
DEC-6-0-TP-FIT-LM-FP-ACTOO

DIGITAL EQUIPMENT C.ORPORATION • MAYNARD, MASSACHUSETTS

DEC-6-0-TP-FIT-LM-FP-ACTOO

PDP-6 FORTRAN II LANGUAGE

PROGRAMMING MANUAL

DIGITAL EQUIPMENT CORPORATION • MAYNARD, MASSACHUSETTS

Copyright 1965 by Digital Equipment Corporation

\I

FOREWORD

This is a reference manual describing the specific statements and cap­

abilities of PDP-6 FORTRAN II. Familiarity with the basic concepts

of FORTRAN programming on the part of the reader is assumed.

III

CONTENTS

INTRODUCTION 00 .. 0 0 0 0 0000000000 1-1

Basic Elements 0000000000000000 1-1

The Character Set 000000 000 1-1

FORTRAN Words.......... 1-1

Number Representation 0 • 000 1-1

Constants 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 1-2

Variables................. 1-3

Operation Symbols 0 0 0 0 0 0000 1-4

Statement Labels

General Format Rules

1-4

1-4

Line Formats.............. 1-5

Control Characters 0 0 0 0 0 0 0 0 0

END Statement 00000 ••• 00000.00

1-6

1-6

ASSIGNMENT STATEMENTS 00000000 2-1

Arithmetic Expressions 0000000 000 2-1

Arithmet ic Operators. 0 0 0 0 0 0 2-1

Formation Rules 00000000000 2-1

Evaluation of an
Expression 000 o •• 0.0 .00 •• 0 0 2-1

Use of Parentheses 000000000 2-3

The Arithmetic Statement 00. 2-3

Assignment Rules 0000.00000 2-4

Bool ean Statements 0 0 0 0 0 0 0 00 0 0 0 2-5

SPECIFICATION STATEMENTS o. 3-1

Array Dec larators 0 0 0 • 0 •• 0 0 0 3-1

Dimension Statements 0000000. 0 0 3-1

Common Statements 00000 0000000 3-2

Equivalence Statements 0 0 000.0.0 3-2

Restr ict ions 0 0 0 ••• 0 0 •••••• 0 3-4

CONTROL STATEMENTS 0 4-1

GO TO Statements. 00' 0 4-1

v

IF Stateme nts 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Speci a I I F Statements 0 0 0 0 0 0 0

DO Statements 0 0 0 00 0 0 • 0 • 0 0 0 0 0 0

Range •••.•.•••••••.••••••

CONTINUE Statement 000000. 0 0 0

PAUSE Statement 0 0 0 0 • 0 0 0 0 0 0 0 0 0

ST OP Statem ent 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SUBPROGRAMS 0000000000000000000

Dummy Arguments 0 0 0 0 0 • 0 00 • 0 0 0 0

Funct ions •••••••••••••••••••••

External Functions

Intrinsic Functions

4-2

4-2

4-3

4-3

4-5

4-5

4-5

5-1

5-1

5-1

5-1

5-3

Subroutines••••.•... 5-4

Defining Subroutines 000000.

Call ing Subroutines 00000000

Return •••••••••••.•••.••••••••

INPUT-OUTPUT 00 0 0

Input-Output lists 00000000.0000

Input-Output Statements 00000.00

Executabl e Statements 0 0 • 0 • 0

FORMA T Statements. 0 0 • 0 0 0 •

APPENDIXES

5-4

5-5

5-5

6-1

6-1

6-1

6-1

6-3

Al DIAGNOSTICS 00.0. 00........ A1-1

A2 SPEC IAL PDP-6 FORTRAN II
STATEMENTS 0 0.0.... A2-1

A3 FUNCTION AND SUBROUTINE
LINKAGES .. 0 0 A3-1

A4 SUMMARY OF STATEMENTS.... A4-1

A5 FORTRAN II OPERATING
SYSTEM ••..•••. 0 •••••••••• 0 • • A5-1

A6 PDP-6 FORTRAN II COMPILER
OPERATING INSTRUCTIONS •• 0 A6-1

CONTENTS (continued)

A P PEN 0 I XF S (c 0 n tin u e d) 3 Use of Continuation Characters •••• 1-6

4 Properties of Arithmetic
A7 LIMITATIONS ON 9K Express ions .•..•.•••.••••...••.. 2-2

FORTRAN II COMPiLER •••••••• A7-1
5 Arithmetic Statements •••••••••••• 2-3

ILLUSTRATIONS TABLES

Example of Subscripts ••••••••••• 1-4 1 External Functions ••••••••••••••• 5-2
2 FORTRAN Statement Card ••••••• 1-5 2 Intrinsic Function •••••••••••••••• 5-4

vi

CHAPTER 1

INTRODUCTION

BASIC ELEMENTS

The Character Set

The symbols or characters which are meaningful

in PDP-6 FORTRAN are:

Blank " H W
I X
% J Y

K Z
< @ L 0

M 1
+ 1" 2
$ \ 0 3
* P 4

A Q 5
> B R 6

l' C S 7
D T 8

/ E U 9
, F V ~

(G

Blanks, with two exceptions, are ignored and

may be used as desired to make the program

neater in appearance and more readable. For

example, READTAPE and READ TAPE are equiv­

alent. The exceptions are FORMAT statements

and ASC II constants.

FORTRAN Words

FORTRAN words fall into seven categories:

constants, variables, subscripted variables,

function names, operation symbols, statement

labels, and commands. Of these, the first four

are most similar to the "words" used in writing

ordinary formulas. For example, as in ordinary

mathematics:

y = 2 x + 3 cos (z)

where x, y, and z are variables, 2 and 3 are

constants, = and + are operators, and cos is a

function name. Statement labels are integers

used to "name" statements within a program.

Commands are special FORTRAN words, e.g.,

DIMENSION, GO TO, ASSIGN, IF, etc.

Each command word is an integral part of its as­

sociated type of statement. Therefore, com­

mands will be discussed along with their state­

ment types.

Number Representation

There are two types of numbers represented in

FORTRAN: integers and real*. Both types of

numbers may assume posi tive, negative, and

zero va lues. I ntegers may, of course, assume

only integral values and always are represented

exactly in the machine provided their magnitude

is not greater than the largest integer contain­

able in the machine registers. In the PDP-6,

this largest integer is 235 -1. A real number x

may take on values in the range

-38 I I +38 1 0 ~ x ~ 10 and x = 0

*This use of the term real should not be confused with the mathematical usage. In FORTRAN, real applies
only in the limited sense described above (formerly referred to as floating point).

1 -1

However, though a number is within the range,

its representation in the machine may only be

approximate. The conversion to machine repre­

sentation is accurate to approximately eight

significant digits (27 binary bits).

Except for zero, two numbers of different types

never have the same representation in the ma­

chine. For example, if 3 is the integer three,

and 3.0 is the type real three, the representa­

tion of 3 is not at all similar to the representa­

tion of 3.0.

Constants

Numerical

In FORTRAN II, a number may be explicitly

named by writing a constant. However, there

are two forms for naming constants: integer and

real.

Integer Constants - Any number representable

by a string of digits, from the set 0, 1, 2,

•••••• 9, written without a decimal point or

exponents

Where X. is any digit. The plus sign is option­
•

al; if no sign appears, plus is assumed.

The range of an integer constant I acceptable

to PDP-6 FORTRAN is:

_235 +1 < I < +235 -1

35
Note: 2 = 34,359,738,368.

Some examples of integers are:

9 -178192 +131701 I
1-2

Real Constants - Any number representable by

a string of digits, from the set 0, 1, 2, •••••• 9,

written with either a decimal point, exponent

or both. The general form is:

where X., Y., and Z. are di gi ts. The plus si gns
•• •

are optional; if no signs are given, plus is as-

sumed. Either the stri ng Xl •••••• X n or the

string Y 1 •••••• Y n may be omitted if their value

is zero. If Zl and Z2 are both zero, E ± Zl Z2

may be omitted. (However, the number must

contain either a decimal point or an E.)

The range of real constants acceptable to PDP-6

FORTRAN II is:

10-38 to 10+38 and zero.

Some examples of real numbers are:

6.023E23
1.66E-16
-.0056

Boolean Constants

-6.023E23
+72E 12
4.2

Any number representable by a string of digits

from the set 0,1,2, ••• 7.

where X. is any octal digit. The plus sign is op-
•

tional; if no sign appears, plus is assumed. A

minus sign implies the l's complement of the

number. The range of the Boolean constant B is

Examples:

377777
-0

40404040
+15

ASCII Constants

ASCII constants are used to convey textual in­

formation. They have the form:

where 0< i~ 5. The c's are any of the charac­

ters from the character set. Note that there

must be exactly i characters including blanks.

Examples:

A = 5HPDP-6
S = 4H YES

In the example above the variable on the left

must be of a real type.

Variables

Variable Names

A variable name is composed of from one to six

characters according to the rules:

1. The only characters which may be used
in a variable name are A through Z and 0
through 9. (Blanks are ignored.)

2. The first character must be a Iphabeti c •

Some examples of acceptable variable names

are K, P51, and EPSILO.

Some incorrect variable names are 6MERGE

(first character not alphabetic), G 1 .5 (i lIega I

character included), and EPSILON (too many

characters) •

Type Rules for Variables

There are two types of entities pesignated by

, variable names: integers and reals. Corre­

sponding to the two types of entities there are

1-3

two types of variable names identified as follows:

1. Integer variable names must begin with
one of the letters I, J, K, L, M, or N.

2. Real variables are designated by names
beginning with any other letter.

Some integer variable names are INDEX, KDATA,

K359, and MSIX. These are real variable names:

XZERO, COUNT, and FICA.

Subscripted Variables

An array is a grouping of data. A column of

figures, the elements of a vector, a list, and a

matrix are all arrays. In mathematics, an ele­

ment of an array is referenced by means of a

symbol denoting the array and subscript identi­

fying the position of the element.

For example, the sixth element in a vector v is

designated v6 • Likewise, the fourth element in

the tenth column of a matrix b is identified as

b4 10· In general, an element of an n-dimen-,
tional array m is designated by

m. • • •
I I I I
1,2,3, ..•...•...••..• n~

In FORTRAN II, array elements are similarly

identified. The array is provided with a name,

subject to the same formation and type rules as

the names of variables. All the elements in the

array have the same type. The subscripts which

identify an element of the array are enclosed in

parentheses and separated by commas. The two

elements, v 6 and b 4 10 would have the following ,
notation: V(6) and B(4, 10). Subscripts may be

quite diverse in form; in fact, a subscript may be

any acceptable FORTRAN arithmetic expression

(see Chapter 2) as long as it is integer-valued

and less than 2 18 (real quantities are not al­

lowed) •

a. X(3,3)

b. C(1+1, J+l)

c. N(I(I), J(l), K(2))

d. Y(J/3,(K-4) +12)

Figure Example of Subscripts

Note that the subscripts in Figure 1, example c,

are themselves subscripted. Subscripting may

be carried to any level. Each subscripted sub­

script, i.e., 1(1L J(lL and K(2) in Figure 1,

is itself treated as a subscripted variable.

