
1.1 GENERAL

PART I

PDP-15/10 SOFfWARE SYSTEM

INTRODUCTION

Software for the PDP- IS/ 10 consists of the COMPACT and the BASIC 1/0 Monitor Software Systems, which are
designed to operate in a paper tape (or card) environment.

I. I. I COMPACT System

COMP ACT is a complete programming system for the PDP-IS/ I 0 and includes a symbolic assembler, text editor,
debugging routine, various utility routines, and a library of mathematical routines. With COMPACT software, the user
can prepare symbolic programs on-line using the Text Editor, assemble them using the CAP-IS Assembler, and
execute them under the control of the debugging routine (ODT). The utility and mathematical routines in the system
can be incorporated into user programs as required. With the addition of a DECtape transport and control unit, users
can use the FAST-IS System to store and retrieve frequently used system and user programs. In addition, users can
convert PDP-8 programs (PAL-D, PAL-III, or MACR0-8) to PDP-IS assembly language with the aid of 8TRAN.

1.1.2 Basic 1/0 Monitor System

The more sophisticated Basic 1/0 Monitor Software System, available to users with expanded PDP-15 / l 0 Computers
(Refer to Table 1-1), is a complete system for the preparation, compilation, assembly, debugging, and operation of
relocatable programs.

Powerful system programs include FORTRAN IV, FOCAL, a sophisticated macro assembler (MACR0-15), an on-line
debugging system (DDT), an on-line editor (EDIT-IS), and a peripheral interchange program (PIP). A versatile and
flexible input-output programming system (IOPS) frees the user from the need to create device handling subroutines
and from the concerns of device timing. The Basic 1/0 Monitor is upward compatible with the Advanced and
Background/Foreground Monitors of the PDP-IS series; thus, all programs prepared for the Basic 1/0 Monitor can be
run using the Advanced or Background/Foreground Monitors. In addition, users having PDP-8 programs (PAL-D,
PAL-III or MACR0-8) may convert them to PDP-IS assembly language with the aid of 8TRAN.

1-l(Part I)

l. l.3 Hardware Requirements

Minimum hardware configurations applicable to the COMPACT and Basic 1/0 Monitors are provided in Table 1-l.

l.2 COMPACT SYSTEM PROGRAMS

The COMPACT System consists of the programs described in the following paragraphs.

1.2.l Assembler

The PDP-15/10 Assembler (CAP-15) is a two-pass assembler that requires less than 3K of core memory. It processes
source programs to produce an executable binary code. The Assembler makes machine language programming easier,
faster, and more efficient. It pennits the programmer to use mnemonic symbols to represent instruction operation
codes, locations, and numeric data. The programmer can direct the Assembler's processing by means of a powerful set
of pseudo operations. An output listing that shows the programmer's source coding, as well as the binary object code
produced by the Assembler, can be obtained.

1.2.2 Text Editor

The Text Editor provides for the creation/modification of source programs and other ASCII text material. Commands
issued from the teletype direct the Editor to bring a group of lines from the input device to an internal buffer. The
user can then, by means of additional commands, examine, delete, and change the contents of the buffer, and insert
new text at any point in the buffer. When a block of lines has been edited, it is punched on the output device.

The Editor is most frequently used to modify PDP-15/10 source programs, but it can also be used to edit any
symbolic text. The Editor operates with either high-speed or low-speed paper tape devices, and occupies
approximately 20001 0 locations of core memory. Any additional memory is used for buffers.

Table 1-1. PDP-15/10 Hardware Configurations

PDP-15/10 Hardware
Basic 4K System Expanded SK System*

Configuration
ASR 33 ASR 33

Applicable ASR33 ASR33 High-speed High-speed

Software DECtape Reader/punch Reader/punch
DECtape

COMPACT f ~ ~ ~
COMPACT ~ ~ FAST 15

BASIC 1/0 ~ ~ MONITOR

*Additional options include the CR03B Card Reader, the 6470 or 647F Line Printer, and the TU20, TU20A, TU30, and TU30A
Magnetic Tape Transports.

l-2(Part I)

1.2.3 Debugging Routine

Octal Debugging Technique (ODT) is a debugging aid that allows the user to conduct an interactive, on-line debugging
session using octal numbers and teletype commands. When errors are found, the programmer can correct them on-line
and execute the program immediately to test the correction. Thus, ODT can be used to compose a program on-line
and check it out as composition progresses. Manual operation of console controls is not required to operate ODT; all
functions are initiated by typing commands on the teletype.

1.2.4 Utility Routines

Utility routines in the COMPACT Software System include a FAST-15 system for DECtape handling, a hardware
readin mode (HRM) punch routine, paper-tape handling routines, teletype 1/0 routines, an octal dump routine, and a
memory scan routine. These routines are briefly described in the following paragraphs.

1.2.4.1 FAST-15 System - FAST-15 (Fast Acquisition of System Tape) is a loading system used to retrieve
frequently used programs from DECtape and to create system tapes. The main advantages of the system are speed and
ease of access. Equipment required for use of FAST-15 includes a Type TC02 DECtape Control Unit and a Type
TU55 DECtape Transport.

The FAST-15 system tape, as distributed by Digital Equipment Corporation, contains commonly used system
programs such as the Symbolic Editor, the CAP-15 Assembler, and ODT. Since these programs can be called from
DECtape with only a small bootstrap, paper tape handling is eliminated. FAST-15 is not restricted to system
programs; it also can be employed very conveniently for frequently accessed user programs.

l.2.4.2 HRM Puncher - The Hardware Readin Mode (HRM) Puncher is a self-relocating, paper tape dump program.
It can be loaded by means of the PDP-15/10 Hardware Readin (HRI) facility into any block of core memory. When
loaded, the HRM Puncher relocates itself and punches out an area of memory, specified by the user, in the HRI
format.

1.2.4.3 Paper Tape Handling Routines - The paper tape handling routines include PTLIST, a paper tape list and
PTDUP, a paper tape duplicator. PTLIST can be used to read an ASCII coded paper tape from either the high-speed
or low-speed paper tape reader, and provide a character-by-character listing on the teletype. PTDUP can be used to
duplicate/verify ASCII or binary tapes using the high-speed paper tape reader and punch.

l.2.4.4 Teletype Input/Output Routines - The teletype input/output routines include the Teletype I/O Conversion
(TICTOC) Package and the Decimal and Octal Print Package.

TICTOC is used to read 8-bit ASCII code from the teletype and pack it as a 6-bit trimmed ASCII code, and vice versa.
Routines in the package fall into three main categories: input, output, and formatting.

The decimal and octal print routines are subroutines that can be used to dump the accumulator in either
signed-decimal or octal format.

1.2.4.5 Octal Dump Routine - The octal dump routine allows the user to obtain hard copy or paper tape output
showing the contents of any register or set of registers that he specifies. The user specifies the registers that are to be
dumped via the teletype keyboard.

J-3(Part I)

1.2.4.6 SCAN Routine - SCAN is a small program used to scan areas of memory for a particular bit configuration.
The user specifies the start and stop address for the area to be scanned, the bit configuration to look for, and the bit
positions to be tested. When scanning the area, if a match is found, the address of the match and the matching word
are printed.

1.2.S Mathematical Routines

The COMP ACT Software System mathematical routines are grouped into four major packages: Integer Arithmetic,
Trigonometric Functions, Floating Point, and Floating Point 1/0. The Integer Arithmetic routines allow PDP-15/10
users, without the EAE option, to write programs using simulated multiply and divide instructions. The
Trigonometric Package provides the user with a large repertoire of trigonometric functions in both single- and
double-precision. The Floating Point Package allows the user with the capability of inputting and outputting decimal
data in floating point format. All floating point data transfers are handled through a software accumulator.

1.2.6 STRAN

8TRAN is used to translate programs written in Pal III, Pal-D, or MACR0-8 assembly language to MACR0-15
assembly language for assembly and execution in the PDP-15 Basic Software environment. The translator produces a
straightforward translation that clearly indicates the parts of the translated program to be reviewed in light of the
PDP-l 5's greater word length and more powerful instruction set. It does not simulate the PDP-8 or produce directly
executable code.

A full description is contained in PDP-15 8TRAN Manual (DEC-15-ENZA-D).

l.3 BASIC 1/0 MONITOR

The PDP-15/10 Basic 1/0 Monitor System simplifies the handling of input/output functions and facilitates the
creation, debugging, and use of PDP-15/10 programs. It allows overlapped input/output and computation, as well as
simultaneous operation of a number of asynchronous peripheral devices, while freeing the user from the need to
create device handling subroutines. The Monitor, operating in conjunction with the Input/Output Programming
System (IOPS), provides a complete interface between the user's programs and the peripheral hardware.

The Monitor accepts 1/0 commands from the system or user programs and supervises their execution. By calling upon
the device manipulation routines of IOPS, it provides for simultaneous 1/0 and computation.

The Basic 1/0 Monitor contains:

a. Routines for its own initialization and control

b. Tables to allow communication between the Monitor, system programs, user programs, and the Input/Output
Program System

c. The CAL Handler, which is used to dispatch to the appropriate Monitor and 1/0 subroutines

d. Device handlers for the teletype and clock.

The Monitor resides in lower core and occupies about 8801 0 locations.

l-4(Part I)

1.3.l Input/Output Programming System (IOPS)

The Input/Output Programming System (IOPS) consists of an 1/0 control routine and individual hardware device
handling subroutines that process file and data level commands to the devices. These handlers exist for all standard
PDP-1 S / l 0 peripherals (see Part II, Chapter 4).

The 1/0 control routine accepts user program commands and transfers control to the appropriate device handlers.
These device handlers are responsible for transferring data between the program and 1/0 devices, for initiating the
reading or writing of files, for the opening and closing of files, and for the performance of all other functions peculiar
to a given hardware device. They are also responsible for ignoring functions which they are incapable of handling (for
example, trying to rewind a card reader, or skipping files on a non-file-oriented device). All device handlers operate
either with or without the Automatic Priority Interrupt (API) option.

1.3.2 System Programs

The Basic 1/0 Monitor, in addition to the IOPS, is complemented by the following system programs:

a. FORTRAN IV Compiler, Object Time System, and Science Library

b. MACRO-IS Assembler

c. FOCAL

d. Dynamic Debugging Technique (DDT) Program

e. Text Editor Program (EDITOR)

f. Peripheral Interchange Program (PIP)

g. Linking Loader (LOADER)

h. 8TRAN, PDP-8 to PDP-1 S Translator

i. Chain Builder Program (CHAIN)

j. Chain Execute Program (EXECUTE)

k. PUNCH-IS

1.3.2.1 FORTRAN IV Compiler - The PDP-1 S FORTRAN IV compiler is a two-pass system that accepts statements
written in the FORTRAN IV language and produces a relocatable object program capable of being loaded by the
Linking Loader. It is completely compatible with USA FORTRAN IV, as defined in USA Standard X3.9-1966, with
the exception of the following features, which were modified to allow the compiler to operate in 8192 words of core
storage:

a. Complex arithmetic is not legal.

b. Adjustable array dimensions are not allowed at source level, but can be implemented by calling
dimension-adjustment subroutines.

1-S(Part I)

c. Blank Common is treated as Named Common except when object program is used in chaining.

d. The implied DO feature is not included for the DAT A statement.

e. Maximum of 5 characters in Hollerith constants.

f. Specification statements must be strictly positioned and ordered.

The FORTRAN IV compiler operates with the PDP-15/10 program interrupt or API facilities enabled. It generates
programs that operate with the program interrupt or API enabled and can work in conjunction with assembly lan
guage programs that recognize and service real-time devices. Subroutines written in either FORTRAN IV or MACR0-
15 assembly language can be loaded with and called by FORTRAN IV main programs. Comprehensive source lan
guage diagnostics are produced during compilation, and a symbol table is generated for use in on-line debugging with
DDT.

The PDP-15 FORTRAN IV Compiler, Object Time System, and Science Library are described fully in the FORTRAN
IV Manual (DEC-15-KFZA-D).

1.3.2.2 FOCAL - The FOCAL (Formulating On-Line Calculations in Algebraic Language) compiler is an on-line
interactive (conversational) system for non-programmers which makes use of standard mathematical notation and
short imperative English command statements to solve user problems.

Arithmetic capabilities of FOCAL permit single commands to generate random numbers and to evaluate standard
functions including: square root, absolute value, sign, integer, and natural exponent of any number; sine, cosine,
arctangent, and Naperian log value.

With FOCAL, user defined mathematical operations are executed by a single command. In addition, specific
hardware, text format, and error codes can be defined to facilitate user needs.

The FOCAL compiler is described fully in the PDP-15 FOCAL Manual (DEC-15-KJZA-D).

1.3.2.3 MACR0-15 - The MACR0-15 Assembler provides PDP-15/10 users with highly sophisticated macro
generating and calling facilities within the context of a symbolic assembler. MACR0-15 is described in detail in the
MACR0-15 Assembler Manual (DEC-15-AMZA-D). Some of the prominent features of MACR0-15 include:

a. The ability to -

(1) define macros

(2) define macros within macros (nesting)

(3) re-define macros (in or out of macro definitions)

(4) call macros within macro definitions

(5) have macros call themselves (recursion)

b. Conditional assembly based on the computational results of symbols or expressions.

l-6(Part l)

c. Repeat functions.

d. Boolean manipulation.

e. Optional octal and symbolic listings.

f. Two forms of radix control (octal, decimal) and two text modes (ASCII and 6-bit trimmed ASCII).

g. Global symbols for easy linking of separately assembled programs.

h. Choice of output format: relocatable, absolute binary (check summed); or full binary capable of being loaded
via the hardware READIN switch.

i. Ability to call input/output system macros that expand into IOPS calling sequences.

1.3.2.4 Dynamic Debugging Technique (DDT) Program - DDT provides on-line debugging facilities within the
PDP-15/lO Basic Software System, enabling the user to load and operate his program in a real-time environment while
maintaining strict control over the running of each section. DDT allows the operator to insert and delete breakpoints,
examine and change registers, patch programs, and search for specific constants or word formats.

The DDT-15 breakpoint feature allows for the insertion and simultaneous use of up to four breakpoints, any one (or
all) of which may be removed with a single keyboard command. The search facility allows the operator to specify a
search through any part or all of an object program with a printout of the locations of all registers that are equal (or
unequal) to a specified constant. This search feature also works for portions of words as modified by a mask. With
DDT-15, registers may be examined and modified in either instruction format or octal code, and addresses may be
specified in symbolic relative, octal relative, or octal absolute. Patches may be inserted in either source language or
octal.

DDT-15 is described more fully in the PDP-15 Utility Program Manual (DEC-15-YWZA-D).

1.3.2.5 Text Editor Program - The Text Editor of the PDP-15/10 Basic 1/0 Monitor provides the ability to read
alphanumeric text from an input device (paper tape reader), to examine and correct it, and to write it on an output
device. It can also be used to create new symbolic programs.

The Editor operates on lines of symbolic text delimited by carriage return (CR) or ALT MODE characters. These lines
can be read into a buffer, selectively examined, deleted or modified, and written out. New text may be substituted,
inserted, or appended.

For further details on the Text Editor, refer to the PDP-15 Utility Programs Manual (DEC-15-YWZA-D).

1.3.2.6 Peripheral Interchange Program (PIP) - The primary function of PIP is to facilitate the manipulation and
transfer of data files from any input device to any output device. It can be use<l to segment or combine files, perform
code conversions, and copy tapes.

Directions for the use of PIP- I 5 can be found in the PDP-I 5 Utility Programs Manual (DEC-15-YWZA-D).

1.3.2. 7 Linking Loader - The Linking Loader loads any PDP-15, FORTRAN IV, or MACR0-15 object program
which exists in relocatable format (or absolute format if pseudo-ops .ABS and .FULL are not used). Its tasks include

l-7(Part l)

loading and relocation of programs, loading of called subroutines, retrieval and loading of implied subroutines, and
building and relocation of the necessary symbol tables. Its operation is discussed in the PDP-1 S Utility Program
Manual (DEC-1 S-YWZA-D).

1.3.2.8 8TRAN - 8TRAN is used to translate programs written in Pal III, PAL-Dor MACR0-8 assembly language to
MACRO-IS assembly language for assembly and execution within the PDP-IS Basic Software environment. The
Translator produces a straightforward translation that clearly indicates the parts of the translated program requiring
review, in light of the PDP-I S's greater word length and more powerful instruction set. It does not simulate the PDP-8
or produce directly executable code. A full description is contained in PDP-1 S - 8TRAN Manual (DEC-15-ENZA-D).

1.3.2.9 Chain Builder and Execute Programs - The Chain Builder and Execute programs provide the user with a
capability for program segmentation which allows for multiple core overlap of executable code and certain types of
data areas. A more complete description of the Chain Builder and Execute programs is given in the Utility Programs
Manual (DEC-15-YWZA-D).

1.3.2.10 PUNCH-15- PUNCH-IS is a utility program used to output selected areas of core memory onto paper tape
for use with the PDP-15 Basic 1/0 Monitor. The primary applications of PUNCH-15 in the Basic 1/0 Monitor
environment are:

a. System program modification

b. +.DAT SLOT reassignment

c. Production of an executable user program core load on a single paper tape. This is particularly useful when
that core load consists of a main program and several subroutines/library routines, the constant reloading of which
may be time consuming.

The PDP-lS Utility Programs Manual (DEC-lS-YWZA-D) describes PUNCH-IS more fully.

l-8(Part I)

PARTil
COMPACT SOFIWARE

1.1 INTRODUCTION

PART II
COMPACT SOFIWARE

CHAPTER 1

COMPACT ASSEMBLER (CAP-15)

The CAP-15 Assembler processes symbolic source programs to produce a binary code that can be executed by the
PDP-15/10 computer. It normally processes source programs in two passes and requires 3K of core memory. The
Assembler makes machine language programming for the PDP-15/10 easier, faster, and more efficient. It permits the
programmer to use mnemonic symbols to represent instruction operation codes, locations, and numeric quantities;
thus, the programmer can easily refer to any point in his program without knowing actual machine locations.

The programmer can direct the Assembler's processing by means of a powerful set of pseudo-operation (pseudo-op)
instructions. These pseudo-ops can be used for program control, to reserve blocks of core storage, to set the radix for
numerical interpretation by the Assembler, to handle strings of text characters in 6-bit ASCII code, to define
symbolic addresses, and many other functions that are described in detail in Section 1.4.

An output listing, showing both the programmer's source coding and the object program produced by the Assembler,
can be printed. This listing includes all the symbols used by the programmer and their assigned values. If assembly
errors are detected, erroneous lines are marked with meaningful letter codes, which can be interpreted by referring to
Section 1.5.4. Operating procedures are found in Section 1.5.

The Assembler normally processes a source program in two passes; that is, it reads the same source program twice,
producing a printed listing and/or outputting the object code during the second pass. (However, if the listing and
binary output utilize the same device, then a third pass is required to produce the binary output.) Assembler coding
for the two passes is resident in memory at the same time. PASSI and PASS2 are almost identical in operation. The
main function of PASSI is to identify locations that are to be assigned symbols, and to construct a symbol table.
PASS2 uses the information derived by PASSI (and left in memory) to produce the final listing object code output.

1.2 HARDWARE REQUIREMENTS AND OPTIONS

The Assembler operates with PDP-15/10 systems having at least 4K of core memory and a console Teletype (ASR33).
With the addition of a high-speed paper tape reader/punch, the user can significantly decrease assembly time and also
have the capability of simultaneously producing a listing and binary output during PASS2.

I-](Part II)

l.3 ASSEMBLY LANGUAGE ELEMENTS

1.3. l Program Statements

A single statement may be written on a 72-character teletype line, in which case a carriage return delimits the
statement. Since a carriage return is not a printable character, it is represented in this manual as)

STATEMENT)

Several statements may be written on a single line, separated by semicolons:

STATEMENT;STATEMENT;STATEMENT)

In this case, the statement line ends with a carriage return character, but semicolons are used as internal statement
delimiters. Thus, if a statement is followed by another statement on the same line, it must end with a semicolon.

A statement may contain up to four fields separated by a space, spaces, or tab characters. These four fields are the
label (or tag) field, the operation field, the address field, and the comments field. Because the space and tab characters
are not printed, the space is represented by L-1 , and the tab by -I in this manual. Tabs are normally set ten spaces
apart on most teletype machines, and are used to line the fields up in columns in the source program listing.

The basic statement format is as follows:

LABEL -I OPERATION -I ADDRESS -I /COMMENTS)

where each field is delimited by a tab or space, and each statement is terminated by a semicolon or carriage return.
The comments field is preceded by a tab (or space) and a slash(/).

An assembly statement may have an entry in any or all of the four fields. The following forms are acceptable:

TAG)
TAG -I OP)
TAG -I OP -I ADDR)
TAG -I OP -I ADDR L-1 comments)
TAG -I OP L-1 comments)
TAG -j -I ADDR)
TAG -I -I ADDR '--'comments;
TAG -I comments)

-I OP)
-I OP -I ADDR)
-I OP -I ADDR -I comments)
-I OP -I comments
-I -I ADDR)
-I -I ADDR -I comments;

/comments;
-I comments)

Note that when a label field is not used, its delimiting tab is written, except for Jines containing only comments. When
the operation field is not used, its delimiting tab is written if an address field follows, except in label only and
comments only statements.

l-2(Part II)

A label (or tag) is a symbolic address created by the programmer to identify the statement. When a label is processed
by the Assembler, it is said to be defined. A label can be defined only once. The operation code field may contain a
machine mnemonic instruction code, a pseudo-op code, a number, or a symbol. The address field may contain a
symbol, number, or expression which is evaluated by the Assembler to form the address portion of a machine
instruction. In some pseudo-operations, this field is used for other purposes, as explained later in this manual.
Comments are usually short explanatory notes that the programmer adds to statement as an aid in analysis and
debugging. Comments do not affect the object program or assembly processing; they are merely printed in the
program listing. Comments must be preceded by a slash (/);the slash must be preceded by one of the following:

a. Space
b. Tab
c. Semicolon
d. Carriage return

1.3.2 Symbols

A symbol consists of a string of alphabetic or alphanumeric characters (including periods and percent signs). The frrst
character of a symbol must be a letter, a period or a percent sign. The first character of a symbol in the label field
must not be a digit. A period can not be used alone as a symbol in the label field. The letter X, if used alone, can only
appear in an address field (see 1.3.4.4).

The following symbols are legal:

MARKI
A%
P9.3

The following symbols are illegal:

TAG:!
SABC
x

.. 1234
%50.99
INPUT

L@Bl

.A

.%

.SA

The colon(:) and@ are illegal characters.
The first character may not be a digit.
See section 1.3.4.4.

Only the first six characters of a symbol are meaningful to the Assembler, but the programmer may use more for his
own information. If he writes,

SYMBOLl
SYMBOL2
SYMBOL3

as the symbolic labels on three different statements in his program, the Assembler will recognize only SYMBOL and
type error flags on the lines containing SYMBOLl, SYMBOL2 and SYMBOL3 because to the Assembler they are
duplicates of SYMBOL.

l.3.2.1 Evaluation of Symbols - When the Assembler encounters a symbol during processing of a source language
statement, it evaluates the symbol by reference to two tables: The user's symbol table and the permanent symbol

l-3(Part II)

table. The user's symbol table contains all symbols defined by the user. The user defines symbols by using them as
labels or by direct assignment statements (see Section l.3.2.2). A label is defined when first used, and cannot be
redefined. When a label is defined by the user, it is given the current value of the Location Counter (see Section
1.3.4).

The Assembler has, in its permanent symbol table, definitions of the symbols for all of the PDP-15/10 memory
reference instructions, operate instructions, index and limit register instructions, and some input/output transfer
instructions. (See Appendix B for a complete list of these instructions.) Both the permanent symbol table and the
user's symbol table reside in storage in alphanumeric sequence. The permanent symbol table symbols can be used in
the operation field of a statement without prior definition by the user.

Example
When the LAC symbol appears in the operation field of a statement,
the Assembler treats it as an op code rather than a symbolic address. It
has a value of 2000008 , which is taken from the operation code
definition in the permanent symbol table.

The user can use instruction mnemonics (see Appendix B) or the pseudo-instruction mnemonics code (see Appendix
C) as symbol labels. For example,

DZM -j DZM Y)

where the label DZM is entered in the user's symbol table and given the current value of the Location Counter, and
the op code DZM is given the value 140000 from the permanent symbol table. The user must be careful, however, in
his usage of these dual purpose (field dependent) symbols. Symbols in the operation field will be interpreted as either
instruction codes or pseudo-ops, rather than as a symbolic label, if they are in the permanent symbol table. In the
following example, several symbols with values have been entered in the user's symbol table and the permanent
symbol table. The sample coding shows how the Assembler uses these tables to form object program storage words.

User Symbol Table Permanent Symbol Table

Symbol Value Symbol Value

TAGl 100 LAC 200000

TAG2 200 DAC 040000

DAC 300 JMP 600000

If the following statements are written, the following code is generated by the Assembler

TAG! -j DAC -j TAG2) 040200

TAG2 -j LAC -j DAC) 200300

l-4(Part II)

DAC -j JMP -I TAGl) 600100

-j TAGl) 000100

-I 000300

1.3.2.2 Direct Assignment Statements - The programmer may define a symbol directly in the user's symbol table by
means of a direct assignment statement, written in the form:

SYMBOL=n)

or

SYMl =SYM2)

where n is any number or expression. There should be no spaces before the symbol or between the symbol and the
equal sign. (The operation field is assumed to be to the right of the equal sign, unless it is followed by a space or a tab,
in which case the address field is assumed.) The Assembler enters the symbol in the user's symbol table, along with
the assigned value. Symbols entered in this way can be redefined. The following are legal direct assignments:

Z=28;A= l;B=~

A symbol can also be assigned a symbolic value:

A=4)
B=A)

The symbol B is given the value 4. Direct assignment statements do not generate storage words in the object pro
gram. In general, it is good programming practice to define symbols before using them in statements which gener
ate storage words. The Assembler will interpret the following sequence without trouble.

Z=S)
Y= Z)
V=Y)

-j LAC, V L..1 /SAME AS LAC 5

A symbol may be defined after use. For example,

-jLAC_. Y)
Y= I.J

This is called a forward reference, and is resolved properly in PASS2. When first encountered in PASS 1, the LACY
statement is incomplete because Y is not yet defined. Later in PASS 1, Y is given the value 1. In PASS 2, the Assembler
finds that Y = l in the symbol table, and forms the complete storage word.

1-S(Part II)

Since the Assembler operates in two passes, only one-step forward references are allowed. The following forward
reference is illegal:

-\ LAC_. Y,)
Y= Z)
Z= I)

In the listing, during PASSI, the line which contains Y = Z will be printed with an A error code indicating a direct
assignment error.

1.3.2.3 Undefined Symbols - If any symbols remain undefined at the end of PASSI of assembly, they are
automatically defined as the addresses of successive registers following the end of the program (i.e., following the
highest program counter value encountered by the Assembler). All statements that referenced the undefined symbol
will be flagged as undefined. One memory location is reserved for each undefined symbol with the initial contents of
the reserved location being unspecified.

Example

Location Source Statement Generated Comments
Counter Code

100 -\LAC UNDEF 1) 200104 '
101 -! LAC UNDEF3 200106

102 -j LAC UNDEF4 200107 > Flagged as an error

103 -! LAC UNDEF2 200105

-I.END

1.3.3 Numbers

1.3.3.1 Integer Values - An integer is a string of digits, with or without a leading sign. Negative numbers are
represented internally in two's complement form. The range of integers is as follows.

Unsigned

Signed
0-+ 262143, 0

0 -+ 1310711 0

(7777778)

(3777778)

e.g., 218 -1
e.g.,± 217 -1

An octal integer* is a string of digits (0-7), signed or unsigned. If a non-octal digit is encountered (8 or 9) it will be
flagged as a numerical error.

*Initiated by usage of .OCT pseudo-instruction and is also the initial assumption if no radix control pseudo-instruction was encountered (see

Section 1.4.4).

l-6(Part II)

Example

Coded Value Generated Value (Octal) Comment

-5 777773 two's complement

3347 003347

3779 000000 error

A decimal integer* is a string of digits (0-9), signed or unsigned.

Example

Coded Value Generated Value (Octal) Comment

-8 777770 two's complement

256 000400

1.3.3.2 Expressions - Expressions are strings of symbols and numbers separated by arithmetic or Boolean operators.
Expressions represent unsigned numeric values ranging from 0 to 218 -1. All arithmetic is performed in unsigned
integer arithmetic (two's complement), modulo 218 . Division by zero is regarded as division by one and results in the
original dividend; this condition will not be regarded as an error. Fractional remainders are ignored. The value of an
expression is calculated by substituting the numeric value for each element (symbol) of the expression and performing
the specified operations.

The following are allowable operators to be used with expressions:

Character

Name Symbol

Plus +

Minus

Asterisk *

Slash I

*Initiated by usage of DEC pseudo-op (see Section 1.4.4).

Function

Addition (two's complement)

Subtraction (convert to two's complement
and add)

Multiplication (unsigned)

Division (unsigned)

1-7(Part II)

Character
Function

Name Symbol

Ampersand & Logical AND

Exclamation point ! Inclusive OR Boolean

Back slash \
Exclusive OR

Comma •

Operations are perfonned from left to right (i.e., in the order in which they are encountered). For example, the
assembly language statement A + B*C + D/E - F "' G is equivalent to the following algebraic expression

(((((A+ B)* C) + D)/E) - F)* G.

Example
Assume the following symbol values:

Symbol Value (Octal)

A 000002

B 000010

c 000003

D 000005

The following expressions would be evaluated according to the rules above.

Expression Evaluation (Octal)

A+B-C 000007

A/B+A *C 000006 (The remainder of A/B is lost)

B/A-2"' A-I 000003

A&B 000000

C+A&D 000005

B*D/A 000024

B*C/A*D 000074

1-8(Part II)

The expression (A + B) * (C + D) cannot be represented in one source statement. To circumvent this problem, at least
one of the members of the expression should be defined by a direct assignment statement (see Section 1.3.2.2).

Examples

or

E=A+B)

C+D*E

E=A+B)

F=C+D)

E*F

1.3.4 Address Assignments

/Represents (A + B) * (C + D))

/Represents (A + B) * (C + D~

As source program statements are processed, the Assembler assigns consecutive memory locations to the storage
words of the object program. This is done by reference to the Location Counter, which is initially set to zero, and
incremented by one each time a storage word is formed in the object program. Some statements, such as machine
instructions, cause only one storage word to be generated, incrementing the Location Counter by one. Other
statements, such as those used to enter data or text, or to reserve blocks of storage words, cause the Location Counter
to be incremented by the number of storage words generated.

1.3.4. l Referencing the Location Counter - The programmer may directly reference the Location Counter by using
the period symbol(.) in the address field. He can write

~ JMP ~ .-1)

which will cause the program to jump to the storage word the address of which was previously assigned by the
Location Counter. The Location Counter can be set to another value by using the .LOC pseudo-op, as described in
1.4.8.

1.3.4.2 Direct Addressing - Direct Addressing occurs when bits 4 and 5 of the Memory Reference Instruction word
(see Figure 1-1) are set to 0. The machine action defined by the operation code field is applied to the operand
specified by the 12-bit address field. The 12-bit address field allows addressing of any location of the 4,096 word
memory page. Access to locations outside the current page is gained via execution of indexed or indirect address
instructions.

1.3.4.3 Indirect Addressing - To specify an indirect address, which can be used only in memory reference
instructions, the programmer writes an asterisk (*) immediately following the operation field symbol. This sets the
Defer Bit (bit 4) for the storage word (see Figure 1-1) and the contents of the address field point to a location (within
the current page) which contains the 15-bit effective address.

The error flag S results if an asterisk (*) suffixes a non-memory reference instruction.

1-9(Part II)

Two examples of legal indirect addressing are as follows:

-j TAD* -I A)
-j LAC* -j B)

The following example is illegal .

....j CLA*) Indirect addressing cannot be specified in non-memory reference
instructions.

NOTE

A symbol followed by an asterisk and by another symbol is interpreted as a
multiplication operation (e.g., LAC*SYMBOL).

0 3 4 5 6 17

Operation • x I Address Field I Code

X= Indexed Address Indicator

*= Indirect Address Indicator

Figure 1-l. Memory Reference Instruction Format

l.3.4.4 Indexed Addressing - Indexed Addressing is specified by bit 5 (indirect bit) of the Memory Reference
Instruction word (see Figure 1-1) being set to l. Indexed Addressing can be either Duect or Indirect. For Direct
Indexed Addressing, bit 4 is 0 and bit 5 is l. In this mode, the effective address is taken as the sum of the 12-bit
address field (bits 6-17) and the contents of the Index Register. The Index Register is an 18-bit hardware register
which may contain a signed 2's complement number.

Indirect Indexed Addressing is specified by bits 4 and S being set to l. In this mode of addressing, the effective
address (EFA) is taken as the contents of the location specified by the sum of the 12-bit address field and the Index
Register.

1-l O(Part II)

Example

Contents
C(30) = 37
C(XREG) = 20
C(57) = 101

LAC* -j 30,X
/C(30) + C(XREG) = EFA
/37 + 20= EFA
/57 = EFA
/C(57) =AC
/101 =AC

Using a comma X(,X) in the address field causes bit 5 of the current address value to be exclusively ORed with l 0000.
For example, if bit 5 of the previous address value was 1, this operation sets it to 0. The Assembler takes this into
consideration when the operation field value and the address field value are combined (see 1 .3.6.2).

In all cases when X is used, the value 10000 is used to perform the operation specified.* Standard usage of X is shown
below.

Example

A=50
LAC --! A,X

Storage word generated 210050

Using X to denote Index Register usage causes the following restrictions:

a. X cannot be used as a TAG.

b. X may not be used more than once in an expression.

c. X can only appear in an address field.

d. X cannot be used with a .DSA statement.

1.3.4.5 Literals - Symbolic data references in the operation and address fields may be replaced with direct represen
tation of the data enclosed in parentheses**. This inserted data is called a literal. The Assembler sets up the address
link, therefore one less statement is necessary in the source program.

The following examples show how literals may be used, and their equivalent statements. The information contained
within the parentheses, whether a number, symbol, expression, or machine instruction, is assembled and assigned
consecutive memory locations after the highest location used by the program (including registers reserved for
undefined symbols). The address of the generated word will appear in the statement that referenced the literal.
Duplicate literals are stored only once so that many uses of the same literal in a given program result in only one
memory location being allocated for that literal. Nested literals are not allowed and result in an L error diagnostic at
assembly time.

*The symbol X should only be used for indexing purposes. After the expression has been evaluated, bit 5 will be set to l regardless of
the expression result.

**The opening parenthesis [(] is mandatory while the closing parenthesis [)] is optional. The operation field is assumed to be to the
right of the opening parenthesis [() unless it is followed by a space or tab, in which case the address field is assumed.

1-1 l(Part II)

Usage of Literal Equivale~ Statements

-I ADD....., (1) -I ADD....., ONE

ONE -t 1

-I LAC L-1 (TAG -I LAC TAGAD

TAGAD -ITAG

-I LAC, (DAC -I TAG) -I LAC....., INST

INST -I DAC -I TAG

-I LAC L-1 (JMP -I .+2) HERE -I LAC, INST

INST -j JMP, HERE+2

The following sample program illustrates how the Assembler handles literals.

Location Counter Source Statement Generated Code

-.j .LOC ._, 100

100 TAGl -I LAC, (100) 200110

101 -I DAC, 100 040100

102 -I LAC, (JMP, .+5) 200111

103 -I LAC....., (TAGl) 200110

104 -I LAC....., (JMP....., TAGl) 200112

105 -I LAC, (JMP, TAG2) 200112

TAG2=TAG1

106 -I LAC (JMP) 200113

107 DAC -I LAC, (DAC -I DAC) 200114

-j .END

1-l 2(Part II)

Location Generated
Counter Source St.atement Code

Generated Literals

110 000100

111 600107

112 600100

ll3 600000

114 040107

1.3.5 Statement Fields

1.3.5.1 Label Field - If the user wishes to assign a symbolic label to a statement, to facilitate references to the
storage word generated by the Assembler, he may do so by beginning the source statement with any desired symbol.
The symbol must be terminated by a space (spaces) or tab, or a statement terminating semicolon, or carriage return.

Examples

TAG, any value;

TAG .._, any value)

TAG --1 any value)

TAG;

TAG)

These examples are equivalent to coding

TAG --j 0)

in that a word of all Os will be output with
the symbol TAG associated with it.

Symbols used as labels are defined in the user's symbol table with a numerical value equal to the present value of the
Location Counter. A label is defined only once; if it was previously defined by the user, the current definition of the
symbol will be flagged as a multiple definition error. All references to a multiply-defined symbol will be made to the
first value encountered by the Assembler.

Example

location
Statement

Storage Word
Counter Generated Notes

100 A -I LAC --1 B 200103

101 A --j LAC -IC 200104 error, multiple definition
first value of A referenced

102 -!LAC --jA 200100

l- l 3(Part II)

Location
Statement

Storage Word
Notes Counter Generated

103 B -I 0 000000

104 c -I 0 000000

Anything more than a single symbol to the left of the label-field delimiter is an error; it will be flagged and ignored.
The following statements are illegal.

TAG+l -I LAS)
LOC* 2 -j RAR)

Redefinition of certain symbols can be accomplished by using direct assignments; that is, the value of a symbol can be
modified. If an Assembler permanent symbol or user symbol (which was defined by a direct assignment) is redefined,
the value of the symbol can be changed without causing an error message. If a user symbol, which was first defined as
a label, is redefined by either a direct assignment or by using it again in the label field, it will cause an error.

Example

*

Coding

A=3

-I LAC -I A

-I DAC -j A

A=4

-j LAC -j A

B -j DAC -jA

B=A

--\DAC -j B

PSF=700201

Generated Value (Octal)

200003

040003

200004

040004

040105

*Assume that this instruction will occupy location 105.

Comments

sets current value of A to 3

redefines value of A to 4

illegal usage; a label cannot be
redefined

to redefine possibly incorrect
permanent symbol definition.

1.3.5.2 Operation Field - Whether or not a symbol label is associated with the statement, the operation field must be
delimited on its left by a space(s) or tab. If it is not delimited on its left, it will be interpreted as the label field. The
operation field may contain any symbol, number, or expression which will be evaluated as an 18-bit quantity using
unsigned arithmetic modulo 21 8 • In the operation field, machine instruction op-codes and pseudo-op mnemonic

l -l 4(Part II)

symbols take precedence over identically named user defined symbols. The operation field must be terminated by one
of the following characters:

Examples

-I or L...1 (s) field delimiters

;or; statement delimiters

TAG -I ISZ)
-I .+3 L...I)

L...1 CMA!CMLJ
-I TAG/5+'f AG2;

1.3.5.3 Address Field -The address field, if used in a statement, must be separated from the operation field by a tab,
or space(s). The address field may contain any symbol, number, or expression which will be evaluated as an 18-bit
quantity using unsigned arithmetic, modulo 218 • If op-code or pseudo-op code symbols are used in the address field,
they must be user defined, otherwise they will be undefined to the Assembler and cause an error message. The symbol
X cannot be user def"med (see section 1.3.4.4). The address field must be terminated by one of the following
characters:

-I or L...1 (s) field delimiters

)Or; statement delimiters

Examples

TAG2 -I DAC -j .+3 -j /COMMENT)

-I -I TAG2/5 + 3 &...1 (s))

-1 ISZ -I TAG2, x + 4)

-I JMP -I BEGIN)

-I TAD -I A; -j DAC -I ~

In the last example, a tab or space(s) is required after the semicolon so the Assembler can interpret DAC as being the
operation field rather than the label field.

An error condition will exist if the bank and page bits (3, 4 & 5) of the address do not match the bank and page bits
of the bank currently being assembled into and the extended memory bits of the address are not zero;-

Examples

Location
Instruction Comments (octal)

1000 -!LAC 100 I wiu not came enm me_.
1001 -I DAC L...I 101

1-15(Part II)

Location
(octal)

1002

1003

1004

Instruction

-I JMS L...I 250

-.j ISZ L-1 40146

-I LAC L...I 10100

Comments

will not cause error messages

will cause a bank error message code B
(see 1.3.5.3)

will cause a bank error message code
(see 1.3.5.3)

1.3.5.4 Comments Field - Comments may appear anywhere in a statement. They must begin with a slash (/)
immediately preceded by a

L...I (s) ·space(s)

tab

) carriage return (end of previous line)

semicolon

Comments are terminated only by a carriage return.

Examples

L...1 (s) / THIS IS A COMMENT)

TAG 1 -.j LAC .._. /after the ; is still a comment)

/THIS IS A COMMENT)

-I RTR L-..1 /COMMENT)

-I RTR; -! RTR; /THIS IS A COMMENT)

Observe that --I A/COMMENT) is not a comment, but rather an operation field expression. A line that is
completely blank; that is, there is no data between two sets of) (s), will be treated as a comment by the Assembler.

1.3.6 Statement Evaluation

When the Assembler evaluates a statement, it examines the first cbaracter position in the label, operation, and address
fields for a numeric character. (Comments fields are ignored.) If the first character of a field is numeric, the contents
of the whole field is treated as a number.

1.3.6.l Numbers - Numbers are not field dependent. When the Assembler encounters a number (or expression) in
the operation or address fields (a number in the frrst character position of the label field is illegal), it uses those values
to form the storage word. The following statements are equivalent:

l-l 6(Part II)

-I 200000 10)

-j 10 +LAC)

-I LAC .__. I 0)

All three statements cause the Assembler to generate a storage word containing 2000 I 0.

A statement can consist of a number or expression which generates a single 18-bit storage word; for. example,

-I 23; L.J 45; &....I 357; &....I 62)

This group of four statements generates four words interpreted under the current radix.

Zero words are generated by statements containing only labels. For example,

A;B;C;D;E)

generates five words set to zero, which can be referenced by the labels defined.

1.3.6.2 Word Evaluation - When the Assembler encounters a symbol in a statement field, it determines the value of
the symbol by referring to the user's symbol table and the permanent symbol table, according to the priority list
shown below. The value of a storage word is computed by combining the 18-bit operation field quantity with the
18-bit address field quantity, in the following manner.

[(OPERATION FIELD+ (ADDRESS FIELD & 017777))] =Value of Word
0-17 0-17

If the operation code is one of the 9-bit operators (see Appendix B), the word value is computed as follows.

[(OPERATION FIELD+ (ADDRESS FIELD & 777))}= Value of Word
0-17 0-17

Extensive error checking is performed on the address field value to ensure correct results. If the page bit of the
address field is different from that of the program counter, the line is flagged with a 'B' error code at assembly time,
indicating a page error. Page bits are always set to 0 if the address value is legal and Index Register usage is not
specified.

Example:

Error Object
Flag LOC Code Source Code

.LOC 100
B 00100 210000 A LAC B /ADDRESS OF BON A DIFFERENT PAGE

.LOC 10000
B 10000 040100 B DAC A /ADDRESS OF A ON A DIFFERENT PAGE

The LAW instruction and the 9-bit operators check the low order 5 bits (or 9 bits) of the address value for validity by
AN Ding off the low order bits and checking the result for 0 or for equality with the 'AND' value.

l-l 7(Part II)

Example

LAW-I

{address field & 760000] = 760000 or 000000

OR

IF A 9 BIT OPERATOR

{address field & 777000] = 777000 or 000000

/The value for -I is 777777.
/When this value is ANDed
/with 760000, the result
/is 760000 and valid.

If the ADDRESS FIELD and 7600008 does not equal 7600008 or 000000, any erroneous results produced are
flagged by the Assembler. This validity check is performed only if an operation field and an address field are present.

If the ADDRESS FIELD ANDed with 7600008 does not equal 7600008 or 000000, any erroneous results produced
are flagged by the Assembler. This validity check is performed only if an operation field and an address field are
present.

If the instruction is a Memory Reference instruction, the low order 5 bits of the address value are examined to make
sure they are not set*. If any of the 5 bits are set, the line is flagged with an E error code during assembly.

-I 2 -I 5 -I /GENERATES 000007

The value of a symbol depends on whether it is in the label field, or the address field. The Assembler attempts to
evaluate each symbol by running down a priority list, depending on its field as shown.

Label Field

Current value of
Location Counter

Operation Field

I . Pseudo-op

2. Direct assignment in user
symbol table.

3. Permanent symbol table

4. User symbol table

5. Undefined

Address Field

l. User symbol table,
(in eluding direct
assignments)

2. Undefined

This means that if a symbol is used in the address field, it must be defined in the user's symbol table; otherwise, it is
undefined.

In the operation field, pseudo-ops take precedence and cannot be redefined. Direct assignments allow the user to
redefine machine op codes, as shown in the example below.

*Does not include LAW instruction.

l - l 8(Part II)

Example

DPOSIT = DAC)

The user can use machine instruction codes and Assembler pseudo-op codes in the label field and refer to them later
in the address field.

1.4 PSEUDO OPERATIONS

In the discussion of symbols in the previous chapter, it was stated that the Assembler has, in its permanent symbol
table, definitions of the symbols for all the PDP-15 memory reference instructions, operate instructions, and some
IOT instructions (listed in Appendix B) which may be used in the operation field without prior definition by the user.
Also contained in the permanent symbol table are a class of symbols called pseudo-operations (pseudo-ops) which,
instead of generating instructions or data, direct the assembler on how to proceed with the assembly.

By convention, the first character of every pseudo-op symbol is a period (.). This convention is used to prevent the
programmer from inadvertently using, in the operation field, a pseudo-instruction symbol as one of his own.
Pseudo-ops may be used only in the operation field.

