it Esioment Gormorat
Maynard, Mazsachusetts dlililtiall

DEC-08-KFXB-D

PDP-8 FAMILY
8K FORTRAN SYSTEM
PROGRAMMER’'S REFERENCE MANUAL

For additional copies order No. DEC-08-KFXB-D from Program Library,

Digital Equipment Corporation, Maynard, Massachusetts Price: $1.75

DIGITAL EQUIPMENT CORPORATION o MAYNARD, MASSACHUSETTS

1st Printing June 1968
2nd Printing (Rev) August 1968
3rd Printing (Rev) April 1969

Copyright 1968, 1969 by Digital Equipment Corporation
194 4 po

1.1
1.1.1
1.1.2
1.1.3
1.2
1.3

2.1

2.1.1
2.1.2
2.2

2.2.1
2.2.2
2.2.3
2.2.4
2.3

2.3.1
2.3.2

4.1
4.1.1
4.1.2
4.2
4.3
4.4
4.5

CONTENTS

CHAPTER 1
8K FORTRAN

Line Format

Statement Numbers

Line Continuation Field

FORTRAN Statements
Comments
Character Set

CHAPTER 2
LANGUAGE ELEMENTS

Constants

Integer Constants

Real Constants
Variables

Integer Variables

Real Variables

Scalar Variables

Array Variables
Expressions

Function Calls

Library Subprograms

CHAPTER 3
ARITHMETIC STATEMENT

CHAPTER 4
CONTROL STATEMENTS

GO TO Statement

Unconditional

Computed
IF Statement
DO Statement
CONTINUE Statement
PAUSE Statement

Page

1-3
1-4

2-1
2-1
2-1
2-1
2-2
2-2
2-2
2-2

2-4
2-5

4-1
4-1
4-1
4-1
4-2

4-3

4.6
4.7

5.1
5.1.1
5.2
5.2.1
5.2.2
5.2.3

6.1
6.2
6.3

7.1
7.1.1
7.2
7.2.1
7.2.2
7.3
7.3.1
7.3.2

Nl
(o]
w

8.1
8.1.1
8.1.2

CONTENTS (Cont)

STOP Statement
END Statement

CHAPTER 5
INPUT/OUTPUT STATEMENTS

Nonexecutable Statement
FORMAT Statement
Data Transmission Statements
READ Statement
WRITE Statement
Device Designations
CHAPTER 6
SPECIFICATION STATEMENTS
COMMON Statement
DIMENSION Statement
EQUIVALENCE Statement
CHAPTER 7
SUBPROGRAM STATEMENTS
General
Dummy Identifiers
Function Subprograms
FUNCTION Statement
Function Type
Subroutine Subprograms
SUBROUTINE Statement
CALL Statement
RETURN Statement
CHAPTER 8
OPERATING INSTRUCTIONS
Loading the Compiler
Loading Into Core Memory
Loading on the Disk

Page

4-3
403

5-1
5-1
5-5
5-6
5-7
5-7

6-1
6-1

7-1
7-1
7-1

7-2
7-2
7-2
7-3

I\l
w

8-1
8-1
8-1

8.2
8.3
8.3.1
8.3.2
8.4

8.4.2
8.4.3
8.5
8.6
8.7
8.7.1
8.8

1-1

CONTENTS (Cont)

Operating the Compiler
Loading the SABR Assembler
Loading Into Core Memory
Loading on the Disk
Operating the SABR Assembler
Method 1
Method 2
Method 3
The Linking Loader
Loading the Linking Loader
Operating the Linking Loader
Library Organization
Executing the FORTRAN Program

CHAPTER 9

DEMONSTRATION PROGRAM

APPENDIX A

DECIMAL AND OCTAL REPRESENTATIONS OF THE CHARACTER SET

APPENDIX B

STATEMENT SPECIFICATIONS

APPENDIX C
FORMAT SPECIFICATIONS

APPENDIX D
STORAGE ALLOCATION

APPENDIX E
ERROR MESSAGES

APPENDIX F
OPERATING PROCEDURES

APPENDIX G
IMPLEMENTATION NOTES

ILLUSTRATIONS

Typical FORTRAN Coding Form

Page

8-2
8-3
8-3
8-3
8-4
8-4
8-6
8-6
8-7
8-9
8-9
8-10
8-11

1-2

CONTENTS (Cont)
Page
TABLES

2-1 Function Library 2-5
5-1 Numeric Field Codes 5-2

vi

PREFACE

This manual describes a version of FORTRAN 1I designed specifically for the PDP-8/1, 8/L, 8,
8/5, and 5 computers with at least 8K words of core memory and a high-speed reader and punch.

It is assumed that the reader is familiar with the basic concepts of the FORTRAN language.
Several excellent texts are available for a more elementary approach to FORTRAN programming. "A

Guide to FORTRAN Programming," by Daniel D. McCracken (published by John Wiley and Sons, Inc.)

is recommended.

CHAPTER 1
8K FORTRAN

8K FORTRAN (acronym for FORmula TRANsiation) is used interchangeably to designate
both the 8K FORTRAN language and translator or compiler.

The 8K FORTRAN compiler is a computer program that enables the programmer to express
his problem using English words and mathematical statements similar to the language of mathematics and
acceptable to the computer. The compiler translates the programmer’s source program into symbolic
language, and then the symbolic version of the program is translated into relocatable binary code, that
is, machine language, the language of the computer. The relocatable binary code, which is output on
paper tape, is then loaded info the computer for solution of the problem.

The 8K FORTRAN system has the following features:

a. Subroutines
b. Two levels of subscripting

Function subprograms

Qa 0

Input/output supervisors

e. Relocatable output loaded by the Linking Loader
f. COMMON statements

g. 1, F,E, A, X, and H format specification

h. Arithmetic and frigonometric library subroutines

The 8K FORTRAN system (hereafter referred fo as FORTRAN) consists of a one-paﬁs
FORTRAN Compiler, SABR Assembler, Linking Loader, and a library of subprograms (see the appendices).

This FORTRAN system requires a PDP-8/1, 8/L, 8, 8/5, or 5 computer* with at least two
fields of core memory, an ASR33 Teleprinter, and a high-speed paper tape reader and punch.

The appendices contain lists of the FORTRAN character set, statements, specifications,

operating procedures for all phases of the system, error messages, and implementation notes.

1.1 LINE FORMAT

A line of data in FORTRAN is a string of 72 characters or less designated columns 1 through
72. Each line consists of three fields: statement number field, line continuation field, and statement

field, as shown in Figure 1-1.

* The PDP=-5 requires a PDP-8 extended memory control modification.

1-1

FORTRAN CODER DATE PAGE
CODING FORM PROBLEM

SSomiane[2 “
B - Boolean | 3 FORTRAN STATEMENT IDENTIFICATION
STATEMENTE
NUMBER |8
12345|6/789101112131415161718192021222324 252627282930 313233 3435363738394041 424344454647 484950 515253 545556575859 60 6162636465660676869707172|7374 757677 787980
C; N L B A ;KOGIRAM L '1 SO&T nAH A A; [lF NUM— HSH-I- l\}qu &AI ENDH cHe) ORDER - Ly
G F-['R ST, RE,A“HH‘E+ NUMBERSM THE|N+66an T:HNUMB+E+R+S+J{»+H:HH.HHHHH fod bbbt
C LASJHPMQJJH44uQANQM&ﬂ&i4UX4%&%@&#A T T T e el e e S S S o B T T T e
G e e I S S B B T I T T o I e e B e
it D”WEN%LQN‘AQLOpJ::::::e:::: I L S o =
S D=2, L e el e F I B e B e e B o S e K et S B B S e S e o e S S S S
ettt S P SR T ST S SR R B S B e T T e T S e A B e e o A e
+—t—t—+ O T 0 T TP U SR SN -+
LQI~'+J——f'—+——Iﬁ—+—I—(N~Q<I—’%+2F)F+4 ,.)u:‘\.(.l.hh). T R R R
h%:: EQ&MABQAEHZWOJI€{313%!€+%%9F%!!f5% T o S B e =
NI W 1O '3*0' K: 2N e e S L S e e A A L T e e e S L e e S S S B e e S B
bt Ky oot S e B AR S o o B o T T S o S e I T I B S
20, IF(A(J)'A(J+] »3: QQQ%%:=¢4~|==4==¢ e I o e B B e e S T S S o B A
2vzl +—t TEM A(J') e e T I B L L LR e S e e B B e e o o e B e B S e S I LA S S

A(J)= A(J+l)

At e e m o LA a E E a l BAm e e o
—+——t—+ A(EJE1)41TEM»—++—f+—Q#++C4}|i}6000¢I0!f—)1—1}+0-—H»+——++&1‘.#:E%##é%###‘r%i{.. s e o
ettt J:=IJE—1‘1%=#:€=1=‘.4‘:%.“.!.‘:::%%‘.%‘.tr%## e M B e e L s o e S
+——+— laF‘(éJi)%Siob"g‘o:’:zﬁq+~+F-}-l'r-l&ll—l»#l40III!lv‘~--r'lvlih!»-»im-i+—f*k+4*€{%fE%v‘%f%;‘#%%##%# L o S
I N SR L S T T P O S S S S S E
40 D A, N e by

42 L WRITE OND, 44 B G 1) o it bttt 1t bttt bttt bttt gt
-4 S.TIOIPA i T L e e S e i o B B e e o o T e S I A 5 bt bod

A4 EORMAT (2E 116 81 ittt bt bbb bbb bt bt bbb bbb bbb bbb A bbbt
gt EaNeD: L I S S B LA e e et B I R IO Sl S S S S IR S S N N A S % L s e et S S S i S A A e e (R it S S S S e e (O S
T SN W W | | SN TR TR WU WY WS VOO S WO S SN W | L ,lllll‘LllLl‘l.,.L']illllllllllllllllllllllllLLLll Aodohhednded

12345(6|/78¢9 IO 111213141516 17 18192021222324 252627282930 313233 34 353637383940 41 4243444546 47484950 515253545556 57 58596061626364 656667686970 71 72|

7374757877 7879 80|

DIGITAL EQUIPMENT CORPORATION .

Figure 1-1.

Typical FORTRAN Coding Form

MAYNARD, MASSACHUSETTS

100 -12/64

1.1.1 Statement Numbers

Each statement may have a positive integer as a label, which is used to reference that state-
ment elsewhere in the program. A statement number consists of from one to four digits in columns 1
through 5. Statement numbers may be assigned nonsequentially; however, no two statements can have

.he same number. Statement numbers must have a decimal value of 2047 or less.

1.1.2 Line Continuation Field

If a FORTRAN statement is so large that it cannot conveniently fit into one statement field,
additional lines may be used to specify the complete statement. Any line which is not continued, or
the first line of sequence of continued lines, must have a biank or zero in column 6. Continuation lines
must have a character other than blank zero (must be a digit from 1to 9 if a TAB is used in the label

field) in column 6.

1.1.3 FORTRAN Statements

Any FORTRAN statement (listed below) may appear in the statement field (columns 7 through
72 or immediately following a tabulation (CTRL/TAB) character]) . Each statement must begin on a
separate line. Except for data within a Hollerith field (see Input/Output Statements), spaces are
ignored and may be used freely for appearance purposes.

There are five fypes of FORTRAN statements:

a. Arithmetic Statements define calculations to be performed.

Control Statements govern the sequence of execution of statements within a program.

c. Input/Output Statements direct communication between the program and input/output

devices.

d. Specification Statements describe the form and content of data within the program.

e. Subprogram Statements define the form and occurrence of subprograms and subroutines.

Each of the above statements is discussed in separate chapters of this manual .

1.2 COMMENTS

The letter C in column 1 of a line designates that line as a comment line. A comment has
no effect upon the compilation process but it is listed on the printed output. There is no limit to the

number of comment lines which may appear in a given program.

1 A tabulation character is generated by typing CTRL/TAB, that is, holding down the CTRL key while
depressing the TAB key.

