Terminal Emulation Manual

First Printing, March 1983

© Digital Equipment Corporation 1983. All Rights Reserved.

The information in this document is subject to change without notice and should not be construed as a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may only be used or copied in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by DIGITAL or its affiliated companies.

CP/M ${ }^{\oplus}, \mathrm{CP}^{\circledR} \mathbf{M}^{\circledR}-80$ and $C P / \mathbf{M}^{\oplus}-86$ are registered trademarks of Digital Research Inc.

Z80 ${ }^{\circledR 1}$ is a registered trademark of Zilog, Inc.
$8088^{\text {º }}$ is a registered trademark of Intel Corporation.
The following are trademarks of Digital Equipment Corporation:

digital ${ }^{\text {m }}$		
DEC	MASSBUS	UNIBUS
DECmate	PDP	VAX
DECsystem-10	P/OS	VMS
DECSYSTEM-20	Professional	VT
DECUS	Rainbow	Work Processor
DECwriter	RSTS	
DIBOL	RSX	

The postage-prepaid READER'S COMMENTS form on the last page of this document requests the user's critical evaluation to assist us in preparing future documentation.
CHAPTER 1 TRANSMITTED CHARACTERS
INTRODUCTION 1
STANDARD KEYS 1
Cursor Control Keys 2
Control Character Keys 3
FUNCTION KEYS 5
Break 5
NUMERIC KEYPAD KEYS 7
CHAPTER RECEIVED CHARACTER PROCESSING
GENERAL 9
RECEIVED CHARACTERS 9
CONSOLE MODE TABLES 9
DISPLAY CHARACTERS 12
CONTROL CHARACTERS 12
ESCAPE AND CONTROL SEQUENCES 13
Error Recovery 14
ANSI-Compatible Sequences 17
Set-Up Feature and Mode Selection 17
ANSI/VT52 Compatibility 21
Scrolling 21
Scrolling Region 22
Origin 22
Cursor Positioning 23
Columns Per Line 25
Auto Wrap 26
Screen Background 26
Line Feed/New Line 27
Keyboard Action 27
Auto Repeat 28
Local Echo (Keyboard Send-Receive) 28
Cursor Key Character Selection 28
Keypad Character Selection 29
Character Sets and Selection 31
Character Attributes 36
Tab Stops 37
Line Attributes 37
Erasing 38
Computer Editing 39
Inserting and Replacing Characters 39
Printing in Terminal Mode 40
Printer Extent in Terminal Mode 41
Print Termination Character in Terminal Mode 42
Reports 42
Adjustments 44
VT52-Compatible Sequences 44
Modes 44
ANSI/VT52 Compatibility 44
Cursor Positioning 45
Keypad Character Selection 46
Character Sets and Selection 48
Erasing 49
Printing in Terminal Mode 50
Reports 51
APPENDIX A PROGRAMMING SUMMARY
GENERAL 52
APPENDIX B CONTROL FUNCTIONS (SEQUENCE FORMATS)
GENERAL 61
Control Functions 61
Escape and Control Sequences 65
Escape Sequence Introducer 65
Intermediate Characters 65
Final Character 65
Control Sequence Format 66
Control Sequence Introducer 66
Parameter Characters 66
Intermediate Characters 66
Final Character 67
APPENDIX C RAINBOW 100 COMPUTER AND VT100 TERMINAL FAMILY DIFFERENCES
DEC'S MULTINATIONAL 8-BIT CHARACTER 68
8-BIT CHARACTER CODES 68
Cl CONTROL CODES 68
KEYBOARD AND 8-BIT KEY CODES 68
KEYBOARD COMPOSE KEY 69
KEYBOARD CONTROL CODE GENERATION 69
SET-UP PURGING KEYBOARD BUFFER 69
WAIT INDICATOR 69
KEYBOARD PRINT SCREEN KEY IN TERMINAL MODE 69
KEYBOARD HOLD-SCREEN KEY 69
KEYBOARD CURSOR KEY MODES 70
PRINTER CHARACTER SETS IN TERMINAL MODE 70
PRINTING BLOB CHARACTERS IN TERMINAL MODE 70
PRINTER PORT DEFAULTS 70
PRINT CURSOR LINE OPERATION IN TERMINAL MODE 70
PRINTER PORT STATUS REQUEST IN TERMINAL MODE 71
TERMINAL ID 71
INSERT AND DELETE LINE ESCAPE SEQUENCES 71
ALTERNATE ROM CHARACTER SETS 71
ALTERNATE ROM AND LED ESCAPE SEQUENCES 71
G2 AND G3 CHARACTER SETS 71
ERASE LINE AND ERASE DISPLAY 72
ABORTING ESCAPE SEQUENCES BY INTERMEDIATE CHARACTERS 72
INSERT AND REPLACE MODES 72
SELFTEST ESCAPE SEQUENCES 72
RESET TO INITIAL STATE 72
VT52 MODE AND ORIGIN MODE 72
AUTOWRAP MODE 72
TAB AND AUTO WRAP 73
DISABLE CURSOR AND ENABLE CURSOR FIRMWARE FUNCTIONS 73
XON/XOFF PROTOCOL AND BUFFER SIZE IN TERMINAL MODE 73
FULL DUPLEX COMMUNICATION PROTOCOL IN TERMINAL MODE 73
HALF DUPLEX COMMUNICATION SUPPORT IN TERMINAL MODE 73
APPENDIX D INTERNATIONAL LANGUAGE KEYBOARDS
FIGURES
FIGURE 1 Standard Key Codes 1
2
2 Editing and Cursor Keys 2
Function Keys 5
Standard Key Codes 52
LK201-AE British Keyboard 74
LK201-AA American (English) Keyboard 74
LK201-AC Canadian (French) Keyboard 75
LK201-AD Danish Keyboard 75
LK201-AF Finnish Keyboard 75
LK201-AG Austrian/German Keyboard 76
LK201-AH Dutch Keyboard 76
LK201-AI Italian Keyboard 76
LK201-AK Swiss (French) Keyboard 77
LK201-AL Swiss (German) Keyboard 77
LK201-AM Swedish Keyboard 77
LK201-AN Norwegian Keyboard 78
LK201-AP Belgian/French Keyboard 78
LK201-AT Flemish Keyboard 78
LK201-AS Spanish Keyboard 79

```
CONTENTS (Cont.)
```

TABLES
TABLE 1 Rainbow 100 Editing and Cursor Keys 2
Cursor Control Key Codes 3
3
Control Codes Generated 4
Rainbow 100 Key Changes 5
Rainbow 100 Function Keys 6
Keypad Codes 7
7-bit US/UK ASCII Characters 10
8-bit Control and Displayable Characters 11
Control Characters Recognized by Rainbow 100Computer12
10 Escape and Control Sequences 15
11 Set-Up Features and Modes 18
ANSI-Specified Modes 19
ANSI-Compatible Private Modes 19
13
Permanently Selected Modes 20
Line Feed/New Line Feature 27
ANSI Cursor Control Key Codes 29
ANSI Keypad Codes 30
7-bit US/UK ASCII Characters 33
8-bit Control and Displayable Characters 34
Special Characters and Line Drawing Character Set 35
VT52 Keypad Codes 47
Special Characters and Line Drawing Set and VT52
Graphics Mode Comparison 49
US/UK ASCII Characters 62
Control and Displayable Characters 63
24
Special Characters and Line Drawing Set 64

PREFACE

INTENDED READER

This guide assumes you are an application programmer.
The information in this guide describes escape sequences and codes used by the Rainbow l00's terminal emulation.

GUIDE ORGANIZATION

CHAPTER 1

TRANSMITTED CHARACTERS

INTRODUCTION

This chapter describes the characters generated by the Rainbow 100 keyboard. The keys are divided into four groups: standard keys, editing and cursor keys, function keys, and numeric keypad keys.

A distinction is also made between console mode and terminal mode on the Rainbow 100 computer.

STANDARD KEYS

The keyboard generates American Standard Code for Information Interchange (ASCII) characters. The standard keys (Figure l) generate lowercase ASCII characters when neither Shift nor Lock is down. These keys generate uppercase ASCII characters when either Shift or Lock is down. Lock does not affect the nonalphabetic keys.

Figure 1: Standard Key Codes

Figure 2: Editing and Cursor Keys

Table l: Rainbow 100 Editing and Cursor Keys

Key Characters Generated

Find	ESC		1
Insert Here	ESC	[2
Remove	ESC	[3
Select	ESC	[4
Prev Screen	ESC	[5
Next Screen	ESC	[6
Up Arrow	ESC	[A
Down Arrow	ESC	[B
Right Ar row	ESC	[C
Left Arrow	ESC	[D

Cursor Control Keys

In ANSI mode the cursor keys generate either application or cursor control sequences. Cursor key mode selects the type of sequence.

The cursor keys generate ANSI cursor commands. The computer selects both cursor key mode and keypad mode. See Cursor Key Character Selection in Chapter 2 for more information.

In VT52 mode, the cursor keys only generate VT52 cursor control sequences. Table 2 lists the ANSI and VT52 compatible cursor key characters.

Table 2: Cursor Control Key Codes

Control Character Keys

Table 3 lists the control characters generated by the keyboard. You can generate control characters in two ways.

- Hold down Ctrl and press any key in Table 3 under the Key Pressed column.
- Press any key in Table 3 under the Dedicated Key column. These dedicated keys generate control characters without the use of Ctrl.

Different computer systems may use each control character differently.

NOTE
The Rainbow 100 computer generates some control characters differently than previous DIGITAL terminals. Table 4 lists the changes.

Table 3: Control Codes Generated

Control Code	VTl02	Previous Terminals Rainbow 100 Computer	
NUL (octal 000)	Ctrl Space Bar	Ctrl @	Ctrl Space Bar
RS (octal 036)	Ctrl	Ctrl	Ctrl Shift
US (octal 037)	Ctrl ?	Ctrl -	Ctrl Shift ?
ESC	Ctrl [,		Ctrl Unshifted [
FS	Ctrl /		Ctrl Unshifted /
GS	Ctrl]		Ctrl Unshifted]

FUNCTION KEYS

The function keys (Figure 3) generate characters used by the computer software or communication system. The following paragraphs describe the function keys.

Break

In terminal mode this key generates a break defined by the computer system when the break enable feature is on. This feature does not affect other key sequences using Break.

Hold down Shift and press Break to generate a long break disconnect. A long break disconnect usually disconnects the terminal from the communication line.

Hold down Ctrl and press Break to transmit the answerback message. In console node this key is not functional.

Figure 3: Function Keys

NUMERIC KEYPAD REYS

These keys generate characters selected by the ANSI/VT52 feature and alternate (application) keypad mode. The computer selects application keypad mode. See Keypad Character Selection in Chapter 2 for more information.

In numeric keypad mode, the numeric keypad generates the numeric, comma, period, and minus sign characters used by the main keyboard. In application keypad mode, the numeric keypad generates escape sequences. Table 6 lists the characters generated by the numeric keypad.

Table 6: Keypad Codes

Key	Numeric Keypad Mode	Mode			VT52 Mode			
		Application			Numeric Keypad Mode	Application		
		Keyp	ad M	Mode		Keyp	ad	Mode
0	0	ESC	0	p	0	ESC	?	p
	060	033	117	160	060	033	077	160
1	1	ESC	0	q	1	ESC	?	q
	061	033	117	161	060	033	077	161
2	2	ESC	0	r	2	ESC	?	r
	062	033	117	162	062	033	077	162
3	3	ESC	0	s	3	ESC	?	s
	063	033	117	163	063	033	077	163
4	4	ESC	0	t	4	ESC	?	t
	064	033	117	164	064	033	077	164
5	5	ESC	0	u	5	ESC	?	u
	065	033	117	165	065	033	077	165
6	6	ESC	0	v	6	ESC	?	v
	066	033	117	166	066	033	077	166
7	7	ESC	0		7	ESC	?	W
	067	033	117	167	067	033	077	167
8	8	ESC	0	x	8	ESC	?	x
	070	033	117	170	070	033	077	170
9	9	ESC	0	Y	9	ESC	?	Y
	071	033	117	171	071	033	077	171

Table 6 (Cont.): Keypad Codes

CHAPTER 2

RECEIVED CHARACTER PROCESSING

GENERAL

This chapter describes how the Rainbow 100 computer processes received characters. There are two types of received characters, display characters and control functions. The chapter covers all display characters and control functions used by the Rainbow 100 computer.

RECEIVED CHARACTERS

The Rainbow 100 computer processes characters according to American National Standards Institute (ANSI) standards X3.64-1979, X3.4-1977, and X3.41-1974. ANSI standard X3.4 defines the American Standard Code for Information Interchange (ASCII). Table 7 shows each ASCII character with its binary, octal, decimal, and hexadecimal values. ASCII corresponds to the International Standards Organization (ISO) Standard 646 and International Telegraph and Telephone Consultive Committee (CCITT) Alphabet 5.

The Rainbow 100 computer processes a received character based on character types defined by ANSI. Position in the ASCII table tells you whether a character is a control function or display character. The ASCII table is 8 columns wide and 16 rows long. The control functions are in columns 0 and 1 . The display characters are in columns 2 through 7. In addition to the characters shown in Table 7, the Rainbow 100 computer displays the 8-bit character shown in Table 8.

CONSOLE MODE TABLES

In terminal mode, however, it depends on the communication port's configurations. In order to correctly process the 8-bit characters in Table 8, you must have the communication port parameter set to 8 data bits. If it is set to 7 data bits the high order bit is set to zero and the character is processed as though in Table 7.

Table 7: 7-bit US/UK ASCII Characters

	column	0		1		2		3		4		5		6		7			
		${ }^{0} 0$																	
0	0000	NUL	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	DLE	$\left[\begin{array}{l} 20 \\ 16 \\ 10 \end{array}\right.$	SP	$\begin{array}{\|l\|l} \hline 40 \\ 32 \\ 20 \\ \hline \end{array}$	0	$\begin{array}{\|l\|l\|} \hline 60 \\ 48 \\ 30 \\ \hline \end{array}$	@	$\begin{array}{\|c\|} \hline 100 \\ 64 \\ 40 \\ \hline \end{array}$	P	$\begin{array}{\|c\|c\|} \hline 120 \\ 80 \\ 50 \\ \hline \end{array}$,	$\begin{array}{\|l\|} \hline 140 \\ 96 \\ 60 \\ \hline \end{array}$	p	\|l	l	160
1	0001	SOH	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	$\underset{(\times 0 \mathrm{~N})}{\mathrm{DC}}$	$\begin{array}{\|l\|} \hline 21 \\ 17 \\ 11 \\ \hline \end{array}$!	$\begin{array}{\|l\|} \hline 41 \\ 33 \\ 21 \\ \hline \end{array}$	1	$\begin{array}{\|l\|} \hline 61 \\ 49 \\ 31 \\ \hline \end{array}$	A	$\begin{array}{\|l\|} \hline 101 \\ 65 \\ 41 \\ \hline \end{array}$	Q	$\begin{array}{\|l\|} \hline 121 \\ 81 \\ 51 \\ \hline \end{array}$	a	$\begin{array}{\|l\|} \hline 141 \\ 97 \\ 61 \\ \hline \end{array}$	q	161 1113 71 71		
2	0010	STX	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & \hline \end{aligned}$	DC2	$\begin{array}{\|l\|} \hline 22 \\ 18 \\ 12 \\ \hline \end{array}$	'	$\begin{array}{\|l\|l\|} \hline 42 \\ 34 \\ 22 \\ \hline \end{array}$	2	$\begin{array}{\|l\|} \hline 62 \\ 50 \\ 32 \\ \hline \end{array}$	B	$\begin{array}{\|c} 102 \\ 66 \\ 42 \\ \hline \end{array}$	R	$\begin{array}{\|c\|} \hline 122 \\ 82 \\ 52 \\ \hline \end{array}$	b	$\begin{array}{\|c} \hline 142 \\ 98 \\ 62 \end{array}$	r	162 114 72 72		
3	0011	ETX	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & \hline \end{aligned}$	DC3	$\begin{aligned} & \hline 23 \\ & 19 \\ & 13 \\ & \hline \end{aligned}$	*\#/E	$\begin{aligned} & \hline 43 \\ & 35 \\ & 23 \\ & \hline \end{aligned}$	3	$\begin{array}{\|l\|l\|} \hline 63 \\ 51 \\ 33 \\ \hline \end{array}$	C	$\begin{array}{\|c} 103 \\ 67 \\ 43 \\ \hline \end{array}$	S	$\begin{gathered} 1 \begin{array}{c} 123 \\ 83 \\ 53 \\ \hline \end{array} \\ \hline \end{gathered}$	c	$\begin{array}{\|c} 143 \\ 99 \\ 63 \\ \hline \end{array}$	s	$\begin{array}{r}163 \\ 115 \\ 73 \\ \hline\end{array}$		
4	0100	EOT	$\begin{aligned} & 4 \\ & 4 \\ & 4 \\ & \hline \end{aligned}$	DC4	$\begin{array}{\|l\|} \hline 24 \\ 20 \\ 14 \\ \hline \end{array}$	\$	$\begin{array}{\|l\|} \hline 44 \\ 36 \\ 24 \\ \hline \end{array}$	4	$\begin{array}{\|l\|} \hline 64 \\ 52 \\ 34 \\ \hline \end{array}$	D	$\begin{gathered} 104 \\ 68 \\ 44 \\ \hline \end{gathered}$	T	$\begin{array}{\|l\|} \hline 124 \\ 84 \\ 54 \\ \hline \end{array}$	d	$\begin{gathered} 144 \\ 100 \\ 64 \\ \hline \end{gathered}$	t	164 116 74 19		
5	0101	ENQ	$\begin{aligned} & \hline 5 \\ & 5 \\ & 5 \\ & \hline \end{aligned}$	NAK	$\begin{array}{\|l} \hline 25 \\ 21 \\ 15 \\ \hline \end{array}$	\%	$\begin{array}{\|l} \hline 45 \\ 37 \\ 25 \\ \hline \end{array}$	5	$\begin{array}{\|l\|l\|} \hline 65 \\ 53 \\ 35 \\ \hline \end{array}$	E	$\begin{array}{\|c} 105 \\ 69 \\ 45 \\ \hline \end{array}$	U	$\begin{array}{\|l\|} \hline 125 \\ 85 \\ 55 \\ \hline \end{array}$	e	$\begin{array}{\|c\|} 145 \\ 101 \\ 65 \\ \hline \end{array}$	u	165 117 75 15		
6	0110	ACK	$\begin{aligned} & \hline 6 \\ & 6 \\ & 6 \\ & \hline \end{aligned}$	SYN	$\begin{aligned} & \hline 26 \\ & 22 \\ & 16 \\ & \hline \end{aligned}$	\&	$\begin{aligned} & 46 \\ & 38 \\ & 26 \\ & \hline \end{aligned}$	6	$\begin{aligned} & \hline 66 \\ & 54 \\ & 36 \\ & \hline \end{aligned}$	F	$\begin{array}{\|c} 106 \\ 70 \\ 46 \\ \hline \end{array}$	V	$\begin{array}{\|c\|} \hline 126 \\ 86 \\ 56 \\ \hline \end{array}$	f	$\begin{array}{\|c} 146 \\ 102 \\ 66 \\ \hline \end{array}$	v	(166118 118 76 16		
7	0 111	BEL	$\begin{aligned} & 7 \\ & 7 \\ & 7 \\ & \hline \end{aligned}$	ETB	$\begin{array}{\|l\|} 27 \\ 23 \\ 17 \\ \hline \end{array}$	'	$\begin{array}{\|} \hline 47 \\ 39 \\ 27 \\ \hline \end{array}$	7	$\begin{array}{\|r\|} \hline 67 \\ 55 \\ \hline 37 \\ \hline \end{array}$	G	$\begin{array}{\|c} 107 \\ 71 \\ 47 \\ \hline \end{array}$	W	$\begin{array}{\|c\|} \hline 127 \\ 87 \\ 57 \\ \hline \end{array}$	g	$\begin{array}{\|c\|} \hline 147 \\ 103 \\ 67 \\ \hline \end{array}$	w	$\begin{array}{r}167 \\ 119 \\ 77 \\ \hline 18\end{array}$		
8	1000	BS	$\begin{array}{\|c\|} \hline 10 \\ 8 \\ \hline 8 \\ \hline \end{array}$	CAN	$\begin{array}{\|l\|} \hline 30 \\ 24 \\ \hline 18 \\ \hline \end{array}$	$($	$\begin{array}{\|l\|l\|} \hline 50 \\ 40 \\ 28 \\ \hline \end{array}$	8	$\begin{array}{\|l\|} \hline 70 \\ 56 \\ 38 \\ \hline \end{array}$	H	$\begin{array}{\|c\|} \hline 10 \\ 72 \\ 48 \\ \hline \end{array}$	X	$\begin{array}{\|c\|} \hline 138 \\ 88 \\ 58 \\ \hline \end{array}$	h	$\begin{array}{\|c\|} \hline 150 \\ 104 \\ 68 \\ \hline \end{array}$	x	170 120 78 18		
9	1001	HT	$\begin{array}{\|c} \hline 11 \\ 9 \\ 9 \\ \hline \end{array}$	EM	$\begin{array}{\|l} \hline 31 \\ 25 \\ 19 \\ \hline \end{array}$)	$\begin{array}{\|l\|} \hline 51 \\ 41 \\ 29 \\ \hline \end{array}$	9	$\begin{array}{\|l\|} \hline 71 \\ 57 \\ 39 \\ \hline \end{array}$	1	$\begin{array}{\|l} \hline 111 \\ 73 \\ 49 \\ \hline \end{array}$	Y	$\begin{array}{\|c} 131 \\ 89 \\ 59 \\ \hline \end{array}$	i	$\begin{array}{\|l\|} \hline 151 \\ 105 \\ 69 \\ \hline \end{array}$	y	171 121 79 79		
10	1010	LF	$\begin{array}{\|c\|} \hline 12 \\ 10 \\ A \\ \hline \end{array}$	SUB	$\begin{array}{\|c\|} \hline 32 \\ 26 \\ 1 A \end{array}$	*	$\begin{array}{\|l\|} \hline 52 \\ 42 \\ 2 A \\ \hline \end{array}$:	$\begin{array}{\|l\|} \hline 72 \\ 58 \\ 3 A \\ \hline \end{array}$	J	$\begin{array}{\|l\|} \hline 112 \\ 74 \\ 4 \mathrm{~A} \\ \hline \end{array}$	Z	$\begin{array}{\|c} 132 \\ 99 \\ 5 A \\ \hline \end{array}$	j	$\begin{aligned} & \hline 152 \\ & 106 \\ & 6 \mathrm{~A} \end{aligned}$	2	172 122 78 71		
11	1011	VT	$\begin{array}{\|c} 13 \\ 11 \\ 18 \\ \hline \end{array}$	ESC	$\begin{aligned} & 33 \\ & 27 \\ & 18 \\ & \hline \end{aligned}$	+	$\begin{aligned} & 53 \\ & 43 \\ & 28 \\ & \hline \end{aligned}$;	$\begin{array}{\|l\|} \hline 73 \\ 59 \\ 38 \\ \hline \end{array}$	K	$\begin{array}{\|l\|l\|} \hline 113 \\ 75 \\ 48 \\ \hline \end{array}$	[$\begin{array}{\|c\|} \hline 133 \\ 99 \\ 58 \\ \hline \end{array}$	k	$\begin{array}{\|l\|l\|} \hline 153 \\ 107 \\ 68 \end{array}$	\{	$\begin{array}{r}173 \\ 123 \\ 78 \\ \hline 18 \\ \hline 1\end{array}$		
12	1100	FF	$\begin{array}{\|c} \hline 14 \\ 12 \\ c \\ \hline \end{array}$	FS	$\begin{array}{\|l\|} \hline 34 \\ 28 \\ 10 \\ \hline \end{array}$,	$\begin{array}{\|l\|} \hline 54 \\ 44 \\ 20 \\ \hline \end{array}$	$<$	$\begin{array}{\|l\|} \hline 74 \\ 60 \\ 30 \\ \hline \end{array}$	L	$\begin{array}{\|l\|} \hline 114 \\ 76 \\ 76 \\ \hline \end{array}$	1	$\begin{array}{\|r\|} \hline 134 \\ 992 \\ 56 \\ \hline \end{array}$	1	$\begin{array}{l\|} \hline 154 \\ 108 \\ 6 \mathrm{C} \\ \hline \end{array}$	1	174 124 76 18		
13	1101	CR	$\begin{array}{\|l\|l} \hline 15 \\ 13 \\ \hline \\ \hline \end{array}$	GS	$\begin{array}{\|l\|} \hline 35 \\ 29 \\ 10 \\ \hline \end{array}$	-	$\begin{array}{\|l} \hline 55 \\ 45 \\ 20 \\ \hline \end{array}$	=	$\begin{aligned} & 75 \\ & 61 \\ & 60 \\ & \hline \end{aligned}$	M	$\begin{array}{\|c} 1157 \\ 77 \\ 40 \\ \hline \end{array}$]	$$	m	$\begin{array}{r} 150 \\ \hline 159 \\ 60 \\ \hline 60 \\ \hline \end{array}$	\}	175 175 125 70		
14	1110	SO	$\begin{array}{\|c\|c\|} \hline 16 \\ 14 \\ \hline \end{array}$	RS	$\begin{array}{\|c\|} \hline 36 \\ 30 \\ 1 E \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline 56 \\ 46 \\ 2 E \\ \hline \end{array}$	>	$\begin{aligned} & 76 \\ & 62 \\ & 68 \\ & \hline \end{aligned}$	N	$\begin{array}{\|l\|} \hline 1168 \\ 78 \\ \hline 8 \\ \hline \end{array}$	\wedge	$\begin{array}{\|c\|} \hline 136 \\ 94 \\ 55 \\ \hline \end{array}$	n	$\begin{aligned} & 156 \\ & 110 \\ & 66 \\ & \hline \end{aligned}$	\sim	176 126 $7 E$ 717		
15	1111	SI	$\begin{array}{\|c} \hline 17 \\ 15 \\ \hline \\ \hline \end{array}$	US	$\begin{aligned} & 37 \\ & 31 \\ & 31 \\ & 17 \end{aligned}$	1	$\begin{array}{\|l\|} \hline 57 \\ \hline 47 \\ 2 F \\ \hline \end{array}$?	$\begin{aligned} & 77 \\ & 63 \\ & 63 \\ & 3 F \end{aligned}$	0	$\begin{aligned} & 171 \\ & 79 \\ & 79 \end{aligned}$	-	$\begin{array}{\|c\|c\|} \hline 137 \\ 95 \\ 5 F \\ \hline \end{array}$	0	$\begin{array}{\|l\|l\|} \hline 157 \\ 111 \\ 67 \\ \hline \end{array}$	DEL	177 127 77		
		NOTE: DEPENDS ON THE CHARACTER SET SELECTED; U.S. $=$ \# U.K. $=£$				T SEL	CTED	U.S. $=$	U.K.		$\mathrm{C}_{\mathrm{Cl}}^{\mathrm{Cl}} \mathrm{GR}$								

