
Digital Equipment Corporation
Maynard, Massachusetts

PDP-S/I

DIBOL Programming

A Selt-l truction Manual

DEC-08-WDRA-D

PDP-8/1
DIBOL PROGRAMMING
A SELF-INSTRUCTION MANUAL

DIGITAL EQUIPMENT CORPORATION • MAYNARD, MASSACHUSETTS

Copyright © 1970 by Digital Equipment Corporation

The material in this manual is for informa
tion purposes and is subject to change with
out notice.

The following are trademarks of Digital Equipment
Corporation, Maynard, Massachusetts

DEC
FLIP CHIP
DIGITAL

PDP
FOCAL
COMPUTER LAB

1st Printing September 1970

CONTENTS

SECTION 1 A DIBOL PROGRAM BY DEDUCTION

SUMMARY SECTION I .

SECTION II DIBOL IN DEPTH

START, PROC, END

BLOCK

BLOCK C

DATA ELEMENT P

INITIALIZATION-SPECIFICATION

BLOCK X

DATA SECTION RESTRICTIONS

DATA SECTION SUMMARY

INIT

X MIT

FINI

CLEAR DATA

ALPHA=ALPHA

COMPUTE DECIMAL Statement

CONVERT Decimal-Alpha, Alpha-Decimal

CONVERT Alpha-Decimal (formatted)

GOTO

CALL RETURN

STOP

SECTION III REVIEW OF DIBOL - PROGRAMMING EXERCISE

APPENDIX

ILLUSTRATIONS

Foldout #1 Sample Problem/Flowchart for Problem

Foldout #2 Sample Problem #2

TABLES

Explanation of Foldout #2 Inventory Problem

iii

Page

11

15

16

19

20

20

23

25

27

28

29

30

31

33

34

36

37

41

44

45

9

51

56

INTRODUCTION

This self-instruction manual is designed to present, as simply as possible, a complete course in

DI BO L programm i ng •

Each DIBOL program is divided into two sections - the data section and the procedure section.

The data section defines data elements used in the program. The procedure section contains the file

handling data manipulation instructions and implies the order of program operation. This manual ex

plains each of these sections in an easy-to-Iearn question and answer format.

The DIBOL Self-Instruction Manual was designed for comprehension in one sitting, so that the

student could immediately begin writing DIBOL programs. In this way, knowledge gained is rein

forced through application.

Upon completion of this manual, the student should be able to write a DIBOL program for the ap

plication problem given in Appendix I.

SECTION I

A DIBOL PROGRAM BY DEDUCTION

The DIBOl language is actually simple and straightforward. This section is intended to give the

student a frame of reference so the value of the following section will be readily apparent.

The general knowledge of this section puts the specialized knowledge of the following section in

perspective~ In this section, you will learn how to design a flow chart, and how to read a DIBOl pro

gram with a fair degree of comprehension.

Following is a statement of what a program should do. (Turn to Page 9 and fold out Foldout #1.)

PROGRAM: Information is stored in records located on a magnetic tape. Each record contains

64 characters. A read operation reads one record at a time (starting with the first

record in the file). Since the teletypewriter will print over 64 characters per line,

we want to list on the teletypewriter all information on the magnetic tape file,

printing one record on each line. After printing the last record on the tape file,

we want to stop the program.

QUESTION: Does the flowchart on Foldout #1 illustrate the logic outlined in the verbal state

ment of our program?

ANSWER: Yes, the flowchart is accurate.

The shapes of the boxes in the flowchart denote different
functions, such as comparison, reading/writing, begin
ning/end, and internal data arrangement. Using the
flowchart, answer the following questions:

QUESTION: What is the function of this symbol?

C ___)
ANSWER: It denotes the beginning/end of the program logic flow.

QUESTION: What is the function of this symbol?

ANSWER:

PASS

It denotes the testing of a condition and, depending upon the outcome of the test,

shows the action to be taken.

QUESTION: What is the function of this symbol?

ANSWER:

o
It denotes an Input (reading) or an Output (writing) operation to be performed by

the computer. (In the program, there is an internal device assignment so the com

puter would issue a read/write command to the proper input/output device.)

QUESTION: What is the function denoted by this symbol?

ANSWER: It denotes explicit commands such as device initialization, move data, etc.

Below the flowchart on Foldout #1 is the DIBOL-coded
program which accomplishes the functions diagrammed.
Note that it requires only ten statements to accomplish
the outlined task.

2

The following dialogue is designed to help the reader
understand the function of each statement in the DIBOL
program.

QUESTION: From the flowchart, is each character of information passed directly from the mag

neHc tape to the teletypewriter?

ANSWER: No. A complete record composed of 64 characters is read into the computer memory

before any data is written (outputted).

QUESTION: Since we know of no reason why data records should be restricted in length to 64

characters, how does the computer know how much memory to reserve for the storage

of the data record?

ANSWER: The programmer must tell the computer how much memory will be required to store

input data.

QUESTION: As a matter of convention, in a program, the area of memory reserved for record

storage precedes the processing instructions. From the DIBOL-coding on Foldout

1, which statement allocates 64 characters of storage?

ANSWER: Statement 3; (A 1, A64).

QUESTION: Statement number 3 says the block of storage labelled A1 will be reserved for 64

alphanumeric characters. What is A1?

ANSWER: It is a label. It could just as well be called XX, YY, or ZOT. It serves as a name

which the programmer can reference from the procedure section of the program

(note: it is not so referenced in the sample program).

QUESTION: The BLOCK statement (#2) gives a label A to an area of computer memory available

for input. If several different input devices are being used, several different

BLOCK statements (with their respective field-definition statements following)

could appear. In order to designate two 16 alphanumeric character fields and one

3

QUESTION: 32 alphanumeric character field instead of the present 64-character field, write the
(Cont)

ANSWER:

appropriate block and field-definition statements.

BLOCK A

Al, A16
A2, A16
A3, A32

QUESTION: A compil~r-statement is a non-executable DIBOL statement. Such a statement gives

the compiling program information necessary to properly interpret notations made by

the programmer. Compiler statements tell the compiler program when to begin and

end encoding DIBOL source statements, and when to begin converting DIBOL state

ments into actual machine procedures. Look at the sample DIBOL program and see

if you can guess which are the compiler statements.

ANSWER: Statements 1, 4, and 10. Statements 1 and 10 tell the program the bounds of the

DIBOL coding. Statement 4 tells the compiler program to interpret the following

lines of coding as procedure to be executed by the computer.

QUESTION: The data section of a DIBOL program describes the data elements used in the program

and allocates memory. Which statements in Foldout # 1 comprise the data section?

ANSWER: Statements 2 and 3 comprise the data section.

QUESTION: Whi ch statements are actual processing instructions?

ANSWER: Statements 5 through 9 are processing statements.

QUESTION: What is the function of the word, LOOP, (in statement 8)?

ANSWER: LOOP is a label denoting a point in the processing cycle to which the program

branches. In this case, the program branches to statement 6.

4

QUESTION: Statement 5 is the first processing instruction. From the flowchart, what is accom

plished by this statement?

ANSWER: It tells the computer what tape unit will be used and whether the file will be read

(input) or written (output). This process is called file-initialization.

In this case, tape transport #2 is initialized as an input
(IN) file. (We will dis.cuss the meaning of the V in a
later section.)

QUESTION: From the flowchart (and following the INIT statement in the program), what does

the XMIT statement (6) do?

ANSWER: It causes a read operation (reads a tape record) from transport 2. More fully, the

XMIT causes data transmission. It can either read (IN) or write (OUT) depending

upon the file-initialization. If a file is initialized as an input (IN), the XMIT

statement would cause a read operation from the file. If a file is initialized as an

output (OUT), the XMIT statement would cause a write operation on to the file.

The data is either read from, or written into the BLOCK as specified in the XMIT

statement (in this example, BLOCK A).

QUESTION: For XMIT (2, A) to cause a record to be written, what would the initialization

statement look like?

ANSWER: INIT (2, V, OUT).

QUESTION: For XMIT (2, A, EOF) to cause a record to be read, what would the initialization

statement look like?

ANSWER: INIT (2, V, IN). (As in statement 5 in our example.)

QUESTION: Statement 6 says: Read a record from device number 2, storing the data from that

record in the area labelled A. When no more records are available, i.e., the End

of-File (EOF) has been reached, then jump to the instruction labelled EOF.

5

QUESTION: Noting that only READ instructions have pointers to which the program will branch
(Cont)

ANSWER:

when an end-of-file (EOF) is reached, what does statement 7 do?

Since there is no end-of-file pointer (just a device number and the BLOCK label)

this must be a write command (writing data from storage block A to device 8).

QUESTION: Note, that it is only necessary to initialize a file-oriented device such as a mag

netic tape drive. Devices such as teletype, line printers, and paper-tape readers

do not need initialization. Is device 8 a file-oriented device?

ANSWER: No. It is a teletype and therefore does not need initialization. Note, under the

present DIBOL configuration, each device is assigned its own device code. Device

assignments are:

1, 2, 3, 4
5
6
7
8

mag tape (DECtape)
paper tape in
line printer
teletype in
teletype out

QUESTION: What does statement 8 do? (Go to LOOP)

ANSWER: It is an unconditioned command for the computer to branch to the instruction labeled

LOOP.

