
XVM/RSX PART X
GRAPHICS

CHAPTER I

INTRODUCTION

XVM/RSX GRAPHICS is comprised of a set of FORTRAN callable routines, a
mUltiscope VT-15 handler (2 VT-15 processors, each with 2 scopes), and
a handler for as many as four VWOl writing tablets. The FORTRAN
routines provide both compatibility with the XVM/DOS graphics package
and significant additional capability. Therefore, a DOS FORTRAN
graphics program, with only a few minor modifications can be compiled,
task-built, and run under XVM/RSX.

It is assumed that the reader is thoroughly familiar with the XVM/RSX
system. While a familiarity with XVM/DOS graphics would be helpful
because the systems are similar, it is not essential. And, although
the RSX graphics package provides access to the graphics hardware, it
is not necessary to have a thorough knowledge of the hardware. For
instance, if the user is concerned about picture wraparound, he should
consult the hardware manual.

1.1 GENERAL DESCRIPTION

The user prepares a FORTRAN source program. This program includes
subroutine calls to the graphics system, as described in later
chapters of this manual. The user FORTRAN program is then task-built
(if this term is unfamiliar, see the On Line Task Development,
Section) with the binary of the FORTRAN-callable routines and
subsequently installed.

A MACRO user need merely simulate the FORTRAN subroutine calling
sequences to access the graphics routines. Chapter 7 describes MACRO
usage of the graphics system. If the MACRO user wishes to generate
his own graphics code, and access the handler, that too is possible.

There is a considerable difference in the emphasis in the design of
RSX graphics, as compared to DOS graphics. Basically, it is the
intent of RSX graphics to remove the distinction between main and
subpicture files, as much as possible, without destroying
compatibility with DOS. Thus, the calls described in Chapter 3 do not
have to be used at all in constructing new RSX graphics programs.

Although considerable effort has been made so that the conversion from
DOS to RSX shall be of minimum difficulty, significant differences
between the systems and the graphics packages remain. A knowledge of
these differences should help the user to stay out of trouble.

X-l-l

It is expected that the user will run under the protection/relocation
hardware in user mode rather than exec mode. This means that the user
program runs in a maximum relative address space of 128K, with the

I relative zero address at any 400-word (octal) boundary. The VT15

•

processor is not affected by the protection/relocation hardware. It
continues to run in an absolute address space.

There are two practical results of running under
protection/relocation. First, a user-mode program cannot destroy
other programs in the system: the protection hardware prevents this.
At the same time, the VT1S processor can destroy other programs in the
system, because it is not affected by the protection hardware. This
means that the programmer should be careful when debugging graphics
programs that are background to important tasks. It also means that
it is dangerous for the user to modify arrays containing display code.

Second, a display file may not span an absolute 8K boundary. This
creates a potential problem in laying out system partitions and
FORTRAN arrays. The user must be careful and plan ahead when doing
core layouts. The simplest method is to have the partition that
contains the program start on an 8K boundary. The graphics system
detects an error of this type before it occurs and stops the program
before the VT15 processor is lost. When this type of error occurs,
the user must rearrange his core layout, recompile and re-task build.

The RSX graphics system provides limited error detection for the user
(see Appendix A).

1.2 REFERENCE MANUALS

The following manuals contain information useful in understanding the
contents of this manual:

VTIS XVM Graphics Software Manual
GRAPHICS-IS Reference Manual
MACRO XVM Assembly Language Manual
FORTRAN IV XVM Language Manual
VWOl Writing Table Maintenance Manual

1.3 MINIMUM HARDWARE

Besides the minimum RSX hardware, RSX GRAPHICS requires a VT15
processor with arbitrary vector, and a VT04 scope.

In the maximum configuration, the system can handle two VT15
processors, four' VT04 scopes and four VWOI writing tablets. In this
maximum configuration, each of the four scopes can show completely
different pictures. Alternately, the pair of scopes on each VT15
processor can display pictures in which part or all of the image is
generated from one display file. LK35 keyboards are treated as
input-only terminals by the RSX Monitor •

XVM/RSX V1B X-1-2 September 1976

CHAPTER 2

SUBPICTURE ROUTINES

The FORTRAN user defines integer arrays into which are built his
display files (subpictures). The display files are merely subroutines
to be executed by the VT-15 display processor. A call to the
subpicture routines places graphics code at the end of the existing
graphics code in the specified display file. A brief description of
each of the subpicture routines follows:

LINE - generates the display code to draw a line (intensified) or to
reposition the beam (unintensified). The arbitrary vector hardware
option is required for RSX GRAPHICS.

TEXT - generates code to display strings of 5/7 ASCII previously
defined by the user in dimensioned arrays.

COpy - generates code to call another display file as a subroutine.
May optionally include the use of the hardware SAVE-RESTORE feature.

PRAMTR - the PRAMTR (parameter) routine generates the display code to
control such hardware options as scale, intensity, blink, light pen
sensitivity, etc., for this display file, or some portion thereof.

GRAPH - generates the code to display data arrays in graphical form.

BLANK - generates the code to 'blank out' all appearances of a given
display file.

UNBLNK - reverses the action of the BLANK subroutine.

POINT - generates code to absolutely position the beam. The point
corresponding to the final position may optionally be intensified.

ANY - places a user-provided array of display code into the display
file.

Example programs (Figures 2-1 through 2-8) using some of these
commands a~e found in paragraph 2.14 at the end of this chapter.

2.1 GENERAL RESTRICTIONS

The following general restrictions apply to the use of the GRAPHICS
system.

X-2-1

1.

2.

3.

5.

6.

7.

All arguments in the graphics system calls must be in integer
format unless specifically noted otherwise. This requirement
must be adhered to even if the argument name shown in
examples and prototype calls is not in the normal FORTRAN
integer variable character convention (I through N).

All display file storage must be declared by the FORTRAN user
in the form of dimensioned integer arrays (may optionally be
in COMMON).

The first location of each display file array is used by the
graphics system as an end-of-file pointer. This location
must be zeroed by the user prior to the first reference to
that display file.

All references to display files in argument lists to the
graphics routines must be of the form IF1LE(l) rather than
IFILE, unless otherwise specified.

Each provided array must be long enough to contain the
display code to be built into it. No error messages are
returned to the user upon array overflow. See paragraph 2.2
for further discussion.

No display file can span an absolute 8K core boundary. The
graphics system will return an error code (see Appendix A) if
this happens. The user can then either reposition his
storage, or re-task-build.

Note, as of RSX PLUS III, and continuing through XVM/RSX, the
FORTRAN subroutine calling conventions have been changed. A
reference to IFILE is now entirely equivalent to a reference
to IFILE(l). This change was implemented with FORTRAN
version 044, and graphics primitives version VPR.33.
Supercedes restriction 4.

A FORTRAN program being brought through this version change
must be recompiled with the new compiler, and re-task-built
with the new graphics primitives. A MACRO program calling
the primitives package with calls of the form IFILE must be
modified. One level of indirection must be removed from
these calls. Finally, reassemble and re-task-build.

8. Note, as of XVM/RSX, the format of the CNAME editing pointer
has been changed. Since 17 bit addressing is supported,
there is no longer room in CNAME for a 3-bit count field.
The external symptoms of this change are fairly minor.
Display files will occasionally become a few locations
longer. Finally, REPLOTs which place PRAMTR instructions
over other instructions may require an extra location. See
Chapters 2 and 3 for further discussion.

X-2-2

2.2 GENERAL FORMAT OF DISPLAY FILES

2.2.1 Storage Overhead

A display file containing four vector commands, for example, has the
following format:

LOCATION CONTENTS

PNAME 6
+1 return address from DJMS*
+2 vector command
+3 vector command
+4 vector command
+5 vector command
+6 DJMP* PNAME+l

Three words are used for storage overhead in each display file. The
first location (PNAME) contains the current length of the display
file. This value must be initially set to zero by the user. After
each reference to the display file by a subpicture routine, this value
is automatically updated to reflect the current length of the file.
The second location stores the return address and the last location
contains the exit instruction.

The corresponding sequence of FORTRAN calls to generate this display
file might typically be:

C

DIMENSION IFILE(IO)
IFILE(I)=O
SET INITIAL VALUE OF FILE LENGTH TO ZERO

CALL LINE (lOO,O,l,IFILE(l»
CALL LINE (0,100,1)
CALL LINE (-100,0)
CALL LINE (0,-100,1)

This display file would simply draw a square. Note that it is
possible to provide variable numbers of arguments to the same graphics
call. For example, with the LINE call, if only two arguments are
provided, an intensified line is generated in the same display file
that was last used. Subsequent paragraphs will provide a detailed
description of the argument. lists of the graphics calls.

2.2.2 Space Allocation

In the FORTRAN example above the dimension statement allocated ten
locations for the display file. In this particular case only seven of
the ten locations are used. Each of the four line commands requires a
single location, and there are three locations used for the display
file overhead. For a larger display file, the user does not wish to
carry out a detailed count. What is recommended °is to make a
debugging version of the program with a much-too-large display file.
When the program is done, the first location of the display file
contains one less than the number of locations actually used. It is

X-2-3

I

then possible to move to a final version of the program with precise
knowledge of your core requirements.

It has been stated that the subpicture routines add display commands
to the end of display files. This can be done while the particular
subpicture is displayed on the screen. There are two other methods of
removing or modifying previously created graphics code. Whole display
files can be reused by calling BLANK and then zeroing the first
location. The graphics system then starts refilling the display file
from the top. This can be done with the display processor running
through the display file.

An additional method of modifying graphics code is thoroughly
discribed in Chapter 4. This method writes a sinqle qroup of commands
(corresponding to a single call to the graphics system) o~er existing
graphics code. This over-write requires an editing pointer to the
beginning of the old group of commands. Under RSX GRAPHICS (not under
DOS), the pointer can be obtained from the subpicture routines.
Throughout this manual, the pointer is referred to as-CNAME.

A description of each of the subpicture routine calls follows. The
code-generating capability of a number of these calls can be accessed
by the routines PLOT and REPLOT. The LINE routine, for example, is
accessed by a call to PLOT or REPLOT with a selection argument of 1.
The description in this chapter is directed toward the subpicture
call, but applies equally to the corresponding PLOT and REPLOT calls.

2.3 LINE SUBROUTINE

The LINE subroutine adds to the specified display file the display
commands necessary to draw a line (beam intensified) or move the beam
(not intensified) through a specified displacement from the current
beam position. RSX GRAPHICS requires that the random-vector hardware
option be present.

The calling sequence is:

where:

CALL LINE (IDX,IDY[,INT[,PNAME(l)[,CNAMEJ]])

The enclosing brackets, " [" and "] " , indicate an optional
argument.

lDX is the integer X-axis displacement in raster units.

lOY is the integer Y-axis displacement is raster units.

INT indicates whether the line is to be intensified. (For
nonzero INT, the line is visible. For INT=O, the line is
not visible. If the INT argument is omitted, a nonzero INT
is assumed by default.)

PNAME(l) is the address of the display file. When the
PNAME(I) argument is not provided, the generated display
code is added to the display file to which code was last
added.

XVM/RSX VIB X-2-4 Septeinber 1976

CNAME, when present, is the output argument used for the
return of an edit address.

Note that foresight is required to edit over a group of commands.
CNAME is included in the argument list. The graphics system places
the address of the command group in CNAME. This CNAME is then used as
an argument in the call to REPLOT to write in the new command group.
See Chapter 4 for more detail.

The square brackets are used to indicate which arguments can be
omitted.. (The square brackets themselves do not appear in any of the
final calling sequences). Those arguments, (and commas) appearing
between any matched [and] can be omitted. Thus, for this call, the
user may provide from 2 to 5 arguments. The two arguments would be
IDX and lOY. Three arguments would be lOX, lOY, and INT. Four
arguments would be lOX, lOY, INT, and PNAME(l). Five arguments would
be lOX, lOY, INT, PNAME(l), and CNAME.

NOTE

The discussion of the use of square
brackets is applicable to the
description of all argument lists
contained in this manual.

The LINE call to the graphics system adds one or two loc~tions to the
display file. If either lOX or lOY is zero, or their absolute
magnitudes are equal, the basic vector hardware command (requiring one
location) is used. Note that lOX and lOY are truncated to ten bits
(with retention of sign) without any warning to the user. If both lOX
and lOY are zero, no code is generated. If lOX and lOY define any
other line, the random vector hardware command (requiring two
locations) will be used.

2.4 TEXT SUBROUTINE

The TEXT subroutine adds to the specified subpicture the VT-15
hardware commands necessary to display a string of 5/7 ASCII. Such a
string will usually be generated by Hollerith data statements. The
string is displayed starting at the current beam position. The
standard text font is displayed on a 10 by 14 raster unit matrix
(assuming hardware scale to be 0). With the exception of certain
control characters, each character causes the beam to move 14 raster
units to the right (positive X-axis). The calling sequence is:

where:

CALL TEXT (STR(l),N[,PNAME(l)[vCNAMEJJ)

STR(l) is the address of the text string and is normally a
real array.

N is the integer number of characters of the string to be
displayed. When N is nonzero, the graphics system inserts
an ALT MODE after the Nth character in the string as a
stop~code for the VT-15 hardware character generator. When
N is zero, no ALT MODE is placed. This last feature would
be used, for ,instance, when one wished the same text string
to appear in two different places on the screen, or the user
had placed the ALT MOOE himself in some way.

X-2-5

PNAME(I) is the display file address; when this argument is
omitted, the code is placed in the display file to which
code was last added.

CNAME is the output argument for the return of the edit
address.

Three locations are added to the display file:

CHARS* .+2
DSKP
address of string

where CHARS* is an indirect reference to a text string for the
hardware character generator, and DSKP is a display skip.

Three warnings are in order here. First, space must be provided at
the end of the text string to be displayed to contain the ALT MODE
placed by the graphics system. One technique is to place (but not
count for N) some extra character (e.g., g or z) at the end of the
string. Second, the placement of the ALT MODE will destroy from I to
5 characters following the string requested for display. Therefore,
if the first part of a longer string is displayed, that longer string
will no longer be intact. Third, if the ASCII data is from some
input/output device, it may contain non-printing characters such as
carriage return and line feed. These characters must be counted for
N.

The following FORTRAN statements show the use of the TEXT routine to
reference the text '153 ASSABET RD.' from display file IFILE.

DIMENSION ADDR(4)
DATA ADDR(I)/5HI53 A/,ADDR(2)/5HSSABE/
DATA ADDR(3)/5HT RD./,ADDR(4)/IHZ/
IFILE(I)=O
CALL TEXT (ADDR(I) ,15,IFILE(I»

2.5 COPY SUBROUTINE

The COpy subroutine generates graphics code so that one display file
can call another as a subroutine. This allows the construction of
complex display images from simple building blocks. The display files
may not be recursively linked. The calling sequence is:

where:

CALL COpy (RST,PNAME1(1)[,PNAME(1)[,CNAMEJ])

RST, when nonzero, requests that the hardware SAVE-RESTORE
instructions be used to save display parameters through the
subroutine call. When RST is zero, the SAVE-RESTORE option
is not used.

PNAMEI(I) is the address of the display file to be called.

PNAME(I) is the address of the calling tile; when PNAME(I)
is not provided by the user, the last display file to which
code has been added is used.

CNAME, when present, will be filled with an edit address.

X-2-6

When the SAVE-RESTORE option is not used, three locations are added to
the display file:

DJMS* .+2
DSKP
address of PNAME+l

When the SAVE-RESTORE option is used, six locations are added:

SAVE .+4
DJMS* .+2
DJMP .+3
address of PNAMEl+l
status word stored here
RSTR .-1

In the above code, DJMS* is the display subroutine jump indirect
instruction, DSKP is the display skip instruction, SAVE is the display
save status to memory instruction, DJMP is.the display jump, and RSTR
is the restore status from memory instruction.

The PRAMTR call is used to establish the settings of such hardware
features as SCALE, INTENSITY, BLINK, etc. If SAVE-RESTORE is
specified in, a COpy call, then the settings of the hardware features
are saved prior to the subroutine call and restored afterwards. This
allows the settings to be unaffected by any action of the called
subroutine. If SAVE-RESTORE is not specified, any settings changed by
the subroutine will remain changed.

At the time of the COpy call, PNAMEl(l) need not yet be a defined
subpicture. At the time that the display processor executes the code,
however, it must be. A typical call to the copy routine could be:

CALL COpy (O,IWNDDW(l),IHOUSE(l»

This call does not use the hardware SAVE-RESTORE option; the
subpicture IHOUSE calls the subpicture IWNDOW.

2.6 PRAMTR SUBROUTINE

The PRAMTR subroutine places code in a display file to control the
following hardware options: (see GRAPHIC-IS Reference Manual for a
more complete description) .

SCALE (0-15) - Controls the displayed size of a picture element. For
a line (characters are similar) of 10 raster units; a scale of 0 will
produce a ten unit line; a scale of 1, 20; a scale of 2, 30; etc.
For the GRAPH routine, a scale of 0 will produce a zero distance
between data points; a scale of 1 will produce a 1 raster separation;
a scale of 2 will produce a 2 raster separation; etc.

INTENSITY (0-7) - Controls the intensity of the picture at eight
different levels. The user may wish to accentuate certain portions of
the picture; points require a somewhat higher intensity than lines;
a picture executing at 30 times per second (see SYNC) takes a higher
intensity than one executing at 60 times per second. The display of
many items at high intensity at the same point on the screen may
damage the phosphor.

X-2-7

LIGHT PEN ENABLE (0-1) - Controls the light pen enable (on or off) of
those portions of the picture until the next such instruction is
executed. A user may wish to obtain light pen hits only on certain
portions of his displayed picture.

WARNING

The internal structure of this feature
is far different than under DOS,
requiring one or two more locations in
the display file (see Chapter 7 for
details) when the light pen is turned
on. Those who have adjusted their
display file arrays under DOS to exactly
the right size must readjust the display
file size for use in RSX Graphics.

BLINK (0-1) - Controls whether that portion of the displayed image up
to the next BLINK command will blink at 4 times per second.

DASH (0-3) - Controls whether lines (and the lines in characters) are
dashed or solid.

SETTING

o
1
2
3

RASTERS

ALL ON
3 ON 1 OFF
4 ON 2 OFF
4 ON 4 OFF

OFFSET (0-1) - The offset area is a thin vertical rectangle of screen
to the right of the normal 1024xl024 working area. When OFFSET is set
to one, all coordinates are based from the lower left of the thin
vertical rectangle rather than the lower left corner of the 1024
square. The offset area is normally used for control information such
as light pen buttons. A light pen button is some graphic element
(text string, square, etc.) that is used to notify the program that
the scope user desires some particular action when a light pen hit
occurs on that particular element.

ROTATE (0-1) - When on, causes the X and Y axes to be swapped, causing
a rotation of 90 degrees counter-clockwise. This is mostly used for
rotating text strings for labeling graphs, etc. Note, do not rotate
arbitrary vectors.

NAME REGISTER (0-127) - This feature is used to identify portions of
the picture upon detection of a light pen hit. The NAME REGISTER is
set to different values for different portions of the picture by the
user. When a light pen hit occurs, the NAME REGISTER setting is
returned, allowing easy identification of the element receiving the
light pen hit.

X-2-8

WARNING

The NAME REGISTER settings 120-127 are
used by the TRACKING routine; it is
recommended that the user not use these
values.

SYNC (0-1) - This feature is no longer under user control under the
RSX system; SYNC is always on. The SYNC parameter code (see Table
2-1) and its corresponding argument are accepted by PRAMTR and ignored
so that existing DOS programs using SYNC can be run without causing
argument errors. SYNC locks the execution of the display processor to
power line frequency.

NOTE

The following discussion assumes 60
cycle power. For those users with 50
cycle power, the numbers should be
changed accordingly.

This means that the user's display is executed 60 or 30 times per
second. This synchronization prevents a continuous change of picture
intensity with picture size, prevents phosphor damage from very small
display files, and prevents noise in the power lines from making the
picture 'swim'. A disadvantage is that 30 times-per-second execution
causes the picture to 'flicker' because the phosphor of the tube
becomes appreciably dimmer in the 1/30 of a second as it waits to be
illuminated again. Another interesting problem occurs if the picture
is right on the border between execution at 60 times and 30 times.
Here the execution rate may well depend on the loading of the RSX
system. This type of picture instability is very uncomfortable for
the viewer. It is recommended that if this condition should arise,
the user put some sort of non-visible display code in his picture to
force execution entirely into the 30 times per second domain. The
calling sequences for one hardware feature, or for some number of
hardware features is shown in the calls below.

where:

CALL PRAMTR (SELECT,VALUE[,PNAMF(l)[,CNAMEJJ)

SELECT argument, described below, tells the graphics system
which of the hardware features are desired.

