
Digital Equipment Corporation
Maynard, Massachusetts

Focal Programming Manual

PDP-15 Systems

PDP-15
FOCAL
PROGRAMMING MANUAL

For additional copies order No. DEC-lS-KJZB-D from Program Library,

Digital Equipment Corporation, Maynard, Mass. Price $3.00

DIGITAL EQUIPMENT CORPORATION 0 MAYNARD I MASSACHUSETTS

1 st Edition July 1969
2nd Printing September 1970
3rd Printing (Rev) October 1970

Copyright © 1969, 1970 by Digital Equipment Corporation

The material in this manual is for informa
tion purposes and is subject to change with
out notice.

The following are trademarks of Digital Equipment
Corporation, Maynard, Massachusetts:

DEC
FLIP CHIP
DIGITAL

PDP
FOCAL
COMPUTER LAB

TABLE OF CONTENTS

Chapter Page

PREFACE

INTRODUCTION TO FOCAL

1.1 Hardware Requirements 1-1
1.2 Loading Procedure 1-1

1.2.1 Basic I/O Monitor System 1-1
1.2.2 Advanced Monitor System 1-3

1.3 Restart Procedure 1-4
1.4 Saving FOCAL Programs 1-4
1.5 Data Input/Output 1-5

2 FOCAL LANGUAGE

2.1 Elementary Commands 2-1
2.2 Output Format 2-2
2.3 Floating-Point Format 2-3
2.4 Arithmetic Operations and Symbols 2-4
2.5 Additional Symbol Information 2-5
2.6 Su bscripted Variables 2-5
2.7 The Erase Command 2-5
2.8 Handling Text Output 2-5
2.9 Indirect Commands 2-6
2.10 Error Detection 2-7
2.11 Corrections 2-7
2.12 Abbreviations 2-8
2.13 Alphanumeric Numbers 2-8

3 FOCAL COMMANDS

3.1 TYPE 3-1
3.2 ASK 3-2
3.3 WRITE 3-3
3.4 SET 3-3
3.5 ERASE 3-3
3.6 GO 3-3
3.7 GOTO 3-4
3.8 DO 3-4
3.9 IF 3-4
3.10 RETURN 3-6
3.11 QUIT 3-6
3.12 COMMENT 3-6
3.13 FOR 3-6
3.14 MODIFY 3-7
3.15 Using the Trace Feature 3-8
3.16 Internal Functions 3-8

4 EXAMPLES OF FOCAL PROGRAMS

4.1 Table Generation Using Functions 4-1
4.2 Formula Evaluation for Circles and Spheres 4-2

4.3 One-Line Function Plotting 4-3

iii

TABLE OF CONTENTS (cont)

Chapter Page

4 EXAMPLES OF FOCAL PROGRAMS (cont)

4.4 Demonstration Dice Game 4-4
4.5 Simultaneous Equations and Matrices 4-5
4.6 Interest Payment Program 4-8
4.7 Intercept and Plot of Two Functions 4-9
4.8 Schroedinger Equation Solver 4-1 I

5 LIBRARY COMMANDS

5. I Library Output Commands 5-1
5.1.1 Library File Initialization 5-1
5.1.2 Library File Output Operations 5-1

5. 1.2. I Direct Command Output 5-1
5.1.2.2 Single Line Output 5-2
5.1.2.3 Group Output 5-2
5.1.2.4 Program Output 5-2

5.1.3 Library File Termination 5-2
5.2 Library Input Commands 5-2
5.3 Library .DA T Slot Usage 5-3
5.4 Common Variables and Arrays 5-3

5.4.1 COMMON Format 5-3
5.4.2 Erase COMMON Command 5-3

5.5 Chaining of FOCAL Programs 5-4

6 USER DEFINED FOCAL FUNCTIONS

6.1 Example 6-1
6.2 File FNEW 6-2

7 DATA COMMANDS

7.1 Data Commands 7-1
7.1.1 DATA File Initialization and Output 7-1
7.1.2 DATA File Termination 7-1
7.1.3 DATA Input 7-2

7.2 DATA .DAT Slot Usage 7-2
7.3 DAT A Command Use 7-2

8 MULTI-USER FOCAL BACKGROUND/FOREGROUND

8.1 System Requirements 8-1
8.2 Controls and Commands 8-1
8.3 System Loading 8-1
8.4 .DAT Slot Usage 8-2
8.5 Loading FOCAL in the Foreground 8-2
8.6 Loading FOCAL in the Background 8-3

APPENDIX A
FOCAL Command Summary A-I

APPENDIX B
Error Diagnostics B-1

iv

TABLE OF CONTENTS (cont)

Chapter Page

APPENDIXC
Estimating the Length of User's Program C-I

APPENDIXD
Calculating Trigonometric Functions D-I

APPENDIXE
.DAT Slot and Handler Assignments in Advanced Monitor System E-l

v

~.

PDP-15 FAMILY OF MANUALS

HARDWARE __ .. ___________________ .---, ____ -L ______ _

INSTALLATION
MANUAL

MODULE
MANUAL

NOTE:

MANUFACTURERS
EQUIPMENT

MANUALS

It New manua Is will be added
as they are developed.

OPERATORS
GUIDE

SOFTWARE

BACK GROUNDI
FOREGROUND

PDP-15/20

PDP-15 110
SYSTEM USER'S 1-1---4---1

GUIDE

PDP'15/40

PDP-15/30

ADVANCED

PDP-15/10
SOFTWARE

SYSTEM

FORTRAN]]I

8/15
TRANSLATOR

15-0040

SYSTEMS REFERENCE MANUAL - Provides overview of
PDP-IS hardware and software systems and options, in
struction repertoire, expansion features, and descriptions
of system peripherals. (DEC-IS-GRZA-D)

USER'S HANDBOOK VOLUME 1, PROCESSOR - Princi
pal guide to system hardware includes system and subsystem
features, functional descriptions, machine-language pro
gramming considerations, instruction repertoire, and system
expansion data. (DEC-IS-H2DA-D)

VOLUME 2, PERIPHERALS - Features functional de
scriptions and programming considerations of peripheral
devices. (DEC-IS-H2DA-D)

OPERATOR'S GUIDE - Lists procedural data, including
operator maintenance, for using the operator's console and
the peripheral devices associated with PDP-IS Systems.
(DEC-lS-H2CA-D)

PDP-IS/IO SYSTEM USER'S GUIDE - Features
COMPACT and Basic I/O Monitor operating procedures.
(DEC-IS-GG I A-D)

PDP-IS/20 SYSTEM USER'S GUIDE - Lists Advanced
Monitor System operating procedures. (DEC-IS-MG2A-D)

BACKGROUND/FOREGROUND MONITOR SYSTEM
USER'S GUIDE - Lists operating procedures for the
DECtape and disk-oriented Background/Foreground moni
tors. (DEC-IS-MG3A-D)

PDP-IS/IO SOFTWARE SYSTEM - Describes COMPACT
software system and Basic I/O Monitor System.
(DEC-I S-GR I A-D)

PDP-IS/20/30/40 ADVANCED MONITOR SOFTWARE
SYSTEM - Describes Advanced Monitor System; pro
grams include system monitor language, utility, and appli
cation types; operation, core organization, and input/
output operations within the monitor environment are dis":
cussed. (DEC-IS-MR2A-D)

PDP-IS/30 BACKGROUND/FOREGROUND MONITOR
SOFTWARE SYSTEM - Describes Background/Fore
ground Software System including the associated language,
utility, and applications program. (DEC-IS-MR3A-D)

PDP-IS/40 DISK-ORIENTED BACKGROUND/FORE
GROUND MONITOR SOFTWARE SYSTEM - Describes
Background/Foreground Monitor in disk-oriented environ
ment; programs include language, utility, and application
types. (DEC-IS-MR4A-D)

MAINTENANCE MANUAL VOLUME I, PROCESSOR -
Provides block diagram and functional theory of operation
of the processor logic; lists preventive and corrective main
tenance data. (DEC-IS-H2BA-D)

VOLUME 2, ENGINEERING DRAWINGS - Provides engi
neering drawings and signal glossary for the basic processor
and options. (DEC-IS-H2BA-D)

INSTALLATION MANUAL - Provides power specifica
tions, environmental considerations, cabling, and other in
formation pertinent to installing PDP-IS Systems.
(DEC-IS-H2AB-D)

ACCEPTANCE TEST PROCEDURES - Lists step-by-step
procedures designed to insure optimum PDP-IS Systems
operation.

PDP-IS MODULE MANUAL - Provides characteristics,
specifications, timing and functional descriptions of mod
ules used in PDP-IS Systems. (DEC-IS-H2EA-D)

INTERFACE MANUAL - Provides information for inter
facing devices to a PDP-IS System. (DEC-IS-HOAA-D)

UTILITY PROGRAMS MANUAL - Provides utility pro
grams common to PDP-IS Monitor systems.
(DEC-IS-YWZA-D)

MACRO-IS - Provides MACRO assembly language for the
PDP-IS. (DEC-IS-AMZA-D)

FORTRAN IV Describes PDP-IS version of the
FORTRAN IV compiler language. (DEC-IS-KFZA-D)

FOCAL-IS - Describes an algebraic interactive compiler
level language developed by Digital Equipment Corporation.
(DEC-IS-KJZA-D)

vii

PREFACE

This revision of the PDP-I5 FOCAL Programming manual is a technical update of the first Edition. Two new
chapters, 7 and 8, have been added. Pages containing significant changes have been identified with the notation
"CHANGE I" at the bottom of the page, as on this page.

FOCAL (FOrmula CALculator) is an interactive service program designed to solve numerical problems of any
complexity.

This manual is designed to allow the reader to master and apply the FOCAL language within hours.

Chapter I through 3 of this manual describe the structure and use of the FOCAL language (particularly in the
formulation and solution of numeric problems).

Chapter 4 contains demonstration programs which illustrate the many features and applications of FOCAL. The
reader, by running these programs using different variables, can more fully realize the power and flexibility of
FOCAL.

Chapters Sand 6 describe advanced user-library storage and retrieval functions and user-defined FOCAL functions.
The FOCAL library functions permit the storage of lengthy programs by the use of "chaining." User defined
functions enable frequently used operations to be called (requested and performed) by a single command.

Chapter 7 describes FOCAL data functions which permit the user to store and then retrieve data on auxiliary
Input/Output devices other than the Teletype.®

Chapter 8 describes FOCAL multi-user functions for use in a Background/Foreground environment.

NOTE

The terms BASIC I/O Monitor and the ADVANCED
Monitor, as used in this manual, refer to PDP-IS software
systems. Use" of other software systems, e.g. PDP-9 BANK
MODE, is noted where pertinent.

OVERALL PDP-IS DOCUMENTATION STRUCTURE

A tree-type block diagram of the overall "PDP-IS Family of Manuals" is illustrated on page viii. A brief description
of the contents and the order numher of each manual shown in the diagram are presented on page ix.

ORGANIZATION OF PDP-IS SOFTWARE MANUALS

There are two basic categories of PDP-IS software manuals:

a. Unique, single-system, manuals which contain information concerning only one of the four available
PDP-IS systems. This category consists of detailed software system descriptive manuals, each with an
associated operational command summary. An example of this class of manual would be the "PDP-IS /1 0
Software System" manual and its associated "PDP-IS/IO Users' Guide."

b. Common, multi-system, manuals that describe utility, language, application and other PDP-IS programs
which may be employed in one or more of the four available PDP-IS systems. Some examples of this type
of manual are the PDP-1S "Utility," "MACRO-IS Assembler" and "STATPAC" manuals.

®Teletype is a registered trademark of Teletype Corporation.

CHANGE I ix

CHAPTER 1

INTRODUCTION TO FOCAL

FOCAL is an on-line, interpretive service program designed to assist scientists, engineers, and students in solving
complex numerical problems. The language consists of concise, imperative statements; mathematical expressions
are typed in standard notation.

FOCAL puts the full calculating power and speed of the computer at the user's fingertips. With FOCAL, the user
can easily generate mathematical models, plot curves, solve sets of simultaneous equations in n-dimensional arrays,
and much more. Examples of various problems that FOCAL is capable of solving are described in Chapter 4.

1.1 HARDWARE REQUIREMENTS

FOCAL can be run on any PDP-IS computer with at least 8K core memory, a Teletype® (Model KSR 33 or KSR
35) and a high-speed reader and punch. In such a system, FOCAL runs under the control of the Basic I/O Monitor.
Extra memory may be added by use of a compatible Extended Arithmetic Element (EAE) and Automatic Priority
Interrupt options.

For use of the Advanced Monitor some form of mass storage must be added to the basic system, as follows:

a. Type TC02 DECtape Control with two Type TU55 DECtape Transports, or

b. Type RB09 Fixed-Head Disk System

Input/output routines are provided for these devices as required. In addition, this system can take full advantage of
any extra memory, central processor options, and additional I/O options.

1.2 LOADING PROCEDURE

1.2.1 Basic I/O Monitor System

The Linking Loader paper tape is used to load FOCAL. When the Loader has been entered and started (refer to
software Users' Guide supplied with the system), it types

LOADER Vnn

where Vnn is the version number. Place the FOCAL binary tape in the paper tape reader, and momentarily depress
the tape feed button to ready and to settle the tape frrmly in the tape reader. Then, after loader's> type

> P+- FOCAL

®Teletype is a registered trademark of Teletype Corporation.

CHANGE I 1-1

followed by the ALT MODE key. When the FOCAL program has been loaded, the Loader types

tP

Load the FNEW tape, or a user defined FNEW tape (see Chapter 6), followed by the system library, and type
CTRL P after each tP typed by Loader. The CTRL P notation indicates depressing the appropriate letter key (in
this case, P) while holding down the control key.

Normally, only tapes 1, 4A or 4B, and SA or SB from the system library are needed. Library tapes 2 and 3 contain
card reader, line printer, and display handlers.

When loading is complete, type

CTRLS

after Loader's t S and FOCAL will respond with FOCAL Vnn and an asterisk (*). FOCAL is now ready to accept
commands. Printout to this point is similar to the following:

LOADER V7A
>P"FOCAL
P FOCAL 11764
P F:-JE\·] 11612
tPtP
P PPA. 11021
tptP
p .BH 10765
P DSQRT 10675
p DSIN 10662
P DCOS 10641
P DATAN 10626
P DEXP 10613
P DLOG 10572
p • DD 10424
P • DB 10304
P • DE 10203
P • DF 10(~4LI

P • DC 07775
P • DA 07726
tPtP
f Pf P
P DOUBLI!~ 07523
P REAL 06554
P .CB 06534

FOCAL. Vi3A
>I<

The FOCAL loading procedure above may be used each time the user runs FOCAL; however, to facilitate
reloading, the PUNCH utility program, distributed as a binary program in the Basic I/O Monitor System, may be
used.

The PUNCH utility program permits preparation of a single paper tape containing the I/O Monitor, system library
programs, FOCAL, and FNEW. The user need only load this single tape (HR: 17720 of the highest core bank) for
further FOCAL operation. The PUNCH utility program is loaded after FOCAL is first in core and ready to accept
commands.

1-2 CHANGE 1

1.2.2 Advanced Monitor System

FOCAL may be loaded with the Linking Loader and with Execute after the Advanced Mopitor has been loaded.
The Linking Loader is used with 12K, or greater, systems and Execute with 8K systems.

To start the Advanced Monitor, place the system and program tapes on the appropriate DECtape units as described
in the applicable System User's Guide. After the Monitor Bootstrap loader is loaded, Monitor types

KMI5 Vnn
$

at the left margin of the teleprinter page.

Execute or the Linking Loader now requires assignment of .DAT (Device Assignment Table) slots -1 and -4.
FOCAL requires assignment of .DAT slots +3, +7 (input) and +5, +10 (output). (.DAT slot assignments for FOCAL
are summarized in Appendix E.) An example of the Advanced Monitor Command that must be typed after
Monitor's $ follows:

$A DTE~ -1, -4/DTEl 3,5, 7, I~

This assignment translates as:

Assign DECtape unit ~ (Advanced Monitor System tape is always placed on unit ~) to .DAT slots -I and -4. Assign
DECtape unit 1 to .DAT slots +3, +5, +7, +1~. On the device assigned to .DAT -1, Execute and the Linking Loader,
if used, expect to find the System Library. On the device assigned to .DAT slot -4, Execute expects to find the two
execute files, FOCAL XCT and FOCAL XCU; and the Linking Loader, if used, expects to find the relocatable
binary program, FOCAL BIN.

FOCAL uses .DAT slot +3 for the library input function and .DAT slot +5 for the library output function (see
Chapter 5 for FOCAL library commands). FOCAL uses .DAT slot +7 for DATA input function and .DAT slot +10
for DATA output function. (Refer to Chapter 7 for detailed information about the DATA method of operating
With FOCAL.)

Use DECtape Handler E (DTE) for all the .DAT slots to ensure loading of only one DECtape handler in memory
for both the Linking Loader or Execute and FOCAL.

Two examples for loading FOCAL with the Advanced Monitor system follow. One is for those users with an 8K
system and one for those users with a 12K, or greater, system.