Function Names

Function names are special forms of variables

consisting of a name immediately followed by

an argument enc losed in parentheses. The func­

tion name represents a mathematical operation

to be performed on the argument such as finding

the square root of a number or determining the

sine or cosine of an angle. Certain basic oper­

ations such as these are provided by the FOR­

TRAN system and are called library functions.

A detai led discussion of functions wi II be found

in Chapter 5.

Operation Symbols

The operation symbols may be anyone of the

following: ** or t I / I + and -. These denote

arithmetic or Boolean operations depending on

the type of statement in which they occur. The

rules for the use and binding strength of these

1-4

operators are given in Chapter 2. An important

rule about operators in FORTRAN II expressions

is that every operation must be explicitly repre­

sented by an operator. In particu lar, the mu I ti­

plication sign must never be omitted. Likewise,

si nce superscri pt notation is not avai lab Ie , a

symbol for exponentiation is provided.

Statement Labels

It is sometimes necessary for statements in a pro­

gram to refer to other statements, e. g., in trans­

ferring control, referring to format statements,

etc. To provide for such references a statement

may be preceded by a label. A statement label

may be any string of one to five decimal digits,

i.e., any integer from 1 to 99999. Leading

zeros are ignored; th us 99, 099, 0099, and

00099 are a II consi dered to be the same labe I •

GENERAL FORMATION RULES

Certain general rules hold for the formation of

all FORTRAN programs and all FORTRAN state­

ments. These rules will be dealt with here.

Physically a FORTRAN program is divided into a

sequence of lines. One line may be ei ther one

punched card or all the characters punched on a

paper tape by one line of typing on a Teletype.

Logically a FORTRAN program is divided into

statements. Therefore, some correspondence must

be established between lines and statements. The

rules are:

1. There can be no more than one statement
per line.

2. If a statement is too long to fit on one
line, it may be continued onto additional

lines. In this case, the first line is known
as the initial line and each succeeding line
is known as a continuation line.

Each continuation line must be identified as

such by a special character. Which character

is used, and where it appears on the line, de­

pends on the input medium. (See below under

Line Formats for each medium). A PDP-6 FOR­

TRAN \I statement may have a maximum length

of 660 characters.
Line Formats

The format for a line depends on the input medi­

um. Since punched cards and punched paper

tape may both be used on the PDP-6, both for-

mats are discussed below:

Card Input

Each card contains exactly one line. The line

is further subdivided into four fields, i.e., four

sets of conti guous columns.

The four fields are columns 1 to 5, column 6,

columns 7 to 72, and columns 73 to 80. This is

known as a fixed field format where all the in­

formation within a certain field is to receive a

specified interpretation. (The interpretation

for each field is often printed at the top of the

card to assist the programmers, see Figure 2).

~
L~O~O:U"lT ~I--------.-----------------------------I

STATEMENT ~ FORTRAN STATEMENT IOENTlfICAT!ON
NUMBER U

01000
'12 3 4 5 6 7 , • 10 11 12 13 14 15 1& 11 " " 20 21 22 23 24 2S 26 27 28 29 30 31 32 33 34 :r.; 38 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 &0 61 62 &3 &4 &5 66 67 68 68 70 71 72 73 74 75 76 17 ii 79 so
111 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 111 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11

2122

133 333 33333 33333333333333 3333333333 3 333 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3333333333 333 3 3 3\3 3 3 3333 3 1\

4144 44 414 4 4 4 4 4 4 44 44444 4 4 4 4 4 4 4 4 4 4 4 4 444 4 44 414 44 4 4 4 4 4

5155555555555555555555555555555555555 555555 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 55 5 5 5 555 55 5 5 sis 55555551
I ' : ;

I &:& 6 6 61616 6 6 66666 6 6 6 6 6 6666666666666666666 6 6 6 6 6 6666666666 G 6 6 6 6 6 6666 6 6 G G S G 6 6 616 6 6 6 6 6 6 6 I

I I I 717777 77 77 7 77 77 77 n 77 77 77 77 77 7 77 7 7 7 77 7 77 77 7 77 7 7 7 i 77 7 7 77 7 77 7 7 7 77 77 7 7 7 77 7 77!7 77 7 7777 i
818 8 8 8 8 8 8 8 8 8 8 8 888 8 8 8888888888888 8 8 888 8 8 8 8 8 B 8 8 8 8 888 8 8 8 8 8 8 8 8 8 888 8 2 J 8 8 B 888 6 818 8 8 8 888 8

I I

91999999 999 999 9 9 9 9 9 999 9 9 9 9 9 9 ~ 9 9 9 9 9 9 9 9 9 9 9 9 999 9 999 9 9 9i9 9 2 9 9 999
112 3 4 5 & 7 , 910111213141516171619202122232425262728 29 303132 33 i4 35 38 37 38 3940 41 4243 4445 4647 48'9l(J 51525354 5G 56 5751 ~ S06162&Ht65" ,1< Ga70" 12171 'I 15 76 1778)9'0

ICC 1-'8117

Figure 2 FORTRAN Statement Card

The interpretation for each field is:

Field 1 (Columns 1-5). This field is further
subdivided into two overlapping subfields,
i.e., column 1 and columns 1-5. Column
1 may contain one of several special con­
trol characters (see below). Statement la­
bels appear in columns 2-5 and may extend
to column 1 if there is no control character.

1-5

Field 2 (Column 6). This one column field
contains the continuation character; if it is
blank, or punched with a zero, the line is
an initial line. Any other character,
punched in column (", denotes a continua­
tion line.

Since nine continuation lines are allowed, the

programmer may use the digits 1 to 9 to indicate

their proper order.

Field 3 (Columns7-72). Th.is field con­
tains the statement. It cannot contain more
than one statement; however I it may con­
tain as much of a single statement as will
fit in 66 or fewer characters.

Field 4 (Columns 73-80). This field is ig­
nored by the compi ler and may be used to
place any kind of identifying information
on the card, e.g., sequence numbers.

Punched Tape Format

On punched tape, lines must be delineated by a

carri age return/I i ne feed. There are two formats

for punched paper tape:

1. Card Simulated Format - Paper tape may
be punched in a card format using the tab to
space to column 7. Each line ends with a
carriage return/line feed. Continuation
characters are punched in column 6. Lines
with no statement numbers or control char­
acters begin with a tab or six spaces. State­
ment numbers in columns 1-5 or control char­
acters in column 1 may be followed by a tab
or enough spaces to reach column 7.

2. Column Free Format - Lines are delin­
eated by carriage return/I ine feed. A
continuation line is identified by a back
slash as the last character before the ter­
minator for the previous line. Statement
labels and control characters must precede
the statement and must be followed by a
colon.

1-6

Figure 3 gives an example of the use of the back

slash as a continuation character.

X=X +(ARG 1 +2. * ARG2+2. * ARG3+\
ARG4) /6.

Figure 3 Use of Continuation Characters

Control Characters

Occasionally it is necessary to instruct the com­

pi ler to interpret a statement in some specia I

way. Two control characters are provided for

this which must appear in the first character

position of the statement's initial line. They

are:

C Desi gnates a comment statement. Such
a statement is ignored by the compiler ex­
cept for being retained for printing along
with the compi lation. A comment statement
may not have continuation lines. However,
this is not a serious restriction since each
line of the comment is simply preceded by
a C.

B Indicates that Boolean operations are to
be compiled. (See Chapter 2.)

END STATEMENT

The END statement must be the last statement of

every FORTRAN program. Its function is to in­

dicate to the compiler that nothing more con­

nected with the preceding program is to follow.

CHAPTER 2

ASSIGNMENT

Assignment statements are statements of the form

v = e, where v is a variable name and e is some

ari thmeti c expressi on. The execution of an as­

signment statement replaces the value of v with

the value of e. There are two types of assign­

ment statements: arithmetic statements and

Boolean statements.

ARITHMETIC EXPRESSIONS

The elements of an arithmetic expression are

constants, variables, subscripted variables,

functions, and operators. An expression may

consist of a single constant, a single variable,

a function, or a string of constants, variables,

and functions connected by operators.

Ar i thmeti c Opera tors

Arithmetic operators are symbols representing

the common arithmetic operations as follows:

Exponentiation

Multiplication

Division

Addition

Subtraction or unary minus

** ort
*

/
+

The symbols are compi led as arithmeti c opera­

tions unless the statement has the control char-

acter 'B I prefixed.

A unary minus is the operator which precedes a

quantity whose value is to be negated.

2-1

STATEMENTS

Formation Rules

An arithmetic expression may be:

1. A constant, a variable name, subscripted
variable name, or function name.

2. Any entity conforming to rule 1, with a
prefixed (unary) minus sign.

3. Two entities conforming to rules 1 or 2
with an infixed operation symbol.

4. Two entities conforming to rules 1, 2, or
3 with an infixed operation symbol.

5. Two entities conforming to rules 1, 2, 3,
or 4 and enc losed in parentheses.

6. An entity conforming to rule 5 with a
prefixed unary minus.

7. Two entities conforming to any of the
above with an infixed operation symbol.

All variables of an arithmetic expression must be

of the same type, except for exponen ts wh i ch may

be of type integers in either integer or real ex-

pressions.

Figure 4 demonstrates the properties of arithmetic

expressions. Each expression is shown with its

corresponding algebraic form.

Evaluation of an Expression

Normally, a FORTRAN expression is evaluated

from left to right just as an algebraic formula.

As ina I gebra, however, there are exceptions.

Certain operations are always performed before

others, regardless of order. This priority of eval­

uation is as follows:

l. Expressions within parentheses ()

2. Unary minus

3. Exponentiation ** or'

4. Multiplication *
Division /

5. Addition +
Subtraction

The term binding strength is used to refer to an

operator's relative position in a table such as

the one above in which the operations are listed

in the order of descending binding strength.

Thus, exponentiation has a greater binding

strength than addition, and multiplication and

division have equal strength.

The left-to-right rule can now be stated a little

a.

b.

c.

d.

e.

f.

g.

h.

Algebraic Expression

a

-a

2
az + bz + C

2
41Tr
-3-

2
3z -2 (z+y)

4.25

a sine + 2a cos (9 -1.5)

2vz
3

A

-A

more precisely as follows: Operations are per­

formed in order of decreasing binding strength.

