

DEC-15-GVTPA-A-D

V T - 1 5

G R A P H I C S S 0 F T W A R E

S Y S T E M

P R 0 G R A M M I N G M A N U A L

Order additional copies as directed on the Software
Information page at the back of this document.

digital equipment corporation . maynard. massachusetts

First Printing, November,1970
Second Printing, October,1971
Third Printing, March, 1974
Revised, August, 1974

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this manual.

The software described in this document is furnished to the purchaser
under a license for use on a single computer system and can be copied
(with inclusion of DIGITAL's copyright notice) only for use in such
system, except as may otherwise be provided in writing by DIGITAL.

Digital Equipment Corporation assumes no responsibility for the use
or reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright (£) 1970, 1971, 1974 by Digital Equipment Corporation

Maynard, Mass.

The HOW TO OBTAIN SOFTWARE INFORMATION page, located at the back of
this document, explains the various services available to DIGITAL
software users.

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in
preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

CDP DIGITAL INDAC PS/8
COMPUTER LAB DNC KAlO QUICKPOINT
COMSYST ED GRIN LAB-8 RAD-8
COMTEX EDU SYSTEM LAB-8/e RSTS
DDT FLIP CHIP LAB-K RSX
DEC FOCAL OMNIBUS RTM
DECCOMM GLC-8 OS/8 RT-11
DECTAPE IDAC PDP SABR
DIBOL IDACS PHA TYPESET 8

UNIBUS

PREFACE

This manual describes the software provided for the VT15 Graphics

Display Processor and its optional:

a) VL~4 Light Pen,

b) LK35 Keyboard, and,

c) VW~lBP Writing Tablet and Control.

The information provided is applicable for users employing either the

Disk Operating System (DOS) or Advanced Monitor Software System (ADSS).

It was assumed in the preparation of this manual that the user was

familiar with the contents of the software manual describing the

operating system (DOS or ADSS) being used. A list of applicable manuals

is given at the end of Chapter 1.

Technical changes made in this revision of the manual are indicated

by a bar in the appropriate page margin.

iii

CONTENTS

CHAPTER 1

INTRODUCTION

CHAPTER 2

SUBPICTURE ROUTINES

2.1 General Restrictions

2.2 LINE Subroutine

2.3 TEXT Subroutine

2.4 COPY Subroutine

2.5 PRAMTR Subroutine

2.6 GRAPH Subroutine

2.7 BLANK Subroutine

2. 8 UNBLNK Subroutine

2.9 CIRCLE Subroutine

2.10 ROTATE Subroutine

CHAPTER 3

MAIN DISPLAY FILE ROUTINES

3.1 DINIT (Display Initialize) Subroutine

3.2 DCLOSE (Display Terminate) Subroutine

3.3 SETPT (Set Point) Subroutine

3.4 PLOT Subroutine

3.4.l PLOT A Subpicture (COPY)

3.4.2 PLOT a Line (or Reposition the Beam)

3.4.3 PLOT a Control Command (PRAMTR)

3.4.4 PLOT a Text String (TEXT)
3.5 DELETE Function

3.6 REPLOT Function

3.7 RSETPT Function

4.1

4.2

5.1

LTORPB Function

TRACK Subroutine

DYSET Subroutine

CHAPTER 4

INPUT ROUTINES

CHAPTER 5

RELOCATING ROUTINES

v

Page
1-1

2-3

2-3

2-5

2-6

2-7

2-10

2-10

2-12

2-12

2-14

3-3

3-4

3-4

3-5

3-5

3-6

3-6

3-7
3-7

3-8

3-9

4-1

4-2

5-1

5.2

6.1

6.2

6.3

6.4

6.5

6.6

6.7
6.8

7.1

7.2

7.3

7.4

7.5

7.6
7.7

7.8

7.9

8.1

8.2

8.3

8.4

8.5

8.6

8.7

9.1

9 .1.1

9 .1. 2

DYLINK Subroutine

CHAPTER 6

SYSTEM I/O DEVICE HANDLER

.INIT (Initialize) Macro

.READ Macro

.WRITE Macro

.WAIT Macro

.WAITR Macro

.CLOSE Macro

.FSTAT Macro

Ignored Functions

CHAPTER 7

LK35 KEYBOARD HANDLER

.INIT (Initialize) Macro

.READ Macro

.WAIT Macro

.WAITR Macro

.CLOSE Macro

.FSTAT Macro

Ignored Function

Illegal Functions

Legal Control Characters

CHAPTER 8

VWOl WRITING TABLET HANDLER

.INIT (Initialize) Macro

.READ Macro

.WAIT Macro

.WAITR Macro

.FSTAT Macro

.CLOSE Macro

Ignored Functions

CHAPTER 9

TEXT DISPLAY/EDIT FUNCTIONS

EDITVT

Setup Commands

Controls

vi

Page

5-2

6-1

6-3

6-4

6-4

6-5

6-6

6-6

6-6

7-1

7-2

7-3

7-3

7-4

7-4

7-4

7-5
7-5

8-2

8-3

8-4

8-4

8-5

8-5

8-6

9-1

9-1

9-1

9.1. 3

9.2

9.2.1

9.2.2

9.2.3

9.2.4

9.2.5

A.

B.

c.
D.

Figure

Figure

Figure

Figure

Figure

Figure

2-1

2-2

2-3

4-1

4-2

5-1

Table 2.1

Table 4.1

Display Modes

CONTROL x Feature

SCROLL Mode

PAGE Mode

VT ON/OFF Monitor Command

HALF ON/OFF Monitor Command

Differences Between CTRL X IN V5A (i.e., ADSS)
and in DOS

APPENDIXES

Mnemonics Commonly Used in Graphics Subprogram Calls

Display Instruction Groups Generated by Graphics
Subprogram Calls

Macro Expansion of Graphics Subprogram Calls

Conditional Assembly of Graphics Subprograms

ILLUSTRATIONS

Subpicture File Containing Four Vector Commands

Sine Wave Program Example

Operation of BLANK/UNBLNK Subroutine

Sample TRACK Program (FORTRAN Example)

Sample TRACK Program (MACRO 15 Example)

DYSET/DYLINK Program Example

TABLES

Display Parameter Settings

Description of CALL TRACK Arguments

vii

Page

9-2

9-2

9-2

9-3

9-3

9-4

9-4

A-1

B-1

C-1

D-1

2-1

2-1

2-1

4-3

4-7

5-3

2-9

4-4

CHAPTER 1

INTRODUCTION

This manual presents a detailed description of the PDP-15/VT15 Graphics Sub

program Package and is primarily concerned with those display subroutines and

calling user programs employed to exhibit information and communicate with the

computer. The Graphics subprograms generate display commands that allow the

user to define display elements and direct the linking, displaying, and delet

ing of those elements. Their primary purpose is to provide a simplified means

of using the VT15 Graphic Display device without requiring detailed familiar

ity with the hardware.

In this manual, Graphic Routines are described in detail as follows:

Chapter 2. Subpicture Routines

3. Main Display File Routines

4. Input Routines

s. Relocating Routines

6. System I/O Device Handler

7. LK35 Keyboard Handler (LKA)

8. VWOl Writing Tablet Handler (VWA)

9. Text Display/Edit Functions

Subprograms which consist of Graphic Routines mentioned above are called by

user programs written in MACRO or FORTRAN IV language. The depth of coverage

of these routines is intended to provide a very basic understanding of the

use of the VT15 Graphic Display system. Much useful information may be found

in appendices following Chapter 6.

The PDP-15 is designed with an autonomous systems structure and the VT15 fol-
lows this same philosophy; it operates asynchronously from the basic processor.

Features include a cycle time of 750 nanoseconds, a character generator (with

64 printing characters and 4 control characters), a hardware program counter, a

fast vector capability (1/4 inch in 1 usec), and a wide range of hardware options.

The VT15 Graphics Software is designed for a minimum hardware configuration, as

follows:

PDP-15 with KSR-33

BK Core Memory (12K required for Text Editor)

Paper Tape High-Speed Reader/Punch

VTlS Display Processor

VT~4 Display Console

Two DECtape Units

1-1

The Graphics Software consists of a group of routines that can be called by user

programs. Calls to these routines build display files in a portion of PDP-15

memory that has been allocated by the calling program for such a purpose. The

display files contain instructions and data upon which the VTlS Processor

operates and to which its digital control and analog outputting circuits re

spond. The VTlS Processor has a set of 12 basic machine-language instructions

which give it excellent versatility in the display of points, basic vectors,

graphic plots, and ASCII characters. The commands contained in a main display

file link together individual subpicture files causing the desired image to be

displayed. Calls to other routines control the flow of the program upon the

occurrence of light pen or push button interrupt. In this way, program paths

can be enabled to modify the sequence of display commands and therefore modify

the picture.

The VTlS Graphics Software is designed to run in Bank/Page Mode and to be used

with either FORTRAN IV or MACR0-15 programs. FORTRAN IV programs devised by

the user will consist of standard FORTRAN IV statements and calls to routines

within the VT15 Graphics package. Other than system software normally used

for compilations, assemblies, loading, etc., the VT15 Graphics software does

not require use of any other programs.

Between DOS V2A and DOS V3A, the internal format of FORTRAN subroutine calls

was changed. FORTRAN Version 044 and higher have the new format. Since the

Graphics Software is called by FORTRAN, its version must match the FORTRAN

version. Corresponding version numbers for modules of the graphics software:

VTPRIM 004

LTORPB 002

TRACK 002

The distribution of DOS V3A contains a matched set of FORTRAN and Graphics

Software, of the new format. Under the new format, references of the form

LARRAY are equivalent to LARRAY(l), so that these forms may be used

interchangeably.

The following manuals contain information use~ul in understanding and

utilizing the contents of this manual.

/

1-2

DOS users

a) DOS users Manual

b) FORTRAN IV Language Manual

c) FORTRAN IV Operating Environment Manual

ADSS Users

a) ADVANCED Monitor Software System for
PDP-15/20/30/40 Systems

b) FORTRAN IV Programmer Reference Manual
(SK Systems)

c) FORTRAN IV Language Manual
(16K Systems)

d) FORTRAN IV Operating Environment
(16K Systems)

Common Manuals

a) MACR015, Macro-Assembler Program

b) Utility Program Manuals

Hardware Manuals

a) Graphic-15 Reference Manual

b) VWOl Writing Tablet, Vol. 1

DEC-15-0DUMA-B-D

DEC-15-LFLMA-A-D

DEC-15-LFEMA-A-D

DEC-15-MR2B-D

DEC-15-KFZB-D

DEC-15-LFLMA-A-D

DEC-15-LFEMA-A-D

DEC-15-LMACA-B-D

DEC-15-YWZB-D

DEC-15-GWSA-D

DEC-00-H4AA-D

The GRAPHIC-15 Reference Manual is of particular importance to the

VT15 programmer. The manual describes the basic Graphic 15 processor

and its interfacing arrangement with the PDP-15 computer. The informa

tion in this manual provides the user with the data needed for machine
level programming and familiarizes the user with the operation 0£ the

Graphic System.

1-3

CHAPTER 2

SUBPICTURE ROUTINES

These routines allow the user to incorporate point plotting, line drawing, and

text display in his programs with minimum effort. Calls to these routines

together with standard FORTRAN or MACRO statements build self-contained sub

picture display files which are subscripted program arrays with executable

display instructions. Each subpicture file contains all the display instruc

tions needed to generate a specific image on the VT~4 Display console. These

files are accessed by a Main Display File (described in Chapter 3) in any

order or sequence during the execution of the display program. Most Subpicture

Routines will normally be called prior to initiating execution of a Main Display

File, thus building a library of accessible graphics (i.e., complete or partial

pictorial images) from which complex images may be formed. The subpicture

display routines and their functions are:

LINE - Draws a line (intensified) or moves the beam (not intensified)

from current position.

option, if available.)

(Provides for using random vector

TEXT - Displays strings of 5/7 ASCII text previously defined by

the user in dimensioned arrays.

COPY - Links subpicture files (similar to subroutining) to form a

composite display image. Provides for using hardware

SAVE/RESTORE feature, if desired.

PRAMTR - Sets scale, intensity, light pen sensitivity, blink, etc.,

for this subpicture, or some portion thereof.

GRAPH - Displays specified data points in graph form.

BLANK - Inhibits display of any copy of this subpicture.

UNBLNK - Reverses the action of the BLANK subroutine.

All display file storage is created by the FORTRAN user in the form of dimen

sioned integer arrays; MACR0-15 users must also allocate display file storage in

some appropriate manner. To facilitate storage management, the first location

of each file contains the length of the file. Limited reuse of storage is

provided for in the Main Display File routines.

The first location of a subpicture file, PNAME(l), contains its current length -

this value must be set to zero before the first reference to the subpicture display

file is made. After the first reference, the contents of PNAME(l) is set equal to

the length of the subpicture file; this value is automatically updated by any sub

sequent calls to the subpicture display routines. (See Figure 2-1). Each display

ELEMENT is added at the current end of the subpicture file.
2-l

LOCATION

PNAME
+l
+2
+3
+4
+5
+6

CONTENTS

(6)
returnt
vector command
vector command
vector conunand
vector conunand
DJMP* PNAME+l

tReturn address stored by any dis
play JMS (DJMS) to this subpicture.

Figure 2-1. Subpicture File Containing Four Vector Commands

Since display files are generated and stored in arrays dimensioned by the user,

they are fully accessible to the user and can be written out or read in using

FORTRAN unformatted I/O statements.

Storage overhead for each subpicture display file is three words; the first word

contains the file length, the second is used for a return address, and the third

(last in file) contains the VT15 display command DJMP* PNAME+l.

The procedure for generating a subpicture file such as that illustrated in

Figure 2-1 requires some further explanation. The four calls to subro~tine LINE,

shown below, will result in such a file. This subpicture file will simply draw

a square when accessed by the Main Display File or another subpicture file.

DIMENSION IPNAME(l~)
IPNAME(l)=~

CALL LINE (l~~'~'l,IPNAME(l))
CALL LINE (~,l~~,l)
CALL LINE (-1~~'~'1)
CALL LINE (~,-1~~,l)

Note in the above example that storage allocation for the subpicture file was

provided by the DIMENSION statement. Also, the first location, IPNAME(l), was

set to zero before the first reference to it, thus indicating a new file. The

identity of a subpicture file is the address of its first location (PNAME)and is

given or implied, as an argument in all calls to subpicture routines. Each sub

picture file is left in displayable form so that it can be manipulated dynamically

while being displayed. 2- 2

Limited reuse of storage is provided for in the main display file routines RSETPT,

REPLOT, and DELETE which are explained in Chapter 3. In this chapter, the number

of locations required for display instructions generated by each subroutine call

is indicated in each of the subroutine descriptions. Naturally, the total number

of locations that can be allocated for display files is limited by the amount of

core memory available.

2.1 GENERAL RESTRICTIONS

The following general restrictions apply to all subpicture routines except BLANK

and UNBLNK.

a. All arguments {constants or variables) must be of integer form.

b. The variable PNAME must be set equal to zero before the first
call referencing it.

c. The PNAME array must be of sufficient size to contain the entire
subpicture file (the software does not check for overflow).

