
Digital Equipment Corporation
Maynard, Massachusetts

ADVANCED FOCAL

TECHNICAL SPECIFICATIONS

D EC-08-AJBB-D L

ADVANCED FOCAL
TECHNICAL SPECI FICATIONS

For additional copies order No. DEC-08-AJBB-DL from Program Library, Digital Equipment

Corporation I Maynard I Mass. Price: $5.00

DIGITAL EQUIPMENT CORPORATION 0 MAYNARD J MASSACHUSETTS

Copyright © 1969 by Digital Equipment Corporation

The following are registered trademarks of Digital
Equipment Corporation, Nbynard, Massachusetts:

DEC
FLIP CHIP
DIGITAL

ii

PDP
FOCAL
COMPUTER LAB

1 st Printing Apri I 1969

2. 1

2.1.1

2.1.2

2.1.3

2.1.4

2.1 .5

2.1.6

2.1.7

2.1.8

2.1.9

2.1.10

2.1.11

2..2

2.3

2.3.1

2.3.2

2.3.3

2.4

2.5

2.6

2.7

2.8

2.9

2. 10

2.11

2.12

2.12.1

2.12.2

2.13

Type, Ask

Literals

CONTENTS

CHAPTER 1
INTRODUCTION

CHAPTER 2
COMMANDS

Numerical Input Formats

Alphanumeric Input Formats

Speci a I Characters

Print Positions

Symbol Tab Ie

Output Formats

Term i nators

Off-Line Data Tapes (c.f., Section 4.5.3)

Corrections

Roundoff

DO

Editing and Text Manipulation Facilities

Command- Input

ERASE

MODIFY

FOR

IF

GOTO

RETURN

QUIT

COMMENT

CONTINUE

SET

High-Speed Reader

General

Other Rules

The Functions

iii

Page

2-1

2-1

2-1

2-1

2-2

2-2

2-2

2-3

2-3

2-3

2-3

2-3

2-4

2-4

2-4

2-5

2-5

2-6

2-6

2-7

2-7

2-7

2-7

2-7

2-7

2-8

2-8

2-8

2-10

2.13.1

2.13.2

2.13.3

2.13.4

2.13.5

2. 13.6

2.13.7

2.13.8

2.14

2.14.1

2. 14.2

2.14.3

2.15

3.1

3.2

3.3

3.4

3.4.1

3.4.2

3.4.3

3.4.4

3.4.5

3.4.6

3.4.7

3.4.8

3.4.9

3.5

3.5.1

3.5.2

3.5.3

3.5.4

CONTENTS (Cont)

General

Analog to Digital

Extended Functions

Random Numbers

Standard Functions

Using the Arctangent

Boolean Functions

FNEW - A User Functions

The Li brary Command

L-Command For Single User System

LIBRA Command Specifications for Multi-User Systems

DF32 FOCAL FILE STRUCTURE

Write

CHAPTER 3
FOCAL USAGE

Requirements

Loadi ng Procedure

Initial Dialogue

Operation

Restart Procedure

Keyboard Error Recovery

Parentheses

Trace Feature

Variables, Functions and Numbers

Error Di agnosti cs

Arithmetic Priorities

ASCII data

Indirect Commands

Saving Focal Programs

Paper Tape

LINC Tape

Disk Monitor System

Disk System and Extended Functions

iv

Page

2-10

2-10

2-11

2-11

2-11

2-12

2-13

2-13

2-13

2-13

2-14

2-15

2-16

3-1

3-1

3-1

3-1

3-1

3-2

3-2

3-2

3-2

3-2

3-3

3-3

3-3

3-4

3-4

3-4

3-4

3-5

CONTENTS (Cont)

Page

3.5.5 Di sk System and Extended Memory 3-6

3.5.6 For 4-user FOCAL SAVE command, see Section 4.6.6 3-7

3.5.7 EAE Patch for FOCAL, 1969 3-7

CHAPTER 4
PROGRAM SPECIFICATIONS

4.1 Machine Requirements 4-1

4.2 Design Specifications 4-1

4.2.1 Design Goals 4-1

4.2.2 Input 4-1

4.2.2.1 Input Format 4-1

4.2.2.2 Character Set 4-1

4.2.3 Output 4-2

4.2.3.1 Output Format 4-2

4.2.3.2 The Input/Output and Interrupt Processor 4-2

4.2.4 Organization 4-3

4.2.4.1 Arithmetic Package 4-3

4.2.4.2 Storage 4-3

4.3 Hardware Errors 4-4

4.4 Internal Environment 4-4

4.4.1 Adding a User's Function; FNEW(Z) 4-4

4.4.2 Internal Subroutine Conventions 4-6

4.4.2.1 Calling Sequences 4-6-

4.4.2.2 Subroutine Organization 4-7

4.4.3 Character Sorti ng 4-7

4.4.4 Language 4-8

4.5 Notes 4-9

4.5.1 Core Uti lization 4-9

4.5.2 Extended Functions 4-9

4.5.3 Error Pri ntouts 4-10

4.5.4 No Interrupts 4-10

4.5.5 Operating HS Reader Without Interrupts 4-10

4.5.6 Non-Typing of Program Tapes During Loading 4-10

4.5.7 Explanation of NAGSW (Not Allor Group Switch) 4-10

v

4.5.S

4.5.9

4.5.10

4.6

4.6.1

4.6.2

4.6.3

4.7

4.7.1

4.7.2

4.7.2.1

4.7.3

4.7.3.1

4.7.3.2

4.7.3.3

4.7.3.4

4.7.3.5

4.7.4

4.S

4.S.1

4.S.2

4.9

5.1

5.1.1

5.1.2

5.2

5.2.1

5.2.2

5.2.2.1

5.2.2.2

5.2.3

CONTENTS (Cont)

Data Inaccuracies

Estimating the Lenght of User's Program

F OCA L Systems

FOCAL Systems Assembly

FOCAL Binary Paper Tapes

FOCAL Listings

FOCAL Segments

8K Single User Overlay - SK

Extended Precision Overlay - 4Word

Double Precision Multiply in Four-Word FOCAL

Four User Overlay - QUAD

Four User Loading and Operating Procedure

Swapping

Workload and Timing

Special Controls

Dialogue

Graphics for Circles and Lines - CLIN

FOCAL Demonstrations

One-Line Function Plotting

How to Demonstrate FOCAL's Power Quickly

FOCAL Versus BASIC

CHAPTER 5
ADDITIONAL FOCAL APPLICATIONS

FOCAL for the LAB-S

Standard

Additionsl (Possible) FOCAL Functions for AX-OS

F NEW for Data Arrays

Storage Requirements

Usage

Loading

Ca II i ng Sequence

Recursive Calling

vi

Page

4-11

4-11

4-11

4-12

4-14

4-15

4-15

4-15

4-15

4-15

4-16

4-16

4-16

4-17

4-17

4-17

4-17

4-18

4-22

4-22

4-23

4-23

5-1

5-1

5-1

5-3

5-3

5-3

5-3

5-4

5-4

CONTENTS (Cont)

Page

5.2.4 Restr i ct ions 5-4

5.2.5 Description 5-4

5.3 Dynamic Interrupt Processing via FOCAL, 1969 5-5

5.4 Simultaneous Equations' Solutions 5-6

5.5 Fast Fourier Transforms Programs 5-6

5.6 Travel Voucher to Expense Voucher Conversion Program 5-8

5.7 Twins Demo 5-10

APPENDIX A
FOCAL COMMAND SUMMARY

APPENDIX B
ERROR DIAG NOSTICS

APPENDIX C
EXPLANATION OF NEW INSTRUCTIONS

APPENDIX D
FOCAL CORE LAYOUT

APPENDIX E
SYMBOL TABLE AND OTHER TABLES/LISTS

APPENDIX F
FOCAL SYNTAX

APPENDIX G
ILLUSTRA TIO NS

ILLUSTRA TIO NS

4-1 Figure 4-1 4-8

D-1 FOCAL Core Layout Dynamic Storage D-4

G- 1 (Sheet 1) Arithmetic Evaluation G-l

G- 1 (Sheet 2) Arithmetic Evaluation G-2

G- 1 (Sheet 3) Arithmetic Evaluation G-3

G-l (Sheet 4) Arithmetic Evaluation (Analysis of Functions) G-4

G-2 Command/Input G-5

G-3 Main Control and Transfer G-6

G-4 DO Command G-7

G-5 (Sheet 1) Input/Output Commands G-8

G-5 (Sheet 2) Input/Output Commands G-9

vii

ILLUSTRATIONS (Cont)

Page

G-6 Iteration Control G-10

G-7 Conditional Branch Command G-ll

G-8 Character Editing G-12

G-9 (Sheet 1) ERASE and Delete G-13

G-9 (Sheet 2) ERASE and Delete G-14

G-10 (Sheet 1) Interrupt Hand ler G-15

G- 1 0 (Sheet 2) Interrupt Hand ler G-16

G-ll Variable Look-up and Enter G-17

G-12 Character Unpacking G-18

G-13 IIFINDLNIJ Routine G-19

TABLES

4-1 FOCAL Source Segments 4-13

4-2 Allowable FOCAL Systems 4-13

4-3 Variations for FOCAL Systems 4-14

8-1 Error Diagnostics of FOCAL, 1969 B-1

C-1 New Instructions C-3

D-1 FOCAL Core Layout Usage D-1

D-2 Detai led FOCAL Core Layout D-2

F-1 Syntax in Backus Norma I Form F-1

F-2 F OCA L Commands in French F-2

viii

CHAPTER 1

INTRODUCTION

FOCAL t is a service program for the PDP-8 family of computers, designed to help scientists,

engineers, and students solve numerical problems.

The FOCALT.M·language is used as a tool in a conversational mode; that is, the user creates

his problem step by step, while sitting at the computer; when the steps of the problem have been

completed, they can be executed and the results checked. Steps can be quickly changed, added or

deleted.

One great advantage of a computer is that once a problem has been formulated, the machine

can be made to repeat the same steps in the calculation over and over again. Until now, the job of

generating the program was costly, time-consuming, and generally required the talents of a specialist

called a programmer. For many modest jobs of computation, a person unfamil iar with computers and

programming would use a desk calculator or slide rule to avoid the delays, expense, and bothersome

detail of setting up his problem so that the programmer could understand it.

FOCAL circumvents these difficulties by providing a set of simplified techniques that permit

the user to communicate directly with the computer. The user has the advantages of the computer put

at his disposal without the requirement that he master the intricacies of machine language programming,

since the FOCAL language consists of imperative English statements in standard mathematical notation.

FOCAL is flexible; commands may be abbreviated, and some may be concatenated within

the same line. Each input string or line containing one or more commands is terminated by a carriage

return •

A great deal of power has also been put into the editing properties of the command language.

Normally, deletions, replacements, and insertions are taken care of by the line number which indicates

the replacement or repositioning of lines. If single characters are to be changed within a FOCAL com­

mand line, it is not necessary to retype the entire string. The changes may be executed by using the

MODIFY command. Thus, complex command strings may be modified quite easily.

In operation, the program indicates that it is ready to receive input by typing an asterisk.

On-line command/input may be either direct (to be executed immediately) or indirect (to be stored

and executed later) commands. An example of a direct command is

*TYPE 5*5*5, 1 (User)
= 125.000* (PDP-8)

The final asterisk indicates that FOCAL is ready for its next command. All commands may be given in

immediate mode (see Appendix A).

t£ormulating 9n-Line Salculations in ~Igebraic !:.anguage (or FORmula CALculator)

T.M·Trademark of the Digital Equipment Corporation, Maynard, Mass.

1-1

Text input requires that a numerical digit, in the form ab .cd and within a range of 1 .01 to

31 .99, follow the *. The number to the left of the period is called the group number. The nonzero

number to the right is called the specific line or step number. While keying in command/input strings,

the rubout key and the left arrow may be used to delete single characters or to kill the entire line,

respectively.

Since the command decoder is table driven, FOCAL can be modified by a small binary tape

to understand foreign languages commands. (See Appendix F-2)

FOCAL is written especially for the educational and engineering markets and is intended to

be used as a problem solving tool. It gives quick and concise reinforcement, minimizes turnaround

time, and provides an unambiguous printed record.

FOCAL is also an extremely flexible, high accuracy, high resol ution, general-purpose desk

calculator and demonstration program.

This document describes the language, operating procedures for Disk Monitor and FOCAL;

use of High Speed reader; addition of user function FNEW; and many other details of interest. Symbol

tables, lists, and flow-charts are included.

There are also descriptions of the lO-digit overlay, 4 user overlay, and the complete

graphics function.

1-2

CHAPTER 2

COMMANDS

2. 1 TYPE, ASK

The TYPE and the ASK statements are used for output and input of literals, alphanumeric

calculations, and formats. The simplest form of the TYPE statement is a command (e.g., TYPE A *1 .4).

This will cause the program to type =, evaluate the expression, and type out the result. Several

expressions of this kind may be typed from the same statement if the expressions are each ended by

commas.

The ASK statement is similar to the TYPE statement in form, but only single variable names

can be used instead of expressions, and the user types in the values.

2.1.1 Literals

For output of literals, the user may enclose characters in quotation marks. The carriage

return will automatically generate closing quotation marks. The bell may only be inserted during

initial input, not via the MODIFY command.

2.1.2 Numerical Input Formats

Keyboard responses to ASK inputs may

a • have lead i ng spaces

b. be preceded by + or - sign if desired or required

c. be in any fixed point or floating point format

d. be terminated by any terminating character, carriage return, or ALTMODE. It is
recommanded, however, that the space be adopted as the conventional and general purpose input
terminator. The AL TMODE is a special nonprinting terminator that may be used to synchronize the
program with external events. For example, to insert special paper in the teletype before executing
the program, type Ask Ai GO and RETURN, then load the paper, and hit ALTMODE. The value of
the variable used remains unchanged.

2.1.3 Alphanumeric Input Formats

Input data that is in response to an ASK command may take any format, may be signed or

unsigned, and must be terminated by a legitimate terminating character (space, CR, comma, I, etc.).

This means that alphabetic input may also be accepted by an ASK input command (see 3.4.9). This is

done by a simple hash-coding technique so that the program can recognize keyboard responses by a

single comparison. See example under the IF command for an illustration of how to program the

2-1

recognition of the user reply "WAIT". This is possible because the leading zero causes a character

string to be interpreted as a number. (e.g.,

TYPE OANSWER = 0.26130E+22).

Any literal word containing the letter "E" twice in one input will cause the ASK statement to be

terminated as the program interprets this letter as an exponent.

2.1.4 Special Characters

The exclamation point (!), percent (%), dollar sign ($), and the number sign (#) may be

used next to quotation marks or by themselves. They cannot be used to terminate alphanumeric

expressions. They may be used in either TYPE or ASK commands.

The TYPE statement precedes its numerical typeouts with an equal sign (=) before beginning

the output conversation process. The ASK statement types a colon (:) when it is ready to receive key­

board data.

To type an expression before its results, the user may enclose the expression in question

marks. This is a special use of the trace feature.

*TYPE ?A *5.2?
A *5.2=+ 10.40

*

2.1.5 Print Positions

Carriage returns are not automatically supplied at the termination of a typeout. To supply

carriage returns within a TYPE or ASK statement, the exclamation mark (!) is used. This is similar to

the use of the slash in FORTRAN format statements.

Occasionally, it is desirable to return the carriage and type out again on the same line

without giving a line feed. A number sign (#) returns the print mechanism to the left hand margin but

does not feed the paper forward. This feature may be used to plot another variable along the same

coordinate.

2.1.6 Symbol Table

TYPE. $ (dollar sign) causes the contents of the symbol table to be typed out with the current

values of all variables created. The symbol table is typed with subscripts and values in chronological

order. The routine then returns as though a carriage return had been encountered in the TYPE state­

ment, thereby terminating the TYPE command. Both the TYPE and the ASK statements may be followed

by a semicolon (;) and other commands, unless a $ is in the string.

2-2

2.1.7 Output Formats

The output format may be changed within a TYPE statement by %X. YY, where X and YY are

positive integers less than 31. X is equal to the total number of digits to be output and YY is equal

to the number of digits to the right of the decimal point.

During output, leading zeroes are typed as spaces. If the number is larger than the field

width indicates, FOCAL wi II convert to E format. E format is also specified by % alone. (Floating­

point decimal: ±O.XXXXXXXE±Y, where E means "10 to the Yth power".) The current output format

is retained unti I expl i citly changed. If a number is too large for the current format, the E format is

used temporarily.

2.1.8 Terminators

In the ASK statement, arguments are scanned by the GETARG Recursive Routine and may

therefore be terminated by any legitimate terminating character (e.g., space, comma, *, etc.). In

the TYPE statement, arguments are scanned by the EVAL Recursive Routine and must therefore be ter­

minated by comma, semicolon, or carriage return. In either the TYPE or ASK statement, command

arguments may be preceded by format control characters # ! ". Example:

*ASK?A B C ?
A :5, B :6 C :7) *

All commands except WRITE, RETURN, MODIFY, QUIT and ERASE may be combined on the same line

if separated by a semicolon.

2. 1 .9 Off-Line Data Tapes (c.f., Section 4.5.3)

To prepare data tapes off-line, type the data word, the terminating space, and the "here-is"

key. Use backspace and rubout to remove characters off-I i ne .

2. 1 .10 Corrections

For editing input to an ASK command before the input has been terminated, the left arrow

(+-) is used.

2.1.11 Roundoff

Numbers to be typed out are rounded-off to the last significant digit to be printed (i .e.,

the rightmost digit of the requested format) or to the sixth significant digit, whichever is smaller.

2-3

2.2 DO

The DO command is used chiefly to form subroutines from single lines, groups of lines, or

from the entire text buffer. Thus, the instruction DO 3.3makes a subroutine of line 3.3. For a single

line subroutine, control wi" be returned when the end of the I ine is encountered or when the I ine is

otherwise terminated (e.g., by a RETURN statement, or in the case of TYPE, with the $).

One of the most useful features of a command language of this type is the ability to form

subroutines out of entire groups. Thus, the statement DO 5 calls all of group 5 as a subroutine

beginning with the first group 5 line number. Control wi II then proceed through the group numbers

going from smaller to larger. A return or an exit is generated from this type of subroutine by using the

word RETURN, or by encountering the end of that group, or by transferring control out of the group via

a GOTO or IF command. Simi larly, the entire text buffer may be used as a recursive subroutine by

simply using DO or DO ALL.

The DO statement may be concatenated with other legitimate commands by terminating it

with a semicolon. Thus, a single I ine may contain a number of subroutine caUs. In this way, several

forms of complex subroutine groupings may be tested from the console.

The number of DO commands which may be nested linearly or recursively is limited only by

the amount of core storage remaining after inclusion of the text buffer and the variable storage.

2.3

2.3. 1

NOTE

When a GOTO or IF statement is executed within a DO
subroutine, control is transferred immediately to the
object line of the GOTO command; that line will be
executed and return made to the DO processor. If the
next line number is within the group (if this is a group
subroutine), it will be executed. If, however, a line
number outside of that group is about to be executed,
then a return will be made from the DO subroutine and
if any of the DO command line remains, it will be
processed.

EDITING AND TEXT MANIPULATION FACILITIES

Command-Input

A line number which has already been used and is reused in a new input will cause the new

input to replace the line that previously had that number. Insertions are made at the appropriate point

in a numerically-ordered string of lines. For example, line number 1 .01 (the smallest line number)

will be inserted in front of (or above) line number 1 .1. The largest line number is 15.99.

2-4

2.3.2 ERASE

Removal of a single line may be made by using the ERASE command. For example, ERASE

2.2 will cause line 2.2 to be deleted. No error comment will be given if that line number does not

exist. The command ERASE 3 or 3.0 will cause all of group 3 to be erased. To delete all of the text,

one must type the words ERASE ALL.

ERASE, used alone, has the function of merely removing the variables. This may also be

thought of as initializing the values of the variables to zero.

To examine a single line, type WRITE followed by the line number. For example, WRITE

3.3 will cause line 3.3 to be typed out with its I ine number on the Teletype. WRITE 4.0 wi II cause all

of group four to be written on the Teletype. WRITE ALL will cause all of the text to be printed on the

Teletype, left justified, with title and line numbers in numerical order.

2.3.3 MODIFY

When only a few characters of a particular line must be replaced, the MODIFY command is

used to avoid replacing the entire line. For example, to change characters in line 5.41, type MODIFY

5.41. This command is terminated by a carriage return, and the program waits for the user to type that

character at which he wishes to make changes or additions. The program will then type out the con­

tents of that line until the search character is typed. (The search character is not echoed when it is

first keyed in by the user.) The program will now accept input.

