
EL-ENDIA-11

PDP-11
DIAGNOSTIC

DESIGN
GUIDE

For Internal Use Only
Do not remove from Digital Equipment Corporation property.

mamaala

EL-ENDIA-11

PDP-11 DIAGNOSTIC DESIGN GUIDE

Document Identifier: A-MN-ELENDIA-11-0, Rev. A
20 January 1983

ABSTRACT: This document contains programming practices and standards
for PDP-11/LSI-11 diagnostic programs. Pertinent
information regarding operating environments, coding
standards, design, and documentation is presented.

APPLICABILITY: This document is intended for diagnostic engineers and
others who are developing diagnostic products for the
PDP-11/LSI-11 family.

FOR INTERNAL USE ONLY

DO NOT REMOVE FROM DIGITAL PROPERTY

File Id: 31

Document Management 20-Jan-83

TITLE: PDP-11 DIAGNOSTIC DESIGN GUIDE

DOCUMENT IDENTIFIER: A-MN-ELENDIA-11-0, Rev. A
20-Jan-83

REVISION HISTORY: Initial Release

Responsible Department: Small Systems Diagnostics
Responsible Individual: Mike Densmore

Page ii

Author: Compiled by Paul Niemi. Rev ised and expanded by: Mike
Densmore, Tom Drake, Barry Irrgang, Bruce Luhrs, Joe Micali,
Ron Parker, Bruce Ribolini, and Ray Shoop. Edited by Gunars
Zagars.

ACCEPTANCE:

Densmor , Small Systems Diagnostics Mgr.

Direct requests for further information to: Mike Densmore,
ML021-4/E20, DTN: 223-6162.

Copies of this document can be ordered from: Standards and Methods
Control, ML03-2/E56, DTN: 223-9475.

Preface 20-Jan-83 Page iii

PREFACE

This manual presents an overview of the PDP-11 diagnostic philosophy
and procedures and an explanation of how to write diagnostic programs
for the PDP-11 and LSI-11 families of computers. It is written for
diagnostic engineers who are familiar with the PDP-11 hardware,
operating system, Macro assembly language, and the hardware device to
be tested. This manual can be used as an aid to diagnostic program
development or as a reference for specific features of the PDP-11
D i a g nos tic Run tim e Se r vic e san d d i a g nos tic mac r 0 1 i bra r y . It i s not
intended to be a self-teaching manual for a novice diagnostic
engineer.

The manual consists of two parts. Part I (chapters 1 - 5) describes
the PDP-11 diagnostic engineering philosophy. It deals with
diagnostic goals, functions, methods, and the structure of the PDP-11
diagnostic operating system. Part II (chapters 6 11) presents
system-wide guidelines, assisting in the development of diagnostic
programs that will interface with the PDP-11 Diagnostic Runtime
Se r vic e san d t hat will con for m to D i a g nos tic En gin e e r in g s tan dar d s .
The chapter titles are:

Ch. 1
Ch. 2
Ch. 3
Ch. 4
Ch. 5
Ch. 6
Ch. 7
Ch. 8
Ch. 9
Ch. 10
Ch . 11

Diagnostic Users and Applications
Diagnostic Program Metrics
Diagnostic Strategy
Operating Modes and Capabilities
Diagnostic Development Process
XXDP+, the PDP-11 Diagnostic Operating System
DRS-Compatible Diagnostic Programs
Non-DRS Automated Environments
Structured Programming and Program Design Language 1
Diagnostic Program Documentation
General Coding Conventions

Table of Contents
Revision Status

20-Jan-83

Subhead

TABLE OF CONTENTS/REVISION STATUS

Title

Title Page
Document Management Page
Preface
Table of Contents/Revision Status

Page

i
ii

iii
iv

CHAPTER 1 DIAGNOSTIC USERS AND APPLICATIONS

1 • 1
1 . 1 . 1
1 . 1 . 2
1 • 1 • 3
1 . 1 .4
1 .2
1 .2. 1
1 .2.2
1.2.2.1
1.2.2.2
1.2.2.3
1.2.2.4
1.2.2.5
1.2.2.6

DIAGNOSTIC USERS
Computer Design Engineers
Manufacturing Technicians
Field Service Engineers
End User s

DIAGNOSTIC APPLICATIONS
Local Operator Application
Automated Applications

Autotest
APT
APT-RD
ACT
XXDP+ Chain Mode
SLIDE

1-1
1-1
1-2
1-2
1-3
1-3
1-3
1-4
1-4
1-4
1-5
1-5
1-5
1-6

CHAPTER 2 DIAGNOSTIC PROGRAM METRICS

2 . 1
2.2
2.2. 1
2.2.2
2.3
2.4
2.5
2.5.1
2.5.2

FAULT DETECTION COVERAGE 2-1
FAULT ISOLATION AND TROUBLESHOOTING SUPPORT 2-1

Fault Isolation 2-2
Troubleshooting Support 2-2

DIAGNOSTIC PROGRAM SIZE 2-3
DIAGNOSTIC EXECUTION TIME 2-3
OPERATIONAL FUNCTIONALITY AND DOCUMENTATION 2-4

Test Mode Diagnostic Functionality 2-4
Troubleshooting and Repair Diagnostic
Functionality 2-5

CHAPTER 3 DIAGNOSTIC STRATEGY

3 • 1
3 . 1 • 1
3 . 1 .2
3 · 1 • 3
3.2
3 .2. 1
3.2.2
3·2.3

SYSTEM CORE DIAGNOSTIC STRATEGY
System Core Definition
System Core Diagnostic Goals
System Core Diagnostic Implementation

CPU AND CPU OPTION DIAGNOSTIC STRATEGY
Hardcore Verification Tests
Basic CPU Cluster Tests
Extended CPU Cluster Tests

3-1
3-1
3-2
3-2
3-3
3-3
3-3
3-3

Page iv

Revision

20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83

20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83

20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83

20-Jan-83

20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83

Table of Contents
Revision Status

20-Jan-B3

Subhead

3.2.4
3.3
3 . 3 . 1
3.3.2
3.4
3·5
3 .5. 1
3.5.2
3.5.3
3.5.4
3.6
3.6. 1
3.6.2
3.6.3

TABLE OF CONTENTS/REVISION STATUS

Title

Microdiagnostics
PERIPHERAL DIAGNOSTIC STRATEGY

General Requirements
Fault Detection and Isolation

SYSTEM EXERCISER DIAGNOSTIC STRATEGY
COMMUNICATIONS DIAGNOSTIC STRATEGY

Communications Strategy
Link Verification
System Performance
Standalone Communications Diagnostics

AUTOTEST DIAGNOSTIC STRATEGY
Commercial Maintenance Products Program
FTS-11
Auto Test Strategy For DECSA (Digital
Ethernet Communications Service, ModelA)

CHAPTER 4 OPERATING MODES AND CAPABILITIES

4 . 1
4.2
4.3
4 . 3 . 1
4.3.2
4.3.3
4.3.4
4.3.5
4.3.6
4.3.7
4.3.8
4.4
4.5

4 .5. 1
4.5.2
4.6
4.7
4.8

PROGRAM SELF IDENTIFICATION
TEST SELECTION CAPABILITY
PROGRAM EXECUTION MODES

Continue On Error
Hal t On Error
Loop On Error
One Error Report Per Sub-Test
Inhibit Error Reports
Inhibit Progress Reports
Error Logging
Signal (Bell) On Error

INTERACTIVE PROGRAM EXECUTION
BASIC FUNCTIONAL TESTING AND RELIABILITY
MODE

Basic Functional Testing
He I i a b iIi t Y Mo d e

DEFAULTING PHILOSOPHY
SPECIAL OPERATING MODES
CHAIN MODE

CHAPTER 5 DIAGNOSTIC DEVELOPMENT PROCESS

5.1
5.2
5 .2. 1
5.2.2
5.2.3
5.3

CONSULTATION PHASE (PHASE 0)
PLANNING PHASE (PHASE 1)

Diagnostic Project Plan
Diagnostic Functional Specification
Diagnostic Program Design Specification

IMPLEMENTATION PHASE (PHASE 2)

Page

3-4
3-5
3-5
3-6
3-7
3-B
3-9
3-9
3-10
3-11
3-11
3-11
3-11

3-11

4-1
4-1
4-2
4-2
4-2
4-3
4-3
4-3
4-3
4-3
4-4
4-4

4-4
4-5
4-5
4-5
4-5
4-6

5-1
5-2
5-2
5-3
5-3
5-4

Page v

Revision

20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-B3
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83

20-Jan-83

20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83

20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83

20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83

Table of Contents
Revision Status

20-Jan-83

Subhead

5.3. 1

5.3.2
5.4

5 .4. 1
5.4.2
5.4.3
5.4.4
5.4.5
5.4.6
5.4.7
5.4.8
5.5

TABLE OF CONTENTS/REVISION STATUS

Title Page

Engineering Breadboard and Prototype
Support 5-4
Final Diagnostic Implementation 5-5

DIAGNOSTIC QUALITY ASSURANCE AND
RELEASE PHASE (PHASE 3A) 5-6

Introduction 5-6
Design Reviews 5-7
Manufacturing Installation 5-7
Performance Feedback 5-8
Configuration Compatibility Testing 5-8
XXDP+/ACT/APT/SLIDE Compatibility Testing 5-8
Diagnostic Program Verification 5-9
Quality Assurance Chacklist 5-9

MAINTENANCE 5-9

CHAPTER 6 XXDP+, THE PDP-11 DIAGNOSTIC OPERATING SYSTEM

6. 1
6 • 1 . 1
6 • 1 .2
6 . 1 • 3
6. 1 .4
6 . 1 .5
6.1.5.1
6.1.5.2
6.2
6.2.1
6.2.2
6.2.3
6.2.3.1
6.2.3.2
6.2.3.3
6.2.3.4
6.2.3.5
6.2.4
6.2.5
6.3
6.3.1
6.3.2
6.4
6.4.1
6.4.1.1
6.4.1.2
6.4.1.3
6.4.1.4
6.4.1.5
6.4.1.6

INTRODUCTION
XXDP+ Monitor
Diagnostic Runtime Services
Utility Programs
Dev ice Dr i ver s
XXDP+ Nomenclature

Software Naming Conventions
File Naming Conventions

XXDP+ CONSTRUCTION
XXDP+ Monitor
Diagnostic Runtime Services
XXDP+ Utility Programs

UPD2
UPD1
PATCH
SETUP
XTECO

XXDP+ Device Drivers
Building XXDP+

BATCH CONTROL (CHAINING)
Batch Control of Diagnostics
Batch Control of Utilities

XXDP+ COMMANDS
Monitor Commands

Load Command
Start Command
Run Command
Chain Command
Directory Command
Fill Command

6-1
6-1
6-1
6-2
6-2
6-2
6-2
6-3
6-4
6-4
6-5
6-5
6-6
6-6
6-6
6-6
6-6
6-7
6-8
6-8
6-9
6-10
6-10
6-10
6-11
6-11
6-12
6-12
6-13
6-14

Page vi

Revision

20-Jan-83
20-Jan-83

20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83

20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83

Table of Contents
Revision Status

20-Jan-83

Subhead

6.4.1.7
6.4.1.8
6.4.1.9
6.4.2
6.4.2.1
6.4.2.2
6.4.2.3
6.4.2.4
6.4.2.5
6.4.2.6
6.4.2.7
6.4.2.8
6.4.2.9
6.4.2.10
6.4.2.11
6.4.3
6.4.3.1
6.4.3.2
6.4.3.3
6.4.3.4
6.4.3.5
6.4.3.6
6.4.4
6.4.4.1
6.4.4.2
6.4.4.3
6.4.4.4
6.4.4.5
6.4.4.6
6.4.4.7
6.4.4.8
6.4.4.9
6.4.4.10
6.4.4.11
6.4.4.12
6.4.4.13
S.lf.5
6.4.5.1
6.4.5.2
6.4.5.3
6.4.5.4
6.4.5.5

TABLE OF CONTENTS/REVISION STATUS

Title

Enable Command
Help Command
Test Command

DRS Commands
STA[RT] Command
RES[TART] Command
CON[TINUE] Command
PRO[CEED] Command
DRO[P] Command
ADD Command
DIS[PLAY] Command
FLA[GS] Command
ZFL[AGS] Command
PRI[NT] Command
EXI[T] Command

DRS Switches
TES[TS] Switch
PAS[S] Switch
FLA[GS] Switch
EOP Switch
UNI[TS] Switch
Combining Switches

DRS Flags
HOE (Halt On Error) Flag
LOE (Loop On Error) Flag
IER (Inhibit Error Reports) Flag
IBE (Inhibit Basic Errors) Flag
IXE (Inhibit Extended Errors) Flag
PRI (Printer) Flag
PNT (Print Number of Test) Flag
BOE (BellOn Error) Flag
UAM (Unattended Mode) Flag
ISR (Inhibit Statistical Reports) Flag
IDR (Inhibit DRopping of Units) Flag
ADR (Auto DRop) Flag
LOT (Loop On Test) Flag

XXDP+ Utility Commands
UPD2 Command Summary
UPD1 Command Summary
PATCH Command Summary
SETUP Command Summary
XTECO Command Summary

CHAPTER 7 DRS-COMPATIBLE DIAGNOSTIC PROGRAMS

7 • 1
7.2

INTRODUCTION
DRS PROGRAM BASICS

Page

6-14
6-15
6-15
6-15
6-16
6-16
6-17
6-17
6-18
6-19
6-19
6-19
6-20
6-20
6-20
6-21
6-21
6-22
6-22
6-22
6-22
6-23
6-23
6-24
6-25
6-25
6-25
6-25
6-25
6-25
6-26
6-26
6-26
6-26
6-26
6-27
6-28
6-28
6-29
6-29
6-29
6-30

7-1
7-1

Page vii

Revision

20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20~Jan-83
20-Jan-8J
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83

20-Jan-83
20-Jan-83

Table of Contents
Revision Status

20-Jan-83

Subhead

7 .2. 1
7.2.2
7.2.3
7.2.3.1
7.2.3.2
7.2.3.3
7.2.3.4
7.2.3.5
7.3
7 . 3. 1
7.3.2
7.3.3
7.3.4
7.3.5
7 . 3. 6
7.3.7
7.3.8
7.3.9
7.3.10
7.3.11
7.3.12
7.3.13
7.3.14
7.3.15
7.3.16
7.3.17
7.4
7.4.1
7.4.2
7.4.3
7.4.4
7.4.5
7.4.6
7.4.7
7.4.8
7.4.9
7.5
7 . 5. 1
7.5.2
7.5.3
7.5.4
7.5.4.1
7.5.4.2
7.5.5
7.5.6
7.5.6.1
7.5.6.2

TABLE OF CONTENTS/REVISION STATUS

Title

Memory Layout
Different Operating Environment Versions
Interfacing to the Environment

Operator Commands
Switches
Hardware Parameterization
Software Parameterization
Passes and Sub-Passes

DRS PROGRAM STRUCTURE
Program Header (Required)
Dispatch Table (Required)
Default Hardware P-Table (Required)
Software P-Table (Optional)
Global Equates (Optional)
Global Data (Optional)
Global Text (Optional)
Global Error Reports (Optional)
Global Subroutines (Optional)
Statistical Report Coding (Optional)
Initialization Coding (Required)
Clean-Up Coding (Required)
Drop Units Coding (Optional)
Add Units Coding (Optional)
Hardware Tests (Required)
Hardware Parameter Coding (Required)
Software Parameter Coding (Optional)

DRS PROGRAM STRUCTURE MACROS
Optional Sections Selection (POINTER)
Header Call (HEADER)
Descriptive Text (DESCRIPT, DEVTYPE)
Last Address Generation (LASTAD)
Module Delimiters (BGNMOD, ENDMOD)
Test Delimiters (BGNTST, ENDTST)
Subtest Delimiters (BGNSUB, ENDSUB)
Segment Delimiters (BGNSEG, ENDSEG)
Hardcoded P-Tables

DRS SERVICE MACROS
Macro Package Initialization (SVC)
Global Equates (EQUALS)
Test Dispatch Table (DISPATCH)
Error Loop Control (CKLOOP)

Implied CKLOOP
Explicit CKLOOP

Error Loop Detection (INLOOP)
Abort Test Calls (ESCAPE, EXIT)

Escape Test (ESCAPE TST, SUB, SEG)
Exit Test (EXIT TST, SUB, SEG)

Page

7-1
7-2
7-2
7-2
7-4
7-4
7-5
7-5
7-5
7-6
7-6
7-6
7-6
7-6
7-7
7-7
7-7
7-7
7-7
7-7
7-8
7-8
7-8
7-8
7-8
7-9
7-9
7-9
7-9
7-10
7-10
7-10
7 -11
7 -11
7 -11
7-12
7-12
7-12
7-12
7-13
7-13
7-13
7-13
7-14
7-15
7-15
7-15

Page viij

Revision

20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83

Table of Contents
Revision Status

20-Jan-83

Subhead

7.5.6.3

7.5.7

7.5.7.1
7.5.7.2
7.5.7·3
7.5.8

7.5.8.1
7.5.8.2

7.5.8.3

7.5.9

7.5.10

7.5.11
7.5.12
7.5.13

7.5.13.1
7.5.13.2
7.5.14
7.5.15
7.5.16

7.5.17

7.5.18

7.5.18.1
7.5.18.2
7.5.18.3
7.5.18.4
7.5.18.5
7.5.19
7.5.20
7.5.21
7.5.22
7.5.23
7.5.24

7 .5. 24 . 1
7.5.24.2
7.5.24.3

TABLE OF CONTENTS/REVISION STATUS

Title

Exit Routine (EXIT HRD, SFT, INIT,
CLN, SRV, HSG)

Error Reporting (ERRSF, ERRDF, ERRHRD,
ERRSOFT, ERROR, ERRTBL)

Error Report Classes
Report Call Arguments
Error Tables

Printing Messages (BGNMSG, ENDMSG,
PRINTB, PRINTX, PRINTF)

Message Printout Format
Begin and End Message Calls (BGNMSG,
ENDMSG)
Basic and Extended Print Message Calls
(PRINTB, PRINTX, PRINTF)

Statistical Reporting (BGNRPT, ENDRPT,
PRINTS, DORPT)
Branching (BERROR, BNERROR, BCOMPLETE,
BNCOMPLETE)
Clock Macro
Event Flags (READEF)
Unit Selection (BGNAU, ENDAU, BGNDU,
DODU, ENDDU)

Adding Units (BGNAU, ENDAU)
Dropping Units (BGNDU, ENDDU, DODU)

Default Hardware P-Table (BGNHW, ENDHW)
Software P-Table (BGNSW, ENDSW)
Hardware P-Table Questions (BGNHRD,
ENDHRD)
Software P-Table Questions (BGNSFT,
ENDSFT)
Parameter Coding Calls (GPRMD, GPRMA,
GPRML)

GPRMD Call - Data
GPRMA Call - Address
GPRML Call - Logical
COUNT MACRO (COUNT arg)
DISPLAY Macro (DISPLAY Arg)

Transfer Calls (XFER)
Request Table (GPHARD)
Initialization (BGNINIT, ENDINIT)
Clean-Up Code (BGNCLN, ENDCLN, DOCLN)
Is Manual Intervention Allowed? (MANUAL)
Get Manual Parameters (GMANID, GMANIA,
GMANIL)

GMANID Call
GMANIA Call
GMANIL Call

Page

7-15

7-16
7-16
7-17
7-17

7-18
7-18

7-19

7-19

7-21

7-21
7-22
7-23

7-23
7-24
7-24
7-24
7-25

7-25

7-26

7-26
7-26
7-28
7-29
7-29
7-29
7-29
7-31
7-31
7-32
7-33

7-33
'7-34
7-35
7-35

Page ix

Revision

20-Jan-83

20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83

20-Jan-83
20-Jan-83

20-Jan-83

20-Jan-83

20-Jan-83

20-Jan-83
20-Jan-83
20-Jan-83

20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83

20-Jan-83

20-Jan-83

20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83

20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83

Table of Contents
Rev ision Status

20-Jan-83

Subhead

7.5.25
7.5.26
7.5.27
7 . 5.

7.5.29
7 . 5 . 29 . 1

7.5.29.2
7.5.30
7.5.31
7.5·32
7.5.33
7.5.34
7.5.35
7.6

TABLE OF CONTENTS/REVISION STATUS

Title

Operator Interrupt Enable (BREAK)
Bus Reset (BRESET)
Memory Allocation (MEMORY)
rterrupt Handling (SETVEC, CLRVEC,

BGNSRV, ENDSRV)
Documentation Aids

Left Justified Graphics (COMMENT,
ENDCONMENT)
Right Justified Graphics (SLASH, STARS)

Program Priority (SETPRI, GETPRI)
Bus Type Check (READBUS)
Load Device Protection
File Control Services
Access to Flags
Autodrop Section

SAMPLE DIAGNOSTIC

CHAPTER 8 NON-DRS AUTOMATED ENVIRONMENTS

8. 1
8.2
8.2. 1
8.2.2
8.2.3
8.2.3.1

8.2.3.2

8.2.3.3
8.2.3.4
8.2.3.5
8.2.3.6
8.2.3.7
8.2.3.8
8.3
8 . 3. 1
8.3.2
8 · 3. 3
8.4
8.4. 1
8.4.2
8.4.2.1
8.4.2.2
8.4.3
8.4.4
8.4.5

INTRODUCTION
AUTOMATED PRODUCT TEST (APT-11)

Introduction
APT Mailbox
APT Mailbox Fields

Message Type Code, Word 1
(SYSMAC/$MSGTY)
Fatal Error Number, Word 2
(SYSMAC/$FATAL)
Test Number, Word 3 (SYSMAC/$TESTN)
Pass Count, Word 4 (SYSMAC/$PASS)
Device Count, Word 5 (SYSMAC/$DEVCT)
Unit, Word 6 (SYSMAC/$UNIT)
Message Address, Word 7 (SYSMAC/$MSGAD)
Message Length, Word 8 (SYSMAC/$MSGLG)

AUTOMATIC COMPUTER TEST (ACT-11) SYSTEM
ACT Dump Mode
ACT Auto-accept Mode
ACT Station Test Mode

SERIAL LOADER IN DEMAND EVERYWHERE (SLIDE)
The SLIDE System
SLIDE Basic Software

Central Computer Memory Usage
Test Station Memory Usage

Using SLIDE
Obtaining a Directory
Time and Date Messages

Page

7-35
7-36
7-36

7-36
7-37

7-37
7-38
7-38
7-38
7-39
7-39
7-40
7-40
7-41

8-1
8-1
8-1
8-2
8-2

8-2

8-3
8-4
8-4
8-5
8-5
8-5
8-6
8-6
8-6
8-6
8-7
8-7
8-7
8-8
8-9
8-9
8-10
8-10
8-11

Page x

Revision

20-Jan-83
20-Jan-83
20-Jan-83

20-Jan-83
20-Jan-83

20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83

20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83

20-Jan-83

20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83

Table of Contents
Revision Status

20-Jan-83

Subhead

8.4.6
8.4.6.1
8.4.6.2
8.4.7
8.4.7.1
8.4.7.2
8.4.8

8.4.9
8.4.10
8.5
8 . 5. 1
8.5.1.1
8.5.1.2
8.5.1.3
8.5.1.4
8.5.1.5
8.5.1.6
8.5.2
8.5.2.1
8.5.2.2
8.5.2·3
8.5.2.4
8.5.2.5
8.5.2.6
8.5.2.7
8.5.2.8
8.5.2.9
8.5.3
8.6
8 . 6. 1
8.6.2
8.6.3

TABLE OF CONTENTS/REVISION STATUS

Title

Chain Mode Operation
Making a Chain
Considerations when Making a Chain

Watchdog Timeout Feature
Watchdog Timer Commands
Using the Watchdog Timer

Issuing Commands to Another Terminal
or Line Printer
Updating and Patching
SLIDE Help Commands

MACRO SUMMARY
Mandatory, Direct Support Macros

.$ACT11 Macro

.$APTHDR Macro

.$APTBLS Macro

.$APTYPE Nacro
REPORT Macro
.$APTAT Macro

Indirect Support Macros
.$EOP Macro
.$CMTAG Macro
.EQUAT Macro
SETUP Macro
N E\JTST Macr 0

.$SCOPE Macro

.$ERROR Macro

.$TYPE Macro
TYPNAM Macro

Other Support Macros
SYSMAC.SML, THE DIAGNOSTIC MACRO LIBRARY

Definition Macros
In-line Code Macros
Handler Macros

CHAPTER 9 STRUCTURED PROGRAMMING

9 . 1
9.2
9 . 2. 1
9.2.2
9.2.3
9.3
9.4
9.5
9.6
9 . 6 . 1
9.6.2

INTRODUCTION
PROGRAMMING CONSIDERATIONS

Structured Design
Structured Programming
Module Structure

USING BLISS
USING PASCAL FOR SPECIFICATION AND DESIGN
USING BASIC TO WRITE DIAGNOSTICS
PROGRAM DESIGN LANGUAGE 1

Introduction
Purpose and History

Page

8-11
8-1.2
8-13
8-15
8-15
8-15

8-17
8-17
8-18
8-19
8-19
8-19
8-19
8-20
8-20
8-20
8-21
8-21
8-21
8-21
8-22
8-22
8-22
8-22
8-22
8-23
8-23
8-23
8-23
8-24
8-24
8-25

9-1
9-2
9-2
9-2
9-4
9-5
9-5
9-7
9-7
9-7
9-8

Page xi

Revision

20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83

20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83

20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83

Table of Contents
Revision Status

20-Jan-83

Subhead

9.6.3
9.6.3.1
9.6.3.2

9.6.4
9.6.4.1
9.6.4.2
9.6.4.2.1
9.6.4.2.2
9.6.4.2.3
9.6.4.3
9.6.4.3.1
9.6.4.3.2
9.6.4.3.3
9.6.4.3.4
9.6.4.3.5
9.6.4.4
9.6.4.5
9.6.4.6
9.6.4.7
9.6.4.8

TABLE OF CONTENTS/REVISION STATUS

Title

Guidelines
Design Guidelines
Guidelines for Translating PDL1 To
So urce Cod e

PDL1 Format
General Format
Block Structure

Sequential Blocks
Selective Blocks
Iterative Blocks

Internal Block Structure
Imperatives
The Underline Character
Assignment and Relational Operators
Parentheses and Brackets
Early Exit

Keywords
Block Structuring
Other Constructs
Example of a Program in PDL1
PDL1 Keywords in Alphabetical Order

CHAPTER 10 DIAGNOSTIC PROGRAM DOCUMENTATION

10. 1
10.2
10.2.1
10.2.2
10.2.3
10.3
10.4
10.5
10.6
10.7
10.8
10.8.1
10.8.2
10.8.3
10.8.4
10.9
10.9.1
10.9.2
10. 10
10.10.1
10.10.2
10. 11

DOCUMENTATION GUIDELINES
DOCUMENTATION SECTION

Documentation Cover Sheet
History Section
Table of Contents

PROGRAM ABSTRACT
SYSTEM REQUIREMENTS
RELATED DOCUMENTS AND STANDARDS
DIAGNOSTIC PREREQUISITES
PROGRAM ASSUMPTIONS
OPERATING INSTRUCTIONS

Loading and Starting Procedures
Special Environments
Program Options
Execution Times

ERROR INFORMATION
Error Reporting Procedures
Error Hal ts

OPTIONAL PERFORMANCE AND PROGRESS REPORTS
Performance Reports
Progress Reports

SUB-TEST SUMMARIES

Page

9-9
9-9

9-10
9-10
9-10
9-10
9-11
9-11
9-11
9-11
9-11
9-13
9-13
9-13
9-14
9-14
9-15
9-16
9-17
9-18

10-2
10-2
10-3
10-4
10-5
10-6
10-6
10-7
10-7
10-7
10-7
10-9
10-9
10-9
10-9
10-10
10-10
10-12
10-12
10-12
10-12
10-13

Page xii

Revision

20-Jan-83
20-Jan-83

20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83

2Q-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83

Table of Contents
Revision Status

20-Jan-83

Subhead

10. 12
10. 13

10. 14
10. 15

TABLE OF CONTENTS/REVISION STATUS

Title

PROGRAM LISTING
SYMBOL TABLE AND AND CROSS REFERENCE
LISTING
PROGRAM FUNCTIONAL DESCRIPTION
DESCRIPTIONS OF SUBROUTINES

CHAPTER 11 GENERAL CODING CONVENTIONS

11 . 1
1 1 .2
11.2.1
11.2.2
11 . 3
11.3.1
11.3.2
11.3.3
11.3.4
11.3.5
11.3.6
11 .4
11.4.1
11.4.2
11.4·3
11.4.4
11 . 5
11.5.1
11 . 6
11.6.1
11.6.2
11.6·3
11.6.4

11 . 7

INTRODUCTION
RECOMMENDED CODING PRACTICE

Line Format
Comments

NAMING STANDARDS
Hardware Registers
De vic eRe g i s t e r s
General Purpose Registers
Processor Priority
Other Symbol s
Program-Local Labels

PROGRAN MODULES
The Program Preface
Register Conventions
Argument Passing
Exiting

FORMATTING STANDARDS
Program FlovJ

FORBIDDEN INSTRUCTION USAGE
Instructions or Index Words as Literals
MOV Instead of JMP
Single-Word Instructions
PDP-11 Family Instruction Execution
Differences

RECOMMENDED CODING PRACTICE - CONDITIONAL
BRANCHES

GLOSSARY

INDEX

Page

10-13

10-14
10-14
10-16

11-1
11- 3
11- 3
11- 3
11-4
11-4
11-4
11-4
11-5
11-5
11-5
11-5
11-6
11-7
11-7
11-7
11-8
11-8
11-9
11-9
11-9
11-10

11-10

1 1 - 1 1

G-1

1-1

Page xiii

Revision

20-Jan-83

20-Jan-83
20-Jan-83
20-Jan-83

20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83
20-Jan-83

20-Jan-83

20-Jan-83

20-Jan-83

20-Jan-83

Chapter 1 20-Jan-83 Page 1-1

CHAPTER 1

DIAGNOSTIC USERS AND APPLICATIONS

This chapter describes the purposes of diagnostic programs for primary
users and applications in the DIGITAL environment. An attempt is made
to introduce the requirements placed on diagnostics by their users and
applications.

1.1 DIAGNOSTIC USERS

Diagnostic programs are used by computer design engineers,
manufacturing technicians, field service engineers, and end users or
customers. The common denominator of diagnostic users is their
requirement for excellent fault detection coverage. Requirements
concerning other diagnostic metrics such as program size, run-time,
faul t isolation, troubleshooting support, and operational
documentation will vary with users and applications. Diagnostic users
include:

o Computer Design Engineers
o Manufacturing Technicians
o Field Service Engineers
o End Users

1.1.1 Computer Design Engineers

Computer design engineers rely on design verification test programs to
detect functional or design implementation mistakes early in the
hardware development phase. Faul t (mistake) detection is their main
concern. Design engineers have little or no concern for program size,
run-time, fault isolation, troubleshooting support, or operational
documentation. But poor or incomplete design verification test
coverage (mistake detection) can resul t in costl y Engineer ing Change
Or de r s (E COs) a f f e c tin g man u fa c t uri n gin v e n tor i e s, ins tall e d s y s t em s ,
and/or missed development schedules.

Chapter 1
Diagnostic Users

20-Jan-83

1.1.2 Manufacturing Technicians

Page 1-2

Manufacturing technicians use diagnostics at several levels of the
hardware test and repair processes. Diagnostic programs are used to
screen (for defects) modules arriving from the module build process.
This application requires excellent fault coverage but is usually
sensitive to program run-time, thus forcing some design trade-offs
between exhaustive testing and acceptable time-to-test. Faul t
isolation and troubleshooting support is generally not required in
module screen diagnostics, since module repair is usually performed at
a special purpose repair station utilizing repair tools (e.g., GenRad
tester or microdiagnostics). Also, diagnostic operational
documentation is not heavily empbasized because the module screen
process is generally automated wi th the details of diagnostic
execution and control masked from the technicians.

A second area of manufacturing diagnostic use is unit or system test,
where central processing units, memory systems, input/output channels,
and peripherals are tested either as components or as newly integrated
systems. As in mod ule screening, excellent faul t detection coverage
is required to minimize the number of faults slipping through to later
system tests (possibly utilizing operating system software) or
customer applications. Diagnostic programs used for unit or system
test do not have the severe size and run-time constraints associated
with the module screening diagnostics. However, unit and system test
diagnostics must provide effective fault isolation and troubleshooting
support, since repair is sometimes performed on-line, that is, at the
time that the problem is detected. Diagnostic operational
documentation becomes more important in this application because the
technicians are directly involved with diagnostic execution and
control. Technicians also must deal with a wide variety of hardware
options; hence, a wide variety of diagnostic programs is needed.

1.1.3 Field Service Engineers

Field service engineers use diagnostic programs to install, maintain,
and repair computer systems in countless configurations running
countless applications. The goal should be isolation to the Field
Replaceable Unit (FRU). Their diagnostic requirements may include the
full spectrum of metrics: fault detection, faul t isolation,
troubleshooting support, and effective diagnostic operational
documentation. The need for excellent fault detection coverage, fault
isolation, and troubleshooting support is probably obvious from the
repair objective of the field service engineer's task. The need for
simple, effective diagnostic operational documentation is based on the
variety and complexity of the systems that field service engineers
support. Often the field service engineer is required to isolate and
repair faults in equipment on which he or she has received little or
no recent training. To further complicate the task, details of
equipment configuration and options will seldom be known to the field

Chapter 1 20-Jan-83 Page 1-3
Diagnostic Applications

service engineer and, therefore, should not be required in order to
execute the diagnostic programs. Default diagnostic test scripts are
key elements in the PDP-11 diagnostic operational effectiveness goal.
Several diagnostic metrics (such as program partitioning and run-time
parameter definition) are heavily driven to achieve the diagnostic
operational goals.

1.1.4 End Users

End users use diagnostic programs in different configurations running
various applications. The end user is concerned in determining
whether the fault lies in the application being run or in the hardware
running the application.

1.2 DIAGNOSTIC APPLICATIONS

Often, diagnostic programs are used in applications or processes that
are quite independent of the ultimate test and repair mission. These
applications impose requirements or constraints on the diagnostic
programs which, in some cases, conflict wi th test and repair
considerations. Since the ul timate effecti veness of a diagnostic
program is a result of both mission effectiveness and process
effectiveness, both sets of requirements must be addressed and
effective compromise solutions engineered.

1.2.1 Local Operator Application

The traditional and probably most important application for diagnostic
programs is local operator controlled and directed testing, fault
isolation, and repair verification. A major percentage of the PDP-11
Diagnostic Supervisor command functionality and the major diagnostic
test design and documentation efforts are directed toward local
operator effectiveness. Diagnostic scripting, ability to preconfigure
diagnostic data structures, and default unit testing are examples of
local operator test effectiveness tools.

Hal t and 100 p-on-error con trol, mul t i leve 1 error report i ng, summar y
test reports, field replaceable unit callout, and listing
troubleshooting documentation are examples of local operator faul t
isolation and repair effectiveness tools. Effective diagnostic
programs must be designed and implemented to achieve excellence in
test and repair support, operator ease of use and control.

Chapter 1 20-Jan-83 Page 1-4
Automated Applications

1.2.2 Automated Applications

Over the past few years, diagnostic programs have been used in
automated, often centrally controlled, applications. Automated
diagnostic operation consists of the execution of predefined
sequences, or scripts, of diagnostic programs. The scripting can be
via local command files packaged on the diagnostic media and processed
by XXDP+ or remote command files that are processed by the remote
computer, or diagnostic host, and supplied to the diagnostic
supervisor via a serial communication link. In the local script case,
the diagnostic programs are usually loaded directly from the same
local media, although there is at least one PDP-11 diagnostic
application in which a local script requests program loads from the
remote host. In remote script applications, the diagnostics can be
loaded from the local diagnostic media or down-line loaded from the
host via the serial communication link.

Automated diagnostic applications, whether locally or remotely
controlled, have a definite impact on diagnostic design and packaging
(see Chapter 7).

1.2.2.1 Autotest

There are many Automatic-Test Products within our sphere of influence.
This Automatic-Test Philosophy is dealing with the functions that are
designed to provide ease of use, improved time to diagnose, and
software control of each device designed diagnostic test-sequence,
enabling the ability to link each device diagnostic test sequence
through software control to provide specific system automatic-test.

1.2.2.2 APT APT is the acronym for an Automated Product Test
application used throughout DIGITAL Manufacturing. APT employs remote
diagnostic scripting with down-line diagnostic program load. Once APT
loads a diagnostic program and starts diagnostic execution, it
performs all monitoring and control functions (end of pass, error
status collection) via an APT-unique software interface and protocol
implemented in the diagnostic supervisor.

APT is sensitive to diagnostic operator intervention requirements, and
to diagnostic program size and down-line load time. Diagnostic
operator intervention, whether for configuration information or for
hardware option information, is generally unacceptable to the APT
application because of the need to create a finite set of test scripts
that can be applied to a wide set of possible system configurations
and hardware options.

Diagnostic program size and load-time considerations are obvious in
time sensitive test processes. Although arbitrary program size
reduction could reduce diagnostic fault coverage, thoughtful program
partitioning (to allow selective hardware testing) and avoidance of
verbose error and status messages (ASCII text) can benefit the
diagnostic in an APT application.

Chapter 1
APT-RD

20-Jan-83 Page 1-5

1.2.2.3 APT-RD APT-RD is an automated diagnostic control
application utilized by DIGITAL field service to provide contract
customers with quick response and effective on-site repair action.
APT-RD becomes involved shortly after a customer requests a service
call, by establishing a phone connection wi th the target system and
in i t i at in gad ia g nos tic t est s e s s ion p rio r tot he dis pat chi n g 0 f a
field service engineer. APT-RD effects Remote Diagnostic control by
issuing diagnostic command sequences, via the phone link, to load
(from local customer-mounted diagnostic media) and execute the
appropriate diagnostics. Unlike APT, APT-RD will down-line load
diagnostics only in rare situations (such as inability to boot or load
from the local diagnostic media). APT-RD scripts use standard
commands and key on ASCII message output (from the individual
diagnostic programs) for all moni toring and control functions. As an
application, APT-RD is extremely sensitive to the details of the
supervisor and diagnostic program command and response messages.
Also, as with APT, APT-RD is sensitive to diagnostic operator
intervention requirements and, to a lesser degree, diagnostic program
size and load time. Essentially the same diagnostic design
considerations that are important to meet APT application requirements
(program partitioning, no mandator y operator run-time intervention)
are required for APT-RD. In addi tion, APT-RD requires well-defined,
documented, and enforced (from program to program and version to
version) command and message standards and implementation.

1.2.2.4 ACT - The Automated Computer Test system (ACT-11) provides
three basic services that aid DIGITAL's manufacturing areas in testing
PDP-11 computers.

1 . Lo a dan d run a d i a g nos tic in to a Un i t Un d e r Te s t (U U T), as i f
it were run manually - called ACT "dump" mode.

2. Automatically load, run, and monitor a single diagnostic or
sequence of diagnostics through one or more iterations
called ACT "auto-accept" mode; includes "quick verify" mode.

3. Directly perform a variety of UUT memory tests - called ACT
"station test" mode.

1.2.2.5 XXDP+ Chain Mode XXDP+, the diagnostic operating system
for PDP-11s, consists of the monitor, diagnostic runtime services,
utility programs, and loadable device drivers for the utilities. It
has the facility to run programs without operator intervention, called
chaining (see Chapter 5).

Chapter 1
SLIDE

20-Jan-83 Page 1-6

1.2.2.6 SLIDE The "serial-line loader in demand everywhere"
(SLIDE) system is used extensively in peripheral manufacturing areas
to check out newly manufactured equipment. A SLIDE system consists of
a PDP-11 computer system that communicates with the UUTs via serial
asynchronous lines. The UUTs consist of a CPU that is known to be
good and the peripheral to be tested. SLIDE can be used to load
stand-alone programs. It can also chain diagnostics in the same
manner as XXDP+.

Chapter 2 20-Jan-83 Page 2-1

CHAPTER 2

DIAGNOSTIC PROGRAM METRICS

In this chapter, the term diagnostic metrics refers to the
characteristics, qualities, and attributes that affect the usefulness
or effectiveness of diagnostics for their various users and
applications. Chapter 1 introduced diagnostic metrics from the
standpoint of the diagnostic users and applications. This chapter
attempts to further define the metrics and relate them to tbe
diagnostic design and development process.

Considered in this chapter are the following metrics:

Fault detection coverage
Fault isolation and troubleshooting support
Diagnostic size
Diagnostic execution time
Operational functionality and documentation

2.1 FAULT DETECTION COVERAGE

Fault detection coverage is the common denominator or basic metric of
all diagnostic uses. Inadequate, incomplete fault detection increases
repair cost in either of two ways. First, it may defer detection of a
faul t to a later point in the computer manufacturing process. This
results in higher repair or recycling costs. Or it may defer
detection of a fault to a higher level diagnostic program (ultimately
the customer's application). This resul ts in longer troubleshooting
and repair verification time and a reduction in customer confidence.

2.2 FAULT ISOLATION AND TROUBLESHOOTING SUPPORT

Fault isolation and troubleshooting support are the primary goals of
diagnostic programs. Fault isolation is defined as explicit
identification, via error reports, of one or more FRUs. A FRU may be
an option, a subassembly (backplane and modules), one or a few
mod ules, or one or a few integrated circui ts (ICs). Troubleshooting
support consists of error reports (short of FRU callout), listing
doc umentation, and operational doc umentation intended to assi st the
technician in locating the failing components using a scope, logic
prints, etc.

Chapter 2
Fault Isolation and
Troubleshooting Support

2.2.1 Fault Isolation

20-Jan-83 Page 2-2

Fault isolation is an ambitious diagnostic undertaking that cannot be
achieved without active cooperation from the design team. This
cooperation must be in the form of well-defined and controlled FRU
functional logic partitioning or FRU interconnect visibility.

FRU functional logic partitioning requires that the majority of the
logic that implements a test function be physically and logically
located on one FRU. The implication is that by detecting the faul t,
the diagnostic program has isolated it to an FRU.

FRU interconnect visibility requires diagnostic read access to logic
states and signal s that feed or control the test function. When the
diagnostic program detects a failure, it gathers the appropriate
inputs and control states to determine if the fault is within the test
function, or reflecting into the test function from other interacting
log i c (w hi c h may bel 0 cat e din an 0 the r F RUm 0 d u leo r chi p) . Mo d u 1 e
interconnect visibility and function interconnect visibility are
employed by the PDP-11 microdiagnostics (module level FRU).

Even with FRU interconnect visibility, fault insertion quality control
is necessary to measure diagnostic FRU isolation effectiveness.

2.2.2 Troubleshooting Support

Troubleshooting support is a traditional component of virtually all
diagnostic programs. Error reports provide the first level of
troubleshooting information by supplying the failing test and subtest
numbers, a brief statement of the function and test performed, and
relevant test data and resul t data. Unless the user has extensive
experience with the diagnostic and hardware failure symptoms, the
error report information will not identify the repair action.
However, the report should direct the user to the correct test listing
section which, coupled wi th the test data and resul t data reported,
should provide detailed troubleshooting assistance.