1-3

1.3 -CHARACTER SET*

The following characters are used in the FORTRAN language.

a. The alphabetic characters:
ABCDEFGHUKLMNOPQRSTUVWXYZ

b. The numeric characters:

0123456789

c. The special characters:

1 1

n (

$)

% +

& -

* /

G ;

i <

: >

? blank (space)

*Appendix A lists the octal and decimal representations of the FORTRAN character set.

1-4

CHAPTER 2
LANGUAGE ELEMENTS

The rules for defining constants and variables and for forming expressions are described below.

2.1 CONSTANTS

Constants are self-defining numeric values appearing in source statements. Two types of

constanis, infeger and real, are permitted in a FORTRAN source program.

2.1.1 Integer Constants

Integer (fixed-point) constants are represented by a digit string of from one to four decimal

digits, written with an optional sign and without a decimal point. An integer constant must fall within
the range -2047 to +2047.

Examples:
47
+47 (+ sign is optional)
-2
0434 (leading zeros are ignored)
-0 (same as zero)

2.1.2 Real Constants

Real constants are represented by a digit string, an explicit decimal point, an optional sign,
and possibly an integer exponent to denote a power of ten (7.2 x 103 is written 7.2E+03). A real

constant may consist of any number of digits but only the leftmost eight digits appear in the compiied

program. Real constants must fall within the range .14 x]0-38 to 1.7 x 1038,
Examples:

+4.50 (+ is optional)

4.50

-23.09

-3.0E14 (same as -3.0 x 1014)
2.2 VARIABLES

A variable is a quantity whose value may change during execution of a program. Variables
are specified by name and type. The name of a variable consists of one or more alphanumeric charac-
ters, the first of which must be alphabetic. Only the first five characters are interpreted as defining

the variable name, the rest are ignored.

2-1

L

The type of variable (integer or real) is determined by the first letter of the variable name.
A first letterof 1, J, K, L, M, or N indicates an integer variable, and any other first letter indicates
a real variable. Variables of either type may be either scalar or array variables. A variable is an

array variable if it first appears in @ DIMENSION statement.

2.2.1 Integer Variables

Integer variables undergo arithmetic calculations with automatic truncation of any fractional
part. For example, if the current value of K is 5 and the current value of J is 9, J/K would yield 1 as
a result.

Integer variables may be converted to real variables by the function FLOAT (see Section

2.3.2) or by an arithmetic statement. Integer variables must fall within the range -2048 to +2047.

2.2.2 Real Variables

A variable is a real variable when its name begins with any character other than I, J, K,
L, M, or N. Real variables may be converted to integer variables by the function IFIX (see Section

2.3.2) or by an arithmetic statement. Real variables undergo no truncation in arithmetic calculations.

2.2.3 Scalar Variables

A scalar variable, which may be either integer or real, represents a single quantity .

Examples: LM

A

G2
TOTAL
J

2.2.4 Array Variables

An array variable represents a single element of a one- or two~-dimensional array of quanti-
ties. The variable is denoted by the array name followed by a subscript list enclosed in parentheses.
The subscript list may be any integer expression or two integer expressions separated by a comma. The
expressions may be arithmetic combinations of integer variables and integer constants. Each expression
represents a subscript, and the values of the expressions determine the referenced array element. For
example, the row vector Ai would be represented by the subscripted variable A(l), and the element in
the second column of the first row of the matrix A, would be represented by A (1,2).

Examples:

Y(1)
PORT (K)
A (3*K+2, 1)

2-2

The arrays above (Y, PORT, and A) would have to appear in a DIMENSION statement prior
to their first appearance in an executable statement. The DIMENSION statement specifies the number

of elements in the array.

Arrays are stored in increasing storage locations with the first subscript varying most rapidly

1

and the last subscript varying least rapidly (see Appendix D). For example, the two-dimensional array
B (J,K) is stored in the foilowing order:
B(1,1),8(2,1),...,B(J,1),8(1,2),8(2,2),...,8(J,2),...,B(J,K)

2.3 EXPRESSIONS

An expression is a sequence of constants, variabies, and function references separated by
numeric operators and parentheses in accordance with mathematical convention and the rules given below.

Without parentheses, algebraic operations are performed in the following descending order:

** exponentiation
- unary negation
*and /' multiplication and division

+and - addition and subtraction
= equals or replacement sign
Parentheses are used fo change the order of precedence. An operation enclosed in parentheses is per-
formed before its result is used in other operations. In the case of operations of equal precedence, the
calculations are performed from left to right; this is aiso true for exponentiation.
Integers and real numbers may be raised to either integer or real powers. An expression of

the form

means AB and is real unless both A and B are integers.
functions are supplied as subprograms (see Appendix E).

Excluding ** (exponentiation), no two numeric operators may appear in sequence unless the
second is a unary plus or minus.

The mode (or type) of an expression may be either integer or real and is determined by its
constituents. Variable modes may not be mixed in an expression with the following exceptions:

a. A real variable may be raised to an integer power.

A**2
b. Mode may be altered by using the functions IFIX and FLOAT.
A*FLOAT(I)

2-3

Any numeric expression may be enclosed in parentheses and be considered a basic element.

Example:

IFIX(X+Y)/2
(ZETA)
(COS(SIN(PI*EM)+X))

A numeric expression may consist of a single element (constant, variable, or function call).

Example:

2.71828
Z(N)
TAN(THETA)

Compound numeric expressions may be formed using numeric operators to combine basic

elements.,

Example:
X+3.
TOTAL/A
TAN(PI*EM)

Alphabetic expressions preceded by a + or a - sign are also numeric expressions.

Example:
+X
-(ALPHA*BETA)
-SQRT(-GAMMA)
As an example of a typical numeric expression using numeric operators and a function call,
the expression for the largest root of the general quadratic equation

b 4V bZedac

2a

would be coded as
(~-B+SQRT(B**2-4.*A*C))/(2.*A)

2.3.1 Function Calls

In addition to the basic numeric operators, function calls are provided to facilitate the eval-
uation of functions such as sine, cosine, and square root. A function is a subprogram which acts upon
one or more quantities (arguments) to produce a single quantity called the function value. A function

call may be used in place of a variable name in an arithmetic expression.

2-4

Function calls are denoted by the identifier which names the function (e.g., SIN, COS,

etc.), followed by an argument list enclosed in parentheses as shown below.
identifier (argument, argument, ..., argument)

At least one argument, which may be an expression or an array identifier, must be present (see Section

7.2). A function call is evaluated before the expression in which it is contained.

2.3.2 Library Subprograms

The standard FORTRAN library includes built=in functions, FUNCTION subprograms, and
SUBROUTINE subprograms (see Chapter 7). Built=in functions are open subroutines, that is, they
are incorporated info the object program each time they are referred to by the source program.
FUNCTION and SUBROUTINE subprograms are closed subroutines; their names derive from the types

of subprogram statements used to define them.

Table 2-1
Function Library
Name Call Definition Argument
Absolute Value ABS or x| Real
1ABS x| Integer

Float FLOAT Conversion from integer fo real Integer
Fix IFIX Conversion from real to integer Real
Remainder IREM Remainder of last integer Integer

divide*®
Exponential EXP e* Real
Switch Register IRDSW Read console switch reg. Integer
Natural Logarithm ALOG |oge(x) Real
Trigonometric Sine** SIN sine(x) Real
Trigonometric Cosine** CcOs cos(x) Real
Tangent ** TAN tan(x) Real
Square Root SQRT (x)]/ 2 Real
Arctangent ** ‘ ATAN arctan(x) Real

* If IREM is called as IREM(I/J), the remainder of 1/J will be returned. If the argument of IREM does

not contain a division, the remainder of the last integer division will be returned.

** Trigonometric functions use radians rather than degrees.

The IRDSW function call (Switch Register) takes the decimal equivalence of the octal
integer in the switch register as its result. For example, if the contents of the switch register is
1234 (668 in decimal) when the statement

N=IRDSW(0)
is executed, the switch register is read and its contents becomes the value of N, i.e.,
N=668

The switch register can be set in two ways:

1. Before executing the FORTRAN program, i.e., after pressing LOAD ADD and before
pressing START.

2. During execution of the FORTRAN program, i.e., using the PAUSE statement .

2-6

CHAPTER 3
ARITHMETIC STATEMENT

One of the key features of FORTRAN is the ease with which arithmetic computations can be
coded. Computations to be performed by FORTRAN are indicated by arithmetic statements, which have
the general form

v=e

where v is a variable name (subscripted or nonsubscripted), e is an expression, and = is a repiacement
operator. The arithmetic statement causes the FORTRAN object program to evaluate the expression e
and assign the resultant value to the variable v. Note that = signifies replacement, not equality. Thus,

expressions of the form

A=A+B
and
A=A*B

are quite meaningful and indicate that the value of the variable A is to be changed.

Examples:

Y=1.1%Y
P = X**2+3.%X+2.0
X(N) = EN*ZETA* (ALPHA+EM /PI)

The expression value is made to agree in type with the assignment variable before replace-
ment occurs. For example, in the statement
META=W* (ABETA+E)
if META is an integer and the expression is real, the expression value is fruncated to an integer before

assignment to META.

CHAPTER 4
CONTROL STATEMENTS

FORTRAN compiled programs normally execute statements sequentially in the order in which

they were presented to the compiler. However, the following control statements are available to alter

normal sequence of statement execution: GO TO, IF, DO, PAUSE, STOP, and END.

4.1 GO TO STATEMENT

The GO TO statement has two forms: unconditional and computed.

4.1.1 Unconditional

Unconditional GO TO statements are of the form:
CO TOn

where n is the number of an executable statement. Control is transferred to the statement numbered n.

4.1.2 Computed
Computed GO TO statements have the form:

GO TO (n],nz,...,nk),J

where ny.n are statement numbers and J is a nonsubscripted integer variable. This statement

gree ey
transfers control to the statement numbered LI TUVERRL if J has the value 1, 2,..., k, respectively.
If J is zero or if it exceeds the size of the list, execution will proceed to the next executable state-

ment. For example, in the statement

GO TO (20,10,5),K
the variable K acts as a switch, causing a transfer to statement 20 if K=1, to statement 10 if K=2, or to

statement 5 if K=3.

4.2 IF STATEMENT
Numerical IF statements are of the form:
IF (expression) PV

where Ny, Ny, N are statement numbers. This statement transfers control to the statement numbered ny/

N/ No if the value of the numeric expression is less than, equal to, or greater than zero, respectively.

The expression may be simple.

Examples:

IF (ETA) 4,7,12
IF (KAPPA-L(10))20, 14, 14

4.3 DO STATEMENT

The DO statement simplifies the coding of iterative procedures. DO statements are of the

form:

DO n l=m],m2,m3

where n is a statement number, i is a nonsubscripted integer variable, and m,, My, m, are integer cons-
tants or nonsubscripted integer variables. [f ma is not specified, it is understood to be 1.
The DO statement causes the statements which follow, up to and including the statement

numbered n, to be executed repeatedly. This group of statements is called the range of the DO state -

ment. In the example above, the integer variable i is called the index, the values of m,m,,m, are,
respectively, the initial, limit, and increment values of the index.
Examples:

DO 10 I-1,5,2

DO 10 I=J,K,5

DO 10 L=,J, K

The index is incremented and tested before the range of the DO is executed. If the limit value is less
than the initial value, the range of the DO will not be executed.

After the last execution of the range, control passes to the statement immediately following
the range. This exit from the range is called the normal exit. Exit may also be accomplished by a
transfer from within the range.

The range of a DO statement may include other DO statements, provided the range of each
contained DO statement is entirely within the range of the containing DO statement. That is, the
ranges of two DO statements must intersect completely or not at all. A transfer into the range of a DO
statement from outside the range is not allowed.

Within the range of a DO statement, the index is available for use as an ordinary variable.
After a transfer from within the range, the index retains its current value and is available for use as a
variable! . The values of the initial, limit, and increment variables for the index and the index of the
DO loop may not be altered within the range of the DO statement.

The last statement of a DO loop must be executable, and must not be an IF, GO TO, or

DO statement.

]The index of a DO loop should not be used as a variable after @ normal exit from that DO loop until
it has been redefined.

