
so~ware
support manual

digital equipment corporation

I

DEC-S8-LFSSA-A-D

OS/8 FORTRAN IV

SOFTWARE SUPPORT ~ANUAL

For additional copies, order No. DEC-B8-LFSSA-A-D
from Software Distribution Center, Digital Equipment
Corporation, Maynard, Mass.

digital equipment corporation · maynard. massachusetts

4/81·16

First Printing
June, 1973

Copyright @) 1973 by Digital Equipment Corporation

The following are trademarks of Digital Equipment Corporation,
Maynard, Massachusetts:

CDP DIGITAL KAlO PS/8
COMPUTER LAB DNC LAB-8 QUICKPOINT
COMTEX EDGRIN LAB-8/e RAD-8
COMSYST EDUSYSTEM LAB-K RSTS
DDT FLIP CHIP OMNIBUS RSX
DEC FOCAL OS/8 RTM
DECCOMM GLC-8 PDP SABR
DECTAPE IDAC PHA TYPESET 8
DIBOL IDACS UNIBUS

INDAC

ii

CONTENTS

CHAPTER 1 THE F4 COMPILER 1=1

CHAPTER 2 THE RALF ASSEMBLER 2-1

CHAPTER 3 THE FORTRAN IV LOADER 3-1

CHAPTER 4 THE FORTRAN IV RUN-TIME SYSTEM 4-1

CF..APTER 5 LIBRA AND FORLIB 5-1

APPENDIX A RALF Assembler Permanent Symbol Table A-I

APPENDIX B Assembly Instructions B-1

iii

CHAPTER 1

THE F4 COMPILER

The OS/8 F4 compiler runs in 8K on either a PDP-8 or a PDP-12. It op

erates in three passes to transform FORTRAN IV source programs into

RALF assembly language. The function of each of the three passes is:

1. Analyze statements, check syntax and convert to a polish

notation.

2. Convert output of PASSl to RALF assembly language making ex=

tensive use of code skeleton tables.

3. Produce a listing of the FORTRAN source program and/or chain

to the assembler.

The following is a more complete description of each of the three

passes.

PASSI OPERATION

After opening the source language input file(s) and an intermediate

output file, PASSl processes statements in the following fashion:

1. Assemble a statement into the statement buffer by reading

characters from the OS/8 input file. This section eliminates

comments and handles continuations so that the statement

buffer contains the entire statement as if it had been written

on one long line.

2. The statement is first assumed to be an arithmetic assignment

and an attempt is made to compile it as such. This is done

with a special switch (NOCODE) set so that in the event the

statement is not arithmetic, no erroneous output is produced.

Thus, with this switch set, the expression analyzer subroutine

is used merely as a syntax checker.

3. If the statement is indeed an arithmetic assignment statement

(or arithrrtetic statement ftL."1.ction) the sWTi tch is set off and

the statement is then recompiled, this time producing output.

1-1

4. If not an arithmetic assignment, the statement might be one

of the keyword defined statements. The compiler now checks

the first symbol on the line to see of it is a legal keyword

(REAL, GOTO, etc.) and jumps to the appropriate subroutine if

so. Any statement that is not now classified is considered to

be in error.

5. The compilation of each statement takes place. Some state

ments produce only symbol table entries (e.g., DIMENSION)

which will be processed by PASS2. Others use the arithmetic

expression analyzer (EXPR) and also output special purpose

operators which will tell PASS2 what to do with the value

represented by the arithmetic expression (e.g., IF, DO).

6. After the statement has been processed, control passes to the

end-of-statement routine which handles DO-loop terminations

and then outputs the end-of-statement code.

7. Statements containing some kind of error cause a special

error code to be output.

8. The entire process is now repeated for the next statement.

9. When the END statement is encountered, PASSI chains to PASS2.

PASSI SYMBOL TABLE

A significant portion of the PASSI processing involves the production

of symbol table entries. These entries contain all storage related

information, i.e., variable name, type, dimensions, etc.

The symbol table is organized as a set of linked lists. The first 26

such lists are for variables, with the first letter of the variable

name corresponding to the ordinal number of the list. There are also

separate lists for statement numbers and literals (integer, real,

complex, double, and Hollerith). In addition to list elements, there

are special entries for holding DIMENSION and EQUIVALENCE information.

1-2

A detailed description of each type of entry follows. (NOTE: All

symbol table entries are in Field 1.)

TYPE

0

1. VARIABLE - The first word of each entry is a pointer to the

next entry, with a zero pointer signaling end of list. The

second word contains type information. The third word points

to the dimension and/or equivalence information blocks. The

next one to three words contain the remainder of the name

(the first character is implied by which list the entry is in)

in stripped six-bit ASCII terminated by a zero character.

Thus, shorter variables take less symbol table space. The

entries are (as for all lists in the symbol table) arranged

in order of increasing magnitude, or alphabetically.

POINTER

TYPE

DIMENSION/EQUIVALENCE

NAME 2-3

NAME 4-5

NAME 6

~ mrrm ...
N A

M E

X ~

WORD FORMAT

1 2 3 4 5 6 7 8 9 10 11

I COM DI lEx AS I EQ E~ L AR I T Y

I
P

I E I M T F UI I G

l I
L~

BIT

~

1

2

3

4

5

6

7

I V J. C

Variable is in common.

Variable is dimensioned.

T I

External symbol or subroutine/function name.

1 I

Symbol is the name of an arithmetic statement function.

Variable is an equivalence slave.

Variable is explicitly

Entry is a literal.

Variable is a formal parameter.

1-3

I

8-11
Type

1 integer
2 real
3 complex
4 double
5 logical
8 statement number
9 common section name

2. STATEMENT NUMBER - The first two words are the standard

pointer/type. The next three words are the statement number,

with leading zeros deleted, in stripped six-bit ASCII, filled

to the right with blanks.

POINTER

TYPE

NUMBER 1-2

NUMBER 3-4

NUMBER 5

3. INTEGER OR REAL LITERALS - The first two words are the pointer

and type. The next three words are the value in standard

floating-point format (12-bit exponent, 24-bit signed 2's

complement mantissa). Since the type of the literal must be

preserved, there are two lists; hence use of 1 and l.~ in the

saroe program will cause one entry in each of the integer and

real literal lists.

POINTER ~

TYPE

EXPONENT
VA

MANTISSA 0-11 __ LU

MANTISSA 12-23 E

4. COMPLEX LITERALS - The first two words are standard. The

next three are the real part in standard floating-point

format. The next three are the imaginary part.

1-4

POINTER

~ TYPE

REAL EXPONENT

REAL MANTISSA 0-11 ~L~ REAL M&~TISSA 12-23

IMAGINARY EXPONENT O-ll~ IMAGINARY MANTISSA

IMAGINARY MANTISSA 12-23 NA

5. DOUBLE PRECISION LITERALS - The first two words are standard.

The next six are the literal in FPP extended format (72-bit

exponent, 60-bit mantissa) •

POINTER •
TYPE J j tIll
EXPONENT

MANTISSA 0-11

rJ..ANTISSA 12-23

MANTISSA 24-35

MANTISSA 36-47

MANTISSA 48-59

6. HOLLERITH (quoted) LITERALS - The first two words are stan-

dard. The next N words are the characters of the literal in

stripped six-bit ASCII, ending in a zero character.

POINTER

TYPE

CHARACTERS 1-2

etc.

7. DIMENSION INFORMATION BLOCK - If a variable is DIMENSIONed,

the third word of its symbol table entry will point to its

dimension information block (may be indirectly, see section

8 below). The first word of this block is the number of

dimensions. The second word is the total size of the array

in elements; thus the size in PDP-8 words may be 3 or 6 times

1-5

this number. The third word contains the "magic number"

which is computed as follows:

n-l
MN= - 1+ L

i=l

i

j=l
d.

J

where d. is the jth dimension and n is the number of
J

dimensions.

For a 3-dimensional variable this number becomes:

The magic number must be subtracted from any computed index,

since indexing starts at one and not zero. The fourth word

will (in PASS2) contain the displacement from #LIT of a

literal which will contain either the magic number in

un-normalized form (for dimensioned variables which are

subroutine arguments) or the address of the variable minus

the magic number (for local or COMMON dimensioned variables) .

This literal is necessary for calling subroutines where a

subscripted variable is an argument. The next N words are

the dimensions of the variable. If the variable is a formal

parameter of the subroutine, it may have one or more dimen-

sions which are also formal parameters. In this case, the

magic number is zero, and the dimension(s) is a pointer to

the symbol table entry for the variable(s) used as a dimen-

sion.

NUMBER OF DIMENSIONS

TOTAL NUMBER OF ELEMENTS

MAGIC NUMBER

RESERVED

DIMENSION 1

DIMENSION 2

DIMENSION n

1-6

SIZE

MN

Dl

D2

8. EQUIVALENCE INFO&~TION BLOCK - If a variable is an

EQUIVALENCE slave variable, the third word of its symbol

table entry points to the equivalence information block.

The first word of this block points to the dimension infor-

mation (if any) of the variable~ The second word points to

the symbol table entry of the EQUIVALENCE master variable.

The third word is the linearized subscript of the master

variable from the EQUIV~LENCE statement; The fourth word is

the linearized subscript of the s~ave variable.

POINTER TO DIMENSIONS

POINTER TO MASTER

MASTER SUBSCRIPT

SLAVE SUBSCRIPT

SSM

SSM

9. CO~~~ON INFOP~~~TION BLOCK - If a symbol is defined as the nwue

of a COMMON section, the third word of its symbol table entry

points to a list of common information blocks. The first

word of each such block points to the next block. The second

word is the number of entries in the list that follows. The

rest of the block is a set of pointers to the symbol table

entries of the variables in the COMMON section.

POINTER TO NEXT CIB

NmvffiER OF ENTRIES #

{ ~
POINTER TO VARIABLES ~ ____ .. __ ~

IN THIS COMMON ..

PASSl OUTPUT

The output of PASSl is a stream of polish with many special operators.

Whenever an operand is to be output, the address of its symbol table

entry is used. The following is a list of the output codes (in their

mnemonic form, obtain numeric values from listing of PASS1) and the

operation they are conveying to PASS2:

1-7

PUSH

ADD

SUB

MUL

DIV

EXP

NOT

NEG

GE

GT

LE

LT

AND

OR

EQ

NE

XOR

EQV

PAUSOP

DPUSH

BINRDl

FMTRDl

The next word in the output file is an operand
(symbol table pointer) to be put onto the stack.

Add the operands represented by the top two stack
entries (actually this causes PASS2 to generate
the RALF coding which will do the desired add).

Subtract top from next-to-top.

Multiply top two.

Divide top into next-to-top.

Raise next-to-top to power of top.

Logical .NOT. of top of stack.

Negate top of stack.

Compare top two for greater than or equal to, this
has TRUE value if the next-to-top is .GE. the top.

Compare for greater than.

Compare for less than or equal.

Compare for less than.

Logical AND of top two entries.

Logical inclusive OR of top two.

Compare top two for equality.

Compare top two for inequality.

Exclusive OR of top two.

EQUIVALENCE of top two.

Use top of stack as PAUSE number.

The next two words are a symbol table pointer and
a displacement; put them onto the stack (used for
DATA statements) .

Take the top of stack as the unit number and com
pile an unformatted READ-open.

The top two stack elemeLts are the unit and format,
take them and compile a formatted READ-open.

1-8

RCLOSE

DARDI

BINWRI

FMTWRI

WCLOSE

DAWRI

DEFFIL

ASFDEF

ARGSOP

EOLCOD

ERRCOD

RETOPR

REWOPR

STOROP

ENDOPR

DEFLBL

DOFINI

~.RTHIF

LIFBGN

Compile a READ-close.

Take the top two stack elements as a unit number
and a block number and compile a direct access
unformatted READ-open.

Same as for the corresponding READ case, except
substitute the word "WRITE".

Take the top four stack entries as the unit,
number of records, record size, and index
variable and compile a DEFINE FILE call.

Set the PASS2 switch which says that the following
statement is an arithmetic statement function.

The next word is a count, call it n; take the
previous n stack entri~~ as subscripts (or
arguments) and the N+l entry from the top as
the array (or function) name; now compile this
as an array reference (or function/subroutine call).

The current statement is completed, reset stacks
and do other housekeeping.

The following word contains an error code, write
it on the TTY together with the current line
number, and put the error code and line number
into the error list for possible PASS3.

Compile a subroutine RETURN.

Take the top of stack as a unit and compile a
re",ind~

Compile a store of the top of stack into the
next-to-top.

Compile a P~TURN if a function or subroutine or
a CALL EXIT if a main program.

The following word is a symbol table pointer to
a statement number, compile this as the tag for
the current RALF line.

The following word is a symbol table pointer for
the DO-loop index, compile the corresponding
DO-ending code.

The following one, two, or three words are symbol
table pointers to statement numbers for the less
than zero, zero, and greater than zero conditions
with the comparison to be made on the top of
stack.

The top of stack is taken as a logical expression
PASS 2 should compile a jump-around-on-falsei this
implies that some statement is to follow.

1-9

DOBEGN

END FOP

STOPOP

ASNOPR

BAKOPR

FMTOPR

G020PR

CG020P

AG020P

IOLMNT

DATELM

DREPTC

ENDELM

PRGSTK

DOSTOR

PASS 1 SUBROUTINES

The top two stack entries represent the final
value and increment of the DO-loop, process them
in hopes pf finding a matching DOFINI.

The top of stack is a unit, compile an END FILE.

Compile a CALL EXIT.

The next word is the address of the symbol table
entry for a statement number; compile an ASSIGN
of this statement number to the variable represented
by the top of stack.

Take the top of stack as the unit and compile
a BACKSPACE.

The following word is a count Ni the next N words
after that are the image of the FORMAT statement.

The following word is the symbol table entry for
the statement number which is to be executed next.

The following word is a count Ni the next N words
are symbol table pointers for the statement
numbers of a computed GO TO list; use the value
represented by the top of stack to compile a
computed GO TO into this list.

Compile an assigned GO TO with the top of stack.

Take the top of stack as a list element for an
I/O statement and compile read or write; PASS2
knows if it is a READ or WRITE by remembering
previous FMTRDl, FMTWRl, etc.

The next word is a count Ni the next N words are
a data element.

The next word is a repetition count for the set
of DATELMs up until the next ENDELM.

Signals the end of a data element group.

Tells PASS2 to purge the top stack entry.

Performs the same function as STOROP after
checking the top two stack elements for legal
DO-parameter type (integer or real).

The following is a brief description of the function-of each of the

major PASSl subroutines:

RDWR Compiles everything in a READ or WRITE statement
starting at the first left parenthesis.

1-10

RESTCP

OUTWRD

COMARP

BACKl

GETSS

MUL12

DOSTUF

TYPLST

LOOKUP

LUKUP2

EXPR

LETTER

CHECKC

GETCWB

SAVECP

GETC

ERMSG

POP

PUSH

LEXPR

GET2C

Restore character pointer and count for the
statement buffer from the stack.

Output a word (the AC on entering) to the PASSl
output file.

Test for comma or right parenthesis; skip one
instruction if a comma, two if a right parenthesis,
and none if neither.

Backup the statement buffer character pointer.

Scans a variable reference, or subscripted variable
reference with numeric subscripts and returns the
linearized subscript.

Perform a l2-bit unsigned integer multiply.

Handles compilation of DO-loop setup.

Process a type declaration, DIMENSION, or
COMMON statement; sets up type bits and/or
dimension information.

Perform a symbol table search for variables and
Hollerith literals.

Perform a symbol table search for integer, real,
complex, and double precision literals or
statement numbers.

Analyze and process an arithmetic expression.

Get next character from the statement buffer and
skip if it is a letter, otherwise put the
character back and don't skip.

The first word after the JMS is the negative of
the ASCII character to test for; if this is the
next character, skip.

Get the next character from the statement buffer
preserving blanks.

Save the character pointer and count on the
stack.

Get the next character ignoring blanks.

Output an error code to PASSl output file.

Pop the stack into the AC.

Push the AC onto the stack.

Analyze and process an arithmetic expression,
legal to the left of the equal sign in an
assignment statement.

Get the next two character into one word.

1-11

STMNUM

DIGIT

NUMBER

GETNAM

ICHAR

PASS2 OPERATION

Scan OII a statement number and do the symbol
table search.

Same as letter, except checks for a digit.

Scans off an integer, real, or double precision
literal.

Scan off a variable name.

Get the next character from the input file.

The first part of PASS2 generates the storage for variables, arguments,

arrays, literals and temporaries by processing the symbol table

built by PASSl, which is kept in core. The next step is to generate

the code for subroutine entry and exit including argument pickup and

restore. After all such prolog code is generated, PASS20 is loaded

into core, overlaying most of the prolog-generating functions. The

main loop of the compiler is now entered. This consists simply of

reading a PASSI output code from the intermediate file and using this

number as an index into a jump table. The sections of code entered

in this way then perform the correct generation of P~LF code.

Example:

The statement: A=B+C*D
would produce the following PASSl output:
(assuming A,B,C,D are REAL)

1) PUSH

+A (symbol table address of A)

2) PUSH

+B

3) PUSH

+C

4) PUSH

+D

5) MUL

6) ADD

7) STOROP

8) EOLeOD

1-12

The corresponding operations performed by PASS2 are:

1) Make a 3-word entry on the stack corresponding to the
variable A consisting of a pointer to the symbol table
entry, a word containing the type, and one reserved word.

2) Repeat above for B.

3) Repeat above for C.

4) Repeat above for D.

5) The multiply operator is handled like any of the binary
operators by the subroutine CODE. This routine is called
with the address of the multiply skeleton table. The
top two stack entries are taken as the operands, with
their types used to index into the skeleton tables.
(See description of binary operator skeleton tables below.)
The correct skeleton for this combination is chosen based on
the where-abouts of each of the operands (AC or memory)
at the corresponding point in the code which is being
compiled. There are three possible cases: Memory ,AC ;
Memory ,Memory i AC,Memory. In this example, both operands
are in memory so the code generated would be:

FLDA C

FMUL D

The CODE subroutine then makes a new stack entry to replace
the entries for C and D. This entry has a ~ in place of
the symbol table pointer, signifying that the operand is in
the AC. Other special case operand codes are:

~ AC (Already mentioned)

1 - 51 Temporaries

52 - 6~ Array reference, the subscript of which is in
an index register (1-7).

61 - A variable, the address of which is in base
location ~.

62 - A variable, the address of which is in base
location 3.

63-6777 - Symbol table entry (can be variable or literal).

7000 - Special temporary

6) The add operator is handled in the same way as for multiply,
except that in this case the add skeleton table is used.
When the correct row is found, the memory,AC case is chosen
since the result of C*D is now in the AC. This skeleton
simply generates:

FADD B

The new top of stack entry is a ~, since the result is in
the AC.

7) The store operation works in a similar manner using a special
skeleton table to determine whether the value to be stored is

1-13

already in the AC and whether it must be converted from one
type to another. In this case, no conversion need be performed
and the code generated is:

FSTA A

8) The end of statement has been reached and any necessary
bookkeeping is performed.

PASS2 SYMBOL TABLE

PASS2 modifies the symbol table entries corresponding to variables

by replacing the first word of the entry with the first character of

the name, this character being derived from the list in which the name

is located.

PASS2 ERROR LIST

PASS2 creates a list (in field 1) of error codes and line numbers

corresponding to the errors printed on the Teletype during PASS2.

This list works downward starting just below the skeleton table area,

working towards the symbol table area. PASS3 uses this list to

write out extended error messages on the listing.

PASS2 SKELETON TABLES

All binary operators have associated with them a skeleton table

having 24 entries arranged in 8 rows and 3 columns. The rows

correspond to the following eight possibilities:

I} Both operands integer or real.

2} Both operands complex.

3) Both operands double precision.

4} First operand integer or real, second complex.

5) First operand integer or real, second double precision.

6) First operand complex, second integer or real.

7) First operand double precision, second integer or real.

8) Both operands logical.

1-14

The columns correspond to the following three possibilities:

l} First operand in memory, second in AC.

2) Both operands in memory.

3) First operand in the AC, second in memory.

Each entry of the skeleton tables is either zero (illegal operator-

type combination) or points to a code skeleton (minus one). Code

skeletons are composed of combinations of the following types of

elements:

l} OPCODES - If an element has a non-negative value, it is
taken as the address of a text string for the desired
opcode. This works since all such text strings are
stored below location 4~~~ (in field ~). In this case,
the next word of the skeleton is taken as a designator
for the address field, the possibilities are:

a. A non-negative values means the address field is a
literal text string, with the value being the ad
dress of the string. (Same restriction as for op
code text strings.)

b. A zero indicates that this instruction should have
no address field.

c. A minus one indicates that the address field is the
operand defined by the three variables ARG1, TYPE1,
and BASEl.

d. A minus two indicates that the address field is the
operand defined by the three variables ARG2, TYPE2,
and BASE2.

