
Digital Equipment Corporation
Maynard, Massachusetts

- • , e

TIME SHARING SYSTEM
TSS/8

BASIC-8

PROGRAMMING MANUAL

A manual for BASIC-8, the elementary algebraic

language designed for use with the PDP-8/I Time

Sharing System. This manual is pre I iminary, and

subject to change without notice.

DEC-T8-KJZA-D

For additional copies of this document order No. DEC-T8-KJZA-D from Program

Library, Digital Equipment Corporation, Maynard, Mass. Price $2.50

DIGITAL EQUIPMENT CORPORATION 0 MAYNARD J MASSACHUSETTS

1st Printing March 1969

Your attention is invited to the last two pages of this manual. The How To
Obtain Revisions and Corrections offers you a means of keeping up-to-date
with DEC's software. The Reader's Comments Card, when filled in and re
turned, is beneficial to both you and DEC. Each card received is consid
ered when documenting subsequent manuals, and where the comments imply
or ask for assistance, a knowledgeable DEC representative wi II contact you.

Copyright © 1969 by Digital Equipment Corporation

BASI~S a conversational algebraic language, originally developed at Dart
mouth College with support from a grant by the National Science Foundation.
Digital Equipment Corporation is grateful to the Trustees of Dartmouth College
for permission to reprint this manual, and also wishes to acknowledge its appre
ciation to the project directors, Dr. John G. Kemeny, professor of mathematics,
and Dr. Thomas E. Kurtz, director of the Kiewit Computation Center at Dart
mouth College.

® Registered: Trustees of Dartmouth College

The following are registered trademarks of Digital
Equipment Corporation, Maynard, Massachusetts:

DEC
FLIP CHIP
DIGITAL

PDP
FOCAL
COMPUTER LAB

CHAPTER 1

INTRODUCTION

BASIC-S (hereafter referred to as BASIC) is designed to run under control of the PDP-S/I

Time-Sharing System (TSS/S) and allows many users to have equal access to the computer, keeping re

cords of the time used by each user.

Learning to use the system is quite easy. After you have been assigned a Teletype console, you

begin by pressing the RETURN key. This tells TSS/S that you are ready, and it responds by typing a period.

You are now ready to log in to the system. Following the period you type

• LOGIN (number) (password)

where the number is your account (or project) number, and the password is the code name assigned to

you. For instance, you might actually type

.LOGIN 6 BILL

and terminate this line by typing the RETURN key. If the number and name that you have typed are

acceptable, TSS/S types another period, and you respond by typing DUPLEX which is the Teletype mode

in which you will operate.

Since you are going to write a program in BASIC language, you must call the BASIC program

by typing

.R BASIC

You are now ready to begin programming in BASIC, but first you must learn the BASIC lan

guage, and that's what this manual is all about.

BASIC is intended for use by students, and also by scientists and engineers, who wish to run

algebraic problems on the computer with a minimum of learning time. Program statements are written

in English, and mathematical expressions are written in standard notation, with a few substitutions (see

Section 2.2). The asterisk (*) is used as a multiplication sign, the slash (/) for division and the up

arrow (t) for raising to a power • To write A times B, divided by X squared, type

A*B/Xt2

The language is fairly simple but it must be written very exactly. The computer must be able

to interpret your BASIC program statements, without ambiguity, so you must follow carefully the instruc

tions for writing statements.

1-1

A word about programming. A program is a sequence of statements or a set of instructions,

which you give to BASIC to perform an operation, or to solve a certain problem. Normally, BASIC

will execute your first statement, then the second, and so on to the last. BASIC is particularly suited

to repetitive calculations, therefore, several techniques may be used to repeat the execution of parts

of your program. This process of repeating is called looping.

If you write a statement incorrectly, BASIC will type an error message to help you identify

and correct the error. Some of these error messages will be given in a numbered code as presented in

the Error Message list in Appendix C. Other messages are printed out in English. But donlt expect

BASIC to make corrections if the results are bad; there is probably something wrong in the program, and

you will have to find and correct this yourself.

The TSS/8 BASIC system was designed to provide computer service for many users with rela

tively small programs, however, there are no general restrictions on program length. If your program

becomes too large to store in the computer and execute at one time, the system will store part of your

program on the disk, and run each part separately. This process is called automatic segmentation, and

is one of the advanced features of the TSS/8 BASIC system.

With a little practice at the Teletype console, you will soon be writing BASIC programs on

the PDP-8/I.

For more information about TSS/8, see "Time-Sharing System TSS/8 Monitor, II Order No.

DEC-T8-MRFA-D.

1-2

CHAPTER 2

THE BASIC LANGUAGE

2.1 AN EXAMPLE

The following example is a complete BASIC program for solving a system of two simultaneous

linear equations in two variables:

ax + by = c

dx + ey = f

and then solving two different systems, each differing from this system only in the constants c and f.

You should be able to solve this system, if ae - bd is not equal to 0, to find that

ce - bf
x =-a-e--...... b-:d and

af - cd
y ae - bd.

If ae - bd = 0, there is either no solution or there are infinitely many, but there is no unique solution.

If you are rusty on solving such systems, take our word for it that this is correct. For now, we want you

to understand the BASIC program for solving this system.

Study this example carefully; in most cases the purpose of each line in the program is self

evident, then read the commentary and explanation.

10 READ A, B, D, E
15 LET G=A*E-B*D
20 IF G=0 THEN 65
30 READ C, F
31 LET X=(C*E-B*F)/G
42 LET ¥=(A*F-C*D)/G
55 PRINT X, ¥
60 GO TO 30
65 PRINT "NO UNIQUE SOLUTI ON"
10 DATA 1, 2, 4
80 DATA 2 .. -1 .. 5
85 DATA 1 .. 3 .. 4 .. -1
90 END

Immediately we observe several things about this sample program. First, we see that the

program uses only capital letters, since the Teletype has only capital letters. We also see that the letter

"oh" is distinguished from the numeral "zero" by having a diagonal slash through the "zero". We make

the distinction since, in a computer program, it is not always possible to tell from the context whether

the letter or the numeral was intended, unless they have a different appearance. This distinction is

2-1

made automatically while typing, since the Teletype has one key for "oh" and another for "zero"; and

one key for "one", another for the letter "i", and no key for the lower case letter "I".

A second observation is that each line of the program begins with a number. These numbers

are called line numbers (and may range from 1 through 2046), and serve to identify the lines, each of

which is called a statement. Thus, a program is made up of statements, most of which are instructions

to BASIC. Line numbers also serve to specify the order in which the statements are to be performed

by BASIC, therefore you may type your line numbers in any order, however, best results will be ob

tained if they are in ascending order. As you type, BASIC sorts out and edits the program, putting

the statements into the order specified by their line numbers. (This editing process facilitates the cor

recting and changing of programs, as explained later.)

A third observation shows that each statement starts, after its line number, with an English

word which denotes the type of the statement. There are several types of statements in BASIC, nine of

which are discussed in this chapter. Seven of these nine appear in the sample program, above.

A fourth observation, not at all obvious from the program, is that spaces have no significance

in BASIC, except in messages which are to be printed out, as in line number 65 above. Thus, spaces

may be used or not used to improve the appearance of a program and make it more readable. Statement

10 could have been typed as 10READA,B,D,E and statement 15 as 15LETG=A*E-B*D.

With this preface, let us go through the example, step by step. The first statement, 10, is a

READ statement. It must be accompanied by one or more DATA statements. When BASIC encounters a

READ statement while executing your program, it will cause the variables (A,B,D,E) listed after the

READ to be given values according to the next available numbers in the DATA statements (lines 70, 80,

and 85). In the example, we read A in statement 10 and assign the value 1 to it from statement 70,

similarly with Band 2, and with D and 4. At this point, we have exhausted the available data in state

ment 70, but there is more in statement 80, so we pick up from it the number 2 to be assigned to E.

