0S/8
TECO Reference Manual
Order No. AA-HB08A-TA

ABSTRACT

This document describes the Text Editing and
Correcting Program for OS/8 users.

SUPERSESSION/UPDATE INFORMATION: This manual supersedes the TECO chapter of
the 0S/8 Handbook (DEC-S8-OSHBA-A-D).

OPERATING SYSTEM AND VERSION: 0s/8 v3D

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation - maynard, massachusetts

First Printing, March 1979

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright (:) 1979 by Digital Equipment Corporation

The postage-prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre-
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0s/8
DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET~8
DDT LAB-8 TYPESET-11
DECCOMM DECSYSTEM=-20 TMS~-11
ASSIST-11 RTS-8 ITPS-10
VAX VMS SBI
DECnet IAS PDT
DATATRIEVE TRAX

CONTENTS

Page
PREFACE vii
CHAPTER 1 INTRODUCTORY COMMANDS 1-1
1.1 FUNDAMENTALS 1-1
1.2 FILE SELECTION COMMANDS 1-2
1.3 INPUT AND OUTPUT COMMANDS 1-4
1.4 POINTER POSITIONING COMMANDS 1-5
1.5 TYPE OUT COMMANDS 1-6
1.6 TEXT MODIFICATION COMMANDS 1-6
1.7 SEARCH COMMANDS 1-7
1.8 SUMMARY 1-8
1.9 SAMPLE EDITING JOB 1-8
CHAPTER 2 CONCEPTS 2-1
2.1 INTRODUCTION 2-1
2.2 MEMORY USE 2-1
2.3 DATA FILES 2-2
2.4 CHARACTER SET 2-3
2.4.1 Special Characters 2-3
2.4.2 Control Characters 2-4
2.4.3 Carriage Control Functions and Responses 2-5
2.5 DATA FORMAT -- LINES AND PAGES 2-5
2.6 EDITING BUFFER 2-6
2.7 BUFFER POINTER 2-6
2.8 GENERAL COMMAND STRING SYNTAX 2-7
2.9 ARGUMENTS 2-8
2.9.1 Text Arguments 2-8
2.9.2 Numeric Arguments 2-8
2.9.3 Commands That Return a Value 2-10
2.10 SUPER TECO 2-10
CHAPTER 3 USING TECO 3-1
3.1 INTRODUCTION 3-1
3.2 CALLING TECO 3-1
3.2.1 R TECO Command 3-1
3.2.2 General Purpose Initialization Commands 3-1
3.2.2.1 MAKE Command 3-2
3.2.2.2 TECO Command 3-3
3.2.3 MUNG Command 3-4
3.3 FILE SELECTION COMMANDS 3-5
3.4 INPUT COMMANDS 3-5
3.5 BUFFER POSITION NUMERIC ARGUMENTS 3-6
3.6 BUFFER POINTER POSITIONING COMMANDS 3-6
3.7 TEXT TYPE-OUT COMMANDS 3-6
3.8 DELETION COMMANDS 3-7
3.9 INSERTION COMMANDS 3-7

iii

CHAPTER

3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17

o>

¢« v e ¢ e s s e

L A A I S
.
WO U W N

—

o

(-3
.

-
[\S)

Lo =
.
—
o W

4.15

4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25
4.26
4.27
4.28
4.29
4.29.1
4.29.2
4.29.3
4.30
4.31
4.32
4.33
4.34
4.35
4.36
4.37
4.38
4.38.1
4.38.2
4.39
4.40

CONTENTS (Cont.)

OUTPUT AND EXIT COMMANDS
SEARCH COMMANDS
ITERATION COMMANDS

FLOW CONTROL COMMANDS
Q-REGISTERS

ERASING COMMANDS

ERROR MESSAGES
TECHNIQUES AND EXAMPLES

TECO COMMANDS

INTRODUCTION

A APPEND COMMAND

nA COMMAND

"Atext<”"A> TYPE-OUT COMMAND
B POSITION INDICATOR

C BUFFER POINTER COMMAND

~C COMMAND

- D DELETE COMMAND

"D DECIMAL RADIX COMMAND
<DELETE>
“E END-OF-PAGE FORM FEED FLAG SIGNAL
EB EDIT BACKUP COMMAND
EC EXIT CLOSE COMMAND
EF END FILE COMMAND
EG EXIT AND GO COMMAND
EH EDIT HELP COMMAND
EX EXIT KILL COMMAND
EO VERSION COMMAND
ER EDIT READ COMMAND
<ESCAPE> COMMAND
ET EDIT TERMINAL COMMAND
EU EDIT UPPER/LOWER COMMAND
EW EDIT WRITE COMMAND
EX EXIT COMMAND
“F COMMAND
FN FAST NONSTOP SEARCH/REPLACE COMMAND
FS FAST SEARCH/REPLACE COMMAND
G GET COMMAND
<~G> COMMAND
<"G><sp> Command Line Echo Command
<~"G>* Command String Echo Command
<"G><"G> Command String Erasure Command
H WHOLE POSITION INDICATOR
I INSERT COMMAND
nI$ INSERT COMMAND
J JUMP COMMAND
K KILL COMMAND
L LINE COMMAND
M MACRO COMMAND
N NONSTOP SEARCH COMMAND
“N
<”N> Match Control Character
“n End-of-File Indicator Command
0O GOTO COMMAND
<”0> COMMAND

iv

)
[
Q
(1]

WWwWwwwww
1

= = O WD 00~ ~J

HoOo

o
|
-

| I | i
PO WUM S WND -

K NN N N N N NI I N O N N X
1 1

P

3= T RN

4-19
4-20
4-21
4-22
4-23
4-24
4-25
4-26
4-27
4-28
4-30
4-32
4-33
4-33
4-34
4-34
4-35
4-36
4-38
4-39
4-40
4-42
4-43
4-45
4-47
4-47
4-47
4-48
4-49

4.40.1
4.40.2
4.41
4.42

A A"
4.4

4.44
4.44.1
4.44.2
4.45
4.46
4.47
4.47.1
4.47.2
4.47.3
4.48
4.49
4.49.1
4.49.2
4.50
4.51
4.52
4.53
4.54
4.54.1
4.54.2
4.55
4.56
4.57
4.58
4.59
4.60
4.61
4.62
4.63
4.63.1
4.63.2
4.63.3
4.64
4.65
3.66
4.67
4.67.1
4.67.2
4.68
4.69
4.69.1
4.69.2
4.70
4.71

APPENDIX A

APPENDIX B

APPENDIX C

INDEX

CONTENTS (Cont.)

<"0> Type Out Command
<”0> Octal Radix Command
P PAGE COMMAND
PW PAGE WRITE COMMAND
Q QO-REGISTER COMMAND
<t Q>
<"Q> Type-Out Control Comman
<"Q> Match Control Character
R REVERSE COMMAND
S SEARCH COMMAND
<"S> Store Command String Command
<"8> Freeze Output Command
<"S> Match Control Character
T TYPE COMMAND
“T TYPE-IN COMMAND
~T Input Command
“T Typeout Command
<TAB> INSERT COMMAND
U COMMAND
<“y> COMMAND
“Ugtext$ COMMAND
W WINDOW COMMAND
W Command
nW Command
X EXTRACT COMMAND
<" X>
Y YANK COMMAND
Z POSITION INDICATOR
itag!
" BRANCHING COMMANDS
$ COMMAND
. POSITION INDICATOR
: MODIFIER
S Modifier
: Numerical Type-out Modifier
: O-register Type-out Command
COMMAND
<...> COMMAND
= NUMERICAL TYPE-CUT COMMAND
? COMMAND
? Trace Command
? Error Command
@ TEXT DELIMITER MODIFIER
\ COMMAND
\ Command
n\ Insertion Command
~“x COMMAND
_ COMMAND

OCTAL & DECIMAL ASCII CHARACTER SET
TECO ERROR MESSAGES

TECO COMMAND SUMMARY

Index~1

FIGURE

TABLE

[} 1
RO AEWNDHNDE

—

[I R R I
o

R N N T I S - R - O S Y N
[}

1
=
Sw N

4-15
4-16

CONTENTS (Cont.)

FIGURES

Command String for Example 2

An Elementary TECO Macro for Example 3

A Second Macro for Example 3

File-Packing Macro

Loading and Running the File-Packing Macro
Unpacking Macro

Loading and Running the Unpacking Macro

TABLES

Special Characters
Arithmetic/Logical Operators
C Commands

D Commands

EH Commands

ET Commands

EU Commands

J Commands

K Commands

L Commands

P Commands

PW Commands

R Commands

T Commands

X Commands

Conditional Execution Commands
= Commands

@ Commands

vi

Page

3-14
3-15
3-15
3-15
3-16
3-16
3-16

.

PREFACE

TECO is a text editing program that runs wunder the PDP8 operating
system. TECO may be used to edit any form of ASCII text such as
program listings, manuscripts, correspondence and the 1like. Since
TECO 1is a character-oriented editor rather than a line editor, text
edited with TECO does not have line numbers associated with it, nor is
it necessary to replace an entire line of text in order to change one
character.

This manual is divided into four parts. Chapter 1, which contains
basic information, introduces enough TECO commands to allow the novice
TECO user to begin creating and editing text files after only a few
hours of instruction. The introductory commands are sufficient for
any editing application; however, they are less convenient, in most
cases, than the advanced commands presented later.

Chapter 2 discusses the concepts underlying TECO. This discussion is
relatively command independent; instead, the emphasis is on how TECO
works.

Chapter 3 explains how to run TECO under the 0S/8 monitor and presents
an overview of many of the TECO commands. These commands are grouped
by function.

Chapter 4 examines all TECO commands. The commands are 1listed in

alphabetic order. Where applicable, commands appear together in the
discussion or in the examples.

vii

0s/8

0Ss/8

0s/8

0S/8

0s/8

DOCUMENTATION SET FOR 0S/8

SYSTEM GENERATION NOTES (AA-H606A-TAH)

The System Generation Notes provide the information you need
to get a new 0S/8 system running.

SYSTEM REFERENCE MANUAL (AA-H607A-TA)

The System Reference Manual describes 05/8 system
conventions, keyboard commands, and utility programs.

TECO REFERENCE MANUAL (AA-H608A-TA)

The TECO Reference Manual describes the 0S/8 version of this
character-oriented text editing and correcting program.

LANGUAGE REFERENCE MANUAL (AA-H609A-TA)
The Language Reference Manual describes all languages
supported by 0S/8, including BASIC, FORTRAN IV, and the PALS
assembly language.

ERROR MESSAGES (AA-H610A-TA)

This manual lists in alphabetical order all error messages
generated by 0S/8 system programs and languages.

viii

CHAPTER 1

INTRODUCTORY COMMANDS

1.1 FUNDAMENTALS

TECO considers text to be any string of ASCII codes. Text is divided
into units of pages, lines, and characters. A page of text consists
of all the ASCII codes between two form feed characters, including the
second form feed. A character is one ASCII code. Thus, every page of
text contains one form feed character, which is the last character on
the page. Every 1line of text contains one line feed, which is the
last character on the line.

TECO maintains a text buffer in which text 1is stored. The buffer
usually contains one page of text consisting of up to several thousand
characters, but the terminating form feed character never appears in
the buffer. TECO also maintains a buffer pointer. The pointer is
simply a movable position indicator which is always 1located between
two characters 1in the buffer, or before the first character in the
buffer, or after the last character in the buffer. The pointer |is
never located on a character.

Line feed and form feed characters are inserted automatically by TECO.
A line feed is automatically appended to every carriage return entered
into the buffer, and a form feed is appended to the content of the
buffer by certain output commands. Additional line feed and form feed
characters may be entered into the buffer as text. If a form feed
character is entered into the buffer, it will cause a page break upon
output. That is, all text preceding the form feed will appear on one
page, and the text following the form feed will appear on the next
page.

Finally, TECO also maintains an input file and an output file, both of
which are selected by the user through the use of file specification
commands. The input file 1is any device from which text may be
accepted. For example, if a block of text is stored in a disk file,
the disk file would be specified as an input file when the text |is
edited.

The output file is any device on which edited text may be written. If
the disk file mentioned above were to be edited, it could be written,
for example, onto another disk file.

TECO functions as a "pipeline" editor. Text is read from the input
file into the text buffer, and is written from the buffer onto the
output file., Once a portion of text has been written to the output
file, it cannot be accessed again without closing the output file and
re-opening it as. an input file.

TECO may be called from command level by typing:

+R TECO For RT-11

INTRODUCTORY COMMANDS

(terminated with a carriage return). TECO will respond by printing an
asterisk at the 1left margin to indicate that it is ready to accept
user commands. At this point, one or more commands may be typed at
the terminal, and TECO will execute the commands upon receipt of two
consecutive ESCAPE characters. The ESCAPE is a non-printing character
which may be 1labelled ESC, ALT, or PREFIX on some keyboards. TECO
echoes a dollar sign ($) whenever an ESCAPE is received. The dollar
sign character is used in examples throughout this manual to represent
ESCAPE.

You can also summon TECO with the MAKE and TECO CCL commands.
To create a new file, use the MAKE command. The format is
MAKE filespec

where filespec is the name of the new file and the device you wish to
store it on. TECO opens the file you specify for output.

To edit an existing file, use the TECO command. The format is
TECO filespec

where filespec is the name of an already existing file you wish to
edit. TECO opens the file for input.

A TECO command consists of one or two characters which cause a
specific operation to be performed. Some TECO commands may be
preceded or followed by arguments. Arguments may be either numeric or
textual. A numeric argument is simply an integer value which might be
used to indicate such things as the number of times a command should
be executed. A text argument is a string of ASCII characters which
might be words of text, for example, or a file specification,

If a command requires a numeric argument, the numeric argument always
precedes the command. If a command requires a text argument, the text
argument always follows the command. All text arguments are
terminated by a special character (usually an ESCAPE) which indicates
to TECO that the next character typed will be the first character of a
new command.

If more than one command 1is typed 1in response to the asterisk
generated by TECO, the command string will be executed from left to
right until either all commands have been executed or a command error
is recognized. If an error is encountered, a message is printed and
the rest of the command string is ignored. 1In any case, TECO prints
another asterisk at the left margin as soon as it finishes execution
of a command string, so that additional commands may be entered.

The extensive text editing capability of TECO implies a 1large and
versatile command set. However, the novice TECO user will find that
little more than a dozen basic commands suffice for most editing
requirements. The following section introduces the basic TECO
commands. The full command set will be described 1later in this
manual.

1.2 FILE SELECTION COMMANDS

Input and output files may be specified to TECO in several ways. The
following commands permit flexible file selection with TECO.

INTRODUCTORY COMMANDS

NOTE

All of the following file selection
commands are shown with a general
argument of "filespec". The actual
contents of this filespec argument are
operating system dependent.

TECC will accept input text from any input device in the operating
system. The input device may be specified by means of an ER command
terminated by an ESCAPE. The ER command causes TECO to open the
specified file and print an error message if the file is not found.
This command does not cause any portion of the file to be read into
the text buffer, however. The following examples illustrate use of
the ER command:

Command Function

ERfilespec$ General form of the ER command where
“filespec" 1is the designation of the input
file. The command is terminated by an
ESCAPE, which echoes as a dollar sign.

The following examples illustrate the use of the ER command.

ERFPR! % Prepare to read an input file from the paper
tape reader.

ERFROG.MACS Prepare to read input filie PROG.MAC from the
system's default device.

ERRXA1:FROG.FOR$ Prepare to read 1input file PROG.FOR from
RXAl:.

TECO will write output text onto any device in the operating system.
The output file may be specified by means of an EW command terminated
by an ESCAPE. If the output device is a file-structured device (e.g.,
a disk), a file name and extension (if any) must be supplied. 1If a
file name is specified but no device 1is explicitly defined, the
system's default device is assumed. The following examples illustrate
use of the EW command, which has the same format as the ER command:

Command Function

EWfilespec$ General form of the EW command where
"filespec” 1is the designation of the output
file. The command is terminated by an
ESCAPE, which echoes as a dollar sign..

EWSYS!TEXT.LST$ Prepare to write output file TEXT.LST on
SYysS:.
EWFROGS » Prepare to write output file PROG on the

system's default device.

EWRXAL!TEXT.LST$ Prepare to write output file TEXT.LST on
RXAl:.