2) MODE CHANGE - An element value of minus one means generate
a STARTF if currently in extended mode. A value of
minus two means generate a STARTE if currently in single
mode.

3) MACRO - Any other negative value is taken as the address
(minus 3) of a sub-skeleton. This sub-skeleton may
contain anything except another sub-skeleton reference.
When the end of the sub-skeleton is encountered, the main
skeleton is re-entered.

4) END-OF-SKELETON - A zero indicates the end of the skeleton.

PASS2 SUBROUTINES

The following is a list of the major PASS 2 subroutines together

with a brief functional description.

1-15

ERMSG

UCODE

CODE

INWORD

FATAL

ONUMBER

SAVEAC

GENCOD

OPCOD

OPCODE

OADDR

GENSTF

GENSTE

OSNUM

CRLF

OTAB

OUTSYM

GARG

GARGS

OUTNAM

OLABEL

GETSS

SKPIRL

GENCAL

MUL12

Output a 2-character error code together with the
line number on the Teletype~ also put the code and
line number into the error list for PASS3.

Generate the code for unary operators, given the
skeleton table address.

Generate code for binary operators, given the
skeleton table address.

Read a word from the PASSI output file.

Output a fatal error message and exit to OS/8.

Output the AC as a 4-digit octal number.

Generate an FSTA #TMP+XXXX if necessary.

Generate the code specified by the given code
skeleton.

Output a TAB followed by the specified opcode
field.

Same as OPCOD, except output a second TAB after the
opcode field.

Generate the address field specified by the
argument.

Generate STARTF if in E mode.

Generate STARTE if in F mode.

Output a statement number preceded by a If#".

Output a carriage return/line feed.

Output a TAB.

Output a text string.

Pop the top entry of the stack into ARGl, TYPEl,
and BASEl.

Pop the top two stack entries into ARGl, TYPEl,
BASEl and ARG2, TYPE2, BASE2.

Output a variable name.

Output a generated label.

Find the address of the dimension information
block given the symbol table address.

Skip if integer, real, or logical.

Generate the code for a subroutine call from
the information contained on the stack.

Do a l2-bit unsigned multiply.

1-16

OINS

OCHAR

NUMBRO

PASS3 OPERATION

Output a literal opcode and address field.

Output a character

Output a 5-digit octal number.

PASS3 first initializes the listing header line with the version

number, date, and page number. It then processes lines, much like

PASS1, handling continuations and comments and outputs their image

to the listing file together with the line number. A constant check

is made on the error message list for line numbers that correspond

to the current line number, ~~en such a correspondence occurs, the

error code is used to find the associated detailed error message,

which is then printed out.

1-17

CHAPTER 2

THE RALF ASSEMBLER

RALF and FLAP are essentially the same program, with differences con-

trolled by the conditional assembly parameter RALF, which must be non-

zero to assemble RALF, or zero to assemble FLAP. The source may be

assembled by either PAL8 or FLAP; although FLAP flags one error (a US

on a FIELD statement) i this may safely be ignored. The remainder of

this chapter applies to RALF only. The following definitions are pre-

requisite to discussion of the operation of this assemblero

MODULE

LIBRARY

CATALOG

EXTERNAL
SYMBOL
DICTIONARY

TEXT

SECTION

ENTRY POINT

The relocatable binary output of an assembly. A module
is physically an OS/8 file or sub-file in a library;
and is made up of an external symbol dictionary and
related text. Logically, it consists of one or more
program sections and COMMON sections.

An OS/8 file on a directory device containing a catalog
and one or more modules as sub-files. Used solely by
the loader, as a source of modules with which to satisfy
unresolved symbols in a program being loaded.

A list of entry points defined in modules contained in
a library, with an indication of the locations of the
modules which define them.

A list of the global symbols defined in and/or used by
a module. Usually called ESD table.

That part of the assembler's binary output which contains
the binary data to be loaded into memory, along with
sufficient information for the loader to associate the
output with specific memory locations through references
to the ESD table.

A unit of binary data output by the assembler as part
of a module to be loaded into a contiguous area of
memory. COMMON sections are a special case in that
they may be defined with the same name in each of many
modules. In this case, all the definitions are combined
to create a single section in memory whose size is that
of the largest COMMON section with the given name.
Program sections, the only other type of section, must
have unique names. Sections are listed in the ESD table
by name, type and size.

&~ address within a section which is named and defined
to be global ,so-that it may he use-d for the resolution
of external references in other sections. Entry points
are listed in the ESD table by name, type and address
within the section in which they occur.

2-1

EXTERNAL
SYMBOL

A symbol which is specified at assembly time to be
defined in another module as an entry point. External
symbols are listed in the ESD table by name and type.
A complete program must include entry point names
equivalent to every external symbol defined in every
module in the program. There need not, however, be an
external symbol for every entry point, nor is there any
limit on the number of modules which may contain external
symbols referencing one entry point. From a functional
viewpoint, entry points correspond to tags within a
program and external symbols correspond to references
to those tags. Every section is considered to have an
entry point at location zero of the section. The name
of this entry point is the section name.

When RALF is called from the monitor, execution begins at the tag

BEGIN. Unless entry is via CHAIN, the OS/8 command decoder is called

to obtain input and output file designations. If entry is by way of

CHAIN, it is assumed that the command decoder area has already been

set up by the caller. In either case, it is always assumed that the

USR is already in core. A check is made to determine that the first

output file is a directory device file and, if no first output file

was specified, the default file SYS:FORTRN.RL is set up.

Default output file extensions are defined if none were specified to

the command decoder, using .RL for the first output file and .LS for

the second output file. The first output file is then opened, and the

handler for the first input file is FETCHed. If /L or /G was specified,

the loader is looked up on SYS so that chaining will be possible. The

symbol table, which is loader above 12000 in order to preserve the

USR, is now moved down to 10000. Finally, the system date word is

converted to character form and stored in the title buffer. This

completes the initialization procedure, and control is passed to

NEWLIN to collect the first line in the buffer.

At NEXTST, tests are made to determine whether the line just assembled

needs to be listed, and whether there are any remaining significant

characters in the line which have not been assembled. If a semicolon

2-2

terminated the statement, the character pointers are bumped to skip

over it, and control passes to ASMBL to process the next statement on

the line. If the assembler is currently 1n a REPEAT line

count is not exhausted, the current line is re-assembled. Otherwise,

a new line is obtained in the line buffer by collecting input characters

until a carriage return is found. If the line is longer than 128

characters, all characters after the l28th are ignored and the LT

message is printed. The line length is calculated and saved.

At ASMBL, ASMOF is tested to determine whether the assembly is currently

inside a conditional. If so, the line is scanned for angle brackets

but not assembled. If not, and the first character is not a slash,

leading blanks are thrown away and control passes to LUNAME. If there

is a name, it is collected. If it is followed by a comma, the symbol

is looked up in the user symbol table. If the symbol is undefined, it

is defined as a label. If it was already defined, the current location

counter is compared with it to check for a possible MD error. Control

then returns to ASMBL.

If the symbol found by LUNAME was followed by an equal it is

looked up and defined according to the expression to the right of the

equal sign. If it was followed by a space, either of the characters

, or #, or the character % and then a space, it is looked up in the

op-code table. If it is found, control passes to the appropriate

op-code handler. Otherwise, control is dispatched to GETEXP which

restores the character pointers saved by LUNAME, processes the rest

of the line as a single-word expression, and returns to NEXTST for the

next statement.

2-3

Expressions are processed on a strict left-to-right basis by the

routine EXPR. A symbol is looked up, and its value is stored in

WORDI and WORD2. It is then combined with the accumulated expressions

in EXPVAL according to the operator in LASTOP. A new operator (if any)

is then located, and the loop begins again. When no operator is found

after some symbol, the expression is considered complete and control

returns to the calling routine. Undefined symbols appearing in an

expression cause output of a US message, and the value zero is used

in their place. COMMON and section names in the symbol table have

special values (namely their lengths), but they always refer to the

starting location of the sections they define, and their values are

taken to be zero of the section so named. If GETNAM is not able to

find a symbol in the expression, three possibilities are checked before

flagging the expression as invalid:

1. It may be a number, rather than a symbol.

2. It may be one of the characters period (representing the
current value of the location counter) or double quote
(representing the binary value of the next ASCII character).

3. The last operator may have been a plus sign in an indexed
FPP instruction.

At the end of expression evaluation, the console keyboard flag is

checked to ensure that the user has not typed CTRL/C to stop the

assembly.

There are six expression operator routines, one each for the operations

add, subtract, AND, OR, multiply and divide. Except for add and

subtract, these routines must operate on absolute addresses because

the loader does not have facilities for non-additive resolution of

address constants.

2-4

The symbol table is the sale occupant of field 1, except for the OS/8

field 1 resident. The symbol table is loaded at location 12000 to

prevent an unnecessary swap of the USR, but moved down, to start at

location 10000, during initialization. Subsequent calls to the USR

do require a swap. The symbol table is a set of linked lists, or,

more properly, two sets; one for user-defined symbols and one for

op-codes and pseudo-ops. Each set contains a list corresponding to

every letter of the alphabet, and each list consists of the symbols

which start with that same letter. Every time a symbol is encountered

in the source, the list corresponding to its first letter is searched

until a match is found, or until the end of the list or a symbol of

higher alphabetical order is found. In the latter cases, the new

symbol is inserted into the user symbol table by changing the list

pointers so that the new symbol appears in the list in correct alpha

betical order. The pre-defined symbol table is never changed, because

the user is not permitted to define op-codes or pseudo-ops.

A RALF output file of relocatable binary data consists of two parts;

the ESD table and the text. The ESD table contains all information

required by LIBRA or the loader, and is generated between the first

and second passes of assembly. It serves as a partial symbol table

for the loader (the full symbol table is built up from the ESD tables

of all the modules in a program) and provides the name, attributes,

and value of every global symbol used by any module, as well as an

ESD code by which the symbol may be referred to within the text.

Every entry in the ESD table is six words long. The first three words

are the symbol itself, packed in stripped ASCII, with two characters

per word. The next word contains type information in the following

format:

2-5

A VALUE OF

o

1

2

3

4

5-17

INDICATES

Last entry in the ESD table.

The symbol is defined as external to this module.
The value of the symbol must be resolved by a
symbol of the same name appearing in the ESD
table of another module. The ESD code which
follows the type code is the code by which
references to this symbol will be identified
in the text.

The symbol is defined as an entry point in this
module. It is therefore suitable for the
resolution of external references in other
modules. The ESD code which follows the type
word identifies the program section in which
this entry point appears, and the value of
the symbol is relative to that section.

The symbol is defined as a COMMON section whose
size is at least as large as specified by the
value of the symbol. If several modules contain
ESD entries referring to COMMON sections with
the same name, a single COMMON block having the
size of the largest symbol is allocated for all
of them. A name consisting of blanks is treated
in the same manner as any other name.

The symbol is defined as a section of location
independent (that is, fully word-relocatable)
code of a size equal to the value of the symbol.
The ESD code for this section allows text from
the module to be included in this section, and
relocated with respect to it.

Undefined

The text portion of a relocatable binary file consists of the binary

data to be loaded into memory, along with information directing the

loader on how to modify that data to correct the addresses for program

relocation. The first word of text is a control word, which is made

up of a 4-bit type code and an 8-bit indicator. Following the control

word, 9nd depending on the type code, are a number of data words to

be loaded as directed by the type code and the indicator. The control

word type codes are:

CODE

o

FUNCTION

End of text, if the indicator is zero, or no
operation otherwise.

2-6

1

2

3

Copy the number of words given by the indicator
from text directly into memory without modifica
tion.

Re-origin to the section identified by the
indicator, with a relative location defined by
bits 9-23 of the following doubleword. Thus,
the next two words define a new origin for the
following text, in the program section identified
by the indicator.

Relocate the following doubleword bits 9-23 by
the value of the symbol whose ESD code is
identified by the indicator. The following
doubleword is usuall:x" a tVv"o-\vord FPP instruction,
the low-order 15 bits of which are to be relocated
by the value of the symbol identified by the
indicator.

WRITING PDP-8 CODE UNDER OS/8 FORTRAN IV

RALF contains the normal set of PDP-8 instructions (TAD, DCA, CDF, KSF,

etc.), however RALF does not allow literals, the PAGE pseudo-op, or

the use of I to specify indirect addressing. PDP-8 code generated by

RALF is not relocatable; therefore, operations such as the following

are illegal:

EXTERN SWAP
TAD (SWAP

SWAP

/Illegal
/Under
/Rll,"LF

The character % appended to the end of a memory reference instruction

indicates indirect addressing, and the character Z indicates a page 0

reference:

CURRENT PAGE
DIRECT INDIRECT

TAD A
DCA B

TAD% A
DCA% B

PAGE ZERO
DIRECT INDIRECT

TADZ A
DCAZ B

TADZ% A
DCAZ% B

Spaces are not allowed between memory reference instructions and either

the Z or the % characters. The Z must precede the % when both are used.

I.e., do not write "DCA%ZII.

Three pseudo-ops have been added to RALF: SECT8, COMMZ, and FIELD1.

All three define sections of code and are handled in the same manner

2-7

as SECT; however, these new sections have special meaning for the

loader. The address pseudo-op (ADDR) which generates a two word re-

locatable 15 bit address (i.e., JA TAG without use of JA) might prove

useful in 8-mode routines. The following example demonstrates a way

in which an 8-mode routine in one RALF module calls an 8-mode routine

in another module:

EXTERN SUB

RIF
TAD ACDF
DCA .+1
0
TAD KSUB
RTL CLL
RAL
TAD ACIF
DCA .+1
0

JMS% KSUB+l

KSUB, ADDR SUB

ACDF, CDF
ACIF, CIF

/Set DF to current
/IF for return

/CDF X
/Make a CIF from
/Field bits

/CIF to field
/Containing SUB

/Psuedo-op to
/Generate 15 bit
/ADDR of subroutine
/SUB

In general the address pseudo-op can be used to supply an 8-mode

section with an argument or pointer external to the section.

FPP and 8-mode code may be intermixed in any RALF section. PDP-8 mode

routines must be called in FPP mode by either:

TRAP3 SUB

or TRAP4 SUB

A TRAP3 SUB causes FRTS to generate a JMP SUB with interrupts on and

the FPP hardware (if any) halted. TRAP4 generates a JMS SUB under the

same conditions. The return from TRAP4 is:

CDF CIF 0
JMP% SUB

The return from TRAP3 is:

CDF CIF 0
JMP% RETUR..~+ 1

2-8

EXTERN #RETRN
RETURN, ADDR #RETRN

Communication between FPP and 8-mode routines is best done at the FPP

level because of greater flexibility in both addressing and relocation

in FPP mode. The following routine demonstrates how to pass an argu-

ment to, and retrieve an argument from, an 8-mode routine:

EXTERN SUB
EXTERN SUB IN
EXTERN SUBOUT

FLDA
FSTA
TRAP 4
FLDA
FSTA

X
SUBIN
SUB
SUBOUT
Y

/Arg for SUB

/Call SUB
/Get result

If the 8-mode routine SUB were in the same module as the FPP routine,

the externs would not be necessary. In practice it is common for FPP

and 8-mode routines that communicate with one another to be in the

same section. A number of techniques can be used to pass arguments.

For example, an FPP routine could move the index registers to an

8~mode section and pass single precision arguments via ATX.

Because 8-mode routines are commonly used in conjunction with FPP code

(generated by the compiler), the 8-mode programmer should be familiar

with OS/8 FORTRAN IV subroutine calling conventions. The general code
A

for a subroutine call is a JSR, followed by a JA around a list of

arguments, followed by a list of pointers to the arguments. The FPP

code for the statement:

CALL SUB (X,Y,Z)

would be

EXTERN SUB
JSR SUB
JA BYARG
JA X

2-9

JA Y
JA Z

BYARG,

The general format of every subroutine obeys the following scheme:

RTN,

BSUB,

GOBAK,

SECT SUB
JA #ST

TEXT +SUB+

SETX XSUB
SETB BSUB
FNOP
JA

ORG BSUB+30
FNOP:JA RTN
FNOP:JA •

/Jump to start of
/Routine
/Needed for
/Trace back
/Reset SUB's index
/And base page
/Start of base page

/Restart for SUB

/Return to
/Calling program

Location 00000 of the calling routine's base page points to the list

of arguments, if any, and may be used by the called subroutine provided

that it is not modified. Location 0003 of the calling routine's base

page is free for use by the called subroutine.

Location 0030 of the calling routine's base page contains the address

where execution is to continue upon exit from the subroutine, so that

a subroutine should not return from a JSR call via location 0 of the

calling routine:

CORRECT

FLDA 30
JAC

INCORRECT

FLDA 0
JAC

The "non-standard" return allows the calling routine to reset its own

index registers and base page before continuing in-line execution.

General initialization code for a subroutine would be:

SECT
JA

BASE

SUB
#ST

o

2-10

#ST, STARTD

FLDA
FSTl'~

FLDA
SETX
SETB
BASE
INDEX
FSTA

JA

ISo only 2 words
IWill be picked up

30 /Get return JA
GOBJlJ< /Save it
0 /Get pointer to list
XSUB /Set SUB's XR
BSUB /Set SUB's Base
BSUB
XSUB
BSUBX /Store pointer

/Somewhere on Base

/Set F mode before
GOBAK /Return

The above code can be optimized for routines that do not require full

generality. The JA #ST around the base page code is a convenience

which may be omitted. The three words of text are necessary only for

error traceback and may also be omitted. If the subroutine is not

going to call any general subroutines, the SETX and SETB instructions

at location RTN and the JA RTN at location 0030 are ~ot necessary. If

the subroutine does not require a base page, the SETB instruction is

not necessary in subroutine initialization; similar remarks apply to

index registers. If neither base page nor index registers are modified

by the subroutine, the return sequence:

FLDl~ 0
JAC

is also legal. In a subroutine call, the JA around the list of argu-

ments is unnecessary when there are no arguments. A RALF listing of

a FORTRAN source will provide a good reference of general FPP coding

conventions.

In order to generate good 8-mode code, one must be aware of the manner

in which the loader links and relocates RALF code. The loader handles

three 8-mode section types: COMMZ, FIELDl, and SECT8. All three

types of section are forced end on page boundaries and to

be a part of level MAIN; 8-mode sections never reside in overlays.

COMMZ and FIELDI sections are forced to reside in field 1; SECT

2-11

sections may be in any field. The first COMMZ section encountered is

forced to begin at location 10000, thus enabling a page a in field 1.

COMMZ sections of the same name are handled like COMMON sections of

the same name (i.e., they are combined into one common section). This

feature allows 8-mode code in different modules to share page 0, pro-

vided that the modules do not destroy each other's page a allocations.

Suppose two modules were to share page 0, with the first using location

0-17 and the second using locations 20-37:

PI,
P2,
KSUBAl,
KSUBA2,

COMMZ SHARE
1
2
SUBAI
SUBA2

/Module A

/Should not go over
LASTA, -1 /20 locations

FIELDI A

P3,
P4,
KSUBB,

LASTB
FIELDI

TADZ PI
JMSZ% KSUBAI

COMMZ SHARE
ORG .+20

3
4
SUBB

-2
B
TADZ P3

/!vlodule B

/ORG past module A's
/Page a

The two COMMZ sections will be put on top of one another, however,

because of the ORG .+20 in module B, they will effectively reside back

to back. When the image is loaded, the COMMZ sections will look as

follows:

2-12

LOC

1 0000
0001

2
3

1 0017
1 0020

21
22

37

CONTENTS

1
2

SUBAl
SUBA2

-1
3
4

SUBB

-2

/LASTA

/LASTB

If module A is to reference module B's page 0, the procedure is:

P3=20
TADZ P3

Alternately, a duplicate of the source code for CO~MZ SHARE may be

included in module B. Modules that are using the same COMMZ section

must be aware of how it is divided up. Although COMMZ SHARE takes

only 40 locations, the loader allocates a full 200 locations to it.

All 8-mode section core allocations are always rounded up so that they

terminate on a page boundary. If COMMZ sections of different names

exist, they are accepted by the loader and inserted into field 1, but

only one COMMZ is the real page O. In general, it is unwise to have

more than 1 COMMZ section name.