4.4 CONTINUE STATEMENT

This is a dummy statement, used primarily as a target for transfers, particularly as the last

statement in the range of a DO statement. For example, in the sequence

DO 7 K=INIT,LIMIT

IF (X(K))22,13,7
7 CONTINUE
a positive value of X(K) begins another execution of the range. The CONTINUE provides a target

address for the IF statement and ends the range of the DO statement.

4.5 PAUSE STATEMENT

The PAUSE statement enables the program to incorporate operator activity into the sequence
of automatic events. The PAUSE statement assumes one of two forms:

PAUSE
PAUSE n

where n is an unsigned decimal number.
Execution of the PAUSE statement causes the octal equivalent of the decimal number n, to
be displayed in the accumulator on the user's console. Program execution may be resumed (at the next

executable statement) by depressing the CONTinue key on the console.

4.6 STOP STATEMENT

The STOP statement has the form:
STOP

The STOP statement ferminates the program.

4.7 END STATEMENT

The END statement has the form:
END

The END statement informs the compiler to terminate compilation. The END statement must

be the last statement of the program.

4-3

CHAPTER 5
INPUT/OUTPUT STATEMENTS

Input/output (1/O) statements are used to control the transfer of data between computer
memory and peripheral devices and to specify the format of the output data. 1/O statements may be

divided into two categories.

a. A nonexecutable statement that enables conversion between internal data within core
memory and external data: FORMAT

b. Data fransmission statements which specify transmission of data between computer

memory and I/O devices: READ and WRITE.

5.1 NONEXECUTABLE STATEMENT

The nonexecutable statement FORMAT enables the user to specify the form and arrangement

of data on the selected external device.

5.1.1 FORMAT Statement

Nonexecutable FORMAT statements may be used with any appropriate input/output device.
FORMAT statements are of the form:

1.1 1
n FORMAT (S]’SZ’ . "Sn/S]'SZ’“ "Sn/"')

where n is a statement number and each S is a data field specification.
FORMAT statements may be placed anywhere in the source program. Unless the FORMAT

statement contains only aiphanumeric data for direct input/output fransmission, it wiil |

i be used in
conjunction with the list of a data transmission statement.

Unit records must be one of the following:

a. A paper tape record preceded by and followed by a carriage return/line feed.

b. A printed line with a maximum of 72 characters for a Teletype keyboard.

During transmission of data, the object program scans the designated FORMAT statement and
if a specification for a numeric field is present (see Data Transmission Statements) and the data trans-
mission statement contains items remaining to be transmitted, transmission takes place according to the
specification. This process ceases and execution of the data transmission statement is terminated as
soon as all specified items have been fransmitted; thus, the FORMAT statement may contain specifica-

tions for more items than are specified by the data transmission statement. The FORMAT statement may

5-1

also contain specifications for fewer items than are specified by the data transmission statement, in
which case, format control will revert to the rightmost left parenthesis in the FORMAT statement (see
Section 5.1.1.7).

Both numeric and alphanumeric field specifications may appear in a FORMAT statement. The
FORMAT statement also provides for handling multiple record formats, skipping characters, space inser-
tion, and repetition. If an input list requires more characters than the input device supplies for a given

unit record, blanks are inserted.

5.1.1.1 Numeric Fields = Numeric field specification codes and the corresponding internal and

external forms of the numbers are listed in the following table.

Table 5-1
Numeric Field Codes
Conversion
Code Internal Form External Form

E Binary floating point Decimal floating point
with E exponents: .324E+10

F Binary floating point Decimal floating point with
no exponent: 283.75

I Binary integer Decimal integer: 79

Conversions are specified by the form:

rEw.d
rFw.d

rlw

where r is a repefition count, E, F, and I designate the conversion type, w is an integer specifying
the field width, and d is an integer specifying the number of decimal places to the right of the decimal
point. For E and F input, the position of the decimal point in the external field takes precedence cver
the value of d.
Example:

FORMAT (15,F10.2,E16.8)
could be used to output the line

bbb32bbbb-17.60bbb .59625476E+03
on the output listing. (The letter b throughout this manual indicates the presence of a space.)

The field width should always be large enough fo include the decimal point, sign, and

exponent. In all numeric field conversions, if the field width is not large enough to accommodate the
converted number, the excess digits on the left are lost; if the number is less than the field width, the

number is right-adjusted in the field.

5.1.1.2 ‘Alphanumeric Fields - Alphanumeric data can be transmitted in a manner similar to numeric

data by use of the form
rAw

where A is the control character and w is the number of characters in the field. Alphanumeric char-
acters are fransmitted as the value of a variable in an input-output [ist; the variabie may be either
integer or real.

Although w may have any value, the number of characters transmitted is limited by the
maximum number of characters which can be stored in the space allotted for the variable. This maxi-
mum depends upon the variable type; for a reai variabie the maximum is six characters, for an integer
variable the maximum is two characters. If w exceeds the maximum, the leftmost characters are lost
on input and replaced with blanks on output. If, on input, w is less than the maximum, blanks are
filled in to the right of the given characters until the maximum is reached. If, on output, w is less

than the maximum, the leftmost w characters are transmitted to the external device.

5.1.1.3 Hollerith Conversion - Alphanumeric data may be transmitted directly from the FORMAT

statement by using Hollerith conversion (H). H-conversion format is referenced by WRITE statements
only.
In H-conversion, the alphanumeric string is specified by the form

nH h] ,h2, .. .,hn
where H is the conirol character and n is the number of characters in the siring, inciuding bianks. For
example, the statement below can be used to print PROGRAM COMPLETE on the output listing.
FORMAT (17HbPROGRAMbCOMPLETE)
A Hollerith string may consist of any characters capable of representation in the processor. The space

character is a valid and significant character in a Hollerith string. See alsc Section G.1.4 for an

alternate method of outputting alphanumeric data.

5.1.1.4 Mixed Fields -~ An alphanumeric format field may be placed among other fields of the format.
For example, the statement

FORMAT (15,7HbFORCE=F10.5)
can be used to output the line:

bbb22bFORCE=bb17.68901

The separating comma may be omitted after an alphanumeric format field, as shown above.

5.1.1.5 Repetition of Fields - Repetition of a field specification may be specified by preceding the

control character E,F, or I by an unsigned integer giving the number of repetitions desired.

For example:

FORMAT (2E12.4,315)
is equivalent to
FORMAT (E12.4,E12.4,15,15,15)

5.1.1.6 Repetition of Groups = A group of field specifications may be repeated by enclosing the

group in parentheses and preceding the whole with the repetition number.

For example:
FORMAT (218,2(E15.5,2F8. 3))

is equivalent to
FORMAT (218, E15.5,2F8.3,E15.5,2F8.3)

5.1.1.7 Multiple Record Formats = To handle a group of output records where different records have

different field specifications, a slash is used to indicate a new record. For example, the statement

FORMAT (318/15,2F8.4)
is equivalent to

FORMAT (318)
for the first record and

FORMAT (I5,2F8.4)

for the second record.

The separating comma may be omitted when a slash is used. When n slashes appear at the
end or beginning of a format, n blank records may be written on output or ignored on input.
When n slashes appear in the middle of a format, n-1 blank records are written or n-1 records skipped.
Both the slash and the closing parentheses at the end of the format indicate the termination of a record.
If the list of an input/output statement dictates that transmission of data is to continue after the closing
parenthesis of the format is reached, the format is repeated from the last open parenthesis of level one

or zero. Thus, the statement:

FORMAT (F7.2,(2(E15.5,E15.4), 17))

AA
_“-—Ievel 0

level 0
level 1 level 1

causes the format:
F7.2,2(E15.5,E15.4), 17

to be used on the first record, and the format:

2(E15.5,E15.4),17

5-4

to be used on succeeding records.

As a further example, consider the statement:

FORMAT (F7.2/(2(E15.5,E15.4),17))

The first record has the format:
F7.2

and successive records have the format:

2(E15.5,E15.4),17

5.1.1.8 Blank or Skip Fields - Blanks may be introduced into an output record or characters skipped

on an input record by use of the specification nX. The control character is X; n is the number of

blanks or characters skipped and must be greater than zero. For example, the statement:
FORMAT (5HbSTEPI5, 10X2HY=F7.3)

may be used to output the line:
bSTEPbbb28bbbbbbbbbbY=bb3.872

5.2 DATA TRANSMISSION STATEMENTS

There are two data transmission statements, READ and WRITE. Data transmission statements
accomplish input/output transfer of data that may be listed in a FORMAT statement. The data trans-
mission statement contains a list of the quantities to be transmitted. The data appears on the external

device in the form of records.

a. Input/Output Lisfs] - The list of an input/output statement specifies the order of trans-
mission of the variable values. During input, the new values of listed variables may be used in sub-
script or control expressions for variables appearing later in the list.

For example,

READ(2,1000)L,A(L),B(L+1)

reads a new value of L and uses this value in the subscripts of A and B. Where 2 is the device designa-
tion code, and 1000 is a FORMALT statement number.

b. Input/Output Records - All information appearing on input is grouped into records. On
output to the printer a record is one line. The amount of information contained in each ASCII record
is specified by the FORMAT reference and the input/output list.

1
The implied DO in input/output lists is not implemented.

Each execution of an input or output statement initiates the transmission of a new data

record. Thus, the statement
READ(1,100)FIRST,SECOND,THIRD
is not necessarily equivalent to the statements where 100 is a FORMAT reference

READ(1,100)FIRST
READ(1,100)SECOND
READ(1,100)THIRD

since, in the second case, at least three separate records are required, whereas, the single statement
READ (d,f) FIRST,SECOND,THIRD

may require one, two, three, or more records depending upon FORMAT f.

If an input/output statement requests less than a full record of information, the unrequested
part of the record is lost and cannot be recovered by another input/output statement without reposi-
tioning the record.

If an input/output list requires more than one ASCII record of information, successive records

are read.

5.2.1 READ Statement

The READ statement specifies transfer of information from a selected input device to internal
memory, corresponding to a list of named variables, arrays or array elements. The READ statement

assumes the following form:

READ (d,f) list

where d is a device designation which may be an integer constant or an integer variable, f is a format
reference, and list is a list of variables.

The first form of the READ statement causes ASCII information to be read from the device
designated and stored in memory as values of the variables in the list. The data is converted to
internal form as specified by the referenced FORMAT statement.

For example:

READ (1,15) ETA, PI

5.2.2 WRITE Statement

The WRITE statement is used to transmit information from the computer to a specified output

device. The WRITE statement assumes one of the following forms:

WRITE (d,f) list

WRITE (d,f)
where d is a device designation (integer constant or integer variable) f is a format reference, and list is
a list of variables.

The first form of the WRITE statement causes the values of the variabies in the iist to be read
from memory and written on the device designated in ASCII form. The data is converted to external
form as specified by the designated FORMAT statement.

The second form of the WRITE statement causes information to be read directly from the

specified format and written on the device designated in ASCII form.

5.2.3 Device Designations

The I/O device designations are used in the READ and WRITE statements. The device codes

are:
Device Code Designating
1 Teletype and low-speed reader and punch
2 High-speed reader and punch

For additional 1/O information, see SABR Manual, DEC-08-ARXA-D.

5-7

CHAPTER 6
SPECIFICATION STATEMENTS

Specification statements allocate storage and furnish information about variables and constants
to the compiler. The specification stafements are DIMENSION, COMMON, and EQUIVALENCE, and

when used, must appear in the program prior to any executable statement.

6.1 COMMON STATEMENT

The COMMON statement causes specified variables or arrays to be stored in an area avail-
able to other programs. By means of COMMON statements, the data of a main program and/or the
data of its subprograms may share a common storage area. Variables in COMMON statements are
assigned fo locations in ascending order in field 1 beginning at location 200 (see Appendix D). The

COMMON statement has the general form:

COMMON V V2,. o,V
n

1

6.2 DIMENSION STATEMENT

The DIMENSION statement is used to declare identifiers to be array identifiers and to
specify the number and bounds of the array subscripts. The information supplied in a DIMENSION
statement is required for the allocation of memory for.arrays. Any number of arrays may be declared

in a single DIMENSION statement. The DIMENSION statement has the form:

DIMENSIONS. ,S,,...,S
1772 n

where S is an array specification.

