

DEC-08-LBSMA-A-D

8K BASIC

For additional copies, order No. DEC-08-LBSMA-A-D
from Software Distribution Center, Digital Equipment
Corporation, Maynard, Mass.

digital equipment corporation · maynard. massachusetts

First Printing, July 1973

Copyright ~ 1973 by Digital Equipment Corporation

The following are trademarks of Digital Equipment Corporation,
Maynard, Massachusetts:

COP DIGITAL KAIO PS/8
COMPUTER LAB DNC LAB-8 QUICKPOINT
COMTEX EDGRIN LAB-8/e RAD-8
COMSYST EDUSYSTEM LAB-K RSTS
DOT FLIP CHIP OMNIBUS RSX
DEC FOCAL OS/8 RTM
DECCOMM GLC-8 PDP SABR
DECTAPE IDAC PHA TYPESET 8
DIBOL IDACS UNIBUS

INOAC

contents

Introduction 1

Numbers 2

Variables .. 3

Arithmetic Operations .. 3
Priority of Arithmetic Operations 4

Parentheses .. 4

Relational Operators .. 5

Immediate Mode .. .'....................... 6
PRINT Command 6
LET Command.. 6

BASIC Statements .. 7
Example Program .. 7
Statement Numbers .. 8
Commenting the Program .. 9

REM .. ·9
Terminating the Program .. 9

END .. 9
STOP .. 10

The Arithmetic Statement .. 10
LET .. 10

Input/Output Statements .. 11
READ and DATA .. 11
RESTORE .. 12
INPUT .. 14
PTR .. 14
PRINT .. 15
LPT .. 19
PTP .. 20
TTY IN and TTY OUT .. 20

IV

Loops
FOR, NEXT, and STEP

Subscripted Variables
DIM

Transfer of Control Statements
Unconditional Transfer-oGOTO ,.
Conditional Transfer-IF-THEN and IF-GOTO

Subroutines
GOSUB and RETURN

Functions
Sign Function-SGN(x)
Integer Function-INT(x)
Random Number Function-RND(x)
TAB Function
PUT and GET Functions
FNA Function .. '" ., ... , .. .

User-Defined Function-UUF
Coding Formats
Floating-Point Format
Addressing
Floating-Point Instruction Set
Writing the Program
Examples

Editing and Control Commands
Erasing Characters and Lines

SHIFT /0, RUBOUTS, and NO RUBOUTS
Listing and Punching a Program

LIST
PTP and LPT ..

Reading a Program
PTR

Running a Program
RUN
PTP and LPT

Stopping a Run
..

............ , .. " . ~ . " " " . " " .. " ... " " " . " . "

v

22
22
25
27

29
29
30
30
30
34
35
35
36
37
39
42

43
43
44
45
45
47
48

53
53
53
55
55
55
56
56
56
56
57
57

CTRL/C .. 57
CTRL/O .. 57

Erasing a Program in Core .. 58
SCR .. 58

Loading and Operating Procedures 58
BASIC Comp~ler 58
User-Defined Function .. 59

8K BASIC Error Messages .. 59

8K BASIC Symbol Table .. 61

Statement and Command Summaries 67
Edit and Control Commands .. 67
BASIC Statements .. 67

Appendix A
Appendix B ..

VI

A-l
B-1

8K basic

INTRODUCTION
8K BASIC is an interactive programming language with a vari

ety of applications. It is used in scientific and business environments
to solve both simple and complex mathematical problems with a
minimum of programming effort. It is used by educators and stu
dents as a problem-solving tool and as an aid to learning through
programmed instruction and simulation.

In many. respects the BASIC language is similar to other pro
gramming languages (such as FOCAL and FORTRAN), but
BASIC is aimed at facilitating communication between the user
and the computer. The BASIC user types in the computational
procedure as a series of numbered statements, making use of com
mon English words and familiar mathematical notations. Because
of the small number of commands necessary and its easy applica-

. tion in solving problems, BASIC is one of the simplest computer
languages to learn. With experience, the user can add the advanced
techniques available in the language to perform more intricate
manipulations or express a problem more efficiently and concisely.

8K BASIC is an extended version of DEC's 4K BASIC,l but
has additional features and requires 8K of core. The user who has
no familiarity with the BASIC language may wish to refer to the
EduSystem Handbook for a background description of the lang
uage fundamentals, and for information pertaining to working
with BASIC at the computer.

The minimum system configuration for 8K BASIC is a PDP-8

1 4K BASIC, or EduSystem 10, is the most fundamental BASIC in DEC's
series of EduSystems. This series is directed primarily for use in an educa
tional environment. Information concerning the EduSystems may be ob
tained from DEC's PDP-8 Educational Marketing Department.

1

series computer with 8K of core memory. Supported options in
clude a high-speed reader and punch, and an LP08 line printer.

New features provided by 8K BASIC include one and two
dimensional subscripting, faster execution time, user-coded func
tions, use of the LP08 line printer and high-speed reader/punch,
and specification of input and output devices from any part of a
program.

Loading and operating instructions and a command summary
are included at the end of the manual.

NUMBERS
BASIC treats all numbers (real and integer) as decimal numbers

-that is, it accepts any number containing a decimal point, and
assumes a decimal point after an integer. The advantage of treating
all numbers as decimal numbers is that the programmer can use
any number or symbol in any mathematical expression without re
gard to its type.

In addition to integer and real formats, a third format is recog
nized and accepted by 8K BASIC and is used to express numbers
outside the range .01 <=x<=1 ,000,000. This format is called
exponential or E-type notation, and in this format, a number is
expressed as a decimal number times some power of 10. The
form is:

xxEn

where E represents "times IOta the power of"; thus the number
is read: "xx times IOta the power of n." For example:

23.4E2 = 23.4*10~ = 2340

Data may be input in anyone or all three of these forms. Re
sults of computations are output as decimals if they are within the
range previously stated; otherwise, they are output in E format.
BASIC handles seven significant digits in normal operation and
input/ output, as illustrated below:

Value Typed In

.01

.0099
999999
1000000

2

Value Output By BASIC

.01
9.900000E-3
999999
1.000000E+6

BASIC automatically suppresses the printing of leading and trail
ing zeros in integer and decimal numbers, and, as can be seen
from the preceding examples, formats all exponential numbers in
the form:

(sign) x.xxxxxx E (+ or -) n

where x represents the number carried to six decimal places, E
stands for "times 10 to the power of," and n represents the ex
ponential value. For example:

-3.470218E+8 is equal to -347,021,800
7.260000E-4 is equal to .000726

VARIABLES
A variable in BASIC is an algebraic symbol representing a

number, and is formed by a single letter or a letter followed by a
digit. For example:

Acceptable Variables Unacceptable Variables

I

B3

X

2C - a digit cannot begin
a variable

AB - two or more letters
cannot form a vari
able

The user may assign values to variables either by indicating the
values in a LET statement, or by inputting the values as data;
these operations are discussed further on in the manual.

ARITHMETIC OPERATIONS
BASIC performs addition, subtraction, multiplication, division

and exponentiation, as well as more complicated operations ex
plained in detail later in the manual. The five operators used in
writing most formulas are:

Symbol
Operator

+

*
I
t

Meaning

Addition
Subtraction
Multiplication
Division
Exponentiation
(Raise A to the
Bth power)

3

Example

A+B
A-B
A*B
AlB
AtB

Priority of Arithmetic Operations
In any given mathematical formula, BASIC performs the arith

metic operations in the following order of evaluation:

1. Parentheses receive top priority. Any expression within
parentheses is evaluated before an unparenthesized expres
sion.

2. In absence of parentheses, the order of priority is:
a. Exponentiation
b. Multiplication and Division (of equal priority)
c. Addition and Subtraction (of equal priority)

3. If either 1 or 2 above does not clearly designate the order of
priority, then the evaluation of expressions proceeds from
left to right.

The expression A tBtC is evaluated from left to right as follows:

1. AtB == step 1
2. (result of step 1) tC == answer

The expression A/B*C is also evaluated from left to right since
multiplication and division are of equal priority:

1. AlB step 1
2. (result of step 1) *C

PARENTHESES

== answer

Parentheses may be used by the programmer to change the
order of priority (as listed in rule 2 above), as expressions within
parentheses are always evaluated first. Thus, by enclosing expres
sions appropriately, the programmer can control the order of eval
uation. Parentheses may be nested, or enclosed by a second set (or
more) of parentheses. In this case, the expression within the inner- .
most parentheses is evaluated first, and then the next innermost,
and so on, until all have been evaluated.

Consider the following example:

A=7*«Bt2+L!)/X)

The order of priority is:

1. Bt2
2. (result of step 1) +4
3. (result of step 2) IX
4. (result of step 3) *7

4

step 1
step 2
step 3
A

Parentheses also prevent any confusion or doubt as to how the
expression is evaluated. For example:

A*Bf2/7+B/C+Df2

Both of these formulas will be executed in the same way. How
ever, the inexperienced programmer or student may find that the
second is easier to understand.

Spaces may be used in a similar manner. Since the BASIC com
piler ignores spaces, the two statements:

10 LET B = Df2 + 1

10LETB=Df2+1

are identical, but spaces in the first statement provide ease in
reading.

RELATIONAL OPERATORS
A program may require that two values be compared at some

point to discover their relation to one another. To accomplish this,
BASIC makes use of the following relational operators:

equal to
< less than
< = less than or

equal to

> greater than
> = greater than or

equal to
< > not equal to

Depending upon the result of the comparison, control of program
execution may be directed to another part of the program, or the
validity of the relationship may cause a value of 0 to 1 to be as
sociated with a variable (that is, if a condition is true, a value of
1 is assigned; if a condition is not true, then the value of 0 is re
turned). Relational operators are used in conjunction with IF and

. LET statements, both of which are discussed in greater detail later
in the manual.

The meaning of the equal (=) sign should be clarified. In
algebraic notation, the formula X==X + 1 is meaningless. However,
in BASIC (and most computer languages), the equal sign desig:
nates replacement rather than equality. Thus, this formula is
actually translated: "add one to the current value of X and store

5

the new result back in the same variable X." Whatever value has
previously been assigned to X will be combined with the value 1.
An expression such as A=B+C instructs the computer to add the
values of Band C and store the result in a third variable A. The
variable A is not being evaluated in terms of any previously as
signed value, but only in terms of Band C. Therefore, if A has
been assigned 'any value prior to its use in this statement, the old
value is lost; it is instead replaced by the value of B+C.

IMMEDIATE MODE
There are two commands available which allow BASIC to act

as a calculator-PRINT and LET. The user types in the algebraic
expression which is to be calculated, and BASIC types back the
result. This is called immediate mode since the user is not required
to write a detailed program to calculate expressions and equations,
but can use BASIC to produce results immediately.

PRINT Command
The PRINT command is of the form:

PRINT expression

and instructs BASIC to compute the value of the expression and
print it on the Teletype. The expression may be made up of any
decimal number, the arithmetic operators mentioned previously, and
the functions which are discussed further on in the manual. (These
may be used in conjunction with a string of text, as explained in the
section concerning the PRINT statement.) For example:

PRINT 1/8t8
5.960L!6L!E-08

LET Command
Values may be assigned to variables by use of the LET com

mand as follows:

LET variable = expression

The computer does not type anything in response to this com
mand, but merely stores the information. This information may
then be used in conjunction with a PRINT command to calculate
results. For example:

6

LET Pl=3.14159

PRINT Pl*4t2
50.26544

BASIC STATEMENTS
Example Program

The following example program is included at this point as an
illustration of the format of a BASIC program, the ease in running
it, and the type of output that may be produced. This program
and its results are for the most part self-explanatory. Following
sections cover the statements and commands used in BASIC pro
grammIng.

10 REM - PROGRAM TO TAKE AVERAGE OF
15 REM - STUDENT GRADES AND CLASS GRADES
20 PRINT "HOW MANY STUDENTS, HOW MANY GRADES PER STUDENT";
30 INPUT A,B
40 LET 1=0
50 FOR J= I TO A-I
55 LET V=0
60 PRINT "STUDENT NUMBER =";J
75 PRINT "ENTER GRADES"
76 LET D=J
80 FOR K=D TO D+(B-l)
81 INPUT G
82 LET V=V+G
85 NEXT K
90 LET V=V/B
95 PRINT "AVERAGE GRADE =";V
96 PRINT
99 LET Q=Q+V
100 NEXT J
101 PRINT
102 PRINT
103 PRINT "CLASS AVERAGE =";Q/A
104 STOP
140 END

7

RUN
HOW MANY STUDENTS, HOW MANY GRADES PER STUDENT? 5,4
STUDENT NU~BER = 0
ENTER GRADES
?78
?86
?88
?74
AVERAGE GRADE = 81.5

STUDENT NUMEER = 1
ENTER GRADES
?59
?86
?7V'J
?87
AVERAGE GRADE = 75.5

STUDENT NUMBER = 2
ENTER GRADES
?58
?64
?75
?8V'J
AVERAGE GRADE = 69.25

STUDENT NUMBER = 3
ENTER GRADES
?88
? 92
?85
?79
AVERAGE GRADE = 86

STUDENT NUMBER = 4
ENTER GRADES
?60
?78
?85
?8V'J
AVERAGE GRADE 75.75

CLASS AVERAGE

READY.

Statement Numbers
An integer number is placed at the beginning of each line in a

BASIC program. BASIC executes the statements in a program in
numerically consecutive order, regardless of the order in which
they have been typed. A common practice is to number lines by

8

fives or tens, so that additional lines may be inserted in a program
without the necessity of renumbering lines already present.

Multiple statements may be placed on a single line by sep
erating each statement from the preceding statement with a back
slash (SHIFT /L). For example:

10 A=S\B=.2\C=3\PRINT "ENTER DATA"

All of the statements in line 10 will be executed before BASIC con
tinues to the next line. Only one statement number at the beginning
of the entire line is necessary. However, it should be remembered
that program control cannot be transferred to a statement within
a line, but only to the first statement of the line in which it is con
tained (see the section entitled Transfer of Control Statements).

Commenting the Program
REM

The REM or REMARK statement allows the programmer to
insert comments or remarks into a program without these com
ments affecting execution. The BASIC compiler ignores every
thing following REM. The form is:

(line number) REM (message)

In the Example Program, lines 10 and 15 are REMARK state
ments describing what the program does. It is often useful to put
the name of the program and information relating to. its use
at the beginning where it is available for future reference. Remarks
throughout the body of a long program will help later debugging
by explaining the purpose of each section of code within the
program.

Terminating the Program
END

The END statement (line 140 in the Example Program), if
present, must be the last statement of the entire program. The form
is:

(line number) END

This statement acts as a signal that the entire program has been
executed. Use of the statement is optional. However, if the pro
gram contains an END statement, after execution, variables and

9

arrays are left in an undefined state, thereby losing any values they
have been assigned during execution.

STOP
The STOP statement is used synonymously with the END state

ment to terminate execution, but while END occurs only once at
the end of ~ program, STOP may occur any number of times. The
format of the STOP statement is:

(line number) STOP

This statement signals that execution is to be terminated at that
point in the program where it is encountered.