It is not always necessary to specify an input file. If the user
desires to «create a file without using any previously edited text as
input, he may type commands to insert the necessary text directly into
the text buffer from the keyboard and, at the end of each page, write
the content of the buffer onto an output file. Since all input is
supplied from the keyboard, no input file is necessary.

1-3

INTRODUCTORY COMMANDS

An output file is unnecessary if the user desires only to examine an
input file, without making permanent changes or corrections. 1In this
case, the content of the input file may be read into the text buffer
page by page and examined at the terminal. Since all output is
printed on the user terminal, no output file is needed.

When the user is finished editing a file, he may use the EX command to
close out the file and exit from TECO. The current contents of the
text buffer, and any portion of the input file that has not been read
yet, are «copied to the output file before TECO exits. Note that the
EX command takes no arguments.

Command Function

EX Move the remainder of the current input file
to the current output file, close the output
file, then return to the monitor.

The following examples illustrate the use of the EX command.

ERINFUT .MACSEWOUTFUT . MACS$ Open an input file "INPUT.MAC" and
open an output file named
"QUTPUT.MAC". The double ESCAPE
{$$) terminates the command string
and causes the string to be
executed. Note that the ESCAPE
which terminates the EW command may
be one of the two ESCAPEs which
terminates the command string.

ERFILE .MACSEWCOFY,.MACSEX$$ Open an input file "FILE.MAC" and
open an output file named
"COPY.MAC", then copy all the text
in the input file to the output
file, close the output file and
exit from TECO.

TECO will only keep one input and one output file open and selected at
a time. The current input file may be changed by simply using the ER
command to specify a new file. The EX command or one of the other

file closing commands presented later may be used to close the output
file.

1.3 INPUT AND OUTPUT COMMANDS

The following commands permit pages of text to be read into the TECO
text buffer from an input device or written from the buffer onto an
output device. Once a page of text has been written onto the output
file, it <cannot be recalled into the text buffer unless the output
file is closed and reopened as an input file,

Command Function *

Y Clear the text buffer, then read the next
page of the input file into the buffer.
Since the Y command causes the contents of
the text buffer to be 1lost, it 1is not
permitted if an output file is open and there
is text in the buffer.

INTRODUCTORY COMMANDS

Command Function

P Write the content of the text buffer onto the
next page of the output file, then clear the
buffer and read the next page of the input
file into the buffer.

nP Execute the P command n times, where n must
be an integer in the range 1<=n<65535. 1If n
is not specified, a value of 1 is assumed.

1.4 POINTER POCSITIONING COMMANDS

The buffer pointer provides the only means of specifying the 1location
within a block of text at which insertions, deletions or corrections
are to be made. The following commands permit the buffer pointer to
be moved to a position between any two adjacent characters in the
buffer. TECO positions the pointer before the first character in the
buffer after every Y or P command.

Command Function
J Move the pointer to the beginning of the
buffer.
L Move the pointer forward to a position

between the next 1line feed and the first
character of the next line. That is, advance
the pointer to the beginning of the next
line.

nL Execute the L command n times, where n may be
any integer., A positive value of n moves the
pointer to the beginning of the nth 1line
following the current pointer position. A
negative value moves the pointer backward n
lines and positions it at the beginning of
the nth line preceding the current position.
If n 1is =zero, the pointer is moved to the
beginning of the 1line on which it is
currently positioned.

C Advance the pointer forward across one
character.

nC Execute the C command n times, where n must
be an integer in the range -32768<=n<=32767,
A positive value of n moves the pointer
forward across n characters (carriage
return/line feed counts as two characters).
A negative value of n moves the pointer
backward across n characters. If n is zero,
the pointer position is not changed.

These commands may be used to move the buffer pointer across any
number of lines or characters in either direction; however, they will
not move the pointer across a page boundary. If a C command attempts
to move the pointer backward beyond the beginning of the buffer or
forward past the end of the buffer, an error message 1is printed and
the command is ignored.

INTRODUCTORY COMMANDS

If an L command attempts to exceed the page boundaries in this manner,
the pointer 1is positioned at the boundary which would have been
exceeded. Thus the command "-10000L" would position the pointer
before the first character in the buffer. The command "10000L" would
position the pointer after the last character in the buffer. No error
message is printed in either case.

1.5 TYPE OUT COMMANDS

The following commands permit portions of the text in the buffer to be
printed out for examination. These commands do not move the buffer
pointer. :

Command Function

T Type the content of the text buffer from the
current position of the pointer through and
including the next line feed character.

nT Type n lines, where n must be an integer in
the range -32768<=n<=32767. A positive value
of n causes the n lines following the pointer
to be typed. A negative value of n causes
the n 1lines preceding the pointer to be
typed. If n is zero, the content of the
buffer from the beginning of the 1line on
which the pointer is located up to the
pointer is typed. This facilitates locating
the buffer pointer.

HT Type the entire content of the text buffer.

\ Type the current 1line, Equivalent to the
sequence "OTT".

The 0T command is particularly useful for determining the position of
the buffer pointer. This command should be used frequently to
determine that the pointer is actually located where the user expects
it to be.

1.6 TEXT MODIFICATION COMMANDS

The following commands permit the user to insert or delete text from
the buffer.

Command Function

Itext$ Where "text" is a string of ASCII characters
terminated by an ESCAPE, which echoes as a
dollar sign. The specified text is inserted
into the buffer at the current position of
the pointer, with the pointer positioned
immediately after the last character of the
insertion.

K Delete the content of the text buffer from
the current position of the pointer through
and including the next line feed character.

INTRODUCTORY COMMANDS

Command Function
nkK Execute the K command n times, where n may be

any integer in the range -32768<=n<=32767. A
positive value of n causes the n lines
following the pointer to be deleted. A
negative wvalue of n causes the n lines
preceding the pointer to be deleted. If n is
zero, the content of the buffer from the
beginning of the line on which the pointer is
located up to the pointer is deleted.

HK Delete the entire content of the text buffer.

D Delete the <character following the buffer
pointer.

nD Execute the D command n times, where n may be

any integer in the range -32768<=n<=32767. A
positive value of n causes the n characters
following the pointer to be deleted. A
negative value of n causes the n characters
preceding the pointer to be deleted. 1If n is
zero, the command is ignored.

Like the L command, the D and K commands may not execute across page
boundaries., If a K command attempts to delete text up to and across
the beginning or end of the buffer, text will be deleted only up to
the buffer boundary and the pointer will be positioned at the
boundary. ©No error message is printed. A D command attempting to
delete text across a page boundary will produce an error and the
command is ignored.

1.7 SEARCH COMMANDS

The following commands may be used to search for a specified string of
characters which may occur somewhere in the input file. They cause
the buffer pointer to be positioned immediately after the last
character in the specified string, if found.

Command Function

Stext$ Where "text" is a string of ASCII characters
terminated with an ESCAPE which echoes as a
dollar sign. This command searches the text
buffer for the next occurrence of the
specified character string following the
current pointer position. If the string is
found, the pointer is positioned after the
last character on the string. If it is not
found, the pointer is positioned immediately
before the first character in the buffer and
an error message is printed.

Ntexts$ Performs the same function as the S command
except that the search is continued across
page boundaries, if necessary, until the
character string 1is found or the end of the
input file is reached. If the end of the
input file 1is reached, an error message is
printed and it 1is necessary to close the
output file and reopen it as an input file
before any further editing may be done on
that file.

1-7

INTRODUCTORY COMMANDS

Both the S command and the N command begin searching for the specified
character string at the current position of the pointer. Therefore,
neither command will locate any occurrence of the character string
which precedes the current pointer position, nor will they locate any
character string which continues across a page boundary.

Both commands execute the search by attempting to match the command
argument, character for character, with some portion of the buffer
contents. If an N command reaches the end of the buffer without
finding a match for its arqument, it writes the content of the buffer
onto the output file, clears the buffer, reads the next page of the
input file into the buffer, and continues the search.

1.8 SUMMARY

At this point, the basic TECO commands have been introduced. Recall
that TECO indicates it is ready to accept user commands by printing an
asterisk (*). Once TECO has printed an asterisk, one or more commands
may be typed at the terminal., Errors may be corrected by typing the
DELETE key to delete characters. The DELETE key may be labeled DEL or
RUBOUT on some keyboards. Each depression of the DELETE key deletes
one character, beginning with the 1last character typed, and then
prints the deleted character at the terminal. An entire command
string may be deleted in this manner, if necessary. Once the correct
command (s) have been entered, typing a double ESCAPE ($$) causes TECO
to execute the command(s) in the order in which they were entered, and
to print another asterisk so that additional commands may be typed.
Note that this manner of operation 1is different from most other
editors. In particular, carriage return has no special significance
to TECO. Only the double ESCAPE forces execution of the command
string.

If TECO encounters an erroneous command, it prints an error message
and ignores the erroneous command as well as all commands which follow
it. All error messages are of the form:

2XXX Message

where XXX is an error code and the message 1is a self explanatory
message relating to the command that generated the error. Every error
message is followed by an asterisk at the left margin, indicating that
TECO is ready to accept additional commands. 1If the first command
entered after a TECO-generated error message is a single question mark
character (?), TECO will print the erroneous command string up to and
including the character which caused the error message. This
facilitates 1locating errors in long command strings and determining
how much of a command string was executed before the error was
encountered.

At the conclusion of an editing job, the user may type EX to exit
TECO. If an input and output file are open at the time the EX command
is encountered, the remainder of the input file, including the current
contents of the text buffer, is copied to the output file, and the
output file is closed before TECO exits,

1.9 SAMPLE EDITING JOB

The following sample editing job is included to help the new user to
achieve a greater understanding of the basic TECO commands. The
entire terminal output from the editing run has been reproduced

INTRODUCTORY COMMANDS

intact, and numbers have been added in the left margin referencing the
explanatory paragraphs which follow.

l.

At this point, the user calls TECO into memory. TECO
responds by printing an asterisk at the left margin. The
user then enters an EW commmand, opening an output file
called "FILEL.TXT" on DTI1. There is no input file. Upon
receipt of the double ESCAPE ($$), TECO created the
designated output file, then printed another asterisk at the
left margin.

The user then enters a command string consisting of two
commands. The HK command clears the text buffer (not really
necessary, since it was already empty), and the I command
inserts 18 1lines of text into the buffer, including 8 blank
lines. TECO executes these commands upon receipt of the
second double ESCAPE. At this point, the bhuffer pointer is
positioned at the end of the buffer, following the last 1line
feed character in the text. Note that the user made an error
while typing the word "MASSACHUSETTS". He typed "MASA", then
realized his mistake and struck the DELETE key once to delete
the second "A". TECO echoes the deleted character. The user
then types the correct character and continues the insertion.

The user then types -20L to move the pointer to the beginning
of the huffer and SETTSS$ to position the pointer immediately
after the character string "ETTS", which terminates the word
"MASSACHUSETTS". He then wuses an I command to insert one
space and a five-digit =zip code. A second S command
positions the pointer after the word *INFORMATION*., The 2C
command moves the pointer to the beginning of the next 1line
(carriage return and line feed count as two characters), and
the user deletes the words "PERTAINING TO" and replaces them
with the word "REGARDING",

The user continues editing by positioning the pointer after
the word "GUIDE". He then deletes this word and replaces it
with the word "MANUAL". Finally, he searches for the word
"SINCERELY", types 0T to determine that the pointer was
correctly positioned between the Y and the comma which
follows 1it, and types OK to delete everything on the line
except the comma. He then inserts "VERY TRULY YOURS" in
place of the word "SINCERELY". An HT command causes the
edited text to be printed at the terminal.

The command string EX$$ causes the content of the buffer to
be written onto the output file and closes the output file.
The user then reenters TECO and reopens the file "FILELl.TXT"
as an input file and specifies the line printer as an output
file.

This command string reads the first (and only) page of
"FILE1l.TXT" into the buffer, deletes the first 5 lines,
replaces them with a different address and salutation, then
prints the content of the buffer on the terminal for
verification and finally prints the new version of the letter
onto the line printer. Note that the previous version of the
letter still resides in file "FILE1l.TXT" on DTIl.

1-9

LSl

ol
P cam cam iam e e tem tem cmm e tam et e cmm cam tam e ew s tmm tam i wsm A e e e cmm cee sam o e e e et e e tem e e e R

S

i i cem e cam i v cme em v e e e e e P i e

INTRODUCTORY COMMANDS

XEWDT1IFILEL . TXTS$S

XHKIMR. JOHN F. JONES

COMFUTER ELECTRONICS CORFORATION
BOSTON,» MASSACHUSETTS

DEAR MR. JONES!

I WAS PLEASED TO RECEIVE YOUR REQUEST FOR INFORMATION

FERTAINING TO THE NEW TECO-11 TEXT EDITING AND CORRECTING
PROGRAM.

ENCLOSED IS A COPY OF THE TECO~-11 USER’S GUIDEs, WHICH
SHOULD ANSWER ALL OF YOUR GQUESTIONS.

SINCERELY

$$

X-20LSETTS$I 02150%$
XSTION$2C13DIREGARDINGSS
XSGUIDE$-SDIMANUAL $$

XSELY$0T$$

SINCERELYXOKIVERY TRULY YOURS$$
XHT$$

MR. JOHN F. JONES

COMFUTER ELECTRONICS CORFORATION
BOSTONs HMASSACHUSETTS 02150

DEAR MR. JONES?

I WAS PLEASED TO RECEIVE YOUR REQUEST FOR INFORMATION
REGARDING THE NEW TECO-11 TEXT EDITING AND CORRECTING
FROGRAM .

ENCLOSED IS A COPY OF THE TECO-11 USER’S MANUAL» WHICH
SHOULLD ANSWER ALL OF YOUR QUESTIONS.

VERY TRULY YDURS:»

XEX$$

(TECO is reruny orerating sgustem derendent)
XERDT1:FILEL.TXTSEWLFP:%%

XYSKIMR., JAMES B. SMITH

DATEK ASSOCIATESs INC.

122 MAIN STREET WEST

AUSTIN» TEXAS

DEAR MR. SMITH?

$$

*HT$$

MR. JAMES B. SMITH
DATEK ASSOCIATESy INC.
122 MAIN STREET WEST
AUSTINy TEXAS

DEAR MR, SMITH:

I WAS FLEASED TO RECEIVE YOUR REQUEST FOR INFORMATION

INTRODUCTORY COMMANDS

REGARDING THE NEW TECO-11 TEXT EDITING AND CORRECTING

FROGRAM .

ENCLOSED IS A COFY OF THE TECO-11 USER’S MANUAL» WHICH
SHOULD ANSWER ALL OF YOUR QUESTIONS.

VERY TRULY YOURS-»

XEX$$

CHAPTER 2

CONCEPTS

2.1 INTRODUCTION

This chapter presents information describing those concepts of TECO
that are relatively independent of the commands you may enter. This
information, where applicable, is applied to specific commands in
Chapter 3.

2.2 MEMORY USE

TECO operates most efficiently on systems with at least 16K of memory.
However, TECO will run on 8K or 12K systems, albeit slower.

In all configurations, TECO allocates sufficient storage to contain a
4000 (decimal)-character editing buffer. In 8K, TECO allocates a
Q-register storage area which contains 2944 (decimal) characters.
(See Section 2,14 for a discussion of Q-registers.) In 12K, TECO
expands this by 2K. 1In 16K, TECO allocates space to store 1l-line
error messages. These messages exist only in systems with 16K or more
memory and reside in a file internal to and accessible only by TECO.

In 8K and 12K systems, TECO uses a series of overlays. In 16K, these
overlays are permanently resident.

The overlay system is:

Level Mnemonic Commands
Overlay 1 1/0 ER, EB, EW (initially resident)
Overlay 2 Quote " Conditionals, 0, and <
Overlay 3 Error Error messages
Overlay 4 Exit EC, EF, EG, EK, EX
Overlay 5 Flags EH, EO, ET, EU, =

You will be able to increase the efficiency of TECO in 8K and 12K
configurations by grouping commands so as to minimize overlay
swapping.

CONCEPTS

2.3 DATA FILES

You must specify the file from which TECO is to extract information
and the file into which TECO places edited or examined information.
When you enter an input command, TECO normally brings part of the
input file into the editing buffer. (The editing buffer is discussed
in Section 2.5.) An output command then tells TECO to write the
contents of the editing buffer onto the output file.

