PDP-9
UTILITY PROGRAMS

ADVANCED SOFTWARE SYSTEM

Programmer's Reference Manual

Order No. DEC-9A-GUAB-D from Program Library, Maynard, Mass. Price $4.50

Direct comments concerning this manual to Software Quality Control, Maynard, Mass.

DIGITAL EQUIPMENT CORPORATION o MAYNARD, MASSACHUSETTS

Ist Printing August 1967
2nd Printing February 1968
3rd Printing November 1968

Copyright©l968 by Digital Equipment Corporation

The following are registered trademarks of Digital
Equipment Corporation, Maynard, Massachusetts:

DEC PDP
FLIP CHIP FOCAL
DIGITAL COMPUTER LAB

CONTENTS

DDT-9

EDITOR-9

PIP-9

LINKING LOADER

7-TO-9 CONVERTER

eee
i

DDT-9

DDT~-9

CONTENTS

Section

1 INTRODUCTION L itttiiiiineininensnnerenossonsscoassonessoansanns
1.1 General Information «vvveen vt iinnescnoesronesorasssrnoasonans
1.2 Terminology Used in this Manual Ceerecsanenrennons
2. DEBUGGING WITH DDT vttt viietiiineecnonensosssestnssscssescessnes
2.1 Loading the Program . .ueees e ererenonsnonsasesosesnsesosessnans
2.2 Using the Breakpoints +.uuiviiiinieieeoienerosstonsnoaassoansaasas
2.3 Examination and Modification . vvvieirieiirirnerericerenensnncenss
2.4 Type-Out Modes et iecaisetiaseaes Ceereieeaes heeees
2.4.1 Address Modes vvveiininnereieioroierennsosaneensssconnsans
2.5 Starting and Restarting «oveeeeeenerereeeteeesencsoenceaoooenasnens
2.6 Searching Operations «vueueeieieriiieereestiessersrssieeneeannns
2.7 Special Locations Used by DDT=9 .ivuiiniiiiiniiiiiinninieennnnnns
2.8 Symbol Definitions ..uuuuriuieieerinrrrinnnrienrnnnnennnnsns
2.9 Patch File Output v iviereriiiiiiiiiiiiii i irnninneecerennnenenens
2.10 Patch File INput tvvtniniiiierninnieeeeerrnnsioconnonnsneseeanns
2.11 Co-Resident Subroutines .v.vvveivieniennen, C e isieree e i
2.12 Indirect Address References vovvvuveiiniineieiennnisenenrnnnennnns
2.13 Miscellaneous Features . vvev i irienenneresestreorsoenonssnsnases

APPENDIXES

AEEendix

1 SUMMARY OF COMMANDS vttt iiittiertreoeeneerocsssonconsssosncenn
2 MNEMONIC INSTRUCTION TABLE. . ..ottt tiitnevenrceenoneencanconsns .
3 FORMAT OF PATCH FILE 4vvvttntentereererneneenenoeensonesannsanns

2-8
2-8
2-8
2-9
2-9
2-9

Al-1
A2-1
A3-1

DDT-9

SECTION 1
INTRODUCTION

1.1 GENERAL INFORMATION

DDT-9 (the Dynamic Debugging Technique program for the PDP-9) provides convenient
on-line debugging assistance for MACRO-9 and FORTRAN programmers. By typing simple commands
on the Teletype keyboard, programmers may make corrections and additions in symbolic code (or octal),
suspend execution of the program at any predetermined point during the debugging run, and examine
the status of any memory word in the program. The user's program is started and stopped by commands
to DDT-9. Under normal conditions, the user is always able to stop a "runaway” program.

DDT-9 operates as part of the PDP-9 Advanced Software System. It is loaded into memory
(the top 160010 positions) along with the Linking Loader which, upon command, loads the user's pro-
gram (including the symbol table and any sub-programs) and the needed I/O handlers, FORTRAN Ob-
ject Time System routines and library subroutines. DDT-9 disables the automatic priority interrupt im-
mediately upon receiving control from the Monitor.

All user communication with DDT-9 is via the Teletype, which may be any model included
in standard PDP-9 configurations.

DDT-9 interprets all numeric input, and outputs all numeric data in octal radix. The digits

8 and 9 are treated as alphabetic characters.

1.2 TERMINOLOGY USED IN THIS MANUAL

2 A non-printing character used for text representation of the carriage return key.
v A non-printing character used for text representation of the line feed key.

t A text representation of the control key, always used in conjunction with another key.
It is also the printing character, up arrow.

T The non-printing character obtained by holding the control key while striking the T.
The term C (R) represents the content of storage word R.
In examples, underlining designates information typed by DDT-9.

+ Elements are to be added.

— Elements are to be subtracted.

s (Space) field delimiter, as between operation code and address.

A Transfer Vector is a word which contains the 15-bit address of another word. Bits 0-2 are
meaningless and may be used for codes. In the PDP-9, transfer vectors are used in indirect addressing,

by the Linking Loader for subroutine calls, and are required in addressing to another memory bank.

1-1

DDT-9

SECTION 2
DEBUGGING WITH DDT

2.1 LOADING THE PROGRAM

In an 1/O Monitor (paper tape) environment, the Linking Loader forms an integral part of
the DDT tape.

In the Keyboard Monitor, the teletype command DDT (DDTNS) calls the Linking Loader as
well as DDT. (DDTNS is used to prevent loading of the user symbol table to save memory.)

The first response from the teletype, in either system, will be:

LOADER
>

The user program is then loaded in the usual manner. (See section 2.1 and 2.2 of the Linking
Loader manual.) When loading is complete, DDT takes control and types:

DDT
>
to indicate its readiness to accept DDT commands.

With the Keyboard Monitor, DAT slots -4 (user program) and =5 (user external library, if
any) must be assigned to appropriate devices for proper loading. DAT slot -6 (patch file output) and
=10 (patch file input) must be assigned to the paper tape punch and paper tape reader, respectively,
if the patch file capability is to be used. Otherwise DAT slots =6 and =10 should be assigned to NONE.

2.2 USING THE BREAKPOINTS

A breakpoint provides a convenient means of interrupting a user program at any predetermined
step, allowing examination of the program status at that point. DDT=9 inserts a breakpoint (upon request)
by replacing the indicated instruction with a jump to DDT-9. When the program reaches that point,
control shifts to DDT=9, which types the number of breakpoint, the address of the breakpoint, the con-
tents of the AC, the status of the Link, and the go-ahead signal (>). The user may then perform any
of the debugging operations explained in this manual.

DDT-9 allows the use of four breakpoints to facilitate debugging when there is uncertainty
as to which path the program will follow.

The user may place a breakpoint at any point in his program, considering only the following
limitations:

a. Instructions which are program modified
b. Instructions which are used as literals

c. XCT instructions pointing to memory reference instructions.

2-1

DDT-?

Breakpoints may be placed on skip, jump, and JMS instructions. Breakpoints may also be placed on
CAL instructions, but since CAL instructions may contain arguments required by the called subroutine,
as well as having a variable number of subsequent arguments, DDT-9 is unable to simulate the CAL

(as it is able to simulate a JMS). Therefore, a breakpoint which has been placed on a CAL is removed
by DDT-9 before continuing (exclamation point command). However, DDT-9 retains the request for a
breakpoint at that location, and restores it if another breakpoint is entered and exited. If the user
wants to place a breakpoint at a CAL, and restore it after each stop, he could place a second break=

point at the return from the CAL, as shown in this example.

LOC CAL3 (Breakpoint 1)
12
LAC BUFF (Breakpoint 2)

Upon leaving the second breakpoint at LOC+2, the breakpoint on the CAL instruction is restored.
Operation of breakpoints requires one auto-index register; DDT-9 initially assumes register 17.
The user may specify any other auto-index register by modifying DDT=9's special register, AX$, as

follows:
AX$/ 000017 10, (Modification procedure is explained later in

this manual.)
The commands controlling breakpoints are as follows:
k n" Causes a breakpoint to be inserted at location k. The number n (1-4) is as-

signed to that breakpoint.

n" Causes the breakpoint assigned the number n to be removed.

" Causes all existing breakpoints to be removed.

The insertion of a breakpoint takes place when control returns to the user program. The
breakpoint occurs before execution of the instruction at the breakpoint address.
Examples:
LOC+ 1 1" Inserts a breakpoint at LOC+1
TAG — 2" Inserts a breakpoint at TAG
1" Removes breakpoint number 1
A breakpoint number may be reassigned without first removing the previous assignment.

To restart from a breakpoint, the user simply types an exclamation point (!). DDT-9 restores
the AC and Link and returns control to the user's program, starting with the instruction at the breakpoint
address. An octal number typed before the exclamation point will cause DDT-9 to bypass that breakpoint
n times. This ability is convenient when a breakpoint has been inserted in a program loop, and the user

does not wish to stop every time through the loop.

2-2

DDT-9

If the user's program does not reach the breakpoint, the operator may stop the action and re-

turn control to DDT-9 by typing control T (hold the CONTROL key down while striking the T). DDT-9

will type the go-ahead (>). The program interrupt control must be on to perform this operation.

2.3 EXAMINATION AND MODIFICATION

DDT-9 provides several variations of the procedure for examining and modifying the contents

of any storage word. They are:

k/

tZ

The slash, typed after an address (k) causes the addressed storage word to be opened
and its contents displayed on the teleprinter. For example,

LOC/ TAD COUNT
where the instruction TAD COUNT is contained at the location labeled LOC. The
storage word is now opened and may be modified by typing the desired content and
issuing one of the commands described below.
The carriage return closes the storage word and resets DDT-9, enabling it to accept

other commands. Any change which has been entered is incorporated, as shown

below:
LOC/ TAD COUNT M
TAG/ JMP LOC JMP LOC+1)

The line feed closes the storage word, then opens the next sequential storage word:

LOC/ TAD COUNT |
LOC+1/ CMA

The up arrow closes the storage word, then opens the preceding storage word.
LOC/ TAD COUNT t
LOC—1/ LAC A

Control Z allows the user to examine (and modify) a single storage word, out of
sequence, and then return to the original sequence. This command closes the
storage word, then opens the referenced storage word. A line feed will then open
the next storage word in the original sequence, as shown:

LABEL/ JMP LOC tZ

@E{ TAD COUNT TAD CNTR

LABEL+1/ LAC HOLD

DDT-9

tA Control A allows the user to examine a new sequence of storage words. This com-
mand closes the storage word, then opens the referenced storage word, establishing
a new sequence. A line feed will then open the second storage word in the new
sequence.
LABEL/ JMPLOC tA
LOC/ TADCOUNT TADCNTR |
LOC+1/ CMA

tX Control X is used, in multi-memory bank systems in conjunction with transfer vectors,
to examine a new sequence of storage words. This command operates with a 15-bit
address taken directly from the currently open word. (In contrast, the t Z and t A
operations take 13 bits from the currently open word and the two memory bank bits

from the address of the open storage word.)
TAG/ 36307 X
36307/ 000000

2.4 TYPE-OUT MODES

DDT-9 allows the user to choose from several modes of representing the requested information.
These modes, and their commands, are as follows:
NUM$ In this mode, DDT-9typesmemory word contents as 6~digit octal numbers, including

any leading zeroes.

VS In this mode, DDT-9 interprets words as transfer vectors. Bits 0-2 are ignored, and

bits 3~17 are interpreted according to the address modes as described below.

SYM$ In this mode, which is assumed initially, DDT-9 interprets words as symbolic in-
structions. Bits 0-3 are first examined to determine the instruction class. If bit 4
(indirect addressing bit) of a memory reference instruction is set, an asterisk (*) is
typed after the mnemonic op code. The address portion is handled according to the
address mode as described below. Operate instructions are further examined for
specific mnemonic codes. (See appendix 2 for recognized codes.) Operate
instructions not found in DDT-9's table are typed out as NOP+XXXX. Subroutine
calls, extended arithmetic element, and input/output instructions are interpreted

as CALEXXXX, EAE+XXXX, and IOT+XXXX, respectively.

2-4

DDT-9

The colon, typed after a word has been displayed in either numeric (NUM$) or
symbolic (SYM$) mode, causes DDT-9 to retype the word in the alternate mode.

Loc/ TAD LABEL : 340126
or LOC/ 340126 TAD LABEL

The equal sign, typed after a word has been displayed in either numeric or symbolic
mode, causes DDT-9 to retype the word as a transfer vector.

Loc/ CAL+126 = LABEL

—

2.4.1 Address Modes

The following commands set the address mode, which affects the handling of transfer vectors,

address portions of memory reference instructions, and display addresses.

REL$

RLCS

ABS$

In this mode, which is assumed initially, DDT-9 types addresses which are relative
to user defined symbols.

LOC/ TAD LABEL-3
If there is no symbolic label within i778 positions, the address is typed as re-
locatable (see next paragraph below). Symbols defined in direct assignments are
not recognized by DDT-9.
In this mode, DDT-9 types addresses in relocatable form, as shown on the assembly
listing. For example,

Loc/ TAD 147

In this mode, DDT-9 types addresses in absolute form:

LoC/ TAD 13147
The difference between the results of RLC$ and ABS$ modes is the relocation factor
(in this case, 13000). The relocation factor is found in the memory map output by the

Loader.

The user may type modification input in whatever representation he finds most convenient.

There are, however, two points to keep in mind.

If @ memory reference mnemonic is entered with a numeric address, DDT-9 assumes that ad-

dress to be relocatable unless the address output mode has been set to ABS$. For example,

Loc/ TAD COUNT TAD 147 |

(DDT=-9 adds the relocation factor before storing the information).

A requested address, typed numerically, is always considered absolute.

41/ Opens word 41 of the machine.
13000+41/ or 13041/ Opens word 41 of the program, where 13000 is

the relocqtion factor.

2-5

DDT-9

2.5 STARTING AND RESTARTING

DDT-9 receives control, initially, from the Monitor and normally regains control from the

user's program by means of a breakpoint, as described above. A control T may be typed at any time
(if the program interrupt control is enabled) to restore control to DDT-9.

The following commands shift control from DDT-9 to the user's program:

' The apostrophe, typed alone, starts the user's program at its normal starting address.
(That address given in the source .END statement, or the first physical location of

the first program loaded.

k' The user may start his program at any other point by simply typing that address
ahead of the apostrophe.

The exclamation point restarts the user's program after a breakpoint. The AC and the

Link are restored before continuing.

n! An octal number (n) entered before the exclamation point causes DDT-9 to bypass
that breakpoint n times before stopping again. This ability is useful when a break~-

point has been placed in a program loop.

2.6 SEARCHING OPERATIONS

DDT-9 has a powerful searching operation with which every word in a user's program having

particular characteristics can be found with ease. Two special locations, LO$ and HI$ (further ex-
plained in the next section), control the limits of the search, and a mask (MSK$) allows the search to
be based on all or any portion of the word. The mask is initially set at 777777, for a full word search;
and the limits are initially set to encompass the entire user's program, including all subprograms and
library routines.

There are three types of searches as follows:

k —EQ$ Starts a search for all words, within the set limits, whose contents, after mask-

ing by C(MSK$), are equal to the expression k.

k UNS$ Starts a search for all words, within the set limits, whose contents, after mask-

ing by C(MSK$), are not equal to the expression k.

k — ADR$ Starts a search for all memory reference instructions, within the set limits,
with effective addresses which, after masking by C(MSKS$), are equal to the

address k. Indirect addressing is followed one step.

2-6

Examples:

DDT-9

LOC+1 s ADR$ might produce

TAG/ LAC LOCH1
POS/ XOR LOC+1
LABEL/ DAC* POINT

If the > is typed with no other output, the search routine has found no qualifying words.

2.7 SPECIAL LOCATIONS USED BY DDT-9

The following special locations contain information of use to the user, and which he may

wish to change.

AC$
LNK$
MSK$
LOS
HI$

PAS

AX$

RF$
SA$

Bn$

Holds C(AC) at a breakpoint.

Holds status of the Link at a breakpoint.

Contains the search mask, initialized at 777777.

Contains the address of the lower limit of the search operation.
Contains the address of the upper limit of the search operation.

Contains the address of the first position available for inserting patches. (Note

that the initial contents of LO$ show the last available position plus one.)

Contains the number of the auto-index register to be used by the breakpoint

routines, initialized to 17.
Contains the current relocation factor.
Contains the normal starting address used by the apostrophe routine.

Contains the address of breakpoint n.

These words are stored sequentially as listed; the line feed may be used to step through them.

In the following example, the mask is set fo examine instruction code bits (0-3) within the

limits specified by LO$ and HI$.

MSK$/ ~ LAW 17777 740000 |

LOS/ CAL+11075 BEGIN-1
HI$ END+67 END+1)

After the mask and search limits have been set, the user may execute the search operation for

the desired instruction class (all JMP instructions) by typing:

IMP_EQS J

2-7

DDT-9

2.8 SYMBOL DEFINITIONS

If the user finds, while debugging, that more symbols would be useful he can easily define

them with the following DDT-9 procedure:
S) DDT-9 assigns the symbol S to the current location.

k(S) DDT-9 assigns the symbol S to the location specified by the address k.
Example:
13627 (LOCAT)
Space is provided for approximately 25 additional symbols; the exact number will depend
on the length of the symbols entered. If an attempt is made to enter symbols beyond the allowable limit,

DDT-? types the message OVERFLOW.

2.9 PATCH FILE OUTPUT

When the process of debugging extends to a number of sessions at the computer, it is con-

venient to be able to save those changes already checked out for use at later sessions. The commands

described below control the output of a patch file onfo paper tape.

PFO$ DDT-9 outputs all registers within the limits set by LO$ and HI$ onto the

patch file. PFO$ may be given as many times as desired.
k PFO$ Put location k only onto the patch file.

SNS$ DDT-9 puts all symbols defined during debugging onto the patch file, thus

saving them for reference at later sessions.

PFE$ Close the patch file.
As many files as desired may be produced by following the sequence of commands, as follows:
PFO$
(as many as desired)
PFO$
SNS$ (optional)
PFE$

2.10 PATCH FILE INPUT
Because of the patch file's format, it may be loaded only by DDT-9. This is done after the

user's program has been loaded in the usual manner. If a read error occurs, DDT-9 stops reading and
types the message ERROR followed by a right angle bracket (>). Data up to the point of error is cor-
rectly in memory.

PFI$ DDT-9 reads in the patch file.

2-8

DDT-9

Typing PFI$ at this point (without repositioning the tape), will cause patch loading to continue with

the patch word after the word causing the error.

Repositioning the tape by moving the tape back one block will cause PFI® to attempt to

re-read the error word. (See appendix 3 for format of the patch file.)

2.1 CO-RESIDENT SUBROUTINES

Since identical symbols may be used in two or more separately assembled or compiled, re-
locatable program segments that are loaded and run together, the user must be able to specify which
set of symbols DDT=9 is to use. DDT=9 initially assumes that the symbol table associated with the first
program loaded (i.e., the main program) will be used. The relocation factor used by DDT=% comes from
the symbol table and is, also, initially assumed to be that of the main program. The following DDT-9
command changes both the symbol table search and the relocation factor to the named subroutine.
k HDR$ Sets DDT-9 to refer to that portion of the symbol table associated with the
subroutine name k, and to use the relocation factor for that subroutine. (The
memory map output by the loader shows all relocation factors.) Symbol tables

are not loaded for IOPS and FORTRAN library subroutines.

HDR$ If no program name is specified, DDT=9 is reset to the initial condition, with

main program symbol table and relocation factor assumed.

2.12 INDIRECT ADDRESS REFERENCES '

External global symbols (those used within the program segment, but defined outside of it)
are treated differently in the symbol table than those defined within the program segment. These
symbols refer to a transfer vector pointing to the named register, not to the named register itself.