At this point, the user has seven options:

a. type in new characters in addition to the ones that have already been typed out;

b. type a form-feed; this will cause the search to proceed to the next occurrence, if any,
of the search character;

c. type a bell which allows him to change the search character just as he did when first
beginning to use the MODIFY command;

d. use the rubout key to delete characters going to the left;

e. type a left arrow to delete the line over to the left margin;

f. type a carriage return to terminate the line at that point and move the text to the right;

g. type line-feed to save the remainder of the line.

The ERASE ALL and MODIFY commands are generally used only in immediate mode, as

these commands return to command mode upon completion. The reason for this is that internal pointers

may be changed by these commands.

During command/input, the left arrow wi II delete the line numbers as well as the text.

During the MODIFY command typing the left arrow will not delete the line number.

When the rubout key is struck, a backslash (\) is typed for each character that is deleted.

2-5

2.4 FOR

NOTE

Any modifications to the text will cause the variables
to be deleted as if an ERASE command had been given.
This is caused by the organization of the data structure.
It is justified by the principle that a change of program
probably means a change of variables as well.

This command is used for convenience in setting up program loops and iterations. The

general format is:

FOR A = B, C, D;---.

The index A is initial ized to the value B, then the command string following the semicolon is executed

at least once. When the carriage return is encountered, the value of A is incremented by C and com­

pared to the value of D. If A is less than or equal to D, then the command string after the semicolon

is executed again. This process is repeated until A is greater than D.

Naturally, A must be a single variable; but B, C, and D may all be expressions, variables,

or numbers. The computations involved in the FOR statement are done in floating point arithmetic. If

comma and the value C are omitted, then it is assumed that the increment is one. For example:

SET B = 3; FOR I = 0, 10; TYPE Btl, ! (po'Aer of 3)

2.5 IF

To provide transfer of control after a comparison, we have adopted the IF statement format

from FORTRAN. The normal form of the IF statement contains the word IF, followed by a space, a

parenthesized expression, and three line numbers separated from each other by commas. The program

will GOTO the first line number if the expression is less than zero, the second line number if the

statement has a value of zero, and the third I ine number if the value of the expression is greater than

zero.

Alternative forms of the IF command are obtained by replacing the comma between the line

numbers by a semicolon. In this case, if the condition is met which would normally cause the program

to transfer to a line number past that position, then the remainder of the line will be executed.

Example:

ASK REPLY
IF (REPLY-OWAIT)6.4, 5.01; RETURN
IF (REPLY - OYES) 6.3, 5.02; 6.3

2-6

2.6 GOTO

NOTE

The IF command could occasionally fail to take the
= 0 branch due to internal computation and truncation
errors.

This command causes control of the program to be transferred to the indicated line number.

A specific line number must be given as the argument of the GOTO command. If command is initially

handed to the program by means of an immediately executed GO, control will proceed from low num­

bered lines to higher numbered lines as is usual in a computer program. Control will be returned to

command mode upon encountering a QUIT command, the end of the text, or a RETURN at the top level.

The operation of the GOTO is slightly more complicated when used in conjunction with a

FOR or a DO statement. Its operation is perfectly straightforward when used with any other statement.

2.7 RETURN

The RETURN command is used to exit from DO subroutines. It is implemented internally by

setting the current program counter to zero. When this situation is encountered by the DO statement

it exits. (Refer to the DO command, Section 3.2.).

2.8 QUIT

A QUIT causes the program to return immediately to command/input mode, type *, and

wait.

2.9 COMMENT

Beginning a command string with the letter C will cause the remainder of that line to be

ignored so that comments may be inserted into the program.

2. 10 CONTINUE

This word is used to indicate dummy lines. For example, it might be used to replace a line

referenced elsewhere without changing those references to that line number.

2. 11 SET

The SET command for arithmetic substitution is used for setting the value of a variable equal

to the result of an expression. The SET statement may contain function calls, variable names, and

2-7

numerical literals on the right hand side of the equal sign. All of the usual arithmetic operations plus

exponentiation, may be used with these operands. The priority of the operators is a standard system:

+-/* t. These, however, may be superseded by the use of parenthetical expressions. The SET state­

ment may be terminated by either a carriage return or a semicolon, in which case it may be followed

by additional commands. For example:

SET AA=B(5+<6+CONST>*AlPHA/ [5/BETA]);GOTO 3.2

2.12 HIGH-SPEED READER

2.12.1 General

The asterisk (*) is also used as a flip-flop control over the selection of the input device to

be used by a FOCAL program. (See the examples that follow.) An out-of-tape condition will return

to low-speed reader input and change the status of the * flip-flop. An error condition, however, does

not change that * flip-flop (see notes below).

For example, typing:

:* ~
will read in a program tape or a series of immediate commands.

**;ASK ABCDZ

will fill AB with data from tape. If tape is empty, control will return to command mode.

1 .1; FOR 1=1, 5; ASK AX(I)
*00 1.1

If the tape contains fewer than 5 pieces of data, then remaining items are taken from keyboard. (See

c below.)

2.12.2 Other Rules

a. * as a command may be concatenated with other processes [JMP (PROC):

(e.g., 01.30*; ASK A, B;*)

b. If an out-of-tape condition is encountered while reading commands, then the input
device is switched to keyboard and all is returned to normal. (This occurs when the user has no reader.)
It is equivalent to receipt of a left arrow. [JMP (IBAR)].

c. If an out-of-tape condition occurs while executing an ASK command, then FOCAL
responds as if the end of the command line (carriage return) has been reached. [ISZ PDlXR; POP J]

Thus,

:*; ASK A,B,C,D

produces:::(out of tape on C): and the user is back to normal mode.

2-8

*

However,

*ERASE
~*; for 1=1, 20; ASK A(I); TYPE I, ! .

:=1.0000
: = 2.0000
: = 3.0000
: (out of tape for 1=4)
: (now accepting from keyboard) 123, = 5.0000
: 345, = 6.0000
: ?01 .00 (Control-C typed)
* TYPE $
I@ (00) = 7.0000
A@ (01) = (data from tape)
A @ (02) = (data from tape)
A @ (03) = (data from tape)
A @ (04) = .0000
A @ (05) = 123.0000
A @ (06) = 345.000

d. When an error occurs from the reader (illegal command, etc.), the code will be typed
out and input device control returned to the low-speed device. However, the device flip-flop (HSPSW)
will still indicate that the reader is active. Consequently, it will be necessary to give two asterisks
before the reader will be activated again.

**
*****?12.83 (Buffer full)

**
**
(reader now active again).

e. It is necessary to have a fairly long timing loop to detect the out-of-tape condition
(slow readers, reatart delays, etc .). As a result, the user of a PDP-8/s may encounter long delays if
there is no high speed reader or when the reader is out of tape. However, the initial dialogue makes
a correction for this when an 8/5 is being used.

f. Since the reader operates with the interrupt on, one may use Control-C to return at
once to keyboard input mode. A manual interrupt via Control-C (?01 .00) or a console restart (?OO.OO)
gives the same effect.

g. All commands, including "*" may be executed in immediate mode from the high speed
reader. This has several beneficial results:

(1) Program tapes may be composed that are self-protecting and self-starting

ERASE ALL (protection)
01.10 ASK "Power of 2?"REPLY (input indirect program)
01.30 TYPE 2 REPLY, !, GOTO 1 . 1
(etc)
GOTO 1.1
5, 3, 1

(starting)
(data)

This particular program is an infinite loop and must be stopped by a Control-C
from the keyboard.

2-9

2.13

2.13.1

(2) Programs may chain themselves together.

ERASE ALL
3.4 TYPE IINUMBER 111!! !; ASK A
3.5 * (indirect command)
*; GO (device restored to low speed and program

started)

The printout from this tape will be:

**

(START READER)
NUMBER 1

(Three I ines accepted)
(Erase processed)

: (waiting for keyboard input») (user)

(execution of 3.5 * at this point wi" reactivate the high speed reader).

(3) Immediate mode commands on the tape allow maximum storage for variables.

(4) If the interrupts are disabled by the patches shown in Section 4.5.3, then two
tapes may be merged from both high- and low-speed readers by a resident FOCAL
program.

THE FUNCTIONS

General

The functions are provided to give extended arithmetic capabilities and the potential for

expansion to additional input/output devi ces. There are basically three types of functions. The first

group contains integer parts, sign part, square root, fractional, and absolute value functions. The

second group has the input/output for scope and analog/digital converter functions. The third group

has extended arithmetic computations of trigonometric and exponential functions.

A function call consists of no more than four letters beginning with the letter F and followed

by a parenthetical expression (e.g., FSGN (A-B *2». This expression is evaluated before transferring

to the function process itself.

2. 13.2 Analog to Digital

a. Input

T~e function FADC(X) is used to take a ra:lding from an analog-to-digital converter.
The value of the function is a 12-bit integer reading. The argument "X II is the channel member (AX08)
in decimal. Additional version of the ADC function could be designed to provide for synchronization
by a c lock or other means. (c. f., Chapter 5)

*SET A=FADC () *5

2-10

b. Output

The scope function FDIS (expression, expression) is used to set and display an X-V
coordinate on a Model 34 Scope and scope interface. The value returned for each of these functions
is the integer part of the second expression.

*SET Z = FDIS(X,X43/50)

2.13.3 Extended Functions

The extended arithmetic functions (FEXP, FLOG, FATN, FCOS, FSIN) are retained at the

option of the user. They consume approximately 800 characters of text storage area. These arithmetic

functions are adapted from the extended arithmetic functions of the three-word, floating point package.

2.13.4 Random Numbers

A simple random number generator is provided in the basic package as FRANO! An expanded

version could incorporate the random number generator from the DECUS library.

2. 13.5

Functions for other devices are provided as overlay tapes (see Appendix H).

Standard Functions

a. Trigonometric Functions

All arguments are in radians
FSIN () - the sine functions
FCOS () - the cosine function
FATN () - the arctangent

From these functions, the user may compute all other trigonometric functions. (See FOCAL User1s
Manual)

where:

b. Logarithmic Functions
FLOG () - log to the base e or Naperian base
FEXP () - e to the pov..e r

c. Arithmetic Functions
FSQT () - the square root
FSGN () - one (1) with the sign of the argument
FABS () - the absolute value
FITR () - the next smaller integer part maximum of 1024
LOG 10 (ARG) = LOGe (ARG) *LOG

10
(e)

LOG
10

(e) = 0.434295

LOGe (10) = 2.30258

e = 2.71828

1 degree = .0174533 radians
1 rod ian = 57 • 2958 degrees

2-11

2.13.6 Using The Arctangent

An arctan function cycles between + IT/2 and - IT/2. Thus, to get a correct range for 0-2lT

radians from the expression FATN(y /X), we must use the signs of X and Y.

X Y FATN(X/y)

+ + O-PI/2

+ PI/,2 - PI

PI - 3*PI/2

+ 3 * PI/,2 - PI *2

I i..j OEX l\ Y FUNCTION em'it-' LJ T E [)
= 0.0f)= 1.00= 0. {1V;= (7;.000(1nr = P.0CilfHiW0
= {j. 30= 0.96= 0.3f,= 0. 300~}0~i = fl. ~00000
:: 0.60= 0.83= 0.57= (/'.600000 = P.6Ci'i!('P00
= (1).90= ~j. 62= 0.78= 0.900000 = ~l. 900f10~

= 1.20= 121.36= ~l. 93= 1.20e,000 = 1 • 2lil000~!
= 1.5')= 0.07= 1.0fi= 1.50vHJ00 = 1.5011'0(110
= 1.80=- 0.23= 0.97=- 1.3.4] 6CO =] • R0f,~Hi)fl
= 2.110=- 0.51= 0.86=- 1. e41 M"~ = 2. 1 ~~Ci'l000
= 2.40=- 121.74= (;).68=- ~).741595 = 2.40f'0(i1C7'
= 2."10=- 0.91= 0.43=- 0.441595 :: 2.70000'"
= 3.100=- 0.99= 0.14=- 0.141595 3.00v'lIif\(ij
= 3.30=- 0.99=- 0.16= (1.158403 3.300t7·0fi
:: 3.60=- v).90=- 121.44= 0.4584'-"2 = 3. 60C?""j0
= 3.910=- 0.73=- 0.69= 0.758402 = 3.9f':fI 00V
= 4.20=- 0.49=- 0.87= 1.05840C;' = 4.2~000(7:

= 4.510=- 0.21=- 0.98= 1.3584f:ie, = 4.500000
= 4.80= 0.09=- 1 .00=- 1.483200 = 4.80000P
= 5.10= 0.38=- 0.93=- 1.1832vH:, = 5. 100f7,00
:: 5.40= 0.64=- 0.77=- 0.883196 = 5.400000
= 5.70= 0.84=- 0.55=- ~j. 583195 = ~h 7f,0~HH)

= 6.00= 0.96=- 0.28=- 0.283198 = 6. 0000f'o~
:: 6.30= 1.00= 0.02= 0.0168~'2 = 0.016802
= 6.60= 0.95= 121.31= 121.316803 = 0.316803
= 6.90= 0.82= 0.58= 0.616800 = 0.616800

C-FOCAL ~ 8/68

01.05 T !!!!" INDEX X Y FliNCTION COMPUTED
01.10 FOR I=0~.3~7J TYPE !~%4.02~IJD 2
01.20 TYPE !!!!J~RITE ALL
01.30 QUIT

02.10 ~ET Y=FSINC!)J SET X=FCOS(I)
02.20 TYPE X~Y~%8.06~rATNCY/<X+IE-10»J DO 13J TYPE THJ

13.10 IF CX)13.3~13.2.13.3
13.20 S~T X=lE-100
13.30 S~T TH=FATN(FABS<Y/X»
13.~0 SET PI=3.141596
13.50 IF (Y) 13.61 IF (X) 13.7J RETURN
13.60 IF C~) 13.8JSET TH=PI+PI-THJ RETURN
13.70 SET TH=PI-THJ RETURN
13.80 SET TH=PI+THJ RETURN

•

2-12

2.13.7 Boolean Functions

TRUE is +1
FALSE is -1

*D 15
A B

=-1=-1
=-1= 1
= 1=-1
= 1= 1

AND
=-1 =
=-1 =
=-1 =
= 1

XOR is A*B

OR
-1

1
1
1

NOR is FSGN(-A-B)
OR is FSGN(A+B)
AND is FSGN(A+B-1)
NOT(A) is -A

NOR
1::::
1=
1::::

-1::::

The result of adding A and B is

CARRY = FSGN(A+B-1)
SUM = -A*B

*
*WRITE 15

XOR
1

-1
-1

1

CARRY
::::-1::::-1
::::-1:::: 1
=-1= 1
= 1 =-1

SUM

15.05 TYPE II A B AND OR NOR XOR CARRY SUM" !
15.10FORA=-1,2,1;FORB=-1,2,1;TYPEA,B," "DO 15.2
15.15 QUIT
15.20 TYPE FSGN(A+B-l),FSGN(A+B),FSGN(-A-B),A*B," "FSGN(A+B-1),-A*B,!

*

2. 13.8 FNEW - A User Function

This function name may be used to call a machine language routine for any reason.

(See Section 4.4. 1)

2.14 THE LIBRARY COMMAND

The form and usage of this mass storage command will vary with the computer and FOCAL

system used. (c. f • , 4.6)

2.14.1 L -Command For Single User System

The command may be given in either direct or indirect mode. Execution of this command

first causes the octal typeout of the contents of four FOCAL pointers: CFRS, BUFR, LASTV, and

BOTTOM, respectively. The second action is to type out whatever characters follow the ilL II to serve

as operating instructions for the user. The third action is to turn off the interrupts and transfer to the

Disk Monitor or a-Library System by jumping to 7600.

2-13

The four octal numbers represent:

a . the start of text buffer,

b. the end of text buffer,

c. the end of the variable list,

d. the bottom of the push-down list.

These command features will permit optimum usage of available disk storage and be compat­

ible with the Disk Monitor.

After debugging a program, a typical user will execute ERASE and LIB. (This causes Band

C to be equa lin the 4K system.) He will then save the program and restart or call another program.

(See Section 3.4.12)

Manual Chaining may also be done. For example, when a program reaches line 12.3, it

may need to call another routine (as in a series of teaching programs, demos, or math subroutines).

The user, however, must be given instructions on how to proceed:

12.30LlB .CALL LES2

For example, execution of 12.3 may produce:

3206
3345
3401
4407

.CALL LES2

.CALL LES2

. START

*

[User types thi s]

In the 8K Version, the text and variables are stored independently. For this reason, the 8K

version can have different programs operating on the same data. (See Section 3.4. 14)

2. 14.2 LIBRA Command Specifications for Multi-User Systems*

Four modifiers of the LIBRARY command are implemented to allow automatic program

storage, retrieval, and management in multi -user FOCAL. This extension to the FOCAL system is

implemented under the segment name LIBRA and requires at least an 8K PDP-8 with one DF32.

The LIBRARY command and its variations are:

a. To save a program on disk,

LI BRA SAVE name ~

Where IJname 1/ is a 1 to 4 character identifier and) is described in the FOCAL language specifications.

*Not completed

2-14

Errors:

(1) A program with an identical name has been found in the directory list

(2) Name missing from command

(3) Disk I/O error (non-recoverable)

b. To call a program on disk,

LIBRA CALL name ~

Errors:

(1) No such program on directory list

(2) Name missing from command

(3) Disk I/O error (non-recoverable)

c. To delete a program from disk,

LIBRA DELETE name ~

Errors:

(1) No such program name in directory list

(2) Name missing from command

(3) Disk I/O error

d. To list the directory

LIBRA LIST)

Errors:

(1) Disk I/O error

NOTE

This command will destroy any program by an effective
IIERASE ALL II.

The directory is printed ten across for as many lines as necessary.

2.14.3 DF32 FOCAL FILE STRUCTURE

Programs are stored in blocks 1600
S

words long. This allows 36 blocks of storage on one

DF32 and a directory of 512 words or 256 entries. This directory is sufficient for the maximum DF32

configuration allowable on a PDP-S.

l. Disk 36 blocks

2. Disk 72 blocks

3. Disk 110 blocks

4. Disk 146 blocks

2-15

The directory is a linear list with a maximum size of 512 words (with 2 words/entry). Word position in

the list corresponds to the block position on the disk. The blocks begin at location lOOOS from the end

of the directory and extend in increments of 1600
S

to the end of the disk. The end of the list is an

entry of ones. Unused blocks are indicated by entries of all zeroes.

The LIBRARY functions swap users in the multiple user system. This diminishes the total

number of blocks by the maximum number of allowed users. A disk program is required to clear the

directory, and to set the maximum number of blocks available.

2. 15 WRITE

The WRITE command is used to list the entire indirect program (WRITE ALL or W), specified

groups, or single lines. When all text is printed, a leader-identifier is given at the top of the listing.

This identifies which major version is being used for the particular indirect program. (FOCAL, 1969;

SK FOCAL @ 1969; 4-word @ 1969).

NOTE

The WRITE command disables the trace.

2-16

CHAPTER 3

FOCAL USAGE

3. 1 REQ UIREMENTS

Any 4K PDP-8 family computer with Teletype may be used with FOCAL: PDP-5, PDP-8,

PDP-8/S, PDP-8II, PDP-8/L, LAB-8, LINC-8, TSS-8, PDP-12.

3.2 LOADING PROCEDURE

a. The RIM or Read-In-Mode Loader must be in memory. (See RIM Loader Manual for a
thorough discussion.)

b. The RIM Loader is used to load the Binary Loader. (See Binary Loader Manual for a
comp I ete descri pt i on •)

c. The Binary Loader is used to load FOCAL.

d. Upon halting, press the CONTINUE key, since the program is loaded in two sections.

e. Place 200, the starting address of FOCAL, into the Switch Register when the complete
tape has been loaded.

f. Press the LOAD ADDRESS key.

g. Press the START key.

h. The initial dialogue will begin.

3.3 INITIAL DIALOGUE

The program will identify the DEC 12-bit computer you are using and make appropriate

corrections to itself. If the user determines that extra space is required, the program will permit rejec­

tion of extended functions.

3.4

3.4.1

FOCAL is ready for commands when it types *.

OPERATION

Restart Procedure

There are two methods to restart the system.