1.4.1 Program Control (.END)

One pseudo-op that must be included in every source program is .END, which must be the last statement in the
program. This statement marks the physical end of the source program and may also contain the location of the first
instruction in the object program to be executed at run-time.

The .END statement is written in the general form

-l .END._. START)

where START may be a symbol, number, or expression whose value is the address of the first program instruction to
be executed.

If a starting address is not present in an .END statement, the program will halt after being loaded and the user must
manually start his program.

The following are legal .END statements:

-\ .END BEGIN + 5)

-\.END &....1 200)

-j .END)

1.4.2 Program Segments (.EOT)

If the input source program is physically segmented, each segment except the last must terminate with an .EOT
(end-of-tape) statement. The last segment must terminate with an .END statement. For example, if the input source

l-l 9(Part II)

program is prepared on three different tapes, the first two are terminated by .EOT statements, and the last by an
.END statement. The .EOT statement is written without label and address field, as follows.

-j .EOT)

1.4.3 Reserving Storage Words In The Object Program

The programmer may reserve blocks of storage words, or single words, for use during program execution.

1.4.3.1 Reserving Blocks of Storage (.BLOCK) - .BLOCK reserves a block of memory equal to the value of the
expression contained in the address field. If the address field contains a numerical value, it will be evaluated according
to the radix in effect. The symbolic elements of the expression must have been defined previously; otherwise, phase
errors (see Section 1.5.5) might occur in PASS2.

The user may reference the first location in the block of reserved memory by defining a symbol in the label field. The
initial contents of the reserved locations are unspecified.

Label Field Operation Field Address Field

User Symbol .BLOCK Predefined Expression

Examples

BUFF -j .BLOCK '--' 12

. -j .BLOCK '--' A-B+65)

1.4.3.2 Reserving Single Storage Words - Storage words set to zero are set up as

A -j O; -j O; -j 0)

In this way, three words are set to zero, starting at A. Storage words set to zero are also set up by statements
containing only labels:

A;B;C;D;E)

1.4.4 Radix Control (.OCT and .DEC)

The initial radix (base) used in all number interpretation by the Assembler is octal (base 8). In order to allow the user
to express decimal values, and then restore to octal values, two radix setting pseudo-ops are provided.

l-20(Part II)

Pseudo-op Code

.OCT

.DEC

Meaning

Interpret all succeeding numerical values in base 8 (octal)
Interpret all succeeding numerical values in base IO (decimal)

These pseudo-instructions must be coded in the operation field of a statement. All numbers are decoded in the
current radix until a new radix control pseudo-instruction is encountered. The programmer may change the radix at
any point in a program.

Source Program Generated Value (Octal) Radix in Effect

-.j LAC -I 100 200100 8 I Uri tUtl volue ;,

-.j 25 000025 8
assumed to be octal

-.j .DEC

-.j LAC -I 100 200144 IO

-.j 275 000423 IO

-.j .OCT

-.j 76 000076 8

-.j 85 000000 error

1.4.5 Text Handling (.SIXBT)

Label Field Operation Field Address Field

SYMBOL .SIXBT delimiter character string delimiter

.SIXBT denotes 6-bit trimmed ASCII characters, which are formed by truncating the leftmost bit of the
corresponding 7-bit ASCII character. The Assembler converts the characters to their appropriate numerical equivalent
(see Appendix A). The characters are packed, three per word left justified, with unused bits set to zero.

0 5 6 11 12 17

I st character 2nd character 3rd character

Spaces or tabs prior to the text delimiter are ignored. Any printing character may be used as the text delimiter,
except). The text delimiter must be present on both ends of the text string, otherwise, the user may get more
characters than desired; however,) may be used to terminate the test string. After a carriage return, a new .SIXBT
pseudo-op is necessary to continue with 6-bit text.

l-21 (Part II)

Examples

Source

..j.SIXBT ..j /ABCDE/)

TAG ..j.SIXBT -j -/125/-)

..j .SIXBT -I /ABCD)

Generated Code

010203
040500
576162
655700
010203
040000

1.4.6 Defining A Symbolic Address (.DSA)

.DSA (define symbol address) is used in the operation field when it is desired to create a word composed only of an
address field. It is especially useful when a user symbol is also an instruction or pseudo-op symbol.

Examples

Label Field

User Symbol

JMP -\ LAC -\ TAG

-I .DSA ..j JMP

-I -I JMP

Operation Field Address Field

.DSA Any expression

Equivalent methods of defining the user symbol JMP to be in the
address field.

1.4. 7 Conditional Assembly (.I FOE F, .I FUND and .ENDC)

It is often useful to assemble some parts of the source program on an optional basis. This is done by means of
conditional assembly statements of the form:

-I .IF... -I expression

The pseudo-op may be one of the two conditional pseudo-ops shown below, and the address field may contain any
symbol or expression. If the condition is satisfied, that part of the source program starting with the statement
immediately following the conditional statement and up to the .ENDC (end conditional) pseudo-op is assembled. If
the condition is not satisfied, this coding is not assembled (it is treated as comments).

The two conditional pseudo-ops (sometimes called IF statements) and their meanings are shown below.

I-22(Part II)

Conditional
Pseudo-op

.IFDEF x

.!FUND x

Assemble
IF xis:

defined (present) in user symbol table

undefined (not present) in user's symbol table

In the following sequence, the pseudo-op .IFDEF is satisfied, and the source program coding between .IFDEF and
ENDC is assembled.

Y=5)

-I .IFDEF -I Y)

-!LAC.._. A)

-j DAC .._. B)

-j .ENDC)

Conditional statements may be nested. For each IF statement there must be a terminating .ENDC statement. If the
outermost IF statement is not satisfied, the entire group is not assembled. If the first IF is satisfied, the succeeding
coding is assembled. If another IF is encountered, however, its condition is tested, and the succeeding coding is
assembled only if the second IF statement is satisfied. Logically, nested IF statements are like AND circuits. If the
first, second and third conditions are satisifed, then the coding that follows the third nested IF statement is
assembled.

Example

-I .IFDEF .._. W) conditional l initiator

-j LAC -I TAG)

-I .IFUND Y) conditional 2 initiator

-I DAC -I TAGl)

-1.ENDC) conditional 2 terminator

-I .IFDEF &...1 Z) conditional 3 initiator

-j DAC -I TAG2)

-1.ENDC) conditional 3 terminator

-1.ENDC) conditional l terminator

IF statements may be activated by means of a strip of tape which precedes the regular source tapes. The strip tape
may take on the following form:

Strip Tape

A=O /Causes A and B to be

B=O /entered into the user's symbol table.

-1.EOT /Terminates the strip tape

1-23(Part II)

Source Program

~ JFDEF -j A

/This coding would be assembled.

-j .ENDC

-I .IFUND -I B

/This coding would not be assembled.

-j .ENDC

-j .END

Since the purpose of the strip tape is to enter definitions into the user's symbol table, it is only necessary to have the
strip tape read in PASS I of assembly.

1.4.8 Setting The Location Counter (.LOC)

Label Field

Not Used

Operation Field

.LOC

Address Field

Predefined symbolic
expression, or number

The .LOC pseudo-op sets or resets the Location Counter to the value of the expression contained in the address field.
The symbolic elements of the expression must have been defined previously; otherwise, phase errors might occur in
PASS2. The .LOC pseudo-op may be used anywhere and as many times as required. If the .LOC pseudo-op is not
used, the assembler assumes location 0 as the starting point of the program.

Examples

Location Counter Instruction

100 -..j .LOC ._. l 00

100 -.f LAC a....1 TAG l

I-24(Part II)

Location Counter Instruction

101 -I DAC '-' TAG2

102 -I LOC L-1

102 A -j LAC L-1 B

103 -I DAC L-1 C

107 -f .LOC '-' A+5

107 -I LAC...., C

lIO -I DAC L-1 D

111 -j LAC L-1 E

112 -I DAC ,_, F

1.4.9 Listing Control (.XLIST and .LIST)

The following assembler listing controls are effective only when a listing was requested in the command string
(Section 1.5.2).

The .XLIST statement causes the assembler to stop listing the assembled program. The listing printout actually starts
at the beginning of PASS2; therefore, to suppress all of the program listing, .XLIST must be the first statement in the
program. If only a part of the program listing is to be suppressed, the .XLlST statement can be inserted at any point
to stop listing from that point.

The .LIST statement, which is normally used following an .XLIST statement, causes the assembler to resume the
listing at the point at which it is encountered.

1.4. IO Object Output Control (.FULL)

Label Field Operation Field Address Field

Not Used .FULL Not Used

The .FULL pseudo-op causes hardware readin-mode binary output to be produced (see Section 1.5.4.3 for a·
description of the normal binary output). It must appear before any coding (except comments), otherwise, it will be
flagged and ignored. The program is assembled as unchecksummed binary code and each physical record of output
contains nothing other than 18-bit binary storage words generated by the Assembler. The Assembler will cause the
address of the .END statement to contain a punch in channel 7, thereby allowing the output to be loaded via
hardware readin mode. If no address is specified in the .END statement, a halt (rather than a jump) will be output as
the last word.

1-25(Part II)

The following specific restrictions apply to programs assembled in .FULL mode output

. LOC

.BLOCK

1.4.11 Size of Program (.SIZE)

Should be used only at the beginning of the program .

May be used only if no literals appear in the program, and must
immediately precede .END.

Undefined symbols may be used if no literals appear in the program.

Literals may be used only if the program has no undefined symbols.

When the Assembler encounters .SIZE, it outputs, at that point, the address of the last location plus one occupied by
the object programs. This is normally the length of the object program (in octal).

Label Field Operation Field Address Field

User Symbol .SIZE Not Used

Example

Generated Code Source Code

00100 -..j .LOC -..j 100)

00100 000105 -..j .SIZE)

00101 200103 -..j LAC -..j A)

00102 040104 -..jDAC -j B)

00103 000000 A -jO)

00104 000000 B -..j 0)

000000 -..j .END)

1.5 OPERATING PROCEDURES

1.5.1 Loading Procedures

The loading procedure depends on whether the Teletype paper tape reader or the high-speed paper tape reader is used
as the loading device.

1-26(Part II)

1.5.1.1 Teletype Reader as Loading Device - Place paper tape of the hardware readin low-speed binary loader (see
Appendix D) into the teletype reader. Engage the start switch on the reader. Enter 7700 into the ADDRESS switches
(17700 if computer has 8K of memory). Press 1/0 RESET and then press READIN. When the computer halts
(AC=777777), disengage the start switch, place the Assembler binary tape into keyboard reader, engage the start
switch, and press START.

1.5.1.2 High-Speed Reader as Loading Device - Place paper tape of the Hardware Readin High-speed Binary Loader
(see Appendix D) into the high-speed reader. Enter 7720 into the ADDRESS switches (17720 if computer has 8K of
memory). Press 1/0 RESET and then press READIN. When computer halts (AC = 777777) place the Assembler
binary tape into high-speed reader and press START.

1.5.2 COMMAND String

After the Assembler has been loaded into memory, it will type out a sequence of messages. The user's responses to
these messages indicate the options and devices that are to be used for the current assembly.

1.5.2.l Binary Option - The first message typed is *BIN -. If no binary output is desired, the user responds with
carriage return()).

If binary output is desired, the user types L) if the binary device is the low-speed punch, or H) if the binary device
is the high-speed punch. If any other character is typed it is ignored and the message (*BIN-) is repeated.*

1.5.2.2 Listing Option - The second message typed is *LST-. If no listing is desired, the user responds with). If a
listing is desired, the user types L) to produce the listing on the teleprinter, or H) to produce the listing on the
high-speed punch. If any other character is typed, it is ignored and the message (*LST-) is repeated.*

1.5.2.3 Symbol Table Option - The third message typed is *SMB-. If no symbol table output is desired, the user
responds with). If symbol table output is desired, the user types L) to produce the symbol table on the teleprinter,
or types H) to produce the symbol table on the high-speed punch. If any other character is typed it is ignored and
the message (*SMB-) is repeated.*

1.5.2.4 Source Input Device - The last message typed is *SRC-. If the source program is to be read from the
keyboard reader, the user types L). If it is to be read from the high-speed reader, the user responds with H) . If H
or L is not specified, or if any other character is typed, it is ignored and the message (*SRC-) is repeated.* When the
carriage return is typed, the Assembler starts reading from the input device.

1.5.2.5 Error Printout - Normally, all errors that are encountered by the Assembler are output to the listing device
and to the Teletype, if it is not the listing device. If no error printout is desired on the Teletype, it can be suppressed
by typing N in addition to the normally typed character on any of the four command string messages prior to typing
the carriage return.

*Note, that the character just prior to the carriage return()) is the one accepted by the Assembler, and therefore, if it is desirea to
change it, it may be retyped before the) is typed.

l-27(Part II)

Examples

(All characters underlined are typed by the Assembler)

*BIN -H)

*LST-N)

*SMB - L)

*SRC-H)

*BIN -F)

*BIN-L)

*LST-L)

*SMB-L)

*SRC- L)

Binary on high-speed punch.

No listing, and suppress error printout on Teletype.

Symbol printed on Teletype.

Source input from high-speed reader.

Illegal request, message repeated.

Binary output on Teletype punch.

Listing on Teletype.

Symbol table printout on Teletype.

Source input from keyboard reader.

NOTE

Normally, the Assembler requires two passes to assemble any program:
however, if the binary output device and the listing device are the same
device, then three passes are required. PASS2 produces the listing and PASS3
produces the binary object code. PASS2 always produces the symbol table,
if requested. When assembly is completed, the Assembler returns to the
command string processor for additional assemblies.

1.5.3 Continuation and Termination Control

Two control characters are available to control Assembler processing: CTRL C and CTRL P. They are typed by
holding the CTRL key and striking either C or P. The Assembler echoes these characters as tC or tP.

CTRL C may be typed when it is desired to prematurely terminate assembly and return to the beginning of assembly.
The Assembler echoes tC and returns to the command string processor. CTRL C may also be used to return to the
beginning of the command string if it is desired to change the options before starting the assembly. (Note that the
keyboard reader start switch must be disengaged before typing CTRL C.)

Examples

(All characters underlined are typed by the Assembler)

TAG! ooo4s:oo200 tc

l-28(Part 11)

A multiple definition error occurred and the user prematurely terminated the assembly by typing CTRL C.

*BIN-)

*LST-H)

*SMB-tC)

*BIN- L)

CTRL C was typed to change the binary request from no binary output to binary output on the Teletype.

Two pseudo-ops control the termination of a segment or total source input to assembly. They are .EOT and .END
(see Sections 3.1 and 3.2).

When .EOT is encountered by the Assembler it outputs EQT tP on the Teletype. It then waits for the user to load the
next tape into the tape reader and type CTRL P to continue.

When .END is encountered and another pass is required, the Assembler types END OF PASS tP. When the tape is
reloaded in the reader for the next pass, the user types CTRL P to proceed.

l.5.4 Assembly Output

l.5.4.1 Symbolic Listing - If the user requests a symbolic listing, via the command string, the Assembler will
produce an output listing on the requested output device. (Teletype or high-speed punch)

The body of the listing will be formatted as follows.

Error Flags Location Object Code Source Statement

where

xxx xxxxx xxxxxx x

Error Flags Errors encountered by the Assembler (see Section 1.5.5)

Location = Location assigned to the binary code.

Object Code = The contents of the location (in octal)

NOTE

Locations and object codes assigned for literals are listed following the
program.

x

When 56 lines have been encountered or when a form feed is encountered, the Assembler precedes the following
output with a new page number. In the case of a form feed the Assembler also outputs three up arrows (ttt)

l-29(Part II)

preceding the new page number, to indicate that a form feed caused the new page. At the end of the assembly listing
will be an error line count indicating any errors encountered during assembly.

l-30(Part II)

*al N
*LST-L
*S"lb-L
>FSt<C-H
uUP1..
uNiJ
ENV
TP
tP

it.1~126;00127
idki l 31d

P.AuE

Oi PASS

001.02
;0i() 1lcJ3
l(Jl(Jl 04
11"6105

id!r1 l l 2
Jt.j 113
JJ114

,JJJ l 15
.Jitil16

lU~l17
id id l2.k2
00121
ic);(i122
0012~
IJJ124

u l{jicJl25
,Y) &i1Jl26
D.11 ldiU1~7

00131
iU.0132

iihiid 144
id0id310

777775
000075
000112

11:100!01 iil
011HH:l21::1
000010
000133
010203
.0400012l

k1":l0 illid 1
:J0ill0f02

6ich:H21
00icHhHil
201ill2ii'.l
22i0010
200131
34ic1l 32
~0fJl30
21U0 l ;o5
200126
~klfil 1 icM

000100
600100

3 ERROR LINES

/THIS IS A COMPLETE SA~PLE PROGRAM LISTING.
/THE LAST COLUMN (COMMENTS> CONTAINS THE
/PARAGRAPH NU1'ibEl1 IN THIS i"IANUAL WHERE
/FULL EXPLANATIONS MAY BE FOUND.
I

ABC

DEF

ADDR

A:l0
8:20
C:A
TAGl
TAG2

DAC

DUPL
uUPL

.1..0C

.DEC
100;

.OCT

100

201/J

-3; +75

11.4.8
/l .4.4

11.4.4

.DSA TAGl /l.4.6

.~LOCK 5 /1.4.3.1
/1.3.2.2

.SIZE 11.4.1.1

.SIXBT /ABCD/ /1.4.5

• IFDEi
l
2
.ENDC
• lfUND
1
.ENDC
J,v)p
~
LAC
LAC*
LAC
TAU
UNO
LAC
LAC
.END

A

.+2

DAC
c
C100
C J.'1P

ABC+5
UUP1..
ABC

/l.4.7

11.4.7
11.3.4.l

11.3.5.3
/l.3.4.3
11.3.4.5

ABC>
/l.3.2.3

11.3.5.1
. /l .4.1

l.5.4.2 Symbol Table Output - After the assembly listing has been typed, the A~mbler will output a symbol table
(if requested) which lists all user defined symbols. There will be two symbol lists; the first will be an alphabetically
ordered list of the symbols and the second will be a list in numerical value order. The symbol table listing is useful in
tracing or debugging a program for which the programmer does not have a complete assembly listing (symbols defined
by labels will have a value of 5 octal digits and symbols defined by direct assignments will have a value of 6 octal
digits).

Sample Symbol Table Listing

PAGE 2

H

AoC
tu)uH

..:;
uAC
DEF
JUPL
IAGl
IAG2
UNi>

PAGE

A
c
d
AdC
DEF
ADUR
TAul
TAG2
DAC
.iJuPL
~Nu

IOIOohH iO
ir'.l0 l tJiJ
.Oc:ihl4

Ji60tJ20
.U00Jlir'J

0i01G0

3

'CJ./J l lll2
l(JIQ1~6

00112
..l0113
tllid 130

oHi00 l 0
0~.0i010
id~0fU2~

001.00
'1010~
0i0104
.hH 12
0.0113
00120
"0126
!00130

1.5.4.3 Object Program Output - If the user requests binary output, the normal object code produced by the
Assembler is a binary paper tape which can be loaded at run time by either of the hardware readin binary loaders (see
Appendix D). The format of the binary output is as follows:

Block Heading - (three binary words)

WORD I

WORD2

WORD3

Block Body - (n binary words)

Starting address to load the block body which follows.

Number of words in the block body (two's complement).

Checksum of block body (two's complement). It also includes Word 1
and Word 2 of the block heading.

The block body contains the binary data to be loaded under block heading control.

l-3l(Part II)

Starting Block - (two binary words)

WORD 1

WORD2

Locations to start execution of program. It is distinguished from the
block heading by having bit 0 set to 1 (negative).

Dummy word

If the value of the expression of the .END statement is equal to zero, the provided loader halts before transferring
control to the object program, thereby allowing manual intervention by the user. (See Section 1.4. l 0 for an alternate
form of binary output.)

1.5.5 Error Detection and Flagging

The Assembler examines each source statement for possible errors. The statement which contains the error will be
flagged by one or several letters in the left-hand margin of the line. The following table shows the error flags and their
meanings.

Flags

A

B

D

E

L

M

N

0

p

1-32(Part II)

Meaning

Error in direct symbol table assignments ignored (see Section 2.5.1).

Memory bank error (see Section 1.3.5.3).

The statement contains a reference to a multiply-defined symbol. It is
assembled with the first value defined.

Erroneous results may have been produced. Will also occur on
undefined .END value (see Section 1.3.5.3).

Literal phase error; literal encountered in PASS2 does not equal any
literal encountered in PASSI.

An attempt is made to define a symbol which has already been defined.
The symbol retains its original value.

Error in number usage.

Operand error. Non-Memory Reference Instruction has an address
value.

Phase error; PASSI value does not equal PASS2 value of a symbol.
PASSI value will be used.

Flag Meaning

Q Questionable line

s Symbol error; an illegal character was encountered and ignored.

T TAG or LABEL error.

1. Unrecognizable character in TAG field.

2. A period used alone in a TAG field.

3. A TAG begins with a number.

4. Xis used as a TAG.

u An undefined symbol was encounterd.

x Illegal use of Index Register.

1. X occurs in a .DSA statement.

2. X occurs more than once in an expression.

3. X occurs in a TAG or OP-Code field.

In addition to flagging error lines, the Assembler, during PASS 1, will print the following conditions.

Condition Example

Multiple definitions ABC 00100; 00125

Direct assignment forward references A=B

Undefined symbols UNDF 06255

The following condition will cause assembly to be terminated prematurely in PASSI.

Message Cause

TABLE OVERFLOW Too many symbols and/or literals

l.5.6 Internal Operations

l.5.6. l Symbol Table Capacity - The Assembler occupies approximately 300010 memory locations, leaving about
109010 registers free for symbols and literals. (The Assembler determines the physical size of memory of the

l-33(Part II)

computer; therefore, if it is an 8K machine, 51901 0 registers are available for table space.) Each symbol defined by
the user requires three memory locations and each literal requires one memory location. For a 4K PDP-15/10 this
means that about 3601 0 symbols (or 3001 0 symbols and 1901 0 literals) may be used before overflow occurs.

1.5.6.2 Halts - Normally, the Assembler does not halt for any reason except if an unknown program interrupt
occurs. If this happens the machine halts with the status word in the AC. In order to clear the condition the user must
deposit, in the location the program counter is pointing to, the instruction to clear the flag that caused the unknown
interrupt, and then press CONTINUE.

l-34(Part II)

2.1 INTRODUCTION

CHAPTER 2

COMPACT TEXT EDITOR

The PDP-15/10 Compact Text Editor provides for the creation and/or modification of source programs and other
ASCII text material. Commands issued from the Teletype direct the Editor to bring a group of lines from the input
device to an internal buffer. The user may then, by means of additional commands, examine, delete, and change the
contents of the buffer, and insert new text at any point in the buffer. When a block of lines has been edited, it is
punched on the paper tape reader.

Editor operation codes are divided into two basic categories: control instructions and Editor commands. Control
instructions determine whether the Editor is to be used to create new ASCII material (input level) or to modify
existing text (edit level). Within the edit level there are four Editor command classes: 1/0 requests, pointer
manipulation, editing requests, and examination requests.

The Editor is most frequently used to modify PDP-15/10 source programs, but it also can be used to edit any
symbolic text. The Editor operates with either high-speed or low-speed (ASR33) paper tape devices, and occupies
approximately 200010 locations of core memory. Any additional memory is used for buffers.

Appendix E provides a concise summary of Editor commands. Appendix F contains a simple procedure for creating
ASCII text using the Editor. Appendix G contains examples of Editor operation, written for the user who is not
fa~iliar with the Editor, but wishes to edit ,an ASCII tape immediately. The user should at least read 2.3, Operating
Procedures, before attempting to use the Editor as described in Appendix G. A more comprehensive, annotated
example of an actual editing session is contained in Appendix H.

2.2 FUNCTIONAL DESCRIPTION

2.2.1 Input Format

The following paragraphs describe the control levels, operation code formats, and data modes for the Editor.

2-1 (Part II)

2.2.l.l Control Levels - The PDP-15/10 Compact Editor operates on one of two control levels: input or edit. The
input level is used to create new text material; on this level the Editor interprets lines from the Teletype as text to be
added to an open block. Instructions are available to conveniently change the control level. The edit level is used to
modify existing text; on this level the Editor accepts and acts upon control .words and data strings to bring in lines of
text, to change, delete, or replace the line currently in the work area, and to insert single or multiple lines after the
current line.

2.2. l. 2 Operation Code Format - The format for all Editor operations consists of the operation code, followed by a
L.-1 (space), followed by arguments where applicable. The space is a blank delimiter which is considered by the
Editor to be a part of the command itself, not part of the argument string which follows the command. Legal
abbreviations are indicated with square brackets in this manual. Certain commands (e.g., FIND and RETYPE) require
the presence of arguments. Others (DELETE, NEXT) may take explicit arguments at the option of the user. Optional
arguments are given in parentheses. For a description of the command language see 2.4.

2.2. l.3 Data Mode - The Editor can accept input from a maximum of two devices* in addition to the keyboard. The
first device normally holds previously prepared text upon which changes are to be carried out. The second, the
subsidiary input device, is usually the medium through which additional, previously prepared text is inserted in the
object text.

Data from the input device is made available for editing in block form. A user-specified portion of the input is held in
a core buffer for editing until the user requests that the contents of the buffer be added to the output text.
Commands to the Editor are performed on that portion of the text currently in the buffer. Lines may be accessed
repeatedly until the buffer is emptied by the user. The lines of text in the buffer are made available for modification
by manipulating a software pointer (see Figure 2- l).

- PSEUOO LINE

POINTER ----I LINES OF ASCII TEXT

Figure 2-1. Line Buffer and Software Pointer

2.2.2 Output Format

The teleprinter is used by the Editor to echo user requests, to make responses to those requests, and to print error
messages. Edited text is punched out on either the low-speed (ASR33) or the high-speed paper tape punch (if
available and requested by the user during the initialization sequence). Edited source programs are punched in a form
that is ready to be read by the Assembler; parity is not punched; channel 8 8 is always punched (see Figure 2-2).

*The low-speed (ASR33) paper tape reader, and a high-speed paper tape reader (if available).

2-2(Part II)

DI REC Tl ON OF
TAPE MOVEMENT

,....------------ CHANNEL 8 [ALWAYS PUNCHED)
r---------- CHANNEL 7
~------- CHANNEL 6

~------ CHANNEL 5

.-------- CHANNEL 4
r------- TAPE-SPEED SPROCKET HOLES

,....------ CHANNEL 3

,....------ CHANNEL 2
-........._....c::--- CHANNEL I

eoooooooo --FRAME n
• 0 0 0 0 0 0 0 0

• 0 0 0 0 0 0 0 0
•00000000

• 0 0 0 0 0 0 0 0

eoooeoeoe
• 0 0 0 • 0 0 • 0

• • 0 0 0 0 0 0 0

••000000•

••oooooeo
• 0 0 0 0 0 0 0 0

-- FRAME n+I
-- FRAME n+2

-- ETC.
-- OCTAL 000• NULL FRAME

-- OCTAL 0 I 5• CARRIAGE RETURN
-- OCTAL 0 I 2• LINE FEED

-- OCTAL 100•@

-- OCTAL 101• A
-- OCTAL t 02• B

0 • HOLE POSITION
e • HOLES PUNCHED

Figure 2-2. PDP-15/10 ASCII Tape Format

2.3 OPERATING PROCEDURES

2.3. l Loading Procedure

Prior to loading the Editor, proceed as follows to generate leader:

Turn Teletype switch to OFF LINE.

Press punch switch ON.

Press HERE IS key several times to generate leader.

Press punch switch OFF.

Turn Teletype switch to ON LINE.

The loading procedure used depends on whether the low-speed (ASR33) or high-speed paper tape reader is used as the
loading device.

2.3. l. l Low-Speed Reader - The low-speed reader loading procedure is as follows:

Place paper tape containing low-speed, hardware readin binary loader in the Teletype reader.

Turn reader switch to ON

Set ADDRESS Switches to 7700 (17700 for 8K systems).

Press I/O RESET and READIN. The computer will halt (AC=777777).

2-3(Part II)

Tum reader switch to OFF and place binary tape of Editor in Teletype reader.

Tum reader switch to ON and press START. The Editor will be loaded into memory and will type EDITOR on the
Teletype.

2.3.1.2 High-Speed Reader - The high-speed reader loading procedure is as follows:

Place paper tape containing high-speed, hardware readin binary loader in the high-speed paper tape reader.

Set ADDRESS Switches to 7720 (17720 for 8K systems).

Press 1/0 RESET and READIN. The computer will halt (AC=777777).

Place binary tape of Editor in high-speed reader and press START. The Editor will be loaded into memory and will
type EDITOR on the Teletype.

2.3.1.3 Loader Halts -

AC = 777777 Program loaded.

AC = non-zero Checksum error on last block loaded. Reposition tape to blank frame prior to
beginning of last block and press START to read again. To ignore error, press
CONTINUE.

2.3.2 Initialization

The Editor always begins with control at the edit level and assumes that the user wishes to modify some existing text.
When first loaded, or when restarted, the Editor types EDITOR, followed by the 1/0 initialization request sequence
(the underlined portion is typed by the Editor).

Select input device:

Select subsidiary device:

Select output device:

INTXT*)
H,L)
GETXT*)
H,L)
OUTXT*)
H,L

User specifies high-speed (H)
or low-speed (L) paper tape
device,) = carriage return.

The user's response to INTXT* initializes the Editor to handle the READ command. If it is L) ,the low-speed reader
on the Teletype is used to read ASCII text into the block buffer for editing. If the response is H), the Editor expects
to find the ASCII text on the high-speed paper tape reader. Similarly, the user's response to GETXT* initializes the
Editor to handle the GET command by selecting the high- or low-speed reader as the subsidiary device. (The user may
specify that the same device be used for both READ and GET.) The response to OUTXT* selects the output device,
initializing the Editor to handle the WRITE command on the high- or low-speed punch. To obtain a listing of the
edited text, the user must specify the ASR33 punch as the output device by responding to OUTXT* with L).

The carriage return is the signal to the Editor to process each step in the initialization. The Editor interprets only the
letter immediately preceding the carriage return to be the desired device selection (i.e., HXL) is equivalent to L)).

2-4(Part II)

If that letter is not an H or L, the Editor assumes that a mistake has been made and repeats the initialization message.
If the user's response specifies the device that is not ON, or is not even part of the system, the Editor goes into an
indefmite loop, the first time it attempts to use that device, waiting for a response from a device that is not available.
In that event, the Editor may be restarted (press STOP, set the Address switches to 228 , and press START) and
reinitialized.

2.3.3 Operation

All text in the buffer is available for editing until a WRITE command is issued or until each individual line is deleted.
Using a block buffer has the advantage of rapid correction of command errors. If the user finds that he has typed the
wrong command, he can immediately correct it since the buffer has not yet been added to the output file.

If the ASR33 is the output device, the punch switch must be OFF except when actually outputting edited text (see
Paragraph 2.3.3.2). This avoids contamination of the output tape by command echoing and typing of Editor
commands. The Teletype punch must be specified as the output device to obtain a listing.

2.3.3.1 Editor Break (CTRL P) - Frequently, having made a mistake in his command string, the user may wish to
stop processing and reissue his command. When the user types the break character CTRL P (formed by depressing the
CTRL key while striking P) during command processing, the normal instruction sequence is interrupted as soon as
processing of the current line has been completed.

Control is transferred from the command processor to the edit command decoder. The line after the line that was
being processed when CTRL P was typed is left in the work area as the current line for examination or modification.
The Editor then awaits a new command from the keyboard.

The break character (echoed as b) results in program restart when the Editor is waiting for a command. On input
level, the break character results in a transfer of control to the edit level (see paragraph 2.4.1.2).

2.3.3.2 Editor Continue - If the INTXT* device is the Teletype, the Editor halts after a READ. The user must turn
the Teletype reader switch to OFF and then press CONTINUE. Similarly, if the GETXT* device is the Teletype
reader, the Editor halts after a GET to allow the user to turn the reader switch to OFF and press CONTINUE. If the
OUTXT* device is the Teletype punch, the Editor halts twice in the execution of a WRITE. After the
command-terminating carriage return, the Editor halts to allow the user to turn on the punch, thus avoiding
contamination of his output tape. When punching stops, the Editor halts and waits for the user to press CONTINUE
as a sign that the Teletype punch has been turned off, and messages may be typed safely.

2.3.3.3 Editor Recovery - If a paper tape reader out-of-tape condition occurs during the execution of a command,
the user can recover by typing CTRL R (formed by depressing the CTRL key while striking R).

2.3.3.4 Using the Erase and Kill Characters - The Editor allows the use of two keyboard characters for correction of
the line currently being typed by the user. The RUBOUT key (erase character) results in the deletion of the
immediately preceding character. The Editor echoes a backslash(\) for each RUBOUT typed. CTRL U ("kill line"
character) results in deletion of the entire line typed so far. CTRL U is formed by depressing the CTRL key while
striking the letter U. The Editor echoes an at sign (@) each time CTRL U is typed.

2.3.3.5 Editor Restart - To restart the Editor at the beginning of the initialization sequence, the user should press
STOP, set the Address switches to 228 , and press 1/0 RESET and START.

2-S(Part II)

If, during command processing (especially FIND and LOCATE), the Editor attempts to move the current-line pointer
past the end of the block buffer, it is assuming the user has made a mistake and types

END OF BUFFER REACHED BY:

followed by the command string. The user must issue a TOP request if further modifications to the current block are
required.

If the user requests SIZE ..._. n, where n is greater than the number of full-length lines that the block buffer can hold,
the Editor types

CAPACITY WARNING

The user may respond with CTRL U to proceed as though the SIZE ..._. n request were never issued, or he can type a
carriage return to ignore the warning and continue. If the user types a carriage return, the command is processed and
the Editor's buffer capacity may be exceeded.

CAPACITY WARNING is also typed when the Editor calculates that execution of a command will result in more than
SIZE or the internal parameter SYSMAX (whichever is greater) lines in the buffer. Again, the user has the option of
killing the command (CTRL U) or of processing it anyway (carriage return). The Editor calculates the number of lines
in the buffer without regard to their length. For example, with a 4K system, the Editor could easily hold 30 lines of
CAP-15 assembly language instructions without comments. Thus

>SIZE L-1 30
CAPACITY WARNING
>READ
>

would be extremely dangerous if the user intends to add extensive commands throughout his code with the APPEND
command. Since the APPEND command does not change the number of lines in the buffer, the user would receive no
additional capacity warnings unless he attempted to use INSERT, INPUT, or GET.

2.3.4 Error Recovery

Operator command errors are detected by the Editor. The message

NOT A REQUEST:

is typed, followed by the command string in error. The user should then retype his command in the correct form.

2.4 COMMAND LANGUAGE

2.4.1 Control Commands

Editor control commands consist of three commands that cause the Editor to enter the input level, and one command
to enter the edit level. (Control is initially at the edit level). These commands are described in the following para
graphs.

2-6(Part II)

2.4.1.1 Transfer from Edit to Input Level - Any one of the following three commands causes the Editor to transfer
control from the edit level to the input level.

a. Carriage return ())typed as the first character on a line.

b. The INSERT command (see Section 2.4.4.4) with no arguments. In this case the current line is added to the
output before the control level is changed.

c. The OVERLAY ('--' n) command (see Section 2.4.4. 7). In this case, n lines (or the current line only if n is
omitted) are deleted from the buffer before the control level is changed.

2.4.1.2 Transfer from Input to Edit Level - A carriage return typed as the first character of a line when operating in
the input level causes the Editor to transfer control from input level to edit level. The user can also change the control
level by typing CTRL P (formed by depressing the CTRL key while striking P). When control has been transferred to
the edit level, the Editor awaits the next command from the Teletype. The line after the line that was being processed
when CTRL P was typed is left in the work area as the current line, ready for examination or modification.

2.4.2 Editor Commands

2.4.2.1 SIZE [S] (L.....1 n) - Set the total number of lines that will occupy a buffer to n. The SIZE command may
be issued at any time, and takes effect when the next group of lines is loaded into the buffer via a READ command.
The integer variable n is initially set to 2010 for a 4K system, or 55 10 for an 8K system, and must always be set
greater than 1.

2.4.2.2 READ) - Reads sequential lines from the input device, loading them into the buffer as they are
encountered, until the number of lines in the buffer is equal to the argument specified in the SIZE request. The
pointer is set to the first line of the buffer when the operation is complete (see Figure 2-3). The READ request will
not be accepted if any lines remain in the current buffer. The buffer must have been cleared by DELETE requests or a
WRITE command.*

POINTER -r-------, - PSEUDO LINE (BLANK!

LINES READ FROM INPUT
DEVICE AS SPECIFIED
BY SIZE REQUEST

Figure 2-3. Line Buffer After READ Command

*If the input device runs out of tape, the user may terminate the processing of this command by typing a CTRL Ron the Teletype.

2-7(Part II)

If more than one block of text is to be read, the READ command inputs the first line of the next block into an
intermediate buffer. This means that if the user changes tapes on the input device between READs, he will find the
"next line" from the previous tape at the top of the block buffer, followed by SIZE- I lines from the new tape. This
does not occur if GET is used to input the new tape into the block buffer, since GET does not use an intermediate
buffer.

NOTE

If the input device is the low-speed paper tape reader, the Editor halts at the
beginning of a READ to allow the user to turn on the reader. Also, the Edi
tor halts at the completion of a READ to allow the user to turn off the
reader; the user should press CONTINUE to proceed.

2.4.2.3 GET [G] (L-11 n)) - The next n lines from the subsidiary input device are added to the buffer below the
current line. When command processing is complete, the nth line read is left in the work area as the current line. If n
is omitted, it is assumed to be I. The pointer remains at the last line read (see Figure 2-4).

2.4.2.4 RENEW) - The contents of the block buffer are written on the output device and a new block is read into
core.*

2.4.2.5 WRITE) - Punches the current contents of the block buffer on the OUTXT device, and clears the buffer.*

2.4.2.6 CLOSE) - This command must be preceded by a WRITE request. The remainder of the input file is then
written on the output device.*

2.4.3 Pointer Manipulation

The pointer is a software device that places the current line in a work area to facilitate editing. After a page of text
has been read, the pointer is positioned at the top of the block buffer to allow the user to insert text before the first
line in that block. This is done by keeping a pseudo line in the buffer which is never punched out. Thus, the first line
of the text in a block is the "second" line in the buffer. Consequently, the first line of the block of text in the buffer
is shifted one position to the right when examined with the PRINT command. This "space" is not printed. The
following paragraphs describe commands that enable the user to manipulate the pointer.

2.4.3. l TOP [T]) - This command moves the pointer to the beginning of the edit block buffer. The first line of the
buffer becomes the current line (see Figure 2-5).

*If the output device is the low-speed punch, the Editor Continue feature provides protection against output contamination (see para
graph 2.3.3.2).

2-8(Part II)

POINT
(BEFORE

ER
·~

ER
~

POINT
(AFTER

- PSUEOO LINE

- CURRENT LINE

}

BEFORE GET

11- 1 LINES

-71 th LINE (CURRENT
LINE AFTER GET)

- LAST LINE
IN BUFFER

GET 1/ ISSUEO WITH POINTER WITHIN BUFFER

POINTER •------
(BEFORE GETl""1 I -PSEUDO LINE

! I}~-"
POINTER _ -7/lhLINE

(AFTER GE~~------4

- PSEUDO LINE

POINTER

(BEFORE GETf"':t---------i! }~~:·:.:: "
I I
I I

POINTER _ I- :I th
(AFTER GEfl-=-L-------- -71 LINE ------- - LAST LINE IN BUFFER

GET 7/ ISSUEO WITH POINTER AT TOP OF BUFFER GET 7/ ISSUED WITH POINTER AT BOTTOM OF BUFFER

NOTE: If GET n attempts to exceed the maximum line buffer size, CAPACITY WARNING will be typed. The user
may type a carriage return ()) to ignore the warning and continue, or he may type CTRL U to proceed as though the
command were never issued.

Figure 2-4. Line Buffer After GET Command

NOTE

If the input device is the low-speed paper tape reader, the Editor halts at the
beginning of a GET to allow the user to turn on the reader. Also, the Editor
halts at the completion of a GET to allow the user to tum off the reader; the
user should press CONTINUE to proceed.

2-9(Part II)

POINTE~-.--------,

(AFTERT0°Pl;--71.--------1

POINTER
(BEFORE TO~-,...-----~

- PSEUDO LINE
- FIRST LINE OF TEXT

POSSIBLE POSITION OF
- CURRENT LINE BEFORE

TOP COMMAND

Figure 2-5. Line Buffer After TOP Command

2.4.3.2 NEXT [NJ (..._. n)) - The pointer is moved past the next n lines, beginning with the line currently in the
work area. Line N+ I is brought into the work area for modification (see Figure 2-6). If omitted, n is assumed to be 1.
If the command results in the pointer moving past the last line of buffer, the error message

END OF BUFFER REACHED BY:
NEXTn

is printed and the pointer is moved to the top of the buffer.

- PSEUDO LINE
- FI RS T LINE OF TEXT

- CURRENT LINE

}~-· "'"
- LINE 7)+1 (NEW "CURRENT" LINE! POINTE_~

(AFTER NEXT! --J....-------4

P 0 I NT E _FL_) __ ~
(BE F 0 RE NE X T-,--------l--------4

Figure 2-6. Line Buffer After NEXT Command

2.4.3.3 FIND [F] ..._. string) - This command searches the buffer for the next line that begins with the character
group "string". The search begins with the line following the current line. If the search is successful, the line beginning
with "string" is brought into the work area (see Figure 2-7). If the search is unsuccessful, the END OF BUFFER
message is printed and the pointer is moved to the top of the buffer. "String" may contain any number of characters.

2.4.3.4 LOCATE (L] ..._. string) - This command searches the buffer for the next occurrence of a line that
contains the character group "string." The search begins with the line following the current line. If the search is
successful, the line containing "string" is brought into the work area (see Figure 2-8). If the search is unsuccessful, the
END-OF-BUFFER message is printed and the pointer is moved to the top of the buffer. "String" may contain any
number of characters.

2-IO(Part II)

POINTER (BEFORE FINO~-.,_ _____ _

POINTE_~j----------t
(AFTER FIND)

- PSEUDO LI NE

- CURRENT LINE (BEFORE
FIND IS EXECUTED l

- CURRENT LINE (AFTER
FIND IS EXECUTED>
OR LINE BEGINNING WITH
"STRING"

FIND STRING WHEN "STRING" IS FOUND

POINTE
1
• .!!.........:,, !AFTER FIND' -1 ______ _.

POINTE,.':!R_~-------t

(BEFORE FIN~o--------

- PSEUDO LINE (CURRENT LINE
AFTER FIND IS EXECUTED>

- CURRENT LINE (BEFORE
FIND IS EXECUTED)

FIND STRING WHEN "STRING" IS NOT FOUND

Figure 2-7. Line Buffer After FIND Command

2.4.3.S BOTTOM [B]) - This command moves the pointer to the beginning of the last line in the buffer. The last
line is typed on the Teletype (see Figure 2-9).

2.4.3.6 SEARCH L...J string - The entire input tape is searched for the next occurrence of a line beginning with the
character group "string." This command must be preceded by a WRITE to clear the block buffer. If the search is
successful, the line beginning with "string" is brought into the work area with the remainder of the buffer left empty
for inputting new text or large inserts for the subsidiary input device using the GET command.

1,,,.;;l It

...... -

NOTE

If the output device (OUTXT*) is the Teletype punch (L), the Editor will
halt at the beginning of a SEARCH to allow the user to turn on the punch.
The user should press CONTINUE to proceed with the SEARCH. When the
line beginning with "string" has been found, the Editor will again halt to
allow the user to tum off the punch. Again, the user should press
CONTINUE to proceed.

2-11 (Part II)

rr-POINTE
(BEFORE LOCAT

~
POINTE

(AFTER LOCAT

- PSEUDO LINE

CURRENT LINE
- !BEFORE LOCATE IS EXECUTED)

CURRENT LINE
- (AFTER LOCATE IS EXECUTED)

OR LINE CONTAINING"STRING"

LOCATE STRING WHEN"STRING"IS FOUND

POINTER
(AFTER LOCAT~1---------i

POINTE~t---------t

(BEFORE LOCATE)

PSEUDO LINE
(CURRENT LINE AFTER LOCATE
is EXECUTED)

CURRENT LINE
(BEFORE LOCATE IS EXECUTED!

LOCATE STRING WHEN "STRING" IS NOT FOUND

Figure 2-8. Line Buffer After LOCATE Command

2.4.4 Editing Requests

The following paragraphs describe commands that enable the user to accomplish his actual editing task.

2.4.4.1 RETYPE [R] "'-' line) - The character string "line" replaces tne current line. The new line is left in the
work area and may be modified.

2.4.4.2 APPEND [A] "'-' string) - "String" is added to the current line following the last character preceding the
terminating carriage return. Thus, to add a comment to the current line

JMSGETNUM)

the command might be

A, -I /Get decimal argument.) NOTE: -I indicates a tab

2- l 2(Part II)

POINT1.~E~R~...t-------1
!BEFORE BOT~~-------1

POINTER

(AFTER eon·~oM;;,l:-i~=====j

- PSEUDO LINE
- FIRST LINE OF TEXT

-CURRENT LINE
(BEFORE BOTTOM IS EXECUTED)

-LAST LINE IN BUFFER
(CURRENT LINE AFTER BOTTOM

IS EXECUTEOI

Figure 2-9. Line Buffer After BOTTOM Command

The new current line would be:

JMS GETNUM -1 /Get decimal argument.)