QUESTION: What is EOF?

ANSWER: It is the label for the end-of-file routine referenced in statement 6 (LOOP; XMIT

(2, I, EOF». This label indicates the location For program transFer at the end of

the input file. In this example, program control would transfer to statement 9.

QUESTION: What would you guess to be the function of Statement 9?

ANSWER: It is a FINIsh statement with respect to the file on device 2. Actually, to write a

tape-file, an end-oF-file mark would be put on the tape, and the tape would be

6

ANSWER:
(Cont)

rewound. In the case of our input file, the tape is just rewound. Only file

oriented devices require a FINI statement.

QUESTION: Why was device 8 not issued a FINI command?

ANSWER: It is not a file-oriented device. The only file-oriented device on a DIBOL config

uration is magnetic tape.

7

FOLDOUT #1

SAMPLE PROBLEM

FLOWCHART FOR PROBLEM

INITIALIZE
MAG. TAPE
(INPUT/OR
OUTPUT)

CLOSE FILE

DIBOL PROGRAM FOR PROBLEM

START
BLOCK A

A1, A64
PROC

INIT (2, V,IN)
LOOP, XMIT (2,A,EOF)

XMIT (8,A)
GO TO LOOP

EOF, FINI (2)
END
$

9

;1
;2
;3
;4
;5
;6
;7
;8
;9
; 1 0

END

08-0584

SUMMARY

SECTION I

To review the initial problem, i.e., printing a 64-character record from a tape file on to a

Teletype until the end-of-file, examine the following lines of the DIBOL program.

2

3

4

5

6

7

a
9

10

START

BLOCK A

A1, A64

PROC

INIT (2,IN)

LOOP, XMIT (2,A, EOF)

XMIT (a,A)

GO TO LOOP

EOF, FINI (2)

END

$

;Compi ler statement, non-executable

;indicates the beginning of the contiguous area
for the data elements that comprise BLOCK A.

;Data statement A 1 is an alphanumeric record 64
characters long.

;Compi ler statement. -begins procedure section.

;Initialize DECtape 2 as an input file

;Read a record from DECtape 2 into the area as
signed to BLOCK A. When End-of-File is
reached, it causes a program transfer.

;Write the record on to Device a (teletype) from
BLOCK A.

;Go to statement that reads another record

;At end of file, the tape on DECtape 2 is rewound

;Compiler statement - indicates the end of program

;Every DIBOL program must be terminated by a $
sign.

11

QUESTION: Below is the same flowchart diagram as listed on the foldout. Mark in the appro

priate statement number corresponding to the flowchart function.

ANSWER: A=5
B=6
C=9
D=7
E=8

A

E c c

08-0583

12

SECTION II

DIBOL IN DEPTH

The student should now have a general knowledge of the elements that

make up a DIBOL-coded program. Thus making the information in this

section more meaningful.

START
PROC
END

There are two basic sections in a DIBOL program. First is the data section which describes all

data and causes allocation of memory storage. Second, there is processing section, which contains

the executable instructions.

QUESTION: What is the statement that separates the data section from the processing section?

ANSWER: The PROC statement.

QUESTION: Is PROC an executable statement? If not, what is it?

ANSWER: PROC is not an executable statement. From the previous section we recognize it

as a compiler statement.

QUESTION: What is a compi ler statement?

ANSWER: A compiler statement is a message to the compiler program indicating the nature of

the DIBOL-Ianguage statements. A compiler instruction is not executable by the

DIBOL program.

There are three kinds of statements in a DIBOL program:

1) Compi ler statements
2) Data statements
3) Procedure statements

All DIBOL programs consist of a START statement (which
is a compiler statement), followed by the data section
(composed of data statements), followed by a PROC state
ment (0 compiler statement), followed by the procedure
section (composed of procedure statements), followed by
an END statement (a compiler statement).

QUESTION: What are the three required compiler instructions in 0 DIBOL program?

ANSWER: START, PROC, and END.

15

QUESTION: What are the three compiler statements and two sections that make up a DIBOL

source-program (in the order in which they appear)?

ANSWER: START

PROC

END

{compiler instruction}
data section

{compiler instruction}
processing section

{compiler instruction}

BLOCK

QUESTION: Where is the data section in a DIBOL program?

ANSWER: The data section is between the START and PROC statements.

QUESTION: From the sample program, in which section does the BLOCK statement reside?

ANSWER: The BLOCK statement resides in the data section.

The BLOCK statement designates the beginning of a group
of data statements. It mayor may not give that group a
name and controls where in memory the block of data will
be stored. A BLOCK statement must be followed by one
or more data statements. {A data statement defines all
data elements with respect to type and size.} The gen
eral format for a BLOCK statement is:

{BLOCK block name,
required optional

X-overlay and/or C-Clear}
optional

QUESTION: In the following example, is the BLOCK statement used correctly?

ANSWER:

START
BLOCK A
BLOCK B

B1, A6
PROC

BLOCK A is an invalid statement because a BLOCK statement must be followed by

one or more data statements. BLOCK A is followed by another BLOCK statement,

BLOCK B, whi ch is correct.

16

The only reason a block of data requires a name is if the
information is to be referenced by an XMIT (data transfer)
statement. A record may be read and stored in this area,
or the contents of this area may be written (output).
There is no punctuation between a BLOCK statement and
its name (if there is to be a name).

QUESTION: What can be deduced about the second block statement following?

ANSWER:

START
BLOCK A

Al, A6
A2, 01

BLOCK
B1, 03

PROC

Since the second BLOCK statement does not have a name, it is not intended to be

used as an input/output buffer. It is used only for temporary storage of program

data.

The data statement is used to define all data elements with respect to type and size. The OIBOL

compiler assigns storage for the data on the basis of these statements. Any data statement that follows

a block name is assigned to the contiguous memory locations in the order that the element occurs. If

a block name is missing, the succeeding data statements are assigned to contiguous locations but not

associated with any block name for input/output. If such data statements are referenced, they are

done so individually.

The general format of the data statement is:

data name
optional

data specification,
required

initial ization-specif.
optional

The data name is-optional, that is, a "," may be used without a data name if the program does

not reference that individual data element but only references the entire BLOCK. This is convenient

when formatting an output line for the printer, so that intercolumn spaces do not require a data name

but merely a comma followed by the type and size; e.g., (,AS). Normally, the data name is used,

followed by the data specification (type and size), with an optional initialization field.

The initialization-specification would normally be used in the temporary storage block but could

also be used in an output block. If a specific data element is to be referenced, it must have a data name.

17

Following are examples of valid data statements:

A, AI0
A, A7, 'DIGITAL'
A, D6, 123456
FISH, A4, 'FISH'

, A5
COST,5D6

NOTE

The data element COST consists of 5D6, which means
there is an array of five fields, six digits long. This
could have been written as:

COSTl, D6
COST2, D6
COST3, D6
COST4, D6
COST5, D6

(The referencing of this COST ,5D6, is done with sub
scripts which will be defined in the procedure section)

QUESTION: In the following statement, what are the fields?

ANSWER:

TOT ,D6,000000

TOT is the name by means of which the data can be referred; D6 is the data speci

fication (in this case, six decimal digits) and 000000 is the initialization-specifica

tion (setting the six decimal digits to an initial value of zero).

The data specification field (which follows the data name)
consists of a data type (Alpha or Decimal), and the data
size in characters. If the data size is omitted, 1 is assumed.
If the initialization specification is present, the data spec
ification is followed by a comma, then an alphanumeric or
decimal constant. The alphanumeric may contain any le
gal character enclosed in apostrophe marks except a ques
tion mark (?). The decimal constant is a string of digits,
optionally preceded by a plus or minus sign. The plus
sign is implied, and the minus sign does not require a char
acter for storage; i.e., NUM,D5,-12345. Data types
cannot be mixed. For example, an alphanumeric constant
may not be assigned to a decimal variable. The data el
ement is assigned to the value of the initialization spec
ification at the beginning of program execution.

18

QUESTION: Describe the data specified for the following four items:

ANSWER:

a) A,
b) TOT,
c) NUMS,
d) HDRS,

A10
D6
10D3
10A12

a) A is an alphanumeric element with ten characters
b) TOT is a decimal element with six digits
c) NUMS is an array of ten decimal numbers, each with three digits
d) HDRS is an array of ten alphanumeric elements, each with 12 characters

BLOCK C

There are three ways data items can be initialized in the Data Section:

1) A BLOCK statement containing a C

2) A data statement containing a P

3) A data statement containing an initialization specification value (previously discussed)

To set all alphanumeric elements to spaces and all decimal elements to zero, at the beginning of

a program run, specify a C following the word BLOCK. In the case of temporary storage, instead of

initializing each individual data element, the entire BLOCK can be cleared with BLOCK C. Follow

ing are valid uses of this feature:

a) BLOCK OUTBUF, C

b) BLOCK, C

QUESTION: What would be the value to have example b) initialized - cleared?

ANSWER: In the case of a temporary storage BLOCK, instead of individually clearing each

storage location, before program execution, the entire BLOCK can be cleared with

one statement. This will ensure that memory locations do not contain information

from the previous run.

