USER’S MANUAL

EDUCOMP CorPORATION
298 PARK RoAD
West HARTFORD, CONNECTICUT

e e e

Copyright @ 1973 EDUCOMP Corporation

. 1"-

2.

3!

TABLE OF CONTENTS

AN OVERVIEW

1.1 EDpucoMpP Basic IS ITSELF A PROGRAM

1.2 BASIC AS A PROGRAMMING LANGUAGE
1.2.1 Statements and Commands
1.2.2 Running BASIC

1.3 THE ENVIRONMENT

1.4 CONVENTIONS USED IN THIS MANUAL

115 SPECIAL TERMINAL KEYS

FUNDAMENTALS OF EDUCOMP RASIC

2.1 SAMPLE BASIC PROGRAM
2.2 LINE NUMBERS
2.3 STATEMENTS

2.3.1 Multiple Statements on a Single Line

2.3.2 Continuation of a Single Statement
onto Another Line

2.4 CHARACTER SET
2.5 EXPRESSIONS
2.5.1 Numbers
2.5.2 Variables
2.5.3 Mathematical Operators
2.5.4 Relational Symbols

ELEMENTARY BASIC STATEMENTS

"3.1 LET STATEMENT
3.2 PROGRAMMED INPUT AND OUTPUT
3.3 UNCONDITIONAL BRANCH, GOTO STATEMENT
3.4 CONDITIONAL BRANCH, IF-THEN STATEMENT
3.4.1 Logical IF-THEN
3.5 PROGRAM LOOPS
3.5.1 FOR and NEXT Statements

3.5.2 Subscripted Variables and the DIM
Statement

2-3
2-4
2-4

2-6
2-7
2-8

3.6 MATHEMATICAL FUNCTIONS

3.6.1 Examples of Particular Intrinsic
Functions

3.6.2 RANDOMIZE Statement
3.7 SUBROUTINES
3.7.1 GOSUB Statement
3.7.2 RETURN Statement
3.7.3 Nesting Subroutines
3.8 STOP AND END STATEMENTS
3.9 REMARKS AND COMMENTS
3.10 ON-GOTO STATEMENT
3.11 ON-GOSUB STATEMENT

4, CHARACTER STRINGS

4.1 CHARACTER STRINGS .
4.1.1 String Constants
4.1.2 Character String Variables
4.1.3 Subscripted String Variables
4.1.4 String Size
4.1.5 Relational Operators

4.2 STRING INPUT |

4.3 STRING OUTPUT

5. DATA STORAGE CAPABILITIES

5.1 FILE STORAGE
5.2 OPEN STATEMENT
5.2.1 Formatted ASCII I/0O

5.2.2 File-Structured Vs. Non-File-
Structured Devices

5.2.3 Opening the User Terminal as an
I/0 Channel

5.3 OUTPUT TO VARIOUS DEVICES

5.4 INPUT FROM VARIOUS DEVICES

5.5 VIRTUAL DATA STORAGE
5.5.1 Virtual Core DIM Statement
5.5.2 Virtual Core String Storage
5.5.3 Opening a Virtual Core File

3-19
3-22
3-23
3-25
3-25

 3-25

3-26
3-27
3-28
3-28

5-1
5-2
5=3

5-4

5-6
5-7

5-9

5-10
5-10
5-11
5-12

5.6 CLOSE STATEMENT
5.7 KILL STATEMENT
5.8 CHAIN STATEMENT

EDUBASIC GENERALIZED INPUT AND OUTPUT OPERATIONS

6.1 READ AND DATA STATEMENTS

6.2 RESTORE STATEMENT

6.3 INPUT STATEMENT

6.4 PRINT STATEMENT
6.4.1 PRINT-USING Statement
6.4.2 PRINT Functions

EDUBASIC COMMANDS

7.1 INTRODUCTION
7.2 CREATING A PROGRAM
7.3 CALLING AN EXISTING PROGRAM
7.3.1 Calling Data Files
7.3.2 Overlaying A Program
7.4 EDITING PROGRAMS
7.4.1 The EDIT Command
7.4.2 The RESEQUENCE Command
7.4.3 DELETE Command
7.4.4 LIST Command
7.4.5 SEARCH ,
7.5 MANIPULATING USER PROGRAMS
' 7.5.1 RUN Command
7.5.2 EXECUTE Command
7.5.3 SAVE Command
7.5.4 SAVE Without Line Numbers
7.5.5 UNSAVE Command
7.5.6 RENAME Command
7.5.7 REPLACE and NREPLACE
7.5.8 COMPILE Command
7.6 LENGTH COMMAND
7.7 CATALOG COMMAND

5-13
5-14
5-14

. 7-10

7-11
7-12
7-12
7-13
7-14
7-16
7-16
7-17
7-17
7-17
7-19
7-19

7.8 COMMANDS FOR INPUT/OUTPUT DEVICES

7.8.1

7.8.2

7.8.3
7.8.4

TAPE Command

KEY Command
PUNCH and NPUNCH
MARGIN Command

SPECIAL CONTROL CHARACTERS

7.9.1
7.9.2
7.9.3
7.9.4
7.9.5
7.9.6
7.9.7
7.9.8
7.9.9

RETURN Key
LINE FEED Key
RUBOUT Key
CTRL/C

CTRL/P

CTRL/U

CTRL/O

TAB Character
CTRL/Z

8. DETAILS OF VIRTUAL ARRAYS

INTRODUCTION
ARRAY STORAGE

TRANSLATION OF ARRAY SUBSCRIPTS INTO FILE

ADDRESSES
ACCESS TO DATA IN VIRTUAL ARRAYS

7-20
7-20
7-21
7-21
7-22
7-22
7-22

- 7-23

7-23
7-24
7-24
7-24
7-25
7-25
7-25

CHAPTER 1

AN OVERVIEW

1.1 EpucomMp BASIC IS ITSELF A PROGRAM

The computer language called BASIC is, itself, a computer
program. It is a very complex program written in a dif-
ferent kind of computer language ("machine" language),

one that requires great detail when writing a program.

Use of this great detail permits the construction of the
language BASIC, which will let you write programs using a
few English words and mathematical symbols. Because BASIC
itself is a computer program, it has a limited number of
ways of accepting instructions (statements and commands) .
Thus, the major effort in learning the language must be to
master the rules for giving instructions and learning what
the instructions do for you. (The error message "ILLEGAL
SYNTAX" may be somewhat disconcerting in a computer-oriented

endeavor but BASIC is a "language".)

Historically, the original development of BASIC was done at
Ddartmouth College by Drs. John Kemeny and Thomas Kurtz and
it may properly be considered to have a bias toward an edu-
cational environment. (Dr. Kemeny was later made President
of Dartmouth College.) BASIC is an acronym for Beginners
All-purpose Symbolic Instruction Code. The objective in de-
veloping BASIC was to provide an easily learned computer
language that would run on a computer in an interactive mode.
The plan was to bring the computer to the student and pro-
vide instant service by means of terminals placed around the
campus rather than require the student to go to the computer
and face a lengthy wait to get'his program run. Although '
BASIC has been considerably extended, and several versions

exist, the few fundamental instructions are commeon to all

1-1

versions and are easy to learn.

1.2 BASIC AS A PROGRAMMING LANGUAGE

BASIC is one of the simplest of all programming languages
because of its small number of powerful but self-explanatory
statements and commands and its easy application in solving
problems. Its wide use in scientific, business, and educa-
tional installations attests to its value and straightfor-
ward application.

BASIC is similar to many other programming languages in
various respects (and is, consequently, very easy for the ex-
perienced programmer to learn), but is especially suited for
time-sharing because of its conversational nature. A conver-
sational language is one which allows the user to communicate
with the language processor by typing on the terminal key-
board. BASIC responds by printing on the terminal printer,

providing for an interactive man/machine relationship.

EDUCOMP BASIC contains both elementary statements used to
write simple programs and advanced programming techniques

and statements to write complex and efficient programs.

The key word here is not complex, but efficient. As the user
progresses and gains programming experience, he will naturally
find himself becoming more efficient and able to use the more
sophisticated data manipulations. Almost any problem can

be solved with the simple BASIC statements. Later in the
"user's programming experience, the advanced techniques can

be added.

1.2.1 STATEMENTS AND COMMANDS

Instructions in BASIC are one of two types: (1) statements
or (2) commands.

1-2

Statements are the instructions which make up the user program.

They give the details of how the program is to perform the
job to be done, i.e., solve your problem. Learning BASIC
means learning what each statement does. As you learn how
to combine the various kinds of statements in different ways
you will find that writing a program becomes progressively
easier and, for many people, a fascinating activity much
like solving a puzzle. In BASIC, each statement starts with
a line number. Each statement also includes a key word in

English which indicates what the statement is to do.

Commands, in BASIC, are the instructions that tell BASIC how
to act upon, or with, your program. Commands are external
to the program which consists of statements. Because com-
mands direct BASIC to work with the program, they are used
in writing, editing, running, debugging and finally, storing
your program. EDUCOMP BASIC is particularly rich in commands
designed to make programming easier. An example of a BASIC
command is RUN. RUN causes BASIC to start the sequence of
events which, if the program is syntactically correct will
result in execution of your program. Note that commands use
no line numbers, and are executed immediately after they are

typed.
1.2.2 RUNNING BASIC

When the RUN command is given, BASIC attempts to complete a

two-phase operation: (1) compilation and (2) execution.

Compilation is the process by which BASIC translates the pro-

gram coding you have written (in BASIC) into a form "under-
stood" by the computer (machine language). The compiler checks
the program to make certain that all the rules of the language
are obeyed. When the statements are correct with respect to

the syntax of BASIC, the conversion to machine language takes
place and the second phase of running a program begins. EDUCOMP
BASIC is an incremental compiler which partially compiles the

user's program. This partial compilation is to be compared

with a pure interpreter which is much slower in running programs.

Execution is the actual operation of the program to perform
its assigned task (solve your problem). During execution the
computer is performing the operations it was instructed to
perform in the manner specified by the program. The computer
can do only what it is instructed to do by the program!

1.3 THE ENVIRONMENT

The environment under which EDUCOMP BASIC functions is an ex-
tremely complex arrangement of interrelated programs. This
particular manual is designed only to convey the constructs
of the EDUCOMP BASIC language and it is assumed that the
reader is (or will become) familiar with Digital Equipment

Corporation's operating system 0S/8.

We make the assumption here that the user is always in the
language BASIC. Briefly, obtaining EDUBASIC requires (1)
getting 0S/8 on the air, i.e., starting the system, and (2)
typing '

<R BASIC

at the terminal in response to the dot "." printed by 0S/8.
EDUBASIC responds with

READY

to indicate that the system is in BASIC and 'READY' to per-

form for you.

1.4 CONVENTIONS USED IN THIS MANUAL

Certain documentation conventions are used throughout this
manual to clarify examples of BASIC syntax. Each BASIC

1-4

statement is described at least once in general terms using

the following conventions:

a. Words appearing in capital letters are the key words
and indicate what the statement is expected to do
with the data found after the key word, if any. For
example:

line number READ 1list

b. Square brackets indicate that the bracketed item is
optional. For example:

line number [LET] variable = expression

c. Items in lower case type (formula, variable, list,
etc.) are supplied by the user according to rules
explained in the text. Items in capital letters
(END, IF, READ, etc.) must appear exactly as shown
because they form the BASIC language.

d. The term line number used in examples (as in (b)
above) indicates that any line number is wvalid.

The use of some terms in this document may be unfamiliar to
the new user. The following definitions and explanations
are valid throughout this manual:

a. BASIC (that is, the computer) prints on the tele-
printer whereas the user types on the keyboard.

b. A statement is a line (or part of a line or mul-
tiple lines in some cases) within a user program
containing a BASIC language instruction. Each
line is terminated by typing the RETURN key.

c. Commands cause BASIC to perform some operation or
task immediately and are not preceded by a line
number. Commands are always terminated with the

. RETURN key.

d. User programs consist of a series of statements
written by a person using the system in the BASIC
language.

e. The terminal is in most cases an ASR-33 Teletype!.
However, we can accommodate virtually any type-
writer type device. The user terminal is alter-
natively referred to as terminal, teleprinter, or
keyboard, depending upon what part or whether the
whole device is indicated.

lTeletype is a registered trademark of the Teletype Corporation.

1-5

1.5 SPECIAL TERMINAL KEYS

Throughout this manual, reference is made to typing various
special keys on the terminal. In many cases, these keys are
not mentioned, but assumed. The user will quickly learn the
use of the more important control keys on the terminal. As
an introduction, the user is directed to consider the keys
explained below. *

The RETURN key causes two operations to be performed:

a. An automatic carriage return/line feed operation
is executed. The printing head returns to the
beginning of the line (carriage return) and the
paper is advanced one line (line feed).

b. The data preceding the typing of the RETURN key
is entered into the system for evaluation. All
commands to BASIC and lines in a user program
are terminated by typing the RETURN key.

The RUBOUT key is used to correct typing mistakes. Typing

this key once causes the last character typed to be deleted
from the terminal input buffer (remember that an entire line
is entered at once when the RETURN key is typed). Pressing
the RUBOUT key N times causes the last N characters of the
current line to be deleted.

The CTRL key (or control key) is used in combination with cer-
tain letter keys to cause BASIC to perform special operations.
These combinations are performed by the user holding down the
'CTRL key while typing the desired letter key, then releasing
both keys. CTRL/U and CTRL/C are examples of these combina-
tions. Some of the CTRL/key combinations are introduced
below for use when working through this manual. All usable
combinations are described in Chapter 11. ‘

a. CTRL/U is used to delete an entire line up to the
last point at which the RETURN or ESCAPE key was
last typed. BASIC responds with a carriage re-
turn/line feed so that the user can continue typing

on a fresh line.

b. CTRL/P is used to interrupt the execution of a
program and return to the interactive BASIC pro-
cessor. When typed by the user, CTRL/P causes
the system to echo 4P when BASIC is in command
mode and the system prints READY. When used to
interrupt the execution of a program, CTRL/P is
not printed, but the message STOP IN LINE xxxX
followed by READY is printed.

c. CTRL/C returns control of the terminal to the 0S/8
monitor.

The LINE FEED key reprints the current line, free of rubouts.
It does not enter the line into the program. The carriage
return is needed to perform that function.

1-7

CHAPTER 2

FUNDAMENTALS OF EDUCOMP BASIC

2.1 SAMPLE BASIC PROGRAM

The program in Figure 2.1 is an example of a user program
written in the BASIC language. It illustrates the syntax*
and elements of the language as well as standard formatting
of statements and the appearance of terminal output.

The user program (the lines numbered 10 through 999) may at
this time mean little, although the remark in the first line
(line 5) and the printed results (following the word RUN)

clearly show that the program performs payroll calculations.

A user program is composed of lines of statements containing
instructions to BASIC. Each line of the program begins with
a line number that serves to identify that line as a state-
ment and to indicate the order in which statements are to be
evaluated for execution. Each statement starts with a ‘'key'
word which specifies the type of operation to be performed.

2.2 LINE NUMBERS

Each line of a user program must be preceded by a line number.
Line numbers have the following characteristics:

1. They indicate the order in which statements
are normally evaluated;

2. The numbers serve as 'tags' to enable the norm-
al order of evaluation to be changed; that is,
the execution of the program can branch or loop
through designated statements (this is explained
further in the sections on the GOTO, GOSUB, and
IF-THEN statements in Chapter 3); and

3. Line numbers enhance program editing by permitting
modification of any specified line without affect-
ing any other portion of the program.

*Syntax refers to the rules which specify how the programming
language elements are combined.

2-1

Line numbers are in the range 1 to 4094. It is good pro-
gramming practice to number lines in increments of 5 or 10
when first writing a program, to allow for insertion of

forgotten or additional lines to complete the program.

~

LISTNH

S REMARK -PAYROLL ChECKSTUBS SIMULATION W/DATA

16 PRINT *“COMPLETE PAYPOLL DEMOVSTRATION"’PRINT PRINT
15 G=g:READ E

17 1F E=-999 THEN 999 : ' i

260 READW,H,D,Y,V ’ T

22 PRINT "EMPLOYEE NUMEER"; E ')

24 PRINT "HOURS WORKED=';H

26 PRINT “YHOURLY WAGE="3VW:PRINT

30 0=0:1F H<=40 THEN 60

35 LET T=H=-40

46 LET O0=T*(1le5%W)

S6 LET G=0

55 LET H=H-T

66 LET R=WkxH: LET G=G+R

88 LET Y=Y+G -

9% IF Y-G>=9207 THEN 1506

168 GO TO 130

116 LET F=(G-(Y=-9200))*5. 2GG0GE~-62: GO TO 169

130 LET F=G*5.20000E-52:G0 TO 160

156 LET F=0

160 LET I= (G- (D*lSoS))*.l4

176 LET N=G=(I+F+V)

‘188 PRINT “EMP NO",“REG WAGE','"0 T WAGE":;"GROSS"

196 PRINT E»Rs0,,G:PRINT o

266 PRINT"ITW"™,"FICA", "VOL DEDUCT" "YTD EARNINGS" "NETPAY"
216 PRINT I,F,V,Y,N)
‘220 DATA 15722:3:4631:5@@5:12:“999

236 GOTO 15 ’

999 END

-

READY | . S
~ RUNNH
COMPLETE PAYROLL DEMONSTRATION

"EMPLOYEE NUMBER 15722
HOURS WORKED= 45
HOURLY WAGE= 3

EMP NO REG VAGE 0 T WAGE . . GROSS

15722 - 120 -9 ~ : o 120
ITV | Fica . VOL DEDUCT YTD EARNINGS NETPAY
14.91 6+24 12 o . 5128 | 86485
READY -
Figure 2.1

2-2

When the program is executed (with the use of the RUN command),
BASIC evaluates the statements in the order of their line
numbers, starting with the smallest line number and going to
the largest (regardless of the order in which they were typed
or entered).

2.3 STATEMENTS

Each line number is followed by an English word (key word).
The word identifies the type of statement and informs BASIC
what to do or how to treat the data (if any) which follows

the word.

2.3.1 Multiple Statements on a Single Line

More than one statement can be written on a single line as
long as each statement (except the last) is terminated with
a colon. Thus only the first statement on a line can (and
must) have a line number. For example:

_ 19 PRINT "EDUCOMP BASIC"

is a single statement line, while

2¢ LET X=1: PRINT X,Y,Z: IF X=2 THEN 10

is a multiple statement line containing three statements: a

LET, a PRINT, and an IF-THEN statement.

Any statement can be used anywhere in a multiple statement
line except as noted in the discussion of the individual

statements.

2.3.2 Continuation of a Single Statement onto Another Line

A single statement can be continued on the next line of the
program. To type more than 72 characters (not including

line numbers) on a line, simply continue typing after 72
characters. EDUBASIC will automatically perform a carriage
return, line feed, tab, and allow you to ypte more characters.
These two lines will be treated as one for GOTO's, IF-THEN,
etc. The length of a multiple line statement is limited to

124 characters.

2-3

2.4 CHARACTER SET

User program statements are composed of individual characters.
Allowable characters come from the following character set:

A through Z

g through 9
and the following special symbols:

S ol Function
Used in specifying string variables.

" Used to delimit string constants, i.e.,
text strings.

Begins comment part of a line (section 3.9).

Separates multiple statements on one line.

Denotes a device or filename, or is used
as an output format effector.
’ Output format effector and list terminator
; Output format effector.
0 Used to group arguments in an arithmetic
expression.
+ - =< # Arithmetic operators.
*x / t+ > A A

Spaces can be used freely throughout the program to make
statements easier to read. For example :

1 LET C1l = H * R
instead of:

1 LETCl=H*R
Both of the above statements mean the same thing to BASIC
and are stored exactly the same within the computer when
the program is executed. If a program is too large, spaces
may be removed to decrease the size because each space is

a character and takes up space in the computer's memory.

2.5 EXPRESSIONS

An expression is a group of symbols which can be evaluated
by BASIC. Expressions are composed of numbers, variables,

functions, or a combination of these, separated by arithmetic
or relational operators. Expressions are created by the

programmer and inserted into the standard BASIC statements
in order to perform the various operations which comprise
the user program.

The following are examples of expressions acceptable to EDUCOMP
BASIC.

4

A7*(B22+1)

X<y
Not all kinds of expressions can be used in all statements,
as is explained in the sections describing the individual
statements. In the following sections the reader is intro-

duced to the elements which compose BASIC expressions.

2.5.1 Numbers

Numbers,.called numeric constants because they retain a con-
stant value throughout a program, can be positive or negative
and can contain up to six digits. Numeric constants are
written using decimal notation, as follows:

2

-3.675

1234.56

-12345.6

-.000078
- The following forms are not acceptable numbers in BASIC:

14
3

v7
However, BASIC can find the decimal expansion of those two
mathematical formulas as shown below:

l% is expressed as 14/3
Y7 is expressed as SQR(7)

These formats are explained further in later sections.

A number representation using the letter E allows further flex-
ibility. If numbers were limited to six digits, a computer

would not be able to solve many problems involving large
numbers. Consequently, rather than saying that BASIC can
only accept numbers with a maximum of six digits, we say
that BASIC has six digits of precision. Larger numbers
can be written using the letter E to indicate "times ten
to the power", thus:

.@@P¥123456 can be written in BASIC as 123.456E-6
-12345609. can be written in BASIC as -1.23456E7

This E format representation of numbers is very flexible
'in that the number .00l can be written as 1lE-3, 01lE-1,
100E-5, or any number of ways. If more than six digits are
generated during any computation, the result of that comp-
utation is automatically printed in E format. (If the ex-
ponent is negative, a minus sign is printed after the E;

if the exponent is positive, a plus sign is printed:

1E-04; lE+g4.

The combination E7, however, is not a constant, but a var-
iable. The term 1lE7 is used to indicate that 1 is multiplied
by 107. ‘

Numbers are specified according to the following rules:

a. line numbers are unsigned decimal integers in the
range 1 to 4094.
b. numbers have the range 1E-616<n<lE616.

2.5.2 Variables

A variable is a data item whose value can be changed by the
programmer. A numeric variable is denoted by a single letter
or by a letter followed by a single digit. Thus BASIC inter-
prets E8 as a variable, along with A, X, N5, L@, and 0l.
(Subscripted and character string variables are described in
later sections.) All variables are set equal to zero (f)

2-6

before program execution. Consequently it is only necessary
to assign a value to a variable when an initial wvalue other
than zero is required, but it is good programming practice

to initialize any variable.