Example:

LAB/ 007603
7603 is the actual address of the storage word named LAB. This address must be used when any reference
is made to LAB.
In FORTRAN programs, this condition also applies to symbols defined in DIMENSION state-

ments.

2.13 MISCELLANEOUS FEATURES

Q$ Q$ represents the content of the currently open storage word. It makes it

possible to make small changes without typing the entire contents. In the
following example, Q$ represents JMP LOC+3.

Loc/ JMP LOC+3 Q$+4)

LocC/ JMP LOC+7

2-9

k#

tu

tT

DDT-9

The period, typed alone, represents the address of the currently open or the
most recently opened word.

Loc/ JMP LOC+3 JMP +7)

./ JMP LOC+7

The ampersand causes DDT=9 to bypass the mnemonic instruction lookup. It

is necessary if the user has used a recognized mnemonic operator as a symbolic

address.
JMP/ Is invalid, but
&JMP/ will open the word named JMP.

LOC/ JMP GO JMP JMP|) The second JMP, in this case, is

interpreted as an address.

DDT-9 executes the instruction k. The AC and Link are restored to their con-
dition before the breakpoint (if one is in effect). If the instruction is not a
JMP, control returns to DDT=9, and the new AC and Link (if affected) are
stored. For example,

JMS — SUBA#
will cause subroutine SUBA to be executed. SUBA cannot look for subsequent

arguments. Skip instructions cause the return pointer to be incremented by one.

If the user makes a typing error, he can cancel the current line by typing
control U. DDT-9 types'@ as evidence of acceptance. Single character
deletion (RUB-OUT) is not allowed by DDT-9. If a RUB-OUT is typed, it will

be treated as a control U.

The user may interrupt his program (or DDT) at any time he desires, by typing
control T. DDT=9 then types:

DDT

0 C(PC) C(AC) S(L)

>

and waits for a command from the teletype.

DDT-9

APPENDIX 1
SUMMARY OF COMMANDS

Linkage Characters

+ Arithmetic plus

- Arithmetic minus

(space) Field separator

Breakpoints
k n" Insert breakpoint at location k, assign number n (1-4)
n" Remove breakpoint number n

Remove all existing breakpoints
Restart from breakpoint

n! Restart from breakpoint, wait n times before reentering breakpoint

tT Restart DDT-9

Examination and Modification

k/ Open location k
L (Carriage return) Close the location
! (Line feed) Close the location, open next location

t (up arrow) Close the location, open the preceding location.

tZ (Control Z) Close the location, open addressed location, continue original
sequence

tA (Control A) Close the location, open addressed location, start new sequence

tX (Control X) Close the location, open the location addressed by 15-bit

transfer vector, start new sequence

Type-out Modes

NUM$ Type contents as 6-digit octal numbers
TV$ Type contents as transfer vectors
SYM$ Type contents as symbolic instructions (assumed by default)

Retype in alternate mode (NUM$, SYMS$)
= Retype as transfer vector
REL$ Type addresses as relative to defined symbols (assumed by default)

Al-1

DDT-9

Type-out Modes (continued)

RLCS Type address as relocatable numbers

ABS$ Type addresses as absolute numbers

Starts and Restarts

Starts user's program at normal starting point
k' Starts user's program at location k

! Restarts user's program from breakpoint

n! Restarts user's program from breakpoint, waits n times before reentering
breakpoint
T Restart DDT-9

Searching Operations

k - EQ$ Search for words equal to k
k — UN$ Search for words not equal to k

k —s ADR$ Search for instructions with effective address equal to k

Special DDT~-9 Locations

AC$ Holds AC at a breakpoint

LNKS$ Status of Link at a breakpoint

MSK$ Contains search mask

LOS Lower limit of search

HI$ Upper limit of search

PAS First unused location in patch area

AX$ Number of auto-index used by breakpoints
RF$ Current relocation factor

SAS Normal starting address

Bn$ Address of breakpoint n

Al-2

PFO$
ks PFO$
SNS$

PFE$

PFI$

k HDR$

HDR$

Qs

| #

ty

tT

DDT-9

Symbol Definition

Assign symbol s to the current location

Assign symbol s to location k

Patch File Output

Patch file output
Single location patch file output
Save new symbols

Close patch file output

Patch File Input

Read patch file

Coresident Subroutines

Use symbol table and relocation factor of subroutine k

Use symbol table and relocation factor of main program

Miscellaneous Features

Contents of currently open location

Address of currently open or most recently opened location
Bypass mnemonic instruction lookup

Execute the instruction k

Cancel the line

Restart DDT-9

Al1-3

DDT-9

APPENDIX 2

MNEMONIC INSTRUCTION TABLE

Memory Reference

CAL 000000
DAC 040000
JMS 100000
DZM 140000
LAC 200000
XOR 240000
ADD 300000
TAD 340000
XCT 400000
1Sz 440000
AND 500000
SAD 540000
JMP 600000
EAE Group
EAE 640000

Inpu t/ Output
107 700000

*DDT-9 interprets 740000 as NOP.

A2-1

NOP
OPR
CMA
CML
RAL
RAR
SMA
SZA
SNL
SKP
SPA
SNA
SZL
RTL
RTR
CLL
STL
RCL
RCR
CLA
CLC
GLK
LAW

Operate

740000*
740000
740001
740002
740010
740020
740100
740200
740400
741000
741100
741200
741010
742010
742020
744000
744002
744010
744020
750000
750001
750010
760000

DDT-9

APPENDIX 3
PATCH FILE FORMAT

DDT-9 punches the patch file in four-word blocks, including the two-word block header
used by the IOPs system, with blank tape showing between the blocks. Each block carries the address
and the contents of one memory word. (See figure A3-1.) The Save New Symbols command (SNS$)
punches the additional symbol table area in the same manner. The PFE$ command punches an 10Ps
end-of-file block.

word pair
WD 0 count and mode

IOPs block header
WD 1 checksum

WD 2 address of
patch
WD 3 contents of
patch
Figure A3-1

A3-1

EDITOR-9

PDP~9 TEXT EDITOR

ACKNOWLED GEMENTS

The structure of the PDP-9 Text Editor control language is based in large part upon that
offered by TYPSET*, a context-editing program designed and written by Jerome H, Saltzer in November,

1964, under the auspices of Project MAC, The Massachusetts Institute of Technology.

* The Compatible Time=Sharing System: A Programmer's Guide, 2nd Edition, ed. P.A. Crisman (The
M.I.T. Press, Cambridge, 1965), Section AH.9,01.

g AW W LW WNNDN
w _—

N O OO OO A WN —

[N

AAAAA#AAAAA#AAwwwwwwwwwwwwpr!o[o!ol\)w{\:{\)M-—-
©® N oA w N —

—

_— - = 0
W NN = O

PDP-9 TEXT EDITOR

CONTENTS

INTRODUCTION e
FUNCTIONAL DESCRIPTION
Control Modes et

Data Modes ..,ecvvnvnn...

Line-by-Line

Block Data Mode
Data Files .. vovvviiierninennnans
Using Monitor I/O
Input and Subsidiary Files
Output Files ...ovovvinininn..

Using the Break (CNTRL P) Character
Using the Erase and Kill Characters

EDITING OPERATIONS,

Modifying an Existing File e et e

Creating A New File

Input/Edit Modes
BlockModecevvivn...
Closing the New File
Error-Handling Conventions
Command String Errors
Premature End of File
Read Errors and Line Overflow ..
Block-Mode Buffer Overflow ..

File~-Naming and Calling Errors .
EDITOR COMMANDS e

OPEN (filename (ext))‘)
CLOSE (filename (ex'r))/

NEXT [N] (un) —ooeriivnnnnn,

PRINT [P] (un)) ovreneinns

FIND [F] string ceiianas

LOCATE [L] string .oovvnvevnnnn
DELETE [D] (wn)d e
BOTTOM [B] J.vvveevnnnn
RETYPE [R]w lined ..oovvvvnnn...
INSERT[1] wlined «.oovnvnnin...
INSERT[I] o vvvvennnnnn. e
GET[G) (wn)d voiieiennnnnnnn.

CHANGE [C] u q stringlq string2q)

...................................

...................................

...................................

...................................

...................................

...................................

...................................

...................................

...................................

...................................

...................................

...................................

...................................

....................................

....................................

...................................

...................................

....................................

...................................

...................................

.......................................

......... R R I R S N B BTN

...................................

...................................

...................................

...................................

...................................

...................................

...................................

...................................

...................................

...................................

...................................

...................................

..................................

Page
1-1
2-1
2-1
2-1
2-1
2-1
2-3

2-3
2-4
2-5
2-5

3-1
3-1

3-2
3-2
3-2
3-2
3-3
3-4
3-4
3-4
4-1
4-1

4-2
4-2
4-2
4-2
4-3
4-3

4-3
4-3

4-4

4.17

.20
.21
.22
.23
.24

[« NG I N L

Appendix

Figure
2-1
6-1
6-2
6-3A
6-3B
6-4

PDP-9 TEXT EDITOR

CONTENTS (continued)

Page
TOP [T] B oot et e 4-4
ON
= N T = 4-4
OVERLAY [O] (Ln) et e i e 4-5
APPEND [A] L string ot vn ittt it ittt i i 4-5
ON
BRIEF L {OFF B 4-5
ON
BLOCK 1 {hE B+ v v veeeeeeei e 4-6
SIZE [n g vee e e e 4-6
2 5 4-6
WRITE B vttt it it ittt ittt eaan 4-5
MOVE u TAG! (:i:n] Yu TAGZ(ﬂ:nz) w TAG3 (:tn3) } 4-7
23 1 1 e e e e e 4-7
RECOVERY PROCEDURES . vt ittt ittt et it e e s nnonsanensonns 5-1
EXAMPLES OF EDITING REQUESTS & v v v vttt ettt s st e s enonannnns 6-1
APPENDIX
SUMMARY OF EDITING COMMANDS ittt ittt s onnennn Al-1
ILLUSTRATIONS
Schematic of Line Processing in Block and Normal Modes 2-2
Sample Input File .« oo v i it it i i i i e ittt e e e e e 6~2
Input File Listing Marked for Correction. . v v v v v v v v ie it ittt v nnnns 6-3
Hard-Copy Output of Editing Session vt i ittt ittt e enennn 6-4
Hard-Copy Output of Editing Session .+« v v v vttt ittt it neneen 6-5
File Resulting From Editing Session . . .o v v vi i it it e et e toneoeeenns 6-6
TABLES
Standard DAT Assignments for PDP-9 Symbolic Editor 0. 2-3
Output File Conventions for PDP-9 Symbolic Editor, 2-4

PDP-9 TEXT EDITOR

1 INTRODUCTION

The PDP-9 Text Editor (EDIT 9) is a powerful context-editing program that allows the modifi-
cation and creation of symbolic source programs and other ASCII text material .* By means of commands
issued from the Teletype, the Editor is directed to bring a line, or group of lines, from the input file to
an internal buffer. The user may then, by means of additional commands, examine, delete, and change
the contents of the buffer, and insert new text at any point in the buffer. When the line, or block of
lines, has been edited, it is written into a new file on the output device.

The Editor is most frequently used to modify MACRO-9 and FORTRAN 1V source programs,
but it may also be used to edit any symbolic text.

The Editor operates in the ADVANCED Software System with either the I/O or Keyboard
Monitor and may be used with all standard peripheral devices. The program resides in locations 130008
to 17763g of the highest memory bank present, occupying 2471 registers.** Additional memory, ex-

cepting that reserved for the Monitor and the required device handlers, is utilized for block mode buffers.

*The Editor reads and writes standard IOPS ASCII lines. The characteristics of IOPS ASCII text are
described in the Monitor manual (DEC-9A-MABO-D).

** Attention is drawn to the Monitor manual, Chapter 3, for a detailed discussion of loading and memory-
allocation schemes for system programs.

1-1

PDP-9 TEXT EDITOR

2 FUNCTIONAL DESCRIPTION

2.1 Control Modes

The PDP-9 Editor operates in one of two control modes; in edit (or command) mode the pro-
gram accepts and acts upon control word and data strings to open and close files, to bring lines of text
from an open file into the work area, to change, delete, or replace the line currently in the work area,
and to insert single or multiple lines after the line in the work area. In input (or text) mode, lines from
the Teletype are interpreted as text to be added to the open file. Commands are available for conve-

niently changing control mode.

2.2 Data Modes
Data from the input file is made available for editing in two ways: in line=by-line mode or
in block mode.

2.2.1 Line-by-Line
| ——

In line-by-line data mode a single line is the unit of the input file available to the user for
modification at any point. The line currently available is specified by a pointer which can be thought
of as moving sequentially through the file, starting at the first line, in response to typed editing com-
mands. When a file is opened at the beginning of an editing session, the first line of that file is brought
into the work area and is available for modification. This line remains in the work area until the user
requests that a new line be brought in. The pointer then moves down the file until the line requested is
encountered. That line is brought to the work area and, as the "current line," can be modified. Lines
previously skipped over are no longer available for editing by the user, but are written in the output
file. Thus at any point in a single edit run in line~by-line mode, the user is able to modify only the
portion of the input file consisting of the current line and all lines between the current line and the end

of the file (i.e., the current line and all lines below it).

2.2.2 Block Data Mode

In block data mode, a user-specified portion of the input file is held in a core buffer for
editing until the user requests that the contents of the buffer be added to the output file. All of the
Editor commands used in line-by-line editing are employed when editing blocks; in addition, a group of
commands is available for use in block mode only (see Chapter 5).

When the user is operating in block mode, commands to the Editor are honored only with
respect to that portion of the input file currently occupying the buffer. The lines of text in the buffer are
made available for modification through the use of normal locative requests and, moreover, may be re-

accessed until the buffer is emptied by the user.

PDP-9 TEXT EDITOR

Unless deleted, lines passed over in block mode are not lost to the user (as in line-by-line
mode) until the contents of the buffer are written in the output file. Consider, for example, the editing
request to search for and bring in a specified line. In line-by-line mode, the result is a scan of
(possibly) the entire file below the pointer. The same request in block mode provides a search of the
entire buffer below the pointer, but no further.

Block mode has another advantage: rapid correction of editing command errors. If the user
finds that he has typed the wrong command, he can immediately correct it, since the buffer has not
been added to the output file. In line-by-line mode, a command error may cause the program to bypass
a line in which a change is needed. The user would then have to punch a new input file and begin

editing (more carefully) again.

READ AND
DECODE
COMMAND
N "o PROCESS
O — CUL&EENT
?
YES
ADD CURRENT ADD CURRENT
LINE TO le— vES BLOCK MODE NO —#» LINE TO
OUTPUT PAGE IN EEFECT OUTPUT FILE
GET NEXT GET NEXT
LINE FROM P LINE FROM
INPUT PAGE . INPUT FILE

FINISHED
PROCESSING
?

NO YES

Figure 2-1 Schematic of Line Processing in
Block and Normal Modes

2-2

PDP-9 TEXT EDITOR

2.3 Data Files

2.3.1 Using Monitor /0

The Editor makes use of the Monitor Input/Output Programming System for 1/O transfers and
communicates with IOPS by way of entries in the Device Assignment Table. Entries in DAT which are
required by the Editor are given in Table 2-1. Methods of modifying DAT are described in the Monitor
manual (DEC-9A-MABO-D).

Table 2-1 Standard DAT Assignments for PDP-9 Text Editor

DAT Entry Number Used For
-3 Teleprinter output; messages to user
-2 Keyboard input; text and commands
-14 File input
-15 Scratch or edit file output*
-10 Subsidiary file input

*The use of the scratch device is described in Section 2.3.3.

2.3.2 Input and Subsidiary Files

The Editor will accept file input from a maximum of two devices in addition to input from the
keyboard. The first device normally holds a previously prepared file upon which changes are to be
carried out. The second, the subsidiary file device, is usually the medium through which additional,
previously prepared, text is inserted in the object file. Either one, or both, of these devices may be
ignored by the user, in which case the Editor assumes that all data will come from the keyboard.

Care must be taken in the specification of the subsidiary input device to ensure that the data
of interest residing thereon was recorded in nonfile=structured fashion. For the paper tape and card
readers, this is the only recording mode. For other devices (e.g., DECtape), however, the user has
the choice of writing data in either a file-structured or a nonfile-structured manner.* When the Editor
is first loaded, the characteristics of the subsidiary input device are determined. If that device can be
file-structured, the comment

SECONDARY INPUT DEVICE IS FILE-ORIENTED
is printed on the Teletype. The intent here is to warn the user that disaster will result if the data to be

read from the device is file-structured. Note, however, that if the data to be read was recorded in

*For a discussion of data~handling conventions in file-structured and nonfile-structured input/cutput
modes, see the Monitor manual (DEC-9A-MB00-D).

2-3

PDP-9 TEXT EDITOR

nonfile-structured fashion, then the requested device is a legal one for secondary input. Accordingly,
the Editor then asks the question,

DO YOU WISH TO CONTINUE?
The user's answer to this question is taken to indicate the nature of the data on the secondary input de-
vice. If the user's response is

YES)

then the program will read data from the device in the normal (nonfile-structured) way. If the user's
answer is NO (or anything except YES) file=structured data is assumed and return is made (via .EXIT)

to the Monitor.

2.3.3 Output Files

Immediately upon receiving control after having been loaded, the Editor attempts to deter-
mine whether or not the input and scratch devices are file structured. If either one of the devices is
not file structured, then the scratch device (DAT entry =15) is assigned as the final output device. If
both devices are file structured, the scratch device is assigned an intermediary function and the input
device is used as the final output device.

The intent, in all cases, is to allow replacement of the input file by the edited output file.
This is possible only when the input and output devices can be both read and written. If replacement
can be accomplished (both devices are file structured), the following sequence of events takes place
when the files are closed after editing.

1. The intermediate output file is read from the scratch device and written on the input

device under a temporary name.

2. The old input file is deleted from the input device.

3. The intermediate output file is deleted from the scratch device.

4. The intermediate output file, temporarily named and now residing on the input device,

is given the nome previously assigned to the old (now deleted) input file.

5. The output file is closed and immediately becomes available for use.

If no replacement can be accomplished, no change is ever made to the input file. If the
output device is file oriented, the new edited file is properly entered in the file directory for that
device under the name given in the OPEN or CLOSE command sequences.

The possible destinations of the new edited file are summarized in Table 2-2.

Note that in the process of file housekeeping, there is always at least one copy of the output
file available on one, or both, of the devices. Further, the original input file is not deleted until the
new file has been successfully written and closed. A system failure, therefore, can never result in

total loss of data. Recovery procedures to be used in case of difficulty are outlined in Chapter 5.

2-4

PDP-9 TEXT EDITOR

Table 2-2 Output File Conventions for PDP-9 Text Editor

Input Device Scratch or Output Device Edited File appears on: Input File is:
File oriented File oriented Input Device Deleted
File oriented Nonfile oriented Output Device Unchanged
Nonfile oriented File oriented Output Device Unchanged
Nonfile oriented Nonfile oriented Output Device Unchanged

2.4 Using the Break (CNTRL P) Character

Frequently, the user, having made a mistake in his command line, wishes to stop processing
and reissue his request. The user, for example, may have asked erroneously for a line which is absent
from the input file. When the Editor begins its search for the requested line, it will not give up until
that line is found, or until the end of the input file is encountered. The user, meanwhile, has noticed
his typing mistake. If control could somehow be transferred from the command processor to the command
decoder, the user's temper and time might be saved.

The Editor's break, or quit, character provides the mechanism for the orderly accomplishment
of the transfer. When the user types the quit character (CNTRL P) during command processing, the
normal instruction sequence is interrupted when processing of the current line has been completed, edit
mode is reentered, and the program reads a new edit command from the keyboard. Nothing is lost from
the output file. Depending upon the command being serviced when CNTRL P was typed, the pointer is
left in one of two positions. In the first (usual) case, the pointer indicates the line which was being
processed when the break character appeared. This line is now the current line, and may be dealt with
in the normal way. In the second case, the pointer is left between two lines. The current-line area is
empty, and some locative request (e.g., NEXT) must be issued to move a line into the work area.