FIELDl sections are identical to COMMZ sections in most respects.

Memory allocation for FIELDl sections is assigned after COMMZ sections,

however, and FIELDl sections are combined with FORTRAN COMMON sections

of the same name as well as other FIELDl sections of the same name.

The first difference ensures that COMMZ will be allocated page 0

storagE even in the presence of FIELDl sections. The second allows

PDP-8 code to be loaded into COMMON, making it possible to load ini

tialization code into data buffers. TwoFIELDl sections with the

same name may be combined in the same manner as two COMMZ, sections.

2-13

The primary purpose of COMMZ is to provide a PDP-8 page 0; the primary

purpose of FIELDI is to ensure that 8-mode code will be loaded into

field 1 and that generating CIF CDF instructions in-line is not neces-

sary. SECT8 sections may not be combined in the manner of a COMMON

and are not ensured of being placed into field 1.

An 8-mode section does not have to be less than a page in length;

however, the programmer should be aware that a SECT8 section which

exceeds one page may be loaded across a field boundary and could

thereby produce disastrous results at execution time. For this reason,

it is generally unwise to cross pages in SECT8 code. This situation

will never occur on an 8K configuration. If the total amount of COMMZ

and FIELDI code exceeds 4K, the loader generates an OVER CORE message.

The loader generates an MS error for any of the following:

1. A COMMZ section name is identical to some entry point or some
non-COMMZ section name.

2. A F-IELDI section name is identical to some entry point or a
SECT, SECT8 or COMMZ section name.

3. A SECT8 section name is identical to an entry point or some
other section name.

COMMZ sections, like FORTRAN COMMONS, are never entered in the library

catalog.

For users who intend to write 8-mode code that will execute in con-

junction with certain 8-mode library routines, the layout of PDP-8

FIELDI #PAGE 0 is:

LOCATION USE

0-1 Temps for any non-interrupt time routine.

2-13 User locations.

14-157 System locations.

160-177 User locations.

1. Do not define any COMMZ sections other than the system COMMZ
which is #PAGEO.

2-14

2. If the system page 0 is desired, it will be pulled in from
the library if EXTERN #DISP appears in the code.

3. Do not use any part of page 0 reserved for the system.

Special purpose PDP-8 mode subroutines may be written to perform idle

jobs (refreshing a scope, checking sense lines) or to handle specific

interrupts not serviced by FRTS.

The run-time system enters idle loops while waiting for the FPP to

complete a task or for an I/O job to complete. It is possible to

effect a JMS to a user routine during the idle loop.

RTS contains a set of instructions such as:

#IDLE, JMP
o
CDF
JMS

.+4

CIF
I .-2

This sequence of instructions must be revised if an IDLE routine is to

be called.

The location #IDLE must be changed to a SKP (7410). #IDLE+l must be

set to the address of the routine to be called. #IDLE+2 must be set

to a CDF erF to the field of the routine. This setup can be done in a

routine that is called at the beginning of MAIN. For example:

CALL SETIDL

where SETIDL is a routine such as:

SECT8 SETIDL
JA #RET

TEXT +SETIDL+

SXR, SETX XR
SETB BP

BP, 0.0
XR, 0.0

ORG 10*3+BP

/Must be an 8-mode section

/Traceback information

2-15

RET,

#RET,

SET8,

lDLAD,
JOB,

SCDF,
SFIEL,
IDPTR,
S74l0,

FNOP
JA SXR

o
JA •

STARTD
FLDA 10*3
FSTA RET
SETB BP
TRAP4 SET8

STARTF
JA RET
o
TAD IDLAD
CLL RTL
RAL

TAD SCDF
DCA .+3
TAD lDLAD+l
DCA IDPTR
o
TAD S74l0
DCA% IDPTR
TAD JOB+l
ISZ IDPTR
DCA lDPTR
TAD JOB

CLL RTL
RAL
TAD SFlELD
ISZ IDPTR
DCA% IDPTR
CDF ClF
JMP% SET8

EXTERN #IDLE
ADDR #lDLE
ADDR DOlT

6201
6203
o
7410

DOlT, 0

CDF CIF 0
JMP% DOlT

/For trace back

/Return address

/Set up
/Return address

/Just for traceback
/Go to the 8 mode
/Routine set 8

/Return to main

/Field of idle

/Move to
/Bits 6-8
/CDF to #IDLE

/Address of #lDLE

/CDF goes here
/SKP
/Store at #lDLE
/Address of IDLE top routine

/Store a #IDLE+l
/Field of routine

/Position

/Store at #IDLE+2
/Set to field 0
/Return to instruction
/Following "TRAP4 SET8"

/15 bit address of IDLE
/15 bit address of IDLE
/Routine "DOlT"
/CDF
/CDF ClF

/Skip

/The following routine performs the
/IDLE task
/Executed during IDLE loops

/Perform task

/Back to field 0
/And back

2-16

If the subroutine is checking for an illegal arg~~ent, an argu-

ment error message with traceback can be included in the subroutine

by adding two lines somewhere on the base page:

EXTERN #ARGER
EXAMER, TRAP4 #ARGER

When the error is detected in the program, effect a jump to the

TRAP 4 instruction. For example,

FLDA%
JEQ

or

FLDA
FNEG
FADD
JLT

EXTMPI
EXAMER

EXTMPl

EXTMP2
EXAMER

/A value of 0 is illegal

/The value in EXTMPl must be
/greater than that in EXTMP2

Some points to note in the above example

1. Using a # as the first character in the name of the start
of the program assumes that the name is not called from
the FORTRAN level. This is because # is an illegal FORTRAN
keyboard character.

2. If index registers 3-5 are not used by the subroutine, the
space from XR3 to the ORG statement can be used for temporary
storage, if needed.

3. The arguments passed from the FORTR~N level do not have to
be picked up all at once at the start of the calculation
(3-word) portion of the program ~ They can be picked up as
required during the program, can be saved in temporary space,
or accessed indirectly each time required, as best suits
the subroutine.

If a call to this routine such as Z=EXAMPL(A,B,C,D) were encountered

by the compiler, it would generate the following call to the routine:

JSR EXAMPL
JA .+10
JA A
JA B
JA C
JA D

/go to the routine
/jump around arguments
/pointer to 1st argument
/pointer to 2nd argument
/pointer to 3rd argument
/pointer to 4th argument

The A}10D routine is listed below to illustrate an application

of the formal calling sequence. It also includes an error condi-

tion check and picks up two arguments. When called from FORTRAN, the

code is ~_MOD(X:Y) •

2-17

I
I
I
I
I
I

A MOD

IS UBROUTI NE
SECT
ENTRY
JA
TEXT

AMODXR, SETX
SETB

BPAMOD, F 0.0
XRAMOD, F rlJ.0
AMODX, F rlJ.rlJ

ORG
FNOP
JA
o

AMOD(X,Y)
AMOD
MOD
HAMOD
+AMOD +
XRAMOD
8PAMOD

lrlJ*3+BPAMOD

AMODXR

AMDRTN, JA •
EXTERN HARGER

AMODER, TRAP4 HARGER
FCLA
JA AMDRTN
BASE 0

ILONG ENOUGH TO GET RETURN
MOD,
#AMOD,

AM.

STARTD
FLDA
FSTA
FLDA
SETX
SETB
BASE
LDX
FSTA
FLDA7.
FSTA
FLDA 7.
FSTA
STARTI'
FLDA7.
JEQ
JGT
FNEG
F'STA
FLDA7.
JGT
F'NEG
LDX
FSTA
FDIV
JAL
ALN
FNORM
FMUL
FNEG
F'ADD
JXN
F'NEG
JA

10*3
AMDRTN
o
XRAMOJ
BPAMOD
BPAMO~
1 , 1
8PAMOD
BPAMOD, 1
AMODX
BPAMOD, 1 +
8PAMOD

BPAMOD
AMODER
.+3

8PAMOD
AMODX
.+5

",1
AMODX
BPAMOD
AMODER
rlJ

8PAMOD

AMODX
AM,l

AMDRTN

ISECTION NAME CREAL NUMBERS)
IENTRY POINT NAME(INTEGERS)
IJUMP TO START OF ROUTINE
IFOR ERROR TRACE BACK
ISET INDEX REGISTERS
IASSIGN BASE PAGE
IBASE PAGE
IINDEX REGS.
ITEMP STORAGE
IRETURN SEQUENCE

IEXIT

IPRINT AN ERROR MESSAGE
IEXIT WITH FAC=0

ISTAY ON CALLER·S BASE PG
ADDRESS

ISTART OF INTEGER ROUTINE SAME AS
ISTART OF REAL NU~. ROUTINE
IGET RETURN JUMP
ISAVE IN THIS PROGRAM
IGET POINTER TO PASSED ARG
IASSIGN MOD·S INDEX REGS
IAN~ ITS BASE PAGE

IADDR OF X

IADDR OF Y

IGET Y
IY =0 I S ERROR

lABS VALUE

IGET X

lABS VALUE
INOTE SIGN
ISAV IN A TEMPORARY
IDIVIDE BY Y
ITOO BIG.
I F I X I T UP NO '~ •

1M U L I TP L Y IT.
INEGATE IT.
lAND ADD IN X.
ICHECK SIGN

IDONE

2-18

RTS has its own interrupt skip chain in which all on-line device flags

are checked and serviced. This chain may be extended to handle

special interrupts. The external tag #INT marks the first of three

locations on RTS which have to be modified to effect a JMS to the

user's special interrupt handler. The three locations must be set up

in exactly the same manner as that used to set up #IDLE, #IDLEl, #IDLE2

as described above. All the same conventions hold. Refer also to the

library subroutines ONQI and ONQB.

Three pseudo-ops have been added to RALF to help the loader determine

core allocation. Each is a more definitive case of the SECT pseudo-op

and defines a chunk of code, thereby providing more control for the

user. They are:

SECT8 section starts at a page boundary
FIELDI - section starts at a page boundary and is in field 1
COMMZ section starts at page 0 of field 1

If there is more than one SECT8 section in a module, those sections

are not necessarily loaded in contiguous core. The loader considers

core to be in two chunks - one block in field 0, and all of field 1

and above.

If there is more than one COMMZ pseudo-op in a module, they are stacked

one behind the other, but there is no way of specifying which one

starts at absolute location 0 of field 1. COMMZ sections are

allocated by the loader before FIELDI sections.

Modules can share a COMMZ section in the same way that FORTRAN COMMON

sections can be shared. FIELDI sections can also be shared by using

the same FIELDI section name in each module.

The first occurrence of a section name defines that section. For

example,

2-19

SECT8 PARTA

SECT8 PARTB

SECT8 PARTA

The second mention of PARTA in the same module continues the source

where the first mention of PARTA ended at execution time. (There is

a location counter for each section.)

To save core, a RALF FIELDI section and FORTRAN COMMON section of the

same name are mapped on top of each other, being allocated the length

of the longer and the same absolute address by the loader. This

feature is useful for initialization (once-only) code, which can later

be overlayed by a data area. Thus, the occurrence of FIELDI AREAl in

the RALF module and COMMON AREAl in the FORTRAN program causes AREAl

to start the same location (in field 1) and have a length of at least

200 locations (depending on the length of the RALF FIELDI section or

of the COMMON section in the FORTRAN).

If the subroutine is longer than one page and values are to be passed

across page boundaries, the address pseudo-op, ADDR, is required.

The format is:

AVARl, ADDR VARI

This generates a two-word reference to the proper location on another

page, here VARI. For example, to pass a value to VARl, possible code

is:

00124
00125

00156
00157

1244
3757

TAD VAR2
DCA% AVARl+l

0000 AVARl,ADDR VARI
0322

/Value on this page
/Pass through 12-bit
/location
/Field and
/location of VARI

Any reference to an absolute address can be effected by the ADDR

pseudo-ope

2-20

If it is doubtful that the effective address is in the current data

field, it is necessary to create a CDF instruction to the proper field.

In the above example, suitable code to add to specify the data field

is:

TAD AVARl /Get field bits
RTL jRotate to bits 6-8
RAL
TAD (6201 jAdd a CDF
DCA .+1 jDeposit in line
0 jExecute CDFn

If the subroutine includes an off-page reference to another RALF

module (e.g., in FORLIB), it can be addressed by using an EXTERN

with an ADDR pseudo-oPe For example, in the display program, a ref-

erence to the non-interrupt task subroutine ONQB is coded as

ONQBX,

and is called

EXTERN
ADDR

JMS%

ONQB
ONQB

ONQBX+l

The next instruction in the program is ADDR DISPLY so that DISPLY will

be added to the background list. Execution from ONQB returns after

the ADDR pseudo-oPe

It may be desirable to salvage the first (field) word allocated by

ADDR pseudo-ops. If the address requires only twelve bits for proper

execution, code such as

TMP,
ARG,ADDR X or

TMP,ADDR X
ARG= .-1

permits TMP to be used for temporary storage because ARG+l in the left

hand example or just ARG in the right hand example defines the l2-bit

address.

RALF does not recognize LINC instruction or PDP-8 laboratory device

instructions. Such instructions can be included in the subroutine

by defining them by equate statements in the program.

2-21

For example, adding the statements:

PDP = 2
LINC = 6141
DIS = 140

takes care of all instructions for coding the PDP-12 display subroutine.

When writing a routine that is going to be longer than a page, it can

be useful to have a non-fixed origin in order not to waste core and to

facilitate modification of the code. A statement such as

IFPOS .-SECNAM&177-K<ORG .-SECNAM&7600+200+SECNAM>

will start a new page only if the value [current location less section

name] is greater than some K (start of section has a relative value of

0) where K~177 and is the relative location on the current page before

which a new page should be started. The ORG statement includes an AND

mask of 7600 to preserve the current page. When added to 200 for the

next page and the section name, the new origin is set.

When calculating directly in a module, the following rules apply to

relative and absolute values.

relative - relative = absolute
absolute + relative = relative
OR (1), AND (&) and ADD (+) of relative symbols

generate the RALF error message RE.

When passing arguments (single precision) from FPP code to PDP code,

using the index registers is very efficient. For example,

FLDA% ARGI /Get argument in FPP mode
SETX MODE 8 /Change index registers so XRO is

/At MODE8
ATX MODE 8 /Save argument

TRAP 4 SUB8 /Go to PDP-8 routine

SUB8, 0 /PDP-8 routine

TAD MODE8 /Get argument

MODE8, 0 /Index registers set here

2-22

CHAPTER 3

THE FORTRAN IV LOADER

The FORTRAN IV loader accepts a set of (up to 128) RALF modules as

input, and links the modules, along with any necessary library

components, to form a loader image file that may be read into memory

and executed by the run-time system. The main task accomplished by

the loader is program relocation, achieved by replacing the rela

tive starting address of every section with an absolute core address.

Absolute addresses are also assigned to all entry points, all

relocatable binary text, and the externs.

The loader executes in three passes. Pass 0 begins by determining

how much memory is available on the running hardware configuration,

and then constructs tables from the OS/8 command decoder input for

use by pass 1 and pass 2.

Pass 1 reads the relocatable binary input and creates the loader

symbol table. The length of each input module is computed and

stored, along with the relative values of entry points defined within

the input modules. When an undefined symbol is encountered, pass 1

searches the catalog of the FORTRAN IV library specified to pass 0,

or FORLIB.RL if no other library was explicitly specified, and loads

the library routine corresponding to the undefined symbol.

Pass 1 also allocates absolute core addresses to all modules and,

through them, to all symbols. Pass 1 execution concludes by

computing the lengths of all overlay levels defined for the current

FORTRAN IV job. Trap vectors are also set up at this time, and

the tables required for pass 2 loading are initialized.

Pass 2 concloo6s loader execution by creating a loader image file

from the relocated binary input and symbol values processed by pass 1.

3-1

00000

02000

04600

06600

07600

10000

12000

12400

13200

14000

16000

17000

17600

LOADER PASS ~ (FILE COLLECTION)

OS/8 Command Decoder FIELD ~

Loader Pass 1 and
Pass 2

Core measuring routine
and scratch area to
save 00000-02000
during CD calls

Unused

OS/8 Field ~ resident

OS/8 User Service Routine FIELD 1

Symbol table, loader map
titles

Pass ~ code

Pass 1 initialization

Module count and
module tables

Library catalog header
read into this block

OS/8 Field 1 resident

Pass 2 also produces the loader symbol map, if requested, and chains

to the run-time system if /G was specified.

Pass 0 contains ~ry few subroutines. The routine CORDSW checks for

the presence of /U, /C or /0 option specifications, as supplied to

the command decoder, and processes these options if necessary. A

routine called UPDMOD is called when input to each overlay has been

concluded, to update the module counts in the module count table.

3-2

00000

01400

02000

03200

04000

04600

07200

07600

10000

11400

12000

15400

16000

17200

17400

17600

20000

25000

I

LOADER PASS 1 (SYMBOL RESOLUTION)

Pass 1 and Pass 2
IL '., '..L.. ,,*-'

Utl.l.ll.Y rou,-~nes

Symbol map printer

Pass 2

Pass 1 symbol collection

Inter-pass code allocates
storage, builds and writes
Loader Image Header Block.

Library catalog loads
here in 8K. Unused in
12K or more.

Input device handlers

08/8 Field rn resident

D ble '-E8 a

8ymbol table

Overlay length table

Module count and module
tables (MCTTBL, MODTBL)

Loader header

ESD reference page

OS/8 Field 1 resident

Library catalog loads here
in 12K or more.

08/8 BATCH processor if
12K or more and BATCH
is running

FIELD ~

I FIELD 1

I
I

FIELD 2

CORMOV is a general core-moving subroutine, called by the instruction

sequence: JMS CORMOV
CDF FROMFIELD
FROMADDR - I
CDF TOFIELD
TOADDR - I
- COUNT

while ERROR is the local error processing routine, called with a

pointer to the appropriate error message in the accumulator.

The major pass 1 and pass 2 subroutines, described below, operate on

the loader internal tables, whose format is presented later in this

3-3

00000

01400

02000

03200

05200

07200

07600

10000

12000

15400

16000

17200

17400

17600

20000

22000

24000

26000

LOADER PASS 2 (LOADER IMAGE BUILDER)

Utility routines: Symbol table
look-up, TTY message handler,
OS/8 block I/O, MCTTBL
processor.

Routine to print symbol map.

Pass 2

Binary buffer #1

Binary buffer #2

I/O device handlers
f---------- - -

OS/8 Field 0 resident

RALF module text loads
here if 8K.

Symbol table

Overlay. length table

MCTTBL and MODTBL

Binary section table and
binary buffer (LDBUFS) table

ESD reference page
I

OS/8 Field 1 resident

Binary buffer #3, if >8K

Binary buffer #4, if >8K

Binary buffer #5, if >12K

Unused

FIELD ~

'1
~

FIELD 1

symbol map
output buffer

FIELD 2

RALF module text loads 30000 FIELD 3
here if >12K

chapter. The subroutines are presented in approximately the order

that they occur in the source listing.

SETBPT

TTYHAN

Sets words BPTR and BPT2 to contain AC and AC+l,
respectively.

Subroutine to unpack and print a TEXT message on the
console terminal. TTYHAN is called by:

CDF CURRENT
CIF 0
JMS TTYHAN
CDF MSGFIELD
MSG

3-4

RTNOS8

IOHAN

ADVOVR

NXTOVR

SETCNT

LOOK

Prints a fatal error message and then returns to the
OS/8 monitor. A pointer to the message must follow
the JMS RTNOS8.

Used to execute all I/O under OS/8. The calling
sequence is:

TAD (ACARG
CDF CURRENT
CIF 0
JMS IOHAN
ADDR
ARGl
ARG2
ARG3

/Optional

where ARGl, ARG2 and ARG3 are standard OS/8 device
handler arguments and ADDR points to a three-word
block in field I which contains the OS/8 unit number
in word 1, the file length in word 2, and the starting
block number in word 3.

If ACARG is zero, the indicated I/O operation is
executed after the handler has been FETCHed, if
necessary. If ACARG=n (greater than zero), the
handler for OS/8 unit n is FETCHed, no I/O is done,
and the four arguments that conclude the calling
sequence are not needed.

Called to initialize the loader to accept a new input
module. ADVOVR determines whether a new overlay or
level is being started by accessing the module count
table. If so, it sets various pointers and internal
counters accordingly, rounds the previous overlay to
terminate on a 200 word boundary, and updates the
length of the previous level, if necessary, as the
maximum of its constituent overlay lengths.

Called by ADVOVR when the next input module will be
the first module in a new overlay.