A sequence of operations of equivalent binding

strength is evaluated from left to right.

Examples g and h in Figure 4 illustrate the use

of functions as variables in an arithmetic ex-

pression. Included in these examples are SINF

(THETA) I COSF (THETA -1 .5) I and SQRTF (Z)

corresponding to the trigonometric functions sine,

cosine, and/W.

Whenever a function is encountered, it is eval­

uated and the result treated as a variable in the

evaluation of the expression in which the func-

tion occurs.

FORTRAN Expression

A*Z""*2+B*Z+C

(A ** 2-B- 2)/ (A+B)** 2

4. * PI * R ** 2/3.

(3.* Z** 2 - 2.*(Z+Y»/4.25

A * SINF (THETA) +2.*A*COSF {THETA-l.5}

2.*SQRTF (Z)/3.

Figure 4 Properties of Arithmetic Expressions

2-2

Use of Parentheses

As with ordinary algebra, parentheses may be

used to change the normal order of evaluation.

For example:

A + B * C

would result in A being added to the product of

Band C. However, if we want, instead, the

product of A + B times C we may write:

(A + B) * C

Also, parentheses may be embedded in parentheses.

For example:

(A * (B + C))** D

The expression is evaluated from the innermost

expressi on outward. That is, B + Cis formed,

then the product with A, and finally the expo­

nentiation. The expression within parentheses

simply becomes a numerical argument for the rest

of the expression.

Expressions with many nested subexpressions can

become very difficult to read making it difficult

to be sure that each left parenthesis is properly

paired with a right parenthesis. If they are not

properly paired, an error diagnostic is printed.

Fortunately, the test used by the computer turns

out to be a very simple way of checking by hand.

Consider the following example:

Z* (P* (SINF(THETA)+S) / (Z**2-(B**2+C**2)))
1 2 3 2 1 2 3 210

The procedure is this: starting with a count of

zero, scan the expression from left to right. In­

crease the count by one for each ri ght parenthesis.

Decrease the count by one when a right paren-

2-3

thesis is read. When the expression has been com­

pletely scanned, the count should be zero.

The Ari thmeti c Statement

The ari thmeti c statement re lates v, a vari able

name or array element name of type integer or

real, to an arithmetic expression e by means of

the equa I si gn (=), thus:

v = e

Such a statement looks like a mathematical

equation, but it is treated differently. The equal

sign is interpreted in a special sense; it does not

merely represent a relation between left and

right members, but specifies an operation to be

performed; namely, replace the value of v with

the va I ue of e.

A few illustrations of the arithmetic statement

are given in Figure 5.

a. VMAX=VO+Z*TO

b. T = 2.*PI*SQRTF(1.0/G)

c. PI =3. 14159

d. THETA=OMEGAO*T+ALPHA*T**2/2.

e. MIN=M + N + 5

f. INDEX = INDEX +2

Figure 5 Arithmetic Statements

The equal sign is considered to have a lower

binding strength than all of the operators. This

means that the whole of the expression on the

right is evaluated before the operation indicated

by == is performed. By this definition the state­

ment in example f of Figure 5 would mean, "add

two to the current value of INDEX. The result

is the new value of INDEX."

It should be noted that all variables occurring to

the right of an equal sign must have been defined

and calculated when the expression is evaluated.

If the variable on the left of the equal sign was

previously undefined, it will be defined by the

ari thmetic statement.

Assi gnment Rules

In an arithmetic statement, the value of the ex­

pression to the right of the equal sign replaces

the value of the variable on the left, according

to the following rules:

v is e is
type type

Rule

integer integer v == e
integer real v = FIX(e)
real integer v ==FLOAT(e)
real real v = e

The name FIX* means truncate any fractional

part and convert to integer representation. The

name FLOAT means convert to real representation.

Internal Arithmetic Statement

An important result of treating the equal sign as

an operator is that it may be used more than once

in an arithmetic statement. Consider the follow-

ing.

Q == A/(V=SQRTF(2.*G*Y))

The internal arithmetic statement I V==SQRTF

(2. * G*Y), must be set off from the rest of the

statement by parentheses. The complete state­

ment in this illustration is a concise way of ex­

pressing the following type of mathematical

procedure:

Let Q ==A/v

where v =/2;;

In the single FORTRAN statement both these

equations are evaluated starting with the inner­

most statement and va I ues are assi gned to V and

Q.

Another result of treating the equal sign as an

operator is that iust as there may be a series of

additions, a+b+c, there may be a series of re­

placements, a=b=c=cl. Since the operand to the

left of an equal sign must be a variable, only

the ri ghtmost operand, represented by d above I

may be an arithmeti c expression. The statement

is interpreted as follows: "Let the value of the

expression d replace the value of the variable c I

which then replaces the value of the variable b"

and so on. ** In other words, the value of the

rightmost expression is given to each of the var­

iables in the string to the left. A common use

for this construction is in setting up initial values:

VZERO=SZERO==AZERO== O.

P==PO=4* ITM-K

Each replacement conforms to the above rules.

* Truncate in 2's complement means find the greatest integer in X. Hence XFIXF(O .5)= 0 and
XFIXF(-O.5)=-1. The function XINTE(X) performs truncationtothe greatest integer inthe absolute
value. Hence XINTF(O.5)= Oand XINTF(-O.5)=O.

**This may seem at first to violate the left-to-right rule. However, whenever an equal sign is encountered
in scanning a statement, it cannot be executed until all operations of higher binding strength have been
performed. Thus, execution of each equal sign (replacement) is deferred unti I the expression on the right
has been evaluated. The replacements then occur in reverse order as the evaluation works back to the left­
most variable.

2-4

BOOLEAN STATEMENTS

The arithmetic statement may be used to perform

Boolean operations if a B is placed in the first

character position of the statement line. In this

case the symbols for the ari thmeti c operations

take on the following meanings:

+ inclusive OR

- (binary) exclusive OR

- (unary) l's complement

* AND

/ equivalence

** or'" shifting

For all but the shift operation, the mode of the

data is in a sense irrelevant. The Boolean op­

erations are performed on the full 36 bits of the

data word, complementing etc., ona bit by bit

basis without regard for the significance of the

bits.

The effect of these operations may be defined

as follows: Let r. be the i th bi t of the 36-bit

result. Let argl,l be the ith bit of the first ar-
I

gument; let arg2. be the i th bit of the second
I

argument. Then for each operation we have:

2-5

Boolean Algebra Resu I t of Operati on (r.)
I

argl. arg2. + * / I I

0 0 0 0 0 1
0 1 1 1 0 0
1 0 1 1 0 0
1 1 1 0 1 1

For the unary minus:

r. = 0 if argo = 1
I I

r. = 1 if argo = 0
I I

For the shifting operation the second argument

must be an integer, i.e., the form must be:

arg ** ivar

where arg is an arbitrary type and ivar is an in­

teger. arg is shifted right if ivar is negative,

left if ivar is positive, by ivarmod36 positions.

That is:

r. = argo ± •
I I Ivar mod36

Examples:

B A = B+213776347777

B C = C*A-D

B F =C**-3

B H =E/G

CHAPTER 3

SPECIFICATION STATEMENTS

There are three types of specification statements: name. The d's, the declarator subscripts, must

dimension statements, common statements, and be integer constants. Their presence is suffi-

equivalence statements. These are called speci - cient to inform the compiler that an array is

fication statements since they specify structural being declared. Their number indicates the di-

properties of the program which must be known mensionality of the array; their magnitude, the

to the compiler if it is to set aside enough stor- maximum value which each subscript may assume.

age for arrays, properly relate different variables,

etc.

NOTE: All specification statements
must appear before any executable state­
ment. (Executable statements are assi gn­
ment statements, control statements, and
the executable input-output statements.)

Array Declarators

In an array of dimension n, each subscript is al­

lowed to assume all integral values between 1

and some maximum, where d 1, d2,····· .dn

represent the maximum values for each subscript.

The array will require:

words of storage. An array declarator is used

to inform the compiler of this requirement. It

has the form:

where aname is the array name. It is subiect to

the same formation rules and type conventions

as ordinary variable names. All of the elements

of the array are of the type dec lared by the

3-1

Array Successor Function

Arrays are stored by columns in the array storage

area. That means the following function may be

used to establish the location of a given element

relative to the beginning of the storage area:

s = i 1 + d 1 (i 2 - 1) + d 1 d2 (i 3 - 1)

+ +d 1d2 ... dn (in -1)-1

where i l' i2,·· .i n are the values of the n sub­

scripts. This function is important when an array

element must be identified by a single subscript.

NOTE: An array declarator must appear
for each array. It may appear in either
a dimension statement, or a common
statement.

DIMENSION STATEMENTS

Dimension statements are provided explicitly to

declare arrays. They have the form:

DIMENSION a 1,a2 , •••••••••• an

where the a's are array dec larators. No two ar­

ray declarators may have the same array name.

COMMON STATEMENTS

The common statement allows the programmer to

assign the same meaning to variable names in

different program units. Names appearing in

common statements are assigned storage loca­

tions in the order in which they appear, begin­

ning at location 14°8 ,

Common statements have the form:

where each v may be either a variable name,

an array name f or an array dec larator. Each

name must be distinct; e.g., a listed variable

name must not be repeated as an array name.

Since the storage location of a variable is de­

termined by its order in the common list, vari­

ables in different program units need not have

the same name to have the same meaning. For

example:

COMMON X, I, Z

COMMON A, J, C

may be two common statements appearing in two

different program units. The effect of the two

statements is to assign the following locations

to the listed variables:

LaC (X) = 1408

LOC (I) = 1418

LOC (Z) = 1428

LaC (A) = 1408

LOC (J) = 1418

LaC (C) = 1428

If an array name appears in a common statement,

enough sequential common locations must be set

aside to contain the array. Consequently, the

array must be declared in a dimension statement.

3-2

The alternative is to list an array declarator in

the common statement rather than simply the ar-

ray name.

Considerable care must be taken to assure that

variables which are to be identical occupy the

same position in common. For example, assume

in one program we have the fo Ilowi ng statement:

COMMON A, B, C

where B is an array name. Then I assume ina

different program unit we have:

COMMON X, Y, Z

where X, Y, and Z are all single variables.

Then LaC (X) = LOC (A); however, C wi II not

be in the same location as Z. Rather, Y wi \I

equal the first element of B, and Z will equal

the second element of B. To have LOC (C) =

LaC (Z) and sti \I write the list in the above order,

we must declare Y to be an array of the same size

as B. That is, if B is a 3 x 3 array, we could de­

clare Y to be a 3 x 3 array or a 1 x 9 array.