KEY

8		9		10		11		12		13		14		15		COLUMN		
${ }^{1} 00000$		${ }^{1} 0$														$\begin{array}{lll} { }^{b 8} & & \text { bITS } \\ & b 7 & \text { bits } \\ & b 6 & b 5 \\ b 4 & \text { b3 } & b 2 \\ b 4 & b 1 \end{array}$		
	$\begin{array}{\|c} 200 \\ 128 \\ 80 \\ 80 \end{array}$		$\begin{gathered} 220 \\ 144 \\ 90 \\ 9 \end{gathered}$		$\begin{array}{r} \hline 240 \\ y^{240} \\ \mathbf{1}^{40} \\ \hline \end{array}$	-	$\begin{array}{\|c\|c\|} \hline 260 \\ 176 \\ 80 \\ \hline \end{array}$	À	$\begin{array}{\|c\|} \hline 300 \\ 192 \\ 192 \\ \hline \end{array}$		$\begin{gathered} 320 \\ 208 \\ 00 \end{gathered}$	à	\|340 224 E0 0		$\left.\begin{gathered} 360 \\ 240 \\ \mathrm{~F}, \end{gathered} \right\rvert\,$	0000	0	
	$\begin{gathered} 201 \\ \begin{array}{c} 129 \\ 819 \end{array} \end{gathered}$		$\begin{array}{\|c\|} \hline 221 \\ 145 \\ 91 \\ \hline \end{array}$	i	$\begin{gathered} 241 \\ 161 \\ \text { A1 } \\ \hline \end{gathered}$	\pm	$\begin{array}{\|c} 261 \\ 177 \\ 817 \end{array}$	Á	$\begin{gathered} 301 \\ 193 \\ c 1 \end{gathered}$	N	$\begin{gathered} 321 \\ 209 \\ 0 . \end{gathered}$	á	$\begin{array}{\|c\|c\|} \left.\hline \begin{array}{c} 341 \\ 225 \\ \\ \hline 1 \end{array}\right) \end{array}$	n	$\begin{array}{\|c\|} \hline 361 \\ 241 \\ \text { F1 } \end{array}$	0001	1	
	$\begin{gathered} 202 \\ 130 \\ 820 \\ 82 \end{gathered}$		$\begin{array}{\|c} \hline 222 \\ 146 \\ 92 \\ \hline \end{array}$	¢	$\begin{gathered} 242 \\ \text { 242 } \\ \hline 22 \end{gathered}$	2	$\begin{array}{\|c} 262 \\ 178 \\ 82 \end{array}$	\hat{A}	$\begin{gathered} 302 \\ 1924 \\ c \\ \hline \end{gathered}$	O	$\begin{gathered} 322 \\ 210 \\ 210 \\ \hline \end{gathered}$	â	$\begin{array}{\|c\|c\|} \hline 342 \\ 226 \\ \text { 22 } \end{array}$	i	$\begin{gathered} 362 \\ 242 \\ 242 \\ \hline 2 \end{gathered}$	0010	2	
	$\begin{array}{\|c\|c\|} \hline 203 \\ 131 \\ 83 \\ \hline 1 \end{array}$		$\begin{array}{\|c\|} \hline 223 \\ 147 \\ 93 \end{array}$	£	$\begin{array}{c\|} \hline 243 \\ 1633 \\ \hline \text { A3 } \\ \hline \end{array}$	3	$\begin{array}{\|c} 263 \\ 179 \\ 83 \\ \hline \end{array}$	A	$\begin{array}{\|c} \hline 303 \\ 195 \\ c 3 \end{array}$	Ó	$\begin{gathered} 323 \\ 211 \\ \text { D3 } \end{gathered}$	ª	$\begin{array}{\|c\|c\|} 343 \\ 247 \\ E 3 \end{array}$	'	$\left.\begin{array}{\|c} 363 \\ 243 \\ 243 \\ F 3 \end{array} \right\rvert\,$	0011	3	
IND	$\begin{array}{\|c} 204 \\ \hline 132 \\ 84 \\ \hline \end{array}$		$\begin{array}{\|c} 224 \\ 148 \\ 94 \\ \hline \end{array}$		$\begin{gathered} 244 \\ \hline 164 \\ \text { 24 } \\ \hline \end{gathered}$		$\begin{array}{\|c} 2184 \\ 88 \\ 84 \\ \hline \end{array}$	$\ddot{\text { A }}$	$\begin{gathered} 304 \\ 196 \\ \text { C4 } \\ \hline \end{gathered}$	0	$\begin{gathered} 324 \\ 221 \\ 21 \\ \hline \end{gathered}$	$\ddot{\square}$	$\begin{array}{\|l\|} \hline 344 \\ 248 \\ \text { 284 } \\ \hline \end{array}$	ô	$\begin{array}{\|c\|c\|} \hline 364 \\ 244 \\ 54 \\ \hline \end{array}$	0100	4	
NEL	$\begin{array}{\|r} 205 \\ 133 \\ 85 \\ \hline \end{array}$		$\begin{array}{\|c} 225 \\ 149 \\ 99 \\ \hline \end{array}$	7	$\begin{array}{\|c\|} \hline 245 \\ 165 \\ \hline \\ \hline \end{array}$	μ	$\begin{array}{\|c} \hline 265 \\ \hline 181 \\ \hline 5 \\ \hline \end{array}$	A	$\begin{array}{\|c} \hline 305 \\ 197 \\ \text { c5 } \\ \hline \end{array}$	0	$\begin{array}{r} 325 \\ 213 \\ 0 \\ \hline \end{array}$	a	$\begin{array}{r} 345 \\ \begin{array}{c} 329 \\ 29 \\ 5 \end{array} \\ \hline \end{array}$	\%	$\begin{gathered} 365 \\ 245 \\ \hline \end{gathered}$	0101	5	
	$\begin{gathered} 206 \\ 134 \\ 86 \\ \hline 86 \end{gathered}$		$\begin{gathered} 226 \\ 150 \\ 90 \\ 90 \end{gathered}$		$\begin{array}{\|l\|l} 246 \\ 166 \\ \text { A6 } \end{array}$	I	$\begin{array}{\|c} 266 \\ 182 \\ 86 \\ \hline \end{array}$	\boldsymbol{E}	$\begin{array}{\|c} 306 \\ 198 \\ c 6 \\ \hline \end{array}$	0	$\begin{gathered} 326 \\ 24 \\ 24 \\ 06 \end{gathered}$	æ	$\begin{array}{\|c} 346 \\ 230 \\ \text { 236 } \end{array}$	\because	$\left.\begin{gathered} 366 \\ 246 \\ \\ \hline 6 \end{gathered} \right\rvert\,$	0110	6	
	$\begin{array}{\|l\|} \hline 207 \\ 135 \\ 87 \\ \hline \end{array}$		$\begin{array}{\|r\|} \hline 227 \\ 151 \\ 97 \\ \hline \end{array}$	§	$\begin{array}{\|c\|} \hline 247 \\ \hline 167 \\ \hline 77 \\ \hline \end{array}$	-	$\begin{array}{\|c} 268 \\ 883 \\ 87 \\ \hline \end{array}$	Ç	$\begin{array}{\|c} \hline 307 \\ 199 \\ \text { c7 } \\ \hline \end{array}$	CE	$\begin{array}{\|c\|c\|} \hline 327 \\ 215 \\ 07 \\ \hline \end{array}$	¢	$\begin{array}{\|c} 347 \\ 231 \\ \\ \hline \end{array}$	œ	$\begin{array}{\|c\|} \hline 367 \\ 247 \\ \text { F7 } \\ \hline \end{array}$	0111	7	
HTS	$\begin{array}{\|c} \hline 210 \\ 136 \\ 88 \\ \hline \end{array}$		$\begin{gathered} 230 \\ 152 \\ 98 \\ \hline \end{gathered}$	a	$\begin{array}{\|c\|} \hline 250 \\ 168 \\ A 8 \\ \hline \end{array}$		$\begin{array}{\|c} 278 \\ 184 \\ 88 \\ \hline \end{array}$	E	$\begin{array}{\|c\|} \hline 310 \\ 200 \\ \text { c8 } \\ \hline \end{array}$	\varnothing	$\begin{array}{\|c} \hline 330 \\ 216 \\ \text { 18 } \end{array}$	è	$\begin{array}{\|c} \hline 350 \\ 232 \\ 58 \\ \hline 8 \end{array}$	\varnothing	$\begin{gathered} 370 \\ 248 \\ 248 \\ \hline \end{gathered}$	1000	8	
	$\begin{array}{\|c\|c\|} \hline 211 \\ 137 \\ 89 \end{array}$		$\begin{array}{\|c} 231 \\ 153 \\ 99 \\ \hline \end{array}$	(c)	$\begin{array}{r\|} \hline 251 \\ \begin{array}{r} 169 \\ \\ \hline 99 \end{array} \\ \hline \end{array}$	1	$\begin{array}{\|c} \hline 271 \\ 185 \\ 89 \\ \hline \end{array}$	E	$\begin{array}{\|c\|} \hline 311 \\ 201 \\ \text { co } \end{array}$	Ù	$\begin{array}{\|c\|c\|} \hline 331 \\ 217 \\ \text { 17 } \end{array}$	é	$\begin{array}{\|c\|} \hline 351 \\ 233 \\ \text { E9 } \end{array}$	ù	$\begin{gathered} 371 \\ 249 \\ \text { F9 } \end{gathered}$	1001	9	
	$\begin{array}{\|c} 212 \\ 138 \\ 88 \\ \hline 8 \end{array}$		$\begin{gathered} 232 \\ 154 \\ 9 A \\ 94 \end{gathered}$	\underline{a}	$\begin{array}{\|c} 252 \\ 170 \\ A A \\ \hline \end{array}$	$\underline{0}$	$\begin{array}{\|c\|c\|} \hline 272 \\ 186 \\ 8 A \end{array}$	\hat{E}	$\left.\begin{gathered} 312 \\ 202 \\ C A \end{gathered} \right\rvert\,$	Ú	$\left[\begin{array}{c} 332 \\ 218 \\ \text { DA } \end{array}\right.$	$\hat{\text { en }}$	$\begin{aligned} & 352 \\ & \begin{array}{c} 334 \\ \text { EA } \end{array} \end{aligned}$	'	$\left[\begin{array}{c} 372 \\ 250 \\ \text { FA } \end{array}\right]$	1010	10	
	$\begin{array}{\|c} 213 \\ 139 \\ 88 \\ \hline \end{array}$	CSI	$\begin{gathered} 233 \\ \hline 155 \\ 98 \\ \hline \end{gathered}$	$<$	$\begin{array}{\|c\|} \hline 253 \\ 177 \\ \hline \text { AB } \\ \hline \end{array}$	>	$\begin{array}{\|c} 273 \\ 187 \\ 88 \\ \hline \end{array}$	$\ddot{\text { E }}$	$\begin{array}{\|r} 313 \\ 203 \\ C B \\ \hline \end{array}$	$\hat{\mathbf{U}}$	$\begin{gathered} 333 \\ 239 \\ 19 \\ \hline \end{gathered}$	$\ddot{\text { ë }}$	$\begin{gathered} 353 \\ 235 \\ \text { 235 } \\ \hline \end{gathered}$	ut	$\begin{array}{\|c\|c\|} \hline 373 \\ 251 \\ \hline \end{array}$	1011	11	
	$\begin{array}{\|l\|} \hline 214 \\ 140 \\ 80 \end{array}$		$\begin{array}{\|l\|} \hline 234 \\ 156 \\ 90 \\ \hline \end{array}$		$\begin{array}{\|c\|} \hline 254 \\ \hline 172 \\ A C \end{array}$	$1 / 4$	$\begin{array}{\|c\|} \hline 278 \\ 188 \\ 8 \mathrm{C} \end{array}$	i	$\begin{array}{\|c\|c\|} \hline 314 \\ 204 \\ \text { cc } \end{array}$	ij	$\left\|\begin{array}{c} 334 \\ 220 \\ 00 \end{array}\right\|$	i	$\begin{array}{\|l\|} \hline 354 \\ 236 \\ \text { EE } \end{array}$	ii	$\begin{array}{\|c} \hline 374 \\ 252 \\ \text { FC } \\ \hline \end{array}$	1100	12	
RI	$\begin{array}{\|r\|} \hline 215 \\ 141 \\ 80 \\ \hline \end{array}$		$\begin{array}{\|c} 235 \\ 157 \\ 90 \\ \hline \end{array}$		$\begin{array}{\|c} 255 \\ \hline 173 \\ A D \end{array}$	$1 / 2$	$\begin{gathered} 275 \\ 189 \\ 88 \\ \hline \end{gathered}$	í	$\begin{array}{r\|} \hline 315 \\ 205 \\ \text { co } \\ \hline \end{array}$	$\ddot{\mathrm{y}}$	$\begin{gathered} 335 \\ 221 \\ 00 \end{gathered}$	I'	$\begin{array}{\|c} 355 \\ 237 \\ \text { 230 } \\ \hline \end{array}$	\#̈	$\begin{array}{\|c} 375 \\ 253 \\ \text { FD } \\ \hline \end{array}$	1101	13	
SS2	$\begin{gathered} 216 \\ 142 \\ 88 \\ 88 \end{gathered}$		$\begin{gathered} 236 \\ 158 \\ 98 \\ \hline 9 \end{gathered}$		$\begin{gathered} 256 \\ 174 \\ \text { AE } \\ \hline \end{gathered}$		$\begin{gathered} 276 \\ 190 \\ 8 E \end{gathered}$	$\hat{\imath}$	$\begin{array}{\|c} \hline 316 \\ 206 \\ \text { CE } \\ \hline \end{array}$		$\begin{gathered} 336 \\ 222 \\ 22 \\ \hline 0 \end{gathered}$	$\hat{1}$	\|cc	c356 238 EE		$\begin{array}{\|c} \hline 376 \\ 254 \\ \mathrm{FE} \\ \hline \end{array}$	1110	14
SS3	$\begin{gathered} 217 \\ \hline 143 \\ 88 \\ \hline 8 \end{gathered}$		$\begin{gathered} 237 \\ \hline 159 \\ 9 F \\ \hline \end{gathered}$		(17 $\begin{gathered}\text { 257 } \\ \\ 175 \\ \text { AF }\end{gathered}$	i	$\begin{array}{\|c} 277 \\ 191 \\ \text { BF } \\ \hline \end{array}$	i	$\begin{array}{\|c} \hline 317 \\ 207 \\ \text { CF } \\ \hline \end{array}$	β	$\begin{gathered} 337 \\ 233 \\ 223 \\ \hline \end{gathered}$	i	$\begin{gathered} 357 \\ \hline 239 \\ \mathrm{EF} \\ \hline \end{gathered}$			1111	15	

KEY

Display characters are received characters displayed on the screen. The actual character displayed depends on the character set selected. You select the character set by using control functions. See Character Sets and Selection in this chapter for more information.

CONTROL CHARACTERS

These single-character control functions start, modify, or stop terminal operations; the control functions are not displayed. Table 9 defines the control characters recognized by the terminal. All other control characters are ignored.

Each control character in this chapter has a mnemonic, listed in Table 9. The mnemonic is an abbreviation of the control character name.

Table 9: Control Characters Recognized by Rainbow 100 Computer

Character	Mnemonic	Octal Code	Function
Null	NUL	000	Ignored when received (not stored in input buffer) and used as a fill character
Enquire	ENQ	005	Transmits answerback message
Bell	BEL	007	Generates bell tone.
Backspace	BS	010	Moves cursor to the left one character position; if cursor is at left margin, no action occurs.
Horizontal tab	HT	011	Moves cursor to next tab stop, or to right margin if there are no more tab stops.
Line Feed	LF	012	Causes a line feed or a new operation. (See Line Feed/New Line). Also causes printing in terminal mode only if auto print operation is selected.
Vertical tab	VT	013	Processed as LF.
Form feed	FF	014	Processed as LF.
Carriage return	CR	015	Moves cursor to left margin on current line.
Shift out	SO	016	Selects Gl character set designated by a select character set sequence.
Shift in	SI	017	Selects GO character set designated by a select character set sequence.

Table 9 (Cont.): Control Characters Recognized by Rainbow 100 Computer

Character	Mnemonic	Octal Code	Function
$\begin{aligned} & \text { Device } \\ & \text { control } 1 \end{aligned}$	DC1	021	Processed as XON. DC1 causes the Rainbow 100 computer to resume (if previously stopped by XOFF) transmitting characters only in terminal mode.
Device control 3	DC3	023	Processed as XOFF. DC3 causes the Rainbow 100 computer to stop transmitting all characters except XOFF and XON.
Cancel	CAN	030	If received during an escape or control sequence, cancels the sequence and displays substitution character (cursor).
Substitute	SUB	032	Processed as CAN.
Escape	ESC	033	Processed as an escape sequence introducer.
Index	IND	204	Processes a LF.
Next line	NEL	205	Processes a CR LF sequence.
Horizontal	HTS	210	Sets a horizontal tab at the current cursor location.
Reverse index	RI	215	Equals a reverse line feed.
Single shift 2	SS 2	216	Selects G2 character set for the next character only.
Single shift 3	SS3	217	Selects G3 character set for the next character only.
Control sequence introducer	CSI	233	Equals an ESC [.