2.5.3 Mathematical Operators

BASIC automatically performs the mathematical operations
of addition, subtraction, multiplication, division, and
exponentiation. Formulas to be evaluated are represented
in a format similar to standard mathematical notation.
There are five arithmetic operators used to write such

formulae:

Operator Example Meaning
+ A+B Add B to A
- A-B Subtract B from A
* A*B Multiply A by B
/ A/B Divide A by B
4 ATB : Calculate A to the B power,AB

When more than one operation is to be performed in a single
formula, as is most often the case, rules are observed as
to the precedence of the above operators. The arithmetic
operations are performed in the following sequence, with
(1) having the highest precedence:

1. Any formula inside parentheses is evaluated before
the parenthesized quantity is used in further com-
putations. Where parentheses are nested, as in

(A+(B*(D*2)))

the innermost parenthetical gquantity is calculated
first.

2. In the absence of parentheses in a formula, BASIC
performs operations as follows:

1. exponentiation
2. unary minus

3. multiplication and division
4. addition and subtraction

For example, —3T2=—(3)f2=—9

3. In absence of parentheses in a formula involving
more than one operation on the same level in (2)
above, the operations are performed left to right,
in the order that the formula is written. For
example:

A+BAC is evaluated as (A+B)+4C
A*B/C is evaluated as (A*B)/C

The formula (or expression) A+B*C4+D is evaluated as follows:

first, C is raised to the D power .
second, the result of the first operation is multiplied by B
third, the result of the previous operation is added to A.

Parentheses are used to indicate any other order of evaluation.
For example, if it is the product of B and C that is to be
raised to the D power, the expression would look as follows:

A+(B*C)4D
If it is desired to multiply the quantity A+B by C to the
D power:

(A+B) *C+D

The user is encouraged to use parentheses even where they

are not strictly required in order to make the formulae

easier to read. Ambiguities exist only in the programmer's
mind, the computer always performs the operations as explained
4above.

2.5.4 Relational Symbols

Relational symbols are used in IF-THEN statements (see section
3.4) where it is necessary to compare values. The relational
symbols are as follows:

Mathematical
Symbol

WIlV VIA A

BASIC
Symbol

Example

=B
A<B
A<=B
A>B
A>=B
A<>B, A#B

L A

is
is
is
is
is

is

Meaning

equal to B
less than B
less than or
greater than
greater than
not equal to

equal to B

B

or equal to B
B

CHAPTER 3

ELEMENTARY BASIC STATEMENTS

The simplest forms of the more elementary BASIC statements,
are sufficient, by themselves, for the solution of most
problems. Once these statements are mastered, the user can
investigate the more advanced applications of these state-
ments and the additional statements and features explained
in later chapters.

The reader should understand that any problem which can be
solved with the more advanced techniques can also be solved
with the simpler statements, although the solution may not
be as efficient. As long as the user understands the details
of his problem he can represeht it in BASIC on a number of
levels ranging from the simple to the sophisticated.

3.1 LET STATEMENT

The LET statement assigns a numeric value to a variable.
Each LET statement is of the form:

line number[LET] variable = expression

This statement does not indicate algebraic equality, but
performs the calculations within the expression (if any)
and assigns the numeric value to the indicated variable.
For example:

19 LET X=X+1

2@ LET W2=(A4-X43)*(Z-A/B)
In line 10, the o0ld value of X is increased by one and be-
comes the new value of X. In line 20, the formula on the
right hand side is evaluated and the numeric value assigned
to W2.

The LET statement can be a simple numerical assignment, such
as
5¢ LET A=35

or require the evaluation of a formula so long that it is
continued on the next line (see Section 2.3.2).

EDUCOMP BASIC allows the user to completely omit the word
LET from the LET statement. The user may find it easier

to type:

19 X=12*(S+7)
than

1¢ LET X=12*(S+7)

This convenience does not alter the effect of the statement.

The LET statement can be used anywhere in a multiple state-

ment line, for example:
19 X=44: Y=X42+Y1l: B2=3.5*A

The LET statement allows the user tc assign a value to
multiple variables in the same statement. For example:

19 LET X=Y=Z=5.7

causes each of the three variables to be set equal to 5.7.

3.2 PROGRAMMED INPUT AND OUTPUT

This section describes the techniques used in performing
BASIC program input and output (I/0). The most elementary
forms of the PRINT, INPUT, READ, and DATA statements are
described here so that the user is able to create simple
BASIC programs.

Using the LET statement, already described, and the follow-
ing executable statements, the user can easily write a viable
BASIC program of the simplest sort. If he should want to

try his program, these simple I/0 statements will provide

a means of doing so and obtaining tangible output.

These statements are described in detail at the end of this
chapter and additional, more advanced, I/O techniques are
described in later chapters.

3-2

The PRINT statement is used to output program results. The
PRINT statement has the basic form:

line number PRINT [1ist]

where the optional list can consist of messages to be printed
or numeric values, or both. Without the list, the PRINT
statement

19 PRINT

causes a carriage return/line feed to be performed at the
teleprinter. In order to print numeric values, the word
PRINT is followed by the variable or expression whose numeric
value is to be printed. The PRINT statement, like the LET
statement, can perform numeric calculations. For example:

19 LET A=2: LET B=4
2@ PRINT (A+B) *2

causes the number 12 to be printed when line 20 is executed.

A message can be easily output on the teleprinter by enclos-
ing the text to be printed in quotation marks, as follows:

78 PRINT "STUDENT NUMBER = "; X

This statemént causes the following to be printed (where
X=7744) :
STUDENT NUMBER =7744

‘'The READ and DATA statements are used to input data to a
.program during execution. A DATA statement contains values
‘which are assigned to the variables within a READ statement.
When the execution of the program encounters a READ statement
of the form:

line number READ 1list

the BASIC processor assigns to the first variable in the
list the first available value encountered in the pool of
DATA statements within the program. The second variable is

3-3

assigned the second value in the DATA pool, and so on. Var-

iable names are separated by commas.

A DATA statement looks as follows:
line number DATA 1list

DATA statements are usually grouped together toward the end
of a program. All of the DATA statements in a given program
are considered to be one data pool from which subsequent
READ statements obtain wvalues. (The values in the list are
separated by commas.) The DATA statements are referenced

in the order of their line numbers. For example:

1¢ READ A,B,C

2¢ READ D,E,F

3¢ READ A,B,C

4¢ DATA 1,2,3,4
5¢ DATA 5,6,7,8,9

results in the following assignments being made:

A=1

B=2 when line 1f is executed
C=3

D=4

E=5 when line 2@ is executed
F=6 :

A=7

B=8 when line 3¢ is executed
Cc=9

The INPUT statement allows the user to enter data to the
program from the terminal keyboard while the program is
being executed. The data is typed by the user as BASIC asks
for it. For example:

1¢ INPUT A,B,C

¢auses BASIC to pause during execution, print a gquestion
mark, and wait for the user to type three numerical values.
The numbers must be separated by commas and terminated with

the RETURN key. BASIC keeps printing question marks until

3-4

it obtains the desired number of numeric inputs from the
keyboard. For example, line 1fg above would cause:

?
to be printed. The user could type:
215,24
followed by the RETURN key. BASIC would reply:

215,24

)

and wait for the user to enter a third value. Any values
entered beyond the number required (three in the above case)
would be ignored. INPUT statements are used only when small
amounts of data are to be entered, or when data can only

be supplied while the program is running.

3.3 UNCONDITIONAL BRANCH, GOTO STATEMENT

The GOTO statement is used when it is desired to unconditionally
transfer to some line other than the next sequential line in

the program. In other words, a GOTO statement causes an
immediate jump to a specified line, out of the normal con-
secutive line number order of execution. The general format

of the statement is as follows:

line number GOTO line number

The line number to which the program jumps can be either
greater than, equal to, or less than the current line number.
It is thus possible to jump forward or backward within a

‘program.

Consider the following simple example:

Lo

16 LET A=2

2¢ GOTO 50 .
32 LET A=SQR(A+14)
S¢ PRINT A,A%A
62 END

B A T e

3-5

When executed, the above lines cause the following to be
printed:

2 4

When the program encounters line 20, control transfers to
line 50; line 50 is executed, control then continues to the
line following line 50. Line 30 is never executed. Any
number of lines can be skipped in either direction.

When written as part of a multiple statement line, GOTO
should always be the last statement on the line, since any
statement following the GOTO on the same line is never

executed. For example:

119 LET A=ATN(R2): PRINT A: GOTO 58

3.4 CONDITIONAL BRANCH, IF-THEN STATEMENT

The.IF—THEN is used to transfer conditionally from the normal
consecutive order of statement numbers, depending upon the
truth of some mathematical relation or relations. The

basic format of the IF statement is as follows:

THEN statement

11neknumber IF condition THEN line number

The spécified condition is tested. If the relationship is
found false, then control is transferred to the line follow-
- ing the IF statement (the next sequentially numbered line).
If the condition is true, the statement following THEN is
executed or control is transferred to the line number

given after THEN.

The deciding condition is a simple relational expression
in which two mathematical expressions are separated by a

relational operator. For example:

Relational Expression
A+27B

The condition, when evaluated, is either true or false; no
numeric value is associated with the result of an IF state-
ment. The relational operators are described in Section 2.5.4
and are presented in Appendix A for reference.

75 IF A*B =B*(B+1) THEN LET D4=D4+1

In the above line the quantities A*B and B*(B+l) are compared.
If the first value is greater than or equal to the second
value, the variable D4 is incremented by 1. If B*(B+l) is
greater than A*B, D4 is not incremented and control passes
immediately to the next line following line 75.

When a line number follows the word THEN, execution is the
same as if a GOTO statement followed the word THEN. The
word THEN can be followed by any BASIC statement, including
another IF statement. For example:

25 IF A>B THEN IF B>C THEN PRINT "A>B7C"
The preceding line would perform the following operation:

if B is both less than A and greater than C, the message
A>B>C ’

is printed, otherwise the line following line 25 is executed.

" (The above example, line 25, is the same as "IF A»B AND B>C
THEN PRINT "A»B>C". This last form is not permitted in EDUCOMP
BASIC.)

In the following example, the IF-THEN statement in line 20
is used to limit the value of the variable A in line 10.
Execution of the loop continues until the relationship A>4
is true, then immediately branches to line 55 to end the
program. (A program loop is a series of statements which
are written so that, when the statements have been executed,
control transfers to the beginning of the statements. This
process continues to occur until some terminal condition is

reached.)

3-7

LISTNH
1@ LET A=A+l: X=At2
. 2@ IF A>4 THEN 55
T 25 PRINT X ‘
3@ PRINT "VALUE OF A IS";A
4¢ GOTO 10
55 END

READY

When the above loop is executed, the following is printed:

. RUNNH
|

VALUE OF A IS 1
4

VALUE OF A IS 2
9

VALUE OF A IS 3
16

VALUE OF A IS 4

READY

(The novice BASIC programmer is advised to follow the oper-
ation of the computer through these short example programs.)

In IF statements, the following priorities are associated
with each operator, in order to provide unambiguous evalu-
ation of the conditions specified (where a. has the highest
priority):

a. expressions in parentheses
b. intrinsic functions
c. exponentiation (%)

d. wunary minus (-), that is, a negative number
or variable such as -3, -A, etc.

e. multiplication and division (* and /)
f. addition and subtraction (+ and =)

g. relational operators (=,<,<=,>,>=,# ,<>)

Within the operators indicated in any one group above, oper-

ations proceed from left to right.

3-8

Examples of IF-THEN statements follow

1¢ IF A>DB THEN 14d ' ! SIMPLE COMPARISON
2g IF A>B THEN A=-B . ASSIGNMENT BY A LET STATEMENT

An IF statement would normally be the last statement on a
multiple statement line (to avoid confusion); however, the
following rules govern the transfer path of the IF statement

in other positions:

a. The physically last THEN clause is considered to
be followed by the next statement (or statements)
on the line:

19 IF A=1 THEN PRINT A;:PRINT "TRUE CASE": GOTO 2§
15 PRINT "NOT = 1"

where A#1, the following line is printed:

NOT = 1

where A=1, the following line is printed:

1 TRUE CASE

b. All other THEN clauses are considered to be followed
by the next line of the program:

2¢ IF A>B THEN.IF B>C THEN PRINT "B>C": GOTO 3¢
25 PRINT "A<=B"

Only in the case where "B>C" is printed is the
statement GOTO 3F seen and executed.

3.4.1 LOGICAL IF-THEN

It is sometimes useful to have available a somewhat different
form of the IF-THEN statement. The following variation is
called a logical IF-THEN;

IF variable THEN statement

If the value of the variable is zero, the statement is false
and control is transferred to the next sequential line. If
the value of the variable is anything other than zero, the
statement is true and the specified expression is executed.

For example,

3-9

118 INPUT A -

115 IF A THEN PRINT "A<>@": GOTO 110
120 PRINT “A=g* | |
2¢0 END -

READY

RUNNH

? 5

A<>Q

? -2

A<>@

? <246

A<>0@

?2 0
=0

READY

3.5 PROGRAM LOOPS

Loops were first mentioned in the section on the IF-THEN
statement. Programs frequently involve performing certain
operations a specific number of times. This is a task for
which a computer is particularly well suited. With simple
tasks, such as computing a list of prime numbers between
1l and 1,000,000, a computer can perform the operations and
obtain correct results in a minimal amount of time. To
write a loop, the programmer must ensure that the series
of statements is repeated until. a terminal condition is

met.

Programs containing loops can be illustrated by using two
versions of a program to print a table of the positive in-
tegers 1 through 100 together with the square root of each.
Without a loop, the first program is 101 lines long and reads:

186 PRINT 1, SQRCI)
2@ PRINT 2, SQR(2)
3¢ PRINT 3, SQR(3)

. 4

998 PRINT 99, SQR(99)
1608 PRINT 108, SQR(1808)
1610 END

‘

With the following program example, using a simple loop,
the same table is obtained with fewer lines:

18 LET X=1

20 PRINT X,SQR(X)

38 LET X=X+1

40 IF X<=108 THEN 20
5@ END

Statement 10 assigns a value of 1 to X, thus setting up the
initial conditions of the loop. In line 20, both 1 and its
square root are printed. In line 30, X is incremented by 1.
Line 40 asks whether X is still less than or equal to 100;

if so, BASIC returns to print the next value of X and its
square root. This process is repeated until the loop has
been executed 100 times. After the number 100 and its square
‘root have been printed, X becomes 101l. The condition in

line 40 is now false so control does not return to line 20,

but goes to line 50 which ends the program.

All program loops have four characteristic parts:

a. initialization, the conditions which must exist
for the first execution of the loop (line 10 above);

b. the body of the loop in which the operation which
is to be repeated is performed (line 20 above);

¢. modification, which alters some value and makes
each execution of the loop different from the
one before and the one after (line 30 above);

d. termination condition, an exit test which, when
satisfied, completes the loop (line 40 above). Ex-
ecution continues to the program statements follow-
ing the loop (line 50 above).

3.5.1 FOR and NEXT Statements

The FOR statement is of the form:
line number FOR variable = expression TO expression [STEP expression]
For example:

14 FOR K=2 TO 2@ STEP 2

which causes program execution to cycle through the designated
loop using K as 2, 4, 6, 8, . . . , 20 in calculations involv-
ing K. When K=20, the loop is left behind and the program
control passes to the line following the associated NEXT state-
ment. The variable in the FOR statement, K in the preceding
example, is known as the control variable.

The control variable must be unsubscripted, although a common
use of such loops is to deal with subscripted variables using
the control variable as the subscript of a previously defined
variable (this is explained in further detail in Section 3.5.2).
The expressions in the FOR statement can be any acceptable
BASIC expression as defined in Section 2.5.

The NEXT statement signals the end of the loop which began
with the FOR statement. The NEXT statement is of the form:

line number NEXT variable

where the variable is the same variable specified in the
FOR statement. Together the FOR and NEXT statements describe
the boundaries of the program loop.

If the STEP expression is omitted from the FOR statement, +1
is the assumed value. Since +1 is a common STEP value, that

portion of the statement is frequently omitted.

The expressions within the FOR statement are evaluated once
upon initial entry to the loop. The test for completion

of the loop is made prior to each execution of the loop.
(If the test fails initially, the loop is never executed.)

3-12

The control variable can be modified within the loop. When
control falls through the loop, the control variable retains

the last value used within the loop.

The following is a demonstration of a simple FOR-NEXT loop.
The loop is executed 10 times; the value of I is 10 when
control leaves the loop; and +1 is the assumed STEP value:

16 FOR I = 1 TO 12

2¢ PRINT 1
3¢ NEXT I
40 PRINT I

The loop itself ié lines ld through 30. The numbers 1 through
10 are printed when the loop is executed. After I=10, con-
trol passes to line 40 which causes 10 to be printed again.

If line 10 had been:

19 FOR I = 1§ TO 1 STEP -1
the value printed by line 40 would be 1.

2 TO 44 STEP 2

10 FOR I =
1 = 4s

2¢ LET
38 NEXT 1

The above loop is only executed once since the value of I=44

has been reached and the termination condition is satisfied.

If, however, the initial value of the variable is greater
than the terminal value, the loop is not executed at all. A
statement of the format:

14 FOR I = 2@ TO 2 STEP 2

can not be used to begin a loop, although a statement like
the following will initialize execution of a loop properly:

1¢ FOR I=20 TO 2 STEP -2

For positive STEP values, the loop is executed until the
control variable is greater than its final value. For
negative STEP values, the loop continues until the cont-

rol variable is less than its final value.

3-13

FOR loops can be nested but not overlapped. The depth of
nesting depends upon the amount of user storage space avail-
able (in other words, upon the size of the user program and
the amount of core each user has available). Nesting is

a programming technigque in which one or more loops are
completely within another loop. The field of one loop

(the numbered lines from the FOR statement to the correspond-
ing NEXT statement, inclusive) must not cross the field of

another loop.

ACCEPTABLE NESTING UNACCEPTABLE NESTING
TECHNIQUES TECHNIQUES

Two Level Nesting

OR I1 = 1 TO 14 OR I1 = 1 TO 180
FOR I2 = 1 TO 14 —{EEOR I2 =1 TO 19
NEXT I2 EXT Il

[?OR I3 =1 TO 1¢ —NEXT I2
NEXT I3
NEXT Il
Three Level Nesting
—FOR Il = 1 TO 149 ~FOR I1 = 1 TO 1§
FOR I2 = 1 TO 1§ FOR I2 = 1 TO 14
FOR I3 = 1 TO 1¢ FOR I3 = 1 TO 1§

EXT I3 [&EXT I3
FOR I4 = 1 TO 18 FOR I4 = 1 TO 1§

EXT T4 EXT I4

EXT I2 L_NEXT Il

—NEXT Il ———NEXT I2

An example of nested FOR-NEXT loops is shown below:

5 DIM X(5,18)

18 FOR A=1 TO 5

20 FOR B=2 TO 10 STEP 2
30 LET X(A,B)= A+B

4@ NEXT B

5@ NEXT A

55 PRINT X(5,10)

Upon execution of the above statements, BASIC prints 15 when

line 55 is processed.

3-14

It is possible to exit from a FOR-NEXT loop without the control
variable reaching the termination value. A conditional or
unconditional transfer can be used to leave a loop. Control
can only transfer into a loop which had been left earlier
without being completed, ensuring that termination and STEP
values are assigned.

Both FOR and NEXT statements can appear anywhere in a multi-

ple statement line. For example:

19 FOR I=1 to 1@ STEP 5: NEXT I: PRINT "I="; I
causes:

I= 6

to be printed when executed.

The FOR nor NEXT statement can be executed conditionally

in an IF statement. The following statements are correct:

15 IF I<>J THEN NEXT I
16 IF I=J THEN FOR I=1 to J

3.5.2 Subscripted Variables and the DIM statement

In addition to the simple variables which were described

in Chapter 2, BASIC allows the use of subscripted variables.
Subscripted variables provide the programmer with additional
computing capabilities for dealing with lists, tables,
matrices, or any set of related variables. In BASIC,
variables are allowed one or two subscripts.

The name of a subscripted variable is any acceptable BASIC
variable name followed by one or two integer expressions
in parentheses. For example, a list might be described as
A(I) where I goes from 1 to 5 as shown below (all matrices
are created with a zero element, even though that element
is never specified):

3-15

A(g), A(1), A(2), A(3), A(4), A(5)

This notation allows the programmer to reference each of
six elements in the list, which can be considered a one -

dimensional algebraic matrix as follows:

A(g)
A(l)
A(2)
A(3)
A(4)
A(5)

A two dimensional matrix B(I,J) can be defined in a similar

manner and graphically illustrated as follows:

B(g,9) | B(g,1 | B(@,2 | B(2,3) / /|
/S L

B(1,¢) | B(1,1) B(1,2) B(1,3) B(1,J)
B(2,0) | B(2,1) B(2,2) B(2,3) / / B(2,J)
B(3,9) | B3, 1) | B3,2) | 83,3 |/ B(3,J)

K‘ 4 \
B(1,9) | B(1,1) B(I,2) B(I,3) | >—N\ B(I,J)

Subscripts used with subscripted variables throughout a
program can be explicitly stated or be any legal expression.

It is possible to use the same variable name as both a
‘subscripted and an unsubscripted variable. Both A and A(I)
are valid variables and can be used in the same program.
’However, BASIC does not accept the same variable name as
both a singly and a doubly subscripted variable name in
the same program. If A(I) and A(I,J) are used in the same
program, an error message 'ILLEGAL SUBSCRIPTING' results.

A dimension (DIM) statement is used to define the maximum

number of elements in a matrix. ("Matrix" is the general

3-16

term used in this manual to describe all elements of a sub-
scripted variable.) The DIM statement is of the form:

line number DIM variable (n), variable (n,m) ,...

where the variables specified are indicated with their

maximum subscript value(s).

For example:

1¢ DIM X(5), Y(4,2), A(1d,19)

12 DIM 14(1g9)
Only integer values (such as 5 or 5070) can be used in DIM
statements to define the size of a matrix. Any number of
matrices can be defined in a single DIM statement as long

as their representations are separated by commas.

