July 1978

This document describes the use of the Linker on the TRAX system.

TRAX
Linker Reference Manual

Order No. AA-D342A-TC

OPERATING SYSTEM AND VERSIONS: TRAX Version 1.0

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipm:~t Corporation, Maynard, Massachusetts 01754

digital equipment corporation - maynard. massachusetts

First Printing, August 1978

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright C) 1978 by Digital Equipment Corporation

The postage-prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre-
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS

DEC DECtape OMNIBUS
PDP DIBOL 0s/8

DECUS EDUSYSTEM PHA

UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-11
DECCOMM DECSYSTEM=-20 TMS-11

ASSIST-11 RTS-8 ITPS-10

. o
W N

o s o « e
AU W -

.
[

« s e
.

¢« o o o o o
e o o e e
Y
N =

=0 0N SISO U B W

— o

« o o o o
" e
N =

s e s o o o

WWWWWwWwwwwwwwwwbwwwwwwwwww

.

N R DD RO RN PO N N = b bt et bt bt e b o e e o b e

DWW wN -

TABLE OF CONTENTS

INTRODUCTICK

MANUAL CBJECTIVES AND READER ASSUMPTIONS
STRUCTURE OF THE DOCUMENT

ASSOCIATED DOCUMENTS

INTRCDUCTION TC THE LINKER

RMS FILE SPECIFICATION INFORMATION

PRCGRAM DEVELCPHMENT AND THE LINK COMMAND
AN CVERVIEW OF THE PROGRAM DEVELGCPMENT PROCESS
Creating Source Language Statement Files
Compiling the COBOL Programs
Linking the Task
Running Your Program
TBE TRAX LINKER
LINK Command Formats
Command Qualifiers
File Specifications
GPTIONS
Multiple Line Input
Indirect Command File Facility
Commants

COMMAND AND FILE CUALIFIERS
CCMMAND QUALIFIERS
The BASIC Command Cualifier
The CROSS-REFERENCE Command Qualifier
The DEBUG Command Qualifier
The DUMP Command Qualifier
The FULL-SEARCH Command Qualifier
The MAP Command Qualifier
The OPTICNS Command Cualifier
Interactive Format
Command File Format
The OVERLAY Command Gualifier
The SEQUENTIAL Command Qualifier
The SYMBOLS Command CQualifier
The TASK Command Cualifier
INPUT F1LE QUALIFIERS
The CCNCATENATED Input File Qualifier
The DEFAULT LIBRARY Input File Qualifier
The LIBRARY Input File Qualifier
Resolve All Clobal Symbols
Include Selected Library Modules
The MAP Input File Gualifier
The SELECT SYMBCLS Input File Qualifier

COMMAND OPTIOKS
ALLCCATION OPTIOKRS
EXI'TSK (External Task Memory)
STCRAGE~-SHARING CPTICKS
COMMCN (System-Owned Common Rlock)
LIER (System-Owned EResident Library)

iii

el
o'
Q
1)

[e
| I T I B |

| [T N Y N Y TN N Y A N AN AN T A A N A I

W@WoONNNNNdOuUT S DWW WWND - SN UTES S DWW WN N WNN

WWWWWWWWWwWWwwwwwwWwWwnwwwww NNONNDNONDNNNDNNDODDDNND N

L
I
W N =

CHAPTER

CHAPTER

3 DEVICE SPECIFICATION OPTIONS

3.1 UNITS (Logical Unit Usage)

3.2 ASG (Device Assignment)

4 STORAGE-ALTERING OPTIONS

4.1 ABSPAT (Absolute Patch)

4,2 GBLDEF (Global Symbol Definition)

OVERLAY CAPABILITY
OVERLAY LCESCRIPTION
1 Cisk-Resident Overlay Structures
2 Overlay Tree
2.1 Loading Mechanism
2.2 Resolution of Global Symbols in a
Multi-segment Task
5.1.2.3 Resolution of CGlobal Symbols from the
Default Library
5.1.2.4 Resolution of P-sections in a
Multi-segment Task

5.1.3 Cverlay Descriptor Language (ODL)
5.1.3.1 .ROCT and .END Directives

5.1.3.2 .FCTR Cirective

5.1.3.3 .NAME Cirective

5.1.3.4 .PSECT Directive

5.1.3.5 Indirect Files

5.1.4 Multiple-Tree Structures

5.1.4.1 Defining a Multiple-Tree Structure
5.1.4.2 Multiple-Tree Example

5.1.5 Cverlay Core Image

5.1.6 Overlaying Programs Written in a

Higher Level Language
Defining the CDL File
Building tha Task
SUMMARY OF THE OVERLAY DESCRIPTOR LANGUAGE
OVERLAYING BASIC-PLUS-2 PROGRAMS
Overlays
USING OVERLAYS WITH TRAX COBCL
Standard CDL File
ODL File Eead=sr
OLL File Body
OCL Generated for Overlays Containing
Cnly Cne PSECT
5.4.5 CDL Generated for Overlays Containing
More Than Cne PSECT

* e
0 3

IS N N N SR VSIS I S I)
.
—

U un

DN

5.4.6 Merging Standard ODL Files
5.4.7 Including Non-CCBOL Programs in a Task
5.4.8 Creating a Stendard COBCL ODL File
5.4.9 kearranging & Compiler-genarated
CDL File
5.4.198 Modifying the Compiler-generated
OCL File
(3 LCADING MECHANISES
6.1 AUTOLOAD
6.1.1 Autoload Indicator
6.1.2 Path~Loading
6.1.3 Autoload Vectors
6.1.4 Autoloadable Lata Segments
6.2 GLCEAL CROSS-REFERENCE OF AN CVERLAID TASK

iv

BB DD D
[LI |

I
> W U bW Ww

(SRS RO RS,)
f

APPENDIX

APPENDIX

[

.
B W NN
* . .

N ==

APPENDIX

[T AL U O A S O
WBWR U B WN B W

[esBesBvs Jvr RN G N IR I NS IO S Y

MEMORY DUMPS

PCST-MORTEM DUMPS

SNAPSHOT DUMP
Format of the SNPBKS Macro
Format of the SNAPS$ Macro
Example of a Snapshot Dump

ERROR MESSAGES

MEMORY ALLCCATION

TASK MEMORY STRUCTURE

TASK IMAGE MEMORY
P-Sections

TASK IMAGE FILE

MEMORY ALLCCATION FILE
Contents of the Memory Allocation File
Control of Memory Allocation File
Contents and Format

RESERVE SYMBCLS
FIGURES

Overlay Structure

Overlay Path

Merged ODL File Listing

Modified ODL File

Sample Cverlaid Cross-Reference Listing
Sample Post-Mortem Dump (Truncated)

Format of Snapshot Dump Control Block

Sample Program that Calls for Snapshot Dumps
Sample Snapshot Dump (Words Octal and RADS5Y)
Sample Snapshot Dump (Bytes Octal and ASCII)
Task Memory Structure

Memory Allocation File for IMG1l.7TSK

Cross Referesnce Listing for MPl.MAP

Memory Allocation for Sample Program

TABLES

Link Command Qualifier
Input File CQualifiers
TRAX Link Command Cptions
P-section Attributes

mtDUJ?t907m
UT UL NN bt

7
-
N

Cc-1

L | I T O I |
- S

UJU‘JUJUJTI\I\I\I\IO\
= 0O O = b 1O N]
w

CHAPTER 1

INTRODUCTION

1.1 MANUAL OBJECTIVES AND READER ASSUMPTIONS

This manual is a tutorial, intended to 1introduce the user to the
concepts and capabilities of the TRAX Linker.

Examples are used to introduce and describe features of the Linker.
These examples proceed from the simplest case to the most complex.

The user should be familiar with the basic concepts of the TRAX system
described in the Introduction to TRAX, and with basic operating
procedures described in the TRAX Support Environment User's Guide.
(See Section 1.3.)

1.2 STRUCTURE OF THE DOCUMENT

The manual has seven chapters. Chapters 1 through 4 describe the
basic capabilities of the Linker, and Chapters 5 and 6 describe its
advanced capabilities. Chapter 7 discusses memory dumps. The
appendixes include error messages, data formats, and a glossary.
Chapter 1 outlines the capabilities of the Linker.

Chapter 2 describes the command sequences used to interact with the
Linker.

Chapter 3 lists the command qualifiers.

Chapter 4 discusses options that you can specify in a LINK command
line.

Chapter 5 describes the overlay capability and the language used to
define an overlay structure.

Chapter 6 gives the two methods that can be used for 1loading overlay
segments.

Chapter 7 describes two memory dumps--Post-mortem and Snapshot.

INTRODUCTION

1.3 ASSOCIATED DOCUMENTS

Other manuals closely allied with the purpose of this document
are the TRAX:

® Support Environment User's Guide
® BASIC-PLUS-2 User's Guide and the

® COBOL User's Guide.
1.4 INTRODUCTION TO THE LINKER

The fundamental executable unit in the TRAX support environment is the
task. A routine becomes an executable task image, as follows:

1. The routine is written in a supported source language.
2. It is entered as a text file, through the editor.

3. It is translated to an object module, using the appropriate
language translator.

4, The object module is converted to a task image by the Linker
program.

5. The task is run.

If errors are found in the routine as a result of executing the task,
the user makes corrections to the text file using the editor, and then
repeats steps 3 through 5.

If a single routine is to be executed, the use of the Linker is
appropriately simple. The user specifies as input only the name of
the file containing the object module produced from the translation of
the program, and specifies as output a name for the task image.

Typically, however, a collection of routines 1is run rather than a
single program. In this case the user names each of the object module
files, and. the Linker 1links the object modules, resolves any
references to the system library, and produces a single task image,
ready to be installed and executed.

The Linker makes a set of assumptions (defaults) about the task image
based on typical usage and storage requirements. These assumptions
can be overridden by including switches and options in the
task-building terminal sequence. This allows the user to build a task
that is tailored to its own input/output and storage requirements.

The Linker also produces, upon request, a memory allocation file (map)
that contains information describing the allocation of storage, the
modules that make up the task image, and the value of all global
symbols. The wuser can also request that a list of global symbols,
accompanied by the name of each referencing module, be appended to the
file (global cross-reference).

The Linker provides the user with an overlay capability as a means of
reducing the memory requirements of a task. A task can be divided
into several overlay segments that reside on disk. Disk-resident
overlays are loaded into memory when they are needed.

If the task is configured as an overlay structure (that is, as a
multi-segment task), the user becomes responsible for loading segments
into memory as they are needed. The method provided for loading
overlay segments is called autoload.

1-2

INTRODUCTION

With the autoload method, no special calls are required to 1load the
task's overlay segments. The segments are loaded automatically by the
Overlay Runtime System according to the structure defined by the user
at the time the task was built.

The user can become familiar with the capabilities of the Linker by
degrees. Chapter 3 gives sufficient basic information about Linker
commands to handle many applications. The remaining chapters deal
with special features and capabilities for handling advanced
applications and tailoring the task image to suit the application.

This manual describes the development of an example application, BILL.
In the first treatment of BILL, the user builds a task using all the
default assumptions. Successive treatments illustrate the main points
of each chapter in a realistic manner. Qualifiers and options are
added as they are required, an overlay structure is defined when the
task increases in size, the loading of overlays is illustrated, and
finally the task is moved from a development system to a system with a
different configuration.

"The memory allocation files for the various stages of task development
are included. The effect of a change can be observed by examining the

map for the previous example and the map for the example in which the
change is made.

1.5 RMS FILE SPECIFICATION INFORMATION

A TRAX file specification conforms to standard RMS conventions. It
has the following form:

device: [ufd]filename.filetype;version

where:

device is the name of the physical device on which the volume
containing the desired file is mounted. The name consists
of two ASCII characters followed by a 1- or 2-digit octal
unit number and a colon(:); for example, DMO: or DBl:.
A logical device name may also be used.

[ufd] is the user file directory specification consisting of two

octal numbers in the range of 1 through 377 (octal).
These numbers must be enclosed in brackets and separated
by a comma and must be in the following format:

[group,member]

For example, member 225 of group 300 would use the
following entry:

[300,225]

file name is the name of the desired file. The file name can be
from one to nine alphanumeric characters; for example,
BILLRTN. You must always specify the file name. There is
no default specification for this component. Failure to
specify the file name causes an error to be generated.
The lone exception is when the wild card (*) specification
is used. The wild card (*) specification causes the
system to process all file names on the specified user
file directory.

INTRODUCTION

file type is the 3-character file type identification. Separate the
file name and file type with a period(.). Files with the
same name but different functions are distinguished from
one another by the file type; for example, BILL.TSK and
BILL.OBJ might be the task file and the object file,
respectively, for the program BILL. You may omit the file
type, but you should avoid this practice when dealing with
system programs which generally assume a default file type
for various operations. The wild card (*) specifier may
be used 1in place of a file type. The action specified
will be applied to all file types associated with a given
file name or wild card file name. (E.G. *.* gpecifies
the current version of all files in the wuser file
directory.)
version is the octal version number of the file 1in the range 1
through 77777 (octal). Separate the extension and version
by a semicolon(;). Various versions of the same file are
distinguished from each other by the version number; for
example, BILL.OBJ;l and BILL.OBJ;2 are successive versions
of the same file. The version number may be omitted, in
which case the current (highest-numbered) version is
assumed. To act upon all versions of a file, you can use
the wild card (*) specification.
The device, user file directory code, file type, and the
version specification are all optional.
Table 1-1 lists the default assumptions applied to missing
components of a file specification. Table 1-2 lists the
file types assumed by PDP-11 system software.
Table 1-1
Item Default
device user's current default device
[ufd] user's current default [ufd]
version for an input file, the default version number is the
existing version with the highest (octal) number.
For an output file, the default is calculated as one
greater than the highest existing version number for
that file.
Table 1-2
File Contents Default
Description File type
task image file .TSK
memory allocation file .MAP
symbol definition file .STB
object module .0OBJ
object module library file .OLB
overlay description file .ODL
indirect command file .CMD
COBOL source text file .CBL
BASIC-PLUS-2 source file .B2S
MACRO source file .MAC

CHAPTER 2

PROGRAM DEVELOPMENT AND THE LINK COMMAND

This chapter is divided into two parts. The first part describes the
program development process as it applies to the TRAX Support
Environment. Illustrations of the steps in program development are
made using examples similar to those found in TRAX Support Environment
applications.

The second part presents the concept of 1linking a task 1image, and
describes the LINK command in terms of syntax rules and available
features.

2.1 AN OVERVIEW OF THE PROGRAM DEVELOPMENT PROCESS

The program development process can be divided into several distinct
parts. Consider the following outline in developing a program to be
run on the PDP-11.

1. Define the operations to be performed. (Flow-charting)

2., Code the defined procedure into source language statements.
(Coding)

3. Create a source statement file 1in machine-readable form.
(Editing)

4. Compile the source language statements into an object module.
(Compiling)

5. Correct errors and recompile until vyour program 1is clean.
(Debugging)

6. Link the compiled object modules and required system
libraries to form an executable task image file. (Linking)

7. Run your program.

This manual assumes that you can define a procedure and code it 1into
appropriate source language statements. 1In the case of TRAX, COBOL
and BASIC-PLUS-2 are supported languages. For details about syntax
and coding of these languages, refer to the TRAX Language Reference
Manual and User's Guide for the language you are using.

The remaining parts of this section describe the last five steps of
program development as listed above, and how they are implemented in
the TRAX Support Environment.

PROGRAM DEVELOPMENT AND THE LINK COMMAND

2.1.1 Creating Source Language Statement Files

After you have defined your procedure and translated the definition
into appropriate source language statements, the next step is to enter
the source statements into the computer. In the TRAX Support
Environment, this is done from a "support"”" terminal using the DEC
Editor. Consult your system manager for the location of your
installation's support terminals, and the procedure required to log in
to the Support Environment.

The DEC Editor is a utility program which will allow you to create and
maintain text files from a video or hard-copy terminal. If you are
unfamiliar with the Editor's operations, consult the DEC Editor
Reference Manual or the Beginner's Guide to the DEC Editor.

The Editor is entered by typing the command string:
>EDIT [file-specification]

The file-specification is to be supplied by you according to the rules
discussed in Section 1.5 for RMS files. When you are creating a new
file, the file specification should be a new file name, and the file
type should follow the style suggested 1in Section 1.5 for the
particular source language you are using. (E.G. COBOL source files
should have a .CBL file type; BASIC-PLUS-2 files should have a .B2S
file type etc.).

2.1.2 Compiling the COBOL Programs

After you have created source lanqguage input files with the help of
the DEC Editor, the next step in the program development process is
compilation. The compiler is a system program which translates vyour
high-level source language statements 1into object modules which
consist of machine language instructions coded as octal numbers. If
you were to compile the example programs that were entered into a
source file in Section 2.1.1, you would invoke the COBOL compiler with
the following command string:

>COBOL/LIST/SWITCHES: (/KE:ST)
FILE? STATE
>COBOL/LIST/SWITCHES: (/KE:LA)
FILE? LABELS
>COBOL/LIST/SWITCHES: (/KE:CR)
FILE? CREDLM
>COBOL/LIST/SWITCHES: (/KE:EX)
FILE? EXCEPT

The first command invokes the COBOL compiler and directs it to take
source input from STATE.CBL and place the relocatable object code in
INRTN.OBJ. The remaining commands perform similar actions for the
source files LABELS.CBL, CREDLM.CBL, and EXCEPT.CBL. The /LIST and
/SWITCHES: (/KE:) keywords inform the COBOL compiler that a listing is
to be spooled to the line printer, and that the four routines are to
be compiled with the kernel names specified by the /KE switch.
Further information regarding language compilers and the features
available can be obtained by consulting the appropriate TRAX User's
Guide for the source language you are using.

The listing output from your compilation will indicate errors in vyour
source language text, and will provide information regarding the cause
of the error. You then can use the DEC Editor to make the required
corrections to your source statements, and recompile. Several

PROGRAM DEVELOPMENT AND THE LINK COMMAND

iterations of the compile and editing process are usually needed to
obtain an error-free compilation. Once the compiler has reported that
your compilation is error-free or "clean", you may then proceed to the
next program development step, linking the object modules to form a
task. In the higher-level languages, such as COBOL and BASIC-PLUS-2,
you must first run a language wutility to create the appropriate
overlay description file for your program.

2.1.3 Linking the Task

The Linker is a system program that takes object modules and system
library modules as input, and merges this information to form a task
image file. The task image file can be copied into memory and run by
the operating system. Linking 1is the final step in the program
development process.

The example programs that have been entered and compiled in the
previous sections can be 1linked by issuing the following command
string:

>LINK/TASK:STATEMENT/MAP : STATE/OVERLAY : STATE /OPTIONS
OPTIONS? UNITS=7

OPTIONS? ASG=TI:1

OPTIONS? ASG=8Y:2:3:4:5:6:7

The LINK command specifies the name of the task image file
(BILL.TSK;1l), the name of the memory allocation file (BILL.MAP;l), and
the name of the input ODL file. Section 2.2 of this manual presents
the Link command, and describes the syntax required to use it.
Chapter 3 discusses the Qualifiers that may be wused with the Link
command, and Chapter 4 explains the Options that may be selected.

2.1.4 Running Your Program

After all steps of program development (editing, compiling and
linking) have been successfully completed, you may run your program by
entering the run command followed by the file name of the task image
file that was created by the Linker. 1In our example programs, the
command string:

>RUN STATEMENT

will tell the TRAX operating system to copy the task image file
BILL.TSK into memory and execute the program. A number of Qualifiers
are available to be used with the RUN command. They are described in
the TRAX Support Environment User's Guide.

2.2 THE TRAX LINKER

The TRAX Linker combines the input files and resolves references ¢to
the system libraries to create a single executable task image. The
Linker produces output files according to the command qualifier
settings. A task image file 1is produced by default, although the
qualifier /TASK:[filespec] can be used to give the task image file a
different name from the input file. Generation of the task image file
can be suppressed by using the /NOTASK command qualifier, A memory
allocation map, which identifies the size and location of components
within the task, is produced on the line printer by explicit wuse of

PROGRAM DEVELOPMENT AND THE LINK COMMAND

the /MAP qualifier. The /MAP:[filespec] qualifier produces a memory
allocation file which is stored on the wuser's system device. The
/SYMBOLS qualifier must be specified to produce a symbol definition
file that contains the global symbol definitions in the task and their
virtual or relocatable addresses, in a format suitable for
reprocessing by the Linker.

Output task image files assume the file name of the first input file
unless the command qualifier specifies a particular file specification
as part of the qualifier.

2.2.1 LINK Command Formats
The standard LINK command format is:

You must separate the command qualifiers from the input file
specification by inserting at least one space between them. To use
the Linker in an interactive prompting mode, first invoke the Linker

by typing:
> LINK[/command qualifiers]

The system responds with a file? prompt. You then enter the input
file description arguments as shown:

> FILE?[file-specification[/file-qualifiers]]

You must respond to a FILE? prompt with at least one file
specification when you are in the interactive mode. You may specify
more than one input file specification, but must separate them with a
comma, a space or a tab character as a delimiter.

2.2.2 Command Qualifiers

Command Qualifiers are keywords which are used to specify output if
files, and to tell the Linker to search for and include certain system
library modules in the executable task image file. They always begin
with a slash (/) and may be abbreviated to the fewest number of digits
that causes the qualifiers to remain unique. Inserting NO between the
/ and the first letter of the keyword results in the negation of that
qualifier. Command Qualifiers are presented in table form and
discussed in detail in Chapter 3.

2.2.3 File Specifications

File specifications conform to the RMS standard format shown in
Section 1.5. Output file specifications are appended to their
corresponding keywords after a colon (:). Some special types of input
files (DEBUG,OVERLAY) are also specified following a command
qualifier. Input object modules and system library files are
specified following the command qualifiers in the input string. A
space must appear between the last command qualifier and the first
input file specification. Multiple input files may be specified, and
must be delimited by a space, comma, or tab character. Input and
library files may be qualified through the use of file-qualifiers
which are described in Section 3.2 of this manual.

PROGRAM DEVELOPMENT AND THE LINK COMMAND

2.2.4 OPTIONS

Options are used to specify the characteristics of the task being
built. If you type the command qualifier /OPTIONS as part of the LINK
command, the Linker prompts for additional 1input by displaying
OPTIONS?: on the 1line following the 1last line of the input file
specification. You then enter one of the Linker options and terminate
the 1line by entering a carriage return. Prompting continues on
successive lines until you type a slash (/) followed by a carriage
return in response to an OPTIONS?: prompt. This sequence of
characters causes the prompting to cease and activates the Linker to
process your command string. A second form of option specification is
/OPTIONS: [filespec] where option input keywords and arguments are
contained in the file specified by the /OPTIONS command qualifier.
The second form suppresses interactive prompting for option input.