VALUE is the value for each hardware feature selected.

PNAME(l) is the address of the display file into which the
display code is placed. If PNAME(l) is not provided, the
code is placed in the display file into which code was last
placed.

In Table 2-1 each hardware feature is given a code. The SELECT
argument is the sum of the codes of the features desired. Allowable
ranges for the values for each feature are discussed earlier in this
paragraph and are summarized in Table 2-1. There must be one and

X-2-9

exactly one VALUE argument for each feature requested in the SELECT
argument. The values must furthermore be in the order given in Table
2-1.

Parameter

/SCALE
'\INTENSITY

LIGHT PEN
LINK

DASH
OFFSET
ROTATE

! <NAME REG.
<SYNC

Code
\

1
2
4
8

1,6
32
64

128
256

Table 2-1

Display Parameter Settings

Settings

o (SMALL) TO 15 (LARGE)
o (LOW) TO 7(HIGH)
O(OFF) AND l(ON)
O(OFF) AND l(ON)
o (SOLID) TO 3(FINEST DASH)
O(OFF) AND l(ON)
o (NORMAL) AND l(X AND Y AXES SWAPPED)
o (LOW) TO l27(HIGH)
o (OFF) AND l(ON)

The PRAMTR subroutine adds one to six commands to the display file,
depending on the features requested. Only one to four locations were
required under DOS. Differences in the length of the generated code
may occur with the SYNC feature, which will generate no code under
RSX. Differences will definitely occur (more code under RSX) when a
request is made to enable the light pen. Rather than simply enabling
the light pen, it is necessary under RSX to make a subroutine call to
the VT-15 handler. This subroutine call requires more code in the
display file. Therefore, it may be necessary to increase array
lengths in moving programs from DOS to RSX.

Each of the features requested from PRAMTR remains in effect until
specifically changed, even if the display processor moves into other
display files. Note that PLOT and REPLOT with a select argument of 2
are entirely equivalent to PRAMTR. Under DOS the feature requested
would remain in effect even when the display processor started in
executing the beginning of the 'main' file again. Under RSX the
display processor always enters the 'main' file with the features set
to specific default values. The default values are 4 for intensity,
and zero for all other features (except for SYNC which is always on).

The user should be very careful in the use of the PRAMTR subroutine.
A miscount of the number of VALUE arguments can have disastrous
effects.

The following sample code shows the use of the PRAMTR subroutine for
the specification of a single feature:

CALL PRAMTR (2,7,IHDUSE(1),IEDIT)

This call sets the intensity of the display to its highest value, 7,
at the current end of the code in the display file IHOUSE. An edit
address is returned into the variable IEDIT. The following is a
multiple-feature statement:

C CODE SETTINGS FOR ASSIGNMENT BITS
ISCALB=l
INTB=2
LPENB=4

X-2-10

CALL PRAMTR (ISCALB+INTB+LPENB,0,4,1)
C OR, THE SAME THING WITH A NUMBER INSTEAD

CALL PRAMTR (7,0,4,1)

In this case the scale is set to 0, the intensity is set
light pen is enabled. The code is placed in the display
code was last added. In general, code will be placed
display file rather than a piece here and a piece there,
will often be defaulted, i.e., not provided.

to 4, and the
file to which
in a single
so that PNAME

In XVM systems, a special marker no-op will be placed in the display
file if CNAME was specified to the PRAMTR CALL. At this point the
display file is one location longer than in previous systems. If a
display element other than a PRAMTR or a PLOT (2",[CNAME]) is added
to the display file, this special marker is written over, reclaiming
the space. (This other group will serve. to terminate the PRAMTR group
for purposes of REPLOT'ing and DELETE'ing).

2.7 GRAPH SUBROUTINE

The GRAPH subroutine adds to the specified display file the code
necessary to display an array of positive integer data in graphical
form. One coordinate of the display (usually Y) is set equal to each
data point in turn. The other coordinate is automatically incremented
by the hardware after each data point. From the discussion of the
SCALE feature, this increment is equal to the SCALE setting, so that
for a scale of 0 the whole graph is collapsed onto a single X value.
For a scale of 1 the increment is one raster unit; for a scale of 2
the increment is two raster units, etc. The beam is left positioned
one increment past the last data point. Note that the axes and
labeling for the graph must be provided separately; this routine
deals only with data. The calling sequence is:

where:

CALL GRAPH (DATA(l),N[,A[,PNAME(l)[,(:NAMEJJ])

DATA(l) is the address of the positive integer data to be
plotted. This data will be truncated to ten bits without
any warning to the user.

N is the number of data points to be plotted.

A is the axis. For a normal Y vs. X plot, A is zero; for
an X vs. Y plot, A is nonzero. When A is not provided as
an argument, the plot is the normal Y vs. X.

PNAME(l) is the display file into which the graphical data
is to be placed. If a PNAME(l) argument is not provided,
the data is placed into the display file into which code was
last written.

CNAME is the output argument for the return of an edit
address.

The code generation is handled differently than under DOS to allow
editing (REPLOT). Under RSX a two location bookkeeping header is
placed prior to the graphical code. Under both DOS and RSX, each data
point requires one core location to display it, using the hardware
graph-point instruction. The bookkeeping header under RSX is a
display skip followed by a count of the total number of locations

X-2-ll

placed into the display file. Note, prior to XVM systems, the
bookkeeping header was placed only if there were 7 or more data
points. This means that XVM/RSX display files will grow by two
locations, compared to previously, if GRAPH calls with less than 7
points are used. The following sample code plots 20 points from array
IX into the present display file. The points are spaced along the X
axis in increments of 2 raster units.

CALL PRAMTR (1~2)

CALL GRAPH (IX(1),20)

X-2-12

2.8 BLANK SUBROUTINE

The BLANK subroutine changes code in a display file to
displaying of any copy of the specified display file.
the display file is not changed by this operation.
sequence is:

where:

CALL BLANK (PNAME(l»

PNAME{l) is the display file to be BLANK'ed.

NOTE

The PNAME{I) argument must be provided
for this call, and cannot be defaulted.
The PNAME{l) provided here does not
count as 'subpicture into which code was
last placed'. That remains what it was
prior to this call.

prevent the
The length of

The calling

The operation of the BLANK subroutine is to swap the contents of the
first location (after the DJMS entry point) and last location of the
referenced display file. Thus, the first instruction executed by the
VT-15 processor upon entering the display file is the DJMP* to exit
from the display file.

Some restrictions should be noted. As under DOS, PNAME should be a
defined display file at the time that BLANK is called. As under DOS,
the DYSET-DYLINK routines described in Chapter 6 should not operate on
BLANK'ed files. As under DOS, BLANK'ing a file that has already been
BLANK'ed is a no-oPe In contrast to DOS, code can be added to a
BLANK'ed subpicture. REPLOT'ing on the BLANK'ed subpicture, not
possible under DOS, should be done with care. Clearly, the first
group of commands in the display file, which now is holding the return
jump, cannot be changed.

WARNING

BLANK requires an I/O operation to the
handler to prevent the VT-15 from
executing beyond the end of the BLANK'ed
file. This I/O operation cannot be
immediately honored if there is an
outstanding LTORPB (see Chapter 5).
Upon the completion of the LTORPB, the
BLANK subroutine will be completed.

The use of the BLANK routine:

CALL BLANK CIPIC(l»

X-2-13

2.9 UNBLNK SUBROUTINE

The UNBLNK subroutine reverses the action of the BLANK subroutine,
allowing the subpicture to again be displayed. The calling sequence
is:

CALL UNBLNK (PNAME(l»

PNAME(l), as in the BLANK subroutine, must be provided as an argument,
and is not remembered as the default subpicture. The effect of this
call is to swap back the locations swapped by BLANK, restoring the
display file to its original configuration. If the file has not been
BLANK'ed the call to UNBLNK is a no-oPe Unlike the BLANK subroutine,
UNBLNK is not affected by outstanding calls to LTORPB.

The following sample code will reverse the action of the example given
for BLANK:

CALL UNBLNK (IPIC(l»

2.10 POINT SUBROUTINE

The POINT routine places in the specified display file the necessary
code to absolutely position the beam. The final point may optionally
be intensified. The calling sequence is:

where:

CALL POINT (IX,IY[,INT[,PNAME~l)[,CNAMEJ]J)

IX is the positive integer absolute X-pqsition to which the
beam is to be moved.

IY is the positive integer absolute Y-position to which the
beam is to be moved. IX and IY are truncated to ten bits
without any warning to the user.

INT=nonzero, point is
intensified. If INT
intensified.

intensified; INT=O, point is not
is not provided the point is not

PNAME(l) is the display file address for that display file
to contain the code. When PNAME(l) is not provided, the
code is placed in that subpicture into which code was last
placed.

CNAME, if presen t, is used for the re turn of an ed i t
address.

The code generated by a call to this routine requires two display file
locations. The first is the hardware command to position the beam
aiong the Y-axis, and the second to position the beam along the
X-axis. Intensification is controlled by a bit in the second
instruction. The following sample code:

positions the beam to the center of the screen (512,512). The point
is not intensified. The code is added to the display file beginning
at IFILE. An edit address is returned into IEDIT.

X-2-14

2.11 ANY SUBROUTINE

The ANY subroutine places a user-provided array of display code into
the specified subpicture file. The callinq sequence is:

where:

CALL ANY (ARRAY(l),N[,PNAME(l)[,CNAMEJJ)

ARRAY (1) is the starting address of an integer array of VT15
display command code provided by the user and is represented
as a subscripted variable.

N is the number of elements of that array that are to be
moved into the display file.

PNAME(l) is the starting address of the display file into
which the display commands are to be placed. PNAME(l) and
ARRAY (1) may not refer to the same array. When PNAME(l) is
not provided by the user, the display code is placed into
the display file into which code was last placed.

eNAME, when present, is the output argument used for the
return of an edit address.

The user code is placed unchanged into the display file. The user
code is preceded by a two-word bookkeeping header identical to that
described in section 2.7 for the GRAPH subroutine.

The graphics system does not allow the user to access all of the
hardware features of the VTlS. The intent of the ANY subroutine is to
allow users to write specialized code using "unused" features, while
still providing the overall convenience of the FORTRAN environment.
(The user should be careful when using ANY, as the possibility of the
VTlS processor "escaping" because of undebugged code is increased
considerably.) Examples of ANY subroutines are single-character
handling programs, such as editors, that can have one character right
justified per word. This word, when executed by the VTlS processor,
displays the single character. Applications of this type can include
display of user terminal input, where the characters are relatively
few in number and can easily be changed.

XVM/RSX V1B X-2-1S September 1976

I

I
•

•

2.12 CIRCLE SUBROUTINE

The CIRCLE subroutine is used by Graphics programs to generate code to
appr?ximate arcs and, circles. In RSX PLUS III, and XVM/RSX the
call1ng arguments remaln the same. However, at the conclusion of the
arc or circle, the beam is returned to the center of the circle not
left at the edge as in RSX PLUS. The calling sequence is: '

Form: CALL CIRCLE (R,THETA,GAMME,ANG,ISUB)

Where: r is the radius of the circle in floating-point
raster units

theta is the starting angle in floating-point
degrees

gamma is the ending angle in floating-point
degrees

ang is the angle subtended by each side of the
polygon in floating-point degrees

isub is the name of the integer subpicture in
which the circle or arc is placed

See example in Figure 2-2.

The call to the CIRCLE subroutine has no effect if ANG is less than
0.001 degrees (absolute) or if R is less than one raster unit. The
difference between GAMMA and THETA is reduced modulo 360, and both are
measured counter-clockwise from the positive X axis. If ANG is
positive, circles are drawn counter-clockwise from THETA to GAMMA. A
full circle is drawn if THETA and GAMMA are within 0.001 degrees
(modulo 360 degrees). The maximum number of polygon sides allowed is
360, even at the expense of not completing the requested circle or
arc. It is possible for GAMMA to be less than THETA. If the user
wishes, for example, he can draw an arc counter-clockwise from 20
degrees around to 10 degrees. Note that the previous contents of the
display file ISUB are destroyed by this call.

2.13 ROTATE SUBROUTINE

The ROTATE subroutine is a FORTRAN subroutine which performs rotations
of arrays of X-Y-Z data about the X,Y, or Z axes, or combinations of
these axes. The user can control the angle of rotation. The user's
array is modified by the ROTATE subroutine which uses the same
left-handed system that is used throughout the graphic software:

X, horizontal movement, positive to the right

Y, vertical movement, positive is up

Z, perpendicular to the screen, positive into screen

The calling sequence is:

where: N is the number of data points to be rotated.

IA nonzero, rotate about Z axis.

IB nonzero, rotate about Y-axis.

X-2-16

IC nonzero, rotate about X-axis.

X is the address of the array of X-positions.

Y is the address of the Y-position array.

Z is the address of the Z-position array.

SINA is the sine of the angle through which the arrays are
to be rotated, in single precision real format.

COSA is the cosine of the same angle.

When two axes of rotation are specified, the rotation occurs about the
45 degree line of the plane defined by those two axes. When all three
axes are specified, the rotation occurs about a line 45 degrees to all
axes.

WARNING

The values in the X, Y, Z arrays must be
in floating-point format. The
specification of these three arrays in
the argument string must be in the form
XARRAY rather than XARRAY(l}. In a
multi-axis rotation, this routine
rotates about one axis by the angle
specified, and then by the same angle
about the other axis. The resulting
overall angle of rotation is not that
angle originally specified.

The operation of the ROTATE routine replaces the X, Y, and Z values in
the arrays, which are taken to be the values before rotation, with the
values corresponding to the positions after rotation. (Since the
initial values are replaced, beware of accumulated rounding errors.)
The user has the responsibility of converting this data back to
integer format and making those calls to the graphics system which are
necessary to display this data. The coordinate point 0,0,0 is taken
to be the center of the rotation. The user can control the displayed
center point by making an initial set point, and then displaying the
figure in relative form. Care should be taken in rotating large, or
off-center figures. It is a hardware feature of the VT-15 that
displayed items that are in part off-screen are not intensified.
Thus, the edge of the screen will not serve to 'clip' figures that
rotate partially off-screen.

2.14 EXAMPLES

The first example (Figure 2-1) is a simple program utilizing some of
the calls described in this chapter to display four squares and a text
string. The DINIT and LTORPB calls used in the examples are described
in Chapter 5. Figure 2-2 is an example that highlights the CIRCLE
subroutine.

X-2-l7

r SIMPLE DEMO TO DISPLAY FOUR SQUARES
C

r
c

LOGICAL IB(6)
DIMENSION MAIN(40)
DIMENSION ISQ(10)
DIMENSION TXT(5)
DATA TXT(1)~TXT(2)vTXT(3)~TXT(4)/5HHERE
15HARE 4,5H SQUA,5HRES /

MAIN(l)=O
C SQUARE SUBROUTINE

CALL LINE (100,0,1,ISQ(1»
CALL LINE (0,100)
CALL LINE (-lOOvO)
CALL LINE (0,-100)

C THE MAIN CALLING ROUTINE
C FIRST THE TEXTv POSITION BEAM

CALL POINT (100,100,0,MAIN(1»
r
r AND TURN ON THE PROCESSOR

CALL DINIT(MAIN(l»
C
C MAKE SCALE EQUAL TO 1 FOR TEXT

CALL PRAMTR (1,1)
C
C THE TEXT

CALL TEXT(TXT(1),18)
C
C SCALE BACK TO ZERO FOR SQUARES

CALL PRAMTR (1,0)
c
C NOW FOUR TIMES, A SET BEAM, AND CALL SQUARE

CALL POINT (200~500)
CALL COPY (O,ISQ(l»
CALL POINT (200,800)
CALL COpy (O,ISQ(l»
CALL POINT (700,500)
CALL COPY (0,ISQ(1»
CALL POINT (700,800)
CALL COPY (0,ISQ(1»

C NOW WAIT FOR AN INTERRUPT TO LEAVE PICTURE
CALL LTORPBCLPX,LPY,NAME,IB,IW,l)
STOP
END

Figure 2-1
Four Square Display Example

X-2-1B

DIMENSION IM(20),IC(1000)
t.-

T r-"l (1) :::: ()

P~.AC(GFAM IN SCREEN CENTER
{:::

I
I

~ARGE ARRAY F0R CIRCLE CALLED FROM 1M

'::;:; ;

Ti :::! I :U

Figure 2-2
CIRCLE Subroutine Example

X-2-l9

The next four examples deal with the technical and conceptual
differences between the DOS and RSX graphics packages. The example in
Figure 2-3 is copied from the DOS graphics manual and will not present
a picture under RSX. The example in Figure 2-4 shows the minimum
modification that has to be made to the example in Figure 2-3 to run
under RSX. The example in Figure 2-5 shows how an RSX graphics
programmer might generate the same picture without the calls of
Chapter 3. The example in Figure 2-6 shows how the program might be
coded so that all the graphics code is in one display file. The
example in Figure 2-7 demonstrates the manipulation of PRAMTR
settings. The example in Figure 2-8 illustrates the use of the ROTATE
subroutine. Figure 2-8A is the FORTRAN listing of the example.
Figure 2-8B is the MACRO listing of the random number generator
designed for the example.

c
C ARRAY INITIALIZATION

c

INTEGER SINWV(300),Y(200)
DIMENSION TITL(10),MAINFL(20)
DATA TITL(1),TITL(2),TITL(3),TITL(4)/5HTHIS ,
l ~5HIS. (:} !J ~.:.:jHSINE !J 4HI;,I,!:lVEI

C SET UP INTEGER ARRAY OF VALUES TO BE PLOTTED
("

to }(::::O

DO 20 1:::::1. I' 200
YCI)=IFIX(SIN(X)*256.)+5:1.2
X::::X +. 062B

2() CONTINUE
c
C SET UP SUBPICTURE TO PLOT THOSE VALUES
c

S I r--.!I.,JV (:I.) :::;0
CALL PRAMTR(3,O,7,SINWV(1»
CALL LINE(1000,0,l)
CALL LINE(-1000,0,O)
CALL LINE(0,250,O)
CALL LINE(0,-500,1)
CALL LINECO,250,O)
CALL PRAMTR (1,4)
CALL GRAPH (Y(1),100,0)
CALL GRAPH (Y(101),100,0,SINWV(1»

C
C SET UP MAIN FILE TO DISPLAY THE GRAPH
(" (MAIN FILE CALLS BELOW, DESCRIBED IN CHPT. 3)
c

(Viti I NFL (:I.) ::::0
CALL DINIT (MAINFL(l»
CALL SETPT (10,512)
CALL PLOT (O,0,SINWV(1»
CALL SETPT (100,100)
CALL PLOT (2,1,1)
CALL PLOT (3,TITL(l),19)
C(:ll...l... DeLOSE
STOP
END

Figure 2-3
DOS Sine Wave Program Example

X-2-20

C
C ARRAY INITIALIZATION

LOGICAL IB(6)
INTEGER SINWV(300),Y(200)
DIMENSION TITL(10),MAINFL(20)
DATA TITL(1),TITL(2),TITL(3),TITLC4)/5HTHIS ,
1 SHIS A ,SHSINE ,4HWAVE/

C
C SET UP INTEGER ARRAY OF VALUES TO BE PLOTTED
C
10 X=O

DO 20 1=1,200
Y(I)=IFIX(SIN(X)*256.)+S12
X=X+.0628

20 CONTINUE
C
C SET UP SUBPICTURE TO PLOT THOSE VALUES
C

C

SINWV(l)=O
CALL PRAMTR(3,O,7,SINWV(1»
CALL LINE(1000,O,1)
CALL LINE(-1000,0,0)
CALL LINE(O,250,O)
CALL LINE(0,-500,1)
CALL LINE(0,250,O)
CALL PRAMTR (1,4)
CALL GRAPH (Y(1),100,O)
CALL GRAPH (Y(101),100,0,SINWV(1»

C SET UP MAIN FILE TO DISPLAY THE GRAPH
C (MAIN FILE CALLS BELOW, DESCRIBED IN CHPT. 3)
C

C

MAINFL(1)=0
CALL DINIT (MAINFL(1»
CALL SETPT (10,512)
CALL PLOT (0,0,SINWV(1»
CALL SETPT (100,100)
CALL PLOT (2,1,1)
CALL PLOT (3,TITL(1),19)

C THE ONLY CHANGE NECESSARY IS A WAIT
C OF SOME SORT TO RETAIN THE PICTURE
C THE -END- KILLS THE PICTURE UNDER RSX
C USE LTORPB FOR THE WAIT
C

C
C ANY PUSH BUTTON OR LIGHT PEN HIT WILL
C CAUSE THE PROGRAM TO EXIT
C
C IF YOU FORGET DCLOSE, THE HANDLER WILL TURN OFF TUBE

CALL DC LOSE
STOP
END

Figure 2-4
DOS Sine Wave Program Converted To RSX

XVM/RSX V1B X-2-21 September 1976

I

I

c
r ARRAY INITIALIZATION

lOGICAL IB(6)
INTEGER SINWV(300 yY(200)
DIMENSION TITle10 ,MAINFl(20)
DATA TITlCl),TITl 2),TITl(3),TITL(4)/5HTHIS ,
1 5HIS A ,5HSINE ,4HWAVE/

C
C SET UP INTEGER ARRAY OF VALUES TO BE PLOTTED
C
10 X=O

DO 20 1=1,200
YCI)=IFIXCSIN(X)*256.)t512
X=Xt.0628

20 CONTINUE
C
C SET UP SUBPICTURE TO PLOT THOSE VALUES
C

SINWV(1)=O
C
C PLACE ABSOLUTE BEAM POSITION WITH REST OF GRAPH
C

C

CALL POINT CI0,512,O,SINWV(1»
CALL PRAMTR (3,0,7)
CALL LINEC1000,0)
CALL LINE(-1000,O,O)
CALL LINECO,250,O)
CALL LINECO,-500)
CALL LINE(0,250,O)
CALL PRAMTR (1,4)
CALL GRAPH (Y(1),100)
CALL GRAPH (Y(101),100)

C SET UP 'MAIN' FILE TO CALL THE GRAPH
C

MAINFL(l)=O
CALL DINIT (MAINFL(l»
CALL COPY (O,SINWV(l),MAINFL(l»
CALL POINT(100,100)
CALL PRAMTR (1,1)
CALL TEXT (TITL(1),19)

C THE ONLY CHANGE NECESSARY IS A WAIT
C OF SOME SORT TO RETAIN THE PICTURE
C THE BENDB KILLS THE PICTURE UNDER RSX
C USE LTORPB FOR THE WAIT
C

ANY PUSH BUTTON OR LIGHT PEN HIT WILL
CAUSE THE PROGRAM TO EXIT

c
C
C
C
C IF YOU FORGET DeLOSE, THE HANDLER WILL TURN OFF TUBE

CALL DCLOSE
STOP
END

Figure 2-5
RSX Sine Wave Program Eliminating Chapter 3 Calls

XVM/RSX V1B X-2-22 September 1976

c
C (.:\PFi:t·i·Y I r·) I'r]: f:~l ... I :2(1 T I CJi\!