If "string" is absent, the current line is unchanged. When the current line is changed, the new line is left in the work
area and may be modified.

2.4.4.3 CHANGE [CJ L-1 qstring1qstring2q) - In the current line, the first character group (stringl) which
matches that occurring between the first pair of delimiting characters (q's in this case) is replaced by the character
group (string2) appearing between the second pair of delimiting characters. The delimiting characters are chosen by
the user and can be any character (including blank) that does not appear in either of the character strings. Both
"stringl" and "string2" may contain any number of characters, including zero. If VERIFY is ON (see paragraph
2.4.5.2), the program will print the new current line on the Teletype when the request change has been accomplished.
The new line is left in the work area and may be modified.

Examples

Current Line: NXTLIN

a. In the comment, spell PRINT properly,

REQUEST:
NEWLINE:

CHANGF.a....JRN/RIN/)
NXTLIN

b. Make the "JMS" a "JMP".

REQUEST:
NEWLINE:

CHANGE '-' XSXP*X)
NXTLIN

JMSTYPOUT /PRNT THE LINE.

JMSTYPOUT /PRINT THE LINE.

JMSTYPOUT /PRINT TifE LINE.

JMP*TYPOUT /PRINT THE LINE.

2-13(Part II)

c. Delete the "T" in the tag,

REQUEST:
NEWLINE:

C '-'/Tl/)
NXLIN JMP* TYPOUT /PRINT THE LINE.

2.4.4.4 INSERT [I) '-' line - The character string "line" is inserted below the current line. The pointer is stepped
to place "line" in the work area and "line" becomes the new current line (see Figure 2-10). The program remains at
the edit level when the request processing is completed.

ERTi

~
(BEFORE INS

POINT

·~ POINT
(AFTER INSE RTl

- PSEUDO LINE

- CURRENT LINE (BEFORE INSERT COMMAND)
- INSERTED LINE OR CURRENT LINE AFTER

INSERT COMMAND.

Figure 2-10. Line Buffer After INSERT Command

2.4.4.5 GET [G] (..._. n)) -This command adds n lines from subsidiary input device to buffer below the current
line (see Section 2.4.2.3). If the subsidiary device runs out of tape, the user may terminate processing of this
command by typing CTRL R on the Teletype.

2.4.4.6 DELETE [DJ ('-' n)) - The next n lines, including the current line, are deleted from the buffer. The line
following the last line deleted becomes the current line (see Figure 2-11). If n is omitted, only the current line is
deleted. If n is large enough to cause the pointer to pass the end of the buffer, the END-OF-BUFFER message is
printed and the pointer is moved to the top of the buffer.

2.4.4.7 OVERLAY [O] (..._. n)) - Starting with the current line, n lines (or the current line only, if n is omitted)
are deleted from the buffer and the control level is changed to input level. When control returns to edit level, the
pointer will be positioned at the last line typed by the user.

2.4.5 Examination Requests

The following paragraphs describe commands that allow the user to examine text within the block buffer.

2.4.5. I PRINT [P) (1-1 n)) - The next n lines from the buffer, including the current line, are printed on the
Teletype. The pointer is left at the last line printed (see Figure 2-12); n is assumed to be one if omitted.

If, as a results of the request, the pointer moves past the last line of the buffer, the error message

END OF BUFFER REACHED BY:
PRINT n

2- I 4(Part II)

is printed and the pointer is moved to the top of the buffer (see Figure 2-12).

PQINTER J------ ·---
(BEFORE DEl.~1------~

I
I
I

POINTE~

""" '""" ! ... _____ ___,

-PSEUDO LINE

- CURRENT LINE (BEFORE DELETE)

}~-, ""' """'
LINE 71+ 1 (NEW"CORRECT"UNE)

DELETE 71 THAT OOES NOT REACH END Of BUFFER

I
I
I
I
I
I
I
I

I I

L------~
DELETE 1/ THAT REACHES END OF BUFFER

PSEUDO LI NE
(CURRENT LINE AFTER DELETE)

- CURRENT LINE (BEFORE DELETE)

* LINES DELETED

Figure 2-11. Line Buffer After DELETE Command

2.4.5.2 VERIFY [V] L-1 (O~~))- Set Editor response according to the parameter. When VERIFY is ON, text
lines are printed in response to certain .editing requests, as follows:

a. The line brought into the work area as a result of a FIND or LOCATE request is printed.

b. The last line of the buffer, brought in by the BOTTOM request, is printed.

c. The new line resulting from a CHANGE request is printed.

When VERIFY is OFF, only error messages are printed. After the Editor is loaded initially, VERIFY is ON. The
verify request without arguments is equivalent to requesting VERIFY ON.

2- I 5(Part I I)

POINTE~Rm:iot:======l
(BEFORE PRlNTl

POINTER
(AFTER PRl~l-------t

-PSEUOO LINE

}

CURRENT LINE (BEFORE PRINT)

11- 2 LINES PRINTED

_ 71th LINE PRINTED OR CURRENT
LINE AFTER PRINT

PRINT 11 THAT DOES NOT REACH END OF BUFFER

POINTER
(AFTER PRl~-1----------4

_PSEUDO LINE
(CURRENT LINE AFTER PRINT)

POINTER
(BEFORE P~-....-------1 - CURRENT LINE (BEFORE P"INTl

LINES PRINTED*

* END OF BUFFER MESSAGE TYPED

PRINT 11 THAT REACHES END OF BUFFER

Figure 2-12. Line Buffer After PRINT Command

2.4.5 .3 BRIEF._. (O~~))- Set Edit°' verification acoonling to the parameter. BRIEF ON '°""" in the ahr..
viated printing of the current line when responding to edit requests. An attempt is made to print only the tag, opera
tion code, and address fields of lines brought into the word area as a result of the FIND, LOCATE, and BOTTOM
requests. The printing of the new line resulting from a CHANGE request is terminated at the last newly inserted
character. BRIEF is initially set to OFF. The setting of this indicator is of no consequence when VERIFY is OFF.
The brief request without arguments is equivalent to BRIEF ON.

2- l 6(Part II)

3.1 INTRODUCTION

CHAPTER 3

OCTAL DEBUGGING TECHNIQUE

Octal Debugging Technique (ODT) is a debugging aid that allows the user to conduct an interactive, on-line debugging
session using octal numbers and Teletype commands. The program, which is self-contained and completely
independent, is designed to run on a basic 4K or 8K PDP-15/10 with an ASR33 and will operate with PI or API
enabled. ODT is written in CAP-15 Assembly Language and may be assembled along with the user programs with
which it is to run. All symbols that are internal to ODT begin with a percent sign (%). Thus, if the user avoids
beginning his own symbols with this character, multiple definition of symbols will not occur when ODT is assembled
with the user program. However, ODT would normally be assembled separately from the user's programs and then
loaded into memory only when desired. Standard versions which are delivered in object program form may be used
for the debugging of any programs as long as enough memory is available to load ODT at the proper locations.

Using ODT, the programmer can conduct a debugging session, and when errors are found, correct them on-line and
execute the program immediately to test the correction. Thus, ODT can be used to compose a program on-line and
check it out as composition progresses. Manual operation of console controls is not required to operate ODT; all
functions are initiated by typing commands on the Teletype .. The source coding for ODT is so designed that many
features can be removed by defining parameters at assembly time. This will be of prime interest to users who are
checking out large programs and wish to conserve core storage.

Appendix I provides a convenient listing of the Teletype code in octal form. Appendix J is a concise listing of ODT
commands.

3.2 GENERAL DESCRIPTION

All input to ODT is initiated through the console Teletype keyboard. In general, the user types commands to ODT
which control the following operations:

Starting the user program at any point.

3-l(Part II)

Stopping and subsequently continuing the user program at selected points called breakpoints.

Examining and/or modifying the AC and Link at a breakpoint.

Examining and/or modifying any memory locations (registers).

Searching user defined areas for registers with specified bit configurations.

Punching out areas of memory to be loaded later for more debugging and/or execution.

Initializing buffer areas to any desired value.

Selection of hardware options such as a high-speed or low-speed paper tape punch.

There are two outputs from ODT: teleprinter and paper tape punch (either high-speed punch or ASR33 punch). The
teleprinter is used by ODT to type all information concerning register contents and error indications. This output is
very useful since it contains the user's commands as well as ODT responses, which can be analyzed off-line if
necessary. The paper tape punch is used to save or dump the user program, or portions of it, as the user desires. The
tapes generated when dumping a program are fully checksummed and can be loaded by the PDP-15 /I 0 Loader. The
format of this tape is shown in Figure 3-1. Each memory word consists of three data frames of six bits each. The
program start address is distinguished from the other load addresses by having bit 0 set to I.

-- -

Leader ($F command)
2 feet

Figure 3-1. PDP-15/10 Loader Format

3.2. l Operational Organization

ODT can be loaded and used in four basic ways:

It can be loaded immediately following the user program, with control being given to ODT after it is loaded.

It can be loaded after the user program has been running.

It can be loaded before the user program(s) and initiated by manual control after the user program(s) has been
running.

It can be loaded by itself and used as a stand-alone program.

3-2(Part II)

.,,... __ --__,..,,._

Block Start Address

of words in block (2's complement)

Checksum of block including the previous
two words (2's complement)

Block Body (any length)

Block Spacer (10 Frames)

More Data Blocks

Last Data Block

Program Start Address

Dummy word

Data Block

(k 1; k2 $0 command)

Terminal Block (k$T command)

Trailer

Figure 3-1. PDP-15/10 Loader Format (cont)

3-3(Part II)

In any case, ODT is initiated by starting the processor at location %0DT. The distributed version is loaded and
initiated at location %0DT (6000 for 4K and 16000 for 8K). However, the user may assemble versions of ODT which
are loaded at any location in memory. Also, by choice of .END statements, ODT may be initiated automatically by
the loader or may require manual initiation at location %0DT. Once initiated, the user has control over running and
stopping his program with keyboard commands. If ODT breakpoints are requested, the following modifications are
made to the user program:

Each instruction that the user designates as a breakpoint is replaced with JMS* AUTOX. This instruction gives
control to ODT when the breakpoint is encountered, and is removed when a breakpoint is executed so that the user
will see his own instructions if he examines these locations or dumps memory.

An auto-index register, the address of which may be examined and/or modified by using the $V command, is used
by ODT and may not be modified or referenced by the user program.

If the PI (program interrupt) is used, ODT must, during breakpoints, intercept all TIY interrupts and pass all other
to the user. Therefore the instruction at location 1 is replaced with the instruction JMP %INT. Location I is
restored when a dump is performed but it is not restored during other ODT operations.

3.2.2 Functional Organization

The internal organization of ODT is almost totally modularized into independent subroutines. In general, the internal
structure consists of major functions, as follows:

Initialization

TTY Character Input/Output

TIY Message Output

PI Intercept

Command Decode

Command Execution

3.2.2.1 Initialization - This function is performed when ODT is started at location %0DT. The tasks performed
include disabling the entire system (similar to an 1/0 reset), resetting miscellaneous registers internal to ODT, clearing
all breakpoint requests, clearing hardware and software flags, and initiating the command decode function.

3.2.2.2 Teletype Character Input/Output - All teletype communication is performed a character at a time; that is,
the input and output is not buffered. This means that the user must not type commands unless ODT is waiting for
one. If characters are typed while a requested operation is in progress, they will not be seen by ODT and will not be
echoed on the teleprinter.

3-4(Part II)

3.2.2.3 Teletype Message Output - This function is performed by repeated use of the teletype character output
routine. The functions performed include the typing of addresses, register contents, operational messages and error
messages.

3.2.2.4 Pl Interrupt - If the PI is enabled, the Teletype will interrupt when it is ready for service. Therefore, during a
breakpoint, ODT must be able to handle the Teletype 1/0 interrupts. This function is performed with the help of the
PI Intercept (%INT) routine. This routine is entered, instead of the users interrupt program, on every program
interrupt which occurs while ODT has control. If the interrupt is not from the Teletype, control continues to the user
trap program.

3.2.2.5 Command Decoder- The functions performed by the command decoder include:

Reading the keyboard.

Assembling and saving all octal numbers typed by the user.

Detecting the command character.

Allocating control to the proper command execution subroutines.

Detection of illegal numbers and commands.

3.2.2.6 Command Execution - In general, each command has a separate entry point into the command execution
routines. These routines are entered from the command decoder. They exit either to the user's program ($G, SC) or
back to the command decoder to interpret the next command.

3.3 COMMAND LANGUAGE

The following conventions are used throughout this section and the remainder of this chapter:

$represents either the ALT MODE key or the dollar sign (S) key($ is echoed).

k represents an octal number of six or less digits. When used to specify an address. k is five or less
octal digits.

n represents a single octal digit.

) represents carriage return

+ represents line feed.

t (up arrow) is formed by depressing the shift key and typing N.

Any underlined text in the examples refers to that which is typed by ODT.

3-S(Part II)

Aindicates a blank or space.

Priority levels are specified as follows:
Highest 0

Lowest

1
2
3
4
5
6
7
8 +-

9 +-

Hardware API levels.

Software API levels.

PI level
Program level

Optional

When a command is typed by the user, ODT responds in one of the following ways:

If the command does not require a typed response, ODT will respond with a carriage return and line feed () .j..) to
indicate that the command has been accepted. On this type of command, the user should not type anything on the
keyboard until after ODT has typed the) .j... Anything typed after the command and before the) .j.. will be ignored;
in fact, it won't be echoed on the teleprinter.

On commands that request the contents of a register to be displayed, ODT performs the typed response but does
not follow with the,) .j..; this allows modification and/or other commands to be typed on the same line.

On commands that cause multiple words, messages, or multiple lines to be typed, ODT terminates the output
with)H.

Illegal or incorrect commands are ignored, and ODT responds with ?) .j...

3.3. l Register Examination and Modification

The following paragraphs describe all ODT register examination and modification commands.

3.3. l. I Open a Register (k/ j) - The command k/ causes ODT to open register k. This means that ODT fetches the
contents of register k, types the contents on the teleprinter, and then leaves the register open for modification. Once a
register is opened, the user may close it, or he may type a new octal value for the register and then close it. ODT
allows only one register to be open at any particular time. Thus, another register-opening command will close the
open register.

The / command causes the last referenced register to be opened. This allows the user to open and close register N,
perform some non-register-opening commands (possibly including the execution of his program), and then type / to
have register N opened again.

Example

400/002066) .!_
39?).j..
3765/01264317/001326)±

/001326)1
0/001472

3-6(Part II)

Open and close register 400
9 is illegal
Open and close register 3765 and then
open register 17
Re-examine register 1 7
Open register 0

3.3.1.2 Close Register ()) - Typing a carriage return ()) closes any open register. If a register is open and the user
types k) the value k will be stored in the open register and the register will be closed.

Example

300/000206) .!.
300/000206 3333) 1.
/003333).:!:..
0/001472 279?)-l-

Register 300 unchanged
Register 300 changed
Verifies contents of location 300
Open register O; Register 0 is not changed

If a register is open, typing another register-opening command will close it.

Example

300/003333 426/ 010000 Closes 300 and opens 426

3.3.1.3 Close Register and Open Next (.j..) - The line feed (.j..) works the same as the carriage return()) except that
after modifying (optional) and closing the open register, the next sequential register is opened and its location and
contents are printed. Note that on the 4K machine, location 0 follows 7777.

Example

300/003333 126 .j..)
00301/700301

Change contents of location 300 to 1268

and open 301.

Note that ODT types addresses as five digits and register contents as six digits with no leading zero suppression.

3.3.1.4 Close Register and Open Previous (t) - The up arrow (t) acts like the line feed (.j..) except that the register
previous to the currently open register is opened.

Example

30/700314t).J_
0027 /700002

Open register 30. The t causes
ODT to open register 27.

3.3.l.5 Close Register and Interpret Contents as Address <~l - The left arrow (~)closes (optionally modifies) the
currently open register. It then interprets the contents of the register as a memory referencing instruction. ODT then
opens the register referenced by the address portion of that instruction. The indirect bit is not tested so that if the
register contained the instruction LAC* 200 the following would occur:

326/22020~) +
00200/nnnnnn-

Ignore the indirect bit and
open register 200.

3.3. l .6 Open AC and Link Register ($A) - Typing SA at any time opens and displays the register holding the current
AC value. The value may be modified if desired.

3-7(Part II)

Typing ~ opens the next register which holds the Link status in bit 17. This may also be modified.

3.3.1.7 Display Pl and API Status ($J) - Typing $J causes ODT to sample and print the current Pl and API status
registers. Since both of these may be running, the values may be constantly changing.

Example

$1.J..±.
Pl/nnnnnn) .j,
APl/nnnnnn)H

The PI is sampled with an IORS instruction and the API is sampled with the RPL instruction. Definitions of the bits
in these registers may be found in the PDP-15 Reference Manual.

3.3.2 Execute Instruction k (k$X)

The instruction k will be executed. The saved AC and Link are restored before execution and saved again after. As
long ask is not a CAL, JMP or JMS, control will remain in ODT. On a JMS or CAL, control returns to ODT on the
instruction following the JMS or CAL, even if control is transferred to a routine that normally contains a breakpoint.
The JMP A instruction will be executed as though the command k$G were given, where k is address A. All other
instructions, except for the DBR instruction and the multiply /divide instructions of the EAE class, may be executed
in this manner. Note that a skip instruction that actually skips causes the current breakpoint return address to be
incremented by one.

ODT responds with) .j, as soon as the $X command is accepted. When ODT is ready to accept another command, it
types another carriage return - line feed sequence.

Example

140012$X).j,
)-1- -

3.3.3 Setting User Start Address

User executes a DZM 12.

3.3.3.1 Open User Start Address ($Z) - Typing $Z opens a register internal to ODT and types its contents. The user
can then type the start address of his program followed by . Then the command $G (see Section 3.3.3.2) will
transfer control to the address specified. (The initial content of the $Z register is unspecified.)

Example

$ZOOOOOO 200) .j, Set start address equal to 000200.

3.3.3.2 Transfer to User Start Address or Address k (G, kG) - This command is used to start the user program at
any location. The command k$G starts the program at location k. The command $G starts the program as specified
by the $Z register.

3-8(Part II)

The normal use of $G is to initially start the user program. If breakpoints have been specified, they are set before
control goes to the user program. The AC and link are unspecified unless the user has used the $A command to set
particular values. The AC and link may also be specified by executing AC modifying instructions with the $X
command. The status of the PI and API are not altered by a $G command.

Another use of $G is to restart the user program at any point after a breakpoint has been encountered. That is,
instead of continuing after the breakpoint with a $C, the user can start at some other location by typing the $G
command. The user's AC and link are restored for a $C command. Again, the Pl and API are not disturbed.

3.3.4 Using Breakpoints

ODT allows the user to specify up to four breakpoints at selected locations in his program (except location l). The
breakpoint facility of ODT provides a means of suspending the program operation at any desired point and then
examining the status of the program through the use of the other ODT commands.

3.3.4. l Setting Breakpoints (kB, knB) - To set a breakpoint at location k, the user types k$nB, where n is I. 2, 3,
or 4. If breakpoint n is already set at some location, it is moved to location k. The command k$B will assume
breakpoint I.

3.3.4.2 Removing Breakpoints ($nB, $8) - To remove breakpoint n, the user can type $nB where n is I, 2, 3 or 4.
To remove all breakpoints, the user can type $B.

Example

NOTE

The above described commands do not immediately alter the breakpoints.
The mechanism is set so that the desired changes occur at the next $G or $C
command.

$B)l
300$4B) .!.
1760$B) J:..

Remove all breakpoints
Set breakpoint 4 at location 300.
Set breakpoint l at location 1760.

3.3.4.3 Continue from Breakpoint (C, kC) - The $C command causes the user's instruction at the breakpoint to
be executed and control to be returned to the user program. The k$C command does the same thing except that a
loop count is set so that the break does not occur until the kth time it is encountered. This command may be given
only while a breakpoint is in progress. Note that even though the loop count may not be satisfied, ODT is still entered
and has control for about 200 µs on every pass through the breakpoint. During this time, re-entrancy may occur (see
paragraph 3.3.4.9). Note that $C is the same as l $C.

3.3.4.4 Kill Pl and API During Breaks ($K) - Typing $K causes the Pl and API to be disabled during all breakpoints.
Their status is saved and restored at the $C command. The $K command stays in effect until the $U command is
given.

3-9(Part II)

3.3.4.S Allow Pl and API During Breaks ($U) - Typing $U re-enables the PI and API after having been disabled by
the $K command. This is the nonnal operating mode for ODT.

3.3.4.6 Vary Autoindex ($V) - The operation of breakpoints requires the use of one autoindex register. The user
may not use this register if ODT is used. Normally, ODT uses location 17 but the user may change this with the $V
command. Typing $V opens a register internal to ODT, which holds the address of the autoindex register. The user
may alter this value to any number in the range 10 through 17. This alteration, if perfonned, should be accomplished
before the first $G command is given to ODT. The user should also note that the autoindex register is used by ODT
even if breakpoints are not specified. Starting ODT at location %0DT will reset the autoindex location to 17.
Restarting ODT at %REST will leave the autoindex specification unaltered.

3.3.4.7 Open Re-entrant PC List ($Y) - This command, which is really only meaningful after a re-entrancy error,
opens the first breakpoint return address. Typing .). opens the succeeding PC values. The list is terminated by an IOT
class instruction (op code 70). Note that the values in this list are the addresses+ 1 of the active breakpoints.

3.3.4.8 Breakpoint Operation - When, during execution, the user program encounters the location of the breakpoint,
control is transferred immediately to ODT. ODT saves the user program AC and link. The status of the teleprinter flag
is also saved. From this point on, until a $G or $C command is given, the user does not have control of the Teletype.
ODT then replaces all break instructions and types the breakpoint number and location as follows:

).J. $Bn .6k).).

where n is the breakpoint number and k is the address of the breakpoint.

ODT is now in control and is waiting for the user to type commands. The user can examine and change any registers.
The current AC and link may be examined and modified by using the $A command. The user should note that the
instruction at the breakpoint has not been executed. It will not be executed until a $C command is given. The user
can remove and/or move any breakpoints at this time.

At a breakpoint, while ODT has control, the status of the PI and API is not altered (except for short periods of time
as described below). Thus, a breakpoint at priority n causes ODT to be entered and executed at that priority. This
means all processing at that priority level and below will stop.

However, all processing at priority levels above the level of the breakpoint will continue. It may be that the user will
want all processing to stop at a breakpoint. This may be accomplished in two ways. The user may set the breakpoint
in a section of code that is executed at the highest priority. If this cannot be done, the user can type the command $K
to "kill" PI and API processing at the next breakpoint. The PI and API status is saved and then restored on the $C
command. The $K command can be typed at any time that ODT has control; it stays in effect until the $U command
is typed and vice versa.

3.3.4.9 Breakpoint Restrictions - The following restrictions apply when using breakpoints:

a. Breakpoints may not be placed at the following types of instructions:

(I) Instructions that are modified by the user program.

3-lO(Part II)

(2) Instructions that are executed out of line by an XCT.

(3) Instructions or data that are not actually executed, such as instructions used as arguments following a
JMS.

(4) An instruction that uses indirect addressing and is the first indirect following a DBR instruction.
Breakpoints on other indirect instructions are not restricted.

(5) An instruction in an area operating in the extend mode.

(6) On any of the exit sequence instructions of a PI or API routine. For example, a breakpoint must not be
set on any of the instructions .

ION
DBR
JMP* 0

in the exit of a Pl routine.

b. If a breakpoint is placed on a CAL instruction, the breakpoint will occur as normal. However, when the $C
command is given, the breakpoint will be removed before control returns to the user. Thus, a breakpoint on a CAL
instruction may only be executed once. A breakpoint may be set on any of the other memory referencing instructions
(op codes 04 through 60), any operate instruction (op code 74), and the EAE instructions (op code 64). The IOT
instructions are discussed in the next paragraph.

c. There is one IOT class instruction that cannot be at a loc~tion where a breakpoint is set; this is the DBR
instruction. Generally, this instruction requires that it be followed by a JMP* referencing the location holding the PC,
link and extend mode status. This will not occur if the DBR instruction is at the breakpoint, since many ODT
instructions will be executed after the DBR is executed and before the user regains control.

If the $K command is in effect, breakpoints should not be set at the IOT instructions listed below. If a breakpoint is
set at these instructions, the results will be as indicated.

IORS

IOF

ION

SPI

ISA

The PI bit will always indicate that the Pl is disabled.

No operation

Could cause ODT to fail if any breakpoints are defined within an
interrupt routine.

SPI will operate correctly if the API was off when the break was
executed; however, if the API was enabled, then ODT raises the priority
to level 0 (highest priority). This may cause SPI not to skip when the
user expects it to do so.

If the API was disabled when the break was executed and if the ISA is
enabling the API, ODT may fail if any breakpoints are defined within
the API level routines. If the API was enabled when the break was
executed, then the API will be enabled and active at level 0 when the
ISA is executed. ODT will then DBK. Thus, if the user's ISA has

3-1 l(Part II)

RPL

requested an interrupt at levels 4-7, the ISA will work. If the ISA has
turned off the API, the ISA will operate correctly. But if the ISA has
tried to raise the priority to levels 1-7, the ISA will operate as a no-op.

If the API was off when the break was executed, RPL will work.
Otherwise, RPL will read a word into the AC which indicates that the
API is enabled and level 0 is active.

d. There are several timing considerations for setting breakpoint instructions.

(1) If the user is operating with no PI or API, then setting a breakpoint merely stops his program. Hence,
all 1/0 in progress will be terminated until the $C command is given.

If a XX$C command is given, the breakpoint is not executed again until the XXth occurence. The user
must realize that on every pass over the breakpoint, ODT is entered, the user instruction is executed by
ODT, and then control is returned to the user program. Therefore, the instruction at the breakpoint,
which normally takes from 1.5 to 12 µs to execute, will actually take about 200 µs to execute.

(2) If the use is running with PI and API enabled, then several additional timing restrictions must be
considered.

3- l 2(Part II)

(a.) Assume the user inserts breaks only at the program level (that is, at non-PI, API levels). When a
breakpoint is encountered, independent of the status of the iteration loop count, the PI is
disabled for short periods of less than 80 µs and the API is temporarily raised to level 0 (highest
priority) for periods of less than 50 µs.

(b.) Assume that the user inserts multiple breakpoints on the same priority level. When the breakpoint
is encountered at level n, ODT will operate at that level (except for the short intervals, described
in paragraph (2) (a) above where ODT operates at level 0). Therefore as long as the break is in
progress, which could be several minutes, all interrupts on that priority and below will be
inhibited.

(c.) Several possibilities exist if the user places breakpoints on more than one level. In general, ODT is
designed such that only one breakpoint may be in progress at any given time. However, it is
possible that a breakpoint is executed at level N and then, before ODT can remove the other
breakpoints, another breakpoint is encountered at a level M, where M has a higher priority than
level N. ODT always detects this situation, but there is no way to recover to the extent that the
user can continue his program. However, ODT will do the following:

Disable Pl, API

Print the message ODT REENTERED
Halt

The user may press CONTINUE to restart ODT or he may manually restart ODT at location
%REST (16011 on the distributed version). Thus, the user may examine, with ODT commands,
the status of the program. In particular, he may use the $Y (see below) command to open up the
first location of list of PC values of all breakpoints which are now active. By stepping down the
list, he may determine which breaks occurred and in which order. The list may have from two to
four entries, but is terminated with an IOT class instruction (op code 70). At first glance, it may
appear that if a break is in progress, then the next break which interrupts the currently active
break will cause ODT to terminate. However, the following may occur:

A breakpoint instruction is executed at some level. This saves the PC (return address which is
the breakpoint address + 1).

A higher priority level becomes active and takes control away from ODT, possibly before
ODT can even save the AC. Of course, this may occur at any time before ODT removes the
other breakpoints.

Another break is executed on the higher level. This instruction will save the PC in the
location following the PC of the interrupted breakpoint. If this breakpoint routine (in ODT)
executes one more instruction, then ODT will detect the re-entrancy and the re-entrant error
process will be initiated. However, this second breakpoint may be interrupted by a higher
level request before it executes its first instruction (following the breakpoint instruction). Of
course, the higher level routine may contain another breakpoint; etc.

Jn any case, the following can be guaranteed:

In no case will the PC value of an executed breakpoint be lost.

Since there are a maximum of four breakpoints, either some breakpoint will get far enough
to detect the re-entrancy or the breakpoint at the highest level will be executed. This means
all other breaks are locked out so that the re-entrancy will be detected.

On multiple entries, all AC values after the first will be lost. The first AC may or may not be
lost.

Thus, in case of re-entrancy, ODT will not collapse and the user will be able to determine what
happened. The user may not issue a $C command. The $G must be used to restart the program.

3.3.5 Searching Operations

ODT has the capability to search a specified area of memory for any bit configuration in any specified bit position.
When a match is found, ODT types the location and the contents of the memory register. The search is performed
between a low and high limit with the following algorithm:

a. Get the memory word

b. Mask with the search mask (see below)

c. Compare with k from the k$W command

d. If equal, print location address and unmasked contents. If not equal, go to next memory register.

The following command sequence is used to set the mask, low limit, high limit, and initiate the search:

$M Open mask register for modification

Open low limit register

Open high limit register

k$W Search fork

3-13(Part II)

The mask and limits must be set before the k$W command is given. Otherwise, whatever is in these locations will be
used.

Note that a core dump between the low and high limits is performed if the user specifies a mask of 0 and then types
0$W ($W is the same as a 0$W).

Example

Suppose the user wants to locate all JMS instructions between location 200 and 1500. The command sequence would
be as follows:

$M 077336 740000-i-)

07745/00100 200.J.)

07746/007000 1500) .±.

100000$W)-1-

00300/ 102030) .j.

01476/126750) H

User opens and changes the mask.

The line feed on previous line opens low limit

Opens and changes high limit.

User types JMS op code and then

ODT starts the search

There are two JMS instructions

JMS 2030 at location 300 and

JMS* 6750 at location 1476.

NOTE

The address of low-limit and high-limit registers may vary depending upon
the assembled version ofODT.

3.3.6 Initialize Buffers ($1)

This command is used to load a specified value into any contiguous block of memory. The user defines the block to
be loaded by setting start and stop addresses into the low and high limits of the word search routine. This means the
user must first open the mask with $M and then type a line feed (.j.) to open the low limit. Once the start and stop
addresses have been set up, typing k$1 causes the value k to be loaded into the buffer. Typing $1 is the same as typing
0$1.

Example

$M 740000.j.)

07745/000200 433.j.)

07746/007000 624) +

400000$1).J..1.

3-14(Part II)

User opens MASK and then types .j. to open low limit. Change to 433.
Open high limit and change to 624. Fill buffer with 400000.

NOTE

The address of low-limit and high-limit registers may vary depending upon
the assembled version ofODT.

3.3.7 Paper Tape Output

The following paragraphs describe the ODT paper tape output commands.

3.3. 7. I High-Speed/Low-Speed Punch Available ($H, $L) - Typing $H indicates to ODT that all punching is to be
performed on the high-speed punch. Typing $L indicates to ODT that all punching is to be performed on the
low-speed punch (ASR Teletype). Since the low-speed punch and the teleprinter are physically connected, the user
always has the punch turned off until after a command to punch has been given to ODT. ODT halts to allow the user
to turn the punch on and off at the correct times. The user operates the CONTINUE switch on the operator's console
to resume ODT operations.

3.3.7.2 Feed Leader ($F) - The $F command causes about 2 feet of leader to be punched either on the high- or
low-speed punch (depending on whether $H or $L has been seen by ODT). For the low-speed punch, ODT halts to
allow the user to turn on the punch. The user then operates the CONTINUE lever. When the punching is complete
ODT halts again so that the punch may be turned off before the next command is typed. The punch must be off
when the keyboard is used or else the commands will be punched as they are typed. The halts are not performed
when the high-speed punch is used.

NOTE

The initiation of any punching permanently disables the PI and APL The
user's program may not be continued with $C. The program must be
restarted with a $G.

3.3.7.3 Dump Block of Memory (k1 ; k2 $0) - This command causes the dumping of all locations between k 1 and
k2 , inclusive. If the low-speed punch is used, halts occur before and after punching. If k2 is not specified, an error is
assumed.

All dumping is performed in the PDP-15/10 Loader format (see Figure 3-1). The main feature is that noncontiguous
blocks may be punched, each with a separate checksum. After the last block there is a special start block that tells the
loader to stop loading and transfer control to a specified address. This terminal block is punched by using the k$T
command. As many blocks as desired may be dumped before the k$T is issued.

3.3.7.4 Terminate Punching (k$T) - The k$T command causes the terminal block (see paragr~ph 3.3.7.3) to be
punched. If $T is typed, the loader halts when loading is complete. If k$T is typed, the loader gives control to
location k when loading is completed.

3-1 S(Part II)

3.4 OPERATING PROCEDURE

This section contains paragraphs describing the ODT loading procedure, start-up procedure, conditional assembly, and
error recovery.

3.4. l Loading Procedure

ODT can be loaded in several different ways. Since the user will have the symbolic source tape of ODT, he may
assemble it into any convenient, contiguous block of memory. The pseudo-op .LOC must be supplied by the user.
ODT would not, in general, be assembled below location IOI; ODT may not, under any circumstances, be assembled
below location 21. ODT may either be assembled and loaded with the user program, or assembled separately and
loaded with the user program. It could even be loaded after the user program has been running. ODT may be
assembled in the .FULL mode if desired.

ODT will also be supplied as a binary tape that can be loaded by the PDP-15/10 Loader. Assuming that the loader is
already in memory, proceed as follows:

Press IO RESET

Set the Address switches to 7700 or 772'J (17700 or 17720, if 8K). Note that these two addresses are for the two
versions of the Loaders; the first one for the low-speed and the second for the high-speed paper tape reader.

Press START. ODT will be initiated automatically by the loader unless a checksum error occurs. The distributed
binary version loads at location 6000 (16000 if 8K) and runs almost up to the PDP-15/10 Loader. The addresses for
starting and restarting are:

%0DT = 6000 j
%REST = 6011

3.4.2 Start-Up Procedure

4K systems or
%0DT = 160001

%REST = 16011

8K systems

Several start-up procedures may be used with ODT. The distributed binary version starts automatically when loaded.
User-assembled versions are started in a manner dependent upon the .END statement used. The source tape will not
have an .END statement. Instead, it will have the .EQT pseudo operation. When the .EQT is encountered the user
may continue with another segment of his program or he may insert a segment consisting of the .END statement. In
any case, the .END determines the start-up procedure as follows:

.END %0DT - ODT will start automatically when the binary tape is loaded .

. END X - The user program will start at location X when the binary tape is loaded. The user will have to manually
give control to ODT at location o/oODT .

. END -The loader will halt when loading is complete. The user must manually start at o/oODT when he is ready.

If ODT is in control initially, the user program is initiated with the $G command. Normally, control will then stay
in the user program until a breakpoint is executed.

In general, when ODT is started manually, an IO reset should be performed first.

3- l 6(Part II)

When ODT is initiated, it types) H to indicate that it is ready to accept commands.

3.4.3 Conditional Assembly

The ODT source program is designed such that certain features may be deleted under the control of assembly
parameters. At assembly time, a parameter tape may be read before the ODT source tape in pass 1. This tape contains
definitions of parameters that allow the user to generate a particular version of ODT. The parameter tape need not be
read on pass 2; however, reading it on pass 2 will provide a list of all defined parameters for the assembly.

A parameter is either "defined" or "undefined." Defined means that the parameter name appears in the Assembler
symbol table. "Undefined" means that it does not appear in the symbol table. None of the parameters are defined in
the ODT source code. If the source tape is assembled without a parameter tape, all of the parameters listed below will
be undefined; thus a version with all features will be produced. To define a parameter, %%J for example, include the
assignment statement

%%1=0) +
on the parameter tape. The parameter tape should be terminated by the .EOT pseudo-op. A complete description of
how to define a parameter is given in Paragraph 1.4. 7.

The following paragraphs list the parameters available for ODT and their effect.

3.4.3. l %%J - If undefined, the command $J (display Pl and API status) is available. If defined, $J is not available,
thus saving approximately 21 (17 1 0) locations.

3.4.3.2 %%X - If undefined, the $X (execute instruction k) command is available. If defined, the $X command is
not available, thus saving about 46 (3810) locations.

3.4.3.3 %%MULD - If undefined, there is no restriction on setting a breakpoint at a multiply or divide EAE class
instruction. However, if the user's PDP-15/10 does not have the EAE option or if the user does not want to set
breakpoints at multiply or divide EAE instructions (the other EAE instructions are not restricted), then 25 (21 1 0)

locations may be saved by defining %%MULD

3.4.3.4 %%WM - If undefined, the word searching commands $M, $W, and the $1 command are available. If defined,
these commands are not available, thus saving about 54 (441 0) locations. If the user defines %%WM, the utility
program SCAN may be used to perform the word searching or scanning function.

3.4.3.5 %%KU - If undefined, the commands $K and $U are available to control the PI and API at breakpoints. If
defined, these commands are not available, saving about 23 (191 0) locations. In this case, $U is always in effect.

3.4.3.6 %%OFT - If undefined, the commands $H, $L, $D, $F, and $T are available to dump segments of memory in
the PDP-15/10 Loader format on either the high-speed ($H) or low-speed ($L) paper tape punches. If defined, these
commands are not available, saving about 213 (1391 0) locations. When these commands are not available, dumping
may be performed, in the HRI format, by the HRM Puncher utility program.

3.4.3.7 %%V - This parameter controls the $V command for varying the autoindex number. If %%Vis undefined,
the $V command is available. But if %%OB (see below) is defined, ODT will not need an autoindex register and the

3-17 (Part II)

$V command will not be available even if %%V is undefined. If %%V is defined, then the $V command is not
available. In this case, ODT assumes register 17*. If %%Vis defined and %%OB is undefined, approximately 30 (241 0)

locations are saved. But if %%OB is defined, these 30 locations are included in the locations saved.

3.4.3.8 %%OB - This parameter controls the number of breakpoints allowed in ODT. As described in the paragraph
about the $B command (see paragraph 3.3.4.1), there are four breakpoints available. This is the case when %%OB is
undefined.

If %o/oOB is defined, there is only one breakpoint available. This has several consequences which are listed below. It is
assumed that the reader is familiar with the description of the breakpoint commands and restrictions described in
paragraph 3.3.4.

a. The command $B removes the breakpoint. (If $nB is typed, ODT ignores the n).

b. The command k$B sets the breakpoint at location k. If it was already set somewhere else, it is moved to
location k. (If k$nB is typed, ODT ignores the n).

c. When the breakpoint is encountered, the message printed is ") .j. $B ~ k) .j." where k is the address of the
break.

d. The re-entrancy problem does not exist when only one breakpoint is available.

e. The command $Y (open re-entrant PC list) is not available.

f. No autoindex register is used; thus, the command $V (vary autoindex) is not available.

g. Approximately 214 (14010) locations are saved.

3.4.3.9 %AUTOX - The default assumption is 17 for which autoindex register to use. The parameter %AUTOX may
be defined to change the default assumption; that is, if %AUTOX is undefined, then register 17 is used unless changed
by the $V command. If %AUTOX is defined as

%AUTOX=XX

where XX is an octal number in the range of 10-17, then the default assumption will be autoindex register XX.

3.4.4 Error Recovery

3.4.4.1 Runaway Program - If the user program does not execute a breakpoint, ODT will not regain control. The
following sequence of operations may be performed to give ODT control:

Depress PROGRAM STOP.

Depress IO RESET

*The assumed autoindex register may be changed by a parameter definition. (See %AUTOX)

3-l 8(Part II)

Set the address of%REST in the Address switches (6011or16011 on the distributed version).

Depress ST ART

This will cause ODT to restore the breakpoint instructions and transfer control to the command decoder. The $G
command must be used to start the user's program.

3.4.4.2 Re-Entrancy - The problem of re-entrancy on breakpoints is discussed in Section 3.3.4.9. ODT always
detects the re-entrancy and prints an error message. At this time the user cannot determine if the PI and/or API were
enabled when the re-entrancy occurred. However, the other PI and API status bits may be examined with the $J
command. The $Y command is used to open the first entry of a list of PC values with the following meanings:

PC1 Adr + l of first breakpoint to occur
PC2 Adr + l of next breakpoint to occur

PCn = Adr + l of nth breakpoint to occur (maximum of four)
70XXXX = End of PC list

After the first value has been printed (by the $Y), each successive value may be printed by using the ,j. command. The
end of the list is indicated by an IOT class instruction (70XXXX).

After a re·entrancy error, the user must again specify all breakpoints before restarting his program with the $G
command.

3.4.4.3 Breakpoint Entry Error - In the event of a software error in the user program or in ODT, it is possible that
control could come to ODT as though a breakpoint had been executed. ODT would not be able to determine which
breakpoint was executed; ODT would, therefore, proceed as follows:

Disable PI, API
Print BAD BREAK ENTRY
Halt

ODT can be continued by pressing CONTINUE or by manually starting at locatio!l %REST. Since, after a software
failure, the user program or ODT may be destroyed, the user should reload both his program and ODT.

Another situation, which is not a software error but an operational error, will cause the above error procedure to
occur. This is the execution of the instruction at the breakpoint address, out of line, with an XCT. If this is the case,
reloading is not necessary but the user's program may be restarted only with the $G command.

3.4.4.4 Command Error - If a command is illegal or contains illegal characters, ODT ignores the command and
responds with ?) ,!.. If, while typing a command, the user changes his mind, he can cause ODT to ignore the
command in the following ways:

Type an 8 or 9.

Type two ALT MODEs (or two $s)

3-l 9(Part II)

Type CTRL

Type an illegal command character (e.g., "E").

3.5 ODT ASSEMBLY INSTRUCTIONS

ODT will be delivered both as an object program tape and as a source tape. The object program tape is loaded and
initiated at location %0DT (6000 for 4K and 16000 for 8K). This version includes all ODT commands defined in this
manual.

The source tape is provided to allow the user freedom to assemble ODT at different locations, in the .FULL or
PDP-15/10 Loader format, and with certain features and options deleted or changed.

Paragraph 3.4.3 described all of the conditional features of ODT. The largest version of ODT (no parameters defined
except possibly for %AUTOX) is approximately 9501 0 locations. The smallest version (all parameters defined except
possibly %AUTOX) is approximately 5301 0 locations.

The source tape has no .LOC statement and does not have an .END statement. If the user assembles ODT by itself a
.LOC and .END must be provided on separate tapes (segmented source tapes are described in paragraph 1.4.2 (Part
II)). The main reason for leaving off the .LOC and .END is to allow the user freedom to change the .LOC or .END or
follow ODT with user programs without requiring an editing of the ODT source tape.

The following shows the coding for the tapes necessary to assemble ODT at location 200 in the .FULL mode with
automatic initiation and with the dumping and word searching commands deleted.

Tape 1

Tape 2

%%DFT
%%WM

-j .EOT).!-

= 0).1-
= 0).1-

-j .FULL).1-
-j .LOC -j 200) +

.EOT) .!-

Tapes 3, 4. 5

Supplied ODT source tape (segmented into three pieces).

Tape 6

-j .END-j%ODT) .!-

On pass 1 of the assembly, tapes I through 6 must be read by the Assembler. On successive passes, it is not necessary
to include tape 1; however, doing so will cause the parameter assignments to appear on the assembly listing. All tapes
other than the parameter tape must be read on all passes.

3-20(Part II)

4. I INTRODUCTION

CHAPTER 4

COMPACT UTILITY ROUTINES

This section provides descriptions of all utility routines supplied with the PDP-IS/JO COMPACT Software System.
These routines include a FAST-IS system for DECtape handling, a hardware readin mode (HRM) punch routine,
paper-tape handling routines, Teletype 1/0 routines, an octal dump routine, and a scan routine used to search core
memory.

4.2 FAST-15

4. 2.1 General Description

FAST-IS (Fast Acquisition of System Tape) is a loading system for use in the PDP-lS/10 COMPACT Software
System to retrieve frequently used programs from DECtape and to create system tapes. The main advantages of the
system are speed and ease of access.

The equipment required for use of FAST-1 S includes a basic PDP-IS/IO with 4,096 words of core memory, one Type
TC02 DECtape Control unit, and one Type TUSS DECtape Transport.

The FAST-IS system tape, as distributed by Digital Equipment Corporation, contains commonly used system
programs such as the Symbolic Editor, the CAP-IS Assembler, and ODT. Since these can be called from DECtape
with only a small bootstrap, paper-tape handling is eliminated. This results not only in a significant time savings, but
also in increased reliability. FAST-IS is by no means restricted to systems programs; it can be employed very
conveniently for frequently accessed user-created programs. This chapter contains complete directions for use of the
FAST-IS system tape, as well as directions for adding user programs to the system.

4.2.2 The FAST System

The FAST System includes four programs: the FAST Loader, the High Writer, the Low Writer, and the Reader.

4-1 (Part II)

In normal use, once the FAST Loader and FAST Writer have prepared a DECtape for system use, only the FAST
Reader need be used; this program is commonly designated FAST.

4.2.2.1 FAST Loader - The FAST Loader writes a table of contents or directory onto block 1 of a certified
DECtape. The directory consists of 18 three-word entries; one entry for each of the 18 accumulator (AC) switches.
Each directory entry specifies three parameters for the program to be stored and retrieved, under the control of an
AC switch, as follows:

The first location in memory occupied by the program (load point),

The number of locations allocated in memory,

The starting location of the program.

