
XVM/RSX-PART VIII
BATCH PROCESSING

CHAPTER 1

INTRODUCTION TO BATCH PROCESSING

1.1 INTRODUCTION

RSX supports an extensive set of batch-processing functions. The
Batch Processor (BATCH) is a specialized program that has many of the
characteristics of an I/O handler. RSX allows the use of BATCH as an
extension of on-line task development (TDV) under MULTIACCESS or as a
total system environment.

BATCH offers fast, efficient data-processing by enabling an operator
to stack multiple jobs to be executed in sequence. BATCH is
file-oriented, device-independent, and suitable for use in both
card-oriented environments and terminal job-entry/remote-access
operations. It has been designed to work well in small configurations
without sacrificing the high throughput and short turnaround that
large systems require.

Some BATCH commands allow each job to invoke all TDV functions. Other
BATCH commands also provide various control and message logging
functions.

Job accounting and account summaries in the Batch System are handled
by the TDV functions ACI and ACD. Control lines are listed on the
line printer and, for additional backup, an operator log is
maintained. BATCH also provides:

Job header and trailer pages

Full FORTRAN, MACRO and loader facilities, including overlays

System protection from undebugged jobs

Convenient operator communication and control

SLIP, a sophisticated file editing and updating program with
search capabilities (described in Part VII of this manual)

1.2 SAMPLE BATCH SEQUENCE

Figure 1-1 illustrates a sample set of commands read during a
batch-processing operation. The figure shows the commands in card
format, but they could also have entered (into a disk file) from a
terminal.

XVM/RSX.VIB VIII-1-1 September 1976

INTRODUCTION TO BATCH PROCESSI~G

(data

($XQT PGM 17

L$CON PGM 17

($BTK PGM

($FOR BL +- PGM

($MSG COMPILE AND GO JOB 1--_"'"

$JOB 35

($EOF

Figure 1-1 Batch-Processing Example

In this example, the $JOB line provides accounting information and
initiates the job.

$MSG is a message line.

The program source file is already on disk. If it is not, the
following sequence is also needed prior to compilation of the FORTRAN
source file:

$DECK file name

source program

$EOF

$FOR requests FORTRAN compilation of PGM. The options specified in
this example include a binary file (B) and a listing (L).

$BTK calls the Basic Task Builder to build a task with the same name
as the binary file that serves as input to BTK. BTK builds the task
to run in a partition named TDV, gives the task a default priority of
400, and builds the task to run in user and page modes. The task
cannot contain overlays. (If nonstandard options are desired, the
user must call TKB, a more flexible version of the Task Builder.)

$CON stores the task on a user disk. $XQT executes it from that disk.

XVM/RSX V1B VIII-1-2 September 1976

INTRODUCTION TO BATCH PROCESSING

When the task is running, it is capable of reading formatted data
(lOPS ASCII) from the BATCH input device. The data section is
terminated by $EOF (end-of-file). After the task completes execution,
it exits. Should the task fail to exit, the operator can force it to
do so by using the OPR MCR Function task (see Chapter 4).

$END indicates the end of the job file.

XVM/RSX VIB VIIl-I-3 September 1976

CHAPTER 2

INVOKING AND USING BATCH

2.1 JOB FILE SUBMISSION

Before BATCH is invoked, job files must be submitted to it by means of
the QJOB directive, which can be issued by:

TDV function QUEUE

BATCH command $QUEUE, which calls TDV function QUEUE

User-written programs in FORTRAN or MACRO

In each case, the QJOB directive supplies the following information:

Name of the job file (if the device is file oriented)

LUN from which the file is to come

Maximum time that the job can run

Job class

Whether the operator is required

Whether sequencing is required

Whether the file is to be deleted after execution

Time of job submission (supplied by the system)

Memory use

Use of hold mode

Whether this is a priority job

Login device, unit and UFD

2.2 INVOKING BATCH PROCESSING

BATCH is invoked by the operator using the MeR command:

MCR>OPR BATCH

BATCH initializes itself and waits.
BATCH scans the job file request

XVM/RSX VIB VIII-2-1

Following an OPR GO command,
list, selects the job file that

September 1976

INVOKING AND USING BATCH

passes certain logical tests and has the highest priority, and begins
processing that job file. After that job file has been processed,
another one is usually selected. The operator can use special aPR
commands to supervise BATCH operations. Because BATCH loads and
waits, the aPR GO command is needed before the first job file is
executed.

2.3 CONTROL LINES

Only control lines (lines beginning with $) have meaning to BATCH.
Other lines, which contain data, FORTRAN source text or other text,
are passed on to the tasks called by control lines. Control lines
fall into two groups:

1. Special BATCH commands.

2. Commands that call TDV Function tasks.

Table 2-1 lists commands of the first type. Chapter 3 describes them
in more detail.

Command

$JOB options

$MSG message

$PAUSE message

$LOG message

$EJECT

$

$END comment

$QUIT

$ERROR comment

Table 2-1
Special BATCH Commands

Effect

JOB identifier; initiates a job.

Prints a message on both the operator console
(operator log) and listing device.

Temporarily suspends execution of the current
job and requests that BATCH pause. To continue
processing the job, the operator uses an aPR GO
command. $PAUSE is printed on both the operator
console and listing device.

Prints a message on the listing device only.

Prints a form feed on the listing device.

Prints a dollar sign (echoes the command line)
on the listing device.

End-of-job-file; prints a job trailer page on
the listing device and notes end-of-job-file on
the operator log.

Similar to $END.
end-of-file.

Equivalent to a physical

Requests that BATCH process subsequent records
if the job is killed. $ERROR is ignored unless
this condition exists. $ERROR is printed on the
listing device.

All TDV Function tasks can be used with BATCH.
manual describes these functions in detail.
preceded by $ when used with BATCH.

Part VII of this
TDV commands must be

XVM/RSX VIB VIII-2-2 September 1976

INVOKING AND USING BATCH

2.4 TERMINATING BATCH PROCESSING

BATCH continues to run jobs until the operator exits with an OPR EXIT
command. This command causes BATCH to exit after completing the
current iob file. If BATCH finishes processing all waiting job files,
it remains idle until more job files are submitted or until the
operator exits.

XVM/RSX VIB VIII-2-3 September 1976

CHAPTER 3

SPECIAL BATCH COMMANDS

3.1 $JOB: BEGIN A JOB

Each job must begin with a $JOB line. BATCH ignores all lines until
it recognizes a $JOB line, but the TDV function QUEUE requires that
the first line of a job file be a $JOB line.

$JOB lines have the format:

Form:

Where:

Example:

$JOB nn[T=time] [DEL] [HLD] [C=class]
fM=memory] [SEQ] [OPR] [FRC] [UFD=Rmn<ufd>]

nn is a user account number in the decimal
range I to 99

time is an integer in the decimal
range 1 to 1023, representing the
maximum number of minutes that the
job can run

class is an integer in the decimal range
o to 7

memory is an integer in the decimal range
1 to 128, representing memory use
(in K)

m is F, K or P, representing the type
of disk:RF DECdisk, RK cartridge
disk, or RP disk pack, respectively

n is the unit number of the disk
ufd is the name of the user file directory

$JOB 15 UFD=<EAG> SEQ

$JOB line options are the same as those for the QUEUE command.