2.2 LINE SUBROUTINE

The LINE subroutine adds to the end of the specified subpicture file the commands

necessary to draw a line (beam intensified) or move the beam {not intensified)

through a specified displacement from the current beam position.

The call statement has the form:

CALL LINE (DELTAX,DELTAY,INT[,PNAME])

where the enclosing brackets [] indicate an optional argument.

DELTAX represents the horizontal component of beam displacement in raster units

and DELTAY represents the vertical component. A raster unit is the distance

between two adjacent points along the X or Y axes, and differs in size with
different picture tubes. The integer variable INT indicates whether the line is

to be intensified (INT=l, the line will be visible; INT=~ the line will not be

visible). The variable PNAME represents the first location of this subpicture

display file and is the name by which the subpicture is referred to in later

manipulation. For example, if a subpicture is to start in the dimensioned array

ILEMNT, the form is:

CALL LINE(DELTAX,DELTAY,INT,ILEMNT(l))

Each subroutine LINE call adds one command to the display file if DELTAX and

DELTAY define one of the eight basic directions:

VN!INCR (where VN is vector direction n, and INCR is units)
(the exclamation operator indicates an inclusive OR function)

2-3

If DELTAX and DELTAY do not define one of the eight basic directions, LINE tests

for availability of the random vector option, and, if available, adds two

commands to the display file:

SVX!DELTAX (stroke vector, x displacement)

SVY!DELTAY (stroke vector, y displacement)

If not one of the eight basic directions, and if the random vector option is not

available, LINE approximates the required line with a series of basic vectors.

The contents of the location PNAME is incremented by the number of commands

added to the display file.

In addition to the general restrictions (paragraph 2.1) outlined previously for

subpicture routines, there is another restriction that should be considered when

using subroutine LINE: DELTAX and DELTAY should always be signed integers with

magnitudes not exceeding 1~23. The following two statements illustrate the use

of the LINE subroutine.

CALL LINE (~,6~,l,ILINE(l))

This statement generates a display instruction to draw a vertical line 6~

raster units long. The display instruction (a basic vector) is stored at the end

of subpicture file ILINE.

i
6~

•4;(_J _______ Starting point

The following statement illustrates use of the LINE routine to draw a sloped line:

CALL LINE(IDX,IDY,l,ILINE(l))

where IDX=-3~~ and IDY=2~~. we obtain the following:

y

Starting point

Note that the random vector option is assumed to be available (otherwise, such
a line would be approximated).

2-4

2.3 TEXT SUBROUTINE

The TEXT subroutine adds to the specified subpicture file conunands necessary to

display an identified text string - starting at the current beam position. The

standard text font is drawn on a l~ by 14 dot matrix. Each character causes an

increment of 14 raster units to the X position of the beam. The form is:

CALL TEXT(STR,N[,PNAME])

The input variable STR identifies the dimensioned real array that contains the

string of characters to be displayed in IOPS ASCII (Hollerith) form - five 7-bit

characters packed in two words. The variable, N, is an integer variable that

indicates the number of characters to be displayed in the referenced array. If

N~~, an ALT MODE will be inserted after the nth character to allow escape from

the character mode. If N=~, ALT MODE will not be inserted in the TEXT array.

The variable PNAME(l) is the first location of this subpicture file, as in the

call to LINE.

The TEXT subroutine adds three locations to the assembled display file; three is

added to the contents of PNAME(l).

CHARS* .+2

DJMP .+2

(FULL 15-BIT ADDRESS)

NOTE

If 5/7 ASCII data is loaded into the array from an
external source (as opposed to being defined in a
FORTRAN DATA statement), it may contain certain
non-printing characters (such as carriage return,
line feed, etc.) that must be allowed for when
specifying the argument N.

In addition to the general restrictions outlined in paragraph 2.1, the array

referred to by TEXT must be of sufficient size to accommodate the escape char

acter that will be inserted by TEXT. Also, to ensure that the display processor

is conditioned to escape on ALT MODE, it is necessary to start up an empty

Main File with a call to DINIT (described in Chapter 3). When this is done, a

display parameter word is inserted in the new Main File to enable escape on

ALT MODE only. (The alternative is to escape on carriage return or ALT MODE,

whichever comes first; however, this option is not selectable using Main File or

subpicture routines.)

The following example illustrates the manner in which TEXT to be displayed is

set up and called:

2-5

Setup to display "15 ASSABET RD." is

DIMENSION ADDR(4)
DATA ADDR(l)/5Hl5 AS/,ADDR(2)/5HSABET/,ADDR(3)/4H RD./

The call statement to display the TEXT from subpicture IPIC is:

CALL TEXT(ADDR(l),14,IPIC(l))

2.4 COPY SUBROUTINE

The COPY subroutine enables two or more subpicture display files to be linked

together to generate a composite display image. This is accomplished by a

display subroutining technique. COPY adds to one subpicture display file the

commands necessary to call a second subpicture. The second subpicture begins at

the last beam position specified by the first subpicture. The form is:

CALL COPY(RST,PNAMEl[,PNAME])

The variable, RST, indicates whether to save and restore display parameters 1

when copying the specified subpicture. RST may be set to ~ or l; ~ indicates

no SAVE/RESTORE option and 1 indicates SAVE/RESTORE option is to be used. The

variable PNAMEl is the first location of the subpicture to be copied. PNAME is

the first location of the subpicture file to which display instructions generated

by this call are to be added.

The COPY subroutine adds three locations to the display file when the

SAVE/RESTORE option is not specified. These three locations are as follows:

DJMS* .+2

DJMP .+2

(ADDRESS of PNAMEl+l)

However, when SAVE/RESTORE is specified, COPY adds six locations to the display

file as follows:

SAVE .+4
DJMS* .+2
DJMP .+3
(ADDRESS of PNAMEl+l)
(STATUS)
RSTR .-1

1 These parameters include (but are not limited to) scale, intensity, blink, offset,
and rotate, which can be set by calling subroutine PRAMTR (see paragraph 2.5.l)
For a detailed description of parameters effected by the SAVE/RSTR instruction,
refer to GRAPHIC-15 Reference Manual (DEC-15-GWSA-D).

2-6

where the SAVE instruction stores the effected display parameter settings in the

STATUS word before executing the normal sequence of COPY commands. Upon return

ing from the subpicture, these parameters are restored to their original settings

by the RSTR instruction. The contents of PNAME is increased by three or six, as

required.

In addition to the general restrictions outlined in paragraph 2.1, PNAME 1 need

not be defined when COPY is called but must be a defined subpicture when PNAME is

displayed. The following statement:

CALL COPY(~,WINDOW(l) ,HOUSE(l))

adds a call to the window subpicture file to the file identified as HOUSE. Note

that the SAVE/RESTORE option was not specified.

2.5 PRAMTR SUBROUTINE

WARNING! The display of small display files at high intensities without the SYNC

option may damage the scope phosphor. It is recommended that SYNC be used through

out.

The PRAMTR subroutine allows the user to add to the specified subpicture file the

commands necessary to set up the following display features.

Reference Manual, PDP-15, for more detailed information.)

(See DEC, Graphic-15

Scale setting - Setting the scale has a different effect, depending on where it

is used. If used when plotting characters or vectors, it specifies the number of

times (~ - 15) that the unscaled vector (or stroke of a character) is to be re

peated. If used in conjunction with the graph subroutine, the scale specifies

the coordinate distance between given points.

Intensity Setting - The brightness of the display can be controlled in eight in

cremental steps between maximum dark and maximum light by specifying an integer

variable or constant to represent the wanted brightness, between ~ and 7.

Light Pen Sensitivity - The ability of the light pen to sense a "hit" can be

controlled by means of this feature.

Blink Setting - Use of this feature enables blinking of some portion or all of the

displayed image. This feature causes characters as well as vectors to blink at a

rate of approximately four times a second.

Dash Setting - This feature enables drawing of dashed lines and can be set

from~ to 3 as follows:

Setting

~
1
2
3

Illuminated Raster Points

2-7

ALL ON
3 ON 1 OFF
4 ON 2 OFF
4 ON 4 OFF

Offset Setting - Since the VT15 display processor defines a square drawing area,

a standard rectangular tube would normally have some unused area. The VTlS makes

use of this area by means of the offset feature. When the offset is enabled, the

absolute origin is relocated to the lower right-hand corner of the normal display

area. This small area (approximately 9-1/2 x 1-1/2 in.) can be used for light

buttons, special figures, etc., without disturbing the normal graphics area.

Rotate Setting - This feature allows the displayed image to be rotated 9~ degrees

in the counterclockwise direction or returned to its normal orientation if it is

currently rotated. This could be useful for labeling graphs on the vertical axis

or for any of a number of other applications.

Name Register Setting - The ability to set the Name Register is required to iden

tify the location of light pen hits when using subroutine LTORPB. However, it is

a feature which, when used at the programmer's discretion, can be helpful in

many other applications. Once set, it retains its value until set to a different

value.

Sync Feature - This feature can be used to avoid phospher burnout when displaying

files that require 32 milliseconds or less for execution. The display will halt

and remain stopped until a sync pulse, derived from the local power main, enables

execution to resume. This essentially locks execution of the display file to the

power line frequency, which eliminates a visible swimming effect on the CRT.

By using the PRAMTR call statement, more than one feature (each with its corres

ponding settings) may be specified, using the following technique:

1. Add together the integer code numbers that identify the selected

features and assign this value to the variable FEATR. For example:

For scale (1) and Intensity (2), FEATR will have the value 3.

2. List the desired settings, as arguments, in ascending order accord

ing to the values of the numeric assigned to their. corresponding

features (the argument list 3,2,6 would specify a value of 2 for

scale (feature 1) and of 6 for Intensity (feature 2)). The general

call statement form is:

(a) One feature - CALL PRAMTR(FEATR,VALUE[,PNAME])

(b) More than one feature and setting -

CALL PRAMTR(FEATR(S),VALUE1,VALUE2 •.• [,PNAME])

The variable FEATR represents the display feature being set. The variable

VALUE is the value to which FEATR is set. (See Table 2.1 for FEATR and VALUE

settings.) PNAME is the first location of this subpicture file.
2-8

The PRAMTR subroutine adds from one to four commands to the display file, depend

ing on the type of argument list used. 1 The number of commands added to the

file is added to the contents of location PNAME.

Table 2.1 Display.Parameter Settings

Integer Code
Parameter for FEATR Possible Settings

Scale 1 fl (Low) to 15 (High)

Intensity 2 fK (Low) to 7 (High)

Light Pen 4 fl (OFF) and 1 (ON)

Blink 8 fl (OFF) and 1 (ON)

Dash 16 fl (Solid) to 3 (Finest dash)

Offset 32 fJ (OFF) and 1 (ON)

Rotate 64 1 (CCW 90°) and
fl (Return CW 90°)

Name Reg. 128 fl (Lowest) to 127 (Highest)

Sync 256 fl (OFF) and 1 (ON)

Note: The abbreviation CCW counterclockwise
cw = clockwise

In addition to the general restrictions, the PRAMTR subroutine must be used with

care, since the setting given is in effect until explicitly changed. Thus, if

the blink is turned on at the beginning of a subpicture, it must be turned off

at the end, otherwise the entire display image will blink (unless, of course, the

SAVE/RESTORE option is used in calls to this subpicture).

The following single feature statement:

CALL PRAMTR (2,7,HOUSE(l))

specifies an intensity level of 7, for the subpicture display file starting at the

first location of array HOUSE. The following multiple-feature statement:

CALL PRAMTR (SCALE+INT+LPEN,fl,4,1,IN(l))

Scale and intensity settings, when combined, generate only one display command.
Light pen, blink, offset, and rotate, when combined, generate only one display
command. Sync and dash features, when combined, generate only one display com
mand. Setting the Name Register generates one command.

2-9

specifies the values % and 4 for scale and intensity, and turns on the light pen

sensitivity. Appropriate display commands are added to the file that begins with

the first location of array IN.

2.6 GRAPH SUBROUTINE

The GRAPH subroutine adds to the specified subpicture file the commands

necessary to display in graph form the identified set of data points. One

coordinate is sequentially set to the value of each data point, the other

coordinate is then automatically incremented (in the current scale), leaving

the beam positioned one increment past the end of the graph. Note that axes

and labeling must be provided separately. The call statement form is:

CALL GRAPH (DTA,N ,A [',PNAME])

DTA represents an INTEGER array that contains the set of data points, one per

word, in the range ~ to 1~23. The variable N indicates the number of data

points to be displayed. The variable A indicates which axis to increment, where

A is set to either ~ or 1. (A=~ specifies incrementing the X axis and setting

Y to data values; A=l specifies incrementing the Y axis and setting X to data

values.) The variable PNAME specifies the first location of the subpicture

file to which the generated display commands are to be added.

The GRAPH subroutine adds to the subpicture file a number of graph-plot commands

equal to the number of entries in the data set, as shown below. The number of

commands added to the file is added to the contents of PNAME.

GX!VALl
GX!VAL2

GX!VALn
or

GY!VALl
GY!VAL2

GY!VALn

One way to summarize the discussion up to this point is to review a program,

(Figure 2-2 Sine Wave Program Example) which illustrates the use of GRAPH and

other subroutines.

2.7 BLANK SUBROUTINE

The BLANK subroutine is used to prevent the displaying of any copy of the

specified subpicture. However, the display file length is not changed. The form

is:

CALL BLANK (PNAME)

where the variable PNAME is the subpicture to be blanked.
2-lO

c
C ARRAY INITALIZATION

c

INTEGER SINWVC300),YC200)
DIMENSION TITLC10>,MAINFLC20)
DATA TITLCI>,TITLC2>,TITLC3>,TITLC4)/5HTHIS,
1 5HIS A ,SHSINE ,4HWAVE/

C SET UP INTEGER ARRAY OF VALUES TO BE PLOTTED.
c
1121

2121
c

X=121
DO 2121 I=I,200
YCI>=IFIXCSIN<X>*256.>+512
x= x+ .121628
CONTINUE

C SET UP SUBPICTURE TO PLOT THOSE VALUES.
c

SINWVCI>=0
CALL PRAMTRCJ,121,7,SINWVCl>>
CALL LINEC10121121,0,l)
CALL LINEC-10121121,0,0)
CALL LINE <121,25121 1 121)
CALL LINEC0,-51210,l)
CALL LINE (0,250,121)
CALL PRAMTR Cl,4)
CALL GRAPH CYCl>,1121121,0)
CALL GRAPH CYC101),10121,0,SINWVCI>>

c
C SET UP MAIN FILE TO DISPLAY THE GRAPH.
C CMAIN FILE CALLS BELOW, DESCRIBED IN CHPT. 3)
c

MAI NFLC 1) =121
CALL DINI! CMAINFLCl))
CALL SETPT C10,512>
CALL PLOT C0,0,SINWVC1))
CALL SETPT C11210,100)
CALL PLOT C2,1,!)
CALL PLOT (3,TITL<l),19)
CALL DCLOSE
PAUSE
STOP
END

Figure 2-2. Sine Wave Program Example

2-11

PNAME LENGTH

+l Return Add.