Next we go to statement 15, which is a LET statement, and encounter a formula to be eval

uated. (The asterisk "*" is used to denote multiplication.) In this statement, we direct BASIC to com

pute the value of AE - BD, and to call the result G. In general, a LET statement directs BASIC to set

a variable equal to the formula on the right side of the equal sign.

We know that if G is equal to zero, the system has no unique solution, therefore, we ask in

line 20, if G is equal to zero. If BASIC discovers a yes answer to the question, it is directed to go to

line 65, where it prints NO UNIQUE SOLUTION. From this point, it would go to the next statement,

but lines 70/ 80/ and 85 give it no instructions since DATA statements are not executed, therefore, it

goes to line 90 which tells it to END the" program.

If the answer to the question "Is G equal to zero?" is no, as it is in this example/ BASIC

goes on to the next statement, in this case 30. {Thus, an IF-THEN tells BASIC where to go if the IF

2-2

condition is met, or to go on to the next statement if it is not met.) BASIC is now directed to read

the next two entries from the DATA statements, -7 and 5, (both are in statement 80) and to assign them

to C and F respectively. BASIC is now ready to solve the system

x + 2y =-7

4x + 2y = 5

In statements 37 and 42, we direct BASIC to compute the value of X and Y according to the

formulas provided. Note that we must use parentheses to indicate that CE - BF is divided by G; with

out parentheses, only BF would be divided by G, which would let X = CE - ~ .
BASIC is told to print the two values computed, that of X and that of Y, in line 55, then

it moves on to line 60 where it is directed back to line 30. If there are additional numbers in the DATA

statements, as there are here in 85, it is told in line 30 to take the next number and assign it to C, and

the one after that to F. BASIC is now ready to solve the system

x+2y=1

4x + 2y = 3

As before, it finds the solution in 37 and 42 and prints them out in 55, and then is directed in 60 to go

back to 30.

In line 30 BASIC reads two more values, 4 and -7, which are found in line 85, and then

proceeds to solve the system

x+2y=4

4x + 2y =-7

and to print out the solutions. It is directed back to 30, but there are no more pairs of numbers avail

able for C and F in the DATA statements. BASIC then informs you that it is out of data by typing OUT

OF DATA and stops.

Let us look at the importance of the various statements. For example, what would have

happened if we had omitted line number 55? The answer is simple; BASIC would have solved the three

systems and then told us when it was out of data. However, since it was not asked to tell us (PRINT) its

answers, the solutions would be BASIC's secret. What would have happened if we had left out line 20?

In the problem just solved nothing would have happened, but if G were equal to zero, we would have

given BASIC the impossible task of dividing by zero in 37 and 42, and it would tell us so by printing

2-3

HJ IN 37 and 1,9J IN 42. If we left out statement 60, BASIC would have solved the first system, printed

out the values of X and Y, and then gone on to line 65 where it would be directed to print NO

UNIQUE SOLUTION. It would do this and then stop.

One very natural question arises from the seemingly arbitrary numbering of the statements:

Why this selection of line numbers? The answer is that the particular choice of line numbers is arbi

trary, as long as the statements are numbered in the order in which we want BASIC to follow in execut

ing the program. We could have numbered the statements 1, 2, 3, .•• , 13, although we do not re

commend this numbering. We would normally number the statements 10, 20, 30, .•• , 130, allowing

additional statements to be inserted later. Thus, if we find that we have left out two statements be

tween those numbered 40 and 50, we can give then any two numbers between 40 and 50, and in the

editing and sorting process, BASIC will put them in their proper place.

Another question arises from the seemingly arbitrary placing of the elements of data in the

DATA statements: Why place them as they have been in the example program? Here again the choice

is arbitrary and we need only put the numbers in the order that we want them read (the first for A, the

second for B, the third for D, the fourth for E, the fifth for C, the sixth for F, the seventh for the next

C, etc.) In place of the three statements numbered 70, 80, and 85, we could have put

or we could have written, perhaps more naturally,

7~ DATA 1, 2, 4, 2
75 Dt\TA -7, 5
891 DATA 1, 3
85 DATA 4, -7

to indicate that the coefficients appear in the first data statement and the various pairs of right-hand

constants appear in the subsequent statements.

The program and the resulting run is shown below exactly as it appears on the Teletype.

LIST
10 READ A, B, D, E
15 LET G=A*E-B*D
20 IF G=0 THEN 65
30 READ C, F
37 LET X=(C*E-B*F)/G
42 LET Y=(A*F-C*D)/G
55 PRINT X, Y
60 GO TO 30
65 PRINT "NO UNI QUE SOLUTION"
70 DATA I, 2, 4

2-4

80 DATA 2, -7, 5
85 DATA 1, 3, 4, -7
90 END

RUN

4 -5.5
.6666667 .1666667

-3.666667 3.833333

1030 ERROR IN LINE 30
OUT OF DATA
READY

NOTE

The number 1030 (3rd line from the bottom) in the example
above is an internal code meaning OUT OF DATA. This
number may not appear in future versions.

READY, the last line in the printout above, is explained in Chapter 4.

After typing the program, we type RUN followed by a carriage return. Up to this point

BASIC stores the program and does nothing with it. It is the RUN command which directs BASIC to

execute your program.

The message OUT OF DATA here may be ignored since it means your program has made an

attempt to read more data than you have made available in DATA statements.

2.2 ARITHMETIC OPERATIONS

BASIC can add, subtract, multiply, divide, extract square roots, raise a number to a power,

and find trigonometric functions such as sine and cosine. We shall now learn how to tell BASIC to per

form these various operations in the order that we want them done.

BASIC performs its primary function (that of computation) by evaluating formulas which are

supplied in a program. These formulas are very similar to those used in standard mathematical calcula

tion, with the exception that all BASIC formulas must be written on a single line. Five arithmetic op

erators can be used to write a formula:

Symbol

+

*
I

Example

A+B

A - B

A * B

AlB
Xf2

2-5

Meaning

Addition (add B to A)

Subtraction (subtract B from A)

Multiplication (multiply B by A)

Division (divide A by B)

Raise to the power (find X2)

We must be careful with parentheses to make sure that those things which we want together

are grouped together. We must also understand the order in which BASIC operates. For example, if

we type A + B * C t D, BASIC will first raise C to the power D, multiply this result by B, and then add

A to the resulting product. This is the same convention as is usual for: A + B x CD. If this is not the

order intended, then we must use parentheses to indicate a different order. For example, if it is the

product of Band C that we want raised to the power D, we must write A + (B * C) t Di or, if we want

to multiply A + B by C to the power D, we write (A + B) * C tD. We could even add A to B, multiply

the sum by C, and raise the product to the power D by writing «A + B) * C) tD. The order of priorities

is summarized in the following rules:

1. The formula inside parentheses is computed before the parenthesized quantity is used
in further computations.

2. In the absence of parentheses in a formula involving addition, multiplication, and the
raising of a number to the power, BASIC first performs exponentiation, then performs the multi
plication, and the addition comes last. Division has the same priority as multiplication, and subtrac
tion the same as addition.

3. In the absence of parentheses in a formula involving only multiplication and division,
the operations are performed from left to right, just as they are read. Addition and subtraction is per
formed from left to right also.

These rules which are illustrated in the previous example, tell us that when BASIC is faced with A - B -

C, it will (as usual) subtract B from A and then C from the differencei with A/B/C, it will divide A by

B and that quotient by Ci with AtBtC, it will raise the number A to the power B and take the resulting

number and raise it to the power C. To avoid a question of priority, you may put parentheses in as

necessary to eliminate possible ambiguities.

2.2.1 Functions

In addition to the five arithmetic operators, BASIC can evaluate several mathematical func

tions. These functions are given special three-letter names, as the following list shows:

Functions

SIN (X)

COS (X)

TAN (X)
ATN (X)

EXP (X)

LOG (X)

ABS (X)

SQR (X)

Interpretation

Find the sine of X

Find the cosine of X
Find the tangent of X

)
Fi nd the arctangent of X

Find eX (2.712818)

X interpreted as a number, or
as an angle measured in radians.

