
'

DEC-15-LMCMA-A-D

MACll Programming L·anguage

Order additional copies as directed on the Software
Information page at the back of this document.

digital equipment corporation · maynard. massachusetts

First Printing, August 1974

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this manual.

The software described in this document is furnished to the purchaser
under a license for use on a single computer system and can be copied
(with inclusion of DIGITAL's copyright notice) only for use in such
system, except as may otherwise be provided in writing by DIGITAL.

Digital Equipment Corporation assumes no responsibility for the use
or reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright ~ 1974 by Digital Equipment Corporation

The HOW TO OBTAIN SOFTWARE INFORMATION page, located at the back of
this document, explains the various services available to DIGITAL
software users.

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in
preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

CDP
COMPUTER LAB
COMSYST
COMTEX
DDT
DEC
DEC COMM
DECTAPE
DIBOL

DIGITAL
DNC
ED GRIN
EDU SYSTEM
FLIP CHIP
FOCAL
GLC-8
IDAC
IDACS

INDAC
KAlO
LAB-8
LAB-8/e
LAB-K
OMNIBUS
OS/8
PDP
PHA

PS/8
QUICKPOINT
RAD-8
RSTS
RSX
RTM
RT-11
SABR
TYPESET 8
UNIBUS

CHAPTER 1

CHAPTER

CHAPTER

1.1
1.1.1
1.1.2
1.1.3
1.2
1.3
1.4
1.5
1.5.1
1.5.2
1.6

2

2.1
2.1.1
2.1.2
2.1.3
2.1.4
2.2

3

3.1
3.1.1
3.1.2
3.1.3
3.2
3.2.1
3.2.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

CONTENTS

PART I

INTRODUCTION TO MACll

FUNDAMENTALS OF PROGRAMMING THE PDP-11

MODULAR PROGRAMMING
Commenting PDP-11 Assembly Language Programs
Localized Register usage
conditional Assemblies
REENTRANT CODE
PREFERRED ADDRESSING MODES
PARAMETER ASSIGNMENTS
SPACE VS. TIMING TRADEOFFS
Trap Handler
Register Increment
CONDITIONAL BRANCH INSTRUCTIONS

SOURCE PROGRAM FORMAT

STATEMENT FORMAT
Label Field
Operator Field
Operand Field
Comment Field
FORMAT CONTROL

PART II

DETAILS ON PROGRAMMING IN MACll

SYMBOLS AND EXPRESSIONS

CHARACTER SET
Separating and Delimiting Characters
Illegal Characters
Operator Characters
MACll SYMBOLS
Permanent Symbols
User-Defined and MACRO Symbols
DIRECT ASSIGNMENTS
REGISTER SYMBOLS
LOCAL SYMBOLS
ASSEMBLY LOCATION COUNTER
NUMBERS
TERMS
EXPRESSIONS

iii

Page

1-1
1-4
1-4
l-6
1-6
1-6
1-7
1-7
1-7
1-B
1-8

2-l
2-2
2-3
2-3
2-3
2-4

3-1
3-2
3-4
3-4
3-5
3-5
3-5
3-6
3-7
3-8
3-10
3-11
3-11
3-12

CHAPTER 4

4.1
4.2
4o3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14

CHAPTER 5

Sol
s.1.1
5.1.2
5.1.3
5.1. 4
5.1. 5
5.2
5.3
5.3.1
5.3.2
5.3.3
5.3.4
5.3.5
5.3.6
5.4
5e4el
5.4.2
5.5
5.5.1
5.5e2
5.503
5.6
5.6.1
5.7
5.7.l
5.7.2
5.7.3

CHAPTER 6

6. J.
6.1.1

ADDRESSING MODES

REGISTER MODE
REGISTER DEFERRED MODE
AUTOINCREMENT MODE
AUTOINCREMENT DEFERRED MODE
AUTODECREMENT MODE
AUTODECREMEN~ DEFERRED MODE
INDEX MODE
INDEX DEFERRED MODE
IMMEDIATE MODE
ABSOLUTE MODE
RELATIVE MODE
RELATIVE DEFERRED MODE
TABLE OF MODE FORMS AND· CODES
BRANCH INSTRUCTION ADDRESSING

PART III

MACll ASSEMBLER DIRECTIVES

GENERAL ASSEMBLER DIRECTIVES

LISTING CONTROL DIRECTIVES
.LIST and .NLIST
Page Headings
.TITLE
.SBTTL
Page Ejection
FUNCTIONS: .ENABL AND oDSABL DIRECTIVES
DATA STORAGE DIRECTIVES
.BYTE
.WORD
ASCII Conversion of One or Two Characters
.ASCII
.ASCJ:Z
.RAD50
RADIX CONTROL
.RADIX
Temporary Radix Control: tD, to, and tB
LOCATION COUNTER CONTROL
.EVEN
.ODD
• BLKB and • BLKW
TERMINATING DIRECTIVES
.END
CONDITIONAL ASSEMBLY DIRECTIVES
Subconditionals
Immediate Conditionals
PAL-llR Conditional Assembly Directives

MACRO DIRECTIVES

MACRO DEFINITION
.MACRO

iv

Page

4~~2

4-·2
4 .. -...2
4·~3

4-·3
4,~,3

•1-4
•1~4

4-4
4=5
4~5

4v•6
4~6

4··7

5-1
5-5
5~·5
5.,5
5-7
5~7

5-8
5--8
5-~9

5-·10
'5=11
s~J.2

5-12
5-14
5-H
5-·14
5-15
5·~15

5··~16
5~17

5-17
5-17
5~1B

5-·19
5~21

5-22

6 .1. 2
6.1.3
6.1. 4
6.2
6.3
6.3.l
6.3.2
6.3.3
6.3.4
6.3.5
6.3.6
6.4
6.5
6.6
6.7

CHAPTER 7

7.1
7.2

APPENDIX A
A.l
A.2

APPENDIX B
B .1.
B.2
B.3
B.3.1
B.3.2
B.3.3
B.3.4
B.3.5
B.3.6
B.3.7
B.4

APPENDIX C

.ENDM

.MEXIT
MACRO Definition Formatting
MACRO CALLS
ARGUMENTS TO MACRO CALLS AND DEFINITIONS
Macro Nesting
Special Characters
Numeric Arguments Passed as Symbols
Number of Arguments
Automatically Created Symbols
Concatenation
.NARG, .NCHR, AND .NTYPE
.ERROR AND .PRINT
INDEFINITE REPEAT BLOCK: .IRP AND .IRPC
REPEAT BLOCK: .REPT

PART IV

OPERATING PROCEDURES

OPERATING PROCEDURES

LOADING MACll
COMMAND INPUT STRING

APPENDICES

MACll CHARACTER SETS
ASCII CHARACTER SET
RADIX-50 CHARACTER SET

MACll ASSEMBLY LANGUAGE AND ASSEMBLER
SPECIAL CHARACTERS
ADDRESS MODE SYNTAX
INSTRUCTIONS
Double-Operand Instructions
Single-Operand Instructions
Operate Instructions
Trap Instructions
Branch Instructions
Register Destination
Subroutine Return
ASSEMBLER DIRECTIVES

PERMANENT SYMBOL TABLE

v

Page

6-2
6-2
6-3
6-3
6-4
6-4
6-5
6-6
6-7
6-7
6-8
6-9
6-10
6-11
6-14

7-1
7-1

A-1
A-1
A-4

B-1
B-1.
B-2
B-3
B-4
B-4
B-6
B-7
B-8
B-9
B-9
B-10

C-1

APPENDIX D
D.1

INDEX

ERROR MESSAGE SUMMARY
MAC11 ERROR CODES

vi

Page

D-1
D-1

I-1

PREFACE

This manual describes the PDP-11 MACR0-11 Assembler (MACll) and
Assembly• Language and discusses briefly how to program the PDP-11
computer. It is recommended that the reader have with him copies of
the PDP-11 Processor Handbook and, optionally, the PDP-11 Peripherals
and Interfacing Handbook. References are made to these documents
throughout this manual (although this document is complete, the
additional material provides further details). The user is also
advised to obtain a PDP-11 pocket Instruction List card for easy
reference. (These items can be obtained from the Digital Software
Distribution Center.)

This MACR0-11 Assembler operates under the PDP-15 DOS (Disk Operating
System) Monitor in conjunction with PIREX, a multiprogramming
executive running on a PDP•ll in the Unichannel 15 system.

Some notable features of MACll are:

1. Device and filename specifications for input

2. Error listing on command output device

3. Alphabetized, formatted symbol table listing

4. Conditional assembly directives

5. User defined macros

6. Extensive listing control

Associated Documents:

PDP-11/20 Processor Handbook 112.01071.1855

PDP-11 Peripherals and Interfacing Handbook 112.01071.1854

DOS-15 Users Manual, DEC-15-0DUMA-A-D

EDIT Utility Program, DEC-15-YWZB-DN6

PIP DOS Monitor Utility Program, DEC-15-UPIPA-B-D

The MACll assembler, a subset of the standard MACR0-11 assembler for
the PDP-11, is specifically written for the Unichannel-15 system.
Programs written for the MACR0-11 assembler will not necessarily
assemble correctly with MACll, and programs written for MACll will not
necessarily assemble correctly with MACR0-11.

The MACll assembler generates only absolute binary output.

vii

PART I

INTRODUCTION TO MACll

CHAPTER 1

FUNDAMENTALS OF PROGRAMMING THE PDP•ll

This Chapter presents some fundamental software concepts essential to
efficient assembly language programming of the PDP-11 computer. A
description of the hardware components of the PDP-11 family can be
found in the two DEC paperback handbooks:

PDP-11 Processor Handbook (11/20 or 11/45 edition)

PDP-11 Peripherals and Interfacing Handbook

No attempt is made in this document to describe the PDP-11 hardware or
the function of the various PDP-11 instructions. However, it is
recommended that the reader become familiar with this material before
proceeding.

The new PDP-11 programmer is advised to read this Chapter before
reading further in this manual. The concepts in this Chapter will
create a conceptual matrix within which explanations of the language
fit. Since the techniques described herein work best with the PDP-11
and are used in PDP-11 system programs, they should be cons.idered from
the very start of your PDP-11 programming experience.

1.1 MODULAR PROGRAMMING

The PDP-11 family of computers lend themselves most easily to a
modular system of programming. In such a system the progranuner must
envision the entire program and break it down into constituent
subroutines. Modular development forces an awareness of the final
system. Ideally, this should cause all components of the system to be
considered from the very beginning of the development effort rather
than patched into a partially-developed system. This provides for the
best use of the PDP-11 hardware (as discussed later in this Chapter),
and results in programs which are more easily modified than those
coded with straight-line coding techniques.

To this end, flowcharting of the entire system is
to coding rather than during or after the
programmer is then able to work on small portions
time. Subroutines of approximately one or two
desirable.

1-1

best performed prior
coding effort. The
of the program at a
pages are considered

Modular programming practices maximize the usefulness of an
installation's resources. Progranuned modules can be used in other
programs or systems having similar or identical functions without the
expense of redundant development. Also software modules developed as
functional entities are more likely to be free of serious logical
errors as a result of the original programming effort. The use of
such modules will simplify the development of later systems by
incorporating proven pieces.

Modular-development provides for ease of use and modification rather
than simplifying the original development. While care must be taken
in the beginning to ensure correct modular system development, the
benefits of standardization to the generation of maintenance
programmers which deal with a given assembly are many. (See also the
notes under Commenting Assembly Language Programs.)

PDP-11 assembly language programming best follows a tree-like
structure with the top of the tree being the final results and the
base being the smallest component function. (The Assembler itself is
a tree structure and is briefly described in Figure 1-1.)

1-2

LABEL

SOURCE
PROGRAM

INPUT

INSTRUCTION
MNEMONIC

ASSEMBLER

PROCESSING

OPERATOR OPERAND

BINARY,
LISTING,

SYMBOL TABL
OUTPUT

LINE
. TERMINATOR

ASSEMBLER
DIRECTIVES

MACRO
PROCESSOR

Figure 1-1
Problem Oriented Tree-Structure

1-3

1.1.1 Commenting PDP-11 Assembly Language Programs

When programming in a modular fashion, it is desirable to heavily
comment the beginning of each subroutine, telling what that routine
does: its inputs, outputs, and register usage.

since subroutines are short and encompass only one operation it is not
necessary to tell how the subroutine functions, but only what it does.
An explanation of how a subroutine functions should be documented only
when the procedure is not obvious to the reader. This enables any
later inspection of an unclear subroutine to disclose the maximum
amount of useful information to the reader.

1.1.2 Localized Register Usage

A useful technique in writing subroutines is to save all registers
upon entering a subroutine and restore them prior to leaving the
subroutine. This allows the programmer unrestricted use of the PDP-11
registers, including the program stack, during a subroutine.

Use of registers avoids 2- and 3-word addressing instructions. The
code in Figure 1-2 compares the use of registers with symbolic
ad~ressing. Register use is faster and requires less storage space
than symbolic addressing.

1 .TFT
2 002060 10$: CALL 20$;MOVE A CHARACTER
3 002064 003375 BGT 10$;LOOP IF GT ZERO
4 002066 001432 BFQ 19$;END IF ZERO
5 002070 114200 MOVB -(R2),RO ;TERMINATOR, BACK UP

JPOINTER
6 002072 020027 CMP RO,#MT,MAX ;END OF TYPE?

177603
7 002076 101453 BLOS 22$; YES
8 002100 010146 MOV Rl,-(SP) ;REMEMBER READ POINTER
9 002102 016701 MOV MSBARG,Rl

002034'
10 02106 005721 TST (Rl)+
1.1 02110 010203 MOV R2 ,R3 . AND WRITE POINTER ,
12 02112 005400 NFG RO ;ASSUME MACRO
13 02114 026727 CMP MSBTYP,#MT,MAC ;TRUE?

002026'
177603

14 02122 001402 BFQ 12$; YES, USE IT
15 02124 016700 MOV MSBCNT,RO ;GET ARG NUMBER

002036'
16 02130 010302 12$: MOV R3,R2 ;RESET WRITE POINTER
17 02132 13$: CALI 20$;MOVE A BYTE
18 02136 003375 BGT 13$;LOOP IF PNZ
19 02140 002402 BLT 14$;END IF LESS THAN ZERO
20 02142 005300 DFC RO ;ARE WE THERE YET?
21 02144 003371 BGT 12$; NO
22 02146 105742 14$: TSTB -(R2) ;YES, BACK UP POINTER
23 02150 012601 MOV (SP)+,Rl ;RESET READ POINTER
24 02152 000742 BR 10$;END OF ARGUMENT

; SUBSTITUTION
25
26 02154 010167 19$: MOV R1,MSBMRP ;END OF LINE, SAVE

1-4

002042' ;POINTER
27 02160 052767 BIS #LC,ME,LCFLAG ;FLAG AS MACRO

000400 ;EXPANSION
000010'

28 02166 000726 BR 9$
29
30 02170 032701 20$: BTT #PPMB-1,Rl 7MACRO, END OF BLOCK?

000017
31 02174 001003 BNE 21$; NO
32 02176 016101 MOV -PPMB(Rl),Rl ;YES, POINT TO NEXT

177760 1BLOCK
33 02202 005721 TST (Rl)+ ; MOVE FAST LINK
34 02204 020227 21$: CMJ? R2,#LINBUF+SRCLFN ;OVERFLOW?
35 02210 101404 BLOS 23$; NO
36 02212 ERROR L ;YES, FLAG ERROR
37 02220 105742 TSTB -(R2) ; AND MOVE POINTER

;BACK
38 02222 112122 23$: MOVB (Rl)+,(R2)+ ;MOVE CHAR INTO LINE

;BUFFER
39 02224 RETURN
40
41 02226 22$: CALL ENDMAC ;CLOSE MACRO
42 02232 000167 JMP 1$

177326
43 .ENDC
44
45

Figure 1-2
Segment of PDP-11 Code

Showing 1, 2, and 3-Word Instructions

1-5

1.1.3 Conditional Assemblies

Conditional assemblies are valuable in macro definitions. The
expansion of a macro can be altered during assembly as a result of
specific arguments passed and their use in conditionals. For example,
a macro can be written to handle a given data item differently,
depending upon the value of the item. Only a single algorithm need be
expanded with each macro call. (Conditionals are described in detail
in Section 5.7.)

Conditional assemblies can also be used to generate different versions
of a program from a single source. This is usually done as a result
of one or more symbols being either defined or undefined. Conditional
assemblies are preferred to the creation of a multiplicity of sources.
This principle is followed in the creation of PDP-11 system programs
for the following reasons:

l. Maintenance of a single source program is easier, and
guarantees that a change in one version of the program, which
may affect other versions, is reflected automatically in all
possible versions.

2. Distribution of a single source program allows a customer or
individual user to tailor a system to his configuration and
needs. and continue to update the system as the hardware
environment or programming requirements change.

3. As in the case of maintenance, the debugging and checkout
phase of a single program (even one containing many separate
modules) is easier than testing several distinct versions of
the same basic program.

1.2 REENTRANT CODE

Both the interrupt handling hardware and the subroutine call
instructions (JSR, RTS, EMT, and TRAP) facilitate writing reent~ant
code for the PDP-11. Reentrant code allows a single copy of a given
subroutine or program to be shared by more than one process or task.
This reduces the amount of core needed for multi-task applications
such as the concurrent servicing of peripheral devices.

of
of
of

On the PDP-11, reentrant code depends upon the stack for storage
temporary data values and the current processing status. Presence
information in the stack is not affected by the changing
operational control from one task to another. Control is always
to return to complete an operation which was begun earlier but
completed.

able
not

1.3 PREFERRED ADDRESSING MODES

Addressing modes are described in detail in Chapter 4. Basically, the
PDP-11 programmer has eight types of register addressing and four
types of addressing through the PC register. Those operations
invo1ving genera1 register addressing take one word of core. storage,

l-6

while symbolic addressing can use up to three words. For example:

MOV A,B
MOV RO,Rl

1THREE WORDS OF STORAGE
;ONE WORD OF STORAGE

The user is advised to perform as many · operations as possible
register addressing modes, and to use the remaining addressing
to preset the registers for an operation. This technique saves
and time over the course of a program.

1.4 PARAMETER ASSIGNMENTS

with
modes
space

Parameter assignments should be used to enable a program to be easily
followed through the use of a symbolic cross reference (CREF listing).
For example:

SYM=42

MOV #SYM,RO

Another standard PDP-11 convention is to name the general registers as
follows:

RO %0
Rl = %1
R2 = %2
R3 = %3
R4 = %4
RS = %5
SP = %6 (processor stack pointer)
PC = %7 (program counter)

1.5 SPACE VS. TIMING TRADEOFFS

On the PDP-11 as on all computers, some techniques lead to savings in
storage space and others lead to decreased execution time. Only the
individuai user can determine which is the best combination of the two
for his application. It is the purpose of this section to describe
several means of conserving core storage and/or saving time.

1.5.1 Trap Handler

The use of the trap handler and a dispatch table conserves core
requirements in subroutine calling, but can lead to a decrease in
execution speed due to indirect transfer of control. To illustrate, a
subroutine call can be made in either of the following ways:

1. A JSR instruction which generally requires two PDP-11 words:

JSR R5,SUBA

but is direct and fast.

1-7

2. A TRAP instruction which requires one in-line PDP-11 word:

TRAP N

but is indirect and slower. The TRAP handler must use N to
index through a dispatch table of subroutine addresses and
then JMP to the Nth subroutine in the table.

1.5.2 Register Increment

The operation:

CMPB (RO)+,(RO)+

is preferable to:

TST (RO)+

to increment RO by 2, especially where the initial contents of RO may
be odd, but slower.

1.6 CONDITIONAL BRANCH INSTRUCTIONS

When using the PDP-11 conditional branch instructions, it is
imperauive that the correct choice be made between the signed and the
unsigned branches.