~
+2 First D1s_E_lay_ Inst •

DJMP* PNAME+l

Figure 2-3. Operation of BLANK/UNBLANK Subroutine

In figure 2-4 the command in location PNAME+2 (the first executable command in

the subpicture file) is interchanged with the DJMP* PNAME+l located at the end of

the subpicture file. PNAME must be a defined subpicture file (BLANK has no mean

ing as the first call referring to PNAME). The subpicture files should not be

modified while BLANKed. The following example would prevent the subpicture dis

play file starting at the first location of array IPIC from being displayed.

CALL BLANK (IPIC(l))

2.8 UNBLNK SUBROUTINE

The UNBLNK subroutine reverse.s the action of the BLANK subroutine, allowing a

previously BLANKed subpicture to be displayed. The form is,

CALL UNBLNK (PNAME)

where the variable PNAME is the subpicture to be UNBLNKed. The command in the

last location of the subpicture file (placed there by a call to BLANK) is inter
changed with the DJMP* in location PNAME+2. If the referenced subpicture is not

already BLANKed, UNBLNK will return without changing the file.

The following statement will enable the previously BLANKed subpicture IPIC to

be displayed.

CALL UNBLNK (IPIC(l))

2.9 CIRCLE SUBROUTINE

The CIRCLE Subroutine is provided as a FORTRAN source, and must be compiled before

use. The CIRCLE Subroutine enables the user to construct approximations of arcs

and circles as subpictures by specifying the length of a series of chords and the

start and stop points of the arc or circle to be constructed.

2-12

The form of the FORTRAN call for the CIRCLE subroutine is:

CALL CIRCLE (R,THETA,GAMMA,DEG,PNAME)

where the call variables in floating point except PNAME, are defined as:

1) ~' the radius, in raster units, of the circle to be constructed.

2) THETA, the start of a constructed arc expressed in degrees from

the X-Axis, rotating counterclockwise about the center of the

screen.

3) GAMMA, the end point of a constructed arc, expressed in degrees,

rotating counterclockwise about the center of the screen.

4) DEG, the chord length expressed in degrees.

5) PNAME, the name of the location at which the CIRCLE subroutine

will start the new subpicture array.

In DOS V3A, the calling arguments remain the same. However, at the conclusion

of the arc or circle, the beam is returned to the center of the circle, not

left at the edge as in DOS V2A.

The call to the CIRCLE subroutine has no effect if ang is less than 0.001 degrees

(absolute) or if r is less than one raster unit. The difference between gamma and

theta is reduced modulo 360, and both are measured counter-clockwise from theta to

gamma. If ang is negative, circles are drawn clockwise from theta to garruna. A full

circle is frawn if theta and gamma are within 0.001 degrees (modulo 360 degrees).

The maximum number of polygon sides allowed is 360, even at the expense of not com

pleting the requested circle or arc. It is possible for farnma to be less than theta.

If the user wishes, for example, he can draw an arc counter-clockwise from 20 degrees

around to 10 degrees. Note that the previous contents of the display file ISUB are

destroyed by this call.

The MACRO form of the CIRCLE subroutine using the same variable representations as

above is:

.GLOBL
JMS
JMP
.DSA
.DSA
.DSA
.DSA
.DSA

CIRCLE
CIRCLE
.+6
R
THETA
GAMMA
DEG
PNAME

NOTE

CIRCLE Subroutines require the VV15 arbitrary vector
hardware option.

2-13

I

2.10 ROTATE SUBROUTINE

The ROTATE subroutine is provided as a FORTRAN source, and must be compiled before

use. The ROTATE subroutine enables the user to plot three-dimensional figures from

basic two-dimensioned figures. Displayed items may be rotated about a specified

axis through a designated angle of rotation. This subroutine achieves the rotation

effect by modifying the users array.

A single call to the ROTATE subroutine can effect a rotation about one or more

of the X, Y, or Z-axes. The rotation of a display about any other axis requires

more than one call to be made to the subroutine.

The ROTATE subroutine utilizes the same left-handed system that is used through

out the graphics software, that is:

a) X, horizontal movement, positive to the right;

b) Y, vertical movement, positive is up;

c) z, axis into the display screen (positive movement)

The setpoint defines the origin of the axis of rotation.

CAUTION

The ROTATE subroutine should be used carefully, particularly

when rotating large figures, or off-center origins.

If, during rotation, the end-point of a line of the rotating figure passes

off screen, part or all of the figure may be lost. It is good practice in

rotating large figures to save the original buffer before calling ROTATE.

The following restrictions must be observed:

1) The values in the user's rotation arrays must be in floating point
format.

2) The user must calculate the sine and cosine of the angle of
rotation before he calls ROTATE.

3) The user must change integers into floating point numbers, and
make the correct calls for displaying the rotated figure.

The FORTRAN and MACRO formats for calls to ROTATE are:

FORTRAN:

CALL ROTATE(ISTR,IA,IB,IC,X, Y, ~. SINA, CSA)

2-14

MACRO:

.GLOBL
JMS
JMP
.DSA
.DSA
.DSA
.DSA
.DSA
.DSA
.DSA
.DSA
.DSA

ROTATE
ROTATE
.+12
ISTR
IA
IB
IC
x
y
z
SINA
CSA

where the input variables are defined as:

1. ISTR, the array length,

2. IA, specifies whether rotation about the Z axis is desired

If IA=l, rotation will occur about the Z axis.

If IA=~, there will be no rotation about the X-axis

3. IB, specifies whether rotation about the Y-axis is desired.

IB=l indicates rotation is desired, as with IA.

4. IC, specifies whether rotation about the X-axis is desired.

IC=l indicates rotation is desired, as with IA.

5. x, the name of the X array.

6. Y, the name of the y array

7. Z, the name of the z array.

8. SINA, the sine of the angle of rotation.

9. CSA, the cosine of the angle of rotation.

2-15

CHAPTER 3

MAIN DISPLAY FILE ROUTINES

Calls to Main File routines together with standard FORTRAN IV statements will,

when run, build a "Main Display File" in a portion of the PDP-15 memory

that has been allocated by the calling program. The commands contained in

this file link together individual subpicture display files causing the desired

image to be displayed.

These routines are used to generate a Main Display File to which the display

processor is directed when initiating a display, and which is presumed to be

calling upon the subpicture files generated with the routines described in

Chapter 2. As is the case with subpicture files, storage used for the main file

is supplied by the calling FORTRAN program as a dimensioned array. This array

is identified by only one call to the initializing routine (DINIT) and is implicit

in all other calls (which assume that reference is made to the storage identified

by DINIT). These call statements are concerned, however, with the identification

of each entry to the main display file. Thus most main file routines have as an

optional argument the location of the display code generated by that particular

call, which provides a "handle" to a particular graphic entity. This supplies the

flexibility required to build and modify a display file in an interactive environ

ment, and enables the user to perform limited storage management. The main dis

play file routines and their functions are:

DINIT - initializes and starts the display via device number

(.DAT SLOT) lyJ

DCLOSE - stops the display and leaves the main file in a form

such that it can be called as a subpicture file.

SETPT - sets abso1ute starting point of disp1ay.

intensified.)

(Point not

PLOT - displays pre-defined but not necessarily complete sub

pictures, individual LINEs, or ASCII text; also used

to define display parameters.

DELETE deletes named subpicture file from main display file.

REPLOT - similar to PLOT, but permits reuse of previously

defined areas in the main file.

RSETPT - similar to SETPT, but permits reuse of previously

defined areas in the main file.

3-1

When returned from PLOT or SETPT, CNAME 1 contains a count of the instructions
generated by that particular call in the high=order 3 bits. REPLOT and RSETPT
use this count to determine whether the required number of locations is avail

able. If there are not enough locations available, these routines check to see

if there are enough contiguous locations in the main display file containing

display NOP's to satisfy the requirement. If the requirement is not satisfied,

the function fails, an indicator to that effect is returned, and the display file

is not changed. If the requirement is satisfied, the new group of instructions

is inserted into the file along with enough display NOP's, if necessary, to match

the size of the original group of instructions, and a logical success indicator
is returned.

The DELETE function operates in a similar fashion, checking for a legal instruc
tion count in the high-order 3 bits of CNAME. If the instruction count is zero,

the function fails, an indicator to that effect is returned, and the main display

file is not changed. Otherwise, the number of instructions indicated (by the

high-order 3 bits of CNAME) are replaced with display NOP's and a logical success

indicator is returned.

An exception to this file management technique is when random direction lines

must be approximated for calls to PLOT. In this case, the count returned in the

high order bits of CNAME is set equal to 7 (this count is less than 7 for all

other calls). The instructions for line approximation are added to the display

file in the following format, where the actual count of instructions added to
the file (plus 2) is stored in CNAME+l.

SKP
(COUNT=N+2)
Vl
V2

VN

This difference in file management is invisible to the user since REPLOT and

DELETE still operate the same externally.

Smaller groups of instructions can be packed into memory formerly required by a
larger group. CNAME must be manipulated to accomplish this, and caution is ad
vised in following this procedure.

As an example, assume that a previous call to PLOT has generated six instructions

1The optional output argument (CNAME) which is returned from PLOT and SETPT is
a pointer to the display code generated by that call. It is a required input
argument to subroutines REPLOT and RSETPT that permit reuse of locations in the
main display file. It is also a required input to subroutine DELETE.

3-2

starting with the tenth location of the integer array IBUF. Also assume

that CNAME was requested as an output argument of that call to PLOT, and is

assigned to the variable IPLOT. When returned from the call to PLOT, IPLOT

would point to IBUF(l/6), and the three high-order bits would equal six (the

number of display commands inserted in the file).

If at a later time you wish to reuse these locations by inserting two

successive calls to REPLOT (each of which generates three display commands),

you can do so as follows:

CALL REPLOT (•••• ,IPLOT)
IPLOT=(IPLOT*B/8)+3
CALL REPLOT (••••• ,!PLOT)

In the second statement of the above sequence, the portion in parenthesis

zeroes out the count in the high order three bits of IPLOT. (When this count

is zero, REPLOT simply checks to see if enough DNOP'ed locations are available

to satisfy the requirement.) Three is then added so that IPLOT now points to

the first free location. It should be emphasized that simply adding three to

the value of IPLOT is not satisfactory, since the count would not be valid for

the second REPLOT (in fact, an additional three DNOP's would be added to the

file to satisfy the original count of six). Therefore, it is imperative to

know the exact number of locations available when using this technique, and

to proceed with caution.

3.1 DINIT (DISPLAY INITIALIZE) SUBROUTINE

The DINIT subroutine initializes the display via device number (.DAT SLOT) lf6.

The VTlS device handler (VTA) must be associated with .DAT slot 1/6 as DINIT

contains • IODEV 1/6, which causes the de.vice handler associated with • DAT slot

1/6 to be loaded. DINIT can be used to set up for a new display main file, to

start up an old one, or to start up any previously defined subpicture as the
current main file. The call statement form is:

CALL DINIT (MAINFL(l))

MAINFL is the first location of the Main Display file. Like PNAME, it is an

element of a dimensioned integer array. Location MAINFL contains the length

of the Main Display File. This is updated by all main file routines.

Subroutine DINIT stores a DJMP* MAINFL+l at the end of the main file, inserts

the address of MAINFL+2 into MAINFL+l, initializes the display, and starts

the display running at MAINFL+2.

Certain restrictions must be noted when using DINIT. If a new display file is

3-3

being formed, location MAINFL must contain zero~ if this is a previously defined

file, location MAINFL contains the file length and must not be altered. Suffi

cient storage must follow MAINFL to accommodate the main display file that is to

be generated. Only one main display file can be _running at a time.

NOTE

When a new main display file is being initialized, DINIT inserts a dis
play parameter word to turn off blink, offset, rotate and light pen,
and to enable character string escape on ALT MODE (175 8). To change
the initial settings for blink, offset, rotate, and light pen, or to
ensure that other display features (i.e., scale, intensity, dash,
name register, and sync) are "initially set as desired, the calling
program should contain a PRAMTR type call to PLOT (described in para
graph 3.4.3) following the call to DINIT.

The following statement initializes the execution of the Main Display File start

ing at the first location of array MAINFL.

CALL DINIT (MAINFL(l))

3.2 DCLOSE (DISPLAY TERMINATE) SUBROUTINE

The DCLOSE subroutine is used to stop the display. DCLOSE also leaves the cur

rent main file in displayable form such that it can later be called as a sub

picture file or restarted as a main file. The call statement form is simply:

CALL DCLOSE

3.3 SETPT (SET POINT) SUBROUTINE

The SETPT subroutine is used to locate the beam on the display surf ace in abso
lute display coordinates (raster units). The beam is not intensified with this

call. The call statement form is:

CALL SETPT (X,Y[,CNAME])

where the variable X represents the horizontal coordinate of beam location and Y

represents the vertical coordinate of beam location. The variable CNAME is a

pointer to the first location of the display commands generated by this call.

SETPT adds two commands to the main file, as follows:

PY!Y
PX!X

Two is added to the contents of location MAINFL. The location PY!Y is stored in

CNAME (if given).

The variables X and Y must be positive integers and their values must not exceed

1~23. A call to SETPT causes the beam to be given an absolute location, as op

posed to a relative displacement. This action effectively severs any following

parts of the display from any preceding parts; if a section of the display

is completely defined in terms of relative vectors, then its location on the
3-4

display surface depends on where the beam was initially located, and it can be

made to move as a unit by changing the initial setting. Giving the beam an

absolute location disregards any previous motion and serves as a new reference

point in the display.

CNAME is an optional output of this subroutine. Use of the same variable name

as one used in a previous call will destroy the previous contents. The following

statement establishes an absolute beam position with display coordinates X = 1¢,

y = 1¢.

CALL SETPT (1~ 1 1¢)

3.4 PLOT SUBROUTINE

The PLOT subroutine is the prime active agent in the generation of the Main Dis

play File. There are four forms of calls corresponding to the four subpicture

routines, COPY, LINE, PRAMTR, and TEXT. These calls are used to display pre

defined (but not necessarily complete) subpictures and individual lines or text

strings, and to introduce appropriate display control commands. In all cases,

the requested display or control function is identified as a separate entity and

may be manipulated independently of the rest of the display. The first entry in

the argument list defines the type of call to PLOT as follows:

FIRST ARG

¢
1
2
3

3.4.1 Plot a Subpicture (COPY)

The call statement form is:

CALL PLOT (~,RST,PNAME[,CNAME])

TYPE OF PLOT

COPY
LINE
PRAMTR
TEXT

where the value ¢ indicates this is a COPY type call to PLOT. RST is the

indicator for the SAVE/RESTORE option (same as COPY). PNAME is the name (first

location) of the subpicture to be displayed.