A job file should contain only a single job; however, multiple jobs
can be included in a single job file by beginning each job with a $JOB
line. The second and subsequent $JOB lines terminate the previous job
and begin a new job. All jobs in the same job file are executed using
the same set of option flags. Only the first occurrence of a
particular option is recognized. Subsequent occurrences of an option
are ignored.

BATCH does not process $JOB line options. The $JOB line is passed to
a Job Startup Processor (JOB •••) that determines the user account
number. All options in the $JOB line are processed by the TDV
function QUEUE when it queues the job request. (Refer to Part VII of
this manual for a description of QUEUE.) QUEUE scans the job file,

XVM/RSX VIB VIII-3-1 September 1976

SPECIAL BATCH COMMANDS

recognizes $JOB lines, processes any options found and encodes the
option information into the QJOB directive.

On recognizing a $JOB line, BATCH first terminates the previous iob,
if any. BATCH then initiates the new job and invokes JOB This
task determines the user account number from the $JOB line, prints a
job header page and logs the start of a new job on the operator
console. The user account number is saved in the BATCH accounting
file for use by the BATCH Job Termination Processor (END ...).

The job time limit ($JOB T=time option) restricts the length of
that a job file can run. When that amount of time has been used,
job is terminated, unless the system manager grants an extension.
execution time is real time (clock time) less any time spent on
following functions:

1. Printing job header and trailer pages.

2. Waiting for the operation to proceed from a $PAUSE.

3. Waiting for a TDV partition to become available
"PARTITION(S) BUSY" message).

time
the
Job
the

(l'DV

XVM/RSX VIB VIII-3-2 September 1976

SPECIAL BATCH COMMANDS

3.2 $MSG: SEND A MESSAGE

The $MSG line is used to communicate with the operator. BATCH
processes it internally. The entire record is printed on both the
operator console and listing device. $MSG records can be interspersed
with both data records and control or TDV command lines.

$MSG lines have the format:

Form: $MSG message

XVM/RSX V1B VIII-3-3 September 1976

SPECIAL BATCH COMMANDS

3.3 $PAUSE: SUSPEND BATCH

The $PAUSE line delays processing of the
resumes it. BATCH processes the $PAUSE
printed on both the operator console and
records can be interspersed with both data
command lines. Time is not charged to the
resumes the job.

$PAUSE lines have the format.

Form: $PAU[SE] [message]

job until the operator
record internally. It is
listing device. $PAUSE

records and control or TDV
job until the operator

The message normally tells the operator what to do before
line

resuming
makes it processing. Including a message In the $PAUSE

unnecessary to precede the line with a $MSG line.

To resume processing, the operator must issue the aPR GO command.
Because $PAUSE requires operator intervention, BATCH jobs should avoid
using it unless strictly necessary.

XVM!RSX VIB VIII-3-4 Septembr 1976

SPEC tAL BATCH COMMANDS

3.4 $LOG: LOG A COMMENT

$LOG sends a message to the listing device. BATCH processes $LOG
lines internally. They can be interspersed with both data records and
control or TDV command lines.

$LOG lines have the format:

Form: $LOG [message]

XVM/RSX VlB VIII-3-S SepteInber 1976

SPECIAL BATCH COMMANDS

3.5 $EJECT: EJECT A PAGE

$EJECT prints a form fee9 on
$EJECT lines internally.
records and control or TDV
printed.

$EJECT lines have the format:

Form: $EJE[CT]

XVM/RSX VIB

the listing device. BATCH processes
They can be interspersed with both data
command lines. $EJECT lines are not

VIII-3-6 September 1976

SPECIAL BATCH COMMANDS

3.6 $: PRINT A LINE

$ prints a line containinq just a dollar siqn (in column one) on the
listing device. The rest of the printed line is blank. $ lines are
processed by TDV. The $ can be interspersed with only control or TDV
command lines. They cause task termination when interspersed with
data lines.

$ lines have the format:

Form: $

XVM/RSX V1B VIII-3-7 September 1976

SPECIAL BATCH COMMANDS

3.7 $END: END A JOB FILE

$END is usually the last line of a job file.

$END lines have the format:

Form: $END

$END invokes the BATCH Job Termination Processor (END ...). This task
prints a job trailer page, logs the job termination on the operator
console and updates the BATCH accounting file. The $END line is not
printed.

END ..• is invoked whenever a job terminates. Besides a $END line,
job termination is caused by:

End-of-file on input of job file

Appearance of a $JOB line when a job is still in progress

Early termination of a job file because the job file has
exceeded its time limit, because of an error condition or by
action of the operator

XVM/RSX VIB VIII-3-8 September 1976

SPECIAL BATCH COMMANDS

3.8 $QUIT: END BATCH INPUT

$QUIT signifies the end of batch input. It is logically equivalent to
a physical end-of-file. This line is not printed.

$QUIT lines have the format:

Form: $QUI [T]

$QUIT is provided for compatibility with older versions of the Batch
System. Whenever possible, $END should be used as the last line of a
job file.

XVM/RSX VIB VIII-3-9 September 1976

SPECIAL BATCH COMMANDS

3.9 $ERROR: PROCESSING AFTER JOB TERMINATION

The $ERROR record ensures that certain processing occurs even if a job
exceeds its time limit or if the operator stops it by means of the OPR
KILL command. $ERROR has no effect unless one of these conditions
exists. If one does exist, $ERROR:

Restores job status

Causes processing of records that follow $ERROR

Prints the $ERROR line, including any comments, on the
listing device

The location of $ERROR is important.

$ERROR lines have the format:

Form: $ERR [OR] [comment]

The following example illustrates the use of $ERROR. The commands
between $ERROR and $END are obeyed even if the job is terminated by an
OPR KILL command or if the time limit is exceeded before $ERROR is
encountered.

$JOB

$ERROR

$END

$ERROR is ignored if a job is terminated with the OPR STOP command.

XVM/RSX VIB VIII-3-10 September 1976

CHAPTER 4

OPERATOR INTERACTION WITH BATCH

4.1 OPERATOR CONSOLE

The operator console (operator log), is usually assigned during BATCH
operations to the same hard-copy terminal as the device for MCR
command input. The operator invokes BATCH with the command:

MCR)OPR BATCH

When this is done, a line feed is printed on the operator console and
BATCH enters the wait state (see Table 4-l).

As BATCH begins to process a job, it prints a message on the console.
When BATCH finishes processing a job, it prints another message on the
console. These messages are printed by the tasks JOB .•.• and END •.. ,
respectively. The operator also uses the console for the special
operator (OPR) commands described in the following sections.

4.2 OPR COMMANDS AND BATCH STATES

Certain OPR commands give the operator control over batch processing
that is unavailable to users.