SIGNED

BGE
BLT
BGT
BLE

UNSIGNED

BHIS (BCC)
BLO
BHI
BLOS (BCS)

A common error is to use a signed branch (e.g., BGT) when comparing
two memory addresses. A problem occurs when the two addresses have
opposite signs; that is, one address goes across the 16K (100000(8))
boundary. This type of coding error usua11y appears as a resuit of
relinking at different addresses and/or a change in the size of the
program.

1-8

CHAPTER 2

SOURCE PROGRAM FORMAT

A source program is composed of a sequence of source lines, where each
line contains a single assembly language statement. Each line is
terminated by either a line feed or a vertical-tab character (which
increments the line count by 1) or a form-feed character (which
increments both the line count and page count by 1).

Since the MACll Interface automatically appends a line feed at the end
of every logical input line, the user need not concern himself with
the statement terminator. However, a carriage return character not
followed by a statement terminator generates an error flag. A legal
statement terminator not immediately preceded by a carriage return
causes the Assembler to insert a carriage return character for listing
purposes.

An assembly language line can contain up to 80(10) characters
(exclusive of the statement terminator). Beyond this limit, excess
characters are ignored and generate an error flag.

2.1 STATEMENT FORMAT

A statement can contain up to four fields which are identified by
order of appearance and by specified terminating characters. The
genera1 format of a MAC11 assemb1y 1an9ua9e statement is~

label: operator operand ;comments

The label and comment fields are optional. The operator and operand
fields are interdependent; either may be omitted depending upon the
contents of the other.

The Assembler interprets and processes these statements one by one,
generating one or more binary instructions or data words or performing
an assembly process. A statement must contain one of these fields and
may contain all four types. (Blank lines are legal.)

Some statements have one operand, for example:

CLR RO

2-1

while others have two,

MOV #ERR,R2

An assembly language statement must be complete on one source line.
No continuation lines are allowed.

MACll source statements are formatted with the DOS-15 EDIT program
such that use of the TAB character causes the statement fields to be
aligned. For example:

Label
Field

MASK=-10
REGEXP:

Operator
Field

Operand
Field

Comment
Field

;REGISTER EXPRESSION
7MUST BE ABSOLUTE ABS EXP

REGTST: BIT
BEQ

REGERR: ERROR
REGERX: MOV

BIC
BR

#MASK,VALUE ;3 BITS?

2.1.1 Label Field

REGERX 1 YES , OK
R ;NO, ERROR
#DEFFLG:REGFLG,MODE
#MASK, VALUE
ABSERX

A label is a user-defined symbol which is assigned the value of the
current location counter and entered into the user-defined symbol
table. The value of the label is absolute.

A label is a symbolic means of referring to a specific location within
a program. If present, a label always occurs first in a statement and
must be terminated by a colon. For example, if the current location
is absolute 100(8), the statement:

ABCD: MOV A,B

assigns the value 100(8) to the label ABCD. Subsequent reference to
ABCD references location 100(8).

More than one label may appear
label within the field has
current location counter is
statement:

ABC: $DD:

within a single label field; each
the same value. For example, if the

100(8), the multiple labels in the

A7.7: MOV A,B

cause each of the three labels ABC, $DD, and A7.7 to be equated to the
value 100(8).

The first six characters of a label are significant. An error code is
generated if more than one label share the same first six characters.

A symbol used as a label may not be redefined within the user program.
An attempt to redefine a label results in an error flag in the
assembly listing.

2-2

2.1.2 Operator Field

An operator field follows the label field in a statement, and may
contain a macro call, an instruction mnemonic, or an assembler
directive. The operator may be preceded by none, one or more labels
and may be followed by one or more operands and/or a comment. Leading
and trailing spaces and tabs are ignored.

When the operator is a macro call, the Assembler inserts the
appropriate code to expand the macro. When the operator is an
instruction mnemonic, it specifies the instruction to be generated and
the action to be performed on any operand(s) which followo When the
operator is an Assembler directive, it specifies a certain function or
action to be performed during assembly.

An operator is legally terminated by a space,
non-alphanumeric character (symbol co~ponent).

Consider the following examples:

MOV A,B

MOV@A,B

(space terminates the operator MOV)

(@ terminates the operator MOV)

tab, or any

When the statement line does not contain an operand or comment, the
operator is terminated by a carriage return followed by a line feed,
vertical tab or form feed character.

A blariK operator field is interpreted as a .WORD assembler directive
(see Section 5.3.2).

2.1.3 Operand Field

An operand is that part of a statement which is manipulated by the
operator. Operands may be expressions, numbers, or symbolic or macro
arguments (within the context of the operation). When multiple
operands appear within a statement, each is separated from the next by
one of the following characters: comma, tab, space or paired angle
brackets around one or more operands (see Section 3.1.1). An operand
may be preceded by an operator, label or other operand and followed by
a comment.

The operand field is terminated by a semicolon when followed by a
comment, or by a statement terminator when the operand completes the
statement. For example:

LABEL: MOV A,B ;COMMENT

The space between MOV and A terminates the operator field and begins
the operand field; a comma separates the operands A and B; a
semicolon terminates the operand field and begins the comment field.

2.1.4 Comment Field

The comment field is optional and may contain any ASCII characters
except null, rubout, carriage return, line feed, vertical tab or form
feed. All other characters, even special characters with a defined

2-3

usage, are ignored by the Assembler when appearing in the comment
field.

The comment field may be preceded by one, any, none or all of the
other three field types. Comments must begin with the semicolon
character and end with a statement terminator.

Comments do not affect assembly processing or program execution, but
are useful in source listings for later analysis, debugging, or
documentation purposes.

2.2 FORMAT CONTROL

Horizontal or line formatting of the source program is controlled by
the space and tab characters. These characters have no effect on the
assembly process unless they are embedded within a symbol, number, or
ASCII text; or unless they are used as the operator field terminator.
Thus, these characters can be used to provide an orderly source
program. A statement can be written:

LABEL:MOV(SP)+,TAG;POP VALUE OFF STACK

or, using formatting characters, it can be written:

LABEL: MOV (SP)+,TAG :POP VALUE OFF STACK

which is easier to read in the context of a source program listing.

Vertical formatting, i.e., page size, is controlled by the form feed
character. A page of n lines is created by inserting a form feed
(type the CTRL/FORM keys on the keyboard) after the nth line.

2-4

P A R T II

DETAILS ON PROGRAMMING IN MACll

CHAPTER 3

SYMBOLS AND EXPRESSIONS

This Chapter describes the various components of legal MACll
construction, expressions: the Assembler character set, symbol

numbers, operators, terms and expressions.

3.1 CHARACTER SET

The following characters are legal in MACll source programs:

1. The letters A through z~ Both upper and lower case letters
are accepta.Ple although, upon .input, lower case letters are
converted to upper case letters. Lower case letters can only
be output by sending their ASCII values to the output device.
This conversion is not true for .ASCII, .ASCIZ, ' (single
quote) o~ n (double quote) 'statements if .ENABL LC is in
effect.

2a The digits 0 through 9.

3s The characters • (period or dot) and$ (dollar sign),

The special characters are as follows:

Character Designation

carriage return

line feed

form feed

vertical tab

colon

equal sign

% percent sign

tab

Function

formatting character

source statement terminators

label terminator

direct assignment indicator

register term indicator

item or field terminator

3-1

space

@

,
;

<

>

+

*

I

&

"

t

\

number sign

at sign

left parenthesis

right parenthesis

item or field terminator

immediate expression indicator

deferred addressing indicator

initial register indicator

terminal register indicator

comma operand field separator

semi-colon comment field indicator

left angle bracket initial argument or expression
indicator

right angle bracket terminal argument or expression
indicator

plus sign

minus sign

asterisk

slash

ampersand

exclamation

double quote

single quote

up arrow

backslash

arithmetic addition operator or
autoincrement indicator

arithmetic subtraction operator
or autodecrement indicator

arithmetic multiplication operator

arithmetic division operator

logical AND operator

logical inclusive OR operator

double ASCII character indicator

single ASCII character indicator

universal operator,
argument indicator

macro numeric argument indicator

3.1.1 Separating and Delimiting Characters

Reference is made in the remainder of the manual to legal separating
characters and legal argument delimiters. These terms are defined in
Tables 3-1 and 3-2.

3-2

Character

space

,

Character

< ••• >

t\ ••• \

Table 3-1
Legal Separating Characters

Definition usage

one or more spaces A space is a legal separator only
and/or tabs for argument operands. Spaces

within expressions are ignored (see
Section 3.8).

comma A comma is a legal separator for
both expressions and the argument
operands.

Table 3-2
Legal Delimiting Characters

Definition

paired angle brackets

Up arrow construction
where the up arrow
character is followed
by an argument
bracketed by any
paired printing
characters.

Usage

Paired angle brackets are used to
enclose an argument, particularly
when that argument contains
separating characters. Paired
angle brackets may be used anywhere
in a program to enclose an
expression for treatment as a term.

This construction is equivalent in
function to the paired angle
brackets and is generally used only
where the argument contains angle
brackets.

Where argument delimiting characters are used, they must bracket the
first (and, optionally, any following) argument(s). The character<
and the characters t\, where \ is any printing character, can be
considered unary operators which cannot be immediately preceded by
another argument. For example:

.MACRO TEM (AB)C

indicates a macro definition with two arguments, while

.MACRO TEL C{AB)

has only one argument. The closing >, or matching character where the
up arrow construction is used, acts as a separator. The opening
argument delimiter does not act as an argument separator.

Angle brackets can be nested as follows:

(A(B)C)

3-3

which reduces to:
AC

and is considered to be one argument in both forms.

3.1.2 Illegal Characters

A character can be illegal in one of two ways:

1. A character which is not recognized as an element of the
MACll character set is always an illegal character and causes
immediate termination of the current line at that point, plus
the output of an error flag in the assembly listingo For
example:

LABEL..-* A: MOV A,B

Since the backarrow is not a recognized character, the entire
line is treated as a:

.WORD LABEL

statement and is flagged in the listing.

2. A legal MACll character may be illegal in context. Such a
character generates a Q error on the assembly listing.

3.1.3 Operator Characters

Legal unary operators under MACll are as follows:

Unary
Operator Explanation

+ plus sign

minus sign

t up arrow,
universal unary
operator (this
usage is described
in greater detail
in Sections 5.4.2
and 5.6.2).

Example

+A (positive value of A,
equivalent to A)

-A (negative, 2's complement,
value of A)

tC24 (8) (interprets the l's complement
value of 24 (8))

tD127 (interprets 127 as a decimal
number)

t034 (interprets 34 as an octal
number)

tBllOOOlll (interprets 11000111
binary value)

as a

The unary operators as described above can be used adjacent to each
other in a term. For example:

-%5
tCtOl2

Legal binary operators under MACll are as follows:

3-4

Binary
Operator

+

*
I
&

. 1

Explanation

addition
subtraction
multiplication
division
logical AND
logical inclusive OR

A+B
A-B
A*B
A/B
A&B
AIB

Example

(16-bit product returned)
(16-bit quotient returned)

All binary operators have the same priority. Items can be grouped for
evaluation within an expression by enclosure in angle brackets. Terms
in angle brackets are evaluated first, and remaining operations are
performed left to right. For example:

.WORD 1+2*3

.WORD 1+(2*3)

3.2 MACll SYMBOLS

;IS 11 OCTAL
;IS 7 OCTAL

There are three types of symbols: permanent, user-defined and macro.
MACll maintains three types of symbol tables: the Permanent Symbol
Table (PST), the User Symbol Table (UST) and the Macro Symbol Table
(MST). The PST contains all the permanent symbols. The UST and MST
are constructed as the source program is assembled; user-defined
symbols are added to the table as they are encountered.

3.2.l Permanent Symbols

Permanent symbols consist of the instruction mnemonics (Appendix B.3)
and assembler directives (Chapters 5 and 6, Appendix B). These symbols
are a permanent part of the Assembler and need not be defined before
being used in the source program.

3.2.2 User-Defined and MACRO Symbols

User-defined symbols are those used as labels (Section 2.1.1) or
defined by direct assignment (Section 3.3). These symbols are added to
the User Symbo1 Tab1e as they are encountered during the first pass of
the assembly. Macro symbols are those symbols used as macro names
(Section 6.1). These symbols are added to the Macro Symbol Table as
they are encountered during the assembly.

User-defined
characters,
illegal.

and macro symbols can be composed of alphanumeric
dollar signs, and periods only; any other character is

The following rules apply to the creation of user-defined and macro
symbols:

1. The first character must not be a number.

2. Each symbol must be unique within the first six characters.

3. A symbol can be written with more than six legal characters,
but the seventh and subsequent characters are only checked

3-5

for legality, and are not otherwise recognized by the
Assembler.

4. Spaces, tabs, and illegal characters must not be embedded
within a symbol.

The value of a symbol depends upon its use in the program.
in the operator field may be any one of the three symbol
determine the value of the symbol, the Assembler searches
symbol tables in the following order:

A symbol
types. To
the three

1. Macro Symbol Table
2. Permanent Symbol Table
3. User-defined Symbol Table

A symbol found in the operand field is sought in the

1. User-defined Symbol Table
2. Permanent Symbol Table

in that order. The Assembler never expects to find a macro name in an
operand field.

These search orders allow redefinition of
entries as user-defined or macro symbols.
assigned to both a macro and a label.

Permanent Symbol Table
The same name can also be

All user-defined symbols are internal and must be defined within the
current assembly.

3.3 DIRECT ASSIGNMENTS

A direct assignment statement associates a symbol with a value. When
a direct assignment statement defines a symbol for the first time,
that symbol is entered into the user symbol table and the specified
value is associated with it. A symbol may be redefined by assigning a
new value to a previously defined symbol. The latest assigned value
replaces any previous value assigned to a symbol.

The general format for a direct assignment statement is:

symbol = expression

Symbols take on the absolute attribute of their defining expression.
For example:

A= l ;THE SYMBOL A IS EQUATED TO THE
;VALUE 1.

B='A-l&MASKLOW ;THE SYMBOL B IS EQUATED TO THE
;VALUE OF THE EXPRESSION.

C: D = 3 ;THE SYMBOL D IS EQUATED TO 3.

E: MOV #!,ABLE ;LABELS C AND E ARE EQUATED TO THE
;LOCATION OF THE MOV COMMAND.

The following conventions apply to direct assignment statements:

3-6

1. An equal sign (=) must separate the symbol from the
expression defining the symbol value.

2. A direct assignment statement is usually placed in the
operator field and may be preceded by a label and followed by
a conunent.

3. only one symbol can be defined by any one direct assignment
statement.

4. Only one level of forward referencing is allowed.

Example of two levels of forward referencing (illegal):

x = y
y = z
z = 1

x and Y are both undefined throughout pass 1. X is undefined
throughout pass 2 and causes a u error flag in the assembly listing.

3.4 REGISTER SYMBOLS

The eight general registers of the PDP-11 are numbered 0 through 7 and
can be expressed in the source program as:

%0
%1

•

%7

where the digit indicating the specific register can be replaced by
any legal term which can be evaluated during the first assembly pass.

It is recommended that the programmer create and use symbolic names
for all register references. A register symbol is defined in a direct
assignment statement, among the first statements in the program. The
defining expression of a register symbol must be absolute.
example:

8
9
10
11
12
13
14
15
16
17
18
19

000000
000001
000002
000003
000004
000005
000006
000006
000007
000007

R0=%0
Rl=%1
R2=%2
R3=%3
R4=%4
R5=%5
R6=%6
SP=%6
PC=%7
R7=%7

3-7

1REGISTER DEFINITION

For

The symbolic names assigned to the registers in the example above are
the conventional names used in all PDP-11 system programso Since
these names are fairly mnemonic, it is suggested the user follow this
convention. Registers 6 and 7 are given special names because of
their special functions, while registers 0 through 5 are given similar
names to denote their status as general purpose registers.

All register symbols must be defined before they are referenced. A
forward reference to a register symbol is flagged as an error.

The % character can be used with any term or expression to specify a
register. (A register expression less than 0 or greater than 7 is
flagged with an R error code.) For example:

CLR %3+1

is equivalent to

CLR %4

and clears the contents of register 4, while

CLR 4

clears the contents of memory address 4.

In certain cases a register can be referenced without the use of a
register symbol or register expression; these cases are recognized
through the context of the statement. An example is shown below:

JSR S,SUBR ;FIRST OPERAND FIELD MUST ALWAYS BE A REGISTER

3.5 LOCAL SYMBOLS

Local symbols are specially formatted symbols used as labels within a
given range. Use of local symbols can achieve considerable savings in
core space within the user symbol table. Core cost is one word for
each local symbol in each local symbol block, as compared with four
words of storage for each label stored in the user symbol tableo

Local symbols provide a convenient means of generating labels for
branch instructions, etc. Use of local symbols reduces the
possibility of multiply-defined symbols within a user program and
separates entry point symbols from local referencese Local symbols
are not referenced from outside their local symbol block.

Local symbols are of the form n$ where n is a decimal integer from 1
to 127, inclusive, and can only be used on word boundaries. Local
symbols include:

1$
27$
59$

104$

Within a local symbol block, local symbols can be defined and
referenced. However, a local symbol cannot be referenced outside the
block in which it is defined. There is no conflict with labels of the
same name in other local symbol blocks.

3-8

Local symbols 64$ through 127$ can be generated automatically as a
feature of the macro processor (see Section 6.3.5 for further
details). When using local symbols, the user is advised to, first use
the range from 1$ to 63$.

A local symbol block is delimited in one of the following ways:

1. The range of a single local symbol block can consist of those
statements between two normally constructed symbol labels.
(Note that a statement of the form

2.

LABEL=.

is a direct assignment, does not create a label in the strict
sense, and does not delimit a local range.)

The range of a single local symbol block can be delimited
with the .ENABL LSB and the first symbolic label. The
default for LSB is off.

For examples of local symbols and local symbol blocks, see Figure 3-3.

Ln. Octal
No. Expansion Source Code Comments

1 .SBTTL SECTOR INITIALIZATION
2
3
8
9
10 000000
11 00000 XCTPRG:
12 00000 012700 MOV fIMPURE,RO

000000
13 00004 005020 1$: CLR (RO)+ ;CLEAR IMPURE AREA
14 00006 022700 CMP UMPTOP,RO

000040
15 00012 101374 BHI 1$
16
17 000000 7PASS INITIALIZATION

;CODE
l.9 00000 XCTPAS:
19 00000 012700 MOV #:tMPPAS ,RO

000000
20 00004 005020 1$: CLR (RO)+ ; CLEAR IMPURE PART
21 00006 022700 CMP UMPTOP,RO

000040
22 00012 101374 BHI 1$
23
24 000000 ;LINE INITIALIZATION

;CODE
25 00000 XCTLIN:
26 00020 012700 MOV #IMPLIN,RO

000000
27 00004 005020 1$: CLR (RO}+
28 00006 022700

000040
CMP #IMPTOP,RO

29 00012 101374 BHI 1$
30

3-9

31 000000 1MIXED MODE SECTOR

Figure 3-3
Assembly source Listing of MACll Code

Showing Local Symbol Blocks

The maximum offset of a local symbol from the base of its local symbol
blocks is 128 decimal words. Symbols beyond this range are flagged
with an A error code.

3.6 ASSEMBLY LOCATION COUNTER

The period (.) is the symbol for the assembly location counter. When
used in the operand field of an instruction, it represents the address
of the first word of the instructionQ W'nen used in the operand field
of an assembler directive, it represents the address of the current
byte or word. For example:

A: MOV #.,RO ;. REFERS TO LOCATION A,
;I.E. 6 THE ADDRESS OF THE
:MOV INSTRUCTION.

(# is explained in Section 5.9.)

At the beginning of each assembly pass, the Assembler clears the
location counter. Normally, consecutive memory locations are assigned
to each byte of binary data generated. However, the location of the
stored binary data may be changed by a direct assignment altering the
location counter.