19

DATA ELEMENT P

Another way of initializing a data item is by putting a P immediately after the data specification

field of a data statement. Upon loading the program, the computer will ask the operator (via the,

teletypewriter) to type in the value he wants to give that data item. A common use of this feature is

to obtain the date. For example, the data statement might be described as:

DATE,A8,P

Upon loading the program, the following message would type out on the console:

ENTER DATE (Carriage Return)

At this point the program would halt, waiting for the operator to type in eight characters and type

carriage return. The operator might type in 07/07/70 and type carriage return.

QUESTION: Suppose the programmer wanted a three-digit customer-number to be suppl ied by the

operator at the beginning of the run. Write a data statement to initialize a field

named CUST.

ANSWER: CUST, D3, P Ordinarily, input from the teletype must be described in alpha for-

mat. This restriction does not hold true for initialization data (P).

INITIALIZATION-SPECIFICATION

A third way to set the value of a data item is by using the initialization option, i.e., specifying

an alphanumeric or decimal constant. The alphanumeric may contain any legal characters enclosed in

apostrophe marks. The decimal constant is a string of digits, optionally preceded by a plus or minus

sign but without apostrophies. Data types cannot be mixed, in that an alphanumeric constant (i .e.,

'ABC') cannot be assigned to a decimal variable (i .e., DEC,D3). But '004' can be assigned to an A3

alphanumeric field.

QUESTION: Are any of the following statements incorrect?

a) A,A8, 'ABCDEF98'
b) TOT,D3,'123'
c) NUM,A3,123
d) B, D6,222334
e) C, D3,23A

20

ANSWER: Statement b) is incorrect because an alphanumeri c notation (an apostrophe) was used

to enclose a decimal item; c) is incorrect because a decimal notation was used to

describe an alphanumeric constant; e) is incorrect because 23A is not a valid decimal

number. Statements a) and d) are correct.

When an initialized value is specified in a data statement,
its length must correspond to the length of its respective
data statement, for example, NUM,D4,0070. It would be
illegal to initialize NUM to 70 since NUM was defined as
a D4 field. The initialization specification does not insert
leading or trailing blanks (zeros). The initialized informa
tion is moved from left to right. This is the only case in
the DIBOL language in which information is moved in this
direction. If the initialized value is shorter than the data
field, the unused characters would contain data left in
memory from the previous computer run. If the initialized
value is longer than the data field, i.e., NUM,D4,55555,
characters would run over into the following data fields.

QUESTION: Which data statements are incorrect?

ANSWER:

a) A1 ,A8, 'ABCDEF641,
b) COST, D4, 7779
c) QTY,D5,'10000'
d) NUM,D7,59796
e) B1,A4,'1987'

Statement a) is incorrect because the initialized value is longer than the data field.

Statement c) is incorrect because apostrophe marks are used to enclose a decimal

item (apostrophe marks are an alphanumeric notation). Statement d) is incorrect

because the initialized value is too short, NUM is defined as a 7-digit decimal

field. Statements b) and e) are correct usage of the initialization specification.

QUESTION: We want NUMS to be an array of two decimal numbers, of three characters each.

ANSWER:

The two numbers are to have constant values of 333 and 61 respectively. What is

the appropriate data specification?

NUMS,2D3,333061

21

NOTE

If the BLOCK C (clear) option is used, and if a data
statement in that BLOCK has an initialized value,
that value will not be cleared. The C option has no
effect on an initialized data statement value. For
example:

BLOCK A,C
NUM,06
TOT ,07
COST, 04,4999
Bl,A7

The initialized value of COST would not be cleared,
but NUM, TOT, and Bl memory locations would be
cleared.

QUESTION: What information is generated by this BLOCK?

ANSWER:

BLOCK A,C
A,AIO, 'ABC'

ABC • The initialized value is too short for the data field (AIO). The -----
other seven character positions would contain information that was left in memory

from the previous run. Remember, an initialized data statement is not cleared with

a BLOCK C statement.

QUESTION: What information is generated by this data specification?

ANSWER:

B, D6, 00001 3

000013. The initialized value must be the same length as the data size. In this

case, B is defined as a six-decimal digit.

QUESTION: What information is generated by this data specification?

ANSWER:

TOT, 01 ,ca

None. The specification is incorrect. An alphanumeric description (apostrophe

marks) cannot be used for a decimally defined item.

22

QUESTION: Consider the following operation.

ANSWER:

DATE,AS,P

When the program is loaded, the computer types

ENTER DATE

and the operator types 06/06/1970. What happens?

Since too many characters were typed, it is an error.

CAUTION

The DIBOl System will accept too few or too many char
acters during operator-initialization. Too few charac
ters would be left-justified, where too many characters
would run over to the following fields.

BLOCK X

The concept of the overlay is a val uable tool in the preservation of computer memory. By means

of the overlay, two BLOCK statements can describe exactly the same area of computer memory. When

ever there is an X there must be a previously defined BLOCK statement without an X. There can be

one or more overlays defining the same area. Note the use of X below.

BLOCK A
A1 ,A5, 'DIBOl'
A2,A9, 'SOFTWARE'

BLOCK B,X
Bl,A5
B2,A9
B3,A7 'SYSTEM'

In this example, the first fourteen characters of BLOCK B occupy the same area of computer mem

ory as BLOCK A.

QUESTION: What is the value of data labeled Bl?

ANSWER: B1= 'DIBOL'

23

QUESTION: What is the val ue of B2?

ANSWER: B2= 'SOFTWARE'.

Be careful to make sure data specifications in overlays are
consistent. Gross abnormalities arise if an alphanumeric
item is redefined as decimal in an overlay specification.
As a general rule, initialized values should not be used in
overlays.

QUESTION: Is the following a correct use of the overlay?

ANSWER:

BLOCK A
A1 ,A3, 'FUN'
A2,A5, 'LOVER'

BLOCK B,X
B1, D8

It is incorrect. B1 is decimal, and the data it redefines is alphanumeric.

QUESTION: Suppose you want to reserve, in computer memory, a place to store an input record

with four fields to be described as follows: FLD1 has three alpha characters, FLD2

has six decimal digits, FLD3 has four decimal digits, and FLD4 has 20 alpha charac

ters and will be used to store a company name. Write the appropriate BLOCK and

data specifications for this input buffer.

ANSWER: BLOCK IN {any name will do}

FLD1, A3
FLD2,D6
FLD3,D4
FLD4,A20

QUESTION: Is it legal to name a BLOCK of records C?

ANSWER: Yes. BLOCK C. It is also legal to have BLOCK C followed by C (clear upon pro

gram loading - BLOCK C/C).

24

QUESTION: Is it legal to name a BLOCK X?

ANSWER: Yes, for the same reason as in the preceding answer.

NOTE

X (overlay) and C (clear) can be used simultaneously,
i.e., BLOCK A,C,X or BLOCK A,X,C. An example
of this would be:

BLOCK A
Al,A50
A2,A25
A3,D10
A4,D18
A5,A20

BLOCK B,X,C
Bl,A75
B2,D28

This would overlay blanks for the first 75 alpha characters
and zeroes for the next 28 decimal digits in BLOCK A.
Note that A5 was not changed, i.e., the entire BLOCK
A is not cleared.

DATA SECTION
RESTRICTIONS

An important restriction on data names and block names is that they contain no more than six

characters. Also, constants specified in initialization statements can be no longer than 18 characters.

The maximum length of a record is 256 characters.

QUESTION: In the following record specification, determine errors in name length, block, or

record length.

ANSWER:

BLOCK INBUFFR
NAME,A20
TOWN,A20, 'ELK MOUNTAIN WYOMING'
POP,A6
CODE,A10, 'ABD-XXM-YV'
Ql, Al
Q2, Al
WORKAREA,A200

The name of the block (INBUFFR) is too long (seven characters); TOWN cannot be

initialized with a 20-character constant (18 is the maximum); the data-name

25

ANSWER:
(Cont)

WORKAREA is too long (eight characters); finally, the record is too long (258

characters - 256 is the maximum allowed). If these errors were made, the DIBOL

system would flag them as errors.

Many times a programmer will make comments, so someone
else reading his program will know what he is doing. A
semi-colon (;) tells the compiler-program that all informa
tion following is not to be interpreted as program text, but
rather as comments by the programmer. Thus, comments
can appear on a program listing but will not affect the op
eration of the program. Here is an example of a comment:

START ;THIS PROGRAM READS INDIVIDUAL TRANSACTIONS
BLOCK A ; THIS IS THE INPUT RECORD BUFFER

Al,A16;CUSTOMER'S NAME IS STORED HERE

The comment is terminated by a carriage-return line feed.

QUESTION: What are the functions of these three computer-defined symbols?

ANSWER:

(a) ,C
(b) ,X
(c)

The C causes the block of data to be cleared when the program is first loaded into

the computer; the X indicates one block of data elements will overlay (use the same

space in computer memory that the previous block was using); when using X, it must

follow a block statement without an X; the; indicates the beginning of a comment.

If the C, X, or both options are used in a BLOCK state
ment without a block name, then a comma must follow
the word BLOCK, i.e., BLOCK,X or BLOCK,X,C.

QUESTION: What is the difference between BLOCK C and BLOCK,C?

ANSWER: BLOCK C denotes the beginning of a group of data statements referenced as BLOCK

C. BLOCK,C would clear the data statements following this unnamed block (C

option).

