Maynard, Massachusetts dlilgliltiall

DEC-08-AJBB-DL

ADVANCED FOCAL
TECHNICAL SPECIFICATIONS

For additional copies order No. DEC-08-AJBB-DL from Program Library, Digital Equipment

Corporation, Maynard, Mass. Price: $5.00
DIGITAL EQUIPMENT CORPORATION o MAYNARD, MASSACHUSETTS

Ist Printing April 1969

Copyrigh’r@ 1969 by Digital Equipment Corporation

The following are registered trademarks of Digital
Equipment Corporation, Maynard, Massachusetts:

DEC PDP
FLIP CHIP FOCAL
DIGITAL COMPUTER LAB

2.1
2.1.1
2.1.2
2.1.3
2.1.4
2.1.5
2.1.6
2.1.7
2.1.8
2.1.9
2.1.10
2.1.11
2.2
2.3
2.3.1
2.3.2
2.3.3
2.4
2.5
2.6
2.7
2.8

.10
.11
12
2.1
.12.2
.13

N N NN NN

Type, Ask

Literals

CONTENTS

CHAPTER 1

INTRODUCTION

CHAPTER 2
COMMANDS

Numerical Input Formats

Alphanumeric Input Formats

Special Characters

Print Positions
Symbol Tdable
Output Formats

Terminators

Off-Line Data Tapes (c.f., Section 4.5.3)

Corrections

Roundoff
DO

Editing and Text Manipulation Facilities

Command-Input
ERASE
MODIFY

FOR

IF

GOTO

RETURN

QUIT

COMMENT

CONTINUE

SET

High-Speed Reader
General
Other Rules

The Functions

Page

2-1
2~-1

2-2
2-2
2-2
2-3
2-3
2-3
2-3
2-3
2-4
2-4
2-4
2-5
2-5
2-6
2-6
2-7
2-7
2-7
2-7
2-7
2-7
2-8
2-8
2-8
2-10

2.13.1
2.13.2
2.13.3
2.13.4
2.13.5
2.13.6
13.7
.13.8
.14

14,1
.14.2
.14.3
.15

N N N N N NN

3.1

3.2

3.3

3.4

3.4.1
3.4.2
3.4.3
3.4.4
3.4.5
3.4.6
3.4.7
3.4.8
3.4.9
3.5

3.5.1
3.5.2
3.5.3
3.5.4

CONTENTS (Cont)

General
Analog to Digital
Extended Functions
Random Numbers
Standard Functions
Using the Arctangent
Boolean Functions
FNEW = A User Functions
The Library Command
L-Command For Single User System
LIBRA Command Specifications for Multi-User Systems
DF32 FOCAL FILE STRUCTURE
Write
CHAPTER 3
FOCAL USAGE
Requirements
Loading Procedure
Initial Dialogue
Operation
Restart Procedure
Keyboard Error Recovery
Parentheses
Trace Feature
Variables, Functions and Numbers
Error Diagnostics
Arithmetic Priorities
ASCII data
Indirect Commands
Saving Focal Programs
Paper Tape
LINC Tape
Disk Monitor System
Disk System and Extended Functions

Page
2-10
2-10
2-11
2-11
2-11
2-12
2-13
2-13
2-13
2-13
2-14
2-15
2-16

CONTENTS (Cont)

Page
3.5.5 Disk System and Extended Memory 3-6
3.5.6 For 4-user FOCAL SAVE command, see Section 4.6.6 3-7
3.5.7 EAE Patch for FOCAL, 1969 3-7

CHAPTER 4
PROGRAM SPECIFICATIONS

4.1 Machine Requirements 4-1
4.2 Design Specifications 4-1
4.2.1 Design Goals 4-1
4.2.2 Input 4-1
4.2.2.1 Input Format 4-1
4.2,2.2 Character Set 4-1
4.2.3 Output 4-2
4.,2.3.1 Output Format 4-2
4.2,3.2 The Input/Output and Interrupt Processor 4-2
4,2.4 Organization 4-3
4,2.4.1 Arithmetic Package 4-3
4.2.4.2 Storage 4-3
4.3 Hardware Errors 4-4
4.4 Internal Environment 4-4
4.4.1 Adding a User's Function; FNEW(Z) 4-4
4.4.2 Internal Subroutine Conventions 4-6
4.4.2.1 Calling Sequences 4-6
4.4.2.2 Subroutine Organization 4-7
4.4.3 Character Sorting 4-7
4.4.4 Language 4-8
4.5 Notes 4-9
4.5.1 Core Utilization 4-9
4.5.2 Extended Functions 4-9
4.5.3 Error Printouts 4-10
4.5.4 No Interrupts 4-~10
4.5.5 Operating HS Reader Without Interrupts 4-10
4.5.6 Non-Typing of Program Tapes During Loading 4-10
4.5.7 Explanation of NAGSW (Not All or Group Switch) 4-10

4.5.8
4.5.9
4.5.10
4.6
4.6.1
4.6.2
4.6.3
4.7
4.7.1
4.7.2
4.7.2.1
4.7.3
4.7.3.1
4.7.3.2
4.7.3.3
4.7.3.4
4.7.3.5
4.7 .4
4.8
4.8.1
4.8.2
4.9

5.1
5.1.1
5.1.2
5.2
5.2.1
5.2.2
5.2.2.1
5.2.2.2
5.23

CONTENTS (Cont)

Data Inaccuracies

Estimating the Lenght of User’s Program
FOCAL Systems
FOCAL Systems Assembly
FOCAL Binary Paper Tapes
FOCAL Listings
FOCAL Segments
8K Single User Overlay - 8K
Extended Precision Overlay - 4Word
Double Precision Multiply in Four-Word FOCAL
Four User Overlay ~ QUAD
Four User Loading and Operating Procedure
Swapping
Workload and Timing
Special Controls
Dialogue
Graphics for Circles and Lines - CLIN
FOCAL Demonstrations
One-Line Function Plotting
How to Demonstrate FOCAL's Power Quickly
FOCAL Versus BASIC
CHAPTER 5
ADDITIONAL FOCAL APPLICATIONS
FOCAL for the LAB-8
Standard
Additions| (Possible) FOCAL Functions for AX-08
FNEW for Data Arrays
Storage Requirements
Usage
Loading
Calling Sequence

Recursive Calling

vi

Page
4-1
4-11
4-11
4-12
4-14
4-15
4-15
4-15
4-15
4-15
4-16
4-16
4-16
4-17
4-17
4-17
4-17
4-18
4-22
4-22
4-23
4-23

5-1
5-1
5-3
5-3
5-3
5-3
5-4
5-4

CONTENTS (Cont)

Page
5.2.4 Restrictions 5-4
5.2.5 Description 5-4
5.3 Dynamic Interrupt Processing via FOCAL, 1969 5-5
5.4 Simultaneous Equations' Solutions 5-6
5.5 Fast Fourier Transforms Programs 5-6
5.6 Travel Voucher to Expense Voucher Conversion Program 5-8
5.7 Twins Demo 5-10
APPENDIX A
FOCAL COMMAND SUMMARY
APPENDIX B
ERROR DIAGNOSTICS
APPENDIX C
EXPLANATION OF NEW INSTRUCTIONS
APPENDIX D
FOCAL CORE LAYOUT
APPENDIX E
SYMBOL TABLE AND OTHER TABLES/LISTS
APPENDIX F
FOCAL SYNTAX
APPENDIX G
ILLUSTRATIONS
ILLUSTRATIONS
4-1 Figure 4-1 4-8
D-1 FOCAL Core Layout Dynamic Storage D-4
G-1 (Sheet 1) Arithmetic Evaluation G-1
G-1 (Sheet 2) Arithmetic Evaluation G-2
G-1 (Sheet 3) Arithmetic Evaluation G-3
G-1 (Sheet 4) Arithmetic Evaluation (Analysis of Functions) G-4
G-2 Command/Input G-5
G-3 Main Control and Transfer G=-6
G-4 DO Command G-7
G-5 (Sheet 1) Input/Qutput Commands G-8

G-5 (Sheet 2) Input/Output Commands G-9

vii

ILLUSTRATIONS (Cont)

G-6 Iteration Control
G-7 Conditional Branch Command
G-8 Character Editing

G-9 (Sheet 1) ERASE and Delete
G~9 (Sheet 2) ERASE and Delete
G-10 (Sheet 1) Interrupt Handler
G-10 (Sheet 2) Interrupt Handler

G-11 Variable Look-up and Enter
G-12 Character Unpacking
G-13 “"FINDLN" Routine
TABLES
4-1 FOCAL Source Segments
4-2 Allowable FOCAL Systems
4-3 Variations for FOCAL Systems
B-1 Error Diagnostics of FOCAL, 1969
C-1 New Instructions
D-1 FOCAL Core Layout Usage
D-2 Detailed FOCAL Core Layout
F-1 Syntax in Backus Normal Form
F-2 FOCAL Commands in French

viii

Page

G-10
G-11
G-12
G-13
G-14
G-15
G-16
G-17
G-18
G-19

4-13
4-13
414
B-1
c-3

D-2
F-1

CHAPTER 1
INTRODUCTION

FOCALT is a service program for the PDP-8 family of computers, designed to help scientists,
engineers, and students solve numerical problems.

The FOCAL™ language is used as a tool in a conversational mode; that is, the user creates
his problem step by step, while sitting at the computer; when the steps of the problem have been
completed, they can be executed and the results checked. Steps can be quickly changed, added or
deleted.

One great advantage of a computer is that once a problem has been formulated, the machine
can be made to repeat the same steps in the calculation over and over again. Until now, the job of
generating the program was costly , time-consuming, and generally required the talents of a specialist
called a programmer. For many modest jobs of computation, a person unfamiliar with computers and
programming would use a desk calculator or slide rule to avoid the delays, expense, and bothersome
detail of setting up his problem so that the programmer could understand it.

FOCAL circumvents these difficulties by providing a set of simplified techniques that permit
the user o communicate directly with the computer. The user has the advantages of the computer put
at his disposal without the requirement that he master the intricacies of machine language programming,
since the FOCAL language consists of imperative English statements in standard mathematical notation.

FOCAL is flexible; commands may be abbreviated, and some may be concatenated within
the same line. Each input string or line containing one or more commands is terminated by a carriage
return.

A great deal of power has also been put into the editing properties of the command language .
Normally, deletions, replacements, and insertions are taken care of by the line number which indicates
the replacement or repositioning of lines. If single characters are to be changed within a FOCAL com=
mand line, it is not necessary to retype the entire string. The changes may be executed by using the
MODIFY command. Thus, complex command strings may be modified quite easily.

In operation, the program indicates that it is ready to receive input by typing an asterisk .
On-line command/input may be either direct (to be executed immediately) or indirect (to be stored
and executed later) commands. An example of a direct command is

*TYPE 5*5*5,1 (User)
= 125.000* (PDP-8)

The final asterisk indicates that FOCAL is ready for its next command. All commands may be given in

immediate mode (see Appendix A).

fFormulating On-Line Calculations in Algebraic Language (or FORmula CALculator)

M- Trademark of the Digital Equipment Corporation, Maynard, Mass.

1-1

Text input requires that a numerical digit, in the form ab.cd and within a range of 1.01 to
31.99, follow the * . The number to the left of the period is called the group number. The nonzero
number to the right is called the specific line or step number. While keying in command/input strings,
the rubout key and the left arrow may be used to delete single characters or to kill the entire line,
respectively .

Since the command decoder is table driven, FOCAL can be modified by a small binary tape
to understand foreign languages commands. (See Appendix F-2)

FOCAL is written especially for the educational and engineering markets and is intended to
be used as a problem solving tool. It gives quick and concise reinforcement, minimizes turnaround
time, and provides an unambiguous printed record.

FOCAL is also an extremely flexible, high accuracy, high resolution, general-purpose desk
calculator and demonstration program.

This document describes the language, operating procedures for Disk Monitor and FOCAL;
use of High Speed reader; addition of user function FNEW; and many other details of interest. Symbol
tables, lists, and flow-charts are included.

There are also descriptions of the 10-digit overlay, 4 user overlay, and the complete

graphics function.

CHAPTER 2
COMMANDS

2.1 TYPE, ASK

The TYPE and the ASK statements are used for output and input of literals, alphanumeric
calculations, and formats. The simplest form of the TYPE statement is a command (e.g., TYPE A*1.4).
This will cause the program to type =, evaluate the expression, and type out the result. Several
expressions of this kind may be typed from the same statement if the expressions are each ended by
commas .

The ASK statement is similar to the TYPE statement in form, but only single variable names

can be used instead of expressions, and the user types in the values.

2.1.1 Literals

For output of literals, the user may enclose characters in quotation marks. The carriage
return will automatically generate closing quotation marks. The bell may only be inserted during

initial input, not via the MODIFY command.

2.1.2 Numerical Input Formats

Keyboard responses to ASK inputs may

a. have leading spaces

b. be preceded by + or - sign if desired or required
c. be in any fixed point or floating point format

d. be terminated by any terminating character, carriage return, or ALTMODE. It is
recommanded , however, that the space be adopted as the conventional and general purpose input
terminator. The ALTMODE is a special nonprinting terminator that may be used to synchronize the
program with external events. For example, to insert special paper in the teletype before executing
the program, type Ask A; GO and RETURN, then load the paper, and hit ALTMODE. The value of
the variable used remains unchanged.

2.1.3 Alphanumeric Input Formats

Input data that is in response to an ASK command may take any format, may be signed or
unsigned, and must be terminated by a legitimate terminating character (space, CR, comma, /, etc.).
This means that alphabetic input may also be accepted by an ASK input command (see 3.4.9). This is
done by a simple hash-coding technique so that the program can recognize keyboard responses by a

single comparison. See example under the IF command for an illustration of how to program the

2-1

recognition of the user reply "WAIT". This is possible because the leading zero causes a character
string to be interpreted as a number. (e.g.,

*TYPE OANSWER = 0.26130E+22%).
Any literal word containing the letter "E" twice in one input will cause the ASK statement to be

terminated as the program interprets this letter as an exponent.

