
PDP-7 PROGRAM LIBRARY 

NUMBER: Digital 7-30-A 

NPu1lJ!E: Floating Point package 

AUTHOR: D. Fellows DEC 

DATE: Revised December 22, 1965 

ABSTRACT: A self-contained Scientific programming Syst·em 

for the PDP-7 with Data and Results to 6 decimal 

digit accuracy, optionally 9 decimal digit ac-

CONTENTS: 

curacy. Instruction execution is interpretive. 

Arithmetic is double precision normalized floa­

ting pOint. 

1.0 ·General Description of the System 

2.0 Command List 

3.0 . Subroutine Library 

4.0 Operational Description 

5.0 Illustrative program 

PDP 

7 
LIBRARY 



Digital-7-30-A 
page 2 

1.0 GENERAL DESCRIPTION OF THE SYSTEM 

1.1 The Interpreter 

The heart of ~, the interpretive instruction proces­

sor uses double precision floating point binary arithmetic; 

data may be carried in one of two ways: 

- a) Sign plus packed 8 bit exponent plus 27-bit 

magnitude, requiring two storage words. 

b) Signed exponent and signed 35-bit magnitude, 

requiring three words of storage. 

The decimal precision possible with (a) is approxi­

mately 6 digits, with (b) 9 digits. 

The interpreter is entered by the pseudo-instruction 

ElM (enter interpretive mode) which initializes the inter-

pretive program counter. Instructions are executed sequen-

tially until a transfer of program control or the pseudo-in­

struction LIM (leave interpretive mode) is encountered. 

(LIM initiates a return to the machine language program.) 

The floating accumulator is never implicitly saved and in 

particular is not preserved when r/o instructions areexe-

cuted. All interpretive instructions except those which 

select data mode and the three indexing instructions, may 

be executed with one level of indirect addressing. 
PDP 

7 
LI BRARY 



1.2 Input/output 

Digital-7-30-A 
Page 3 

All entry of data is through a one-character-per-word 

buffer. Either teletype or paper tape may be used. Allow­

able input is limited to numeric characters but alphanumeric 

output is permitted. (see the HDG instruction.) 

1.3 Iterative Operation 

A primitive one level form of iterative operation is 

possible in the interpretive mode (see SIX, EXI). Any se-

quence of commands may be executed, iteratively, up to N 

times (N ~ 8191). An address modification instruction (ADM) 

is also provided which, when executed, increments the effec-

tive address of the instruction which precedes it in se­

quence by 2 or 3, depending on the current data mode (see 

DMD). The program must be re-initialized for a second run, 

since the instructions themselves are changed (ADM). 

PDP 

7 
LIBRARY 



Digital-7-30-A 
page 4 

2.0 INTERPRETIVE COMMAND LIST 

2.1 Mnemonics 

DAC: 

JMS: 

INP: 

LAC: 

FCS: 

ADD: 

FSB: 

FMP: 

FDV: 

HDG: 

CAS: 

JMP: 

OUT: 

NUM: 

laD: 

DMD2: 

DMD3: 

SIX: 

EXI: 

ADM: 

Deposit Floating Accumulator p. 6 

Subroutine JMP, Floating p. 5 

Initiate Input p. 9 

Load Floating Accumulator p. 6 

Load Floating Accumulator with the Complement p. 6 

Add to the Floating Accumulator 

Subtract from the Floating Accumulator 

Multiply by the Floating Accumulator 

Divide into the Floating Accumulator 

Text Output p. 9 

Compare with Floating Accumulator p. 5 

Change Interpretive program Counter p. 5 

Initiate Output p. 9 

Indicates a Numeric Argument p. 8 

I/O Device Indicator p. 7 

Select two Word Data Mode p. 5 

Select three Word Data Mode p. 5 

start Iteration p. 8 

End Iteration p. 8 

Modify Preceding Address p. 8 

PDP 

7 
LIBRARY 



Digltal-7-30-A 
page 5 

2.2 Control Transfer Instructions 

Floating JMS,JMP 

These instructions are logically the same as the 

machine language JMS, 3MP. 