The Arithmetic Statement
LET

The Arithmetic (LET) statement is probably the most com
monly used BASIC statement and is used whenever a value is to
be assigned to a variable. It is of the form:

(line number) (LET) x = expression

'where x represents a variable, and the expression is either a num
ber, another variable, or an arithmetic expression. The word 'LET'
is optional; thus the following statements are treated the same:

100 LET A=AfR+10 110 LET C=F/G

100 A=AtF3+10 110 C=F/G

As mentioned earlier, relational operators may be used in a LET
statement to assign a value of 0 (if false) or I (if true) to a
variable depending upon the validity of a relationship. For example:

100 A=1\B=2
110 C=A=B
120 D=A>B
1 30 E=A<>B
140 PRINT C.,D.,E
150 END

Translated, this actually means "let C= 1 if A=B (0 otherwise);
let D== 1 if A> B (0 otherwise)" and so on. Thus, the values of C,
D, and E are printed as follows:

10

RUN
o

READY.

o

There is no limit to the number of relationships that may be tested
in the statement.

Input/ Output Statements
Input/Output statements allow the user to bring data into a

program and output results or data at any time during execution.
The Teletype keyboard, low or high-speed reader/punch, and
LP08 line printer are all available as I/O devices in 8K BASIC.
Statements which control their use are described next.

READ AND DAT A
READ and DATA statements are used to input data into a pro

gram. One statement is never used without the other. The form of
the READ statement is:

(line number) READ x I, x2, ... xn

where xl through xn represent variable names. For example:

10 READ A"B"C

A, B, and C are variables to which values will be assigned. Vari
ables in a READ statement must be separated by commas. READ
statements are generally placed at the beginning of a program, but
must at least logically occur before that point in the program
where the value is required for some computation.

Values which will be assigned to the variables in a READ state
ment are supplied in a DATA statement of the form:

(line number) DATA xl, x2, ... xn

where x 1 through xn represent values. The values must be sep
arated by commas and occur in the same order as the variables
which are listed in the corresponding READ statement. A DATA
statement appropriate for the preceding READ statement is:

70 DATA 1,2,3

11

Thus, at execution time A=I, B==2, and C=3.
The DATA statement is usually placed at the end of a program

(before the END statement) where it is easily accessible to the
programmer should he wish to change the values.

A READ statement may have more or fewer variables than
there are values in any one DATA statement. The READ state
ment causes BASIC to search all available DATA statements in
the order of their line numbers until values are found for each
variable in the READ. A second READ statement will begin read
ing values where the first stopped. If at some point in the program
an attempt is made to read data which is not present or if the data
is not separated by commas, BASIC will stop and print the follow
ing message at the console:

DATA ERROR AT LINE XXXX

where XXXX indicates the line which caused the error.

RESTORE
If it should become necessary to use the same data more than

once in a program, the RESTORE statement will make it possible
to recycle through the DATA statements beginning with the lowest
numbered DATA statement. The RESTORE statement is of the
form:

(line number) RESTORE

An example of its use follows:

15 READ B."C."D

55 RESTORE
60 READ E."F."G

100 END

The READ statements in lines 15 and 60 will both read the first
three data values provided in line 80. (If the RESTORE statement

12

had not been inserted before line 60, then the second READ would
pick up data in line 80 starting with the fourth value.)

The programmer may use the same variable names the second
time through the data, or not, as he chooses, since the values are
being read as though for the first time. In order to skip unwanted
values, the programmer may insert replacement, or dummy, vari
ables. Consider:

1 REM - PROGRAM TO ILLUSTRATE USE OF RESTORE
20 READ N
25 PRINT "VA.LUES OF X ARE:"
30 FOR 1=1 TO N
40 READ X
50 PRINT X,
60 NEXT I
70 RESTORE
185 PRINT
190 PRINT "SECOND LIST OF X VALUES"
200 PRINT "FOLLOWING RESTORE STATEMENT:"
210 FOR 1=1 TO N
220 READ X
230 PRINT X,
2LJ0 NEXT I
250 DATA Lj, 1,2
251 DATA 3,LJ
300 END

RUN
VALUES OF X ARE:

1 2
SECOND LIST OF X
FOLLOWING RESTORE

LJ 1
READY.

3
VALUES

STATEMENT:
2

LJ

3

The second time the data values are read, the first X picks up
the value originally assigned to N in line 20, and as a result, BASIC
prints:

2 3

13

To circumvent this, the programmer could insert a dummy variable
which would pick up and store the first value, but would not be
represented in the PRINT statement, in which case the output
would be the same each time through the list.

INPUT
The INPUT statement is used when data is to be supplied by

the user from the Teletype keyboard while a program is executing,
and is of the form:

(line number) INPUT xl, x2, ... xn

where xl through xn represent variable names. For example:

25 INPUT A,B,C

This statement will cause the program to pause during execution,
print a question mark on the Teletype console, and wait for the
user to type in three numerical values. The user must separate the
values by commas; they are entered into the computer by his press
ing the RETURN key at the end of the list.

If the user does not insert enough values to satisfy the INPUT
statement, BASIC prints another question mark and waits for more
values to be input. When the correct number has been entered,
execution continues. If two many values are input, BASIC ignores
those in excess of the required number. The values are entered
when the user types the RETURN key.

PTR
A PTR statement is used when data is to be input from the high

speed paper tape reader. The format of the data on the paper tape
must be the same as it would be if it were input from the Teletype
keyboard. If more than one value is to be input at a time, the
values must be separated by commas. The tape must be positioned
in the reader before it is called by the program; while it is reading,
there is no echo (type out) on the Teletype. The for~ is:

(line number) PTR

The PTR statement is most useful for inputting large amounts of
data in conjunction with the INPUT command. The following
program accepts 20 data values from the high-speed reader, prints
a heading, the value input, and its sine on the Teletype:

14

50 PTR
60 PRINT "SINE TABLE"
100 FOR J=1 TO 20
110 INPUT A
120 LET B=SINCA)
130 PRINT A.1B
140 NEXT J
1 50 END

RUN
SINE TABLE
-.97
-.911
-.872
-.723
-.719
-.61
-.502
-.346
-.33
-.283
-.175
-.155
- .02

.03

.093

.127
• 13
.42
.529
.632

READY.

PRINT

-.8248857
-.79011 71
-.7656171
-.6616371
-.6586325
-.5728675
-.4811798
-.3391376
-.324043
-.2792376
-.1741081
-. 1543801
-.01999867

.0299955

.092866

.1266589

.1296341

.4077605

.5046703

.5907596

The PRINT statement is used to output results of computations,
comments, values of variables, or plot points of a graph on the
Teletype. The format is:

(line number) PRINT expression

When used without an expression, a blank line will be output on
the Teletype. For more complicated formats, the type of expression
and the type of format control characters following the word
PRINT determines which formats will be created.

In order to have the computer print out the results of a compu
tation, or the value of a variable at any point in the program, the

15

user types the line number, PRINT, and the variable name(s)
separated by a format control character, in this case, commas:

5 A=1()\B=5\C=4
10 PRINT A~C+R~SQR(A)

In BASIC, ·a Teletype line is formatted into five fixed columns
(called print zones) of 14 spaces each. In the above example, the
values of A, C+B, and the square root of A will be printed in the
first three of these zones as follows:

RUN
16

READY.

9

A statement such as:

4

5 A=2.3\R=21\C=156.75\D=1.134\E=23.4
10 PRINT A~B,C,D,E

will cause the values of the variables to be printed in the same
format using all five columns:

RUN
2.3

READY.

21 156.75 1.134 23.4

When more than five variables are listed in the PRINT statement,
the sixth value begins a new line of output.

The PRINT statement may also be used to output a message or
line of text. The desired message is simply placed in quotation
marks in the PRINT statement as follows:

10 PRINT "THIS IS A TEST"

When line lOis encountered during execution, the following will
be printed:

THIS IS A TEST

A message may be combined with the result of a calculation or a
variable as follows:

16

80 PRINT "AMOUNT PER PAYMENT ="R

Assuming R=344.9617, when line 80 is encountered during execu
tion, this will be output as:

RUN
AMOUNT PER PAYMENT = 344.9617

READY.

It is not necessary to use the standard five zone format for out
put. The control character semicolon· (;) causes the text or data
to be output immediately after the last character printed (sep
arated by one space.) If neither a comma nor a semicolon is used,
BASIC assumes a semicolon. Thus both of the following:

80 PRINT "AMOUNT PER PAYMENT ="R
80 PRINT "AMOUNT PER PAYMENT =";R

will result in:

AMOUNT PER PAYMENT = 344.9617

The PRINT statement can also cause a constant to be printed on
the console. (This is similar to the PRINT command used in Im
mediate Mode.) For example:

10 PRINT 1.234,SQR(10014)

will cause the following to be output at execution time:

1.234 100.07

Any algebraic expression in a PRINT statement will be evaluated
using the current value of the variables. Numbers will be printed
according to the format previously specified.

The following example program illustrates the use of the control
characters2 in PRINT statements:

2 The user may wish to refer to the section entitled Functions for in
formation pertaining to three functions available for additional character
control-TAB, PUT, and GET.

17

1121 READ A,B,C
2121 PRINT A,B,C,At2,Bt2,Ct2
3121 PRINT
4121 PRINT A;B;C;AT2;Bt2;Ct2
5121 DATA 4,5,6
6121 END

RUN
4
36

5

4 5 6 16 25 36

READY.

6 16 25

As this example illustrates, if a number should be too long to be
printed on the end of a single line, BASIC automatically moves the
entire number to the beginning of the next line.

Another use of the PRINT statement is to combine it with an
INPUT statement so as to identify the data expected to be entered.
As an example, consider the following program:

10 REM - PROGRAM TO COMPUTE INTEREST PAYMENTS
20 PRINT "INTEREST IN PERCENT";
25 INPUT J
26
30
35
40
45
50
55
60
65
70

LET J=J/100
PRINT "AMOUNT
INPUT A
PRINT "NUMBER
INPUT N
PRINT "NUMBER
INPUT M
LET N=N*M
LET I=J/M
LET B=!+I

OF LOAN" ;

OF YEARS";

OF PAYMENTS

75 LET R=A*I/(1-1/BfN)
78 PRINT

PER YEAR";

80 PR INT "AMOUNT PER PAYMENT ="; R
85 PRINT "TOTAL INTEREST =";R*N-A
88 PRINT
90 LET B=A
95 PRINT " INTEREST APP TO PRIN
100 LET L=B* I
110 LET P=R-L
120 LET B=B-P
130 PRINT L.,P.,B
140 IF B>=RGC TO 100
150 PRINT B*I.,R-B*I
160 PRINT "LAST PAYMENT ="B*I+B
200 END

18

BALANCE"

RUN
INTEREST IN PERCENT?9
AMOUNT OF LOAN?2500
NUMEER OF YEARS?2
NUMBER OF PAYMENTS PER YEAR?4

AMOUNT PER PAYMENT = 344.9617
TOTAL INTEREST = 259.6932

INTEREST
56.25
49.75399
43.11182
36.32019
29.37576
22.27508
15.01463
7.590824

LAST PAYMENT =

READY.

APP TO PR IN
288.7117
295.2077
301.8498
308.6415
315.5859
322.6866
329.947
337.3708
344.9608

BALANCE
2211.288
1916.081
1614.231
1305.589
990.0035
667.317
337.3699

As can be noticed in this example, the question mark is gram
matically useful in a program in which several values are to be
input by allowing the programmer to formulate a verbal question
which the input value will answer.

LPT
The LPT statement is used to generate output on the LP08 line

printer, and is of the form:

(line number) LPT

By inserting this statement anywhere in a program, all subsequent
output, with the exception of error messages, will be printed on the
line printer. The LPT statement is particularly advantageous for
outputting large amounts of calculated data, as can be seen from
this and following examples:

100 LPT
110 FOR F=30 TO 60 STEP 3
120 PRINT FJlFf2
130 NEXT F
140 END

19

q~~

10bq
12q&

1521
17b4
21iJ25
2304
2b01
2qlb
32"Q
30~H"

When the END statement is encountered in the program, the
output device is reset to the Teletype.

PTP
The high-speed paper tape punch is also available as an output

device in 8K BASIC, permitting users to save data or output files
quickly on paper tape. When the statement is encountered, all
output is diverted from the Teletype to the high-speed punch. Con
trol automatically returns to the Teletype when the END statement
is encountered. The form is:

(line number) PTP

By substituting this statement in line 100 of the previous program,
all output, with the exception of error messages, will be sent to the
high-speed paper tape punch instead of the line printer.

TTY IN AND TTY OUT
The Teletype may be placed under program control so that,

during execution of a program, 110 may be obtained or sent alter
nately between any available device. By issuing the statement:

(line number) TTY IN

control of input is returned to the Teletype if it has been previously
set to another device. Similarly, the statement:

(line number) TTY OUT

returns output control to the Teletype.

20

The following program makes use of most all the available I/O
devices. The output, with the exception of paper tape, is also
included.

100 LPT
110 PRINT "FIRST DEGREE EQUATION CALCULATION"
120 TTY IN
130 TTY OUT
135 PRINT "TYPE Xl Y1 THEN X2 Y2"
140 INPUT X1,Y1,X2,Y2
150 X=X2-X1
160 Y=Y2-Y1
170 M=Y/X
180 B=Y2-M*X2
190 IF B> =0 THEN 300
200 PRINT "Y="M"X"B
210 LPT
220 PRINT "Y="M"X"B
230 GO TO 400
300 PRINT "Y="M"X+"B
310 LPT
320 PRINT "Y="M"X+"B
400 FOR Y=0 TO 10 STEP 2
410 FOR X=0 TO 10 STEP .5
420 LET T=M*X+B-Y
430 IF T<>0 THEN 480
440 PRINT X,Y
450 PTP
460 PRINT X, Y
470 LPT
480 NEXT X
490 NEXT Y
500 END

RUN
TYPE Xl Y1 THEN X2 Y2
1-3,-4,-1,0
Y= 2 X+ 2

READY.

The line printer output is the following:

FIRST DEG~~E CALCULATIO~

va 2 x+ 2

" 1
2
3
4

21

Loops

NOTE
The Teletype low-speed reader and punch
may be used as I/O devices at any time. No
special statement is required. To read in data
from the low-speed reader, position the tape
over the sprocket wheel and set the reader to
START when input is required. The tape
will begin reading in. To punch a tape, set
the low-speed punch to ON and all ouput
will be punched on the low-speed punch.

Using the low-speed I/O devices is, in
effect, the same as using the Teletype key
board. Characters will be typed on the Tele
type keyboard as tapes are being read in or
punched.

FOR, NEXT, AND STEP
FOR and NEXT statements define the beginning and end of a

loop. A loop is a set of instructions which are repeated over and
over again, each time being modified in some way until a terminal
condition is reached. The FOR statement is of the form:

(line number) FOR v=xl TO x2 STEP x3

where v represents a variable name, and xl, x2, and x3 all repre
sent formulas (a formula in this case means a numerical value,
variable name, or mathematical expression). v is termed the index,
xl the initial value, x2 the terminal value, and x3 the incremental
value. For example:

15 FOR K=2 TO 20 STEP 2

This means that the loop will be repeated as long as K is less than
or equal to 20. Each time through the loop, K is incremented by 2,
so the loop will be repeated a total of 10 times.