EQUIVALENCE STATEMENTS

Equivalence statements are used to assi gn two or

more variables in a program unit to the same

storage locations. Such an assignment may be

made for several reasons, perhaps the most com­

mon being to save storage. If a program contains

several variables which are never used simulta­

neously or I more accurately, the value of one

need not be retained while another is being used;

storage may be saved by having them all use the

same location.

The general form of the equivalence statement

is:

where each e is a list of the form v 1, v2,···v n

and n.2: 2. In turn, each v may be a variable

name or an array element name. All of the en­

tities named within a single set of parentheses

are assigned to the same location in storage.

The array element is identified by a single sub­

script, which is equal in value to the array suc­

cessor function. If an array name is listed with­

out the I inear subscript, a subscript of 1 is

assumed.

If an element in an equivalence group also ap­

pears in a common statement, all the elements

of the group are considered to be in common.

The common block is reordered so that the items

appearing in equivalence statements appear first

and in the same order as in the equivalence

statements. For example, suppose a program

had the common statement:

COMMON A, B, C, 0

This would make the following assignment:

LOC (A) = 1408

LOC (B) = 1418

LOC (C) = 1428

LOC (0) = 1438

If there were also an equivalence statement:

EQUIVALENCE (0, G), (F ,B)

The result would be:

3-3

LOC (G) = LOC (0) = 1408

LOC (F) = LOC (B) = 1418

LOC (A) = 1428

LOC (C) = 1438

A question arises as to what happens if an array

element appears as equivalent to a common vari­

able. The answer is:

The common variable is placed in com­
mon according to its position in an equiv­
alence statement. The array is then as­
signed to common locations so that the
specified element is equivalent to the
specified common variable.

For example, consider:

COMMON A, B, C, 0

EQUIVALENCE (E(l),C)

The result would be:

LOC (E(l)) = LOC (C) = 140

LOC (E(2)) = LOC (A) = 141

LOC (E(3)) = LOC (B) = 142

LOC (E(4)) = LOC (0) = 143

LOC (E(n+1)) = 140 + n

However, the pair of statements:

COMMON A, B, C, 0

EQUIVALENCE (E(5), C)

would have the following effect:

LOC (E(l)) = 140

LOC (E(2)) ;:: 141

LOC (E(3)) ;:: 142

LOC (E(4)~ ;: 143

lOC (E (5» = lOC (C) = 144

lOC (E(6» = lOC (A) = 145

lOC (E(7)) = lOC (B) = 146

lOC (E(8» == LOC (D) == 147

3-4

Restrictions

A common variable may appear in only one

equivalence statement unless its storage require­

ments are equal to or exceed all other variables

in the succeeding equivalence groups in which

it appears.

CHAPTER 4

CONTROL

Normally, the executable statements of a

FORTRAN program are executed in the order

of their appearance. However, the order of

execution may be altered by any of the follow­

ing control statements: GO TO, IF, CALL,

RETURN, CONTINUE, STOP, PAUSE, and DO.

The CALL and RETURN statements are used with

subrouti nes and wi II be di scussed in Chapter 5.

The control statements (except for STOP, CON­

T�NuE, and RETURN) contain labels to identify

those statements which are to be executed fol­

lowing execution of the control statement itself.

All labels in a control statement must refer to

executable statements.

GO TO STATEMENTS

Unconditional GO TO - This statement has the

form:

GOTOn

where n is a statement label. Execution of this

statement results in the statement labeled n being

executed next.

Example:

GO TO 10

Computed GO TO - The computed GO TO is

an n-way branch, where the branch selected

depends on the value of an integer variable.

The form is:

STATEMENTS

4-1

GO TO (labell, labeI2, ••• Iabeln), iname

where iname is an integer variable name. The

next statement executed, following the computed

GO TO, wi II be the statement corresponding to

the nth label in the list; n being the current val­

ue of iname.

Example:

GO TO (21, 4, 36, 18, lOa), INT

If INT = 3, the next statement to be executed is

statement 36.

Assigned GO TO - There are two forms of this

statement, one being similar to the unconditional

GO TO and one simi lar to the computed GO TO.

In both cases, the effect of the statement depends

on the current value of an integer variable. The

two forms are:

GO TO iname

and

GO TO iname, (labell, labeI2, ••• Iabeln)

The first form simply transfers the execution se­

quence to the statement whose label is equal to

the value of iname. The second form matches

the current value of iname against the labels in

the list. If a successful match is found, the ef­

fect of the statement is the same as the first form.

If not, control passes to the next executable

statement.

The statement:

ASSIGN n TO iname

assign the label n to the integer variable iname.

If more than one ASSIGN statement refers to the

same integer variable name, the value assigned

by the last executed statement is the current

value.

Examples:

ASSIGN 21 TO INT

GO TO INT

ASSIGN 1000 TO INT

GO TO INT, (2,21,1000,310)

IF STATEMENTS

Arithmetic IF - The arithmetic IF is a three way

branch. It has the form:

IF (exp) labell, label2, label3

whereexp is any arithmetic expression of type

real or integer; and label1, label2, and label3

are three statement labels. The next statement

to be executed is:

labell if exp < 0

label2 if exp = 0

label3 if exp > 0

The three labels need not all be distinct; less

than or equal, greater than or equal, and not

4-2

equa I condi tions may be tested by repeatin9

label.

Examples:

1. IF (K) 23,64,100

2. IF (A**I*B+C) 23,64,23

3. IF (K-100) 5,5,10

Boolean IF - The Boolean IF is a two way branch.

I t has the form:

IF (exp) labell, label2

where exp is a Boolean expression. The next

statement executed after the IF is:

Examples:

labe 11 if exp = 0

labe 12 if exp I- 0

IF (A*672) 101,3

IF (-(A+B)) 4,76

IF (-(AlB)) 36,21

The Boolean IF must be identified by a B in col­

umn 1.

NOTE: The character * may replace any
statement label in an arithmetic or Boolean
IF statement; this causes control for the
branch corresponding to the * to pass to
the next executable statement.

Special IF Statements

There are several forms of IF used to detect var­

ious conditions in the state of the machine.

Sense Lights

IF (SENSE LIGHT i) labell, label2

where i is an integer constant and 1':::: i ,:::: 36.

If the desi gnated Ii ght is on, it is turned off

and the statement corresponding to labell is

executed next; otherwise, control transfers to

the statement corresponding to labe 12.

NOTE: Although the PDP-6 has no sense
lights, the FORTRAN II Compiler sets a­
side a register for sense light tests.

The statement:

SENSE LlGHTi

where i is an integer constant and l~ i ~ 36

causes sense light i to be turned on. The state­

ment SENSE LIGHT 0 causes all sense lights to

be turned off.

Sense Switch

Sense switch settings may be tested by the state­

ment:

IF (SENSE SWITCH i) labell, label2

Control goes to labell if sense switch i is up and

label2 if it is down; i is an integer constant in

the range ()~ i ~ 35 •

Overflow - There are two overflow conditions

which may be tested. The statements provided

are:

IF ACCUMULATOR OVERFLOW labell, label2

IF QUOTIENT OVERFLOW labell f label2

If an overflow condition is indicated, the indi­

cator is cleared and the statement corresponding

4-3

to labell is executed next. Otherwise, the

statement corresponding to label2 is executed

next.

Examples:

IF ACCUMULATOR OVERFLOW 14,2

IF QUOTIENT OVERFLOW 13,51

NOTE: Both ACCUMULATOR and QUO­
TIENT OVERFLOW tests examine the over­
flow flag in the PD P-6 •

DO STATEMENTS

DO statements provide a convenient means for

causing the repeated execution of a series of

statements along with incrementing an index for

each repetition.

The general form of a DO statement is:

DO label i =k, I, m

where label is the statement label of an execut­

able statement in the same program unit as the

DO and sequentially following the DO. This

statement is known as the terminal statement.

The terminal statement must not be any form of

GO TO, IF, STOP, PAUSE, or DO statement.

Each DO statement has an associated range which

includes the first executable statement following

the DO and extends to and includes the terminal

statement.

i is an integer variable name known as the con­

trol variable~ it is the index to be incremented.

k, I, and m are integer expressions. i is ini­

tially set to the value of k. After execution of

the terminal statement, the value of i is incre­

mented by the value of m. If the value of i is
less than or equal to the value of I, control

passes to the first executable statement following

the DO. Otherwise control passes out of the

range of the DO.

m may be omitted, in which case its value is

assumed to be 1 •

No statement within the range of the DO should

change the value of i, k, I, or m.

Notall statements in the range of the DO need

appear sequentially between the DO and the

terminal statement. For example, a statement

within a DO may transfer control to a procedure,

which, when terminated, returns control to a

statement within the range of the DO. This may

be diagrammed as follows:

00-

SUBPROGRAM

In this case, the subprogram is considered to be

within the range of the DO.

It is often desirable to have DO's within a DO.

This might occur, for example, when a calcu­

lation is being performed with multiply sub­

scripted parameters. An innermost DO will com­

pletely run through all the values of one sub­

script for each step of an outer DO.

4-4

When a DO is contained within a DO, i.e.,

nested, the range of the contained DO must be

a subset of the range of the containing DO.

That is, all the statements of the inner DO, from

the DO itself to and including its terminal state­

ment, must be statements in the range of the

outer DO.

The following diagram illustrates proper and im­

proper nesting of DO's.

.--00 -------1

DO -------2

I~~ -------3
~------4

~
0-------5

DO -------6
DO -------7

Allowable Nesting

00------------1

DO ----------2

DO ---------3

Improper

A program branch must not occur from a state­

ment outside the range of a DO to a statement

within the range of a DO. However, branches

are permitted out of the DO, in which case the

control variable is defined and is available.

Branches 2, 5, and 6 in the following diagram

are permitted; branches 1, 3, and 4 are not.

4

Finally, if two or more nested DO's share the

same terminal statement, no statement outside

the range of the innermost DO may cause a

branch to the terminal statement.

Examples:

DO 10011 = Nl*2,M,K*(N2*3-1)

DO 4012 = 1,10,4

DO 1013=7,J

CONTINUE STATEMENT

The general form of a CONTINUE statement is:

CONTINUE

Its execution has no effect on the program be­

yond causing control to go to the next statement

in sequence. Nevertheless, this can be a use­

ful statement. For example, suppose it is nec-

4-5

cessary to have a conditional GO TO or IF

statement in the range of a DO so that, if the

stated conditions are met, the control variable

is incremented and another repetition of the

entire range begins. This can be done by mak­

ing the terminal statement of the DO a CON­

TI N UE statement. The GO TO or IF statements

then simply transfer control to the terminal se­

quence of the DO.