ComEare Accumulator to storage: CAS 

The CA~ instruction requires an operand address, say A. 

The logical transfer of control is to PC+1, PC+2, pc+3: where 

PC is the location of the ~ instruction and the condition of 

transfer is that the signum of the quantity (C(FLOACC) - C(A)) 

be -1,0, +1 respectively. One level of indirect addressing is 

allowable. For example, if the contents of the effective oper-

and address were zero, then the following program: 

CAS A 
JMP B (A > AC) 
3MP C (A= AC) 
JMP D (A < AC) 

would execute "JMP B" when the floating accumulator is less 

than zero: "JMP CIf when C(FLOACC) equals zero: II JMP D" when 

C(FLOACC) is greater than zero. 

2.3 Internal Data Mode Instructions 

DMD2, DMD3 set the mode for the interpreter with re­

spect to data handling. The appropriate on) should be used 

before any data is referenced. No operand is used. 

PDP 

7 
LIBRARY 



Digital-7-30-A 
page 6 

Internal Data Mode Instructions cont1d 

DMD2 designates two word operands. Considering the 

extended word as bits 0-35, the operand is packed: 

bit 0 
bits 1-8 
bits9-35 

= sign 
= two's exponent + 128 
= binary fraction (magnitude) 

Approximate range of data, 10±38. Precision 6 deci-

mal digits. 

DMD3 designates three word operands. Considering 

the extended word as bits 0-53: 

bits 0-17 = signed two's exponent 
bit 18 = sign 
bits 19-53 = magnitude of binary fraction. 

Usable range of data, 10±99. Precision 9 decimal 

digits. 

2.4 Data Move Instructions 

LAC, ~ will load or store respectively in accor­

dance with the current value set by the data mode instruc-

tion. FCS loads the floating accumulator with the comple­

ment of the effective operand. 

2.5 Floating Point Arithmetic 

Add, subtract, Multiply, Divide are provided. Expo­

nentiation is provided as a library subroutine. 

PDP 

7 1 

LIBRARY 



Digital-7-30-A 
page 7 

Internal Arithmetic 

The floating accumulator is a four register accumulator, 

one register for the sign of the magnitude, one register for 

the signed exponent in two's complement form and two registers 

for the positive 35 bit magnitude held as a binary normalized 

fraction. The floating point accumulator is the same for both 

two and three word data. The result of an arithmetic operation 

is normalized and unrounded. The uninitiated should consult the 

literature for an indication of the inherent pitfalls of this 

approach to floating point arithmetic. One excellent reference 

is "Numerical Methods for Scientists and Engineers" by R. W. 

Hamming; published by McGraw-Hill, 1962. 

2.6 Red Tape Instructions 

rOD indicates the I/O device referred to by an accom­

panying input or output control instruction. It is not in­

terpreted by the interpreter but by the logical section of the 

I/O subprogram. Presently assigned device numbers are: 

1 teletype (keyboard or teleprinter) 

2 paper tape (reader or punch) 

Numbers 3 thru 7 have not been assigned. Reference to an 

unassigned device will cause 765050 to appear in the AC lights 

and an irrecoverable halt to occur in the program. IOD+device 

number+l00S) may be used to control format. The occurence 

of the added (octal) hundred implies that input (or output) 

consists of (modulo) four-word strings. 

Note that indirect addressing is not allowed with the IOD 

instruction. 
PDP 

7 
II BRARY 



Digltal-7-30-A 
page 8 

Floating Point Arithmetic cont'd 

NUM (numeric valuel 

This pseudo-instruction is used with the I/O commands 

and the iterative execution command §!!. When used with 

INP/OUT it indicates the number of values expected; with 

SIX, it indicates the number of times the following se­

quence of instructions is to be executed. Indirect addres­

sing is allowable in the first use but not in the second. 