The expression defining the location counter must not contain forward
references or symbols that vary from one pass to anothere

Examples:

.=500

FIRST: MOV .+10,COUNT

.=520

SECOND: MOV .,INDEX

:SET LOCATION COUNTER TO ABSOLUTE
1500

;THE L~.BEL FIRST HAS THE VALUE 500(8)
;.+10 EQUALS 510(8). THE CONTENTS OF
;THE LOCATION 510(8) WILL BE DEPOSITED
;IN LOCATION COUNT&

;THE ASSEMBLY LOCATION COUNTER NOW
;HAS A VALUE OF ABSOLUTE 520(8).

;THE LABEL SECOND HAS THE VALUE 520(8)
:THE CONTENTS OF LOCATION 520(8), THAT
;IS, THE BINARY CODE FOR THE INSTRUCTION
;ITSELF, WILL BE DEPOSITED IN LOCATION
;INDEX.

;SET LOCATION COUNTER TO ABSOLUTE 540 OF
;THE PROGRAM SECTION.

3-10

THIRD: .WORD 0 ;THE LABEL THIRD HAS THE VALUE OF
;ABSOLUTE 540.

Storage area may be reserved by advancing the location counter. For
example, if the current value of the location counter is 1000, the
direct assignment statement

.=.+100

reserves 100(8) bytes of storage space in the program.
instruction is stored at 1100.

The next

3.7 NUMBERS

The MACll Assembler asswnes all numbers in the source program are to
be interpreted in octal radix unless otherwise specified. The asswned
radix can be altered with the .RADIX directive (see Section S.4.1) or
individual numbers can be treated as being of decimal, binary, or
octal radix (see Section S.4.2).

Octal. numbers consist of the digits 0 through 7 only. A number not
specified as a decimal number and containing an 8 or 9 is flagged with
an N error code and treated as a decimal number.

Negative numbers are preceded by a minus sign (the Assembler
translates them into 2's complement form). Positive numbers may be
preceded by a plus sign, although this is not required.

A number which is too large to fit into 16
truncated from the left and flagged with
assembly listing.

3.8 TERMS

a
bits (177777<n) is

T error code in the

A term is a component of an expression. A term may be one of the
following:

1. A number, as defined in Section 3.7, whose 16-bit value is
used.

2. A symbol, as defined earlier in the chapter. Symbols are
interpreted according to the following hierarchy:

a. a period causes the value of the current location counter
to be used.

b. a permanent symbol whose basic value is used and whose
arguments (if any) are ignored.

c. an undefined symbol is assigned a value of zero and
inserted in the user-defined symbol table.

3. An ASCII conversion using either an apostrophe followed by a
single ASCII character or a double quote followed by two
ASCII characters which results in a word containing the 7-bit
ASCII value of the character(s). (This construction is
explained in greater detail in Section S.3.3.)

3-11

4. A term may also be an expression or term enclosed in angle
brackets. Any quantity enclosed in angle brackets is
evaluated before the remainder of the expression in which it
is found. Angle brackets are used to alter the left to right
evaluation of expressions (to differentiate between A*B+C and
A*<B+C>) or to apply a unary operator to an entire expression
{-<A+B), for example).

3.9 EXPRESSIONS

Expressions are combinations of terms joined together by binary
operators and which reduce to a 16-bit value. The operands of a .BYTE
directive (see Section 5.3.1) are evaluated as word expressions before
truncation to the low-order eight bits. Prior to truncation, the
high-order byte must be zero or all ones (when byte value is negative,
the sign bit is propagated}.

Expressions are evaluate~ left to right with no operator hierarchy
rules except that unary operators take precedence over binary
operators. A term preceded by a unary operator can be considered as
containing that unary operator. (Terms are evaluated, where
necessary, before their use in expressionss) Multiple unary operators
are valid and are treated as follows:

-+-A

is equivalent to

-<+<-A>>

A missing term, expression, or external symbol
zero. A missing operator is interpreted
generated for each missing term or operatoro

TAG LA 177777

is evaluated as

TAG LA+l77777

is interpreted as a
as +. A Q error flag is

For example:

with a Q error flag on the assembly listing line.

The value of an expression is the value of the absolute part of the
expression; e.g.,

A = 5
= 20

TAG MOV TAG+A,RO ;SET RO TO 25 (8).

3-12

CHAPTER 4

ADDRESSING MODES

The program counter
always contains the
address of the next
word of the current

(PC, register 7 of the eight
address of the next word to be
instruction to be executed, or
instruction.

general registers)
fetched; i.e., the
the second or third

In order to understand how the address modes operate and how they
assemble, the action of the program counter must be understood. The
key rule is:

Whenever the processor implicitly
the program counter to fetch a word
memory, the program counter
automatically incremented by two
the fetch.

uses
from

is
after

That is, when an instruction is fetched, the PC is incremented by two,
so that it is pointing to the next word in memory7 and, if an
instruction uses indexing (Sections 4.7, 4.8 and 4.11) the processor
uses the program counter to fetch the base from memory. Hence, using
the rule above, the PC increments by two, and now points to the next
word.

The following conventions are used in this Section:

l. Let E be any expression as defined in Chapter 3.

2. Let R be a register expression.
containing a term preceded by
previously equated to such a term.

This is any expression
a % character or a symbol

Examples:

RO = !fsO
Rl = RO+l
R2 = l+U

;GENERAL REGISTER 0
1GENERAL REGISTER 1
;GENERAL REGISTER 2

3. Let ER be a register expression or an expression in the range
0 to 7 inclusive.

4. Let A be a general ·address specification which
6-bit mode address field as described in sections
of the PDP-11 Processor Handbook (both 11/20
versions).

4-1

produces a
3.1 and 3.2
and 11/45

The addressing specifications, A, can be explained in terms of E, R,
and ER as defined above. Each is illustrated with the single operand
instruction CLR or double operand instruction MOV.

4.1 REGISTER MODE

The register contains the operand.

Format for A: R

Examples: R0=%0
CLR RO

4.2 REGISTER DEFERRED MODE

iDEFINE RO AS REGISTER 0
1CLEAR REGISTER 0

The rP.gister contains the address of the operande

Format for A:

Examples:

4.3 AUTOINCREMENT MODE

@R or (ER)

CLR @Rl
CLR (1)

;BOTH INSTRUCTIONS CLEAR
;THE WORD AT THE ADDRESS
;CONTAINED IN REGISTER 1

The contents of the register are incremented immediately after being
used as the address of the operand. (See note below.)

Format for A:

Examples:

(ER)+

CLR (RO)+
CLR (R0+3)+
CLR (2)+

NOTE

;EACH INSTRUCTION CLEARS
;THE WORD AT THE ADDRESS
;CONTAINED IN THE
:SPECIFIED REGISTER AND
;INCREMENTS THAT
;REGISTER'S CONTENTS BY
;TWO.

Both JMP and ISR instructions using
non-deferred autoincrement mode,
autoincrement the register before its
use on the PDP-11/20 (but not on the
PDP-11/45 or 11/05). In double operand
instructions of the addressing form
%R,(R)+ or %R,-(R) where the source and
destination registers are the same, the
source operand is evaluated as the
autoincremented or autodecremented
value: but the destination register, at
the time it is used, still contains the
originally intended effective address.

4-2

In the following two examples, as
executed on the PDP-11/20, RO originally
contains 100.

MOV RO,(O)+ ;THE QUANTITY 102 IS
;MOVED TO LOCATION 100

MOV R0,-(0) ;THE QUANTITY 76 IS MOVED
;TO LOCATION 76

The use of these forms should be avoided
as they are not compatible with the
PDP-11/05 and 11/45.

A Z error code
compatible among
warning code.

is printed with each instruction which is not
all members of the PDP-11 family. This is merely a

4.4 AUTOINCREMENT DEFERRED MODE

The register contains the pointer to the address of the operand. The
contents of the register are incremented after being used.

Format for A:

Example:

4.5 AUTODECREMENT MODE

@(ER)+

CLR @(3)+ ;CONTENTS OF REGISTER 3
;POINT TO ADDRESS OF WORD
;TO BE CLEARED BEFORE
;BEING INCREMENTED BY TWO

The contents of the register are decremented before being used as the
address of the operand (see note under autoincrement mode).

Format for A:

Examples:

-(ER)

CLR -(RO)
CLR -(RO+J)
CLR -(2)

4.6 AUTODECREMENT DEFERRED MODE

;DECREMENT CONTENTS OF
;REGISTERS 0 1 3 1 AND 2 BY
:TWO BEFORE USING AS
;ADDRESSES OF WORDS TO BE
;CLEARED.

The contents of the register are decremented before being used as the
pointer to the address of the operand.

Format for A:

Example:

@-(ER)

CLR @-(2)

4-3

;DECREMENT CONTENTS OF
;REGISTER 2 BY TWO BEFORE
;USING AS POINTER TO
;ADDRESS OF WORD TO BE
;CLEARED.

4.7 INDEX MODE

The value of an expression E is stored as the second or third word of
the instruction. The effective address is calculated as the value of
E plus the contents of register ER. The value E is called the base.

Format for A: E(ER)

Examples: CLR X+2 (Rl)

CLR -2(3)

4.8 INDEX DEFERRED MODE

1EFFECTIVE ADDRESS IS X+2
;PLUS THE CONTENTS OF
; REGISTER l.
;EFFECTIVE
;ADDRESS IS -2 PLUS THE
;CONTENTS OF REGISTER 3.

An expression plus the contents of a register gives the pointer to the
address of the operand.

Format for A:

Example:

4.9 IMMEDIATE MODE

@E (ER)

CLR @14(4) ;IF REGISTER 4 HOLDS 100
;AND LOCATION 114 HOLDS
;2000, LOCATION 2000 IS
JCLEARED.

The immediate mode allows the operand itself to be stored as the
second or third word of the instruction. It is assembled as an
autoincrement of register 7, the PC.

Format for A: #E

Examp1es: MOV #100 1 RO
MOV fX, RO

;MOVE AN OCTAL J.00 TO
~REGISTER 0 • MOVE THE
;VALUE OF SYMBOL X TO
;REGISTER O.

The operation of this mode is explained as followsa

The statement MOV #lOO,R3 assembles as two words. These are:

0 l 2 7 0 3
0 0 0 1 0 0

Just before this instruction is fetched and executed, the PC points to
the first word of the instruction. The processor fetches the first
word and increments the PC by two. The source operand mode is 27
(autoincrement the PC). Thus the PC is used as a pointer to fetch the
operand (the second word of the instruction) before being incremented
by two, to point to the next instruction.

4-4

4.10 ABSOLUTE MODE

Absolute mode
specifies an
word of the
autoincrement

is the equivalent of immediate mode deferred. @#E
absolute address which is stored in the second or third
instruction. Absolute mode is assembled as an

deferred of register 7, the PC.

Format for A: @#E

Examples:

4.11 RELATIVE MODE

MOV @#100 ,RO

CLR @IX

;MOVE THE VALUE OF THE
;CONTENTS OF LOCATION 100
rTO REGISTER 0. CLEAR
;THE CONTENTS OF THE
1LOCATION WHOSE ADDRESS
;IS X.

Relative mode is the normal mode for memory references.

Format for A: E

Examples: CLR 100
MOV X,Y

;CLEAR LOCATION 100.
;MOVE CONTENTS OF
JLOCATION X TO LOCATION
·;Y.

Relative mode is assembled as index mode, using register 7, the PC, as
the index register. The base of the address calculation, which is
stored in the second or third word of the instruction, is not the
address of the operand (as in index mode), but the number which, when
added to the PC, becomes the address of the operand. Thus, the base
is X-Pc, which is called an offset. The operation is explained as
follows:

If the statement MOV lOO,R3 is assembled at absolute location 20, the
assembled code is:

Location 20:
Location 22:

0 l 6 7 0 3
0 0 0 0 5 4

The processor fetches the MOV instruction and adds two to the PC so
that it points to 1ocation 22. The source operand mode is 67; that is,
indexed by the PC. To pick up the base, the processor fetches the
word pointed to by the PC and adds two to the PC. The PC now points
to location 24. To calculate the address of the source operand, the
base is added to the designated register. That is, BASE+PC=54+24=100,
the operand address.

Since the Assembler considers "•" as the address of the first word of
the instruction, an equivalent index mode statement would be:

MOV 100-.-4(PC) 1 R3

This mode is called relative because the operand address is calculated
relative to the current PC. The base is the distance or offset (in
bytes) between the operand and the current PC. If the operator and
its operand are moved in memory so that the distance between the
operator and data remains constant, the instruction will operate
correctly anywhere in core.

4-5

4.12 RELATIVE DEFERRED MODE

Relative deferred mode is similar to relative mode, except that the
expression, E, is used as the pointer to the address of the operand.

Format for A: @E

Example: MOV @X,RO ;MOVE THE CONTENTS OF THE
;LOCATION WHOSE ADDRESS IS
JIN X INTO REGISTER O.

4.13 TABLE OF MODE FORMS AND CODES

Each instruction takes at least one word. Operands of the first six
forms listed below do not increase the length of an instruction. Each
operand in one of the other modes, however, increases the instruction
length by one word.

Form Mode Meaning

R On Register mode
@R or (ER) ln Register deferred mode
(ER)+ 2n Autoincrement mode
@(ER)+ 3n Autoincrement deferred mode
-(ER) 4n Autodecrement mode
@-(ER) Sn Autodecrement deferred mode

where n is the register number.

Any of the following forms adds one word to the instruction length:

Form Mode Meaning

E(ER) 6n index mode
@E (ER) 7n Index deferred mode
iE 27 Immediate mode
@#E 37 Absolute memory reference mode
E 67 Relative mode
@E 77 Relative deferred reference mode

where n is the register number. Note that in the last four forms,
register 7 (the PC) is referenced.

NOTE

1. An alternate form for @R is (ER).
However, the form @(ER) is equivalent to
@0 (ER).

2. The form @#E differs from the form E in
that the second or third word of the
instruction contains the absolute
address of the operand rather than the
relative distance between the operand

4-6

and the PC. Thus, the instruction
CLR @ilOO clears absolute location 100
even if the instruction is moved from
the point at which it was assembled. ·

4.14 BRANCH INSTRUCTION ADDRESSING

The.branch instructions are 1-word instructions. The hiqh byte
contains the op code and the low byte contains an 8-bit signed offset
(7 bits plus sign) which specifies the branch address relative to the
PC. The hardware calculates the branch address as follows:

1. Extend the sign of the offset through bits 8-15.

2. Multiply the result by 2. This creates a word offset rather
than a byte offset.

3. Add the result to the PC to form the final branch address.

The Assembler performs the reverse operation to form the byte off set
from the specified address. Remember that when the offset is added to
the PC, the PC is pointing to the word following the branch
instruction1 hence the factor -2 in the calculation.

Byte offset = (E-PC)/2 truncated to eight bits.

Since PC = .+2, we have

Byte offset = (E-.-2)/2 truncated to eight bits.

The EMT and TRAP instructions do not use the low-order byte of the
word. This allows information to be transferred to the trap handlers
in the low order byte. If EMT or TRAP is followed by an expression,
the value is put into the low-order byte of the word. However, if the
expression is too big ()377(8)) it is trwicated to eight bits and a T
error flag is generated.

4-7

P A RT III

MACll ASSEMBLER DIRECTIVES

Chapters 5 and 6 describe all MACll directives. Directives are
statements which cause the Assembler to perform certain processing
operations. Chapter 5 describes several types of directives including
those to control symbol interpretation, listing header material,
program sections, data storage format, assembly listings, and
floating-point formats. Chapter 6 describes those directives having
to do with macros, macro arguments, and repetitive coding situations.

Assembler directives can be preceded by a label, subject to
restrictions associated with specific directives, and followed by a
comment. An assembler directive occupies the operator field of a
MACll source line. Only one directive can be placed on any one line.
Zero, one, or more operands can occupy the operand field1 legal
operands differ with each directive and may be symbols, expressions,
or arguments.

CHAPTER 5

GENERAL ASSEMBLER DIRECTIVES

5.1 LISTING CONTROL DIRECTIVES -

s.1.1 .LIST and .NLIST

Listing options can be specified in the text of a MACll program
through the .LIST and .NLIST directives. These are of the form:

where:

.LIST arg

.NLIST arg

arg represents one or more optional argwnents.

When used without argwnents, the listing directives alter the listing
level count. The listing level count causes the listing to be
suppressed when it is negative. The count is initialized to zero,
incremented for each .LIST and decremented for each .NLIST. For
example:

.MACRO LTEST JLIST TEST
JA-THIS LINE SHOULD LIST

.NLIST
JB-THIS LINE SHOULD NOT LIST

.NLIST
JC-THIS LINE SHOULD NOT LIST

.LIST
JD-THIS LINE SHOULD NOT LIST (LEVEL NOT BACK TO

.LIST
1E-THIS LINE SHOULD LIST

0 ENDM
JLTEST

;A-THIS LINE SHOULD LIST
.NLIST
.LIST

(LEVEL BACK TO ZERO)

1CALL THE MACRO

;E-THIS LINE SHOULD LIST (LEVEL BACK TO ZERO)

ZERO)

The primary purpose of the level count is to allow macro
expansions to be selectively listed and yet exit with the level
returned to the status current during the macro call.

The use of argwnents with the listing directives does not affect
the level countr however, use of .LIST and .NLIST can be used to
override the current listing control. For example:

5-1

.MACRO XX

.LIST
X=.
.NLIST
•

• ENDM
.NLIST ME
xx
.LIST
X=.

JLIST NEXT LINE

;DO NOT LIST REMAINDER
:OF MACRO EXPANSION

;DO NOT LIST MACRO EXPANSIONS

1LIST NEXT LINE

Allowable arguments for use with the listing directives are as follows
(these arguments can be used singly or in combination):

Argument Default

SEQ list

LOC list

BIN list

BEX list

SRC list

COM list

MD list

MC list

ME no list

MEE no list

Function

Controls the listing of source line sequence
nwnbers. Error flags are normally printed on
the line preceding the questionable source
statement.

Controls the listing of the location counter
(this field would not normally be
suppressed).

Controls the listing of generated binary
code.

Controls listing of binary extensions; that
is, those locations and binary contents
beyond the first binary word (per source
statement). This is a subset of the BIN
argument.

Controls the listing of the source code.

Controls the listing of comments. This is a
subset of the SRC argument and can be used to
reduce listing time and/or space where
comments are unnecessary.

Controls listing of macro definitions and
repeat range expansions.

Controls listing of macro calls and repeat
range expressionso

Controls listing of macro expansions.

Controls listing of macro expansion binary
code. A .LIST MEB causes only those macro
expansion statements producing binary code to
be listed. This is a subset of the ME
argument.

5-2

CND

LD

TOC

TTM

SYM

An example
is shown
generating
line.

list

no list

list

Teletype
mode

list

Controls the listing of
conditions and all .IF and .ENDC
This argument permits conditional
to be listed without including
code.

unsatisfied
statements.
assemblies

unsatisfied

Control listing of all listing directives
having no arguments (those used to alter the
listing level count).

Control listing of tables of contents on pass
l of the assembly (see Section 5.1.4
describing the .SBTTL directive). The full
assembly listing is printed during pass 1 of
the assembly.

Controls listing output format. The TTM
argument (the default case) causes output
lines to be truncated to 72 characters.
Binary code is printed with the binary
extensions below the first binary word. The
alternative (.NLIST TTM) to Teletype mode is
line printer mode, which is shown in Figure
6-1.