NOTE
Formerly, FOCAL and FNEW were separate binary programs
in the Advanced Monitor system and had to be called as
FOCAL, FNEW after the Linking Loader was loaded. FNEW
has been combined with FOCAL. Both are now loaded as
shown in Example 2, below.

Examples: (1) Execute (8K systems) is used in this example. After the .DAT slots are assigned, as above, Monitor
types another $. Now type:

$E FOCAL

and depress the RETURN key. The teleprinter responds with

EXECUTE Vnn

and FOCAL starts to be loaded automatically. When FOCAL is loaded, the teleprinter responds
with

FOCAL 1 5 Vnn

*
where Vnn is the version number. FOCAL is now ready to accept commands.

(2). The Linking Loader (12K system, or greater) is used in this example. After the .DAT slots are
assigned, as above, Monitor types another $. Now type

$GLOAD

and depress the RETURN key. The Loader types

LOADER Vnn

now type a P and a back arrow (P~) and FOCAL after the Loader's>

CHANGE I 1-3

> P+-FOCAL

and depress the ALT MODE key.

Teleprinter output fonnat is as follows:

K"11 5 V5J~

$' DTE0 -1,-4/DTEl 3,5,7,10

LO\DER V7A
>P+-FOC.A.L
p FOCAL 31762
P FNE'.v 316Hi
p .BH 31554
P D3QKT 31464
P DSI ~ 31451
p DCOS 31430
p DATAN 31413
P DEXP 31402
P DLOG 3136 1
p .DD 31213
P • D3 31073
P oJS 30772
P • DF 30633
P .DC 30564
p oD~ 30515
p DOUBLE 30312
P REL3AE 26736
p • c:e 30272

R)CP.L 15 V8~

*

1.3 RESTART PROCEDURE

Restart is accomplished by the use of CTRL P (echoes t P).

1.4 SAVING FOCAL PROGRAMS (Refer to Chapter 5 for full description)

To save the current FOCAL program, type the following sequence of commands; where necessary, wait for FOCAL
to type an * on the next line.

-:<L~: d :-;;f3,'RY JUT [\l AM E
*LIBRARY WRITE "ERASE ALL
*LIBRARY WRITE ALL
LIBRARY WRITE "
*LIBRARY CLOSE

*
This sequence does not destroy the current program. Execute an ERASE ALL before starting the program to clear
all variables and prevent placing previous programs in the library along with the current program during current
library storage (refer to sections 3.5 and 5.4.2). When a program is to be saved, Loader assignment must be to the
proper output device. The assignment described in section 1.2.2 will output the program on DECtape.

To 10aa a saved FOCAL program, type:

*LIBRARY IN NAME

1-4 CHANGE 1

1.5 DATA INPUT/OUTPUT (Refer to Chapter 7 for full description)

To use auxiliary I/O devices for data storage and retrieval, type the following sequence of commands:

*DATA OUT NAME
* DATA CLOSE
*DATA IN NAME

This sequence will initialize and enter the named me for the data on a mass storage device, close the named me on
that device, and then initialize a device under the given mename for data retrieval.

CHANGE 1 1-5

After FOCAL has been loaded, the program types out
FOCALVnn
*

CHAPTER 2
FOCAL LANGUAGE

to indicate that it is ready to accept commands from the user. Each time the user terminates a teletype line by
depressing the RETURN key, or after FOCAL has performed a command, an * (asterisk) is typed to tell the user
that FOCAL is ready for another command.

2.1 ELEMENTARY COMMANDS
One of the most useful commands in the FOCAL language is TYPEt which instructs FOCAL to "type out the
result of the following expression." Then, the user types an expression after TYPE (following the asterisk which
FOCAL typed) such as

*TYPE 123.456+9.8765

and presses the RETURN key; FOCAL types the answer.
133.3325*

SET is another useful command, which instructs FOCAL to "store this symbol and its numerical value; then when
this symbol is used in an expression, insert the numerical value." Thus, the user may type

*SET A=3.141592; SET 8=23.572; SET C=485.5

and then use these symbols to identify the values defined in the SET command.

*TYPE A+8+C
512.2136*

Symbols may consist of one, two, or three alphanumeric characters. The first character must be a letter, but must
not be the letter F which refers to function names (Refer to Section 3.16).

FOCAL is always checking user input for syntax errors (e.g., invalid commands, illegal formats, etc.). When an error
is detected, FOCAL types an error message in the form of a question mark and code number to indicate the type of
error. In the following example,

t Any number appearing in a TYPE command must have its magnitude represented in 35 bits of mantissa; otherwise, FOCAL will type
the ?27 error message and ignore your request. This error message will occur with an 11 or 12 digit number, depending on the
magnitude of the number. The same is applicable for the ASK command.

CHANGE 1 2-1

*HELP
? 10
*TYPE 2++4
?21

*
HELP is not a valid command and two plus signs (double operators) is an illegal operation. The complete list of
error messages and meanings is given in Appendix B.

2.2 OUTPUT FORMAT

The FOCAL program is originally set to produce results snowing up to eight digits, four to the left of the decimal
point (the integer part) and four to the right of the decimal point (the fractional part). Leading zeros are sup
pressed, and spaces are shown instead. Trailing zeros are included in the output to the limits of the format, as
shown in the examples below.

~SET A=77.77; SET 8=111111.1111; SET C=39
*TYPE A.,B ... C

77.7700 111111.11 39.0000*

The output format may be changed if the user types

*TYPE %X.YZ

where the percent sign (%) is the format operator symbol, ~ is the total numher of digits to be output and yz is the
number of digits to the right of the decimal point. The values x and yz are positive integers, and the value of x
cannot exceed 63 digits. The value yz is always written as a 2 digit number, (e.g., 03). For example, if the desired
output format is 2 places to the left of the decimal point and five to the right the user types

*TYPt:: %7.05 ... 12.222222+2.37184

and FOCAL types

14.59406*

Notice that the format operator (%x.yz) must be followed by a comma, and that until the user changes the output
format all results will be typed in the last specified format, i.e. %7.05.

The results are calculated to nine digits. In some circumstances since rounding may place some uncertainty on the
9th place, the user may need to account for the rounding. If the user types

FOCAL types

123Ll56.789*

Of the 9 available digits, priority is given to those to the left of the decimal point.

In the following examples, the number 2848.5363 is typed out in several different formats.

2-2 CHANGE 1

*SET A=2848.5363
*TYPE %7.03" A

2848.536*
*TYPE %8.04" A

2848.5363*
*TYPE %9.05, A

2848.53630*

If the user does not indicate the number of places in the rractionai part of the number, only the integer part is
printed.

If the specified output format is too small to contain the integer portion of the number; FOCAL converts the
number to floating point form, O.LE+mn, where E+mn indicates the mn th power of 10 of the number L printed as
a number between 0.0 and 1.0 (refer to Section 2.3).

*TYPE %3" A
0.285E+04*

If the specified format is larger than the number, FOCAL inserts leading spaces up to, but not including, the
asterisk column.

*TYPE %11" A
2849*

Leading blanks and zeros in integers are always ignored by FOCAL, except tor numbers between 0.0 and 1.0,
where a zero precedes the decimal point.

*TYPE %8.04" 0016" 0.016" ." 00700
16.0000 0.0160 0.0000 700.0000*

2.3 FLOATING-POINT FORMAT

The user may request output in exponential form which is called floating-point or E format. This notation is fre
quently used in scientific computations and is the format in which FOCAL performs its internal computations.
The user requests floating-point format by including a % followed by a comma in a TYPE command. FOCAL will
print out f/J, a decimal point, a 9-digit number, the letter E, and the number of places to move the decimal point for
standard notation. Until the user specifies another output format, all results are typed out in floating-point format.

For example,

*TYPE %,,111l
0.111100000E+04*

is interpreted as .1111 times 104
, or 1111. Exponents can be used to ±999. The largest number that FOCAL can

handle is ±0.999999983 times 10998 , and the smallest is 0.999999983 times 10-999 .

To demonstrate the ability of FOCAL to compute large numbers, find the value of 449 factorial by typing the
following commands:

*SET A=1
*F'OR 1=1,,449; SET A=A*1
*TYPE %"A

0.385193049E+998*

2-3

The FOR statement, which will be explained later, is used to set I equal to each integer from I to 449.

2.4 ARITHMETIC OPERATIONS AND SYMBOLS

FOCAL performs the usual arithmetic operations (addition, subtraction, multiplication, division, and
exponentiation). These operations are written by using the following symbols:

SYMBOL

t Exponentiation
* Multiplication
/ Division
+ Addition l
- Subtraction f

MATH NOTATION

equal
priority

33

3·3
3+3
3+3
3-3

FOCAL

3t3 (Power must be a positive integer)
3*3
3/3
3+3
3-3

These operations may be combined into expressions. When FOCAL evaluates an expression comprising several
arithmetic operations, the priority follows the above list.

Note that addition and subtraction have equal priority. Expressions with these two operators are evaluated from
left to right.

A+B*C+D is A+(B*C)+D not (A+B)*(C+D) nor (A+B)*C+D
A *B+C*D is (A *B)+(C*D) not A *(B+C)*D nor (A *B+C)*D

X/2°Y is 2~ not(~) Y

2 t 2 t 3 is 43 not 28

To perform exponentiation to a negative power, X-A, use FEXP(A *FLOG< X>).

Expressions (except IF) to be evaluated by FOCAL may be enclosed in any properly paired parentheses, square
brackets, or angle brackets. The IF statements, however, must be enclosed in parentheses.

For expressions without IF statements:

SET A1=(A+8)<M+N>*[X+YJ

The left bracket ([) and the right bracket (]) enclosures are typed using the SHIFT and K keys and the SHIFT
and M keys, respectively.

For expressions that are nested, FOCAL computes the value of the innermost expression first and then works
outward.

*TYPE %, (2+<3-[1*4J+5>-2)

0.400000000E+01*

Note that this number is expressed in floating-point format, as specified by the unmodified % symbol.

2.5 ADDITIONAL SYMBOL INFORMATION

The value of a symbolic name or identifier is not changed until the expression to the right of the equal sign is
evaluated by FOCAL. Therefore, before it is evaluated, the value of a symbolic name or identifier can be changed
by retyping the identifier and assigning it a new value.

2-4

*SET Al=3f2; SET Al=AI+1
*TYPE %2, Al

10*

Symbolic names or identifiers must not begin with the letter F. (Refer to Section 3.16)

The user can request FOCAL to type out all user defined identifiers, in the order of definition, by typing a dollar
sign ($) after a TYPE command. (Refer to Section 3.1.)

The user's symbol table is typed out in the following manner:

A@@(00)= 0.3851931E+998
I@@(00)= 450.0000
Al@(00)= 10.00000

* NOTE

"A" and "I" defined in a previous example (on
page 2-3) were not erased before going on to the
present example.

If an identifier consists of less than three letters, an @ is inserted as the second/third character in the symbol table
printout, as shown in the example above. An identifier may be longer than three characters, but only the first three
are recognized by FOCAL and stored in the symbol table.

2.6 SUBSCRIPTED VARIABLES
FOCAL always allows identifiers, or variable symbols, to be further identified by subscripts in the range ± 131 071
(2 17 -1), which are enclosed in parentheses immediately following the identifier. For example, the following
identifiers are subscripted:

A (I) B (1,3)
A subscript may also be an expression:

*SET AICI+3*J)=2.33
*SET X2C5f3*J)=8.20

The ability of FOCAL to compute subscripts is especially useful in generating arrays for complex programming
problems. A convenient way to generate linear subscripts is shown in Section 4.5.

2.7 THE ERASE COMMAND

To delete all of the symbolic names which are defined in the symbol table, except those in the COMMON area
(Refer to Section 5.4), type ERASE. As FOCAL does not clear the user's symbol table area in core memory when
it is first loaded, it is good programming practice to type an ERASE command before defining any symbols.

2.8 HANDLING TEXT OUTPUT

Text strings are enclosed in quotation marks (" ... ") and may include most teletype printing characters and spaces.
The carriage return, line feed, and leader-trailer characters are not allowed in text strings. To instruct FOCAL to
type an automatic carriage return line feed at the end of a text string, the user inserts an exclamation mark (!).

*TYPE "ALPHA"!"BETA"!"GAMMA"!
ALPHA
BETA
GAMMA

*
If only a carriage return is desired at the end of a text typeout, the user inserts a number sign (#).

X+Y #. Z

*

x y 7 I • .ttl'
L. 11"

_"..u"
- 11"

,," ,
/ .

CHANGE 1 2-5

The number sign operator is useful in formatting output and in plotting another variable along the same coordinate
(Refer to Section 4.7).

2.9 INDIRECT COMMANDS

Up to this point, only direct commands, executed immediately by FOCAL, have been discussed. In contrast,
commands may be delayed to alter sequences, assign all variables or generate a lengthy program. These delayed
execution statements are called indirect commands which are prefixed by a line number and are stored by FOCAL
for later execution, usually as part of a sequence of commands. Line numbers must be in the range 1.01 to 99.99.
The number to the left of the point is called the group number; the number to the right is called the step number.
(The numbers 1.00, 2.00, etc., are illegal line numbers; they are used to indicate an entire group of lines.) For
example,

*ERASE ALL
*1.1 SET A=3
*1.2 SET B=8
*1.3 TYPE %2~ A+B

To execute indirect commands the user types one of the direct commands GO, GOTO, and DO.

The GO command causes FOCAL to go to the lowest numbered line to begin executing the program. If the user
types a direct GO command after the indirect commands above, FOCAL will start executing at line 1.1.

*GO
11 *

The GOTO command causes FOCAL to start the program by executing the command at a specified line number.

*GOTO 1.2
11 *

FOCAL started executing the program at line, 1.2 SET B=8, in the above example, and then continued to line 1.3.

The DO command is used to transfer control to a specified step, or group of steps, and then return automatically to
the command following the DO command.

*ERASE ALL
*1.1 SET A=I; SET B=2
*1.2 TYPE" STARTING"
* 1 • 3 DO 3.2
*2.1 TYPE" FINISHED"
* 3. 1 SET A= 3; SET B= Lj

*3.2 TYPE %1~ A+B
*GO

STARTING 3 FINISHED 7*

When the DO command at line 1.3 was reached, the command TYPE %1, A+B was performed and then the
program returned to line 2.1 and continued from there.

The DO command can also cause FOCAL to jump to a group of commands and then return automatically to the
normal sequence. .

*ERASE ALL
*1.1 TYPE "A"
*1.2 TYPE "B"
*1.3 TYPE "e"
* 1 • Lj DO 5.0
*1.5 TYPE" END "; GOTO 6.1

2-6 CHANGE 1

* 5. 1 TYPE "0"
*5.2 TYPE "E"
-* 6. 1 TYPE
*GO
ABCOE END .*

Whetl the DO command at line 1.4 was reached, FOCAL executed the group 5 lines and then returned to line l.5.

An indirect command, with the proper sequential line number, can be inserted in a program at any time before the
direct execute command. For example,

*ERASE ALL
*4.8 SET A=l; SET B=2
*6.3 TYPE %8.3, B/C+A
*4.9 SET C=3.4581
*GO

1.5733523*

where line 4.9 will be executed before line 6.3 and after line 4.8. FOCAL arranges and executes indirect commands
in numerical sequence by line number.

2.10 ERROR DETECTION

FOCAL checks all input commands for a variety of errors. If an error is detected, FOCAL types a question mark,
followed by an error code and the appropriate line number if the error is in an indirect command. A complete list
of these error codes is shown in Appendix B.

The WRITE command without an argument causes FOCAL to print out the entire indirect program so that the user
may check it for errors.

The trace feature of FOCAL is valuable in program debugging. Any part of an indirect statement or program can be
enclosed in question marks, and when that part of the program is executed, the portion enclosed in question marks
will be printed out. If only one question mark is inserted the program is printed out from that point until
completion. The trace feature is also used to follow program control and to create special formats (Refer to Section
3.15).

2.11 CORRECTIONS

If the user types the wrong character, or several wrong characters, the RUBOUT key, which echoes a backslash (\)
for each RUBOUT typed, is used to delete one character to the left each time the RUBOUT key is depressed.

*ERASE ALL
*1.1 RYPE\\\\TYPE X-Y
* 1 ,2 SET X= 12\ 3
*WRITE

C FOCAL V3A
01.10 TYPE X-Y
01.20 SET X=13

*
Typing CTRL U (echoes an @) deletes everthing which appears to its left on the same line.