Find a natural logarithm of X (10ge X)

Find the absolute value of X (I X I)

Find the square root of X (../X)

Three other functions are also available in BASIC: INT, RND, and SGNi these are reserved for ex

planation in Section 3.2.

2-6

In place of X, we may substitute any formula or any number in parentheses following any of these

functions. For example, BASIC may be asked to find J 4 + X3 by writing SQR (4 + Xt3), or the arc

tangent of 3X - 2eX + 8 by writing

ATN C3*X-2* EXPCX)+8)

If the value of (~) 17 is needed, you can write the two line program

10 PRINT C 5/6) f 17
20 END

RUN

.04503441

READY

and BASIC will find the decimal form of this expression and print it out in less time than it took to

type either line.

2.2.2 Numbers and Variables

Since we have mentioned numbers and variables, it should be understood how to write num

bers for BASIC and what variables are allowed. A number may be positive or negative and may contain

up to 8-1/3 significant digits {absolute limit is ±134217727) but it must be expressed in decimal form. For

example, all of the following are numbers in BASIC: 2, -3.675, 123456789, -.98765432, and 483.4156.

The following are not numbers in BASIC: 14/3,./7, and .001234567890. The first two are formulas

but not numbers, and the last one has more than 8-1/3 significant digits. BASIC may be asked to find

the decimal expansion of 14/3 orn, and to do something with the resulting number, but neither may

be included in a list of DATA. Further flexibility is gained by use of the letter E (exponent), which

stands for "times ten to the power"; thus, .00123456789 may be written in any of several forms:

• 123456789E-2 or 123456789E-1l or 1234.56789E-6. Ten million may be written as 1E7 (or 1E + 7)

and 1969 as 1. 969E3 (or 1. 969E + 3). E7 is not written as a number, but as 1 E7 to indicate that it is 1

that is multiplied by 107 . Numbers must be in the range. 14E-38<N<1.7E38.

The BASIC program performs computations in this E (or floating-point) format. Results are

printed out in decimal format for numbers in the range 0.01<N<100000. Trailing decimal points are

omitted. Leading and trailing zeroes are also omitted, except when the value is zero or when the number

is in the range O.Ol~N<O. 1. Numbers outside the range 0.01~N<100000 are printed out in E format.

2-7

A numerical variable in BASIC is denoted by any letter, or by any'letter followed by a single

digit. The computer therefore will interpret E7 as a variable, along with A, X, NS, JO, and Ml. A

variable in BASIC stands for a number, usually one that is not known to the programmer at the time the

program Was written. Variables are given or assigned values by LET and READ statements. The value

so assigned will not change until the next time a LET or READ statement is encountered with a value for

that variable. However, all variables are set equal to zero before a RUN; thus, it is only necessary

to assign a value to a variable when a value other than zero is required.

Although BASIC does little in the way of correcting, during computation it will sometimes help

you when you forget to indicate absolute value. For example, if BASIC is asked for the square root of -7

or the logarithm of -5, it wi II give the square root of 7 with the error message for the square root of a

negative number, or the logarithm of 5 with the error message for the logarithm of a negative number.

2.2.3 Symbols of Relation

Six other mathematical symbols, symbols of relation, are used in BASIC, and these are used

in IF-THEN statements where it is necessary to compare values. An example of the use of these rela

tion symbols was given in the example program in Section 2.1.

Any of the following six standard relations may be used:

Symbol Example Meaning

= A=B Is equal to (A is equal to B)

< A<B Is less than (A is less than B)

<= A<= B Is less than or equal to (A is less
than or equal to B)

> A>B Is greater than (A is greater than B)

)= A)=B Is greater than or equal to (A is
greater than or equal to B)

<> A<> B Is not equal to (A is not equal to B)

2.3 lOOPS

We are frequently interested in writing a program in which one or more portions are per

formed not just once but a number of times, perhaps with slight changes each time. To write the sim

plest program, the one in which the portion to be repeated is written just once, we use the programming

device known as a loop.

Programs which use loops can be best illustrated and explained by two programs which print

out a table of the first 100 positive integers together with the square root of each. Without a loop, the

program would be 101 lines long and read:

10 PRINT 1~ SQR(I)
20 PRINT 2~ SQR(2)
30 PRINT 3~ SQR(3)

990 PRINT 99~ SQR(99)
1000 PRINT 100~ SQR(100)
1010 END

With the following program, using one type of loop, we can obtain the same table with

5 lines instead of 101:

10 LET X= 1
20 PRINT X~ SQR(X)
30 LET X=X + 1
40 IF X<=100 THEN 20
50 END

Statement 10 gives the value of 1 to X and "initializes" the loop. In line 20, both 1 and its square

root are printed. Then, in line 30, X is increased by 1, to 2. Line 40 asks whether X is less than or

equal to 100; an affirmative answer directs BASIC back to line 20. Here BASIC prints 2 and ../2, and

goes to 30. Again X is increased by 1; this time to 3, and at 40 it goes back to 20. This process is

repeated (line 20 (print 3 and./3), line 30 (X = 4), line 40 (since 4 < 100 go back to line 20), etc.)

untit the loop has been traversed 100 times. Then, after it has printed 100 and its square root, X be

comes 101. BASIC now receives a negative answer to the question in line 40 (X is greater than 100,

not less than or equal to it), it does not return to 20 but moves on to line 50, and ends the program.

All loops contain four characteristics:

1. initialization (line 10),

2. the body {line20},

3. modification (line 30), and

4. an exit test (line 40).

Because loops are so important and because loops of the type just illustrated arise so often, BASIC pro

vides two statements to specify a loop even more simply. They are the FOR and NEXT statements, and

their use is i / /ustrated in the program:

10 FOR X=l TO 100
20 PRINT X, SQR<X)
30 NEXT X
50 END

2-9

In line 10, X is set equal to 1, and a test is set up, like that of line 40 in the previous example program.

Line 30 carries out two tasks: X is increased by 1, and the test is made to determine whether to go back

to 20 or go on. Thus lines 10 and 30 take the place of lines 10, 30, and 40 in the previous program,

and they are easier to use.

Note that the value of X is increased by 1 each time we go through the loop. If we wanted

a different increase, as in increments of 5, we could specify it by writing

10 FOR X=1 TO 100 STEP 5

and BASIC would assign 1 to X on the first time through the loop, 6 to X on the second time through I

11 on the third time, and 96 on the 20th and last time through the loop. (Another step of 5 would take

X beyond 100.) The program would proceed to the end after printing 96 and its square root. The STEP

may be positive or negative, and we could have obtained the first table, printed in reverse order, by

writing line 10 as

10 FOR X=100 TO 1 STEP -1

In the absence of a STEP instruction, a step size of + 1 is assumed.

More complicated FOR statements are allowed. The initial value, the final value, and the

step size may all be formulas of any complexity. For example, if Nand Z have been specified earlier

in the program, we could write

FOR X=N + 7 * Z TO <Z-N)/3 STEP <N-4*Z)/10

For a positive step-size, the loop continues as long as the control variable is less than or

equal to the final value. For a negative step-size, the loop continues as long as the control variable

is greater than or equal to the final value.

If the initial value is greater than the final value (less than, for negative step-size), then

the body of the loop will not be performed at all, instead, BASIC will immediately pass to the statement

following the NEXT. As an example, the following program for adding up the first n integers will give

the correct resu It 0 when n is O.

10 READ N
20 LET S=0
30 FOR K=1 TO N
40 LET S=S + K
50 NEXT K
60 PRINT S
70 GO TO 10
90 DATA 3 .. 10 .. 0
99 END

2-10

It is often useful to have loops within loops, called nested loops, which can be expressed

with FOR and NEXT statements, however, they must actually be nested and must not cross, as the fol-

lowing skeleton examples illustrate:

Allowed Allowed

QFORX
FOR X

FOR Y FORY

[NEXT Y [FOR Z

NEXT X NEXT Z

Not Allowed [FORW

~FORX NEXTW

FORY NEXTY

NEXT X [FOR Z

NEXTY NEXT Z

NEXT X

2.4 LISTS AND TABLES

In addition to the ordinary variables used by BASIC, there are variables which can be used

to designate the elements of a list or a table. These are used where we might ordinarily use a sub

script or a double subscript; for example, the coefficients of a polynomial (aO' a 1, a2 , •••) or the

elements of a matrix (b ••). The variables which we use in BASIC consists of a single letter, which we
It!

call the name of the list, followed by the subscripts in parentheses. Thus, we might write A(O), A(l),

A(2), etc., for the elements of the matrix.