NOTE

An output command is different from an
exit command. Generally, an output
command writes the contents of the
editing buffer onto the output file,
which remains open. An exit command may
or may not write to an output file. In
contrast, it normally closes the output
file.

TECO can only process a file sequentially; that is, TECO can access
the nth page in a file only after it reads the previous (n-1) pages.
Also, you cannot reaccess the information TECO places 1in the output
file until vyou close both the input and the output files. Then, and
only then, can you declare the former output file to be the new input
file. You may subsequently use an input command to bring the portion
of a file you wish to reaccess into the editing buffer.

When using such hard-copy devices as card readers and paper-tape
readers, you need only specify a device name to open a file for input
or output, For disk and DECtape files, you must specify filenames as
well as the device name. If you omit the device name, TECO assumes
DSK:.

NOTE

If 0S/8 1is not configured for the
devices you wish to use, consult the
BUILD section of the 0S/8 System
Reference Manual for a 1listing of
available devices and the 0S/8 Software
Support Manual for instructions on
adding other device handlers to your
configuration.

Filenames for file-structured devices consist of two parts: the first
part, the filename proper, consists of from one to six alphanumeric
characters; the second part, which 1is optional, 1is ~called the
"extension." If present, the extension consists of either one or two
alphanumeric characters. You must separate the filename from the
extension by a period. For example,

RXALIMYFILE.FT

is a file specification which designates the FORTRAN file called
MMYFILE. This file resides on the floppy in drive 1.

If you do not enter an extension, CCL (the 0S/8 Concise Command
Language Utility Program) supplies .PA. If you do not want the file
to have an extension, you must type a period (.) after the filename.

CONCEPTS

For example,

is the command which retrieves the file MYFILE. with no extension
from DSK: (the system device).

NOTE

The term "file specification"® is
abbreviated as filespec throughout this
manual. For a complete discussion of
file specifications, see the 03/8 System
Reference Manual.

When you use floppies (diskettes), DIGITAL strongly recommends that
you keep vyour files small. 1If a file is large and you store other
files on the device, you may have difficulties with some of TECO's 1/0
commands because there may be insufficient room to write the file onto
the device. Consequently, if you are having problems, you should
segment the file using EF commands (see Section 4.14).

2.4 CHARACTER SET

TECO uses the entire ASCII character set, ASCII characters work on
two levels in TECO: the command level and the data level.

You can use every ASCII character from control-A (decimal wvalue 01)
through delete (decimal value 127) as data in TECO. They can all be
read, written, and inserted. (The ASCII character set is 1listed in
Appendix A.)

The only character that is not completely legal as data 1is the null
character (decimal wvalue 0). If you insert a null character, TECO
writes it to the output file. However, when TECO reads a null
character into the editing buffer (through the reopening of the file
as input), TECO removes it from the file. The null character echoes
as @ on the terminal.

TECO interprets many of the ASCII characters as commands. When you
use them as commands, the lower-case characters have the same meaning
as their upper-case equivalents.
NOTE
In this manual, commands always appear

as capital letters.

Appendix C is a list of TECO commands.

2.4.1 Special Characters

Because of their use as special immediate-action commands (e.g.,
monitor commands or erasing commands), you may only implicitly enter
certain characters into a command string. All of them, however, are
legal as data (except the null character) and you may insert them

CONCEPTS

using commands designed for this purpose. For example, you may insert
a <°C>, which has a decimal ASCII value of 3, into the editing buffer
using a 3I$ command, where 3 is the argument to the I$ command.

The characters to which this restriction applies are called "special
characters" and are listed in Table 2-1.

Table 2-1
Special Characters
Decimal
Command - ASCII Vvalue Function
<CTRL/C> 3 A monitor Command
<CTRL/G><sp> 7-32 A retyping command (causes TECO to
retype line showing editorial
corrections)
<CTRL/G>* 7-42 A typing command (types current
command string)
<CTRL/G><"G> 7-7 An erasing command (erases command
string)
<CTRL/0O> 15 A monitor command (ends terminal
output if TECO is printing)
<CTRL/U> 21 An erasing command (deletes current
line)
DELETE 127 An erasing command (deletes last
character typed)
ESCAPE 27 Standard text argument terminator
(two successive ESCAPEs terminate a
command string)

2.4.2 Control Characters

You can enter control <characters (ASCII decimal wvalues 0-31) by
holding down the CONTROL key while typing a character key.

NOTE

TECO prints a control character as a
circumflex followed by the character
that you type to produce the control
character. For example, <CTRL/A> prints
as “a.

On some terminals, the circumflex prints
as an up-arrow. For example,
<CONTROL/A> prints as "A.

You can enter many of the control characters into command strings by
typing a circumflex (or up-arrow) followed by the desired character.

' CONCEPTS

For example, <CONTROL/D> is equivalent to <"D>. You should use this
method only when typing the control character as a command and not as
text. That is, in an alphanumeric argument, TECQ interprets the
circumflex-letter combination as two characters. 1In a command string,
however, TECO interprets the circumflex-letter combination as one of
the control characters.

NOTE

Throughout this manual, entering a
control character as a circumflex
followed by a letter is called the
circumflex construction.

2.4.3 Carriage Control Functions and Responses

A few of the control characters have special echces toc the terminal,
namely, bell, tab (<KCONTROL/I>), line feed, form feed (<CONTROL/L>),
and carriage return. These characters echo on your terminal by
performing their particular action.

When you type a carriage return, the TECO monitor automatically
generates a line feed following it. The echo to the carriage return
type-in is a carriage return followed by a line feed. As TECO appends
a line feed character to every carriage return you type, you must type
a carriage return followed by a <DELETE> to enter a carriage return
without a 1ine feed. However, 1if you enter a carriage return as
<CONTROL/J>, TECO does not append a line feed to it.

Except as text arguments, TECO 1ignores the characters "carriage
return® and "line feed" in command strings. TECO also ignores spaces
within command strings. Consequently, you may insert spaces, carriage
returns, and 1line feeds 1into command strings to improve their
readability.

LESCAPE echoes and prints as a dollar sign ($).

2.5 DATA FORMAT -- LINES AND PAGES

TECO lines can be of any 1length, subject to the 1limitations of
available memory. The characters that define the end of a line are
the line feed, the vertical tab, and the form feed. (These are the
characters which cause vertical movement.) The end of the editing
buffer may also be an end-of-line character if no 1line feed |is
present. When TECO counts lines, it does so by counting these
end-of-line characters.

An end-of-line character belongs to the line that it terminates.

A text does not have to contain end-of-line characters; however, if
you do not include them, the TECO commands that are line-dependent
will not be useful, DIGITAL recommends that you enter data as a
series of lines.

Pages are delimited in TECO by form feed characters. Thus, a page of
text consists of all the ASCII code between two form feed characters.
A form feed character does not belong to either of the two pages that
it separates, Two consecutive form feed characters delimit a null

page.

CONCEPTS

A form feed character at the end of a file has no effect 1in TECO.
Thus, you may omit it,

TECO operates most efficiently if you divide files 1into pages of
approximately fifty or fewer lines. You may edit files with longer
pages or files containing no form feeds, but this process requires
more care because you may use more memory than is available. (See
Section 4.2 for a list describing how TECO determines when to stop
reading characters into the editing buffer.)

2.6 EDITING BUFFER
You can edit a program by:
1. Reading text into the editing buffer
2. Making changes to the text in this buffer

3. Writing the modified text from the editing buffer out to the
new file.

This editing buffer is a block of memory within TECO. When reading or
inserting data, TECO places it into the buffer, and the data remains
there while you are editing it. It leaves the buffer only when vyou
type an output command.

The buffer usually contains one page of text consisting of up to 4000
characters. However, the terminating form feed character never
appears in the buffer, If TECO terminates input to the editing buffer
because it reads a form feed character, TECO sets the "E form feed
flag to -1.

TECO normally passes data into and out of the buffer one page at a
time.

2.7 BUFFER POINTER

The "buffer pointer" construct is fundamental to TECO because the
place indicated by this pointer determines the effect of many editing
commands. For example, character insertion and deletion always take
place at this position.

The buffer pointer is a position indicator. It always points to a
position between two characters 1in the editing buffer (unless it
points to a position immediately before or after the buffer's
contents).

Either you or TECO can move this pointer to any position in the
buffer. It cannot, however, point to a position beyond the boundaries
of the buffer; that is, you cannot move it farther forward than the
position immediately preceding the first character in the buffer or
farther backward than the position following the last character in the
buffer.

Although TECO must sequentially process pages in a file, it can
address characters randomly within a page.

2-6

CONCEPTS

2.8 GENERAL COMMAND STRING SYNTAX

You can type TECO commands by typing a command string (a command
string is a sequence of commands, one immediately after the other, and
concluding with two consecutive ESCAPEs).

The only formal delimiter in TECO 1is the ESCAPE character, which
terminates some alphanumeric arguments (see Section 2.9.1). However,
if you use the @ command modifier (see Section 4.68) to a command
accepting a textual argument, you may specify any delimiter you wish.
For example, Itext$ and @I/text/ (where / is an arbitrary delimiter)
are equivalent.

The action that tells TECO to begin the execution of a command striné
is the double ESCAPE ($$). The double ESCAPE is the only command
string terminator that TECO accepts.

You may type a command string after TECO prints a prompting asterisk.
An example of a command string is:

XYIheading$2K4DNtag$2LT+$

Execution of this command string begins only after you type two
consecutive ESCAPEs. TECO indicates that it is beginning execution by
printing a carriage return/line feed. At this time, TECO starts
executing each command in the command string in turn, starting at the
command immediately following the asterisk. When TECO has executed
all commands in the string, it prints another asterisk to indicate
that it is ready to accept another command string.

NOTE

If you enter a command which causes TECO
to type out information, the asterisk
prints immediately after the type-out
rather than at the left margin if the
sequence does not end with a carriage
return/line feed.

If TECO cannot execute a command, execution of the command string
stops at that point and TECO prints an error message. However,
because TECO executes one operation before proceeding to the next, it
executes all commands preceding an error. Thus, TECO does not execute
the erroneous command (and any command that may follow). (Errors,
error messages, and recovery techniques are discussed in Section
3.16.)

The only exceptions to the rule that TECO does not execute commands
until you enter the double ESCAPE are:

1. The special characters in Table 2-1

2. The ? command, which types out all commands executed before
an error occurred.

3. The <°S> command, which stores a command string in Q-register
Z.

CONCEPTS

2.9 ARGUMENTS

If a command requires a numeric argument, the argument always precedes
the command. If a command requires a text argument, the argument
always follows the command.

2.9.1 Text Arguments

Text arguments are character strings that follow a command. Some
examples of text arguments are: search strings, command string tags,
and file specifications,

Text that you place into the buffer is usually as the argument to an
insertion string.

A text argument always follows the command to which it applies.
Commands that take text arguments require that you terminate the
argument with an ESCAPE; however, the @ command modifier allows you
to choose an alternate delimiter to a text argument.

TECO uses the ESCAPE terminating a text argument as one of the two
ESCAPEs necessary to terminate a command string.

Example:

XITEXT$STEXT14$% An ESCAPE terminates the alphanumeric
argument TEXT. An ESCAPE also terminates the
second argument TEST; however, TECO also
uses this as one of the ESCAPEs terminating
the command string.

All ASCII characters are legal as text arguments. However, the
special characters listed in Table 2-1 may only be indirectly inserted
(for example, the nI$ command can insert any character).

2.9.2 Numeric Arguments

Numeric arguments always precede the command to which they apply. In
some cases, Yyou need to enter only a single numeric argument; in
others, the command may require a pair of arguments.

NOTE

No TECO command accepts more than two
numeric arguments.

In many cases, numeric arguments must be positive; however, some
commands allow a numeric argument to be negative or zero. The number
and type of numeric arguments that you may use with a command are
described in Chapter 4.

When you use a numeric argument to specify a buffer position, the
number represents the number of characters in the buffer to the left
of that position. Thus, the nth position means the position to the
right of the nth character in the buffer, that is, between the nth and
(n+l)st characters.

Paired numeric arguments are always buffer-positioning arguments,
When you use two numeric arguments, separate them with a comma. Such

2-8

' CONCEPTS

a pair indicates all the characters in the editing buffer that lie
between the two buffer positions indexed by the two arguments. This
definition is precise because the term *buffer position®™ always points
to a position before or after a given character, not “"on" or "at"™ the
character.

Example:

12,20 This argument specifies the 13th through the 20th
characters in the buffer. These characters are
specified because the 12 indicates the position
between the 12th and 13th characters, and the 20
indicates the position between the 20th and 21lst
characters.

You may construct a numeric operator from arithmetic/logical
combinations. Table 2-2 lists the TECO operators.

Table 2-2
Arithmetic/Logical Operators
+ Ignored, if used before the first term in a +2=2
string
+ Addition 5+6=11
- Negation, if used before the first term in a- -2=-2
string
- Subtraction 8-2=6
* Multiplication 8*2=16
/ Integer divide (and drop the remainder) 8/2=4
8/3=2
& Bitwise logical AND of the binary representa- 12&10=8
tions of two terms
Bitwise logical OR of the binary representa- 12410=14
| tions of two terms

When you use more than one arithmetic/logical operation in a single
numeric argument, TECO performs the operations from left to right.

You may override this sequence through the wuse of parentheses ().
TECO evaluates all operations within parentheses before those outside
the parentheses. TECO also accepts nested parentheses,

TECO numbers are normally decimal integers. However, you may change
the radix to octal by typing "0. TECO will then remain in octal radix
unless you change it by entering a "D command.

Example:

~0177=127 (decimal)
3%7010=30 (octal)

2+43%4=20

2+(3%4)=14
24(3%(16/(e—-1))/2+(2%5)=24
28(385)%16=18
-{((2+(3%4)-18(6+8))/2)=-4

2-9

CONCEPTS

You may use the arithmetic/logical operators and parentheses to form
one or both of the numeric arguments in a pair.

Example:

260-(3%42)2504+(77/3)F
is identical to:

144,275F

2.9.3 Commands That Return a Value

Generally speaking, there are two main categories of TECO commands:
1) those that perform some operation, such as inserting text; and 2)
those that "return" a value, such as the number of characters in the
editing buffer. (Some commands do both.)

A command is said to return a value if the command both causes TECO to
calculate the current value of some gquantity and then takes on this
value. You may subsequently use this value as an argument to the next
command in the command string. If the command does not take a numeric
argument, TECO ignores the number. For example, the "N flag is equal
to -1 when TECO reads in the end of a file. Otherwise, it is equal to
0. Thus, the command string segment ... N"E..,. causes the value of
the "N flag to be an argument for the "E (execute if equal to o)
command. If it equals 0, TECO executes the commands immediately after
the E. Consequently, using such a command is equivalent to typing the
particular number that the command returns as a value, except that the
value is not usuallv known in advance.

You may use commands that return values with each other and with
explicit numbers. All the same rules apply. Each command that
returns a value has all the properties of a number that you explicitly

type.

If you concatenate commands that return values with each other (or
with digits), the wvalue that TECO returns 1is not defined. For
example, you should not use such arguments as:

22
248
-22Z
3+22

2.10 SUPER TECO

Inevitably, you will lose valuable files or directories because of
your error, a hardware error, or an operating system error. To
retrieve files whose names have been accidentally deleted from the
directory of a device, you can create a version of TECO called SUPER
TECO by typing a 2-word patch using ODT. (See the 0S/8 System
Reference Manual for a complete description of ODT.) This patch is:

LGET SYS TECO
.0D0T
2034/7420 7610
2117/7450 7410
;gnuz SYS STECO
2-10

CONCEPTS

To use STECO, mount the device on which you want to retrieve the file,
and then type ’ .

R STECO
XERDEV:$$
X_STRINGS$

where STRING is a part of the first page of the desired file (e.g.,
the title line). STECO then searches the entire device for the first
occurrence of STRING. Because the device may contain older or similar
copies of the desired file, examine the text following each occurrence
of STRING. If the file is not the one you want, continue searching
until you find the correct file. Once you find the file, type:

XERDEVISEWDEV2IFILESS
XN-STRINGSNENDSTRINGSECSS

where
n is the number of times you had to search for STRING
ENDSTRING is a string at the end of the file.

This command operation retrieves your file and copies it onto another
device.