26

DATA SECTION SUMMARY

The data section describes all data used in a program and causes allocation of memory storage. It

consists of one or more data blocks. Each data block section is made up of a BLOCK statement fol

lowed by one or more data statements.

I. BLOCK STATEMENT

a) Normal Form - BLOCK block name, e.g., BLOCK INBUF

b) Unnamed Form - A block name may be omitted, e.g., BLOCK

c) Data Overlay - Overlay a preceding storage area, e.g., BLOCK,X
or BLOCK B,X

d) BLOCK Clear - Initialize a block with zeroes and/or blanks, e.g.,
BLOCK A,C or BLOCK,C

e) BLOCK overlay and Block Clear Combined - e.g., BLOCK A,X,C

II. DATA STATEMENT

a) Normal Form -

data name,
(optional)

For example:

data specification
(required)

Al,D4,1234
A2,A4, 'ABC4'

initialization specif.
(optional)

b) Operator Initialization - Specified by a P and causes entry of data from
teletype before program execution, e. g.,
DATE,AS,P

1II. Three ways to initialize data elements in the Data Section:

Block Initialization - a BLOCK with a ,C - set BLOCK to blanks
and/or zeroes

Data Statement Initialization -A data statement with an initialization speci
fication

Operator Initialization - A data statement with a ,P which will allow
entry of data from console

27

INIT

PROCEDURE SECTION

QUESTION: What is the compiler statement that separates the data and procedure sections?

ANSWER: The PROC statement separates the data and procedure sections.

QUESTION: What is the difference between a procedural statement and a data statement?

ANSWER: Procedura I statements are executable.

In a computer program, procedural statements are executed sequentially; the sequential execution

of instructions can be changed by a branching instruction.

The first procedural statement discussed is the file-initialization statement. The general form is:

INIT fi Ie number,
(required)

file type,
(required)

direction
(required)

Examples of the file initialization statements are:

INn (2, F,OUT)
INn (3,F,IN)
INn (4, V,OUT)

NOTE

F means fixed; i.e., all records in the file are the same
length. V means variable; i.e., all records in this file
are not necessarily the same length. The direction can
be either IN (for input file) or OUT (for output file).
At present, the F fi Ie type is not implemented in the
DIBOL language. File types must be specified as V,
even if all records in the file are of the same length;
i.e. I

BLOCK A
A1,A7
A2,D5
A3,A7
A4, D10 (14 alpha, 15 decimal)

BLOCK,X
B1,A5
B2,A2
B3,D10
B4,A7
B5,D5 (14 alpha, 15 decimal)

28

QUESTION: In the following initialization, what is each field?

INIT (4, V,OUT)

ANSWER: File number is 4; File type is V (variable); Direction of Data Transmission is OUT.

The file number in an INIT statement refers to a peripheral
device. When any device is attached to a computer, the
computer must be told how to refer to that devi ce. As de
vices are added to the system, they are given a physical
number, or file number. Thus, whenever the programmer
wants to access a peripheral device, he must tell the com
puter the name of that device.

QUESTION: If the device is a teletype for input (let's say 8) what would the file initialization

statement (if any) look like?

ANSWER: The teletype is not a fi Ie-oriented device and, as such, does not require file

initialization. Only file-oriented devices (magnetic tapes) need file initialization.

QUESTION: What does the following initialization statement do?

INIT (2, V,IN)

ANSWER: It says "Initialize device 2 (DECtape 2) as an input file with variable length

records. "

QUESTION: What does the following initialization statement do:

INIT (3, V, OUT)

ANSWER: It says "Initialize device 3 (DECtape 3) to output variable length records. "

To read or write a record, the transmit data statement is used. Its general form is:

X MIT fi Ie-number,
(required)

block name,
(required)

29

end of fi Ie label
(only for input file)

XMIT

Examples of the transmit-data statement are below:

a) XMIT(1,OUTBUF)
b) XMIT(2,INBUF,EOF)

a. Assuming device 1 has been previously initialized for output, statement a) would transfer
the contents of BLOCK OUTBUF to device 1.

b. Assuming that device 2 has been previously initialized for input, statement b) would
transfer data into BLOCK INBUF from device 2.

QUESTION: What is accomplished by the following DIBOL program?

ANSWER:

START
BLOCK INBUF

INA,A10
INB,A6
INC,A6

BLOCK
DATE,A8,P

PROC
INIT(2, V,IN)

BEGIN ,XMIT(2,IN BUF, EOF)
GO TO BEGIN

EOF, FINI (2)
STOP
END
$

After the program has been loaded into the computer memory, the Teletype will out

put ENTER DATE and wait for the operator to input an eight-character date (note

the P option on data-item DATE). File 2 will be initialized and all records will be

read from device 2 into the area assigned to BLOCK INBUF. After all records are

read, the program will transfer to End of File routine (EOF) in which device 2 is

rewound, and then the program will stop.

FINI

QUESTION: What is the function of the FINI statement?

ANSWER: The FINI is a finalize-file statement and must refer to a previously initialized file.

For output files, an end-of-file marker is written onto the file (if the device is mag

netic tape, the file is rewound); for an input file, reading is discontinued (and if the

device is a tape file, a rewind begins). The form is:

FINI (device number)

30

In Summary:

NOTE

A FINI statement must be used for each device initialized.
(File-oriented devices, i.e., Magnetic tape-DECtape is
the only device that needs initialization.)

a. An I NIT statement has the following format:

INIT (file number, file type, direction)

For example:

INIT{4, V,OUT) - Device 4 is initialized as an output device.

b. XMIT statement has the following format:

XMIT file number, block name, end-of-file (only for input files)

For example:

XMIT(l,INBUF,EOF) - Assuming device 1 was initialized as an input
file, this XMIT statement would read data into
BLOCK I NBUF, ti II the end-of-file, and then
branch to EOF routine.

c. FINI statement has the following format:

For example:

FINI(l) -

FINI (file number)

The file number refers to an initialized device;
for an output file device, EOF is marked at
end of file, and file is rewound. For an
input file the file is rewound.

CLEAR DATA

Next comes a general class of commands known as data-manipulation statements. They take the

general form:

destination data element=source data

The destination data element is always an alphanumeric or decimal element. The source data can

be either an alphanumeric or decimal element; an arithmetic expression such as A+1, or A+B/C.A

data-manipulation statement appears as follows:

A=A+1

31

A will now contain the contents of A+1. The only exception to this format is the clear-data

statement.

The general format for the clear-data statement is:

destination data element=

The destination data element may be a single element or an element of an array whose type may

be alphanumeric or decimal. If it is alphanumeric, it is set to blanks. If decimal, it is set to zeroes.

QUESTION: What is accompl ished by statements S 1 through S3 in the following example?

ANSWER:

START
BLOCK A,Al0

NUMS,D25
BUF,A100

PROC
Sl A=
S2 NUMS=
S3 BUF(56,70)=

Statement Sl sets the ten-character element A to blanks. S2 sets the 25-character

element NUMS to zeroes. S3 sets the characters 56 through 70 of element BUF to

blanks.

An attractive feature of the DIBOL language is the ability to reference characters within an ele

ment. The notation BUF (56,70) allows the programmer to reference characters within a data element

without assigning a specific data name. The general format to accomplish this is:

Data name (starting character position, end character position)

QUESTION: What would be accomplished by statements Sl and S2 in the following example:

ANSWER:

START
BLOCK B

NUMS,lOD2
Bl,5A6

PROC
Sl NUMS (5)=
S2 Bl (4)=

S 1 zeroes the fifth element of the array NUMS. S2 blanks the fourth element in the

array B1.

32

This notation is called subscripting. It allows the programmer to reference a specific data element

of an array. This form of subscripting can be either a positive numeri c number or a data name. The

data name option is called variable subscripting. For example:

START
BLOCK

NUMS,lOD2
A,Dl

PROC
A=5
NUM(A)=

This will accomplish the same as NUM(5)= which is in the previous example.

NOTE

An entire array cannot be referenced, only a single element
within an array. However, it is possible to reference an
entire array by redefining the array, using BLOCK,X
(overlay). For example:

BLOCK
NUMS,lOD2

BLOCK X
NUMS1,D20

PROC
Sl,NUM1=

This will set the entire array of NUMS to zero.

In summary, the Clear Data Statements have the following formats:

Destination data element= e.g., A= ,
Destination data element (subscript)= e.g., A(4)=

or A(B)=
or A(51,7l)=

ALPHA=ALPHA

The second type of data manipulation is the move-alphanumeric-variable statement. It takes the

genera I form:

alpha data element=alpha data element
(destination) (source)

This allows one alpha field to be moved to another alpha field. If the source is shorter than the

destination, the result is right-justified with the left-most characters set to blanks. If the source is

longer than the destination, the right-most characters of the source are truncated (chopped off) in the

move.

33

QUESTION: What is the value of A in the following example, after the move has been executed?

ANSWER:

START
BLOCK

PROC

A,AS, 'ABCDE'
B,A3,'FGH'

A=B

Variable A now has the value bbFGH (b signifies blanks). Source is shorter than

destination. Left-most characters are set to blanks.

QUESTION: What is the value of NAME in the following example?

ANSWER:

START
BLOCK A

NAME,A4,'FRED'
NAME1,A7,'JOHNSON'

PROC
NAME=NAMEl

NAME now has the value of JOHN.