The test listing documentation, coupled with operational functionality
such as 100 p-on-error, prov ides the user wi th a tool for determining
the failure source. Unfortunately, effective use of test listing
documentation and loop-on-error techniques requires a trained user and
well-designed and structured documentation. It is not uncommon for
one of these two prerequisi tes to be missing, resul ting in extended
troubleshooting and repair sessions. The diagnostic engineer cannot
greatly influence the level of training and expertise of the
diagnostic user. The engineer can, however, implement well-designed,
well structured, informative error reports and test sections that
maximize the potential transfer of troubleshooting assistance from the
implementor to the user.

Chapter 2 20~Jan-83 Page 2-3
Diagnostic Program Size

2.3 DIAGNOSTIC PROGRAM SIZE

Diagnostic program size is measured in kilowords (KW) of memory
occupied by a diagnosti~ program at execution time. Diagnostic
programs are comprised of test data, test execution code, environment
interface code, and ASCII data. None of these components can be
reduced arbitrarily without sacrificing test coverage, operational
functionality, isolation, or troubleshooting support effectiveness.
Program size must not exceed the minimum supported system memory size
minus the size of the diagnostic control programs. Beyond this
restriction, program size should be a function of the hardware test
application. For example, a single program covering a total hardware
subsystem maximizes local load media and test efficiency. Conversely,
several small programs covering specific hardware subassemblies and
mod ules will minimi ze APT down-l ine load time in a str uc tured test
process such as manufacturing module screening.

2.4 DIAGNOSTIC EXECUTION TIME

The execution time of a diagnostic program is the elapsed time from
start to completion of one test pass. A test pass may consist of
completion of all tests for each selected UUT (serial test), or
completion of all tests for all selected UUTs (parallel test).
Diagnostic execution time is primarily defined by the characteristics
and test requirements of the UUT. The first pass is a fast
verification (Quick Verify) of the UUT.

Pure logic tests usually execute at machine speed, thus allowing many
test passes to occur in a few seconds or less. Electromechanical or
data loop-back tests, such as disk head posi tioning tests or data
communicat ion tests, inc ur mill i second de 1 a ys (pa uses) resul t i ng in
test passes of a few minutes or less. Media testing (disk or tape)
incurs a combination of data transfer, electromechanical, and media
motion delays that can resul t in many minutes per test pass.
Diagnostic program design should not impose unnecessary pass time
requirements by building iterations into each test section.

The diagnostic engineer should specify first (Quick Verify) and also
subsequent pass execution times (via the functional and program design
specification), review them with the users, and employ thoughtful test
algorithms to optimize electromechanical and media test execution
times.

Chapter 2 20-Jan-B3 Page 2-4
Operational Functionality

2.5 OPERATIONAL FUNCTIONALITY AND DOCUMENTATION

Diagnostic program operational functionality and documentation define
the ease of loading and running the diagnostic program and the use and
inter'pretation of the diagnostic program in a troubleshooting and
repair situation.

Operational functionality is primarily what the diagnostic program and
the diagnostic control software are capable of providing to the user.
Operational functionality should be defined by the user's
requirements. Documentation largely defines how easily and
effectively the user can take advantage of the functionality.

Clearly, operational functionality is a prerequisite for easy,
effective diagnostic program use. However, without effective
documentation, the operational functionality will go unused.

Diagnostic programs are used in two modes:

1) test mode and

2) troubleshooting and repair mode

From an operational standpoint, these two modes have quite different
requirements.

2.5.1 Test Mode Diagnostic Functionality

Test mode diagnostic use is typically an attempt to answer the
question "Is there a hardware fault in the unit, subsystem, or
system?" The goal of test mode diagnostic operation is to fac il i tate
the running of all applicable diagnostic programs with as little
system configuration, hardware option, and diagnostic knowledge as
possible. Only when a fault is detected by a diagnostic program
should it be necessary and appropriate for the operator to understand
the hardware operation, diagnostic test algorithm, and troubleshooting
functionality.

The PDP-11 diagnostic system (diagnostic control software plus unit
diagnostic programs) utilizes configuration parameter and diagnostic
execution scripts to automate, as much as possible, the test mode use
of diagnostic programs. Diagnostic programs adhering to the PDP-l1
Diagnostic Runtime Services interface conventions and XXDP+ chain mode
programs will operate in script driven test mode (refer to Chapters 6
and 7).

Chapter 2
Troubleshooting and
Repair Functionality

20-Jan-83

2.5.2 Troubleshooting and Repair Diagnostic Functionality

Page 2-5

Troubleshooting and repair support diagnostic functionality is
important once a fault has been detected and reported by a diagnostic
program. The effectiveness of the failure isolation and repair
process depends on a combination of the diagnostic error report,
diagnostic test algorithm and supporting documentation, and the
diagnostic operator controls.

The error report must inform and direct the repair engineer wi thout
overwhelming him with superfluous data. PDP-11 diagnostics compatible
with Diagnostic Runtime Services employ a three level error report
structure -- header, basic, and extended. The intention is to provide
essential test information and function or FRU callout (header),
initial and final test status information (basic), and free-form
troubleshooting information (extended). The reports should provide
this information in structured, controlled packets that can be
selectively enabled or disabled according to the ability or need of
the diagnostic user to use the information.

Diagnostic test algorithms and their supporting documentation are
often the final resort troubleshooting guide for the repair engineer.
The diagnostic program must clearly define (through documentation and
test structure, not through a reading of the code) what the test is
doing, and how it is being done. Hardware initialization, initial
test data, and test results (data and state) should be clearly
identified and accessible. Although some formal diagnostic user
training must be a prerequisite for effective diagnostic
troubleshooting, the test algori thms and documentation must transfer
as much as possible of the diagnostic engineer's hardware and test
expertise to non-specialist diagnostic users.

The diagnostic control software's operator controls provide the final
element of diagnostic troubleshooting functionality. Diagnostic
troubleshooting controls such as loop-on-error, hal t-on-error, test
and subtest selection, bell-on-error, etc., are traditional functions
long provided by diagnostics. In general, these troubleshooting
control functions are generic to all diagnostics, and are standardized
and implemented largely by the diagnostic control software. However,
effective use of these functions depends on the diagnostic test design
and proper program interface to (interaction with) these functions.

Chapter 3 20-Jan-83

CHAPTER 3

DIAGNOSTIC STRATEGY

Page 3-1

This chapter describes diagnostic strategy and structure of the PDP-11
diagnostic system.

3.1 SYSTEM CORE DIAGNOSTIC STRATEGY

The Diagnostic Strategy for PDP-11 central processor units, and
compatible PDP-11 components, is a strategy designed to provide a test
sequence from a top down approach on the system level and a bottom-up
approach on the uni t level. The bottom-up strategy is based on a
building-block approach, initiating tests of the most primitive
functions, utilizing the most primitive controls. This strategy
continues building component and device confidence until the most
complex functions of a device are tested.

The top-down strategy is based on attempting to determine which device
on a s y stem iss us p e c ted to be fa iIi n g . Th i s top - down a p pro a chi s
achieved by execution of prime device functions, and their ability to
execute effectively interacting with all system components. The
system exerciser programs are designed to perform the required system
interaction within the constraints of the specification of the system
under test.

This section explains today's System Core Diagnostic Strategy from the
standpoint of:

System Core De fin i tion
System Core Diagnostic Goals
System Core Diagnostic Implementation Process

3.1.1 System Core Definition

System Core is made up of those CPU cl uster components which are
essential for the loading and execution of the most basic macrolevel
program. System Core typical 1 y incl udes the CPU micro-machine and
data paths, memory-I/O bus, memory controller and some minimum memory
storage, basic program load device functions, and finally, diagnostic
control functions. In other words, System Core consists of all of the
functions which are called into play from the pressing of the
bootstrap button until the second program instruction is fetched from
a predictable memory location.

Chapter 3 20-Jan-83 Page 3-2
Goals and Implementation

The System Core Diagnostic facili ty plays an important role in the
overall Diagnostic Strategy. Precise isolation of a fault requires
consistent, predictable execution of the test procedure which detects
the fault. Faults in the System Core will often result in
catastrophic unpredictable behav ior of macrolevel programs. A
Diagnostic Strategy which assumes a fault free System Core, or
attempts to test it by using it, will produce ineffective and
misleading results whenever one or more core faults exist.

3.1.2 System Core Diagnostic Goals

The prime goals of Digital's Core Diagnostic Strategy are to reduce
system mean time to repair (MTTR) by providing effective core fault
detection, isolation and troubleshooting facili ties, and to confront
the Field Servicel Manufacturing training problem by simplifying core
fault repair.

An effective Core Diagnostic facility benefits total system diagnostic
effectiveness (e .g., MTTR) by establishing a base level of system
operation from which the macrolevel diagnostic strategy can proceed.

The faul t isolation and troubleshooting aid s prov ided by the Core
Diagnostic facility enable a wider range of repair personnel to deal
with core failures which otherwise would require highly trained
technicians employing highly deductive trouble-shooting techniques
gained primarily through experience.

A secondary goal of the Core Diagnostic Facility, and one that is
somewhat difficult to quantify, is to increase system reliability by
protecting the system software from crashes resulting from undetected
Core faults. This extra measure of reliability is guaranteed by
invoking the Core Diagnostic facility as an integral part of the
bootstrap sequence.

3.1.3 System Core Diagnostic Implementation

System Core Diagnostic facilities have been implemented, or are being
planned, for the full range of Digital's computer systems. Al though
the systems range greatly in size and price, whether the system is the
PDP-11/04 or the PDP-11/70, the core components are similar (i.e., CPU
micro-machine, data paths, Mem-I/O bus, etc.), and the Core Diagnostic
facilities are functionally the same (i.e., ROM based micro and macro
level GO/NOGO tests, Core Test Control, Troubleshooting aids).
However, the size and complexity of the core components and diagnostic
facilities required vary significantly.

Chapter 3 20-Jan-83 Page 3-3
CPU and Option Strategy

3.2 CPU AND CPU OPTION DIAGNOSTIC STRATEGY

The CPU Cluster consists of all the hardcore components and the
additional components required for reliable program execution.
Effective test and diagnosis of the CPU cluster requires thorough test
and verification of the (hopefully small) System Core nucleus
components. Progression from microlevel System Core verification to
verification of the total CPU requires three levels of macrolevel
testing:

Hardcore Verification Tests
Basic CPU Tests
Extended CPU Tests

3.2.1 Hardcore Verification Tests

The Hardcore Verification Tests provide a macrolevel verification of
the functions already tested from the microlevel and then expand to
other hardcore functions which may not be candidates for thorough
microlevel testing due to microdiagnostic size constraints. The
Hardcore Verification Tests constitute the most basic macrolevel
program execution and rely on a basic CPU "halt" function and
primitive error-status display capability.

The role of the Hardcore Verification Tests with respect to the
overall Diagnostic Strategy is to provide the base level of operation
and to load and support the Basic CPU cluster Tests.

3.2.2 Basic CPU Cluster Tests

The Basic CPU Cluster Tests verify the fundamental operation of CPU
cluster components such as Memory Management, Data Cache, and basic
CPU Interrupt and Trap functions.

These tests establish the hardware base for execution of the Extended
CPU Cluster Tests and the memory and I/O Subsystem Tests.

3.2.3 Extended CPU Cluster Tests

The Extended CPU Cluster Tests extend from the basic CPU Cluster Tests
to include CPU options such as Extended or Floating Arithmetic
Instructions, and all normal and "exception condition" CPU cluster
functions. Specific diagnostic system implementations may perform
basic and extended CPU cluster testing within the same diagnostic
program. In other implementations such as one based on
establishing a hardware base on which the diagnostic control software
will run as soon as possible -- the basic and extended CPU Cluster
Tests will be performed by separate diagnostic programs.

Chapter 3
Microdiagnostics

3.2.4 Microdiagnostics

20-Jan-83 Page 3-4

The trend in peripheral subsystem design (terminals included) is
towards microprogrammed, microprocessor-based control. The trend in
peripheral (and terminal) diagnostics is towards diagnostic microcode,
i.e., microdiagnostics. Microcoded diagnostics have three important,
inherent advantages over macrocoded diagnostics:

1 . Microdiagnostics can test hardware in very small incremental
pieces. In this sense, the microprocessor
feature yielding very efficient tests and
fault detection and isolation.

is a diagnostic
greatly imporved

2. Microdiagnostics provide complete, subfunction level control
over the sequence and timing of test operations. In addition
to affording more effective and efficient testing, this
capability facilitates time measurements and time-critical
testing in a way which is processor independent and operating
system independent.

3. Since peripheral microdiagnostics are merely data files
insofar as processors and software are concerned, per ipheral
microdiagnostics are inherently processor independent and
operating system independent.

Diagnostic microcode will generally be implemented as a combination of
resident and non-resident firmware. The resident firmware will reside
in ROM or PROM and will contain the system core microdiagnostic. The
system core microdiagnostic will test:

1. the hardware system core,
2. the load path for the non-resident microdiagnostics and
3. the ability of the resident microdiagnostics to communicate

with software.

The non-resident microdiagnostics will take the form of RAM overlays
and will functionally pick up where the resident words
microdiagnostics left off. In general, there will be many words of
non-resident microdiagnostics for each word of resident microdiag
nostics. Resident microdiagnostics would be ini tiated by power-up,
pushbutton, or software. Microdiagnostics would normally rely on
software to analyze and interpret results, communicate with the
operator, and load the non-resident microdiagnostic overlays. As an
alternative, microdiagnostics could be made available in the form of
optional plug-in modules.

Microdiagnostics are the most effective and efficient means of
detecting and isolating hardware fa ul ts . They do not ver ify the
design, test against functional specifications, or demonstrate the
capaci ty to do useful work. For these reasons, higher level
diagnostics must be provided in addition to microdiagnostics.

Chapter 3
Peripheral Strategy

20-Jan-83

3.3 PERIPHERAL DIAGNOSTIC STRATEGY

Page 3-5

In general, a peripheral diagnostic can assume that the central
processor and memor yare 100% funct ional . Thi sis usually a safe
assumption, although the extended, high-speed data transfers included
in some peripheral diagnostics (e.g., disk) should be expected to
sometimes bring out intermittent memory failures not detected by the
memory diagnostics. Thus, in a sense, intermittent memory faults are
a proper secondary target of certain peripheral diagnostic tests.

3.3.1 General Requirements

Peripheral diagnostics should run on all members of a processor
family. This requires that code be limited to a carefully chosen
subset of the total family instruction set and that code which depends
on instruction execution time for proper execution be avoided.

Peripheral diagnostics are used in a variety of environments
standalone, APT, operating system, system exerciser, remote diagnosis,
etc.

Chapter 3 20-Jan-83 Page 3-6
Fault Detection and
Isolation

3.3.2 Fault Detection and Isolation

As wi th all types of diagnostics, the general trend will be towards
better fault detection and towards automatic or semiautomatic fault
isolation. Improved fault detection and isolation will be the result
of six elements:

a . Hore comprehensive
detection, and error
drives.

and detailed status reporting, error
reporting by peripheral controllers and

b. More careful partitioning of hardware so as to create rational
relationships between functions (or malfunctions) and the
field replaceable units.

c. More comprehensive "diagnostic hooks" including:

1 • data and control loopbacks (wraparounds) at all major
interfaces:

between the I/O bus and the central processor

between the I/O bus and the peripheral controller

between the peripheral controller and the drive

between the drive and the media

2. facilities allowing hardware to be exercised and tested
incrementally and in small pieces at the "subfunctional"
level consisting of:

the capability to read and write all registers, status
flip-flops, control memories, silos, buffer memories,
etc.

the capabili ty to one-step, i.e., clock, logic under
program control

the capability to thoroughly exercise and test a
peripheral controller without involving the drive

the capabili ty to thoroughly exercise and test a
peripheral subsystem without involving the media (e.g.,
wi thout head motion, wi thout tape motion, wi thout
reading from or writing to the media, etc.)

the capability to directly test all data and
paths and arithmetic and logical operations
"subfunctional" level

control
at the

the ability to "force" errors under program control

Chapter 3 20-Jan-B3
System Exerciser

d. Diagnostic microcode.

e . Physical fault
insolation and
dictionaries.

insertion to verify fault
to create (or just to

Page 3-1

detection and
verify) fault

f. Greatly increased emphasis and effort on fault isolation.

Peripheral subsystem diagnostics will provide one of three levels of
automatic fault isolation:

a. Faults will be isolated to the subsystem, i.e., the subsystem
will be verified.

b. Faults will be isolated to the controller or drive, i.e,
controller faults will be distinguished from drive faults and
drive faults will be distinguished from media faults.

c. Faul ts will be isolated to one or a few field replaceable
units.

For a given peripheral subsystem, the actual level of automatic fault
isolation provided will be determined by both practical and
philosophical considerations such as total number of field replaceable
units, product cost, product life, schedule, volume, development cost,
resource availability, etc.

3.4 SYSTEM EXERCISER DIAGNOSTIC STRATEGY

The primary goals of a system exerciser are:

1. to detect and isolate failures not detectable at the unit or
subsystem level of testing, and

2. to provide a level of confidence in the functionality and
reliability of a system.

The system exerciser is especially designed to catch the following
types of problems:

1 . bus interconnection problems, such as those associated wi th
latency, noise, crosstalk and transmission line phenomena,

2. dev ice interaction problems such as those caused by bus or
memory contention,

3. system loading and bus traffic problems such as data late,
data overrun or underrun caused by latency, bandwidth, access
rate, cycle time, peak transfer rates, etc.

Chapter 3
Communications

20-Jan-83 Page 3-8

4. other configuration-sensitive problems such as those of
multi-port peripherals, shared busses, multiprocessors, etc.

A system exerciser is not designed to simulate normal, customer usage
of a system. Rather, a system exerciser is designed to stress the
system (within the specified limits of the hardware).

In general, the data transfer rate, subsystem interaction, bus traffic
and general level of system activity produced by the system exerciser
should exceed that produced by user tasks running under an operating
system.

A system exerciser is designed for comprehensive error detection.
Failures are much more likely to be detected and isolated via a system
exerciser than via systems or applications programs. Often, faul ts
which only appear intermittently when running systems or applications
programs, appear frequently when running the system exerciser.

A system exerciser test module must be developed for each unique
system component. The system exerciser is a configuration of
subsystem-specific test modules executing concurrently (under control
of an executive program). The run-time system exerciser is sysgen' d
in the factory or field for each system configuration.

3.5 COMMUNICATIONS DIAGNOSTIC STRATEGY

Communications Diagnostic Engineering provides software and hardware
expertise to Manufacturing, Engineering, and Field Service and acts as
the "sounding board" on such issues as marketplace, networks,
engineering design and implementation, front ends, 1/0 processor
architecture, system engineering user mode diagnostics and the related
supporting software.

It is important that the network diagnostic strategy is developed
irrespective of processor type or architecture and that it supplies
the guidelines for the network system. The goal is to provide:

1. Link Verification (node-to-node communication).

2. Node Verification (Modem & Line).

3. Controller Verification (communications device).

Chapter 3 20-Jan-83 Page 3-9
Link Verification

3.5.1 Communications Strategy

Communications diagnostics are structured to provide a high level of
fault isolation in keeping with Field Service requirements. There are
two basic approaches to developing hierarchies of programs designed to
systematically detect and isolate failures in hardware. One approach
is the "bottom up" process, which assumes that the failing uni t is
pro b a b 1 Y ide n t i fie d w hen the fa u 1 tis in i t i all y de t e c ted . Th e 0 the r
i s the " top down" a p pro a c h , w hi c has sum est hat the fa u 1 tis not
isolated to a small segment of the system when the fault is initially
detected. The first program to run on the system, in the top down
approach will be a system exerciser whose purpose is to identify the
failing subsystem or unit(s). Once the subsystem or unit is
identified, a unit diagnostic will be run bottom up to identify the
failing segment of logic. Most often this will be the module which
will be replaced. In some cases, the maintenance philosophy may
require identification of the failing component to accomodate field
repair. In those cases another program may be run to analyze that
segment of logic and identify the failing component. The "top down"
approach has been established to minimize debug time in the field.

3.5.2 Link Verification

The following strategies are based on the "top down" approach.

DCLT (Data Communications Link Test) - These programs are meant to
prov ide Field Service wi th a tool to maintain communication links.
The programs provide the coverage necessary to detect failures in the
computer equipment, the communication link, or the modems. Several
modes of operation are available which can be used to check out the
communication link using a building block approach.

NIE (The Network Interconnect Exerciser) will be used to determine the
ability of nodes on the Network Interconnect (NI) to communicate. The
NIE will also be used to aid other tools in troubleshooting the NI.
The exerciser should be run whenever a problem is noticed and the
ability of nodes to communicate is in question. It could also be used
to test the ability of a new node to communicate on the network or to
test the communication ability of a node which has been having
problems.

ITEP (Interprocessor Test Program) is an over-the-line program to
isolate faults primarily in the communications device, telephone line,
or modem. It provides the Field Service operator with tight,
repeti tive loops for scope v iewing of the modem leads and line. It
also provides simple message transfer to a remote site running the
same program or the Maynard Communications Turn-Around System. ITEP
checks out terminals as well as remote processors.

Chapter 3 20-Jan-83 Page 3-10
System Performance

CTAS (The Communication Turn-Around System) will prov ide the Field
Service organization an easy to use method for establishing the data
reliability and link integrity of a data communications network.
Field Service personnel using CTAS will be able to perform
installation checkout for new systems and fault isolation in existing
systems.

Several modem types are supported as well as various baud rates. This
allows the user to run against a known good interface, so that
problems may be properly located, whether they occur in the software,
interface hardware, modem, or communication line.

3.5.3 System Performance

DEC/X11 -- DEC/X11 modules are written for all communication devices
to provide system performance critiqueing. The hardware design
provides the programmable maintenance features needed to support
DEC/X11 without requiring Field Service hardware reconfiguration.
This is especially true for communication devices as they are usually
connected to modems and the telephone system. Approximately 85% of
the logic can be tested without operator intervention.

Exerciser Emulators -- Special Field Service diagnostic tools such as
the IBM 2848 responder are provided to spot faulty customer design
problems due to protocol, channel interface design and non-standard
configurations. These "tools" find delicate and subtle micro-pro
cessor type problems as well as proving "on which side of the fence"
the problem lies. Isolation of the customer's software, telephone
line, and modem are critically important to a network's, as well as
Digital's, credibility. These programs are submitted along with the
normal SDC released programs.

Manufacturing Exercisers Because of the special requirements of
Manufacturing (one all encompassing GO/NOGO diagnostic), a
manufacturing-only diagnostic is provided only through internal
distribution. These programs allow selection and deselection of
mul tiple units while undergoing heat env ironment testing. They also
provide the ability to configure a non-standard system to minimize
operator intervention. Communication devices have a proliferation of
strapping and switch options, and if all were required to be selected
and cut, production test time would be greatly increased.
Manufacturing Exercisers greatly increase manufacturing throughput and
have served very well for the existing hardware architecture.

Chapter· 3
Autotest Strategy

20-Jan-B3

3.5.4 Standalone Communications Diagnostics

Page 3-11

After the failing unit has been identified, the bottom up approach is
used. The diagnostics are operated in a standalone mode and stress
timing internal to the dev ice to max imum I imi ts . Finding timing
errors in the operating system environment would be much more subtle
and d i ffic ul t than using these tests. Usually five or si x BK word
programs are involved as all code is straight line. Errors found in
the lower level tests will be mbre descriptive in these simpler tests
to help isolate problems to the component level.

3.6 AUTOTEST DIAGNOSTIC STRATEGY

3.6.1 Commercial Maintenance Products Program

The Commercial Maintenance Products Program developed by Commercial
Diagnostic Engineering fills a need for user friendly functional
testing packages as part of the existing commercial system maintenance
strategy. Wi th no training or documentation required for operation,
plain English prompts and responses, and test run times measured in
seconds or minutes, this software has a broad range of applications.

3.6.2 FTS-11

The Functional Test System for PDP-11 bounded computing systems is
part of the Commercial Maintenance Products program. From a library
of functional test modules, specific test packages can be rapidly
assembled to fill the needs of novice commercial users.

3.6.3 Auto Test Strategy for DECSA (Digital Ethernet Communications
Service, Model A)

The DECSA system is tested by three sets of diagnostics. The sets are
a self test, a Loadable Diagnostic Image, and a set of On-Line
Diagnostics.

The Self-Test executes on power up or "init" and checks out the "hard
core" and "load path". Then the Loadable Diagnostic Image (LDI) is
brought in to do a thorough diagnosis of the DECSA. To complement
these tests, some on-line tests are included that will test line cards
and data. links while the system is running the "operating software".

The Self-Test and LDI will run in an automatic mode and can be invoked
by the operator depressing a TEST switch on the front panel of the
DECSA.

Chapter 4 20-Jan-83 Page 4-1

CHAPTER 4

OPERATING MODES AND CAPABILITIES

The following operating modes and capabi I i ties should be prov ided by
diagnostic programs. Various diagnostics may require additional
features to achieve their goals and maximize their utility. Program
control should be consistent within a program, among programs for the
same or similar hardware subsystems, among programs for a given
product line or family, and should follow all applicable standards.
Dev iations from standard s should be noted and completely descr ibed
within the program listing and in the Program Users' Description.

In general, operator control of, and interaction wi th, the program
should be via an interactive terminal, console switches or a software
swi tch reg ister and a pr inter. The present trend in CPU des ign is
away from hardware swi tch registers. Thus emphasis should be placed
on designs where these functions are implemented in software (see
Chapter 6). Operator interaction with a program by explicitly
interrogating or mod i fying memory locations is to be avoided. When
unavoidable (due to memory limitations), the documentation should
highlight this fact. Instruction for entering this information should
be clearly stated.

4.1 PROGRAM SELF IDENTIFICATION

If a print device is available, the program should print its name
revision number and release date as the first step of execution. I~
the case of programs with long run times, tests and possibly subtests
should similarly identify themselves. The exceptions to this are unit
diagnostics for CPUs and memories where the CPU and memory are assumed
to be working. Consideration should be given to inhibit this function
under certain special conditions (e.g., Quick Verify and chain mode in
an automated environment).

4.2 TEST SELECTION CAPABILITY

Diagnostic programs should prov ide the operator wi th the capabili ty
to:

Chapter 4 20-Jan-83 Page 4-2
Program Execution Modes

1 • Select and run the complete set of tests comprising the
program. On unit diagnostics this should be the normal
default mode of operation. Note that sub-tests requiring
operator intervention normally should not be executed in the
default mode.

2. Begin program execution wi th the first sub-test and run the
subset of tests between the first sub-test and the selected
sub-test of the program, inclusively. The diagnostic engineer
should also consider the option of allowing the operator to
specify loops which start at a selected sub-test and recycle
at the last sub-test in the program.

3. Loop on operator-selected tests. When looping on operator
selected tests, an initial error is not required to establish
the loop. When looping because the loop-on-error swi tch was
set, an initial error is required to establish the loop but
additional errors are not required to sustain the loop.

In programs constructed incrementally, like unit diagnostics, starting
the testing in the middle of the program should not produce erroneous
or confusing error messages. The diagnostic engineer must des ign
tests to be independent of one another.

4.3 PROGRAM EXECUTION MODES

Depending upon the program execution mode, the occurrence of an error
will result in the following:

4.3.1 Continue On Error

If an error occurs in this mode, the program will print the error
message and continue unless error reports have been inhibited (4.3.5).
Diagnostics default to this mode of operation.

4.3.2 Halt On Error

If an error occurs in this mode, program execution will be halted or
go back to the prompt in DRS. The capabil i ty to continue or to
restart the program or to loop on the failing test must also be
provided. Continuing is the default mode in which most programs will
execute. The exception to this default condition may be certain unit
diagnostics (e.g., CPU diagnostics).

Chapter 4 20-Jan-83 Page 4-3
Program Execution Modes

4.3.3 Loop On Error

In general, the size and boundaries of error loops are determined by
the diagnostic eng ineer . An ini tial error is required to establ i sh
the loop, but additional errors beyond the first should not be
required to sustain the loop. The default condition should be for the
program to continue after an error.

Note

In certain very special cases this rule
may be violated (e.g, exercisers).
However, when violated, the documentation
should clearly state this fact.

4.3.4 One Error Report Per Sub-test

Programs should be designed so that if an error occurs in a subtest,
only the first error report will be printed.

4.3.5 Inhibit Error Reports

This mode will inhibit printing error reports, except for a class of
errors (fatal) which should be printed whether or not this mode is
selected.

4.3.6 Inhibit Progress Reports

The operator must have the ability to inhibit printing progress
reports. This mode will provide that capability.

4.3.1 Error Logging

An optional mode of operation can include the accumulation of various
error types in memory during execution, with or without error
type-outs. These memory locations could be later interrogated by the
operator. This mode could be used in circumstances where an output
device is normally not available or where prolonged, unattended
operation is expected in normal circustances. Report code section of
DRS diagnostics support the logging of test summaries. (DEC STD 153,
being updated, addresses Logging and Reporting of System Events.)

Chapter 4 20-Jan-83 Page 4-4
Interactive Program Execution

4.3.8 Signal (Bell) On Error

This optional mode of operation is to provide t~' user with an audible
or visual ind ication that an error has been detected. It is useful
when adjustments are required or when intermittents are being tracked
down.

4.4 INTERACTIVE PROGRAM EXECUTION

Execution of certain
recabling, powering
inserting file protect
With such interactive
sho uld :

tests requires operator action, such as
down, opening doors, removing disk packs,
rings, operating switches and pushbuttons, etc.
programs, the tests requiring operator action

1. print out clear, complete instructions,
2. pause until the operator responds via switches or keyboard,

indicating the action has been taken,
3. verify the operator's actions, and
4. continue execution.

Lack of a timely response or failure to verify the operator action
after a response should result in an appropriate message and retry by
the program. If neither a terminal or printer is available, the
program will take action similar to that described above (except, of
course, no instructions or messages will be printed). Here it is
doubly important that the operator's actions be thoroughly described
in both the listings and the Operating Procedures section of the
Program User Description. In summary, the diagnostic engineer should
recognize that restart and retry capabilities are very important
functions which must be carefully human engineered.

The diagnostic engineer should consider methods of defaulting program
execution to its unattended mode (i.e., don't do any test requiring
operator intervention). This is a human engineering consideration
which is based on the type of program and the environment in which it
will be used.

4.5 BASIC FUNCTIONAL TESTING AND RELIABILITY MODE

When designing a system core diagnostic, the diagnostician should
consider at least two modes of operation which may be required for the
program.

Chapter 4 20-Jan-83 Page 4-5
Basic Functional Testing

4.5.1 Basic Functional Testing

In this mode, the basic (gross) functional tests are executed. This
mode, also known as quick verify, is used as a go/no-go type test.
The purpose of this mode is to provide maximum coverage with minimum
exec ution time. Sub-t"ests requir ing operator inter vent ion are never
performed in the quick verify mode.

4.5.2 Reliability Mode

In the reliabili ty mode, all sub-tests in the program are executed.
In some cases, the sub-tests may be iterated several times during a
single pass. Finally, programs requiring operator actions may need a
mode of operation where the sub-tests requiring operator action are
skipped. The quick verify mode may be implemented by skipping manual
intervention sub-tests and performing all other sub-tests but without
all the iterations performed in the reliability mode.

4.6 DEFAULTING PHILOSOPHY

As a general philosophy, the default mode of operation (load and go)
should be the most rigorous and complete mode of execution of the
program. The diagnostic engineer should consider the objectives of
the program relative to its uses and operating environments when
determining the sub-tests and iterations to be used in the defaul t
mode.

4.7 SPECIAL OPERATING MODES

Exercisers are a special class of programs where the diagnostic
engineer may see that more than two modes of operation are useful.
For example, an acceptance mode may be needed for manufacturing.
Thus, the program may have several different sequences of sub-tests
(scripts) required for the various modes of operation. There are two
basic approaches appl icable . The first is to package the v ar iou s
scripts and use the swi tches or other indicators to determine which
script to execute. The second is to allow the operator or an
automated manufacturing system to specify the sub-tests to be run.
The diagnostic engineer should address the question and understand the
tradeoffs between using one or both of the two implementations. The
prime factor to consider is the frequency with which the scripts would
be changed. If they are expected to change rarely, the first approach
is recommended.

Chapter 4
Chain Mode

4.8 CHAIN MODE

20-Jan-83 Page 4-6

Chain mode operation consists of the sequential execution of programs
without operator intervention. Only programs that have been designed
to run in chain mode can be chained. For additional information on
the use of chain mode refer to Chapter 7.

Chapter 5 20-Jan-83

CHAPTER 5

DIAGNOSTIC DEVELOPMENT PROCESS

Page 5-1

This chapter identifies the activities that make up the diagnostic
development process. The process presented is general in that it is
appropriate for any diagnostic development effort -- large or small.
The presentation is also specific in that it is heavily biased toward
the DIGITAL diagnostic development process.

The diagnostic development process consists of the following major
phases:

Consultation
Planning
Implementation
Testing, QA, and release
Maintenance

Each phase involves objectives, time and staffing requirements, and
external dependencies. Al though specific objectives, requirements,
and dependencies will vary from project to project, development of an
effective diagnostic product requires thoughtful attention to each of
the development phases. The Phase Review Process Manual (Order No.
EL-EN356-00) and DEC STD 028 describe DIGITAL's corporate Phase Review
Policy. Diagnostic projects will usually fit into the phases and use
some of the milestones of the hardware systems for which the
diagnostic programs are being developed.

5.1 CONSULTATION PHASE (PHASE 0)

The consul tation phase of diagnostic development is an information
gathering and exchange process. It is usually an effort requiring an
experienced diagnostic project leader or technical supervisor to work
with engineering, customer services, and manufacturing to formulate
diagnostic strategy, key project milestones, and preliminary staffing
requirements.

The consultation phase may start before project funding is negotiated
and continues through the writing of a cursory project plan (strategy,
key milestones, staffing).

Failure of a diagnostic engineer to be involved in the consul tat ion
phase reduces the opportunity for early diagnostic inputs and
increases the chance of failure if there is a lack of understanding of
the users' requirements.

Chapter 5 20-Jan-83 Page 5-2
Planning Phase (Phase 0)

The results of this phase should be published in a diagnostic
requirements document. This document specifies the technical
requirements of the diagnostic in terms of:

required capability of the product
required environment in which it will operate
required packaging, installability, ease-of-use, performance,
reliability, maintainability, compatibility, evolvability, and
serviceability (required quality)
required documentation (refer to the Software D~velopment
Policies and Procedures)

5.2 PLANNING PHASE (PHASE 1)

The diagnostic development planning phase can begin when the cursory
diagnostic requirements document is reviewed and agreed upon and a
diagnostic project leader is assigned. Then the diagnostic project
plan or functional specification is wri tten. For moderate to large
projects (2 or more diagnostic engineers and/or 9 months or more
duration), the following diagnostic planning documents should be
developed:

Diagnostic requirements document
Diagnostic project plan
Diagnostic functional specification
Diagnostic program design specification

For smaller projects, it is appropriate to combine the relevant
planning information into one or two doc uments . DIGITAL diagnostic
engineers should follow the Software Development Policies and
Procedures manual for the diagnostic engineering project plan (7C3-1),
functional specification (7C3-2), and program design specification
(7C3-3).

5.2.1 Diagnostic Project Plan

The diagnostic project plan lays the foundation for the total
development effort. It presents, in a single document, an overview of
the product and product goals, a statement of diagnostic goals and
strategy, a summary of key project and diagno~tic development
milestones, and estimates of required resources (staff and computer
facilities). Specifically state gating items, critical paths,
requirements, and assumptions being made. Often, the project plan is
developed in two stages. A Rev 0 project plan requiring from two to
several weeks to develop may be followed later (often after functional
specifications are written) by the Rev 1 or final project plan.

Chapter 5 20-Jan-83 Page 5-3
Functional Specification

Thoughtful development and review of the project plan are
prerequisi tes for all diagnostic development efforts, regardless of
their size or complexity.

5.2.2 Diagnostic Functional Specification

The diagnostic functional specification is essentially a statement of
how the diagnostic goals for each major diagnostic component will be
achieved. The functional specification should be developed by the
project leader or diagnostic engineer responsible for program
implementation.

The diagnostic functional specification addresses three important
facets of the product:

a. Diagnostic Product Goals
Intended users (design engineering, field service,
manufacturing)
Intended env ironments (local operator test, repair, APT,
APT-RD, XXDP+, ACT-11, SLIDE)
Diagnostic metrics (fault detection, isolation, and
troubleshooting goals; program size and execution-time
goals; operational functionality and documentation goals)

b. Diagnostic Requirements
Hardware test and isolation aids (special control logic,
partitioning, test visibility)
Hardware and software restrictions (hard-core error
detection, minimum memory size and required hardware
options, operating system driver)
Development requirements (development resources: hardware
and software, debug and evaluation resources, project
staffing)

c. Development Process
Key project milestones (engineering breadboard and
prototype support: what and when, preliminary release
availability, final completed availability)
Key process events (specification and implementation
reviews, quality assurance procedure, post-release support)

5.2.3 Diagnostic Program Design Specification

The diagnostic program design specification describes, to the working
design level, the internal diagnostic program implementation. It
describes how the diagnostic functionality is to be implemented.

Chapter 5 20-Jan-83 Page 5-4
Implementation Phase (Phase 2)

Several methods of program design representation are available:

Detailed hierarchy charts
Interface specification blocks
HI PO diagrams (structured flowcharts)
Programming design language 1 (PDL1)

Development of an appropriate program design representation -- from
overview level hierarchy charts to detailed PDL 1 descriptions -- is
well worth the initial investment. It increases the probability of a
high quali ty, accurately scheduled, program implementation and the
timely development of useful program maintenance documentation.

5.3 IMPLEMENTATION PHASE (PHASE 2)

In theory, the transition between the diagnostic planning phase and
the implementation phase sho uld be clear ly de fined. Occasionally,
however, both activities must go on in parallel. Such is the case for
diagnostic efforts in support of new hardware products,' where
engineering breadboard and prototype support programs for hardware
debug and design verification are needed well before the final
diagnostic product is needed, or could be developed.

It is often necessary and desirable to plan the engineering breadboard
and prototype diagnostic support phase as a semi-independent part of a
proj ect wi thin' the overall diagnostic effort. Based on the timing 0 f
engineering hardware support requirements, with respect to the startup
of the diagnostic plan and specification effort, it may be necessary,
and desirable, to defer detailed diagnostic functional and design
specification completion until the engineering support programs are in
place. Obviously the hardware dependent diagnostic capabilities and
requirements must be specified during hardware design.

5.3.1 Engineering Breadboard and Prototype Support

The objective of this part of the implementation phase is to provide
the hardware engineers wi th basic hardware debug programs and design
verification programs. These programs will be required wi thin a few
hours to a few days of ini tial hardware power-on. The level of
hardware debug program support and diagnostic engineer support will
vary from project to project. However, hardware design verification
programs are normally essential to reduce the propagation of design
mistakes into large numbers of prototypes or final systems.

Chapter 5 20-Jan-83 Page 5-5
Final Implementation

The timely development of the correct (needed) set of engineering
debug and design verification programs is an early, visible, and
important phase in the diagnostic development process. Also, this
phase enables the diagnostic engineer to develop the hardware
functional understanding and the hardware implementation understanding
that is essential for specification and implementation of effective
diagnostics. The hardware debug and design verification effort
requires planning and review to the same extent as the final
diagnostic effort.

5.3.2 Final Diagnostic Implementation

To the same degree that the engineering breadboard and prototype
support diagnostic effort must be focused on engineering hardware
debug and design verification needs, the final diagnostic
implementation effort must be focused on the diagnostic effectiveness
and process needs of field service and manufacturing.

Since the needs of engineering debug and design evaluation are
considerably different from those of manufacturing and field service
(Section 1.1), the engineering diagnostic programs are not readily
transportable to the manufacturing and field service environments.
However, the diagnostic engineer's acquired knowledge and expertise
are significant and transportable.

The final diagnostic implementation phase begins wi th rev iew of the
diagnostic functional and program design specifications and ends when
the diagnostic programs are suitable for pre-release. Since this
phase of diagnostic implementation is often a critical path for key
product milestones (manufacturing startup, design maturity testing,
and first customer shipment) it is important that the development
tasks be well-defined, understood, scheduled in measurable stages,
monitored, and reported. Good foresight in the planning phase will
payoff here. For complex or cri tical product development efforts,
trade-offs may have to be made between diagnostic program completion
and the need to provide base level diagnostic programs. This is fine
as long as deficiencies and imcompleteness are well communicated.
Schedules should be reviewed for possible early support interference
wi th remaining development and test. Legi timate diagnostic program
pre-release can occur when diagnostic development is complete
(including debug and test), listing documentation and operational
documentation are in final form, and a formal qual i ty assurance (QA)
checklist has been completed.

The diagnostic engineer should prepare the QA checklist according to
the goals set up in the functional specification and this manual. It
is good practice (required in DIGITAL diagnostic engineering) to
conduct a pre-release review of the package (including the planned QA
checklist) with hardware engineering, manufacturing, and customer
services engineering representatives.

Chapter 5
Quality Assurance and
Release

20-Jan-83 Page 5-6

5.4 DIAGNOSTIC QUALITY ASSURANCE AND RELEASE PHASE (PHASE 3A)

The final stage in the diagnostic development process is the QA effort
leading to formal diagnostic release.

Quality assurance must be an ongoing process in the diagnostic
development effort.

The QA process must involve members of customer services,
manufacturing, and possibly, product lines, formal evaluation.

5.4.1 Introduction

Diagnostic Quality Assurance is an aggregate of policies and
procedures designed to ensure that a diagnostic achieves the desired
level of quali ty. The desired level of quali ty must be determined
before the project is underway and must be expressed as a set of
project goals. The resources (people, time, equipment, technology)
required to achieve the desired level of quality' must also be
determined. Included in these resources must be the quality assurance
resources, i.e., the resources necessary to test the quality of the
diagnostic and to correct discrepancies between specified and measured
quality.

The diagnostic quality objectives for a given product are determined
by manufacturing cost objectives, maintenance cost objectives, product
life, product volume, competition, field and factory test and repair
strategies, customer expectations and the resources available for
diagnostic development. Included in these resources are the
diagnostic features designed into the hardware.

The following diagnostic qualities must be assured to the specified
level:

fault detection
error reporting precision, accuracy and comprehensiveness
fault isolation
necessary skill level of the intended user
precision, accuracy and comprehensiveness of the
documentation

maintainability of the diagnostic
XXDP+/ACT/APT/SLIDE or other system compatibility
compatibility with all legal configurations
conformance to standards

Chapter 5
Design Rev iews

20-Jan-83

The basic ingredients of the QA process are:

design review
design engineering acceptance
factory installation
performance feedback

Page 5-1

configuration on other system compatibility testing
XXDP+/ACT/APT/SLIDE or other system compatibility testing
hardware or software fault insertion

It is important to note the QA testing of a diagnostic cannot be
confined to the engineering laboratory. For reasons which are
explained below, diagnostic QA testing is a process which continues
through the first few months of production and delivery.