A variable used as an index in a FOR statement must not be
subscripted, although a common use of loops is to deal with sub
scripted variables, using the value of the index as the subscript of

22

a previously defined variable (this is illustrated in the section con
cerning Subscripted Variables).

The NEXT statement is of the form:

(line number) NEXT

and signals the end of the loop. When execution of the loop reaches
the NEXT statement, the computer adds the STEP value to the
index and checks to see if the index is less than or equal to the
terminal value. If so, the loop is executed again. If the value of
the index exceeds the terminal value, control falls through the loop
to the following statement, with the value of the index equaling the
value it was assigned the final time through the 100p.3

If the STEP value is omitted, a value of + 1 is assumed. Since
+ 1 is the usual STEP value, that portion of the statement is fre
quently omitted. The STEP value may also be a negative number.

The following example illustrates the use of loops. This loop is
executed 10 times: the value of I is 10 when control leaves the
loop. + 1 is the assumed STEP value.

1 0 FOR I = 1 TO 10
20 NEXT I
30 PRINT I
40 END

RUN
10

READY.

If line 10 had been:

10 F OR I = 1 0 TO 1 STEP - 1

the value printed by the computer would be 1.
As indicated earlier, the numbers used in the FOR statement

3 The user should note that this method of handling loops varies among
different versions of BASIC.

23

are formulas; these formulas are evaluated upon first encountering
the loop. While the index, initial, terminal and STEP values may
be changed within the loop, the value assigned to the initial formula
remains as originally defined until the terminal condition is reached.
To illustrate this point, consider the last example program. The
value of I (in line 10) can be successfully changed as follows:

10 FOR 1=1 TO 10
15 LET 1=10
20 NEXT 1

The loop will only be executed once since the value 10 has been
reached by the variable I and the terminal condition is satisfied.

If the value of the counter variable is originally set equal to the
terminal value, the loop will execute once, regardless of the STEP
value. If the starting value is beyond the terminal value, the loop
will also execute only once.

It is possible to exit from a FOR-NEXT loop without the index
reaching the terminal value. (This is known as a conditional trans
fer and is explained in the section entitled Transfer of Control
Statements.) Control may only transfer into a loop which has been
left earlier without being completed, ensuring that the terminal
and STEP values are assigned.

Nesting Loops
It is often useful to have one or more loops within a loop. This

technique is called nesting, and is allowed as long as the field of
one loop (the numbered lines from the FOR statement to the cor
responding NEXT statement, inclusive) does not cross the field of
another loop. A diagram is the best way to illustrate acceptable
nesting procedures:

24

ACCEPTABLE NESTING UNACCEPTABLE NESTING
TECHNIQUES TECHNIQUES

Two Level Nesting

FOR

[
FOR
NEXT

[
FOR
NEXT
NEXT

Three Level Nesting

FOR
FOR

[
FOR
NEXT

[
FOR
NEXT
NEXT
NEXT

~
FOR

FOR
NEXT
NEXT

FOR
FOR

[
FOR
NEXT
FOR
NEXT
NEXT
NEXT

A maximum of eight (8) levels of nesting is permitted. Exceeding
that limit will result in the error message:

FOR ERROR AT LINE XXX X

where XXXX is the number of the line in which the error occurred.

Subscripted Variables
In addition to single variable names, BASIC accepts another

class of variables called subscripted variables. Subscripted variables
provide the programmer with additional computing capabilities for
handling lists, tables, matrices, or any set of related variables.
Variables are allowed one or two subscripts. A siI}gle letter forms
the name of the variable; this is followed by one or two integers
in parentheses and separated by commas, indicating the place of
that variable in the list. Up to 26 arrays are possible in any pro
gram (corresponding to the letters of the alphabet), subject only
to the amount of core space available for data storage. For ex
ample, a list might be described as A (I) where I goes from 1 to 5,
as follows:

25

This allows the programmer to reference each of the five elements
in the list A. A two dimensional matrix A(I, J) can be defined in a
similar manner, but the subscripted variable A can only be used
once (i.e., A(I) and A(I,J) cannot be used in the same program).
It is possible however, to use the same variable name as both a
subscripted and an unsubscripted variable. Both A and A(I) are
valid variable names and can be used in the same program.

Subscripted variables allow data to be input quickly and easily,
as illustrated in the following program (the index of the FOR state
ment in line~ 20, 42, and 44 is used as the subscript) :

10 REM - PROGRAM DEMONSTRATING READING
11 REM - OF SUBSCRIPTED VARIABLES
15 DIM A(5),BC2,3)
18 PRINT "ACI) WHERE A=1 TO 5;"
20 FOR 1=1 TO 5
25 READ AC I)
30 PR INT A C I) ;
35 NEXT I
38 PRINT
39 PRINT
40 PRINT "BCI,J) WHERE 1=1 TO 2:"
41 PRINT" AND J=1 TO 3:"
42 FOR 1=1 TO 2
43 PRINT
44 FOR J=1 TO 3
4 8 READ B C I , J)
50 PRINT BCI,J);
55 NEXT J
56 NEXT I
60 DATA 1,2,3,4,5,6,7,8
61 DATA 8,7,6,5,4,3,2,1
65 END

RUN
ACI) WHERE A=1 TO 5;

234 5

BCI,J) WHERE 1=1 TO
AND J=1 TO

6 7 8
8 7 6

READY.

2:
3:

26

DIM
From the preceding example, it can be seen that the use of sub

scripts requires a dimension (DIM) statement to define the max
imum number of elements in the array. The DIM statement is of
the form:

(line number) DIM VI (nl), v~ (n:,!, m:.!)

where v., indicates an array variable name and nand m are integer
numbers indicating the largest subscript value required during the
program. For example:

15 DIM A(6~10)

The first element of every array is automatically assumed to have
a subscript of zero. Dimensioning A (6, 10) sets up room for an
array with 7 rows and 11 columns. This matrix can be thought of
as existing in the following form:

AG,o A G,1

and is illustrated in the following program:

27

Ao,lo

Al,ll)

A 2,lo

10 REM - MATRIX CHECK PROGRAM
15 DIM A(6.110)
20 FOR 1=0 TO 6
22 LET A(I.10)=I
25 FOR J=0 TO 10
28 LET A(0.1J)=J
30 PR INT A (1.1 J) ;
35 NEXT J
40 PRINT
45 NEXT I
50 END

RUN
0 1 2 3 4 5 6 7 8 9 10
1 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0

READY.

Notice that a variable assumes a value of zero until another value
has been assigned. If the user wishes to conserve core space by not
making use of the extra variables set up within the array, he should
set his DIM statement to one less than necessary, DIM A(5,9).
This results in a 6 by 10 array which may then be referenced be
ginning with the A (0, 0) element.

More than one array can be defined in a single DIM statement:

10 DIM A(20).1 B(4.17)

This dimensions both the list A and the matrix B.
A number must be used to define the maximum size of the array.

A variable inside the parentheses is not acceptable and will result
in an error message by BASIC at run time. The amount of user
core not filled by the program will determine the amount of data
the computer can accept as input to the program at anyone time.
In some programs a TOO-BIG ERROR may occur, indicating
that core will not hold an array of the size requested. In that event,

28

the user should change his program to process part of the data in
one run and the rest later.

Transfer of Control Statements
Certain control statements cause the execution of a program to

jump to a different line either unconditionally or depending upon
some condition within the program. Looping is one method of
jumping to a designated point until a condition is met. The follow
ing statements give the programmer added capabilities in this area.

UNCONDITIONAL TRANSFER-GOTO
The GOTO (or GO TO) statement is an unconditional state

ment used to direct program control either forward or back in a
program. The form of the GOTO statement is:

(line number) GOTO n

where n represents a statement number. When the logic of the
program reaches the GOTO statement, the statement(s) immedi
ately following will not be executed; instead execution is transferred
to the statement beginning with the line number indicated.

The following program never ends; it does a READ, prints
something, and jumps back to the READ via a GOTO statement.
It attempts to do this over and over until it runs out of data, which
is sometimes an acceptable, though not advisable, way to end a
program.

10 REM - PROGRAM ENDING WITH ERROR
11 REM - MESSAGE WHEN OUT OF DATA
20 READ X
25 PRINT "X="X,"Xt2="Xt2
30 GO TO 20
35 DATA 1,5,10,15,20,25
40 END

RUN
X= 1 Xt2= 1
X= 5 Xt2= 25
X= 10 Xt2= 100
X= 15 Xf2= 225
X= 20 Xf2= 400
X= 25 Xt2= 625

DATA ERROR AT LINE 20

29

CONDITIONAL TRANSFER-IF-THEN AND IF-GOTO
If a program requires that two values be compared at some

point, control of program execution may be directed to different
procedures depending upon the result of the comparison. In com
puting, values are logically tested to see whether they are equal,
greater than, less than another value, or possibly a combination of
the three. This is accomplished by use of the relational operators
discussed earlier.

IF-THEN and IF-GOTO statements allow the programmer to
test the relationship between two formulas (variables, numbers, or
expressions). Providing the relationship described in the IF state
ment is true at the point it is tested, control will transfer to the
line number specified, or perform the indicated operation. The
statements are of the form:

(line number) IF vI <relation> v2 {~~~~}x or expression

where v 1 and v2 represent variable names or expressions, x repre
sents a line number, and expression represents an operation to be
performed. The use of either THEN or GOTO is acceptable.

The following two examples are equivalent (the value of the
variable A is changed or remains the same depending upon A's
relation to B) :

100 IF A>B THEN 120
110 A=AfB-1
120 C=A/D

100 IF A<=B THEN A=AfB-1
110 C=A/D

Subroutines
GOSUB AND RETURN

A subroutine is a section of code performing some operation
that is required at more than one point in the program. Often a

30

complicated I/O operation for a volume of data, a mathematical
evaluation which is too complex for a user-defined function, or any
number of other processes may best be performed in a subroutine.

Subroutines are generally placed physically at the end of a pro
gram, usually before DATA statements, if any, and always before
the END statement. Two statements are used exclusively in
BASIC to handle subroutines; these are the GOSUB and RETURN
statements.

A program begins execution and continues until it encounters a
GOSUB statement of the form:

(line number) GOSUB x

where x represents the first line number of the subroutine. Control
then transfers to that line. For example:

50 GOSUP 200

When program execution reaches line 50, control transfers to line
200; the subroutine ~s processed until execution encounters a RE
TURN statement of the form:

(line number) RETURN

which causes control to return to the statement following the
GOSUB statement. Before transferring to the subroutine, BASIC
internally records the next statement to be processed after the
GOSUB statement; thus the RETURN statement is a signal to
transfer control to this statement. In this way, no matter how many
different subroutines are called, or how many times they are used,
BASIC always knows where to go next.

The following program demonstrates a simple subroutine:

31

1 REM - THIS PROGRAM ILLUSTRATES GOSUB AND RETURN
10 DEF FNACX)=ABSCINTCX»
20 INPUT A."B."C
30 GOSUB 100
40 LET A=FNACA)
50 LET B=FNA CB)
60 LET C=FNA C C)
70 PRINT
80 GOSUB 100
90 STOP
100 REM - THIS SUBROUTINE PRINTS OUT THE SOLUTIONS
110 REM - OF THE EQUATION: ACXt2) + BCX) + C = 0
120 PRINT '!THE EQUATION IS "A"*Xt2 + "B"*X + tIC
130 LET D=B*B-4*A*C
140 IF D<>0 THEN 170
150 PRINT "ONLY. ONE SOLUTION ••• X ="-B/C2*A)
160 RETURN
170 IF D<0 THEN 20~

180 PRINT "TWO SOLUTIONS ••• X =";
185 PRINT C-B+SQRCD»/C2*A)"AND X ="C-B-SQRCD»/C2*A)
190 RETURN
200 PRINT "IMAGINARY SOLUTIONS ••• X =; C";
2 0 5 P R IN T - B / C 2 * A) " ." " S Q R (- D) / (2 * A) ") AN DC" ;
207 PRINT -B/C2*A)".,,"-SQR(-D)/C2*A)")"
210 RETURN
900 END

RUN
?1,.5.,,-.5
THE EQUATION IS 1 *Xt2 + .5 *X .+ -.5
TWO SOLUTIONS ••• X .5 A~D X =-1

THE EQUATION IS 1 *Xt2 + 0 *x + 1
IMAGINARY SOLUTIONS ••• X = (0 , 1) AND~ C 0 .,,-1)

READY.

Line 100 begins the subroutine. There are several places in which
control may return to the main program, depending upon a certain.
condition being satisfied. The subroutine is executed from line 30
and again from line 80. When control returns to line 90, the pro
gram encounters the STOP statement and execution is terminated.

It is important to remember that subroutines should generally
be kept distinct from the main program. The last statement in the
main program should be a STOP or GOTO statement, and sub
routines are normally placed following this statement.

32

More than one subroutine may be used in a single program, in
which case these can be placed one after another at the end of the
program (in line number sequence). A useful practice is to assign
distinctive line numbers to subroutines. For example, if the main
program is numbered with line numbers up to 199, 200 and 300
could be used as the first numbers of two subroutines.

Nesting Subroutines
Nesting of subroutines occurs when OOe subroutine calls an

other subroutine. If a RETURN statement is encountered during
execution of a subroutine, control returns to the statement follow
ing the GOSUB which called it. From this point, it is possible to
transfer to the beginning or any part of a subroutine, even back to
the calling subroutine. Multiple entry points and RETURN state
ments make subroutines more versatile.

The maximum level of GOSUB nesting is about thirty-three (33)
levels, which should prove more than adequate for all normal uses.
Exceeding this limit will result in the message:

GOSUB ERROR AT LINE XXXX

where XXXX represents the line number where the error occurred.
An example of GOSUB nesting follows (execution has been stopped
by typing a CTRLjC, as the program would otherwise continue in
an infinite loop; see Stopping a Run.)

33

10 ijEM FACTORIAL PROGRAM USING GOSUB TO
15 REM RECURSIVELY GOMPUTE THE FACTORS
40 INPUT N
50 IF N> 20 THE~ 120
60 X= 1
70 K=l
80 GOSUB 200
90 PRINT "FACTORIAL"W" ="X
110 GO TO 40
120 PRINT "MUST BE 20 OR LESS"
130 GO TO 40
200 X='X*K
210 K=K+l
220 IF K<=N THEN GOSUB 2ae
230 RETURN
240 END

RUN
?2
FACTORIAL 2 2
?4
FACTORIAL 4 24
?5
FACTORI-AL 5 120
?
STOP.
READY.

Functions
BASIC performs several mathematical calculations for the pro

grammer, eliminating the need for tables of trig functions, square
roots, and logarithms. These functions have a three letter call
name, followed by an argument, x, which can be a number, vari
able, expression, or another. function. Table 1 lists the func
tions available in 8K BASIC. Most are self-explanatory; those
that are not and are provided in greater detail are marked with
asterisks.

Table 1 8K BASIC Functions

Function Meaning

SIN(x)

COS(x)

Sine of x (x is expressed in radians)

Cosine of x (x is expressed in radians)

34

Table 1

Function

TAN(x)

ATN(x)

EXP(x)

LOG(x)

*SGN(x)

*INT(x)

ABS(x)

SQR(x)

*RND(x)

*TAB(x)

*GET(x)

*PUT(x)

*FNA(x)

*UUF(x)

8K BASIC Functions (Cont.)