If a subscripted variable is used without appearing in a DIM
statement, it is assumed to be dimensioned to length 10 in
each dimension (that is, having eleven elements in each dim-
ension, §# through 1§). "However, all matrices should be
correctly dimensioned in a program. DIM statements are
usually grouped together among the first lines of a

program.

The first element of every matrix is automatically assumed
to have a subscript of zero. Dimensioning A(6,10) sets
up room for a matrix with 7 rows and 11 columns. This

zero element is illustrated in the following program:

LISTNH : :
10 REM - MATRIX CHECK PROGRAM
20 DIM A(6,10)
3¢ FOR I=0 TO 6
49 LET AC1,0) = I
5¢ FOR J=0 TO 19 _ AR -
68 LET ACG,J) = J. -

- 70 PRINT ACI,J)3 ,
80 NEXT J: PRINT: NEXT 1 -a

98 END

READY

3-17

RUNNH
- .8 1 2 3 4 5 6 7 8 9 10
1 6 6 ¢ ¢ © © ©6 ©6 0 @
2 9 0 06 ©0 @ 9 0 @ @ 0O
3 ¢ ¢ 06 0 @ @ ©6 @ @ ¢
4 ¢ ¢ 0 6 © © @ © 06 0
S @ 8 0 0 © @ @6 © 0 0
6 8 6 2 6 © 8 @6 ©6 @ @

READY
N o ' S T N v
Notice that a variable has a value of zero until it is
assigned a value.

If the user wishes to conserve core space he may make use
of the extra variables set up within the matrix. He could,
for example, say DIM A(5,9) to obtain a 6 x 10 matrix
which would then be referenced beginning with the A(#,#)
element.

The size and number of matrices which can be defined depend

upon the amount of user storage space available.

A DIM statement can be placed anywhere in a multiple state-
ment line. A DIM statement can appear anywhere in the prog-
ram and need not appear prior to the first reference to an
array, although DIM statements are generally among the first
statements of a program to allow them to be easily found

if any alterations are later required.

3.6 MATHEMATICAL FUNCTIONS

‘Within the course of a user's programming experience, he
encounters many cases where relatively common mathematical
operations are pérformed. The results of these common
operations can often be found in volumes of mathematical
tables; i.e., sine, cosine, square root, log, etc. Since
it is this sort of operation that computers perform with
speed and accuracy, such operations are built into BASIC.
The user need never consult tables to obtain the value of
the sine of 23° or the natural log of 144. When such values

are to be used in an expression, intrinsic functions, such as:

3-18

SIN(23*PI/180)

LOG(144)

are substituted.

The various mathematical functions available in EDUCOMP BASIC

are detailed in Table 3.1.

Table 3.1

Mathematical Functions

Function
Code Meaning

ABS (X) returns the absolute value of X

SGN (X) returns the sign function of X, a value
of 1 preceded by the sign of X, SGN(g)=0

INT (X) returns the greatest integer in X which is
less than or equal to X, (INT(-.5)=-1)

COS (X) returns the cosine of X in radians

SIN (X) returns the sine of X in radians

TAN (X) returns the tangent of X in radians

ATN (X) returns the arctangent (in radians) of X

SQR(X) returns the square root of X

EXP (X) returns the value of e?™X, where e=2.71828...

LOG(X) returns the natural logarithm of X, log X

PI has a constant value of 3.41593.

RND (X) returns a random number between @ and 1;
the same sequence of random numbers 1is
generated each time a program is run
requiring the use of the random number
generator. The value of X is ignored.

Most of these functions are self-explanatory. Those which
are not are explained in the following section.

3.6.1 Examples of Particular Intrinsic Functions

Sign Function, SGN(X)

The sign function Prints the value
1l if X is positive
-1 if X is negative

0 if X is zero.

3-19

Fer example:.
'LISTNH
18 REM - SGN FUNCTION EXAMPLE
20 READ A,B '
25 PRINT "A="3A,'"B="35B ’ :
3@ PRINT '"SGN(A)="3SGN(A),"SGN(BI=""3SGN(B)
49 PRINT *SGN(CINT(A))="3SGNC(INTCA))
5@ DATA "7032) 044

6@ END
READY
RUNNH N e
A=-7.32 B= .44 '
SGN(&)=~-1 SGN(B)= |

SGNCINT(A))=~1

- READY R L

Integer Function, INT (X)

The integer function returns the value of the greateét integer
‘not greater than X. For example, INT(34.67) = 34. INT can

be used to round numbers to the nearest integer by asking

for INT(X+.5). For example, INT(34.67+.5) = 35. INT can

also be used to round to any given decimal place, by asking
for

INT (X*1g% D+.5) /187D

where D is the number of decimal places desired, as in the
following program:

LISTNH ‘
19 REM- INT FUNCTION EXAMPLE

' 2@ PRINT "NUMBER TO BE ROUNDED";
30 INPUT A ’ '
40 PRINT "NO. OF DECIMAL PLACES";
5S¢ INPUT D
60 LET B=INT(A%*10tD+.5)/13tD
76 PRINT "A ROUNDED =";B

- 86 GOTO 20

9@ END

READY o

3-20

RUNNH
NUMBER TO BE ROUNDED? 55.6534
v NO. OF DECIMAL PLACES? 2
' A ROUNDED = 55465 :
NUMBER TO BE ROUNDED? 78. 375
NO. OF DECIMAL PLACES? -2
A ROUNDED = 108
NUMBER TO BE ROUNDED? 67.89
NO. OF DECIMAL PLACES? -l
A-ROUNDED = 70 '
NUMBER TO BE ROUNDED? S
STOP AT LINE 30
READY

For negative numbers, the largest integer contained in the

number is a negative number with the same or a larger absolute

value. For example: INT(-23), but INT(-14.39) =

NOTE

AP in the above program terminates
program execution.

Randon Number Function, RND(X)

The random number function produces a random number between

0 and 1. The numbers are reproducible in the same order

for later checking of a program. The argument X in the RND(X)

function call can be any number, as that value is ignored.

LISTNH

10 REM - RANDOM NUMBER EXAMPLE

25 PRINT "RANDOM NUMBERS"

38 FOR I=! TO 30 : :

408 PRINT RNDCD), - ' -

3-21

50 NEXT I
68 END
. READY

-RUNNH

RANDOM NUMBERS : :
«770032 728066 «438103 + 076028
+395189 $751974 ©955142 +963083
©425557 +913388 ©650321 © 681433
+281333 + 566656 «867935 T187712
3.97218E-02 724634 +993399 “420146
«B867253 Z730664 +57871 +896285

READY - . - T ‘

«51324

.182217
«235785
+834855
< 688095
«169325

In order to obtain random digits from 0 to 9 , change line
40 to read:

49 PRINT INT(1@*RND(0)),

and tell BASIC to run the program again. This time the re-

sults are:

~ RUNNH . . C '
RANDOM NUMBERS ‘ »

7 7 4 (") S

3 7 9 9 1

4 9 - 6 6 2

.2 5 8 1 8

[} i 9 4 6

8 7 5 8 _ 1

READY] , o i
, __ ‘ H

It is possible to generate random numbers over any range.

For example, if the range (A,B) is desired, use:

(B=A) *RND (#f) +A

P s

to produce a random number in the range A<n<B.

3.6.2 RANDOMIZE Statement

ARSI 70

The RANDOMIZE statement is written as follows:
line number RANDOMIZE

or, alternatively:

1 S T

line number RANDOM

' If the random number generator is to calculate different
random numbers every time a program is run, the RANDOMIZE
statement is used. RANDOMIZE is placed before the first
use of random numbers (the RND function) in the program.
When executed, RANDOMIZE causes the RND function to choose
a random starting value, so that the same program run
twice gives different results. For this reason, it is
good practice to debug a program completely before insert-
ing the RANDOMIZE statement. ’

S

e

To demonstrate the effect of the RANDOMIZE statement on two
runs of the same program, we insert the RANDOMIZE statement

as statement 15 in the following program:

. LISTNH
15 RANDOMIZE "
20 FOR I=1 TO S
25 PRINT '"VALUE"; I 3" IS"3 RND(@)

38 NEXT I
35 END
READY
RUNNH |
VALUE 1 IS .808118
VALUE 2 IS .842323
VALUE 3 IS .780877
VALUE 4 1S .1@4348
VALUE 5 1S +.598241
READY
RUNNH o ' o - -
'VALUE 1 IS .572767 ’
VALUE 2 IS .136269
~ VALUE 3 IS .662712
VALUE 4 IS .749856
VALUE 5 IS .534725

READY
The output from each run is different.

3.7 SUBROUTINES

A subroutine is a section of code performing some operation
required at more than one point in the program. Sometimes
a complicated I/O operation for a volume of data, a math-

" ematical evaluation which is too complex for a user-defined
function, or any number of other processes may be best per-
formed in a subroutine.

More than one subroutine can be used in a single program,

in which case they can be placed one after another at the -
end of the program (in line number sequence). A useful

3-23

practice is to assign distinctive line numbers to subroutines;
for example, if the main program uses line numbers up to 199,
use 200 and 300 as the first numbers of two subroutines.

LISTNH |
1 REM - THIS PROGRAM ILLUSTRATES GOSUB AND RETURN

2¢ INPUT A,B,C

3¢ GOSUB 100 | -~
"4 LET A=ABSCINT(CA)) - :
50 LET B=ABSCINT(B))

68 LET C=ABSCINT(C))

78 PRINT
80 GOSUB 100
’ 9¢9 STOP

1660 REM - THIS SUBROUTINE PRINTS OUT THE SOLUTIONS
110 REM -~ OF THE EQUATION: AXt2 + BX + C = @
, 120 PRINT “THE EQUATION 1IS "3 A 3U"kXt2 + Y3 B 3Vv%kX + Y3
~ 138 LET D=B%B - 4%A%C : i
140 IF D<>@ THEN 17@
156 PRINT '""ONLY ONE SOLUTION.-. X " =B/(2%A)
1680 RETURN ‘ i ~
176 1F D<@ THEN 289 :
180 PRINT *“TUO SOLUTIONSeseX ="3 : }
185 PRINT (-B+SQR(D))/(2%A); "AND X “"3 (~-B-SQR(D))/ (2%A)
196 RETURN . o
200 PRINT "IMAGINARY SOLUTIONS«ee X = ('3
205 PRINT =-B/(2%A) 3",'3 SQR(=-DY/(2%A) ;') AND ('3
207 PRINT -B/(2*A) 3","3 =SQR(=-D)/(2%A) 3™ i
210 RETURN 7 | a , T
9908 END " ‘ '

READY

RUNNH

? 1)05)".5

THE EQUATION IS 1 *Xt2 + o5 %X + -.5
TWO SOLUTIONSseeX = o5 AND X --l

THE EQUATION IS 1 *Xt2 + @ %X + 1
IMAGINARY SOLUTIONSeee X = ¢ @ 5 1) AND ¢ @ ,-1)

STOP AT LINE 98
READY

Lines 100 through 210 constitute the subroutine. The sub-
routine is executed from line 30 and again from line 80.
When control returns to line 90 the program encounters the
STOP statement and terminates execution. |

3-24

3.7.1 GOSUB Statement

Subroutines are usually placed physically at the end of a

programAbefore DATA statements, if any, and always before

the END statement. The program begins execution and cont-
inues until it encounters a GOSUB statement of the form:

line number GOSUB 1line number

where the line number following the word GOSUB is the first
-1line number of the subroutine. Control then transfers to
that line in the subroutine. For example:

5¢ GOSUB 2¢f@

Control is transferred to line 2@@ in the user program.
The first line in the subroutine can be a remark or any

executable statement.

3.7.2 RETURN Statement

Having reached the line containing a GOSUB statement, control
transfers to the line indicated after GOSUB; the subroutine
is processed until the computer encounters a RETURN state-
ment of the form:

line number RETURN

which causes control to return to the statement following
the original GOSUB statement. A subroutine is always exited
via a RETURN statement.

Before transferring to the subroutine, BASIC internally records
the next sequential statement to be processed after the GOSUB
statement; the RETURN statement is a signal to transfer

control to this statement. In this way, no matter how many
subroutines or how many times they are called, BASIC always
knows where to go next.

3.7.3 Nesting Subroutines

Subroutines can be nested; that is, one subroutine can call
another subroutine. If the execution of a subroutine encounters

3-25

a RETURN statement, it returns control to the line following
the GOSUB which called that subroutine. Therefore, a sub-
routine can call another subroutine, even itself. Subroutines
can be entered at any point and can have more than one

RETURN statement. It is possible to transfer to the begin-
ning or any part of a subroutine; multiple entry points and

RETURNs make a subroutine more versatile.
‘The maximum level of GOSUB nesting is dependent on the size
of the user program and the amount of core storage available-

at the installation.

3.8 STOP AND END STATEMENTS

The STOP and END statements are used to terminate program

execution. The END statement is the last statement in a
-BASIC program. The STOP statement can occur several times
throughout a single program with conditional jumps deter-
mining the actual end of the program. The END statement
is of the form:

line number END

The line number of the END statement should be the largest
line number in the program, since running a program with

line numbers greater than that of the END statement results

in the following error message being printed:
TEND' NOT LAST
and execution is halted.

NOTE

A program will execute without an END statement;
however, the following error message is printed:
NO 'END' STATEMENT.

The STOP statement is of the form:

line number STOP

3-26

and causes:

STOP AT LINE line number
READY

to be printed when executed.

Execution of a STOP or END statement causes the message:
READY

to be printed by the teleprinter. This message signals that
the execution of a program has been terminated or completed,
and BASIC is able to accept further input.

3.9 REMARKS AND COMMENTS

It is often desirable to insert notes and messages within
a user program. Such data as the name and purpose of the
" program, how to use it, how certain parts of the program
work, and expected results at various points are useful

things to have present in the program for ready reference

by anyone using the program.

There are two ways of inserting comments into a user program:

a. the REMARK statement, and

b. use of the exclamation mark (!).
The REMARK statement must be preceded by a line number.
The word REMARK can be abbreviated to REM for typing con-
venience, and the message itself can contain any printing
character on the keyboard. BASIC completely ignores any-
'thing on a line following the letters REM. (The line num-
ber of a REM statement can be used in a GOTO or GOSUB state-
ment; see sections 3.4 and 3.8.1, as the destination of a
jump in the program execution.) Typical REM statements
- are shown below:

1§ REM - THIS PROGRAM COMPUTES THE AMOUNTS
11 REM - AND WRITES THE CHECKS

3-27

The exclamation mark is used to terminate the statement part
of a line and begin the comment part of the line. For

example:
125 LET Pl=(H-44) *R !SET EQUAL TO OVERTIME PAY
130 PRINT P + P1 IPRINT SUM OF OVERTIME AND REGULAR PAY

BASIC ignores everything on the line after encountering the
exclamation mark.

Messages in REMARK statements are generally called remarks,
those after the exclamation mark, comments. Remarks and
comments are printed when the user program is listed but
do not affect program execution. It is good programming
practice to include REMARKs and comments in all programs,

unless space requirements are critical.

"3.10 ON-GOTO STATEMENT

The simple GOTO statement allows the user to unconditionally
transfer control of the program to another line number. The
ON-GOTO statement allows control to be transferred to one
of several lines depending on the value of an expression
at the time the statement is executed. The statement is

of the form:
- line number ON expression GOTO 1list of line numbers

The expression is evaluated and the integer part of the ex-
pression is used as an index to one of the line numbers in

the list. For example
5¢ ON X GOTO 1@¢,20¢,39¢

transfers control to line number 1§@ if the value of X is 1,
to line number 2fgg if X is 2, and to 3¢@g if X is 3. Any other
values of X (other than 1,2, or 3 in this example) would

cause a transfer to the next line.

3.11 ON-GOSUB STATEMENT

The GOSUB and RETURN statements are used to allow the user to

3-28

transfer control of his program to a subroutine and return
from that subroutine to the normal course of program exec-
ution (see Section 3.7 for details). The ON-GOSUB state-
ment is used to conditionally transfer control to one of
several subroutines or to one of several entry points to
one (or more) subroutine(s). The statement is of the
form:

line number ON expression GOSUB 1list of line numbers

Depending on the integer value (truncated if necessary) of
the expression, control is transferred to the subroutine
which begins at one of the line numbers listed. Encounter-
ing the RETURN statement after control is transferred in
this way allows the program to resume execution at the line
following the ON-GOSUB line.

 An example of the statement follows:

When line 80 is executed, the value of X-Y being either 1,

2, or 3 causes control to transfer to line 900, 933 or 1014,
respectively. If the quantity X-Y is not equal to 1, 2 or 3,
control is transferred to the next line.

Since it is possible to transfer into a subroutine at dif-

ferent points, the ON-GOSUB statement could be used to deter-

mine which portion of the subroutine should be executed.

3-29

CHAPTER 4

CHARACTER STRINGS

4.1 CHARACTER STRINGS

Thé previous chapters describe the manipulation of numerical
information; however, EDUCOMP BASIC also processes information
'in the form of character strings. A string, in this context,
is a sequence of characters treated as a unit. A string can
be composéd of any combination of the ASCII characters in
Table 4-2.

Without realizing it, the reader has already encountered
character strings. Consider the following program which

. prints the name of a month, given its number:

- ;

LISTNH ’ R
16 PRINT "TYPE A NUMBER BETVEEN 1 AND 12"

12 INPUT N

15.IF N>1 THEN IF N<12 THEN IF N=INT(N) THEN 2§

17 PRINT "NUMBER OUT OF RANGE":GOTO 16

20 IF N>3 THEN PRINT “THE";N;"TH MONTH I1S':

25 IF N=1 THEN PRINT "THE FIRST MONTH IS JANUARY"
36 IF N=2 THEN PRINT "“THE SECOND MONTH 1S FEBRUARY"

'35 IF N=3 THEN PRINT "THE THIRD MONTH 1S MARCH"
4¢ IF N=4 THEN PRINT “APRIL"

45 IF N=5 THEN PRINT "MAY"
56 IF N=6 THEN PRINT "JUNE"

. 55 IF N=7 THEN PRINT "JULY"

©66 IF N=8 THEN PRINT '"AUGUST" :

65 IF N=9 THEN PRINT "“SEPTEMBER" S
76 IF N=1¢ THEN PRINT "OCTOBER" ’
75 IF N=11 THEN PRINT *NOVEMBER"

86 IF N=12 THEN PRINT “DECEMBER" ’
85 END ~ '

READY

* RUNNH

TYPE A NUMBER BETWEEN 1 AND 127 2
THE SECOND MONTH 1S FEBRUARY

READY

4-1

In Chapter 3 the INPUT and PRINT statements were shown print-

ing messages along with the input and output of numeric values
(see lines 10 and 15 above). These messages consist of char-

acter string constants (just as 4 is a numeric constant). In

a similar way, there are character string variables and

functions.

4.1.1 String Constants

Just as numbers can be used as constants or referenced by
variable names, EDUCOMP BASIC permits character string con-
stants. Character string constants are delimited by double

quotes. For example:

1¢5 LET Y$ = "FILE4"
8¢ IF AS$ = "YES" THEN 25§

- where "FILE4" and "YES" are character string constants.

4.1.2 Character String Variables

variable names can be introduced for simple strings and for
lists composed of strings (which is to say one dimensional
string matrices). Any single letter followed by a dollar
sign($) character is a legal name for a string variable.

For example:

AS, C$, 28

are simple string variables. Any single letter list var-
iable name followed by the $ character denotes the string

form of that variable. For example:
Vs (N), C$(M)

are list string variables,(where M and N indicate the pos-
ition of that element of the matrix within the whole).

The same name can be used as a numeric variable, as a string
variable and as a one dimensional array in the same program.

For example:

A AS A(N)

can all be used in the same program, but
A(N) and A(M,N)

cannot both occur in the same program.

Just as numeric variables are automatically initialized to
@ when a program is run, string variables are initialized
to a null string containing zero characters (the character

'string constant "").

4.1.3 Subscrigped String Variables

String lists are defined with the DIM statement, as are

numerical lists and matrices. For example:
1@ DIM S$(5)

indicates the S$ is a string matrix with six elements,
S$(g) through S$(5), which can be separately accessed. If
a DIM statement is not usgd, a subscripted string variable
is assumed to have a dimension of 10 (11 elements including
the zero element) in each direction. Note that the dimension
of a string array specifies the number of strings and not
the number of characters in any one string. For example, if
16 FOR I=1 T0 7
26 LET B$(I)="PDP-8"
36 NEXT 1

- they would cause a list B$(n) té be created having 11
accessible elements, B$(ﬁ) through B$(1g). The elements

BS$ (1) through B$(7) are set equal to "PDP-8" and the others
would be null strings (have no characters). As a general
rule, all lists should be dimensioned to the maximum size

being referenced in the program.

4.1.4 String Size

A character string can contain almost any number limited
usually by the amount of memory storage available. In
EDUCOMP BASIC the upper limit on string size is 2050 characters.
The DIM statement is used not only to define an array, but also
to indicate the length (number of characters) of a string. 1In
EDUBASIC, strings longer than fifteen (15) characters must be
dimensioned before they are accessed. For example:

19 AS$ = "@1234567890123456789"

2@g@ END

The above example will generate an error message when executed,
STRING OVERFLOW IN LINE 1g@¢. In the above example, line 9§
should be added,

9¢ DIM AS = 24

Strings must be dimensioned for the maximum length which they
will assume in the user's program. However, a string may
contain fewer characters than the number specified in the DIM
statement. For example,

1gg DIM AS$ = 50

114 Ag = "EDUCOMP"

12g9 - END

The length of AS$ will be seven after this program is executed.
If no length is specified for string variables, a length of
fifteen is assumed. The following line is an example of
DIMensioning for string arrays:

1g¢ DIM AS = 3¢gd@, BS(1g), Cs$(12) = 24

The above statement would reserve space in memory for
1. A character string of length 3¢f,
2. Eleven strings of length fifteen, and
3. ‘Thirteen strings with twenty-four characters.

4-4

4.1.5 Relational Operators

When applied to string operands, the relational operators
indicate alphabetic sequence. For example:
55 IF AS$(I) < AS$(I+1l) GOTO 1g¢

When line 55 is executed the following occurs: AS$(I) and.