Method 1 - Type the character control/C at any time; (FOCAL acknowledges this by typing
?01.00).

Method 2 - a. Put 200 into the Switch Register
b. Press the STOP key
c. Press the LOAD ADDRESS key
d. Press the START key
e. The program will then type ?OO.OO indicating a manual restart, and an

asterisk indicating it is ready to receive input.

3-1

3.4.2 Keyboard Error Recovery

If an error is made while typing commands to FOCAL, one of the following methods may be

used to recover:

a. Use the RUBOUT key on the teletype keyboard to erase the preceding character. The
RUBOUT key echoes \ for each character removed.

b. Use the MODIFY command, with the modify control characters, to search the command
string for any character in error and alter or delete that character.

c. Use Left Arrow to delete over to the left margin.

d. Use Left Arrow to delete input data.

3.4.3 Parentheses

The following parenthetical pairs may be used in any alphanumeric expression: parentheses,

angle brackets « », and square brackets ([]). The program checks to see whether the proper

matching terminator has been used at the correct level. Use of these terminators in different configura­

tions provides additional clarity in reading alphanumeric expressions.

3.4.4 Trace Feature

A trace feature may be used to detect errors, follow program control, and create special

formats. To implement the trace feature, insert a question mark into a command string at any point.

Each succeeding character will then be typed out as it is interpreted until another question mark is

encountered or until the program returns to command-input mode.

3.4.5 Variables, Functions and Numbers

A variable name consists of one or two alphanumeric characters, of which the first must be

a letter. The second character may be A-Z, 0-9, II, I. Additional characters are ignored.

Function names are easily distinguished from variable names because they start with the

letter F. A number always begins with a digit 0-9.

3.4.6 Error Diagnostics

Programming errors are indicated by an error diagnostic. The printout is in the form

?XX.XX@ GG.SS. The first number is a specific error number derived from the core address of the

error call. The GG.SS is the number of the line, if any, of the text which contains the error.

The error diagnostic printouts are intended to be efficient yet informative and expl icit.

Used in conjunction with the trace feature, these wi" pinpoint errors precisely. (See Appendix B).

3-2

3.4.7

3.4.8

3.4.9

Example:

*00 2.35?
SET A=5/C + ?28. 72 (Divide by zero, C=O)

*

Arithmetic Priorities

*
/
+-

Operations of equal priority are executed from left to right (e.g., T 2 t3 t2=64 not 512).

ASCII data

ASCII input of A-Z has the values of 1-26 per digit per letter respectively, thus,

*ASK A; TYPE A
:Z=26.00
*A A; T A
:AZ = 36.00

This is also true for internal numerical constants I ike ONO, DYES, etc.

(See the IF command for an example of this feature.)

The technique may also be used to create a kind of associative memory:

*ASK
:DICK

*ASK
:DICK

Indirect Commands

A; ASK GRADE (A) ~
: 95

A;TYPE GR(A»)
=95

If a Teletype I ine is prefixed by a line number, that line is not executed immediately, but

is stored for later execution. Line numbers must be in the range 1.01 to 31.99. The numbers 0.0,

1.00,2.00,3, etc., are illegal line numbers and are used to indicate the entire group. The number

to the left of the point is called the group number; the number to the right is called the step number.

Execution of indirect commands is begun by an immediate GOTO of DO command. The GOTO com­

mand causes FOCAL to start the program by executing the command at a specified line number (e.g.,

GOTO 1 .3). The GO command causes FOCAL to go to the lowest numbered line to begin executing

the program and continues until it runs out of program text. FOCAL can automatically cross group

boundaries.

3-3

3.5 SAVING FOCAL PROGRAMS

3 .5. 1 Paper Tape

To save a FOCAL symbolic text, type WRITE ALL, turn on the punch, type @ marks for

leader-trailer, and type carriage return. When all of the program has been typed out, type additional

@ marks for more leader-trailer, turn off the punch, and continue your conversation with the computer.

(To save a FOCAL binary program, see Appendix C.l .)

3.5.2 LINC Tape (see Section 2. 14. 1; TCOl via 8-LIBRARY SYSTEM; PDP-12)

On LINC tape, load FOCAL program as follows:

a. Load FOCAL binary tape, execute Initial dialog, and call UPDATE.

NAME: START
SA (OCTAL): 200
MEM LOCATIONS: <4600, 7577 >;

b. Call UPDATE again.

NAME: FOCAL
SA (OCTAL): (none)
MEM LOCATIONS: < 0, 3377 >;

c. Call ing Sequence:

*

FOCAL
START

d. Write the desired FOCAL routine.

e. Give an ilL II command. Four octal numbers will be printed, and control will return to
the Library System.

3.5.3

UPDATE

NAME: (user's choice)
SA (OCTAL): (none)
MEM LOCATIONS: < 0 > < (A), (B) >;

Where "(A)" and II (B) II mean the first and second octal numbers.

f. To call a program:

*

FOCAL
(user's choice)
START

Disk Monitor System (see Section 2. 14. 1)

a. Build the Disk System.

3-4

3.5.4

b. Load FOCAL into field zero.
(If the computer has 8K, use the binary loader in field 1.)
Alternate procedure: Use PIP to place the binary on disk. Then, use LOAD on the
disk file. (This procedure is faster for a teletype, but uses more disk space.)

c. Load Address 200, START, and complete the initial dialogue.

d. Load Address 7600 and START.

e. Initial ize the disk as follows:

. SAVE START!4600-7577;200

.SAVE FOCAL! 0-3377;

f. Run FOCAL .

.) FOCAL

.) START

(Create Program)

g. Save program; return to disk Monitor by giving an L command .

. SAVE (name);O, (A) - (B) [note saving page zero]

h. Run a program (after doing either step f or g) •

. FOCAL)

.CALL (name))

. START) [I inefeed wi II not occur]
*(FOCAL ready)

Steps g and h may be repeated.

Disk System and Extended Functions

To cope with configurations involving deletion of extended functions, proceed as follows:

a. Load FOCAL and start at 7600;

.SAVE START!4600-7577;200

.SAVE INIT:0,3200-4577; [note saving page zero]

.CALL INIT
• START
[Dialogue, answer YES]
*L
.SAVE FOCAL !0-3377;

b. To reinitialize a system without some extended functions, type

.FOCAL

.CALL INIT
• START

[Dialogue, answer NO, YES, i.e., keep sine and cosine]
*L
.SAVE STNY!5200-7577;200

3-5

3.5.5

c. To create a system without any extended functions, type

.FOCAL

.CALL INIT
• START

[Dialogue, answer NO, NO]
*L
.SAVE STNN !5400-7577;200

d. Be sure to use the correct START command with each user program.

(1)

[to use no exponential function version]

.FOCAL

.CALL NEXP

.STNY
*

(2) or

[to use no cosine function version]

.FOCAL

.CALL NCOS

.STNN
*

Disk System and Extended Memory (see section 2. 14. 1)

Follow these operations to set up an 8K version of FOCAL on the disk:

[Bui Id Disk System]
[Load FOCAL]
[Start at 200]
[Dialogue, answer questions.]
*L)
0100 (A)
0121 (B)
3217 (C)
XXXX (D)
.SAVE ST8K! (D) -7577;200
.SAVE FCL81 0 - 3177;
.SAVE NUL8: 10100; 10113

The SAVE command for a finished 8K FOCAL program is

.SAVECODE:1(A) - l(B); 10113

where (A) and (B) are the first and second four digit numbers typed out by the L-command. These are

the field one bounds of the program text. The value of (D) will depend on the functions retained.

3-6

3.5.6

3.5.7

The variables, however, are in field zero. To save a set of data, type:

.SAVE DAT8:0;3200-(C); [note saving page zero, field zero]

To set up a null program with a particular data set, type:

.FCL8

.CALL DAT8

.CALL NUL8

.ST8K

For 4-user FOCAL SAVE command, see Section 4.6.6.

EAE Patch for FOCAL, 1969

7203
7204
7205
7206
7207
7210
7211
7212

3206
1256
7425

o
3253
7501
3255
5227

DCA
TAD
MQL
o
DCA
MQA
DCA
SNP

.+3
MP2
MUY

MP5

MP3
.+15

3-7

CHAPTER 4

PROGRAM SPECIFICATIONS

4.1 MACHINE REQUIREMENTS

The minimum hardware configuration necessary to run this program is a 4K PDP-8 family

computer with ASR-33.

4.2

4.2. 1

Scope, an additional 4K memory, and high-speed reader and punch are available options.

Additional PT08s are added for extra users.

DESIGN SPECIFICATIONS

Design Goals

FOCAL is a conversational language and operating system for a basic PDP-B. It is designed

to faci litate on-I ine editing and execution of symbol ic programs. (For BNF description, see Appendix

F.)

4.2.2 Input

The keyboard, low-speed reader, or high-speed reader may be used for input of program

text and for commands to be executed immediately. Keyboard input is double buffered.

4.2.2. 1 Input Format - See description of the commands in Chapter 2 for format information.

4.2.2.2 Character Set - Input and output characters are in ASCII teletype code. Interpretive opera­

tions are also done internally in expanded ASCII. The text buffer is packed two characters to a word

as follows.

number = represented as: prints as
300 = not packed = ignored: @

301 - 336 = 01 - 36: A-Z
337 = not packed - edit control, kill line: 4-

240 - 276 = 40 - 76: symbols
277 = 37: ?

340 - 376 = 7740 - 7776 (extended codes): non-printing
377 = not packed - edit control, delete preceding character; if a character

is deleted, \ (backslash) is typed.
200 = not packed - ignored: I eader-trailer

210 - 237 = 7701 - 7737: control characters
000 = not packed - ignored: blank tape.

4-1

4.2.3 Output

4.2.3. 1 Output Format - See the TYPE and WRITE statements for format of output. The output

character set is the same as that for input.

4.2.3 .2 The Input/Output and Interrupt Processor - The purpose of the interrupt hand I er and the I/O

buffers is to permit input and output to proceed asynchronously with calculations. This allows an

optimal use of the computer time. When the interrupt handler finds that the teletype output flag has

been raised, it clears that flag and looks to see whether there are any additional characters in the

te I etype output buffer to be pri nted • If there are, it takes the next character from the buffer, pri nts

it, clears that location in the buffer, and moves the pointers. Separate pointers are maintained for

both the interrupt processor and for the program output subroutine (XOUTL). If the interrupt handler

finds that there are no more characters to be output on the Teletype, it will clear the teletype in­

progress-switch (TELSW). If the interrupt handler does output another character, it sets TELSW to a

nonzero value.

When the program desires to place characters in the buffer for the interrupt processor to

print, it makes a call to XOUTL. This routine first checks to see if TELSW has been set. If TELSW is

zero, no further interrupts are expected by the interrupt processor, and the output routine immediate Iy

types the character itself and sets TELSW to a nonzero value. Otherwise, if the interrupt processor is

in motion, then the output routine places the character into the buffer and increments the pointer. If

there is no room in the buffer for additional characters, the low-speed output routine waits until room

is available. The keyboard input processors are similar in organization to the output routines except

that no in-progress-switch is needed and the input is only double buffered.

Another advantage of the interrupt system is that it enables the user to stop program loops

from the keyboard by typing Control C. The recovery routine will then reset the I/O pointers, type

out the message code ?01.00, and return to command mode. Manual restart via the console switches

also goes to the recovery routine, resets the pointers, and types out message code ?OO.OO. In fact I

all error diagnosti cs go to the recovery routine. Error printing is withheld until prior printing is com­

plete. Otherwise, on occasion, a full buffer could be dumped and the error message could be printed

as many as 16 characters before it should have otherwise occurred. This would be misleading when

using the trace mode to discover specific errors within a character string.

The recovery routine may also be called by the interrupt processor if it discovers that there

is no more room in the keyboard buffer. For example, this could occur if the user continues to type on

the keyboard while the program is making computations. Physical evidence of the error is indicated by

failure of the computer to echo characters as the user types.

4-2

4.2.4 Organization

NOTE

This error could also occur when reading a paper tape
program into the text buffer via the low-speed reader.
If the output hardware is slower than the input hard­
ware, more text is read in than is being read out of the
buffer, resulting in failure of the program to empty the
reader buffer as quickly as it is being fj lied up, since
the program synchronizes the reading of the characters
with sending them into the buffers. In other words, the
program synchronizes its side of the I/O buffers, but the
interrupt side of the I/O buffers proceeds at a rate deter­
mined by the hardware. To prevent this type of error with
long input tapes, which were prepared off-line, carriage
returns may be followed by some blank tape whi ch is i g­
nored by the input routines, thereby giving the output
routine time to catch up. This is essentially a hardware
problem since the program is unable to stop the low-speed
reader.

4.2.4.1 Arithmetic Package - The arithmetic is done in the floating point system. The three-word

floating point package allows six digits of accuracy plus the extended functions. The program wi"

eventually use four words as an option. The exponential range is approximately ten to the six hundredth.

Internal accuracy during computations is 6.924 decimal digits.

The four-word floating point system creates ten digits of accuracy, including roundoff. It

does, however, require more storage for variables and for push-down list data.

4.2.4.2 Storage - The major components of the program occupy locations 1-3200. The remaining

storage 3200 - 4600 is used for text storage, variable storage, and push-down storage, in that order.

The text occupies approximately two characters per register. The variables occupy either five or six

locations per variable depending on whether the three- or four-word option is utilized.

Remaining storage is allocated to the push-down list. Overflow wi" occur only when one

of these lists exceeds the remaining storage. This could happen in the case of complex programs which

have multiple levels or recursive subroutine calls. The push-down list contains three kinds of data.

One of these is a single location for push-jump and pop-jump operations. The content of the accumu­

lator is also pushed into the same list in a single register. The third type of push-down storage is

floating point storage (see Appendix D).

4-3

Thi s important storage allocation scheme permits flexibi I ity in the trade off of text size,

number of variables, and complexity of the program, rather than restricting the user to a fixed number

of statements or characters, or to a fixed number of subroutine calls, or to a limited number of variables.

4.3 HARDWARE ERRORS

The 8/S wi II halt at location EXIT +6 if a parity error occurs.

4.4 INTERNAL ENVIRONMENT

4.4.1 Adding a User's Function;FNEW(Z) (c.f., Section 5.2)

The FOCAL system was designed to be easily interfaced for new hardware such as LAS-8,

multiplexed ADCs real-time clocks, or to software such as a nonlinear function.

The information given below, the symbol table, the various lists, and a core layout are in­

tended to be sufficient for all required modifications and patches. This symbolic approach ensures

greater flexibility and compatibility with DEC modifications to FOCAL, other user's routines, and

assembly via PAL III on a PDP-8.

Example: Suppose we had a scope routine to display characters at a given point on a scope.

We will call this routine from FOCAL as function by FNEW (X, Y I SHOW). Here X and Yare expres­

sions to be used as display coordinates for the start of SHOW.

a. First, patch the function branch table.

*FNTABF + 15
XFNEW

b. When control arrives at XFNEW, the X has already been evaluated.

XFNEW, JMS INTEGER /make 12 bit integer
in AC

DXL /set X - coor.
CLA

c. Now, test for the possibi lity of another argument.

TAD
TAD
SZA
JMP

d. Move past the separating comma.

GETC
SPNOR

4-4

CHAR
MCOMMA
CLA
EFUN3I /no more

e. Evaluate the second argument.

PUSHJ

JMS
DYS;CLA
SPNOR
TAD
TAD
SZA
JMP

EVAL
INTEGER

/this FNEW is
/not recursive

/set Y and intensify

CHAR
MCOMMA
CLA
EFUN31

f. Now, pick up the single letters for display until the end of the function is reached.

DCHR, GETC
TAD
TAD
SNA
JMP

CHAR
MRPAR
CLA
EFUN31

Char. display routine called here; (for Tektronics Y002, it is simply PRINTC)

JMP DCHR

g. Definitions from the symbol table are available in Appendix E.

Summary:

a. User defined functions must leave their value, if any, in FLAC and return by a
JMP I EFUN3I.

b. The contents of FLAC is converted to an integer in FLAC and in the AC by a
JMS I INTEGER.

c. The floating point arithmetic interpreter is entered by JMS I 7.

(FOCAL uses its own version of the floating point package.)

d. The address of the user's function is placed by him in the FNTABF list.

e. Location BOTTOM contains the address of the last location to be used for storage. If
BOTTOM is made to contain 4277, for example, then the user has from 4300 to 4577 for
storage of the function processor. The user should achieve his function implementations
using the information given here and in the symbol table without using the actual listing so
that changes made by different users may be compatible and so that they may also be
relocated easily should any changes be made by DEC. (see Section 4.5.1 for Core
Uti lization List)

f. The argument following the function name is evaluated and left in FLAC before control
is transferred to the particular function handler. Since evaluation is terminated by either
a comma (,) or a right parenthesis, a special function could have more than one argument.

Only in the case of multiple arguments does a user need to worry about saving his
working machine language storage for a possible recursive use of his function. The contents

4-5

of the AC are saved by PUSHA and restored by POP A for this purpose. If there is another
argument, it may be evaluated by PUSHJ; EVAL. Doing a PUSHJ; EVAL-l is equivalent to

GETC;PUSHJ;EVAL.

4.4.2 Internal Subroutine Conventions

4.4.2. 1 Call ing Sequences - The (AC)=O unless it contains information for the subroutines. Upon

returns (AC)=O unless it contains data.

There are six types of routines and subroutines used in the implementation of this program:

a. Normal subroutines called by an effective

JMS

which contain zero at their entry point

SUBR 1,0

and a return by a

JMP

b. New instructions called by

PRNTLN

and usually defined by

PRNTLN = JMS I.
XPRNT

SUBRl

SUBRl

/(to print a line number)

where XPRNT is the entry point for a normal subroutine. These new instructions may have
multiple returns/multiple arguments:

SORTJ
LIST6-1
INLIST -LIST 6

/call;
/data list minus one;
/increment to branch table
/return if CHAR is not in LIST6

These new instruction subroutines often have implied arguments, e.g., GETC, READC,
PACKC, TESTC, and SORTC all use the variable CHAR as their argument. The new
instructions SORTJ and PRINTC use CHAR only if the AC is zero. If the AC is nonzero,
then that value is used. Still others use only the AC for their argument:
RTL6, TSTLPR, PUSHA, and TSTGRP, (see Appendix G).

c. Recursive routines called by

PUSHJ
EVAL

/call
/address
/return

where the address contains the first instruction of the routine. The return address is kept in
the push-down list, and exit is made by use of

POPJ /exit subroutine.

4-6

Such routines may call each other or themselves in any sequence and/or recursively by
saving data on the push-down list. Others are EVAL, PROCESS, PROC, and GETVAR.

d. Command processor routines to handle specific command formats are called by

SORT J /go to command
COMLST-l
COMGO-COMLST

ERROR 3 /i Ilegal command

The individual command routines use only new instructions and recursive routines. They may
exit in one of three possible ways:

(1) POP J - if C . R. is encountered or

(2) transfer to another command routine or

(3) transfer to START

e. Floating point groups of interpretive instructions similar to the following format:

FI NT /enter floati ng interpreter (i .e., JAS 17)
FGET FLARG
FMPY PT1

EPUT
FXIT

FLARG
/Ieave floating interpreter

f. Main processor modules to handle text input and keyboard commands. This routine
could be IIl0cked-out II by an instructor to protect and execute a stored or immediate
command program repeated Iy •

IBAR, INPUT X

Similarly, selected commands are easily deleted by the instructor by placing zero in the
appropriate locations in COMLST.

Line number input and explicit replacements are IIshort circuited II by

GONE+ 11, error 3

4.4.2.2 Subroutine Organization - Figure 4-1 illustrates the internal use of various subroutines.

(c. f., Flow Charts in Appendix G).

4.4.3 Character Sorting

If a program must contend with a number of different characters (or 11-bit items) each of

which can initiate different responses, simply look up the address of the action that corresponds to a

given symbol or bit pattern. If the symbols do not form a continuum, the programmer must find the

most efficient method for determining the corresponding address.

The method used in FOCAL is the table sort and branch. This method uses a subroutine to

match up an input character with one member of a list of characters. The call to the subroutine is

followed by

4-7

a. the address minus one of the list and

b. the difference between that I ist and a second list. The latter list contains the corre­
sponding addresses. Thus, if a match is found in the first list, the difference is added to the address of
that match to compute the address in the second list which contains the name of the action to be
performed.

c. The next instruction to be executed if a match is not found.