2.1.4 Special Characters

The exclamation point (1), percent (%), dollar sign ($), and the number sign (*) may be
used next to quotation marks or by themselves. They cannot be used to terminate alphanumeric
expressions. They may be used in either TYPE or ASK commands.

The TYPE statement precedes its numerical typeouts with an equal sign (=) before beginning
the output conversation process. The ASK statement types a colon (:) when it is ready to receive key-
board data.

To type an expression before its results, the user may enclose the expression in question
marks. This is a special use of the trace feature.

*TYPE ?A*5.2?
A*5.2=+10.40
*

2.1.5 Print Positions

Carriage returns are not automatically supplied ot the termination of a typeout. To supply
carriage returns within a TYPE or ASK statement, the exclamation mark (1) is used. This is similar to
the use of the slash in FORTRAN format statements.

Occasionally, it is desirable to return the carriage and type out again on the same line
without giving a line feed. A number sign (¥) returns the print mechanism to the left hand margin but
does not feed the paper forward. This feature may be used to plot another variable along the same

coordinate.

2.1.6 Symbol Table

TYPE $ (dollar sign) causes the contents of the symbol table to be typed out with the current
values of all variables created. The symbol table is typed with subscripts and values in chronological
order. The routine then returns as though a carriage return had been encountered in the TYPE state~
ment, thereby terminating the TYPE command. Both the TYPE and the ASK statements may be followed

by a semicolon (;) and other commands, unless a $ is in the string.

2.1.7 Output Formats

The output format may be changed within a TYPE statement by %X.YY, where X and YY are
positive integers less than 31. X is equal to the total number of digits to be output and YY is equal
to the number of digits to the right of the decimal point.

During output, leading zeroes are typed as spaces. If the number is larger than the field

width indicates, FOCAL will convert to E format. E format is also specified by % alone. (Floating-
point decimal: +0.XXXXXXXE+Y, where E means "10 to the Yth power".) The current output format

is retained until explicitly changed. If a number is too large for the current format, the E format is

used temporarily .

2.1.8 Terminators

In the ASK statement, arguments are scanned by the GETARG Recursive Routine and may
therefore be terminated by any legitimate terminating character (e.g., space, comma, *, etc.). In
the TYPE statement, arguments are scanned by the EVAL Recursive Routine and must therefore be ter-
minated by comma, semicolon, or carriage return. In either the TYPE or ASK statement, command

arguments may be preceded by format control characters # | ". Example:
[¢] V4 P 4 P

*ASK?A B C ?
A5, B:6C:7)*

All commands except WRITE, RETURN, MODIFY, QUIT and ERASE may be combined on the same line

if separated by a semicolon.

2.1.9 Off-Line Data Tapes (c.f., Section 4.5.3)

To prepare data tapes off-line, type the data word, the terminating space, and the "here-is"

key . Use backspace and rubout to remove characters off-line.

2.1.10 Corrections

For editing input to an ASK command before the input has been terminated, the left arrow

(+) is used.

2.1.11 Roundoff

Numbers to be typed out are rounded-off to the last significant digit to be printed (i.e.,

the rightmost digit of the requested format) or to the sixth significant digit, whichever is smaller.

2.2 DO

The DO command is used chiefly to form subroutines from single lines, groups of lines, or
from the entire text buffer. Thus, the instruction DO 3.3 makes a subroutine of line 3.3. For a single
line subroutine, control will be returned when the end of the line is encountered or when the line is
otherwise terminated (e.g., by a RETURN statement, or in the case of TYPE, with the $).

One of the most useful features of a command language of this type is the ability to form
subroutines out of entire groups. Thus, the statement DO 5 calls all of group 5 as a subroutine
beginning with the first group 5 line number. Control will then proceed through the group numbers
going from smaller to larger. A return or an exit is generated from this type of subroutine by using the
word RETURN, or by encountering the end of that group, or by transferring control out of the group via
a GOTO or IF command. Similarly, the entire text buffer may be used as a recursive subroutine by
simply using DO or DO ALL.

The DO statement may be concatenated with other legitimate commands by terminating it
with a semicolon. Thus, a single line may contain a number of subroutine calls. In this way, several
forms of complex subroutine groupings may be tested from the console.

The number of DO commands which may be nested linearly or recursively is limited only by

the amount of core storage remaining after inclusion of the text buffer and the variable storage.

NOTE

When a GOTO or IF statement is executed within a DO
subroutine, control is transferred immediately to the
object line of the GOTO command; that line will be
executed and return made to the DO processor. If the
next line number is within the group (if this is a group
subroutine), it will be executed. If, however, a line
number outside of that group is about to be executed,
then a return will be made from the DO subroutine and
if any of the DO command line remains, it will be
processed .

2.3 EDITING AND TEXT MANIPULATION FACILITIES

2.3.1 Command-Input

A line number which has already been used and is reused in a new input will cause the new
input to replace the line that previously had that number. Insertions are made at the appropriate point
in a numerically-ordered string of lines. For example, line number 1.01 (the smallest line number)

will be inserted in front of (or above) line number 1.1. The largest line number is 15.99.

2-4

2.3.2 ERASE

Removal of a single line may be made by using the ERASE command. For example, ERASE
2.2 will cause line 2.2 to be deleted. No error comment will be given if that line number does not
exist. The command ERASE 3 or 3.0 will cause all of group 3 to be erased. To delete all of the text,
one must type the words ERASE ALL.

ERASE, used alone, has the function of merely removing the variables. This may also be
thought of as initializing the values of the variables to zero.

To examine a single line, type WRITE followed by the line number. For example, WRITE
3.3 will cause line 3.3 to be typed out with its line number on the Teletype. WRITE 4.0 will cause all
of group four to be written on the Teletype. WRITE ALL will cause all of the text to be printed on the

Teletype, left justified, with title and line numbers in numerical order.

2.3.3 MODIFY

When only a few characters of a particular line must be replaced, the MODIFY command is
used fo avoid replacing the entire line. For example, to change characters in line 5.41, type MODIFY
5.41. This command is terminated by a carriage return, and the program waits for the user to type that
character af which he wishes to make changes or additions. The program will then type out the con-
tents of that line until the search character is typed. (The search character is not echoed when it is
first keyed in by the user.) The program will now accept input.

At this point, the user has seven options:

a. type in new characters in addition to the ones that have already been typed out;

b. type a form-feed; this will cause the search to proceed to the next occurrence, if any,
of the search character;

c. type a bell which allows him to change the search character just as he did when first
beginning to use the MODIFY command;

d. use the rubout key to delete characters going to the left;

e. type a left arrow to delete the line over to the left margin;

f. type a carriage return to terminate the line at that point and move the text to the right;

g. type line-feed to save the remainder of the line.

The ERASE ALL and MODIFY commands are generally used only in immediate mode, as
these commands return to command mode upon completion. The reason for this is that internal pointers
may be changed by these commands.

During command/input, the left arrow will delete the line numbers as well as the text.
During the MODIFY command typing the left arrow will not delete the line number.

When the rubout key is struck, a backslash (\) is typed for each character that is deleted.

NOTE

Any modifications to the text will cause the variables
to be deleted as if an ERASE command had been given.
This is caused by the organization of the data structure.
It is justified by the principle that a change of program
probably means a change of variables as well.

2.4 FOR

This command is used for convenience in setting up program loops and iterations. The

general format is:
FORA=8B, C, D;---.

The index A is initialized to the value B, then the command string following the semicolon is executed
at least once. When the carriage return is encountered, the value of A is incremented by C and com-
pared to the value of D. If A is less than or equal to D, then the command string after the semicolon
is executed again. This process is repeated until A is greater than D.

Naturally, A must be a single variable; but B, C, and D may all be expressions, variables,
or numbers. The computations involved in the FOR statement are done in floating point arithmetic. If
comma and the value C are omitted, then it is assumed that the increment is one. For example:

SETB =3; FOR1=0, 10; TYPEB t I, ! (power of 3)

2.5 IF

To provide transfer of control after a comparison, we have adopted the IF statement format
from FORTRAN. The normal form of the IF statement contains the word IF, followed by a space, a
parenthesized expression, and three line numbers separated from each other by commas. The program
will GOTO the first line number if the expression is less than zero, the second line number if the
statement has a value of zero, and the third line number if the value of the expression is greater than
zero.

Alternative forms of the IF command are obtained by replacing the comma between the line
numbers by a semicolon. In this case, if the condition is met which would normally cause the program
to transfer to a line number past that position, then the remainder of the line will be executed.

Example:

ASK REPLY
IF (REPLY - OWAIT) 6.4, 5.01; RETURN
IF (REPLY - OYES) 6.3, 5.02; 6.3

NOTE

The IF command could occasionally fail to take the
= 0 branch due to internal computation and truncation
errors.

2.6 GOTO

This command causes control of the program to be transferred to the indicated line number.
A specific line number must be given as the argument of the GOTO command. If command is initially
handed to the program by means of an immediately executed GO, control will proceed from low num-
bered lines to higher numbered lines as is usual in a computer program. Control will be returned to
command mode upon encountering a QUIT command, the end of the text, or a RETURN at the top level.

The operation of the GOTO is slightly more complicated when used in conjunction with a

FOR or a DO statement. Ifs operation is perfectly straightforward when used with any other statement .

2.7 RETURN

The RETURN command is used to exit from DO subroutines. It is implemented internally by
setting the current program counter to zero. When this situation is encountered by the DO statement

it exits. (Refer to the DO command, Section 3.2.).

2.8 QUIT

A QUIT causes the program to return immediately to command/input mode, type *, and

wait.

2.9 COMMENT

Beginning a command string with the letter C will cause the remainder of that line to be

ignored so that comments may be inserted into the program.

2.10 CONTINUE

This word is used to indicate dummy lines. For example, it might be used to replace a line

referenced elsewhere without changing those references to that line number.

2.1 SET

The SET command for arithmetic substitution is used for setting the value of a variable equal

to the result of an expression. The SET statement may contain function calls, variable names, and

numerical literals on the right hand side of the equal sign. All of the usual arithmetic operations plus
exponentiation, may be used with these operands. The priority of the operators is a standard system:
+-/*t. These, however, may be superseded by the use of parenthetical expressions. The SET state-
ment may be terminated by either a carriage return or a semicolon, in which case it may be followed

by additional commands. For example:

SET AA=B(5+<6+CONST>*ALPHA/ [5/BETA]); GOTO 3.2

2.12 HIGH-SPEED READER

2.12.1 General

The asterisk (*) is also used as a flip-flop control over the selection of the input device to
be used by a FOCAL program. (See the examples that follow.) An out-of-tape condition will return
to low-speed reader input and change the status of the * flip-flop. An error condition, however, does
not change that * flip-flop (see notes below).

For example, typing:

iy
will read in a program tape or a series of immediate commands.
**;ASK ABCDZ
will fill AB with data from tape. If tape is empty, control will return to command mode.

*1.1% FORI=1, 5 ASK AX()
*DO 1.1

If the tape contains fewer than 5 pieces of data, then remaining items are taken from keyboard. (See

c below.)

2.12.2 Other Rules

a. * as a command may be concatenated with other processes [JMP (PROC):
(e.g., 01.30%; ASK A, B;*)

b. If an out-of-tape condition is encountered while reading commands, then the input
device is switched to keyboard and all is returned to normal. (This occurs when the user has no reader.)
It is equivalent to receipt of a left arrow. [JMP (IBAR)].

c. If an out-of-tape condition occurs while executing an ASK command, then FOCAL
responds as if the end of the command line (carriage return) has been reached. [1SZ PDLXR; POPJ]

Thus,
** ASK A,B,C,D

produces:::(out of tape on C): and the user is back to normal mode.

However,

*ERASE
¥, for 1=1, 20; ASK A(1); TYPE I, !.

: = 1.0000
: = 2.0000
: = 3.0000
: (out of tape for 1=4)
: (now accepting from keyboard) 123, = 5.0000
: 345, = 6.0000
: ?201.00 (Control-C typed)
* TYPE $
@ (00) = 7.0000
A @ (01) = (data from tape)
A @ (02) = (data from tape)
A @ (03) = (data from tape)
A @ (04) = .0000
A @ (05) = 123.0000

* A @ (06) = 345.000

d. When an error occurs from the reader (illegal command, etc.), the code will be typed
out and input device control returned to the low-speed device. However, the device flip-flop (HSPSW)
will still indicate that the reader is active. Consequently, it will be necessary to give two asterisks
before the reader will be activated again.

ko
F#x*%912.83 (Buffer full)
*%

F*
(reader now active again).

e. It is necessary to have a fairly long timing loop to detect the out-of-tape condition
(slow readers, restart delays, etc.). As a result, the user of @ PDP-8/S may encounter long delays if
there is no high speed reader or when the reader is out of tape. However, the initial dialogue makes
a correction for this when an 8/5 is being used.

f. Since the reader operates with the interrupt on, one may use Control-C to return at
once to keyboard input mode. A manual interrupt via Control-C (?01.00) or a console restart (?00.00)
gives the same effect.

g. All commands, including "*"

reader. This has several beneficial results:

may be executed in immediate mode from the high speed

(1) Program tapes may be composed that are self-protecting and self-starting

ERASE ALL (protection)
01.10 ASK "Power of 2?"REPLY (input indirect program)
01.30 TYPE 2 REPLY,!,GOTO 1.1

(ete)
GOTO 1.1 (starting)
5, 3,1 (data)

This particular program is an infinite loop and must be stopped by a Control-C
from the keyboard .

(2) Programs may chain themselves together.

ERASE ALL

3.4 TYPE "NUMBER 1"!11; ASK A

3.5* (indirect command)

* GO (device restored to low speed and program

started)
The printout from this tape will be:

i (START READER)
ek E Ak NUMBER 1
(Three lines accepted)

(Erase processed)
: (waiting for keyboard input)) (user)
(execution of 3.5 * at this point will reactivate the high speed reader).
(3) Immediate mode commands on the tape allow maximum storage for variables.

(4) If the interrupts are disabled by the patches shown in Section 4.5.3, then two
tapes may be merged from both high- and low=speed readers by a resident FOCAL
program.