AS$ (I+l) are compared; if AS$(I) occurs earlier in alphabetical
order than AS$(I+l), execution continues at line 100. Table
4-1 contains a list of the relational operators and their
string interpretations.

Table 4-1

Relational Operators Used With
String Variables

 Operator Example Meaning
= AS = BS The strings A$ and B$ are equivalent.
< A$ < BS The string A$ occurs before B$ in alpha-

betical sequence.

<= AS$ <= BS$ The string A$ is equivalent to or occurs
before B$ in alphabetical sequence.

> . AS$ > BS The string A$ occurs after B$ in alpha-
betical sequence.

>= AS$ >= BS The string A$ is equivalent to or occurs
‘ after B$ in alphabetical sequence.

<>, # AS # BS The strings A$ and B$ are not equivalent.

In any string comparison, trailing blanks are part of the
string. That is to say "YES" is not equivalent to "YES ",
A null string (of length zero) is considered to be completely
blank and is less than any string of length greater than zero.

ASCII Character Codes

Table 4-2

ASCII ASCII ASCII
Decimal Char- RSTS Decimal Char- RSTS Decimal Char- RSTS
Value acter Usage Value acter Usage Value acter Usage
] NUL FILL character 43 + 86 v
SOH 44 , 87 W

2 STX 45 - 88 X

3 ETX . CTRL/C 46 . 89 Y

4 EOT 47 / 9g VA

5 ENQ 48] 91 (

6 ACK 49 1 92 \

7 BEL BELL 5@ 2 93]

8 BS 51 3 94 ~or 4

9 HT HORIZONTAL TAB 52 4 95 - Or «

1g LF LINE FEED 53 5 96 ~ Grave accent
11 vT VERTICAL TAB 54 6 97 a

12 FF FORM FEED 55 7 98 b

13 CR CARRIAGE RETURN 56 8 99 c

14 so 57 9 199 d

15 SI CTRL/O 58 I 121 e
16 DLE 59 ; 1¢2 £

17 DCl 6g - < 123 g

18 DC2 61 = 194 h

19 DC3 62 > 1¢5 i

28 DC4 .63 ? 1g6 j

21 NAK CTRL/U 64 @ 187 k

22 SYN 65 A 1¢8 1

23 ETB 66 B 1g9 m

24 CAN 67 (o4 11¢ n

25 EM 68 D 111 o

26 SUB CTRL/Z 69 E 112 P

27 ESC ESCAPE! 79 F 113 a

28 FS 71 G 114 r

29 GS 72 H 115 s

39 RS 73 I 116 t

31 us 74 J 117 u

32 SP SPACE 75 K 118 v

33 ! 76 L 119 w

34 " 77 M 12¢ X

35 # 78 N 121 y

36 $ 79 "0 122 z

37 % 8@ P 123 {

38 & 8l o) 124 l Vertical Line
39 ' 82 R 125

49 (83 s 126 ~ rilde

41) 84 T 127 DEL RUBOUT
42 * 85 U

! a1 TMODE (ASCII 125) or PREFIX (ASCII 126) keys which appear on some terminals are
translated internally into ESCAPE.

NOTE

The decimal wvalues 128 through 255 can appear in character

strings.

For most practical purposes, the characters repre-

4-6

sented by N and N+128 (decimal) are the same. The characters
CHRS$ (N) and CHRS (N+128) test as equal if compared. Users
should be careful when performing output of these values
since they may have some significance in certain device-

dependent operations.

4.2 STRING INPUT

The READ, DATA and INPUT statements can be used to input string
variables to a program. For example,

1¢ READ A$, B, C, D

2§ DATA 17, 14, 13.4, CAT

causes the following assignments to be made:

AS$ = the character string "17"

B = 14

cC = 13.4

reading D as CAT causes the message BAD INPUT IN LINE 1§
to be printed. EDUBASIC then tries to read the next
number for D. In this example, no number exists after
CAT so another error message is printed OUT OF DATA IN
LINE 14.

Quotation marks are necessary around string items in DATA
statements only if the string contains a comma or if leading
blanks within the string are significant. Quotes are always
acceptable around string items, even though not always
necessary. For example, the items in line 40 in the following
program are all acceptable character strings and would be read
as printed. EDUBASIC will recognize imbedded and trailing
blanks even though there are no quote marks around the string.
The comma, carriage return, or second quute is the end of the

string.

4-7

16 READ AS$,B$,C$,D$,ES

26 PRINT AS$:;E$3CS$3DS3ES , , ‘
33 PRINT A$,E$»C3%,D3%ES .

40 DATA "MR. JONES",MISS SMITH, "MRSe BROWN', "MISS","MR"
S¢ END . S

READY

RUNNH : : . ,

MR. JONESMISS SMITHMRS. BROWNMISSMR

MRs JONES . MISS SMITH MRS. BROWN = MISS MR

READY

A READ statement can appear anywhere in a multiple statement
line, but a DATA statement must be the last statement on a
line.

NOTE

The data pool composed of values from
the programmed DATA statements is stored
internally as an ASCII string list.
Where a numeric variable is read, the
appropriate ASCII to numeric conversions
are performed. Where a string variable
is read, the string is used as it appears
in the DATA statement. If the item did
not appear in quotes, leading spaces

are ignored. If the item did appear in
quotes, the string variable is equated
to the entire string within the quotes.

A feature of the INPUT statement when used with character
string input is the INPUT LINE statement of the form:
line number INPUT LINE string variable

For example,

1¢ INPUT LINE A$
causes the program to accept a line of input from the terminal
with punctuation characters or quotes. Any characters are
acceptable in a line being input to the program in this
manner. The program can then treat the line as a whole or in
smaller segments as explained in Section 4.4 which describes
string functions. ‘

An INPUT LINE statement reads the entire line as typed by

the user, excluding the line terminating character. The

4-8

line terminator is a carriage return/line feed, generated
by typing the RETURN key.

4.3 STRING OUTPUT

When character string constants are included in PRINT state-
ments, only those characters within quotes are printed. No

leading or trailing spaces are added. For example,

LISTNH

10 X=1eG:Y=2.01:A="A="
26 PRINT A$3X5"B=';Y
3¢ PRINT "DONE"

46 END ’)

READY . N
RUNNH -

A= 1 B= 2.01

 DONE '

READY

Character string output can also contain the string functions

described in the next section.

4.4 STRING FUNCTIONS

Like the intrinsic mathematical functions (e.g., SIN, LOG),
EDUCOMP BASIC contains various functions for use with charac-
ter strings. These functions allow the program to concatenate
two strings, access part of a string, determine the number

of characters in a string, and perform other usefull operations.
(These functions are particularly useful when dealing with
whole lines of alphanumeric information input by an INPUT LINE
statement). The various functions available are summarized in
Table 4-3.

4-9

Table 4-3

String Functionsl

Function Code

Meaning

MID(A$,N1,N2)

LEN (AS$)

CHRS (N)

ASCII(AS)

Indicates a substring of the string AS
starting with character N1, and N2 characters
long (the characters between and including
the N1 through N1+N2-1 characters of the
string AS$). For example:
100 PRINT MID(AS,15,5)
110 END '
RUNNH
OPQRS

Indicates the number of characters in the
string A$ (including trailing blanks).
For example:
100 PRINT LEN(AS)
110 END
RUNNH
26

Indicates a concatenation operation on two
strings. For example "ABC"+"DEF" is '
equivalent to "ABCDEF". "12"+"34"+"56" 1is
equivalent to "123456".

Generates a one-character string having the
ASCII value of N (see Table 4-2). For
example: CHRS$(65) is equivalent to "A".
Only one character can be generated.

Generates the ASCII value of the first
character in A$. For example, ASCII("X")

is equivalent to 88, the ASCII equivalent of
X. If BS = "XAB", then ASCII(BS$) = 88.

1A$ in the 'MID' and 'LEN' examples is assumed
to be "ABCDEFGHIJKLMNOPQRSTUVWXYZ".

CHAPTER 5

DATA STORAGE CAPABILITIES

5.1 FILE STORAGE

Thus far, techniques have been presented for entering data
into a program as it is written (via READ and DATA statements)
or when it is executed (via the INPUT statement). Both of
these techniques pose operational problems when the amount of
data a program reads or writes is increased beyond a few items.
In order to alleviate these problems, EDUBASIC provides the
user with a facility to define Input/Output files.

An EDUBASIC file consists of a sequehce of data which is trans-
mitted to (or from) a BASIC program from (or to) an external
Input/Output device. The external device can be the user's
terminal, the 0S/8 system disk, a line printer, magnetic tape,
or high-speed paper tape equipment. _EECh file has both an

external name by which it is known within the system and an

internal file designator_ (a number used to refer to the file

within the program). An OPEN statement is used to associate

an external name with an internal designator.
—_ ’

An external file name is completely specified with the following

information:
device:filename.extension

where the device can be one of the following:

SYS: system device

DSK: default device

DTAZ to DTA7: DECtape units 0 to 7

PTR: high-speed paper tape reader
ijj PTP: high-speed paper tape punch

LPT: line printer

CDR: card reader

TTY: user's terminal

RKAQ system halt of an RK8e disk

RKAl other half of an RK8e disk

RKA2n-2:

RKA2n-1: RK8e units for n=2,3,4

5-1

The filename is a six character (maximum) alphanumeric name. The
extension is a two character (maximum) alphanumeric file name
extension usually specifying the type of file. The extensions
used by the system are as follows (the user can create his own
extensions) : '

.BA BASIC source program, ASCII format

.BC Compiled BASIC program, 'binary' format

.DA -Data file (sequential) _

.BR BASIC Random access data file (virtual file)

A user can have up to 4 files open (with internal designators
1 through 4) for access at any given time. Each open file

consumes a buffer within core storage. The buffer sizes for

various devices are all 256 words under 0S/8. If a buffer

——

cannot be created for a file, due to a lack of storage space

in core, then the file cannot be opened. (The process of

opening a file is described in section 5.2).

5.2 OPEN STATEMENT

The OPEN statement is used to associate a file on a bulk

storage device or an I/O device with an internal file desig-
nator. This statement allows the file to be readily referencedir;;;”
in INPUT, PRINT, and (in some cases) DIM statements. The 4f‘

format of the OPEN statement is as follows: ,?’ >A
N v
70
(W& A \
1i ber OPEN strin FOR LNPUT
ine number string. OUTPUT AS FILE expression

The string field is a character strlng constant, variable orﬂ_xxﬁ

expression that contains the external flle spec1f1catldﬁﬂof

the file to be opened. The AS FILE expresszon must have an
integer value between 1 and 4, corresponding to the internal

channel number on which the field is being opened.

There are three distinct forms for the OPEN command:

5-2

OPEN<string> FOR INPUT
OPEN<string> FOR OUTPUT
OPEN<string>

The form of the OPEN statement used determines whether an
existing file is to be opened or a new file created.

a. An OPEN FOR INPUT statement causes a search for an
already existing file (since the statement indicates
the file is an input file). If no file is found, the
FILE NOT FOUND error occurs. In the following
examples the extensions .DA are assumed unless the
extensions are provided. |

5¢ OPEN "FILE" FOR INPUT AS FILE 1

b. An OPEN FOR OUTPUT statement causes a search for an
already existing file which, if found, is deleted.
A new file is then created.

75 OPEN "DATA" FOR OUTPUT AS FILE 3

c. An OPEN statement without an INPUT or OUTPUT desig-
nation attempts to perform an OPEN FOR INPUT operation
as described above. If this fails, a new file is
created.

194 OPEN "MATR.BR" AS FILE 4

The extension .BR is assumed if not specified.
EDUBASIC permits access to data files by two methods:

a. Formatted ASCII and

b. Virtual core arrays.

5.2.1 Formatted ASCII I/0

Formatted ASCII data files are the simplest method of data
storage, involving a logical extension of the PRINT and INPUT

statements to be used in conjunction with the OPEN statement.

5-3

The formats for INPUT and PRINT statements to be used with
the OPEN statement are as follows:

line number INPUT # expression , list

line number PRINT # expression , list

where the expression has the same value as the expression in
the OPEN statement (the internal file designator) and the 1list
is a list of variable names, expressions, or constants as
explained in the Sections describing the PRINT and INPUT state-
ments. (The virtual array dimension statements reference OPEN
'statements without the FOR INPUT or FOR OUTPUT phrase, as

explained later.)

For example,
14 OPEN "CDR:" FOR INPUT AS FILE N1
2@ INPUT #N1, AS

Line number 1@ above causes the card reader to be opened as

an input source with the internal file designator whose value
is contained in the variable N1l. Line number 2@ causes input
to be accepted from logical I/O channel N1; and the input is
associated with the wvariable AS$S. (N1 must have a value between
1 and 4.)

5.2.2 File-Structured Vs. Non-File-Structured Devices

0S/8 distinguishes between file-structured (disk, DECtape and
magtape) devices and non-file-structured (all other) devices.
When a file is to be found or created on a file-structured
device, the file specification string in the OPEN statement
must include both a device designation and a filename. On
non-file-structured devices, the device name alone identifies
a file (filename and extension, if specified, are ignored.)
For example:

DTAl: is insufficient information to specify a
- file '

5-4

DTA1l:FRED is sufficient to specify the file
FRED on DECtape unit 1

PTP: uniquely specifies the high-speed
punch
PTP:FILE produces the error message FILE NOT

FOUND IN LINE xxX

File specification syntax is such that the default device need

not be specified. For example:
DSK:QUIZ

is equivalent to:
QUIZ

When a device is not specified, a file name alone always in-
dicates a disk or DECtape as a default storage device. To
store a file on DECtape (other than the default device) the
device would be specifically indicated:

DTA4:FOO

The following sequence is useful and allows for easy change in
the device to be used before program execution begins:

1¢ LET I$ = "PTR:"

29 OPEN I$ FOR INPUT AS FILE 1

3¢9 INPUT #1, AS

If a file being opened for input does not exist, an error

message is returned. If a file being opened for output dbes

not exist, it is created. If a file for output already exists

it is deleted and recreated.

If an assignable device is referenced in any OPEN statement and
that device is unavailable for assignment, an error message

is printed.

File names used in an OPEN statement are composed of up to six

alphanumeric characters with an extension of up to two alpha-

numerics. Thus, an output file could be created as follows:
14 OPEN "DSK:SCRTCH.TM" FOR OUTPUT AS FILE N1

Thereafter, reference can be made to file SCRTCH.TM on device
DSK: as follows (notice that the internal file designator is
represented as a variable, although its value must still be
between 1 and 4): ' ‘

199 PRINT #N1, AS$, BS

5.2.3 Opening the User Terminal as an I/0 Channel

The internal file designator (following the # character in the
INPUT or PRINT statements) is always in the range 1 to 4. File
designator @ is, by definition, always open as the user's ter-
minal. Internal.file designator # cannot be closed or opened.
" Use of file ## is indicated below (no OPEN #@ statement is
necessary or allowed). | |

~ 1¢ INPUT #¢, A$

is equivalent to:
. 1¢ INPUT AS

It is sometimes useful to be able to request keyboard input
without having the "?" prompting character printed first. This
can be accomplished by opening the user's terminal ("TTY:") on
some internal file designator other than @. The ? character

is only generated for input requests on file #@, as shown in the

following example:

S DIM A$=55 ‘

16 OPEN "TTY:" FOR INPUT AS FILE 1 '
20 PRINT “"WITH USE OF INTERNAL FILE DESIGNATOR"
3¢ PRINT “TYPE YOUR NAME, FOLLOWED BY A RETURN KEY, AND A CTRL/Z"
46 INPUT #1,AS » |
5¢ PRINT: PRINT r

66 PRINT "FOR COMPARISON, WITHOUT FILE DESIGNATOR"
76 PRINT “TYPE YOUR NAME FOLLOWED BY A RETURN KEY"™
86 INPUT AS . - L
96 END | C A

.

5-6

READY

_RUNNH .
WITH USE OF INTERNAL FILE DESIGNATOR

TYPE YOUR NAME, FOLLOWED BY A RETURN KEY, AND A CTRL/Z
Je Pe JONES ' . -

\

FOR COMPARISON, WITHOUT FILE DESIGNATOR ‘ -
TYPE YOUR NAME FOLLOVED BY A RETURN KEY
? Je P. JONES

READY

If a file is being opened for both input and output or to be

referenced as virtual arrays the form:
Line number OPEN string AS FILE expression

is used. If the file indicated by the name "string" is found,
it will be used and, if it is not found, it will be created.

When a program used a statement such as:

5¢ OPEN "FOO" AS FILE 4
it can perform input and output to that file. However, such a
file (FOO on the system device) can only be referenced in a
sequential fashion. If data is already in the file, it can be
read via INPUT statements similar to the manner in which a
READ statement pulls data from the DATA statement pool. Any
\ attempt to use a PRINT statement with the file FOO will work
only if there is nothing already in that file. If data already
exists in the file FOO, a PRINT statement will begin to write
over any data beyond the point where the INPUT stopped. This-
is not a recommended technique since the entire file may be

garbled and useless.

5.3 OUTPUT TO VARIOUS DEVICES

In order to direct output to a device other than the user
terminal, the PRINT command is formatted as follows:

5=7

line number PRINT # expression , list

where the expression is the internal file designator of a
previously opened output file (see section 7.2). The list of
information to be output can include any of the output infor-
mation described as applicable to the PRINT statement. For
example:

14 OPEN "DATAl" FOR OUTPUT AS FILE 1

2@ PRINT #1, "START OF DATA FILE"

The above lines open a file called DATAl on the system device
with internal file designator #1 (of 4 possible open files
available in the system). The first line in that file reads:
START OF DATA FILE.

To output a table of square roots on the line printer, the

following program could be used:

" 16 LET IS$="LPT:"

20 OPEN I$ FOR OUTPUT AS FILE | . ‘
- 36 FOR I = 1 TO 5: PRINT #1, I, SQRCI): NEXT I
= 48 END ‘ . R ,

¢

READY

The results would appear on the line printer as follows:

Rl
~

1
l.41421
1473265

b ,

2.23607

BN =

It is advisable to print only one character string per PRINT
statement because terminators are not automatically introduced.

The carriage return serves as the delimiter. A MID function
may be used to separate the fields as desired.

5.4 INPUT FROM VARIOUS DEVICES

Like the PRINT statement, the INPUT statement can operate upon
devices other than the user terminal. The form:

line number INPUT # expression , list

causes input to be accepted from the previously opened file or
device indicated in the expression (see section 5.1). As long
as the value of the expression is non-zero, the specified file
is read through one of the available user I/O0 buffers (internal
file designators). If the expression is zero, or missing
completely, input is from the user terminal. No ? character
is printed on the terminal paper when input is requested from
a deVice other than the terminal, opened on file #@g. For
example:

19 OPEN "PTR:" FOR INPUT AS FILE 3

2¢ INPUT #3, AS
causes the string A$ to be read from the high-speed paper tape
reader.

Note that spaces are ignored in numeric input data. Commas
are inserted automatically when printing out to a data file.
When inputting from a data file, a comma or carriage return is

taken as a terminator.

Once a file is opened it can be closed (a CLOSE statement must
be used) with a second OPEN statement. Closing and reopening
the file moves the positioned pointer within the file back to
the beginning of the file, so that the entire file becomes
available again for sequential referencing. These operations
serve much the same function as a RESTORE statement would to
the pool of DATA statement.

5-9

5.5 VIRTUAL DATA STORAGE

Many applications require a capability to individually address
and update records on a disk file in a random (non-sequential)
manner. Other applications may require more core memory for
data storage than is economically feasible. EDUBASIC fills
both these requirements with its easy-to—-use random access

file system, called virtual core.

The EDUCOMP BASIC virtual core system provides a mechanism for
the programmer to specify that a particular data array is not

to be stored in the computer's core memory, but within the 0S/8
file system, instead. Data stored in files external to the

user program will survive, even after the user leaves his ter-
minal, and can be retrieved by name at a later session. Items
within the file are individually addressable, as are items

within core arrays. In fact, it is the similar way in which
data are treated in both core and random-access files which leads

to the name virtual core.

The matrix format is used to store data because in a normal
data file, described earlier, the PRINT and INPUT statements
deal only with the next sequential data element. A normal data
file, then, is much more limited in its applications and de-
pends upon a strictly sequential treatment of I/O. With
virtual data storage, the user can reference any element of the
file, no matter where in the file it resides. This random
access of data allows the user program to perform non-sequential
feferencing of the data for use in any BASIC statement (which
is to say that the virtual core arrays need not be read into
core to be available to the program for use).

5.5.1 Virtual Core DIM Statement

In order for an array of data to exist in wvirtual core, it must
be declared in a special form of the DIM statement (places in
program sequence somewhere after the corresponding OPEN state-

5-10

ment). This special statement is as follows:
line number DIM # expression , list

where the expression is an integer constant between 1 and 4
and corresponds to the internal file designator on which the
program has opened an internal file. The variable list appears
as it would for a normal core resident array DIM statement.
Thus, a 100 by 100 matrix could be defined as:

1¢ DIM #2, A(lg¢ ,196) :
Numbers and strings can both reside in virtual core arrays.
"More than one array can be specified in one virtual core file.
For example:

25 DIM #1, A(1@9@) , Cs(2589)
which allocates space for 1000 numbers and 2500 character
strings (15 characters long each).

5.5.2 Virtual Core String Storage

One of the few differences in data handling between core and
virtual arrays occurs in the storage of strings within string
matrices in virtual core. Strings in virtual core are of
fixed length (all elements having a particular name are of
the same length.) This length can be defined by the programmer
and varies from 1 character to 2000 characters. The system
forces lengths to be a multiple of 3:
3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33,

" If the user indicates other than one of these values, he will
receive the next higher size. Thus:

19 DIM #1, X$(1g8)= 65
is the same as:

19 DIM #1, X$(1@)= 66
If no length is specified, a default length of 15 characters
is assumed. The length attribute of virtual core strings (as
well as ordinary strings) is specified in the DIM statement,
using the notation:

5-11

15 DIM #1, A$(1g@) = 32, B$(1gg)=4, CS$(1g0)

where
AS$ consists of 101 strings of 33 characters each;
BS$ consists of 101 strings of 6 characters each;
C$ consists of 101 strings of 15 characters each;

5.5.3 Opening a Virtual Core File

In order for the user to reference his virtual core file, he
must first associate one of his files (known by name) with an
internal file designator from 1 to 4 (which is then used in
the virtual DIM declaration). This is normally done with the
following OPEN statement:

line number OPEN string AS FILE expression

where the string is the name of a file and the expression
épecifies an internal file designator; thus:

35 OPEN "PAY" AS FILE 1)
associates the file named "PAY" with internal file 1. If "PAY"
already exists, then the existing file is used; if there is no
file named "PAY" one would be created. The extension .BR is

assumed.