In addition to being simple and concise, although more time consuming than other methods,

this technique has another advantage that is especially useful in a pop-a: the tables may be placed

at page boundaries to take up the slack that often occurs at the end of a page. This results in a more

effi c i ent use of ava i I ab I e core storage.

d. COMMAND ROUTINES

COMMAND AND

Q.

Figure 4-1

4.4.4 language

The program is written in PAL III with floating point commands, as well as program-defined

commands, implemented as subroutine calls. (see Appendix G) The program must be assembled using

PAllO.

4-8

4.5 NOTES

4.5.1 Core Utilization

NAMES

IOBUF:
COMEIN:
FRST:
BEGIN:

FEXP:
ARTN:
FCOS:
TGO:
DECONV:
FLOUTP:
THISD:
FLINTP:
HREAD:
FPNT:
MP4:
XSQRT:
LIBRARY:
XRTD:

Storage of text is

4.5.2 Extended Functions

PLACE

0-15, 17-166
167-175
176-2572
2573-2577
2600-2724
2725-3117
3120
3140
3206
4420-4577
4430-4577
4620-4776
5000-5166
5200-5345
5400-5577
5600-5773
6000-6157
6160-6176
6200-6317
6320-6377
6400-7177
7200-7377
7400-7502
7503-7556
7557-7576

3200-4577
3200-5177
3200-5377

SEGMENT

FOCAL (4K)
8K
FOCAL (4K)
8K
(Interrupt Handler)
FOCAL (4K)
(I/O Buffer)
(Command Buffer)
(Text Buffer)
(Initialization)
CLIN
(Extended Functions)
[11 free]
[32 free]
[0 free]
[4 free]
(Output Conversion)
8K
(Input Conversion)
(High Speed Reader)
(floating interpreter)
[none free]
[FSQT() and format buffer]
(Single user L command)
8K

14 functions
11 functions
9 functions

Extended Functions may be reinitialized by loading in the second part of main program tape.

Functions are normally deleted by answering the questions asked when FOCAL is initiated.

However, they may also be erased by changing location 0035 to 5377, and locations 401 through

0405 to 2725. Retaining the extended functions allows approximately 1200 characters of text or 170

variables (or any combination in the ratio of 7 characters to one variable). Deleting the extended

functions allows approximately 1800 characters or 250 variables.

4-9

4.5.3 Error Pri ntouts

Errors

and

?01.00
?OO.OO
?11.35

Because these errors are time dependent, they may be followed by nonexistant or false I ine number.

4.5.4 No Interrupts

To read data tapes without running the risk of Keyboard-Input-Buffer overflow (?11.35), it

is necessary to remove the interrupt. This action means that Control-C wi II not work.

4.5.5

4.5.6

To run FOCAL without interrupts, change:

Loc/From To

63/2676 1353
64/2666 2413

2732/6001 5336
2762/6046 7000

The high-speed punch will now run in parallel with the low-speed punch!

To run the high speed punch at top speed change:

1356/6041 6021

Operating HS Reader Without Interrupts

To run the high-speed reader without interrupts, make the above patches plus two more:

6324/1037
6325/7700

6011
7410

Non-Typing of Program Tapes During Loading

The "echo" feature for the ASR-33 may be suppressed by changing location 2163 to 7000

(from 4551). This will cause only asterisks to be typed as the tape is read. There will not be line

feeds or carriage returns. (c.f., 4.7.3.4 for multi-user system)

Any output commands w ill be typed out in the usua I manner, as will di agnosti cs, answers,

etc. Entri es from the keyboard wi II not be typed.

4.5.7 Explanation of NAGSW (Not All or Group Switch)

Since LINENO may be modified, a record is needed of whether a specific line number was

given by XX. YY (where XX and YY are nonzero) or whether a group was indicated by XX or XX: or

XX .00 or whether II ALL" text was indicated by either zero, less than one, or a non-numeric argument:

4-10

4.5.8

For one line
For a group
For all text
Error

PDP-8 code for testing NAGSW:

skip if

Or One

ONE SMA

ALL --
GROUP SMA SZA

Data Inaccuracies

NAGSW =
4000
0000
0001
4001

All

--
SPA SNA

SPA SZA

Group

SMA SZA

SNA

SZA

The logical conclusion from the inequality 10
8 < 227 is that the user can represent 8-digit

decimal floating-point numbers accurately by 27-bit floating-point numbers. However, 28 significant

bits are needed to represent some 8-digit numbers accurately. In general, we can show that if

lOP < 2
q

-
1

, then q significant bits are always enough for p-digit decimal accuracy. Finally, we can

define a compact 27-bit floating-point representation that will give 28 significant bits, for numbers of

practi cal importance. 1 In FOCAL, 23 bits are used giving 6.9 digit accuracy.

4.5.9

4.5.10

Eliminating = and: in I/O Formats

Leading equal signs and colons in I/O formats are omitted by making the following patch:

Loc/From To

1216/4551
6002/4551

Estimating the Length of Userls Program

7600 /:
7600 /=

FOCAL requires five words for each identifier stored in the symbol table and one word for

each two characters of stored program. This may be calculated by

c
5s + 2" • 1.01 = I ength of user IS program

where s = Number of identifiers defined
c = Number of characters in indirect program

If the total program area or symbol table area becomes too large, FOCAL types an error message.

1 Goldberg, B. 118-Digit Accuracy II ,
Communications of the ACM
Vol. 10, No. 2, February, 1967

4-11

FOCAL occupies core locations 1-3300S and 4600
S

_7576
S

' This leaves approximately

70010 locations for the user's program (indirect program, identifiers, and push-down list). The ex­

tended functions occupy locations 4600-5377. If the user decides not to retain the extended functions

at load-ti me, there wi" be space left for approximately 110°
10

characters for the user's program.

The L-command may be used to indicate how much core is avai lable for the user.

4.6 FOCAL SYSTEMS

FOCAL systems are designed to take advantage of as many PDP-S configurations as possible.

With this in mind, the system source language is divided into segments which, when loaded together,

fit the needs of a user and his particular configuration. Thus, when a user changes his configuration

or requirements, he does not need to secure an entirely new FOCAL tape but on Iy to load a new seg­

ment corresponding to the change in his configuration. The scheme used a Iso has the advantage of

simple maintenance, since changes are made to one source file for all possible systems and in some

cases re-assembly of other segments is not needed.

Two source segments create a FOCAL system for a 4K PDP-S. Others are used to create a

FOCAL system with (1) ten digit arithmetic, (2) SK memory, and (3) circular and linear graphics.

The segments of the FOCAL system and their functions are listed in Table 4-1. The ASCII

source segments FOCAL .ASC and FLOAT .ASC must be assembled with all configurations and the

resulting binary segment, FOCAL.BIN, when loaded makes a one user FOCAL system for a 4K PDP-S.

The segment INIT .ASC is assembled alone, but when INIT. BIN is loaded with FOCAL. BIN

into field zero it gives you the initial dialog. If the extended functions are to be retained, it is not

necessary to load INIT at all. All corrections for machine type will be made anyway. After FOCAL

is started and/or the dialog is completed the user may proceed to load other binary segments.

If a user has an SK PDP-S and wants to create a large program with extended precision

arithmetic, he need only load FOCAL.BIN, start, and then load 4WORD.BIN, and BK.BIN as

indicated in Table 4-2. If he wants to share his PDP-S with three other people, he just loads FOCAL.

BIN and QUAD. BIN into field one and start.

Intra-references between segments is handled by small multiple assemblies, rather than a

large assembly with conditionals for each possible system. For example, to obtain a binary copy of

the segment QUAD.BIN, use PALlO to assemble, QUAD.ASC, FOCAL.ASC, FLOAT.ASC. This

assembly produces only the listing and binary files for QUAD which end with the PSEUDO-op's

"XLIST" and "NOPUNCH ". Tables 4-2 and 4-3 give the allowable combinations of the binary

segments to produce legal configurations of the FOCAL system.

4-12

Table 4-1
FOCAL System Source Segments

ASCII Segment Name Function Description

FOCAL* The interpreter & TTY I/O driver.

FLOAT* Modified Floating Point Package.

4WORD Extended precision overlay to FLOAT (give 10 digits). (4.6.5)

SK Allows one user to take advantage of an SK PDP-S. (4.6.4)

QUAD Allows multiple users (up to 4) to use FOCAL or (4.6.6)
SK PDP-So

LIBRA t Allows multiple users (up to 7) to run and save (2. 14.2)
FOCAL programs on an SK PDP-S with disk.

CLIN The user may have a scope to interact with FOCAL. (5.S)

PENT A variation of QUAD allowing five (5) users.

INIT The symbolic source for the initial dialog program.

*These two segments must be assembled and loaded together for all configurations. They are
separated for editing convenience.

tNot yet implemented.

1 - Must be loaded into field one
o - Must be loaded into field zero

Table 4-2
Allowable FOCAL Systems

Y - Command may be used if disk system is built
N - Command is illegal
* - Command different

Binary Segment

FOCAL

INIT (optional)

4WORD

SK

QUAD or PENT (non-SiS)

LI BRA (non -SiS)

CLIN (optional)

LIBRARY COMMAND
(for disk monitor)

Allowed Combinations &
Subsets are indicated by

entries in vertical columns

0 o 0 0 1 1 1 1

0 o 0 0

o 0 1 1

0 0

o 0 0 0

0 0

o 1 1

YYYY N N * *

FOCAL is always loaded first in the proper field.

4-13

Minimum Hardware
Required

4K

4K

SK

SK/PT08s

SK/PT08s/DF32

Graphics Terminal

DF32

Table 4-3
Variations for FOCAL Systems

Any combination of these three sets (2*2*4=16),

a. 8K overlay b. Disk Monitor c. No Dialogue
4K No Disk No ext. functions

SINe, COSine only
All ext. functions

or QUAD four-user system or PENT five-user system (PENT is obtained by a
modified assembly of QUAD; see listing) may be used with

CLIN graphics (4)
4WORD overlay
Neither
Both

These are formed from only six sections of binary tapes.

The CLIN graphics function can be used for numerical control.

4K FOCAL can be run on the following DEC computers: 5, 8, 8/S, 8/1, 8/L,
LI NC -8, LAB-8, TSS-8, PDP-12.

a. Load FOCAL & INIT

b. do initial dialogue

c. load any or all of 4WORD, 8K, CLIN.

d . restart and use

4.6.1 FOCAL Systems Assembly

a • Systems programs

* tC

.RUN T PAL 10
*FOCAL. BIN ,FOCAL .LST"'FOCAL .ZZL,FLOAT .ZZL

*QUAD.BIN,QUAD.LST+QUAD.ZZL,FOCAL .ZZL,FLOAT .ZZL

b. Initial dialogue

* tC

.RUN T PAL 10
*INIT .BIN,INIT .LST"'INIT .ZZL

*
c. Overlay routines

.R PAL 10

*4WORD.BIN,4WORD • LST"'4WORD .ZZL,FOCAL .ZZL,FLOAT .ZZL

*8K .BIN,8K • LST"'8K .ZZL,FOCAL.ZZL,FLOAT .ZZL

*CLIN .BIN,CLIN • LST+-CLIN .ZZL,FOCAL .ZZL,FLOAT .ZZL

*
4-14

4.6.2

4.6.3

4.7

4.7.1

FOCAL Bi nary Paper Tapes

.AS DSK D
DSK ASSIGNED

.AS PTP
PTP ASSIGNED

.R PIP

*PTP: -II D:Q UAD . BI N

*PTP: -/ID:4WORD. BIN ,8K. BIN ,CLIN. BIN

*PTP: -/ID:FOCAL. BIN, INIT . BIN
tC

FOCAL Listings

*LPT :-D:Q UAD. LST ,4WORD .LST ,8K. LST ,CLIN. LST ,INIT • LST ,FOCAL. LST

*TTY:-/L DTAa:

58: FREE BLOCKS LEFT
FOCAL .ZZL
FLOAT .ZZL
QUAD .ZZL
4WORD .ZZL
8K .ZZL
CLIN .ZZL
INIT .ZZL
PAL 10 .SAV
JR36
JR46

FOCAL SEGMENTS

8K Single User Overlay - 8K

To increase the size of program, the 8K overlay uses the upper 4K for storage of the user's

source text. The maximum number of variables does not change as they are sti II stored in the lower 8K.

Load the overlay after doing the initial dialogue with the 4K version.

4.7.2 Extended Precision Overlay - 4Word

This overlay provides FOCAL with 10-digit accuracy when the 10th digit goes to enable.

The overlay increases the number of words needed to store a number from three words to four words.

The number of variables that may be stored is decreased accordingly.

Load the overlay after doing the initial dialogue with the 4K version.

4-15

4.7.2. 1 Double Precision Multiply in Four-Word FOCAL

To multiply two numbers, the product of which is greater than ten digits and yet retain the

least significant figures, use a double precision operation.

For example, to multiply:

M = 20243974

by

N = 69732824

let MO = the 1st 4 digits of M and let M1 = the 2nd 4 digits of M. Similarly, NO and N1 are the left

and right halves of N.

4.7.3

Note the correction of an input error in the high order part of N.

*W
C-4WORD@1!69

14. 10 AS K !, MO ,M 1 , .. *" NO I N 1 , !
14.20 SET A=MO*NO
14.30 SET B=-NO*M1 + MO*N 1
14.40 SET C=M1 *N1
14.50 SET Z=FITR(C*lE-4)
14.60 SET C=C-Z*lE4
14.70 SET B=B+Z
14.80 SET Z=FITR(B*lE-4)
14.90 SET B=B-Z *1 E4
14.99 TYPE ! %8 ,A+Z, 0/04 ,B,C,!
*GO

:2024 :3974 * :6928+6973 :2824

= 14116694= 7600= 2576

*

Four User Overlay - QUAD

QUAD allows an 8K PDP-8/I, -8/l with up to four teletypes to time-share FOCAL. In

effect, each user has the equivalent of a 4K PDP-8 or PDP-12 with FOCAL. The QUAD overlay is

located in the lower 4K, and the FOCAL interpreter is located in the upper 4K. Users are traded for

one of three other users in the lower 4K. Swapping of users is based upon I/O waits and checkpoints

in the FOCAL interpreter.

4.7.3. 1 Four User loading and Operating Procedure

a. load 1st binary part into field one. (FOCAL.BIN)

b. load 2nd binary part into field one. (QUAD .BIN)

4-16

c • Load address

7600
and START

• SAVE F4UB!0-2177,3000,3600,5400;200
.SAVE F4UA!0-13220, 14600-17577;

(Any errors made here may require reloading field zero.)

d. (Calling Sequence)

.F4UA

.F4UB

(If any problem occurs hit stop, record the PC and restart at 200 or reload.)

4.7.3.2 Swapping - At certain points in the FOCAL program it is a pure procedure. If swapping

occurs at these times, then only 1 K of impure data needs to be saved instead of 4K. This factor of

four considerably improves system performance. Such a point is called a checkpoint.

Each time an operating program reaches a checkpoint the executive routine checks to see

whether another user should be swapped in at that time.

This check is also made if the operating program goes into a state of waiting for input-output,

except for output duri ng use of trace.

4.7.3.3 Workload and Timing

a. Swapping is done on a demand (I/O wait) and a cooperative (checkpoint) basis.
Therefore, no clock is needed. Not having a clock reduces system overhead by about ten percent.

b. Fully asynchronous I/O is backed up by large (over 16 characters) and uniform (easy to
process) character buffers. Serial to parallel conversion of the bit stream is done in external hardware
by PT08 line controllers. This reduces system load by 18 to 30 percent.

c. If each of eight user programs takes less than 100-17 msec to generate one 8-digit
output string, then the system is barely output bound and no delay will be observed in response times.
The 17 msec is average access time to the disk, and one TTY character takes 100 msec to be typed.

4.7.3.4 Special Controls - A control-R character (TAPE) suppresses echo of input tapes except for

the line-feed. A control-T (NOT-TAPE) or Control-C restores the echo of input characters.

It is a good practice to punch a Control-R at the beginning of all off-line tapes. An

alternative is simply to type Control-R manually before setting the low speed reader to RUN.

4.7.3.5 Dialogue - There is no initial dialogue with QUAD.

4-17

4.7.4 Graphics for Circles and Lines - CLIN

Ic£ L I \j ... :; RAP'" I C S u V E R LAY F 0 k Foe A L , t 2 K PAL 10 16:01

6057
6053
6067

0035
21035 4437

0407
214217 4440

4440

444~ 4453
444 712140
4442 33 4 2
4443 1340
4444 3010
4445 1117
4446 3316
4447 4537
4450 1612
4451 112144
44:S2 1341
4453 3044
4454 4453
4455 7200
44,6 leJ"~
4457 3410
4460 1045
4461 3410
4462 1046
4463 34.1.0
4464 2316
4465 5241
4466 1046
4467 7640
4410 5343

ICLIN • GRAPHICS OVERLAY FOR FOCAL.t~K

IFINITE DIFFERENCE EQUATION OF A CIRCLE • FOR FOCAL

11 6 ,2 S p=X~X0;S Q=Y-Y0;s R=FSQT(Qt2~pt2)
11 6 ,3 S ~=FNEW(6,3*R*C,P,Q,X0,Y0,S/R)
116~4 S X0=X;S Y~=Y

ILl NEAR DIFFERENCE EQUATION OF A LINE

11"1 0 16'21S 2=FNEw(R,P/R,Q/R,X0,Y0,~)JD 1 6 ,4

DXS=6057
DxL=6053
DyS=6067

FCIN, JMS I INTEGER
CMA
DCA R
TAD XXP
DCA AXIN
TAO M5
DCA CT
PuSHJ

TAD EXP
TAD LP
DCA EXP
JMS I INTEGER
CL.A
TAD P13
DCA I AXIN
TAD HORD
DCA I AXIN
TAD LORD
DCA I AXIN
1St CT
JMP GETA
TAD LORD
slA CL,.A
.JMP XFC I R

4-18

ISAvE THE POINT COUNT

1ST ART DATA POINTERS
IFOR 5 MORE ITEMS

ICOMPUTE EACH ARG,

IFOUR FIXED POINT RESULTS

ISAVE UNNORHALllED FORM

ITEST FOR END Or DATA

ITEST FOR CIRCLE OR LINE

ICLl\j - :;Ht'P-418S OVE.RLAy

4471 71)0

447~
447 ±333 __ 32

4474 3331
4475 70J4
4476 13 -~0
4477 1322
45 '0 60">3
45 -"1 33-50
457;2 71 '1[1

45~3 13!14
4:>:i4 1326
4:> '~5 :~334
4:>,J6 7:1 ~'4
45~7 :1.333
45 u~ 13~5
4~11 6067
4512 3333
4:>13 23t.2
4514 5~71
4:>:1.5 ?5,)5

FOR FOCAL.,tt~ PAL1~ V133 14-MAR g 69 16:01 PAGE 2

XFLIN, elL IvECTOR PLOT ALGORITHM
TAD X0 1 TAD Pi
!.leA X01
qAL
TAD X v)0
TAD P0
DXl 1(6317)- FOR lAB-8
DCA X00
Cll
TAD Y01
TAD 01
DCA Y01
RAL
TAD Y00
TAD 00
DYS 1(63 0 7) ... FOR LAB-A
DCA Y00
1St R
Ji'1P XF\.lN
JMP I EFLJN31

I1I11

ITO DISPLAY A POINT X,Y; SET 2=FDIs<x,Y)
ITO DRA~ lINE X0,Y0 TO X,y: 00 17
ITU 5[T X0,y0=X,Y: no A,4
ITO ERASE SCREEN : TYP~ "(ERASE CODE)"
ITO RESET PRINT ORIGIN: TYPE "(RESrT CODE)"
ITO DRAw A CIRCLt ABOuT X0,Y0 STARTING AT X,Y
lAND GOING COUNTtRClOCKWISE FOR FRACTION
IOF A CIRCLE ALPHA SET S=+liSET C=ALPHAJD016
ITO GO CLOCK~ISE: SET S=~lJDO 16

IGROUPS lb AND 17 CREATE OR USE THE VARIABLES
IX'Y'X0,Y~,l,R,C'P,Q,K,AND S.
IS MAy BE REPLACED By A 1 IF DESIRED.