BATCH can be in one of the states listed in Table 4-1. The OPR
commands perform various functions, including changing the BATCH
state. Table 4-2 lists the operator commands.

The operator can determine the current BATCH state by invoking OPR
without specifying a command:

MCR)OPR

OPR responds by printing the current BATCH state, a slash (/) and the
state that BATCH will enter following completion of the current job
file. The number of job files queued is also printed.

XVM/RSX V1B VIII-4-1 September 1976

State

Run

Idle

Pause

Wait

Exit

OPERATOR INTERACTION WITH BATCH

Table 4-1
BATCH States

Meaning

If this is printed as the current BATCH state (before
the slash), BATCH is currently executing a job file. If
printed as the next BATCH state, BATCH will continue to
process job files when the current job file is complete.

BATCH is not currently executing a job file.

BATCH is waitinq for an OPR GO command to continue from
a $PAUSE. This state implies that BATCH is executing a
job file.

BATCH will wait between job files. Following completion
of the current iob file, BATCH becomes idle until an OPR
GO or EXIT command is issued.

BATCH will exit following completion of the current job
file.

XVM/RSX VIB VIII-4-2 September 1976

Command

BATCH

SC[HEDULE]

JO[B LIST]

ON

OF [F]

WA [IT]

GO
PR[OCEED]

HO[LD] n [day]

OPERATOR INTERACTION WITH BATCH

Table 4-2
aPR Commands

Effect

Load BATCH

Sets job file selection parameters

Lists queued job files

Indicates that the operator is available

Indicates that the operator is unavailable

Causes BATCH to wait between job files

Causes BATCH to go on to the next job file after
WAIT or continues the job file after $PAUSE

Indefinitely prevents processing of a job file

RE[LEASE] n [day] Releases the job file after HOLD

EX[IT] Causes BATCH to exit after the current job file

FO[RCE] n [day] Forces a job file to run next

CA[NCEL] n [day] Cancels a job file request

CA[NCEL] ALL Cancels all job file requests

TL[ACT]

ST lOP]

KI r LL]

MO [RE] [time]

AB [aRT]

Specifies the action BATCH should take after a
job file exceeds the time limit

Terminates the current iob file

Terminates the current job file

Allows the current iob file to exceed the time
limit

Terminates the current job file

4.2.1 BATCH: Load BATCH

The operator loads BATCH by typing a command in the format:

Form: OPR BATCH

BATCH loads into core, initializes itself and waits. The operator
should set job file selection parameters, using the OPR SCHEDULE
command. The operator should then use the OPR GO command to initiate
job selection and execution.

XVM/RSX VIB VIII-4-3 September 1976

OPERATOR INTERACTION WITH BATCH

4.2.2 SCHEDULE: Set Job File Selection Parameters

SCHEDULE sets the parameters that are used in determining job file
priority. These parameters are read either from a file with extension
SCH (already existing on disk) or directly from the OPR SCHEDULE
command line.

After the operator types the command in the format:

Form: OPR SC[HEDULE]

an asterisk appears on the next line. The
parameters directly or name a file
specifications. To set parameters directly,
them in the format (in any order) :

operator can
containing

the operator

Form: TF=n WF=n CF=n TM=n WM=n CM=n

Where: TF represents the time factor
WF represents the wait factor
CF represents the class factor
TM represents the time maximum
WM represents the wait maximum
CM represents the class minimum
n is a decimal number

Example: TF=5 WF=lO CF=O TM=60 WM=120 CM=O

then set
parameter
supplies

The numbers in the example are typical entries. Section 6.3 explains
the parameters in greater detail.

Instead of setting the parameters in this way, the operator can
respond to the asterisk by entering the name of an existing file. A
scheduling file consists of one line of scheduling parameters in the
format previously given. For example, if the operator types:

*NOON

BATCH looks up NOON SCH. If the file is not there, it prints:

FILE NOT FOUND

If the file is there, it is printed and the parameters that it
specifies are set into the schedule table in BATCH.

In this way, the OPR SCHEDULE command can enter parameters from a
scheduling file, but it cannot create such a file. This must be done
by ordinary editing. The scheduling file can be named for the time of
day that it will be used.

Instead of using the OPR SCHEDULE command, the operator can use a
combination of OPR HOLD and FORCE commands to request that each task
run in turn. This, however, is much less convenient.

XVM/RSX VIB VIII-4-4 September 1976

OPERATOR INTERACTION WITH BATCH

4.2.3 JOB LIST: List Queued Job Files

The operator can request a list of the currently running job file and
the queued job files by typing a command in the format:

Form: OPR JO[B LIST]

If the queue is empty, the message is printed:

NONE WAITING

Otherwise, the BATCH system activity and backlog
including:

are listed,

Job file sequence number (assigned by the QJOB directive)

Day of the month when the job file was queued

Any job characteristics that have been specified, such as
run time, memory required, class, sequencing and operator

Cancelled job file requests are listed with a zero job file sequence
number. These requests are removed from the job file requested queue
when BATCH next selects a job file.

4.2.4 ON: Indicate That The Operator is Available

The operator can indicate availability by typing a command in the
format:

Form: OPR ON

Job files that need operator assistance are not run unless the
operator is at the system. The operator indicates this with the OPR
ON command. When BATCH is loaded, OPR ON is assumed.

4.2.5 OFF: Indicate That The Operator is Unavailable

The operator can indicate unavailability by typing a command in the
format:

Form: OPR OF[F]

This prevents job files that neeq assistance ($PAUSE lines, tape
mounting, special forms, etc.) from being selected for execution.

XVM/RSX VIB VIII-4-5 September 1976

OPERATOR INTERACTION WITH BATCH

4.2.6 WAIT: Cause BATCH to wait Between Job Files

The operator can request that BATCH wait after finishing the current
job file and before starting the next iob file. This command gives
the operator time needed to mount new tapes or to perform other system
functions. It has no effect on the job file currently in progress.

The OPR WAIT command has the format:

Form: OPR WA [IT]

4.2.7 GO and PROCEED: Cause BATCH to Continue

When BATCH is waiting between job files because of an OPR WAIT command
or is pausing within a job file because of a $PAUSE record, operation
is continued by typing a command in the format:

Forms: aPR GO
aPR PR[OCEED]

These two commands are equivalent. OPR treats them identically.
Because BATCH loads in the wait state, it is necessary to use an OPR
GO command before the first job file is executed.

4.2.8 HOLD: Prevent Processing of a Job File

The operator can indefinitely keep a job file from running by typing a
command in the format:

Form: aPR HO[LD] n [day]

Where: n is the job file sequence number (printed by
the OPR JOB LIST command)

day is the day of the month when the job file
was queued (printed by the aPR JOB LIST
command) . It is optional, except when
two or more job files have the same
job file sequence number.