Examples:
DIMENSION A (100)
DIMENSION Y(10),PORT(25),A(10,10),J(32)
NOTE
When variables in COMMON storage are dimensioned,
the COMMON statement must appear before the DIMEN-
SION statement.
6.3 EQUIVALENCE STATEMENT

The EQUIVALENCE statement causes more than one variable within a given program to
share the same storage location. The EQUIVALENCE statement has the form:

6-1

EQUIVALENCE (V,,Vy, -+, V) V) g ree) e

where the V's are variable names.

The inclusion of two or more references in a parenthetical list indicates that the quantities
in the list are to share the same memory location.
For example,

EQUIVALENCE (RED, BLUE)

specifies that the variables RED and BLUE are stored in the same place. The subscripts of array
variables must be integer constants.

Example:

EQUIVALENCE (X,A(3),Y2,1)), (BETA(2,2),ALPHA)

Identifiers may not appear in both EQUIVALENCE and COMMON statements.

6-2

CHAPTER 7
SUBPROGRAM STATEMENTS

7.1 GENERAL

External subprograms are defined separately from (i .e., external to) the programs that call
them, and are complete programs which conform to all the rules of FORTRAN programs. They are
compiled as closed subroutines, that is, they appear only once in core memory regardless of the num-
ber or times they are used. External subprograms are defined by means of the statements FUNCTION

and SUBROUTINE.

7.1.1 Dummy Identifiers

Subprogram definition statements contain dummy identifiers, representing the arguments of
the subprogram. They are used as ordinary identifiers within the subprogram and indicate the sori of
arguments that may appear and how the arguments are used. The dummy identifiers are replaced by

the actual arguments when the subprogram is executed.

7.2 FUNCTION SUBPROGRAMS

A function subprogram is a single-valued function that may be called by using its name as
a function name in an arithmetic expression, such as FUNC(N), where FUNC is the name of the sub-
program that evaluates the corresponding function of the argument N. A function subprogram begins
with a FUNCTION statement and ends with an END statement. It returns control to the calling

program by means of one or more RETURN statements.

7.2.1 FUNCTION Statement

The FUNCTION statement has the form:
FUNCTION identifier (a] Pgreee ,an)

This statement declares the program which follows to be a function subprogram. The identifier is the
name of the function being defined. This identifier must appear as a scalar variable and be assigned a
value during execution of the subprogram which is the function value.

Arguments appearing in the list enclosed in parentheses are dummy arguments representing
the function argument. The arguments must agree in number, order, and type with the actual arguments

used in the calling program. Function subprogram may have expressions and array names as arguments.

Dummy arguments may appear in the subprogram as scalar identifiers or array identifiers. A
function must have at least one dummy argument. Dummy arguments representing array names must
appear within the subprogram in a DIMENSION statement. Dimensions must be given as constants and
should be smaller than or equal to the dimensions of the corresponding arrays in the calling program.

A function should not modify any arguments which appear in the FORTRAN arithmetic
expression calling the function. The only FORTRAN statements not allowed in a function subprogram

are SUBROUTINE and another FUNCTION statement .

7.2.2 Function Type

The type of function is determined by the first letter of the identifier used to name the func-

tion, in the same way as variable names.

7.3 SUBROUTINE SUBPROGRAMS

A subroutine subprogram may be multivalued and can be referred to only by a CALL state-
ment. A subroutine subprogram begins with a SUBROUTINE statement and returns control fo the calling

program by means of one or more RETURN statements.

7.3.1 SUBROUTINE Statement

The SUBROUTINE statement has the form:
SUBROUTINE identifier (a] sGnrens ,an)

This statement declares the program which follows to be a subroutine subprogram. The first identifier is
the subroutine name. The arguments in the list enclosed in parentheses are dummy arguments represent-
ing the arguments of the subprogram. The dummy arguments must agree in number, order, and type with
the actual arguments used by the calling program.

Subroutine subprograms may have expressions and array names as arguments. The dummy
arguments may appear as scalar or array identifiers.

Dummy identifiers which represent array names must be dimensioned within the subprogram
by a DIMENSION siatemeni. The dummy arguments must not appear in an EQUIVALENCE or COMMON
statement in the subroutine subprogram.

A subroutine subprogram may use one or more of its dummy identifiers to represent results.
The subprogram name is not used for the return of results. A subroutine subprogram need not have any

argument at all.

Examples:

SUBROUTINE FACTOR (COEFF,N ,ROOTS)

SUBROUTINE RESID U(NUM,N ,DEN,M,RES)

SUBROUTINE SERIES
The only FORTRAN statements not allowed in a function subprogram are FUNCTION and another
SUBROUTINE statement .

7.3.2 CALL Statement

The CALL statement assumes one of two forms:
CALL idenfifier
CALL identifier (argument, argument, . . .argument)
The CALL statement is used to transfer control to a subroutine subprogram. The identifier is the sub-
routine name.

The arguments may be expressions or array identifiers. Arguments may be of any type, but
must agree in number, order, type, and array size with the corresponding arguments in the SUBROUTINE
statement of the called subroutine. Unlike a function, a subroutine may produce more than one value
and cannot be referred to as a basic element in an expression.

A subroutine may use one or more of its arguments to return results to the calling program.
If no arguments at all are required, the first form is used.

Examples:
CALL EXIT
CALL TEST (VALUE,123,275)

The identifier used to name the subroutine is not assigned a type and has no relation to the types of the
arguments. Arguments which are constants or formed as expressions must not be modified by the sub-

routine.

7.3.3 RETURN Statement:

The RETURN statement has the form
RETURN
This statement returns conirol from a subprogram to the calling program. Each subprogram must contain
at least one RETURN statement. Normally, the last statement executed in a subprogram is a RETURN
statement. Any number of RETURN statements may appear in a subprogram. The RETURN statement

may not be used in a main program.

7-3

CHAPTER 8
OPERATING INSTRUCTIONS

This chapter describes how o compile, assemble, and execute a FORTRAN program using
the 8K FORTRAN Compiler, SABR Assembler, and Linking Loader. The PDP-8/1 System User's Guide,
DEC-08-NGCB-D, is frequently referenced for loading instructions.

Except when loading the Linking Loader (Section 8.5), the DF setting is ignored because

all other system tapes have field settings coded on the tapes.

8.1 LOADING THE COMPILER

8.1.1 Loading Into Core Memory

a. Make sure the Binary Loader is in memory, say field 1.
b. Place the FORTRAN Compiler binary tape in the reader.

c. Set the console switches as follows: (Data field is ignored) instruction field =1,
Switch Register = 7777.

d. Press LOAD ADDress.
e. Depress Switch Register bit 0.
f. Press START

g. The FORTRAN Compiler has now been loaded into memory by the Binary Loader.
Parts of the compiler will load into field 0 and field 1.

8.1.2 Loading on the Disk

a. Make sure the Disk Monitor is in memory. (Type CTRL/C" or START at 7600.)

b. When the Monitor responds with a dot, call the system loader by typing
.LOAD , (the y denotes typing the RETURN key)

c. Place the Compiler binary tape in the reader.

d. Answer the Loader command dialogue as follows:

* IN=R:

*

*OPT-2

*ST=J

t <CTRL/P > t <CTRL/P > t <CTRL/P> t <CTRL/P>

] CTRL/C and CTRL/P are typed by holding down the CTRL key while typing the C or P key. They
do not echo (print) when typed, therefore, their presence are indicated by being enclosed in angle
brackets.

8-1

After typing the second CTRL/P remove the tape from the reader and place it back in
the reader for the second pass.

e. The FORTRAN Compiler has now been loaded into memory, parts into field 0 and field 1.
It must now be saved on the system device as follows:

.SAVE FTCO ! 0 - 7577; 5363/
.SAVE FTC1 ! 200, 1000 - 1577, 2600, 6000 - 16377; ,

f. The Compiler has now been saved on the user's system device and may be called as

follows:
.FTC1y
.FTCOy
The field 1 part must be called first.
8.2 OPERATING THE COMPILER

It is assumed that the programmer has written his main program and possibly one or more
subprograms, and that these source programs have been punched on paper tape in ASCII format.
Remember that each source tape must have an END statement at the end of the tape.

After the Compiler has been loaded into memory, it is used to translate each FORTRAN
statement info one or more SABR assembler instructions. The Compiler output will be punched in two
parts separated by approximately three feet of blank tape. The first part, (executable code) will be
punched as the source tape is read. The second part, (variable storage and constants) will be punched
after the entire source tape has been read.

If the Compiler has been saved on the Disk Monitor System, it will halt after it is loaded
into memory. Be sure that the source tape has been placed in the reader and the punch has been
turned ON, then simply press CONTinue fo begin step(d).

It may be desirable to suppress all compiler output the first time a particular program is
compiled, simply to check for errors. To do this it is necessary to load the Compiler and then deposit
3075 in location 0356 (field 0), prior fo executing step (c) below.

a. Set the console switches as follows: Data field =0, Instruction field =1
Switch Register = 1000. (The Compiler may also be started at location 5364 in field 0.)

b. Place the FORTRAN program source tape in the reader, and press the punch ON.
c¢. Press LOAD ADDress and START.

d. As soon as the Compiler has typed out an identification number, it will begin compiling
the user's program. The Compiler output will generally be several times the length of the FORTRAN
source program.

e. Ifan error is discovered in the user's FORTRAN program, the Compiler will type the
incorrect line, followed by an error message. Although compiler output will be suppressed, the rest
of the user's program will be read, and additional error messages may be typed.

f. When the Compiler has finished punching both sections of tape it will halt. It may
be restarted to compile additionai programs by pressing CONTinue.

g. The FORTRAN Compiler may be restarted at any time by pressing STOP and going
back to step (a).

8.3 LOADING THE SABR ASSEMBLER

8.3.1 Loading Into Core Memory

a. Make sure the Binary Loader is in memory, say in field n.

b. Sef the console switches as follows: Instruction Field =n, Switch Register =7777.
(Data field is ignored) :

c¢. Press LOAD ADDress.

d. Insert the SABR binary fape into the reader.

e. If using the high-speed reader depress Switch Register Bit 0.
f. Press START.

SABR will now be loaded into memory by the Binary Loader. Portions of SABR will
load into Fleld 0 and Field 1.

8.3.2 Loading on the Disk

a. Make sure the Disk Monitor is in memory. (Type CTRL/C or START at 07600.)
When the Monitor responds with a dot, call the system Loader as follows:
.LOAD y
c. Insert the SABR binary tape in the reader.
d. Answer the loading command dialogue as follows:
:IN-R:J for high-speed reader or *IN-T: y for ASR reader
*OPT -2

*ST =)
t <CTRL/P> 1t <CTRL/P> t <CTRL/P> t <CTRL/P>

After typing the second CTRL/P remove the tape from the reader and place it back
in the reader for the second pass.

e. SABRis now loaded into memory, partly in Field 0 and partly in Field 1. It may be
saved on the user's system device by responding fo the monifor's dot as follows:

. SAVE SABR! 0-7177; 200 ¢
- SAVE SAB1! 12000 - 12427;

8-3

f. SABRis now saved on the user's system device and may be called as follows:

.SAB1 y
.SABR y

The Field 1 portion must be called first.

8.4 OPERATING THE SABR ASSEMBLER

In addition to being a stand-alone assembler, SABR also serves as the second pass of 8K
FORTRAN compilation. For this purpose the use of SABR is slightly different from that described in
the SABR manual. This difference in the operation of SABR is due only to the unusual format of the
FORTRAN Compiler output.

The Compiler, in one pass, converts the user's FORTRAN source into a symbolic machine
language program tape. SABR then converts the symbolic tape into relocatable binary. However,
the symbolic tape produced by the Compiler is not a standard format SABR language tape. It is

arranged as shown in the figure below.