5.4.2 Design Reviews

The review of diagnostic plans and specification is the first phase of
the QA process. These reviews assure that the knowledge, insight and
experience of the entire corporation are exploited, from the inception
of the project, by the diagnostic engineers. Periodic design reviews
during the design, coding and debug phases of the diagnostic
development cycle minlmlze the number and scope of discrepancies
discovered during the quality assurance testing phase.

5.4.3 Manufacturing Installation

After debug on prototype hardware, the diagnostic engineer introduces
the diagnostic program and assists in installation on the
pilot-production line. At this point the program is really a prototye
diagnostic and the engineer will instruct manufacturing and field
personnel in its use, monitor its utility and effectiveness, solicit
constructive cri ticism and react to the process by correcting and
enhancing the diagnostic. This process is complete only when the
production line is up and running to everyone's satisfaction, normally
a matter of a few months.

Chapter 5
Performance Feedback

5.4.4 Performance Feedback

20-Jan-83 Page 5-8

Feedback of diagnostic performance is vital to the diagnostic quality
ass urance process. Feedback should come pr imar ily from two sources,
f"Ian ufac t ur ing and Field Serv ice. Man ufact ur ing uses the diagnostic s
in the fa c tor yin s tall at ion pro c e s s . Fie 1 d Se r vic e use s the
diagnostics in the field test sites and at first customer sites. Any
bugs or deficiencies discovered by these groups should be reported
back to the diagnostic developers. In the initial startup phase of a
product, the problems should be reported by telephone to the
developers. As the product life cycle continues, problems can be
reported back using problem reporting systems such as AIDS or PRISM.

5.4.5 Configuration Compatibility Testing

Engineering must connect prototype hardware to several configurations
so that diagnostic software can be run against a variety of
configuration possibilities.

Engineering laboratories seldom have sufficiently large and varied
configurations to assure that a program will run on all members of a
processor family and with all options but every effort should be made
to audit diagnostic performance on varied system configurations.

Configuration compatibility testing is normally co~pleted at a System
Manufacturing site. The diagnostic engineer must monitor the
configurations shipping out of Manufacturing before reaching a
satisfactory level of confidence that the program will run properly on
all legal configurations. Diagnostic problems which show up in system
checkout are usually configuration related problems.

5.4.6 XXDP+/ACT/APT/SLIDE and Other System Compatibility Testing

The ability of XXDP+ to load and chain diagnostics needs to be tested
as part of the initial debug of the diagnostic.

ACT/APT/SLIDE and other system compatibility also need to be tested as
part of the ini tial debug. This can best be accompl ished by running
APT lines to all the engineering labs. Pilot production time is too
late to discover an APT incompatibility. Products intended to run on
other operating systems (e .g., RSX-11M) must be fully tested for
compatibility with those systems.

Chapter 5 20-Jan-83 Page 5-9
Program Verification

5.4.7 Diagnostic Program Verification

Diagnostic program verification is the process of ensuring that the
program actually performs as the developers intended. This can seem a
monumental task. The combinations of error conditions, hardware
configuration, and software environment are overwhelming. Currently,
the optimum approach is to force the execution of all executable code
in the program. The most desirable way to do this is by physically
fault inserting the hardware under test. Normally, though, a
diagnostic program tests many more fault conditions than can be
physically inserted into the hardware. Therefore, hardware faul t
insertion must be augmented by other means. Temporary patches can be
made to cause the code to execute conditional paths and error paths.
All paths must be forced to ensure that errors are properly handled
and printouts are correct. Careful structuring of the program in the
design phase will simplify the verification process considerably.

5.4.8 Quality Assurance Checklist

The QA process should be planned (via a QA checklist) and reviewed
(via the pre-release review) to ensure that all specified diagnostic
user applications (Chapter 1) and diagnostic program metrics (Chapter
2) have been achieved. Execution of the QA checklist involves
detailed diagnostic effectiveness checks, operational functionality
checks, and operating environment checks. Depending on hardware
availability and diagnostic product complexity, the QA checklist
process requires from two to six weeks to complete properly. Years of
experience in diagnostic program development show that this final QA
effort makes the difference between delivering prototype quality
diagnostic products and delivering finished, production quality
diagnostic products. From the perspective of the diagnostic end user,
the difference between the product qualities (prototype vs.
production) makes the QA process non-negotiable.

5.5 MAINTENANCE

Once a diagnostic has been released, the d i agno st ic goe s into its
maintenance phase. Any problems reported through the AIDS or PRISM
problem reporting systems are fixed. It is in the maintenance stage
that good planning and good documentation payoff. Diagnostic
developers should schedule 10 to 15% of their time for maintenance of
programs that they have developed.

Chapter 6 20-Jan-83 Page 6-1

CHAPTER 6

XXDP+, THE PDP-11 DIAGNOSTIC OPERATING SYSTEM

6.1 INTRODUCTION

XXDP+ is the diagnostic operating system for PDP-11s. It consists of
four major components:

· the monitor
the diagnostic runtime services

· utility programs
· loadable device drivers for the utilities

These four components work together to accomplish the system
functionality.

6.1.1 XXDP+ Monitor

The monitor, which forms the core of the system, is the highest level
software. All other components require monitor support for their
operation. The moni tor prov ides program load and execution, console
terminals services, batch control and file services (loading and
reading files) for the system storage medium only. The system storage
medium is the storage medium on the device from which the monitor was
loaded. All other components utilize the terminal services for
operator communications and the file services for certain other
operations. XXDP+ does not use interrupts.

6.1.2 Diagnostic Runtime Services

The Diagnostic Runtime Services (DRS) are an extension of the monitor.
For certain types of diagnostic programs, commonly referred to as "DRS
compatible", DRS provides non-diagnostic function support including:

· standard operator interface
· error message formatting
· control of diagnostic

Chapter 6
Utility Programs

6.1.3 Utility Programs

20-Jan-83 Page 6-2

The utili ty programs are used for file manipulation (e.g., mov ing
files from one medium to another), diagnostic pre-parameterization
(creating diagnostic files with hardware information included), file
modification (e.g., patching), and to create batch control files. The
utility programs use the monitor for typing and receiving messages and
for loading the read/write device drivers required for file
operations.

6.1.4 Device Drivers

The fourth component of the XXDP+ System is the collection of device
handlers or drivers. These are used by the utility programs to access
storage media and I/O devices. The drivers reside on the system
storage medium and are loaded into memory as required.

6.1.5 XXDP+ Nomenclature

The term "XXDP+" is interpreted as follows:

xx - 2 alpha characters which specify the media supported by any
particular monitor. For example, DXDP+ is the XXDP+ System
for the RX01, identified by the "DX" code (see Table 6-3).

DP - Diagnostic Package, the primary function of the XXDP+ System.

+ - The plus sign differentiates XXDP+ from its forerunner, XXDP.

6. 1.5. 1 Software Naming Conventions - XXDP+ software components are
named as illustrated in the following example:

CHMDXAO XXDP+ DX MONITOR BIN

CHMDXAO - first seven characters; the
specific software component
removing the first character.

name of a
is der ived

program for a
from this by

These seven characters can be broken down into four groups as follows:

CH-M-DX-AO

The first two characters, CH, represent the XXDP+ family of software
and documentation. Only XXDP+ related software has names beginning
with CH.

Chapter .6 20-Jan-B3 Page 6-3
File Naming Conventions

The next character defines the type of product the component is, using
the following codes:

M - monitor
S runtime services
U - utility programs
Q - manuals

The third group refers to either the de~ice supported (Ref. Table 6-3)
or type of software (Ref. Table 6-4) using the following codes, for
example:

DK - RK05 Monitor
DX - RX01 driver
SU - SETUP utility

The last characters refer to the rev isison and patch level of the
component, e.g., AO is the first version of the component while B1
would be the first revision with one patch or temporary modification.

Examples:

CHMDKBO

CHUSUA3

CHDDXAO

B revision of RK05 monitor

A revision (with 3 patches) of SETUP utility

A revision of RX01 driver

6.1.5.2 File Naming Conventions

XXDP+ files are specified by a name and an extension. The name may be
up to six alphanumeric characters in length and the extension may be
up to three alphanumeric characters in length, with no imbedded
spaces. The name and extension are separated by a dot(.). File names
for all component~, other· than util i ties, are based on the naming
conventions discussed in Section 6.1.5.1. The file 'name is derived by
dropping the "e" and taking the next six characters as the file name.
The utility programs, for user convenience, are distributed under
their common names like UPD2 and XTECO.

Some ex tensions are used to identi fy particular file types. For
example, all components~ other than utility programs, have .SIS
extensions. Util i ty programs have • BIN or . BIC extensions. Batch
control files have .CCC extensions. Table 6-1 lists those extensions
having particular meanings.

Chapter 6 20-Jan-83
XXDP+ Construction

Table 6-1. File Extensions

File Extension Meaning

BAK

BIC

BIN

CCC

LIB

OBJ

TXT

SYS

6.2 XXDP+ CONSTRUCTION

An XTECO backup file.

An executable program file
that -maybe run or loaded
through either operator or
batch control operation.

An executable program file
that may only be run or loaded
through operator control.

A batch control file.

A library file.

A DEC/X11 object module.

A text file.

An XXDP+ system file.

Page 6-4

The purpose of this section is to give the diagnostic designer a
general idea of how the components of XXDP+ are constructed and how
they operate.

6.2.1 XXDP+ Monitor

The monitor which is about 4K words in size at load time consists of
three major components:

secondary bootstrap
initialization code
runtime monitor code

The secondary bootstrap is loaded into memory at boot time and loads
the remainder of the moni tor into memory. The in i tial i zation code
gathers certain information and relocates the runtime monitor to the
last 2K words in the first 28K words of physical memory. The runtime
monitor is the code used to carry out the operator functions described
in Section 6.4.1, Monitor Commands. The runtime monitor, which is
approximately 2K words in size, consists of five sections outlined in
Table 6-2.

Chapter 6
Runtime Services

Section

Table 6-2.

Re a d On 1 y De vic e Dr i v e r

Operator Interface
Handler

Batch Control Handler

fv'IO nit 0 r Se r vic e s
Handler

20-Jan-83 Page 6-5

Runtime Monitor Sections

Function

Loads programs from the system medium and
reads batch control files.

Processes operator commands from console
terminal.

Processes batch files from system medium.

Processes requests for monitor services
which are made by utility programs via
the EMT instruction.

Console Terminal Driver Loads programs entered via console terminal

6.2.2 Diagnostic Runtime Services

The Diagnostic Runtime Serv ices (DRS) are the portion of the XXDP+
System that control diagnostic programs. This program is an extension
of the XXDP+ monitor that is automatically loaded into memory
immediately below the monitor and started when a compatible diagnostic
is run. DRS also provides non-test related services, such as console
terminal support, to these diagnostic programs. All diagnostic
programs that are compatible wi th DRS share some important common
features, which are discussed in Chapter 7, DRS COMPATIBLE DIAGNOSTIC
PROGRAMS. DRS commands are discussed in Section 6.3.2.

6.2.3 XXDP+ Utility Programs

There are five XXDP+ utility programs:

UPD2
UPD1
PATCH
SETUP
XTECO

All the utility program commands are discussed in Section 6.4.5.

Chapter 6
Runtime Services

6.2.3.1 UPD2

20-Jan-83 Page 6-6

UPD2 (Update Two) is a file manipulation utili ty used for building
XXDP+ media, copying files from one medium to another, deleting files
from a medium, modifying files, and other functions. UPD2 runs in the
lowest 6K words of memory. All remaining memory between the top of
UPD2 and the bottom of the monitor is used for buffers. UPD2 uses the
runtime monitor to interface with the operator and to load the
retrievable device drivers it uses for device related functions.

6.2.3.2 UPD1

UPD1 (Update One), a file modification program that duplicates some of
the functions of UPD2, is used exclusively for modifying binary files.
Because of its small size, it can be used with larger programs than
UPD2. UPD1 runs in upper memory and may overlay part of the monitor.
You cannot exit from the utility to the monitor directly; you must
reboot the monitor. UPD1 requires the retrievable device drivers that
reside on the system medium, which must remain on-line and ready while
UPD1 is used. UPD1 can only use one device and cannot transfer files.

6.2.3.3 PATCH

The Patch utility can be used to modify any binary-formatted (.BIN or
. BIC) file stored on an XXDP+ storage medi urn. This program can be
used when a file which is to be modified is too large to be loaded
into the memory space of the system being used.

6.2.3.4 SETUP

SETUP allows the user to build the hardware and software tables for a
DRS compatible diagnostic (.BIC or .BIN) and to store these tables
with the diagnostic. SETUP also combines a special version of DRS
with a diagnostic for use with ACT and SLIDE. These are DEC
manufacturing systems discussed in Chapter 8. SETUP has the same
memory requirements as DRS: 5. 75K words. The total memory required
ranges from 16K to 28K words depending on the diagnostic being
parameterized. The SETUP commands are discussed in Section 6.4.5.4.

Chapter 6 20-Jan-83 Page 6-7
XXDP+ Device Drivers

6.2.3.5 XTECO

The XTECO utility is a simple editor used to create and modify text
files (. TXT or . CeC) . It is a limited subset of TECO, a character
edi tor supported by most of DEC's operating systems. As with the
other XXDP+ utilities, XTECO commands are discussed in Section 6.4.5.

6.2.4 XXDP+ Device Drivers

XXDP+ supports most mass storage devices as well as some non-file
structured devices such as paper tape. Table 6-3 lists all devices
supported, the mnemonic used to specify the device and the name of the
monitor and driver files. The?? characters in the file name (as used
in Table 6-3) refer to the revision and patch level which may vary
over time. XXDP+ device drivers are, by necessity, small (maximum of
3400[10J bytes in length) and limited in function. They have limited
error detect ion capab iIi tie s : read, wr i te , and hard errors. These
errors are reported and control is returned to the utility being used,
which then takes any required further action. The user is required to
run diagnostics on the device in question if an error persists.

TABLE 6-3. XXDP+ Supported Devices

Device Mnemonic Monitor Driver

TU60 CT HMCT?? HDCT??
RP04/5/6 DB HMDB?? HDDB??
TU58* DD HMDD?? HDDD??
RK05 DK HMDK?? HDDK??
RL01/2 DL HMDL ?? HDDL??
RK06/7 DM HMDM?? HDDM??
RP02/3 DP HMDP?? HDDP??

I RM02/3 DR HMDR?? HDDR??
RS03/4 DS HMDS?? HDDS??
DECTAPE DT HMDT?? HDDT??
RX01 DX HMDX?? HDDX??
RX02 DY HMDY?? HDDY??
PRINTER LP HDLP??
TM02 MM HMMM?? HDMM??
TS04 MS HMfv'IS?? HDMS??
TE10 MT HMMT?? HDMT??
TR79 TR HMTR?? HDTR??
PDT11 PD HMPD?? HDPD??
HI SPD PT PCH PP HDPP??
LOW SPD PCH PT HDPT??
HI SPD PT RD PR HDPR??
LOW SPD PT RD KB HDKB??

* The TU58 is also called DECtape II.

Chapter 6
Building XXDP+

6.2.5 Building XXDP+

20-Jan-83 Page 6-8

The minimum files that must reside on a bootable XXDP+ medium are the
moni tor for that med i urn, the dev ice dr i ver for that med i urn, the DRS
(file name, HSAA?? SYS) and the directory util i ty (file name,
HUDI?? SYS) . The moni tor file must be loaded up by UPD2 and then
saved on the medium. The batch control file XXBLD.CCC will update or
build XXDP+ media automatically. (The medium to be built must be in
drive 0.) The file is started using the chain command. The file
accepts switches which specify the media type to build and the mode in
which to build. All supported XXDP+ media may be built. The
available modes to build and update are listed in Table 6-4.

Table 6-4. XXDP+ Build and Update Modes

Mode Description

DRIVER A bootable medium with all XXDP+ drivers
MONITOR A bootable medium with all XXDP+ monitors
UTILITY A bootable medium with all XXDP+ utilities
SYSTEM A combination of the above three modes

6.3 BATCH CONTROL (CHAINING)

XXDP+ has a facility for running programs without operator
intervention called batch control or chaining. The commands that
would normally be issued by an operator are put into a text file,
using XTECO, and the moni tor processes the command s in this fi Ie.
This saves the operator from having to enter the commands manually,
and once the batch control file has been created, it can be used over
and over again. This process releases the operator from having to do
repetitive tasks such as building new media or running a common set of
diagnostics. More importantly, batch control allows a user to
implement a test str'ategy and use it consistently. Thi sis done by
selecting the proper diagnostics and running then in a particular
order and mode to achieve the best test process. Once this process is
developed, it is put into a batch control file. Table 6-5 lists the
available batch control functions. The batch feature allows one batch
control file to call up another control file for execution. On
completion of the commands in the second control file, control returns
to the first control file.

Chapter 6 20-Jan-83 Page 6-9
Batch Control (Chaining)

Table 6-5. Batch Control Functions

COMMANDS FUNCTION

Monitor Commands Monitor commands: R, L, S, C, and E

Utility Commands UPD2, SETUP, PATCH

DRS Commands all DRS commands and diagnostic dialogue

Conditionals sections of the batch file can be processed
conditionally under operator control or runtime
conditions

GOTO tag begin processing at another section of the batch
file designated by "tag"

QUIET inhibit printing of batch file if printing or
enable printing if printing was inhibited
prev iousl y

PRINT temporary override of QUIET

SMI/CMI enable/disable manual intervention operations in
specialized diagnostics

QUIT terminate the batch operation

WAIT stop batch operation until the operator types
a control X

For a discussion of how to use these functions, refer to the XXDP+
User's Manual (CHQUSE).

6.3.1 Batch Control of Diagnostics

For the purposes of batch control, there are two types of diagnostics:
chainable non-DRS-type (see Chapter 8) diagnostics and DRS-type (see
Chapter 7) diagnostics. Chainable non-DRS type diagnostics can be
batched by a simple run command: R DIAG[/nJ; where n is an optional
argument that specifies the number of passes the diagnostic will run
(the defaul t is one). DRS-type diagnostics require complete batch
control. All commands normally entered by the operator must be in the
batch file. The batch file is an INDIRECT COMMAND FILE for DRS. If
the diagnostic program uses a software table, it is necessary to
provide the commands required to support it. The user does not have
to enter all the commands via the batch file, however. By using the
SET UP uti 1 i t Y (see Se c t ion 6 . 2 . 3. 4) all h a r d war e and so f twa r e
information can be supplied to the diagnostic prior to running the
batch job.

Chapter 6 20-Jan-83 Page 6-10
Batch Control of Utilities

6.3.2 Batch Control of Utilities

The UPD2, SETUP, and PATCH utilities may be used under batch control.
To run one of these utilities under batch control, create a batch file
that contains all the commands that would normally be entered by the
operator. For example, to build an RXO 1 floppy diskette for XXDP+
under batch control, using UPD2:

R UPD2
LOAD HMDX??SYS
SAVM DXO:
PIP DXO:=HSAA??SYS
PIP DXO:=HUDI??SYS
PIP DXO:=HDDX??SYS
EXIT

The dialogue wi th UPD2 must end wi th an EXIT command in order to
complete the batch job or to allow further batch functions.

6.4 XXDP+ COMMANDS

6.4.1 Monitor Commands

This section describes the XXDP+ monitor commands listed in Table 6-6.
Some commands have optional "switches" which consist of a single
character preceded by a slash(/). These are used to modify the
command function.

Wildcard ch~racters (? or *) are permitted in the file specification.
The first file found that fits the wildcard description will be run.

All XXDP+ moni tor commands may be used in a chain file wi th the
exception of the TEST command. The Chain command, when used in a
chain, invokes nesting of chain commands to one level.

Chapter 6
XXDP+ Commands

20-Jan-83

Table 6-6. XXDP+ Monitor Commands

Command

L
S
R
C
D
F
E
H

Test
TC

6.4.1.1 Load Command

Function

Load a program
Start a program
Run a program
Run a batch job (Chain)
List directory of load medium
Set the terminal fill count
Enable alternate drive for system device
Type help information
Run a batch file called SYSTEM.CCC
Return control to monitor

Page 6-11

The Load command is used to load a file into memory. The program must
be an executable file. The defaul t extension is . BIN or . BIC (e.g.,
UPD2.BIN). The format of the load command is:

L filnam[.extJ

where the file name must be a standard XXDP+ file name. After the
program is loaded, the full file name of the loaded program will be
printed. Some examples of the load command are:

L DIAG (load DIAG.BI?)
L ZDJCA2.NEW (load ZDJCA2.NEW)

6.4.1.2 Start Command

The Start command is used to start a file that has been previously
loaded into memory by a Load command. No commands should be issued
between a Load and Start command. The purpose of this command
sequence is to allow the user to load a program, halt the processor,
modify memory contents, restart the monitor and start the program.
The format of the Start command is:

S [addrJ

The user may optionally enter a starting address. The moni tor will
start the program at the transfer address in the file if the operator
does not enter a starting address. The defaul t starting address for
files without specific transfer addresses is 200 (octal). Some
examples of the Start command are:

Chapter 6 20-Jan-83
Run and Chain Commands

L RXDIAG
S

L RXDIAG
S 204

(load RXDIAG.BI?)
(start at transfer address)

(load RXDIAG.BI?)
(start at memory address 204 octal)

6.4.1.3 Run Command

Page 6-12

The Run command, which is used to load and start a program stored on
the load (system) medium, is a combination of the Load and Start
commands. The format of the Run command is:

R filnam[.ext] [addr]

The defaul t extension is . BIN or . BIC. If there is a file wi th both
extensions on the medi urn, the first file found is used. After the
program is found and loaded, but before the program is started, the
full file name is pr inted out to ver ify the load. Thi s is useful in
determining which of possibl y several programs on a medium is being
run after a wildcard specification. The file will be started at the
transfer address in the file (or at 200 octal in the absence of a
tr ansfer addres s) . The oper ator may optionally spec ify a starting
address. Some examples of the Run command:

R UPD2
R SAMPLE. XXX
R RXDIAG 204

(load and start UPD2.BI?)
(load and start SAMPLE. XXX)
(load and start RXDIAG.BI? at location 204 octal)

6.4.1.4 Chain Command

The Chain command is used to initiate execution of a batch (or chain)
file. The file must be on the system medium and have a .CCC
extension. Batch operations may accept user-defined switches. The
format of the Chain command is:

C filnam[/switches]

User-defined switches are ASCII strings delimited by a / and another /
or end-of-line. The monitor compares the conditional string in an "IF
condition THEN" directive with all user-defined switches. If there is
a match, the conditional portion of the chain file is executed.

Example:
C CHAIN/string would execute: IF string THEN

R DIAG1/Q
R DIAG2/Q
END

Chapter 6
Directory Command

6.4.1.5 Directory Command

20-Jan-83 Page 6-13

The Directory command is used to obtain a list of all the files on the
system medium. This list contains the following five items of
information:

entry number
complete file specification (name and extension)
date file created
length of file in 256 (decimal) word blocks
the number of the first block in the file

A few files are contiguous, i.e., their blocks are in order on the
medium. Contiguous files are noted in the directory by a "C"
following the date. Most files, however, are "linked", with their
blocks not continguous on the medium.

When the Directory command is given, the monitor must load the
directory utility (HUDI??SYS) which in turn requires the read/write
device driver for the system medium type. These two files must be on
the system medium in order for the Directory command to work. If one
of these files is not on the medium, the moni tor will type error
message "? NOT FOUND: filename .ext". The format of the Directory
command is:

D[/L][/FJ

There are two opt ional swi tches for the Director y command. The /L
switch will cause the directory to be printed on a line printer rather
than on the console terminal. The /F switch causes the directory to
printed in a short form. This short form only gives the entry number
and file name. Examples of both forms are shown below.

Directory Long Form

ENTRY/!

1
2
3

FILNAM.EXT

HMDKA1.SYS
HDDKAO.SYS
HUDIAO.SYS

DATE

02-Jun-19
02-Jun-19
02-Aug-19

Directory Short Form

1 HMDKA1.SYS
2 HDDKAO.SYS
3 HUDIAO.SYS

LENGTH
(in

decimal)

12
5
6

START
(addr. in
octal)

000100
000120
000066

Chapter 6
Fill Command

6.4.1.6 Fill Command

20-Jan-83 Page 6-14

The Fill command is used to control the number of non-printing (fill)
char ac ter s that wi 11 be typed a fter a car r i age ret ur n . The fill, or
null, characters are typed to allow time for the carriage return
before typing the next line, thus preventing overprinting. The
following terminals require a fill count:

.ASR

.LA30

.VT05

.VT50

The format of the Command is:

F

The monitor will print the current fill count in octal and then wait
for the user to type the new fill count. If the user does not want to
change the count, the user should not type a number, but simply a
carriage return. Some examples of the Fill command:

F
000005 (fill count = 5)

F
000010 (old count = 10 octal, new count = 1)

The fill count is ini tially set to octal 14 in order to
monitor to start properly on a system that has one of the
that require a fill count. After start-up, the fill count
reset to 0 since most terminals do not require fill counts.
can immediately reset the fill count if desired.

6.4.1.7 Enable Command

allow the
terminals
is always

The user

The Enable command is used to change the drive that the monitor
considers to be the system device. For example, if the user had
booted the system from drive 0 of an RK05 and later wanted to have the
monitor use drive 1 as the system device (that is, as the default
device), he or she could do this without re-booting the monitor by
using the Enable command. This command is valid for multi-drive
devices only and affects drives, not controllers. The format of the
command is:

E n

Where n is the new drive number.

E 1 (enables drive 1)

Chapter 6
DRS Commands

6.4.1.8 Help Command

20-Jan-83 Page 6-15

The Help command is used to obtain a brief summary of XXDP+ commands.
The contents of a file named HELP. TXT, which must be on the system
medium, are printed. There is a switch to cause the summary to be
pr inted on a line pr inter in stead 0 f on the con sole term ina I . The
format of the Help command is:

H[/L]

6.4.1.9 Test Command

The Test command is a special case of the C (CHAIN) command. The TEST
command in vo ke s a spec i fic chain fi Ie : SYSTEM. CCC. In all other
respects, the TEST command functions exactly as the C command.

TEST[/SWITCHES]

6.4.2 DRS Commands

This section describes the eleven DRS commands listed in Table 6-7.

Table 6-7. DRS Commands

Command Function

START
RESTART
CONTINUE

PROCEED
DROP
ADD
DISPLAY
FLAGS
ZFLAGS
PRINT
EXIT

Start the diagnostic and initialize
Start the diagnostic and do not initialize
Continue diagnostic at test that was aborted by
a C
Continue from an error halt
Deactivate a unit
Activate a unit for testing
Print a list of device information
Print status of all flags
Reset (clear) all flags
Print statistical information
Return to XXDP+ runtime monitor

Ref: XXDP+ System User's Manual (CHQUSE).

Chapter 6
DRS Commands

20-Jan-83 Page 6-16

The commands are entered in response to the DRS prompt (DR»), which is
issued after:

the DRS is loaded
all specified diagnostic operations are completed
a DRS detected error
a "halt-on-error" sequence
DRS has been aborted by a AC(CTRL-C)

The sections that follow describe the effect of each command, which
may be mod ified by the use of swi tches descr i bed in Section 6.4.3·
DRS recognizes a command by the first three characters. The portion
in square brackets may be omi tted, i.e., the Start command may be
entered as STA, STAR, or START.

6.4.2.1 STA[RT] Command

The Start command, which is normally the first command issued to DRS,
starts the diagnostic from its initial state. All initialization code
is executed. The trap catcher code (code that allows DRS to handle
any unexpected interrupts and report them to the user) is reloaded
into the vector space. The format of the Start command is:

STA[RT][switch-list]

where "switch-list" is any valid combination of switches (modifiers)
for the S tar t co mm and . Th e de fa u 1 t val u e i s t hat all t est s wi 11 run
on all units, all flags (see section 6.4.4) will be cleared, and
testing will continue until interrupted by the user (AC) or by a
system error, and an. end-of -pass message will be printed after each
pass. A pass is defined to be all specified units tested once by all
specified tests.

When the first START command is given, unless the P-tables have
previously been set-up or coded in using SETUP, you must answer yes to
the change hardware P-Table question (see Section 7.3.3).

6.4.2.2 RES[TART] Command

The Restart command, like the Start command, starts the diagnostic
from an initial state. The diagnostic initialization process for a
Restart command, however, may differ. The user has the opportunity to
change the contents of the software table only; the vector space is
not changed. The format of the Restart command is:

RES[TART][switch-listJ

Chapter 6
DRS Commands

20-Jan-83 Page 6-17

where "switch-list" is any valid combination of switches for the
Restart command. The defaul t value is that all tests will be run on
all units, all flags are cleared, testing will continue until aborted
by the user (AC) or by a system error, and an end-of-pass message will
be printed after each pass.

6.4.2.3 CON[TINUE] Command

The Continue command is used to resume diagnostic operation after the
user typed control-C (AC) to abort execution or after a halt-on-error.
The diagnostic will be restarted at the beginning of the test that was
aborted, not at the first test, as would be the case with the RESTART
command. The uni t being tested when the diagnostic was interrupted
wi 11 rem a ina s the un i t be in g t est e d . The use r wi 11 beg i v e nth e
opportuni ty to change the software table if desired. The hardware
tables cannot be changed. The format of the Continue command is:

CON[TINUE][switch-list]

where "switch-list" is any valid combination of switches for the
Continue command. The defaul t operation of the Continue command is:
the testing will run for the number of passes remaining in the pass
count specified in the last Start or Restart command. All flags will
remain set or clear as previously specified.

The Start and Restart commands can also be used to resume diagnostic
execution, but diagnostic initialization will take place and testing
will start with the first unit, first test.

6.4.2.4 PRO[CEED] Command

The Proceed command is used exclusively with the halt-on-error feature
in DRS. When halt-on-error is in force and the diagnostic reports an
error to DRS, DRS returns to command mode. The user may issue any
commands at this point. The Proceed command is special in that it
restarts the diagnostic at the point where it reported the error. No
ini tiali zation is done, the uni t-under-test is not accessed and the
vector space is unchanged. This process allows the user to examine
the state of the uni t being tested and then to continue testing
wi thout disturbing diagnostic operation. The format of the Proceed
command is:

PRO[CEED][switch-list]

where "switch-list" is any valid combination of switches for the
Proceed command. The default operation of the Proceed command is: the
flags remain set or clear as specified with the previous command.

Chapter 6
DRS Commands

20-Jan-83 Page 6-18

The following is a short summary of the effects of each command.

START
trap catcher reloaded
diagnostic initialize code executed
user may change both hardware and software tables
testing will start with first test on first unit
all flags cleared
units dropped by program are re-added; units dropped manually
are not

RESTART
trap catcher not reloaded
some diagnostic initialize code may be executed
user may change software table only
testing will start with first test
all flags are cleared
units dropped by program are re-added; units dropped manually
are not

CONTINUE
trap catcher not reloaded
initialize code not executed
user may change software table only
testing will start at beginning of interrupted test
flags remain in previous state

PROCEED
trap catcher not reloaded
user may not change hardware or software tables
test will be resumed immediately after error call
flags remain in previous state

CONTROL-C
Cleanup code executed, returns to DRS prompt

6.~.2.5 DRO[P] Command

The Drop command is used to deactivate a unit from testing. The unit
to be deactivated must be specified using the UNIT switch. All units
are initially active and must be explicitly deactivated by the user or
the diagnostic. The units to be deactivated must already be activated
for testing. Units dropped by program are re-activated on a START or
RESTART while units dropped by an operator using the DROP command are
only re-activated by an ADD command.

Chapter 6
DRS Commands

20-Jan-83

The format of the Drop command is:

DRO[P][/UNI[TS]:n]

Page 6-19

where "n" is the number of the unit to be deactivated. The default
operation of the Drop command (when the UNIT switch is not specified)
is that all active units will be dropped from testing.

6.4.2.6 ADD Command

The Add command is used to activate a unit for testing. The unit
swi tch is used to specify the uni t to be activated. All uni ts are
initially active and must be explicitly deactivated by the user of the
diagnostic. The units to be activated must have already been
deactivated. The format of the Add command is:

ADD[/UNI[TS]:n]

where "n" is the unit to be activated. The default operation of the
Ad d co mm and (w hen the UN ITs wit chi s not s p e c i fie d) i s tor e t urn all
deactivated units to active testing.

6.4.2.1 DIS[PLAY] Command

The Display command is used to examine the contents of the hardware
tables. All table data for the specified uni ts are listed on the
console terminal. Uni ts that have been dropped are so designated.
The format of the Display command is:

DIS[PLAY][/switch-list]

where "switch-list" is any valid combination of switches for the
Display command. The default operation of the Display command is that
all units described in the hardware tables will be displayed on the
console terminal.

6.4.2.8 FLA[GS] Command

The Flags command is used to display the current status of the DRS
fl ags . It cannot be used to change the state 0 f the flags. Thi sis
done using the flags switch (see Section 6.4.3.3). The default flag
setting is zero. The format of the Flags command is:

FLA[GS]

Chapter 6
DRS Commands

20-Jan-83

Examples (operator input underlined):

a. No flags set:

DR>FLA
FLAGS SET
NONE

b. Two flags set:

DR>FLA
FLAGS SET
IER
LOE

Page 6-20

The FLAGS command cannot be used to set or clear flag s, anI y wi th
START and RESTART commands.

6.4.2.9 ZFL[AGS] Command

The Zflags command resets all DRS flags to their cleared states. The
default flag setting is zero. The format of the Zflags command is:

ZFL[AGS]

When a program is loaded, the initial state of all flags is zero.

6.4.2.10 PRI[NT] Command

The Print command causes the DRS to print the contents of the
statistical tables kept by the diagnostic. (Statistical tables are an
optional feature and not all diagnostics support them.) The Pr int
command executes the code in the Report coding section. The data are
printed on the console terminal in a format specified by the
diagnostic program. There are no switches or arguments.

6.4.2.11 EXI[T] Command

The Exit command returns control to the XXDP+ monitor.
arguments or switches.

There are no

Chapter 6
DRS Switches

6.4.3 DRS Switches

20-Jan-83 Page 6-21

Switches are modifiers of commands. Many DRS commands affect units,
wi th a command of this type affecting all units spec i fied dur ing
hardware table build. A switch enables the user to limit the effect
of the command to certain selected units. All switches cannot be used
with all commands. Table 6-8 lists the DRS switches, their functions,
and with which commands they can be used.

Table 6-8. DRS Switches

Switch Function DRS Commands Used with

TEST Execute only specified tests START, RESTART

PASS Execute ddddd (1 to 65536) passes START, RESTART, CONTINUE

FLAGS

EOP

UNITS

Set specified flags

Report end-of-pass after each
pass

Command will affect only
specified units

6.4.3.1 TES[TS] Switch

START, RESTART,
CONTINUE, PROCEED

START, RESTART,
CONTINUE

START, RESTART,
DROP, ADD, DISPLAY

The Tests switch specifies which tests will be run. The default value
is to run all tests. The format of the Tests switch is:

ITES[TS]:test-list

where "test-l i st" is a lis t 0 f test number s separ ated by colons (:).
Sequential test numbers may be specified by giving the first and last
test numbers separated by a dash. For example, if Tests 1,2,3, and 4
are to be specified, they may be entered as:

1:2:3:4 or 1-4

Although the test numbers may be entered in any order, the tests will
always be executed in numeric order.

Chapter 6
DRS Switches

6.4.3.2 PAS[S] Switch

20-Jan-83 Page 6-22

The Pass switch is used to specify the number of passes a diagnostic
will run; a pass being defined as all specified tests on all active
units. The default value is "no limit". The format of the Pass
swi tch , which allows the user to place a I imi t on the number 0 f
passes, is:

IPAS[S]:ddddd

where ddddd is a decimal number between 1 and 65536. When the PASS
limit is reached, control is returned to DRS and a prompt is issued.

6.4.3.3 FLA[GS] Switch

The Flags switch is used to set DRS operational flags.
value is having all flags cleared.

The format for the Flags switch is:

IFLA[GSJ:flag-list

The defaul t

where "flag-list" is a list of DRS flags (see Section 5.4.4) separated
by colons (:).

6.4.3.4 EOP Switch

The EOP switch is used to specify when end-of-pass messages will be
printed. These messages indicate the number of passes completed and
the number of errors found. Defaul t operation is to pr int these
messages after every pass. The format of the EOP switch is:

IEOP:ddddd

where ddddd is a decimal number between 1 and 65536. The end-of-pass
message is printed after every ddddd passes. For example, to have the
EOP message printed after every 90 passes (user entry underlined):

DR)RES/EOP:90

6.4.3.5 UNI[TS] Switch

The Uni ts swi tch is used to specify which available uni ts are to be
tested. Default DRS operation is to encompass all units in the scope
of any command. This switch is used to limit the effects of a command
to certain units. The format of the Units switch is:

Chapter 6
DRS Switches

IUNI[TS]:units-list

20-Jan-83 Page 6-23

where "units-list" is a list of unit numbers separated by commas.
Unit numbers are decimal numbers from 1 to 64. A Unit is assigned a
number based upon order of entry into the tables. The first unit is
uni t 1. If the uni ts are sequential, they may be spec ified by the
first and last uni t number separated by a dash (-). For example,
units 3, 4, 5, 6 and 7 may be specified as 3-7.

6.4.3.6 Combining Switches

The user may specify as many valid swi tches, in any order, wi th a
command as the user desires. Simply string out the switches, one
after another, on the command line. For example, if the user wanted
to start a diagnostic and:

1. test units 1 through 4 only,

2. execute tests 1, 5 and 15,

3. execute 100 passes and

4. only report the end-of-pass data after every 10 passes,

this is the command that would be given.

STA/UNI: 1-4/TES:1:5:15/PAS:100/EOP: 10

6.4.4 DRS Flags

Flags are used to set up certain operational parameters such as
looping on error. All flags are cleared at startup and remain cleared
until explici tl y set using the Flags swi tch. Flags are also cleared
after a Start or Restart command unless set using the Flags swi tch.
The Zflags command may also be used to clear all flags. No other
commands affect the state of the flags.

Table 6-9 lists the DRS flags and their effects.

Chapter 6
DRS Flags

Flag

HOE

LOE
lER
lBE

lXE
PRl
PNT
BOE
UAM
lSR

lDR
ADR
LOT

6.4.4.1

20-Jan-83 Page 6-24

Table 6-9. DRS Flags

Effect

halt on error - control is returned to runtime services
command mode
loop on error
inhibit all error reports
inhibit all error reports except first level (first level
contains error type, number, PC, test and unit)
inhibit extended error reports
direct messages to line printer
print test number as test executes
"bell" on error
unattended mode (no manual intervention)
inhibit statistical reports (does not apply to diagnostics
which do not support statistical reporting)
inhibit program dropping of units
execute autodrop code
loop on test

HOE (Halt On Error) Flag

The HOE flag, when set, will cause DRS to execute a "hal t-on-error"
sequence when an error is detected by the diagnostic. Execution of
this sequence does not result in an actual processor halt, but returns
DRS to command mode. The exact process is:

1 • Wh en the err 0 r is rep 0 r ted to DR S , the err 0 r me s sag e (s) will
be printed (unless printing has been inhibited).

2. DRS will return to command mode.

3 . The d i a g nos tic wi 11 h a v e bee n sus pen d e d at the po in t 0 f the
error report to DRS and the unit being tested will be left in
the state that it was in at the time of the call.

After DRS has returned to command mode, the user may issue a Proceed
command to resume diagnostic execution at the point where it was
suspended. The user may also issue other commands as desired.

Chapter 6
DRS Flags

20-Jan-83

6.4.4.2 LOE (Loop On Error) Flag

Page 6-25

The LOE flag, when set, will enable DRS error looping. When error
looping is in effect, DRS will cause the diagnostic to continually
re-execute the code that detected the error. Looping remains in
effect even if the symptoms that prompted the error report disappear.
This allows for looping on intermittent errors. To stop the looping,
the user must type CTRL-C (AC) to return DRS to command mode.

6.4.4.3 IER (Inhibit Error Reports) Flag

The IER flag, when set, causes DRS to inhibit all error reporting to
the console terminal. While in effect, no messages will be sent to
the operator except system error reports such as ILL INT (illegal
interrupt) and end-of-pass reports. This feature is usually used in
conjunction with error looping. It speeds up the test process and, in
the case of hard copy terminals, saves paper.

6.4.4.4 IBE (Inhibit Basic Errors) Flag

The IBE flag, when set, causes DRS to inhi bi t the basic and ex tended
portions of error reports. There are three levels of messages in an
error report. This is illustrated below:

CZRLG DVC FTL ERR 00009 ON UNIT 00 TST 010 SUB 000 PC: 015626 ... error
BIT SET INSTRUCTION ON RLBA YIELDED WRONG RESULT ... basic
CONTROLLER: 174400 DRIVE: 0 ... extended
EXP'D: 000000 REC'D: 000001 ... extended

6.4.4.5 IXE (Inhibit Extended Errors) Flag

The IXE flag,
reporting only.

when set, causes DRS to inhi bi t the ex tended error
The error message and basic reports will be printed.

6.4.4.6 PRI (PRInter) Flag

The PRI flag, when set, causes DRS to redirect all messages to a line
printer. This does not apply to command prompts.

6.4.4.1 PNT (Print Number of Test) Flag

The PNT flag, when set, causes DRS to print the number of the test
being executed.

Chapter 6
DRS Flags

20-Jan-83

6.4.4.8 BOE (BellOn Error) Flag

Page 6-26

The BOE flag, when set, causes DRS to issue a CTRL-G, or BELL
character when an error is reported by the diagnostic. This will give
an audible tone at the console terminal. This feature is usually used
in conjunction with the message inhibit functions.

6.4.4.9 UAM (UnAttended Mode) Flag

The UAM flag, when set, prevents the use of manual intervention during
testing. Manual intervention assumes that nn operator is present to
undertake any necessary action. The use of this flag allows the
operator to start the diagnostic and let it run unattended. When this
flag is in effect, some testing will be inhibited. Refer to specific
diagnostic documentation for a description of UAM flag effects in
spec i fic cases. See Sect ion 7. 5.23 for MANUAL macro for chec ki ng the
setting of this flag.

6.4.4.10 ISR (Inhibit Statistical Reports) Flag

The ISR flag, when set, causes DRS to inhibit the printing of
statistics by the diagnostic. This is an optional feature and not all
diagnostics support statistics. Consult specific diagnostic
documentation to determine whether or not a diagnostic has this
feature.

6.4.4.11 IDR (Inhibit DRopping of units) Flag

The IDR flag, when set, causes DRS to inhi bi t the execution of the
DROP code in the diagnostic, i.e., inhibi t deselection of uni ts by a
diagnostic. Diagnostics may deselect a unit from the test process if
an error threshold is reached or if a serious error is detected. This
flag allows the user to keep the unit selected, usually for the
purposes of tracing the error.