NOTE

While the receiving field is changed (destination), the
sending (source) field remains unchanged, so NAMEl
still has the value JOHNSON.

In review, the general format of move alpha to alpha data element is:

Alpha data element = alpha data element
(destination) (source)

COMPUTE DECIMAL
Statement

The third form of data manipulation is the compute decimal value statement. The general format

for this expression is:

decimal data element=arithmetic expression
(destination) (source)

34

The arithmetic expression may be any expression with decimal elements, subscripted data elements

constants, and the prorators plus (+), minus (-), multiply (*) and divide (/). The order of operation is,

/, *, +, -, with the contents of parentheses being performed first. The destination data element would

be right-justified after the move. Below is an example:

Statement 1)

Statement 2)

Statement 3)

START
BLOCK

PROC
1
2
3

QOROER,04,0002
UCOST, 04, 0200
ECOST, 08
X, 02,04
Y, 5D3,000007100025023

ECOST=UCOST * QOROER
X=X+l
Y(l)=Y(X)+(25*Y(2) + Y(3»/y(4)

ECOST is calculated by multiplying UCOST and QOROER. In the above example,
the answer would be: ECOST=00000400

The new value of X shall be X+l (answer, X=05)

The first element in array Y will be equal to the fifth element in array Y (X=5),
plus the quantity; second element in array Y plus third element in array Y divided
by fourth element in array Y. The answer would be:

Y (1) = Y (05) + (25 * Y(2) + Y(3»/y(4)

Y (1) = Y (023 + (25 * 007 +100»/025

=023 + (275)/25

=023 + 011

Y (1) =034

QUESTION: In the following expression, select the defined items; i.e., decimal data element,

subscripted data element, constants, and the operators, plus, minus, multiply, and

divide.

ANSWER:

X=Y(3)+Y(2)+66*(13-Z)/2

Subscripted variables are Y(3), Y(2); decimal variable is Z; constants are 66,13,2;

the arithmeti c operators used are +, -, *, and /.

35

QUESTION: Is the expression X=Y(2) equal to X=Y*2?

ANSWER: No. Y(2) is a subscripted data element denoting the second element of an array

with the name Y. The expression X=Y*2 is the equivalent of multiplying Y times

2 and storing it in X.

QUESTION: What is the expression which would accomplish the following?

a) Take a number X and add it to the second element in an array named K

b) Take the result of that operation and divide it by 145 and store it in M.

ANSWER: M=(X + K (2))/145

In summary, the compute decimal data element has the general format of:

decimal data element = arithmetic expression

A =A+ B/C

CONVERT
Decimal-Alpha
Alpha-Decimal

Since all input/output information to the line printer (or teletype) must be in alphanumeric form,

there must be a way to convert decimal information from one form to another.

The two forms of converting from one data type to another are:

a) Decimal data element=alpha data element

b) Alpha data element=decimal data element.

QUESTION: In the following example, data fields are described in both alphanumeric and deci

mal formats. Convert TOT from decimal to an alpha format of corresponding length

and convert NUM to its decimal format of corresponding length.

START
BLOCK A

NUM,A6
Al,A6

BLOCK B

PROC

TOT,D6
B1, D6

36

ANSWER: A1=TOT (converts decimal to alpha)

B1=NUM (converts alpha to decimal)

The result of the conversion is always stored in the destination data element (the expression located

to the left of the equals sign). The decimal-to-alpha conversion is always right-justified with leading

blanks, if required. The alpha-to-decimal conversion is also right-justified with leading zeroes, if

required.

QUESTION: What would be the contents of B1 and A1 after the following conversions?

ANSWER:

START
BLOCK A

COST, D4, 9999
A1,D5

BLOCK B
NUM,A6, '678912'
B1,A6

PROC
B1=COST
A1=NUM

Bl=COST (converts decimal to alpha). B1 would contain bb9999, where b signifies

blanks. A 1=NUM (converts an alphanumeric number to decimal). A 1 would contain

78912; the result is right-justified.

CONVERT
Alpha-Decimal
(formatted)

In business data processing, it is frequently desirable to output decimal information with imbedded

commas and (if needed) a minus sign. For example, -34,259.00 reads easier than -3425900. It is

troublesome however, for a programmer to worry about the mechanics of editing decimal information.

DIBOL makes it possible to accomplish the formatting of decimal information during the conversion

from decimal-to-alpha format. The general form of conversion is:

alpha data element=decimal element, format

For example, if B=125677700 (decimally formatted), the expression, A=B, '-X,XXX,XXX.XX'

will move B to A and cause A to look like this:

1,256,777.00 (with no minus sign, since the number is greater than zero).

37

QUESTION: For 8=4432567- {assume two decimal places}; what would the conversion instruction

look like?

ANSWER: A=B'-XX,XXX.XX' or 'XX,XXX .XX-'
{-44,325.67} (44,325.67-)

The minus sign in the edit format can be either on the left or on the right. If the

decimal value is positive, the sign will appear as a blank.

QUESTION: Since commas are inserted only if the corresponding comma has a nonzero digit to

the left, if 8=311 what would be the value of A after the following?

ANSWER:

A=B, '-X,XXX,XXX.XX'

Where b signifies a space, A would be equal to bbbbbbbbb3. 11. When decimal

data element is converted, it is right-justified.

QUESTION: Device 8 is for Teletype output; what is typed out by the following program?

START
BLOCK A,C

Al,A7
A2,A4
A3,All

BLOCK

PROC

NUM,D6,10oo00
Bl,A7,'CREDIT'
B2,All, 'TO DIGITAL'

Al=Bl
A3=B2

•

A2= NUM, 'X,XXX .XX'
XMIT (8,A)

ANSWER: CREDIT 1,000.00 TO DIGITAL

The Alpha=Decimal (formatted) statement can use compiled-defined symbols for formatting the

alpha data element resultant. The compiler-defined symbols are:

X} represents a digit
-} inserts a minus sign if number is negative
.} inserts period

38

,) will suppress leading zeroes unless there is an integer other than zero to the left.
Z) will suppress a digit position and right-justify it, if required. That is:

NUM,D3,987
A1=NUM,'XXZ'
(A 1=b98 where b signifies a blank)

Any other symbol, except for those mentioned above, may be used for formatting. That is:

DATE=102370
A1=DATE,'XX;XX;XX
(A 1-10/23/70)

OR

A l=NUM'XXXO'
(A 1=9870)

When using a comma, period, slash, minus sign, or any other notation, it must be counted as a

character position. In the above example, Bl must be defined as an eight-character alphanumeric

field.

QUESTION: What would the contents of statements a) through d) be in the following example:

ANSWER:

START
BLOCK A

Al,A8
A2,A4
A3,A4
A4,Al1

BLOCK B

PROC

DATE, D6, 103070
NUM,D3,123
COST, D3,999
TOT,D12, 7894211

a) A l=DATE, 'XXjXX;XX'
b) A2=NUM, 'XXZ'
c) A3=COST ,'XXXO'
d) A4=TOT, '-XXX,XXX.XX*'

Statement a) A 1= 1 0/30/70
Statement b) A2=bb12 (b specifies blanks)
Statement c) A3=9990
Statement d) A4-b78,942.11* (b specifies blank)

39

In summary, the data manipulation statements have the following formats:

Operation

CLEAR
CLEAR
MOVE
COMPUTE
CONVERT
CONVERT
CONVERT

Format

Clear Data Element=
Clear Data Element (Subscripted)
Alpha Data Element=Alpha Data Element
Decimal Data Element=Arithmetic Expression
Decimal=Alpha
Alpha=Decimal
AI pha=Deci rna I (formatted)

Example

(A=)
(.A4=) or (A(B}=)
(A=B)
(A=B*C/D)
(A1=NUM)
(B1=TOT)
(A=B, '-xx ,XXX .XX ')

In most of the examples in which subscripting was used, it was done by referencing specific ele

ments of an array, i.e., NUMS (2)=. In certain cases it is desirable to vary the value of the subscript

or to have a variable subscript. This is done by using a data name for the subscript. For example:

START
BLOCK C

C1, lOAS
BLOCK

PROC

A,D2
B,AS, 'DIBOL'

A=l
C1(A)=B

This places the value of DIBOL in the first element of the array C1. If all elements of the array

were to be set to the value DIBOL, the procedure section would look like:

PROC
A=l

BEGIN, C1 (A) = B
A= A+1

END

IF (A.LT.l1) GO TO BEGIN
STOP

NOTE

An important restriction for the data manipulation state
ments is that block names cannot be used. Block names
can only be used in the XMIT statement. For example:

START
BLOCK AAA

A1,ABO
BLOCK BBB

B1,ABO
PROC

END

AAA=BBB
STOP

Statement AAA=BBB is not legal. A block name cannot
be moved to a block name. A 1=B1 is legal.

40

GOTO

The next type of statement is the GO TO statement.

QUESTION: From the previous section (and using Foldout #2), what is the purpose of the basic

GO TO statement?

ANSWER: This statement causes the program control to branch to the executable statement in

the procedure section with the specified label, and has the form:

GO-TO statement-label

The statement label must be a label (tag). It cannot be a data name. A data name refers to an

element which has been defined in the data section. A statement label is a tag associated with a

statement in the procedure section.