CNAME is an optional output argument that will contain a pointer to the first

location of the group of display commands generated by this call. The number of

commands added to the display file is added to the contents of MAINFL(l). In general

the same restrictions apply as for the COPY subroutine. Again, multiple use of

the same variable CNAME will destroy previous contents. The following example

illustrates use of a COPY type call to PLOT:

3-5

CALL PLOT (COPI,~,HOUSE(l),MAIN)

In this example, COPI has the integer value ~; the next argument (~) is the

indicator for the SAVE/RESTORE option; HOUSE identifies the subpicture file to

be displayed; and MAIN is an optional output argument by which the group of dis

play instructions inserted for this call may be referenced.

3.4.2 Plot a Line (or Reposition the Beam)

The call statement form is:

CALL PLOT (l,DELTAX,DELTAY,INT[,CNAME])

This type of PLOT is basically the same as the LINE subpicture routine, except

for the first argument which defines this as a line type call to PLOT. The

variable CNAME is an optional output argument and. will contain a pointer to the

first location of the group of display commands generated by this call. The

number of commands added to the display file is added to the contents of MAINFL.

The location of the first display command is stored in CNAME (if given) •

As in SETPT, CNAME is an output variable and multiple use of the same variable

name will destroy previous contents. Otherwise, the same general restrictions

apply as for the LINE subpicture routine. The following example illustrates a

LINE type call to PLOT.

CALL PLOT (LYNE,l~~~,l~~,ON,IEDGE(l))

where LYNE and ON have assigned values of 1 and IEDGE(l) is a display identifier
'to be used for later reference to this LINE.

3.4.3 Plot a Control Command (PRAMTR)

The call statement form is:

CALL PLOT (2,FEATR,VALUE[,CNAME])

where FEATR and VALUE must be specified in the same manner as for PRAMTR sub

picture calls. Also, as with the PRAMTR call, multiple features can be specified

in a single PLOT call of the following form: ·

CALL PLOT (2,FEATRs,VALUEl,VALUE4 ••• ,VALUEn[,CNAME])

The number of commands added to the display file is added to the contents of

MAINFL. The location of the first command is stored in CNAME (if given). The

same general restrictions apply as for the PRAMTR subpicture routine. The

3-6

following example illustrates the use of this type of PLOT to set the BLINK

feature in a Main File.

CALL PLOT (2,8,1)

The multiple-feature statement

CALL PLOT (PRAM,SCALE+INT+LPEN,~ 1 4,l,IN)

establishes values ~ and 4 for display features SCALE and INT, and turns the

light pen sensitivity on. The variable IN is supplied for the optional CNAME

output argument. (PRAM=2, to specify a PRAMTR type call to PLOT.)

3.4.4 Plot a Text String (TEXT)

The call statement form is:

CALL PLOT (3,STR,N[,CNAME])

This type of call to PLOT is essentially the same as that for the TEXT subpicture

routine, except for the first argument which defines this as a TEXT type call to

PLOT. The number of commands added to the display file is added to the contents

of MAINFL. The location of the first generated display command is returned in

CNAME (if given). The same restrictions apply as for the TEXT subroutine. The

following example illustrates the use of the TEXT type call to PLOT

CALL PLOT (3,STRING,15,SAVNAM)

where STRING contains the 15 characters to be displayed, and SAVNAM will contain

a pointer to the group of display commands inserted by this call.

3.5 DELETE FUNCTION

The DELETE function is used to delete from the Main Display File any display

entity formed by a single call to a main file routine and assigned to CNAME. If

CNAME does not contain a legal instruction count (1-7), the DELETE fails and has

no effect on the display file. The function and call statement forms are:

I = DELETE (CNAME)

or

CALL DELETE (CNAME)

The input variable CNAME is the location of the group of display commands to be

3-7

deleted. In the function form (I=), the output variable I is a Boolean success

indicator; TRUE indicates a successful deletion, FALSE indicates an unsuccessful

deletion. CNAME is checked to see if it contains a legal instruction count in

high-order bits. If it does, all commands in this group are replaced by display

NOP's (DNOPs); otherwise, no action is taken.

The example:

CALL·DELETE (NAME(2))

deletes from the.Main Display File the display entity whose first command is

pointed at or identified by the second element of array NAME.

3.6 REPLOT FUNCTION

The function REPLOT allows use to be made of previously defined locations in the

Main Display File. This can serve two purposes: (1) to reuse locations freed by

DELETE, and (2) to change an existing group of display commands. REPLOT checks

whether the group being inserted is longer than the space pointed at by CNAME, if

it is, REPLOT then checks to see if there are enough DNOPed locations following

the group to be overlaid. If there still are not sufficient locations available,

the REPLOT fails and the display file is not affected. By manipulating CNAME,

smaller groups can be packed into the space formerly used by ~ larger group. For

example, up to three control commands could be inserted into the space left by

a DELETEd copy group. There are four forms of call to REPLOT, each of which is

s imi.lar to the corresponding call to PLOT (Paragraph 3. 4) •

The first entry in the argument list defines the type of call to REPLOT as follows:

FIRST ARG

~
l
2
3

TYPE OF REPLOT

COPY
LINE
PRAMTR
TEXT

It is important to note that while CNAME is an optional output of PLOT it is a

required input of REPLOT since it identifies the locations to be modified in the

Main Display File. It also must be recognized that CNAME must have been given as

an argument to a PLOT call for it to be available for REPLOT.

Since all of the REPLOT functions are similar to corresponding calls to PLOT,

only the COPY type REPLOT is described as an example. The call statement forms

for a COPY type REPLOT are:

3-8

I REPLOT (~,RST,PNAME,CNAME)

or

CALL REPLOT (~ 1 RST,PNAME,CNAME)

The input variables are the same as in the corresponding call to PLOT, except

CNAME, which points to the first location of a block in which to store the dis

play commands generated. The output variable I is a logical success indicator:

TRUE indicates that the REPLOT was successful, and FALSE indicates that there

was not enough room at the location pointed to by CNAME. It should be emphasized

that if the above form is used, both I and REPLOT must be declared as LOGICAL in

a type statement.

The COPY type REPLOT checks whether CNAME points to a large enough block of

locations; no action is taken if the block is not large enough. Otherwise,

REPLOT inserts the necessary commands starting at the location pointed to by

CNAME, and inserts DNOP's in any remaining locations within the block. The same

general restrictions apply as for the corresponding call to PLOT. The following

example illustrates a COPY type call to REPLOT:

CALL REPLOT (~ 1 IRST,SLIDE(M),NAME)

where ~ indicates that this is a COPY type call. IRST is equal to zero to

indicate no SAVE/RESTORE option, M represents the first location of the sub

picture display file (in array SLIDE) and NAME identifies the first location in

the display file into which this group of commands is to be inserted.

3.7 RSETPT FUNCTION

Like SETPT, the function RSETPT permits absolute beam locations to be defined;
it can be used in the same manner as REPLOT to reuse any deleted locations or

to change any existing group of commands. The same checking of needed space

versus available space is done by RSETPT as in REPLOT.

The call statement forms are:

I RSETPT (X,Y,CNAME)

or

CALL RSETPT (X,Y,CNAME)

3-9

The variable X represents the horizontal coordinate of beam location; Y repre
sents the vertical coordinate of beam location. CNAME is an input argument

that points to the first location of a block in which to store the display

commands that are generated. If the function form (I=) is used with RSETPT,

both I and RSETPT must be declared as LOGICAL in a type statement. RSETPT first

checks whether CNAME points to a large-enough block of locations; no action is

taken if the block is not large enough. Otherwise, RSETPT inserts two position

ing commands at the location pointed to by CNAME:

PY!Y
PX!X

RSETPT also inserts DNOPs in any remaining locations belonging to a former command

group at this address. The following example illustrates the use of a call to

RSETPT:

CALL RSETPT (19,19,NAME)

where the value of l~ is assigned to the x and Y coordinates and NAME identifies

the starting location of a block within the display file into which the position

ing commands are to be inserted.

3-10

CHAPTER 4

INPUT ROUTINES

Input routines enable the user (through his program) to deal with display con

sole interaction using the light pen and pushbuttons. Routine LTORPB can inform

the user whether there has been a light pen or pushbutton action and, if so,

return the appropriate information that is required. The user program is not

(logically) interrupted when such action occurs. The light pen or pushbutton

action at the console merely causes an indicator to be set in the corresponding

routine. This may affect the user's flow of control at his discretion. The

light pen tracking routine (TRACK) provides a somewhat different use of the

light pen, allowing the user to control input and generation of graphics.

4.1 LTORPB FUNCTION

The function LTORPB is used to determine whether a light pen or pushbutton hit

has occurred. If it has not, the function returns an indicator to this effect.

If a hit has occurred, the logical (contents of name register) and physical

·(y and X raster coordinates) location of the light pen and the status of the

pushbutton box are returned as well as the indicator that a hit has occurred.

For example, this routine may be used as a switch in a FORTRAN logical IF state

ment (see example below). The IF statement could branch to itself if no hit has

occurred, or to the user's light pen hit processing code if a hit has occurred.

The function statement form is:

I LTORPB (IX,IY,NAMR,PB,IWICH)

LTORPB and the variables I and PB must be declared logical in a type statement.

The output variable I is a logical success indicator; TRUE indicates that a light

pen or pushbutton hit has occurred, and FALSE indicates no 1ight pen hit has

occurred. It should be emphasized that if I is FALSE, IX, IY, NAMR, and PB

have no meaning.

The variable IX is the horizontal coordinate at end of the vector that caused

a light pen hit. IY is the vertical coordinate at end of vector which caused

a light pen hit. The variable NAMR will contain the value of the name register

at the time of the light pen hit. PB should be defined in the calling program

as a six-element array. Each element will contain either the logical TRUE or

FALSE corresponding to ON or OFF for each of the six pushbuttons. IWICH will

be either of two values; IWICH=l if a light pen hit has occurred, or IWICH=2 if

a pushbutton hit has occurred.

4-1

LTORPB issues a .READ on light pen or pushbutton interrupt to the display

device handler. It returns if no interrupt was posted. Otherwise; it reads

appropriate display registers and returns with appropriate output variables.

The following statement illustrates use of LTORPB as a switch in a FORTRAN

IF statement:

IF(LTORPB (LPX,LPY 1 NAME 1 PB,IWICH) GOTO l~~

In the above statement, if a hit has occurred (LTORPB is TRUE) LPX and LPY

contain the x and Y coordinates of the end of the vector that was hit. Also,

the contents of the name register is set, the status of the push buttons is

stored in the push button array, and the variable IWICH is set to indicate

whether the hit was due to a pushed button or to the light pen. Then, program

execution is transferred to statement l~~.

NOTE: Each interrupt from either light pen or push buttons requires at least

a PAIR of LTORPB's to be issued. The first LTORPB acts as an initialization,

telling VTA that interrupts are to be accepted. This first LTORPB can only

return a FALSE value. Interrupts that may have occurred prior to the first

LTORPB have been ignored. The first LTORPB that occurs AFTER an interrupt(s)

returns the light pen and push button conditions at the time of the last

interrupt, and notifies VTA to ignore further interrupts. This brings us

back to the initial condition.

The general intent of the LTORPB function is wait until something happens. For

some types of programs, the user might rather have the push buttons act as dynamic

switches to an executing display program. In this case it is probably simpler to
make up a MACRO subroutine that reads the buttons, disregarding interrupts altogether.

4.2 TRACK SUBROUTINE

The TRACK subroutine is used for light pen tracking and drawing. Tracking allows

the scope user to return an X-Y co-ordinate pair to the program. A tracking

symbol is displayed at a location specified by the program. (The tracking symbol

is an octagon with a point in its center.) The scope user then positions the

tracking symbol with the light pen. A hit on any push button terminates tracking,

and returns to the program the co-ordinates of the central point of the tracking

symbol (as basic vectors) as well as the end point. The form of the call is as

follows:

CALL TRACK(IX,IY,IOPT,IARRAY[,ISIZE])

IX and IY are positive integer variables (0-1023 defining the initial position of

the tracking symbol. The final position of the tracking symbol is returned in

these same variables. IOPT is a positive integer (~-6) restricting the axes

(see Table 4.1) along which the tracking symbol may move. An IOPT value of zero

4-2

means no restriction. !ARRAY is zero to indicate that tracking is to occur.

!ARRAY, for drawing, is the address of the array, empty before drawing, to

contain the vectors describing the patch of the tracking symbol. In DOS
V3A systems, !SIZE, the integer size of the array !ARRAY, must be specified
for the draw option. During drawing, the path appears on the screen; after

drawing, the path subpicture file is disconnected from the main file. It

remains as an ordinary subpicture file. Note that d~awing may easily insert

100 vectors per second into the path subpicture file. When the path file
is full, drawing terminates. For tracking, !SIZE may not be provided.

Examples of the use of these arguments can be found in the following sample

program that calls TRACK.

C THE FOLLOWING FORTRAN PROGRAM USES THE TRACKING ROUTINE
C TO DETERMINE THE DISTANCE BETWEEN (100,400), THE INITIAL
C POSITION Or THE TRACKING PATTERN AND ANY POINT ON A LINE
C OF SLOPE 20, DRAWN FROM A SET POINT AT X=750 Y=250
c

c

DIMENSION MFC150),IUSERC200)
MFCl):0
I OPT:3
IX1=l00
IY1:400

C INITIALIZE THE DISPLAY
C CALL SET POINT TO POSITION BEAM
C DRAW LINE FROM SET POINT
C CALL TRACKING ROUTINE
c

c

CALL DirUTCMFCl))
CALL SETPTC750,250)
CALL PLOTCl,25,500,1)
IX2=Ix1·
I Y2: lYl
CALL TRACKCIX1,IY1,IOPT,IUSER>

C GET CHANGE IN X VALUE
C GET CHANGE IN Y VALUE
C CALCULATE DISTANCE BETWEEN POINTS
c

IDELX= IX!- IX2
IDELY= IY1-IY2
IDELAB:SQRTCCIDELX**2)+CIDELY**2))
STOP
ElllD

Figure 4-1. Sample TRACK Program (FORTRAN Example)

4-3

Table 4.1 Description of CALL TRACK Arguments

Example:

CALL TRACK (IX,IY,IOPT,IARRAY)

INPUT VARIABLES:

IX Initial Absolute X-Position of Tracking Point (,0-1,02 3)

IY Initial Absolute Y-Position of Tracking Point (,0-1,023)

IOPT Tracking Direction Option (,0-6)

OPTION ALLOWARLE TRACKING
DIRECTIONS

,0 ALL AXIS DIRECTIONS

1 +X -x
2 +Y -Y

3 +x +Y -Y

4 +X -x +Y

5 -x +Y -Y

6 +X -x -Y

IARRAY - Tracking Draw Option

USER DRAW OPTION DESIRED
DIMENSIONED Intensified Vectors Following the Lightj ARRAY Pen Movement Are Stored in This Array

and are Displayed.

,0 DRAW OPTION NOT DESIRED

OUTPUT VARIABLES

IX - Final Absolute x - Position of Tracking Point (,0-1,023)

IY - Final Absolute y - Position of Tracking Point (,0-1,023)

4-4

When TRACK is called, the X and Y input arguments are inserted into the track

display file. The track display file is then linked to the main file by insert

ing into main file a DJMS* to a second location in the main file; into which

has been inserted the address of the track display file. The direction option is

then used to increment down a dispatch table which in turn sets up a second

table so only light pen hits on certain sides of the tracking octagon are valid.