6.4.4.12 ADR (AutoDRop) Flag

The ADR flag, when set, causes DRS to execute the "autodrop" code in a
diagnostic. The purpose of this code is to test for "device ready" or
"device available". If the unit being tested is not ready or
available, it will be dropped (deselected). Not all diagnostics have
autodrop code. Refer to specific diagnostic documentation to
determine if a diagnostic does support this feature.

Chapter 6
DRS Flags

20-Jan-83 Page 6-27

6.4.4.13 LOT (Loop On Test) Flag

The LOT flag, when set, causes DRS to continually execute the test(s)
s p e c i fie d wit h the T EST s wit c h . Th e in i t i ali z e and end - 0 f - pas s cod e
are not executed as in normal operation, however.

TABLE 6-10

DRS COMMANDS

START [/TESTS:#:#-#] [/PASS:#] [/FLAGS:XXX] [/EOP:#] [/UNITS:#:# ..]
RES TAR T [I T EST S : II : # - #] [1 PAS S : #] [1 F LAG S : X X X] [1 EO P : II] [1 U NIT S : # : #. .]
CONTINUE [/PASS:#] [/FLAGS:XXX]
PROCEED [/FLAGS:XXX]
DROP [/UNITS:#:# ..]
ADD [/UNITS:II:II ..]
PRINT
DISPLAY [/UNITS:#:# ..]
FLAGS
ZFLAGS
EXIT

WHERE:

HOE
IER
IXE
PNT
UAM
IDU
LOT

1 TESTS: #: # Speci fies the test #' s to run when all tests in a
diagnostic are not wanted.

IPASS:I! Specifies the number of passes to run; if omitted,
the diagnostic runs continuously.

IEOP:# Specifies the number of passes between End-Of-Pass
printouts.

IUNITS:II Specifies the number of the uni t to be tested,
dropped, or added.

IFLAGS:XXX Specifies the flag(s) to be set.
than one, use XXX:YYY.

To specify more

Flags available are:

Hal t on Error
Inhibit Error Reports
Inhibit Extended Error
Print Test Numbers
Unattended Mode
Inhibit Drop Units
Loop on Test

LOE
IBE
PRI
BOE
ISR
ADR

Note

Loop on Error
Inhibit Basic Error Reports
Print Errors on Line Printer
Bellon Error
Inhibit Statistical Reports
Auto Drop absent Units

Only first 3 characters of any string are
needed to enter the command.

Chapter 6 20-Jan-83 Page 6-28
XXDP+ Utility Commands

6.4.5 XXDP+ Utility Commands

This sections tabulates the various XXDP+ Utility commands as used in
UPD2, UPD1, PATCH, SETUP, XTECO. For a complete discussion of these
commands refer to the XXDP+ System User's Manual (CHQUSE).

6.4.5.1 UPD2 Command Summary

Table 6-11. Summary of UPD2 Commands

CATEGORY

File Manipulation

File Modification

New Medium Creation

Miscellaneous

Returning to
Monitor

Printing

COMMAND

DIR
PIP
FILE
DEL
REN

CLR
LOAD
MOD
XFR
HICORE
LOCORE
DUMP

ZERO
SAVM

SAVE

COpy

ASG
DO
READ
EOT
DRIVER

BOOT
EXIT

PRINT
TYPE

FUNCTION

give directory of specified medium
transfer a file or files
transfer a file or files
delete a file or files
rename a file

, clear UPD2 program buffer
load a program
modify file image in memory
set transfer address
set upper memory limit for dump
set lower memory limit for dump
dump a program image

initialize a medium
save the bootable monitor image on

a random-access device
save the bootable monitor image on

a sequential-access device
copy entire medium

assign a logical name to a device
execute an indirect command file

I read a file to check validity
write logical end-of-tape mark on a tape

load a device driver

bootstrap a device
return control to the runtime monitor

print a file on the line printer
type a file on the console terminal

Chapter 6 20-Jan-B3
XXDP+ Utility Commands

6.4.5.2 UPD1 Command Summary

COMMAND

CLR
LOAD
MOD
XFR
HICORE
LOCORE
DUMP
DEL
BOOT

Table 6-12. Summary of UPD1 Commands

FUNCTION

clear UPD1 program buffer
load a program
modify file image in memory
set transfer address
set upper memory limit for dump
set lower memory limit for dump
dump a program image
delete a file
bootstrap a device

6.4.5.3 PATCH Command Summary

COMMAND

BOOT
CLEAR
EXIT
GETM
GETP
KILL
MOD
PATCH
SAVP
TYPE

Table 6-13. Summary of PATCH Commands

FUNCTION

Boot specified device
Clear input table
Return to XXDP+ monitor
Load DEC/X11 MAP file
Load saved input table
Delete address from input table
Enter address in input table
Create patched file
Save input table
Print input table on terminal

6.4.5.4 SETUP Command Summary

They are only three commands in the SETUP utility. They are:

SETUP
LIST
EXIT

Page 6-29

Chapter 6 20-Jan-83 Page 6-30
XXDP+ Utility Commands

SETUP is used to build tables for DRS-compatible diagnostics. LIST
types a list of DRS-compatible diagnostics on a specific medium, and
EXIT returns control to XXDP+.

6.4.5.5 XTECO Command Summary

The three commands used to put XTECO in an edit mode are:

TEXT
TECO
EDIT

TEXT is used to create a new file, TEee is used to modify files only
on random-access devices, and EDIT can be used to modify files on any
device (providing the input and output devices are different). Once
in the edit mode, the twelve commands, listed in Table 6-14 can be
used.

Table 6-14. Summary of EDIT Mode Commands

These are all terminated by ESC, ESC instead of Carriage Return.

I

CATEGORY : COMMAND
I
I
I

Pointer Location L
C
J
ZJ

Search S

FUNCTION

Move the pointer line by line
Move the pointer character by character
Move the pointer to the beginning of text
Move the pointer to the end of text

Search for specified string in text now
in memory

N Search for specified string in remainder
of text file

Modify/
Display text

Terminating
Edit Mode

T
D
K
I
A

EX

Type text
Delete character(s)
Delete line(s)
Insert text
Append text to that currently in memory

Exit edit mode

Chapter 7 20-Jan-83

CHAPTER 7

DRS-COMPATIBLE DIAGNOSTIC PROGRAMS

Page 7-1

This chapter describes the structure of the Diagnostic Runtime
Services (DRS) module, as well as the DRS program structure macros and
DRS serv ic e macros. These mac ros are de fined by a macro Ii brar y
(S V C . ~1 L B) w h i c h m u s t b e use d w hen ass em b lin gaD R S - com pat i b I e
diagnostic program.

7.1 INTRODUCTION

The DRS mod ule is the resul t of efforts to gather together all the
code which interfaces the diagnostic to the operational environment
(system software and human operator) and which was formerl y contained
ins ide the d i agno st i c . The code wa s then put into a common fron t-end
software product that can be appended to each diagnostic and through
which the diagnostic may interface to the operational environment as
it executes.

7.2 DRS PROGRAM BASICS

Any diagnostic, whether DRS-compatible or not, must be loaded and
started by a load system of some kind. This load system can be XXDP+
(Field Service operation) or APT/ACT/SLIDE (~anufacturing Operation).
DRS was des igned as part 0 f the XXDP+ system. Add it iona I so ft war e
provides DRS' functionality under the other loading systems by
emulating XXDP+. In this chapter, the term DRS module will be used in
preference to "supervisor".

7.2.1 Memory Layout

Table 7-1 illustrates the memory layout on a 16K word machine in a
Field Service environment, where DRS runs under XXDP+. If the
diagnostic program is less than 7.75K words in length, then the
remaining space between DRS and the diagnostic may be used for data
buffers.

Table 7 -1 . Memory Layout

XXDP+ 1 .5K word s 72000 through 77777

DRS 6.25K words 41000 through 71777

Diagnostic 7.75K words 2000 thro ugh 40777

Stacks 0.25K words 1000 through 1777

Vector area 0.25K words 0 through 477

Chapter 7 20-Jan-83 Page 7-2
Operating Environment Versions

7.2.2 Different Operating Environment Versions

There are different versions of the DRS to run under various load
systems. DRS is a part of the XXDP+ system. There are two additional
versions which emulate XXDP+ under the various manufacturing load
s y s t em s . Th e d iff ere n t v e r s ion S 0 f the DRS are i 11 us t rat e din Ta b 1 e
7-2.

Table 7-2. DRS Versions

DRS Version Operating Environment

CHSAA XXDP+

CHSAB APT

CHSAC ACT/SLIDE

DRS is appended to the diagnostic at runtime for XXDP+ and APT
applications. The DRS software is appended to the diagnostic by a
special utility (SETUP) for ACT and SLIDE, the result being a single
program image containing both DRS and the diagnostic.

7.2.3 Interfacing to the Environment

XXDP+ is the superset of DRS and
Exceptions in the APT/ACT/SLIDE
necessary.

is the basis
environments

for
are

thi s chapter.
noted where

7.2.3.1 Operator Commands - The Diagnostic must be loaded and started
using standard XXDP+ commands. Once the Diagnostic is loaded, the DRS
is loaded and given control and will issue its own prompt (DR». This
is known as the DRS Command Mode. In this mode, the operator can
issue the commands listed (see Section 6.4.2):

START
RESTART
CONTINUE
PROCEED
DROP
ADD
DISPLAY
FLAGS
ZFLAGS
PRINT
EXIT

Chapter 1 20-Jan-83 Page 1-3
DRS Command Mode Commands

Note

Only the first three characters of a command need be entered.

START

RESTART

CONTINUE

PROCEED

DROP

ADD

Table 1-3. DRS Command Mode Commands

Function

Build hardware and software p-tables and
transfer control to the Diagnostic.

Command

Transfer control to the Diagnostic, bypass
building of hardware P-tables. Software P-tables
may be modified.

Resume execution of Diagnostic at begin
ning of current hardware test. Issued
after an operator CONTROL/C or an ERROR
HALT.

Resume execution of Diagnostic at instruc
tion following the error call. Issued
after an ERROR HALT.

Flag the P-table for the specified logical
unit as "Not Complete" and invoke the
"Drop Code" in the Diagnostic. The effect
of this command lasts until another START
command or an ADD command is given. There
is also a program drop macro (DODU) with
the same effect, but it lasts only for the
current command.

Add a previously dropped unit back to the
test cycle. The" Not Complete" flag is
cleared from the p-table and the "Add
Code" in the Diagnostic is invoked.

Chapter 7 20-Jan-83 Page 7-4
DRS Command Mode Commands

7.2.3.2 Switches - The operator can, by way of switches on the above
commands, affect the value of the following: pass count, test
selection, unit selection, and flag settings. Under the supervisor,
there is no access to the Hardware Swi tch Register. The flags (See
Se c t ion 6. 4 . 4) rep 1 ace the use 0 f the Ha r d war e and So f twa reS wit c h
Registers. Available flags are:

HOE
LOE
IER
IBE
IXE
PRI
PNT
BOE
UAM
ISR
IDR
ADR
LOT

7.2.3.3 Hardware Parameterization - A major purpose of the DRS is to
force parameterization by the operator. A DRS-compatible diagnostic
does not autosize or assume standard device addresses but must request
from the DRS a hardware parameter table (P-table) for each unit it
desires to test. The p-tables are either built in memory by operator
dialogue, at RUN-TIME, or they reside in the diagnostic image on the
load medium. The latter is accomplished by either assembling the
tables into the program or by attaching the tables using the SETUP
utility.

Each device type has a different p-table format, but all diagnostics
t est in g the sam e de vic emu s t h a v e P - tab 1 e s 0 f the sam e for mat. On e
d i a g nos tic may h a vet heR K 05 Dis k Dr i v e as its tar get de vic e, w hi 1 e
another may have the RK11 Controller. The first diagnostic would see
a unit as a drive and request an RK05-type P-table for the drive it
tests. The second would see a uni t as a controller and request an
RK11-type P-table for each controller it tests. The p-table format is
defined and controlled by the appropriate diagnostic group, using the
following established format: the first N entries in any p-table must
be the UNIBUS address down through the UNIT address, e.g., the first 3
entries in the TU77 P-table should be: UNIBUS address, MASSBUS
address, and drive number.

Chapter 7 20-Jan-83 Page 7-5
DRS Command Mode Commands

7.2.3.4 Software Parameterization - Each diagnostic, optionally, has
a set of behavioral parameters which are obtained by DRS by way of
operator dialogue, before the diagnostic is given control. DRS places
these into a software P-table that is. hard-coded into the diagnostic.
The diagnostic may then examine this table, during execution, to guide
its behavior. The data in this table are distinguished from those in
the hardware tables in that they relate to operational parameters and
do not relate to hardware specific parameters.

7.2.3.5 Passes and Sub-Passes - When a diagnostic is executed, DRS
selectively executes pieces of the diagnostic. The order of execution
is as follows: initialization (INIT) code, hardware tests, and
clean-up code. A single trip through these items is called a
sub-pass. The required number of sub-passes, one or more, depends on
whether it is a sequential diagnostic or a performance exerciser.
When the necessary sub-passes have occurred such that all active units
have been through all the hardware tests, a "pass" has been completed.
If the DRS determines, after a certain number of sub-passes within a
given pass, that all remaining units, as specified in the P-tables,
have been dropped (are "non-active"), it will not return control to
the INIT code but will declare "END-Of-PASS" at that point. This will
also occur if the "/UNITS" switch has been used to select a subset of
the units under test and this test does not include the last few units
in the p-tables.

7.3 DRS PROGRAM STRUCTURE

A supervisor diagnostic has a very specific structure. The diagnostic
program can consist of 17 separate sections; 7, which are required,
and 10, predicated on expanded program requirements, which are
optional. Each section may be contained in an independently assembled
module, with the number of sections per module and the manner of
linkage being determined by the program. The module calls BGNMOD and
ENDMOD are used as initiating and ending directives, respectively.
The argument (NAME) provides for a symbolic name to facilitate
linkage. BGNMOD has an optional ARG = module name. The 17 sections,
defining the structure or skeleton of the diagnostic, are discussed in
this section.

Chapter 7 20-Jan-83 Page 7-6
DRS Program Structure

7.3.1 Program Header (Required)

The Program Header sect ion conta ins general information which des
cribes the major characteristics of the diagnostic program, including
the program name and revision and patch-order levels. It also
provides space for an event flag register and pointer storage, by
which the supervisor may find access to other key sections of the
program (e.g., dispatch table, initialization and clean-up code,
etc.). An optional argument allows the programmer to specify the
default program priority. The default is zero (0) if not specified.

7.3.2 Dispatch Table (Required)

The Dispatch Table section contains address pointers to the various
tests contained within the diagnostic program. This section requires
the coding of only the Dispatch macro.

7.3.3 Default Hardware P-Table (Required)

The Default Hardware P-table coded by the programmer provides the
format for the N (number of units) P-tables that DRS will build via
operator dialogue, before transferring control to the diagnostic.
This table is used as a template to give DRS the si ze of a P-table
and, optionally, the default values of each entry in a table. The
actual p-tables are added to the end of the diagnostic image, one
table per unit.

7.3.4 Software P-Table (Optional)

Th ere is jus ton e So f twa reP - tab 1 e and i tis cod e d by the pro g r a mm e r
to contain any defaul t behavorial parameters needed by the program.
It may be modified by the DRS via operator dialogue before control is
transferred to the diagnostic. Unl ike the hardware P-table template
used to create tables, this is the actual table used by DRS.

7.3.5 Global Equates (Optional)

This section consists of direct assignment statements which equate
s p e c i f i c s ym b 0 1 s, t hat are g lob ali n nat u r e , wit h s p e c i f i c val u e s .
The EQUALS macro provides several of the direct assignments of a
general nature, including bit definitions for a register and priority
level definitions.

Chapter 7 20-Jan-83 Page 7-7
DRS Program Structure

7.3.6 Global Data (Optional)

The Global Data section contains information that will be used by more
than one test.

7.3.7 Global Text (Optional)

The Global Text section contains all the ASCII messages that will be
used by more than one test and are, therefore, global in nature. The
programmer may wish to put all text in this section in order to easily
implement foreign languages-.--

7.3.8 Global Error Reports (Optional)

The Global Error Reports section contains the error message
subroutines (BGNMSG, ENDMSG) which request the printing of both basic
and extended error information for more than one test.

7.3.9 Global Subroutines (Optional)

The Global Subroutines section contains subroutines that will be used
by more than one test.

7.3.10 Statistical Report Coding (Optional)

The Statistical Report Coding section contains the PRINTS macros and
associated code that will be used to generate statistical reports.
The BGNRPT and ENDRPT macros are used as beginning and ending
directives for the coding contained in this section. A DORPT call or
a PRINT command from the operator is used to request the execution of
this section. If this section was executed as a resul t of a PRINT
command, control is passed back to DRS.

7.3.11 Initialization Coding (Required)

The Initialization (INIT) code, executed at the beginning of every
sub-pass, is primarily used for requesting p-tables. Any other set-up
or initialization type functions may also be performed in the INIT
code. There are event flags which the programmer may use to
select i vely exec ute code. The event flags ind icate which cond i tions
caused the INIT code to be invol ved : START, RESTART, CONTINUE, POWER
FAIL OR NEW PASS (see 7.5.12).

Chapter 7 20-Jan 83 Page 7-8
DRS Program Structure

7.3.12 Clean-Up Coding (Required)

The Clean-up Coding is executed at the end of every sub-pass, after a
CTRL-C, and after a DOCLN macro. It performs any functions necessary
to restore the device under test to a power-up state.

7.3.13 Drop Units Coding (Optional)

This section is not required for units to be dropped, but is there for
the purpose of allowing the programmer to take any program-specific
action in the event that a unit is dropped (e.g., making a notation in
the statisties table). The Drop Unit code, invoked by a DODU macro or
a DROP command, contains any code that needs to be executed in
conjunction with the dropping of a unit from the test cycle. Units
may still be dropped wi thout hav ing this code. The DRS reports the
unit number of the device dropped. No coding is required in this
section.

7.3.1~ Add Units Coding (Optional)

The Add Unit Code, invoked by the ADD command, contains any code that
needs to be executed in conjunction with adding a unit back to the
test cycle. No coding is required in this section.

Note

All units are considered to be ADDED when
a diagnostic is started.

7.3.15 Hardware Tests (Required)

The Hardware Tests must perform a series of independent free-standing
blocks of code with no interdependencies.

7.3.16 Hardware Parameter Coding (Required)

The Hardware Parameter section contains the format for the questions
that the DRS uses the build the hardware p-tables via operator
dialogue and the information necessary to enter the data into the
tables.

Chapter 7 20-Jan-83 ~. Page 7-9
DRS Program Structure

7.3.17 Software Parameter Coding (Optional)

The Software Parameter section contains the questions that the DRS
will use to fill in the software p-table via operator dialogue in the
same manner as the hardware p-tables.

7.4 DRS PROGRAM STRUCTURE MACROS

Since RO is used by DRS in serv ic ing macro call s , the progr ammer
should not use RD.

7.4.1 Optional Sections Selection (POINTER)

A diagnostic program may contain any or all of the 10 optional
sections. Five of the optional sections, however, require a pointer
that is derived by and for the DRS and is located in the header block
(see Section 7.4.2.). The effective use of these 5 pointers requires
that the optional sections call must be coded to reflect usage (i.e,
ANY, ALL, or NONE). The following coding possibilities exist:

POINTER BGNRPT, BGNSW, BGNSFT, BGNAU, BGNDU, ERRTBL, BGNSETUP (or
any subset of the ARGS)

POINTER ALL - ALL provides pointers for all 5 sections.

POINTER NONE - NONE indicates to the DRS that no pointers are
required; this is the default value.

7.4.2 Header Call (HEADER)

Each diagnostic program must contain a header block which describes
the major character i stics of the progr am for the DRS. The following
macro call is used to generate the program header:

HEADER FILNAM,REVLEV,DEPOREV,LONGST,TYPE[,PRIORITY]

FILNAM

REVLEV

DEPOREV -

LONGST -

FILNAM is ASCII name of program.

REVLEV is ASCII program release level.

DEPOREV is DEPO (single decimal digit) of
latest patch.

LONGST is execution time of longest test
in seconds (includes clean-up time).

Chapter 1 20-Jan-83 Page 7-10
DRS Program Structure Macros

TYPE - "0" for sequential diagnostic, n 1" for Exerciser.

PRIORITY - PRIORITY (PS\~ mask) at which diagnostic will run when
started (Default is PRIGO).

Example: HEADER CZCLK,A,O,24.,O,#PRI04

This example is from CZCLK, Rev.A, DEPO Rev. 0. Execution time of
longest test in 24 (decimal) seconds. It is a sequential diagnostic
which starts executing at PRIORITY 4.

All the header arguments are required (except PRIORITY).

7.4.3 Descriptive Text (DESCRIPT, DEVTYPE)

In addition to the Program Name, two lines of text will be printed to
the operator. The first will come from the DESCRIPT macro at start-up
time and will identify the diagnostics. The second will come from the
DEVTYPE macro at hardware dialogue time and will identify the device
un de r t est . Th ear g urn e n t s 0 f bot h mac r 0 s are 72 - c h a r act erA SCI I
strings enclosed in angle brackets.

DESCRIPT <Identification of Diagnostic Program>

Example: DESCRIPT <DATA COMM LINK TEST>

DEVTYPE <List of device types tested>

Example: DEVTYPE <DMP-11,DMV-11)

7.4.4 Last Address Generation (LASTAD)

The final statement in the program (except for .END) must be the
LASTAD macro. This call generates an even address, reflecting the
first word of memory unused by the program. It is recommended to add
a patch area of about 50 words just before the LASTAD macro call.

7.4.5 Module Delimiters (BGNMOD, ENDMOD)

As discussed in section 7.3, BGNMOD and ENDMOD are used to initiate
and end the individual sections.

Chapter 1 20-Jan-83 Page 1-11
Te s t De 1 i mit e r s

1.4.6 Test Delimiters (BGNTST, ENDTST)

A block of code which performs a specific diagnostic operation on a
given unit is called a test. BGNTST and ENDTST are used to delimit
this code, and tests may not be nested. Following the INIT code, a
test is ini tiated by the DRS as an independent block of coding,
al though the use of global information may be required by any given
test. Nothing done in one test must depend on anything done in any
other test and no branching from one test to another is permitted.

If more than one test is contained within a module, the tests will be
sequentially numbered and run as directed by DRS. By using the
optional argument with a Begin Test (BGNTST) macro, a test number may
be specifically assigned. DRS will always place the number of the
test currently being executed into the header word L$TEST.

Example 1: BGNTST Example 2: BGNTST 5

. code . code

ENDTST
ENDTST

1.4.1 Subtest Delimiters (BGNSUB, ENDSUB)

A subtest is an optional block of code contained in a test. It is
delimited by the directives BGNSUB, ENDSUB. BGNSUB takes no argument.
Subtests may not be nested. Subtests are prov ided for tighter error
loop control (see Section 1.5.4).

1.4.8 Segment Delimiters (BGNSEG, ENDSEG)

A segment is an optional block of code within a test or subtest. Each
segment utilizes an initiating (BGNSEG) and ending (ENDSEG) directive,
in order to de fine minimum areas 0 f responsi bil i ty wi thin a test.
Segments are the only blocks of test code that can be logically
nested. Up to 8 segmented levels may be logically contained within a
single segment. This provides considerable flexibility in the design
of program loops for the monitoring of error conditions. Segments are
also provided for tighter error loop control (see Section 7.5.4).

Chapter 1
Hard-Coded P-Tables

1.4.9 Hard-Coded P-Tables

20-Jan-83 Page 1-12

When present, these optional hardware p-tables are located between the
LASTAD macro and the ". END" statement. These hardware P-tables, in
contrast to the default hardware p-table located in the main body of
the program, are appended to the binary image file of the diagnostic,
just as though the DRS or the SETUP utili ty had buil t them there.
Thus, the diagnostic can be "preparameterized" by the programmer. A
sample is as follows (this is not code):

LASTAD
BGNSETUP 2 ;NUMBER OF P-TABLES
BGNPTAB
.WORD 176500 ; 1 ST UNIT CSR
.WORD 300 ; 1 ST UNIT VECTOR
.WORD 240 ; 1 ST UNIT PRIORITY
ENDPTAB
BGNPTAB
.WORD 176510 ;2ND UNIT CSR
.WORD 304 ;2ND UNIT VECTOR
.WORD 240 ;2ND UNIT PRIORITY
ENDPTAB
ENDSETUP
.END

7.5 DRS SERVICE MACROS

All services that a diagnostic requires from DRS are called for by
issuing an appropriate macro. This section describes these macros and
provides examples. The interface between diagnostics and DRS is based
on the TRAP instruction.

Use of RO: the programmer should not rely on the contents of register
RO across macro calls. RO is used by DRS.

7.5.1 Macro Package Initialization (SVC)

Macro Package Initialization (SVC statement) must be the first macro
call of every program. The SVC statement initializes the DRS macro
package, thereby allowing subsequent calls to assemble properly.

7.5.2 Global Equates (EQUALS)

The Global Equates call equates specific symbols with specific values
by way of direct assignment statements. It expands to give mnemonics
for bit definitions, event flag definitions, and priority level
definitions.

Chapter 7 20-Jan-83 Page 7-13
Test Dispatch Table

7.5.3 Test Dispatch Table (DISPATCH)

The DISPATCH call is used to produce a table containing the symbolic
address (e.g., T1, T2, etc.) of each test contained in the diagnostic
program. When the program is assembled, the addresses for the table
are obtained from the Begin Test (BGNTST) statements. The Dispatch
call must contain an argument to equal the decimal number of tests or
additional tests will not be executed.

7.5.4 Error Loop Control (CKLOOP)

When the operator executes a diagnostic, the operator has the ability
to set a "loop on error" flag. When this flag is set, the occurrence
of an error will cause looping in one of two ways, depending on the
type of CKLOOP statement that was coded or implied. Implied CKLOOP
(7.5.4.2) is the normal usage.

7.5.4.1 Implied CKLOOP - This situation exists when the programmer
does not code a CKLOOP statement. In this case, when an error call is
issued, execution proceeds to the end of the smallest scope entity
(test, subtest, or segment) that contains the error call, at which
point a branch is created back to the beginning of that scope entity.
This loop is permanently established, even if the error does not
persist.

BGNSUB <-

CODE

LOOP IS HERE
ERRHRD 3,ERLAB,MSG1

CODE
<-

ENDSUB

7.5.4.2 Explicit CKLOOP - This situation exists when the programmer
has inserted a CKLOOP call (no ARGS) into the code. In this case,
when an error call is issued, execution of the test code will continue
down through the CKLOOP statement, at which point a branch is created
back to the beginning of the smallest scope entity (test, subtest, or
segment) that contains the error call. This loop is permanently
established, even if the error that was reported does not persist.

Chapter 1
Error Loop Detection

EXPLICIT CKLOOP
BGNSUB

CODE

ERRHRD 3,ERLAB,MSG1

CKLOOP

CODE

ENDSUB

20-Jan-83

<-

LOOP IS HERE

<-

1.5.5 Error Loop Detection (INLOOP)

Page 1-14

The programmer can determine whether or not the program is in an error
loop by issuing the INLOOP macro (no arg uments) which will return a
"complete" ind ication if an error 100 pis in progres s (see Sect ion
7.5.10).

10$:

BGNSUB

INLOOP
BCOMPLETE 10$

CODE

ERRHRD

CODE

ENDSUB

;IF IN LOOP BECAUSE OF
;LOOP ON ERROR, EXIT
;SUBTEST.

Chapter 1 20-Jan-83 Page 1-15
Abort Test Calls

1.5.6 Abort Test Calls (ESCAPE, EXIT)

There are two Abort Test calls. The first is a conditional escape
call, while the second is an unconditional exit call. Both calls
share the same arguments (TST, SUB, SEG) when directing an appropriate
exit from test coding. Additional arguments (HRD, SFT, INIT, CLN,
RPT, SRV, MSG) are available to the exit call to provide an
unconditional exit from certain selected routines.

1.5.6.1 Escape Test (ESCAPE TST, SUB, SEG) - If an error is detected
within a test, subtest, or segment; the error could invalidate results
obtained from the execution of subsequent test code within the
structure. To prevent this, the programmer has the option of
including an ESCAPE statement which utilizes an argument (TST, SUB,
SEC) to create a branch from the test code to the next ENDTST, ENDSUB,
or ENDSEG statement. This escape mayor may not occur if an error was
detected, depending on the state of the Loop on Error flag. If the
Loop on Error flag is set, the escape will cause a branch back to the
beginning of that entity.

7.5.6.2 Exit Test (EXIT TST, SUB, SEG) - The EXIT macro used inside a
test has the force of an unconditional escape: a branch is created to
the next ENDTST/SUB/SEG statement, whether or not an error has
occurred. If an error condition does exist when the exit statement is
encountered, however, that error indication is cleared so looping will
not occur even if the Loop on Error flag is set.

1.5.6.3 Exit Routine (EXIT HRD, SFT, INIT, CLN, RPT, SRV, MSG) - When
EXIT is used with anyone of additional arguments (HRD, SFT, INIT,
CLN, RPT, SRV, MFC) an unconditional escape from the specified routine
to its associated ending directive (i.e., ENDHRD, ENDSFT, ENDINIT,
ENDCLN, ENDRPT, ENDSRV, ENDMSG) will occur, providing termination for
one of the following routines:

Hardware Parameter Coding (HRD)
Software Parameter Coding (SFT)
Initialization Coding (INIT)
Clean-up Coding (CLN)
Statistical Report Coding (RPT)
Interrupt Service Coding (SRV)
Print Message Coding (MSG)

Chapter 7 20-Jan-83 Page 7-16
Error Reporting

7.5.7 Error Reporting (ERRSF, ERRDF, ERRHRD, ERRSOFT, ERROR, ERRTBL)

7.5.7.1 Error Report Classes

Four error report calls are used within test coding to report
individual errors. Errors are classified as soft or hard. A soft
error is an error which is recoverable wi thin a specific number of
retries. There are two classes of hard errors:

a. overflow of the acceptable limit of retries for a soft error

b. a non-recoverable error

Neither of the above mean that the device has failed. In order for a
diagnostic to determine device failure, based on the number of soft or
hard errors, it must contain code to make a "DEVICE FATAL" error call
when the acceptable limits are exceeded. The call must also be made
where a single error indicates that the device has failed.

DEVICE FATAL - device failure

SYSTEM FATAL - system failure

Adherence to these defin it ions is impor tant because so ft and hard
errors will be ignored when running under an automated system. Four
error report calls are used within test coding to report individual
errors (Table 7-5).

Table 7-5. Error Report Calls

Report Call

ERRSF NUM,MSGADR,POINTER

ERRDF NUM,MSGADR, POINTER

ERRHRD NUM,MSGADR,POINTER

ERRSOFT NUM,MSGADR, POINTER

Function

Reports a system fatal error

Reports a device fatal error

Reports a hard error(unrecover
able)
Reports a soft error (recover
able)

When an error is detected by the test code, the associated report
call:

reports the error by setting an error indicator, whicb
provides one of the two enables required to allow a
loop-on-error to occur (The other enable is the loop-an-error
flag) .

Chapter 7 20-Jan-83 Page 7-11
Error Report ing

enables the printing, via optional parameter coding, of a
combination of test identification information (i.e., header;
test, subtest, and error inrormation; and any additional
identifying information).

7.5.7.2 Report Call Arguments

7.5.7.2.1 Explicit Arguments

ERROR NUMBER PARAMETER (NUM) requires one full word of memory and
provides a unique number for each error message. The maximum error
number is 32767 and it is passed as a decimal number.

MESSAGE ADDRESS PARAMETER (MSGADR), an optional argument, requires one
full word of memory. The argument provides a symbolic address for a
message, created via an assembler directive (. ASCIZ), that will be
printed as part of the header, an to which DRS will add test and
subtest numbers.

MESSAGE POINTER PARAMETER (POINTER), an optional argument, requires
one full word of memory. The argument provides a symbolic address for
specific subroutine coding that will be executed following the
printing of the header. The subroutine coding, which could consist of
macro calls that provide for the printing of additional error
information, could also initialize a portion of a test for use in a
test loop. The first and final instructions in the subroutine,
however, must be BGNMSG and ENDMSG calls, respectively.

7.5.7.2.2 Implicit Argument (Exerciser Diagnostics Only)

UNIT NUMBER REPORTING - DRS pr ints the error n umber of the fai 1 ing
device, so it is unnecessary for the diagnostics to do so. L$LUN, in
the header, contains the number of the unit currently being tested.
However, in the case of a performance exerciser, DRS needs to be told
the failing uni t number, since several devices are being tested at
once. This is done by entering the failing unit number into the
header item L$LUN (0 to 63, decimal) prior to each error call.

7.5.7.3 Error Tables

Another pair of macros is provided for the programmer who needs to
dynamically modify either the error number, the message address, or
the message blocks pointer. The error is reported by first filling in
a tab leg e n era ted by the ERR T B L mac r 0 s, w hi c h t a k e s no a r g urn e n tan d
expands to the following:

Chapter 7
Printing Messages

ERRTYP:: .wORD
ERRNBR:: . WORD
ERRMSG:: .WORD
ERRBLK:: . WORD

20-Jan-83

ERRTYPE Values
a = System Fatal
1 = Dev ice Fatal
2 = Error Hard
3 = Error So ft

Page 7-18

After filling the table, the programmer must issue the macro "ERROR"
wi th no arguments. This will cause the above table to be accessed.
Only one "ERRTBL" macro can be coded per program.

7.5.8 Printing Messages (BGNMSG, ENDMSG, PRINTB, PRINTX, PRINTF)

7.5.8.1 Message Printout Format - An error message consists of four
separate parts:

A header of test identification information (TEST liD) from DRS.
A programmer specified error message (optional).
Basic error (BASIC ERROR) information (optional).
Extended error (EXTENDED ERROR) information (optional).

For example:

CZRLG DVC FTL ERR 00009 ON UNIT 00 TST 010 SUB 000 PC: 015626 ... error
BIT SET INSTRUCTION ON RLBA YIELDED WRONG RESULT ... basic
CONTROLLER: 174400 DRIVE: a ... extended
EXP'D: 000000 REC'D: 000001 ... extended

Test Identification Information (TEST liD):

The test liD information is error message header data from DRS. This
includes the error type, the test, subtest numbers, unit, pass, pass
count, etc.

Programmer Specified Error Message:

One-line ASCII message describing the error in general terms.

Basic Error Information (BASIC ERROR):

The basic error information is provided by the diagnostic program via
subroutines bounded by the BGNMSG, ENDMSG macros. This information
must be pr inted wi th a PRINTB macro. These messages descr ibe the
nature of the error, including the contents of device registers.

Chapter 7
Printing Messages

20-Jan-83 Page 7-19

Extended Error Information (EXTENDED ERROR):

The extended error information is provided by the diagnostic program
via subroutines contained in the message section and bounded by the
BGNMSG, ENDMSG macros. This information must be printed with a PRINTX
macro. The messages describe certain program and/or hardware
conditions that the diagnostic engineer deems necessary (e.g., number
of bytes transferred, etc.).

7.5.8.2 Begin and End Message Calls (BGNMSG, ENDMSG) - The begin and
end error message directives are used to initiate the code required to
print the basic and extended error message information following the
header print-out. BGNMSG requires an ARG = Name of This Message
Routine. This is the HSGADR argument for error report calls (see
Section 7.5.7.2).

7.5.8.3 Basic and Extended Print Message Calls (PRINTB, PRINTX,
PRINTF) - The basic (PRINTB) and extended (PRINTX) and unconditional
(PRINTF) error calls have the same format, so the following coding
example will use the basic error print call. However, if the inhibit
basic error flag is set, the PRINTB call cannot enable the print-out
of basic information, and if ei ther the inhibi t basic error flag or
the inhibit extended error flag is set, the PRINTX call cannot enable
the print-out of extended information.

The print error message macro calls are as follows:

PRINTB DFORMAT,DAT1, ... ,DAT8

where DAT1 thru DAT8 are data arguments (up to a maximum of 8) to be
printed in accordance with the specifications contained in the format
statements. The data arguments are word items which may be specified
by any add res sin g mod e (i . e ., R 2 , @ R 1 , (R 3) + , etc). Th e fir s t
argument placed on the stack is executed last and vice versa.

The format expression is as follows:

FORMAT: .ASCIZ /%D%D%D / ;% is a directive CD) delimiter

The format directives (D) may be coded as follows:

A = ASCII

T = ASCII

N<N) = NEW LINE

;Pickup and copy characters from the
;format statement to the output buffer
;until the next print limit (%) is
;encountered.

;Pickup and copy characters from an
;external area. The next data argument
;contains a pointer to the area.

;Insert N CR/LF's into the output buffer.

Chapter 1
Printing Messages

S<N) = SPACE

O<N) = OCTAL

B<N) = BINARY

D<N) = DECIMAL

Z<N) = ZEROS

20-Jan-83 Page 7-20

;Insert N spaces in output buffer
; (1<=N<=9).

;Convert next data argument to OCTAL
;ASCII. If N is less than or equal to
;6, only N ASCII characters will be
;provided as output. If N is greater
;than 6, leading ASCII spaces will be
;supplied

;Convert next data argument to binary
;ASCII. If N is less than or equal to
;16, only N ASCII characters will be
;provided as output. If N is greater
;tnan 16, leading ASCII spaces will be
;supplied.

;Convert next data argument to unsigned
;decimal ASCII. If N is greater than the
;actual number of characters output, and
;that output is less than 5, leading
;spaces will satisfy the difference
;within the first 5 characters.

;Convert next data argument to unsigned
;decimal ASCII, If N is greater than the
;actual number of characters output, and
;that output is less than 5, leading
;zeros will satisfy the difference within
;the first 5 characters; where N is
;greater than 5, leading spaces up to N-5
;will be supplied.

It should be noted that DRS allows a maximum line length of 72
characters. In addition, if any of the delimited directives are
incorrectly coded, DRS will print an error message (?).

Example:

EXAMPLE: TO PRODUCE THE MESSAGE

ERROR AT CSR 177500 DRIVE 2

USE THE FOLLOWING CODE:

MOV
MOV
PRINTB
MSG:
CSR:
DRIVE:

11111500,CSR
112,DRIVE
IIMSG,CSR,DRIVE
.ASCIZ I%N%AERROR AT CSR %06%A DRIVE %011
.WORD 0
.WORD 0

Chapter 1 20-Jan-83 Page 1-21
Statistical Reporting

Pr int Forced Message call (PRINTF) - the forced message print call
allows the programmer to override the print inhibit flags (e .g., to
issue a warning message). The call utilizes the same format as the
basic error print call (PRINTB), but does not require special
subroutine coding. For printing a byte value, the data argument (DAT1
to DAT8) looks like <B,DAT1>, for example:

UNIT:
DRIVE:

PRINTB
.BYTE 0
.BYTE 0

HFORMAT, <B,DRIVE>

1.5.9 Statistical Reporting (BGNRPT, ENDRPT, PRINTS, DORPT)

If a report coding section is included in the design of the diagnostic
program, a statistical report can be printed, via subroutine, which
reI ate s tot h e per for man ceo f the d i a g nos tic t est s (e . g ., n urn be r 0 f
errors occuring per read or write operation, etc.). Thus, a report
may be i ncl uded, and format ted, at the progr amme r 's d i scre t ion. In
any case, the coding of a statistical print':'out subroutine must be
initiated (BGNRPT) and ended (ENDRPT) by report directives, while the
required print (PRINTS) call is formatted in the same manner as the
basic error print call (PRINTB) described above.

The Print Statistical Report calls are as follows:

PRINTS HFORMAT, DAT1, ,DAT8

It sould be noted that if an Inhibit Statistical Report flag is set, a
print-out will not occur when a PRINTS call is executed.

Do Report call (DORPT)

Do Report (DORPT) is a separate call that can be independently coded
with a diagnostic structure to affect the printing of a statistical
report. This call is inhibi ted via setting of the "ISR" control flag
by the operator. Reports can be initiated by an operator via the PRINT
command.

1.5.10 Branching (BERROR, BNERROR, BCOMPLETE, BNCOMPLETE)

DRS services performed for a diagnostic program can result in the
return of an error indication via the setting of an error flag. To
alter the sequencing of the diagnostic, dependent on the condition of
the error indicator, a branch on error (BERROR) and branch on no error
(BNERROR) call are prov ided which allow the program to pred icate a
branch on the set or reset condition of the indicator. Branch
c apabi Ii ty is prov ided by a single argument (Label), which prov ides
each call with a symbolic label to which program sequencing is
directed if the tested condition is true.

Chapter 7
Branching

20-Jan-83 Page 7-22

The Error Branch Macros are as follows:

BERROR LABEL

BNERROR LABEL

;Branch to label if error indicator is
;set (generates BCS inst.)

;Branch to label if error indicator is
;reset (generates BCC inst.)

DRS can also return a Function Complete indication via the setting of
a complete flag. To alter program sequencing, dependent on the
condition of the complete indicator, a branch on complete (BCOMPLETE)
and branch on not complete (BNCOMPLETE) call are provided to predicate
a branch on the set or reset condition of the indicator, respectively.
Branch capability is provided by the argument (label), which provides
for program redirection if the tested condition is true.

The Function Complete Branch Macros are as follows:

BCOMPLETE LABEL

BNCOMPLETE LABEL

7.5.11 Clock Macro

;Branch if function complete indicator is
;set (generate BCC inst.)

;Branch if function complete indicator is
;reset (generate BCS inst.)

I f a programmer need s to do cr it ic al timing he can use either the "L"
or the "P" clocks, if available, as follows:

CLOCK TYPE,PTR

For example: CLOCK
BNCOMPLETE
MOV

L,R1
CLK
(R 1) +, CLK

;Look for a line clock.
;Branch if none there.
;Save clock CSR address.

The ARG "Type" is either an "L" or a "P" and causes the address of the
corresponding clock table to passed back in the ARG "PTR". The format
of this four word table is:

.WORD CSR

.WORD BR LEVEL

.WORD VECTOR

.WORD HERTZ

Notes:

;CLOCK ADDRESS
;CLOCK BR LEVEL
;CLOCK VECTOR
;LINE FREQUENCY (L CLOCK ONLY)

a. The diagnostic should not call the DRS during a fine timing
operation.

Chapter 7
Clock Macros

20-Jan-B3 Page 7-23

b. The diagnostic should not use the clock for watchdog delays
and should return to the DRS periodically during these delays.

7.5.12 Event Flags (READEF)

Read event flag call (READEF ARG) - the read event flag call is used
to test the condition of an event flag bit specified by the associated
argument. If the flag bit is set, a function complete indicator will
be ret urn e d for t est in g v i a a bra n c h com pIe t e (B C OM P LET E) call. Th e
act of reading clears an event flag.

The read event flag macro is as follows:

READEF IIARG ;Read condition of EF bit specified
;by ARG.
;ARG provides decimal number (1-32)
;by any legal address mode.
;If EF bit is set, return function
;complete indicator and clear EF bit.