Sophisticated users are urged to read Chapter 8 which

describes the system implementation of the virtual core
processor. A mastering of this information will produce
programs which utilize the system resources in a highly

efficient manner.

As an example of virtual core usage, consider the problems of
implementing an information retrieval system for a small or-
ganization. There might be 1000 employees, each needing a
300-character record containing the name, home address, phone,
work station, and phone extension of the employee. Rather
than order the records in the file, it is decided to

5-12

maintain a separate index file containing only badge numbers.
The order of employeq‘records in the master file is the same
as the badge number sequence in the index file. Thus, to
extract information on an employee with badge n, we find his
badge number in the index file and use the index found to
retrieve his data from the master file. Since the number of
employees is small, numeric data can be used in the badge

file; only alphanumeric data is stored in the master file.

A program to print an employee's name, given his badge number,

might appear as follows:

LISTNH
5 DIM R$=300 :
18 !PROGRAM TO LOOK UP NAMES IN MASTER FILE

20 OPEN "BADGE" AS FILE 1 ! BADGE FILE

38 OPEN "MASTER" AS FILE 2 . - IMASTER FILE

49 DIM #1, B(1G0G) ' ' 110809 BADGE NUMBERS

56 DIM #2, AS$(10G@G)=300 11600 RECORDS, EACH 300
55 ’ , 1CHARACTERS LONG

68 PRINT "INPUT BADGE NUMBER";:INPUT E !GET EMPLOYEE NUMBER FORM TTY
76 FOR I=1 TO 166G: IF B(I)=E THEN 186 !IS BADGE # IN FILE?

~ 75 NEXT 1 o : -

80 PRINT "NO SUCH EMPLOYEE": GOTO 60 INO

166 !'VE NOW HAVE INDEX INTO FILE,I IYES

. 118 R$=AS(I) o ' !BRING RECORD INTO CORE

126 PRINT "NAME IS";MID(RS$,10515) INAME IS FROM COLUMN 16 TO 25
268 END) ’ T

READY ‘ | T

5.6 CLOSE STATEMENT

The CLOSE statement is used to terminate I/O to or from a device.
Once a file has ‘been closed, it can be reopened for reading

or writing on any internal file designator. All files are
automatically closed at the end of program execution. The for-
mat of the CLOSE statement is as follows:

line number CLOSE expression

Any number of files can be closed with a single CLOSE statement;
if more than one, they are separated by commas. The expression
indicated is the same expression used in the OPEN statement
and indicates the internal file designator. By choosing a
file with the CLOSE statement, the user frees more core storage
space to open other files (a maximum of 12 depending upon the
space available). For example:

255 CLOSE 2, 4

345 CLOSE 3
Line 255 above closes the files opened on internal device
designators 2 and 4. Line 345 closes the file open on internal

device designator 3.

‘5.7 KILL STATEMENT

The KILL statement is of the form:
line number KILL string

and causes the file named string to be deleted from the user's
file area. For example, when the user has completed all work
with the file XYZ.DA on the system disk, he could remove the
file from storage by executing the following statement:

455 KILL "XYZ.DA"

When using the KILL statement, extensions must be used.

Otherwise no error statement is given but the file is not deleted.

5.8 CHAIN STATEMENT

If a user program is too large to be loaded into core and run
in one operation, the user can segment the program into two or
more separate programs. Such programs are called into core
for execution by means of a CHAIN statement. Each program
section is assigned a name and control can be transferred be-

tween any two programs. A CHAIN statement is of the form:

5-14

line number CHAIN string [line number]

and causes the program named by the string to be called, com-
iled (if necessary), and executed. The line number, if
specified, designates the line at which the program is to be
started. If the line number is omitted, the program is started
at the lowest numbered line (as though a RUN command had been
used). The CHAIN statement is the last statement executed in
each program segment other than the last segment. For example:
199@ CHAIN "MAINﬁ 200
_causes the program MAIN to be loaded and started at line 2@f.

Chaining to precompiled program files (.BC files) is consid-
erably more efficient than chaining to BASIC source program

files since .BA files require compilation upon each call.

Communication between chained programs is performed by means of

the user's file area.

If no extension is given, EDUBASIC looks for a .BC file.
If no .BC file is found, EDUBASIC looks for a .BA file.

If no .BA file is found, an error message results.

When the CHAIN statement is executed, all open files for the
current program are kept open, the new program segment is
loaded, and execution continues. Virtual files should be closed

and reopened across a chain.

The significance of not having to close and reopen a sequential
data file is that the file pointer will not be reset (see
section 5.4). In other words, a PRINT statément in the
chained-to program will add information to the end of the file.
This significance is not present when working with virtual files.

5-15

CHAPTER 6 .

EDUBASIC' GENERALIZED INPUT AND OUTPUT OPERATIONS

6.1 READ AND DATA STATEMENTS

A READ statement is used to assign to a list of variables values
obtained from a data pool composed of one or more DATA statements.
The two statements are of the form:

line number READ 1list of variables

line number DATA list of values

The list of variables can include numeric, subscripted, or
character string variables. The list of values must correspond
in type with the variables to which the value will be assigned,

(although they are stored according to the type of the variable.)

The data pool consists of all DATA statements in a program.
Values are read starting with the DATA statement having the
lowest line number and continuing to the next higher, etc.

The location of DATA statements in a program is irrelevant,
although for simplicity they are usually kept together toward
the end of the program. (The DATA statements must occur in
the proper numeric sequence , however.) A DATA statement must
be the only statement on a line, although a READ statement can
occur anywhere on a line. Comments are not permitted at the
end of a DATA statement.

If a READ statement is unable to obtain further data from the
data pool, an error message is printed and program execution\

. . —D
is terminated.

Quotes are necessary in DATA statements only around string items

which contain a comma or where leading blanks within the string

are significant. The data pool, composed of values from the

6-1

program's DATA statements, is stored internally as an ASCII
string list. When a numeric variable is read, the appropriate
ASCII to numeric conversions are performed. When a string
variable is read, the string is used as it appears in the DATA
statement. If the item did not appear in quotes; leading
spaces are ignored. If the item did appear in quotes, the
string variable is equated to the entire string within the
quotes.

6.2 RESTORE STATEMENT

' The RESTORE statement reinitializes the data pool of the pro-
gram's DATA statements. This makes it possible to recycle
through the DATA statements beginning with the lowest numbered
DATA statement. The RESTORE statement is of the form:

line number RESTORE

For example:
85 RESTORE
causes the next READ statement following line 85 to begin reading
data from the first DATA statement in the program, regardless
of where the last data value was found. See Section 3.3.1 for
an example program using the RESTORE statement.

The RESTORE statement can be placed in any position on a multiple

statement line.

6.3 INPUT STATEMENT

The INPUT statement allows data to be entered to a running
program from an external device, the user's keyboard, disk,
DECtape, paper tape reader, etc. The full form for this state-

ment is:

liné number INPUT[# expression ,] variable list

6-2

In many cases the simpler form:
line number INPUT variable list

is used. This last form causes a ? to be printed at the ter-
minal and the system then waits for the user to respond with
the appropriate values. If sufficient values are not typed,
the system prints another ?; if too many values are typed,
excess values are ignored. .

The format:
line number INPUT # expression , variable list

causes input to be read from the file or device indicated, in
the expression, by the internal file designation number given
when the file was opened. If the value of the expression is
non-zero and the specified file is open to the user terminal
as an input device, then no ? character is printed at the ter-
minal when input is requested. For example:’

75 OPEN "TTY:" FOR INPUT AS FILE 2

8¢ INPUT #2,A
The system then pauses while the user types a numeric value for
the variable A, although no prompting ? or character string

message is printed on the terminal.

Another format of the INPUT statement allows for the entering
of an entire line of data as a single character string entity,
regardless of punctuation. This statement is different from
the normal mode of string input, where the comma and double

quote characters have special significance. The format is: e
line number INPUT LINE[# expression ,] string variable

For example, the statement
25 INPUT LINE AS

would print a question mark and wait for the user to enter a
line followed by the RETURN. As another example:

2@ OPEN "F2" FOR INPUT AS FILE 4

25 INPUT LINE #4, BS$
These lines cause the system to open a file F2 on the system
disk on channel #4 (of 4 possible channels) to input a line of
characters up to the next RETURN character.

6.4 PRINT STATEMENT

In its simplest form, the PRINT statement:
line number PRINT

causes a carriage return/line feed to be performed on the user
terminal. The format:

line number PRINT list

causes the printing of the elements in the list on the user
terminal. An element in the list can be any legal expression.
When an element is not a simple variable or constant, the ex-
pression is evaluated before a value is printed. The list can
also contain character strings between quotes which are printed

exactly as typed between quotes.

Elements in the list are separated by commas or semicolons.
For example:
19 A=1: B=2: C=3
15 PRINT A; A+B+C, C-A, "END"
when executed causes the following line to be printed:
1 6 2 END
A terminal line is considered to be divided into five1 print

zones of fourteen spaces each. Use of these zones involves

lThe actual number of print zones is INT (n/14), where n is the
size of the print line.

6-4

the comma character which causes the print head to move to the
néxt available print zone (from 1 to 14 spaces away). If the
fifth print zone on a line is filled, the print head moves to
the first print zone on the next line.

The .semicolon character functions as follows:

a. 1if a numeric variable or expression is followed by
a semicolon, the value is printed with a preceding
minus sign if the number is negative, or a preceding
space if it is positive. The number is then followed
by a single space.

b. character strings and string variables followed by a
semicolon are printed with no preceding or trailing
spaces.

Any PRINT statement which does not end with a semicolon or
comma character causes a skip to the next line after printing
the elements in the list. The presence of the punctuation
character at the end of the PRINT list causes the next PRINT
statement to continue on the same line under the conditions
already defined.

In general, the output rules for the PRINT statement are

a. suppression of leading and trailing zeros to the
right of a decimal point. Where a number can be
represented as an integer, printing of the decimal
point is also suppressed.

b. at most six significant digits are printed.

c. most numbers are printed in decimal format. Numbers
too large or too small to be printed in decimal
format are printed in exponential format.

d. character string constants are printed without leading
or trailing spaces.

e. extra commas cause print zones to be skipped.

Output can be directed to a device other than the user terminal
with the following command:

line number PRINT # expression , list

The expression is the number of a previously opened output file.
For example:

19 OPEN "PTP:" FOR OUTPUT AS FILE 3

5¢ PRINT #3, B,D,A+7,FNX(B) '
causes four values to be punched onto paper tape by the high
speed punch which is opened for output as file 3, of 4 possible
files. As many as four possible virtual files may be open at
once (for input or output).

'6.4.1 PRINT-USING Statement

In order to perform formatted output, the following statement
is used:

line number PRINT[# expression ,]USING .string , list

where the expression (which is optional) indicates the file or
device which is the destination of the output; the string is
either a string constant, string variable, or string expression
which is an exact image of the line to be printed; and the list
is a list of items to be printed. All characters in the

string are printed as they appear except for the special for-
matting characters and character combinations described on

the following pages. The string, or portions of the string,
are repeated until the 1ist is exhausted. The string is con-
structed according to the following rules:

Exclamation Point

An exclamation point identifies a one character string field.
The string is specified in the 1list within the PRINT statement.
For example:

1¢ PRINT USING "!!!", "AB", "CD", "EF"
which causes:

ACE

6-6

to be printed at the user's terminal. The first character
from each of the three string constants or variables is
printed. Any other characters beyond the first are ignored.

String Field

A variable string field of two or more characters is indicated
by spaces enclosed between backslashes. The backslash character
(\) is produced by typing SHIFT/L on the Teletype keyboard.
Enclosing no spaces indicates a field two columns wide, etc.
For example:

2¢ PRINT USING "\\\ \", "ABCD", "EFGHI"
causes '

ABEFGH
to be printed at the user's terminal. The first two backslashes
have no spaces enclosed, hence permit the printing of two char-
acters (AB). The second two backslashes enclose two spaces and
permit the printing of four characters (EFGH). No spaces
are printed unless specifically planned.

Numeric Field

Numeric fields are indicated with the # character. Any decimal
point arrangement can be specified and rounding is performed
as necessary (not truncation). For example:

3¢ PRINT USING "###.##", 12.346
causes

12.35
to be printed on the user's terminal, while
| 49 PRINT USING "####", 12.345

5@ PRINT USING "####.", 12.345

6@ PRINT USING "##", 19d
causes

12

12.

* .

to be printed on the user's terminal. Numeric fields are right
justified; that is, if a number does not fill the allotted

6-7

space, leading blanks precede the number. When the field
specified is too small for a constant or variable to be printed,
an asterisk is printed for each alloted space.

If the format field specifies a digit as preceding the decimal
point, at least one digit is always output before the decimal
point. TIf necessary, that digit is =zero.

Exponential Format

When the exponential form of a number is desired, the numeric
. field is followed by the string 4444+ (four + characters) which
allocates space for E-xx. Any arrangement of decimal points
is permitted. For example:

5 FS="###+404 #4444

19 A=10000.

28 PRINT USING F$,A,A
causes

19E + @3 1g9d0

to be printed at the user's terminal.

All format positions are used to output a number with an ex-
ponent. The significant digits are left justified and the

exponent is adjusted.

PRINT Statement Punctuation

When the PRINT-USING statement is used, the usual PRINT state-
ment punctuation characters (commas and semicolons) have no
effect on the output format, except that a semicolon at the
end of the PRINT list does inhibit termination of the printed

line.

19 PRINT USING "## ## ##", 1:2,3 N
prints the following:

1 2 3

As another example:
19 PRINT USING
2@ PRINT "X"

prints
2.58X

As another example:

TRELEET, 255

190 LET A=1.32111: B=2.45457

15 LET F$ =

"A=##. ##B=H4. #4"

2@ OPEN "LPT:" FOR OUTPUT AS FILE 4
25 PRINT #4, USING F$, A,B

would cause:

A= ;/32B= 2.45

to be printed on the line printer.

6.4.2 PRINT Functions

In order to aid in formatting simple and complex PRINT state-

ments the following functions are provided:

Function Meaning
POS (X) Returns the current position on the output
: line; where X is the I/0 channel number.
POS (f) returns the value for the user's
terminal.
TAB (X) Tab to position X in the print record.

For example, a standard Teletype has 72
printable columns numbered g through 71.

TAB (4) causes sufficient spaces to be

output to move the print head to column 4.
If the print head is currently past position
4, no spaces are output.

For example:

19 PRINT "X";TAB(1lg) ;POS (#)
causes the following to be printed:

X
Position 1

9 spaces

1¢

Position 1§

6-9

CHAPTER 7

EDUBASIC COMMANDS

7.1 INTRODUCTION

We have discussed the statements in EDUCOMP BASIC which are
available to the programmer to solve the problem. However,

- equally important are the commands or immediately executed
‘key words in BASIC which permit you to perform the tasks of
creating your program, debugging it, running the program,

and finally, saving the statements. All of these steps are
greatly eased with the rich vocabulary of commands in EDUCOMP
BASIC.

The user is assumed to be familiar with 0S/8 and how to start
up an 0S/8 system. In response to the dot (.) given by the
0S/8 command decoder, type

R BASIC
EDUCOMP BASIC responds with

READY

7.2 CREATING A PROGRAM

In order to create a new user program, at any time a user can

- issue the NEW command as follows:
NEW
followed by the RETURN key. The system responds by printing:

NEW FILE NAME--

to which the user responds by typing the name of the new pro-
~gram (no more than six characters). When typing a new BASIC
program, the file name extension .BA (for BASIC) is added to

the name by the system.

Alternatively, the user can give the command NEW followed by
the program name, to avoid having the system prompt the
typing of the program name:

NEW CALPPB
is equivalent to

NEW
NEW FILE NAME--CALPPB

When the NEW command is given, it:
a. Deletes any program currently in core, and

b. Causes BASIC to remember the new program name.
NEW DTAl:CALPPB

is meaningless. All checking for duplicate files occurs

when the SAVE command is given.

Following the creation of a new file with an acceptable
file name, the user can begin to type his program, begin-

ning each line with a line number.

| If the user doesn't type NEW either he will get the program
name given to the previous program or BASIC will create a
file called NONE (if no previous name has been given) which
can be referenced later as NONE. At any time, this name can
be changed (see section 7.5). Only one file with the name

NONE can exist at any one time.

7-2

7.3 CALLING AN EXISTING PROGRAM

When the user desires to recall the source file of an old
BASIC program (previously saved on a storage device), he
gives the OLD command as follows:

OLD
to which the system replies:

OLD FILE NAME--
The usér then types the name of the old BASIC file containing
the program. Alternatively, the user can indicate the old
file name without prompting, as follows:

OLD TAXES
which calls the old file TAXES from the disk. If the file
is not available on the disk or if it is protected against

that user, an appropriate message is printed.

There is a more general form for the OLD command which allows
the user to specify the particular 0S/8 device on which the
OLD program exists.

OLD device:file name.extension

- If the program ALUM is to be called from DECtape number 1,

the command string is
OLD DTAl:ALUM
where the extension .BA is assumed.

OLD may also be used to read in a program (or data file)

‘from a non-file structioned device (TTY:, PTR:, CDR:, etc.).
In this case, only the device is specified since these de-
vices have no directory and do not store more than one file

at a time. As an example,
OLD CDR:
reads a program from the card reader.

NOTE: When accepting input from non-file structional devices,
' CTRL/Z is used as an end-of-file character. This

character may be typed at the console or may occur
at the end of the file on the particular device used.
0S/8 automatically inserts a CTRL/Z at the end of a

paper tape reader file.
7.3.1 CALLING DATA FILES
A further generalization of the OLD command occurs in EDUBASIC
for use with data files. Certainly a data file may be called

into memory with the previously described versions of the OLD

command .
However, many times it is very convenient to be able to
append line numbers to the elements in a data file to ease
editing the information. The full form of the OLD command is

OLD device:file name.extension line number, increment
As an example,

OLD RKA2:STUDNO.DA 100, 5
brings in the data file STUDNO from the second RK8e disk and -

numbers each element starting with line number 100 in incre-

ments of 5. New elements may be added, deleted, or modified

7-4

easily and the file may be stored again without the line num-
bers by using the NSAVE command (section 7.5).

7.3.2 OVERLAYING A PROGRAM

Sometimes it is necessary to append a subroutine or series of
statements to an already existing program. The OVERLAY com-
mand works exactly like OLD except that the program already

in memory is not destroyed.
OVERLAY device;file name.extension line number, increment
As an example, file BX on SYS contains

4g PRINT "TELL ME AGAIN"
50 GO TO 1¢

The program (LOVE) in memory is

14 PRINT "IF YOU LOVE ME, TYPE A 7"

2g INPUT A

3¢9 IF A #7 THEN PRINT "I DON'T LOVE YOU EITHER": GO TO 6{
64 END

If the command is now given,
OVERLAY BX
BX now contains lines 1@ through 6§.

LISTNH
19 PRINT "IF YOU LOVE ME, TYPE A 7"
2¢g INPUT A
3¢ IF A #7 THEN PRINT "I DON'T LOVE YOU EITHER": GO TO 6%
49 PRINT "TELL ME AGAIN"
5¢ GO TO 18
64 END

\J

The OVERLAY command is very useful for adding a subroutine to

a program.

Both the OLD and OVERLAY commands may be used only to call

7-5

ASCII files into memory (e.g., not compiled or .BC files).
Any file called with OLD or OVERLAY may be edited by the

user at the terminal.

7.4 EDITING PROGRAMS

During the course of typing a program at the terminal or after
a program is seen to be incorrect, changes can be made in the
text of a program. These changes are made in what is called
the editing phase of BASIC, between the time when the system
prints READY and the time when the user types RUN. (During

this time, commands can be executed.)
The simplest type of correction is done during the typing of
a line before the line is entered to the system with the RE-
TURN key. For example:

14 PRHNT
If the user realizes he has typed PRH instead of PRI, he can
type the RUBOUT key once for each character to be erased. The
RUBOUT key causes the erased character to be echoed on the
user terminal between back slashes as they are erased. For
example:

ABC<RUBOUT><RUBOUT>DEF
'Typing the above is printed on the terminal as follows:

ABC\CB\DEF

If the RETURN key is typed at the end cf the above line, the

system would receive it as follows:
ADEF

The letters B and C have been erased.

7-6

If the user decides that his easiest course is to delete the
entire line, and he has not yet typed the RETURN‘key, then

he can type CTRL/U (hold down CTRL and U keys), which performs
this function. If the RETURN key has been typed, then the
line may merely be retyped; the second version will replace

the first in the computer memory.
7.4.1 THE EDIT COMMAND

One of the most useful commands in EDUBASIC is the EDIT com-
mand. This search command permits the user to modify a com-
pleted line or statement which is already contained within
the memory of the computer. Thus, EDIT should be contrasted
with the use of the RUBOUT key where the latter is used for
changing a line already completed, i.e., RETURN has not been
typed.

EDIT tells the computer to find a given line number, and to

then search for a particular in that line. As an example,

READY
. EDIT 124
(character)

When you tYpe the character to be searched for, this character
is not printed, but the line requested is immediately printed
out to the character which you have typed. If there are sev-
eral occurrences of this character, the first one is printed

and printing ceases. At this point you have several options:

a. Type a RUBOUT to delete the last character printed;
type two RUBOUTs to delete the last two characters
printed; and so on.

b. Type in new characters to take the place of any
you rubbed out; or, of you have not typed any
RUBOUTs, to add to the text already there.

c. Type CTRL/L; the computer will now search for the
next occurrence of the same search character.