The example in Section 2.1.3 illustrates interactive prompting for
options: .

An example of the second form of /OPTIONS qualifier is given in
Section 2.2.6. The syntax and interpretation of each TRAX Linker
option are described in Chapter 4.

The form of an option is a keyword followed by an equal sign (=) and
an argument list. The arguments in the list are separated from one
another by colons (:). 1In the preceding example, the first option
consists of a keyword UNITS and a single argument 6 indicating that
the task being linked is to be assigned 6 logical units. The second
option consists of the keyword ASG and an argument list DB2:5,DBl:6
indicating that disk unit 2 has been assigned to logical unit 5, and
disk wunit 1 to logical unit 6. This is a demonstration of the manner
in which several arguments may be presented within the same option
argument list. In the absence of the /OPTIONS qualifier, the user
task is linked using the default option settings.

2.2.5 Multiple Line Input

LINK command lines are often complex, requiring command qualifiers and
file specifications that cause the command string to exceed the number
of characters allowed on a single input line. To enter a LINK command
line over more than one line, type a hyphen (-) as the last printing
character on the line, then continue the command on the next line.

>LINK/TASK:STATEMENT/MAP:STATE-
DCL>/OVERLAY : STATE /DEBUG/OPTIONS
OPTIONS?

2.2.6 Indirect Command File Facility

The LINK command string can also be entered as a text file and later
invoked through the indirect command file facility. To use the
indirect command file facility, you prepare a file that contains the
desired command string input to link object modules into a task-image
file. The contents of the indirect command file are invoked by typing
@ followed by the file name of the indirect command file.

> @AFIL

When the symbol "@" is encountered, search for commands is directed to
the file specified following the "@" symbol. While accepting input

PROGRAM DEVELOPMENT AND THE LINK COMMAND

from an indirect file, the Linker does not display prompting messages
on the terminal. If the 1input file specifications are not in the
indirect command file, prompting for the input file follows the 1last
item in the command file. If the /OPTIONS command qualifier appears
in the indirect command file without an accompanying file
specification, interactive prompting for option input will occur.

The single line command string which references the indirect command
file AFIL.CMD is equivalent to the following keyboard sequence:

LINK/TASK:STATEMENT/MAP: STATE/OVERLAY : STATE /DEBUG-
DCL>/OPTIONS:BFIL

When you create the indirect command file, you must follow the syntax
rules for command qualifiers, file specifications, and options which
are associated with the LINK command.

Suppose the file BFIL.CMD contains a set of standard options that are
requested by a number of users at an installation. That is, every
programmer in the group uses the options in BFIL.CMD. These standard
options can be included in a link command file by modifying AFIL.CMD
to include an input file reference to BFIL.CMD as the file
specification following the /OPTIONS: command qualifier.

The contents of BFIL.CMD are:

UNITS=7
ASG=TI:1
ASG=SY:2:3:4:5:6:7

You include this file specification in the file AFIL.CMD
If the command:
> @AFIL
is issued, it then becomes the equivalent of the following sequence:

LINK/TASK:STATEMENT/MAP:STATE/OVERLAY : STATE /DEBUG-
DCL>/OPTIONS

OPTIONS? UNITS=7

OPTIONS? ASG=TI:1
OPTIONS? ASG=SY:2:3:4:5:6
OPTIONS? //

>

The /OPTIONS command qualifier is described in Section 2.2.4, and
detailed examples of 1its use are given in Chapter 4. A complete
discussion of indirect command files is included in the TRAX Support
Environment User's Guide. The discussion includes examples of how
several different types of TRAX commands can be used in the same
indirect command file.

In the case of BASIC-PLUS-2 tasks, the BUILD command is issued to the
BASIC-PLUS-2 compiler which then <creates an indirect command file
containing the command qualifiers, file specifiers, and standard
options required to create the desired task-image file from the BASIC
object module. For example, consider a BASIC-PLUS-2 source program
and object modules called SORT02. The BUILD command produces a file
called SORT02.CMD which may be input to the Linker by typing:

>LINK/BASIC SORT02

PROGRAM DEVELOPMENT AND THE LINK COMMAND

You should not modify the generated command file produced by the BUILD
command in BASIC-PLUS-2, because unpredictable and possibly fatal
results may occur.

2.2,6.1 Comments - You can document the purpose and status of a task
by adding comments to the Link command file. Comments can be placed
at any point in the command file. Begin a comment with an exclamation
point (!), and terminate it with a carriage return. The Linker
interprets the text between the exclamation point and the carriage
return as a comment and does not process it. '

Consider the annotation of the following LINK command string which 1is
to be executed as an indirect command file. Comments have been added
to the lines of the command string to document the functions performed
by the Linker, as well as a brief description of the contents of the
input object modules. A note concerning the current status of the
task has been inserted at the end of the file.

TASK STATEMENT

COBOL TASK USING COBOL MERGE ODL FILE STATE.ODL
FOUR INPUT MODULES

STATE - MAINLINE STATEMENT PROGRAM

LABELS - SUBROUTINE TO PRINT LABELS

CREDLM - SUBROUTINE TO WRITE CREDIT LETTERS
EXCEPT - EXCEPTION PROCESSING SUBROUTINE

e Gem fem e S b S

LINK/TASK:STATEMENT/MAP:STATE /OVERLAY : STATE /DEBUG-
/OPTIONS:BFIL
! 7 UNITS USED, 1 TO TI:, 2-7 for SY:

This feature is extremely useful for installations where maintenance
of existing programs and tasks 1is not generally performed by the
original developer. The comment capability allows you to explain your
logic in building a task in the same way as you would place comments
in a source program file.

CHAPTER 3

COMMAND AND FILE QUALIFIERS

Command qualifiers provide information to the TRAX Linker. This
information is wused by the Linker to determine how it will process
your compiler-generated object modules into executable task image
files. Command qualifiers allow you to provide the Linker with four
general types of information:

1. You may specify the types of output files to be <created by
the Linker. You are given the option of specifying file
names for the output files.

2. You may tell the Linker to include predefined or user-defined
object modules in the task image.

3. You may specify how the Linker 1is to search for object
modules in system libraries.

4. You may specify input files of a specialized type. The
Linker recognizes the qualifier and links the task based upon
the contents of the specialized input file.

Table 3-1 lists the command qualifiers in alphabetical order. A short
description of their function is also included. Section 3.1 gives a
more detailed explanation of each command qualifier,

Input File Qualifiers allow you to instruct the Linker to perform
specialized processing with certain types of input files. The Input
File Qualifiers are shown in Table 3-2, and described in detail 1in
Section 3.2,

Table 3-1
Link Command Qualifiers
Keyword Function
/BASIC Tells the Linker that the input file is a
command file created by the BASIC-PLUS-2
compiler.
/CHECKPOINT [: keyword] The Linker should include checkpoint
) capability in the task image file. The
optional keyword specifies TASK or SYSTEM
checkpoint space allocation.

(Continued on next page)

COMMAND AND FILE QUALIFIERS

Table 3-1 (Cont.)

Link Command Qualifiers

Keyword

Function

/CROSS_REFERENCE

/DEBUG][: filespec]

/DUMP

/FULL_SEARCH

/MAP[:filespec(/file-
qualifier)

/OPTIONS

/OPTIONS[:filespec]

/OVERLAY [: filespec]

/SEQUENTIAL

/SYMBOLS[:filespec]

/TASK[:filespec]

Tells the Linker to include a global
symbol cross-reference 1listing in the
memory allocation file.

Includes a debugging aid 1in the task
image file. Optional file name contains
a user-written debugging module.

The task image is 1linked with modules
that provide a post-mortem dump in the
event of abnormal task termination.

Controls symbol table searching in
overlaid tasks with co-trees.

Tells the Linker to produce a memory
allocation file.

file-qualifiers:
/FULL Include all modules in map.

/NARROW Format map for 72-col.
output.

/SHORT Produce only a summary map.

/WIDE Format map for 132-col.
output.

Apply LINK command options specified
after command string.

Apply Link Command options contained in
the specified file.

The Linker does its processing according
to the specified overlay description
file.

Task object modules are allocated memory
sequentially.

Instructs the Linker to produce a symbol
table file.

The Linker is to produce a task image
file.

3.1 COMMAND QUALIFIERS

A detailed description of each command qualifier is presented in
section. The meaning and effect of each qualifier are described and

the default condition is identified.

this

COMMAND AND FILE QUALIFIERS

3.1.1 The BASIC Command Qualifier
Syntax: LINK/BASIC [Command File Specification]

The input file is a command file created when you issued the BUILD
command to the BASIC-PLUS-2 compiler. The Linker decodes the command
file and links the task 1image file according to the information
supplied in the command file. No prompting for files or options
occurs.

The /BASIC command qualifier should only be specified in conjunction
with BASIC-PLUS-2 compiler-generated command files. For further
information, see the discussion of the BUILD command in the TRAX
BASIC-PLUS-2 User's Guide.

CAUTION

Do not attempt to modify the command
file after it has been created.
Unpredictable or fatal results may occur
when user-edited BASIC-PLUS-2 command
files are supplied to the Linker.

3.1.2 The CROSS-REFERENCE Command Qualifier

Syntax: /CROSS_REFERENCE

A global symbol <cross-reference 1listing 1is produced. The cross
reference listing is appended to the memory allocation (MAP) file. An
example of this listing is provided in Appendix A.

The Linker will not produce a global symbol cross reference 1listing
unless this qualifier is specified.

3.1.3 The DEBUG Command Qualifier
Syntax: /DEBUG[:file specification]

This qualifier instructs the Linker to include a debugging aid in the
task 1image file. If the file specification is omitted, the system's
debugging aid (ODT) is assumed to be the default module. If a file
specification is present, the debugging aid contained in the specified
file will be linked into the task image. The user-generated debugging
aid must be 1in object module format. See Appendix D for additional
information on including a debugging aid.

3.1.4 The DUMP Command Qualifier

Syntax: /DUMP

This qualifier instructs the Linker to include system modules in the
task image file that will provide a post-mortem dump in the event that
your task is abnormally terminated.

Memory dumps are discussed in detail in Chapter 7.

The default assumption is /NODUMP

COMMAND AND FILE QUALIFIERS

3.1.5 The FULL-SEARCH Command Qualifier
Syntax: /FULL__SEARCH

When processing modules from the default object module 1library, the
presence of this qualifier causes the Linker to search all co-tree
overlay segments for a matching definition or reference.

If this switch 1is negated, wunintended global references between
co-tree segments are eliminated. Definitions of global symbols from
the default library are restricted in scope to references in the main
root and the current tree. Use of this qualifier is discussed in
detail in Chapter 6.

/NOFULL_SEARCH is the default setting assumed by the Linker.

3.1.6 The MAP Command Qualifier
Syntax: /MAP[:filespec] or /MAP[:filespec/filequalifier]

This qualifier instructs the Linker to produce a memory allocation
(.MAP) file as it links the task image file.

If the file specification is present, the file type field may be
omitted. The Linker assumes the .MAP file type.

If this qualifier is present and no file 1is specified, the memory
allocation file 1is spooled directly to the line printer. The memory
allocation file (is deleted after printing) (remains on your user file
directory, taking the file name of the task image file, and the file
type .MAP).

The Linker assumes a default of /NOMAP. The following qualifiers may
be applied to the file specification:

/FULL The Linker will include all modules in the memory
allocation file, even those which explicitly or by default
have the /NOMAP input file qualifier (see Section 3.2.4).

/NARROW The Linker produces a map listing 72 characters wide,
suitable for printing on an output terminal.

/SHORT Tells the Linker to include only the segment headings in
the memory allocation file.

/WIDE Produce a map 132 characters wide, suitable for printing
on a line printer. When /MAP is specified, this is the
default file qualifier.

3.1.7 The OPTIONS Command Qualifier

Two forms of the /OPTIONS command qualifier are available. The first
form prompts you for option input. The second form allows you to
specify a file which contains option input strings. The syntax for
each form appears before the text explaining its usage. Chapter 4
contains detailed information on TRAX Linker options.

COMMAND AND FILE QUALIFIERS

3.1.7.1 Interactive Format - Syntax: /OPTIONS

The Linker interactively prompts for option input lines after you have
supplied the command qualifiers and input file specifications to the
Linker. Prompting will continue until you enter a slash (/) followed
by a carriage return in response to an OPTIONS?: prompt. The slash
and carriage return sequence signals the Linker that all option input
has been supplied. The Linker then begins processing the input files.

3.1.7.2 Command File Format - Syntax: /OPTIONS:[file specification]

When the filespec is supplied with the /OPTIONS qualifier, the Linker
treats that file as a series of option input-lines. Interactive
prompting for options does not occur. The default file type for the
input file is .CMD.

3.1.8 The OVERLAY Command Qualifier
Syntax: /OVERLAY:[ODL File Specification]

The input file specified with the /OVERLAY command qualifier is
assumed to be an Overlay Description Language (ODL) file. The Linker
creates the task image file according to the overlay structure defined
in the specified input file.

An overlay description file must be supplied with this gqualifier. The
user cannot supply another input file. The Linker will not accept any
input files other than those described in the supplied ODL file.

Overlay descriptions are discussed in Chapter 6. ODL files are also
discussed in the TRAX COBOL and TRAX BASIC-PLUS-2 User's Guides.

3.1.9 The SEQUENTIAL Command Qualifier
Syntax: /SEQUENTIAL

The task image is constructed from the specified object files in the
order stated in the LINK command string. Chapter 5 describes the
allocation of storage within the task image, and gives an example of
the allocation performed under the default assumption and the
allocation that results when the /SEQUENTIAL qualifier is specified.

The Linker does not reorder the program files alphabetically. This
qualifier must not be used for modules that rely upon alphabetical
program section allocation; in TRAX such modules include RMS modules
from RMSLIB.

The default condition is non-sequential storage allocation.

3.1.10 The SYMBOLS Command Qualifier
Syntax: /SYMBOLS[file specification]
This qualifier tells the Linker to produce a symbol definition file.

If the file specification is present, the file type field is optional.
The Linker assumes the .STB file type.

COMMAND AND FILE QUALIFIERS
If the filespec is absent, the first input file name becomes the
symbol table .definition file name, and .STB the assumed file type.

/NOSYMBOLS is the default setting for this qualifier.

3.1.11 The TASK Command Qualifier
Syntax: /TASK[:file specification]

This qualifier instructs the Linker to create a task image file. It
is set by default, with the file name being taken from the first input
file, and the file type assumed to be .TSK.

If a file name is specified, the file type is optional; 1in that case
the default assumption file type is .TSK.

Use of the /NOTASK qualifier causes the Linker to process the input
files for unresolved symbol references, but suppresses creation of a
task image file.

Table 3-2
Input File Qualifiers

Keyword Function

/CONCATENATED The input file consists of
concatenated object modules. The
/NO prefix with this qualifier
instructs the Linker to take only
the first object module from a
series of concatenated files.

/DEFAULT_LIBRARY[:filespec] Directs the Linker to use the
specified file as the system
default library. If this

qualifier 1is absent, the default
is LBO:[1,1]SYSLIB.OLB.

/LIBRARY[:modl:...:mod n] Identifies the input file as an
object module library file.
Module specifiers direct the
Linker to read only those modules
from the library.

/MAP This qualifier tells the Linker to
include the modules in the
associated file 1in the memory
allocation (.MAP) file. /NOMAP
results in the modules not being
listed in the map.

/SELECT_SYMBOLS The input file is to be
selectively searched for
unresolved global symbol
references. Only those modules

which resolve global symbols will
be included 1in the task image
file.

COMMAND AND FILE QUALIFIERS

3.2 INPUT FILE QUALIFIERS

Input File Qualifiers tell the Linker that specialized processing is
to be performed on the associated input file.

3.2.1 The CONCATENATED Input File Qualifier
Syntax: Input File Specification/[NO] CONCATENATED

The Linker normally processes all modules in the input file to form
the task image. When /NOCONCATENATED is present, the Linker processes
only the first module in the task image, regardless of the number
present. Do not use this qualifier with the /LIBRARY qualifier, as it
will be overridden.

/CONCATENATED is the default setting for this qualifier.

3.2.2 The DEFAULT LIBRARY Input File Qualifier
Syntax: /DEFAULT_LIBRARY:file specification

The Linker searches the specified library file when it 1is resolving
undefined global symbol references. This qualifier overrides the
default system library LBO:[1,1]SYSLIB.OLB.

If the specified library is empty (no modules have been inserted into
it), the default library reverts to the system library.

The Linker assumes a default system library ([1,1]SYSLIB.OLB). Any
other default 1library name must be specified by the use of this file
qualifier.

3.2.3 The LIBRARY Input File Qualifier

There are two forms of this qualifier. The first form allows you to
provide a Library (.OLB) file as input to the Linker. The Library is
used to resolve global symbol references. The second form allows you
to specify certain modules from an existing Library file as input to
the Linker. The named modules are included in the task image file
being created by the Linker.

3.2.3.1 Resolve all Global Symbols - Syntax: Input File
Specification/LIBRARY

The Linker searches the specified input 1library £file to resolve
undefined global symbol references. The Linker extracts any modules
which resolve global references, and includes them in the task image
file.

You must append /LIBRARY to any input library file.

COMMAND AND FILE QUALIFIERS

3.2.3.2 1Include Selected Library Modules - Syntax: Input file
specification/LIBRARY: [(]lmod-1[,...,mod~n)]

The input module is assumed to be a library (.0OLB) file of relocatable
object modules from which the modules named in the argument list are
to be copied for inclusion in the task image. The module names are
those defined at assembly time by the .TITLE directive (or if no
.TITLE directive, the file name (first six characters) when inserted
by the Librarian). Up to eight modules can be specified. The Linker
includes only the specified object modules in the task image file.

The /LIBRARY file qualifier must be appended to the input file
specification. It is never assumed as a default.

NOTE

To direct the Linker to search a library
file for both global symbol references
and selected modules that are needed 1in
the task image, the You must name the
library file twice. First, specify the
/LIBRARY qualifier and no other
arguments. Second, specify the desired
modules, directing the Linker to include
those modules in the task 1image file
that 1is being created. See Section
3.2.3.2 to see how you may specify named
modules with the /LIBRARY file
qualifier.

3.2.4 The MAP Input File Qualifier
Syntax: Input File Specification/MAP

This qualifier instructs the Linker to include the input file when it
creates the memory allocation file.

If /NOMAP is specified, no details of modules contained in the file
will appear in the memory allocation map or cross-reference listing.

User supplied input object module files are assumed to have the input
file qualifier /MAP as a default,

For system library files, resident libraries, and common area, /NOMAP
is assumed as the default file qualifier.

NOTE

The /NOMAP qualifier, when it is
qualifying an input file, is overridden
by /FULL_SEARCH. (See Table 3-1 and
Section 3.1.6).

COMMAND AND FILE QUALIFIERS

3.2.5 The SELECT SYMBOLS Input File Qualifier
Syntax: Input File Specification/SELECT_SYMBOLS

This qualifier tells the Linker to selectively search the input file.
The search 1is made for only those global symbols for which an
undefined reference exists. The Linker includes only the required
symbol definitions from the specified file as distinct from all global
symbols of that file. This qualifier is useful when an input file 1is
the symbol table (.STB) output of another Link command, because it
reduces the size of symbol table searches.

If this file qualifier is absent, all global symbols from the input
file will be included 1in the task image file. This is the default
condition.

If the input file specified with this gqualifier 1is a Library or
concatenated file, the qualifier is active for each module in the
input file.

CHAPTER 4

COMMAND OPTIONS

LINK Command Options are keywords that allow you to supply the Linker
with information about task memory requirements and references to
other global symbols, libraries, and logical units.

Most of these options interest all system users. A few are of
interest only to the MACRO Programmer. These options have been
identified by the word (MACRO) in Table 4-1.

Options may be divided into four general classes. The identifying
mnemonics and a brief description of each category are listed below:

1. Allocation options allow you to modify the task's memory
allocation at execution time. (Alloc)

2. Storage-sharing options provide vyour task with access to
shareable global areas. (Share)

3. Device-specifying options let you specify the number of units
required by the task and allow you to assign physical devices
to logical unit numbers. (Device)

4. Content-altering options permit you to define a global symbol
and value. You can also use them to introduce patches in the
task-image. (Alter)

Table 4-1 briefly describes each LINK command option, and also
provides the interest range and option class for each option.

NOTE

TRAX restricts the wuse of MACRO to
subroutines which do not require RMS
file-handling facilities.

Unless noted in the table, all options can be used for high-level and
MACRO tasks. The category to which the option belongs is also
indicated in the table.

The options are then described in detailed fashion, by category, in
Section 4.1.

COMMAND OPTIONS

Table 4-1
TRAX LINK Command Options

Option Category Meaning

ABSPAT Alter Allows you to declare absolute patch
values. (MACRO)

ASG Device Allows you to assign physical devices to
logical units.

COMMON Share Allows you to declare a task's intention to
access a shared region of executable code.

EXTTSK Alloc Allows you to extend task memory allocation
at task installation time.

GBLDEF Alter Allows you to declare a global symbol
definition. (MACRO)

LIBR Share Allows you to declare a task's intention to
access a shared library region.

UNITS Device Allows you to specify the maximum number of
logical units required by the task.

4.1 ALLOCATION OPTIONS

This option directs the Linker to change the allocation of task
memory.

4.1.1 EXTTSK (Extend Task Memory)

The EXTTSK option declares the amount of additional memory to be
allocated to the task when RUN in a system-controlled partition.

The amount of memory available to the task is the sum of the task size
plus the increment specified in the EXTTSK keyword (rounded up to the
nearest 32-word boundary). If the task is Linked for a
user-controlled partition, the allocation of task memory reverts to
the partition size.
Syntax:

EXTTSK = length

where:

length is a decimal number specifying the 1increase 1in task
memory allocation (in words).

COMMAND OPTIONS

4.2 STORAGE-SHARING OPTIONS

When you wish to access a shared region of memory, such as a global
common area or a shared library or Object Time System, you can use two
options: COMMON and LIBR. These options are of interest to all users
of the system.

The COMMON option indicates that the shared region contains only data,

while the LIBR option indicates a shared global region that contains
only object code. :

4.2.1 COMMON (System-Owned Common Block) LIBR (System-Owned Resident Library)
The identical options. The COMMON and LIBR options declare that the
task 1is to access a system-owned shared global region. There is no
default setting for either of these options; they must be specified
by you.
Syntax:

COMMON = name:access—-code

or

LIBR = name:access-code

where:
name is the 1- to 6-character alphanumeric name
specifying the library.
access—-code is the code RW (read-write) or the code RO
(read-only) indicating the type of access the task
requires.