Controls the listing of the symbol table for
the assembly.

of an assembly listing as sent to a 132-column line printer
in Figure 5-1. Notice that binary extensions for statements
more than one word are spread horizontally on the source

5-3

MACfrn VflJQ!JA a 1 MACRO Vlilf63A, 1
ASSE~BL.ER PROPE'R

1 ?.1~1766 GETL.IN1 l GET A~'! !NPUT !- P!E
2 o.llrJi 766 SAVREG
3 Clf:i31712 "11670'1 e!0~!i:l~0 I 1$1 MOV fF'CNT, R!i:l ; A 'JY RFSERvEn FF 1 S?
4 t'lld:1776 0014221 E3E 0 31.$. 1\J r) •
5 Pf02!2100 160061 0!ll0r622, ADO R~1PAGNUM :YE~, UPDATE PAGE ~lUt18 ER
6 '1JJ20~4 ''12767 1,77777 01.i0026 1 MOV #.,.1,PAGEXT
7 002012 iH5506 7 C'l0CH:l12 1 CL.R L.lNNUM ; P!!T 'IEW CREF SECWE'JCE
8 illfa2016 \-HJ5&:i67 0k'J0i!l20' CL.R Fr'CNT
9 Pll2J2l2122 k1r6506 7 0210016 t CL.R SEQEND

U' 002026 (,H,,767 '1lliH:l!i:lQ! Ill' TS 'f P4SS
11 1'1~2032 0fd14C12 SEQ 3:U
12 ~02034 i1Jld!3"67 00121'1:l1kl' CLR LPPCNT
13 C1~2040 ~127~2 0U712' 3U MOV IH. I NSUF' I R2
:1.4 Cllr2!2fa44 '~1"267 2!2l!IJ12 1 MOV R2,L.CBEGL. JSEAT UP BEGlNNHJG
1!5 VllZl20!'H3 03.2767 ((.102116, CHHH'14 1 '1 ov #1..lNEND,LCENDL . AMO END OF' I.. HJE ~1ARKERS ' H Clll:!l22156 0(69767 00020ra, TST SML.CNT ; I ~! SYSTEM MACRO?

U'1 18 0~2062 0~h45 BNE 4~$; YES, SPtCtAL
I 21 0~2064 ~16701 ~ia2214, MOV MSBMRP,Ri ;ASSUME MACRI') IN PROGRESS
""' 22 21Uk'l'?l'll taftJ!:U6 EINE U$ 1 BRA'JCH IF" so

24 C!!f6U12 fJJl.27U 2JU756' MOV #SRCBUF,R1
25 111020?'6 0\HIT #SRCl..NK
26 taf/l2U4 0(ill!3267 0'1}0ill12 1 lNC L. lNNUM
27 ~rll21U 1Ui'fllel 00fa75J' MOVB SRCH0Hi>3 ~rm ;GET CODE BYTE
28 121~2U4 ~~271'/lla el~ff.IWJ47 en itld4 7, fH~ ;ANYTHING 8.AF.'l?
29 302120 0I01403 F3EQ 32$. NO •
3el 002:1.n ERROR L. ;YES, ERRO~

3:1. ll!fiJ2130 :U:l6Ulil J2$; ROL.B R0 ;EOF?
32 rll!IJ2130 Hl0ril14 B~I.. 2~ NO
33 Q102l,:S4 Q!!j6767 0'HHH'16' 0~0004' BXS CSXSAl/ 1 ENOF'LG
34 002:1.42 2l'3Ulrl!3 BNE: 34$

Figure 5-1
Example of MACll Line Printer Listing

(132-column line printer)

5.1.2 Page Headings

The MACll Assembler outputs each page in the format shOW'n in Figure
5-1, Line Printer Listing. On the first line of each listing page the
Assembler prints (.from right to left):

1. title taken from .TITLE directive.

2. assembler version identification

3. page number.

The second line of each listing page contains the subtitle text
specified in the last encountered .SBTTL directive.

5.1.3 .TITLE

The .TITLE directive is used to assign a name to the listing output.
The name is the first symbol following the directive and must be six
Radix-50 characters or less {any characters beyond the first six are
ignored). Non-Radix 50 characters are not acceptable. For example:

.TITLE PROG TO PERFORM DAILY ACCOUNTING

causes the listing output of the assembled program to be named PROG
{this name is distinguished from the filename of the binary output
specified in the command string to the Assembler).

If there is no .TITLE statement, the default name assigned to the
first listing output is

.MAIN.

The first tab or space following the .TITLE directive is not
considered part of the listing output name or header text, although
subsequent tabs and spaces are significant.

If there is more than one .TITLE directive, the last .TITLE directive
in the program conveys the name of the listing output.

5.1.4 0 SBTTL

The .SBTTL directive is used to provide the elements for a printed
table of contents of the assembly listing. The text following the
directive is printed as the second line of each of the following
assembly listing pages until the next occurrence of a .SBTTL
directive. For example:

.SBTTL CONDITIONAL ASSEMBLIES

The text

CONDITIONAL ASSEMBLIES

is printed as the second line of each of the following assembly
listing pages.

5-5

During pass 1 of the assembly process, MACll automatically prints a
table of contents for the listing containing the line sequence number
and text of each .SBTTL directive in the program.

An example of the table of contents is shown in Figure 5-2. Note that
the first word of the subtitle heading· is not limited to six
characters since it is not a module name.

MACRO VlA

5- 1
7- 1

12- 1
14- 1
16- 1
26- 1
36- 1
40- l
41- 1
48- 1
so- l
51- 1
59- 1
68- 1
72- 1
74- 1
75- 1
78- 1
79- 1
80- 1
88- 1
92- 1
93- 1
99- 1

103- 1
109- 1
114- 1
116- 1
135- 1

MACRO VlA
TABLE OF CONTENTS

SECTOR INITIALIZATION
SUBROUTINE CALL DEFINITIONS
PARAMETERS
ROLL DEFINITIONS
PROGRAM INITIALIZATION
ASSEMBLER PROPER
STATEMENT PROCESSOR
ASSIGNMENT PROCESSOR
OP CODE PROCESSOR
EXPRESSION TO CODE-ROLL CONVERSIONS
CODE ROLL STORAGE
DIRECTIVES
DATA-GENERATING DIRECTIVES
CONDITIONALS
LISTING CONTROL
ENABL/DSABL FUNCTIONS
CROSS REFERENCE HANDLERS
LISTING STUFF
KEPBOARD HANDLERS
OBJECT CODE HANDLERS
LISTING OUTPUT
I/O BUFFERS
EXPRESSION EVALUATOR
TERM EVALUATOR
SYMBOL/CHARACTER HANDLERS
ROLL HANDLERS
REGISTER STORAGE
MACRO HANDLERS
FIN

Table of Contents text is taken from
directive. The associated numbers are
numbers of the .SBTTL directive.

the text of each .SBTTL
the page and line sequence

Figure 5-2
Assembly Listing Table of Contents

5-6

5.1.5 Page Ejection

There are several means of obtaining a page eject in a MACll assembly
listing:

l. After a line count of 58 lines,· MACll automatically performs
a page eject to skip over page perforations on line printer
paper and to formulate terminal output into pages.

2. A form feed character used as a line terminator
only character on a line) causes a page eject.
macro definition a form feed character causes a
A page eject is not performed when the macro is

(or as the
Used within a

page eject.
invoked.

3. More commonly, the .PAGE directive is used within the source
code to perform a page eject at that point. The format of
this directive is

.PAGE

This directive takes no arguments and causes a skip to the
top of the next page.

Used within a macro definition, the .PAGE is ignored, but the
page eject is performed at each invocation of that macro.

5.2 FUNCTIONS: .ENABL AND .DSABL DIRECTIVES

several functions are provided by MACll through the .ENABL and .DSABL
directives. These directives use 3-character symbolic arguments to
designate the desired function, and are of the forms:

where:

.ENABL arg

.DSABL arg

arg is one of the legal symbolic arguments defined below.

The following table describes the symbolic arguments and their
associated functions in the MACll ~anguage:

Symbolic
Argument

CDR

LC

LSB

Function

The statement .ENABL CDR causes source columns 73 and
greater to be treated as comment. This accommodates
sequence numbers in card columns 72-80.

Enabling of this function causes the Assembler to
accept lower case ASCII input instead of converting it
to upper case.

Enable or disable a local symbol block. While a local
symbol block is normally entered by encountering a new
symbolic label, .ENABL LSB forces a local symbol block
which is not terminated until a label following the

5-7

PNC

.DSABL LSB statement is encountered. The default case
is .DSABL LSB.

The statement .DSABL PNC inhibits binary output until
an .ENABL PNC is encountered. The default case is
.ENABL PNC.

An incorrect argument causes the directive containing it to be flagged
as an error.

5.3 DATA STORAGE DIRECTIVES

A wide range of data and data types can be generated with the
following directives and assembly characters:

.BYTE

.WORD
'
II

.ASCII

.ASCIZ

.RADSO
tB
tD
to

These facilities are explained in the following Sections.

5.3.1 .BYTE

The .BYTE directive is used to generate successive bytes of data. The
directive is of the form:

.BYTE exp

• BYTE expl,exp2, •••

;WHICH STORES THE OCTAL EQUIVALENT
;OF THE EXPRESSION exp IN THE NEXT
:BYTE •

1WHICH STORES THE OCTAL EQUIVALENTS
;OF THE LIST OF EXPRESSIONS IN
JSUCCESSIVE BYTES.

where a legal expression must have an absolute value (or contain a
reference to an external symbol) and must result in eight bits or less
of data. The 16-bit value of the expr~sion must have a high-order
byte (which is truncated) that is either all zeros or all ones. Each
operand expression is stored in a byte of the object program.
Multiple operands are separated by commas and stored in successive
bytes. For example:

SAM=S
.=410
.BYTE tD48,SAM ;060 (OCTAL EQUIVALENT OF 48 DECIMAL}

~IS STORED IN LOCATION 410, 005 IS
;STORED IN LOCATION 411.

If the high order byte of the expression equates to a value other than
0 or -1, it is truncated to the low-order eight bits and flagged with
a T error code.

5-8

If an operand following the .BYTE directive is null, it is interpreted
as a zero. For example:

.=420

.BYTE I,

5.3.2 .WORD

;ZEROES ARE STORED IN BYTES 420,
421, AND 422.

The .WORD directive is used to generate successive words of data. The
directive is of the form:

.WORD exp

.WORD expl,exp2, •••

;WHICH STORES THE OCTAL EQUIVALENT
10F THE EXPRESSION exp IN THE NEXT
;WORD

;WHICH STORES THE OCTAL EQUIVALENTS
10F THE LIST OF EXPRESSIONS IN
;SUCCESSIVE WORDS.

where a legal expression must result in sixteen bits or less of data.
Each operand expression is stored in a word of the object program.
Multiple operands are separated by commas and stored in successive
words. For example:

SAL=O
.=500
.WORD 177535,.+4,SAL ;STORES 177535, 506, AND 0 IN

7WORDS 500, 502, AND 504.

If an expression equates to a value of more than sixteen bits, it is
truncated and flagged with a T error code.

If an operand following the .WORD directive is null, it is interpreted
as zero. For example:

.=500
Word ,5, ;STORES O, S, AND 0 IN LOCATIONS 500

;502, AND 504.

A blank operator field (any operator not recognized as a macro call,
op-code, directive or semicolon) is interpreted as an implicit .WORD
directive. Use of this convention is discouraged. The first term of
the first expression in the operand field must not be an instruction
mnemonic or assembler directive unless preceded by a + or - operator.
For example:

.=440
LABEL: +MOV,LABEL

;THE OP-CODE FOR MOV, WHICH IS 010000,
1IS STORED ON LOCATION 440.
;440 IS STORED IN LOCATION 442.

Note that the default .WORD directive occurs whenever there is a
leading arithmetic or logical operator, or whenever a leading symbol
is encountered which is not recognized as a macro call, an instruction
mnemonic or assembler directive. Therefore, if an instruction

5-9

mnemonic, macro call or assembler directive is misspelled, the .WORD
directive is assumed and errors will result. Assume that MOV is
spelled incorrectly as MOR:

MOR A,B

Two error codes result: Q occurs because an expression operator is
missing between MOR and A, and a u occurs ·if MOR is undefined. Two
words are then generated: one for MOR A and one for B.

5.3.3 ASCII Conversion of One or Two Characters

The ' and " characters are used to generate text characters within the
source text. A single apostrophe followed by a character results in a
word in which the 7-bit ASCII representation of the character is
placed in the low-order byte and zero is placed in the high-order
byte. For example:

MOV #' A,RO

results in the following sixteen bits being moved into RO:

15 8 7
l{l.11 j
• octal ASCII value of A

The ' character is never followed by a carriage return, null, rubout,
line feed or form feed. (For another use of the 1 character, see
Section 5.3.6.)

STMNT:
GETSYM
BEQ
CMPB
BEQ
CMPB
BEQ

4$
@CHRPNT,# 1 :

LABEL
@CHRPNT,#'=
ASGMT

;COLON DELIMITS LABEL FIELD.

;EQUAL DELIMITS
7ASSIGNMENT PARAMETER.

A double quote followed by two characters results in a word in which
the 7-bit ASCII representations of the two characters are placed. For
example:

MOV #"AB,RO

results in the following word being moved into RO:

l{l.12 l{l.11 j 15 8 7

• • octal ASCII value of B octal ASCII value of A

5-10

The " character is never followed by a carriage return, null, rubout,
line feed or form feed. For example:

;DEVICE NAME TABLE

DEVNAM: .WORD "DF ·;RF DISK
.WORD "DK JRK DISK
.WORD "DP ;RP DISK

DEVNKB: .WORD "KB ;TTY KEYBOARD
.WORD· 11 DT ;DECTAPE
.WORD "LP 1LINE PRINTER
.WORD "PR ;PAPER TAPE READER
.WORD "PP ;PAPER TAPE PUNCH
.WORD "CR ;CARD READER
.WORD "MT JMAGTAPE
.WORD 0 1TABLE 1 S END

5.3.4 .ASCII

The .ASCII directive translates character strings
.ASCII equivalents for use in the source program •
• ASCII directive is as follows:

into their 7-bit
The format of the

where:

.ASCII

character
string

I I

/character string/

is a string of any acceptable printing ASCII
characters. The string may not include null
(blank) characters, rubout, carriage return,
line feed, vertical tab, or form feed.
Nonprinting characters can be expressed in
digits of the current radix and delimited by
angle brackets. (Any legal, defined
expression is allowed between angle
brackets.)

these are delimiting characters and may be
any printing characters other than ; <
and = characters and any character within the
string.

As an example:

A: .ASCII /HELLO/

• ASCII BC/(15)(12)/DEF/

• ASCII /<AB>/

;STORES ASCII REPRESENTATION OF THE
;LETTERS H,E,L,L,O IN CONSECUTIVE
;BYTES •

1STORES A,B,C,15,12,D,E,F IN
;CONSECUTIVE BYTES •

;STORES <,A,B,>
;BYTES.

IN CONSECUTIVE

The ; and = characters are not illegal delimiting characters, but are
pre-empted by their significance as a comment indicator and assignment
operator, respectively. For other than the first group, semicolons
are treated as beginning a comment field. For example:

5-11

Example

.ASCII ;ABC;/DEF/

.ASCII /ABC/;DEFJ

.ASCII /ABC/=DEF=

.ASCII =DEF=

5. 3. 5 .ASCIZ

ASCII st:r:ing
Generated

ABCDEF

ABC

ABC DEF

Notes

Acceptable, but not a recommended
procedure.

;DEF; is treated as a comment and
ignored.

Acceptable, but not recommended
procedure.

The assignment

.ASCII=DEF

is performed and a Q-error is
generated upon encountering the
second =.,

The .ASCIZ directive is equivalent to the .ASCII directive with a zero
byte automatically inserted as the final character of the string. For
example:

When a list or text string has been created with a .ASCIZ
directive, a search for the null character can determine the end
of the list. For example:

•
•
•

MOV #HELLO,Rl
MOV ILINBUF,R2

X: MOVB (Rl)+,(R2)+
BNE X

•

HELLO: .ASCIZ (CR)(LF)/MACll VlA/<CR)(LF) JINTRO MESSAGE

S.3.6 .RADSO

The .RADSO directive allows the user the capability to handle symbols
in Radix-SO coded form (this form is sometimes referred to as MOD40
and is used in PDP-11 system programs). Radix-SO form allows three
characters to be packed into sixteen bits1 therefore, any 6-character
symbol can be held in two words. The form of the directive is:

.RADSO /string/

s-12

where:

I

string

I delimiters can be any printing characters
other than the =, <, and ; characters.

is a list of the characters to be converted
(three characters per word) and which may
consist of the characters A through z, 0
thfough 9, dollar ($),dot (.) and space ().
If there are fewer than three characters (or
if the last set is fewer than three
characters) they are considered to be
left-lustified and trailing spaces are
assumed. Illegal nonprinting characters are
replaced with a ? character and cause an I
error flag to be set. Illegal printing
characters set the O error flag.

The trailing delimiter may be a carriage return, semicolon, or
matching delimiter. For example:

• RADSO
• RADSO
• RADSO
.RADSO

/ABC
/AB/
II
/ABCD/

;PACK ABC INTO ONE WORD •
rPACK AB (SPACE) INTO ONE WORD •
;PACK 3 SPACES INTO ONE WORD •
7PACK ABC INTO FIRST WORD AND
;D SPACE SPACE INTO SECOND WORD.

Each character is translated into its Radix-SO equivalent as indicated
in the following table:

Character

(space)
A-Z

$
•

0-9

Radix-SO Equivalent (octal)

0
1-32
33
34
36-47

Note that another character could be defined for code 35, which is
currently unused.

The Radix-SO equivalents for characters 1 through 3 (Cl, C2, C3) are
combined as follows:

Radix 50 val.ue = ((Cl.*50) +C2) *50+C3

For example:

Radix-50 value of ABC is ((1*50)+2)*50+3 or 3223

See Appendix A for a table to quickly determine Radix-50 equivalents.

Use of angle brackets is encouraged in the .ASCII, .ASCIZ, and .RADSO
statements whenever leaving the text string to insert special codes•
For example:

.ASCII <101>

.RADSO /AB/<35)

5-13

;EQUIVALENT TO .ASCII/A/

;STORES 3255 IN NEXT WORD

CHRl=l
CHR2=2
CHR3=3

.RAD50(CHRl><CHR2)(CHR3> ;EQUIVALENT TO .RAD50/ABC/

5.4 RADIX CONTROL

5. 4 .1 • RADIX

Numbers used in a MACll source program are initially considered to be
octal numbers. However, the programmer has the option of declaring
the following radices:

2, 4, 8, 10

This is done via the .RADIX directive, of the form:

.RADIX n

where:

n is one of the acceptable radices.

The argument to the .RADIX directive is always interpreted in decimal
radix. Following any radix directive, that radix is the assumed base
for any number specified until the following .RADIX directive.

The default radix at the start of each program, and the argument
assumed if none is specified, is 8 (octal). For example:

.RADIX 10 ;BEGINS SECTION OF CODE WITH DECIMAL RADIX
•

.RADIX ;REVERTS TO OCTAL RADIX

In general, it is recommended that macro definitions not contain nor
rely on radix settings from the .RADIX directive. The temporary radix
control characters should be used within a macro definition. (tD, to,
and tB are described in the following Section.) A given.radix is valid
throughout a program until changed. Where a possible conflict exists
within a macro definition or in possible future uses of that code
module, it is suggested that the user specify values using the
temporary radix controls.

5.4.2 Temporary Radix Control: tn, to, and tB

Once the user has specified a radix for a section of code, or has
determined to use the default octal radix he may discover a number of
cases where an alternate radix is more convenient (particularly within
macro definitions). For exarnpl.e, the creation of a mask word might
best be done in the binary radix.

5-14

MAC!! has three unary operators to provide a single interpretation in
a given radix within another radix as follows:

tDx
tox
tBx

For example:

tD123
to 47

(x is treated as being in decimal radix)
(x is treated as being in octal radix)
(x is treated as being in binary radix)

tB 00001101
tO<A+3>

Notice that while the up arrow and radix specification characters may
not be separated, the radix operator can be physically separated from
the number by spaces or tabs for formatting purposes$ Where a term or
expression is to be interpreted in another radixu it should be
enclosed in angle brackets.

These numeric quantities may be used any place where a numeric value
is legal.

PAL-llR contains a feature, which is maintained for compatibility in
MACll, allowing a temporary radix change from octal to decimal by
specifying a decimal radix number with a "decimal point". For example:

100.
1376.

128.