ADM (address modification) 

This instruction is used to modify, using a positive 

increment, the instruction which precedes it in sequence. 

In the two-word, (three word) data mode the increment is 2, 

(3). The effective operand address (of the modified in­

struction) is the address modified. 

2.7 Iterative Execution Instructions 

These instructions take no operand. 

SIX initiates an iterative operation. It is always 

followed by a ~ command in the immediate address mode 

whose argument is the number of passes desired. The next 

sequential address (i.e., the contents of the floating 

mode program. counter) is saved for use by the ~ instruc­

tion. Only one level of iteration is allowed. 

EXI reduces by one the counter (number of passes) 

set by SIX and when it reaches zero falls through to the 

next instruction in sequence. If the counter is not zero, 

the program counter is reset and control is transferred to 

that location (note that all interpretive instructions, in­

cluding this one, operate in floating mode only). Multiple 

exits are allowable, that is an iteration initiated by a 

uc command may have several exit paths. PDP 

7 
LI BRARY 



2.8 I/O Instructions: 

Digital-7-30-A 
page 9 

!!ill! (heading) is meaningful on output only and is used 

to initiate output of prestored text. (see for reference the 

assembler document with particular reference to the pseudo­

instruction ~.) Formats are predetermined by the particu-

lar I/O device selected. The effective address is the loca­

tion of the first word of the desired output. The program 

sequence is: 
HDG (I) A 
laD N 

INP/QUT are used to initiate data transfers only. The legal 

characters are (for teletype and paper tape) 

SPACE 
DASH 
PERIOD 
DECIMAL DIGIT 
NULL/IDLE' 
LINE FEED 
CR 
TAB 

/~lus, the +sign .is not legal 
lor minus sign 
/decimal point 
/0-9 
/ignored 
/ignored 
litem delimiters 
litem delimiters 

If an illegal character is used "X" is typed and the buffer is 

cleared. The entire input item must be retyped to enter the num­

ber correctly. 

Input format is flexible, output format rigid. The normal 

form for both input and output is: 

± .DD ••• D ± EE 

where the DiS are the decimal digits of a (decimally nor­

malized) fraction and the E's represent a two digit decimal 

exponent. Any meaningful variation of the normal form is 

valid on input. If the decimal point is omitted, the input 

value is assumed to be integral; if the sign is omitted, it 
is assumed to be positive; if the (decimal) exponent is 

omitted, it is assumed to be zero. (e.g. 767.12-1 ~ 76.712; 

76712 ~ 76712 etc). If more than ten digits are input, the PDP 

7 
LIBRARY 



Digital-7-30-A 
page 10 

resulting value will not be true. In the two-word mode, a 

converted 35 bit value is truncated to 27 bits on input, 

rounded to six digits on output. The effective address is 

the first pick-up or store address and indexing is in 2 or 

3 (storage) word increments in accordance with the current 

data mode. 
3.0 SUBROUTINE LIBRARY 

subroutines are entered in floating mode with the floa-

ting ~ and the argument in the accumulator. They exit in 

floating mode with the result left in the accumulator. The 

following functions are an integral part of the ~ package. 

The non-appearance of a version accurate to only 6 decimal 

digits indicates that there was no essential temporal or 

spatial advantage in providing a routine other than that 

accurate to 9 decimal digits. All of the functions except 

Q!E (q.v.) require the following program sequence: 

LAC (I) A 

JMS BBB 

XX 

3.1 Trigonometric FUnctions. 

/argument to floating 
/accumulator 
/enter with floating jms 

/return to program se­
/quence 

9 decimal digit accuracy with 6 decimal digits op­

tionally available. 

Sine/cosine (routine has optional entry, common exit). 