2.13 THE FUNCTIONS

2.13.1 General

The functions are provided to give extended arithmetic capabilities and the potential for
expansion to additional input/output devices. There are basically three types of functions. The first
group contains integer parts, sign part, square root, fractional, and absolute value functions. The
second group has the input/output for scope and analog/digital converter functions. The third group
has extended arithmetic computations of trigonometric and exponential functions.

A function call consists of no more than four letters beginning with the letter F and followed
by a parenthetical expression (e.g., FSGN (A-B *2)). This expression is evaluated before transferring

to the function process itself.

2.13.2 Andglog to Digital
a. Input

The function FADC(X) is used to take a reading from an analog-to-digital converter.
The value of the function is a 12-bit integer reading. The argument "X" is the channel member (AX08)
in decimal. Additional version of the ADC function could be designed to provide for synchronization
by a clock or other means. (c.f., Chapter 5)

*SET A=FADC () *5

2-10

b. Output

The scope function FDIS (expression, expression) is used to set and display an X-Y
coordinate on a Model 34 Scope and scope interface. The value returned for each of these functions
is the integer part of the second expression.

*SET Z = FDIS(X, X43/50)

2.13.3 Extended Functions
The extended arithmetic functions (FEXP, FLOG, FATN, FCOS, FSIN) are retained at the
option of the user. They consume approximately 800 characters of text storage area. These arithmetic

functions are adapted from the extended arithmetic functions of the three-word, floating point package .

2.13.4 Random Numbers

A simple random number generator is provided in the basic package as FRAN()! An expanded
version could incorporate the random number generator from the DECUS library.

Functions for other devices are provided as overlay tapes (see Appendix H).

2.13.5 Standard Functions
a. Trigonometric Functions

All arguments are in radians
FSIN () - the sine functions
FCOS () = the cosine function
FATN () - the arctangent

From these functions, the user may compute all other trigonometric functions. (See FOCAL User's
Manual)

b. Logarithmic Functions
FLOG () - log to the base e or Naperian base
FEXP () - e to the povwer

c. Arithmetic Functions
FSQT () - the square root
FSGN () - one (1) with the sign of the argument
FABS () - the absolute value
FITR () = the next smaller integer part maximum of 1024
LOG]O (ARG) = LOGe (ARG) *LOGIO(G)

LOG, () = 0.434295
LOG_ (10) = 2.30258
e =2.71828

where:
1 degree = .0174533 radians
1 radian =57.2958 degrees

2.13.6 Using The Arctangent

An arctan function cycles between + 1/2 and - n/2. Thus, to get a correct range for 0-2n

radians from the expression FATN(Y/X), we must use the signs of X and Y.

X Y FATNX/Y)
+ + 0-P1/2

- + P1/2 - PI

- - PI-=3*P1/2

+ = 3*PI/2 - PI*2

*GO

INDEXK X Y FUNCTION COMPUTED
= BefiB= 1e00G= Delioz= G QRGROGE = Pe.prpgann
= Ge3B= (.96= B.30= .3006GHG = (e ARRGOG
= DebU= Be8B83= GS57= 0(.600000 = (e 6O 0A
= Be90= (1462 QeT8= (900000 = P.90R000
= 1620= (@36 (e93= 1.200000 = 1.206G6060
= 1e50= Qelbbi= 1.00= 1.500¢¢0 = 1500000
= 1e80== Be23= (97=~ 1.341660 = 1. 800000
= 2e10== DeS1l= PNeBb== 1.€41600 = 2.1600000
= 2e40== QeT74= (Heb6B=~ NeT41595 = 2.400000
= 2¢70== De91= (Beda3=- e 441595 = 2. 700000
= Jelh=- Be99= (Geld4=- P.141595 = B QGCHAG
= 3e30=- (+99=~ Ce16= (158403 = 3. 300006
= 36 60=~ Be90=~ Dedid= e458402 = 3 6002 CH
= 3¢90=- DeT3== Pe69= e 758402 = 3900000
= 4e20=~ De49=- Bef= 1.058400 = 4. 200000
= 4e 50== Ge21== PeFB= 1.358400¢ = 4. 500000
= 4e8U= DeD9=~ 1.00=- 1.483200 = rr{dAdds
= Selfl= B«38=~ B+93=- 1183200 = S.1607000
= Sedl= (Debd=- PeT1=- V883196 = S. 400000
= S5e70= DeB4== (BeS55=- («583195 = S5.700000
= 600 De96== B+28=~- PN.283198 = 6.000000
= 6 300= 1.00= Q012= 0B.016802 = 0.016802
= 6e60= Fe95= MN.31= P.316803 = (#.316863
= 6e90= B82= [e58= 0.616800 = Be616806
C-FOCAL », 8768
BledS5 T 11" INDEX X Y FUNCTION COMPUTED
Ple1@ FOR I=0»+3,73 TYPE !,%4.0251I35D 2
P1.20 TYPE !!!!3wRITE ALL
91«30 QUIT
P2.10 SET Y=FSINC(CIY3 SET X=FCOS(I)
8220 TYPE XsYsZ8e06,FATNCY/<X+1E-10>)3 DO 133 TYPE " " TH3

13010 IF (X)13:35132513.3

13.20 SET X=1E-108

1330 SET TH=FATN(FABS<Y/X>)

13«48 SET PI=3.141596

13560 IF (Y) 13.63 IF (X) 13.735 RETURN
1360 IF (X) 13¢83SET TH=PI+PIl-TH3 RETURN
1370 SET TH=PI-TH3 RETURN

13.80 SET TH=PI+TH3 RETURN

*

2-12

2.13.7 Boolean Functions

TRUE is +1
FALSE is -1

*D 15

AND OR NOR XOR CARRY SUM
“l==1 ==1= -I 1= 1 ==1=-1
=1 =1 1 1= -1 =1=1
=1 = 1 1= -1 =1=1
“1=1 =1 1 -1= 1 = 1=-1
XOR is A*B
NOR is FSGN(-A-B)
OR is FSGN(A+B)
AND is FSGN(A+B-1)
NOT(A) is -A

The result of adding A and B is
CARRY = FSGN(A+B-1)

ot

SUM =-A*B

*

*WRITE 15

15.05 TYPE " A B AND OR NOR XOR CARRY SUM"!

15.10 FOR A=-1,2,1; FOR B=-1,2,1;TYPE A,B," "; DO 15.2

15.15 QUIT

15.20 TYPE FSGN(A+B-1),FSGN(A+B),FSGN(-A-B),A*B, " "FSGN(A+B-1),-A*B, !
*

2.13.8 FNEW - A User Function

This function name may be used to call a machine language routine for any reason.

(See Section 4.4.1)

2.14 THE LIBRARY COMMAND

The form and usage of this mass storage command will vary with the computer and FOCAL

system used. (c.f., 4.6)

2.14.1 L-Command For Single User System

The command may be given in either direct or indirect mode. Execution of this command
first causes the octal typeout of the contents of four FOCAL pointers: CFRS, BUFR, LASTV, and
BOTTOM, respectively. The second action is to type out whatever characters follow the "L" to serve
as operating instructions for the user. The third action is to turn off the interrupts and transfer to the

Disk Monitor or 8-Library System by jumping to 7600.

2-13

The four octal numbers represent:

a. the start of text buffer,

b. the end of text buffer,

c. the end of the variable list,

d. the bottom of the push-down list.

These command features will permit optimum usage of available disk storage and be compat-
ible with the Disk Monitor.

After debugging a program, a typical user will execute ERASE and LIB. (This causes B and
C to be equal in the 4K system.) He will then save the program and restart or call another program.
(See Section 3.4.12)

Manual Chaining may also be done. For example, when a program reaches line 12.3, it
may need to call another routine (as in a series of teaching programs, demos, or math subroutines).
The user, however, must be given instructions on how to proceed:

12.30LIB .CALL LES2
For example, execution of 12.3 may produce:

3206

3345

3401

4407

.CALL LES2

.CALL LES2 [User types this]
.START

*

In the 8K Version, the text and variables are stored independently. For this reason, the 8K

version can have different programs operating on the same data. (See Section 3.4.14)

2.14.2 LIBRA Command Specifications for Multi-User Systems*

Four modifiers of the LIBRARY command are implemented to allow automatic program
storage, retrieval, and management in multi-user FOCAL. This extension to the FOCAL system is
implemented under the segment name LIBRA and requires at least an 8K PDP-8 with one DF32.

The LIBRARY command and its variations are:

a. To save a program on disk,

LIBRA SAVE name)

Where "name"” is a 1 to 4 character identifier and) is described in the FOCAL language specifications.

*Not completed

2-14

Errors:
(1) A program with an identical name has been found in the directory list
(2) Name missing from command
(3) Disk 1/O error (non-recoverable)
b. To call a program on disk,
LIBRA CALL name)
Errors:
(1) No such program on directory list
(2) Name missing from command
(3) Disk 1/O error (non-recoverable)
c. To delete a program from disk,
LIBRA DELETE name)
Errors:
(1) No such program name in directory list
(2) Name missing from command
(3) Disk 1/O error
d. To list the directory
LIBRA LIST ;
Errors:

(1) Disk I/O error

NOTE

This command will destroy any program by an effective

“ERASE ALL".
The directory is printed ten across for as many lines as necessary .

2.14.3 DF32 FOCAL FILE STRUCTURE

Programs are stored in blocks 16008 words long. This allows 36 blocks of storage on one
DF32 and a directory of 512 words or 256 entries. This directory is sufficient for the maximum DF32
configuration allowable on a PDP-8.

1. Disk 36 blocks

2. Disk 72 blocks

3. Disk 110 blocks

4. Disk 146 blocks

2-15

The directory is a linear list with a maximum size of 512 words (with 2 words/entry). Word position in
the list corresponds to the block position on the disk. The blocks begin at location 10008 from the end
of the directory and extend in increments of]6008 to the end of the disk. The end of the list is an
entry of ones. Unused blocks are indicated by entries of all zeroes.

The LIBRARY functions swap users in the multiple user system. This diminishes the total
number of blocks by the maximum number of allowed users. A disk program is required to clear the

directory, and to set the maximum number of blocks available.

2.15 WRITE

The WRITE command is used to list the entire indirect program (WRITE ALL or W), specified
groups, or single lines. When all fext is printed, a leader-identifier is given at the top of the listing.
This identifies which major version is being used for the particular indirect program. (FOCAL, 1969;
8K FOCAL @ 1969; 4-word @ 1969).

NOTE
The WRITE command disables the trace.

2-16

CHAPTER 3
FOCAL USAGE

3.1 REQUIREMENTS

Any 4K PDP-8 family computer with Teletype may be used with FOCAL: PDP-5, PDP-8,
PDP-8/S, PDP-8/1, PDP-8/L, LAB-8, LINC-8, TSS-8, PDP-12.

3.2 LOADING PROCEDURE

a. The RIM or Read-In~Mode Loader must be in memory. (See RIM Loader Manual for a
thorough discussion.)

b. The RIM Loader is used to load the Binary Loader. (See Binary Loader Manual for a
complete description.)

c. The Binary Loader is used to load FOCAL.
d. Upon halting, press the CONTINUE key, since the program is loaded in two sections.

e. Place 200, the starting address of FOCAL, into the Switch Register when the complete
tape has been loaded.

f. Press the LOAD ADDRESS key.
g. Press the START key.

h. The initial dialogue will begin.

3.3 INITIAL DIALOGUE

The program will identify the DEC 12-bit computer you are using and make appropriate
corrections to itself. If the user determines that extra space is required, the program will permit rejec-
tion of extended functions.

FOCAL is ready for commands when it types *.
3.4 OPERATION

3.4.1 Restart Procedure

There are two methods to restart the system.

Method 1 - Type the character control/C at any time; (FOCAL acknowledges this by typing
?01.00).

Method 2 -~ a. Put 200 into the Switch Register
b. Press the STOP key
c. Press the LOAD ADDRESS key
d. Press the START key
e. The program will then type ?00.00 indicating a manual restart, and an
asterisk indicating it is ready to receive input.

3-1

3.4.2 Keyboard Error Recovery

If an error is made while typing commands to FOCAL, one of the following methods may be
used to recover:

a. Use the RUBOUT key on the teletype keyboard fo erase the preceding character. The
RUBOUT key echoes \ for each character removed.

b. Use the MODIFY command, with the modify control characters, to search the command
string for any character in error and alter or delete that character.

c. Use Left Arrow to delete over to the left margin.

d. Use Left Arrow to delete input data.

3.4.3 Parentheses

The following parenthetical pairs may be used in any alphanumeric expression: parentheses,
angle brackets (< >), and square brackets ([1). The program checks to see whether the proper
matching terminator has been used at the correct level. Use of these terminators in different configura-

tions provides additional clarity in reading alphanumeric expressions.

3.4.4 Trace Feature

A trace feature may be used to detect errors, follow program control, and create special
formats. To implement the trace feature, insert a question mark into a command string at any point.
Each succeeding character will then be typed out as it is interpreted until another question mark is

encountered or until the program returns to command=input mode .

3.4.5 Variables, Functions and Numbers

A variadble name consists of one or two alphanumeric characters, of which the first must be

. Additional characters are ignored.

a letter. The second character may be A-Z, 0-9, ",
Function names are easily distinguished from variable names because they start with the

letter F. A number always begins with a digit 0-9.

3.4.6 Error Diagnostics

Programming errors are indicated by an error diagnostic. The printout is in the form
PXX. XX @ GG.SS. The first number is a specific error number derived from the core address of the
error call. The GG.SS is the number of the line, if any, of the text which contains the error.

The error diagnostic printouts are intended to be efficient yet informative and explicit.

Used in conjunction with the trace feature, these will pinpoint errors precisely. (See Appendix B).

3.4.7

3.4.8

3.4.9

Example:

*DO 2.35?
SET A=5/C + ?28.72 (Divide by zero, C=0)
*

Arithmetic Priorities

+ N\L >

Operations of equal priority are executed from left to right (e.g., T 21312=64 not 512).

ASCII data

ASCII input of A-Z has the values of 1-26 per digit per letter respectively, thus,

*ASK A; TYPE A
:7=26.00
AATA

:AZ =36.00

This is also true for internal numerical constants like ONO, OYES, etc.
(See the IF command for an example of this feature.)