Meaning

Tangent of x (x is expressed in radians)

Arctangent of x (result is expressed in
radians)

eX (e=2.718282)

N aturallog of x (logex)

Sign of x-assign a value of + 1 if x is posi
tive, 0 if x is zero, or-l if x is negative

Integer value of x

Absolute value of x (Ixl)

Square root of x (VX)

Random number

Print next character at space x

Get a character from input device

Put a character on output device

User-defined function

User-coded function (machine language
code)

SIGN FUNCTION-SGN (X)
The sign function returns the value + 1 if x is a positive value,

o if x is zero, and-l if x is negative. For example, SGN(3.42)=1,
SGN(-42) =-1, and SGN(23-23) =0. The following example
in which X is assigned the sign of y illustrates the use of this
function:

INTEGER FUNCTION-INT(X)
The integer function returns the value of the nearest integer not

greater than x. For example, INT (34.67) =34. By specifying

35

INT(x+.5) the INT function can be used to round numbers to
the nearest integer; thus, INT(34.67+.5)==35. INT can also be
used to round numbers to any given decimal place by specifying:

INT (x* 1 OtD+ .5)/1 OtD

where D is the number of decimal places desired. The following
program illustrates this function; execution has been stopped by
typing a CTRL/C:

10 REM - INT FUNCTION EXAMPLE
20 PRINT "NUMBER TO BE ROUNDED";
30 INPUT A
40 PRINT "NO. OF DECIMAL PLACES',';
50 INPUT D
60 LET B=INTCA*10tD+.5)/10tD
70 PRINT "A ROUNDED = "B
80 GO TO 20
90 END

RUN
NUMBER TO BE ROUNDED?55.65342
NO. OF DECIMAL PLACES?2
A ROUNDED = 55.65
NUMBER TO BE ROUNDED?78.375
NO. OF DECIMAL PLACES?-2
A ROUNDED = 100
NUMBER TO BE ROUNDED?67.89
NO. OF DECIMAL PLACES?-1
A ROUNDED 70
NUMBER TO BE ROUNDED?
STOP.
READY.

If the argument is a negative number, the value returned is the
largest negative integer (rounded to the higher value) contained in
the number. For example, INT(-23)==-23 but INT(-14.39)=-15.

RANDOM NUMBER FUNCTION-RND(X)
The random number function produces a random number be

tween 0 and 1. The numbers are not reproducible, a fact the
programmer should keep in mind when debugging or checking his

36

program. The argument x in the RND (x) function call can be any
number, as that value is ignored. The following program illustrates
the use of this function to generate a table of random numbers:

10 REM - RANDOM NUMBER EXAMPLE
25 PRINT "RANDOM NUMBERS"
30 FOR 1=1 TO 30
40 PRINT RND(0),
50 NEXT I
60 END

RUN
RANDOM NUMBERS

.9547609

.05280478

.9848808

.5828625

.04672124

.2585353
READY.

.2890875

.3859534

.2466345

.7026891

.9868434

.5187701

.1416765

.8404774

.61588

.9703719

.5005693

.7858024

.2482717

.5692836

.4755698

.4980298

.1218251

.04588368

.2145417

.8514056

.3104984

.2548316

.2258269

.2030807

It is possible to generate random numbers over any range by
using the following formula:

(B-A)*RND(O)+A

This produces a random number (n) in the range A<n<B.
In order to obtain random integer digits in the range 0< == n<9,

line 40 in the previous example is changed to read:

40 PRINT INT(9*RND(0)),

When the program is run again, the results will look as follows:

RANDOM NUMBERS
8 8 3 (21 0
3 0 0 4
8 3 1 4 6
2 2 0 6 5
7 6 7 7 6
2 0 2 8 6

READY.

Notice that the range has changed to 0< = n<9. This is because
the INTfunction returns the value of the nearest integer not greater
than n.
TAB FUNCTION

The TAB function allows the user to posItIon the printing of
characters anywhere on the Teletype (or line printer) line. Print

37

positions can be thought of as being numbered from 1 to 72
across the Teletype from left to right. (For printing devices with
long lines, the number of positions may be as large as 255, but it
is unlikely that more than 160 spaces will be required for most
printers.) The form of this function is:

TAB (n)

where the argument n represents the position (from 1 to the total
number of spaces available) in which the next character will be
typed.

Each time the TAB function is used, positions are counted from
the beginning of the line, not from the current position of the
printing head. For example, T AB(3) causes the character to be
printed at position 3; the following statement:

10 PRINT "X =";TAB(3);"/";3.14159

will print the slash on top of the equal sign, as shown below:

X ~ 3.14159

READY.

The following is an example of the sort of graph that can be
drawn with BASIC using the TAB function:

38

30 FOR X=0 TO 15 STEP .5
40 PRINT TABC30+15*SINCX)*EXPC-.l*X));"*"
50 NEXT X
60 END

RUN
*

*
*

*
*'

*
*

*
*

*
*

*
*

*
*
*

*
*

*
*

*
*
*

*
*

*
*
*
*

*

READY.

PUT AND GET FUNCTIONS

*

8K BASIC provides two additional functions, PUT and GET,
to increase input/output flexibility. Using these statements, the
programmer can "PUT" an ASCII character on the current output
device, or "GET" a character from the current input device. GET
is of the form:

GET (x)

39

where the argument x is a dummy variable which may be any
value. GET (x) will be assigned the decimal value of the ASCII
code of the next character input on the current input device.

For example, jf the following statement appears in a program:

Ie;, LET L=GETCX)

and the next character input is an M, the variable L will be as
signed the value 77(10).

PUT is of the form:

PUT (x)

where the argument x represents the decimal value of the ASCII
code of the character to be output. For example, the statement:

15 L=PUTCGETCV))

will wait for a character to be read from the current input device
and then print it on the current output device. A statement such as:

30 PRINT PUTCQ)

will print the character typed as well as the decimal value of the
ASCII code for that character. To get 10 characters from a paper
tape and print them on the line printer, a suitable program is:

100 LPT
110 PTR
120 FOR A=l TO 10
130 LET B=PUTCGET(0))
140 NEXT A
150 END

The GET(O) will contain the most recently obtained character
which is then "PUT" to the line printer. The user should be careful
to position the tape on the first character to be input. Otherwise

40

blank tape may be entered, resulting in spaces being printed as
output.

The PUT statement can also be used to format output. For ex
ample, to print a trig table on the line printer with a heading and
50 data lines per page, the line feed character (12(10)) can be
"PUT" to the printer as follows:

100 LPT
110 GOSUB 1000
120 G OSUB 500
125 REM - SET UP TRIG TABLE
130 FOR J=0 TO 360 STEP .5
140 LET L=L+l
150 LET B=J/180*3.1~
160 PRINT J~SIN(B)~COS(B)~TAN(B)~ATN(B)
165 REM - PRINT 50 ENTRIES IN TABLE
170 IF L=50 THEN GOSUB 500
180 NEXT J
1 90 G 0 SUB 1 000
200 GOSUB 1000
210 STOP
500 REM PRINT HEADER
50 5 G 0 S UB 1 000
510 PRINT
520 PRINT
530 PRINT "ANGLE"~"SINE"~"COSINE"~"TANGENT"~"ARCTANGENT"
540 PRINT
550 RETURN
1000 REM PRINT FORM FEEDS TO ADVANCE PAPER
1005 X=PUT(12)
1010 L=0
1020 RETURN
1030 END

The beginning of the line printer output from this program follows.
The first page of the table continues through an angle of 24.5 de
grees: then the header and the next 50 entries are printed on the
next page, and so on until the values have been output for all an
gles through 360 degrees (in steps of .5).

41

ANGLE

~
,5
1
1.5
2
2.5
3
3.5

" 4.5
5
5.5
b
b.S
7
7,5

24
24.5

SINE.

0
8.722112E-rn
.0174435&
.026163&1:1
."'3488181
.134359729
.0523094~

.06101763

.0b912111

.0784194

.1381111"7

.09579731

.1044751

.11314&1

.1218079

.1304604

COSI""~

1
,9Q99bc?
.9Q98479
.999&'571
.9993915
.9990492
.998&309
.99813&7
.99756&5
.996921l:5
.9961986
.995'1009
.9945274
.9935784
.9925537
.9914535

,9136318
.9100512

TANGt::~T

0
8.722444E-03
.01744&21
.02611264
.0349121305
.043&3878
.0523811&
.[£16113154
.06989125
.1217866164
• ~8 744408
.09623993
.1050506
.1138174
.1221211
.131585

.4449743

.4554645

A~CTANGEIIJT

fl]

8.722C1101E-03
.01744268
.02&1607
.03481,,74
.0435835
.05228564
.061397986
.0&966486
.07833935
.0871£HIJ20"
.095651&&
.10428&9
.1129"'67
.121512195
.1300944

The GET statement cannot be used to get binary characters.

FNA FUNCTION
In some programs it may be necessary to execute the same

mathematical formula in several different places. 8K BASIC al
lows the programmer to define his own function in the BASIC
language and then call this function in the same manner as the
square root or a trig function is called. Only one such user
defined function may be included per program. The function is
defined once at the beginning of the program before its first use,
and consists of a DEF statement in combination with a three
letter function name, the first two letters of which must be FN.
The format of the defining statement is as follows:

(line number) DEF FNA(x)=formula(x)

A may be any letter. The argument (x) has no significance; it is
strictly a dummy variable, but must be the same on each side of
the equal sign. The function itse,lf can be defined in terms of num
bers, several variables, other functions, or mathematical expres
sions. For example:

10 DEF FNA(X)=Xt2+3*X+4

or

20 DEF FNC(X)=SQR(X+4)+1

42

The function:

10 DEF FNACS)=Sf2

will cause the later statement:

20 LET R=FNA(4)+1

to be evaluated as R== 17.
The user-defined function can be a function of only one vari

able.

USER-DEFINED FUNCTION - UUF
A special user-coded function is available for the programmer

who wishes to define an additional 8K BASIC function perma
nently or one which cannot be defined with one BASIC expres
sion, as an FI'~A function must be. The UUF function routine is
coded in PDP-8 assembly language, assembled with one of the
available assemblers, and loaded as an overlay to 8K BASIC.
While 8K BASIC is running, the special function can be used in
a fashion analogous to the regular 8K BASIC functions. The user
coded function. if present, is referenced in the BASTC program as:

UUF(n)

where n can be any BASIC expression.
The programmer who defines the UUF function should be familiar

with the information on assembly language programming which
is in Introduction to Progranlnling 1972 chapters 1-5, and the
material on the Floating Point Package, chapter 8. He should also
be familiar with the information on the assembler he intends to
use by reading the appropriate manual.

Coding Formats
8K BASIC uses a floating point package which has been modi

fied to allow 27-bit, sign-magnitude mantissa floating point. In
sign-magnitude convention the sign bit, rather than the mantissa,
expresses the sign of the entire number. This format is described
more fully below. All coding must be compatible with this format.
The floating point instructions are discussed later in this manual.

43

Upon entrance to the UUF subroutine the value of the argu
ment is in the F AC (floating accumulator). The value which is
calculated for the function nlust be in the F AC in normalized
form on exit.

When floating point statements are to be included in the pro
gram, the start of a series of floating point instructions must be
indicated by the instruction:

FENTER

immediately before the first floating point instructions. Each series
of floating point instructions is terminated by the instruction:

FEXIT

immediately after the last floating point statement. There can be
as many sections of floating point code as necessary in the pro
gram, but each must be delimited in this manner.

Floating-Point Format
The floating-point format used by 8K BASIC allocates three

storage words to each number as follows:

WORD 1 WORD 2 WORD 3

I

t ..-------.J)''-----____ ---.. ".-________ ----J

EXPONENT MANTISSA

SIGN BIT

The F AC occupies five locations on page 0:

Location Name

ACS
ACE
AC1
AC2
AC3

Location Number

0024
0025
0020
0017
0016

Contents

Sign
Exponent (2008 biased)
High-order word
Mid-order word
Low-order word

The constant 2008 is added to the exponent to make its range
o to 377.

All of BASIC's mathematical operations are in floating point
format. Therefore, if any temporary storage locations are to be
used, they will require three words, for example:

44

Addressing
The floating point package uses only relative addressing. There

fore all statements that require an address specification must in
clude one of the operators FWD or BKWD plus a reference to
the current location. Such ,et.~~r~AS~:)~~<t.&~nerally of the form:

~.- ... -,"--C-:":. r.:-

or
instruction+FWD+LtEMP~ .. ·

~di'(".;:t, 'tti',Jr. -A.t.; .,,'\~ ~~

~-.--

instruction+BKWD+.-LTEMP'

. where L TEMP is the first of the three locations containing the
number to be used. The operator FWD is used when the address
of the location to be referenced is numerically greater than the ad
dress of the instruction; BKWD is used when the address of the
location to be referenced is numerically less than the address of the
instruction. The floating point interpreter uses the number of
locations between the instruction and the data to locate the data.
The location referenced must be within 2008 locations of the
instruction.

The following two examples cause the contents of L TEMP to
be added to the contents of the F AC, and the result left in the
FAC:

00200

00210
00211
00212

or

00200
00201
00202

00210

4210

0000
0000
0000

0000
0000
0000

4610

LTEMP

LTE;'<1P

F'AO+ F'W O+L TEMP-.

o
o
eJ

o
o
o

FAO+ 8:·{'.oJ 0+ • -L TE~P

Floating-Point Instruction Set

The legal instructions in the modified Floating-Point Package
used by 8K BASIC are explained in Table 2 :

45

Table 2 Floating-Point Instructions·

Instruction Value Meaning

FST 2000 Store the contents of the floating accu-
mulator (FAC). The contents of the
FAC are not changed.

FLD 3000 Load FAC with contents of relative
address.

FAD 4000 Add contents of relative address to
FAC.

FSB 5000 Subtract contents of relative address
from FAC.

FMP 6000 Multiply the contents of the FAC by
the contents of the relative address.

FDV 7000 Divide F AC by contents of relative
address.

FJMP 1000 Floating-point jump to relati ve ad-
dress.

FENTER 4435 Start floating-point code.

FEXIT 0000 Exit floating-point code. Return to
PDP-8 code.

FWD 0200 Access a relative location in the for-
ward direction.

BKWD 0600 Access a relative location in the back-
ward direction.

FSNE 0040 Skip if FAC 10
FSEQ 0050 Skip if FAC = 0

FSGE 0100 Skip if FAC ~ 0

FSLT 0110 Skip if FAC < 0

FSGT 0140 Skip if FAC > 0

FSLE 0150 Skip if FAC ~ 0

46

The following list contains floating-point instructions for in
direct relative addressing. The indirect addressing is similar to the
I construction used in regular PDP-8 assembly language coding.