4.3 DEVICE SPECIFICATION OPTIONS

The two device specification options are of interest to all users of
the system. The UNITS option declares the maximum number of logical
input-output units that the task can use. All units from 1 to the
number specified are made available to the task. The ASG option
declares the devices that are assigned to these units.

Using a logical unit number greater than this option will cause an
error at task execution time.

To increase the number of units and assign devices to these units,
enter the UNITS option first and then the ASG option. Because Linker

processes the options as they are encountered, entering the options in
the reverse order can produce an error message.

4,3.1 UNITS (Logical Unit Usage)

The UNITS option declares the maximum number of logical units that the
task can use.

Syntax:

UNITS = max-units

COMMAND OPTIONS

where:
max-units is a decimal integer in the range 0-250 specifying
the maximum number of logical units. A device may
be assigned up to a maximum of eight logical unit
numbers.

The Linker assumes a default value of 6 UNITS.

4.3.2 ASG (Device Assignment)

The ASG option assigns the physical devices to their corresponding
logical units.

,Syntax:
ASG = device-name:unit-num-l:unit-num-2:...:unit-num-8
where:
device-name is a 2-character alphabetic device name followed
by a 1- or 2-decimal unit number.
unit-num-1 are decimal integers indicating the logical unit
unit-num-2 numbers.

unit-num-8
The default logical units assignments are:

ASG = S8Y0:1:2:3:4,TI0:5,CL0O:6

4.4 STORAGE-ALTERING OPTIONS
Storage-altering options cause the Linker to modify the task image and
are of interest only to the experienced MACRO programmer. The GBLDEF

option declares a global symbol and value. The option ABSPAT allows
you to insert a patch into the task image.

4.4.1 ABSPAT (Absolute Patch)

The ABSPAT option specifies a series of patches starting at the
specified base address. A maximum of eight patch values may be
supplied.

Enter the ABSPAT option in the following format:

Syntax:

ABSPAT = seg—name:address:val-l:val-2:...:val-8

where:

seg—-name

address

val-1l

val-2

val-8

default: none

COMMAND OPTIONS

is the 1- to 6-character alphanumeric name of the
segment.

is the octal address of the first patch. The

address may be on a byte boundary; however, two
bytes are always modified for each patch.

is an octal number in the range of 0 to 177777 to
be assigned to address.

is an octal number in the range of 0 to 177777 to
be assigned to address+2.

is an octal number in the range of 0 to 177777 to
be assigned to address+16(octal).

NOTE

All ABSPAT patches must be within the
segment memory limits or a fatal error
is generated.

4.4.2 GBLDEF (Global Symbol Definition)

The GBLDEF option defines a global symbol. The symbol definition is

considered absolute.

Syntax:

GBLDEF = symbol-name:symbol-value

where:

symbol-name

symbol-value

is a 1- to 6-character alphanumeric name of the
defined symbol.

is an octal number in the range of 0 to 177777
which is assigned to the defined symbol.

CHAPTER 5

OVERLAY CAPABILITY

The Linker provides the user with a means of reducing the memory
and/or virtual address space requirements of a task -- tree-like
overlay structures created with the aid of the Overlay Description
Language (ODL). Overlay segments are specified to reside on disk.

5.1 OVERLAY DESCRIPTION

To create an overlay structure, you must divide a task into a series
of segments:

e a single root segment, which is always in memory, and

® any number of overlay segments, which reside on disk and
share virtual address space and memory with one another.

A segment consists of a set of modules and p-sections. Segments that

overlay each other must be 1logically independent; that is, the
components of one segment cannot reference the components of a segment
with which it shares virtual address space. In addition to the

logical independence of the overlay segments, you must consider the
general flow of control within the task.

The user must also consider the kind of overlay segment to have at a
given position in the structure, and how to construct it. Dividing a
task into disk-resident overlays saves physical space, but introduces
the overhead activity of loading these segments each time they are
needed, but not present in memory.

There are several 1large <classes of tasks that can be handled
effectively by an overlay structure. For example, a task that moves
sequentially through a set of modules is well suited to the use of an
overlay structure. A task that selects one of a set of modules
according to the value of an item of input data is also well suited to
an overlay structure.

5.1.1 Disk-Resident Overlay Structures

Disk-resident overlays conserve memory by sharing it. Segments that
are logically independent need not be present in memory at the same
time. They, therefore, can occupy a common physical area in memory
whenever either needs to be used.

OVERLAY CAPABILITY

The use of disk-resident overlays is shown 1in this section by an
example -- task statement, which consists of four overlaid input
files. Each input file consists of a single module having the same
name as the file. The task is built by the command string shown in
Chapter 2.

The user knows that the modules A, B, and C are logically independent.
In this example:

A does not call B or C and does not use the data of B or C.
B does not call A or C and does not use the data of A or C.
C does not call A or B and does not use the data of A or B.

It is possible to define a disk-resident overlay structure in which A,
B, and C are overlay segments that occupy the same storage area in
memory. The flow of control for the task is as follows:

CNTRL calls A and A returns to CNTRL.
CNTRL calls B and B returns to CNTRL.
CNTRL calls C and C returns to CNTRL.
CNTRL calls A and A returns to CNTRL.

In this example, the loading of overlays occurs only four times during
the execution of the task. Therefore, the user can reduce the memory
requirements of the task without unduly increasing the overhead
activity.

The effect of an overlay structure on the allocation of memory for the
task is shown in the following paragraphs.

The lengths of the modules (expressed in octal) are:

CNTRL 10000 bytes
A 6000 bytes
B 5000 bytes
C 1200 bytes

The memory allocation produced as a result of building the task as a
single segment on a system with memory-mapping hardware is as follows:

- 24200
C

- 23000

- 15000
A

- 10000

CNTRL
-0

The memory allocation for a single-segment task requires 24200 (octal)
bytes.

The memory allocation produced as a result of wusing the overlay
capability and building a multi-segment task is as follows:

" - 16000
B c
- 10000
CNTRL
-0

OVERLAY CAPABILITY

The multi-segment task requires 16000 (octal) bytes. In addition to
the module storage, storage is required for overhead in handling the
overlay structure. This overhead 1is described further on and
illustrated in the example STATEMENT.

The amount of storage required for the task is determined by the
length of the root segment and by the length of the longest overlay
segment. Overlay segments A and B in this representation are much
longer than overlay segment C. If the user can divide A and B into
sets of logically independent modules, task storage requirements can
be further reduced. A can be divided into a control program (AO) and
two overlays (Al and A2). A2 can then be divided into the main part
(A2) and two overlays (A2l and A22)., Similarly, the B overlay can be
divided into a control module (BO) and two overlays (Bl and B2).

The memory allocation for the task produced by the additional overlays
defined for A and B is shown in the following figure:

- 13600
A21{A22
Al A2 Bl | B2
A0 BO c
- 10000
CNTRL
- 0

A vertical line can be drawn through the memory diagram to indicate a
state of memory. In this diagram, the leftmost vertical line shows
memory when CNTRL, AO, and Al are 1loaded. The next vertical 1line
shows memory when CNTRL, A0, and Al are loaded. The next vertical
line shows memory when CNTRL, A0, A2, and A2l are loaded, and so on.

A horizontal line can be drawn through the memory diagram to indicate
segments that share the same storage. The uppermost horizontal line
shows Al, A21, A22, Bl, B2, and C, all of which can wuse the same
memory. The next horizontal line shows Al, A2, Bl, B2, and C, and so
on.

5.1.2 Overlay Tree

The arrangement of overlay segments 1in a task can be represented
schematically as a tree-like structure. Each branch in the tree
represents a segment. Parallel branches denote segments that overlay
one another; these segments must be logically independent. Branches
connected end to end represent segments that do not share virtual or
physical memory with each other; these segments need not be logically
independent.

The Linker provides a language for representing an overlay structure
consisting of one or more trees (described in Section 5.1.3).

OVERLAY CAPABILITY

The memory allocation for the previous example (in Section 5.1.1) can
be represented by the single overlay tree shown below:

A2l A22

Al A2 Bl Tz

AQ T f

CNTRL

The tree has a root (CNTRL) and three main branches (A0, BO, and CC).
It also has six leaves (Al, A21, A22, Bl, B2, and C).

The tree has as many paths as it has leaves. The path down is defined
from the leaf to the root. For example:

A21-A2-A0-CNTRL
The path up is defined from the root to the leaf, for example:
CNTRL~-B0-B1

Knowing the properties of the tree and its paths is important in the
understanding of the overlay loading mechanism and the resolution of
global symbols.

5.1.2.1 Loading Mechanism - Modules can call other modules that exist
on the same path. The module CNTRL is common to every path of the
tree and, therefore, can call and be called by every module 1in the
tree. The module A2 can call the modules A21, A22, A0, and CNTRL;
but A2 cannot call Al, B1l, B2, BO or C.

When a module in one overlay segment calls a module in another overlay
segment, the called segment must be in memory and mapped, or must be
brought into memory. The method for loading overlays is described in
Chapter 6.

5.1.2.2 Resolution of Global Symbols in a Multi-segment Task - In
resolving global symbols for a multi-segment task, the Linker performs
the same activities as it does for a single-segment task.

In a single-segment task, any module can reference any global
definition. In a multi-segment task, however, a module can reference
only a global symbol that is defined on a path that passes through the
called segment.

The following points, illustrated in the tree figure below, describe
the two distinct cases of multiply-defined symbols, and ambiguously
defined symbols.

OVERLAY CAPABILITY

In a single segment task, if two global symbols with the same name are
defined, the symbols are multiply-defined, and an error message is
produced.

In a multi-segment task:

o Two global symbols with the same name can be defined if they
are on separate paths, and not referenced from a segment that
is common to both.

) If a global symbol is defined more than once on separate
paths, but referenced from a segment that is common to both,
the symbol is ambiguously defined.

. If a global symbol is defined more than once on a single
path, it is multiply-defined.

The procedure for resolving global symbols can be summarized as
follows:

1. The Linker selects an overlay segment for processing.

2, Each module in the segment is scanned for global definitions
and references.

3. If the symbol 1is a definition, the Linker searches all
segments on paths that pass through the segment being
processed, and looks for references that must be resolved.

4., If the symbol is a reference, the Linker performs the tree
search as described in step 3, 1looking for an existing
definition.

5. If the symbol is new, it is entered in a 1list of global
symbols associated with the segment.

Overlay segments are selected for processing in an order corresponding
to their distance from the root. That is, the Linker considers a
segment farther away from the root, before processing an adjoining
segment.

When a segment is being processed, the search for global symbols
proceeds in the following order:

) the segment being processed
o all segments toward the root
) all segments away from the root

® all co-trees (see Section 6.1.4.1)

OVERLAY CAPABILITY

Example:

A2l A22
T (def) R(ref)

I Q(ref)

Al A2 Bl B2
Q(ref) R(def) Q(ref)
R(ref)
A0 BL C
Q(def) Q(def)
S (def) S (def)
T(?ef)
I
CNTRL
S(ref)

The following remarks apply to the use of the symbols Q, R, S, and T,
shown in the diagram above:

Q The global symbol Q is defined in the segment A0 and in the
segment BO. The reference to Q in segment A22 and the
reference to Q in segment Al are resolved by the definition
in AO. The reference to Q in Bl is resolved by the
definition in BO. The two definitions of Q are distinct in
all respects and occupy different overlay paths.

R The global symbol R is defined 1in the segment A2. The
reference to R in A22 is resolved by the definition in A2
because there is a path to the reference from the definition
(CNTRL-AO0-A2-A22) . The reference to R in Al, however, is
undefined because there is no definition for R on a path
through Al.

S The global symbol S is defined in AG and BO. References to S
from Al, A2l1, or A22 are resolved by the definition in AO,
and references to S in Bl and B2 are resolved by the
definition in BO. However, the reference to S in CNTRL
cannot be resolved because there are two definitions of S on
separate paths through CNTRL. S is ambiguously defined.

T The global symbol T is defined in A2l and AQ0. Since there is
a single path through the two definitions (CNTRL-A0-A2-A21),
the global symbol T is multiply-defined.

5.1.2.3 Resolution of Global Symbols from the Default Library - The
process of resolving global symbols may require two passes over the
tree structure. The global symbols discussed in the previous section
are included 1in user-specified input modules that are scanned by the
Linker in the first pass. If any undefined symbols remain, the Linker
initiates a second pass over the structure in an attempt to resolve
such symbols by searching the default object module library (normally
SY0:[1,1]SYSLIB.OLB). Any undefined symbols remaining after the
second pass are reported to the user.

OVERLAY CAPABILITY

When multiple tree structures (co-trees) are defined, as described 1in
Section 5.1.4.1, any resolution of global symbols across tree
structures during a second pass can result in multiple or ambiguous
definitions. In addition, such references can cause overlay segments
to be inadvertently displaced from memory by the overlay 1loading
routines, thereby causing run-time failures to occur. To eliminate
these conditions, the tree search on the second pass is restricted to:

) The segment in which the undefined reference has occurred

) All segments in the current tree that are on a path through
the segment

[The root segment

When the current segment is the main root, the tree search is extended
to all segments. The user can unconditionally extend the tree search
to all segments by including the /FU (full) switch in the task image
file specification.

5.1.2.4 Resolution of P-sections in a Multi-segment Task - A
p-section has an attribute that indicates whether the p-section is
local (LCL) to the segment in which it is defined or 1is of global
(GBL) extent.

Local p-sections with the same name can appear 1in any number of
segments. Storage 1is allocated for each local p-section in the
segment in which it is declared. Global p-sections that have the same
name, however, must be resolved by the Linker.

When a global p-section is defined in several overlay segments along a
common path, the Linker allocates all storage for the p-section in the
overlay segment closest to the root.

If the programs A0 and BO use a common block COMAB, however, the
Linker allocates the storage for COMAB in both the segment that
contains AO and the segment that contains BO. A0 and BO cannot
communicate through COMAB. When the overlay segment containing BO is
loaded, any data stored in COMAB by A0 is lost.

The tree for the task TK1l, including the allocation of the common
blocks COMA and COMAB, is:

Al A2
l COMA Bl B2
A0 Bl

CNTRL

The allocation of p-sections can be specified by the user. If A0 and
B0 need to share the contents of COMAB, the user can force the
allocation of this p-section into the root segment by the use of the
.PSECT directive, described in Section 5.1.3.4.

5-7

OVERLAY CAPABILITY

5.1.3 Overlay Description Language (ODL)

The Linker provides a language that allows the user to describe the
overlay structure of a task. An overlay description is a text file
consisting of a series of ODL directives, one directive per line.
This file is entered in a Linker command line, and is identified as an
ODL file by the presence of the /OVERLAY: switch (see Section 3.1.9)
after the filename. 1If an overlay description text file is entered,
it must be the only input file specified.

The format for an ODL line is:
label: directive argument-list ;comment

A label is a necessary part of the .FCTR directive only (see Section
5.1.3.2).

Directives act upon argument-lists -- named input files, overlay
segments, p-sections, and 1lines 1in the ODL file itself. Operators
group these named task elements, or attach attributes to them.

If the name belongs to a file, a complete file specification <can be
given. Defaults for omitted parts of the file specification are as
described in Chapters 2 and 3, except that the default device 1is
always SY0, and the default UFD is always taken from the terminal UIC.

In addition, the following restrictions apply to argument-lists:
° The dot character (.) can only be used in a filename.

° Comments cannot appear on a line ending with a filename.

5.1.3.1 .ROOT and .END Directives - There must be one .ROOT directive
and one .END directive. The .ROOT directive tells the Linker where to
start building the tree, and the .END directive tells the Linker where
the input ends.

The arguments of the .ROOT directive make use of three operators to
express concatenation, overlaying, and memory residency. A pair of
parentheses delimits a group of segments that start at the same
virtual address. The number of nested parenthetical groups cannot
exceed 16.

° The hyphen operator (-) indicates the concatenation of
storage. For example, X-Y means that sufficient memory will
be allocated to contain X and Y simultaneously. X and Y are
allocated in sequence.

° The comma operator (,) appearing within parentheses indicates
the overlaying of wvirtual memory. For example, Y,Z means
that virtual memory can contain either Y or 2. If no
exclamation point (!) precedes the left parenthesis, Y and 2
also share physical memory.

The comma operator (,) is also used to define multiple tree
structures (as described in Section 5.1.5).

Example:

.ROOT X-(Y,Z2-(Z1,22))
.END

OVERLAY CAPABILITY

These directives describe the following tree and 1its corresponding
memory diagram:

71 722 zZ1l (22

Y 7 Y Z

T X

X

To create the overlay description for the task described in Section
5.1.1, the user creates a file that contains the directives:

.ROOT CNTRL- (AO-(Al,A2-(A21,A22)),B0-(B1,B2),C)
.END

To build the task with that overlay structure, the user types:
>LINK/TASK/OVERLAY : STATEM

The switch /OVERLAY tells the Linker that there 1is only one input
file, .ODL, and that this file contains an overlay description for the
task.

5.1.3.2 LJFCTR Directive - Because the tree that represents the
overlay structure can be complex, the Overlay Description Language
includes another directive, .FCTR, that allows the user to build large
trees and represent them more clearly.

The .FCTR directive has a label to its left at the beginning of the
line, that 1is pointed to by a reference in a .ROOT or another .FCTR
statement. The .FCTR directive allows the user to extend the tree
description beyond a single line. (There can be only one .ROOT
directive.)

The decision to use the .FCTR directive is based on considerations of
clarity. To simplify the tree given in the file TFIL, the user can
introduce the .FCTR directive into the overlay description as follows:

.ROOT CNTRL- (AFCTR,BFCTR,C)

AFCTR: .FCTR AO-(Al,A2-(A21,A22))
BFCTR: .FCTR BO-(Bl1,B2)
.END

The label BFCTR, is used in the .ROOT directive to designate the
argument of the .FCTR directive, B0-(B1,B2). The resulting overlay
description is easier to interpret than the original description. The
tree consists of a root, CNTRL, and three main branches. Two of the
main branches have sub-branches.

The .FCTR directive can be nested (to a level of 16). The user can
modify TFIL as follows:

.ROOT CNTRL- (AFCTR,BFCTR,C)

AFCTR: .FCTR AO-(Al,A2FCTR)

A2FCTR: .FCTR A2-(A21,A22)

BFCTR: .FCTR BO-(Bl,B2)
.END

OVERLAY CAPABILITY

5.1.3.3 .NAME Directive - The .NAME directive allows the user to
specify a name for a segment, and in so doing, to attach attributes to
the segment. The name must be unique with respect to filenames,
p-section names, .FCTR labels, and other segment names that are used
in the overlay description.

The chief uses of this directive are:

1. to name uniquely a segment that is to be loaded through the
manual load facility, and

2, to permit a segment that does not contain executable code, to
be loaded through the autoload mechanism.

(Loading mechanisms are discussed in Chapter 6.)
The format of the .NAME directive is
.NAME segname|,attr] [,attr]
where:
segname = a l- to 6-character name composed from the Radix-50
character set, exclusive of the period (.); i.e., A-3Z,
0-9, and $
[] denote optional attributes

attr = one of the following:

GBL The name is entered in the segment's global symbol
table.

The GBL attribute makes it possible to 1load
non-executable overlay segments by means of the
autoload mechanism (see Chapter 6).

NODSK No disk space is allocated to the named segment.

If a data overlay segment has no initial values,
but will have 1its contents established by the
running task, no space for the task image on disk
need be reserved. If a NODSK attribute has been
specified, an attempt to initialize a segment with
data at task-build time results in a fatal error.

NOGBL The name is not entered in the segment's global
symbol table.

If the GBL attribute 1is not present, NOGBL is
assumed.

DSK Disk storage is allocated to the named segment.

If the NODSK attribute is not present, DSK is
assumed.

The attributes described are not attached to a segment until the name
is used in a .ROOT or .FCTR statement that defines an overlay segment.
When multiple segment names are applied to a segment, the attributes
of the last name given are in effect.

OVERLAY CAPABILITY

In the following modified tree for TK1l, the user gives names to the
three main branches, A0, BO, and C, by specifying them in the .NAME
directive, and wusing them in the .ROOT directive. The default
attributes NOGBL and DSK are in effect for BRNCH1 and BRNCH3, but
BRNCH2 has the complementary attributes (GBL and NODSK) that will
cause the name BRNCH2 to be entered into its segment's global symbol
table, and the allocation of disk space for the segment to be
suppressed. BRNCH2 contains uninitialized storage to be utilized at
run-time.

.NAME BRNCH1

.NAME BRNCH2,GBL,NODSK

.NAME BRNCH3

.ROOT CNTRL- (BRNCH1-AFCTR,*BRNCH2-BFCTR,BRNCH3-C)

AFCTR: .FCTR AO-(Al,A2-(A21,A22))
BFCTR: .PCTR BO-*(Bl,B2)
.END

(* is the autoload indicator; it is discussed in Chapter 6.)

The data overlay segment BRNCH2 is loaded by including the following

statement in the user's program.
CALL BRNCH2

This action is immediately followed by an automatic return to the next
instruction in the program.

NOTE

In the absence of a unique name
specification, the Linker establishes a
segment name, using the first .PSECT,
file, or 1library module name occurring
in the segment.

5.1.3.4 .PSECT Directive - The .PSECT directive allows the placement
of a global p-section 1in an overlay structure, to be specified
directly. The name of the p-section (a 1- to 6-character name
composed from the set A-Z, 0-9, and $) and its attributes are given in
the .PSECT directive. This allows use of the name to indicate which
segment the p-section will be allocated to.

5.1.3.5 1Indirect Files - The Overlay Description Language processor
can accept ODL text indirectly, if the text is included in a file
specified in the proper format. If an @ is the first character in an
ODL 1line, it instructs the processor to read text from the file
specified immediately after the @. It accepts the ODL text from the
file as input, at the point in the overlay description where the file
is specified.

For example, if the file BIND.ODL contains

B: .FCTR Bl-(B2,B3)

OVERLAY CAPABILITY

then this text can be replaced by a line beginning with @BIND, at the
position where the text would have appeared:

Indirect Direct
.ROOT A-(B,C) .ROOT A-(B,C)
C: .FCTR C1-(C2,C3) = C: .FCTR C1-(C2,C3)
@BIND B: .FCTR B1-(B2,B3)
.END .END

Two levels of indirection are allowed.

5.1.4 Multiple-Tree Structures

The Linker allows the definition of more than one tree within the
overlay structure. These multiple tree structures consist of a main
tree and one or more co-trees. The root segment of the main tree is
loaded by the Executive when the task is made active, while segments
within each co-tree are loaded through calls to the Overlay Runtime
System.