*1.3 TYPE A,B,C@
*WRITE

C FOCAL V3A
o 1 • 1 0 TY P E X - Y
01.20 SET X=13

*
2-7

A line can be overwritten. Repeat the same line number and type the new command. For example,

is replaced by

*14.99 SET C9(N+3)=15

*

*14.99 TYPE C9/Z5-2
*WRITE 14.99
14.99 TYPE C9/Z5-2

*

When WRITE is typed after corrections are made, FOCAL will print the indirect program as altered. With this
feature, commands can be checked and a "clean" program printout can be obtained. Remember that all indirect
input is printed when WRITE is typed. Therefore, it is useful to type ERASE ALL at the start of a new sequence.
(Refer to Chapter 5 for storing programs.) The ERASE command with an argument'" will delete a line or group of
lines. For example, to delete line 2.21, the user types

*ERASE 2.21

To delete all of the lines in group 2, the user types

*ERASE 2.0

Used alone, without an argument, the ERASE command causes FOCAL to erase the user's entire symbol table.
FOCAL does not zero memory when loaded; consequently, it is good practice to type ERASE before defining
symbols. The command ERASE ALL erases all user input, except COMMON variables.

The MODIFY command is another valuable feature. It may be used to change any number of characters in a
particular line, as explained in Section 3.14.

2.12 ABBREVIATIONS

All FOCAL commands (except COMMON and DATA) may be abbreviated to the first letter of the command.
Thus,

is equivalent to

*T 10:1!

2.13 ALPHANUMERIC NUMBERS (Using Letters as Numbers)

Numbers must start with a numeral but may contaLl1 letters. FOCAL interprets as a number any character string
beginning with a numeral (0 through 9). An alphanumeric number is a string of alphanumeric characters (excluding
symbols) \l!Pich starts \I!ith a number. Fcr example,

2-8 CHANGE 1

*0ABC 238l~T 2836Al

Each letter in an alphanumeric number is taken as a number (A through Z correspond to I through 26,
respectively) except for E.

The letter E denotes exponentiation to base 10 when used as a numeral. Alphanumerics after the letter E are taken
as the exponent of the preceding alphanumerics.

NOTE

E denotes exponentiation; consequently, the number 5
cannot be represented in alphanumeric fonn.

A= I
B=2
C=3
D=4
E = (exponentiation)
F=6
G=7
H=8
1=9

J = 10
K = 11
L = 12
M= 13
N= 14
0=15
P = 16
Q= 17
R = 18

S = 19
T= 20
U= 21
V= 22
W=23
X=24
y= 25
Z= 26

An easy way to give FOCAL numerical valued letters is to start with the number (/J, as in the following example.

*TYPE %, 0AB
0.120000033[+02*

After (/J, A= I and B=2; thus, (/JAB= 12. Alphanumeric characters may be used in arithmetic operations.

*TYPE %, 0AB+0C
0.150000000E+02*

The letter E denotes exponentiation to base 10 when used as a numeral. Alphanumerics after the letter E are taken
as the exponent of the preceding alphanumerics. Only one E is allowed in anyone alphanumeric number.

*TYPE %8, 0AED
10000*

*TYPE %8, 0SEC
19000*

*

Alphabetic chu.racters may be used when assigning numerical values to identifiers or variables in response to an ASK
statement (Refer to Section 3.9 for a use of this feature and lines 3.20 and 3.30 of "Intercept and Plot of Two
Functions" in Section 4.7 for an application).

2-9/2-10

3.1 TYPE

CHAPTER 3
FOCAL COMMANDS

The TYPE command js used to compute and type out a text string, the result of an expression, or the value of an
identifier. For example

*4.14 TYPE 3.2*6-(36.2*65)/2.348
*4.15 TYPE 316+(7.23/4.2753)*73.4

*

Several expressions can be computed by a single TYPE command; commas are used to separate each expression.

*1.1 TYPE %6.03, A1*2, 2112, 2.28*83.636
*00 1.1

0.000 4096.00 190.690*

The output format (%) can be included in the TYPE statement as shown in the example above and as explained in
Section 2.2.

The user may request a typeout of all identifiers which he has defined by typing TYPE $ and pressing the
RETURN key. This causes FOCAL to type out the identifiers with their values, in the order in which they were
defined. The $ can follow other statements in a TYPE command, but must always be the last operation on the line.

*ERASE ALL
*SET L=33; SET 8=22; SET Q=385
*SET A3=94~3; SET A7T=2.485
*TYPE %5.03,$

L@@(00)=
8@@(00)=
Q@@(00)=
A3@(00)=
A7T(00)=

*

33.000
22.000
385.00
94.300

2.485

3-1

A text string enclosed in quotation marks can be included in a TYPE command, and a carriage return can replace
the closing quotation mark:

* T Y P E " X S Q 'j !; RED
X SgUARED*

A text string or any FOCAL command or group of commands cannot exceed the capacity of a teletype line (72
characters for KSR33 Teletype). A command cannot be continued on the following line. To print out extended
text, each line must start with a TYPE command.

FOCAL does not automatically perform a carriage return after executing a TYPE command. To insert carriage
return-line feed characters type an exclamation mark (!). To insert a carriage return without a line feed, type a
number sign (#). To insert spaces, enclose them in quotation marks. These operations are useful for format output.

3.2 ASK

The ASK command is normally used in indirect commands to allow the user to input data at specific points during
the execution of the program. The ASK command is written in the form:

*11.99 ASK X,Y,Z,

When step 11.99 is encountered by FOCAL, it types a colon (:). Then, the user types a value in any format for the
first identifier, followed by a carriage return or ALT MODE. The ALT MODE key continues the text on the same
line. FOCAL then types another colon, and the user types a value for the second identifier. This continues until all
the identifiers or variables in the ASK statement have been given values.

*11.99 ASK X,Y,Z
*00 11.99
:4:4:8*

In the above example, the user typed 4, 4, and 8 as the values, respectively, for X, Y, Z.

FOCAL recognizes each value when its terminator (i.e., carriage return or ALT MODE) is typed. Therefore a value
can only be changed before its terminator is typed. This is done by using RUBOUT or CTRL U.

A text string can be included in an ASK statement if the string is enclosed in quotation marks.

*1.1 ASi-< "rDW MANY APPLES 00 YOU HAVE?" APPLES
*DO 1. 1
HOW MANY AP?LES OJ YOU HAVE?:25
*TYPE AP?

0.250030000E+0':>*

The identifier APP (FOCAL recognized only the first three characters of the identifier APPLES.) now has the value
25. When APP is used, it will equal 25. Its value may be reassigned if it is asked for again.

*ASK APP
: 30
*TYPE APP

0.3021000300E+J2*

Alphabetic characters can be used if numerical values are assigned to identifiers or variables:

3-2

*1.1 ASK A; TYPE %4,A
*00 1.1
:ABCO

1234*

When the user typed ABCD and RETURN, FOCAL typed the numerical value of ABCD (Refer to "Alphanumeric
Numbers", Section 2.l3).

Alphabetic responses are especially useful for keyboard responses to FOCAL statements. A YES or NO answer can
be typed by the user during program execution in response to a program question, as explained in Section 3.9.

3.3 WRITE

A WRITE command without an argument causes FOCAL to write out all indirect statements which the user has
typed. Indirect statements are those preceded by a line number.

A group of line numbers, or a specific line, can be typed out with the WRITE command using arguments, as shown
below.

3.4 SET

*7.97 WRITE 2.0
*7.98 WRITE 2-1
*7.99 WRITE

(FOCAL types all group 2 lines)
(FOCAL types line 2.1)
(FOCAL types all numbered lines)

The SET command is used to define identifiers. When FOCAL executes a SET command, the identifier and its
value are stored in the user's symbol table. When the identifier is encountered in the program, the value is
substituted for the identifier.

*ERASE ALL
*401 SET A=394.83; SET B=4.373
*4.2 TYPE %,A+B
*GO

0.399203000E+03*

An identifier can be set equal to previously defmed identifiers, which can be used in arithmetic expressions.

3.5 ERASE

An ERASE command without an argument is used to delete all identifiers except those in COMMON (Refer to
Section 5.4 for the ERASE COMMON command.) with their values, from the symbol table.

If the ERASE command is followed by a group number or a specific line number, a group of lines or a specific line
is deleted from the program.

*ERASE 2.0

*ERASE 7. 11

(deletes all group 2 lines)

(deletes line 7. 11)

The ERASE ALL command erases all the user's input. In the following example, an ERASE command is used to
delete line 1.50.

3.6 GO

*ERASE ALL
* 1 .2 SET B= 2
*1.3 SET C=34
*1.4 TYPE B+C
*1.5 TYPE C-B
*ERASE 1.5
*WRITE

C FOCAL V3A
01.20 SET B=2
01.30 SET C=34
01.40 TYPE B+C

*

The GO command is used to execute the program which starts with the lowest numbered line. The remainder of
the program is executed in line number sequence. Line numbers must be in the range 1.01 to 99.99.

3-3

3.7 GOTO

The GOTO command causes FOCAL to transfer control to a specific line in an indirect program. It must be
followed by a specific line number. After executing the command at the specified line, FOCAL continues to the
next higher line number, executing the program sequentially.

*ERASE ALL
* 1 • 1 TYPE "A"
* 1 .2 TYPE "8"
* 1 .3 TYPE ,. (~"
* 1 • 4 TYPE "D"
*GOTO 1.2
8CD*

3.8 DO

The DO command transfers control momentarily to a single line, a group of lines, or an entire indirect program. If
transfer is made to a single line, the statements on that line are executed, and control is transferred back to the
statement foJ.lowing the DO command. Thus, the DO command makes a subroutine of the lines'to which control is
transferred, as shown in the following example:

*ERASE ALL
*1.1 TYPE "F"
*1.2 DO 2.3; TYPE "C"
*1.3 TYPE "A"
*1.4 TYPE "L"
*1.5 QUIT
*2.3 TYPE "0"
*GO
FOCAL*

If a DO command transfers control to a group of lines, FOCAL executes the group sequentially and returns control
to the statement following the DO command.

If DO is writt~n without an argument, FOCAL executes the entire indirect program in the same manner as a GO
command.

DO commands cause specified portions of the indirect program to be executed as closed subroutines. These
subroutines can also be terminated by a RETURN command.

A GOTO or an IF statement within a DO subroutine modifies the program execution sequence.

3.9 IF

To transfer control after a comparison, FOCAL contains a conditional IF statement in the form IF (m) x, y, z; m is
an expression or variable, and x, y, z are three line numbers. The expression is evaluated, and the program transfers
control to the first number, x, if the expression is less than zero; to the second line numbel, y, if the expression
equals zero; or to the third line number, z, if the value of the expression is greater than zero.

*2.1 TYPE "LESS THAN ZERO"; QUIT
*2.2 TYPE "EQUAL TO ZERO"; QUIT
*2.3 TYPE "GREATER THAN ZERO"; QUIT
*IF <25-25) 2.1 ... 2.2 ... 2.3
EQUAL TO ZERO*

In the above example, the parenthetical expression equals zero; consequently, line 2.2 was executed. Note that an
IF statement must be enclosed in parentheses.

The IF statement can be shortened by terminating it with a semicolon or carriage return after the first or second
line number. If a semicolon follows the first line number, the expression is tested, and control is transferred to that

3-4

line if the expression is less than zero. If the expression is not less than zero, the program continues with the next
statement..

*2.20 IFCX)1.8;TYPF.:: "C"

In the above example, when line 2.20 is executed, if X is less than zero, control is transferred to line 1.8. If not, C
is typed out.

*3-19IFCB)1.8,1.9
*3.20 TYPE B

In the above example, if B is less than zero, control goes to line 1.8, if B is equal to zero, control goes to line 1.9.
If B is greater than zero, control goes to the next statement (in this case, line 3.20), and the value of B is typed.

In programs that require a keyboard response (as in Section 4.7 line 3.2), it is useful to determine if the answer
by the user to an ASK question is YES or NO. Alphabetic responses used with an IF statement permit one of two
possible commands to be executed, depending on the user's answer. For example:

IF (answer-fPYES) 1.1, 2.1, 1.1

where answer is YES or NO, as typed by the user. The next command depends on whether answer is YES (in which
case, answer-fPYES equals fP, and line 2.1 is executed) or NO (producing a nonzero result and moving program
execution to line 1.1).

For example,

*1·1 TYPE "DO YOU WANT A LIr'JE?",!
*1.2 ASK "TYPE YES OR NO",ANS,!
*1.3 IF CANS-OYES) 2-1,2.2,2-1
*2-1 QUIT
*2.2 TYPE "--------------------",!
*2.3 GOTO 1'}
*GO
DO YOU WANT A LINE?
TYPE YES OR NO:YES

DO YOU WANT A LINE?
TYPE YES OR NO:NO

If a GOTO or an IF command is executed within a DO subroutine, two actions are possible:

a. If a.GOTO or IF command causes transfer to a line inside the DO group, the remaining commands in that
group are executed as in any subroutine before returning to the command following the DO command.

b. If transfer is to a line outside the DO group, that line is executed and control is returned to the command
following the DO command unless that line contains another GOTO or IF.

*ERASE ALL
*101 TYPE "A"; SET X=-1; DO 3d; TYPE "0"; DO 2
*1.2 DO 2.0
*2.1 TYPE "G"
*2.2 IF ex) 2.5,2.6,2.7
*2.5 TYPE "H"
*2.6 TYPE "I"
*2.7
*2.8
*2.9
* 3. 1
* 5. 1
*5.2
*GO

TYPE
TYPE
TYPE
TYPE
TYPE
TYPE

"J"
"K"
% 2.01,X;
"B" ,; GOTO
"C"
"W"

TYPE
5. 1;

" ,,- SET X=X+1 ,
TYPE "F"

ABCOGHIJK-1.0 GIJK 0.0 GJK 1.0 BCW*

3-5

3.10 RETURN

The RETURN command is used to exit from a DO subroutine. When a RETURN command is encountered during
execution of a DO subroutine, the program exits from its subroutine status and returns to the command following
the DO command that initiated the subroutine status.

3.11 QUIT

A QUIT command causes the program to halt and return control to the user. FOCAL types an asterisk and the user
can type another command.

3.12 COMMENT

Beginning a command string with the letter C (except for COMMON) will cause the remainder of that line to be
ignored to allow insertion of comments into the program. Such lines are skipped over when the program is
executed, but are typed out by a WRITE command. A program that is well documented with comments is more
meaningful and easier to understand than one without comments.

3.13 FOR

This command is used for convenience in setting up program loops and iterations. The general format is

*FOR A=8,C,O;(COMMANO)

The identifier A is initialized to the vall.,le B. Then, the command following the semicolon is executed. When the
command has been executed, the value of A is incremented by C and compared to the value of D.1f A is less than
or equal to D, the command after the semicolon is executed again. This process is repeated until A is greater than
D; then, FOCAL goes to the next sequential line.

The identifier A must be a single variable. B, C, and D can be either expressions, variables, or numbers. If a comma
and the value C are omitted, it is assumed that the increment is one. If C,D is omitted, it is handled like a SET
statement and no iteration is performed.

The computations involved in the FOR statement are done in floating-point arithmetic, and it may be necessary, in
some circumstances, to account for this type of arithmetic computation.

Example 1 below is a simple example of how FOCAL executes a FOR command. Example 2 shows the FOR
command combined with a DO command.

Example 1:

Example 2:

3-6

*ERASE ALL
*3.11 SET A=383.383
*3.12 FOR 8=20, H~,70; TYPE %7.03, "8 IS " 8+A,!
*GO
8 ~?
8 IS
8 IS
8 IS
8 IS
8 IS

*

403.383
413.383
423.383
433.383
443.383
453.383

*1-1 FOR X=I,2,9; OJ 2.0
* 1 .2 G'J TO 3. 1
*2.1 TYPE: ! " "%5, "X" X
*2.2 SET A=X+100.00
*2.3 TYPE ! "
*3-1 Q'JIT
*GO

"%5, "A" A

X
A 101
X 3
A 103
X 5
A 105
X 7
A 107
X 9
A 109*

If two FOR statements are put on one line, the second FOR statement is performed in full for each incrementation
in the fIrst FOR statement.

3.14 MODIFY

Frequently, only a few characters in a particular line require changes. To facilitate this job, and to eliminate the
need to replace the entire line, FOCAL has a MODIFY command. For example, to modify the characters in line
5.41, the user types MODIFY 5.41 and then depresses RETURN key. The program then waits for the user to type
the character he wishes to modify. After the user has typed the search character, the program types out the
contents of that line until the search character is typed.

At this point, the user has seven options:

a. Type in new characters in addition to the ones that have already been typed out.
b. Type ALT MODE to continue the search to the next occurrence, if any, of the same search character.

c. To change the search character, type CTRL BELL and the new search character as at the beginning of the
MODIFY command.

d. Use the RUBOUT key to delete one character to the left each time RUBOUT is depressed.

e. Type a CTRL U to delete the line over to the left margin, but not the line number.

f. Type carriage return to terminate the line at that point, removing the text to the right.

g. Type a LINE FEED to save the remainder of the line.

The ERASE ALL and MODIFY commands are generally used only in immediate mode because they return to
command mode upon completion.

During command input, CTRL U deletes the line numbers as well as the text if the CTRL U is the right-most
character on the line. However, when using the MODIFY command the line number is not deleted by the
use of CTRL U. Note the error in line 7.01.