PAUSE STATEMENT

PAUSE statements may have the form:

PAUSE n or PAUSE 'MESSAGE'

where n is an octal constant and may be omitted.

Execution of a PAUSE statement causes PAUSE,

PAUSE n or PAUSE 'MESSAGE' to be typed on

the user Teletype. The user may type G to

return control to the next statement or X to ter­

minate the program. A carriage return must

follow the G or X.

STOP STATEMENT

The general form uf the STOP statement is:

STOP n

where n is an octal constant and may be omitted.

The STOP statement causes termination of a

program.

CHAPTER 5

SUBPROGRAMS

There are two broad classes of subprograms, de­

fined by the way the subprogram is called and

whether or not it may return one or many values

to the mai n program. Subrouti ne subprograms

must be explicitly called by a CALL statement.

They may return one, or severa I, va lues. F unc­

tion subprograms are implicitly called by using

their names in an arithmetic expression. They

may return only a single explicit value. Implicit

values may be returned through arguments or

COMMON storage.

DUMMY ARGUMENTS

All subprograms use dummy arguments in their

argument lists which accompany their definitions.

The calling argument list must match the dummy

argument list in the number, order, and type of

argument. Beyond that, there need be no cor­

respondence between the names of the arguments

in the two lists.

FUNCTIONS

The two types of functions are intrinsic and ex­

ternal. Intrinsic functions are predefined and

are part of the FORTRAN language. External

functions are defined by subprograms external

to the program unit in which they are called.

External Functions

External functions, along with subroutine sub-

5-1

programs, correspond most closely to what is nor­

mally thought of as a separate and closed sub­

routine. That is, an external function is a single

and separate program. It exists only once in

memory and is separate from the main program.

Whenever it is called, control leaves the main

program temporari Iy and goes to the external

function.

The following rules must be observed in defining

an external function:

1. The first statement must be a FUNCTION
statement. This is a statement of the form

where name is the symbolic name of the
function. Name may not have a terminal
F unless it consists of three characters or
less. The a's are dummy arguments which
may be either variables or array names.

Symbolic function names are constructed by
the same rules as for variables. The type
of the function name, integer or real, de­
termi nes the type of the resu It.

2. The symbolic name of the function must
appear as a variable name within the pro­
gram. Upon execution of the RETURN state­
ment, the value of the variable is considered
the value of the function.

3. The symbolic name of the function must
not appear in any non-executable statement
within this program unit except for the
FUNCTION statement.

4. The symbol i c names of the dummy ar­
guments must not appear in any COMMON
or EQUIVALENCE statements within this
program unit.

5. The subprogram may not contain a SUB­
ROUTINE statement, another FUNCTION
statement, or a reference to itself.

6. The subprogram must be logically ter­
minated by a RETURN or CALL statement.

7. The subprogram must be physically ter­
minated by an END statement.

External functions are called by using the sym­

bol ic name of the function, followed by a list

of actua I arguments. The arguments must agree

in number, order, and type with the dummy ar­

guments. Further" if a dummy argument is an

array name, the corresponding actual argument

must be an array name. The actual arguments

may be variable names, array elements, array

names, or expressions. The expressions may, in

turn, contain calls to other external functions.

An external function to calculate the factorial

of an integer n:

10

FUNCTION NFACT (N)
NFACT = 1
DO 10 J = 1, N
NFACT = NFACT * J
RETURN
END

Library Functions

Certain external functions are used so commonly

that they are considered basic, and are supplied

in the library. Table 1 shows these basic func­

tions. If desired, additional functions may be

added to the library. When library funct ions

are called, a terminal F is appended to the

function name.

Example:

ROOll = (-B+SQRTF(B**2-4.*A*C»/2.*A

TABLE 1 EXTERNAL FUNCTIONS

Basic
Number of Symbolic Type of

External Definition Restr ict ions
Functions

Arguments Name Argument Function

exponentiql
x

EXP real real e

natural log LOG real real
logarithm

' e

sine sine (arg. in radians) SIN real real
sine (qrg. in degrees) SIND real real

cosine cos (arg. in radians) COS real real
cos (arg. in degrees) COSD real real

hyperbolic tanh TANH real real
tangent

square root x 1/ 2 SQRT real real

arctangent tan- 1 ATAN real real

,arctangent tan- 1 (y/x) 2 ATAN2 real real

5-2

TABLE I EXTERNAL FUNCTIONS (continued)

Basic
Number of Symbolic Type of

External Definition Restrictions
Functions

Arguments Name Argument Function

arcsin
• -I

ASIN real real Sin

-I
ACOS real real arccos cos

hyperbolic sinh SINH real real
sine

hyperbolic cosh COSH real real
cosine

common 10910 LOGIO real real
logarithm

truncation sign of a XINT real integer 101< 234

times lar- tNT real real a normalized
gest into
~ 101

0 1 (mod O2) real real
27

remainder- MOD 10/021<2
ing (*note)

choose max
largest (0 1,02 , .an) n~2 XMAXO integer integer
value X MAX I real integer

MAX 0 integer real
MAXI real real

choose min
smallest (0 1,02 " .an) n~2 XMINO integer integer
value XMINI real integer

MINO integer real
MINI real real

transfer sign of 02 2 XSIGN int/either integer
sign times 10 II SIGN rea 1/ e ith er real

positive max 2 XDIM integer integer
difference (0 1-02,0) DIM real real

*Note: The functions MODF(al, 02) and XMODF(al ,02) are defined as 01 -[01/02]02, where [x] is
the largest integer which does not exceed the absolute value of x, and whose sign is the same as x.

Intrinsic Functions

Table 2 lists the intrinsic functions for PDP-6

FORTRAN. The intrinsic functions are sometimes

referred to as open subrouti nes. Th i s means each

time the function name is encountered, the se-

5-3

quence of program steps to evaluate the function

becomes part of the co II i n9 program.

The function name must agree exactly with the

name shown in Table 2, and it must be followed

by a parenthesized I ist of arguments. Each ar-

gument may be any arithmetic expression which

agrees in order, type, and number wi th the spec i­

fications of Table 2.

Some examples of arithmetic expressions with

intrinsic functions:

An initial X is always present in the names of

functions which produce results of type integer.

A * Z + ABSF (C) * D

I * J + XABSF (K) * L

TABLE 2 INTRINSIC FUNCTIONS

Intrinsic
Function

absolute
value

remainder-
ing (*note)

float

fix

Definition

I a I

a 1 (mod a2)

convert in-
teger to real

convert real
to integer
the result is
the largest
integer ~ a

No. of
Args.

2

Function
Name

XABSF
ABSF

XMODF

FLOATF

XFIXF

Mode of
Args.

integer
real

integer

integer

real

Mode of
Function

integer
real

integer

real

integer

Restriction

none
none

none

none

none

*Note: The functions MODF(a1, a2) and XMODF(a1,a2) are defined as a1 - [a1/a2] a2, where [x] is the
largest integer which does not exceed the absolute value of x, and whose sign is the same as x.

SUBROUTINES

Defining Subroutines

Subroutines are defined by writing a program

much like any other program except for the fol­

lowing restrictions:

or

1. The first statement must have the form

SUBROUTINE name

SUBROUTINE name (a 1,a2,·· .an)

where the name is the symbolic name of
the subroutines and the als, the dummy

5-4

arguments, are either variable or array
names.
2. The subroutine name must not appear in
any other statement other than the first.

3. No dummy argument name can appear
in a COMMON or EQUIVALENCE state­
ment. However, they must appear ina
DIMENSION statement if they are array
names.

4. The subprogram may not contain a
FUNCTION statement or another SUB­
ROUTINE statement..

5. The subroutine must be logically ter­
minated by a RETURN, CALL EXIT, or
CALL DUMP statement.

6. The subroutine must be physically ter­
minated by an END statement.

Calling Subroutines

A subroutine is called by a statement of the form

CALL name

or

where name is the symbolic name of the subrou­

tine and the a's are the actual arguments. An

argument may be a variable name, an array ele­

ment, an array name, or any other expression.

However, the actual arguments must agree in or­

der, number, and type wi th the dummy argument

list in the subroutine definition.

None of the arguments shou Id have the same

name as the subroutine.

A subroutine may return one or more calculated

values by redefining one or more of the argu­

ments in the argument list. If this is done, the

redefined argument should not appear in this

I ist as an expression.

Example:

CALL FOFX (A(3), 5.43, SQRTF(Y), 5H ERROR)

RETURN

The RE TURN statement causes control to be trans­

ferred to the next executable statement in the

calling program. RETURN statements may appear

on I yin subprograms.

5-5

The following example contains a subroutine, for

multiplying two 3 x 3 matrices to form a third:

SUBROUTINE MATMPY (A, B,C)
DIMENSION A(3, 3), B(3, 3), C(3, 3)
DO 100 1=1,3
DO 100 J=l,3

100 C(1,J)=A(I,1)*B(1,j)+A(I,2)*B(2,j)
X +A(I,3)*B(3,J)

RETURN
END

This subroutine could be called by the statement

CALL MATMPY (AMATl,AMAT2,PMAT)

The routine would then form the product of

AMATI times AMAT2 and return all the values

in an array named PMAT.

An alternative method for calling and transmit­

ting information is:

SUBROUTINE MATMPY
COMMON A(3, 3), B(3, 3), C(3, 3)
DO 100 1=1,3
DO 100 J=l, 3

100 C(I, j)=A(I, 1)* B(I, J)+A(I, 2)* B(2, J)
X +A(I,3)*B(3,j)

RETURN

called by:

COMMON AMATl(3,3), AMAT2(3,3),
X PMAT(3,3)

CALL MATMPY

CHAPTER 6

INPUT-OUTPUT

INPUT-OUTPUT LISTS

Data transfer statements contain input-output

lists. These are ordered lists of variable names,

array element names, or array names (also ex-.

pressions in the case of output) each separated

by commas. The order of the list, from left to

right, specifies the order in which the data will

appear.

Example:

Ir-A-,-B ,-C-(-3)-, -F (-7)-,-N-U-M-,-C-0-N-S-T--'

If data was being read in, the first number read

would be placed in a memory location referenced

by A, the second by B, the third by C(3) I etc.

The appearance of an array name wi thout sub­

scripts causes input or output of all the elements

of the array, ordered by the array successor

function.

A DO-implied list is a list which is enclosed in

parentheses and ends in an indexing specifica­

tion, i.e., a list of the form:

(namel, name2, •••• namen, j=ml, m2, m3)

where i, m 1, m2, and m3 all have the same

meanings as in DO statements, and name 1,

name2, and namen are subscripted variables.