The technique may also be used to create a kind of associative memory:

*ASK A; ASK GRADE (A))

.DICK : 95
*ASK A;TYPE GR(A)
.DICK =95

Indirect Commands

If a Teletype line is prefixed by a line number, that line is not executed immediately, but

is stored for later execution. Line numbers must be in the range 1.01 to 31.99. The numbers 0.0,

1.00, 2.00, 3, etc., are illegal line numbers and are used to indicate the entire group. The number

to the left of the point is called the group number; the number to the right is called the step number.

Execution of indirect commands is begun by an immediate GOTO of DO command. The GOTO com-
mand causes FOCAL to start the program by executing the command at a specified line number (e.g.,

GOTO 1.3). The GO command causes FOCAL to go to the lowest numbered line to begin executing

the program and continues until it runs out of program text. FOCAL can automatically cross group

boundaries.

3.5 SAVING FOCAL PROGRAMS

3.5.1 Paper Tape

To save a FOCAL symbolic text, type WRITE ALL, turn on the punch, type @ marks for
leader=trailer, and type carriage return. When all of the program has been typed out, type additional
@ marks for more leader-trailer, turn off the punch, and continue your conversation with the computer.

(To save a FOCAL binary program, see Appendix C.1.)

3.5.2 LINC Tape (see Section 2.14.1; TCOT via 8-LIBRARY SYSTEM; PDP-12)

On LINC tape, load FOCAL program as follows:
a. Load FOCAL binary tape, execute Initial dialog, and call UPDATE.

NAME: START
SA (OCTAL): 200
MEM LOCATIONS: <4600, 7577 >;

b. Call UPDATE again.

NAME: FOCAL
SA (OCTAL): (none)
MEM LOCATIONS: <0, 3377 >;

c. Calling Sequence:

FOCAL
START
*

d. Write the desired FOCAL routine.

e. Give an "L" command. Four octal numbers will be printed, and control will return to
the Library System.

UPDATE

NAME: (user's choice)
SA (OCTAL): (none)
MEM LOCATIONS: <0 ><(A), (B) >;
Where "(A)" and "(B)" mean the first and second octal numbers.

f. To call a program:
FOCAL

(user's choice)
START
&

3.5.3 Disk Monitor System (see Section 2.14.1)

a. Build the Disk System.

3.5.4

b. Load FOCAL into field zero.
(If the computer has 8K, use the binary loader in field 1.)
Alternate procedure: Use PIP to place the binary on disk. Then, use LOAD on the
disk file. (This procedure is faster for a teletype, but uses more disk space.)

c. Load Address 200, START, and complete the initial dialogue.
d. Load Address 7600 and START.
e. Initialize the disk as follows:

.SAVE START!4600-7577;200
.SAVE FOCAL!0-3377;

f. Run FOCAL.

.)FOCAL
.) START

(Create Program)

g. Save program; return to disk Monitor by giving an L command.
.SAVE (name);0, (A) - (B) [note saving page zerol

h. Run a program (after doing either step f or g).

.FOCAL

.CALL (name))

.START) [linefeed will not occur]
*(FOCAL ready)

i Steps g and h may be repeated.

Disk System and Extended Functions

To cope with configurations involving deletion of extended functions, proceed as follows:
a. Load FOCAL and start ot 7600;

.SAVE START14600-7577;200

.SAVE INIT:0,3200-4577; [note saving page zero]
.CALL INIT

.START

[Dialogue, answer YES]

*L

.SAVE FOCAL!0-3377;

b. To reinitialize a system without some extended functions, type

.FOCAL
.CALL INIT
.START

[Dialogue, answer NO, YES, i.e., keep sine and cosinel
*L
.SAVE STNY 15200-7577;200

c. To create asystem without any extended functions, type

.FOCAL
.CALL INIT
.START

[Dialogue, answer NO, NOI]
*|
.SAVE STNN15400-7577;200

d. Be sure to use the correct START command with each user program.

M
[to use no exponential function version]

.FOCAL
.CALL NEXP
STNY

*

(2) or
[to use no cosine function version]

.FOCAL
.CALL NCOS
.STNN

*

3.5.5 Disk System and Extended Memory (see section 2.14.1)

Follow these operations to set up an 8K version of FOCAL on the disk:

[Build Disk System]

[Load FOCAL]

[Start at 200]

[Dialogue, answer questions.]

0100 (A)
0121 (B)
3217 (C)
XXXX (D)

.SAVE ST8K! (D) -7577;200
.SAVEFCL8! 0 - 3177;
.SAVE NULS: 10100; 10113

The SAVE command for a finished 8K FOCAL program is
.SAVE CODE:1(A) - 1(B); 10113
where (A) and (B) are the first and second four digit numbers typed out by the L~command. These are

the field one bounds of the program text. The value of (D) will depend on the functions retained.

3.5.6

3.5.7

The variables, however, are in field zero. To save a set of data, type:

.SAVE DAT8:0;3200~(C);

[note saving page zero, field zerol

To set up a null program with a particular data set, type:

.FCL8

.CALL DAT8
.CALL NUL8

.ST8K

For 4-user FOCAL SAVE command, see Section 4.6.6.

EAE Patch for FOCAL, 1969

7203
7204
7205
7206
7207
7210
7211
7212

3206
1256
7425

0
3253
7501
3255
5227

DCA
TAD
MQL
0
DCA
MQA
DCA
SNP

+3
MP2
MUY

MP5

MP3
+15

CHAPTER 4
PROGRAM SPECIFICATIONS

4.1 MACHINE REQUIREMENTS

The minimum hardware configuration necessary to run this program is a 4K PDP-8 family
computer with ASR-33.
Scope, an additional 4K memory, and high-speed reader and punch are available options.

Additional PTO8s are added for extra users.

4.2 DESIGN SPECIFICATIONS

4,2.1 Design Goals

FOCAL is a conversational language and operating system for a basic PDP-8. It is designed
to facilitate on-line editing and execution of symbolic programs. (For BNF description, see Appendix

F.)

4.2.2 Input

The keyboard, low=speed reader, or high-speed reader may be used for input of program

text and for commands to be executed immediately. Keyboard input is double buffered.

4.2.2.1 Input Format - See description of the commands in Chapter 2 for format information.

4.2.2.2 Character Set - Input and output characters are in ASCII teletype code. Interpretive opera-
tions are also done internally in expanded ASCII. The text buffer is packed two characters to a word
as follows.

number = represented as: prints as
300 = not packed = ignored: @
301 - 336 =01 - 36: A-Z
337 =not packed - edit control, kill line: «.
240 - 276 =40 - 76: symbols
277 =37: 2.
340 - 376 =7740 - 7776 (extended codes): non-printing
377 =not packed - edit control, delete preceding character; if a character
is deleted, \ (backslash) is typed.
200 = not packed - ignored: leader-trailer
210 - 237 =7701 - 7737: control characters
000 = not packed - ignored: blank tape.

4-1

4.2.3 Output

4.2.3.1 Output Format - See the TYPE and WRITE statements for format of output. The output

character set is the same as that for input.

4.2.3.2 The Input/Output and Interrupt Processor - The purpose of the interrupt handler and the 1/0
buffers is fo permit input and output to proceed asynchronously with calculations. This allows an
optimal use of the computer time. When the interrupt handler finds that the teletype output flag has
been raised, it clears that flag and looks to see whether there are any additional characters in the
teletype output buffer to be printed. If there are, it takes the next character from the buffer, prints
it, clears that location in the buffer, and moves the pointers. Separate pointers are maintained for
both the interrupt processor and for the program output subroutine (XOUTL). If the interrupt handler
finds that there are no more characters to be output on the Teletype, it will clear the teletype in-
progress=switch (TELSW). If the interrupt handler does output another character, it sets TELSW to a
nonzero value.

When the program desires to place characters in the buffer for the interrupt processor to
print, it makes a call to XOUTL. This routine first checks to see if TELSW has been set. If TELSW is
zero, no further interrupts are expected by the interrupt processor, and the output routine immediately
types the character itself and sets TELSW to a nonzero value. Otherwise, if the interrupt processor is
in motion, then the output routine places the character into the buffer and increments the pointer. If
there is no room in the buffer for additional characters, the low-speed output routine waits until room
is available. The keyboard input processors are similar in organization to the output routines except
that no in-progress-switch is needed and the input is only double buffered.

Another advantage of the interrupt system is that it enables the user to stop program loops
from the keyboard by typing Control C. The recovery routine will then reset the 1/O pointers, type
out the message code ?01.00, and return to command mode. Manual restart via the console switches
also goes to the recovery routine, resets the pointers, and types out message code ?00.00. In fact,
all error diagnostics go to the recovery routine. Error printing is withheld until prior printing is com-
plete. Otherwise, on occasion, a full buffer could be dumped and the error message could be printed
as many as 16 characters before it should have otherwise occurred. This would be misleading when
using the trace mode to discover specific errors within a character string.

The recovery routine may also be called by the interrupt processor if it discovers that there
is no more room in the keyboard buffer. For example, this could occur if the user continues to type on
the keyboard while the program is making computations. Physical evidence of the error is indicated by

failure of the computer to echo characters as the user types.

NOTE

This error could also occur when reading a paper tape
program into the text buffer via the low-speed reader.

If the output hardware is slower than the input hard-
ware, more text is read in than is being read out of the
buffer, resulting in failure of the program to empty the
reader buffer as quickly as it is being filled up, since

the program synchronizes the reading of the characters
with sending them into the buffers. In other words, the
program synchronizes its side of the I/O buffers, but the
interrupt side of the 1/O buffers proceeds at a rate deter-
mined by the hardware. To prevent this type of error with
long input tapes, which were prepared off-line, carriage
returns may be followed by some blank tape which is ig-
nored by the input routines, thereby giving the output
routine time to catch up. This is essentially a hardware
problem since the program is unable to stop the low-speed
reader. :

4.2.4 Organization

4.2.4.1 Arithmetic Package - The arithmetic is done in the floating point system. The three-word
floating point package allows six digits of accuracy plus the extended functions. The program will
eventually use four words as an option. The exponential range is approximately ten to the six hundredth.
Internal accuracy during computations is 6.924 decimal digits.

The four-word floating point system creates ten digits of accuracy, including roundoff. It

does, however, require more storage for variables and for push-down list data.

4.2.4.2 Storage - The major components of the program occupy locations 1-3200. The remaining
storage 3200 - 4600 is used for text storage, variable storage, and push-down storage, in that order.
The text occupies approximately two characters per register. The variables occupy either five or six
locations per variable depending on whether the three- or four-word option is utilized.

Remaining storage is allocated to the push-down list. Overflow will occur only when one
of these lists exceeds the remaining storage. This could happen in the case of complex programs which
have multiple levels or recursive subroutine calls. The push-down list contains three kinds of data.
One of these is a single location for push-jump and pop-jump operations. The content of the accumu-
lator is also pushed into the same list in a single register. The third type of push-down storage is

floating point storage (see Appendix D).

4-3

Thi s important storage allocation scheme permits flexibility in the trade off of text size,
number of variables, and complexity of the program, rather than restricting the user to a fixed number

of statements or characters, or to a fixed number of subroutine calls, or to a limited number of variables.

4.3 HARDWARE ERRORS

The 8/S will halt at location EXIT +6 if a parity error occurs.

4.4 INTERNAL ENVIRONMENT

4.4.1 Adding a User's Function;FNEW(Z) (c.f., Section 5.2)

The FOCAL system was designed to be easily interfaced for new hardware such as LAB-8,
multiplexed ADCs real-time clocks, or to software such as a nonlinear function.

The information given below, the symbol table, the various lists, and a core layout are in-
tended to be sufficient for all required modifications and patches. This symbolic approach ensures
greater flexibility and compatibility with DEC modifications to FOCAL, other user's routines, and
assembly via PAL III on a PDP-8.

Example: Suppose we had a scope routine to display characters at a given point on a scope.
We will call this routine from FOCAL as function by FNEW (X, Y, SHOW). Here X and Y are expres—
sions to be used as display coordinates for the start of SHOW.

a. First, patch the function branch table.

*FNTABF + 15

XFNEW
b. When control arrives at XFNEW, the X has already been evaluated.
XFNEW, JMS I INTEGER /make 12 bit integer
in AC
DXL /set X = coor.
CLA
c. Now, test for the possibility of another argument.
TAD CHAR
TAD MCOMMA
SZA CLA
JMP I EFUN3I /no more
d. Move past the separating comma.
GETC
SPNOR

e. Evaluate the second argument.

PUSHJ /this FNEW is
EVAL /ot recursive
JMS I INTEGER
DYS;CLA /set Y and intensify
SPNOR
TAD CHAR
TAD MCOMMA
SZA CLA
JMP I EFUNS3I
f. Now, pick up the single letters for display until the end of the function is reached.
DCHR, GETC

TAD CHAR
TAD MRPAR
SNA CLA
JMP I EFUN3I

Char. display routine called here; (for Tektronics Y002, it is simply PRINTC)
JMP DCHR

g. Definitions from the symbol table are available in Appendix E.

Summary:

a. User defined functions must leave their value, if any, in FLAC and return by a

JMP 1 EFUNZ3I.

b. The contents of FLAC is converted to an integer in FLAC and in the AC by a
JMS 1 INTEGER.

c. The floating point arithmetic interpreter is entered by JMS 1 7.
(FOCAL uses its own version of the floating point package.)
d. The aoddress of the user's function is placed by him in the FNTABF list.

e. Location BOTTOM contains the address of the last location to be used for storage. If
BOTTOM is made to contain 4277, for example, then the user has from 4300 to 4577 for
storage of the function processor. The user should achieve his function implementations
using the information given here and in the symbol table without using the actual listing so
that changes made by different users may be compatible and so that they may also be
relocated easily should any changes be made by DEC. (see Section 4.5.1 for Core
Utilization List)

f. The argument following the function name is evaluated and left in FLAC before control
is transferred to the particular function handler. Since evaluation is terminated by either
a comma (,) or a right parenthesis, a special function could have more than one argument.

Only in the case of multiple arguments does a user need to worry about saving his
working machine language storage for a possible recursive use of his function. The contents

4-5

of the AC are saved by PUSHA and restored by POPA for this purpose. If there is another
argument, it may be evaluated by PUSHJ; EVAL. Doing a PUSHJ; EVAL-1 is equivalent to

GETC;PUSHJ;EVAL.