Initializes the pointers and counters used by ADVOVR.
SETCNT is called once at the beginning of each pass.

Executes a symbol look-up in the loader symbol table.
LOOK is called by:

TAD (Pointer to symbol name in
RALF ESD format

JMS LOOK
RETURN here if not found
RETURN here if found
GPTR points to word following entry name

If the syrr~ol is not found, it is inserted into the
loader symbol table and GPTR is set to point to the
word following the symbol name.

Produces the symbol map.

3-5

PUTSYM

FIT

D08S, FIT8S

SETREF

BLDTV

NEWORG

NEWBB

MERGE

GETCTL

PUTBIN

TXTSCN

Enters an ESD symbol in the loader symbol table.
PUTSYM calls LOOK to determine whether the symbol
is already present in the symbol table and, if so,
verifies that the symbol is not multiply defined.
Otherwise, it copies the ESD data words into the symbol
table entry, updates the length of the current overlay
by the length associated with the symbol, and links
the symbol to its parent symbol, if any.

Fits a section into core by subtracting its length
from the amount of core still available and substi
tuting its load address for its length in the symbol
table.

Fits an 8-mode section into core by calling FIT and
then checking for field 1 overflow.

Extracts data from the ESD table of the current module
and initializes the ESD reference page at 17400.

Builds the transfer vector. A transfer vector entry
is created for each subroutine in an overlay. This
entry provides the information that the run-time
system will require in order to load the overlay
containing the referenced subroutine.

Called whenever an origin is found in an input module,
to map the location referenced by the origin into a
block of the loader image file and an address within
that block.

Called whenever a new binary buffer is needed during
loader image file construction. NEWBB scans a list
of available buffers and dumps the content of the
least recently accessed buffer to free up space for
new data.

Relocates an input word pair and outputs it to the
loader image file.

Gets a control byte from the input module and incre
ments its return address by the content of the control
byte.

Inserts words, sequentially, into the current binary
buffer. When the buffer is full, PUTBIN calls
NEWBB to execute output to the loader image file and
supply a new buffer.

Called once for each input module. TXTSCN reads and
relocates an entire input module, executing calls to
MERGE, PUTBIN and NEWORG as needed.

3-6

SYMBOL TABLE

The loader symbol table begins at location 12000 and contains room

for 26 (decimal) permanent system symbol entries and 218 (decimal)

user entries. Each entry is 7 words long, and provides the name and

definition of a symbol. The table is organized in buckets according

to the first character of the symbol, which must be A to z, #, or

blank (for blank COMMON). The table of bucket pointers begins at

location 12000 with the pointer to bucket A, and consists of one word

per bucket. This word contains a value of zero, if there are no

symbols in the corresponding bucket, or else the address of the first

sx~ol in the bucket.

Symbols within a bucket are arranged in alphabetical order, with each

symbol entry pointing to the following entry, and the last entry

pointing to zero. Thus, the symbol table appears as a set of threaded

lists in core. The format of a symbol table entry is:

I-bit trap
vector flag during
pass 1. Error
flag during pass 2.

S

M

o

3-bit

level

4-bit

overlay

Y

B

L

WORD 2

WORD 3

4-bit type code

undefined
entry point
extern
cornmon sect

9-bit pointer to program sect
~-~~-"- ~·~bOl ;::!;:; ~"'r< "t:"~olr:l t:;;- """11t-';n1e pnt-rv nnint-

I
~:~~Hl (~~ro ~if;O"'~~)·1 bit;~ 16- ~;iti~ie -~~~t ~~---~-"--
Trap vector displace- 17- SECT8 sect

Iment -during pass 2. I IIO-Ca.f.1Z

I

; 11-FIEIDl
ADDRESS !12 to 17- undefined

I (Length during pass 1) I
!

3-7

Several special symbols are created by the loader. The symbol #YLVLn,

where n is an octal digit, describes overlay level n. This symbol

table entry contains the length of level n during pass 1 and the

starting address of level n during pass 2.

The symbol #YTRAP describes the trap vector, a method by which the

run-time system controls automatic overlaying of user subroutines.

Four words are allocated in the trap vector for each entry point in

every overlay except overlay #MAIN. The symbol table entry for #YTRAP

contains the accumulated length of the trap vector during pass 1 and

the trap vector starting address during pass 2.

ESD CORRESPONDENCE TABLE (ESDPG)

The ESD correspondence table begins at location 17400 and contains

128 (decimal) I-word entries. This table establishes the corre-

spondence between the local ESD reference numbers used to reference

a symbol inside a RALF module, and the address of that symbol in the

th loader symbol table. The n entry in the ESD correspondence table

points to the address of ESD symbol n.

BINARY BUFFER TABLE (LDBUFS)

The binary buffer table begins at location 17247 and contains from

two to ten entries, depending upon the amount of memory available.

Each entry is 4 words in length. The binary buffers function as

windows into the loader image file, through which the loaded program

is written onto mass storage. Each binary buffer is 8 pages

(4 OS/8 blocks) in length. The loader tries to minimize the amount

of "window turning" necessary to buffer the binary data by keeping a

record of the last time each buffer was referenced. In this way,

3-8

when the content of a binary buffer must be dumped to make room for

new data, the loader empties that buffer which was least recently

used.

In addition, program loading is overlay oriented such that only one

overlay is loaded at a time and while any specific overlay is being

loaded, only origins inside that overlay are legal.

The format of a binary buffer table entry is:

Pointer to the binary
buffer of "next earliest
reference", i.e., the youngest
buffer older than this
buffer. contains zero if
this buffer is oldest.

Loader image block #.
Contains zero if buffer
has not been used.

Blocks left in current
overlay. If <4, only
part of buffer will
be dumped.

Page address
of buffer.

I
I

Unused I
I
I

WORD 1

WORD 2

WORD 3

WORD 4

The number of binary buffers used varies with the amount of memory

available as follows:

MEMORY
AVAIL

8K
12K
16K
20K
24K
28K
32K

NO. OF
BUFFERS

2
4
5
7

10 (decimal)
10 (decimal)
10 (decimal)

3-9

BINARY SECTION TABLE

The binary section table overlays the loader image header block

(described under FRTS) after the latter has been written into the

loader image file at the beginning of pass 2. Thus, the binary

section table begins at location 17200 and contains eight 4-word

entries. Each entry relates the core origin of one of the eight

overlay levels to that level's position in the loader image file.

The format of a binary section table entry is:

Unused Field
of WORD 1

level

Address of level WORD 2

Relative block # WORD 3

Length (in blocks) WORD 4

OVERLAY TABLE (OVLTBL)

The overlay table begins at location 15435 and contains room for

113 (decimal) 2-word entries. There is one entry for each overlay

defined, including overlay MAIN, with each entry designating the

length in words, of the corresponding overlay. The format of an

overlay table entry is:

OVLTBL Negated to indicate
last table entry

LEVEL MAIN

/ LEVEL 1 OVERLAY 1
.....

-~
I" HIGH-order bits

of length WORD 1

LEVEL m OVERLAY n-l I)-~ LOW-order bits

LEVEL OVERLAY n of length WORD 2 m -'---'

OVLTBL format individual entry (2 words) I

3-10

MODULE DESCRIPTOR TABLE (MODTBL)

The module descriptor table begins at location 16172 and contains

room for 172 (decimal) 3-word entries. Each entry provides the in-

formation needed to locate an input module. The first MODTBL entry

corresponds to the library file to be used in building the current

loader image. Successive entries correspond to input modules and

appear order that the modules were specified by the user,

(i.e., in ascending order by level, and ascending by overlay within

any given level.) At the end of pass 1, entries corresponding to

individual library modules are appended to the end of the table,

even though the library modules load into level MAIN. The table

format is:

MODTBL

FORLIB.RL or user-
specified library

---~{
Level ~.AIN module #1

Level MAIN module #2

Level MAIN module #3 .

Level MAIN module n

Level 1 Overlay 1 module #1

Level 1 Overlay 1 module #2
.~

Level 1 Overlay 1 module #n

Level 1 Overlay 2 module #1
'-

~
I

Library module #1 I
Library module #2

'~~------.....,.--""""=--~--------'

MODTBL format

3-11

OS/8 I/O unit #

File length (positive)

Starting block #

MODTBL format of

individual entry (3 words)

MODULE COUNT TABLE (MCTTBL)

The module count table begins at location 16000 and contains room for

122 (decimal) I-word entries that give the (two's complement) module

count for each overlay level. The table format is:

MCTTBL

LEVEL MAIN

I fJ

I-word ENTRIES

LEVEL 1 OVERLAY 1

LEVEL 1 OVERLAY 2

LEVEL 1 OVERLAY 3 -' ------LEVEL 1 OVERLAY n

~

LEVEL 2 OVERLAY 1

LEVEL 2 OVERLAY 2 --- ~ ,---------------
LEVEL 2 OVERLAY n

fJ
LEVEL 3 OVERLAY 1

.......

, - ------ ,..
--"'--

LEVEL m OVERLAY n

fJ
fJ

If an overlay or level is not defined for a specific program, there

is no module count table entry corresponding to that overlay or level.

The loader image file, produced by the loader and read as input by the

run-time system, consists of a header block followed by a binary

image of each level defined in the FORTRAN IV job.

HEADER
BLOCK

LEVEL
MAIN

LEVEL
1

3-12

The loader image file header block contains information in the

following format:

LOCATION

o

1-2

3-4

5

6

7-46

Load

CONTENTS

2 -- Identifies the file as a loader image file.

Initial SWAP arguments to load level MAIN.

Highest address used by core load, including overlays
but not including OS/8 device handlers.

Loader version number.

Double-precision flag.

User overlay information table containing one 4-word
entry per overlay level (the level MAIN entry is
ignored) in the following format:

Must I WORD 1

unused

Block number of this level,
relative to header block.

!
Bits 9-11 WORD 2
unused

WORD 3

Length of overlays in this level,
in blocks.

WORD 4

3-13

CHAPTER 4

THE FORTRAN IV RUN-TIME SYSTEM

The FORTRAN IV run-time system supervises execution of a FORTRAN

job and provides an I/O interface between the running program and

the OS/8 operating system. FRTS includes its own loader, which

should not be confused with LOAD, the system loader. It executes

with only one overlay, used to restore the resident monitor and

effect program termination. The run-time system was designed to

permit convenient modification or enhancement, and it is well docu-

mented in the assembly language source, available from the Software

Distribution Center, which includes extensive comments.

One of the most valuable modifications to FRTS provides for the

inclusion of background (or idle) jobs. When FORTRAN is waiting for

I/O operations or the FPP to complete execution, the PDP-8 or PDP-12

processor is sitting in an idle loop. An idle job may be executed

by the PDP-8 or PDP-12 CPU during this time, perhaps for the purpose

of refreshing a CRT display, for example, or monitoring a controlled

process. To indicate such a job, the idle wait loop must be modified

to include a reference to the userls PDP-8 routin~., The routine

#IDLE in FRTS must be changed as part of the user's subroutine from

#IDLE, JMP .+4
o
CDF CIF
JMS I .-2

to #IDLE, SKP
ADDUSR
FLDUSR
JMS I .-2

Devices issuing interrupts may be added to the interrupt skip chain

so that FORTRAN checks the user's device as well as system devices.

The original code is:

#INT, JMP .+4
o
CDF CIF
JMS I .-2

4-1

and must be changed, as above, to:

#INT, SKP
ADDUSR
FLDUSR
JMS I .-2

In both cases, ADDUSR should be the address of the user's routine, and

FLDUSR should be the memory field of the user's routine.

The idle job is initiated by the subroutine HANG in the run-time

system. Hang should only be called when the FORTRAN program must

wait for an I/O device flag. The calling sequence is:

EXTERN #HANG

IOF
eDF n
elF 0
JMS% HANG+I
ADDRSS

HANG, AD DR # HANG

/Important.
/Where n is current field.

/Return here with interrupts OFF
/When device flag is raised.

The word ADDRSS must point to a location in page 400 of the run-time

system which must normally contain a JMP DISMIS. Three such locations

have been provided for the user at #DISMS, #DISMS+I, and #DISMS+2.

The selected location must be the location via which the interrupt

caused by the desired flag is dismissed. No two flag routines should

use the same dismiss location. The following program example illus-

trates these calling conventions. This routine may be used to drive

a Teletype terminal via the PT08 option.

4-2

NOTFST,

HNGLOC,

GO Tl ,

KSFSUB,

INCHR,
ONQI,
HANG,
DISMIS,
FIRST,

EXTERN # ONQI
EXTERN # DISMS
FIELD! GETCH
0
ISZ FIRST
JMP NOIFST
JMS7. ONQI+l
KSFI
ADDR KSF'SUB
TAD DISMIS+l
DCA HNGLOC
101'
TAD INCHR
SZA ,." A

I."I..H

JMP GOTI
elF 0
JMS7. HANG+l
0

TAD INCHR
DCA FIRST
DCA INCHR
TAD FIRST
ION
JMP7. GETCH

0
KRBl
DCA INCHR
CDF CIF' 0
JMP7. DISMIS+l

0
ADDR #ONQI
A:JDR #HANG
ADDR # DISi1S
-I

IJMS GETCH GETS A CHAR
IGETCH RUNS IN FIELD 1 ONLY

ISET UP TO CALL HANG

INO CHAR READY: HANG

IHANG RETURNS WI IOF

IINTERRUPT ROUTINE
ICALLED AS SUBROUTINE

IRETURN TO SYSTEM LOCATION
ICONTAINING "JMP DISMIS"

In most cases, it is easier to include references to the FORLIB

module ONQI for adding a handler to the interrupt skip chain and

ONQB for adding a job to the idle chain, instead of trying to modify

#IDLE and #INT. ONQB provides slots for up to 9 idle jobs to be

executed round-robin, and ONQI provides for up to 9 user flags to

be tested on program interrupts.

FRTS entry points are listed, along with the core map, on the following

pages. The FRTS calling sequence must be observed in any user

subroutine. The formal calling sequence is illustrated below. In

general, it can be used exactly as illustrated,changirig dhly the

section, entry, base page, index register and return location names.

4-3

SECT EXAMPL

JA #EXSRT

TEXT +EXAMPL+

EXAMXR, SETX XREXAM

SETB BPEXAM
BPEXAM, F 0.0
XREXAM, F 0.0

F 0.0
EXTMPl, F 0.0
EXTMP2, F 0.0
EXTMP3, F 0.0

FRTS CALLING SEQUENCE

/Section name. Your module may
/require another section pseudo-op
/such as FIELDI or SECT8.
/Jump to start of subroutine
/Use # for first character
/6 character section name for
/error traceback (optional)
/Set up index registers
/for this subroutine
land its base page.
/Base page
/Index registers 0-2
/Index registers 3-5 (optional)
/Space between index registers
land the ORG for temporary
/storage (optional)

ORG 10*3+BPEXAM /Location 30 of base page
FNOP
JA EXAMXR

o
EXMRTN, JA .

BASE 0
#EXSRT, STARTD

FLDA 10*3

FSTA EXMRTN

FLDA 0

SETX XREXAM
SETB BPEXAM
BASE BPEXAM
FSTA BPEXAM
LDX 1,1
FLDA% BPEXAM,
FSTA EXTMPI
FLDA% BPEXAM,
FSTA EXTMP2

/Force a two-word instruction
/Jump to base page for
/return to calling program
/Force a two-word instruction
/Will be replaced by return jump
/Caller's base page
/Start of subroutine
/Get return jump from caller's
/base page
/Save in return location for
/this routine
/Location 0 of caller's routine
lis a pointer to the argument list
/Change to EXAMPL's index registers
/Change to EXAMPL's base page

/Save the pointer
/Set up index register 1

1 /Get address of argument list
/Save the addresses

l+/of all passed arguments

FLDA% BPEXAM, 1+
FSTA EXTMP3 /Continue for all arguments

Ito be picked up

STARTF
FLDA% EXTMPI

FLDA% EXTMP2

JA EXMRTN

/Start three-word instructions

/Continue to get arguments
las required in routine
/Exit when done

4-4

RTS ENTRY POINT USEAGE AND COMMENTS

#UE

#ARGER or
ARGERR

#READO

#WRITO

#RUO

#WUO

#RDAO

#WDAO

#RFSV

#RENDO

#ENDF

#REW
#BAK

#DEF

#EXIT

SWAP

#80R12

#IDLE

TRAP3 #DE /?roduces USER ERROR error message.

TRAP4 #ARGER /Produces BAD ARG error message.

TRAP3 #READO
JA UNITNO
JA FORMAT

TRAP3 #WRITO
JA UNITNO
JA FORMAT

TRAP3 #RUO
JA UNITNO

TRAP3 #WUO
JA UNITNO

TRAP3 #RDAO
JA UNITNO
JA RECNO

TRAP3 #WDAO
JA UNITNO
JA RECNO

TRAP3 #RFSV

TRAP 3 #RENDO

FLDA UNITNO
TRAP3 #ENDF

or TRAP3
or TRAP3 #BAK

TRAP3 #DEF
JA UNITNO
JA RECORDS
JA FPNPR
JA VARIABLE

JSR #EXIT

TRAP3 #SWAP
ADDR

/=00000001 if

/Initializes
/formatted
/read operation.

/Initializes
/formatted
/write operation.

/Initializes unformatted
/read operation.

/Initializes unformatted
/write operation.

/Initializes
/direct access
/read operation.

/Initializes
/direct access
/write operation.

/Passes a variable to or from the read/
/write processors via the floating AC.

/Terminates a read/write operation.

/Executes an
lend file,
/re\Alind j

/backspace (depending upon the entry used)
Ion the referenced I/O unit.

/Opens a file
/for direct access I/O.

/(FPP numbers per record)
/Refer to DEFINE FILE statement

/Terminates current FORTRA~ IV job.

/Reads overlay OVLY into level LVL and
/jumps to ADR. ADDR is given by:
/ADDR=4000000*OVLY+100000*LVL+ADR

the CPU is a PDP-12.

Address of background job, used by ONQB. Contains:

JMP I (NULJOB /Replace by SKP
o /Replace by addr of background job
CDF CIF 0 /Replace by field of background job
JMS I .-2
JMP .-4

4-5

CORE LAYOUT OF FRTS

NON-FPP

0000 Page zero (0120-0134 free)

0200 Most entry points, character
I/O handlers, interrupt
service, and HANG routine

0600 Format decoder; A, H, and'
format processors, and EXIT

1400 REWIND, ENDFILE, BACKSPACE
and general unit initializa
tion. DATABL table (3 wds/unit)

2000 I, E, F and G output

2400 I, E, F and G input

2600 X, Land T formats and
GETHND routine

3000 Char in and char out routines
including OS/8 packing, ed
iting and forms control

3400 Binary and D. A. I/O, and
DEFINE FILE processor

3600 Overlay loader

4000 Input line buffer, overlay
and DSRN tables, FORMAT
parenth pushdown list, /P
processor and init flag clear

4400 Floating-point utilities
(shift, add, etc.) used even

w/FPP

4600 Error routine and messages

5200 OS/8 handler area and part of
FRTS loader initialization

5600 FPP simulator

6000

6600 Floating-point package and
part of LPT ring buffer

7400 Most of LPT ring buffer

7600 OS/8 handler and field
o resident

10000 OS/8 User Service Routine
~~ ----- ~

4-6

FPP (Same as non-FPP unless indicated)

FPP start-up and trap routines

Band D format I/O

Floating-point package (never used)
and part of LPT ring buffer

.r'-"""-~ .- ----- --.........
12000

12200

12400

12600

13000

13400

14000

15600

16000

16600

17400

17600

#INT

I

#DISMS

#HANG

#RETRN

FRTS loader tables, IONTBL Locations 12000 to 17400 are
overlayed at execution time

FRTS loader: main flow

program start-up 1

initialize and
configure system

Load OS/8 handlers and assign
unit numbers to OS/8 files

Utility and error routines,
error messages

FPP start-up and trap routines Locations 14000 to 16777 are used
to save lower field 0 during loading
of device handlers and file
specifications

B and D format I/O

EAE Floating-point package

Termination routine Locations 17400 to 17777 are
written on SYS block 37 before
program load and restored on
termination

OS/8 field 1 resident

/Address of user interrupt location, used by ONQI:

JMP .+4
o

CDF elF 0
JMS I .-2

/Rep1ace with SKP
/Replace wi~~ address of interrupt
processor

/Replace with field of interrupt processor

/Addresses first of three JMP DISMIS instructions for
use by specialized I/O routines.

/Addresses I/O dismiss routine.