7-7

7.4.3 DELETE COMMAND

The DELETE command is used to remove one or more lines from

the user program currently in core. For example:
DELETE 1¢¢

causes line number 100 to be deleted. (The user should first
be certain that no other line references line number 100 un-

less that line is to be replaced.)
DELETE 1¢@g-200

causes all the program lines between and including line num-
bers 100 and 200 to be deleted. If 100 and/or 200 do not
exist in the program, any lines within the range frocm 100

to 200 are deleted.

If several groups of lines are to be deleted, then the user

can type:

DELETE 1¢¢-29@, 3¢0-4p¢, 1990-11¢9, 1620

which deletes all lines between 100 and 200, 300 and 400,
1000 and 1100, and line number 1620.

Individual lines may be deleted with the following form:
DELETE 1¢, 33, 976
This command deletes only lines 10, 33 and 976.

If only one line is to be deleted it may be more convenient
merely to type the line number and the RETURN KEY:

19

which is equivalent to:

DELETE 10
7-9

d. Type a BELL code (CTRL/G); now type a new search
character (which is not printed). The computer
will now print out the line until it meets this
new character.

e. Type the ALT MODE key; the left half of the line,
up to and including the last character printed, is
erased. The line number, however, is not erased.

£. Type the RETURN key. All the line to the right of
the last character printed is dropped. The left
side of the line is saved and the RETURN indicates
that the EDIT command is complete.

g. Type the LINE FEED key. The whole line, in its
present condition (including any changes you have
made) will be printed but not saved. To save the
line you must type RETURN. LINE FEED may be typed
as many times as you like.

Note that EDIT cannot be used to change a line number. The
only way to move a line to a new position in the program is
to retype it, complete with its new line number. The old line
should then be deleted. The RESEQUENCE command (next section)

is useful for creating the space to add new lines.
7.4.2 THE RESEQUENCE COMMAND

The RESEQUENCE command simply renumbers the line numbers in

the user program. The general form of this command is
RESEQUENCE 1line number, increment

If only the word RESEQUENCE is typed and no line number and
increment are specified, the program is renumbered starting

with line number 100 in increments of 10.

Note that only the program (or data file) currently in memory
is resequenced and that if you wish to SAVE the new version
or REPLACE the o0ld version, these commands must be given (see
section 7.5).

LIST Command Meaning

- LIST List the entire user program as it currently exists.
NLIST Same as LIST, but without line numbers.
LISTNH Same as LIST, but without a program header.
NLISTNH Same as NLIST, but without a program header.
LIST n - List line n, without a program header.

- LIST m,n,p List lines m,n,p without a program header.
NLIST m,n,p List lines m,n,p without line numbers.

LIST nl-n2 List lines nl through n2, inclusive, without a
program header.

LIST LPT: Lists the user program on the line printer (if
one exists on the system).

7.4.5 SEARCH

One of the most powerful editing features in EDUBASIC is the
SEARCH command. The first form is

SEARCH nl-n2/string 2/

This SEARCH command lists all lines in the range nl to n2 in-
clusive that contain string A anywhere in the line. If no
line numbers are»specified, the entire text buffer is searched.
Note that string A4 may be a variable name (AS) or a group of
characters (ABCD) without quotation marks unless the quote

marks are part of the string.
The second form of the SEARCH command is

SEARCH nl-n2 /string A/string B/list
This form of the SEARCH command replaces all occurrences of
string A with string B in the range nl-n2. If the optional
word list is specified at the end of the command, all line

numbers in which replacement was performed are listed. If no

line numbers are specified, the entire text buffer is searched.

7-11

7.4.4 LIST COMMAND

The LIST command is used to obtain a clean printed copy of
all or part of the user's current program. This listing is
especially useful during and after an editing session in

which the original program is changed.

In order to obtain a printed copy of the entire program as

it currently exists within the system, type:
LIST
In order to list a single line, type:
LIST 109
tb type line 100. (LIST 100, 300 lists both lines 100 andv300.)
In order to list a section of the program, type:
LIST 19¢9-2¢¢

which will cause the listing of the entire program from line

number 100 to line number 200 inclusive.

The above LIST commands list both statements and line numbers.
If the user wishes a listing without line numbers, the command
NLIST is available. NLIST may be used similarly to the three

cases above, but the lines listed will have no line numbers.

In the first of the above cases, BASIC prints a program header
containing the prograﬁ title and data. If this header is not
desired (as it might not be for normal editing), the command
may be given as LISTNH to delete the header material. To sum-

marize:

EXAMPLE: File in memory contains:

14 PRINT "SEARCH COMMAND USAGE"
2g INPUT B

390 IF B=5 THEN 24

49 B=B+1

5¢ PRINT B

69 GO TO 2¢

79 END

SEARCH 30-60/20/

3¢9 IF B= 5 THEN 2§
69 GO TO 2¢

SEARCH /B/C/LIST

2¢ INPUT C

390 IF C=5 THEN 20
49 C=C+1

5¢ PRINT C

SEARCH PRINT/PRINT B;/
The file in memory now contains:

1¢ PRINT B; "SEARCH COMMAND USAGE"
2¢g INPUT C .
. 3¢ IF C=5 THEN 20
49 C=C+1
590 PRINT C
60 GO TO 2¢
7¢ END

(In order to permit the slash (/) to be part of the string, an
alternate form of the SEARCH command allows replacement of the
slash by any non-numeric character -- e.g., SEARCH A/A*A re-
places all slashes with asterisks.)

7.5 MANIPULATING USER PROGRAMS

The commands in this section enable the user to compile, save,
~run, and rename his files. These are cll operations performed
on a program as a whole (either in core or as a file) and are

used once a complete program has been prepared at the terminal.

7.5.1 RUN Command
The RUN command is used to cause the execution of any source

7-12

BASIC program. (Source programs are stored as the user typed

them; compiled programs are files described in section 7.5.2.)

In order to run the program currently in core, the user simply
types:

RUN

This command causes the execution of the program in core. A
program header is printed after the RUN command is given, con-
sisting of the program name, date and language. If this in-

formation is not desired, the command

RUNNH

should be given. RUNNH executes the current program without

printing the header material.
7.5.2 EXECUTE Command *

When it is desired to run a program not in memory, the EXECUTE

command is used.

EXECUTE device:file name.extension line number

This command causes BASIC to search for file name on the device,

load it, compile it (if necessary), and run it if it is found.
If no extension is specified and both the .BA (source) and .BC
(compiled) versions exist, BASIC will execute the compiled
form because it requires less time. In order to retrieve and
execute the source, it is necessary to specify the extension

~ .BA after the file name. An alternate approach is to give the
OLD command followed by the RUN command. This approach is not
equivalent to the EXECUTE command because EXECUTE will save
the file currently in core (before EXECUTE is typed), execute
the program called for, and then restore the previous file
into memory.

Compiled (.BC) files can only be executed with the EXECUTE
Command.

If only the source version of a file exists on a device, the
EXECUTE command serves as a combination of the OLD and RUN
commands, except with the restoring of the previous file
noted above. For example, if the progrém STOCK is stored

on DECtape 1, it may be called into memory and executed

~ with the following single command string:

EXECUTE DTAl:STOCK, 1@¢g
where execution starts at line number 100. (Perhaps lines
1 through 99 contained instructions not required for the
running of the program.) As another'example,

EXECUTE CDR:
reads a BASIC program from the card reader and runs it.

7.5.3 SAVE Command

The SAVE command is used to store BASIC source programs oOn
the disk as follows: ’

SAVE
The program currently in core is saved under its file name
- with the extension .BA. If a file of the same name exists,
then SAVE returns the error message:

DUPLICATE FILE NAME

Where the current name of the file is not the desired name,

the format:

SAVE GRADE

can be used, which saves the Program currently in memory under
the name GRADE.BA.

In cases where the desired storage device is not the default
device, the format:

SAVE device:file name.extension nl,n2-n3,n4

is used where device indicates the device designation. The
file is stored as FILE NAME.BA. For example:

SAVE DTA4:ACCPAY
saves the whole file ACCPAY.BA on DECtape 4. The numbers (nl,
n2-n3,n4) are used if only part of the file in memory currently
is to be saved. As an example:

SAVE DTA4:ACCPAY 10, 1g@-368

saves only lines 10 and 100 through 360 of the file ACCPAY on
DTAA4.

The SAVE command is used only with source files and cannot
- be used with compiled files. When a program is saved, under
some name, the program is still in core to be used or ignored

as the user wishes.

To obtain a listing of his program on the line printer, the

user can type:
SAVE LPT:
"To punch a tape of his program, the user can type:

SAVE PTP:

7.5.4 SAVE Without Line Numbérs

The NSAVE command saves the file currently in memory but

without line numbers.
NSAVE device:file name nl,n2-n3,n4
This particular command is very useful during the editing
~of a data file. The file may be called into memory with the
OLD command and at the same time line numbers may be appended.
OLD DTAl:PARTFL 1¢¢,1¢
After editing has occurred (adding, deleting, or changing the
items in the file), the NSAVE command is used to save the file
without line numbers.

NSAVE DTA2:PART2 1g@-959

The above command string saves only lines 100 through 950
of the new data file (PART 2) on DTA 2.

7.5.5 UNSAVE Command

The UNSAVE command is used to remove a file from a storage

device. The form:
UNSAVE device:file name.extension
removes the file name from the device.

Any number of files may be removed. Each name must be sepa-
‘"rated from the following name by commas. As an example

UNSAVE PART1, PART2, PART3

If no extension is given .BA is assumed. If no file name is

(ot

given, BASIC responds with FILE NAME -- and waits for the
user to input a file name.

7.5.6 RENAME Command

The RENAME command causes the name of the program currently

in. core to be changed to the specified name. For example:
RENAME COLGNO

The old name of the program in core is discarded and it is
now known as COLGNO. TIf the SAVE command is given:

SAVE
the file COLGNO.BA would be stored on the systems device.
7.5.7 REPLACE and NREPLACE
The REPLACE command is used when the program in memory has
the same name as a file on the same device and the user wishes
the program in memory to become the new file with that name.
The command is simply of the form:

REPLACE device:file name.extension nl,n2-n3

where nl,n2-n3 indicate that only these lines may be saved.

REPLACE is like SAVE, but destroys without notice the old
copy of the same file, if it exists.

NREPLACE is the same as REPLACE except that the file is saved
‘without line numbers.

7.5.8 COMPILE Command

Normally BASIC reads each line of a user's program as it
is typed and, if acceptable, translates the line into a form

7-17

more easily understood by the computer. When lines within
the user's program are altered,.all lines which are in the
program need to be recompiled (i.e., translated). When the
SAVE command isngiven, only the source version of the pro-
gram (i.e., the text that is typed in response to the LIST
command) is retained in the specified place. In response

to the OLD command, BASIC reads the text from a file and
compiles it in much the same manner as is done when the pro-

gram is read from the user's keyboard.

Once a program is completely developed and debugged, it may

be desirable to avoid the time-consuming practice of compiling
the program every time it is fetched from the library. For
this reason, the COMPILE command has been provided. This
command permits the user to save an image of his compiled
program, rather than (or in addition to) the source text of
the program. This compiled program may be called and executed
with a minimum of overhead by use of the EXECUTE command (see

section 7.5.2).

Due to the transformation which takes place when a program

is compiled, a file with the extension .BC can only be execu-
'ted, it cannot be edited. Therefore, the user can issue the
EXECUTE command with respect to these compiled files, but the
file cannot be brought into core with the OLD command.

If the current file name (i.e., that which is typed in the
heading of a listing) is INVCTL, then the command

COMPILE
will save the compiled program in a file named INVCTL.BC.
If another name is desired for the compiled file, it may be
specified.

COMPILE INVCL4

will generate a file named INVCL4.BC while the source file

ij

in the above example will be Saved as INVCTL.BA.

7.6 LENGTH COMMAND

The LENGTH command returns the length of the user's current

program in memory. For example:

LENGTH
710 CHARACTERS (2 BLOCKS)

The LENGTH command may also be used to give the length of
lines in a program, by specifying the line numbers after the
work LENGTH. As an example, ‘

LENGTH 10¢-2¢0
354 CHARACTERS (1 BLOCK)

The maximum size of a program to be run depends upon‘the num-
- ber of variables in the program as well as the amount of text.
This size varies between about 13 and 18 blocks. An 18 block
file will not always execute, but may be edited.

7.7 CATALOG COMMAND

- Giving the CATALOG command causes the user's file directory
to be printed on the console. For example:

CATALOG

PPB .BA 4 3/29/71
4 4 4 4

name extension size creation date

To obtain a CATALOG of files on a device other than the

systems device, one can give the command

CATALOG DEV:

For example:

CATALOG DTA4:

7-19

lists the files on DECtape unit 4.

7.8 COMMANDS FOR INPUT/OUTPUT DEVICES

EDUBASIC has several commands specifically for I/0. However,
it should be remembered that 0S/8 handles all I/O (except the
console) for EDUBASIC and many system commands should be
given while under the monitor (e.g., ASSIGN).

7.8.1 TAPE COMMAND

The TAPE command is used to disable the terminal echo feature
when reading a paper tape with the low-speed (terminal)

reader. The command is given as follows:

TAPE {initial line number, step}
—
EDUBASIC will add line numbers to a file if no line numbers
exist on the tape (especially data files). The tape is in-
serted in the low-speed reader and the reader control switch
set to START.

Prior to giving the TAPE command, the user would set up con-
ditions such that the system expects the program. TAPE does
not scratch memory. For example, giving the following com-

mands:

NEW ADDREC
TAPE

causes the system to await the new program file ADDREC which

is to be entered to the system via the terminal tape reader.

Giving the TAFE command disables the echo feature so that

the program is not listed on the terminal as it is read. The
same function would be served by the following commands:

OLD ADDREC
TAPE

7-20

7.8.3 PUNCH and NPUNCH

It is sometimes necessary to produce a paper tape using the
low speed punch on the console teletype. The PUNCH (and
NPUNCH) is used to create this tape. '

PUNCH nl,n2-n3
NPUNCH nl,n2-n3

These commands punch a copy of the file currently in memory;
the latter command produces no line numbers. The line num-

bers may be used to indicate which lines are to be punched.

The user types the word PUNCH, types a carriage return, and
turns on the paper tape punch. Typing LISTNH, turning on the
paper tape punch, and then typing a RETURN accomplishes ap-
proximately the same result, with the exception that leader

is not punched and READY is punched after the program has
been punched. PUNCH also punches the program name, extension,

and date on the paper tape, which may be read by the user.
Note that when reading in a tape, the name, extension, and

date punched by PUNCH should not read in. Place the tape in

the reader after this information.

7-21

7.8.4 MARGIN COMMAND

The maximum line length can be changed using the margin
command. The margin command is of the form:

MARGIN number

The above statement changes the line length on all output
devices from 72 to the specified number. MARGIN is in ef-
fect until another MARGIN command is given. Even leaving
BASIC and then calling it in again or re-bootstrapping will
not change the margin back to 72.

The maximum line number is in effect for all commands and all
output devices. It is not in effect for character string out-
put.

The following description will help the user to more fully
understand the MARGIN command. The user may continue typing
his line of text or command until the specified margin is
reached. At this point an automatic Carriage RETURN/LINE FEED
is performed and the user is allowed to keep typing. Only by
striking the RETURN key does the user enter his command. No
commands are affected by the margin command, i.e., operation
of BASIC is the same with a line of 72 characters or a line

of 5 characters. Even though a single statement may be printed
as 10 lines with the new margin, those 10 lines are considered

as 1 line to the computer.

7.9 SPECIAL CONTROL CHARACTERS

Some characters previously discussed are reviewed here. Addi-

tional control characters are available from 0S/S8.
7.9.1 RETURN KEY

Typing the RETURN key echoes as a carriage return/line feed

7-22

operation on the terminal, as'long as the terminal is not in
TAPE mode. RETURN is used to indicate the end of a line typed.
The RUBOUT key is of no use for corrections on the line just
typed after the RETURN is typed. The line has been entered
into the 'source' buffer. .

7.9.2 LINE FEED KEY

The LINE FEED key causes the current line to be echoed, free
of rubouts, up to the point at which the user typed LINE FEED.
A RETURN must be typed to cause execution (command) or enter
the line (BASIC statement). As an example,

1¢¢ PRNT\TN\INT "MY NME\EM\AME IS LAH\HAL\HAL" (LINE FEED)
199 PRINT "MY NAME IS HAL"

where the carriage position (next position to be printed) is
. after the last quotation mark. Additional characters may be
added to the line or the RETURN key may be typed to accept

the line as is.
7.9.3 RUBOUT KEY

- The RUBOUT key is used as an eraser for the current line.

If typed in TAPE mode, the RUBOUT key is ignored; otherwise,
it causes the character most recently typed to be deleted.
The erased characters are shown on the terminal paper between

back slashes. For example,

1§ LEF X=X*X
could be corrected by typing the RUBOUT key 7 times (to remove
the F) and typing the remainder of the line correctly. The

line would look as follows on the terminal paper:

1f LEF X=X*X\X*X=X F\T X=X*X

and would appear to the system as:
19 LET X=X*X

In cases where the mistake is toward the beginning of a line,
it may be easier to simply retype the entire line. For exam-
ple, ‘

14 LEF X=X*X
1 LET X=X*X

Once the second line is entered into the system, the first

line numbered 10 is deleted.
7.9.4 CTRL/C

CTRL/C returns control to the 0S/8 keyboard monitor. BASIC
may be recalled by typing R BASIC in response to the dot given
by 0S/8. START may also be typed and in most cases returns
the user to EDUBASIC and into the program upon which he was
working before CTRL/C was typed.

7.9.5 CTRL/P

By typing a CTRL/P (hold down the CTRL key and type the P key,
release both), the user causes BASIC to return to command mode,
where commands can be given or editing done. CTRL/P stops
whatever BASIC was doing at the time and returns control of
the system to the user.

7.9.6 CTRL/U

The CTRL/U combination deletes the current input line. This
combination is useful when a long command has been typed and

is no longer wanted. Rather than use the RUBOUT key repeatedly,
CTRL/U cancels the entire line. This feature can be used when
typing either commands or statements. The entire physical

line is deleted.

7-24

7.9.7 CTRL/O

The CTRL/O combination suppresses output on the Teletype
until the next time CTRL/O is typed (or CTRL/P is typed).
When a program produces a large amount of oufput (usually
in tabular form), the user may not wish to wait for the
printing of the complete information. CTRL/O enables the
user to monitor the output while not stopping it completely.
Typing CTRL/O while output is occurring still allows the
computer to output the data, but the Teletype does not print
it. This speeds up the output process, since the Teletype
is a rather slow device. The second time CTRL/O is typed,
the output is again sent to the Teletype for as long as the

user wishes.

-

=

CTRL/P, on the other hand, will completely stop the output.
Think of CTRL/O as a switch, the first setting of which cre-

- ates a condition and the second setting releases the condition.
7.9.8 TAB CHARACTER

The TAB character or CTRL/I combination allows the user to
insert a tabular format into his typed material. When entering
a program to the system, the TAB character allows formatting.
The BASIC editor considers each line as being broken into tab
stops eight spaces apart across the line. Typing the TAB
character causes the printing head to move to the next of

those stops on the line.

If using a model 33 Teletype, the TAB echoes as spaces. The
model 35 Teletype has built-in hardware tabs.

7.9.9 CTRL/Z
The CTRL/Z combination is used to mark the end of a file; when

inputting data from a file, a CTRL/Z character marks the end
of the recorded data.

7-25

CHAPTER 8

'DETAILS OF VIRTUAL ARRAYS

8.1 INTRODUCTION

The virtual array facility provides the means for an EDUCOMP
BASIC program to operate on data structures that are too
large to be accommodated in memory at one time. To accom-
plish this, BASIC uses the disk or DECtape file system for
storage of data arrays, and only maintains portions of these

files in memory at any given time.

An essential difference between real arrays and their virtual
counterparts is the order in which array elements are refer-
enced. In real arrays, the referencing algorithm has no effect
on the time it takes to accomplish the references; while for
virtual arrays, this order can have a significant effect on

the program execution time. This chapter gives the user an
in-depth look at the algorithms used in the virtual array
processor, in order that users concerned with efficiency can

optimize their use of this facility.

Each DECtape or disk file appears to the user program as a
contiguous sequence of 256-word records. Any position in a
file can be specified internally with a two-component address;
the first part being the relative record within the file, and
the second being the position of the item within the block.
One of the functions of the virtual array processor is to
transform, or map, each virtual array reference into its
corresponding file address. This virtual array processor is
invisible to the user and BASIC performs all mapping functions
automatically.

Virtual arrays are stored as unformatted binary data. This

8-1

format means that no I/0 convérsions (internal form-to—-ASCII)
need be performed in storing or retrieving elements in virtual
storage. Thus, there is no loss of precision in these arrays,

and no time wasted performing conversions.

All references to virtual arrays are ultimately located via
file addresses relative to the start of the file. No symbolic
information concerning array names, dimensions, or data types

is stored within the file. Thus, different programs may use

i

different array names to
 gitreren a

e g . ST TS e

refer to the data contained within a_

single virtual array file. The user must be cautious in such

operations, since it is his responsibility to ensure that all
programs referencing a given set of virtual arrays are refer-
encing the same data. Consider the following example:

—

Program ONE contains

1¢ OPEN "FILE" AS FILE 1
2¢ DIM #1,X(1¢),Y(1f)

Program TWO contains

1§ OPEN "FILE" AS FILE 1
2¢ DIM #1,Z(1f) ,X(1f)

Whenever program TWO references the array Z, it is using the
data known to program ONE as array X. Both X and Z are the
first arrays in their declarations, both contain numeric data,
and both are 11 elements (X(#),...,X(1g)) long. These two

arrays, then, correspond in position, type, and dimension.

References to the array X (in ONE) and to the array X (in TWO)
do not refer to the same data, even though both are using the

same virtual file (FILE). The concept of using relative posi-
tion, rather than name, to identify data items is familiar to

users of the FORTRAN COMMON facility.

8-2

Within a single EDUBASIC program it is possible to redefine
a single virtual array file on the same channel for the pur-

pose of reallocating the data within the file. For example:

145 OPEN "DATA" FOR INPUT AS FILE 1
150 DIM #1, A$(1g)=4
155 DIM #1, B$(4)=16

The program now has access to the file DATA through both the
array A$ and the array BS$. Each element of BS$ contains four
elements of A$ (B$(F) 1is equivalent to the elements AS (f)
through AS$(3), etc.). Note that the file is open for input
only and that the two DIM statements reference that file on
a single channel number (#1 in this case).