The breck character results in program restart when the Editor is waiting for a command. In

input mode, the break character results in a control mode change.

2.5 Using the Erase and Kill Characters

The Monitor allows the use of two keyboard characters for correction of the line currently
being typed by the user. The Rubout key (Erase character) results in the deletion or the immediately
preceding character. The Monitor echoes a back slash (\) for each Rubout typed. CNTRL U (Kill
character) results in the deletion or the entire line typed so far. The Monitor echoes a commercial at
sign (@) for each CNTRL U typed.

CNTRL U has a second function when used during output from the Editor to the Teletype.
When the user types CNTRL U while a line is being printed, output is immediately terminated and a

PDP-9 TEXT EDITOR

carriage return is issued. CNTRL U functions in this case as the user's means of overriding his previous

request for the output of tediously long lines.

2-6

PDP-9 TEXT EDITOR

3 EDITING OPERATIONS

The Editor always begins in edit mode and assumes that the user wishes to modify some (named

or unnamed) file. When first loaded, or when restarted for a new file, the program types

EDITOR
>

on the teleprinter and waits for the user's first command.

3.1 Modifying an Existing File

If the input device is file structured (disk, drum, magnetic tape, or DECtape), the first

command to the Editor must be

OPEN filename ex'rd
where "filename" is the primary name of the wanted file residing on the input device and "ext" is its
extension. "Ext" may be omitted and, if so, is assumed to be SRC. If the file specified is not found
in the directory, the program assumes that the user wishes to create a file named "filename ext."
Accordingly, when it has been determined that the named file is absent from the input device, the
Editor types

FILE filename ext NOT FOUND.

INPUT
Input mode is entered and subsequent lines from the Teletype are inserted in a new, temporarily named,
file on the output device.

If the specified file is present on the input device, an intermediate, temporarily named,
file is opened for writing on the output device and the input file is opened for reading. The user may
then proceed to make the necessary changes in the input file.

If the input device is not file structured (e.g., paper tape reader, card reader), the user's
first command after program initialization may be any edit request. The OPEN command is not required

for nonfile structured devices.

3.2 Creating a New File

When the user wishes fo create a new file, he need only issue a carriage return, thereby
entering input mode. If the output device is file structured, a temporarily named file is opened for
writing and text lines from the Teletype are added to it as they appear. If the output device is not
file structured, the file=naming conventions are bypassed.

Where both input and output devices are file structured, the user may issue the OPEN com-

mand followed by the name he wishes to assign to his new file. Since a file of the name given is

PDP-9 TEXT EDITOR

guaranteed not to be found (if the user has properly chosen his new name), input mode will immediately
be entered following the standard error message. The name specified will be assigned to the final out-

put file if no other name is given in the CLOSE command.

3.3 Input/Edit Modes

To enter text from the Teletype, the Editor must be in input mode. To carry out an edit
function on the current line, the Editor must be in edit mode.

Control mode may be changed at any time by typing a line of zero length (a line consisting
of a carriage return only). The Editor command INSERT (without arguments) also causes a mode change.
After the user changes control modes, the Editor types INPUT or EDIT, indicating the control mode in
effect.

3.4 Block Mode

The Editor recognizes several commands which are designed to be useful in the block or page
mode. In block mode, a user-specified portion of the input file is held in a core buffer until the user
indicates his satisfaction with the current state of that portion. Block mode is entered via the control
word BLOCK, followed by the parameter ON. When in block mode, the user may take advantage of
all the locative and manipulative commands (FIND, LOCATE, CHANGE, etc.) and, in addition, may
employ the MOVE command fo rearrange arbitrarily long blocks of text within the buffer.

Line=-by~-line mode is reentered by use of the BLOCK OFF command.

3.5 Closing_the New File

When the user, after modifying his input file, is satisfied that all needed changes have been
carried out, he is required to close out the input and output files. The edit command
CLOSE filename ext)
will initiate the sequence of events described above (Section 2.3.3).
Neither "filename" nor "ext" need be specified if previously given in the OPEN command.
If "filename" and "ext" are present in the command string, they override the names given in the OPEN
command.

Both "filename" and "ext" are ignored if the output device is nonfile oriented.
3.6 Error-Handling Conventions

3.6.1 Command String Errors

All mistakes in the use of edit-mode control words result in a common complaint by the

Editor. Although the possible errors in usage fall into a number of distinct categories, the program

3-2

PDP-9 TEXT EDITOR

makes no attempt to differentiate among error types. The reasons for this common treatment lie in the
requirement that the Editor take some cognizance of its memory allocation (relatively obscure error
types need as much memory for recognition and response as do the more usual mistakes) and in the fact
that the treatment rendered makes the error self-explanatory, in most cases, with respect to the difficulty
encountered.

Command string errors, then, all result in the single typed comment,

NOT A REQUEST:

followed, on the next line, by the request line with which the Editor had trouble.

Usual types of command string errors include the following:

A. The edit control word issued was not among those in the program's repertoire.

B. A SIZE command was issued with a missing argument or an argument of "1."

C. A MOVE request was issued when BLOCK mode was OFF,

When BRIEF mode is ON, the Editor comment and the command line in error are replaced by

a single typed question mark, thus:
s
3.6.2 Premature End-of-File

During the processing of some commands, it occasionally happens that a read is attempted
which moves the pointer below the last line of a logical (or physical) group. Consider, for example,
the effect of a numeric argument in the GET n command line. The program reads successive lines from
the subsidiary input device until exactly n lines have been read. If, in the process of reading, it is
discovered that fewer than n lines are physically present on the secondary input medium (paper tape,
say), then a premature end-of-file condition is said to exist. An improperly~formulated FIND request
(the character string typed is absent from the file) will result in a similar condition.

Depending upon the character of the incoming group of lines (block buffer, secondary input
mediym, or input file), the appearance of an unexpected end-of-file causes a comment to be typed
informing the user of the difficulty. The form of the message is:

BUFFER

END OF { MEDIUM REACHED BY:
FILE

followed, on the next line, by the edit request which caused the problem.
A premature end-of-file causes the pointer to be left below the final line of the group being

read.

3-3

PDP-9 TEXT EDITOR

3.6.3 Read Errors and Line Overflow

The Editor recognizes two sorts of errors which may occur during the processing of the input
file. Both errors result in an appropriate printed comment and immediate transfer of control to the
command decoder. The line in error is printed and left in the work area for modification by the user.

The first type of error occurs when the input file device handler detects either incorrect
parity or a faulty checksum in the incoming line. The printed comment is:

READ ERROR:
followed by the line in which the error was encountered.

The second difficulty results from the appearance of a line which is too long to be contained
in the program's internal buffers. Any line of more than 9010 characters (not including terminator)
results in the comment:

TRUNCATED:
followed by the first (leftmost) 90 characters of the long line. The remaining right-end characters are
discarded.

The user has the choice, after either type of error, of modifying the line which caused the
complaint (via any manipulative request) or of allowing the line to stand as is in the output file (via any

locative request).

3.6.4 Block-Mode Buffer Overflow

When block mode is in effect, it is possible for an attempted addition of a line to the block-
mode buffer to exceed the buffer's capacity. This might occur, for example, during the processing of
a READ request if the buffer length (previously defined by a SIZE command) is too great to be accom=-
modated by the memory available. When the capacity of the buffer is exceeded, the program types the
comment:

BUFFER CAPACITY EXCEEDED BY:
followed by the line which caused the overflow. This line remains in the current-line area and the

program reads a new command from the keyboard.

3.6.5 File~Naming and Calling Errors

Errors in file-name usage can be classified in three general groups. Either (1) the named
file cannot be found, or (2) o name has not been given to the file at a point where one is needed, or

(3) a name has been given which cannot be used.

3.6.5.1 Absent File - If the file named in the OPEN request line cannot be found on the device

associated with DAT slot-14, the assumption is made that the user wishes to create a new file with the

PDP-9 TEXT EDITOR

the name given. The program prints the comment:
FILE filename ext NOT FOUND.

and changes to input mode.

3.6.5.2 Absent File Name - If no file name is given either in an OPEN request line or as an argument

to the CLOSE command, the program, after attempting to process the CLOSE request, will print:
NO FILE NAME GIVEN,
The next edit request must be another CLOSE naming the file.
If no OPEN command is issued (a new file is being created), any locative request (FIND,
NEXT) will result in the comment:

NO INPUT FILE PRESENT.

3.6.5.3 Identically=Named Files = The problem of duplicate file names is apparent on two levels.

In the first case, it is possible for a previous edit run to have been aborted with one of the Editor's
temporary files (normally .TFIL1 EDT) closed on the output device. The closing of the temporary file
created during the current edit run will result in the deletion of the like=named file from the previous
run, perhaps to the user's keen disappointment. To enable the retrieval of prior work, the Editor types
the comments:

FILE .TFILT EDT IS PRESENT ON OUTPUT DEVICE.

DO YOU WISH TO DELETE IT?
If the user's response to this question is

YES)
then the version of the file on the output device is deleted and processing continues as usual. If the
user's response is

NO (or anything except YES)
then return is made (via .EXIT) to the Monitor. The user may then rename .TFIL1 EDT.

At the second level, it may happen that the file name given in a CLOSE sequence is identical

to that of another file on the (current) output device. In this case, the program types:

PLEASE USE ANOTHER NAME.

A second CLOSE request (with a unique name) may then be issued.

3-5

PDP-9 TEXT EDITOR

4 EDITOR COMMANDS

When edit mode is in effect, the following commands result in the specified activity.
Abbreviations for most commands consist of the initial characters of those commands. Legal abbrevia-
tions are given in square brackets. Optional arguments are given in parentheses.

Certain commands (e.g., FIND, RETYPE) require the presence of arguments. Others
(DELETE, NEXT) may take explicit arguments at the option of the user. All commands must be separated
from their argument strings by a single blank character. This blank delimiter is considered by the Editor
to be a part of the command itself, not part of the argument string which follows the command. Thus,
the command

RETYPE L /COMMENT)
results in the following line:
/COMMENT
If more than one blank appears between the command and its argument string, all blanks except the first
are taken as part of the argument. Thus,
FIND wuu /COMMENT)
results in a search for the line which begins with the character string

u u /COMMENT

4.1 OPEN (filename (ext)) 3

The file whose name is "filename" and whose extension is "ext" is searched for on the input
device. If a file of this name is not found, a message is printed on the Teletype and the mode is changed
to input. An intermediate write file is opened on the output device and lines from the keyboard are
written into it as they are completed. "Ext," if not given, is assumed to be SRC.

If the file specified is found on the input device, it is opened for reading. Subsequent typed
lines are interpreted as Editor commands.

Neither file name nor extension need be given if the input device is nonfile oriented.

4.2 CLOSE (filename (ex'r)))

If an input file is present, all lines in that file falling below the current line are appended
to the output file and the output file is closed. If no input file is present, the current line is added to
the output file and the output file is closed. No further editing is permitted.

If the extension is omitted, and none was assigned in the OPEN command line, the extension
is assumed to be SRC. If no file name is given, the name assigned in the OPEN command line is used.

Neither "filename" nor "ext" need be given for nonfile-oriented output devices.
[¢] P

4-1

PDP-92 TEXT EDITOR

4.3 NEXT [N] (un))

The pointer is moved past the next n lines, beginning with the line currently in the work
area. Line n+ 1 is brought into the work area for modification. Lines skipped over are added to the
output file. If omitted, n is assumed to be 1. If the command results in the pointer moving past the

last line of the file (or buffer, if block mode is on) the error message

FILE

BUFFER REACHED BY:

END OF

NEXT n

is printed,

4.4 PRINT [P] (un))

n lines from the input file (or buffer, in block mode), including the current line, are printed
on the Teletype. The pointer is left at the last line printed; n is assumed to be 1 if omitted.

If, as a result of the command, the pointer moves past the last line of the file, the error

message
FILE
END OF BUFFER REACHED BY:
PRINT n
is printed,
4.5 FIND [F] w string)

The input file or buffer is searched, beginning with the line following the current line, for

the next occurrence of a line which begins with the character group "string." If the search is success-
Legins with g9 P g

ful, the line beginning with "string" is brought into the work area. If the search is unsuccessful

(pointer moves past end of file), the end-of-file error message is printed.

"String" may contain any number of characters.

4.6 LOCATE [L] u string 3

The input file is searched, beginning with the line following the current line, for the next
occurrence of a line which contains the character group "string". If the search is successful, the line
which satisfies the search is brought to the work area. If the search is unsuccessful, the end-of-file
message is printed and the pointer is moved to the top of the file.

"String" may contain any number of characters.

4-2

PDP-9 TEXT EDITOR

4.7 DELETE [D] (un))

n lines, including the current line, are deleted from the input file. The line following the
last line deleted becomes the current line. If n is omitted, only the current line is deleted. If n is
large enough to cause the pointer to move past the end of the file, the end-of-file error message is

printed.

4.8 BOTTOM [B 18

The pointer is moved to the final line in the input file (or buffer) which then becomes the

current line. Lines skipped over in the process of moving the pointer are added to the output file.

4.9 RETYPE [RI L line #

The character string "line" replaces the current line. The new line is left in the work area

and may be subsequently modified.

4.10 INSERT [1] u line 3

The current line is added to the output file and the character string "line" is taken as the
current line. Note that insertions are always made below the current line. The program remains in

edit mode when command processing is completed.

4.11 INSERT [17]))

The current line is added to the output file and the mode is changed from edit to input.

Subsequent lines are interpreted as text to be added to the output file.

4.12 GET [G] (un))

n lines from the subsidiary input device are added to the output file. New lines are added
below the current line. When command processing is complete, the nth line read is left in the work
area as the current line. If n is omitted, it is assumed to be 1,

If an end-of-medium condition is encountered on the subsidiary input device before n lines
are read, the error message

END OF MEDIUM REACHED BY:
GET n

is printed. The pointer remains at the last line read.

4-3

PDP-9 TEXT EDITOR

4.13 CHANGE [C] w q stringlq string2q

In the current line, the first character group ("string1") which matches that occurring between
the first pair of quote characters (q's, in this case) is replaced by the character group ("string2")
appearing between the second pair of quote characters. The quote character chosen by the user may be
any graphic (including blank) which does not appear in either of the character strings quoted. Both
"string]" and "string2" may contain any number of characters, including zero. If verify mode is in effect,
the program will print the new current line on the Teletype when the requested change has been accom-

plished. Examples of change requests:

Current line: NXTLIN JMS TYPOUT /PRNT THE LINE.
a. In the comment, spell "PRINT" properly.

Request: CHANGEu/RN/RIN/)

New line: NXTLIN JMS TYPOUT /PRINT THE LINE.

b. Make the "JMS" o "JMP*",
Request: CHANGELXSXP*X 3
New line: NXTLIN JMP* TYPOUT /PRINT THE LINE.

c. Delete the "t" in the tag.

Request: Cu/T//3
New line: NXLIN JMP* TYPOUT /PRINT THE LINE.

4.14 ToP [11)

Move the pointer to the beginning of the edited file or buffer. The first line of the file

becomes the current line.

415 VERIFY [V]L {3 3

Set the verify mode according to the parameter. When verify mode is on, text lines are

printed in response to certain editing commands, for example:

1. The line brought into the work area as a result of a FIND or LOCATE request is printed.
2. The last line of the file, brought in by the BOTTOM request, is printed.
3. The new line resulting from a CHANGE request is printed.

When verify mode is off, only error messages are printed. After the Editor is loaded initially,

verify mode is on.

PDP=-9 TEXT EDITOR

The command
VERIFY [V)
(without arg'umenfs) is equivalent to

VERIFY [V]UON

4.16 OVERLAY [O1(un) 3

Starting with the current line, n lines (or the current line only, if n is omitted) are deleted

from the input file. Control mode is changed to input with the normal typed program response,
INPUT
Subsequent typed'lines are interpreted as text intended to replace the lines so OVERLAYed.

4.17 APPEND [A] Ly string }

"String" is added to the current line following the last data character and preceding the
terminating carriage return. Thus, to add a comment to the current line
JMS GETNUM
the command might be
APPEND u —»i /GET DECIMAL ARGUMENT.‘)
The new current line would be
JMS GETNUM —»j /GET DECIMAL ARGUMENT.
If "string" is absent, the current line is unchanged.

ON

4.18 BRIEF U {OFF

Set brief mode according to the ON/OFF parameter. Brief mode results in the abbreviated
printing of the current line during the servicing of some commands. An attempt is made to print only
the tag, operation code, and address fields of lines brought in as a result of the FIND, LOCATE, and
BOTTOM commands. In addition, the printing of the new line resulting from a CHANGE request is
terminated at the last newly-inserted character.

Brief mode is set to off initially. The setting of the brief mode indicator is of no consequence
when verify mode is off.

The command

BRIEF
(without arguments) is equivalent to

BRIEFUON)

PDP-9 TEXT EDITOR

419 socku{ZN)

Set block mode according to the parameter. When block mode is on, the editing commands
READ, WRITE, and MOVE are accepted by the program; these commands are treated as illegal if block
mode is off. When block mode is in effect, the program treats several lines as a subfile, retaining
them internally in a block buffer. In block mode, editing commands which move the pointer reference
only those lines currently residing in the buffer. The contents of the buffer are saved until a WRITE
command is encountered or until, by way of the DELETE command, it is emptied.
When block mode is off, sequential lines in the input file are moved singly to the work area
and are not available for reexamination after the pointer has been moved to a later line.
When the Editor is initially loaded, block mode is set to on if either the input or the scratch
device is nonfile oriented. If both devices are file oriented, block mode is set off.
The command
BLOCK 3
(without arguments) is equivalent to
BLOCKLON)

4.20 SIZE[Slun)

Set the total number of lines which will occupy a buffer (in block mode) to n. The SIZE
command may be issued at any time, and takes effect when the next group of lines is inserted in the

buffer via @ READ command. n is initially set to 55 n must be greater than 1.

10°
NOTE

Commands 4.21-4.23 are legal only in the BLOCK data mode.

4.21 READ

Read sequential lines from the input file, inserting them in the buffer as they are encountered,
until the number of lines in the buffer is equal fo the argument specified in the SIZE request. The
pointer is set to the first line of the buffer when the operation is complete.

The READ request will not be accepted if any lines remain in the current buffer. The buffer
must have been cleared by DELETE requests or a WRITE command.

The READ request is treated as illegal if block mode is off.

4.22 WRITE 3

Add the current contents of the block buffer to the output file and clear the buffer. Nothing

is output if the buffer is empty. This request is illegal if block mode is not in effect.

PDP-9 TEXT EDITOR

4.23 MOVEUTAGI (in])uTAGZ(inz)u TAG3 (in3))

Perform a block transfer of several lines in the buffer. The inclusive limits of the block to be
moved are defined by the first two arguments (TAG1 and TAG2). The destination of the block so trans-
ferred is defined by the third argument (TAG3).

TAG1, TAG2, and TAG3 are symbolic labels in lines anywhere in the the buffer. The n,
are optional augments to be used when block-limiting lines are not labeled.

At the completion of command processing, the block of lines between and including those
labeled TAG1 and TAG2 (augmented, if desired) are repositioned to appear after the line labeled
TAG3. The pointer is left at the top of the buffer.

This command is legal only in block mode.

4.24 EXIT

Control is transferred from the Editor to the Monitor. This command is illegal if any file is
open for reading or writing when it is issued, i.e., it may only be given as the first command aofter

Editor initialization and the message

EDITOR
>

4-7

PDP-9 TEXT EDITOR

5 RECOVERY PROCEDURES

In case of a hardware or system failure, the user may recover at the point at which the last
complete version of the edited output file was closed. The Editor, in preparing intermediate files,
assigns them temporary names. Thus, in the event of disaster, one (or both) of the following files may
be found.