L T
E|F Symbol Definitions | P | R
AL1O Main part of program; Common, Arrays, | A A
DJ|R Executable code. Data and ujl
E|T Program Entry S|t
R IR Point. E|E

R

ozm
MoOP»P-— RZPprm

L True Start

The tape is arranged this way because the data at the end of the tape cannot be inserted in
the midst of the executable code, and some of it which should be at the beginning of the tape is not
known until later. Thus the true start of the symbolic program is near the end of the symbolic tape
preceded by a segment of leader/trailer code and followed by a PAUSE statement .

To assemble such a tape with SABR one of three methods must be followed. Actually, the
general procedure is the same as that described in the SABR manual, but in particular details it differs.

The differences are covered by the three methods explained below.

8.4.1 Method 1

The simplest method is to cut the symbolic tape into two parts. The cut should be made at
the middle of the blank tape which separates the executable code from the symbol definitions. The

latter section of the tape should then be marked "Section 1" and the former section (the executable

code) should be marked "Section 2." Assembly then proceeds with the two part symbolic tape exactly
as described below .

After SABR has been loaded into memory, it is used fo assemble the Compiler output. In
the first pass through SABR the relocatable binary version of the user's program is created and, at the
end of this pass, the symbol table may be typed and/or punched. Pass 2 is the listing pass. The assembly
is carried out as follows.

If SABR has been saved on the system 1/O device as in Section 8.3, it will start automatically
at step (c) below when called into memory. The source tape (first section) should be inserted in the
reader before operation begins.

It may be desirable to suppress all assembler output the first time a particular program is
assembled, simply to check for errors. To do this it is necessary to load SABR and then deposit 5370
in location 3165 (Field 0) before beginning step (a) below.

a. Set the console switches as follows: Data field =0, Instruction field =0,
Switch Register = 0200,

b. Press LOAD ADDress and START.

c. SABR now types a sequence of two or three questions;

"HIGH SPEED READER?"
"HIGH SPEED PUNCH ?"
"LISTING ON HIGH SPEED PUNCH ?"

These questions must be answered with "Y" if the answer is "yes." Any other answer
is assumed to be "no." The third question is typed only if the second is answered "Y". If the third
is answered "Y," both the symbol table and the listing will be punched on the high-speed paper tape
punch. Otherwise, they are typed on the teletypewriter. Incidentally, the user need not wait for
the full question to be typed before responding .

d. As soon as SABR has echoed the user's response to the last question, the punch device
and, if it is being used, the ASR reader should be furned on. If using the low-speed reader, the error
message E indicates that the user has waited too long before turning the reader on. He will have to
start over.

e. At this point, Pass 1 begins. SABR reads the source tape and punches the binary tape.
After the binary tape has been completed SABR will type or punch the program symbol table.

f. If the source tape is in several sections (separate fapes with PAUSEs at the end of all
except the last), SABR will halt at the end of each section. At this point the user should insert the
next section in the reader and then press CONTinue.

g. At the end of Pass 1 SABR will halt.

h. If the user desires an assembly listing, he should now reposition the beginning of the
source fape in the reader and press CONTinve.

If the listing is going to be punched on the high speed punch, the user may want to
list the symbol table (at the end of the binary relocatable tape) before beginning Pass 2.

8-5

i. At the end of Pass 2 SABR will again halt. It may be restarted for assembling another
program by pressing CONTinve.

i. SABR may be restarted at any time by pressing STOP, setting the Switch Register = 0200,
pressing LOAD ADDress and START. However, Pass 1 must always be repeated.

8.4.2 Method 2

The user may avoid actually cutting the symbolic tape by cleverly manipulating the tape as
if it were two parts as explained above. The tape should initially be inserted in the reader with the
separator blank tape over the read-head. When SABR halts at the PAUSE statement at the physical
end of the tape, the user should reposition the tape, putting the physical beginning of the tape in the
reader. Then press CONTinue. The assembly pass will end at the separator blank tape code. The

assembly listing can be produced in a similar manner, pressing CONTinue to start the Listing pass.

8.4.3 Method 3

The third method requires SABR to pass over the symbolic tape two times for each pass of the
assembly. However, it allows the tape to be inserted at its physical beginning. It is based on the

fact that a symbolic tape output by the FORTRAN Compiler has as its physical first line the special

-

pseudo-op, FORTR. This pseudo-op has no effect except when a symboiic tape output by the Compiier
is assembled using this third method.

The method is this:

a. Insert the symbolic tape in the reader at its physical beginning.

b. Start SABR as usual.

c. Sensing the FORTR statement as the first line, SABR ignores all further data until
after it passes over the END statement. SABR then begins the actual assembly by processing the
symbol definitions, etc., which are af the latter end of the tape.

d. Then SABR halts at the PAUSE statement which is at the physical end of the tape.
At this time the user should reposition the symbolic tape in the reader at the physical beginning of the
tape, and then press CONTinue. SABR will now assemble the executable code portion of the tape in
the normal way .

e. If the user desires an assembly listing, he should proceed as in Method 2 after SABR
finishes the assembly pass.

One further type of error may occur. This is an undefined symbol. Because SABR is
a one pass assembler, this can not be determined until the end of the assembly pass, so the error
diagnostic UNDF is given in the symbol table listing.

8-6

8.5 THE LINKING LOADER
Relocatable binary program tapes produced by SABR are loaded into memory by the 8K

System Linking Loader. The Linking Loader is capable of loading and linking a user's program and
subprograms in any fields of memory. It is even capable, in a special way, of loading programs over
itself. The Linking Loader also has options which give storage maps and core availability.

Generally speaking, the Linking Loader is capable of loading any number of user and
Library programs into any field of memory. These programs are loaded one after the other via the
high-speed reader (or the ASR reader). The choice of which field to load each program into is a
Switch Register option. Usually several programs may be loaded into each field. Because of the space
reserved for the Linkage Routines, the available space in Field 0 is three pages smaller than in all
other fields.

Any COMMON storage reserved by the programs being loaded is allocated in Field 1 from
location 0200 upwards. The space reserved for COMMON is obviously subtracted from the available
loading area in Field 1. The program reserving the largest amount of COMMON sforage must be
loaded first.

The Linking Loader uses the following special method to enable loading data over itself.
When the Linking Loader encounters data which must be loaded over itself, it punches this data onto
paper tape in RIM format. Then after the user has finished loading all his relocatable binary program
tapes, all that is necessary is to load the RIM format tape using the RIM loader.

The Run-Time Linkage Routine necessary to execute SABR programs are automatically loaded
into the required areas of every field by the Linking Loader as a part of its initialization. The user
needs to know nothing more about these routines than the particular areas of core they occupy. (See
Appendix D of the SABR manua|)

The 8K System Library subprograms, which may be used by any SABR program, are loaded
in the same way as any other relocatable binary programs. Only those Library programs which the
user's programs actually call need to be loaded. Refer to the SABR manual for additional information.

During the loading operation with the Linking Loader, two options are available to the
user fo obtain information about what has been loaded so far.

The Switch Register is used fo select these options. Either option may be selected after
any program has finished loading. (Warning: if the ASR punch is turned on, it must be turned off
before selecting these options.) The Switch Register bits used are as follows.

BITO =1 selects the Core Availability option;
BIT 1 =1 selects the Storage Map option.

The Core Availability option, when selected, causes the number of free pages of memory in
every field of memory to be typed in a list on the teletype. For example, if the user has a 16K con-

figuration a list like the following might be typed.

0002 (number of free pages in field 0)
0010 (number of free pages in field 1)
0030 (number of free pages in field 2)
0036 (number of free pages in field 3)

The number of pages initially available in field 0 is 0033 and in all other fields is 0036.

The Storage Map option, when selected, causes a list of all program Entry points to be typed
along with the actual address at which they have been loaded. Entry points of programs which have
been called but which have not been loaded are also listed along with a U flag for "undefined."

Such flagged programs must be loaded before execution of the user's programs are possible. The core

availability list is automatically appended to the storage map. A sample is shown below.

MAIN 10200
READ 01055
WRITE 01066

I OH 03031
SETERR 00000 U
ERROR 00000 U
TTYQUT 0000C U
H SOUT 00000 U
TTYIN 00000 U
H SIN 00000 U
F DV 04722
CLEAR 05247

I FAD 05131
FMP 04632
ISTO 05074
STO 04447
FLOT 05210
FAD 04010
D1V 00000 U
I REM 00000 U
F SB 04000
FLOAT 05046
FIX 04513
IFIX 04561
CHS 05231
0011

0033

8-8

8.6 LOADING THE LINKING LOADER

The Linking Loader must be loaded into the highest available field of memory.
a. Make sure the Binary Loader is in memory, say in field 1.

b. Set the console switches as foliows: Data fieild =h, Instruction field = 1,
Switch Register = 7777. Where h represents the number of the highest field in the user's configuration.

c. Press LOAD ADDress.

d. Place the binary paper tape of the Linking Loader in the reader.
e. If using a high-speed reader, depress Switch Register Bit 0.

f. Press START. The Linking Loader will now be loaded into memory .

8.7 OPERATING THE LINKING LOADER

The Linking Loader is used fo load the user's relocatable programs and 8K system Library
subprograms as outlined below.

The program or subprogram which uses the largest amount of COMMON storage should be
loaded first. (The Library subprograms do not use COMMON..)

a. After the Linking Loader has been loaded into the highest memory field, h, the user
should set the console switches as follows: Data Field =h, Instruction Field =h, Switch Register =0200.

b. Press LOAD ADDress.

c. Place the relocatable binary tape for the first program to be loaded in the reader. It
should be positioned with leader code in the reader.

d. The Switch Register should be set to 0000. Then, if loading via the ASR reader is
required, raise Switch Register Bit 6. If the user does not have high-speed punch, he should raise
Switch Register Bit 7. Finally the user should set Switch Register Bits 9-11 to the number of the field
into which he wishes to load the first program or subprogram.

Switch Register*®

0| 12|13 |4|5|6(|718]9 (10 (1N

00 111 0 1 1

| | I e
-81 g-— s Number of

© g o ® Loading Field
- @ o 2

o [¢] Q [

Qe 3 a 3

% 2o o >

o -
Example:

If the user wishes to load his first program into Field 3, and if he has no high-speed
1/0 device, then he should set the Switch Register to 0063 before the next step.

* All other Switch Register bits are irrelevant.

e. Press START.

f. The user's relocatable binary program will now be loaded. When loading is completed
the Linking Loader will halt.

g. The user may now either load another program or select one of the options.

h. To load another program, insert the program relocatable binary tape in the reader,
set Switch Register Bits 9-11 fo the number of the field the program is to be loaded into, and then
press CONTinve.

i. To select the Core Availability option, set Switch Register Bit 0 = 1 and press
CONTinue.

j. To select the Storage Map option, set Switch Register Bit 1 = 1 and press CONTinue.

WARNING

If the ASR punch is turned on for possible RIM format
data punching (as explained in Section 6.2), be sure
to turn it off before selecting either of the options
and to turn it back on after the typing of the option
is completed.

k. The user may continue loading more programs as in step (h) after using either of the
options.

Any time the Linking Loader halts the user may access memory directly via the
DEPosit and EXAMine console switches. After this is done the Linking Loader may be restarted vic
the console switches at location 7200 (in the highest field, where the Linking Loader resides).

In general, all five parts of FORTRAN Library Tape I must be loaded before any
FORTRAN program can be executed. The five parts of Library II may be loaded selectively as
determined by the Storage Map option, and the following table:

8.7.1 Library Organization

Tape I) "IOH" contains IOH, READ, WRITE
2) "FLOAT" contains FAD, FSB, FMP, FDV, STO, FLOT,
FLOAT, FIX, IFIX, IFAD, ISTO, CHS,
CLEAR
3) "INTEGER" contains IREM, ABS, IABS, DIV, MPY, IRDSW
4 "UTILITY" contains TTYIN, TTYOUT, HSIN, HSOUT,
OPEN, CKIO
5) "ERROR" contains SETERR, CLRERR, ERROR
Tape 11 1 "sussc” contains SUBSC (Subscripting routine)
2) "POWERS" contains IIPOW, IFPOW, FIPOW, FFPOW, EXP,
ALOG
3) "SQRT" contains SQRT
4) "TRIG" contains SIN, COS, TAN
5) "ATAN" contains ATAN

8.8 EXECUTING THE FORTRAN PROGRAM

Determine the starting address of your Main program by using the Linking Loader Storage Map
option. The address will be typed in the form:

MAIN dnnnn
Set Data field = d, Instruction field = d, Switch Register = nnnn.