4.2.2.2 FAST Writer -The FAST Writer transfers a program from core memory to DECtape as specified by the table
in the first DECtape block. Program selection is determined by the leftmost AC switch in the 1 position. The FAST
Writer exists in both high and low versions. The high version, which occupies location 7 600 - 7777 8 , is normally used.
However, it is permissable for programs read by the FAST Reader to overlay the first 1008 locations of the Reader
(e.g., locations 7600 - 76778). So that such programs may be written on a FAST DECtape, a low version of the FAST
writer, which occupies locations 100 - 3008 , is used.

4.2.2.3 FAST Reader - The FAST Reader transfers a program from the DECtape to the computer memory in the
locations specified by the table in the first DECtape block. Program selection is determined by the leftmost AC switch
in the l position.

4.2.3 The FAST Loader

The FAST Loader writes a table of contents (directory) of predetermined programs onto the first block of certified
DECtape. This table determines the order of programs on DECtape and can be modified by the user. This table, which
is located at the end of the FAST Loader, contains the following information for all programs:

Its first location in memory (load point).

The total number of words to be loaded.

Its starting address.

One program or core image is assigned to each of the 1810 accumulator switches. To each switch, 32 10 DECtape
blocks are assigned which allows 176008 words to be written and/or read. The number of blocks assigned to each
switch is not variable, but the number of words read or written is variable. Switch 17 has 301 0 blocks assigned. This
allows 170008 words to be written instead of 176008 .

To load the directory onto the first block of the DECtape, the user should first modify the table of contents in the
FAST Loader as necessary. This is most conveniently done by using the Symbolic Editor and punching a revised
source tape. Using the CAP-15 Assembler, prepare a binary object tape. Select the DECtape for unit I-WRITE. Load

4-2(Part II)

the FAST Loader using the PDP-i5/IO Loader; it will stop with all ls in the AC. Press CONTINUE to execute the
writing of the directory on block l. If an error occurs, the Loader will return to the beginning and halt with all ls in
the AC; otherwise, it will halt with the AC clear (all Os).

4.2.4 The FAST Writer

This description assumes that the DECtape which is about to be prepared is ready; that is, the FAST Loader has been
appropriately modified and the directory has been written onto block l of the DECtape.

To transfer a program from memory to the DECtape:

Load the program into memory.

Place the desired DECtape on a transport and select unit I-WRITE.

Press 1/0 RESET.

Place the Writer in the paper tape reader, set the ADDRESS switches to 7600 (l 7600 for 8K systems), and press
START*. The Writer will stop with all ls in the AC.

Set the DATA (AC) switches to select the desired program. Selection is controlled by the leftmost switch that is
up; all switches to the right of that one are ignored. (No switches up is equivalent to switch 0 up).

Press CONTINUE to execute the transfer. If no error occurs, the computer will halt with the AC clear. If an error
occurs, the Writer will return to the beginning and stop with all ls in the AC.

4.2.5 The FAST Reader

The FAST Reader (commonly designated FASn occupies memory locations 7600 - 77778 (17600-177778 for 8K
systems). FAST destroys the 668 locations immediately preceding the first location of FAST before the program is
read from the DECtape. However, the program read-in may overlay all of these 668 locations. If several programs are
to be loaded through repeated use of FAST, only the last program to be loaded may overlay the 668 locations
mentioned above since each call to FAST destroys these locations.

4.2.5.l Standard FAST System Tape -The FAST System DECtape (prepared for system program retrieval)
distributed by Di~tal Equipment Corporation, allocates the first five DAT A (AC) switches as follows:

Leftmost
Switch Up

0

2

Program

Symbolic Tape Editor

CAP-15 Assembler

ODT (with all commands
defined)

*If the area of core to be written will overlay the Writer, then the user must read in the low version of the Writer and set the Address
switches to 1008 .

4-3(Part II)

Leftmost
Switch Up

3

Program

Paper Tape Lister

4 Paper Tape Duplicator

The user can, however, prepare different system DECtapes and working program DECtapes by the method described
in paragraphs 4.2.3, 4.2.4, and 4.2.6.

All of the standard system programs as distributed by DEC are initiated automatically by FAST after they are loaded.
All system programs, except for ODT, are not normally loaded into memory with user programs; thus, their memory
requirements are of no concern. ODT is loaded with user programs. This program is an overlay of FAST*, and must
be loaded by FAST after other programs have been loaded. The memory requirement for ODT is exactly the same as
the object program distributed on paper tape.

Program Load Address Start Address Size

ODT 6000 6000 (o/cODT) 1665

6011 (%REST)

4.2.5.2 The FAST S~rt - These instructions are for use with DECtapes (similar to the one distributed by DEC) that
have been properly prepared.

Place the FAST System DECtape on a transport and select unit I-WRITE LOCK.

Assuming FAST is already in memory, set the ADDRESS switches to 7600 (17600 for 8K systems) and press
START (this is known as FAST Start). The computer will halt with all Is in the AC.

If FAST is not in memory, perform the following:

Press I/O RESET.

Place the FAST binary tape in the paper tape reader.

Set the ADDRESS switches to 7600 (17600 for 8K systems) and press START.

The computer will halt with all Is in the AC.

Set the AC switches to select the program desired, according to the table of contents (written onto block 1 by the
FAST loader) associated with the DECtape.

*The first 1008 locations of FAST can be overlayed by a program read from DECtape.

4-4(Part II)

Press CONTINUE. The DECtape will rewind to block l, search forward to the appropriate block, and transfer the
program. If no error occurs, control will transfer to the start of the program. If an error occurs, the computer halts
with all 1 s in the AC. Check for an incorrect setting of the DECtape switches. The DECtape status flags can be
examined for possible malfunctions.

If the program just loaded did not overlay any part of FAST, then FAST is ready for the procedure beginning with
"Set the AC switches". However, if the program did overlay FAST, FAST must be reloaded.

NOTE

The program selected is determined by the leftmost AC switch that is up; the
positions of other switches to the right are ignored by FAST. No switches up
is equivalent to switch 0 up.

4.2.6 Example Writing A FAST System Tape

This example shows how to add a program to the standard system DECtape. The program to be added uses 426
locations beginning with location 2000. The start address is 2010. The binary tape is in the CAP-15 Loader format.

4.2.6.1 Preparing the Directory - The standard systems tape has a directory with five programs assigned to switches
0 through 4. This example will use switch 5 for the new program. The directory may be changed in two ways. The
best method is to edit the source tape of the FAST Loader and assemble the new FAST Loader as described in
paragraph 4.2.3. This always generates a hard copy of the new directory. The other method, which may be faster but
is prone to errors, is to load the FAST Loader into memory, manually alter the proper directory entries and then
execute the FAST Loader. In any case, the first 6 entries in the directory are initially as follows:

TABLE
ZERO

ONE

TWO

THREE

FOUR

TABLE
I

7477
22

1
7477

22
16000

1700
16000

I
1000

22
I

2000
22

/DUMMY WCATION
/SWITCH 0: SYMBOLIC TAPE EDITOR

/STARTING ADDRESS
/SWITCH I PDP-15/10 ASSEMBLER

/SWITCH 2 ODT-15

/OVERLAYS FAST

/SWITCH 3 PAPER TAPE LISTER

/SWITCH 4 PAPER TAPE DUPLICATOR

4-S(Part II)

FIVE
7477

22

/SWITCH S UNASSIGNED

The standard system programs will remain as they are. Therefore, the entries for switches 0 through 4 need not be
changed. The entry for switch 5 will be changed to

FIVE 2000
426

2010

/PROGRAM LOADED AT 2000
/USES 426 WORDS
/INITIATE AT 20 l 0

When the directory has been properly prepared, it may be written on DECtape as described in paragraph 4.2.3.

4.2.6.2 Writing the Program on DECtape - To add the program to the system DECtape, proceed as follows:

Place the prepared DECtape on unit 1 - WRITE.

Place the binary tape containing the program in the paper tape reader.

Set the ADDRESS switches to 7720 (or 7700) and press IO RESET and then START.

Set the ADDRESS switches to 7600 (17600 for 8K systems), place the HRI tape for the FAST Writer in the paper
tape reader, and press READIN.

Set AC switch 5 up (all others down).

Press CONTINUE. The DECtape will rewind to block 1 and then will search forward to the proper block and write
out the program.

If no errors occur, the Writer will halt with Os in the AC. If it halts with all Is, an error has occurred. The program
will be written again if the user presses CONTINUE.

When the DECtape stops and the program halts with the 0 in the AC, the writing is complete. To check that the
program may be read again, proceed as follows:

Change the DECtape unit to unit 1 - WRITE LOCK.

Load the FAST Reader by placing the tape in the paper tape reader. Set the Address switches to 7600 (17600 for
8K systems) and press READIN.

Set AC switch 5 up. Press CONTINUE to read the program. Control should be transferred to location 2010 when
loading is complete. If an error occurs, the reader will halt with all ls in the AC. In this case, press CONTINUE to
read program A again.

4-6(Part II)

4.2.7 Assembling The High And Low Writers

As mentioned previously, the FAST Writer exists in two versions. The high version occupies locations 7600- 77778

(17600 - I 7777 8 for 8K systems) and the low version occupies locations JOO - 277 8 • There is only one source tape for
the two versions of the Writer. The source code is conditionalized so that if the symbol LOW is defined, the low
version is produced at assembly time; if undefined, the high version is produced. (See Part II, paragraph 1.4.7, for a
complete description of conditional assemblies.) Thus, if the source tape is assembled by itself, the high version is
produced since LOW is undefined. The low version is produced by preceding the source tape with a parameter tape
containing the following two statements.

LOW=O)

--j.EOT)

4.3 HRM PUNCHER

4.3.l General Description

The Hardware Readin Mode (HRM) Puncher is a self-relocating dump program, written in CAP-15 Assembly
Language. It can be loaded by means of the PDP-15/10 hardware readin (HRI) facility (see PDP-15 Reference Manual)
into any block of memory. Once loaded, the HRM Puncher relocates itself and punches out a block of contiguous
memory locations, specified by the user, in the HRI format. The HRM Puncher operates anywhere in up to 8K of
memory.

4.3.2 Output Format

Binary output is punched in the HRI format which consists of the data words followed by the hardware readin word.

The data words correspond to consecutive memory words from the start address through the stop address. Each word
is punched as three frames. Each frame has channel 8 punched and channel 7 not punched. Channels I through 6
contain six bits of the data word. The three frames correspond to the memory word as follows:

Frames 1 0 x x x x x x Bits 0-5

2 0 x x x x x x Bits 6-11

3 0 x x x x x x Bits 12-17

t: t! Channels 1-6
Channe I 7 not punched

Channe I 8 a !ways punched

Following all the data words is the HRI word which halts the processor. This word is different than the data words in
that channel 7 of the third frame is punched. The HRI word is punched as follows:

4-7(Part II)

• 0 0 0 0 0 0 0
74} 00 740040 = HLT

40

• 0 • • • • 0 0

• • • 0 0 0 0 0

The HRI reads this word and executes the instruction, i.e., the processor halts.

4.3.3 Functional Description

The HRM Puncher is self-relocating and self-initializing. It uses several locations external to itself. These are:

Location 0

Locations 7766-7777, see below; (17766-17777 for 8K).

The source tape may be assembled under the control of two parameters to get four versions of the HRM puncher. The
parameters are defined (or left undefined) at assembly time by means of a parameter tape (See Paragraph 1.4.7). The
parameters are:

SLOW

V2

Defined for low-speed punch (ASR).
Undefined for high-speed punch.

Defined to punch leader/trailer.
Undefined to punch no leader or trailer.

The four versions are described below. The distributed object program, in the .FULL mode, is for the low-speed
punch and produces leader/trailer.

4.3.3. 1 High-Speed Punch With No Leader/Trailer - For this version, both parameter~ are undefined. The leader and
trailer should be provided manually. This version requires 738 locations for the puncher, plus locations 0 and
7770-7777 for pointers and temporary storage.

4.3.3.2 High-Speed Punch With Leader/Trailer - This version is assembled with V2 defined and SLOW undefined.
The memory requirements are 1158 locations for the puncher and locations 0 and 7766-7777.

4.3.3.3 Low-Speed Punch (ASRI With No Leader/Trailer - This version is assembled with only SLOW defined. The
memory requirements are 1028 locations for the puncher and locations 0 and 7770-7777. The leader and trailer
should be provided manually.

4.3.3.4 Low-Speed Punch With Leader!Trailer - Both V2 and SLOW are defined to assemble this version. The
memory requirements are 1248 locations for the puncher and locations 0 and 7766-7777.

4-8(Part II)

4.3.3.5 HRM Puncher - The HRM puncher is divided into two almost equal parts. The first part performs the
relocation and initialization (which includes the reading of the switches to set the start and stop addresses for the
dump). The second part performs the actual dumping process.

4.3.4 Operating Procedure

The following paragraphs contain procedures for loading and starting the HRM puncher.

4.3.4.1 Loading Procedure - Proceed as follows to load the HRM puncher:

Press IO RESET.

Place the HRM puncher in the reader.

Set the address of where the HRM puncher is to be loaded in the ADDRESS switches.

Press the READIN key.

The load address must not be 0. The address must be selected so that the HRM puncher does not overlay locations
7766-7777. The size of the puncher is defined for the various versions in Section 4.3.3.

4.3.4.2 Start-up Procedure - The HRM puncher can be started and/or restarted at any time after it has been loaded.
The procedure is:

Manually generate leader if necessary.

Press IO RESET.

Initiate at the selected load address by pressing START. The program will halt immediately.

Load the start address for the dump into the AC switches. Press CONTINUE. The program will halt immediately.

Load the stop address for the dump into the AC switches (this address must be greater than the start address). Press
CONTINUE.

When punching is complete, the program will halt. Manually generate the trailer if necessary.

To repeat, or to punch out another area, repeat the procedure from the beginning.

4.4 PAPER TAPE HANDLING ROUTINES

4.4. l Paper Tape Lister (PTLIST)

The Paper Tape Lister (PTLIST) is used to read an ASCII-coded paper tape from either the high-speed or low-speed
paper tape reader, and to provide a character-by-character listing on the Teletype. Carriage return and line feed

4-9(Part II)

characters must be punched on the tape if these operations are to take place (they are not handled automatically by
PTLIST). If a tab is encountered by PTLIST, it is converted to the appropriate number of spaces. Each tab stop is
assumed to be every tenth print position.

When the program has been loaded by the PDP-IS/IO Loader, it will type the following message on the Teletype:

PLEASE READY THE INPUT DEVICE AND SET THE AC SWITCH.

If input is to be from the low-speed (ASR) paper-tape reader, the user should set the reader switch to the ON
position, set the AC switches to 400000, and depress the CONTINUE switch to start the listing. The program enters a
wait loop when the reader runs out of tape. Inserting more input will cause the reader to continue. Typing CTRL U
will cause the program to terminate*.

If input is to be from the high-speed paper tape reader, the user should set the AC switches to 0 and depress the
CONTINUE switch to start the listing. The listing will terminate when the reader runs out of tape. At termination, the
program types whatever is left in the input buffer and halts at location 2 I. Press CONTINUE to restart.

4.4.2 Paper Tape Duplicator (PTDUP)

The Paper Tape Duplicator (PTDUP) is used to duplicate and/or verify ASCII or binary paper tapes using the
high-speed paper tape reader and punch. The program can also be used to punch a title on a tape that is being
duplicated.

After the program has been loaded using the PDP-15/10 Loader, it prints the following message:

SWITCH? (M, V, or D)

The user should iype the letter of the function that he wishes to perform, as desCribed in the following paragraphs.

NOTE

At the end of the job the program halts at location 21. Press CONTINUE to
restart.

M (Master Tape Duplicator) - This switch allows the user to type in a title and have that title punched in readable
format preceding his duplicated tape. The following characters have a special meaning while typing in a title line.

ASCII Character Action

2 I 2 LINE FEED Punch a title line and return for more input.

215 CARRIAGE RETURN Punch a title line and return for more input.

377 RUB OUT(S) Ignore the previous character(s)

*CTRL U is formed by depressing the CTRL key while striking the U key.

4-lO(Patt II)

ASCII Chsacter Action

375ALTMODE Punch title line and begin duplicating the tape (acts like D switch after
it punches the title).

225 CTRL U Ignore whatever is typed on this line and begin to type a new line.

D (Duplicate a Tape) - The following message is printed:

PARITY

The user should type Y if he wants even parity to be generated. Any other character will cause the paper tape image
to be duplicated as is. If the high-speed reader runs out of tape, the program wiJI terminate when it has completed
punching the input buffer.

NOTE

The tape being duplicated must have at least one inch of trailer. The last ten
frames are not duplicated.

V (Verify a Tape) - A parity check is performed on each frame. Frames not having even parity cause PARITY
ERROR to be printed. The program will stop with the reader positioned at one frame past the frame in error.
Depressing CONTINUE will cause the program to continue verifying.

At the end of duplication the input frame count and output frame count are printed in octal, as follows:

INPUT FRAME COUNT xxxxxx .
OUTPUT FRAME COUNT xxxxxx

If the input and output frame counts are unequal, an error has occurred. The user should then restart the job.

NOTE

If the punch runs out of tape, the programs halts with all 1 s in the AC. Refill
the punch and continue.

The following message is always printed when verification has been completed.

PARITY ERROR= nnnnnn

where nnnnnn indicates the number of error frames in octal.

4.5 TELETYPE INPUT/OUTPUT ROUTINES

The Teletype Input/Output routines include the Teletype 1/0 Conversion (TICTOC) and the Decimal and Octal Print
packages. Each of the routines in these packages is described in the following paragraphs. Each package should be
assembled along with the program with which it is to run. The Teletype must be initialized by the user program to

4-1 l(Part II)

enable use of the Teletype I/O routines. This is accomplished by the statement TLS+ l 0 at the beginning of the user
program (see PDP-15 Reference Manual).

4.5.l Teletype 1/0 Conversion (TICTOC) Package

The Teletype Input/Output Conversion (TICTOC) Package is used to convert 8-bit ASCII code to a 6-bit trimmed
ASCII code, and vice versa. Formatting facilities are also available. Routines in the package fall into three main
categories: input, output, and formatting. The routines in each of these categories are described in the following
paragraphs, along with input and output formats and character sets.

NOTE

When using output and formatting routines, ensure that all characters have
been printed before halting. This can be accomplished by means of the "skip
if teleprinter flag set" instruction TSF (see PDP-15 Reference Manual).

4.5.1.1 Input Routines - The input routines include %TIC and %TICI. %TIC is used to input a string of characters
from the Teletype and pack them three to a word into memory. The first, second, and third characters (in order of
arrival) are packed into the left, middle, and right sections of a word. Subroutine %TIC requires two arguments for
execution; the calling sequence is as follows:

%TIC (PC-I)
(PC)
(PC+ l)
(PC+ 2)

LAW
JMS
.DSA
(Return)

(Stop Character)
%TIC
(Buffer Area)

Stop Character may be the trimmed ASCII (see Section 5.1.4) or 8-bit ASCII of any character. %TIC will only look at
the rightmost six bits of the Stop Character. When this character is typed, %TIC stores it with the rest of the text and
returns to the calling program at location (PC + 2). Buffer Area is the address of the first location of a block of
storage into which the incoming text is to be packed. When the Stop Character (terminating character) is
encountered, it is packed and the rest of the word filled out with zeros, if necessary. The user is not allowed to use
the character @ as part of his text.

Four teletype keys have special meaning for %TIC:

LINE FEED (ASCII 212) - causes %TIC to ignore what has been typed and start over again. The input buffer
address is reinitialized to receive the new text, and %TIC outputs a carriage-return and line feed to the Teletype. The
tab count is set to 0.

AT SIGN (@ASCII 300) - delimits the text externally. The @performs the same function as the Stop Character.
The rightmost six bits are stored with the rest of the text and, if necessary, the word is filled out with zeros. Return is
made to location PC+ 2 of the calling program (see calling sequence).

TAB KEY (ASCII 211) - TICTOC keeps a tab count. When the TAB key is struck, the Teletype spaces to the next
TAB stop. The spaces are stored in the input buffer with only the rightmost six bits being packed. The tab count is
then set to 0.

4- I 2(Part II)

CARRIAGE RETURN (ASCII 215)-The tab count is cleared and a Teletype carriage return and line feed are
executed. No data is packed and %TIC keeps listening. %TIC will not stop listening until either the Stop Character or
an@ (at sign) has been typed. %TIC uses subroutine %TICI to get an 8-bit ASCII character. %TIC restores the AC and
link before returning. Refer to Section 5.1.4 for list of valid %TIC characters.

%TICJ Calling sequence:

(PC)

(PC+ I)

JMS %TICI

(Return)

/Subroutine Call

/Return with 8-bit ASCII
character in AC.

Subroutine %TICI inputs a single 8-bit ASCII character from the Teletype. %TIC1 uses subroutine %TOCI to echo
the character that was typed on the keyboard.

4.5.l.2 Output Routines -The output routines include %TOC, %TOCI, and %TDIG.

%TOC - Subroutine %TOC is used to type out a string of text in the same format as described for %TIC (three
6-bit characters per word). Each 6-bit set is tested for being less than 408 . If the 6-bit set is less than 408 , then 3008 is
added to it to form an 8-bit ASCII character. 2008 will be added to the 6-bit set if it is 408 or greater. When the 8-bit
character has been built, %TOC will use subroutine %TOC1 to print it. The calling sequence is as follows:

(PC- 1) LAW (Stop Character)

(PC) JMS %TOC

(PC+ I) .DSA (Buffer Address)

(PC+ 2) (Return)

The AC and link are restored by subroutine %TOC. The buffer address is the address of the first word of the block of
storage containing the text. The last character in the typing string is the Stop Character, which is not typed. As in
%TIC, the rightmost six bits of the Stop Character are the only bits considered. If an at sign (@)is encountered, it will
act as if it were the Stop Character.

%TOCJ - Subroutine %TOCI outputs an 8-bit ASCII character to the teleprinter. A tab count is kept by %TOCI
which is used by subroutines %TABIT and %TIC. No assumption is made concerning the position of the teleprinter.
%TOCI types one character at the current position of the Teletype. The 8-bit character is not examined in any way
before printing on the Teletype. The calling sequence is as follows:

(PC) JMS

(PC+ I) (Return)

%TOCI /Call with 8-bit character
in AC.

/Return with AC and link
unchanged.

%TD/G - Subroutine %TDIG is used to type a single digit. The calling sequence is as follows:

4- I 3(Part II)

(PC) JMS %TDIG /AC must already be loaded.

(PC+ I) (Return) /AC and link unchanged.

The AC must be set before calling %TDIG. The leftmost fourteen bits are stripped from the AC. The four bits left are
added to 2608 to form an 8-bit ASCII character. %TDIG uses subroutine %TOC l to print the character.

4.5.l.3 Formatting Routines - The formatting routines include %CARR, %TABIT, and %SPACE. The calling
sequence and description of each routine follows.

%CARR - Calling sequence:

(PC) JMS o/cCARR /Subroutine call

(PC+ 1) (Return)

A carriage return (ASCII 215) and line feed (ASCII 212) are printed. The tab count is then set to 0.

%TABIT- Calling sequence:

(PC) JMS %TABIT /Subroutine call

(PC+ 1) (Return)

The Teletype spaces to the next tab stop. The tab count is then set to 0. This count is kept automatically. %TIOCN,
the number of spaces in a tab, is normally assembled as 8 (decimal), but may be altered by the user.

%SPACE - Calling sequence:

(PC) JMS %SPACE /Subroutine call

(PC+ l) (Return)

A space (ASCII 240) is printed on the Teletype. The accumulator and link are unchanged by calling the formatting
routines.

4.5.I.4 Input Format and Character Set - The input characters read from the Teletype buffer by %TICl and %TIC
are 8-bit ASCII. They are converted to 6-bit ASCII by stripping off the high-order 2-bits. The character set is as shown
in Appendix I.

4.5. l .5 Output Format and Character Set - The 6-bit code is expanded to 8-bit ASCII by adding 2008 or 3008 to it.
If the 6-bit number is less than 408 , 3008 is added; otherwise, 2008 is added (see Appendix A).

4.5.2 Decimal And Octal Print Package

The Decimal and Octal Print Routines (%DIP, %OPT, %OPS, and %0PZ) are subroutines which dump the
accumulator in either signed-decimal or octal mode.

4-14(Part II)

4.5.2.l Decimal Integer Print (%DIP) -This routine prints the signed decimal equivalent of an 18-bit binary number.
The binary number to be printed must be loaded into the AC before calling %DIP. Insignificant Os (leading Os) are not
printed; the routine types a space in place of each leading zero. In the case of a negative number, before typing the
first significant figure, the routine types a minus sign. If the number is positive, the sign is omitted (space) and
understood to be plus.

4.5.2.2 Octal Print Subroutines (%OPS, %OPT,' %0PZ) - The Octal Print subroutines type the contents of the
accumulator as an octal number, suppressing nonsignificant leading zeros if desired. Two methods of suppression are
available through two entry points.

a. %OPS - The (JMS %OPS) entry causes leading zeros to be suppressed; the printed number occupying only the
number of spaces needed to print all significant digits (left justified).

b. o/oOPT - The (JMS %OPT) entry causes leading zeros to be suppressed by blanks; the printed number is right
justified in six spaces.

c. o/oOPZ - The (JMS o/oOPZ) entry causes no zero suppression to take place.

4.5.2.3 Operation - Input to the subroutines is provided in the accumulator by the user.

The subroutines are called directly:

(PC - 1) LAC NUM

(PC) JMS %DIP/o/oOPZ/o/oOPS/o/oOPT

(PC+ 1) (Return)

Control is returned to the user at location PC + 1.

The link and AC are restored upon return to the calling program.

The character set for the decimal and octal print routines is as follows.

%DIP: -,0,1, .. 9,Space

o/oOPS/o/oOPT 0,1, ... 7,Space

o/oOPZ: 0,1, .. 7

Examples

Input (AC) %DIP %OPT %0PZ %OPS

777777. -1 777777 777777 777777

377777 131071 377777 377777 377777

400000 -131072 400000 400000 400000

4- l 5(Part II)

Input (AC) %DIP %OPT %0PZ %OPS

000000 0 0 000000 0

400055 -131027 400055 400055 400055

000055 45 55 000055 55

4.6 OCTAL DUMP ROUTINE

4.6.1 General Description

The Octal Dump Program allows the user to obtain either Teletype hard copy or paper tape output showing the
contents of any register or set for registers that he specifies. The user specifies which registers are to be dumped via
the Teletype keyboard as described in the following paragraph.

4.6.2 Input Format And Character Set

To obtain the dump of all memory locations between registers A (represented by xxx ..) and B (represented by yyy ..)
where A~ B, the user must type xxx .. -yyy .. -. A minus sign must be placed after each address; there is no need to type
leading zeros in the address.

Examples

To dump from I 08 to 258 , type: I 0-25-

To dump from 1008 to 13778 , type: 100-1377-

To obtain the contents of a single register, type the address twice, followed by a minus sign each time, as usual.

Examples

To obtain 10, type: I 0-10-

To obtain 7725, type: 7725-7725-

To obtain the contents of all registers from address A up to the end of memory (7777 in a 4K machine, 17777 in an
BK machine) type address A followed by a slash.

Example

1500/

To print out memory locations between two registers A and B, type the smallest register first and the largest second,
each followed by a minus sign.

Example

If A < B, type: A - B -
If A > B, type: B - A -

4-l6(Part II)

If the user types 6 characters and the sixth character is not a slash(/), or minus(-) the program will interpret this as
an illegal character. The highest possible address is 77778 (or 177778 for an 8K machine).

Always place a minus sign after each address. If an illegal (not octal) character is typed, the program does not
recognize it and types back a question mark(?) followed by a carriage return and line feed.

The input character set includes the numbers 0,1, ... 7, and the special characters I and-.

4.6.3 Output Format And Character Set

The output format appears as follows

LLLLL xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx

LLLLL xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx

where the LLLLLs represent a five-character octal address in increments of I Os , and the xxxxxx 's represent the
contents (in octal) of locations LLLLL to LLLLL + 7 s .

Example

00100 123014 530126 430765 110476 104572 271246 312467 764213

00110 453123 693530 511430 610110 222104 631221 745311 113457

If all locations in any line or group of lines of at least I Os locations are equal, the output would appear as follows.

00120 123456 711111 740040 000000 000000 123123 740040 740040

740040 omitted

00160 740040 740040 740040 740040 740040 123123 600000 000000

The output character set includes only the digits 0 through 7 8 •

4.6.4 Operation

DUMP is normally loaded starting at location 7300 (17300 for an 8K machine). The user can change this starting
address by reassembling the DUMP program, preceded by a strip tape. The strip tape satisfies conditional assembly
statements in the DUMP program by defining a start address. This is accomplished by setting the symbol LOW to the
desired starting address.

Example

LOW= 22,J

-j .EOT,J
(DUMP program follows)

4- l 7(Part II)

The above example would cause the DUMP program to be assembled starting at location 22. If the symbol LOW is not
defined, the default start address is location 7 300 (17300 for an 8K machine).

After loading the program starts automatically. It types a carriage return/line feed and prints the following message:

OUTPUT DEVICE =

The user must respond with H if the output is to go to the high-speed paper tape punch. Any other character will
cause the program to assume the teleprinter as the output device. The program then outputs a carriage return/line
feed and goes into a wait loop. The user should then type his parameters.

After the user's parameters have been satisfied, the program restarts automatically with a carriage return/line feed and
waits for more parameters. If the user wishes to change the output device, he must restart the DUMP program at the
original start address.

4.7 SCAN ROUTINE

4. 7 .1 General Description

SCAN is a small (1008 locations) program used to scan areas of memory for a particular bit configuration. The user
specifies the start and stop address for the area to be scanned, the bit configuration to look for, and the bit positions
to be tested (e.g., a mask). SCAN then scans the area. When a match is found, the address of the match is printed
along with the unmasked matching word. Proper selection of the operating parameters allows SCAN to be used as a
dump. SCAN operates in either 4K or 8K without reassembly.

4.7.2 Output Format

The output of SCAN is a sequence of addresses and their contents printed on the Teletype. When SCAN is initiated, it
prints a carriage return()) and a line feed(.!-). As matches are found, the addresses and contents are printed as:

AAAAA/XXXXXX) ,i.

where AAAAA is the address (5 octal digits) and XXXXXX is the unmasked contents (6 octal digits). After the last
line has been printed, another carriage return/line feed sequence is printed and SCAN halts.

Example

The following is an example of a SCAN output to search an area for all JMS instructions:

Remarks

)+

00200/ I 00600 ~ .!- JMS 600 at location 200.

4- l 8(Part II)

Remarks (cont)

00377/100670) i JMS 670 at location 377.

END of SCAN.

4. 7.3 Functional Description

SCAN is a self-contained and self-initializing program. Once loaded, it may be started and restarted at any time. SCAN
never alters any locations outside of itself. SCAN consists of a main program and three subroutines. The actual scan is
accomplished by the main program. All output is performed by the three closed subroutines. The SCAN process is
performed for all locations between the beginning address and the end address as follows:

Fetch the contents of the core location.

Mask* it with the contents of MASK (specified by user).

Compare the result with the contents of WORD (specified by user).

If not equal, repeat for next core location. If the compare is equal, print the address and the unmasked
contents.

In general, SCAN operates at 1/0 speed. If no matches are detected, a 4K area is scanned in the time it takes to print
two carriage return/line feed sequences.

SCAN may be used as a dump or as a search for any particular bit configurations. For example, the user may:

Locate all instructions with a particular op code (such as all JMSs or all XCTs).

Locate all references to a particular address.

Locate all indirect references.

4. 7.4 Operating Procedure

The following paragraphs describe the loading procedure and start-up procedure for the SCAN program.

4. 7.4. l Loading Procedure - SCAN is loaded by the hardware readin (HRI) facility of the PDP-15 / l 0. The procedure
is as follows.

Load the paper tape into the reader.

Set the address of BEGIN in the Address switches. This address is 7700 (17700 for 8K) on the supplied binary
tape.

Depress the IO RESET key.

*"Mask" indicates an l 8·bit Boolean AND function.

4- I 9(Part II)

Depress the READIN key.

When loading is complete, the processor will halt.

4.7.4.2 Start-Up Procedure - The following procedure can be used at any time to start or restart SCAN. The purpose
of this process is to set four parameters for SCAN. These are, in the order that they are set:

Location

4K 8K

7701 17701 WORD /Bit configuration to look for.
7702 17702 MASK /Specifies which bits to test.

/(! to test, a 0 to not test.)
7703 17703 BEGLOC /First location to test.
7704 17704 ENDLOC /Last location to test.

Initially, the first three values are 0 and the last is 7777. Once a value has been set, it does not have to be set again for
another run if it is desired to use the same value again.

The Start-up procedure is as follows:

Press IO RESET key.

Set the beginning address of SCAN into the ADDRESS switches. This is 7700 for 4K or 17700 for 8K.

Press EXAMINE to store the address in the AR register.

Set the desired value for WORD into the AC switches. Operate the DEPOSIT NEXT key. This sets the value from
the AC switches into memory.

NOTE

If it is not desired to change the present value of the parameter, step d may
be replaced with the operation EXAMINE NEXT.

Repeat the preceding step for MASK, BEGLOC, and ENDLOC.

Operate the START key. This starts SCAN at location BEGIN.

To search for all references to 7200 between locations 500 and 1500:

(WORD)= 7200
(MASK) = 7777
(BEGLOC) = 500
(ENDLOC) = 1500

4-20(Part II)

To dump all of the area between the BEGLOC and ENDLOC, specify WORD = 0 and MASK = 0. This causes a match,
and associated printout, to occur at every location.

If a restart is desired and no parameters are to be set, only the first three steps and the sixth step need be performed.
After the first three steps have been performed, the sixth step may be performed at any time to start the program.

4-21 /22(Part II)

5.1 INTRODUCTION

/

CHAPTER 5

COMPACT MATHEMATICAL ROUTINES

All mathematical routines in the PDP-15/10 COMPACT Software System library are described in this section. These
routines are grouped in four major packages: Integer Arithmetic, Trigonometric Functions, Floating Point, and
Floating Point 1/0. Table 5-1 on page 5-19 provides a concise listing of their important characteristics. Each package,
if used, must be assembled and loaded with the user program. The size and number of tapes furnished for each
package are as follows.

Package Size (decimal) Number of Tapes

Integer Arithmetic 184 4

Trigonometric Functions 760 2

Floating Point 574

Floating Point 1/0 480

Separate tapes are supplied for each of the four Integer Arithmetic routines. Trigonometric Functions are on two
tapes - one single precision and one double precision. Each of the above tapes is terminated with a .EOT pseudo-op.
All symbols that are internal to the math routines begin with a percent sign(%) so that the user can avoid using them
as his own symbols.

If any of the trigonometric functions are not required by a user program, the user can specify that they are not to be
assembled by means of a strip tape. The strip tape contains symbols that are used in conditional assembly statements,
and is ended with a .EOT pseudo-op. This procedure can save a great deal of core space, and symbol table space, for

5-l(Part II)

users who do not require all of the trigonometric functions. The following symbols (set equal to 0) should be included
on the strip tape, as desired, to specify that a function should not be assembled.

SQRT

SIN
cos

Function

%SIN (internal routine)

EXP

ALOG
ALOG 10
%LOGS (internal routine)

ATAN

TANH

POLY

DSQRT

DSIN
ocos
%DSIN (internal routine)

DEXP

DLOG
DLOGIO
%DLOGS (internal routine)

DA TAN

DPOLY

Single-Precision Functions

Size (decimal)

34

7
I I
55

69

I I
11
51

50

33

32

Double Precision Functions

35

7
12
69

86

12
12
59

90

35

Symbol

%NSQRT

%NSIN
%NCOS
(both of the above)

%NEXP

%NA LOG
%NLGIO
(both of the above)

%NATAN

%NT ANH

%NPOLY

%NDSQ

%NDSIN
%NDCOS
(both of the above)

%ND EXP

%NDLG
%NDLIO
(both of the above)

%NDTAN

%ND POL

For example, if a user program did not require the functions SQRT, TANH, and ALOG 10, and wished to conserve
core space, he would assemble a strip tape containing the following symbols before assembling his own program and
the trigonometric functions.

%NSQRT=O~

%NTANH=O.J

5-2(Part II)

%NLG10=0.J

-j .EOT .J

Assuming that the double-precision trigonometric functions were not required, the following functions would then be
assembled.

SIN

cos

%SIN

EXP

ALOG

%LOGS

ATAN

POLY

The same procedure applies to the Floating Point Package and to Floating Point I/O. Both the single precision and
double precision sections of the Floating Point Package require that the general floating point section be assembled
with them. However, if either the single precision or double precision section of the Floating Point Package is not
required by a user program, the user can delete them by including the symbols %NSING or %NDOUB on the strip
tape. In like manner, if either the floating point input (FLIP) program or the floating point output (FLOP) program is
not required in the Floating Point 1/0 Package, the symbols %NFLIP or %NFLOP, respectively, should be included on
the strip tape.

5.2 INTEGER ARITHMETIC SIMULATION

The Integer Arithmetic Simulation routines include multiply (MULT), logical multiply (LMUL), divide (DIV), and
logical divide (LDIV). The purpose of these routines is to allow PDP-15I10 users to program using simulated multiply
and divide instructions. A description of each routine is given in the following paragraphs. The reader is referred to
Table 5-1 (Page 5-19) for a tabular summary of all COMPACT mathematical routines. Included in the summary for
each routine is the name, mnemonic, calling sequence, function, errors, accuracy, timing, storage requirements, and
pertinent comments.

5.2. l Multiply Routines (MUL T/LMUL)

The purpose of MUL T is to multiply a signed 18-bit multiplicand by a signed 18-bit multiplier and produce a signed
36-bit product. Return is made with the low-order product in the AC and the high-order product in location
%MHIGH.

5-3(Part II)

The purpose of LMUL is to multiply a logical (unsigned) 18-bit multiplicand by a logical 18-bit multiplier and
produce a logical 36-bit product. Return is made to the calling program with the low-order product in the AC and the
high-order product in location %LMHY.

The calling sequence for the multiply routines is as follows.

PC-I LAC Multiplier

PC JMS MULT (or LMUL)

PC+I LAC Multiplicand

PC+2 (Return)

The algorithm used by the multiply routines is as follows: the least significant bit of the multiplier is tested; if it is
equal to I, the multiplicand is added to the developing product, which is then shifted right one bit position; if it
equals 0, no addition is made before the shift. The process is repeated until all the bits of the multiplier, in order from
least significant to most significant, have been processed.

Example

For this example, assume that register MP! is the multiplier, MP2 is the multiplicand, and that the product will be
developed in registers MP3 and MPI, combined. Each of these registers is 5 bits long for purposes of illustration. The
multiplier (MP!) is equal to 9, and the multiplicand (MP2) is equal to 4.

MP3 MP1 MP2 Comments

00000 01001 00100 Initial state of registers. The least significant bit of MP! is tested.

00100 01001 00100 Since it is a I, the contents of MP2 are added to MP3.

00010 00100 00100 The combined contents of MP3 and MP! are shifted right one position. The least
significant bit of MP! is tested.

00001 00010 00100 Since it is a 0, no addition takes place, the combined contents of MP3 and MP! are
shifted right one position, and the least significant bit of MP! is tested again.

00000 10001 00100 Since it is a 0, no addition takes place, the combined contents of MP3 and MP! are
shifted right one position, and the least significant bit of MP I is tested again.

00100 10001 00100 Since it is a I, the contents of MP2 are added to the contents of MP3.

00010 01000 00100 The combined contents of MP3 and MPI are shifted right one position and the
least significant bit of MP 1 is tested again.

00001 00100 00100 Since it is a 0, no addition takes place, the combined contents of MP3 and MP1 are
shifted right one position, and the multiplication is complete (with a product of 36
in locations MP3 and MPI combined).

5-4(Part II)

5.2.2 Divide Routines (OIV/LDIV)

The purpose of DIV is to divide a signed 36-bit dividend by a signed 18-bit divisor. The signed 18-bit quotient that is
developed is returned to the AC. The remainder, signed the same as the dividend, is returned in location %REM. When
the magnitude of the divisor is equal to or less than that of the high-order dividend, no divis,on takes place since the
quotient cannot be expressed by an I 8-bit signed integer. In this case, the program exits with the link bit set to I. If
division takes place, the link bit is set to 0 prior to exit.

The purpose of LDIV is to divide a logical (unsigned) 36-bit dividend by an unsigned 18-bit divisor. The I 8-bit
quotient that is developed is returned to the AC. The remainder is returned in location %LREM. When the high-order
dividend is greater than or equal to the divisor, division does not take place, and the link bit is set to I. If division
takes place, the link bit is set to 0 prior to exit.

The calling sequence for the divide routines is as follows.

PC-I LAC Dividend (high order)

PC JMS DIV (or LDIV)

PC+I LAC Dividend (low order)

PC+2 LAC Divisor

PC+3 (Return)

The algorithm used by both division routines is binary long division, where the quotient is determined by a
subtraction process. Unlike decimal long division, where a single quotient digit can be one of lO numbers, in binary
long division the quotient digit is either I or 0. To determine this digit, the divisor is subtracted from the dividend and
if the remainder is negative, the quotient digit is 0, the remainder is ignored, the divisor is moved one place to the
right with respect to the dividend, and the process is repeated. If the remainder is positive, the quotient is I and the
remainder is used as the next dividend, as in ordinary long division. In either case, the divisor is moved one place to
the right and the next bit from the original dividend is included with the new dividend. The following example
demonstrates the algorithm. The divisor is equal to 5, and the dividend is equal to 45 8 •

Example

Step I

Step 2

0
IOI I 100101

IOI
-111

01
101 /100101

I 01
+100

Result of division is negative; therefore, quotient is 0.
Disregard remainder. Move divisor one place to right.

Result of division is positive; therefore, quotient is I. Retain
remainder as new dividend and bring down next digit from
dividend.

5-S(Part II)

Step 3

Step 4

011
101 / 100101

101
1000

101
+l l

Oil I
101 /100101

101
1000

101 -111
101

+010

Result of subtraction is positive; therefore, quotient is l.
Retain remainder as new dividend and bring down next digit.

Final quotient is 111 with a remainder of 0 l 0.

In implementing the algorithm, the divide routines rotate the dividend left instead of moving the divisor right. No
division occurs if the high-order dividend is greater than or equal to the divisor. This eliminates situations where the
high-order dividend is divisible by at least one (which, if allowed to continue, would produce erroneous results).

NOTE

DIV does not check for the overflow condition that will occur when the
high-order dividend is zero, the low-order dividend is greater than 377777
(bit zero is set), and the divisor is equal to 1.

5.3 TRIGONOMETRIC FUNCTIONS

Detailed algorithms for all trigonometric functions in the PDP-15/10 COMPACT Software System Mathematical
Library are described in this chapter. Most of the functions are computed by methods of approximation as described
by Cecil Hastings in his book Approximation for Digital Computers.

The trigonometric routines must be assembled along with the user program. The Floating Point Package (paragraph
5.4) must also be assembled to enable use of the trigonometric routines. Execution time for the trigonometric
routines is greatly reduced if the EAE option is available since multiplication and division can then be accomplished
by the hardware.

The reader is referred to Table 5-1 for a tabular summary of all PDP-15/ 10 mathematical routines. Included in the
summary for each routine is the name, mnemonic, calling sequence, function, errors, accuracy, timing, and pertinent
comments.

5.3. l Square Root (SORT, DSORT}

The calling sequence for the square root routines is as follows.

PC JMS SQRT (or DSQRT)

5-6(Part II)

PC+l .DSA ARG (+400000 if indirect)

PC+2 (Error Return)

PC+3 (Normal Return)

If the argument (ARG) is negative, return is made to the error return (PC+2) with the argument in the floatir.
accumulator and the AC set equal to 1; otherwise, return is made to location PC+ 3 with the square root of th_
argument in the floating accumulator.

A first-guess approximation of the square root of the argument is obtained as follows.

If the exponent (EXP) of the argument is odd:

(EXP-I) (~)
P0 = .5 2 + ARG 2

If the exponent (EXP) of the argument is even:

(EXP) (EXP · t)
Po = .5 -2- +ARG - 2-

Newton's iterative approximation is then applied three times for SQRT or four times for DSQRT.

(ARG) pi + I = I /2 pi + T

5.3.2 Sine And Cosine (SIN, COS, DSIN, DCOS)

The calling sequence for the sine and cosine routines is as follows.

PC JMS SIN (or COS, DSIN, DCOS)

PC+I .DSA ARG (+400000 if indirect)

PC+2 (Error Return)

PC+3 (Normal Return)

If the integer portion of the product (ARG*7T/2) is too large (i.e., the exponent of the product is greater than 21 8),

return is made to the error return (PC+2) with the AC set equal to 3. Otherwise, return is made to location PC+3 with
the sine or cosine of the argument in the floating accumulator.

The argument is converted to quarter circles by multiplying by 2/1T. The low two bits of the integral portion
determine the quadrant of the argument and produce a modified value of the fractional portion (F) as follows.

5-7(Part II)

Low2 Bits Quadrant Modified Value (Z)

00 I F
01 II 1-F
10 Ill -F
11 IV -(1-F)

Z is then applied to the following polynominal expression:

sin x ='t C2i + I z2i + I)
~1=0

where n = 4 for SIN and COS, and n = 6 for DSIN and DCOS. The values of Care as follows.