INTEGER SINWV(300 ,Y(200)
DIMENSION TITL(10

1 5HIS A ,5HSINE ,4HWAVE/
c
C SET UP IN1EGER ARRAY OF VALUES TO BE PLOTTED
{"'

:I. () ;(::::0

DO 20 1::::1, :~.lOO
Y(I)=IFIX(SIN(X)*256.)tS12

20 COI···~TI(~I...iE

c
C ONE FILE FOR EVERYTHING
c
I .. , ::·:'EPO TOp·_·UF····FIL.E rOINTEE

c;
ESTABLISH ABSOLUTE BEAM POSITION

CALL POINT (iO,512,O,SINWV(1»
('

L SCALE 0, INTENSITY 7
CALL PRAMTR (3,0,7)

c
C HORIZONTAL AXIS

Ctil. .. L LINE (:l.OOO!' 0)
c
i.; i'vIOI·')F BEI~H B{)CI<

CALL LINE(-iOOO,O,O)
c

CALL LINE(O,250.0)
c
C TURN ON VT-iS ANY OLD TIME

CALL DINIT (SINWV(l»
c
C: !')EFt:TTC()L I:~XIS

CALL lINECO,-500)
r
C MOVE BEAM BACK

CALL LTNECO,250,O)
c
C SET SCALE TO FOUR FOR GRAPH POINTS

Cf~LI... PI:~{)t'iTF;~ (:I.~' -4)

Figure 2-6
Sine Wave Program Written For Single Display File
(Sheet 1 of 2)

X-2-23

C
L NOW TWO GROUPS OF 100 POINTS EACH

CALL GRAPH (Y(1),100)
CALL GRAPH (Y(101),100)

C
C ABSOLUTE BEAM POSITION FOR TITLE

CALL POINT(100,100)
C
C SCALE BACK TO 1 FOR TITLE TEXT

CALL PRAMTR (1,1)
C
r AND PLACE TEXT

CALL TEXT (TITL(1),19)
C
C WAIT FOR ANY INTERRUPT BEFORE EXITTING,
C A PUSH BUTTON WILL DO

CALL LTORPB (LPX,LPY,NAME,IBvIW,l)
c
C IF YOU FORGET DClOSE, HANDl~R WIll TURN OFF TUBE

CALL DClOSE
STOP
END

Figure 2-6 (Cont.)
Sine Wave Program Written For Single Display File (Sheet 2 of 2)

X-2-24

c
C TO SHOW SOME OF PRAMTR SETTINGS
c

c.
("

I...OGIC(:~I... IB(6)
DIMENSION IFILE(100)

I F I L. E (1) :::: ()

C PCl~:~ I T I ON BEr::II"1
CALL. POINT (300,300,O,IFIL.E(1»

'_. NOI.JJ (1 LINE, PF:r:)I'iTR E;ETTINGB OFF
C ON ENTERING MAIN FILE, BO LINE NORMAL

C(~LL l.. I NE (::.~OO}' 0)
c
C TURN ON DASH AND BLINK

C(~ILL. PI:;.:i~tt"iTF;.: (24!~:I.,:i.)

c
C AND A LINE TO DEMONSTRATE IT

CALL LINE (0,200)

1.... NOI; .. I Tl.Jr;~I·'·l OFF Dr-,EI--! (:'1 I"'! [I BI...INI<~' (.)ND
C TURN ON OFFSET AND ROTATE

CALL PRAMTR (120,0,0,1,:1.)
c
C BEAM POSITION. NOTE THAT ROTATE
C AFFECTS ONLY RELATIVE POSITIONING

CALL POINT (10,300)
c
C r::)j\JD 1:;~OT(:I"rED LINE IN OFF~:)ET ('~F;~E()

CALL LINE (200,0)
c
C REMEMBER TO TURN ON SCOPE

C(')I...L. DINIT (IFILE(l);'

c
C WAIT BEFORE EXITTING TO LEAVE PICTURE

CALL LTORPB (LPX,LPY,NAME,IB,IW,l)
c
C ~\IHEN I.JJE GET IT !.' EXIT

END

Figure 2-7
Demonstration of PRAMTR Settings

X-2-2S

c
C ROTATING LINE EXAMPLE
c

LOGICAL ID,LTORPB,IPB(6)
DIMENSION X(10)~Y(10),Z(10),MAIN(1000)
DIMENSION IT(2),IT2(2)
DIMENSION IQ(7),~X(10),JY(10)

C
i" EGUi~',TES FOh TIl'll::: DEl...tIY~:;

IT (:I. ;. ::::2
1"r.;:::? ;. :::: :i.
JT::~::(:I.):::::1.

J T::.:: (~!. ;. ::::2

c
C SIN AND COS OF 4.5 DEGREES

~:)ING::::. 07046
CD E) 0 :::: 0 9 9 {~, (,7' :~.~

c
C ADDITIONAL CORRECTION FOR 3 AXIS

CCiF~H::::~. OOO:3:'.:~

c
C AXIS SELECTION ARRAY

I G! 0:: :I.) :::::1.

c

I n (:'.:.~ ;. :::: ~5
:I: Cl (:-5) ::::·4
In (-4) :::::.':)
I Cl .:: ~:i) :::: .. :.:.,
I (] (b) :::::?
I C~ (?) :::: l)

c 1"i'.J~:;T GT,~I:;:T TUBE NOt',ll' BIi\!CE kiE Ctli"".!·' T ~:)TtlF;~T

C WHILE A LTORPB IS OUTGTANDING
CAL.L DINIT (MAINel»

r GET INITI(:·,I... BI..JTTI] i\! ~:;ET"j'TIi\!GS

CALL GETPSH (IPB)
c
f" SEL.ECT 6 F'C)INT~:) FDF;.: F;~ClT(ITION

:!. SH::::O.,

C HOLD POINT FURTHEGT FROM ORIGIN

c

I: (] :I. () () I :::: :r. ~. <:)

X(I)=400.*IZ-130.
IF(X(I;I.LT,.·;':-'O,.) X(I)::::X(I)· .. ·:/.·40,·

I F (\' (I) • I... T .:. '7 () .:.) Y (I) :::: Y (I) 1 4 0 •
Ctll...!... r;.:(,NDii .: ZZ ;.

IF(Z(I).LT.70.) Z(1)=Z(1)-140.

l SUM OF SQUAREG

c

IFCS.GT.SH) GH=G

Figure 2-8A
ROTATE Subroutine Example (FORTRAN Listing) (Sheet 1 of 3)

X-2-26

100 CONTINUE
C
C EACH AXIS IS +-(70~ TO 270.)
C NOW RATIO UP IF GOT SMALL PATTERN
C HAVE TO KEEP ALL LINES ON SCREEN.

R=SQRT(250000./SH)
C
C NOW RATIO UP EVERYONE

DO 101 1=1,6
X(I)=X(I)*R
YCI)=YCI)*R
Z(I)=Z{I)*R

101 CONTINUE
C
C ROTATE ABOUT EACH A 7 AXIS COMBINATIONS

DO 20 11=1,7
C
C
~ ROTATE ABOUT Z1

IA=IQ(II).AND.4
c
C ROTATE ABOUT Y?

IB=IQ(II).AND.2
r
r ROTATE ABOUT X?

C
C CORRECT ROTATE ROUTINE FOR MULTI-AXIS

ZZ=3.
IFCIA.EQ.O) ZZ=ZZ-l.
IF(IB.EQ.O) ZZ=ZZ~l.
IFCIC.EQ.O) 2Z=ZZ-1.
ZZQ=SQRT(ZZ)
SINCL=SINQ/ZZQ
IF(ZZ.GT.2.5) SINCL=SINCLtCORR
COSCL=1.-(1.-COSQ)/ZZ

C
C REINIT MAIN FILE

MAIN(1)=0
C
C
C SET UP INTENSITY AND SCALE

CALL PLOT C2~3vO,6)

C
C NOW ROTATE 80 TIMES FOR IMAGE

DO 10 IL=1v80
CALL ROTATE (6vIAvIB,IC,X,Y,ZvSINCLvCOSCL)

C
C

C

MAKE ALL INTEGER AT ONCE TO HELP ROUNDOFF
DO 121 10=1,6
JX(IO)=XCIO)
JY(IO)=Y(IO)

121 CONTINUE

C SET POINT FOR INITIAL POINT
IX=JX(1)+512
IY=JY(1)+512
CALL SETPT(IXvIY)

Figure 2-SA (Cont.)
ROTATE Subroutine Example (FORTRAN Listing) (Sheet 2 of 3)

X-2-27

c
C FIVE LINES CONNECTING 6 POINTS

DO 122 IO:::::LlI~)

IX=JX(IO+:L)-JX(IO)
IY=JY(IOt:L)-JYCIO)
CALL PLOT (:LyIX,IY)

:1.22 CONTINUE
C
r TIME DELAY BETWEEN EACH ROTATION
r EXCEPT IF BUTTON 1 ON

C

IFCIPB(l» GO TO 10
C0L(MARKCIT,IEV)
CI!:)I...I... Wf.) I TFH (lEV)

10 CONTINUE

C AND A BIGGEH ONE BETWEEN EACH PICTURE
r EXCEPT IF PUSH BUTTON 2
C FIRST FIND OUT ABOUT BUTTON STATES

CALL GETPSH (IPB)
IF(IPB(2f) GO TO 27
CALL MARK(IT2,IEV)
Ct:;/...L lAJt:; I TFI:~ (I Etj)

r
r IF PUSH BUTTON 3, HOLD THIS PICTURE

27 CALL GETPSH eIPB)
IFCIPB(3» GO TO 777

C
C IF PUSH BUTTON 6, EXIT

IFCIPB(6» GO TO 999
c
C OTHERWISE CONTINUE AS NORMAL

20 CONTINUE
C
C IF THRU WITH 7 AXIS TRIESy GET NEW POINTS

GO TO :I.

c
r NOW IF BUTTON 3 ON, WAIT FOR NEW HAPPENING WHILE
C USER ENJOYS THE PICTURE

777 ID=LTORPB(LPX,LPY,NAME,IPB,IW,l)

C IF BUTTON 6 ON EXIT
IFCIPB(6» GO TO 999

c
C IF BUTTON 3 STILL ON, GO WAIT AGAIN

IFCIPB(3» GO TO 777
c
C OTHERWISE REJOIN LOOP

GO TO 20
999 STOP

END

Figure 2-8A (Cont.)
ROTATE Subroutine Example (FORTRAN Listing) (Sheet 3 of 3)

X-2-28

1
I RANDOM NUMBER GENERATOR
1
1 CALLING SEQUENCE
/
/ CALL RANDM (Z[yINITJ)
1
1 Z IS RETURNED WITH A FLOATING POINT NUMBER
/ NORMALIZED BETWEEN 0 AND 1
/
1 INIT IS AN INTEGER QUANTITY USED TO
/ CHANGE THE INTIALIZATION OF THE
1 GENERATOR. THIS ARGUMENT IS OPTIONAL
1
I THE MULTIPLIER IS 5~15
/ THE DIVISOR IS 2~35
/ THE STARTING NUMBER IS (2-19tINIT).OR.l
I

RANDM
I

.GLOBL RANDM
o

1 SET UP POINTERS TO HANDLE ARG.'S
I

I

LAC RANDM
lAC
DAC T
LAC* T
SMA
JMP
DAC
LAC*

.+3
POINT
POINT

ISKIP IF ANOTHER INDIRECT

/ FIRST OF TWO WORDS OF FLOATING POINT
DAC POINT
lAC

1
/ AND SECOND

DAC POINTl
/
I NOW FIRST OF THREE MULTIPLIES

ML

I

lAC NH IHIGH 1/2 OF NUMBER
MUl
244615
LACQ
DAe NH

IlOW 1/2 OF MULTIPLIER
IlOW 1/2 OF ANSWER
IBUIlD NEW ANSWER

/ NOW CHECK FOR INIT ARGUMENT
ISZ T
LAC T IDOES POINTER=JMP
XOR* RANDM IlAST 13 BITS
AND (17777 IKEEP lOW 13
SNA ISKIP IF ARGUMENT
JMP NOARG INOT ONE

I
I THERE IS INIT ARGUMENT, IS THIS FIRST TIME

lAC* T /
SMA /SKIP IF EXTRA INDIRECT

Figure 2-8B
ROTATE Subroutine Example (Random Number Generator Coding) (Sheet 1 of 2)

X-2-29

NOAI:::O

I

,.JMP
[lAC
LAC*
DAC
LAC
(~ND*
Dl.M
XOI:;~

n(~c

~ ·t<.3
T
T
T
FIHST
T
FIHST
NL
NL

INOW POINTS TO INIT
IMASK SO WE CAN OR NL

ISET NO LONGER FIRST TIME
IXCPT FIRST, AC=O
ISTOF~E I:;:ESULT

I NOW lOW 1/2 NUMBERv HIGH 1/2 MULTIPLIER
,'"lUi...

MH

I

343::~?)'

L.(iCG
T(~D NH
[lAC NH

IHIGH 1/2 OF 5~15
IlOW 1/2 OF MULT.
IASSEMLY OF HIGH 1/2 NEW NUMB.
IHOLD For-\: NOW

I NOW LOW 1/2 TIMES LOW 1/2
I

NI ...

POINT
POINTl
NH
FII:;~ST

T

/...(.~IC

!"iUI ...
:/.
TI~D

PrND
Df~C

L(~Ct~

Df~C

Lf.1C
NOI:~M

DpIC*
LI~CO

AND
[lAC
LACS
f~lf~C

CMI~! II~iC

f':tND
T('H)
DAC*
... JMP*
()

()

2

()

IINIT'S AT 1 AS DEFAULT
NH IHIGH 1/2 MULT TO HIGH 1/2 NUM
(377777 I MAKE IT POSITIVE
NH ITHIS IS THE NEW HIGH HALF

NL.
NH

POINTl

(??7000
POINT1

····34

(77?
POINTl
POIr·!T
!=;:I~NIH1

IGET NEW LOW HALF
IPL(:,:)CE IT
INOW NCH;:MAL I ZE
ITO FLOATING POINT FORMAT
IHIGH ORDER MANTISSA IN SECOND WORD
INOW MAKE 9 BITS LOW ORDER MANTISSA
IWHICH WILL BE IN TOP OF FIRST WORD
IUSE THIS AS TEMPORARY TO HOLD IT
/GET STEP COUNT TO COMPUTE EXPONENT
INEXT TWO TO NORMALIZE TO 1, AND MAKE
IFORTRAN EXPECTED TWO-COMPLEMENT EXPONENT
18TRIP TO LOW NINE BITS
IPUT TOGETHER TWO HALVES OF FIRST WORD
lAND RETURN IT TO CALLER

Figu~e 2-SB (Cont.)
ROTATE Subroutine Example (Random Number Generator Coding) (Sheet 2 of 2)

X-2-30

CHAPTER 3

MAIN DISPLAY FILE ROUTINES

The calls presented in this chapter are supported by RSX graphics to
maintain DOS graphics compatibility. The calls need not be used at
all for graphics programs being created under RSX. The PLOT calls do,
however, serve as a model for the REPLOT calls of Chapter 4.

Under DOS there are two distinctly different types of display files,
main files and subpicture files. It is the intent of the RSX graphics
package to remove this distinction as much as possible without making
DOS programs incompatible with the RSX graphics system.

Under DOS the calls that operated on subpicture files had distinctly
different capabilities than the calls that operated on main files.
The main file was that file incorporating the VT-15 processor loop:
subpictures were called as subroutines from it.

Under RSX all the code generating capability of the package is
included in the subpicture calls, and they may indeed operate on the
'main' file. The main file is linked as a display subroutine from the
VT-15 handler. The subpicture files are, in turn, linked as display
subroutines from the main file.

Of the original DOS calls de'scribed in the 'MAIN DISPLAY FILE
ROUTINES' chapter of the DOS graphics manual, the calls DINIT and
DCLOSE are found in Chapter 5, Input-Output. The calls DELETE,
REPLOT, and RSETPT are discussed in Chapter 4, Code Modification. The
two remaining calls described in this chapter are: SETPT and PLOT.

SETPT - places in the main file the code to absolutely position the
beam. The resulting point is not intensified.

PLOT - accesses the code generating capability (by a selection
argument) of the subpicture calls LINE, TEXT, COPY, PRAMTR, GRAPH,
POINT, and ANY. The GRAPH, POINT and ANY subroutine accessed by PLOT
were not originally provided in the DOS graphics package. They have
been added to the RSX graphics package to provide an internal
compatibility between PLOT and REPLOT in the RSX system. The last
file given as an argument to the routine DIN IT is generally referred
to as the main file. The code generated by PLOT is placed in the main
file.

X-3-1

3.1 SETPT SUBROUTINE

The SETPT subroutine generates the code to absolutely position the
beam. The resulting point is not intensified. The calling sequence
is:

where:

CALL SETPT (IX,IY[vCNAMEJ)

IX is a positive integer absolute X-position to which the
beam is to be located.

IY is a positive integer absolute Y-position to which the
beam is to be located.

CNAME is the argument for the return of an edit address.

Both IX and IY are truncated to ten bits without any warning to the
user. The code is placed in the display file last given as an
argument to the DINIT routine. This file is referred to throughout
this document as the 'main' ·file.

The operation of this subroutine is to place two locations of display
code in the main file. The first location contains the VT-IS
instruction to place the display beam at the correct absolute
Y-position. The second contains the corresponding instruction for
X-positioning.

3.2 PLOT SUBROUTINE

The PLOT subroutine accesses the display code generation capability of
the subroutines COPY, LINE, PRAMTR, TEXT, POINT, GRAPH, and ANY. The
first argument to all PLOT calls is a selection argument to describe
which subroutine is to be accessed, as follows:

CODE SUBROUTINE

0 COpy
1 LINE
2 PRAMTR
3 TEXT
4 POINT
S GRAPH
6 ANY

Note that the subpicture routines can also be used to access the main
file by supplying the mainfile as the file address.

3.2.1 Access Subroutine COpy

The calling sequence to access the COpy subroutine is:

where:

CALL PLOT (O,RST,PNAME(l)[~CNAME])

the code 0 is the select argument indicating that this call
to PLOT generates COpy code.

X-3-2

RST is the argument indicating whether the hardware
SAVE-RESTORE option is to be used in the generated code.