Example:

(VAR(K), MA T(K), K=1, 10)

6-1

This list is equivalent to VAR(1), MAT(l), VAR

(2), .••• VAR(lO), MATOO).

Implied-DO lists may be nested. In this case,

the range of the inner DO is exhausted for each

increment of the outer DO.

For example, suppose it is desired to read in a

matrix by row rather than column order. Then

a nested pair of implied DO's may be used as

follows:

«MAT (I,J), J=1, m), 1=1, n)

This is equivalent to the list (MAT(l,l), MAT(l,

2), MAT(1 ,m), MAT(2, 1),,, •• MAT(m,n).

INPUT-OUTPUT STATEMENTS

Input-output statements are of two types: exe­

cutable statements cause transmission of informa-

tion from or to input-output devices. FORMAT

statements, referred to by executable input­

output statements, specify the arrangement and

conversion of information denoted by the input­

output lists.

Executable Statements

Input statements have the form:

READ label, list

REREAD label, list

ACCEPT label, list
READ INPUT TAPE n, label, list
or RIT n, label, list

REREAD INPUT TAPE n, label, list

READ TAPE n, list

where label is a FORMAT statement label, list

is an input list, and n is an integer expression

denoting a device number.

For the READ, TYPEIN, READ INPUT TAPE,

and RIT statements, information is read in begin­

ning with the next item in position to be read,

until the input list is satisfied. Each item of

data is converted as specified in the FORMAT

statement.

For the REREAD statements, the previous record

is rescanned with a new format.

The READ TAPE statement causes input of binary

information from device n.

Examples:

READ 101, (A(I) ,I=M, N) ,J

REREAD 102, (A(I) ,I=M, N) ,J

RIT N+l,5, TERM1, TERM2

READ TAPE 4, (((BINDAT(I,J,K)
l=l,Il),J=l,Jl),K=l,Kl)

Output statements have the form:

PRINT label, list

PUNCH label, list

TYPE label, list

WRITE OUTPUT TAPE n, label, list
or WOT n, label, list

WRITE TAPE n, list

6-2

where label is a FORMAT statement label, list

is an output list, and n is an integer expression

denoting a device number.

For the PRINT, PUNCH, TYPEOUT, WRITE OUT­

PUT TAPE, and WOT statements, information is

written until the output list is satisfied. Each

item of data is converted as specified in the

FORMA T statement.

The WRITE TAPE statement causes output of bi­

nary information onto device n.

Special Tape Statements -In each of the following

statements n is an integer expression:

REWIND n

This command causes tape n to be positioned at

its load point.

UNLOAD n

This command causes tape n to be rewound and

unloaded.

BACKSPACE n

This command causes tape n to backspace one

record.

SKIP RECORD n

This command causes tape n to space at the be­

ginning of the next record.

END FILE n

This command causes an end-of-fi Ie mark to be

wri tten on tape n.

FORMA T Statements

The general form of a FORMAT statement is:

123---m 123--p
label FORMAT(///---/f s f s ----f 5 ///--/)

1122 nn

where m, n, or p, but not all three, may be

zero, the f's are field descriptors or a group of

field descriptors enclosed in parentheses, and

the s's are ei ther commas or slashes.

Basic Field Descriptors

The basic field descriptors have the following

forms: Fw.d, Ew.d, Gw.d, Iw, Ow, Lw/ Aw,

wHh, h2---h3 , andwX. The lettersF, E, G,

0, I, L, Al H, and X indicate the method of

conversion. 'w I is a non-zero integer constant

denoting the width of the field in the external

character stri ng. 'd' is an integer constant speci­

fying the number of digits in the fractional part.

F, E, G, I, and 0 are all considered to be nu­

merical fields. The remaining four are alpha­

numeric fields.

The fields designated by FIE/ and G descriptors

all contain real data which is to be converted

internally to a real datum. For all three, the

input fields are identical. However, the output

fields may be quite different.

F,E, G Input Fields - The general form of the

input field is:

b b ---b ±X-----X • Y ----V E±Z Z r n : ~jJ2

6-3

To allow ease of preparing input data several

variations are allowed on this basic form:

1. The decimal point may be omitted.
If so, and if the field descriptor is Fw.d,
Ew.d, or Gw.d, d digits are assumed to
follow the implicit point. If the decimal
point is present, it overrides the 'd' speci­
fication.

2. The initial plus sign may be omitted.

3. The exponent may have the following
forms:

a. A si gned integer.

b. E followed by an integer (if
positive).

c. E followed by a signed integer.

4. The exponent may be omitted.

Thus, suppose the field descriptor was E10.4,

F10.4, or G 1 0.4. The following numbers would

all be equal:

bbbb427.67 bbb4276700 (decimal impl ied
by descriptor)

42.7670E+1
b+42.767+1

b+42.767El
+427670E01 (decimal implied

by descriptor)

Note that E+1, E1, E01, E+01, +1 and +01 are

all equivalent.

F Conversion Output - For F conversion, the form

of the output field is:

b b ---b ±X X ---X •
1 2 n 12m

Y ----V
1 d

1 w 1
The field consists of as many blanks as necessary

to fill out its width, followed by a decimal num­

ber without exponent. Plus signs are omitted.

The following table illustrates the correspond­

ence between i nterna I and externa I numbers for

an F10A field descriptor:

Internal

+4270.
-437.
+4.37
+.437
-.00437
+.0000437

External

b4370.0000
b-437.0000
bbbb4.3700
bbbbOA370
bbb-O.0044
bbbbb.OOOO

E Conversion Output - The external field for

conversion output is of the form:

x -----X E±Z Z
1 d 1 2

w I
For this conversion, all numbers are normalized

so that the decimal point appears to the left of

the first significant digit. The number is round­

ed to d significant digits.

The following table illustrates the correspondence

between internal and external numbers for an

E12A field descriptor:

Internal

+4370
-4.37
+.00437
+.0000437
-437.19
+437.23

External

bbO A370E +04
b-O A370E +0 1
bbO.4370E-02
bbO.4370E-04
b-O • 4372E +03
bbO • 4372E +03

G Output Conversion - G conversion depends

on the magnitude of the internal number. For

the field descriptor Gw.d, the following table

shows the correspondence between the magni­

tude of the internal number and the conversion

that takes place.

6-4

Magnitude

O.l~N<l

1 < N < 10

10d- 2< N < 10d-l

10d-l< N < 10d

Otherwise

External

E VV •

F (VV-4). d I bbbb I

F(VV-4).(d-l) I bbbb I

F(VV-4). 1

F(VV-4). 0

Ew.d

I bbbb I

I bbbb I

The following table illustrates G output conver­

sion for the field descriptor Gl1A.

Internal Number Conversion External Field

43700.0 E11.4 bO.4370E+05
-4370.0 F7.0bbbb b-4370.bbbb
437.0 F7.1bbbb bb437.0bbbb
43.7 F7.2bbbb bb43.70bbbb
-4.37 F7.3bbbb b-4.370bbbb
.437 F7Abbbb bO.4370bbbb
.0437 Ell A bO A370E -01

I Conversion - Fields specified by the field de­

scriptor Iw contain decimal integers. The form

of the external field is the same for both input

and output:

b b ---b ±X X ---X
12m 1 2 n

t w r
On output the plus sign is omitted.

Examples of external fields corresponding to the

descriptor 16:

bbbbb2 bbbb-2 b+2763 (if output bb2763)

-57296 647198

o Conversion - Fields specified by the field

descriptor Ow contain octal integers. The form

of the external field is:

b b ---b ±X X ---X

(mW I 2 I
For input the sign is optional. All O-type out­

put conversi ons are unsi gned.

Examples of conversion for 04 specification:

External (input) Internal External (output)

bb27 000000000027 0027

bb-1 777777777777 7777

L Conversion - L conversions are used to read

or write logical data. The form of the field

descriptor is Lw.

For input, the external field contains a string of

up to w nonblank characters beginning with

either Tor F. For example,

Descriptor Input Field

L1
L3
L15

T
bbT or bTb or Fbb
bb TRUEbHONESTbb

For output, a Tor F is written in the last char­

acter position of the field. The rest of the field

is fi lied in with blanks.

Scale Factors - A scale factor may be used for

E,F, and G conversions. A scale factor has

the form:
nP

where n, the sca Ie factor, is an integer constant

or a minus sign followed by an integer constant.

The scale factor precedes the three basic field

descriptors. When execution of a format state­

ment is begun, a sca Ie fac tor of zero is assumed.

Once a scale factor is encountered in a FORMAT

statement, it holds for all remaining E, F, and G

fields, in that FORMAT statement or until a new

scale factor is encountered.

The effects of the scale factor are:

1. For F, E, and G input the scale factor
has no effect if there is an exponent in the
external field. Otherwise; for a scale of
n:

externa I number = i nterna I number x 10n

2. For F output wi th a scale factor of n

externa I number = i nterna I number x 10n

3. For E output, the scale factor controls
the decimal normalization between the
number and the exponent so that:

a. If n~O, there will be Inl leading
zeros followed by d significant digits
to the right of the point.

b. If n~O, there wi II be exactly n
significant digits to the left of the
decimal point and d-n+1 to the right
of the decimal point.

4. For G output, the scale factor is sus­
pended un less E conversion is used.

The following chart provides some examples of

scale factor effects.

Internal Format External-No Scale External with Scale

+4370
4370
4370

2PF12.4
2PE 12.4

-2PE12.4

4370.0
bb0.4370E+04
bbO .4370E+04

6-5

b438000.0000
bb43.700E+02
b.004370E+06

The Blank Field Descriptor

A blank field descriptor has the form:

wX

On input, w characters of the external record

are skipped. On output, w blanks are written

in the external record.

The ASCII Field Descriptors

There are three forms of ASCII field descripl'ors,

wH,. •••• ',and Aw. The wH descriptor has the

following effects:

1. On input, the next w characters are
read as ASCII text into the w character
positions following the H in the FORMAT
statement.

2. On output, the w characters following
the H in the FORMAT statement are writ­
ten into the record.

For example, if we should wish to insert text in

a record, the following field descriptor might

appear in a FORMAT statement.

32HbTHISbiSbAbSAMPLEbOFbOUTPUTbTEXT

Note that w, the character count, must include

::dl characters, including blanks. The following

~xample illustrates the means for altering text­

)al information in a FORMAT statement.

READ 100

100 FORMAT (5Hbbbbb)

he field read by the READ statement would

:tve to include exactly five characters of text

icluding blanks. This text would replace the

6-6

blanks in the format statement.