The draw option is tested for, and if desired, the user's vector storage array

is set up and linked to the track display file in the same manner that it was

linked to the main file. Track then issues a .READ on Light Pen or Pushbutton

interrupt, to the display device handler. If a light pen hit on a valid side

of the octagon occurs, the tracking octagon is moved two raster units in the

appropriate direction. If the draw option was specified, track adds a two raster

unit vector to the user's vector storage array or increases the length of the last

vector in the array if the hit was on the same side of the octagon as the previous

hit. If a pushbutton interrupt occurs, TRACK removes all the created links and

restores the main file to its previous form. The final X and Y coordinates of

the tracking point are returned and control is released to the calling program.

The macro calling sequence to track is as follows:

.GLOBL
JMS*
JMP
.DSA
.DSA
.DSA
.DSA

TRACK
TRACK
.+5
IX
IY
IOPT
I ARRAY

Internal Structures Created by Track:

Main File Link to Track:

MF TOP LENGTH
.+l
DJMS* .+2
SKP
ADDRESS

DJMS*
DJMP*
TRCK

.+2
MFTOP+l

/Link to track display file
/Jump to top of MAIN FILE
/Address of Track display file

Note: Track requires two temporary locations in the user's main
file. A main file must be running when track is called.

4-5

Vector Array for Draw Option:

ARTOP LENGTH
~
PX
PY
VI
VI

.
DJMP* ARTOP+l

/File length
/Return address
/X set point
/Y set point
/Intensified vectors

/Display Jump to calling file

Note: The x and Y set points must be set by the user if he desires

to relocate his array of intensified vectors, when recalling

it.

(See MACRO 15 TRACK program page 4-7).

NOTE

Track uses name registers 120-127
decimal.

4-6

I THE FOLLOWING MACRO 15 PROGRAM USES THE TRACKING ROUTINE
I TO LOCATE OR POSITION A SET POINT ON THE DISPLAY SCREEN.
I THE POSITIONED SET POINT IS THEN USED TO DRAW A FIGURE.
I

• GLOBL DIN IT
SAMP2 JMS* DI NIT /INITIALIZE THE DISPLAY

JMP .+2
• DSA MAI NBF

CHK0 LAC (45'1.1 /SET INITIAL POSITION OF TRACKING PATTEN
DAC IXI
DAG IYl
• GLOBL TRACK

CHKI JMS* TRACK /CALL TO TRACKING ROUTINE
JMP .+5
• DSA I Xl IX-POSITION
.DSA IYl /Y-POSITION
• DSA CNST4 /DIRECTION OPTION
.DSA CNST4 /DRAW OPTION
• GLOBL SETPT

CHK2 JMS* SET PT /CALL TO SET POINT ROUT I ~~E
JMP .+3
• DSA IXl IX-POSITION.RETURNED FROM TRACKING
.DSA IYl /Y-POSITION RETURNED FROM TRACK! NG
• GLOBL PLOT

CHK3 JMS* PLOT /CALL TO PLOT ROUTINE
JMP .+5
.DSA CNST0 /ARG. TO PLOT A LINE
• DSA CNSTl /DELTA X
.DSA CNSTl /DELTA Y
.DSA CNST0 /INTENSIFY THE LINE

CHK4 JMS* PLOT
JMP .+5
.DSA CNSTl1J
• DSA CNSTl
• DSA CNST2
.DSA CNSTllJ

CHK5 JMS* PLOT
JMP .+5
• DSA C NSTllJ
• DSA CNST3
• DSA CNST4
0 DSA CNSTeJ
HLT

MAINBF' .BLOCK 50 /DISPLAY MAIN F'ILE BUFFER
IX! 0
IYl 0
CNST0 1
CNSTl 25
CNST2 -25
CNST3 -50
CNST4 Ill

• END

Figure 4-2. Saittple TRACK Program (MACRO 15 Example)

4-7

CHAPTER 5

RELOCATING ROUTINES

The subroutines DYSET and DYLINK are used to allow display main or subpicture

files, which refer to each other (via COPY or PLOT (~ ••••)), to be output and

input to some external medium relocatably. This includes arrays of 5/7 ASCII

that are referred to via TEXT or PLOT(3 ••••). Prior to outputting, interdepen-

dent display files and their user-assigned ASCII names are listed as arguments

in a call to DYSET, which converts each subpicture call to the ASCII name of the

subpicture being called. After input, and prior to displaying, a corresponding

call is made to DYLINK, which uses the listed ASCII names to reinstate the

appropriate subpicture calls or text references. A display file cannot be displayed

after having been processed by DYSET; DYLINK must be used to return it to display

able form.

WARNING! DYSET and DYLINK do not function properly if any of the referenced dis

play files are above 24K.

5.1 DYSET SUBROUTINE

The DYSET subroutine converts subpicture calls or text references to a symbolic

form independent of core memory location, using specified ASCII strings. The

forms are,

or

CALL DYSET (PNAMEl,ASCIIl, .•. ,PNAMEN,ASCIIN)

CALL DYSET (PNAMEl,ASCIIl, ... ,PNAMEK,ASCIIK,~,PNAMEL,ASCIIL, .•.
,PNAMEN,ASCIIN)

The variable PNAMEs are the first locations of the interdependent display files,

both calling and called. If a ~ argument appears in the argument string, subse

quent PNAMEs refer to arrays of 5/7 ASCII text. (These files will not be

searched for memory references.) The ASCIIs are the names of real arrays contain

ing nine characters of 5/7 IOPS ASCII, which may be used for filenames on output.

Subroutine DYSET searches each listed display file (PNAME) for a DJMS or CHARS

instruction. When it finds one, it appends the ASCII name of the file referenced

to the file being searched, if that name is not already there. The operand of

the DJMS is made a relative pointer to the ASCII name of the referenced file.

The first location of the file being searched is increased by four each time an

ASCII name is appended to the file.

5-1

Certain restrictions must be noted; space provided for a display file must

include four locations for each subpicture or text array that is called.

Display commands must not be added to a display file nor can a file be

displayed once it has been processed by DYSET, or until after it has been

processed by DYLINK. (Thus DYSET must be called after DCLOSE for a main

display file.) Also, it is the user's responsibility to list all relevant

display files when calling DYSET. The subroutine does not check the list

for completeness in order to allow multiple calls to it. Once a zero appears

in the argument string, all subsequent PNAMES must refer to arrays of 5/7

ASCII text.

5.2 DYLINK SUBROUTINE

The DYLINK subroutine converts file namee to appropriate DJMS or CHARS instruc

tion references to the corresponding files. The forms are:

or

CALL DYLINK(PNAMEl,ASCIIl, •.. ,PNAMEN,ASCIIN)

CALL DYLINK(PNAMEl,ASCIIl, .•. ,PNAMEK,ASCIIK,~,PNAMEL,
ASCIIL, .•. ,PNAMEN,ASCIIN)

where the input variables are the same as for DYSET. DYLINK searches each

listed display file for a DJMS or CHARS instruction. When it finds one, it

searches the argument list for a pointer to an ASCII string equal to the one

pointed at by the operand of the DJMS or CHARS instruction. This operand is

replaced by the address of the corresponding file, obtained from the argument
list. The first location of each display file that is searched is reduced to

the actual number of display commands in the file (excluding the ASCII blocks).

It is the user's responsibility to list all relevant display files when calling

DYLINK. The subroutine does not check the argument list for completeness, to

allow multiple calls. Once a zero appears in the argument string, all subsequent

PNAMEs must refer to arrays of 5/7 ASCII text. See Figure 5-1 for DYSET/DYLINK

Program.

5-2

c
C ARRAY INITALIZATION
c

c

DIMENSION NWPICf21(4fiD, NWPIC1C2121), NWPIC2(2121)
DIMENSION RTXTAC2), RTXTBC2)
DIMENSION IMAINC4f21>, IPICAC2f21), IPICB(2f21)
DIMENSION TEXTAC2), TEXTBC2) .
DIMENSION TITL1(2), TITL2C2), TITL3C2>, TITL4C2), TITL5(2)
DATA TITLlCl), TITL1C2)/5HJPIC121, 4H BINI,
2TITL2Cl>, TITL2C2)/5HJPICA, 4H BIN/,
3TITL3Cl>, TITL3C2)/5HJPICB, 4H BINI,
4TITL4<1>, TITL4C2)/5HCHRSA, 4H BINI,
5TITL5(1), TITL5(2)/5HCHRSB, 4H BIN/
DATA TEXTACl), TEXTAC2)/5HI AM ,4HBOXA/,
lTEXTBCl>, TEXTBC2)/5HI AM , 4HBOXB/

C INITIALIZE DISPLAY FILES.
c

c

I MAI NC l) =121
IPICAC 1):0
IPICBC 1):121

C BUILD BOXB CIPICB)
c

c
c
c

c

CALL TEXT CTEXTBCl),9, IPICBCl))
CALL LINE C Hl0, 121, 1 >
CALL LINE rn,H"21,1>
CALL LINE (-1f21f21,121, 1)
CALL LINE rn ,-1121121, D

BUILD BOXA C IPI CA>

CALL LINE C312lf21,f21,l,IPICAC1))
CALL LINE Cf21,300,l)
CALL LINE C-3121121,121,1)
CALL LINE Cf21,-3f210,l)
CALL LINE (3121,30,121)
CALL COPY Cf21,IPICBC1))

C BUILD MAIN CIMAIN)
c

c
c

CALL DINIT CIMAIN<l>>
CALL PLOT C2,19,f21 1 4,f21)
CALL SETPT (2121,20)
CALL PLOT C3,TEXTAC1>,~)
CALL PLOT C0,1,IPICAC1>>
CALL SETPT C534,20)
CALL PLOT C3,TEXTACI>,9>
CALL PLOT C0,0,IPICAC1))

C DCLOSE, CALL DYSET, AND OUTPUT TO DECTAPE COAT 5)
c
c

CALL DCLOSE
CALL DYSET C IMAI NC 1), TITLl, !PICA< 1), TITL2, IP ICBC l), TITL3 ,0,
1 TEXTAC I>, TITL4, TEXTBC D, TITL5>
CALL ENTER CS,TITLl)
J:IMAINClHl
WRITE {5) CIMAINCI>, I=l,J)
CALL CLOSE CS,TITLl)

Figure 5-1. DYSET/DYLINK Program Example

5-3

c
c

c
c

c
c

c

CALL ENTER C5,TITL2)
J:IPI CA(1H1
WRITE (5) CIPICACD, I:l,J)
CALL CLOSE C5,TITL2>

CALL ENTER C5,TITL3)
J:IPICBC lHl
WRITE (5) CI PI CBC I>, I: 1,J)
CALL CLOSE C5,TITL3)

CALL ENTER C5,TITL4)
WRITE (5) CTEXTA)
CALL CLOSE C5,TITL4)

CALL ENTER C5,TITL5)
WRITE CS) CTEXTB)
CALL CLOSE C5,TITL5)
PAUSE 222

C INPUT FROM DECTAPE, CALL DYLINK AND DINIT
c

c
c

c
c

c
c

c
c

c
c

CALL SEEK C5,TITL1)
R EA D C 5) J, C NW PI C121 C I+ I> , I: 1 , J)
NWPIC121(l):J
CALL CLOSE C5,TITL1)

CALL SEEK C5,TITL2)
READ (5) J, CNWPIClCI+D, I:l,J)
NWPIClCl):J
CALL CLOSE C5,TITL2)

CALL SEEK C5,TITL3)
READ C5) J, OJWPIC2CI+1', I=t,J>
NWPIC2Cl):J
CALL CLOSE C5,TITL3)

CALL SEEK C5,TITL4)
READ CS) RTXTA
CALL CLOSE C5,TITL4)

CALL SEEK C5,TITL5)
READ C5) RTXTB
CALL CLOSE C5,TITL5>

CALL DYLINK CNWPIC0Cl>,TITL1,NWPIC1Cl>,TITL2,NWPIC2Cl>,TITL3,121,
1RTXTAC1),TITL4,RTXTBC1),TITL5)
CALL DINI! CNWPIC0Cl))
STOP
END

5-4

CHAPTER 6

SYSTEM I/O DEVICE HANDLER

The VT15 Graphic Display Device Handler provides an interface between the user

and the hardware. In general, it conforms to the conventions of the Keyboard

Monitor System, as described in DEC manual Monitors, ADVANCED Software System.

Input or output functions are initiated by standard user program commands and

all display interrupt management is done automatically by the handler, The

primary goals of the device handler are to relieve the user from writing his own

device handling subprograms and to centralize all direct communication between

the PDP-15 and the display processor. To start up a display, the user generates

a display file consisting of display commands then calls the device handler to

start it running. To interact with it, the device handler is used to read

display controller registers and to dispatch on appropriate interrupts.

6.1 .INIT (INITIALIZE) MACRO

The macro .INIT causes the display to be initialized and must be given before

any other I/O macro to the display is issued. The display is initialized

according to four words of standard settings contained in the handler. The

user may substitute his own settings for any of these.

The Device Handler is connected to the Monitor Interrupt system (PIC or API)

in the same manner as other system device handlers.

The form is:

.INIT A, F 1 R

A Device Assignment Table (.DAT) slot number

F initialization flag

~ use standard display initialization
1 user's initialization is pointed to by R

R = optional pointer to user's initialization settings

If F = 1, R points to a word containing initial settings.

If F = ~ and R = 1, clearing the READ BUSY switch is the only action
taken by the handler.

The expansion is:

LOC
LOC+l
LOC+2

CAL+ F(7-8) + A(9-17)
1
R

6-1

The normal settings are: :

a. Set display status to

1. DISABLE edge flag interrupts

2. ENABLE light pen interrupts

3. ENABLE pushbutton interrupts

4. DISABLE external stop interrupts
5. ENABLE full 12 Bit X and Y beam position registers

6. ENABLE internal stop interrupts

b. Connect handler to PIC or API

c. Clear READ BUSY switch

Initialization IDT

SIC {7¢3¢24) Set Initial Conditions - SIC sets up a number of status registers

in the display. The instruction enables five display flags onto the Interrupt

Lipe. The IDT is issued with settings loaded in the AC in the following format:

Io I 1 12 I 3 T 4 Is I 6 I 1IaI9110T11112113T14T1sT16I11] 3 -;;, 'i' 'I- 1' -1' I~ -1\ I~ 1- ~ ~ 7
P FLAG INTR .). STO

LP

EDG

PB

EXT

CLR
CLR

CLR

CLR

CLR

PAC

PAO

PAL

NOT

FLAG INTR

E FLAG INTR

HIT INTR

STOP INTR

STOP FLAG
LP FLAG

EDGE FLAG

PB FLAG

EXT STOP

HANGE EN

USED

ff1 Sets the Stop Flag Interrupt Enable Flop
1 Sets the LP Flag Interrupt Enable Flop
2 Sets Edge Flag Interrupt Enable Flop
3 Sets PB Hit Interrupt Enable Flop
4 Sets External Stop Interrupt Enable Flop
5 Clears Stop Flag
6 Clears LP Flag
7 Clears Edge Flag
8 Clears PB Flag
9 Clears External Stop Flag

10 Allow a Change in Virtual Paper Size
11 New Virtual Paper Size
12 New Virtual Paper Size

6-2

Bits 11 & 12 (NeW paper Size)
~~ = 9.5 inch (l~ bits)

1~24 raster units

ffJl 19 inch
2fl148 raster units

lffJ 28.4 inch
3fiJ72 raster units

11 38 inch (12 bits)
4_0'96 raster units

6.2 .READ MACRO

The .READ macro is used for input to the user program from the hardware registers

of the display controller. The user may select standard groups of registers to

be read, in response to each possible display interrupt flag, or he may indicate

his own group of flags and registers. This is done with an optional descriptive

word following the .READ macro, the first five bits of that word indicate which

interrupts are of interest and the next nine indicate the registers to read if

any of those interrupts are set.