ESCAPE AND CONTROL SEQUENCES

Escape and control sequences provide additional control functions not provided by the single-character controls of the character set. These multiple-character sequences are not displayed; instead, they control Rainbow 100 computer operation. Escape and control sequences are defined by ANSI X3.41-1977 and X3.64-1979. See Appendix B for more information about sequences and sequence formats.

The ANSI-compatible control functions in this user guide have a mnemonic assigned by ANSI. If the control function is an ANSI private control function (defined by DIGITAL), the mnemonic begins with DEC. The escape and control sequences shown here use ASCII characters. You must type the characters in the sequences exactly as shown (upper or lowercase). The text provides the octal equivalent of each character in the sequence as a second reference. See Table 7 for decimal and hexadecimal representations.

The following section groups sequences by software compatibility (ANSI or VT52) and function (Table l0). Appendix A summarizes all control functions.

Error Recovery

Current standards do not specify the action performed when the terminal receives a control function with an error. Errors are incorrect parameters; invalid control functions. The terminal usually recovers from these errors by performing as much of the function as possible. The specific error recovery procedures are as follows:

- Unrecognized control functions are usually ignored.
- Unsupported control functions (valid control functions not listed in this user guide) are usually ignored, but may produce unexpected results.
- If a 7-bit control character from Table 7 is received within a sequence, the terminal performs the function of the control character, followed by the function of the sequence.
- If cancel (CAN, octal 030) or substitute (SUB octal 032) is received during a sequence, the current sequence is aborted. The terminal displays the substitute character, followed by characters in the sequence received after CAN or SUB.
- If an 8-bit control character from Table 8 is received, the current escape sequence is aborted, and the function of the character is performed.
- If an 8-bit displayable character is received from Table 8, the current escape sequence continues and the 8-bit character is displayed.

Ansi-Compatible Sequences

```
Set-Up Feature and Mode Selection
    Set mode (SM) and reset mode (RM)
ANSI/VT52 Compatibility
        ANSI/VT52 mode (DECANM)
Scrolling
        Scroll mode (DECSCLM)
Scrolling Region
        Set top and bottom margins (DECSTBM)
Origin
        Origin mode (DECOM)
Cursor Positioning
        Cursor up (CUU)
        Cursor down (CUD)
        Cursor forward (CUF)
        Cursor backward (CUB)
        Cursor position (CUP)
        Horizontal and vertical position (HVP)
        Index (IND)
        Reverse index (RI)
        Next line (NEL)
        Save cursor (DECSC)
        Restore cursor (DECRC)
Columns Per Line
        Column mode (DECCOLM)
Auto Wrap
        Auto wrap mode (DECAWM)
Screen Background
        Screen mode (DECSCNM)
    Line Feed/New Line
        Line Feed/New Line mode (LNM)
    Keyboard Action
        Keyboard action mode (KAM)
Auto Repeat
        Auto repeat mode (DECARM)
    *Local Echo
        Send-receive mode (SRM)
Cursor Key Character Selection
        Cursor key mode (DECCKM)
Keypad Character Selection
        Numeric keypad (DECKPNM)
        Application keypad (DECKPAM)
Character Sets and Selection
        Select character set (SCS)
        Single shift 2 (SS2)
        Single shift 3 (SS3)
Character Attributes
        Select graphic rendition (SGR)
Tab Stops
        Horizontal tab sets (HTS)
        Tabulation clear (TBC)
Line Attributes
        Double-height line (DECDHL)
        Single-width line (DECSWL)
        Double-width line (DECDWL)
```


Ansi-Compatible Sequences

```
Erasing
    Delete character (DCH)
    Insert line (IL)
    Delete line (DL)
Inserting and Replacing Characters
    Insertion-replacement mode (IRM)
*Printing
    Media copy (MC)
*Printer Extent
    Printer extent mode (DECPEX)
*Print Termination Character
    Printer form feed mode (DECPFF)
Reports
    Device status report (DSR)
    Cursor position report (CPR)
    Device attributes (DA)
    Identify terminal (DECID)
Reset
    Reset to initial state (RIS)
Adjustments
    Screen alignment display (DECALN)
Modes
ANSI/VT52 Compatibility
    ANSI mode (DECANM)
Cursor Positioning
    Cursor up
    Cursor down
    Cursor right
    Cursor left
    Cursor to home
    Direct cursor address
    Reverse line feed
Keypad Character Selection
    Application keypad mode
    Numeric keypad mode
Character Sets and Selection
    Enter graphics mode
    Exit graphics mode
Erasing
    Erase to end of line
    Erase to end of screen
*Printing
    Auto print
    Print controller
    Print cursor line
    Print screen
Reports
    Identify
*Only in terminal mode.
```


ANSI-Compatible Sequences

ANSI-compatible sequences meet ANSI standards X3.64-1979 and X3.41-1974. This section describes the ANSI control functions used by the terminal. You can select ANSI compatibility from the keyboard in Set-Up or have the computer use a sequence. (See VT52-Compatible Sequences in this chapter).

Set-Up Feature and Mode Selection - Set-Up features change how the Rainbow 100 computer operates. You can select these features from the keyboard or through escape sequences.

Some Set-Up features are modes. A mode affects Rainbow 100 computer operation. The Rainbow 100 computer uses the selected mode until you or an escape sequence changes the selection. Table ll lists Set-Up features and modes. Modes are changed by using set mode (SM) and reset mode (RM) sequences. Set and reset the terminal modes by using the following sequences.

NOTE

```
Ps represents a variable parameter
selected from a list of parameters. A
series of asterisks (***) represent the
parameter in the octal sequence. The
parameter is transmitted using decimal
ASCII characters. When you set several
modes with a single SM or RM sequence, a
semicolon (i, octal 073) separates
parameters.
```

Set Mode (SM)

Sets one or more modes specified by selective parameters (Ps) in the parameter string.

Reset Mode (RM)

Resets one or more modes specified by selective parameters (Ps) in the parameter string.

Set-Op Feature or Mode	Change by Escape Sequences	Change from Keyboard in Set-Up
On/off line**	No	Yes
Columns per line	Yes (DECCOLM)	Yes
Tab stops	Yes (HTS/TBC)*	Yes
Scroll rate	No	Yes
Auto repeat	Yes (DECARM)	Yes
Screen background	Yes (DECSCNM)	Yes
Cursor	No	Yes
Margin bell volume	No	Yes
Keyclick volume	No	Yes
ANSI/VT5 2	Yes (DECANM)	Yes
Auto XON/XOFF**	No	Yes
US/UK character set	Yes (SCS)*	Yes
Auto Wrap	Yes (DECAWM)	Yes
Line Feed/New Line	Yes (LNM)	Yes
Local echo**	Yes (SRM)	Yes
Print termination character**	Yes (DECPFF)	Yes
Printer extent**	Yes (DECPEX)	Yes
One or two stop bits	No	Yes
Receive parity	No	Yes
Break enable**	No	Yes
Disconnect character enable**	No	Yes
Disconnect delay**	No	Yes
Auto answerback enable**	No	Yes
Power	No	Yes
Modem data/parity bits	No	Yes
Transmit speed	No	Yes
Receive speed	No	Yes
Modem control**	No	Yes
Printer data/parity bits	No	Yes
Transmit/receive speed	No	Yes
Application keypad mode/ numeric keypad mode	Yes (DECKPAM/DECKPNM)*	No
Cursor key mode	Yes (DECCKM)	No
Origin mode	Yes (DECOM)	No
Insertion-replacement mode	Yes (IRM)	
*These features are not change (RM) sequences.	using the set mode (SM)	and reset mode

Table 12 lists the ANSI-specified modes and their selective parameters (Ps). Table 13 lists the ANSI-compatible private modes and their selective parameters. When you change ANSI-compatible private modes, the first character in the parameter string is a question mark (?, octal 077). All parameters in the sequence are interpreted as ANSI compatible private parameters. This chapter explains each mode in detail and provides the sequences to set and reset each mode.

The following example shows the use of the question mark (used with ANSI private parameters) and semicolon (used with multiple parameters). The sequence sets both column and scroll modes.

```
ESC [ ? 3 ; 4 h
033 133 077 063 073 064 150
```

Table 14 describes modes specified in ANSI X3.64-1979 that are permanently set, permanently reset, or not applicable. See the ANSI standard for more information about these modes.

Table 12: ANSI-Specified Modes

Name	Mnemonic	Parameter (Ps)
Error (ignored)	-	0
Keyboardaction	KAM	2
Insertion-replacement	IRM	4
Line Feed/New Line	LNM	20

Table 13: ANSI-Compatible Private Modes

Name	Mnemonic	Parameter (Ps)
Error (ignored)	-	0
Cursor key	DECCKM	1
ANSI/VT52	DECANM	2
Column	DECCOLM	3
Scroll	DECSCLM	4
Screen	DECSCNM	5
Origin	DECOM	6
Auto wrap	DECAWN	7
Auto repeat	DECARM	8
Printer form feed*	DECPFF	18
Printer extent*	DECPEX	19
*Happens only in terminal mode.		

NOTE
The application keypad and numeric keypad modes are selected using dedicated sequences, not set and reset mode sequences. See Keypad Character Selection in this chapter for more information.

Table 14: Permanently Selected Modes

Name	Mnemonic	Selection	Function
```Control representation```	CRM	Reset	Rainbow 100 computer performs control functions without displaying a character to represent control function received.
Editing boundary	EBM	Reset	Characters moved outside the margins are lost; terminal does not perform erasing and cursor positioning functions outside the margins. This does not affect horizontal and vertical position (HVP) and cursor position (CUP) sequences.
Erasure	ERM	Set	All characters displayed can be erased.
Format effector action	FEAM	Reset	Terminal immediately performs control functions that affect the screen display.
Format effector transfer	FETM	N/A	-
Guarded area transfer	GATM	N/A	-
Horizontal editing	HEM	N/A	-
Multiple area transfer	MATM	N/A	-
Positioning unit	PUM	Reset	Terminal specifies horizontal and vertical positioning parameters in control functions in units of character position.
Selected area transfer	SATM	N/A	-
Status reporting transfer	SRTM	Reset	Terminal transmits status reports by using device status report (DSR) sequences.
Tabulation stop	TTM	N/A	-
Vertical editing	VEM	N/A	-

ANSI/VT52 Compatibility - The Rainbow 100 computer is compatible with both ANSI and private DIGITAL standards. Therefore, you can use new software that meets both ANSI standards and existing software designed for previous terminals (such as the VT52).

ANSI-compatible sequences meet ANSI standards X3.64-1979 and X3.41-1974. You select ANSI compatibility by using the ANSI/VT52 mode (DECANM) sequence in VT52 mode. See VT52-Compatible Sequences in this chapter for details on selecting ANSI sequence compatibility. In ANSI mode, the following sequence selects (VT52 mode).

Features and modes selected in ANSI mode are also used in VT52 mode. However, these features and modes usually cannot change in VT52 mode.

VT52 Mode (DECANM)


In ANSI mode, reset selects VT52 compatibility. In VT52 mode, the Rainbow 100 computer responds like a VT52 to private DIGITAL sequences.

Scrolling - Scrolling is the upward or downward movement of existing lines on the screen. This makes room for more display lines at either the top or bottom of the scrolling region. There are two methods of scrolling, jump scroll and smooth scroll. Select the type of scrolling by using the following sequences.

NOTE
In full-duplex communication, the auto XON/XOFF Set-Up feature prevents the loss of received characters when using smooth scroll. If auto XON/XOFF is not used, fill characters are needed.

Scroll Mode (DECSCLM)
ESC [ ? 4 h
033133077064150
Set selects smooth scroll. Smooth scroll rate selected in Set-Up.
ESC [ ? $\quad \begin{array}{llll} & 1\end{array}$
033133077064154
Reset selects jump scroll. Jump scroll lets the terminal add lines to the screen as fast as possible.

Scrolling Region - This inclusive region is the area of the screen defined by top and bottom margins. The margins determine which screen lines move during scrolling. Characters added outside the scrolling region do not cause the screen to scroll. The minimum size of the scrolling region is two lines. Therefore, the line number of the top margin must be less than the number of the bottom margin. The origin mode selects line numbers relative to the whole screen or the scrolling region.

After the margins are selected, the cursor moves to the home position. The origin mode feature also affects the home position. Select the top and bottom margins of the scrolling region by using the following sequence.

NOTES: When you power up or use the system reset command the scrolling region becomes the full screen.

Pt and Pb represent variable numeric parameters. The parameters are decimal numbers transmitted to the terminal as ASCII characters. Asterisks (***) represent one or more variable numeric parameters in the octal sequence.

Set Top and Bottom Margins (DECSTBM)


Selects top and bottom margins, defining the scrolling region. Pt is line number of first line in the scrolling region. Pb is line number of bottom line. If Pt and Pb are not selected, the complete screen is used (no margins).

Origin - This mode determines if the cursor can move outside the scrolling region (the area between the top and bottom margins). You can move the cursor outside the margins with the cursor position (CUP) and horizontal and vertical position (HVP) sequences.

Lines on the screen are numbered according to the location of the home position. Home position is always line l, column l. The cursor moves to the new home position whenever origin mode is selected. Select origin mode by using the following sequences.

NOTE
When you power up or use the system reset command, origin mode resets.

## Origin Mode (DECOM)

ESC [ ? $\quad$ ? h
033133077066150
Set selects home position in scrolling region. Line numbers start at top margin of scrolling region. The cursor cannot move out of scrolling region.

ESC [ ? $\quad 6 \quad 1$
033133077066154

Reset selects home position in upper-left corner of screen. Line numbers are independent of the scrolling region (absolute). Use CUP and HVP sequences to move cursor out of scrolling region.

Cursor Positioning - The cursor indicates the active screen position where the next character will appear. The cursor moves:

- One column to the right when a character appears
- One line down after a line feed (LF, octal 012), form feed (FF, octal 014) or vertical tab (VT, octal 013) (Line feed/new line may also move the cursor to the left margin). If at the bottom margin, this causes an upward scroll.
- One line up after a reverse index, if at the top margin, it causes a downward scroll.
- To the left margin after a carriage return (CR, octal 015)
- One column to the left after a backspace (BS, octal 0l0)
- To the next tab stop (or right margin if no tabs are set) after a horizontal tab character (HT, octal 0ll)
- To the home position when the top and bottom margins of the scrolling region (DECSTBM) or origin mode (DECOM) selection changes.

You can also move the cursor by using the following sequences.

## NOTE

Pn represents a variable numeric parameter. The parameter is a decimal number transmitted to the terminal by using ASCII characters. If you select no parameter or 0 , the terminal assumes the parameter equals l. Asterisks (***) represent one or more characters in the octal sequence.

Cursor Up (CUU)

| ESC | $\left[\begin{array}{ll}\text { Pn } & \text { A } \\ 033 & 133 \\ * * * & 101\end{array}\right.$ |
| :--- | :--- | :--- | :--- |

Moves cursor up $P n$ lines in same column. Cursor stops at top margin.

## Cursor Down (CUD)

ESC [ Pn B
033133 *** 102
Moves cursor down Pn lines in same column. Cursor stops at bottom margin.

## Cursor Forward (CUF)

ESC [ Pn C

033133 *** 103
Moves cursor right Pn columns. Cursor stops at right margin.

Cursor Backward (COB)
ESC [ Pn D

033133 *** 104
Moves cursor left Pn columns. Cursor stops at left margin.

Cursor Position (CUP)


033133 *** 073 *** 110
Moves cursor to line Pl, column Pc. If Pl or Pc are not selected or selected as 0, the cursor moves to first line or column, respectively. Origin mode (DECOM) selects line numbering and ability to move cursor into margins.

NOTE

> Pl and Pc represent variable numeric parameters. The parameter is a decimal number that represents one or more characters transmitted to the terminal as ASCII characters. Asterisks (***) represent the variable parameter in the octal sequence.
> Cup operates the same as the horizontal and vertical position (HVP) sequence.

Cursor Position (Home) (CUP)
ESC [ H
033133110
Moves cursor to home position, selected by origin mode (DECOM).

Horizontal and Vertical Position (HVP)
ESC [ Pl ; Pc f
033133 *** 073 *** 146
Moves cursor to line Pl, column Pc. If Pl or Pc are not selected or selected as 0 , the cursor moves to first line or column, respectively. Origin mode (DECOM) selects line numbering and ability to move the cursor into margins.

NOTE
HVP operates the same as the cursor position (CUP) sequence.

```
 ESC [f
 033133 146
Cursor moves to home position selected by origin mode (DECOM).
Index
 ESC D or IND
 033 104 204
Moves cursor down one line in same column. If cursor is at bottom
margin, screen performs a scroll-up.
Reverse Index (RI)
 ESC M or RI
 033 115 2l5
Moves cursor up one line in same column. If cursor is at top margin,
screen performs a scroll-down.
Next Line (NEL)
 ESC E or NEL
 033 105 205
Moves cursor to first position on next line. If cursor is at bottom
margin, screen performs a scroll-up.
Save Cursor (DECSC)
 ESC }
 0 3 3 0 6 7
Saves cursor position, character attribute (graphic rendition),
character set, and origin mode selection. (See restore cursor.)
Restore Cursor (DECRC)
 ESC 8
 033 070
Restores previously saved cursor position, character attribute
(graphic rendition), character set, and origin mode selection. If
none were saved, the cursor moves to home position.
Columns Per Line - This mode selects the number of columns in a display line, 80 or 132. With either selection, the screen can display 24 lines. Select the number of columns per line by using the following sequences.
```

NOTE
When you change the number of columns per line, the screen is erased. This also sets the scrolling region for full screen (24 lines).

## Column Mode (DECCOLM)

```
 ESC [? 3 h
 033 133 077 063 150
Set selects l32 columns per line.
 ESC [? ? 3 1
 033 133 077 063 154
Reset selects 80 columns per line.
Auto Wrap - This mode selects where a received character will appear when the cursor is at the right margin. Select auto wrap by using the following sequences.
```

NOTE
Regardless of the auto wrap Set-Up feature selection, the tab character never moves the cursor to the next line.

## Auto Wrap Mode (DECAWM)

ESC [ ? 7 h
$033133077 \quad 067150$
Set selects auto wrap. Any display characters received when cursor is at right margin appear on next line. The display scrolls up if cursor is at end of scrolling region.

ESC [ ? 7 l
033133077067154
Reset turns auto wrap off. Display characters received when cursor is at right margin replace previously displayed character.

Screen Background - This mode selects either light (reverse) or dark display background on the screen. Select screen mode by using the following sequences.

## Screen Mode (DECSCNM)

ESC [ ? 5 h
033133077065150
Set selects reverse screen, a white screen background with black characters.

ESC [ ? $\quad$ ? 1
033133077065154
Reset selects normal screen, a black screen background with white characters.

Line Feed/New Line - This mode selects the control character (s) transmitted by Return. Line feed/new line also selects the action taken by the terminal when receiving line feed, form feed, and vertical tab. Table 15 provides a summary of the feature. Select line feed/new line mode by using the following sequences.

Line Feed/New Line Mode (LNM)
ESC [ 2 0 h
033133062060150
Set causes a received line feed, form feed, or vertical tab to move cursor to first column of next line. Return transmits both a carriage return and line feed. This selection is also called new line option.

ESC [ 2 0 1
033133062060154
Reset causes a received line feed, form feed, or vertical tab to move cursor to next line in current column. Return transmits a carriage return.

Table 15: Line Feed/New Line Feature

Feature   Selection	Key Pressed-   Character Sent	Character Received-Function
Off	Return-CR	CR-Cursor moves to left margin.
Off	Line Feed-LF	LF, FF, VT-Cursor moves to next line   but stays in same column.
On	Return-CR LF	CR-cursor moves to left margin.
On	Line Feed-LF	LF, FF, VT-Cursor moves to left margin

Keyboard Action - Keyboard action lets the computer turn the keyboard on or off. This mode always resets when you enter Set-Up. Select keyboard action mode by using the following sequences.

Keyboard Action Mode (KAM)
ESC [ 2 h
033133062150
Set turns off keyboard and turns on the Wait indicator.
ESC [ 2 1
033133062154
Reset turns on keyboard and turns off the wait indicator.

```
Auto Repeat - This mode selects automatic key repeating. A key pressed for more than one-half second automatically repeats the transmission of the character. Key repeating does not affect Set-Up, ESC, Return, Enter, Hold Screen, and Ctrl. Select auto repeat mode by using the following sequences.
```


## Auto Repeat Mode (DECARM)

## ESC [ ? 8 h

033133077070150
Set selects auto repeat. A key pressed for more than one-half second automatically repeats.
ESC [ ? $8 \quad 1$
$033133 \quad 077 \quad 070154$
Reset turns off auto repeat. Keys do not automatically repeat.

Local Echo (Keyboard Send-Receive) - This mode selects local echo, only in terminal mode, which causes every character transmitted by the Rainbow 100 computer to automatically appear on the screen. Therefore, the host computer does not have to transmit (echo) the character back to the Rainbow 100 computer for display. When local echo is off, the Rainbow 100 computer only transmits characters to the host computer. The host computer must echo the characters back to the Rainbow 100 computer for display. Select send-receive mode by using the following sequences.

Send-Receive Mode (SRM)

```
ESC [1 2 h
033 133 061 062 150
```

Set turns off local echo. The Rainbow 100 computer transmits characters to the host computer, which must echo characters for display on screen.