PNAMEl(l) is the address of the display file to be called as
a subroutine.

CNAME is the output argument for the return of an edit
address.

The code generated by the PLOT call is placed into the main file. See
paragraph 2.5 for a more complete description of the code generated
for the COpy subroutine. In the following call:

CALL PLOT (O,O,IHOUSE(l),IEDIT)

The first zero indicates COPY, the second that the hardware
SAVE-RESTORE is not to be used, IHOUSE(l) is the subroutine called,
and an edit address is returned to IEDIT.

3.2.2 Access Subroutine LINE

The calling sequence to access the LINE subroutine is:

where:

CALL PLOT (l,IX,IY[,INT[,CNAMEJ])

the code 1 indicates the LINE code generating routine is to
be accessed.

IX is the X-displacement in raster units.

IY is the Y-displacement in raster units.

INT indicates whether
(INT=nonzero, the line
will not be visible. If
assumed by default.)

the line is to
will be visible;
INT is omitted,

be intensified.
INT=O, the line
INT=nonzero is

CNAME is the output argument for the return of an edit
address.

The code generated by this call is placed in the main file. The
square brackets indicate that the user may provide all five arguments,
he may omit CNAME, or he may omit both INT and CNAME. See paragraph
2.3 for a more complete description of the code generated by the LINE
subroutine. In the following call:

CALL PLOT (1,100,-200)

the 1 indicates that LINE code is t~ be generated. The delta X is 100
raster units and the delta Y 1S -200 raster units. The line is
intensified because the INT argument is omitted. The code goes into
the main file. No edit address is returned.

X-3-3

3.2.3 Access Subroutine PRAMTR

The calling sequences for a single feature specification, and multiple
feature specification are shown, respectively, in the two calls that
follow:

where:

CALL PLOT (2vSELECT,VALUE[vCNAMEJ)

CALL PLOT (2,SELECT,VALUE1,VALUE2vyyv[,CNAMEJ)

The 'code 2 indicates the PRAMTR code is to be generated.

SELECT indicates which hardware features
activated.

are to be

VALUE indicates what setting is to be placed in the hardware
instruction.

CNAME is the output argument for the return of an edit
address.

See paragraph 2.6 for a more complete discussion of PRAMTR code
generation, limits for VALUE arguments, etc. The following call
illustrates the setting of the BLINK feature:

The following call illustrates the simultaneous setting of the name
register to a value of 47, and the intensity to 6:

On completion of execution of the call, the argument JEDIT contains
the address of the first of the two locations of code generated by
this call.

Under XVM, if a CNAME argument is provided to this type 2 PLOT call, a
special marker no-op is placed in the display file to terminate the
display group. When additional information is placed in this display
file by a Chapter 2 or Chapter 3 call, the marker no-op is reclaimed
as display space unless the call is a PRAMTR call, or a type 2 PLOT
call. In these two latter cases, the display file will remain one
location longer because of the imbedded no-oPe The display file is
also a location longer if it is terminated by a type 2 PLOT call.

This marker no-op is necessary because the new CNAME format cannot
distinguish one two-location parameter graphics element from two
one-location parameter graphics elements for the purposes of
REPLOTing.

3.2.4 Access Subroutine TEXT

The calling sequence to access the TEXT subroutine is:

where:

CALL PLOT (3,STR(1),N[,CNAMEJ)

The code 3 indicates that TEXT code is to be generated.

STR(I) is the address of the string of 5/7 ASCII to be
displayed.

X-3-4

N is the number of characters to be displayed.

CNAME, when present, contains an
completion of the call.

edit address upon

See paragraph 2.4 for a more complete description of the assumptions
and limitations of this type of code generation. The following call
displays 15 characters of a string located in the array ZOT:

Ct,1...1... PL.DT (:.-5~, :t.D·r.:: :I.) !} :I. ':.:.i~, 1 ~:;(I'.) J·r;.

The 3 indicates the TEXT code will be generated. The character string
is in the array ZOT. The pointer (edit address) to the location of
this group of commands is in the variable ISAVIT.

3.2.5 Access Subroutine POINT

The calling sequence to access the POINT subroutine is:

where: The code 4 is the select argument to access the POINT code
generating routine.

IX and IY are the integer X and Y values to which the beam
is to be positioned.

INT is the
intensified
nonzero.

intensity control
only if the INT

argument.
argument is

The point is
provided, and

CNAME, when present, is for the return of an edit address.

This routine is somewhat redundant with SETPT. The intent is to
supply intensified point capability without destroying compatibility
with existing code using SETPT. See paragraph 2.10 for a more
complete description of POINT code generation. The following sample
call generates the code to position the beam to 200,300, and to
intensify the resulting point:

3.2.6 Access Subroutine GRAPH

The calling sequence to access the GRAPH subroutine is:

where:

CALL PLOT (S,DATA(l),N[,A[,CNAMEJJ)

The code 5 indicates that GRAPH code is to be generated.

DATA(I) is the address of the array of positive integer data
provided by the user.

N is the number of data points to be displayed.

X-3-5

I

I

A specifies the axis of the plot. It is a normal Y versus X
plot unless the argument A is present and nonzero.

CNAME is the output argument for the return of an edit
address.

See section 2.7 for a more complete description of GRAPH code
generation.

3.2.7 Access Subroutine ANY

The calling sequence to access the ANY subroutine is:

where: The code 6 indicates that the ANY subroutine is to be
accessed.

ARRAY (1) is the user provided array of VT1S code.

N is the number of elements of the array to be transferred
to the main file.

CNAME, when present, is the output arqument used for the
return of an edit address.

See section 2.11 for a more complete description of the ANY routine.

XVM/RSX V1B X-3-6 September 1976

CHAPTER 4

CODE MODIFICATION ROUTINES

The code modification routines provide a limited means of modifying
existing VT15 code, rather than completely recreating the whole
display file. Instead of workin9 on a specific display file, these
routines use an edit address, CNAME, which is the output argument
returned at the time of graphics code generation. CNAME provides the
starting address of a group of VT15 commands.

The general mode of operation of the code modification routines is to
replace an old group of commands with a new group. In deciding
whether there is room for the new command 9roup, the modification
routines insert display no-ops immediately following the old command
group. A brief description of the routines follows:

DELETE - replaces a group of commands with display no-ops.

RSETPT - accesses the SETPT code generating routine. The code is
generated, if it fits, at the address provided in the CNAME argument.

REPLOT - accesses the code
PRAMTR, GRAPH, POINT and
address, if it fits.

generating
ANY. The

routines
code is

LINE, TEXT, COPY,
placed at the CNAME

A comprehensive programming example using the code modification
routines is located at the end of Chapter 5.

4.1 GENERAL

Under XVM/RSX, the CNAME pointer has a new format. It used to be a
l5-bit address pointer with a three-bit count field. It is now a
l7-bit address pointer. The graphics system derives the count of
in-core display items by examining the display code.

When REPLOT is used to place parameter instruction code (type 2) over
nonparameter code, a problem arises. Marker no-ops are used to
terminate parameter code, because the parameter groups have variable
length. When a REPLOT occurs, marker no-ops must be inserted if
parameter instructions precede or follow the new group. One marker
no-op is required for each parameter-to-parameter interface. The
REPLOT can fail if insufficient space is available for the marker
no-ops.

XVM/RSX VIB X-4-1 September 1976

•

When a group of commands is replaced by a group having the same number
of commands, the new group is written over the old. If the new group
is smaller than the old, the new group is placed so that it starts at
the same location as the old. The extra locations at the end of the
new group are filled with display no-ops. If the new group is larger
than the old and there is a sufficient number of display no-ops
following the old group, the new group is placed so that it starts at
the same location as the old. If the new group is larger and there is
not a sufficient number of display no-ops, the display file is not
modified.

If the user has made REPLOT or RSETPT a FORTRAN function, he receives
a logical FALSE indication if the edit has failed or a logical TRUE
indication if it has succeeded. Otherwise, there is no indication.

I (MACRO programs receive an AC value of -1 if the edit has succeeded;
zero if not.)

•

If the user wishes to replace two small command groups with a larger
one, he should first DELETE the second command group. On editinq the
first group, the graphics system uses the display no-ops already in
place for the second command group.

WARNING

The code modification routines require
an I/O CAL to be issued to the VTlS
handler. If there is an outstandinq
LTORPB, the CAL cannot be immediately
honored. When the LTORPB is completed,
the modification call is completed.

b~LFi..re:. (NA,/oI\E.. <:""4~GfLb "r"O AVOID c.oNFf.,.IC.:r w,..,-/-l ~/L..it. DllU...e::re:.. I..!,.l.L<-

4.2 DEE.E':FE

DELETE replaces the group of commands pointed to by CNAME with display
no-ops. The calling sequence for the subroutine and function calls
is:

CNAME is
created.
declared

DO(..~re..

CALL BELETE (CNAME)
I -·J:'h:U!:TIii: (CNAME)

OOL.t'E..re...

the edit address obtained
In the function call

as logical variables.

4.3 REPLOT

when the group to be deleted was
form, both I and DELETE must be

The REPLOT routine allows.the code-generating capability of subpicture
calls COPY, LINE, PRAMTR, TEXT, POINT, GRAPH and ANY to be used to
edit graphics code over existing graphics code. The form of the
REPLOT call is the same as that for the PLOT call described in Chapter
3. The first argument of REPLOT calls is a selection argument to
describe which routine is to be selected:

Code

o
I

XVM/RSX V1B

Routine

COpy
LINE

X-4-2 September 1976

2
3
4
5
6

PRAMTR
TEXT
POINT
GRAPH
ANY

The selection argument is followed by those arguments required by the
code-generating routines, as indicated in Chapter 3. The difference
between PLOT and REPLOT is that there are no optional arguments for
REPLOT calls, because the final argument, CNAME, must be provided in
the REPLOT call.

A list of the calling sequences for both subroutine and function calls
is given below for each of the code-generating subroutines. A loqical
FALSE indication is returned to the function if the group does not fit
or if CNAME is zero. I

CALL REPLOT (O,RST,PNAME1(1)yCNAME)
I=REPLOT(O,RST,PNAME(l),CNAME)

CALL REPLOT (l,IX,IY,INT,CNAME)
I=REPLOT(l,IX,IY,INT,CNAME)

CALL REPLOT(2,SELECT,VALUE1,VALUE2"CNAME)
I=REPLOT(2,SELECT,VALUE1,VALUE2"CNAME)

CALL REPLOT (3,STR(1),N,CNAME)
I=REPLOT(3,STR(1),N,CNAME)

CALL REPLOT(4,IX,IY,INT,CNAME)
I=REPLOT(4,IX,IY,INT,CNAME)

CALL REPLOT(5,DATA(1),N,A,CNAME)
I=REPLOT(5,DATA(1),N,A,CNAME)

CALL REPLOT(6,ARRAY(1),N,CNAME)
I=REPLOT(6,ARRAY(1),N,CNAME)

4.4 RSETPT

The RSETPT routine uses the code-generating capability of the SETPT
routine to edit over previously existing code. The operation is
similar to the REPLOT call:

CALL RSETPT (IX,IY,CNAME)
I=RSETPT(IX,IY,CNAME)

XVM/RSX V1B X-4-3 September 1976

CHAPTER 5

INPUT-OUTPUT

5.1 GENERAL

The RSX graphics system allows the FORTRAN user limited access to the
RSX VT15 handler. The available calls and a brief description of each
are listed below:

VTUNIT - provides a logical unit number (LON) to the VT15 handler for
the scope.

DINIT - requests that the provided display file be called by the VT15
as a subroutine from the handler loop. The file provided is
established as the main file. .

DCLOSE - requests that the present main file be detached from the VT15
execution loop (i.e., turned off).

CINIT - requests that the provided file be called as a subroutine from
the VT15 execution loop. This file is not established as the main
file. This file and all related calls are displayed on both scopes •
for the VTl5 processor.

CCLOSE - requests that the last CINITed file be detached from the VT15
execution loop.

LTORPB - provides the user with the capability of obtaining status and
interrupts from the light pen and push buttons on the scope.

GETPSH - reads the present push-button settings.

TRACK - allows the user to input X-Y coordinate data in a limited
manner with the light pen.

The RSX VTl5 handler provides for a maximum configuration of two VTl5
processors, each with two scopes. Each of the four scopes can have
independent operation of light pen and push buttons. Each of the four
scopes can display a different picture, or image. With two scopes on
one processor, the amount of material that can be displayed on the
screen before "flicker" occurs is the sum of the displayed elements on
both scopes. (The CINIT display of identical pictures on both scopes
is considered a single execution.)

XVM/RSX VIB X-5-1 September 1976

I
I

WARNING

If there is an outstanding LTORPB, the
calls of this chapter (except for VTUNIT
and LTORPB) cannot be immediately
honored.

5.2 VTUNIT CALL

VTUNIT is used to notify the handler which logical scope number is to
be used. Logical numbers 0 and I are on the first VT-15 processor,
and 2 and 3 are on the second. If VTUNIT is never called (DOS does
not have this call), logical unit number 0 is used. If used, VTUNIT
calls should be made the first call to the graphics system. The
calling sequence is:

C:: (, i... L ' ..) T l...l t--..! I ·r (: ! ::.

The unit number N must be provided as an argument.

The 'normal' LUN slots for the scopes are 24-27. The graphics system
adds 24 to the provided number, and passes the result to the handler.

There is no 'assignment' implicit in this call. If, for example, one
user requests unit 0 and starts up a picture on the scope, and another
user now requests unit 0 and starts a picture, the second user's
picture will be shown. No one will get an error message or any other
indication. If protection against this type of situation is desired,
the RSX ATTACH command can be used to lock out other jobs.

5.3 DIN IT CALL

This is the traditional DOS call to start up the picture. It serves
basically the same function under RSX. The calling sequence is:

CALL DINIT (~AIN(l::')

Here MAIN is the array containing the file to be the 'main' file.
Under RSX this file is called as a subroutine by the VT-15 processor
from a loop in the VT-15 handler. This change is made necessary
because the VT-15 processor is essentially a shared device. Calls to
the PLOT routine will now place code in this file, that is, it is now
the 'main' file. When the VT-15 processor enters the 'main' display
file, the intensity setting is 4, SYNC is on, and all other parameter
settings are O. The beam position is undefined unless TRACKing is in
force; in this case only, the beam position is the center of the
light~pen TRACKing symbol (see Section 5.9).

X-5-2

5.4 OCLOSE CALL

The call to OCLOSE is used to stop the execution of the present main
file by the VTl5 processor. The handler rewoves the call to this
routine from its loop. The resulting file can be used as a subpicture
file or restarted as a main file. The assiqnment of the main file for
PLOT calls is not changed by DCLOSE. The calling sequence is:

CAll DClOSE

5.5 CINIT CALL

The CINIT routine is similar to the OINIT routine in that it starts up
a display image by requesting that the handler call the provided file
as a subroutine. (There is no effect on the main file assignment for
the purposes of PLOT calls.) Here, however, the resulting i~age is
shown on both scopes (if present). This call can be used, for •
example, for some feature common to both displays, such as light pen
buttons, grids, etc. The execution time (VTI5) of a CINIT file is
half that required for each scope to separately display the same
image. The VTl5 processor enters the CINIT file with the same default
parameter settings as for the main file. The position of the beam on
entry to the file can be anything. A recommended procedure is to
issue an absolute beam positioning call early in the file. The
calling sequence is:

CAll CINIT (IFILE(l»

5.6 CCLOSE CALL

The CCLOSE routine is similar to the OCLOSE routine, except that it
acts on files that have been CINITed. The calling sequence is:

CAll CClOSE

5.7 LTORPB CALL

This routine allows the user to obtain information and interrupts from
the light pen and push buttons. While the argument structure and
information passed are similar to that under DOS, the use of this
routine is different under the multiprogrammed RSX system. Under DOS,
for example, it is possible to establish a tight loop with an LTORPB
waiting for a push-button "hit" to occur. This is a poor procedure
for a multiprogrammed system, but is quite satisfactory .for a
stand-alone system.

Another condition to avoid is a tight loop consisting of a light-pen
hit, a program reenable of the hit element, another light pen hit,
etc. See the example program in Figure 5-1 for a more complete
explanation.

A call to LTORPB is necessary to activate the light pen. At all other
times, the light pen is left inactive to reduce system loading. The
calling sequence is:

XVM!RSX V1B X-S-3 September 1976

where:

I :::: I ... T (] F~ P D (1 :x: \. I Y ~.' N {i I·" F~ \' I B·r \. I I } I C H [\' I ... J ,q I ·r ::: ;.

IX is the absolute X (horizontal) coordinate of the end of
the vector that caused the light pen interrupt. It is
meaningless when there has not been a light pen interrupt.

IY is the absolute Y (vertical) coordinate of the end of the
vector that caused the light pen interrupt. It is
meaningless if there has not been a light pen interrupt.

NAMR is the setting of the name register at the time of the
light pen interrupt. It is meaningless if there has not
been a light pen interrupt.

IBT is the name of a logical six member array into which the
on-off state of each push button is placed. The values are
meaningless if there has not been an interrupt. Upon a
light pen interrupt, the push buttons are read correctly.

IWICH will be I if a light pen hit has occurred, 2 if a push
button hit has occurred, and 3 if both (just barely likely).

WAIT, when present and nonzero, indicates that the handler
is to wait until an interrupt occurs before returning to the
user.

LTORPB, IBT and I must be declared as logical variables in a TYPE
statement when used in function calls. When I is true, an interrupt
has occurred; when false, one has not.

If the WAIT argument is used, another calling sequence is possible:

CALL LTORPB CIX,IY,NAMR,IBT,IWRCH,l)

For this subroutine call, only IBT is required to be declared a
logical variable in a type statement. In this case it is known that
an interrupt has occurred when control returns to the user. The
following example shows the use of LTORPB in an IF statement:

IFCLTORPBCLPX,LPY,NAME,IBT,ILB,O» GO TO 100

If an interrupt occurred, go to statement 100. Note that the form of
the WAIT argument gives an immediate return.

The LTORPB call issues an I/O CAL to the handler to enable light pen
and push button hits. If WAIT was requested, control returns to the
user at the time of the interrupt. The status, of course, is that at
interrupt time. Interrupts that occurred prior to the initial LTORPB
will have been ignored. Interrupts are not enabled when control
returns to the user.

The situation is somewhat different when the .LTORPB is specified with
an immediate return. Initially, interrupts will not be enabled. The
first LTORPB enables the interrupts, and returns to the user. This
first LTORPB cannot have detected an interrupt~ LTORPB's will be
issued at some interval, each asking if an interrupt has occurred.
After one of these, the interrupt will finally occur, status will be
recorded at this time, and the interrupts will be disabled. The next
LTORPB will notify the user that the interrupt has occurred, return
the stored status, and leave the interrupts disabled.

X-5-4

It is possible for the user to issue an immediate return LTORPB, do
some work, and then issue an LTORPB with a WAIT. The situation is
then identical with that if the LTORPB with the WAIT had been
initially issued.

S.8 GETPSH CALL

The GETPSH call immediately returns the present state of the push
buttons. The calling sequence is:

where:

CALL GETPSH (IBT)

IBT is a logical array of size six into which the push
button settings are returned.

S.9 TRACK CALL

The TRACK routine has been reduced from a many optioned routine under
DOS to a much simpler function under RSX. This is primarily due to a
necessity to keep interrupt level time to a minimum. (Consider four
scope users TRACK'ing at once). The program provides an initial
position of a tracking symbol. The scope user moves the symbol to the
desired position with the light pen. The scope user then hits a push
button to signal the end of tracking. The program then receives the
final X-Y position of the tracking symbol. The user program does not
receive control for the duration of this procedure. The calling
sequence is:

where:

CALL TRACK (IX,IY[,IOPTvIARRAY])

IX and IY are both the original X-Y co-ordinates for the
tracking symbol, and the variables to receive the final
co-ordinates.

10PT and lARRAY are arguments under DOSi they have no
function here, but can be supplied without causing errors.

In contrast to DOS, no modification is made to the user 'main' file in
tracking. The whole mechanism exists in the handler. The size of the
tracking symbol is an assembly variable in the handler. It might
prove convenient to re-assemble for a 21" scope, as the symbol was
designed on a 17" scope. The following sample code shows the use of
TRACK:

IX=512
IY=512

C START IN CENTER OF SCREEN
CALL TRACK (IX,IY)
CALL POINT (IXvIY,O,IFF(l»

C USE RETURNED VALUES FOR ABSOLUTE POSITION IN
C THE DISPLAY FILE IFF

During TRACKing, the beam position upon entry to the user 'main' file
is the center of the TRACKing symbol. If it is desired to have some
graphics element automatically follow the TRACKing symbol, the first
code in the 'main' file can be a COpy call to a subroutine containing
the graphics element. Upon termination of TRACKing, the COpy call can

x-S-S

be DELETEd. The graphics element, along with position information
returned from TRACK, can be permanently linked into the picture. At
some future time, the top of the 'main' file can be REPLOTTed to link
another following item during TRACKing.