4-19

leLI\] - :;RAP~I:;S OVE.F<LAY FOR FOCALt~iZK PAL1~ V133 14-MAR .. 69

4~16 007:,2' CT, (-1

4517 ~00(ij (II

4520 Z0~:'I0 0

4521 0tL~0 PP. (71

4522 2102'0 Pel, 0
4523 00:~f3 Pl, VI

4524 2!;~ ?l0 QQ, 0
4~25 30Z,0 QeI, 0
45?6 00J(1I Ql, 0

4527 3013 XX, 1.3
~530 0021 il X0J, (I)

4?31 00 0~~ X01, 0

45~2 ;))013 yy 13
4533 ~~2l~)0 Y00, 0
4534 :1020 Y01, 0

457)5 21100 KK. 0
4536 ~0Z0 0
4537 00,10 21

4540 452~ XXP, PP-1
45~1 3014 LP, 14
4542 ~0l0 R, eJ

ITO USE AN X~Y PLOTTER, CLIN IS NOT NEEDEDJ SIMPLy
lAUD TH£ FOLLOWING LINES TO GROUPS 16 AND 17 I

16:01

11 6 ,25 S K=s/R
116.30 ~ 1=0,6.3*R*C;S P=P-Q*K;S Q=Q.P.KJS ~=FDlS(X0+P.Y0+Q)
/17,10 D 16,2;F I=0,RIS X0=X0+P/R;S Y0=Y0+Q/RJS ~=rOIS(X0,Y0)
11 7 ,20 0 16,4

PAGE

/THE l'£RATION PARAMETER "I" MAY BE TAKEN IN GREATER INCREMENTS I' THE
ISGALE rACTOR IS ALSO CHANGED; I.E.
I 'l'1~ DO 16'2JSET K=4/R 11 7 ,15 rOR I=0,4,RIS X0=X0+K*P;S Y0: Y0+Q*KJS l=roIS(X0,Y0)

4-20

3

4543 4487 xrCIR, FINT
4544 ~324 FGET
4545 4335 FMUL
4546 6316 FPUT
4547 21321 FGET
4550 2316 FSUB
4531 6321 FPUT
4552 1327 FADO
4,53 002' iZ: FXIT
4554 4453 JMS
4555 6057 DXS

4556 442}7 Fl~T
4557 0321 FG T
4560 4335 FMUL
4561 1324 FAOD
4'~2 6324 FPUT
4563 1332 F'AOD
45~4 Z0Z0 FXIT
4565 4453 JMS
4556 60r,7 OYS
4567 7230 CLA

4570 2342 lSi!
4571 5343 JMP
4572 5535 JMP

NOPUNCH
46210 PAGE
~0211 FIELD 1

XLIST

QO
KK
CT
PP
CT
PP
XX

I INTEGER

PP
t<K
QO
QO
YY

I INTEGER

R
XFCIR
I EFUN31

4-21

14-MAR-69 16101. PAGE 4

IC(RCLE ALGORITHM

1(6317) - FOR LAS-8

1CLEARS AC

1(63~7) - FOR LASeS

4.8 FOCAL DEMONSTRATIONS

4.8.1 One-Line Function Plotting

This example demonstrates the use of FOCAL to present, in graphic form, some given function

over a range of values. In this example, the function used is
- lx y = 30 + 15(SIN(x»e .

with x ranging from a to 15 in increments of .5. This damped sine wave has many physi ca I applications,

especially in electronics and mechanics (for example, in designing shock absorbers for automobiles) .

In the actual coding of the example, the variables I and J were used in place of x and y,

respectively; any two variables could have been used. The single line 08.01 contains a set of nested

loops for I and J. The J loop types spaces horizontally for the y coordinate of the function; the I loop

prints the * symbol and the carriage return and line feeds for the x coordinate. The function itself is

used as the upper limit of the J loop showing the power of FOCAL commands.

The technique illustrated by this example can be used to plot any desired function. Although

the * symbol was used here, any lega I FOCAL character is acceptable.

08.01 F I=O,.5,15;T "*",!; F J=O,30+15*FSIN(I)*FEXP <-.l*I);T II II

*
*
*DO 8.01
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*
*
*

-lC
-lC

-lC

*
*
*
*

*
*

*
*
*

4-22

4.8.2 How To Demonstrate FOCAL's Power Quickly

a. Load the program and start at 200.

b. Explain that the initial dialogue gives you options.

c. Try some other response like MAYBE) .

d . Now answer YES J •

e. The preceeding has demonstrated the interactive capabi lities of the language and the
compromises that it permits.

f. In a 4K machine (4096 words) FOCAL gives the user 15 functions and uses only 3K,
leaving enough room to so Ive up to 6th order simultaneous equations.

g. The asterisk (*) means that FOCAL can now respond to your commands.

h. The basic command is TYPE:

*TYPE 5 t 2 + FSQT (5))

i . Now compute 5 factorial:

*SET ALPHA=l
*FOR 1=1, 5; SET ALPHA=ALPH *1

i . The answer is ready when the next asterisk is typed out:

Then type

*TYPE ALPHA

for the answer.

k. Now if you are usi ng a PDP-8 or -8/1, demonstrate a large number:

*SET A=l
*FOR 1=1, 300; SET A=A *1

some time later

*TYPE A
= 0.395 615

I. Now generate a plot via a stored program:

*1.1 FOR Y=O, .5, 15; TYPE! ; D02
*1.2 QUIT
*2.1 FOR X=O, 12+10*FSIN(Y); TYPE
*2.2 TYPE" * ..
*GO

.. ..

m. Now use the MODIFY Command to change 10* to FEXP ty /6) * and try again.

4.9 FOCAL Versus BASIC

FOCAL is superior to BASIC, not only in terms of computing power and ease of use, but also

in maximum use of the memory space, which is so often limited in small computer systems.

4-23

FOCAL contains all the power of BASIC, and in addition provides the following capabi lities:

a. Control of the output format (i .e., precise figure location on a page and graphi ca I
representation) ;

b. An "immediate ll mode, a !lowing the system to operate as a desk calculator and to
execute simple problems without writing a program;

c. The capability of executing individual IIstored program" statements in the immediate
mode for debugging and verification;

d. Bui It-in symbolic editor capable of searching program statements for specified characters
and inserting and deleting characters within a statement, thereby eliminating the retyping
of the entire program statement;

e. Multiple statements may be grouped on each line for more logical ordering of the pro­
gram;

f. True multiple level re-entrant subroutining capabilities;

g. A trace feature which types out selected segments of a program (as the program is
executed) to pin point exactly where a program error occurred;

h. Commands may be abbreviated to one letter; this eliminates wasted typing time when
writing a program and- increases the available storage space for use by additional program
statements;

i . Programs may be saved on disk and chained together;

i· Point plot displays, vector displays, X, Y plotters, and analog to digital converters
may be operated by FOCAL; this capability can be used in an on-line, real-time fashion;

k. FOCAL SYSTEMS a Ilow use of severa I hardware configurations: 8K, 10 digit, di splay,
and mu Iti -user.

4-24

CHAPTER 5

ADDITIONAL FOCAL APPLICATIONS

5. 1 FOCAL FOR TH E LAB-8

5. 1 . 1 Standard

Two commands have been added to FOCAL to implement the A to D converter and the

osci 1I0scope display on the AX08.

5.1.2

a. A to D Command:

FADC{N) where N is the channel number in decimal.

The command:

SET Z = FADC(28)

gives the variable Z a value of octal channel 34 depending on the position of the upper
righthand potentiometer. The other 3 knobs are channels 29, 30 and 31. A subroutine
in FOCAL to read the A to D in volts is as follows:

15.1 ASK CHAN;C-O, 1,2,3

15.2 SET X=FADC{28+CH)

15.3 IF (X-256)15.Y, 15.4;SET X=X-4096

15.4 SET X=X/255

The input variable is CH for values of a to 3, and the output variable is X with values
±/volt.

b. Display Command:

The display command has been modified to use only one statement to define X and Y .

SET Z = FDIS{X, Y).

will display a point on the oscilloscope screen defined by points X and Y. X can range
between 0-511 and Y from -255 to +255. The variable Z is a dummy. (It is given the
value of the integer part of Y .). (c. f., Section 5.8 for circle and sector algorithms.)

CAUTION

Since the ADC of the AX08 hardware is an integral part
of the display logic, using both display and A and D,
may result in splatter of the Y direction of the oscillo­
scope screen.

Additional (Possible) FOCAL Functions for AX-08

FADC (n): Converts (decimal) channel n. Returns result of conversion.

FDIS (x,y): Loads display X and Y; intensifies point.

5-1

FTIM (n): Delays n RC clock pulses (n < 4096)
Returns # of 100 !JS increments since last used.
Xtal c lock interrupt is enabled.

Interrupt servicing for Xtal clock as
follows:

SKXK
JMP OTHERS
CLXK
ISF TIME + 1
JMP .+3
ISF TIME
NOP
ION
JMP I 0

Clock flag servicing will tie up 20% of processor time.

When FTIM is called, do the following sequence:

XTIME,

F N EW (a, b, c)

TAD (1002) /enable Xtal clock, start RC clock
OTEN
get n
SNA
JMP XTIME
CMA lAC
DCA RCNTR
CLRK
SKRK
JMP .-1
ISZ RCNTR
RMP .-4
PUT TIME, TIME +1 in FLAC
DCA TIME
DCA TIME +1
return to FOCAL

a = 0: Turn on relays indicated by b (b < 7)
Turn off relays indicated by c (c < 7)
as follows: -

get b
RAL; RTL
AND {70
OTEN
get c
RTL; RAL
AND {70
CMA
ZTEN
CLA
return to FOCAL

a = 1: lIand II external register with mask
b: mask (octal)
c: ignored

5-2

a = 2:

Get characters of b
interpret as octal #
DCA XMASK
XRIN
AND MASK
XRCL
CMA JAC
TAD MASK
SNA CLA
lAC
store in F LAC
return to FOCAL

"orll external register with mask
b: mask (octal)
c: ignored

get characters of b
interpret as octal #
DCA XMASK
XRIN
AND MASK
XRCL
SZA CLA
lAC
store in F LAC
return to FOCAL

5.2 FNEW FOR DATA ARRAYS*

A new function for 8-K FOCAL is available which uses field one to store data arrays in

floating double precision, single precision, and signed integer format. This facility is added to

FOCAL via the function call FNEW. The function may be called recursively to any level, and all

of the features of FOCAL are retained. In addition an ERASE or ERASE ALL command will not wipe

out the array. Hence, variables may be stored for use in successive programs.

5.2. 1 Storage Requirements

Fits into unused locations in floating point package

5.2.2 Usage

5.2.2. 1 Loading - Load after FOCAL has been loaded into the machine (and the initial dialogue is

executed). Load the first part of the overlay using the Big Loader. If a single precision floating

array is desired press CONTINUE. A patch should now be read in to allow a 1980 element array in

*Originated by University of Georgia, program not supported by DEC.

5-3

single precision floating point. If an integer array (maximum number = 3047) is desired press

CONTINUE. A patch will now be read in to allow a 3965 element signed integer array.

Restart FOCAL at 200.

5.2.2.2 Calling Sequence - To store a variable Z as array element J:

* S X=FNEW (J,Z)

or

* 4.3 S X=FNEW (J,Z)

In addition, X will be set equal to Z.

To call the array element K and set Z equal to this element:

* S Z=FNEW(K)

i.e., if there is only one argument the instruction is interpreted as a "GET". If there are

two arguments it is interpreted as a "PUTII.

5.2.3 Recursive Call ing

The function FNEW may be called recursively at any level. viz.

* S Z=FNEW [J, FNEW(J+10)J

sets Z=FNEW(J+10) and stores FNEW(J+10) in array element J.

* 3.2 S Z=FDIS (J*1000) , FDIS(FNEW(J)*NORM)

the arguments may be any arithmetic expression. The following are valid:

* S Z=FNEW (J*10-3, FEXP(X
2

)*V)

5.2.4

5.2.5

* S Z=FNEW (J,FNEW (K)*FEXP(FNEW(L»)

Restri cti ons

Double precision floating:

Single precision floating:

Integer Array:

Description

0< J < 1320

0< J < 1979

0< J < 3965

I Z I < 2047

(23 bits of significance)

(11 bits of significance)

(11 bits of significance)

The function FNEW protects the binary loader in upper core. The function checks to see if

J is too large, but does not check to see if Z is larger than 2047 in the integer array case (c. f., array

overlay).

The user, of course, may subdivide this array into any number of smaller arrays, keeping

track of his own indices.

5-4

5.3 DYNAMIC INTERRUPT PROCESSING VIA FOCAL, 1969

This simple patch allows real-time interrupts to initiate execution of a specific FOCAL

subroutine (e.g. Group 31) which gains control (i.e., D031) when an interrupt occurs from an external

device. The FOCAL subroutine could sample various channels of the A/D converter, set a few con­

stants, then turn off the interrupt, and return to the main FOCAL program. The main FOCAL program

will carry out the analysis or output of data during the time between these external device interrupts.

The external device could even be an animal and the time between interrupts will be asynchronous and

long (between 1 and 1000 seconds), or the external device will be a clock, in which case the time

between interrupts will probably not be less than 100 ms or greater than 1 sec.

/patch to interrupt processor
(tag assignments from symbol table)
EXIT /replaces H. S. Reader

IOTl /skip if device
JMP.+3
NOP /"HINBUF" is cleared

*PCl
JMP I 175

*167
DIPCHK

*HINBUF
1

*HREAD
DIPCHK, TAD HINBUF

SZA CLA
POPJ

/checkpoint in main program
/ valid for 8K, also

/Dynamic Interrupt Check

/initialized to non-zero

TAD PC /save FOCAL register
PUSHA
TAD SPCLN /(your group #)
DCA LINENO
DCA NAGSW
ISZ HINBUF
PUSHJ

DO+l
POPA
DCA PC
POPJ

SPCLN, 7600 /(group 31)

The routine in group 31 returns control by "RETURN II. This feature does not operate unti I

main program is started. It will operate during execution of a direct command.

5-5

5.4 SIMULTANEOUS EQUATIONS· SOLUTIONS

This program will work with a set of simultaneous linear equations (in 4K. FOCAL 6 equations

is the limit) and output the solutions. To do this the program requests a value liLli, the number of equa­

tions and variables to be processed. The program then requests the coefficients and constants for each

equation, in a matrix like format. The solution values are typed out in a column with the names "X(O)"

through IIX(L -1) II. The program is available through DEC US.

5.5 FAST FOURIER TRANSFORMS PROGRAMS

The FAST FOURIER TRANSFORMS Program is designed to accept samples of a complex wave

pattern as input and, through a FOURIER analysis, describe its component sine and cosine waves in

terms of amplitudes and frequencies.

The user inputs a number IIN", which must be a power of two, (in 4K. FOCAL, "4" is the

limit) and which describes the number of samples to be used in the analysis. Next the samples, which

are wave height measurements taken at regular intervals, are requested. Output is in the form of two

columns (side by side), the left of which describes the cosine wave components whi Ie right hand

column describes the sine wave components.

It should be noted that because the number of samples is always a power of two, the number

of complex multiplications is cut drastically. For this reason computation time is also greatly reduced.

NOTE

In order to use this program, the extra extended
function FX(A, B) must be loaded into memory
via the BIN loader.

FAST FOURIER TRANSFORMS

W
C-FOCAL.,1968

01.08 A "POWER OF 2 II ,NU
01. 10 S N=2 t NU;S TP=2*3. 14159/N
01.18 S S=N/2:, L=l;S Q=5-1;S H=l-NU
01.20 F IlO,N-1;A !;A !,XR(I);S XI(I)=O
01 .22 S SR=XR(Qt-S)+XR(Q);S XR(Q+S)=XR(Q)-XR(Q+S);S XR(Q)=5R
01.24 I (Q) 1.26, 1. 26;S Q=Q-1;G 1.22
01.26 I (L-NU) 1 .28,1 .54,1.28
01.28 S L=L+l;S S=5/2;S H=H+1;S P=N-l;S Z=1/(2t(-H»
01.32 S C=l
01.34 S U=FITR(P*Z);S K=FX(NU,U)*TP
01.36 S CO=FCOS(K);S SN=FSIN(K)
01.38 S GR=CO*XR(P)+SN*XI(P);S GI=CO*XI(P)-SN*XR(P)

5-6

01.405 Q=P-5;5 5R=GR+XR(Q);5 51=GI+XI(Q);5 XR (Q)=XR(Q)-GR
01.42 5 XI(Q)=XI(Q)-GI;5 XR(P)=SR:, XI(P)=SI
01.46 5 P=P-1; I (-FAB5 [C-5J) 1.48; I (P-5+1) 1.52,1.26,1.52
01.48 5 C=C+1;G 1.34
01 .52 5 P=P-5;G 1 .32
01.54 F 1=O,N-1;5 K=FX(NU,I);T !,%3.2,2*XR(K)/N, II ",2*XI(K)/N

*
*C-TRAN5FORM OF INTERFERENCE PATTERN FORMED BY MIXING A 5INE
*C-WAVE OF AMPLITUDE 1 .0 AND A C051NE WAVE OF AMPLITUDE 1 .5
*
*GO
POWER OF 2 :3
: 1.5
:1.768
:1
:-.353
:-1 .5
:-1 .768
:-1
: .353
++0.00
=+1 .50
=+0.00
=+0.00
=+0.00
=+0.00
=+0.00
=+1 .50

*

=+0.00
=-1 .00
=+0.00
=-0.00
=+0.00
=+0.00
=+0.00
=+-1 .00*

/FNEW(u,v) for FFT
*BOTTOM

4377
*FNTABF+1Y

XFX
*4400

XFX, JM5 I INTEGER
Dca U
PU5HJ

EVAl-1
JM5 I INTEGER
CIA
DCA T2
DCA lORD/low order

TAD U
Cll RAR
DCA U
TAD lORD
RAl
DCA lORD
15Z T2
JMP .-7
JMP I EFUN31

5-7

5.6 TRAVEL VOUCHER TO EXPENSE VOUCHER CONVERSION PROGRAM

Though FOCAL is not a business oriented language the use of FOCAL in business applications

is not impossible. Such a use is seen in the TRAVEL VOUCHER TO EXPENSE VOUCHER CONVERSION

program with which the user may ease the task of reporting his expenses after a business trip.

Working from the input of the number of the days using the expense account and the categor­

ized input of the expenses encountered (all amounts must be entered in terms of cents rather than dollars)

during that period, the computer tallies and itemizes

a. the dai Iy expenses and

b. the totals of the expenses over the entire period.

The data, thus summarized, are very easily transcribed onto an employee expense voucher.