(144(8))
(2540(8))
(200(8))

5.5 LOCATION COUNTER CONTROL

The four directives which control movement of the location counter are
.EVEN and .ODD which move the counter a maximum of one byte, and .BLKB
and .BLKW which allow the user to specify blocks of a given number of
bytes or words to be skipped in the assembly.

5.5.1 .EVEN

The .EVEN directive ensures that the assembly location counter
contains an even memory address by adding one if the current address
is odd. If the assembly location counter is even, no action is taken.
Any operands following a .EVEN directive are ignored.

The .EVEN directive is used as follows:

.ASCIZ /THIS IS A TEST/

.EVEN ;ASSURES NEXT STATEMENT

;BEGINS ON A WORD BOUNDARY •

• WORD XYZ

5-15

S.S. 2 .ODD

The .ODD dir'ective ensures that the assembly location counter is odd
by adding one if it is even. For example:

;CODE TO MOVE DATA FROM AN INPUT LINE
;TO A BUFFER

N=S

.ODD

.BYTE
BUFF: .BLKW

MOV
MOV
MOVB

AGAIN: M.OVB

DONE:

LINE:

BEQ
DEC
BNE

CLRB

.ASCIZ

N*2
N

#BUFF,R2
#LINE,Rl
l(R2),RO
(Rl) +, (R2) +

DONE
RO
AGAIN

-(R2}

;BUFFER HAS 5 WORDS

;COUNT=2N BYTES
;RESERVE BUFFER OF N WORDS

;ADDRESS OF EMPTY BUFFER IN R2
;ADDRESS OF INPUT LINE IS IN Rl
;GET COUNT STORED IN BUFF-1 IN RO
;MOVE BYTE FROM LINE INTO BUFFER
1WAS NULL CHARACTER SEEN?
;DECREMENT COUNT
;NOT = O, GET NEXT CHARACTER

;OUT OF ROOM IN BUFFER, CLEAR LAST
;WORD

/TEXT/

In this case, .ODD is used to place the buffer byte count in the byte
preceding the buffer, as follows:

COUNT BUFF-2

BUFF

5-16

5.5.3 .BLKB and .BLKW

Blocks of
directives.
word blocks •

storage can be reserved using the .BLKB and .BLKW
.BLKB is used to reserve byte blocks and .BLKW reserves
The two directives are of the form:

where:

• BLKB exp

.BLKW exp

exp is the nuim;>er of bytes or words to reserve. If no
argument is present, 1 is the assumed default value.
'Any legal expression which is completely defined at
assembly time and produces an absolute number is legal.

For example:

1 000000 PASS: .BLKW
2 ;NEXT GROUP MUST STAY TOGETHER
3 000002 SYMBOL: .BLKW 2 ;SYMBOL ACCUMULATOR
4 000006 MODE:
5 000006 FLAGS: .BLKB 1 ;FLAG BITS
6 000007 SECTOR: .BLKB 1 ;SYMBOL/EXPRESSIONS TYPE
7 000010 VALUE: .BLKW 1 ;EXPRESSION VALUE
8 00012 RELLVL: .BLKW 1
9 .BLKW 2 ;END OF GROUPED DATA
10
11 00020 CLCNAM: .BLKW 2 ;CURRENT LOCATION COUNTER SYMBOL
12 00024 CLCFGS: .BLKB 1
13 00025 CLCSEC: .BLKB 1
14 00026 CLCLOC: .BLKW 1
15 00030 CLCMAX: .BLKW 1

The .BLKB directive has the same effect as

.=.+exp

but is easier to interpret in the context of source code.

5.6 TERMINATING DIRECTIVES

5.6.1 .END

The .END directive indicates the physical end of the source program.
The .END directive is of the form:

where:

.END exp

exp is an optional argument which, if present, indicates
the program entry point, i.e., the transfer address.

5-17

At the conclusion of the first assembly pass, upon encountering the
END statement, MACll prints:

END OF PASS 1

and attempts to reread the source file(s) to perform pass 2. If the
source file is on a disk, DECtape, or magtape device no further
operator action is necessary. If the source file is on paper tape an
IOPS 4 message is printed; the user is expected to reposition the
tape in the reader and type tR (for CONTINUE).

5.7 CONDITIONAL ASSEMBLY DIRECTIVES

Conditional assembly directives provide the programmer with the
capability to conditionally include or ignore blocks of source code in
the assembly process. This technique is used extensively to allow
several variations of a program to be generated from the source
program.

The general form of a conditional block is as follows:

.IF cond,argument(s) ;START CONDITIONAL BLOCK
;RANGE OF CONDITIONAL
;BLOCK

.ENDC

where:

con cl.

argument(s)

range

;END CONDITIONAL BLOCK

is a condition which must be met if the block
is to be included in the assembly. These
conditions are defined below.

are a function of the condition to be tested.

is the body of code which is included in the
assembly or ignored depending upon whether
the condition was met.

The following are the allowable conditions:

Conditions

POSITIVE COMPLEMENT ARGUMENTS ASSEMBLE BLOCK IF

EQ NE expression expression=O (or =O)

GT LE expression expression>O (or (0)

LT GE expression expression<O (or)0)

DF NDF symbolic argument symbol is defined (or
undefined)

B NB macro-type argument argument is a blank (or
not blank)

5-18

IDN

z

G

DIF two macro-type
arguments separated
by a comma

arguments identical
(or different)

NZ. expression

L expression

NOTE

A macro-type argument is
angle brackets or within
construction (as described
6.3.1). For example:

<A,B,C)
t/124/

same as EQ/NE

same as GT/LE

enclosed in
an up-arrow
in Section

For example:

.IF EQ ALPHA+l 7ASSEMBLE IF ALPHA+l=O
•

• ENDC

Within the conditions DF and NDF the following two operators are
allowed to group symbolic arguments:

& logical AND operator
I logical inclusive OR operator

For example:

.IF DF SYMl & SYM2

.ENDC

assembles if both SYMl and SYM2 are defined.

5.7.1 Subconditionals

Subconditionals may be placed within conditional blocks to indicate:

1. assembly of an alternate body of code when the condition of
the block indicates that the code within the block is not to
be assembled.

2. assembly of a non-contiguous body
conditional block depending upon
conditional test to enter the block.

of code within
the result of

the
the

3. unconditional assembly of a body of code within a conditional
block.

5-19

There are three subconditional directives, as follows~

Subconditional

.IFF

.IFT

.IFTF

Function

The code following thi s statement up to the next
subconditional or end of the conditional block is
included in the program providing the value of the
condition tested upon entering the conditional
block was false.

The code following this statement up to the next
subconditional or end of the conditional block is
included in the program providing the value of the
condition tested upon entering the conditional
block was true.

The code following this statement up to the next
subconditional or the end of the conditional block
is included in the program regardless of the value
of the condition tested upon entering the

1 conditional block~
'-------------'------------------------·----------
The irnp1ied argument of the subconditiona1s is the value of the
condition upon entering the conditional blocke· Subconditionals are
used within outer level conditional blocks. Subconditionals are
ignored within nested, unsatisfied condition blocks. For example:

.IF DF

.IFF

• IFT

.IFTF

• ENDC

.IF DF

.IF DF

.IFF

.IFT

.ENDC

SYM

x
y

7ASSEMBLE BLOCK IF SYM IS DEFINED

;ASSEMBLE THE FOLLOWING CODE ONLY IF
;SYM IS UNDEFINED •

;ASSEMBLE THE FOLLOWING CODE ONLY IF
1SYM IS DEFINEDa

:ASSEMBLE THE FOLLOWING CODE
;UNCONDITIONALLY •

JASSEMBLY TESTS FALSE
;TESTS FALSE
;NESTED CONDITIONAL
;IGNORED

7NOT SEEN'

5-20

However,

.IF DF X

.IF DF Y

.IFF
•

.IFT

•

• ENDC

;TESTS TRUE
;TESTS FALSE
;IS ASSEMBLED

;NOT ASSEMBLED

5.7.2 Immediate Conditionals

An immediate conditional directive is a means of writing a 1-line
conditional block. In this form, no .ENDC statement is required and
the condition is completely expressed on the line containing the
conditional directive. Immediate conditions are of the form:

where:

.IIF cond, arg, statement

cond

arg

statement

is one of the legal conditions defined for
conditional blocks in Section 5.7.

is the argument associated with the condition
specified1 that is, either an expression,
symbol, or macro-type argument, as described
in Section 5.7.

is the statement to be executed if the
condition is met.

For example:

0 :X:IF DF F00 1 BEQ ALPHA

this statement generates the code

BEQ ALPHA

if the symbol FOO is defined.

A label must not be placed in the label field of the .IIF statement.
Any necessary labels may be placed on the previous line:

LABEL:
.IIF DF FPP,BEQ,ALPHA

or included as part of the conditional statement:

.IIF DF FOO,LABEL: BEQ ALPHA

5-21

5.7.3 PAL-llR Conditional Assembly Directives

In order to maintain compatibility with programs developed under
PAL-llR, the following conditionals remain permissible under MACR0-11.
It is advisable that further programs be developed using the format
for MACR0-11 conditional assembly directives~

Directive Arguments Assemble Block if

.IFZ or .IFEQ expression expression=O

.IFNZ or .IFNE expression expression=O

.IFL or .IFLT expression expression<O

.IFG or .IFGT expression expression>O

.IFLE expression expression< or =O

.IFGE expression expression> or =O

.IFDF logical expression expression is true (defined)

.IFNDF logical expression expression is false
(undefined)

The rules governing the usage of these directives are now the same as
for the MACR0-11 conditional assembly directives previously
described. Conditional assembly blocks must end with the .ENDC
directive and are limited to a nesting depth of 16(10) levels
(instead of the 127(10) levels allowed under PAL~llR).

5-22

CHAPTER 6

MACRO DIRECTIVES

6.1 MACRO DEFINITION

It is of ten convenient in assembly lanqUage programming to generate a
recurring coding sequence with a single statement. In order to do
this, the desired coding sequence is first defined with dummy
arguments as a macro. Once a macro has been defined, a aingle
statement calling the macro by name with a list of real arquments
(replacing the corresponding dummy arguments in the definition)
generates the correct sequence or expansion.

6.1.1 .MACRO

The first statement of a macro definition must be a .MACRO directive.
The .MACRO directive is of the form:

where:

.MACRO name, dummy argument list

name

,

dwnmy
argument
list

is the name of the macro. This name is any leqal
symbol. The name chosen may be used aa • label
elsewhere in the proqram.

represents any legal separator (generally, a comma
or space).

zero, one, or more legal symbols which may appear
anywhere in the body of the macro definition, even
as a label. These symbols can be used elsewhere
in the user program with no conflicts of
definition. Where more than one dummy argument is
used, they are separated by any legal separator
(generally a comma).

A comment may follow the dummy argument list in a statement containing
a .MACRO directive. For example:

.MACRO ABS A,B 7DEFINE MACRO ABS WITH TWO ARGUMENTS

A label must not appear on a .MACRO statement. Labels are sometimes
used on macro calls, but serve no function when attached to .MACRO
statements.

6-1

6.1.2 .ENDM

The final statement of every macro definition must be an .ENDM
directive of the form:

.ENDM name

where:

name is an optional argwnent, being the name of the macro
terminated by the statement.

For example:

.ENDM

.ENDM ABS

(terminates the current macro definition)

{terminates the definition of the macro ABS)

If specified, the symbolic name in the .ENDM statement must correspond
to that in the matching .MACRO statement. Otherwise, the statement is
flagged and processing continues. Specification of the macro name in
the .ENDM statement permits the Assembler to detect missing .ENDM
statements or improperly nested macro definitions.

The .ENDM statement may contain a comment field, but must not contain
a label.

An example of a macro definition is shown below:

.MACRO TYPMSG MESSGE JTYPE A MESSAGE
JSR RS,TYPMSG -
.WORD MESSGE
.ENDM

6.1.3 .MEXIT

In order to implement alternate exit points from a macro (particularly
nested macros), the .MEXIT directive is provided •• MEXIT terminates
the current macro as though an .ENDM directive were encountered. Use
of .MEXIT bypasses the complications of conditional nesting and
alternate paths. For example:

.MACRO ALTR N,A,B

•
• IF

•
•
•

• MEXIT
.ENDC

•

• ENDM

EQ,N JSTART CONDITIONAL BLOCK

JEXIT FROM MACRO DURING CONDITIONAL BLOCK
;END CONDITIONAL BLOCK

JNORMAL END OF MACRO

In an assembly where N=O, the .MEXIT directive terminates the macro
expansirn.

6-2

Where macros are nested, a .MEXIT causes an exit to the next hiqher
level. A .MEXIT encountered outside a macro definition is flaqqed as
an error.

6.1.4 MACRO Definition Formattinq

A form feed character used as a line terminator on a MACll source
statement (or as the only character on a line) causes a paqe eject.
Used within a macro definition, a·form feed character causes a paqe
eject. A page eject is not performed when the macro is invoked.

Used within a macro definition, the .PAGE directive is iqnored, but a
page eject is performed at invocation of that macro.

6.2 MACRO CALLS

A macro must be defined prior to its first reference. Macro calls are
of the general form:

where:

label: name, real arguments

label

name

real
arguments

represents an optional statement label.

represents the name of the macro specified in
the .MACRO directive preceding the macro
definition.

are those symbols, expressions, and values
which replace the dummy arguments in the
.MACRO statement. Where more than one
argument is used, they are separated by any
leqal separator ..

Where a macro name is the same as
symbol in the operation field
occurrence of the symbol in the
reference. For example:

a user label, the appearance of the
designates a macro call, and the

operand field desiqnates a label

ABS: MOV @RO,Rl ;ABS IS USED AS A LABEL

•
•

BR ABS JABS IS CONSIDERED A LABEL
•
•
•

ABS i4 ,ENT ,LAR ;CALL MACRO ABS WITH 3 ARGUMENTS

Arguments to the macro call are treated as character strinqs whose
usage is determined by the macro definition.

6-3

6.3 ARGUMENTS TO MACRO CALLS AND DEFINITIONS

Arguments within a macro definition or macro call are separated from
other arguments by any of the separating characters described in
Section 3.1.1. For example:

.MACRO REN A,B,C

•
REN ALPHA,BETA 0 (Cl,C2)

Arguments which contain separating characters are enclosed in paired
angle brackets. An up-arrow construction is provided to allow angle
brackets to be passed as arguments. Bracketed arguments are seldom
used in a macro definition, but are more likely in a macro call. For
example:

REN (MOV X,Y)#44,WEV

This call would cause the entire statement:

MOV X,Y

to replace all occurrences
Real arguments within a
strings and are treated as
macro expansion.

of the symbol A in the macro definition.
macro call are considered to be character

a single entity until their use in the

The up-arrow construction could have been used in the above macro call
as follows:

REN t/MOV X,Y/,#44,WEV

which is equivalent to

REN (MOV X,Y>,#44,WEV

Since spaces are ignored preceding an argwnent, they can be used to
increase legibility of bracketed constructions@ The form:

REN #44,WEVt/MOV X,Y/

however, contains only two arguments: #44 and
Section 3.1.1) because t is a unary operator.

6.3.l Macro Nesting

WEV t/MOV X,Y/ (see

Macro nesting (nested macro calls) , where the expansion of one macro
includes a call to another macro, causes one set of angle brackets to
be removed from an argument with each nesting level. The depth of
nesting allowed is dependent upon the amount of core space used by the
program. To pass an argument containing legal argument delimiters to
nested macros, the argument should be enclosed in one set of angle
brackets for each level of nesting, as shown below.

.MACRO
LEVEL2
LEVEL2
cENDM

LEVELl
DU Ml
DUM2

DUM1,DUM2

6-4

.MACRO LEVEL2 DUM3
DUM3
ADD 110,RO
MOV RO 1 (Rl) +
.ENDM

A call to the LEVELl macro:

LEVELl ((MOV X,R0)) 1 ((CLR RO))

causes the following expansion:

MOV X,RO
ADD #10,RO
MOV RO, (Rl) +
CLR RO
ADD ilO,RO
MOV RO, (Rl) +

where macro definitions are nested (that is,
entirely contained within the definition of
definition is not defined as a callable macro
has been called and expanded. "For example:

.MACRO LVl A,B
•
•
•

• MACRO LV2 A

•
•

• ENDM
.ENDM

a macro definition is
another macro) the inner
until the outer macro

The LV2 macro cannot be called by name until after the first call to
the LVl macro. Likewise, any macro defined within the LV2 macro
definition cannot be referenced directly until LV2 has been called.

6.3.2 Special Characters

Arqwnents may inc1ude spec~a1 characters w~thout enc1os~nq the
argument in a bracket construction if that argument does not contain
spaces, tabs, semi-colons, or commas. For example:

.MACRO PUSH ARG
MOV ARG,-(SP)
.ENDM

•
•

PUSH X+3(%2)

generates the following code:

MOV X+3(%2) ,-(SP)

6-5

6.3.3 Numeric Arguments Passed as Symbols

When passing macro arguments, a useful capability is to pass a symbol
which can be treated by the macro as a numeric string. An argument
preceded by the unary operator backslash (\) ·is treated as a nwnber in
the current radix. The ASCII characters representing the number are
inserted in the macro expansion; their fwictions are defined in
context. For example:

B=O
.MACRO
CNT
B=B+l

INC A,B
A,\B

A,B
A'B:

.ENDM

.MACRO CNT

.WORD

.ENDM
/SEE SEC.6.3.6 FOR EXPLANATION OF 1 B.

•
•

INC X,C

The macro call would expand to:

XO: .WORD

A subsequent identical call to the same macro would generate:

Xl: .WORD

and so on for later calls. The two macros are necessary because the
dummy value of B cannot be updated in the CNT macro. In the CNT
macro, the number passed is treated as a string argument. (Where the
value of the real argument is o, a single 0 character is passed to the
macro expansion.)

The number being passed can also be used to make source listings
somewhat clearer. For example, versions of programs created through
conditiona1 assemb1y of a single source can identify themse1ves as
follows:

.MACRO IDT SYM

.ASCII /SYM/

.ENDM

.MACRO OUT ARG
IDT 005A 1 ARG
.ENDM

• OUT \ID

The above macro call expands to:

.ASCII /OOSAXX/

;ASSUME THAT THE SYMBOL ID TAKES
;ON A UNIQUE TWO DIGIT VALUE FOR
;EACH POSSIBLE CONDITIONAL ASSEMBLY
;OF THE PROGRAM

•
7WHERE OOSA IS THE UPDATE
1VERSION OF THE PROGRAM
;AND ARG INDICATES THE
;CONDITIONAL ASSEMBLY VERSION.

where XX is the conditional value of ID.

Two macros are necessary since the text delimiting characters in the
.ASCII statement would inhibit the concatenation of a dummy argument.

6-6

6.3.4 Number of Argwnents

If more arguments appear in the macro call than in the macro
definition, the excess arguments are ignored. If fewer arguments
appear in the macro call than in the definition, missing arguments are
assumed to be null (consist of no characters). The conditional
directives .IFB and .IFNB can be used within the macro to detect
unnecessary arguments.

A macro can be defined with no arguments.

6.3.5 Automatically Created Symbols

MACll can be made to create symbols of the
decimal integer number such that 64<n<l27.
local symbols between 64$ and 127$. (For
symbols, see Section 3.5.) Such local
Assembler in numerical order; i.e~:

64$
65$

• .
126$
127$

form n$ where n
Created symbols are

a description of
symbols are created

is a
always
local

by the

Created symbols are particularly useful where a label is required in
the expanded macro. Such a label must otherwise be explicitly stated
as an argument with each macro call or the same label is generated
with each expansion (resulting in a multiply-defined label). Unless a
label is referenced from outside the macro, there is no reason for the
programmer to be concerned with that label.

The range of these local symbols extends between two explicit labels.
Each new explicit label causes a new local symbol block to be
initialized~

The macro processor creates a local symbol on each call
whose definition contains a dummy argument
the ? character. For example:

.MACRO ALPHA A,?B
TST A
BEQ B
ADD #5,A

B:
.ENDM

of a macro
preceded by

Local symbols are generated only where the real argument of the macro
call is either null or missing. If a real argument is specified in
the macro call, the generation of a local symbol is inhibited and
normal replacement is performed. Consider the following expansions of
the macro ALPHA above.