Except for this distinction, all overlay trees have identical
characteristics -— a root segment that resides in memory, and usually
two or more overlay segments. The main property of a structure
containing more than one tree 1is that storage is not shared among
trees. Any segment in a tree can be referenced from another tree
without displacing segments from the calling tree. Routines that are
called from several main tree overlay segments, for example, can
overlay one another in a co-tree. The same considerations in deciding
whether to create memory-resident overlays or disk-resident overlays
in a single tree structure, apply in building a structure containing
co-trees,

The following paragraphs describe the procedure for specifying
multiple trees in the Overlay Description Language, and illustrate the
use of co-trees to produce the memory allocation best suited to the
needs of the task.

5.1.4.1 Defining a Multiple-Tree Structure - Multiple-tree structures
are specified within the Overlay Description Language by extending the
function of the comma operator. As previously discussed, this
operator, when included within parentheses, defines a pair of segments
that share storage. The inclusion of the comma operator outside all
parentheses delimits overlay trees. The first overlay tree thus
defined is the main tree. Subsequent trees are co-trees.

.ROOT X,Y
X: .FCTR X0-(X1,X2,X3)
Y: .FCTR YO0-(Y1,Y2)
.END

In the example above, two overlay trees are specified: a main tree
containing the root segment X0 and three overlay segments, and a
co-tree consisting of root segment Y0 and two overlay segments. The
Executive loads segment X0 into memory when the task is activated.
The task then loads the remaining segments through <calls to the
Overlay Runtime System.

OVERLAY CAPABILITY

A co-~tree must have a root segment to establish linkage with 1its own
overlay segments. Co-tree root segments need not contain code or
data. A segment of this type, called a null segment, can be created
by means of the .NAME directive. The previous example is modified, as
shown below, to move file Y0.0BJ to the root, and include a null
segment.

.ROOT X,Y

X: .FCTR X0-Y0-(X1,X2,X3)
.NAME YNUL

Y: .FCTR YNUL-(Y1,Y2)
.END

The null segment YNUL is created by use of the ,NAME directive, and
replaces the co-tree root that formerly contained Y0.0OBJ.

5.1.4.2 Multiple-Tree Example - The following example illustrates the
use of multiple trees to reduce the size of the task.

In the example, the root segment CNTRL consists of a small dispatching
routine and two modules, CNTRLX and CNTRLY. CNTRLX and CNTRLY are
logically independent of each other, approximately equal in 1length,
and must be accessed from modules on all the paths of the main tree.

The user can define a co-tree for CNTRLX and CNTRLY and reduce the
amount of storage required by the task. The overlay description in
TFIL is modified as follows:

.NAME CNTRL2Z2
.ROOT CNTRL- (AFCTR,BFCTR,C) ,CNTRL2- (CNTRLX ,CNTRLY)

.END

The co-tree is defined in the .ROOT directive, by the placement of the
comma operator outside all parentheses (immediately before CNTRL2)., A
co—-tree must have a root segment to establish linkage with the overlay
segments within the co-tree. When no code or data logically belongs
in the root, the .NAME directive can be used to c¢reate a null root
segment.

The tree for the task TKl now is:

A2l A22
Al A2 Bl 2
BO c CNTRLX CNTRLY
AQ | § [
CNTRL CNTRL2

OVERLAY CAPABILITY

The corresponding memory diagram is:

- 6200

CNTRLX CNTRLY

CNTRL2 _ 2200
A21ja22
Al A2 Bl | B2

A0 BO c

- 1000
CNTRL

- 0

The specification of the co-tree decreases the storage allocation by
4000 bytes. CNTRLX and CNTRLY can still be accessed by all modules in
the main tree. The only requirement imposed by the introduction of
the co-tree is the logical independence of CNTRLX and CNTRLY.

Any number of co-trees can be defined. Additional co-trees can access
all modules in the main tree and other co-trees.

5.1.5 Overlay Core Image

The contents of the core image for a task with an overlay structure
are discussed briefly in the following paragraphs.

The root segment of the main tree contains modules that are resident
in memory throughout the execution of the task, along with the
following data required by the overlay loading routines:

e Segment tables

e Autoload vectors

code and data

window descriptors

region descriptors .
main tree

root segment

segment descriptors

autoload vectors

code and data

The segment table contains a segment descriptor for every segment in
the task. The descriptor contains information about the load address,
the length of the segment, and the tree linkage.

OVERLAY CAPABILITY

Autoload vectors appear in every segment that calls modules in another
segment located farther away from the root of the tree. Autoload
vectors are described in the discussion of 1loading mechanisms in
Chapter 6.

The main tree overlay region consists of memory allocated for the
overlay segments of the main tree. The overlays are read into this
area of memory as they are needed.

autoload vectors _]
overlay
code and data _Tegment

overlay

-
autoload vectors overlay
segment

code and data —J

The co-tree overlay region consists of memory allocated for co-tree
overlay segments.

The co-tree root segment contains modules that, once 1loaded, must
remain resident in memory.

5.1.6 Overlaying Programs Written in a Higher~level Language

Programs that are written in a higher-level language usually require
the use of a large number of library routines in order to execute.
Unless care is taken when overlaying such programs, the following
problems can occur:

e Linker throughput may be drastically reduced because of the
number of library references in each overlay segment.

® Library references from the default object module library,
which are resolved across tree boundaries, can result in
unintentional displacement of segments from memory at run-time.

e Attempts to task-build such programs can result in multiple and
ambiguous symbol definitions when a co-tree structure is
defined.

The following procedures are effective in solving these problems:

1. Linker throughput can be increased by linking commonly used
library routines into the main root segment.

2. Ambiguous and multiple definitions, and cross-tree references
can be eliminated by using the /NOFULL switch (the default)
to restrict the scope of the default library search.

OVERLAY CAPABILITY

The user can force library modules into the root by preparing a list
of the appropriate global references and linking the object module
into the root segment.

The appropriate user's guide for the language should be consulted for
other ways to reduce task size.

5.1.7 Defining the ODL File

The user constructs a file, STATE, of ODL directives to represent the
tree for STATE, using the COBOL Merge Utility of the BASIC-PLUS-2
Build Command.

(The * in the ODL description 1is the autoload 1indicator; it 1is
described in Chapter 6.)

5.1.8 Building the Task

The names of the input files are specified by a single filename that
designates the file containing the overlay description:

The reader should note that the ODL file specification automatically
terminates command input, and the Linker automatically prompts for
options.

5.2 SUMMARY OF THE OVERLAY DESCRIPTION LANGUAGE

1. An overlay structure consists of one or more trees. Each
tree contains at least one segment. A segment is a set of
modules and p-sections that can be loaded by a single disk
access.

A tree can have only one root segment, but it can have any
number of overlay segments.

2. An overlay description is a text file consisting of a series
of ODL directives, one directive per line. This file is
entered in a Linker command line, and is identified as an ODL
file by the presence of the /OVERLAY switch after the
filename. If an overlay description text file is entered, it
must be the only input file specified.

3. The overlay description language provides five directives for
specifying the tree representation of the overlay structure,
namely:

.ROOT
.END
.PSECT
.FCTR
.NAME

OVERLAY CAPABILITY

These directives can appear in any order in the overlay
description, subject to the following restrictions:

a. There can be only one .ROOT and one .END directive.

b. The .END directive must be the last directive because it
terminates input.

The tree structure is defined by the operator's hyphen (-),
comma (,), and by the use of parentheses.

e The hyphen operator (-) indicates that its arguments are
to be concatenated and thus coexist in memory.

° The comma operator within parentheses indicates that its
arguments are to overlay each other either physically if
disk-resident, or virtually if memory-resident.

° The comma operator not within parentheses delimits
overlay trees.

° The parentheses group segments that begin at the same
' point in memory. ’

For example,
.ROOT A-B-(C,D-(E,F))

defines an overlay structure with a root segment
consisting of the modules A and B. In this structure,
there are four overlay segments: C, D, E, and F. The
outer pair of parentheses indicates that the overlay
segments C and D start at the same location in memory;
and similarly, the inner parentheses indicate that E and
F start at their own shared address.

The .ROOT directive defines the overlay structure. The
arguments of the .ROOT directive are one or more of the
following:

e File specifications as described in Section 2.9

e Factor labels

e Segment names

e P-section names

The .END directive terminates input.

The .FCTR directive provides a means for replacing text by a

symbolic reference (the factor label). This replacement is

useful for two reasons:

a. The .FCTR directive extends the text of the .ROOT
directive to more than one line and thus allows complex
trees to be represented.

b. The .FCTR directive allows the overlay description to be

written in a form that makes the structure of the tree
more apparent.

10.

OVERLAY CAPABILITY

For example:

.ROOT A-(B-(C,D) ,E-(F,G) ,H)
.END

can be expressed, using the .FCTR directive, as follows:

.ROOT A-(Fl,F2,H)

Fl: .FCTR B-(C,D)
F2: .FCTR E- (F,G)
.END

The second representation makes it clear that the tree has
three main branches.

The .PSECT directive provides a means for directly specifying
the segment in which a p-section is placed. It accepts the
name of the p-section and its attributes. For example:

.PSECT ALPHA,CON,GBL,RW,I,REL

ALPHA is the p-section name and the remaining arguments are
attributes. P-section attributes are described in Chapter 5.

The p-section name (composed from the characters A-Z, 0-9,
and $) must appear first in the .PSECT directive, but the
attributes can appear in any order, or be omitted. If an
attribute 1is omitted, a default condition is assumed. The
defaults for p-section attributes are RW, I, LCL, REL, and
CON.

In the example above, therefore, it is necessary to specify
only those attributes that do not correspond to the defaults:
.PSECT ALPHA,GBL

The .NAME directive provides a means for designating a
segment name for wuse in the overlay description, and for
specifying segment attributes. This directive is useful for
creating a null segment, naming a segment that is to be
loaded manually, or naming a non-executable segment that is
to be autoloadable. If the .NAME directive is not used, the
name of the first file, p-section, or library module 1in the
segment is used to identify the segment.

The .NAME directive creates a segment name as follows:
.NAME segname,attr,attr

where segname is the designated name (composed from the
character set A-Z, 0-9, and §), and attr is an optional
attribute taken from the following: GBL, NODSK, NOGBL, DSK.
The defaults are NOGBL and DSK. The defined name must be
unique with respect to the names of p-sections, segments,
files, and factor labels.

A co-tree can be defined by specifying an additional tree
structure in the .ROOT directive. The first overlay tree
description in the .ROOT directive 1is the main tree.
Subsequent overlay descriptions are co-trees. For example:

.ROOT A-B-(C,D-(E,F)) ,X-(Y,2),0-(R,S,T)
The main tree in this example has the root segment consisting
of files: A.OBJ and B.OBJ. Two co-trees are defined: the
first co-tree has the root segment X, and the second co-tree
has the root segment Q.

5-18

OVERLAY CAPABILITY

5.3 OVERLAYING BASIC-PLUS-2 PROGRAMS

Programs can be logically broken into sections (subprograms) that are
compiled and input to the task builder as object modules. These
sections can then be overlaid, which allows you to create programs
that would otherwise exceed the maximum in-core program limits.

A program requires overlays when in-core program needs exceed the
system default maximum job size.

5.3.1 Overlays

When you use the Linker's overlay facility, you can specify only one
input file in the command line. This input file describes the overlay
structure, the location of program sections, and the loading
procedures.

Overlay structure is defined by means of the Overlay Description
Language (ODL). This structure is analogous to a tree, with the main
program being the root and the program sections representing the
branches. The ODL directives are contained in a user-created file
that is specified in the command string. The OVERLAY qualifier must
be 1included 1in the LINK command line to identify the file as an ODL
file.

Note that you can use the output produced by the BUILD command to
create overlaid program segments. That is, the BUILD command produces
a command file that contains all of the command input required by the
Linker and an ODL file. You can examine the ODL file and use the
Editor to modify its content before the command file is input to the
Linker.

At a minimum, the overlay description must contain a .ROOT and an .END
directive. The .ROOT directive declares the overlay tree structure
and the .END directive signifies the end of input. Note that an
overlay description can contain only one .ROOT directive, which limits
the tree structure declaration to a single line of input. The Linker
truncates an input 1line that exceeds 80 characters, but this
limitation should not affect the majority of tree structure
declarations because you can use the .FCTR directive to build large
trees and extend the description beyond a single 1line. For a
description of the .FCTR directive, refer to Section 5.2, item 7.

Suppose, for example, you have a program consisting of a main program
and calls to three external subprograms. One subprogram does
pre-processing of data, the second does primary processing, and the
third does post-processing. The main program and three subprograms
are compiled as object modules named MAIN.OBJ, PRE.OBJ, PROC.OBJ, and
POST.OBJ, respectively.

You can build an overlay structure that causes the main program to be
resident in memory and the three subprograms to share the same area of
memory. The ODL directive that creates this structure has the form:

.ROOT MAIN-*(PRE,PROC,POST)
.END

In this example:

.ROOT MAIN defines the root of the overlay structure as the
object module named MAIN.OBJ.

5-19

OVERLAY CAPABILITY

- the hyphen indicates that the following modules
are concatenated to the preceding module.

* the asterisk indicates that modules are loaded
automatically (autoload). The asterisk must
precede every module. If all modules within
parentheses are to be autoloaded, a single
asterisk preceding the parentheses is used.

() parentheses group the descriptions of overlay
sections.

PRE,PROC,POST commas separating object modules contained 1in
parentheses indicate that the named modules occupy
the same virtual memory area.

Figure 5-1 1is a graphic illustration of the overlay &structure
specified above as it would appear in memory.

PRE PROC POST

MAIN

Figure 5-1 Overlay Structure

To create an overlaid program by means of the BUILD command, you edit
the ODL file that is generated. That is, a BUILD command produces a
command file (file type .CMD) and an overlay description language file
(file type .0ODL). The ODL file must be edited to reflect the desired
overlay structure prior to input to the Linker.

For example, if the object modules described 1in Figure 5-1 (i.e.,
MAIN, PRE, PROC, and POST) are used as arguments in the BUILD command:

BUILD MAIN,PRE,PROC,POST

the result is a command file (MAIN.CMD) that is invoked by the command
line:

LINK/BASIC MAIN
MAIN.CMD corresponds to the following LINK command string:
LINK/TASK:MAIN/CHECKPOINT/MAP :MAIN/OVERLAY :MAIN/OPTIONS : BASOPT

where the options command file BASOPT consists of the following option
lines:

LIBR=BASIC2:RU

UNITS = 14
ASG=SY:5:6:7:8:9:10:11:12
ASG=TI:13

OVERLAY CAPABILITY

The BUILD command also generates an overlay description file
(MAIN.ODL) that appears as follows:

.ROOT USER

USER: .FCTR MAIN-PRE-PROC-POST-LIBR
LIBR: .FCTR [1,1]BASIC2/LB
.END

You can edit this ODL file to create an overlay as follows:

.ROOT USER

USER: .FCTR MAIN-LIBR-*(PRE-LIBR,PROC-LIBR,POST-LIBR)
LIBR: .FCTR [1,1]BASIC2/LB
.END

The overlay structure used in this example duplicates that shown in
Figure 5-1. Note that each branch of the structure must be associated
with the library. This procedure ensures that the correct routines
are linked at run time.

The path of an overlay structure is from the root of the structure,
along a series of branches, to the outermost section. The root
section can call any overlay section. However, a subprogram in an
overlay section can call another overlay section only if they share a
common path. Therefore, in the previous example, MAIN can call PRE,
PROC, and POST, but the three subprograms cannot call each other.

The concept of paths is better illustrated with a tree diagram. For
example:

.ROOT A-B-*(C,D-(E,F,G))
.END

where A and B are two object modules representing the root section. C
and D are the branches of A and B. E, F, and G are branches of D. A
tree diagram of this structure appears in Figure 5-2.

Figure 5-2 Overlay Path

OVERLAY CAPABILITY
The paths of this structure are: A-B-C, A-B-D-E, A-B-D-F, and
A-B-D-G. Within this structure:
1. and B can call all the sections.

3.

A

2. D can call E, F, and G.
C and D cannot directly call each other.
C

4, cannot call E, F, and G.

5. E, F, and G cannot call each other.
Note that if A calls C, C€C in turn <can call B. However, 1if B
simultaneously calls D and then attempts to return to C, an error

occurs. The error is due to B returning to an overlaid segment, i.e.,
D overlays C.

OLD NONAME

Basic 2

COM

Basic 2

BUILD NONAME/IND

Basic2

EXIT

LINK/BASIC NONAME.CMD
In this command series, BUILD 1is wused to create a command file
(NONAME.CMD) composed of a previously compiled object module. The
command file contains all the libraries and options that are required
input to the Linker as well as the BASIC switch (/IND) that enables
the use of RMS indexed I/O. The command file is used as input to the
Linker and results 1in a map file and an executable task (NONAME.MAP
and NONAME.TSK) .

Note that no additional qualifiers or options can be associated with
the command file input specification. For example:

LINK/NOMAP/BASIC NONAME.CMD
is illegal.
The use of an RMS switch (/VIR, /SEQ, /REL, or /IND) causes the BUILD

command to change the generated. .ODL file as required for RMS I/0.
These changes are made automatically when the appropriate switch is

appended to the BUILD command. Consider the following example of
NONAME .ODL:
.ROOT BIROT4-USER,RMS
USER: .FCTR NONAME-LIBR
LIBR: .FCTR [1,1]1BASIC2/LB
RMS: .FCTR BIO047
@sy:[1,1] BASIC4
.END

OVERLAY CAPABILITY

5.4 USING OVERLAYS WITH TRAX COBOL

5.4.1 Standard ODL File

The standard ODL file generated by the TRAX COBOL compiler consists of
a header and a body. The header contains information that is required
to merge one or more ODL files. The body contains ODL directives that
describe the object program.

5.4.2 ODL File Header

The ODL file header consists of a sequence of comment lines. Two are
required in every ODL file, and others are supplied as needed. The
required comment lines are:

; COBOBJ=XXXXXX.0BJ

; COBKER=KK

Where:
XXXXXX.0BJ is the name of the object module being described
KK is the kernel that was used to generate the PSECT

names for the COBOL program.
The following comment lines are supplied as needed:

; COBMAIN This comment line is supplied if the program being
described 1is a main program. The absence of this
line means that the ODL file was generated for a
COBOL subprogram.

; RMSSEQ=CIOOXY This comment line is specified if the program
requires RMS 1I/0 support. One or more lines may
be supplied. X and Y represent integer codes that
respectively specify the file organization and
operational support required for that
organization. File organization is specified by
the following codes:

CODE ORGANIZATION
1 sequential
2 relative
3 indexed

5.4.3 ODL File Body

The ODL file body describes the overlay structure of the COBOL
program. The body contains the following ODL directive types:

1. L.PSECT defines the name of the code PSECT and makes it
known to the TRAX Linker.

2. .NAME defines the name to be assigned to the overlay
segment by the Trax Linker.

5-23

OVERLAY CAPABILITY

3. .FCTR describes the contents of the segments.
4, .ROOT defines the root.
5. .END informs the TRAX Linker that the end of the ODL

file has been reached.
6. ;comments contains comment entries.

The .ROOT and .END directives are not supplied by the COBOL compiler.
They are 1inserted into the ODL file generated by the Merge Utility.
If you are generating a stand alone ODL file, these directives must be
supplied by you. 1If the ODL file you are generating is to be used as
input to the Merge Utility, leave these directives out.

Within a compiler—-generated ODL file, the directives .PSECT, .NAME,
and .FCTR are denerated around the PSECT kernel. If the PSECT name
kernel for a given program is KK, the format of the names generated in
the ODL file is:

Entity Format of Name
.PSECT $KKMMM
.NAME KK$SMMM
.FCTR KKMMMS$S

Each .PSECT defined in the ODL file begins with a $§ followed by the
two-character kernel ($SKK). Each (NAME directive begins with the
two-character kernel followed by $ (KKS). Finally, each .FCTR
directive begins with the two-character kernel and ends with a §
(KKMMMS) .

COMPILER-GENERATED ODL FOR COBOL PSECTS

The following sections discuss the ODL directives generated for
different types of overlay requirements. The characters NNN, when
used in examples, refer to the three character suffix generated by the
compiler for each PSECT. The characters KK refer to the kernel
characters that make the PSECT unique to a particular compilation.

5.4.4 ODL Generated for Overlays Containing Only One PSECT

For overlays containing only one PSECT, the following 1lines are
generated:

.PSECT $KKNNN,GBL,RW,CON, I
.NAME KK$NNN,GBL
KKNNNS$.FCTR *KKSNNN-SKKNNN

5.4.5 ODL Generated for Overlays Containing More Than One PSECT

For each overlay that contains more than one PSECT, a .PSECT directive
is generated for each PSECT in the overlay. These .PSECT directives
are followed by a .NAME and .FCTR directive. Consider the following
example.

OVERLAY CAPABILITY

Example

Two PSECTs, $AA001 and $AA002, are to be placed in the same overlay.
The segment-number assigned to the PSECTs is 20. The following ODL
directives are generated:

;DEFINE PSECT $AA001
.PSECT $AAO01,GBL,RW,CON,I
;DEFINE PSECT SAA002
.PSECT SAA002,GBL,RW,CON, I

;DEFINE THE OVERLAY NAME

.NAME AA$020,GBL

;DEFINE OVERLAY CONTENTS
AA020S: .FCTR *AAS020-$SAA001-$AA002

ODL Generated for All Overlayable PSECTS

All .FCTR directives that describe the overlayable PSECTs must be
collapsed into one final .FCTR directive. This directive describes
the entire overlayable portion of the object code. The name
associated with this .FCTR directive is derived from the two-character
kernel assigned to the PSECTs. If the kernel is KK, then the name of
the .FCTR directive that describes the entire overlayable part of the
object code is KKOVRS.