TRAVEL VOUCHER TO EXPENSE VOUCHER
CONVERSION PROGRAM

C-FOCAL., 1969

01.01
01.05
01 .10
01.20
01.40T
01.41T
01.60
01.70
01.80
01. 90G

05.10
05.20
05.30
05.40
05.50
05.60
05.70
05.73
05.75
05.76A
05.77A
05.85
05.90
05.91
05.92
05.93
05.94
05.95
05.96

T !! "EXPENSE ACCOUNTER (fYPE ALL AMOUNTS IN PENNIES)"
ERASE
ASK 0/06.02,! "HOW MANY DAYS?" DAYS,!
IF (DAYS) 1.1,1.1; FOR 1=1 ,DAYS; DO 5
!! II THE TRIP TOTALS ARE";F I=1,30;T II II

"GRAND"!
SET LO=LTi SET ME=ET
SET OJ=OT; SET MI=MT; DO 7
TYPE II $"!!!!!!
1.05

ASK !! IIBRKFST II B 1
ASK "LUNCH II B2
ASK "DINNER II B3
AS K 115 NACKs II B4
ASK IIMILEs TRAVELED? IIB5; SET B5=B5*9; TYPE II $ B5/100; DO 6
ASK "HOTEL II B6
ASK "OTHER II B7
ASK IITELc II B8
A ! "TAXI IIC1
! IIPARKN IIC2
! IITOLL "C3
ASK! IIMISC. II B9
TYPE ! liTHE DAILY TOTALS ARE II !
SET LO=B6; SET ME=B 1+B2+B3+B4
SET OJ=B5+C1; SET MI=B9+B8+B7+c2+C3
TYPE IIDAY NO .11; DO 7.1
TYPE !Ok3,I,1I II; DO 7.2; DO 7.3
SET LT=LT+LOi SET ET=ET+ME
SET OT=OT+OJi SET MT=MT+MI

5-8

06.10 ASK II MISC. TRAV. ? IIB6; SET B5=B5+86

07. lOT II LODGING MEALS OTHER TRAV. MISC. TOTAL
07.15 T !
07.20T %8.02, LO/100,1I IIME/100,1I IIOJ/100," IMI/lOO,"
07.30 T (LO+ME+OJ+MI)/100

*
*
*G

EXPENSE ACCOUNTER (TYPE ALL AMOUNTS IN PENNIES)
HOW MANY DAYS? :2

BRKFST : 150
LUNCH :170
DINNER :645
SNACKS :35
MILES TRAVELED ? :36

$ =+ 3.24 MISC. TRAV. ?:O

HOTEL:1400
OTHER :0
TELE :40
TAXI :0
PARKN :250
TOLL :0
MISC. :0
THE DAILY TOTALS ARE
DAY NO. LODGING MEALS OTHERTRAV. MISC TOTAL
=+ 1 =+ 14.00 =+ 10 .00 =+ 3 .24 =+ 2 .90 =+ 30. 14

BRKFST :98
LUNCH :192
DINNER :650
SNACKS :30
MILES TRAVELED ? :23

$=+ 2.07 MISC.TRAV.?:O
HOTEL:1400
OTHER :398
TELE :285
TAXI :0
PARKN :250
TOLL :0
MISC. :0
THE DAILY TOTALS ARE
DAY NO. LODGING MEALS
=+ 2 =+ 14.00 =+ 9.70 =+

THE TRIP TOTALS ARE
LODGING MEALS

=+ 28.00 =+ 19.70 =+

OTHER TRAV. MISC TOTAL
2.07 =+ 9.33 =+ 35.10

GRAND
OTHER TRAV. MISC TOTAL

5.31 =+ 12.23 =+ 65.24

5-9

$

5.7 TWINS DEMO

The TWINS DEMO Program is an interesting experiment in the applications of plotHng with

a visual scope display unit. It must be noted that several functions must be loaded into memory before

this program will operate. This program is an integral part of curve fitting. The Twins Demo requires

V68/I Control with Tektronix 611 Scope. (i.e., 340 control)

TWINS DEMO

W
C-FOCAL., 1969

01.055
01.105
01.70F
01 .75
01.805

02.10

03.10

04.10

05.10

06.10 F

07.10 F
07.20 F

08.10 F

08.20 F

08.30

08.40

08.505

08.605

08.705

09.10 F

10.10 F

11.10F
11 .20 F

12.10F

12.20F

13.10F

14.10F
14.20F
14.30R

A=FDI5 () + FDX5 () + FNEW(2) + FNEW (256)
A=.2;5 5W=19
T=O, .05,6.284;5 T2=T+3.14159/4;DO 1.8;DO 15
G 2.1
R=4*FSIN(T) +4;5 X=8+R*FCOS(T2);S Y=32+R*FSIN(T2)

F Y=28.5,A,32;S K=((Y-30.5)/1.5) t 2;5 X=9-(K*K-K);DO 15

F X=7.4,A, 10 .5;5 Y=26.5-((X-9) t2)/2;DO 15

5 X=10.5;F Y=17,2*A,24.8;DO 15

F X=7 .2*A,8;5 Y=22-7*(X-7); DO 15

X=10.5 ,A, 15;5 Y=26-F50T(5*(X-10));DO 15

X=l1 .5 ,A, 14 .5;D 8.5
X=14.5, .2*A, 15;D 8.5

X=3,A,4.6;DO 8.4

X=11 ,A, 12;DO 8.4

G 9.1

5 K=X-7;5 Y=12+(K *K)/4;DO 15

Y-21-F5QT(6.25-(X-12.5) t2);D 15

Y=(X-7) t2-1;D 15

X-5+F5IN (3. 14159*(Y -12);7);D 15

Y=O,2*A,16;5 X=12-((Y-8) t2)/64;DO 15

X=2,A,4.5;5 K=X-3;5 Y=K *(K *(.47*K- .5)+ 1 .03)+26;DO 15

X=2, (.2*A),2 .85;D 8.6
X=4.7,.2*A,6;D 8.6

Y=4.5,2*A,12;D 8.7

Y = 15 ,2 * A ,25; D 8.7

X =5 . 3, . 3 * A ,6; 5 Y =-7 * (X -6) ; DO 15

Y=12,2*A,24;5 K=((Y-15.5}/1l) t2;5 X=5.5+12.5*(K*K-K);DO 15
Y=4,2*A,12;S K=Y-8.5;5 X=8.1-F5QT(27-K*K);DO 15

NOTE

Group 15 must be supplied to scale X, Y and call ap­
propriate display for the device. (c.f., Section 5.8)

5-10

Command Abbr

TYPE T

WRITE w

IF

APPENDIX A

FOCAL COMMAND SUMMARY

Example of Form

TYPE FSQT (AL t 3+ FSQT (B))

TYPE IITEXT STRING II!

WRITE ALL

WRITE 1

WRITE 1 .1

I F (X) 1 .2, 1. 3 , 1. 4;

Explanation

Evaluates expression, types out =,
and result in current output format.

Types text. Use! to generate
carriage return line feed.

FOCA L pri nts the entire i ndi rect
program.

FOCAL types out all group 1 lines.

FOCAL prints line 1 • 1

Where X is identifier or expression.

Control is transferred to the first, second, or third line number if (X) is less than, equal to,

or greater than zero respectively. If the semicolon is encountered prematurely then the remainder of

the line is executed.

MODIFY M MODIFY 1.15 Enab les editi ng of characters on
line 1.15

The next character typed becomes the search character. FOCAL wi II position itself after

the search character; then the user may

a . type new text, or

QUIT

RETUR~'~

SET

ASK

b . form-feed to go to the next occ urrence, or

c. bell to change the search character, or

d. rubout to de lete backwards, or

e. left arrow to ki II backwards, or

f. carriage return to end the line, or

g. line-feed to save the rest of the line.

Q

R

S

A

Q un or * or contro I-C

RETURN

SET A = 5/B * SCALE(3)

ASK ALPHA (I + 2 * J)

A-1

Returns contro I to user.

Terminates DO subroutines

Substitution statement

FOCAL types a colon for each
variable; the user types a value to
define each variable.

Command

COMMENT

CONTINUE

DO

ERASE

FOR

GO

GOTO

Abbr

C

C

D

E

F

G

G

Example of Form Explanation

C - compute area If a line begins with the letter C,
the remainder of the line will be
ignored.

C - ignore temporari Iy

DO 4.14 Execute line 4. 14; return

DO 4

DO ALL

ERASE

ERASE 2

ERASE 2.1

ERASE ALL

Execute all group 4 lines I return
when group is expanded or when a
RETURN is encountered.

Execute entire indirect text as a
subrouti ne .

Erases the symbol table.

Erases a II group 2 Ii nes .

Deletes line 2. 1 .

Deletes all user text.

FOR I = x/Y IZ; TYPE I The command string following the
semicolon is executed for each value;
X/Y ,Z are constants, variables, or
expressions. x=initial value of I,

GO

GOTO 3.4

Y =value added to I unti I I is greater
than z. y is assumed = 1 if omitted.

Starts indirect program at lowest
numbered line number.

Starts indirect program at line 3.4

C - The Fourteen (14) Functions are

FSQT () - Square Root
FABS () - Absolute Value
FSGN () - Sign Part of the Expression
FITR () - Integer Part of the Expression
FRAN () - A Noise Generator
FEXP () - Natura I Base to the Power
FSIN () and - FCOS () I FATN (- Trig Functions
FLOG () - Naperian Log
FDIS (X/Y) - Scope Functions
FADC () - Analog to Digital Input Function
FNEW () - User Functi on
FX () - Extra User Function

A-2

Location

0250
0316
0340
0351
0362
0440
0464
0517
0605
0634
1047
1064
1074
1147
1260
1406
1466
1626
1646
1755
1764
2057
2213
2551
2643
5042
5644
6543
7111
7405

Code

?OO.OO
?01.00
?01.40
?01.78
?01. 96
?01.: 5
?01.; 4
?02.32
?02.52
?02.79
?03.05
?03.28
?04.34
?04.52
?04.60
?04.: 3
?05.48
?06.06
?06.54
?07.22
?07.38
?07.:9
?07.;6
?08.47
?09.11
?10.:5
?11.35
?20.34
?23.36
?26.99
?28.73
?30.05
?31.<7

APPENDIX B

ERROR DIAGNOSTICS*

Table B-1
Error Diagnostics of FOCAL, 1969

Meaning

Manual Start given from console.
Interrupt from keyboard vi a contro I-C.
Illegal step or line number used.
Group number is too large.
Double periods found in a line number.
Line number is too large.
Group zero is an illegal line number.
Nonexistant Group referenced by 100 I.
Nonexistant line referenced by 1001.
Storage was filled by push-down list.
Nonexistant line used after IGOTO I or lIP.
Illegal command used.
Left of II = II in error in IFORI or 'SET'.
Excess right terminators encountered.
Illegal terminator in 'FOR' command.
Missing argument in Display command.
Bad argument to 'MODIFY I.
Illegal use of function or number.
Storage is fj lied by variab les .
Operator missing in expression or double IE'.
No operator used before parenthesis.
No argument given after function call.
Illegal function name or double operators used.
Parenthesis do not match.
Bad argument in 'ERASE ' .
Storage was fi lied by text.
Input buffer has overflowed.
Logarithm of zero requested.
Literal number is too large.
t Power is too large or negative.
Di vi si on by zero requested.
Imaginary square roots required.
Illegal character, unavai lable command, or unavai lable
functi on used.

*The above diagnostics apply only to the version of FOCAL, 1969, issued on tape DEC-08-AJAE-B

B-1

B.1 OBTAINING ERROR CODES VIA ODT36

To obtain error codes via ODT36, proceed as follows:

a. Start 0 DT at 3600.

b. User types underlined letters:

(change, from, to)

4320/1357 1275 (I i ne feed)

4321/4745 3067 (I i ne feed) (UNENO)

4322/1675 4552 (I i ne feed) (PRNTlN)

4323/4246 7000 (carriage return)

63/2676 1355 (C .R.) (OUTDEV, OUTl)

c. then

M 7777 7777 (line feed)

4273/0001 4400 (C . R .)

4565W (ERROR 2)

Calling addresses and error codes wi II be printed here. The first two and last error codes

(00.00,01 .00 ,31 . <7) are always the same.

B-2

C .1

C.1.1

APPENDIX C

EXPLANATION OF NEW INSTRUCTIONS

NEW INSTRUCTIONS (see Table C-1)

Push Down Li st Instructi ons

The user1s push down list begins at the start of the floating point package and grows up

toward the last variable. The initial value of the push down list pointer is contained in location

"BOITOM". The pointer is kept in an auto-index labeled "PDLXR". The instructions used to manage

the list are given below:

C.1.2

PUSHA

POPA

PUSHF

POPF

PUSHJ

POPJ

places the contents of the AC onto the list as the current entry

adds the current entry of the push down I ist to the AC,

saves a group of data, normally a floating point entry.
This instruction is followed by a pointer to a 3 word (or
4 word) group of data. These 3 or 4 words are placed
on the push down list as the current entry.

restores a 3 or 4 word group of data from the current
entry on the push down list according to the pointer
which follows the instruction. The location "MFLT"
contains either -3 or -4 and determines the number
of words affected by "PUSH F" and "POPF".

calls subroutine which is pointed to by the word follow­
ing the instruction. The return address is placed on the
push down list as the current entry.

the current entry is used as a return address from a sub­
routine.

Character Handling Instructions

These instructions are used to pick-up, save, and print characters for processing by FOCAL.

Characters are fetched from the user's storage area or from the ASR-33 input buffer. Character con­

version between 8 and 6 bits and the trace feature are handled by these routines.

PRINTC

READC

PACKC

is used to print a character. If the AC is zero upon
entry then the character in "CHAR" is printed. If the
AC is non-zero, then the contents of the AC is printed.

Reads a character from the user's input buffer (AS R-33
input) and echos a II characters except line feeds and
rubouts. The character is placed into "CHAR".

places the 8-bit character in "CHAR" into the user1s
storage area. If the character is a rubout the previ ous
character is de leted from the user's area and a back­
slash is echoed via "PRINTC". The character is

C-1

GETC

SPNOR

C.l.3 Character Testing Routines

converted into 6-bit code. The auto index
"AXIN" and the flip-flop "XCTIN" are pointers
to the user1s storage area.

this instruction fetches the next character from the
right or left side of the word pointed to by "AXOUT"
and "XCT II and places it into "CHAR". If a question
mark character is detected the dump switch "DMPSW"
is flipped. If the dump switch is on then the character
in "CHAR" is printed via "PRINTC".

Blanks and leading zeroes are ignored by repeated
calls to "GETC II .

These guide the interpreter through the source text. They are testing routines used through­

out FOCAL in interpreting the program and in other instances.

C.l.4

SORTC

SORTJ

TESTC

TESTN

TSTLPR

the character in "CHARII is classified according to
an ASCII list which is pointed to by the location follow­
ing the instruction. If the character is found in the list
an exit is made to the location following the list pointer.
If no character is found exit is made to the second location
following the list pointer. If the character was found in
the list then "SORTCN" contains the position relative to
zero in the list searched. The list is terminated by a negative
word.

the character in "CHAR" or in the AC is classified accord­
ing to a list as per IISORTC II . If the character is found in
the ASCII list, then a jump to an address is made from a
second list. The second list is pointed to by the 2nd
location following call. If the character is not found then
exit is made as per IISORTC". "S0RTCN" is not changed,
however.

this instruction fetches the next non-space and classifies
it as a terminator, number, function, or letter. The instruc­
tion then skips zero, one, two or three cells accordingly.

"CHARII is classified according to whether it is a period
{no skip}, number {skip two}, or other {skip one}. If
"CHAR" is a number then its binary value is in IISORTCN".

This instruction skips the next instruction if the AC contains
a left parenthesis.

Line Number Handling Instructions

This group is used in manipulating line data and line numbers.

C-2

TSTGRP

PRNTLN

GETLN

FINDLN

ENDLN

PUSHJ = JMS I .
XPUSHJ

POPA = TAD I POLXR
POPJ = JMP I .

XPUPJ
PUSHA = JMS I .

XPUSHA
PUSHF = JMS I .

PD2
POPF = JMS I .

PD3
GETC = JMS I .

UTRA
PACKC = JMS I .

PACBUF
SORT J = JMS I .

SORTB
/NUMERICAL LIST -1

If the group of the line number in the AC is equal
to the group on the line in "LINENO II the next
instruction is skipped.

the coded line in "LINENO II is printed as a decimal
fraction with group number and the step number
separated by a decimal point.

JlSPNOR Ii is called and a line number is built in
JlLINENO Ii via calls to IIGETC IJ

• IINAGSW II is set
to indicate whether the line number was a group, line,
or "ALLII designator.

the line number coded in IlLINENO Ii is searched for
in the user's text area. If the line is found, -the auto­
index IIAXOUT" and IIXCT II are set to point to the
line's text and an instruction is skipped. If the line
is not found, the pointer "AXOUT" is set to point
to the next higher line and no instructions are skipped.
"THISLN" points to the line found on the next larger
line and "LASTLN" points to the previous/less
line.

"ENDLN" links the line in the user's storage area
to the rest of his text. It uses the result of the "FINDLNII
instruction to accomplish this. The new end of the user's
buffer is set-up in IIAXINII. This command is used for
insertion of new text, reconnecting after a deletion,
and reconnecti on after Modify.

Table C-1
New Instructi ons

/RECURSIVE SUBROUTINE CALL

/RESTORE AC
/SUBROUTINE RETURN

/SAVE AC

/SAVE GROUP OF DATA

/RESTORE GROUP

/UNPACK A CHARACTER

/PACK A CHARACTER

/SORT AND BRANCH ON AC OR CHAR

/ADDRESS LIST - NUMERICAL LIST

C-3

SORTC = JMS I .
XSORTC

PRINTC = JMS I .
OUT

READC = JMS I .
CHIN

PRNTLN = JMS I .
XPRNT

GETLN = JMS I .
XGETLN

FINDLN = JMS I .
XFIND

ENDLN = JMS I L
XENDLN

RTL6 = JMS I.
XRTL6

SPNOR = JMS I. .
XSPNOR

TESTN = JMS I .
XTESTN

TSTLPR = JMS I •
LPRTST

TSTGRP = JMS I •
GRPTST

TESTC = JMS I .
XTESTC

ERROR2 = JMS I .
ERROR3 = JMS I .
ERROR4 = JMS I .

ERR2

Table C-1 (Cont)
New Instructi ons

/SORT CHAR

/PRINT AC OR CHAR

/READ ASR-33 INTO CHAR AND PRINT IT

/PRINT C (LINENO)

/UNPACK AND FORM A LINENUMBER

/SEARCH FOR A GIVEN LINE

/INSERT LINE POINTERS

/ROTATE LEFT SIX

/IGNORE SPACE AND LEADING ZEROS

/PERIOD: OTHER: NUMBER

/SKIP IS 5 < SORTCN < 11 (I . E. AN L-PAR)

/SKIP IF G(AC) = G (LINENO)

/fERM; NUMBER; FUNCTION; LETTER

/EXCESS SOMETHING ERROR
/MISCELLANEOUS ERROR
/FORMAT ERROR

C-4

Mnemonics

ZERO

START

BUFBEG

BEGIN

FEXP

(BET 2+ 3)
ARTN

(FLAG 3 +1)
FCOS

(FLOA+ll) }
(TEMPO + 1)
DECONV

(I NFIX +5)
FLOUTP
(OUTOG+4)
FLINTP

(P43+l)
FPNT

ACMINS

(RAR1+1)
DNORM

}
I
I

(BUFFER + 10)}
BINARY
(RIM)

APPENDIX D

FOCAL CORE LAYOUT

Table D-1
Foca I Core Layout-Usage

D-1

What

FOCAL PROPER

BUFFER AREA

INITIAL DIALOGUE

EXTENDED
FUNCTIONS

OUTPUT
CONVERSION

INPUT -
OUTPUT
ROUTINES

FLOATING-POINT
INTERPRETER

LOADERS

Table D-2
Detailed FOCAL Core Layout

Miscellaneous
Numbers
Floating-Point Working Area
Constants
New Instruction Pointers
Variables

START

Command/Input
Line Read Routi ne
'DO' Routi ne
Push -POP Routi nes
'GOTO' and 'WRITE' and Misc.
'IF', "SET", 'FOR'andMisc.
'ASK', 'TYPE', 'MODIFY'

"GETARG II - Recursive Routine
"SPNOR", "TESTN", "POPJ"
'RETRUN'
"EVAL" - Recursive Routine
OPNEXT - read operator
ARGNXT - read operand
ETERM - evaluate terminator
FLOP - floating operations called
ENUM - number processor
EFUN - function processor
ELPAR - left parens processor
EFUN3 - function returns
"DELETE" - Recursive Routine
DO K - group de lete
DONE - garbage collection
"FINDLN" - Normal Routine
Find exact match or next larger
'ERASE' command processor
"GETC II - unpack text and trace
"ENDLN", "PRNTLN"
I/O Subrouti nes
Interrupt Processor
ERROR Processor
"PACKC" - pack text
Rubout routi ne

D-2

*3120

T
E
X
T
/
V
A
R
I
A
B
L
E
S
/ .
. "/
P
u
S
H
D
0
W
N
L
I
S
T

*4400 -

*3600

*4600

*4600
*5400
*6400
*7600

Table D-2 (Cont)

I/O Buffer
Command Buffer
Text Buffer Begins

Once-On Iy Code
SELF-START

CLEAR ALL FLAGS
TYPE MESSAGE

ODT -JR (for X-FUN)

ODT -JR (for dialogue)

Floating Point Routines
(c.f., Section 4.5.2)

Extended Functions
I/O Controller
Interpreter
Binary Loader
or 8-SYS LIB Bootstrap
or Disk Monitor Bootstrap