.TFILT EDT and .TFIL2 EDT both contain the version of the edited file extant at the point at
which the crash occurred, No editing is lost. If neither of these files is present, the file specified in
the OPEN command contains the version of the file extant at the time the latest TOP command was
issued. All editing taking place after the latest TOP command is lost. If neither .TFIL1 EDT nor

.TFIL2 EDT is found and if no file name was given in the OPEN command, no recovery is possible.

PDP-9 TEXT EDITOR

6 EXAMPLES OF EDITING REQUESTS

This chapter contains illustrations of one complete iteration through the modification process
using the Editor.

Figure 6-1 shows the assembly listing of a sample input file.

Figure 6-2 shows the same listing marked for correction.

Figures 6-3A and 6-3B show the hard-copy output of the editing session. The sequence
numbers at the right margin are not program generated, but were added later for reference.

Figure 6-4 is the assembly listing of the new, edited file showing the results of the editing

run,

6-1

-9

[y el

cccococcocc

[l

(e

a0eng
arenl
arenz
Jee3
neaeq
v gns
GVrene
wreez
Wweld
ArP11
ArB12
20013
Ar014
20015
aR16
bre17
0820
are21
a0p22
arg23
bwre24
¢ 025
Bre26
arez27
wre3e
Bra3l
W32
o33
v 334
Are3s
drN36
ArB37
40040
areal
642

B0057

VDV UVDUV VD IVTDVDUVUVODDDVDIUDIODTLIIDVUIDDOUIUDIDION T DU VD

Pl

a0000@
2npegn
2400744
2020000
042052
248047
442200
777773
042045
220044
20aven
741200
6MOP33
442044
449044
042055
100051
4490746
6A0N43
203054
74071 @
042754
209953
744010
062052
440252
670050
777773
546745
600020
7500081
343047
740001
349752
620000
P0BRRR
777777

»P»DUT>» VP> VVP> DIDV> VUOP> DD VDD DDD>DDD>VVODUDT D>

L IT

/SUBRO
/CALL:
/

/

PACK

PLOOP1

PLOOP2

PLOOP?

PCLOS

UTINE PACK, 7-BIT CHARS
JMS PACK
FROM
T0
[

LAC PACK
DAC PFRQOM
LAC# PACK
DAC PTQ
DAC PLRH
1SZ PACK
LAW 17773
DAC PKSCHR
LACs PFROM
SAC (-1
SKP

JMP PCLOS
1SZ PFRQOM
1SZ PFROM
DAC PWRD3I
JMS PRaAL7?
1S#? PKsCR
JMP LPOOP2
LAC PWRD?2
RAL

DAC PWRD?2
LAC PWRD1
RAL!CLL
NAC® PTQ
1SZ PTD
JMP PLA@P1
LAW 17773
SAD PKSCHR
JMP PLNOP7
CLAICMA
TAD PLRH
CMA

TAD PTO
JMP# PACK
JEND

TO 10PS ASCITI,

/GET FROM ADRESS,

/GIVE TO FROM POINTER.
/GET ADDRESS OF TO ARRAY.
/GIVFE TO OUTPUT POINTER,
/SAVE AS START ADDRESS,
/BUMP TO RETURN,

/SET UP

/GET NEXT WORD IN INPUT ARRAY,
/TERMINATOR?

/NO, SKIP,

/YES, GO CLOSE QUTPUT ARRAY,
/POINT TO NEXT WORD.

/POINT TO NEXT WORD.

/SET UP TO ROTATE,

/5 CHARS IN,O

/NO, GFT ANOTHER,
/WORD PAIR COMPLFTE.
/CLEAR PAIR RIT 35,

/GET FIRST WD OF PAR,,
/BIT @ OF WD 2.

/INSERT FIRST WD IN OUT ARRAY,

/BUMP 0OUT ADDRESS,
/GO SET UP NEXT PAIR,
/MAKF SURE PAIR IS COMPLETE.

/INCOMPLETE PAIR,
/FORM WORD PAIR COUNT
/START ADDRESS,

/LESS END ADDRESS,
/RETURN TO CALLER,

Figure 6-1 Sample Input File

40O1Id3 1X31 6-4ad

LEFT-ADTUSTED NON-HEARELE D
/SUBROUTINE PACK, 7-BITLCHARS T0/10PS ASCII.

<BloBL PAcK, PLACT, Pwlo, ;C‘LL‘ JMS PACK

ON LETULN, AC #or 85 TOTAL WOLHE OCLUPED
PWEOZ, PWEDS PROM JSTALT oF /WALl 4ELRY. ’ :

BY PAcE 4LLAY. A WoRD OF AL £'s Mus;-

€-9

/ To / STREF o JeF Pui RELA. TELMINATE TUE INPUT (U PACEESY) ARLAY.
drE0e R 000280 A PACK)
pvep1 R 209702 R LACK _| 4T PACK /GET FROM ADRESS.,
U BPBB2 R 048044 R .5z Pack »DAC PFRQM /GIVE Tg FROM POINTER.
d0en3 P 220080 R LAC= PACK /GET ADDRESS OF TO ARRAY,
U 0re04 R 249252 R DAC PTO /GIVE TO OUTPUT POINTER,
u ¥P@A5 R Q40047 R —OAE—RLRH /SAVE AS START ADDRESS,
Qrer6 R 449207 R — }SRPACK— /BUMP TO RETURN,
pR@R7 R 777773 A PLOOP1 LAW 17773 /SET UP
U orP10 R 248245 R NAC PKSCHR -~ [J5- CHAERCTEL. D) &L,
U ee@11 R 220r44 R PLOOP?2 LAC2 PFROM JGET NEXT WORD IN INPUT ARRAY,
L oro12 R peeren R " 41T {endcetR /TFRMINATOR?
2¢@13 R 741797 A —_— /NO, SKIP,
¥e@14 R 62@P33 R JMP PCLOS /YES, GO CLOSE OUTPUT ARRAY,
v PrB15 R 440044 R ISZ PFROM /POINT TO NEXT WORD.
U 20316 R 44PP44 R —F5FPFREM———————— .
u ar@17 R ©40655 R DAC PWRD3 /SET UP TO ROTATE,
J ge@2e R 1pB@51 R PLOOP? JMS PRAL7? ?
U 0v@21 R 440046 R 1SZ_PKSCR PLSCHE /5 CHARS ING;}’fi'
u er@”2 R 6ngr4a3 R JMP_LROEPI 2ZLOOPZ /NO, GET ANUTHER,
] ar@23 R 2p@P54 R / LAC PWRD? /WORD PAIR COMPLETE,
@re24 R 748710 A RAL-CLL _pT /CLEAR PAIR BIT 35, 2
U 0re25 R 049254 R DAC PWRD? z
u @r@26 R 200053 R LAC PWRD1 /GET FIRST WD OF p,
Pv@27 R 744010 A LAL /BIT ¢ OF WD 2.
J 9P036 R 260052 R DAC# PTO /INSERT FIRST WD IN OUT ARRAY,
U 9¢@31 R 449052 R [SZ PTN /BUMP OUT ADDRESS,
J pre32 R 600258 R JMP PLuagPT ALoORPZ /GO SET UP NFEXT PAIR,
o¢@33 R 777773 A PCLOS LAW 17773 /MAKE SURE PAIR IS COMPLETE,
U ¥eA34 R 540045 R Dzm PWAEDLS SAD PKSCHR
#re3s R 6mar2m R JMP PLNOP7 /INCOMPLETE PAIR,
0re36 R 750001 A EwoHE LAW —{ CLALEME /FORM WORD PAIR COUNTA
U pre37 R 3408P47 R TROX PAC L _TADPERH /START ADDRESS., ©
Pr@4ap R 74081 A CMA
Y 0r@41 R 343n52 R e TAD PTO /LESS END ADDRESS,
pr@42 R 620PQ@ R sz > 7JMPe PACK /RETURN TO CALLER.
PABPON A JEND
pwes7 R 777777 A =LIT
PRom &
P70 &
PEECHE K

Figure 6-2 Input File Listing Marked for Correction

4OlLIAa3 1X31 6~-dAd

EDITOK
>OPEN PACK SkC
>FIND /5UB&ROUT

PDP-9 TEXT EDITOR

/SUBKOUTINE PACKs 7-BIT CHARS TO I0PS ASCII.

>0VERLAY 1
INPUT

/SUEROUTINE PACKs 7-BIT LEFT-ADJUSTED CEAKS TO NON-HEADERED IOPS
/AS5CII. ON RETURNs AC HOLDS TOTAL WOnbLS OCCUPIED BY PACKED ARRAY.
/A WOhD OF ALL 1'S MUST ONTERMINATE THE INPUT

EDIT
>LOCATE FROM
/ FrOM
>APPEND /START QOF INFUL ARKAY.
SNEXT
SAPEND /START OF OUTPUT ARKAYe
NOT A KREQUEST:
APEND /START OF OUTPUT ARKAY.
>APPEND /STAKT OF QUTPUT AKKAY.
>PRINT 1
/ T0 /START OF OUTPUT ARRAY.
>INSERT « GLOEL PACK, PRAL7, PWhkD1, PWRD2, PWRD3
>, LAC
LAC PACK /GET FKOM ADKESS.
>CHANGE LAC/LAC*/
LAC PACK /GET FRONM ADRESS.
#CHANGE /LAC/LAC*/
LAC* PACK /GET FrOM ALRESS.
>NEXT 1
>INSERT
INPUT
157 PACK / BUMP TO "'TO" ALDRESS.
EDIT
>PRINT
I15Z PACK / BUMP TO "TO" ADDKESS.
>BrRIEF ON
>C o/ o/s
1SZ PACK /
>PRINT
1572 PACK /BUMP TO ""TO'" ADDRESS.
>L. PLBH
DAC PLBH
>BHIEF OFF
SPRINT
DAC PLBH /SAVE AS START ADDRESS.
>DELETE 2
>PRINT
PLOOPI LAW 17773 /SET UP
>N 1
>A /5=CHARACTER COUNTEK.
>L (¢
SAC (-1 /TERMINATOR?

>VERIFY OFF
>C /SAC/SAbL/
>C /(-1/ENDCHK/

>V O
>pP

SAD ENDCHk
>N
>D
>N
>pP

ISZ PFROM

Figure 6-3A

/TERMINATOKR?

/POINT TO NEXT WOhDe

Hard-Copy Output of Editing Session

6-4

(UNPACKEL) ARKAY.

O O~ o+

>D
>pP
I1SZ PFROM
>F PL
PLOOP7 JMS PRAL7
>N
>RETYPE I1SZ PKSCHR
>N
>C »LP,PL»
JMP PLOOPZ2
>N 2
>CHANGE /L/L!CLL
RAL!CLL
>L. RAL
nAL!CLL
>C /!CLL//
RAL
>L JMP
JMP PLOJP1
>CHANGE 7Q@@/00/
JMP PLOOP1
>N
>
INPUT
DzZM PWRD3
EDIT
>L !
CLA!CMA

>k ENDCHK LAW -1
>N

>k TAD* PACK
>L PTO
TAD PTO
> INSERT 1SZ PACK
>BOTTOM
« END
>0VERLAY
INPUT
PFROM 1]
PKOBPTO [}
PKSCHR @
« END
EDIT
>TOP
>I. ADRESS
LAC* PACK
>C /ADR/ADDR/
LAC* PACK
>LLOCATE o«
LAC PWED1
>V OFF
>C /Re/ IR/
>PRINT
LAC PwrD1
>CLOSE
EDITOR
>EXIT
MONITOR
3

Figure 6-3B Hard=Copy Output of Editing Session (continued)

PDP-9 TEXT EDITOR

/POINT TO NEXT WORDe

/5 CHARS IN?

/NOs GET ANOTHEK.

/CLEAR PAIK BIT 35.
/BIT @ OF WD 2.

/BIT 8 OF WD 2.

/GO SET UP NEXT PAIR.

/GO SET UP NEXT PAIRe.

/FILL PAIR WITH ZEnORS.

/FORM WORD PAIR COUNT

/FORNM WORD PAIR COUNT.

/START ADDRESSe.

/LESS END ADDRESS.

/GET FrOM ADRESS.

/GET FROM ADDKESS.

/GET FIRST WD OF PAKes

/GET FIRST WD OF PAIRe.

6-5

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
11

11

119
120
121
122
123
124
125
126
12

12

/SUBROUTINE PACK, 7-BIT LEFT-ADJYSTED CHARS TO NON-HEADERED I10PS
/ASCII. ON RETURN, AC HOLDS TOTAL WORDS OCCUPIED BY PACKED ARRAY,
/A WORD OF ALL 1'S MUST TERMINAIE THE INPUT (UNPACKED) ARRAY,

/CALL: JMS PACK

/ FROM /START OF INPUT ARRAY.

/ T0 /START OF OUTPUT ARRAY,

.GLOBL PACK, PWRD1, PWRN2, PWRD3
@reM@ R 32d7al A PACK 4
ave¢1 R 22879? R LAC# PACK /GET FROM ADDRESS,
A0RP2 R Q44242 R DAC PFRQOM /GIVE TO FROM POINTER,
ACP03 R 443vpe R 1S2 PACK /BUMP TQ "TQ" ADDRESS.
4yrema R 22979@ R LAC#® PACK /GET .ADDRESS OF TO ARRAY,
B005 R P4P743 R DAC PTO /GIVE TO OUTPUT POINTER,
orees R 777773 A PLOOP1 LAW 17773 /SET UP
vree7 R 442744 R NDAC PKSCHR /5=-CHARACTER COUNTER,
ve10 R 22@742 R PLOOP2 LAC® PFROM /GET NEXT WORD IN INPUT ARRAY,
@¢P11 R 549734 R SAD ENNCHR /TERMINATOR?
3rg12 R e62373m R JMP PCLOS /YES, GO CLOSE OUTPUT ARRAY,.
9vv13 R 449742 R 1S7Z PFROM /POINT TO NEXT WORD,
6014 R 249750 'V DAC PWRD3Z /SET UP T0 ROTATE,
27815 R 1n@8A45 V PLOOP? JMS PRAL7?
0FB16 R 44P244 R 1S#Z PKSCHR /5 CHARS IN?
wrg17 R 66a212 R JMP PLOQP?2 /NO, GET ANOTHER,
vre28 R 20av47 LAC PWRD? /WORD PAIR COMPLETE,
dr@21 R 7440102 A RAL!CLL /CLEAR PAIR RIT 35,
Bre22 R QY4747 NV DAC PWRD?2
97@23 R 298846 V LAC PWRD1 /GET FIRST WD OF PAIR,
0v824 R 743212 A RAL /BIT @ OF WD 2.
@EB25 R P6PR43 R DAC® PTO /INSERT FIRST WD IN OUT ARRAY.
Pre26 R 449943 R 1SZ PTN /BUMP OUT ADDRESS,
59027 R 604PQ6& R JMP PLROP1 /G0 SET UP NEXT PAIR,
2¢@38 R 777773 A PCLOS LAW 17772 /MAKE SURE PAIR IS COMPLETE,
¥r¥31l R 14475@ V NZ™ PWRD3 /FILL PAIR WITH ZEROES,
67@32 R 549744 R SAD PKS5CHR
26833 K 629715 R JMP PLNQOP7 /INCOMPLFTE PAIR,
Wre34 R 777777 A ENDCHR LAW -1 /FORM WORD PAIR COUNT.
¥7835 R 36M79P@ R TAD® PACK /START ADDRESS.
Bre36 K 740001 A CMA
Wru37 P 34p743 R TAD PTN /LESS END ADDRESS.
V9V4ad R 440200 R ISZ PACK
gvv4l1 R 629792 R JMP3# PACK /RETURN TO CALLER.
VP42 R ARQvan A PFROM “
7343 R a0@ra¢ A PTO o}
Yy @44 R PGI’AN A PK&SCHR 7
A207Q% A JEND

Figure 6-4 File Resulting From Editing Session

JO.11a3 1X3L 6-dad

PDP-9 TEXT EDITOR

APPENDIX 1
SUMMARY OF EDITING COMMANDS

Editor-Monitor Communication

Command Abbreviation Activity Line Number* Section
EXIT n/a Transfer control to Monitor. 124 4.24

File Housekeeping

Command Abbreviation Activity Line Number Section

OPEN nm ext n/a Prepare input file (named "nm 2 4.1
ext") for editing.

CLOSE n/a Terminate editing on input file. 121 4.2

Locative Requests

FIND string F Bring first line beginning with 3,68 4.5
"string" to work area.

LOCATE string L Bring first line containing "string" 12,52 4.6
to work area.

NEXT N Bring next consecutive line to 15,70 4.3
work area.

BOTTOM B Bring last line of file to work area. 100 4.8

TOP T Reset pointer to beginning of file 110 4.14

PRINT P Print the current line on the Teletype 20,58 4.4

Manipulative Requests

DELETE D Discard the current line. 47,61 4.7
RETYPE string R Replace current line with "string" . 71,94 4.9
INSERT string I Add "string", as a complete line, 99 4.10
to the file after (below) the current
line.
CHANGE /stringl/string2/ Replace, in the current line, the 25,27,38 4.13
C first occurrence of "stringl" with
"string2" .
OVERLAY O Replace multiple lines. 5,102 4.16
APPEND string A Add "string" at the rightmost end 14,16,19 4.17

of the current line.

*Entries under " Line Number" refer to line sequence numbers (in Figure 6-3) where examples of com-
mand usage are to be found.

Al-1

Command
VERIFY {8';’F
BLock { S
BRIEF {g;
READ

WRITE

GET

SIZE

INSERT

Abbreviation

\

PDP-9 TEXT EDITOR

Mode Control

Activity Line Number
Set verify mode to print (ON) 54,57

or ignore printing (OFF) lines
after processing CHANGE,
LOCATE, and FIND requests.

Set program to operate in block

mode (ON) or in line-by-line
mode (OFF).

Set brief mode to print truncated 37,44
(ON) or full (OFF) lines

Input/Output Requests

Fill block buffer from input file.
Add block buffer to output file.

Add lines from subsidiary input
device after (below) current line.

Miscellaneous Requests

Set total lines to occupy block
buffer.

Change mode to input. 30

Sec'rio_r__

4.15

4.18

4.2}
4.22
4.12

4.20

4.11

PIP-9

Section

p—

NoOA N N A AN BAMA MDA BAMAEAAEDNDAMAMDANDNANEDNDOWWW®W®W®WNONN

AW LW W W W W W NN DNDDNDDNDNDDNDDNDNDDN

N N

—

pa—)

0 N o0 AW N

[o SN & I N 2)

PIP-9

CONTENTS

INTRODUCTION L.ttt et e ettt ettt e ie e innns
DEVICE ASSIGNMENTS L. e et et e enn e
I/O Monitor System e e e e
Keyboard Monitoro i e e
PIP-9 COMMAND STRING: GENERALvivriivni e,
Operation Characteruuit it ine ittt iiaeeeanenn.
Device NOME .. ut ettt i et it i
File Name and EXtensiont vnun et iinaaenn
SWitch OPHONS « v vttt it et e e
Data Modes e e e e e e e
Subsidiary Operations PP

PIP-9 FUNCTIONAL DESCRIPTION . ..ottt e cie e
Operations Under the 1/O MoNitorovieiuiieneeeiiinnneeennnnnnn.
Transfer File (T) AP

Verify File (V) ot e e it e

Segment File () «iivrrieriei ittt ettt e

Switch Options Under the 1/O Monitorcovvveviinnrnnnnnnnnnn.
Image Alphanumeric (1) ..o i e e

TOPS Binary (B) vvviititit i ittt i et e

TOPS ASCIH (A) ittt e i et ettt e eene e

Bad Parity Correction (G) . vvvvi ittt iietieienineaenenns

Tab to Space Conversion (E) . ..o vvneeinniiie it iiiiiiineenns

Space to Tab Conversion (C) «.vivivein ittt in i ie e iieenes

Segment File (Y) virritn ittt ittt e
Combined File (W) «ovniii ittt et e e et i e eeeaes
Operations Under the Keyboard Monitorcovvuivvnnneennnnnnn.