SIN, COS DSIN,DCOS

C1 = .157080 x 101 C1 = .157079633 X l 0 1

C3 = -.645964 x l 0° C3 = -.645964097 x 10°

Cs = 796897 x l 0-1 Cs = .796926260 x 10-1

C7 = -.467377 x I 0-2 c, = -.468175300 x 10-2

C9 = .151484 x 10-3 C9 = . I 60438400 x 10-3

C1 1 ::: -.359518435 x 10-5

C13 = .544652850 x 10-7

The argument for COS and DCOS routines is adjusted by adding 'lf/2. The sine function is then used to compute the
cosine as follows.

cos x = sin (!!__ + x)
2

5.3.3 Exponential (EXP, DEXP)

The calling sequence for the exponential routines is as follows.

PC JMS

PC+l .DSA

PC+2 (Error Return)

PC+3 (Normal Return)

5-8(Part II)

EXP (or DEXP)

ARG (+400000 if indirect)

If the integer portion of the product ARG*log2 e is too large (i.e., the exponent of the product is greater than 21 8),

return is made to the error return (PC+2) with the AC set equal to 3. Otherwise, return is made to location PC+ 3 with
the exponential of the argument in the floating accumulator.

The function ex is calculated as

which will have an integral portion (I) and a fractional portion (F). Then

where

and n = 6 for EXP, and n = 8 for DEXP. The values of C are as follows.

EXP DEXP

C0 = .100000 x 101 C0 = . I 00000000 x I 01

c, = .346574 x 10° c. = .346573590 x 10°

C2 = .600566 x I 0-1 C2 = .600566267 x 10-1

C3 = .69380 I x I 0-2 C3 = .693801368 x 10-2

C4 = .601130 x 10-3 C4 = .601133075 x 10-3

Cs= .416700" lo-4 Cs = .416670330 x 10-4

c6 = .240977 x 10-s C6 = .240678700 x 1 o-s

C7 = .119610000 x 10-6

C8 = .518000000 x 10-8

5.3.4 Natural And Common Logarithms (ALOG, ALOG10, DLOG, DLOG10)

The calling sequence for the logarithm routines is as follows.

PC JMS ALOG (or ALOGIO, DLOG, DLOGlO)

5-9(Part II)

PC+l .DSA ARG (+400000 if indirect)

PC+2 (Error Return)

PC+3 (Normal Return)

If the argument is Jess than or equal to zero, return is made to the error return (PC+2) with the AC set equal to 2.
Otherwise, return is made to location PC+3 with the result in the floating accumulator.

The exponent of the argument is saved as one greater than the integral portion of the result. The fractional portion of
the argument is considered to be a number between l and 2. Z is computed as follows:

then

x- ('L

x+ rr

log2x = 1/2 + (~ C2i +I z2i + 1)
1 = 0

where n = 2 for ALOG and ALOG IO, and n = 3 for DLOG and DLOG IO.

The values of C are as follows.

ALOG & ALOG10 DLOG & DLOG10

C1 = .288539 x 101 C1 = .288539007 x 101

C3 = .961471 x 10° C3 = .961800762 x 10°

Cs = .598979 x I 0° Cs = .576584342 x JOO

C7 =.434259751 X JOO

for ALOG and DLOG

and log1 0 x = (log2 x) (log1 0 2) for ALOG I 0 and DLOG l 0.

5.3.5 Arc Tangent (ATAN, DAT AN)

The calling sequence for the arc tangent routines is as follows.

5- IO(Part II)

PC

PC+!

PC+2

JMS

.DSA

(Return)

ATAN (or DAT AN)

ARG (+400000 if indirect)

Return is made to location PC+2 with the arc tangent of the argument in the floating accumulator. There are no error
conditions.

For x less than or equal to I, Z = x, and

arc tangent x =(i: C2i + I z2i + l)
i= 0

where n = 8 for ATAN, and n = 3 for DA TAN. For x greater than I, Z = l/x, and

arc tangent x = 7f/2 _(~ C2i + l z 2i + ~
~=O)

where n = 7 for AT AN, and n = 3 for DAT AN. The values of C are as follows.

ATAN DAT AN

C1 = .999999 x 10° c. = .999215000 x 10°

C3 = -.333299 x 10° C3 = -.321181900 x 10°

C5 = .199465 x 10° C5 = .146276600 x 10°

C7 = -.139085 x 10° C7 = -.389929000 x I 0-1

C9 = .964200 x I 0-1

C1 I = -.559099 x 10-1

C13 = .218612 x 10-1

c. 5 = -.405406 x 10-2

To get full 34-bit accuracy in DAT AN, the tangent of the first approximation is taken, and the small angle theory is
then used to minimize the error angle as follows:

arctan x = P -

where P is the result of the first approximation.

5.3.6 Hyperbolic Tangent (TANH)

tan (P - x)

l+xtanP

5-11 (Part II)

The calling sequence for the hyperbolic tangent routine is as follows.

PC JMS TANH

PC+l .DSA ARG (+400000 if indirect)

PC+2 (Error Return)

PC+3 (!'formal Return)

If the integer portion of the product x * log2 e is too large (i.e., the exponent of the product is greater than 21 8),

return is made to the error return (PC+2) with the AC set equal to 3. Otherwise, return is made to location PC+3 with
the hyperbolic tangent of the argument in the floating accumulator.

The function

tanh lxl= fi_ 2 ~
\ l+e21xl}

ex is computed as 2x log2e which will have an integral portion (I) and a fractional portion (F). Then,

where and n = 6.

The values of C are as follows.

C0 = .100000 x 101 C4 = .601130 x 10-3

C1 = .346574 x 10° C5 = .416700 x 10-4

C2 = .600566 x I 0-1 c6 = .240977 x 10-5

C3 = .693801 x 10-2

5.3.7 Polynomial Evaluation (POLY, DPOLY)

The calling sequence for the polynomial evaluation routine is as follows.

PC JMS POLY (or DPOLY)

PC+l .DSA PUST

PC+2 (Return)

5- l 2(Part II)

The value of Z must be loaded in the floating accumulator prior to calling POLY or DPOLY. PLIST refers to a list of
constants stored in contiguous locations within the calling program as follows:

PLIST /2's complement of number or terms
/Last term

/First term

Return is made to location PC+2 with the result in the floating accumulator. There are no error conditions.

The polynomial

x=f~ C2i+ I z2i+ ~
\i=O)

is evaluated as follows.

x = Z(C0 + Z2 (C 1 •••

5.4 FLOATING POINT PACKAGES

The purpose of the Floating Point Package is to allow PDP-IS/IO users to program for floating-point data using
simulated floating-point instructions. The Floating Point Package must be assembled and loaded with the user
program at run time. All simulated floating-point instructions exist as subroutines within this package and must be
called as such by the user program.

The reader is referred to Table 5-l for a tabular summary of all PDP-15/IO mathematical routines. Included in the
summary for each routine is the name, mnemonic, calling sequence, function, errors, accuracy, timing, storage
requirements, and pertinent comments. The following paragraphs provide a brief description of the floating-point
accumulator, and single-precision, double-precision, and general floating-point operations.

5.4.l Floating Point Accumulators

The floating accumulator is a software accumulator which is included in the Floating Point Package. It is a three-word
accumulator, %FACl being the label of the first word, %FAC2 the second, and %FAC3 the third. Floating-point data
is stored in the floating accumulator in the following format; negative mantissae are indicated by the setting of bit 0
of word %F AC2.

5-l 3(Part II)

% FAC I EXPONENT (2 'S COMPLEMENT)

0 17
SIGN OF MANTISSA

% FAC 2 IT HIGH-ORDER MANTISSA

0 17

% FAC 3 LOW-ORDER MANTISSA

0 17

Used by both single- and double-precision routines, this format is also the general format of double-precision
numbers. Single-precision numbers have a different format and must be converted before and after use in the floating
accumulator. This conversion is taken care of automatically by the floating arithmetic load and store routines FLAC
and FDAC (see Table 5-l). The format of single-precision numbers is as follows.

DATA WORD I LOW ORDER MANTISSA EXPONENT (2 'S COMPLEMENn

0 8 9 17 I SIGN OF MANTISSA

DATA WORD 21 ... _ __... __ H_I G_H_o_R_D_E_R_M_A_N_T_is_s_A ________ ___.

0 I 17

5.4.2 Single Precision Operations

Single-precision routines perform floating-point operations on double-word quantities as described in paragraph 5.4.1.
The arithmetic operations are performed with one operand in the floating accumulator and the other operand taken
from storage. The computed result is developed in the floating accumulator, and is accurate to 26 bits.

All routines in the single-precision floating-point package are summarized in Appendix A. In general, the calling
sequence for arithmetic routines is as follows:

JMS SUBR

.DSA ARG2

(Return)

S-I 4(Part II)

where ARG2 is the address of the first location of the argument from storage. The single-precision load and store
routines (FLAC and FDAC) must be used to load ARG I into the floating accumulator prior to calling an arithmetic
routine, and to store the result upon return.

5.4.3 Double Precision Operations

Double-precision routines perform floating-point operations on triple-word quantities as described in paragraph 5.4. 1.
The arithmetic operations are performed with one operand in the floating accumulator and the other operand taken
from storage. The computed result is developed in the floating accumulator, and is accurate to 34 bits.

All routines in the double precision floating point package are summarized in Appendix A. The calling sequence is the
same as for single-precision routines except that the double-precision load and store routines (DLAC and DDAC) must
be used for loading and storing the floating accumulator.

5.4.4 General Floating Point Operations

General floating-point routines perform the actual computation for arithmetic operations set up by the individual
single- and double-precision routines. All arithmetic operations are performed with one operand in the floating
accumulator and the other in the held accumulator (%HAC 1 - %HAC3). All floating-point operations are performed
on normalized operands.

All general floating point routines are summarized in Table 5-1. The calling sequence for these routines is simply

PC JMS SUBR

PC+I (Return)

except for the unfloat routine %FUNF. This routine is called as follows:

PC JMS %FUNF.

PC+I (Error Return)

PC+2 (Normal Return)

where the error return (PC+ I) is taken if there is an attempt to unfloat a number that has an integer portion too large
for an 18-bit word. If the error return is taken, the AC is set equal to 3. Otherwise, return is made to PC+2 with the
result in the AC.

5.5 FLOATING POINT 1/0

5.5.1 General Description

The floating-point input/output (FLIO) program is designed to allow the user to input and output decimal data in
floating-point format. The program is designed to operate with either the high-speed paper tape reader/punch or the
ASR33 Teletype. All data transfers are handled through the floating accumulator. FLIO should be assembled and

5-I 5(Part II)

loaded along with the Floating Point Package (FPOINn and the user program. The user program must initialize
(select) the device used by FLIO; for example, to select teleprinter output, "TSL+ 10" must appear at the beginning
of his program (See PDP-15 Reference Manual).

For input, the user program must specify the device as the only argument when calling FLIP (floating-point input).
The input field is delimited by:

Tab 211

Line Feed 212

Carriage Return 215

Slash 257

The second number of the exponent will also delimit the field. Spaces and illegal characters are ignored until the first
digit is encountered. If the decimal number is too large, the rightmost extra digits are ignored until the exponent or a
delimiting character is typed.

For output, the user program must specify the device and the number of digits to be output when calling FLOP
(floating-point output). Output takes place at the current device position; that is, spacing and other formatting
functions are not automatically performed.

The following represents device assignments for both input and output.

ASR33 Teletype

High-Speed Reader/Punch

The calling sequence for FLIP is as follows.

JMS
xxxxxx
Next Instr.

The calling sequence for FLOP is as follows.

JMS
xxxxxx+n

Next Instr.

000000

400000

FLIP

FLOP

NOTE

/Subroutine call
/Device specification
/Return

/Subroutine call
/Device specification plus no.
/of digits to be output (octal)
/Return

Again, for both input and output, data transfers are processed through the
floating accumulator.

5- l 6(Part II)

5.5.2 Input Format And Character Set

The input format is flexible. The normal form is± .DDDD ... ± EE where the Ds are decimal digits representing the
mantissa (a maximum of nine digits) and the Es are decimal digits representing the exponent (two digits). Any
meaningful variation of the normal form is permitted on input. If the decimal point is omitted, the number is assumed
to be integral If more than one decimal point is in the input stream, the last one to appear is the one that will be
used. A plus or minus sign after at least one number of the mantissa field will signal the program that the next two
digits are exponent digits.

The input character set is as follows.

+

E

Space Tab

0, l 9 Carriage Return

Line Feed

Examples

123.123E4 1231230 .

.123123-4 . 0000123123

-1.23.123 -123.123

+123123 123123.

5.5.3 Output Format And Character Set

The output format is rigid. The user can specify as many digits to be output as he wishes between one and nine
(inclusive).* After the last mantissa is typed/punched, a plus is output if the exponent is positive and a minus sign is
output if the exponent is negative. The output character set includes the following.

+

0, I. .. 9

Space

*If the argument to FLOP is 0, an "x" is printed, if the argument specifies more than nine decimal digits, an "x" is printed along with the
first nine digits.

5-l 7(Part II)

Examples

. l 2312300+()4

.123-4

.1+10

All output is rounded. For example,

JMS FLOP

6

indicates that the user wishes to output six decimal digits. If his internal number is . I 23456789E I 2, his output would
be rounded as follows .

. 123457+E12

5-18(Part II)

Table S-1. Summary of PDP-IS/IO COMPACT Mathematical Routines

RoutirwName Mnemonic Calling Sequence Function Errors•
Accuracy Timing*** Storage

Comments
Bits Non-EAE EAE (Decimal)

Integer Arithmetic 184 Signed high-order product in
location %MHIGH.

Multiply MULT LAC Multiplier l*J None 17 447 µs N.A. 55 Low-order product in AC.
JMS MULT/LMUL Unsigned high-order product
LAC Multiplicand in location %LMHY.

Logical Multiply LMUL I * J None 18 404µs N.A. 29 Low-order product in AC.

Divide DIV LAC Dividend (high order) l/J l>J, 17 483µs N.A. 64 Signed remainder in location
JMS DlV/LDIV Link set %REM.

Logical Divide WIV LAC Dividend (low order) l/J l>J, 18 41411s N.A. 36
LAC Divisor link set Unsigned remainder in Joca-

tion%LREM.

Trigonometric Functions 760 Any trigonometric function
can be deleted by conditional

Square Root:
xi 12 assembly, see Chapter l

SP Square Root SQRT JMS SQRT/DSQRT #1 26 8.488 ms 3.522 ms 34
DP Square Root DSQRT .DSA Address of arg. x112 #1 34 13.907 ms 5.S8S ms 35

(Error Return)
(Normal Return)

Sine:
SP Sine SIN JMS SIN/DSIN sin (x) #3 26 11.460 ms 4.814 ms 7 Calls POLY and %SIN**
DP Sine DSIN .DSA Address of arg. sin (x) #3 34 17.481 ms 9.441 ms 7 Calls DPOL Y and %DSIN**

(Error Return)
(Normal Return)

Cosine:
SP Cosine cos JMS COS/DCOS cos (x) #3 26 11.895 ms 5.269 ms II Calls POLY and %SIN**
DP Cosine DCOS .DSA Address of arg. cos (x) #3 34 18.135 ms 9.894ms 12 Calls DPOL Y and %DSIN"*

(Error Return)
(Normal Return)

Exponential:
SP Exponential EXP JMS EXP/DEXP eX #3 26 14.471 ms 7.944 ms 69
DP Exponential DEXP .DSA Address of arg. eX #3 34 27.107 ms 9.377 ms 86

(Error Return)
(Normal Return)

Natural Logarithm:
SP Natural Logarithm ALOG JMS ALOG/DLOG loBeX #2 26 ll.099ms 5.817 ms II Calls POLY and %LOGS**
DP Natural Logarithm DLOG .DSA Address of arg. IOBeX #2 34 17.928 ms 6.461 ms 12 Calls DPOL Y and %DLOGS**

(Error Return)
(Normal Return)

:le footnotes at the end of table.

Table 5-1. Summary of PDP-15/10 COMPACT Mathematical Routines(cont)

Routine Name Mnemonic Calling Sequence Function Errors*
Accuracy Timing*** Storage

Bits Non·EAE EAE (Decimal} Comments

Trigonometric Functions
(cont)

Common Logarithm:
SP Common Logarithm ALOGIO JMS ALOGJO/DLOGlO Jog,oX #2 26 11.099 ms 5.817 ms JI Calls POLY and %LOOS"*
DP Common Logarithm DLOGIO .DSA Address of arg. Jog, ox #2 34 17.928 ms 6.461 ms 12 CallsDPOLY and %DLOGS**

(Error Return)
(Normal Return)

Arc Tangent:
SP Arc Tangent ATAN JMS ATAN/DATAN tan- 1 (x) None 26 14.115 ms 7.736 ms 50 Calls POLY
DP Arc Tangent DATAN .DSA Address of arg. tan- 1 (x) None 34 54.540ms 24.075 ms 90 Calls POLY and %DSIN* *

(Normal Return)

Hyperbolic Tangent TANH JMS TANH tanh(x) #3 26 17.910ms 9.737 ms 33
.DSA Address of arg.
(Error Return)
(Normal Return)

Polynomial Evaluation:
SP Poly. Eva!. POLY JMS POLY/DPOLY None N.A. •••• • ••• 32 Called by SIN, COS, ALOG

ALOGlO, and ATAN
n Called by DSIN, DCOS,

DP Poly. Eva!. DPOLY .DSA PLIST x =°I: C2i+l z2i+I None N.A. ***** ••••• 35 DLOG DLOG 10, and
(Normal Return) i=O DA TAN

PUST -N /2's comp. of no. of terms
Cn /Last term
Cnt Cn-t

Co /First term

Floating Point 574 Either SP or DP Arithmetic
SP Arithmetic: Arg. 1fFL.AC) Arg.2 can be deleted by conditional

Add FAD Augend Addend l JMSSUBR A+B _,.FL.AC None 26 415.5 µs 393µs assembly. If either of these is
Subtract FSUB Minuend Subtrahend .DSAArg. 2 A-B -+FL.AC None 26 513µs 457.5 µs
Multiply FMPX Multiplicand Multiplier A"B -+FL.AC None 26 1.482 ms 421.5 µs

:ee footnotes at the end of table.

Routine Name

Divide
Reverse Subtract
Reverse Divide
LQad
Store

DP Arithmetic

Add
Subtract
Multiply
Divide
Reverse Subtract
Reverse Divide
Load
Store

General Operations:

Negate Hardware AC
Negate Floating AC
Exchange Floating AC

with Held AC
General Floating

Multiply
Get Address
Gen. Floating AC
Normalize Floating

AC
Hold Floating Add
Sign Control
Round and Insert Sign
Gen. Floating Divide
Float
Unfloat

FllJQting Point 1/0

Floating Point Input

See footnotes at the end of table.

:c

~ -c:

Mnemonic

FDVD
FSBR
FDVR
FLAC
FDAC

DFAD
DSUB
DMPY
DDVD
DSBR
DDVR
DLAC
DDAC

%ANEG.
%FNEG
%SWITCH

'!WM

'if·FG.
%FA.
%FNOR.

%FH.
'if·FS.
'Jl,FlR.
%FD.
%FLOT.
%FUNF.

FLIP

Calling Saquance

Dividend Divisor
Subtrahend Minuend
Divisor Dividend

Address
Value Address

Arg. }(FL.AC) Arg.2

Augend Addend
Minuend Subtrahend
Multiplicand Multiplier
Dividend Divisor
Subtrahend Minuend
Divisor Dividend

Address
Value Address

JMS %ANEG.
JMS %FNEG.
JMS %SWITCH

JMS '?nFM.

JMS %FG.
JMS %FA.
JMS %FNOR.

JMS %FH.
JMS %FS.
JMS %FIR.
JMS %FD.
JMS '!WLOT.
JMS %FUNF.
(Error Return)
(Normal Return)

JMS FLIP /Subr call
xxxxxx /Devke

Table 5-1. Summary of PDP-I 5/10 COMPACT Mathematical Routines (cont)

Function Errors•
Ac:curac:y Timing*** Storage

Comments Bits Non-EAE EAE (Decimal)

R/B -+FL.AC None 26 L986ms 481.5 µs assembled, the General Float-
B-A -+FL.AC None 26 510µs 445.5 µs 93 ing Point tape must also be as-

JMSSUBR B/A -+ FL.AC None 26 2.211 ms 556.5 µs sembled. See Chapter I.
.DSA Arg. 2 Arg. -+FL.AC None N.A. 105µs 105µs

FL.AC-+ Arg. None N.A. 79.5 µs 79.5 µs

A+B -+FL.AC None 34 463.5 µs 385.5 µs
A-B -+FL.AC None 34 516µs 450its
A*B -+ FL.AC None 34 2.031 ms 411 µs

JMS SUBR A/B -+FL.AC None 34 2.336 ms 471 µs
.DSA Arg. 2 B-A -+FL.AC None 34 519 µs 435 µs 98

B/A -+FL.AC None 34 2.840ms 696µs
Arg. -+FL.AC None N.A. 94.S µs 94.5 µs
FL.AC-+ Arg. None N.A. 69 µs 69µs

-(AC)-AC None N.A. 7.5µs 7.5 µs
-(FL.AC) FL.AC None N.A. 12µs 12µs
(FL.AC);=(Held AC) None N.A. 57 JJ.S 57 µs

(FL.AC)*(Held AC) None 34 2.1 ms 216µs Product in Floating Accumula-
tor

None N.A. 38µ.s 38µs
(FL.AC)+(Held AC) None 34 207 µs 201 µs 383 Sum in Floating Accumulator

None N.A. 363µs 60µs

(FL.AC)-(Held AC) None N.A. 21 µs 21 µs
None N.A. 42µ.s 42µs
None N.A. 39 JJ.S 39µs

(Held AC)/(FL.AC) None 34 2.1 ms 276µs Quotient in Floating Accumu-
(AC)-(FL.AC) None N.A. 405µs 95 µs Ia tor
(FL.AC) (AC) #3 N.A. 46µs 96jlS

480 Either FLIP or FLOP can be
deleted by conditional assem-

Input FL.PT. •••••• N.A. N.A. N.A. 181 bly, see Chapter I.

=
Table 5-1. Summary of PDP-15/10 COMPACT Mathematical Routines (cont)

Routine Name Mnemonic Calling Sequence Function

Floating Point Output FLOP JMS FLOP /Suhr.call Output FL.PT.
xxxxxx /Device + no. of

digits to be
oµtput

•For errors designated as #n, the error number is stored in the AC, and the Error Return is taken. Errors result Jn attempts to
I) take the square root of a negative number, 2) take the Logx of an argument <ll, and 3) unfloat a number, the integer
portion of which is too large for an 18-bit word.

**Internal routines. %SIN and %DSIN called by SIN/COS, DSIN/DCOS, and DATAN. %LOGS and %DLOGS called by
ALOG/ALOG JO, DLOG/DLOGJO. Storage requirements for%SIN, %DSIN, %LOGS, and %DLOGS are 55,69,51,and 59
locations, respectively .

.. -timings indicated are estimated and represent average-to-worst-case times.
••••Non-EAE = 2.862 ms+ 1.S81C;EAE = 1.128 ms+ .896C.C =number of coefficients.
·•••*Non-EAE = 4.322 ms+ 2.482C; EAE • 1.076 ms+ .876C. C =number of coefficients.
•••••Flip will ignore any characters after the first nine significant digits, and will continue to do so until a delimiting character is

read.

Errors•
Accuracy Timing***

Bits Non-EAE

None N.A. N.A.

Storage
Comments EAE (Decimal)

N.A. 183
Device is specified as:
000000 for 1TY
400000 for high-speed paper-
tape reader punch

Printing 6-bit
7-bit Trimmed

Character ASCII ASCII**

@t IOO oott
A IOI 01
B I02 02
c I03 03
D 104 04
E I05 05
F I06 06
G 107 07
H I IO IO
I 111 11
J 112 12
K 113 13
L 114 14
M 115 15
N 116 16
0 117 17
p 120 20
Q 121 21
R 122 22
s 123 23
T 124 24
u 125 25
v 126 26
w 127 27
x 130 30
y 131 31
z 132 32
lt 133 33
\ 134 34
Jt 135 35
tt 136 36
-t 137 37

Null (Blank) 000
Horizontal Tab 011
Line Feed 012
Vertical Tab 013
Form Feed 014
Carriage Return 015
Rubout 177

Printing
Character

(Space)
!
"t
#t
$t
%
&
,t
(
)

*
+
'

-

I
0
l
2
3
4

5

6
7
8
9
:t
' <t
=

>t
?t

APPENDIX A
CHARACTER SET

6-bit
7-bit Trimmed
ASCII ASCII**

040 40
041 41
042 42
043 43
044 44
045 45
046 46
047 47
050 50
051 51
052 52
053 53
054 54
055 55
056 56
057 57
060 60
061 61
062 62
063 63
064 64
065 65
066 66
067 67
070 70
071 71
072 72
073 73
074 74
075 75
076 76
077 77

Notes: All other characters are illegal and are flagged and ignored
t = Illegal as source except in a comment or text; Ignored by %TOC and %TOC I.

tt =Ignored by %TOC and %TOCI.
** = .SIXBT pseudo-op text value.

A-l/A-2(Part II)

APPENDIX B
PERMANENT SYMBOL TABLE

Memory Reference Operate (Cont)

CAL 000000 CLC 750001
DAC 040000 LAS 750004
JMS 100000 LAT 750004
DZM 140000 GLK 750010
LAC 200000 LAW 760000
XOR 240000
ADD 300000 1/0 States
TAD 340000
XCT 400000 IOT 700000
ISZ 440000 IORS 700314
AND 500000 CAF 703302
SAD 540000
IMP 600000 Interrupt

Operate IOF 700002
OPR 740000 ION 700042
NOP 740000
CMA 740001 Teletype Keyboard
CML 740002
OAS 740004 KSF 700301
RAL 740010 KRB 700312
RAR 740020 KRS 700322
IAC 740030
HLT 740040 Teletype Teleprinter
xx 740040
SMA 740100 TSF 700401
SZA 740200 TCF 700402
SNL 740400 TLS 700406
SML 740400
SKP 741000 Paper Tape Reader
SPA 741100
SNA 741200 RSF 700101
SZL 741400 RCF 700102
SPL 741400 RSA 700104
RTL 742010 RRB 700112
RTR 742020 RSB 700144
SWHA 742030
CLL 744000 Paper Tape Punch
STL 744002
CCL 744002 PSF 700201
RCL 744010 PCF 700202
RCR 744020 PSA 700204
CLA 750000 PSB 700244

B-l(Part II)

Index and Limit Register Instructions Index and Limit Register Instructions (cont)

AAS 720000 PXA 724000
AAC 723000 PXL 726000
AXS 725000
CLLR 736000 Mode Switching and Listing Instructions
AXR 737000

EBA 707724
CLX 735000 DBA 707722
PAL 722000 SBA 707721
PAX 721000
PLA 730000 Index Register
PLX 731000

x 10000

B-2(Part II)

Paragraph

.BLOCK 1.4.3.l

.DEC l.4.4

.DSA 1.4.6

.END 1.4.1

.ENDC 1.4.7

.EOT 1.4.2

.FULL 1.4.10

.IFDEF
1.4.7

.IFUND

. LIST 1.4.9

.LOC 1.4.8

.OCT 1.4.4

.SIXBT 1.4.S

.SIZE 1.4.11

. XLIST 1.4.9

Format

APPENDIX C
SUMMARY OF PSEUDO-OPS

Function

label -j .BLOCK -j expAi Reserves a block of storage words equal
to the expression. If a label is used, it
references the first word in the block.

-j .DEC)

label -I .DSA ..._. exp..)

-j .END ..._.START)

-j.ENDC)

-j.EOT)

-j.FULL)

-.j.IFxxx ..._.exp)

-j .LIST)

-j .LOC ..._.exp)

-j.OCT)

label -j .SIXBT ~ /text/)

label -I .SIZE)

-j .XLIST)

Sets prevailing radix to decimal.

Defines a user symbol which 1s to be
used only in the address field.

Must terminate every source program.
ST ART is the address of the first
instruction to be executed.

Terminates conditional coding in .IF
statements.

Must terminate physical program
segments, except the last, which is
terminated by .END.

Produces hardware readin binary tapes.

If a condition is satisfied, the source
coding following the .IF statement, and
terminating with an .ENDC statement, is
assembled.

Resume printing of assembly listing .

Sets the Location Counter to the value
of the expression.

Sets the prevailing radix to octal.
Assumed at start of every program.

Input text strings in 6-bit trimmed
ASCII, with first character as delimiter.

The Assembler outputs the address of
last location plus one occupied by the
object program.

Suppress printing of assembly listing .

C-l/C-2(Part II)

APPENDIX D
PDP-15/10 HARDWARE READIN BINARY LOADERS

I
/POP-15/10 HARDWARE REAOIN LOADERS
I
/DEFINING %LOW PRODUCES THE LOW SPEED VERSION
/OTHERWISE. THE HIGH SPEED VERSION IS PRODUCED.
I
/LOW SPEED READER VERSION:
/HARDWARE READIN TO 7700 (17700 IF aK>, WHEN IT HALTS,
/PLACE BINARY PROGRAM TAPE IN LOW SPEED READER
/ANO PRESS START, WITH BANK/PAGE MOOE SWITCH IN PAGE POSITION,
I
/IIGH SPEED READER VERSION:
/HARDWARE REAOIN TO 7720 <17720 IF 8K>, WHEN IT HALTS,
/PLACE BINARY PROGRAM TAPE IN HIGH SPEED READER
/ANO PRESS START, WITH BANK/PAGE MODE SWITCH IN PAGE POSITION,
I
/LOADER HALTS:
I
/AC=777777 - PROGRAM LOADED.
IAC:NONlERO - CHECKSUM ERROR ON LAST BLOCK LOADED,
I REPOSITION TAPE AT BLANK FRAME PRIOR TO
I BEGINNING OF LAST BLOCK AND PRESS START
I TO REREAD.
I TO IGNORE ERROR, PRESS CONTINUE.
I
CAF:703302
RSF=700101
RSB=700144
RRB=71110112
KSF=700301
KRH=700312
KRS=71!10322

,FULL
SKPFLG:RSF
RDSLCT:RSB
ROBFR=RRB

.L0c 11120
• I FOEF %LOW

SKPFLG:KSF
RDSLCT=KRS
RORFR:KRB

.LOC 17700

.ENDC
CAF

LONXBK OlM LOCKSM
-dMS LDREAU
DAC LOSTAO
SPA
JMP LDXFR
JMS LDREAO
DAC LDWOCT
JMS LDREAO

LDNXWD JMS LDREAO
OAC• LDSTAD

/CLEAR FLAGS
/CHECKSUMMING LOCATION
/GET A WORD

/BLOCK HEADING-LOADING ADDRESS
/START BLOCK

1WORO COUNT (2'S COMPLEMENT)

/LOAD DAT A INTO

D-1 (Part II)

LDXFR

LDREAD

LORD A

LDC TR
LDT MP
LDMSK

LDCKSM
LDSTAD
LOWD CT

D-2(Part II)

IS2 LOSTAO
!Si! LDWDCT

JMP LONXWO
TAD LDCKSM
SH
HLT
JMP LONXBK
f)AC LOWDCT
ISl LDWDCT
JMP* LDSTAD
CLC ! HLT
fll
• IFDEF %LOW
LAW -3
DAC LOCTR
f);!M LOTMP
,ENOC
TAD LDCKSM
DAC LDCKSM
RD SL CT
SKPFLG
JMP • -1
ROB FR
, I FDEF %LOW
TAD LDMSK
SPA!CLL
JHP LDRDA
TAD LDTMP
ISl LDCTR
SKP!RTL
.ENDC
JMP• LDREAD
. I FDEF %LOW
RTL
RTL
DAG LDTMP
JMP LDROA
0
fll
777600
.ENDC
0
0
fll
.END

/MEMORY
/FINISHED LOADING

/NO
/ADD INTO CHECKSUM

/CHECKSUM ERROR

/EXECUTE START ADDRESS
/MANUALLY START USER PROGRAM

/WAIT FOR READER
/READ BUFFER

/BINARY FRAME
/YES
/NO

/ACCUMULATE 3 FRAMES
/INTO 1 BINARY WORD

/PACK COUNTER
/BINARY WORD
IBJNARY FRAME MASK

/CHECKSUM
1LOADING1STARTING ADDRESS
/WORD COUNT

Transfer from Edit Level to Input Level

>)

>I)

Transfer from Input Level to Edit Level

)

CTRLP

Text Input/Output

S(&...1 n))

READ)

G(&...1 n))

RENEW)

WRITE)

CLOSE)

Pointer Manipulation

T)

N(&...1 n))

F L..I string)

L ..._. string)

B)

APPENDIX E
SUMMARY OF EDITOR COMMANDS

Carriage return as first character.

INSERT command with no arguments.

OVERLAY command.*

Carriage return as first character.

(echoes tP)

(SIZE) Sets number of lines to occupy buffer.

Reads sequential lines from input device; number
of lines specified by SIZE command.

(GET) Adds next n lines from subsidiary device to
the buffer.

Writes contents of buffer and reads new block.

Punches contents of buffer on output device and
clears buffer.

Writes remainder of input file on output device;
must be preceded by a WRITE command.

(TOP) Moves pointer to top of buffer.

(NEXT) Moves pointer past next n lines.

(FIND) Searches buffer to find next line that
begins with string.

(LOCATE) Searches buffer to find next line that
contains string.

(BOTTOM) Moves pointer to final line in buffer.

*n lines are deleted from the buffer before the control level is changed.

E-1 (Part II)

SEARCH 11-1 string)

Editing Requests

R 11-1 line)

A 11-1 string)

C 11-1 qstring I qstring2q)

I 11-1 line)

G(11-1 n))

D(11-1 n))

0(11-1 n))

Examination Requests

E-2(Part II)

Searches input file for next line that begins with
string.

(RETYPE) Replaces the current line with "line."

(APPEND) Adds "string" to current line.

(CHANGE) Replaces string! with string2.

(INSERT) Inserts "line" after current line.

(GET) Adds n lines from subsidiary input device
after current line.

(DELETE) Deletes next n lines from buffer.

(OVERLAY) Deletes next n lines from buffer and
transfers control to input level.

(PRINT) Prints next n lines on Teletype.

(VERIFY) Causes text lines to be printed in
response to certain commands.

(BRIEF) Causes abbreviated printing of VERIFY
lines.

APPENDIX F
CREATING ASCII TEXT WITH THE EDITOR

(Using ASR33 Reader/Punch)

This appendix contains procedures intended for the user who is not familiar with the Editor, but wishes to create
ASCII text on paper tape immediately. The basic procedure includes loading the paper tape containing the Editor into
core memory, completing an initialization sequence, typing the desired text on the Teletype, and punching out the
text (which has been held in the Editors buffer). It is assumed that the low-speed (ASR33) paper tape reader and
punch are to be used. Appendix D contains detailed examples of basic Editor operation, and Appendix E contains a
comprehensive Editor demonstration.

To punch leader:

l. Turn Teletype switch to OFF LINE.

2. Press Teletype punch switch ON.

3. Press HERE IS key several times to generate leader.

4. Press Teletype punch switch OFF.

5. Turn Teletype switch ON LINE.

To load the Editor:

6. Place the tape containing the low-speed, hardware readin binary loader in the Teletype reader.

7. Press Teletype reader switch ON.

8. Set ADDRESS switches to 7720 (l 7720 for 8K systems).

9. Press 1/0 RESET and READIN. The computer will halt (AC= 777777).

IO. Press reader switch OFF and place binary tape of Editor in Teletype reader.

11. Press reader switch ON and press START. The Editor will be loaded into memory (this takes about 3-1/2
minutes using the ASR33 reader).

To initialize the Editor:

When loading is complete, the Editor types

12. You type:
The Editor types:

EDIT-15

INTXT*

L)
GETXT*

F-1 (Part II)

13. You type:
The Editor types:

14. You type:
The Editor types:

followed by:

L)
OUTXT*

L)
EDIT
>

15. You type a carriage return following the right angle bracket, and the Editor responds

INPUT

To create your ASCII text:

16. Just type it in. Each line should consist of less than 72 characters followed by a carriage return. If you make a
mistake, don't worry about it now. Make a note of it and, when you have finished creating your text, you can edit it
using basic Editor commands illustrated in Appendix D. The Editor will store your ASCII text in a 20-line buffer
(55-line buffer for 8K systems). When you have typed enough lines to fill the buffer or when you have finished
creating your text (whichever occurs first), proceed with the following steps.

To punch out the contents of the buffer:

I 7. Type a carriage return as the first character on a line. The Editor will respond

EDIT

>

I 8. You type WRITE) following the right angle bracket.

I 9. Press Teletype punch switch ON.

20. Press CONTINUE. The Editor will punch out the buffer. When punching stops

21. Press the Teletype punch switch OFF.

22. Press CONTINUE. The Editor will respond with

>

23. If you wish to continue creating text, return to step 15. If you are finished creating text, return to steps I
through 5 to generate trailer in the same manner that you generated leader.

F-2(Part II)

APPENDIX G

EXAMPLES OF EDITOR OPERATION

This appendix is intended for the user who is not acquainted with the Editor, but has an ASCII tape that he wishes to
modify. Basic editing can be accomplished using only two I/O commands (READ and WRITE) and six editing
commands (INSERT, RETYPE, DELETE, PRINT, NEXT, and TOP). Most editing jobs can be accomplished using
these simple commands; the following editing session illustrates their use.

(I) To get things started, load the Editor into memory and initialize it by following the procedure in paragraph
2.3.
(2) Make sure the Teletype reader switch is OFF.

(3) Place the tape containing the ASCII text to be edited in the Teletype reader.

(4) Type READ)

(5) The Editor will halt. Turn the Teletype reader switch ON.

The Editor will read 201 0 lines (55 1 0 for 8K systems) into a block buffer ltnd halt. Turn the Teletype reader switch
OFF and press CONTINUE. The Editor will type a right angle bracket (>) in the left margin. This is the signal that
the Editor has finished processing your last command (READ) and is ready to accept your next command. You can
now perform the following editing operations.

To obtain a listing of the text in the Editor's buffer:

a. Type TOP)
This moves the current-line pointer to the beginning of the buffer.
The Editor types >

b. Type PRINT, 22)

This commands the Editor to print 22 lines, starting with the current line. The number 22 includes the 20 lines
in the buffer, one pseudo line at the beginning of the buffer, and one extra line to make sure you get
everything.
The Editor types:

(Line I of original text)

(Line 20 of original text)
END OF BUFFER REACHED BY:
PRINT 22

>

To insert a line at the top of the buffer (before line 1 or original text):

a. TypeTOP)

The Editor types >

*If an out-of-tape condition occurs during the READ (e.g., the ASCII text is less than 2010 lines), you can continue by typing CTRL R.

G-1 (Part II)

b. Type INSERT L..I (Line to be added before line 1)

To verify this change:

a. TypeTOP)
The Editor types>

b. Type PRINT, 3)
The Editor types:

To change line 5 instead of verifying as above:

a. Type NEXT, 4)

(Line 1 to be added)
(Line I of original text)
>

This moves the current-line pointer from line I of the original text to line 5 of the original text.
The Editor types >

b. Type PRINT)
This will allow you to verify that the current-line pointer is in fact pointing at the line you wish to modify.
The Editor types:

c. Type RETYPE ~ (New version of line 5))
The Editor types>

To add four lines after line 7:

a. Type NEXT ~ 2
This moves the current-line pointer to line 7.
The Editor types>

b. Type INSERT)
The Editor types INPUT
You type:

The Editor types:

To verify your insertion:

G-2(Part II)

(Line 5 of original text)
>

(Line I to be inserted))
(Line 2 to be inserted))
(Line 3 to be inserted))
(Line 4 to be inserted))

)
EDIT)
>

a. TypeTOP)
The Editor types>

b. Type NEXT L-1 8)
(You typed 8 as the parameter for NEXT since you wish to move the pointer down through seven lines of
original text plus the line you added at the top.)
The Editor types >

c. Type PRINT L-1 6)
The Editor types:

To delete lines 11, 13,and 14:

a. Type NEXT ..._. 3)
The Editor types >

b. Type PRINT)
(To verify the position of the current-line pointer.)
The Editor types:

c. Type DELETE)
The Editor types >

(Line 7 of original text)
(Line 1 to be inserted)

(Line 4 to be inserted)
(Line 8 of original text)
>

(Line 11 of original text)

>

(The current-line pointer is now positioned at line 12, the line after the line deleted.)

d. Type NEXT)
The Editor types>

e. Type DELETE L-1 2)
The Editor types>

Now you have added 5 lines to the original 20 lines read, deleted 3 lines, and modified 1 line. You now have 22 lines
in your buffer. To verify that this block is as you want it, issue a TOP command followed by a PRINT L...1 24
command.

To punch out the edited block:

a. Type WRITE)
The Editor halts. Turn on the Teletype punch and press CONTINUE.
The Editor punches out the block buffer (tabs will not appear in the listing) and halts.

G-3(Part II)

Turn off the Teletype punch and press CONTINUE.
The Editor types>

You now have the option of returning to step 4 to fill the buffer and edit more previously prepared text, or using the
INSERT command to fill the buffer. In either case, if the buffer is filled again, a WRITE must precede further
READs. If starting a new editing job, type CTRL P to clear all buffers before beginning.

G-4(Part II)

APPENDIX H
EDITOR DEMONSTRATION

This appendix provides a comprehensive example of an actual editing session. Before attempting to follow the
example in this appendix, the user should perform the operations outlined in Appendices F and G, and read sections
2.3 and 2.4 to familiarize himself with the Editor. The first page shows the editorial changes that are to be made to an
ASCII tape. The next several pages show hardcopy output of the editing session, and the last page shows an assembly
listing of the newly edited file. The following comments are keyed to the two pages containing the hard-copy output
of the editing session.

1) After initializing the Editor to READ text from the high-speed paper tape reader, to GET subsidiary input
from the Teletype reader, and to WRITE edited text on the high-speed punch, the user must READ a block of text
before editing can begin.

2) User types a carriage return to ignore CAPACITY WARNING.

3) The user has misspelled a command. It must be retyped in order to be executed. After the command has been
executed, PRINT is used to verify the results.

4) The use of command abbreviations saves time.

5) The user should have simply typed-

I L-1 ISZ PACK /BUMP TO "TO" ADDRESS

instead of changing from edit level to input level, typing the line, followed by another carriage return to get back to
edit level.

6) Verification is truncated with BRIEF ON, and prints out only up to the character changed. This saves time on
long editing jobs.

7) Verification can be eliminated by the confident user.

8) The end of the buffer has been reached. The user must now issue a WRITE followed by a READ to continue.

9) The editing task is now complete. The user issues a WRITE to finish punching out his edited tape.

H-l(Part II)

.•

Input File Marked For Editing

-a .,,,_
f)Jl)~TE~~~~o4R• ~o•DJP-r;;i.,A

un=.1t ~;..:::,.. , tJ rre. ,... a'(•-
1suattouT 1 NE PACK, 7-BITt;;HARS TO IOPS ASCII.f:.a.,_,~ft'b~"..-~~~,!~ ~L~ ··~T
/CALL: JMS PACK Al.~/l(f, 1' 'f>0 ,_.,.& TllC S
I FROM /5l"Aitl'•FjU1'VrA1''tAY, "'~T" TE'\M~1',.Af
I TO / •r.1. -.,- ,., ourf'CJT' A•IUy. t'ul"P"'" Co, ,_.
PACK ~ .Jt

LAC~ PACK /GET fRQ,•l A . ESS. 0

1.st. ptel\..w; PrRQ,'I} /GIVE TO mo; PO NTEH.
LAC• PACK /uET AuURESS Oi TO ARRAY.
D~~,1 PTO /GIVE TO OUTPUT POINTER.
~~ PLBH /SAV'i. AS START ADIJRESS.
~ PACK /dU~P TO RETURN.

PLOOPl LAW 17773 /SET UP
DAC PK5CHR /rCHAb,Tlt ,oftll)TIR,

PLOOP<'... ~ Pl0ROi1 /GET NEXT WOHD IN INPUT ARRAY.
Sttl>~~ ~JNOUtl(/TER1"1INATOR7
~ ~ +tiQ; il<I12.'4'
J1"1P PCLOS /YES, GO CLOSE OUTPUT ARRAY.
lSZ PFkOM /POINT TO NEXT WORD.
IBZ: Pflii811t ,, 1'1'tHIH T8 NEHI wen.w. '('
DAC PWHD3 /SET UP TO ROTATE.

i-'LOOP7 Jfl!S PRALJ... JI "'I
ISZ PK5i'R - ' /5 CHARS IN t;J- •
JMP ID(>OP2 /NO, GET ANOTHER.
LAC PWRD2 /WORD PAIR COMPLETE.
RAL/,lL /CLEAR PAIR BIT 35.
DAC PWRD2 JI(
LAC PWRDl /GET FIRST WD OF PA~.
RAL~ /oIT 0 OF WD 2. ~\.('
DAC* PTO /INSERT FIRST WD IN OUT ARRAY.
I sz PTCl-.-oo /a Ui1P OUT ADDRESS.
JMP PL~l /GO SET UP NEXT PAIR.