4.4.2 Internal Subroutine Conventions

4.4.2.1 Calling Sequences - The (AC)=0 unless it contains information for the subroutines. Upon
returns (AC)=0 unless it contains data.
There are six types of routines and subroutines used in the implementation of this program:

a. Normal subroutines called by an effective

JMS SUBRT
which contain zero at their entry point

SUBRT,0
and a return by a

JMP I SUBR1

b. New instructions called by
PRNTLN /(to print a line number)
and usually defined by

PRNTLN = JMS I.
XPRNT

where XPRNT is the entry point for a normal subroutine. These new instructions may have
multiple returns/multiple arguments:

SORTJ Jcall;
LIST6~1 /data list minus one;
INLIST-LIST 6 /increment to branch table

/return if CHAR is not in LISTé

These new instruction subroutines often have implied arguments, e.g., GETC, READC,
PACKC, TESTC, and SORTC all use the variable CHAR as their argument. The new
instructions SORTJ and PRINTC use CHAR only if the AC is zero. If the AC is nonzero,
then that value is used. Still others use only the AC for their argument:

RTL6, TSTLPR, PUSHA, and TSTGRP, (see Appendix G).

c. Recursive routines called by

PUSHJ /call
EVAL /address
' /return

where the address contains the first instruction of the routine. The return address is kept in
the push-down list, and exit is made by use of

POPJ /exit subroutine.

Such routines may call each other or themselves in any sequence and/or recursively by
saving data on the push-down list. Others are EVAL, PROCESS, PROC, and GETVAR.

d. Command processor routines to handle specific command formats are called by

SORTJ /go to command
COMLST-1
COMGO-COMLST

ERROR 3 /illegal command

The individual command routines use only new instructions and recursive routines. They may
exit in one of three possible ways:

(1) POPJ - if C.R. is encountered or
(2) transfer to another command routine or
(3) transfer to START

e. Floating point groups of interpretive instructions similar to the following format:

FINT /enter floating interpreter (i.e., JAS 17)
FGET FLARG

FMPY 1 PT1

EPUT FLARG

FXIT /leave floating interpreter

f. Main processor modules to handle text input and keyboard commands. This routine
could be "locked=out" by an instructor to protect and execute a stored or immediate
command program repeatedly .

IBAR, INPUT X

Similarly, selected commands are easily deleted by the instructor by placing zero in the
appropriate locations in COMLST.

Line number input and explicit replacements are "short circuited" b
P p P y

GONE + 11, error 3

4.4.2.2 Subroutine Organization - Figure 4~1 illustrates the internal use of various subroutines.

(c.f., Flow Charts in Appendix G).

4.4.3 Character Sorting

If a program must contend with a number of different characters (or 11-bit items) each of
which can initiate different responses, simply look up the address of the action that corresponds to a
given symbol or bit pattern. If the symbols do not form a continuum, the programmer must find the
most efficient method for determining the corresponding address.

The method used in FOCAL is the table sort and branch. This method uses a subroutine to
match up an input character with one member of a list of characters. The call to the subroutine is

followed by

a. the address minus one of the list and

b. the difference between that list and a second list. The latter list contains the corre-
sponding addresses. Thus, if a match is found in the first list, the difference is added to the address of
that match to compute the address in the second list which contains the name of the action to be
performed.

c. The next instruction to be executed if a match is not found.

In addition to being simple and concise, although more time consuming than other methods,
this technique has another advantage that is especially useful in a PDP=8: the tables may be placed
at page boundaries to take up the slack that often occurs af the end of a page. This results in a more

efficient use of available core storage.

d. COMMAND ROUTINES

COMMAND AND
INPUT PROCESSOR

Do
GO TO

P TYPE
e | AsK
¢

L]
.
) START
.
.
NEW
b INSTRUCTIONS WRITE
[
. NORMAL. SUBROUTINES] C~I RECURSIVE SUBROUTINES

|
¢] il

RECURSIVE SUBROUTINES

Figure 4-1

4.4.4 Language

The program is written in PAL III with floating point commands, as well as program-defined

commands, implemented as subroutine calls. (see Appendix G) The program must be assembled using

PALT1O.

4.5

NOTES

4.5.1 Core Utilization

NAMES PLACE SEGMENT
0-15, 17-166 FOCAL (4K)
167-175 8K
176-2572 FOCAL (4K)
2573-2577 8K
2600-2724 (Interrupt Handler)
2725-3117 FOCAL (4K)

IOBUF: 3120 (1/0 Buffer)

COMEIN: 3140 (Command Buffer)

FRST: 3206 (Text Buffer)

BEGIN: 4420-4577 (Initialization)
4430-4577 CLIN

FEXP: 4620-4776 (Extended Functions)

ARTN: 5000-5166 [11 freel

FCOS: 5200-5345 [32 freel

TGO: 5400-5577 [O freel

DECONV: 5600-5773 [4 freel

FLOUTP: 6000-6157 (Output Conversion)

THISD: 6160-6176 8K

FLINTP: 6200-6317 (Input Conversion)

HREAD: 6320-6377 (High Speed Reader)

FPNT: 6400-7177 (floating interpreter)

MP4: 7200-7377 [none freel

XSQRT: 7400-7502 [FSQT() and format buffer]

LIBRARY:: 7503-7556 (Single user L command)

XRTD: 7557-7576 8K

Storage of text is 3200-4577 14 functions
3200-5177 11 functions
3200-5377 9 functions

4.5.2 Extended Functions

Extended Functions may be reinitialized by loading in the second part of main program tape.
Functions are normally deleted by answering the questions asked when FOCAL is initiated.
However, they may also be erased by changing location 0035 to 5377, and locations 401 through
0405 to 2725. Retaining the extended functions allows approximately 1200 characters of text or 170
variables (or any combination in the ratio of 7 characters to one variable). Deleting the extended

functions allows approximately 1800 characters or 250 variables.

4,5.3 Error Printouts

Errors ?201.00
?200.00
and ?211.35

Because these errors are time dependent, they may be followed by nonexistant or false line number.

4.5.4 No Interrupts

To read data tapes without running the risk of Keyboard=Input-Buffer overflow (?11.35), it
is necessary to remove the interrupt. This action means that Control-C will not work .

To run FOCAL without interrupts, change:

Loc/From To
63/2676 1353
64/2666 2413

2732/6001 5336
2762/6046 7000

The high-speed punch will now run in parallel with the low-speed punch!
To run the high speed punch at top speed change:
1356/6041 6021

4.,5.,5 Operating HS Reader Without Interrupts

To run the high-speed reader without interrupts, make the dbove patches plus two more:

6324/1037 6011
6325/7700 7410

4.5.6 Non-Typing of Program Tapes During Loading

The "echo" feature for the ASR-33 may be suppressed by changing location 2163 to 7000
(from 4551). This will cause only asterisks to be typed as the tape is read. There will not be line
feeds or carriage returns. (c.f., 4.7.3.4 for multi-user system)

Any output commands will be typed out in the usual manner, as will diagnostics, answers,

etc. Entries from the keyboard will not be typed.

4,5.7 Explanation of NAGSW (Not All or Group Switch)

Since LINENO may be modified, a record is needed of whether a specific line number was
given by XX.YY (where XX and YY are nonzero) or whether a group was indicated by XX or XX: or

XX .00 or whether "ALL" text was indicated by either zero, less than one, or a non-numeric argument:

4-10

NAGSW =

For one line 4000
For a group 0000
For all text 0001
Error 4001
PDP-8 code for testing NAGSW:
skip if
Or One All Group
ONE SMA -- SMA SZA
ALL -- SPA SNA SNA
GROUP SMA SZA SPA SZA SZA
4.5.8 Data Inaccuracies

The logical conclusion from the inequality 108 < 227 is that the user can represent 8-digit
decimal floating=point numbers accurately by 27-bit floating=point numbers. However, 28 significant
bits are needed to represent some 8-digit numbers accurately. In general, we can show that if
10P < 2q-] , then q significant bits are always enough for p-digit decimal accuracy. Finally, we can
define a compact 27-bit floating=point representation that will give 28 significant bits, for numbers of

practical importance.] In FOCAL, 23 bits are used giving 6.9 digit accuracy.

4.5.9 Eliminating = and : in I/O Formats

Leading equal signs and colons in 1/O formats are omitted by making the following patch:

Loc/From To
1216/4551 7600 /.
6002/4551 7600 /=

4.5.10 Estimating the Length of User's Program

FOCAL requires five words for each identifier stored in the symbol table and one word for

each two characters of stored program. This may be calculated by

c
55 +2 . 1.01 = length of user's program
where s = Number of identifiers defined
c = Number of characters in indirect program

If the total program area or symbol table area becomes too large, FOCAL types an error message .
]Goldberg, B. "8-Digit Accuracy",

Communications of the ACM
Vol. 10, No. 2, February, 1967

FOCAL occupies core locations 1-33008 and 46008_75768. This leaves approximately
700]0 locations for the user's program (indirect program, identifiers, and push-down list). The ex-
tended functions occupy locations 4600~5377. If the user decides not to retain the extended functions
at load-time, there will be space left for approximately HOO]0 characters for the user's program.

The L-command may be used to indicate how much core is available for the user.

4.6 FOCAL SYSTEMS

FOCAL systems are designed to take advantage of as many PDP-8 configurations as possible .
With this in mind, the system source language is divided into segments which, when loaded together,
fit the needs of a user and his particular configuration. Thus, when a user changes his configuration
or requirements, he does not need to secure an entirely new FOCAL tape but only to load a new seg-
ment corresponding to the change in his configuration. The scheme used also has the advantage of
simple maintenance, since changes are made to one source file for all possible systems and in some
cases re-assembly of other segments is not needed.

Two source segments create a FOCAL system for a 4K PDP-8. Others are used to create a
FOCAL system with (1) ten digit arithmetic, (2) 8K memory, and (3) circular and linear graphics.

The segments of the FOCAL system and their functions are listed in Table 4-1. The ASCII
source segments FOCAL.ASC and FLOAT.ASC must be assembled with all configurations and the
resulting binary segment, FOCAL.BIN, when loaded makes a one user FOCAL system for a 4K PDP-8.

The segment INIT.ASC is assembled alone, but when INIT.BIN is loaded with FOCAL.BIN
into field zero it gives you the initial dialog. If the extended functions are to be retained, it is not
necessary to load INIT af all. All corrections for machine type will be made anyway. After FOCAL
is started and/or the dialog is completed the user may proceed to load other binary segments.

If a user has an 8K PDP-8 and wants to create a large program with extended precision
arithmetic, he need only load FOCAL.BIN, start, and then load 4WORD.BIN, and 8K.BIN as
indicated in Table 4=2. If he wants to share his PDP=-8 with three other people, he just loads FOCAL.
BIN and QUAD.BIN into field one and start.

Intra-references between segments is handled by small multiple assemblies, rather than a
large assembly with conditionals for each possible system. For example, to obtain a binary copy of
the segment QUAD .BIN, use PAL10 to assemble, QUAD.ASC, FOCAL.ASC, FLOAT.ASC. This
assembly produces only the listing and binary files for QUAD which end with the PSEUDO=-op's
"XLIST" and "NOPUNCH". Tables 4~2 and 4-3 give the allowable combinations of the binary

segments to produce legal configurations of the FOCAL system.

4-12

Table 4-1
FOCAL System Source Segments

ASCII Segment Name Function Description

FOCAL* The interpreter & TTY 1/O driver.

FLOAT* Modified Floating Point Package.

4WORD Extended precision overlay to FLOAT (give 10 digits). (4.6.5)

8K Allows one user to take advantage of an 8K PDP-8. (4.6.4)

QUAD Allows multiple users (up to 4) to use FOCAL or (4.6.6)
8K PDP-8.

LIBRAT Allows multiple users (up to 7) to run and save (2.14.2)
FOCAL programs on an 8K PDP-8 with disk.

CLIN The user may have a scope to interact with FOCAL. (5.8)

PENT A variation of QUAD allowing five (5) users.

INIT The symbolic source for the initial dialog program.

*These two segments must be assembled and loaded together for all configurations. They are
separated for editing convenience.

TNof yet implemented.

Table 4-2
Allowable FOCAL Systems

1 - Must be loaded into field one
0 - Must be loaded into field zero
Y - Command may be used if disk system is built

N - Command is illegal
* - Command different

Binary Segment

Allowed Combinations &
Subsets are indicated by

Minimum Hardware

entries in vertical columns Required
FOCAL 00001111 4K
INIT (optional) 0000
4WORD 00 1 1 4K
8K 00 8K
QUAD or PENT (non-8/5) 0000 8K/PT08s
LIBRA (non-8/5) 00 8K/PT08s/DF 32
CLIN (optional) 01 1 Graphics Terminal
LIBRARY COMMAND YYYY NN?* * DF32
(for disk monitor)

FOCAL is always loaded first in the proper field.

4-13

4.6.1

Table 4-3
Variations for FOCAL Systems

Any combination of these three sets (2*2*4=16),

a. 8K overlay b. Disk Monitor c. No Dialogue
4K No Disk No ext. functions
SINe, COSine only

All ext. functions

or QUAD four-user system or PENT five-user system (PENT is obtained by a
modified assembly of QUAD; see listing) may be used with

CLIN graphics (4)
4AWORD overlay
Neither

Both

These are formed from only six sections of binary tapes.
The CLIN graphics function can be used for numerical control.