/Provides return from TRAP3.

lprogram start-up moves OS/8 handler to top of core, writes field
1 resident onto SYS, and termination routine goes to FRTS to load
program.

4-7

DSRN TABLE

The DSRN table controls files and I/O devices used under OS/8 FORTRAN

IV ASCII, binary and direct access I/O operations, including BACKSPACE,

REWIND, and END FILE operations. The exact meaning of the initials

DSRN is one of the great, unanswered questions of FORTRAN IV develop-

ment and, as such, has considerable historical interest. The DSRN

table provides room for 9 entries; each entry is 9 words in length,

and contains the following data:

WORD 1: (HAND) Handler entry point. If this value is positive,
the I/O device handler is a FORTRAN internal (character
oriented) handler, and the remainder of the DSRN table
entry is ignored. If the value is negative, the handler
is an OS/8 device handler whose entry point is the two's
complement of the value. Entry points always fall in
the range [7607, 7777] for resident handlers or [5200,
5377] for non-resident handlers. Space for non-resident
handlers is allocated downward from the top of memory,
and the handlers are moved into locations 5200 to 5577
before being called.

WORD 2: (HCODEW) Handler code word. Bits 0-4 of this word specify
the page into which the device handler was loaded, while
bits 6-8 specify the memory field. If all of bits 0-8
are zero, the handler is permanently resident. When any
of these bits are non-zero, the data is used to determine
which handler, if any, currently occupies locations 5200-
5577. This eliminates unnecessarily moving the content
of memory. Bit 10 is set if forms control has been
inhibited on the I/O unit. Bit 11 is set if the device
handler can execute with the interrupt system enabled.
The data in bits 10 and 11 is obtained from the IOWTBL
table in the FRTS loader.

WORD 3: (BADFLD) Buffer address and field. Bits 0-4 address the
memory page at which the I/O buffer for this unit begins,
while bits 6-8 specify the memory field. Unlike the FORTRAN
internal I/O unit buffers, OS/8 device handler buffers
always occupy two full pages of memory. Buffer space is
allocated upward from the top of the FORTRAN program.

WORD 4: (CHRPTR) Character pointer.

WORD 5: (CHRCTR) Character counter. Words 4 and 5 of each DSRN
table entry define the current character/position in the
I/O buffer as follows:

4-8

Value of
CHRCTR

Character
position

Bits 4-11 of word

Next value
of CHRCTR

Next value Special
of CHRPTR Conditions

I Refresh buffer if

-3 addressed by

CHRPTR

-2 CHRPTR +

11
input operation and

CHRPTR mod 256=0

-2 " -1 " none

-1 Bits 0-3 of words

WORD 6:

addressed by

CHRPTR-2 and

CHRPTR-l

-3 CHRPTR

(STBLK) Starting block of file.

Dump buffer if

output operation and

CHRPTR mod 256=0

WORD 7: (RELBLIC) Current relative block of file. That is, block
to be accessed next.

WORD 8:

WORD 9:

(TOTBLK) Length of file in blocks.

(FFLAGS) Status flags:

Bit 0 - Has been written flag. Set to 1 if unit has
received output since last REWIND.

Bit 1 - Formatted I/O flag. Set to 1 if an ASCII I/O
operation has occurred since last REWIND.

Bit 2 - Unformatted I/O flag. Set to 1 if a binary
or direct access I/O operation has occurred
since last REWIND. Bits 1 and 2 are never
set simultaneously.

Bit 11- END FILEd flag. Set to 1 if unit has been
END FILEd. Bit 11 is not cleared by a
REWIND.

When any active unit is selected for an I/O operation, the DSRN table

entry for that unit is raoved into 9 ':Alords on page O. These 9 words

are tagged with the labels cited above. Upon completion of the I/O

operation, the 9 words are moved from page 0 back into the DSRN table.

4-9

IFORTRAN 4 RUNTIME SYSTEM - R.L PAL8-V8

IPAGE ZERO FOR FORTRAN IV RTS

PAGE 3

021000
00001
00002
00003
00004
00005
00006
00007
0001~
00011
00012
00013

00016
00017
00020
00021
00022

00023
00024
00025
00026
00027
00030

00031
00032
00033

00034
00035
0131336

00037
00040
00041
00042
00043
00044
00045
00046
00047
00050
001351

0000
0000
5402
0400
5165
0000
0000
0000
0000
0000
3777
0000
0000

0016
0000
0000
0000
0000
0000

0000
0000
0000
0000
0000
0000

0000
0000
5431

5013
0000
5000

0000
5313
0000
0000
0000
0000
0000
0000
0000
0000
0000

*0
o

IINTERRUPT STUFF

LPGET,
TOCHR,
KBDCHR,
POCHR,
RDRCHR,
FMTPXR,
INXR,
XR,

JMP I .+1
I NTRPT
LP8UFR ILINE PRINTER RING BUFFER FETCH

ITELETYPE STATUS WORD o
o
o
o
o
INBUFR-l
o

XR 1 , o

*16
VEOFSW, 0

T,
DFLG,
I NST,

o
o
o
o

IKEYBOARD INPUT CHARACTER
IP.T. PUNCH COMPLETION FLAG
IP.T. READER STATUS
IXR USED TO INDEX FORMAT PARE NTH
IXR USED TO GET CHARS FROM INPUT

IUSED BY "EOFCHK" TO STORE VARIABLE ADDRESS
I*K* MUST BE IN AUTO - XR
ITEMPORARY
10 = F.P., 1 = D.P.
ICURRENT INSTRUCTION WORD

IIOH PAGE ZERO LOCATIONS

RWFLAG, 0
FMTTYP, 0
EOLSVI, 0
N, 0
W, 0
0, 0

DA TCDF, 0
DATAF, 0

ERR,
FATAL,
MCDF,

JMP I

ERROR
o
MAKCDF

IREAD/WRITE FLAG
ITYPE OF CONVERSION BEING DONE
IEOL SW ON INPUT - CHAR POS ON OUT
IREPEAT FAC TOR
IFIELD WIDTH
INUMBER OF PLACES AFTER DECIMAL

ISUBROUTINE TO CHANGE DATA FIELD
ICONTAINS VARIOUS CDF·S

DATCDF IRETURN

IPOINTER TO ERROR ROUTINE
IFATAL ERROR FLAG - 0=FATAL

IFPP PARAMETER TABLE LOCATIONS:

APT,
PC,
XRBASE,
BASADR,
ADR,
ACX,
ACH,
ACL,
EAC 1,
EAC2,
EAC3,

o
DPTEST
o
o
o
o
o
o
o
o
o

IVARIOUS FIELD BITS FOR FPP
IFPP PROGRAM COUNTER
IFPP INDEX REGISTER ARRAY ADDRESS
IFPP BASE PAGE ADDRESS
IADDRESS TEMPORARY

1*** FLOATING ACCUMULATOR ***

1** FOR EXTENDED PRECISION OPTION **

4-10

IFORTRAN 4 RUNTIME SYSTEM - R.L PAL8-V8

IFLOATING POINT PACKAGE LOCATIONS

PAGE 4

00052
00053
00054
00055
00056
00057

00060
00061
00062
00063
00064
00065
00066
00067
00070
002171
0~072
00073
00074
00075
00076

00077
00100
00101
00102
1?I1?I11?I7.
CJ'4IIUV

00i04
00105
00106
00107

00110
00111
00112

00113
00114
00115

0000
0000
0000
0000
0000
0000

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0320
~000
6001

0000
0000
0000
0000
0000
0000
0000
0000
0000

0000
7402
5510

0000
0000
0000
0200

AC0,
AC 1,
AC2,
OPX,
OPH,
OPL,

o
o
o
o

" "

IFLOATING AC OVERFLOW WORD
10PERAND OVFLOW WORD

1*** FLOATING OPERAND REGISTER ***

IRTS 110 SYSTEM LOCATIONS

FMTBYT,
IFLG,
GFLG,
EFLG,
OD,
SCALE,
PFACT,
PFACTX,
INESW,
CHCH,
F'MTNUM,
CTCINH,
PTTY,

FPNXT,

" " o

" o
o
o
o
o
o
o
o
TTY

'" ICYCLE

IDSRN IMAGE

HAND, 0
HCODEW, 0
BADFLD, 0
CHRPTR, "
CHRCTR, 0
STBLK, 0
RELBLK, 0
TOTBLK, 0
Jo"FLAGS, 0

BUFFLD, 0
BUFCDF, HLT

JMP 1

rGPBF, 0
BIOPTR, 0

FEXIT
PAGE

BUFFLD

IFORMAT BYTE POINTER
II FOEIVJAT FLAG
IG FORMAT FLAG
IE FORMAT FLAG - SOMETIMES ON FOR

IP-SCALE FACTOR
ITEMP FOR PFACT
IEXPONENT SWITCH

ICONTAINS ACCUMULATED NUMERIC VALUE
ItC INHIBIT FLAG
IPOINTER TO TTY HANDLER - USED BY
I SO FORMS CONTROL WILL WORK ON
IUSED AS INTERPRETER ADDRESS IF

IHANDLER ENTRY POINT
IHANDLER LOAD ADDR & FIELD + IOFFL
IBUFFER ADDRESS AND FIELD
IACTUALLY A WORD POINTER
ICOUNTER - RANGES FROM -3 TO -1
ISTARTING BLOCK OF FILE
ICURRENT RELATIVE BLOCK NUMBER
ILENGTH OF FILE
IfiILE FLAGS:
IBIT 0 - "HAS BEEN WRITTEN" FLAG
IBITS 1-2 - FORMATTED/UNFORMATTED
18IT 11 - "END-FILED" FLAG

IROUTINE TO SET DF TO BUFFER FIELD

ITHESE THREE WORDS ARE USED
ITO FETCH AND STORE FLOATING POINT
IFROM RANDOM MEMORY

4-11

IFORTRAN 4 RUNTIME SYSTEM - R.L PAL8-V8

ISTARTUP CODE

PAGE 5

00200 2203
00201 6213
00202 5603
00203 2200

00204

00205
00206
00207
00210
00211
00212
00213
00214
00215
00216
00217
00220
00221
00222
00223
00224
00225
00226
1.30227
00230
00231
00232
00233

5777

4434
2023
5634
5776
5775
5774
5773
7330
5772
7330
5771
7330
5770
5767
3000
1317
0000
0000
5766
0000
6203
4630
5227

FTEMP2, ISZ .+3
CDF CIF 10
JMP I .+ 1

VDA TE, R TSLDR

IALSO USED AS 1/0 F.P. TEMPORARY

IUSED TO STORE OS/8 DATE

IRTS ENTRY POINTS - "VERSION INDEPENDENT"

VUERR,

VARGER,
VRENDO,
VRFSV,
VBAK,
VENDr,
VREW,
VDEF,
VWUO,
VRUO,
VwDAO,
VRDAO,
VWRITO,
VREADO,
VSWAP,
VEXIT,

JMP I

JMS I
ISZ
JMP I
JMP I
JMP I
JMP I
J~1P I
AC4000
JMP I
AC4000
JMP I
AC4000
JMP I
JMP I
TRAP3;

V80R12, 0;0

(USRERR

ERR
RWFLAG
GETLMN
(BKSPC
(ENDFL
(RwIND
(DFINE

(RWUNF

(RWDACC

(RWASCI
(SWAP
CALXIT

IUSER ERROR
1** LOADER MUST DEFINE lARGER AS
ILIBRARY ARGUMENT ERROR
lEND OF 1/0 LIST
11/0 LIST ARG ENTRY - COROUTINE
I"BACKSPACE" ROUTINE
I"END FILE" ROUTINE
I"REWIND" ROUTINE
I"DEFINE FILE" ROUTINE
IUNFORMATTED WRITE
IUNFORMATTED READ
IDIRECT ACCESS WRITE
IDIRECT ACCESS READ
IFORMATTED (ASCII) WRITE
IFORMATTED (ASCII) READ
10VERLAY PROCESSOR
I"STOP" ROUTINE - ENTERED IN FPP

10;1 IF CPU IS A PDP-12

V8ACKG, JMP I (NULLJB 18ACKGROUND JOB DISPATCHER
o
CDF CIF 0 IUSED BY ROUTINE "ONQB" IN LIBRARY
JMS I .-2
JMP V8ACKG

IIOH GET VARIABLE ROUTINE.
ITHIS ROUTINE MAKES THE rORMATTED 1/0 PROCESSOR AND THE
IPROGRAM CO-ROUTINES (DEF(COROUTINE).= 2 ROUTINES EACH
I IS A SUBROUTINE). ON ENTRY FAC=INPUT NUMBER
IIF 1/0 IS A READ, ON RETURN FAC=OUTPUT NUMBER IF 1/0

00234 0000 GETLMN, 0
00235 5577 VRETRN, JMP I [RETURN

4-12

All FORTRAN IV mass storage I/O is performed in terms of OS/8 blocks,

including direct access I/O. Hence, all FORTRAN IV files conform to

OS/8 standard ASCII file format. When a formatted READ or WRITE is

requested, the data is converted to or from 8-bit binary representa-

tion according to the FOfu~T statement associated with the READ or

WRITE. Standard OS/8 file format packs three 8-bit characters into

two 12-bit words as follows:

MASS STORAGE CORE

WORD 3
bits 0-3 WORD 1 WORD 1

WORD 3 WORD 2
I bits 4-7 WORD 2

WORD 3

Unformatted (i.e. direct access) READ and WRITE operations also

operate on standard OS/8 format files, with each statement causing

one FORTRAN IV record to be read or written. A FORTRAN IV record

must contain at least one OS/8 block, and always contains an integral
,

number of blocks. The number of variables contained in a I-block

record depends upon the content and format of the I/O list, as

follows:

Format type Number of 12-bit Number of
Words/Variable Variables/Block

Integer 3 85

Real 3 85

Double precision 6 42 1/2

Complex 6 42 1/2

It is possible to mix any types of data in an I/O list; however, no

more than 85 variables may be stored in one OS/8 block. The number

of blocks required for a FOR'fRAN IV record depends, therefore, upon

the number of variables in the I/O list, and may be minimized by

supplying every direct access WRITE with sufficient data to nearly

fill an integral number of blocks without overflowing the last block.

4-13

The last word in every file block contains a block count sequence

number and is not available for data storage. FRTS assigns block

count numbers sequentially, beginning with 1, whenever a file is

written. Block count numbers must be maintained by the user when

FORTRAN IV files are created outside of an OS/8 FORTRAN IV environ

ment. While reading a binary file, FRTS checks the block count

sequence numbers on input blocks and ignores any block whose sequence

number is larger than expected. Sequence number checking is

disabled during direct access READ operations.

When FRTS is loaded and started, the initialization routines deter

mine what optional hardware, such as FPP-12 Floating Point Processor

or KE8E Extended Arithmetic Element, is present in the running

hardware configuration. The initialization routines then modify

FRTS to use the optional hardware, if available. When an FPP is

present in the system and it becomes desirable to disable the FPP

under FRTS, this may be accomplished by changing the content of

location 12621 from 6555 to 7200. The extended arithmetic element

may be disabled in the same manner by changing the content of FRTS

location 12623 from 7413 to 7200. These changes must be made before

FRTS is started. The OS/8 monitor GET and ODT commands provide an

excellent mechanism for changes of this type.

The FRTS internal line printer handler uses a linked ring buffer for

maximum I/O buffering efficiency. The buffer consists of several

contiguous sections of memory, linked together by pointers. All of

these buffer segments are located above 04000, so that the pointers

are readily distinguishable from bufferred characters. The entire

07400 page is included in the line printer ring buffer. If it

becomes desirable to modify FRTS by patching or reassembly, most

of the 07400 page may be reclaimed from the buffer by changing the

4-14

content of location 07402 from 7577 to 5164. This frees up locations

07403 to 07577 for new code and still leaves about eighty character

positions in the LPT ring buffer.

Because FRTS executes with the processor interrupt system enabled,

it may hang up on hardware configurations that include equipment

capable of generating spurious program interrupts. In addition,

any OS/8 I/O device handler that exits without clearing all device

flags may cause troublesome interrupts when it is assigned as a

FORTRAN I/O unit under FRTS. To counteract these potential

problems, FRTS provides certain areas that are reserved for

inclusion of user-generated code designed to clear device flags

and/or inhibit spurious interrupts.

A string of Nap instructions beginning at location 04020 is

executed during FRTS initialization, just before the interrupt

system is enabled. When the /H option is specified to FRTS, the

system halts after these NOPs have been executed and the interrupt

system has been enabled. Another string of Naps occupying the

eight locations from 03746 to 03755 is executed after every call

to an OS/8 device handler. Any of these Nap instructions may be

replaced by flag-handling or interrupt-servicing code. If

additional memory locations are required, they may be obtained by

replacing some of the code from locations 04007 to 04017 with

flag-handling code. Locations 04007-17 are used to clear flags

associated with LAB-8/E peripheral devices.

Due to memory ll.mitations, it is no"C possiole "Co add internaL -:1./0

device handlers to the four internal handlers supplied with the

system. However, FORTRAN I/O unit 0, which is not defined by the ANSI

standard, may be specified for terminal I/O via the internal console

terminal handler. I/O unit 0 is not re-assignable.

4-15

IFORTRAN 4 RUNTIME SYSTEM - R.L PAL8-V8

IINTERRUPT DRIVEN 1/0 HANDLERS

PAGE 6

00236
00237
00240
00241
00242
00243
00244
00245
00246
00247
00250
00251
00252
00253
00254
00255
00256
00257
00260
00261
00262
00263
00264
00265
00266

0000
0176
7450
5765
6002
3667
1003
7041
1267
7640
5253
1667
6666
7201
6665
1267
3267
1667
7510
5256
7640
4764
0436
6001
5636

LPT,

LPTSNA,
'" AND
SNA
JtYlP I
IOF
DCA I
TAD
CIA
TAD
SZA CLA
JMP
TAD I
LLS
CLA lAC
LIE
TAD
DCA
TAD I
SPA
JMP
SZA CLA
JMS I
LPUHNG
ION
JMP I

00267 5165 LPPUT, LPBUFR

00270
00271
00272
00273
00274
00275
00276
00277
00300
00301
00302
00303
00304
00305

0000
7450
5765
3236
6002
1006
7640
4764
0502
1236
6026
3006
6001
5670

PTP, o
SNA
JMP I
DCA
IOF'
TAD
SZA CLA
JMS I
PPUHNG
TAD
PLS
DCA
ION
JMP I

[377

(IOERR

LPPUT
LPGET

LPPUT

.+3
LPPUT

LPPUT
LPPUT
LPPUT

• -3

(HANG

LPT

IRING-BUFFERED - LP08 OR LS8E
IJUST IN CASE

ICANNOT BE USED FOR INPUT

lIS LPT QUIET?
INO

IYES - START 'ER UP

IENABLE LPT INTERRUPTS
II IN AC, REMEMBER?

INEGATIVE NUMBERS ARE BUFFER LINKS
IANY ROOM LEFT IN BUFFER?