List Directory (L) +vvvvnnnenre ittt i ieeieneneann

New Directory (N)......... e ettt e e e e e

Delete File (D) ¢ vvvinint ittt it ittt e ee e eneenannaaenns

Rename File (R) . .ovvrvrnie it et it e ie et aeeeeenss

Copy Tape (C) tvvriiiitt ittt caer et iianeaneenn,

Block Copy (B) «vv viirit ittt et

Switch Options Under the Keyboard Monitorcovviiviin..,

W W 0 W 0 W © 0 N N N N N N N N o oo o oo o A DM DM LW WN

CONTENTS (cont)

Section Page
4.4 Image Binary (H) .. oovrine i i e 9
4.4.2 Dump Mode (D) . .vvniiii i i 10
4.4.3 New Directory (N) ..o e i i et e 10
4.4.4 Create System Directory (S) . ovvvurn it iiniiniieeenn, 10
5 PDP-9 COMMAND STRING ...ttt it e it anan 10
5.1 Transfer File (T) .. vvnu i i e et e e et et et tnenneannns 10
5.1.1 Copying Files ... i 10
5.1.2 Creating Files . .vnviii i i i e c e 11
5.1.3 Listing Files ... unieeirr e i e it e 1
5.1.4 Using the G Switch i e i 11
5.1.5 Using the C or E Switches e e e 11
5.1.6 Using the N or S Switch e e e e 12
5.1.7 Using the W Switch ... i i i i i 12
5.1.8 Using the Y Switch ... it i i i it e i ie e nann 13
5.2 Verify File (V) o i i e it it ettt 13
5.3 Segment File (5) . vviivirnri i e i e e e e 14
5.4 List Directory (L) . oovurvemnnen e iiie e eiieriereannnens 14
5.5 New Directory (N) ..t iteirin it i ittt et i iireaeenns 15
5.6 Delete File (D) oot e e e e e et 15
5.7 Rename File (R) . ovvrv i e it it e e ettt eeneaianens 15
5.8 Copy Tape (C) ittt ittt et et e 15
5.9 Block Copy (B) ..o iviiiiiiiniineneaennns e e 16
6 CORRECTION PROCEDURES ... ittt et it it ineaaeniannns 16
6.1 AP (Control Key P) «vvoeree ettt et e e 17
6.2 RUBOUE (RO Lttt it et et et et it e e e 17
6.3 QU (Control Key U) wvveeeeee e 17
6.4 PIP-9 Error Detection and Correctioncoviiniiiiiirienennns. 17

APPENDIXES

Appendix
1 SUMMARY OF PIP-2 COMMANDSot cie i Al-1
2 PIP-2 ERRORMESSAGES ... it it et iie it iiie s A2-1

Iable

3-1

4-1
4-2
4-3
4-4

TABLES

PIP-9 Operation Charactersoeu.tieen e inniniverneen.ns
PIP-? Device Nomesvivvnnn.. .

...........................

Legal Operation/Switch Combinationsovvitirrn v
Legal Switch Combinations for Transfer File (T)

...........................

Legal Operation/Switch Combinations

...................................

Legal Switch Combinations for Transfer File e

PIP-9

1. INTRODUCTION
PIP-9 (for Peripheral Interchange Program) is a utility program in the PDP-9 ADVANCED

Software System used to transfer data files from one standard peripheral device to another. PIP operates
under Monitor control, using the Monitor I/O device handlers.

Files may be verified, renamed, deleted, combined or split into segments. Entire DECtapes,
or individual DECtape blocks, may be copied and verified. File directories may be listed or initialized.
Some of these functions and other subsidiary functions may be combined by inserting optional switches
when the user types a command string to PIP-9.

The following peripheral devices may be used as either input (source) or output (destination):

Mnemonic
DECtape (TCO02 Control Unit with TU55 Transports) DTn
Paper Tape Reader/Punch (PC02) PR (Reader)
PP (Punch)
Line Printer (Type 647) (output only) LP
Teletype (KSR 33 or KSR 35) TT
Card Reader (CROTE or CRO2B) CR

Later versions of PIP-9 will also transfer files on magnetic tape and disk.

2. DEVICE ASSIGNMENTS

Before using PIP, the user must be sure that the peripheral devices he plans to use are as-

signed to positive slots in the Monitor's Device Assignment Table. This is for use by PIP. When typing

his command string, the user specifies devices by writing mnemonic codes, such as DT2, PR or TT.

2.1 I/O Monitor System

In paper tape I/O Monitor systems, where the Device Assignment Table is fixed, the user

need not be concerned with .DAT slot assignments. Line Printer and card reader users must be certain

that the appropriate handlers are included in their systems.

2.2 Keyboard Monitor
In Keyboard Monitor systems, the user must be sure that the devices he will use are assigned

.DAT slots. He should use the Monitor REQUEST PIP command to get a typeout of all current .DAT slot

assignments. If a device he plans to use is not listed, he may use an ASSIGN command to assign that
device to any positive .DAT slot, with the exception of .DAT slot 1 which must always be assigned to
the system device. The most complete handler, (e.g. DTA, PPA, etfc.), must be assigned. If the same

device is to be used as both the source and destination device, it must be assigned to two .DAT slots.

PIP-9

Since these .DAT slot assignments are for use by PIP, they need not be remembered by the

user. Systems distributed by DEC initially have the assignments shown below in Table 2-1.

Table 2-1
Initial .DAT Slot Assignments

.DAT Slot No. Assignment

DTAO
DTAI
DTA2
TTAO
PRAO
PPAO
DTAI
DTA2

ONOOUODMWN—

a—

3. PIP-9 COMMAND STRING: GENERAL

Once in core memory, whether in an I/O Monitor or Keyboard Monitor environment PIP~9

informs the user of its readiness to accept keyboard commands by outputting the following on the

teleprinter:

PIP
>

The user may then type a command string to PIP=9 on the same line as the right angle bracket (>).
Successful completion and readiness for the next command is normally acknowledged by "CR, LF, >"
unless there has been intermediate output to the teleprinter by PIP. In the latter case, the initial
response (PIP, CR, LF, >) is output once again for ease of later printout examination. PIP command

strings are of the following general form:

a dd| : |fname{ ; |ext (xX)@—sd| : Ifname| ; lext (x))
SPACE SPACE SPACE SPACE ALT MODE

where, a = A single letter, specifying a PIP operation,
dd = the destination device
fname = file name
ext = file name extension
(x) = letter(s) specifying a PIP switch option(s).
sd = source device
The left arrow (@—) terminates information concerning the destination device. Data for the source
device follows the @—. CR or ALT MODE must ferminate a command string. ALT MODE forces PIP-9
to return control to KM=9 upon successful completion of the command. CR causes PIP-9 to wait for an-

other command upon completion of the current one.

2

PIP-9

Multiple spaces are ignored by the command string processor. In fact, delimiters are

absolutely required only following the operation character, device names and file nomes.

Example: TwDT1es NEWNAM BIN (B) @ DT2 ,OLDNAM .___.BINJ
OR T DTI:NEWNAM;BIN (B)=— ._.DT2:OLDNAM;BIN)
The elements in the preceding example are:
T PIP-9 Transfer File operation
DT1, DT2 DECtape 1 is the destination device,
DECtape 2 is the source device.
NEWNAM, OLDNAM File names
BIN File name extension
- Transfer direction indicator (right to left,

i.e., DT2 to DTI)
B Switch option

3.1« Operation Character

The first character in a PIP-9 command string must be an operation character defining the

main function to be performed. It must be followed by a space. Legal operational characters are

listed in Table 3-1 below.

Table 3-1
PIP-9 Operation Characters
(T) Transfer File (V) Verify File
(L) List Directory (S) Segment File
(D) Delete File (B) Block Copy
(C) Copy (N) New Directory
(R) Rename File

3.2 Device Name

Because the PDP-9 ADVANCED Software System provides more than one device handler for
some peripherals, a 2-letter mnemonic (corresponding to the first two letters of the handler name) is
used for device name specification in PIP. Table 3-2 lists legal device names. For multi~unit periph-
erals, e.g., DECtape, the unit number, 0-7, appears after the device manemonic, e.g., DT7. The

device name delimiter must be a colon (:) or a space.

PIP=9

Table 3-2
PIP-9 Device Names
(PR) Paper Tape Reader (DT) DECtape
(PP) Paper Tape Punch (MT) Magnetic Tape
(TT) Teletype (CC) Card Reader
(LP) Line Printer (DK) Disk
3.3 File Name and Extension

File name ond extension, if used, constitute one element of the command string, where the
file=name delimiter is a semicolon (;) or space. If the extension is omitted, the default assumption is
three null characters. If more than one file name is specified, the second, third, etc., are separated
from earlier names by commas (,). If the device is not a file-oriented device, file names may be
omitted. Commas, however, must still be used for file count purposes. Some examples of device, file

name and file-name extensions follow:

DT5:FILEA,FILEB;SRC (2 files) or DT5 FILEA, FILEB SRC
PR:,, (3 files) or PR ,,
PP: (1 file) or PP

A file name is a string of up to six (6) alphanumeric characters. Any printing character in
the ASCII set may be used with the exception of a space, (:), (;), (,), (0 and ()), which have a specific

delimiter meaning to PIP. The file=name extension may be up to three (3) characters long.

3.4 Switch Options

Switch options are enclosed in parentheses and require no delimiters to separate them from

each other. They may appear either with the destination device information or with the source device
information. PIP-9 switch options are divided into two classes: (1) data modes and (2) subsidiary

operations.

3.4.1 Data Modes

A) IOPS ASCII
B IOPS Binary

~

(
(
(
(

)} Image Alphanumeric
H) Image Binary
(D) Dump

3.4.2 Subsidiary Operations

(G) Correct Bad Parity/checksum lines

(E) Convert tabs to spaces

PIP-9

(C) Convert multiple spaces to tabs

(S) Create new system directory

(N) New directory

(Y) Segment file

(W)* Combine several source files, or tapes, stripping .EOT's and

.END's from intermediate tapes.

or
(W)* Comgine several binary files, stripping EOF's from intermediate files.
4, PIP-9 FUNCTIONAL DESCRIPTION

Functionally, PIP=9 may be described in terms of operations which may be specified and
subsidiary switch functions requested as a part of a given operation. All PIP=9 operations and switches
which are valid in the /O Monitor paper tape system are also valid in the Keyboard Monitor system.

The converse is not true, however.

4.1 Operations Under the I/O Monitor
Three PIP-9 operations are provided in an I/O Monitor environment: (1) Transfer File,

(2) Verify File, (3) Segment File.

4,11 Transfer File (T) = T performs basic data or file transfer from one I/O device to another. In

an 1/O Monitor environment T is used to copy paper tapes and list paper tapes or card decks on the
Teletype or line printer. T also provides the ability to create a source file by transferring from Teletype
to paper tape punch. Paper tapes may be combined into one paper tape or segmented (IOPS ASCII tapes

only) into several tapes.

4.1.2 Verify File (V) = The V operation allows parity and/or checksum verification of paper tapes.

This function is particularly useful for verifying paper tapes copied with the T command.

4.1.3 Segment File (S) - The S operation provides a means for segmentation of source paper tapes

whose unwieldy bulk makes two or more smaller tapes desirable. All PIP=9 operation commands are
independent of other commands except Segment which is used prior to a Transfer command in order to
specify at what points in the source file segmentation is to take place. The S command string allows
for up to sixteen segmentation points or character strings (1=5 characters) at the beginning of lines at
which segmentation is to take place. The file is terminated just prior to the segmentation point after a

.EOT is appended. Transfer continues to the next segmentation point and so on.

* .END and .EOT on the final ASCII tape and EOF of the final binary tape are retained.

PIP-9

4.2 Switch Options Under the I/O Monitor

The data mode switches which may be used in an I/O Monitor environment are:
(A) IOPS ASCII
(B) IOPS Binary
8] Image Alphanumeric

Function switches for use under the I/O Monitor are:

(G) Correct bad parity lines

(E) Convert tabs to spaces

(C) Convert multiple spaces to tabs
) Segment file

(W) Combine files

Switch options may be used for some operations and are meaningless for other operations.
Table 4-1 lists legal options by operation in an 1/O Monitor environment. Furthermore, certain switch
options conflict, e.g., combining the option to convert tabs to spaces (E) and spaces to tabs (C) is

clearly a conflict. Table 4-2 lists legal switch combinations for the primary PIP-9 operation, Transfer
File. |

Table 4~1
Legal Operation/Switch Combinations
Operation Legal Switches
Transfer File (T) A,B,1,E,G,C,W,Y
Verify File (V) AorB
Segment File (S) (None)
Table 4~2

Legal Switch Combinations for Transfer File (T)

Switches A B I G| C

AN "

W
J
/1
)/

]

\

\\\\\N NS NG I

~ &\@

7

<|lzlo|a|m
SIS S

~

PIP-9

4.2.1 Image Alphanumeric (I) = The (I) data mode permits copying of any paper tape but, in

particular, (I) must be used when copying tapes which are in Hardware Read-in Mode (HRM or RIM
tapes). Thus MACRO=-9 .ABS or .FULL tapes require the (I) data mode.

4,2.2 IOPS Binary (B) = Relocatable binary tapes are reproduced using the binary data mode (B).

4.2.3 IOPS ASCII (A) - PDP=9 source tapes are normally copied using the (A) data mode. It should

be noted, however, that use of the (A) mode will result in IOPS ASCII paper tapes having even parity
in channel 8 of each frame. (See Section 2.1.2.1 of the PDP-2 Monitor Manual, DEC-9A-MAAQ-D
for a detailed discussion of IOPS ASCIL.) If for some reason this is undesirable to the user, a data mode

of (I) is recommended.

4.2.4 Bad Parity Correction (G) - Whenever data modes (A) or (B) are specified during a Transfer

command, PIP-9 automatically verifies the correctness of parity and/or checksum. The G switch,
used with IOPS ASCII mode only, allows the user to modify erroneous input lines via teletype keyboard
input. User intervention may take one of three forms: (1) the line may be deleted, (2) the line may be

accepted, or (3) the line may be replaced from the keyboard. The option to restart (AP) is always

available.

4,2.5 Tab to Space Conversion (E) = The E switch allows for conversion of horizontal tabs to spaces

in order to allow off-line listing of ASCII tapes on Model 33 Teletypes. It is used with IOPS ASCII

tapes. Since IOPS (Input/Output Programming System) follows a tenth position tab setting convention,
enough spaces are substituted for a tab to place the next printing character of the line in position 10,

20, 30, etc.

4.2.6 Space to Tab Conversion (C) = In order to condense an ASCII paper tape the C switch is used

to convert multiple spaces on an input file into horizontal tabs on the output file. Trailing spaces are

simply deleted. Again, C is legal only when used with the (A) data mode.

4.2.7 Segment File (Y) - In order to apply the Segment operation during a Transfer file command,

a (Y) switch is required in the T command string. On the basis of the (Y) switch the IOPS ASCII input

file is segmented into the number of output files specified in the preceding S command.

4,2.8 Combine Files (W) = Although combining files or a series of paper tapes into one file is most

common when Transferring from paper tape to a mass storage medium, it is possible to combine several

small paper tapes into a single larger paper tape by indicating a W switch in a T command. Either IOPS

PIP-9

binary or ASCII tapes may be so combined. For binary files, all but the final EOF block of the input
tapes are discarded on output. Likewise, when combining a series of IOPS ASCII paper tapes, all .EOT's

and .END's are stripped except that of the final input tape.

4.3 Operations Under the Keyboard Monitor

The presence of mass storage devices in @ PDP-9 configuration allows additional operations
with PIP-9. In addition to the Transfer, Verify and Segment file cperation, the following are available:
(1) List Directory, (2) New Directory, (3) Delete File, (4) Rename File, (5) Copy Tape, and (6) Block

Copy. (Additional switch options also become available.)

4.3.1 List Directory (L) - The directory of any file-structured mass storage device may be listed on

teleprinter or line printer with the L command. The file name, extension, starting block number and

number of blocks occupied, are printed along with the number of free blocks remaining.

4.3.2 New Directory (N) = The N command provides recording of a fresh directory on a mass

- storage device. In the case of DECtape, the File Bit Map blocks are cleared and the Directory block

is initialized to indicate only the File Bit Map and Directory blocks as occupied.

4.3.3 Delete File (D) - To delete one or more named files from a mass storage device, the D opera-

tion is employed. Deletion implies removing references to the file from both the Directory and File Bit

Map blocks.

4.3.4 Rename File (R) - Renaming one or more files requires an R command. Only the name and

extension in the Directory are changed.

4.3.5 Copy Tape (C) = This function provides a convenient means of reproducing tapes (especially

system tapes) in their entirety. Programmed read-after-write verification is performed. Differences in

file structuring will be accounted for in the transfer from one type of device to another.

4.3.6 Block Copy (B) = The block copy operation is used with DECtape when copying one or more

blocks seems desirable, e.g., when one or a few blocks on a tape seem suspect after a copy operation.
The B operation obviates the need to recopy an entire tape. Blocks to be copied and verified are

specified by their octal block number (0-1077).

4.4 Switch Options Under the Keyboard Monitor

Four additional switch options are available in a Keyboard Monitor environment. Two are
data modes: Image Binary (H) and Dump Mode (D). Two are subsidiary functions: New Directory (N)
and Create System Directory (S).

PIP-9

Tables 4-3 and 4-4 summarize legal switch/operation combinations within a Keyboard

Monitor environment.

Table 4-3
Legal Operation/Switch Combinations
Operation Legal Switches
Transfer File (T) A,B,1,H,D,E,G,C,W,Y,N,S
Verify File (V) AorB
Segment File (S) (None)
List Directory (L) N or S or None
New Directory (N) (None)
Delete File (D) (None)
Rename File (R) (None)
Copy Tape (C) N or S or H or None
Block Copy (B) N or S or None
Table 4-4

Legal Switch Combinations for Transfer File

Switches B |1 H D C S

NE
< \\\‘k\\ ©

N
v
v
v
v
v

YARARANS
VIV VY

_

/
v
/
/
v/

7=

NN ;@x\xé
&x@ NN ANER

wilz < [0 |m
AL L N A RN R
<
\
x\xxk\x

ol

4.4.1 Image Binary (H) = The reader is referred to Section 2.1.2 of the PDP-92 Monitor Manual for

a discussion of data modes. The use of Image Binary as a data mode on mass storage devices such as
DECtape or disk implies the intent to retain the exact form of the binary data as it originally appeared
in hard copy, e.g., paper tape or cards such that, at a later time, the original data may be retrieved
(ance again onto paper tape), without alteration. It should be noted again that use of Image ASCII will

always exactly reproduce an identical tape whether or not DECtape or disk has been used for intermediate

storage (see Section 4.2.1).

PIP-9

The meaning of Image Binary as a switch option with the Copy (C) function is expanded
beyond its customary meaning fo imply a block by block DECtape copy. Later examples will illustrate

this use of H mode.

4.4.2 Dump Mode (D) - Files recorded in dump mode may customarily be expected to reside on a

mass storage device. Hence, D is used as a data mode most frequently when transferring to and from

mass storage. There is no restriction on its use from mass storage to paper tape or vice versa, however.

4.4.3 New Directory (N) = The N switch option, like the N operation, initializes the Directory

of the destination device. Permitting its use as a switch provides the added convenience of combining

operations in a single command string.