There are situations where the diagnostic needs to know what command
invoked it, and for this purpose there are the following event flags
which can be read by the program:

EF.START
EF.RESTART
EF.CONTINUE
EF.NEW
active units have been

EF.PWR

Start command was issued
Restart command was issued
Continue command was issued
New pass is being commenced after all

accessed (always
set on a new pass, even if EF.START or
EF. RESTART is also set). _
Power is coming back up after failure
(a power up message is printed by DRS)

DRS sets these flags to their correct values (and clears any that are
no longer true) at each entry to the INIT code (i.e., at each
sub-pass). The act of reading one of these event flags clears it.
These flags are only valid during the execution of the INIT code.

7.5.13 Unit Selection (BGNAU, ENDAU, BGNDU, DODU, ENDDU)

If the diagnostic engineer wishes to include additional device-units
in a test cycle, or delete specific units from a cycle, separate add
unit (BGNAU, ENDAU) or drop unit (BGNDU, ENDDU) directives must be
use d to de fin e the n e c e s s a r y cod i n g (if any) w hi 1 e s e par ate dod r 0 p
unit (DODU) calls must be coded to effect execution. When the add or
drop code is invoked, RQ will contain the logical unit number.

Chapter 7
Unit Selection

20-Jan-83

Note

All uni ts are in the ADDED state when a
diagnostic is started.

Page 7-24

7.5.13.1 Adding Units (BGNAU, ENDAU) - Units may be added to the test
sequence only through the use of operator add command (ADD). Each
unit must have a P-table in memory due to an earlier hardware dialogue
(i.e., the unit was previously dropped). The add code must be
delimited by BGNAU, ENDAU. There is no particular coding required in
the add code to cause the add to be effective: the section is just
for program housekeeping.

7. 5.13. 2 Dropping Units (BGNDU, ENDDU, DODU) The drop code,
delimited by BGNDU ... ENDU is invoked by either the operator drop
command or by the issuance of the DODU macro. There is no particular
coding required in the drop code to cause the drop to take effect in
either case: the section is merely for program housekeeping.

Do Drop Uni t Macro (DODU)

The effect of a DODU is dependent upon whether it is executed in the
INIT code or in a hardware test. It invokes the drop unit coding and
causes subsequent GPHARDs for the logical uni t to be returned "not
complete". This effect lasts only for the duration of the current
command. See 7.5.20 for sample DODU. If the DODU is exec uted in the
INIT section, the run is aborted and the DRS returns to prompt mode.
If the DODU is executed in a test, control is returned to the
diagnostic immediately after the DODU call. A DOCLN call is typically
executed next (see section 7.5.22). This forces execution of the
cleanup code.

7.5.14 Default Hardware P-Table (BGNHW, ENDHW)

The defaul t hardware p-table serves as the template from which DRS
builds identically formatted tables (via operator dialogue), one for
each unit specified. The default hardware p-table is hard coded into
the diagnostic (unlike the hardware p-tables which are buil t by DRS
foIl 0 wi n g the LAS TAD mac r 0 (see Se c t ion 7. 4 . 4) wit h beg inn i n g and
ending directives BGNHW and ENDHW).

The hardware p-table may be structured differently for each device
being tested. All diagnostic programs testing a particular device
should use the same format for the hardware portion of the p-table.
The standard P-table format requires that the first N words of the
P-table be the device addresses from Unibus address down through unit
address. The first N words of the P-table should look like this:

Chapter 1
Software P-Table

.WORD CSR1

20-Jan-83 Page 7-25

.WORD Next level of device address (e.g., massbus address)

.WORD Unit address (e.g., drive number)

Additional words can contain additional hardware parameters if needed.

7.5.15 Software P-Table (BGNSW, ENDSW)

The software p-table is coded into the program with initiating (BGNSW)
and ending (ENDSW) directives. Unlike the default hardware P-table,
this is an actual table used by DRS and not a template. Sirice table
information relates to program behavior, each entry is formatted at
the engineer's discretion. During dialogue with the operator, the
assembled entries may be altered by operator input, or left intact via
the execution of a carriage return, if the defaul t-select on the
GPRMxx call was YES. Thus, the assembled entries are the software
default status. The BGNSW has an optional ARG = label of first entry
of software p-table. This label can be used by the programmer to
access the table.

7.5.16 Hardware P-Table Questions (BGNHRD, ENDHRD)

Hardware parameter coding is assembled with the diagnostic program,
utilizing initiating (BGNHRD) and ending (ENDHRD) directives. The
parameter coding calls (GPRMD, GPRMA, GPRML, XFERs), that are required
by the DRS to obtain desired hardware parameters from the operator,
are placed in this section and are interpreted by the DRS in order to
query the operator for hardware data during the initial load phase of
the diagnostic. During this dialogue, the operator may enter 1'Z,
which terminates dialogue and takes default values for the rest of the
entire table. Also included in this section are the ASCIZ messages
that are required to establish a dialogue with the operator. Data
thus obtained by the DRS is placed in the p-tables.

Chapter 7
Software P-Table

20-Jan-83 Page 7-26

7.5.17 Software P-Table Questions (BGNSFT, ENDSFT)

Optional software parameter coding may be assembled with the
diagnostic program, utilizing initiating (BGNSFT) and ending (ENDSFT)
directives. The parameter coding calls (GPRMD, GPRMA, GPRML, XFERs),
that are required by the DRS to obtain des ired software parameter s
from the operator, are placed in this section, and interpreted by the
DRS in order to query the operator for hardware data during the
in it ial load phase 0 f the d i agno stic . Dur ing thi s dialogue, the
operator may enter iZ, which terminates dialogue and takes defaul t
values for the rest of the entire table. Also included in thi s
section are the ASCIZ messages that are required to establish a
dialogue wi th the operator. Data thus obtained by the DRS is placed
in the software P-table.

7.5.18 Parameter Coding Calls (GPRMD, GPRMA, GPRML)

These calls are the means whereby questions are posed to the operator
and the answers received are placed into the appropriate hardware or
software P-table. There are three kinds of calls:

GPRMD
GPRMA
GPRML

GET DATA
GET ADDRESS
GET LOGICAL (YES/NO)

7 .5. 18. 1 GPRMD Call - Data -
follows:

The get parameter data call is as

GPRMD MSGADR,OFFSET,RADIX,MASK,LOLIM,HILIM,DEFAULT-SELECT

MSGADR
OFFSET

RADIX

MASK

LOLIM
HILIM
DEFAULT-SELECT

;Msgadr is address of message to be printed.
;Offset is a relative data byte position in
;table.
;Radix is the base of the input value, decimal
;(D), octal (0), or binary (B).
;Mask is bit position to which the data is
;justified prior to packing.
;LOLIM is the lowest allowed unsigned value.
;HILIM is the highest allowed unsigned value.
;DEFAULT-SELECT provides a logical choice for
;default (YES), or no default (NO).

The information obtained by the get parameter data (GPRMD) call is
placed in ei ther a hardware or software P-table, as directed by the
arguments. The call can obtain from the operator ei ther even or odd
valued parameters.

Chapter 1
Software P-Table

20-Jan-B3 Page 1-21

The MSGADR argument provides DRS with the symbolic address of the
ASCIZ message that is used to provide the question required to
initiate dialogue with the operator.

The OFFSET ar gument prov ides DRS wi th a byte location that is
relative to the base location of the p-table by the offset value, and
into which the current parameter will be placed.

The RADIX argument symbolically defines the base value of the
number system (D,O,B) that must be used by the operator in order to
correctl y input numer ical information. To ensure pro per operation,
DRS checks the RADIX of the input data.

The MASK argument provides DRS with the location of the
consecutive bit positions, within a 16-bit word, into which the value
of a parameter will be right justified in the P-table. For example,
if the mask is a 36 octal (000036), the one bits contained in the
16-bit argument (0 000 000 000 011 110) define the desired location of
the 4-bit parameter as bit positions 1-4 of the lower byte of the
word.

The LOLIM and HILIM arguments provide DRS with unsigned numerical
values which define the minimum and maximum input values desired. To
ensure proper operation, DRS will compare the limit values with the
values entered by the operator. However, if the programmer desires to
utilize a previous P-table entry as a limit, a special syntax
«@VALUE» may be used in place of the argument, the value of which is
used to define the offset required to obtain the previous limit.

The DEFAULT-SELECT ar gument prov ides DRS wi th a logical swi tch ,
which allows the supervisor to define either an actual operator input
or a default value for the P-table. The actual coding of the default
value must be YES or NO; if DEFAULT-SELECT is YES, the default value
will be printed, and the operator may then enter a carriage return to
select the defaul t value, or a new value followed by a carriage
return. If the defaul t-select is NO, the defaul t value will not be
printed and the operator must enter a new value and carriage return.
For the software P-table, the defaul t value is what is contained in
the table. For the hardware P-table, the default value is initially
the value contained in the table. After that, the latest value is the
default value.

Chapter 7
Software P-Table

20-Jan-83 Page 7-28

7.5.18.2 GPRMA CALL - Address - The get parameter address call is as
follows:

GPRMA MSGADR,OFFSET,RADIX,LOLIM,HILIM,DEFAULT-SELECT

MSGADR ;same as GPRMD
OFFSET ;same as GPRMD
RADIX ;same as GPRMD
LOLIM ;same as GPRMD
HILIM ;same as GPRMD
DEFAULT-SELECT ;same as GPRMD

The get parameter address (GPRMA) call is used to obtain even valued,
unsigned parameter addresses from the operator. However, as
previously implied, if odd valued addresses are desired the programmer
must use the data call (GPRMD). The address call (GPRMA) arguments
are used in the same manner as the data call arguments wi th one
exception - the address call does not require the coding of a mask
argument since all addresses will be word values.

Exception Capability

There is an additional feature available on the GPRMD and GPRMA calls,
known as the "Exception Bi ttl . By using it, the diagnostic is able to
indicate that the desired low and high limits are not constants, but
are in the form of relative offsets to previous entries in the
p-table. In other words, these entries were put into the table as
responses to previous questions. In the following example, the first
hardware question asks for the low limit, the second asks for the high
limit, and the third question is the one that uses those limits.

Note that the offsets in the exception coding are byte offsets from
the beginning of the p-table to the location which contains the high
or low limit.

LOW:
HIGH:
VAL:

BGNHW
.WORD
.WORD
.WORD
ENDHW
BGNHRD
GPRMD
GPRMD
GPRMD
ENDHRD
.ASCIZ
ASCIZ
.ASCIZ
.EVEN

o
200
100

LOW,O,D,177777,0,100,YES
HIGH,2,D,177777,101,200,YES
VAL,4,D,177777,<@0),<@2),YES

/LOW LIMIT/
/HIGH LIMIT/
/VALUE DESIRED/

Chapter 7
Software P-Table

20-Jan-83 Page 7-29

7.5.18.3 GPRML Call - Logical - The Get Parameter, Logical call is as
follows:

GPRML MSGADR,OFFSET,MASK,DEFAULT-SELECT

MSGADR
OFFSET
MASK
DEFAULT-SELECT

;sarne as GPRMD
;same as GPRMD
;same as GPRMD
;same as GPRMD

The Get Parameter Logical (GPRML) call is used to obtain a logical YES
or NO response from the operator. Ei ther lower or upper case val ues
will be accepted by the supervisor. The arguments associated with the
call are used in the same manner as the data call (GPRMD) arguments.
However, the RADIX and LIMIT (LOLIM, HILIM) arguments are not
required. The response is stored in a single bit. The bit will be
set to a for yes and 0 for no. Up to sixteen responses may be
stored in a single word.

7.5.18.4 COUNT Macro (COUNT arg)

An optional COUNT argument is permitted in the software dialogue only.
By appending a COUNT value to the argument string of any of the above
three macros, the program can cause the question to be asked a
variable number of times. The actual value of the count argument is
an offset into tbe software P-table. The entry so referred to must
have been filled by a previous GPRMD call wi thout a count argument.
When the GPRMx macro with the count argument is processed, the value
at (BGNSW plus COUNT) will be used to determine how many times the
question will be asked. The answers will be placed (one word each)
starting at the offset specified.

7.5.18.5 DISPLAY Macro (DISPLAY arg)

The program may cause a one-time display of
inserting a DISPLAY macro into his parameter
argument is a pointer to a multi-line message
ASCII directive and the entirety is terminated
directive.

7.5.19 Transfer Calls (XFER)

a piece of tex t by
gather ing code. The

where each line is an
by a . BYTE a or ASCIZ

Three transfer calls allow program control to be transferred to the
location defined by the label associated with each transfer call.
These calls may be used to sample the response received from the
operator to the GPRML calls. Branching is forward only. Table 7-6
lists the transfer calls.

Chapter 7
Transfer Calls

20-Jan-83 Page 7-30

Table 7-6. Transfer Calls

Transfer Calls Function

XFERT LABEL

XFERF LABEL

XFER LABEL

If last GPRML input is true (Y),
transfer control to LABEL

If last GRPML input is false (N)
transfer control to LABEL

Unconditionally transfer control
to LABEL

The following provides an example of dialogue coding for construction
of the p-table.

BGNHRD ;Begin hardware parameter code

GPRMD G1,O,O,160000,0,7,NO ;Get a unit number (0-7). Place in
;upper 3 bits of P-table, at word 0,
;No default value is allowed.

GPRMA G2,2,0,177000,177776,YES ;Get addr. of regs (177000-177776)
;place in word 2 of the table.
;Default value is from default
;table.

GPRMA G3,4,O,O,776,YES ;Get the vector addr (octal 0-7).
;Place in word 4.
;Default value is from default
jtable.

GPRMD G4,6,D,-1,0,6,YES ;Get interrupt priority (0-6).
;Place in word 6.
jDefault value is from default
jtable.

GPRML G5,10,-1,YES ;Get logical switch (yes or no)
jplace in word 10.
;Default value is from default
jtable.

ENDHRD jEnd hardware parameter code.

G 1 :
G2:
G3 :
G4 :
G5:

.ASCIZ

.ASCIZ

.ASCIZ

.ASCIZ

.ASCIZ

IUNIT NUMBERI
IDEVICE ADDRESSI
IINTERRUPT VECTOR ADDRESSI
IPRIORITY LEVELl
I RK05FI

Chapter 7
Request Table

1.5.20 Request Table (GPHARD)

20-Jan-83 Page 1-31

The GPHARD is issued in the initialization code with two arguments:

GPHARD LUNBR,PLOC

DRS places the address of the P-table for logical unit LUNBR to be
placed at location PLOC. The arguments may be in the form of any
addressing mode. Note that no movement of the p-table takes place.

The return from GPHARD indicates to the program whether the p-table
requested was available or not by means of the "COMPLETE" or "NOT
COMPLETE" indicator. The p-table will be unavailable if:

A. This logical unit was dropped by the operator.
B. This logical unit was dropped by the program (See DODU).
C. The "/UNITS" switch was supplied on a restart command and this

logical unit wasn't mentioned.

GPHARD calls must be issued in the INIT code section in order for the
DRS to keep track of passes.

For a sample of GPHARD calls, see 1.5.21.

1.5.21 Initialization (BGNINIT, ENDINIT)

Diagnostic initialization coding
program utilizing initiating
directives.

is assembled
(BGNINIT) and

with the
ending

diagnostic
(ENDINIT)

The INIT code is invoked at the beginning of every sub-pass (see 1.2),
when a START, RESTART, or CONTINUE command is issued and after a
power fail/ autorestart . Following are two samples of INIT code, one
for an ordinary sequential diagnostic and one for a performance
exerciser.

BGNINIT
READEF
BECOMPLETE
READEF
BNCOMPLETE

SETUP: MOV
NEXT: INC

CMP

END:

BEQ
GPHARD
BNCOMPLETE
MOV

ENDINIT

IIEF.CONTINUE
END
IIEF.NEW
NEXT
/1-1 ,LOGUNIT
LOGUNIT
LOGUNIT,L$UNIT

SETUP
LOGUNIT,PLOC
NEXT
@PLOC,LOCAL
jlocal storage

jSequential example
jContinue command?
jYes, get no p-table
jNew pass?
jNo, skip setup
;Initialize logical unit NBR
jPoint to next logical unit
jHave we pass maximum?

jYes, abort the pass
;Get the p-table
jlf not available, get next
jMove p-table contents to

jFinished

Chapter 1
Initialization

20-Jan-83 Page 1-32

INIT code is run at priority 0 or the value of the priority argument
that was used in the HEADER macro. A SETPRI macro can be used to
change the priority.

BGNINIT

READEF
BCOMPLETE

SETUP: MOV
CLEAR: MOV

CMP
BNE
MOV

MOV
NEXT: INC

CMP
BEQ
GPHARD
BNCOMPLETE
MOV

BR
END: ENDINIT

IIEF.CONTINUE
END
IILOCAL,R4
IIO,(R4)+
R4,IIENDLOC
CLEAR
IILOCAL,R4
;pointer
11-1,LOGUNIT
LOGUNIT
LOGUNIT,L$UNIT
END
LOGUNIT,PLOC
DROPPED
@PLOC,(R4)+
;local storage
NEXT

;Performance exerciser
;example
;Continue command?
;Yes, finished
;Init local storage pointer
;Clear next piece of local
;End of local storage?
;No, go clear more
;Reinit local storage

;Init logical unit number
jPoint to next logical unit
jHave we passed maximum?
jYes, finished
;Get the p-table
;Not available, get next
;Move p-table contents to

;Finished

1.5.22 Clean-Up Code (BGNCLN, ENDCLN, DOCLN)

Cleanup coding is assembled with the diagnostic program, utilizing
initiating (BGNCLN) and ending (ENDCLN) directives. The coding can be
used by either the diagnostic program or DRS and must return the test
device to a static (power-up) state. The clean-up code is invoked in
three different ways:

1) at the end of every sub-pass

2) at the issuance of DOCLN macro

3) by operator CONTROL/C

Do Clean-Up (DOCLN) is a separate call that can be independently coded
within a diagnostic structure to return a device to that static state
via a call up of the BGNCLN structure. If invoked during the INIT
code, the entire diagnostic will be aborted and control will return to
the DRS command mode. If invoked during a hardware test, it aborts
the current sub-pass with the message ABOPAS.

Chapter 7 20-Jan-83 Page 7-33
Manual Intervention

7.5.23 Is Manual Intervention Allowed? (MANUAL)

Each test requiring manual intervention must contain a Test, Allow
Manual Intervention (MANUAL) call, to determine, via the return of a
complete or not-complete indicator, if manual intervention mayor may
not be successfully performed. If a negative determination is made,
the program must provide an exit from the test structure via the
coding of an Exit Test (EXIT TST) macro. This is necessary since any
attempt to execute manual intervention coding when the system is
incapable of successfully performing the operation will cause the
program to "hang" since no operator will be available to perform the
required action that will enable the program to continue.

Example:

BGNTST
MANUAL
BCOMPLETE 5$
EXIT TST

5 $: . · · .. .

;Branch if manual intervention is allowed (UAM flag
;set) .

Manual intervention is not normall y allowed in XXDP+ chain (batch)
mode. The user may be a Clear Manual Intervention (CMI) or Set Manual
Intervention (SMI) directive in a batch file to enable and disable
manual intervention.

7.5.24 Get Manual Parameters (GMANID, GMANIA, GMANIL)

This should be done with care since diagnostics may not run properly.
If used, the batch file must contain responses to manual intervention
questions.

Ref: XXDP+ System User's Manual (CHQUSE)

Coding of a GMANI call provides a means for an operator to manually
intervene in the operation of a program under predefined response
conditions. When a GMANI call is executed, a message is delivered to
the operator by DRS while the program awai ts a manual response. The
values (upper or lower case) entered by the operator are delivered to
the program along with a function-complete indicator. The GMANI calls
are similar in format to the GPRM calls except that the OFFSET
argument is replaced by a DATADR agrument. The XFER calls cannot be
used with the GMANI calls.

Chapter 7 20-Jan-83 Page 7-34
Manual Parameters

7.5.24.1 GMANID Call
The Manual Intervention Input Data Call is as follows:

GMANID MSGADR,DATADR,RADIX,MASK,MINCHR/LOLIM,MAXCHR/HILIM,
DEFAULT-SELECT

MSGADR
DATADR
RADIX

;MSGADR is address of message to be printed.
;DATADR is address of data storage area.
;RADIX is number base of expected input
;values symbolized by: D(decimal), O(octal),
;B(binary), or A (ASCII).

MASK ;MASK is bit position to which the data is
;justified prior to packing.

MINCHR/LOLIM ;Define lower limit:
;MINCHR serves A radix.
;LOLIM serves D,O and B.

MAXCHR/HILIM ;Define upper limit:
;MAXCHR serves A radix.
;HILIM serves D,O, and B.

DEFAULT-SELECT ;to default values or strings.

a) The Message Address Argument (MSGADR) is the symbolic address
of the ASCII message which requests information from the
operator.

b) The Data Address Argument (DATADR) is the symbolic address of
the storage area into which the data, received from the
operator, will be placed.

c) The Number Base Argument (RADIX) is a value which defines the
rad ix the operator must use for input data. Legal rad i x
values are D(DECIMAL), O(OCTAL), A(ASCII) and B(BINARY).
Control characters may be input to per form desired control
functions.

d) The Mask Argument (MASK) provides DRS with the location of the
consecutive bit positions, within a 16-bit word, into which
the value of a parameter will be right-justified in the
P-table. This argument does not apply to ASCII radix.

e) The Minimum Character (MINCHR) and Maximum Character (MAXCHR)
arguments apply to A radix usage only, with a maximum defined
input of 72 characters. The Low Limit (LOLIM) and High Limit
(HILIM) arguments apply to D, 0, and B radix usage and provide
the DRS with unsigned numerical values that define the number
of input data characters desired.

f) The Default-Select (DEFAULT-SELECT) argument provides the DRS
with a logical switch which defines either an actual operator
input or a default value for the p-table. The argument is
coded ei ther YES or NO to indicate, respectively, if defaul t
values should or should not be appended.

Chapter 7 20-Jan-83 Page 7-35
Manual Parameters

7.5.24.2 GMANIA Call

The Manual Intervention Input Address call is as follows:

GMANIA MSGADR,DATADR,RADIX,MINCHR/LOLIM,MAXCHR/HILIM,DEFAULT-SELECT

MSGADR ;same as GMANID
DATADR ;same as GMANID except this is not a table address
RADIX ;same as GMANID
LOLIM ;same as GMANID
HILIM ;same as GMANID
DEFAULT-SELECT ;same as GMANID

The Get Manual Intervention Address (GMANIA) call is used to obtain
even-valued, unsigned parameter addresses from the operator. If odd
valued addresses are desired, the programmer must use the data call
GMANID. The mask and ASCII character limits (MINCHR/MAXCHR), however,
are not required since all addresses will be numeric values.

7.5.24.3 GMANIL Call

The Get Manual Intervention Logical Call is as follows:

MSGADR
DATADR
MASK
DEFAULT-SELECT

;same as GMANID
;same as GMANID except this is not a table address
;same as GMANID
;same as GMANID

The Get Manual Intervention Logical (GMANIL) call is used to obtain a
logical yes (YES) or no (NO) response from the operator. Either lower
or upper case values will be accepted by DRS. The arguments are used
in the same manner as those associated with the GMANID data call. The
radix and character limits (MINCHR/MAXCHR and LOLIM/HILI~I), however,
are not required.

7.5.25 Operator Interrupt Enable (BREAK)

The diagnostic program will sometimes run with priority levels that
are so high that operator-initiated interrupts from the console device
will be ignored. The possibility of this problem occurring is
alleviated by the design of DRS, which allows an operator request flag
to be set when communicat ion occ urs, and tested when a DRS call is
executed by the program. For this reason, diagnostic program coding
should contain periodic DRS calls that are predicated on approximately
2 seconds of run time. To serve this end, a special Program Break
Call (BREAK), which will advise DRS to initiate a test of the operator
request flag, is available to the programmer. This call is used only
in the exceptional case where a given program loop contains no DRS
calls (even ERROR calls) at all (usually in long software delays).

Chapter 1
Bus Reset

1.5.26 Bus Reset (BRESET)

20-Jan-83 Page 1-36

The BRESET call is used to cause the execution of a RESET instruction
to, for example, a unit under test (UUT) via DRS. This method of
initializing error conditions allows DRS to implement self-protective
procedures prior to executing a clear operation.

1.5.21 Memory Allocation (MEMORY)

When a program issues the MEMORY macro, DRS gets the address of the
start of free memory.

MEMORY ARG

The address is placed into the location specified by ARG. The first
word of free memory contains the length in words of free memory. The
second word contains bits 0-15 of the physical address of free memory.
The third word contains bits 16-31.

DRS, at start-up time, al wa ys puts the leng th of total memor y (28K
words and over) into the header word L$HIMEM. The value is in page
address register form.

1.5.28 Interrupt Handling (SETVEC, CLRVEC, BGNSRV, ENDSRV)

Since diagnostics usually have interrupt service routine coding, a
dev ice vector location should be configured wi th the address of the
associated service routine, under appropriate interrupt priority level
conditions. To accomplish this for each device, a Set Vector (SETVEC)
mac r 0 is use d , a Ion g wit h t h r e e ass 0 cia ted a r g urn en t s (A R G 1, A R G 2 ,
ARG3), to provide the following:

ARG1, the first argument, provides the address of the vector.

A R G 2 , the sec 0 n dar g urn e nt, pro v ide s the add res s 0 f the
associated interrupt service routine.

ARG3, the third argument, provides the priority level for the
servicing of the associated interrupt.

The Set Vector macro is as follows:

SETVEC ARG1,ARG2,ARG3 ;Set-up a device interrupt.
;ARG1 provides the address of the
ivector.
iARG2 provides the address of
ithe service routine.
;ARG3 provides the appropriate priority
ilevel.

Chapter 1
Interrupt Handling

20-Jan-83 Page 7-37

A vector location assigned to a dev ice may be deallocated by the
coding of a Clear Vector (CLRVEC) macro, in which an argument is used
to provide the absolute vector address.

The Clear Vector macro is as follows:

CLRVEC ARG jReturn an interrupt vector to the unused pool.
jThe trap catching mechanism is replaced in the vector.
jARG provides the address of the vector.

The cod ing of the interr upt serv ice routine requires an ini tiating
(BGNSRV) directive and an ending (ENDSRV) directive.

The service routine macros are as follows:

BGNSRV LABEL
ENDSRV ARG

jLABEL identifies the routine
jARG is for optional interrupt priority change

RO is used by DRS and should not be used in the diagnostic, including
the interrupt routine.

7.5.29 Documentation Aids

The formatting and readability of program listings may be enhanced by
using the COMMENT, END COMMENT, SLASH, and STARS macros to provide
left (COMMENT, ENDCOMMENT) and right (SLASH, STARS) justified 70-
column line graphics for use as message and/or comment brackets.

7.5.29.1 Left Justified Graphics (COMMENT, ENDCOMMENT)

The Left Justified Graphic macros allow printing of a 70-column line
(0-69) of repetitive symbols (/*:). The associated argument may be
used to defi ne the n umber of 1 ines desired. If the ar g ument is not
used, a single line will be printed. The left graphic macros are as
follows:

COMfvIENT ARG

ENDCOMMENT ARG

jPrint initial line of graphic (/*\:).
jARG provides for specific number
jof lines.
;Print final line of graphic (/*\:).
jARG provides for specific number
jof lines.

Chapter 7
Documentation Aids

20-Jan-83

7.5.29.2 Right Justified Graphics (SLASH, STARS)

Page 7-38

Right Justified Graphic macros allow the printing of a 70-column line
(32-96) of either forward slashes (/) or asterisks (*). The
associated argument may be used to define the number of lines desired.
If the argument is not used, a single line will be printed. The right
graphic macros are as follows:

SLASH ARG ;Print line of forward slashes (/).
;ARG provides for specific number
;of lines.

STARS ARG ;Print line of asterisks (*).
;ARG provides for specific number
;of lines.

7.5.30 Program Priority (SETPRI, GETPRI)

SETPRI is used to set the priority at which the diagnostic will run.
The call format is SETPRI ARG, where ARG is the desired priority.
GETPRI is used to determine what the current diagnostic progrm
priority is. The call format is GETPRI ARG, where ARG is the location
into which DRS will return the current program priority.

The priority argument is aligned with the priority field of the PSW.
It is recommended that you use PRI07-PRIOO defined by the EQUATES
macro. When SETPRI is used in the INIT code, the priority is
permanent. When SETPRI is used in a test, the priority is only in
effect for that test.

7.5.31 Bus Type Check (READBUS)

The READBUS call (no arg ument) is used to determ ine bus type (UNIBUS
versus Q-BUS). A complete indication is given for Q-BUS, not complete
for UNIBUS.

Example: READBUS
BCOMPLETE QBUS ;Branch if Q-BUS.

;Bus is UNIBUS.

Chapter 7 20-Jan-83 Page 7-39
Load Device Protection

7.5.32 Load Device Protection

Load Device Protection is provided by DRS, using a table in the
diagnostic to identify the p-table entries which are pertinent to the
load device (i.e., Unibus addr., Massbus addr., unit/drive). The
required three word table supplies the hardware off-sets of the CSR,
the MASS BUS unit, and the drive number of the UTT. It is used by DRS
to compare these hardware parameters to the corresponding values for
the load dev ice. On a match, a NOT-COMPLETE indication is returned
after a GPHARD call for the load device.

If the programmer does not care to have a match attempted on a
particular field (such as MASS BUS UNIT NBR), the programmer can code
a "-1" in the appropriate slot in the protection table.

Example:

BGNPROT
.WORD 2
. WORD -1
.WORD 4
ENDPROT

jP-table offset of CSR.
jnot a MASS BUS device .
jp-table offset of drive H.

7.5.33 File Control Services

DRS provides the ability for a diagnostic to request the loading of a
byte or word of a data file (from the load medium only) into an
address specified by the diagnostic. The file must be opened by name
(OPEN MACRO), read one byte or one word at a time (GETBYTE, GETWORD),
and closed. It is the responsibility of the programmer, working with
Release Engineering, to ensure that a file of the specified name
resides on the load medium. Data will not be linked or relocated. A
diagnostic which calls for data retrieval via DRS will not run under
APT. Note that this says nothing about the APT compatibility of a
di agnostic that does its own data retr ieval from a medi urn that it
knows about; such a case is not related to the data retrieval
capability of DRS.

WARNING

Any 0 n e w"r i tin gaD R S d i a g nos tic t hat
calls for data retrieval via the DRS will
have produced a non-APT-compatible
diagnostic.

There are four macros involved in data retrieval:

OPEN ARG - Where ARG is the ASCII string containing the file name and
extension. If the file is not found, the message "LOOKUP
FAILURE FILE. EXT" will be printed and return to the
monitor prompt mode will occur.

Chapter 7 20-Jan-B3 Page 7-40
File Control Services

GETBYTE ADDR - The next sequential BYTE from the currently open data
file is placed into the specified location.
End-of-file is indicated by NOT COMPLETE.

GETWORD ADDR performs two GETBYTES.

CLOSE - The currently open data file is closed.

7.5.34 Access to Flags

A diagnostic may request to see the operator flag settings by issuing
the RFLAGS macro. This is a Read-Only access. The settings will be
passed in a 16-bit word to the diagnostic specified by the macro's
argument (RFLAGS argument). The bit settings are as follows:

15 Halt on Error
14 Loop on Error
13 Inhibit Error Reporting
12 Inhibit Basic Error Reports
11 Inhibit Extended Error Reports
10 Direct All MSGS to Line Printer
9 Print Number of Test Being Executed
B Bellon Error
7 Run in Unattended Mode
6 Inhibit Statistical Reports
5 Inhibit Dropping of Units by Diagnostic
4 Autodrop Units
3 Loop on Test
2 Reserved
1 Unimplemented
o Unimplemented

7.5.35 Autodrop Section

Every diagnostic must have an AUTODROP SECTION delimited by
BGNAUTO ENDAUTO. This required section contains AUTODROP code with
which the diagnostic checks each unit to see if it responds READY and
drops it if it does not. If so desired, this section may contain
nothing more than the delimiters. That is, the section may have no
actual function. If the unit is dropped in a sequential diagnostic,
it will be returned to the INIT code to fetch another P-table. In an
"Exerciser-type" diagnostic, where more than one uni t at a time is
tested, it is always sent on to the first hardware test. The Autodrop
Section is cond i tionally executed immed iatel y after the INI T code,
when the operator ADR flag is set.

Chapter 1 20-Jan-83
Sample Diagnostic

1.6 SAMPLE DIAGNOSTIC

.TITLE Sample diagnostic

.MCALL SVC
SVC
.ENABLE ABS
.ENABLE AMA
.=2000

BGNMOD MOD1
; Program Header

POINTER BGNSW,BGNSFT,BGNDU,BGNRPT
HEADER CSAMP,A,0,10,O
DISPATCH 3

;Descriptive Text
DESCRIPT
DEVTYPE

<SAMPLE DIAGNOSTIC)
<RK05,RK06)

;Default Hardware P-Table
Listed by DISPLAY, May change hardware p-tables on START

BGNHW DFPTBL
.WORD 0
ENDHW

;Software P-Table
May change on START, RESTART, CONTINUE

BGNSW SFTBL
.WORD 0
ENDSW

;Global Equates and Global Data
EQUALS

LOGUNT:
LOCAL:
PLOC:

;Global
ERRt-'ISG:
TS 1 :
TS2:
TS3:

.WORD

.WORD

.WORD

Text
.ASCIZ
.ASCIZ
.ASCIZ
.ASCIZ
.EVEN

o
o

°
/ERROR
/%N%AI
/%N%AI
/%N%AI

MSG/
AM TEST
AM TEST
AM TEST

1/
2/
3/

Page 1-41

Chapter 7 20-Jan-83
Sample Diagnostic

;Global Error Report Section
PRINTB (Basic error info), PRINTX (Extended error info)

BGNMSG ERRTN
PRINTB #ERR1,CSR,DRIVE
EXIT MSG

ERR1: .ASCIZ I%N%AERROR AT CSR %06%A DRIVE %011
.EVEN

CSR: .WORD 177600
DRIVE: .WORD 0

ENDMSG

;Protection Table
BGNPROT
.WORD -1
.WORD -1
.WORD 0
ENDPROT

Page 7-42

;Global Subroutine Section (Such as Interrupt Service Routines)
Interrupt Service Routine Addresses loaded in vector by SETVEC

BGNSRV DEVINS
MOV @CSR,LOCAL
ENDSRV

;Report Coding Section
Invoked by DR) PRINT or DORPT macro

BGNRPT
PRINTS #STSMSG,DRIVE
EXIT RPT

STSMSG: .ASCIZ I%N%ADRIVE %01 %A WAS TESTED/
.EVEN
ENDRPT

;Initialization Code

SETUP:
NEXT:

END:

Executed by START, RESTART, CONTINUE, new subpass (check event
flags)
BGNINIT
READEF #EF.CONTINUE
BCOMPLETE END
READEF #EF.NEW
BNCOMPLETE NEXT

MOV #-1,LOGUNT
INC LOGUNT
GPHARD LOGUNT,PLOC
BNCOMPLETE NEXT
MOV @PLOC,LOCAL
ENDINIT

Chapter 7
Sample Diagnostic

jAutodrop Code
BGNAUTO
BIT
BNE
DODU

ENDAT: ENDAUTO

jCleanup Code

1J2,@CSR
ENDAT
LOGUNT

20-Jan-B3

Executed on
BGNCLN
PRINTF
EXIT

subpass, DOCLN, or AC

IJCLEAN
CLN

CLEAN: .ASCIZ /%N%AI AM CLEANUP/
.EVEN
ENDCLN

; Drop Unit Code
Executed by

BGNDU
PRINTF
EXIT

DROP or DODU

IJDROP,LOGUNIT
DU

DROP: .ASCIZ /%N%AUNIT DROPPED WAS %06/

;Tests

.EVEN
ENDDU

BGNTST 1
PRINTF IITS 1
ENDTST
BGNTST 2
PRINTF IITS2
BGNSUB

BGNSEG
BGNSEG

"
ENDSEG

ENDSUB
ENDTST

BGNTST
PRINTF
MOV
ERRHRD
ENDTST

3
IITS3
LOCAL, DRIVE
1,ERRMSG,ERRTN

Page 7-43

Chapter 1
Sample Diagnostic

;Hardware P-Table
BGNHRD
GPRMD
EXIT

DR: .ASCIZ
.EVEN
ENDHRD

;Software P-Table
BGNSFT
GPRML
EXIT

SWQ1: .ASCIZ
.EVEN

;Patch Area
PATCH: .BLKW

;The tail-end
LASTAD
ENDMOD
.END

20-Jan-83

Cod ing

DR,O,O,-1,O,7,NO
HRD
/DRIVE/

Coding

SWQ1,O,-1,NO
SFT
/SW QUESTION 111/

50.

Page 7-44

Chapter 8 20-Jan-83 Page 8-1

CHAPTER 8

NON-DRS AUTOMATED ENVIRONMENTS

8.1 INTRODUCTION

This chapter discusses the diagnostic programs that are used in
automated, 0 ften centrally controlled, appl ications . The automated
diagnostic operation consists of the execution of predefined sequences
of diagnostic programs. Subjects covered include APT, ACT, SLIDE,
Macro summary, and a discussion on SYSMAC. For a complete discussion
of SYSMAC, refer to the PDP-11 MAINDEC SYSTEM PACKAGE document
(SYSMAC.MAN, March 1975, MAINDEC-11-DZQAC-C-D.

8.2 AUTOMATED PRODUCT TEST (APT-11)

One of the environments in which diagnostics run is in manufacturing
areas having an APT system. APT is a PDP-11-based computer system
which loads and monitors one or more diagnostics into a PDP-11
computer, know as the unit under test (UUT).

8.2.1 Introduction

The diagnostic is loaded into the UUT over a serial asynchronous line
by a specialized controller designed by test engineering. After
loading a diagnostic, APT can start it running and monitor its
progress. A diagnostic executing under APT continuously runs pass
after pass until hal ted, externally by the operator or by APT when
running a script file. When an error is detected by the diagnostic,
the error is indicated in the APT mailbox and the appropriate path of
execution is taken. It is preferable to loop, but in some cases, such
as basic instruction diagnostics, the diagnostic can halt.

The APT system must communicate with the UUT diagnostic to ensure that
the diagnostic is executing properly. If errors are detected, APT
needs to be made aware of these errors. In addition, the diagnostic
requires information about the environment in which it is to run. APT
communicates with the UUT diagnostic via a polling mechanism.
Periodically, APT reads the contents of a small number of UUT memory
locations. Thi s 8-word block is called the Mailbox. Based on the
values read, APT performs one or more services. Services include
verifying the proper execution of a diagnostic or ensuring that no
error conditions exist. When it completes these services, APT
modifies the Mailbox indicating to the diagnostic that the requested
services have been completed.

Chapter 8
ART Mailbox

8.2.2 APT Mailbox

20-Jan-83 Page 8-2

The Mailbox, an 8-word block of memory within the diagnostic, provides
the basic communications between APT and the diagnostic in the UUT.
The address of this block is defined by the programmer and is passed
to the APT system via the APT parameter block. The Mailbox locations
contain status and control words, as well as a pointer to a diagnostic
buffer. In general, the APT system monitors the first 5 words of the
Mailbox for a request for service by the diagnostic and for the
correct execution of the diagnostic (i.e., the diagnostic is not hung
up without setting up an error condition).

8.2.3 APT Mailbox Fields

Table 8-1 illustrates the layout of the Mailbox fields.

Table 8-1 . APT Mailbox Fields

Word APT SPEC. Name SYSMAC Name

1 Message Type Code $MSGTY

2 Fatal Error Number $FATAL

3 Test Number $TESTN

4 Pass Count $PASS

-5 Device Count $DEVCT

6 Unit $UNIT

7 Message Address $MSGAD

8 Message Length $MSGLG

8.2.3.1 Message Type Code, Word 1 (SYSMAC/$MSGTY)

This field communicates diagnostic requests to the APT system. This
field is set to a non-zero value by the diagnostic (.$APTYPE MACRO)
when service is required from the APT system. This field is reset to
zero in all cases but fatal errors, after APT has serviced the
request.

Chapter 8 20-Jan-83 Page 8-3
Message Type Code

Contents - The following codes have been defined:

a. Default and non-request value - Octal 000000
b. Code 1, Octal 000001: Fatal error message - The product being

tested is "not operable".
c. Code 2, Octal 000002: Fetch statistics table - The diagnostic

requests the APT system to copy a table of soft errors (e.g.,
tape or disk read errors, etc.).

d. Code 3, Octal 000003: Spooling message - A message to be
spooled is in the buffer and additional data will be spooled
as part of the message.

e. Code 4, Octal 000004: Spooling message - The last message or
a complete message to be spooled is in the buffer.

f. Code 5, Octal 000005: Script request message - The diagnostic
currently running in the UUT is,- requesting the loading of
another diagnostic.

SYSMAC Reference - The . $APTYPE macro will set up the above message
type codes. Inline calls to the . $APTYPE macro are generated by the
REPORT macro or diagnostic user code.

Programming Note - This must be the last field changed in the mailbox~

8.2.3.2 Fatal Error Number, Word 2 (SYSMAC/$FATAL)

This field supplied the APT system with an error number that indicates
why the prod uct being tested is "not 0 perable" . When the diagnostic
has discovered that the UUT is "not operable" then word 2 of the
mail box is loaded wi th an error number and MSGTYP is set to a one.
The term "not operable" includes the case when the diagnostic
determines that execution cannot continue and the case when a "soft
error" occurs more frequently than a predetermined rate.

Contents - A binary number that can be related to the diagnostic and
the reason for the error.

SYSMAC Reference - The . $ERROR macro
SYSMAC field $ITEMB when it reports
macro.

will use the contents of the
fatal error s to the . $APTYPE

Programming Note - This field must be set up before the fatal error
code is set up in the Message Type field.

Chapter 8
Test Number

20-Jan-83

8.2.3.3 Test Number, Word 3 (SYSMAC/$TESTN)

Page 8-4

This location is assembled with a value of zero. During diagnostic
execution, the number of the test currently being executed is stored
in this location by the diagnostic. A diagnostic must be structured
by test number', and all tests within a diagnostic must be sequentially
numbered, starting wi th one. The n umber of the test c urrentl y be ing
executed must be placed in this field before the test is started.

Contents - A binary number that can be related to the tests within the
diagnostic.

SYSMAC Reference -

a. The SYSMAC/NEWTST macro, upon option, will set up this field.
b. The SYSMAC/. $SCOPE macro routine will move field $TSTNM to

this field each time the scope routine is trapped to.

Programming Note - This field must be set up before test execution
begins. The default value is octal 000000, which is not a valid test
number.

8.2.3.4 Pass Count, Word 4 (SYSMAC/$PASS)

This field is assembled with a value of zero and should be incremented
each time the diagnostic completes the execution of a pass. A pass
consists of the execution of all tests in a diagnostic. If more than
one device is being tested, a pass consists of the execution of all
tests on all devices controlled by the currently running diagnostic.

Contents - A binary number, that is set by default to octal 000000,
and incremented by one (1) for each pass.

SYSMAC Reference - The $ PASS field has been moved from the SYSMAC
Common Tags Area to the APT Mailbox when running under APT. Each time
the SYSMAC/.$EOP macro is entered, the pass count will be incremented
by one (1).