IWAIT FOR LINE PRINTER
ITURN INTERRUPTS BACK ON
IRETURN

IPAPER TAPE PUNCH HANDLER

(IOERR IINPUT IS ERROR
LPT ISAVE CHAR

POCHR IIF PUNCH IS NOT IDLE,
IWE DISMISS JOB

(HANG
IWAIT FOR PUNCH INTERRUPT
LPT

IOUTPUT CHAR
POCHR ISET FLAG NON-ZERO

PTP

I*K* THE FOLLOWING ADDRESSES GET FALLEN INTO & MUST BE SMAL

IFNZRO
IFNZRO
IFNZRO
IFNZRO
IFNZRO

PPUHNG&7000
TTUHNG&7000
KBUHNG&7000
RDUHNG&7000
LPUHNG&7000

4-16

< ERROR4-+->
< ERROR >
< ERROR >
< E RR OR >
< ERROR >

IFORTRAN 4 RUNTIME SYSTEM - R.L PAL8-V8 PAGE 7

00306
00307
00310
00311
00312
0121313
00314
00315
00316
00317

00320
00321
00322
00323
00324
00325
00326
00327
00330
00331
00332
00333
00334
00335
00336
00337
00340
00341

IINTERRUPT-DRIVEN PTR AND TELETYPE HANDLER

0000 PTR,
7640

o
SZA CLA

5765
6002
6014
4764
0510
1007
6001
5706

0000
6002
7450
5342
3236
1004
7740
4764
0451
1004
7104
7230
1236
7510
6046
3004
6001
5720

JMP I (IOERR
lOF
RFC
JMS I (HANG
RDUHNG
TAD RDRCHR
ION
JMP I PTR

TTY, 0
IOF
SNA
JMP KBD
DCA LPT
TAD TOCHR
SMA SZA CLA
JMS I (HANG
TTUHNG
TAD TOCHR
CLL RAL
CLA CML RAR
TAD LPT
SPA
TLS
DCA

TTYRET, ION
JMP I

TOCHR

TTY

ICRUDE READER HANDLER

10UTPUT ILLEGAL TO PIR

ISTART READER

IHANG UNTIL COMPLETE
IGET CHARACTER

IRETURN

IBUFFERS 2 CHARS ON OUTPUT, 1 ON
IDELICATE CODE AHEAD
IINPUT OR OUTPUT?
IINPUT
10UTPUT - SAVE CHAR
IGET TTY STATUS
IG.T~ 0 MEANS A CHAR IS BACKED UP

IWAIT FOR LOG JAM TO CLEAR
INO CHAR BACKED UP - SEE IF TTY
1"8USY" FLAG IN LINK - INTERRUPTS
ICOMPLEMENT OF BUSY IN SIGN
IGE1 CHAR
IIF TTY NOT BUSY,
10UTPUT CHAR
ISTORE POS OR NEG, BACKED UP
ITURN INTERRUPTS BACK ON
lAND LEAVE

IFORTRAN 4 RUNTIME SYSTEM - ReL PALS-V8 PAGE 8

00342 1005 KBD, TAD KBDCHR IHAS A CHARACTER BEEN INPUT?
00343 7650 SNA CLA
00344 4764 JMS I (HANG
'10345 0465 KBUHNG INO - RUN BACKGROUND UNTIL ONE IS
00346 1005 TAD KBDCHR IGET CHARACTER
00347 3236 DCA LPT
00350 3005 DCA KBDCHR ICHEAR CHARACTER BUFFER
00351 1236 TAD LPT
00352 5340 JMP TTYRET IRETURN WITH INTERRUPTS ON

00353 6554 KILFPP, F'PHL T 18RING FPP TO A SCREECHING HALT
00354 2353 ISZ • -1
00355 5354 JMP .-1 IWAIT FOR IT TO STOP
00356 6552 F'PICL ICLEAN UP MESS HALT HAS MADE IN FPP
00357 7430 SZL 11'C OR 1'B?
00360 5763 JMP I (7600 11'C - HIYO SILVER, AWAYI
00361 6032 KCC ICLEAR KBD FLAG ON tB
003S2 4-4.)4 GILBER, JPlS I ERR 1*** THISMA-¥ BE DANGEROUS! **

4-17

IF'ORTRAN 4 RUNTIME SYSTEM - R.L PAL8-V8 PAGE 9

IINTERRUPT SERVICE ROUTINES

00400 3322 INTRPT, DCA INTAC
00401 7010 RAR
00402 3323 DCA INTLNK
00403 5207 VINT, JMP .+4 1** MUST BE AT 403 **

IFNZRO VINT-403 <~~~ CHANGE LOADER!!!>
00404 0000 0
00405 6203 CDF ClF' 0 IUSER INTERRUPT ROUTINE GOES HERE
004~6 4604 JMS I • -2

00407 6551 FPINT ICHECK FOR F'PP DONE
00410 5215 Jl'llP LPTEST
00411 5314 FPUHNG, JMP DlSMIS IALWAYS GOES TO RESTRT

00412 5314 VDlSMS, JMP DISMlS IFOR USE BY USERS
00413 5314 JMP DlSMIS
00414 5314 JMP DISMIS

00415 6661 LPTEST, LSF
00416 5240 JMP NOTLPT
00417 6662 LP TLCF , LCF IC LEAR FLAG
00420 1403 TAD I LPGET
00421 7650 SNA CLA ICHECK FOR SPURIOUS INTERRUPT
00422 5314 J~PDIS, JMP DISMIS IGO AWAY IF SO
00423 3403 DCA I LPGET IZERO CHAR JUST OUTPUT
00424 2003 ISZ LPGET
00425 1403 TAD I LPGET
00426 7510 SPA
00427 3003 DCA LPGET ITAKE CARE OF BUFFER LINKS
00430 7450 SNA
00431 1403 TAD I LPGET IMAKE SURE CHAR IS IN AC
00432 7440 SZA lIS THERE A CHARACTER?
00433 6666 LLS IYES - PRINT IT
00434 7200 CLA
00435 6661 LSF ICHECK FOR IMMEDIATE FLAG
00436 5314 LPUH~G, JMP DIsrYlIS INO - MAYBE RESTART PROGRAM
00437 5217 Jr~p LPTLCF IYES - LOO?

00440 6041 NOTL? T , TSF ICHECK TTY
00441 5252 JMP NOTTTY
00442 6042 TCF ICLEAR FLAG
00443 1004 TAD TOCHR IGET TTY STATUS
00444 7540 SMA SZA IIF THERE IS A CHARACTER WAITING,
00445 6046 TLS 10UT?UT IT.
00446 7740 SI'flA SZA CLA ICHANGE "WAITING" TO "BUSY",
00447 7130 STL RAR I"BUSY" TO "IDLE".
00450 3004 DCA TOCHR
00451 5314 TTUJiNG, JI"IP DISMIS

4-18

IFORTRAN 4 RUNTIME SYSTEM - R.l PAl8-V8 PAGE 110

100452
100453
100454
100455

00457
00460
010461
00452
100463
100464
100465

00466
1010467
10104710
010471
100472
010473
100474
100475

6031
5275
1175
6034

1005
1377
7110
1650
5266
6032
5314

11073
76510
5366
1323
7104
1322
6244
54100

IKBD AND PIP INTERRUPTS

NOTTIY, KSF
JMP
lAD
KRS
DCA

NOIKBD
[2100

KBDCHR
lAD KBDCHR
lAD (-2102
Cll RAR
SNA CLA
JMP CICCTB
KCC

KBUHNG, JMP DISMIS

CICCTB, TAD CTCINH
SNA ClA
J!llP NOIINH
lAD INTLNK
Cll RAL
TAD INTAC
RMF
JMP I 10

NOT?T?

IUSE KRS 10 FORCE PARITY BIT
lAND ALSO SO THAT tC WILL STILL

ICHECK FOR tC OR tB

IYUP - TAKE SOME DRASTIC ACIION
IDATA CHARACTER - CLEAR FLAG

IARE WE IN A HANDLER?
INO

/YES - RETURN WITH INTERRUPTS Off
ITRUST IN GOD AND RTS

IP.T. PUNCH INTERRUPT - CLEAR FLAG

100476 61021
00477 5303
100500 6022
010501 31006
00502 5314

NOTKBD, PSI'
JMP
PCI'
DCA POCHR IClEAR SOFTWARE FLAG

PPUHNG, JMP

00503 6011 NO TPTP, RSF
005104
00505
100506
10105107
10105110

1010511
00512
00513

5311
1175
61012
310107
5314

6663
7410
6667

JI'lP
TAD
RRB
DCA

RDUHNG, JI'lP

lPTERR, lSE
SKP
llF

DISMlS

LPTERR
[200

RDRCHR
DI5("1IS

100514
1010515
010516
1010517
10105210
1010521

1323
71~4
1322
6244
610101
5400

DISMIS, TAD INTlNK
CLL RAL
TAD INTAC
RMF
ION
Jr~p I 0

010522 0101010 I NT~C, 10
00523 0101010 INTLNK, 10

4-19

IGET RDR CHAR

ITEST FOR LP08 ERROR FLAG

IDISA3LE LPeJ8 INTERRUPTS IF ERROR

IRESTORE AC AND LINK

IRETURN FROM THE INTERRUPT

IFORTRAN 4 RUNTIME SYSTEM - R.L PAL8-VB

IBACKGROUND INITIATE/TERMINATE ROUTINE

PAGE 11

00524
00525
00526
00527
00530
00531
00532
00533
00534
00535
00536
00537
00540
00541
00542
00543

00544
00545
00546
00547
00550
00551
00552
00553
00554
00555
00556
00557
00560
00561
00562
00563
00564
00565

00566
00567
00570

00571
00572
00573
00574

00575
00576
00577

0000
1724
3371
6214
1332
3364
6203
1376
3771
1373
7104
1372
6202
6201
6001
577,4

1222
3771
1322
3372
1323
3373
1000
3374
6234
0174
1332
3340
6234
4436
3341
2324
7402
5724

1222
3771
5775

0000
0000
0000
0227
0524

0353
5344
7576
0600

HANG,

HCIDF0,

BAKCIF',
BAKCDF,

o
TAD I
DCA
RDF
TAD
DCA
CDF CIF
TAD
DCA I
TAD
CLL RAL
TAD
CIF (()
CDF I{)

ION
Jr~p I

IALWAYS CALLED WITH INTERRUPTS OFF!
HANG IGET POINTER TO UNHANGING LOCATION
UNHANG

IGET FIELD CALLED FROM
HCIDFI{)
HNGCDF ISAVE FOR RETURN
o
(JMP RESTNT ICHANGE THE "JMP DISMIS"
UNHANG ITO A "JMP RESTRT"
BACKLK

BACKAC ISET UP BACKGROUND AC AND LINK

BACKPC IINITIATE BACKGROUND

I COME HERE WHEN THE HANG CONDITION HAS GONE AWAY

RESTRT, TAD
DCA I
TAD
DCA
TAD
DCA
TAD
DCA
RIB
AND
TAD
DCA
RIB
JMS I
DCA
ISZ

HNGCDF, HLT
JMP I

NOTINH, TAD
DCA I
Jf1P I

UNHANG,
BACKAC,
BACKLK,
BACKPC,
VHANG:

o
o
o
VBACKG
HANG
IFNZRO

PAGE

Jf1PDIS
UNHANG
INTAC
BACKAC
INTLNK
BACKLK
o
BACKPC

[70
HCIOF0
BAKCIF

MCDF'
BAKCDF
HANG

HANG

IRESTORE THE UNHANG LOCATION

ISUSPEND THE BACKGROUND

I*K* OK SINCE BACKGROUND DOESN'T

IINTERRUPTS ARE OFF - RETURN

JMPDIS lIN CASE WE WERE HUNG, WE DON'T
UNHANG ITO GET "UNHUNG" OUT OF THE ERROR
(KILF'PP IKILL FPP AND GO TO EXIT OR ERROR

VHA NG -" 52 4 <~~ CHANGE LOADER!>

4-20

The FRTS /P option provides a mechanism whereby the core image gener-

ated from a FORTRAN program may be punched onto paper tape in binary

loader format. This permits the loader image to be executed on a

hardware configuration that does not include mass-storage devices.

To use the /p option, specify /P to FRTS and assign a device or file

as FORTRAN I/O unit 9. Assigning the paper tape punch as unit 9

causes the image to be punched out directly; however, it may be de-

sir able to direct the binary output to an intermediate file for later

transfer to paper tape via OS/9 PIP. In any event, FRTS returns to

the monitor once the core image has been transferred.

The output file is a binary image of memory locations ~~~~~ to ~7577

and l~~~~ up to the highest location used by the FORTRAN load. The

content of each field is punched separately with its own checksum

and leader/trailer.

With the BIN loader resident in field ~, load the binary tape produced

under the /P option by reading each segment separately and verifying

the checksum as each memory field is loaded. When all segments have

been read into memory, start execution at location ~~2~~. The

following restrictions apply:

1. OS/8 device handlers which have been assigned FORTRAN I/O
unit numbers are not necessarily punched out. For this
reason, I/O unit assignments other than in the form /n=m
should be avoided.

2. With respect to the presence of an FPP and/or EAE, the con
figuration on which the image is punched must be identical

3.

to the configuration on which it is to be run. If the
punching configuration contains hardware that is absent from
the target configuration, this hardware must be disabled
under FRTS. If the target configuration contains hardware
that is absent from the punching configuration, the extraneous
hardware will not be used.

The statements STOP and CALL
under the IP optiun to halt.
punching or execution causes
halt. Do not press CONTinue
machine halts.

4-21

EXIT cause a core load produced
Any fatal erro-r flagged during

error traceback followed by a
in response to either of these

A FORTRAN IV program is terminated in one of three ways:

1. A fatal error condition is flagged (CTRL/B) is processed as
a fatal error.

2. CTRL/C is recognized, or the CPU is halted and re-started in
07600.

3. A STOP, CALL EXIT, or (under RALF) JSR #EXIT statement is
executed.

The sequence of events that results in program termination proceeds as

follows:

BRANCH TO
ERROR
ROUTINE

PRINT
TRACEBACK

Fatal Error
(CTRL/B)

JMP 07605

CTRL/C

EXECUTE IOF

LET I/O DE
VICE HANDLER
PROCESS tc

STOP
CALL EXIT
JSR #EXIT

SIMULATE
END FILE ON
ANY OPEN
FILES

SET NORMAL
TERMINATION
FLAG

Location 07605 traps back to FRTS

At point A, FRTS executes the following operations.

1. Read termination routine into memory.

2. Read OS/8 field 0 resident from block 37 of SYS.

3. Jump into termination routine at location 17400.

4. Restore normal content of locations 07600 and 07605 (in OS/8
resident).

5. If configuration is an in-core TD8E DECtape system, restore
second part of TD8E handler from n7600 to 27600.

6. Wait for TTY to finish all pending I/O. If BATCH is running,
print LF on TTY and LPT.

7. If normal termination flag is set, close any output files
that were opened by the FRTS loader.

8. Return to OS/8 monitor via location 07605.

4-22

IFORTRAN 4 RUNTIME SYSTEM - R.L PALS-V8 PAGE 78

106600
106616

rACC''''
IU\;)\;)' ,

106620
106621
106622
106623
106624

106625
06626
106621
06630
06631
106632
106633
06634
06635
06636
06637
1066410
06641
106642
106643
06644
06645
106646
106641
~6651O
06651
106652
06653
106654
106655
106656
106657
066610
106661
106662
06663
106664

66100 FPPKG= IFOR EAE OVERLAY

1010010
7160

0000
1240
11044
31344
4542
5611

4171
741~
4116
4304
1044
31044
3304
31054
11045
76510
31044
4334
11056
31051
4334
1054
3046
13104
31045
11045
110104
17110
4211
11053
7710
21046
5265
21045
11045
15110
5175
721010

123-81T FLOATING PT INTERPRETER
IW.J. CLOGHER, MODIFIED BY R.LARY FOR FORTRAN

LPBUF2, ZBLOCK
L?BUF3

ALIBM?, 0
STA
TAD
DCA
Ji'lS I
JMP I

16

ACX
ACX
[ALl
ALIBM?

IFLOATiNG MULTIPLY-DOES
DDMPY, JMS I (DARGET

SKP
FFMPY, JMS I

JMS
TAD
DCA
DCA
DCA
TAD
SNA
DCA
JMS
TAD
DCA
JMS
TAD
f\ ("/\
l.Ivn

TAD
DCA
TAD
RAL
SPA
JMS
TAD
SPA CLA
ISZ
JMP
ISZ
TAD
SPA
JMP I
CLA

(ARGET
MDSET
ACX
ACX
[~DSET

AC2
ACH
CLA
ACX
MP24
OPH
OPL
~P24
AC2
A"l v ...

MDSET
ACH
ACH

CLA
ALl BMP
ACl

ACL
MOONE
ACH
ACH

(SHRI

4-23

I*K* UTILITY SUBROUTINE

2 24X12 BIT MULTIPLIES

IGET OPERAND
ISET UP FOR MPY-OPX IN AC ON RETN.
100 EXPONENT ADDITION
ISTORE fINAL EXPONENT
IZERO TEM STORAGE FOR MPY ROUTINE

lIS FAC=IO?

IYES-ZERO EXPONENT
INO-MULTIPLY FAC BY LOW ORDER OPR.
INOW MULTIPLY FAC BY HI ORDER MULT

ISTORE RESULT BACK IN FAC
ILOW ORDER
IHIGH ORDER

100 WE NEED TO NORMALIZE?

IYES-DO I T FAST

ICHECK OVERFLOW WORD
IHIGH BIT ON - ROUND RESULT

ILOW ORDER OVERFLOWED - INCREMENT

ICHECK FOR OVERFLOW TO 4101010 100010
IWE HANDLE A SIMILIAR CASE IN

IFORTRAN 4 RUNTIME SYSTEM - R.L PAL8-V8 PAGE 19

06665 3053 MOONE, DCA ACI IZERO OVERFLOW WD(DO I NEED THIS??7
06666 2333 ISZ MSIGN ISHOULD RESULT BE NEGATIVE?
06661 1410 SKP INO
06610 4543 JMS I [FFNEG IYES-NEGATE IT
06611 1045 TAD ACH
06612 7650 SNA CLA IA ZERO AC MEA NS A ZERO EXPONENT
06673 3044 DCA ACX
06674 1021 TAD DFLG
06675 7740 SMA SZA CLA ID.P. INTEGER MODE?
06676 1044 TAD ACX IWITH ACX LESS THAN 0?
06677 7450 SNA
06700 5416 JMP I FPNXT INO - RETURN
06701 7040 CMA
06702 4541 JMS I (ACSR IUN-NORMALIZE RESULT
06703 5476 JMP I FPNXT IRETURN

IFORTRAN 4 RUNTIME SYSTEM - R.L PAL8-V8 PAGE 80

06704
06105
06706
06707
06110
06711
06712
06713
06714
06715
06716
06717
06720
06721
06722
06723
06724
06725
06726
06727
06730
06731
06132
06733

0000
7344
3333
1056
7700
5314
4774
2333
1057
7104
3057
1056
7004
3056
3053
1045
7700
5331
4543
2333
7000
1055
5704
0000

IMDSET-SETS UP SIGNS FOR MULTIPLY AND DIVIDE
IALSO SHIFTS OPERAND ONE BIT TO THE LEFT.
IEXIT WITH EXPONENT OF OPERAND IN AC FOR EXPONENT
ICALCULATION-CALLED WITH ADDRESS OF OPERAND IN AC AND
IDATA FIELD SET PROPERLY FOR OPERAND.

MOSET,

lEV,

MSIGN,

o
CLl CMA RAl ISET SIGN CHECK TO -2

MSIGN
CLA
DCA
TAD
SMA
JMP
JMS I
ISZ
TAD
CLL
DCA
TAD
RAL
DCA
DCA
TAD
SMA
JMP
Jrt'Js I
ISZ
NOP
TAD
JlllP I
o

OPH
CLA
.+3
(OPNEG
MSIGN
OPL
RAL
OPl
OPH

OPH
ACI
ACH
CLA
LEV
[FFNEG
MSIGN

OPX
MDSET

4-24

lIS OPERAND NEGATIVE?

INO
IYES-NEGATE IT
IBUMP SIGN CHECK
lAND SHIFT OPERAND lEFT ONE BIT

ICLR. OVERFLOW WORF OF FAC
lIS FAC NEGATIVE

INO-GO ON
IYES-NEGATE IT
IBUMP SIGN CHECK
IMAY SKIP
IEXIT WITH OPERAND EXPONENT IN AC

IFORTRAN 4 RUNTIME SYSTEM - R.L PAL8-V8 PAGE 81

06734
06735
06736
06737
06740
06741
06742
06743
06744
06745
06746
106747
06750
06751
06752
06753
06754
06755
06756
06757
06760
06761
06762
06763
06764
06765
06766
06767
06770
06771
06773
06774
06775
06776

0000
1373
3055
1057
7440
5345
3053
5734
1057
'71711171 .u"u
3057
7420
5356
1054
1046
3054
1024
1045
1304
7010
3304
1054
7010
3054
1053
7010
3053
2055
5344
5734
7764
7203
7110
1::.&;111 ",

06777 6460
7000

124 BIT BY 12 BIT MULTIPLY. MULTIPLIER IS IN OPL
IMULTIPLICAND IS IN ACH AND ACL
IRESULT LEFT IN MDSET,AC2, AND ACt

MP24,

MPLP,
MPI PI
1 .. wi ~,

MPLP2,

o
TAD
DCA
TAD
SZA
JMP
DCA
JM? I
TAD
RAR
DCA
SNL
JMP
TAD
TAD
DCA
CML RAL
TAD
TAD
RAR
DCA
TAD
RAR
DCA
TAD
RAR
DCA
ISZ
JMP
JMP I

PAGE

(-14
OPX
OPL

MPLP 1
AC 1
MP24
OPL

OPL

MPLP2
AC2
ACL
AC2

ACH
MOSEr

lYiDSET
AC2

AC2
ACt

ACl
OPX
MPLP
MP24

ISE1 UP 12 BIT COUNTER

lIS MULTIPLIER=0?