*7.01 JACK AND HILL WRNT UP THE GILL
*MODIFY 7.01
HJACK AND H~JRILL WR~EGNT UP THE G\H

*WRITE 7.01
07.01 JACK AND JILL WENT UP THE HILL

*

ILL

To modify line 7.01, the user typed an H to indicate the character to be changed. FOCAL stopped typing when it
encountered the search character, H. The user typed the RUBOUT key to delete the H, and then typed the correct
letter, J. The user then typed CTRL BELL key followed by the R, the next character to be changed. The RUBOUT
deleted the R and the user typed E. Again a serach was made (this time for the G), and the G was changed to H.
The user typed a line feed to save the remainder of the line.

When the MODIFY command (or another command which alters the stored indirect program) is used, the values in
the user's symbol table (except those defIned as COMMON) are reset to zero. Therefore, if the user defines his
symbols in direct statements and then uses a MODIFY command, the values of his symbols are erased and must be
redefIned.

However, if the user defInes his symbols by indirect statements prior to using a MODIFY command, the values are
not erased because these symbols are not entered in the symbol table until the statements defining them are
executed.

3-7

In the example below, notice that the values of Y and Z were set using direct statements. The use of the MODIFY
command reset their values to zero and listed them after the defined symbols:

*ERAS£ ALL
*SET Z=9
*SET Y=3
*1-1 SET X=3
*1.2 SET W=4
*1.3 TYPE W+X+Y+Z; TYPE !; TYPE $

* tv1J 0 IF Y 1. 1
S SET X=5

*G')
0.900000000E+01

X@@(00)= 0.500000000E+01
W@@(00)= 0.400000000E+01
Y@@(00)= 0.000000000E+00
Z@@(00)= 0.000000000E+00

*
3.15 USING THE TRACE FEATURE
As noted in Section 2.10, the trace feature is useful in checking an operating program. Those parts of the program
which are enclosed in question marks are printed out as they are executed. (The trace feature is illegal for use in the
multi-user FOCAL environment; see Chapter 8.)

In the following example, parts of three lines are printed.

*ERASE ALL
*1.1 SET A=2
* 1 .2 SET 8=5
* 1 .3 SET C=3
* 1 .4 TYPE 702., ?A+8-C?., !
* 1 • 5 TYPE ? 8+AI C?., !
* 1 .6 TYPE ? 8-C?
* 1 .6 TYPE ?8-C/A?

*GO
A+8-C 4
8+A/C 6
8-C/A 4*

Also, GO? will trace the program starting with the lowest numbered line, provided no other question marks are
present in the program.

3.16 INTERNAL FUNCTIONS
The internal functions provide extended arithmetic capabilities. User defined external functions are described in
Chapter 6. A standard function call consists of four letters, beginning with the letter F and followed by a
parenthetical expression.

The following are the internal functions:

a. The square root function (FSQT) computes the square root of the expression within parentheses.

*TYPE %.,FSQT(43.489)
0. 659461902E+01 *

*TYPE FSQTC2.333)
0.152741612E+01*

*TYPE FSQT(3718)
o .6097540LJ9E+02*

3-8 CHANGE I

b. The -a,bsolute value function (F ABS) outputs the absolute or positive value of the number in parentheses.

*TYPE %, FABS(-394)
0. 39 4g0~)002)E+03*

*TYPE FABS(-.93)
0. 9 3000lZJ2lt~:HZJ:::+00*

*TYPE FABS(73)
0.7 3 t2) !.ZJ00 2)13121 E+ 02*

c. The sign part function (FSGN) outputs the sign part (+ or -) of a number and the interger part becomes a 1.
Zero is considered a positive number.

*TYPE %, FSG!\lC-283.3)
-0.1002)00000E+01*
* T Y P E F S [3 r\l C 0 • 0 121)
0.10000JJ00~+01*

*TYPE FSGN(-0.38)
-0.100000000E+01*

d. The integer part function (FITR) outputs the integer part of a number up to ± 131071 (217 -1).

*TYPE %,FITR(-34.8)
-0.340000000E+02*
*TYPE FI TR(0. 73)
0.000000000E+00*

*TYPE FITRC374.92)
!2J • 3 7400010 00 E + 0 3 *

e. The random number generator function (FRAN) computes a nonstatistical pseudo-random number be
tween -1 and +1 (Most numbers fall in the range 0 to +1.).

*TYPE %, FRAN C)
0.110626628E-03*

*TYPE FRAN ()
0.129700202E-03*

*
f. The exponential function (FEXP) computes e (e = 2.718281) to the power within parentheses.

*TYPE %, FEXP(27)
0.532048241E+12*

*TYPE FEXPC2.348)
0.104646196E+02*

*TYPE FEXP(0.374)
0.145353715E+01*

*
g. The sine function (FSIN) calculates the sine of an angle expressed in radians.

*TYPE %, FSINC3.10)
0.41S805620~-01*

*TYPE FSIN(0.2~8)
0.274432986E+00*

*TYPE FSIN(I.272)
0.9556915217E+02,*

FOCAL requires that angles be expressed in radians; thus, to find a function of an angle in degrees, the conversion
factor, 7T/180, must be used. To find the sine of 10 degrees:

*SET PI=3.14159; TYPE FSINC10*PI/180)
0. 17 3648033E+00*

3-9

h. The cosine function (FeOS) calculates the cosine of an angle expressed in radians.

*TYPE %, FC as (2 *P I)
0.100000000 +01

*TYPE FCaS(.3628)
0.934906788E+00*

*TYPE Fcas (1 .37)
0.199449720E+00*

i. The arctangent function (FATN) calculates the angle in radians the tangent of which is the argument within
parentheses.

*TYPE %, FATN(I.000)
0.785398163E+00*

*TYPE FATN(23.44i
0.152816007E+01*

*TYPEFATN(0.728)
0.629271798E+00*

j. The logarithm function (FLOG) computes the natural logarithm (loge) of the number within parentheses.

3-10

*TYPE %, FLOG(238.48467)
0.5474305CJ3E+01*

*TYP~ FLOG(0.2876)
-0.124618465E+01*
*TYP~ FL:)G(I.23)

0.207014169E+00*

CHAPTER 4
EXAMPLES OF FOCAL PROGRAMS

4.1 TABLE GENERATION USING FUNCTIONS

The ability to evaluate simple arithmetic expressions and to generate values with the aid of internal functions is one
of the fIrst benefIts to be derived from learning the FOCAL language. In the example that follows, a table of sine,
natural logarithm, and exponential values is generated for a series of arguments. As the user becomes more familiar
with these functions, he can easily combine them with standard arithmetic operations and evaluate any given for
mula for a single value or for a range of values.

In this example, line * 1.01 outputs the desired column headings. Line * 1.10 is the loop to generate values for I,
beginnmg with the value 1.00000000 ana continuing in increments of .00000010 through the value 1.0000010U;
the DO 2.05 command at the end of this second line causes the various functions to be executed for the I
arguments. The output format %9.08 in line 2.05 specifIes that all output results up to the next % symbol are to
appear in fIxed-point format with one digit position to the left of the decimal point and eight digit positions to the
right; the second % symbol reverts the output mode back to floating point for the remaining values FLOG and
FEXP. Line 01.20 (optional) returns control to the user. -

The foil owing techniques are apparent in line *2.05 of thIS example:

a. FOCAL commands can be abbreviated to the fIrst letter of the command followed by a space, as shown by
the use of T instead of TYPE. This technique can be used to shorten command strings.

b. Arguments can be enclosed in various ways. This feature is useful in matching correctly when a number of
enclosures appear in a command.

c. Spaces can be inserted in :m output format by enclosing the appropriate number of spaces within quotation
marks. This procedure is recommended to improve the readability of the output results.

d. The use of very small loop increments (in this example .000000 I) eliminates the need to interpolate
between table values of trigonometric functions. FOCAL is usually accurate to nine significant digits but
rounding in certain cases may place some uncertainty on the 9th place. Thus, the user, in some circumstances,
may need to account for the rounding.

CHANGE 1 4-1

*1.01 T" SINE
*1.10 FOR 1=1, .0000001,1.000001; DO 2.05
*1.20 QUIT

LOG

*2.05 T %9.06,1," ",FSIN(I)," ",%,FLOG<I>," ",FEXP[IJ,!
*GO

I SINE LOG E
1.00000000 0.64147099 0.806929521E-10 0.271 8261 83 E +01
1.00000010 0.84147104 0.999785677E-07 o .271 828210 E +01
1.00000020 0.84147109 0.199676442E-06 0.871 828237 E +01
1.00000030 0.84147115 0.299733971E-06 o .271828264E+01
1.00000040 0.64147120 0.399631645E-06 o .271 826292 E +01
1 .00000050 0.64147126 0.499529720E-06 0·271627319E+01
1.00000060 0.84147131 0.599427595E-06 o .271826346E+01
1.00000070 0.64147136 0·699285123E-06 0.271828373E+01
1.00000060 0.84147142 0.799162998E-06 0.271626400E+01
1.00000090 0.84147147 0.899040526E...,06 0.271626427E+01
1.00000100 0.84147153 0.996918747E-06 0.271626454E+01

*

4.2 FORMULA EVALUATION FOR CIRCLES AND SPHERES

E"!

In this example, FOCAL is used to calculate, label, and output geometric values for an indefinite number of radii
typed in by the user.

Given a radius, R, FOCAL can calculate such values as:

a. circle diameter: 2R

b. circle area: 1I'R2

c. circle circumference: 211'R

d. sphere volume: 411'R3 /3

e. sphere surface area: 411'R2

Although inches are used in this example, conversions to other systems (metric, for example) could
be easily incorporated into the program, without the need for hand-calculated conversions.

The program is very straightforward. ASK is used to allow the user to type in the radius value to be used in the
calculations. SET is used to supply the value of 11'. TYPE is used for all calculations and output. If a value (e.g., 11' in
this example) is to be entered once and then used in repeated calculations, it should be entered by a SET command
which is outside the calculation loop; otherwise, the variable must be set at the beginning of each pass through the
loop. If the value of the variable changes during each iteration, however, then it must be calculated either by a SET
or TYPE command within the loop.

The use of the GOTO command (line * 1.50) results in an infinite loop of lines * 1.10 through * 1.50. This technique
is used when the number of desired repetitions is not known. The looping process can be terminated at any time by
typing CTRL P. If, however, the number of desired repetitions is known (e.g., 10), the following method can be
used.

4-2

*S E T P I = 3 • 1 4 1 5 9
*1.t ASK •••

*
* *1.6 TYPE I!!!!
*FOR I = 1,10; DO

The ability to choose between these methods provides great flexibility in actually running FOCAL programs.

*1.01 SET PI=3014159
*1.10 ASK" A RADIUS OF ".,R., "INCHES"
* 1 • 20 TY P E % 8 • 0 4., !.," G ENE RA T E SAC I R C LEO F: ".,!
*1.21 TYPE" DIAMETER"., 2*R," INCHES",!
*1.30 TYPE" AREA", PI*R1'2.," SQUARE INCHES",!
*1.31 TYPE" CIRCUMFERENCE", 2*PI*R," INCHES".,!
*1.40 TYPE !, "AND A SPHERE OF:",!
*1.47 TYPE" VOLU1V1E", (4/3)*PI*R1'3," CUBIC INCHES",!
*1.50 TYPE !!!!!; GOIO 1-1
*GO

A RADIUS OF :26.39INCHES
GENERATES A CIRCLE OF:

DIAMETER 52.7800 INCHES
AREA 2187.9041 SQUARE INCHES
CIRCUMFERENCE 165.8131 INCHES

AND A SPHERE OF:
VOLUME 76985.053 CUBIC INCHES

A RADIUS OF :0.73INCHES
GENERATES A CIRCLE OF:

DIAMETER 1.4600 INCHES
AREA 1.6742 SQJARE INCHES
CIRCUMFERENCE 4.5867 INCHES

AND A SPHERE OF:
VOLUME 1.6295 CUBIC INCHES

4.3 ONE-LINE FUNCTION PLOTTING

This example demonstrates the use of FOCAL to present, in graphic form, some given function over a range of
values. In this example, the function used is

y= 30+ 15 [sin (x)]e-O •1X

with x ranging from 0 to 15 in increments of .5. This damped sine wave has many physical applications, especially
in electronics and mechanics (for example, in designing automobile shock absorbers).

In the actual coding of the example, the variables I and J were used in place of x and y, respectively; any two
variables could have been used. The single line 1.10 contains a set of nested loops for I and J. The J loop types
spaces horizontally for the y coordinate of the function; the I loop prints the * symbol and the carriage return and
line feeds for the x coordinate. The function itself is used as the upper limit of the J loop, again showing the power
of FOCAL commands.

The technique illustrated by this example can be used to plot any desired function. Although the * symbol was
used here, any legal FOCAL character is acceptable.

4-3

1.1 F 1=0.,.5.,15; T "".,!; F J=0.,30+15*FSIN(I)*FEXP(-ol*I); T" "
* DO 1. 1

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*
*

*
*

*
*
*
*

*

4.4 DEMONSTRATION DICE GAME

Occasionally, the computer user will apply the computer to tasks solely for his own enjoyment. Because such
pastimes are usually keyboard oriented, FOCAL lends itself nicely to these ends. The following example uses the
random number generator, FRAN (), to produce dice combinations, as well as IF logic to check bets and winning
com binations.

Note again the use of initials to abbreviate commands throughout the example (remember that each such
abbreviation must be followed by a space).

The random number generator must be modified for use with statistical or simulation programs to achieve true
randomness. However, it is sufficiently random for most applications in its present form.

4-4

NOTE

DEC does not assume any responsibility for the use of this
routine or any similar routines.

C FOCAL V3A
o 1 • 1 0 S B = 0 ; T !!" 0 ICE GA ME" ! ., "H 0 USE LIM I TIS $ 1 0 0 0 "
01013 T ". MIN., BET IS $1.00"!!
01.20 ASK "YOUR BET IS"A;1 (1000-A) 3010
01 .22 I (A - 1) 3.40., 1 .26., 1 .26
01.26 IF CA-FITRCA»3.50.,1.30.,3.50
01·30 ASK M;OO 2;SET O=C;OO 2;T " ";SET O=O+C
01 .32 I CO - 7) 1 .42., 3.20., 1 .42
01 .40 (0 - 2) 1 • 50., 3 • 30., 1 • 50
o 1 • 42 I (0 - 1 1) 1 • 40., 3 • 20., 1 • 40
01 • 50 I CO - 3) 1.60., 3 • 30., 1 .60
01.60 ASK M;OO 2;S E=C;OO 2;T " ";S E=E+C
01 .72 ICE - 7) 1.74., 3.30., 1 .74

o 1 • 74 I (E - 0) 1 _. 60, 3 • 20, 1 • 60
02.10 SET C=FITR(10*FABS(FRAN(»);IF (C-6)2.20,2.20,2.10

03-10 T "HOUSE LIMITS ARE $1000"!!'; G 1.20
03.20 S B=B+A.;T %6.0, !"YOU WIN. YOUR WINNINGS ARE ",B,!!.;G 1.2
03-.30 S B=B-A.;T %6.0, !"SORRY YOU LOSE. YOUR WINNINGS ARE ",B,!!.;G 1.2
03. 40 T "M IN. BET I S $1"!!.; G 1.2
03.50 T "NO PENNI ES, PLEASE"!!.; GOTO 1.2

01 CE GAME "
HOUSE LIMIT IS $1000. MIN, BET IS $1.00

YOUR BET IS:.50 MINIMUN BET IS $1

YOUR BET IS:15:
6 3

4 :
4 5

YOU hlI N. YOUR

YOUR BET IS:5:
2 2
6

WINNINGS ARE 15

SORRY, YOU LOSE. YOUR WINNINGS ARE 10

YOUR BET IS:3:
6 5

YOU WIN. YOUR WINNINGS ARE 13

YOUR BET IS: I'LL QUIT WHILE 1'M AHEAD. THANKS!

4.5 SIMULTANEOUS EQUATIONS AND MATRICES

Many disciplines use subscripted variables for vectors in one, two, or more dimensions to store and manipulate
data. A common use is the 2-dimensional array or matrix for handling sets of simultaneous equations. For example,

Given:

Find: The values of Xl, X2 , and X3 to satisfy all three equations simultaneously.

The solution can be reduced to simple mathematics between the various elements of the rows and columns until
correct values of X are found.

Each individual quantity in an array is referred to in terms of its position within the array. This identifier is a
subscript. The notation A(I) refers to element I of array A.
FOCAL uses only a single subscript. Thus, the handling of two or more dimensions requires the generation of a
linear subscript which represents the correct position if it were stored in normal order, i.e., leftmost subscript
moving fastest.

In one dimension:

In two dimensions:

ARRAY (0)1
(1) B
(2) C
(3) D
(4) E

ARRAY (row, column) or A(I, J)

For example:
Element D could be represented as ARRA Y(3); any element in
this array can be represented by a subscript in the range 0
through 4. The first element in an array always has a subscript
ofO.