Turn on paper tape punch and/or put data tape in reader as required.

c. Press LOAD ADDress, and START.

Program execution will begin.

CHAPTER ¢
DEMONSTRATION PROGRAM

The purpose of this program is fo compute the factorials of the even integers from 1 through

34. The MAIN program calls the subprogram to perform the computation.

This demonstration program was run on a PDP-8/1 with 8K words of core memory and a high-

speed photoelectric reader and punch. The demonstration, from start to finish, required 15 minutes.

Actual Teletype printout is used below.

L
C FORTRAN DEMONSTRATION PROGRAM Both source programs were written using the
DIMENSION A(35) Symbolic Editor, listed on the Teletype for
DO 18 N=2,34,2 inclusion here, and punched on the high-speed
ACN)=FACT(ND nch
19 WRITE (1,68)NsACN) punch.
STOP
60 FORMAT (I3,4H! = LE12.7)
END
P
L
C FORTRAN FUNCTION TO COMPUTE FACTORIALS
FUNCTION FACT(N)
IF (N-34) 1,555
1 IF (N) 25452
2 M=N-2
FACT=N
DO 3 K=1,-M
C=N-=-K
3 FACT=FACTx*C
RETURN
4 FACT=1.
RETURN
5 WRITE (1,6) N
FACT=9
RETURN
6 FORMAT (I5,30H! EXCEEDS CAPACITY OF MACHINE.)
END
P
PDP-8 FORTRAN DEC-98-A2B1-3 This is the system program tape identification.

Loaded the FORTRAN Compiler and compiled both

source programs.

9-1

PDP-8 SABR DEC-08-A2B2-10 Loaded the SABR Assembler, responded to the initial

HIGH SPEED READER? Y . b .
ed led ams.
HIGH SPEED PUNCH? Y dialogue and assembled both compiled program

LISTING ON HIGH SPEED PUNCH? N

CKIO PODDEXT
FACT BPBBEXT
I0H OPPDEXT
ISTO BPOBEXT
MAIN @352EXT
OPEN PPOGEXT

SuBSC DOGPEXT
WRITE COABEXT

87 7512
\A 2209
\N 7351
\19 D426
\60 2501
tA 0361
B 2473
1C 2411
*D 2450
tE D463
tF B4aT6
G gs512

HIGH SPEED READER? Y
HIGH SPEED PUNCH? Y
LISTING ON HIGH SPEED PUNCH? N

FACT @215EXT
FAD BBBDEXT
FLOT BPDBEXT
FMP POBBEXT
I0H PAGOBEXT
OPEN DOBBEXT
STO OBQPEXT
WRITE O0BFEXT
Lo D473
\C 205
\FACT 0291
\K D204
\M 2209
\N 2471
\1 7251
\2 n261
\3 2331
\4 354
\5 h496
\6 2445
13 72219
TA 395
B n346
tC N 422
*D 3471

DEC-08-A2B3-5

EXCEEDS CAPACITY OF MACHINE.

MAIN 1152
OPEN 19325
SUESC 11269
FACT B1415
ISTC 6062
WRITE 02966

ICH B23744
CKIO 19321
FLOT 26200

STO 05444

FAD 25010

FMP 05623
READ 02355
SETERK 10400
ERRCR 19503
TTYOUT 1@227
HSGUT 19255
TTYIN 10200
HSIN 18245

FDV 25711
CLEAR 26237
IFAD 06117

DIV 06443
IREM 6616

FSB 05000
FLCAT 26234

FIX 95519

IFIX @5556

CHS B6221

ABS 56636

IABS 26700

MPY D640
IRDSW 06723

EXIT 19344
CLRERR 10431

903

233

21 = .2000009%E+01
4Y = J24000C0E+02
6! = T2000BBE+23
8! = 4032000E+25
10! = 3628800E+27
121 = 4790016E+09
14! = .8717829E+11
16! = .2092279E+14
18! = .6402374E+16
20! = +2432902E+19
221 = .1124p91E+22
241 = J6204484E+24
26! = +4032915E+27
281 = .3048883E+30
30! = .2652529E+33
32! = .2631308E+36

34!
34! = QQ00CCOE+0BOD

Loaded the Linking Loader and the Library programs
{all of the first tape and the first section of the second
tape, and then set the switch register for the memory
map) .

Loaded the relocatable binary tapes and started the
MAIN program at location 01152 (see memory map).

Received the expected results.

9-3

APPENDIX A
DECIMAL AND OCTAL REPRESENTATIONS OF THE CHARACTER SET

This version of FORTRAN uses six-bit characters. Other ASCII characters will be #rimmed

to six bits and translated to even parity, resulting in one of the characters in the table.

AF B & A* B CF AY B c*
Carriage 0 00 [27 33 0 48 60
Return \ 28 34 i 49 61

A 1 01 J 29 35 2 50 62

B 2 02 ? 30 36 3 51 63

C 3 03 - 31 37 4 52 64

D 4 04 Space 32 40 5 53 65

E 5 05 I 33 4 6 54 66

F 6 06 " 34 42 7 55 67

G 7 07 # 35 43 8 56 70

H 8 10 $ 3% 44 9 57 71

[9 11 % 37 45 : 58 72

J 10 12 & 38 46 ; 59 73

K 11 13 ' 39 47 < 60 74

L 12 14 (40 50 = 61 75

M 13 15) 41 51 > 62 76

N 14 16 * 42 52 ? 63 77

o} 15 17 + 43 53

P 16 20 , 44 54

Q 17 21 - 45 55

R 18 22) 46 56

S 19 23 / 47 57

T 20 24

U 21 25

v 22 26

Y 23 27

X 24 30

Y 25 31

ya 26 32

A* = character

B* = decimal representation

C* = octal equivalent

A-1

APPENDIX B
STATEMENT SPECIFICATIONS

STATEMENT FORM WHERE
(R or P indicates a required or
prohibited statement number,
N indicates nonexecutable
statement)
COMMENT P "C" in column 1 columns 2 through 80 will be
ignored.
CONTINUE CONTINUE control goes to next statement.
ARITHMETIC v=e variable name = expression.
GO 1O GO TOn n is a statement number.
GOTO(n,,...,n), i 1 <i <m and control goes to
1 m - = .. .
statement n,. lisa nonsubscripted
integer variable.
™
[{ =l e 1 H
iF it (E) Ny /Ny, Na controi goes f nzj if
n
3
, {f} .
expression E¢ = 0.
>
DO DO n i=m] s My Mo repeated execution through state-
ment n beginning with i=m] .
incrementing by m3, while
i is less than or equal to m,
m's and i may not be subscripted.
DO n i=m, ,m, ma assumed fo be 1.
PAUSE PAUSE temporary halt, resumed by
CONTinve key.
PAUSE n octal equivalent of the integer n
displayed.
STOP STOP must be used to halt execution of
a main program.
STOP n octal equivalent of the integer n
displayed.
END NP | END an END statement at the end of a

subprogram tells the compiler
there is no more program.

B-1

STATEMENT

FORM

WHERE

READ
WRITE

READ (d, f) L
WRITE (d,f) L

d is device number, f is a
FORMAT statement number and L
is list of variable names separated
by commas.

FORMAT

NR

FORMAT (kl reees kn)

k's are format specifications

COMMON*

NP

COMMON q,b,...,n

a,...,n are nonsubscripted
variable names

DIMENSION

NP

DIMENSION a (k]), ceesd (kn)

a's are array names and k's are
maximum subscripts.

FUNCTION

NP

FUNCTION name (a] . .,cn)

a's are dummy arguments and
function name must be defined as
a variable containing the value
of the function.

SUBROUTINE

NP

SUBROUTINE name (a] o ,qn)

a's are dummy arguments and sub-
routine name may not appear
elsewhere in the subroutine.

CALL

CALL name (a], ce.,a)

n

a's are actual arguments of a
subroutine and may be expressions.

RETURN

RETURN

for subroutines, control returned
to statement following CALL. For
functions, evaluation of expression
in calling program is resumed
using value of the function.

EQUIVALENCE

NP

EQUIVALENCE (V] poee ,Vn), ..
(Vm, . "Vp)

*7

V's are variables or subscripted
array names.

B-2

APPENDIX C

FORMAT SPECIFICATIONS

KIND FORM WHERE

Integer rlw r is the repetition count; w is fotal field width in
characters.

Floating Point rFw.d r is the repetition count, w is field width including

(Decimal) sign and decimal point, and d is number of characters
to right of decimal.

Exponential rEw.d r is the repetition count, w is field width including
sign, decimal point, and d is the number of characters
in exponent.

Alphanumeric rAw r is the repetition count, w is field width.

H (Hollerith nHcharacters n is total number of characters following H. Parentheses

or Literal) 'characters' in each format statement must balance. Characters en-
closed within single quotes (SHIFT/7) are also printed.

Parentheses n (specification) format specification in parentheses is repeated n times.

Carriage

Control / indicates beginning of a new data record.

APPENDIX D
STORAGE ALLOCATION

D.1 REPRESENTATION OF CONSTANTS AND VARIABLES

D.1.1 Integers

Integers are each allocated one machine word. They are represented in fwo's complement

binary.
01 11
L1 il
sign Two's complement magnitude

Positive numbers in fwo's complement binary are
represented as straight binary with the first bit zero.

lo |

37778 =+20471O' the largest positive integer.

Negative numbers are represented by replacing each 0 bit with a 1 and each 1 bit witha 0,
then adding 1 to the binary result.
+1 s

[0 | 00000000001 |

-is [0 [oo} w1 = [0 i | =777,

The largest negative number is ~2048 which is represented by 40008 or

1 | 00000000000

D.1.2 Real Numbers

Real numbers are each allocated three machine words. They are represented as a binary

mantissa multiplied by 2 raised to a binary exponent:

Word 1

0 1 819 11

sign exponent mantissa

D-1

Word 2

mantissa

Word 3

0 1]
mantissa

The sign of the number is bit 0 of word 1 (0=+, 1=-). The value and sign of the exponent

are obtained by subtracting 10 000 OOO2 (or 2008) from bits 1 through 8 of word 1.

Example 1
110000001100
~0-
—0-
Sign:]2
Exponent: 10 000 OOOI2
Mantissa: .1002
Exponent = 20]8-2008=]8
Mantissa = .48
_ i
No. = .48 X2 8
= =1/2X2=-1
Example 2
01000010110
—0-
—0-
Sign: 02
Exponent: 10 000]012
Mantissa: .]2
Mantissa = .48
Exponent = 2058-2008=58

= 5
No. .48X2 8

1/2X32=16

D.2 STORAGE OF ARRAY'S

Array variables are stored in core according to USA Standards, in columns and from top to

bottom. For example, the array 1J
DIMENSION 1J (5)

if started at location 0705 would be stored:

01 11
1 (1) 0705
(2 0706
1 (3) 0707
1 (@) 0710
1J (5) 0711

The real array, T
DIMENSIONT (3)

starting in location 0612 would appear:

01 89 11

T (1) 0612
0613
0614
T[] [0615
0616
0617
T[] [0620
0621
0622

Two-dimensional arrays are stored as shown below.

DIMENSION 1(4,2)

01 i1
1(1,1) 0566
12,1 0567
1(3,1) 0570
1 (4,1) 0571
1(1,2) 0572
1(2,2) 0573
[(3,2) 0574
1 (4,2) 0575

D-3

In the array
AMWJ,K))
M is a two-dimensional integer array stored as indicated above. No element of M may be less than 1.
If the element
M3, 4)
contains the integer 7, then AM(3,4)) will be evaluated as A(7). The largest integer stored in M must

not exceed the dimensions of A.