5.10 COMPREHENSIVE EXAMPLE

The following example program (Figure 5-1) uses a considerable portion
of the RSX capabilities of the graphics system. It shows some of the
techniques to establish an interface between the system and the
external user of the scope which minimizes system loading.

X-5-6

C
C THIS IS A MORE GENERALIZED PROGRAM FOR THE
C MANIPULATION OF ITEMS ON THE SCREEN. IN STATE 1 OF THE
C PROGRAMv THE WORDS 'ADD' 'MOVE' 'KILL' WILL
C APPEAR ON THE TOP OF THE SCREEN. THE PROGRAM WILL ACT ON A
C LIGHT PEN HIT ON ONE OF THESE WORDS. A PUSH BUTTON HIT ON
C BUTTON NUMBER 6v THE RIGHTMOST? WILL CAUSE THE PROGRAM TO
r EXIT FROM STATE 1. WHEN THE PROGRAM GOES FROM STATE 1 TO
C ONE OF THE ADD-MOVE-KILL ACTION ROUTINES, THESE WORDS
C ARE REMOVED FROM THE SCREEN? TO HELP THE USER STAY
r SYNCHRONIZED WITH THE PROGRAM? AND TO LIMIT UNWANTED
C LIGHT PEN HITS.
C
C THE 'ADD' INTERRUPT WILL CAUSE THE TRACKING SYMBOL TO
C APPEAR. THE USER MOVES THE TRACKING SYMBOL TO THE DESIRED
r POSITION, AND TERMINATES TRACKING BY HITTING A PUSH
C BUTTON (NUMBER 5 IS RECOMMENDED SINCE IT IS NOT USED FOR
C ANYTHING ELSE). THE USER THEN HITS A BUTTON FROM 1-4 TO
r SELECT THE DESIRED ITEM TO BE PLACED AT THE CO-ORDINATES
r SPECIFIED BY TRACKING. THE ITEMS ARE? IN ORDER, SQUARE,
C Xv TRIANGLE, AND CIRCLE. A HIT ON BUTTON 6 AT THIS POINT
G WILL RETURN THE PROGRAM TO STATE 1 WITH NO ACTION TAKEN.
r LIGHT PEN HITS WILL BE IGNORED. AFTER PLACEMENT OF THE
r ITEM, THE PROGRAM RETURNS TO STATE 1 TO WAIT FURTHER
r COMMANDS. A MAXIMUM OF 22 ITEMS CAN BE PLACED. THIS
r SOMEWHAT ARBITRARY NUMBER IS FOR 11 O'S AND
C 11 X'S.
C
C THE 'MOVE' INTERRUPT WILL ENABLE THE LIGHT PEN TO
r RECEIVE A HIT ON THE ITEM THE USER WISHES TO MOVE. A HIT
r ON PUSH BUTTON 6 RETURNS THE PROGRAM TO STATE 1. OTHER
C PUSH BUTTONS ARE IGNORED. WHEN THE ITEM IS SELECTED? THE
r TRACKING SYMBOL WILL APPEAR. MOVE THE TRACKING SYMBOL TO
C THE DESIRED POSITION. A PUSH BUTTON HIT WILL TERMINATE
r TRACKING, AND THE ITEM WILL BE MOVED TO THAT FINAL
C POSITION. THE PROGRAM WILL THEN RETURN TO STATE 1.
r
r THE 'KILL' INTERRUPT WILL ENABLE THE LIGHT PEN TO
C RECEIVE A HIT ON THE ITEM THE USER WISHES TO REMOVE. A HIT
C ON PUSH BUTTON 6 RETURNS THE PROGRAM TO STATE 1. WHEN
C A LIGHT PEN HIT OCCURS, THE ITEM IS REMOVED, AND
C THE PROGRAM RETURNS TO STATE 1.
r
C REMEMBER THROUGHOUT THAT A SEPARATE PUSH BUTTON
C HIT IS NECESSARY TO TERMINATE TRACKING!
c

C

LOGICAL 1B(6)
INTEGER CIRC(50),SQ(10),TRI(10)
INTEGER X(10)?DUM(10)vCLEAR(2)
DIMENSION IS(22)vLOC(22)?LINK(22),TA(2),TM(2)yTK(2)
DIMENSION MAIN(200),LB(30)

r SET UP TEXT STRINGS FOR ADD,MOVE?KILL
DATA TA(1)/SHADD I
DATA TM(1)/SHMOVE I

Fiqure 5-1
Comprehensive Example (Sheet 1 of 7)

X-5-7

DATA TK(l)/SHKILL /
c
C VT-IS INSTRUCTION SO BUTTONS ALWAYS OFF
C THE. DESIGNATES OCTAL - VERY CONVENIENT!

CLEAR(1)=1231374

C NOW ZERO ALL FILE TOPS
CH<C (:I.) ::::()
SC~ (1) ::::()
TI:\: 1 (:I.) ::::0

X(:I.)::::()

DUfvJ (:I.) ::::0

Mt-lIN(1):::()
LB(1.)::::O

c
r NOW ESTABLISH ELEMENT SUBROUTINES

C THE CIRCLE

c
C THE EWUAI:U::

CALL LINE C25,-25vO,SQ(1»
CALI... LINE (Ov~50)

CALL LINE (-50,0)
CALL LINE (O,-5()
CAL. I... L. I NE (~7iO 7 0)

C
C THE TI=< I r:INGLE

CALL LINE (-27v-16,OvTRI(1»
CALL LINE (27,47)

c
C THE X

C

CALL LINE (27,-47)
CALL LINE (-54,0)

CALL LINE (25?-2~,0,X(1»

CALL LINE (-50,50)
CALL LINE (50,0,0)
CALL LINE (~50,-50)

r AND THE FILE FOR LIGHT PEN BUTTONS
C
C MAKE SCALE 1, AND TURN ON LIGHT PEN
r IT WOULD PROBABLY RE BETTER TO PUT THIS
C INTO THE OFFSET AREA.

c
C FIX THE BEAM NEAR SCREEN TOP

CALL POINT (100,950)
c
C SET NAME REGISTER TO 41 SO WE KNOW IT'S ADD

CALL PRAMTR (128,41)
C
r AND NOW THE 'ADD'

512 CALL TEXT (TA(1),3)
r
r SAME FOR MOVE AND KILL.~.

CALI... POINT (300,950)
CALL PRAMTR (128,42)

Figure 5-1 (Cont.)
Comprehensive Example (Sheet 2 of 7)

X-5-8

c

CALL TEXT (TM(1),4)
CALL POINT (500,950)
CALL PRAMTR (128y43)
CALL TEXT (TK(1)v4)

C TURN OFF LIGHT PEN, AND REPLACE SCALE 0
C ALTERNATELY WOULD COULD USE SAVE-RESTORE
C IN THE COPY CALL TO LB(1)

CALL PRAMTR (5,0,0)
C
C NOW THE DUMMY FILE WHICH IS CALLED WHEN THAT
C SLOT HAS NO ELEMENT

CALL LINE (10,O,O,DUM(1»
C
C NOW SET UP 'MAIN' FILE

CALL ANY (CLEAR(1),1,MAIN(1»
C
C HORIZONTAL AXIS

CALL POINT (0,512)
CALL LINE (1023,0)

c
C VERTICAL AXIS

C

CALL POINT (512,0)
CALL LINE (0,1023)

C MAKE ITEMS BRIGHTER THAN AXES
CALL PRAMTR (2,6)

r
C CALL TO THE BUTTONS FILE

CALL COpy COyLB(1»
c
C NOW LIGHT PEN ENABLE FOR ITEMS, RETURN ADDR SINCE
r THIS WILL BE EDITTED ON AND OFF~ ON IS BIGGER THAN OFF!
C SO WE MAKE ON FIRST TO GET ENOUGH SPACE~ TURNED OFF AGAIN
C AT LINE TAGGED 30~

CALL PRAMTR (4v1,MAIN(1),ITEMS)
C
C REMEMBER TO TURN ON SCOPE

CALL DINITCMAIN(l»
c
C NOW WE ARE GOING TO ESTABLISH LINKAGES FOR 22 ITEMS.
r A PRAMTR TO SET NAME REG. FOR LIGHT PEN HITSy A SET POINT
C TO POSITION THE ITEM, AND A COPY TO LINK IT TO FILE.
t AT THIS TIME THERE ARE NO ITEMS, AND THE COPY WILL BE TO
C A DUMMY ROUTINE. THE REAL THINGS WILL BE EDITTED IN LATER.
C THE EDIT ADDRESSES FOR POINT AND COPY WILL BE PLACED IN
C THE ARRAYS LOC AND LINK. IS(N) IS AN ARRAY TO TELL WHEN THE
C SLOT IS OCCUPIED BYA REAL ITEM; IT WILL BE ZEROED NOW.
C

C
C SET UP NAME REG=SLOT NUMBER

CALL PRAMTR (128,1)
C
C ZERO OCCUPIED INDICATOR

c
r ABSOLUTE BEAM POSITION COMMAND

Figure 5-1 (Cont.)
Comprehensive Example (Sheet 3 of 7)

X-5-9

CALL POINT (1v1vO,MAIN(1)vLOCCI»
C
r AND COPY COMMAND

CALL COPY (O,DUM(l)vMAIN(l)vLINK(I»
13 CONTINUE

C
r ENTER STATE 1v WAIT FOR HIT
C BUT FIRST PREVENT LIGHT PEN HIT ON ITEMS!!!
C THE NAME REGISTER WOULD PREVENT US FROM THINKING
C THAT AN ITEM HIT WAS AN ADD-MOVE-KILL HITv BUT
C SOME AMOUNT OF SYSTEM COULD BE USED UP BY THE
C LOOP: HIT ON ITEM, WE THROW IT AWAY, HIT ON ITEM ••••
C

30 CALL REPLOT (2,4,O,ITEMS)
C
C NOW SINCE WE ARE ENTERING STATE 1v PUT THE
C ADD-MOVE-KILL BACK ON THE SCREEN.

CALL UNBLNK(LB(l»
C
C NOW WAIT UNTIL A HIT HAPPENS, THEN WE GET CONTROL

CALL LTORPB (LPX,LPY,NAME,IB,IW,l)
C
C IF LAST PUSH BUTTON EXIT

IF(IB(6» GO TO 99
C
C IF NOT A LIGHT PEN HIT, GO WAIT AGAIN

IFCIW.GT.1) GO TO 30
C
C IF WRONG NAME REGISTER, ALSO WAIT AGAIN

IF(NAME.LT.41) GO TO 30
IF(NAME.GT.43) GO TO 30

C
C AHA, GOT A LEGAL ONE, SO TURN OFF ADD-MOVE-KILL

CALL BLANK (LB(1»
C
C NOW GO TO CORRECT ACTION ROUTINE

IFCNAME.EQ.43) GO TO 43
IF(NAME.EQ.42) GO TO 42

C
C
r 'ADD'
c
C DEFAULT 1=0 IF NO MORE EMPTY SLOTS

1=0
C

DO 41 IJ=l,22
r FIND OUT IF SLOT EMPTY, AND SAVE
C ITS NUMBER IF IT IS

IFCISCIJ).EQ.O) I=IJ
41 CONTINUE

C
C IF NO EMPTIES, BACK TO STATE 1

513 IFCI.EQ.O) GO TO 30
C
C HAVE AN EMPTY, CONTINUE

IS(I)=1
C SET SWITCH, SAYING WE'RE TAKING THE SLOT
C

Figure 5-1 (Cont.)
Comprehensive Example (Sheet 4 of 7)

X-5-10

C SET UP TRACKING SO USER CAN SAY 'WHERE'
IX=512
IY=512

C INITIALIZE IN SCREEN CENTER
C

CALL TRACK (IX~IY)

C
C NOW HAVE THE CO-ORDINATES, EDIT INTO PLACE

CALL REPLOT C4vIXvIYvOvLOCCI»
C
C NOW WAIT FOR USER PUSH BUTTON TO SAY 'WHICH'

413 CALL LTORPB CLPX,LPY,NAMEvIBvIW,1)
r
r IF BUTTON 6, BACK TO STATE 1v CLEARING IS(I)!!

IFCIB(6» GO TO 419
C
C IF NOT PUSH BUTTON HITp GO WAIT AGAIN

IF(IW.LT.2) GO TO 413
c
C IF 1-4 ALL OFF, GO WAIT AGAIN ALSO

IF(IB(1» GO TO 418
IF(IB(2» GO TO 418
IF(IB(]» GO TO 418
IFCIB(4» GO TO 418
GO TO 413

C
C NOW EDIT THE COPY TO CORRECT ITEM

C

418 IFCIB(l» CALL REPLOT (O,OvSQ(l),LINK(I»
IFCIB(2» CALL REPLOT (O,O,X(l),LINK(I»
IFCIB(3» CALL REPLOT (O,O,TRI(l),LINK(I»
IFCIB(4» CALL REPLOT (O,O,CIRC(l)vLINKCI»

C DONE, GO BACK TO STATE 1
GO TO 30

C
C REMEMBER RETURN TO STATE 1 ON BUTTON 6.~.

r
C

419 18(1)=0
GO TO 30

C 'MOVE'
C
C TURN ON LIGHT PEN FOR ITEMS

42 CALL REPLOT (2,4,1,ITEMS)
C
C WAIT FOR USER TO SELCT ITEM.

423 CALL LTORPB (LPX,LPY,NAME,IB,IW,l)
C
C CHECK FOR BUTTON 6 PUSH TO STATE 1

IF (IB(6» GO TO 30
C
C IF BUTTON HITv WRONG, GO WAIT AGAIN

IF(IW.GT.1) GO TO 423
C
r IF WRONG NAME REG. GO WAIT AGAIN

IFCNAME.EQ.O) GO TO 423
IFCNAME.GT.22) GO TO 423

c

Figure 5-1 (Cont.)
Comprehensive Example (Sheet 5 of 7)

X-5-11

C GOT ONE, NOW SET UP TRACKING SO USER CAN SAY 'WHERE'
IX=S12
IY=512
CALL TRACKCIX,IY)

c
C WHEN RETURN, HAVE THE X AND Y, SO EDIT IN

CALL REPLOT (4,IX,IY,OvLOC(NAME»
C
C DONE, GO TO STATE 1 TO WAIT FOR MORE COMMANDS

GO TO 30
C
C
C
C

'KILL'

C TURN
43

OF LIGHT PEN FOR ITEMS
CALL REPLOT (2,4,lvITEMS)

C
C WAIT FOR USER TO SELECT ITEM

433 CALL LTORPB (LPXvLPY,NAMEvIBvIW,1)
C
C CHECK FOR PUSH BUTTON 6 RETURN TO STATE 1

IF (IB(6» GO TO 30
r
C IF BUTTON HIT, WRONG, GO WAIT AGAIN

IF(IW.GT.l) GO TO 433
C
r IF WRONG NAME REG. GO WAIT AGAIN

IFCNAME.EQ.O) GO TO 433
IF (NAME.GT.22) GO TO 433

C
C GOT THE ONE, ZERO ITS FLAG

ISCNAME)=O
r
C AND REMOVE LINKAGE TO ITEM

CALL DELETE (LINK(NAME»
C
r AND HOP BACK TO STATE 1

514 GO TO 30
C
C
C HERE IS EXIT FROM STATE 1 VIA PUSH NUMBER 6.

STOP 99
C
r
C
C
C
r
C
C
C

NOTE THAT THIS PROGRAM HAS A BUG IN IT! WHEN 22
ITEMS HAVE BEEN PLACED ON THE SCREEN, AND THE USER
ATTEMPTS TO PLACE THE IMPOSSIBLE 23RD, A LIGHT PEN
SELECT LOOP OCCURS. I.E. 'ADD' GIVES A LIGHT
PEN INTERRUPT, AND THE PROGRAM IMMEDIATELY RETURNS
TO STATE 1 - - TO GET THE SAME INTERRUPT AGAIN.
TRY IT AND NOTE THE SYSTEM LOADING.

C ONE OF THE MANY WAYS TO FIX THIS
C WOULD BE TO TURN OFF 'ADD' WHEN FULL UP.
C THE INITIAL CALL AT 512 WOULD RETURN CNAME
C
C512 CALL TEXT (TA(1),3,LB(1)vITFLL)
C
C AND AT 513v RATHER THAN GOING TO 30 ON FULL,

Figure 5-1 (Cont.)
Comprehensive Example (Sheet 6 of 7)

X-S-12

C GO VIA A
C
C CALL DELETE (ITFLL)
r
C AND FINALLY, A LINE OF CODE WOULD BE
C INSERTED PRIOR TO 514 TO RESTORE THE ADD
C UPON A SUCCESSFUL 'KILL'.
C
C CALL REPLOT (3,TA(1),3rITFLL)
r
C
C

END

Figure 5-1 (Cont.)
Comprehensive Example (Sheet 7 of 7)

X-5-13

CHAPTER 6

RELOCATING ROUTINES

The routine DYSET is used to convert display files from their absolute
executable form to a relocated form. The display files in relocated
form are then stored on a mass storage medium. In the general case,
these relocated display files generated by one user can then be placed
in different arrays for other graphics programs generated by a second
user. The routine DYLINK is then called to convert the display files
back to the absolute executable form.

The DYSET-DYLINK routines under RSX are completely different than
those under DOS. Files stored (DYSET) under one system cannot be
brought back (DYLINK) under the other.

The basic intent of these routines is to allow storage of scope
images. A scope image, or picture, may arise as a result of
considerable work on the part of the scope user interacting with a
program. Simply rerunning the program will not give the same picture,
so it is necessary to store the actual display files. With careful
programming it is also possible to bring together portions of stored
images into a composite image.

The mass storage files may not be modified between the action of DYSET
and DYLINK. Display code normally generated by the graphics system
will survive the DYSET-DYLINK procedure. This includes BLANK'ed
files.

6.1 DYSET ROUTINE

The DYSET routine converts all direct memory references to a relative
form, where the address is relative to the first location of the
display file. Indirect memory references must refer to display files
provided as arguments to DYSET. These references are replaced by a
logical number pointing to the requisite file name. Executable files
have a positive number corresponding to their position in the argument
list, text files a similar negative number. Each executable file is
'labelled' by placing its logical number in the second location of the
file. The text files cannot be so conveniently labeled; the call to
DYLINK must preserve the logical numbers by providing the text file
arguments in the same order. The logical file number approach means
that, in contrast to DOS, no additional display file space is required
to DYSET files.

X-6-l

The possible calling sequences are;

where:

CALL DYSEr (PNAME1(1)~PNAME2(1),~PNAMEN(1»

CALL DYSET (PNAME1(1)v?,~PNAMEN(1)v-l?STR1(1)""STRN(1»

PNAMEI(I) to PNAMEN(I) are
executable code.

display files containing

STRl(l) to STRN(I) are arrays containing text strings.

-1 is a delimiter separating the executable files from the
text strings.

All file arguments are of the usual form FILE(I). It is the user's
responsibility to insure that all files, executable and text,
referenced from the provided executable files, are included in the
argument list. The VT-15 processor must not be allowed to execute a
file in relocated form. The integrity of the entire system is at
stake. DCLOSE and CCLOSE should be called before any call to DYSET.

6.2 DYLINK ROUTINE

The DYLINK routine reverses the action of the DYSET routine. The
calling sequences are:

where:

CALL DYlINK (PNAME1(1),PNAME2(1)"PNAMEN(1»

CALL DYlINK (PNAME1(1)""PNAMEN(1),-1,STR1(1)""STRN(1»

PNAMEI(I) to PNAMEN(l) are the files containing executable
code that are to be linked.

STRI(I) to STRN(l) are the names of the files containing
text information that are to be linked.

-1 is a delimiter separating the executable and text files.

All files specified as arguments to a call to DYLINK must have been
provided as arguments to a single call to DYSET. Otherwise there
might be conflicts in the assignment of logical file numbers. The
list of text files must appear exactly in the order that it appeared
in the corresponding call to DYSET, even if some files are not
referenced by the executable files. This is necessary to maintain the
logical numbers of the text files; note that the text files will
likely have different array names under DYLINK than they had under
DYSET.

It is not necessary that all the PNAME's (executable files) provided
in the call to DYSET be provided in the DYLINK call, or that they
appear in the same order. That is, the user can 'link' a subset of
what he 'set'. It is still necessary that all files which are
referenced by the executable code appear in the argument list to
DYLINK. Again the VT-15 processor cannot execute relocated files. It
is recommended that the files be brought from mass storage, DYLINK'ed,
and only then should the VT-15 be turned on.