The' ••• ' descriptor has the same effect as wH

except that the text is embedded between the

single quotes. When used as part of the text,

the quote character appears twice in succession:

DON'T is represented as 'DON liT' •

The Aw field descriptor causes ASCII characters

to be read into, or written from, a specified list

element. Since up to five ASCII characters can

be stored in one memory word, the following

rules apply to the Aw specification.

1. If on input w>5, only the rightmost five
characters, including blanks, are read from
the external field.

2. If on input w~5, all w characters wi II
be read and stored in memory left justified
with 5-w trailing blanks to fill out the
memory words.

3. If on output w>5, the five characters
from the internal representation wi II be
written in the last five characters positions
of the external field. The leading char­
acter positions will be filled in by w-5
blanks.

4. If on output w~5, the leftmost w char­
acters of the internal representation wi II
be written in the external field.

Variable Field Input

The PDP-6 FORTRAN allows certain relaxation

of the input formats for use in preparing input

data. Namely, the E, F, G, I, and 0 field

descriptors can appear without wand d. If so,

nl!Jmbersmust be separated by an explicit delimiter.

Such a delimiter may be any character which is

illegal as the next character in the number rep­

resentation.

Examples:

FORMAT

(I)
(I,E,F ,O)

External Field

-5+4/3,6-7/
9/.5E12/6.501/776/

Variable Field Output

If the E, F, G, I, and 0 descri ptors appear

without wand d in a FORMAT specification for

output, the field width w is set to 15. For the

E, F, and G descriptors, d is set to 7. Thus

the output FORMAT specification

110 FORMAT (E,F ,G,I,O)

would automatically become

10 FORMA T (E 15 .7, F 15 .7,

X G 15.7, 115, 015)

Repeat Count

The repeat count is an integer constant that

specifies how many times a given field descrip­

tor, or group of field descriptors enclosed in

parentheses, is to be repeated. For example,

consider the following equivalent FORMAT

specifications:

(l2,12,E10.4,E10.4,E10.4):= (212,3E10.4)

(12,12, lHQ,F5.2, 12,1 HQ,F5.2,12, 1HQ,F5.2) ==
(12,3(12, lHQ, F5. 2)}

When a repeat count and scale factor are both

used, the general form is

n P rf

where f is the basic field descriptor. All basic

field descriptors, except for wH and wX, may

have a prefixed repeat count.

6-7

Carriage Control

The first character of each printed line is inter­

preted as a control character for the line printer.

The following table contains the special control

characters which may be used as the first char­

acter in an Aw or wH field. Up to 120 charac­

ters may be printed on a line.

Character

space
o
1
+

2
3
/
*

Slash

Effect

skip to next line
skip a line
form feed - go to top of next page
suppress skipping - will repeat line
skip 2 lines
skip to next 1/2 page
skip to next 1/3 of page
skip to next 1/6 of page
skip to next 1/10 of page
skip to next 1/20 of page
skip to next 1/30 of page

Besides being a field separator, the character /

closes a record and starts a new one.

On output, a series of n+ 1 slashes wi \I produce

n blank records.

Example: Output according to the FORMAT

statement.

FORMAT (9HbMATRIXbA/ /5H+SINE)

wi \I produce

MATRIXbA
(blank line)

SINE

Terminating FORMAT Statements

When the entire format has been used and the

final right parenthesis is reached, the current

record is closed and the input or output list is

examined for further entries. If no further en­

tries are found, the data transfer is complete.

If items remain, a new record is started and the

FORMAT statement is repeated according to the

following conditions:

6-8

1. If the FORMAT specification contains
one or more repeat groups, beg i n with
that group with the rightmost closing
parenth eses.

2. If the FORMAT specification has no
repeat groups, return to the beginning
of the specification.

APPENDIX 1

DIAGNOSTICS

The compilation process proceeds in two parts.

First, the compiler translates the source lan­

guage into an intermediate assembler language.

Second, an assembler translates the intermediate

language into an object language, the binary

machine language. Therefore, there are two sets

of diagnostics: those printed out by the compi ler

and those printed out by the assembler.

Error Message

Parse Table Overflow

Pushdown Depth
Excessive

Rule Storage Overflow

COMPILER DIAGNOSTICS

Meaning

Statement too long

Same as above

The program can not
be compiled since it
generated too many
rules.

Steps for Correction

Break up the statement into one
or more smaller statements.

Same as above

Try reduc ing the number of
variables in DIMENSION state­
ments and/or don't nest the DOs
so deeply.

If the compi ler cannot completely parse a state­

ment, it will parse as much of the statement as

it can and generate the corresponding code. It

will indicate its failure to parse the statement

completely by printing an up-arrow f under the

last character correctly parsed.

ment, it wi II pri nt three up-arrows f t f under the

offending statement.

ASSEMBLY DIAGNOSTICS

Assembly error flags consist of single characters

printed in the left margin of the assembly listing

of the compi ler output. If the compiler cannot parse any of a given state-

Error Flag

C

D

Explanation

Common Error - A variable has appeared more than

once in a set of COMMON statements or is also a

subroutine argument.

Dimension Error - A variable has appeared more than

once in a set of DIMENSION statements.

A 1-1

Error Flag

E

S

M

U

o

x

R

=

N

L

T

Explanation

Equivalence Error - A subroutine argument has appeared

in an EQUIVALENCE statement.

Equivalence Inconsistency - More than one variable in an

equivalence group has appeared in another equivalence

group.

Storage Assignment Error in EQU IVALENCE Statement -

A variable in an equivalence group which has appeared

in a previous equivalence group does not account for all

the storage in the current group.

Multiple Symbols - A statement label has been used more

than once.

Undefined Symbol - A statement label which has been refer­

enced is missing, or an op-code which is incorrect.

Table Overflow - Symbol table; COMMON, DIMENSION,

EQUIVALENCE table; or literals table has overflowed.

External Symbol Definition - A variable or array name is the

same as a library function name.

Relocation Error - Illegal arithmetic involving relocatable

symbols. *

Assignment Error - illegal use of = *.

Null Symbol - Use of illegal symbol structure such as

label in assembly which does not begin with alphabetic

character or % or. *

A constant is too large to fit in a PDP-6 machine word.

A statement is too long to be assembled correctly.

The statement labe I for the terminating statement of the current

DO loop has already been processed.

*Errors likely to occur in use of ASSEMBLE - COMPILE feature.

Al-2

APPENDIX 2

SPECIAL PDP-6 FORTRAN II STATEMENTS

DECTAPE INPUT-OUTPUT

The statements INFILE N, FILE and OUTFILE N,

FILE provide a means for referencing DECtape in

FORTRAN input-output statements. On output,

files are created by issuing the OUTF\LE state­

ment. For example, the statement

OUTFILE 10, FILEl

causes the file name (in 7-bit ASCII) in FILEl

to be entered in the file directory on the DEC­

tape referenced by device assignment 10. Sub­

sequent to the OUTFILE statement, all output

statements wh i ch reference devi ce 10 wi II cause

data to be written in file FILE1. The statement

END FILE 10

is necessary for closing the output, i.e. f emp­

tying buffers and completing the entry in the

directory for fi Ie FILE 1 •

For input, the INFILE statement causes subse­

quent input statements to reference data in a

particular file. The special tape statements,

except for END FILE, are ignored in DECtape

operations.

If INFILE or OUTFILE statements are not used,

the file name F ORTR. DA T wi 1\ be assumed.

Thus one fi Ie can be created automati ca lIy on

any DECtape.

A2-1

C

C

c

WRITE FILE1
ANAME==5HFI LE 1
OUTFI LE 3, ANAME
WRITE TAPE 3, (A(I), 1=1,100)
END FILE 3

WRITE FI LE2
BNAME=5HFI LE2
OUTFI LE 3, BNAME
WRITE TAPE 3, (B(I), 1=100)
END FILE 3

READ FILE1
INFILE 3, ANAME
READ TAPE 3, (A(I),1=1,100)

TITLE

A program name may consist of up to six characters

and is declared in a TITLE statement which has the

form

TITLE NAME

The use of the TITLE statement is optional. If not

used, the title .MAIN. is generated for main pro­

grams and subprogram names for subprograms. The

title is essential for initiating use of a program's

symbols in DDT. When used, the TITLE statement

must be the first statement in the program.

ASSEMBLE -COMPILE

The PDP-6 FORTRAN II compiler will accept

MACRO-6 code directly when inserted between

the statements ASSEMBLE and COMPI LE.

The followi ng components of MACR 0-6 code

are permissible:

1. Ail basic PDP-6 operation code mne­
monics.

2. The pseudo-operations ASCII, ASCIZ,
EXP, XWD, and BLOCK.

3. Literals containing

a) digits 0-9

b) the characters ., +1 - I E

c) the symbol t 0 for changing the
radix to 8

d) the pseudo-operations ASCII and
SIXBIT.

4. The use of • to represent the value of the
current location counter.

5. Storage ma; be allocated by the use of
the character •

NOTE: The radix for all instructions is
'10 unless changed temporarily byt O.

The following restrictions apply to the above:

1. Terms in expressions may be combined
only with +, -, and *.

2. Only non-relocatable terms may be
combined by * •

3. Relocatable symbols may not be used
in the left half of the XWD pseudo-operation.

4. Statement labels must begin with an al­
phabeti c character or "%", "$" or " ." •
I f a labe I starts wi th " .", the second char­
acter must be alphabetic. FORTRAN state­
ment labels of the form XXX may be re­
ferred to by %XXX.

A2-2

ASSEMBLE-COMPILE Examples

1. C IF N IS NEGATIVE, GET RANDOM
NUMBER IN M

2.

IF (N) 10, 20, 20
ASSEMBLE

%10 MOVE 3, [t 0142536475076]
ADD 3, RAN
ROT 3, -1
EQVB 3, RAN
MOVEM 3, M#
JRST %11

RAN t 0123456707654
COMPILE

11 DO 12 1=1, 100

C REPLACE THE STATEMENTS:
C DO 10 l=l,M
C D010J=I,N
C 10 A(I,J) = B(l,J)*A(J,J)
C AND EXECUTE IN ACCUMULATORS

DIMENSION A(10,20), B(10,20L
C(1O,20)
ASSEMBLE
MOVEM 2, TWOSAV#; SAVE AC 2
HRLI 2, BEGN; Set up block transfer

; in AC 2
HRRI 2, 6
BLT2,17 ; Move code to AC

; 6-AC 17
JRST 6

; The following block is
; executed in accumu-
; lators 6-17

BEGN MOVE 2,M ; OUTER LOOP
MLUP MOVE 3,N ; INNER LOOP

MOVE 4,J
IMULI 4,10
ADD 4,1
MOVE 5, B-l1 (4) ;B(I, J)
FMPRM 5, A-I! (4) ;AO,J)=a:I,J)*A(I,J)
SOJG 4, NLUP
SOJG 3, MLUP
JRST %20 ; RETURN FROM AC 17

%20 MOVE 2, TWOSAV
COMPILE

ASSEMBLE- CaMPI LE Format

Cards

On cards, statement labels for assembly code

are limited to four characters and must be punched

in columns 1-5. The instruction and comments

follow in columns 7-72 with the format

OPCODE AC, ADDR (lR) iCOMMENT

The fields for the operation, accumulator, ad­

dress, index register, and comments are not

fixed and may fall anywhere in columns 7-72.