Example: MCR>OPR HOLD 19

4.2.9 RELEASE: Release a Job File After HOLD

To RELEASE a job file that has been prevented from running by a HOLD
command or that had initially been queued with a HOLD specified, the
operator can type a command in the format:

XVM/RSX VIB VIII-4-6 September 1976

OPERATOR INTERACTION WITH BATCH

Form: OPR RE[LEASE] n [day]

Where: n is the job file sequence number (printed by
the OPR JOB LIST command)

day is the day of the month when the job file
was queued (printed by the aPR JOB LIST
command) • It is optional, except when
two or more job files have the same
job file sequence number.

Example: MCR)OPR RE 13 26

4.2.10 EXIT: Cause BATCH to Exit

The operator can request that BATCH exit after finishing the current
job file by typinq a command in the format:

Form: OPR EX [IT]

4.2.11 FORCE: Force a Job File to Run Next

The operator can FORCE a job file to run next by typing a command in
the format:

Form: OPR FO[RCE] n [day]

Where: n is the job file sequence number (printed by
the OPR JOB LIST command)

day is the day of the month when the job file was
queued (printed by the aPR JOB LIST command).
It is optional, except when two or more job
files have the same job file sequence number.

Example: MCR)OPR FORCE 238

4.2.12 CANCEL and CANCEL ALL: Cancel Job File Requests

The operator can cancel a job file request by typing a command in the
format:

Form: OPR CA [NCEL] n [day]

Where: n is the job file sequence number (printed by
the aPR JOB LIST command)

day is the day of the month when the job file was
queued (printed by the aPR JOB LIST command).
It is optional, except when two or more job
files have the same job file sequence number.

Example: MCR)OPR CA 2 1

XVM/RSX V1B VIII-4-7 September 1976

OPERATOR INTERACTION WITH BATCH

The entire job file request queue is cancelled by typing a command in
the format:

Form: OPR CA[NCEL] ALL

All job files and temporary files are cancelled. This command is
useful when, for example, the operator wishes to go to DOS.

CANCEL does not remove requests from the job queue. Requests are
removed by BATCH the next time that it chooses a job file for
execution. At that time, the job file is deleted, if appropriate.

4.2.13 TLACT: Specify Action After Time Limit Is Exceeded

The operator can specify the act jon that BATCH should take when a job
file exceeds its time limit, by typing a command in the format:

Form: OPR TL[ACT] option

Where: option is A, S, K, R or I (explained below)

Example: MCR>OPR TL R

Options A, Sand K stand for abort, stop and kill, respectively.
Normally, TLACT prints a warning message and, one minute later,
terminates the job file in the specified manner. Option R (report)
specifies that only the warning message should be printed. Option I
(ignore) causes time limits to be ignored. Option K should normally
be selected.

4.2.14 STOP: Terminate The Current Job File

The operator can terminate the current job file when the current task
completes by typing a command in the format:

Form: OPR STrOP]

This command allows the current task to complete, then causes BATCH to
skip to the next job file. $ERROR lines are not recognized.

4.2.15 KILL: Terminate The Current Job File

The operator can terminate the current job file by typing a command in
the format:

Form: OPR KI[LL]

XVM/RSX VIB VIII-4-8 September 1976

OPERATOR INTERACTION WITH BATCH

This command allows the current task to complete. BATCH then skips to
the next $ERROR line and resumes normal processing until a $JOB line,
$END line or other job terminato~ is reached. Subsequent iobs in the
same job file are not executed and $ERROR lines in subsequent jobs are
not recognized. If no $ERROR line is found, the action taken is
equivalent to OPR STOP.

If a job has not yet begun execution, the OPR KILL command is
equivalent to OPR STOP ($ERROR is not recognized). OPR KILL is the
preferred way to terminate a job file.

4.2.16 MORE: Allow Extra Processing Time

If a job file exceeds its time limit, the operator can request more
time for it by typing a command in the format:

Form: OPR MO[RE] [time]

Where: time is the decimal number of minutes
to add to the time limit.
If time is omitted, the default
is to double the currrent
time limit.

An OPR MORE command with no argument doubles the time limit. An
argument is taken as decimal minutes and is added to the time limit.
Time limits larger than 262143 seconds (about three days) disable time
limit checking.

The clock starts when the job file starts. After the estimated job
time has elapsed, a warninq message is printed on the operator console
(unless an OPR TLACT I command has been issued). One minute after the
warning message is printed, the action specified in the OPR TLACT
command is performed.

4.2.17 ABORT: Terminate the Current Job File

The operator can immediately terminate a job file by typing a command
in the format:

Form: OPR AB[ORT]

This command is similar to OPR KILL, except that the current task is
terminated immediately.

4.3 ERROR MESSAGES

Errors in OPR commands cause the messages in Table 4-3 to be printed
on the operator console.

XVM/RSX VIB VIII-4-9 September 1976

Message

JOB NOT QUEUED

OPERATOR INTERACTION WITH BATCH

Table 4-3
OPR Error Messages

Meaning

Job file request specified in a FORCE, HOLD,
RELEASE or CANCEL command cannot be found.

ILLEGAL ARGUMENT Error in the specification of a job file request
in a FORCE, HOLD, RELEASE or CANCEL command.

FORMAT ERROR

BATCH NOT
RUNNING

BATCH SYSTEM
ERROR nnn

BATCH ALREADY
ACTIVE

BATCH RESOURCE
FAILURE

TASK NOT
AVAILABLE

TWO JOBS
SAME NUMBER

XVM/RSX VIB

Job file request specification is missing in a
FORCE, HOLD, RELEASE or CANCEL command.

BATCH is not running.

See Appendix B.

BATCH is already running. The command is
ignored.

BATCH is not in the system.

Scheduling task (SC.OPR) is not in the system.

A job file sequence number given in a FORCE,
HOLD, RELEASE or CANCEL command needs a date
specifier.

VIII-4-10 September 1976

CHAPTER 5

SYSTEM MANAGEMENT

5.1 ORGANIZATION OF THE ACCOUNT FILE

BATCH maintains an account file as a disk-resident data set named
"USERS RSX". It maintains both current and historical information on
the use of the RSX system. The file contains the following general
information:

Current user account number

Account period starting date and time

For each account, it also records the number of jobs run and the total
time used.

The file provides space for 100 accounts. Account numbers 1 to 99 are
reserved for users. Account 100 is used by all runs processed with
incorrect $JOB lines. Incorrect $JOB information prevents the
operator log from keeping track of who is using the machine.
Therefore, whenever a job account cannot be determined, the job is
assigned to account 100 and a warning message is printed on the
operator console.

Account numbers are most meaningful when
A block of numbers can be assigned
number within the block can be assigned
that project. This also helps the
individual when a job gets into trouble.

assigned on a project basis.
to the project and a separate
to each programmer/user on
operator contact the proper

The account file is updated by JOB ••• and END ..•. In addition, two
TDV commands are provided to facilitate account file management: ACI
and ACD. ACI permits account file creation, initialization and
modification. ACI records the date and time in the account file when
the file is initialized (at the start of the current accounting
period). ACD prints the contents of the account file, showing all
accounts that have been used. Because ACD does not modify the account
file, the file can be printed as often as desired.