This must be reduced to the form A(G). Because subscripts are linear, G is a function of I and J; that is, A(I,J) =
A(G). Consider the diagram

4-5

1= 0
1
2
3
4

o
0
1
2
3
4

J=
2

5 10
6 11
7 12
8 13
9 14

This array has five rows and three columns; thus, two values can be defmed:

IMAX= 5
JMAX= 3

To generate the number (G) in any box, using the corresponding values of I and J, the formula

G = I + IMAX*J or A(G) = A(I + IMAX*J)

can be used. Each element in a 2-dimensional array represents an area. The example for solving simultaneous
equations, above, uses this algorithm for subscripts, merely by replacing I, IMAX, and J with J, L, and K,
respectively, to form the equation

A(J+L*K)

In three dimensions

ARRAY (row, column, plane) = A(I, J, K) = A(G)

Three dimensions can be illustrated as rectangular solid.

K=O

1=0

2

3

4

J=O 2

This rectangular solid has dimensions of five rows, three columns, and four planes; thus, IMAX = 5, JMAX = 3, and
KMAX = 4. Each plane is numbered exactly as in the 2-dimensional example, except 15 times K (with K = the num
ber of planes back from the first) is added to each subscript in the first plane.

Example: Upper lefthand square, back one plane from the first = 15

1= 0, J = 0, K = I; 1+ (lMAX*J) + (IMAX* JMAX*K) = 15 = G

or

A(O, 0, I) = A(15)

4-6

In four dimensions:

ARF~J\.Y (row, column, plane, cube) = i~~(!, J, K, L) = l~1(G)
Assign the values for IMAX, JMAX, KMAX; a method similar to the one used above yields

G = I+(lMAX* J)+(lMAX* JMAX* K)+(lMAX* JMAX* KMAX* L)

This process can theoretically be extended indefInitely to n-dimensions.

C FOCAL V3A
01.02 TYPE !"ROUTINE TO SOLVE MATRIX EQ. AX=B FOR X"!
01.04 ASK "ENTER DIMENSION OF A~ THEN
01.05 TYPE !"ENTER COEFF'S A(J~K) ••• A(J~N) AND B(J)"!
01-10 ASK L~ !;SET N=L-1; SET 1=-1
01-11 FOR K=0~N; SET RCK)=K+1
01.12 FOR J=0~N; TYPE !; FOR K=0~L; ASK ACJ+L*K)
01-14 SET M=lE-6
01.16 FOR J=0~N; FOR K=0~N; DO 4
01.17 SET R[PJ=0.
01.18 FOR K=0~L; SET A[P+L*K]=A[P+L*K]/M
01.20 FOR J=0~N; DO 5
01.22 SET 1=1+1
01.23 IF (I-N) 1.t4~ 1.26 ~ 1014
01.26 FOR J=0~N; FOR K=0~N; DO 7
01.28 FOR K=0~N;TYPE !%2~"X("K~") "~%8.05~X(K)

o 1 • 29 TY P E !!; GOT 0 1. 0 2
04.05 IF (R<J» 0~ 4.3~ 401
04.10 IF (FABS(A(J+L*K» - FABS[M]) 4.3;
04.20 SET M=AeJ+L*K)
04.22 SET P=J; SET Q=K
04.30 RETURN
05.10 IF (J-P) 5.2~5.4~5.2

05.20 SET D=A(J+L*Q)
05.30 FOR K=0~L; SET A<J+L*K>=A<J+L*K>-A<P+L*K>*D
05.40 RETURN
07-10 IF (1E-6-FABS[A(J+L*K)]) 7.2; RETURN
07.20 SET X(K)=A(J+L*L)

ROUTINE TO SOLVE MATRIX EQ. AX=B FOR X
ENTER DIMENSION OF A~ THEN
ENTER COEFF'S ACJ~K) ••• A(J~N) AND BCJ)
:3

:1:3:2:4
:5:3:6:2

:3:1:2:1

X(0)
X (1)
X(2)

0.25000
1.75000
0.75000

ROUTINE TO SOLVE MATR1X EQ. AX=B FOR X
ENTER DIMENSION OF A~ THEN
ENTER COEFF'S ACJ~K) ••• A(J~N) AND BCJ)
:3

:4:5:2:3

:1:3:8:5
::2:6:1

X(0)
X (1)
X(2)

5.00000
4.00000
1 .50000

4-7

4.6 INTEREST PAYMENT PROGRAM

This is an example of a business-oriented FOCAL program. It is designed to completely describe the payments to
be made on a loan, with interest, on an installment plan basis.

Under program control, the computer requests as input the amount of a loan, the percentage of interest on that
loan, and the length of time over which the loan is to be paid. The computer then calculates and types the amount
of monthly payments to be paid, the total amount of interest to be paid, and a table showing interest paid, amount
applied to principal, and balance due after each payment.

4-8

C FOCAL V3A
o 1 .02 TYP E !!, % 7 .02
01.20 TYPE" THIS PROGRAM WILL COMPUTE MONTHLY PAYMENTS AND THE"
01.21 TYPE" CONTRIBUTION OF EACH"
01.22 TYPE "PAYMENT TO INTEREST AND PRINCIPAL. PLEASE ANSWER THE"
01.23 TYPE" FOLLOWING:",!!
01.30 ASK "WHAT IS THE AMOUNT OF THE PRINCIPAL?" PRINCIPAL
01.31 ASK "WHAT IS THE RATE OF INTEREST?" INTEREST
01.32 ASK "WHAT IS THE TERM OF THE LOAN IN MONTHS?" TERM
01.33 TYPE!!
01.40 SET D=I+«INTEREST/12>*.01)
01.41 FOR A=I,I,TERM; DO 15.99
01.42 SET C=PRINCIPAL/B
05.01 SET BALANCE=PRINCIPAL
05.02 TYPE "PRINCIPAL"
05.03 TYPE PRINCIPAL; TYPE"
05.04 TYPE "PAYMENTS"; TYPE C; TYPE !!!
05.05 TYPE" PAYMENT"; TYPE"
05.06 TYPE "INTEREST"; TYPE"
05.07 TYPE "PRINCIPAL"; TYPE"
05.08 TYPE "BALANCE"; TYPE"
06.01 FOR M=I,I,TERM; DO 7.00

"; TYPE

06.02 TYPE!!!; TYPE"
06.03 TYPE "TOTAL INTEREST",%6.02
06.04 TYPE TOTINTEREST
06.05 TYPE!!!
06.06 GOTO 1 .02

,,,

07.01 SET CINTEREST=BALANCE*(INTEREST/12)*.01
07.02 SET TOTINTEREST=TOTINTEREST + CINTEREST
07.03 SET CPRINCIPAL=C-CINTEREST
07.04 SET BALANCE=BALANCE-CPRINCIPAL
07.05 TYPE %7.02,M,%14.02
07.07 TYPE CINTEREST,CPRINCIPAL,BALANCE,!
15.99 SET B=B+(l/<D>tA)

THIS PROGRAM WILL COMPUTE MONTHLY PAYMENTS AND THE CONTRIBUTION OF EACH
PAYMENT TO INTEREST AND PRINCIPAL. PLEASE ANSWER THE FOLLOWING:

WHAT IS THE AMOUNT OF THE PRINCIPAL?:2000
WHAT IS THE RATE OF INTEREST?:6.4
WHAT IS THE TERM OF THE LOAN IN MONTHS?:12

PRINCIPAL 2000.00 PAYMENTS 1 72.50

PAYMENT INTEREST PRINCIPAL BALANCE
1 .121121 1121.67 161.84 1838-1 ~I

2.121121 9.8121 162.7121 1675.47
:.:s~tO~ 8v94 1""'" 1::'''' 10w·")1 1511.90
4.00 8.1216 164.44 1347.47
5.121121 7 • 1 9 165.32 1182.15
6.121121 6.31 166.20 1015.96
7.0121 5.42 167.1218 848.87
8.0121 4.53 167.97 68121.9121
9.0121 3.63 1 68 .87 512.1213

1121.0121 2.73 1 69 • 77 342.26
11 .121121 1 .83 1 7121 • 68 1 71 .59
12.121121 0.92 171.59 121.121121

TOTAL INTEREST 7121 .1211

4.7 INTERCEPT AND PLOT OF TWO FUNCTIONS

Values are first computed and printed for two monotonic functions. Then these curves are plotted within specified
limits. Non-monotonic functions must be plotted using the method of residuals.

C FOCAL V3A
1211 • 121 1 T %8. 121 4
1211.1212 ASK "LOWER LIMIT",LL, !"UPPER LIfV!IT",UL, !"INCREMENT",IN,!
01 • 1 121 SET Y 1 = 121,; SET Y 2= 121 ,;
1211.20 FOR X=LL,IN,UL.; SET Yl=-X-3'; SET Y2=3+4*X-Xt2.; DO 2.121
1212.10 IF (Y2-YD 2.3 .. 2.2,2.3
121 2. 2121 TY P E " TH E PO I NT 0 FIN T E R SEC T ION IS",!
1212.3121 TYPE "Xl=",X," ","Yl=",Yl, !,"X2=",X," ","Y2=",Y2,!!
1213.1121 TYPE "DO YOU WANT A PLOT?"
1213.2121 ASX "(TYPE Y FOR YES. TYPE N FOR NO) ",AN,!!
1213.3121 IF (AN-I2IY)9.1,4.1,9.1
1214.10 FOR X=LL,IN,UL.; DO 5.0
05.01 IF (X) 5.t,5.1212,5ol
o 5. 0 2 TY P E ' , Y • Y" , #
121 5. 1 0 FO R Y = 121, 3121.; TY P E " "
1215.20 TYPE ".",#
05.3121 FOR Y=0,30+(-X-3)'; TYPE
05.4121 TYPE "*",#
05.50 FOR Y=I2I,3121+(3+4*X-Xt2),;
05.6121 TYPE "*", !
1219. 10 QUIT

*L IN TWOFNC
LOWER LIMIT:-l121

UPPER LIMIT: 1121

INCREMENT: 1

X1=- 1121.121121121121 Yl= 7.1211211210
X2=- 1121.1210121121 Y2=- 137.121121121121

X1=- 9.121121121121 Yl= 6.121121121121
X2=- 9.121121121121 Y2=- 114.121121121121

X1=- 8.121121121121 Yl= 5.0121121121
X2=- 8.121121121121 Y2=- 93.121121121121

Xl=- 7.0121121~ Yl= 4.121121121121
X2=- 7.0121121121 Y2=- 74.012121121

Xl=- c. nIninini v, _ 3.1010100 U·IUIUIUIU 11-

X2=- 6.0121121121 Y2=- 57.121121121121

TYPE

4-9

4-10

X1=- 5.0000 Y1= 2.0000
X2=- 5.0000 Y2=- 42.0000

X1=- 4.0000 Y1= 1 .0000
X2=- 4.0000 Y2=- 29.0000

X1=- 3.0000 Y1= 0.0000
X2=- 3.0000 Y2=- 18.0000

Xl=- 2.0000 Y1=- 1 .0000
X2=- 2.0000 Y2=- 9.0000

THE POINT OF INTERSECTION IS
X1=- 1.0000 Y1=- 2.0000
X2=- 1.0000 Y2=- 2.0000

X1=
X2=

X1=
X2=

X1=
X2=

Xl=
X2=

Xl=
X2=

Xl=
X2=

X1=
X2=

Xl=
X2=

X1=
X2=

Xl=
X2=

Xl=
X2=

Xl=
X2=

0.0000
0.0000

1.0000
1.0000

2.0000
2.0000

3.0000
3.0000

5.0000
5.0000

6.0000
6.0000

7.0000
7.0000

8.0000
8.0000

9.0000
9.0000

10.0000
10.0000

11 .0000
11.0000

Y1=- 3.0000
Y2= 3.0000

Y1=- 4.0000
Y2= 6.0000

Yl=- 5.00021
Y2= 7.0000

Y1=- 6.0000
Y2= 6.0000

Yl=- 7.0000
Y2= 3.0000

Y1=- 8.0000
Y2=- 2.0000

Yl=- 9·0000
Y2=- 9.0000

Y1=- 10.0000
Y2=- 18.0000

Yl=- 11.0000
Y2=- 29.0000

Y1=- 12.0000
Y2=- 42.0000

Yl=- 13.0000
Y2=- 57.0000

Yl=- 13·0000
Y2=- 57.0000

DO YOU WANT A PLOT?CTYPE Y FOR YES. TYPE N FOR NO) :Y

* *
* *
* *
* *
* *
* . *
* • *

* *
* * •

* .
y·· ... · * * Y

*

*
*
*
*

*

*
*

*
*

4.8 SCHROEDINGER EQUATION SOLVER

* *
* *

* * * . *
* *

*
*

This program is designed to aid the user in searching for possible energy-states of an electron in a potential well.
This is one of the most complex equations yet written in FOCAL. It calculates and plots the energy levels of an
electron within specified boundary conditions.

C FOCAL V3A
01.01 T !,"SCHROEDINGER EQUATION SOLVER -",!
01.02 T !," -OELSQUAREO PSI + AX * PSI = E * PSI",!!
01.03 A "TILTED SQUARE WELL PROBLEM WITH WIOTH",X0,!
01.08 A "WELL TILT SLOPE A",Al, !,"TRIAL ENERGY E",B1,!
01.09 A "NUMBER OF STEPS",NT,!
01.11 S VF=0; S SL=l
01.70 S P(0)=0; S OX=X0/NT; S PCl)=SL*OX; S R0=0
01.75 S VF=0
01 ·80 S P0=0
01.90 F N=0,I,NT-2; 0 6
01.93 T !,"PSI ZEROS"%2.0, P0
01.95 GOTO 7.02
05-10 T !,%3.0, PX," PSI",%,PCPX),"."
05.20 S PZ=FITRCPM*SC); S PE=FITR<CPCPX]+PM)*SC>
05. 30 F X = 1 , 1 , P Z - 1; T " "
o 5 • 40 T ".", # ; F X = 1 , 1 , P E + 24; T " "
05.50 T "*"; R
06.10 S PCN+2)=<C-B1+Al*OX*CN+1])*OX12+2>*PCN+1)-PCN)
06.20 I CNT-N-2) 12.90,6.9,6.3
06.30 S RB=PCN+2)*PCN+l); I CRB) 6.4,6.4,6.9
06.40 S P0=P0+1; R
06.90 CONTINUE
07.02 S CF=CP<NT>/P<l » 12; T" CONV INO"%, CF
07.05 A" NEW E?"NY
07.07 I (NY-9) 7.9,7.08,7.9
07.08 I (VF) 7.09,7.8,7.09
07.09 I (CF-100) 7-1,7-1,7.8
07-10 S R2=P(NT)*VF..: I (R2) 7e73;7.80,7.85
07.73 S OB=-0.5*OB; GOTO 7.85
07.80 S OB=0.1

4-11

4-12

12J7.85 S B1=Bl*(I+DB); T Bl; S VF(NT); G 1.80
07.90 DO 14; GO TO 12.01
12.01 T !,,!,,"EIGEN E"Bl; S HP=Bl/(Al*X0)
12.20 T" EN/MAX POT"HP,,!
12.90 QUIT
14-10 S PM=0; S PP=0; F PX=I"I"NT; D 15
14.20 S PS=PM+PP; S SC=45/PS
14.30 T !!!; F PX=I"I,,70; T "."
14.40 F PX=0~I"NT; D 5
1 4. 50 T !; F P X= 1 " 1 " 70; T "."
14.60 T !!; R
15.10 I (P[PX]) 15.2,,15.9,,15.5
15.20 I (PM+P<PX» 15.3,,15.4,,15.4
15.30 S PM=FABS(P[PX])
15.40 RETURN
15.50 I (P<PX>-PP) 15.9,,15.9,,15.6
15.60 S PP =P (P X)
15.90 RETURN

*
SCHROEDINGER EQUATION SOLVER -

-DELSQUARED PSI + AX * PSI = E * PSI

TILTED SQUARE WELL PROBLEM WITH WIDTH: 1

WELL TILT SLOPE A:40

TRIAL ENERGY E:50

NUMBER OF STEPS:15

PSI ZERDS C0NV IND 0.501326463E+01 NSW E?:Y

..
0 PSI 0.000000000E+00. *

PSI 0.666666667E-01. *
2 PSI 0.119308642E+00. *
3 PSI 0.148265643E+00. *
4 PSI 0.149546390E+00. *
5 PSI 0.124684213E+00. *
6 PSI 0.795031267E-01. *
7 PSI 0.223082351E-01. *
8 PSI-0.379932849E-01. *
9 PSI-0.934541789E-01. *

10 PSI-0.138115924E+00. *
1 1 PSI-0.168454535E+00. *
12 PSI-0.183320286E+00*
13 PSI-0.183520414E+00*
14 PSI-0.171213966E+00.*
1 5 PSI-0.149268805E+00. *,

EIGEN E 0.500000000E+02 EN/MAX POT 0.1250000~0E+01

*

CHAPTER 5
LIBRARY COMMANDS

FOCAL library commands allow the user to save and then call programs by name. These commands cause files
consistent with the Advanced Software file format to be produced and accepted. These files, which use lOPS ASCII
data mode, can be manipulated by other Advanced Software programs such as PIP and EDITOR. In addition to the
library commands, a COMMON command and an ERASE COMMON command are available. These commands
allow the effective segmentation (chaining) of FOCAL programs, with the COMMON area defining those variables
which are to be used by all segments.