If the programmer wishes, for example, to display portions of three
separate stored pictures, he must first bring all the relevant files

X-6-2

into core. (Text files that are not referenced do not have to be
core-resident, but they must appear in the argument string.) Then
DYLINK is called three separate times, once for each group of files
that was DYSET together. At this point the files are equival~nt to
ordinary display files. The COpy routine can be called so that all
files are displayed. Note, however, that no mechanism exists for
passing edit addresses (CNAME's) from one program to the next. In
general the DYLINK'ed files cannot be edited (REPLOT'ed).

6.3 NON-STANDARD DISPLAY FILES

Certain restrictions should be noted if code not generated by the
graphics system is to be passed through the DYSET-DYLINK procedure.
It is not guaranteed that following these restrictions will ensure
success. Try examples of the expected type of non-standard code when
the system is not running important tasks.

The DYSET-DYLINK routines simulate the path of the VT-15 processor
through the display file. This means that non-executable information,
suitably protected with a display jump around it, can be placed in the
display file. Similarly, a character string direct instruction could
refer to a text string contained in the same display file. Again the
text string would require a display jump around it.

Two separate indicators are used to decide what is the end of the
display file. Whichever comes first will be honored. One indicator
is the pointer in the first location of the display file. It is
assumed to hold the difference in location between the last executable
location of the display file, and itself. The second indicator is the
occurrence of a display jump indirect. (Note, however, that the
display jump indirect will not end the file if it is in the third
location of the file, where it is placed in a BLANK'ed file).

As a consequence of the end of file assumption, it is not possible to
have embedded subroutines in display files. The DYSET-DYLINK routines
would stop at the end of the first embedded subroutine, and not
complete the file. It is possible, however, to place non-executable
information at the end of the display file, making sure, of course,
that this information is stored on the mass storage device. The
DYSET-DYLINK routines would stop upon finding the jump indirect at the
end of the file, before acting on the non-executable information.

6.4 PROGRAM EXAMPLE

The program in Figure 6-1 illustrates the use of the DYSET-DYLINK
routines.

X-6-3

c
C EXAMPLE PROGRAM FOR DYSET-DYlINK
r

C

C

lOGICAL IB(6)
DIMENSION lATO(40),lAT1(20),lAT2(20)
DIMENSION NEWO(40),NEW1(20),NEW2(20)
DIMENSION TXT01(2),TXT02(2),TXTN1(2),TXTN2(2)

DATA TXT01(1)vTXTOIC2)/SHI AM ,4HBOXAI
DATA TXT02(1)vTXT02(2)/SHI AM ,4HBOXBI

r INIT THE DISPLAY FILES
C

r
C BOXE
r

r
C BOXA
C

c

LATO(l)=O
LAT1(1)=O
LAT2(1)=O

CALL TEXT (TXT02(1)v9,LAT2(1»
CALL LINE (100,0)
CALL LINE (0,100)
CALL LINE (-100,0)
CALL LINE (0,-100)

CALL LINE (300,Ovl,LAT1(1»
CALL LINE (0,300)
CALL LINE (-300,0)
CALL LINE (0,-300)
CALL COpy (0,LAT2(1»

C A 'MAIN' FILE
C

c

CALL DINITCLATO(l»
CALL PRAMTR (7,Ov6,l,LATO(1»
CALL POINT (20,20)
CALL TEXT (TXT01(1),9)
CAll COpy (lvlAT1(1»
CALL POINT (S34,20)
CALL TEXT (TXT01(1),9)
CAll COpy (0,lAT1(1»

C NOW LEAVE PICTURE ON UNTIL LIGHT PEN HIT
r

20 CAll lTORPB (lPX,lPY,NAME,IB,IW,l)
IF (IW.GT.l) GO TO 20

C
C CLOSE OUT AND DYSET

CALL DCLOSE
CALL DYSET (LATO(1),lAT1(1),LAT2(1),-1,TXT01(1),TXT02(1»

C
r NOW OUTPUT THE 5 FILES TO LUN 5

CALL ENTER (S,lHF,lH1,IEV)
CALL WAITFR (lEV)
J=LATO(l)+l

Figure 6-1
DYSET-DYLINK Example (Sheet 1 of 3)

X-6-4

c

c

c

C

C

WRITE (5) (LATO(I), l=l,J)
CALL CLOSE tS,lHF,lHl,IEV)
CALL WAITFR (lEV)

CALL ENTER (5~lHF,lH2,IEV)

CALL WAITFR (lEV)
.j::::L(.-lTl (:L) +1
WRITE (S) (LAT1(I), I=l,J)
CALL CLOSE (S,lHF,lH2,IEV)
CALL WAITFR (lEV)

CALL ENTER CS,lHF,lH3,IEV)
CALL WAITFR (lEV)
,J::::L(.:IT2 (1) +:1.
WRITE (S) (LAT2(I), I=l,J)
CALL CLOSE (S,lHF,lH3,IEV)
CALL WAITFR (lEV)

CALL ENTER (S,:LHF,lH4,IEV)
CALL WAITFR (lEV)
WRITE (5) (TXT01(1), 1=1,2)
CALL CLOSE (S,lHF,lH4,IEV)
CALL WAITFR (lEV)

CALL ENTER (S,lHF,lHS,IEV)
CALL WAITFR (lEV)
WRITE (5) (TXT02(I), 1=1,2)
CALL CLOSE (S,lHF,lHS,IEV)
CALL WAITFR (lEV)

C NOW GET THEM ALL INTO NEW FILES
c

c

c

CALL SEEK (S,lHF,lHl,IEV)
CALL WAITFR (lEV)
READ (S) j,(NEWO(I+l), I=l,j)
NEI,~O (:I. ;. :::: .. .J
CALL CLOSE (S,lHF,lHl,IEV)
CALL WAITFR (lEV)

CALL SEEK (S,:l.HF,:l.H2,IEV)
CALL WAITFR (lEV)
READ (5) j,(NEW1(I+1), I=1,j)
NEI,IJl (l) ::::,J

CALL CLOSE (S,lHF,lH2,IEV)
CALL WAITFR (lEV)

CALL SEEK (S,lHF,lH3,IEV)
CALL WAITFR (lEV)
READ (5) J,CNEW2(I+l), I=1,J)
NEW2 (1) ::::,J

CALL CLOSE (S,1HF,lH3,IEV)
CALL WAITFR (lEV)

CALL SEEK (S,lHF,lH4,IEV)
Ct-lL.L Wl~ I TFR (lEV)
REI~ID (~5) (TXTN:I. (I), I :::::1. v 2)
CALL CLOSE (5,lHF,:l.H4,IEV)
CALL WAITFR (lEV)

Figure 6-1 (Cant.)
DYSET-DYLINK Example (Sheet 2 of 3)

X-6-S

c

c

CALL SEEK (5v1HFv1H5,IEV)
CALL WAITFR (lEV)
READ (S) (TXTN2(I), 1=1,2)
CALL CLOSE (5,lHFv1HS,IEV)
CALL WAITFR (lEV)

C WE GOT THEM BACK, SO DYLINK
CALL DYLINK (NEW1(1)vNEWO(1),NEW2(1),-1,TXTN1Cl)vTXTN2(1»

C
C AND TURN ON THE TUBE

CALL DINIT (NEWO(l»
c
C WAIT FOR LIGHT PEN HIT TO EXIT

30 CALL LTORPB (LPX,LPY,NAME,IB,IW,l)

r
r EXIT

IFCIW.GT.l) GO TO 30

STOP
END

Figure 6-1 (Cant.)
DYSET-DYLINK Example (Sheet 3 of 3)

X-6-6

CHAPTER 7

VT-15 HANDLER

This chapter provides a brief description of the external interface of
the RSX VT-15 handler. The handler is designed for the VT-15 scope
and will not handle I/O for other devices. The user calls to the
handler are made via GET's and PUT's. In general, PUT's are used to
issue VT-15 lOT's, and GET's are used to obtain status and
'interrupts' from the light pen, push buttons, etc.

The handler occupies 2000 octal locations for a one scope
configuration, and 2400 octal locations for two scopes or more. In
addition to the GET and PUT previously mentioned, the I/O handler
honors DETACH, ATTACH, HINF, ABORT, and DISCONNECT & EXIT. The HINF
function returns a value of 13 octal.

Paragraph 7.3 of this chapter also deals with the use of both the
handler and the FORTRAN package from a MACRO program and includes an
example program.

7.1 DESCRIPTION OF PUT

The format of the PUT CAL:

I
I

CAL PUTCAL IT HE CAL IS ISSUED TO THE CAL PARAMETER
IBLOCK AT ADDRESS PUTCAL

I SOMEWHERE IN THE
PUTCAL 3100

CODE IS THE CONTROL BLOCK
ICODE FOR THE PUT FUNCTION

EV
UNIT
PUTTAB

I

IADDRESS OF THE EVENT VARIABLE
ILOGICAL UNIT NUMBER? USUALLY 24-27
IADDRESS OF CONTROL TABLE

I AND SOMEWHERE ELSE IN THE CODEy THE CONTROL TABLE
PUTTAB TYPE ICODE FOR TYPE OF PUT

ARG IADDITIONAL ARGUMENT? OPTIONALv
/ / DEPENDING ON WHAT KIND
/ I OF PUT IS BEING ISSUED

The following is a list of the legal types of PUT functions and their
action:

TYPE 0 - requests that the VT-15 handler stop the VT-15 processor
associated with the scope specified by the provided LUN. The stop is

X-7-1

accomplished by the handler issuing a 703044 or 703444. Use this
function with care if there are two scopes on the VT-15 processor,
since it will turn off both scopes.

TYPE I - requests that the VT-15 handler resume operation of the VT-15
processor associated with the scope specified by the provided LUN.
When the VT-15 processor is stopped, it remembers its PC, and can be
continued (resumed) from that location. The handler issues a
703024(703424) to set the initial conditions, and then a
703064(703464) to resume execution.

TYPE 2 - requests that the handler place a subroutine call to the
address provided in the optional argument of the argument table in the
handler VT-15 display loop. The VT-15 processor is then started in
that display loop, and will call the provided address as a subroutine.
(This CAL is issued by the DINIT routine.) The image shown by the
called code will be displayed on the scope specified by the provided
logical unit number (LUN). Note that while the user provided IFILE(I)
to the graphics system, it then passes the address of IFILE(2) to the
handler.

TYPE 3 - requests that the handler place a subroutine call to the
provided address in the display processor loop. Again the VT-15 is
started at the top of the display loop (even if already running). The
image will be shown on the scope specified by the provided LUN, and
the other scope (if present) on the same VT-15 processor. (This CAL
is issued by CINIT.)

TYPE 4 - requests that the subroutine linkage established by the last
TYPE 2 PUT be removed. This request is honored only if that PUT was
issued from the partition of the present CAL. If this is the last
subroutine in the display loop, the VT-15 processor is stopped. (This
call is issued by DCLOSE.)

TYPE 5 - requests that the subroutine linkage established by the last
TYPE 3 PUT be removed. This request is honored only if the linkage to
be removed is to the partition of the present CAL. If this is the
last subroutine in the display loop, the VT-15 processor is stopped.
(This PUT is issued by CCLOSE.)

TYPE 6 - requests that the argument provided as the optional argument
be used as the SIC (set initial conditions) word the next time this
VT-15 processor is started or resumed. Prior to starting the display,
the lOT 703024 or 703424 is issued to establish various initial
conditions. See the GRAPHIC-15 Reference Manual for a description of
the lOT instruction bits.

TYPE 7 - requests that the VT-15 processor be started at the address
supplied as the optional argument. This allows the user to circumvent
the display loop in the VT-15 handler.

WARNING

Very short display files
intensities executed without
damage the scope phosphor.

at high
SYNC can

Now that the handler is no longer in the display execution loop, the
user now has the responsibility of either running in SYNC (place a

X-7-2

236000 (octal) in the display loop) or maintaining the display file at
an appropriate size and intensity. (This CAL nullifies the effect of
all type 2 and type 3 PUTs previously issued to this VTIS processor.)
The user also has the responsibility of shutting down the scope I
software when he is done. .

7.2 DESCRIPTION OF GET

The format of the GET CAL to the RSX system is as follows:

CAL GETCAL IISSUE A CAL TO THE CAL PARAMETER
IBLOCK AT ADDRESS GETCAL

~.,/

I SOMEWHERE ELSE IN THE CODE, CAL PARAMETER BLOCK
GET CAL 3000 IFUNCTION CODE FOR A GET

EI.)

LINIT
CJETTI~B

IADDRESS OF EVENT VARIABLE
IUNIT NUMBER OF SCOPE
IADDRESS OF CONTROL TABLE

I AND SOMEWHERE ELSE IN THE CODE, CONTROL TABLE
GET TAB CODE leODE FOR THE TYPE FO GET

GBUF .. /(iDDF:EHS OF (~)JUFFEF;~ FOR {IF:GUi\'jEi\!T~:;

/
I SOMEWHERE ELSE
GBUF ()

IOPTIONAL ARGUMENT

IBUFFER OF 2-10 LOCATIONS FOR
IARGUMENTS AND DATA
IBACK AND FORTH. DEPENDS ON TYPE

The following is a list of the legal types of GET functions and a
brief description of their action:

Type 7 - This type is discribed first, because types 0 to 6 are
subsets of type 7. The third word of the control table (GETTAB+2)
describes which interrupts are to be acted on and what status is to be
returned in the argument buffer on an interrupt. The first word of
the argument buffer is returned with this descriptor word with only
those bits set for which an interrupt actually occurred. This means
that an information receiving routine, separate from the requesting
routine, can determine which interrupt occurred and which status words
are being returned. The returned status words are then placed in
order of increasing bit number in the argument buffer after the
leading descriptor word. Ifa staus word is omitted in the bit
specifications, no open word is left in the argument buffer. The
arguments are packed from the top down.

Bits 0 to 4 of the word describe which interrupts are to be acted on:

Bit 0 is the internal stop interrupt.

Bit I is the push-button interrupt.

Bit 2 is the light-pen interrupt.

Bit 3 is the edge-flag interrupt.

Bit 4 is the external stop interrupt.

XVM/RSX VIB X-7-3 September 1976

WARNING

The code modification routines request
external stops from the VT-15 handler.
See the GRAPHIC-IS Reference Manual for
a more complete description of these
interrupts.

Bits 5-11 (decimal) describe what status words are to be returned in
the argument buffer:

Bit 5 returns a word containing (left-justified) a bit for the
state of each push button.
Bit 6 returns the X-position of the beam.
Bit 7 returns the Y-position of the beam.
Bit 8 returns the display program counter.
Bit 9 returns READ-STATUS 1.
Bit 10 returns READ-STATUS 2.
Bit 11 returns the NAME-REGISTER.

See GRAPHIC-IS Reference Nanual for a description of READ-STATUS I and 2.

TYPE 0 - reads all of the status registers immediately without waiting
for an interrupt.

TYPE 1 - waits for an internal stop interrupt, and returns all status
registers when one happens.

TYPE 2 - waits for a push button interrupt, and returns all registers
when that happens.

TYPE 3 - waits for a light pen interrupt and returns all status
registers.

TYPE 4 - waits for an edge interrupt and returns all registers.

TYPE 5 - waits for an external stop interrupt and returns all
registers.

TYPE 6 - waits for light pen or push buttons.
buttons, X-position, Y-position, and NAME-REGISTER.
the LTORPB routine.}

It returns push
(This is used by

TYPE 10 - (octal) performs TRACK'ing. The initial positive integer X
and Y positions are placed in the first two words of the argument
buffer. When the scope user signals an end of TRACK'ing by generating
a push button interrupt, the final X and Y positions are returned into
the first two words of the argument buffer.

TYPE 11 - is not implemented at present.

TYPE 12 - returns into the first word of the buffer the address of the
subroutine in the handler (for the provided scope unit) to enable the
light pen. Normally, the light pen is activated by this routine when
the user has issued a GET that requests a light pen interrupt. In the
user display code, instead of the hardware instruction to enable the
light pen, is a DJMS* to this subroutine. In this way, the light pen
is enabled only in those portions of the display file that the user
wishes, and only when a GET on the light pen (usually an LTORPB in the
FORTRAN environment) has been issued.

X-7-4

7.3 MACRO PROGRAMMING

If the MACRO user wishes to issue calls to the
routines, he must simulate the calling sequence.
the FORTRAN call is:

CALL LINE (IX,IY,INT,MAIN(l»

Then the corresponding MACRO call is:

~GLOBL LINE
JMS* LINE
JMP ~+5

+DSA IX
~DSA IY
.DSA INT
MAIN

FORTRAN callable
If, for instance,

If a variable is to be floating point instead of integer, the calling
sequence is the same, but the variable is two core locations in
floating point format. If MAIN is to be provided instead of MAINel),
the argument would remain MAIN. With the original VPR.32 MAIN would
require .DSA MAIN as an argument.

A user may also write his own graphics code, run under
protect-relocate, and call the handler for I/O functions. In this
case, he assumes the responsibility of relocating those addresses in
graphics code that reference memory. This is best explained by the
example in Figure 7-1. If the user runs in executive mode, ignoring
both the graphics package and the handler, the coding techniques are
exactly those described in the GRAPHIC-IS Reference Manual. This last
technique is not recommended, since I/O rundown cannot be done in a
reasonable manner.

The following program shows the use of the handler and code relocation
under protect-relocate:

X-7-S

I
I MACRO EXAMPLE CORRESPONDING ROUGHLY
I TO THE FOUR SQUARE FORTRAN EXAMPLE
I
I GRAPHICS EQUALITIES
DJMS=640000
DJMPI=620000
CHARS=40000
I
I SQUARE SUBROUTINE
I
so 0

CSQR
I
I
I

420144
424144
430144
434144
SQ

I MAIN FILE
I
MAIN

CTXT

CCSQ

CCSQ1

CCSQ2

CCSQ3
CMR
I

/

o
140144
144144
200021
STR
200020
140764
144310
SQ
141440
144310
sa
140764
145274
sa
141440
145274
sa
MAIN

/tX=100 DECIMAL
/+Y=100 DECIMAL
I-X
/-y
/MUST RELOCATE VT-1S MEMORY
/REFERENCES BECAUSE WE'RE RELOCATED
/AND IT'S NOT

/SET Y=100
/SET X=100
/SET SCALE=1
/RELOCATE TEXT STRING REFERENCE
/SCALE=O FOR SQUARES
/SET Y=500
/SET X=200
/CALL TO SQUARE MUST BE RELOC'ED
/SET Y=800
ISET X=200
/AGAIN RELOC IT
/Y=500
IX=700
lAS BEFORE
IY=800
/X=700
/FINAL CALL TO SQ SUBROUTINE
/RETURN JUMP FROM MAIN

/ FIRST THE ONE TO SYSTEM TO FIND
/ OUT WHAT OUR PARTITION BEGINNING
I ADDR IS
/
WHRCAL 26

WHREV
o
o
WHRBEG

WHRBEG -1
-1

/
/

Figure 7-1
MACRO Programming Example (Sheet 1 of 3)

X-7-6

/ PUT CAL
I
PUTCAL

PUT TAB

I

3100
PEV
30
PUTTAB

MAIN

/ GET CAL
/
GETCAL 3000

GEV
30

GET TAB

GBUF

I

GET TAB

GBUF
o
o
o
o
o
o
o
o

I WAITS FOR ABOVE CAL'S
I
WATWHR 20

WHREV
I
I
WATPUT 20

PEV
I
I
WATGET 20

GEV
I
I EVENT VARIABLES
I
WHREV 0
PEV 0
GEV 0
I
I TEXT STRING
STR .ASCII IHERE ARE 4 SQUARES/
I
I FIRST WE HAVE TO RELOCATE ALL VT-15
I MEMORY REFERENCES
I
I FIND OUT WHERE WE ARE
I
START CAL

CAL
LAC
SPA
HLT

WHRCAL
WATWHR
WHREV

IRETURNS PARTITION ADDR.
IWAIT FOR COMPLETION
IIF POSITIVE OK

IHALT ON ERROR

Figure 7-1 (Cont.)
MACRO Programming Example (Sheet 2 of 3)

X-7-7

/
I RELOCATE RETURN JUMP FROM SQUARE SUBROUTINE
I

I

LAC
TAD
AND
TAD
DAC

WHRBEG
CSQR
(17777
(DJMPI
CSQR

ISTART OF PARTITION
IADD IN RELATIVE ADDR.
ITRUNCATE TO 13 BITS
lOP CODE JUMP INDIRECT
lAND INTO PLACE

I AND SAME FOR TEXT STRING REFERENCE
I

LAC WHRBEG IADDR. OF PARTITION START
TAD CTXT IADD RELATIVE TO START
AND (17777 IVT-IS HAS 13 BIT ADtiR
TAD (CHARS lOP CODE FOR CHARACTER STRING
DAC CTXT IPLACE IT

I
I AND FOR FOUR CALLS TO SQUARE
/

LAC WHRBEG
TAD CCSQ
AND (17777
TAD (DJMS ISUBROUTINE CALL OP CODE
DAC CCSQ 14 TIMES FOR 4 COPIES
DAC CCSQl
DAC CCSQ2
DAC CCSQ3

I
I AND RETURN FROM MAIN T() HANDLER
/

LAC WHRBEG
TAD CMR
AND (17777
TAD (DJMPI
DAC CMR

I
/ PUT ALT-MODE IN TEXT STRING
I

LAC STR+7 lEND OF 4 TWO-WORD PAIRS
AAC 372 IALT-MODE SHIFTED UP ONE
DAC STR+7

I
I AND THE PUT TO CALL OUR 'MAIN' FILE
I

CAL PUT CAL I
CAL WATPUT IWAIT FOR COMPLETION
LAC PEV IEVENT VARIABLE
SPA
HLT

I
/ NOW LEAVE PICTURE RUNNING~ WHILE
I WAITING FOR A PUSH BUTTON
I

CAL GETCAL
CAL WATGET IWAIT FOR COMPLETION
LAC GEV
SPA
HLT
CAL (10 IEXITv WHICH WILL CAUSE HANDLER

I
I TO TURN OFF TUBE IN OUR PARTITION

.END START Figure 7-1 (Cont.)
MACRO Programming Example (Sheet 3 of 3)

X-7-8

CHAPTER 8

WRITING TABLET HANDLER

The writing tablet returns X-Y coordinate pairs to the user program.
The pen emits a spark; the time that it takes the sound of the spark
to reach microphones at the side of the tablet gives the X-Y
coordinates of the pen. When the pen is pressed firmly on the tablet
surface, it will emit a spark (assuming that it has been enabled). It
is also possible to initialize the pen to issue a continuous series of
sparks.