QUESTION: Is the following use of GO TO correct?

ANSWER:

START
BLOCK A

A1,A90
PROC

END

INIT (2, V,OUT)
XMIT (2,A)
GO TO START
FINI (2)
STOP

No. START is not an executable statement. Executable statements are found only

in the processing section of the program.

QUESTION: Is the following use of GO TO correct?

START
BLOCK B

B1,ASO
PROC

INIT (2, V,IN)
LOO P, XMIT (2, B, EOF)

XMIT (8, B)
GO TO LOOP

EOF, FINI (2)
END
$

41

ANSWER: Yes. LOOP is a tag associated with a statement in the procedure section. LOOP is

not a data name.

Another type of GO TO statement is the Multi-way-Go To. It has the form:

GO TO (label-l,label-2, .•••• label-10), decimal expression

For example:

GO TO (LOOP,RUN,STOPS),KEY

This statement reads "If decimal variable named KEY is equal to 1, then go to LOOP; if it is equal to

2, then go to RUN; and if it is equal to 3, go to STOPS. If KEY is equal to none of these (1,2, or 3)

then go to the next sequentia I statement.

Labell value must begin with 1, label 2 value with 2, label 3 value with 3, etc. A GO TO

statement can have up to ten 6-character labels with label values of 1 through 10. The label can

only be a statement label (tag). The decimal expression may be a constant data element, subscripted

data element or an arithmetic expression.

NOTE

If a DIBOL program statement exceeds a teletype line, it
can be continued to the next I ine with a $ carriage return.

QUESTION: If NUM is equal to 2, what does the following accomplish?

GO TO (X 1 ,X2,X3), NUM

ANSWER: The program branches to the statement labeled X2.

QUESTION: In the above example, if NUM is equal to 6, what happens?

ANSWER: The program continues to execute statements sequentially.

The last form of the GO TO is the conditional Go To statement. It takes the form:

IF (Item 1 . relation. item 2) GO TO label

42

The data items for comparison may be a data element, a subscripted data element, a constant, or

an arithmetic expression. They must be both alphanumeric or both decimal. The relations are:

· EQ. for equal
.NE. for not equal
· LT. for less than
· LE. for less than or equal
· G T • for greater than
· GE. for greater than or equal

NOTE

The format requires a period before and after the two
character relation codes.

If item 2 is an alphanumeric constant, it must be enclosed in apostrophies.

QUESTION: Write an equivalent DIBOL statement for the following. If NUMB is less than or

equal to 46, then go to the statement labelled LOOP.

. ANSWER: If (NUMB.LE.46) GO TO LOOP. If NUMB was defined as a D4 field, item 2 must

be 0046.

QUESTION: Write an equivalent DIBOL statement for the following. If DESC is equal to HAPPY,

go to the statement labelled FUN.

ANSWER: IF (DESC. EQ. 'HAPPY') GO TO FUN. This assumes that DESC is defined as AS.

NOTE

Compare field (data elements) must be of equal length.
If they are of unequal length you will always fail the
comparison.

QUESTION: Is the following use of the conditional Go To statement correct?

START
BLOCK

NUMB, D3,223
ALPH,A3, 'ZAP'
TOTL, D3, 999

PROC
BEGN, NUMB=NUMB+l

IF(NUMB.EQ.ALPH)GO TO BEGN
END, STOP
END
$

43

ANSWER: Use of the conditional Go To is incorrect. You cannot compare NUMB (which is a

decimal item) with ALPH (which is an alpha item).

CALL
RETURN

Also of importance are the CALL and RETURN statements. There is a method to use the same

routine several places in a program (i .e., a complicated mathematical calculation). Instead of writing

the same routine several places in the program, write it as a subroutine. To use the routine write:

CALL name of first statement

The CALL statement does two things. It puts the memory address of the following statement in the

RETURN statement of the subroutine and then performs an unconditional branch to a subroutine. You

cannot use a subroutine name in a GO TO statement. You can only CALL subroutines. (GO TO

statement transfers program control to a statement label and does not automatically return). The return

from a subroutine is to the next statement after the CALL statement. This is accomplished by the

RETURN statement. For example:

To return from the subroutine to the place where you were,
the subroutine uses the RETURN statement

PROC

CALL LIST

LIST, operation
operation
RETURN

THEN, STOP

The RETURN statement causes the program control to return
to the statement after the last CALL. A subroutine may be
called by a subroutine (this is called nesting.) The max
imum number of nested subroutines is ten.

QUESTION: Is the following correct use of the subroutine?

44

ANSWER:

START.

PROC

CALL SUBl

SUB1,X=X+1
IF (X. NE.3) GO TO EXIT
CALL SUB2

EXIT RETURN
SUB2, X=X*2

RETURN

The example is correct. SUB2 is an example of a nested subroutine, called by

SUB1. SUB1 calls SUB2, which is multiplied decimal-data element X by 2 and re

turns to SUB1, which returns to the instruction following the original CALL state-

ment.

STOP

The final DIBOL statement, which occurs frequently, is the STOP statement. It causes the pro

gram to terminate its execution and to return control to the DIBOL monitor. For example:

START
BLOCK A

A1,A10
A2,A2

BLOCK B,X

PROC

Bl,A12
B2,D1,0

INIT (2, V,IN)
LOOP, XMIT (2,A,EOF)

XMIT (8,B)
GO TO LOOP

EOF, FINI (2)

END
$

STOP

45

Thi$ example would print BLOCK B from DECtape 2 onto the teletype and continue this until EOF

whereby DECtape 2 would rewind. Then the program would terminate transferring control to the

DIBOL monitor.

On Foldout #2 is a listing of a complete DIBOL-coded program. Examine it, and answer the fol

lowing questions.

QUESTION: From statements 14 and 16, what is the function ofINBUF?

ANSWER: INBUF is the input buffer, into which all data from device 1 is stored.

QUESTION: From statements 15 and 19, what is the function of the block named OUTBUF?

ANSWER: It is the output buffer, from which all records are written by device 2.

QUESTION: What is the purpose of the X in describing OUTBUF?

ANSWER: The first four fields of OUTBUF occupy the same area of computer memory as the

four fields of INBUF.

QUESTION: Which statements separate the data section from the processing section?

ANSWER: The PROC statement (13).

QUESTION: Why should the input record occupy the same area of computer memory as the out

put record?

ANSWER: With the exception of the field named ECOST, the output records contain the same

information as the input record. Thus, not only is computer memory saved, but

many move instructions from one buffer to another are eliminated.

46

QUESTION: In our input and output buffers data is described as being in decimal format. Is this

valid, and why?

ANSWER: This is val id. Only information coming from or going to the line printer (or teletype)

must be described in alpha-format. We know devices 1 and 2 are not of this class,

since they have been initialized (which makes them file-oriented devices).

QUESTION: Put statement number 17 into your own words.

ANSWER: "If data named STOCKN is less than 1000, then go to the instruction labeled lOOP.

Otherwise, execute the next sequential instructions."

QUESTION: In the example program, STOCKN refers to a stock number, DESC refers to an item

description, UCOST refers to unit cost of the item, QORDER is the quantity ordered,

and ECOST denotes the extended cost. Describe in your own words the operation of

this program (the logic).

ANSWER: The program reads fixed-length records containing a stock number, item description,

unit cost, and quantity ordered. It skips records whi ch have a stock number less

than 1000. Output records are generated with the same information as the input

with an additional item - an extended cost which is the product of the unit cost

and the quantity ordered •

QUESTION: Put statement 15 into your own words.

ANSWER: "Initialize device 2 as an output device which will write variable length records,

the size of which is determined by the size of the block of data named OUTBUF."

QUESTION: There doesn't seem to be any way for the program to execute statements beyond

statement 20 (an unconditional branch). How is the statement labeled EOF executed?

ANSWER: Statement 16 carries the solution. It says "Read a record from device 1 and store the

information in the block labelled INBUF. If there are no more records, go to the

instruction labelled EOF. "

47

QUESTION: How do we know statement 16 is a read statement? (two reasons)

ANSWER: First, statement 14 initializes device 1 as an input device; second, only read uses

of the XMIT statement have three parameters (device, buffer, and end-of-file

routine name); write statements have only two parameters (device-selection and

name of output buffer).

You have completed an in-depth discussion of the DIBOl language. This is not a long section,

so if you doubt you understand DIBOl clearly, by all means study the section a second time.

In summary, the procedure section has the following instructions:

1) Initialize File Device statement (as input or output)

General form:

INIT (file number, file type,direction)

Example:

INIT (2, V,IN)

2) Transmit statement (Read-from or write-into file)

Genera I form:

XMIT (File number,block name,EOF for input files)

Example:

XMIT (2,INBUF, EOF) Read from
XMIT (1 ,OUTBUF) Write onto

3) Finalize File statement (rewind file)

Genera I form:

FINI (file number)

Example:

FINI (2)

4) Data Manipulation Statement

General form:

destination data element=source data element or expression

a) Clear data (destination data element=)
b) Move alphanumeric data (alpha data = alpha data)

48

c) Compute decimal data (decimal data = decimal expression
d) Convert alpha to decimal (decimal data = alpha data)
e) Convert decimal to alpha (alpha data = decimal data)
f) Convert decimal to alpha, formatted (alpha data = decimal data, formatted)

5) GO TO statement (program control branches to statement label}

Genera I form:

GO TO statement label

Example:

GO TO LOOP

6) Multi-way GO TO statement (program control branches to label 1 if the decimal data ele
ment is 1, etc.)