The following example shows how the KKOVR$ factor is developed for
various overlay configurations:

Example 1: All Code Psects Overlay One Another

.PSECT $AA001,GBL,RW,CON,I
.NAME AAS001,GBL

AA001: .FCTR *AAS001-SAAQ01
i
.PSECT $AA002,GBL,RW,CON, I
.NAME AAS$002,GBL

AAQ02S: .FCTR *AAS002-$AA002
.PSECT $AAO03,GBL,RW,CON, I
.NAME AAS003,GBL

AAO003S: .FCTR *AAS003-$SAA003
.PSECT $AA004,GBL,RW,CON, I
.NAME AAS$004,GBL

AAQ004S: .FCTR *AAS004-$AA004
H
.PSECT $AA005,GBL,RW,CON, I
.NAME AAS005,GBL

AAQ05S: .FCTR *AAS005-SAA005

;IN THIS EXAMPLE, ALL PSECTS OVERLAY
:ONE ANOTHER.
AAOVRS: .FCTR (AA0015,2A0028 ,AA003$,AA0045,AA0045,AA005%)

OVERLAY CAPABILITY

Example 2: Two Code Psects Are in the Same Overlay

.PSECT $AA001,GBL,RW,CON,I
:PSECT $AA002,GBL,RW,CON, I
:NAME AAS001,GBL

AAQ001S: .FCTR *AAS001-SAA001-SAA002
.PSECT $AA003,GBL,RW,CON, I
.NAME AAS003,GBL

AAQ03S: .FCTR *AAS003-SAA003
.PSECT $AA004,GBL,RW,CON, I
.NAME AAS004,GBL

AAQ004S: .FCTR *AAS004-SAAQC4
.PSECT $AA005,GBL,RW,CON, I
.NAME AAS005,GBL

AA0Q5S: .FCTR *AAS005-SAAQO05

AAOVRS : .FCTR AA001S,AA003$,AA004$,AA0058

Example 3: Two Occurrences of Two Psects in the Same Overlay

;IN THIS EXAMPLE, PSECTS $AA(001 AND S$AAQ02
;ARE IN THE SAME OVERLAY. PSECTS $AA(003
;AND $AA004 ARE IN THE SAME OVERLAY.

;s PSECT $AA005 IS IN AN OVERLAY ALL BY ITSELF

’

;s PSECT $AA001,GBL,RW,CON,I
; PSECT $AA002,GBL,RW,CON, I
.NAME AAS$001,GBL

AAQOl1S: .FCTR *AAS001-$AA001-$AA002
; PSECT $AA003,GBL,RW,CON,I
.PSECT $AA004,GBL,RW,CON, I
.NAME AAS003,GBL

AA003S: .FCTR *AAS003-SAA003-$SAA004
.PSECT $AA005,GBL,RW,CON, I
. NAME AAS005,GBL

AAQ05S: .FCTR *AAS005-SAA005

AAOVRS: .FCTR AA001$,AA003$,AA005$

5.4.6 Merging Standard ODL Files

To develop an ODL file for a task composed of more than one COBOL
object program, it 1is necessary to merge the ODL files for each
individual object program into a single ODL file that describes the
overlay requirements for the task.

All of the ODL files to be merged are partial ODL files. That 1is,
none of these ODL files can be submitted directly to the Linker to
link a task, because none of the compiler—-generated ODL files contain
a .ROOT directive: The .ROOT directive that describes the task is
supplied by the Merge Utility.

OVERLAY CAPABILITY

Merging COBOL compiler-generated ODL files is accomplished by
executing the ODL merge utility. (See TRAX COBOL User's Guide Section
2.6, Using the ODL Merge Utility.))

5.4.7 1Including Non-COBOL Programs in a Task

To use the Merge Utility to include a non-COBOL object module in a
task image, you must:

1. Create a standard COBOL ODL file (use the DEC editor)

2. Specify this ODL file as input to the ODL Merge Utility.

5.4.8 Creating a Standard COBOL ODL File

A standard COBOL ODL file for a non-COBOL object module contains one
or two directive lines:

1. Object Program ID Line - This 1line 1is required. It
identifies the object module to be included in the task
image. The format of this line is:

; COBOBJ =XXXXXX.0BJ

Where XXXXXX.OBJ is the name of the object module to be
included in the task image.

2. Main Program ID Line - This 1line 1is present only for
non-COBOL object modules that are main programs as opposed to
being subprograms. The format of the line is:

; COBMAIN

For each invocation of the COBOL ODL Merge Utility, one and only one
main program ODL file can be specified. If no main program ODL file
is specified, the Merge Utility continues to request more input wuntil
a main program ODL file is specified. If more than one main program
ODL file is specified, all but the first is rejected, and appropriate
diagnostic error messages are issued. Consider the following
examples.

Example 1

MACRO program START.OBJ is a main program in a task consisting of a
main program and several subprograms. The ODL file to be
hand-generated is:

; COBOBJ=START .OBJ
; COBMAIN

Example 2

Macro subprogram SUBX.OBJ is to be part of a task image that consists
of several COBOL subprograms and a COBOL main program. The ODL file
to be hand-generated is:

; COBOBJ=SUBX.0OBJ

OVERLAY CAPABILITY

5.4.9 Rearranging a Compiler—generated ODL File

The ODL file generated by the compiler can be rearranged to modify the
overlay structure of a task. If the ODL file describes a task that
has overlayable segments, one or more of these segments can be
converted into non-overlayable segments by:

1. Modifying the compiler—-generated ODL file.

2, Specifying a one-line Linker option at Link time for each
segment made non-overlayable.

5.4.10 Modifying the Compiler—-generated ODL File

Modifying the compiler-generated ODL file requires the following
steps:

1. Each overlayable segment is named in the ODL file by an
ODL.NAME directive. This .NAME directive must be removed.

2., Each name appearing in a .NAME directive is marked with an *
and placed as the first element of a .FCTR directive. For
each .NAME directive removed by step 1, this .FCTR directive
must be removed.

3. All references to the name of the .FCTR directive removed in
step 2 must be removed from the ODL file.

4, All PSECTs referenced in the .FCTR directive that was removed
in step 3, must be removed from the ODL file.

Example

The task image contains three overlayable segments, C€$$010, C$$015,
and C$$020. Segment C$$020 is to be forced into the root. Figure 5-3
contains a listing of the merged ODL file.

;MERGED ODL FILE CREATED ON 26-JAN-77 AT 10:50:00
; COBOL STANDARD ODL FILE GENERATED ON: 26-JAN-77 10:48:37
; COBOBJ=TEST1.0BJ
; COBKER=CS$
; COBMAIN
.NAME C$$010,GBL
.PSECT C003,GBL,I,RW,CON
C$010S: .FCTR *C$S010-SC$003
.NAME C$$015,GBL
.PSECT C004,GBL,I,RW,CON
C015: .FCTR *C$$015-3C$S004
.NAME C$$020,GBL
.PSECT CS005,GBL,I,RW,CON
C$0208: .FCTR *C$$020-$CS005

CSOVRS: .FCTR C010,C$015%,C$0208
CBOBJS$: .FCTR TEST1.0OBJ
CBOVRS: .FCTR CSOVRS
CBOTSS$: .FCTR {320,13]COBLIB/LB
RMSS: .FCTR {1,1]1RMSLIB/LB
OBJRTS: .FCTR CBOBJS-CBOTSS-RMSS
.ROOT OBJRTS$- (CBOVRS)
.END

Figure 5-3 Merged ODL File Listing

5-28

OVERLAY CAPABILITY

To force segment C$$020 into the root, the merged ODL file must be
modified as follows:

1. The .NAME directive referencing C$$020 must be removed.
2. The .FCTR directive containing *C$$020 must be removed.

3. All references to the PSECTs in the removed .FCTR directive
must be removed.

Figure 5-4 contains the ODL listing after the modifications have been
made.

;MERGED ODL FILE CREATED ON 26-JAN-77 AT 10:55:22
; COBOL STANDARD ODL FILE GENERATED ON: 26-JAN-77 10:48:37
; COBOBJ=TEST1 .0OBJ
; COBKER=CS$
; COBMAIN
.NAME C$$010,GBL
.PSECT C003,GBL,I,RW,CON
CS$S010S$: .FCTR *C$$010-CSS003
.NAME C$$015,GBL
.PSECT C004,GBL,I,RW,CON
C015: .FCTR *C$$015-SCS$004
CSOVRS: .FCTR C010,C$0158
CBOBJS: .FCTR TEST1.O0BJ
CBOVRS: .FCTR CSOVRS
CBOTSS: .FCTR [1,1]COBLIB/LB
RMSS: .FCTR [1,1]RMSLIB/LB
OBJRTS$S: .FCTR CBOBJS$S-CBOTSS-RMSS$
.ROOT OBJRTS- (CBOVRS)
.END

Figure 5-4 Modified ODL File

CHAPTER 6

LOADING MECHANISMS

The method for loading disk-resident overlays is called:

Autoload in which the Overlay Runtime System is
automatically called upon to load those segments
that are marked by the user.

In the autoload method, loading and error recovery are handled by the
Overlay Runtime System. Overlays are automatically loaded by being
referenced through a transfer-of-control instruction (CALL, JMP, or
JSR). No explicit calls to the Overlay Runtime System are needed.

Provision must be made for loading the overlay segments of the main
tree, and the root segments and overlay segments of the co-trees.
Once loaded, the root segment of a co-tree remains in memory.

6.1 AUTOLOAD

To use the autoload method, the user places the autoload indicator, *,
in the ODL description of the task, at the points indicating where
loading must take place. The execution of a transfer-of-control
instruction to an autoloadable segment up-tree (farther away from the
root) automatically initiates the autoload process.

6.1.1 Autoload Indicator

The autoload indicator, *, marks as autoloadable the segment or other
task element (as defined below). If the autoload indicator is applied
to an ODL statement enclosed in parentheses, then every task element
named within the parentheses is marked as autoloadable. Applying the
autoload indicator at the outermost parenthesis level of the ODL tree
description marks every module in the overlay segments as
autoloadable.

LOADING MECHANISMS

If, in the TKl example of Chapter 6, segment C consisted of a set of
modules Cl, C2, C3, C4, and C5, the tree diagram would be:
A21 A22
Cc5
c4
Al A2 Bl B2 c3
| c2
A0 B Cl
L : I J
CNTRL
Placing the autoload indicator at the outermost parenthesis level,

ensures that, regardless of the flow of control within the task, a
module will be properly loaded when it is called. The ODL description
for the task with this provision is:

.ROOT CNTRL-* (AFCTR,BCTR,CFCTR)

AFCTR: .FCTR AO-(Al,A2-(A21,A22))
BFCTR: .FCTR BO-(B1,B2)
CFCTR: .FCTR C1-C2-C3-C4-C5
.END
To ensure that all modules of a co-tree are properly loaded, the user
must mark its root segment (CNTRL2) as well as its outermost

parenthesis level as follows:

.ROOT CNTRL-* (AFCTR,BFTCR,CFCTR) , *CNTRL2-* (CNTRLX,CNTRLY)

The example above assumes that one or more modules

executable code reside in CNTRL2.

containing

The autoload indicator can be applied to the following elements:

° Filenames - to make all the components of the file
autoloadable.

° Portions of ODL tree descriptions enclosed in
parentheses - to make all the elements within the
parentheses autoloadable. This includes elements within any
nested parentheses.

) P-section names - to make the p-section autoloadable. The
p-section must have the I (instruction) attribute.

° Segment names defined by the .NAME directive - to make all
components of the segment autoloadable.

) .FCTR label names - to make the first component of the
factor autoloadable. All elements of the .FCTR are

autoloadable if they are enclosed in parentheses.

LOADING MECHANISMS

In the following example, the user introduces two .PSECT directives
and a .NAME directive into the ODL description for TK1l, and then
applies autoload indicators in the following way:

.ROOT CNTRL- (*AFCTR,*BFCTR, *CFCTR)

AFCTR: .FCTR A0-*ASUB1-ASUB2-*(Al,A2-(A21,222))
BFCTR: .FCTR (BO-(B1,B2))
CFCTR: .FCTR CNAM-C1-C2-C3-C4-C5

.NAME CNAM,GBL

.PSECT ASUB1,I,GBL,OVR
.PSECT ASUB2,I,GBL,OVR
.END

The interpretation for each autoload indicator in the overlay
description is as follows:

(*AFCTR, *BFCTR, *CFCTR)
The autoload indicator is applied to each factor name.

® *AFCTR=*A0
® *BFCTR=* (B0-(B1-B2))
® *CFCTR=*CNAM

CNAM, however, 1is an element defined by a .NAME
directive; therefore, all the components of the
segment to which the name applies are made
autoloadable; that is, Cl1, C2, C3, C4, and C5.

*ASUB1 The autoload indicator is applied to the name of a
p-section having the I attribute, so the p-section
ASUBl is made autoloadable.

*(Al,A2-(A21,A22)) The autoload indicator 1is applied to a
portion of the ODL description enclosed in parentheses,
so every element within the parentheses is made
autoloadable (that is, files Al, A2, A21, and A22).

The net effect of this ODL description is to make every element except
file ASUB2 autoloadable.

6.1.2 Path-Loading

Autoload uses the technique of path-loading. That is, a call from one
segment to another segment up-tree (farther away £from the root)
ensures that all the segments on the path from the calling segment to
the called segment will be resident in physical memory and will be
mapped. Path-loading is confined to the tree in which the called
segment resides. A call from a segment in one tree to a segment in
another tree results in the loading of all segments on the path in the
second tree, from the root to the called module.

Example:
A2l A22
C5
A2 Bl B2 c3
| c2
A0 BO Cl
L l J

LOADING MECHANISMS

In the example above, if CNTRL calls A2, then all the modules between
the calling module CNTRL and the called module A2 are loaded. 1In this
case, modules A0 and A2 are loaded.

The Overlay Runtime System keeps a record of the segments that are
loaded and mapped, and issues diksk-load requests only for those
segments not in memory. If CNTRL calls A2 after calling Al, A0 is not
loaded again because it is already in memory and mapped.

A reference from one segment to another segment down-tree (closer to
the root) 1is resolved directly. For example, A2 can immediately
access A0 because A0 was path-loaded in the call to A2.

6.1.3 Autoload Vectors

When the Linker sees a reference to a global symbol in an autoloadable
segment up-tree, it generates an autoload vector for the referenced
global symbol. The reference is changed to a definition that points
to an autoload vector entry. The autoload vector has the following
format:

JSR PC,sub

$SAUTO

SEGMENT DESCRIPTOR ADDR.

ENTRY POINT ADDRESS

A transfer-of-control instruction to the global symbol executes the
call to the autoload routine, S$AUTO.

An exception to the procedure for generating autoload vectors is made
in the <case of a p-section with the D (data) attribute. References
from a segment to a global symbol up-tree in a p-section with the D
attribute are resolved directly.

Because the Linker can obtain no information about the flow of control
within the task, it often generates more autoload vectors than are
necessary. The user, however, can apply knowledge of the flow of task
control and knowledge of path-loading to determine the placement of
autoload indicators. By placing the autoload indicators only at the
points where loading is actually required, the user can minimize the
number of autoload vectors generated for the task.

In the following example, all the calls to overlays originate in the
root segment. That is, no module in an overlay segment calls outside
its segment. The root segment CNTRL has the following contents:

PROGRAM CNTRL
CALL Al

CALL A2l

CALL A2

CALL A0

CALL A22

CALL BO

CALL Bl

CALL B2

LOADING MECHANISMS

CALL C1
CALL C2
CALL C3
CALL C4
CALL C5
END

If the autoload indicator is placed at the outermost parenthesis
level, thirteen autoload vectors are generated for this task;
however, since A2 and A0 are 1loaded by path-loading to A2l1, the
autoload vectors for A2 and A0 are unnecessary. Moreover, the call to
Cl loads the segment that contains C2, C3, C4, and C(C5; therefore,
autoload vectors for C2 through C5 are unnecessary.

The user eliminates the unnecessary autoload vectors by placing the
autoload indicator only at the points where explicit loading is
required, as follows:

.ROOT CNTRL- (AFCTR,*BFCTR,CFCTR)

AFCTR: .FCTR AO-(*Al,A2-*(A21,A22))
BFCTR: .FCTR (BO-(B1,B2))
CFCTR: .FCTR *Cl-C2-C3-C4-C5

.END

With this ODL description, the Linker generates seven autoload
vectors -- those for Al, A21, A22, BO, Bl, B2, and Cl.

6.1.4 Autoloadable Data Segments

Overlay segments containing no executable code can make use of the
autoload facility in the following way. The user must first include a
.NAME directive with the GBL attribute, as described in Section
6.1.3.4.

For example:

.ROOT A-*(B,C)
.NAME BNAME,GBL

B: .FCTR BNAME-BFIL
.END

The global symbol BNAME is created and entered into the symbol table
of segment BNAME. Since this segment is marked to be autoloaded, root
segment A calls segment BNAME as follows:

CALL BNAME

The segment is autoloaded and an immediate return to in-line code
occurs.

The user should place the data of BFIL in a .PSECT with the D
attribute to suppress the creation of autoload vectors.

LOADING MECHANISMS

6.2 GLOBAL CROSS-REFERENCE OF AN OVERLAID TASK

Chapter 6 introduced the global cross-reference feature. This section
illustrates a global cross-reference that has been created for an
overlaid task. The task consists of a root segment containing the
module ROOT.OBJ, and two overlay segments composed of modules OVR1 and
OVR2. The overlay description of the file is as follows:

.ROOT ROOT- (OVR1, *OVR2)
Only segment OVR2 is autoloadable.

The resulting cross~reference listing is shown in Figure 6-1. By
consulting the cross-reference 1listing, the user can make the
following observations.

The global symbol OVRI is defined in the module OVRl, and a single
non-autoloadable, up-tree reference 1is made to this symbol by the
module ROOT, as indicated by the circumflex (up-arrow on some
printers). Note that there is no way to load segment OVR1l because of
the restriction against mixing manual load and autoload 1in the same
task.

The asterisk preceding the module OVR2 indicates that the global
symbol OVRZ2 1is an autoload symbol, and is referenced from the module
ROOT through an autoload vector, as shown by the @ character.

Down—-tree references to the global symbol ROOT are made from modules
OVR1l and OVR2. These references are resolved directly.

The segment cross-reference shows the segment name and modules in each
overlay.

LOADING MECHANISMS

OVRTST CREATED BY TKkB ON {=0CT=76 AT 12104 PAGE 1|
GLOBAL CROSS REFERENCE CREF vl
SYMBOL VALUE REFERENCES .,

N.,ALER p0@210 AUTO # OVRES

N,10ST Q00004 ovCeTL # QVRES

N.MRKS 0aaatis ¥ OVRES

N,OVLY oueoee OVCTL # OVRES

N,OVPT 000054 AUTO oveTL 4 VCTOF

N,RDSG @9@014 # OVRES

N,STBL w@dgea? # OVRES

N.,S2SG o¢90612 # OVRES)

OVR1 @82A14=R ¥ OVRY 4 ROOT

0VR2 BB2314eR x QVR2 ® ROOT

ROOT 001176=R # ROOT

SALBP1 g@ai132reR & AUTO

SALBP2 poidie=R # AUTO

SALERR pui2u4e=R # ALERR OVDAT

$AUTO P01302«R # AUTO

SOSW adev4s ALERR # VCTDF
SMARKS 041S46=R oveTL
$0TSV »agevs2 VCTDF
$SAVRG 9Q01452«R AUTO # SAVRG

”® n

SVEXT ¥2p0Se # VCTDF

+FSRPT @un@ase % VCTDF

+NALER @01442«R & OVDAY

«NIOST @41436=R # OVDAT

+NMRKS ©@0145S@«R & OVDAT

«NOVLY @@1432=R # OVDAT

+NOVPT @agau? # OVDAT

«NRDSG @01446eR & OVDAT

«NSTBL aBiu3u=R # OVDAT

+NSZSG PA1444=R & OVDAT

OVRTST CREATED BY TK8 ON {=«0CTe76 AY {2:04 PAGE 2
SEGMENT CROSS REFERENCE CREF vt

SEGMENT NAME RESIDENT MODULES

OVR1 OVR1

QVR?2 OVR?2

ROOT ALERR AUTO overL CVhAT NVRES RONDT SAVRG
VCTDF

Figure 6-1 Sample Overlaid Cross—-Reference Listing

CHAPTER 7

MEMORY DUMPS

7.1 POST-MORTEM DUMPS

The task PMD... generates a post-mortem dump of a task that is
abnormally terminated. A task can be made eligible for a post-mortem
dump in any of three ways:

1. At task-build time by specifying the /DUMP switch for the
task file. /NODUMP disables dumps; it 1is the default
condition.

2. When using the ABORT command (described in the TRAX Support
Environment User's Guide), a dump can be specified by
including the switch /DUMP in the command line.

The Post-mortem Dump task PMD... 1is automatically 1installed by the
system 1in a 4K partition in which all other tasks are checkpointable.
This allows the dump to be generated in a timely manner and prevents
the system from being locked up while the dump is being generated.
The dump task is capable of dumping from memory or from the checkpoint
image of the user's task. The Post-mortem Dump task is sensitive to
the location of the aborted task; therefore, if the aborted task is
checkpointed during the dump, the dump task switches to reading the
checkpoint image. Once the task is checkpointed, PMD locks it out of
memory until it has completed formatting the dump.

Dumps are always generated on the system disk under UFD [1,4]. When
the dump task finishes generating the dump, it attempts to queue it to
the print spooler for subsequent printing. If no spooler is
installed, the dump file is left on the disk and can be printed later
using the PRINT Command.

NOTE

Dump files tend to be somewhat large.
The dump of an 8K partition averages
about 340 blocks. Therefore, 1if there
is 1little space on the disk, it is
important to print and delete the dump
file without delay. The print spooler
automatically deletes all files with the
type .PMD after printing them.

The following description of the contents of Post-mortem and Snapshot

dumps is keyed to Figure 7-1. Snapshot dumps are explained more fully
in Section 7.2.

Item

10

11

12

MEMORY DUMPS

Description

Type of dump - Post-mortem or Snapshot. If it is a Snapshot
dump, the dump ID is printed.

The name of the task being dumped, and the date and time the
dump was generated.

The program counter at the time of the dump; and if it is a
Post-mortem dump, the reason the task was aborted.

The general registers, stack pointer, and processor status at
the time of the dump.

The task status flags at the time of the dump. See the
description of ATL or TAL in the TRAX Support Environment
User's Guide for the meaning of the flags.

The task event flag mask word at the time of the dump. If
the dump 1is a Snapshot dump, the EFN specified in the SNAP
macro will be ON.

The task UFD and the current value of the directive status
word.

The task's priority and default priority, number of
outstanding I/0 requests, and the terminal from which the
task was initiated (TI:).

The task load device and the logical block number for the
start of the task image on the device.

The floating point wunit (FPU) registers or the extended
arithmetic element (EAE) registers if the task is using one
of these hardware features. 1If the task is not using the FPU
or EAE, these registers are not printed. If the task uses
the FPU and does not specify /FP on the task image file, or
if it uses the EAE unit and has not specified the /EA switch,
the registers are not printed. 1If the machine being used has
both an FPU and an EAE, PMD assumes the user is using the FPU
because it is the unit of choice for arithmetic computations.