```
ESC [lllll
033 133 061 062 154
```

Reset selects local echo. Characters transmitted to the host computer automatically appear on the screen.

Cursor Key Character Selection - Cursor key mode selects the set of characters transmitted by the cursor keys. See Table 16 for the codes transmitted by the cursor keys. Select cursor key mode by using the following sequences.

NOTE
If you power up or use a system reset command, cursor key mode resets. This mode also resets during a communication line connection in all communication except full-duplex no modem control (FDX A).

## Cursor Rey Mode (DECCKM)

```
 ESC [? l h
 033 133 077 061 150
Set selects cursor keys to generate (application) functions.
 ESC [? l l l
 033 133 077 061 154
Reset selects cursor keys to generate cursor control sequences.
 Table 16: ANSI Cursor Control Key Codes
 Cursor Key Mode Cursor Key Mode
 Reset Sends Set Generates
 Cursor Control Application
Cursor Key Sequence Functions
ESC [A ESC O A
033 133 101 033 117 101
ESC [B ESC O B
033 133 102 033 117 102
ESC [C ESC O C
033 133 103 033 117 103
ESC [D ESC O D
033 133 104 033 117 104
```

Keypad Character Selection - The numeric keypad generates either numeric characters or control functions. Selecting application or numeric keypad mode determines the type of characters. The program function (PF) keys generate the same characters regardless of the keypad character selection. See Table 17 for the characters generated by the keypad. Select the keypad mode by using the following sequences.

NOTE
When you power up or use a system reset command, the terminal selects numeric keypad mode. This mode is also selected during communication line connections, except full-duplex no modem control (FDX A) .

## Application Keypad Mode (DECKPAM)

ESC
$=$
033075
Selects application keypad mode. Keypad generates control functions.


Key	Numeric Reypad Mode	Applica Mode	on
Enter*	$\begin{array}{llll} \text { CR or } & \text { CR } & \text { LF } \\ 015 & 015 & 012 \end{array}$	$\begin{array}{cc} \text { ESC } & 0 \\ 033 & 117 \end{array}$	$\begin{gathered} M \\ 115 \end{gathered}$
PF1	$\begin{array}{ccc} \text { ESC } & 0 & \text { P } \\ 033 & 117 & 120 \end{array}$	$\begin{array}{cc} \text { ESC } & 0 \\ 033 & 117 \end{array}$	$\begin{gathered} \mathbf{P} \\ 120 \end{gathered}$
PF2	$\begin{array}{ccc} \text { ESC } & 0 & Q \\ 033 & 117 & 121 \end{array}$	$\begin{array}{cc} \text { ESC } & 0 \\ 033 & 117 \end{array}$	$\begin{gathered} Q \\ 121 \end{gathered}$
PF3	$\begin{array}{ccc} \text { ESC } & 0 & \text { R } \\ 033 & 117 & 122 \end{array}$	$\begin{array}{cc} \text { ESC } & 0 \\ 033 & 117 \end{array}$	$\begin{gathered} \mathbf{R} \\ 122 \end{gathered}$
PF4	$\begin{array}{ccc} \text { ESC } & 0 & \text { S } \\ 033 & 117 & 122 \end{array}$	$\begin{array}{cc} \text { ESC } & 0 \\ 033 & 117 \end{array}$	S 123

NOTE
In ANSI mode, if the codes are echoed back to the terminal or if the terminals is off-line, the last character of the sequence appears on the screen; for example, PF4 appears as an "S".
*In numeric keypad mode, Enter generates the same characters as Return. You can change the Return key character code with the line feed/new line feature. When off, this feature causes the key to generate a single control character (CR, octal 015). When on, this feature causes the key to generate two characters (CR, octal 015 and LF, octal 012).

Character Sets and Selection - The Rainbow 100 computer can display the characters found in Tables 18 through 20.

The Rainbow 100 computer can select only one character set at a time. Therefore, the Rainbow 100 computer uses the following three character sets, with some characters appearing in more than one set. The GR displayable characters found in Table 8 are always available.

```
United States
United Kingdom
Special characters and line drawing (VTl00 compatible)
```

Tables 18 through 20 show the character sets. The United States and United Kingdom character sets meet the standard of the "ISO international register of character sets to be used with escape sequences." The space (SP) and control characters are the same in all sets.

The terminal uses two active character sets at any one time. The computer designates these sets as GO and Gl, using the select character set (SCS) sequence. Then a single control character can switch between sets. Shift in (SI, octal 017) invokes the GO character set; shift out (SO, octal Ol6) invokes the Gl character set.

The designated character sets are active until the terminal receives another SCS sequence. You can use the SCS sequence as often as needed to designate GO and Gl. Designate GO by using the following sequences.

NOTE
The terminal uses the character set
selected in Set-Up after all
communication line connections, except
full-duplex no modem control (FDX A).

Select Character Set (SCS)
ESC ( A
033050101
Designates the UK character set as GO.
ESC ( B
033050102
Designates the US character set as GO.
ESC $\quad 0$
033050060
Designates the special characters and line drawing character set as G0.

Designate Gl by using the following sequences.

Select Character Set (SCS)
ESC ) A
033051101
Designates the UK character set as Gl.
ESC ) B
033051102
Designates the US character set as Gl.
ESC ) 0
033051060
Designates the special characters and line drawing character set as Gl.

The terminal also has G2 and G3 character sets. However, these are always the default (selected in Set-Up) character sets. You select G2 and G3 for only one character at a time. The terminal returns to the previous character set after displaying a single character. Select G2 and G3 for one character by using the following sequences.

	column	0		1		2		3		4		5		6		7	
											$0$		1				
0	0000	NUL	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	DLE	$\begin{array}{\|l\|} \hline 20 \\ 16 \\ 10 \\ \hline \end{array}$	SP	$\begin{array}{\|l\|} \hline 40 \\ 32 \\ 20 \\ \hline \end{array}$	0	$\begin{aligned} & \hline 60 \\ & 48 \\ & 30 \\ & \hline \end{aligned}$	@	$\begin{array}{\|c\|} \hline 100 \\ 64 \\ 40 \\ \hline \end{array}$	P	$\begin{array}{\|l\|} \hline 120 \\ 80 \\ 50 \\ 50 \end{array}$	,	$\begin{array}{\|l\|} \hline 10 \\ 96 \\ 60 \\ \hline \end{array}$	p	$\begin{array}{r}160 \\ 112 \\ 70 \\ \hline 10\end{array}$
1	0001	SOH	$\begin{array}{\|l\|} \hline 1 \\ 1 \\ 1 \\ \hline \end{array}$	$\underset{(\times O N)}{\text { DC1 }}$	$\begin{array}{\|l\|} \hline 21 \\ 17 \\ 11 \\ \hline \end{array}$	!	$\begin{array}{\|l\|} \hline 41 \\ 33 \\ 21 \\ \hline \end{array}$	1	$\begin{array}{\|l\|} \hline 61 \\ 49 \\ 31 \\ \hline \end{array}$	A	$\begin{array}{\|c\|} \hline 101 \\ 65 \\ 41 \\ \hline \end{array}$	Q	$\begin{array}{r} 181 \\ 81 \\ 51 \\ \hline \end{array}$	a	$\begin{array}{\|c\|} \hline 141 \\ 97 \\ 61 \\ \hline \end{array}$	q	161   113   71   712
2	0010	STX	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	DC2	$\begin{array}{\|l\|} \hline 22 \\ 18 \\ 12 \end{array}$	'	$\begin{array}{\|l\|} \hline 42 \\ 34 \\ 22 \\ \hline \end{array}$	2	$\begin{array}{\|l\|l\|} \hline 62 \\ 50 \\ \hline \end{array}$	B	$\begin{array}{\|c} 102 \\ 66 \\ 42 \\ \hline \end{array}$	R	$\begin{array}{\|l\|} \hline 122 \\ 82 \\ 52 \\ 52 \end{array}$	b	$\begin{array}{\|c} 142 \\ 98 \\ 62 \\ \hline \end{array}$	r	162   114   72   17
3	0011	ETX	$\begin{array}{\|l\|} \hline 3 \\ 3 \\ 3 \\ \hline \end{array}$	DC3 (XOFF)	$\begin{aligned} & 23 \\ & 19 \\ & 13 \\ & \hline \end{aligned}$	"\#/モ	$\begin{aligned} & 43 \\ & 35 \\ & 23 \\ & \hline \end{aligned}$	3	$\begin{array}{\|l} \hline 63 \\ 51 \\ 33 \\ \hline \end{array}$	C	$\begin{array}{\|r\|} \hline 103 \\ 67 \\ 43 \\ \hline \end{array}$	S	$\begin{array}{\|c} 123 \\ 83 \\ 53 \\ \hline \end{array}$	c	$\begin{array}{\|c} 143 \\ 99 \\ 63 \\ \hline \end{array}$	s	163   115   73   71
4	0100	EOT	$\begin{array}{\|l\|} \hline 4 \\ 4 \\ \hline \\ \hline \end{array}$	DC4	$\begin{array}{r} 24 \\ 20 \\ 14 \\ \hline \end{array}$	\$	$\begin{array}{\|l\|} \hline 44 \\ 36 \\ 24 \\ \hline \end{array}$	4	$\begin{aligned} & \hline 64 \\ & 52 \\ & 34 \\ & \hline \end{aligned}$	D	$\begin{array}{\|c\|} \hline 104 \\ 68 \\ 44 \\ \hline \end{array}$	T	$\begin{array}{\|l\|} \hline 124 \\ 84 \\ 54 \\ \hline \end{array}$	d	$\begin{array}{\|l\|} \hline 144 \\ 100 \\ 64 \\ \hline \end{array}$	t	164   116   74   145
5	0101	ENQ	$\begin{array}{\|l\|} \hline 5 \\ \hline 5 \\ 5 \\ \hline \end{array}$	NAK	$\begin{aligned} & 25 \\ & 21 \\ & 15 \\ & \hline \end{aligned}$	\%	$\begin{array}{\|l\|} \hline 45 \\ 37 \\ 25 \\ \hline \end{array}$	5	$\begin{aligned} & \hline 65 \\ & \hline 63 \\ & 35 \\ & \hline \end{aligned}$	E	$\begin{array}{\|c} \hline 105 \\ 69 \\ 45 \\ \hline \end{array}$	U	$\begin{array}{\|l\|} \hline 125 \\ 85 \\ \hline 55 \end{array}$	e	$\begin{array}{\|c} 145 \\ 145 \\ 101 \\ 65 \end{array}$	$u$	165   117   75   17
6	0110	ACK	$\begin{array}{\|l\|} \hline 6 \\ 6 \\ \hline \end{array}$	SYN	$\begin{array}{\|l\|} \hline 26 \\ 22 \\ 16 \\ \hline \end{array}$	8	$\begin{array}{\|l} \hline 46 \\ 38 \\ 26 \\ \hline \end{array}$	6	$\begin{array}{\|l\|} \hline 66 \\ 54 \\ \hline 36 \\ \hline \end{array}$	F	$\begin{array}{\|c\|} \hline 106 \\ 70 \\ 46 \\ \hline \end{array}$	V	$\begin{array}{\|l\|} \hline 126 \\ 86 \\ 56 \\ \hline \end{array}$	f	$\begin{array}{\|c\|} \hline 146 \\ 102 \\ 66 \\ \hline \end{array}$	v	166   118   76   16
7	0111	BEL	$\begin{array}{\|l\|} \hline 7 \\ 7 \\ \hline \\ \hline \end{array}$	ETB	$\begin{array}{\|l} \hline 27 \\ 23 \\ 17 \\ \hline \end{array}$	'	$\begin{array}{\|l\|} \hline 47 \\ 39 \\ 27 \\ \hline \end{array}$	7	$\begin{array}{\|l\|} \hline 67 \\ 55 \\ 37 \\ \hline \end{array}$	G	$\begin{array}{\|r\|} 107 \\ 71 \\ 47 \\ \hline \end{array}$	W	$\begin{aligned} & 1277 \\ & 87 \\ & 57 \\ & \hline \end{aligned}$	g	$\begin{array}{\|c} 147 \\ 103 \\ 67 \\ \hline \end{array}$	w	$\begin{array}{r}167 \\ 119 \\ 77 \\ \hline 18\end{array}$
8	1000	BS	$\begin{array}{\|c} 10 \\ 8 \\ 8 \\ \hline \end{array}$	CAN	$\begin{array}{\|l\|} \hline 30 \\ 24 \\ 18 \\ \hline \end{array}$	1	$\begin{array}{\|l\|} \hline 50 \\ 40 \\ 28 \\ \hline \end{array}$	8	$\begin{array}{\|l\|} \hline 70 \\ 56 \\ \hline 38 \\ \hline \end{array}$	H	$\begin{array}{\|c} 110 \\ 72 \\ 48 \\ \hline \end{array}$	X	$\begin{array}{\|c\|c\|} \hline 130 \\ 88 \\ 58 \\ \hline \end{array}$	h	$\begin{aligned} & 150 \\ & 104 \\ & 68 \end{aligned}$	x	$\begin{array}{r}170 \\ 120 \\ 78 \\ 78 \\ \hline 18\end{array}$
9	1001	HT	$\begin{array}{\|c} \hline 11 \\ 9 \\ 9 \\ \hline \end{array}$	EM	$\begin{array}{\|l\|} \hline 31 \\ 25 \\ 19 \\ \hline \end{array}$	)	$\begin{array}{\|l\|} \hline 51 \\ 41 \\ 29 \\ \hline \end{array}$	9	$\begin{aligned} & 70 \\ & 71 \\ & 57 \\ & 39 \end{aligned}$	1	$\begin{array}{\|l\|} \hline 111 \\ 73 \\ 49 \\ \hline \end{array}$	Y	$\begin{gathered} 131 \\ 89 \\ 59 \end{gathered}$	i	$\begin{aligned} & \hline 51 \\ & \hline 105 \\ & 69 \\ & \hline \end{aligned}$	y	$\begin{array}{r}171 \\ 121 \\ 79 \\ 712 \\ \hline 12\end{array}$
10	1010	LF	$\begin{array}{\|c\|} \hline 12 \\ 10 \\ A \\ \hline \end{array}$	SUB	$\begin{array}{\|c\|} \hline 32 \\ 26 \\ \hline \end{array}$	*	$\begin{array}{\|l\|} \hline 52 \\ 42 \\ 2 A \\ \hline \end{array}$	:	$\begin{aligned} & 72 \\ & 58 \\ & 3 A \\ & \hline \end{aligned}$	J	$\begin{array}{\|l\|} \hline 112 \\ 74 \\ 4 \mathrm{~A} \\ \hline \end{array}$	Z	$\begin{aligned} & 132 \\ & 90 \\ & 5 A \\ & \hline \end{aligned}$	j	$\begin{array}{\|l\|} \hline 152 \\ 106 \\ 6 A \\ \hline \end{array}$	$z$	172 122 78 7
11	1011	VT	$\begin{array}{\|l\|l\|} \hline 13 \\ 11 \\ \hline 8 \\ \hline \end{array}$	ESC	$\begin{array}{\|l\|} \hline 33 \\ 27 \\ 18 \\ \hline \end{array}$	+	$\begin{array}{\|l\|} \hline 53 \\ 43 \\ 28 \\ \hline \end{array}$	;	$\begin{aligned} & 73 \\ & 59 \\ & 38 \\ & \hline \end{aligned}$	K	$\begin{aligned} & 13 \\ & 75 \\ & 48 \end{aligned}$	[	$\begin{aligned} & 133 \\ & 91 \\ & 98 \\ & 58 \end{aligned}$	k	$\begin{array}{\|c\|} \hline 153 \\ 107 \\ 68 \\ \hline \end{array}$	\{	$\begin{array}{r}173 \\ 123 \\ 78 \\ 78 \\ \hline 18\end{array}$
12	1100	FF	$\begin{array}{\|l\|} \hline 14 \\ 12 \\ c \\ \hline \end{array}$	FS	$\begin{array}{\|l\|} \hline 34 \\ 28 \\ 19 \\ \hline \end{array}$	,	$\begin{aligned} & 54 \\ & 44 \\ & 2 \mathrm{C} \\ & \hline \end{aligned}$	$<$	$\begin{aligned} & 74 \\ & 60 \\ & 30 \end{aligned}$	L	$\begin{array}{\|l\|} \hline 14 \\ 76 \\ 4 c \\ \hline \end{array}$	1	134 92 96 50	1	$\begin{array}{\|l\|} \hline 154 \\ 108 \\ 60 \\ \hline \end{array}$	1	174   1724   712   71   12
13	1101	CR	$\begin{array}{\|c} \hline 15 \\ 13 \\ \hline 0 \\ \hline \end{array}$	GS	$\begin{array}{\|l\|} \hline 35 \\ 29 \\ 10 \\ \hline \end{array}$	-	$\begin{aligned} & 55 \\ & 45 \\ & 20 \\ & \hline \end{aligned}$	$=$	75 61 60 30	M	$\begin{aligned} & 115 \\ & 77 \\ & 40 \\ & \hline \end{aligned}$	$]$	135 93 90 50	m	$\begin{array}{\|c\|} \hline 155 \\ 109 \\ 60 \\ \hline \end{array}$	\}	$\begin{array}{r}175 \\ 125 \\ 70 \\ \hline 10\end{array}$
14	1110	SO	$\begin{array}{\|c\|} \hline 16 \\ 14 \\ \hline \\ \hline \end{array}$	RS	$\begin{array}{\|c\|} \hline 36 \\ 30 \\ 15 \\ \hline \end{array}$		$\begin{aligned} & 56 \\ & \hline 46 \\ & 26 \\ & \hline 2 \end{aligned}$	>	$\begin{aligned} & 76 \\ & 62 \\ & 62 \\ & \hline \end{aligned}$	N	$\begin{aligned} & 116 \\ & 78 \\ & 4 E \end{aligned}$	$\wedge$	$\begin{aligned} & 136 \\ & 94 \\ & 5 E \\ & \hline \end{aligned}$	n	$\begin{aligned} & 156 \\ & 110 \\ & 6 \mathrm{E} \end{aligned}$	$\sim$	$\begin{array}{r}176 \\ 126 \\ 76 \\ 71 \\ \hline 12\end{array}$
15	1111	SI	$\begin{array}{\|c} \hline 17 \\ 15 \\ \hline \\ \hline \end{array}$	US	$\begin{gathered} \hline 37 \\ 31 \\ 17 \\ \hline \end{gathered}$	1	$\begin{aligned} & 57 \\ & 47 \\ & 27 \\ & \hline \end{aligned}$	?	77   63   3 F	0	$\begin{aligned} & 117 \\ & 79 \\ & 4 \mathrm{~F} \\ & \hline \end{aligned}$	-	$\begin{aligned} & 137 \\ & 95 \\ & 95 \\ & \hline \end{aligned}$	0	$\begin{aligned} & 157 \\ & 111 \\ & 111 \\ & 6 \mathrm{~F} \end{aligned}$	DEL	177 127 77
NOT	E: DEPEND	S ON TH	HE C	ARACte	ER S	T SELE	CTED	; U.S.=	U.K	\&	inco						

KEY

Character \begin{tabular}{|l|l|l}
ESC \& 33 <br>

\& 27 \& | octal |
| :--- |
|  |
|  |
|  | <br>

\hline
\end{tabular}

Table 19: 8-bit Control and Displayable Characters


KEY

Character		$\mathbf{3 0 6}$	OCTAL
OE	198	$\begin{array}{l}\text { DECIMAL } \\ \text { C6 }\end{array}$	
	hex		

MR-9594

B6 B5 BITS $\qquad$   B4 B3 B2 B1 ROW		0 0    0    0   COLUMN    0		${ }^{0} 0$						${ }^{1} 0$		${ }^{1} 0$		${ }^{1} 1$		${ }^{1} 1$			
		1	2		3		4		5		6		7						
0000	0			NUL	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \end{array}$		$\begin{aligned} & 20 \\ & 16 \\ & 10 \\ & \hline \end{aligned}$	SP	40 32 20 20	0	$\begin{aligned} & \hline 60 \\ & 48 \\ & 30 \\ & \hline \end{aligned}$	@	$\begin{array}{\|c} \hline 100 \\ 64 \\ 40 \\ \hline \end{array}$	P	$\begin{array}{\|l\|l\|} \hline 120 \\ 80 \\ 50 \\ \hline \end{array}$	1	$\begin{array}{\|c} \hline 140 \\ 96 \\ 60 \\ \hline \end{array}$	SCAN 3	160   112   70
0001	1		$\begin{array}{\|l\|} \hline 1 \\ 1 \\ 1 \end{array}$	$\underset{\substack{\text { DON }}}{\mathbf{D C 1}}$	$\begin{aligned} & 21 \\ & 17 \\ & 11 \\ & \hline \end{aligned}$	!	$\begin{aligned} & 41 \\ & 33 \\ & 21 \\ & \hline \end{aligned}$	1	$\begin{array}{\|r} \hline 61 \\ 49 \\ 41 \\ \hline \end{array}$	A	$\begin{array}{\|l\|} \hline 101 \\ 65 \\ 41 \\ \hline \end{array}$	Q	$\begin{array}{\|c} 121 \\ 81 \\ 51 \\ \hline \end{array}$	\%	$\begin{array}{\|c} 141 \\ 97 \\ 61 \\ \hline \end{array}$	SCAN 5	161   113   71   71		
0010	2		$\begin{aligned} & \hline 2 \\ & 2 \\ & 2 \\ & \hline \end{aligned}$		$\begin{aligned} & 22 \\ & 18 \\ & 12 \\ & \hline \end{aligned}$	11	$\begin{aligned} & 42 \\ & 34 \\ & 22 \\ & \hline \end{aligned}$	2	$\begin{aligned} & 62 \\ & 50 \\ & 32 \end{aligned}$	B	$\begin{array}{\|c\|} \hline 102 \\ 66 \\ 42 \\ \hline \end{array}$	R	$\begin{array}{\|c} \hline 122 \\ 82 \\ 52 \\ \hline \end{array}$	4	$\begin{array}{\|c\|} \hline 142 \\ 98 \\ 68 \end{array}$	SCAN 7	162   114   72   12		
00011	3	ETX	$\begin{aligned} & 3 \\ & 3 \\ & 3 \end{aligned}$	DC3 (XOFF)	$\begin{aligned} & 23 \\ & 19 \\ & 13 \\ & \hline \end{aligned}$	\#	$\begin{aligned} & 43 \\ & 35 \\ & 23 \end{aligned}$	3	$\begin{array}{\|l} \hline 63 \\ 51 \\ 33 \\ \hline \end{array}$	C	$\begin{array}{\|c} \hline 103 \\ 67 \\ 43 \\ \hline \end{array}$	S	$\begin{array}{\|c} \hline 123 \\ 83 \\ 53 \\ \hline \end{array}$	$\xi$	$\begin{array}{\|c\|} \hline 143 \\ 99 \\ 63 \\ \hline \end{array}$	SCAN 9	163   115   73   15		
0100	4	EOT	$\begin{aligned} & 4 \\ & 4 \\ & 4 \\ & \hline \end{aligned}$		$\begin{aligned} & 24 \\ & 20 \\ & 14 \\ & \hline \end{aligned}$	\$	$\begin{aligned} & 44 \\ & 36 \\ & 24 \\ & \hline \end{aligned}$	4	$\begin{aligned} & \hline 64 \\ & 52 \\ & 34 \\ & \hline \end{aligned}$	D	$\begin{array}{\|c} \hline 104 \\ 68 \\ 44 \\ \hline \end{array}$	T	$\begin{gathered} 124 \\ 84 \\ 54 \\ \hline \end{gathered}$	$\hat{k}$	$\begin{array}{\|c} 144 \\ 100 \\ 64 \\ \hline \end{array}$	F	164   116   74   16		
01001	5	ENQ	$\begin{array}{\|l\|} \hline 5 \\ 5 \\ 5 \\ \hline \end{array}$		$\begin{aligned} & 25 \\ & 21 \\ & 15 \\ & \hline \end{aligned}$	\%	$\begin{aligned} & 45 \\ & 37 \\ & 25 \\ & \hline \end{aligned}$	5	$\begin{array}{\|l\|} \hline 65 \\ 53 \\ 35 \end{array}$	E	$\begin{array}{\|c\|} \hline 105 \\ 69 \\ 45 \\ \hline \end{array}$	U	$\begin{array}{\|l\|l\|} \hline 125 \\ 85 \\ 55 \\ \hline \end{array}$	k	$\begin{array}{\|l\|} \hline 145 \\ 101 \\ \hline 65 \\ \hline \end{array}$	1	165   117   75   15		
0110	6		$\begin{array}{\|l\|} \hline 6 \\ 6 \\ 6 \\ \hline \end{array}$		$\begin{aligned} & \hline 26 \\ & 22 \\ & 16 \end{aligned}$	\&	$\begin{aligned} & 46 \\ & 38 \\ & 26 \end{aligned}$	6	$\begin{aligned} & 66 \\ & 54 \\ & 36 \\ & \hline \end{aligned}$	F	$\begin{array}{\|l\|} \hline 100 \\ 70 \\ 46 \\ \hline \end{array}$	V	$\begin{array}{\|l\|} \hline 126 \\ 86 \\ 56 \\ \hline \end{array}$	0	$\begin{array}{\|l\|} \hline 146 \\ 102 \\ 66 \\ \hline 6 \end{array}$	1	166   118   76   6		
0 1111	7	BEL	$\begin{array}{\|l\|} \hline 7 \\ 7 \\ \hline \end{array}$		$\begin{array}{\|l} \hline 23 \\ 23 \\ 17 \\ \hline \end{array}$	,	$\begin{aligned} & \hline 47 \\ & 39 \\ & 27 \\ & \hline \end{aligned}$	7	$\begin{aligned} & \hline 67 \\ & 55 \\ & 37 \\ & \hline \end{aligned}$	G	$\begin{array}{\|r} 187 \\ 74 \\ 47 \\ \hline \end{array}$	W	$\begin{array}{\|c} 127 \\ 87 \\ 57 \\ \hline \end{array}$	$\pm$	$\begin{aligned} & 147 \\ & 103 \\ & 67 \\ & \hline \end{aligned}$	T	167   119   77   17		
1000	8	BS	$\begin{array}{\|c} 10 \\ 8 \\ 8 \\ \hline \end{array}$	CAN	$\begin{aligned} & \hline 30 \\ & 24 \\ & 18 \\ & \hline \end{aligned}$	1	$\begin{aligned} & 50 \\ & 40 \\ & 28 \\ & \hline \end{aligned}$	8	$\begin{aligned} & 70 \\ & \hline 76 \\ & 38 \\ & 38 \end{aligned}$	H	$\begin{array}{\|c\|} \hline 110 \\ 72 \\ 48 \\ \hline \end{array}$	X	$\begin{array}{\|l\|} \hline 130 \\ 88 \\ 58 \end{array}$	'	$\begin{aligned} & 150 \\ & 104 \\ & 68 \end{aligned}$	1	170 120 120 78		
1001	9	HT	$\begin{gathered} 11 \\ 9 \\ 9 \\ \hline \end{gathered}$		$\begin{array}{\|l\|} \hline 31 \\ 25 \\ 19 \end{array}$	)	$\begin{aligned} & 51 \\ & 41 \\ & 29 \end{aligned}$	9	$\begin{aligned} & \hline 71 \\ & 57 \\ & 39 \\ & \hline \end{aligned}$	1	$\begin{array}{\|l\|} \hline 111 \\ 73 \\ \hline 9 \\ \hline \end{array}$	Y	$\begin{aligned} & \hline 131 \\ & \hline 89 \\ & 59 \end{aligned}$	Y	$\begin{array}{\|l\|l\|} \hline 151 \\ 105 \\ 699 \end{array}$	S	171 121 79 79		
1010	10	LF	$\begin{array}{\|l\|} \hline 12 \\ 10 \\ 10 \\ \hline \end{array}$	SUB	$\begin{aligned} & 32 \\ & \hline 26 \\ & 26 \\ & 1 A \\ & \hline \end{aligned}$	*	$\begin{aligned} & 52 \\ & 42 \\ & 2 A \end{aligned}$	:	$\begin{aligned} & 72 \\ & \hline 58 \\ & 38 \\ & \hline \end{aligned}$	J	$\begin{array}{\|l} \hline 112 \\ 74 \\ 4 \mathrm{~A} \\ \hline \end{array}$	Z	$\begin{aligned} & 132 \\ & 90 \\ & 5 \mathrm{~A} \\ & \hline \end{aligned}$	」	$\begin{aligned} & 152 \\ & 106 \\ & 6 A \end{aligned}$	$\lambda$	172 122 78 78		
1011	11	VT	$\begin{array}{\|l\|} \hline 13 \\ 11 \\ 8 \end{array}$	ESC	$\begin{array}{\|l\|l} \hline 33 \\ 27 \\ 18 \end{array}$	+	$\begin{aligned} & 53 \\ & 43 \\ & 28 \end{aligned}$	;	$\begin{aligned} & 73 \\ & \hline 59 \\ & 38 \end{aligned}$	K	$\begin{aligned} & 113 \\ & 75 \\ & 48 \end{aligned}$	[	$\begin{aligned} & 133 \\ & 91 \\ & 58 \end{aligned}$	1	$\begin{aligned} & 153 \\ & 107 \\ & 68 \end{aligned}$	$\pi$	$\begin{array}{r}173 \\ 123 \\ 78 \\ 717 \\ \hline 1\end{array}$		
1100	12	FF	$\begin{gathered} 14 \\ 12 \\ c \\ \hline \end{gathered}$		34   28   18	,	$\begin{aligned} & 54 \\ & 44 \\ & 26 \\ & \hline \end{aligned}$	$<$	$\begin{array}{\|l\|} \hline 74 \\ 60 \\ 30 \\ \hline \end{array}$	L	$\begin{array}{\|l\|} \hline 114 \\ 76 \\ 46 \\ \hline \end{array}$	$\backslash$	$\begin{array}{r} 134 \\ 92 \\ 5 \mathrm{C} \\ \hline \end{array}$	「	$\begin{aligned} & 154 \\ & 108 \\ & 6 C \end{aligned}$	$\ddagger$	174   124   78   15		
1101	13	CR	$\begin{array}{\|l\|} \hline 15 \\ 13 \\ 0 \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline 35 \\ 29 \\ 10 \\ \hline \end{array}$	-	$\begin{aligned} & 55 \\ & 45 \\ & 20 \\ & \hline \end{aligned}$	=	$\begin{aligned} & 75 \\ & 61 \\ & 30 \\ & \hline \end{aligned}$	M	$\begin{array}{\|l\|} \hline 115 \\ 77 \\ 40 \\ \hline \end{array}$	]	$\begin{aligned} & 135 \\ & 93 \\ & 90 \\ & \hline \end{aligned}$	L	$\begin{aligned} & 155 \\ & 109 \\ & 60 \\ & \hline \end{aligned}$	$\ddagger$	$\begin{array}{r}175 \\ 125 \\ 70 \\ \hline 1\end{array}$		
1110	14	SO	$\begin{gathered} 16 \\ 14 \\ \mathrm{E} \\ \hline \end{gathered}$		$\begin{aligned} & 36 \\ & 30 \\ & 1 E \end{aligned}$	-	$\begin{aligned} & 56 \\ & 46 \\ & 46 \end{aligned}$	$>$	76 62 $3 E$ $3 E$	N	$\begin{aligned} & 116 \\ & 78 \\ & 48 \end{aligned}$	$\wedge$	$\begin{array}{r}136 \\ \hline 19 \\ 94 \\ 50 \\ \hline\end{array}$	$\dagger$	156 110 $6 E$ 68		$\begin{array}{r}176 \\ 126 \\ 71 \\ 71 \\ \hline 17\end{array}$		
11111	15	SI	$\begin{array}{\|c} \hline 17 \\ 15 \\ F \\ \hline \end{array}$		37   31   31   $1 F$	1	$\begin{aligned} & 57 \\ & 47 \\ & 2 F \\ & \hline \end{aligned}$	?	77 63 $3 F$	0	$\begin{array}{r} 117 \\ 79 \\ 49 \\ \hline \end{array}$	(BLANK)	(137   95   95   5		$\begin{aligned} & 1177 \\ & 111 \\ & 6 F \end{aligned}$		177 127 77		

KEY