*7756 Rim Loader
End of Field Zero
Field One
Command

Buffer Extended Text Storage

D-3

A 8

C D

77 15

N A

S EXP

S

FOCAL CORE LAYOUT

0000 --------------------------

PUSH A

PUSH J

PUSH F

PAGE ZERO

FOCAL

FREE

4600 r-----------~----------~

EXTENDED FUNCTIONS

5400 I------------------------~

FLOATING -POINT PACKAGE

LOADERS
7777

Figure D-1 FOCAL Core Layout
Dynamic Storage

D-4

T

APPENDIX E

SYMBOL TABLE AND OTHER T ABLES/LISTS

E. 1 SYMBOL TABLE

If:"OCAL.~lM PALl" V5l5 1121-APR ... 69 19138 PAGE 121

A ~"'45 9F'XX 4556 CO~EtN 31·0 OU80lV 7261
ABSOL 6751 QMOVE 1255 COME"'U 32e!6 DUBLAD 5133
ABSOL2 6153 BOTTOM ~035 CO~GO 1163 OUMLN2 2012
A8S0L3 7375 BUI='BEG 3217 r.OMLST 0714 DVJ 7261
ABSOLV 5571 RUF'F"ER 7470 COMMF"N ~614 E "'0.2
AC1H ~Z41 AUF'R "'060 CON1 5037 EBEL.L ~512
AC1L ;1042 RUF'RS 13"'~ CaNTIN 1147 ECALL 1601
AC~ I ~'S 6673 BurRSP 3045 CONTIIJ ~11l16 ECCR 2630
ACTI~;G ~7r1 RurST 5531 r:STAQ 0225 ECHO 0454
ACTlr:f\J 442e C 0047 CTABS 0353 ECHOLS 1624
ACTI\lE Vl~37 C1~k'J 1?!0~6 M 0041 Erop 00'6
ACTVP 1143 C140 2554 DATUM 7102 ErUN 17.3
ADn ~061 C144 614~ DA TU~1A 7252 Ef"UN2 1754
ADrH~ Ll041(1 C2k'l0 ~123 DCONP 6303 EF'UN3 2017
ADn~E 6673 C2e0~~ Ql065 DCONT Pl411 EF'UN31 0136
AF' 4677 C260 "1113 DCOU~IT 6143 ELPAR 1763
ALF'l 4760 C3 5346 ["lOTJP 0004 END 111134
ALF"2 4763 C5 5342 OEBGS\rI 0026 END;I 6243
AI.F"l! 4755 C7 5336 nECK ~HI.0 ENOLN .556
ALG,\; 6570 C9 5332 IjECKP OJ101 ENOT 0135
AUGN ~623 CCR 0017 DECO~J 5627 ENUM 1732
ALI ~T 1372 CDF' 70"'1t!J OE CO~,IV 5601ll [OUT ",4,.
ALlSTP ;,,,72 CDF'l 6211 OECP 5533 EP7 0121'2
AI.PH~ 1436 CEXl 651114 OECR 5521 EPAA 1710
AMCU~,'T 6722 CEXP 6503 DELETE .565 EPAR2 1765
AReAlG 4732 CF" 4705 Of:" .,10 EA' 4555
ARCRTN 5024 CF'RS "'133 nGRp 0425 ERASE 22214
ARGNXT 1723 CF"RSX :"1137 OGRP1 "'4·1 ERe 2225
ARTr-.; 5fiH'Iil CHAR 0066 1'1 G 5543 [AL 2222
As~rT 6665 CHARt-I C11026 r:lIGIT 5113 ERR2 2726
ASK 120.2 CHIN 2155 DIGITS "'1/J2'6 EAROR2 .566
ATE:l 4465 CHKC~T 1'1153 0lV1 5754 EARORJ 4'66
ATfS 4513 CHKCON 1~52 DIV2 6757 ERROR4 4566
ATLIST 157e CHRT 6133 rJlVlne: '1'1ll ERROR5 2725
ATSw ~0r;6 CIA 7041 OLISTP 0101ll ERT 2214
Axlfll :"010 CIF' 6202 nMDO~'E 1063 [AV 2217
AXOUT ~1i317 CIF'l 6212 OMPSW !'J1QJ0 ERVX 2237
~ ~~46 CLA 7200 OMUI.T '1ll"'4 ESCA 2'32
~ACK 5503 CI.CU 7421 OMUl.T4 7036 ETERM 1647
~ASER ~616 Cl.F' "'016 ONORM '335 ETERM1 1627
RASES 1540 Cl.l. 7111'121 ONUMFIR 5714 ETERM2 1655
BASEx ~617 CMA 711140 DO 0.21ll ETEAMN 1644
QOUMP 0071 CML 7020 ~Ol< 2111 EVAL 1613
8EGI~ 4371 CNTR 0057 "O~E 2121 [Xl "'040
BEI.I.X ~5:54 CNTRLC 1'1324 DOONE 0463 EXASt(2662
RENO 4442 CNTRI.X "'331 DOUBLE 11'121 EXCMCK 1037
BETl 4771 CNTRM 0024 OPCVPT 6302 EXCHE 111172
~ET2 4774 CNTRT 0032 OPN 631!l' EXCHEC 2615
BETA 0010 COOET 11'0.4 OPT 614' EXGO 1007
BETl 4766 COL 12'5 OSAV£: 564fIJ EXGON 1215
Rf:" 47e2 COMBOT 11'226 DTABLE 0070 Exn 26'6
Rf:"X 4557 COM8UF ~1~2 DT5T 56'7 EXIT1 '8~4

E-l

IfOCAL.ti1M PALl,' V515 10"APR .. 69 19138 PAGE 121.1

EXIT? 53!12 F'LOUT 5556 10101.0 "'036 KINT 2625
rXIT3 7363 F"l.OUTP 612"1'0 HOLOT 1276 KRB 60:36
[XITJ 2661 F"LPT 6465 401.0(' 1277 KSF" 60:51
rx~()n 2657 F'LSU 65C1!5 1-40RD 00"5 KSF'l 64~1

[XP 7044 F'L TO"1[24~5 HRE,V' 6321 KSr2 6421
rxpRTN ?6~e: F"LTXR 21014 \.IREA~2 6324 KSF'3 6441
E XpR~. 1ra6~ F"LTXR2 12"~15 HSGO 6364 KSF'4 6461
F'XPR\T 100" F"l.TtER 24~7 HSP t'l273 Ll 5126
rXRD 1.~14 F"M12 6142 1-4SPS\.: 6315 L2 5131
rXPEAD 261"5 F'NF.:G ';163 HSPX 6361 L3 5134
rX~Er'\ 11354 F'NOR 10~0 IoISR 0273 L4 5131
~XS;.jp 1142 F'NPT 4554 IojSWI TC 6343 L8A 4550
EXTR 231.3 F'NTAPF" ~374 1-4T5T ~316 L8AX 4553
F' t?k?)43 F'NTA~L 2165 133 2414 L8AY 4552
r C O~\j T 1171 F'OP 1041 tAC 7001 L8B 45~1

rc"'S 5221~ rO!JT PU ~13ri:l ISAR ?l212 LASTI.N 0025
F'CnU";T C:;535 F'PACl 7414 tBUFI ;)1"'6 I.ASTOP 0055
r£ND3 ?2fo.7 F'PNT 64~0 18UF"'" ~1~5 LASTV 0031
F'E)(P 46?~ F"PRNT 5465 tECALI. 1037 LeON "311
ron ?~~eI F'RST 32"'6 IF' 1013 LG2E 4113
F'G1"2 6idl1 F'RSTX 3215 tF1 1035 LIBRAR 75~3

rG03 fl027 F'SIN 52215 IF'3 1025 LINENO ~067

F'G(,4 "034 F'X IT f210C110 IGNO~ ~217 L1ST3 0071
F'G'.'l5 "010 G8L 4466 I G~'OQE ~447 LlST6 0012
!'Ir.01 fo.221 GECALL 146~ IL.IST "'711 LIST1 ~074

F'IG04 6261 GE~D 2334 IN 5513 LISTGO 1370
r I "'C~ 1065 GERR "'34~ INBUF' 0",34 LlSTI. 0023
~ 1 ~!DL N 4555 GETl 233rli tNOEV "'064 LlSTP 1165
~ I t\D~: 2246 G£TJ 2345 INnRrT 6463 L.OG2 5157
F' P.'F I 1'-1 1131 GETAqG 14Ql3 INF'l)(24"'1 LOG5 5142
F'lNKP 1133 r;ETC 4545 I N I TL 3001 LOG6 5145
F' I NPlJ T 1131 GETL'" 4554 INITL4 3011 LOG7 5150
r 1 "IT 442'7 GETSr.N 1045 tNLIST 2510 LOG8 5153
f"l S \oj ?!052 GETVAR 1407 I NOR~' 63~1 LOOKUP 45'1
r p(6724 GEXIT "352 INPUT ~756 LOOPCIl1 6431
F'lXM 6753 GF'NOi 15~5 tNPUTX '11211 LORD (11046
F'LAC ~1044 GINC ~070 INSUR "'036 LP? 1556
F'LAO 65C"6 GLIST 1371 INTE~E 0",53 I.PRTST 2035
F'LAGl 5162 GO 5021 INTRPM 02"'1 M100 0101
rLAG? 4725 GOCR (21451 INTR~T 26~3 Mltl1PT 6147
F'LARG 2030 GOt\'[C!'232 to~ur 3120 1'111 0121
F'LARGP 0125 GOTO "'603 I OF' 6002 M12 2413
F'Lf'l1J 7Ul7 GRPTST Pl744 ION 60!l11 1'1137 2357
F'LEX 6515 GS1 1437 101)(ClI111 1'1140 2556
rLr.T 6467 GS2 1461 IPART 1041 1'1144 6137
F'LIMIT HJ75 GS3 1441 I RET~" ~227 M2 0111
F'LINTP 62210 GS" 1454 ITABLE 6573 MUJ 0105
F'LIST1 "'517 GSERCH 1426 tTER1 7471 1'1200 UJ64
F'LIST2 "'574 GTEM Pl021 JUMP 6462 M20M 13056
F'L~Y 6563 GlfRR e362 1(5 5525 M240 ~114

"LOG 5040 IolIN8UF" 02137 KEY :3321 M240M 3146
FLOP 1674 IolI.T 7402 KEY)(Ql447 M260 1526

E-2

IF"OCAL.irM PAL1;1 V515 10-APR .. 69 19138 j:!AGE 121-2

""271 1527 NEGP 4724 P ~"aJ0 POP 4562
"14 6141 NEWU 0frH2 "10 ~"53 POPS 4510
~4pi 2356 ~EXT0 1146 P100 0342 POP5X 4463
'14V1M ~057 NEXTU 1145 P100'" ~046 popel 4567
"14"1 ~"61 Nl.l 73~1 1'13 0005 PEQ 6135
~5 0120 NL,2 1326 1'14 ?I706 PER 0102
~6'" 1162 NL,2000 1332 P14" 0532 PI 5312
""77 l103 NL,3777 13513 P17 01~7 1'12 5036
M,8REAK 26"'2 "JL4000 1330 P177 e106 PlOT '316
.... C20'" :'446 'lL5777 7352 P17M 02154 PL.CE 5536
~COM 1136 NL7775 7346 1'2 4566 PL.S 6026
~CR ?i116 NL,7776 7344 1'20 0055 PM2000 1144
"'CRM ~063 NOEC~O 0465 p2e13~ e37J PNTR 00:51
"'0 '5526 "lOP 7 ~H:~ 0 1'27 675" pop A 1413
MDEeK 01343 ~JORF" 6513 1'217 (H1" POPF' 4544
MEQ 1135 NORM 6567 P2M ~7~7 POPJ 5541
~f C'l6f{l2 NORM~ 7147 1'3 2034 PpTEN 6144
.... fLT ell] ~JOUSRS 01373 1'337 0075 PRINTC 4551
""IF" 726~ NOX 6675 1'37 0062 PRINTO 7550
~INE 5662 NOX1 6711 1'377 2553 PRNT 2442
"1INSKI v'~51 NOX2 6704 1'4 0060 PRNT2 3114
MINUS2 7153 01 437", p4~ 25152 PRNT8 7527
..., I tJUSA 7:112 02 4561 1'40130 "'124 PRNTI 6132
MINUSE 63"-1 04 H12 1'43 6310 PRNTL,N 4553
Mlf\JUSi 5663 05 4563 P6771 010'" PROC 0611
MLISTP '1:077 06 4564 P1 4565 PROCES ~610
MOD 5215 OBUF"~ "'104 1'7"''''''' "'047 PSIN 0165
t-COOIF"Y 1256 OBun "'103 P7~76 0764 PTl "'030
~OVE15 1232 OBuro QlUJ2 P160(,! 0104 pTeH 0126
MOVE2f£' 1243 OF'rOrc 4422 P7' "122 PTE:N 6275
MP1 7254 DM12 5530 P770P1 0101 PTEST 1457
~P11 C'l575 ONDECK 4421 1'7740 P'372 PUSHA 4542
MP177 ~445 ONE: 4716 P1150 .,,76J pUSHF' 4543
MP2 1256 DOUT 4544 P1157 1lI,,51 PUSHJ 4540
MP3 7255 OP 3115 P77M 004' R6 5441
tA p4 72"'''' OPM p.IS 6565 PAl 2524 RAL 7004
I"'P5 7253 OPNEXT 1622 PACBUF' 25"'2 RANO 15:50
'4p6 7210 OPTA~L 1731 PACKC 45046 RAR 71Zll0
"'Pf:R (11115 OPTR~ 2663 PAC:K~T "'027 RARl 6571
MPLUS 5664 OPTRI 2665 PACX 2530 RAR2 65'2
MQ "'1335 OPTRO 2664 PALG 5261 ROIV 0152
MQA 7501 OPUT 5532 PARITY 21302 READC 4552
MRO "'444 OTIoIE~ 0215 pART~S 2047 RECOVR 2140
MSPACE 5665 OUT 2465 PC 0022 RECOVX 2761
"'ULDIV 1101 OUTA 5536 PCl 0614 REMAIN 5712
MULT 6566 OUTCR 2416 "CHECK 5245 REPT 61.6
MUL TUl 5667 OUTOEV 0063 pCIoIK 05UJ RESOL. 6152
MULT2 5715 DUToe; 6154 PCl(l 2535 RESOL,3 7316
MULTV 4752 DUTL 1354 "CM 01211 RESOL.5 6304
MX 0533 OUT X 24'5 "02 0534 RESOL.V 11'3
MiERD 01367 OVER1 "'''43 P03 0554 RESTAR ",rU3
NAGSIrJ ~065 OVf:R2 0047 "DL.X~ "I1l13 RESTOR 0304

E-3

IF'OCAL.llM PALl"' V515 10"AoR·69 19:38 PAGE 121-3

RESTP 6377 SNL 742il TEST~ 4561 XABS 2014
RESUME 2623 SQPTQ 1314 TEXP ?744 XACTIO ~643

QET ~452 SQRTC 4550 TE,)(T\ 1610 XADC 1.343
~ETRN 1.563 SORTer-.. (7'0';4 TEXT'" 2'015 x8 2655
RETURN 5536 SQRTJ 4547 TEXT~ ~017 X8UF t'l516
PEVIT 7146 SPA 751~ TEXTPM e.074 XCOM 0620
RF'e 6014 SPECIA 6777 TGI) 54(110 XCT 11020

RMF" 6244 SPL 70~'" THTR 12'57 XCTI\I "'062
PNn2 5527 SPLAT 3051 TH I SU1I 111023 XOECK 2'600
ROOTGO 7461 SP~.'OQ 456~ THIsnp ~024 XOELEl 2062
POT 2557 ~Qro·'-.!1 7467 TINTQ 1241 XOYS 1142
RQU~~ 6151 SQP~r'l 1465 TLtS T 14"0 XENOLN 2360
RR~ 6012 SRF"T' e261 TL.IST2 14~4 XF' 4560
PSF' 6011 SR~L~T 1363 TLIST3 2317 XF'lNI1 2242
RTL 7\?lV'lb START ?l177 TLS 6046 XGETLN 113V!2
RTL6 4557 STARTL 5064 TPr'" t:044 X133 2666
RTR 7012 STARTV ~~6il TQUQT 1232 XIN 631716
PU81 3017'4 SU8S 1517 fRAO fl573 X I NPIJT 5666
RUA2 3~42 Si!A 744i TRr:l 1163 XINT 1160
RUB3 3~3it SlL 743~ TRC2 1164 XKEY ~412

PUB4 3~37 T ~~p!0 TS~ 6041 xOUTL 2676
PUP5 3041 T1 "'~32 TSr:1 6411 XPOPJ 1565
RUB IT 2555 T1? 44?6 TS~2 6431 XPR 11362
SAC o",33 T2 V'l1il11 Tsr3 ~451 XPR2 1064
SAOR 61~k:l T211 2624 lsr4 6411 XPRNT 2425
SAVAC 26{'1~ T3 C!'033 TSTGr.P 4563 XPRNTI 11313
SAVE 3751 TAQL~ 6464 TSTL"'R 4562 XPUSIoIA ~477

SAVLI< 26eJl TAGl 6723 TTY 01322 XPUSIoIJ ~521

seAR 1302 TASt< 12"'4 TTvpr er347 XR10 etfH0
SCHAR 1273 TASK4 1253 Twl') 4721 XR11 el011
SCONT 12710 Ter ()0 42 TWOPT 53"'6 XR12 ~012

SCOU~' T 5534 TCRLF 1251 TYPE 12~3 XR13 ~013

SET 1041 TCRLF2 1246 TvoE~ 1226 xRAN 1553
SETW "'527 TQUMP 3052 UN~E"'K "633 XRAR2 7365
SETwt "'023 T£LSW 0,316 UPAR {'!066 XRSTAR V'l312
SEX 134irO TELS 'JJl i?'275 USER"Q 01041 XRT (71011
s£~c e'74~ TELSt.J2 ;'216 IJSERTS 121~ XRT2 02112
SrOUNO 13"'6 TELS~.3 "'277 uTr 2276 XRTL6 ,,413
$GOT 1312 T£LS'.!4 ?l3"'''' dT1 237'5 XSGN 21310
SIGN 7124 TELsw5 ~3"'1 IJTRA 2214 XSORTC ~721

SIGNF' 2'050 TE"'l 5156 UTX 2316 XSPNOR 1517
SILENT 0343 TEMP 4726 VAL Ql032 XS02 4676
S 11'! 2662 TEMPu "1:125 WALL ?J664 XSQR 5326
Sl~G "'411 TEMPT 011327 '...JOROS "'0"3 XSQRT 7400
SINGLE 2636 TEMPX r;H630 wRtT~ ~635 XT3 1.'l717
SKP 7410 TpJ 6271 ;.oJT(ST2 V'653 XTDU"'lP ~535

SL.K Pl034 TENPT 6152 wTEST~ 7667 XTESTC 1(17910

SMA 75Q!0 TE~H1S 1770 wx ~613 XTESTN 1533
SMtN 6136 TEST~ 6736 X 5322 XTTX r;t727
SMP 61tH T(ST4 1366 Xl 5035 XTTY "'7121
SMSP 6134 TESTA ~322 X2 4615 XXTTY 0742
SNA 1450 TESTC 4564 XA 2656 XYl 2451

E-4

IF'OCAl-.llM

lERO

PAl-HI

6520

ERRORS DETECTED' 0

RUN-TIMEI 32 SECONDS

61(CORE USED

V515 19'38 PAGE 121-4

E-5

E.2 OTHER TABLES AND LISTS

ILlsT OF FUNCTION ADJHESSES, (NAMES ARE IN "FNTABL")

~3 73
,1374
,1375
~376
J377
!~4?!0

214'1
J4!.J2
114713
1.14'4
Z415
J4~6
1)437
:'410
1411

1\412
)41,3
~414

;'4 t 5
~416

0775
0776
0777
1';1('10
10211
10212
1~2J3
1004
10Z5
1fli1 6
t0~7
~10

1011
1e12
1~13

0373
2014
2010
1161

t$~~
1344
50:)0
4620
50410
5205
52210
7400
2725
2725
2725

~10J0
71~6

7006
7006
5612

0775
0323
0306
0311
0304
03~7
0303
0301
0324
!2I314
°3 05

~~i~
0321
0322
0212

FI\JTABF=,

COMLST=,

XA8S
XSGN
XINT
XDYS
XRAN
XAOC
ARTN
FEXP
FLOG
FSIN
FCgS
XSCRT
ERROR5
ERROR5
ERROR5

IAHS
ISGN
IITR
lOIS
IRAN
lADe
IATN
IEXP
ILOG
ISIN
leas
IS T
INEW
leOM
IX

-ABSOLUTE VALUE'
-SIGN PART
"'INTEGER PART
-DISPLAY AND INTENSlrY
-RANDOM NUMBER
~READ ANALOG TO DIGITAL CONVERTER

-EXPONENTIAL FUNCTIONS

'!!'TRIG FUNCTIONS

"'SQUARE ROOT
~USER DEFINEO rUNCTIONS

o IROTATE AC LEFT SIX"", "RTL6"
eLL RTL
RTL
RTl
JMP I XRTL6

!E.NbLISH ... FRENCH
ICoMMAND DECODING LIST

323 !SET ,., ORG~NI~E
306 IFOR QUA 0
311 IIF - SI
3"'4 100 - PAIl
307 IGOTO "" VA
303 ICoMMENT~ COMMENTE
301 IASK "'" OEMANDE
324 ITYPE .. TAPE
314 ILIBRARY. ENTREPOSE
3/{)5 IERASE "" BIF"F'E

~i~ IwRITE - INSeRIS
IMODIF'Y ... MaDIPIE

321 IQUIT .. ARRETE
322 IRETURN ~ RETQURNE
212 !(ASTERISK):EXPANDABLE COMMAND

E-6

1164 COMGO:, ICOMMANO ROUTINE ADORESSES
1164 1042 SET
1165 1(42 FOR
1160 1Vi 14 If
1167 0417 DO
117~~ 0604 GOTO I(REF'ERENCED)
1171 0615 COMMENT
1172 1203 ASK
1173 1204 TYPE
ll74 7503 LIBRARY
1175 2204 ERASE
1176 0636 WRITE
:1.177 1257 MODIFY
12~0 el177 START IRE TURN TO COMMAND MODE VIA 'QUIT'
12?1 1563 RETRN
12212 6361 HSPX IACTIVATE THE HIGH SPEED READER

2165 F'NTABL =,
2165 2533 2533 lABS
2160 265~ 2650 ISGN
2167 2636 2636 IITR
2170 2565 2565 lOIS
2171 263~ 2630 IRAN
2172 2!)17 2517 lADe
2173 2572 2572 IATN
2174 2624 2624 IEXP
2175 2625 2625 Il.OG
2176 2654 2654 ISIN ILIST OF' COOED rUNCilON NAMES
2177 2575 2575 ICOS
22:3kl 2702 2702 ISQT
22211 2631 2631 INEW
22212 2567 2567 ICOM
2203 0330 0330 IX

E-7

IQUAD - ~U~TI-JSER SYSTEM WITH FOCAL.~rK PAL10 V133 14'-MAR-69 15149

/CONTROL TABLE.:

:3 354 0451 IGNORE IL,T.
21355 CTABS:.