Note also that the two statements:

75 DIM #1, A(19)
84 DIM #1, B(19)

are not equivalent to the statement:
99 DIM #1, A(1f),B(1g)

In the first case the arrays A and B are equivalent to each
other and constitute the first array in the file open on
channel 1. 1In the second case the arrays A and B are defined

as both existing in the file open on channel 1.

CAUTION

The user is advised not to open a single
file under two different channel numbers.
For example:

5¢ OPEN "VALUES" AS FILE 1
55 OPEN "VALUES" AS FILE 2

199 DIM #1, X$(20)
195 DIM #2, Y$(29)

8-3

causes two buffers to be created for the
storage of input to/from channel 1 and

to/from channel 2. Data output to chan-
nel 1 is not available to channel 2, etc.

8.2 ARRAY STORAGE

Numbers (floating point) are stored in four words (8 charac-
ters) in virtual files so that an integer number of numbers
may be contained in one segment (256 words). The only limit
on the number of elements in a numeric virtual array is the

size of the device.

Virtual array elements are limited to a length of 2046 charac-
ters (bytes). The number of data elements stored in each disk
or DECtape segment is a function of the size of each element.
For virtual strings, the number of elements is also related

to the maximum string length specified in the DIM statement.
The size of a virtual string is defaulted to 15 characters,
and can be specified as a multiple of three: 3, 6, 9, 12,

15, 18, 2046.

Strings in virtual storage occupy pre-allocated space in the
virtual file, and thus differ from strings in core storage,
where space is allocated dynamically. A segment containing
virtual strings can be considered to be a succession of fields,
each of the maximum string length. When a virtual string is
assigned a new value, it is stored left-justified in the appro-
priate field. If the new string value is shorter than the
maximum length, the remainder of the field is filled with
zeros. When the string is retrieved, its length is computed

as the maximum string length minus the number of zero-filled

bytes.

8.3 TRANSLATION OF ARRAY SUBSCRIPTS INTO FILE ADDRESSES

In order to translate an array subscript into a file address,

EDUBASIC computer (a) the relative distance from the specified
item to the first item in the array, and then adds (b) the
relative distance from the first element of the array to the
first item in the file. The first quantity (a) is computed
from the array subscript and the number of elements per block.
The second number (b) is a constant for each array in a file,
and is computed from the parameters specified in the DIM
statement.

Since the DIM statement contains the only information used to
define the structure of a file, it is possible for the user
to specify different accessing arrangements for the same file
in one or more programs. For example, the user can reference
the same data as either a series of l6-byte strings (AS$) or

32-byte strings (B$), with the following statements:

19 OPEN 'FIL1' AS FILE 1 !VIRTUAL ARRAY FILE.
2¢g DIM #1,AS$(1lggg) = 16 116 CHARACTER STRINGS.
39 DIM #1,BS$(509) = 32 132 CHARACTER STRINGS.

The user should keep in mind that in EDUCOMP BASIC, as in most
BASICs, array subscripts begin with @, not 1. An array with
dimension n, or (n,m) actually contains n+l, or [(n+l)*(m+1)]

elements.

User programs may define two-dimensional virtual arrays (ex-
cept for string arrays) as well as singly dimensioned ones.
Two-dimensional arrays are stored on disk or DECtape (and in
core) linearly, row-by-row. Thus, in the case of an array

X(1,2), the array appears logically as:

X(¢g.,9) X(g,1) X(g,2)
Xx(1,9) X(1,1) X(1,2)

8-5

10

20

30
49
50
(&)
72
134
- 9e
100
11
120
138
140
156
1606
170
©99

while physically it is stored as:

X(9.9)

X(1,9)

X(2,9)

X(9,1)

X(1,1)

X(2,1)

lowest address

highest address

If & virtual array is to be referenced sequentially, it is

usually preferable to reference the rows, rather than the

columns, in sequence.

Consider the case in which it is

necessary to compute the sum of each row and column in a

two dimensional virtual array.

Program MAT1 below does

this far more efficiently than program MAT2 below:

REM PROGRAM '"MATI' TO COMPUTE SUMS

REM ‘AR

REM RB(I)> IS SUM OF ROV I

REM C(J

DIM EC1

* CONTAINS VIRTUAL ARRAY

> IS SUM OF COLUMN J
OPEN "“AR"™ AS FILE .1l
DIM #1,AC1€,59)

€y, CC38)

FOR R=1 TO 1Z:R(R)=0:NEXT R
FOR C=1 TO SZ:C(CY=@:NEXT C

FOR J =
FOR I =
RC(I) =
C(J) =
NEXT I
NEXT J

FOR P=1 TO 1G:PRINT R(R)3:NEXT R

1 TO 50

1 TO 1@
RCI) + ACILJD
CCJY + ACILI)

FOR C=1 TO C:PRINT C(C)5;:NEXT C

END

READY

EFFICIENTLY

10PEN VIRTUAL FILE
11¢ ROVUS, 58 COLUMNS

LINITIALIZE SUMS

!OPERATEJONE COLUMN AT A TIME

1AND EACH ROV IN COLUMN

1TOTAL ACROSS ROV
1TOTAL DOWN COLUMN
INEXT ROW IN COLUMN

INEXT COLUMN

'PRINT ROV TOTALS
'PRINT COLUMN TOTALS

10
20
30
40
52

- 60
70

. 8@
.90
C1e0e
110
128
138
149
15¢
160
178
999

REM PROGRAM 'MAT2' HAS INEFFICIENT USE OF VIRTUAL CORE

REM
REM
REM

'AR' CONTAINS VIRTUAL ARRAY

R(I) IS SUM OF ROV I
C(J) IS SUM OF COLUMN J

OPEN "AR"™ AS FILE 1

DIM
DIM

FOR R=1 TO 1Z:R(R)=8:NEXT R

FOR
. FOR
FOR
R(I)
CC¢J)

#1,08C18,50)
F(18>, CC(58)

C=1 TO 5@:C(C)=F:NEXT C
1 =1 T0 10
J =1 TO 58 ,

= RCI) + ACI,d)

= CCJ) + ACI,d)

NEXT J
NEXT 1.

FOR

'END

READY

/

R=1 TO 12:PRINT R(R);:NEXT R
FOR C=1 TO C:PRINT C(C)$:NEXT C

10PEN VIRTUAL FILE

10 ROUS, 50 COLUMNS

CYINITIALIZE SUMS

1OPERATE ROV EY ROV
!DO0 EACH COLUMN IN ROV
! TOTAL ACROSS ROV
ITOTAL DOWN COLUMN
INEXT COLUMN IN ROV
INEXT ROV
'PRINT ROV TOTALS
IPRINT COLUMN TOTALS

In virtual arrays it is permissible to have two (or more)

arrays sharing the same file.

statement is perfectly legal:

That is, the following DIM

1g¢ DIM #1,A(1099),B(999),C(1009)

The matrix B begins immediately after the 1000th element
of A and the matrix C begins immediately after B(999).
Therefore, the disk layout is as follows:

A(2)

A(l)
A(999)
A(1999)

B (9)

B(1l)

. — - —
’\ . —

B(998)

B(999)

c(g)

Cc(l)

— . —
C(999)
C(1949)

Figure 8-1 Virtual Array File Layout

8.4 ACCESS TO DATA IN VIRTUAL ARRAYS

Only a portion of a virtual array is in memory at any given
time. This data is transferred directly between the disk
and an I/0 buffer in the user core area, created when the
OPEN statement is executed. This buffer is 256 words (one
segment) long. For each virtual array file, EDUBASIC

notes (1) the segment of the file in the buffer, and (2)
whether or not the data in Fhe buffer has been modified

since it was read into core.

8-8

After BASIC translates a virtual,array address into a file
address, it checks whether or not the segment containing
the referenced item is currently in the buffer. If the
necessary segment is present the reference proceeds; but
if not, another portion of the file is read into the

buffer. TIf the current data in the buffer has been altered,
it is necessary to rewrite this data on the disk prior to
reading new data into the buffer.

The referencing algorithm, which minimizes the number of
disk memory accesses generated when handling virtual arrays,

is flowcharted in Figure 8-2.

Virtual Array
kReference

Translate Sub-
script into File
Ad@ress

Is
This
Segment in
Buffer

rd
[

Current
Segment Been
Altered

i

Rewrite Segment

in File

7
Clear 'Modified’
Indicator
%

Read New
File Segment

Replac-
ing Element
in Buffer

Set 'Modified'
Indicator

Procecd with
Oporation

oo g

Al

Type

Numeric (floating point)

Character String

Numeric Matrix

Character String
Matrix

Al'z
Type

Arithmetic

Relational

String

APPENDIX A

LANGUAGE SUMMARY
SUMMARY OF VARIABLE TYPES

Variable Name

single letter
optionally followed by
a single digit

any letter
name .followed by a
$ character

any numeric variable
name followed by one
or two dimension ele-
ments in parentheses

any character string
variable

name followed by a one
dimension element in
parentheses

SUMMARY OF OPERATORS

Operator

unary minus
exponentiation
multiplication,division
addition, subtraction

equals

less than
less than or
greater than
greater than
not equal to

equal to

concatenation

or equal to

Examgles

A
I
X3

M$
R/S

~

S(4) E(5,1)
N2(8) Vv8(3,3)

Ccs$ (1)

Operates Upon

numeric variables
and constants

string or
numeric variables
and constants

string constants
and variables

A3 EDUCOMP RASIC STATEMENT SUMMARY

The following summary of BASIC statements defines the general
format for the statement and gives a brief explanation of its
use.

CHAIN dev:filnam.ex,line number
Terminates execution of user program,
loads and executes the specified pro-
gram starting at the line number if
included.

CLOSE n Closes the logical file specified.
If no file number is specified, closes
all files which are open.

DATA data list Used in‘conjunction with READ to in-
put data into an executing program.

DIM variable(n), variable (n,m)
Reserves space for lists and tables
according to subscripts specified
after variable name.

END Placed at the physical end of the
program to terminate program execu-
tion.

FOR variable = expressionl TO expression2 STEP expression 3

Sets up a loop to be executed the
specified number of times.

GOSUB line number Used to transfer control to the first
line of a subroutine.

GO TO line number Used to unconditionally transfer con-
trol to other than the next sequential
line in the program.

IF expression rel.op. expression THEN line number
Used to conditionally transfer control
to the specified l1ine of the program.

IF expression rel.op. expression THEN statement
Used to conditionally execute the
statement after the THEN.

IF variable THEN statement
For the logical 'IF', when the
variable 1s zero, the statement
is not executed.

INPUT 1list Used to input data from the terminal
: keyboard or papertape reader.

INPUT #expression, list Inputs from a particular device.

INPUT LINE string Inputs a record at a time. Accepts
commas and quotes, and recognizes
the RETURN as the delimiter.

INPUT LINE #expression, string
Inputs a record from a specified
device.

KILL file Unsaves the file. File may be of
the form dev:filnam.ex Or a scalar
string variable. (Must have an ex-
tension.)

[LET) variable = expression
Used to assign a value to the speci-
fied variable(s) .

NEXT variable - Placed at the end of a FOR loop to
return control to the FOR statement.

ON expression GOTO list of line numbers
The formula is evaluated and control
transfers to the first, second, third,
etc., line number depending on whether
the truncated evaluation is 1,2,3, etc.
If the magnitude of the index is
greater than 2047, an error is genera-
ted. Otherwise, if the index is out
of range, control passes to the next
statement.

ON expression GOSUB list of line numbers
Same as the ON-GOTO statement except
that a GOSUB is generated.

OPEN file FOR JINPUT \ AS FILE #n
UTPUT, Opens a sequential file for input or
output. File may be of the form
dev:filnam.ex Oor a scalar string
variable. Variables must be DIMen-
sional in a separate statement.

PRINT 1list Used to output data to the terminal.
The list can contain expressions or
text strings.

PRINT text

PRINT #expression,

PRINT TAB (x)

READ variable list

REM gomment
RESTORE

RETURN

£TOP

13

1

s

t

Used to print a message or a string
of characters.

Outputs to a particular output de-
yvice, as specified in an OPEN state-
ment.

Used to space to the specified
eolumn unless the column is already
passed in which case TAB is ignored.

éauses the random number generator
to calculate different random num-
bers every time the program is run.

Used to assign the values listed in
a DATA statement to the specified
variables.

Used to insert explanatory comments
into a BASIC program.

Used to reset data block pointer so
the same data can be used again.

Used to return program control to
the statement following the last
GOSUB statement.

Used at the logical end of the pro-
gram to terminate execution.

Al EDUCOMP BASIC COMMAND SUMMARY

COMMAND EXPLANATION

CATALOG Returns the user's file directory.
Unless another device is specified
following the term CAT or CATALOG,
the 'DSK' is the assumed device.

COMPILE Allows the user to store a compiled
version of his BASIC program. The N
file is stored with the current name)
and the extension .BC. Or, a new
file name can be indicated and the
extension .BC will still be appended.

DELETE nl,n2-n3,n4 Removes line numbers nl and n4, as
well as lines n2 through n3 inclu-
sive, from the program currently in
memory.

EDIT line number After EDIT followed by a line number
and RETURN is typed, EDUBASIC waits
until the search character is typed
(but not printed). The specified
line is then listed until the first
occurrence of the search character.

EXECUTE dev:filnam.ex,line number
Runs the specified program. Compiled
or .BC programs are tried first.

LIST dev:nl,n2-n3 Prints out the current program on the
device specified (console assumed).
Prints out the specified program line(s)
if given.

NLIST dev:nl,n2-n3 - Same as LIST but without line numbers.
LISTNH dev:nl,n2-n3 Lists the lines associated with the

specified numbers but does not print
a header line.

MARGIN line number Changes the maximum line length on
all output devices.

CoMMAND - EXPLANATION

NEW filnam - Does a SCRatch and sets the current
program name to the one specified.

OLD dev:filnam.ex line number,step
Does a SCRatch and inputs the pro-
gram from the specified file. Line
numbers are added (if specified)
to ASCII files not already containing
them.

OVERLAY dev:filnam.ex,increment
Works like OLD but does not scratch.

PUNCH nl,n2-n3 Punches the current program on the
fastest available papertape punch.

NPUNCH nl,n2-n3 Same as PUNCH but no line numbers
are punched.

RENAME filnam Changes the current program name to
the one specified.

REPLACE dev:filnam.ex nl,n2-n3
Replaces the specified file with the
current program. Parts of the pro-
gram may be replaced by specifying
particular line numbers.

NREPLACE dev:filnam.ex nl,n2-n3 :
Same as REPLACE but line numbers are
not saved.

- RESEQUENCE line number, increment

' Renumber the lines in a program and
changes appropriate GOTO, IF-THEN, etc.
If line number is not specified, starts
at 100 with increments of 10.

RUN Executes the program in memory.

RUNNH Executes the program in memory but does
not print a header line.

SAVE dev:filnam.ex nl,n2-n3
Outputs the program in memory as the
specified file.

NSAVE dev:filnam.ex nl,n2-n3
Like SAVE but does not save line numbers.

SCRatch Erases the entire storage area.

COMMAND EXPLANATION

SEARCH nl-n2/stringa/ Lists all lines in the range nl to
n2 that contain string A anywhere
in the line.

SEARCH nl-n2/stringA/stringB/LIST
String B replaces all occurrences of
string A and these lines are listed
if L1sT is specified.

TAPE line number,increment Like OVERLAY, but the file comes from
the fastest available papertape reader.

SPECIAL CONTROL CHARACTER SUMMARY

CoNTROL CHARACTER EXPLANATION

CTRL/C Causes the system to return to the
0S/8 monitor.

CTRL/P Returns BASIC to the READY mode.

CTRL/O Used as a switch to suppress/enable

output of a program on the user ter-
minal. Echoes as *10.

CTRL/U Deletes the current typed line, echoes
as tU and performs a carriage return/
line feed. .

CTRL/Z ‘ Used as an end-of-file character.
LINE FEED Key Used to list the current line.
RETURN Key Enters a typed line to the system, re-

sults in a carriage return/line feed
operation at the user terminal.

RUBOUT Key Deletes the last character typed on
that physical line. Erased characters
are shown on the teleprinter between
back slashes.

TAB or CTRL/I Performs a tabulation to the next of
nine tab stops (eight spaces apart)
which form the terminal printing line.

A.6

SUMMARY OF FUNCTIONS

Under the Function column, the function is shown as:

Y=function

where the character '$' is appended to Y if the value returned

is a character string.

Function

Y=ABS (X)
Y=ATN (X)
Y=COS (X)

=EXP (X)
Y=INT (X)

¥Y=LOG(X)
Y=PI

Y=RND (X)
Y=SGN (X)

¥Y=SIN (X)
Y=SQR(X)
¥=TAN(X)

Y=POS (X)

Y$=TAB (X)

=ASCII(AS)

- ¥$=CHRS$ (X)

Y$=MID(AS$,N1,N2)

Y=LEN (A$)

Explanation

returns the absolute value of X. \

returns the arctangent of X in radians.

returns the cosine of X in radians.

returns the value of etX, where e=2.71828.

returns the greatest integer which is
less than or equal to X.

returns the natural logarithm of X, loggX.

has a constant value of 3.141593.

returns a random number between @ and 1.

returns the sign function of X, a value
of 1 preceded by the sign of X.

returns the sine of X in radians.

returns the square root of X.

returns the tangent of X in radians.

returns the current position of the print
head for I/0 channel X, ¢ is the user's
Teletype.

moves print head to position X in the cur-
rent print record, or is disregarded if
the current position is beyond X. (The
first position is counted as §.)

returns the ASCII value of the first char-
acter in the string AS.

returns a character string having the
ASCII value of X. Only one character

'~ 1s generated.

returns a substring of the string AS$
starting with the N1 and being N2
characters long (the characters betwzen
and including the N1 to N1+N2-1 characters).

returns the number of characters in the
string AS$, including trailing blanks.

APPENDIX B
ERROR MESSAGES

The error messages appearing onthe following pages are
designed to specifically to help the use pinpoint the
'bug' in his program gquickly. An arrow (4) is used in
many statement to point to the offending syntax and in
most error messages the line number of the statement
in error is given.

B.1
MESSAGE

CAN'T 'IF' VIRTUAL CORE STRING

CHARACTERS AFTER STATEMENT END

COMPILER ERROR

'END' NOT LAST AT LINE 11§

COMPILER ERRORS

EXAMPLE

1¢¢ OPEN "CORE" AS FILE 1
- 11¢ DIM #1,A$=30¢
12¢ IF A$="ONE"THEN PRINT "ONE"

139 END
RUNH

120 IF AS$="CONE"THEN PRINT"ONE"

+

199 INPUT LINE AS$,BS
114 END
RUNH

10¢ INPUT LINE AS,B$
*\

19¢ DIM AS(3,2)
119 END
RUNH

109 DIM A$(3;2)

19g PRINT “A"
119 END

129 Go 1O 199
RUNH

EXPLANATION

User cannot have a virtual core
string in an 'IF' statement.

Statement has unrecognized
characters at the end of it.

The user has used a legal
statement in an illegal
manner.,

The last statement must be an
YEND' statement.

MESSAGE

EXTRA OPERATOR

EXTRA ' ('

EXTRA ')

FILE TOO LARGE

'"FOR' WITHOUT 'NEXT'

AT LINE 10¢

EXAMPLE ' EXPLANATION
20@¢ IF A==B THEN 300 The statement contains an
34¢ END extra operator.

RUNH

2¢0@ IF A==B THEN 30¢
f

199 Y=((A+B)/5 Line has one more left
114 END parenthesis than right
RUNH parenthesis.

199 Y=((A+B) /5
4

199 Y=(A+B)) /5 Line has one more right
119 END parenthesis than left
RUNH parenthesis.
199 Y=(A+B))/5
4

10¢ OPEN "DTAl:HALT" AS FILE 1 A file is dimensioned too
119 DIM #1,Q(1gQop@d) large for any device.

128 END

RUNH

119 DIM #1,Q(19@g009)
: A

149 FOR I=1 TO 54 A variable used as the index
12¢ END in a 'FOR' statement does
RUNH not appear in a corresponding

'"NEXT' statement.

MESSAGE EXAMPLE ’ EXPLANATION

ILLEGAL ASSIGNMENT The assignment made is not
acceptable to BASIC

ILLEGAL CONSTANT 199 Y=88888888888 A number inside the program
- 11¢ END cannot be longer than 10
RUNH digits. A number that is

input can be any length.
100 Y=88888888888

.’s
ILLEGAL INTEGER 199 DIM AS="3g" A string's length must be
119 END : an integer number.
RUNH
199 DIM AS="3g"
,'\
ILLEGAL STRING VARIABLE 199 A1$="pPDP" A string variable must be a
119 END single letter followed by a
RUNH 'st.
199 Al1$="PDP"
+
ILLEGAL SUBSCRIPTING 19@ PRINT A(5 : A subscripted variable has
- 119 END been dimensioned or used
RUNH incorrectly.
199 PRINT A(5
+
ILLEGAL SYNTAX 199 AS=7 A string variable has been
119 END used where a numeric variable

RUNH should have been used.

MESSAGE

ILLEGAL USE OF FUNCTION

ILLEGAL VARIABLE

INCONSISTENT SUBSCRIPTING

MISPLACED ',' OR ';'

~ MISSING '='

MISSING ',

EXAMPLE

199 Y = LOG 1 (X)

11¢ END

RUNH

199 Y = 1LOG 1¢ (X)
+

lﬂﬂ PRINT FI

llﬂ END

RUNH

10¢ PRINT FI
+

149 DIM AS(14)
11¢ PRINT A$(1,1)

2¢0@ END
RUNH

119 PRINT AS$(1,1)
+

199 A=5
11¢ END
RUNH

199 A=5,
4

199 Y-5
119 END
RUNH

19 Y-5
4

EXPLANATION

A function must be followed
by an open parenthesis, an
argument and then a closed
parenthesis.

A variable must be one letter
or one letter followed by a
number.

A string variable has been
dimensioned as a one-dimen-
sional variable and utilized
as a two-dimensional variable.

A comma or semicolon doesn't
belong where it was placed.