XVM/RSX V1B VIII-S-1 September 1976

SYSTEM MANAGEMENT

5.2 ACI: INITIALIZE THE ACCOUNT FILE

The ACI TDV Function task initializes the account file for batch
processing. It permits the system manager to create an account file,
to edit the account file, or to reset all usage data to zero at the
beginning of a new accounting period. The current time and date are
set according to the system. It is advisable to verify that they are
correct or to change these numbers using the ETI MCR Function task.
ACI may be used only when BATCH is not running, otherwise, errors can
result from simultaneous account file updates.

The ACI TDV command has the format:

Form: ACIV

Example: TDV>ACI

ACI responds with a request for a password:

ENTER PASSWORD:

The correct password in the system as distributed is RSX. The system
manager should change this password to suit the processing environment
and to guarantee the integrity of the accounting data. This change
can be made in the source code of ACI, which is written in FORTRAN.

After the password is entered, ACI overprints it and checks its
validity. An invalid password causes ACI to exit. If the password is
correct, ACI continues with the questions that follow.

If no account file currently exists, ACI asks whether one should be
created:

CREATE NEW ACCOUNTING FILE (YES/NO)?

A reply of .INO·I causes ACI to exi t wi th no action taken. A reply of
"YES" causes the account file to be created and initialized. ACI
prints an appropriate message at the completion of each action.

If an account file already exists, ACI asks whether it should be
initialized (i.e., whether all accounts should be reset to zero):

RESET ALL ACCOUNTS (YES/NO)?

A reply of "YES" causes ACI to initialize the account file, print an
appropriate message and exit. A reply of II NO" allows the system
manager to edit individual accounts. ACI asks for an account number:

ENTER ACCOUNT NUMBER TO BE EDITED, OR a TO EXIT:

The user responds with an account number in the range 01 to 100. ACI
prints the current number of runs and the time used (in seconds), then
prints:

ENTER NEW VALUES:

XVM/RSX VIB VIII-5-2 September 1976

SYSTEM MANAGEMENT

The user must type separate lines to enter the revised number of runs
and the revised amount of time used. To keep the current number of
one or both values, the user must still enter two numbers.

The process of requesting an account number and editing the stored
values repeats until an account number of zero is entered, at which
time ACI exits.

ACI uses LUN 10 to access the account file.
stored on the system disk in the RSX UFD.

XVM/RSX V1B VIII-5-3

The file is usually

Septembe~ 1976

SYSTEM ~ANAGEMENT

5.3 ACD: DISPLAY THE ACCOUNT FILE

The ACD TDV Function task permits the system manager to list the
account file. The system manager can then identify the users of the
batch system and the amount of time used by each. ACD overcomes the
need for detailed checking of operator loqs. The ACD summary listing
also allows the manager to evaluate the impact of any system changes.
Listings can be requested as often as desired, because they do not
affect the account file in any way.

The ACD TDV command has the format:

Form: ACDV

Example: TDV>ACD

The summary appears on LUN-16. It lists the following information
concerning the entire account file:

Date and time of the start of the accounting period

Date and time of the end of the accounting period

Total number of jobs processed

Total time used (in seconds)

The summary also gives information on each account actually used, so
only nonzero numbers appear. The summary of each account has the
following information:

Account number

Number of runs during accounting period

Time used (in seconds)

This part of the summary includes information on runs made to invalid
accounts.

ACD uses LUN 10 to access the account file.
stored on the system disk in the RSX UFD.

XVM!RSX V1B VIII-S-4

The file is usually

September 1976

CHAPTER 6

BATCH OPERATIONS

6.1 BATCH SYSTEM ORGANIZATION

The Batch System of XVM/RSX comprises the following components:

The QUEUE TDV Function task (QUE •..)

The Executive QJOB directive

The Batch Processor (BATCH)

The Job Startup Processor (JOB ..•)

The Job Termination Processor (END ..•)

The MCR OPR command (•.. OPR)

The OPR task used to implement the OPR SCHEDULE command
(SC.OPR)

The ACI TDV Function task (ACI •..)

The ACD TDV Function task (ACD •.•)

The names in parentheses are the task names of the respective
components. The following sections provide descriptions of the
individual components and how they interact.

6.1.1 QUEUE TDV Function Task (QUE •••)

The QUEUE command is the main user interface with the Batch System,
providing a convenient mechanism for submitting jobs. QUEUE
determines all of the flags and values that affect job scheduling,
including such items as run time limit, priority class, memory
requirements and operator requirements. This information is obtained
from the QUEUE command line and by scanning the job file for $JOB
lines. For each parameter, the first value found is used. In this
way, the command line overrides $JOB lines, the first $JOB line
overrides the second, and so on. The job information is encoded into
a QJOB directive CPB and the job is submitted to the system.

QUE •.• processes the entire $JOB line, except for the user account
number. BATCH does no $JOB processinq at all. For this reason, when
the NCK option is used with QUEUE, all scheduling options on $JOB
lines are ignored.

XVM/RSX VIE VIII-6-1 September 1976

BATCH OPERATIONS

6.1.2 Executive QJOB Directive

The QJOB directive adds a node to the job queue and copies the CPB
information into it. I/O device specifications are translated from a
LUN number to a device name, unit number and UFD name. This prevents
subsequent LUN reassignments from affecting the job. Finally, a job
file sequence number is assigned. Sequence number 1 is assigned to
the first iob submitted on a particular date, 2 to the second job, and
so on. The sequence number, taken in conjunction with the submittal
date, is a unique job 10. The QJOB directive event variable is set to
the job file sequence number.

6.1.3 Batch Processor (BATCH)

BATCH emulates a user at a terminal. TDV treats BATCH as though it
were an additional unit of the terminal handler.

After selecting a job for execution, BATCH simulates a CTRL/T and
responds to the TDV login prompter. BATCH then enters commands and
data, iust as a user might. The only difference is that BATCH gets
the command and data lines from the job file.

BATCH is controlled by the MCR aPR command. aPR interfaces with BATCH
via a Batch control vector, whose address is stored in SCaM.

BATCH prints several messages (primarily error messages) on the
operator log or listing device. The bulk of the operator log,
however, is printed by JOB ... and END •.. , which also print the job
header and trailer pages. BATCH provides extensive information
describing the job to these tasks. For details of the job information
format, refer to the source code listing of JOB.nn SRC and END.nn SRC.

6.1.4 Job Startup Processor (JOB ...)

JOB ... determines the job account number, stores the number in the
account file, prints the job header page and prints the operator log.
This is done using information provided by BATCH in the form of input
lines that JOB ... reads. One line is an image of the $JOB line, from
which the account number is determined. The format of the other lines
is documented in the source code listing of JOB.nn SRC.

BATCH invokes JOB ... at the beginning of every job. JOB... is
written in FORTRAN to allow easy alteration by the system manager.