4.4.4 Create System Directory (S) = The S switch constructs a basic system tape on the destination

device prior to executing the main operation of the command string. The system tape must be mounted
on unit 0 and DAT slot one (1) must be assigned to the system device in order to use the S switch. Basic

system tape refers to the Directory, File Bit Maps, all absolute system programs and the relocatable

system files: DDT?, .LOAD, .LIBR, INTEGE EAE, INTEGE NON, REAL EAE, and REAL NON.

5. PIP-9 COMMAND STRING

This section illustrates PIP~9 commands and usage in detail. Since reference is made in

earlier sections to I/O and Keyboard Monitor environmental differences, no further mention is made
here. Examples are given without the optional (:) and semicolon (;) delimiters for use of which the

reader may refer to Section 3, page 3.

5.1 Transfer File (T)

Under the T command are included the tasks of listing, copying, creating, combining and

segmenting files. An input and an output device are required in the command string as well as one of

the five (5) data modes. File names must be specified only for file structured devices.

5.1.1 Copying Files - The command:
T DT7 FILEA SRC (A)«— PR p)
copies a single tape from the paper tape reader to DECtape unit 7 in IOPS ASCII mode.
The command:
T DT7 FA SRC,FB SRC,FC SRC (A)e— PR,,
transfers three paper tapes as three separate files named FA SRC, FB SRC, and FC SRC.

PIP-9

The command:
T DT2 FILNEW BIN (B) «—DT1 FILOLD BIN)
not only transfers FILOLD BIN from DECtape unit 1 to 2 but also renames the file: FILNEW BIN.

5.1.2 Creating Files - Creating a file is normally an Editor function. However, a T command from
Teletype to any output device is perfectly legitimate. It should be kept in mind, however, that cor-
rection facilities provided by an Editor are not in PIP=9.
The command:
TPP (A)e—TTp
directs PIP=9 to accept the input from Teletype to be punched on paper tape. To terminate file creation,

a final line consisting of #D (Control Key D) must be typed.

5.1.3 Listing Files =
The command:
T LP@—DK FILNAM SRC (A) g
lists FILNAM SRC on the line printer. IOPS ASCII is the only permissible mode to the line printer.
Both IOPS and image ASCII are acceptable to the Teletype, the alternate listing device.

5.1.4 Using the G Switch - PIP-9 normally examines the correctness of parity and checksum when

data mode A or B is specified. Transfer is discontinued after display of one of the two following messages
on the Teletype:
INPUT PARITY ERROR

or INPUT CHECKSUM ERROR
The G switch allows for user correction of an ASCII line with bad parity. It may only be used with
data mode A. Consider the following example:

T DT7 FILEA SRC (AG)®—PR 4

is fyped. During transfer bad parity is encountered and the input parity error message is output on the
Teletype followed by the line in error. The user may:

(1) Accept the line by typing a carriage return.

(2) Delete the line by typing Dgl

(3) Retype the line, terminating with a carriage return,

(4) Abort the operation by typing #P to restart PIP=9 or 4C 1o reload the Keyboard

Monitor.

5.1.5 Using the C or E Switches = The C or E switch may be used only with A as the data mode.

C and E may not be used together.

PIP-9

The command:
T DT7 FILEA SRC (AC)@—PRp
effects a transfer from paper tape to DECtape during which process all multiple spaces are converted
to tabs and trailing spaces are deleted.
The command:
T PP (AE) @—DT2 FILEB SRCp
effects a transfer of FILEB SRC from DECtape unit 2 to the paper tape punch during which process all
tabs are converted to spaces allowing listing of the file on an off-line Teletype which lacks a tabbing

mechanism.

5.1.6 Using the N or S Switch - Initializing the directory of certain mass storage devices, e.g.,

DECtape, is a frequent operation. The N switch allows initialization within the context of a File
transfer. S is the only switch which conflicts with N.
The command:
T DT4 FILEA IMG (IN)e—PRy)
initializes the Directory and File Bit maps of DECtape unit 4 and, subsequently, transfers the paper tape
file to DECtape in image ASCII mode.
Given a DAT slot 1 assignment of DTAO and PDP-9 Advanced Software System tape on DEC-
tape unit 0, the command:
T DT4 FILEA BIN (BS)‘——PR)
copies system programs and Directory information from DECtape unit O to unit 4 prior to transferring

FILEA BIN from paper tape to DECtape.

5.1.7 Using the W Switch = Source files are frequently of such size as to require several paper

tapes. Although they may be maintained on a mass storage device in segmented form, it is more often
desirable to combine the segments into one file. The W switch performs this function. It is legal with
data modes A or B and conflicts with the Y switch.

The command:

T DT1 FILEA SRC (AW)®—PR,,,, 2

transfers five (5) ASCII paper tapes to DECtape unit 1 as the single file, FILEA SRC. Because inter-
mediate .EOT or .END pseudo ops are no longer useful, all but the one on the final tape are deleted
during transfer.

Used with a data mode of B, the W switch provides a convenient way to combine several

binary subprograms into a single file such as a library file.

PIP-9

The command:
T DT6 LIBRY BIN (BW)-e—DTI1 A BIN, B BIN,C BIN)
combines the three (3) binary files, A BIN, B BIN and C BIN info one file LIBRY BIN, deleting inter-

mediate End-of-Files in the process.

5.1.8 Using the Y Switch - In contrast to the W switch which combines files, the Y switch is used

when ASCII file segmentation is required. It is used only with data mode A and conflicts with the W
switch, Given a sizable source file on mass storage which is to be segmented, the command:
TPP,,,,, (AY)«—DTI FILBIG SRC 4

will result in FILBIG SRC being split up into six (6) paper tapes where five (5) segmentation points must
have been specified in an S operation immediately preceding the current T command string (see Section
5.3, p.20).

The command:

T DT3 FA SRC,FB SRC4—DK FILBIG SRC (AY))

similarly segments the disk file FILBIG SRC into two smaller DECtape files, FA SRC and FB SRC. The
preceding S operation will have specified one segmentation point. ‘

As each output file is closed, PIP=9 will output on Teletype AP which is the restart request.
The purpose for this is to allow dismounting of tapes or removal of tape from the punch. Clearly, if the
file was so large as to require segmentation, time for operator management of the segments seems ap-

propriate.,

5.2 Verify File (V)

File verification is performed in either IOPS ASCII (A) or IOPS binary (B) data modes. No
other switch options apply to the verify operation. Since there is no output, only the input device (and
file name if a file structured device) need be specified.

The command:

V PR ()8
requests parity and checksum verification of one binary paper tape. If a parity error occurs, the fol-
lowing message is typed:
INPUT PARITY ERROR
If checksum failure:
INPUT CHECKSUM FAILURE
For an ASCII file, the error line is also printed. In either case, after the message is printed, verifica-
tion continues until the entire file has been examined allowing the user to assess how many errors are

present.

PIP-9

Multiple files may be verified in a single command string. For example, the command
V DT3 FILEA SRC, FILEB SRC (A))
requests verification of both FILEA SRC and FILEB SRC.

5.3 Segment File (S)

The S operation allows specification of up to sixteen file segmentation points. Device names,
file names and switch options are all meaningless in the S command.

The segmentation points are specified as 1 to 5 character strings. In the subsequent T com-
mand, if a Y switch is specified, PIP-9 will examine the beginning of every line for the specified seg-
mentation points in order of occurrence. Vertical form control characters at the beginning of a line
are excluded from the string search. As each segmentation point is found, PIP=-9 will close the current
output file segment, appending the pseudo op, .EOT, at the end of the segment. The next segment will
start with the line which begins with the current segmentation point.

The command:

S TAGA, TAGB, TAGC, TAGD
sets up the four segmentation points TAGA,TAGB, TAGC, and TAGD for the immediately following
cémmand:
TPP,,,, (AY) «—DT3 FILBIG SRC)
the end result is five paper tapes, all but the last of which are terminated with .EOT. The last four
begin with the lines TAGA---, TAGB---, efc.

As each segment is completed, ’ P will be output on the teleprinter allowing time to remove

the paper tape segment, dismount tapes, etc. When ready to continue, the user simply types CTRL P

and PIP-9 resumes segmentation.

5.4 List Directory (L)

The Directory contents of any file structured device may be listed by the L operation. The
N or S switch options may be used.
The command:
LTT<—DTIZ
results in a printout such as the one below:

DIRECTORY LISTING
Ist Block of File
MACRO ONE 4 226@—* of Blocks Occupied

MACRO TWO 5 140
MACRO SRC 6 365

4 SYS PGM BLKS
121 FREE BLOCKS

PIP-9

5.5 New Directory (N)

Although the N function may be performed as a switch option in the command string of
another operation, it has proven useful to include it as a distinct operation. No switch options are
used with the N command and only the destination device need be specified.

The command:

N DT4,4
results in a fresh directory on DECtape unit 4, a listing of which (as requested by an L operation) will
appear as follows:
DIRECTORY LISTING
4 SYS PGM BLKS

1074 FREE BLOCKS
The four system program blocks are the Directory and three File Bit Map blocks.

5.6 Delete File (D) f

File deletion is performed by the operation, D. Only the destination device is specified.
No switch options are used.

The command:

D DT3 FILEA,FILEB 8
causes PIP-9 to delete both FILEA and FILEB from DECtape unit 3.

5.7 Rename File (R)

The R command is used to rename files on a file=structured device without data transfer of
any kind. No other unit is needed although the device name must appear with both source and destina-
tion data. A simple 9-character name substitution takes place into the directory entry section of the
directory block. All switch options are illegal.

The command:

R DT2 NEWNAM BIN«e—DT2 OLDNAM BIN)
changes the name of the file OLDNAM BIN ON DECtape unit 2 to NEWNAM BIN.

5.8 Copy Tape (C)

Copying the contents of one file~structured device onto another implies one of two tasks:
(1) incorporation of all information on the input device info the organization and content of the output
device or (2) total replacement of all information on the output device by information on the input de~
vice. The latter is performed by the C operation in conjunction with the H data mode switch.

The command:

C DTS (H)Q—-DT3)

15

PIP-9

replaces all data on DECtape unit 5 with data from unit 3 in a block by block copy and read after
write.
[ncorporation is effected in one of the following three ways:
(1) Absence of switch options in the C command:
C DT5 «—DT3)
All files on DT3 will be incorporated into the file organization of DTS5.
(2) Use of the N Switch:
C DT5 (N) «—DT3y
Prior to transferring the files on DECtape unit 3 to unit 5 the Directory and File Bit Maps
of unit 5 will be initialized.
(3) Use of the S Switch:
C DT5 (5)«—DT3
After copying the system from the system device onto DECtape unit 5, the files on
unit 3 will be transferred to unit 5. PIP assumes that DAT slot 1 is assigned to the

system device.

5.9 Block Copy (B)

To copy one or more blocks of one DECtape onto another, the B command is used. Switches
N or S may be employed within command string also. Instead of specifying file names, actual octal
block numbers (0-1077) are given in the command string. These kblock numbers may appear either with
the destination or source data and are separated by commas.

The command:

B DT7@— DT4 5,15,165,1075)
or

B DT7 5,15,165,1075 4—DT4,)
requests copy and verification of blocks 5,15,165 and 1075 from DECtape unit 4 to unit 7.
The command:
B DT2 10,15+e—DT1 4,34
requests blocks 4 and 3 of DECtape unit 1 to be copied (and verified) onto blocks 10 and 15 of DECtape

unit 2 respectively.

6. CORRECTION PROCEDURES

Four correction procedures are available to the user in his operation of PIP-9. The procedure
chosen is largely a function of what point in the PIP=9 process the user decides to correct or somehow
modify PIP=9 action. Aborting a task is the most drastic procedure. Deleting one or more characters
in a command string, negating the entire command string, or responding with corrected command string

information after a PIP-9 error message are others.

16

PIP-9

6.1 &p (Control Key P)
A task may be aborted and PIP=9 restarted by typing in ’rhe’P (control key P) character at

any time, ’P has a secondary use in PIP=9 which is fo indicate loading of the next in a series of paper
tapes or output of the next in a series of files during segmentation. For example, at the end of each of
several paper tapes to be combined info one output file, PIP-9 will type’P on the teleprinter directing

the user to load the next paper tape. When ready, the user ’rypes’P for PIP-9 continuation.

6.2 Rubout (RO)
During typing of a command string, one or more characters may be deleted by use of the
rubout (RO) key. For each character deleted, starting with the last one typed, a back slash (\) is

echoed. For example:
T zT3\\DT3 FILEA (A)e—PR S

The character Z is in error. Three rubouts have been used to back up to the erroneous characrer.

6.3 *U (Control Key U)
At any point while typing a command string, that is, prior to the CR or ALTMODE, a ’U

may be typed to delete the entire command string up to that point. An "at" sign (@) is echoed. The
user may then start from the beginning of the command string again.
The command:

T ZT3@T DT3 FILEA (A)e—PRg

demonstrates a *U correction.

6.4 PIP-9 Error Detection and Correction

Once a command siring is completed, PIP-9 may discover erroneous information. When this
occurs, an appropriate error message is output to the teleprinter and the questionable command string
is output up to but not including the offending character or element followed by "?", requiring correct
completion by the user. If the user prefers to retype the command, a carriage return or b will in this
instance signal PIP=9 to accept a new command from the beginning. The characters RO and *U may
not be used since the Teletype handler (which no longer has access to the erroneous command string)
and not PIP=92, interprets and acts upon RO and *U.

Appendix II contains a complete list of PIP-9 error messages. Hence only two examples are
cited here. Suppose a user intends to transfer an IOPS ASCII file from paper tape to DECtape. He

types:
T DT2 FILEA SRC (F)e—PR g

17

PIP-9

Recognizing F as an illegal switch option, PIP-9 types:
INVALID SWITCH OPTION
T DT2 FILEA SRC(?
The user may complete the command string from the erroneous character or element on to the end, or
use a’P to indicate he prefers to restart the message.
[f a DECtape handler and unit are not assigned to any of the positive .DAT slots, PIP=9
would type in response to the above example:
DEVICE (UNIT) NOT ASSIGNED TO POSITIVE .DAT TABLE
T?
to indicate that the command was in error (could not be honored due to absence of the necessary .DAT

assignment) at the point of the device and unit specification code.

18

Summary of PIP-9 Commands

1/0O Monitor Environment:

PIP-9

Appendix |

Command Abbrev . Dest. Dev. Source Dev.
Transfer File T Yes Yes
Verify File \ No Yes
Segment File S No No

Keyboard Monitor Environment:

Command Abbrev . Dest. Dev. Source Dev.
Transfer File T Yes Yes
Verify File \% No Yes
Segment File S No No
List Directory L Yes Yes
New Directory N Yes No
Delete File D No Yes
Rename File R Yes Yes
Copy Tape C Yes Yes
Block Copy B Yes Yes

*Segmentation points instead of file names.

**Block numbers instead of file names.

Al-1

File Names

Legal Switches

No AI BIII E,
G,C,W,Y

No AorB

No* None

File Names Legal Switches

Yes A,B,I,H,D,E,
G,C,W,Y,N,S

Yes AorB

No* None

No NorS$S

No None

Yes None

Yes None

No NorSorH

No** NorS$S

PIP-9

Appendix I

PIP-9 Error Messages

Command String Too Long, Try Again
Ill. Function

Ili. Dev. or Unit
Iil. Dev. or Unit Terminator

Dev. Ill. for Option or Function and Direction

Dev. (Unit) Not in + DAT Table
IIl, Sys. Dev. in DAT Slot 1

Sys. Tape Not on Unit 0

Too Many Files or Blks., Try Again

Too Many Chars. in File or Ext. Name}

Source File Not on Dev.
<

Too Many Source Files }
Too Many Dest. Files

Data Mode Needed
Switch Iil. for Dev.
Il. Switch

Switch Conflict
Switch Ill. for Function

I, Terminator
Input Parity Err,

Input Checksum Err
ASCII Input Line Too Long

1. Blk.#
Read - Comp. Err. on Blk. n
S Operation Not Performed

Strings 1 to 16 Accepted

Too Few Dest. Files for # of Segment Points

Retype command string

Retype from function character on.
Retype from device name on.

Type ’C to restore
Monitor and perform ASSIGN

Mount System Tape on Unit O and retype command
string.

Retype command string

Retype from File Name
on.

Check number of files actually transferred and
type another command string to transfer remainder.

Type data mode in parentheses followed
by carriage return

Retype from switch on.

Retype from terminator on.

If binary, check data.

If ASCII, retype command string using G switch.
Check data

Retype from block # on.

When operation complete, try B function
on error block,

Execute S operation; then retype T command.

Perform segmentation; then further segment
last destination file.

Retype command string with correct # of destina-
tion files. (1 more than ¥ of segmentation points).

A2-1

LINKING LOADER

LINKING LOADER

CONTENTS
1. INTRODUCTION 1 titiirieteiereronesocssasonssasssacsnssasssosans 1-1
2. DESCRIPTION 1 titiiiietiiinernennesnenonecnesssssacenssnnanncans 2-1
3. INFORMATION UNITS L itttteeirietnsroeooueronsesacosessocossonssns 3-1
4, IDENTIFICATION CODES .. vvvvivvvnnnnn G esesieeier e abee e enaseens 4-1
5. MAIN PROGRAM ORGANIZATION L. utitieriieinenerensrnnennsnoenns 5-1
5.1 Subprogram Organization cvuue e iieenrereensnerneecsnneennnns 5-2
5.2 Block Data Subprogram Organization coveeereeerveeeececeensensenses 5-3
6. DEFINITIONS it tiiiiit it tiieiinretsoenesneosonssoasssnsacsonsnes 6-1
7. LINKING LOADER OPERATING PROCEDURES ... i viiiiiiiieiiennnennens 7-1
7.1 I/O Monitor Environment «ovesee e eeeeoeeseesessneensesoeens e 7-1
7.1.1 Structure of System Libraryvvveiiiiieiiiiiniiiiiiieiennnn, 7-2
7.1.2 Loader Memory Map .vvvviiveninnaenns Ceeseiesie e AN 7-2
7.1.3 Error Messages «vueeessereresasnsesarosassssssacsssonsnsaanas 7-3
7.2 Keyboard Monitor Environmentovuieeennne. it - 7-4
8. MEMORY MAPS ottt eiretrisietoneeasssessncessenssanases .o 8-1
8.1 /O Monitor Environment «vveveennnns Creereeees et e rerea e 8-1
8.2 Keyboard Monitor Environment ...vuierieniiiieiniiiienennasenens 8-3
A-1 SYMBOL CONCATENATION - RADIX 508 FORMAT ...ciiiiiiiiiininnet, Al-1
A-2 LOADER SYMBOL TABLE ... civviiiiivnernnnnnnas Cheereieanes ceereaans A2-1

iii

LINKING LOADER

SECTION 1
INTRODUCTION

This document describes the operation of the Linking Loader and the composition of the binary
information which comprises a loadable program unit. Operating procedures for the |/O Monitor and
Keyboard Monitor environments are included along with memory maps of the various phases of loading by

the Linking Loader.

1-1

LINKING LOADER

SECTION 2
DESCRIPTION

The Linking Loader loads and links relocatable or absolute binary program units as produced
by the FORTRAN IV compiler and the MACRO-9 Assembler. Absolute and relocatable coding should
not be intermixed in one unit, and care should be taken in linking relocatable and absolute units. For
FORTRAN and Assembler generated program units, the Loader also assigns the common data storage area.
The input medium may be any input device.

Initially the loader will load all the program units whose names appear on the command
string (see operating procedures, section 7). After all the programs named by the command string
have been loaded, the Loader automatically loads and links all requested and unresolved library subpro-
grams. The requested library subprograms are loaded from the external library and the system library (in
that order). After both libraries have been examined for requested subprograms, the loader displays the
names of all subprograms which have not been found. If the user requires |/O handlers that are already
in core for Linking Loader purposes, the resident handlers will be used.