INO-GO ON
IYES-INSURE RESULT=0
IRETURN
ISHIFT A BIT OUT OF LOW ORDER
IOF MULTIPLIER AND INTO LINK

IWAS IT A I?
INO - 0 - JUST SHIFT PARTIAL PROD
IYES-ADD MULTIPLICAND TO PARTIAL
ILOW ORDER

I*K* NOTE THE "SNL" 5 WORDS BACKl
IHI ORDER

INOW SHIFT PARTIAL PROD. RIGHT 1

IOVERFLOW TO ACl

IDONE ALL 12 MULTIPLIER BITS?
INO-GO ON
IYES~RETURN

IFORTRAN 4 RUNTIME SYSTEM - R.L PAL8-V8 PAGE 82

IDIVI:JE-BY-ZERO ROUTINE - MUST BE .AT BEGINNING OF' PAGE

07000 2035 DBAD, ISZ FATAL IDIVIDE BY 0 NON-FATAL
07001 4434 JMS I ERR iGIVE ERROR Mroro

l'1':) I.J

07002 1200 TAD bBAD
07003 3044 DCA ACX IRETURN A VERY LARGE POSITIVE NUM
07£104 7332 AC2000
07012'5 5325 JMP FD

4-25

IFLOATING DIVIDE - USES DIVIDE-AND-CORRECT METHOD

a7006 4777 DDDI V, JMS I (OARGET
07007 741121 SKP
1217010 4776 FFDIV, JMS I (ARGET IGET OPERAND
07011 4775 .1MS I (MDSET IGO SET UP FOR DIVIDE-OPX IN AC
121712112 712141 CMA lAC INEGATE EXP. OF OPERAND
1217013 112144 TAD ACX IADD EXP OF FAC
121712114 3044 DCA ACX ISTORE AS FINAL EXPONENT
07015 1056 TAD OPH INEGATE HI ORDER OPe FOR USE
07016 7141 CLL CMA lAC lAS 01 VISOR
1217017 312156 DCA OPH
071212121 4231 JMS DV24 ICALL DIV.--(ACH+ACL)/OPH
0712121 112146 TAD ACL ISAVE QUOT. FOR LATER
1217022 312153 DCA ACI
0712123 112157 TAD OPL
0712124 765121 SNA CLA
121712125 5327 JMP DVL2 IAVOID MULTIPLYING BY 121
121712126 1374 TAD (-15 ISET COUNTER FOR 12 BIT MULTIPLY
1217027 3231 DCA DV24 ITO MULTIPLY QUOT. OF DIV. BY
071213121 5267 JMP DVLPI ILOW ORDER OF OPERAND (OPL)

IDIVIDE ROUTINE - (ACH,ACL)/OPH = ACL REMAINDER REM

1217121.31 1210121121 DV2 4, 0
121712132 112145 TAD ACH ICHECK THAT DIVISOR IS .GT.
0712133 112156 TAD OPH IDIVISOR IN OPH (NEGATIVE)
1217121.34 763121 SZL CLA I I SIT?
121712135 52121121 JMP DBAD INO-DIVIDE OVERFLOW
0712136 1374 TAD (-15 IYES-SET UP 12 BIT LOOP
121712137 312154 DCA AC2
071214121 5251 JMP DVI IGO BEGIN DIVIDE
0712141 1045 DV2 , TAD ACH ICONTINUE SHIFT OF FAC LEFT
0712142 71211214 RAL
0712143 312145 DCA ACH IRES TORE HI ORDER
0712144 112145 TAD ACH IN OW SUBTRACT DIVISOR FROM HI ORDER
121712145 112156 TAD OPH IDIVIDEND
07046 7430 SZL IGOOD SUBTRACT?
1217047 312145 DCA ACH IYES-RESTORE HI DIVIDEND
12171215121 721210 CLA INO-DON-T RESTORE--OPH.GT.ACH
121712151 112146 DV1, TAD ACL ISHIFT FAC LEFT 1 BIT-ALSO SHIFT
07052 71211214 RAL II BIT OF QUOT. INTO LOW ORD OF ACL
121712153 312146 DCA ACL
0712154 212154 ISZ AC2 IDONE 12 BITS OF QUOT?
121712155 5241 JMP DV2 INO-GO ON
121712156 5631 J:"tJP I DV24 IYES-RETN W/AC2=0

IFORTRAN 4 RUNTIME SYSTEM - R.L PALS-VB PAGE 83

IDIVIDE ROUTINE CONTINUED

121712157 312157 MP 12 L, DCA OPL ISTORE BACK MULTIPLIET
12171216121 112154 TAD AC2 IGET PRODUCT SO FAR
0712161 7420 SNL IWAS MULTIPLIER BIT A I?
121712162 5265 JMP .+3 INO-JUST SHIFT THE PARTIAL PRODUCT
0712163 71121121 CLL IYES-CLEAR LINK AND ADD MULTIPLICA
0712164 112146 TAD ACL ITO PARTIAL PRODUCT
121712165 712110 RAR ISHIFT PARTIAL PRODUCT-THIS IS HI
121712166 312154 DCA AC2 IRESULT-STORE BACK
0712167 112157 DVLPl, TAD OPL ISHIFT A BIT OUT OF MULTIPLIER
0712170 701121 RAR lAND A BIT OR RESLT. INTO IT (LO
07071 2231 ISZ DV24 IDONE ALL BITS?

4-26

07072
07073
07074
07075
07076
07077
07100
07101
07102
07103
07104
07105
07106
07107
07110
07111
07112
07113
07114
07115
07116
07117
01120
07121
07122
07123
07124
07125
07126

07127
07130

5257
7141
3046
7024
1054
7161
1045
7430
5331
3045
4231
1053
7500
5325
7100
2046
7410
7001
7010
3045
1046
7010
3046
2044
7000
1045
5306
3045
5773

3046
5304

DVL3,
DVL1,

SHR1,

rD,

DVL2,

JMP
CLL CIA
DCA
C['1L
TAD
STL CIA
TAD
SZL
JI'1P
DCA
JMS
TAD
SMA
JIYlP
CLL
ISZ
SKP
lAC
RAR
DCA
TAD
RAR
DCA
ISZ
NOP
TAD
Jl'rJP
DCA
JMP I

DCA
JI"'P

MP12L

ACL
RAL
AC2

ACH

DVOPS
ACH
DV24
ACI

FD

ACL

ACH
ACL

ACL
ACX

ACH
DVL1+1
ACH
(MDONE

ACL
DVL3

INa-LOOP BACK
IYES-LOW ORDER PROD. OF QUOT. X
INEGATE AND STORE
IPROPAGATE CARRY
INEGATE HI ORDER PRODUCT

ICOMPARE WITH REMAINDER OF FIRST
IWELL?
IGREATER THAN REM.-ADJUST QUOT OF
10K - DO (REM - (Q*OPL» I OPH
IDIVIDE BY OPH (HI ORDER OPERAND)
IGET QUOT. OF FIRST DIV.
IIF HI ORDER BIT SET-MUST SHIFT
INO-ITS NORMALIZED-DONE

IROUND AND SHIFT RIGHT ONE

IDOUBLE PRECISION INCREMENT

IS TORE IN FAC
ISHIFT LOW ORDER RIGHT

/STORE BACK
IBUMP EXPONENT

/IF FRACT WAS 77777777 WE MUST
ISTORE HIGH ORDER RESULT
/GO LEAVE DIVIDE

ICOME HERE IF LOW-ORDER QUO=0
/SAVE SOME TIME

IFORTRAN 4 RUNTIME SYSTEM - R.L PALS-V8 PAGE 84

07131
07132
07133
07134
07135
07136
07137
07140
07141
07142
07143
07144
07145
07146
07147
07150
07151
07152
07153
07154
071-S-S
07156
07157

7041
3045
7100
1056
1045
7420
5344
3045
7040
1053
3053
7300
1045
7450
3046
3045
4231
1046
7141
3046
7420
7040
5305

IROUTINE TO ADJUST QUOTINET OF FIRST DIVIDE (MAYBE) WHEN
IREMAINDER OF THE FIRST DIVIDE IS LESS THAN QUOT*OPL

DVOPS,

DVOPl,

DVOP2,

CMA lAC
DCA ACH
CLL
TAD OPH
TAD ACH
SNL
JI't}P DVOP 1
DCA ACH
CMA
TAD ACI
DCA ACl
CLA CLL
TAO ACH
SNA
DCA ACL
DCA ACH
JMS DV24
TAD ACL
CLL CMA lAC
DCA ACL
SN-L
CMA
JrtJP DVLl

4-27

INEGATE AND STORE REVISED REMAINDER

IWATCH FOR OVERFLOw

IOVERFLOW-DON'T ADJUST QUaT. OF 1
INO OVERFLOW-STORE NEW REM.
/SUBTRACT 1 FROM QUOT OF
IFIRST DIVIDE

IGET HI ORD OF REMAINDER
lIS IT ZEHO?
IYES-MAKE WHOLE THING ZERO

/DIVIDE EXTENDED REM. BY HI DIVISOR
INEGATE THE RESULT

llF QUOT~ IS NON-ZERO, SUBTRACT
lONE FROM HIGH ORDER ~UOT.
/GO TO IT

0116_0 aflHl0 LPBUF3, Z-BLOCK 12
1217172 7316 lPBUF'4
1217173 6665
1217174 7763
1217175 671214
1217176 6514
1217177 646121

721210 PAGE

IFORTRAN 4 RUNTIME SYSTEM - R.L PAl8-V8 PAGE 85

r-NRMFAC" AND "OPNEG" MUST 8E AT 0 AND 3 ON PAGE

12172121121 312153 NRMF AC, DCA ACI IKILL OVERFLOW BIT
121721211 4271 JMS F'FNOR
121721212 5476 JIVlP I FPNXT

121721213 121121121121 OPNEG, 121 IROUTINE TO NEGATE OPERAND
121721214 112157 TAD OPl IGET LOW ORDER
121721215 7141 ClL CMA lAC INEGATE AND STORE BACK
07206 312157 DCA OPL
121721217 7024 CMl RAl IPROPAGATE CARRY
07210 1056 TAD OPH IGET HI ORDER
1217211 7141 Cll CI~A lAC INEGATE AND STORE BACK
07212 312156 DCA OPH
1217213 561213 JMP I OPNEG

I
IFlOATING SUBTRACT AND ADD
I

07214 4777 F'F'SUB, JIVlS I (ARGET IPICK UO THE OPe
07215 421213 JMS OPNEG INEGATE OPERAND
1217216 741121 SKP
1217217 4777 FFADD, JMS I (ARGET IPICK UP OPERAND
0722121 1056 TAD OPH lIS OPERAND = 121
1217221 7550 SNA ClA
1217222 5476 JMP I FPNXT IYES-DONE
07223 112145 TAD ACH INO-IS FAC=0?
1217224 765121 SNA CLA
1217225 5236 JMP DOADD IYES-DO ADD
1217226 112144 TAD ACX INO-DO EXPONENT CALCULATION
1217227 7141 Cll C(~A lAC
121723121 112155 TAD OPX
1217231 754121 SMA SZA IWHICH EXP. GREATER?
1217232 5243 JMP FACR IOPERANDS-SHIFT FAC
1217233 712141 CMA lAC IFAC'S-SHIFT OPERAND=DIFFRNCE+l
1217234 4246 JMS OPSR
07235 4541 Jf1S I [ACSR ISHIF'T FAC ONE PLACE RIGHT
07236 112155 DOADD, TAD OPX ISET EXPONENT OF RESULT
1217237 312144 DCA ACX
0724121 4537 Jr1S I [OADD 100 THE ADDITION
1217241 4271 Jf1S FFNOR INORMALIZE RESULT
1217242 5476 JMP I FPNXT IRETURN
07243 4541 FACR, JI~S I [ACSR ISHIFT FAC = DIFF.+1
1217244 4246 JMS OPSR ISHIFT OPR. 1 PLACE
1217245 5236 Jf1P DOADD 100 ADDITION

4-28

IFORTRAN 4 RUNTIME SYSTEM - R.L PALS-VB OA~C' t.L1:
r MU~ ov

07246
'07247
07250
07251
07252
'07253
07254
07255
07256
07257
07260
07261
07262
'07263
07264
07265
07266
07267
07270

07271
07272
07273
07274
07275
07276
07277
07300
'07301
'073'02
07303
en 304
07305
07306
'073'07
'0731'0
07 ~ 11
'07312
'07313
07314
07315

07316
07376
'07377

00'0'0
7040
3052
1056
7100
7510
702'0
701'0
3'056
1051
7010
3'057
2055
7000
2'052
5251
7'0l~
3'054
5646

00'00
1'045
74521
1046
745'0
1053
7650
5313
7332
1045
7440
53'07
1046
764'0
7710
5314
4534
53'01
3044
3053
5671

'00'00
7400
6514
74'00

10PERAND SHIFT RIGHT-ENTER WITH POSITIVE COUNT-l IN AC

OPSR,

LOP2,

FFNOR,

'0
CMA
DCA
TAD
CLL
SPA
CML
RAR
DCA
TAD
RAR
DCA
!SZ
NOP
ISZ
JMP
RAR
DCA
JMP I

AC'0
OPH

OPH
OPL

OPL
OPX

AC0
LOP2

AC2
OPSR

/- (COUNT+l) TO SHIFT COUNTER

IGET SIGN BIT
ITO LINK

IWITH HI MANTISSA IN AC
ISHIFT IT RIGHT, PROPAGATING SIGN
ISTORE BACK

ISTORE LO ORDER BACK
IINCREMENT EXPONENT

IDONE ALL SHIFTS?
INO-LOOP
ISAVE 1 BIT OF OVERFLOW
lIN AC2
IYES-RETN.

IROUTINE TO NORMALIZE THE FAC
ACH IGET THE HI ORDER MANTISSA

IZERO?
ACL IYES-HOW ABOUT lOW?

ACI ILOW=0, IS OVRFlO BIT ON?
ClA
ZEXP 1#='0-ZERO EXPONENT

NORMlP,

'0
TAD
SNA
TAD
SNA
TAD
SNA
JMP
CLA
TAD

ClL CML RTR INOT 0-MAKE A 2000 IN AC
ACH IADD HI ORDER MANTISSA

SZA
JM?
TAD
SZA
SPA
JMP
JMS I
JMP

ZEXP, DCA
FFNORR, DCA

JMP I

.+3
ACL
CLA
CLA
FFNORR
[ALIBMP
NORMLP
ACX
ACI
FFNOR

LPBUF4, ZBLOCK 6'0
lPBUFE

PAGE

4-29

IHI ORDER = 6000
INO-CHECK LEFT MOST DIGIT
IYES-6000 OK IF lOW=0

12,3,4,5,ARE LEGAL LEFT MOST DIGS.
IFOR NORMALIZED 6-(+2000=4,5,6,7)
ISHIFT AC LEFT AND BUMP ACX DOWN
IGO BACK AND SEE IF NORMALIZED

IDONE W/NORMALIZE - CLEAR ACI
IRETURN

CHAPTER 5

LIBRA AND FORLIB

The binary output of an assembly under RALF is called a RALF

module. Every RALF module consists of an External Symbol Dictionary

(or ESD) and associated text. The ESD lists all global symbols

defined in the assembly, while the text contains the actual binary

output along with relocation data.

There are three major classes of global symbols. Entry points are

global symbols defined in a module and referenced by code in other

modules. Thus, entry points include the names of all modules and

the names of all globally callable subroutines within modules.

Externs are global symbols that are referenced in a module but not

defined in that module. For example, the entry point of module A

would appear as an extern if referenced in module B. The COMMON area

comprises a third class of global symbols including all global

symbols which define CO~~ON.

A FORTRAN IV library is a specially formatted file, created with

LIBRA, consisting of a library catalog (which lists section names

and entry points of library modules) and a set of RALF modules;

perhaps interspersed with empty subfiles. The loader uses one

such library, specified by the user, to resolve externs while

building a loader image file. The general structure of a FORTRAN IV

library is:

CATALOG MODULE FREE

AREA etc.

<

\
MODULE MODULE

5-1

LIBRA is a very simple program, basically a file-to-file copy inside

several nested loops. The outer loop begins at START, and calls the

command decoder for specification of the library and input files. If

no library is specified, the previous library name is used (initially

this is SYS:FORLIB.RL). If a new name is given, but no extension is

specified, .RL is forced. A check is made to verify that the spec

ified library is on a file-structured device, and the handler is

FETCHed.

At ZTEST, the /Z switch is tested. If it was set, control passes to

NEWLIB to create a new library. Otherwise, an attempt is made to find

an old library of the specified name on the device. If it fails,

control passes to NEWLIB. Otherwise, the catalog of the old library

is read and scanned to determine the starting block of available

space. This is stored at LAVAIL. Control then passes to GETINF to

begin reading input files.

If /Z was set, or the specified library isn't found, a new library

is entered at NEWLIB, and an empty catalog is written. Control passes

to GETINF. There, a check is made to determine whether input is

presently coming from another library. If it is, control passes to

INLIB to obtain the next module from the library. Otherwise, the

next input file is obtained from the command decoder area in field 1,

and if one exists, control passes to FTCHIN to load the handler. If

there is none, the /C switch is tested. If it is not set, control

is passed to LCLOSE to close the library. If it is set, however,

the command decoder is recalled to obtain a continuation of the

preceding input line, and control returns to NXTINF to look in the

command decoder area.

5-2

At FTCHIN, the unit, starting block, and length of the next input

file are obtained from the command decoder area, the appropriate

device handler is fetched, and at LUKMOD, the input file is read to

ensure that it is either a module or a library. If a library, control

passes to GOTLIB, which sets INLSW and goes to INLIB to obtain the

first module from the Otherwise, the length is checked

against the available length in the library, to ensure that this

module can be fit in, and control goes to NXTEBK to read the ESD.

At INLIB, the catalog of the library being input is read, and scanned

until a module is found with a starting block greater than the start-

ing block of the last input module (in the case of the first module

in a library, MODBLK, which normally contains the starting block of

a module, contains the starting block of the library, so this scan

yields the starting block of the first module in the library). When

the next module has been found, control returns to LUKMOD to check

the length of the module against the available length in the library.

At NXTEBK, the end of the input module is scanned for entry point and

section names. Whenever one is found, the catalog of the output

library is scanned for a matching name. If a match is found, control

passes to GOTMAT, which prints the duplicated name, and if the /1

switch is set, asks the operator which name to keep. If he types N,

for new, control passes to DLETO to delete the old name. Otherwise,

control is passed to ESDLND to find the next entry point or section

name in the input. If /1 is not set, /R is tested. If it is not set,

control is passed to ESDLND. If it is, control flows into DELTO,

where the old na~e is cleared: and the rest of the catalog is scanned

to find the first available name slot. Control then passes to INSERT.

5-3

If no match was found, the II switch is tested. If it was set, the

operator is asked whether to include the name. If he types, N, for

no, control is passed to ESDLND. Otherwise, or if II was not set, a

pointer is set up for the new name, and control passes to INSERT,

where the new name is added to the catalog.

When the entire ESD has been scanned, INCLUD is tested to determine

whether any name has been included in the catalog, and assuming at

least one has, the module is copied into the library, and LAVAIL is

updated to indicate the next available block in the library. Control

returns to GETINF for another module.

LCLOSE receives control whenever the end of the input file string is

reached and IC is not set. Here, any remaining changes in the library

catalog are written, and if a new library was entered, it is closed.

Control passes to CATLST, to create a catalog listing. The second

output file, if any was specified, is opened, a title is output to it,

and at PRCAT, the entire contents of the catalog are listed. When

this process is complete, the output file is closed, and control

returns to start for more command decoder input.

5-4

User-coded modules may be added to the system library or incorporated

in a new library provided that entry points, variable storage alloca-

tions, calling sequences, error conditions and the like are handled

with care.

Every library module must have a unique section (and entry) name(s).

The library supplied by DEC uses the character # before names where

duplication in the FORTRAN program may be possible. Note that this

character is acceptable to RALF, but is illegal in a FORTRAN source.

If more than one entry is required to the routine, they should be

listed as such using the pseudo-op ENTRY before they are encountered

as tags in the code. Thus, if a double precision tangent routine is

being written, it may be helpful to have an entry for a double pre-

cision co-tangent calculation also. Appropriate code would be:

SECT DTAN
JA #DTAN
ENTRY DCOT
JA #DCOT

#DCOT,

#DTAN;

When routines will handle double precision or complex values, allocate

six words for their storage. Such routines can switch between the

STARTF (3 word format) and STARTE (6 word format) pseudo-ops as re-

quired, being careful to define variables of the proper length to

keep track of temporary locations.