When using subscripts, a DIMENSION (DIM) statement must be used to indicate that BASIC

must save extra space for the list or table. The dimension statement consists of the command DIM, a

space, and the variable followed by the largest subscript (parenthesized) to be assigned. As shown in

the following examples, more than one variable may be declared in a single DIM statement.

The list A(O), A(l), ••• ,A(10) may be entered into a program very simply by the lines:

05 DIM ACI0)
10 FOR 1=0 TO 10
20 READ ACI)
30 NEXT I
40 DATA 2, 3, -5, 5, 2.2, 4, -9, 123, 4, -4, 3

2-11

We can enter a 3x5 table into a program by writing:

05 DIM 8(2,4>
10 fOR H=0 TO 2
20 fOR J=0 TO 4
30 READ BCH,J>
40 NEXT J
510 NEXT H
610 DATA 2, 3, -5, -9, 2
70 DATA 4, -7 .. 3 .. 4 .. -2
810 DATA 3, -3 .. 5 .. 7, 8

The single letter denoting a list or a table name may also be used to denote a simple variable

without confusion. HoWever, the same letter may ~ be used to denote both a I ist and a table in the

same program. The form of the subscript is quite flexible, and you might have the list item B(H+K} or

the table items B(H,K) or Q(A(3,7), B-C}.

A list and a run of a problem which uses both a list and a table is shown below. The program

computes the total sales of each of five salesmen, all of whom sell the same three products. The list P

gives the price/item of the three products and the table S tells how many items of each product each

man sold. The program indicates that product No.1 setfor $1.25 per item, No.2 for $4.30 per item,

and No.3 for $2.50 per item; and also that salesman No.1 sold 40 items of the first product, 10 of the

second, and 35 of the third, and so on. The program reads in the price list in lines 40-80, using data

in lines 910-930. The same program could be used again, modifying only line 900 if the prices change,

and only lines 910-930 to enter the sales in another month.

Since the DIM statement is not executed, it may be entered into the program on any line be

fore END and prior to use of the list or table; it is convenient, however, to place DIM statements near

the beginning of the program.

5 DIM P(3), S(3 .. 5)
10 fOR I = 1 TO 3
20 READ PC!)
391 NEXT I
40 fOR I = 1 TO 3
50 fOR J = 1 TO 5
60 READ S(I,J)
70 NEXT J
80 NEXT I
90 fOR J = TO 5
100J LET S = 0
110 fOR I = TO 3
120 LET S = S + P(I)*S(I .. J)
13(11 NEXT I
14QJ PRINT "TOTAL SALES !'OR SALESMAN "J .. "$" S
150 NEXT J
900 DATA 1.25, 4.30 .. 2.50
910 DATA 40, 20, 37 .. 29, 42

2-12

92171 DATA II?), 16, 3, 21, 8
930 DATA 35, 47, 29, 1 6, 33
990 END

RUN

TOTAL SALES FOR SALESMAN 3) 180.5
TOTAL SALES FOR SALESMAN 2 3) 21 1 .3
TOTAL SALES FOR SALESMt:IN 3 3) 131.65
TOTAL SALES FOR SALESMAN 4 3) 166.55
TOTAL SALES FOR SALESIVIAN 5 3) 169.4

2.5 ELEMENTARY BASIC STATEMENTS

This section contains a short and concise description of each type of BASIC statement dis

cussed earl ier in th is chapter and adds one statement to the list. In each form, a line number is assumed,

and brackets denote a general type, thus, [variable] refers to any variable, which is a single letter,

possibly followed by a single digit.

2.5.1 LET

This statement is not a statement of algebraic equality, but rather a command to BASIC to

perform certain computations and to assign the answer to a certain variable. Each LET statement is of

the form:

LET [variable] = [formula] •

For example:

100 LET X=X + 1
259 LET W7=(W-X4t3) * (Z-A/(A-B» - 17

2.5.2 READ and DATA

A READ statement is used to assign to the listed variables, values obtained from a DATA

statement. Neither statement is used without the other type. A READ statement causes the variables

listed in it to be given, in order, the next available numbers in the collection of DATA statements.

Before the program is run, BASIC takes all of the DATA statements in the order in which they appear

and creates a large data block. Each time a READ statement is encountered anywhere in the program,

the data block supplies the next available number or numbers. If the data block runs out of data with a

READ statement still asking for more, the program is assumed to be done and an OUT OF DATA message

is received.

2-13

Since data must be read in before it can be worked with, READ statements normally occur

near the beginning of a program. The location of DATA statements is arbitrary, as long as they occur

in the correct order. A common practice is to collect all DATA statements and place them just before

the E NO statement.

Each READ statement is of the form:

READ [sequence of variables]

and each DATA statement is of the form:

Examples:

DATA [sequence of numbers]

150 READ X, Y, Z, Xl, Y2, Q9
330 DATA 4, 2, 1 .7
340 DATA 6.734E-3, -174.321, 3.1415926

234 READ BCK)
263 DATA 2, 3, 5 .. 7 .. 9 .. 1 1 .. 10 .. 8 .. 6, 4

10 READ RCI .. J)
440 DATA -3 .. 5 .. -9 .. 2.37 .. 2.9876 .. -437.234E-5
450 DATA 2.765, 5.5576 .. 2.3789E2

Remember that only numbers are put in a DATA statement, and that 15/7 and../3 are formulas, not

numbers.

2.5.3 PRINT

The PRINT statement has a number of different uses, which are discussed in more detail in

Chapter 3. The common uses are described below.

1. To print out the result of some computation:

100 PRINT X, SQRCX)
135 PRINT X, Y .. Z .. B*B-4*A*C .. EXPCA-B)

The first will print X and then several spaces to the right of that number (X), it's square root. The
second will print five different numbers:

2 A-B X, Y, Z, B - 4AC, and e

BASIC will compute the two formulas and prrnt them, as long as values have been given to A, B, and
C. It can print up to five numbers per line in this format.

2-14

2. To print out verbatim a message included in the program:

100 PRI NT "NO UNI QUE SOLUTI ON"
430 PRINT "X VALUE", "SINE", "RESOLUTION"

Both have been encountered in the example programs. The first prints the simple statement; the second
prints the three labels with spaces between them. The labels in 430 automatically I ine up with three
numbers called for a PRINT statement.

3. A combination of 1. and 2. above:

150 PRINT "THE VALUE OF X IS" X
30 PRINT "THE SQUARE ROOT OF" X, "IS" SQR<X>

If the first has computed the value of X to be 3, it will print out:

THE VALUE OF X IS 3

If the second has computed the value of X to be 625, it will print out:

THE SQUARE ROOT OF 625 IS 25

4. To skip a line (explained in Chapter 3).
We have seen examples of the first three in our previous example programs. Each type

is slightly different in form, but all start with PRINT after the line number.

2.5.4 GOTO

In a program there are times when you do not want all commands executed in the order that

they appear in the program. If we do not want the program to go to the END statement yet, but to go

through the same process for a different value, we direct BASIC to go back to a certain I~ne with a

GO TO statement; in the form:

GO TO [line number]

Example:

150 GO TO 75

2.5.5 IF -- THEN

There are times when we are interested in jumping the normal sequence of commands, if a

certain relationship holds. For this we use an IF--THEN statement, sometimes called a conditional

GO TO statement. Each such statement is of the form-:

If [formula] [relation] [formula] THEN [line number]

2-15

Examples:
40 IF SIN(X) <= M THEN 80

::~' .2;0 IF G = I2l:THEN 65

The fir$t Rsks if the sine Qf, XisJ'eS$,tJlan or equpJvto M, and directs the computer to skip to line 80 if

it is. The second asks if G is equaH~:O:; .anddirects the computer to skip to line 65 if it is. In each

case, if the answer to the question is no, BASIC will go to the next line of the program.