If, as sometimes occurs, meaningless characters precede the first good
line of your file, simply delete them.

CHAPTER 3

USING TECO

3.1 INTRODUCTION

This chapter describes how you call TECO from the 0S/8 monitor and
presents the commands that TECO recognizes. Because these commands
are grouped by function, a command may be mentioned in mcre than one
context.

3.2 CALLING TECO

You can call (or load) TECO by typing one of four commands to the
monitor.

You may load TECO whenever the monitor prints a dot. The dot
indicates that TECO is waiting for a new command.

If you do not type an extension after a filename, CCL (the 0S/8
Concise Command Language Utility Program) assumes .PA.

3.2.1 R TECO Command
You can call TECO by typing:

.k TECO
X

This command brings TECO into memory. It does not automatically
initialize any particular device or file for input or output,

After 0S5/8 loads TECO into memory, TECO prints an asterisk indicating
it is ready to receive a command. This state, in which TECO waits for
a command string type-in, is the command mode. At this point, you can
enter a file specification command such as EB, ER, or EW.

.
If you are creating a file, you need only type an EWfilespec command
to create the file at the keyboard.

3.2.2 General Purpose Initialization Commands

TECO is used chiefly to create new files and to edit existing files.
These two functions are so common that there are special 0S/8 monitor
commands for calling TECO. These commands are MAKE and TECO.

USING TECO

You can follow both TECO and MAKE commands with a file specification.
If you do not use a filespec with a TECO command, CCL uses the name of
the last ASCII file specified in a TECO or MAKE command. If no
filename 1is given in a TECO command and no previous MAKE or TECO
command has been entered on that day, CCL prints the error message
"BAD RECOLLECTION". CCL also displays this message if you have not
typed an 0S/8 DATE command. (See the 0S5/8 System Reference Manual for
a description of the DATE command.)

NOTE .

TECO will remember a filespec only
between bootstraps or during the same
date of operations as entered in an 0S/8
monitor DATE command.

3.2,2,1 MAKE Command - You type:
.MAKE filespec

to instruct TECO to create a new file. The filename.ext parameter of
the filespec is . the name that you give the new file. The dev:
parameter of the filespec is the device on which the file will be
written; it can be any output device. If you omit dev: from the
filespec, TECO assumes DSK:.

The command
.MAKE filespec
is equivalent to:

.R TECO
*EWfilespec$$

The MAKE command opens an output file and gives it the name you
specify. Once TECO opens a file, you can create it with insert and
output commands.

You should choose the filename carefully when using the MAKE command.
If a file is already on the device with the same name, the MAKE
command overwirtes the old file. However, CCL prints the warning
message $%SUPERSEDING, If you do not wish to supersede the file, you
must type <°C> to return to the monitor.

After the 0S/8 monitor loads TECO, TECO prints an asterisk indicating
its readiness to receive a command string. Usually, you would then
create the file by using an insert command.

' USING TECO

Example:
+MAKE EARNNG.FT This command calls TECO for the creation
X of a FORTRAN file named EARNNG.FT.
+MAKE MYFILE.MA TECO 1is called and the output file
X MYFILE.MA on DSK: IS CREATED. AFTER
. YOU CLOSE THE FILE WITH THE EX command,
. the monitor accepts the second MAKE.
XEX$S This second command overwrites the first
+ MAKE unless you type <°C>,
%ZSUPERSEDING
+«MAKE MYFILE.MA This is the way in which you create most
*Irade of tesxtss files.

XFI2nd rade of textss$
*
.

*

XFIlast rade of text$s

XEC$$

3.2.2.2 TECO Command - Use the command

.TECO filespec

to call TECO for editing an existing file on a file-structured device,
TECO interprets the filespec in the same way as it does for the MAKE
command, except that the device must be a file-structured device
(disk, diskette, or DECtape).

The filename and extension must be exactly the same as those of the
file that you are editing.

The TECO command opens the specified file for input and reads in the
first page of that file. After TECO outputs the new version, it
renames the original (input) version of the file "filename.BK", and
gives the new version the name of the original file. This operation
is identical to that used for the EB command; that is,

TECO filespec
is equivalent to:

*EBfilespecYS
(See Section 4.12.) Also,

.TECO filespec2<filespecl

is equivalent to:

.R TECO
*ERfilespecl$SEWfilespec2SYS$$

You cannot use the TECO command with a file having the extension BK.
If a TECO filespec2<filespecl command would cause TECO to overwirte an

existing file, CCL prints the message RSUPERSEDING. If you do not
wish TECO to overwrite the file, type a <"C>.

3-3

'USING TECO

If you have entered a TECO filespec command, CCL remembers the
filespec the next time you type a TECO command. If you have entered
TECO filespec2<filespecl, CCL remembers only filespec2.

After the 0S/8 monitor loads TECO into memory, TECO prints a prompting
asterisk to indicate its readiness to receive a command string.

Example:

+TECO LIB40.MA This command initializes TECO for editing the
existing file LIB40.MA. At the completion of
editing, TECO automatically changes the name of
the original version of LIB40.MA to LIB40.BK and
gives the name LIB40.MA to the new version.

+TECO This command initializes TECO for editing the disk
file 1last referenced 1in a TECO or MAKE command.

If the last file referenced was LIB40.MA, then
this would be the file initialized.

3.2.3 MUNG Command

The MUNG Command performs the actions defined in a TECO macro. The
MUNG command can take two forms, the first of which:

.MUNG filespec
is equivalent to:

.R TECO
*ERfilespec$Y HXY HK MY$$

The second form:
.MUNG filespec,text
is equivalent to:

.R TECO
*ERfilespec$Y HXY HK Itext$MYSSS

When you enter a MUNG command, TECO places the first page of the file
specified in filespec into Q-register Y. If you omit the extension in
the filespec, CCL assumes TE.

If you enter a text argument, TECO places it into the text buffer.

Example:

The following demonstrates one way you could use the MUNG command.
The action that the macro performs is the formatting of a file into
50-line page segments. If the macro

J IEBS$ 2J 27I$ HXA HK MA Y
<1ST!"N;508
$"FA 0OSTS$ '0,.P0,.K>EX

is in the file FIFTY and if you wish to format the file TEXT.TX into
50-line pages, then the command

+MUNG FIFTYsTEXT.TX

3-4

USING TECO

causes the operation to be performed. The following i
cf hecw this macro operates {sees Section 4.4 for a de

formatting portion of this macro):

/]
)

1. The MUNG command performs an ER on file FIFTY.
2. The Y command brings the text into the buffer.

3. HXY stores the page in Q-register ¥ and the HK kills the

page.

4. MY places the string TEXT.TX into the buffer.

5. Control now passes to the macro, in which the JIEBS command
string inserts an EB before TEXT.TX and ZJ27I$ inserts an
ESCAPE after it,

6. HXA inserts the string EBTEXT.TXS into Q-register A.

7. HK kills the buffer,

8. The MA command executes the EBTEXT.TK command.

9. The remainder of the macro now formats the file TEXT.TX into
50-1line pages.

3.3 FILE SELECTION COMMANDS
File selection is the specifying of both the device from which input
is to be taken and the device to which output is to go. 1In the case
of file-structured devices, you must specify a filename as well as the
device.
If you want only to create a file or to edit an existing
file~-structured device, you may use either of the previously described
loading commands, that is,

.MAKE filespec
or

.TECO filespec

When you load TECO with the R TECO command, one or more of the file
selection commands must be used.

The file specification commands are:

EBfilespec Edit creating backup
ERfilespec Edit read from
EWfilespec Edit write to

3.4 INPUT COMMANDS

You can enter input commands to bring data from a previously opened
input file into the editing buffer. However, you must use an input
command only after entering an ER command (or its equivalent). Input
always starts at the beginning of the input file. Successive input
commands bring other parts of the input file into the editing buffer.

The amount of data TECO brings into the buffer depends on the buffer
size, the input commands, and the data itself.

After TECO has written a page of text onto the output file, you cannot
recall the page into the text buffer unless you close the output file
and then reopen it as an input file.

The input commands are:

A Append next page to end of buffer
p Page input and output
Y Yank, bring next page into buffer

The N, FN, and _ Search commands may also input data.

3.5 BUFFER POSITION NUMERIC ARGUMENTS

In many cases, you may use numeric arguments to specify buffer
positions. Because such arguments tend to be large and not easily
countable, the buffer positions which you may often use as numeric
arguments are represented by special characters. You may also use
these characters as values in arithmetic/logical operations. The
special characters are: ’

Beginning of buffer, always zero
Whole buffer, always equal to B,2
End of buffer

Current position in buffer

e NI W

3.6 BUFFER POINTER POSITIONING COMMANDS

You may use a buffer pointer positioning command to move the buffer
pointer. The buffer pointer positioning commands are:

C Continue forward movement
J Jump to character

L Line move

R Reverse character movement

In addition to these commands, the search (S, N, and) commands and
search/replace commands (FS and FN) also move the buffer pointer.

3.7 TEXT TYPE-OUT COMMANDS

You can type text type-out commands to display information in the
buffer, to type messages while executing a TECO macro, or to suppress
the typing of data. The text type-out commands are:

“A Type following text

T Type text

= Type-out value equal to expression
\ Type ASCII value of number

The two commands <"S> and <"Q> are not type-out commands; instead,
they allow you to stop the display and later resume at the place where
you stop. The command <“0> tells TECO to omit printing the remainder
of the output on the terminal.

TECO also contains the EU flag which, depending on its value, can flag
upper- or lower-case output.

3-6

USING TECO

3.8 DELETION COMMANDS

The deletion commands remove characters from the editing buffer. The
deletion commands are:

D Delete character
K Kill line

The K command preceded by a single numeric argument is a line-oriented
deletion command. However, if you enter it with a pair of numeric
arguments, it becomes character-oriented.

A search/replace command (FS or FN) with a null second text argument
also deletes text from the buffer.

3.9 INSERTION COMMANDS

The insertion commands place characters intc the editing buffer. The
insertion commands are:

1 Insert

nl$ Insert number n intc buffer

<TI> Insert and include tab

<TAB> Equivalent to <"I>

n\ Insert a number as individual characters into the buffer

3.10 OUTPUT AND EXIT COMMANDS

Output commands transfer data from the editing buffer to the output
file. An exit command generally transfers data to the output file.
However, output commands also terminate a TECO job and return to the
0S/8 monitor. One exit command, <°C>, Jjumps to the 0S/8 monitor
without performing output.

The four output commands are:

EC Exit and close after output of file
EF End file at page

P Page output and input next

PW Page write and append form feed

The three exit commands are:

EG Exit and go to executing program
EX Exit to 0S/8 monitor after output of file
e Jump to 0S/8 monitor

3.11 SEARCH COMMANDS

In many cases, you may find that the simplest way to reposition the
buffer pointer is to use a character string search. A search command
causes TECO to scan through the text until a specified string of
characters is found, and then to position the pointer at the end of
the string.

The string of characters for which you are searching is the text
argument following the search command. This search string can be from
1 to 31 characters long.

USING TECO

If TECO finds an exact match for the search string in the text, it
positions the buffer pointer immediately after the last character in
this match. If TECO cannot find a match for the string, it positions
the pointer at the beginning of the buffer and notifies you of the
failure if you had typed an S or FS. 1If you use an N or FN search,
TECO places the buffer pointer after all text in the file. The entire
file will have then been written to the output file.

If you type a colon modifier to a search command, then the search will
return a -1 if the search succeeds or a 0 if the search fails.

All searches begin at the current position of the buffer pointer.

If you do not include a text argument with a search command (for
example, S$$ or N$$), TECO executes the search using the last previous
search command argument.

The search commands are:

FN Search all pages until found, then replace

FS Search current page until found, then replace

N Search all pages until found

S Search current page until found

_ Search, but discard pages until found (that is, no
output)

Four match control characters are allowed in a search string:

<TND> Match any character except the one following

<TQ> Quote the next character (that is, accept command as a
character)

<"s> Match on separator

<TX> Match any character

3.12 ITERATION COMMANDS

An iteration command enumerates how many times TECO will execute a
command string or it may determine whether a command within an
iteration loop has failed so that the looping may end. The iteration
commands are:

<ono? Loop
; Exit loop upon search failure
n; Exit loop if n is negative

USING TECO

3.13 FLOW CONTROL COMMANDS

TECO contains commands that enable you to write editing and character

manipulation programs. The iteration command <...> is a specialized
example. In addition, TECO has an unconditional branch command, O,

and a set of conditional execution commands. The flow control
commands are: .

0 Goto

"C Execute if alphanumeric character
"E Execute if equal

"F Execute if false

"G Execute if greater than zero
"L Execute if less than zero

"N Execute if nonzero

"R Execute if alphanumeric range
"s Execute if successful

s Execute if true

"y Execute if unsuccessful

"< Execute if less than zerc

"> Execute if greater than zero

3.14 Q-REGISTERS

Q-registers are essentially data storage areas. These registers are
the means by which you perform programmed editing and text block
movement. Data that you store in Q-registers is not disturbed by the
flow of data 1into and out of the editing buffer. Thus, you may
preserve this data throughout an entire TECO job, and also retrieve or
change this data at any time.

There are 36 Q-registers, each of which has a single character name.
The name is either one of the digits 0 through 9 or one of the letters
A through Z. Each Q-register is divided into two storage areas: The
first area stores numbers and the second stores strings.

You can store a single positive, negative, or zero decimal integer in
the range -4095<n<4095 in a Q-register. You can also increment, test,
or recall numbers in a Q-register. Hence, you may use Q-registers as
switches and counters, as well as data-save areas.

The Q-registers can hold from 3000 to 5000 characters, depending upon
your configuration. However, no single Q-register can hold more than
2047 characters. You can store two types of character strings:
ordinary text and TECO command strings. TECO stores both identically.
The use you make of them determines if a string will be used as a text
or as a macro. (A macro is a series of TECO commands that are stored
in a Q-register and can be executed upon command.)

Text that you store in a Q-register is copied into the Q-register from
the editing buffer without destroying the copy in the buffer.

Storing text in a Q-register is useful for such tasks as making many
copies of a given segment of text throughout a file without retyping
it each time, moving a block of text from one position to another in a
file, or moving a block of text to another file,

You may store textual data representing TECO command strings 1in
Q-registers., You <can then execute such a command string many times
throughout an editing job, much like calling a subroutine. You may
edit such command strings as you would any other text.

USING TECO

The Q-register commands are:

Gq Get text

Mg Execute macro

Qq Return Q-register number

Ugq Put number in Q-register

“uq Put text immediately into Q-register

Xq Extract text

%q Postfix, that is, return number incremented, then store

3.15 ERASING COMMANDS

If you make an error while typing a command string, you may correct
the error (if you terminate the command string with a double ESCAPE)
by using the DELETE key to individually delete characters. Other
erasing commands that you may find useful are: <°G><"G>, which erases
the entire command; and <“U>, which erases the last line typed.

Typing <"G><sp> will cause TECO to echo the last line typed. <"G>*
will echo the entire command. The <"G><sp> and <"G>* commands do not
move the buffer pointer and they do not <close the command storage

register. Consequently, after you type one of these commands, you may
continue typing as if you had not entered one of these commands.

3.16 ERROR MESSAGES

TECO error messages are listed in Appendix B.

When TECO encounters an illegal command or a command that it cannot
execute, it prints an error message on the terminal. An error message
may consist of two parts: The first is a question mark followed by a
3-letter mnemonic code for the error message, and the second is a
brief, 1-line statement of the error condition. The l-line message is
available only on systems with a configuration of at least 16K.

TECO normally prints both parts of the error message. The EH command
explaains how you may suppress the l-line statement.

When an error occurs:
1. The command to which it refers is not executed
2. The remainder of the command string is ignored
3. TECO prints an error message

4. TECO returns to command mode.

USING TECO

After TECO prints an error message, you may type the special command
2. TBECC then prints all commands that it has executed in the command

string.

NOTE

This command displays the executed
portion of the command string
immediately after an error has occurred.
If you type any other command following
the printing of an error message, TECO
assumes that you are typing a new

to use the ? command for this error.

Also note that the <S> command is often useful after an error occurs.

After TECO finishes executing a command string (or if you abort a
command string by means of the <"G><"G> command), you can store the
command string in Q-register Z by entering a <"S> command as the first
command after the prompting asterisk. The <"S> has this function only
when you use it as the first command in a command string. The <S>
command is especially wuseful when an error occurs in a long command
string.