6-7

GENERATE A LOCAL SYMBOL FOR MISSING ARGUMENT:

64$:

ALPHA
TST
BEQ
ADD

%1
%1
64$

#5,%1

DO NOT CREATE A LOCAL SYMBOL:

XYZ:

ALPHA %2,XYZ
TST %2
BEQ XYZ
ADD #5 1 %2

These Assembler-generated symbols are restricted to the first sixteen
(decimal) arguments of a macro definition.

6.3.6 concatenation

The apostrophe or single quote character (') operates as a legal
separating character in macro definitions. An ' character which
precedes and/or follows a dummy argument in a macro definition is
removed and the substitution of the real argument occurs at that
point. For example:

A'B:
.MACRO
.ASCIZ
.WORD
.ENDM

DEF A,B,C
/C/

11 A11 'B

When this macro is called:

DEF X,Y 1 (MAC11)

it expands as follows:

XY: .ASCIZ /MACll/
.WORD 'X'Y

In the macro definition, the scan terminates upon finding the
first • character. Since A is a dummy argument, the ' is removed.
The scan resumes with B, notes B as another dummy argument and
concatenates the two dummy arguments. The third dummy argument is
noted as going into the operand of the .ASCIZ directive. On the next
line (this example is purely for illustrative purposes) the argument
to .WORD is seen as follows: The scan begins with a ' character.
Since it is neither preceded nor followed by a dummy argument,
the ' character remains in the macro definition. The scan then
encoL:.nters the second ' character which is followed by a dummy
argument and is discarded. The scan of the argument A terminated upon
encountering the second ' which is also discarded since it follows a
dummy argument. The next ' character is neither preceded nor followed
by a dummy argument and remains in the macro expansion. The

6-8

last ' character is followed by another dummy argument and
were necessary

is
to discarded. (Note that the five ' characters

generate two ' characters in the macro expansion.)

Within nested macro definitions, multiple single quotes can be used,
with one quote removed at each level of macro nesting.

6.4 .NARG, .NCHR, AND .NTYPE

These three directives allow the user to obtain the number of
arguments in a macro call (.NARG), the number of characters in an
argument (.NCHR), or the addressing mode of an argument {.NTYPE). Use
of these directives permits selective modifications of a macro
depending upon the nature of the arguments passed.

The .NARG directive enables the macro being expanded to determine the
number of arguments supplied in the macro call, and is of the form:

where:

label: .NARG symbol

label is an optional statement label

symbol is any legal symbol whose value is equated to the
number of arguments in the macro call currently
being expanded. The symbol can be used by itself or
in expressions.

This directive can occur only within a macro definition.

The .NCHR directive enables a program to determine the number of
characters in a character string, and is of the form:

where:

label; .NCHR symbol, <character string>

!abed

symbol

<character
string>

is an optional statement label.

is any legal symbol which is equated to the
nwnber of characters in the specified character
string. The symbol is separated from the
character string argument by any legal
separator.

is a string of printing characters which should
only be enclosed in angle brackets if it
contains a legal separator. A semi-colon also
terminates the character string.

This directive can occur anywhere in a MACll program.

The .NTYPE directive enables the macro being expanded to determine the
addressing mode of any argument, and is of the form:

label : • NTYPE symbol, arg

6-9

where:

label is an optional statement label.

symbol is any legal symbol, the low-order 6-bits of which
are equated to the 6-bit addressing mode of the
argument. The symbol is separated from the argument
by a legal separator. This symbol can be used by
itself or in expressions.

arg is any legal macro argument (dummy argument) as
defined in Section 6.3.

This directive can occur only within a macro definition.
of .NTYPE usage in a macro definition is shown below:

An example

.MACRO SAVE

.NTYPE SYM,ARG

.IF EQ,SYM&70
MOV ARG,TEMP
.IFF
MOV #ARG,TEMP
.ENDC
.ENDM

ARG

7REGISTER MODE

;NON-REGISTER MODE

6.5 .ERROR and .PRINT

The .ERROR directive is used to output messages to the command output
device during assembly pass 2. A conunon use is to provide diagnostic
announcements of a rejected or erroneous macro call. The form of the
.ERROR directive is as follows:

label:

where:

label

expr

;

text

.ERROR expritext

is an optional statement label.

is an optional legal expression whose value is
output to the command device when the .ERROR
directive is encountered. Where expr is not
specified, the text only is output to the command
device.

denotes the beginning of the text string to be
output.

is the string to be output to the command
The text string is terminated by
terminator.

device.
a line

Upon encountering a .ERROR directive anywhere in a MACll program, the
Assembler outputs a single line containing:

l. the sequence number of the .ERROR directive line,
2. the current value of the location counter,
3. the value of the expression if one is specified, and
4. the text string specified.

6-10

For example:

.ERROR A;UNACCEPTABLE MACRO ARGtn<iENT

causes a line similar to the following to be output:

512 5642 000076 ;UNACCEPTABLE MACRO ARGUMENT

This message is being used to indicate an inability of the subject
macro to cope with the argument A which is detected as being indexed
deferred addressing mode (mode 70) with the stack pointer (%6) used as
the index register.

The line is flagged on the assembly listing with a P error code.

The .PRINT directive is identical to .ERROR except that it is not
flagged with a P error code.

6.6 INDEFINITE REPEAT BLOCK: .IRP AND .IRPC

An indefinite repeat block is a structure very similar to a macro
definition. An indefinite repeat is essentially a macro definition
which has only one dummy argument and is expanded once for every real
argument supplied. An indefinite repeat block is coded in-line with
its expansion rather than being referenced by name as a macro is
referenced. An indefinite repeat block is of the form:

label: • IRP arg,<real arguments>
•
•
•

(range of the indefinite repeat)
•
•
•

• ENDM

where:

label

arg

<real argument>

range

is an optional statement label. A label may
not appear on any eIRP statement within
another macro definition, repeat range or
indefinite repeat range, or on any .ENDM
statemento

is a dummy argwnent which is successively
replaced with the real arguments in the .IRP
statement.

is a list of arguments to be used in the
expansion of the indefinite repeat range and
enclosed in angle brackets. Each real
argument is a string of zero or more
characters or a list of real arguments
(enclosed in angle brackets). The real
arguments are separated by commas.

is the block of code to be repeated once for
each real argument in the list. The range

6-11

may contain macro definitions, repeat ranges,
or other indefinite repeat ranges. Note that
only created symbols should be used as labels
within an indefinite repeat ranqe.

An indefinite repeat block can occur either within or outside macro
definitions, repeat ranges, or indefinite repeat ranges. The rules
for creating an indefinite repeat block are the same as for the
creation of a macro definition (for example, the .MEXIT statement is
allowed in an indefinite repeat block) • Inde.fini te repeat arguments
follow the same rules as macro arguments.

6-12

1 .TITLE IRPTST
2 .LIST MD,MC,ME

000000 RO=% 00
000001 Rl•% 01
000002 R2=ti 02
000003 R3=% 03
000004 R4=% 04
ooooos RS=% OS
000006 R6=% 06
000007 R7=% 07
000006 SP=% 06
000007 PC=% 07
177776 PSW= 0177776
177S70 SWR= Ol77S70

3 000000 012/00 MOV #TABLE,RO
000050

4
5 .IRP X,<A,B,C,D,E,F)
6
7 MOV X, (RO)+
8
9 .ENDM

00004 016720 MOV A, (RO)+
000032

00010 016720 MOV B, (RO)+
000030

00014 016720 MOV C, (RO)+
000026

00020 016720 MOV D, (RO)+
000024

00024 016720 MOV E, (RO)+
000022

00030 Ol.6720 MOV F 1 (RO)+
000020

12
13 .IRPC X,ABCDEF
14
15 .ASCII /X/
16
17 .ENDM

00034 101 .ASCII /A/

00035 102 .ASCII /B/

00036 103 .ASCII /C/

00037 104 .ASCII /D/

6-13

00040 105 .ASCII /E/

00041 106 .ASCII /F/

18
19
20 00042 041101 A: .WORD "AB
21 00044 041502 B: .WORD "BC
22 00046 042103 C: .WORD "CD
23 00050 042504 D: .WORD "DE
24 00052 043105 E: .WORD "EF
25 00054 043506 F: .WORD "FG
26 00056 TABLE: .BLKW 6
27
28 000001 .END

Figure 6-1
.IRP and .IRPC Example

A second type of indefinite repeat block is available which handles
character substitution rather than argument substitution. The .IRPC
directive is used as follows:

label: .IRPC arg,string

•
(range of indefinite repeat)

•

• ENDM

On each iteration of the indefinite repeat range, the dummy argument
(arg) assumes the value of each successive character in the string.
Terminators for the strinq are: space, comma, tab, carriage return,
line feed, and semi-colon.

6.7 REPEAT BLOCK: .REPT

Occasionally it is useful to duplicate a block of code a number of
times in-line with other source code. This is performed by creating a
repeat block of the form:

label: ~REPT expr

•
•

(range of repeat block)

.ENDM ;OR .ENDR

6-14

where:

label

expr

range

is an optional statement label. The .ENDR or .ENDM
directive may not have a label. A .REPT statement
occurring within another repeat block, indefinite
repeat block, or macro definition may not have a
label associated with it.

is any legal expression controlling the number of
times the block of code is assembled. Where expr<O,
the range of the repeat block is not assembled@

is the block of code to be repeated expr number of
times. The range may contain macro definitions,
indefinite repeat ranges, or other repeat ranges.
Note that no statements within a repeat range can
have a label.

The last statement in a
statement. The .ENDR
previous assemblers.

repeat block can be an .ENDM or .ENDR
statement is provided for compatibility with

The .MEXIT statement is also legal within the range of a repeat blocka

6-15

PART IV

OPERATING PROCEDURES

This part of the manual describes the
operation of the MACll Assembler, its
input files and their formats, and the
variations of the command string to the
Assembler.

CHAPTER 7

OPERATING PROCEDURES

This MACll Assembler assembles one ASCII source file containing MACll
statements at a time into a single absolute binary output file. The
output of the Assembler consists of an absolute binary file on a paper
tape, and an assembly listing followed by the symbol table listing on
the device assigned to .DAT-12.

7.1 LOADING MACll

MACll is loaded under DOS-15 by typing:

$MAC11 (followed by a carriage return or altmode)

(Characters printed by the system are underlined to differentiate them
from characters printed by the user. The Assembler responds by
identifying itself and its version number, followed by a > character
to indicate readiness to accept a conunand input string:

MACRO VlA
>

7.2 COMMAND INPUT STRING

In response to the > printed by the Assembler, the user types the
switch options followed by the input filename; the switch options and
the filename are separated by a 1+- 1 • Command input can be terminated
by a carriage return to restart MACll, or by an altmode to return to
DOS-15 at the end of assembly:

where:

)SW+-FILNAM

SW is the switch option(s); can be null (for plain
assembly,) or 'B' (for binary output) or 'L' (for
listing) or both.

FILNAM is the input filename extension or filename from
.DAT-11. Default extension is 'SRC'. The filename
can consist of up to six characters followed by a

7-1

Examples:

)+-FILNAM

)+-FILNAM EXT

space(s) and not more than a 3-character extension
(additional characters cause the message 'NAME
ERROR/TOO LONG' to be printed on the command inp3t
device). All of the legal printing characters can be
used in any order. The first non-space character to
be typed after the first left-arrow (+-) is
recognized as the first character of the filename.
Similarly, the first non-space character after the
filename (other than carriage return or alt.mode) is
recognized as the first character of the extension.

plain
'filnam

assembly of a file
SRC', and restart MACll

called

plain assembly of a file called 'FILNAM EXT',
and restart MACll.

)B+-FILNAM EXT (ALT) assemble 'FILNAM EXT' to obtain an absolute
binary output on a paper tape and return to
DOS-15 monitor.

)L+-FILNAM EXT (ALT) assemble 'FILNAM EXT 1 to
output on .DAT-12 and
monitor.

obtain
return

a listing
to DOS-15

)LB+-XlY2 EO assemble 'XlY2 EO to obtain an absolute
binary output on a paper tape and a listing
output on .DAT-12 and restart MACll.

If an error is made in typing the command string, typing the RUBOUT
key erases the immediately-preceding character. Repeated typing of
the RUBOUT key erases one character for each RUBOUT up to the
beginning of the line. Typing CTRL/U erases the entire line.

A syntactical error detected in the command string causes the
Assembler to print a ? character. The Assembler then reprints
the > character and waits for a new command string to be entered. If
the input £i1e is not found or name and/or extension is illegal, the
message:

NAME ERROR/TOO LONG

is printed.

7-2

MACRO VIJ01
OBJECT COD[~ANDLERS

1
2
3 1111212126 ENO?I
4 12112026

U2026 ;J~4 767
17424(!1

5 12112062 ern5767
0t'J0011.H'JI

6 01212136 001142
7 12112040
B 0120421 M15767

0"11416 1

9 U2044 idr.'.11517
u 1212146 ~"12767

i<'~0111121!1.
~11Hl542 1

11 12054
1212154 r-J04767

001542
12 121216121 ~1271211

00fi1Hll5Pl I

13 12064 "16702
el!ZJQJ\50 1

14 1201Ql
12Ql10J f(JQ.114767

1210066 t1!
15 122174 01215fH6
16 12016 012667 10s1

0121fiH'.106 I

17 12102
12102 liH..2711!!1J

00!1J2JU
121fll6 004767

0!1J540!1J
18 12112 0014!"1'1
19 12114 IU6'i'46

01'/J !arzJ "6 I
21 12124 0UUJ5
22 12126 042705

0"03?1
23 12132 0~"305
24 12134 042111

177731
25 1210 ras2121

'1r2!1214U!
26 12144 IH12152i
27 12146 2JtzJ14f.U
28 12150 iH114t

1 SBTTL.

CALL
JSR

TST

BNE

TST

BEQ
MOV

CAL.I..
JSR

MOV

MOV

CALL
JSR

Cl.R
MOV

NE;XT
MOV

JSR

BtQ
MOV

MOV
BlC

SWAB
BIC

81S

MOV
Bf;Q
HOV

MACRO V00111A1

OBJEC'I' CODE HANOLERS

SETMAX
PC,SE:TMAC

PASS

E1~DP2
EN'TOVR
OBJLNK

30$
#8L.Kt0:1.a BL.KT VP

OBJ1Nl
PC,OBJINI

#PRGTTL. 1 Ri

RL,DPNT1R2

GSDDMF'
PC,GSOOMFI

.,CSf")
(SP+,ROl.UPD

SECROL.
#SECROl..,R!ZJ

PG a NEXT

2U
ROLUPDP•(SP)

(IU),R5
#377 a R5

JENO OF PASS HA~DLER

IFIASS ONE?

JBRANCH Ir PASS 2
4
JPASS ONE 1 ANY OBJECT?

J NO
JSET BLOCK TVPE1 1

J!NIT THE POINTERS

1SET "FROM" INDEX

AND "TO" INDEX

JOUTPUT GSD ~LOCK

JINIT FOR SECTOR SCAN
;SET SCAN MARKER

JGET THE NEXT SECTOR

JBRANOH XF' THROUGH
I SAVE MARKER

JSAVE SECTOR
I ISOLATE IT

H5 I AND PLACE IN RIGHT
#•1•<RELF'LG>,(R1) lCLEAR ALL BUT REL RIT

#<GSOT"1>+DEFF'LG1 CRl)+ ;SET TO TYPE 1~ nEFl'iEi1

R51CR1>+
11$
CR1),.,(R1>

lASSUME ABS
l OOF'S I
1 RE:L.1 SET MAX

Figure 7-1
Assembly Listing

7-3

29 12152 4~5!1!67 11$1
J~0('!ilJ6'

30 12156 J127:1i 12$
M!~HHJ2'

~1 12162
12162 M!4767

,J00566
32 12166 13$1

12166 ~i27KJ('!

0et!1'00P.I
12172 0'114767

Jt'!5314
33 12 JQ!1737
34 12200 :~32767

JO'l0 HH"
tHJHH'IJ6 I

35 122r2!6 J('ll 76 7
36 122U 126711!5

01/10t'l07 1

37 12214 0?11364
38 12216 042767

177627
0r2fliH'l06 1

39 12224 i.J52767
0('J2t'H'Jt'll
0t'JUJ~0'5 I

4 ra 12232 '1!0075:!

Ct..R ROL.UPD I SET F'OR INNER SCAN

MOV #SYMBOL1R1

CALL GSDDMP JOUTPUT nns BL.OCK
JSR PC,GSODMP

~JE XT SYMODL, 1F'ETCH PlE fll£XT SYMRO[...
MOV #SYMBOL. 1 R0

JSR PC, ~.JEXT

SEQ 1'1$ J FINISHED WITH TH IS
BIT #GLBFt.G,MODE $GLOBAL?

SEQ 13$; NO
CMPB SECTQR,H5 iYES, PROPER SECTOR?

BNE 13$; NO
s?c #~1-<0EF'FLG!RELFLG!GLBFL.G>,MUDE JCLFAR

BIS #GSDT(ll4,MODE

BR 12$

Figure 7-1 (Cont.)
Assembly Listing

7-4

; SET TYPE 4

J OUTPLJT IT

G1_iV

H ()SI

APPENDIX A

MACll CHARACTER SETS

A.l ASCII CHARACTER SET

EVEN
PARITY
BIT

0
l

l

0

l

0

0
1
l

0
0

l
0

l

l

0

l
0

0

l

0

l

l
0

7-BIT
OCTAL
CODE

000
001

002

003

004

005

006
007
010

011
012

013
014

015

016

017

020
021

022

023

024

025

026
027

CHARACTER

NUL
SOH

STX

ETX

EOT

ENQ

ACK
BEL
BS

HT
LF

VT
FF

CR

so

SI

DLE
DCl

DC2

DC3

DC4

NAK

SYN
ETB

REMARKS

NULL, TAPE FEED, CONTROL/SHIFT/P.
START OF HEADING; ALSO SOM, START
OF MESSAGE, CONTROL/A.
START OF TEXT: ALSO EOA, END OF
ADDRESS, CONTROL/Be
END OF TEXT; ALSO EOM 6 END OF
MESSAGE, CONTROL/C.
END OF TRANSMISSION (END); SHUTS
OFF TWX MACHINES, CONTROL/D.
ENQUIRY (ENQRY); ALSO WRU,
CONTROL/E.
ACKNOWLEDGE; ALSO RU, CONTROL/F
RINGS THE BELL. CONTROL/G.
BACKSPACE1 ALSO FEO, FORMAT
EFFECTOR. BACKSPACES SOME
MACHINES. CONTROL/H.
HORIZONTAL TAB. CONTROL/I.
LINE FEED OR LINE SPACE (NEW LINE)7
ADVANCES PAPER TO NEXT LINE,
DUPLICATED BY CONTROL/J.
VERTICAL TAB (VTAB). CONTROL/K.
FORM FEED TO TOP OF NEXT PAGE
(PAGE). CONTROL/L.
CARRIAGE RETURN TO BEGINNING OF
LINE. DUPLICATED BY CONTROL/M.
SHIFT OUTJ CHANGES RIBBON COLOR TO
RED. CONTROL/N ..
SHIFT INJ CHANGES RIBBON COLOR TO
BLACK. CONTROL/O.
DATA LINK ESCAPE. CONTROL/B (DCO).
DEVICE CONTROL 1, TURNS TRANSMITTER
(READER) ON, CONTROL/Q (X ON).
DEVICE CONTROL 2, TURNS PUNCH OR
AUXILIARY ON. CONTROL/R (TAPE,
AUX ON).
DEVICE CONTROL 3 6 TURNS TRANSMITTER
(READER) OFF, CONTROL/S (X OFF).
DEVICE CONTROL 4, TURNS PUNCH OR
AUXILIARY OFF. CONTROL/T (AUX OFF).
NEGATIVE ACKNOWLEDGE; ALSO ERR,
ERROR. CONTROL/U.
SYNCHRONOUS FILE (SYNC). CONTROL/V.
END OF TRANSMISSION BLOCK; ALSO
LEM, LOGICAL END OF MEDIUM.
CONTROL/W.