The logical unit assignments at the time of the dump. UNIT
is the 1logical wunit number, and DEVICE is the device the
logical unit is assigned to. For Snapshot dumps, file status
displays the file name of any open files. Post-mortem Dumps
will not display this information because all the files will
have been <closed as a result of the I/0 rundown on the
aborted task.

The following are displayed: the overlay segments loaded and
resident libraries mapped at the time of the dump, the
relative block number of the segment, the base address, the
length of the segment, and, for tasks using manual loads, the
segment names. For resident libraries, the library name is
also displayed. The block number can be used to determine
which segment is 1loaded, by reference to the memory
allocation file generated by the Linker. The starting block
number for each segment is the relative block number of the
segment. By obtaining a match, the name of the segment in
memory can be determined. Zero length segments are usually
co-tree roots.

MEMORY DUMPS

Item Description

13 The task stack at the time of the dump. The address is
displayed, along with the contents, 1in octal, ASCII, and
RAD50. Each word on the stack is dumped. If the stack
pointer is above the initial value of the stack (H.ISP), only
one word is dumped. The rest is dumped as part of the task
image.

14 The task image itself. The partition being dumped and the
limits of interest are displayed. For Post-Mortem Dumps, all
address windows in use are dumped. For Snapshot Dumps, these
are the virtual task limits requested by the user. The dump
routine rounds the requested low limit down to the nearest
multiple of 8 bytes and rounds the requested high limit up to
the nearest multiple of 8 bytes. The dump image displays the
virtual starting address of a four-word block of memory, the
data in both octal and RAD50 on the first 1line, and byte
octal and ASCII on the second line. A four-word block that
is repeated in a contiguous region of memory is printed once,
and then noted by the message

%% DUPLICATE THROUGH XXXXXX **%*

where xxxxxx indicates the last word that is duplicated. If
the task was aborted, all address windows in use are dumped.
If the dump is a Snapshot Dump, up to four contiguous blocks
of memory can be dumped, if requested.

7.2 SNAPSHOT DUMP

The task PMD... is also capable of producing edited dumps for running
tasks. These dumps are called Snapshot Dumps, and they are useful as
debugging aids. A Snapshot Dump can be requested any number of times
during the execution of a task. The information generated is under
the control of the programmer.

Snapshot Dumps are generated by the following macros:

SNPDF$ defines offsets in the Snapshot Dump Control Block,
and control bits, which control the format of the
dump.

SNPBKS allocates the Snapshot Dump Control Block (see Figure
7-2).

SNAPS causes a Snapshot Dump to be generated.

SNPBKS and SNAPS issue calls to SNPDF$, so, 1in most cases, the
programmer does not have to issue the SNPDF$ macro call explicitly.

MEMORY DUMPS

POSTeMORTEM DUMP @

Tasks 116 (2 TIME: 5=0CTe76 15106
PCt dee7av @ 10T EXECUTION @
REGS RQ = PUWG34S RY = 74400 R2 = 00128 R3 = 140130 ®

Ry = ©YYRAC RS « PoQgae SP « @galnu PS = (7vroe
TASK STATUS: MSG AST DST =CHK HLT STP REM MCR (5)
EVENT FLAG MaSk FOR <1=16> wrnael (6)
CURRENT UIC: fea7,091] oswt 1. (2)
PRIORITYs DEFAULT e 56, KUNMING « §8, 1/0 COUNTy ¢, TI DEVICE « TTey
LOAD DEVICE = DRW: LeNe 1,160038 (9

N
FLOATING POINT UNIT

STATUS = 2uyae

R = NeveBE @UeRne 032208 aengee ? @
Rl = @PrER EvEReRrn Qor200 veeare

R2 = a)ovDe EAéoee aAeEeen eveepv

RT =« (U2¢P0h QUAUPE 00CCAC @02000

R4 = eiPviP¢ @pplee @aeave naeeee

RS =

CUACRP CEAVAR A0 Apaene J

LOGICAL UNITS

UNIT DEVICE FILE STATUS

o0y 9

1

2 [51-a §
3 DRV
4 DI A

/
OVERLAY SEGMENTS | CADED AND RESIDENT [IBRARIES MAPPED

STARTING RELATIVE BLOCK: ¥@¢C¢2 BASEp 00@¢@0 LENGTHy 261454 @
STARTING RELATIVE BLUCK: ¥v3224 BASES #1454 LENGTHS 2pn264

TASK STACK
ADDRESS COMTENTS ASCII ADSHE @)
See3ry Perds % 7

Figure 7-1 Sample Post-Mortem Dump (Truncated)

asoce
eape1d
200020
R@ee03Y
Q000un
eseesa
CLLITYS
oepary
gegley
een11e
QevR120
80013~
eonlar
20015
ara16?

wxe D
a@e24v
eepesy
00026
ega2r¢
e0030¢
pep31v
oanl2v
220332
p@e3ul
eep3se

pea36y

TASK

PARTITIONS GEN

eialey
304 WY
PL3ARY
el ey
ren3cy
Ied anp
VTS d'dd
REQ A
(4152t "
2¢l 202
Aridvee
a0k Qmy
V(373
373 “e2
wuapuar
A BAA
[I SR
R vieiA
(RN s Fak A
2y ARD
67UV
a2is 156
A Aoe R
AR AR
170000
Ay Jer
1“';". 3;‘
13 3un
[TUAM AL
AR DAY

UPLICATE

vwiauy
A 0
£:114854
754 op3y
¢Rpeey
a1 AGe
ety
214 146
Y1891
2851 re2
Uiz
A el
CvSed
124 viry
“umeghEee
eue Apae
131574
174 263
warpee?
vl Bhg
‘&"':: l Q;’
a7 ¢re

o162
162 000
veldoel
ney ear
papeope
7ol eve
BAp23d
"2e 900
149162
162 3on
20R2V00
nee aee
¢oodee
voE Qe
a7415¢
150 17
751646
246 123
¥S1646
246 123
weueon
noe eea
bnAvae
nae Qae
ceatee
320 A0
vagiee
120 vve
veaedn
998 A0

MEMORY DUMPS

IMAGE

VIRTUAL LIMITS:

aveoel
vo1 e
170017
17 360
220900
bpQ ege
pnavep
ve0 ven
e74106
1re 170
ver1ed
104 202
eaavoe
BN wao
aneped
204 v@e
geavoee
aB0 200
neesew
200 nen
w1777
3717 403
r3ve0Q
209 6@l
[LdAud "L
23n v
@Tu4pna
ven 171
noseud
280 AN

THROUGH gen236

Avecey
f26 M0
von2ed
264 rap
¥z1612
212 vel
131574
174 263
neavet
01 2w
2pevel
Nl 244AY
Lenace
VAo Ree
N2PREY
e aen
347123
123 116
p167646
346 23S
104377
377 21e

Figure 7-1 (Cont.)

o111
11¢ v
fAALRA
P02 Vw2)
274360
36 179
araaeen
ee2 aee
gugaas
nus 199
aneiee
100 ¢P@
GABLRY
den 4eo
pa3uen
v 2ee
#S212¢
12 124
177734
334 377
123456
usSe 2m7

067426
226 157
2ne3s?
352 206
¥0pa6e
eee @00
L1
oen oo
en2p001
201 80w
¢nnoRe
pee ece
PARR20
Pvp 100
251646
246 123
951646
2u6 123
Annne1
o1 ane
nei1404
@ad 143
aer406
Pu6 817
ceroon
erY PBEC
»AY3das
345 aop
2000RAQ
¢oe eee

L2 24

naepee
e0a pee
aeeeee
enn eea
nA3613
vil3 eev
enoeee
eea eeg
esaiiu
114 129
pBA304
Igs eoe
aeazee
veér eve
a63e1d
P14 146
©52123
123 124
»1274¢6
346 025
resede
oue e12

oBApee - ac1777

i Do
{AD3
! De
!

| Fk

.-

{QxP

18P

1o

1P My

I M3

l".

§oMw

By A
AD3 8PO
212 sle

NT
§JX 0
MON
MON

YW

1x

KX

B SnP

NX
0T

VZ SN
oy

A 7
A AX
Lux M§x
Cin 77
Uel UYF

Qagl
10
E4l

>~
o

2

O = G= o= B St Om G G = Gm B 9= P m Gm = Bm S S B b= P P G
-~

MON

MON

L

(=]
w
.

@
hd
n

™m
~
>

AEC

- . P fe = B = o
-

L3¢l
1)
Dé6l
H
i
i7
PMDY
H
-2 3]

3

0

SN
r ol
pJ
!
!
re Fx i
D {
i
hx L1
LS LS
RS §
¢l
.l.
P !
P vel
!
H {
¢ !
pX !
13 {
% LP!
e D
[
fl

113 SN PT ST

CTFY
!
AX8l
!

L2 S
o &1

Sample Post-Mortem Dump (Truncated)

MEMORY DUMPS

Symbol Offset Description
SB.CTL 0 Control Flags
SB.DEV 2 Device Mnemonic
SB.UNT 4 Unit Number
SB.EFN 6 Event Flag
SB.ID 10 Snap Identification
SB.LM1 (L1) 12 Memory Block 1
Limits
(H1) 14
(L2) 16 Memory Block 2
_ Limits
(H2) 20
(L3) 22 Memory Block 3
Limits
(H3) 24
(L4) 26 Memory Block 4
Limits
(H4) 30
SB.PMD 32 "PMD..." in, RADS50
34

Figure 7-2 Format of Snapshot Dump Control Block

7.2.1 Format of the SNPBK$ ‘Macro

The format of the SNPBK$ macro call is:

SNPBKS
where:

dev

unit

ctl

dev,unit,ctl,efn,id,Ll,Hl,L2,H82,L3,H3,L4,H4

is the 2-character ASCII name of the device the dump
is directed to. If it is a directory device, the UFD
[1,4] must be on the volume. The dump is written to
the disk and then spooled to the line printer. 1If
there is no print spooler, the file 1is left on the
disk. If the device is not a directory device, the
dump goes directly to the device.

is the unit number of the device the dump is directed
to.

is the set of flags that control the format of the
dump and the data to be printed. The flags are:

SC.HDR Print the dump header (items 1-10 in Figure
9-1).

7-6

MEMORY DUMPS

SC.LUN Print information on all assigned LUNs
(item 11).

SC.OVL Print information about all loaded overlay
segments (item 12).

SC.STK Print the user stack (item 13).

SC.WRD Print the requested memory in octal words
and RAD50 (item 14).

SC.BYT Print the requested memory in octal bytes
and ASCII (item 14).

efn is the event flag to be used to synchronize the user
program and the task PMD... .

id is a number that identifies the Snapshot Dump.
Because dumps can be requested at different times and
under different conditions, this ID 1is used to
identify the place or reason for the dump.

Ll,L2 are the starting addresses of the memory blocks to be

L3,L4 dumped.

Hl,H2, are the ending addresses of the memory blocks to be

H3,H4 dumped.

NOTE

If no memory is to be

(L1,L2,L3,L4,H1,H2,H3,

zero.

Only one snap block is allowed.

dumped, each limit
H4) should be

It generates the global label ..SPBK.

NOTE
Because SNPBK$ 1is wused to allocate
storage for the snap block, all
arguments except dev must be valid

arguments for

7.2.2 Format of the SNAP$ Macro

The format of the SNAPS$ macro is:

.WORD or

.BYTE directives.

SNAPS ctl,efn,id,Ll,Hl,L2,H2,L3,H3,L4,H4

where:

ctl

is the set of flags that control
dump and the data to be printed.

the format of the
The flags are:

SC.HDR Print the dump header.

SC.LUN Print information on all assigned LUNs.

SC.STK Print the user stack.

SC.0VL Print information about all loaded overlay
segments.

SC.WRD Print the requested memory in octal words
and RAD50.

SC.BYT Print the requested memory in octal bytes
and ASCII.

MEMORY DUMPS

efn is the event flag to be used to synchronize the user
program and the task PMD... . A
Wait-For-Single-Event-Flag directive is always

generated to perform synchronization.

id is a number that identifies the snapshot dump.
Because . dumps can be requested at different times and
under different conditions, this ID 1is used to
identify the place or reason for the dump.

Ll,L2, are the starting addresses of memory blocks to be
L3,L4 dumped.
H1l,H2, are the ending addresses of memory blqQcks to be
H3,H4 dumped.

NOTE

1. If no memory is to be dumped, each 1limit
(L1,L2,L3,L4,H1,H2,H3,HB4) should be zero.

2. The control flags can be set in any
combination. They are not mutually
exclusive. Thus, any number of options can
be obtained; e.g., SC.HDR!SC.LUN!SC.WRD
prints the header, LUNs, and the requested
memory in word octal and RAD50 mode.

3. Arguments should be specified only to
override the information already in the snap
control block.

4. Because SNAPS$ generates instructions to move
data into the snap block, its arguments must
be valid source operands for MOV
instructions.

7.2.3 Example of a Snapshot Dump

The sample program shown in Figure 7-3 causes two Snapshot dumps to be
printed directly on LPO:. The first dump uses the parameters defined
in the Snap Control Block. The header is generated, and the data in
relative locations BLK to BLK+220 1is displayed, in word octal and
RAD50. The identification on the dump is 1.

The second dump causes the data in the locations BLK to BLK+220 to be
displayed in byte octal and ASCII. A header is also generated. The
dump identification is 64 (100 octal). Figures 7-4 and 7-5 show the
dumps generated by the sample program.

sdung 3joysdeug 103 STTeD 3oyl weiboig srdues ¢-; 21nbr g

SNPTST = TEST SNAP DUMP AND PMD MACRO M1210 (3-Jun-7¢ 15357

1

F

3

4 2UPEYe

S P90936 123 116
ednauy 124 123
At Uy wen

6

7 a9nade

8 0UP216 612780 0ANAA3L’

9 navpe?

12 vor226

11 »vpdie aeeved

1e an@aue’

SNPTST « TEST SNAP DUMP AND PMD
SYMBOL TABLE

BLK ANQABOR 88,EFNs
BUF VLPV36R $8,1D =
IELACTE aansnn GX 8B,LMis
8§8,CTLs pooeen 88,PMD=
$8,DEVs ampua?2 SB,UNT=

ABS, 0vQA90Qe 000

Avadly 0ot

ERRORS DETECTED: @
VIRTUAL MEMORY USED: 1335 WORDS

OYNAMIC MEMORY AVAILABLE FOR 30
ASSEMBLY TIME (ELAPSED): @@i001
SNPTST,SNPTSTaSNPTST

PAGE 1§

«TITLE SNPTST « TEST SNAP DUMP AND PMD
+ IDENT /01/
JMCALL SNPBKS,SNAPS,CALL
PLKks SNPBKS LP,0,SC,HDRISC,OVLISC,WRD,1,1,BLK,BLK+220
120 BUF: «ASCIZ /SNPTST/
124
+EVEN
START; SNAPS
MOV ¥BUF,R@
CaLL $CATS
SNAPS #SC,HMDRISC,OVLISC,.BYT,,#100
107
<END STARY

MACRO M1@1@ $3-Jun-78 15157 PAGE {e=t

200006 $C,BYTs Boend0 $C,STKe 0P0GO10
gooele SC,HDRs pPo0@0Q1 SC.WRDm pP@B0D290
govele SC,LUN= gonon2 STARY POPO4U6R
gaev3e SC,0VLs proooR4 SCATS 2 warann GX
ose0ay
(6 PAGES)
PAGES
14

SDSW B pamann GX
$33T2 = geeoo27
o 3PBK 20C0020RG
ves SNPE Q020032

SdHNd XJIOWIAW

TASK: TTe

PCs eensee

REGS?:

TASK STATUS:
EVENT FLAG MASK FOR <lel6> 4002021

CURRENT UICS

RG = Qu600V0

R4 « 20099Q

fee7,001)

PRIORITYs DEFAULT - S0,

LOAD DFVICE « DBAg

FLOATING POINT UNIG

STATUS = apvenn

R2
R1
R
R3
R4
RS

OVERLAY

- Q2CVQ2
RARRARE
a0
WARE R
goe”on
AreI00

geenee
200000
gnoa0e
Av0a0e
aeanen
enaend

MEMORY DUMPS

TIMES c5-Jun-7815806

SNAPSHOT DUMP 1Dt 1
R1 = 1087104 R2 - doneae
RS - 200090 SP « 200324

DSwsy 1,

RUNNING = 5@,

eunrore
goevew
sov20n
aAaINe
Q042
aeeaea

MSG «CHK STP WFR REM MCR

LBNg §,16A034

A0a000
¢eeeon
000en?
¥20009
2208002
e0A2Q0

R3 = 14P13¢

PS « 1700200

170 CCuNnT: @,

SEGMENTS LOADED AND RESIDENT LIBRARIES MAPPED

STARTING RELATIVE BLOCK:

parane

TASK IMAGE

PARTITIONS GEN

gegleen
P00310

000320

@0p3302
eea3yw
e0ep350
2003602
eoe37¢
oop4oe
gopd12
eep422
@dp43e
2000440
200450
poeds2
e0p4d7s
espSa¢
P00514
paesS2y

221051
erRvon
aogsed
Pvpdne
131574
PAAQeR
0v1437
et12746
ef17646
Pundne
c12746
NES2U 6
#1274e
062766
voaune
184377
BLepvdé
716746

-1mu37?

Figure 7-4

®20001
foepal
#7000
neRAVe
247123
016746
124377
e¢nlad
202000
217666
ge2sSe7
205046
eo¢e336
sopoR2
veeoee
103006
vo1de?
177576
e1279¢

BASE: fuQoon

LENGTHS

VIRTUAL LIMITS: @0030u -

noeeees
eeeoe!
eeeaen
2000002
052120
177734
103456
212746
062766
eeanee
124377
0050@4de
217646
ooavee
P12746
v22737
200261
212746
opalde

pSo0114
em0304
eegcooe
ne3eid
952123
012746
005046
200336
oeee@
‘og0002
103435
ovsAUe
oppeoe
017666
203413
177771
08042S
aei1esi
oeaver

M3
H

—

| Mw
ICTF
lEBY
{ B
ICTF
1AX8
ICTF
IPLY
| 8
fuel
i1 8
JOIN
lue!

uee
S§J
SF
CSH

- T1 DEVICE = TTé1

@01454

ee0es5ed

v
A

MSX
77
UYF
CTF
PLY
8
Uéy
AX8

EBYV

8
CTF
Feo

00
CTF
€2

L36!
Del
|
PMD]
MS$|
CTF|
AX8]
Ev)
e
Bl
uxszy
AX81

!
EBs!
AECY

811
FUl
M3y
Awgl

Sample Snapshot Dump (Words Octal and RAD50)

7-10

MEMORY DUMPS
SNAPSHOT DUMP ID: 64

TASKE TTé TIMEL35-Jun-7¢ 15806
PC: BWRT16
REGS!? Ry » PREA3LS Rl = A74d402 R2 = 2002120 R} « 142130

RU « PRADEPO RS < UAAEAB SP - @P@3a4 PS = {72292
TASK STATUS: »SG =CHK STP WFR REM MCR
EVENT FLAG MASK FOR <1=16> 203091
CURRENT UIC: [ew7,021) DSWi 1,
PRIORITY: DEFAULT = 50, RUNNING = 5@, 1/0 COUNT$ @, T1 DEVICE = TTés

LOAD DEVICE = DBute LBN: 1,160034

FLOATING POINT UNIT

STATUS = 2eduvee

R?2 = AICPA2 Q20082 ©A0VAQ 0Q0eQP2
R1 = aAugdnz aeveen ouvd2a ooeeee
R2 = grevee €0C022 ePe2¢a 002020
R « AcQveR (Q0020 oVoeeA eed200
R4 = ¢upze® 0OPQR0C @AR000 020020
RS « PUCr@R @2A20Q Q00228 Qespee

OVERLAY SEGMENTS LOADED AND RESIDENT LIBRARIES MAPPED

STARTING RELATIVE BLOCK: @ared2 BASE: @20uvee LENGTHS 001454
STARTING RELATIVE BLCCK: 02004 BASE: e@1454 LENGTH: Qee2ed

TASK IMAGE
PARTITIONS GEN VIRTUAL LIMITS: 000304 « 000524

20A3PR @51 f22 M0l G2 O4S 99¢ 3114 120 1) X LPI
200312 @A P20 001 V0@ 100 P30 304 Q00 $ ¢ 0|
000322 24 @21 @OQ 000 QAU 92@ eoe 9e0 iT !
200337 @IP 2N0 000 @A OGA0 927 Q14 j46 } f1
02034 174 263 123 116 120 124 123 24 113 SN PT ST}
000350 dvve Qa@e 346 VY35 334 377 346 @S] tf \ t1
@oe36¥ 037 202 377 218 056 287 @46 012 | e &4
020378 346 @25 304 903 346 @25 336 000 I¢ D ¢ °* |
0004p0 246 #37 o0ne Are 366 145 pR2 020 it ve i
200410 @92 e 266 B3IT 002 00Q 0R2 P00 ! 6 !
PB@U2D 346 P25 187 B8S 377 2190 035 207 i1+ 6 !
B0043Q U6 W12 V46 D12 0AU6 P12 V46 P12 It & ¢ &}
900442 346 P2S 336 AP 246 2837 @00 eoe 1¢ = & !
P0P4SO 366 145 QG2 PE2 Q02 P2 266 037 lve 6 |
82pdes wu¥2 eee a02 P2 346 P25 @13 007 Il ¢ }
020472 377 21¢ 906 206 337 @4S 371 377] % v !
200508 aus @ep B2 203 261 200 MRS ang i1t T |
20051y 346 35 176 377 346 825 0S1 002 ¢ ~ ¢)¢
00eS2¢ 377 21@ 328 225 342 000 367 61t ! ® b wl

)

Figure 7-5 Sample Snapshot Dump (Bytes Octal and ASCII

APPENDIX A

ERROR MESSAGES

The Linker produces diagnostic and fatal error messages. Error
messages are printed in the following forms:

TKB —-- *DIAG*-error-message
or
TKB —-- *FATAL*-error-message

Some errors are correctable when command input is from a terminal. 1In
such a case, a diagnostic error message can be printed, the error
corrected, and the task building sequence continued. If the same
error 1is detected in an indirect file by the Linker, a correction
cannot be made and the link operation is aborted.

Some diagnostic error messages merely advise the user of an unusual
condition. If the user considers the condition normal to his task, he
can install and run the task image.

This appendix tabulates the error messages produced by the LINKER.
Most of the messages are self-explanatory. 1In some cases, the line in
which the error occurred is printed.