Programming Note - Since the $PASS field has been moved, a Clear
instruction has been added to the code in the SYSMAC/SETUP macro to
ensure that the field is set to zero when running in stand-alone mode.

Chapter 8
Dev ice Count

20-Jan-83

8.2.3.5 Device Count, Word 5 (SYSMAC/$DEVCT)

This field, set to zero at assembly time, refers to the
devices which have been tested and not to a device number.
conclusion of the last test on a device, and only if another
to be tested, this field should be incremented by one (1).
one device is being tested, this field should remain zero.

Page 8-5

n umber of
After the
device is

If onl y

Contents - A binary number that is set by default to octal 000000 and
incremented by one (1) for each device tested.

SYSMAC Reference - None.

Programming Note - It is the responsibility of the diagnostic program
to increment this field if more than one device is being tested.

8.2.3.6 Unit, Word 6 (SYSMACI$UNIT)

This field, used by diagnostics that test multiple devices on a
controller, must contain the device number as given in the Etable when
a fatal or soft error is reported. This will allow the APT system to
report the error to the correct device.

Contents - A binary value from a to 15 as related to one of the device
descriptor words listed in the Etable.

SYSMAC Reference - None.

Programming Note It is the responsibility of the diagnostic
programmer to ensure that this field is correctly set up when testing
multiple devices.

8.2.3.7 Message Address, Word 7 (SYSMAC/$MSGAD)

This field must contain the address of the buffer that contains the
message, statistics, or script that is to be transferred to the APT
system.

Contents - The address given must point to a word. Bi ts 17 and 18
will be obtained from the first word in the APT Parameter block.
Thus, both the mailbox and message buffer must be addressable by the
same bits 17 and 18.

SYSMAC Reference - The SYSMAC/$APTYPE macro will set up this field.

Programming Note - None.

Chapter 8 20-Jan-83 Page 8-6
Automatic Computer Test (ACT-11)

8.2.3.8 Message Length, Word 8 (SYSMAC/$MSGLG)

This field must contain the length, in words, of the message in the
buffer to be transferred to the APT system.

Contents - A binary number.

SYSMAC Reference - The SYSMAC/$APTYPE macro will set up this field.

Programming Note - None.

8.3 AUTOMATIC COMPUTER TEST (ACT-11) SYSTEM

An ACT-11 system consists of a central computer and from one to
thirty-two test stations. The central computer, or "mother", is made
up of a PDP-11 CPU, one to eight RK disk drives, a high-speed paper
tape reader, and a console terminal. Each test station, or
"daughter", consists of a station console, the Uni t Under Test (UUT),
and the UUT's console terminal. The PDP-11 communicates via its
UNIBUS with the UUT test stations. The UUT test stations communicate,
in turn, via UNIBUS with the UUTs. ACT-11 may be used to load
stand-alone programs. ACT-11, however, usually loads and monitors
programs sequentially from a list known as a "sequence table". This
sequencing capability requires that end-of-pass hooks be provided in
the diagnostic programs themselves.

The ACT-11 system can operate in the following modes:

o ACT Dump mode

o ACT Auto-accept mode

o ACT Station Test mode

8.3.1 ACT Dump Mode

In this mode, ACT load s and runs a diagnostic into a Uni t Under Test
(UUT) as if it were run manually.

8.3.2 ACT Auto-accept Mode

In this mode, ACT automaticall y load s, runs, and moni tors a single
diagnostic or series of diagnostics through one or more iterations.
This mode includes the "quick verify" mode.

Chapter 8 20-Jan-83 Page 8-7
ACT Station Test Mode

8.3.3 ACT Station Test Mode

In this mode, ACT directly performs a variety of UUT memory tests.

8.4 SERIAL LOADER IN DEMAND EVERYWHERE (SLIDE)

8.4.1 The SLIDE System

The SLIDE System can be thought of as an RKDP System wi th mul tiple
users. (RKDP is an existing DEC software package that incl udes all
PDP 11 diagnostic s on three RK05 disk pac ks.) SLIDE is composed of a
central computer (mother) and up to 32 test stations (daughters). The
central computer can have up to 8 RK05 disks attached to it.
Normally, disks 0, 1, and 2 are used to store RKDP diagnostics and
disks 3 through 7 are used to store preconfigured Run-Time Exercisers
and other user programs. The central computer has a console terminal
and in most cases each test station will have a user terminal.

The central computer is connected to each test station by a 4 wire
communications line and the appropriate communications interface.

A monitor program called SLIDE. BIN is resident in the central computer
and a Serial Line Interface Program (Y. BIN, sometimes referred to as
the SLIP [Satellite Loader Interface Program] monitor) is resident in
each test station CPU. These programs provide the software interface
which permit communications between the central computer and each test
station.

The main function served by SLIDE is diagnostic program loading. All
diagnostics used by the test stations reside on the central computer's
disk(s) and are serially output to selected test stations when
requested. SLIDE is set up so that if more than one test station
initiates a program load request at the same time, each request will,
in effect, be handled simultaneously.

SLIDE can be run in either the dump mode or the chain mode. In the
dump mode, one program is loaded into a test station. In the chain
mode, a series of programs are executed with a single command. SLIDE
can handle up to 64 user defined chains. Each chain consists of from
1 to 31 program and pass count selections to be executed in the order
specified by the user. Pass counts of from 1 to 77777(octal) can be
specified. It is also possible to branch from one chain to another
chain, enabling SLIDE to run up to 1,984 programs with a single
command.

SLIDE is best sui ted to be used in areas where options are to be
tested on known good processors.

Chapter 8
SLIDE System

20-Jan-83 Page 8-8

Some benefi ts obtained wi th SLIDE versus hav ing a separ ate program
loading device on each test station are:

1. By maintaining only one copy of each diagnostic, the job of
ensuring that all users have the latest version is much
simpler,

2. Reduced costs, since most paper tape readers can be
eliminated,

3. Increased speed - SLIDE transfers programs at 10,000 cps while
paper tape readers operate at 300 cps, and

4. Less operators - Using the chain mode, several programs can be
run with a single command. (There is even a hard copy
verification as each diagnostic is run).

Note

(1) When using multiple disks, the user
must ensure that all drives are numbered
sequentially. For example, if 4 disk
drives were attached to the central
computer then these drives would have to
be drives 0, 1, 2, and 3.

(2) SLIDE has a watchdog timeout feature
that can be used to monitor a test
station running in the chain mode (refer
to Section 8.4.7 for a description of the
watchdog timeout feature).

The SLIDE system is composed of a central computer and up to
32 test stations.

8.4.2 SLIDE Basic Software

The basic
The disks
software,
program.
The SLIDE

SLIDE software comes as part of the RKDP Diagostic Package.
as received from the program library contain all SLIDE

the PDP-11 diagnostics, the RKDP Moni tor, and an update
The SLIDE software is stored on the first RKDP disk pack.

software consists of the following programs:

1 . SLIDE. BIN The SLIDE monitor program that will reside in the
central computer.

2. SHELP. TXT The SLIDE Help Text File that will reside on the
system disk. It can be called in from the central
computer's terminal or from any test station
terminal.

Chapter 8
SLIDE System

3. A.OBJ

4. Y.BIN

20-Jan-83 Page 8-9

The modified PDP-11 absolute loader. A copy of
A.OBJ will reside in each test station's memory.

The PDP-11 Serial Line Interface Program. A copy
of Y.BIN will reside in each test station's memory
(Y . BIN is also referred to as the SLIP or test
station monitor).

8.4.2.1 Central Computer Memory Usage

SLIDE.BIN is stored in memory locations 0 through 70000 (octal), i.e.,
the lowest 16K words.

8.4.2.2 Test Station Memory Usage

All SLIDE software at the test
decimal words of memory. The
determine where A.OBJ and Y. BIN
A.OBJ is loaded in front of the
in front of A. OBJ. (In effect,
determines where A.OBJ and Y.BIN

station is stored in the upper 1100
size of the test station CPU will
are stored. The end resul t is that
bootstrap loader and Y.BIN is loaded
where the bootstrap loader is placed
will be stored.)

Note

A.OBJ and Y.BIN are protected from being
overwritten when running a diagnostic
program at a test station by setting up
two RKDP hooks. These are, the load
med i urn ind icator (location 41) and the
automatic mode indicator (location 42).
This is done at system initialization by
the Y. BIN program. Y. BIN stores 377 in
location 41 and XX7314 in location 42
(where XX is the memory size parameter).
Together these two hooks flag the PDP-11
diagnostic program not to write into the
upper 1500 words of the test station
memory.

Chapter 8
SLIDE System

8.4.3 Using SLIDE

20-Jan-83 Page 8-10

When using SLIDE, the user should be aware of the following special
characters:

CTRL/C to return user to command mode

CTRL/S to suspend termporarily output to a terminal

CTRL/Q to restart output to a terminal

RUBOUT to delete the last character typed

CTRL/L to clear the user terminal's input buffer

8.4.4 Obtaining a Directory

To obtain a directory, type one of the following:

IDIJ<CR> To obtain a full directory on the user terminal (where II is
the selected disk drive number).

SAMPLE FULL DIRECTORY PRINTOUT OF DISK DRIVE o.

IDO <CR>
FILNAME.EXT LENGTH
RKDP .BIN 017 TADP .BIN 017 TCDP .BIN 017 TMDP. BIN 017
THDP .BIN 017 RXDP .BIN 017 XTECO .BIN 027 UPD1 .BIN 017
ACT .BIN 032 HELP .TXT 003 XQADFO.BIN 029 ZQUXBO.BIN 040
Y .BIN 002 HELPB .TXT 004 SLIDE .TXT 015 SLIP11.0BJ 002
HELP11.TXT 003 00 .CHN 001 01 .CHN 001 02 .CHN 001
0"3 .CHN 001 04 .CHN 001 06 001 05 .CHN 001
4002 BLOCKS USED.

IDHF<CR> To type a fast directory (no extension or blocks) on the user
terminal.

SAMPLE FAST DIRECTORY PRINTOUT OF DISK DRIVE 1.

ID1F<CR>
RKDP TADP
ACT HELP
Y HELPB

4002 blocks used

TCDP
XQADFO
SLIDE

TMDP
ZQUXBO
SLIP11

THDP RXDP

HELP11

XTECO UPD1

Chapter 8
SLIDE System

8.4.5 Time and Date Messages

20-Jan-83 Page 8-11

/T<CR> To print out the time and date on the test station terminal or
console terminal.

To set the time and date, type one of the following:

Note

The time and date can onl y be changed
from the console terminal.

/T####<CR> to set the time (HHMM)

/T/######<CR> to set the date (MMDDYY)

/T####/######<CR> to set the time and date

Sample time and date printouts. All user inputs are underlined.

/T TIME 02:17 01/01/79

/T1710 TIME 17:10 01/01/79

/T/020979 TIME 17:11 02/09/79

/T1800/021079 TIME 18:00 02/10/79

8.4.6 Chain Mode Operation

Chain mode operation consists of the sequential execution of programs
without operator intervention. Only programs that have been designed
to run under XXDP+ chain mode can be chained using SLIDE. Chainable
programs are identified in the directory by the extension .BIC.

Note

.BIC is a chainable binary file .

. CHN is a SLIDE chain command file.

To run chain mode, the SLIDE monitor requires a chain command file
(.CHN) indicating the programs to run, and the number of times (pass
count) each program must execute before going on to the next program
in the table.

A chain file can have up to 31 program entries. Up to 32767 passes
can be run for each entry, numbered in octal from 000001 to 077777.
Up to 64 chain files can be generated, numbered in octal from 00 to
77.

Chapter 8 20-Jan-83 Page 8-12
Chain Mode Operation

8.4.6.1 Making a Chain

Chains can be made up of programs stored· on any disk. However, the
.CHN file should be stored on drive O. Making a chain file cannot be
done on-line while SLIDE is running.

To make a SLIDE chain, the XTECO program must be used. The UPDATE 2
program resides on the RKDP disk anq is used to add, delete, rename,
or edit ASCII files on RKDP packages.

To make a chain, the following procedure should be used:

1. Start the RKDP monitor by booting the RK disk.

2. Run the XTECO program.

Once started, XTECO will respond with:
*

3. Write enable the disk

4. Type in:

a. TEXT DK*:##.CHN<CR>
Where * = disk drive number and ## = chain number

b. FFFF--1######J<CR>
Where FFFF-- = The first four characters of the diagnostic

name followed by 2 spaces or the six character
diagostic name and

= The number of passes to run it

c. Repeat step B for additional programs

d. I<CR> to terminate the list of programs in a chain

or

I#D to call for execution of another chain at the end of
the current chain.

e. Type in a CTRL/Z to terminate the text input.

Note

The user can return to the RKDP moni tor
from XTECO by typing the following:

*EXIT<CR>

Chapter 8 20-Jan-83
Chain Mode Operation

Sample printout for making a chain follows:

CHMDKB1 XXDP+ DK MONITOR
BOOTED VIA UNIT 0
28K NON-UNIBUS SYSTEM

ENTER DATE (DD-MMM-YY): 8-JUN-82 <CR)
RESTART ADDR: 152010
THIS IS XXDP+. TYPE "H" OR "H/L" FOR HELP .

. R XTECO <CR)
CHUTEB2 XXDP+ XTECO UTILITY
RESTART: 005126

*TEXT DKO: 71.CHN <CR)
WRITE-ENABLE OUTPUT UNIT, THEN TYPE <CR). <CR)
"ZKWA 1000001J
"ZKWA 1000003J
"ZKWA 1000005J
"ZKWABOI000002J
" Z KW A I 000002 J
"I
""'Z

Notes

1. Building a chain with ZKWA (clock test
program) is an excellent way to verify
that the chain mode works on a user
system.

2. UPD2 cannot make a chain file.

8.4.6.2 Considerations when Making a Chain

Page 8-13

1 . Before making a chain for SLIDE, the user should first, when
possible, try making and running the chain under RKDP.

Note

Just because a program has
extension doesn't guarantee
program is chainable.

a . BI C
that a

2 . Wh e n m a kin g a c h a in un de r SL IDE e a c h pro gram I pas s c 0 un ten try
must contain the same n umber of characters. (i . e., each
program entry must contain a four character entry followed by
2 spa c e s; 0 r a 6 c h a r act ere n try and a s 1 ash (I) • Th is is
followed by a six digit pass count. This, in turn, is
followed by a bracket (J) and a carriage return.

Chapter 8 20-Jan-83 Page 8-14
Chain Mode Operation

3. To verify that a chain has been typed correctly, use the TYPE
command of UPD2. A chain made via instructions in section
7.4.6.1 can be verified by typing the following command
string.

TYPE DK1:06----.CHN<CR>

A sample printout for verifying a chain follows:

*TYPE DK1:06----.CHN

ZKWA 1000001 J
ZKWA 1000003J
ZKWA 1000005J
ZKWABOI000002J
ZKWA 1000002:
I ,..z

Note

The ,..z mayor may not be printed because
some versions of UPD2 replace the ,..z with
a null character.

To printout all chains on DKO, the following could be typed:

TYPE DKO:.CHN<CR>

4. When the user is typi ng a command or data under UPD2, he
should be aware of the following special commands:

CTRL/C -

CTRL/Z -

RUBOUT -

returns user to command mode.

exits text mode and returns user to command mode.

deletes the last character typed.

FILENAMES - considered to always be 6 characters long, plus a
3 character extension. The name and extension are
left-justified with trailing blanks.

Chapter 8 20-Jan-83 Page 8-15
Chain Mode Operation

8.4.1 Watchdog Timeout Feature

The watchdog timeout feature is used to monitor the status of any test
station running programs in chain mode. Normally, if a diagnostic
fails while running in chain mode, all communications between the
SLIDE monitor and the test station are terminated. When this
condition occurs, the user has no way of knowing that chain mode
operation has been terminated for a particular test station. Using
the watchdog timer, this condition can be detected by the SLIDE
monitor and an appropriate error message can be printed on the system
console.

8.4.1.1 Watchdog Timer Commands

The watchdog timer is activated by typing in the following command
string at a test station terminal:

/ W 111111 < C R)

Where 111111 is a 1-3 digit decimal number that represents the watchdog
timeout time. Timeout times of 1-255 minutes are valid.

The watchdog timer is deactivated by typing in:

/WC <CR)

If the user enters an invalid watchdog command, an ?INVALID ENTRY?
message will be printed on the test station terminal.

8.4.1.2 Using the Watchdog Timer

1. The user activates the test station for XXX minute timeouts.

2. The user starts a chain running at the test station.

3. If chain mode is terminated, the watchdog timer will timeout
and print the following message on the console terminal:

LINE XX WATCHDOG TIMEOUT(XXX) AT HH:MM DD/MM/YY

Where XXX indicates a watchdog timeout time of XXX minutes.

Even if the chain runs successfully, the watchdog timer will
remain activated. At this time the user has four options:

a. Do nothing - the watchdog timer will timeout in XXX minutes.

b. Start another chain this chain will run using the same
timeout time that was used for the previous chain.

Chapter 8
Watchdog Timer

20-Jan-83 Page 8-16

c. Enter a new IW command and start another chain - This chain
will run using the timeout time that was specified in the new
IW command.

d. Disable the watchdog timer by entering a IWC command. This
gives the user a way of eliminating unnecessary timeout
messages from being printed on the console.

Two example watchdog timer printouts are given below:

Example 1.

Test station terminal printout:

IW03 WATCHDOG TIMER ACTIVATED
IC32

[ZKWA

[ZKWA

CHAIN END

EXIT

1000001]

1000002]

BO LOADED

BO LOADED

Console terminal printout:

TIME 13:30

TIME 13:31

LINE 02 WATCHDOG(003) TIMEOUT AT 13:36 09/08/79

Example 2.

Test station terminal printout:

IW05 WATCHDOG TIMER ACTIVATED
IC32

[ZKWA

[ZKWA

CHAIN END

EXIT

1000001]

1000002]

BO LOADED

BO LOADED

./WC WATCHDOG TIMER DEACTIVATED

TIME 13:37

TIME 13:38

09/08/79

09/08/79

09/08/79

09/08/79

Chapter 8
Issuing Commands

20-Jan-83 Page 8-11

8.4.8 Issuing Commands to Another Terminal or Line Printer

With SLIDE the user has the capability of issuing commands to a
particular test station or to the line printer from any other test
station or from the console terminal. A few examples of this feature
are given below.

1. To print out a full directory for drive 0 at test station
number 07, the following command could be typed at the console
terminal.

/ II 07= I DO < C,R >

2. To load the clock progr am (ZKWABO) into test stat ion number
07, the following command could be typed at the console
terminal.

3. To execute chain
following command
terminal.

11I07=ZKWABO<CR>

n umbe r 02 at test station number
could be typed at any other test

/1I07=/C02<CR>

07, the
station

4. To print a fast directory for drive 1 on the line printer, the
following command could be typed at any terminal.

/IILP=/D1F<CR>

5. To activate line 15 for 5 minute timeouts, the following
command could be typed at any terminal.

/1I07=/W5<CR>

8.4.9 Updating and Patching

Diagnostic programs and supporting files may be updated (replaced)
and/or patched using the UPD2 program. UPD2 is an offline facility,
i.e., off-line programs cannot be run while SLIDE is executing.

UPD2 is a program that provides fairly powerful updating and patching
capabilities. This program may be run by booting any RKDP disk and
then by answering the RKDP's prompt character by typing .R UPD2<CR>.
For complete details on UPD2, please reference the XXDP+ USER'S GUIDE.
In summary, UPD2 provides the following updating and patching
facilities:

Chapter 8 20-Jan-83 Page 8-18
Updating and Patching

Transferring an ABS format program file from any of the
supported peripherals to any of the supported peripherals and
reblocking the file in the process (requires 24K of memory for
a 16K program).

Transferring (using the PIP command) any file from one drive
to another (requires 12K of memory).

Patching a program by using the MOD command (requires 24K of
core for a 16K program).

Patching a program by using the PATCH command (has no special
memory requirements because the patching is done directly on
the disk).

Batch operation (memory requirements depend upon operations
performed).

8.4.10 SLIDE Help Commands

/DII< CR>
/DIIF<CR>

/ T< CR)
/ T 11111111 < C R>
/ T / 111111111111 < C R)
/TIIIIIIIIIIIIIIIIIIIII<CR>

AAAA--<CR>
<LF>

/ W 111111 < C R>

/ CIIII < CR>
<LF>

/IIXX=Y

to print a full directory
to print a fast directory (no ext. or blocks)
(II is the drive number)

to print the time and date
to set the time (HHMM)
to set the date (MMDDYY)
to set the time and date

where AAAA-- is a 4 or 6 character program name.
For a 4 character name, the first program that has
the same first 4 characters will be sent.

For a <CR> the program must be started manually.
For a <LF> the program will self start.

will activate the watchdog timer for 1111#
minute timeouts (1111# is a decimal number).

will run a predefined chain of programs
(## is the chain number).

For a <CR> the chain will execute normally.
For a <LF> a quick verify pass will be executed.
For a - (minus) the chain will loop indefinitely.

XX is (1) an octal line no. of any test station
(2) LP for the line printer
(3) CY for the console terminal

Y is any valid command

Chapter 8 20-Jan-83 Page 8-19
SLIDE Help Commands

* * * * * * * * * * E X AMP L E S * * * * * * * * * *

ZKWABO<CR>

If/OO=ZKWABO<LF>

1f/25=/W005<CR>

1/l03=IC01<CR>

I/lLP=/DOF<CR>

8.5 MACRO SUMMARY

sends program ZKWABO to the test station that
initiated the program load request.

sends program ZKWABO to line #00
(program will self start).

monitors line 25 for 5 minute timeouts.

executes chain 01 on line 1103.

prints a fast directory of drive 0 on the LP.

8.5.1 Mandatory, Direct Support Macros

The following macros are in direct support of XXDP+, ACT-11, APT-11
and are required when not using DRS.

8.5.1.1 .$ACT11 Macro

Purpose: Provide the ACT-11 System with the following information:

a. Sets location 42 to zero.

b • Sets up the address of the "end-of -pass" code into location
46.

c. Sebs up program needs information into location 52.

Power failure during run required.
Program memory size dependent.
Manual intervention required.

How-To-Use Reference: SYSMAC.MAN 10.1

8.5.1.2 .$APTHDR Macro

Purpose: Provides, at load time, the APT System with the following
information:

Chapter 8
Macro Summary

20-Jan-83 Page 8-20

a. Setup location 24 with the start address of the program
(default 200).

b. Setup location 44 with the starting address of the APT
parameter block.

c. Generates the APT parameter block based upon known information
and following programmer supplied data:

TSTM - Run time, in seconds, of the longest test in the
diagnostic.

*** Define worst case time for maximum iteration
count, memory size, and CPU speed.
PASTM - Run time, in seconds, of the 1st pass on one unit
(quick verify).
UNITM - Additional run time, in seconds, of a pass for
each additional unit being tested.

How-To-Use Reference: SYSMAC.MAN 10.2

8.5.1.3 .$APTBLS Macro

Purpose: Builds and sets up the APT mailbox and environment (ETABLE).
The si ze of the mailbox is fixed. However, the ETABLE
length may be defined by the programmer. (Minlmum of four
word s) .

All fields defined in the mailbox and ETABLE will be set to
predefined values. The programmer may use assignment state
ments before calling this Macro to change these values.

How-To-Use Reference: SYSMAC.MAN 10.3

8.5.1.4 .$APTYPE Macro

Purpose: Performs the communications with the APT system via the APT
mailbox.

How-To-Use Reference: SYSMAC.MAN 10.4

8.5.1.5 REPORT Macro

Pur po s e : G e n era t e sin - 1 i n e cod e t hat call s the . $ APT Y P E Mac r 0 ,

permitting complete APT communication functionality.

Chapter 8
Macro Summary

20-Jan-B3

Note

This macro is not required in converted
diagnostics if the .$ERROR and .$TYPE
macros are used.

How-To-Use Reference: SYSMAC.MAN 10.5

8.5.1.6 .$APTAT Macro

Page 8-21

Purpose: Generates space for the statistics table in a format
compatible with the APT error reporting procedure.

Note

This macro is not required if statistics
are not being collected.

How-To-Use Reference: SYSMAC.MAN 10.6

8.5.2 Indirect Support Macros

The following macros contain ACT-11, APT-11, or XXDP+ code. This code
is required if diagnostics are to interface correctly.

8.5.2.1 .$EOP Macro

Purpose: A code sequence required by ACT-11 and XXDP+ for end of pass
control.

How-To-Use Reference: SYSMAC.MAN 9.3

8.5.2.2 .$CMTAG Macro

Pur po se :

a. Sets up address words for the indirect switch and display
registers (SWR and DISPLAY).

b. Calls the .$APTBLS macro to generate the APT mailbox and
ETABLE.

c. Removes names from the common tag area that are now defined in
the mailbox and ETABLE. (i.e., $PASS, $SWREG, etc.)

Chapter 8
Macro Summary

20-Jan-83

How-To-Use Reference: SYSMAC.MAN 9.2

8.5.2.3 .EQUAT Macro

Page 8~22

Purpose: To define commonly used constants, registers, and symbols.

How-To-Use Reference: SYSMAC.MAN 7.4

8.5.2.4 SETUP Macro

Purpose: Sets up, at execution time, location SWR to ensure that the
correct switch register is being used while running under
APT systems control.

How-To-Use Reference: SYSMAC.MAN 8.1

8.5.2.5 NEWTST Macro

Purpose: Moves the test number generated by this macro to the APT
mailbox test number field ($TESTN).

How-To-Use Reference: SYSMAC.MAN 8.6

8.5.2.6 .$SCOPE Macro

Purpose: Moves the test number used by this macro ($TSTNM) to the APT
mailbox test number field ($TESTN) each time scope is
trapped to.

How-To-Use Reference: SYSMAC.MAN 9.4

8.5.2.1 .$ERROR Macro

Pur po se : After thi s macro pr i nts out the reported error, a fatal
error will be reported to the APT system if running in the
APT mode. The contents of field $ITEMB will be reported as
the fatal error number. Upon reporting the fatal error, the
diagnostic will go into a single instruction loop.

How-To-Use Macro Reference: SYSMAC.MAN 9.5

Chapter 8
Macro Summary

8.5.2.8 .$TYPE Macro

20-Jan-83 Page 8-23

Purpose: If running in the APT s1stem mode, this macro will spool all
messages to the APT system via the mailbox. It will also
suppress all messages to the UUT console if requested to do
so by the APT system.

How-To-Use Macro Reference: SYSMAC.MAN 9.7

8.5.2.9 TYPNAM Macro

Purpose: To type the name of the diagnostic, if the diagnostic is not
running in the ACT-11 Auto-accept Mode.

How-To-Use Macro Reference: SYSMAC.MAN 8.20

8.5.3 Other Support Macros

The following macros are required to support the . $EOP and $CMTAG
macros .

. $TRAP

.$TYPDEC
PUSH
POP
STARS

8.6 SYSMAC.SML, THE DIAGNOSTIC MACRO LIBRARY

The System Nacro Library (SYSMAC.SML) is a collection of supporting
macros that are available to the PDP-11 diagnostic engineer. By using
these macros, the engineer does not have to write the various
"non-diagnostic" routines necessary to use the PDP-11 and the
associated console terminal. This allows the engineer to place
emphasis on the diagnostic techniques.

Based upon the type of code they generate, the macro routines in
SYSMAC.SML are classified into 3 groups:

1 . De fin i t ion mac r 0 s

2. In-Line Code macros

3. Handler macros

Chapter 8
Definition Macros

8.6.1 Definition Macros

20-Jan-83 Page 8-24

The macros in this group do not generate executable code but are used
to define commonly used constants, symbols, registers, device
addresses, and vectors. They are also used to aid in documenting a
program's listing and are intended to be used at the very beginning of
a program .

. EQUAT

.HEADER

.KT11

.SETUP

. SWRHI

.SWRLO

8.6.2 In-line Code Macros

These macros are used in the mainline code of a program to generate
listing controls and subroutine and trap calls to the SYSMAC service
routines .

. CKSWR

.COMMENT

.ENDCOMMENT

.ESCAPE

.GETSWR

.MUL

.NEWTST

. POP

.PUSH

.SETTRAP

.SETUP

.SKIP

.STARS

.TRMTRP

.TYPBIN

.TYPDEC

.TYPNAM

.TYPNUM

.TYPOCS

.TYPOCT

.TYPTXT

Chapter 8
Handler Macros

8.6.3 Handler Macros

20-Jan-83 Page 8-25

The Handler group is composed of those macros that actually service
the subroutine and trap calls generated with the in-line macros. The
handler macros are generally placed near the end of the program. The
handlers within SYSMAC.SML are compatible with DEC-10-DECDOC.

LINKAGE
.SCATCH
.$40CAT
.$CMTAG
.$DB2D
.$DB20
.$DIV
.$EOP
.$ERROR
.$ERRTYP
.$MULT
.$POWER
.$R2AZ
.$RAND
.$READ
.$RDDEC
.$RDOCT
.$SAVE
.$SB2D
.$SB20
.$SCOPE
.$SIZE
.$SUPRS
.$TRAP
.$TYPBIN
.$TYPDEC
.$TYPE
.$TYPOCT

Chapter 9

9.1 INTRODUCTION

20-Jan-83

CHAPTER 9

STRUCTURED PROGRAMMING

Page 9-1

A major change has occurred in the maintenance and repair philosophy
of the entire computer industry over the past five years. Module and
even subsystem replacement has replaced component level repair by
electronic technicians. Al though this change is due to a n umber of
reasons, the primary reason is that components are no longer single
function devices. Components now replace whole cabinets of logic, and
c om po n e n tIe vel rep air in the fie 1 d, don e by hi g hI Y ski 11 e d sup p 0 r t
engineers, only occurs under extreme emergency situations.

This change in repair philosophy affects diagnostic development in
several ways. The technical tr ain ing of field personnel has been
greatly reduced since field diagnostics are no longer used for
component-level troubleshooting. This requires tailoring the
diagnostic interface to the non-technical user. The concept of
customer maintenance also puts the running of DEC diagnostic programs
in the user application realm, where human-engineering is critical.
The human interface has to be in a natural, meaningful language which
is helpful and non-intimidating. The obvious exception is in the area
of module repair facilities, where dedicated test equipment is used to
isolate defective components.

Although many diagnostics are still being written in assembly
language, there is a growing use of higher level languages in
diagnostic development. This has resul ted from memory constraints
being relaxed by changing the minimum system from 4K words of memory
to 16K words. Another factor is that the development time for
programs written in higher level languages is much less than that for
pure assembly programming. Languages such as BLISS, PASCAL, BASIC and
SPMACJ have been used for in-house diagnostic programs with much
success.

Chapter 9 20-Jan-B3 Page 9-2
Programming Considerations

9.2 PROGRAMMING CONSIDERATIONS

Diagnostic programmers must be aware of the three major requirements
their diagnostic programs must satisfy. They are as follows:

the program must deliver the specified diagnostic coverage

the program has to be completed on schedule and within budget,
and

the program must be maintainable and extensible for the entire
life of the product.

By far, the largest payback to any development group is when the
product they create is designed so that it is easy to test, maintain,
and change. The concepts of structured design and structured
programming have proven themsel ves as the best means to achieve the
goals to testability, maintainability, and changeability in software.

9.2.1 Structured Design

The basic concept of structured design is to take a high level
conceptual idea for a program and repeatedly break it into smaller and
smaller pieces until each piece is concerned wi th perfor:'1ing one and
only one function. Each piece is then coded as a module, or routine,
in such a way that there is only one entry point into the module and
only one exit from the module. In addition, all information passing
into or out of the module must pass through a defined interface.
Global data access is considered a poor programming practice. When
these modules are diagrammed (see Section 9.2.2), a hierarchy becomes
apparent with the top most module being the primary or main control
module, which calls or causes the execution of the subordinate
modules.

9.2.2 Structured Programming

Each module can be thought of as a block with an arrow going in and an
arrow leaving the block (a, Figure 9-1). These blocks can be linked
together in a number of ways, one of which is called a sequence. The
sequence (b) invol ves two or more blocks where the output· from one
block feeds directly into the input of the next block. The entire
sequence then has one entry and one exit point. The entire structure,
therefore, can be represented as a block (c).

Chapter 9
Programming Considerations

(a)

(b)
I
I

---->\

(c)

I
I

----> ->\

I
I

---->\

I I
I I

\--->\

I I
I I

\--->\

20-Jan-83

I
I

\---->

I I
I I

\--->\

I I
I I

\--->\

I
I

\---->

I
I

Page 9-3

\-----> ---->

Figure 9-1. Block Structured Programming

This "block within a block" arrangement has led to the use of the term
Block Structured Programming, or Structured Programming for short.
The primary benefit of this type of structuring is that each block is
responsible for one function. Any problem wi th that function can be
isolated to that module or to the data being passed through the
interface. In addition, each module can be modified without affecting
any other module as long as the data interface remains the same. The
modular structure should be documented with an overview diagram
showing the interrelationship between the modules and with
INPUT-PROCESS-OUPUT diagrams for each module.

Any str uct ure can be part 0 f (nested wi thi n) any other str uct ure as
long as the single entry and exit is maintained. Figure 9-2
illustrates several common structures. The modular structure, which
results from breaking the top level design into smaller pieces having
a defined purpose, results in a hierarchy, with the topmost module
being the primary or main module (Figure 9-3).

Chapter 9 20-Jan-83 Page 9-4
Structured Programming

,
I

L

-T-

V

--,-
I

L

DECISION

,
I

/\
/ \

< ? > -F-
\ / :
\/ V

-,
I

>< : ,-
I ,
I

v

REPEAT-UNTIL

,
I

:<---
V

,
I

V
/\ :

/ \ :
< >-F:

\ /
\/ ,
I :T
,
I

V

FOR 1:1 TO n BY z
,

-----:---------------
I

V
:--1-:-1-:

<

V
/\

/ \
<I>z > F

I + n

DO

\ / ---
\/
:T ,

-----:---------------
I

V

Figure 9-2. Common Structures

9.2.3 Module Structure

Module structure should include the following:

a subtitle describing the function of the module,

a reVISIon history for the module, showing what was changed,
by whom, and when,

one or two paragraphs of text describing the module, its data
input, its output, and how the process is accomplished,

a design description of the module's structure and operation
(e.g., in PDL1),

a section containing equated symbols used within the module,
storage variables, data tables, and ASCII text messages,

the source code for the module, and

supporting subroutines.

Chapter 9
Using BLISS

9.3 USING BLISS

20-Jan-83 Page 9-5

BLISS is a middle-level language which has advantages of higher and
lower level languages. It was designed to meet the following
objectives.

Requirements of System Programming

Economy of memory space and execution time
Access to all relevant hardware features
Objec code not dependent on elaborate run-time support

Characteristics of System Programming Practices

Control of data structure representation
Modularization of system into separately compilabl sub-modules

Overall Good Language Design

Encourage program structuring for understanding
Economy of concepts, generality, and flexibility

BLISS relieves users of concern over a broad class of details while
permitting access to hardware features and producing high quali ty
object code.

9.4 USING PASCAL FOR SPECIFICATION AND DESIGN

PASCAL was originally designed as a language for teaching structured
programming techniques in an educational environment. PASCAL is now
becoming popular as a general-purpose language since PASCAL programs
are structured and relativel y easy to read and understand. PASCAL 1 S

English-like statements result in program code that is descriptive of
what the program actually does.

PASCAL can be used in the development of diagnostics to describe
software algorithms or to explain the functionality of a software
procedure. PASCAL descriptions or models can clearly define the
required behavior of sections of program code or routines. Ambiguity
is undesirable in any specification or design document and PASCAL can
also supplement carefully worded English prose and program flow
diagrams.

Chapter 9
Using PASCAL

20-Jan-83 Page 9-6

The following example of a PASCAL proced ural speci fication, der i ved
from the Digital/Intel/Xerox Ethernet Specification, specifies an
address recogni tion function or procedure which could be implemented
in hardware or software:

(* Recognize Address Function *)

CONST
Address Size = 48; (* 48 bit address *)

TYPE
Address Mode = (Promiscuous, Normal);

VAR
Physical Address: Address Value;
Multicast Address: Address Value;
Broadcast=Address: Address=Value;

FUNCTION Recognize_Address (address: Address_Value):BOOLEAN;

BEGIN
IF Address Mode = Promiscuous OR

address = Physical Address OR
address[1] = 1 AND-address=Multicast address OR
address = Broadcast Address -

THEN Recognize Address = TRUE
ELSE Recognize=Address = FALSE;

END;
(* Recognize Address Function *)

This example clearly defines the recogni tion of an address. The
address field of a receive message is checked. If the address field
is the physical or multicast address of the station, the stat'ion is in
promiscuous mode (receive everything), or the address field says it is
a broadcast message that everyone should recognize, then this software
would indicate that the message should be passed on to a higher level
for examination as a received message.

PASCAL includes a variety of statements, data types, and predefined
procedures and functions. Some are:

Data Types = INTEGER, REAL, CHAR, BOOLEAN, ARRAY, RECORD, SET, FILE
Statements = FOR, REPEAT, WHILE, UNTIL, CASE, IF-THEN, IF-THEN-ELSE,

BEGIN ... END, READ, WRITE

Refer to a PASCAL manual or text of your choice for more information.

Chapter 9
Using BASIC

20-Jan-B3

9.5 USING BASIC TO WRITE DIAGNOSTICS

Page 9-7

The BASIC language was developed at Dartmouth College so that students
wi th no background in programming could learn to use a computer.
Be c au s e 0 fit s s imp I i cit Y , BAS ICc a n be use d to s p e c i f y, des i g nor
even implement programs easily.

In the case of a Modem Manufacturing test for the LA 12, two test
programs were written in MINC BASIC to run on a MINC test station.
The test station had the necessary hardware to test the analog signals
in the modem. BASIC allowed manipulation and compar ison of those
signals.

9.6 PROGRAM DESIGN LANGUAGE 1

9.6.1 Introduction

Program Design Language 1 (PDL1) is a tool used to describe the design
of a program. PDL1, which is a pseudo code, highlights control logic
and functionality contained within a module (PDL1 is a
block-structured language). It uses English expressions and reserved
keywords. The advantages of designing with PDL1 are:

Implementation language independence
Provides an overview of the code
Use of structured design constructs
Machine maintainable documentation for code
Easy to learn
Replaces flow charts
Increased productivity during design and coding

PDL 1 will not replace code or
translatable to code. PDL1
completely design modules.

user doc umenta tion nor
is not, in itself,

is it machine
sufficient to

Chapter 9 20-Jan-83 Page 9-8
Program Design Language 1

9.6.2 Purpose and History

Most computer programs written in the past, and even many that are
being wri tten today, are not very readable. In many cases, even the
author of the program may find it difficult to obtain a particular
piece of information about the program from the documentation produced
some time in the past. The difficul ty is greatl y magnified when
another programmer, besides the author, attempts to maintain a poorly
documented program. This problem has been widely recognized (see
Chapter 11, General Coding Conventions) and the usual solution is to
produce more documentation.

Structured programming and structured design have been in existence
for some time and programmers recognize the advantages they offer. If
program documentation were to be similarly structured in a
hierarchical manner, the information retrieval task would be
simplified. Documentation delivered with a program should include
overview diagrams, data flow diagrams, hierarchy charts, etc. The
external, functional aspects of the program should be separated as
much as possible from the internal, proced ural details. Procedural
descriptions may include detailed hierarchy charts, interface
specification blocks, input-process-output charts, structured
flowcharts, and a Program Design Language description of the program.

Pseudo code has been referred to as a Program Design Language or tight
English in software engineering literature. Many pseudo code
variations are patterned after block structured, higher level
languages such as PASCAL or PL 1. Many algorithms, in much of the
recent software engineering literature, are presented using some type
of pseudo code. Various design techniques use pseudo code as part of
their process. For example, IBM's HIPO (Hierarchy plus
Input-Processing-Output) approach uses pseudo code to descr ibe the
processing logic. Data flow diagramming techniques also use pseudo
code to describe the content of processing blocks.

Pseudo code differs from language preprocessors, which translate from
a structured language to a compilable source. The language
preprocessor and the structured language must be maintained throughout
the life of the software. FLECS and RATFOR are examples of
pre-processors. Pseudo code is not compilable and cannot be imbedded
in a language source except as comments.

Chapter 9 20-Jan-83 Page 9-9
Program Design Language 1

9.6.3 Guidelines

PDL 1 is to be used for logic and program design. There exists a
natural transition from design of the system structured in PDL1 to the
actual coding process, and PDL l' s purpose is to allow communication
from a diagnostic program designer to a diagnostic program developer.
This section discusses guidelines for using PDL 1 in both the design
and coding of software. Since PDL1 is not compiled by a computer, its
syntax rules do not have to be as stringent as they would be for a
compilable language. Functionally, the description of a program in
PDL1 is equivalent to a structured flowchart of the program. Just as
there may be different levels of detail in flowcharts, there may be
different PDL1 descriptions of the same program. A high level
description, for example, might be included in a functional
specification, while a lower level description could be included in a
design specification. Whether flowcharts or PDL 1 are used,
descriptions of more than one level of detail should be provided for
all but the simplest and shortest programs.

9.6.3.1 Design Guidelines

PDL 1 is an effective tool to describe the functionality and logic
requirements of a module. The following guidelines are helpful:

Limit the size of blocks to one page.

Do not overdesign - continue until the code can be easily
visualized. Do not duplicate the code, and do not use
variable names or source code descriptions in the expressions.

Do top-down reviews to expand the detail of individual pseudo
code lines.

Try to use similar structures and definitions to help identify
common processing logic or functions.

The benefits of using the design guidelines are:

1. Easier to maintain deSigns.

2. The potential for identification of common subroutines and
structures.

Chapter 9 20-Jan-83 Page 9-10
Program Design Language 1

9.6.3.2 Guidelines for Translating POL1 to Source Code

The following guidelines address the translation of POL1 code to
source code.

1. POL1 code can be included in the designed module and
maintained with the code.

2. PDL 1 code can be left as a block in the front of a mod ule.
Generally, if the code is mixed with the source code, the POL1
code replaces block comments only and does not replace
line-by-line comments or additional non-POL1 comments.

3. The PDL1 code and the block of source code it describes should
be on the same page.

9.6.4 POL1 Format

9.6.4.1 General Format

The "rules" of PDL1 are intended to be only as stringent as necessary
for two people, the writer and reader of the program, to communicate.
A PDL1 code line starts with a keyword and may contain an expression.
POL1 is a block-structured language. The keywords are used to define
the types of block structures and control structures used in a
program. PDL1 does not allow any GOTO-like statements except for an
early exit from an inner block or loop.

9.6.4.2 Block Structure

PDL1 allows nesting of blocks to any depth, permitting the description
of the most complex of programs. Any program may be written using the
three classes of blocks:

1. sequential

2. selective

3. iterative

Each block starts with a keyword that defines the type of block and
ends with the same keyword preceded by END (e.g., MODULE ENDMODULE,
DO ENDDO, etc.)