The form is,

.READ A, M, L, W
NSTD

where NSTD = optional word describing non-s~andard groups.

The variables A= .DAT slot number, M = type of read:

JZ READ,PB,XP,YP,Sl,S2 Read now, no interrupts

1 READ,PB,XP,YP,DPC,Sl,S2,NR If stop flag interupt flag is set

2 READ,PB,XP,YP,DPC,Sl,S2,NR If pushbutton interrupt flag is set

3 READ,PB,XP,YP,DPC,Sl,S2,NR If light pen interrupt flag is set

4 READ,PB,XP,YP,DPC,Sl,S2,NR If edge flag interrupt flag is set

5 READ,PB,XP,YP,DPC,Sl,S2,NR If external stop interrupt flag is

7 NSTD specifies registers and interrupt flags as follows:

Bit JZ on service internal stop interrupt
Bit 1 on service pushbutton interrupt
Bit 2 on service light pen interrupt
Bit 3 on service edge flag interrupt
Bit 4 on service external stop interrupt
Bit 5 on read pushbuttons (PB)
Bit 6 on READ X position register (XP)
Bit 7 on READ Y position register (YP)
Bit 8 on READ DISPLAY program counter (DPC)
Bit 9 on READ STATUS one (Sl)
Bit 10 on READ STATUS TWO (S2)
Bit 11 on READ NAME REGISTER (NR)
Bit 12 on READ SLAVE GROUP 1 (SGl)
Bit 13 on READ SLAVE GROUP 2 (SG2)

set

L = return buffer address, C(l) = descriptive word showing what this interrupt

was and which registers were read in the order listed above. C(L+l) = contents

of first register actually read, C(L+2) = contents of second register read, etc.
W = 1 (W must equal l) .

6-3

The expansion is:

LOC
LOC+l
LOC+2
LOC+3
LOC+4

CAL + M(6-8) + A(9-17)
l~
L
-W /DECIMAL
NSTD

.READ determines interrupts to be serviced and turns on read busy flag.

6.3 .WRITE MACRO

The .WRITE macro is used to transmit information from the user program to the

display controller, once a display file has been generated. Its location is

passed on to the display controller by a call to .WRITE, and the display

starts up .

• WRITE is also used to stop the display, by issuing an external stop, and to

start the display if it has been stopped. A .WRITE to the display is done

immediately and requires no waiting.

The form is,

.WRITE A, M, L, W

A .DAT slot number

M type of write,

where ~ = restart display (L not required)
1 = resume display after internal stop
Note: The display is automatically resumed after

LP or EDGE violation interrupt.
2 = stop display (external stop)
4 = start display pointed to by L

L display file starting address

W not used

The expansion is:

LOC
LOC+l
LOC+2

LOC+3·

6.4 .WAIT MACRO

CAL + M(6-8) + A(9-17)
11
L
.DEC
-W /DECIMAL

The .WAIT macro is used to synchronize the user program with the interrupt

activity of the display. .WAIT is only defined with respect to .READ. If a

.WAIT is given, the user program waits until the previous .READ has completed,

6-4

that is, the interrupt has occurred. If the previous .READ specified more than

one kind of interrupt flag, the descriptive word(s) in the input buffer can be

interrogated to determine what flags were set.

play activity.

The form is,

.WAIT A

The variable A

The expansion is,

LOC
LOC+l

.DAT slot number.

CAL + A(9-17)
12

.WAIT does not initiate any dis-

.WAIT allows a previous .READ to be completed and turns off input busy flag.

6.5 .WAITR MACRO

The .WAITR macro allows the user program to proceed in line if the previous

.READ is complete. If the previous .READ is not complete, control is given

to the location in the user program specified by the .WAITR call. This allows

the user to branch to some other part of his program while waiting for the

.READ to finish. The user must continue to check for completion by periodically

issuing .WAITRs or by issuing a .WAIT.

The form is,

.WAITR A, ADDR

The variables A = .DAT slot number, and ADOR

to branch to if input is not completed.

The expansion is,

LOC
LOC+l
LOC+2

6.6 .CLOSE MACRO

CAL+l~~~ + A(9-17)
12
ADDR

location in the user program

The .CLOSE macro is used to terminate the current display. External STOP

and CLEAR flags IOTs are issued. It is up to the user to save the display file

if desired.

6-5

The form is .CLOSE A where A = .DAT slot number.

The expansion is,

LOC
LOC+l

6.7 .FSTAT MACRO

CAL + A(9-l7)
6

The .FSTAT macro checks the status of a file specified by the file entry block.

On return, the AC will contain zero and bits ~-2 of LOC+2 will also be zero,

stating that the device was non-file oriented.

The form is,

.FSTAT A, D

where the variables A = .DAT slot number, and D = starting address of three

word block of storage in user area containing the file. name and extension of

the file name whose presence on the device associated with .DAT slot A is to

be examined.

The expansion is,

LOC
LOC+l
LOC+2

CAL+3~~~ + A(9-17)
2
D

6.8 IGNORED FUNCTIONS

The following system I/O macros are ignored by the VT15 display device handler:

1. .DLETE

2. .RENAM

3. .ENTER

4. .CLEAR

5. .MTAPE

6. .SEEK

7. .TRAN

6-6

CHAPTER 7

LK35 KEYBOARD HANDLER

The LK35 Keyboard device handler (LKA) provides an interface between the user and

the hardware. In general, the handler, LKA, conforms to the conventions of the

DOS and ADSS monitor software systems. Since the LK35 is a send-only device,

the LKA handler provides only input functions. Input functions are initiated by

standard user program commands; all interrupt management is done automatically

by LKA.

The LKA handler relieves the user of the task of writing his own device handling

subprograms and centralizes all direct communications between the PDP-15 computer

and the LK35 Keyboard. This handler only inputs IOPS ASCII or IMAGE ASCII

data into a user-designated buffer; i~ is up to the user to develop the display

of any input text on the VT04 display CRT or output it to any other device.

The LK35 Keyboard is connected to either an LTlS or LT19D controller.

The LKA handler is a resident program, it resides with the Keyboard Monitor and

other required device handlers. It does not require EAE and it operates with

both PI and API.

7.1 .INIT (Initialize) MACRO

This macro initializes the LK35 Keyboard; it must be called before any other

I/O macro is issued to this device.

When .INIT is issued it initializes the LKA handler, which returns the size of

the current line buffer (34 10 standard) to the macro.

If .INIT is issued during a .READ, it will abort this operation.

The form of this macro is:

where:

.INIT a,f,r

a .DAT slot number

f ignored by LKA

r control p address

7-1

The expansion of this macro is

LOC+l
LOC+2
LOC+3

1
r
n (standard buffer size 3410)

7.2 .READ MACRO

This macro performs the operations required to input data from the LK35 Keyboard

and transfer it to the memory input line buffer. In performing this function,

the .READ macro:

a) allows any previous input operation to terminate,

b) sets the "input underway" indicator,

c) accepts and performs the operations indicated by:

1) RUBOUT - delete previously entered (typed) character,

2) CTRL U (t U) - delete all entries made prior to t U.

d) recognizes IOPS ASCII string terminators ALT MODE and RETURN
(carriage return) •

e) is terminated, during IMAGE ASCII read operations when the
given line buffer word count (see form) is reached.

The form of the .READ macro is:

where:

.READ a,M,L,W

a .DAT slot number

M Data Mode

2 = IOPS ASCII
3 = IMAGE ASCII

L Line buffer address

W Line buffer word count (including 2-word header pair)

The expansions of this macro are:

LOC
LOC+l
LOC+2
LOC+3

CAL+M6-B+a9-17
10
L
-w

7-2

7.3 .WAIT MACRO

The .WAIT macro is used to detect the availability of the user's line buffer for

data transfer operations. If the buffer is unavailable when tested, control

remains with the macro; if the buffer is available, control is returned to the

user.

The form of this macro is:

.WAIT ~

where ~ represents a .DAT slot number

The expansion of the macro is:

LOC
LOC+l

7.4 .WAITR Macro

CAL+a9-17
12

This macro enables the user to test the status of a previously initiated .READ

operation. If the .READ operation is complete the user's program is permitted

to proceed in line; if the .READ operation is not complete control is given to

a user-specified location expressed in the .WAITR macro call. The latter fea

ture permits the user to branch to some other part of his program while wait

ing for the completion of the .READ operation.

The form of this macro is:

.WAITR a,ADDR

where:

.DAT slot number a
ADDR location to branch to if .READ operation is incomplete.

·The expansion of this macro is:

LOC
LOC+l
LOC+2

CAL+l000+A9 _17
12
ADDR

7-3

7.5 .CLOSE MACRO

The LKA handler regards the .CLOSE macro as being the same as the .WAIT macro

(see 7. 3).

The form of this macro is:

.CLOSE a

where !!. .DAT slot number.

The expansion of this macro is:

LOC
LOC+l

7.6 .FSTAT Macro

CAL+a9-17
6

If used, this macro will return a zero to the AC since the LK35 is a non

directoried device. The form of this macro is.:

.FSTAT a,D

where:

a .DAT slot number

D ignored by LKA.

The expansion of .FSTAT is:

LOC
LOC+l
LOC+2

CAL+3000+a9_17
2
D

7.7 IGNORED FUNCTION

The .SEEK macro is ignored by the LKA handler.

7-4

7.8 ILLEGAL FUNCTIONS

The following macros are illegal with regard to the LKA handler •

. WRITE

.DLETE

.RENAM

.ENTER

.CLEAR

.MTAPE

.TRAN

7.9 LEGAL CONTROL CHARACTERS

The following keyboard control entries are recognized by LKA:

ENTRY OPERATION

1) CTRL c (t C) Performs on .EXIT to the
2) CTRL p (tP) Transfers control to the

given in the .INIT cal.

Monitor.

address

3) CTRL D (t D) Gives an End-of-Medium header word
pair to the user.

7-5

CHAPTER 8

VWOl Writing Tablet Handler

The VWOl Sonic Digitizer Writing Tablet converts graphical information, in the

form of x- and Y-coordinates, to digital data that can be input to a digital

computer.- The major components of the VWOl, are the writing tablet, spark pen,

component box, and computer interface logic.

The user places a sheet of paper on the writing tablet and draws sketches,

schematics, and hand-written symbols or characters using the special ball-point

spark pen. The sound of the spark emitted by the pen is picked up by microphones

located along the X- and Y-axes of the writing tablet. The time lapse, from

spark emission until the sound is picked up by each bank of microphones, is ac

curately measured to provide a digital record of the x- and Y-coordinates of

the spark pen location on the paper.

The digitized graphic data is input to a digital computer via the VWA handler

for immediate or delayed processing.

The VWOl operates in either of two modes: Single Point or Data Input.

In the Single Point mode of operation, a single spark is generated each time the

spark pen is pressed against the writing surface. The spark is initiated by the

closure of a microswitch within the spark pen. The Single Point mode is used

if the operator desires to plot points. For example, to plot points at four

different locations·, he positions the pen point at each location. Then, by

pressing and releasing the pen at each position, the corresponding X-Y coordi

nate pairs are sense·d and digitized.

In the Data Input mode, a continuous series of sparks are generated at a constant

rate, under control of clock pulses. The X-Y coordinate pairs are continuously

generated and input to the computer. This mode allows the user to draw continu

ous lines, circles, curves, etc., that can be displayed on the CRT.

At the time a spark is generated, x- and Y- clock pulses are initiated which

increment X- and Y- hardware registers until the sound of the spark is received

by the X- and Y-microphones. As soon as a microphone detects the sound, the

associated x- or Y-clock pulses are inhibited, and the register stops increment

ing. The binary numbers contained in the x- and Y-registers will then be

directly proportional to the x- and Y- coordinates of the position at which the

spark was emitted.

8-1

The VWA device handler for the VWOl Sonic Digitizer Writing Tablet provides an

interface between the user and the hardware. In general, it conforms to the

conventions of the Keyboard Monitor System in either the ADSS or DOS software

in DEC manual ADVANCED Monitor Software system. Initialize and input functions

are initiated by standard user program commands (system macros). The device

handler relieves the user from writing his own device handling subprograms

The Writing Tablet handler makes no tests on incoming X- and Y-coordinates. All

coordinates are handled directly back to the user. This means that if the pen

stays on the same spot (Data Input mode) or is pushed on at the same spot more

than once (Single Point mode) the same X- and Y-coordinates are handled to the

user. Repetitive x- and Y-coordinates should not be sent directly to the VT

handler since they could cause a hole to be burned on the display-screen. For

this reason it is the user's responsibility to ignore X- and Y-coordinates

which are generated on one and the same spot. The number of times the same co

ordinates could be accepted also depends on the intensity.

B.l .INIT (INITIALIZE) MACRO

The macro .INIT causes the Writing Tablet to be initialized and must be given

prior to any other I/O command referencing this device.

The .INIT macro clears one software and two hardware flags. These flags are:

1) Handler Busy flag

2) Data Ready flag

3) Pen Data flag

The form is:

.INIT A,F,R,n

where:

/Software

/Hardware

/Hardware

A Device Assignment Table (.DAT) slot number

F Not used

R Not used

n Not used

The expansion is:

LOC
LOC+l
LOC+2
LOC+3

CAL+F(7-2)+A(9-17)
l
R
n

/Function code for .INIT

8-2

8.2 .READ MACRO

The .READ macro is used for input point data to the user from the Writing

Tablet. The input always consists of one status word and two words con

taining the X- and Y-point coordinates.

The status word has the following format:

0 l 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Input .DAT flag Writing Tablet Identifier Bits

where: means:

Bit 0 = 0 Input from "DATA READY"
= 1 Input from "PEN DATA"

Bit 14=1 Input from Writing Tablet 1

Bit 15=1 Input from Writing Tablet 2

16=1 Input from Writing Tablet 3

17=1 Input from Writing Tablet 4

The form is:

where:

.READ A,M,L,W

A Device Assignment Table (.DAT) Slot Number

M Data Mode:

0 = Single Point

1 Single Point multiplexed

2 Data Input (not scan!)

3 Data Input multiplexed (scan!)

L Line buffer address

Points to a three word data buffer

W Writing tablet to be selected (1-4)

The expansion is:

LOC
LOC+l
LOC+2
LOC+3

CAL+M(6-8)+A(9-17)
10
L
w

/Function code for .READ

8-3

8.3 .WAIT MACRO

The .WAIT macro is used only with respect to the .READ macro. If a .WAIT is

given the user program waits until the .READ has completed, that is, when the

line buffer is filled and is again available for the user program. If the line

buffer is available, control is returned to the user immediately after the .WAIT

macro expansion (LOC+2). If the input of data has not yet been completed,

control is returned to the .WAIT macro.