A-1

EVEN 7-BIT
PARITY OCTAL
BIT CODE CHARACTER REMARI<S

0 030 CAN CANCEL (CANCL). CON'l'ROL/X.
1 031 EM ENO OF MEDIUM. CON'l'ROL/Y.
1 032 SUB SUBSTITUTE. CONTROL/Z.
1 033 ESC ESCAPE. CON'l'ROL/SHIFT/K.
1 034 FS FILE SEPARATOR. CON'l'ROL/SHIFT/L.
0 035 GS GROUP SEPARATOR. CON'l'ROL/SHIFT/M.
0 036 RS RECORD SEPARATOR. CONTROL/SHIFT/N.
1 037 us UNIT SEPARATOR .. CONTROL/SHIFT/O.
1 040 SP SPACE.
0 041 1
0 042 n

1 043 #
0 044 $
1 045 %
1 046 &
0 047 I ACCENT ACUTE OR APOSTROPHE.
0 050 (
1 051)
1 052 * 0 053 +
1 054 ,
0 055
0 056 .
1 057 I
0 060 0
1 061 l
1 062 2
0 063 3
1 064 4
0 065 5
0 066 6
1 067 7
1 070 8
0 071 9
0 072
1 073 ;
0 074 <
1 075 =
1 076 >
0 077 ?
1 100 @
0 101 A
0 102 B
1 103 c
0 104 D
1 105 E
1 106 F
0 107 G
0 110 H
1 111 I
1 112 J

A-2

EVEN 7-BIT
PARITY OCTAL
BIT CODE CHARACTER REMARKS

0 113 K
1 114 L
0 115 M
0 116 N
1 117 0
0 120 p

1 121 Q
1 122 R
0 123 s
1 124 T
0 125 u
0 126 v
1 127 w
l 130 x
0 131 y

0 132 z
1 133 [SHIFT/K.
0 134 \ SBIFT/L.
1 135 J SHIFT/M.
1 136 t
0 137 ..
0 140 I ACCENT GRAVE.

1 141 a
1 142 b
0 143 c
1 144 d
0 145 e
0 146 f
l 147 g
1 150 h
0 151 i
0 152 j
1 153 k
0 154 1
1 155 m
1 156 n
0 157 0

1 160 p
0 161 q
0 162 r
1 163 s
0 164 t
1 165 u
1 166 v
0 167 w
0 170 x
1 171 y
1 172 z

0 173
1 174
0 175 THIS CODE GENERATED BY ALTMODE.
0 176 THIS CODE GENERATED BY PREFIX KEY

(IF PRESENT).
1 177 DEL DELETE, RUBOUT.

A-3

A.2 RADIX-SO CHARACTER SET

ASCII Octal Radix-50
Character Equivalent Equivalent

space 40 0
A-Z 101 - 132 1 - 32

$ 44 33
• S6 34

unused 35
0 = 9 60 = 71 36 .. 47

The maximum Radix-SO value is, thus,

47*S0(2) + 47*SO + 47 = 174777

The following table provides a convenient means of translating between
the ASCII character set and its Radix-SO equivalents. For example,
given the ASCII string X2B; the Radix-50 equivalent is (arithmetic
performed in octal.) :

x 113000
2 = 002400
B = 000002

X2B = 115402

A-4

Single Char.
Third or Second

First Char. Character Character

A 003100 A 000050 A 000001
B 006200 B 000120 B 000002
c 011300 c 000170 c 000003
D 014400 D 000240 D 000004
E 017500 E 000310 E 000005
F 022600 F 000360 F 000006
G 025700 G 000430 G 000007
H 031000 H 000500 H 000010
I 034100 I 000550 I 000011
J 037200 J 000620 J 000012
K 042300 K 000670 K 000013
L 045400 L 000740 L 000014
M 050500 M 001010 M 000015
N 053600 N 001060 N 000016
0 056700 0 001130 0 000017
p 062000 p 001200 p 000020
Q 065100 Q 001250 Q 000021
R 070200 R 001320 R 000022
s 073300 s 001370 s 000023
T 076400 T 001440 T 000024
u 101500 u 001510 u 000025
v 104600 v 001560 v 000026
w 107700 w 001630 w 000027
x 113000 x 001700 x 000030
y 116100 y 001750 y 000031
z 121200 z 002020 z 000032
$ 124300 $ 002070 $ 000033 . 127400 . 002140 . 000034

unused 132500 unused 002210 unused 000035
0 135600 0 002260 0 000036
1 140700 1 002330 1 000037
2 144000 2 002400 2 000040
3 147100 3 002450 3 000041
4 152200 4 002520 4 000042
5 155300 5 002570 5 000043
6 160400 6 002640 6 000044
7 163500 7 002710 7 000045
8 166600 8 002760 8 000046
9 171700 9 003030 9 000047

A-5

APPENDIX B

MACll ASSEMBLY LANGUAGE AND ASSEMBLER

B.l SPECIAL CHARACTERS

Character

form feed

line feed

carriage return

vertical tab

=

%

tab

space

@

, (comma)

;

+

*
I

&

n

Function

Source line terminator

Source line terminator

Formatting character

Source line terminator

Label terminator

Direct assignment indicator

Register term indicator

Item terminator
Field terminator

Item terminator
Field terminator

Immediate expression indicator

Deferred addressing indicator

Initial register indicator

Terminal register indicator

Operand field separator

Comment fie1.d indicator

Arithmetic addition operator or
autoincrernent indicator

Arithmetic subtraction operator or
autodecrement indicator

Arithmetic multiplication operator

Arithmetic division operator

Logical AND operator

Logical OR operator

Double ASCII character indicator

B-1

' (apostrophe) Single ASCII line indicator

Assembly location counter

< Initial argument indicator

> Terminal argument indicator

t Universal unary operator
Argument indicator

\ MACRO nwneric argument indicator

B.2 ADDRESS MODE SYNTAX

n is an integer b7tween 0 and 7 representing a register. R is a
register expression, E is an expression, ER is either a register
expression or an expression in the range 0 to 7.

Format

R

Address
Mode Name

Register

@R or (ER) Def erred
Register

(ER)+

@(ER)+

-(ER)

@-(ER)

E(ER)

@E (ER)

Auto increment

Def erred
Autoincrement

Autodecrement

Deferred
Autodecrement

Index

Deferred Index

Address
Mode Number

On

ln

2n

3n

4n

Sn

6n

7n

B-2

Meaning

Register R ' contains the
operand. R is a register
expression.

Register R contains the
operand address.

The contents of
specified by
incremented after
as the address of

the register
ER are

being used
the operand.

ER contains the pointer to the
address of the operand. ER is
incremented after use.

The contents of register ER
are decremented before being
used as the address of the
operand.

The contents of register ER
are decremented before being
used as the pointer to the
address of the operand.

.E plus the contents of the
register specified, ER, is the
address of the operand.

E added
pointer
operand.

to ER gives the
to the address of the

#E Immediate 27 E is the operand.

@iE Absolute 37 E is the address of the
operand.

E Relative 67 E is the address of the
operand.

@E Deferred 77 E is the pointer to the add-
Relative ress of the operand.

B.3 INSTRUCTIONS

The instructions which follow are grouped according to the operands
they take and the bit patterns of their op-codes.

In the instruction-type format specification, the following symbols
are used:

OP
R
E
ER
A

Instruction mnemonic
Register expression
Expression
Register expression or expression O<ER<7
General address specification

In the representation of op-codes, the following symbols are used:

SS

DD

xx

R

Source operand specified by a 6-bit address mode.

Destination operand specified by a 6-bit address
mode.

8-bit offset to a location (branch instructions).

Integer between 0 and 7 representing a general
register.

Symbols used in the description of instruction operands are:

SE Source Effective Address
DE Destination Effective address
ll Absolute value of
() Contents of

Becomes

The condition codes in the processor status word (PS) are affected by
the instructions. These condition codes are represented as follows:

N Negative bit: set if the result is negative

z Zero bit: set if the result is zero

v overflow bit: set if the operation caused an overflow

c Carry bit: set if the operation caused a carry.

In the representation of the instruction's effect on the condition
codes, the following symbols are used:

B-3

* Conditionally set
Not affected

O Cleared
1 Set

To set conditionally means to use the instruction's result to
determine the state of the code (see the PDP~ll Processor Handbook).

Logical operations are represented by the following symbols:

1 Inclusive OR
<D Exclusive OR
& AND

(used over a symbol) NOT (i.e., l's complement)

B.3.1 Double-Operand Instructions

Instruction type format: Op A,A

Status Word
Condition Codes

Op-Code Mnemonic Stands for Operation N z v c

OlSSDD MOV MOVe (SE) (DE). .,,
* 0

llSSDD MOVB MOVe Byte

02SSDD CMP CoMPare (SE)-(DE) * * * * 12SSDD CMPB CoMPare Byte

03SSDD BIT Bit Test (SE) & (DE) * * 0
13SSDD BITB Bit Test Byte

04SSDD BIC Bit Clear (SE) & (DE)+ DE * * 0
14SSDD BICB Bit Clear Byte

OSSSDD BI" Bit Set (SE) I (DE)+DE * * 0
15SSDD BI:SB BI:t Set Byte

06SSDD ADD ADD (SE)+ (DE)+DE * * * * 16SSDD SUB SUB tract (DE) - (SE) -+ E * * * *

B.3.2 Single-Operand Instructions

Instruction-type format: Op A

Status Word
Condition Codes

Op-Code Mnemonic Stands for Operation N z v c

OOSODD CLR CLear 0 DE 0 l 0 0
lOSODD CLRB CLear Byte

005100 COM COMplement (DE) DE * * 0 l
1051DD COMB COMplement Byte

B-4

005200 INC INCrement (DE)+l DE * * *
1052DD INCB INCrement Byte

0053DD DEC DECrement (DE)-1 DE * * *
1053DD DECB DECrement Byte

0054DD NEG NEGate (DE)+l DE * * * *
1054DD NEGB NEGate Byte

00550D ADC ADd Carry (DE)+(C) DE * * * *
1055DD ADCB ADd Carry Byte

0056DD SBC SuBtract Carry (DE)-(C) DE * * * * 1056DD SBCB SuBtract Carry Byte

005700 TST TeST (DE)-0 DE * * 0 0
105700 TSTB TeST Byte

c 15 0

0060DO ROR ROtate Right C°= I ~ * * * *

106000 RORB ROtate Right even or odd byte * * * * Byte ca-= I ::i
006100 ROL ROtate Left c=D --l ~ *

.,,
* *

106100 ROLB Rotate Left even or odd byte
* *

.,,
* '"°

-I ~ Byte
c 15 14 I 0

0062DD ASR Arithmetic D

!~ '~b * * * * Shift Right l(

1062DD ASRB Arithmetic D
even or odd byte

* * * * f~ ~h Shift Right
Byte er

c

0063DO ASL Arithmetic ~o * * *
.,,

Shift Left

even or odd byte
1063DD ASLB Arithmetic * * * * Shift Left

Byte

OOOlDD JMP JuMP DE PC

0003DO SWAB SWAp Bytes * * 0 0

0067DD SXT Sign eXTend 0 DE if N bit *
clear

-1 DE if N bit
is set

FN FZ FV FC

0707DD NEGD NEGate Double -(FbE) FDE * * 0 0

B-5

1704DD

1705DD

1706DD

B.3.3

CLRD CLeaR Double

TSTD TeST Doubel

ABSD make ABSolute

Operate Instructions

Instruction-Type format: Op

Op-Code Mnemonic Stands for

000000 HALT HALT

000001 WAIT WAIT

000002 RTI ReTurn from
Interrupt

000005 RESET RESET

000241 CLC CLear Carry bit

000261 SEC SEt Carry bit

000242 CLV CLear overflow bit

000262 SEV SEt overflow bit

000244 CLZ CLear Zero bit

000264 SEZ SEt Zero bit

000250 CLN CLear Negative bit

000270 SEN SEt Negative bit

000243 eve Clear overflow and
Carry bits

000254 CNZ Clear Negative and
Zero bits

B-6

0 FDE

(FDE)-0 FDE

FDE FDE

Operation

The computer stops
all functions.

The computer stops
and waits for an
interrupt.

The PC and PS are
popped off the SP
stack:

((SP))+PC
(SP)+2+SP
((SP))+PS
(SP) +2+SP

RTI is also used
to return from a
trap.,

Returns all I/O
devices to power-on
status.

o c

l+C

0-+V

l+V

0-+Z

l+Z

O+N

l+N

O+V

O+N
O+Z

0 1 0 0

* * 0 0

0 * 0 0

N z v c

* * * *

0

1

0

1

0

1

0

1

0 0

0 0

000257 CCC Clear all O+N 0 0 0 0
Condition Codes O+Z

O+V
O+C

000277 sec Set all - l+N 1 1 l 1
Condition Codes l+Z

l+V
l+C

000240 NOP No OPeration

B.3.4 Trap Instructions

Instruction-type format: Op or Op E where 0 < E < 377(8)
*OP (only)

Status Word
Condit.ion Codes

op-Code Mnemonic Stands for Operation N z v c

000003 BPT BreakPoint Trap Trap to location * * * *
14. This is used
to call ODTe

*000004 IOT Input/Output Trap Trap to location * * * *
20 8 This is used
to call IOX.

104000- EMT EMulator Trap Trap to location * * * *
104377 30. This is used

to call system
programs.

104400- TRAP TRAP Trap to location * * * * 104777 34. This is used
to call any routine
desired by the
programmer.

B-7

B.3.5 Branch Instructions

Instruction-type format: Op E where -128(10) < (E-.-2)/2 < 127(10)

Condition to be
met if branch

Op-Code Mnemonic Stands for is to occur

0004XX BR BRanch always

OOlOXX BNE Branch if Not Z=O
Equal (to zero)

0014XX BEQ Branch if EQual Z=l
(to zero)

0020XX BGE Branch if N © V=O
Greater than or
Equal (to zero)

0024XX BLT Branch if Less N CD V=l
than (zero)

0030XX BGT Branch if Zl (N CD V)=O
Greater than
(zero)

0034XX BLE Branch if Less ZI+- (N Q) V)=l
than or equal
(to zero)

lOOOXX BPL Branch if PLUS N=O

l004XX BMI Branch if MI nus N=l

lOlOXX BHI Branch if c Z=O
HI9her

1014XX BLOS Branch if LOwer c Z=l
or Same

1020XX BVC Branch if V=O
overflow Clear

1024XX BVS Branch if V=l
overflow Set

1030XX BCC Branch if Carry C=O
(or BHIS) Clear (or

Branch if
Higher or Same)

1034XX BCS Branch if Carry C=l
(or BLOS) Set (or Branch

if Lower

B-8

B.3.6 Register Destination

Instruction type format: Op ER,A

Op-Code Mnemonic Stands for

004RDD JSR Jump to SubRoutine

Status Word
Condition Codes

Operation N z V c

Push register on
the SP stack, put
the PC in the
register.

DE TEMP (TEMP=
temporary storage
register internal
to processor.)

(SP)-2 SP
(REG) (SP)
(PC) REG
(TEMP) PC

The following instruction is available only on the PDP-11/45:

074RDD XOR eXcl.usive OR

B.3.7 Subroutine Return

Instruction type format: Op ER

Op-Code Mnemonic Stands for

00020R RTS ReTurn from
Subroutine

B-9

(R) DE DE * * 0

Status Word
Condition Codes

Operation N z V c

Put :register in
PC and pop old
contents from SP
stack into register

B.4 ASSEMBLER DIRECTIVES

Form

n

tBn

ten

tDn

ton

• ASCJ:J: string

• ASCIZ string

• BLKB exp

Operation

A single-quote character
(apostrophe) followed by one

ASCII character generates a
word containing the 7-bit
ASCII representation of the
character in the low-order
byte and zero in the high
order byte.

A double-quote character
followed by two ASCII
characters generates a word
containing the 7-bit ASCII
representation of the two
characters.

Temporary radix control;
causes the number n to be
treated as a binary number.

Creates a word containing the
one's complement of n.

Temporary radix control;
causes the number n to be
treated as a decimal number.

Temporary radix control1
causes the number n to be
treated as an octal number •

Generates a b1ock of data
containing the ASCII
equivalent of the character
string (enclosed in
delimiting characters) one
character per byte •

Generates a block of data
containing the ASCII
equivalent of the character
string (enclosed in
delimiting characters) one
character per byte with a
zero byte following the
specified string •

Reserves a block of storage
space exp bytes long.

B-10

Described
in Manual
Section

5.3.3

5.3.3

5.4.2

s.6.2

S.4.2

5.4.2

5.3.4

5.3.5

5.5.3

FORM

.BLKW exp

.BYTE expl,exp2, •••

.DSABL arg

.ENABL arg

.END

.END exp

.ENDC

.ENDM

.ENDM symbol

• ERROR exp,string

• EVEN

• IF cond,argl,arg2, •••

.IFF

Described
in Manual

Operation Section

Reserves a block of storage 5.5.3
space exp words long.

Generates successive bytes of 5.3.1
data containing the octal
equivalent of the expression(s)
specified.

Disables the assembler 5.2
function specified by the
argument.

Provides the assembler 5.2
function specified by the
argument0

Indicates the physical end 5.7.l
of source program. An
optional argument specifies
the transfer address.

Indicates the end of a 5.11
conditional block.

Indicates the end of the 6.1.2
current repeat block,
indefinite repeat block, or
macro. The optional symbol,
if used, must be identical to
the macro name •

Causes a text string to be 6.5
output to the command device
containing the optional
expression specified and the
indicated text string •

Ensures that the assembly 5.5.l
location counter contains an
even address by adding 1 if
it is odd •

Begins a conditional block of s.11
source code which is included
in the assembly only if the
stated condition is met
with respect to the
argument(s) specified.

Appears only within a 5.11.1
conditional block and
indicates the beginning of a
section of code to be
assembled if the condition
tested false.

B-11

Form

.IFT

.IFTF

.IIF cond,arg,statement

.IRP sym,<argl,arg2, ••• >

.IRPC sym,string

.LJ:ST

.LIST arg

• MACRO sym,argl,arg2, •••

.MEXIT

• NARG symbol

Described
in Manual

Operation section

Appears only within a s.11.1
conditional block and
indicates the beginning of
a section of code to be
assembled if the condition
tested true.

Appears only within a s.11.1
conditional block and
indicates the beginning of
a section of code to be
unconditionally assembled.

Acts as a 1-line conditional s.11.2
block where the condition is
tested for the argument
specifiede The statement
is assembled only if the
condition tests true.

Indicates the beginning of 6.6
an indefinite repeat block
in which the symbol specified
is replaced with successive
elements of the real argument
list (which is enclosed in
angle brackets).

Indicates the beginning of an 6.6
indefinite repeat block in
which the symbol specified
takes on the value of
successive characters in the
character string.

Without an argument, • Ll:ST S. 1. 1
increments the listing level
count by one.. With an
argument .LIST does not alter
the listing level count but
formats the assembly listing
according to the argwnent
specified •

Indicates the start of a 6.1.l
macro named sym containing
the dummy arguments specified.

Causes an exit from the 6.1.3
current macro or indefinite
repeat block •

Appears only within a macro 6.4
definition and equates the
specified symbol to the
number of characters in the
string (enclosed in
delimiting characters).

B-12

Form

.NCHR syrn,string

.NLIST

.NLIST arg

.NTYPE sym,arg

.ODD

.PAGE

.PRINT exp,string

.RADIX n

• RADSO string

• REPT exp

• SBTTL string

Operation

Can appear anywhere in a
source program; equates the
symbol specified to the
number of characters in the
string (enclosed in
delimiting characters).