4K FOCAL can be run on the following DEC computers: 5, 8, 8/S, 8/1, 8/L,
LINC-8, LAB-8, TSS-8, PDP-12.

a. Load FOCAL & INIT
b. do initial dialogue
load any or all of 4WORD, 8K, CLIN.

d. restart and use

(9]

FOCAL Systems Assembly

a. Systems programs

.RUN T PALITO
*FOCAL.BIN,FOCAL.LST<FOCAL.ZZL ,FLOAT.ZZL

*QUAD.BIN,QUAD.LST-QUAD.ZZL,FOCAL.ZZL,FLOAT.ZZL
b. Initial dialogue
* 1C

.RUN T PAL10
*INIT.BIN,INIT.LST<INIT.ZZL

*
c. Overlay routines
R PALTO
*4WORD.BIN,4WORD.LST<4WORD.ZZL ,FOCAL.ZZL ,FLOAT.ZZL
*8K .BIN,8K.LST+<8K.ZZL,FOCAL.ZZL,FLOAT.ZZL
*CLIN.BIN,CLIN.LST+~CLIN.ZZL ,FOCAL.ZZL,FLOAT.ZZL

*

4-14

4.6.2 FOCAL Binary Paper Tapes
.AS DSK D
DSK ASSIGNED

.AS PTP
PTP ASSIGNED

.R PIP
*PTP:</ID:QUAD .BIN
*PTP:<+/ID:4WORD.BIN,8K .BIN,CLIN.BIN

*PTP:</ID:FOCAL.BIN,INIT.BIN
tC

4.6.3 FOCAL Listings

*LPT:«<D:QUAD.LST,4WORD.LST,8K.LST,CLIN.LST,INIT.LST ,FOCAL.LST
*TTY: /L DTAa:
58: FREE BLOCKS LEFT

FOCAL .ZZL
FLOAT .ZZL
QUAD Z7ZL
4WORD .ZZL
8K ZZL
CLIN ZZL
INIT ZZL
PAL10 .SAV
JR36

JR46

4.7 FOCAL SEGMENTS

4.7.1 8K Single User Overlay - 8K

To increase the size of program, the 8K overlay uses the upper 4K for storage of the user's
source text. The maximum number of variables does not change as they are still stored in the lower 8K.

Load the overlay after doing the initial dialogue with the 4K version.

4.7.2 Extended Precision Overlay - 4Word

This overlay provides FOCAL with 10-digit accuracy when the 10th digit goes to enable.
The overlay increases the number of words needed to store a number from three words to four words.
The number of variables that may be stored is decreased accordingly.

Load the overlay after doing the initial dialogue with the 4K version.

4-15

4.7.2.1 Double Precision Multiply in Four-Word FOCAL

To multiply two numbers, the product of which is greater than ten digits and yet retain the
least significant figures, use a double precision operation.

For example, to multiply:
M = 20243974
by
N = 69732824
let MO = the Ist 4 digits of M and let M1 = the 2nd 4 digits of M. Similarly, NO and N1 are the left
and right halves of N.
Note the correction of an input error in the high order part of N.
*W
C-4WORD@1/69

14.10 ASK 1,MO,MI,"*'NO,NT,!
14.20 SET A=MO*NO

14.30 SET B=NO*M1 + MO*N1
14.40 SET C=MI1*NI1

14.50 SET Z=FITR(C *1E~4)
14.60 SET C=C-Z*1E4

14.70 SET B=B+Z

14.80 SET Z=FITR@*1E~4)

14.90 SET B=B-Z *1E4

14.99 TYPE 1%8,A+Z ,%4,8,C,!
*GO

12024 :3974 * :6928+6973 :2824
= 14116694= 7600= 2576

*

4.7.3 Four User Overlay - QUAD

QUAD allows an 8K PDP-8/1, -8/1 with up to four teletypes to time=-share FOCAL. In
effect, each user has the equivalent of a 4K PDP-8 or PDP-12 with FOCAL. The QUAD overlay is
located in the lower 4K, and the FOCAL interpreter is located in the upper 4K. Users are traded for
one of three other users in the lower 4K. Swapping of users is based upon 1/O waits and checkpoints

in the FOCAL interpreter.

4.7.3.1 Four User Loading and Operating Procedure

a. Load Ist binary part into field one. (FOCAL.BIN)
b. Load 2nd binary part into field one. (QUAD .BIN)

4-16

c. Load address

7600
and START

.SAVE F4UB!0-2177,3000,3600, 5400;200
.SAVE F4UA!10-13220, 14600-17577;

(Any errors made here may require reloading field zero.)
d. (Calling Sequence)

.FAUA
.F4UB

(If any problem occurs hit stop, record the PC and restart af 200 or reload.)

4.7.3.2 Swapping - At certain points in the FOCAL program it is a pure procedure. If swapping
occurs at these times, then only 1K of impure data needs to be saved instead of 4K. This factor of
four considerably improves system performance. Such a point is called a checkpoint.

Each time an operating program reaches a checkpoint the executive routine checks to see
whether another user should be swapped in at that time.

This check is also made if the operating program goes into a state of waiting for input-output,

except for output during use of trace.

4.7.3.3 Workload and Timing
a. Swapping is done on a demand (I/O wait) and a cooperative (checkpoint) basis .
Therefore, no clock is needed. Not having a clock reduces system overhead by about ten percent.

b. Fully asynchronous I/0 is backed up by large (over 16 characters) and uniform (easy to
process) character buffers. Serial to parallel conversion of the bit stream is done in external hardware
by PTO8 line controllers. This reduces system load by 18 to 30 percent.

c. If each of eight user programs takes less than 100-17 msec to generate one 8-digit
output string, then the system is barely output bound and no delay will be observed in response times.
The 17 msec is average access time to the disk, and one TTY character takes 100 msec to be typed.

4.7.3.4 Special Controls = A control-R character (TAPE) suppresses echo of input tapes except for
the line-feed. A control-T (NOT-TAPE) or Control-C restores the echo of input characters.
It is a good practice to punch a Control=R af the beginning of all off-line tapes. An

alternative is simply to type Control=-R manually before setting the low speed reader to RUN.

4.7.3.5 Dialogue - There is no initial dialogue with QUAD.

4-17

4.7 .4 Graphics for Circles and Lines = CLIN

/CILIN -« GRAPAICS OVERLAY FORr FOCAL,.,#2ZK PAL1D

3035

2427

444
444

4442
4443
4444
4445
4446
4447
4459
4451
4452
4453
4454
4455
4456
4457
4440
4461
4462
4463
4464
4455
4456
4467
4470

6857
6053
5067

2035
4437
2427
4449

444,

4453
7040
3342
1340
301¢
1117
3316
4537
1612
1044
1341
3044
4453
72230
1025
3410
1045
3410
1046
3410
2316
5247
1046
7640
5343

v133 14-MAR<69 16101

/CLIN <« GRAPHICS OVERLAY FOR FOCAL,ZZK

/FINITE DIFFERENCE EQUATION OF A CIRCLE ~ FOR FOCAL

/16,2 S p3X=XBis @3Y-Y?is R=FgqpT(Q*t2+pr2)
/16,3 S ZsFNEW(6,3%R«C,P,Q,Xx@,YR,S/R)
/16,4 S X@=X;S YB=sY

/LI\EAR DIFFERECE EQUATI gy oF A LI\E

/liql D 16.2‘8 Z=FNEN(R’P/RpO/R’XQJYG’@);D 16.4

DXS=6057
DxL=6853
DYS=6@67
*BOTTOM

«]
#FNTABF+§3

FCIN

’4qgﬂ*40

FCIN, JMS
CMA
DCA
TAD
oCA
TAD
DCA

N=1

I INTEGER

R
XXP
AXIN
M5
CT

GETA, PUSH,J

TAD
TAD
DCA
JMS
CLA
TAD
DCA
TAD
DCA
TAD
DCA
152
JMP
TAD
gZA
JMP

EvAL=-1
EXP
LP
EXP
I INTEGER

P13

I AXIN
HORD

I AXIN
LORD

I AXIN
CT
GETA
LORD
CLA
XFCIR

4-18

/SAVE THE POINT COUNT

/START DATA POINTERS
/FOR 5 MORE I1TEMS

/COMPUTE EACH ARG,
JFOUR FIXED POINT RESULTS

/SAVE UNNORMAL!IZED FORM

/TEST FOR END OF DATA

/TEST FOR CIRCLE OR LINE

/CLIN = SKAP4ICS OVERLAY FUR FOCAL.Z7ZK PAL1Z V133 14=MAR=69 16:01 PAGE 2

4471 710 XFLIN, CLL JVECTOR PLOT ALGORITHM
7 TAD X@
1478 1333 TAD P11t
4474 3331 NCA X1
4475 70J4 RAL
4476 1352 TAD Xp@
4477 1322 TAD PO
4519 5253 DXL /(6317)- FOR LAB=8
45711 3357 NCA X2p
4572 7112 cLL
4573 1334 TAD YD1
454 1326 TAD 01
4575 3334 0CA Y21
4536 7704 RAL
4517 1333 TAD YR
4510 1325 TAD Q@
4511 6057 nYs /6307y = FOR LAB-A
4512 3353 DCA Y@@
4513 2342 187 R
4514 5271 JMP XF|IN
4515 5555 JMP 1 EFUNSI
11777
/TO DISPLAY A POINT X,V SET Z=FDIS(X,Y)
/TO DRAW LINE XZ,Y2 TO X,y: D0 7
/T0 SET x9,YP=x,Y:! DO ,h.q4
/T0 ERASE SCREEN ¢ TYPE "(ERASE CODE)"
/T0 RESET PRINT CRIGING TYPE "(RESET CODE)"

/TU DRAW A CIRCLE ABOUT Xg,Y? STARTING AT X,Y

/AND GOING COUNTERCLOCKWISE FQOR FRACTION

/0F A CIRCLE ALPHA @ SET S=+_.;SET C=ALPHAID016
/70 GO CLOCKWISE:® SET S=-13:D0 16

/GROUPS 16 AND 17 CREATE QR USE THE VARIABLES
/X1 Y XOD,YWw,2,R0CoPsQ,KsAND oY)
/S MAY BE REPLACED BY A 1 IF DESIRED,

/CLIN - GRAPAICS OVERLAY FOR FOCAL,ZzK PAL12 V133 14-MAR=69 16:01 PAGE 3

4516 aprag CT, ®
4517 29949 A
45298 2¢27 7
4521 2278 PP @
4522 2079 PZ» G
4523 2929 P1. A
4524 g9ag Q. 2
4525 2329 043, 5
4526 2gun 01, @
4527 2313 XX 13
4530 23234 xXga, @
4531 2020 Xgt, a
4532 2913 YY’ 13
4533 2222 Ygé, 1)
45%4 3320 Ya1, /]
4535 23¢3 KK 1 @
4526 2924]
4537 2333 2
4547 4527 XxP, PP=1
4541 3414 LP» 14
4542 2424 R, 2

/10 USE AN ,~, PLOTTER, CLIN 1S NOT NEEDED: SIMPL,
/AUD THE FOELSNING LINES TO GROUPS 16 AND 17

/16,25 5 K=s/R
/716,30 F 120,6.3%R#C;S P=peQ#K;S Q=Q+P#K;S ZsFDIS(XB+P.YB+Q)
/17,19 D 16,2iF 1=28,R3S X@=X@+P/R3iS Y@P=zYP+Q/R3S 2=FD1S(Xp,YQ)

/17,28 D 16,4

/THE 1TERATION PARAMETER "1" MAY BE TAKEN IN GREATER INCREMENTS IF THE
/SCALE FACTOR IS ALSD CHANGED; I,E,

/.7,48 DO 16.2;351 Kz4/R

/i7.15 FOR"1=3,4/RiS XP=Xg+K*PiS Yp=Y@+Q*K3S Z=FDIS(Xp,Y@)

4-20

/CLIN - GRAPHIZS OVERLAY FOR FOCAL,2ZK PALLY

4543
4544
4545
4546
4547
4550
45351
4552
4553
4554
4555

4536
4557
4560
4561
4562
4563
4564
4555
45566
4567

4570
4571
4572

4427
2324
4335
6316
2321
2316
6321
1327
2R27
4453
6257

4427
2321
4335
1324
6324
1332
2029
4453
6067
72729

2342
5343
5535

4629
2021

xFCIR,

NOPUNCH
PAGE
FIELD 1
XLIST

FINT
FGET
FMUL
FPUT
FGET
Fsus
FPUT
FADD
FXIT
JMS

DXS

FI.T
FORT
FMUL
FADD
FRUT
FADD
FXTT
UMS

DYS

CLA

1S2
JMP
JMP

06
KK
cT
PP
cT
PP
XX

I INTEGER

PP
KK
0
QQ
YY

I INTEGER

R
XFCIR
1 EFUN3I

4-21

V133 14-MAR-69 161031 PAGE 4

/CIRCLE ALGORITHM

/(6317) - FOR LAB-8

/C EARS AC

/(6387) « FOR LABe8

4.8 FOCAL DEMONSTRATIONS

4.8.1 One-Line Function Plotting

This example demonstrates the use of FOCAL to present, in graphic form, some given function

over a range of values. In this example, the function used is

y =30 + 15INGK) Je 1
with x ranging from 0 to 15 in increments of .5. This damped sine wave has many physical applications,
especially in electronics and mechanics (for example, in designing shock absorbers for automobiles) .

In the actual coding of the example, the variables I and J were used in place of x and y,
respectively; any two variables could have been used. The single line 08.01 contains a set of nested
loops for 1 and J. The J loop types spaces horizontally for the y coordinate of the function; the I loop
prints the * symbol and the carriage return and line feeds for the x coordinate. The function itself is
used as the upper limit of the J loop showing the power of FOCAL commands.

The technique illustrated by this example can be used to plot any desired function. Although
the * symbol was used here, any legal FOCAL character is acceptable.

08.01 F 1=0,.5,15; T "*",I; F J=0,30+15*FSIN() *FEXP <-.1*I 5T " "
*

*

*DO 8.01

*

4-22

4.8.2 How To Demonstrate FOCAL's Power Quickly

a. Load the program and start at 200.

b. Explain that the initial dialogue gives you options.
c. Try some other response like MAYBE) .

d. Now answer YES } .

e. The preceeding has demonstrated the interactive capabilities of the language and the
compromises that it permits.

f. In a 4K machine (4096 words) FOCAL gives the user 15 functions and uses only 3K,
leaving enough room to solve up to 6th order simultaneous equations.