A Software Performance Report (SPR) should be submitted to DIGITAL 1in
cases where the explanation accompanying a message refers to a system
error.,
ALLOCATION FAILURE ON FILE file-name

The Linker could not acquire sufficient disk space to store the

task image file, or did not have write-access to the UFD or
volume that was to contain the file.

BLANK P-SECTION NAME IS ILLEGAL
overlay-description—~line

The overlay-description-line printed contains a .PSECT directive
that does not have a p-section name.

COMMAND I/O ERROR

I/0 error on command input device. (Device may not be online, or
possible hardware error.)

ERROR MESSAGES

COMMAND SYNTAX ERROR
command-line

The command-line printed has incorrect syntax.

COMPLEX RELOCATION ERROR - DIVIDE BY ZERO: MODULE
module-name

A divisor having the value zero was detected 1in a complex

expression. The result of the divide was set to zero. (Probable

cause - division by a global symbol whose value is undefined.)
FILE file—name ATTEMPTED TO STORE DATA IN VIRTUAL SECTION

The file contains a module that has attempted to initialize a
virtual section with data.

FILE file-name HAS ILLEGAL FORMAT

The file file-name contains an object module whose format is not
valid.

ILLEGAL APR RESERVATION

An APR specified in a COMMON, LIBR, RESCOM, or RESLIB keyword 1is
outside the range 0-7.

ILLEGAL DEFAULT PRIORITY SPECIFIED
option-line

The option-line printed contains a priority greater than 250.
ILLEGAL ERROR-SEVERITY CODE octal-list

System error (no recovery). An SPR should be submitted with a
copy of the message containing the octal-list as printed.

ILLEGAL FILENAME
invalid-line

The invalid-line printed contains a wild card (*) in a file
specification. The use of wild cards is prohibited.

ILLEGAL GET COMMAND LINE ERROR CODE
System error (no recovery).

ILLEGAL LOGICAL UNIT NUMBER
invalid-line

The invalid-line printed contains a device assignment to a unit
number larger than the number of logical units specified by the
UNITS keyword, or assumed by default if the UNITS keyword is not
used.

ILLEGAL MULTIPLE PARAMETER SETS
invalid-line

The invalid-line printed contains multiple sets of parameters for
a keyword that allows only a single parameter set.

ERROR MESSAGES

ILLEGAL NUMBER OF LOGICAL UNITS
invalid-line

The inwalid-line printed contains a logical unit number greater
than 250.

ILLEGAL ODT OR TASK VECTOR SIZE
ODT or SST vector size specified greater than 32 words.

ILLEGAL OVERLAY DESCRIPTION OPERATOR

invalid-line
The invalid-line printed contains an unrecognizable operator in
an overlay description. This error occurs if the first character
in a p-section or segment name is a dot (.).

ILLEGAL OVERLAY DIRECTIVE
invalid-line

The invalid-line printed contains an unrecognizable overlay
directive.

ILLEGAL PARTITION/COMMON BLOCK SPECIFIED
invalid-line

User-defined base or length not on 32-word boundary.

ILLEGAL P-SECTION/SEGMENT ATTRIBUTE
invalid-line

The 1invalid-line [irinted contains a p-section or segment
attribute that is not recognized.

ILLEGAL REFERENCE TO LIBR%“RY P-SECTION p-sect-name
A task has attempted to reference a p-sect-name existing in a
resident library (shared region), but has not named the library
in a keyword.

ILLEGAL SWITCH
file-specification

The file-specification printed contains an illegal switch or
switch value.

INCOMPATIBLE REFERENCE TO LIBRARY P-SECTION p-sect-name

A task has attempted to reference more storage in a shared region
than exists in the shared region definition.

INCORRECT LIBRARY MODULE SPECIFICATION
invalid-line

The invalid-line contains a module name with a non-Radix-50
character.

INDIRECT COMMAND SYNTAX ERROR
invalid-line

The invalid-line printed contains a syntactically incorrect
indirect file specification.

ERROR MESSAGES

INDIRECT FILE OPEN FAILURE
invalid-line

The invalid-line contains a reference to a command 1input file
which could not be located.

INSUFFICIENT PARAMETERS
invalid-line

The invalid-line contains a keyword with an insufficient number
of parameters to complete its meaning.

INVALID APR RESERVATION
invalid-line

APR specified on a keyword for an absolute library.

INVALID KEYWORD IDENTIFIER
invalid-line

The invalid-line printed contains an unrecognizable keyword.

INVALID PARTITION/COMMON BLOCK SPECIFIED
invalid—-line

Partition is invalid for one of the following reasons:

1. The Linker cannot find the partition name in the host system
in order to get the base and length.

2. The system is mapped, but the base address of the partition
is not on a 4K boundary for a non-runnable task or is not 0
for a runnable task.

3. The memory bounds for the partition overlap a shared region.

4, The partition name is identical to the name of a previously
defined COMMON or LIBR shared region,

5. The top address of the partition for a runnable task exceeds
32K minus 32 words for a mapped system, or exceeds 28K minus
1 for an unmapped system.

6. A system-controlled partition was specified for an unmapped
system.

INVALID REFERENCE TO MAPPED ARRAY BY MODULE module-name
The module has attempted to initialize the mapped array with
data. An SPR should be submitted if this problem is caused by
DIGITAL-supplied software.

INVALID WINDOW BLOCK SPECIFICATION
invalid-line

The number of extra address windows specified exceeds 7.
I/0 ERROR LIBRARY IMAGE FILE

An I/0 error has occurred during an attempt to open or read the
Task Image File of a shared region.

I/0 ERROR ON INPUT FILE file-name

ERROR MESSAGES

I/0 ERROR ON OUTPUT FILE file-name

LABEL OR NAME IS MULTIPLY DEFINED
invalid-line

The invalid-line printed defines a name that has already appeared
as a .FCTR, .NAME, or .PSECT directive.

LIBRARY FILE filename HAS INCORRECT FORMAT

A module has been requested from a library file that has an empty
module name table.

LIBRARY REFERENCES OVERLAID LIBRARY
invalid-line

An attempt was made to link the resident library being built to a
shared region that has memory-resident overlays.

LOAD ADDR OUT OF RANGE IN MODULE module-name
An attempt has been made to store data in the task image outside
the address 1limits of the segment. This problem is usually
caused by one of the following:

1. an attempt to initialize a p-section contained in a shared
region

2, an attempt to initialize an absolute 1location outside the
limits of the segment or in the task header

3. a patch outside the limits of the segment it applies to
4. an attempt to initialize a segment having the NODSK attribute

LOOKUP FAILURE ON FILE filename
invalid-line

The invalid-line printed contains a filename that cannot be
located in the directory.

LOOKUP FAILURE ON SYSTEM LIBRARY FILE

The Linker cannot find the system Library (S¥0:[1,1]SYSLIB.OLB)
file to resolve undefined symbols.

LOOKUP FAILURE RESIDENT LIBRARY FILE
invalid-line

No symbol table or task image file can be found for the shared
region.

MAXIMUM INDIRECT FILE DEPTH EXCEEDED
invalid-line

The invalid-line printed gives the file reference that exceeded
the permissible indirect file depth (2).

MODULE module-name AMBIGUOUSLY DEFINES P-SECTION p-sect-name
The p-section p-sect—-name has been defined in two modules not on

a common path, and has been referenced from a segment common to
both paths.

ERROR MESSAGES

MODULE module-name AMBIGUOUSLY DEFINES SYMBOL sym-name

Module module—name references or defines a symbol sym-name whose

definition exists on two different paths, but is referenced from

a segment that is common to both paths.

MODULE module-name ILLEGALLY DEFINES XFR ADDRESS p-sect-name addr

1. The start address printed is odd.

2. The module module-name is in an overlay segment and has a
start address., The start address must be in the root segment
of the main tree.

3. The address 1is in a p-section that has not yet been defined.

An SPR should be submitted if this 1is caused by
DIGITAL-supplied software.

MODULE module—-name MULTIPLY DEFINES P-SECTION p-sect-name

1. The p-section p-sect—-name has been defined more than once 1in
the same segment with different attributes.

2. A global p-section has been defined more than once with
different attributes in more than one segment along a common
path. ’

MODULE module-name MULTIPLY DEFINES SYMBOL sym-name
Two definitions for the relocatable symbol sym-name have occurred

on a common path. Or two definitions for an absolute symbol with
the same name but different values have occurred.

MODULE module-name MULTIPLY DEFINES XFR ADDR IN SEG
segment-name

This error occurs when more than one module making up the root
has a start address.

MODULE module—name NOT IN LIBRARY

The Linker could not find the module named on the /LIB switch in
the library.

NO DYNAMIC STORAGE AVAILABLE
The Linker needs additional symbol table storage and cannot
obtain it. (If possible, install the Linker 1in a larger
partition.)

NO MEMORY AVAILABLE FOR LIBRARY library-name

The Linker could not find enough free virtual memory to map the
specified shared region.

NO ROOT SEGMENT SPECIFIED
The overlay description did not contain a .ROOT directive.
NO VIRTUAL MEMORY STORAGE AVAILABLE
Maximum permissible size of the work file exceeded. The user

should consult Appendix D for suggestions on reducing the size of
the work file.

ERROR MESSAGES

OPEN FAILURE ON FILE file-name

OPTION SYNTAX ERROR
invalid-line -

The invalid-line printed contains unrecognizable syntax.

OVERLAY DIRECTIVE HAS NO OPERANDS
invalid-line

All overlay directives except .END require operands.

OVERLAY DIRECTIVE SYNTAX ERROR
invalid-line

The invalid-line printed contains a syntax error.
PARTITION partition—-name HAS ILLEGAL MEMORY LIMITS

l. The partition-name defined in the host system has a base
address alignment that 1is not compatible with the target
system.

2. The user has attempted to build a privileged task 1in a
partition whose 1length exceeds the task's available address
space (8K or 12K).

PASS CONTROL OVERFLOW AT SEGMENT segment-name

System error. An SPR should be submitted with a copy of the ODL
file associated with the error.

PIC LIBRARIES MAY NOT REFERENCE OTHER LIBRARIES
invalid-line

The user has attempted to build a position-independent shared
region that references another shared region.

P-SECTION p-sect-name HAS OVERFLOWED
A section greater than 32K has been created.

REQUIRED INPUT FILE MISSING

At least one input file is required for a task-build.

ROOT SEGMENT IS MULTIPLY DEFINED
invalid-line

The invalid-line printed contains the second .ROOT directive
encountered. Only one .ROOT directive is allowed.

SEGMENT seg—-name HAS ADDR OVERFLOW: ALLOCATION DELETED

Within a segment, the program has attempted to allocate more than
32K. A map file is produced, but no task image file is produced.

TASK HAS ILLEGAL MEMORY LIMITS

An attempt has been made to build a task whose size exceeds the
partition boundary. If a task image file was produced, it should
be deleted.

ERROR MESSAGES

TASK HAS ILLEGAL PHYSICAL MEMORY LIMITS
mapped-array task-image task extension

The sum of the parameters displayed -- mapped array size, task
image size, and task extension -- exceeds 2.2 million bytes. The
guantities are shown as octal numbers in units of 64-byte blocks.
Any resulting task image file should be deleted.

TASK IMAGE FILE filename IS NON-CONTIGUOUS

Insufficient contiguous disk space was available to contain the
task image. A non-contiguous file was created. After deleting
unnecessary files, the /CONTIGUOUS switch in PIP should be used
to create a contiguous copy.

TASK REQUIRES MORE THAN 8 WINDOW BLOCKS

The number of address windows required by the task and any shared
regions exceeds 8.

TASK-BUILD ABORTED VIA REQUEST
option-line

The option-line contains a request from the user to abort the
task-build.

TOO MANY NESTED .ROOT/.FCTR DIRECTIVES
invalid-line

The invalid-line printed contains a .FCTR directive that exceeds
the maximum nesting level (16).

TOO MANY PARAMETERS
invalid-line

The invalid-line printed contains a keyword with more parameters
than required.

TOO MANY PARENTHESES LEVELS
invalid-line

The invalid-line printed contains a parenthesis that exceeds the
maximum nesting level (16).

TRUNCATION ERROR IN MODULE module-name
An attempt has'been made to load a global value greater than +127
or less than -128 into a byte. The low-order eight bits are
loaded.

UNABLE TO OPEN WORK FILE

The work file device is not mounted. (The work file 1is located
on the same device as the Linker.)

UNBALANCED PARENTHESES
invalid-line

The invalid-line printed contains unbalanced parentheses.
n UNDEFINED SYMBOLS SEGMENT seg-name

The segment named contains n undefined symbols. If no memory
allocation is requested, the symbols are printed on the terminal.

ERROR MESSAGES

VIRTUAL SECTION HAS ILLEGAL ADDRESS LIMITS
option-line

The option-line printed contains a VSECT

keyword whose base
address plus window size exceeds 177777.

WORK FILE I/O ERROR

I/0 error during an attempt to reference data stored by the
Linker in its work file.

APPENDIX B

MEMORY ALLOCATION

The Linker is responsible for allocating the physical memory and
virtual address space required by a task. This allocation can consist
of two parts -- a region containing the task itself, and memory not
physically a part of the task image, containing subroutines or data
that are shared by several tasks.

B.1 TASK MEMORY STRUCTURE

Task memory (see Figure B-1l) is divided into two physically contiguous
areas containing:

1. The task image, and
2, Additional memory allocated while the task 1is running, by

means of the Extend Task system directive; or before the
task is running, by means of the Linker EXTTSK option.

task
extension A
area

task increasing
memory

image
g addresses

mapped
array
area

Figure B-1 Task Memory Structure

TRAX supports only mapped systems with memory management hardware.

In a mapped system, the task is usually bound to virtual =zero and
relocated by the mapping hardware, and therefore, the task can be
installed in any partition large enough to contain it.

In a mapped system, the task can access only memory specifically owned
by the task.

In a mapped system, the largest task size is normally 32K words minus
32 words.

MEMORY ALLOCATION

B.2 TASK IMAGE MEMORY

The area of memory allocated for task image storage contains a header,
a stack, and a set of named areas called program sections
(p-sections).

The header contains task parameters and data required by the Executive
and provides a storage area for saving the task's context.

The stack is an area that can be used for temporary storage and
subroutine linkage, and is referenced by general register 6, the stack
pointer (SP).

A p-section is an area of task memory, containing code or data, that
can be referenced by name. Associated with each p-section is a set of
attributes that control the allocation and placement of the section
within the task image.

B.2.1 P-sections

A p-section, the basic unit of memory for a task, is composed of the
following elements:

® a name by which it is referenced

® a set of attributes that define its contents, mode of access,
allocation, and placement in memory

® a length that determines how much storage will be reserved for
the p-section

P-sections can be created or referenced in either of the following
ways:

e The language processors automatically include p-sections 1in
the object module to reserve storage for code or data.

® The user can explicitly create p-sections by using facilities
present in the language processors or Linker.

P-sections are created through the Linkage Section and segmentation
facilities in COBOL or the COMMON statement in BASIC-PLUS-2, or the
.PSECT directive in MACRO. The .PSECT directive allows the MACRO
programmer to attach attributes to the section. A p-section of the
specified name is conveyed to the Linker via the object module,
whether it was created through COMMON or .PSECT.

The Linker's overlay processor allows p-sections to be created and
inserted at specific points in the overlay structure. This facility
is described in Chapter 5.

As noted above, each reference to a p-section 1is accompanied by a
length and set of attributes that define how memory is to be allocated
to the p-section. The Linker collects scattered references to the
p—section in a single area of task memory. The attributes, listed in
Table B-1, control the way the Linker collects and places this
storage.

MEMORY ALLOCATION

Table B-1
P-section Attributes

ATTRIBUTE

VALUE

MEANING

access—code

type-code *

scope-code

alloc-code

reloc-code

memory-code **

RW

RO

GBL

LCL

CON

OVR

REL

ABS

HIGH

LOW

Read/Write - Data can be read from, and
written into, the p-section.

Read Only - Data can be read from, but cannot
be written into, the p-section.

Data - The p-section contains data.

Instruction - The p-section contains either
instructions, or data and instructions.

Global - The p-section name 1is recognized
across overlay segment boundaries. The
Linker allocates storage for the p-section
from references outside the defining overlay
segment.

Local - The p-section name is recognized only
within the defining overlay segment. The
Linker allocates storage for the p-section
from references within the defining overlay
segment only.

Concatenate - All references to a given
p-section name are concatenated. The total
allocation 1is the sum of the individual
allocations.

Overlay - All references to a given p-section
name overlay each other. The total
allocation 1is the 1length of the 1longest
individual allocation.

Relocatable - The base address of the
p-section is relocated relative to the
virtual base address of the task.

Absolute - The base address of the p-section
is not relocated. It is always zero.

High - The p-section is to be 1loaded into
high-speed memory.

Low - The p-section 1is to be 1loaded into
low—speed memory.

The scope-code

structure
Chapter 6,

not used by the Linker.

is

and type-code are meaningful only when an overlay

defined

for the task. The scope-code is described in

in the context of p-section resolution. The memory-code is

* These codes should not be confused with the I and D space hardware
on PDP-11 systems.

** Not used by the Linker.

MEMORY ALLOCATION

The access—-code and alloc-code are used by the Linker to determine the
placement and the size of the p-section in task memory.

The Linker divides storage into read/write and read-only memory, and
places the p-sections in the appropriate area according to
access—-code. Memory allocated to read-only p-sections is not hardware
protected.

The alloc-code is used to determine the starting address and length of
memory allocated by modules that reference a common p-section. If the
alloc-code indicates that such a p-section is to be overlaid, the
Linker places the allocation from each module at the same location in
task memory, and determines the total size from the 1length qf the
longest reference to the p-section. If the alloc-code indicates that
a p-section is to be concatenated, the Linker places the allocation
from the modules one after the other in task memory, and determines
the total allocation from the sum of the lengths of each reference.

The allocation of memory for a p-section always begins on a word
boundary. If the p-section has the D (data) and CON (concatenate)
attributes, all storage contributed by subsequent modules is appended
to the 1last byte of the previous allocation. This occurs regardless
of whether that byte is on a word or nonword boundary. For a
p-section with the I (instruction) and CON attributes, however, all
storage contributed by subsequent modules begins at the nearest
following word boundary.

B.3 TASK IMAGE FILE

The Task Image file contains a copy of the task that can be read into
memory and initiated with little system overhead. All binding, memory
allocation, and address resolution are performed by the Linker;
therefore, the only function performed by the system is the loading of
the task image and the transfer of control to it.

In addition to the core image, the task image file contains a label
block group and possibly a checkpoint area. The label block group
contains data that is used by the Install processor to create an entry
for the task in the system task directory.

The checkpoint area is allocated only if the user specifies that the
task 1is checkpointable, and requests checkpoint space by using the
/CHECKPOINT:filespec. The /CHECKPOINT:filespec switch indicates that
the task 1is checkpointable, and causes the Linker to allocate
checkpoint space within the task image file. /CHECKPOINT can be used
instead, 1if the system incorporates dynamic allocation of checkpoint
space. This makes the task checkpointable without the allocation of
extra disk space in the task image file.

When the task is checkpointable and the /CHECKPOINT:filespec switch is
used, the Linker must reserve space 1in the task image file large
enough to save all of the memory owned by the task.

When the task is to reside in a system-controlled partition, the size
of the required area is determined by the sum of:

° Amount of memory allocated for mapped array storage
° Size of the task image

° Size of the task extension

MEMORY ALLOCATION

B.4 MEMORY ALLOCATION FILE
The memory allocation (.MAP) file 1lists information about the
allocation of task memory and the resolution of global symbols. A

global cross-reference list can be appended to the file by means of
the /CROSS_REFERENCE switch.

B.4.1 Contents of the Memory Allocation File
The memory allocation file consists of the following items:

® Page Header

e Task Attributes

e Overlay Description (if applicable)

e Segment Description

e Memory Allocation Synopsis

e Global Symbols

e File Contents

e Summary of Undefined Global Symbols

® Linker Statistics
A sample of the memory allocation file produced by the command is
shown in Figure B-2, where each item is identified. The overlay
description does not apply to this task, and is therefore not shown.

If the /CROSS_REFERENCE switch is wused to request a global
cross-reference, then the following items are also included:

o Cross-Reference Page Header

o Global Cross-Reference

o Segment Cross-Reference
Figure B-3 illustrates a global cross-reference obtained by appending
the /CROSS_REFERENCE switch to the memory allocation file

specification of the previous example.

The paragraphs following Figure B-3 discuss the map items in greater
detail.