Floating-Point Instructions (Indirect Relative Addressing)

Instruction Value Operation

FSTI 2400 Store
FLDI 3400 Load
FADI 4400 Add
FSBI 5400 Subtract
FMPI 6400 Multiply
FDVI 7400 Divide
FJMPI 1400 Jump

Writing the Program
UUF must be made a defined function for 8K BASIC. This is

done by inserting the starting address of the UUF subroutine in
BASIC's table of subroutine addresses. The subroutine address
must be placed in location 1156 of field O. If UUF is the first
location of the subroutine, the following code is sufficient:

*1156
UUF

The UUF subroutine may be placed in the area of core nor
mally occupied by the RIM and BIN loaders, location 7600-7777
of field O. To do this, the loaders are placed in field 1. The loading
instructions for UUF are contained in the section called Loading
and Operating Procedures.

If mass storage devices are in use, they may destroy the data
break locations on the last page of field O. If TC08 DECtape
is used, locations 7752 and 7753 must be reserved. If an RF08
or DF32 disk is used, locations 7750 and 7751 must be reserved.

There are three subroutines in 8K BASIC which are available
to maintain a floating-point format acceptable to the modified
floating-point package in 8K BASIC. These subroutines are de
scribed below. The listing of 8K BASIC is available from the
Software Distribution Center for the programmer who wishes to
call other subroutines in the compiler.

47

BEGFIX

ANORM

FIX

Examples

If a value is to be returned to the F AC as a result
of the UUF function, that value must be in nor
malized floating point format in the FAC on exit
from the subroutine. If floating point arithmetic is
used throughout the user function, then the value
in the F AC is in normalized floating point format
and need not be converted. If fixed point arithmetic
(single word) is used anywhere in the function,
then the subroutine BEGFIX must be called to
initialize the F AC before the fixed point number
is placed in the F AC and subsequently converted
to floating point (see ANORM below). After
BEGFIX is called, the 12-bit number is stored by
a simple DCA AC3 instruction and then ANORM
is called. BEGFIX is located at 3762 and is called
with a JMS instruction; on return from BEGFIX
the AC is clear.

If a fixed point value is placed in the F AC,
ANORM may be called to normalize the FAC.
After the fixed point value has been placed in AC3,
ANORM may be called to supply the acceptable
values for ACE, ACS, ACl, and AC2. ANORM is
located at 4600; on return, the AC is clear.

When the value in the F AC must be made into an
integer, FIX may be called to perfom that job. The
12-bit value of the F AC is left in AC3 and that
value plus 1 is left in the AC. FIX is located,}'t
4744.

The following examples illustrate the method of writing and
calling a UUF routine.

Example 1:

This UUF routine is an example of a fixed point calculation.
The value of UUF(X) is 3X+2.

48

'AGE t

IUUF(x)a3X.2
tENTER WITH X IN FAC
IEX!T WITH UUF(X) IN FAC
IUSE FIXED POINT ARITHMETIC - !

1211211& AC3-1&
4744 FIX-4744
37&2 BEGFIX=37&2
tl60~ ANORM a ab012l

000121 FIELD 0

115& *1156
121115& 7b0~ UUF

07&121121
017&0\
1217&1212
07&03
07&0U
(37612l5
07&1216
0'(,121'
1217&10
07611
1217&12
07613
1217&ia

07&15
07&1&
1217&11
07&20
1217&21

07&2;!
1217&23
1217624
1217f125

1&1210
1211210~
t1&23
7200
3222
4215
4215
4215
~&2a

7326
1222
3016
4625
5&1210

1210121121
1222
112116
3222
5&15

12101210
4744
3762
4Et00

*760121
UUF,

LOOP,

121
JMS I IFIX
CLA
DCA ANSWER
JMS LOOP
JMS LOOP
JMS ~OOP
JMS I IBEG
CLA r:Ll.. CML
TAO ANSWER
DCA AC3
JMS I INORM
JMP I UUF

121

TAD ANSrlER
TAO AC3
DCA ANSwER
J~4P I L.OOP

ANSWER, 0
IFJX, FIX
IBEG, BEr.FIX
I NORM, ANORM

s

IMAKE 12-BIT INTEGER.
/5.e-tAC~a

15:+ ANs:/i 'D

I~ULTrpL.V)(BY 3

RTL ISET AC-2
I~ETCH 3)(
IRETURN 3)(.2 TO FAC
INORMALIZE
I--RETURN··

IAOO At] TO ACCUMUL.ATEO SUM

The following BASIC program calls UUF(X) to print X and
3X+2 for a number of values of X:

READY.

100 FOR X=-3 TO 3 STEP .5
110 PRI~T ~~ UUF(~)

120 .'l EXT X
130 END

49

RU:\1
-3 1 1
-2. 5 1 1
-2 g
- 1. 5 8
- 1 5
-.5 5

"0 2
.5 2
1 5
1. 5 5
2 3
2. 5 8
3 1 1

READY.

Example 2:
This UUF routine is an example of a floating point calculation.

Like example 1, this routine returns a value of UUF(X)=3X+2.

4435
2000
0200
0000
&000
l£000
001~
31&2
1J&00

0000

1156
01156 1&00

7&00
07&00 0000
0"~l2Il l£435
1211&0? 221&
1217603 0000
01&0a 132'S
1211605 l£ii4
07&0b l£435
CH~07 6il1
07610 2210
07& 11 0210121
1217&12 73i&
1217&13 4224

IUUF 0' a3lt+2
IENTER WITH X IN FAC
IEltIT WIT~ UUF(X) IN FAC
IUSE ~~ING ~~"~NT ARITHMETIC

FENTElh4l£35
FST;:a2000
FWO-200
FEXIT=0000
FMPn&000
FAOa4000
AC3 8 16
BEGFIX:;3762
ANO~M"Q&00

FIELD 0

*1156
UUF

o
FENTER

PAGE 1

FST+FWO+X-. ISTORE X FROM FAC INTO Loe, x
FEXIT .~;:

ClA Cll CMl lAC RAl ISET AC-3
J~S FLOAT IGET A FLOATING POINT 3 IN THE FAC
FENTER
FMP+FWO+X-. IMULTIPLY X BY J
FST+FWO+X-. ISAVE IT FOR lATER
FEXIT
CLA CLL C~L RTl IGET A 2 IN THE FAC
JMS FLOAT

50

01&14 4435
01&15 4203
07&1& 0e'00
07fl17 5f>00

t'l1b20 0000
07&i?1 0000
011,22 0000

07&23 121000

- 07&24 0et00
01~25 3223
1211&2& 4633
01&21 1223
07&30 301&
01&31 4&34
01632 5&24

07b33 37&2
211611.1 4600

IUUF on -])(.2

)(,

TEMP,

FLOAT,

IBEG,
INOIlM,

s

FENTEQ
FAD.FWO.)(-,
FE)(IT
JMP I UUF

010'0

o

o
OCA TEMP
JMS I IBEG
TAD TEMP
DCA ACl
JMS I INORM
JMP I FLOAT

BEGFI)(
ANORM

IAOD 2 TO 3)(
ILEAVE RESULT IN FAC
I--RETURN-·

ISTORE CONSTANT TEMPORARILY
IPREPARE FAC TO RECEIVE VALUE

IPUT CONSTANT IN FAt
INORMALIZE IT
I·-RETURN .. •

PALl-V? 5/25/72 PAGE t-l

The following BASIC program"calls UUF(X) to print X and
3X + 2 for a number of values of X. The results differ from those
in example 1 because of the capability of floating point arithmetic
to handle fractions.

READY.

100 FOR X=-3 TO 3 STEP • 5
110 PRINT x, UUFC X)
120 \JEXT X
130 END

RU\I
-3 -7
-2.5 - 5. 5
-2 -4
- 1. 5 - 2.5
- 1 - 1
-.5 • 5

0 2
• 5 3.5
1 5
t. 5 6.5
2 8
2.5 9.5
3 1 1

READY.

51

Example 3:
This UUF routine computes the square of the argument in float

ing point format.

IUUF(X)-X·2
IENTER wITH X IN 'AC
IExIT WITH UUFeW) IN FAC
IUSE FLOATING POINT ARITHMETIC

4435 FENTER-4435
20210 FS1-2000
21200 F"'0-200
602121 FMP-&2100
21000 FExIT-0000

21000 FIELD 0

115& *115&
0115& 7700 UUF

01100
011211
011212
01103
01104
01105

01106
01701
011UI

7100 *1100
21000 UlJF,
"''''35
22214
6203
21000
5100

0000
0000
0000

x,

" FENTER
FST.F",O.X-,
FMP.FWO.X.,
FEXIT
JMP I UUF

0'0,0

ISTORE ARGUMENT IN X
IMULTIPlV FAC 8V ~OC. x (X-X)
IRESULT IS IN FAC
ltot-RETURN··

The following BASIC program uses the above UUF to produce
a table of squares and square roots:

READY.

100 FOR A=1 TO 10 STEP 1
110 PRI NT AI UUF(A) I SQR(A)
120\J EXT A
130 EN 0

RU:\J
1
2
3
4
5
6
1
8
9
10

READY.

4
9
16
25
36
49
64
81
100

52

1.414214
1.132051
2
2.236068
2.44949
2.645151
2.623427
3
3.162218

EDITING AND CONTROL COMMANDS
Errors made while typing at the console keyboard are easily cor

rected. BASIC provides special commands to facilitate the editing
procedure.

Erasing Characters and Lines
SHIFT /0, RUBOUTS, NO RUB OUTS

There are two methods available for erasing a character or
series of characters one at a time. Typing a SHIFT / O' causes the
deletion of the last character typed, and echoes as a back arrow
(~) on the Teletype. One character is deleted each time the key
is typed.

The RUB OUT key may also be used for deletion of characters
one at a time providing the command:

RUBOUTS

has been typed on the keyboard before the editing is done. This
command enables the RUBOUT key to be used. If the user has
neglected to type this command, he may not use the RUBOUT key.
A later command of:

NO RUBOUTS

disables the key for use. (This is desirable when programs created
on other systems which use rubouts as null characters are to be
read into core. See the section entitled PTP AND LPT under
Listing and Punching a Program.) For example:

The user types a B instead of T and immediately notices the mis
take. He may type SHIFT /0 (or RUBOUT key, if enabled) once
to delete the B, and as many times more as characters, including
spaces, are to be deleted. After the correction is made, he may
continue typing the line. The typed line enters the computer only
when the RETURN key is pressed. Before that time any number
of corrections can be made to the line.

53

When the RETURN key is typed, the line is input as:

Notice that spaces, as well as printing characters, may be erased.
The user may erase an entire line (provided the RETURN key

has not been typed) by typing the AL TMODE key (ESCAPE
key on some keyboards). BASIC echos back:

DELETED

at the end of the line to indicate that the line has been removed.
The user continues as though it were a new line. If the RETURN
key has already been typed, the user may still correct the line by
simply typing the line number and retyping the line correctly. He
may delete the line by typing the RETURN key immediately after
the line number, thus removing both the line number and line
from his program.

If the line number of a line not needing correction is accidentally
typed, the SHIFTjO or RUB OUT key may be used to delete the
number(s); the user may then type in the correct numbers. As
sume the line:

10 IF A>5 GO TO 230

is correct. The programmer intends to insert a line 15, but in
stead types:

10 LET

He notices the mistake and makes the correction as follows:

10 LET~~~~~5 LET X=X-3

Line 10 remains unchanged, and line 15 is entered.
Following an attempt to run a program, error messages may be

54

output on the Teletype indicating illegal characters or formats, or
other user errors in the program. Most errors can be corrected by
typing the line number (s) and the correction (.S) and then re
running the program. As many changes or corrections as desired
may be made before runs.

Listing and Punching a Program
LIST

An indirect program or data can be listed on the active output
device by typing the command:

LIST

followed by the RETURN key. The entire program (or data) will
be listed.

A part of a program may be listed by typing LIST followed by
a line number. This causes that line and all following lines in the
program to be listed. For example:

LIST 100

will list line 100 and all remaining lines in the program.

PTP AND LPT
The LIST command may be issued in conjunction with the LPT

or PTP commands as follows:

PTP
LIST

LPT
LIST

This will list the current program on the high-speed paper tape
punch or line printer respectively. Control is reset to the Teletype
after the listing is completed.

Occasionally, when 8K BASIC is reading in a program from the
low-speed reader, it may drop a character since the Teletype
buffer cannot accept input at a prolonged fast rate. To eliminate
this possibility, use LIST as follows when punching out paper
tapes:

55

PTP
LIST*

This inserts null characters after carriage returns and is recom
mended when punching any tapes that will later be read in from
the low-speed paper tape reader. (8K BASIC does not use rub
outs as null characters.)

Reading a Program
PTR

The PTR command can be issued to read in a paper tape from
the high-speed reader. This mode is particularly useful for reading
in a user-coded "load and go" BASIC program. The tape should
be positioned in the reader before the command is issued; if not, or
if the reader runs out of tape, BASIC prints;

TTY

on the Teletype to indicate that there is no more input from the
high-speed reader, and that it is waiting for input from the Tele
type.

The user may cause tapes to be read in from the low-speed
reader by simply placing the tape over the sprocket wheel and
setting the reader to ST ART.

Running a Program
RUN

After a BASIC program has been typed and is in core, it is
ready to be run. This is accomplished by simply typing the com
mand:

RUN

followed by the RETURN key. The program will begin execution.
If errors are encountered, appropriate error messages will be typed
on the keyboard; otherwise, the program will run to completion,
printing whatever output was requested. When the END state
ment is reached, BASIC stops execution and prints:

READY.

56

PTP AND LPT
Either the high-speed paper tape punch or LP08 line printer, if

available, can be used in conjunction with the RUN command.
After the command is issued, all output during program execution
is diverted from the Teletype to the specified. device. The com
mand sequence is:

PTP
RUN

LPT
RUN

This procedure eliminates the need to insert the PTP (or LPT)
statement within the program. Output returns to the Teletype
after execution.

Stopping a Run
CTRLjC

To stop a program during execution or to return to BASIC at
any time, type a CTRL/C (accomplished by typing the CTRL
key and the C simultaneously). This causes the current operation
to be aborted immediately, and the message:

STOP.
READY.

to be printed indicating that an 8K BASIC command can now be
issued.

CTRL/O
The command CTRLjO (caused by typing the CTRL and 0

keys down simultaneously) is used to stop output temporarily. The
program will continue to execute but output will not be printed on
any output device unless an error occurs or unless BASIC is
waiting for a command or for data from an input statement. In the
latter case, the Teletype is the expected input device. This feature
is particularly useful for programs that print lengthy introductions
and then request a user-specified parameter. Typing CTRL/O
after the program is started will cause BASIC to bypass printing
the introduction and wait until the parameter is specified, thereby
saving the time required to print the message. A second CTRLj 0
will resume output.

57

NOTE
For most programs that do not wait for
input from the Teletype, processing of the
program after an initial CTRLjO will be
completed before a second CTRL/O can be
typed. Thus, it is very possible for no output
to be printed rather than the anticipated
partial output.

Erasing a Program in Core
SCR

The command:

SCRATCH

or
SCR

is provided to allow the programmer to clear his storage area,
deleting any commands, or a program which may have been
previously entered, and leaving a clean area in which to work. If
the storage area is not cleared before entering a new program,
lines from previous programs may be executed along with the
new program, causing errors or misinformation. The SCRATCH
command eliminates all old statements and numbers and should
be used before any tapes are read into core, or new programs
created.