)

3.17 ECHNIQUES AND EXAMPLES

TECO may be used in several ways. The most elementary application
involves using TECO to create and edit ASCII files on-line. The user
enters short command strings, often consisting of a single command,
and proceeds from task to task until the file is completely edited.

Since every edited job is simply a sequence of TECO commands, an
entire job may be accomplished with one long command string consisting
of all the short command strings placed end to end with the
intervening double ALT MODE characters removed. This leads to the
concept of a TECO editing program, which 1is simply a 1long command
string that performs a certain editing task. Editing programs may be
written (using TECO) and stored in the same manner as any other ASCII
file. Whenever the program is needed, it may be read into the buffer
as text, stored in a Q-register, and executed by an Mg command (where
"q" is the Q-register name).

This is fine for clear-cut editing assignments, such as converting
from one format to another or editing certain characters out of a
file, but many editing jobs are so complex that a given editing
program will only solve a small class of problems. The solution, in
this case, is to write very specialized "editing subroutines." TECO
subroutines might perform such elementary functions as replacing every
occurrence of two or more consecutive spaces with a tabulation
character, for -example, or ensuring that words are not hyphenated
across a page boundary. When an editing problem arises, the right
combination of subroutines may be loaded into various Q-registers,
augmented with additional commands 1if necessary, and called by a
"mainline®™ command string.

Editing subroutines are essentially macros; that 1is, sequences of
commands which perform commonly required editing functions. Thus,
another application of TECO is in the creation and use of a macro
library. As each editing job is undertaken, the user may look for

3-11

USING TECO

sequences of operations which might be required in future editing
assignments. All of the TECO commands required to perform such an
operation may be loaded into a Q-register and executed by means of an
Mg or nMgq command. When the Jjob is finished, the content of any
Q-register which contains a useful macro may be written onto an output
file (via the buffer) and saved in the macro library. The nMg
command, which was designed to facilitate use of macros, permits one
run-time numeric argument to be passed to the macro.

The following examples illustrate some of the techniques discussed
earlier. It would not be practical to include examples of the use of
every TECO command, since most of the commands can be used for many
applications. Instead, you are encouraged to experiment with the
individual commands.

Example 1: Splitting, Merging, and Rearranging Files

Assume that a user has a file named PGM.PA on the system device and
that this file contains data in the following form:

AB FORM CD FORM EF FORM GH FORM IJ FORM KL FORM MN FORM OP

where each of the letters A, B, C, etc., represents 20 lines of text

and FORM represents

a form feed character. The user intends to

rearrange the file so that it appears in the following format:

AQOB FORM D FORM MN FORM EF FORM ICJ FORM KL FORM P FORM GH

The following sequence of commands will achieve this rearrangement.
(Search command arguments are not listed explicitly.)

+R TECO Call TECO.

XEBFGM.FASYSS Specify input file and get first page.

XNCS$ Search for a character string in C to write A and
B on the output file.

XJ20X1%$ Save all of C in Q-register 1.

X20Ks$ Delete C from the buffer.

XNGSS$ Search for a character string in G to write D, E
and F on the output file.

XHX2%3% Save G and H in Q-register 2.

XY$$ Delete GH from the buffer and read 1J.

X200 %% Move pointer to the beginning of J.

XG1ss Insert C, which was stored in Q-register 1.

XNMMSS Search for a character string in M to write ICJ
and KL on the output file.

XHX1%$ Save MN in Q-register 1 (the previous content is
overwritten).

xY$$ Delete MN and read OP.

XJ20X3¢% Save all of 0 in Q-register 3.

X20Kss Delete O from the buffer.

XP$$ Write P onto the output file, leaving the buffer
cleared (the input file is exhausted).

XG2%$ Bring GH into the buffer from Q-register 2.

XHPEF$$ Write GH on the output file and close it.

XEBFGM.PA$YSS Open the partially revised file,

X20L%% Move the pointer to the beginning of B.

XG3$$ Insert all of O from Q-register 3.

XND$$ Search for a character string in D to write AOB
on the output file.

XPUHKS$ Write D on the output file and clear buffer.

3G1iss Bring all of MN from Q-register 1 into the
buffer.

XEXS$$ Write MN onto the output file, then <close the

file and exit to the 0S/8 monitor.

3-12

USING TECO

At this point, the file has been rearranged in the desired format. Of
course, this rearrangement could have been accomplished in fewer steps
if the commands |1efed above had bheen combined intg lgncer command

= LaS0 Ly

strings. Note that the asterisks shown at the left margin in this
example are generated by TECO, and not typed by the user.

N Y

2) &
ASSuUme, nNow, Tn
o

data in the f
AB FORM CD FORM EF FORM...FORM OP

is to be split into two separate files, with the first file containing
AB FORM CD and the second file containing KL FORM M, while the rest of
the data is to be discarded. The following commands could be used to
achieve this rearrangement:

+R TECO Call TECO.

XERFILESEWFILE.i$$ Open the input file and the (first output
file.

XYS$S Read AB into the buffer.

XxPss Write AB FORM onto the output file and read
CD into the buffer.

XHPEF$$ Write CD onto the output file (without

appending a form feed), and close the first
output file.

X<{-K$$ Search for a character string in K. After
this command has been executed, the buffer
will contain KL. No output is generated by
the search.

XEWFILE.2¢Pss Open the second cutput file and write KL onto

- it. Read MN into the buffer.

X20L0y .F$% Move the pointer to the end of M, then write
M onto the output file.

XEFTC$$ Close the second output file and exit to the

0S/8 monitor.
As a final example of file manipulation techniques, assume that the
user has two files. One file is MATH.BK, which contains information
in the form:
AB FORM CD FORM EF FORM GH FORM IJ FORM KL
and the other is MATH.FT, which contains:
MN FORM OP FORM QR
If both of these files are stored on DECtape unit 1, the following
sequence of commands may be used to merge the two files into a single
file, MATH.NW, which contains all of MATH.FT followed by the latter
half of file MATH.BK in the following format:

MN FORM OP FORM QR FORM GH FORM IJ FORM KL

XR TECO Call TECO.

XERDTALIMATH.FT$$ Open the first input file.

AEWMATH.NW$$ Open the output file on the 0S/8 default
device.

XAYS$S Read MN into the text buffer.

XNR$$ Search for a character string in R to write
MN and OP onto the output file.

XPUSS Write QR onto the output file, appending a
form feed.

XERDTA1:MATH.BK$$ Open the second input file.

XxY$$ Read AB into the buffer. QR is overwritten.

USING TECO

*<-G$$ Search for a character string in G to delete
AB, CD and EF, leaving GH in the buffer.
XNK$$ Search for a character string in K to write

GH and 1IJ on the output file, leaving KL in
the buffer.

XHFEF~G$$ Write KL onto the output file (without
appending a form feed) and close the file,
then exit to the 0S/8 monitor.

Example 2: Alphabetizing by Binary Search

Assume that TECO is running and the buffer contains many short lines
of text, each beginning with an alphabetic character at the left
margin (that is, immediately following a line feed). The lines might
consist of names 1in a roster, for example, or entries in an index.
Figure 3-1 shows a command string which will rearrange the lines into
rough alphabetical order. This command string groups all lines which

begin with the character "A"™ at the beginning of the page, followed by
all lines beginning with "B,"™ and so on.

ISTART! J 0AUA!

VICONT! L OAUER!

'QA-QE*G XA K -L GA 1UZ’!
IQBUA!

'L Z-."G —-L OCONTS"!

)

iGZ*G OUZ OSTAKRTS i

P

3%

Figure 3-1 Command String for Example 2

Example 3: An Elementary TECO Macro

Figure 3-2 shows a TECO macro which right justifies the content of the
text buffer on a 60-space line. This macro assumes that the buffer
contains paragraphs of text in manuscript form and that every 1line
which 1is not the last line of a paragraph contains between 40 and 60
characters.

When the macro is run, it counts the number of spaces and the number
of characters 1in each line. It then adds spaces between words until
the line contains a total of 60 characters. Lines which contain fewer
than 40 characters are assumed to be paragraph terminators. These
lines are not justified. Figure 3-3 shows how the macro may be
stored, loaded and executed using DECtape unit 1 as the storage
device. In this example, DECtape file 'TEXT.AS" is the file to be
justified.

3-14

USING TECO

JI110UN OoUS!

' QNA-32"E 1%S5 ¢ !

iGNA-13°E OJUSTIFY$7!

T1ZN$>!

TIJUSTIFY! QN-40°G!
160-AN-QS<S $I $S"N s>

IOL QSZN$ Q5%Z5¢ OJUSTIFYS$‘!
160-GN"G 60-QN<S $1 $S7N ¢!
1L Z-. "G 01%’ss

Figure 3-2 An Elementary TECO Macro for Example 3

.R TECO
*¥ERITALIMACRO.TES Y HXI HK$$
XERDTA1!TEXT.AS$ Y MISSS

Figure 3-3 A Second Macro for Example 3

Example 4: Managing a Macro Library

A TECO macro library is most conveniently stored with TECO on the 05/8
system device, Macros are usually short enough to require a small
amount of storage space; however, it is impractical to store each
macro in a separate named file, because a large macro library stored
in this manner would make the device unmanageably large and might even
exhaust the available directory entries.

Figure 3-4 illustrates a macro that packs the user's TECO macro
library (or any other set of short ASCII files) into a single file
requiring only one directory entry. This macro could be stored on the
system device in a file named PACK.TE (the extension indicates a TECO
command string file). The user must also create a separate file
containing the name of each file to be packed. This file must be
formatted as follows:

filel.ex
file2.ex
file3.ex

filen.ex

where each file specification after the first is preceded and followed
by a carriage return/line feed combination. Assume that such a file
is created and stored as INDEX.AS on the system device. If macro
PACK.TE is also on the system device, the following commands will pack
all files listed in INDEX.AS into file MACLIB.PK on the system device.

Y 10<A> HX0 HK OU1 0U2
<60 Q1J S

$3 JUl 2R 0X4 HK

I ERDSKi$ G4 RI.$. HX3

M3 HK I\$¢ G4 I\$ OUS

A1 AZ°N FW HK 0US 0AS$’
Z2%> Q2"E OB$’ EF

B! HK Q2\ I FILES FACKED
$ HT HK

Figure 3-4 File-Packing Macro

3-15

USING TECO

The packing macro prints a message, as shown, where "n" is the aumber
of files that were packed. The files to be packed will be taken from
the system device. Files PACK.TE, INDEX.AS and MACLIB.PK may reside
on any file-structured device if the file designations in the above
command summary are changed accordingly. (See Figure 3-5.)

R TECOD

XERSYS!FACK,TESY HXF HK$$

XERSYS ! INDEX . ASSEWSYS I MACLIE.FKSHFP$$
N FILES FACKED

X

Figure 3-5 Loading and Running the File~Packing Macro

Once the packing macro has packed all the files into MACLIB.PK, the
individual files may be deleted. Alternatively, macros could be saved
in individual files on, say, DTAl and the packing macro could be used
to pack the files into one system device file simply by replacing the
imbedded "ERDSK:" command in the macro body with “ERDTAl:". If the
library 1index 1is also saved on the system device, an unpacking macro
may be used to create an unpacked copy of the macro library whenever
required, and the original library tape may be saved as a backup.

Figure 3-6 illustrates a macro that unpacks the output file produced
by the packing macro. This macro accepts a packed ASCII file (such as
MACLIB.PK), then unpacks the file and restores each entry as a
discrete file with the appropriate specification.

Assume that a user desires to access a macro or other ASCII file that
was packed into file MACLIB.PK, as shown in the previous example. If
file UNPACK.TE contains the unpacking macro, the following commands
will unpack the entries and restore them as individual, named files.

The unpacking macro prints a message, as shown, where "n" is the
number of files that were unpacked. Once the files are unpacked, they
will be directed to the system disk. Alternately, the unpacked files
could be directed to, say, DECtape unit 5 by modifying the “"EWDSK:"
command in the macro body to read "EWDTAS5:". (See Figure 3-7.)

ou2 <Y -Zi 0A-92'E
125\$"L .-13°L 1y.-1X4
Or.K Q2'E OAS$’ EF

Al %Z2% I EWDSK: $ G4
CI.$. 0y eX3 M3 Oy .K*""
FW: Q2"E OB$’ EF

'E! Q2 I FILES UNFACKELD
$ HT HK

Figure 3-6 Unpacking Macro

Rk TECO

XERSYSIUNFACK.TE$Y HXF HK$$
XERINCEX.AS$MF$$

N FILES UNFACKEL

X

Figure 3;7 Loading and Running the Unpacking Macro

3-16

CHAPTER 4

TECO COMMANDS

4.1 INTRODUCTION

This chapter describes all TECO commands used on the PDP-8. The
commands are listed in their ASCII order with the following exception:
A control character is listed under its alphabetic equivalent. For
example, vyou will find °F listed user F, and not preceding A as it
would in the normal ASCII collating sequence.

Within a letter grouping, the letter predominates over a symbol; for
example, A precedes "A.

The nonalphabetic symbols follow the same rule. However, since the
ASCII collating order 1is difficult to remember, the order for the
entry of nonalphabetic symbols is:

P Nl AN s v gP T e

The ASCII character set is listed in Appendix A.

4.2 A APPEND COMMAND
Append next page to end of buffer.
FORMAT: A

The A (append) command reads in the next page of the input file
without <clearing the current contents of the editing buffer. TECO
concatenates this information to that which is already in the buffer;
that is, TECO places it in the buffer following buffer position Z. An
A command does not change the position of the buffer pointer.

If the editing buffer does not have sufficient space to accommodate
the appended data, TECO issues the error message ?MEM STORAGE CAPACITY
EXCEEDED.

TECO terminates input begqun by an A command when:
1. The end of the input file is reached;
2. A form feed character is read;
3. The buffer is 2/3 full and a line feed character is read;

4. The buffer 1is filled to within 128 characters of its
capacity; or

S. The buffer is full.

If TECO reads a form feed (that 1is, if input stops because of
condition 2), the form feed flag "E is set to -1. TECO does not place
the form feed flag into the buffer with the rest of the text.

The next input command you enter begins input of the character
following the form feed. If a form feed is not read, the form feed
flag is set to 0. You may test the form feed flag, but this is
usually unnecessary.

The A command does not accept a numeric argument. Note that nA, where
n is a numeric argument, is a different command. If you wish to
append more than one page to the editing buffer, you can type n<A>,
where n is the number of pages you wish to append.

If the end of the input file was previously read (that is, if the EOF
flag has been set (see “N)), the A command has no effect.

Examples:

XYASS This command deletes the page of text currently in
the editing buffer, and reads in the text two
pages of the current input file, appending the
second page to the first.

XA%S This command enters the next page of the file into
the editing buffer and appends it to the data
already in the buffer. The previous contents of
the buffer are not altered and the pointer is not
moved.

|2

TATNFFEXSS If the contents of a file fit into memory as a
single unit, this command string will bring the
entire file into memory and remove all form feeds.
The °“N; command will cause TECO to exit from the
loop when the end-of-file flag is set.

4.3 nA COMMAND
Return the ASCII

FORMAT: nA

TECO COMMANDS

code of a character.

where n prints to the (n+l)th character following the buffer pointer.

The purpose of the nA command is to return a number equal to the ASCII
value for the {.+n+l1l)th character in the editing buffer.

For example, the expression 1-1A is equivalent to the ASCII code for
_ immediately preceding the pointer and 0OA is equivalent
to the ASCII code of the character immediately following the pointer.

the character

NOTE

You cannot omit n. If you omit the
position indicator, TECO will treat your
command as an append command, Because

TECO

type
message can be issued.

cannot determine 1if you meant to

nA or A command, no error

If you attempt to reference a position outside of the buffer, TECO
prints the error message ?POP ATTEMPT TO MOVE POINTER OFF PAGE.

Example:

.. .OA-’”‘/'E
1A-""R"EMQ’

4

*

.

*

This command string segment will verify that
the string /B immediately follows the buffer
pointer. 1If it does, TECO executes the macro
in Q-register g. If not, TECO executes the
commands following the second apostrophe.
(The purpose of the "" command is to return
the ASCII value of the character following
it.) 0A-""/ is an argument which is the value
of the character following the pointer minus
the ASCII value of a / character.