The form is:

.WAIT A

where: A Device Assignment Table (.DAT) slot number

The expansion is:

LOC
LOC+l

8. 4 ~,WAITR MACRO

CAL+A (9-17)
12 /Function Code for .WAIT

The .WAITR macro is also used only with respect to the .READ. If the previous

.READ is done, control is returned to the user immediately after the .WAIT in

order to proceed in line. If the input of data has not yet been completed,

however, control is given to a location in the user program specified in the
.WAITR call.

The form is:

where:

.WAITR A,ADDR

A= Device Assignment Table (.DAT) slot number

ADDR = Location in the user program to which control must
be transferred if input is not completed.

The expansion is:

LOC
LOC+l
LOC+2

CAL+l000 8+A(9-17)
12
ADDR

/Function code for .WAITR

8-4

8.5 .FSTAT MACRO

The .FSTAT macro checks the status of a file specified by the file entry block.

On return the AC will contain zero and bits 0-2 of LOC+2 will also be zero,

stating that the device was non-directoried,

The form is:

.FSTAT A,D

where:

A Device Assignment Table (.DAT) slot number

D Address of a three word block of storage (directory entry
block) in user area containing the file name and the ex
tension of the file whose presence is to be examined.

The expansion is:

LOC
LOC+l
LOC+2

CAL+3000 8+A(9-17)
2
D

8.6 .CLOSE MACRO

/Function code for .FSTAT

Once input has been initiated (.INIT and .READ) it must be terminated by the

.CLOSE macro. The hardware flags (Data Ready and Pen Data) are cleared and the

Writing Tablet(s) is disabled in order to prevent illegal interrupts.

The form is:

.CLOSE A

where: A Device Assignment Table (.DAT) slot number

The expansion is:

LOC CAL+A(9-17)
LOC+l 6 /Function code for .CLOSE

8-5

8.7 IGNORED FUNCTIONS

The following macros are ignored by the VWA device handler:

1) .SEEK

2} .ENTER

3) .CLEAR

4) .MTAPE

5) .WRITE

6} .TRAN

7) .DLETE

8) .RENAM

8-6

CHAPTER 9

TEXT DISPLAY/EDIT FUNCTIONS

The VT15 GRAPHICS software provides the user with a complete text editing program,

EDITVT, and a soft copy display feature, CONTROL X.

The EDITVT program has the same command and editing structure as the standard

Editor (i.e., EDIT, refer to DEC-15-YWZB-DN) except that the majority of the

text pre~entation takes place on the VT04 display CRT. The Control X (CTRL X)

feature enables the user to, essentially, replace the console printer with the

display CRT when desired.

9.1 EDITVT

Systems which have a VT15 Graphics Display unit permit the user to employ program

EDITVT for editing purposes. Program EDITVT enables the user to perform soft

copy editing of files using the VT15 display as a file data display device.

Data is displayed in sets of either 56, 72-character lines or 28, 72-character

lines. The EDITVT commands and the editing functions performed are essentially

the same as those of the standard Editor program (EDIT, refer to DEC-15-YWZB-DN6).

9.1.1 Setup Commands

The following commands must be issued to the monitor prior to loading EDITVT:

a) $ VT ON

b) $ HALF ON/OFF

c) $ tx

Enables the VT display unit.

This command is optional; it enables the
user to set up a half-screen display
(i.e., 28 72-character lines) condition
in which only half the screen is used for
display.

(control X) Turn on VT display unit.

The program EDITVT is loaded into core by the command "EDITVT" given to the

Monitor. Once loaded, the program announces itself by outputting its name and

version number on the console printer. The user must then input the command

"TV ON;' to initiate the VT15 display operations. VT15 display operations may be

stopped at any time by the command "TV OFF".

9 .1. 2 Controls

The VT-15 Display console contains a horizontal strip of six square push-to

light push buttons which are used in display operations. These push buttons

9-1

are unmarked since their function is determined by software and may vary

according to the particular program (system or user) which is in control of the

system.

In EDIT operations, only the two rightmost push buttons are needed; these

switches are referred to as numbers 5 and 6, based on the following numbering

scheme:

m

.9.1.3 Display Modes

The VT-15 Display operates in two display modes:

a) SCROLL Mode - When the number 5 push button is in the OFF (unlit)
position, the display is in the SCROLL mode. In
this mode, when the display screen is full, the
next line of data to be displayed causes the dis
played material to "roll" upwards, line-by-line,
with new data displayed at the bottom of the
screen.

b) PAGE Mode

9.2 CONTROL X FEATURE

When the number 5 push button is in the ON (lit)
position, the display is in the PAGE mode. In thLs
mode, when the screen is full, the next entered
material for display causes the complete, full-
screen display (i.e., PAGE) to be erased; the new
material is then displayed starting at the top line
of the screen. When a large file is to be displayed
in the PAGE mode, the number 6 control push button is
used to advance the display through the file page
(screen) by page (screen) • Each time this push button
is actuated, the screen is cleared and the next set
(page) of data available is displayed.

The Control X feature gives the user the ability to change from hard to soft

copy at any time during Monitor operation. When Soft copy is desired the

user types VT ON when under Monitor Control and then a Control X. The VT ON

command sets up the necessary linkage in the teletype handler and also reserves

a segment of core to be used for the Display Buffer. The Control X command

may be typed during Monitor Control or during System Program Control; it

switches output from the device presently being used to the alternate device.

(Teletype to display or display to teletype.) When the display is being used,

teletype input is echoed on both the teletype and on the display while teletype

output appears only on the display.

9-2

9.2.1. SCROLL Mode

·When text is being output to the display and the display screen is filled (56)

lines, the next incoming line appears on the bottom of the screen and the oldest

or top line on the screen disappears. It appears as if the text is rotating

from screen bottom to screen top. The display screen may be cleared at any

time and new text begins at screen top by changing the position of push button

number 6; and then typing a carriage return.

9.2.2 PAGE Mode

The display may be put in page mode operation. That means that when the dis

play has 56 lines being presented it stops output to it so the user can inspect

the text and it then waits for the user to advance to the next page. This fea

ture is useful for doing a PIP transfer of a large file to the display; the

file can be read on the display a page at a time. It is also useful for looking

at Macro Assemblers and FORTRAN compilations on the display. Page Mode opera

tion is entered by setting push button number 5 to the ON position; for normal

operation (text rotation across screen) push button number 5 should be in the

OFF position. When in page mode, a page is advanced by changing the position

of push button number 6.

9.2.3 VT ON/OFF Monitor Commands

The VT ON command sets up the interface between the VT15 Display System and the

Teletype Handler Section of the Resident Monitor. The Display Interface Code

is moved to a position directly above the Resident Monitor and essentially be

comes a part of the resident monitor. The VT ON command also reserves a segment

of core for use as the Display Buffer. Once the VT ON command has been issued
the user has the ability to switch his output device from Teletype to display

and from display to teletype. The output device switching is accomplished by

typing a t X (Control X) ; and may be done when under monitor control or user

program control.

The feature gives the user the ability to work from an extremely fast, soft

copy output device; and easily switch to hard copy when it is desired. When tX

is typed, an Up-Arrow (t) is echoed on the device selected for output. The

VT OFF command releases the reserved core segment and it frees the area of core

directly above the Resident Monitor where the Display Interface Code was moved.

The VT ON command remains in effect until VT OFF is issued or the Monitor System

is bootstrapped. If the VT15 Display System is desired as the primary output

device, VT ON may be set at System Generation time. The VT OFF command can over

ride the System Generation setting, allowing selection of hard copy output.

9-3

9.2.4 HALF ON/OFF Monitor Command

The HALF ON/OFF command can be used in tX operations.

9.2.5 Differences Between CTRL X in V5A (i.e., ADSS) and in DOS

control x will work slightly differently under DOS15 than under the Advanced

Monitor System (ADSS). The DOSlS Monitor also includes some additional features

associated with t x.

The System Generator under ADSS does not ask questions concerning VT ON/OFF

and half buffer ON/OFF settings. Under DOS15 the VT can be set to the ON posi

tion at system generation time and then it will not be necessary for the user

to type VT ON; the same applies to HALF buffer ON. Under DOS15 the loading of

a system CUSP does not cause the display to be cleared thus requiring another

+x to be typed. Under DOS15 the display will continue its text presentation

not only when system CUSPs are loaded but also when the Monitor is refreshed.

Control x under ADSS (VSA) is NOT supported but is available to the user,

9-4

APPENDIX A

MNEMONICS COMMONLY USED IN GRAPHICS SUBPROGRAM CALLS

The following mnemonics are commonly used in describing subroutine call state

ments throughout this manual.

Mnemonic

1. DELTAX

2. DELTAY

3. INT

4. PNAM,E

5. STR

6. FEATR

Definition

An integer number or variable which represents in

raster units the amount the CRT beam is to be displaced

from its current position in a horizontal direction.

This quantity is signed to indicate the direction of

displacement (i.e., + move beam right
move beam left) •

Same as DELTAX except that the indicated displacement

is made on a vertical direction and the directions

indicated by the .sign are: +· move beam up
move beam down.

This variable is restricted to the Integer values l

and ~ to indicate if the CRT beam movement is to be

visible, (INT = 1) to draw a line, or
invisible (INT=~).

The subpicture display files generated by the graphic

subpicture calls are stored in dimensioned integer

arrays specified by the user. The integer variable

PNAME specifies the first element of the array into
which commands generated by a particular call are to

be stored. PNAME is always represented as a subscripted

variable; it will contain the length of the file and is

the variable by which the file is referenced in later

manipulations.

NOTE: The variable PNAME may be dropped from the
statement argument lists; if dropped, the
last given value for PNAME will be assumed.

Identifies the dimensioned real array which contains

the string of characters to be displayed in IOPS ASCII

(Hollerith) form (five 7-bit characters per word).

An integer number which identifies a hardware feature(s)

to be specified in the call (e.g., l =scale, 2 =
intensity, 4 = light pen, and 8 = blink).

A-1

Mnemonic

7. VALUE

8. OTA

9. N

10. A

11. MAINFL

12. CNAME

13. NAMR

14. PB

15. RST

Definition

A single integer variable or constant that indicates

the value or setting is specified for a selected display

feature.

contains the set of data points, one per word, in the

range~ to 1~23 (Integer).

used by GRAPH subprogram to indicate the number of

points to graph. Also used by TEXT subprogram to

indicate the number of characters to be displayed.

An integer variable or constant restricted to the values

~ and 1. Indicates which axis to increment for GRAPH

subprogram, ~ increment X, set Y to data values,
1 = increment Y, set X to data values.

Similar to PNAME, the value of MAINFL represents the

first array element of the dimensioned Integer array

specified by the user for storing main display file

commands. MAINFL is represented as a subscripted

integer variable, it contains the length of the file and

is the variable by which the file is referenced.

An integer variable that identifies the location or

first location which contains the display command(s)

generated by the call in which CNAME is an output argu

ment.

An integer which represents the contents of the name

register at the time of a light pen hit (restricted to

values ranging from~ to 127).

A six-element integer array which will contain a logical

.T~ or .F, for each of the six push buttons.

This variable, restricted to the integer values of 1

and ~' indicates whether the hardware SAVE/RESTORE

option is to be used when copying subpicture files.

The value ~ indicates that the SAVE/RESTORE option is

not to be used~ the value 1 indicates that it is to be

used.

A-2

SUBPROGRAM CALL

LINE
PLOT (JJ, •••
REPLOT(JJ, •.•

TEXT
PLOT(3, •.•
REPLOT(3, •••

COPY
PLOT (JJ I •••

REPLOT(JJ, .••

PRAMTR
PLOT(2, ...
REPLOT(2, .•.

GRAPH

SETPT
RSETPT

APPENDIX B

DISPLAY INSTRUCTION GROUPS
Generated By

GRAPHICS SUBPROGRAM CALLS

NUMBER OF
COMMANDS COMMANDS GENERATED

1 If one of the eight basic directions:

VN!INCR

2 If random vector option is used:

SVX! DELTAX
SVY! DELTAY

N+2 If not one of the above, required line
is approximated with a series of basic
vectors:

SKP
(COUNT=N+2)
Vl
V2
. . .
VN

3 CHARS* .+2
DJMP .+2
(FULL 15-BIT ADDRESS)

3 When SAVE/RESTORE is not used:

DJMS* .+2
DJMP .+2
(FULL 15-BIT ADDRESS)

6 When SAVE/RESTORE is specified:

SAVE .+4
DJMS* .+2
DJMP .+3
(FULL 15-BIT ADDRESS)
(STATUS)

RSTR .-1

1-4 Adds from one to four parameter words
to the display file, depending on the
type of argument list used.

N Adds N graph plot commands to the dis-
play file, where N is equal to the
number of points in the data set:

GY!Yl GX!Xl
GY!Y2 GX!X2 . or .

. .
·• .

GY!YN GX!XN

2 PY!Y
PX!X

B-1

APPENDIX C

MACRO EXPANSION OF GRAPHICS SUBPROGRAM CALLS

Subpicture Routines

LINE GRAPH

.GLOBAL LINE .GLOBL GRAPH
JMS* LINE JMS* GRAPH
JMP .+5 JMP .+5
.DSA DELTAX .DSA DTA
.DSA DELTAY .DSA N
.DSA INT .DSA A

[.DSA PNAME] [.DSA PNAME]

TEXT BLANK

.GLOBL TEXT .GLOBL BLANK
JMS* TEXT JMS* BLANK
JMP .+4 JMP .+2
.DSA STR .DSA PNAME
.DSA N

[.DSA PNAME]
UNBLNK

COPY .GLOBL UNBLNK
JMS* UNBLNK

.GLOBL COPY JMP .+2
JMS* COPY .DSA PNAME
JMP .+4
.DSA RST CIRCLE
.DSA PNAMEl

[.DSA PNAME] .GLOBL CIRCLE
JMS* CIRCLE
JMP .+6

PRAMTR .DSA R
.DSA THETA

.GLOBL PRAMTR .DSA GAMMA
JMS* PRAMTR .DSA DEG
JMP .+N .DSA PNAME
.DSA FEATR
.DSA VALUE ROTATE

[.DSA PNAME]
where N=2+(Number of Features .GLOBL ROTATE

specified)+l if PNAME JMS ROTATE
is given JMP .+12

.DSA ISTR

.DSA IA

.DSA IB

.DSA IC

.DSA x

.DSA y

.DSA z

.DSA SINA

.DSA CSA

C-1

LTORPB

DYS ET

.GLOBL
JMS*
JMP
.DSA
.DSA
.DSA
.DSA
.DSA
DAC

.GLOBL
JMS*
JMP
.DSA
.DSA

.DSA

.DSA

DINIT

.GLOBL
JMS*
JMP
.DSA

DCLOSE

.GLOBL
JMS*

LTORPB
LTORPB
.+6
IX
IY
NAMR
PB
IWICH
I

DYS ET
DYS ET
2*N+.+l
PNAME
ASCII

PNAMEN
ASCIIN

Input Routines

TRACK

.GLOBL
JMS*
JMP
.DSA
.DSA ·
.DSA
.DSA

Relocating Routines

DYL INK

.GLOBL
JMS*
JMP
.DSA
.DSA

.DSA

.DSA
(where n = number

of files)

DIN IT
DIN IT
.+2
MAINFL

DCLOSE
DCLOSE

Main Display File Routines

SETPT

.GLOBL
JMS*
JMP
.DSA
.DSA

[.DSA

c- 2

TRACK
TRACK
.+s
IX
IY
IOPT
IARRAY

DYL INK
DY LINK
2*N+.+l
PNAMEl
ASCIIl

PNAMEN
ASCIIN
(where N

SETPT
SETPT
.+4
x
y
CNAME]

numbe;:,
of files)

Main Display File Routines (Cont.)