2.5.6 IF ••• GO TO

To give a different structure to the IF-THEN instructions, the instruction

IF X > 5 THEN 200

may also be written as

IF X > 5 GO TO 200

2.5.7 FOR and NEXT

We have already encountered the FOR and NEXT statements in our loops, and have seen that

they go together, one at the entrance to the loop and one at the exit, directing BASIC back to the

entrance again. Every FOR. statemen~ is of the form:

FOR [variable] = [formula] TO [formula] STEP [formula]

Most commonly, the expressiorjswill be integers and the STEP omitted. In the latter case, a step size

of one is assumed. The accomp.Q't!ying NEXT statement is simple in form, but the variable must be pre

cisely the same one as that foliowingrfOR i.n the FOR $.tatement. Ilts form is NEXT [variable]. The

variable used in the FOR and NEXT >~(l.j;eme~"'l1ay not be subsc,(ipted.

Examples:
30 FOR X~0 TO 3 STEP D
80 NEXT X

120 FOR X4 = (17+COS(Z»/3 TO 3*SQR(10) STEP 1/4
235 NEXT X4
240 FOR X=8 TO 3 STEP -1
456 FOR J=-3 TO 12 STEP 2

Notice that the step size may be a formula (1/4), a negative number (-1), or a positive num

ber (2). In the example with lines 120 and 235, the successive values of X4 will be .25 apart, in in

creasing order. In line 240, th~,successive values of X will be 8,7,6,5,4,3. In line 456, on

successive trips through the loop, J will take on values -3, -1, 1, 3, 5, 7, 9, and 11.

2-16

If the initial, final, or step-size values are given as formulas, these formulas are evaluated

once and for all upon entering the FOR statement. The control variable can be changed in the body of

the loop; of course, the exit test always uses the latest value of this variable.

If you write 50 FOR Z = 2 TO -2, without a negative step size, the body of the loop will not

be performed and BASIC will proceed to the statement immediately following the corresponding NEXT

statement.

2.5.8 DIM

Whenever we want to enter a list or a table, we must use a DIM statement to inform BASIC

to save sufficient room for the list or table. Examples:

20 DIM H(35)
35 DIM Q(5,25)

An alternate way of writing this would be:

20 DIM H(35), Q(5,25)

The first would enable us to enter a list of 35 items, or 36 if we use H(O); and the latter a

table 5 x 25, or by using row 0 and column 0 we get a 6 x 26 table. The DIM statement must precede

any other references to the dimensioned variable named.

2.5.9 END

Every program must have an END statement, and it must be the statement with the highest

I ine number in the program. Its form is simple: a line number with END.

999 END

2.6 ERRORS AND DEBUGGING

It may occasionally happen that the first run of a new problem will be free of errors and give

the correct answers, but it is much more common that errors wi" be present and wi II have to be corrected.

Errors are of two types: errors of form (or syntactical errors) which prevent the running of the program;

and logical errors (bugs) in the program which cause BASIC to produce wrong answers or no answers at

all.

2-17

Errors of form wi II cause error messages to be pri nted, and the various types of error messages

are listed and explained in Appendix C. Logical errors are often much harder to uncover, particularly

when the program gives answers which seem to be nearly correct. In either case, after the errors are

discovered, they can be corrected by changing lines, by inserting new lines, or by deleting lines from

the program. As indicated in the last section, a line is changed by typing it correctly with the same

line number; a line is inserted by typing it with a line number between those of two existing lines; and

a I ine is deleted by typing its line number and pressing the RETURN key. Notice that you can insert

a line only if the original line numbers are not consecutive integers. For this reason, most programmers

will start out using line numbers that are multiples of five or ten, but that is a matter of choice.

These corrections can be made at any time, when in the editing phase and either before or

after a run, by simply retyping the offending line with its original line number.

2-18

3.1 MORE ABOUT PRINT

CHAPTER 3

ADVANCED BASIC

The uses of the PRINT statement were described in 2.5.3, but more detail is presented in

this chapter. Although the format of answers is automatically supplied for the beginner, the PRINT

statement permits a greater flexibility for the more advanced programmer who wishes a different format

for h is output.

The Teletype line is divided into five zones of fourteen spaces each. Some control of the

use of these comes from the use of the comma: a comma is a signal to move to the next print zone or,

if the fifth print zone has just been filled, to move to the first print zone of the next line.

For example, if you were to type the program

10 FOR N=1 TO 15
20 PRINT N
30 NEXT N
40 END

BASIC would print 1 at the beginning of a line, 2 at the beginning of the next line, and so on, finally

printing 15 on the fifteenth line. But, by adding a comma to line 20 to read

20 PRINT N ..

you would have the numbers printed in the zones, reading

1
6
1 1

READY

2
7
12

3
8
13

4
9
14

5
10
15

More compact output can be obtained by use of the semicolon. If a label (expression in

quotes) is followed by a semicolon, the label is printed with no space after it. If a variable is followed

by a semicolon, its value is printed in the following format:

First, a minus sign for negative numbers or a space for positive numbers,

then, the numerical value,

then, a single space.

Thus, printing a list of numbers in semicolon format will pack them in the closest readable form.

3-1

If you wanted the numbers printed in this fashion, but more tightly packed, you would change line 20

to replace the comma by a semicolon:

210 PRINT NJ

and the result would be printed

123456 7 8 9 110 11 12 13 14 15

You should remember that a label inside quotation marks is printed just as it appears and also

that the end of a PRINT signals a new line, unless a comma or semicolon is the last symbol.

Thus, the instruction

510 PRINT X, Y

will result in the printing of two numbers and the return to the next line, while

50 PRINT X, Y,

will result in the printing of these two values and no return. The next number to be printed will occur

in the third zone, after the values of X and Y in the first two.

Since the end of a PRINT statement signals a new line,

2510 PRINT

will cause BASIC to advance the Teletype paper one line. It will put a blank line in your program, if

you want to use it for vertical spacing of your results, or it causes the completion of a partially filled

as illustrated in the following fragment of a program:

50 FOR M = 1 TO N
110 FOR J = 10 TO M
120 PRINT BCM,J);
130 NEXT J
140 PRINT
150 NEXT M

3-2

This program will print B(l ,0) and next to it B(l, 1). Without line 140, BASIC would then go on printing

B(2,0), B(2,1), and B(2,2) on the same line, and then B(3,0), B(3.1), etc. Line 140 direct BASIC,

after printing the B(l, 1) value corresponding to M = 1, to start a new line and to do the same thing

after printing the value of 8(2,2) corresponding to M = 2, etc.

The instructions

50 PRINT "TIME-"; "SHAR"; "ING";
51 PRINT" AT"; " DEC"
52 END

will result in the printing of

TIME-SHARING AT DEC

The following rules for the printing of numbers will help you in interpreting your printed

results:

1. If a number is an integer, the decimal point is not printed. If the integer contains more
then five digits, the number will be printed in E format; the Teletype will give you the first digit,
followed by (a) a decimal point, (b) the next six digits, and (c) an E, followed by the appropriate
signed integer. For example, it will take 32,437,580 and write it as 3.243758E+07.

2. For any decimal number, no more than seven significant digits are printed.

3. For a number less than 0.01, the E notation is used.

4. Trailing zeroes after the decimal point are not printed. The following program, in
which we print out powers of 2, shows how numbers are printed.

10 FOR N = -5 TO 16
20 PRI NT 2 fN;
30 NEXT N
40 END

RUN

0·03125 0.0625 0.125 0.25 0.5 1 2 4 8 16 32 64 128 256 512
1024 2048 4096 8192 16384 32768 65536

3.2 FUNCTIONS

Three functions were mentioned in Section 2.2; they are described below.