D.2.1 Representation of N-dimensional Arrays

Although arrays of more than two dimensions are illegal, the values of the subscripts of
larger arrays may be calculated by using the following algorithm:
i#D1*(ig=1)Dy *Dylig=1)+...D *Dy. . .D (i -1)
where the subscript values are i‘, i2. . .in in an array whose dimensions are D, Dj... Dn.
Subprograms may be written to compute and insert subscript values in such illegal arrays.
For example, in an array A(3,4,5), the following subprogram inserts the value of element A(NT,N2,N3):
DIMENSION ARRAY (60)
READ (1,5) N1,N2,N3, VALUE
[=NT+3%(N2-1)3*4%(N3-1)
ARRAY (I)= VALUE

5 FORMAT (3I1,F5.3)
END

D.3 COMMON STORAGE ALLOCATION

Common storage begins in absolute location 200 in field 1. Variables are assigned locations
in the common storage area in ascending order as they appear in COMMON statements.
For example:
COMMON A, J,K
DIMENSION A(2,2), J(4)

would be stored as follows.

D-4

200

A, 1) 201
202

203

A@2,1) 204
205

206

A(1,2) 207
210

A@,2) t 212
213

J(1) 214
J(2) 215
1(3) 216
J@4) 217

K 220

NOTE
K does not appear in a DIMENSION statement.

If the COMMON statement of another subprogram defines

COMMON J
DIMENSION J(5)
J(1) through J(5) will be assigned to locations 1000 through 1004 respectively, thus overlapping the
variables A(1,1) and A(2,1). The Loader is not aware of this, therefore it is advisable to make COMMON
statements identical in all subprograms in which they appear.
However, the statements
COMMON DUMMY, J
DIMENSION DUMMY (2,2), J(4)
would not produce overlapping common and could be used in subprograms. In the example above,

DUMMY is an arbitrary variable which need not be used in the subprogram.

APPENDIX E
ERROR MESSAGES

E.1 COMPILER

When an error is encountered during compilation of a statement, the incorrect statement
and an error message is prinfed. Further compilation of that statement is terminated, and output is
suppressed for the rest of the compilation. The compiler, however, will scan the remaining statements
for errors, and will print an error message for any errors found.

An example of an error message follows:

/ A=B+M(6) + N(1)
T
MIXED MODE EXPRESSION

Note that an t was printed directly below the incorrect statement. This indicates that the error occurred
somewhere between that point and the beginning of the statement. In some cases the arrow may point
directly at the illegal character or word, but this cannot always be assumed.

If an error occurs in the middle of a series of confinuation lines, all remaining lines in that
statement will be printed with the error message ILLEGAL CONTINUATION.

Compiler error messages are self-explanatory:

ILLEGAL CONTINUATION ILLEGAL VARIABLE
ILLEGAL ARITHMETIC EXPRESSION ILLEGAL OR EXCESSIVE DO NESTING -
ILLEGAL STATEMENT ARITHMETIC EXPRESSION TOO COMPLEX
ILLEGAL CONSTANT MIXED MODE EXPRESSION
ILLEGAL STATEMENT NUMBER EXCESSIVE SUBSCRIPTS
SYMBOL TABLE EXCEEDED ILLEGAL EQUIVALENCING
SYNTAX ERROR (usually illegal
punctuation)
E.2 SABR

Because SABR is a 1-pass automatic paging assembler for binary relocatable programs,
errors are somewhat difficult to handle. If there are errors in the source, the assembled binary code
will be virtually useless. Both errors E and S are fatal. Assembly halts when they are encountered.
The other types of errors are not fatal, but they cause the line in which they occur to be treated as a
comment and thus essentially ignored. An address label on such a line will remain undefined and no

space is reserved in the binary output for the erroneous data.

E-1

During the assembly pass error diagnostics are typed on the teletype as they occur.

Example:
C AT \I0 +0004

This means that an error of type C has occurred at the 4th instruction after the location tag \10.
This would correspond to statement 10 in the source program.
During the listing pass the error letter is typed in the address field of the instruction line.

The following error diagnostics may occur.

A means that too many or too few ARG's follow a CALL statement.

C means that an illegal character appears on the line. This could possibly be an
"8" or "9" in an octal digit string or an alphabetic character in a digit string.

M means that a symbol is multiply defined. It is impossible to resolve multiple
definitions during Pass 2. Therefore, listings of programs which contain multiple
definitions will necessarily have unmarked errors. The M flag occurs only during
Pass 1.

I means that an illegal syntax has been used. Below are listed the types of illegal
syntax that may occur.

(1) A pseudo-op with improper arguments.

(2) A quote mark with no argument.

(3) A non-terminated text siring.

(4) A memory reference instruction with improper address.
(5) An illegal combination of microinstructions.

E means there is no END statement .
S means either one of two things:

(1) The symbol table has overflowed. This can be corrected by
using fewer symbols, using more shorter symbols, or by
breaking the program into smaller parts.

(2) Common storage has been exhausted.

One further type of error may occur. This is an undefined symbol. Because SABR is a one-
pass assembler, undefined symbols cannot be determined until the end of the assembly pass, so the error

diagnostic UNDF is given in the symbol table listing.

E.3 LINKING LOADER

If during the process of loading a program or subprogram the Linking Loader encounters an
error, the user is notified by an error message; the partially loaded program or subprogram is ignored,

removed from the field, and core is freed. The error messages are typed out in the form

ERROR 000n

where n is the error code number.

Error Code Explanation

1 More than 6414 subprogram names have been seen by the
Loader (64, subprogram names is the capacity of the
s s
Loader's symbol table).
2 The current field is full.
3 The current subprogram has too large a COMMON storage

assignment. (Subprogram with largest common storage
declaration must be loaded first.) This is a semi-fatal error.
Re-initialize the Linking Loader as explained below and
reload the programs in the proper order.

4 Checksum error on input tape. If the error persists, re-
assembly is necessary.

5 Illegal Relocation Code has been encountered. This can
occur only if the relocatable binary tape is bad or if the
user is using it improperly, e.g., not starting at the begin-
ning of the tape, or reader error, or punch error. If the error
persists, re-assembly is necessary.

Recovery from Errors 2, 4, 5 is accomplished by repositioning the tape in the reader to the
leader code af the beginning of the subprogram and then pressing CONTinue. When attempting to
recover from one of these errors, no other program should be loaded before reloading the program which
caused the error. Obviously, on Error 2 a different field should be selected before pressing CONTinue.

The entire ioading process may be restarted via the console switches, af any time by re-
initializing the Linking Loader. To do this, set the console switches as follows: Data Field =h (the

field where the Linking Loader resides), Instruction Field =h, Switch Register = 6200; then press START.

rm
I~

LIBRARY PROGRAM

During execution the Library programs check for certain errors and type out the appropriate

error messages in the form

IXXXX" ERROR AT LOC NNNN
where XXXX specifies the type of error, and NNNN is location of the error. When an error is en-
countered, execution stops, and the error must be corrected.
When multiple error messages are typed, the location of the last error message is relevant
to the user program. The other error messages are to subprograms called by the statement at the

relevant location.

Error Code Explanation

"ALOG" Attempt to compute log of negative number
"ATAN" Result exceeds capacity of computer
"DIvZ" Attempt to divide by 0

"EXP" Result exceeds capacity of computer
"FIPW" Error in raising a number to a power
"FMTT" Multiple decimal points

"FMT2" E or . in integer »

"FMT3" Illegal characterin 1, E, or F field
"FMT4" Multiple minus signs

"FMT5" Invalid FORMAT statement

“FLPW" Negative number raised to floating power
"FPNT" Floating=~point error may be caused by: Division by zero;

floating-point overflow; attempting to fix too large a number

"SQRT" Attempt to square root a negative number

To pinpoint the location of a Library execution error:

a. From the storage map, determine the next lowest numbered location (external symbol)
which is the entry point of the program or subprogram containing the error.

b. Subtract in octal the entry point location of the program or subroutine containing the
error from the LOC of the error in the error message.

c. From the assembly symbol table, determine the relative address of the external symbol
found in step a and add that relative address to the result of step b.

d. The sum of step ¢ is the relative address of the error, which can then be compared with
the relative addresses of the numbered statements in the program.

APPENDIX F
OPERATING PROCEDURES

This appendix is a condensation of Chapter 8. The figures referenced (in parentheses) are

found in the PDP-8/1 System User's Guide, DEC-08-NGCB-D.

F.l LOADING THE FORTRAN COMPILER

1. Load RIM and BIN Loaders into Field 1 (Figure RIM-1, 2, 3, and BIN-1).

2. Load the FORTRAN Compiler using BIN (Figure BIN-2); 1IF=1SR=7777. When loaded,
parts of the Compiler will be in Field 0 and Field 1.

To load the Compiler on the disk, proceed in step sequence, otherwise, proceed at
step 5, below.

3. With the Disk Monitor in memory, call the Disk System Loader by typing:
.LOAD

and load the FORTRAN Compiler onto the disk (see PDP-8/1 Disk/DECtape Monitor System,
DEC-D8-SDAB-D.)

4. Save the compiler by typing:

.SAVE FTC010-7577: 5363
.SAVE FTC11200, 1000-1577, 2600, 6000-16377;

F.2 COMPILING (Pass 1)

5. Set DF=0, IF=1, SR=1000

6. Place FORTRAN source program tape in reader, press punch ON, LOAD ADD, and
then START; compilation commences.

7. Error message ? Either proceed or correct program and recompile.

Compiler will punch compiled tape in two sections, separated by a noticeable length
of blank tape.

8. More source program tapes to be compiled? Yes: insert source tape and press CONT.
No: proceed to next step.

NOTE

The FORTRAN Compiler may be restarted at any time
by pressing STOP and proceeding at step 5.

F-1

F.3 LOADING THE SABR ASSEMBLER

9. Load the SABR Assembler using BIN (Figure B-2); IF=1, SR=7777. When loaded,
parts of the Assembler will be in Field 0 and Field 1.

To load the Assembler on the disk, proceed in step sequence, otherwise, proceed at
step 12, below.

10. Same as step 3, above.
11. Save the Assembler by typing:

.SAVE SABR!0-7177; 200
.SAVE SAB1112000 - 12427;

F.4 ASSEMBLING (Pass 2)

See Section 8.4 for alternate methods of assembling.
12. Insert Section 1 (the last section punched) of the compiled tape into the fape reader.

13. Set DF=0, IF=0, SR=0200, press LOAD ADD, START, and answer SABR's initial
dialogue.

14. Turn the appropriate punch and reader ON; the tape reads in and the binary tape is
punched.

15. Insert Section 2 (the first section punched) of the compiled tape info the tape reader
and press CONT; assembly is completed when SABR halts after producing the relocatable binary tape.

SABR may be restarted to assemble another program by starting over at step 12 above.

SABR may be restarted at any time by pressing STOP, setting the SR=0200, and pressing
LOAD ADD and then START.

To generate an assembly listing, proceed in step sequence, otherwise, proceed at step

18 below.
16. Insert Section 1 of the compiled tape into the reader and press CONT.
17. Insert Section 2 of the compiled tape into the reader and press CONT.

F.5 LOADING THE LINKING LOADER

18. Set DF =highest field in the configuration, IF=1, SR=7777, and press LOAD ADD.

19. [Insert Linking Loader tape into the appropriate reader: if ASR reader, turn reader ON;
if high-speed reader, set SR=3777.

20. Press START; the Linking Loader will be read into core memory .

F.6 LOADING PROGRAMS AND SUBPROGRAMS

21. Set DF and IF=to DF in step 18 above, SR=0200, and press LOAD ADD.

22. [Insert relocatable binary tape (first, program or subprogram with largest amount of
COMMON storage) into the reader with leader code over reader head.

23. Set SR as explained in Section 8.5.

24. Press START; the relocatable binary program will be loaded into core memory.

Repeat from step 22 for subsequent program or subprogram tapes or select an opfion

(Core Availability or Storage Map) os explained in Section 8.5.