6.1.5 Job Termination Processor (END ..•)

END .•. prints the job trailer page, prints the operator log and
updates the account file to reflect the job just run. The account
number of the job is obtained from the account file, where it was
stored by JOB The other information used is provided by BATCH in
the form of input lines that END •.. reads. The format of these lines
is documented in the source code listing of END.nn SRC.

BATCH invokes END ... at the end of every job. END ... is written in
FORTRAN to allow easy alteration by the system manager.

XVM/RSX VIB VIII-6-2 September 1976

BATCH OPERATIONS

6.1.6 MCR aPR Command (•.• OPR)

aPR provides operator control of the Batch System. aPR controls a
table called the' Batch control vector within BATCH. BATCH examines
this table and reacts accordinqly. BATCH stores the base address of
the Batch control vector in an SCaM word.

The functions of aPR are fully described in Chapter 4.

6.1.7 aPR SCHEDULE Command (SC.OPR)

The OPR SCHEDULE command task is an overlay to aPR. The functions of
SCHEDULE are fully described in section 4.2.2.

6.1.8 ACI TDV Function Task (ACI ••.)

ACI allows the system manaqer
account file. The functions
5.2.

to create, initialize and edit an
of ACI are fully described in section

ACI is written in FORTRAN to allow easy alteration by the system
manager.

6.1.9 ACD TDV Function Task (ACD •.•)

ACD displays the contents of the account file. The functions of ACD
are fully described in section 5.3.

ACD is written in FORTRAN to allow easy alteration by the system
manager.

6.2 I/O FUNCTIONS

BATCH implements the I/O functions HINF, READ, WRITE and ABORT.
ATTACH and DETACH are also accepted (the event variable is set to +1),
but are otherwise ignored.

6.2.1 HINF

For HINF, BATCH sets the event variable to +300021 to indicate:

Bit Contents

0 Set to 0 to make the event variable positive

1-2 Set to 3 to indicate an input and output device

3 Set to 0 to indicate a non-directory-oriented handler

4-11 Device unit 0

12-17 Device code 21

XVM/RSX V1B VIII-6-3 September 1976

BATCH OPERATIONS

6.2.2 READ

BATCH satisfies a READ function by using a line from the job file.
The event variable is always set to +2 (as though the request line
were terminated with a carriage return), regardless of the line
terminator. Input lines are restricted to 132 characters. Only the
lOPS ASCII data mode is supported for BATCH input.

In response to a read request from TDV, BATCH always supplies a
control line. The first character of each control line is $. An
exception to this is $EOF, which is considered a data line.
Intervening data lines are skipped (ignored) until a control line is
found.

In response to a read request from any other task, BATCH supplies a
data line. If any task other than TDV attempts to read a control
line, an end-of-file indication is returned and the requesting task is
aborted.

Exceptions to the previous rules are $LOG, $MSG, $PAUSE and $EJECT
lines. Each of these is processed internally by BATCH and can be
intermixed with both control and data lines.

6.2.3 WRITE

BATCH normally satisfies a WRITE function by transmitting output lines
to the listing device. Only the lOPS and Image ASCII data modes are
supported for BATCH output. lOPS ASCII lines are restricted to 132
characters. Image ASCII lines are restricted to 80 characters.
Longer lines are truncated.

A special feature of the BATCH WRITE function allows selected output
lines to be omitted from the listing file. This feature is used to
avoid printing command prompters and other support messages that are
of no value in a BATCH iob listing. TDV uses this feature to avoid
printing command prompters ("TDV);') on the job listing.

Use of the selected-output feature is controlled by the sign bit in
the line buffer header word (the word containing the word-pair count).
If the sign bit is zero (the normal case), the output line is
transmitted to the listing device. If the sign bit is set to one, the
output line is not transmittd to the listing device, and the write
request event variable is immediately set to +1.

When transmitting a line to the listing device, BATCH first copies the
line into an internal buffer. The request event variable is set to +1
when the copy is complete. Listing errors are not returned to the
user task. They are handled by BATCH. BATCH responds to a listing
error by aborting the current task and immediately terminating the
current job file. The error is reported to the Job Termination
Processor (END •..), which prints an error message on the operator
console. END ... also attempts to print a job trailer page containing
the error message.

6.2.4 ABORT

Both abort-single-unit, issued by tasks, and abort-alI-units, issued
by I/O RUNDOWN, are supported.

XVM/RSX VIB VIII-6-4 September 1976

BATCH OPERATIONS

6.3 JOB SELECTION

After initializing itself, BATCH scans the list of iob requests. For
each request that passes certain logical tests, BATCH computes a
"priorityH using a formula given below.

6.3.1 Priority Calculation

Job priority has different implications for batch processinq and for
ordinary RSX scheduling. Listed below are the elements of the
priority calculation. They can vary with each job. All time
parameters are in minutes.

Parameter

waittime

Timelimit

Class

FRCFLG

OPRFLG

Memsiz

SEQFLG

HLDFLG

Meaning

Delay between now and when job was queued.
I

Estimated run time of the job as specified in the
$JOB line, QUEUE command line or QJOB CPB.

A qeneral parameter indicating who is requestinq
the run.

An indicator set to show whether this ;ob must run
next.

An indicator set to show whether this iob needs
operator assistance.

A quantity in the ranqe 1 to 128 indicating the
mlnlmum TDV partition size that must exist when
this job runs.

An indicator set to show that this job cannot run
until previously submitted and sequenced jobs have
run.

An indicator set to prevent this job from running
until cleared by the OPR RELEASE command.

waittime has a maximum value of 1440 minutes, or one day. If a job
has been waiting more than one day, one day is used for Waittime.

Timelimit is evaluated in reverse 10g(2) form:

(10 - 10g(2) (runtime» * Tfactr

so that 1 minute becomes a Timelimit of 10 and 1023 minutes becomes a
Timelimit of O. Tfactr (explained below), therefore, favors the short
job. The log form is used to increase discrimination between jobs
with short run times.

The OPR SCHEDULE command sets the additional parameters below and
should be used when BATCH is first invoked. The same set of values
for these parameters then applies to all jobs.

XVM/RSX VIB VIII-6-5 September 1976

BATCH OPERATIONS

Parameter Meaning

Timmax Longest job to be run at this time of day.

Clsmin Lowest class job to be run at this time of day.

Waitmax Longest time a job should wait, regardless of
characteristics.

Wfactr A multiplier applied to waittime.

Tfactr A multiplier applied to Timelirnit.

Cfactr A multiplier applied to Class.

The OPR ON command sets the Opon parameter while BATCH is running.
Opon is an indicator set to show whether operator assistance is
available.

The loqical tests that follow are performed in the order listed before
BATCH attempts to calculate a priority.