As individual program units cannot be executed if the program flows across an 8K memory
bank, the Loader will prevent this type of loading. The Loader will, however, load (and link) the pro-
gram in the next memory bank. No checking of this type is made with absolute binary program units.

Optionally, symbols and their absolute definitions are loaded into a program dictionary for
use by the on-line debugging package (DDT). The loader also sets up for DDT the start execution ad=
dress of the main program (in the system communication tables) and the initial relocation value of all

the program units.

2-1

LINKING LOADER

SECTION 3

INFORMATION UNITS

The binary output from the FORTRAN compiler and the MACRO-9 Assembler consists of blocks

of information units,
(18 bits).
the information units.
to the Loader.

Each information unit consists of an identification code (6 bits) and a data word
The form of the object program at run time is determined by the content and the ordering of

Several information units may be grouped to convey a single run-time instruction

A block of information units consists of four 18-bit machine words arranged in the following

manner:

Word 1
Word 2
Word 3
Word 4

5 6 11 12 17
Code 1 Code 2 Code 3
Data Word 1
Data Word 2
Data Word 3

Standard 10PS binary line sizes (48 information words and a 2 word header) are input by the Loader.

3-1

LINKING LOADER

SECTION 4
IDENTIFICATION CODES

The identification code is used to instruct the Loader on how to handle the associated data

word.
Code
01

02

03

Loader Action
Program Unit Size

The data word specifies the number of machine words required by this program
unit. This number does not include the required number of machine words for
common storage. The program size is used by the Loader to determine whether
the program will fit within the unused locations of any available 8K memory
bank. Loading terminates with an appropriate error message if the program can-
not be loaded. This information unit appears only once per program unit and is
the first information unit of the binary output. In absolute loads, no checking
is made for overlays; this is left to the discretion of the user. The program size
is also used to determine where to begin loading as loading proceeds from the

top of core down (see Memory Maps).

o1 3 17

Data Word Program Size

X
L 1 if absolute load
0 if relocatable load

Program Load Address

The data word is an unrelocated memory address. This address specifies either
an absolute or a relative storage address for program data words and is incre-
mented by one for each data word stored (codes 03, 04, and 05). [f the ad-
dress is relative, it is initially incremented by the current relocation factor
(modulo 15 bits). Bit 0 of the data word is used to indicate an absolute address
(bit 0=1) or a relative address (bit 0 = 0).

0123 17

Data Word X100 Load Address

| {O, relative load address
1

, absolute load address

Relocatable Instruction
The data word is a memory referencing instruction. The address portion of the

instruction is incremented by the current relocation factor (modulo 13 bits).

4-1

Code

04

05

06

07

LINKING LOADER

Loader Actio_n

The instruction is stored in the location specified by the load address which is

incremented by one after the word is stored.

0 45 17

Unrelocated
Data Word Op Code Memory Address

Absolute Instruction/Constant/Address

The data word is either a non-memory referencing instruction, a non-reloca~
table memory referencing instruction, an absolute address, or a constant. The
word is stored in the location specified by the load address which is incre-

mented by one after the word is stored.

0 17

Data Word Non-Relocatable Word

Relocatable Vector

The data word contains a relocatable program address (vector), The word is
incremented by the current relocation factor (modulo 15 bits). The data word
is stored in the location specified by the load address which is incremented by

one after the word is stored.

Data Word 0 0 0 Vector

Non-Common Storage Allocation

The data word specifies the number of machine words required for non-common
variable and array storage. Storage allocation begins at the address specified
by the load address. The load address is incremented by this number. The

block of memory is not cleared.

(971

17

0 4
Data Word 0 0 Storage Size

Symbol-First Three Characters
The data word contains the first 3-characters of a symbol in radix 50g format

(see appendix 1). The data word is saved by the loader for future reference.

4-2

LINKING LOADER

Code Loader Action

01 2 17

Data Word

Symbol

X|0
L{O, 1- to 3-character symbol
1, 4~ to 6-character symbol

08 Symbol - Last Three Characters
The data word contains the last 3-characters of a symbol in radix 50g format.

The data word is saved by the loader for future reference. This word is used
only if in the code 07 data word bit 0=1,

0 12 17

Data Word 00 Symbol

09 External Symbol Definition
The data word contains the unrelocated address of the transfer vector for the
subprogram named by the last symbol loaded (codes 07 and 08). If the external
“subprogram has already been loaded, the address (definition) of the symbol is
stored info the specified vector address (relocated modulo 15 bits). [f the sub-
program has not been loaded and this is the initial request, the symbol and the
relocated (modulo 15 bits) transfer vector address are entered into the Loader
symbol dictionary as a request for subprogram loading. This action automati-
cally forces the Loader into a library search mode when the end of the command
string is encountered. |If the Loader is already in the library search mode, it
remains there until all virtual globals have been resolved. If the subprogram
has been previously requested (symbol in dictionary) but not loaded, the Loader
chains the reference locations. This chain, generated exclusively by the
Loader, is followed when the external definition is encountered. (Unchained
transfer vector locations must initially contain a reference address (code 04 or

05) to themselves.) For example, *GLOBL SUB where SUB is virtual should cause

the output of

012 17
07 olo SUB(radix 508)
09 TVADD
5 17
0 23 17
05 TVADD TVADD

and SUB defined internally as TVADD. Subroutine calls are made via
JMS* SUB

4-3

S:ode

11

12

LINKING LOADER

Loader Action

0 3 17

Data Word 0 Transfer Vector Address

Internal Global Symbol Definition

The data word contains the unrelocated or absolute address (definition) of the
last symbol loaded (codes 07 and 08). The last symbol loaded is a global sym-
bol internal to the program unit which follows. In the library search mode, if
a request for subprogram loading exists (code 09) in the Loader dictionary, the
relocated (modulo 15 bits) definition is stored in the specified transfer vectors
and the program unit is loaded. The definition also replaces the transfer vec-
tor address in the Loader dictionary. [f no request for loading exists, the pro-
gram unit is not loaded and the Loader continues to examine information units
until the next internal global symbol definition is found (library search mode).
If the program unit is to be loaded, all internal symbols following the one
causing loading are automatically entered into the Loader dictionary as de-
fined global symbols. If the symbol already exists in the dictionary and is
defined (indicating that a program unit with the same name is already loaded)

the current program unit is ignored.

0 3 17

Data Word 0 Symbol Definition

Block Data Declaration
This information unit instructs the Loader that the common blocks and data

constants following are part of a block data subprogram.

0 3 17

Data Word 0 Block Size

Common Block Definition

The data word specifies the number of machine words required for the common
block named by the last symbol loaded (codes 07 and 08). In general, the
assignment of memory space for the common block is deferred until all requested
library and subprograms have been loaded. The exception to this rule occurs
when the block data declaration (code 11) has been encountered. In this case
the common block name is treated as an internal global symbol and the block

is assigned to memory. After the block is assigned to memory, the starting ad-
dress is entered into the Loader dictionary and the starting address is saved by

the Loader for future use (code 13). All symbols in the dictionary associated

4-4

Code

13

14

LINKING LOADER

Loader Action
with the block are assigned addresses with respect to this starting address. All
symbols which are yet to be loaded (via code 13 and 14) will also be assigned
as they are encountered. When the block data flag is not set, the Loader en-
ters the name and the size into the dictionary (if it is not already there) and
also enters the word containing the next available dictionary entry address.
This entry will contain the first symbol in this common block and will be used
as the head of the chain of all symbols in this common block. The address of
the head of chain is saved by the Loader so that the new set of symbols in the
common block may be added to the chain. The larger of the two block sizes
is retained as the block size.
When the common block has been assigned memory locations, the assigned ad-
dress is saved by the Loader for future reference (code 13) and the respective
lengths are compared. Loading terminates, with an appropriate error message,
if the assigned block is the smaller. When the assigned block is larger or both

are equal, loading continues.

0 3 17

Data Word 0 Block Size

Common Symbol Definition

The data word specifies the relative location of the last symbol loaded (codes
07 and 08) in the last common block (code 12). If the associated common
block has been defined (block data), the absolute address of the symbol is cal-
culated (block address plus relative position) and placed in T. V. location
(code 14), When the common block has not been assigned, the relative address
is entered into the Loader dictionary. and chained to the symbols associated

with the common block.

Data Word 0 Relative Address

Common Symbol Reference Definition

The data word contains the unrelocated address of the transfer vector for refer-
ences to the common symbol named by the last symbol loaded (codes 07 and 08).
The symbol definition (code 13) is stored in the relocated (modulo 15 bits) ad-
dress specified when the associated common block has been assigned (code 12).
When the block has not been assigned, the relocated (modulo 15 bits) address is
entered into the Loader dictionary along with the relative address (code 13) of

the symbol.

Code

17

-

LINKING LOADER

Loader Ac%igl_w_

0 3 17

Data Word 0 Address of Vector

Data Initialization Constant = First Word
The data word contains the first machine word of a data initialization constant.

It is saved by the Loader for future use (code 18).

0 17

Data Word Data Constant

Data Initialization Constant - Second Word
The data word contains the second machine word of a data initialization con-

stant. It is saved by the Loader for future use (code 18).

0 17

Data Word Data Constant

Data Initialization Constant = Third Word
The data word contains the third machine word of a data initialization constant.

It is saved by the Loader for future use (code 18).

0 17

Data Word Data Constant

Data Initialization Constant Definition

The data word contains the relative load address of the last data initialization

constant loaded (codes 15, 16, and 17) and a mode code identifying the con-
stant (real, integer, double, logical). The load address is incremented by the
current relocation factor (modulo 15 bits) if the constant initializes a non-
common storage element. When the constant initializes a common storage
element (indicated by the presence of the block data flag, code 11), the load
address is incremented by the address of the last common block loaded (code 12).

The constant is stored according to mode and the relocated load address.

0123 17
Data Word 0] XX Load Address
00, mode = integer (1 word)
01, mode = real (2 words)

10, mode = double (3 words)

11, mode = logical (1 word)

4-6

LINKING LOADER

Code Loader Action
19 Internal Symbol Definition

The data word contains the unrelocated or absolute address (definition) of the
last symbol loaded (codes 07 and 08). The symbol is strictly internal to the
program being loaded and is entered conditionally (if a DDT Load) along with
its relocated address (modulo 15 bits), into the DDT symbol dictionary. The

program unit name is indicated by bit 0 of the data word.

01 3 17

Data Word Symbol Definition

X0
L{O, internal symbol
1, program name -- from FORTRAN IV or

MACRO=-9 command sfring

All symbols fall into this category.

20 String Code ~ First Half
The data word contains the unrelocated address of a data word whose address
portion is to be replaced by another value. The relocated (modulo 15 bits) ad-
dress is saved by the Loader for future use (code 21).

0 3 17

Data Word 0 String Address

21 String Code - Second Half
The data word contains an unrelocated address. The address portion of the data
word specified by the first half-string code (code 20) is replaced with this ad-

dress (relocated modulo 13 bits).

0 45 17
Data Word 0——©0 Replacement Address
22 Input/Output Device Routine Request

The data word specifies the unit number (. DAT slot number) associated with a

device level 1/O routine. The Loader defers loading of any |/O routines until
all other subprogram loading has been completed; when subprogram loading is
complete , the system library is searched for all requested I/O device routines
not already residing in memory (see Operating Procedures). The 1/O routines

are then loaded.

4-7

Code

23

LINKING LOADER

Loader Acfio_n

0 9 17
Data Word Unit Number
t 0 = single unit L2 complement when
1 = all units negative

(- IODEV ALL) all

positive +DAT slots with non-zero contents
End of Program Unit
This information unit is the last unit of a program unit. The data word contains
the unrelocated start execution address of the program. This address is relo-
cated (modulo 15 bits) and entered into the system communication tables to be
used when control is given to the user. Only the first start address encountered
is entered into the communication tables. (It is assumed that the first program
unit specified in the command string is the main program.) The first address of
the main program will be used if the . END pseudo-op did not have a start ad-
dress. When loading from either the system or external libraries, the end unit
causes the Loader to examine the next line buffer for the end-of-file condition.
When the end-of-file for the external library is obtained, the Loader automati-
cally begins searching the system library to resolve any remaining globals.
Upon encountering the end-of-file of the system library, the Loader announces
any unresolved global names. When loading is complete, control is returned
to the Monitor for dispatching to the user, DDT, keyboard listener (see Opera-

ting Procedures),

Data Word Start Address

LINKING LOADER

SECTION 5
MAIN PROGRAM ORGANIZATION

PROGRAM SIZE (code O1) absolute or relative, does not include COMMON size
PROGRAM NAME (code 19)
PROGRAM LOAD ADDRESS (code 02) absolute or relative
COMMON STORAGE (codes 12, 13 and 14)
NON-COMMON STORAGE (code 06)
Array Declaration Information
Equivalenced Arrays and Variables

Non-Equivalenced Arrays

PROGRAM BODY

Codes Codes
03 07} Symbol
Instructions 04 08
05 09 External Symbol

Definition
Constants
Non-Equivalenced Variables
Literals
Transfer Vectors (code 05)
EXTERNAL SYMBOL DEFINITIONS (code 09)
END (code 23)

LINKING LOADER

5.1 SUBPROGRAM ORGANIZATION

PROGRAM SIZE (code 01) absolute or relative, does not include COMMON

INTERNAL GLOBAL DEFINITIONS (code 10)
PROGRAM NAME (code 19)
PROGRAM LOAD ADDRESS (code 02) absolute or relative
COMMON STORAGE (codes 12, 13 and 14)
NON-COMMON STORAGE (code 06)

Array Declaration Information

Equivalenced Arrays and Variables

Non-Equivalenced Arrays
PRO GRAM BODY

Codes Codes
03 07
Instructions 04 08
05 09

Constants

Non-Equivalenced Variables

Literals

Transfer Vectors (code 05)
EXTERNAL SYMBOL DEFINITIONS (code 09)
END (code 23)

5-2

LINKING LOADER

5.2 BLOCK DATA SUBPROGRAM ORGANIZATION

BLOCK DATA INDICATOR (code 11)

PROGRAM NAME (code 19)

COMMON STORAGE (codes 12, 13, and 14)

DATA INITIALIZATION CONSTANTS (codes 15, 16, 17, and 18)
END (code 23)

5-3

LINKING LOADER

SECTION 6
DEFINITIONS

Loadable Program Unit A main program, subprogram, or a block data subprogram.

Transfer Vector A core location containing the address of a subprogram or an entity in
common. All references to subprograms and entities in common are
indirect.

Internal Global Symbol A symbol whose definition is accessible to all programs.

External Symbol A symbol which is referenced in one program and defined in another.

Relocation Factor The amount added to relative addresses to form absolute addresses; ini-

tially, the first loadable core location. The relocation factor for pro-
grams following the first program unit is the next available load address.

Radix 50g Format A method of symbol concatenation utilizing 50g characters as a "number"
set each with a unique value between and including 0 to 47g. The sym-
bol ("number") is converted using standard base conversion methods

(see appendix 1).

LINKING LOADER

SECTION 7
LINKING LOADER OPERATING PROCEDURES

7.1 I/O MONITOR ENVIRONMENT
When the Linking Loader is ready to accept the load command string from the keyboard, it

will output to the teleprinter.
LOADER
> Set up the input device and if it is the paper tape reader, momentarily
depress the tape feed control to clear the reader out-of-tape flag.

The file names, of all the programs that are to be unconditionally loaded from the input de-

vice (* DAT Slot + =4) must be input from the Teletype Keyboard, in the following form:
>NAMET, NAME2, NAME3),
>NAME4, NAMES (ALT MODE)

The main program must be requested first. The file names consist of 1 to 6 characters with
any characters over 6 being ignored. File names are exactly those used in command strings for assembly
or compilation.

A file name is terminated by a comma (,), a carriage return ()), or ALT mode. Until the
comma, the carriage return, or the ALT mode is encountered, N RUBOUTS may be used to delete the N
previous characters of the file name.

ALT mode terminates the command string. When the input device is not file oriented, N
commas, followed by the ALT mode will prime the Loader to load N + 1 programs from the device.

After loading the programs requested in the keyboard command string, the Loader will at-
tempt to resolve all unsatisfied subroutine requests by scanning the system library (- DAT Slot =1).

The library must be in the following format:

LINKING LOADER

7.1.1 Structure of System Library

ONE FILE: .LIBR

A
r A
PROGRAM PROGRAM PROGRAM | _ _ PROGRAM END-OF-FILE
UNIT UNIT UNIT UNIT UNIT
y
PROGRAM SIZE W
BESCRIPTOR PROGRAM UNIT
INTERNAL A
GLOBALS e N
LOAD ADDRESS ONE IOPS ONE I0PS
DESCRIPTOR BINARY |- — — — = BINARY
4 PROGRAM BUFFER BUFFER
UNIT
DATA
A TWO-WORD
VIRTUAL HEADER
GLOBALS H2
~
END CODE 1/ Ca/C3
< D
! FOUR-WORD
GROUP
D2
Ch=2319 TERMINATES 5
A PROGRAM UNIT. THE 3
NEXT UNIT MUST BEGIN
A NEW IOPS BINARY C4/C5/Cg | — DESCRIPTOR
BUFFER.
D
5 > 4840
Oe WORDS
1
|
|
C34/C35/C36
D34
D35
)
36)
0-89-17
WORD O} 1 I 1ol END-OF-FILE N
WORD 1 |CHECK - SUM UNIT

END-OF-FILE UNIT ONLY PRESENT
AT END OF .LIBR FILE. MUST BE
REMOVED FROM END OF ALL PRO-
GRAM UNITS, SINCE FORTRAN IV
AND MACROQO-9 ALWAYS CREATES
E-O-F UNIT.

7.1.2 Loader Memory Map
The loader will output to the teleprinter the names and relocation factors (starting load ad-

dresses) of all the programs requested in the command string, followed by the required library routines

in the following format:

NAMEI1 16572
NAME2 14301
NAME3 10765
NAME4 06427
NAMES 06313
LIBR1 05304
LIBR2 04112

LINKING LOADER

NOTE: Whenever the Loader detects end-of-medium in the input device,

or the system library device, it types tP on the teleprinter. To continue, place

more input in the device, and if the paper tape reader momentarily depress the

tape feed control, and type t P on the keyboard.

7.1.3 Error Messages

The Loader will output to the teleprinter *LOAD followed by the pertinent error code and

then it will halt.
Error Code
1

Meaning
Memory overflow - the Loader's symbol table and the user's program have over-
lapped. The loader memory map will contain printouts of all programs success-
fully loaded, prior to the one which caused the memory overflow. Use of
COMMON storage may enable the program to be loaded as it can overlay the
Loader and its symbol table because it is not loaded into until run time.
Input Data Error = parity error, checksum error, illegal data code or buffer over-
flow (input line bigger than Loader's buffer).
Unresolved globals = if an explicitly or implicitly requested program cannot be
found, it will appear in the memory map with an address of 00000. This indi-
cates that loading was unsuccessful; the cause of the trouble should be remedied
and loading tried again.
Illegal *DAT slot request-the -DAT slot requested is
(a) out of the range of legal ‘DAT slots
(b) O
(c) does not have a device associated with it; that is, it was not set up at
SYSTEM generation time, and (in Keyboard Monitor systems) was not set up by
a ASSIGN command.

When all the requested programs have been loaded and all library requests satisfied, the

Loader will output tS on the teleprinter and sit in a JMP loop. Typing %S on the keyboard will give

control to the starting address of the user's main program.

NOTE: If use is to be made of the paper tape reader, load the reader and

then momentarily depress the tape-feed control.

When the user program has completed its operation and terminated via the *EXIT command,

the computer will halt.

If a DDT load, on completion of the loading and building of a DDT symbol table (exclusive

of the library routine symbols and those of DDT itself) control is automatically given to the starting ad-

dress of DDT. DDT types EDT to inform the user that it is waiting for a DDT command.