The asterisk (*) means that FOCAL can now respond to your commands.
h. The basic command is TYPE:
*TYPE 512 +FSQT (%))
i. Now compute 5 factorial:

*SET ALPHA=]
*FOR I=1, 5; SET ALPHA=ALPH*I

i. The answer is ready when the next asterisk is typed out:
Then type
*TYPE ALPHA
for the answer .

k. Now if you are using a PDP-8 or -8/1, demonstrate a large number:

*SET A=1
FOR I=1, 300; SET A=A

some time later

*TYPE A
=0.395 615

. Now generate a plot via a stored program:

*1.1 FOR Y=0O, .5, 15; TYPE! ; DO2

*1.2 QUIT

*2.1 FOR X=O, 12+10*FSIN(Y); TYPE " "
*2.2 TYPE" * "

*GO

m. Now use the MODIFY Command to change 10* to FEXP (Y/6)* and try again.

4.9 FOCAL Versus BASIC

FOCAL is superior to BASIC, not only in terms of computing power and ease of use, but also

in maximum use of the memory space, which is so often limited in small computer systems.

4-23

FOCAL contains all the power of BASIC, and in addition provides the following capabilities:

a. Control of the output format (i .e., precise figure location on a page and graphical
representation);

b. An "immediate" mode, allowing the system to operate as a desk calculator and to
execute simple problems without writing a program;

c. The capability of executing individual "stored program" statements in the immediate
mode for debugging and verification;

d. Built-in symbolic editor capable of searching program statements for specified characters
and inserting and deleting characters within a statement, thereby eliminating the retyping
of the entire program statement;

e. Multiple statements may be grouped on each line for more logical ordering of the pro-
gram;

f. True multiple level re-entrant subroutining capabilities;

g. A trace feature which types out selected segments of a program (as the program is
executed) to pin point exactly where a program error occurred;

h. Commands may be abbreviated to one letter; this eliminates wasted typing time when
writing a program and-increases the available storage space for use by additional program
statements;

i. Programs may be saved on disk and chained together;

i- Point plot displays, vector displays, X, Y plotters, and analog to digital converters
may be operated by FOCAL; this capability can be used in an on-line, real-time fashion;

k. FOCAL SYSTEMS allow use of several hardware configurations: 8K, 10 digit, display,
and multi-~user.

4-24

CHAPTER 5
ADDITIONAL FOCAL APPLICATIONS

5.1 FOCAL FOR THE LAB-8

5.1.1 Standard

Two commands have been added to FOCAL to implement the A to D converter and the
oscilloscope display on the AX08.
a. A to D Command:
FADC(N) where N is the channel number in decimal.
The command:
SET Z = FADC(28)

gives the variable Z a value of octal channel 34 depending on the position of the upper
righthand potentiometer. The other 3 knobs are channels 29, 30 and 31. A subroutine
in FOCAL to read the A to D in volis is as follows:

15.1 ASK CHAN;C-0,1,2,3

15.2 SET X=FADC(28+CH)

15.3 IF (X-256)15.Y,15.4;SET X=X-4096
15.4 SET X=X/255

The input variable is CH for values of 0 to 3, and the output variable is X with values
+/volt.

b. Display Command:
The display command has been modified to use only one statement to define X and Y.
SET Z = FDIS(X,Y).

will display a point on the oscilloscope screen defined by points X and Y. X can range
between 0-511 and Y from =255 to +255. The variable Z is a dummy. (It is given the
value of the integer part of Y.). (c.f., Section 5.8 for circle and sector algorithms.)

CAUTION

Since the ADC of the AX08 hardware is an integral part
of the display logic, using both display and A and D,
may result in splatter of the Y direction of the oscillo-
scope screen.

5.1.2 Additional (Possible) FOCAL Functions for AX-08

FADC (n): Converts (decimal) channel n. Returns result of conversion.

FDIS (x,y): Loads display X and Y; intensifies point.

5-1

FTIM (n): Delays n RC clock pulses (n < 4096)
Returns # of 100 ps increments since last used.
Xtal clock interrupt is enabled.
Interrupt servicing for Xtal clock as
follows:

SKXK

JMP OTHERS
CLXK

ISF TIME +1
JMP .+3

ISF TIME
NOP

ION
JMPI10

Clock flag servicing will tie up 20% of processor time.
When FTIM is called, do the following sequence:

TAD (1002) /enable Xtal clock, start RC clock
OTEN
get n
SNA
JMP XTIME
CMA 1IAC
DCA RCNTR
CLRK
SKRK
JMP -1
1SZ RCNTR
RMP =4
XTIME, PUT TIME, TIME +1 in FLAC
DCA TIME
DCA TIME +1
return to FOCAL

FNEW (a, b, <)
a=0: Turn on relays indicated by b (b < 7)
Turn off relays indicated by ¢ (¢ < 7)
as follows: B

get b
RAL; RTL
AND (70
OTEN
get ¢
RTL; RAL
AND (70
CMA
ZTEN
CLA
return to FOCAL

a=1: "and" external register with mask
b: mask (octal)
c: ignored

5-2

Get characters of b
interpret as octal #
DCA XMASK
XRIN

AND MASK

XRCL

CMA JAC

TAD MASK

SNA CLA

IAC

store in FLAC
return to FOCAL

a=2: "or" external register with mask
b: mask (octal)
c: ignored

get characters of b
interpret as octal #
DCA XMASK
XRIN

AND MASK

XRCL

SZA CLA

IAC

store in FLAC
return to FOCAL

5.2 FNEW FOR DATA ARRAYS*

A new function for 8-K FOCAL is available which uses field one to store data arrays in
floating double precision, single precision, and signed integer format. This facility is added to
FOCAL via the function call FNEW. The function may be called recursively to any level, and all
of the features of FOCAL are retained. In addition an ERASE or ERASE ALL command will not wipe

out the array. Hence, variables may be stored for use in successive programs.

5.2.1 Storage Requirements

Fits into unused locations in floating point package
5.2.2 Usage
5.2.2.1 Loading - Load after FOCAL has been loaded into the machine {and the initial dialogue is

executed). Load the first part of the overlay using the Big Loader. If a single precision floating

array is desired press CONTINUE. A patch should now be read in to allow a 1980 element array in

*Originated by University of Georgia, program not supported by DEC.

5-3

single precision floating point. If an integer array (maximum number = 3047) is desired press
CONTINUE. A patch will now be read in to allow a 3965 element signed integer array .
Restart FOCAL at 200.

5.2.2.2 Cadlling Sequence - To store a variable Z as array element J:
* S X=FNEW (J,Z)
or
* 4.3 S X=FNEW (J,Z)
In addition, X will be set equal to Z.
To call the array element K and set Z equal to this element:
* S Z=FNEW(K)
i.e., if there is only one argument the instruction is interpreted as a "GET". If there are

two arguments it is interpreted as a "PUT".

5.2.3 Recursive Calling

The function FNEW may be called recursively at any level. viz.
* S Z=FNEW [J, FNEW(J+10)]
sets Z=FNEW(J+10) and stores FNEW(J+10) in array element J.
* 3.2 S Z=FDIS (J*1000) , FDIS(FNEW(J)*NORM)
the arguments may be any arithmetic expression. The following are valid:
* S Z=FNEW (J*10-3, FEXP(X2)*Y)
* S Z=FNEW (J,FNEW (K)*FEXP(FNEW(L)))

5.2.4 Restrictions

Double precision floating: 0<J <1320 (23 bits of significance)

Single precision floating: 0<J <1979 (11 bits of significance)

Integer Array: 0<J <3965 (11 bits of significance)
1Z1<2047

5.2.5 Description

The function FNEW protects the binary loader in upper core. The function checks to see if
J is too large, but does not check to see if Z is larger than 2047 in the integer array case (c.f., array
overlay).

The user, of course, may subdivide this array into any number of smaller arrays, keeping

track of his own indices.

5.3 DYNAMIC INTERRUPT PROCESSING VIA FOCAL, 1969

This simple patch allows real-time interrupts to initiate execution of a specific FOCAL
subroutine (e.g. Group 31) which gains control (i.e., D0O31) when an interrupt occurs from an external
device. The FOCAL subroutine could sample various channels of the A/D converter, set a few con-
stants, then turn off the interrupt, and return to the main FOCAL program. The main FOCAL program
will carry out the analysis or output of data during the time between these external device interrupts.
The external device could even be an animal and the time between interrupts will be asynchronous and
long (between 1 and 1000 seconds), or the external device will be a clock, in which case the time

between interrupts will probably not be less than 100 ms or greater than 1 sec.

/patch to interrupt processor
(tag assignments from symbol table)

EXIT /replaces H.S. Reader
IOT1 /skip if device
JMP.+3
NOP /"HINBUF" is cleared
*PC1 /checkpoint in main program
JMP 1175 / valid for 8K, also
*167
DIPCHK /Dynamic Interrupt Check
*HINBUF
1 /initialized fo non-zero
*HREAD
DIPCHK, TAD HINBUF
SZA CLA
POPJ
TAD PC /save FOCAL register
PUSHA
TAD SPCLN /(your group #)
DCA LINENO
DCA NAGSW
ISZ HINBUF
PUSHJ
DO+1
POPA
DCA PC
POPJ
SPCLN, 7600 /(group 31)

The routine in group 31 returns control by "RETURN". This feature does not operate until

main program is started. It will operate during execution of a direct command.

5.4 SIMULTANEOUS EQUATIONS' SOLUTIONS

This program will work with a set of simultaneous linear equations (in 4K. FOCAL 6 equations
is the limit) and output the solutions. To do this the program requests a value "L", the number of equa-
tions and variables to be processed. The program then requests the coefficients and constants for each
equation, in a matrix like format. The solution values are typed out in a column with the names "X(0)"

through "X(L=1)". The program is available through DECUS.

5.5 FAST FOURIER TRANSFORMS PROGRAMS

The FAST FOURIER TRANSFORMS Program is designed to accept samples of a complex wave
pattern as input and, through a FOURIER analysis, describe its component sine and cosine waves in
terms of amplitudes and frequencies.

The user inputs a number "N", which must be a power of two, (in 4K. FOCAL, "4" is the
limit) and which describes the number of samples to be used in the analysis. Next the samples, which
are wave height measurements taken at regular intervals, are requested. Output is in the form of two
columns (side by side), the left of which describes the cosine wave components while right hand

column describes the sine wave components.
It should be noted that because the number of samples is always a power of two, the number

of complex multiplications is cut drastically. For this reason computation time is also greatly reduced.

NOTE

In order to use this program, the extra extended
function FX(A,B) must be loaded into memory
via the BIN loader.

FAST FOURIER TRANSFORMS

w
C-FOCAL.,1968

01.08 A "POWER OF 2 ",NU
01.105 N=2 tNU;S TP=2*3.14159/N

01.18 S $=N/2:, L=1;S Q=5-1;S H=1-NU

01.20 F 110,N-T;A ;A 1,XR(1);S XI({1)=0

01.22 S SR=XR(Q#S)+XR(Q);S XR(Q+5)=XR(Q)-XR(Q+5);S XR(Q)=SR
01.241 (Q) 1.26,1.26;5 Q=Q-1;G 1.22

01.261 (L-NU) 1.28,1.54,1.28

01.28 S L=L+1;S $=5/2;5 H=H+1;S P=N-1;5 Z=1/(21(-H))
01.32S C=1

01.34'S U=FITR(P*Z);S K=FX(NU,U)*TP

01.36 S CO=FCOS(K);S SN=FSIN(K)

01.38 S GR=CO*XR(P)+SN*XI(P);S GI=CO*XI(P)-SN*XR(P)

5-6

01.40 S Q=P-S;5 SR=GR+XR(Q);S SI=GI+XI(Q);S XR(Q)=XR(Q)-GR

01.42'5 XI(Q)=XI(Q)-GL;S XR(P)=SR:, XI(P)=SI

01.46'S P=P-1; 1 (-FABSLC-S1) 1.48; I (P-5+1) 1.52,1.26,1.52

01.48'S C=C+1;G 1.34

01.52S P=P-5;G 1.32

01.54 F 1=0,N-1;5 K=FX(NU,I);T !,%3.2,2*XR(K)/N," " 24XI(K)/N
*

*C~-TRANSFORM OF INTERFERENCE PATTERN FORMED BY MIXING A SINE
*C-WAVE OF AMPLITUDE 1.0 AND A COSINE WAVE OF AMPLITUDE 1.5
*

*GO

POWER OF 2 :3

:1.5

:1.768

:1

:-.353

:=1.5

:=1.768

=1

:.353

++).00 =+.00
=+1.50 =-1.00
=+0.00 =+).00
=+).00 =-0.00
=+0.00 =+).00
=+H).00 =+).00
=+).00 =+0.00
=+1.50 =+1.00*

*

/FNEW(u,v) for FFT
*BOTTOM

4377
*ENTABF+1Y

XFX
*4400

XFX, JMS 1 INTEGER

Dca U
PUSHJ

EVAL-1
JMS T INTEGER
CIA
DCA T2
DCA LORD/low order

TAD U

CLL RAR

DCA U

TAD LORD
RAL

DCA LORD
ISZ T2

JMP ~7
JMP I EFUNSI

5.6 TRAVEL VOUCHER TO EXPENSE VOUCHER CONVERSION PROGRAM

Though FOCAL is not a business oriented language the use of FOCAL in business applications
is not impossible. Such a use is seen in the TRAVEL VOUCHER TO EXPENSE VOUCHER CONVERSION

program with which the user may ease the task of reporting his expenses after a business trip.
Working from the input of the number of the days using the expense account and the categor-

ized input of the expenses encountered (all amounts must be entered in terms of cents rather than dollars)

during that period, the computer tallies and itemizes
a. the daily expenses and
b. the totals of the expenses over the entire period.

The data, thus summarized, are very easily franscribed onto an employee expense voucher.

TRAVEL VOUCHER TO EXPENSE VOUCHER
CONVERSION PROGRAM

C-FOCAL., 1969

01.01 T !! "EXPENSE ACCOUNTER (TYPE ALL AMOUNTS IN PENNIES)"
01.05 ERASE

01.10 ASK %6.02,!"HOW MANY DAYS ?" DAYS, !

01.20 IF (DAYS) 1.1,1.1; FOR I=1,DAYS; DO 5

01.40T !! " THE TRIP TOTALS ARE";F I=1,30;T " "

01.41T "GRAND"!