LOADING AND OPERATING PROCEDURES
BASIC Compiler

The following procedure may be used to load in the 8K BASIC
binary tape.

1. Toggle the RIM Loader into field 0 and, using the appro
priate reader, read the Binary Loader into field O. (Refer
to Appendix A for details.) 8K BASIC will not use loca
tions 7600 to 7777, thereby preserving the Binary Loader if
it is present.

2. Place the 8K BASIC binary tape in the appropriate reader;
set switches 6-8 == 0, and 9-11 == 0; press EXTD ADDRess
LOAD.

3. Set the Switch Register == 7777 and press ADDRess LOAD.

58

4. If using high-speed reader, set the Switch Register =
3777 and press CLEAR and CONTinue; otherwise, sim
ply press CLEAR and CONTinue.

S. After the tape has read in, set the S~tch Register = 1000.
6. Press ADDRess LOAD, and CLEAR and CONTinue.

BASIC responds by typing READY.
7. BASIC programs on paper tapes may be read in using the

PTR command explained earlier, or created on-line.

User-Defined Function
The following procedure may be used to load in a user-defined

function.

1. Load the Binary Loader into field 1.
2. Load BASIC into field O.
3. Load the user-function (binary paper tape overlay) into

field O~·~/i~.~, ~ r t'" .,{ ~ .,"/ .~.

4. Set Switch Register = 1000; press ADDRess LOAD and
\

START. '~ "'.:"''" ,';. L l'

Note that the Binary Loader is destroyed. To reload BASIC,
steps 1 through 6 must be repeated.
8K BASIC ERROR MESSAGES

The computer checks all commands before executing them. If
for some reason it cannot execute the command, it indicates this
by typing one of the error messages. The number of the line in
which the error was found is also typed out. The form is:

ERROR MESSAGE AT LINE XXXX

Table 3 lists the errors 8K BASIC checks for and reports
before execution:

Table 3 8K BASIC Error Messages

Message Meaning

ARGUMENT ERROR A function has been given an illegal argument;
for example:

DATA ERROR

FOR ERROR

SQRC-l)

There are no more items in the data list.

FOR loops are nested too deeply.

59

FUNCTION ERROR

GOSUB ERROR

LINE NO ERROR

NEXT ERROR

RETURN ERROR

SUBSCRIPT ERROR

SYNTAX ERROR

TOO-BIG ERROR

The user has attempted to call a function which
has not been defined.

Subroutines are nested too deeply.

A GOTO, GOSUB, or IF references a non
existent line.

FOR and NEXT statements are not properly
paired.

RETURN statement issued when not under
control of a GOSUB.

A subscript has been used which is outside
the bounds defined in the DIM statement.

The command does not correspond to the
language syntax. Common examples of syntax
errors are misspelled commands, unmatched
parentheses, and other typographical errors.
Reference to an undefined UUF will also pro
duce this diagnostic.

The combination of program size and number
of variables exceeds the capacity of the com
puter. Reducing one or the other may help.
If the program has undergone extensive re
vision, punching it out, typing SCRATCH
and reloading should be tried.

The following programming errors are not reported by 8K
BASIC, but instead are used in the computation as specified. They
are included here for the programmer's reference.

1. Attempting to use a number in a computation which is too
large for BASIC to handle will produce a result which is mean
ingless.

2. Attempting to use a number in a computation which is too
small for BASIC to handle will result in the value zero being used
instead.

3. Attempting to divide by zero will produce a result which is
meaningless.

60

BASIC SYMBOL TABLE
Table 4 lists 8K BASIC's symbols and their values. This

information IS useful when writing user-coded (machine lan-
guage) functions.

Table 4 8K BASIC Symbol Table

A3CJEr 1750 BARROW 2666 CT3 ~IiH4 EPTR ~056
A3DGET e0~6 BCDE~G 1757 CVTLOO 50~4 ERROR 4142
A30P ~325 BCKWOS 4502 DATAER 1667 EVAL 10214
ASS 6425 BEGFIX 3762 DBAD 1513 EVALGO 10217
AC1 2020 SIDLE 6713 DBBAD '5~2 EX£CUT 0213
A:2 0017 BKWD f2l60~ DBGOT 1420 ExIT 24212
A:3 ~016 BREAK 6522 DBISRT 1547 EXP 60211lJ
ACCEPT 7473 BSKIP 2730 DB~IT 7526 ExPGOO 5242
A:E 0025 BUSY 6737 DBPUT 1556 EXPLON 5'64
ACN 4417 CARRET 27"'~ DDLAST 7512 EXPOK 5265
AC:OUNT e~22 CCINTK 7465 DECEXP ~043 F'AD 40210
ACS 0024 CCXRA 7:542 DECFRA 33~6 F'ADEXT 1314
A::JA1 Ck'J25 CDEVCO ~00~ DEEPER 0526 tAD I 4400
AJA2 e026 CDINP 7445 DEF' 1516 F'ATNAX 6273
AJA3 e'''27 CHECKW 2346 DELAY 1463 F'ATNC 6337
AJACPT e0f2l7 CHKFIT 640~ DELETE 6501 F'ATNC1 63214
AJ8 7477 CLAB 6133 DE~OUT 0142 F'ATNC2 63217
AJC 7477 CLBA 6136 DEVCOM 7175 F"ATNC3 6312
AJGCOR 012164 CLC 7477 DEVCON 71'6 F"ATNC4 6315
AGCl 6530 CLCA 6137 DICD 6051 F'ATNC5 63221
AJCUNT ~01" CLEAR 7432 DIGIN 3224 rATNC6 6323
AOCX e012 CL.EARV 2462 DIGIT 32~4 F'ATNC7 6326
AJLJRES e067 CL.EN 6134 DIGLUP 6557 F'ATNCS 6331
AJLE 6536 CLKSTS 012103 DILC 6050 rATNC9 6334
AJL"1 6531 CL.OCKI 0175 DILE 6056 F'ATNCH 6342
AJRB 6533 CL.OE 6132 OILX 621'33 rATNCJ 6345
Al)RS 6537 CLRCNT 036~ DILY 6054 F'ATNSX 62'12
AJSE 6535 CL.S 7477 DIM 6472 F'ATNT 6276
AJSK 6534 CL.SA 6135 DIMF'LA 0~:54 F"ATNTT 6301
AJST 6532 CL.SK 6131 OINP 7511 F'CNTLC 6665
AGET 0301 CL.T(MP 0~11 DIRE 62157 F"CNTLO 6103
ALl 4654 CltE 613J OISAUT 012115 F'DIGIT 3360
ALG\JL.P 4466 CNCLR 0143 DISB 0136 F"DV 700(21
ALL3 3146 CNTLCF' 67021 DIS0 621'2 rDVI 7400
ALlOC 1461 CNTLCR 667~ DIVL.P ~705 F'ENTER 4435
A I.. Ti"IOD 2663 Ct'-lTL2 0133 DIVXTE 33&4 F'EXIT 21000
AMATCH 6506 CODELO 0004 OIXY 6055 F'EXPC1 6012
A\jOR~ 46021 COLU~N 0126 DLAST 1511 F'EXPC2 62115
AP0T 2'263 COMMON 340~ DOAO ~362 F'EXPC3 6Hl(21
A?0 T1 0.023 COMPAR 2136 DOADLP ~366 F"E)(PC4 61213
APUT2 0024 CONST 1367 DOITNO 1247 F'EXPC5 61216
ARl 44~2 COS 5616 DOTtER 13'1 F'E)CPC6 611i
A~GERR 7363 COWT 7326 DPF"L.AG 33&5 F'E)(PF' 6067
ARRlOC ~003 COWTFP 7343 DCINTX 31'0 F'EXPI 6061
ATE"1P e!323 COL-HLP 7331 DSCREW 03'5 F'E)CPU 6064
ATEMP2 0324 COWTO 734~ DVL,OOP 5245 F'INDIT rlJ5'7
ArlINE 6451 COWTW 7344 EDIT 2405 F'INDLU 1lJ5&5
ATN 6200 CRINTX 3076 END 2'~7 F'IX 4144
ATNSI::; 6265 CRL.r 6531 ENOLIN 7643 F'IXEXI 41'3
A T ~~ L 0 i'J 6220 CRLrPR 374;:' ENONUM 3331 F'IXITU 5200
AT\I"JOT 6237 CTl 0016 ENDPDl 111.'J4 rl)CLIN 2113
AUTEHP ~063 CT2 f2l2J15 EOF'AD 45~6 F'IXLUP 4"0

61

FIXU~ 5146 FSB 5~~~ GP'iP 2112160 INTOU 6765
F"JMP 10210 FSBI 540~ G~B 1224 INWDTM 42164
FJMPI 14eJ0 FSEQ ~1215~ G~OElA 1222 IPNOPE 42124
FJUMP 113" FSGE 0100 GSBEND 1155 IPOINT 12134
FLO 3212121 FSGT fZl14~ GSBPTR 0165 ISOEF'2 3512
F"lO! 34121" FSHIFT 7443 GSS1 1562 ISOIG 6532
FLOGel 6175 FSINll21 5641 .GSS2 1'63 ISOIM 1473
FLOGC2 6156 FSINC1 5713 GTBKLP 11i2J %S[T 14137
F"LOGC3 6161 F'SINC3 5716 GTEMP 12!!J.4 IS1T 4566
FLOGC4 6164 F'SINC4 5721 GW~ERE 12'121 ISITOF' 1215,a
FMP 6"0121 F'SINC5 5124 HF'OUND 1321 ISITF'U l11a
F'~PI 64021 FSINC6 5727 HIGHWD 4333 ISITlI 41134
F'1T1 5125 FSINC7 5732 HL.OOP 2722 ISLIT 4133
FMT2 5"53 FSINM4 5735 HPTR IUI61 ISSOME 1644
n1T3 513" FSINOK 5657 H~CHAR 12'6 ISUMIN 112113
FMTENF 5123 FSINr 57a5 H~LOP 13m2 ITSDEF' 3514
FN 5453 FSINt~ 5110 HRMES 1323 ITSDP 3256
F~E~R 0352 F'SlE fZl150 IAMLES 21'6 ITSE 3263
FNEXIT 12fZ1" F'SlT al1fZ1 IOL.EAC 6732 ITSOP 122121
FOR 0413 FSNE 12104121 ICL.ECo 6725 ITSF 33mB
FORCT "12163 FSQRX 54fZ17 IOLECI 6126 JBPENT 37m7
F'ORDON "663 FST 2fZ1a21 IOL.ElK 6731 JOIGIT 3124
FORERR fZl501 FSTI 24fZ10 IOLEPC 6733 JISOIG 3367
F'~RLIM 0721 FTANTl 5677 IF' 121315 JMATCH 2;66
F"ORLIS 7705 F'TANT2 571212 IGNORE 2115 JPUTCH 121777
F'ORSTE 0724 FUNTAB 1131 I I XR 7414 JTXXIT 3123
FORVAR 0452 FUPRC1 5162 P1MED 24'4 JuSTa 31,a
F'OUND ~575 FWD fZl2fZ1fZ1 IN 34!1 JUSTrllF' 316a
F'OURLF 3557 FXXPFX 6B23 iNCHAR '2~5 JUSTI!P 3163
FPADo 4456 GALT 7247 INCEV 18127 JUST1 3145
FPADoR 4304 GDIM2 1564 INOEXl 12112113 JUST2 .3147
F'POIV 4667 GET IlJB"l INOEX2 ml2l!. KEYWD 21231
FPDOIT 4231 GETADD 1421~ INLCTM 412165 L4LUP 3664
FPFlAG 0156 GETARY 7462 INL.OOP fZl5'2 LBEGIN '563
FPGOTO 4273 GET8LK 1674 INI.UPF rll432 LOF' 6662
FPJMP 4317 GETCH 72fZ11 INODUN 671QJ LET "312
FPJUMP 4274 GETJ 1770 INOPPP 6641 I.EToO 1212185
FPLAC 4351 GETLIN 26"3 INOTTT 6645 LETTER 3446
FPLOOP 4202 GETLRE 26Z0 INPLUP 4034 LF'XLUP 2333
FPMUL 453k'l GETOPR 112115 INPPTR 412163 L~.LF' 3B;"
FPNOAD 42721 GETVAR 0311 INPUT 4mQl7 LIMIT 12121213
FPOPER 4305 ·GETWD 0177 INSERT 212132 L.INBUF' '512
F'PPGZ! 4227 GLOOP 2711 INSRT5 2121!2J LINENO 1210'2
F"PSKIP 4314 GOBOTH 1lJ532 INT 6434 LINF'IX 2331
F'PSTO 4322 GOlIST 1725 INTAC 6134 LIST 36~QJ
FPSUB 4453 GOSUS 05"5 INTCDF 61'21 LIST2 36421
FPT 42021 GOTEMP 0Z53 INTCIF 6711 LIST3 36'5
FPTEMP 4576 GOTO fZl517 INTECD 6162 LIST4 3661-
F'PTR 0057 GOTOPR 12"2 INTEMP 67!6 LIST' 36;6
F'PlDIV 4736 GOTSS 1174 INTER 66~QJ LISTAL 3616
F'RNDX 5404 GOTSTE "634 INTEXT 6744 LISTLU 3621
FRSTNE 2155 GOUT 7251 INTL 6735 L.ISTSO 3617