7-3

LINKING LOADER

The user can force control back to DDT whenever he wants, by typing 1T on the Teletype
keyboard.
7.2 KEYBOARD MONITOR ENVIRONMENT

The operating procedures noted below are required in addition to those described under the

I/O Monitor environment.
After loading the programs requested in the keyboard command string, the Loader attempts to

resolve all unsatisfied subroutine requests by scanning the external (- DAT Slot =5) and system (- DAT

Slot =1) libraries, in that order.
In order to inform the Loader that an external (user) library file exists for this load, it is

necessary to ASSIGN an 1/O device to + DAT Slot -5 prior to the LOAD, DDT, DDTNS or GLOAD

command, i.e.,

$ASSIGN DTA4 -5
$LOAD

The format of the external library file is identical to that of the system library file (see
section 7.1.1).

If a DDT load, (DDT), on completion of the loading and the building of a DDT symbol table
(exclugive of the library routines' symbols and those of DDT itself), control is automatically given to
the starting address of DDT.

DDT uses * DAT slots =6 and =10 for patch output and patch input respectively. If the user
knows that he will not make use of this feature, he should ASSIGN NONE to those slots so that un-
necessary device handlers do not take up needed core space. For example,

$ASSIGN NONE -6, -10
$DDT

A program may be loaded with DDT but without the DDT symbol table by requesting loading
with the DDTNS keyboard command. For example,

$ASSIGN NONE -6, =10
$DDTNS

This feature gives the user more operating space but deprives him of symbolic references to
user symbols in DDT commands.

If a loading error occurs, an appropriate error message wil! be output to the teleprinter and
control will be given to the system bootstrap to reinitialize the Keyboard Monitor.

When all the requested programs have been loaded and all library requests satisfied, the
Loader will

a. If LOAD, wait on the recognition of 1S by the keyboard handler and then give
control to the starting address of the user's main program.

b. If GLOAD, give control to the starting address of the user's main program.

c. If DDT or DDTNS, automatically give control to the starting address of DDT.

7-4

LINKING LOADER

When the user program has completed its operation and terminated via the + EXIT command,
control will be given to the system bootstrap to reinitialize the Keyboard Monitor and wait for the

next keyboard command.

7-5

LINKING LOADER

SECTION 8
MEMORY MAPS

8.1 1/0O MONITOR ENVIRONMENT
Linking Loader Tape

8K or 16K or

24K or 32k BOOTSTRAP
LOADER IN
HRM FORMAT

I ® SCOM AND e SCOM +3

USER
PROGRAMS

v

Refer to memory map 2A of Keyboard Monitor
Systems for results of Link Loading .

)

GLOBAL
SYMBOL
TABLE

® SCOM +2

LINKING LOADER

PAPER TAPE
READER HANDLER

® SCOM +1

1/0 MONITOR
WITH TELETYPE ~IN
AND
TELETYPE-OUT
DEVICE HANDLERS

8-1

8K or 16K or
24K or 32K

DDT Tape

BOOTSTRAP
LOADER IN
HRM FORMAT

boT

USER
- PROGRAMS

)

GLOBAL AND
DDT
SYMBOLITABLES

LINKING
LOADER

PAPER TAPE
PUNCH HANDLER

PAPER TAPE
READER HANDLER

1/0 MONITOR
WITH TELETYPE-IN
AND
TELETYPE-OUT
DEVICE HANDLERS

¢ SCOM

® SCOM+3

e SCOM+2

® SCOM +1

LINKING LOADER

8-2

Refer to memory map 2B of Keyboard Monitor
Systems for results of Link Loading in DDT mode.

Paper Tape Punch Handler is only present in
version of DDT with patch file capabilities.

8.2

8K or 16K or
24K or 32K

LINKING LOADER

KEYBOARD MONITOR ENVIRONMENT

LOAD

GLOAD

DDT

DDTNS (DDT without symbol table)

Phase 1

RESIDENT
SYSTEM
BOOTSTRAP

l

LINKING
LOADER

LINKING LOADER
DEVICE
HANDLER

LINKING LOADER
DEVICE
HANDLER

RESIDENT
KM-9
(INCLUDING
TELETYPE
HANDLER)

® SCOMAND ® SCOM+3

® SCOM+2

® SCOM+1

The System Loader learns which 1/O handlers
are required by the Linking Loader, loads
them relocatably and then loads the Linking
Loader relocatably .

The Linking Loader, during loading of user
programs down from .SCOM+3 builds the
loader (GLOBAL) and DDT (if DDT) symbol
tables up from .SCOM+2,

If a DDT load, the Linking Loader just prior
to giving control to DDT moves the DDT
symbol table down in core so that it over-
lays all of the Linking Loader except for the
small routine that makes the block transfer.

The Linking Loader will not load a device
handler that is already in core for its own
use.

8K or 16K or
24K or 32K

COMPACT DOT
SYMBOL TABLE

{

Phase 2B (DDT or DDTNS)

RESIDENT
SYSTEM
BOOTSTRAP

DoT

USER
PROGRAM (S)

USER/DDT
DEVICE HANDLER

USER/DDT
DEVICE HANDLER

ooT
PATCH SPACE

00T
SYMBOL

/LT

LINKING LOADER
DEVICE HANDLER

LINKING LOADER
DEVICE HANDLER

RESIDENT
KM~-8
(INCLUDING
TELETYPE
HANDLER)

e SCOM

® SCOM +3

e SCOM +2

® SCOM +1

LINKING LOADER
BLOCK TRANSFER

ROUTINE

LINKING LOADER

.EXIT from the user program causes the
system bootstrap to re-initialize the Key-
board Monitor.

If a DDTNS load, no DDT symbol table is
built.

Non BLOCK DATA COMMON (FORTRAN IV
or MACRO-9 output) may make use of core
as low as the compact DDT symbol table (DDT
only retains certain symbol table entries).
However, the user must be careful about
placing patches.

The Linking Loader device handlers would
have been used to satisfy user device requests.

8-4

8K or 16K or
24K or 32K

RESIDENT
SYSTEM
BOOTSTRAP

USER
PROGRAM(S)

USER DEVICE
HANDLER

USER DEVICE
HANDLER

USER DEVICE
HANDLER

LINKING LOADER
DEVICE HANDLER

LINKING LOADER
DEVICE HANDLER

RESIDENT
KM-9
(INCLUDING
TELETYPE
HANDLER)

Phase 2 (Not DDT or DDTNS)

e SCOM

® SCOM +3

(b.)

()

\

LINKING LOADER

8-5

.EXIT from the user program causes the
system bootstrap to re-initialize the
Keyboard Monitor.

.SCOM+1 and .SCOM+2 point to one of
two places.
(a) If the user program did not have any
device handlers in common with the
Linking Loader.

(b) If the user program did have at least
one device handler in common with
the Linking Loader.

Non BLOCK DATA COMMON (FORTRAN IV
or MACRO-9 output) may make use of core as
low .SCOM+2

LINKING LOADER

APPENDIX 1

SYMBOL CONCATENATION - RADIX 50, FORMAT

8

Radix 50, is a technique used by the MACRO-9 Assembler and the FORTRAN IV Compiler

8
to condense the binary representation of symbolic names in symbol tables. Three characters plus two
symbol classification bits are contained in each 18-bit word. A symbol is defined as a string of one
to six characters, i.e.,

C]CCCCC

273747576
where Ci is defined as
Character 6-bit octal code
Space 00
A 01
Z 32
% 33
. 34
0 35
9 46
47

The symbol is concatenated as follows:

Word 1 ((C] *508) +C) 508+C3
Word 2 ((C4* 508) +C5) 508+ Ce

For example: The symbol SYMNAM would be entered in the Loader's symbol table as:

Word 1 ((23, * 508)+318)508+158 475265*

8

Word 2 (164 * 508)+1)508+158 053665

8

*The sign bit of WORD 1 is set to 1 to indicate that this symbol consists of more than 3 characters and
that the WORD 2 is necessary.

Al-1

LINKING LOADER

APPENDIX 2
LOADER SYMBOL TABLE

Common Block Name

0 23 17
1 ID Block Size ID = 7 when not defined
2 Name (2A) ID = 3 when defined
3 |Symtab address of last entry in chain 0 if no entries
4 Block Definition 0 if not defined

"Name" may require 2 words.

Common Name

0 23 17
1 ID Symtab Chain Address 0 if last entry in chain
ID =4
2 1 TV Address BO =1 for easy entry
Relative Address in Block update

If associated COMMON block was defined when code 14 is encountered, no entry is needed
in the symbol table.
Virtual Global (internal)
0 3
1 1D J Definition
2 Name (2A)
Definition (Virtual) = Absolute Address of last TV in chain Virtual ID =1

17

Definition (Internal) = Absolute Address of Symbol Internal ID =5
"Name" may require 2 words.

Internal Names

0 3 17
1 ID Definition ID=0 F)nly entered
2 Name (2A) If Program Name info the symbol
W " . ID = g table during
Name" may require 2 words. DDT loads.

A2-1

7-t0-9 CONVERTER

3.1
3.2
3.3
3.3.1

7-to-9 CONVERTER

CONTENTS

OPERATING INSTRUCTIONS L ittt ittt it ittt iieiiinnenns
Command String Format ..vuiuiniiiiiin i rinenrionesroass
With /O Monitor «uvuvereineeenenrereeenneesnonenaenas S o
With Keyboard Monitor «.ovuvve it iiiiiiiinininenninennenns ‘ e

Device Assignments ...t nrieerraroiaencnesnnnsoenes

—

W W W NN

AW

7=to=9 CONVERTER

1. INTRODUCTION

Source programs written for the PDP-7 Assembler in ASCII (or the PDP-9 BASIC Software
System Symbolic Assembler) may be converted to the source language and statement format of the PDP-9
ADVANCED Software System Assembler, MACRO-9, by the 7-to-9 Converter program. FIODEC fis not
accepted by the Converter. It is assumed that the reader is familiar with both assembler formats.

The Converter operates in the PDP-9 ADVANCED Software System environments, with either
the 1/O Monitor (paper tape system) or the Keyboard Monitor (DECtape or other mass storage systems),

Basically, this program converts statements in the input PDP-7 program to equivalent
MACRO-9 statements, Some PDP-7 Assembler pseudo-ops cannot be translated because MACRO-9 does
not perform a comparable function. These are not changed by the converter, but will be flagged as
undefined symbols when assembled by MACRO=-9, PDP-7 pseudo-ops which cannot be converted are

listed below.

ANALEX FIODEC NOSYMBOLS SYMBOLS
BAR FIX PUNCH TELETYPE
CHAR FLEX PUNDEF TEXT
EXPUNGE NOINPUT VARIABLES

Since MACRO-9 does not allow multiword variables, the dollar sign ($) should not appear

in the input source program .,

2. CONVERTER FUNCTIONS

The converter performs the following functions.

a. Removes commas from tags (or labels),

b. Removes Location Counter Settings. For example, 100/ is normally exactly transla-
ted as .LOC 100, but the user may specify, in the command string that the Location
Counter setting be removed completely .

¢. If another statement follows on the same line, the converter inserts the semicolon
delimiter as required in the MACRO=-9 statement format.

d. Inserts plus signs where needed LAC A 5 is translated to LAC A+5.

e. Changes the indirect address indicator from [to *, as LAC 1 A to LAC* A,

Normally, the converter does not produce a printed listing, and terminates programs with an
.END statement. The user may make command string entries, however, to request the following func-
tions.
a. A printed listing
b. Insert the .ABS pseudo-op

c. Remove Location Counter settings

7-to-9 CONVERTER

d. Terminate physical segments with .EOT instead of .END
e. Multiple inputs

3. OPERATING INSTRUCTIONS

3.1 Command String Format

After the converter types,
7-TO-9 CONVERTER
>
the user types the command string in the following format,

input outfput

optional nome name terminator
—,—— —t— —— r A »
> L,ARETh « filel , file2 p (or ALT mode)

where, if typed,
L Requests a printed output listing
A Insert .ABS
R Remove Location Counter settings
E Terminate with .EOT

T Multiple input, followed by n

n Number of inputs

The reverse arrow must follow the optional function entries, or start the command string if no
optional entries are made.

filel Input program name, if different from output, otherwise it is omitted.

file2 Name of the program to be output. May be used to rename the program.

If the command string is terminated by a carriage return, on completion of conversion, con-
trol returns to the 7-to-9 Converter to convert another program. If terminated by ALT mode, control
returns to Monitor (if in Keyboard Monitor environment).

Optional entries may appear in any order, separated by commas, and terminated by the reverse
arrow. Rubouts may be used to delete any unwanted characters prior to typing the command string termina-
tor. If an error is detected, the Converter types,

COMMAND STRING ERROR
>

and the user may type the corrected command string.

7-to-9 CONVERTER

The following command strings are valid and correct,
>L,E,T3 4+ NAME7, NAME9)
>T2,R,A 4 SEVEN, NINE)
> 4 SAME (ALT)
In the last example, there will be no listing, no .ABS insertion, Location Counter settings
will be converted to .LOCs, .END will terminate, and only one input will be allowed. Both the input

and output program are named SAME, and upon conversion, conirol returns to Monitor.

3.2 With 1/O Monitor

In the paper tape only environment, to load the 7-to-9 Converter, place the CONV tape in
the reader, set the address switches to 17720 of the highest memory bank, depress the 1/O RESET switch,
and then depresses the hardware READIN switch. When the Converter is ready to receive a command
string, it types,

7-TO-9 CONVERTER
>
3.3 With Keyboard Monitor
The Converter is called by typing CONV, after the Keyboard Monitor has typed $. When

ready fo receive a command string, the Converter types,
7-TO~9 CONVERTER
>
3.3.1 Device Assignments - The Converter assumes that the input is assigned .DAT slot -14, the

output is assigned .DAT slot =15, and the listing device is assigned -12. The user may check the cur-
rent device assignments by typing $ REQUEST CONV, and he may use the ASSIGN command to modify

the assignments if desired.

4. USING THE CONVERTER

It is normally expected that some editing will be necessary to the output of the converter.
The converter performs the tedious operation of adjusting statement format from that of the Basic Assem=
bler to that of MACRO=-9. If any of the pseudo-ops listed in Section 1 are used, editing must be done
before the converted program will assemble correctly.

If the converted program is to be in relocatable form and run in the PDP-9 Monitor environ-
ment (I/O or Keyboard), the input/output procedures must be revised to utilize the IOPS routines.

Any device IOT instructions which are to be kept in the converted programs must be defined
by statements such as TSF= 700401. The Editor may be used to insert these definitions at the front of

the converter output.

7-to-9 CONVERTER

The procedure to convert a program for assembly in the absolute (.ABS) mode is as follows.

a. Be sure the source tape is punched in ASCII.
b. Run the converter (CONV=9), using option A to place .ABS on the converted
program.
c. An assembly may be run to locate any illegal codes not corrected by the converter.
d. Edit

1. revise coding to remove pseudo~ops which MACRO=9 cannot handle

2, define device IOT instructions
e. Assemble with MACRO-9.

The procedure to convert a program for assembly in the relocatable mode, for running in the

monifor environment, is as follows:

a. Be sure the source tape is punched in ASCII.
b. Run the converter (CONV=9). Do not use option A.
c. An assembly may be run to locate any illegal codes not corrected by the converter.
d. Edit
1. revise coding to remove pseudo-ops which MACRO=-9 cannot handle.
2. revise input/output procedures to utilize the IOPS routines.
5. ASSEMBLE WITH MACRO-9.

UTILITY PROGRAMS

ADVANCED SOFTWARE SYSTEM
PROGRAMMERS REFERENCE MANUAL
DEC-9A-GUAB-D

READER’S COMMENTS

Digital Equipment Corporation maintains a continuous effort to improve the quality and usefulness of its publications.
To do this effectively, we need user feedback: your critical evaluation of this manual and the DEC products described.

Please comment on this publication. For example, in your judgment, is it complete, accurate, well-organized, well-

written, usable, etc?

Did you find this manual easy to use?

What is the most serious fault in this manual?

What single feature did you like best in this manual?

Did you find errors in this manual? Please describe.

Please describe your position.

Name Organization

Street State Zip

cerseessncercesernares cerserertcesrrertracnrnanne crrrersrnances veessesnseeserersaseeranne FOIAd HEIE vrvveriuerrenrtacornnessnamsonssssssssesctssssasisensorsnsessnsotscssasascotasssssasacss

..... seesesseeserierssttcnnesersesserrrasanasasasassnscssssnsssasenssnssnnse DO NoOt Tear - Fold Here and S(aple e EeEBeerNs e arrenreerenreenanerienriosestiatnstanstiiersensonos

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by: Enanlan

Digital Equipment Corporation
Software Quality Control
Building 12

146 Main Street

Maynard, Mass. 01754

To The Reader

Notification of changes and revisions to this document, to the software
described, and of new software products available from the DEC Program Library, is
currently published in DECUSCOPE, the magazine of the Digital Equipment Com-
puter User's Society (DECUS). This information appears in a section of DECUSCOPE
called "DEC Library News."

Revised software products and documents are shipped only after the Program
Library receives a specific request from a user.

DECUSCOPE is distributed periodically to both DECUS members and to
non-members who request it. If you are not now receiving this information, you are
urged toreturn the request form below so that your name will be placed on the mail-
ing list,

S e e e G —— — - — o —— o— W o " G0 Ui s " Wy o b el ™ i Wl il U ks "™ .~ B~ Uit WM Wl ™ s ~wE™

To: DECUS Office,
Digital Equipment Corporation,
Maynard, Mass. 01754
(O Please send DECUS installation membership information.
O Please send DECUS individual membership information.
O Please add my name to the DECUSCOPE non-member mailing list.

Name

Company

Address

(Zip Code)

DIGITAL EQUIPMENT CORPORATION ¢ MAYNARD, MASSACHUSETTS

Printed in U.S.A.

	001
	002
	003
	004
	1_001_DDT
	1_003
	1_1-01
	1_2-01
	1_2-02
	1_2-03
	1_2-04
	1_2-05
	1_2-06
	1_2-07
	1_2-08
	1_2-09
	1_2-10
	1_A1-01
	1_A1-02
	1_A1-03
	1_A2-01
	1_A3-01
	2_001_Editor
	2_002
	2_003
	2_004
	2_1-01
	2_2-01
	2_2-02
	2_2-03
	2_2-04
	2_2-05
	2_2-06
	2_3-01
	2_3-02
	2_3-03
	2_3-04
	2_3-05
	2_4-01
	2_4-02
	2_4-03
	2_4-04
	2_4-05
	2_4-06
	2_4-07
	2_5-01
	2_6-01
	2_6-02
	2_6-03
	2_6-04
	2_6-05
	2_6-06
	2_A1-1
	2_A1-2
	3_001_PIP
	3_003
	3_004
	3_005
	3_01
	3_02
	3_03
	3_04
	3_05
	3_06
	3_07
	3_08
	3_09
	3_10
	3_11
	3_12
	3_13
	3_14
	3_15
	3_16
	3_17
	3_18
	3_A1-1
	3_A2-1
	4_001_LinkingLoader
	4_003
	4_1-01
	4_2-01
	4_3-01
	4_4-01
	4_4-02
	4_4-03
	4_4-04
	4_4-05
	4_4-06
	4_4-07
	4_4-08
	4_5-01
	4_5-02
	4_5-03
	4_6-01
	4_7-01
	4_7-02
	4_7-03
	4_7-04
	4_7-05
	4_8-01
	4_8-02
	4_8-03
	4_8-04
	4_8-05
	4_A1-01
	4_A2-01
	5_001_7-9conv
	5_003
	5_01
	5_02
	5_03
	5_04
	replyA
	replyB
	replyC
	xBack