5.1 LIBRARY OUTPUT COMMANDS

Three operations are required to produce a file with the FOCAL library commands:

a. File initialization

b. File output

c. File termination

5.1.1 Library File Initialization

The command

*LIHRARY OUT NA~E

initializes a file on the output device associated with .DAT slot 5. If the device is bulk storage (i.e., has named
files), then the file name NAME is used. NAME can be up to six alphanumeric characters and is terminated by a
carriage return. The extension FCL is supplied by the system.

5.1.2 Library File Output Operations

Commands of the form

*LIBRARY WRITE NNN

cause information to be entered into the library file. The character string NNN can take four forms which are
explained below.

5.1.2.1 Direct Command Output

If the character string NNN, in the example above, begins with quotation marks ("), the command indicates that

5-1

the character string following the quotation marks is to be inserted into the file. This character string may be any
FOCAL command.
For example, the command here is an *, a FOCAL symbol typed by the user to signal termination of input from
the device associated with .DAT slot 3.

causes the command

*; GO
to be inserted into the library file as a direct command. This will start the program when the fIle is later called for
execution by a library input command.

5.1.2.2 Single Line Output

If the character string NNN is a legal line number which is present in the program in core, this command causes a
single line to be inserted into the file. For example, the command

*LIBRARY WRITE 10.02

causes line 10.02 to be inserted into the currently opened output file.

5.1.2.3 Group Output

If the character string NNN is a legal group number, this command causes the entire group of lines to be inserted
into the me. For example, the command

*LIBRARY WRITE 2.00

causes all group 2 lines to be inserted into the current output file.

5.1.2.4 Program Output

If the character string NNN is ALL or A, then the entire indirect program is inserted into the current output fIle.

5.1.3 Library File Termination

After using the appropriate library output commands, it is necessary to issue the command

*LIBRARY CLOSE

to complete fIle output and enter the fIle name into the directory of the mass storage unit of the Advanced
Monitor System. The LIBRARY CLOSE command allows an input or output file to be closed. An error message
"?35" will be printed if a fIle has not been opened. If the LIBRARY CLOSE command is not issued, the user
remains in library mode and all other commands are illegal. However, to leave library mode without actually
finishing the output fIle, the command

*LIBRARY KILL

is used. After using this command, the user is in command mode, and the file which had been started by the library
output commands is lost.

5.2 LIBRARY INPUT COMMANDS

To load a library file which has been output from FOCAL or which has been prepared off-line, the command

*LIBRARY IN NAME

is used where NAME follows the conventions used for library output. The library input from the device associated
with .DAT slot 3 is terminated by an end of file or end of tape condition on the input file. It is also terminated by
the presence of a direct command of asterisk (*), supplied during a LIBRARY WRITE command within the library
fIle. If none of these three conditions occurs, FOCAL assumes that subsequent input (e.g., for ASK command) will
come from the device associated with .DAT slot 3. This direct command can be a multiple command.'which can
provide automatic program starting. For example, a direct command to terminate input and to start a program at
line number 8.21 would be

5-2 CHANGE 1

This command can be inserted at the end of the library output by the command

LIBRARY vJRITE u; GOTO 8.21

5.3 LIBRARY .DAT SLOT USAGE

The FOCAL library commands assume input on .DAT slot 3 and output on .DAT slot 5 from the Advanced
Monitor, and the FOCAL data commands assume input on .DAT slot 7 and output on .DAT slot 10 from the
Advanced Monitor. The recommended assignment to the Linking Loader is the System Library located on unit 0 (8
on the DECtape thumbwheel) where the FOCAL system is also located. The .DAT slot for the System library is -4
and for the FOCAL system it is -1.

Assignments for DECtape or Disk in the Advance Monitor environment follow.

.DAT Slot Contents Samples Assignment

.DAT -1 System Library DTEO (DKE0) -1

.DAT -4 FOCAL (XCV, XCT) DTEO (DKE0) -4
FOCAL binary program

.DAT 3 FOCAL library input DTEI (DKEl) 3

.DAT 5 FOCAL library output DTEI (DKE1) 5

.DAT 7 FOCAL data input DTE 1 (DKE 1) 7

.DAT 10 FOCAL data ou tpu t DTEI (DKEl) 10

FOCAL data commands are described in Chapter 7, and .DAT slot assignments are further summarized in
Appendix E.

5.4 COMMON VARIABLES AND ARRAYS

The COMMON command allows the user to define permanent FOCAL variables and arrays which are saved with
their current values when the user modifies the stored indirect program. Thus, the caution at the MODIFY
command (refer to section 3.14.1) does not apply to COMMON variables. The COMMON command is legal only if
no other variables have been defined in the symbol table. Thus, it is good programming practice to precede a
COMMON definition by an ERASE command to clear the symbol table. If any non-COMMON variables have been
defined when the COMMON command is executed, it will be treated as a COMMENT and ignored.

5.4.1 COMMON Format

Three types of variables can be defined in a COMMON command as the following example shows.

The first variable, A, defines a single non-subscripted variable. The second variable, B(5), defines a single array
element to be COMMON. All other elements of the array B are non-COMMON. The third variable (C,I,I,3) defines
a series of array elements as COMMON by using a notation similar to the FOR statement. Thus, the command

is equivalent to the command

but much shorter. Note that, because COMMON and COMMENT both have the initial letter C, the COMMON
command must not be abbreviated (refer to Section 2.12).

5.4.2 ERASE COMMON Command

The ERASE COMMON command must be used to clear the COMMON area if a user wishes to define a completely
new COMMON area. It will clear both the COMMON area and all variables in the symbol table, but not the program
itself. If, however, the user simply wants to add to the current COMMON area; it is only necessary to erase any
non-COMMON variables by using ERASE. The ERASE ALL command has no effect on the COMMON area
variables and does not change their values.

CHANGE 1 5-3

5.5 CHAINING OF FOCAL PROGRAMS

For FOCAL programs that exceed the capacity of user's core memory, it is possible to segment the program. By
combining the library input and COMMON commands, one segment can call another by name. ALL COMMON
variables are retained in core memory for access to them from all segments of the program. New COMMON
variables can be added to the permanent table from any segment. The command LIBRARY IN NAME brings in the
next segment to core memory and provides access to the COMMON table for the operations in this segment of the
program.

NOTE

Ensure that a segment does not exceed its allotted memory
location or the overflow will begin to erase the compiler in
core.

The following example shows three FOCAL segments and the operations required to provide the segments with
linkage capability. The first segment, named CHI, defines a COMMON area and initializes the variables. If CHI is
called again, it checks for the values in the second part of the COMMON area which were defined in CH2 and
QUITS. The second-segment, CH2 defines more COMMON variables, checks the original COMMON values created
in CH l, and initializes the additional COMMON variables. The third segment checks all the COMMON values and
calls the first segment again.

5-4

*WR ITE
C FOCAL V3A
01 .05 TYPE "CHI READY",!
01010 COMMON A,B,C,eABC,1,5)
01.20 IF eA) 20.1,1.3,2001
01.30 SET A=l
01.40 SET B=2; SET C=3
01.50 FOR X=1,5; SET ABCeX)=X*10
01.55 TYPE "CHI DONE CALLING CH2",!
01.60 LIBRARY IN CH2
20010 IF e0-10) 20.2,20.3,20.2
20.20 TYPE "COMMON ERROR ON 2ND CALL OF CHI",!
20.30 TYPE "ALL DONE",!; QUIT

*LIBRARY OUT CHI
*LIBRARY WRITE "ERASE ALL
*LIBRARY WRITE ALL
LIBRARY WRITE " ; GO
*LIBRARY CLOSE

*

*WRITE ALL

C FOCAL V3A
01.10 TYPE "CH2 READY",!

01.30 FOR X=6,10; S ABCeX)=X*10
01.40 FOR X=1,10; DO 25.0
01.50 IF CA+B+C-6) 1.6,1.7,1.6
o 1 • 6 0 T Y P E " C H 2 C 'J M M J N ERR') R - S U r-1 = ".I A + B + C, !
01.70 TYPe:: "Crl2 DONE CALLING CH3",!
01.80 LIBRARY IN CH3
25.10 IF CA8CCX)-10*X) 25.2,25.3,25.2
25.2121 TYPe:: "ERROR AT X = ".IX," ABC ARRAY
25. 3~3 RETUR,\)

",A8ceX), !

l

Listing
of CHI

Library
Output
ofCHl

Listing
ofCH2

*LIBRARY OUT Crl2
*LIBRARY WRITE "ERASE ALL
*LIBRA~Y WRITE ALL
LIBRARY WRITE "; G:J
*LIBRARY CLOSS
*

*WR ITE ALL

C FOCAL V3A
101 .110 TYPE "CH3 READY",!
101.210 SET 10=110
10 1 • 3 10 F OR I = 1 , 1 10; D 0 2 5 • 10
101.410 TYPE "CH3 DONE - CALLING CHI AGAIN",!
101.510 LIBRARY IN CHI
250110 IF (ABC(X)-IIO*) 25.2,25.3,25.2 .
25.210 TYPE "ERROR AT X = ",X," ABC ARRAY =,ABC(X),!
25.310 RETURN

*LIBRARY OUT CH3
*LIBRARY WRITE "ERASE i .1010
*LIBRARY WRITE 1.1010
LIBARY WRITE "; GO
*LIBARY CLOSE

*
FOCAL V3A
*ERASE COMMON
*LIBRARY IN CHI
CHI READY
CHI DONE CALLING CH2
CH2 READY
CH2 DONE CALLING CH3
CH3 READY
CH3 DONE CALLING CHI
CHI READY
ALL DONE
*TYPE $

A@@ (1010) = 1 .1010
B@@(IOIO)= 2.1010
C@@8101O)= 3.1010
ABC (101) = 110.1010
ABC(102)= 210.1010
ABC (103) = 30.1010
ABC(104)= 410.100
ABC(105)= 50.010
Q@@8(0)= 110.1010
ABC(106)= 610.100
ABC (10 7) = 710.010
ABC(108)= 810.1010
ABC (10 9) = 910.1010
ABC (10) = 100.010

*

AGAIN

1
J

l
J
}

Library
Output
ofCH2

Listing
ofCH3

Library
Output
ofCH3

Library Input and
Execution of Chained
Programs CH 1, CH2
and CH3

Dump of
COMMON
Symbols

5-5/5-6

CHAPTER 6
USER DEFINED FOCAL FUNCTIONS

The ability to write FOCAL functions in MACRO assembly language t and subsequently interface these functions
with the FOCAL interpreter is an important feature which allows real-time use of FOCAL. These functions are
processed in the same way as the normal internal functions supplied with the interpreter (i.e., FSIN, FITR, etc.).
Some external functions are provided in the FNEW file (Refer to Section 6.2). User-defined functions can be
incorporated into the source file of FNEW, which, when reassembled by MACRO, can be loaded with FOCAL. The
interface of external functions is accomplished by:

a. Use of a function table which contains the three letter function name in .SIXBT (6-bit ASCII) and a jump
to the function processor

b. Use of .GLOBL definitions which allow the function processors to use character processing and expression
evaluation routines which are in the interpreter. (Refer to listing under FOCAL operations printout in this
chapter.)

The following detailed examples show the operations necessary to write a FOCAL function in MACRO.

6.1 EXAMPLE

A scope routine has been generated to display characters at a given point on a scope. This routine is called from
FOCAL as a function by XYC (X, Y, SHOW). Here, X and Yare expressions to be used as display coordinates
for the start of SHOW.

First, the function name and transfer instruction must be added to the function table:

.SIXBT
JMP

When control arrives at SETXYC, the X has already been evaluated:

SETXYC JMS*
DXL

.AX

/XYC/
SETXYC

/make 18 bits
/set X coordinate

t The MACRO -9 and -15 assembly languages are described in manuals DEC-9A-AMZA-D and DEC-15-AMZA-D,
respectively.

CHANGE 1 6-1

Now, check for the second argument and give an error if no second argument is given.

Program

JMS*
SAD
JMP
.DEC
LAW
.OCT
JMP*

Comment

XSPNOR
(254
.+3

FUNERR

/skip spaces
lis it a comma?
/yes

/?Ol error

/function error

Move past the separating comma.

JMS* UTRA

Evaluate the second argument.

LAC
DAC
JMS*
XX

EVAL
.+2
XPUSHJ

/address of evaluation routine

The second argument must be made into an 18-bit quantity and the y coordinate set:

JMS*
DYL

.AX

Test for a comma; if present, bypass it to get to the character string.

JMS*
SAD
JMP
.DEC
LAW
• OCT
JMP*
JMS*

XSPNOR
(254
.+3

FUNERR
UTRA

/skip spaces
lis it comma
/yes

/?Ol error

/ error return
/skip comma

Now, pick up the single ASCII characters and display them. (This example assumes the character display routine is
called DYCHAR.):

DC LOOP

6.2 FILE FNEW

LAC*
JMS
JMS*
SAD
JMP*
JMP

CHAR
DYCHAR
UTRA
(251
EFUN3
DC LOOP

/get character
/display it
/get next char
lis it end?
/yes-return
/no-go display next character

The following functions are supplied in the libra.ry FNEW tape (where N cannot be another function):

Function

FDXS (N)
FDIS (M)
FDXY(N,M)
FADC (N)
FDAC (N)
FRLB(N,M)

6-2

Meaning

Set the x coordinate of the 34H display.
Set the y coordinate of the 34H display and intensify the point.
Set the x and y coordinates and intensify.
Set the multiplexer of the A/D converter and perform one conversion.
Set the D / A converter to the specified value.
If N = -1, clear the relay buffer (M should not be specified)
If N = 0 to 17, set the appropriate bit of relay buffer according to the value of M (0
or 1).

The functions are supplied to:
a. provide a basic set of external functions;

b. provide the user with additional examples in the method of coding external functions.

The listing that follows is that of the library supplied FNEW tape which is distributed in both source and binary
form.

.TITLE FNEW
I

IFOCAL EXTERNAL FUNCTION PROGRAM
I

ICOPYRIGHT 1969
IDIGITAL EQUIPMENT CORP.
IMAYNARD" MASS.
I

IDAVE LENEY
12-7-69
I

·GL08L
.GL08L
.GLOBL
·GLOBL
·GL08L
·GL08L
.GLOBL
.GLOBL
·GLOBL
.GLOBL
.GLOBL
.GLOBL
·GLOBL
.GLOBL
·GLOBL
.GLOBL
·GLOBL
.GLOBL

FPOW=0021000
FADD=100000
FSU3=200000
FMUL=300000
FDIV=400000
FGET=500000
FPUT=600000
FNOR=700000
FXIT=000000
I

.EJECT
I

• NEItJF
XPUSHJ
XPUSHl\
PD2
PD3
UTRA
XSPNOR
FUi\JERR
EFUl\l3
FINT
CHAR
EVAL
• ,6,. A
.AB
.AC
.BA
.AX
.AW

IFUNCTION TABLE
IPUSH JW~P

IPUSH AC
IPUSH FP
IPOP FP
IGET CHAR
ISKIP SPACE & ZEROS
I FUl\lC T I O[\] ERROR
IFUr\JCTION RETURN
IFLO~\TING ARITH
ICHAR STORAGE
IEXPRESSION EVALUATOR
IEXPONENT (2'S COMP)
ISIGN AND HIGH ORDER MANTISSA
ILOW ORDER MANTISSA
INEGATE
IFIX
IFLOAT

IFOCAL OPERATIONS (FOCAL SOURCE EQUIVALENT IN PARENS)
I
IPUSH JUMP TO EXPRESSION EVALUATOR (PUSHJ EVAL)
I LAC EVAL
I DAC .+2
I JMS* XPUSHJ
I XX
I
IPUSH THE HARDWARE ACCUMULATOR (PUSHA)
I JMS* XPUSHA
I

IPOP THE HARDWARE ACCUMULATOR (POPA)
I LAC* 13

6-3

6-4

I

IPUSH FLOATING ACCUIVlULATOR (PUSHF.AA)
I LAC .AA
I DAC .+2
I JMS* PD2
I XX
IPOP FLOATING A CCW~ULATOR (POPF • AA)
I LAC .AA
I DAC ·+2
I JMS* PD3
I XX
I

IPUSH FLOATING VARIABLE (PUSHF VAR)
I JMS* PD2
I .DSA VAR IWHERE VAR IS THE FIRST OF
I ITHREE(3) REGISTER BLOCK
I

IPOP FLOATING VARIABE (POPF VAR)
I JMS* PD3
I .DSA VAR ISAME AS FOR PUSHf VAR
I

IFETCH CURRENT CHARACTER
I LAC* CHAR
I

IFETCH NEXT CHARACTER (GETC)
I JMS* UTRA ICHARACTER IN BOTH CHAR AND AC
I

IIGNORE LEADING SPACES AND ZEROS (SPNOR)
I JMS* XSPNOR INEXT CHARACTER IN BOTH CHAR AND AC
I

IINDICATE A FUNCTION ERROR (ERROR NN)
I • DEC
I

I
I
I

LAW
.OCT
JMP*

NN

FUNERR

IRE TURN FROM FUNCTION (RETURN)

INN=TWO DIGIT (DECIMAL) ERROR CODE

IERROR WILL HAVE DOUBLE QUESTION MARK

I JMP* EFUN3 IVALUE OF FUNCTION IN FLOATING AC
I

IEI'JTER
I
I
I
I
I

I

FLOATING
JIVlS*
FNN
FNN*
FNN
FXIT

POINT
FINT
A
B
C

INTERPRETER (JMS FINT)
IFROM HERE ON ALL INSTRUCTIONS
IARE ASSUMED TO BE FLOATING POINT
IUNTIL FXIT IS REACHED - FNN
IREFERS TO FLOATING POINT OPERATIONS
ILISTED NEXT.