A2-3

The ASSEMBLE and COMPILE statements must

appear wi thout labe Is.

Punched Tape

1. Card simulated format

Tabs may be used to skip to column 7
and also to delimit fields within an
instruction.

2. Column free format

Labels must be followed by a colon.

APPENDIX 4

SUMMARY OF STATEMENTS

CONTROL STATEMENTS

ASSIGN n TO iname
CONTINUE
DO label i = k, I, m
GO TO n
GO TO iname
GO TO iname, (labell, labeI2, ••• labeln)
GO TO (label 1 , labeI2, ••• labeln), iname
IF (exp) labell, label2, label3

B IF (exp) labell, label2
IF ACCUMULATOR OVERF LOW labell
label2
IF QUOTIENT OVERFLOW labell, label2
IF (SENSE LIGHT i) labell, label2
IF (SENSE SWITCH i) labell, label2
PAUSE i
PAUSE "MESSAGE"
SENSE LIGHT i
STOP

I NPUT -OUTPUT STATEMENTS

Input

ACCEPT label, list
READ label, list
REREAD label, list
READ INPUT TAPE n, label, list
REREAD INPUT TAPE n, label, list
READ TAPE n, list
RIT n, label, list

A4-1

Output

PRINT label, list
PUNCH label, list
TYPE label, list
WRITE OUTPUT TAPE n, label, list
WOTn, label, list
WRITE TAPE n, list

Tape Commands

BACKSPACE n
END FILE n
REWIND n
SKIP RECORD n
UNLOAD n

SPECIFICATION STATEMENTS

COMMON v l' v 2' ••• v m

DIMENSION a l , a2, ••• an

EQUIVALENCE (listl), (list2), ••• (\istn)

SUBPROGRAM STATEMENTS

CALL name (a l , a2, .•• an)

FUNCTION name (d" d2, ••• dn)

RETURN

SUBROUTINE name (d l , d2, ••• dn)

APPENDIX 5

FORTRAN II OPERATING SYSTEM

1. Device Assignments

Logical device assignments for run-time
I/O are made with the use of a table called
DEVTB. in the FORTRAN library. Each en­
try in the table consists of a 6-bit ASCII
device name, and the numerical position
of each en try corresponds to the logi ca I
number used in FORTRAN I/O statements.
The first location of DEVTB. contains the
number of entries in the table. The last
five entries in the table are special and
correspond to the FORTRAN statements
READ, ACCEPT, PRINT, PUNCH, and
TYPE. Any entry in DEVTB. may be
changed by reassembling the table.

Example:

DEVTB.: t D13
SIXBIT
SIXBIT
SIXBIT
SIXBIT
SIXBIT
SIXBIT
SIXBIT
SIXBIT
SIXBIT
SIXBIT
SIXBIT
SIXBIT
SIXBIT
END

.DTAO.

• TTY.
.CDR.
.LPT.
.MTAO.
.MTA1.
.DTA1.
.DTA2.
.CDR.

• TTY.
.LPT.
.PTP.

• TTY.

;READ
;ACCEPT
;PRINT
iPUNCH
iTYPE

With this tablet the statement WRITE OUT­
PUT TAPE 6 would refer to magnetic tape
unit 1. The PRINT statement would refer
directly to the line printer.

2. Special Library Programs

a. EXIT

A call EXIT statement causes a run to be
terminated. All I/o devices are re­
leased from the job.

b. PDUMP, DUMP

AS-l

CALL PDUMP (Al, B1, F1, A2, B2,
F2,"') and CALL DUMP (A1, B1, F1,
A2, B2, F2,"') are statements which
cause portions of core to be dumped on
the device corresponding to the PRINT
statement. If no arguments are present,
the entire user core area is dumped in
octal. The argument list (A1, B1,
F1, ...) displays the arguments for the
dump and the mode in which the dump is
to take place. Core is dumped between
the I imits Ai and Bi in the mode Fi.
Either Ai or Bi may be upper or lower
limits.

The modes are

O. Octal
1. Floating Point
2. Integer
3. ASCII

If the final mode is missing, the core
area between A and B is dumped in
octal. n n

If the last two arguments Bn and F n are
missing, an octal dump is made from An
to the end of the user's area.

DUMP calls EXIT while PDUMP returns
control to the calling program when the
dump has been compl eted.

c. CHANG

The statement A = CHANGF (X) causes
X to be changed from a sign-magnitude
negative number to a 2's complement
negative number (or vice versa). If X is
positive, CHANG has no effect on X.

3. Error Messages

All errors which are detected by the Oper­
ating System result in terminating the run
with a CALL EXIT. The errors detected are:

a. Illegal character in FORMAT
statement

b. End of file on input

c. Illegal character in input string

d. Device not available

e. "'egal FORTRAN device number

f. Too many devices referenced
(15 a \lowed)

g. File name not found in a DECtape
directory

A5-2

h. DECtape directory full

i. Tape record too short for list
spec i fi cati on

i . Dev i ce error or tape pari ty error

k. End of file while reading binary
file

I • End of tape

For more detailed information about FORTRAN
1/0, see DEC-06-0-0S-FII-GM-FP-ACTOO­
FORTRAN \I Format and I/O Processor.

APPENDIX 6

PDP-6 FORTRAN II COMPILER OPERATING INSTRUCTIONS

The PDP-6 FORTRAN II Compiler contains two

basic sections: a compiler which generates as­

sembly code from the FORTRAN source state­

ments and an assembler which generates relo­

catable binary programs. The 22K compiler

contains both parts in one program. The 9K

compiler, however, prepares an intermediate

file for input to the assembler which is a sepa­

rate program (F o LA) •

COMMAND STRING FOR 22K COMPILER

The command string is used to specify the input

and output file designations for the compiler.

The 22K compiler expects up to two output fi les

and one input file. The genera I form of the

command string is

FILEl, FILE2+- FILE3

FILEl will contain the relocatable binary output;

FILE2 will contain the listing of the compiled

output (source, assembly, bi nary, errors), and

FILE3 is the source or input file. Each file may

have one of the following forms:

DEVICE:
DEVICE: FILENAME
DEVICE: FILENAME.EXTENSION

where DEVICE may be any device mnemonic

acceptable to the PDP-6 executive system,

FILENAME may be up to six letters and/or digits,

and EXTENSION may be up to three letters and/

or digits.

A6-1

The fi Ie name extensions RE Land LST are assumed

for FILEl and FILE2 unless specified otherwise.

Example:

PTP: ,DTA3:LIST....-DTA1:S0RC.TXT

If FILEl is not desired, the command string should

be of the form:

,FILE2.-- FILE3

If FILE2 is not desired, either of the following

command strings is valid:

FILE 1.-- FILE3
FILE1, +- FILE3

If neither output file is desired, the valid com­

mand strings are:

.-- FILE3
, ...--FILE3

SWITCHES FOR THE 22K COMPILER

Switches are letters specifying optional and extra

functions to be performed by the com pi ler. These

letters may appear within parentheses or after a

forward slash. Only a single letter may follow a

slash, whi Ie more than one letter may appear

within parentheses. The switches are as follows:

K Skip one file on the device (magnetic
tape only).

M Do not print storage map.

N Do not l.ist errors on Teletype console
if there is a listing file.

R The source contai ns ru les for the com­
piler {for building a new compiler}.

5 List only source and errors (no assem­
bly code).

T The source is in column-free punched
tape format.

W Rewind the device (magnetic tape
only) •

Z Clear the directory on the device be­
fore inserting the new file.

Any switches not recognized are ignored.

The switches M, N, R, 5, T may appear any­

where in the command string. K, Wand Z must

appear before the termination character of the

applicable file.

For example, the command string

(W)MTAO:, (Z)DTA2: LIST +- CDR: 1M

calls for binary output on magnetic tape 0 (re­

wind first), listing on DECtape 2 (clear direc­

tory) and source from the card reader. The

storage map is to be deleted from the listing.

Command String for the 9K Compiler: The com­

mand string for the 9K Compiler is similar to

that for the 22K Compiler except that there is

no binary file. However, two identical output

files are permitted (for example a listing of in­

put to the assembler F OLA). The genera I forms

of the command string are

FILE1, FILE2+-FILE3
FILE 1 +-FILE3

The fi Ie name extension for the output fi les are

assumed to be FOL unless otherwise specified.

A6-2

Switches for the 9K Compi ler: The swi tches K,

R, T I W, and Z (as described for the 22K com­

piler) are recognized by the 9K Compiler.

Example:

[DTA1:FOLAIN, LPT:...- PTR: IT

This command string calls for identical output

files (input to FOLA) to be written on DECtape 1

and the line printer. The input (punched in col­

umn-free format) is coming from the paper tape

reader.

Command String for FOLA: The form of the FOLA

command string is identical to that of the 22K

compiler with the exception that more than one

input file may be specified:

FILE 1, FILE2 +- FILE3, FILE4, •••

Switches for FOLA: The switches K, M, N, S,

and Ware recognized by FOLA. M, N, 5, and

T must appear before the termination character

for the applicable file and must appear for each

file for wh i ch they are intended.

Example:

I PTP:,(K)MTA1: +- CDR:, (M)TTY:

In this example, the binary is to be punched on

paper tape, the listing is to go on magnetic tape

1 (after skipping one file), and the input is to

come from the card reader and the teletype.

The storage map is not to appear on the listing

for the input file from the teletype.

APPENDIX 7

LIMITATIONS ON 9K FORTRAN II COMPILER

1. Boolean statements are not allowed.

2. Use of * in IF statements is not allowed.

A7-1

8101

~DmDDmD
EQUIPMENT
CORPORATION
MAYNARD,MASSACHUSETTS

Cambridge, Mass .• Washington, D. C .• Parsip­
pany, N.J .• Rochester, N.Y .• Los Angeles
Palo Alto • Chicago • Ann Arbor • Pittsburgh
Denver' Huntsville' Orlando • Carleton Place

• and Toronto, Ont. • Reading, England • Paris,
France • Munich, Germany • Sydney, Australia

PRINTED IN U.S.A. 20-9/65