```
Single Shift 2 (SS2)
 ESC N or SS2
 033 116 216
Selects G2 (default) character set for one character. You select G2
in Set-Up.
Single Shift 3 (SS3)
 ESC 0 or SS3
 033 117 217
Selects G3 (default) character set for one character. You select G3
in Set-Up.
```

- Underline
- Reverse video (character background opposite of the screen background feature)
- Blink
- Bold (increased intensity)
- Any combination of these attributes (applied in the order of reception)
You can select one or more character attributes at one time. Selecting an attribute does not turn off other attributes already selected. After you select an attribute, all characters received by the terminal appear with that attribute. If you move the characters by scrolling, the attribute moves with the characters. Select the character attributes by using the following sequences.

```
```

Character Attributes - The terminal can display the following

```
Character Attributes - The terminal can display the following
character attributes that change the character display without
character attributes that change the character display without
changing the character.
changing the character.
Select Graphic Rendition (SGR)
ESC [m or ESC [0 m
\(033133155 \quad 033133 \quad 060155\)
Turns off character attributes.
ESC [1 m
033133061155
Selects bold (increased intensity).
ESC [4 m
033133064155
Selects underline.
ESC [5 m
033133064155
Selects blink.
ESC [7 m
033133067155
Selects reverse video.
```

Tab Stops - You select tab stop positions on the horizontal lines of the screen. The cursor advances (tabs) to the next tab stop when the terminal receives a horizontal tab (HT, octal 0ll). If no tab stops are set, horizontal tab moves the cursor to the right margin. Set and clear the tab stops by using the following sequences.

Horizontal Tabulation Set (HTS)

ESC	H	or
033	110	
0310		

Sets a horizontal tab stop at cursor position.

Tabulation Clear (TBC)
ESC [ $\quad$ g or ESC [ $0 \quad 9$
$\begin{array}{lllllll}033 & 133 & 147 & 033 & 133 & 060 & 147\end{array}$
Clears a horizontal tab stop at cursor position.
ESC [ 3 [ $\quad 3$
0331331063147

Clears all horizontal tab stops.

Line Attributes - These are display features that affect a complete display line. The cursor selects the line affected by the attribute. The cursor stays in the same character position when the attribute changes. However, if the attribute would move the cursor past the right margin, the cursor stops at the right margin. When you move lines on the screen by scrolling, the attribute moves with the line. Select line attributes by using the following sequences.

NOTE
If you erase an entire line by using the erase in display (ED) sequence, the line attribute changes to single-height and single-width.

Double-Height Line (DECDHL)

Top	Half:	Bottom Half:			
ESC	$\#$	3		ESC	$\#$
03	4				
033	043	063	033	043	064

Makes the line with the cursor the top or bottom half of a double-height, double-width line. Sequences work in pairs on adjacent lines. The same character must be used on both lines to form full characters. If the line was single-width, single-height, all characters to the right of center are lost.

## Single-Width Line (DECSWL)

ESC \# 5
033043065
Makes the line with the cursor single-width, single-height. This is line attribute for all new lines on screen.

## Double-Width Line (DECDWL)

ESC \# 6
033043066

Makes the line with the cursor double-width, single-height. If the line was single-width, single-height, all characters to the right of center screen are lost.

Erasing - Erasing removes characters from the screen without affecting other characters on the screen. Erased characters are lost. The cursor position does not change when erasing characters or lines.

If you erase a line by using the erase in display (ED) sequence, the line attribute becomes single-height, single-width. If you erase a line by using the erase in line (EL) sequence, the line attribute is not affected.

Erasing a character also erases any character attribute of the character. Erase characters by using the following sequences.

Erase in Line (EL)

| ESC | $[$ | K |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 033 | 133 | or | ESC | $[$ | 0 | K |
| 033 | 133 | 060 | 113 |  |  |  |

Erases from cursor to end of line, including cursor position.
ESC [ 1 K
033133061113
Erases from beginning of line to cursor, including cursor position.
ESC [ 2 K
033133062113
Erases complete line.

Erase in Display (ED)
ESC [ J or ESC [ 0 J
033133112033133060112
Erases from cursor to end of screen, including cursor position.
ESC [ 1 J
033133061112
Erases from beginning of screen to cursor, including cursor position.

Erases complete display. All lines are erased and changed to single-width. Cursor does not move.

Computer Editing - Editing allows the computer to insert or delete characters and lines of characters at the cursor position. The cursor position does not change when inserting or deleting lines. Delete characters or insert and delete lines by using the following sequences.

NOTE
Insertion-replacement mode (RM) selects how characters are added to the screen. See Inserting and Replacing Characters in this chapter for more information.

Delete Character (DCH)


033133 *** 120
Deletes Pn characters, starting with character at cursor position. When a character is deleted, all characters to the right of cursor move left. This creates a space character at right margin. This character has all attributes off.

Insert Line (IL)


033133 *** 114
Inserts Pn lines at line with cursor. Lines displayed below cursor move down. Lines moved past the bottom margin are lost. This sequence is ignored when cursor is outside scrolling region.

Delete Line (DL)
ESC [ Pn M
033133 *** 115
Deletes Pn lines starting at line with cursor. As lines are deleted, lines displayed below cursor move up. Lines added to bottom of screen have spaces with same character attributes as last line moved up. This sequence is ignored when cursor is outside scrolling region.

Inserting and Replacing Characters - The terminal displays received characters at the cursor position. This mode determines how the terminal adds characters to the screen. Insert mode displays the character and moves previously displayed characters to the right. Replace mode adds characters by replacing the character at the cursor position. Select insertion-replacement mode by using the following sequences.

This mode resets after a communication line connection in all communication except full-duplex no modem control (FDX A). It also resets any time NVM is saved.

## Insertion-Replacement Mode (IRM)

ESC [ 4 h
033133064150
Set selects insert mode and turns INSERT on. New display characters move old display characters to the right. Characters moved past the right margin are lost.

ESC [ 4 I
$033133 \quad 064154$
Reset selects replace mode and turns INSERT off. New display characters replace old display characters at cursor position. The old character is erased.

Printing in Terminal Mode - The Rainbow 100 computer has a serial printer interface for local printing. The host computer can select all print operations by using escape sequences. You can only select two of the print operations from the keyboard, auto print and Print Screen.

When you print characters from the screen, Rainbow 100 computer terminal and printer tab stops are ignored. Print characters are spaced with the space (SP, octal 040) character. The terminal transmits a carriage return (CR, octal 015) and line feed (LF, octal 012) after the last printable character of a line - but not a space character.

A line of double-height characters prints as two identical lines of single-width characters. Double-width characters print as single-width characters on a single line.

Before selecting a print operation, check the printer status by using the printer status report (DSR) in ANSI mode. Do not select a print operation if the serial printer is not ready to print. Select print operations by using the following sequences.

## Media Copy (Auto Print ON) (MC)

ESC [ ? 5 i
033133077065151
Turns on auto print. A display line prints after you move cursor off the line, using a line feed, form feed, or vertical tab (also transmitted to printer).

The line also prints during an auto wrap. Auto wrap lines end with a CR,LF。

```
Media Copy (Auto Print Off) (MC)
 ESC [? 4 i
 033 133 077 064 151
Turns off auto print.
NOTE
Printer controller has a higher priority than auto print. Therefore, you can select printer controller and print characters during auto print.
Media Copy (Printer Controller On) (MC)
ESC [5 i
\(033 \quad 133 \quad 065 \quad 151\)
Turns on printer controller. The terminal transmits received characters to printer without displaying them. The terminal does not insert or delete spaces, provide line delimiters, or select the correct printer character set.
Media Copy (Printer Controller Off) (MC)
ESC [4 i
033133064151
Turns off printer controller. Always move printhead to left margin before turning off printer controller.
Media Copy (Print Cursor Line) (MC)
ESC [? \(\quad\) ? i
033133077161151
```

Prints display line with cursor. Cursor position does not change. Print cursor line ends when line prints.

Media Copy (Print Screen) (MC)
ESC [ i or ESC [ 0 i
033133151033133060151
Prints the screen. Printer extent (DECEXT) selects full screen or scrolling region to print. Select scrolling region by using set top and bottom margins (DECSTBM) sequence. Print Screen ends when screen prints.

Printer Extent in Terminal Mode - This mode selects the full screen or the scrolling region to print during a Print Screen. Select printer extent mode by using the following sequences.

## Printer Extent Mode (DECPEX)

ESC [ ? $\quad$ ? $\quad 9 \quad h$ 033133077061071150

Set selects the full screen to print during a Print Screen.
ESC [ $\quad \begin{array}{lllll}? & 1 & 9 & 1\end{array}$ $\begin{array}{llllll}033 & 133 & 077 & 061 & 071 & 154\end{array}$

Reset selects the scrolling region to print during a Print Screen.

Print Termination Character in Terminal Mode - This mode determines if the terminal should transmit a print termination character after a Print Screen. The form feed (octal, 014) control character serves as the print termination character. Select printer form feed mode by using the following sequence.

ESC [ $\quad \begin{array}{lllll}\quad & 1 & 8 & h\end{array}$
033133077061070150
Set selects form feed as print termination character. The terminal transmits this character to printer after each Print Screen.

ESC [ $\quad \begin{array}{lllll}1 & 1 & 8 & 1\end{array}$
$\begin{array}{llllll}033 & 133 & 077 & 061 & 070 & 154\end{array}$
Reset selects no termination character.

Reports - The Rainbow 100 computer transmits reports in response to escape sequence requests. Reports determine terminal emulation type and status, and cursor position. The report requests and responses are as follows.

NOTE
The terminal does not respond to the DSR, DA, or DECID sequences during printer controller operation.

Device Status Report (DSR)
ESC [ 5 n
$033133 \quad 065156$
Computer requests a status report (using a DSR sequence).
ESC [ 0 n
$033 \quad 133 \quad 060 \quad 156$
Terminal response: Ready, no malfunctions detected.
These next four codes apply to terminal mode only.
ESC [ ? $\quad$ ? 5 n
033133077061065156
Computer requests a printer status report. Terminal checks status of
printer. This report should be requested before any print operation.
ESC [ ? $\quad$ ? $\quad 3$
033133077061063156
Printer not connected to terminal. Data terminal ready (DTR) signal
of the printer has not been on since terminal turned on.
ESC [ ? 1 l n
033133077061061156
Printer not ready to print. Printer DTR was on, but is now off.
ESC [ ? 1 0 n
$033133077061 \quad 060 \quad 156$
Printer ready to print. Printer DTR is on.
Cursor Position Report (CPR)
ESC [ 6 n
033133066156
Requests a cursor position report.
ESC [ P1 ; Pc R
033133 *** 073 *** 122
Terminal reports cursor position in response to DSR sequence request
from computer. Pl indicates line and Pc indicates column. No
parameters, or parameters of 0 , indicate cursor is at home position.
Origin mode (DECOM) determines whether line numbering is relative to
the top of the screen or the top of the scrolling region.
Device Attributes (DA)
ESC [ c or ESC [ 0 c
$033133143 \quad 033133 \quad 060143$
A request for Rainbow 100 computer identification.
Identify Terminal (DECID)
ESC Z
033132
A request for Rainbow 100 computer identification. Rainbow 100 computer uses device attributes (DA) to respond. Future DIGITAL terminals may not support this sequence. Therefore, new software should use device attributes.
Device Attributes (DA)
ESC [ ? 6 c
033133077066143

```
Reset to Initial State(RIS)
 ESC c
 033 143
Resets the terminal to its initial state.
```


## CAUTION

It is recommended that this not be used due to unpredictable results.

Adjustments - The terminal has a screen alignment pattern that lets Field Service personnel adjust the screen. Display the screen alignment pattern by using the following sequence.

Screen Alignment Display (DECALN)

## ESC \# 8

033043070
Fills screen with uppercase E's for screen focus and alignment. This command is used by DIGITAL Manufacturing and Field Service personnel.

## VT52-Compatible Sequences

VT52-compatible sequences meet private DIGITAL standards. Therefore, the terminal can use existing software designed for previous terminals (such as the VT52). You can select VT52 compatibility from the keyboard in Set-Up or the computer can use a sequence. (See ANSI-Compatible Sequences in this chapter).

NOTE
In VT5 2 mode, 8-bit control characters and displayable characters are processed just as in ANSI mode.

Modes - In VT2 mode, you cannot select most terminal features by using sequences. You can, however, select the following three modes by using sequences: ANSI mode, application keypad mode on, and application keypad mode off (numeric keypad mode on).

ANSI/VT52 Compatibility - The terminal is compatible with both ANSI and private DIGITAL standards. Therefore, the terminal can use new software that meets ANSI standards and existing software designed for previous terminals (such as the VT52). ANSI-compatible sequences meet standards X3.64-1979 and X3.41-1974. You use ANSI mode to select most terminal features; the terminal uses the same features when it switches to VT52 mode. You cannot, however, change most of these features in VT52 mode. Select ANSI compatibility by using the following sequence.
ANSI Mode (DECANM)
ESC ..... $<$
033 ..... 074
The terminal interprets all sequences according to ANSI standardsX3.64-1979 and X3.41-1974. The VT52 escape sequences described inthis chapter are not recognized.
Cursor Positioning - The cursor indicates the active screen positionwhere the next character will appear. You must select the margins forVT52 mode in ANSI mode. If you do not select margins, the terminaluses the complete screen. The cursor moves:

- One column to the right when a character appears
- One line down after a line feed, form feed, or vertical tab(Line feed/new line may also move the cursor to left margin.)
- To the left margin after a carriage return
- One column to the left after a backspace
- To the next tab stop (or right margin if no tabs are set)after a horizontal tab character.
You can also move the cursor by using the following sequences.
Cursor Up
ESC A
033101
Moves cursor up one line in same column. Cursor stops at top margin.
Cursor Down
ESC ..... B
033102
Moves cursor down one line in same column. Cursor stops at bottommargin.
Cursor Right
ESC C
033103
Moves cursor one column to right. Cursor stops at right margin.
Cursor Left
ESC ..... D
033104
Moves cursor one column to left. Cursor stops at left margin.