~355 0456 ECHO ItA-HOME
2'356 21333 CNTRLX ItB
0357 0326 C,\jTRLC IC~END OF' M.ESSAGE
0360 0333 CNTRLX ID
21361 21333 CNTRLX IE
21362 0333 CNTRLX IF
~363 0456 ECHO IG '" BELL.
21364 0333 CNTRLX IH
21365 21333 CNTRl,.X I I
21366 21467 NOECHQ IJ ... LF.
el367 0333 CNTRLX IK
~370 0467 NOECHQ IL -FF,
0371 2J453 GOeR 1M -C,R,
21372 0333 CNTRLX IN ...
0373 ~333 CNTRLX /0

0~74 ~~~~ CNTRLX IP
21 75 CNTRL,X /0
0376 21345 SILENT IR-TAPE
0377 21333 CNTRLX IS .. (7((J00) - FOR DEBUGGING
iJ4~r2l 21351 TTvPE IT-NOT TApE
iJ4~1 "333 CNTRL.X IU
214212 21333 CNTRLX IV
214213 ~333 CNTRLX IW -E.O,MEDIA
04?J4 21456 ECHO IX-ERASE
2I42J5 ~~~~ CNTRLX IY
04~6 CNTRLX Ii
04217 21451 IGNORE Ie
21410 0451 IGNORE 1\
21411 21451 IGNORE I)
0412 0456 ECHO IUPAR -
21413 21453 GOCR ILEPTARaGQRO

E-8

4WQRD (10 DIGIT) OVERLAY FOR FOCAL.2~K PAL10 14-MARa69 15,54

2'004
21012

005C2
21vi 52 0000

21(,71 7 0
0k:'70 0006

0116
eJ116 7774

3210
3210 Zl355
3211 6427
3212 1722
3213 214~('I

5526
5526 7766
5527 0013

5310
5310 3755

5314
5J14 3755

5320
5320 3755

6143
6143 7765

6277
62 77 31 46

6402
64212 7410

654~i

654121 70""
6736

6736 0043

7036
7036 3275

7105
7125 7000

7~72
7~72 7000

14 WQRO (10 DIGIT) OVERLAY FOR FOCAL,~tK

WORUS=4
OI(';IT5=12

wORDS+2
*MFLT

-WORDS
*FRST+2
TEXT @C-4wORD(il

-DIGITS IEXTENDED LENGTH OF OUTpUT FORMAT
OIGITS+l/RN02

*TW OP I+2
3755

*pI+2

*pIOT+2
3755

3755

ICORRECT CONSTANTS

-OIGITS-l
*PTEN+2

*FPNT+ 2
SKP

*lERO+20
NOP

*TE5T2
43

ICONSTANT ONE

100 NOT CLEAR OVERFLOw WORDS

DCA OATUM",5
*MULOIV+4

NOP
*OMDONE+7

NOP

E-9

4WORO (10 lJJGIT) UvE.RLAY FOR

7260 *MIF

7 2 60 77 35

7271 *D v3+2
7271 1(143
7272 1047
7273 3253
7274 70~j4

727~ 1042
7276 1046
7277 32,6
73;'0 70 /1 4
73~1 1045
7322 1041
73713 742;::
73214 5312
73715 3045
73216 125.s
737J7 3047
7310 1256
7311 3046
7312 7200
7313 1254
7314 7004
7315 3254
7316 12 ~H.'
7317 7004
7320 ~22HJ

7321 1335

FQCAL.ttK PAL.10

-43

TAD OVERl
TAD OVER2
DCA MP5
RAL
TAD AC1\..
TAO l.ORD
DCA ~1P2

RAL
TAD HORD
TAD AC1H
SNL
JMP ,+6
DCA HORD
TAD MP5
DCA OVER2
TAD MP2
DCA LORD
CL.A
TAD MPl
RAL
DCA MPl
TAD MP4
RAL
DCA ~1P4

TAD DNORM

NOPUNCH
FIELD 1
XLIST

E-10

V133 14-MAR-69 15:54

ICOMBINE ONE POSITION AND

ISAVE RESULT

IADD OVERFLOW

ISKIP IF OVERFLO~

IUPOATE FLAC

ICLEAR ACCUMULATOR
ISAVE OVERFLOW SITS CIRCULARLY

IHK OVE~LAY FJR FJCAL.2lK PAL10 V133 14-MAR-69 15:57 PAGE 1

62lJ1

~010

~0210

~0~0

31210
21022

21022 21020
0031

21031 32216
21060

2JJ50 21126
21131

2)131 0010
'';'132

2132 31210
£1134

Z,134 ~126
3166

21166 2565
2l1S7 6160
21170 6173
21171 75":>7
21172 7564
21173 2572
21174 ~1212l

18K OVE~LAY FOR FOCAL.~~K

ITEXT IS IN FIELD 1; VARIABLES AND POL ARE IN FIELD 0

I.SAVE ST8 K !(D)-7577;200
I.SAVE FCL8:0-3377i
I,SAVE NULd:1010~il~113
I,SAVE NAM~:10100-(B);1011J

COF=6201

T=l e1

P:0

Flt:.LlJ "
LINEr2l=lfl10
*pC

0
*LASTV

COMEOUT
*BUFR

LINEl
*COM8UF

10
*CFRS

LINE~

*ENOT
LINE1

*1 66
OpC, ROT+5 IPC
OTHIS, THISD ITHISLN
OP T1, PT1D IPTl
DXRT, XRTD I(TAD XRT)
OAXIN, AXIND I(DCA I AXIf\J)
OAX~UT' AX 9Ur D I(TAD I AX ur)
OLI , OL 88 ILINK FOR RK L"COMMAND

E-ll

~'l001

2hu00
~01J0 ~1 f~ 00
~H)~l ~1000

2l0~2 210i2l0
210213 ~)000

iH:J 2'4 7l0~~
J02J5 5051
~0216 ~060

2l0~7 0126

81 00
lJl210 J000
2Jl~l ~0el0

2112'2 0355
211213 7013
211214 42106
211215 1703
2i12;16 0114
£l1217 4121012)

"lie. 6171
:?Jl11 6671
l?112 7715

t1113 62211
{l114 1~eJ7
21115 3406
21116 6202
~117 5525
~120 6002
0121 1406
lJ122 3007
21123 6203
?J124 5525
0125 7600

0126

~02l0
0000

eJ021f2J 00021

PALl£?) V133 14-MAR-69 15:57

111111111////1/11///1//11//1//111/1/1///111

FIELD 1

*0000
0 IlERO PC
~

" ITOUMP DATA
0

" 5"'51
BUFR
LINE!

*LINEf2I
0
eJ

TEXT GlC~8K FOCAL @l

6171
6671
7715

ST8K. cor p 1ST ART 8K USER
TAD 7
DCA I 6
elF p

JMP I RLIB
DLIB8, IOF

TAD I 6
DCA 7
elF CDF P
JMP I ,+1

RLl~, 7600 IRE TURN To DISK
LINE1:.

NOPUNCH
XLIST

o

E-12

FILE AT T""'IS

MONITOR,

ADDRESS

APPENDIX F

FOCAL SYNTAX

Table F-l
Syntax in Backus Norma I Form

< i mmedi ate command> : : = < program statement> C . R .
<indirect command>: : = <line # > <program statement> C. R.

<line # >: : = <group no. >. <line no. >

<group no. >: : = 1-31

< line no. > : : = 01-99 11-9

< program statement> : : = <command> I
<command> <space> <arguments> I <command string> J

<program statement >; <program statement>

<command>: : = WRITE I DO I ERASE I GO I GOTO

<arguments>: : = ALL I < line # > I <group no. >

<command string>: : = <type statement> I < Library statement> I
<Ask statement> I <If statement>
<Modify statement> I <Set statement>
<For statement> I QUIT I RETURN I COMMENT I CONTINUE

<Set statement>: ::::! SET <space> <variable> = <expression>

<For statement>: : = FOR <space> <variable> = <expression >,

<expression >, <expression >; <program statement> I
FOR <space> <variable> = <expression >, <expression >;
<program statement>

<If statement>: : = IF <space> <subscript> <line # >; I

IF <space> <subscript> <line # >, <line # >; 1
IF <space> <subscript> <line # >, <line # >, <line # >

<Ask statement> : : = ASK <space> <Ask arguments>

<Ask arguments> : : = <operand >, <Ask arguments> I
! <Ask arguments> I # <Ask arguments> I % <format code >, <Ask arguments> I
1\ <character string> II <Ask arguments> I <null> I
<operand> <space> I $

<format code>: : = <line # > I <null> I <group no. >

< library statement>: : =
LIBRARY <space> < Library Command>

<space> <file NAME>

'<Library Command>: : = CALLI SAVE I DELETE I LIST

F-1

<character string>: : = <nul I > I <character> <character string>

<character>: : = a-z \ <digit> I <specia I symbo Is >

<digit>: : = 1-9\ 0

<terminator> : : = <space> 1 ' \ ; \ C. R.

<not space>: : = <nul I > I <character>

<special symbols>: : = & \ I I : \ @

< leader-trai ler >: : = @ I [200] I <null >

<Fi Ie name>: : = <character string>

<data list>: : = <variable> I <variable >, <data list>

<Type statement>: : = TYPE <space> <Type arguments>

<Type Arguments>: : = <Ask arguments> I <expression >\

<Type arguments >, <Type arguments>

<Modify statement>: : = MODIFY <space> <line # >

This command is then followed by keyboard input
characters defined as <search character>
plus
<null> I <character string> 1 <control character> I
<character string> <control characters>

<control charcter >: : = [bel I] <search character >1
[form] \ [fine-feed] I C.R. 1

['l'C] I +- I [rub-out]

<Variable>:: = <letter >\ <Ietter><character>\
<Variable> <subscript>

<Subscript> : : = <left paren > <expression> <right paren >

<operand>: : =<variable > I <constant >\ <subscript> I <function>

<left paren >: : = < I (I [
<right paren >: : = >) I]
<expression> : : = <unary> <operand> 1 <operand> I

<expression> <operator> <expression>

<unary>: : = +\ -
<operator>: : = t I * I / I + I -
<Function>: : = F <function code> <subscript>

<function code>: : = SIN· I COS
SQT I ADC
ABS I SGN

LOG I ATN I EXP
DIS I ITR I
RAN I NEW I

NOTE

Spaces are ignored except when required.

F-2

1.

2.

3.

4.

5.

6.

7.

B.

9.

10.

1l.

12.

13.

14.

Table F-2
FOCAL Commands In French

Commandments Francais Pour Le Calculateur Electronique "IGOR"

Eng lish

SET

FOR

IF

DO

GOTO

COMMENT

ASK

TYPE

LIBRARY

ERASE

WRITE

MODIFY

QUIT

RETURN

French

ORGANIZE

QUAND

51

FAIS

VA

COMMENTE

DEMANDE

TAPE

ENTREPOSE

BIFFE

INSCRIS

MODIFIE

ARRETE

RETOURNE

CE N'EST PAS PARFAIT
MAIS "IGOR" EST INTELLIGENT
IL COMPRENDRA

NOTE

"IGOR" refers to PDP-B!I

F-3

Letter

0

Q

5

F

V

C

D

T

E

B

I

M

A

R

EVAL-1

EVAL

APPENDIX G

ILLUSTRA TIO NS

ETERM1

ENUM

EFUN

T

N

F

Figure G-l (Sheet 1) Arithmetic Evaluation

G-l

Figure G-l (Sheet 2) Arithmetic Evaluation

G-2

EPAR
ENUM

EPAR2

OPNEXT

ARGNXT

ELPAR

ERROR4

_----_T EPAR2
ELPAR

N
ENUM

_----_F
EFUN

_----_v
OPNEXT-2

Analysis of Operands Analysis of Sub-Expressions and Constants

Figure G-l (Sheet 3) Arithmetic Evaluation

G-3

EFUN

EFUN2

ASSEMBLE
CODE NAME

ERROR4

ILLEGAL
NAME

ERROR4

ARG ::::> FLARG
(PT1) ::::> FLARG

CHAR = RPAR.
COMMA OR C. R.

VIA
EFUN31

FNTABL

r

LIST OF
CODED NAMES

FNTABF

LIST OF
FUNCTION

ADDRESSES

l
TYPICAL FUNCTION

OPNEXT

Figure G-l (Sheet 4) Arithmetic Evaluation (Analysis of Functions)

G-4

FUNCTION
RETURN

200

START

IBAR

IGNOR

IGNOR+4

G'>
I

OJ

OR START
INITIAL DIALOG

PC-O
DNPSW='

LIST 6

-F.F.
BELL

L.F.
C.R.

WAIT FOR
INPUT

ASR33

(IBAR)

(IGNOR+4)

(IGNOR+4)

(IGNOR)

(IRETN)

Figure G-2 Command/Input

SRETN

ON LINE
COMMAND

START

GZERR

INPUTX
NO

GOTO

PROCESS

PROC

MANUAL RESTART VIA LOC 200

ERROR2

GO TO
NEXT

TERMINATOR

ERROR2

Figure G-3 Main Control and Transfer

G-6

START

BRANCH OR
COMMAND

CHARACTER

DO

DGRP

PC ., (PC)

CONTINUE
DATA IS
SAVED

DCONT

SAVE NAGSW
DCHAR
LlNEND

Figure G-4 DO Command

G-7

ONE

ERROR2

DCONT

NOT
THERE

OK

ASK

TYPE REMEMBER
WHICH COMMAND

THIS IS

AL 1ST ATLIST
TASK

() 0/0 TINTR

(TQUOT)

(TCRLF)

(TCRLF2)

$ (TDUMP)

SP (TASK4)

(TASK4)

(PROCESS)

C.R. (PC1)

Figure G-5 (Sheet 1) Input/Output Commands

G-8

TYPE 2

TYPE

Figure G-5 (Sheet 2) Input/Output Commands

G-9

FI NCR

FLiSTl

(FINCR)
ERROR4

(PROCESS) FLIST2

TLiST
() PCl

ill
TLiST

ld READ
G) THE LIM IT ERROR4
I

0

FCONT

Figure G-6 Iteration Control

IF'

GOTO

TUST lUST

lJ
(IF')

(PROCESS)

(PCI)

Figure G-7 Conditional Branch Command

G-ll

MODIFY

NO
ERROR2

SCONT
(i)
I -N

SCONT+ 1

SCHAR

YES

LlST3

R
@

READ A
LINE NUMBER

LISTGO

(..... __ 5 R_E_T_N_J)

SBAR

SFOUND

SGOT

Figure G-8 Character Editing

RESTART
INPUT

POINTERS

LlST6

(

FORM- FEED (

BELL (

LINE-FEED (

CARRIAGE - RETURN (

SEARCH CHARACTER (

SRNLST

SBAR)

L2)

SCONT)

SCONT+ 1)

SRETN)

SGOT)

ERASE

ERV

RESET TEXT

POI NTS

RESET
VAR I ABLE

LI ST

ERV

ERL

ERRORS

Figure G-9 (Sheet 1) ERASE and Delete

G-l3

DELETE ENTRY ERL

NO

ADD ONE

Figure G-9 (Sheet 2) ERASE and De lete

G-14

(,-__ I N_T_R_PT __)-

TI NT

SAVE
I NPUT DATA

TINT

RECOVR

EX IT

CLEAR FLAGS

EX IT

SAVE
ERROR NUMBER
TURN ON TELSW

Figure G-10 (Sheet 1) Interrupt Hand ler

G-15

START

XOUTL ENTRY

TYPE CHARACTER
EXIT XOUTL ~~--~ AND ~--~~ EXIT XOUTL

START PROGRESS

XI33 ENTRY

Figure G-10 (Sheet 2) Interrupt Handler

G-16

GETARG

GETVAR

G'>
I -'"

RESTORE NAME

GSl

ERROR4)

GSI
GFND1

Fiqure G-ll Variable Look-up and Enter

GFNOl

ADD THE
~::":""'---I~ VARI ABLE NAME

AND SUBSCRIPT

YES

ERROR3

UTRA ENTRY
GET1

UTRA+1
GET3

UT2

200 -276 300 -376

EXTR

UTX

G) UTa
I

(X)

YES UTX

CHAR=277 UTa

EXIT UTRA

Figure G-12 Character Unpacking

FIND A
PART ICUL AR

LINE FOR A
GIVEN

LI NENUMBER
OR GROUP

FINDN

"FINDLN"

FINDN

ERROR2

Figure G-13 "FINDLN" Routine

G-19

"FINDLN~
ROUTINE

READER'S COMMENTS

ADVANCED FOCAL
TECHNICAL SPECIFICA nONS
DEC·08·AJBB·DL

Digital Equipment Corporation maintains a continuous effort to improve the quality and usefulness of its
publications. To do this effectively we need user feedback - - your critical evaluation of this manual.

Please comment on this manual's completeness, accuracy, organization, usability, and readability.

Did you find errors in this manual'! Please explain, giving page numbers. ____________ _

DEC also strives to keep its customers informed on current DEC software and publications. Thus, the
following periodically distributed publications are available upon request. Please check the publication(s)
desired.

o Digital Software News for
the PDP-8 Family, contains
current information on soft­
ware problems, programming
notes, new and revised soft­
ware and manuals.

o PDP-8/1 Software Manual
Update, contains addendal
errata sheets for updating
software manuals.

o PDP-8/1 User's Bookshelf,
contains a bibliography of
current and forthcoming
software manuals.

Name _____________________ Organization ___________ _

Street _____________________ Department ___________ _

City ______________ State __________ Zip or Country _____ _

... Fold Here

.. Do Not Tear - Fold Here and Staple .. .

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by: mamaama
Digital Equipment Corporation
Software Information Services
146 Main Street, Bldg. 3-5
Maynard, Massachusetts 01754

FIRST CLASS
PERMIT NO. 33

MAYNARD, MASS.

Digital Equipment Corporation
Maynard, Massachusetts

printed in U.S.A.

mamaala

	000
	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	A-01
	A-02
	B-01
	B-02
	C-01
	C-02
	C-03
	C-04
	D-01
	D-02
	D-03
	D-04
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	E-11
	E-12
	F-01
	F-02
	F-03
	G-01
	G-02
	G-03
	G-04
	G-05
	G-06
	G-07
	G-08
	G-09
	G-10
	G-11
	G-12
	G-13
	G-14
	G-15
	G-16
	G-17
	G-18
	G-19
	replyA
	replyB
	xBack