TECO COMMANDS

4.4 “Atest<"A> TYPE-OUT COMMAND
Type delimited text.
FORMAT: < A>text<"A>

where the first "A may be a <circumflex-A> or <CONTROL/A> but the
second must be a <CONTROL/A>.

The “Atext<"A> command types the "text" between the “As on vyour
terminal. The text 1is wusually a message that you wish typed out
during the execution of a command string.

The first "A is the actual command. Enter it as a circumflex-A or a
<CONTROL/A>. The second "A is a delimiter which indicates the last
character in the text argument. The second delimiter must be a
<CONTROL/A> because a ~ is a legal character within a text string.

The string "text" is the character string that TECO types out when it
encounters the “A command. The text string can contain any character
except “A.

Example:

XOUL<IST™N#S0S
' $"FAOSTS ‘12I%0r.F0r.K"A
OUTPUTTING PAGE <{"A» X2=>EC$$
OQUTPUTTING PAGE
OQUTPUTTING FAGE
QUTFUTTING PAGE
QUTPUTTING FAGE

D101

1. O0Ul stores 0 in Q-register 1.

2. The angle brackets indicate TECO will perform a repeated
sequence of operations.

3. The 50S command searches for the 50th occurrence of a line
feed. If the buffer does not contain 50 lines, the seaarch
fails and TECO executes the commands after the failure
conditional ("F).

4. TECO appends the next page and branches back to search for
the fiftieth line (AOSTS).

S. If there are now 50 lines, TECO inserts a form feed into the
buffer, and the text in the buffer up to and including the
form feed is written to the output file.

6. 0,.K removes this text from the buffer.

7. TECO then prints the message.

8. The %1 command increments the value in Q-register 1, and then
the = command prints it.

9. This continues until the end-of-file flag is set; that |is,
“N=-1.

10. TECO closes the file.

TECO COMMANDS

4.5 B POSITION INDICATOR
Position of beginning of buffer, always O.
FORMAT: B
The B buffer position indicator always equals 0. It represents the
position at the beginning of the buffer, that 1is, the position
preceding the first character in the buffer.
You may also use the B command in arithmetic expressions.
Example:
XEBy.K$$ Remove all characters from the beginning of the

buffer to the character immediately preceding the
buffer pointer position.

TECO COMMANDS

4.6 C BUFFER POINTER COMMAND

Move pointer forward,

FORMAT: nC

where n may be positive or negative.

You can use the C command to move the buffer pointer. You would

normally use this command when the pointer has to be moved across only
several characters. The C commands are listed in Table 4-1.

Table 4-1
C Commands

Command Argument Function

nC n>0 Move the pointer forward over n
characters in the buffer from the
current position of the pointer; that
is, nC 1is equivalent to (.+n)J. nC is
also equivalent to -nR.

C 1l is assumed Move the pointer forward one position.
This is equivalent to -R.

ocC 0 No movement of the pointer.

-C -1 is assumed Move the pointer backward one position.
This is equivalent to R.

nC n<{ Move the pointer backward over n
characters in the buffer from the
current position of the pointer; that
is, nC 1is equivalent to (.-n)J. nC is
also equivalent to nR.

If a C command attempts to move the buffer pointer across either
editing buffer boundary, TECO ignores the command and prints the error
message ?POP ATTEMPT TO MOVE POINTER OFF PAGE.

Examples:
c Advance the buffer pointer one space,.
L4C Advance the pointer to the posiﬁion following the
fourth character in the next line.
aic Advance the pointer the number of characters in

Q-register 1.

TECO COMMANDS

4.7 “C COMMAND
Abort or exit.
FORMAT: “Cc

If TECO is in command mode (that is, awaiting a command), then <°C> is
an 0S/8 monitor command which causes a jump back to the monitor.
However, if TECO is not in command mode, the <°C> is a TECO command
which aborts the present action and returns control to TECO. If you
abort TECO while it is executing with a <°C>, it prints the message
?XAB EXECUTION ABORTED.

If you wish to insert this command into a text or macro, you can type
it using the circumflex convention,

TECO COMMANDS

4.8 D DELETE COMMAND

Character deletion,

FORMAT: nD

where n may be positive or negative.

You can use a D command to individually delete characters and short

strings. The D commands are listed in Table 4-2.

Table 4-2
D Commands

Command Argument Function

nD n>0 Delete the n characters following the
buffer pointer.

D 1 is assumed Delete the character following the buffer
pointer. :

0D 0 This is a null command.

-D -1 is assumed Delete the character preceding the buffer
pointer.

nD n<o0 Delete the n characters preceding the

buffer pointer.

After TECO executes the D command, it positions the buffer pointer
between the characters that preceded and followed the deletion. The
pointer will always be adjacent to one of the characters to which it
was adjacent before the deletion.

If you attempt to delete text up to and across the beginning or end of
the buffer, no text will be deleted and TECO prints the error message
?POP ATTEMPT TO MOVE POINTER OFF PAGE.

When deleting across carriage return/line feeds, the carriage
return/line feed counts as two characters.

Examples:

The following examples assume that the buffer contains the ABCDE
text shown at the right; the buffer pointer points to the FGHIJ
position between the M and the N, KLMNO
PQRST
UVWXY
A
k6D$$ Deletes NO, the carriage return/line feed, and PQ,
changing the third and fourth lines to KLMRST.
Xx-Ds$ Deletes M.
X-SDss Deletes the carriage return/line feed, and KLM,
changing the second and third lines to FGHIJNO.
X-2D20%¢$ Deletes LMNO, changing the third line to K.
AXKDI$S Deletes NO and the carriage return/line feed, and

P, changing the third and fourth lines to KLMQRST.

4-8

TECO COMMANDS

4.9 °“D DECIMAL RADIX COMMAND

FORMAT: D

The entering of a "D or a <CONTROL/D> changes the current radix to
decimal if TECO was not already 1in decimal. You would use this
command after you have changed the radix to octal with a "0 command.
If the radix is in decimal, this command is a no-op.

The initial radix of TECO is decimal.

TECO COMMANDS

4.10 <DELETE>
Delete a character.
FORMAT: none.

Typing the DELETE key while entering a command string causes TECO to
delete the last character typed. You may continue deleting characters
until you have erased the entire command string. An attempt to delete
past the prompting asterisk causes TECO to type a carriage return/line
feed followed by the printing of another asterisk.

The actual function of the delete character is to delete the last
typed character in the command string. Consequently, if the incorrect
character is not the last one in the string, you must delete all
characters back to that point.

Type <DELETE> twice to erase a carriage return and the TECO-generated
line feed following it.

If you have used the SET TTY SCOPE 0S/8 monitor command, the <DELETE>
will cause an immediate erasure of the character, and the cursor will
be moved backwards. You can delete any nonexecuted character;
however, you cannot erase <"C> and <°G>, etc., because these execute
immediately.

If your terminal is not in "scope mode," TECO echoes a deletion by
typing the character deleted; for example, the string "real-time," if
followed by five deletions, would appear as “real-timeemit-"* on your
terminal.

If your terminal is not in scope mode, you should use the <"G><sp>
command when, through extensive editing, a command string becomes
unintelligible.

Example:

After typing the portion of the command string shown below, vyou
discover that you have misspelled the name "Ericson.”

X3LKILEIF ERICXON

To nullify this error, you would type three successive <DELETE>s. As
you do this, TECO responds by retyping the character being deleted.

*ILEIF ERICXON<DELETE>N<DELETE>O<KDELETE>X<"G><sp>
ILEIF ERIC

TECO COMMANDS

4,11 °“E END-OF-PAGE FORM FEED FLAG SIGNAL

This flag indicates if a form feed was read when the current buffer's
contents were placed into the buffer.

FORMAT: “E
If, when TECO is loading data into the editing buffer, input stops
because a form feed was read, it sets the "E flag to -1. 1If input was
stopped because:

1. The end of the input file was reached;

2. The buffer is 2/3 full and a line feed character is read;

3. The buffer is filled to within 128 characters of its
capacity; or

4. The buffer is full
the flag remains as a 0.
The P-and other similar output commands test this flag to determine
whether they should append a form feed when they write the contents of
the buffer to the output file.

Example:

This macro divides a file into pages of 50 1lines each and also
preserves original form feeds. ‘

<ISTITN?S508
$"FTEULl Q1°LF’ Q1"EA’ 0ST’ 121I% O».F O0y.K: EC$$

1. TECO searches for the 50th line terminator.

2. If this search fails, TECO stores the value of the form feed
flag in Q-register 1.

3. If this value is less than 0, TECO writes the buffer to the
output file and reads in a new page.

4, 1If it equals zero, TECO appends a new page to the buffer's
contents.

5. TECO then branches back to ST to search again for the
fiftieth line.

6. If fifty lines were found, TECO appends a . form feed. This
text 1is written to the output file and then deleted. TECO
again searches for the 50th line.

7. This continues until the end of the file is reached, that is,
“N is set to -1.

TECO COMMANDS

4,12 EB EDIT BACKUP COMMAND

Open an input and output file, creating a file with the same name as
the input file. The old file has its extension changed to BK.

FORMAT: EBfilespec$
@EB/filespec/

where / is an arbitrary delimiter which is not one of the characters
in filespec.

Use the EB command to open a file for editing in a manner similar to
the TECO filespec command.
NOTE
You can use this command only for files
stored on a directory-structured device.
The EBfilespec command is equivalent to:
*ERfilespec$EWfilespec$
except that the input file has its extension changed to BK.
The operation of the EB command is as follows:
1. The EB command executes an automatic ERfilespec$ command,
opening the specified file for input and releasing any

previously opened input file.

2. Then, it opens a temporary file to receive the output of the
edited version of the input file.

3. The output device is the same as the input device.

4, Finally, the EB command sets an internal flag indicating that
special action must be taken when the EB file is closed (by
an EC, EF, EX, or EG command). It also prohibits any further
EW or EB commands until the file is closed.

When you close a file opened with an EB command, the following .action
takes place:

1. If a file with the name filename.,BK aiready exists on the
device, TECO deletes it.

2. TECO renames the input file filename.ext to filename.BK.
3. Finally, TECO renames the temporary output file filename.ext.
You cannot use the EB command with a file having the extension BK.

The TECO filespec 1initialization command causes an automatic
EBfilespec to be executed (followed by an automatic Y command).

Examples:

XEBAB.FT$$

XEEB/RXALITEXT$.TX/

TECO COMMANDS

This command selects the disk file AB.,FT for
editing. When the editing is completed, the
file AB.FT is the new version. TECO changes
the old version to the back-up file AB.BK,
and deletes any previous back-up file AB.BK.

This command selects the file TEXTS$.TX, where
the $§ is an ESCAPE character from device RXAl
(floppy drive 1). 1If you had created a file
with the name TEXT.TX, it could not be
accessed through the O05/8 monitor except
through the use of # filespec construction.

4-13

TECO COMMANDS

4.13 EC EXIT CLOSE COMMAND

Transfer the remainder of the input file to the output file and then
close the input and output files.

FORMAT: EC

EC commands TECO to write the contents of the editing buffer and any
information in the input file not as yet brought into the editing
buffer onto the output file. The input and output files are closed.
After the execution of an EC command, TECO remains in command mode.

The EC command is similar to the EX command, which produces the
identical output and also closes the input and output files. However,
the EX command returns control to the 0S/8 monitor.

If you use an EC command instead of an EX command, you do not have to
reload TECO, and you do not lose the data in the Q-registers.

Example:

_XEC$$ This command closes the current file and writes its
contents to the appropriate file.

4-14

TECO COMMANDS

4.14 EF END FILE COMMAND

End the output file with the current page.
FORMAT: EF

The EF command is an output-file-closing command; that 1is, TECO
closes the file you opened with an EW command. You would normally use
an EF command to close the output file after all output to it is
complete. Furthermore, the EF command is most often used after a P
command, which outputs the last page of a file.

NOTE

If you type an EF command in the middle
of the file, all succeeding pages that
would have been read to it with an EX or
EC command are omitted. If you are not
creating a file, it is far safer to exit
with an EC command rather than an EF
command because you could lose data if
you erroneously think you are at the end
of the file,

Examples:

XPEF$$ Output the current page to the output
file, and then close the output file.
Use this command string to close a
file after writing the last page.

KFUWEF$$ Equivalent to the preceding example,
except that the buffer is not altered.

XEFEWTEXT.TE$$ Close the current output file and open
an output file TEXT.TE on the 0S/8
default device DSK:.

XERFTR!SEFEWRXAOIFILE.MA$$ Read the input file from the paper
tape reader, close the current output
file, and open FILE.MA on RXA0: as an
output file.

XERFILE.TXSEWFILEL1.TX$ This command divides file FILE.TX into
AFEFEWFILE2,TX$ three files: The first two files each
AFEFEWFILE3.TX$EC$$ consists of four pages, while file

FILE3.TX contains the remainder of
FILE.TX. If you thought FILE.TX
consisted of 12 pages of data, you
could have concluded with a 4PEF
command string, rather than an EC.
However, if you were mistaken, you
would not have written the remainder
to an output file, and thus could lose
all text following the 12th page with
an EF command.

TECO COMMANDS

4,15 EG EXIT AND GO COMMAND
Exit from TECO after output, then either:
1. Re-execute the last compile-class CCL command, or

2, Perform the action specified in the optional text argument.

FORMAT: EG

@EG//
EGtext$
@EG/text/
where:
text is an 0S/8 monitor command
/ is an arbitrary delimiter which is not one of the

characters in "text".
The EG command is a dual-purpose command.

1. It transfers the contents of the editing buffer and any
remaining text in the input file to the output file. It then
exits from TECO. This is identical to an EX command.

2. An 0S/8 monitor command will then be executed.

If you specify a text argument to an EG command, that text must be an
0S/8 monitor command. After the exit from TECO, that command will be
executed. Thus,

*EGtext$

is equivalent to:

*EX
.text

This command form is often used when the text you have created is a
batch command file. If it were, you would type EGSUBMIT filespec$$.

If you do not specify a text argument, TECO causes the last
compile-class command (for example, COMPILE, EXECUTE, or LOAD)
attempted before TECO was called to be re-executed (with the same
arguments). Generally, you would use the EG command to exit from an
editing job that was called by an EBfilespec or TECO filespec command.
As an example, suppose you give the command
_+COMFILE FLOT.FT

to request compilation of a FORTRAN source program, but the compiler
encounters errors in the code. You would then call TECO to correct
these errors with the command

_+TECO FLOT.FT

4-16

TECO COMMANDS

After you have corrected the errors, you would exit from TECO with the

U |

commana ~,
XEG$$

This command causes: 1) the rest of the file PLOT.FT to be output and
closed; and 2) the command COMPILE PLOT.FT to be re-executed
automatically.

Example:

The following is an example that can be called with a MUNG command.
It will compile all FORTRAN programs that are on your disk. You call
it with the 0S/8 command.

_«MUNG COMFILX.FT

Z'E ERTEMF.TM$ Y3RZ.J-3KJ

<FS $%$5> <5

$5-L I.COMPILE ¢l
I$JOR

$ZJISEND

$

EGSUEBMIT TEMFP.TM/T/H%
‘Z°N EWLDIR.TM$

JISJOR

+DIR TEMF.TM<$

ZJI/F

+MUNG COMFIL

$END

%

EGSURMIT DIR.TM/H/T%”’

In this example, the $ symbols indicate dollar signs rather than
ESCAPEs.

4-17

TECO COMMANDS

4.16 EH EDIT HELP COMMAND
Error message printing form command.
FORMAT: nEHR
where:

n is an integer such that -1<n<3.
TECO error messages consist of two parts: The first, or code, is
always typed, while the second part, the brief message, is also typed
only with the 16K version of TECO,
By using the EH command, you may change TECO so that it prints only
the 3-letter code preceded by a ? or both the code and a l-line error
message. TECO always prints an error message.
Table 4-3 lists the EH commands.

Table 4-3
EH Commands

Command Function
1EH Sets TECO so that it prints only the 3-letter code
part of the error message.
2EH Sets TECO so that it prints both the error message
code and the 1-1line extended descriptions

automatically. On systems with less than 16K, ‘a 2EH
command is a null command because there is
insufficient memory for the internal file which
contains the error messages.

OEH Resets TECO to the system standard mode of error
message type-out (normally equivalent to 2EH).