Expected argument is in radians. The quoted accuracy 

falls off markedly when the argument is (in absolute value) 

greater than 21r. Call SIN (cos). 
uc 

Arctangent 9 decimal digits with 6 digits optionally 

available. Result is ± radians. Call ATN. 
PDP 

7 
LIBRARY 



3.2 Natural Logarithm 

Digital-7-30-A 
page 11 

The routine finds the logarithm to the base e of the 

absolute value of the argument. Accuracy is 9 decimal digits. 

To find the logarithm to a different base, multiply the na­

tural log by the log of e to the new base. Call LOG 

3.3 Exponential Functions 

Normal Exponential Functio~ 

Result is e raised to the argument as a power. 9 de­

cimal digit accuracy with 6 decimal digits optionally 

available. Call EXP. 

General Exponentiation 

A compound function of ~ and LOG and hence relatively 

slow. Accuracy depends on the version of ~ in use. To 

calculate AtB call: 

LAC (I) A 
JMS GXP 
LAC B /direct addressing expected 

3.4 Square Root 

9 decimal digit accuracy if the value for which the 

root was taken was exact. (e.g. 2). In general, the preci­

sion of the result will be (necessarily) only one-half the 

precision of the argument. Call SQR. 

PDP 

7 
LIBRARY 



Digital-7-30-A 
page 12 

4.0 OPERATIONAL DESCRIPTION OF THE SYSTEM 

4.1 Input/Output calling sequence 

INP (I) A 
IOD X 
~M Y 

/(out(i)a) 

/(num i b, c(b)=y) 

lA' (or its contents) is the initial data address. 

IX' is the device number (1 or 2). 'Y' is the number of 

items to be processed. If 100 (octal) has been used (101 

or 102) with IOD, the data will occur four words per line. 

(the last line need not.) Each data item must be termina­

ted by a tab or (line feed) carriage return. 

4.2 Symbolic Tapes 

1) A definitions tape, defining for the assembler 

the special symbols of the system. 

2) The ~ system itself in four parts. There 

are two versions of part IV, one for normal 

arithmetic, the other for use with machines 

having an extended arithmetic element. 

3) TWo library subroutine tapes with 6 and 9 digit 

accuracies. 

4) A 'PUNDEFI request tape. 

PDP 

7 
LIBRARY 



Digital-7-30-A 
page 13 

4.3 Binary Tapes 

No address assignment exists on the symbolic tapes. 

The library version was assembled at 12000 (octal) for use 

in 8K machines. The system itself (with library) occupies 

approximately 3000 (decimal) core locations. A PUNDEF tape 

is supplied. Before assembling a program using disc, load 

this tape through address 4 immediately after the assembler 

is loaded. 

4.4 Assembling from the symbolic tapes 

1) Supply a title tape with the desired address 

assignment. In lieu of thiS, the system will 

be assembled at core locations 22 and ff. 

2) Assemble together (and in order) 

a the title tape 
b the definitions tape 
c disc parts I, II, III 
d ~desired part IV 
e the desired library 

3) After punching the binary tape, get a symbol 

print if you wish. 

4) without restoring the assembler (start at 20) 

assemble the PUNDEF request tape. 

4.5 Assembling a Program to be used with Disc 

Load'the PUNDEF tape binary before assembling, i.e." START 

17770 to load assembler, START 4 to load PUNDEF tape then assemble 

in the normal way. To use, load the using program and the binary 

Disc and start at the using programs beginning location. If you 

are making use of the automatic start through the loader, load the 

~7DP binary Disc first. I ~ I 



D1g1tal-7-30-A 
page 14 

5.0 ILLUSTRATIVE PROGRAM 

DISC TEST 
IPROBLEM TO CALCULATE THETA:EXP(-X) AND SIN (THETA) 
IFOR X=A(B)C WHERE A IS STARTING VALUE, B IS INCREMENT 
lAND C IS FI NAL VALUE 
BAR 2 
BEGIN, ElM 