3-3

3.2. 1 The INT Function

The INT function frequently appectrs in algebraic computation as X, and it gives the greatest

integer not greater than X. Thus, INT (2.35) = 2, INT (-2.35) = -2, and INT (12) = 12.

One use of the INT function is to round numbers. We may use it to round to the nearest

integer by asking for INT (X + .5). This will round 2.9, for example, to 3, by finding INT (2.9 + .5) =
INT (10*X + .5)/10t2 will round X correct to two decimal places, and INT (X*10 t 0 + .5)/10tD

tween two integers up to the larger of the integers).

INT can also be used to round to any specific number of decimal places. For example,

INT (10*X + .5)/1 Ot 2 will round X correct to two decimal places, and INT (X*10 t 0 + .5)/10tD

will round X correct to 0 decimal places.

3.2.2 The RND Function

The function RND produces a random number between 0 and 1. Note that the argument in

th is function is not used.

If we want the first twenty random numbers, we write the program below and we get twenty

six-digit decimals.

10 rOR L = 1 TO 20
20 PRINT RND(I),
30 NEXT L
40 END

RUN

0.406533
0.863799
0.570427
5.00548 E-2

0.88445
0.880238
0.897931
0.393226

0.681969
0.638311
0.628126
0.680219

0.939462
0.602898
0.613262
0.632246

0.253358
0.990032
0.303217
0.668218

On the other hand, if we want twenty random one-digit integers, we could change line 20

to read:

20 PRINT INT(10*RND(0»,
RUN

and we would then obtain:

4
8
5
o

8
8
8
3

3-4

6
6
6
6

9
6
6
6

2
9
3
6

We can vary the type of random numbers we want. For example, if we want 20 random

numbers ranging from 1 to 9 inclusive, we could change line 20 as shown

20 PRINT INTe9*RNDCl)+I»)
RlJN

4 8 7 9 388 6 6 9 6 9 663 1 476 7

or we can obtain random numbers which are integers from 5 to 24 inclusive by changing line 20 as in

the following example:

20 PRINT INTC20*RNDel)+5»)
RUN

1 3 22 18 23 10 22 22 1 7 1 7 24 16 22 1 7 1 7
11612181718

In general, if we want our random numbers to be chosen from the A integers of which B is

the smallest, we would call for INT (A*RND(l) + B).

3.2.3 The SGN Function

The SGN function assigns the value 1 to any positive number, 0 to zero, and -1 to any

negative number, thus, SGN (7.23) = 1, SGN (0) = 0, and SGN (-.2387) =-1.

3.2.4 o EF Statement

In addition to the standard functions, you can define any other function which you expect

to use a number of times in your program by use of a DEF statement. The name of the defined function

must be three letters, the first two of which must be FN. Hence, you may define up to 26 functions,

e.g., FNA, FNB, etc. The use of a DEF statement is shown in the following example.

10 DEF FNXeX) = X * X
20 READ A, B
30 PRINT A, B, FNXCB)
40 GO TO 20
50 DATA 1, 2, 3, 4, 5, 6
60 END

RUN

1
3
5

2
4
6

3-5

4
16
36

1030 ERRCR IN LINE 20
OUT OF' DATA
READY

3.3 GOSUB and RETURN

When a particular part of a program is to be performed more than one time, or possibly at

several different places in the overall program, it is most efficiently programmed as a subroutine. The

subroutine is entered with a GOSUB statement, where the number is the line number of the first state

ment in the subroutine. For example,

90 GOSUB 210

directs BASIC to jump to line 210, the first line of the subroutine. The last line of the subroutine should

be a RETURN command directing BASIC to return to the earlier part of the program. For example,

350 RETURN

will tell BASIC to go back to the first line numbered greater than 90, and to continue the program there.

The following example, a program for determining the greatest common divisor of three in

tegers using the Eucl idean Algorithm, illustrates the use of a subroutine. The first two numbers are

selected in lines 30 and 40 and their greatest common divisor (GCD) is determined in the subroutine,

lines 200-310. The GCD just found is called X in line 60, the third number is called Y in line 70, and

the subroutine is entered from line 80 to find the GCD of these two numbers. This number is, of course,

the greatest common divisor of the three given numbers and is printed out with them in line 90.

You may use a GOSUB inside a subroutine to perform yet another subroutine. This would

be called nested GOSUBs. In any case, it is absolutely necessary that a subroutine be left only with

a RETURN statement, using a GOTO or an IF-THEN to get out of a.subroutine will not work properly.

You may have several RETURNs in the subroutine so long as exactly one of them will be used.

10 PRINT" A", " B", " C", "GCD"
20 READ A,B,C
30 LET X=A
40 LET Y=B
50 GOSUB 200
60 LET X=G
70 LET Y=C
80 GOSUB 200
90 PRINT A,B,C,G

100 GO TO 20
110 DATA 60,90,120

3-6

3.4

120 DATA 38456,64872,98765
130 DATA 32,384,72
200 LET Q=INTeX/Y)
210 LET R=X-Q*Y
220 IF R=0 GOTO 300
230 LET X=Y
240 LET Y=R
250 GO TO 200
300 LET G=Y
310 RETURN
320 END

RUN

A B
60 90
38456 64872
32 384

1030 ERROR IN LINE
OUT OF DATA
READY

INPUT

20

C GCD
120 30
98765 1
72 8

There are times when it is desirable to have data entered during the running of a program.

This is particularly true when one person writes the program and enters it into the computer's memory,

and other persons are to supply the data. This may be done by an INPUT statement, which acts as a

READ statement but does not draw numbers from a DATA statement. If, for example, you want the user

to supply values for X and Y into a program, you will type

40 INPUT X, Y

before the first statement which is to use either of these numbers. When it encounters this statement,

BASIC will type a question mark. The user types two numbers, separated by a comma or blank, presses

the RETURN key, and BASIC goes on with the rest of the program.

Frequently an INPUT statement is combined with a PRINT statement to make sure that the user

knows what the question mark is asking for. You might type:

20 PRINT "YOUR VALUES OF X, Y, AND Z ARE";
30 INPUT X, Y, Z

and BASIC wi II type out

3-7

YOUR VALUES OF X, Y, AND Z ARE?

Without the semicolon at the end of line 20, the question mark would have been printed on the next line.

Data entered via an INPUT statement is not saved with the program. Furthermore, it may

take a long time to enter a large amount of data using INPUT. Therefore, INPUT should be used only

when small amounts of data are to be entered, or when it is necessary to enter data during the running

of the program such as with game-playing programs.

3.5 MISCELLANEOUS STATEMENTS

Several other BASIC statements that may be useful from time to time are STOP, REM and

RESTORE.

3.5.1 STOP Statement

STOP is equivalent to GOTO xxxxx, where xxxxx is the line number of the END statement

in the program. It is useful in programs having more than one natural finishing point. For example,

the following two program portions are equivalent.

250 GO TO 999 2513 STOP

340 GO TO 999 340 STOr

999 END 999 END

3.5.2 REM Statement

REM provides a means for inserting explanatory remarks in a program. BASIC completely

ignores the remainder of that line,allowing the programmer to follow the REM with directions for using

the program, with identifications of the parts of a long program, or with anything else that he wants.

Although what forlows REM is ignored, its line number may be used in a GOTOor IF-THEN statement.

100 REM INSERT DATA IN LINES ~00-998. THE FIRST
110 REM NUMBER IS N, THE NUMBER OF POINTS. THEN
120 REM THE DATA POINTS THEMSELVES ARE ENTERED, BY

200 REM THIS IS A SUBROUTINE FOR SOLVING EQUATIONS

300 RETURN

520 GOSUB 200

3-8

3.5.3 RESTORE Statement

Sometimes it is necessary to use the data in a program more than once. The RESTORE

statement permits reading the data as many additional times as it is used. Whenever RESTORE is en

countered in a program, BASIC restores the data to its original state. A subsequent READ statement

will then start reading the data all over again. A word or warning: if the desired data are preceded

by code numbers or parameters, superfluous READ statements should be used to pass over these numbers.