You may return the current value of the EH setting by typing EH. To
be wuseful, this must be typed as a numeric argument to another
command.

TECO COMMANDS

file from TECO without performing input or output.
FORMAT: EK
The EXK command detaches the output fiie (if there is one). It does
not delete any files. If, for example, after typing an EWfilespecl
command and deciding that this is an error, you wish to write to
filespec2 instead, then the command

EKEWfilespecz
will detach filespecl without causing cutput.

You can also use the EK command to detach a file if it were going to
overwrite another file.

TECO COMMANDS

4,18 EO VERSION COMMAND
Return version number of TECO.

FORMAT: EO

An EO command returns a value which specifies the current version
number of TECO. This will be either a2 5 or a 5xx, where 5 is the
current version and xx is any 2-digit number. If EO does not return

the 5, this manual may contain inapplicable or erroneous information
for your version.

NOTE

This command is included for
compatibility with versions of TECO
implemented on other DIGITAL computers.
It is not used except to see if you have
the version of TECO described in this
manual.

TECC COMMANDS

4.19 ER EDIT READ COMMAND

Initializes a file so that TECO may sequentially extract information
from it.

FORMAT: ERfilespecS$
@ER/filespec/

where:

/ is an arbitrary delimiter which is not one of the
characters in filespec.

The ER command initializes a file so that TECO may read information
from it. An ER command also terminates input from any file that may
have been previously opened for input, in addition to opening a file
for input. .

You may open one file for input, read only part of that file, and
then, with ancther ER command, release the first file and open a new
file for input. It is not necessary to read the end of one file
before opening a second. However, opening the second file does
terminate input from the first,

NOTE
0S/8 TECO permits only one input file to

be open at any time,.

If you are creating a file, then you do not need to enter an ER
command. Instead, you enter the text directly into the text buffer
from the terminal keyboard.

Examples:

_XERFULSE.FT%$$ Select the file PULSE.FT
from the 0s/8 default
device DSK:.

XERCDR{$SEWFTF:$¢ Select the card reader for

input and the paper tape
punch for output.

XERDTA1:INFUT.TX$EWRKAO{OUTFUT.TXS$$ Open an input file INPUT.TX
on DECtape wunit 1 and an
output file OUTPUT.TX on
disk unit 0.

XERRXA1:FROGS$ Prepare to read input file
PROG or PROG.MA from RXAl:.

TECO COMMANDS

4,20 <ESCAPE> COMMAND
A signal to begin execution or a command delimiter.

FORMAT: none.

An <ESCAPE> character is the only predetermined command delimiter in
TECO. Use it to indicate the location of the last character in a text
argument., In this case, it is part of the previous command; for
example, in IABCS, the ESCAPE is part of the I command.

The <ESCAPE> is sometimes also used after an n%q command. You would
use it to ensure that the incremented value in the Q-register is not
used as an argument for the following command.

You may insert the <ESCAPE> into a text string if you preface the
command with an @ modifier. (See Section 4.68.) Using the @ modifier
allows you to choose any delimiter that is not one of the TECO special
characters listed in Table 2-1.

You may also insert the <ESCAPE> into a command string using a 27I$
command.

TECO echoes an <ESCAPE> as a dollar sign ($) on a terminal.

A double ESCAPE ($$) signals TECO to begin execution of the command
string.

On some terminals, ESCAPE is labeled ALTmode or PREfix. (The term
"ALTmode" is the traditional TECO name for ESCAPE.)

TECC COMMANDS

4.21 ET EDIT TERMINAL COMMAND
Flag and command to set typeout mcdes.
FORMAT: nET
where:

n is a combination of the numbers 1, 2, and 8.
The ET flag informs TECO whether you have entered a SET TTY SCOPE or
SET TTY NO SCOPE command to the 0S/8 monitor. 1If you have entered SET
TTY NO SCOPE, then this flag has a value of 0. If you are 1in “scope
mode” then the flag is set to 2.
Use this command to control how TECO will type information to your
terminal. The three values this command can take are listed in Table

4-4, Because these numbers represent bits, they are additive; that
is, one ET value does not preclude another.

Table 4-4
ET Commands

Command Function
1ET Setting this bit 1inhibits all of TECO's typeout
conversions. All characters are output to the
terminal exactly as they appear in the buffer or < A>
command. For example, the changing of control

characters in the CONTROL/CHAR form 1is suppressed.
This mode is useful for driving dispiays.

2ET Process <DELETE> and <"U> in scope mode. Scope mode
processing uses the cursor control features of the
CRT terminals to handler character deletion by
actually erasing characters from the screen.

[¢¢]
(]
3

Read without echoing for "T command. This allows
data to be read by the “T command without having the
characters echo at the terminal. Normal command
input will echo.

Example:
The following TECO command string erases the entire screen of a VT52,

X27TTTTHTTWZ T KT T$%

TECO COMMANDS

4,22 EU EDIT UPPER/LOWER COMMAND
Upper-case and lower-case flagging of output.
FORMAT: nEU
where:
n is a positive, negative, or zero integer.

The upper/lower-case flag determines the manner in which TECO is to
transmit characters to your terminal, 1If you have entered a SET TTY
LC command to the 0S/8 monitor, TECO, when called into memory, sets
this value to -1. Otherwise, it will be set to 0.

Use the nEU command to flag upper-case output characters with an
apostrophe ('). For example, if you are displaying a text, a form of
the EU command will tell TECO to precede every character entered in
lower case with an apostrophe. Although TECO prints the text in upper
case, you would clearly be able to distinguish upper- and lower-case
characters.

The EU commands are listed in Table 4-5.

Table 4-5
EU Commands

Command Argument Function

nEU n>0 Flag upper-case characters with an
apostrophe.

OEU 0 Flag lower-case characters with an
apostrophe.

nEU n<o Do not flag characters.

TECO COMMANDS

4.23 FW EDIT WRITE COMMAND
Initialize the output file.

FORMAT: EWfilespec$
@EW/filespec/

where:
/ is an arbitrary delimiter which 1is not one of the
characters in filespec.

Use an EW command to open a file for output. If an output file is
currently open, a second EW command closes that file before opening
the new file. TECO permits only one output file to be active at any
one time.

If you type an EWfilespec command while a file is open, TECO deletes
the previously opened file. However, TECO does not permit you to type
an EW command if you had copened the file with an EBfilespec command.

You may not output any information without first entering an EW or
equivalent command.

TECO does not permit you to use multiple EW commands without changing
the input file.

The MAKE filespec initialization command causes TECO to execute an
automatic EWfilespec$ command.

Examples:

¥ERRXAZ2ICREF . 2$EWRXAQICREF « 3%% This command string selects the
- file CREF.2 on diskette drive 2
for input and opens a file
called CREF.3 on diskette drive
0 for output. If there 1is a
file named CREF.3 already on the

diskette, it will be
overwritten.
XEWFROG.FA$$ Prepare to write the output file

PROG,PA on the 0S/8 default
device DSK:.

XEWRXA1:0CON.TE$$ Prepare to write the output file
- OCON.TE on RXAl:.

TECO COMMANDS

4,24 EX EXIT COMMAND
Exit from TECO to the 0S/8 monitor.
FORMAT: EX

The EX command outputs the latter part of the input file and closes
the input and output files. Using the EX command is the easiest way
to finish editing a job.

For example, you may be editing a 30-page file and the last change you
make is on page 10. At this point you can give the command

XEX$$

*

In this case, the action TECO performs is equivalent to the command
string 21PEF, with an automatic exit to the monitor at the end. Thus,
TECO:

1. Rapidly moves all the rest of the input file, including the
page currently in the buffer, to the output file

2. Closes the output file
3. Returns control to the monitor.

The EX command is equivalent to:

The EX command outputs a form feed character only if, after the output
of the editing buffer's contents, it examines the "E end-of-page form
feed flag and finds that a form feed terminated input. In this way,
the EX command maintains existing page sizes.

TECO COMMANDS

4,25 °F COMMAND

Return value of console switch register,.

FORMAT: °F

After you enter an “F or <CONTROL/F> command, TECO returns the number

input on the console switch register. (On the PDP-12, this is the
right switch register.) This number must be in the range 0<n<4095.

TECO COMMANDS

4.26 FN FAST NONSTOP SEARCH/REPLACE COMMAND
Search remainder of the file until text is found and then replace it.

FORMAT: nFNtextl$text2$

nFNtext1$$
n@FN/textl/text2/
n@FN/textl//
where:
n is a positive number. If text2 1is omitted, no
replacement occurs.
/ is an arbitrary delimiter which 1is not one of the

characters in textl or text2.

Use an Fn N command to search for a character string in a page of the
input file which may not yet have been read into the buffer (function
of the N command) and to replace it with another string. The FN
command operates like the N command when searching for the string. 1If
the search fails, no replacement occurs,

If you omit text2 in an FN search, TECO deletes textl and does not
insert a string into the buffer to replace it. However, even when
text2 is omitted, its terminating delimiter must be present as shown
in the form

*FNtextl1$$

The maximum length of a text argument is 31 ASCII characters. The FN
command, like all search commands, accepts a colon modifier.

The textl argument may contain the four match control characters:

)

Na Match anything except "a"

“0 Use the next command as match character
°s Match on separator

“X Exempt position from match

If a search fails, TECO writes the entire input file to the output
buffer.

You may preface the FN command with a number n to indicate which
occurrence of a string is the object of the search. If a number
specifying which occurrence of a string is to be replaced is less than
1, then TECO prints the error message ?NAS NEGATIVE OR ZERO ARGUMENT
TO S. :

Examples:

KI2FNSTRINGSTEXTS$

K12-FNSTRINGS$TEXT$-$$

X12<@ FN/STRING//:>%%

TECO COMMANDS

This command replaces the 12th
occurrence of STRING with TEXT.

The first 12 occurrences of STRING are
replaced with TEXT. Note the position
of the ESCAPEs. The ESCAPE following
the TEXT terminates the string TEXT.
Because the search is within an
iteration, a double ESCAPE cannot be
used because it would terminate the
command before the iteration were to be
entered into the command string.

This is similar to the above example
with the difference being that STRING is
not replaced. If the @ modifier were
not used, you would have to type $$.
This would prematurely terminate the
command and you would receive an error
message.

TECO COMMANDS

4.27 FS FAST SEARCH/REPLACE COMMAND

Search the remainder of the editing buffer until text 1is found and
then replace it.

FORMAT: nFStextl$text2$

nFStext1$$
n@FS/textl/text2/
n@FS/textl//
where:
n is a positive number, textl and text2 are less than 32
characters long
/ is an arbitrary delimiter which 1is not one of the

characters in textl or text2.

The FS command searches for a character string within the current
editing buffer (function of the S command) and replaces it with
another string. If the string to be replaced is not found after the
current pointer position and before the end of the buffer, the search
fails and no replacement is made. If a search fails, TECO moves the
buffer pointer to the beginning of the editing buffer.

If you omit text2 from a FS command, textl 1is deleted without
replacement. However, when you omit text2, its terminating ESCAPE
must be present as shown in the form

*FStext1$$

Textl and text2, like all search commands, may not be longer than 31
ASCII characters.

The FS command may use the colon modifier, while textl may use the
following match control characters:

Na Match anything except "a"

Q Use the next command as match character
S Match on a separator

X Exempt position from match

You may preface the FS command with a number n to indicate which
occurrence of a string 1is the object of the search. If the number
specifying which occurrence of a string is to be replaced is less than
1, then TECO prints the error message ?NAS NEGATIVE OR ZERO ARGUMENT
TO S.

Examples:

X12FSOF$FOR$$ This command causes TECO to search the
current buffer for the 12th occurrence
of the string OF and to replace it with
the string FOR.

X12<FSOFFOR:$% This command causes TECO to search for,

and then to replace, the first 12
occurrences of OF with FOR. Note that
the concluding double $$ follows the >.

b
|
w
©

X12FSINTERESTS$

X@12FS/INTEREST//%%

TECO COMMANDS

This command causes TECO to search the
current page for the 12th occurrence of
the string INTEREST and to delete it,
The two ESCAPEs, $$, must be typed
following the string to be deleted; the
first delimits the string for which vou
are searching and the second tells TECO
that there is no replacement string.

This command is identical to the one
described immediately above. It is very
useful if a double ESCAPE would
prematurely terminate your command
string.

TECO COMMANDS

4.28 G GET COMMAND
Place Q-register g's contents in the editing buffer.
FORMAT: Ggq
where:
q is a Q-register.

The command Gq (where q is one of the 36 Q-registers) fetches a copy
of the character string stored in the Q-register and inserts it into
the editing buffer at the current buffer pointer position. This
command does not alter the contents of the Q-register. TECO positions
the buffer pointer at the right end of the character string inserted.

Examples:

*ZJ-5XAJBLGAS$ This command string puts a copy of the last five
lines of the page into Q-register A and then puts
a copy of these five lines immediately after the
eight 1lines 1in the page. It does not, however,
delete the five lines from their position at the
end of the page.

XSTEXT140L..U1 This command string stores all text from TEXTl to
STEXT2$0L .U2 TEXT2 in Q-register A, deletes that text from the
QlQ2XA page, and then places this text on the line
Q1,Q2K following TEXT3.

NTEXT3$L GA%$$

If you type a : before a Gq command, TECO types the contents of that
register on your terminal without inserting it into the buffer.

Example:
If the second command in the above examples were changed to:
STEXT1$0L.U1L
STEXT2%0L.U2
Q1,Q2XA
tGAss

then the :GA command would verify that you have placed the proper text
into the Q-register.

4

32

TECO COMMANDS
4.29 <°G> COMMAND

1. Retype all text back to the last line terminator.
FORMAT: <"G><sp>
where the command must be typed using a <CONTROL/G>.
2. Retype the entire command string.
FORMAT: <°G>*
where the command must be typed using a <CONTROL/G>.
3. Erase all commands that have been entered but not executed.
FORMAT: <°G><"G>

where the command must be typed using a <CONTROL/G>.

4.29.1 <°G><sp> COMMAND LINE ECHO COMMAND

The <"G><sp> command prints the line currently being 1input on vyour
terminal. This command is useful when the correcting of typographical
errors causes you to be unable to read easily what you have typed.

If the terminal has a bell, it will ring twice.
You cannot type this command using the circumflex construction.

This is identical in function with typing a 1line feed during the
entering of a command to the 0S/8 monitor.

<"G><sp> is normally unnecessary if you are entering information on a
CRT and you have entered the 0S/8 SET TTY SCOPE command. The <"G><sp>
command can be thought of as an erasing commmand although it is
actually an echoing command. 1Its function is to retype the current
line, omitting characters erased with other commands. Use it when you
type so many <DELETE>s on a line that you cannot determine what you
have typed.

After TECO types a line, continue typing the command string just as if
the command had not been typed. TECO neither stores this command in
nor removes anything from the command string.

Example:

KSTAET S <DELETE>$<DELETE>T<DELETEERT ¢ <TAR>TRZE<"G>sp:
START ¢ TRZE

%

X

TECO COMMANDS

4.29.2 <"G>* COMMAND STRING ECHO COMMAND

The <"G>* command prints all the lines you typed from the last TECO
prompt (i.e., the asterisk) to be reprinted. This command differs
from the <"G><sp> command in that it types the entire command string,
rather than only the last line,

If the terminal has a bell, it will ring.

You cannot use the circumflex construction for this command.

4.29.3 <°G><"G> COMMAND STRING ERASURE COMMAND

Typing two consecutive <"G><"G> characters erases all commands entered
but not yet executed.

If the terminal has a bell, it will ring.

You cannot use the circumflex construction for this command.

TECO COMMANDS

4.30 H WHOLE POSITION INDICATOR
Incorporate entire buffer (B,Z) limits into a command argument.
FORMAT: H
The H command is equivalent to the numeric pair B,Z. Thus, in those
commands that take two numeric buffer position arguments, H represents
the combination B,Z (which is the entire buffer). This letter is
particularly useful with type-out and output commands.
Examples:

XHR$$ Delete entire editing buffer.

XHT$¢ Type entire buffer.

XHXA$$ Insert entire buffer into Q-register A.

TECO COMMANDS

4.31 I INSERT COMMAND
Insert text into the buffer.

FORMAT: Itext$

@I/text/
where:
text is only limited by available command string storage
space
/ is an arbitrary delimiter which 1is not one of the

characters in "text."