5-5

All user-written library routines are called by a JSR in STARTF mode.

Depending on the type of function, the routine must be coded to exit

as follows in order to return the result to the program:

Single preC1S10n
(integer, real and logical)

FLDA ANSWER
JA RETURN

Double precision:

Complex:

FLDA ANSWER
JA RETURN

EXTERN #CAC
STARTE
FLDA ANSWER
FSTA #CAC
JA RETURN

Answer in AC in STARTF mode

/In STARTF mode
/3 word result

Answer in AC in STARTE mode

/In STARTE mode
/6 word result

Answer in location #CAC in
STARTE mode

/Real part in first 3 words
/Imaginary in last 3 words
/Exit in STARTE mode
/6 word result

Routines should conform to the FPP FORTRAN calling sequence. An

example of that sequence follows:

DTANXR,

BPDTAN,
XRDTAN,

DTNRTN,

#DTAN,

SECT DTAN
JA #DTAN
TEXT +DTAN +

SETX XRDTAN

SETB BPDTAN

F ~.~
F ~.~

ORG 10*3+BPDTAN

FNOP
JA DTANXR
~
JA
BASE ~
STARTD
FLDA 10*3
FSTA DTNRTN

/Sector name
/Jump to Start of Function
/6 characters for trace
/back feature must be
/immediately before index
/register assignment.
/This tag referenced when
/returning to reset base
/page and index registers
/if this routine called.

/3 words each
/These locations may be
fused for temporary storage or
/If this routine is called,
/will set up return to it.

/Return to calling program
/Still on caller's base page
/Start of subroutine
/Get jump to caller's return jump
/Save for return from this routine

5-6

FLDA ~

SETX XRDTAN

SETB BPDTAN
BASE BPDTAN
FSTA TEMP
LDX 1,1
FLDA% TEMP,l
FSTA TEMP
STARTE
FLDA% TEMP
FSTA TEMP

FLDA ANSWER
JA DTNRTN

/Get next location in caller's
/routine (pointer to argument list)
/Change index registers to this
/routine's
/Change base page to this routine's
/Change base page to this routine's
/Save pointer
/Set up XRL
/Get address of argument list
/Save it
/A double precision routine
/Get variable
/Save variable

/Calculate result

/Load answer
/Exit

The following conventions must be observed to return to the calling

program at the correct location, to permit the error trace back

feature to function properly, and to preserve index registers and

base page integrity.

Locations ~ and 3~ of the called (user-coded) program are determined

by a statement in the form ORG lO*3+BPAGE which must be followed by

a two-word jump to the index register and base page assignment in-

structions JA BPXR. In the above example, the code is:

ORG 10*3+BPDATN
FNOP
JA DTANXR

By saving the contents of location 30 of the calling prog.am (FLDA

10*3,FSTA RETURN) for the return exit, the called program executes

(when control is returned to it) a JA BPXR to its base page and index

register assignment statement. In the calling program this resets

the index registers and base page and then returns to execute the

instruction in the calling program. In the tangent example above,

the code is:

5-7

FLDA 10*3
FSTA DTNRTN

which creates the instruction

JA xxx

at the tag DTNRTN, where xxx is the location in the calling routine

whose function corresponds to DTANXR in DTAN.

When called, the routine must assign its own base page and index

registers (SETX XROWN, SETB BPOWN). If arguments are to be passed

to the called routine, a scheme such as illustrated above permits

any number of arguments to be passed from the calling program and

saved on the base page of the called program, in this case just

two arguments.

The corresponding code for the calling program (as created by the

compiler) is:

EXTERN DTAN
JSR DTAN
JA .+4
JA A

FSTA Q

The FORTRAN for such code is:

Q DTAN (A)

/Jump past all arguments
/Argument

/Save result in some variable

The calling sequence is also discussed in Chapter 2.

To permit the error trace back feature to function properly, a TEXT

statement followed by a six alphanumeric character name is required

immediately before the index register and base page assignment

statements. Thus, if the cota~gent routine includes a JSR TAN and an

5-8

unacceptable argument is passed to the tangent function, the trace

back indicates the location of the problem by a sequence such as:

DIVa MAIN
ARGUMENT
7777 SIN
0000 TAN
0000 COT
0007 MAIN

(Line numbers are not relevant in RALF modules such as T&~ and SIN:

they are meaningful only in FORTR&~ source progra~s.)

A new library routine may call other new or existing library routines

as part of its function, as well as the error handling function of

the run-time system. To invoke the error message program, code such

as the following is required:

EXTERN
MERROR, TRAP4

#ARGER
#ARGER

Then any condition encountered in the program that is an error should

jump to MERROR. For example, if an argument of ~~ is illegal, it

could be examined and handled as follows:

FLDA%
JLE
FSTA

ARG2
MERROR
NEXT

/<~ error
/ Save non-zero value

In this case, the TRAP4 #ARGER at MERROR will produce the message

BAD ARG DTAN nnnn followed by traceback and program termination.

If a new library routine would like to use an existing library routine,

a JSR to that routine is required. The sequence for passing arguments

is:

EXTERN
JSR
JA
JA
JA
FSTA

ATAN2
ATAN2
.+6
A
B
ANSWER

/Execute upon exit from
lIst arg
/2nd arg
/Save answer

5-9

The arguments must be referenced in the order expected by the called

routine and must agree in number and type. The following routines

can be used in this manner:

ROUTINE ARGUMENTS PASSED

AMOD Address of X then y

SQRT Address of X
ALOGIO Address of X
EXP Address of X
SIN Address of X
COS Address of X
TAN Address of X
SIND Address of X
COSD Address of X
TAND Address of X
ASIN Address of X
ACOS Address of X
ATAN Address of X
ATAN2 Address of X then Y
SINH Address of X
COSH Address of X
TANH Address of X
DMOD Address of X then Y
DSIGN Address of X then Y
DSIN Address of X
DLOG Address of X
DSQRT Address of X
DCOS Address of X
DLOGIO Address of X
DATAN2 Address of X then Y
DATAN Address of X
DEXP Address of X
CMPLX Address of X
CSIN Address of X
CCOS Address of X
REAL Address of X
AI MAG Address of X
CONJG Address of X
CEXP Address of X
CLOG Address of X
CABS Address of X
CSQRT Address of X

For real and double precision routines, the result is returned via

the FAC (3 or 6 words, respectively). For complex routines, the

result is returned in #CAC (6 words) •

5-10

The TAN function from FORLIB is included here as an example of the

requirements just discussed. The TAN function calls two external

condition exit.

I T A N
I
I
ISUBROUTINE

SECT
JA

EXTERN
TANER, TRAP4

TEXT
TA NXR, SETX

SETB
BTAN, FNOP

0
0

XR TAN, F 0.0
TAN 1 , F 0.0

TAN2, F' 0.0
ORG

FNOP
JA
0

T.~NRTN, JA
BASE

TAN, STARTO
F'LDA
FSTA
FLDA

~r.'·T'v .,r..ll\
SETB
BASE
LDX
FSTA
FLDA7.
FSTA
STARTF
FLDA7.
JEQ
FSTA
EXTERN
JSR
JA
JA
JE(~

F'ST.~
EXTERN
JSR
JA
JA
FDIV
JA

standard calling sequence, and contains an error

TAN(X)
TAN
TAN

Jl.!\O~t"o
1T MI\ \,01 Lol\

#ARGER
+TAN +
XRTAN
BPTAN

10+.3+BPTAN

TANXR

0

10*.3
TANRTN
0

XRTAN
BPTAN
BPTAN
1 , 1
BPTAN
BPTAN,l
BPTAN

BPTAN
TANRTN
TANI
COS
COS
.+4
TANI
TAN~R
TAN2
SIN
SIN
.'T4
TANI
TAN2
TANRTN

ISECTION NAME
IJUMP AROUND BASE PAGE

IEXIT TO ERROR MESSAGE HANDLER
IFOR ERROR TRACE BACK
ISTART OF FORMAL CALLING SEQUENCE

ISTART OF BASE PAGE

IINDEX REGISTERS
ILOCATIONS 21-42 OCTAL AVAILABLE
IFOR USER STORAGE

ISET UP FOR A RETURN
ITO THIS ROUTINE

IJUMP TO XR + RP ASSIGNMENT

ISAVE RETURN JUMP

IGET NEXT LOCATION
lIN CALLING PROGRAM
I~~l ur run TAN'S ~NU~A REGS
ISET UP FOR TAN'S BP

IGET ADDRESS OF X

IGET X
IIF 0 RETURN NOW
ISAVE FOR A SECOND

ITAKE COS(X)
IJUMP AROUND ARGUMENT LIST
IREFERENCE TO PASSED ARGUMENT
/COS=0. A NO-NO
ISAVE IT

~ ", ('\ i.1 T A \J' C'" ~ I AI , " "-
Il1iUW !Hnt:.. .,t.Jl'I~I\J

IJOMP AROUND ARGUMENT LIST
IREFERENCE TO ARGUMENT
IDIV BY COS(X)
IEXIT

5-11

The library routine ONQI illustrates many of the same conventions.

This listing may also prove valuable as a guide to interfacing with

the run-time system.

FIELDl ONQI
IHANDLER TO INTERRUPT SKIP CHAIN
IPUT THIS CODE IN FIELD 1

o
JMP
ISZ
ISZ
DCA?
TAD
ISZ
DCA?
ISZ
ISZ

ONQISW, TAD?
ISZ
DCA?
TAD
AND
TAD
DCA?
ISZ
ISZ
JMP?
TAD
DCA
JMP?

SETINT, TAD
DCA
CDr
TAD
DCA?
ISZ
TAD
DCA?
ISZ
TAD

SETINT
ONQI
INTQ+l
INTQ+l
XSKP
INTQ+l
INTQ+I
ONQI
INTQ+l
ONQI
ONQI
INTADR+l
INTADR+l
L177
L4600
INTQ+l
INTADR+l
IQSIZE
ONQI
• -1
ONQI+l
ONQI
ONQISW
ONQI+l

IROUTINE TO ADD A

ISET UP INT INITIALLY
IBUMP ARGUMENT POINTER
IBUMP INTERRUPT Q POINTER
ISTICK lOT ONTO INT Q
IFOLLOWED BY A SKIP

10NTO INT Q
ISKIP FIRST WORD OF ADDR

IGET INT HANDLER ADDRESS

10NTO ADDRESS STACK
INOW MAKE JMS?

10NTO INT Q

IROOM F'OR MORE?
IYES
INO, CLOSE OUT THE SUSR

IDO THIS PART ONLY ONCE

IFIX UP HINT
IPUT SKIP INST. FIRST

IGET ADDR. OF' USER'S ROUTINE
IADD TO INTERRUPT CALL
IGET FIELD INSTRUCTION

IFIELDI SECTION
DCA?

XSKP
XINT+l
XINT+l
INTQ+l
XINT+I
XINT+l
CIFCDF
INSURES
XINT+I
10
ONQI+l
lINT
lINT

ITS IN FIELD I

CIF'CDF', CDF' CIF'
JMP

XINT,

INTQ,

INTADR,

IQSIZE,
XSKP,
L177,
L4600,

IHANDL,

IHA DRS,

EX TERN
ADDR

ADDR

ADDR

-5
SKP
177
4600
CDF' CIF'
J~??'
0

IHANDL

IHADRS

IHANDL

REPEAT 16
JMP IHANDL-2
0;0;0;0;0

IBACK TO ONQI

IPOINTS TO INT RTN IN COMMON

IMUST USE 15 BIT ADDRESS

I

leAN SET UP 1-5 DEVICES

5-12

ENTRY ONQB
IACCESS FRO~ OUTSIDE OF SECTION
IROUTINE TO SET UP AN IDLE JOB
ONQB, 0

JMP SETBAK
TAD7. ONQB

ONQBSW, ISZ ONQB
DCA7. BAKADR+l
TAD BAKADR+l
ISZ BAKADR+l
AND L177
TAD L4600
ISZ BAKQ+l
DCA? BAKQ+!
ISZ BQSIZE
J~P?' ONQB
TAD • -1
DCA ONQB+l
JMP7. ONQB

SETBAK, TAD ONQ3SW
DCA ONQB+l
CDF
TAD XSKP
DCA? XI DLE+ 1
TAD BAKQ+l
ISZ XIDLE+l
DCA 7. XIDLE+ 1
ISZ XIDLE+l
TAD CIF"CDF
DCA 7. XIDLE+l
CIF CDr 10
JMP ONQB+l
EXTERN #IDLE

XIDLE, ADDR #IDLE

BAKQ, ADDR BAKRND

BAKA DR, ADDR BHADRS

BQSIZE, -5
CDF CIF'
J;V1P? 13AKRND

BAKRND, 0
REPEAT 6
JMP BAKRND-2

BHADRS, 0;0;0;0;0

IUSE "ENTRY" TO PERMIT

ISETUP #IDLE
IGET ADDRESS OF IDLE JOB

ISTORE ONTO BACKGROUND JOB Q
IMAKE A JMS7.

IMORE ROOM?
IYES
INO, CLOSE THE DOOR

ICLOSE OFF #IDLE INITIALIZATION

IFIX UP #IDLE
IADD SKIP TO IDLE CALL
IGET ADDRESS OF ROUTINE

fGET FIELD INSTR.

IEXTERNAL REFERENCE

11-5 JOBS

5-13

APPENDIX A

RALF Assembler Permanent Symbol Table

MI'lemonic Code

FPP Memory Reference Instructions

FADD
FADDM
FDIV
FLDA
FMUL
FMULM
FSTA
FSUB

lOT'S

FPINT
FPICL
FPCOM
FPHLT
FPST
FPRST
FPIST

1000
5000
3000
0000
4000
7000
6000
2000

6551
6552
6553
6554
6555
6556
6557

8-Mode Memory Reference Instructions

AND
TAD
ISZ
DCA
JMS
JMP
lOT
OPR

0000
1000
2000
3000
4000
5000
6000
7000

FPP Special Format Instructions

ADDX 0110
ALN 0010
ATX 0020
FCLA 0002
FEXIT 0
FNEG 0003
FNOP 0040
FNORM 0004
FPAUSE 0001
JA 1030
JAC 0007
JAL 1070
JEQ 1000
JGE 1010
JGT 1060
JLE 1020
JLT 10-5-0
JNE 1040
JSA 1120
JSR 1130
JXN 2000

A-I

SETB
SETX
STARTD
STARTE
STARTF
TRAP 3
TRAP 4
TRAPS
TRAP 6
TRAP 7
XTA

Pseudo-Operators

ADDR
BASE
COMMON
COMMZ
DECIMAL
DPCHK
E
END
ENTRY
EXTERN
F
FIELDI
IFNDEF
IFNEG
IFNZRO
IFPOS
IFREF
IFZERO
INDEX
LISTOFF
LISTON
OCTAL
ORG
REPEAT
SECT
SECT8
TEXT
ZBLOCK
IFFLAP
IFRALF
IFSW
IFNSlil

1110
1100
0006
0050
0005
3000
4000
5000
6000
7000
0030

APPENDIX B

ASSEMBLY INSTRUCTIONS

The following sequence of co~~ands may be used to assemble the OS/8
FORTRAN IV system programs. It is assumed that all PAL language
sources reside on DSK. In this example, DTAI is shown as the
target device, however any other device could be used via the
appropriate ASSIGN command. Note that PASS20.SV is produced by
conditional assembly of PASS2.PA and that the "0" in PASS20 is an
oh, not a zero. The initial dot and asterisk characters on every
command line shown are printed by the monitor. All other characters
(except carriage return, in some cases) are typed by the user.
Type CTRL/Z after each of the three system pauses at point ~,
to continue assembly of PASS20. Type ALT MODE to produce the "$"
character •
. ASSIGN DTAI DEV
.R PAL8
*F4.BN,LIST.LS<F4$
.R ABSLDR
*F4$
.SAVE DEV F4=Oi12200S
.R PAL8
*PASS2.BN,LIST.LS<PASS2$
.R ABSLDR
*PASS2$
.SAVE DEV PASS2=Oi5000$
.R PAL8
*PASS20.BN,LIST.LS<TTY:,DSK:PASS2$OVERLY=1

.R ABSLDR

.PASS20$

.SAVE DEV PASS20=Oi7605$

.R PAL8
*PASS3.BN,LIST.LS<PASS3$
.R ABSLDR
*PASS3$
.SAVE DEV PASS3=Oi400$
.R PAL8
*RALF.BN,LIST.LS<:RALF$
.R ABSLDR
*RALF$
.SAVE DEV RALF=Oi200$
.R PAL8
*LOAD.BN, LIST. LS<LOAD$
.R ABSLDR
*LOAD$
.SAVE DEV LOAD=Oi200
.R PAL8
*FRTS.BN,LIST.LS<RTS,RTL$
.R ABSLDR
*FRTS$
.SAVE DEV FRTS=Oi200
.R PAL8
*I..IBRA. BN, LIST. LS <LIBP~~.$
.R ABSLDR
*LIBRA$
.SAVE DEV LIBRA=O;200

B-1

INDEX

Argument passirlg- I 2-1G
Arithmetic expression

analyser, 1-2

Background jobs, 4-1
Binary buffer table 3-8 . '

Loader symbol table, 3-1, 3-7

Magic number, 1-6
Mixing code, 2-8
Module, 2-1
Module count table, 3-12

4-14 Module descriptor table, 3-11
B~nary section table, 3-10
Block count sequence number,

COMMON information block 1-7
C · ' ommun~cation, 2-9
COMMZ sections, 2-12
Compilation, 1-1
Compiler symbol table, 1-2

Device handlers, 4-16
Defice flag handlers, 4-2
Dimension information block, 1-5
DSRN table, 4-8

Entry point, 2-1
EQUIVALENCE information table,

1=7
ESD, 2-1, 2-5, 2-6
ESD correspondence table, 3-8
External symbol, 2-1
External symbol dictionary, 2-1,

2-5, 2-6

FIELDI sections, 2-13
Files, 4-13
Formatted I/O, 4-13
FRTS

Calling sequence, 4-4
Core maps, 4-6
Entry points, 4-~

Initialization, 4-14
Page zero, 4-10

Header block, 3-13

Idle jobs, 4-1
Indirect addressing, 2-7
Interrupts,

Servicing, 4-1, 4-15
Spurious, 4-15

Keyword, 1-2

LIBRA, 5-2
Library I 2-1

Format, 5-1
Line printer handler 4-14
.... ---,--_"1_ , A , ,
L~~era~o, ~-~, ~-5

Loader f 3-1
Core maps, 3-2 to 3-4
Image file, 3-12
Subroutines, 3-3

Off-page references, 2-19
Optimized code, 2-11
Output codes, 1-7
Overlay table, 3-10

/P option, 4-21
Page boundaries, 2-18
PASSl, 1-1

Output, 1-7
Subroutines, 1-10

PASS2, 1-12
Error list, 1-14
Skeleton tables, 1-14
Symbol table, 1-14
Subroutines, 1-15

PASS3, 1-17
PDP-8 code, 2-7
Program loading, 3-9
Program termination, 4-2
Pseudo-ops, 2-7

X-I

RALF, 2-1
Expressions, 2-4
Symbol table, 2-5

RALF output file, 2-6

Section, 2-1
Section types, 2-11
Statement number, 1-4
Subroutine calls, 2-9
Subroutine return sequence, 2-10
Symbol table,

Compiler, 1-14
Loader, 3-7
RALF, 2-5

Termination, program, 4-22
Text, 2-1
TRAP3 and TRAP4, 2-8

Variable type word, 1-3

8-mode sections, 2-14

READER'S COMMENTS

DEC-S8-LFSSA-A-D
OS/8 FORTRAN IV

SOFTWARE SUPPORT MANUAL

Digital Equipment Corporation maintains a continuous effort to improve
the quality and usefulness of its publications. To do this effectively
we need user feedback--your critical evaluation of this document.

Did you find errors in this document? If so, please specify by page.

How can this document be improved?

How does this document compare with other technical documents you
have read?

Job Title Date: --- --------------------
Name: _________________________________ organization: ______________________ _

Street: _______________________________ Department: ____________ ==-= ________ __

City: State: Zip or Country ----------------------- ------------ -------------

---Fold lIere--

--.- Do Not Tear· Fold lIere and Staple ---

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

Digital Equipment Corporation
Software Information Service
Software Engineering and Services
Maynard~ Massachusetts 01754

FIRST CLASS

PERMIT NO. 33

MAYNARD, MASS.