As an example, the following program portion reads the data, restores the data to its original state,

and reads the data again. Note the use of line 570 to "pass over II the value of N, which is already

known.

100 READ N
110 FOR I = 1 TO N
120 READ X

200 NEXT I

560 RESTORE
570 READ X
580 FOR I = 1 TO N

3-9

CHAPTER 4

OPERATING TSS/8 BASIC SYSTEM

After logging into TSS/8, and calling the BASIC program (see page I-I), BASIC then types

NEW OR OLD? and you type the appropriate adjective: NEW if you are about to type a new problem

and OLD if you want to recover a problem on which you have been working earlier and have stored in

the computer's memory.

BASIC then asks NEW PROGRAM NAME (or OLD PROGRAM NAME, as the case may be)

and you type any combination of letters and digits you like, but no more than six. If you are recalling

an old problem from the computer's memory, you must use exactly the same name as that which you

gave the problem before you asked BASIC to save it.

BASIC then types READY (which signals the start of the editing phase), and you should

begin to type your program. If you type a line consisting of only a line number followed by the

RETURN key, that line will be deleted. Make sure that each line begins with a line number which is

greater than 0 and less than 2046 and contains no non-digit characters. Also be sure to type the

RETURN key at the completion of each line.

If, in the process of typing a statement, you make a typing error and notice it immediately,

you can correct it by typing the RUBOUT key (right-hand side of the keyboard). This will delete the

character in the preceding space and print a left arrow (-) for each rubout. You can then type in the

correct character. Typing the RUBOUT key a number of times will erase from the current line one

character (including spaces) to the left for each RUBOUT typed. (Caution: It sometimes takes several

seconds for BASIC to accomplish a rubout.) Typing the key marked ALT MODE (left-hand side of the

keyboard) will delete the entire line being typed.

While in the editing phase, certain additional commands (which may not have line numbers)

are available and are described below:

a. If IOU type in SAVE followed by typing the RETURN key, the program you have just
written (or changed) will be saved for use at a later time, under the name you gave when you started.
If following the word SAVE you have typed one or more spaces, followed by a name followed by the
RET URN key, the program wi II be saved under that name.

b. If you type in UNSAVE, followed by a name, followed by the RETURN key, the program
with the name you have just given will be deleted from your permanent file.

c. If you type in CATALOG followed by the RETURN key, a listing of all the program
names in your permanent file will be typed.

NOTE

Names of temporary files may also be shown. These
wi" be of the form, BASn , and may be ignored.

4-1

d. If you type in LIST followed by two line numbers separated by a comma, a listing of
that part of your current program, which lies between those line numbers, will be typed. If the comma
and second line number are omitted, only the single line indicated will be listed. If no line numbers
follow the word LIST (but only the RETURN key), your whole program will be listed.

e. If you type in DELETE followed by two line numbers separated by a comma, all lines,
between the two indicated, will be deleted. If the comma and second line number are omitted, only
the single line specified will be omitted •

f. When you are ready to leave the Teletype, sign off by typing BYE. This concludes
operations and TSS/8 deletes any temporary files assigned to you. --

The editor phase control words (CATALOG, DELETE, LIST, NEW, OLD, RUN, SAVE,

UNSAVE and BYE) may either be typed as shown or the equivalent effect may be obtained by typing in

just the first letter. If information (other than the RETURN key) is to follow the control word, at least

one blank must follow the control word (or character).

After typing your complete program, you type RUN, press the RETURN key; BASIC will then

analyze your program. If the program is one which BASIC can run, it will type out any results for

which you have asked in your PRINT statements. This does not mean that your program is correct, but

that it has no errors of the type known as syntactical or format errors. If it has errors of this type,

BASIC will type an error message to you and return to the editing phase. A list of the error messages

with the interpretation of each is contained in Appendix C.

If it is obvious that you are getting the wrong answers to your problem, even while the

program is running, you can press the ALT MODE key and computation will cease. The computer will

than type READY to indicate that you are back in the editing phase. It may be necessary to type

CTRL/B followed by S;ST 222J in order to stop processing and return to the Editor.

4:-2

APPENDIX A

SUMMARY OF BASIC STATEMENTS

A.1 ELEMENTARY BASIC STATEMENTS

The following subset of the Dartmouth BASIC command repertoire includes the most commonly

used commands and is sufficient for solving most problems.

LET [variable] = [formula]

DATA [data list]

READ [variable list]

PRINT [arguments]

GO TO [line number]

IF [formula] [relation] [formula]

{ THEN ~[line number]

GOTOj

FOR [variable] = [formula1]
TO [formula2] STEP [formula3]

NEXT [variable]

DIM [variable] [subscript]

END

Assign the value of the formula to the specified
variable.

DATA statements are used to supply one or more
numbers to be accessed by READ statements.

READ statements, in turn, assign the next available
datum in the DATA string to the variables listed.

Type the values of the specified arguments, which
may be variables, text, or format control characters.

Transfer control to the line number specified and
continue execution from that point.

If the stated relationship is true, then transfer con
trol to the line number specified; if not, continue
in sequence.

Used for looping repetitively through a series of
steps. The FOR statement initializes the variable
to the value of formula1' If the increment is posi
tive and the variable .s. formula2' the instructions
following are executed until the NEXT statement is
encountered.

The NEXT statement increments the variable by the
value of formula3 (if omitted, the increment value
is +1). The variable is again tested as described
above, and this process continues until the loop is
repeated the specified number of times. When the
variable becomes larger than formula2, control goes
to the statement following the NEXT. If the incre
ment (formula3) is negative, then the instructions
between the FOR and NEXT statements are executed
until the variable becomes less than the value of
formula2'

Enables the user to enter a table or array with the
specified number of elements.

Last statement to be executed in the program. This
statement must be present.

A-1

FORMULAS: In addition to the common arithmetic operators of addition (+), subtraction (-),

multiplication (*), division (/), and exponentiation (f), BASIC includes the following elementary

functions:

SIN (x)

COS (x)

TAN (x)

A.2 ADVANCED BASIC STATEMENTS

GOSUB [line number]

{
[line number] •

Subroutine

RETURN

INPUT [vaJ:iable(s)]

STOP

REM

RESTORE

ATN (x)

EXP (x)

LOG (x)

ASS (x)

SQR (x)

Simplifies the execution of a subroutine at several
different points in the program by providing an
automatic return from the subroutine to the next
sequential statement following the appropriate
GOSUB (the GOSUB which sent control to the
subroutine).

Causes typeout of a ? to the user and waits for user
to respond by typing the value(s) of the variable(s).

Equivalent to GO TO [line number of END state
ment] •

Permits typing of remarks within the program.

Sets pointer back to beginning of string of DATA
values.

FORMULAS: Some advanced functions include the following:

INT (x) Find the greatest integer in x.

RND (x)

SGN (x)

Generate random numbers between 0 and 1. The
same set of random numbers can be generated
repeatedly for purposes of program testing and
debugging. The value of x is ignored.

Assign a value of 1 if x is positive; 0 if x is 0;
or -1 if x is negative.

The user can also define his own functions by use of the DEFine statement. For example,

[tine number] DEF FNC(x) = SIN(x) + TAN(x) -10

(Defines the user function FNC as the formula SIN(x) + TAN(x) -10.)

NOTE that DEFine statements are restricted to one line.

A-2

APPENDIX B

SUMMARY OF EDIT AND CONTROL COMMANDS

Several commands for editing BASIC programs and for controlling their execution enable you

to: delete lines, list your program, save programs on a file-structured storage device (disk), delete or

replace old programs on the storage devi ce with new programs, call in programs from the storage device,

etc. These commands are summarized below.