The I command followed by a text argument is the basic TECO insertion
command. Delimit the text argument by an ESCAPE.

This command inserts the ASCII text string, "text," into the -editing
buffer just ahead of the buffer pointer. After the insertion, TECO
positions the buffer pointer immediately after the last inserted
character. TECO does not insert the ESCAPE terminating the text
argument. "Text" may contain any character except the special
characters listed in Table 1-1.

The amount of core available for command string storage 1limits the
number of characters in the text. During normal editing jobs, DIGITAL
recommends that you limit insertions to about 10 to 15 lines each.

If a very long insertion command begins to exceed the TECO command
storage capacity, TECO rings the terminal bell once when ten
characters of storage remain and once after each additional character
entered. The bell also echoes as a "G. When this occurs, terminate
the command string immediately. Entering more than ten additional
characters into the current command string causes a fatal error.

The @I/text/ command is slightly more powerful than the I command. It
enables you to insert ‘single (but not double) ESCAPE characters in
addition to the characters that can be inserted with the I command.
The @I form 1is wuseful for inserting TECO command strings into the
editing buffer.

Delimit the text argument to the @I command, both before and after, by
any single character which 1is not itself a part of the text to be
inserted. TECO does not require an ESCAPE to terminate the text
string; it is the second occurrence of the delimiting character that
terminates the text string. The text 1is inserted immediately
preceding the buffer pointer, as it is with the I command. TECO does
not insert the delimiting character,

Examples:

XJiiline one
line two
line three
$%

X

XKI
$%
X

XxI
<NELETE>
$$
X

XRIZTEXT$x<DELETE:$%Z$$

The following examples assume
buffer positioned between the

XIXYZ$$

XxI
$$

3RI $4CI $%

TECO COMMANDS

This example shows insertion of several
lines of text at the beginning of the
buffer.

Use this command string to delete the
tail of & 1line without removing the
carriage return/line feed at the end.

I1f the buffer contains:

ABCD

EFGH
and the buffer pointer is between the
and the C, this command produces:

AB

EFGH

B

Use this command to insert a carriage
return without a line feed following it.

The single <DELETE> deletes the 1line
feed but not the carriage return.

This is a convenient method for
inserting multiple ESCAPEs when using
the @I command. Type the sequence
x<DELETE>, where x 1s any character
except an ESCAPE, between the successive
ESCAPESs. If the x<DELETE> were not
typed, TECO would assume that you were

terminating the command string.

that the buffer contains ABCDEF with the
D and E.
Produces ABCDXYZEF with the buffer
pointer between the Z and the E.
Produces ABCD

EF
with the buffer pointer positioned

before the E.

Produces A BCDE F

TECO COMMANDS

4.32 nI$ INSERT COMMAND
Insert a character into the buffer.
FORMAT: nIS$
where:
n is the ASCII value of the character to be inserted.
The nI$ command inserts one character into the editing buffer. The n
numeric argument includes all characters that the I and @I commands
cannot insert. However, the nI$ command inserts only one character at
a time. The command nI$ inserts the character with the ASCII value n
into the buffer immediately preceding the pointer.
NOTE
The I$ command inserts a null string
into the editing buffer. The nI$

command always inserts a character into
the buffer.

The nI$ command is most often used to insert the special characters

listed in Table 2-1.

Example:

If you are creating a macro that you wish to abort immediately if a

certain condition occurs, then you could type some command string

minus the <°C> and then add it with the insert command. For example,
XIARCDEFGHIJNKILMNS$

If the <"C> were to be inserted after the K, then the command string

K3RIISHXASS

would insert the °C, and then place the command string in Q-register
A,

The following command string could also be typed:

XIABCDEFGHIJKS 3I$% ILMNS$$

TECO COMMANDS

4.33 J JUMP COMMAND

where n>0

The nJ command moves the buffer pointer to the position immediately
after the nth character in the buffer. The J commands are listed in
Table 4-6.
Table 4-6
J Commands
Command Function
nJ Move the pointer to the position following the nth
charater in the text buffer.
0J move the pointer to the beginning of the buffer.
J Equivalent to 0J.
zJ Move the pointer to the end of the buffer.

TECO COMMANDS

4.34 K KILL COMMAND
Line deletion.

FORMAT: nK
m,nkK

where:

n may be positive, negative, or zero if there is one
argument, If there are two arguments, m<n.

The K commands are described in Table 4-7.

Table 4-7
K Commands

Command Argument Function

K 1 assumed Deletes everything from the buffer
pointer through the next line terminator.
If the pointer is at the beginning of a
line, the K command deletes the entire
line. Otherwise, the K command deletes
only the portion of the line following
the pointer (including the line
terminator).

nkK n>0 Deletes everything from the buffer
pointer through the nth line terminator
following it.

0K 0 Deletes everything from the pointer back
to the beginning of the current line.

-K -1 assumed Deletes everything from the pointer back
to the beginning of the line preceding
the current line,

nkK n<0 Deletes everything from the pointer back
to the beginning of the nth 1line
preceding the current line.

m,nK m<n Deletes the (m+l)st through the nth

: characters 1in the buffer and positions
the pointer at the point of deletion
(that is, the pointer is set equal to m).

HK B,Z Deletes the entire contents of the
buffer.

If the K command attempts to delete text up to and across the
beginning or end of the buffer, TECO deletes text only up to the
buffer boundary. The buffer pointer is positioned at the boundary and
no error message is printed.

TECO positions the buffer pointer between the character that preceded
and followed the deletion.

TECO COMMANDS

Examples:

The following examples assume that the buffer contains the ABCDE
text shown at the right; the buffer pointer is positioned FGH1J
between the M and the N, KLMNO
PORST
UVWXY

Z
XHK$$ Deletes everything in the buffer, but does not delete

the form feed (if there is one) marking the end of the
page. To delete the form feed as well, type HKA,

X0y .K$$ Deletes everything from A through M,

Xer1ZK$$ Deletes everything from N through Z.

XK$$ Deletes NO, changing the third and fourth 1lines to
KLMPQRST.

XOLKS$ Deletes the entire third line.

XL3K$$ Deletes the 1last three 1lines (everything from P
through Z).

XKD$$ Deletes NO and P, changing the third and fourth 1lines
to KLMQRST.

XOK$$ Deletes KLM.

X-K3$$ Deletes FGHIJ

KLM,

TECO COMMANDS

4.35 L LINE COMMAND
Move the buffer pointer by lines.
FORMAT: nL
where:
n may be positive, negative, or zero.
Use the L command to move the buffer pointer over entire lines. The L

command and its arguments are shown in Table 4-8.

Table 4-8
L Commands

Command Argument Function

L 1 assumed Advances the pointer to the beginning
of the line following the current line.

nL n>0 Advances the pointer to the beginning
of the nth line following the current
line.

oL 0 Moves the pointer back to the beginning

of the current line.

-L -1 assumed Moves the pointer back to the beginning
of the line preceding the current line.

nL n<0 Moves the pointer back to the beginning
of the nth line preceding the current
line.

If you attempt to move the buffer pointer backward beyond the position
immediately prior to the first character in the buffer or forward
beyond the position immediately after the 1last character 1in the
buffer, TECO does not print an error message; however, TECO moves the
pointer to the beginning or end of the editing buffer.

Examples:

XJ3L%% The J command moves the pointer to the beginning of
the first 1line 1in the buffer. The 3L command then
moves it to the beginning of the fourth line.

XZJ-2L %% The ZJ command moves the pointer to the end of the
last 1line in the buffer. Then the -2L command moves
the pointer to the beginning of the next to last 1line
in the buffer (assuming that the 1last 1line |is
terminated by a line feed).

XLACSS Advance the pointer to the position following the
fourth character in the next line.

TECO COMMANDS

4.36 M MACRO COMMAND
Execute the command string stored in a Q-register.

FORMAT: Mq
nMq
m,nMg

where:
q is a Q-register,

TECO command strings are composed of ASCII characters and, as such,
you can insert or read them into the editing buffer just like any
other text.

The command string stored in a Q-register is called a macro.

When a command string is in the editing buffer, you can edit 1it, but
you may not execute it because, when it is in the buffer, it appears
to be data to TECO. However, if you copy a command string from the
editing buffer into a Q-register (using an X command), then this
command string can be executed.

The command Mg (where g is one of the 36 Q-registers) executes the
text in that register. Thus, entering an' Mg command is analogous to
calling a subroutine.

You may include any TECO command in the command string which is stored
in and executed from the Q-register. The only restriction is that the
commands must all be complete within the macro in the Q-register. For
example, a command and its argument must not be split apart, one in
the command string and the other in the Q-register. If you include
iterations and conditional execution strings, these must also be
complete within the register., If you use an O command in the macro,
the tag to which it branches must also be in the register.

The forms of the M command are:

Mg Execute the contents of Q-register q.

nMg Execute the contents of Q-register g and use n as a
numeric argument for the first command in the command
string.

M,nMq Execute the contents of Q-register g and use m,n as a
numeric argument for the first command in the command
string.

Example:

The following shows the creation of a macro to format a file into
pages of 50 lines. The macro will be stored in a Q-register, and then
be called to operate upon two files,

XEWFIFTY ,TEC$$
XERI/Y<ISTI"N} 508
$°FA 0ST$/121I% 0s.P 0y .K> EC/$$
XHXASS
XECS$
KEEFILE1.FT$$
AMASS
KAERFILE2.FT$$
kMASS
X

9.
10.

11.

TECO COMMANDS
This macro will be kept after it 1is created in the file
FIFTY.TE.
The Y brings in the first page of text.
The "N will signal if the end-of-file flag has been set.

If it has been set, “N; will cause a branchin from the
iteration.

If the page has fewer than 50 lines, a new page 1is appended
to the buffer and the loop is continued.

If there are at least 50 lines, a form feed is appended, the
50 lines are output, and then killed.

This will continue until the "N flag is set, indicating the
end of the file has been reached.

After the macro has been completed, it is stored with the HXA
command into Q-register A.

FIFTY.TE is then closed.
FILE1l.FT is then opened, and the Q-register is executed.

The procedure is repeated for FILE2,FT.

TECO COMMANDS

4,37 N NONSTOP SEARCH COMMAND
Search a file for a string until it is found.

FORMAT: nNtext$

where n>0 and / is an arbitrary delimiter which is not one of the
characters in "text." The N command combines the S command with
input/output functions. Use the N command to search for a character
string in a page of the input file which may not yet have been read
into the editing buffer.

The N command may accept a colon modifier.

"Text" may include the following match control characters:

“Na Match anything except "a"

“Q Use the next command as match character
°s Match on a separator

X Exempt position from match

The N command differs from the S command in that the former does not
terminate at the end of the page currently in the buffer.

If TECO does not find a match for the search string between the
current buffer pointer position and the end of the buffer, the current
page is output, the buffer is cleared, and the next page is read in.
The search then starts over at the beginning of the new page. This
process continues until a match is found or the input file is
completely written to the output file.

If an N search fails, the entire input file passes through the buffer
and 1is written to the output file, TECO also clears the editing
buffer but does not close the output file. Unless the : modifier was
used or the search is within an iteration, an error message is typed
to notify the user that the search has failed.

An N search cannot detect a match when the matching characters are
split across two buffers. It also cannot detect a match if the
characters are on separate lines unless you include the line separator
in the search string.

The output function of the N command is exactly like the P command.
If a form feed character was encountered when a given page was read
in, TECO appends a form feed character to that page when it is output;
otherwise, no form feed character is output.

If you do not include a text argument with a search command (for
example, N$$), TECO executes the search using the last previous search
command argument.

You may use the N command with a single numeric argument. The command
nN_, in which n must be greater than 0, causes a search for the nth
occurrence of the search string. When you omit n, TECO assumes n=1.

The _ search differs from the N search in that the former produces no
output. However, both will search through the entire file following
the buffer pointer until a match occurs.

Examples:

ANDIGITALS$S

ANLAST LIN FG1
18T LIN FG2

$$

ZPSRH FAILED

X

ANMASSACHUSETTS$$
PSPSRHLED

XEF$$

XEROUTFUT .FI$$%
XY$$
ANMASSACHUSETTS$$

TECO COMMANDS

If page 5 of the text is currently in the
buffer and the string DIGITAL does not occur
until page 15, this command causes pages 5
through 14 to be output and page 15 to be
read in. The pointer will be set
immediately after the L in DIGITAL.

If this string actually exists in the file
but the two lines are not read into the same
buffer, the N search will fail. 1In other
words, a search can be dependent on how TECO
brings information into the buffer.

An N search should not be used when an S
search would suffice, because user errors
with the N command, such as the spelling
shown here, can cause considerable delay.
In this example, the error causes two passes
over the entire file instead of just one.

TECO COMMANDS

1. Do not match on character following the <"N>,
FORMAT: <"N>a

where a 1is an ASCII character and must be entered
<CONTROL/N>.

2. Flag that indicates if the end of file has been reached.
FORMAT: °“N

where the command can be entered as a <CONTROL/N> or
circumflex-N,

4.38.1 <"N> MATCH CONTROL CHARACTER

Use the <"N> match control command to accept any character in a
particular position during a search except the character following the
command. When TECO is searching for a string, any character except
that following the <"N> is acceptable as a match. It differs from the
<"X> match control character in that the <"X> will accept any
character in that position as a match.

The <"N>-character combination counts as one character in the search
string. However, it counts as 2 of the 31 characters permitted in a
search string.

The combination <"N><"S>.is legal; it commands TECO to accept any
character which is not a separator as a match for this string.

The circumflex construction may not be used.

4.38.2 “n End-of-File Indicator Command

The “N command returns a value indicating if the end of the file has
been reached. It is most often used in conjunction with a command
that inputs data. The setting of the flag will then be the cause of
jumping from an iteration or the fulfillment of a condition for a
conditional execution command. It is initially set to 0. When the
end of file has been reached, it is set to -1.

Example:
X<YITITLE This command string inserts TITLE at the top
$FWUTNF >3 of each page of a file.
X<"N§FSARCSDEF$5 This macro changes all occurrences of ABC to
<FSXYZ$FQRS DEF and of XYZ to PQR in an entire file.
P EX$$ The "N terminates the iteration when the °N

flag is set to -1.

TECO COMMANDS

4.39 O GOTO COMMAND

Unconditional branch to a location.
FORMAT: Otag$

where:

tag is composed of ASCII characters delimited by
exclamation marks in the command string and by an
ESCAPE in the O command.

The purpose of the tag following the 0 is to name the destination of
the unconditional branch instruction. The tag location itself may be
either before or after the O command in the command string. However,
the branch cannot occur before the beginning of the current iteration.
For example, if you enter the following command string:
.e..ltaglt,...<...0tagl$...>
TECO will produce an error message.
However, the command string segment
...<ltagl!,..0tagl$...>
is legal.
The O command causes the command string execution pointer to be moved
to the first character following the exclamation point that terminates
the tag, and command execution continues from that point.

Tags are ignored except when an O command forces TECO to scan the
command string from them.

There is no restriction on the length of the tag (except that it must
fit into the buffer).

The tag must also be in the same macro level; that 1is, you cannot
branch from within a called macro to outside of the contents of the
Q-register nor can you branch from outside of a macro into it.

TECOC COMMANDS

4.40 <°0> COMMAND

1. Stop terminal output during typing ocut.

-~

FORMAT: < O>

where the command must be typed as <CONTROL/O>.
2. Change to octal radix.

FORMAT: ~Q

4.40.1 <"0> TYPE OUT COMMAND

During the execution of a type-out, you can stop the terminal output
by typing <°0>. This command causes TECO to finish execution of the
command string, omitting all further type-outs. You can enter this
command only while TECO is actually typing out text at the terminal.
If it is not, TECO ignores the “0. The effect of this command does
not carry over to the next command string.

Typing a second <"0> will cause the type-out to continue if the
command string has not finished executing.

This command cannot be typed as circumflex-O0.

Occasionally, the asterisk that TECO prints when a command finishes
execution is also suppressed. If this occurs, you can type
<CONTROL/U>. TECO then responds with an asterisk if it is waiting for
a command.

Example:

The following example assumes the buffer contains the text ABCDE

shown at the right. FGHIJ
KLMNO
PQRST
UVWXY

A

XHT3K$$ The user requests type-ou<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>