Without an argwnent, .NLIST
decrements the listing level
count by l. With an argument,
.NLIST deletes the portion of
the listing indicated by the
argument.

Appears only in a macro
definition and equates the
low-order six bits of the
symbol specified to the
six-bit addressing mode of
the argument.

Ensures that the assembly
location counter contains an
odd address by adding 1 if it
is even.

Causes the assembly listing
to skip to the top of the
next page.

Causes a text string to be
output to the command device
containing the optional
expression specified and the
indicated text string.

Alters the current program
radix to n, where n can be 2,
4, a, or 10 ..

Generates a block of data
containing the Radix-SO
equivalent of the character
string (enclosed in
delimiting characters).

Begins a repeat block •
Causes the section of code
up to the next .ENDM or
or .ENDR to be repeated
exp times •

Causes the string to be
printed as part of the
assembly listing page header.
The string part of each .SBTTL
directive is collected into

B-13

Described
in Manual
Section

6.4

s.1.1

6.4

s.s.1

5.1 .. 6

6.5

5.4.1

6.7

5.1.4

Form

.TITLE string

.WORD expl,exp2, •••

Operation

a table of contents at the
beginning of the assembly
listing.

Assigns the first symbolic
name in the string to the
object module and causes the
string to appear on each page
of the assembly listing.
One .TITLE directive should
be issued per program.

Generates successive words
of data containing the octal
equivalent of the
expression(s) specified.

B-14

Described
in Manual
Section

5.1.3

5.3.2

APPENDIX C

PERMANENT SYMBOL TABLE

PST PERMANENT SYMBOL TABLE MACRO V004A PAGE 1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51 00000

.TITLE PST PERMANENT SYMBOL TABLE

COPYRIGHT 1972 DIGITAL EQUIPMENT CORPORATION

000020 DRl=
000100 DR2=

200
100

000020 DFLGEV= 020
000010 DFLGBM= 010
000004 DFLCND= 004
000002 DFLMAC= 002

;DESTRUCTIVE REFERENCE IN FIRST
JDESTRUCTIVE REFERENCE IN SECOND

;DIRECTIVE REQUIRES EVEN LOCATION
JDIRECTIVE USES BYTE MODE
JCONDITIONAL DIRECTIVE
;MACRO DIRECTIVE

.IIF DF X45, XFLTG= 0

PSTBAS:

.IIF DF XMACRO, XSMCAL= 0

.MACRO

.IF NB

.IF DF

.MEXIT

.ENDC

.ENDC

.RAD50

.BYTE

.GLOBL

.BYTE

.WORD

.ENDM

.MACRO

.IF NB

.IF DF

.MEXIT

.ENDC

.ENDC

.GLOBL

.RAD50

.BYTE

.BYTE

.WORD

.ENDM

OPCDEF NAME, CLASS, VALUE, FLAGS, COND
(COND>
COND

/NAME/
FLAGS+O
OPCL'CLASS
200+0PCL 1 CLASS
VALUE

DIRDEF NAME, FLAGS, COND
(COND)
COND

NAME
/.'NAME/
FLAGS+O
0
NAME

1BASE

C-1

PST PERMANENT SYMBOL TABLE MACRO V004A PAGE 2

1 000020 OPCDEF (ADC >, 01, 005500, DRl
2 000030 OPCDEF (ADCB >, 01, 105500, DRl
3 000040 OPCDEF (ADD >, 02, 060000, DR2
4 000110 OPCDEF (ASL >, 01, 006300, DRl
5 000120 OPCDEF (ASLB >, 01, 106300, DRl
6 000130 OPCDEF (ASR >, 01, 006200, DRl
7 000140 OPCDEF (ASRB >, 01, 106200, DRl
8 000150 OPCDEF (BCC >, 04, 103000,
9 000160 OPCDEF <BCS >, 04, 103400,
10 000170 OPCDEF (BEQ >, 04, 001400,
11 000200 OPCDEF (BGE >, 04, 002000,
12 000210 OPCDEF (BGT >, 04, 003000,
13 000220 OPCDEF (BHI >, 04, 101000,
14 000230 OPCDEF (BHIS >, 04, 103000,
15 000240 OPCDEF (BIC >, 02, 040000, DR2
16 000250 OPCDEF (BICB >, 02, 140000, DR2
17 000260 OPCDEF' (BIS >, 02, 050000, DR2
18 000270 OPCDEF (BISB >, 02, 150000, DR2
19 000300 OPCDEF (BIT >, 02, 030000 fl

20 000310 OPCDEF (BITB >, 02, 130000,
21 000320 OPCDEF (BLE), 04, 003400,
22 000 330 OPCDEF <BLO), 04, 103400,
23 000340 OPCDEF (BLOS >, 04, 101400,
24 000350 OPCDEF (BLT >, 04, 002400,
25 000360 OPCDEF (BMI >, 04, 100400,
26 000370 OPCDEF (BNE >, 04, 001000,
27 000400 OPCDEF (BPL >, 04, 100000,
28 000420 OPCDEF (BR >, 04, 000400,
29 000430 OPCDEF (BVC >, 04, 102000,
30 000440 OPCDEF (BVS >, 04, 102400,
31 000450 OPCDEF (CCC), 00, 000257,
33 000470 OPCDEF (CLC), oo, 000241,
34 000500 OPCDEF (CLN >, 00, 000250,
35 000510 OPCDEF (CLR >, 01, 005000, DRl
36 000520 OPCDEF (CLRB >, 01, 105000, DRl
39 000550 OPCDEF (CLV >, 00, 000242,
40 000560 OPCDEF (CLZ >, 00, 000244,

c-2

PST PERMANENT SYMBOL TABLE MACRO V004A PAGE 3

·t

1 000570 OPCDEF (CMP >, 02, 020000,
2 000600 OPCDEF (CMPB >, 02, 120000,

CMZ 00 000254,
3 000630 OPCDEF (COM >, 01, 005100, DRl
4 000640 OPCDEF (COMB >, 01, 105100, DRl
5 000650 OPCDEF (DEC >, 01, 005300, DRl
6 000660 OPCDEF (DECB), 01, 105300, DRl
7 000670 OPCDEF (EMT >, 06, 104000,

~ ' 8 000730 OPCDEF (HALT), 00, 000000,
9 000740 OPCDEF (INC >, 01, 005200, DRl
10 000750 OPCDEF <INCB >, 01, 105200, DRl
11 000760 OPCDEF (IOT >, 00, 000004,
12 000770 OPCDEF (JMP), 01, 000100,
13 001000 OPCDEF (JSR >, OS, 004000, DRl
14 001010 OPCDEF (MOV >, 02, 010000, DR2
15 001230 OPCDEF (MOVB >, 02, 110000, DR2
16 001240 OPCDEF (NEG), 01, 005400, DRl
17 001320 OPCDEF (NEGB) 1 01, 105400, DRl
18 001330 OPCDEF (NOP >, 00, 000240,
19 001360 OPCDEF (RESET), 00, 000005,
20 001370 OPCDEF

c-3

PST PERMANENT SYMBOL TABLE MACRO V004A PAGE 4

1 001400 OPCDEF (ROL >, 01, 006100, DRl
2 001410 OPCDEF (ROLB >, 01, 106100, DRl
3 001420 OPCDEF (ROR >, 01, 006000, DRl
4 001430 OPCDEF (RORB >, 01, 106000, DRl
5 001440 OPCDEF (RTI >, 00, 000002,
6 001450 OPCDEF (RTS >, 03, 000200, DRl
7 001470 OPCDEF (SBC >, 01, 005600, DRl
8 001500 OPCDEF (SBCB >, 01, 105600, DRl
9 001510 OPCDEF <SCC >, 00, 000277,
10 001520 OPCDEF (SEC > 00, 000261,
11 001530 OPCDEF (SEN >, oo, 000270,
12 001600 OPCDEF (SEV >, 00, 000262,
13 001610 OPCDEF (SEZ >, 00 I 000264,
14 002020 OPCDEF (SUB >, 02, 160000,
15 002050 OPCDEF (SWAB >, 01, 000300, DRl
16 002070 OPCDEF (TRAP >, 06, 104400,
17 002100 OPCDEF (TST >, 01, 005700,
18 002110 OPCDEF (TSTB >, 01, 105700,
19 002140 OPCDEF (WAIT >, oo, 000001,

C-4

PST PERMANENT SYMBOL TABLE MACRO V004A PAGE 5

1 002160 DIRDEF (ASCII>, DFLGBM
2 002170 DIRDEF (ASCIZ>, DFLGBM
3 002210 DIRDEF (BLKB),
4 002220 DIRDEF (BLKW >, DFLGEV
5 002230 DIRDEF (BYTE >, DFLGBM
6 002250 DIRDEF (DSABL>,
7 002260 DIRDEF (ENABL},
8 002270 DIRDEF <END >,
9 002300 DIRDEF (ENDC >, DFLCND
10 002310 DIRDEF (ENDM), DFLMAC, XMACRO
11 002320 DIRDEF (ENDR >, DFLMAC, XMACRO
12 002340 DIRDEF (ERROR),
13 002350 DIRDEF (EVEN),
14 002420 DIRDEF (IF >, DFLCND
15 002430 DIRDEF (IFDF), DFLCND
16 002440 DIRDEF (IFEQ), DFLCND
17 002450 DIRDEF (IFF >, DFLCND
18 002460 DIRDEF (IFG >, DFLCND
19 002470 DIRDEF (IFGE) 1 DFLCND
20 002500 DIRDEF (IFGT) , DFLCND
21 002510 DIRDEF (IFL >, DFLCND
22 002520 DIRDEF (IFLE), DFLCND
23 002530 DIRDEF (IFLT >, DFLCND
24 002540 DIRDEF <IFNDF>, DFLCND
25 002550 DIRDEF (IFNE >, DFLCND
26 002560 DIRDEF (IFNZ >r DFLCND
27 002570 DIRDEF (IFT >, DFLCND
28 002600 DIRDEF (IFTF), DFLCND
29 002610 DIRDEF (IFZ >, DFLCND
30 002620 DIRDEF (IIF >,
31 002630 DIRDEF (IRP >, DFLMAC, XMACRO
32 002640 DIRDEF (IRPC >, DFLMAC, XMACRO
33 002660 DIRDEF (LIST >,

C-5

PST PERMANENT SYMBOL TABLE MACRO V004A PAGE 6

1 002670 DIRDEF (MA.CR >, DFLMAC, XMACRO
2 002700 DIRDEF <MACRO), DFLMAC, XMACRO
3 002720 DIRDEF (MEXIT:>, , XMACRO
4 002730 DIRDEF <NARG } 1 , XMACRO
5 002740 DIRDEF (NCHR >, If XMACRO
6 002750 DIRDEF (NLIST)
7 002760 DIRDEF (NTYPE:>, , XMACRO
8 002770 DIRDEF (ODD >,
9 003000 DIRDEF (PAGE),
10 003010 DIRDEF (PRINT),
11 003020 DIRDEF <RADIX>,
12 003030 DIRDEF (RAD50), DFLGEV
13 003040 DIRDEF (REM >,
14 003050 DIRDEF <REP'!' >, DFLMAC, XMACRO
15 003060 DIRDEF (SBTTL >,
16 003070 DIRDEF (TITLE),
17 003100 WRDSYM:
18 003100 DIRDEF <WORD } 8 DFLGEV
19
20
21 003110 PSTTOP: ,TOP LIMIT
22
23 000001 eEND

c-6

APPENDIX D

ERROR MESSAGE SUMMARY

D.l MACll ERROR CODES

MACll error codes are printed following a field of six asterisk
characters and on the line preceding the source line containing the
error. For example:

******A
26 00236 000002 1 .WORD RELl+REL2

The addition of two relocatable symbols is flagged as an A error.

Error Code

A

B

D

E

I

L

M

N

0

p

Q

Addressing
instruction
relocation
necessarily

Meaning

erroro An
is incorrect.
error. This

reflect a coding

address within the
Also may indicate a
message does not

error.

Bounding error. Instructions or word data are
being assembled at an odd address in memory. The
location counter is updated by +l.

Doubly-defined symbol referenced. Reference was
made to a symbol which is defined more than once.

End directive
generated.)

not found. (A listing is

Illegal character detected. Illegal characters
which are also non-printing are replaced by a ? on
the listing. The character is then ignored.

Line buffer overflow; i.e., input line greater
than 132 characters. Extra characters on a 1ine
(more than 72(10)) are ignored.

Multiple definition of a label. A label was
encountered which was equivalent (in the first six
characters) to a previously encountered label.

Number containing 8 or 9 has decimal
missing.

Op-code error. Directive out of context.

point

Phase error. A label's definition of value varies
from one pass to another.

Questionable syntax. There are missing arguments
or the instruction scan was not completed or a
carriage return was not immediately followed by a
line feed or form feed.

D-1

R

T

u

z

Register-type error. An invalid use
reference to a register has been made.

of or

Truncation error. A number generated more than 16
bits of significance or an expression generated
more than S bits of significance during the use of
the .BYTE directive.

Undefined symbol. An undefined symbol was
encountered during the evaluation of an
expression. Relative to the expression, the
undefined symbol is assigned a value of zero.

Instruction which is not compatible among all
members of the PDP-11 family (11/15, 11/20, and
11/45).

D-2

INDEX

Absolute mode, 4-5

Addressing modes, 4-1

branch instruction, 4-7

preferred, 1-6

syntax, B-2

.ASCII directive, 5-11

.ASCIZ directive, 5-12

Assembler directives, 5-1, B-10

Concatenation, 6-8

Conditional assemblies, 1-6

directives, 5-18

Conversion (ASCII) of one or

two characters, 5-10

Delimiters, 3-2

Assembly language and assembler,B-1 Direct assignment statements, 3-6

Assembly instructions, B-3

branch, B-8

double-operand, B-4

operator, B-6

single-operand, B-4

subroutine return, B-9

trap, B-7

Assembly location counter, 3-10

Assembly listing, example, 7-3

Autodecrement deferred mode, 4-3

Autodecrement mode, 4-3

Autoincrement deferred mode, 4-3

Autoincrement mode, 4-2

Automatical'ly created symbols, 6-7

.BLKB and .BLKW directives, 5-17

.DSABL directive, 5-7

.ENABL directive, 5-7

.END directive, 5-17

.ENDM directive, 6-2

Error codes, D-1

.ERROR and .PRINT directives, 6-10

.EVEN directive, 5-t5

Expressions, 3-12

Format control, 2-4

Immediate conditional directives,

5-21

Branch instruction addressing, 4-7 Immediate mode, 4-4
Branch instructions, conditional,l-8Indefinate repeat block (.IRP and

.BYTE directive, 5 _ 8 .IRPC) directives, 6-11
Index deferred mode, 4-4

Index mode, 4-4

Character set, 3-1

illegal characters, 3-4

MACll, A-1

operator characters, 3-4

RADIX-SO, A-4

Command input string, 7-1

Comments within programs, 1-4

field, 2-3

Label field, 2-2

Listing control directives, 5-1

Listing, MACll example, 5-4

Loading MACll, 7-1

Location counter, 5-15

I-1

MACRO calls, 6-3

MACRO definition, 6-1

arguments, 6-4

formatting, 6-3

MACRO directives, 6-1

MACRO nesting, 6-4

.MACRO directive, 6-1

.MEXIT directive, 6-2

Mode forms and codes, table, 4-6

Modular programming, 1-1

Registers

increment, 1-9

localized usage, 1-4

register deferred mode, 4-2

register mode, 4-2

register symbols, 3-7

Relative deferred mode, 4-5

Relative mode, 4-5

Repeat block (.REPT) directive, 6-14

.SBTTL directive, 5-5

.NARG, .NCHR and .NTYPE

6-9

d . t' Source program format, 2-1 irec ives,

Number of MACRO arguments, 6-7

Numbers, 3-11

Numeric arguments passed as

symbols, 6-6

.ODD directive, 5-16

Operand field, 2-3

Operator field, 2-3

Page ejection, 5-7

Page headings, 5-5
PAL-llR conditional assembly

directives, 5-22

Parameter assignments, 1-7

Permanent symbol table, C-1

.PRINT and .ERROR directives,

.RAD50 directive, 5-12

.RADIX control directive, 5-14

temporary, 5-14

Reentrant code, 1-6

Special characters, 6-5, B-1

Statement format, 2-1

direct assignment, 3-6

Subconditional directives, 5-19

Symbols

MACll, 3-5

local, 3-8

permanent, 3-5

register, 3-7

user-defined & MACRO, 3-5

Terminating directives, 5-17

Terms, 3-11
.TITLE directive, 5-5

Trap handler, 1-7

6-10 .WORD directive, 5-9

I-2

HOW TO OBTAIN SOFTWARE INFORMATION

SOFTWARE NEWSLETTERS, MAILING LIST

The Software Communications Group, located at corporate headquarters in
Maynard, publishes newsletters and Software Performance Summaries (SPS)
for the various Digital products. Newsletters are published monthly,
and contain announcements of new and revised software, programming
notes, software problems and solutions, and documentation corrections.
Software Performance Summaries are a collection of existing problems
and solutions for a given software system, and are published periodi
cally. For information on the distribution of these documents and how
to get on the software newsletter mailing list, write to:

Software Communications
P. O. Box F
Maynard, Massachusetts 01754

SOFTWARE PROBLEMS

Questions or problems relating to Digital's software should be reported
to a Software Support Specialist. A specialist is located in each
Digital Sales Office in the United States. In Europe, software problem
reporting centers are in the following cities.

Reading, England
Paris, France
The Hague, Holland
Tel Aviv, Israel

Milan, Italy
Solna, Sweden
Geneva, Switzerland
Munich, West Germany

Software Problem Report (SPR) forms are available from the specialists
or from the Software Distribution Centers cited below.

PROGRAMS AND MANUALS

Software and manuals should be ordered by title and order number. In
the United States, send orders to the nearest distribution center.

Digital Equipment Corporation
Software Distribution Center
l46 Main Street

Maynard, Massachusetts 01754

Digital Equipment Corporation
Software Distribution Center
l400 Terra Bella
Mountain View, California 94043

Outside of the United States, orders should be directed to the nearest
Digital Field Sales Office or representative.

USERS SOCIETY

DECUS, Digital Equipment Computer Users Society, maintains a user ex
change center for user-written programs and technical application in
formation. A catalog of existing programs is available. The society
publishes a periodical, DECUSCOPE, and holds technical seminars in the
United States, Canada, Europe, and Australia. For information on the
society and membership application forms, write to:

DECUS
Digital Equipment Corporation
146 Main Street
Maynard, Massachusetts 01754

DECUS EUROPE
Digital Equipment Corporation
International (Europe)
P.O. Box 340
1211 Geneva 26
Switzerland

MACll Programming Language
(MACll)
DEC-15-LMCMA-A~D

READER'S COMMENTS

NOTE: This form is for document comrnents only. Problems
with software should be reported on a Software
Problem Repcrt (SPR) form (see the HOW TO OBTAIN
SOFTWARE INFORMATION page) .

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

[] Assembly language programmer

[] Higher-level language programmer

[] Occasional programmer (experienced)

[] User with little programming experience

[] Student programmer

[] Non-programmer interested in computer concepts and capabilities

CitY~~~~~~~~~~~~~~-State~~~~~~~Zip Code~~~~~~~~
or

Country

If 'you do not require a written reply, please check here. []

·--Fold Flere--

·--· Do Not Tear • Fold Flere and Staple ---

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

~nmoomo
Software Communications
P. O. Box F
Maynard, Massachusetts 01754

FIRST CLASS

PERMIT NO. 33

MAYNARD, MASS.

printed in U.S.A.

	000
	001
	002
	003
	004
	005
	006
	007
	1-00
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	2-01
	2-02
	2-03
	2-04
	3-00
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	5-00
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	7-00
	7-01
	7-02
	7-03
	7-04
	A-01
	A-02
	A-03
	A-04
	A-05
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	D-01
	D-02
	I-01
	I-02
	Y-01
	replyA
	replyB
	xBack