The modes of operation of the writing tablet are most easily described
when there is only one tablet. In mode zero, the continuous series of
sparks is not initialized, only single point data from pressing the
pen upon the tablet (pen data) is returned to the program. In mode
one (any nonzero mode setting), the pen is initialized to spark
continuously to provide continuous tracking. Both the single point
data and the continuous tracking data are returned (appropriately
labelled) to the user program.

When two users must be simultaneously serviced (a maximum of
possible), operation is more complicated. A mode zero user
that his pen starts to emit a continuous spark (necessary to
some mode one user); only the pen data will be returned to
zero program. A mode one user may find that his data rate is
when another user of any type is being serviced.

8.1 GETBLT ROUTINE

four is
may find

service
the mode

halved

The GETBLT routine is called by the FORTRAN user to obtain an X-Y pair
from the writing tablet. The calling sequence is:

where:

CALL GETBLT (LUN,MODE,ARRAYC,IEV])

LUN is an integer expression describing which logical unit
is to be referenced.

MODE is an integer expression, defining the mode of
operation, as described above.

ARRAY is a three member integer array into which are
returned the data and a type indicator.

lEV is an integer event variable.

X-8-1

Pen data is indicated by a zero word in the first location of ARRAY.
A value greater than zero indicates continuous data obtained at full
speed; a value less than zero, half speed. The second location
contains the X coordinate, and the third location contains the Y
coordinate. The coordinate data range in value from 0 to 1023
decimal.

lEV is handled in a manner identical to RSX calls such as ENTER, SEEK
etc. In the general case lEV must be provided, and the calling
program must issue a WAITFR to insure that the read has occurred
before the data is used. If the program has controlled the timing in
some other way, the lEV does not have to be provided as an argument to
GETBLT.

8.2 HANDLER INTERFACE

The writing tablet handler honors a GET CAL to obtain the writing
tablet data. The handler is designed for the writing tablet, and will
not handle I/O intended for other devices. In addition to the GET
CAL, the handler honors DETACH, ATTACH, HINF, ABORT, DISCONNECT & EXIT
and CLOSE. The HINF function returns a value of 23 octal. The
handler requires a partition of 1000 octal locations in the first 32K
of core. The format of the GET CAL:

TABGET 3000
EV
LUN
CNTL

I

ISYSTEM CODE FOR GET
IEVENT VARIABLE ADDRESS
ILOGICAL UNIT NUMBER
ICONTROL TABLE ADDRESS

I AND SOMEWHERE IN CORE THE CONTROL TABLE
I
CNTL MODE IMODE~ ZERO, OR NON-ZERO

ARRAY IARRAY INTO WHICH TO GIVE DATA
I
I AND THE ARRAY, FOR FORTRAN IT IS THE PROVIDED ARRAY
I IN THE FORTRAN PROGRAM~ FOR MACRO IN CORE
I SOMEWHERE
I
ARRAY
RETX
RETY

o
o
o

IDATA TYPE
IRE TURN X VALUE
IRETURN Y VALUE

Figures 8-1 and 8-2 illustrate the use of the writing tablet GETBLT
routine.

X-8-2

c
C TEST PROGRAM TO SHOW TRACKING WITH THE WRITING TABLET
C
c NOTE THAT A FAINT 'D' WILL APPEAR TO THE RIGHT OF THE 'P'
C WHEN THE PROGRAM IS RUNNING IN CONTINUOUS DATA MODE.
C WHILE THE REPLOT IS TAKING PLACE, THE GRAPHICS SYSTEM PLACES
C A JUMP OVER THE CODE TO BE MODIFIED. IF THE VT-15 PROCESSOR
C HAPPENS TO EXECUTE THAT JUMP~ THE 'D' WILL NOT HAVE A SET-POINT.
C THE BEAM REMAINS POSITIONED AFTER THE 'P', SO THAT IS WHERE
C THE 'D' WILL BE PLACED.
C
C
C
C
C
C
r
C

c

THE PROGRAM CAN DEAL WITH THIS BY MOVING THE BEAM
OFF-SCREEN PRIOR TO THE EDITED SET POINT. THE 'EXTRA' 'D'
WILL THEN NOT BE SEEN. A CONSIDERABLE IMPROVEMENT CAN BE OBTAINED
BY ASSEMBLING VPR.XX WITH THE QEDIT ASSEMBLY PARAMETER.
WHEN THE SCOPE IS NOT RESTARTED FOR EACH EDITr THE JUMP IS
EXECUTED FAR LESS FREQUENTLY.

LOGICAL IB(6)
DIMENSION MAIN(100)~ITAB(3)

r ARBITRARY LUN SLOT FOR TABLET
LUN=28

r
C START UP MAIN FILE

MAIN(l)=O
CALL DINIT (MAIN(l»

C
C SET UP A 'P' ON THE SCREEN TO FOLLOW PEN DATA
C HITS FROM THE WRITING TABLET
C
C FIRST THE BEAM POSITION; ALLOW FOR EDITING

CALL POINT(250,250rOvMAIN(1),IEP)
c
C HARDWARE SCALE OF 1 FOR BOTH CHARACTERS

CALL PRAMTR (1~1)

C
C SINGLE CHARACTER COMMAND FOR A 'P'

CALL ANY(~120,1)
c
C NOW SET UP A 'D' ON THE SCREEN TO FOLLOW CONTINUOUS
C DATA HITS FROM THE TABLET
C
C THE BEAM POSITION, AGAIN SETTING UP FOR LATER EDIT

CALL POINT (750v750vO,MAIN(1)vIED)
c
C SINGLE CHARACTER COMMAND FOR A 'D'

CALL ANY (1104,1)
C
C HERE IS THE MAIN LOOP
C
C FIND OUT PRESENT STATE OF PUSH BUTTONS

44 CALL GETPSH (rB)
C
C IF LAST BUTTON IS ON, EXIT

IF (IB(6» GO TO 99
c

Figure 8-1
Tracking With Writing Tablet (Sheet 1 of 2)

X-8-3

C SET UP DATA MODE 0 AS A DEFAULT
MODE=O

c
C I~ FIRST BUTTON ON, THE DATA MODE SHOULD BE NONO

IF (IB(l» MODE=1
C
C GET DATA FROM TABLET

CALL GETBLT (LUN,MODE,ITAB,IEV)
C
C WAIT FOR COMPLETION OF REQUEST

CALL WAITFR (lEV)
C
C CHECK WHETHER RETURNED DATA IS PEN DATA

IF (ITAB(l)~EQtO) GO TO 55
C
C

r
c

C
C

55
C
r

IT WAS CONTINUOUS DATAr SO MOVE THE 'D'
CALL REPLOT (4,ITAB(2),ITAB(3),O,IED)

BACK TO TOP OF LOOP
GO TO 44

WAS PEN DATA, SO MOVE THE 'P'
CALL REPLOT (4,ITAB(2),ITAB(3),O,IEP)

RETURN TO LOOP TOP
GO TO 44

C EXIT HERE
99 STOP

END

Figure 8-1 (Cont.)
Tracking With Writing Tablet (Sheet 2 of 2)

X-8-4

r
r ~
C

r
r

C
C

C
C
C
C

r
C

C
C

C
C

C
C

C

1

:\
L

PROGRAM TO INPUT AN ARBITRARY CURVE

LOGICAL IB(6)
DIMENSION MAIN (3100),ITABC3)

START UP MAIN FILE
MAIN(1)=O
CALL DINIT (MAIN(l»

FIRST TIME THROUGHv DON'T WAIT ON BUTTONS
GO TO 2

MAIN LOOP, DO WE GET ANOTHER CURVE?
WAIT FOR USER TO DECIDE
UNLESS PUSH BUTTON SIX SET, CONTINUE

CALL LTORPB (LPX,LPY,NAME,IB,IW,l)
IF (IB(6» GO TO 99

RE-INIT THE MAIN FILE
MAIN(1)=0

MAKES POINTS BRIGHTER SO THEY WILL SHOW
CALL PRAMTR (2,6,MAIN(1»

GET 1500 POINTS, OR STOP WHEN PEN PUSHED DOWN
DO 33 IC=1,1500

GET THE NEXT POINT
22 CALL GETBLT (28,l,ITABvIEV)

C WAIT
CALL WAITFR (lEV)

r
C IF PEN DATA, STOP GETTING POINTS

IF CITAB(l).EQ.O) GO TO 77
C
C REGULAR DATA, CHECK TO SEE IF FAR ENOUGH FROM
C LAST. OTHERWISE WE COULD OVER-INTENSIFY.
r

IT=IX-ITAB(2)
C
C CHECK FOR DIFFERENCE OF THREE RASTER UNITS

IFCIT.GT.2) GO TO 66
IFCIT.LT.-2) GO TO 66

C
C X DIDN'T MOVE ENOUGH, CHECK Y

IT=IY-ITAB(3)
IFCIT.GT.2) GO TO 66
IFCIT.GT.-3) GO TO 22

r
C GOT A POINT FAR ENOUGH AWAY. SAVE ITS CO-ORDINATES
C FOR THE CHECK THE NEXT TIME THROUGH

66 IX=ITAB(2)
IY=ITAB(3)

c
C ADD THE DATA POINT TO THE FILE

Figure 8-2
Inputting With Writing Tablet (Sheet 1 of 2)

X-8-5

C 1 ... ClOP CONTF~()I...

33 CONTINUE
('"

C TURN OFF PEN WHILE WAITING
77 CALL CLOSE (28)

C
C GO WAIT FOR USER TO DECIDE

GO TO :l
C
C EXIT HEI:(E

99 STOP
END

Figure 8-2 (Cont.)
Inputting With Writing Tablet (Sheet 2 of 2)

X-8-6

CHAPTER 9

GETTING ON THE AIR WITH XVM/RSX GRAPHICS SOFTWARE

The RSX distribution tapes contain seven graphics source files. These
are:

File

VT.nn SRC

VW.nn SRC

VPR.nn SRC

CIRCLE SRC

ROTATE SRC

DYS.nn SRC

TBL.nn SRC

Description

VT15 Display Processor I/O handler

VW15 Writing Tablet I/O handler

FORTRAN-callable graphics primitive routines

Circle approximation routine

Axis rotation routine

DYSET/DYLINK routine

Routine allowing FORTRAN code to access the
writing tablet

To use either the VT15 or VW15 handler under RSX, the appropriate
source file must be assembled, task built and installed in the system.
General directions for these operations are in the System Installation
Guide. Assembly parameters for both handlers are in Appendix B of
Pa~t III of this manual. For additional information, refer to section
9.1 and Appendix D of this part.

9.1 CONSOLE DIALOGUE •
The console listing in Figure 9-1 shows an example procedure for •
installing graphics into an RSX system. The slashes C/) and text
following are comments for the purposes of the manual and will not
appear at the console. It is assumed that the user does not have •
floating-point hardware. Installation of the writina tablet handler
is not shown. An expanded version of the typed FORTRAN program is
provided in Figure 9-2.

In the dialogue presented, the exact version numbers of the modules
and the exact program sizes may not match those obtained by every
user; however, the overall flow remains accurate.

XVM/RSX V1B X-9-1 September 1976

• I MCR>DTC TTO lA30 300 ITEll SYSTEM WHAT KIND OF TERMINAL
MCR>ADV VTO
MCR>ADB VWO
MCR)I=<CP

TYPE UNITS "NAME(BASE,SIZE)"

PARTITION
>10.6(75400,2400)

TYPE N TO EXIT

RCF OK!
MCF:>
/
/
I
I
1
XVM/RSX VIBOOO MULTIACCESS
6/4/1976 :1.5:30
o USERS ALREADY LOGGED IN

flOG INTO TDV, TYPICALLY AT
ISOME OTHER TERMINALv BY
ITYPING CONTROL T.

SPECIFY DISK TYPECRKvRP OR RF), UNIT AND UFD><VTX>
<VTX> UFD CREATED
TDV>ASG 19 DTO
TDV>FIN .LIBRX BIN
TDV>FIN CIRCLE BIN
TDV>FIN ROTATE BIN
I
I
1
I
I
TDV>FIN VT.21 BIN
TDV>FIN VPR.32 BIN
TDV>FIN DYS.03 BIN
TDV>FIN VW.03 BIN
TDV)FIN TBL.02 BIN
TDV>TKB
TASK BUILDER V5A
LIST OPTIONS
>EXM,SZ
NAME TASK
>VT ••• II>

SPECIFY DEFAULT PRIORITY
>1
DESCRIBE PARTITION
)10.6
/

IBI:::ING IN FILES
IBRING IN THE NON-FLOATING POINT LIBRARY
IBINARY OF CIRCLE ROUTINE
lAND r~()TATE.

IIF RUNNING WITH FLOATING POINT, BRING IN
IINSTEAD .LIBFX BIN,CIRCLE SRC,ROTATE SRC. THEN
ICOMPILE CIRCLE AND ROTATE (USE F4F).

IBRING IN THE VT HANDLER BINARY
IBRING IN THE PRIMITIVES BINARY
lAND RELOCATION ROUTINES
lAND OF VW TABLET HANDLER
10F GETBLT FORTRAN CALL FOR TABLET
ITASK BUILD HANDLER
ITERMINATE WITH ALT-MODE TO TKB!

IMUST BE EXEC MODE;SZ OPTIONAL

IHANDLERS HAVE .'S AT END OF NAME

11/0 HANDLERS MUST HAVE 1
lIN FIRST 32K; MUST BE AT LEAST 2400

ICAN REASSMBLE HANDLER :I. SCOPE (2000)

Figure 9-1
Simulated Console Listing (Sheet 1 of 3)

XVM/RSX V1B X-9-2 September 1976

DESCRIBE SYSTEM COMMON BLOCKS
:::. /NONE, SO JUST HIT ALT-MODE
DEFINE RESIDENT CODE
>VT.21 /HANDLER BINARY JUST READ IN
DESCRIBE LINKS & STRUCTURE
> /NO OVERLAYS, JUST HIT ALT-MODE
VT.21 51000-53320 02321

COF~E REa' D
51000-53320 02321

TDV>INS VT.... /INSTALL TASK IMAGE IN SYSTEM
TDV>EDI /CALL EDITOR TO TYPE IN PROGRAM
EDITRSX V19A

INPUT
C
C
C
C

33

99

EDIT

/EXTRA CARRIAGE RETURN TO INPUT

TO DISPLAY 'HI'

LOGICAL IB(6)
DIMENSION IFILE(100),TXT(2),ICL(2)
DATA TXT(1)/5HHI /
ICL(1)=t231374
INT::::4
LARGE::::O
IFI LE <1,) ::::0
CALL ANY(ICL(1),1,IFILE(1»
CALL PRAMTR (3,LARGE,INT,IFILE(1),IEDIT)
CALL POINT (250,250)
CALL DINIT (IFILE(1»
CALL TEXT (TXT(1),2)
CALL LTORPB (LPX,LPY,NAME,IB,IW,l)
IF (IW.LT.2) GO TO 33
IF (IB(6» GO TO 99
IF (IB(1» INT::::INT+l
IF (IB(2» INT::::INT-l
IF (IB(3» LARGE=LARGE+1
IF (IB(4» LARGE=LARGE-l
IF (INT.LT.O) INT=O
IF (INT.GT.7) INT=7
IF (LARGE.LT.O) LARGE=O
IF (LARGE.GT.15) LARGE=15
CALL REPLOT (2,3,LARGE,INT,IEDIT)
GOT TO 33
STOP
ENII /EXTRA CARRIAGE RETURN

/FOR EDIT MODE
>Cl.OSE TESTF SRC
EDITRSX V19A

/CLOSE OUT WITH NAME FOR FILE

)E /IMPORTANT, MUST EXIT FROM EDITOR

Figure 9-1 (Cont.)
Simulated Console Listing (Sheet 2 of 3)

XVM/RSX V1B X-9-3 September 1976

I

TDV>FOR BL._ TESTF
I
I
/
TDV>TKB
TASK BUILDEF~ V5A
LIST OPTIONS
>BKR,NFP"SZ
I
NAME TASK
>HELLO
SPECIFY DEFAULT PRIORITY
>300
DESCRIBE PARTITION
>TDV
DEFINE RESIDENT CODE
> TESF , VPR • ~52
I
I
DESCRIBE LINKS & STRUCTURE

TESTF 00020-00531
VPR.32 00532-02564
STOP 02565-02600
SPMSG 02601-02724
.FP 02725-02726

CORE REQ'D

00512
02033
00014
001::.~4
00002

00000-02726 02727

IDO NOT SPECIFY EXTENSION

IIF FLOATING POINT USE 'F4F' NOT 'FOR'

INOW TASK BUILD THE EXAMPLE PROGRAM

IBANK MODE NECESSARY FOR FORTRAN" NO FLOATING
IPOINT, SIZE OPTIONAL

ICAN BE ANY UNUSED NAME

IEXACT VALUE UNIMPORTANT

IGENERALLY THE ONLY ONE BIG ENOUGH

IMUST TASK BUILD WITH PRIMITIVES, AND
IWHATEVER ADDITIONAL (CIRCLE, ROTATE,,)
IROUTINES ARE CALLED BY THE FORTRAN PROGRAM

IJUST AN AlT-MODE

ISTANDARD VT ASSIGNMENT
ISTEP 1 FOR EXECUTION

TDV>XQT HELLO ISTEP 2 I
TDV>ASG 24 VT
TDV>CON HELLO

TDV>OFF IBUTTON #6 EXITS PROGRAM; LOG OFF
LOGGING OFF MULTIACCESS AT 16:07

Figure 9-1 (Cont.)
Simulated Console Listing (Sheet 3 of 3)

XVM/RSX V1B X-9-4 September 1976

This page intentionally left blank

XVM/RSX V1B X-9-5 September 1976

9.2 FULL FORTRAN EXAMPLE

Figure 9-2 is the commented version of the FORTRAN program referenced
in the console example above:

C THE TEXT 'HI' IS DISPLAYED ON THE SCREEN
C
C (LEFTMOST) TO INCREASE INTENSITY PUSH BUTTON *1
C TO DECREASE INTENSITY PUSH BUTTON *2
C TO INCREASE SCALE (SIZE) PUSH BUTTON *3
C TO DECREASE SCALE PUSH BUTTON *4
C IS A NO-UP PUSH BUTTON *5
C (RIGHTMOST) TO EXIT PUSH BUTTON *6
C

LOGICAL 18(6)
DIMENSION IFILE(100)vTXT(2)vICL(1)

C
C SET UP THE 'HI' FOR THE TEXT CALL

DATA TXT(1)/5HHI I
C
C PUSH BUTTON CLEAR FOR THE ANY CALL

ICL(1)=*231374
C SCOPES 0 AND 2 ONLY
C
C DEFAULT SIZE AND INTENSITY

INT=4
LARGE=O

C
C ZERO TOP-OF-FILE POINTER

IFILE(l)=O
C
C START BUILDING THE DISPLAY FILE

CALL ANY(ICL(1),1,IFILE(1»
C THIS SO BUTTONS NEVER LIGHT
C
C SET UP SIZE AND INT. GET BACK EDIT ADDRESS

CALL PRAMTR(3,LARGE,INT,IFILE(1),IEDIT)
C
C ABSOLUTE BEAM POSITION, 250 ARBITRARY.