Command

BYE

DELETE n (or n J)

DELETE n1' n2

LIST

LIST n

LIST n1, n2

NEW

OLD

RUN

SAVE

SAVE [name]

UNSAVE

UNSAVE [name]

t B (CTRL/B)

Action

Exit to TSS/8 Monitor to conclude operations.

Delete line number n (or simply the line number and RETURN key).

Delete line numbers n1 through n2'

List program

List line number n.

List program from line number n1 through n2'

BASIC wi II ask for new program name.

BASIC will ask for program name and will replace current contents
of user core with existing program of that name from the storage
device.

Compile and run program currently in core.

Save the contents of user core as file whose fi lename is current
program name.

Save user core as name 1 •

Delete the program with the current program name from the storage
device.

Delete the name program from the storage device.

To stop a running program, type t B followed by S; ST 222 J. CTRL/B
is typed by holding down the CTRL key while typing the B key; it
echoes the t B on the Teletype printer.

1 SAVE commands will not overwrite an existing file of the same name (use UNSAVE first).

B-1

APPENDIX C

ERROR MESSAGES

Four types of error messages can occur in BASIC. The messages and their interpretation is

shown below.

C.1 DURING THE EDITING PHASE

(Just retype the line to correct it.)

//ERROR 00

//ERROR 01

//ERROR 02

//ERROR 03

//ERROR 04

//ERROR 10

//ERROR 11

//ERROR 12

//ERROR 20

Machine malfunction.

You didn't type in OLD or NEW when the information was requested.

The new or old name you typed in wasn't a valid name.

The new name you gave is already an active program.

You asked for an old program name which isn't in your permanent
file.

The name you gave with the SAVE command is already in your
permanent fi Ie.

The SAVE or UNSAVE name you gave is not a valid name.

The editor can1t understand the command you just gave.

Invalid line number format or outside of the range 0 < line number
<2047.

C.2 DURING PROGRAM COMPILATION OR EXECUTION

The message will be preceded by ERROR ON LINE nnnn, where nnnn is the line number on

which the error was detected. (BASIC will type READY and you will be back in the editing

phase.)

PROGRAM TOO LARGE TO LOAD

MISSING END STATEMENT

DATA POOL OVERFLOW

ILLEGAL STATEMENT

ILLEGAL LINE FORMAT

NOT CONSTANT IN DATA

Your program is too large to be executed. Try to
make it smaller.

All programs must have an END statement.

You have used too many constants and/or variables
in your program.

A statement was used which is not one of the
legitimate BASIC statements.

The structure of the statement does not agree with
the BASIC syntax.

You attempted to use something other than a con
stant in a DATA statement.

C-l

ILLEGAL CHARACTER

ILLEGAL CONSTANT

INVALID NAME

You attempted to use an illegal character for the
statement you are processing.

The format of a constant, in the statement being
processed, is not valid.

A name is being used which doesn't agree with the
BASIC requirements.

INVALID LINE NUMBER The format of th'e line number, being used in a GO
TO or IF statement, is not correct.

ARRAY USED BEFORE DEFINED You have attempted to use an array prior to its
appearance in a DIM statement.

EXPRESSION SYNTAX

STACK OVERFLOW

OUT OF DATA

The expression being processed does not agree with
the BASIC rules (probably this will be due to un
matched parentheses).

You have programmed a situation in which either
DO, subroutines, or functions are nested too deeply
or you have a function or subroutine which calls
itself.

An attempt has been made to READ more data than
you have.

ILLEGAL INPUT FORMAT The form of a constant, which you are attempting to
INPUT, is not valid.

DIMENSION SIZE

UNDEFINED LINE NUMBER

Too large an array.

The line number appearing in a GO TO or an
IF-THEN statement does not appear in the program.

C.3 NON-FATAL EXECUTION ERRORS

These errors are for notification purposes and indicate that you have performed a computa

tional range error. They will all type the message XX IN nnnn, where nnnn is the line number and XX

is as described below.

Error Code

/0

OV

UN

LN

Explanation

ZERO DIVIDE - An attempt was made to divide a number by zero.
The largest possible number will be used for the result.

OVERFLOW - The result of a calculation was too large for the com
puter to handle. The largest possible number will be used for the
result.

UNDERFLOW - The result of a calculation was too small for the com
puter to handle. Zero will be used for the result.

An attempt was made to compute the logarithm of zero or a negative
number. Zero will be used for the result.

C-2

SQ

PW

C .4 SYSTEM ERROR

An attempt was made to compute the square root of a negative
number. The square root of the absolute value will be used for the
result.

An attempt was made to raise a negative number to a power. The
absolute value raised to a power will be used.

If a failure occurs in the I/o portion of the BASIC system, the message MACHINE MAL

FUNCTION will be typed and control will return to the editing phase.

C-3

APPENDIX D

D.1 LOADING TO DISK

The system call routine (SYP) references a table called SYPTBA at EXEC locations 314-3328 •

This table contains the disk address of the five (5) basi c programs. As is shown in the table, the pro

grams are on the disk in the following order:

EDITOR
COMPILER
LOADER
INTERPRETER
ERROR

(BASED)
(BASCOM)
(BASLDR)
(BASIN)
(BAS ERR)

Having gone once through all the preliminaries of Opening, Creating, Extending and setting

the Protection Mask for BASIC, you can start with the loading of the disk.

Load the EDITOR/EXEC (binary tape) using R LOAD.

Check the AC on completion with a WHERE. If the AC -10 reload the tape.

If AC=O perform a SAVE BASIC 0 0 4377. EDITOR will now occupy locations 0-4377 01'\

disk. The compiler is loaded next. Perform WHERE. If AC=O perform a

SAVE BASIC 4400 400 5377
~-----------------~-------------------- r-----------------~/'--------------------~

(First disk location used by the COMPILER~ (Starting location and 2's complement of the'
length of the COMPILER

This wi II butt the COMPILER up against the EDITOR/EXEC on the disk. This same procedure

is used for each of the remaining programs. The succeeding SAVE's are:

LOADER:

INTERPRETER:

ERROR:

SAVE BASIC 11400 400

SAVE BASIC 12000 400

SAVE BASIC 20100 400

NOTE

Changes in the size of these programs will require altera
tions to the table entries in SYPTBA and in the SAVE's
performed in loading the disk.

D-l

777

6477

1777

APPENDIX E

IMPLEMENTATION NOTES

TSS/8 BASIC language is compatible with Dartmouth BASIC except as noted below:

1. There are no matrix operations.

2. There are no character string instructions.

3. The ON statement has not been implemented.

The TAB function is not available in PRINT statements.

5. BASIC has no features which allow reading or writing data on the disk. (Although
programs may be saved on the disk for future use.)

6. All array (subscripted) variables must appear in a DIM statement.

7. The function INT{x) will give the greatest integer in x. Thus INT{-2.3) will give
the value -2.

8. Negative numbers may not be raised to integer powers. The absolute value will be
used and an error message wi II be printed.

9. The RANDOMIZE instruction is not available.

10. User defined functions are restricted to one line.

E-l

HOW TO OBTAIN REVISIONS AND CORRECTIONS

Notification of new or revised DEC software and manuals avai lable from the Program
Library is published in:

Digita I Software News for the PDP-8 Fami Iy
Digital Software News for the PDP-9 Family

If you are not receiving the publication appropriate to your computer, please notify Software Informa
tion Service (see Reader's Comments card).

Revised software products and documents are shipped only after the Program Library receives
a specific request from a user (see title page for address) •

Digital Equipment Computer User's Society (DECUS) maintains a library of user software
and publishes them in DECUSCOPE, a magazine avai lable to both DECUS members and to non-members
who request it. Return the request card below to receive further information or to place your name on
the mailing list.

To: Decus Office,
Digital Equipment Corporation,
Ma.ynard, Massachusetts 01754

o Please send DECUS installation membership information.

o Please send DECUS individual membership information.

o Please add my name to the DECUSCOPE non-member mai ling list.

Name ------------------------------
Company ----------------------------
Address

Digital Equipment Corporation
Maynard, Massachusetts

printed in U.SA

momODma