PCLOS ~AW 1777 3 /i1AKE SURE PAIR IS CO~PLETE.
OZflt MOJSAD PK5CHR

JMP Pl.OOP7

t.»~"""'~' . n.r>f'~#, lAIJ Pl.Ii~
CMA

J°'l p,.C~~~* ~!gK
• END

H-2(Part II)

/INCO~PLETE PAIH.
/FORM WORD PAIR COUNTA""'>
/START ADDRESS. 'C/

/LESS END AilDRESS.
/RETURN TO CALLER •

Hard-Copy Output of Editing Session

EDIT-15/10

I NlXT*
H
GETXT*
L
OU TX I"'
H
Eull
>KiAD
>f!ND /SUdROUT
/SUBROUTINE PACK, 7-dil CHARS 10 !OPS ASCII.
>OVERLAY 1
ItWuT
/SUBROUTINE PACK, 7-dlT LEFT-ALJJUSTED CHARS TO NON-HEADERED !OPS
/~5CII. ON riETURN, AC HOLJS TOTAL WORDS OCCUPIEu &Y PACKEJ ARRI

CAPACITY ~ARNING

/A WOriD OF ALL l'S MUSI TERMINATE THE INPUT CUNPACKEJ) ARRAY.

CAPACITY wARNING

EUil
>LOCATE FHO;'l

I FHOi'1
>APP~Nu /START OF INPUT ARRAY.
>NEXT
>APENU /START OF OUTPUT ARRAY.
NOT A REQUEST:

APEND /START OF OUTPUT ARRAY.
>APPENu /START OF OUTPUT ARRAY.
>PRINT 1

I TO /START OF OUTPUT ARRAY.
>L LAC

LAC PACK
>CtiANGE LAC/LAC*/

LAC PACK
>CHANG ii: /LAC/LAC*/

LAC*
>C I i-;DR/ ttDDR/

>NEXT 1
>INSERT

LAC*

CAPACITY wARNING

I NPLIT
ISZ PACK

Cf;PACIIY WARNING

PACK

PACK

/uET FROi"i ADRESS.

/GET FROl1 AurlC:SS.

/GET iRO"'I AiJttESS.

/GET rnoM AuDrlESS.

/bU~P TO "IO" AuJ~ESS.

H-3(Part II)

Hard-Copy Output of Editing Session (cont)

H-4(Part II)

EDIT
>PitlNI

ISZ PACK
>BklEF ON
>C .I .I.

ISZ PACK
>Pt(! NI

ISZ PACK
>L PLi3H

DAC PLBH
>BHI~F OFF
>PHI NI

DAC
>DELETE 2
>fHINI

PLOOPl LAW
>N l

PLBH

17773

/BUMP TO "TO" AUDRESS.

1au~P TO "To" ADDRESS.

/SAVE AS START ADDRESS.

/SET UP

>A /5-CHARACTER COUNTEH.
>L C

SAC C-1
>VERIFY OFF
>C /SAC/SAD/
>C /8\C-1/ENDCHR/
>V ON
>PRINT

>N
>D
>N
>P

>!)

>P

>f PL

SAD ENDCHR

ISZ PF'ROi"I

ISZ PFR01'1

/IEfMI NA TOR 7

/TEiMINATOR?

/POINT TO NEXT WORD.

/POINT TO NEXT WORD.

ENLI OF BUFFER REACHEi.> BY:
F' PL
>W
>nEAD
>i t'L

PLOOf'7 Jf"IS
>N

PHAL7

>HETYPE ISZ PK5CHR
>N
>C ,LP,PL,

JMP
>N 2
>CHANGE /LILI CLL

RALi CLL

PLOOP2

5 \/5 CHARS IN?

/NO, GET ANOTHER.

/CLEAR PAIR BIT 35.

Hard-Copy Output of Editing Session (cont)

>N 2
>P

LAC PWRDl /GET FIRST lllD OF PAR.•
>C IH.IIrl/

LAC P lllrl D 1 /1.:iET FIRST Wu Or PAIR.
>L HAL

HALlCLL /olT 0 OF Wl.> 2.
>C I I CLL//

RAL /olT 0 OF WiJ 2.
>L J,1P

J1'1P PLi00Pl /GO SET UP NEXT PAIR.
>CHANGE /ld0/00/

JMP PLOOP1 /GO SET UP NEXT PAIR.
>N
>
1 NPUT

DZt'1 PWRD3 /FILL PAIH WITH ZEROES.

EDIT

>L
CLAICLL /FOR~ WORD PAIR COUNT

>R ENDCHH LAW -1 /FORM WORD PAIR COUNT.
>N
>R TAD• PACK /START ADDRESS.
>L PTO

TAD PTO /LESS END ADDRESS.
>INSERT ISZ PACL\K
CAPACITY WARNING

>BOTI01•l
.ENiJ

>OllERLAY
INPUT
Piri01VJ IO

CltPACIIY WARNING
PTO

CBPACITY WARNING
PK5CHR iO

CAPACITY WARNING
.END

CAPACITY WARNING

EDIT
>Ii/RITE

H-S(Part II)

Edited Output File

PLEASE READY THE INPUT DEVICE AND SET TH~ AC SWITCH

/SUBROUTINE PACK, 7-BIT LErT-AUJUSIED CHARS TO NON-HEADERED IOPS
/ASCII. ON RETURN, AC HOLDS TOTAL WORDS OCCUPIEu BY PACKEU ARRAY.
/A ~OrlD OF ALL 1"5 MUST TERMINATE THE INPUT <UNPACKED> ARRAY.
/CALL: J~S PACK
I flWi'<l
I IO
PACK JO

LAC* PACK
DAC PFH0:1
ISZ PACK
LAC* PACK
DAC PTO

PLOOPl LAw 17773
DAC PK5CHR

PLOOP2 LAC* PFROM
SAD ENDCHR
J1'<1P PCLOS
ISZ Pl'ROM
DAC PWRD3

PLOOP7 JMS PRAL7
ISZ PKSCHR
Jl'lP PLOOP2
LAC PWRD2
RALi CLL
DAC
LAC
RAL

PWRD2
PWrlD)

DAC* PTO
ISZ PIO
J1'1P PLOOP 1

PCLOS LA~ 17773
DZi'I PWRD3
SAD PK5CHR
JMP PLOOP7

ENiJCHR LAVI -1
TAD* PACK

PFl10i'l
PTO
P!<5CHR

H-6(Part II)

TAD PLBH
C~A
TAD PTO
ISZ PACK
J,'1P* PACK
Id

0
.END

/START OF INPUT ARRAY.
/START Or OUTPUT ARRAY.

/GET FROM ADDRESS.
/GIVE TO FRO~ POINTER.

/SUMP TO "IO" AUURESS.
/GET ADDRESS OF TO ARRAY.
/GIVE TO OUTPUT POINTER.
/SET UP

/$-CHARACTER COUNTER.
/GET NEXT WORD IN INPUT ARRAY.
/TER1'1INATOR?
/YES, GO CLOSE OUTPUT ARRAY.
/POINT TO NEXT WORD.
/SET UP TO ROTATE.

/5 CHARS IN?
/NO, GET ANOTHER.
/WORD PAIR COMPLETE.
/CLEAR PAIR BIT 35.

/GET FIRST WD OF PAIR.
/BIT 0 OF WD 2.
/INSERT FIRST WD IN OUT ARRAY.
/BU~P OUT ADDRESS.
/GO SET UP NEXT PAIR.
/1'1AKE SURE PAIR IS COi'1PLETE.
/FILL PAIH WITH ZEROES.

/INCO~PLETE PAIR.
/FORM WORD PAIR COUNT.
/START AUDRESS.

/STA.rt! ADDRESS.

/LESS END ADDRESS.

/RETURN TO CALLER.

APPENDIX I
ASCil CHARACTER SET

MODEL 33ASR TELETYPE CODE (ASCII) IN OCTAL FORM

Character
8-BitCode
(in Octal)

A
B
c
D
E
F
G
H
I
J
K
L
M
N
0
p

Q
R
s
T
u
v
w
x
y

z
0
1
2
3
4
5
6
7
8
9

*Not recognized by ODT.
**Ignored by ODT.

301
302
303
304
305
306
307
310
31 l
312
313
314
315
316
317
320
321
322
323
324
325
326
327
330
331
332

260
261
262
263
264
265
266
267
270*
271*

tHave special meaning to TIC & TOC.

8-BitCode
Character (in Octal)

! 241*
" 242*
243*
$ 244
% 245*
& 246*
' 247*
(250*
) 251*
* 252*
+ 253*
' 254*
- 255*

256*
I 257
: 272*

'
273

< 274*
= 275*

-

> 276*
? 277
@ 300*t
[333*
\ 334*

J 335*
t 336

+- 337
Leader /Trailer 200**
Line-Feed O.) 2I 2t
Carriage-Retumi)> 215t
Space (A) 240
Rub-out 377**
Blank (Null) 000**
ALT MODE($) 373
Tab 21 It

1-1/1-2 (Part II)

Register Examination and Modification

k/
I
)
k)
.t.
t

$A
$1

Execute Instruction

k$X

Setting User Start Address

$Z
$G
k$G

Breakpoint Commands

k$B
k$nB
$B
$nB
$C

k$C

$K
$U
$V
$Y

Searching Operations

$M
k$W

APPENDIX J
ODT COMMAND SUMMARY

Open register k.
Open last referenced register.
Close register.
Store k and close register.
Close register and open next register .
Close register and open previous register.
Close register and interpret contents as address.
Open AC and Link registers.
Display PI and API status.

Execute instruction k.

Open user start address.
Start program at address specified in $Z register.
Start program at location k.

Set breakpoint I at location k.
Set breakpoint n at location k.
Remove all breakpoints.
Remove breakpoint n.
Execute instruction at breakpoint and continue
with user program.
Execute instruction at breakpoint and continue
with user program when the breakpoint has been
encountered for the kth time.
Disable PI and API during all breakpoints.
Enable PI and API during all breakpoints.
Vary autoindex (must be between l 0 and 17).
Open re-entrant PC list (after re-entrancy error).

Open mask register for modification.
Search for bit configuration k.

J-1 (Part II)

Initialize Buffers

Paper

$1
k$I

Tape Output

$H
$L
k1; k2 $D

$T

k$T

Initialize (set) block of memory locations to zero.*
Initialize (set) block of memory location to k. *

Select high-speed punch.
Select low-speed punch.
Dump (punch) all locations between k 1 and k2 ,

inclusive.
Punch terminal block; loader will halt when
loading complete.
Punch terminal block; loader will transfer to
location k when loading complete.

*User must first specify high and low limits of block by means of$M command.
**If low-speed punch ($L), ODT halts to allow user to turn-on punch.

J-2(Part II)

PARTW
Basic 1/0 MONITOR

.-1~-·

1.1 MONITOR FUNCTIONS

PART Ill
BASIC I/0 MONITOR

CHAPTER I
THE PDP-15 MONITOR ENVIRONMENT

The Basic 1/0 Monitor greatly simplifies the task of programming 1/0 functions by providing an interface between
system or user programs and the external world of 1/0 devices. Upward compatibility exists between the Basic 1/0
Monitor and the other monitors of the PDP-15 Software System; programs written to operate under control of the
Basic 1/0 Monitor will also operate, without modification, under control of the Advanced and
Background/Foreground Monitors. The Monitors, by means of the Input/Output Programming System (IOPS) and
Program Interrupt (Pl) or Automatic Priority Interrupt (API), allow simultaneous operation of multiple 1/0 devices
along with overlapping computations.

Certain features such as the general Monitor environment, data handling, and logical/physical 1/0 device associations,
are common to all three Monitors. Detailed information on the Advanced and Background/Foreground Monitors will
be found in manuals DEC-15-MR2A-D and DEC-15-MR3A-D respectively.

1.1.2 General 1/0 Communication

A general communication required to accomplish an 1/0 task is the same for all three Monitor systems (see Figure
1-1). A system or user program initiates an 1/0 function by means of a Monitor command (system macro), which is
interpreted by a CAL handler within the Monitor as a legitimate 1/0 call. (See the PDP-15 Reference Manual
DEC-15-BRZA-D for a description of the CAL instruction.) The 1/0 call includes a logical 1/0 device number as one
of its arguments. The Monitor establishes the logical/physical 1/0 device association by means of its Device
Assignment Table (.DAT). When this has been accomplished, the Monitor passes control to the appropriate device
handler subroutine to initiate the 1/0 function and returns control to the system or user program. The system or user
program retains control until an interrupt (Pl or API) occurs, at which time it relinquishes control to the device
handler to perform and/or complete the specified 1/0 function. Computations or other processing can be performed
by the system or user program while waiting for an interrupt. This feature allows the programmer to make optimum
use of available time.

1-1 (Part III)

DATA

j_ l
VIA CAL VIA PI

Vi A CAL HANDLER I/0 DEVICE HANDLER OR API SYSTEM OR
MONITOR

INITIATION 1 INTERIWPT

I/0 DEVICE USER PROGRAM ~

1 CONTROL RETURN I 1 J
Figure 1-1. General I/O Communication in Monitor Environment

1.1.3 Command, Control, and Data Flow

Figure 1-2 provides a more detailed representation of the Monitor environment, with emphasis on command, control,
and data flow. As shown, the user can initiate a command via the Teletype which is interpreted by a Command
Processor within the system program (or user program if so designed).

Each system or user program must internally set up line buffers (except when using Dump mode, discussed later) to
be used in transmitting data to or from the external environment. Each line buffer of n words consists of a two-word
header (referred to as a header word pair) and n -2 words of data. The system or user program can exercise control on
output by modifying the header word pair, or it can verify on input by examining the header word pair. The use of
line buffers is discussed in more detail later in this chapter.

Monitor 1/0 commands (system macros) are written as part of the system or user program. In FORTRAN IV source
programs, these commands are in the form of READ and WRITE statements (refer to the PDP-IS FORTRAN IV
Manual, DEC-1 S-KFZA-D). These statements are translated by the compiler into the proper calling sequences for the
FORTRAN Object Time System which provides the required Monitor calls at execution time. In MACRO-IS source
programs, Monitor 1/0 commands are written as system macros within the system or user program. These system
macros are expanded at assembly time and include a CAL initiated Monitor call that contains the logical device
number as one of the arguments.

At execution time, Monitor calls are processed by the CAL Handler within the Monitor. Non-I/0 functions are then
further processed by the Monitor Control routine and I/O functions are processed by the I/O Control routine (see
Figures 1-2 and 1-3). A complete description of each of these commands is given in Chapter 2. If the original
command involved is an I/O function, the I/O control routine checks the Device Assignment Table to associate the
logical I/O device (specified by the system macro) to a physical I/0 device. The logical/physical device associations
can be modfied either by reassembly or with the aid of utility program PUNCH l S.

When the logical/physical 1/0 device association has been established, the Monitor passes control to the appropriate
1/0 device handler which initializes itself, initiates I/O, and returns control to the system or user program. As
mentioned previously, the system or user program retains control until the specified device causes an interrupt (Pl or
API). At this point, it relinquishes control to the device handler to continue or complete the specified 1/0 operation.

l-2(Part III)

EXTERNAL ENVIRONMENT

USER
COMMANOS

>-----+--TELETYPE

• I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

OATA

COMMA NOS

11
ACKNOWLEDGEMENTS

MONITOR ENVIRONMENT

ERROR MESSAGES AND COMMAND ACKNOWLEDGEMENTS

...
COMMAND

PROCESSOR

OUTPUT CONTROL

l HEADER

WORD PAIR

LINE
BUFFER

SYSTEM
OR USER
PROGRAM

INPUT J
VERIFICATION

DATA

MONITOR
COMMANDS

(SYSTEM MACROS)