01.60 SETLO=LT; SET ME=ET

01.70 SETOJ=OT; SET MI=MT; DO 7

01.80 TYPE " $"IIll1]

01.90G 1.05

05.10 ASK !I1"BRKFST " Bl

05.20 ASK !"LUNCH " B2

05.30 ASK !"DINNER " B3

05.40 ASK !"SNACKS " B4

05.50 ASK I"MILES TRAVELED ? "B5; SET B5=B5*9; TYPE " § B5/100; DO 6
05.60 ASK !"HOTEL " B6

05.70 ASK !"OTHER " B7

05.73 ASK !"TELc " B8

05.75 A !'"TAXI "Cl

05.76A 1"PARKN "C2

05.77A 1"TOLL "C3

05.85 ASK I"MISC. " B?

05.90 TYPE !"THE DAILY TOTALS ARE"!

05.91 SET LO=B6; SET ME=B1+B2+B3+B4

05.92 SET OJ=B5+Cl; SET MI=B9+B8+B7+C2+C3
05.93 TYPE "DAY NO."; DO 7.1

05.94 TYPE 1%3,1," ";DO7.2; DO7.3
05.95 SET LT=LT+LO; SET ET=ET+ME

05.96 SET OT=OT+OJ; SET MT=MT+MI

5-8

06.10 ASK " MISC. TRAV. ? "B6; SET B5=B5+B6

07.10T " LODGING MEALS OTHER TRAV. MISC.
07.15T !

07.20T %8.02,LO/100," "ME/100," "OJ/100," "MIA00,"

07.30 T (LO+ME+OJ+MI)/100
*

*
*G

EXPENSE ACCOUNTER (TYPE ALL AMOUNTS IN PENNIES)
HOW MANY DAYS? :2

BRKFST :150
LUNCH :170
DINNER :645
SNACKS :35
MILES TRAVELED ? :36
$ =+ 3.24 MISC. TRAV. ?:0

HOTEL :1400

OTHER :0

TELE :40

TAXI :0

PARKN :250

TOLL 0

MISC. :0

THE DAILY TOTALS ARE

DAY NO. LODGING MEALS OTHER TRAV. MISC

TOTAL

TOTAL

=+ 1T =+ 14.00 =+ 10.00 =+ 3.24 =t 2,90 =+ 30.14

BRKFST :98
LUNCH :192
DINNER :650
SNACKS :30
MILES TRAVELED ? :23
$ =+ 2.07 MISC. TRAV. ? :0
HOTEL :1400
OTHER :398
TELE :285
TAXI :0
PARKN :250
TOLL :0
MISC. :0
THE DAILY TOTALS ARE
DAY NO. LODGING MEALS OTHER TRAV. MISC
=+ 2 =t 14,00 =+ 9.70 =+ 2.07 =t 9.33

THE TRIP TOTALS ARE

LODGING MEALS OTHER TRAV. MISC
=t 28.00 =+ 19.70 + 5.31 =+ 12.23

5-9

TOTAL
=+ 35.10

GRAND
TOTAL
=+ 65.24

5.7 TWINS DEMO

The TWINS DEMO Program is an interesting experiment in the applications of plotting with
a visual scope display unit. It must be noted that several functions must be loaded into memory before
this program will operate. This program is an integral part of curve fitting. The Twins Demo requires

Vé8/1 Control with Tektronix 611 Scope. (i.e., 340 control)

TWINS DEMO
W
C-FOCAL., 1969

01.055 A=FDIS () +FDXS () +FNEW(2) + FNEW (256)

01.10S A=.2;S SW=19

01.70F T=0,.05,6.284;S T2=T+3.14159/4;D0 1.8;DO 15
01.75 G 2.1

01.805 R=4*FSIN(T) +4;S X=8+R*FCOS(T2);S Y=32+R*FSIN(T2)

02.10 FY=28.5,A,32;S K=((Y=30.5)/1.5)12;5 X=9-(K*K-K);DO 15
03.10 F X=7.4,A,10.5;S Y=26.5-((X-9)12)/2;D0 15

04.10 S X=10.5;F Y=17,2*A,24.8;D0 15

05.10 F X=7 .2*A,8;S Y=22-7*(X-7); DO 15

06.10F X=10.5,A,15;5 Y=26-FSOT(5*(X-10));DO 15

07.10F X=11.5,A,14.5;D 8.5
07.20F X=14.5,.2*A,15;D 8.5

08.10F X=3,A,4.6;D0 8.4

08.20 F X=11,A,12;D0 8.4

08.30 G 9.1

08.40 S K=X-7;5 Y=12+(K*K)/4;D0 15

08.505 Y-21-FSQT(6.25-(X~12.5)12);D 15

08.605 Y=(X-7)t2-1;D 15

08.705 X-5+FSIN(3.14159%(Y-12)/7);D 15

09.10F Y=0,2*A,16;5 X=12-((Y-8)12)/64;D0 15

10.10F X=2,A,4.5;5 K=X-3;5 Y=K*(K*(.47*K-.5)+1.03)+26;DO 15

11.10F X=2,(.2*A),2.85;D 8.6
11.20F X=4.7,.2*A,6;D 8.6

12.10F Y=4.5,2*A,12;D 8.7
12.20F Y=15,2*A,25;D 8.7
13.10F X=5.3,.3*A,6;S Y=-7*(X-6);DO 15

14.10F Y=12,2*A,24;S K=((Y-15.5)/11)12;S X=5.5+12.5*(K*K-K);DO 15
14.20F Y=4,2*A,12;S K=Y-8.5;5 X=8.1-FSQT(27-K*K);DO 15
14.30R

NOTE

Group 15 must be supplied to scale X, Y and call ap-
propriate display for the device. (c.f., Section 5.8)

5-10

APPENDIX A
FOCAL COMMAND SUMMARY

Command Abbr Example of Form Explanation
TYPE T TYPE FSQT (AL t 3+FSQT (B)) Evaluates expression, types out =,
and result in current output format.
TYPE "TEXT STRING"! Types text. Use ! to generate
carriage return line feed.
WRITE W WRITE ALL FOCAL prints the entire indirect
program.
WRITE 1 FOCAL types out all group 1 lines.
WRITE 1.1 FOCAL prints line 1.1
IF 1 IF (X) 1.2,1.3,1.4; Where X is identifier or expression.

Control is transferred to the first, second, or third line number if (X) is less than, equal to,
or greater than zero respectively. If the semicolon is encountered prematurely then the remainder of

the line is executed.

MODIFY M MODIFY 1.15 Enables editing of characters on
line 1.15
The next character typed becomes the search character. FOCAL will position itself after
the search character; then the user may
a. type new text, or
b. form-feed to go to the next occurrence, or
c. bell to change the search character, or
d. rubout to delete backwards, or
e. left arrow to kill backwards, or

f. carriage return to end the line, or

g. line-feed to save the rest of the line.
QUIT Q QUIT or * or control-C Returns control to user.
RETURN R RETURN Terminates DO subroutines
SET S SET A = 5/B * SCALE(3) Substitution statement
ASK A ASK ALPHA (1 +2 * J) FOCAL types a colon for each

variable; the user types a value to
define each variable.

Command

COMMENT

CONTINUE
DO

ERASE

FOR

GO

GOTO

Abbr

C

Example of Form

C - compute area

C - ignore temporarily
DO 4.14
DO 4

DO ALL

ERASE

ERASE 2

ERASE 2.1

ERASE ALL
FORI=x,y,z; TYPEI

GO

GOTO 3.4

Explanation

If a line begins with the letter C,
the remainder of the line will be
ignored.

Execute line 4.14; return

Execute all group 4 lines, return
when group is expanded or when a
RETURN is encountered.

Execute entire indirect text as a
subroutine.

Erases the symbol table.
Erases all group 2 lines.
Deletes line 2.1.
Deletes all user text.

The command siring following the
semicolon is executed for each value;
X,y ,z are constants, variables, or
expressions. x=initial value of I,
y =value added to I until I is greater
than z. y is assumed =1 if omitted.

Starts indirect program at lowest
numbered line number.

Starts indirect program at line 3.4

C - The Fourteen (14) Functions are

FSQT
FABS
FSGN
FITR
FRAN
FEXP
FSIN
FLOG
FDIS
FADC
FNEW
FX

(
(
(
(
(
(
(
(
(
(
(
(

) - Square Root

) - Absolute Value

) - Sign Part of the Expression

) - Integer Part of the Expression
) - A Noise Generator

) - Natural Base to the Power
Yand - FCOS (), FATN () - Trig Functions
) - Naperian Log

Y

)

)

)

X,Y) = Scope Functions

- Analog to Digital Input Function
- User Function
- Extra User Function

APPENDIX B
ERROR DIAGNOSTICS *

Table B-1
Error Diagnostics of FOCAL, 1969
Location Code Meaning

200.00 Manual Start given from console.

?01.00 Interrupt from keyboard via control-C.
0250 ?01.40 Illegal step or line number used.
0316 ?01.78 Group number is too large.
0340 ?01.96 Double periods found in a line number. ,
0351 ?01.:5 Line number is too large.
0362 ?01.;4 Group zero is an illegal line number.
0440 ?02.32 Nonexistant Group referenced by 'DO’.
0464 ?02.52 Nonexistant line referenced by 'DO".
0517 ?02.79 Storage was filled by push-down list.
0605 ?03.05 Nonexistant line used after 'GOTO"' or 'IF'.
0634 ?03.28 Illegal command used.
1047 ?204.34 Left of "="in error in 'FOR' or 'SET'.
1064 ?04.52 Excess right terminators encountered.
1074 ?04.60 Illegal terminator in 'FOR' command.
1147 ?04.:3 Missing argument in Display command.
1260 ?05.48 Bad argument to 'MODIFY".
1406 206 .06 Illegal use of function or number.
1466 ?06.54 Storage is filled by variables.
1626 ?07.22 Operator missing in expression or double 'E'.
1646 ?07.38 No operator used before parenthesis.
1755 ?207.:9 No argument given after function call.
1764 ?07.;6 Illegal function name or double operators used.
2057 ?08.47 Parenthesis do not match.
2213 ?209.11 Bad argument in 'ERASE'.
2551 ?10.:5 Storage was filled by text.
2643 ?11.35 Input buffer has overflowed.
5042 ?20.34 Logarithm of zero requested.
5644 ?23.36 Literal number is too large.
6543 ?26.99 t Power is too large or negative.
7111 ?28.73 Division by zero requested.
7405 ?30.05 Imaginary square roots required.

?231.<7 Hlegal character, unavailable command, or unavailable

function used.

*The above diagnostics apply only to the version of FOCAL, 1969, issued on tape DEC-08-AJAE-B

B-1

B.1

OBTAINING ERROR CODES VIA ODT36

To obtain error codes via ODT36, proceed as follows:
a. Start ODT at 3600.
b. User types underlined letters:

(change, from, to)
4320/1357]275 (line feed)
4321/4745 3067 (line feed) (LINENO)
4322/1675 4552 (line feed) (PRNTLN)
4323/4246 7000 (carriage return)

63/2676 1355 (C.R.) (OUTDEV, OUTL)

c. then.
M 7777 7777 (line feed)
4273/0001 4400 (C.R.)
4565W (ERROR 2)

Calling addresses and error codes will be printed here. The first two and last error codes

(00.00,01.00,31. <7) are always the same.

APPENDIX C

EXPLANATION OF NEW INSTRUCTIONS

C.1 NEW INSTRUCTIONS (see Table C-1)

C.1.1 Push Down List Instructions

The user's push down list begins at the start of the floating point package and grows up

toward the last variable. The initial value of the push down list pointer is contained in location

"BOTTOM". The pointer is kept in an auto-index labeled "PDLXR". The instructions used to manage

the list are given below:

PUSHA
POPA
PUSHF

POPF

PUSHJ

POPJ

places the contents of the AC onto the list as the current entry

adds the current entry of the push down list to the AC,

saves a group of data, normally a floating point entry.
This instruction is followed by a pointer to a 3 word (or
4 word) group of data. These 3 or 4 words are placed
on the push down list as the current entry.

restores a 3 or 4 word group of data from the current
entry on the push down list according to the pointer
which follows the instruction. The location "MFLT"
contains either -3 or -4 and determines the number

of words affected by "PUSHF" and "POPF".

calls subroutine which is pointed to by the word follow-
ing the instruction. The return address is placed on the
push down list as the current entry.

the current entry is used as a return address from a sub-
routine.

Cc.1.2 Character Handling Instructions

These instructions are used to pick-up, save, and print characters for processing by FOCAL.

Characters are fetched from the user's storage area or from the ASR-33 input buffer. Character con-

version between 8 and 6 bits and the trace feature are handled by these routines.

PRINTC

READC

PACKC

is used to print a character. If the AC is zero upon
eniry then the character in "CHAR" is printed. If the
AC is non-zero, then the contents of the AC is printed.

Reads a character from the user's input buffer (ASR-33
input) and echos all characters except line feeds and
rubouts. The character is placed into "CHAR".

places the 8-bit character in "CHAR" into the user's
storage area. If the character is a rubout the previous
character is deleted from the user's area and a back-
slash is echoed via "PRINTC". The character is

C-1

converted into 6-bit code. The auto index
"AXIN" and the flip=flop "XCTIN" are pointers
to the user's storage area.

GETC this instruction fetches the next character from the
right or left side of the word pointed o by "AXOUT"
and "XCT" and places it into "CHAR". If a question
mark character is detected the dump switch "DMPSW"
is flipped. If the dump switch is on then the character
in "CHAR" is printed via "PRINTC".

SPNOR Blanks and leading zeroes are ignored by repeated
calls to "GETC".

C.1.3 Character Testing Routines

These guide the interpreter through the source texi. They are testing routines used through-

out FOCAL in interpreting the program and in other instances.

SORTC the character in "CHAR" is classified according to
an ASCII list which is pointed to by the location follow-
ing the instruction. If the character is found in the list
an exit is made to the location following the list pointer.
If no character is found exit is made to the second location
following the list pointer. If the character was found in
the list then "SORTCN" contains the position relative to
zero in the list searched. The list is terminated by a negative
word.

SORTJ the character in "CHAR" or in the AC is classified accord-
ing to a list as per "SORTC". If the character is found in
the ASCII list, then a jump to an address is made from a
second list. The second list i