Statement requires an equal
sign.

The syntax requires a comma
in the designated position.

MESSAGE

MISSING OPERATOR

MISSING ' ('

MISSING QUOTE

MISSING VARIABLE

MIXED MODE EXPRESSION

EXAMPLE

1¢ PRINT "TEST1""TEST2"
2¢ END
RUNH

19 PRINT"TEST1""TEST2"
4

199 DIM AS (4)=2¢
119 A$=5

120 END

RUNH

119 AS$=5
+

19@ PRINT "ABC
11¢ END
RUNH

19¢ PRINT "ABC
+

19 PRINT TAB() ;X

2¢ END
RUNH

10 PRINT TAB();X

A

199 Y="ABCD"

119 END
RUNH

199 Y="ABCD"

4

EXPLANATION

The statement is missing an
arithmetic or relational
operator, or a punctuation
mark.

Subscripted variable has been
used as a non-subscripted
variable.

A string variable assignment
statement must have the
assigned value surrounded

by quotes.

The statement is missing a
numeric variable or constant.

A numeric variable was used
where a string variable should
be used.

MESSAGE

'NEXT' WITHOUT 'FOR' AT LINE 11§

NO 'END' STATEMENT

NON-BASIC STATEMENT

PROGRAM TOO LONG

'READ' WITHOUT 'DATA' ON LINE 18¢

TOO MANY ARRAYS AT LINE 110

TOO MANY LITERALS

TOO MUCH DATA AT LINE 31

EXAMPLE

199 FOR I=1 TO 5§
119 NEXT A
12¢ END

RUNH

199 PRINT "“ABC"
RUNH

190 DEF FNA(X)=X%2
119 END
RUNH

10f DEF FNA(X)=X%2
gt‘

109 READ A
2g@¢ END
RUNH

1¢¢ DIM A(2099)
119 END
RUNH

EXPLANATION

A variable used as the index
in a 'NEXT' statement does
not appear in a corresponding
'FOR' statement.

Program must have an 'END'
statement.

BASIC does not understand the
statement.

Program is too long for BASIC
to compile;

The program contains one or
more 'READ' statements and no
'DATA' statements.

Not enough space in core for
all of the subscripted
variables in the program.

The program has too many
literals for BASIC to handle.

Program has too much data in
its DATA statements for BASIC
to handle.

MESSAGE

UNDEFINED LINE NUMBER AT LINE 10f@

VARIABLE DIMENSIONED TWICE

EXAMPLE

19g GO TO 15¢
119 END
RUNH

199 DIM AS$=15
119 DIM AS$S=20
120 END

RUNH

119 DIM AS$=24
,1\

EXPLANATION

Any statement which references
a non-existent line (GOTO,
GOSUB, ON-GOTO, ON-GOSUB,
IF-THEN) .

A variable must appear in
only one dimension statement.

B.2 RUNTIME ERRORS

MESSAGE EXAMPLE

ARRAY OF WRONG SIZE IN LINE 1¢¢ . 94 OPEN "A" AS FILE 1
19¢ DIM #1,A(1299Q)

2¢g@ END
RUNH

BAD FILE FOR CHAIN IN LINE 1§ 19 CHAIN "CDR3.DA"
2¢ END
RUNH

BAD INPUT IN LINE 1g¢ 1gg INPUT A
11¢ END
RUNH
? 1gP

CAN'T OPEN OUTPUT FILE IN LINE 10¢ 109 OPEN "CDR:" FOR OUTPUT AS
1119 END
RUNH

CHANNEL NOT OPEN FOR INPUT IN LINE 14f

109 INPUT #1,A
119 END
RUNH

CHANNEL NOT OPEN FOR OUTPUT IN LINE 1¢¢

19¢ PRINT #1,A
119 END
RUNH

EXPLANATION

A virtual file cannot be
dimensioned larger than at
the time it was created un-
less the original is deleted.

Only a BASIC program can be
chained.

Numeric variables may have

only numbers as input.

FILE 1 A sequential access
file cannot be opened
because the device
specified is full or
there is a mistake in
the 'OPEN' statement.

No file or device hés been
opened under the specified
channel number.

No file or device has been
opened under the specified
channel number.

MESSAGE

CHANNEL OUT OF RANGE IN LINE 10y
DEVICE ERROR

DEVICE FULL IN LINE 2f

DEVICE NOT AVAILABLE IN LINE 1¢0f@
DIVISION BY ZERO IN LINE 7

END OF FILE IN LINE 2§

ERROR CLOSING FILE IN LINE 1g¢

EXAMPLE

19 OPEN "EDU" AS FILE 5
119 END
RUNH

1¢ OPEN "AFILE" AS FILE 1
2¢ DIM #1,A(50000)

209 END

RUNH

199 OPEN "AAA:RISK" AS FILE 1
11g END
RUNH

78 PRINT T/Y

2099 END
RUNH

5 DIM As$=12f

19 OPEN "CDR" FOR INPUT AS FILE 1
_ 2@ INPUT LINE #1, AS

30 GOTO 2¢
1909 END
RUNH

1@ OPEN "K" FOR OUTPUT AS FILE 1

119 PRINT #1,A
115 GOTO 11¢
120 END

RUNH

EXPLANATION

Files can only be opened
under numbers 1-4.

A device that the system has
been configured for has been
used in an illegal manner.

Device specified doesn't
have enough contiguous
blocks to contain file.

Any device for which the
system is not configured
cannot be accessed.

Division by zero is an
undefined operation.

An input device or
file has no more
elements remaining.

A sequential access
file cannot be closed
because the specified
device is full.

MESSAGE

ERROR READING FILE

FILE ALREADY OPEN IN LINE 10¢@

FILE NOT FOUND IN LINE 1g¢
FUNCTION ARG TOO BIG IN LINE 1@¢
LINE NOT FOUND IN LINE 20¢

MID ERROR IN LINE 2¢

NEGATIVE OR ZERO LOG IN LINE 1#f¢

EXAMPLE

EXPLANATION

1g@ OPEN"READ"FOR INPUT AS FILE 1 Input from device or

114 END
RUNH

file contains an un-
recognizable error.

109 OPEN"LOAN"FOR OUTPUT AS FILE 1 A file or device which

195 A=1g

119 PRINT #1,A
129 GOTO 199
499 END

RUNH

199 CHAIN “INFORT",29@
119 END
RUNH

199 Y=2410000
11¢ END
RUNH

2¢@¢ CHAIN "PLOT",12

2009 END

RUNH

19 AS="ABCD"

2¢ BS$=MID(AS,84,5)
34 END

RUNH

19¢ Y=LOG(f#)
119 END
RUNH

the program attempts to
open has previously been
opened.

File specified does not
exist.

BASIC cannot manipulate the
function with the specified
arguments,

There is no such line in the

program chained. '

A MID function must have a
positive integer for its
length specification, it must
have at least one character
to 'MID', and it must not
'MID' past the dimension

of the string.

The LOG function requires
a positive argument.

MESSAGE

NO CLOSING QUOTE IN LINE 1¢¢

NOT A BINARY FILE IN LINE 109

OUT OF DATA IN LINE 1¢0f@

OUT OF STORAGE IN LINE 5¢

RETURN WITHOUT GOSUB IN LINE 1g4¢

SQR OF NEGATIVE ARG IN LINE 1¢f@

STEP OF ¢ IN LINE 10§

EXAMPLE

199 INPUT A$
11¢ END
RUNH

? "ABC CR.

199 DIM #4,A$(10)=20
11¢ END
RUNH

199 READ A, B, C, D
119 DATA 4,7,2

12¢ END

RUNH

199 RETURN
119 END
RUNH

199 Y=SQR(-9)
119 END
RUNH

109 FOR I=1] TO 1@ STEP X

2@ NEXT I

40@¢@ END
RUNH

EXPLANATION

A string variable must have
a closing quote if it has

.an opening quote.

A virtual file must be
opened before it is
dimensioned.

A READ statement has no
more data available to
read.

Program has run out of
storage performing an
operation.

A RETURN statement must only
be accessed after a GOSUB

"command has previously been

executed.

The SQR function requires
non-negative argument.

The step of a FOR-NEXT loop
must be a non-zero number.

MESSAGE

STOP AT LINE 15§

STRING OVERFLOW IN LINE 11§

EXAMPLE

15¢ SsTOP
2¢g@ END
RUNH

190 DIM A$=4

119 A$="123456"
120 END
RUNH

SUBSCRIPT OUT OF BOUNDS IN LINE 1l1¢

- TAN OF PI/2 IN LINE 45

UNDEFINED ERROR IN LINE 25

ZERO TO ZERO POWER IN LINE 1f

1909 DIM A(5)
11¢ PRINT A(6)
120 END '
RUNH

45 PRINT TAN(PI/2)

2¢9@ END
RUNH

19 PRINT X+X

2099 END
RUNH

EXPLANATION

Execution has been halted
by BASIC at the line indi-
cated.

A string must not be set
equal to a length greater
than its demension state-
ment.

A subscript of a subscripted
variable has exceeded its
DIMension.

The tangent of PI/2 does not -
exist.

An error has occurred which

‘BASIC does not know how to

handle.

Zero to the zero power does
not exist.

R.3

MESSAGE

DEVICE ERROR

DEVICE NOT AVAILABLE

ERROR DELETING FILE n

ERROR READING FILE

filnam.ex ALREADY SAVED

filnam.ex NOT FOUND

ILLEGAL FILE NAME

LINE NOT FOUND

COMMAND ERRORS

EXAMPLE

SAV PTR:

SAV PTT:

UNSAVE COMP

OLD PAYROL

SAVE

OLD COMP

OLD A-5

EDIT 11¢

EXPLANATION

If you try to use a device
the system is configured for
in an illegal manner, this
error statement will result.

System is not configured for
the specified device.

File n not found.

An error has occurred in
calling a previously saved
program into core.

The specified file already
exists on the specified

- device.

File specified is not found
on specified device.

File name must be less than
six characters, consisting of
alphanumeric characters, and
starting with a letter.

When using the EDIT command,
the line specified does not
exist. :

MESSAGE

LINE NUMBERS MISSING ON filnam.ex

LINE TOO LONG
NOT A FILE DEVICE
NUMBER OUT OF RANGE

PROGRAM TOO LONG TO RESEQUENCE

SEQUENCE NUMBER OVERFLOW

TEXT BUFFER IS FULL

TOO FEW ARGS

TOO MANY LINES

WHAT??

EXAMPLE

OLD A.DA

UNSAVE PTP:AA

1999@ END

RESEQUENCE

1¢¢ PRINT "A"

11¢ PRINT "B"

12¢ PRINT “C"

13¢ PRINT "D"

149 END

RESEQUENCE 19@@,100¢

OLD LCARDS.DA 14,1

SEARCH 100-200/A

OLD CARD.DA 10,1¢

MISTNH

EXPLANATION

File called in is missing
some or all line numbers.

Line greater than 124 charac-
ters.

The specified device can't
be used to save files.

Line numbers must be in the
range 1-4094.

File in core contains too
many characters for BASIC
to resequence.

Specified command needs more
arguments than were given.
When trying to resequence, a
line number became greater
than 4094.

File is too big to fit into
core or too large to be able
to use the SEARCH command.

Specified command needs more
arguments than were given.

User tried to type in or call
in a file with more lines
than is acceptable to BASIC.

BASIC does not recognize the
command .

INDEX

ABS function, 3-19, A-8 Commas
Arithmetic operators, 2-7, A-1l in DATA, 4-7
Array storage, 8-4 in INPUT LINE, 6-3
Array variables, 3-15 in PRINT, 6-4
character string, 4-3 in PRINT-USING, 6-8
default values, 3-17 Comments, 3-27
virtual core, 5-10, 8-1 DATA statement, 6-1
zero elements, 3-17, 8-5 Common statement
see also matrices similarity to, 8-2
ASCII Compilation, 1-3
DATA statement, 4-8, 6-2 Compiled files, 7-2, 7-13, 7-17
formatted I/0, 5-3 COMPILE command, 7-17, A-5
table, 4-6 - Concatenation, 4-10
ASCII function, 4-10 Conditional branch, 3-6
Assignment, see LET Conditions, 3-6
see also relational expressions
Constants
BASIC character string, 4-2
conventions, 1l-4 numeric, 2-5
history, 1-1 Control characters
language, 1-1 summary, A-7
start-up, 1-4 CONTROL key, 1-6
Brackets, 1-5 Control variable, 3-12, 3-15
Buffer, 8-8 Conventions, manual, 1-4

cos function, 3-19, A-8
Creating a program, 7-1

Capital letters, 1-5 CRTL key, 1-6

CATALOG command, 7-19, A-5 CTRL/C, 1-7, 7-24, A-T7

CHAIN statement, 5-14, A-2 CTRL/G, 7-28

Channel numbers, see Internal CTRL/I, 7-25, A-7

file designators CTRL/L, 7-7

Characters, 2-4 CTRL/O, 7-25, A-7

Character strings, 4-1 CTRL/P, 1-7, 7-24, A-7
constants, 4-2 CTRL/U, 1-6, 7-7, 7-24, A-7
functions, 4-9, A-8 CTRL/Z, 7-25, A-7

output by PRINT, 4-1, 4-8
relational operators, 4-5,

A-1 Data files, see files, data
size, 4-4 Data pool, 3-3, 4-8, 6-1
string input, 4-7 DATA statement, 3-3, 4-7, 6-1, A-2
string output, 4-9 character strings in, 4-7, 6-1
subscripted variables, 4-3 comments, 6-1
variables, 4-2 data pool storage, 3-3, 4-8, 6-1
virtual core arrays, 5-11, placement in line, 4-8, 6-1
8-4 simplest form, 3-4
CHRS function, 4-10 DELETE command, 7-9, A-5
CLOSE statement, 5-9, 5-13, A-2 Device designator, see Internal file
Colon, 2-4 designator
Commands, 1-3, 1-5 Devices, 0S/8, 5-1

summary, A-5, see Chapter 7
for specific commands

x=-1

DIM statement, 3-17, 4-3, A-2 IF-THEN statement, 2-8, 3-6, A-2

placement on line, 3-18 logical, 3-9

placement in program, 3-18 placement on line, 3-9

virtual files, 5-10 Implicit dimensions
Disk files, 8-1, 8-4, 8-8 numeric, 3-17
Dollar sign ($), 2-4 string, 4-3

Input
EDIT command, 7-6 character strings, 4-7
Editing programs, 7-6 see also READ, INPUT, and INPUT
E format numbers, 2-5 LINE
END statement, 3-26, A-2 INPUT LINE statement, 4-8, 6-3, A-3
Error messages, Appendix B INPUT statement, 3-4, 5-4, 5-9, 6-2,
Example BASIC program, 2-2 A-3
Exclamation mark (!), 2-4, 3-27, character string input, 4-8
6-6 : from data files, 5-4
EXECUTE command, 7-13, 7-18, from non-terminal devices, 5-4,
A-5 5-9, 6-2

Execution, 1-4, 2-3 simplest form, 3-4, 6-3
EXP function, 3-19 , Internal file designators, 5-1, 5-4,
Exponential format output, 6-8 5-6
Exponentiation, 2-7, 3-8 user terminal, 5-6
Expressions, 2-4, 2-7, 3-6 : virtual array, 5-7, 5-11

arithmetic, 2-4, 2-7 Intrinsic functions, see functioning

relational, 2-8, 3-6 INT function, 3-19, A-8
Extensions, file, 5-2, 7-2 I/0, basic operations, 3-2

complete discussion, Chapters 5
and 6

Filename format, 5-1 see also individual entries

Filename specification,
complete, 5-1

Files, data, 9-1 Kemeny, John, 1l-1
calling into memory, 7-4 KILL statement, 5-14, A-3
formatted data, 5-3 Kurtz, Thomas, 1-1

random access, 5-10
see also virtual array files

Files, DECtape, 8-1, 8-4 LENGTH command, 7-19
Files, disk, 8-1, 8-4, 8-8 LEN function, 4-10, A-8
File-structured devices, 5-4 LET statement, 3-1, A-3
Formatted ASCII I/O, 5-3 multiple variables, 3-2
Formulas, see expressions ' omitting LET, 3-3
FOR statement, 3-12, A-2 placement on line, 3-3
nesting loops, 3-14 Line, 1-5, 2-1, 7-23
placement on line, 3-15 multiple statements on single, 2-3
Functions single statement on multiple, 2-3
mathematical, 3-8, 3-18 LINE FEED key, 1-7, A-7
print, 6-9 Line terminators, 4-8
string, 4-9 LIST command, 7-10, A-5
summary, A-8 LISTNH command, 7-10, A-5

LOG function, 3-19
Logical IF-THEN statement, 3-9
GOSUB statement, 3-24, A-2 Loops, 3-7, 3-10
GOTO statement, 3-5, A-2 characteristic parts, 3-11
nested, 3-14

Lower case type, 1-5

Mapping, 8-1
MARGIN command, A-8
Mathematical functions,
A-8 :
table, 3-19, A-8
Mathematical operators,
A-1
Matrices, 3-15
implicit dimensions, 3-17
virtual core, 5-10, 8-5
Memory, conserving, see programs
Message output
by PRINT, 3-3
MID function, 4-10, A-8
Minus sign (-), 2-7, 3-8
Multiple lines per statement,
2-3
Multiple statements per line,
2-3

3-18'

2-7 ’

’

Nesting

loops, 3-14

subroutines, 3-25
NEXT statement, 3-12, A-3

placement on line, 3-15
NLIST command, 7-10, A-5
NLISTNH command, 7-11
None, assumed filename, 7-2
NPUNCH command, 7-21, A-6
NREPLACE command, 7-17, A-6
NSAVE command, 7-16, A-6
Null string, 4-3, 4-5
Number format, output by PRINT

statement, 3-3

Numbers, 2-5

E format, 2-6
Number sign (#), 2-4, 6-7

A-6

3-28, A-3
3-28, A-3
8-8, A-3

OLD command, 7-3,
ON-GOSUB statement,
ON-GOTO statement,
OPEN statement, 5-2,
FOR INPUT, 5-3, 5-9
FOR OUTPUT, 5-3, 5-8
user terminal, 5-6
virtual array file,
Operators
mathematical, 2-4, 2-7
relational, 2-8, 3-8
summary, 5-1, 5-4, A-1

5-3, 5-12

os/8, 1-4, 1-7, 4-5, 5=-2, 7-1, 7-20,
7-22
Output
character strings, 4-9

see also PRINT

OVERLAY command, 7-5, A-6

Parentheses, 2-4, 2-7, 3-8
PI, 3-19
Plus sign (+), 4-10
Pound sign (#), 2-4,
Precedence rules
complete, 3-8
mathematical,
PRINT functions, 6-9
PRINT statement, 3-3, 6-4, A-3
character string format, 4-1, 4-9
comma, 6-4
message output, 3-3
number format, 6-5
output rules, 6-5
performing calculatlons,
semicolon, 6-5
simplest form, 3-3, 6-4
to data files, 5-4, 5-8,
to non-terminal devices,
6—-6
without arguments,
PRINT USING statement,
exclamation point,
exponential format,
numeric field, 6-7
punctuation, 6-8
string field, 6-7
Print zones, 6-4 ,
Priorities, see precedence rules
Programs, 1-5
creating, 7-1
conserving memory space,
line, 1-5
running, 1-3,
PUNCH command,

2-9, 6-7

2—7' 2—8

3-3

6-6
5-4, 5-8,
3-3,
6-6
6-6
6-8

6-4

2-4, 3-18
7-12

7-21, A-6

Question mark (?), printed by INPUT,
3-4, 6-3
Quote ("), 2-4, 6-3

4-7, 6-1,

Random access files, see virtual
array files
RANDOM statement,

RANDOMIZE statement,

3-22, A-4
3"'22 I A"4

READ statement, 3-3, 4-7, 6-1,
A-4 '
placement in line, 4-8, 6-1
simplest form, 3-3
string input, 4-7
Relational
expressions, 2-8, 3-6, 4-5,
A-1
operators, 2-8, 3-8, A-1
operators with character
strings, 4-5, A-1
REMARK statement, 3-27, A-4
RENAME command, 7-17, A-6
REPLACE command, 7-17, A-6
RESEQUENCE command, 7-8, A-6

RETURN statement, 6-2, A-4
RND function, 3-19, 3-21, A-8
RUBOUT key, 1-6, 7-6, 7-23
RUN command, 7-13, A-6

RUNNH command, 7-13, A-6
Running BASIC, 1-3

Sample BASIC program, 2-2
SAVE command, 7-14
Scientific notation, 2-6
SCRATCH command, A-6
SEARCH command, 7-11, A-7
Semicolon (;)
in PRINT, 6-4
in PRINT-USING, 6-8
SGN function, 3-19, A-8
SIN function, 3-19, A-8
Single statement on multiple
lines, 2-3
Space, conservation of, see
programs
Spaces, 2-4, 4-7,
Square brackets ([]
Statements
elementary, 3-1
multiple on single line, 2-3

4-9
)I 1-5

single on multiple lines, 2-3

summary, A-2
STEP expression, 3-12, A-2
STOP statement, 3-26, A-4
String, see character string
Subroutines, 3-23

GOSUB, 3-25

nesting, 3-25

ON-GOSUB, 3-28

Subscripts, 3-15
character string variables, 4-3
default values, 3-17, 4-3
zero elements, 3-17, 4-3
Syntax, 1-4, 2-1

Tabs, 7-25
TAN function, 3-19, A-8
TAPE command, 7-20, A-7
Tapes, paper
punching, 7-20
reading, 7-20
Terminal input, see INPUT and
INPUT LINE
Terminals, 1-5, 5-1, 5-6

Unary minus, 2-7, 3-8
Unconditional branch, 3-5
Up-arrow (4), 6-8, 8-1

Variables
character string, 4-2, A-1
initial wvalue, 2-7
nunmeric, 2-5, A-1
subscripted, 3-15, 3-17, 4-3
subscripted and unsubscripted
in same program, 3-16, 4-2
summary, A-1
Virtual array files, 5-10
example, 5-12
opening, 5-12
see also Chapter 8
Virtual data storage, see
virtual array files

Zero, assumed value, 2-6, 3-18
Zeroth element ’
numeric, 3-15, 3-17
string, 4-3