IFLOATING POINT OPERATIONS (USE * FOR INDIRECT)
I FPOW VAR IRAISE F.P. AC TO VAR/CONST~NT

I FADD VAR IADD F.P. VARIABLE/CONSTANT TO F.P. AC
,

/

I
I
I
I
I
I
I

F:v1.UL
FDIV
FGET
FPUT
FNOR
FXIT

V:4R
VAR
V~R

VAR
Vt;R

INEGATE THE FLOATING ACCUMULATOR
I JMS* .BA
I

ISUBTRACT FROM F.P. AC
IMULTIPLY THE F.P. AC
IDIVIDE INTO THE F.? AC
ILOAD INTO THE F.P. AC
ISTORE THE F.P. AC
INORMALIZE THE F.P. AC
IEXIT FROM FLOATING POINT MODE

IFIX THE FLOATIN~ ACCUMULATOR INTO THE HARDWARE ACCUMULATOR
I JMS* .AX

I
IFLOAT THE HARDWARE ACCUMULATOR INTO THE FLOATING ACCUMULATOR
I

I

/

JMS* .AW

IEXTERNAL FU~CTION TABLE FORMAT
I WORD 0: TWO'S COMPLEMENT COUNT OF NUMBER OF ENTRIES
I WORDS 1 TO 2N: N TWO WORD ENTRIES
I EACH ENTRY: WORD0: .SIXBT THREE LETTER FUNCTION NAME
I WORD1: JMP TO FUNCTION ADDRESS
I

I

I

.EJECT

ITABLE OF NAMES OF EXTERNAL FUNCTIONS
I

.NEWF

.NEWFE=.
I

.NEWFE-.-1/2~777777+1

.SIXBT IDXSI
JMP SETX
.SIXBT IDISI
JMP SETY I
.SIXBT IDXYI
JMP SETXY I
.SIXBT IADCI
JMP SETADC
.SIXBT IDACI
JMP SETDAC
.SIXBT IRLBI
JMP SETRLB

IIOT DEFINITIONS
I

DYL=700 60 6
DXS=700546
ADSF=7 f2l1301
ADSC= 701304
ADRB=701312
ADSM=701103
DAL1=705501
ORC=702101
ORS=702104
I

.EJECT
SETX JMS*

DAC
JIV1P*

SETYI JMS*
DYL
LAC
DXS
J :VlP *

SETXYI J:VJS*
DAC
JlVlS
JMP

SETADC JMS*
ADSM

IOF
I S,(,\ + 10
ADSC
ADSF

.AX
XCOORD
EFUN3
• AX

XCOORD

EFUN3
.AX
XCOJRD
GETARG
SETYI
.AX

ITWO'S COMP COUNT OF NAMES

ISET X COORDINATE

ISET Y COORDINATE AND INTENSIFY

ISET X AND Y AND INTENSIFY

ISET MULTIPLEXER AND CONVERT

ILOAD D/A CONVERTER

ISET RELAY BUFFER

ILOAD Y COORDINATE
ILOAD X COORDINATE AND INTENSIFY
ISKIP ON AID FLAG
ISELECT AND CONVERT
IREAD AID BUFFER
ISET MULTIPLEXER
ILOAD D/A CHANNEL ONE
ICLEAR RELAY BUFFER
ISET RELAY BUFFER

ISET X COORDINATE
ISAVE
IRETURN
ISET Y COORDINATE
ILOAD REG wITH Y

ILOAD WITH X AND INTENSIFY
IRETUl~N

ISET X COORDINATE
ISAVE

INOW SAME AS FDIS
IGET MULTIPLEXER CHANNEL
INOTE: WILL USE LOW ORDER
ISIX BITS AS CHANNEL NUMBER
ITURN OFF INTERRUPT SYSTEM

iSELECT AND CONVERT
I WA I T FOR FLA G

6-5

6-6

JMP
ADR8
JMS*
LAC
I SA
ION
JMP*

SETDAC JMS*
DAL1
JMP*

SETRLB JMS*
SMA
JMP
DZM
ORC
JMP*
CMA
DAC
.DEC
TAD
.OCT
SMA
JMP
.DEC
LAW
.OCT
JMP*

• -1

• ,L\ W
(402121(2) 0

EFUN3
.AX

EFU['J3
.AX

.+4
RELAYB

EFUN3

TEMP

(1 8

.+3

2

FUN ERR
CLA!CLL!CML
RAR

I

ISZ
JMP
DAC
JMS
LAC
CMA
AND
DAC
Jf\1S*
SZA!CLA
LAC
XOR
DAC
ORS
JMP*

GETARG (2)

I

JMS*
SAD
JMP
.DEC
LAW
.OCT
JMP*
JMS*
LAC
DAC
JMS*
XX
JMP*

XCOORD (2)
RELAYB (2)
TEMP (2)
I

.END

TEMP
.-2
TEMP
GETARG
TEMP

RELAYB
RELAYB
.AX

TEMP
RELAYB
RELAYB

EFUN3

XSPNOR
(254
.+3

FUNERR
UTRA
EVAL
.+2
XPUSHJ

GETARG

IREAD AID BUFFER
IFLOAT RESULT
ITURN ON INTEVVUPT SYSTEM

IRE TURN
IGET VALUE AS INTEGER

IGET VALUE
lIS IT MIr\JUS
INO - GO FIND BIT POSITION

IYES - CLEAR WHOLE RELAY BUFFER
IRETURN
IFORM ONE'S COMP
ISAVE AS COUNT

IMUST BE RELAY (2) TO 17

lIS IT LEGAL POSITION
IYES

INO

1??02 ERROR
IINITIALIZE AC

IPUT BIT IN RIGHT
IPOSITION
ISAVE BIT POSITION

ICLEAR OLD RELAY VALUE

ISAVE NEW BUFFER

ICLEAR OR SET RELAY
IIF NON ZERO SET

ILOAD BUFFER
IRE TURN

I GET AR GUlYJENT
ISKIP SPACES
I I SIT A COMMA?
IYES

INO - ??01 ERROR

IEXTERNAL FUNCTION ERROR
I SK IP COMMA

ICALL EXPRESSION EVALUATOR

IRETURN

IX COORDINATE STORAGE
IRELAY BUFFER STORAGE
ITEMPORARY STORAGE

CHAPTER 7
DATA COMMANDS

FOCAL data commands allow the user to store and then retrieve substantial amounts of data through the use of
auxiliary Input/Output devices other than the Teletype. The steps for processing the data need not be incorporated
in the FOCAL program itself. The commands cause mes consistent with the Advanced Software format to be
produced and accepted, and as with the library commands, the files can be manipulated by other Advanced
Software programs such as PIP and EDITOR, as may be noted from the examples at the end of this chapter.

Data commands are used with other FOCAL commands and follow the same conventions with only minor
exceptions. Data commands are for single-user FOCAL, and the DATA command, because of the conflict with the
DO command, cannot be abbreviated. Also, under some conditions, library commands are illegal as with DATA
OUT or DATA CLOSE (see 7.1.1 and 7.1.2).

7.1 DATA COMMANDS

Three operations are required to produce a me with the FOCAL data commands:

a. me initialization

b. me output

c. me termination

7. 1.1 D AT A File Initialization and Ou tpu t

The command

*DATA OUT NAME

initializes and enters a filename on the device associated with .DAT slot 10. The name can be up to six
alphanumeric characters and is terminated by a carriage return. The extension FCL is supplied by the system.

Every TYPE or WRITE command issued after DATA OUT NAME will output data to the device assigned to .DAT
slot 10. For example with the following .DAT slots assigned:

$A DTE0 -1, -4/DETI 3,5,7,10

data is output to .DAT 10 on DECtape unit 1, and will continue to be until a DATA file termination command is
given.

If a LIBRARY command is issued while in the DATA OUT mode, error message '~?31" will be output to the
teletype. What has already been output to the DATA file can then only be saved if a DATA CLOSE command is
issued.

7.1.2 DATA File Termination

After the appropriate DATA output commands are used, it is necessary to issue the command

*DATA CLOSE

to complete file output and enter the filename and data into the device associated with .DAT slot 10.
DATA CLOSE commands aliow input or output file to be closed. If a file has not been opened, FOCAL will output
the "?35" error message on the teletype. The DATA CLOSE command also returns the user to the teletype mode.

CHANGE 1 7-1

If the command is not issued, the user remains in the data mode. However, to leave the data mode without
finishing the output file the user may type

*DATA KILL

-which aborts the output file and returns the user to the teletype mode. The file started by the DATA output
command is lost when DATA KILL is issued.

7.l.3 DATA Input

The command

*DATA IN NAME

function is related to its use in indirect programs. When DATA IN NAME is used in an indirect program (e.g. 1.10
DATA IN filename), it initializes the device associated with .DAT slot 7 for data input from an ASK command.
Recall that the ASK command is normally used in indirect commands and that its use is to input data at specific
points during the execution of an indirect program. Thus, when a line number and a DATA IN command such as

*l.10 DATA IN filename

is inserted in a program, .DAT slot 7 is initialized for data input when an ASK command such as

*2.10 ASK X,Y,Z

is encountered during program execution.

7.2 DATA .DAT SLOT USAGE

Data commands, as previously stated, assume input on .DAT slot 7 and output on .DAT slot 10 from the Advanced
Monitor. The recommended assignment to the Linking Loader is the system library located on unit 0 (8 on the
DECtape thumbwheel). Recommended FOCAL program and user input/output assignments for DECtape and Disk
are:

.DAT Slot

.DAT - 1

.DAT - 4

.DAT 3

.DAT 5

.DAT 7

.DAT 10
7.3 DATA COMMAND USE

Contents

System library

FOCAL (XCU ,XCT)

FOCAL binary program

FOCAL library input

FOCAL library output

FOCAL DATA input

FOCAL DATA output

Sample Assignment

DTEO (DKE0)
DTEO (DKE0)

DTEI (DKEI)

DTEI (DKEl)

DTEI (DKEl)

DTEI (DKEl)

Some of the data commands so far described are used in the following examples. Also demonstrated are the
commands for loading FocAL with the Linking Loader after Monitor's $ is typed and for use of PIP for a
Directory listing and output of data on the teletype.

KM15 VIS

$A DTEI -4,3,5,7,10

$LOAD

Loader V7A
>+-FOCAL
tsts
FOCAL15 V8A
*1.10 DATA IN INDISK
*1.20 ASK A,B,C,D,E
*1.30 T A+B+C+D+E,!
*GO

15.0000

7-2 CHANGE I

/Prior .DAT slot assignments

/Type indirect program.
/File INDISK contains the input data.
/See PIP listing of INDISK below.

*LWA
*LC
*LI SHOW

*WA

C FOCAL15 V8A
qJl.lqJ DATA IN INDISK
qJ1.2qJ ASK, A,B,C,D,E
qJ1.3qJ T A+B+C+D+E,!

*GO
15.qJqJqJqJ

*T A
1 . qJqJqJqJ *

*T B,!
2.qJqJqJqJ

*DATA OUT OUTDT
*T A
*TB
*TC
*TD
*TE,!
*DATACLOSE
*tc
KM15 VIS

$PIP

PIP VlqJA
>L TT+-DTI

DIRECTORY LISTING
1 qJ42 FREE BLKS

4 USER FILES
10 SYSTEM BLKS

INDISK FCL 1 1
FOCAL BIN 2 23
SHOW FCL 3 1
OUTDT FCL 4 I

PIP Vl0A

>T TT +- DTI INDISK FCL (A)

1.0
2.0
3.0
4.0
5.0

PIP Vl0A

>T TT +- DTI SHOW FCL (A)

IRecall indirect program.

lList program on the teletype.

IOutput data onto DECtape using
Ithe TYPE command.

IClose the output file.

IExamination of files created and input.

CHANGE I 7-3

,C FOCAL 15 V8A
q,1.1q, DATA IN INDISK
q,1.2q, ASK A,B,C,D,E
q,1.3q, T A+B+C+D+E.!

PIP Vlq,A

>T TT +- DTI OUTDT FCL (A)

PIP VIC/JA

>tc

KMI5 VI5

$

7-4 CHANGE I

CHAPTER 8
MULTI-USER FOCAL

BACKGROUND~OREGROUND

Multi-user FOCAL operates under the control of the Background/Foreground Monitor system which is designed to
control processing and Input/Output operations in real-time or time-shared environment. With only a few
exceptions, the commands, operating procedures, and FOCAL programs so far described in this manual are
applicable to Multi-user FOCAL operations. The significant exceptions concern loading the Background!
Foreground Monitor system, the .DAT slot assignments, use of a FCORE command in the Foreground to reserve
core, and the FOCAL Trace and Data commands. Once Multi-user FOCAL is loaded, users may begin to call up and
to ,run or create programs such as those described in Chapter 4 of this manual.

8.1 SYSTEM REQUIREMENTS

The user will need a Background/Foreground System DECtape. For those users who may not be familiar with the
operations, or for those who may want detailed descriptions of the system Background/Foreground operations, the
following references are suggested:

BACKG ROUND/FOREGROUND MONITOR SYSTEM PROGRAMMER'S REFERENCE MANUAL
(DEC-9A-MRZB-D)

PDP-15/20 ADVANCED MONITOR SOFTWARE SYSTEM (DEC-15-MR3A-D)

PDP-15/40 Disk-Oriented BACKGROUND/FOREGROUND MONITOR Software System (DEC-15-MR4A-D)

8.2 CONTROLS AND COMMANDS

For Multi-user FOCAL:

1. DATA Commands are illegal, except for single-user FOCAL.

2. The TRACE Feature (see Section 3.15, Chapter 3) is not used.

3. The FCORE Command, which reserves core for FOCAL in the Foreground, is part of the loading
procedure. The amount of assigned free core will determine the size of the FOCAL program that can be
run. Free core will be assigned a value in default of the FCORE command and is established during system
generation. Free core needed to run three of the sample programs from Chapter 4 follows:

FOCAL No. of DEC- No. of State- FCORE Cells to
Program tape blocks ments ... decimal Run ... octal

CIRCLE 13

LOAN 3 33

SCHROEDINGER 4 49

8.3 SYSTEM LOADING

The Background/Foreground Monitor system is loaded before the .DAT slots are assigned.

To load Monitor:

a. In disk systems, the Monitor and system programs are assumed to be on unit C/J.

b. in DECtape systems, mount the system tape on DECtape unit 8 (i.e. 0) and then

• Load the appropriate paper tape bootstrap in the Reader.

3(/)(/J

H/JC/JC/J
l2C/JC/J

CHANGE 1 8-1

• Momentarily depress Reader TAPE FEED pushbutton to clear end-of-tape flag .

• Set console address switches as follows:

If you have a -

16K System

24K System

32K System

Bootstrap Restart

Set switches to -

37637

57637

77637

111 (octal)

Press and release in sequence, the console STOP, I/O RESET, and READ IN switches.

When loaded, the Monitor identifies itself and indicates its readiness by outputting the following message on the
Foreground control teletype (normally unit 1):

FKM15 V3A
$

After Monitor identifies itself in· the Foreground, an IDLE job is loaded. Loading the IDLE job in the Foreground
allows control to pass to the Background and the Non-resident Monitor is loaded into core. At that point the
Monitor identifies itself on the Background control teletype as

BKMl5 V3A
$

and the user can begin to make the .DAT slot assignments and to start the FOCAL loading operations.

8.4 .DAT SLOT USAGE

The .DAT slot assignments vary according to the number of users and whether the user operates in the Background
or Foreground. Beyond the assignments necessary to meet these requirements, .DAT slots for FOCAL library
input/output and for the system are needed.

Following is the .DAT slot usage for two and for four users and following that are sample loading and .DAT slot
assignments for single- and two-user FOCAL in the Foreground and in the Background.

,"

Note that an IDLE job is loaded in the Foreground before Background is loaded. Also note that the FCORE
command is not used in the Background and that, although not echoed by the Teletype, the ALTMODE key must
be depressed after

>+-FOCAL
is typed.