62

L.ITRAL 3131 NOBUMP 4633 0212 0QJ11lJ 0111lJ6C 34;3
L.LLJMP 7457 NOCOMM 12J335 0215 0QJIlI? 07115 2"5
L.L.LJMS 7446 NOINT 12J134 023 1366 0"25A 311821
L.L.LUUU 7141lJ NON8LN 311121 0233 3"2 01'2'8 33;1
L.LS 6666 NONlER 51lJ16 024" QJQJ~h 01'37 3122
L.NOEND 363121 NOPARE lQJ35 02'3 51'1lJ 0114QJ 180;4
LOADED 4127 NOPCR 2216 02'5 51tl 01141 31'5
L.OCCTR 21045 NORLFT 6423 02'6A 51~6 01'43 4'43
LOCTEM 12J671 NORMED 5221lJ 02'68 65" 07145 QJ162
L.OCTMP 1673 NORMIT 5212J7 026" 0111 07146 1264
L.OG 6114 NORUBO 5574 02' 33'21 07153 :!lQJ4
L.OGACE 617" NOSSl 146121 03QJ5 51'2 0;162 2327
L.OGF"WD 6167 NOSS2 1453 032 3121 0"63A IIJt;4
L.OGOKW 6172 NOT 3427 036 . 27.7 07'638 3uii
L.OWL.OC 2171 NOTBAO 2127 03'378 27'3 07'64A 1214
L.PTOUT 7163 NOT8IG 46221 03'54 1162 07'64B 3112
L.SF" 6661 NOTCR 3"23 03'155 12'3 01'64C 3314
L.STL.OC 216121 NOTF"RS 21lJ61 03'7 01lJ'1 071640 67;7
L.UP 34215 NOTHER 12J435 04 0160 07'66 51'4
L.UPF" 21426 NOTKWO 21313 041 21'0 01'71lJ 1IJ0;5
MACHIN 1lJ01210 NOTNOW 2f1)IlJQJ o 4f1)fI) 1 7525 07171 51;'
MAYi!ER 4612 NOTSGN 3311J1 04114 1163 07172 51'7
MENDL.I 12J041 NOTTXT 2236 042 31~6 07'73 53.6
MENOF'D 2363 NOTVAR 11"5 0421UJ 311115 07'174 1566
MEVAL. 7415 NOTX11lJ 5236 04213 1164 01175 6;;6
MEVAL.G 7431 NPSPER 7555 054f1)fI) 5347 07'76 3312
MGOL.IS 121720 NSYMTA IlJfI)I2J6 06211A 66!5 07'177 71i~
MGSBEN fl)525 NULCMO 7454 062118 71lJ1lI5 OAOO .. 435
MINUS 1316 NULJOB 7415 06212 67'5 OB~IGH 11;7
ML.BEGI 0173 NULL.OF' 743121 01 01'2 OBL.OW 1165
ML.ENO 121174 NUM8UF" 5335 070 67'4 oeop 71111
ML.INBU 004f1) o lQJfI) 121 355121 07111lJ 12'2 ace 52i5
MNSONE 121736 011 05"4 011l1QJfI)A 2'611 OCML.IM 7115
MOREOI 64711 0110 2361 O'lIlf1)B 34'" oeOR ,113
MOREIN 4'UJfI) 012 0165 0'11110C ;"!l6 OCOUNT 71142
MORERO 1621 0122 2771 071177 12" ootv 1132
MOVE 2f1)12 013 1'67 01'2f1) 51!13 OF'LAG 11ill
MOVLUP 21172 0132 7265 0'1'45 4"7 OF"LOW '1~5 MPy 5321 0137 7261 0"71 64!16 OJUMP 12 6
MPYLUP 4552 014 236" 07'77 4"7 OL.OOP 1111'6
MTXXIT 32l2Jl 0140A 12J775 01'778 ", .. ONE 11!h.
MULCL.R 4571 01418 2772 0'61f1) 43 .. 5 ONEOIM 1116 ..
MULEXP 3346 0143 7266 01611 '2611 ONESS 11'6
MUL.XTE 3363 017 5147 0'1'1lJ3 21'4 ONLY1 33i2
MU5TBE 4570 01742 3315 01611 5:5" 00'16111 '4'2
NOELAY 7421 0175 7267 07612 '262 00'736 2326
NEwCHA 2615 0177 211121 01641A 187., opt IIIi3
NEWLIN 2611 01774 3376 07'411B 2763 OP2 11112
NExT 12J6211lJ 02 1162 076411C '263 OP3 11121
NEXT[R 12J673 02fJfI) 21155 01673 33{6 OPOONE 12i3
NEXTVA 1631 02140. 3373 017 211'11 OPE 11131
NINTEC 1457 02162 5344 01716A 6'.4 OPERAN 111'3

63

OPNUL 1067 PGOTOP 0Ul7 PRENT 23i6 PieRDO ,5.'
OPOINT 7~65 PHRCHA 6140 PAESET 013' QBIDL.E ;2"
OPOTAB 7073 PIGNOR 0471 PRINBL. 22'7 QE"ROR 41;i
OPRST 7155 PINCHA 6141 PRINCO 2303 QHACHA 71'6
OPS 0026 PINT 5676 PAINHA 2261 RANDAE ·14;i
OPUTC 7141 PISITL 121175 PRINQU 22~5 R8SWCH 1135
OTEMP 1271 PJSET 2461 PRINRE 2242 REAO 1623
OTHER 3010 PLBEGI 0172 PRINSE 23J2 R[AOL.O 1'.6
OTSTl 1112 PLETDO 121204 PRINT ~1 3 READY '5i5
OUTD2 1211'30 PLETTE 3UJ3 PRINTC 2217 REAL.Tl 74;3
OUTDEL 7146 PLIMIT 2561 PRINTG 2216 REJECT 74'3
OUTDEV 121131 PL.INBU 121037 PAINTH 22!2 REL.ATE 13'2
OUTIT 7QJ43 PLINFI 121161 PRINTX 3712 REMPAC 3",43
OUTNUM 5QJI0 PL.IST 2563 PAINUM 37.' RESETl 7116
OV I2IQJ12 PL.ITRA 3377 PRINVA 36'3 RESET2 71.i
PAeN 4742 PL.OG 5175 PAL.OOP 37ii REITOR 3773
PALl "'1'0 PLoOT 141210 PRSUBR 3724 RETNEA 1113
PANORM 121146 PL.OTB 1514 PRTEMP IUJ42 RETURN 1'" PAR'l 121147 PLUS 1312 PATXRE 37t2 RHAL.r 311'.
PAAGER I2IQJ47 PMEVAL. 1441 PSON '615 RMLErT 6413
PASSCR 0472 PMPY 5160 PSI<IPI i6!7 RNO 53;3
PASSUM 744'" PNBF"6 5161 PSL.OOP 0116 RNOJMP 53;'"
PBEGF'I 1716 PNOCR 0157 PSP'ACE 15., RTERR 73'3
PBIDL.E 7161 PNONBL. 0122 PSTICK 01tl RuBO 5573
PBOMB 0367 PNOTNO 2566 PSTOVA 01i2 RUN 2"2
PBUSY 7157 PNUMBU 0144 PS)(ERR 0liu, RUN2IN 25'3
PCCUNT 0744 POADD 0157 PSYMTA 0115 RUN2LU 25{4
PCHKF'I 0163 POF"LAG 6742 PTABDE 5511 RUN2NO 2537
PCOMMO 3357 POP 3551 PTASF"L 55'1 RUNIN 2503
PCOWT 0141 POP3 4434 PTASL.E 27'7 RUNLUP 2.65
PDEVCO 7442 POPERA 3127 PT£N 12114' RUNNOT 2';'
POL I2IQJ36 POTHER 2776 PTEXT 0"'6 SC~MOR 1"7
POLIST 7644 POUTIT 6743 PTI'OUT 7164 seRATC 24.1
PEOIT 0120 POUTNU 0117 PTAIN 71'2 SEARCH 1"1
PERMSY 1022 PPACl 0042 PTUBIG 31121 S[TCLO 74'3
PERROR 0QJ77 PPAC2 0043 PUSERF' 5'45 SETRAT 7.;3
PEVAL. 011211 PPAC3 12'044 PUSH 2364 S[TSGN 4'12
PEVALG 2240 PPACE 12'045 PUTCOF" '1137 SETUP '.11
PEXECU 0103 PPACS 121046 PUTCH 1741 SGN 0'26
PEXP 5776 PPASSC 01121 PUTCIN '''23 SIMPLY 3"6
PF"INOI 121672 PPOLIS 0125 PUTER '11'0 SIN "24
PF'IX 01"6 PPERMS 2565 PUTJ 1'61 SINCHA 71'2
PF"NERR 5546 PPF"LOO 4141 PUTL.CC 21'2 SJUMP 12.11
PFPLOO 4575 PPF"ORI. 1760 PUTI.P '1107 SKIPIT 14'7
PGET AD. 0102 PPINT 6160 PUTXRA 17'6 SLASH 1332
PGETeL 0115 PPOP 1105 PxrORL 21"6 SLOOP 27.7
PGETCH 0QJ32 PPRINR 2241 PXI.INB 37~6 SLSHTM 1331
PGETLI 0124 PPRINT 0114 PXXCRL 312' SNUMrL. 11164
PGETL,R 3QJ22 PPRINU 1123 PXXEOF 2'64 SPACER 13;1
PGETOP 0111 PPUSH 011214 PXXEXI 3126 SPECIN 12114m
PGETVA 0113 PPUTCH 1133 PXXL,IT 31S1 SPL.ErT 11.4
PGOLIS 0164. PPXRA 716~ PXXTHE 2'62 SQ[XIT '451

64

SQLOOP 5435 U7760 0052 UUAC1 06'4 XxENO 7Z32
SQR 5412 U7767 0Q135 UUAC2 13661 XXEOF' 7'82
SSERR 1570 U7775 0Q121 UUAC3 13666 XXEQ 7Q1;4
SSF"IX 4775 U7777 0Q150 UUOATA "'67 XXEXIT 7,jS
SSONE 0344 UABAD 062" UUOEVC 011' XXEXP ;126
SSTWO 0345 UAC1 02137 UUrUOG 131~' XX'INI "14
STAR 1327 UAC2 0040 UUJMP O122 XXF'N 71187
START 1000 UAC3 0Q141 UUJMS 01i7 XxF'OR 72S'
STICI(I 6430 UACCPT ",453 UUMEVA 06'3 XX~E 7Q1'QI
STOP 2570 U A,DCB 0600 UUNOAD 146O XXGET 71;3
STOVAR 0341 UADCIN 0613 UUftF"IX 06'7 XXGOSU 7241
SueR A 2161 UADCMY 0615 UUSETF' 00~0 XXGOTO 72.6
SXERR 6441 UADCN 0622 UUUJMP 0130 XX~T '0.1lJ
TA8 5547 UCLC 0345 UUUJMS 187tl XXIF" 7Z.IlJ
TABOES 6367 UCLOQP 0217 UUULLL 1lJ3~2 XXINPU 72'3
TABOO 6350 UCLS 0340 UVP "12 XXINT 7142
TABF"LG 2345 ueEVCO 0Q156 UWAIT 0437 XXL.BFU '118'
TABOI(6360 UDOAD 0051 UWAITC tlJ4~12I XXI.E 7Q1S'
TABT~R 2362 UOOPER 1363 VA" 0343 XXI.ET 72'1lJ
TAN 5600 UF"F"UD 121756 VARTEM 0"3 XXI.IS 71.2
TB£G,.1 5572 UF'JMP 0757 VSC~lN 35t4 XXI.IST '1;6
TEN 0000 UGETWO 02157 VSCHLU 34'5 XXI.ITI "i6
THESI(I 1353 UGH1 3562 VSCHNO 3,tllJ XXL.OG ;123
THISTX 3107 uIEXT 0234 WAIT '4'3 XXLPT 13'1
TIM 7477 UIEXT2 0243 WAITC "'3 XXI.T ,QI;,
TIMl 0Q104 UIEXT3 0245 WOTEMP iI")(XMINU 712'
TIM2 00135 UIEXT4 0260 WORD 01'1lJ XXNE ;143
T~p 02131 UlNAe 1lJ631 XEXECU 1lJ412 XXNEXT 72;.
TOOLON 5162 UJMP 02154 XCISIT 41" XXNRUB 73'7
TPRINT 63721 UJMS IlJI55 XCMUST '34' XXOPEN 1113
TRAL.UP 2105 UMEVAI. 1lJ131 xISIT 4"3 xxflLOT ;~i2
TRANSF" 2103 UMOPER 1321 XMUST '312 XXflLUS 'li3
TRYAGI 5133 UNOERF' 4645 XRESTA 1113 XxflRIN 7311lJ
TRYSTE 0626 UPAGET 0653 XXABS ;1S4 XX'TP 13'4
TST 7421 UPARR2 4365 xxACPT '466 XXftTR 13'7
TSTF"X 7417 UPARRO 6457 XXA08 7223 xxPUT 11i3
TSTP 7431 UPARRX 5740 XXAOC '1'6 XXR8RA 71'i
TTYIN 7173 UPCOMe 1lJ731 XXATN 'ltllJ XX~EAD ;337
TTYOUT 1165 UPF'IX 1132 XXBSLS 72321)(X~EAI. 1~i6
TU81G 2657 UPF'UN 0747 XXCL.C '221lJ XXfIt·[JT 7~;3
TWIOTH 2357 UPJMP 21136 XXCLEA 7486 XXfltEM 73i7
TWOSS 11lJ77 UREAL 0460 XXCL.OS '.'6 XXfltETR 73ii,
TXTPAK 32146 UREJT 0456 XXCLS ;215 XXfltNO 71.'
Ull21 212136 uSE 7446 X)(COMM "'2 XXfltSTO 73i2
UlllJl2I 02113 USERF"N 1620 xxeos 71{2 XXfltUB 13;2
U11 01lJ47 USETC 1lJ411 XXCRL.F' '226 XXfltUN 7165
U177 02111 USETF" 0550 XXOATA '3.3 XXICR ;l'i
U1P 1503 USETM 1lJ416 XXOEF '333 XxSEMI ''''4
U2P 1504 USETR 040a XXOEL.A '412 XXIETC , •• 3
U411217 021221 USI<IPI ,.61 XXDIM '3~6 XX.ETR ;.35
U5a11lJ 121 IlJ 34 UTEMP 0153 XXEG '1.6 XXIGN ;137
U7 02133 UTIM a'41 xxEL. 'Itl XxllN ;1irl

65

XXSL.AS 7131
XXSQR 7131
XXSTAR 7127
XX5TE:P 7176
XXSTOP 7312
XX,TA8 7217
XXTAN 7115
XX TEXT 7511
XXTHEN 72'3
XXTIME 7214
XXTO 7172
XXTTV 7211
XXTTVI 7347
XXTTVO 73'4
XXUCOM 7462
XXUNAR 7513
XXUPAR 7133
XXuSE 7416
XXUUP' 7212
XXWA1T 7452
YYWA1T 7456
i!ERDON 5144
i!ERO rlJ152
i!F'IXEX 4767
i!i!ADB 0775
i!i!AOC rlJ770

66

STATEMENT AND COMMAND SUMMARIES
Summaries of the editing and program control commands

available in 8K BASIC are presented below.

Edit and Control Commands

Command

CTRL/C

CTRL/O

LIST

NO RUBOUTS

RUBOUTS

RUN

SCRATCH

Abbreviation

LIS

LIS n

RUN

SCR

BASIC Statements

Statement

DATA

DEF

Example of Form

DATA nl, n2,
... nn

DEF FNB (x) ==
f(x)

DEF FNB (x, y)
==f(x, y)

67

Action

Stops a running program. and
returns to the editing phase of
BASIC.

Stops output of a running BASIC
program. Remains in this state
until BASIC requests INPUT, an
error occurs, or until another
CTRL/O is typed.

Lists the entire program in core.

Lists line n through end of pro
gram.

Disables the RUBOUT key.

Enables the RUBOUT key.

Compiles and runs the program
currently in core.

Erases the current program from
core.

Explanation

Numbers nl through nn are to be
associated with corresponding vari
ables in a READ statement.

The user may define his own func
tion to be called within his pro
gram by putting a DEF statement
at the beginning of a program. The
function name begins with FN and
must have three letters. The func
tion is then equated to a formula
f(x) which must be only one line
long.

Statement

DIM

END

FOR-TO
STEP

GOSUB

GOTO

IF-GOTO

IF-THEN

INPUT

LET

LPT

NEXT

Example of Form

DIM v(s)

END

FOR v==fl TO f2
STEP f3

GOSUB n

GOTO n

IF fIr f2 GOTO n

IF fl r f2 THEN n

INPUT vI, v2,
... vn

LET v==f

LPT

NEXT v

68

Explanation

Enables the user to create a table
or array with the specified number
of elements where v is the variable
name and s is the maximum sub
script value. Any number of ar
rays can be dimensioned in a
single DIM statement.

Last statement in the program.
Signals completion of the program.