Loo.
~ONTROL

11;,;s- - - - - -

ERROR
MESSAGES

MON I TOR

MON I TOR ERROR
DIAGNOSTIC (,MEDl

PROGRAM

TERRORS

lDEVICE ASSIGNMENT I
TABLE I.DAT l J

CAL
HANDLER

~~~~~ 

NON !/0 
FUNCTIONS J MONI TORJ .... 1 CONTROL 

ROUTINE 

1--
I/O FUNCTIONS~ 1 

ERRORS 

MONITOR 

I 
______ _J 

INITIALIZATION 

l /0 CONTROL 
ROUTINE J 

INTERRUPT INITIATION 
L _____ _ 

1/0 
OE VICE 

DATA AND CONTROL 

I 
I .. ERRORS 

I 
I 

l 
I/0 DEVICE HANDLER 

L __________ _ INPUT/OUTPUT PROGRAMMING SYSTEM (!OPS) 

Figure 1-2. Command, Control, and Data Flow in the Basic 1/0 Monitor Environment 

-1 

I 
I 
I 
I 
I 
I 
I 
I 

.1 
I 

_J 



Function 
Code 

2 

Command 

.INIT 

.DLETE, .RENAM, and .FSTAT 

Functions processed 
by 1/0 control routine 

3 .SEEK 

4 .ENTER 

5 .CLEAR 

6 .CLOSE 

7 .MT APE 

10 .READ and .REALR 

11 :WRITE and .REALW 

12 .WAIT and .WAITR 

13 .TRAN 

14 .TIMER 

Functions processed by 15 .EXIT 

monitor control routine 16 .SETUP 

l-4(Part III) 

17 .IDLE and .IDLEC 

20 .RLXIT 

Figure 1-3. Monitor Commands and Function Codes 

NOTE 

.INIT, .READ, .WRITE, .WAIT, .WAITR, .CLOSE, .TIMER, and .EXIT are 
recognized by all three Monitors . 

. SEEK, .ENTER, .FSTAT, .RENAM, .DLETE, .TRAN, .CLEAR, and 

.MT APE are recognized by the Advanced and Background/Foreground 
Monitors (and are ignored by the Basic 1/0 Monitor) . 

. SETUP is used by the Monitors in setting up the 1/0 skip chain and API 
channel registers (see Chapter 4) . 

.IDLE, .IDLEC and .RLXIT are recognized by the Background/Foreground 
Monitor only. 



In either case, control is returned to the system or user program at the point where it was interrupted. The system or 
user program, by means of a .WAIT system macro (described in Chapter 2), can determine whether an input or output 
operation has been completed. If the transfer of data from or to the system or user program line buffer has been 
completed, program execution continues; if the transfer has not been completed, control is returned to the .WAIT 
macro. 

Additional buffering is provided by the individual device handlers as required. All device handlers are non-resident in 
the sense that only those handlers required by the system or user program are loaded into core. 

l.2 LINE BUFFERS 

As mentioned in the preceding general description of the Monitor environment, each system or user program must 
internally set up line buffers to be used in transmitting data to or from the external environment. An exception to 
this rule is when data is transmitted in the Dump mode (described in paragraph 1.3.1.4). Each line buffer of n words 
(always even) should be set up to consist of a two-word header (termed a header word pair) followed by n-2 words of 
data as shown in Figure 1-4. 

Word 0 First Word of Line Buffer Header 

Word l Second Word of Line Buffer Header 

Word 2 First Word of Data Area 

! ! 
Word n-1 Last Word of Data Area 

Figure 1-4. Line Buffer Structure 

A system or user program should contain at least one line buffer for each device that is to be used. This buffer is used 
to set up output lines before transmittal to an output device, or to receive input lines from the associated input 
device. The Monitor accepts commands (system macros) from system or user programs to initiate input to the line 
buffers and to write out the contents of line buffers. Complete descriptions of these commands are given in Chapter 
2. Line buffers are internal to, and must be defined by, each system or user program. The header word pair within a 
line buffer is detailed in Figure 1-5. The .BLOCK pseudo operation may be used to reserve space for a line buffer. A 
tag is required to allow referencing by individual .READ and .WRITE macros. For example: 

LINEIN 

LINOUT 

.DEC 

.BLOCK 52 

.BLOCK 52 

/creates 52-word line 
/buffer named LINEIN. 

/creates 52-word line 
/buffer named LINOUT. 

Before output, the user must set the appropriate word pair count in bits 1 through 8 of word zero in the line buffer if 
they have not already been set by a device handler on input. This count overrides the word count passed to IOPS by 

1-S(Part III) 



0 ---···--8 9---11 12. 13 14----17 

HEADER, 
WORD 0 I l fOUNT ! 

I i , I 
0 v 

I 
110 MODE 

I 

1-1GNORE CHECKSUM _J T----------1----. .r--'~-----..------
ON BINARY INPUT I 

:~:gE:A~~;g~~I~· INCLUDING ------~ 

FOR !OPS BINARY ONLY } 
I CORRESPONDS TO 7-9 PUNCH ---------------_, 
ON BINARY CARDSI 

VALIDITY BITS: 
00 • DATA CORRECT 
01 • PAR! TY ERROR 

110 MOOE. 

0000 = !OPS BINARY 
000 1 = IMAGE BINARY 
0010 •!OPS ASCII 
00 1 I • IMAGE ALPHANUMERIC 

* !OPS AND IMAGE MODES ONLY 

10 • CHECK SUM ERROR } 
11 = SHORT LINE -----------' 

(BUFFER OVERFLOW) 

0100 = DUMP } 
0101 = EOF (LOGICAL)* 
0110= EOM (PHYSICAL!* -------------' 
0111 =TAPE LABEL* 

MM ALSO DUMP MODE FOR 9 CHANNEL 
MAGNETIC 4 APES 

Hf ADER, 
WORD1 

0---------------------------~17 

CHECKSUM• 

TWO'S COMPLl;MENT OF HEADER WORD 0 PLUS DATA ---~ 
WORDS CO= CHECKSUM NOT COMPUTED! 

Figure 1-5. Format of Header Word Pair 

the .WRITE macro. (The word count must still be specified in the .WRITE macro for each data mode; however, it 
only has meaning in Dump mode since there is no header word pair.) In IOPS binary mode (discussed in Paragraph 
1.3.l.2), bits 9 through 11 should be set to IOI if the output will ultimately be on cards. The checksum word, the 
second word in the header, need not be set by the user since checksums are computed by IOPS. 

Before input, the user should not be concerned with the header word pair since they will be set by IOPS to enable the 
user to determine what has happened after input has terminated. 

On input, the word count specified in the .READ macro is used by IOPS to determine the maximum number of 
locations to be occupied by the data being read. If the word count is exceeded before input is terminated, or if there 
is a parity or checksum error, IOPS sets the appropriate validity bits in header word 0 to indicate the error. 

After input, the user should check the validity bits in word 0 of the line buffer header to determine if the data was 
read without error. If multiple errors are detected, priority is given to a parity error over a checksum error. IOPS 
ignores checksum errors on binary input if bit 0 of word 0 of the line buffer header is set to 1. IOPS sets the 1/0 
mode bits (bits 14 through 17 of word 0 of the line buffer header) to: 6 (01102 ) if it senses a physical end-of-medium 
(such as end-of-tape in the paper-tape reader), or 5 (0101 2 ) if it senses a logical end-of-file during an IOPS binary 
read. 

l -6(Part III) 



When choosing a word count (that is, the maximum line buffer size) to specify in system macros, both the set of 
possible devices and the mode of data transmission must be considered. The maximum line buffer sizes (including 
2-word header) for standard peripheral devices, along with applicable data modes, are listed in Table 1-1. 

Table 1-1. Maximum Line Buffer Sizes 

Device 

PR (paper tape reader) 

PP (paper tape punch) 

TT (Teletype) 

CD (card reader) 

LP (line printer) 

MT0-7 (magnetic tape) 

*See paragraph 1.3 below. 

1.3 DATA MODES 

Maximum Line 
Buffer Size Data Modes* 

All 

All 

2 & 3 only 

2 only 

2 only 

0, 2& 5 

Notes 

341 0 sufficient only if mode 2. Headers 
accepted for mode O; generated for modes 1, 
2& 3. 

341 0 sufficient only if mode 2. Headers 
output only for mode 0. 

Allows for 8010 characters. 
Headers generated on input. 
Headers not output on output. 

Headers generated on input. 

Allows for 125 1 0 characters. No headers 
output. 

Modes 0 and 2 allow for several line buffers 
(logical records) per physical block. 

The Input/Output Programming System allows data transmission to or from a system or user program in five different 
modes. 

Mode Code* 

IOPS Binary 0 

Image Binary 

IOPS ASCII 2 

Image Alphanumeric 3 

Dump 4 

9-Channel Dump 5 

*Bits 14 through 17 of Header Word 0, specified by system macro and set by IOPS. 

I-7(Part III) 



1.3.1 IOPS Modes 

The two IOPS data modes include IOPS ASCII and IOPS binary as shown in Figure 1-6 on paper tape, and de"scribed 
in the following paragraphs. 

DIRECT I ONl 
OF TAPE 

MOVEMENT 

DIRECTION] 
OF TAPE 

MOVEMENT 

TAPE CHANNEL 

87654 321 
FEED ------0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

t t._ ___ 7-BIT ASCII CODE 

l.___ _______ PARITY BIT lEVEN PARITY) 

IOPS ASCII 

TAPE CHANNEL 

8 7 6 5 4 3 2 I 
FEED -e 0 0 0 0 o 0 0 0 t•I 6-BIT BYTE 

e O o o O o O O O 2nd 6-BIT BYTE 

e o o o O o o o O 3rd 6-BIT BYTE 

• 0 0 0 0 0 0 0 0 

1 t ,_.,,, " """ "°" 
PARITY BIT lODD PARITY) 

'--------- MUST ALWAYS BE PUNCHED 

lOPS BINARY 

Figure 1-6. IOPS Mode Data on Paper Tape 

1.3.1.1 IOPS ASCII - 7-bit ASCII is used by IOPS to accommodate the entire 128-character revised ASCII set 
(Appendix A). All alphanumeric data, whatever its original form on input (ASCII, Hollerith, etc.) or final form on 
output, is converted internally and stored as 5/7 ASCII. "5/7 ASCII" refers to the internal packing and storage 
scheme. Five 7-bit ASCII characters are packed in two contiguous locations as shown in Figure 1-7 and can be stored 
as binary data on any bulk storage device. Input requests involving IOPS ASCII should be made with an even word 
count to accommodate the paired input. 

ASCII data is input to or output from IOPS ordinarily, via the Teletype or paper tape, although it may exist in 5/7 
ASCII form on any mass storage device. IOPS ASCII is defined as a 7-bit ASCII character with even parity in the 
eighth (high order) bit, in keeping with USA standards. IOPS performs a parity check on input of IOPS ASCII data 
prior to the 5/7 packing. On output, IOPS generates the correct parity. 

Non-parity IOPS ASCII occurs in data originating at a Model 33, 35, or 37 teletype, without the parity option. This 
data always appears with the eighth (high order) bit set to 1. Apart from parity checking, the IOPS routines handle 
IOPS ASCII and non-parity IOPS ASCII data identically. 

1-8(Part III) 



,' 

WORD 0 1ST CHARACTER 21'40 CHARACTER 3RD CHARACTER 
1-4 

o--. 2 3-----------9 10 --------· 16 17 

WORD 1 3RD CHARACTER 
5-7 

4TH CHARACTER 5TH CHARACTER 

Figure 1-7. 5/7 ASCII Packing Scheme 

4l- UNUSED 

An alphanumeric line consists of an initial form control character (line feed, vertical tab, or form feed), the body of 
the line, and a carriage return (CR) or ALT MODE. CR (or ALT MODE) is a required line terminator in IOPS ASCII 
mode. Control character scanning is performed by some device handlers for editing or control purposes (see paragraph 
4.4 for effects of control characters on specific devices). 

1.3. l.2 IOPS Binary - IOPS Binary data is blocked in an even number of words, with each block preceded by a 
two-word header. On paper tape (see Figure 1-6), IOPS binary uses six bits per frame, with the eighth channel always 
set to 1, and the seventh channel containing the parity bit (odd parity) for channels 1 through 6 and channel 8. The 
parity feature supplements the checksumming as a data validity provision it?- paper tape IOPS binary. 

1.3. l.3 Image Modes - Image Mode data is read, written, and stored in the binary or alphanumeric form of the 
source or terminal device, one character per word, as shown in Figures 1-8 and 1-9. No conversion, checking, or 
packing is permitted, and character scanning is generally omitted. 

1.3.1.4 Dump Mode - Dump mode data is always binary. Dump mode is used to output from or load directly into 
any core memory area, bypassing the use of line buffers. Each dump mode statement has arguments defining the core 
memory area to be dumped. Dump mode is normally used with bulk storage devices, although it is also possible to use 
it with paper tape output and input. 

1.3.l.5 9-Channel Dump Mode - This mode is always binary and is exclusively used with 9 channel magnetic tape 
transports. This mode is designed to take advantage of all 8 data bits in each frame of the tape and thus insure 
maximum thruput for each word transferred. A full discussion of this data mode is provided in paragraph 4.4.6. 

1.3.2 Input/Output Data Mode Terminators 

Input/output terminators for each of the data modes are summarized in Table 1-2. 

1.4 SYSTEM TABLES 

System tables used by each of the monitor systems include the Device Assignment Table (.DAT), and the System 
Communication Table (.SCOM). These tables are discussed in the following paragraphs. 

l-9(Part III) 



DIRECTION! 
OF TAPE 

MOVEMENT 

DIRECTION r OF TAPE 
MOVEMENT 

TA PE CHANNEL 

a 1 6 5 4 3 2 t 
FEED --oooocoooe 

o e o c o • o e o 
e o o o e o e o c 
0 Q 0 0 0 0 0 & 0 

y 

LALL EIGHT CHANNELS USED 

I MAGE ALPHANUMERIC 

TAPE CHANNEL 

87654 321 
FEED 

• o e o e o c o • 
• • 0 • 0 0 0 • 0 

• o e o e o e o e 
• • 0 • 0 • 0 & 0 

·o; t 6-BIT 81 NARY CODE 
13 FRAMES/WORD) 

IGNORED 

L-------- MUST ALWAYS BE PUNCHED 

I MAGE Bl NARY 

Figure 1-8. Image Mode Data on Paper Tape 

WORD COUNT 

17 

~------~ ~ ~~~~E:..IR 
A B C ABC; 

C J} O IN5/7ASCII 

!OPS ASCII 

ORD C UNT /a w 
0 

0 t7 

IT 3 l 
A 

a 
c 

; 

IMAGE ALPHANUMERIC 

HEADER 
WORD PAIR 

ABC JI 
FOUR 8-BIT 
CHARACTERS 
!RIGHT 

JUSTIFIED) 

Figure 1-9. IOPS ASCII and Image Alphanumeric Data in Line Buffers 

1.4.l Device Assignment Table (.DAT) 

Both FORTRAN IV and MACR0-15 coded user programs, as well as the system programs, specify 1/0 operations 
with commands to logical I/O devices. One of the Monitor's functions is to relate these logical units to physical 

1-1 O(Part III) 



Table 1-2. Input/Output Data Mode Terminators 

IOPS IOPS Image Image 9-Channel 
ASCII Binary Alphanumeric Binary Dump Dump 

Carriage Return Word Pair Count Word Count Word Count Word Count 
I 
N ALT MODE End of Medium End of Medium End of Medium End of Medium 
p 

u Word Pair Count** Word Count* End of File** End of File** End of File** Word Count 
T 

End of Medium End of File** 

Word Count* 

End of File** 

0 Carriage Return 
u 
T ALT MODE Word Pair Count Word Pair Count Word Pair Count Word Count Word Count 
p 

u Word Pair Count*** 
T (except on teletype) 

*A short Line Indicator will be placed by IOPS into the validity bits ( 12 and 13) of Header Word 0 if the maximum size of the line 
buffer is reached before an End-0f-File. 

**Bulk storage only. 
***If the word pair count is not greater than I, the output line is ignored. If the word pair count is greater than 1, it has no effect and a 

carriage return or ALT MODE are the only legal line terminators. 

devices. To do this, the Monitor contains a Device Assignment Table (.DAT) which has "slot" numbers that 
correspond directly to logical 1/0 device numbers. Each .DAT slot contains the physical device unit number (if 
applicable) along with a pointer to the appropriate device handler. 

All I/O communication in the Monitor environment is accomplished by the logical/physical device associations 
provided by the Device Assignment Table (see paragraph 3.3.2). 

1.4.2 System Communication Table (.SCOM) 

The System Communication Table (.SCOM) provides a list of registers that can be referenced by the Monitor, IOPS, 
and system programs. A complete list of .SCOM entries, and the purpose of each, is given in Table 1-3. The System 
Communication Table begins at location I 008 • 

1.5 SPECIFYING DEVICES USED TO LINKING LOADER 

When writing a MACR0-15 program that uses Monitor commands (system macros), it is necessary to use the .IODEV 
pseudo operation somewhere in the program to specify to the Linking Loader which .DAT slots are to be used. The 
.IODEV pseudo-op causes a code to be generated that is recognized by the Linking Loader and used to load device 
handlers associated with specified .DAT slots. FORTRAN IV programs cause the compiler to generate this code based 

1-11 (Part III) 



Word 

.SCOM 

.SCOM+ 1 

.SCOM+2 

.SCOM+3 

.SCOM+4 

.SCOM+5 

.SCOM+ 6 

Table 1-3. System Communication Table (.SCOM) Entries 

Purpose 

First free register below resident portion of System Bootstrap (constant) 

First free register above resident Monitor (constant) 

First free register 

Last free register 

Hardware options available: 

Bit 0 l = API 
Bit 1 1 = EAE 
Bit 2 1 =TTY is 35/37 
Bit 3 1 = Non-resident Monitor in core 
Bit 6 I = 9-channel, 0 = 7-channel Magnetic tape 
Bit 7 l = Page Mode, 0 "" Bank Mode 

System program starting location 

User starting location (bits 3 through 17), and: 

Bit 0 1 =DDT Load 
Bit 1 1 = G Load 
Bit 2 1 = No-symbol-table Load 

.SCOM + 7-11 8 Device numbers of Linking Loader's devices. These are used to avoid loading user handlers already 
in core for the Loader itself . 

. SCOM + 12-158 Transfer vectors associated with API software level channel registers 40 through 438 • 

. SCOM + 16 

.SCOM + 17 

.SCOM +20 

Contains PC on keyboard interrupts . 

Contains AC on keyboard interrupts . 

Bit 0 
Bit 3-17 

1 "" 12K, 20K or 28K System 
=First Free Register in extra 4K Page 

on the units specified in READ and WRITE statements. If a variable is used in a FORTRAN program to specify an 
1/0 unit, handlers will be loaded for all positive .DAT slots that have handlers assigned. The .IODEV pseudo-op has 
the following form: 

.IODEV 3, 5, 6 

where the MACR0-15 program containing this statement can use .DAT slots 3, 5, and 6. An error message is 
generated if a slot called for by a program is unassigned. The MACR0-15 Assembler Manual (DEC-15-AMZA-D) 
provides a full discussion of pseudo-ops. 

l- l 2(Part III) 



CHAPTER 2 

USER PROGRAM COMMANDS (SYSTEM MACROS) 

User program commands or system macros that apply to the Basic 1/0 Monitor are described in this chapter for 
convenient reference. Because of the upward compatability of Monitor systems, all 1/0 Monitor commands (system 
macros) are also used in the Advanced and Background/Foreground Monitor environments. 

NOTE 

When executing a system macro, the monitor makes no attempt to save the 
user's accumulator and link bit. 

2.1 BASIC 1/0 MONITOR COMMANDS (SYSTEM MACROS) 

The following commands are available for use in programs that are to operate in the Basic 1/0 Monitor environment. 
Each command is described in detail in the paragraphs that follow. 

Name 

.INIT 

. READ 

. WRITE 

. WAIT 

.WAITR 

. CLOSE 

Purpose 

Initializes the device and device handler . 

Transfers data from the device to the line buffer . 

Transfers data from the line buffer to the device . 

Checks availability of the user's line buffer and waits if busy . 

Checks availability of the user's line buffer, and provides transfer 
address for busy return. 

Terminates use of a file . 

2-1 (Part III) 



Name 

. TIMER 

. EXIT 

2.2 INIT (INITIALIZE) 

FORM: 

VARIABLES: 

EXPANSION: 

Purpose 

Calls and uses real-time clock . 

Returns control to the Monitor . 

.INIT a, F, R 

a= Device Assignment Table (.DAT) slot number (in octal radix) 

F = File Type: { 0 = Input File 
l =Output File 

R = User Restart Address* (should be in every .INIT statement) 

LOC 

LOC+ 1 

LOC+2 

LOC+3 

CAL+ F7_s + a9-17 

R 

n 

/The CAL handler will place the unit number (if 
/applicable) associated with .DAT slot a into bits 
/0 through 2 of this word.** 

/Maximum size of line buffer associated with .DAT 
/slot a for example, 2551 0 for DECtape.*** 

DESCRIPTION: The macro .INIT causes the device and device handler associated with .DAT slot a to be initialized . 
.INIT must be given prior to any 1/0 commands referencing .DAT slot a; a separate .INIT command must be gi\;en for 
each .DAT slot referenced by the program. Each initialized .DAT slot constitutes an open file to the device handler 
and must be .CLOSEd. Since a .DAT slot may refer to only one type of file (input or output), only one file type 
specification (0 or l) may be made in an .INIT statement. If a .DAT slot first references an input file, then an output 
file (or vice versa), a second .INIT command must be executed to change the transfer direction prior to the actual 
data transfer command. 
2.3 READ 

FORM: 

VARIABLES: 

.READ a, M, L, W 

a= .DAT slot number (octal radix) 

M =Data mode 

0 = lOPS Binary 
1 = Image Binary 
2 = IOPS ASCII 
3 = Image Alphanumeric 
4= Dump Mode 

L = Line Buffer address 

W =Line buffer word count (decimal radix), including the two-word header 

*Has meaning only for .INIT commands referencing slots used by Teletype (the last .INIT command encountered for any slot 
referencing the keyboard or teleprinter takes precedence). When the user types CTRL P, control is transferred to R. For example, the 
Linking Loader takes advantage of this feature to restart the system when a new medium has been placed in the input device. 
**Has no direct effect upon the user's program, but should be noted so that no attempt will be made to use LOC +I as a constant. 

***Size is returned by the handler so that the program, in a device-independent environment, can use it to properly set up line buffers. 

Page 2-2(Part III) 



EXPANSION: LOC 

LOC+ I 

LOC+2 

LOC+3 

10 

L 

/CAL Handler will place unit number (if applicable) 
/into bits 0 through 2. 

.DEC /Decimal radix 

-W 

DESCRIPTION: The .READ command is used to transfer the next line of data from the device assigned to .DAT slot 
a to the line buffer in the user's program. In the operation, M defines the mode of the data to be transferred; L is the 
address of the line buffer; and W is the number of words in the line buffer (including the two-word header). 

Since 1/0 operations and internal data transfers may proceed asynchronously with computation, a .WAIT command 
must be used after a .READ command before the user attempts to use the data in the line buffer or to read another 
line into it. 

When a .READ (non-dump mode) has been completed, the program should interrogate bits 12 through 13 of the first 
word of the line buffer header to ascertain that the line was read without error. Bits 14 through 17 should be checked 
for end-of-medium and end-of-file conditions. 

2.4 .WRITE 

FORM: 

VARIABLES: 

EXPANSION: 

WRITE a, M, L, W 

a= .DAT slot number (octal radix) 

M= Data mode 

0 = IOPS Binary 
l = Image Binary 
2 = IOPS ASCII 
3 = Image Alphanumeric 
4= Dump Mode 

L = Line buffer address 

W =Line buffer word count (decimal radix), including the two-word header 

LOC CAL+ M6-s + a9-11 

LOC+ 1 10 /CAL Handler will place the unit number (if appli
/cable) associated with .DAT slot a into bits 
/0 through 2. 

LOC+2 L 

DEC /Decimal radix 

LOC+3 -W 

2-3(Part III) 



DESCRIPTION: .WRITE is used to transfer a line of data from the user's line buffer to the device associated with 
DAT slot a. 

WAIT must be used after a .WRITE command, before the line buffer is used again, to insure that the transfer to the 
device has been completed. 

On non-bulk storage devices, headers are output along with the data in IOPS binary mode only (bit 9 and 11 of 
header word 0 should be set to 1). On bulk storage devices, headers are output along with the data in all modes except 
dump mode. In image modes, the header space cannot be used for data, even though the headers are not written out. 
The word pair count in the header takes precedence over maximum size (or word count) in all modes and must be 
inserted by the user. 

For both .READ and .WRITE macros, dump mode causes the transfer of the specified core area to or from one record 
on magnetic or paper tape. One or more blocks on DECtape or disk may be occupied by a single dump command. A 
subsequent .WRITE in dump mode will utilize the unfilled portion of the last block. 

2.5 .WAIT 

FORM: 

VARIABLES: 

EXPANSION: 

WAIT a 

a= .DAT slot nuwher (octal radix) 

LOC CAL+ a9_ 17 

LOC+ 1 12 /The CAL Handler will place the unit number (if 
/applicable) associated with .DAT slot a into bits 
/0 through 2. 

DESCRIPTION: .WAIT is used to detect the availability of the user's line buffer (being filled by .READ or emptied 
by .WRITE). If the line buffer is available, control is returned to the user immediately after the .WAIT macro 
expansion (LOC + 2). If the transfer of data has not been completed, control is returned to the .WAIT macro .. WAIT 
must also be used after the .TRAN command. 

2.6 .WAITR 

FORM: 

VARIABLES: 

EXPANSION: 

2-4(Part III) 

WAITR a, ADDR 

a = .DAT slot number (octal radix) 

ADDR =Address to which control is passed if line buffer is not available for use. 

LOC 

LOC+ 1 

LOC+2 

CAL+ 10008 + ag-11 

12 

ADDR 

/The CAL Handler will place the unit number (if 
/applicable) associated with .DAT slot a into bits 
/0 through 2. 



DESCRIPTION: .WAITR is also used to detect the availability of the user's line buffer. If the buffer is available, 
control is returned to the user immediately after the .WAITR macro expansion (LOC + 3). If the transfer of the data 
has not been completed, however, control is given to the instruction at ADDR. It is the user's responsibility to return 
to the .WAITR to again check the availability of the buffer. 

2.7 .CLOSE 

FORM: 

VARIABLES: 

EXPANSION: 

.CLOSE a 

a= .DAT slot number (octal radix) 

LOC CAL+ a9_ 17 

LOC+ I 6 /The CAL Handler will place the unit (if applicable) 
/associated with .DAT slot a into bits 0 through 2. 

DESCRIPTION: When action has been initiated (.INIT or .SEEK or .ENTER) on a file (whether the device is 
file-oriented or not) this action must be terminated by a .CLOSE command. 

On input, it is assumed that the user is finished with the file when the .CLOSE macro is used, so the file is closed. On 
output, all associated output is allowed to finish and then an EOF (end-of-file) line is output before the file is finally 
closed. If a refers to a file-oriented device, any earlier file of the same name and extension, as currently referenced, is 
deleted from its directory after the new file is written. 

2.8 .TIMER 

FORM: TIMER n,C 

VARIABLES: n =Number of clock increments (decimal radix) 

C = Address of subroutine to handle interrupt at end of interval 

EXPANSION: LOC CAL 

LOC+ I 14 

LOC+2 c 

.DEC /Decimal radix 

LOC+3 -n 

DESCRIPTION: .TIMER is used to set the real-time clock to n increments and to start it. Each clock increment 
represents l/60s for 60 Hz systems and l/50s for 50 Hz systems. 

C + 1 is the location to which control is given when the Monitor services the clock interrupt. The coding at C should 
be in subroutine form; for example, 

2-5(Part III) 



c 0 /C + 1 is reached via JMS 

DACSAVEAC 

. } Must not contain any Monitor CALs 

. in Basic or Advanced Software Systems 

LACC /Restore Link 

RAL 

LAC SA VEAC /Restore AC 

XIT JMP* C 

so that control will return to the originally-interrupted sequence when the interval-handling routine has been 
completed. The Monitor automatically reenables the interrupt system before transferring control to C + 1. If the user 
wishes to initiate another interval at the completion of the previous interval in the subroutine specified to .TIMER, he 
may do so as follows: 

LAC (desired interval in 2's complement) 

DAC* (7 

LACC /Restore Link 

RAL 

LAC SA VEAC /Restore AC 

CLON /Turn on clock 

JMP* C 

2.9 .EXIT 

FORM: .EXIT 

EXPANSION: LOC CAL 

LOC +I 15 

DESCRIPTION: .EXIT provides the standard method for returnit.6 to the Monitor after completion of a system or 
user program. In the Basic 1/0 Monitor environment, it causes a program halt; in the Advanced Monitor environment, 
it causes the non-resident monitor to be reloaded. When the reloading process has been completed, the Monitor types 

MONITOR 
$ 

on the teleprinter, indicating that it is ready to accept the next command. In the Background/Foreground Monitor 
environment, the effect of the .EXIT depends upon whether it occurs in a BACKGROUND or a FOREGROUND job. 

2-6(Part III) 



3.1 GENERAL 

CHAPTER 3 

BASIC INPUT/OUTPUT MONITOR FUNCTIONS 

The Basic 1/0 Monitor simplifies the programming of input and output functions in the basic paper-tape environment. 
It serves as an interface between the system and user programs and the external world of device hardware, relying 
upon the routines and capabilities of the Input/Output Programming System (IOPS) to relieve the programmer of 
writing his own device and data handling subroutines. The 1/0 Monitor allows simultaneous operation of many 1/0 
peripherals and overlapped computation. Since upward compatibility exists between the Monitor systems, user 
programs that are written to operate under control of the 1/0 Monitor will also operate, without modification, under 
control of the Advanced and Background/Foreground Monitors. 

The Input/Output Monitor is designed to take advantage of the Automatic Priority Interrupt (API) if it is present on 
the system. Both the 1/0 skip chain for the Program Interrupt Control (PIC) and the API channels are set up to 
handle all devices which have been requested by the user. All unused channels are tied to an error routine to detect 
spurious interrupts. 

The reader is referred to Chapter 1 for a general discussion of the Monitor environment, and to Chapter 2 for detailed 
descriptions of user program commands (system macros) available in the 1/0 Monitor environment. 

3.2 PROGRAMMING EXAMPLE 

The following example illustrates the use of system macros with MACR0-15 programs in the Basic 1/0 Monitor 
environment. The example inputs a line of data from the Teletype keyboard, and outputs the same line of data to the 
Teletype. The arguments used by the system macros are given symbolic names (via MACR0-15 direct assignment 
statements) to facilitate recall for the programmer, and to change the arguments easily, if desired. Note the use of the 
pseudo-ops .. TITLE, .IODEV, .BLOCK, and .END, in addition to the system macros. The assembly listing that 
follows the example shows how the system macros are expanded at assembly time. (The reader may wish to compare 
these expansions with the system macro descriptions in Chapter 2.) 

3-1 (Part Ill) 



TT1:2 
TT0=4U 
OUT:l 
1N:l6 
l0P;):2 

START 

eiEGIN 

flESTHT 

dUJ'l''EH 

• TITLE ECHO 

.lOlJEV 
• INI T 
• INI T 
.ki::IU) 
• vlA1 T 
.•RUE 
.wAIT 
Ji'lP 
.CLOSE 
.CLOSE 
JillP 
.BLOCK 
.END 

2,4 
TTO,OUT,RESTRT 
TTI, I N,riESTRT 
TTI,IOPS,oUFFEk,34 
TTI 
TTO,IOPS,dUFFEH,34 
TIO 
BEGIN 
TTI 
TTO 
START 
42 
START 

ASSEMBLY LISTING: 

PAGE 1 ECHO 

VH1JOJ002 A. TTI =2 
QIP,(11411'/J A. TT0=4111l 
00J0vHil1 A OUT=1 
00J(ll0011J A. I N=l'/J 
11l'1JCl!002 A IOPS=2 

llJ001/JVJ R START 
0011!00 R '11Clll 410 A. •G 
0011!01 R '110!i!001 A. •G 
00002 R PIOJVl025 R *G 
00011l3 R 011JQl0VJl1J A •G 

1211Hlf114 R 91OJ111riHll2 A. ttG 
flJr210 V'l5 R i10J0Vlfil1 A. ttG 
OJOJ006 R '110V'l025 R ttG 
"10007 R 01H'litl011J A. ttG 
011l010J R BEGIN 
00'1!10 R OJ0?~rn2 A •G 
00011 R Cl!0Cl!i1111l A. •G 
lil0012 R V!Cl!(l!Ql32 R •G 

00013 R 777736 A ttG 

00014 R C/!01-'1002 A ttG 
00015 R 0100J'1112 A ttG 

00016 R 0Pl24111l A •G 
00017 R 17l0riHH1 A •G 
0ril02fll R 17l0'1l032 R •G 

ril0021 R 777736 A ttG 

3-2(Part III) 

/lNlTlALIZE TELETYPE OUTPUT 
/ANU INPUT 
/INPUT IOPS ASCII FRO~ TELETYPE 
/vlAIT UNTIL INPUT CO~PLETE 
/uUTPUT SA~~ DATA ON TELETYP~ 
/~Alt UNTIL OUTPUT CO~PLETE 
/LOOP TO INPUT AGAIN 
/TER~INATE INPUT 
/TERMINATE OUTPUT 
/RETURN TO REINITIALIZE 
/SET UP TELETYPE BUFFER C34 DEC> 
/END OF ECHO PROGRA~ 

.TITLE ECHO 

• I OOEV 2.4 
• IN IT TTO,OUT,RESTRT 
CAL+OUT•1Hi0 TT0&777 
1 
RESTRT+0 
0 
.INIT TTI, IN,RESTRT 
CAL+ I Ntt1f1100J TTI&777 
1 
RESTRT+11J 
Ill 
,RfA.D TT I, I OPS, BUF'F'ER, 3.4 
CAL+ I OPS•10Jli!IPI TTI &777 
Hl 
BUFFER 
.DEC 
-34 
.WA.IT TTI 
CAL TT I &777 
12 

.WRITE TTO,IOPS,eUFFER,34 
CAL+IOPS•10011J TT0&777 
11 
BUFFER 
.DEC 
-34 
.WAIT TTO 



00022 R ~11!0410 A oG CAL TT0&777 
00023 R Q!(IJCIJ012 A ttG 12 
00024 R 6'H'lv.l!e R JMP REG IN 
000215 R REST RT .CLOSE TT I 
00025 R 01H~002 A ttG CAL TTI&777 
li'l0Pl26 R 0(210flll7l6 A oG 6 

.CLOSE TTO 
00027 R lilriJV'!410 A ttG CAL TT0&777 
00030! R lll!illl!C106 A ttG 6 
00031 R 601111,100 R JMP START 
00032 R A BUFFER .BLOCK 42 

!i'l0V!Vl00 R .ENO START 
0 ERROR LINES 

PAGE 2 ECHO 

AEGIN 00'1!10 R 
AUF'FER lll0032 R 
IN 0'110000 A 
IOPS 000002 A 
OUT fi'HIJ0001 A 
RESTIH 00025 R 
START 00000 R 
TTI PIV.'10002 A 
TTO 000410 A 
PAGE 3 ECHO 

IN 00000Cll A 
START 00000 R 
OUT 0V.HHHJ1 A 
IOPS 000002 A 
TT I 000002 A 
REGIN 000HI R 
REST RT 00025 R 
RUFFER 00032 R 
TTO 0P10410 A 

3.3 OPERATING THE BASIC 1/0 MONITOR SYSTEM 

The reader is referred to the PDP-15/10 Users Guide (DEC-15-GG lA-D) for detailed operating procedures for system 
programs in the 1/0 Monitor environment. The following PDP-15 Software System manuals contain additional 
detailed information on system programs. 

Manual 

Utility Programs 

MACRO-IS Assembler 

FORTRAN IV 

FOCAL 

8TRAN 

Document Number 

DEC-15-YWZA-D 

DEC-15-AMZA-D 

DEC-15-KFZA-D 

DEC-15-KJZA-D 

DEC-15-ENZA-D 

This section contains descriptions of loading programs, device assignments, and error detection and handling. 

3-3(Part III) 



3.3.1 Loading Programs in the Basic 1/0 Monitor Environment 

In the paper tape system, each system program accompanied by the necessary I/O device handlers and an appropriate 
version of the Monitor, is punched on a separate paper tape in absolute format. See Figure 3-1 for memory maps of 
the Basic I/O Monitor System. 

The eleven system tapes supplied are: 

FORTRAN IV DDT (without Patch File capabilities) 

FOCAL-15 DDT (with Patch File capabilities) 

MACR0-15 8TRAN (PDP-8 -to PDP-15 Translator) 

PIP-15 CHAIN 

Text Editor EXECUTE 

Linking Loader 

In addition, the utility program PUNCH-15 which provides the ability to dump an executable core load and .ABS 
loader onto paper tape, is provided with all paper tape systems. 

At the beginning of each tape is a Bootstrap Loader in hardware READIN mode. By setting the starting address of the 
Loader on the console ADDRESS switches to 17720 (8K), depressing 1/0 RESET, and then depressing the READIN 
switch, these system tapes may be loaded. 

Since the tapes also contain appropriate versions of the Basic I/O Monitor and the necessary 1/0 device handlers, the 
system programs listed above can be loaded, ready for operation, in a single step. 

Once the system program has been loaded and takes control, 'the individual system program operating procedures 
come into use. (See PDP-15/10 Users Guide, DEC-15-GG IA-D.) 

User programs, however, normally exist in relocatable form, as output from FORTRAN IV or MACR0-15, these 
tapes do not contain copies of the Monitor. To load these programs, the Linking Loader or DDT should be loaded 
first. The user should then initiate loading of his main program followed by all required subprograms. By loading 
subprograms in order of size (largest first, smallest last), the µser has a better chance of satisfying core requirements 
for his program in systems with extended core memory. The Monitor (including the device handlers) contained on the 
Linking Loader or DDT tape may be used with user programs, and the Linking Loader or DDT can be used to load 
the necessary device handlers as well as the user's object programs. 

3-4(Part III) 



4K TO 32K 
(4K INCREMENTS) 

0 

MEMORY MAP A SYSTEM PROGRAMS 

BOOTSTRAP 
LOADER IN 

HRM FORMAT 

• SCOM 

SYSTEM 
PROGRAM 

• • SCOM+3 

SYSTEM 
PROGRAM 

TABLE 
SPACE 

• • SCOM +2 
SYSTEM PROGRAM 

DEVICE HANDLER 

SYSTEM PROGRAM 
DEVICE HANDLER 

• SCOM+I 

110 MONITOR 
WITH TELETYPE•IN 

AND 
TELETYPE-OUT 

DEVICE HANDLERS 

FORTRAN JI: MEMORY MAPB·LINKING LOADER, CHAIN 
MACR0-15 
EDITOR 4K TO 32K 
PIP-15 (4K INCREMENTS) 

BOOTSTRAP 
LOADER 1111 

HRM FORMAT 

1 
USER 

PROGRAMS 
FOCAL-15 
AND 8 TRAN 

' 

+ 
GLOBAL 
SYMBOL 

TjLE 

LINKING LOADER 
OR CHAIN 

PAPER TAPE 
READER HANDLER 

110 M()lollTOR 
WITH TELETYPE ·1111 

AND 
TELETYPE ·OUT 

DEVICE HANDLERS 

0 

4810 

• SCOM ANO • SCOM + 3 

• SCOM+2 

• SCOM+1 

NOTE: 

IN THE CASE OF CHAIN THE 
PAPER TAPE PUNCH l!ANOLER 
IS ALSO RESIDENT IN CORE. 

Refer to Section 4.4 for sizes for device 
handlers. 

Refer to Memory Map D for results of Linking 
Loader 

Figure 3-1. BASIC 1/0 Monitor System Memory Maps 

3-S(Part III) 



MEMORY MAP C-DOT TAPE 

4K TO UIC 
(4 K INCREMENTS) 

BOOTSTRAP 
LOADER IN 4810 

HRM FORMAT 

• SCOM 

DOT 

UJER 

• SCOM+3 

PROGRAMS 

t 

+ 
GLOBAL AND 

DDT 
SYMBOLJTABLES 

• SCOM+2 

LINKING 
LOADER 

PAPER TAPE 
PUNCH HANDLER 

PAPER TAPE 
READER HANDLER 

• SCOM+t 

1/0 MONITOR 
WITH TELETYPE-IN 

ANO 
TELETYPE-OUT 

DEVICE HANDLERS 

0 

Refer to Memory Map E for results of Link 
Loading in DDT mode. 

Paper Tape Punch Handler is only present in 
DDT versions with patch file capabilities. 

Refer to Section 4.4 for sizes of device handlers. 

.SCOM+1 and .SCOM+2 both point to one of 
two places and non-BLOCK DATA COMMON 

4K TO 52 k 
(4K INCREMENTS) 

0 

MEMORY MAP 0-USER PROGRAM READY 
TO BE EXECUTED 

BOOTSTRAP 

• SCOM 

USER 
PROGRAM!S) 

USER DEVICE 
HANDLER 

USER DEVICE 
HANDLER 

USER DEVICE 
HANDLER 

• SCOM +3 

------- lb.l 

LINKING LOADER 
DEVICE HANDLER 

-------
LINKING LOADER 

DEVICE HANDLER 

la.I 

1/0 
MONITOR 
(INCLUDING 
TELETYPE 
HANDLER) 

(FORTRAN IV or MACR0-15) output may 
make use of core as low as they point. 

a. If the user program did not have any device 
handlers in common with the Linking 
Loader. 

b. If the user program did have at least one 
device handler in common with the Linking 
Loader. 

Figure 3-1. BASIC 1/0 Monitor System Memory Maps (Cont) 

3-6(Part III) 



4K TO 32K 
(4K INCREMENT) 

0 

MEMORY MAP E 

BOOTSTRAP 

DDT 

USER 
PROGRAMISl 

USER/DOT 
DEVICE HANDLER 

USER/DOT 
DEVICE HANDLER 

1 DOT CREATED 
SYMBOLS AND 
PATCH SPACE 

DDT 
SYMBOL 

TABLE 

7JIIIUDI£DJTJ 
LINKING LOADER 
DEVICE HANDLER 

LINKING LOADER 
DEVICE HANDLER 

1/0 MONITOR 
(INCLUDING 
TELETYPE 
HANOLERl 

• SCOM 

• SCOM + 3 

• SCOM +2 

• SCOM +I 

L LINKING LOADER 
BLOCK TRANSFER 
ROUTINE 

Refer to Section 4.4 for sizes for device 
handlers. 

Non BLOCK DATA COMMON (FORTRAN IV 
of MACR0-15 output) may make use of core as 
low as the DDT symbol table. However, trouble 
will occur if the user requests DDT to create 
symbols or make patches that cause overlaying 
of the COMMON area. 

The Linking Loader device handlers would have 
been used to satisfy user device requests. 

4K TO ll2K 
(4K INCREMENTS) 

0 

MEMORY MAP F (EXECUTE) 

BOOTSTRAP 

• SCOM 

EXECUTE 

USER 
PROGRAM($) 

LI BR ARY 
PROGRAM(Sl 

USER DEVICE 
HANDLE RISI 

NAMED COMMON 

• SCOM+ 3 

BLANK COMMON 

• SCOM+2 

EXECUTE'S 
DEVICE 

HANDLER 

I /0 MONITOR 
(INCLUDING 

TELETYPE 
BB Oto 

HANDLER l 

When the user types in the name of the XCT 
File to be run, .EXECUTE brings in the first 
chain from paper tape. 

FORTRAN programs pass on data in blank 
common starting at .SCOM + 2. Macro programs 
pass on data between .SCOM + 2 and .SCOM + 
3. 

A call from the running chain to bring in 
another chain is effected by transferring control 
back to Execute. 

Figure 3-1. BASIC 1/0 Monitor System Memory Maps (Cont) 

3-7(Part III) 



3.3.2· Device Assignments 

The device assignment table used by the Basic I/O Monitor is fixed in length and in the assignments it contains. It is 
composed of two sections; the upper section is for use by all system programs except PIP, the lower section is 
referenced by all user programs and PIP. 

The upper portion of the .DAT contains 13 slots, referenced as -1 through -15 8 • The lower section has 8 slots 
numbered I through l 08 • The standard assignments for the device assignment table for user programs and system 
programs other than PIP are shown in Figure 3-2. Figure 3-3 illustrates PIP assignments, which include the Card 
Reader (CR03B) and Line Printer as standard devices. 

.DAT Slot Device Handler* Use 

.DATBG -15 Paper Tape Punch (PPA.) Editor Output 
Paper Tape Reader (PRA) 8TRAN Input 

-14 Paper Tape Reader (PRA.) Editor Input 
Paper Tape Punch (PPA) 8TRAN Output 

-13 Paper Tape Punch (PPB.) MACRO, FORTRAN IV Output 
-12 TTY Printer (TTA.) MACRO, FORTRAN IV Listing 
-11 Paper Tape Reader (PRB.) • MACRO, FORTRAN IV Input 
-10 Paper Tape Reader (PRA.) DDT Patch-file Input and 

Editor Secondary Input 
TTY Keyboard (TIA.) MACRO Secondary Input 

-7 0 Not Used 
-6 Paper Tape Punch (PPA.) Output (.DDT, Chain) 
-5 0 Not Used 
-4 Paper Tape Reader (PRA.) System Input (Linking Loader, 

DDT Chain and Execute) 
-3 TTY Printer (TTA.) Teleprinter Output 
-2 TTY Keyboard (TIA.) Keyboard Input 
-1 Paper Tape Reader (PRA.) System Device (Linking Loader, 

DDT and Chain) 
DAT .DAT 

I TTY Printer (TIA.) Teleprinter Output 
2 TTY Keyboard (TTA.) Keyboard Input 
3 Paper Tape Reader (PRA.) Input 
4 TTY Printer (TIA.) Listing 
s Paper Tape Punch (PPA.) Output 
6 Paper Tape Reader (PRA.) Scratch 
7 Paper Tape Punch (PPA.) Scratch 
IO Paper Tape Reader (PRA.) Scratch 

DATND=. 

Figure 3-2. Device Assignment Table (.DAT) for the Basic 1/0 Monitor 

The negative .DAT slot assignments for use by system programs may be changed by DEC. For example, .DAT slot -IO 
might be associated with a card reader, while .DAT slot -12 could be assigned to a line printer. Provision for changing 
positive .DAT slot assignments for use by relocatable user programs is included in the PUNCH 15 utility program (see 
section 3.3.S). For example, a line printer handler (LPA) or a card reader handler (CDB) could be added. 

*See Section 4.4 for a description of the handlers. 

3-8(Part Ill) 



.DAT Slot Device Handler Use 

Teletype (TIA.) Input/Output 

2 Teletype (TIA.) Input/Output 

3 Paper Tape Reader (PRA.) Input 

4 Line Printer (LPA.) Output 

5 Paper Tape Punch (PPA.) Output 

6 Card Reader (CDB.) Input 

7 P!iper Tape Punch (PPA.) Output 

10 Paper Tape Reader (PRA.) Input 

Figure 3-3. Device Assignment Table (.DAT) for PIP 

3.3.3 Error Detection and Handling 

Comprehensive error checking is provided by the Linking Loader and the Input/Output Programming System. 
Detailed lists of errors that may occur are given in Appendix C and D, respectively. The other system programs also 
provide comprehensive error checking. Refer to the appropriate PDP-15 manual (see paragraph 1.3 in Part I of this 
manual). 

3.3.4 Control Character Commands in the Basic 1/0 Monitor Environment 

All control character commands recognized by the Basic 1/0 Monitor are summarized in Table 3-1. These commands 
(except RUBOUT) are formed by holding down the CTRL key while striking a letter key. The character or characters 
echoed on the Teletype and the resulting action is given in the table for each command. 

3.3.5 Modifying System Programs and Building Executable User Core Loads in the Basic 1/0 Monitor Environment 

The capability of modifying or patching system programs in the Basic 1/0 Monitor environment is provided by the 
utility program PUNCH 15. PUNCH 15 allows for producing an executable core load on paper tape in .ABS format 
with the standard .ABS loader (HRM 17720 of the highest available core bank) on the front of the tape. This is 
particularly useful when the core load consists of a relocatable main program, subroutines and library routines, the 
repetitive loading of which tends to be time consuming. It is further possible to specify the number of .ABS tapes to 
be output ( 1-9) for convenience of tape handling. 

The areas of memory output by PUNCH 15 are 0 up to .SCOM + 2 (the first free cell) and .SCOM + 3 (last free cell) 
up to the .ABS loader ( 17720 modulo 8K). PUNCH 15 is loaded (1/0 RESET and READ IN) at 17720 of the highest 
core bank available. It loads and relocates part II of itself in free core, i.e., from the cell in .SCOM + 2 and up. When 
loaded it types the following message on Teletype: 

P, TorS?) 
> 

3-9(Part III) 



Command 

CTRLS 

CTRLT 

CTRLR 

CTRLP 

CTRLD 

CTRLU 

RUBOUT 

Table 3-1. Control Character Commands 

Echo Action 

t S Starts user program after Linking Loader has brought it into core via a 
LOAD command. 

t T CTRL T is applicable only when using DDT and transfers control to 
DDT which types 

DDT 
> 

to indicate its readiness for another DDT command. All previous DDT 
conditions remain intact (breakpoints, register modifications, etc.). 

t R Allows the user to continue when an IOPS4 (device not ready) error 
occurs. The user must first ready the device, and then type CTRL R. 

t P Forces control to last address specified in the .INIT command 
referencing Teletype. Used by system programs to reinitialize or restart. 

Generates EQT code - used to terminate Teletype input. 

@ Cancels current line on Teletype (input or output). 

\ Cancels last character input from Teletype (not applicable with DDT). 

The user is expected to type CTRL P or CTRL T or CTRL S to define the starting location of the program to be 
punched followed by carriage return (1 tape) or a number (1-9) specifying the total number of tapes into which 
binary output is to be divided. 

All tapes output by PUNCH 15 are loaded by pressing 1/0 RESET and the READIN key with ADDRESS switches set 
to 17720 of the highest core bank. 

CTRL T should be used if DDT is part of the core load. 

CTRL P should be used for all other system programs and user programs which have already initialized (.INIT) the 
teletype with a restart address at the time PUNCH 15 was executed. 

CTRL S should be used only if the core load was output by PUNCH 15 after Linking Loader operation at the 
moment when the loader itself was expecting the CTRL S command. 

All tapes output by PUNCH 15 are loaded by pressing 1/0 RESET and the READIN key with ADDRESS switches to 
17720 of the highest core bank. 

3.3.6 Modifying User .DAT Slots in the 1/0 Monitor Environment 

Although it is not possible to reassign negative .DAT slots at load time in the Basic 1/0 Monitor environment for 
system programs (reassembly is required), PUNCH 15 provides this capability for the user or positive .DAT slots. 

3-lO(Part III) 



For example, Figure 3-2 lists the standard .DAT slot assignments. A relocatable user program wanting to use a card 
reader (CDB.) or line printer (LPA.) whose handlers are included in the paper tape library has no way of doing so 
unless the positive .DAT table can be modified. The modification procedure is as follows: 

1. Load the Linking Loader (or DDT) tape into core (HRM 17720 modulo 8K). 

2. Stop the computer and modify the appropriate .DAT slot cell* according to the Loader-1/0 correspondence 
table below. For example, if .DAT slot 7 is to be assigned to the line printer using handler LPA, cell 144 should be 
changed to 000007. 

3. Load PUNCH into core (HRM 17720 modulo 8K). 

4. Type CTRL Pin response to the query from PUNCH: P, Tor S? 

5. Load the resultant punched tape into core (HRM 17720 modulo 8K). 

6. The Loader will restart ready for acceptance of typed program names to be loaded. If .DAT slot 7 is referenced 
by the user program (e.g., IODEV 7), LPA for the line printer will be loaded from the 1/0 Library. 

Loader - 1/0 Correspondence 

Handler 

TIA. 
PRA. 
PRB. 
PPA. 
PPB. 
PPC. 
LPA. 
CDB. 
MTF 

*.DAT table (cell 0) begins at location 135 
**With unit number in bits 0-2. 

.DAT Slot Value 

2 
3 
4 
5 
6 
7 

11 
13* 

3-l l/3-12(Part III) 



CHAPTER 4 

1/0 DEVICE HANDLERS 

This chapter contains information that is essential for a good understanding and proper use of 1/0 device handlers for 
the Basic 1/0 Monitor system. Included is a general description of 1/0 hardware and API software level handlers, a 
complete section on writing special 1/0 device handlers, a summary of 1/0 handlers acceptable to system programs, 
and_ a summary of standard 1/0 handler features. 

It is assumed that the reader is familiar with all related material in the PDP-15 Reference Manual (DEC-15-BRZA-D), 
especially Chapter 5, Organization of the Input/Output Processor. It is also assumed that the reader is familiar with 
the PDP-15 Monitor environment and other pertinent information contained in this manual. 

4.1 DESCRIPTION OF 1/0 HARDWARE AND API SOFTWARE LEVEL HANDLERS 

4. I .1 1/0 Device Handlers 

All communications between user programs and 1/0 device handlers are made via CAL instructions (see Chapter 2) 
followed by argument lists. The CAL Handler in the Monitor performs preliminary setups, checks on the CAL calling 
sequence, and transfers control via a JMP instruction to the entry point of the device handler. When the control 
transfer occurs, the AC contains the address of the CAL in bits 3 through 17 and bits 0, 1, and 2 indicate the status of 
the Link, extend mode and memory protect, respectively, at the time of the CAL. Note that the content of the AC at 
the time of the CAL is not preserved. 

On machines that have an API, the execution of a CAL instruction automatically raises the priority to the highest 
software level (level 4). Control passes to the handler while it is still at level 4, allowing the handler to complete its 
re-entrant procedures before debreaking (DBK) from level 4. This permits the handler to receive re-entrant calls from 
software levels higher than the priority of the program that contained this call. If a device handler does not contain 
~ntrant procedures, system failure caused by inadvertent re-entries can be prevented by remaining at level 4 until 
control is returned to the user. 

If the non-reentrant method is used, the debreak and restore (DBR) instruction should be executed just prior to the 
JMP* which returns control to the user, allowing debreak from level 4 and restoring the conditions of the Link, 

4-1 (Part III) 



extend mode, and memory protect. Any IOTs issued at the CAL level (level 4 if API present, mainstream if no API) 
should be executed immediately before the 

DBR 
XCT .+1 
JMP* 

exit sequence to ensure that the exit takes place before the interrupt from the issued IOT occurs. (The XCT is 
necessary to ensure that the 3 cycles requested by the API on a debreak operation occur in the instruction after the 
DBR.) 

The CAL instruction must not be used at any hardware priority level (API or PIC), since interrupts to these levels are 
not closed out by the execution of a CAL and recovery is not possible from such sequences of events as 

a. An 1/0 flag coming up during a CAL at level 7, 

b. Control going to the 1/0 device handler at level 3, 

c. The handler at level 3 CALing and thus destroying the content of location 00020 for the previous CAL. 

The highest API software level (level 4) is also used for processing CALs and care must be taken when executing CALs 
at this level. For example, a routine that is CAL'd from level 4 must know that if a debreak (DBR or DBK) is issued, 
control will return to the calling program at a level lower than 4. The calling routine will also debreak; however, this 
second debreak will not be from level 4 but from the next highest active level. 

4.1. l .1 Setting Up the Skip Chain and API (Hardware) Channel Registers - When the Monitor is loaded, the Program 
Interrupt Control (PIC) skip chain and the Automatic Priority Interrupt (API) channels are set up to handle the 
Teletype keyboard, teleprinter and clock interrupts, only. The skip chain contains the other skip IOT instructions, 
but indirect jumps to an error routine result if a skip occurs, as follows: 

SKP PRA /Skip if Reader flag. 
SKP 
JMP* INITl /INT 1 contains error address. 
SKP LPT /Skip if line printer flag. 

SKP 
JMP* INT2 /INT2 contains error address. 
SKP TTl /Skip if Teletype flag. 
SKP 
JMP TELINT /To Teletype interrupt handler. 

All unused API channels also contain JMPs to the error address. 

When a device handler is called for the f"rrst time via an .INIT user program command, it must call a Monitor routine 
(.SETUP) to set up its skip chain entry or entries and API channel, prior to performing any 1/0 functions. The calling 
sequence is as follows. 

4-2(Part III) 



CAL 

16 
SKP 
DE VINT 
(normal return) 

N 

JOT 

/N = API channel register 40 through 77 (see section 
/4.1.3 for standard channel assignments), 0 if device 
/not connected to APL 
/.SETUP function code. 
/Skip JOT for this device. 
/Address of interrupt handler. 

DEVINT exists in the device handler in the following format. 

DEVPIC 

DE VINT 

DVSTON 

DEVION 

DAC 
LAC* 
DAC 
LAC 
JMP 
JMP 
DAC 
LAC 

DAC 
IORS 
SMA!CLA 
LAW 
TAD 
DAC 
DEV CF 
ION 

IOF 
DEVIOT 

/DISMISS ROUTINE 
LAC 
DAC 
LAC 

DVSWCH ION 
DBR 
JMP* 

DEV AC 
(0 
DEVOUT 
DEVI ON 
DVSTON 
DEVPIC 
DEV AC 
DEVINT 

DEVOUT 

17740 
DEVION 
DVSWCH 

(JMP DEVPIC 
DEVINT 
DEV AC 

DEVOUT 

/SAVE AC. 

/SAVE PC, LINK, EX.MODE, MEM.PROT. 
/FORCE ION AT DISMISSAL. 

/PICENTRY. 
/API ENTRY, SA VE AC. 

/SA VE PC, LINK, EX.MODE, MEM.PROT. 
/CHECK STATUS OF PIC 
/FOR RESTORATION AT DISMISSAL. 