```
Cursor to Home
 ESC H
 033110
Moves cursor to home position.
Direct Cursor Address
 ESC Y line column
 033 131 *** ***
Moves cursor to specified line and column. Line and column numbers
are ASCII characters whose codes are their octal value plus octal 037.
For example, line l column 8 parameters are octal 040 (first line) and
octal 047 (eighth column).
Reverse Line Feed
 ESC I or RI
 033 111 2l5
Moves cursor up one line in same column. If cursor is at top margin,
screen performs scroll-down.
Keypad Character Selection - The numeric keypad generates either numeric characters or control functions. Select application keypad mode to generate control functions. Exit application keypad mode (select numeric keypad mode) to generate numeric characters. See Table \(2 l\) for the characters generated by the keypad. Enter and exit application keypad mode by using the following sequences.
```

NOTE

When you power up or use a system reset command, the terminal exits application keypad mode (selects numeric keypad mode). This mode is also selected during communication line connections, except full-duplex no modem control (FDX A).

## Enter Application Keypad Mode

## ESC

 075Keypad generates sequences used by the application program.

Exit Application Keypad Mode (Numeric Keypad Mode)
ESC >
033076
Keypad generates characters that match the numeric, comma, period, and minus sign keys on main keyboard.

Key	Application Keypad Mode Off (Numeric Keypad Mode)	Application Mode On			Keypad
0	$\begin{aligned} & 0 \\ & 060 \end{aligned}$	$\begin{aligned} & \text { ESC } \\ & 033 \end{aligned}$	$\stackrel{?}{77}$	$\begin{gathered} p \\ 160 \end{gathered}$	
1	$\begin{aligned} & 1 \\ & 061 \end{aligned}$	$\begin{aligned} & \text { ESC } \\ & 033 \end{aligned}$	$\stackrel{?}{77}$	$\begin{gathered} q \\ 161 \end{gathered}$	
2	$\begin{aligned} & 2 \\ & 062 \end{aligned}$	$\begin{aligned} & \text { ESC } \\ & 033 \end{aligned}$	$\stackrel{?}{77}$	$\begin{gathered} r \\ 162 \end{gathered}$	
3	$\begin{aligned} & 3 \\ & 063 \end{aligned}$	$\begin{aligned} & \text { ESC } \\ & 033 \end{aligned}$	$\stackrel{?}{77}$	$\begin{gathered} \mathbf{s} \\ 163 \end{gathered}$	
4	$\begin{aligned} & 4 \\ & 064 \end{aligned}$	$\begin{gathered} \text { ESC } \\ 033 \end{gathered}$	$\stackrel{?}{7}$	$\begin{gathered} t \\ 164 \end{gathered}$	
5	$\begin{aligned} & 5 \\ & 065 \end{aligned}$	$\begin{aligned} & \text { ESC } \\ & 033 \end{aligned}$	$\stackrel{?}{77}$	$\begin{gathered} \mathbf{u} \\ 165 \end{gathered}$	
6	$\begin{aligned} & 6 \\ & 066 \end{aligned}$	$\begin{aligned} & \text { ESC } \\ & 033 \end{aligned}$	$\stackrel{?}{77}$	$\begin{gathered} \stackrel{v}{2} \\ 166 \end{gathered}$	
7	$\begin{aligned} & 7 \\ & 067 \end{aligned}$	$\begin{aligned} & \text { ESC } \\ & 033 \end{aligned}$	$\stackrel{?}{77}$	$\begin{gathered} w \\ 167 \end{gathered}$	
8	$\begin{aligned} & 8 \\ & 070 \end{aligned}$	$\begin{gathered} \text { ESC } \\ 033 \end{gathered}$	$\stackrel{?}{77}$	$\begin{gathered} x \\ 170 \end{gathered}$	
9	$\begin{aligned} & 9 \\ & 071 \end{aligned}$	$\begin{aligned} & \text { ESC } \\ & 033 \end{aligned}$	$\stackrel{?}{7}$	$\begin{gathered} \mathrm{y} \\ 171 \end{gathered}$	
-(minus)	$\begin{aligned} & - \text { (minus) } \\ & 055 \end{aligned}$	$\begin{aligned} & \text { ESC } \\ & 033 \end{aligned}$	$\stackrel{?}{77}$	$\stackrel{m}{155 *}$	
, (comma)	$\begin{aligned} & \text { (comma) } \\ & 054 \end{aligned}$	$\begin{aligned} & \text { ESC } \\ & 033 \end{aligned}$	$\stackrel{?}{77}$	$\stackrel{1}{154 *}$	
. (period)	$\begin{aligned} & .(\text { period }) \\ & 056 \end{aligned}$	$\begin{aligned} & \text { ESC } \\ & 033 \end{aligned}$	$\stackrel{?}{77}$	$\begin{gathered} n \\ 156 \end{gathered}$	



NOTE
The character set selected in Set-Up is used after all communication line connections, except full-duplex no modem control (FDX A).

## Enter Graphics Mode

ESC F
033106
Selects the special characters and line drawing character set.

## Exit Graphics Mode

ESC
G
033107
Selects the character set selected in Set-Up.

Table 22: Special Characters and Line Drawing Set and VT52 Graphics Mode Comparison

Octal Code	US or UK Set	Special Characters and Line Drawing Set	VT52 Graphics   Mode (Not   Available in   Rainbow 100 Computer
137	-	Blank	Blank
140	/	Diamond	Reserved
141	a	Checkerboard (error indicator)	Solid rectangle
142	b	Horizontal tab	$1 /$
143	c	Form feed	$3 /$
144	d	Carriage return	5/
145	e	Line feed	$7 /$
146	f	Degree symbol	Degrees
147	$g$	Plus/minus	Plus or minus
150	h	New line	Right arrow
151	i	Vertical tab	Ellipsis (dots)
152	j	Lower-right corner	Divide by
153	k	Upper-right corner	Down arrow
154	1	Upper-left corner	Bar at scan 0
155	m	Lower-left corner	Bar at scan 1
156	n	Crossing lines	Bar at scan 2
157	$\bigcirc$	Horizontal line - scan 1	Bar at scan 3
160	p	Horizontal line - scan 3	Bar at scan 4
161	q	Horizontal line - scan 5	Bar at scan 5
162	r	Horizontal line - scan 7	Bar at scan 6
163	s	Horizontal line - scan 9	Bar at scan 7
164	t	Left "T"	Subscript 0
165	u	Right "T"	Subscript 1
166	v	Bottom "T"	Subscript 2
167	w	Top "T"	Subscript 3
170	x	Vertical bar	Subscript 4
171	Y	Less than or equal to	Subscript 5
172	z	Greater than or equal to	Subscript 6
173	\{	Pi	Subscript 7
174	I	Not equal to	Subscript 8
175	\}	UK pound sign	Subscript 9
176	~	Centered dot	Paragraph

Erasing - Erasing removes characters from the screen. Erased characters are lost. Erase characters by using the following sequences.

Erase to End of Line
ESC K
033113
Erases all characters from cursor to end of current line, including cursor position. Cursor does not move.

ESC J
033112
Erases all characters from cursor to end of screen, including cursor to end of position. Cursor does not move.

Printing in Terminal Mode - The Rainbow 100 computer has a serial printer interface for local printing. The host computer can select all print operations by using sequences. You can only select two print operations from the keyboard, auto print and Print Screen.

When you print characters from the screen, terminal and printer tab stops are ignored. Characters printed are spaced with the space (SP, octal 040 ) character. The Rainbow 100 computer transmits a carriage return and line feed - but not a space character - after the last printable character of a line.

A line of double-height characters print as two identical lines of single-width characters. Double-width characters print as single-width characters on a single line.

Before selecting a print operation, check the printer status by using the printer status report (DSR) in ANSI mode. Do not select a print operation if the serial printer is not ready to print. Select print operations by using the following sequences.

## Auto Print

ESC
033136
Turns on auto print. A display line prints after you move cursor off the line, using a line feed, form feed, or vertical tab (also transmitted to printer).

The line also prints during an auto wrap. Auto wrap lines end with CR, LF.

ESC
$0331 \overline{3} 7$

Turns off auto print.

NOTE
Printer controller has a higher priority than auto print. Therefore, you can select printer controller and print characters during auto print.

Turns on print controller. The terminal transmits received characters to printer without displaying them. The terminal does not insert or delete spaces, provide line delimiters, or select printer character set.

ESC $X$
033130
Turns off printer controller. Always move printhead to left margin before turning off printer controller.

## Print Cursor Line

ESC V
033126
Prints display line with cursor. Cursor position does not change. Print cursor line ends when the line prints.

## Print Screen

ESC ]
033135

Prints the screen. Printer extent (DECPEX) determines whether full screen or scrolling region prints. Select scrolling region by using DECSTBM sequence. Print Screen ends when screen prints.

Reports - The Rainbow 100 computer transmits reports in response to escape sequence report requests. The Rainbow 100 computer generates only one report in VT52 mode. The report requests and responses are as follows.

## Identify

ESC Z
033132
This escape sequence requests the Rainbow 100 computer to identify itself.

ESC / Z
033057132
Rainbow 100 computer responds "I am a VT52." (Same as VT52.)

## APPENDIX A

## PROGRAMMING SUMMARY

## GENERAL

This appendix provides a summary of Rainbow 100 computer escape and control sequences.

Figure 4 shows the codes generated by the standard keys. Figure 5 shows the control codes generated by the function keys; shaded keys do not need Ctrl down to generate the control character.


Figure 4: Standard Key Codes

Programming Sequences
The rest of this appendix repeats the information in summary form.

Control Characters Received

Name	Character   Mnemonic	Octal   Code	Function
Null	NUL	000	Ignored when received (not stored   in input buffer) and used as a   fill character.
End of    transmission EOT	004	Can be selected as a disconnect   character. When used as a	
turnaround character, the			
disconnect character is DLE-EOT.			


Name	Character Mnemonic	Octal Code	Function
Enquire	ENQ	005	Transmits answerback message.
Bell	BEL	007	Generates bell tone.
Backspace	BS	010	Moves cursor to the left one character position; if cursor is at left margin, no action occurs.
Horizontal	HT	011	Moves cursor to next tab stop, or to right margin if there are no more tab stops.
Line feed	LF	012	Causes a line feed or a new line operation (See line feed/new line mode.) Causes printing if in terminal mode and if auto print operation selected.
Vertical tab	VT	013	Processed as LF.
Form feed	FF	014	Processed as LF.
Carriage return	CR	015	Moves cursor to left margin on current line.
Shift out	So	016	Selects G1 character set designated by a select character set sequence.
Shift in	SI	017	Selects G0 character set designated by a select character set sequence.
Device control 1	DCl	021	Processed as XON. DCl causes terminal to continue transmitting characters.   (Terminal mode only).
Device control 3	DC3	023	Processed as XOFF. DC3 causes terminal to stop transmitting all characters except XOFF and XON. (Terminal mode only).
Cancel	CAN	030	If received during an escape or control sequence, cancels the sequence and displays substitution character ( ) .
Substitute	SUB	032	Processed as CAN.
Escape	ESC	033	Processed as a sequence introducer.
Index	IND	204	Processes a line feed.
Next line	NEL	205	Processes as a CR LF sequence.
Horizontal tab set	HTS	210	Sets a horizontal tab at cursor location.
Reverse index	RI	215	Equals a reverse line feed.


Name	Character   Mnemonic	Octal   Code	Function
Single shift 2 SS2	SS	216	Selects G2 character set for the   next character only.
Single shift 3	SS3	217	Selects G3 character set for the   next character only.
Control sequence   introducer	CSI	233	Equals an ESC [.

ANSI Compatible Sequences

Set Mode

Name	Mnemonic	Mode	Sequence		
Keyboard action	KAM	Locked	ESC	2 h	
Insertion-replacement	I RM	Insert	ESC	4 h	
Send-receive	SRM	Off	ESC	12	h **
Line feed/new line	LMN	New line	ESC	20	h
Cursor key	DECCKM	Application	ESC	[ ? 1	h
ANSI/VT5 2	DECANM	ANSI	N/A		
Column	DECCOLM	132 column	ESC	? 3	h
Scrolling	DECSCLM	Smooth	ESC	? 4	h
Screen	DECSCNM	Reverse	ESC	? 5	h
Origin	DECOM	Relative	ESC	? 6	h
Auto Wrap	DECAWM	On	ESC	? 7	h
Auto repeat	DECARM	On	ESC	[ ? 8	h
Print form feed	DECPFF	On	ESC	? 1	$8 \mathrm{~h} * *$
Print extent	EDCPEX	Full screen	ESC	[ ? 1	$9 \mathrm{h**}$

Reset Mode

Name	Mnemonic	Mode	Sequence*			
Keyboard Action	KAM	Unlocked	ESC	2	1	
Insertion-replacement	IRM	Replace	ESC	4	1	
Send-receive	SRM	On	ESC	1	2	1**
Line feed/new line	LMN	Line feed	ESC	2	0	1
Cursor Key	DECCKM	Cursor	ESC	?	1	1
ANSI/VT52	DECANM	VT52	ESC	?	2	1
Column	DECCOLM	80 column	ESC	?	3	1
Scrolling	DECSCLM	Jump	ESC	?	4	1
Screen	DECSCNM	Normal	ESC	5	?	1
Origin	DECOM	Absolute	ESC	?	6	1
Auto wrap	DECAWM	Off	ESC	?	7	1
Auto repeat	DECARM	Off	ESC	?	8	1
Print form feed	DECPFF	Off	ESC	?	1	8 1**
Print extent	DECPEX	Scrolling region	ESC		1	9 1**

*The last character of the sequence is lowercase $L$ (l54 octal) **Terminal mode only.

Cursor Key (Arrow)	ANSI Char	cters Generated
	Reset (Cursor)	Set (Application)
Up	ESC [ A	ESC O A
Down	ESC [ B	ESC O B
Right	ESC [ C	ESC O C
Left	ESC [ D	ESC O D
Keypad Character Selection		
Name	Mnemonic	Sequence
Alternate Numeric	DECKPAM	ESC $=$
	DECKPNM	ESC >
Keypad Code	Generated	


	VT52	VT52	ANS I	ANSI
	Numeric	Alternate	Numeric	Alternate
	Keypad	Keypad	Keypad	Keypad
Key Mode Mode Mode Mode				
0	0	ESC ? p	0	ESC O p
1	1	ESC ? q	1	ESC O q
2	2	ESC ? r	2	ESC O r
3	3	ESC ? s	3	ESC O s
4	4	ESC ? t	4	ESC O t
5	5	ESC ? u	5	ESC O u
6	6	ESC ? v	6	ESC O v
7	7	ESC ? w	7	ESC O w
8	8	ESC ? x	8	ESC O x
9	9	ESC ? y	9	ESC O y
- (minus)	- (minus)	ESC ? m	- (minus)	ESC 0 m
, (comma)	, (comma)	ESC ? 1*	, (comma)	ESC O 1*
. (period)	. (period)	ESC ? N	. (period)	ESC O $n$
ENTER	Same as	ESC ? M	Same as	ESC O M
	RETURN		RETURN	
PF1	ESC P	ESC P	ESC O P	ESC O P
PF 2	ESC Q	ESC Q	ESC O Q	ESC O Q
PF3	ESC R	ESC R	ESC O R	ESC O R
PF 4	ESC S	ESC S	ESC O S	ESC O S

*The last character of the sequence is lowercase $L$ (154 octal)

Character Set	GO Designator	Gl Designator
United Kingdom (UK)		
United States (USASCII)	ESC (A	ESC ) A
Special characters	ESC ( 0	ESC ) B
SSC )		


Name	Mnemonic	Sequence
Single shift 2		
Single shift 3	SS2	ESC N
SS3	ESC O	

## Character Attributes

## Name

Select graphic rendition (no attributes)

Select graphic rendition (no attributes)

Select graphic rendition (select attribute bold)

Select graphic rendition (select attribute underline)

Select graphic rendition
(select attribute blink)
Select graphic rendition (select attribute, reverse video)

## Mnemonic

SGR

SGR

SGR

SGR

SGR

SGR

## Scrolling Region

Mnemonic Sequence

CUU	ESC	Pn A
CUD	ESC	Pn B
CUF	ESC	Pn C
CUB	ESc	Pn D
CUP	ESC	P1; Pc
CUP	ESC	H
HVP	ESC	Pl; Pc
HVP	ESC	f

IND
RI
NEL
DECSC
DECRC


CUD
CUF
CUB
CUP
HVP
HVP

ESC D
ESC M
ESC E
ESC 7
ESC 8

## Sequence

ESC [ m

EC [ 0 m

ESC [ 1 m

ESC [ 4 m

ESC [ 5 m

ESC [ 7 m

## Name

## Cursor up

Cursor down
Cursor forward (right)
Cursor backward (left)
Cursor position
Cursor position (home)
Horizontal and vertical position Horizontal and vertical position (home)
Index
Reverse index
Next line
Save cursor (and attributes)
Restore cursor (and attributes)

```
Name
Horizontal tab set
(at current column)
Tabulation clear
(at current column)
Tabulation clear
(at current column)
Tabulation clear (all tabs)
```

Line Attributes

## Name

Double-height top half
Double-height bottom half
Single-width single-height
Double-width single-height

Erasing

## Name

Erase in line
(cursor to end of line)
Erase in line
(cursor to end of line)
Erase in line
(beginning of line to cursor)
Erase in line
(entire line containing cursor)
Erase in display
(cursor to end of screen)
Erase in display
(cursor to end of screen)
Erase in display
(beginning of screen to cursor)
Erase in display
(entire screen)

Editing Functions

## Name

Delete character
Insert line
Delete line

## Mnemonic

HTS
TBC
TBC
TBC

Mnemonic
Sequence

## DECDHL

ESC \# 3
ECDHL
ESC \# 4
DECSWL
DECDWL
ESC \# 5
ESC \# 6

## Mnemonic

Sequence

## EL

EL
EL
EL

ED
ED
ED
ED
ESC [ 1 J
ESC [ 2 J

## Mnemonic

DCH
IL
DL

Sequence
ESC [ Pn P
ESC [ Pn L
ESC [ Pn M

Name	Mnemonic	Sequence
Media copy (enter auto print)	MC	ESC [ ? 5 i
Media copy (exit auto print)	MC	ESC [ ? 4 i
Media copy   (enter printer controller)	MC	ESC [ 5 i
Media copy   (exit printer controller)	MC	ESC [ 4 i
Media copy (Print Screen)	MC	ESC [ i
Media copy (Print Screen)	MC	ESC [ 0 i
Media copy (print cursor line)	MC	ESC [ ? 1 i
Reports		
Name	Mnemonic	Sequence
Device status report (request status of VTl02)	DSR	ESC [ 5 n
Response:		
Device status report (request status of printer)	DSR	ESc [ ? 15 n
Response:		
Printer ready	DSR	ESC [ ? 1 0 n*
Printer not ready	DSR	ESC [ ? 1 1 n*
No printer	DSR	ESC [ ? 13 n *
Device status report (report cursor position)	DSR	ESC [ 6 n
Cursor position report	CPR	ESC [ Pl; Pc R
Device attributes (what are you)	DA	ESC [ c
Device attributes (what are you)	DA	ESC [ 0 c
Identify terminal (what are you)	DECID	ESC Z

NOTE
ESC Z is not recommended.

Device attributes
response: VTl02 DA
ESC [ ? 6 c

NOTE
ESC C is not recommended.
*Terminal mode only.