DMD2 
INP ALPHAIX 
IOD 1 
NUM 3 

IPRECEDING INSTRUCTIONS 

GAMMA, 

ALPHA, 

BETA, 

DELTA, 

JMS INITAL 
LAC ALPHAX 
DAC STARTIX 
FCS STARTX 
DAC MINUSIX 
JMS EXP 
DAC EXPIONX 
JMS SIN 
DAC SINIEX 
JMS STOREX 
LIM 
ISZ COUNT 
ElM 
LAC STARTX 
CAS GAMMAX 
JMP ALPHA 
JMP BETA 
JMP BETA 
LAC ALPHAX 
ADD BETAX 
DAC ALPHAX 
JMP GAMMA 
HDG MESS 
IOD 1 
LIM 
LAC COUNT 
RTL 
ADD (NUr., 
DAe DELTA 
ElM 
OUT DATA 
IOD 101 
XX 
JMP BEGIN 

READ 

IENTER INTERPRETIVE MODE 
IDATA MODE TO 2 WORD 
IINITIAL STORE ADDRESS 
IFROM TELETYPE 
13 ITEMS 

IN A, S, C, TO ALPHAX, +1, +2 

/SET STARTING VALUE 
I-X 

PDP 

7 
LIBRARY 



INITAL, 0 
LIM 
LAC (DAC DATA 
DAC MODEX 
DZM COUNT 
ElM 
JMP I INITAL 

STOREX, a 
LIM 
LAC (LAC STARTX 
DAC INITEX 
ElM 
SIX 
NUM 4 

INITEX, XX 
ADM 

MODEX, XX 
ADM 
EXI 
JMP I STOREX 

ALPHAX, 0 

" BETAX, " ftJ 
GAMMAX, " 0 
STARTX, " " MINUSX, " 0 
EXPONX, g 

" SINEX, fa 

" /OUTPUT FORMAT 15 CHARS 
MESS, TEXT/ 
X -x EXP(-X) 
/ 
DATA, DATA+1750/ 
START BEGIN 

SINE 

Dig1tal-7-30-A 
page 15 

PDP 

7 
LIBRARY 



LINE 5: 

LINE 11: 

LINE 12: 

LINE 13: 

LINE 21: 

LINE 30: 

LINE 34: 

D1g1tal-7-30-A 
page 16 

Bar 2 tells the assembler to assign 2 words to multi­

word variables (~). Later the program overrides the 
( 

variable assignment by providing explicit storage, (be-

cause the programmer decided to order his variable 

storage in a definite way). 

comment '+1, +2', refers to variable storage, not core 

locations. 

This program stores four values for each value of 'x' 

and then transfers the four values to array 'datal. 

Subroutine 'inital' zeros the item count (for the out­

put routine) and initializes the data storage address. 

Note the shift from interpretive to machine language 

and back again. 

'gamma' calculates and/or stores x, -x, exp (-x), 

sin(exp(-x»). 

'storex' initializes the pick-up address, which has 

been ~odified by 'ADM' then transfers the current 

tabular values to the array 'data'. 

'alpha' increments x and continues. 

'beta' initiates printout on the teletype. The item 

count is multiplied by four and set with 'NUM' in the 

I/O sequence (delta). printout will be four items 

per line (IOD 101). 
PDP 

7 
LIBRARY 



Dig1tal-7-30-A 
page 17 

The material reproduced below is one run through the 

program with a=¢, b=1, c=5. Note that the programmer misjudged 

slightly when he prepared his text message. 

o. 
1. 
5. 
X -X EXP(-X) 

.000000 00 -.000000 00 

.100000 01 -.100000 01 

.200000 01 -.200000 01 

.300000 01 -.300000 01 

.400000 01 -.400000 01 

.500000 01 -.500000 01 

SINE 
.100000 01 
.367879-00 
.135335-00 
.497871-01 
.183156-01 
.673795-02 

.841471 00 

.359638-00 

.134921-00 

.497667-01 

.183145-01 

.673791-02 

PDP 

7 
LIBRARY 


	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17