/PIC OFF, BUILD IOF IOT. 
/PICON, BUILD ION IOT. 

/CLEAR DEVICE DONE FLAG 
/ENABLE PIC SO THAT OTHER DEVICES 
/AREN'T SHUT OUT. 

/DISABLE PIC TO INSURE 
/DISMISSAL BEFORE INTERRUPT 
/FROM THIS JOT OCCURS 

/RESTORE DEVINT IN 
/CASE API DISABLED. 
/RESTORE AC 
/IONORIOF 
/DEBREAK AND RESTORE CONDITIONS 
/OF LINK, EX.MODE AND MEM.PROT. 

Since the auto-index registers and EAE registers are not used by the standard 1/0 device handlers, it is not necessary 
to save and restore them. 

The Monitor routine (.SETUP) checks the skip chain for the instruction which matches SKP IOT; if there is a match it 
places the address, DEVINT, in the appropriate transfer vector (INTn) and places JMS* INTn in the corresponding 
API channel register. If a match cannot be found, IOPS outputs the following error message, 

.IOPS 05 XXXXXX 

4-3(Part III) 



indicating that the skip IOT in the CAL calling sequence at location XXXXXX was not in the skip chain. 

Refer to paragraph 4.2.4 for the method of incorporating new handlers and associated skip chain entries into the 
Monitor. 

4.1.2 API Software Level Handlers 

4.1.2.1 Setting Up API Software Level Channel Registers - When the Monitor is loaded, the API software-level 
channel registers ( 40 through 43) are initialized to 

JMS* .SCOM+l2 
JMS* .SCOM+l3 
JMS* .SCOM+l4 
JMS* .SCOM+l5 

/LEVEL4 
/LEVEL 5 
/LEVEL 6 
/LEVEL 7 

where the .SCOM registers are at absolute locations 00112 through 00115 and contain the address of an error routine. 

Therefore, prior to requesting any interrupts at these software priority levels, the user must modify the contents of 
the .SCOM registers so that they point to the entry point of the user's software level handlers. 

Example: 

.SCOM = 100 

LAC 
DAC* 

(LVSINT 
(.SCOM+l3 

LVSINT exists in the user's area in the following format: 

LVSINT 0 
DAC SAVSAC 
/SA VE AUTO INDEX REGISTERS 
/IF LEVEL 5 ROUTINES 
/USE THEM AND LOWER LEVEL 
/ROUTINES ALSO USE THEM 
/SA VE MQ AND STEP COUNTER 
/IF SYSTEM HAS EAE AND IT 
/IS USED AT DIFFERENT LEVELS. 

/RESTORE SAVED REGISTERS. 
DBR 
XCT 
JMP* 

4-4(Part III) 

.+l 
LVSINT 

/PC, LINK AND MEM. PROT. 
/SAVE AC 

/DEBREAK FROM LEVEL 5 

/AND RESTORE LINK AND MEM.PROT. 



4.1.2.2 Queueing - High priority /high data rate/short access routines cannot perform complex calculations based on 
unusual conditions without holding off further data inputs. To perform the calculations, the high priority program 
segment must initiate a lower priority (interruptable) segment to perform the calculations. Since, in general, many 
data handling routines will be requesting calculations, there will exist a queue of calculation jobs waiting to be 
performed at the software level. Each data handling routine must add its job request to the appropriate queue (taking 
care to raise the API priority level as high as the highest level that manipulates the queue before adding the request) 
and issue an interrupt request (ISA) at the corresponding software priority level. The general flow chart, Figure 4-1 
depicts the structure of a software level handler involved with queued requests. 

LV51NT 

SAVE PC.LINK.AC. 
AUTO-INDEX REGS, 
MO. STEP COUNTER 

AND CONDITIONS 
OF EXTEND MODE 

AND MEMORY PROTECT 

RAISE TO HIGHEST 
LEVEL THAT 

MANIPULATES 
LEVEL 5 QUEUE 

REMOVE ENTRY 
FROM QUEUE 

DllK llACK 
TO LEVEL 5 

GO HONOR THIS 
'-----< JOll REQUEST VIA 

AJMS 

RESTORE SAVED 
REG IS TE RS 

Figure 4-1. Structure of API Software Level Handler 

Care must be taken about which routines are called when a software level request is honored; that is, if a called 
routine is "open" (started but not completed) at a lower level, it must be reentrant or errors will result. 

NOTE 

The standard hardware 1/0 device handlers do not contain reentrant 
procedures and must not be reentered from higher software levels. 

New resident handlers for Power Fail, Memory Parity, nonexistent memory 
violation, and Memory Protect violation have been incorporated into the 
system and effect an IOPS error message if the condition is detected. (see 
Appendix E for IOPS errors). The user can, via a .SETUP, tie his own 
handler to these skip IOT or API channel registers. 

4-S(Part III) 



4.1.3 Standard API Channel/Priority Assignments 

Channel Device 

0 Software Priority 

Software Priority 

2 Software Priority 

3 Software Priority 

4 DECtape 

5 MAG tape 

6 RESERVED 

7 RESERVED 

IO Paper Tape Reader 

11 Clock overflow 

12 Power Fail 

13 Parity 

14 Display (LP flag) 

15 Card Reader 

16 Line Printer 

17 A/D 

20 DB99/DB98 

21 RESERVED 

22 Data Phone 

23 DECdisk 

24 DISK Pack 

25 Plotter 

4-6(Part Ill) 

Option 
Number 

TC02 

TC59 

KF15 

MPlSB 

VP15 

CR03B 

LP15A/LP15C 

AFOl/ADCl/9 

DB09 

DP09A 

RF15 

RP15 

565 

Priority 

4 

5 

6 

7 

2 

3 

0 

0 

2 

2 

2 

0 

3 

2 

2 

Channel 
Register 

40 

41 

42 

43 

44 

45 

46 

47 

50 

51 

52 

53 

54 

55 

56 

57 

60 

61 

62 

63 

64 

65 



Channel 

34 

35 

Device 

Multi-Station 
TTY Control 

Multi-Station 
TTY Control 

Option 
Number 

LT19A (Tele
printer) 

LT19A (Key
board) 

Priority 

2 

2 

Channel 
Register 

74 

75 

NOTE: Channels 26-33, 36 and 37 and corresponding Channel Registers are reserved. 

4.2 WRITING SPECIAL 1/0 DEVICE HANDLERS 

This section contains information prepared specifically to aid those users who plan to write their own special I/O 
device handlers for the Basic I/O Monitor system. 

Although special handlers cannot be incorporated directly into the Basic Monitor System, they can be designed to run 
with user programs in the Basic Monitor environment (see paragraph 4.2.4). If a user wishes to incorporate a special 
handler into a systems program (for example, a card punch handler for MACRO 15), he must purchase the source 
tape and assemly listings, modify them symbolically, and reassemble using at least a I 6K machine. 

It is assumed that the user is familiar with paragraph 4.1. To summarize, the handler is entered via a JMP from the 
Monitor as a result of a CAL instruction. The contents of the AC contain the address of the CAL in bits 3 through 17. 
Bit 0 contains the Link, bit 1 contains the extend mode status, and bit 2 contains the memory protect status. The 
previous contents of the AC and Link are lost. 

To show the steps required in writing an I/O device handler, a complete handler (Example B) was developed with the 
aid of a skeleton handler (Example A). This handler is a non-reentrant type (discussed briefly at the beginning of this 
chapter) and uses the Debreak and Restore instruction (DBR) to leave the handler at software priority level 4 (if API), 
and restore the status of the Link, extend mode, and memory protect. Example A is referenced by part numbers to 
illustrate the development of Example B, a finished Analog to Digital Converter (ADC) I/O Handler. The ADC 
handler shown in Example B, was written for a hypothetical basic analog-to-digital converter with IOT instructions as 
shown in Table 4-1. This handler is used to read data from the ADC and store it in the user's line buffer. The handler 
shown in Example Bis for instructional purposes only; it has not been thoroughly tested. 

Mnemonic 
Symbol 

ADSF 

ADSC 

ADRB 

TABLE 4-1. Hypothetical A/D Converter IOT Instructions 

Octal 
Code 

701301 

701304 

701312 

Operation 
Executed 

Skip if converter flag is set. This flag is connected to the program 
interrupt. 

Select and convert. The converter flag is cleared and a conversion of an 
incoming voltage is initiated. When the conversion is complete, the 
converter flag is set. 

Read converter buffer. Places the content of the buffer in the AC, left 
adjusted. The remaining AC bits are cleared. The converter flag is 
cleared. 

4-?(Part III) 



The reader, while looking at the skeleton of a specialized handler as shown in Example A, should make the following 
decisions about his own handler (The decisions made in this case are in reference to developing the ADC handler): 

a. Services that are required of the handler (flags, receiving or sending of data, etc.). By looking at the ADC IOT's 
shown in Table 4-2, it can be seen that there are three IOT instructions to be implemented. These instructions are: 
Skip if Converter Flag Set; Select and Convert; and Read Converter Buffer. 

The only service the ADC handler performs is that of receiving data and storing it in user specified areas. This handler 
will have a standard 256-word buffer. 

b. Data Modes used (for example, !OPS ASCII, etc.J. Assuming that there is only one data mode for this device, 
mode specification is unnecessary in Example B. 

c. Which I/O macros are needed for the handler's specific use, that is, .INIT, .CLOSE, .READ, etc. These are fully 
described in Chapter 2 of this manual. For an ADC, the user would be concerned with three of the macros . 

.INIT would be used to set up the associated API channel register and the interrupt skip IOT sequence in the 
Program Interrupt (PIC) skip chain. This is done by a CAL (N) as shown in Part III of Example A, where (N) is. 
the channel address. The standard device/ API channel associations can be found in paragraph 4.1.3 . 

. READ is used to transfer data from the ADC. When the .REAi{ macro is issued, the ADC handler will initiate 
reading of the specified number of data words and then return control to the user. The analog input data 
received is in its raw form; it is up to the programmer to convert the data to a usable format . 

. WAIT detects the availability of the user's buffer area and ensures that the 1/0 transfer is completed. It would 
be used to ensure a complete transfer before processing the requested data. 

d. Implementation of the AP/ or PIG interrupt service routine. Example A shows an API or PIC interrupt service 
routine that handles interrupts, processes the data and initiates new data requests to fully satisfy the .READ macro 
request. Note that the routines in Example A will operate with or without APL Example B used the routines exactly 
as they are shown in Example A. 

During the actual writing of Example B, consideration was given to the implementation of the 1/0 Macros in the new 
handler in one of the following ways: 

(1) Execute the function in a manner appropriate to the given device as discussed in (c) . .INIT, .READ, 
.WAIT were implemented into the ADC handler (Example B) under the subroutine names ADINIT, 
ADREAD, ADWAIT. 

Wait for completion of previous 1/0. (Example B shows the setting of the ADUND switch in the 
ADREAD subroutine to indicate 1/0 underway.) 

(2) Ignore the function if meaningless to the device. See Example B (.FSTAT results in JMP ADIGN2) in 
the dispatch table DSPCH. For ignored macros, the return address must be incremented depending 
upon the argument string after the CAL. The number of arguments for each macro is shown in Chapter 
2. 

(3) Issue an error message in the case where it is not possible to perform the 1/0 function. (An example 
would be trying to execute an .ENTER on the paper tape reader.) In Example B the handler jumps to 
DVERR6 which returns to the Monitor with a standard error code in the AC. 

4-8(Part III) 



After the handler has been written and assembled, the user must assemble the handler and splice it to the 1/0 Library 
Tape. This procedure is described in 4.2.4. 

4.2.1 Discussion of Example A by Parts 

4.2.2 

'5i 
i:i.. 

N 

~ 
if 

Part 1 

Part 2 

Part 3 

Part 4 

Part 5 

Part 6 

Part 7 

Stores CAL pointer and argument pointer; also picks up function code 
from argument string. 

By getting proper function code in Part 1 and adding a JMP DSPCH, 
the CAL function is dispatched to proper routine. 

This is the .SETUP CAL used to set up the API channel register and PIC 
skip chains. Section 4.1.3 of this manual shows the standard device/ API 
associations. 

Shows the API and PIC handlers. It is suggested these be used as shown. 

This area reserved for processing interrupt and performing any 
additional 1/0. 

Interrupt dismiss routine. 

Increments argument pointer in bypassing arguments of ignored macro 
CAL's. 

Example A, Skeleton 1/0 Device Handler 

/SPECIALIZED I/O HANDLER 
/CAL ENTRY ROUTINE 

• GL00L DEV. /MUST BE OF FORM AAA • 
• MED:3 I.MED CMONITOR ERROR DIAGNOSTIC> 
DEV. DAC DVCALP /SAVE CAL POINTER 

DAC DVARGP /AND ARGUMENT POINTER 
ISZ DVARGP /POINTS TO FUNCTION CODE 
LAC* DVARGP /GET CODE 
AND (77777 /REMOVE UNIT I !F 4PPLICABLE 
ISZ DVARGP /POINTS TO CAL + 2 
TAD (JMP DSPCH> 
DAC DSPCH /DISPATCH WITH 

DSPCH xx /MODIFIED JUMP 
JMP DVI NIT /1 = • !NIT 
JMP DVFSAT /2 :: .FSTAT, .DELET, .RENAM 
JMP DVSEEK /3 = .SEEK 
JPIP DVENTR /4 : .ENTER 
JMP DVCLER 15 : .CLEAR 
JPIP DVCLOS /6 :: .CLOSE 
JMP DVMTAP 17 = .MTAPE 
JMP DVREAD /10 = .READ 
JMP DVWRTE / 11 = • WRITE 
JMP DVWAIT /12 = • WAIT 
JMP DVTRAN /13 = .TRAN 

4-9(Part III) 



/ILLEGAL FU~CTIONS IN ABOVE TABLE CODED AS: 
/ JMP DVERR6 

/FUNCTION CODE ERROR 
DVERR6 LAW 6 

JMP* C. MED+l > 

/DATA MODE ERROR 
DVERR7 LA•4 7 

JMP* C .MED+l> 

/DEVICE NOT READY 
DVERR4 LAC <RETURN> 

DAC* C. MED> 
LAC C 4 > 
JMP* C .MED+l) 

/l/O UNDERWAY LOOP 
DVBUSY D9R 

JMP* D\fCALP 

/~ORMAL RETURN FROM CAL 
DVCK D9R 

JMP* DVARt;P 

/ERROR CODE 6 
/TO MONITOR 

/ERROR CODE 7 
/TO MONITOR 

/RETURN (ADDRESS IN HANDLER 
/TO RETURN TO WHEN NOT READY 
/CONDITION HAS 9EEN REMOVED> 

/ERROR CODE 4 
/TO MONITOR 

/8RiAK FROM LEVEL 4 
/LOOP ON CAL 

/BREAK FROM LEVEL 4 
/RETURN AFTER CAL AND 
/ARGUMENT STRING. 

/THE DVINIT ROUTINE MUST INCLUDE 
/A. SETUP FOR 
/EACH FLAG CO~NECTED TO PIC CAT BUILD TIME> 
/ONE OF THESE MAY ALSO BE THE API SETUP CALL. 
/THE SETUP CALLING SEQUENCE IS: 

DVINIT CAL 

16 
SKP IOT 
DBVINT 

N /~ = API CHANNEL REGISTER 
/C40-77>; 0 IF NOT 
/CONNECTED TO ~PI 

/IOPS FUNCTION CODE 
/SKIP !OT TO TEST THE FLAG 
/ADDRESS OF INTERRUPT 
/HANDLER CAPI OR PIC> 

/THIS SPACE CAN BE USED FOR I/O SUBROUTINES 

/INTERRUPT HANDLER FOR 
DEVPIC DAC DEVAC 

LAC* (0) 
DAC DEVOUT 
LAC DEVI ON 
JMP DVSTON 

DEVINT JMP DEVPIC 
DAC DEVAC 
LAC DEVI 'H 
DAC DEVOUT 
I ORS 

4-IO(Part III) 

API OR PIC 
/SAVE AC 
/SACE PC, LINK, 
/MEM. PROT. 
/FORCE ION AT DISMISSAL 

/PIC ENTRY 
/API ENTRY, SAVE AC 
/SAVE PC, LINK, 
/MEIWI. PROT. 
/CHECK STATUS OF PIC 



SMA !CLA 
LAW 
TAD 
DAC 
DEVCF 
ION 

17740 
DEVI ON 
DVS~~CH 

/FOR ~ESTORATION AT 
/DISMISSAL 

/CLEAR FLAG 
/EN.t\9LE PIC 

~ /PERFORMIN9 ANY ADDITIONAL I/O DESIRED. {
/THIS IS THE AREA DEVOTED TO PROCESSING INTERRUPT AND 

~ - !OF /DISABLE PIC TO !~SURE 
DEVIOT /DISMISSAL ~EFORE 

/INTERRUPT HANDLER DISMISS RTE 
DVDISM LAC CJMP DEVPIC> 

DAC DEVI NT 
LAC DEVAC 

DVSWCH ION 
DBR 
JMP* DEVOUT 

/INTERRUPT FROM THIS 
/IOT OCCURS 

/RESTORE PIC ENTRY 

/RESTORE AC 
/ION OR IOF 
/DEBREAK AND RESTORE 
/LINK, MEM. PROT. 

/IF THE HANDLER USES THE AUTO-INDEX 
/OR 
/EAE REGISTERS, THEIR CONTENTS 
/SHOULD BE 
/SAVED AND RESTORED. 
/FU~CTIONS POSSIBLY IGNORED SHOULD 
/CONTAIN PROPER INDEXING TO BYPASS 
/ARGUMENT STRING. 

~ {DVI GN2 I SZ rf JMP 
DVARGP 
DVCK 

/BYPASS FILE POINTER 

4.2.3 Example B, Special 1/0 Handler for Hypothetical A/D Converter 

/ADC IOT'S 
AOSF:701301 
ADSC:701304 
ADRB:701312 
/ADSF:SKIP IF CONVERTER FLAG IS SET 
/ADSC:SELECT ANO CONVERTCADC FLA3 IS LEARED 
/AND A CONVERSION IS INITIALITED> 
/ADRB:READ CONVERTER BUFFERCPUTS CONTENTS IN AC> 
/CAL ENTRY ROUTINE 

.MED::S 
ADC. 

.GLOBL ADC. 

DAC ADCALP 
DAC ADARGP 
ISZ ADARGP 
LAC* ADARGP 
ISZ ADARGP 
TAD CJMP DSPCH> 
DAC DSPCH 

/ADC. IS GLOBAL NAME FOR HANDLER 
/MEDCMON!TOR ERROR DIAGNOSTIC) 
/SAVE CAL POINTER 
/AND ARGUMENT POINTER 
/POINTS TO FUNCTION CODE 
/GET CODE 
/POINTS TO CAL + 2 

/DISPATCH WITH 

4-11 (Part III) 



DSPCH XX 
JMP ADINIT 
JMP AOir;N2 
JMP ADIGN2 
JMP ADl'RR6 
JMP ADFRR6 
JMP ADOK 
JMP ADOK 
JMP ADREAD 
JMP ADERR6 
JMP ADWAIT 
JMP ADERR6 

/MODIFIED JU:-!P 
/1 = • !NIT 
/2 = .FSTAT, • DEL ET, .RENAM 
/3 = .SEEK 
/4 = .ENTER 
/5 = .CLEAR 
16 = .CLOSE 
11 = .MTAPE 
/10 = .READ 
I 11 = • WRITE 
/12 = • WAIT 
/13 = • TRAN 

/ILLEGAL FUNCTIONS IN ABOVE TABLE CODED AS: 
I JMP ADERR6 
/FUNCTION CODE ERROR 
ADERR6 LAW 6 

JMP* C .MED+l) 
/DATA MODE ERROR 
ADERR7 LAW 7 

JMP* C .MED+l > 

/ER~OR CODE 6 
/TO MONITOR 

/ERROR CODE 7 
/TO MONITOR 

/THE ADINT ROUTINE MUST INCLUDE A 
I .SETUP FOR 
/EACH FLAG ASSOCIATED WITH THE 
/DEVICE 
/THE .SETUP CALLIN3 SEQUENCE IS: 
ADINIT ISZ ADARGP /IDY TO RET ST~DRD BUFF SIZE 

ADCKSM 
ADC BP 
ADLBHP 

.DEC 
LAC C256 
.ocT 
DAC* ADARr;P 
ISZ ADARllP 
CAL 57 

16 
ADSF 
ADCI tH 

ADUND LAC .+2 
ADl4RC DAC .-5 
ADWPCT JMP ADSTOP 

/STANDARD BUFFER SIZE CDECIMAL) 

/PUT BACK STANDARD 3UFFER SIZE 

/57:,Pl CHANNEL REGISTER 
/(40-77>: 0 IF NOT 
/CON~ECTED TO API 
I.SETUP !OPS FUNCTION CODE 
/ADC SKIP IOI TEST THE FLAG 
/ADDRESS OF INTERRUPT 
/HANDLER CAPI OR PIC> 
/ERASES CALL FUNCTION IN CASE 
/OF FURTHER .!NIT'S THEY WILL BE 
/IGNORED BY THIS JMP TO ADSTOP 
/WHERE THE I/O UNDERWAY SWITCH 
/IS CLEARED AND 1LL 1/0 IS 
/TERMINATED 

/THE PREVIOUS SIX TA~S IN THE CAL AREA ARE USED FOR TEMP 
/STORAGE DURING THE ACTUAL .READ FUNCTION 
/ADCKSM IS FOR STORING THE CHECKSUM 
/ADDRP IS THE CURRENT BUFFER POINTER 
/ADLRHP IS T~E LINE BUFFER HEADER POINTER 
/ADUND IS FOR DEVICE UNDERWAY SWITCH 
/ADR~C IS USED AS A -WORD COUNT REGISTER 
/ADRWCT IS USED TO STORE CURRENT WORD PAIR COUNT 
/STOP ADC ROUTINE CLEARS I/O U~DER WAY SWITCH 
ADSTOP DZM ADUND 
/ADC 14AIT LAC ADUND 

SNA 
JMP ADOK 

4-12(Part III) 



/I/.0 UNDER~AY LOOP 
ADBUSY DBR 

J~P* ADCALP 

ADR EAD LAC ADIJ~D 
SZA!CMA 
JMP ADBUSY 
DAC ADUND 
LAC* ADARGP 
DAC ADDBP 
D4C ADLRHP 
ISZ ADARflP 
LAC* ~DR~8P 
D4C ADR'~C 
ISZ ADl\R:1P 
DZM AD'~PCT 
DZM ADCKSM 
ISZ ADDBP 
ISZ ADDBP 

ADSC 
/NORMAL RETURN FROM CAL 
ADOK DBR 

JMP* ADARGP 

/INTERRUPT HANDLER FOR API OR 
ADCPIC DAC ADCAC 

LAC* (0) 
DAC ADCOUT 
LAC ADCION 
JMP ADSTON 

ADCINT JMP ADCPIC 
DAC ADCAC 
LAC ADCINT 
DAC ADCOUT 
LAC CJMP l\DCPIC> 
DAC ADCINT 
!ORS 
SMA!CLA 
LAW 17740 
TAD Al)CION 

ADSTON DAC ADSWCH 
ADRB 

ADC! ON I ON 
DAC* ADDBP 
ISZ ADDBP 
ISZ ADWPCT 
TAD ADCKSM 
DAC ADCKSM 
ISZ ADRINC 
JMP ADCONT 
LAC ADWPCT 
TAD Cl 
RTL 

RTL 
RTL 
RTL 

/CHECK TO SEE IF l/O IS UNDERWA~ 
/IF NOT SET IT WITH -1 
/IT WAS SET, 80 9ACK TO CAL 
/SET IT 
/GET LINE BUFFER HEADER POINTER 
/STORE !T 
/ALSO STORE IT FOR LATER HEADER 
/INCREMENT ARG. POINTER 
/GET -L.B.W.C.<2'S COMP> 
/STORE IT IN WORD COUNT REGISTER 
/I~CREMENT FOR EXIT FROM .READ 
/ZERO WORD PAIR COUNT REG. 
/ZERO CHECKSUM ~EG. 
/GET PAST HEADER PAlq 
/NOW POINTING AT 2EGINNING OF 
/BUFFER 
/START UP DEVICE 

/BREAK FROM LEVEL 4 
/RETURN AFTER CAL 

PIC 
/SAVE AC 
/SAVE PC, LINK, 
/MEM. PROT. 
/FORCE ION AT DISMISSAL 

/PIC ENTRY. 
/API ENTRv, SAVE ~C 
/SAVE PC, LINK, 
/MEM. PROT. 
/RESTORE PIC ENTRY qECAUSE PIC 
/A JMS CALL NOT A JUMP 
/CHECK STATUS OF PIC 
/FOR RESTORATION AT 
/DISMISSAL 

/READ CONVERTER BUFFER 
/ENABLE PIC FOR OTHER DEVICES 
/STORE DATA IN USER BUFFER 
/INC. BUFFER POINTER 
/INC. WORD PAIR COUNTER 
/ADD CHECKSUM 
/STORE IT 
I IS l/O COMPLETE 
/NO KEEP GOING 
/YES, COMPUTE WORD COUNT PAIR 
/ADD ONE MAY 9E ODD 
/DIVIDE BY TWO, AT SAME TIME 

/ADJUST IT, FOR HEADER 

4- l 3(Part III) 



AND <377000 
DAC* ADLBHP 
ISZ ADLBHP 
TAD .l\DCKSM 
DAC* ADLBHP 
DZM ADUND 
JMP ADDISM 

ADC ONT I OF 
ADSC 

/INTERRUPT HANDLER DISMISS RTE 
ADDISM LAC ADCAC 
ADSWCH ION 

DBR 
JMP* ADCOUT 

ADCAIP 0 
ADARGP 0 
ADCOUT 0 
ADCAC 0 

/AU. SET 
/STORE IN HEADER #l 
/INC. TO STORE CKSUM 
/ADO WORD PAIR COUNT 
/STORE IN HEADER 12 
/CLEAR DEVICE UNDERWAY 
/EXIT 
/DISABLE PIC TO INSURE 
/DISMISSAL ?EFORE 

/I~TERRUPT FROM THIS 
/IOT OCCURS 

/RESTORE AC 
/ION OR IOF 
/DEBREAK 4ND RESTORE 
/LINK, MEM. PROT. 
/ADC CAL POINTER 
/l\DC 4RGUEMENT POINTER 
/PC,L,MP 
/AC SAVED HERE 

/IF THE HANDLER USES THE AUTO-INDEX 
/OR 
/EAE REGISTERS, THEIR CONTENTS 
/SHOULD BE 
/SAVED AND RESTORED. 

/FUNCTIONS POSSIBLY IGNORED SHOULD 
/CONTAI~ PROPER INDEXING TO BYPASS 
/ARriUMENT STRING. 
ADIGN2 ISZ ADARGP /BYPASS FILE POINTER 

JMP ADOK 
.END 

4- I 4(Part III) 



4.2.4 Incorporating User-Generated 1/0 Handlers 

4.2.4.1 The following example shows how to incorporate a user generated 1/0 handler for a special or non-standard 
device (e.g., Type 350 incremental plotter) into the standard l/O Library. This means that the Linking Loader, DDT, 
or DDTNP must be modified to recognize the new handler. The changes to be made include .DAT Slot modification 
and skip chain modification. If the user wishes to use his own handler name, instead of one of the standard handler 
names (e.g., PLA., instead of LPA.), a radix SO value in the Loader 1/0 Configuration (IOC) Table must be changed. 

4.2.4.2 Procedure: 

a. Load the Linking Loader as follows: 

(I) Set the ADDRESS Switches to 17720 of the highest core bank. 

(2) Place the Linking Loader tape in the reader. 

(3) Press RESET then READIN. 

b. Stop the computer at the point where the Loader types ts and modify the appropriate .DAT Slot (Slot 0 begins 
at location 135) according to the Loader IOC Table (Table 4-2). Suppose .DAT Slot 4 is chosen and the user wishes to 
substitute his plotter handler for handler LPA .. Cell 141 (.DAT Slot 4) should be changed from 000001 (Loader code 
for TIA.) to 000007 (Loader code for LPA.). 

c. Modify the Monitor Skip Chain (Table 4-3) as follows: 

(l) Determine the proper Skip IOT instruction code (octal) assigned to the device, either from the User's 
Guide DEC-I S-H2DA-D (in the case of standard DEC 1/0 devices) or from engineering documentation 
supplied to the customer (for customer specified devices). 

(2) Load the new IOT in the desired Skip Chain location. In case of the plotter mentioned above, the Skip 
IOT (from the User's Guide) is 702401 (PLSF). The skip associated with LPA. is at location 1533 as 
shown in Table 4-3. Location 1533 should be changed from 706501 (LSDF) to 702401 (PLSF). 

If the user has named his plotter handler LPA., he may proceed to step E below. 

d. If the user prefers a different name* (e.g., PLA.), the radix 50 value associated with the LPA handler in the 
IOC Table (Table 4-2) must be changed. Compute the new radix 50 value as follows: 

( l) Find P in column l of Table 4-4 (062000). 

(2) Find L in column 2 (000740). 

(3) Find A in column 3 (000001). 

(4) The resultant radix 50 value is 062741. 

(5) The fourth character of the mnemonic PLA. is the period (.). 

This is signified to the Loader by making the sign bit of the computer word (bit 0) a 1. The resulting 
radix 50 value is now 462741. 

*The new name must consist of from one to three alphabetic characters followed by a period. 

4-l 5(Part Ill) 



(6) Hence the contents of location 4SOS (Loader) or S264 (DDT) should be changed to 46274 l. 

e. Load PUNCH-1 S as follows: 

(l) Set the ADDRESS Switches to 17720 of the highest core bank. 

(2) Place the PUNCH-1 S tape in the reader. 

(3) Press RESET then READIN. 

f. When the PUNCH-l S query "tP, TORS?" appears on the teletype, type CTRL P. 

g. When PUNCH-1 S replies with a >, type the number of output tapes desired (in this case 1 - up to 9 if 
desired.) 

h. To load the resultant tape(s), proceed as in Step a. The computer stops after loading each tape except the 
last. Press CONTINUE when the next tape is in the reader. Program execution begiAs automatically when the end of 
the last tape is reached. 

i. Assemble the new handler in relocatable binary form. Remove the end-of-file (EOF) block using PIP-IS with 
the "W" switch option. Attach this tape to the end of the first tape in the I/O Library. 

Table 4-2. Linking Loader IOC Table 

Code Location Radix 
Handler Slot 

50 
Loader/DDTNP DDT Value 

TIA. I 4477 5256 500041 
PRA. 2 4500 5257 463321 
PRB. 3 4501 5260 463322 
PPA. 4 4502 5261 463201 
PPB. s 4503 5262 463202 
PPC. 6 4504 5263 463203 
LPA. 7 4S05 S264 446601 
CDA. 10 4506 526S 411S4l 
CDB. l l 4507 5266 411S42 
CDC. 12 4SIO S267 411543 
MTF. 13 4511 S270 452146 
DRA. 14 4Sl2 5271 415721 
DRB. IS 4513 5272 415722 
DRC. 16 4514 5273 415723 
DRD. 17 4Sl5 5274 415724 

tThe IOC Table Locations shown above are subject to change in later versions of DDT and the Linking Loader. For information regarding 
these changes, see the Reader Service Card at the end of this manual. 

4-16(Part III) L 



Table 4-3. Basic 1/0 Monitor Skip Chain* 

Locationt Contents Mnemonic Device Meaning 

1521 703201 SPF AL POWER FAIL 
1522 741000 SKP 
1523 621517 JMP*INT6 
1524 707341 MTSF MAGTAPE DONE 
1525 741000 SKP 
1526 621604 JMP* INT13 
1527 700001 CLSF CLOCK OVERFLOW 
1530 741000 SKP 
1531 600476 JMPCLKPIC 
1532 706701 RCSF CARD COLUMN READY 
1533 741000 SKP 
1534 621575 JMP*INT4 
1535 706721 RCSD CARD DONE 
1536 741000 SKP 
1537 621576 JMP*INT5 
1540 706501 LSDF LINE PRINTER DONE 
1541 741000 SKP 
1542 621572 JMP* INTI 
1543 700101 RSF PAPER TAPE READER DONE' 
1544 741000 SKP 
1545 621573 JMP* INT2 
1546 700201 PSF PAPER TAPE PUNCH DONE 
1547 741000 SKP 
1550 621574 JMP* INT3 
1551 700301 KSF KEYBOARD READY 
1552 741000 SKP 
1553 601 I JO JMPTIINT 
1554 700401 TSF TELEPRINTER DONE 
1555 741000 SKP 
1556 601344 JMPTOINT 
1557 701741 MPS NE NON-EXISTENT MEMORY 
1560 741000 SKP 
1561 621600 JMP* INT7 
1562 701701 MPSK MEMORY PROTECT VIOLATION 
1563 741000 SKP 
1564 621601 JMP* INTlO 
1565 702701 SPE MEMORY PARITY ERROR 
1566 741000 SKP 
1567 621602 JMP* INTI l 

*This skip chain memory map applies only when the Linking Loader, DDT, DDTNP, CHAIN, EXECUTE or relocatable user pro
grams are in core. 

tThe skip chain locations shown above are subject to change in later versions of the associated software. For information regarding these 
changes, see the Reader Service Care at the end of this manual. 

4-l 7(Part III) 



Table 4-4. Radix 508 Values 

x -. -X- --X 

A 003100 A 000050 A 000001 
B 006200 B 000120 B 000002 
c 011300 c 000170 c 000003 
D 014400 D 000240 D 000004 
E 017500 E 000310 E 000005 
F 022600 F 000360 F 000006 
G 025700 G 000430 G 000007 
H 031000 H 000500 H 000010 
I 034100 I 000550 I 000011 
J 037200 J 000620 J 000012 
K 042300 K 000670 K 000013 
L 045400 L 000740 L 000014 
M 050500 M 001010 M 000015 
N 053600 N 001060 N 000016 
0 056700 0 001130 0 000017 
p 062000 p 001200 p 000020 
Q 065100 Q 001250 Q 000021 
R 070200 R 001320 R 000022 
s 073300 s 001370 s 000023 
T 076400 T 001440 T 000024 
u 101500 u 001510 u 000025 
v 104600 v 001560 v 000026 
w 107700 w 001630 w 000027 
x 113000 x 001700 x 000030 
y 116100 y 001750 y 000031 
z 121200 z 002020 z 000032 
% 124300 % 002070 % 000033 

127400 002140 000034 
0 132500 0 002210 0 000035 
I 135600 1 002260 1 000036 
2 140700 2 002330 2 000037 
3 144000 3 002400 3 000040 
4 147100 4 002450 4 000041 
5 152200 5 002520 5 000042 
6 155300 6 002570 6 000043 
7 160400 7 002640 7 000044 
8 163500 8 002710 8 000045 
9 166600 9 002760 9 000046 
# 171700 # 003030 # 000047 

4.3 1/0 HANDLERS ACCEPTABLE TO SYSTEM PROGRAMS 

This section lists the .DAT slot requirements of system programs, the uses made of the .DAT slots, and the 1/0 
handlers that may be assigned to each. It is imperative that one and only one 1/0 handler for a device be in core at the 

4- l 8(Part III) 



same time; that is, PRA and PRB should not be brought in together since there is no communication between the two 
interrupt handlers. 

NOTE 

All system programs use .DAT slots -2 and -3 for teletype input and output, 
respectively. These assignments cannot be changed. 

4.3.1 FORTRAN IV 

.DAT Slot 

-I I 

-12 

-13 

4.3.2 MACR0-15 

Use 

Input 

Listing 

Output 

TTA 
PRA 
PRB* 

Handler 

MTF (non-file oriented) 
CDB 

TTA* 
LPA 
PPA 
MTF (non-file oriented) 

PPA 
PPB* 
PPC 
MTF (non-file oriented) 

MACR0-15 is identical to FORTRAN IV, with two exceptions: a If .ABS binary output is requested on .DAT slot 
-13, PPC. cannot be used. b When the P option (in the command string) is used, .DAT slot -IO is the secondary input 
device: 

TTA* 
PRA 
PRB 
CDB 

4.3.3 FOCAL 

.DAT Slot 

+3 

*DEC Standard assignment. 

Use 

Input 

Handler 

PRA* 
PRB 
CDB 

4-19(Part III) 



.DAT Slot Use Handler 

+5 Output PPA* 
LPA 

4.3.4 Editor 

.DAT Slot Use Handler 

-IO Secondary Input TIA 
PRA* 
PRB 
CDB 

-14 Input TIA 
PRA* 
PRB 
COB 

-15 Output LPA 
TIA 
PPA* 

4.3.5 Linking Loader and DDT 

.DAT Slot Use Handler 

-1 System PRA* 
Library 

-4 Input PRA* 

-5 External 
User Library NONE* 

PRA 

4.3.6 PIP 

.DAT Slot Use Handler 

1/0 TIA* 
2 1/0 TIA* 
3 Input PRA* 
4 Output LPA* 
5 Output PPA* 
6 Input COB* 
7 Output PPA* 

IO Input PRA* 

*DEC Standard assignment 

4-20(Part III) 



4.3.7 Chain Builder 

.DAT Slot Use Handler 

-1 System Library PRA* 
-4 User Programs PRA* 
-5 External NONE* 

Library 
-6 Output PPA* 

PPB 
PPC 

4.3.8 Chain Execute 

.DAT Slot Use Handler 

-4 Chain Input PRA* 

4.3.9 STRAN 

.DAT Slot Use Handler 

-14 Output PPA* 
-15 Input PRA* 

CDB 

4.4 SUMMARY OF STANDARD 1/0 HANDLER FEATURES 

4.4.I TTA·(Teletype) 

a. Functions - All function descriptions (except READ and WRITE) refer to action taken when either the 
teleprinter or the keyboard is addressed. 

Mnemonic Code 

.INIT 

*DEC Standard Assignment 

Action 

(l) Return standard buffer size (341 0 ). 

(2) Assign return addresses for certain control characters from contents of 
CAL ADDRESS +2. Bits 0 through I in CAL + 2 address are set to 
designate caller: 

B0,1=01 
BO, I = 10 
BO, I= 00 

caller = Monitor 
caller= DDT 
caller = any other user 

(3) Set I/O UNDERWAY indicator. 

(4) Print carriage return and line feed (CR/LF). 

4-21 (Part III) 



Mnemonic Code 

.DLETE 2 

.REN AM 2 

.FSTAT 2 

.SEEK 3 

.ENTER 4 

.CLEAR 5 

. CLOSE 6 

.MT APE 7 

. READ 10 

. WRITE 11 

. WAIT 12 

. TRAN 13 

b. Legal Data Modes 

IOPS ASCII (Mode 2) 

Ignored 
Ignored 

Ignored 
Ignored 
Ignored 
Ignored 

Action 

(1) Set 1/0 underway indicator . 
(2) Print CR/LF. 
(3) Wait on .CLOSE for completion of 1/0. 

Ignored 
(1) Set 1/0 underway indicator . 
(2) Set up to accept characters from keyboard. 
(1) Set 1/0 Underway indicator . 
(2) Print line. 

Allow input at output to finish . 
IOPS06-lllegal function . 

IMAGE ALPHANUMERIC (Mode 3) 

c. Vertical Carriage Control Characters 

Output -

Input -

(I ) Line feed (128 ) 

IOPS ASCII: Ignore all leading line feeds; otherwise output 
IMAGE: Output 

(2) Others (vertical tab, form feed) output 
Inserted in buffer 

d. Horizontal Ca"iage Control Characters 

Tab (11 8 ) in or out 

IOPS ASCII 

Image Alphanumeric 

e. Program Control Characters-IN 

Stop current 1/0 
to Teletype. 

Decode character 
and echo on Tele
printer.* 

(1) Model 33 - output sufficient number of spaces to place the next typed 
character in column 11, ... , 71. Insert only 11 8 in buffer on input. 

(2) Model 35 - input, insert 11 8 in buffer. Output, print tab. 
Input, insert I 18 in buffer. Output, print tab. 

(I) CTRL C transfers control to the address specified as return in the 
.INIT performed by the Monitor. 

*Character will be ignored (not echoed) in cases (I), (2), and (3), if respective . .INIT has not been performed. 

4-22(Part Ill) 



f. Data Control Characters-JN 

Image Alphanumeric 

IOPS ASCII 

(2) CTRL P transfers control to the address specified as return in the .INIT 
performed by the user (other than the Monitor or DDT). 

(3) CTRL T transfers control to the address specified as return in the .INIT 
performed by DDT. 

( 4) CTRL S transfers control to the address specified in .SCOM + 6. 

All characters inserted in buffer as 7-bit characters. 

(l) Rubout. Delete previous character typed. Type out reverse slash (\). 

(2) CTRL U. Delete entire line typed so far. Type out commercial at (@). If 
output is UNDERWAY, printing is terminated and a CR/LF is output. 

g. Data Control Characters-OUT (both modes) 

Ignore RUBOUT ( 177 8 ) and NULL (00). 

In Image Alpha mode, a RUBOUT should be used to fill the last word pair when an odd number of characters is 
to be output. 

h. Errors (no program-initiated recovery) 

i. Program Sfze 

IOPS6 - Illegal Function 
IOPS7 - Illegal Data Mode 

4691 0 registers (this is included in resident MONITOR). 

j. Teletype J/O - Can be requested only from mainstream in API systems, since the Teletype is not connected to 
the APL 

4.4.2 PP (Paper Tape Punch) 

a. Functions 

Mnemonic Code Action 

.INIT (l) Return standard buffer size (521 0 ). 

(2) .SETUP - no APL 

(3) Punch two fanfolds of leader. 

4-23(Part III) 



Mnemonic Code Action 

.DLETE 2 Ignored 

.REN AM 2 Ignored 

.FSTAT 2 Ignored 

.SEEK 3 IOPS6 - Illegal function 

.ENTER 4 Ignored 

.CLEAR 5 Ignored 

.CLOSE 6 (1) Allow previous output to terminate. 

(2) Punch EOF if IOPS Binary 

(3) Punch two fanfolds of trailer 

(4) Allow trailer punching to terminate 

.MT APE 7 Ignored 

.READ 10 IOPS6 - Illegal function 

.WRITE 11 (1) Allow previous output to terminate. 

(2) Output buffer 

.WAIT 12 Allow previous output to terminate. 

.TRAN 13 IOPS6 - Illegal function 

b. Legal Data Modes 

IOPS Binary (mode 0) 

IMAGE Binary (mode 1) 

IOPSASCII (mode 2) 

IMAGE ALPHANUMERIC (mode 3) 

Dump (mode 4) 

c. Vertical Control Characters (/OPS ASCII only) 

May appear only as first character of line, if elsewhere in line will be ignored; if no vertical control character at 
beginning of line, a line feed (012) will be used. 

4-24(Part III) 



012 Line feed 

013 Vertical tab, followed by four deletes ( 177) 

014 Form feed, followed by 408 nulls (000) 

d. Horizontal Control Characters (/OPS ASCII only) 

011 Horizontal tab, followed by one delete (I 77) 

e. Recoverable E"ors 

No tape in punch - Monitor error IOPS4 

f. Unrecoverable E"ors 

IOPS6 - Illegal Function: 

IOPS7 - Illegal Data Mode 

g. Program Size 

PPA. (all data modes) 

PPB. (all except IOPS ASCII) 

PPC. (IOPS binary only) 

(1) Put tape in punch 

(2) Type CTRL R 

(1) .SEEK 

(2) .READ 

(3) .TRAN 

397 decimal registers 

270 decimal registers 

210 decimal registers 

NOTE 

In API systems, the paper tape punch can be called only from mainstream, 
since the punch is not connected to the API. 

4.4.3 PR (Paper Tape Reader) 

a. Functions 

Mnemonic Code Action 

.INIT (1) Return standard line buffer size (52 1 0 ) 

(2) .SETUP API channel register 508 

4-25(Part III) 



Mnemonic Code 

.DLETE 2 

.REN AM 2 

.FSTAT 2 

.SEEK 3 

.ENTER 4 

.CLEAR 5 

.CLOSE 6 

. MT APE 7 

.READ IO 

.WRITE 11 

.WAIT 12 

.TRAN 13 

b. Legal Data Modes 

IOPS ASCII 
(mode 2) 

4-26(Part III) 

Action 

(3) Clear 1/0 UNDERWAY indicator 

Ignored 

Ignored 

Ignored 

Ignored 

IOPS6 - Illegal function 

IOPS6 - Illegal function 

Allow previous input to finish and then clear 1/0 UNDERWAY 
indicator . 

Ignored 

(I) Allow previous input to be completed. 

(2) Input line or block of data (see modes below). 

(I) 

IOPS6 - Illegal function 

Allow previous input to be completed before allowing user program to 
continue. 

IOPS6 - Illegal function 

Constructs line buffer header, computing: 

Word pair count 

Data mode 

Data validity bits 

(2) Packs characters into the line buffer in 5/7 ASCII, checking parity 
(eighth bit, even) on each character. 

(3) Allows vertical form control characters. (FF, LF, VT) only in character 
position I of the line buffer. Otherwise, ignored. 

(4) Terminates reading on CR or line buffer overflow. In the latter case, 
tape is moved past the next CR to be encountered. 



IOPS Binary 
(Mode 0) 

Image 
Alphanumeric 
(Mode 3) 

Image Binary 
(Model) 

Dump 
(Mode 4) 

(I) Reads binary data in alphanumeric mode, checking parity (seventh 
hold, odd) on each frame. 

(2) Accepts line buffer header at head of input data, modifying data 
validity bits if parity or checksum errors (or short line) have occurred. 

(3) Terminates reading on overflow of word pair count in line buffer 
header or word count in .READ macro, whichever is smaller, moving 
tape to end of line or block if necessary. 

(l) 

(2) 

(3) 

Constructs line buffer header, computing: 

Word pair count 

Data mode 

Stores characters, without editing, or parity checking in the line buffer, 
one per register. 

Terminates reading as a function of .READ macro word count. 

Same as Image Alphanumeric, except a binary read is issued to the 
PTR. 

Same as Image Alphanumeric except, no header is constructed; loading 
begins at the core address specified in the .READ macro. A binary read 
is issued to the PTR. 

NOTE 

An end of tape condition causes the PTR interrupt service routine to 
terminate the input line, turning off the 1/0 UNDERWAY program indicator 
and marking the header (data mode bits) as an EOM (end of medium) for all 
modes except Dump. 

c. Unrecoverable Errors 

Illegal Function (IOPS6) 

(I) .ENTER 

(2) .CLEAR 

(3) .WRITE 

(4) .TRAN 

Illegal Data Mode (IOPS7) 

4-27(Part III) 



d. Program Size 

PRA. (all data modes) 436 decimal registers 

PRB. (IOPS ASCII only) 287 decimal registers 

4.4.4 COB. (CARD READER CR03B) 

a. Functions 

Mnemonic 

.INIT 

.DLETE 

.REN AM 

.FSTAT 

.SEEK 

.ENTER 

.CLEAR 

.CLOSE 

.MT APE 

. READ 

.WRITE 

4-28(Part III) 

NOTE 

When the CR03B is used as an EDITOR input, a blank card must be placed 
immediately after the End of File (EOF) card (card column I punched 
12-11-0-1-2-3-4-5-6-7-8-9). If an EOF card is not used to end a deck, the 
blank card is not required. 

Code 

2 

2 

2 

3 

4 

5 

6 

7 

IO 

11 

Action 

(I) Return standard buffer size (361 0 ) 

(2) Call .SETUP to update skipchain with PIC servicer addresses for column 
ready and card done flags and to place API servicer address in location 
558 (API channel 13). 

Ignored 

Ignored 

Ignored 

Ignored 

IOPS6 - Illegal function 

IOPS6 - Illegal function 

Allow previously requested input to terminate 

Ignored 

(I) Allow previously requested input to terminate . 

(2) Ensure that device is ready. 

(3) Initiate input of next card. 

IOPS6 - Illegal function 



Mnemonic 

.WAIT 

.TRAN 

b. Legal Data Modes 

Code 

12 

13 

Action 

Allow previously requested input to terminate. 

IOPS6 - Illegal function 

IOPS ASCII (mode 2) Eighty card columns are read and interpreted as Hollerith (029 or 026) data, mapped into the 
corresponding 64-graphic subset of ASCII, and stored in the user's line buffers in 5/7 format (361 0 locations required 
to store an 80 column card). Compression of internal blanks to tabs and truncation of trailing blanks is not 
performed; all 80 characters appearing on the card are delivered to the caller's line buffer. In addition, a carriage 
return (0158 ) character is appended to the input line. A total of 81 ASCII characters are thus returned by the handler 
in IOPS ASCII mode. 

All illegal punch configurations (i.e., those not appearing in the 029 or 026) cause an IOPS4 error. In response to the 
error, the user can: 

(a) correct the card, reinsert it into the reader input hoppers, and type CTRL R to restart the read operation; 

(b) attempt to restart read (CTRL R) without correcting the card; 

(c) remove the card from the read hopper and restart read (CTRL R). 

The single addition to the Hollerith set, one made necessary by the constraints of system programs, is the provision 
for the internal generation of the ALT MODE terminator. The appearance of a 12-1-8 punch (multiple-punched A/8) 
on the card is mapped into the standard PDP-15 ALT MODE character (1758 ) in the user's line. 

When card processing is complete, word 1 of the header is constructed and stored in the caller's line buffer area. Word 
2 of the header, the checksum location, is never disturbed by the card reader handler in IOPS ASCII mode. 

Refer to Appendix B for a listing of legal Hollerith codes and their corresponding ASCII graphics. 

c. Recoverable Errors 

IOPS4 - Reader Not Ready 

(I) Hopper Empty 

(2) Stacker Full 

(3) Feed check, LIGHT CHECK (may be hardware failure) 

(4) Read Check, DARK FAIL (may be hardware failure) 

(5) Reader not ready: 

(a) Stop button depressed. 

(b) Start button not depressed. 

(6) Validity check. 

(7) Pick Fail card selected but not passed from hopper to read stations. 

4-29(Part Ill) 



d. Unrecoverable Errors 

IOPS6 - Illegal Function 

(I) .ENTER 

(2) .CLEAR 

(3) .WRITE 

(4) .TRAN 

e. Program Size 

CD B. occupies 41 01 0 locations. 

f. Assembly Procedures 

CDB. exists in the I/O Library in a version which recognizes DEC 029 code (Appendix B). It also is supplied to the 
user as a source tape to allow an alternate assembly of the handler which will recognize DEC 026 code. 

The following is the procedure for assembling CDB. in 026 mode: 

(I) Prepare to assemble the CDB. source tape using MACR0-15 with the "P" option.* 

(2) Enter the following parameter on the Teletype: 

DEC026 = 1 (CTRL D) 

(3) After assembly, remove the end-of-file (EOF) block from the new CDB. tape by using PIP with the "W" 
switch option. 

(4) This tape becomes the first tape in the I/O Library. 

4.4.5 LPA•(647 LINE PRINTER) 

a. Function 

Mnemonic Code Action 

.INIT (l) Return standard line buffer size (52 1 0 ) 

(2) .SETUP - API channel register 568 

(3) Clear line printer buffer 

(4) Form feed 

*Assembly without the "P" option produces the 029 version of the handler. 

4-30(Part Ill) 



Mnemonic 

.DLETE 

.RENAM 

.FSTAT 

.SEEK 

.ENTER 

.CLEAR 

.CLOSE 

.MT APE 

.READ 

.WRITE 

.WAIT 

.TRAN 

b. Legal Data Modes 

IOPS ASCII 
(mode 2) 

Code 

2 

2 

2 

3 

4 

5 

6 

7 

10 

11 

12 

13 

Action 

Ignored 

Ignored 

Ignored 

IOPS6 - Illegal function 

Ignored 

Ignored 

(1) Allow previous output to terminate 

(2) Form feed 

(3) Allow form feed to terminate 

Ignored 

IOPS6 - Illegal function 

(1) Allow previous output to terminate 

(2) Output line 

Allow previous output to terminate 

IOPS6 - Illegal function 

c. Vertical Control Characters (when first character of line) 

12 Print every line 

21 Print every second line 

22 Print every third line 

13 Print every sixth line 

23 Print every tenth line 

24 Print every twentieth line 

4-3l(Part III) 



20 Overprint 

14 Form feed 

d. Horizontal Control Characters (anywhere in line) 

11 Horizontal tab - converted to N spaces, where N is the number necessary to have the next 
character in column I I , 21, 31 , 41 , ... 

e. Recoverable Errors 

Device not 
ready 

f. Unrecoverable Errors 

Illegal function 

Illegal data 
mode 

g. Program Size 

297 (decimal) registers. 

(I) 

(2) 

(3) 

Monitor error message, .IOPS4. Make device ready, then type CTRL R 
to continue. 

Ml ;tor error message, .IOPS6 XXXXXX, where XXXXXX is address 
of ror CAL. 

.SEEK 

.READ 

.TRAN 

Monitor error message, .IOPS7 XXXXXX, where XXXXXX is address 
of error CAL. 

Any mode other than IOPS ASCII. 

4.4.6 MTF. (TU20, TU20A, TU30, TU30A Tape Transports) 

a. Introduction 

MTF. is a general magnetic tape 1/0 handler intended principally to meet the immediate needs of PDP-15 FORTRAN 
users. It will accept data-transfer requests in data modes used by the FORTRAN IV Object Time System and in 
addition, will honor the following FORTRAN statements: 

REWINDu 

ENDFILE u 

BACKSPACEu 

4-32(Part III) 



The magnetic tape facility is also available, via MTF., to MACRO-IS users. It should be noted. however, that legal 
data modes and functions are limited to those required in the FORTRAN environment and the special 9-channel 
dump mode. 

b. Functions 

Mnemonic Code 

.INIT 

.OPER 2 

.FSTAT 2 

.DLETE 2 

.REN AM 2 

.SEEK 3 

. ENTER 4 

Action 

(I) Return standard buffer size (561 0 = 708 ). 

(2) Call .SETUP for API channel 45, if first time through. 

(3) Set transfer direction for drive referenced. Direction is specified by bit 
8 of CAL instruction: 

Bit 8 = I, this drive is output; 
Bit 8 = 0, this drive is input. 

(4) Set default conditions for this drive, viz: 

Ignored 

Ignored 

Ignored 

Ignored 

(I) 

(a) This drive will transfer in odd parity. 
(b) This drive will transfer at 800 BPI. 
(c) This drive is 7-channel.* 

If the specified drive has been INITed and transfer direction is input, 
return to caller. 

(2) If the specified drive has been INITed and transfer direction is not 
input, IOPS6. 

(3) If the specified drive has not been INITed and transfer direction is 
· input, perform .INIT for this drive (input) . 

(I) If the specified drive has been INITed and transfer direction is output 
return to caller. 

*Unless the assembly parameter had been used to change the default assumption to 9-<:hannel. Variable MT9CHN need only be defined 

for 9-<:hannel paper-tape systems. 

4-33(Part Ill) 



b. Functions (cont) 

Mnemonic Code 

. CLEAR 5 

. CLOSE 6 

.MT APE 7 

4-34(Part III) 

(2) 

(3) 

(I) 

(2) 

Action 
If the specified drive has been INITed and transfer direction is not 
output, IOPS6. 

If the specified drive has not been INITed and transfer direction is 
output, perform .INIT of this drive (output) . 

Ignored 

Wait for current 1/0 to complete . 

Is this drive an input drive? 

Yes: return to caller. 
No: continue. 

(3) Is this drive open for transfers? 

No: return to caller. 
Yes: continue. 

( 4) Write two EOF markers (7-channel = 17 8 ; 9-channel = 238 ), hang 
on CAL during transfers. 

(5) Backspace one record, hang on CAL during backspace. This positions 
the read head between the two EOF markers written. 

(6) Set switch indicating this drive is not open for transfers. 

(7) Return to caller at CAL + 2 

(I) Wait for current 1/0 to complete. 

(2) Interpret subfunction (bits 5-8) of CAL instruction. 

Subfunctions: 

0- Rewind 

(a) Set indicator that 1/0 is not underway. 
(b) Issue rewind to this drive. 

I - Undefined 

IOPS6. 

2 - Backspace Record 



Mnemonic Code 

.READ 10 (I) 

Action 

(a) Set indicator that 1/0 is underway. 
(b) Issue backspace-one-record to this drive. Note: the backspace is 

attempted at the density currently assigned to this drive (via .INIT or 
.MTAPE 10-17). 

3 - Backspace File 

IJlegal: IOPS6 

4-Write EOF 

5 - Space Forward Record 

(a) Check 1/0 transfer direction for this drive. 

i. Output: IOPS 6 
ii. Input: continue. 

(b) Set indicator that I/O is underway 

(c) Issue space-forward-one-record to this drive. 

6 - Space Forward File 

Illegal: IOPS6 

7 - Space to Logical EOT 

Illegal: IOPS error, code 6. 

I 0-17 - Describe Tape Configuration 

Update format descriptor bits for this drive. Note that these bits will 
be reset by any subsequent .INIT to this drive. 

1/0 transfers (including space operations) will be performed in the 
parity, density, and channel-count specified in .MT APE l 0-17, thus: 

10:7-channel, even, 
11 :7-channel, even, 
12:7-channel, even, 
14:7-channel, odd, 
15:7-channel, odd, 
16: 7-channel, odd, 
13:9-channel, even, 
17:9-channel, odd, 

Wait for current l/O to complete. 

200 BPI 
556 BPI 
800 BPI 
200 BPI 
556 BPI 
800 BPI 
800 BPI 
800 BPI 

4-35(Part Ill) 



Mnemonic Code 

.WRITE 11 

Action 

(2) Ensure that requested drive is available (IOPS4 if not). 

(3) Parameters: 

(a) Buffer address: from CAL sequence 

(b) Word count (maximum): from CAL sequence 

(c) Tape format: from previous .INIT or .MTAPE 10-17. 

(4) Data Format: Data are transferred directly from magtape to the user's 
core buffer area. No editing of any kind is performed by MTF. 

(5) Parity Errors: Hardware parity errors during an input transfer cause the 
proper bits to be set in word 0 of the line buffer header (bits 12-13 = 
0 I if an error occurred). No reread is attempted. 

(6) End of File, End of Tape 

(1) 

(a) End of File: When an end-of-file marker (EOF) is encountered on 
the tape being read, an EOF pseudo-line is constructed and stored 
in the user's line buffer area.* This EOF line consists of a two-word 
header and one data word, thus: 

header word 0: 
header word I : 
data word 0: 
data word I: 

002005 
775773 
000000 
Unchanged 

(b) Physical End of Tape: When an end-of-tape is encountered on the 
tape being read, an end-of-medium line is constructed and stored in 
the user's line buffer area.* The EOM line consists of a two-word 
header and one data word, thus: 

header word 0: 
header word l : 
data word 0: 
data word l: 

002006 
775772 
000000 
unchanged 

An attempt is then made to backspace over the record being read. 
The assumption is made that the record was written through the 
end-of-tape. 

Wait for current 1/0 to complete. 

(2) Ensure that requested drive is available (IOPS 4 if not). 

*The action described takes place only if the 1/0 transfer had been performed in Mode 0 or Mode 2 (see Section C). For error activity in 
Mode 5 transfers, see Section C.3. 

4-36(Part III) 



Mnemonic Code 

.WAIT 12 

. WAITR 13 

.TRAN 14 

c. legal Data Modes 

Action 

(3) Parameters: 

(a) Line buffer address: from CAL sequence. 

(b) Word count: from bits 1-8 of line buffer header.* 

(c) Tape format: from previous .INIT or .MTAPE 10-17. 

(4) Data Format: Data are transferred directly from the user's line buffer 
area to the device. No editing of any kind is performed by MTF. Each 
. WRITE results in exactly one physical record on tape. 

(5) Write errors: 5 attempts are made to rewrite the record. Before each 
attempt, a 3-inch length of tape is erased. If the fifth try is unsuc
cessful, an IOPS 4 return is made to the monitor. The user then has 
the option of trying to write 5 more times (CTRL R) or restarting 
with a fresh tape. 

(6) End of Tape: When EOT is detected during writing, an error return 
(IOPSI 5) is made to the monitor. 

(I) Wait for current 1/0 to complete. 

(2) Return to CAL + 2 

Determine whether current 1/0 is complete . 

(1) If 1/0 is incomplete, transfer to location specified in CAL+ 2. 

(2) If 1/0 is complete, return to CAL + 3. 

The .TRAN request (for forward-direction Transfers only) is honored 
and results in a binary transfer from or to the next physical record on 
tape. The device-address agreement in the CAL sequence (CAL + 2) is 
ignored by the .TRAN processor. 

( 1) IOPS Binary (Mode 0) - 7 or 9 channel transports 

(2) IOPS ASCII (Mode 2) - 7 or 9 channel transports 

(3) 9~Channel Dump (mode 5)- 9 channel transports only. 

(a) This mode is designed to take advantage of all 8 data bits in each 
frame of 9-channel tape and thus ensure maximum throughput for 

*In Modes 0 and 2 only (see Section C). For Mode 5 transfers, the word count is taken from the CAL sequence. 

4-37(Part Ill) 



Mnemonic Code 

4-38(Part IJI) 

Action 

each word transferred. Whereas normal (Modes 0 and 2) transfers 
require three tape frames for each PDP-IS register, transfer in Mode 
5 require only two frames per word. Only 16 bits of each PDP-15 
word, however, are read from or written on tape. Word format for 
Mode S is described below: 

Parity Bits (P 0 , P 1 ): Bits 0 and I of the PDP-15 word are used 
as parity bits for the 2 8-bit data bytes (D0 and D1 ), 

respectively, in the low-order portion of the register. During an 
output (write) transfer, these bits are ignored. The hardware will 
generate the proper parity for each data frame. During an input 
(read) transfer, these bits are set to the actual parity values for 
the two data frames as read from tape. 

Data Bytes (D0 , D1 ): Bytes 2-9 and 10-17 hold the values of 
two adjacent 8-bit frames. During reads and writes, D0 is the 
first frame transferred. If a record containing an odd number of 
frames is read, the final frame is stored in D0 ; D1 is set to binary 
zeroes. An even number of frames are always written during an 
output operation. 

(b) Error Treatment in Mode 5 

Because no line-buffer header is present in data transferred in Mode 
5, there is presently no facility for indicating 1/0 errors to the user 
program, particularly during input transfers. MTF. will do its best 
to transfer correct data but, if it fails, cannot so inform the calling 
program. 

Read Errors 

Parity Errors: 5 attempts are made to reread the error record. If 
the record cannot be read successfully, the data resulting from 
the fifth reread attempt are left in the user's buffer area. 

Buffer Overflow: If the number of words in the record being 
read exceeds the count given in the CAL sequence, transfer is 
halted. 

1 : 
End of File: No data are transferred. The read head is 
positioned preceding the EOT refledive spot. 

Write Errors 

As described in paragraph e. under .WRITE. 

(c) Restrictions 

Mode 5 is a legal 1/0 mode only if the referenced transport is 
9-channel. An attempt to use Mode 5 in reading or writing a 



Mnemonic Code 

d. Program Size 

MTF. currently occupies 11448 PDP-15 registers. 

Action 

7-channel drive results in an error return (IOPS7) to the Monitor. 
Requests for transfers in modes other than 0, 2, and 5 result in 
error returns (IOPS7) to the Monitor. 

4-39/4-40(Part III) 