```
Name Mnemonic Sequence
Reset to initial state
RIS ESC c
```


## CAUTION

```
Do not use, unpredictable results.
Tests and Adjustments
\begin{tabular}{lll}
Name & Mnemonic & Sequence \\
\begin{tabular}{l}
Screen alignment display \\
(fill screen with "Es")
\end{tabular} & DECALN & ESC \# 8
\end{tabular}
VT52 Compatible Mode
Modes Sequence
Enter ANSI mode ESC <
Keypad Character Selection
Name Sequence
Enter alternate keypad mode \(\quad\) ESC \(=\) Exit alternate keypad mode ESC > (Numeric keypad mode)
```


## NOTE

```
VT52 alternate keypad and numeric keypad mode different than ANSI.
Character Sets
Name Sequence
Special graphics character set ESC F*
Select US/UK character set ESC G
(as determined by US/UK
character Set-Up feature)
*Same as special character and line drawing set in ANSI mode.
```



## APPENDIX B

## CONTROL FUNCTIONS (SEQUENCE FORMATS)

## GENERAL

This appendix summarizes the ANSI code extension techniques defined in standards X3.4l-1974 and X3.64-1979. Those specifications cover many special cases and details not included here.

## Control Functions

The ANSI standards define types of characters used for specific purposes. You can determine a character's type by its position in the ASCII table (Table 22). There are two general categories of characters:

- display (columns 2 through 7; 10-15)
- control (columns 0 and $1 ; 8$ and 9)

This table and the ANSI system can work for either a 7-bit or 8-bit character environment. The Rainbow 100 computer uses both 7-bit and 8-bit characters.

NOTE
The ASCII 7-bit table corresponds to International Standards Organization (ISO) standard 646 and International Telegraph and Telephone Consultive Committee (CCITT) alphabet 5.

All control characters and groups of characters (sequences) not intended for display on the screen are control functions. Not all control functions perform an action in every ANSI device, but each device can recognize all control functions and discard any that do not apply to it. Therefore, each device performs a subset of the ANSI functions.

Because different devices use different subsets, compliance with ANSI does not mean compatibility between devices. Compliance only means that a particular function, if defined in the ANSI standard, is invoked by the same control function in all devices. If an ANSI device does not perform an action that has a control function defined in the ANSI standard, it cannot use that control function for any other purpose.

	column	0		1		2		3		4		5		6		7	
0	0000	NUL	$\begin{array}{\|l\|l\|} \hline 0 \\ 0 \\ 0 \\ \hline \end{array}$	DLE	$\begin{array}{\|l\|} \hline 20 \\ 16 \\ 10 \\ \hline \end{array}$	SP	$\begin{array}{\|l\|} \hline 40 \\ 32 \\ 20 \\ \hline \end{array}$	0	$\begin{array}{\|l\|l\|} \hline 60 \\ 48 \\ 30 \\ \hline \end{array}$	@	$\begin{array}{\|l\|} \hline 100 \\ 64 \\ 40 \\ \hline \end{array}$	P	$\begin{array}{\|l\|} \hline 120 \\ 80 \\ 50 \\ \hline \end{array}$	,	$\begin{array}{\|l\|} \hline 140 \\ 96 \\ 60 \\ \hline \end{array}$	p	160   112   70   11
1	0001	SOH	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	$\underset{(\times 0 N)}{\text { DC1 }}$	$\begin{array}{\|l\|} \hline 21 \\ 17 \\ 11 \\ \hline \end{array}$	!	$\begin{array}{\|l\|} \hline 41 \\ 33 \\ 21 \end{array}$	1	$\begin{array}{\|l\|} \hline 61 \\ 49 \\ 31 \end{array}$	A	$\begin{array}{\|c\|} \hline 101 \\ 65 \\ 41 \end{array}$	Q	$\begin{aligned} & 121 \\ & 81 \\ & 51 \\ & 51 \end{aligned}$	a	$\begin{array}{\|c\|} \hline 141 \\ 97 \\ 61 \end{array}$	9	$\begin{array}{r}161 \\ 113 \\ 71 \\ 712\end{array}$
2	0010	STX	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & \hline \end{aligned}$	DC2	$\begin{array}{\|l\|} \hline 22 \\ 18 \\ 12 \\ \hline \end{array}$	'	$\begin{array}{\|l\|} \hline 42 \\ 34 \\ 22 \end{array}$	2	$\begin{array}{\|l\|l\|} \hline 62 \\ 50 \\ 32 \\ \hline \end{array}$	B	$\begin{array}{\|c} 102 \\ 66 \\ \hline 20 \\ 42 \end{array}$	R	122 82 52 52 18	b	$\begin{array}{\|c} 142 \\ 98 \\ 62 \\ \hline \end{array}$	r	162   114   72   12
3	0011	ETX	$\begin{array}{r} 3 \\ 3 \\ 3 \\ \hline \end{array}$	DC3	$\begin{array}{\|l} \hline 23 \\ 19 \\ 13 \\ \hline \end{array}$	${ }^{*} \# / \underline{~}$	$\begin{array}{\|l} \hline 43 \\ 35 \\ 23 \\ \hline \end{array}$	3	$\begin{array}{\|l} \hline 63 \\ 51 \\ 33 \\ \hline \end{array}$	C	$\begin{array}{\|r\|} \hline 103 \\ 67 \\ 43 \\ \hline \end{array}$	S	123   83   53   53	c	$\begin{array}{\|c} 143 \\ 99 \\ 63 \\ \hline \end{array}$	s	163   115   73   16
4	0100	EOT	$\begin{aligned} & 4 \\ & 4 \\ & 4 \\ & \hline \end{aligned}$	DC4	$\begin{array}{\|l\|} \hline 24 \\ 20 \\ 14 \\ \hline \end{array}$	\$	$\begin{array}{\|l\|} \hline 44 \\ 36 \\ 24 \\ \hline \end{array}$	4	$\begin{array}{\|l\|l\|} \hline 64 \\ 52 \\ 34 \\ \hline \end{array}$	D	$\begin{array}{\|c\|} \hline 104 \\ 68 \\ 44 \\ \hline \end{array}$	T	$\begin{array}{\|c\|} \hline 124 \\ 84 \\ 54 \\ \hline \end{array}$	d	$\begin{array}{\|c} 144 \\ 100 \\ 64 \\ \hline \end{array}$	t	164   116   74   16
5	0101	ENQ	$\begin{aligned} & 4 \\ & \hline 5 \\ & 5 \\ & 5 \end{aligned}$	NAK	$\begin{array}{\|l\|} \hline 25 \\ 21 \\ 15 \end{array}$	\%	$\begin{aligned} & \hline 45 \\ & 37 \\ & 25 \end{aligned}$	5	$\begin{aligned} & \hline 65 \\ & 53 \\ & 35 \\ & \hline \end{aligned}$	E	$\begin{array}{\|c\|} \hline 105 \\ 69 \\ 45 \end{array}$	U	$\begin{array}{\|l\|} \hline 125 \\ \hline 85 \\ \hline 55 \end{array}$	e	$\begin{array}{\|c} 145 \\ 101 \\ 65 \end{array}$	u	165   117   75   15
6	0110	ACK	$\begin{array}{\|l\|} \hline 6 \\ 6 \\ 6 \\ \hline \end{array}$	SYN	$\begin{array}{\|l\|} \hline 26 \\ 22 \\ 16 \\ \hline \end{array}$	\&	$\begin{aligned} & 46 \\ & 38 \\ & 26 \\ & \hline \end{aligned}$	6	$\begin{array}{\|l\|l\|} \hline 66 \\ 54 \\ \hline 36 \\ \hline \end{array}$	F	$\begin{array}{\|l\|} \hline 106 \\ 70 \\ 46 \\ \hline \end{array}$	V	$\begin{array}{\|l} 126 \\ 86 \\ 56 \\ \hline \end{array}$	$f$	$\begin{array}{\|c\|} \hline 146 \\ 102 \\ 66 \\ \hline \end{array}$	$v$	166   118   76   16
7	0 1.11	BEL	$\begin{array}{\|l\|} \hline 7 \\ 7 \\ 7 \\ \hline \end{array}$	ETB	$\begin{array}{\|l\|l\|} \hline 27 \\ 27 \\ 23 \\ 17 \end{array}$	,	$\begin{aligned} & 47 \\ & 49 \\ & 39 \\ & \hline \end{aligned}$	7	$\begin{array}{\|l\|} \hline 67 \\ 55 \\ 57 \\ \hline \end{array}$	G	$\begin{array}{\|c\|} \hline 107 \\ 71 \\ 47 \\ \hline \end{array}$	W	$\begin{array}{\|l\|} 127 \\ 87 \\ 87 \\ 57 \end{array}$	g	$\begin{array}{\|c\|} \hline 147 \\ 103 \\ 107 \\ \hline 67 \\ \hline \end{array}$	w	167   119   77   12
8	1000	BS	$\begin{array}{\|l\|} \hline 10 \\ 8 \\ 8 \\ \hline \end{array}$	CAN	$\begin{array}{\|l\|} \hline 30 \\ 24 \\ 18 \\ 18 \end{array}$	$($	$\begin{array}{\|l\|} \hline 50 \\ 40 \\ 28 \\ \hline \end{array}$	8	$\begin{array}{\|l\|} \hline 70 \\ 56 \\ \hline 38 \\ \hline \end{array}$	H	$\begin{array}{\|c\|} \hline 110 \\ 72 \\ 48 \\ \hline \end{array}$	X	$\begin{array}{\|c\|c} 130 \\ 88 \\ 58 \\ 58 \end{array}$	h	$\begin{array}{\|c\|} \hline 150 \\ 104 \\ 68 \\ \hline 60 \\ \hline \end{array}$	x	$\begin{array}{r}170 \\ 172 \\ 78 \\ 78 \\ \hline 18\end{array}$
9	1001	HT	$\begin{array}{\|l\|} \hline 11 \\ 9 \\ 9 \\ \hline \end{array}$	EM	$\begin{array}{\|r\|} \hline 31 \\ 25 \\ \hline \end{array}$	)	$\begin{array}{\|l\|} \hline 51 \\ \hline 51 \\ 29 \\ \hline \end{array}$	9	$\begin{aligned} & 70 \\ & 51 \\ & 57 \\ & 39 \end{aligned}$	1	$\begin{array}{\|l\|} \hline 111 \\ 73 \\ 49 \\ \hline \end{array}$	Y	$\begin{gathered} 131 \\ 89 \\ 89 \\ 59 \end{gathered}$	i	$\begin{array}{\|l\|} \hline 151 \\ 105 \\ 69 \\ \hline \end{array}$	y	171 121 79 79
10	1010	LF	$\begin{array}{\|c} \hline 12 \\ 10 \\ A \\ \hline \end{array}$	SUB	$\begin{gathered} 32 \\ 26 \\ 1 \mathrm{~A} \\ \hline \end{gathered}$	*	$\begin{array}{\|l\|} \hline 52 \\ 42 \\ 2 A \\ \hline \end{array}$	:	$\begin{aligned} & 72 \\ & 58 \\ & 3 A \\ & \hline \end{aligned}$	J	$\begin{array}{\|l\|} \hline 12 \\ 74 \\ 4 \mathrm{~A} \\ \hline \end{array}$	Z	$\begin{aligned} & 132 \\ & 90 \\ & 5 A \end{aligned}$	j	$\begin{array}{\|c\|} \hline 152 \\ 106 \\ 6 A \\ \hline \end{array}$	$z$	172   122   78   78   12
11	1011	VT	$\begin{array}{\|c\|} 13 \\ 11 \\ 8 \\ \hline \end{array}$	ESC	$\begin{array}{\|l\|} \hline 33 \\ 27 \\ 18 \\ \hline \end{array}$	+	$\begin{array}{r} 53 \\ 43 \\ 43 \\ \hline 28 \\ \hline \end{array}$	;	$\begin{aligned} & 73 \\ & 59 \\ & 38 \end{aligned}$	K	$\begin{aligned} & 113 \\ & 75 \\ & 48 \\ & \hline \end{aligned}$	[	$\begin{aligned} & 133 \\ & 91 \\ & 98 \\ & 58 \end{aligned}$	k	$\begin{array}{\|l\|} \hline 153 \\ 107 \\ 68 \\ \hline \end{array}$	\{	173   123   78   18   1
12	1100	FF	$\begin{array}{\|l\|} \hline 14 \\ 12 \\ 12 \\ c \\ \hline \end{array}$	FS	$\begin{aligned} & 34 \\ & 28 \\ & 1 \mathrm{C} \end{aligned}$	,	$\begin{array}{\|l\|} \hline 54 \\ 44 \\ 20 \\ \hline \end{array}$	$<$	$\begin{aligned} & 74 \\ & 60 \\ & 60 \\ & 30 \end{aligned}$	L	$\begin{array}{\|l\|} \hline 114 \\ 76 \\ 4 c \\ \hline \end{array}$	\}	$\begin{aligned} & 134 \\ & 92 \\ & 92 \\ & \hline \end{aligned}$	1	154   108   60   68	1	174 1724 70 7125
13	1101	CR	$\begin{array}{\|c\|} \hline 15 \\ 13 \\ \hline \\ \hline \end{array}$	GS	$\begin{aligned} & 35 \\ & 29 \\ & 10 \\ & \hline \end{aligned}$	-	$\begin{array}{\|l} \hline 55 \\ 45 \\ 20 \\ \hline \end{array}$	=	$\begin{aligned} & 75 \\ & 61 \\ & 60 \\ & \hline \end{aligned}$	M	$\begin{array}{\|c\|} \hline 115 \\ 77 \\ 40 \\ \hline \end{array}$	]	$\begin{array}{r} 135 \\ \hline 93 \\ \hline 93 \\ \hline \end{array}$	m	$\begin{array}{r}155 \\ 109 \\ 60 \\ \hline 1\end{array}$	\}	175   125   120   10
14	1110	SO	$\begin{array}{\|c\|c\|} \hline 16 \\ 14 \\ \hline \end{array}$	RS	$\begin{aligned} & 36 \\ & 30 \\ & 30 \\ & 1 E \end{aligned}$		$\begin{array}{\|l\|} \hline 56 \\ 46 \\ 26 \\ \hline \end{array}$	>	$\begin{aligned} & 76 \\ & 62 \\ & 68 \\ & \hline \end{aligned}$	N	$\begin{array}{\|c\|} \hline 16 \\ 78 \\ 4 E \\ \hline \end{array}$	$\wedge$	$\begin{aligned} & 136 \\ & 94 \\ & 94 \\ & \hline 5 \end{aligned}$	n	$\begin{array}{r}156 \\ 110 \\ 6 E \\ \hline\end{array}$	$\sim$	176 126 76 717
15	1111	SI	$\begin{array}{\|c\|} \hline 17 \\ 15 \\ \mathrm{~F} \\ \hline \end{array}$	US	$\begin{aligned} & \hline 37 \\ & 31 \\ & 17 \\ & \hline \end{aligned}$	1	$\begin{array}{\|} \hline 57 \\ 47 \\ 27 \\ \hline \end{array}$	?	$\begin{aligned} & 77 \\ & 63 \\ & 67 \\ & \hline \end{aligned}$	0	$\begin{aligned} & 117 \\ & 79 \\ & 79 \end{aligned}$	-	$\begin{aligned} & 137 \\ & 95 \\ & 57 \end{aligned}$	0	$\begin{array}{r}157 \\ 111 \\ 6 F \\ \hline 10\end{array}$	DEL	177 127 77
NOT	E: DEPEND	S ON Th	HE C	haract	ER S	ET SELE	CTED	; U.S.	U.K			$\begin{aligned} & \text { AES } \\ & \text { PPH } \end{aligned}$					

KEY

Table 24: Control and Displayable Characters


## KEY



Table 25: Special Characters and Line Drawing Set

${ }^{B 7}{ }^{B 6}{ }^{B 5}$BITS				${ }^{0} 0$		${ }^{0} 1$		01		${ }^{1} 0$		${ }^{1} 0$				${ }^{1} 1$	
		$\begin{gathered} \text { COLUMN } \\ \mathbf{0} \end{gathered}$		1		2		3		4		5		6		7	
0000	0	NUL	0		$\begin{aligned} & 20 \\ & 16 \\ & 10 \\ & \hline \end{aligned}$	SP	$\begin{aligned} & 40 \\ & 32 \\ & 20 \\ & \hline \end{aligned}$	0	$\begin{aligned} & 60 \\ & 48 \\ & 30 \end{aligned}$	@	$\begin{array}{\|r\|} \hline 100 \\ 64 \\ 40 \\ \hline \end{array}$	P	$\begin{array}{\|r\|} \hline 120 \\ 80 \\ 50 \\ \hline \end{array}$	1	$\begin{array}{\|r\|} \hline 140 \\ 96 \\ 60 \\ \hline \end{array}$	$\text { SCAN } 3$	$\begin{array}{r}160 \\ 112 \\ 70 \\ \hline 16\end{array}$
$00^{\circ} 001$	1		$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { DC1 } \\ & \left(\times{ }^{\prime}\right) \end{aligned}$	$\begin{aligned} & 21 \\ & 17 \\ & 11 \\ & \hline \end{aligned}$	1	$\begin{aligned} & 41 \\ & 33 \\ & 21 \\ & \hline \end{aligned}$	1	$\begin{aligned} & 61 \\ & 49 \\ & 31 \\ & \hline \end{aligned}$	A	$\begin{array}{\|r\|} \hline 101 \\ 65 \\ 41 \\ \hline \end{array}$	Q	$\begin{array}{\|r\|} \hline 121 \\ 81 \\ 51 \\ \hline \end{array}$	\#	$\begin{array}{\|r\|} \hline 141 \\ 97 \\ 61 \\ \hline \end{array}$	SCAN 5	$\begin{array}{r} 161 \\ 113 \\ 71 \\ \hline \end{array}$
0010	2		2 2 2		$\begin{aligned} & 22 \\ & 18 \\ & 12 \end{aligned}$	'1	$\begin{aligned} & 42 \\ & 34 \\ & 22 \end{aligned}$	2	$\begin{aligned} & 62 \\ & 50 \\ & 32 \end{aligned}$	B	$\begin{array}{\|r\|} \hline 102 \\ 66 \\ 42 \\ \hline \end{array}$	R	$\begin{array}{\|r\|} \hline 122 \\ 82 \\ 52 \\ \hline \end{array}$	4	$\begin{array}{\|r\|} \hline 142 \\ 98 \\ 62 \\ \hline \end{array}$	SCAN 7	162   114   72
00011	3	ETX	$\begin{aligned} & \hline 3 \\ & 3 \\ & 3 \\ & \hline \end{aligned}$	DC3	$\begin{aligned} & 23 \\ & 19 \\ & 13 \\ & \hline \end{aligned}$	\#	$\begin{aligned} & 43 \\ & 35 \\ & 23 \end{aligned}$	3	$\begin{aligned} & 63 \\ & 51 \\ & 33 \end{aligned}$	C	$\begin{array}{\|r\|} \hline 103 \\ 67 \\ 43 \\ \hline \end{array}$	S	$\begin{array}{\|r\|} \hline 123 \\ 83 \\ 53 \\ \hline \end{array}$	$F$	$\begin{array}{\|r\|} \hline 143 \\ 99 \\ 63 \\ \hline \end{array}$	SCAN 9	$\begin{array}{r} 163 \\ 115 \\ 73 \\ \hline \end{array}$
0100	4	EOT	$\begin{aligned} & 4 \\ & 4 \\ & 4 \\ & \hline \end{aligned}$		$\begin{aligned} & 24 \\ & 20 \\ & 14 \end{aligned}$	\$	$\begin{aligned} & 44 \\ & 36 \\ & 24 \end{aligned}$	4	$\begin{aligned} & \hline 64 \\ & 52 \\ & 34 \end{aligned}$	D	$\begin{array}{\|r\|} \hline 104 \\ 68 \\ 44 \\ \hline \end{array}$	T	$\begin{array}{\|r\|} \hline 124 \\ 84 \\ 54 \\ \hline \end{array}$	$k$	$\begin{array}{\|r\|} \hline 144 \\ 100 \\ 64 \\ \hline \end{array}$	F	$\begin{array}{r}164 \\ 116 \\ 74 \\ \hline 165\end{array}$
0101	5	ENQ	$\begin{aligned} & \hline 5 \\ & 5 \\ & 5 \end{aligned}$		$\begin{aligned} & 25 \\ & 21 \\ & 15 \end{aligned}$	\%	$\begin{aligned} & 45 \\ & 37 \\ & 25 \end{aligned}$	5	$\begin{aligned} & 65 \\ & 53 \\ & 35 \end{aligned}$	E	$\begin{array}{\|r\|} \hline 105 \\ 69 \\ 45 \\ \hline \end{array}$	$\mathbf{U}$	$\begin{array}{\|c} 125 \\ 85 \\ 55 \end{array}$	$k$	$\begin{array}{\|r\|} \hline 145 \\ 101 \\ 65 \\ \hline \end{array}$	$\dagger$	$\begin{array}{r}74 \\ 165 \\ 117 \\ 75 \\ \hline 166\end{array}$
0110	6		$\begin{aligned} & \hline 6 \\ & 6 \\ & 6 \end{aligned}$		$\begin{aligned} & 26 \\ & 22 \\ & 16 \\ & \hline \end{aligned}$	\&	$\begin{aligned} & 46 \\ & 38 \\ & 26 \end{aligned}$	6	$\begin{aligned} & 66 \\ & 54 \\ & 36 \end{aligned}$	F	$\begin{array}{\|r\|} \hline 106 \\ 70 \\ 46 \\ \hline \end{array}$	V	$\begin{array}{\|c} \hline 126 \\ 86 \\ 56 \\ \hline \end{array}$	0	$\begin{array}{\|r\|} \hline 146 \\ 102 \\ 66 \\ \hline \end{array}$	1	$\begin{array}{r}166 \\ 118 \\ 76 \\ \hline 18\end{array}$
0 0111	7	BEL	$\begin{aligned} & 7 \\ & 7 \\ & 7 \end{aligned}$		$\begin{aligned} & 27 \\ & 23 \\ & 17 \end{aligned}$	1	$\begin{aligned} & 47 \\ & 39 \\ & 27 \end{aligned}$	7	$\begin{aligned} & 67 \\ & 55 \\ & 37 \end{aligned}$	G	$\begin{array}{\|r\|} \hline 107 \\ 71 \\ 47 \end{array}$	W	$\begin{array}{\|r\|} \hline 127 \\ 87 \\ 57 \\ \hline \end{array}$	$\pm$	$\begin{array}{\|r\|} \hline 147 \\ 103 \\ 67 \end{array}$	T	$\begin{array}{r}167 \\ 119 \\ 77 \\ \hline 18\end{array}$
1000	8	BS	$\begin{array}{\|c} \hline 10 \\ 8 \\ 8 \end{array}$	CAN	$\begin{aligned} & 30 \\ & 24 \\ & 18 \end{aligned}$	$($	$\begin{aligned} & 50 \\ & 40 \\ & 28 \end{aligned}$	8	$\begin{aligned} & 70 \\ & 56 \\ & 38 \end{aligned}$	H	$\begin{array}{\|r\|} \hline 110 \\ 72 \\ 48 \\ \hline \end{array}$	X	$\begin{array}{\|r\|} \hline 130 \\ 88 \\ 58 \\ \hline \end{array}$	L	$\begin{array}{r} 150 \\ 104 \\ 68 \end{array}$	1	$\begin{array}{r}170 \\ 120 \\ 78 \\ \hline 17\end{array}$
10001	9	HT	$\begin{gathered} 11 \\ 9 \\ 9 \end{gathered}$		$\begin{aligned} & 31 \\ & 25 \\ & 19 \end{aligned}$	)	$\begin{aligned} & 51 \\ & 41 \\ & 29 \end{aligned}$	9	$\begin{aligned} & 71 \\ & 57 \\ & 39 \end{aligned}$	1	$\begin{array}{\|l\|} \hline 111 \\ 73 \\ 49 \\ \hline \end{array}$	Y	$\begin{array}{\|r\|} \hline 131 \\ 89 \\ 59 \end{array}$	K	$\begin{aligned} & 151 \\ & 105 \\ & 69 \end{aligned}$	5	$\begin{array}{r}171 \\ 121 \\ 79 \\ \hline 172\end{array}$
1010	10	LF	$\begin{gathered} 12 \\ 10 \\ A \end{gathered}$	SUB	$\begin{aligned} & \hline 32 \\ & 26 \\ & 1 A \end{aligned}$	*	$\begin{aligned} & 52 \\ & 42 \\ & 2 A \end{aligned}$	:	$\begin{aligned} & 72 \\ & 58 \\ & 3 A \end{aligned}$	J	$\begin{array}{\|l\|} \hline 112 \\ 74 \\ 4 \mathrm{~A} \\ \hline \end{array}$	Z	$\begin{array}{\|r\|} \hline 132 \\ 90 \\ 5 A \\ \hline \end{array}$	」	$\begin{array}{\|c\|} \hline 152 \\ 106 \\ 6 A \\ \hline \end{array}$	2	$\begin{array}{r}172 \\ 122 \\ 7 A \\ \hline 18\end{array}$
$1 \begin{array}{llll}1 & 0 & 1 & 1\end{array}$	11	VT	$\begin{gathered} 13 \\ 11 \\ 8 \end{gathered}$	ESC	$\begin{aligned} & 33 \\ & 27 \\ & 18 \end{aligned}$	+	$\begin{aligned} & 53 \\ & 43 \\ & 2 B \end{aligned}$	;	$\begin{aligned} & 73 \\ & 59 \\ & 3 B \end{aligned}$	K	$\begin{array}{r} 113 \\ 75 \\ 4 B \end{array}$	[	$\begin{array}{\|r\|} \hline 133 \\ 91 \\ 5 B \\ \hline \end{array}$	1	$\begin{array}{r} 153 \\ 107 \\ 6 B \end{array}$	$\pi$	$\begin{array}{r}173 \\ 123 \\ 78 \\ \hline 174\end{array}$
1100	12	FF	$\begin{aligned} & 14 \\ & 12 \\ & c \end{aligned}$		$\begin{aligned} & 34 \\ & 28 \\ & 10 \end{aligned}$	,	$\begin{aligned} & 54 \\ & 44 \\ & 2 \mathrm{C} \end{aligned}$	$<$	$\begin{aligned} & 74 \\ & 60 \\ & 30 \end{aligned}$	L	$\begin{array}{\|r\|} \hline 114 \\ 76 \\ 4 C \\ \hline \end{array}$	\}	$\begin{array}{\|r\|} \hline 134 \\ 92 \\ 50 \\ \hline \end{array}$	$\Gamma$	$\begin{array}{\|c\|} \hline 154 \\ 108 \\ 6 \mathrm{C} \\ \hline \end{array}$	$\neq$	$\begin{array}{r}174 \\ 124 \\ 7 C \\ \hline\end{array}$
1101	13	CR	$\begin{gathered} 15 \\ 13 \\ D \end{gathered}$		$\begin{aligned} & 35 \\ & 29 \\ & 10 \end{aligned}$	-	$\begin{aligned} & 55 \\ & 45 \\ & 20 \end{aligned}$	=	$\begin{aligned} & 75 \\ & 61 \\ & 3 D \end{aligned}$	M	$\begin{array}{\|r\|} \hline 115 \\ 77 \\ 4 D \\ \hline \end{array}$	]	$\begin{gathered} 135 \\ 93 \\ 5 D \end{gathered}$	L	$\begin{array}{r} 155 \\ 109 \\ 6 \mathrm{D} \end{array}$	$f$	$\begin{array}{r}175 \\ 125 \\ 70 \\ \hline 18\end{array}$
1110	14	SO	$\begin{gathered} 16 \\ 14 \\ E \end{gathered}$		$\begin{aligned} & 36 \\ & 30 \\ & 1 E \end{aligned}$	-	$\begin{aligned} & 56 \\ & 46 \\ & 2 E \end{aligned}$	$>$	$\begin{aligned} & 76 \\ & 62 \\ & 3 E \end{aligned}$	N	$\begin{array}{r} 116 \\ 78 \\ 4 E \end{array}$	$\wedge$	$\begin{array}{\|c} \hline 136 \\ 94 \\ 5 \mathrm{E} \end{array}$	$t$	$\begin{gathered} \begin{array}{c} 156 \\ 110 \\ 6 E \end{array} \end{gathered}$	-	$\begin{array}{r}176 \\ 126 \\ 7 E \\ \hline 177\end{array}$
11111	15	SI	17 15 15 F		$\begin{aligned} & 37 \\ & 31 \\ & 1 F \end{aligned}$	/	57 47 27	$?$	77 63 $3 F$	0	$\begin{array}{r} 117 \\ 79 \\ 47 \\ \hline \end{array}$	(BLANK)	137 95 57	SCAN 1	157 111 $6 F$		177   127   77

KEY
ASCII CHARACTER
ESC 33
27
18 octal DECIMAL

MR-9587

## Escape and Control Sequences

Escape and control sequences provide more controls in addition to the control characters in the ASCII 7-bit table. These multiple-character control sequences are not displayed but control the displaying, processing, and transmission of characters. At the end of a sequence or during an error condition, the terminal continues to display received characters.

## Escape Sequences

The format for an escape sequence is as follows:

ESC	1....1	F
033	$040-057$	$060-176$
Escape   sequence   introducer	Intermediate   characters   (0 or more   characters)	Final
character		
(1 character)		

Escape Sequence Introducer - This is the ESC character (octal 033) defined by ANSI X3.4-1977. After receiving ESC, the terminal stores (but does not display) all control function characters received in the proper range.

Intermediate Characters - These are characters received after ESC in the octal range of 040 - 057 (column 2 of the ASCII table). The terminal stores intermediate characters as part of the control function.


#### Abstract

Final Character - This is a character received after ESC in the octal range of 060 - 176 (columns 3-7 of the ASCII table). The final character indicates the end of the control function. The intermediate and final characters together define the function of the sequence. The terminal then performs the specified function and continues to display received characters. ANSI standard control functions have a final character in the octal range of 100 - 176 (columns 4-7 of the ASCII table). Private sequences have a final character in the octal range of 060 - 077 (column 3 of the ASCII table).


## Example

Action: Designate ASCII character set as GO.

## Sequence