CALL POINT(250,250)
C
C START UP THE VT-15

CALL DINIT(IFILE(l»
C ~OTE WE CAN HAVE SAME FILE MAIN AND SUBPICTURE
C ALSO, VT-1S CAN EXECUTE DURING FILE-BUILD
C
C NOW PLACE THE TEXT STRING

CALL TEXT (TXT(1),2)
C
C NOW WAIT FOR INTERRUPT, THEN GET CONTROL

33 CALL LTORPB (LPX,LPY,NAME,IB,IW,I)
C
C CHECK IF PUSH BUTTON INTERRUPT

IF(IW.LT.2) GO TO 33

Figure 9-2
FORTRAN Example To Display 'HI' (Sheet 1 of 2)

X-9-6

c
C IS TIME TO EXIT

IF(IB(6» GO TO 99
C
C ADJUST INTENSITY AND SCALE

IFCIB(l» INT=INTtl
IF(IB(2» INT=INT-l
IF(IB(3» LARGE=LARGEtl
IF(IB(4» LARGE=LARGE-l

c
C PREVENT OUT-OF-BOUNDS VALUES

IFCINT.LT.O) INT=O
IFCINT.GT.7) INT=?
IFCLARGE.LT.O) LARGE=O
IFCLARGE.GT.15) LARGE=15

r
r EDIT NEW ONES OVER OLD

CALL REPLOT C2v3vLARGEvINT,IEDIT)
C
C GO WAIT FOR NEXT

GO TO 33
c
C EXIT ON LAST BUTTON

99 STOP
END

Figure 9-2 (Cent.)
FORTRAN Example To Display 'HI' (Sheet 2 of 2)

x-9-7

APPENDIX A

ERROR MESSAGES

A.l ERROR MESSAGES FORMAT

Error handling under the RSX graphics systerr. is minimal. If an error
is detected, the user task is aborted and a messaqe is printed on the
user terminal. Other tasks in the system are unaffected: The message I
format is:

where:

*** BTASKN B VPR ADDR MMMMMM CODE NNNNNN •

TASKN is the task name.

MMMMMM is the address of the user call to the graphics
system.

NNNNNN is an error code (refer to section A.2).

The 100000 bit of the address is set if the user is runninq in user
mode. The address in this case is relative to the start of the task
partition. A task build gives a memory map of the modules in the user
partition (including FORTRAN COMMON blocks). A FORTRAN compilation
with the BLO option provides a complete listing (BLS provides
locations of variables and numbered statements). This information
allows the user to associate the returned address with an individual
call to the graphics system. If the error is in a DYSET or DYLINK
call, DYS replaces VPR in the error message.

A.2 ERROR CODES

A negative error code is an RSX negative event variable for an I/O
error. This error presumably occurred when the handler was doing I/O.

An error code of 0 indicates that the user provided an incorrect
number ot arguments in his call.

An error code of I indicates that the user provided an illegal
selection code (first argument) to a PLOT or REPLOT call.

An error code of 2 indicates that the user provided an illegal bit in
the PRAMTR (or corresponding PLOT or REPLOT) hardware feature
selection argument.

XVM/RSX V1B X-A-1 September 1976

An error code of 3 indicates that the user provided a CNAME with a
value of zero. (It is probable that the CNAME was used to attempt an
edit without first filling it with an address.)

An error code of 4 indicates that the last user call would have
extended a display file across an absolute 8K boundary. The display
file is left as it was prior to the erroneous call. Locations beyond
the end of the display fil~ may, however, have been modified.

An error code of 5 indicates that a user-provided count of display
elements (TEXT, GRAPH or ANY) was impossible (usually occurs with a
negative count).

An error code of 6 indicates the detection of any DYSET/DYLINK error,
except those involving 8K boundaries. (8K boundary errors are
indicated by error code 4.)'

An error code of 7 indicates that a text string extended across an
absolute 8K boundary.

X-A-2

APPENDIX B

SUMMARY OF CALLS

CALL ANY (ARRAY(l),N[,PNAME(l)[vCNAMEJ])

CALL BLANK (PNAME(l»

Ct11...L eCL.OSE

CALL CINIT (IFILE(l»

CALI... CIRCLE (R,THETA,GAMMA,DEG,ISUB)

CALL. COpy (RST,PNAME1(1)[,PNAME(1)[~CNAME]])

Cf::1L.1... DCLOSE
bOLE-II:.

CALL. BELETE (CNAME)
.,. :::: fiCJ C 'Y',::' (f" N ~ M I::' ,
.. ~~ ... 'li"III._)

CALL DINIT (MAINCl»

CALI... DYL.INK (PNAME1(1),PNAME2(1)~vPNAMEN(l»

CALI... DYLINK (PNAME1(1),~"PNAMEN(1),-1,STR1(1)'v"STRN(1»

CAL.L DYSET (PNAME1(1),PNAME2(1)"PNAMEN(1»

CALI... DYSET (PNAME1(1)""PNAMEN(1),-1,STRl(1)""STRN(1»

CALL GETBL.T (LUN,MODE,ARRAY[,IEV])

CALL GETPSH (lBT)

CALL GRAPH (DATA(1),N[,A[,PNAMEC1)[,CNAMEJJJ)

CALL LTORPB (IX,IY,NAMRvIBT,IWRCH,l)
I=LTORPBCIX,IY,NAMR,IBT,IWICH[,WAITJ)

1)P \...0 1
CALI... PLOT (O,RST,PNAME(l)[,CNAME])

/

CALL PLOT ~l,IX,IY[,INT[,CNAMEJJ)
I

CALL, PLOT/ (2,SELECT,tJALUEI:: ,eNAME])
--_ .. j

X-B-l

CAll PLOT (2,SELECT,VAlUE1,VALUE2,yy,[,CNAME])

CALL PLOT (3,STR(1),N[,CNAMEJ)

CALL PLOT (6,ARRAY(1),N[,CNAME])

CALL POINT (IX,IY[,INT[,PNAME(l)[,CNAMEJJ])

CALL PRAMTR (SELECT,VALUE[,PNAME(l)[,CNAMEJJ)

CALL PRAMTR (SELECT,VALUE1,VALUE2",[,PNAME(1)[,CNAME]])

CALL REPLOT (O,RST,PNAME(l),CNAME)
I=REPLOT(O,RST,PNAME(l),CNAME)

CALL REPLOT (l,IX,IY,INT,CNAME)
I=REPLOTC1,IX,IY,INT,CNAME)

CALL REPLOT (2,SELECT,VALUE1,VALUE2"CNAME)
I=REPLOT(2,SELECT,VALUE1,VALUE2"CNAME)

CALL REPLOT (3,STR(1),N,CNAME)
I=REPLOT(3,STR(1),N,CNAME)

CALL REPLOT (4,IX,IY,INT,CNAME)
I=REPLOT(4,IX,IY,INT,CNAME)

CALL REPLOT (5,DATA(1),N,A,CNAME)
I=REPLOT(5,DATA(1),N,A,CNAME)

CALL REPLOT (6,ARRAY(1),N,CNAME)
I=REPLOT(6,ARRAYC1),N,CNAME)

CALL RSETPT (IX,IY,CNAME)
I::"HGETPT (IX, 1"(, CNtll"iE::O

CALL SETPT (IX,IY[,CNAME])

CALL TEXT (STR(l),N[,PNAME(l)[,CNAMEJJ)

CALL UNBLNK (PNAME(l»

C(II ... L tJTUN IT (N)

X-B-2

MNEMONIC

A

ARRAY

CNAME

COS A

DATA

APPENDIX C

MNEMONICS COMMONLY USED IN GRAPHICS CALLS

DEFINITION

An integer variable or constant which indicates which axis
to increment for GRAPH subroutine:

o = increment X, set Y to data values.

nonzero = increment Y, set X to data values.

In the GETBLT call, a three member integer array into which
are returned the X-Y coordinate data and a type indicator.
In the ANY call, the starting address of an integer array of
VT-15 display command code provided by the user and
represented as a subscripted variable.

An integer variable that identifies the edit address (first
location) which contains the display command(s) placed by
the call in which CNAME is an output argument.

Floating-point cosine of angle of rotation. Used in ROTATE
call.

Address which contains the array of integer data points to
be plotted by the GRAPH subroutine. DATA is represented as
an integer subscripted array.

DEG Chord length of circle, expressed in Floating-point degrees
of arc. Used in CIRCLE call.

GAMMA

IA

IB

IBT

IC

Used in CIRCLE call to define end point of circl~ or arc.
Expressed in floating-point degrees counter-clockwise from
the positive X axis.

If nonzero indicates rotation about Z axis. Used in ROTATE
call.

If nonzero indicates rotation about Y axis. Used in ROTATE
call.

A six-element integer array which will contain
TRUE or FALSE for each of the six pushbuttons.
argument of the LTORPB and GETPSH calls.

a logical
An output

If nonzero indicates rotation about X axis. Used in ROTATE
call.

X-C-I

IDX

IDY

lEV

INT

IWICH

IX

IY

An integer number or variable which represents in raster
units the amount the CRT beam is to be displaced from its
current position in a horizontal direction. This quantity
is signed to indicate the direction of displacement (i.e., +
= move beam right and - = move beam left). Used in LINE
call.

Same as IDX except that the indicated displacement is made
in a vertical direction and the directions indicated by the
sign are: + = move beam up and - = move beam down. Used in
LINE call.

In the GETBLT call, an integer event variable.

This integer variable indicates if the CRT beam movement is
to be visible, (INT = nonzero) to draw a line, or invisible
(INT = 0). Used in LINE, POINT, and PLOT calls.

Output argument in LTORPB call. Set to 1 for light pen hit;
set to 2 for push button hit; set to 3 for simultaneous
light pen and push button hit.

Used in POINT and SETPT calls to indicate the
position to which the beam is to be moved.
coordinate of light pen hit in a LTORPB call.

Used in POINT and SETPT calls to indicate the
position to which the beam is to be moved.
coordinate of light pen hit in a LTORPB call.

absolute X
Absolute X

absolute X
Absolute Y

LUN In the GETBLT call, an integer expression describing which
logical unit is to be referenced.

MODE

N

NAMR

PNAME

In the GETBLT call, an integer expression defining the mode
of operation. MODE=O, single point data; MODE=nonzero,
continuous tracking.

Used by GRAPH subroutine to indicate the number of points to
be plotted. Used by TEXT subroutine to indicate the number
of characters to be displayed. Used by ROTATE subroutine to
indicate number of data points to be rotated. Also used in
ANY call to indicate the number of elements of the array
specified that are to be moved into the display file.

An integer which represents
register at the time of a
values ranging from 0 to 127).
LTORPB call.

the contents of the name
light pen hit (r~stricted to
An output argument of the

The display files generated by the graphic subpicture
routines are stored in dimensioned integer arrays specified
by the user. The integer variable PNAME specifies the first
element of the array into which commands generated by a
particular call are to be stored. PNAME is always
represented as a subscripted variable (e.g., PNAME(l))
except in the CIRCLE call. It will contain the length of
the file and is the variable by which the file is referenced
in later manipulations.

X-C-2

PNAMEI

R

RST

SELECT

SINA

STR

THETA

VALUE

WAIT

x

y

z

NOTE

The variable PNAME may be dropped from the statement
argument lists; if dropped, the last given value
for PNAME will be assumed.

In a COpy call, the address of a subpicture display file
called PNAME and is represented as a subscripted variable
{ e • g ., PNAME (I)) •

Used in CIRCLE call to specify radius of a circle in raster
units.

In the COpy call, this variable indicates whether the
hardware SAVE/RESTORE option is to be used to save display
parameters through the subroutine call. The value 0
indicates that the SAVE/RESTORE option is not to be used; a
nonzero value indicates that it is to be used.

An integer number which identifies a hardware feature (s) to
be specified in the call (e.g., I = scale, 2 = intensity, 4
= light pen, and 8 = blink). Used in the PRAMTR call.

In the ROTATE call, represents the floating-point sine of the
angle of rotation.

In the TEXT call, identifies the dimensioned real array
which contains the string of characters to be displayed in
lOPS ASCII (Hollerith) form (five 7-bit characters per
word). Represented as a subscripted variable (e.g.,
STR (I)) •

Beginning point of circle or arc, expressed in floating-point
degrees counter-clockwise from the positive X axis. Used in
CIRCLE call.

A single integer variable or constant that indicates the
value or setting specified for a selected display feature in
the PRAMTR call.

An integer constant or variable, which, if nonzero, handler
waits for an LTORPB interrupt before returning to user.

In the ROTATE call, the address of the array of floating-point
X positions to be rotated.

In the ROTATE call, the address of the array of floating-point
Y positions to be rotated.

In the ROTATE call, the address of the array of floating-point
Z positions to be rotated.

X-C-3

APPENDIX D

ASSEMBLY PARAMETERS

The VTIS handler recognizes the assembly parameters SCOPEO, SCOPEI,
SCOPE2 and SCOPE3. If no assembly parameters are specified, the
handler is assembled to handle all four scopes. If any assembly
parameter is specified, the resulting binary handles only those scopes
specified. SCOPEI cannot be specified if SCOPEO is not specified and
SCOPE3 cannot be specified if SCOPE2 is absent. The VTIS handler
requires 2400 (octal) core locations, except for a one-scope
configuration, which requires 2000 (octal) locations.

WARNING

When assembling the source file of the
VTIS handler, the user must specify at
least as many VTIS units as there are
listed in the Physical Device List.

The FORTRAN-callable routine VPR.nn recognizes the assembly parameter
QEDIT. If no parameters are provided, the FORTRAN package restarts
the VTIS each time a code modification call is issued. If QEDIT is
specified, this restart is not issued. The restart is present as a
safety feature primarily to guard against editing different length
groups over COpy calls. If speed is essential and complex editing
operations are not being done, this safety feature can be removed by
assembling VPR.nn with the QEDIT feature.

VPR.nn recognizes the assembly parameter SHRTAV. If this parameter is
defined, the output display code consists of one location of short
arbitrary vector when the absolute magnitude of both IDX and IDY is
less than 32.

The other graphics programs do not have assembly parameters.
tablet handler VW.nn requires 1000 (octal) locations.

Writing

The following is an example of an assembly of the VTlS handler for one
scope:

TDV>MACRO PBLX_VT.23 /PARAMETERS,BINARY,LIST,CREF
MAC-INPUT PARAMETER DEFINITIONS
SCOPEO=l
TnV> /AFTER CARRIAGE RETURN,CONTPOL D,ALTMODE

XVM/RSX VIB X-D-l September 1976

•

I

I
•

•

Allocation of space, 2-3
Altmode character, 2-6
ANY subroutine, 2-15, 3-6
Arguments, 2-2
Arrays, 2-1, 2-15

size of, 2-2
ASCII string, 2-5
Assembly parameters, 0-1

Beam position, 3-2
BLANK subroutine, 2-13
BLINK, 2-8
Boundaries of core, 2-2

CCLOSE routine, 5-3
Characters, nonprinting, 2-6
CINIT routine, 5-3
CIRCLE subroutine, 2-16

example, 2-19
CNAME, 2-2, 2-4, 2-5, 3-4
Code modification routines, 4-2
Console dialogue, 9-1
Console listing, example, 9-2
COpy subroutine, 2-6, 3-2
Core boundaries, 2-2

DASH (dashed lines), 2-8
DCLOSE routine, 5-3
DELETE routine, 4-2
DINIT routine, 5-2
Display file, 2-2, 2-3
Display parameter settings, 2-10
DYLINK routine, 6-2
DYSET-DYLINK, example, 6-4
DYSET routine, 6-1

Embedded subroutines, 6-3
End-of-file pointer, 2-2
Error messages, A-I
Examples

CIRCLE subroutine, 2-19
console listing, 9-2
OYSET-DYLINK, 6-4
FORTRAN, 9-6
four-square display, 2-18
MACRO programming, 7-6

INDEX

Examples (cont.)
PRAMTR settings, 2-25
ROTATE subroutine, 2-26
sine wave, 2-20, 2-21, 2-22, 2-23
writing tablet, 8-3

Filename format, 2-2
Flicker, 2-9
FORTRAN example, 9-6
Four-square display example,

2-18

GETBLT routine, 8-1
GET functions, 7-3
GETPSH routine, 5-5
Getting on the air, 9-1
GRAPH subroutine, 2-11, 3-5

Hardware, 1-2
Hollerith data statements, 2-5

Input-output routines, 5-1
Integer event variable

(lEV), 8-1
INTENSITY, 2-7

Light pen, 5-3
LIGHT PEN ENABLE, 2-8
LINE subroutine, 2-4, 3-3
LTORPB routine, 5-3

MACRO programming, 7-5
example, 7-6

Main display file routines, 3-1
Mnemonics, C-l
Modifying VT15 code, 4-1

NAME REGISTER, 2-8
Nonprinting characters, 2-6
Nonstandard display files, 6-3

XVM/RSX VIB X-Index-l September 1976

INDEX (CONT.)

OFFSET, 2-8

Phosphor damage, 2-9
Picture flickering, 2-9
PLOT routine, 3-1, 3-2
PNAME, 2-3
POINT subroutine, 2-14, 3-5
PRAMTR settings example, 2-25
PRAMTR subroutine, 2-7, 3-4
PUT functions, 7-1

Relocation routines, 6-1
REPLOT routine, 4-2
Restrictions, 2-1
ROTATE, 2-8
ROTATE subroutine, 2-16

example, 2-26
RSETPT routine, 4-3

SAVE-RESTORE option, 2-7
SCALE (picture size), 2-7
Scope images, storage of, 6-1
SETPT routine, 3-1, 3-2
Sine wave program example, 2-20,

2-21, 2-22
Sine wave program written for

single display file, 2-23

Source files, 9-1
Space, allocation, 2-3
Square brackets ([]) usage, 2-5
Storage of display file, 2-2
Storage of scope images, 6-1
Storage overhead, 2-3
Subpicture routines, 2-1
Subroutine calling conventions,

2-2
Summary of routines, B-1
SYNC (synchronization), 2-9

Text string rotation, 2-8
TEXT subroutine, 2-5, 3-4
Tracking, 5-2
TRACK routine, 5-2
Truncation, 2-5, 2-11, 3-2

UNBLNK subroutine, 2-14

VT15 handler, D-l
VTUNIT routine, 5-2

Writing tablet example, 8-3
Writing tablet handler, 8-1

XVM/RSX VIB X-Index-2 September 1976

	10_00
	10_01-01
	10_01-02
	10_02-01
	10_02-02
	10_02-03
	10_02-04
	10_02-05
	10_02-06
	10_02-07
	10_02-08
	10_02-09
	10_02-10
	10_02-11
	10_02-12
	10_02-13
	10_02-14
	10_02-15
	10_02-16
	10_02-17
	10_02-18
	10_02-19
	10_02-20
	10_02-21
	10_02-22
	10_02-23
	10_02-24
	10_02-25
	10_02-26
	10_02-27
	10_02-28
	10_02-29
	10_02-30
	10_03-01
	10_03-02
	10_03-03
	10_03-04
	10_03-05
	10_03-06
	10_04-01
	10_04-02
	10_04-03
	10_05-01
	10_05-02
	10_05-03
	10_05-04
	10_05-05
	10_05-06
	10_05-07
	10_05-08
	10_05-09
	10_05-10
	10_05-11
	10_05-12
	10_05-13
	10_06-01
	10_06-02
	10_06-03
	10_06-04
	10_06-05
	10_06-06
	10_07-01
	10_07-02
	10_07-03
	10_07-04
	10_07-05
	10_07-06
	10_07-07
	10_07-08
	10_08-01
	10_08-02
	10_08-03
	10_08-04
	10_08-05
	10_08-06
	10_09-01
	10_09-02
	10_09-03
	10_09-04
	10_09-05
	10_09-06
	10_09-07
	10_A-01
	10_A-02
	10_B-01
	10_B-02
	10_C-01
	10_C-02
	10_C-03
	10_D-01
	10_Index-01
	10_Index-02