.DAT Slot Usage

Two User

.DAT+ 1 TTA I/O for user #1

.DAT+2 BULK STORAGE I/O for user #1

.DAT+3 TTA I/O for user #2

.DAT+4 BULK STORAGE for user #2

8.5 LOADING FOCAL IN THE FOREGROUND

Single User

FKM15 V3A

$A [DTO] -4

DKO

$A DTI 3

$A DTI 5

$A DT3 7

$A DT3 10

8-2 CHANGE I

/FOCAL is on system tape

/Library input to FOCAL

/Library output to FOCAL
/Data input
/Data output

Four User

Same as for two user plus:

.DAT+5 TTA I/O for user #3

.DAT+6 BULK STORAGE I/O for user #3

.DAT+7 TTA I/O for user #3

.DAT+lyj BULK STORAGE I/O for user #4

SFCORE l400t

SGLOAD

FGLOAD Vnn

>~FOCAL

FOCAL Vnn

*
Two User

FKM15 V3A

r DT~l
$A lDK~J-4
$A TTl 1

SA DTI 2

$A TI2 3

$ADT24

$FCORE 3~~~

SGLOAD Vnn

FGLOADVnn

>~FOCAL 2

FOCAL Vnn

*

/Free core for FOCAL buffer

/CaH Loader to LOAD-and-GO

/Loader is in core

/Load FOCAL and its Library, FNEW

/FOCAL is in core and is ready to accept commands

/FOCAL is on system tape

/Teletype for user #1

/Library I/O for user #1

/Teletype for user #2

/Library I/O for user #2

/Assign 14~~ (octal) locations for each user

/Call Loader to LOAD-and-GO

/Loader is in core

/Load two-user FOCAL and its Library, FNEW

/FOCAL is in core and will identify itself on each
user's teletype

Once the Monitor identifies itself in the Foreground, the user can load an IDLE job in the Foreground as follows:

FKM9VIA

$A [DTA~J_4
DKA~

$GLOAD

FGLOAD VIA

> ~ IDLE (ALTMODE)

/The program "IDLE" is on unit

/~ of the system device

/Call the Loader to LOAD-and-GO

/The Loader is in core

/Load "IDLE BIN".

When IDLE is loaded, no indication is given on the Foreground control Teletype. Control passes to the Background
and the Non-resident Monitor is loaded into core. The Monitor identifies itself on the Background control Teletype
as:

BKM9 VIA

$

/The Monitor is now ready to

/accept background commands.

8.6 LOADING FOCAL IN THE BACKGROUND

The .DAT slots are as shown except the user should make certain that assignments for the Teletypes and mass
storage units are different from those used in the Foreground.

Single User

BKM15 V3A

$A [DT~]_4
DK~

/FOCAL is on system tape

$A DT2 3 /Library input to FOCAL

tThis may be varied, but 1400 (8) is considered a reasonable amount for text, push down lists, and variable storage.

CHANGE I 8-3

$A DT2 5
$A DT4 7

$A DT4 10

/~ibrary output to FOCAL
/Data input

/Data output

FCORE NOT USED IN THE BACKGROUND

$GLOAD /Call Loader to LOAD-and-GO

FGLOAD Vnn
>+-FOCAL

FOCAL

*

Two User

BKM15 V3A

$A[

DT

0]_4
DK0

$A TTl

$ADT2

$A IT3

$ADT4

/Loader is in core
/Load FOCAL and its Library, FNEW

/FOCAL is in core and is ready to accept commands

BACKGROUND

/FOCAL is on system tape

/Teletype for user #1

/Library I/O for user #1

/Teletype for user #2

/Library I/O for user #2

FCORE command not used in the Background

$GLOAD /CaIl Loader to LOAD-and-GO

FGLOAD

>+-FOCAL 2

FOCAL Vnn

*

/Loader is in core

/Load two-user FOCAL and its Library, FNEW

/FOCAL is in core and will identify itself
Ion each user's teletype

After FOCAL's *, users can begin to run FOCAL programs.

8-4 CHANGE I

Command Abbreviation

ASK A

COMMENT C

CONTINUE C

COMMON none

DO D

ERASE E

FOR F

t Has no effect on COMMON variables

Example of Form

ASKX,Y,Z

COMMENT

APPENDIX A
FOCAL COMMAND SUMMARY

FOCAL types a colon for each variable; user
then types a value to define each variable.

If a line begins with the letter C, the
remainder of the line is ignored during
program execution.

C Dummy lines.

COMMON A,B, (C,I,2,20) Assigns COMMON variables to be stored in
indirect program.

DO 4.1 Execute line 4.1; return to command
following DO command.

D04.~

DO ALL

ERASE

ERASE 2.~

ERASE 2.1

ERASE ALL

ERASE COMMON

Execute all group 4 lines; return to command
following DO command, or when a RETURN
is encountered.

Execute entire indirect program.

Erases line 2.1 t.

Erases all user input t.
Erases all COMMON variables.

Deletes all user input t.

Deletes all COMMON variables.

FOR I=X,Y,Z;(commands) Where the command following is executed at
each new value.

X=initial value of I

Y = value added to I until I is greater than Z.
Y = 1, if not defined.

A-I

Command Abbreviation

GO G

GO? G?

GOTO G

IF

LIBRARY L

DATA None

A-2 CHANGE 1

Example of Form

GO

GO?

GOTO 3.4

IF (X)Ln, Ln, Ln

IF (X)Ln, Ln; (commands)

IF (X)Ln; (commands)

LIBRARY OUT NAME

LIBRARY WRITE NNN

LIBRARY WRITE 2.01

LIBRAR Y WRITE 2.00

LIBRARY WRITE ALL

LIBRARY CLOSE

LIBRARY KILL

liBRARY IN NAME

DATA OUT NAME

DATA CLOSE NAME

DATA KILL

Explanation

Starts indirect program at lowest numbered
line number.

Starts at lowest numbered line number and
traces entire indirect program until another
question mark (?) or an error is encountered,
or until completion of program.

Starts indirect program (transfers control to
line 3.4); must have argument.

Where X is a defined identifier, a value or an
expression, followed by three
num bers/ commands.

If X is less than zero, control is transferred to
the first line number.

If X is equal to zero, control is transferred to
the second line number or command.

If X is greater than zero, control is transferred
to the third line number or command.

Initializes a file on the output device.

Inserts NNN in library output file.

Inserts line 2.01 in output file.

Inserts group 2 lines in library output file.

Inserts entire indirect program in library
output file.

Causes file name to be entered in directory.

Returns user to command mode & file is
deleted.

Loads library file NAME.

Initializes the device assigned to .DAT 10 and,
if file-oriented, enters the filename in the file
directory.

Closes the output file and returns the user to
the teletype mode.

Aborts the output file and returns the user to
the teletype mode.

Command Abbreviation

MODIFY

QUIT

RETURN I
SET

TYPE

WRITE

FOCAL Operations

Operation

To set output format

To type symbol table

To produce carriage
return - line feed

Carriage return only

M

Q

R

S

T

W

Example of Form

DATA IN NAME

MODIFY 1.15

QUIT

I RETURN

I
SET A=5/B*C

TYPEA+B - C

TYPE A-B, CIE

TYPE "TEXT STRING"

WRITE
WRITE ALL

WRITE 1.0

WRITE 1.1

Command

TYPE %x.yz

TYPE %6.3, 123.456

TYPE %

TYPE $

Explanation

Initializes the device assigned to .DAT 7 and
reads in the file named.

Enables editing of any character on line 1.15
(see below).

Returns control to the user.

Terminates DO subroutines, returning to the
original sequence.

Defmes identifiers in the symbol table. Each
occurrence of A is replaced by the value of
the expression.

Evaluates expression and types out result in
current output format.

Computes and types each expression
separated by commas.

Types text; can be followed by exclamation
point (!) to generate carriage return-line feed
or by # to generate carriage return only.

FOCAL types out the entire indirect program.

FOCAL types out all group 1 lines.

FOCAL types out line 1.1.

Explanation

Where x is the total number of digits, and yz
is the number of digits to the right of the
decimal point.

FOCAL types: 123.456

Resets output format to floating point.

Other statements may not follow on this line.

A-3

Modify Operations

After a MODIFY command, the user types a search character, and FOCAL types out the contents of that line until
the search character is typed. The user can then perform any of the following optional operations.

a. Type in new characters. FOCAL adds these to the line at the point of insertion.

b. Type an ALT MODE. FOCAL proceeds to the next occurrence of the search character.

c. Type a CTRL BELL. After this, the user can change the search character.

d. Type RUBOUT. This deletes characters to the left: one character for each time the user strikes the
RUBOUTkey.

e. Type CTRL U. Deletes the line over to the left margin, but not the line number.

f. Type RETURN. Terminates the line, deleting characters over to the right margin.

g. Type LINE FEED. Saves the remainder of the line from the point at which LINE FEED is typed over to
the right margin.

Summary of Internal Functions

Function FOCAL Representation

Square Root FSQT(x)

Absolute Value FABS(x)

Sign Part FSGN(x)

In teger Part FITR(x)

Random Number FRAN (
Generator

Exponential FEXP(x)
Function (eX)

Sine FSIN(x)

Cosine FCOS(x)

Arc Tangent FATN(x)

Logarithm FLOG(x)

A-4 CHANGE 1

Operation

Where x is a positive number or expression
greater than zero.

FOCAL ignores the sign of x.

FOCAL evaluates the sign part only _ with I as
integer

FOCAL operates on the integer part of x,
ignoring any fractional part.

FOCAL generates a random number.

FOCAL generates e to the power x.
(2.718281828X).

FOCAL generates the sine of angle x expressed
in radians.

FOCAL generates the cosine of angle x expressed
in radians.

FOCAL generates the arc tangent of angle x ex
pressed in radians.

FOCAL generates loge(x).

CODE

?OO
?01
?02
?03
?04
?05
?06
?07
?08
?09
?10
?ll
?12
?13
?14
?15
?16
?17
?18
?19
?20
?21
?22
?23
?24
?25
?26
?27
?28
?29
?30
?31
?32
?33
?34
?35
?36
?37
??nn

APPENDIX B
ERROR DIAGNOSTICS

MEANING

Function not implemented
Illegal character at beginning of line
Group number illegal as line number
Group number too large
Illegal type/ask format
Too many periods
Line number too large
Line number missing
Illegal group number
Push-down list overflow
Illegal command
Illegal IF format
Left of equals in error on FOR or SET
Excess right parenthesis
Illegal FOR format
Illegal variable name
Text/variable buffer overflow
Illegal expression format
Operator missing before parenthesis
Missing left parenthesis
Illegal function name
Double operator
Parenthesis error
ERASE or WRITE argument error
Negative line number
Zero argument for log
Input overflow
Number too large
Negative power illegal
Division by zero illegal
Square root of a negative number
Illegal command during library or data output
Illegal library command
Illegal file name
File not found
No file open
.OTS error from arithmetic package
COMMON statement format error
User defined function error

CHANGE 1 B-l/B-2

APPENDIX C
ESTIMATING THE LENGTH OF USER PROGRAMS

FOCAL requires five words for each identifier stored in the symbol table, and one word for each three characters
of stored program. This may be calculated by

where:

C
5s+(-. 1.01) = length of user's program

3
s = Number of identifiers defined

c = Number of characters in indirect program

If the total program area or symbol table area becomes too large, FOCAL types the error message

?16

The following routine allows the user to fmd out how many core locations remain for his use.

*FOR 1=1,500ki); SET A(1)=1
? 16
*TYPE %Lj, 1*5, "LOCATIONS LEFT"

8160LOCATIONS LEFT*

(Wait for FOCAL to type the error message.)

At the end of this routine, use ERASE to clear all the variables A(I) from the symbol table.

NOTE

The upper limit on I varies with the amount of core memory
in the user's system.

C-l/C-2

Function

Sine

Cosine

Tangent

Secant

Cosecant

Cotangent

Arc sine

Arc cosine

Arc tangent

Arc secant

Arc cosecant

Arc cotangent

Hyperbolic sine

Hyperbolic cosine

Hyperbolic tangent

Hyperbolic secant

Hyperbolic cosecant

Hyperbolic cotangent

Arc hyperbolic sine

Arc hyperbolic cosine

Arc hyperbolic tangent

Arc hyperbolic secant

Arc hyperbolic

cosecant

Arc hyperbolic
cotangent

APPENDIX D
CALCULATING TRIGONOMETRIC FUNCTIONS

FOCAL Argument Function
Represen ta tion Range Range

FSIN(A) ~IAI<IOt4 ~IFI~1
FCOS(A) ~IAI<10t4 ~IFI~1
FSIN(A)/FCOS(A) ~IAI<IOt4 ~IFI<10t6

IAI*(2N+ I)7T/2
l/FCOS(A) ~IAI<IOt4 1~IFI<10t6

IAI*(2N+ 1)7T/2
l/FSIN(A) ~IAI<10t4 1~IFI<10t6

IAI*2N7T
FCOS(A)/FSIN(A) ~IAI<IOt4 ~IFI<IOt440

IAI*2N7T
FATN(A/FSQT(I-A t2) ~IAI<1 ~IFI~7T/2

FATN(FSQT(1-A t2)/A) O<IAI~l ~IFI~7T/2
FATN(A) ~~10t6 ~F<7T/2
FATN(FSQT(A t2-1)) 1~<10t6 ~F<7T/2
FATN(1 /FSQT(A t2-1)) 1<A<10t300 O<F<7T/2
FATN(1/A) 0<A<10t615 O<F<7T/2
(FEXP(A)-FEXP(-A))/2 ~IAI<700 ~IFI~5* IOt300
(FEXP(A)+FEXP(-A))/2 ~IAI<700 1~<5*10t300
(FEXP(A)-FEXP(-A))/ ~IAI<700 ~IFI~l
(FEXP(A)+FEXP(-A))

2/(FEXP(A)+FEXP(-A)) ~IAI<700 0<F~1
2/(FEXP(A)-FEXP(-A)) 0<1AI<700 0<1FI<10t7
(FEXP(A)+FEXP(-A))/ 0<1AI<700 1~IFI<10t7
(FEXP(A)-FEXP(-A))

FLOG (A+FSQT(At2+1)) -IOt5<A<10t600 -12<F<1300
FLOG (A+FSQT(At2-1)) 1~<IOt300 ~F<700

(FLOG(I +A)-FLOG(I-A))/2 ~IAI<l ~IFI<8.31777

FLOG((1 / A)+FSQT((I /A t2)-I)) O<IAI~l ~F<700

FLOG((l/A)+FSQT((I/A t2)+ I)) O<IAI< lOt 300 ~IFI<1400

(FLOG(X + 1)-FLOG(X-I))/2 l<A<10t616 ~F<8

D-l/D-2

APPENDIX E
SLOT AND HANDLER ASSIGNMENTS
.DAT IN KEYBOARD MONITOR SYSTEM

The .DAT slots to be assigned with FOCAL are

- 1 System library

- 4 FOCAL (XCT, XCU)

FOCAL binary program

3 Library input

5 Library output

7 Data input

IqJ Data output

Handler assignements depend on the user's peripheral devices. Handler E is used when DECtape input/output is
desired for FOCAL programs, as in the assignment:

$A DTEqJ -1, -4/DTEI 3,5,7,IqJ

When Disk input/output is desired the Handler is also E and the assignment is

$A DKEqJ -1, -4/DKEI 3,5,7,IqJ

When paper tape is used to load FOCAL (as described in Chapter 1) to operate under the control of the Basic I/O
Monitor system the .DAT slot assignments are

$A PRA -1, -4,3,7/PPA 5,1 qJ

CHANGE 1 E-I/E-2

READER'S COMMENTS

PDP-IS FOCAL
PROGRAMMING MANUAL
DEC-IS-KJZB-D

Digital Equipment Corporation maintains a continuous effoit to improve the quality and usefulness of its
publications. To do this effectively we need user feedback - your critical evaluation of this manual.

Please comment on this manual's completeness, accuracy, organization, usability, and readability.

DEC also strives to keep its customers informed of current DEC software and publications. Thus, the fol
lowing periodically distributed publications are available upon request. Please check the appropriate boxes
for a current issue of the publication(s) desired.

o Software Manual Update, a quarterly collection of revisidlls to current software manuals.

o User's Bookshelf, a bibliography of current software manuals.

o Program Library Price List, a list of currently available software programs and manuals.

Name _____________ _ Organization _________________ _

Street Department

City State Zip or Country

- - - - - - - - - - - - - - - - - - Fold Here -

- - - - - - - - - - - - - - Do Not Tear - Fold Here and Staple - - - - - - - - - - - - -

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

mamaoma
Digital Equipment Corporation
Software Information Services
146 Main Street, Bldg. 3-5
Maynard, Massachusetts 01754

FIRST CLASS

PERMIT NO. 33

MA YNARD, MASS.

Digital Equipment Corporation
Maynard, Massachusetts

printed in U.S.A.

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	7-01
	7-02
	7-03
	7-04
	8-01
	8-02
	8-03
	8-04
	A-01
	A-02
	A-03
	A-04
	B-01
	B-02
	C-01
	C-02
	D-01
	D-02
	E-01
	E-02
	replyA
	replyB
	xBack