Test

1. HLDFLG set

2. OPRFLG set

3. Memsize>maximum
TDV partition size

4. SEQFLG set

5. FRCFLG set

6. Timelimit>Timmax

7. Class<Clsmin

8. Waittime>Waitmax

Action if True Action if False

Task will not run Test 2

If Opon equals 1, test 3; Test 3
otherwise, task will not run

Task will not run Test 4

If any previously submitted Test 5
and sequenced task has not
run, this task will not
run; otherwise, test 5

Task runs next Test 6

Task will not run Test 7

Task will not run Test 8

Task runs at maximum Task runs at
priority (131071) the priority

computed by
formula

All waiting jobs go throuqh these loqical tests. If none can run, the
tests are repeated after a short delay. A priority is calculated for
each iob that goes throuqh these tests without being rejected or
selected to run next. The formula for computing pritirity is:

Priority

XVM/RSX VIB

(Cfactr * Class)
+
(Wfactr * Waittime/262l44)
+
(Tfactr * Tirnelirnit)

VIII-6-6 September 1976

BATCH OPERATIONS

The priority calculated by this formula must be in the range 1 to
131071. If the formula yields a result of zero, a priority of 1 is
used. If the formula yields a result greater than 131071, the value
131071 is used.

6.3.2 Other Selection Factors

From the job request list, BATCH selects the job request having the
highest priority. If two priorities are the same, the job that has
been waiting longest is favored. The job file name and other
descriptive information is taken from the job queue node. The job is
then run.

6.4 JOB FILES

BATCH assigns a priority to each job file. The job file is the unit
of work submitted by the QUEUE command or QJOB directive. A job file
is a file on file-oriented devices, or a sequence of input lines
(appropriately terminated) on other devices. A job file is terminated
by the first occurrence of an end-of-file indicator, a $END card, a
$QUIT card or an I/O error.

Job files from non-file-oriented devices are normally stacked on a
disk. This function is performed by the QUEUE command. BATCH has
been optimized for this mode of operation.

6.4.1 Multiple Jobs

A job file can contain several jobs by separating them with $JOB
lines. The entire job file is treated as a unit for scheduling and
time-limit purposes. Each job has separate header and trailer pages,
and is separately entered in the account file. If any job in a job
file is terminated abnormally (i.e., for any reason other than reading
a $JOB line), the remaining jobs in the job file are not run.

6.4.2 Printing Control Lines

Most control lines (those with $ as the first character) are printed
on the listing device only. Exceptions to this are $JOB, $END, $QUIT
and $EJECT lines, which are not printed anywhere. The effects of
these lines, however, are visible in job listings and the operator
loq. $MSG and $PAUSE lines are printed on both the listing device and
operator log. Data lines are not printed anywhere.

XVM/RSX VIB VIII-6-7 September 1976

APPENDIX A

BATCH SYSTEM INSTALLATION CHECKLIST

Before installing the Batch System, the system manager must choose
several LUNs and UFDs to be used. Most of these are used by BATCH and
are assembly parameters to module BDRES. Others are specified when
assembling SC.OPR.

BATCH requires two LUNs for its exclusive use, plus a third LUN for
the operator log. The exclusive LUNs are used to access the input and
listing devices. BATCH assigns appropriate devices to these LUNs for
each job file run. LUNs 6 and 7 are normally used for this. The
operator log is normally printed on the MCR terminal via LUN 3. In a
heavily used system, it may be desirable to use a different LUN and
dedicate a terminal printer to the operator loq. LUN assignments are
specified using the JOBLUN, LSTLUN and OPRLUN assembly parameters to
BDRES.

BATCH must know the location of the account file so that appropriate
device assignments can be made for JOB ... and END ...• The account
file device name and unit are specified using assembly parameter
ACCTDEV to BDRES. The UFD is specified using assembly parameter
ACCTUFD. The default location of the account file is the system disk,
unit zero, UFD RSX. The account file name is defined by a DATA
statement in source code files JOB.nn, END.nn, ACI.n and ACD.n.

The only other LUN assignment required is for the OPR SCHEDULE
command. The LUN used to access schedule files is specified using the
SCHLUN assembly parameter to SC.OPR. The default LUN is 8. The MCR
REASSIGN command must be used to assign the correct disk and UFD to
this LUN.

After assigning the previously described parameters, install the Batch
System using the followinq checklist. Assembly and task building
instructions are given in Parts III and XII of this manual.

1.

2.

3.

4.

5.

6.

Verify that the RSX Executive was assembled
processing. This is a question asked
procedure.

Create a partition named BATCH of size 3400
be within the lowest 32K of core.

Verify that a TDV partition of 9K or larqer

Build and install QUE •.•.

Build and install BATCH.

Build and install JOB ••..

XVM/RSX VIB VIII-A-l

to allow batch
during the build

{octal} • It must

exists.

SepteInber 1976

7.

8.

9.

10.

11.

12.

Build

Build

Build

Build

Build

Build

BATCH SYSTEM INSTALLATION CHECKLIST

and install END

and install ... OPR.

and install SC.OPR.

and install ACI

and install ACD

and install SLl

13. verify that LUNs 6 and 7 are assigned to NONE, and that LUN 8
is assigned to the location of the schedule files. Modify
this step appropriately if LUN assignments were changed with
assembly parameters.

14. If accounting records are to be kept, create an account file
using ACl.

15. Using the OPR BATCH command, load BATCH.

16. Using the OPR SCHEDULE command, set scheduling parameters.

17. Using the OPR GO command, start BATCH.

18. Using the QUEUE command from any TDV terminal, submit jobs to
BATCH.

XVM/RSX VIB VIII-A-2 September 1976

APPENDIX B

BATCH SYSTEM ERRORS

B.l GENERAL

BATCH contains extensive error-checking code to ensure reliable
operation. Errors that affect only the current job cause the job to
be terminated. Errors are reported to the Job Termination Processor
(END •••), which prints them on the operator loq and job trailer page.

Other errors, particularly those that prevent all jobs from being
processed, are referred to as Batch System errors. Batch System
errors abort batch processing and are reported on the operator log in
the form:

BATCH SYSTEM ERROR nnn
error description

where nnn is a code identifyinq the source of the error. The error
description provides useful information to system programmers familiar
with BATCH. After printinq the message, BATCH disconnects from the
PDVL node and exits.

If an I/O error is detected while BATCH is printing an error message,
BATCH arranges for OPR to report the message. The error code number
is saved and subsequently printed by OPR. In this event, however, the
error description is not printed.

Most Batch System errors are in response to some major inconsistency
in the operation of BATCH, the TDV Poller or some other component of
the MULTIACCESS feature. These errors are meaninqful only to someone
knowledgeable in the internal implementation of the components. These
errors should be treated as software faults and be reported via the
standard SPR procedure. Copies of the operator log, job file and job
listings should be submitted with the SPR.

Some Batch System errors can result from incorrect software
installation or related errors. These errors are listed in the
following section with appropriate corrective actions.

B.2 RECOVERABLE BATCH SYSTEM ERRORS

The following list describes all Batch System errors from which the
user can recover. Any errors not in this list should be reported via
the standard SPR procedure.