General form:

GO TO {labell, label 2 ••.. label 10),decimal data element

Example:

GO TO (TAX,COST,PRICE),A2

7) Conditional GO TO statement. (If statement is true, control goes to statement label.)

General form:

IF (data element 1 • relation • data element 2) GO TO LABEL

Example:

IF (A.EQ. B) GO TO C

8) Subroutine Call Statement (Control goes to statement label.)

General form:

CALL statement label

Example:

CALL COST

9) Return Statements (Program control returns to the statement after the last CALL.)

Genera I form:

RETURN

10) STOP Statement (Causes program to terminate and transfers control to the monitor.)

General form:

STOP

49

SECTION III

THIS SECTION CONTAINS A REVIEW OF DIBOL AND

A PROGRAMMING EXERCISE

FOLDOUT #2

SAMPLE PROBLEM #2

START ; 1
BLOCK INBUF ;2

STOCKN, D4 ;3
DESC, A25 ;4
UCOST, D5 ;5
QORDER, D4 ;6

BLOCK OUTBUF,X ;7
A1, D4 ;8
A2, A25 ;9
A3, D5 ; 10
A4, D4 ;11
ECOST, D9 ; 12

PROC ; 13
INIT (1, V,IN) ; 14
INIT (2, V,OUT) ; 15

LOOP, XMIT (l,INBUF,EOF) ; 16
IF (STOCKN. LT. 1000) GO TO LOOP ; 17
ECOST =UCOST*QORDER ; 18
XMIT (2,OUTBUF) ; 19
GO TO LOOP ;20

EOF, FINI (2) ;21
FINI (l) ;22
STOP ;23

END
$

The program reads variable length records containing a stock number, item description,

unit cost and quantity ordered. It skips records which have a stock number less than

1000. Output records are generated with the same information as the input with an

additional item - an extended cost which is the product of the unit cost and the

quantity ordered.

51

The following is an outline of the elements which make up a DIBOL program:

I. The DATA SECTION contains:

A. Data Statements:

1. The BLOCK statement denotes the beginning of a specific group of data
statements.

2. The DATA STATEMENT describes all program variables.

II. The PROCEDURE SECTION contains the following elements:

A. Initialize File Statement (INIT);

B. Transmit Data Statement (XMIT);

C. Finalize File Statement (FINI);

D. The following set of DATA MANIPULATION statements:

1. Clear Data Statement

2. Move Alphanumeric Variable Statement

3. Compute Decimal Variable Statement

4. Convert Alphanumeric to Decimal Statement

5. Convert from Decimal to Alphanumeric Statement

6. Convert from Decimal to Alphanumeric; Formatted Statement

E. The following forms of GO TO statements:

1. The Conditional GO TO

2. The Multi-way GO TO

3. The Conditional GO TO

F. The Subroutine Call Statement

G. The Subroutine Return Statement

H. The STOP

START and END statements are required at each respective end of a DIBOL-coded program. The PROC

statement must separate the Data Secti on from the Procedure Secti on.

Since DIBOL is syntax oriented spacing of source statements is irrelevant. For example, the data

statement NUMB,D6, 123456 can be correctly rewritten as NUMB, D6, 123456. The one restriction

is that imbedded spaces (in data names or procedural verbs) cannot be used. Examples or incorrect

usage of spaces are:

a) NU MB, D 6, 123 4 5 6

b) XM IT (1 0, INBU F, EOF)

The arrows in the examples above point to erroneous usage of spaces.

55

START
BLOCK

BLOCK

PROC

LOOP,

EOF,

END

$

EXPLANATION OF FOLDOUT #2
INVENTORY PROBLEM

INBUF

STOCKN,D4
DESC,A25

UCOST ,05
QORDER,D4

OUTBUF ,X

,04
,A25
,05
,04
ECOST,D9

INIT (1,V,IN)
INIT (2, V,OUT)
XMIT (1,INBUF,EOF)

IF (STOCKN.LLlOOO) GO TO LOOP

ECOST=UCOST*QORDER

XMIT (2,OUTBUF)

GO TO LOOP
FINI (2)

FINI (1)
STOP

56

;DECtape 1, containing stock list
(Master File)

;Stock number, six digits
;Description, 25 characters

Alpha word
;Unit Cost, five digits
;Quantity ordered four digits
;DECtape 2, will contain new file

after Program Executi on (X refers to
BLOCK overlays)

;Extended Cost, seven digits
;Begin Procedure Section
;Initialize file 1, as an Input Device
;Initialize file 2, as an Output Device
;Read a record from file 1, and store it

in area assigned to INBUF until end
offile

;If stock number is less than 1000, go
to read another record

;Extended cost would be calculated for
STOCKN 1000 or over

;Write the record onto file 2 from area
assigned to OUTBUF (overlay of
INBUF plus ECOST)

;Read another record
;OUTBUF file is rewound and EOF

mark is put at end of file
;INBUF file is rewound

;OUTBUF file will contain all stock
items with a stock number of 1000 or
over, with DESC, UCOST ,QORDER,
and ECOST for each item.

;A DIBOL program must be terminated
with a $

QUESTION: On this page is the definition of a program you are to write. It is imperative you

complete writing the program before you look at this author's solution. It is also

important that the student write the program during the same sitting in which he

studied the previous two sections, for the simple reason that prompt reinforcement

(through application) is the only way he will retain the thorough knowledge of

DIBOL. Feel free to use sections I and II as a reference.

YOU ARE TO WRITE A PROGRAM FOR THE ATHLETICS DEPARTMENT OF A COLLEGE.
STUDENT RECORDS ARE STORED ON MAGNETIC TAPE IN THE FOLLOWING FORMAT:

STUDENT LAST FIRST CUMULATIVE SEX WEIGHT HEIGHT
NUMBER NAME NAME G.P.A. (LBS) (FEET)

4 digits 10 char. 10 char. 2 digits 1 char. 4 digits 3 digits
M/F XXX.X X.XX

54-CHARACTER TAPE RECORD

THE COACH WANTS A LIST OF ALL MEN ON CAMPUS WHO HAVE A GRADE POINT
AVERAGE ABOVE 85, WHO WEIGH OVER 170.0 POUNDS, AND WHO ARE OVER
5.75 FEET TALL. THE REPORT IS TO HAVE A HEADING AND LOOK LIKE THIS:

0 I 2 3 4 5 6 7 B
o~ I 2 3 56789012345678'01234e6789 0' • 23 56789

D. E: • ATTN: COAC

STU. HEIGHT
ND. FIRST EIGHT F

LO ••• X .. X xx X • I(x
)()()(• x

DON'T LOOK AT OUR SOLUTION UNTIL YOU HAVE COMPLETED ALL WORK ON YOURS.

57

START

BLOCK TAPEIN ;INPUT BUFFER FOR TAPE RECORDS

STUNO, D4 ;Student Number
LNAME, A10 ;Last Name
FNAME, AlO ;First Name
GPA, D2 ;Cumulative Grade Point Average
SEX, Al ;Sex (M or F)
LBS, D4 ;Weight (XXX.X)
FEET, D3 ;Height (X.XX)

BLOCK TTYBUF ;Teletype Output Buffer
FLD, A80 ;Print Line
ENDL, Dl,O ;Causes Carriage-Return/Line-Feed

BLOCK HEAD,C ;Heading line of Report
, A37 ;Fi lIer
Hl, A5, 'DATE'

Al ;Fi lIer
DATE, A8,P ;Request date when program is loaded

XX/XX/XX
, A18 ;Fi lIer
H2, All, 'ATTN:COACH'
, Dl,O ;Causes Carriage-Return/Line-Feed

BLOCK COLl,C ;First line of column heading
, A4 ;Fi lIer
Cl, A4, 'STU'
, A19
C2, A7, 'NAME'
, A18
C3, A3, 'CUM'
, A8
C4, A6, 'WEIGHT'

A5
C5, A6, 'HEIGHT'
, Dl,O ;Causes Carriage-Return/Line-Feed

BLOCK COL2,C ;Second line of column heading
, A4 ; Fi lIer
C10, A3, 'NO.'
, A14
Cll, A4, 'LAST'
, A13
C12, A5, 'FIRST'
, A9
C13, A3, 'GPA'
, A9
C14, A5, '(LBS)'
, A7
C15, A4, '(FT)'

Dl,O ;Causes Carri age-Return/Li ne-Feed
BLOCK

LINECT, D2,50

PROC ;BEGINNING OF PROCEDURE
SECTION

INTIT (l,F,IN) ;Initialize the input tape
CALL HEADER ;PRINT REPORT HEADINGS

58

REPT, XMIT (I, TAPEIN,EOF)
IF (SEX. NE. 'M') GO TO REPT
IF (GPA.LE.85) GO TO REPT
IF (LBS.LE.170) GO TO REPT
IF (FEET. LE .575) GO TO REPT
FLO (5,8) = STUNO
FLO (18,27) = LNAME
FlO (36,45) = FNAME
FLO (54,55) = GPA
FLO (65,69) = LBS, 'XXX.X'
FlO (77,80) = FEET, 'X .XX'
CALL PRINT
GO TO REPT