Used to implement loops; the vari
able v is set equal to the formula
fl. From this point the loop cycle
is completed following which v is
incremented after each cycle by f3
until its value is greater than f2.
If STEP f3 is omitted, f3 is as
sumed to be + 1. f3 may also be
negative.

Allows the user to enter a sub
routine at several points in the
program. Control transfers to line
n.

Transfers control to line nand
continues execution from there.

Same as IF-THEN.

If the relationship r between the
formulas f1 and f2 is true, trans
fers control to line n (n may also'
represent an operation); if not, cont
inues in regular sequence.

Causes typeout of a ? to the user
and waits for the user to supply
the values of the variables vI
through vn.

Assigns the value of the formula f
to the variable v.

Assigns line printer as output de
vice.

Used to tell the computer to re
turn to the FOR statement and
execute the loop again until v is
greater than or equal to f2.

Statement Example of Form

PRINT PRINT aI, a2,
... an

PTP PTP

PTR PTR

READ READ vI, v2,
... vn

REM REM

RESTORE RESTORE

RETURN RETURN

STOP STOP

TTY IN TTY IN

Explanation

Prints the values of the specified
arguments, which may be variables,
text or format control characters
(, or ;).

Assigns high-speed paper tape
punch as output device.

Assigns high-speed paper tape
reader as input device.

Variables v I through vn are as
signed the value of the correspond
ing numbers in the DATA string.

When typed as the first three let
ters of a line, allows typing of
remarks within the program.

Sets pointer back to the beginning
of the string of DATA values.

Must be at the end of each sub
routine to enable control to be
transferred to the statement follQw
ing the last GOSUB.

Terminates execution at that point
at which the statement is reached
in the program.

Assigns a console terminal as input
device.

TTY OUT TTY OUT Assigns a console treminal as out
put device.

During input to the editor or when executing an INPUT com
mand, the following messages may be printed in response to
the input:

Message

LINE TOO LONG

DELETED

TTY

Explanation

The line just typed exceeded the available core
buffer and must be retyped.

The line has been deleted in response to an
AL TMODE character and must be retyped.

Back arrow is printed any time a RUBOUT or
SHIFT /0 is used. The previous character is
deleted.

BASIC prints TTY to indicate that there is no
more input from the high-speed reader and
that it is waiting for input from the Teletype.

69

appendix a
loading procedures

Initializing the system
Before using the computer system, it is good practice to initialize

all units. To initialize the system, ensure that all switches and con
trols are as specified below.

1. Main power cord is properly plugged in.
2. Teletype is turned OFF.
3. Low-speed punch is OFF.
4. Low-speed reader is set to FREE.
5. Computer POWER key is ON.
6. PANEL LOCK is unlocked.
7. Console switches are set to O.
8. SING STEP is not set.
9. High-speed punch is OFF.

10. DECtape REMOTE lamps OFF.

The system is now initialized and ready for your use.

Loaders
READ-IN MODE (RIM) LOADER

When a .computer in the PDP-8 series is first received, it is noth
ing more than a piece of hardware; its core memory is completely
demagnetized. The computer "knows" absolutely nothing, not even
how to receive input. However, the programmer can manually
load data directly into core using the console switches.

The RIM Loader is the very first program loaded into the com
puter, and it is loaded by the programmer using the console

A-I

switches. The RIM Loader instructs the computer to receive and
store, in core, data punched on paper tape in RIM coded format
(RIM Loader is used to load the BIN Loader descrJbed below.)

There are two RIM loader programs: one is used when the in
put is to be from the low-speed paper tape reader, and the other
is used when input is to be from the high-speed paper tape reader.
The locations and corresponding instructions for both loaders are
listed in Table A-I.

The procedure for loading (toggling) the RIM Loader into core
is illustrated in Figure A-I.

Location

7756
7757
7760
7761
7762
7763
7764
7765
7766
7767
7770
7771
7772
7773
7774
7775
7776

Table A-I. RIM Loader Programs

Instruction

Low-Speed Reader High-Speed Reader

6032
6031
5357
6036
7106
7006
7510
5357
7006
6031
5367
6034
7420
3776
3376
5356
0000

6014
6011
5357
6016
7106
7006
7510
5374
7006
6011
5367
6016
7420
3776
3376
5357
0000

After RIM has been loaded, it is good programming practice to
verify that all instructions were stored properly. This can be done
by performing the steps illustrated in Figure A-2, which also
shows how to correct an incorrectly stored instruction.

When loaded, the RIM Loader occupies absolute locations 7756
through 7776.

A-2

*DECTAPE USERS SHOULD
LOAD RIM INTO FIELD 0

SET SWITCHES 6-8
TO DESIRED

NSTRUCTION FIELD*

.Figure A-I. Loading the RIM Loader

A-3

SET SWITCHES
6-8 TO FIELD IN
WHICH RIM HAS
8EEN LOADED

Figure A-2. Checking the RIM Loader

BINARY (BIN) LOADER-
The BIN Loader is a short utility program which, when in core,

instructs the computer to read binary-coded data punched on paper
tape and store it in core memory. BIN is used primarily to load the
programs furnished in the software package (excluding the loaders
and certain subroutines) and the programmer's binary tapes.

BIN is furnished to the programmer on punched paper tape in
RIM -coded format. Therefore, RIM must be in core before BIN
can be loaded. Figure A-3 illustrates the steps necessary to prop
erly load BIN. And when loading, the input device (low- or high
speed reader) must be that which was selected when loading RIM.

A-4

Figure A-3

- - - -1 See FIOU"I' C2-1.C2-21

Loading the BIN Loader

A-5

When stored in core, BIN resides on the last page of core, oc
cupying absolute locations 7625 through 7752 and 7777.

BIN was purposely placed on the last page of core so that it
would always be available for use-the programs in DEC's soft
ware package do not use the last page of core (excluding the Disk
Monitor) . The programmer must be aware that if he writes a
program which uses the last page of core, BIN will be wip
ed out when that program runs on the computer. When this
happens, the programmer must load RIM and then BIN before
he can load another binary tape.

Binary tapes to be loaded should be started on the leader-trailer
code (Code 200), otherwise zeros may be loaded into core, destroy
ing previous instructions.

Figure A-4 lilustrates the procedure for loading binary tapes
into core.

A-6

- - ~ SEE FIGURE C2-31

F:gure A-4. Loading A Binary Tape Using BIN

A-7

Character

A
B
C
D
E
F
G
H
I
J
K
L
M
N
a
P
Q
R
S
T
U
V
W
X
Y
Z
0
1
2
3
4
5
6
7
8
9

appendixb
character codes

ASCII-I! Character Set

Decimal
8-Bit 6-Bit Equivalent 8-Bit 6-Bit
Octal Octal (AI Format) Character Octal Octal

301 01 96 241 41
302 02 160 242 42
303 03 224 # 243 43
304 04 288 $ 244 44
305 05 352 % 245 45
306 06 416 & 246 46
307 07 480 247 47
310 10 544 (250 50
311 11 608) 251 51
312 12 672 * 252 52
313 13 736 + 253 53
314 14 800 , 254 54
315 15 864 255 55
316 16 928 256 56
317 17 992 / 257 57
320 20 1056 272 72
321 21 1120 273 73
322 22 1184 < 274 74
323 23 1248 275 75
324 24 1312 > 276 76
325 25 1376 ? 277 77
326 26 1440 @ 300
327 27 1504 [333 33
330 30 1568 " 334 34
331 31 1632] 335 35
332 32 1696 t(A)~ 336 36
260 60 ·-992 ~(-):! 337 37
261 61 -928 Leader/Trailer 200
262 62 -864 LINE FEED 212
263 63 -800 Carriage RETURN 215
264 64 -736 SPACE 240 40
265 65 -672 RUBOUT 377
266 66 -608 Blank 000
267 67 -544 BELL 207
270 70 -480 TAB 211
271 71 -416 FORM 214

1 An abbreviation for American Standard Code for Information Interchange.
2 The character in parentheses is printed on some Teletypes.

B-1

Decimal
Equivalent

(AI Format)

-1952
-1888
-1824
-1760
-1696
-1632
-1568
-1504
-1440
-1376
-1312
-1248
-1184
-1120
-1056
-352
-288
-224
-160
-96
-32

32
1760
1824
1888
1952
2016

-2016

AC1, 44
AC2, 44
AC3, 44
Acceptable nesting

techniques, 25
ACE, 44
ACS, 44
Addressing, 45

Indirect relative, 47
Relative, 45

ALTMODE, 54
ANORM, 48
Argument, 36
Arithmetic operations, 3

Priority of, 4
Arithmetic statement, 10
Array, 25

Maximum size of an, 28
ASCII character set, B-1

Backslash, 9
BASIC compiler, 58
BEGFIX, 48
BIN loader, A-4

loading the, A-5
loading a binary tape,

A-7
BKWD, 45

Character codes, B-1
Character set, B-1
Characters,

Format control, 15
Checking the RIM loader,

A-4
Coding formats (UUF), 43
Command,

LET, 6
LIST, 55
LPT, 55, 57
PRINT, 6
PTP, 55, 57
PTR, 56
RUN, 56
SCR, 58

Command summary, 67
Commands,

Editing and Control, 53,
67

Commenting the program, 9
Conditional transfer, 24,

30
Control characters,

Format, 15
Control commands,

Editing and, 53, 67
CTRL/C, 36, 57
CTRL/O, 57

INDEX

DATA statement, 11
DEF statement, 42
Devices,

I/O, 22
DIM statement, 27
Directing program control,

29
Dummy variable, 13, 39, 42

E-type notation, 2
Editing and Control

commands, 53, 67
END statement, 9
Equal sign,

Meaning of the, 5
Erasing a program in core,

58
Erasing characters and

lines, 53
Error messages, 59
Evaluation,

Order of, 4
Example Program, 7
Examples (UUF), 48
Exponential notation, 2

FAC, 44
FENTER, 44
FEXIT, 44
Field, 24
FIX, 48
Floating accumulator, 44
Floating-point format, 44
Floating-point instruction

set, 45
Floating-point interpreter,

45
Floating-point package, 43
FNA function, 42
FOR statement, 22
Format control characters,

15
comma, 16
semicolon, 17

Fo~ats, coding (UUF), 43
Formatting output, 41
Formula, 22, 24
Function, 34

FNA, 42
GET, 39
INT, 35
PUT, 39
RND, 36
SGN, 35
TAB, 36
User-defined, 59
UUF, 43

Functions, 34
FWD, 45

X-I

Generating random numbers
over any range, 37

GET function, 39
GOSUB nesting,

maximum level of, 33
GOSUB statement, 30, 31
GOTO statement, 29

I/O devices, 22
IF GOTO statement, 30
IF THEN statement, 30
Immediate mode, 6
Incremental value, 22
Index, 22
Indirect relative

addressing, 47
Initial value, 22
Initializing the system,

A-l
INPUT statement, 14
Input/Output statements, 11
Instruction set,

Floating-point, 45
INT function, 35
Integer function, 35
Introduction, 1

LET cormnand, 6
LET statement, 10
Level of GOSUB nesting, 33
List, 25
LIST command, 55
Listing and punching

program, 55
Loaders, A-l
Loading a binary tape

(using BIN), A-7
Loading and operating

procedures, 58
Loading procedures, A-l
Loading the BIN loader, A-5
Loading the RIM loader, A-3
Loops, 22

Nesting, 24
LPT command, 55, 57
LPT statement, 19

Mass storage devices, 47
Maximum level of GOSUB

nesting, 33
Maximum size of an array,

28
Meaning of the equal sign,

5
Minimum system

configuration, 1
Mode,

Immediate, 6

Nesting loops, 24
Nesting subroutines, 33
Nesting techniques,

Acceptable, 25
Unacceptable, 25

Nesting, maximum level of
GOSUB, 33

NEXT statement, 22, 23
NO RUBOUTS, 53
Normalized form, 44
Numbers, 2

Operating procedures,
Loading and, 58

Operators, 3
Relational, 5

Order of evaluation, 4
Output,

Formatting, 41

Parentheses, 4
PRINT command, 6
Print positions, 37
PRINT statement, 15
Print zones, 16
Priority of arithmetic

operations, 4
Program control,

Directing, 29
Programming errors, 60
PTP command, 55, 57
PTP statement, 20
PTR corranand, 56
PTR statement, 14
PUT function, 39

Random number function, 36
READ statement, 11
Reading a program, 56
Relational operators, 5
Relative addressing, 45

Indirect, 47
REM statement, 9
RESTORE statement, 12
RETURN, 54
RETURN statement, 31
RIM, A-l
RIM loader,

Checking the, A-4
Loading the, A-3

RIM loader programs, A-2
&~D function, 36
Rounding numbers, 36
RUBOUT, 53
RUN cormnand, 56
Running a program, 56

SCR command, 58
SGN function, 35
SHIFT/L, 9

X-2

SHIFT/O, 53
Sign function, 35
Sign-magnitude convention,

43
Statement,

Arithmetic, 10
DATA, 11
DEF, 42
DIM, 27
END, 9
FOR, 22
GOSUB, 30, 31
GOTO, 29
IF GOTO, 30
IF THEN, 30
INPUT, 14
LET, 10
LPT, 19
NEXT, 22, 23
PRINT, 15
PTP, 20
PTR, 14
READ, 11
REM, 9
RESTORE, 12
RETURN, 31
STEP, 23
STOP, 10
TTY IN, 20
TTY OUT, 20

Statement numbers, 8
Statement summary, 67
Statements, 7, 67

Input/Output, 11
Transfer of control, 29

STEP statement, 23
STOP statement, 10
Stopping a run, 57
Subroutines, 30

Nesting, 33

Subscript, 27
Subscripted variables, 22,

25
Summary,

Command, 67
Statement, 67

Supported options, 2
Symbol Table, 62-66
System configuration,

minimum, 1

TAB function, 36
Table,

Symbol, 62
Terminal value, 22
Terminating the program, 9
Transfer,

Conditional, 24, 30
Unconditional, 29

Transfer of control
statements, 29

TTY IN statement, 20
TTY OUT statement, 20
Two-dimensional matrix, 26

Unacceptable nesting
techniques, 25

Unconditional transfer, 29
User-defined function, 59,

43
UUF function, 43

Variable, 3
Dummy, 13, 39, 42
Subscripted, 22, 25

Writing the program, 47

X-3

READERrS COMMENTS

8K BASIC
DEC-08-LBSMA-A-D

Digital Equipment Corporation maintains a continuous effort to improve
the quality and usefulness of its publications. To do this effectively
we need user feedback--your critical evaluation of this document.

Did you find errors in this document? If so, please specify by page.

How can this document be improved?

How does this document compare with other technical documents you
have read?

Job Title _______________________________________ Date: __________________ _

Name: Organization: --------------------------------- -----------------------
Street: ______________________________ Department: ________________________ _

City: _______________________ State: ____________ Zip or Country ____________ _

---Fold lIere--

-- Do Not Tear - Fold Here and Staple. ---

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

Digital Equipment Corporation
Software Information Service
Software Engineering and Services
Maynard, Massachusetts 01754

FIRST CLASS

PERMIT NO. 33

MA YNARD, MASS.

	000
	001
	002
	004
	005
	006
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	B-01
	X-01
	X-02
	X-03
	replyA
	replyB