PLOT a COPY

.GLOBL
JMS*
JMP
.DSA
.DSA
.DSA
~DSA

PLOT a LINE

.GLOBL
JMS*
JMP
.DSA
.DSA
.DSA
.DSA

[.DSA

PLOT
PLOT
.+5
(~
RST
PNAME
CNAME]

PLOT
PLOT
.+6
(1
DELTAX
DELTAY
INT
CNAME]

PLOT a PRAMTR

.GLOBL
JMS*
JMP
.DSA
.DSA
.DSA

[.DSA

PLOT
PLOT
.+5
(2
FEATR
VALUE
CNAME]

PLOT a TEXT string

.GLOBL
JMS*
JMP
.DSA
.DSA
.DSA

[.DSA

DELETE

.GLOBL
JMS*
JMP
.DSA
DAC

PLOT
PLOT
.+5
(3
STR
N
CNAME]

DELETE
DELETE
.+2
CNAME
I/ if used

RE PLOT
RE PLOT
.+5
(~

RST
PNAME
CNAME

REP LOT

.GLOBL
JMS*
JMP
.DSA
.DSA
.DSA
.DSA
DAC I/ if used as function

REPLOT a LINE

.GLOBL
JMS*
JMP
.DSA
.DSA
.DSA
.DSA
.DSA
DAC

RE PLOT
REP LOT
.+6
(1
DELTAX
DELTAY
INT
CNAME
I/ if used

REPLOT a PRAMTR

RE PLOT
RE PLOT
.+5

as function

.GLOBL
JMS*
JMP
.DSA
.DSA
.DSA
.DSA
DAC

(2
FEATR
VALUE
CNAME
I/ if used as function

REPLOT a TEXT string

.GLOBL REPLOT
JMS* REPLOT
JMP .+5
.DSA (3
.DSA STR
.DSA
.DSA
DAC

RSETPT

as function .GLOBL
JMS*
JMP
.DSA
.DSA
.DSA
DAC

c- 3

N
CNAME
I/ if used as function

RSETPT
RSETPT
.+4
x
y
CNAME
I/ if used as function

APPENDIX D

CONDITIONAL ASSEMBLY OF GRAPHICS SUBPROGRAMS

For VTlS configurations that include the Arbitrary Vector

Option, the Graphics Subprogram Package (VTPRIM) can be

conditionally assembled to eliminate coding required for

line approximation. This procedure saves approximately

1748 locations. The standard procedure for conditional

assembly may be followed; it is only necessary to define

a value for the variable ARBVEC when assembling VTPRIM SRC.

WARNING

In writing MACRO routines, the exclamation point

(!) must not be used in memory reference type in

structions to separate the Op-code and address

fields. The symbol I used in this manner causes

the contents of the Op-code and address fields to

be OR'd together resulting in an erroneous 15-bit

address,

D-1

INDEX

A (mnemonic definition), A-2
Absolute beam locations, 3-4, 3-9
ADSS Users manuals, 1-3
ALT MODE in TEXT array, 2-5
Angle of rotation, 2-14
API, 6-1
Arcs, measurement of, 2-13
Arguments, 2-3
Array references, 1-2
Arrays, 2-1, 3-1, 4-3, A-1
Array storage, 2-2
Array, TEXT, 2-5
ASCII, 2-5, 5-1

Beam intensified, 2-3
BLANK subroutine, 2-1, 2-10
BLANK/UNBLANK subroutine, 2-12
Blink setting, 2-7

CALL TRACK arguments, 4-4
Change display commands, 3-8
CIRCLE subroutine, 2-12
Clock pulses, 8-1
.CLOSE macro

LK35 keyboard, 7-4
system I/O device handler, 6-5
writing tablet, 8-5

CNAME, 3-2
mnemonic definition of, A-2

Conditional assembly of graphics
subroutines, D-1

Constants, 2-3
Control characters recognized by

LKA, 7-5
Controls, VT-15 display console, 9-1
COPY subroutine, 2-1, 2-6, 3-5
Count of instructions, 3-2
CRT beam, A-1
CTRL characters, 7-5
CTRL X feature, VT-15, 9-2

differences between ADSS and
DOS, 9-4

Dash setting, 2-7
Data Input mode, VWOl, 8-1
DCLOSE (Display terminate)

subroutine, 3-4
DELETE function, 3-2, 3-7
Definitions of mnemonics, A-1
DELTAX, 2-4

mnemonic definition, A-1
DELTAY, 2-4

mnemonic definition, A-1
Device handler for system I/O, 6-1
DIMENSION statement, 2-2

X-1

DINIT (Display initialize)
subroutine, 3-3

Display blanked, 2-12
Display commands, 3-8
Display console interaction, 4-1
Display files, 2-2, 3-3
Display flags, 6-2, 6-3
Display instruction groups, B-1
Display modes, VT-15, 9-2
Display parameters, 2-7, 2-8, 2-9
Display routines, 2-1
Display startup, 6-1
Distribution of DOS V3A, 1-2
DOS Users manuals, 1-3
Drawing on VWOl, 8-1
Draw option, 4-5, 4-6
DTA (mnemonic definition), A-2
DYLINK subroutine, 5-2
DYSET/DYLINK program example, 5-3
DYSET subroutine, 5-1

EDITVT program, 9-1
Escape character, 2-5
Exclamation operator (!), 2-3

FEATR (mnemonic definition), A-1
Filenames, 5-1
Files, 3-1
Files, display, 2-2
File storage, 2-1
FORTRAN source,

CIRCLE routine, 2-12
ROTATE subroutine, 2-14

.FSTAT macro
LK35 keyboard, 7-4
system I/O device handler, 6-6
writing tablet, 8-5

GRAPH subroutine, 2-1, 2-10

HALF ON/OFF monitor command, 9-4
Hard copy output, 9-2, 9-3
Hardware configuration, 1-1
Hardware manuals, 1-3
Hardware registers, VWOl, 8-1
Hollerith, 2-5
Horizontal line, generation of a,

2-3

IF statement, 4-1
Inclusive OR function, 2-3
Initialization IOT,

system I/O device handler, 6-2
Initialize main display file, 3-4

.INIT macro
LK35 keyboard, 7-1
system I/O device handler, 6-1
writing tablet, 8-2

Input routines, 4-1
Instructions, count of, 3-2
Intensified beam, 2-3
Intensity setting, 2-7
Interrupt flags, 6-3
INT (mnemonic definition), A-1

Length of subpicture file, 2-1
Light pen, 4-1

sensitivity, 2-7
backing and drawing, 4-2

LINE subroutine, 2-1, 2-3
LK35 keyboard device handler (LKA),

7-1
LT15 or LT19D controller, 7-1
LTORB function, 4-1, 4-2

Macro expansions, c-1
Main display file initialization,

3-4
Main display file routines, 3-1
MAINFL location, 3-4
MAINFL (mnemonic definition), A-2
Manuals for reference, 1-3
Memory locations, reuse of, 3-3
Mnemonics, A-1
Monitor interrupt system, 6-1
Multiple features, specification of,

2-8

Name Register setting, 2-8
NAMR (mnemonic definition), A-2
N (mnemonic definition), A-2

Octagon tracing symbol, 4-2
Offset setting, 2-8
OR function, inclusive, 2-3
Output transfer between devices,

9-2
Overflow, 2-3

Page mode, VT-15, 9-2, 9-3
PB (mnemonic definition), A-2
PIC, 6-1
Plot a control command (PRAMTR), 3-6
Plot a line, 3-6
Plot a text string (TEXT), 3-7
Plot subpicture (COPY), 3-5
PLOT subroutine, 3-2, 3-5
Plotting points, VWOl, 8-1
PNAME array, 2-3
PNAME (mnemonic definition), A-1

X-2

Point plotting, VWOl, 8-1
PRAMTR call statement, 2-8
PRAMTR subroutine, 2-1, 2-7, 3-6
Push buttons, 4-1

Random vector option, 2-4
Raster unit, 2-3
.READ macro

LK35 keyboard, 7-2, 7-3
system I/O device handler, 6-3
writing tablet, 8-3

Relative displacement, 3-4
Relocating routines, 5-1
REPLOT function, 3-8
Reposition the beam, 3-6
Restore display parameters, 2-6
Restrictions to subpicture routines,

2-3
Rotate setting, 2-8
ROTATE subroutine, 2-14
Routines, 2-1
RSETPT function, 3-9
RST (mnemonic definition), A-2

Sample DYSET/DYLINK program, 5-3
Sample, sine wave program, 2-11
Sample TRACK program

FORTRAN, 4-3
MACR0-15, 4-7

SAVE/RESTORE option, 2-6
Scale setting, 2-7
Scope phosphor, 2-7
Scroll mode, VT-15, 9-2, 9-3
Set initial conditions (SIC), 6-2
SETPT (Set point) subroutine, 3-2,

3-4
Setup commands, EDITVT, 9-l
Sine wave program example, 2-11
Single point mode of operation,

VWOl, 8-l
Sloped line, generation of a, 2-4
Soft copy output, 9-2, 9-3
Software manuals, 1-3
Spark pen, 8-1
Square, generation of a, 2-2
Start up display, 6-1
Status registers, 6-2, 6-3
Storage of files, 2-1, 2-2, 3-1
STR (mnemonic definition), A-1
Subpicture routines, 2-1
Sync feature, 2-8
System I/O device handler, 6-1

TEXT subroutine, 2-1, 2-5, 3-7
Text/display edit functions, 9-1
3-dimensional figures, 2-14
Tracking symbol, 4-2
TRACK macro calling sequence, 4-5

TRACK program sample
FORTRAN, 4-3
MACR0-15, 4-7

TRACK subroutine, 4-2

UNBLNK subroutine, 2-1, 2-12

VALUE (mnemonic definition), A-2
Variables, 2-3
Vectors, 2-4
Version numbers for modules, 1-2
Vertical line, generation of a, 2-4
VT15 device handler (VTA), 3-3, 8-2
VT15 processor, 1-2
VT ON/OFF monitor commands, 9-3
VTPRIM (Graphic subprogram package),

D-1
VWA device handler, 8-2
VWOl writing tablet handler, 8-1

Wait function (LTORPB), 4-2
•. WAIT macro

LK35 keyboard, 7-3
system I/O device handler, 6-4
writing tablet, 8-4

• WAITR macro
LK35 keyboard, 7-3
system I/O device handler, 6-5
writing tablet 8-4

.WRITE macro
system I/O device handler, 6-4

Writing tablet, 8-1, a-2

X-3

HOW TO OBTAIN SOFTWARE INFORMATION

SOFTWARE NEWSLETTERS, MAILING LIST

The Software Conununications Group, located at corporate headquarters in
Maynard, publishes newsletters and Software Performance Sununaries (SPS)
for the various Digital products. Newsletters are published monthly,
and contain announcements of new and revised software, progranuning
notes, software problems and solutions, and documentation corrections.
Software Performance Sununaries are a collection of existing problems
and solutions for a given software system, and are published periodi
cally. For information on the distribution of these documents and how
to get on the software newsletter mailing list, write to:

Software Conununications
P. 0. Box F
Maynard, Massachusetts 01754

SOFTWARE PROBLEMS

Questions or problems relating to Digital's software should be reported
to a Software Support Specialist. A specialist is located in each
Digital Sales Office in the United States. In Europe, software problem
reporting centers are in the following cities.

Reading, England
Paris, France
The Hague, Holland
Tel Aviv, Israel

Milan, Italy
Solna, Sweden
Geneva, Switzerland
Munich, West Germany

Software Problem Report (SPR) forms are available from the specialists
or from the Software Distribution Centers cited below.

PROGRAMS AND MANUALS

Software and manuals should be ordered by title and order number. In
the United States, send orders to the nearest distribution center.

Digital Equipment Corporation
Software Distribution Center
146 Main Street
Maynard, Massachusetts 01754

Digital Equipment Corporation
Software Distribution Center
1400 Terra Bella
Mountain View, California 94043

Outside of the United States, orders should be directed to the nearest
Digital Field Sales Office or representative.

USERS SOCIETY

DECUS, Digital Equipment Computer Users Society, maintains a user ex
change center for user-written programs and technical application in
formation. A catalog of existing programs is available. The society
publishes a periodical, DECUSCOPE, and holds technical seminars in the
United States, Canada, Europe, and Australia. For information on the
society and membership application forms, write to:

DECUS
Digital Equipment Corporation
146 Main Street
Maynard, Massachusetts 01754

DECUS Europe
Digital Equipment Corporation International
P.O. Box 340
1211 Geneva 26
Switzerland

READ ER'S COMMENTS VT-15 Graphics Software
System, Programming Manual
DEC-15-GVTPA-A-D

Digital Equipment Corporation maintains a continuous effort to improve the quality and usefulness
of its publications. To do this effectively we need user feedback -- your critical evaluation of

th is manua I.

Please comment on this manual's completeness, accuracy. organization, usability and read

ability.

Did you find errors in this manual? If so, specify by page.

How can th is manua I be improved?

Other comments?

Please state your position. Date:
----------------~-- ----~--

Name: ------------------Organization: --------------
Street: ------------------ Department:

--------------~

City: ------------ State: ----------- Zip or Country ______ _

---Fold llere--

·--- Do Not Tear - Fold llere and Staple --·

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

~nmnomo
Software Communications
P. 0. Box F
Maynard, Massachusetts 01754

FIRST CLASS

PERMIT NO. 33

MAYNARD. MASS.

printed in U.S.A.

	000
	001
	002
	003
	005
	006
	007
	1-01
	1-02
	1-03
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	5-01
	5-02
	5-03
	5-04
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	7-01
	7-02
	7-03
	7-04
	7-05
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	9-01
	9-02
	9-03
	9-04
	A-01
	A-02
	B-01
	C-01
	C-02
	C-03
	D-01
	X-01
	X-02
	X-03
	Y-01
	replyA
	replyB
	xBack