BATCH SYSTEM ERROR 102
LUN nn (INPUT LUN) MUST BE ASSIGNED TO NONE

XVM/RSX VIB VIII-B-l September 1976

Explanation:

Correction:

BATCH SYSTEM ERRORS

BATCH requires a dedicated job file input LUN, as
it changes the device assigned to it.

Use the MCR REA command to assign the LUN to NONE,
then rerequest BATCH.

BATCH SYSTEM ERROR 103
LUN nn (LISTING LUN) MUST BE ASSIGNED TO ~ONE

Explanation:

Correction:

BATCH requires a dedicated listing LUN, as it
changes the device assigned to it.

Use the MCR REA command to assign the LUN to NONE,
then rerequest BATCH.

BATCH SYSTEM ERROR 104
LUN nn (OPERATOR TTY) MUST BE ASSIGNED TO A TTY

Explanation:

Correction:

BATCH requires a LUN on which to print the
operator log. This message is printed if the LUN
is assigned to NONE rather than a suitable
terminal.

This message cannot be printed on the operator
log. It can be printed only by OPR. Therefore,
the error description line is not printed.

Use the MCR REA command to assign the LUN to a
terminal or other listing device.

BATCH SYSTEM ERROR 201
BATCH REQUIRES A 9K OR LARGER TDV PARTITION

Explanation:

Correction:

JOB .•. and END ... each require a 9K partition.
A partition this size or larqer must be provided.

Use the MCR RCF or RCP command to create a TDV
partition of sufficient size. TDV partitions have
the letters "TDV" as the first three characters of
the partition name.

BATCH SYSTEM ERROR 301
ASSIGN FAILURE--CANNOT ASSIGN LP

Explanation:

Correction:

XVM/RSX VlB

BATCH requires the use of a line printer (device
name LP) as a listing device. This message
appears if BATCH is requested and the line printer
is not available.

This error is detected after a job has
been removed from a job request queue.
request is irretrievably lost. .

Choose one of the following:

1. Don't use BATCH.

already
That job

2. Modify the device handler for some other
device to act as device name LP.

VIII-B-2 September 1976

BATCH SYSTEM ERRORS

3. Modify BATCH modules BDOPEN and BDMSSG to use
some other device as the default listing
device.

In general, recovery from Batch System errors should be done by
restarting BATCH using the OPR BATCH command. It is frequently
necessary to assign the BATCH ~nput and listing LUNs to NONE.

If BATCH aborts because of a bad CAL or other unexpected cause, a
Batch System error should deliberately be caused in order to properly
reinitialize the BATCH PDVL node. Batch System error 102 can be
caused by assigning a device to the BATCH input LUN and requesting
BATCH.

XVM/RSX V1B VIII-B-3 September 1976

ABORT, I/O function, 6-4
ABORT, terminate current job

file command, 4-9
Account file,

display, 5-4, 6-3
initialization, 5-2, 6-3
organization, 5-1

ACD (TDV Function task), display
account file, 5-4, 6-3

ACI (TDV Function task),

INDEX

$ERROR, processing after job
termination command, 3-10

Error messages, OPR, 4-9, 4-10
Errors, batch system, B-1
Example of batch processing, 1-2
EXIT, BATCH exit command, 4-7

initialize account file, 5-2, 6-3
FORCE, force a job file to

run command, 4-7

BATCH, 1-1, 6-2
load command, 4-3
operator interaction, 4-1
special commands, 2-2, 3-1
states, 4-1, 4-2
use, 2-1

BATCH, load BATCH command, 4-3
Batch processing, 1-1

example, 1-2
introduction, 1-1
invoking, 2-1
sequence sample, 1-1
terminating, 2-3

Batch Processor (BATCH), 1-1, 6-2
Batch system,

errors, B-1
installation checklist, A-I
management, 5-1
operations, 6-1
organization, 6-1

CANCEL ALL, cancel job files
command, 4-7

CANCEL, cancel job file request
command, 4-7

Commands,
BATCH, special, 2-2, 3-1
OPR, 4-1, 4-3

Control lines, 2-2
printing, 6-7

CTRL/T, 6-2

$, print a line command, 3-7

$EJECT, eject a page command, 3-6
$END, end a job file command, 3-8

GO, BATCH continue command, 4-6

HINF, I/O function, 6-3
HOLD, prevent processing of a

job file command, 4-6

Installation checklist, batch
system, A-I

Invoking batch processing, 2-1
I/O function, 6-3

$JOB, begin a job command, 3-1
Job files, 6-7

submission, 2-1
JOB LIST, list queued job

files command, 4-5
Job selection, 6-5
Job Startup Processor (JOB •••),

6-2
Job Termination Processor (END •••),

6-2

KILL, terminate current job
file command, 4-8

$LOG, log a
3-5

LUN-6, A-2
LUN-7, A-2
LUN-8, A-I
LUN-lO, 5-3,
LUN-16, 5-4

comment command,

5-4

XVM/RSX VIB VIII-Index-I September 1976

INDEX (CONT .)

MCR OPR command (... OPR), 6-3
MORE, allow extra processing

time command, 4-9
$MSG, send a message command,

3-3
Multiple jobs, 6-7

OFF, operator unavailable command,
4-5

ON, operator available command,
4-5

Operator console, 4-1
Operator interaction with

BATCH, 4-1
OPR command, 4-1, 4-3

error messages, 4-9, 4-10
Organization of account file, 5-1

$PAUSE, suspend batch command,
3-4

Printing control lines, 6-7
Priority,

calculation, 6-5
tests, 6-6

PROCEED, BATCH continue command,
4-6

QJOB, directive, 6-2
QUEUE, TDV Function task, 6-1
$QUIT, end batch input command,

3-9

READ, I/O function, 6-4
RELEASE, release job file

command, 4-6

Sample batch processing
sequence, 1-1

SCHEDULE, set job file selection
parameters command, 4-4, 6-3

Special BATCH commands, 2-2, 3-1
STOP, terminate current job

file command, 4-8

Terminating batch processing, 2-3
Time limit options, 4-8
TLACT, action after time limit

exceeded command, 4-8

Use of BATCH, 1-1

WAIT, BATCH wait command, 4-6
WRITER, I/O function, 6-4

XVM/RSX VIB VIII-Index-2 September 1976

	08_00
	08_01-01
	08_01-02
	08_01-03
	08_02-01
	08_02-02
	08_02-03
	08_03-01
	08_03-02
	08_03-03
	08_03-04
	08_03-05
	08_03-06
	08_03-07
	08_03-08
	08_03-09
	08_03-10
	08_04-01
	08_04-02
	08_04-03
	08_04-04
	08_04-05
	08_04-06
	08_04-07
	08_04-08
	08_04-09
	08_04-10
	08_05-01
	08_05-02
	08_05-03
	08_05-04
	08_06-01
	08_06-02
	08_06-03
	08_06-04
	08_06-05
	08_06-06
	08_06-07
	08_A-01
	08_A-02
	08_B-01
	08_B-02
	08_B-03
	08_Index-01
	08_Index-02