Chapter 9 20-Jan-83
Program Design Language 1

9.6.4.2.1 Sequential Blocks

Sequential blocks start with one of the following keywords:

PROGRAM
MODULE
MACRO
PROCEDURE
ROUTINE
SUBROUTINE
SUBTEST
SEGMENT

Page 9-11

Alternate keywords that may be used to define a sequential block are
the block name preceded by BGN, or BEGIN, and END (e.g.
BGNMODULE ENDNODULE). Since PDL1 will not be assembled or
compiled, there are no restrictions in the number of characters used
for these names. This allows the designer to create names truly
descriptive of the functions performed by each sequential block. To
show that a series of words is the names of a block, connect the words
by using the underline character (). For example, ROUTINE
RK01 LOGICAL FUNCTION TESTS. (For more-detail, see Section 11.4.5,
BloCK Structuring.)

9.6.4.2.2 Selective Blocks

Selective blocks start
ENDSELECT, respectively.
Constructs.)

with IF or SELECT and end with ENDIF or
(For more detail, see Section 11.4.6, Other

9.6.4.2.3 Iterative Blocks

Iterative blocks start with DO, REPEAT, or WHILE and end with ENDDO,
ENDREPEAT, or ENDWHILE, respectively. (For more detail, see Section
9.6.4.6, Other Constructs.)

9.6.4.3 Internal Block Structure

9.6.4.3.1 Imperatives

The keywords defining a block should be vertically aligned to start in
the same print column and be connected. by colons to clearly show the
scope of the block. All statements to be incl uded in the block are
idented 4 spaces within the bracketing keywords. Within a block, each
statement starts with an imperative. Some suggested imperatives are:

Chapter 9
Program Design Language 1

ATTEMPT
BEGIN
CALL (a subroutine)*
CHANGE
CHECK (FOR)
DECREMENT (or DECR)
DELAY
DISABLE
DISPLAY
ENABLE
EXECUTE (a Macro)**
FILL
HALT
INCREMENT (or INCR)
INITIALIZE (or INIT)
INPUT
INQUIRE
ISSUE
MOVE
OUTPUT
PRINT
READ
RECEIVE
REPORT
RESET
RESTART
RESTORE
SAVE
SEEK
SEND
SET
SET UP
START
STOP
STORE
TYPE
WRITE

20-Jan-83 Page 9-12

* The imperative CALL is only used to show where a subroutine is
called.

** The imperative EXECUTE is only used to show where a macro will be
expanded.

Chapter 9 20-Jan-B3 Page 9-13
Program Design Language 1

9.6.4.3.2 The Underline Character

I n add i t ion to con n e c tin g wo r d sin the n am e 0 f a b 1 0 c k (s e e Se c t ion
9.6.4.2.1), the underline character may be similarly used to
concatenate words in order to form names of memory locations, arrays,
buffers, functions, etc. It may also be used to separate groups of
digits that form a number to improve readability (e.g., 177 400,
4_194_304, or 01 000 001 000 instead of 01000001000). -

9.6.4.3.3 ASSignment and Relational Operators

The preferred assignment operator is = (equals sign).

The preferred relational operators are:

EQ for =

GT for >

LT for <

NE for -/.

GE for >

LE for <

9.6.4.3.4 Parentheses and Brackets

Parentheses may be used to enclose:

1 . Parameters - input to or output from a program, subroutine,
etc.

2. Comments.

3. Arithmetic or logical subexpressions.

Brackets, braces, or both, if incl uded in the character set, may be
used in addition to or instead of parentheses. Consistency must be
used in using parentheses, brackets, and braces throughout the
program. When in doubt about this or any other "rule", document the
exception or interpretation.

Chapter 9 20-Jan-83 Page 9-14
Program Design Language

9.6.4.3.5 Early Exit

Two methods of early exit are defined:

RETURN
EXITBLOCK (label)

The RETURN statement allows early exit from a subroutine, which has
the effect of popping the last transfer address off the stack.

The EXITBLOCK (label) statement allows an exit from any level of
nesting to any outer level. The outermost block to be skipped must be
labeled with the "label" which is enclosed in parenthesis in the
EXITBLOCK statement. When the EXITBLOCK statemen tis encountered,
control passes to the next statement following the ned of the labelled
block.

9.6.4.4 Keywords

1. SEQUENTIAL BLOCK KEYWORDS

PROGRAM ENDPROGRAM
MODULE ENDMODULE
ROUTINE ENDROUTINE
MACRO ENDMACRO
PROCEDURE ENDPROCEDURE
SUBROUTINE ENDSUBROUTINE or SUBR ENDSUBR
SUBTEST ENDSUBTEST
SEGMENT ENDSEGMENT

2. SELECTIVE BLOCK KEYWORDS

IF THEN ELSE ENDIF
SELECT CASE DEFAULT ENDSELECT

3. ITERATIVE BLOCK KEYWORDS

DO FOR TO DOWNTO BY ENDDO
DO FOREVER ENDDO
REPEAT UNTIL ENDREPEAT
WHILE DO ENDWHILE

4. OTHER KEYWORDS

EXITBLOCK
CALL
EXECUTE
RETURN

Chapter 9 20-Jan-83
Program Design Language 1

9.6.4.5 Block Structuring

PROGRAM program name (param1, param2)
MODULE module name

ROUTINE routine or test name
SUBTEST subtest name or number

SEGMENT segmnet name
statement 1-
statement-2

Page 9-15

CALL subroutine_name (param1, param2, param3)
statement 4

ENDSEGMENT [segment name]
statement 5

ENDSUBTEST [segment name]
stmt 6 -

ENDROUTINE [routine name]
stmt 7 -

ENDMODULE module name
stmt8
ENDPROGRAM program_name

1 •
2.

3.

NOTES
Keywords are uppercase.
Brackets [] enclose
optional names.

Some programs may not be
nested this deeply.

Chapter 9
Program Design Language 1

9.6.4.6 Other Constructs

IF expression
THEN

do this if true
ELSE

do this if false
ENDIF

SELECT case variable
CASE a: do this
CASE b: or this

CASE x: or this
DEFAULT: or this

ENDSELECT

20-Jan-83 Page 9-16

DO FOR variable = initial value TO final value BY increment

ENDDO

REPEAT

these
statements

these
statements

UNTIL expression is true
ENDREPEAT -

WHILE expression is true DO
these -
statements

ENDWHILE

SUBR subroutine name

statements

ENDSUBR subroutine name

MACRO macro name

statements

ENDMACRO macro name

DOWN TO decrement

Chapter 9 20-Jan-83
Program Design Language 1

9.6.4.1 Example of a Program in PDL1

PROGRAM EXAMPLE
INITIALIZE STACK POINTER
OUTPUT START MESSAGE
ROUTINE TEST 01

READ STATUS INTO DEV STAT (status of device should
initially equal zero)

IF DEV STAT NEQ 0
THEN

OUTPUT ERROR MESSAGE
ELSE

Page 9-11

REWIND DEVICE (to ensure that writing starts from
BOT)

ENDIF
ENDROUTINE TEST 01

LB: ROUTINE TEST 02
SELECT BYTES PER INCH

CASE 6250: RECORDING METHOD = GCR
CASE 1600: RECORDING-METHOD = PE
DEFAULT: RECORDING-METHOD = NRZI

ENDSELECT
WRITE ONE 64 BYTE RECORD
SET UP 1 SECOND TIMEOUT (write command should be executed

in far less time than one second)
REPEAT

INPUT STATUS
: UNTIL DEVICE NOT BUSY OR TIMEOUT OCCURS
ENDREPEAT
IF TIMEOUT OCCURRED

THEN OUTPUT ERROR MESSAGE
AND EXITBLOCK (LB)

REWIND DEVICE AND SET CTR = 0
WHILE REWINDING = 1 DO

INCREMENT CTR
IF CTR GTR 32167

THEN OUTPUT MSG. 'REWINDING'
ENDIF

ENDWHILE
ENDROUTINE TEST 02

ROUTINE TEST 03
READ ONE-RECORD
DO FOR I = 126 DOWNTO 0 BY 2

IF BYTE [I] NEQ I
THEN OUTPUT ERROR (WAS, SHOULD BE)

ENDIF
ENDDO

ENDROUTINE TEST 03

Chapter 9
Program Design Language 1

ROUTINE TEST 04

ENDROUTINE TEST 56
OUTPUT END MESSAGE
ENDPROGRAM EXAMPLE

20-Jan-83

9.6.4.8 PDL1 Keywords in Alphabetical Order

PDL1 KEYWORDS IN ALPHABETICAL ORDER

BY
CALL
CASE
DEFAULT
DO
DOWNTO
ELSE
ENDDO
ENDIF
ENDMACRO
ENDMODULE
ENDPROCEDURE
ENDPROGRAM
ENDREPEAT
ENDROUTINE
ENDSEGMENT

ENDSELECT
ENDSUBR (=ENDSUBROUTINE)
ENDSUBTEST
ENDWHILE
EQ
EXECUTE
EXITBLOCK
FOR
FOREVER
GE
GT
IF
LE
LT
MACRO
MODULE

NE

NOT
PROCEDURE
PROGRAM
REPEAT
RETURN
ROUTINE
SEGMENT
SELECT

Page 9-18

SUBR (=SUBROUTINE)
SUBTEST
THEN
TO
UNTIL
WHILE

Chapter 10 20-Jan-83 Page 10-1

CHAPTER 10

DIAGNOSTIC PROGRAM DOCUMENTATION

Good documentation is important in all diagnostic programs. The
programmer must always keep in mind that the documentation is for the
program user and not the programmer. It is therefore vital that the
User's Documentation be prepared so that a user with minimal knowledge
of soft ware or the language in which the diagnostic was wr it ten, be
able to use the diagnostic.

Programs require several levels of documentation. Program
documentation consists of user documentation, section and test
descriptions, comment lines, cross references, etc. All important
aspects of the program should be explained, from the overall purpose
and structure of the program to the meaning of individual lines of
code. Three important reasons for careful program documentation are:

1. Documentation is an important aid in the debugging phase of
program development. Prefaces and comments tell what the code
should do, so that unwanted side effects stand out.

2 . Do c um e n tat ion he 1 pst h e pro g ram use r t 0 u n d e r s tan d the
capabilities and requirements of the program. It also
increases the value of the program as a fault isolation tool,
if the user must troubleshoot with the program listing.

3. Documentation is essential to the individual who must maintain
the program, particularl y if the maintainer did not develop
the pro g r am . Sin c e the doc urn en tat ion tell s w hat the cod e i s
intended to do, the maintainer can fix the code if the code
does not perform as intended. If the maintainer wishes to
alter the function of the code, the documentation will aid in
determining what should be changed. The documentation may be
thought of as consisting of two main parts. The first part
(called external here) is aimed at describing the environment,
structure, and functional features of the program to the
users. The second part (called internal here) is the actual
code and comments which comprise the assembly listing of the
program. The discussion which follows is aimed predominantly
at defining a standard format for the external part of the
documentation.

You must document your program in each phase of its development. Do
not leave it until the end when the program strategy and details may
be difficult to recall.

Chapter 10
Guidelines

10.1 DOCUMENTATION GUIDELINES

20-Jan-B3 Page 10-2

Al tho ugh spec i fic guidel ines are impossi ble to give in all cases, 1 t
is important to follow some broad guidelines even in the internal
parts of the documentation. Some of the factors to consider are the
benefits of central listing (usually at the beginning of the listing)
of all user MACROs. Central location allows the user to find
explanations of MACROs without having to search the entire document.
(Note: MACRO expansion is required each time the MACRO is used).
Another useful practice is to locate variables, data buffers and
constants at the beginning of the program. Finally, sequence the
sub-tests in ascending order of normal execution in memory. It is
confusing when the sub-tests are out of sequence or when error reports
show PCs with random jumps in both directions. The way sub-tests are
linked together requires some thought. Special test dispatchers or
standard test linking routines (like those in SYSMAC) have unique
advantages and disadvantages. As a general rule, use the standard
sub-test linking packages. However, product specific sections of this
document should provide some additional information on this entire
area.

User documentation for all diagnostic programs should follow, as
closely as possible, the general format discussed in the sections that
follow.

10.2 DOCUMENTATION SECTION

The documentation section is the first item in the listing when you
release a diagnostic programr This section should include all
information necessary to running and using the program. This section
identifies the name and function of the program, program operating
instructions, run-time requirements, and a functional description of
each test in the program.

Organize the documentation section under several headings. Refer to
appropriate skeleton files for DRS and SYSMAC programs. The following
headings are recommended:

Documentation cover sheet

History section

Table of contents

Program abstract

Hardware requirements

Software requirements

Chapter 10
Documentation Section

Prerequisites

Operating instructions

20-Jan-83

Program functional description

Test descriptions

10.2.1 Documentation Cover Sheet

Page 10-3

The documentation cover sheet is the first page of the documentation
file. Use the following format:

a. PRODUCT CODE: Insert the AC-XXXXX-XX code assigned by PDP-11
Diagnostic Release Engineering.

b. PRODUCT NAME: Up to 29 character description matching the
title of the engineering change order (ECO). Although the
description may be expanded on the cover sheet, the first 1
characters of the ECO description are unique and must be the
first 1 characters of the product name.

c. PRODUCT DATE: Not necessarily the release date, but whatever
date the program is being created or revised.

d. MAINTAINER: Maintaining group, such as Small Systems
Diagnostic Engineering.

e. DISCLAIMER: The disclaimer statement should appear as shown
in Example 10-1.

f. COPYRIGHT STATEMENT: DIGITAL engineers use the format shown in
Example 10-1, glvlng the first and last copyright years.
These copyright years should be the same as those on the ECO.
They should be the first year that the program was released
from SDC and the current year.

Chapter 10
Documentation Section

20-Jan-83 Page 10-4

a :
b :
c :
d :

PRODUCT CODE:
PRODUCT NAME:
PRODUCT DATE:
MAINTAINER:

IDENTIFICATION

AC-8781G-MC
CZDZAGO DZ11 ASYNC MUX TEST
20 FEBRUARY 1981
SMALL SYSTEMS DIAGNOSTIC ENGINEERING

e: THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE
USED AND COPIED ONLY IN ACCORDANCE WITH THE TERMS OF
SUCH LICENSE AND WITH THE INCLUSION OF THE ABOVE
COPYRIGHT NOTICE. THIS SOFTWARE, OR ANY OTHER COPIES
THEREOF, MAY NOT BE PROVIDED OR OTHERWISE MADE
AVAILABLE TO ANY OTHER PERSON. NO TITLE TO AND
OWNERSHIP OF THE SOFTWARE IS HEREBY TRANSFERRED

THE INFORMATION IN THE SOFTWARE IS SUBJECT TO CHANGE
WITHOUT NOTICE AND SHOULD NOT BE CONSTRUED AS A
COMMITMENT BY DIGITAL EQUIPMENT CORPORATION.

DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR
RELIABILITY OF ITS SOFTWARE ON EQUIPMENT THAT IS NOT
SUPPLIED BY DIGITAL.

THE FOLLOWING ARE TRADEMARKS OF DIGITAL EQUIPMENT
CORPORATION:

DEC
MASSBUS
VAX

I
I

: d i g i

DECUS
PDP

t a : I
I
I

DECTAPE
UNIBUS

f: COPYRIGHT (C) 1979, 1981 BY DIGITAL EQUIPMENT
CORPORATION, MAYNARD, MASSACHUSETTS ALL RIGHTS
RESERVED.

Example 10-1. Documentation Cover Sheet

10.2.2 History Section

List the version numbers (including all DECOs and DEPOs),
date, and reason for modification of each version, one per
chronological order. The reasons for modification include
reports closed (by number) or DEPOs closed.

author,
line in
problem

The example below was taken from CZCLM, a communications link test
program for the DMP-11 and DMV-11.

Chapter 10
History Section

20-Jan-83 Page 10-5

REVISION HISTORY:

REV

A

B

DATE AUTHOR

14-Jan-81 Bruce Ribolini

26-0ct-81 Ernie Cooper

REASON

Original issue, DCLT for the
DMP-11, DMV-11

Add - "SET E=T Command"
Add - ID of device requesting

downlineload.
Added needed patches.
General cleanup and enhancement
of document.

Example 10.2 Sample History Section

10.2.3 Table of Contents

List of all the major subsection titles. For example:

1 GENERAL INFORMATION
1.1 Program Abstract
1.2 System Requirements
1.3 Related Documents and Standards
1.4 Diagnostic Hierarchy Prerequisites
1.5 Terminal Setup

2 OPERATING INSTRUCTIONS
2.1 Commands
2.2 Switches
2.3 Flags
2.4 Hardware Questions
2.5 Software Questions
2.6 Extended P-Table Dialogue
2.7 Quick Startup Procedure

3 ERROR INFORMATION

4 PERFORMANCE AND PROGRESS REPORTS

5 DEVICE INFORMATION TABLES

6 TEST SUMMARIES

Example 10.3 Table of Contents

Chapter 10
Program Abstract

10.3 PROGRAM ABSTRACT

20-Jan-83 Page 10-6

This section is a short but clear descr iption and summary of the
diagnostic program. Include its scope (functional test, exerciser,
repair level, etc.) and major features. Example 10-4 shows a typical
program abstract.

This example was taken from CZCLM, a communication link test program
for the DMP-11 and DMV-11.

PROGRAM ABSTRACT

This DCLT (Data Communication Link Test) program is meant to provide
Field Service with a tool to maintain DMP-11 or DMV-11 to DDCMP
mul tipoint communication links. This DCLT program will prov ide the
coverage necessary to detect failures in the computer equipment, the
communication link, or the modem. This diagnostic has been written
for use with the Diagnostic Runtime Services software (DRS). These
services provide the interface to the operator and to the software
environment. This program can be used with XXDP+, ACT, APT, SLIDE and
paper tape. For a complete description of the runtime services, refer
to the XXDP+ System User's Manual (CHQUS?SEQ where? is rev. level of
the manual). There is a brief description of the runtime services in
section 2 of this document.

Example 10-4. Sample Program Abstract

10.4 SYSTEM REQUIREMENTS

This section should describe all hardware requirements. Remember, all
PDP-11 DRS diagnostics require a minimum of 16K words of memory and a
console terminal. See Example 10-5.

SYSTEM REQUIREMENTS

This program requires
· a PDP-11 processor
· at least 24K words of memory
· a console terminal interfaced with the standard address

and interrupt vector.

Example 10-5. System Requirements Documentation

Chapter 10
Related Documents

20-Jan-83

10.5 RELATED DOCUMENTS AND STANDARDS

List any standards or other documentation related to
(e. g., DEC STD 138 for ANSI sequences is related
diagnostics) . All DRS diagnostics must refer to the
Users' Manual.

10.6 DIAGNOSTIC PREREQUISITES

Page 10-7

the program
to terminal
XXDP+ System

Specify what other diagnostics are assumed to have been run and found
working before this diagnostic is run: for example, a controller
diagnostic that should have been successfully completed prior to a
drive test.

10.7 PROGRAM ASSUMPTIONS

If the program assumes that certain elements of the equipment under
test (e.g., disc pack) are fault free or are free from certain types
of faults (e.g., multiple faults), these assumptions should be
described here. Further, any significant assumptions made regarding
the required training of the user should be included.

10.8 OPERATING INSTRUCTIONS

Include in this category all instructions for loading and executing
the diagnostic program. If the program can be loaded and run on-line
as well as off-line (standalone), show both methods. Example 10-6
shows the operating instructions for the LSI-11 Extended Instruction
Set Test program.

a. Loading Procedure

Use standard procedure for loading diagnostic programs.

b. Starting Procedure

b.1 Control Switch Settings

See Section c.1. All switches should be reset for worst
case testing.

b.2 Starting Address

After loading the program, it should always be started at
200 octal. If it is desired to save the pass counter, then
the program should be restarted at location RESTRT,
otherwise the program can be restarted at octal 200.

Chapter 10 20-Jan-83 Page 10-8
Operating Instructions

b.3 Program and/or operator action

b.3.1 Stand Alone

1) Place LTC switch in Off position (if applicable).
2) Load program into memory (.L VKA???).
3) Set switches (see section c.1) all low for worst case.
4) Type .S 200.
5) The program will execute and END PASS will be typed

after completion of first pass and every 4th pass.
However, typeout will be suppressed if Bit 5 of location
$ENVM is high.

6) A minimum of two passes should always be run.

b.3.2 Under APT

Load the program and start after setting the desired
switches (see section c.1). However, if the diagnostic is
run under APT with Bit 5 of $ENVM low, then it will be
required that a SLU with TTY registers having addresses of
176560-66 and interrupt vectors of 70 for receiver and 74
for transmitter be present. It will also be required to
change the pass time from 5 to 15 seconds and the test time
from 3 to 10 seconds.

c. Operating Procedure

c.1 Switch Settings

A 16-bit location called $SWREG (i.e., location 176 octal)
has been used to give the following options by inserting a
1 in their respective bit positions.

Bit II

15
13

Octal Value

1000000
0200000

Function

Hal t On Error
Inhib it Pr intout

8-bit byte $ENVM has been used to define the operating
mode. All typeouts can be suppressed by making Bi t 5 of
byte $ENVM a one.

Note

Operator input is underlined.

Example 10-6. Operating Instructions.

Chapter 10 20-Jan-83 Page 10-9
Loading and Starting Procedures

10.8.1 Loading and Starting Procedures

This section should have a summary description of a standard loading
and starting procedure here. Any special procedures should be
documented here. Procedures for selecting a subtest of the tests
comprising the program should be described here.

10.8.2 Special Environments

Any special characteristics of the program when executed in other than
the standalone mode (e .g., APT system, operating system for online
mode) should be clearly stated here.

10.8.3 Program Options

This section will describe all operator parameters, their meanings and
uses, default values, ways of inputing these parameters, and ways of
changing default values.

Each family of processors has standard definitions of all control
switches (switch register). The meaning and usage of all such
switches is described here. When a deviation from the standard is
necessary, it should be noted and the new usage clearly described.

The addresses, meanings, and uses of all memory locations which serve
as program control registers, program swi tch registers, starting or
restarting locations, etc. should be described here. Deviations from
memory location standards will be clearly and completely described
here.

If the program is interactively controlled via a terminal command
language, this language will be described here.

10.8.4 Execution Times

A statement of the approximate program run times should be provided.
Normally, this approximation - is given for the case of a single
error-free pass through the complete program. It is important that
approximate run times be provided for meaningful configurations,
operating modes, and other circumstances and that these configura
tions, modes, and circumstances be explicitly stated.

For example: First pass run time is 3 seconds, subsequent passes take
30 seconds, and longest test time is 5 seconds.

Chapter 10 20-Jan-83 Page 10-10
Error Information

10.9 ERROR INFORMATION

10.9.1 Error Reporting Procedures

This section contains a description of what happens when the program
detects an error. It describes the formats used in reporting the
error.

The purpose of the error report is to provide concise and accurate
information in order to facil i tate the isolation and repair of the
fault causing the error. A diagnostic program must provide an error
report in every instance where an error is detected. The only
permissable exception is when the operator or operating system (in the
case of on-line diagnostics) has invoked the "no error report" mode.
Generally speaking, error reports take the form of visual display or
hard copy produced at the time the error is detected. Some systems,
most notably on-line diagnostic or automated manufacturing test
systems, may reproduce all or part of the error report on a system
file (e.g., an error log) for fail ure data base creation, automatic
analysis, or for deferred printing if no printer is available at the
time of failure.

Sophisticated error reporting schemes may allow the operator (or
operating system) to select the amount and nature of the information
to be included in the error report. For certain diagnostics, it is
not reasonable to assume that the system under test has the capability
to print or log error reports; this is usually the case for basic
central processor diagnostics. In these si tuations, the program may
report an error merely by halting, with pertinent information stored
in documented memory locations. When errors are detected within
subroutines, special care must be exercised to ensure that meaningful
information is reported. The printing of the PC within the subroutine
has little or no meaning. Errors detected within subroutines must
provide enough information to identify what caused the error and where
in the main flow of the program the subroutine call was issued. This
holds true for nested subroutines as well.

Error reports should address the following:

1 . The location in the program doc umentation where the error
information is explained. Usually this takes the form of test
number and subtest number.

2. A concise description of the test operation which failed or
produced the failure.

3. The correct (i.e., expected or specified) results of the test
operation.

4. The actual (i.e., incorrect) results of the test operation.

Chapter 10
Error Reporting

20-Jan-B3 Page 10-11

5. Other significant data: register, flags, indicators, operands,
addresses, important memory location contents, etc.

6. To the extent possible, identification of the failing hardware
element or a list of probable failing elements listed in
decreasing order of probability.

7. Where applicable, a pointer or index to an entry in a document
where information, pertinent to the error but too voluminous
to be included in the error report, can be found.

HEADER AND BASIC ERROR FORMATS

The following basic error formats have been adopted as minimum ways of
displaying the specified error information.

A.1 Register Value Wrong

Expected: <expected-value>
Received: <actual-value>

A.2 Register Dump of Unit Under Test

<Register-O> : <Register-value>
"
"
" <Register-N> <Register-value>

A.3 Data Compare Error in Buffer

Memory Buffer Address
Record Size
Words in Error

Address Expected

;<Description of set bits>

;<Description of set bits>

<Starting Address of buffer>
<Length of Transfer>
<Number of words that are incorrect>

Received

<Memory Address> <Expected Data> <Actual Data>*
"
"
"

"
"
"

Note:

"
"
"

* A maximum of 8 memory locations will be dumped.

Chapter 10
Error Halts

10.9.2 Error Halts

An explanation
prov ided . The
incl uded .

of all
correct

20-Jan-83

halts designed into
operator response to

the program
those hal ts

Page 10-12

should be
should be

In general, error halts should only be used in cases where the error
was fatal and the ability of the processor to print the error message
is in doubt. The most common use of error halts is in unit
diagnostics of basic processor functions. In such cases the failure
detected may be in a function required to print the error.

In all cases where the error halts are used, the documentation should
contain a list of all the halts in the program and a reference to the
program documentation where additional data is available.

10.10 OPTIONAL PERFORMANCE AND PROGRESS REPORTS

These two sections doscribe what the programmer must do to provide
optional performance and progress reports listing number of hard
errors, number of soft errors, etc.

10.10.1 Performance Reports

There is a type of diagnostic program whose prime function is to
provide hardware performance data. The performance data is required -
in the form of visual display or hard copy performance reports - even
if the hardware is operating normally and well within specifications.
This type of diagnostic program is commonly required for peripheral
equipment.

Since the format and contents of performance reports must vary widely
according to the specifics of the hardware and the user environment,
specific guidelines cannot be provided.

10.10.2 Progress Reports

Diagnostic programs must be designed so that it is not possible for a
program to be halted, to be hung-up, or to skip selected tests without
the operator being aware of the fact. This is especially important in
the case of programs with long execution times. Progress messages in
the form of console typeouts of the name of each test as execution of
the test and subtest begins is a good way to ensure that "silent
death" is noticed soon. Under DRS, the name of the subtest cannot be
printed. For DRS-compatible diagnostics, use the PNT flag to get this
option.

Chapter 10
Sub-Test Summaries

20-Jan-83 Page 10":'13

The size and frequency of progress messages must not be such as to
increase program run time, reduce test effectiveness (e .g., by
reducing the activity level of the equipment under test), or create an
operator nuisance.

10.11 SUB-TEST SUMMARIES

A summary of each sub-test must be provided to allow for clearer
understanding of the program by the users without having to read the
entire source code. This does not put an addi tional burden on the
Diagnostic Engineer if the guidelines indicated in Section 9.12 are
followed. Each sub-test should carry a summar y or head ing. By
identifying these headings with ;* symbols, the Diagnostic Engineer
can extract each of these headings to be used in this section.

10.12 PROGRAM LISTING

The program code and its listing should be sectioned into tests,
subtests, subroutines, constants, variables, data, parameters,
buffers, communication areas, etc. Each section within the listing
s h 0 u I d be pre c e d e d by a he ad in g . Th e he ad in g s h 0 u I d des c rib e the
purpose, function, and methods used in the section it precedes.

All coding must be clearly and thoroughly commented. In general, each
line of code requires a comment. The comment must convey the
function, meaning, and role of the instruction it describes. A
comment cannot be a simple translation of an instruction from
alphanumeric symbols into English. If a particularly complex,
obscure, or elegant instruction sequence is used, a paragraph of
comments explaining what is being done shall precede the sequence.
Code that implements a logical or mathemtical algor i thm is a good
example of such a case.

Symbol s, acronyms, mnemonic s, and abbrev iat ions used in the program
listing must be clearly and completely defined by text within the
listing. Names, abbreviations, acronyms, mnemonics, and symbols of
hardware elements must be the same as used in the hardware
specifications. Comments and sectional headings must clearly describe
program actions when an error is detected.

Programs containing MACROs should expand the HACROs and explain in
detail their functions and implementations. This should be done once
in detail at the start of the source files. The explanation need not
be repeated each time the MACRO is used in the program.

Chapter 10
Symbol Table

20-Jan-83

10.13 SYMBOL TABLE AND CROSS REFERENCE LISTING

Page 10-14

Programs must contain symbol tables and cross reference listings when
required by the diagnostic users.

10.14 PROGRAM FUNCTIONAL DESCRIPTION

This section of the documentation file should include the following
information categories.

1. General information

a. Program abstract
This is an overview of the diagnostic program

b. System requirements
What hardware and software is needed for this diagnostic
to run

c. Related documents and standards
What other documents and standards should be read

d. Diagnostic prerequisites
What diagnostics need to run before information from this
one is valid. This is bottom up testing

e. Assumptions-restrictions
What are the restrictions and assumptions used when
running this diagnostic

2. Operating instructions
Describe the command switches and modes of operation

3. Error information
Descr i be the ERROR TYPES and the speci fic error information
given by this diagnostic

4. Performance reports
Describe any performance or progress reports that the
diagnostic provides

5. Device information tables
Describe device table information

6. Test descriptions
Describe all tests in the diagnostic

7. Other text (e.g., Troubleshooting hints)

For each test (and subtest, if appropr iate) explain the functions
tested, possible fail ures, and actions that the operator should take
on error detection. Example 10-7 shows the descript-ion of the first
test in the LA34-VA Hardcopy Terminal functional diagnostic program.

Chapter 10· 20-Jan-83
Program Functional Description

.SBTTL REVERSE LINEFEED TEST
MODULE NAME; REVLF2.-1

BGNMOD

Reverse linefeed / reverse index test 2

Page 10-15

This test will exercise the single line reverse linefeed and
multiline reverse index features of the terminals under test.

The test will verify correct operation at the following vertical
pitches; 3, 8, 12, and 6 lines per inch.

FA&T MODE will test 6 lpi, 10 cpi only.

Each vertical pitch will be tested at the following horizontal
pitches; 16.5, 5, and 10 characters per inch.

The test will self modify for 8" paper if "wide" is less than
132.

The pattern produced will appear as a zigzag pattern of *
characters between two reference line of = characters spaced
ten lines apart.

BEGIN TEST
Pr int Test I D
Init Pointer to Table of Vert pitches
Set Diagonal size = 8.
Repeat for each entry in Vert Pitch Table

Set Vert pitch
Init pointer to table of Horiz pitches
Repeat for each entry in Horiz Pitch Table

Set Hor i z pi tch
Select column count for current pitch & width
Select pattern count for current pitch & width
Set top at current line (66 line page)
Skip 12 lines
Print bottom ref line (column count long)
Print a <CR>
Send UP10 escape sequence
Print top ref line (comumn count long)
Send a <CR>
Repeat pattern (Count times)

Create Diagonal down
: Create Diagonal up
End repeat
Skip 12 lines

End repeat
End repeat

End test
Example 10-7. Test Description.

Chapter 10 20-Jan-83 Page 10-16
Subroutine Descriptions

Notice that the test steps are listed in order. You should be able to
use material from the functional and design specifications when you
write the test descriptions for the documentation file.

10.15 DESCRIPTIONS OF SUBROUTINES

;++
FUNCTIONAL DESCRIPTION:

INPUTS:

OUTPUTS:

Updates total char. count TOTCC based on CURCC. Last
message is truncated to fit into the buffer. If total
char. count exceeds "BUFLIM", a message is printed
telling the operator that the truncation occurred.

CURCC= Char. count of message being added
TOTCC= Total char count of buffer it's being added to

Message to operator if message truncated to fit

FUNCTIONAL SIDE EFFECTS:
Location "TEMP" used for calculations

CALLING SEQUENCE:
JSR PC,ADDCC ;Updated total char. count

Example 10-8.

Chapter 10 20-Jan-83 Page 10-11
Subroutine Descriptions

;++
;FUNCTIONAL DESCRIPTION:

FACSIMILE: This routine is used to create a facsimile of
the transmit list and transmit buffer in the expect
list and expect buffer. The routine is normally
called when user command "SET E [XPECT]=
T [RANSMIT] is entered.

CALLING SEQUENCE: JSR PC,FACSIMILE

DEFINITIONS CMPBUF = Expected data buffer holds max 512 bytes
TXBUF = Transmit data buffer holds max 512 bytes
TTOTCC = Number of bytes in TXBUF
PTRTAB = Top of message list pointer table
CTOTCC = Number of bytes in expect message
CMPTOT = Number of expected messages
CMPPTR = Expected message list pointer
TXPTR = Transmit message list pointer
TXfvlTOT = Number of transmit messages
CCURAD = Storage address of message in CMPBUF
MSGLIN = Maximum number
BUFLIN = Number

BEGIN FACSIMILE ROUTINE
(*COpy TXBUF ==> CMPBUF*)
· . SAVE R 1
· .INIT R1
· . REPEAT
.... [CMPBUF]R1=[TXBUF]R1
.... R1=R1+1
.. UNTIL R1 = BUFLIM

of bytes
of messages

in buffer

(*NOW CALCULATE EXPECT LIST MESSAGE POINTER*)
.. CMPPTR = PTRTAB + (2 * MSGLIM)

(*NOW PRIME THE WHILE-DO LOOP*)
.. TXPTR = PTRTAB
.. CCURAD = CMPBUF
.. TXPTR = TXPTR + 2
.. CTOTCC = [TXPTR]
.. CMPTOT = 0
.. WHILE TXMTOT <> CMPTOT DO
.... [CMPPTR] = CCURAD
.... CMPPTR = CMPPRT + 2
...• [CMPPTR] = CTOTCC
.... TXPTR = TXPTR + 4
.... CCURAD = CCURAD + CTOTCC
.... CTOTCC = [TXPTR]
..•. CMPPTR = CMPPTR + 2
...• CMPTOT = CMPTOT + 1
.. END WHILE DO

that can be stored

Chapter 10 20-Jan-83 Page 10-18
Subroutine Descriptions

.. CTOTCC = TTOTCC
END FACSIMILE ROUTINE

Example 10-9.

Chapter 11 20-Jan-B3 Page 11-1

CHAPTER 11

GENERAL CODING CONVENTIONS

11.1 INTRODUCTION

In designing diagnostic programs, diagnostic engineers should keep in
mind who the users and maintainers of the programs will be. Elegant
software techniques and complicated coding subtract from, rather than
add to, the quality and viability of a diagnostic program. Techniques
which may be satisfactory for exercisers or maintenance programs may
be too elegant for uni t diagnostics. Thi s chapter disc usses some 0 f
the guidelines to follow to ensure good coding.

When developing basic logic diagnostics, straight line coding
techniques should be followed since deviations from straight line
cod ing call for ex tra doc umentation efforts. The use of standard
subroutines is a justified and mandatory deviation from straight line
coding. When standard subroutines are used, however, extra care must
be taken to ensure that the program documentation is clear and will
cause minimum confusion to the non-programmer user who must refer to
the documentation.

Global parameters, constants, literals, tables, and data should be
collected and concentrated into easily recognized, contiguous areas of
the source code (and memory). Operator parameters should be collected
into a single, contiguous, easily recognized area at the beginning (or
end) of the source code (and memor y) . These areas should be clearl y
identified within the source listing by means of headings and
comments.

All registers and vector addresses of peripheral equipment under test
or used to output messages or control diagnostic execution should be
readily changeable by the operator at program set-up time. Text
within the source listing should clearly explain how to use this
capability.

Subroutines should return control to the next executable instruction
immediately following the subroutine call. This does not preclude the
transfer of parameters with a subroutine call, nor does it preclude
multiple return points (depending on conditions encountered in the
subroutine). The objective is to keep the return address as close to
the location that the call was made from as is practically possible.

Chapter 11
Introduction

20-Jan-83

The following practices are to be avoided:

1. Instructions which modify instructions.

Page 11-2

2. Time-dependent code (i.e, code which depends on the execution
time or response time of instructions or other operations).
Note that this does not preclude the use of a real-time clock
to measure the execution or reponse time of the hardware under
test. Time-dependent code could be used if it is calibrated
against a real-time clock or the line frequency.

3. Model-dependent code (i.e., code which will not correctly
execute on all models of a product line). For example, a disk
diagnostic should not be written that will execute on a
PDP-11 /40 but not on a PDP-11 /05 . Obviously, PDP-11 /45
processor diagnostics need not execute on a PDP-11/05. Note
that if a firm commi tmen tis obtained to 1 imi t the types of
processors the option will be used on, this constraint may not
be applicable. This condition almost never exists.

4. Nested subroutines (i.e., subroutines which call sub
routines) . If nested subroutines are unavoidable, be sure
that returns are made in reverse order (i.e., each subroutine
returns control to the subroutine which last called it). Also
clear 1 y document (flow charts are good) and explain what is
being done. Since unit diagnostic programs are the basic
diagnostic tool s, nested subroutines should be avoided
wherever possible.

Values to be used as the basis of comparison for purposes of error
determination, such as expected register contents, should be handled
as program const~nts predetermined at coding time. These values
should not be dynamically measured by the program itself during
execution. 'There are exceptions to this rule. _ In mul ti-uni t
controllers, for example, the contents of the status/control register
will depend· on' the number of units connected. In such cases the
program would use information supplied by the operator as a basis of
comparison. ~

If the contents of a dynamic register is to be processed (e.g., read 4
compared to a constant, and printed) first store the register and then
process the stored value, not the register contents. A dynamic
register is one whose contents can change without the explicit
initiation of the change by the program. An example of such a
register is the word count register of an NPR peripheral during a data
transfer. This methodology is preferred even for static registers.

Chapter 11 20-Jan-83 Page 11-3
Recommended Coding Practice

11.2 RECOMMENDED CODING PRACTICE

When developing coding, the guidelines discussed in this section
should be followed.

11.2.1 Line Format

All source lines shall consist of from one to the maximum number of
characters supported by the listing media (usually 80 columns).
Assembly language code lines shall have the following format:

1. LABEL FIELD - If present, the label shall start at tab stop 0
(column 1).

2. OPERATION FIELD - The operation field shall start at tab stop
1 (col urn n 9).

3. OPERAND FIELD - The operand field shall start at tab stop 2
(co 1 urn n 11).

4. COMMENTS FIELD - The comments field shall start at tab stop 4
(column 33) and may continue to the maximum number supported
by the listing media.

Comment lines included in the code body shall be delimited by a line
containing only a leading semicolon. The comment itself contains a
leading semicolon and starts in column 1. Indents shall be 1 tab.

1ft he 0 per and fie 1 d ext end s bey 0 n d tab s top 4 (col urn n 33), s imp 1 y
leave a space and start the comment. Comments which appl y to an
instruction but require continuation should always line up with the
character position which started the comment.

Wherever possible, assembly pseudo-operation control statements should
not be printed on the assembly listing.

11.2.2 Comments

Comment all coding to convey the global role of an instruction and not
simpl y a literal translat ion 0 f the ins tr uc t ion into Engl ish. In
general, this will consist of a comment per line of code. If a
particularly difficult, obscure, or elegant instruction sequence is
used, a paragraph of comments shall immediately precede that section
of code.

Preface text describing formats, algorithms, program-local variables,
subroutines, etc. will be delimited by the character sequence ;* at
the start of each line of text.

Chapter 11
Naming Standards

For example:

20-Jan-83

;*This routine accepts a list of
;*random number and alphabetizes them.

11.3 NAMING STANDARDS

Page 11-4

Names, symbols, and labels should adhere to the following standards:

11.3.1 Hardware Registers

These registers must be named identically with the hardware
definition: for example, PS and SWR.

11.3.2 Device Registers

These are symbolically named identically to the hardware notation.
For example, the control and status register for the RK disk is RKCS.
Only this symbolic name may be used to refer to this register.

11.3.3 General Purpose Registers

Only the following names are permitted as register names and may not
be used for any other purpose:

Only the following names are permitted as register
names; and may not be used for any other purpose:

RO=%O
R1=%1
R2=%2
R3=%3
R4=%4
R5=%5
R6=%6
R7=%7
SP=%6
PC=%7

;Reg 0
; Reg 1
;Reg 2
; Reg 3
;Reg 4
; Reg 5
;Reg 6
; Reg 7
;Stack Pointer (Reg 6)
;Program Counter (Reg 7)

Note: To clarify, RO can only be used to name register 0, RO
cannot be used to name register 5.

Chapter 11
Naming Standards

11.3.4 Processor Priority

20-Jan-83 Page 11-5

Testing or altering the processor priority is done using the following
symbols:

PRIO, PRI1, PRI2, , PRI7

These symbols are equated to their corresponding priority bit pattern.

11.3.5 Other Symbols

Frequently used bit patterns such as CR (carriage
feed) will be made conventional symbolics on
Mnemonic symbol assignments should be defined
con s tan t s . Th is aid sin the c 1 a r i t Y 0 f the
editing and maintaining.

11.3.6 Program-Local Labels

return) and LF (line
an as-needed basis.
for frequently used

program and ease of

Self-relative address arithmetic (.+n) is absolutely forbidden in
branch instructions and should be used only where absolutely essential
elsewhere. Indeed, no implication of adjacency is permitted without
showing cause. Non-symbolic absolute references should be avoided.

Labels targetted for branches that exist solely for positional
reference will use local labels of the form:

<NUM>$: NOTE: This format defines "local label s" .

Use of non-local labels is restricted, wi thin reason, to those cases
where reference to the code occurs external to the code.
Local-labeling is formatted with the numbers proceeding sequentially
down the page and from page-to-page. It should be noted that macros,
when expanded, will v iolate this guide. This is acceptable since it
is not avoidable.

11.4 PROGRAM MODULES

No other characteristic has more impact on the ul timate engineering
success of a system than does modularity. It provides the means to
layout the program for ease of coding, understanding, and revising.

Chapter 11
Program Modules

11.4.1 The Program Preface

20-Jan-83

Programs must adhere to a strict format.
readability and understandability of the
sections are included in each program:

Page 11-6

This format adds to the
program. The following

For the code section (in the source listing, NOT the assembly listing)
of a SYSMAC diagnostic program:

1. Listing and assembly directives:

a. "No list" macro calls and definitions and unsatisfied
conditionals (.NLIST MC,MD,~ND).

b. List macro expansions (.LIST ME).

c. Enable, if appropriate, absolute addressing and absolute
mode (.ENABL ABS,AMA).

2. A" . TITLE" statement that specifies the name of the program
and the MAINDEC number with revision level.

3. The name of the pr incipal author and the date on which the
program was first created (Not to appear on the assembly
listing).

4. The name of each modifying author, the date the modification
was completed, and the purpose of the modification. The
information concerning each modification shall occupy one line
and the modifications shall be listed in chronological order
(see Sec. 10.2.2).