```
ESC (B
```

033050102

Escape sequence Intermediate Final character
introducer character

## Control Sequence Format

The format of a control sequence is as follows:

CSI	P..... P	1..... 1	F
033133	060-077	040-057	100-176
Control sequence introducer	Parameter characters (O or more characters)	Immediate characters (0 or more (characters)	Final character (l character)

Control Sequence Introducer - The CSI is the ESC (octal 033) and [ (octal 133) characters defined by ANSI X3.41-1977. These characters provide 8-bit control functions by using 7-bit characters. After receiving CSI characters, the Rainbow 100 computer stores (but does not display) all control function characters received in the proper range.

During an escape sequence, if the Rainbow 100 computer receives an 8-bit control character, (octal 200-237), the escape sequence is aborted. The 8-bit control character's function is then executed if it is one of the supported functions.

An 8-bit display character, received during an escape sequence, is displayed and does not affect the escape sequence in process.

Parameter Characters - These are characters received after the CSL character, in the octal range of $060-077$ (column 3 of the ASCII table). The parameter characters modify the action or interpretation of the control function. The terminal interprets parameter characters as private when the $<=>$ ? characters (octal 074-077) begin the parameter string. The : character (octal 072) is reserved. This means an ANSI-specified control sequence can have a parameter function with a private interpretation.

The Rainbow 100 computer uses two types of parameter characters, numeric and selective. A numeric parameter represents a decimal number, designated by Pn. The decimal characters have a range of $0-9$ (octal 060 - 071). A selective parameter comes from a list of specified parameters, designated by Ps.

If a control sequence includes more than one parameter, the parameters are separated by a delimiter, the ; character (octal 073).

Intermediate Characters - These are characters received after the CSl character, in the octal range of $040-057$ (column 2 of the ASCII table). The terminal stores these characters as part of the control function.

## NOTE

The terminal does not use intermediate characters in control functions.

```
Final Character - This is a character received after the CSl
character, in the octal range of 100 - l76 (columns 4 - 7 of the ASCII
table). The final character indicates the end of the control
function. The intermediate and final characters together define the
function of the sequence. The terminal then performs the specified
function and continues to display received characters. ANSI standard
control functions have a final character in the octal range of 100 -
157 (columns 4 - 6 of the ASCII table). Private sequences have a
final character in the octal range of 160 - l76 (column 7 of the ASCII
table).
```


## Example

```
Action: Clear all horizontal tabs.
```


## Sequence

```
\(\left.\begin{array}{lccl}\text { ESC } & \text { [} & 3 & \text { g }\end{array}\right]\)
```


## Sequence Examples

```
These examples show the use of multiple functions selected in one sequence, private parameters and private sequences.
```



```
ESC [2 ; 1 y Invoke self-test
033133062073061171 (\(y=\) ANSI private sequence)
```


## APPENDIX C

## RAINBOW 100 COMPUTER AND VT100 TERMINAL FAMILY DIFFERENCES

The following is a list of the differences between the Rainbow 100 and members of the VTlOO family of terminals. Also included are certain "points-of-interest" that should be considered by programmers.

## DEC'S MULTINATIONAL 8-BIT CHARACTER

The Rainbow 100 computer implements the printing graphics found in DEC's Multinational Character set, and the 8-bit character codes for the printing characters. It is a subset of the Multinational Character set. It is not the full character set. In particular, it does not implement all the control sequences specified for the Multinational Character set.

## 8-BIT CHARACTER CODES

The Rainbow 100 computer accepts and acts on 8-bit character codes, the VTl02 terminal always strips the 8th bit. If 8-bit codes are received in VT5 2 mode, they will be handled the same as in ANSI mode.

## Cl CONTROL CODES

Rainbow 100 computer executes ( 8 -bit) control codes for index, next line, horizontal tab set, reverse index, single shift 2 , single shift 3, control sequence introducer. Reception of any Cl control code will abort an escape sequence in process (CSI restarts an escape sequence). The control codes are processed and the graphic characters are displayed. This is not a recommended way of aborting escape sequences. It is not guaranteed to work this way in future versions of the Rainbow personal computer family.

## KEYBOARD AND 8-BIT KEY CODES

Rainbow l00's keyboard is called the LK201 keyboard. The Rainbow 100 computer never asks the LK201 Keyboard's non-US keys (those keys that generate 8-bit character codes). Software written for Rainbow should always treat 8-bit characters generated by the keyboard the same as 7-bit characters. In future Rainbow systems 8-bit characters will be generated by all keyboards, US and non-US. This is to say, an operator will be able to generate an 8-bit "a-umlat" character from any national version of the keyboard.

## KEYBOARD COMPOSE KEY

When in terminal mode, the Compose key is non-functional and rings the bell when pressed. When the operating system is running, the Compose key, if pressed, generates an escape sequence. Application software should never use this key for any purpose. In future Rainbow 100 systems the key will be used by the firmware or the operating system to generate 8-bit character codes.

## KEYBOARD CONTROL CODE GENERATION

Rainbow 100 computer requires use of the Shift key for some of the keyboard-entered control codes. This is due to the uncertainty of character location on various non-US national keyboards.

## SET-UP PURGING KEYBOARD BUFFER

When the Set-Up key is pressed to enter Set-Up mode in the Rainbow 100, the key-holding buffer is cleared which causes any unserviced keys to be lost and Set-Up is immediately honored.

## WAIT INDICATOR

When the keyboard buffer fills up, the Rainbow 100 computer ignores further entries and sounds the bell. It lights the Wait LED as the VTl02 terminal does. The bell and Wait LED are used to notify the user that the key was not accepted.

## KEYBOARD PRINT SCREEN KEY IN TERMINAL MODE

Terminal mode print functions are implemented via the Print Screen key on the Rainbow 100 computer. VTl02 terminal uses the keypad Enter key. Rainbow l00's Print Screen is equivalent to VTl02's <Shift/Enter> and Rainbow l00's <Ctrl/Print Screen> is equivalent to VTl02's <Ctrl/Enter>.

## KEYBOARD HOLD-SCREEN KEY

The Hold Screen key on the Rainbow 100 computer does not work the same as the NO SCROLL key on a VTl02 terminal. On a VTl02 terminal it sends an XOFF/XON as it toggles back and forth the <Ctrl/S> and <Ctrl/Q> typed from the keyboard can be used to get the same effect. Setting Hold Screen for the Rainbow 100 computer does not necessarily cause an XOFF to be sent. It sets an internal flag that causes the "receive character" process to loop until the flag is cleared. This effectively "hangs" any console output (normal or direct) in console mode. In terminal mode this "hang" causes the comm receive buffer to fill up until it reaches the high water mark at which point it will send an XOFF, if enabled by Set-Up. After the Hold Screen is removed, characters are removed from the receive buffer until the low water mark is reached which causes XON to be sent, if enabled.

As a result of this method of implementation, Rainbow 100 computer honors Hold Screen even in "local", VTl02 terminal does not.

In Rainbow 100 terminal mode, after using Hold Screen on incoming data, the last char for display is being 'held'. Entering setup, switching to local, and exiting from setup does not clear the 'hold' state or the char. When 'hold' is finally removed, the char originally being 'held' is displayed before any locally generated characters.

In the Rainbow 100 computer, if the Print Screen key is depressed while the Hold Screen is asserted, the print is deferred until after the 'hold' is removed and char being 'held' is processed. The VTl02 terminal prints a screen even if the NO SCROLL key as been depressed.

## KEYBOARD CURSOR KEY MODES

Cursor key mode and keypad mode for the Rainbow 100 computer are independent. In the VTl02 terminal, the cursor keys only send application codes if both cursor and keypad modes are set to 'application'.

## PRINTER CHARACTER SETS IN TERMINAL MODE

The Rainbow 100 computer assumes the printer is capable of properly receiving 8-bit DEC Multinational characters.

## PRINTING BLOB CHARACTERS IN TERMINAL MODE

When printing from the screen in terminal mode and encountering a 'blob' character, the VTl02 terminal sends ASCII 'SUB' to the printer. The Rainbow 100 computer sends the VTl00 line-drawing graphics character 'blob' bracketed by the appropriate character set selection escape sequence if required.

## PRINTER PORT DEFAULTS

Factory Set-Up defaults are not the same as the VTl02 terminal for the printer port.

## PRINT CURSOR LINE OPERATION IN TERMINAL MODE

At the completion of a 'print cursor line' operation, Rainbow loo computer sends the escape string to restore the printers Go char set in between the terminating carriage return and line feed. VTlo2 terminal sends it after the line feed.

The following anomaly occurs when a printer cable is attached to a Rainbow after it is powered up, but the printer end of the cable is not attached to anything.


## TERMINAL ID

The Rainbow 100 computer identifies itself as a VTl02 terminal.

## INSERT AND DELETE LINE ESCAPE SEQUENCES

Insert Line:	CSI	Pn	$L$
Default line:	CSI	Pn	$M$

If the cursor is on the last line of the scrolling regions, and the line is double-width, then after execution of either of the above controls, the active line attributes are:

A0 On Rainbow 100: single-width
BO On the VTlO2 terminal: whatever the active line attributes were before execution of the control sequence.

## ALTERNATE ROM CHARACTER SETS

Rainbow 100 computer does not implement the alternate ROM character sets found in the VTlO2 terminal.

## ALTERNATE ROM AND LED ESCAPE SEQUENCES

The Rainbow 100 computer parses but ignores the escape sequences to set GO and Gl to the alternate ROM and alternate ROM special graphics (ESC ( 1 , ESC ( 2 , ESC ) 1 , ESC ) 2 ). It will parse but ignore the escape sequence for LED control (ESC [ Pn q ). Rainbow has no alternate ROMs and the LEDs are not available for software control.

## G2 AND G3 CHARACTER SETS

G2 and G3 are permanently designated as the NVM default character set. They are either US or UK variations of Rainbow's subset of the multinational character set. They can be invoked for single characters by the single-shift-2 or single-shift-3 escape sequences or the Cl control codes.

## ERASE LINE AND ERASE DISPLAY

In Rainbow l00, escape sequences for erase in line and erase in display, only the first selective parameter is processed. If more than one is sent, the additional parameters are ignored.

## ABORTING ESCAPE SEQUENCES BY INTERMEDIATE CHARACTERS

Rainbow 100 computer aborts escape sequence parsing when it finds an intermediate char causing all following characters to be displayed. VTl02 terminal aborts the sequence but continues parsing until it finds a final char so the intervening part of the escape sequence does not display.

## INSERT AND REPLACE MODES

Rainbow 100 computer always sets insertion/replacement mode to replacement before saving into NVM. These modes are not user selectable. They are only selectable by software.

## SELFTEST ESCAPE SEQUENCES

The Rainbow 100 computer parses but ignores the escape sequences to run self tests (ESC [ 2 , Pn $y$ ). Also the device status report request (ESC [ 5 n ) will always cause the ready, no malfunctions reply ( ESC L 0 n ).

## RESET TO INITIAL STATE

In Rainbow 100 computer, ESC $c$ (reset to initial state) does not reset keypad and cursor keys to their normal modes. RIS is a dangerous sequence to issue from workstation software. It is not recommended to be used. Its function will change in future versions of Rainbow.

## VT52 MODE AND ORIGIN MODE

The Rainbow 100 computer in VT52 mode honors the origin mode setting, VT102 terminal in VT5 5 modes does not.

## AUTOWRAP MODE

The Rainbow 100 computer maintains the wrap-pending flag unconditionally and tests it conditionally. VTl02 terminal maintains the flag conditionally and tests it conditionally. This implementation affects where the next character goes when the auto-wrap mode is CHANGED while the cursor is in the 'line-filled' position. The VTl02 terminal places the cursor in a different place than the Rainbow. Software is recommended to not use auto wrap mode for controlling the placement of the text on the screen.

```
In Rainbow 100 computer the Tab character always clears the
wrap-pending flag. As a result, if Tab is the 81 st char in an 80 char
line, char 82 will not wrap but char 83 will. In a VTlo2 terminal,
char 82 will wrap.
```


## DISABLE CURSOR AND ENABLE CURSOR FIRMWARE FUNCTIONS

The Rainbow l00's ENABLE and DISABLE cursor firmware functions are designed to only work with the direct video formware functions. They will not work with the normal single character at a time screen updates.

## XON/XOFF PROTOCOL AND BUFFER SIZE IN TERMINAL MODE

In Rainbow 100 terminal mode, the second XOFF is sent at
'buffer-full'. In a VTlo2 terminal, the second XOFF is sent l2 char
before 'buffer-full'. Also the Rainbow 100 buffer is 255 char in
size, a VTl02 terminal is 128 .

FULL DUPLEX COMMUNICATION PROTOCOL IN TERMINAL MODE
The Rainbow 100 computer always precedes the dropping of DTR with a EOT character. The VTl02 terminal does not always do this. The Rainbow 100 computer does not disconnect if it is placed in Local mode. The VTl02 terminal disconnects if placed in local mode.

HALF DUPLEX COMMUNICATION SUPPORT IN TERMINAL MODE
The Rainbow 100 terminal emulation does not support the half duplex communication protocols of the VTl02 terminal.

## APPENDIX D

## INTERNATIONAL LANGUAGE KEYBOARDS

The figures in this appendix illustrate the different national language keyboards that are or will be available. One of the main differences is the label strip that you add to the top of the keyboard. The label strip comes in the country kit.


Figure 5: LK201-AE British Keyboard


Figure 6: LK201-AA American (English) Keyboard


Figure 7: LK201-AC Canadian (French) Keyboard


Figure 8: LK201-AD Danish Keyboard


Figure 9: LK201-AF Finnish Keyboard

	${ }_{\text {c }}^{\substack{\text { Bind } \\ \text { drucken }}}$		F4	沙	$\times$	Fors	$\begin{aligned} & \text { Zuruck } \\ & \text { nehmen } \end{aligned}$	Hevot	fortio	(EITC)	${ }_{\text {fis\% }}^{\text {(12) }}$	${ }_{(1,13}^{1 / 5}$	2ustre	${ }^{\text {sida mop }}$	Kombi	${ }^{\text {worob }}$	417	${ }^{6} 18$	${ }^{1} 19$	${ }_{5} 2$
														Hilt	Austurnen					



Figure 10: LK201-AG Austrian/German Keyboard


Figure ll: LK201-AH Dutch Keyboard


Figure 12: LK201-AI Italian Keyboard

Figeif	Imporame	$\xrightarrow{\text { Monce }}$ Mod	${ }_{4}$	$\substack{\text { Couper } \\ \text { comm }}$	interruot	Repors	Annuter	${ }_{\text {Peose }}^{\text {paincip. }}$	Sortio		${ }_{\substack{\text { fas } \\ \text { fat }}}$		${ }_{\text {Opplions }}$	${ }^{\text {Ecring fige }}$	\%	${ }^{\text {Cramp }}$ comp	Artonara	F17.	${ }^{18}$	F19	,
														Aide		Exocu					



Figure 13: LK201-AK Swiss (French) Keyboard


Figure 14: LK201-AL Swiss (German) Keyboard


Figure 15: LK201-AM Swedish Keyboard


Figure 16: LK201-AN Norwegian Keyboard


Figure 17: LK201-AP Belgian/French Keyboard


Figure 18: LK201-AT Flemish Keyboard


Figure 19: LK201-AS Spanish Keyboard

## READER'S COMMENTS

Did you find this manual understandable, usable, and well-organized? Please make suggestions for improvement.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Did you find errors in this manual? If so, specify the error and the page number.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Please indicate the type of reader that you most nearly represent.First-time computer user
$\square$ Experienced computer user
$\square$ Application package user
$\square$ Programmer
$\square$ Other (please specify)
Name $\qquad$
Date $\qquad$
Organization $\qquad$
Street $\qquad$
City $\qquad$
State
Zip Code or Country

No Postage Necessary if Mailed in the United States

## BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

SOFTWARE PUBLICATIONS
200 FOREST STREET MRO1-2/L12
MARLBOROUGH, MA 01752