PRINT, XMIT (8, TTYBUF)
FLD=
LINECT=LINECT + 1
CALL HEADER
RETURN

HEADER, IF (LINECT.LT.50) GO TO EXIT
LINECT=
XMIT (8, HEAD)
FLD=
XMIT (8, TTYBUF)
XMIT (8,COLl)
XMIT (8,COL2)
XMIT (8, TTYBUF)

EXIT, RETURN
EOF, FINI (1)

STOP
END

59

;READ INPUT TAPE
;**TEST TO Determine
;**IF record is to be
; **Select. If a test fai Is
;**Read another record
;Fornett pri nt
;line by moving
;all field to
;the appropriate pri nt
;position. Edit feet
;and Ibs.
;Print the line
;Read another record

;Print the line
;Clear print line
;Add one to line count
;Test if header is to be printed
;Return to instruction after last call

;Print header after every 50 lines
;Set line count to zero
;Print header line
;Clear Print Buffer
;Print blank line
;Print first column header line
;Print second header line
;Print blank line
;Return to instruction after last call
;Rewind input file
;Return control to OIBO L monitor

Coding Tips and Conventions

A) Printer

Block

Block

B) TTY Input

Block

C) TTY Output

Block

APPENDIX

HDF
, D2, 70
, A1
, D 1, 0

BLK
, D2, 00
, A1
, D1, 0

TBUF

TP, A6
, A1

MSG

Head of Form

Blank Line

TP can be any size depending on
amount of data expected. Make
buffer at least one character larger
(for CR 10 is recommended)

, A6, 'ENDJOB'
, 01, 0

0) You cannot use a "?" even in a literal.

E) Tape device assignment can be assigned at run time by:

BLOCK TMSG
, A7, 'TAPE NO'

BLOCK

BLOCK
PROt
LOOP,

, D1, 0

ATAPE

TT, A1
, A1

Tl, 01

XMIT (8, TMSG)
XMIT (7 ,AT APE)
Tl=TT

IF (T1.EQ .0) GO TO E1.

INIT (T1,V,IN)
XMIT (Tl, BUF, EOF)

or

T1,01,P

60

;Types TAPE NO
awaits response from TTY.
Move response 'convert' to decimal
If no more tapes are to be mounted,

Branch to Ending Routine
Initialize input tape
Read

This allows only one device assignment

F) Use of data names when referencing characters of an element

G)

Block P

Block

Proc

, D2,OO
PP, A80

, Dl,O

A, Dl
B, Dl

PP (1,4 = 'DATE')

or

A = 1
B=4

PP (A,B) = 'DATE'

FORMAT EDIT

1) DATE,D6,031370
PP (10,17) = DATE, 'XX/XX/XX'

2) AMT, 010, 7942576301
PP (10,22) = AMT, 'XX,XXX,XXX.XX'

3) AMT ,05, 12345
PP (1,3) = AMT, 'XXXZZ'

PP (1,6) = AMT, 'XXXXXO'

4) AMT, 05, 12345
PP (1,7) = AMT 'XXXXX**'

The format edit summary

Special symbols X

Z
o (zero)

X represents a digit

Result = 03/13/70

Result = 79,425,763 .01

Result = bb 123

Resu I t = 123450

Result = 12345**

inserts the period, replaces zeroes to the left with blanks, prints zeroes to the right

The comma is not printed unless there is an integer other than zero to the left

Z The Z suppresses the digit position

o Zero is inserted in the position indicated

Symbols Symbols other than those mentioned above, such as a / are inserted in the position indi
cated.

NITE If the value of the sending field is zero, the result is leading blanks
and one zero, except for the period in which case it is a period
followed by all zeroes to the right

i.e., AMT, D5, 0
DATE, 06, 0
PP (1,6) = AMT'XX.XXX' Result = bb.OOO
PP (1,8) = DATE 'XX/XX/XX' Result = bbbbbbbO

61

A

ALPHA=ALPHA, 31

Arithmetic Expression, 33

BLOCK, 14-17

BLOCK C, 17

BLOCK X, 21-23

B

C

CALL Subroutine, 42, 43

CLEAR DATA=, 29-31

Compiler Statements, 13, 14

Computer Decimal Expression, 32-34

Convert Alpha to Decimal, 34, 35

Convert Alpha to Decimal (formatted),
35-38

Convert Decimal to Alpha, 34, 35

D

Data Element, 18

Data Initialization in Data Section, 17-21

Data Manipulation statements, 29-38

Data Name, 16, 39

Data Section, 13-25

Data Section Restrictions, 23-24

Devi ce Codes, 7

E

END statement, 13, 14

EOF (End of File), 27, 28

F

FINI statement, 28, 29

Format Symbols (output), 36, 37

INDEX

G

GO TO statements, 39-42

IF statement, 40, 41

Initialization Specification, 18-21

INIT statement, 26, 27

L

Label (tag), 39

M

MOVE statements, 29-38

Multi-way-GO TO, 44, 45

N

Nesting (subroutine), 42, 43

P

P data statement, 18

PROC statement, 13, 14

Procedure Secti on, 25-47

R

RETURN statement, 42, 43

S

Sign (initialization-specification), 16

Sign (procedure section), 35-37

START statement, 13, 14

STOP statement, 43

Subscripting, 7, 3D, 31, 38

x

XMIT statement, 27, 28

HOW TO OBTAIN SOFTWARE INFORMA nON

Announcements for new and revised software, as well as programming notes, software problems, and documentation
corrections are published by Software Information Service in the following newsletters.

Digital Software News for the PDP-8 Family
Digital Software News for the PDP-9/1 5 Family
PDP-6/PDP-IO Software Bulletin

These newsletters contain information applicable to software available from Digital's Program Library.

Please complete the card below to place your name on the newsletter mailing list.

Questions or problems concerning DEC Software should be reported to the Software Specialist at your nearest DEC regional
or district sales office. In cases where no SOftware Specialist is available, please send a Software Trouble Report form with
details of the problem to:

Software Information Service
Digital Equipment Corporation
146 Main Street, Bldg. 3-5
Maynard, Massachusetts 01754

These forms, which are available without charge from the Program Library, should be fully filled out and accompanied by
teletype output as well as listings or tapes of the user program to facilitiate a complete investigation. An answer will be sent
to the individual and appropriate topics of general interest will be printed in the newsletter.

New and revised software and manuals, Software Trouble Report forms, and cumulative Software Manual Updates are avail
able from the Program Library. When ordering, include the document number and a brief description of the program or
manual requested. Revisions of programs and documents will be announced in the newsletters and a price list will be included
twice yearly. Direct all inquiries and requests to:

Program Library
Digital Equipment Corporation
146 Main Street, Bldg. 1-2
Maynard, Massachusetts 01754

Digital Equipment Computer Users Society (DECUS) maintains a user Library and publishes a catalog of programs as well as
the DECUSCOPE magazine for its members and non-members who request it. For further information please write to:

DECUS
Digital Equipment Corporation
146 Main Street
Maynard, Massachusetts 01754

Send Digital's software newsletters to:

My computer is a

Name __ __

Company Name ________________________________ _

Address ______________________________________ ___

PDP-8/1 0
LINC-8 0
PDP-9 0
PDP-1O 0

PDP-8/L 0
PDP-12 0
PDP-IS 0

(zip code) ________ __

Other 0 ______ Please specify

My system serial number is ____ ----------------,..-(if known)

· - - - - - - - - - - - - - - - - - Fold Here -

- - - - - - - - - - - - - - Do Not Tear - Fold Here and Staple - - - - - - - - - - - - -

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

mamaala
Digital Equipment Corporation
Software Information Services
146 Main Street, Bldg. 3-5
Maynard, Massachusetts 01754

FIRST CLASS
PERMIT NO. 33

MAYNARD, MASS.

READER'S COMMENTS

PDP-8/1
DIBOL PROGRAMMING
DEC-08-WDRA-D

Digital Equipment Corporation maintains a continuous effort to improve the quality and usefulness of its
publications. To do this effectively we need user feedback - your critical evaluation of this manual.

Please comment on this manual's completeness, accuracy, organization, usability, and readability.

Did you find errors in this manual? ---------------------------

How can this manual be improved?

DEC also strives to keep its customers informed of current DEC software and publications. Thus, the fol
lowing periodically distributed publications are available upon request. Please check the appropriate boxes
for a current issue of the publication(s) desired.

o Software Manual Update, a quarterly collection of revisions to current software manuals.

o User's Bookshelf, a bibliography of current software manuals.

o Program Library Price List, a list of currently available software programs and manuals.

Please describe your position. ____________________________ _

Name Organization

Street Department

City -'-_______ _ State Zip or Country ____ _

- - - - - - - - - - - - - - - - - Fold Here -

-- - -- - - - --- --DoNotTear-FoldHereand Staple - -- - - - - - - - ---

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

mamaama
Digital Equipment Corporation
Software Information Senrices
146 Main Street, Bldg. 3-5
Maynard, Massachusetts 01754

FIRST CLASS
PERMIT NO. 33

MAYNARD, MASS.

Digital Equipment Corporation
Maynard, Massachusetts

printed in U.S.A.

momoomo