F.7 EXECUTING THE FORTRAN PROGRAM

25. Set DF and IF=to field of MAIN program, and SR=to starting address of MAIN program
(determined from the Storage Map).
26. Turn punch ON and/or insert data tape in reader, as required.

27. Press LOAD ADD and START.

Program execution will begin.

F-3

APPENDIX G
IMPLEMENTATION NOTES

G.1 INPUT/OUTPUT

G.1.1 Implied DO Loops

Because of core memory restrictions, 8K FORTRAN does not have implied DO loops in READ
and WRITE statements. However, a simple way to circumvent this restriction has been implemented.
Normally a carriage return/line feed (CR/LF) is produced at the end of each WRITE statement. The
CR/LF can easily be suppressed by terminating the WRITE statement with a comma. The CR/LF can
be generated explicitly in one of two ways:

a. By using a WRITE (d,f) instruction.

b. By using a FINI pseudo instruction.

The second method is more efficient since it generates only 4 words of code, whereas the

first method will generate somewhat more than that. For example, the following statements:

DO 10 J=1,M
10 WRITE (1,20) (A(J,K), K=1,N)
20 FORMAT (10F7.3)
which is not iegai in 8K FORTRAN, could be rewritten as follows:
DO 15 J=1,M
DO 10 K=1,N

10 WRITE (1,20) A(J,K),
15 WRITE (1,20)
20 FORMAT (F7.3)

or
DO 15 J=1,M
DO 10 K=1,N
10 WRITE (1,20) A{J,K),
15 FINI

20 FORMAT (F7.3)
The second method is preferred for more efficient utilization of core memory. Note that it is not
necessary to specify a repefition count in the FORMAT statement since the 1/O handler initializes
itself to the beginning of the FORMAT statement each time the WRITE statement is executed.

G.1.2 FORMAT Handling

For more complicated FORMAT handling a somewhat different technique can be used. For

example,

WRITE (1,20) (A(K), K=1,N)
20 FORMAT (F7.2,2E15.6)
which again is not legal in 8K FORTRAN, could be written as follows

WRITE (1,20), (comma suppresses CR/LF)
DO 10 K=1,N

10 CALL IOH(A(K))
FINI

20 FORMAT (F7.2,2E15.6)

In the example above, the statement WRITE (1,20), generates the following assembly code

CALL 2, WRITE
ARG (1
ARG \20

The statement CALL IOH (A(K)) will generate code to call the subscripting routine SUBSC and will
then generate the following code

CALL 1, IOH
ARG [0

where [0 is a temporary location generated by the compiler. Finally the FINI pseudo instruction will
generate the following

CALL 1, IOH
ARG 0

which will cause execution of the WRITE statement to be completed.
Although only WRITE statements have been shown in the previous examples, the same

techniques apply equally well to READ statements.

G.1.3 Numeric Input Conversion

In general, numeric input conversion is compatible with most other FORTRAN processors .
A few exceptions are listed below:
a. Blanks are ignored except to determine what field digits fall in. Thus numbers are

treated as if they were right justified within a field. In an F5.2 format, the following

bbb12
12bbb
.12bb
00012

would all be read as the number 0.12.

b. A null line delimited by two CR/LFs will be treated as a line of blanks, and blanks will
be appended to the right of a line (if necessary) to fill out a FORMAT statement. Thus

12(CR/LF)
12bbb
bbb 12

G-2

would all be identical under an F5.2 format. If an entire line is blank, numeric data from that line
will be read as zeros.

c. No distinction is made between E and F format on input. Thus

100.
100E2
1.E2
10000

would all be read identically under either an F5.2 or E5.2 format.

G.1.4 Alphanumeric Data Within FORMAT Statements

Alphanumeric data may be transmitied directly from the FORMAT statement by two different
methods: H=conversion or the use of single quotes.

Hollerith (H) format is used in WRITE statements only. An attempt to use H format specifica-
tions with a READ statement will cause characters from the format field to be either typed or punched.
This may occasionally be a useful feature since it provides a simple way of identifying data that is to

be read from the Teletype. For example, the following instructions

READ (1,30) A,B
30 FORMAT (4HAb=b, F7.2/4HBb=b,F7.2)

would cause a =and B = to be typed out before the data was read.

The same effect is achieved by merely enclosing the alphanumeric data in single quotes.
The result is the same as in H-conversion; on input, the characters between the single quotes are re-~
placed by input characters, and, on output, the characters between the single quotes (including blanks)

are written as part of the output data. For example, when referred to from a WRITE statement,

FORMAT ('PROGRAM COMPLETE")
would cause PROGRAM COMPLETE to be printed. This method eliminates the need to count characters.

G.1.5 E and F Format

When using the WRITE statement with either E format or F format with numbers less than

1.0 a zero will not be typed to the left of the decimal point.

G.2 ARITHMETIC OPERATIONS

G.2.1 Floating=Point

In general, floating=point arithmetic calculations are accurate to seven digits with the
eighth digit being questionable. Subsequent digits are not significant even though several may be

typed to satisfy a field width requirement.

No definitive information is currently available on the accuracy of the functions except that
they are believed to be accurate to six decimal places for arguments which are neither extremely large
nor extremely small.

The floating~point arithmetic routines check for both overflow and underflow. Overflow
will cause the FPNT error message to be typed and program execution will be terminated. Underflow
is detected but will not cause an error message. The arithmetic operation involved will yield a zero
result. The arctangent function is accurate to six decimal places for arguments whose absolute value

is greater than .01. This is a temporary restriction.

G.2.2 Integer

Integer arithmetic operations do not check for overflow. For example, the sum 2047+2047
will yield a result of =2. For more information refer to Chapter 1 of Introduction to Programming

(Small Computer Handbook Series) or any text on binary arithmetic.

G.2.3 Exponentiation

Zero raised to a power of zero will yield a result of 1. Zero raised to any other power
will yield a zero result. Numbers are raised to integer powers by repetitive multiplication. Numbers
are raised fo floating=point powers by calling the EXP and ALOG functions. A negative number
raised to a floating—-point power will not cause an error message but will use the absolute value. Thus,

the expression (=3.0)**3.0 will yield a result of +27.

G.3 SUBSCRIPTING

Since excessive subscripting tends to use core memory inefficiently, it is suggested that

subscripted variables be used judiciously. For example, the statement

A= (@B (1) +C2) *B() +CT1) *B(I)

could be rewritten with a considerable saving of core memory as follows:
T =B()
A= ((T+C2) *T+Cl) *T

G.4 DO LOOPS

DO loops are treated slightly differently in 8K FORTRAN than in most compilers. The

index is tested before the range of the DO is executed. Therefore, in the following example

DO20 N=1,M

20 CONTINUE

the instruction between the DO statement and statement 20 will never be executed if M is less than one.

G.5 PAUSE STATEMENT

The PAUSE statement may be used for a variety of reasons to temporarily suspend program
execution. In some cases the PAUSE statement may be used to give the operator a chance to change
data tapes or to remove a tape from the punch. When this is done it is necessary to follow the PAUSE
statement with a call to the OPEN subroutine. This subroutine initializes the 1/O devices and sets
hardware flags that may have been cleared by pressing the tape feed buttons. Example:

PAUSE
CALL OPEN

G.6 EQUIVALENCE STATEMENT

Because of core memory resirictions within the compiler, variables may not appear in
EQUIVALENCE statements more than once. Thus,
EQUIVALENCE (A,B,C)
would be valid, but the statement

EQUIVALENCE (A,B), (8,C)

would not compile correctly.

G.7 SPECIAL 1/O DEVICES

1/O can be performed on devices other than Teletype and high-speed paper tape reader and

punch in several different ways:

1. [If it is desired to use other devices in place of the high-speed paper tape reader and
punch, rewrite the Utility library subroutine defining the entry points for the desired input and output
devices as HSIN and HSOUT respectively. The source tape for the Utility subroutine is available from
the program library and is very short. Refer to the SABR manual for more information.

2. [Ifitis desired to input or output on a special device but not in ASCII format, write a
subroutine to handle the particular device in the SABR assembly language. For more information refer
to the SABR manual .

3. [Ifitis desired to add additional devices which can be used with READ and WRITE state-
ments, then edit part I of the Library Subroutines IOH. New entries must be made in the device
transfer table at the beginning of IOH. Copies of this source tape and listings of the library subroutines
are available from the program library. The service routines for the additional 1/O devices must be
written in SABR assembly language and can then be assembled along with the revised version of IOH.

G-5

4. Program written in SABR language can call PAL subroutines in various ways:
a) A JMS 7000 instruction will call a PAL program which starts at location 7000
in the same memory field.
b) A CONTINUE (or PAUSE) statement might be inserted in the user's FORTRAN
program. Then a JMS fo the PAL subroutine may be inserted using the Switch Register.
It is possible to load any size PAL III program for linkage with an 8K FORTRAN program
by merely dimensioning an integer variable fo the proper size for the PAL III program. This offers
two advantages, virtually unlimited size programs in PAL III can be linked to 8K FORTRAN main

programs, and none of the library routines are disturbed by this linkage.

G.8 ERRORS

All compile time, assembly time, and execution time errors are fatal. For this reason it is
desirable to suppress punched output of the compiler and assembler until the source program is believed
to be correct. For specific instructions refer fo Chapter 8.

Note especially that the compiler will not detect undefined statement numbers. Therefore
it is imporfant to examine the assembly symbol table for undefined symbols before loading and executing
the program.

Do not attempt to load or run a program which has assembly errors. Do not attempt to
proceed after an execution time error by pressing CONTinue. Unpredictable results will be obtained

in either case.

HOW TO OBTAIN REVISIONS AND CORRECTIONS

Notification of new or revised DEC software and manuais available from the Program

Library is published in:

Digital Software News for the PDP-8 Family
Digital Software News for the PDP-9 Family

If you are not receiving the publication appropriate to your computer, please notify Software Informa-
tion Service (see Reader's Comments card).

Revised software products and documents are shipped only after the Program Library receives
a specific request from a user (see title page for address).

Digital Equipment Computer User’s Society (DECUS) maintains a library of user software
and publishes them in DECUSCOPE, a magazine available to both DECUS members and to non-members
who request it. Return the request card below to receive further information or to place your name on
the mailing list.

To: Decus Office,
Digital Equipment Corporation,
Maynard, Massachusetts 01754
D Please send DECUS installation membership information.

D Please send DECUS individual membership information.

D Please add my name to the DECUSCOPE non-member mailing list.

I

Name

Company

Address

i (7t CAada)

: 8K FORTRAN
: PROGRAMMERS REFERENCE
DEC-08-KFXB-D

Aeeeaness

READER'S COMMENTS

: Digital Equipment Corporation maintains a continuous effort to improve the quality and usefulness of its
publications. To do this effectively we need user feedback -- your critical evaluation of this manual.

sen

Please comment on this manual's completeness, accuracy, organization, usability, and readability.

“e0sesrcoenioevsEssens TR b

ses

Did you find errors in this manual ? Please explain, giving page numbers.

sen

sveevue

ceormsevergae

5 How can this manuai be improved ?

DEC also strives to keep its customers informed on current DEC software and publications. Thus, the
: following periodically distributed publications are available upon request. Please check the publica-
: tion(s) desired.

acnvvrvwssne

: (] Digital Software News for the (J PDP-8/1 Software Manual [] PDP-8/1 User's

: PDP-8 Family, contains current Update, contains addenda/ Bookshelf, contains
information on software problems, errata sheets for updating a bibliography of

programming notes, new and re- -software manuals. current and forth-

: vised software and manuals. coming software

: manuals.

: Please describe your position.

- Name Organization
. Street Department

: City State Zip or Country

...

...

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

...

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

Postage will be paid by:

dlilgliltlall

Digital Equipment Corporation
Software Information Services
146 Main Street, Bldg. 3-5
Maynard, Massachusetts 01754

“essNssesenar

P P R R R T R N TR T N N R R N N R R N AR NI A A N R

CEvABAaNRELESBPAAS S R aNARAs RPN e v AV easuabaBtuoERE

T RN R Y

Maynard, Massachusette | dlilaliltall

printed in U.S.A.