5. A .SBTTL statement that defines the program section or
subroutine that follows.

6. Switch Settings

7. Trap Catcher

8. Starting Address or Addresses (includes restart address).

9. A list of the definitions of all equated symbols used in the
program. These definitions appear one per line and shall be
broken into categories with each category in logical order
(alphanumeric).

10. All local macro definitions, preferably in logical order by
name. A description should be provided for each macro.
Additionally, each macro should be adequately commented to
allow easy understanding when it is expanded.

Chapter 11
Program Modules

20-Jan-83 Page 11-7

11. All constant, variable, and table data.
indicate:

The data should

a. Description of each element (type, size, etc.)
b. Organization (functional, alpha, adjacent, etc.)
c. Adjacency requirements

12. The program code. A detailed description of each test and
sub-test shall precede the start of code. This description
should describe what is being performed, what portion of the
logic is being tested, any assumptions made, and the English
language flow of the test itself.

13. All subroutines. A description should be provided for each
subroutine. This description should include the calling
sequence, the information retrieval procedures, the contents
of registers (upon entry and exit), and the information
delivery procedure.

14. ASCII messages

15. Anyone-shot code

16. SYSMAC macros

17. Buffer area

For a DRS-compatible diagnostic, 13, 14, and 17 would occur before 12.

11.4.2 Register Conventions

When a subroutine is entered, it minimally saves all registers (except
for result registers) it intends to alter and, on exit, it restores
these registers. State preservation is assumed across calls.

11.4.3 Argument Passing

Any registers may be used, but their use should follow an orderly
pattern. For example, if passing three arguments, pass them in R1, R2
and R3 rather than R1, R2, R5. Saving and restoring should not be
scattered throughout the routine but each should happen in one place.

11.4.4 Exiting

All subroutine exits occur through a single RTS Rn or RTI.

Chapter 11
Formatting Standards

11.5 FORMATTING STANDARDS

20-Jan-83

The following formatting guidelines should be adhered to.

11.5.1 Program Flow

Page 11-8

Programs should be organized on the listing such that they flow down
the page as the PDL flows. This organization makes the flow easier to
follow. Code should exit the routine at only one point, perferably at
the bottom.

;++
;PDL description of a code fragment

,
; 1 $
,
;2$

;++
;Correct method of

ADD
CMP
BLOS
INC
CMP
BLOS
ASR
BR

1 $: MOV
2$: ASL

RETURN

A = A + 5
IF (A .GT. 7)

THEN
D = D + 1
IF (D • GT. 10)

THEN
B = B 1 2

ENDIF
ELSE

A = C
ENDIF
C = C * 2
RETURN

coding above PDL

115,A ;A = A + 5
A,117 ; (A > 7) ?
1$; No , branch
D ;D = D + 1
D,1I10 ; (D > 10) ?
2$; No , branch
B ;B = B 12
2$. ,
C,A ;A = C
C ;C = C * 2

Chapter 11
Formatting Standards

;++

20-Jan-83

:Incorrect method of coding above PDL

1 $:

2$:

ADD
CMP
BHI
MOV
ASL
RETURN
INC
CMP
BLOS
ASR
BR

115,A
A,117
2$
C,A
C

D
D,fl10
1$
B
1$

11.6 FORBIDDEN INSTRUCTION USAGE

Page 11-9

Certain coding conventions, that may
desirable, are forbidden.

on the sur face appear to be

11.6.1 Instructions or Index Words as Literals

The use of instructions or index words as literals of the previous
instruction is forbidden. For example:

MOV @PC,REGISTER

BIC SRC,DST

uses the bi t clear instruction as a literal. This may seem to be a
very "neat" way to save a word but what about maintaining a program
using thi s tr ic k? To compound the problem, thi s will not exec ute
properly if liD space is enabled on the 11/45. In this case @PC is a
D bank reference.

11.6.2 MOV Instead of JMP

The use
transfer
example:

of the MOV instruction instead of
program control to another location

MOV HALPHA,PC

a JMP instruction to
is not allowed. For

Chapter 11 20-Jan-83 Page 11-10
Forbidden Instruction Usage

transfers control to location ALPHA. Besides taking longer to execute
(2.3 microseconds for MOV vs. 1.2 for JMP), the use of MOV instead of
JMP makes it nearly impossible to pick up someone else's program and
tell where transfers of control take place. As a more general issue,
perphaps even other operations such as ADD and SUB from PC should be
discouraged. Possibly one or two words can be saved by using these
operations but this will not occur very often.

11.6.3. Single-Word Instructions

The seeminl y "neat" use of all single-word instructions, where a
double-word instruction could be used and would execute faster, should
not be used. Consider the following instruction sequence:

CMP -(R1),-(R1)
CM P - (R 1) , - (R 1)

The intent of this instruction sequence is to subtract 8 from register
R1 (not to set condition codes). This can be accomplished in
approximately 1/3 the time via a SUB instruction 3.8 vs. 9.4
microsecond s) at no addi tional cost in memory space. Another
consideration, what if R1 is odd? SUB always wins since it will
always execute properly and is always faster!

11.6.4 PDP-11 Family Instruction Execution Differences

Because of differences in the way PDP-11 CPUs execute some
instructions when certain register modes are used, care must be taken
when using the same register in the source and destination operands
and in using the PC as a source operand.

For example, avoid the use of the same register in both the source and
destination such as:

MOV R1,(R1)+ or MOV R1,-(R1)

The register mayor may not be auto-incremented or auto-decremented
before use as the source.

The use of the PC can cause problems if used as a source operand, such
as:

MOV PC,loc

because different CPUs update the PC at different times during fetch
and execution of the instruction.

Chapter 11
Instruction Execution
Differences

20-Jan-83 Page 11-11

The use of auto-increment mode in a JMP or JSR may execute
differently, such as:

JMP (R1)+ or JSR R5,(R1)+

R1 mayor may not. be incremented before use for the destination.

Other areas of difference involve RESET, RTT, RTI, the T-Bi t,
differences in Memory Management, HALT, Odd-Address references and
others. Beware that differences exist and check your programs on all
targeted CPUs to be sure you're not caught.

11.7 RECOMMENDED CODING PRACTICE CONDITIONAL BRANCHES

When using the PDP-11 conditional branch instructions, it is
imperative that the correct choice be made between the signed and the
unsigned branches.

SIGNED

BGE
BLT
BGT
BLE

UNSIGNED

BHIS (BCC)
BLO
BHI
BLOS (BCS)

A common pitfall is to use a signed branch (e.g., BGT) when comparing
two memory addresses. All goes well until the two addresses have
opposi te signs; that is, one of them goes across the 16kw (100000
octal) boundary. This type of coding error usually shows itself as a
result of re-linking at different addresses and/or a change in size of
the program.

GLOSSARY 20-Jan-83 Page G-1

GLOSSARY

A

Absolute (ABS) - A program section (psect) attribute. This attribute
causes the code produced by the assembler to be nonrelocatable. All
code is assigned fixed memory locations. The converse of absolute is
relocatable (REL) where the code can be relocated to some other
locations by the linker.

Absolute loader - The monitor for paper-tape-based systems.

AIDS

Alignment - The address boundary at which a program section is based.

Allocate a device - To reserve a particular device unit for exclusive
use. A user process can allocate a device only when that device is
not allocated by any other process.

Allocation - The number of bytes of memory contributed by a program
section to a particular module.

Alphanumeric character - An upper or lower case letter (A-Z, a-z), a
dollar sign ($), an underscore (), or a decimal digit (0-9).

APT-RD - An automated diagnostic control application used by DIGITAL
field service to provide contract customers with quick response and
effective on-site repair action.

Argument - An independent value within a command statement that
specifies where, or on what, the command will operate (e.g., address,
data).

ARRAY - An area of data storage in which all elemental parts are
adjacent, identical in size, and sequentially accessed.

ASCII - American Standard Code for Information Interchange.

ASH - A PDP-11 instruction, Arithmetic Shift. A member of the
Extended Instructions Set (EIS).

ASHC - A PDP-11 instruction, Arithmetic Shift Combined. A member of
the Extended Instructions Set (EIS).

Assembler - A program that translates source language code, whose
operations correspond directly to machine op codes, into object
language code.

GLOSSARY 20-Jan-83 Page G-2

Assembly - Creation of a program written in Assembly language, using
the MACRO-11 assembler program.

Assignment - To make one thing equivalent to another.

Autodelete - A possible effect of the file transfer process whereby a
file from the input medium replaces a file of the same name on the
output medium. In UPD2, only transfers initiated by a FILE command
can result in autodeletion.

Automated Product Test (APT) system - System which loads and monitors
one or more PDP-11 diagnostics into a PDP-11 computer.

Automated Computer Test (ACT) system - Used by DEC's manufacturing
areas in testing PDP-11 computers.

B

Base register - A general register used to contain the address of the
entry in a list, table, array, or other data structure.

Binary - Consisting of two things, e.g., binary numbers are a and 1.

Bit - The smallest piece of data, a a or 1.

Block - 1. The smallest addressable unit of data that the specified
device can transfer in an I/O operation (512 contiguous bytes for most
disk devices). 2. An arbitrary number of contiguous bytes used to
store logically related status, control, or other processing
information (i.e., process control block).

Boot (bootstrap) - A program that loads another (usually larger)
program into memory from a peripheral device.

Boot block - The first physical block on a medium (block zero). This
block contains the XXDP+ secondary bootstrap for the device.

Bootstrap - The procedure that starts a CPU, which consists of loading
and executing a very short program, the boostrap loader, whose only
function is to load and start a larger monitor program.

BR - Bus request

Branch - A transfer to another part of the program. A GOTO.

Breakpoint - In diagnostics, an address assigned through DRS. When
the PC equals the value of the breakpoint, control returns to DRS.

GLOSSARY 20-Jan-83 Page G-3

Buffer - A section of memory reserved for storing data, usually from a
file, as opposed to executable code. A temporary data storage area.

Byte - Eight bits of data, one half of a WORD, the smallest
addressable memory location.

C

Chain mode operation - The sequential excution of programs without
operator intervention. Only programs modifed to run in chain mode can
be chained.

Clean-up Code - The last section of code within a diagnostic program,
executed before the program is stopped, which brings all units into a
non-ambiguous inactive, error-free state.

Command file - A file containing command strings.

Command string - A line or a set of continued lines (normally
terminated by typing the carriage return key) containing a command)
and, optionally, information modifying the command. A complete
command string consists of a command; its qualifiers, if any; its
parameter (file specifications, for example), if any; and their
qualifiers, if any.

Condition codes - Four bits in the processor status word that indicate
the results of the previously executed instruction.

Console terminal - The video or hardcopy terminal attached to the
system via the DL interface at bus address 177560.

Control unit - Interface between drive units and the CPU.

CPU - Central processing unit (same as processor).

Cylinder - The tracks at the same radius on all recording surfaces of
a disk pack.

D

DEBUG - To find an remove errors from a program.

DEC/X11 - UNIBUS exerciser for the PDP-11 computer family which
provides a means of testing the expected reliability of a particular
system within a specified period of time.

GLOSSARY 20-Jan-83 Page G-4

Default - Assumed value supplied when a command qualifier does not
specifically override the normal command function; also, fields in a
file specification that the system fills in when the specification is
not complete.

Default disk - The system disk to which the system writes all files
that the operator creates, by default. The default is used whenever a
file specification in a command does not explicitly name a device.

Default hardware parameter table - A mock table of specified size and
format within the diagnostic program, created by the programmer, which
DRS can copy when building the hardware p-tables.

Delimiter - A character or symbol used to separate or limit items
within a command or data string. However, the delimiter is not a
member of the string.

Device - The general name for any physical terminus or link connected
to the processor that is capable of receiving, storing, or
transmitting data. Card readers, line printers, and terminals are
examples of record-oriented devices. Magnetic tape devices and disk
devices are examples of mass storage devices. Terminal line
interfaces and interprocessor links are examples of communications
devices.

Device driver - That software which has the function of controlling
the operation of a specific hardware component in a system. An RX01
driver, for example, is that software that accomplishes such tasks as
selecting a physical block, reading a block of information, etc., on
an RXO 1 disk.

Device fatal error - An error declared if the diagnostic program
detects so many hard errors on the device being tested that it is
pointless to continue testing the device or if there is something so
catastrophically wrong with the device that it cannot be tested at
all.

Device handler - see "device driver"

Device name - The field in a file specification that identifies the
device unit on which a file is stored. Device names also include the
mnemonics that identify an I/O peripheral device in a data transfer
request. A device name consists of a mnemonic followed by a
controller identification letter (if applicable), followed by a unit
number (if applicable).

Diagnostic - Any program which isolates a hardware fault to the
replacement level.

Diagnostic program header - The first part of the code of a diagnostic
program, consisting of a set of memory locations used for
communication between the program and DRS.

GLOSSARY 20-Jan-83 Page G-5

Diagnostic program pass - Execution of all of the selected tests once
on all of the selected units.

Diagnostic Runtime Services (DRS) - A program that is loaded in memory
to provide a framework for control and execution of diagnostic
programs. It provides nondiagnostic services to diagnostic programs.

Direct I/O - A mode of access to peripheral devices in which the
program addresses the device registers directly, without relying on
support from the operating system drivers.

DMA - Direct memory access

Drive - The electro-mechanical unit of a mass storage device system on
which a recording medium (disk cartridge, disk pack, or magnetic tape
reel) is mounted.

Driver - The part of XXDP+ that handles physical I/O to a device.

Dropping - Deselecting a unit.

Dump - the process whereby an image of the contents of memory is
placed on a storage medium.

E

ECO - Engineering Change Order.

Edit - To modify text information in a file.

Editor - A utility program used to modify text files.

EIS - Extended Instruction Set.

Entry mask - A word whose bits represent the registers to be saved or
restored on a subroutine or procedure call using the call and return
instructions and which includes trap enable bits.

Event - A change in process status or an indication of the occurrence
of some activity that concerns an individual process or cooperating
processes. An incident reported to the scheduler that affects a
process' ability to execute. Events can be synchronous with the
process' execution or they can be asynchronous.

Event flag - A bit in an event flag cluster that can be set or cleared
to indicate the occurrence of the.event associated with that flag.
Event flags are used to synchronize activities in a process or among
many processes.

GLOSSARY 20-Jan-83 Page G-6

Executable image - An image that is capable of being run in a process.
When run, an executable image is read from a file for execution in a
process.

Executive - The generic name for the collection of procedures included
in the operating system software that provides the basic control and
monitor functions of the operating system.

Exerciser - A diagnostic program which runs all of the I/O units at
once to test unit interactivity and stamina, along with data integrity
causing strenuous and prolonged activity.

F

Field replaceable unit (FRU) - A subassembly or a module or an
integrated circuit that may be replaced in the field.

File - A logically related collection of data treated as a physical
entity that occupies one or more blocks on a volume such as disk or
magnetic tape. A file can be referenced by a name assigned by the
user. A file normally consists of one or more logical records.

File specification - A unique name for a file on a mass storage
medium.

G

GPR - General purpose register

Global symbol - A symbol defined in a module that is potentially
available for reference by another module. The linker resolves
(matches references with definitions) global symbols. Contrast with
local symbol.

H

Hard error - One that cannot be recovered from which is so serious
that the process being performed cannot continue, e.g., a disk seek
error.

Hardware parameter tables (P-tables) - A set of tables created by DRS,
at program runtime, via operator interaction, containing specific
drive-related information for each unit which is to be tested on the
system, such as vector addresses, device priority, and baud rate.

GLOSSARY 20-Jan-83 Page G-7

Home block - A block in the index file that contains the volume
identification, such as volume label and protection.

HW - Hardware

I

I/O - Input/output

Image - An image consists of procedures and data that have been bound
together by the linker. There are three types of images: executable,
sharable, and system.

Index file - The file on a FILES-11 volume that contains the access
information for all files on the volume and enables the operating
system to identify and access the volume.

Init code - Initialization code - The section of the DRS diagnostic
program, executed prior to every subpass of the diagnostic program,
which retrieves the information contained in the hardware p-table for
the unit in question and uses that information to set up the program
parameters so the tests will reference that unit.

Interrupt - An event (other than an exception or branch, jump, case,
or call instruction) that changes the normal flow of instruction
execution. Interrupts are generally external to the process executing
when the interrupt occurs.

Interrupt handler - A software routine that services an interrupt.

Interrupt priority level (IPL) - The interrupt level at which the
processor executes when an interrupt is generated. There are 8
possible interrupt priority levels on the UNIBUS. IPL 0 is lowest, 7
highest. The levels arbitrate contention for processor service. The
QBUS supports only one level. The Q22 bus 'supports levels 0,5,6, and
7. For example, a device cannot interrupt the processor if the
processor is currently executing at an interrupt priority level
greater than the interrupt priority level of the device's interrupt
service routine.

Interrupt stack - The system-wide stack used when executing in an
interrupt service context. At any time, the processor is either in a
process context executing in user, supervisor, executive, or kernel
mode; or in system-wide interrupt service context operating with
kernel privileges, as indicated by the interrupt stack and current
mode bits in the PSW. The interrupt stack is not context-switched.

Iterate - Repeatedly execute until a counter exceeds a limit.

GLOSSARY 20-Jan-83 Page G-8

J

Jump - Continue execution at the specified address. A GOTG.

K

Keyword - A word used in a language for understandability. These
words are not reserved, but are required by the macro.

L

Library file - A direct access file containing one or more modules of
the same module type.

Linked commands - A group of independent commands connected together
(linked) so as to form a single executable list of commands. Once
initiated, the entire linked command list may be executed without
further operator intervention.

Linker - A program that reads one or more object modules created by
language processors and produces an executable image file, a sharable
image file, or a system image file.

Linking - The resolution of external references between object modules
used to create an image; the acquisition of referenced library
routines, service entry points, and data for the image; and the
assignment of virtual addresses to components of an image.

Literal - An operand which is used im'mediately, without being
translated to some other value. An operand which specifies itself.

Literal argument - An independent value within a command statement
that specifies itself.

Load - The process whereby the contents of a file containing a program
image are placed in memory.

Load unit protection - Protection of the load unit medium, if the
device being tested is also the load device for the system software,
from possible destruction by the program.

Local symbol - A symbol that is meaningful only to the module that
defines it. Symbols not identified to a language processor as global
symbols are considered to be local symbols. A language processor
resolves (matches references with definitions) local symbols. They
are known to the linker and cannot be made available to another object
module.

GLOSSARY 20-Jan-83 Page G-9

Logical block - A block on a mass storage device identified by using
the volume-relative address rather than the physical (device-oriented)
address or the virtual (file-relative) address. The blocks that
comprise the volume are labeled sequentially starting with logical
block O.

Logical unit number (LUN) - The numerical designation of a device
under test. LUNs are assigned in the order in which units are entered
by the operator.

Loopability - The ability of the code contained in a test structure to
be continually excuted without failing.

LSI - Large-scale integration

M

Macro - A word or symbol which represents a definition of some part of
a program. Parameters may modify the code that is created by the
macro.

MACRO-11 - The PDP-11 program which creates an executable program from
a source program that was written in assembly language.

Maintenance programs - Any program specifically designed to be used
only during preventive maintenance of the hardware.

Manual intervention - Operator intervention, during the execution of a
diagnostic program, which can be accomplished via the console terminal
or by a physical adjustment on the UUT, such as adding a cable or
changing a switch position.

Medium - Physical storage such as a disk or magtape. In this manual,
the term "medium" is equivalent to "XXDP+ medium".

Memory management - The system functions that include the hardware's
page mapping and protection.

MINe

Module - A part of a program assembled as a unit. Modular programming
allows the development of large programs in which separate parts share
data and routines.

MOS - Metal-oxide semiconductor.

GLOSSARY 20-Jan-83 Page G-10

Mount a volume - To logically associate a volume with the physical
unit on which it is loaded (an activity accomplished by system
software at the request of an operator). Or, to load or place a
magnetic tape or disk pack on a drive and place the drive on-line (an
activity accomplished by a system operator).

MTTD - Mean-time-to-detect

MTTR - Mean-time-to-repair

N

Network service protocol (NSP) - The logical link control layer of
DEeNET architecture.

NPR - Non-processor-request

o

Object module - The binary output of a language processor such as the
assembler or a compiler, which is used as input to the linker.

ODT-11 - On-line Debugging Technique for PDP-11 Computers.

Operand - A value (address or data) that is operated on by, or with,
an instruction.

P

Parameter - A parameter is the object of a command. It can be a file
specification, a keyword option, or a symbol value passed to a command
procedure. In diagnostics, parameters are usually operator-supplied
answers to questions asked by a program concerning devices to be
tested.

Parameter switch - A command qualifier. In diagnostics, it is
preceded by a slash (/).

Parser - A procedure that breaks down on input string into its
component parts.

GLOSSARY 20-Jan-83 Page G-11

Pass - A unit of diagnostic operation. A DRS-type diagnostic pass is
defined to be execution of all specified tests on all active units.

Patch - A temporary remedy for a problem in a program that is
accomplished by altering the program image stored on the XXDP+ medium.
Patch area - A section of free memory which can be used for program
patching when necessary.

PC - Program counter (register 7)

Physical address - The address used by hardware to identify a location
in physical memory. A physical address consists of the 16, 18 or
22-bit memory address (depending on memory type).

Physical block - A group of data consisting of 256 (decimal) words.
This is the standard size of data transmission to and from the XXDP+
media.

Physical location - An absolute memory reference (see "virtual
location").

POP - A keyword meaning "remove from the stack". A macro used to
remove data from the stack.

Position independent code (PIC) - A program section attribute. The
contents of the psect do not depend on a specific location in virtual
memor y.

Primary bootstrap - Code, usually stored in a ROM, which loads the
"boot block" (block 0) from a medium into the first 256 (decimal)
words of memory and then transfers control to memory location O.

Priority - The rank assigned to an activity that determines its level
of service. For example, when several jobs contend for system
resources, the job with the highest priority receives service first.

PRISM

Program buffer - A section of memory used by UPD2 for loading program
images.

Prompt - A program's typed-out response to and request for operator
action.

PSW - Processor status word. A register within the PDP-11 processor
that contains the current condition of the processor and results of
the last operation done (condition-code bits).

PUSH - A keyword meaning put onto the stack. A macro used to put data
onto the stack.

GLOSSARY 20-Jan-83 Page G-12

Q

Qualifier - A portion of a command string that modifies a command verb
or command parameter by selecting one of several options. A
qualifier, if present, follows the command verb or parameter to which
it applies and is in the format: /qualifier:option. For example, in
the command string "PRINT <filename> /COPIES:3", the COPIES qualifier
indicates that the user wants three copies of a given file printed.

Queue - A list of commands or jobs waiting to be processed.

Quick-verify (QV) application - Way of running a diagnostic which
verifies that all major components are present and functioning, tests
all the logic at least once and indicates errors, indicates that no
"hard" errors exist or that they no longer exist after a repair, and
isolates the failing component in the shortest possible time.

R

Radix - The base of the number system currently in use.

Record - A collection of adjacent items of data treated as a unit. A
logical record can be of any length whose Significance is determined
by the programmer. A physical record is a device-dependent collection
of contiguous bytes such as a block on a disk, or a collection of
bytes sent to or received from a record-oriented device.

Reserved word - A word that is recognized as a part of the language or
as a directive used by the program. Can not be used as a variable
name or tag name.

ROM - Read-only-memory.

Runtime environment - System level software that is responsible for
loading the diagnostic program an executing it: XXDP+, ACT, SLIDE,
APT, or paper tape.

S

Scope loop - A loop, containing the code which caused the error to be
detected, executed by the diagnostic program providing electrical
signals, which can easily be examined with an oscilloscope, on the
hardware unit being tested.

GLOSSARY 20-Jan-83 Page G-13

Script file - A line-oriented ASCII file that contains a list of
commands.

Secondary bootstrap - Code that resides in the boot block (block 0) of
a medium. This code is loaded and started by the primary bootstrap
and in turn loads an starts the XXDP+ monitor.

Section - A group of tests in a diagnostic program that may be
selected by the operator.

Sector - A portion of a track on the surface of a disk.

Segment - Routines, which can be nested down to 8 levels in depth,
contained within a test and delimited by the BGNSEG, ENDSEG macros. A
segment causes some hardware activity to occur, checks for a resulting
error condition, and reports an error. should it occur.

Sequential diagnostic program - A diagnostic program which tests all
the units attached to a device, one at a time in sequence.

Soft error - An error that potentially can be recovered from, i.e. an
error which may go away if the process which detected the error is
repeated, e.g., the occurrence of a write-check error when writing
data to a medium.

Software parameter table - A table used by the programmer to store all
of the diagnostic program's runtime software variables, whose values
msut be obtained from the operator before test execution commences.

SP - Stack pointer (register 6)

Spooling - Output spooling: The method by which output to a lowspeed
peripheral device (such as a line printer) is placed into queues
maintained on a high-speed device (such as disk) to await transmission
to the low-speed device. Input spooling: The method by which input
from a low-speed peripheral (such as the card reader) is placed into
queues maintained on a high-speed device (such as disk) to await
transmission to a job processing that input.

Stack - An area of memory set aside for temporary storage, or for
procedure and interrupt service linkages. A stack uses the last-in,
first-out concept. As items are added to (pushed on) the stack, the
stack pointer decrements. As items are retrieved from (popped off)
the stack, the stack pointer increments.

Stack pointer - General register 6 (R6). SP contains the address of
the top (lowest address) of the processor-defined stack.

Standalone mode - A diagnostic program environment in which the
program and DRS run without the operating system. The operator must
use the console terminal when running diagnostics in the standalone
mode, and no other users have access to the system.

GLOSSARY 20-Jan-83 Page G-14

Statistical report - An optional report containing a summary of the
activity that occurred during the execution of a diagnostic program;
e.g., the total number of disk reads and writes for each unit,
enumeration of errors that occurred, etc.

Sub-pass - Execution of all of the selected tests once on one of the
selected units.

Subroutine - A section of code that is executed via a Call to that
subroutine. The subroutine accepts input parameters and sends back
output parameters as a result of the code within the routine.

Sub-system - Logic controller along with its associated device or
devices (e.g, disk controller and disk drives).

Subtest ~ Routines, which cannot be nested, contained within a test
and delimited by the BGNSUB and ENDSUB macros. Code which tests the
smallest logical element of the hardware and can produce one, and only
one, type of error.

SW - Software.

Switch - A modifier for a command.

Switch register (SWR) - A set of switches that a program looks at in
order to determine which paths of execution it should take.

Symbolic argument - An argument within a command that refers to
another value.

Syntax - the rules governing a command language structure. The way in
which command symbols are ordered to form meaningful statements.

System - Collection of sub-systems that are so related as to form a
logical whole.

System image - The image that is read into memory from secondary
storage when the system is started up.

System medium - The medium on the device from which the XXDP+ system
was booted.

T

Test - A unit of a diagnostic program that checks a specific function
or portion of the hardware.

text - A collection of ASCII formatted data consisting of printing
characters, tabs, carriage returns, and form feeds.

GLOSSARY 20-Jan-83 Page G-15

Time stamp - A statement of the time of day at which a specific event
occurred.

Top - The most recent entry onto the stack.

Track - A collection of blocks at a single radius on one recording
surface of a disk.

Trap - An exception condition that occurs at the end of the
instruction that caused the exception. The PC saved on the stack is
the address of the next instruction that would normally have been
executed. All software can enable and disable some of the trap
conditions with a single instruction. A software interrupt.

Trap handler - A software routine that services a trap.

TSP - Test-software-package utility (APT).

TST - Time-sharing terminal (APT).

U

Unattended mode (UAM) - The running of a diagnostic program without
the presence of an operator, selected when the operator sets the UAM
flag.

Unibus exercising - Testing of several of the same or combinations of
different units simultaneously which emphasizes detection over
isolation.

Unit (or device) - A part of a sub-system (e.g., tape controller; tape
drive).

Unit record device - A device such as a card reader or line printer.

Unit test - Test approach which tests a single unit in order to
isolate the malfunction.

UUT (unit under test) - The device or portion of the computer hardware
being tested by a diagnostic program.

Utilities - Tools used to aid in maintenance tasks which are directly
aimed at maintaining the programs used for problem detection and
isolation (e.g., XXDP+ disc to tape copy program).

GLOSSARY 20-Jan-83 Page G-16

v

Virtual block number - A number used to identify a block on a mass
storage device. The number is a file-relative address rather than a
logical (volume-oriented) or physical (device-oriented) address. The
first block in a file is always virtual block number one.

Virtual location - A relative memory reference. A program image that
has been loaded into the program buffer by UPD2 uses virtual
locations; that is, program location 0 is not physical memory location
O. It is the first physical memory location in the program buffer.
The XXDP+ monitor does absolute loads and, in this case, program
location 0 is not virtual, but is actually memory location o.

x

XXDP+ - XX Diagnostic Package; "XX" is replaced by a two-letter device
mnemonic.

XXDP+ medium - Physical storage, such as a disk pack, magtape,
cassette, etc., that has been formatted for XXDP+ use.

INDEX

A

Abort Test Calls
Abstract, Program
Access to Flags
ACT

Auto Accept Mode
Dump Mode
Station Test Mode

ADD Command
Add Units Coding
Add ing Units
APT Mailbox Fields
Argument Passing
Arguments, Report Call

20-Jan-83

INDEX

Assignment and Relational Operators
Assumptions, Program
Auto Dro p (ADR) Flag
Autodrop section
Automated

Applications
Computer Test (ACT)
Program Test (APT)

- Remote Diagnostic (APT-RD)
Autotest

B

BASIC
Basic

Diagnostic Strategy

CPU Cluster Tests
Error Information
Functional Testing
Print Message call

Batc h Control
Chaining
Functions
Handler
Of Diagnostics
Of Utilities

Begin Message Call
Be lIOn Err 0 r (B 0 E) F 1 a g
BLISS

Page

7-15
10-5,6

7-40

8-6
8-6
8-7

6-19
7-8

7-24
8-2

11-7
7-17
9-12
10-7
6-26
7-40

1-4
1-5,7-2,8-6
1-4,7-2,8-1

1-5
1-4

3-11

9-1,7

3-3
7-16ff.

4-4
7-18ff.

6-8
6-9
6-5

6-8 to 11
6-10
7-19
6-26

9-1

Page I-1

INDEX 20-Jan-83

Block
Structure, PDL 1
Structured Programming

Boot Command
Bottom Up Process
Brackets
Branching
Building XXDP+
Bus

C

Problems
Reset
Type Check

Central Computer Memory Usage
Chain

Command
Making

Considerations
Mode

Operation
Chaining (Batch Control)
CHSAA, CHSAB, CHSAC
Clean-Up Code (Coding)
CLEAR Command
Clock Macro
Coding Conventions, General
Combining Switches
Comments
Common Ex its
Communications Diagnostic Strategy
Communications Turn-Around System
Compatibility Testing
Computer Design Engineers
Conditional Branches
Conditionals
Configuration Compatibility Testing
Console Terminal Driver
Consultation Phase
CONTINUE Command
Continue On Error
Control

Software, Diagnostic
Transfer

Count Argument
CPU and CPU Option Diagnostic Strategy
CPU Cluster Tests

Basic
Extended

9-2,3
9-3

6-29
3-1 ,9

9-13
7-22

6-8

3-7
7-36

?

8-9

6-12
8-12
8-14
8-7

8-11
6-8
7-2

7-8,32
6-29
7-23
11-1
6-23

9-9
?

3-8
3-10
5-8
1-1

11-11
6-9
5-7
6-5
5-1

6-17
4-2

2-5
11-7
7-29

3-3

3-3
3-3

Page 1-2

INDEX 20-Jan-83

D

Data, Global
Default Hardware P-Table
Definition Macros
Descr ipt i ve Tex t
Des ign Rev iews
Dev ice

Diagnostics
Drivers
Fatal Error
Registers

Development Process
Diagnostic

Applications
Control Software
Development Process
Functionality

Test Mode

7-7
7-6,25

8-25
7-10

5-7

3-7
6-2

7-16
11-4

5-1

1-3
2-5
5-1

Troubleshooting and Repair Support
Hooks

2-4
2-4
3-6

Macro Library, SYSMAC.SML
Metrics, Program
Microcode
Prerequisites
Progr am Si ze
Runtime Services (DRS)
Sample
Strategy
Users

Direct Support Macros
Directory Command
Dispatch Table
Display

Command
Text Command

Doc ument File
Doc umentation

Aids
Cover Sheet
Guidelines

Drop Command
Drop Units Coding
Dro pping Un its
DRS

Commands
Compatible Diagnostic programs
Flags
Program

Basics
Structure

Switches

8-24
1-2,2-1

3-4
10-7
2-3
6-1

7-41
3-1
1-1

8-20
6-13

7-6
7-29
6-19
6-30
10-2
2-3

7-37
10-3
10-2
6-18

7-8
7-24

6-15
7-1

6-22,23,24

7-1
7-6

6-21

Page 1-3

INDEX

DUMP Command

E

Early Exit
Edit Mode Commands
Enable Command
End

Message Call
Users

Engineering

20-Jan-83

Breadboard and Prototype Support
Change Orders (ECOs)

EOP Switch

Error
Equates, Global

Halts
Information
Logging
Loop

Control
Detection

Number Parameter
Report

Calls
Classes
Reports, Global
Reporting

Tables
Escape Test
Event Flags
Execution Times
Exerciser Emulators
Exit

Command
Routine
Test

Ex i ting
Ex pI ic it CKLOOP
Extended

CPU Cluster Tests
Error Information
Print Message Call

6-29

9-13
6-30
6-14

7-19
1- 3

5-4
1-1

6-22
7-7

10-13
10-10

4-3

7-13
7-15
7-17

7-17
7-16

7-7
7-16,10-10

7-18
7-15
7-23

10-10
3-10

6-20, 29
7-16
7-16
11-8
7-14

3-3
7-19
7-19

Page 1-4

INDEX

F

Fault

Field

Detection
Coverage

Isolation

20-Jan-83

Replaceable Unit (FRU)
Service engineers

File
Control Serv ices
Extensions
Manipulation

Commands
Modification Commands
Naming Conventions

Fill Command
Final Diagnostic Implementation
Firmware
First Customer Shipment
Flag Access
Flags Command
Flags, DRS
Flow, Program
Forbidden Instruction Usage
Formatting Standards
Functional Specification, Diagnostic

G

General
Coding Conventions
Purpose Registers

Get Manual Parameters
Global

Data
Error Reports
Equates
Subroutines
Text

Go To Tag
Go/ No Go Test

1-1
2-1

2-2,3-6

1-2
1- 1 ,2

7-39
6-4
6-2

6-28
6-28
6-3

6-14
5-4
3-4

?
7-40
6-19

6-23,24
11-8

11-10
11-8
5-2

11-1
11-4
7-33

7-7
7-7
7-7
7-7
1-1
6-9
4-5

Page 1-5

INDEX

H

Hal t On Error
Flag (HOE)

Hard
Core

20-Jan-83

Verification Tests
Errors

Hardcoded
P-Table(s)

Hardware
Parameter Coding
Parameterization
p-table Questions
Registers
Tests
Traps

Header Call
Header, Program
Help Command
Help Commands, SLIDE
HIerarchy, Module
HIPO Diagrams

I

Imperatives, PDL1
Implementation Phase
Impl ied CKLOOP
In-Line Code Macros
Indirect Support Macros
Inhibit

Basic Errors (IBE) Flag
Dropping of Units (IDR) Flag
Error Reports (IER)
Extended Errors (IXE) Flag
Progress Reports
Statistical Reports (ISR) Flag

Initialization
Code (INIT)
Coding

Interactive Program Execution
Internal Block Structure
Interprocessor Test Program (ITEP)
Interrupt Handling
Is Manual Intervention Allowed?

4-2
6-24

3-3
3-3

7-16

7-12

7-9
7-5

7-25
11-4
7-9

8-28
7-10

7-6
6-15
8-18

9-4
5-3

9-11
5-4

7-13
8-26
8-22

6-25
6-26

4-3
6-25

4-3
6-26
7-31
7-31

7-8
?

9-11
3-9

7-35
7-33

Page 1-6

INDEX 20-Jan-83

K

Keywords

L

Last Address Generation (LASTAD)
Left Justified Graphics
Line Format
Line Printer, Issuing Commands To
LIST Command
Load

Command
Device Protection

Loading And Starting Procedures
Local Operator Application
Loop On

M

Macro

Error
Flag (LOE)
Switch

Test (LOT) Flag

Package Initialization
Summary

Macros, DRS Program Structure
Mailbox
Manual Intervention, Is it Allowed?
Manufacturing

Diagnostic Use
Installation
Technicians

Memory
Allocation
Layout, DRS Program

Message
Address Parameter
Pointer Parameter
Printout Format

Metrics, Diagnostic
Microdiagnostics
Module

Delimiters
Hierarchy
Screen Diagnostics
Structure

9-13

7-11
7-37
11-3
8-17
6-29

6-11 , 29
7-39
10-9

1-3

4-3,7-13
6-25

?
6-27

7-13
8-20

7-9
8-1

7-33

1-2
5-7
1-1

7-36
7-1

7-17
7-17
7-18

1-2,2-1
3-4

7 -11
9-4
1-2
9-5

Page 1-7

INDEX

Monitor
Commands
Serv ices Handler

N

Naming Standards
Network Verification
Nomenclature, XXDP+

20-Jan-83

Non-DRS Automated Environments

o

Obtaining a Directory
One Error Report Per Sub-test
Operating

Environments
Instructions
Modes And Capabilities

Operational Functionality
Operator

Commands, XXDP+
Interface Handler
Interrupt Enable (BREAK)

Optional Sections Selection (POINTER)
Options, Program
Other Support Macros
Over The Line Tests

P

P-Table
Hard ware
Software

Parameter Coding Calls
Pass Swi tch
Passes And Sub-passes
PATCH Command Summary
PATCH Utility
Patching
PDL1

Example
Format
Guidelines

6-11
6-5

11-4
3-9
6-2
8-1

8-10
4-3

7-2
10-8

4-1
2-3

7-2
6-5

7-35
7-9

10-10
8-24

3-9

7-6
7-7

7-26
6-22

7-5
6-29

6-6
8-18

9-16
9-9
9-8

Page 1-8

INDEX

Preformance
Freeback
Reports

20-Jan-83

Peripheral Diagnostic Strategy
Physical Fault Insertion
Plannig Phase, Project
POINTER
Print

Command (s)
Number Of Test (PNT) Flag

Printer (PRI) Flag
Printing

Commands
Messages (BGNMSG,ENDMSG,PRINTx)

Proceed Command
Processor Priority
Project

Design Specification
Goals
Plan, Diagnostic

Program
Abstract
Assumptions
Design Language 1 (PDL 1)
Documentation, Diagnostic
Execut ion Modes
Flow
Functional Description
Header
Listing
Local Labels
Modules
Options
Preface
Priority
Self Identification
Size, Diagnostic
Structure

DRS
Macros, DRS

Programming
Considerations
Languages

Progress Reports

5-7
10-13

3-5
5-8
5-2
7-9

6-9,20
6-25
6-25

6-28
7-18
6-17
11-5

5-3
5-3
5-2

10-6
10-7
9-7

10-1
4-2

11-8
10-15

7-6
10-14

11-5
11-5

10-10
11-6
7-38

4-1
2-3

7-6
7-9

9-2
9-1

10-13

Page 1-9

INDEX

Q

Quality Assurance (QA)
Checklist

20-Jan-83

And Release Phase, Diagnostic
Quick Verify (QV) Mode
Quiet Command
Quit Command

R

Read Only Device Driver
Recommended Coding Practice
Register Conventions
Registers
Reliability Mode
Report

Call Arguments
Coding, Statistical
Macro

Reporting, Statistical
Request Table
Requirements, Diagnostic
Restart Command (DRS)
Returning to Monitor Commands
Right Justified Graphics
RUN Command
Runtime Monitor Sections

S

Sample
Diagnostic
Program Abstract

Segment Delimiters
Selective Blocks, PDL1
Sequential Blocks, PDL1
Serial-line Loader In Demand Everywhere

Service Macros, DRS
Setup

Command Summar y
Macro
Utility

Signal On Error
Single-Word Instructions
Size, Diagnostic Program

5-5
5-5
4-5
6-9
6-9

6-5
11-2
11-7
11-4
4-5

7-17
7-8

8-21
7-21
7-31
5-3

6-16
6-28
7-38
6-12

6-5

7-41
10-6
7-12
9-11
9-10

(SLIDE)
1-6,7-2

7-12

6-29
8-22

6-6
4-4

11-11
2-3

Page 1-10

INDEX

SLIDE
Basic software
Help Commands

Soft Errors
Software

P-Table
Questions

Parameter Coding
Parameterization

Special

Start

Environments
Operating Nodes

Command
DRS

Statistical
Report Coding
Reporting

Strategy, Diagnostic
Structured

Design
Programming

Subroutine Description
Subroutines, Global
Subtest(s)

Delimiters
Summaries

Summary, Macro
Switches, DRS

20-Jan-83

1-6,7-2,8-7
8-8

8-18
7-16

7-7
7-26

7-9
7-5

10-9
4-5

6-12
6-16

7-8
7-21

3-1

9-2
9-1

10-18
7-7

Symbol Table and Cross Reference Listing
SYSMAC,SML, The Diagnostic Macro Library
System

7 -11
10-14
8-20

6-21,7-4
10-15
8-24

Core
Defini tion
Diagnostic

Goals
Implementation

Exerciser Diagnostic Strategy
Fatal Error
Per formance
Requirements
Test

3-1

3-2
3-2
3-7

7-16
3-10
10-7

1-2

Page 1-11

INDEX 20-Jan-83

T

Terminal, Issuing Commands To
Test

Algorithms
Command
Delimiters
Description
Dispatch Table
Identification Information
Mode
Selection Capability
Station Memory Usage

Test Swi tch
Text, Global
Top Down Process
Transfer Calls (XFER)
Troubleshooting

U

And Repair Mode
Support

Unattended Mode (UAM) Flag
Underline Character
Unit

Number Reporting
Selection
Under Test (UUT)

Units Switch
UPD1 command Summary
Update One (UPD1) Utility
Update Two (UPD2) utility
Updating
Uisng SLIDE
Utility

w

commands, XXDP+
Programs

WAIT Command
Watchdog Timer

Commands
Use

Wraparounds

8-17

2-5
6-15
7 -11

10-17
7-13
7-19

2-4
4-1
8-9

6-21
7-7
3-1

7-29

2-4
2-2,3

6-26
9-12

7-18
7-24

1-5; 2-3; 8-1
6-22
6-29

6-6
6-6

8-18
8-10

6-27
6-2

6-9

8-15
8-15

3-6

Page 1-12

INDEX

X

XTECO (Utility)
Command Summary

XXDP+
Command s
De vic e Dr i v e r s
Environments
Monitor
Utility Commands

XXDP+, Building

Z

ZFLAGS Command

20-Jan-83

6-3,4,7
6-30

6-11
6-7
7-2

6-1 ,4
6-27
6-8

5-21

*** END OF PDP-11 DIAGNOSTIC DESIGN GUIDE. ***

Page 1-13