MEMORY ALLOCATION

IMG1,T8Kg4 MEMORY ALLOCATION MAP TKB M2e
#1 Jun-78 11159

PARTITION NAME § GEN

IOENTIFICATION ;3 00

TASK UIC s [301,303)

STACK LIMITS: 000172 001171 201007 @0512,
TOTAL ADDRESS WINDOWS: 1,

TASK IMAGE SIZE 3 S7e, WORDS

TASK ADDRESS LIMITS: o0o000e 082153 -

sxe ROOT SEGMENT3 INt

R/W MEM LIMITS: 000000 902153 Pe2154 a1132,

DISK BLK LIMITS: @0e002 000004 VAV0QR3 000A3, |

MEMORY ALLOCATION SYNOPSIS;
SECTION

ceeReDe

o BLKo3(RW,I,LCL,REL,CON) Ru1172 Q0n090 @nrde,

A 1(RW,I,LCL,REL,OVR) 081172 2003202 22192,
901172 00a3ap ew192,
001172 000254 ne168,

8 $CRW,I,LCL,REL,CON) m21472 00n220 00144,
901472 087100 20064,
901572 000120 eepse,

c 1(RO,I,LCL,REL,CON) 201732 WON220 21144,
001732 200150 Pv104,
202102 200050 BvO4D,

$3S 1(RW,I,LCL,REL,CON) Q01712 004020 02Ci6,
001712 200820 03016,

GLOBAL SYMBOLSS

A 291176=R B2 021472=R XXX en171
81 e@tav2-R L1 #01172«R

__Page
PAGE l:l Header

Task
—attributes
section

__ Segment
description

TITLE IDENT FILF

N -1 INt,08J21
INg ee IN2,08J31
Iivg -1} IN1,08J11
INe a2 IM2,0RJg1
INt 29 IN1,ORJs 1
INS LI InN3,08J11
XXX a2 SYSLI“.OLBH_
Global

=R | symbols

Memory
— allocation
synopsis

Figure B-2 Memory Allocation File for IMGl1.TSK on an Unmapped System

FILE: INY1,0BJst

<, ABS,

2333333335 >>

<8

B1
<A
<C

FILEs IN2,0B8J)1

<A
A
3

>t

>t
>3

>3

>t

MEMORY ALLOCATION

TITLEs 1INt
227239 QsQAdY

IDENTs o0
000200 20000,

UNDEFINED REFERENCE: Ct

201472 9031571
P01472=R B2
201172 001471
221732 @219
TITLEsS IN2
201172 201441
P21176=R

oe 1572 ee1711

@on102 20ve4,
@81472«R
e0a3aw ve192,
200150 00104,

IDENT: 29
#002592 20168,

a00122 npR8a,

File
— contents
section

By PP1472eR

IMG1,TSKyt
INg

MEMORY ALLOCATION MAP TKB M2
31- Jun-78& 11359

PAGE .
GE 2 File

__contents
section
(cont.)

FILEs IN3,08Jy1 TITLEs IN3 IDENTy @@
<C >3 082102 002151 PALASY PepuP,

FILE: LBR1,0LBy1 TITLEs L1 IDENT: @8
<, BLK,>1 901172 @01172 arenoe aerae?,
L 081172«R

FILEy SYSLIB,OLBy1 TITLEs xxX IDENT: Qv
<383 >t 001712 @01731 Q00022 wvoe1e,
XXX 001712<R

(2232322022 2]
Undefined

UNDEFINED REFERENCES? — references

c1

whe TASK BUILDER STATISTICS:

TOTAL WORK FILE REFERENCES3 669,

wORK FILE READS: 9,

WORK FILE WRITES: 0,

8J2E OF CORE POOL: 2066, WORDS (B, PAGES)
SIZE OF WORK FILEt: S12, WORDS (2, PAGES)

Task,
—Builder
statistics

ELAPSED TIME;00:02311

Figure B-2 (Cont.) Memory Allocation File for IMGl.TSK on an Unmapped System

SYMBOL
sOTSV

$O0TSVA
$PUTRE
$RLCB
$RQACB
$R50
$SAVRG
$SBR
$SEQC
$SST
$SSTO
$SST1
$SST2
$8ST3
$SST4
8SSTS
$8ST6
$SST7
$SVTKS
oASLUN
«CLOSE
+FATAL
+FINIT
+FSRCB
«FSRPT

«GIDID
«MBFCT
+MOLUN
o«NLUNS
+«OPFNB
«PPASC
«PPR50
+PUTSQ
«SAVR]

««ALC1
« «ALOC
« ALUN
« «BDRC
« «BKRG
« «CREA
.. DEL1
e oDID
¢ «DIDF
« «EFCK
. .EFC1
o +ENTR
e «EXTD
. +EXT1
. FCSX

e oFIND
e« FINIL
0eGIDI

VALUE
000052

016206-R
011662-R
027034=R
027136=R
011714=R
027274=R
001516-R
016206-R
016734=R
004310-R
004316-R
004330-R
004336-R
004344-R
004352-R
004436-R
004362-R
006002=R
030436=R
024702=R
031436-R
025140=R
024264=R
000050

025244-R
024364-R
016214-R
016212-R
025262=R
032604-R
032132=R
027320-R
030402-R

034012=R
033742-R
030442-R
030632=R
030714=R
030734~-R
031122-R
032216=R
032076=R
031162=R
031170=R
031336=R
034042-R
034116=R
031424=R

031352-R

025150=R
031440=R

Figure B-3

MEMORY ALLOCATION

REFERENCES.,.
$CLOSE $EOL
$ISNLS $OTI

SOTV <MAIN,
SIFW ¢ SPUTRE

RQLCB . RSTFDB
OPFNB & RQLCB
SERRPT # $RS50
RQLCB # SAVRG

SFADD

SOTV

SOTV

SERRPT $OTV

SERRPT

SERRPT $OTV

SERRPT $OTV

SERRPT $OTV

SERRPT $OTV

SERRPT $OTV

SERRPT $OTV

¢ SERRPT

ASSLUN

CLOSE $CLOSE

COMMON WAITI

FINIT $OTI

FCSFSR $OTV
ASSLUN CREATE
PARDI RSTFDB

» GETDID $UPEN

FCSFSR

SOTV

SOTV

OPFNB $OPEN
PARDI & PPNASC
DIDEND # PPNRSO

¥ PUTSU $PUTRE
ASSLUN CKALOC
UPFNB PUTSO

CKALOC

CKALOC WTWAILT

% ASSLUN GETDI

BLBREC UPFNB

BKRG CLOSE

CREATE OPFNB

s DEL OPFNB
DIDFND # DIFND

¢ DIDFND PARDID

EUFCHK PUTSQ

EOFCHK
DEL # DIRECT

CKALOC

CKALUC
CLOSE % COMMON
WAITI WATSET
DIFND ¥ DIRECT

s FINIT OPFNB

GETDI GETDID

SERRPT

SRETS

FCSFSR
WAITI

CLOSE
SAVR1

OPFNb
RDWALT
RuwAlT

OPFNB

CREATE
WIWAILT
OPFNB

$FI0
$STPPA

FINIT
XQlol

FINIT
SERRPT

WIWALT
WIWALT

OpPFNB

Cross-Reference Listing for MP1l.MAP

SINITI
S§VIRAN"

‘UOPFNB

GETDID
SOPEN

PUTSQ

MEMORY ALLOCATION

The map items are described in the following paragraphs.

1.

The

page header shows the name of the task image file and the

overlay segment name, along with the date, time, and version
of the Linker that was used.

The task attribute section contains the following
information:
a. Task name
b. Task partition
c. Identification (task version)
d. Task UFD
e. Task priority
f. Stack limits -- consisting of the low and high addresses,
followed by the length in octal and decimal bytes
g. ODT transfer address -- starting address of the debugging
aid
h. Program transfer address
i. Task attributes -- shown only if they differ from the
defaults. One or more of the following may be displayed:
AL Task is checkpointable, and task 1image file
contains checkpoint space allocation
CP Task is checkpointable
DA Task contains debugging aid
FP Task uses floating-point processor
-HD Task image does not contain header
PI Task contains position-independent code and
data
PM Post-mortem dump requested in the event of
abnormal task termination
SL Task can be slaved
TR Task initial PS word has T-bit enabled
j. Total address windows -- the number of address windows
allocated to the task
1. Task extension -- the increment of physical memory
allocated through the EXTTSK keyword
m. Task image —-- the amount of memory required to contain

task code

MEMORY ALLOCATION

n. Total task size -- the amount of memory allocated to
mapped arrays, task extension, and task image listed
above

o. Task address limits -- the 1lowest and highest virtual

addresses allocated to the task.

The overlay description shows the address limits, length, and
name of each overlay segment. Indenting 1is used to
illustrate the overlay structure. The overlay description is
printed only when a multi-segment task 1is created. An
example of overlay description output is shown in Figure 5-1.

The segment description gives the name of the segment, along
with the segment address and disk space limits.

The memory allocation synopsis gives information about the
p-sections that make up the memory allocated to each overlay
segment. The information shown consists of the p-section
name, attributes, starting address, and length in bytes,
followed by a list of modules that contributed storage to the
section. The entry for each module shows the starting
address and length of the allocation, the module name, module
identification, and file name.

If the /SEQUENTIAL switch 1is applied, the p-sections are
listed in the order of input; otherwise they appear in
alphabetical order.

The following p-section information is omitted:

a. The absolute section, . ABS. 1is not shown because it
appears in every module and always has a length of 0.

b. The unnamed relocatable section, shown as . BLK., is not
displayed if its length is 0, because it appears in every
module.

Global symbols that are defined in the segment are 1listed
along with their octal values. An -R is appended to the
value if the symbol is relocatable. The list is alphabetized
in columns.

The file contents section lists the module name, file name,
p-sections, and global definitions occurring in the module.
Any undefined global references made by the module are also
displayed.

A summary of undefined global references is printed after the
listing of file contents.

The display of Linker statistics 1lists the following
information, which may be used to evaluate Linker
performance.

® Work File References -- The number of times that the Linker
accessed data stored in its work file.

e Work File Reads -- The number of times that the work file
device was accessed to read work file data.

® Work File Writes —-— The number of times that the work file
device was accessed to write work file data.

10.

11.

12.

MEMORY ALLOCATION

@ Size of Core Pool -- The amount of memory that was
available for work file data and table storage.

e Size of Work File -- The amount of device storage that was
required to contain the work file.

® Elapsed Time -- The amount of wall-clock time required to
construct the task 1image and produce the memory
allocation file. Elapsed time 1is measured from the
completion of option input to the completion of map
output. This wvalue excludes the time required to
process the overlay description, parse the list of input
file names, and create the cross-reference 1listing (if
specified).

Appendix D should be consulted for a more detailed
discussion of the work file.

The cross-reference page header gives the name of the memory
allocation file, the originating task (TKB), the date and
time the memory allocation file was created, and the
cross-reference page number, in the following format:

GLOBAL CROSS REFERENCE PAGE
map file name CREATED BY TKB ON date AT time CREF Vn
SYMBOL VALUE REFERENCES...

The cross-reference list contains an alphabetic 1listing of
each global symbol along with its value and the name of each
referencing module. When a symbol 1is defined in several
segments within an overlay structure, the last defined value
is printed. Similarly, if a module 1is 1loaded 1in several
segments within the structure, the module name will be
displayed more than once within each entry.

The suffix -R is appended to the value if the symbol is
relocatable.

Prefix symbols accompanying each module name define the type
of reference as follows:

Prefix Symbol Reference Type

blank Module contains a reference that is
resolved in the same segment or in a
segment toward the root.

Module contains a reference that is
resolved directly in a segment away from
the root or in a co-tree.

Q Module contains a reference that is
resolved through an autoload vector.

Module contains a non-autoloadable
definition.
* Module contains an autoloadable definition.

The segment cross-reference lists the name of each overlay
segment and the modules that compose it.

MEMORY ALLOCATION

NOTE

The reader should consult the glossary
and Chapter 6 for a discussion of
unfamiliar terms.

B.4.2 Control of Memory Allocation File Contents and Format

By using the memory allocation and input file switches described
below, the wuser can eliminate nonessential information from the
output, improve Linker throughput, and obtain output in a format that
is more compatible with the hard-copy device.

The amount of information presented in the memory allocation file 1is
controlled by the /SHORT and /MAP switches. When the /SHORT switch is
included in the map file specification, the Linker eliminates the file
contents section of the allocation listing. The 1list of global
definitions by module, and the list of wunresolved global references
within a module are not produced. All other information can be found
elsewhere in the output.

In general, the short format provides sufficient information for
debugging while reducing task-build time considerably. Listings that
contain a full description of file contents can be obtained at 1less
frequent intervals and kept for later reference.

The contents of individual input files <can be excluded from the
listing by negating the /MAP switch (/NOMAP). Suppressing such output
eliminates the following information from the allocation and
cross-reference output of the excluded file:

e P-section contributions as shown in the memory allocation
synopsis

e Global symbol definitions
e File contents

® Global definitions or references, and module names as shown in
the cross-reference listing.

To disable map output for individual files, the user includes /NOMAP
in the appropriate input file specification. To disable such output
for the default system object module library and all memory-resident
library files, the user includes /NOMAP in the memory allocation file
specification.

The width of the listing is controlled by the /WIDE switch. This
switch 1is included 1in the map file specification to increase the
listing format to 132 columns. The global symbols, overlay
description, and cross-reference output are expanded to fill the
additional space.

MEMORY ALLOCATION

PARTITION NAME : GEN

IDENTIFICATION : 214097

TASK UIC : (0,202)

STACK LINITS: 000216 001215 001000 00512.

PRG XFR ADDRESS: 141260

TOTAL ADDRESS WINDOWS: 1.

TASK IMAGE SIZE : 32448, WORDS

TASK ADDRESS LIMITS: 000000 176573

. OVERLAY DESCRIPTION:

BASE TOP 'LENGTH

000000 174337 174340 63712. EXCEPT

174340 174423 000064 00052. EX5025

174340 174743 000404 00260. EX$049

174340 174433 000074 00060. DOS025

174340 174443 000104 00068. CR§025

174340 174673 000334 00220. 5T§047

174340 175337 ' 001000 00512. 5T5048

174340 176573 002234 01180. 5T5049

##% ROOT SEGMENT: EXCEPT

R/W MEM LIMITS: 000000 174337 174340 63712, e

MEMORY ALLOCATION SYNOPSIS:

SECTION TITLE IDENT FILE

« BLK.:(RW,I,LCL,REL,CON) 001216 001420 00784.

' 001216 000026 00022. ROCLOS 0005CM RMSLIB.OLB;16

001244 000026 00022, ROCONN 0003CM RMSLIB.OLB;16
001272 000104 00068. ROCREA 0012CM RMSLIB.OLB;16
001376 000026 00022. ROFIND 0004CM RMSLIB.OLB;16
001424 000026 00022. ROGET 0010CN RMSLIB.OLB;16
001452 000212 00138, ROINIT 0011CM RMSLIB.DLB;16
001664 000114 00076. ROFBDB 0007CM RNSLIB.OLB;16
002000 000124 00084. ROOPEN 0013CN RMSLIB.OLB;16
002124 000026 00022. ROPUT 0004CM RMSLIB.OLB;16

ACDDAT: (RW,D,GBL,REL,0VR) 002636 000244 00164.
002636 000244 00164. ACDQIO 1A-18 COBLIB.OLB;1

- | —1
v 4

m’

: 152054 000130
$SRTS :(RW,I,GBL,REL,OVR)

152204 000002

00088, ROIMPA 0017CM RMSLIB.OLB;16
00002.

$85GD0: (RW,D,LCL,REL,OVR) 152206 000000 00000,

152346 000002
152350 000004
152354 000000
152354 000000
152354 000142
152516 002464

$$SGD2: (RW,D,LCL,REL,OVR)
$SVEXO:(RW,D,GBL,REL,OVR)
$SVEX1:(RW,D,GBL,REL,OVR)
$S8WNDS:(RW,D,LCL,REL,CON)
«CSID :(RW,I,LCL,REL,CON)
«CSII :(RW,I,LCL,REL,CON)

GLOBAL SYMBOLS:

ACCBUF 002712-R AWFB3 013754-R COVALU

ACCQIO 004112-R AWFB4 013766-R CREDLM

00002,
00004.
00000.
00000.
00098,
01332,

111070-R DISQIO 004232-R EMCE 013354=R

122516-R DOCATS 127750-R EMDD 017364=R :

FCP2 013606=R

FCP3 013610=-R

INTEG 161226-R

I0FLGS 111060-R

A

—

$ALBDB 023100-R $COPS 166224-R SGETBK

$ALBST 023144~R SCPOOL 023036-R SGETTV

$*¥x TASK BUILDER STATISTICS:

TOTAL WORK FILE REFERENCES:
WORK FILE READS: 0.
WORK FILE WRITES: 0.
SIZE OF CORE POOL: 17028. WORDS (66.
SIZE OF WORK FILE: 15360. WORDS (60.

279702,

ELAPSED TIME:00:00:46

¥% SEGMENT: EX$025

R/W MEM LIMITS:

MEMORY ALLOCATION SYNOPSIS:

SECTION

034766~R S$SRLSBK 041200-R $SVFRQ 044510-R

152004=-R SRMCLO 001216=R S$UNLK 047122-R

PAGES)
PAGES)

174340 174423 000064 00052.

TITLE IDENT FILE

$EX006:(RW,I,GBL,REL,CON) 174340 000064 00052.
$SALVC:(RW,D,LCL,REL,CON): 174424 000000 00000.
$8RTS :(RW,I,GBL,REL,OVR) 152204 000002 00002,

GLOBAL SYMBOLS:
EX$025 152204=-R

Figure B-4 Memory

Allocation File

SXINIT 173270-R
S$XINRD 105334=R

APPENDIX C

RESERVED SYMBOLS

Several global symbols and p-section* names are reserved for use by
the Linker.** Special handling occurs when a definition of one of
these names is encountered in a task image.

The definition of a reserved global symbol in the root segment causes
a word in the Task Image to be modified with a value calculated by the
Linker. The relocated value of the symbol 1is taken as the
modification address.

The following global symbols are reserved by the Linker:

Global Modification
Symbol Value

.FSRPT Address of File Storage Region work area (.FSRCB)
.MOLUN Error message output device

.NLUNS The number of logical units used by the task, not
including the Message Output and Overlay units

.NOVLY The overlay logical unit number
N.OVPT Address of Overlay Runtime System work area (.NOVLY)
.NSTBL The address of the segment description tables. Note

that this location is modified only when the number of
segments is greater than one.

.0ODTL1 Logical unit number for the ODT terminal device TI:
.ODTL2 Logical unit number for the ODT line printer device CL:
SOTSV Address of Object Time System work area ($OTSVA)

.TRLUN The trace subroutine output logical unit number

SVEXT Address of vector extension area ($SVEXTA)

* P-sections are created by .ASECT, .CSECT, or .PSECT directives.
The .PSECT directive obviates the need for either the .ASECT or .CSECT
directive, these being retained only for compatibility with other
systems. In this d. ~ument all sections are referred to as p-sections
unless the specific characteristics of .ASECT or .CSECT apply.

** In addition, all symbols and p-section names containing a . or $
are reserved for DIGITAL-supplied software.

c-1

The following p-section names are reserved by the

cases,
3.2.3.4).

Section
Name

$SALVC

SS$DEVT

$SFSR1

$$IOB1

$SOBF1

$SRGDS

SSRTS

$$SGDO
$$SGD1
$$SGD2

S$SSWNDS

RESERVED SYMBOLS

Linker. In some

the definition of a reserved p-section causes the p-section to
be extended if the appropriate option input is specified (see

Section

Description
Contains segment autoload vectors

The extension length (in bytes) is calculated from the

formula
EXT = <S.FDB+52>*UNITS

Where the definition of S.FDB is obtained from the root
segment symbol table and UNITS is the number of logical

units used by the task, excluding the Message Output,
Overlay, and ODT units.
The extension of this section 1is specified by the

ACTFIL option input.

The extension of this section is

MAXBUF option input.

specified by the
FORTRAN OTS uses this area to parse array type format
specifications. May be extended by FMTBUF keyword.

Contains region descriptors for resident 1libraries

referenced by the task

Contains return instruction

P-section adjoining task segment descriptors
Contains task segment descriptors

P-section following task segment descriptors

Contains task window descriptors

APPENDIX D

INCLUDING A DEBUGGING AID

The user can include a program that controls the execution of a task,

by naming the appropriate object module as an input file, and applying
the /DEBUG command qualifier.

When such a program is input, the Linker causes control to be passed
to the program when the task execution is initiated.

Such control programs might trace a task, printing out relevant
debugging information, or monitor the task's performance for analysis.

The switch has the following effect:

1. The transfer address in the debugging aid overrides the task
transfer address.

2. On initial task load, the following registers have the
indicated value:

RO - Transfer address of task
Rl - Task name in Radix-50 format (word #1)
R2 - Task name (word #2)

AUTOLOAD

CO-TREE

DISK-RESIDENT OVERLAY
SEGMENT

GLOBAL CROSS-REFERENCE

GLOBAL SYMBOL

HOST SYSTEM

MAIN PARTITION

MAIN TREE

MAPPED ARRAY AREA

MEMORY ALLOCATION FILE

OVERLAY DESCRIPTION
LANGUAGE

APPENDIX E

TRAX LINKER GLOSSARY

The method of loading overlay segments, in
which the Overlay Runtime System
automatically 1loads overlay segments when
they are needed and handles any unsuccessful
load requests.

An overlay tree whose segments, including the
root segment, are made resident in memory
through calls to the Overlay Runtime System.

An overlay segment that shares physical
memory and virtual address space with other
segments. The segment is read in from disk
each time it is loaded (compare
Memory-Resident Overlay Segment).

A list of global symbols, in alphabetical
order, accompanied by the name of each
referencing module.

A symbol whose definition is known outside
the defining module.

The system on which the task is built.

A partition whose memory may be subdivided
into fixed-length sub-partitions, or
dynamically allocated to each task by the
Executive (system—-controlled partitions).

An overlay tree whose root segment is loaded
by the Monitor when the task is made active.

An area of the task's physical memory,
preceding the task image, that is used for
storage of large arrays. Space in the area
is reserved by means of the VSECT keyword or
through a Mapped Array Declaration contained
in an object module. Access is through the
mapping directives issued at run-time.

The output file created by the Linker that
describes the allocation of task memory.

A language that describes the overlay
structure of a task.

OVERLAY RUNTIME SYSTEM

OVERLAY SEGMENT

OVERLAY TREE

PARTITION

PATH

PATH-DOWN

PATH-LOADING

PATH-UP

P-SECTION

ROOT SEGMENT

RUNNABLE TASK

SEGMENT

SUB-PARTITION

SYMBOL DEFINITION FILE

SYSTEM-CONTROLLED
PARTITION

TARGET SYSTEM

TASK IMAGE FILE

TRAX LINKER GLOSSARY

A set of subroutines linked as part of an
overlaid task that are called to 1load
segments into memory.

A segment that shares physical memory and/or
virtual address space with other segments,
and is loaded when needed.

A tree structure consisting of a root segment
and optionally one or more overlay segments.

An area of memory reserved for the execution
of tasks.

A route that is traced from one segment in
the overlay tree to another segment in that
tree.

A path toward the root of the tree.

The technique used by the autoload method to
load all segments on the path between a
calling segment and a called segment.

A path away from the root of the tree.

A section of memory that is a wunit of the
total allocation. A source program is
translated into object modules that consist
of p-sections with attributes describing
access, allocation, relocatability, etc.

The segment of an overlay tree that, once
loaded, remains in memory during the
execution of the task. ‘
A task that has a header and stack and that
can be installed and executed.

A group of modules and/or p-sections that
occupy memory simultaneously and that can be
loaded by a single disk access.

A partition that resides within a main
partition.

The output file created by the Task Builder
that contains the global symbol definitions
and values in a format suitable for
reprocessing by the Linker. Symbol
definition files are used to 1link tasks to
shared regions.

A partition whose memory may be dynamically
allocated by the Executive to several
concurrently active, resident tasks.

The system on which the task executes.
The output file created by the Task Builder

that contains the executable portion of the
task.

USER-CONTROLLED
PARTITION

VIRTUAL ADDRESS SPACE

TRAX LINKER GLOSSARY

A partition that can accommodate only one
active, resident task.

The set of addresses ranging from 0 to 177777
octal that are contained in a 16-bit word and
referenced directly by a user's program.

INDEX

.B2S, 1-4 Abnormal task terminator, 3-2

.CBL, 1-4, 2-2 ABSPAT, 4-2, 4-4

.CMD, 1-4, 2-6, 3-5, 5-20, 5-22 Allocation options, 4-2

.END directive, 5-8, 5-17 Ambiguous definitions, 5-15

.FCTR directive, 5-9, 5-17 to 5-19, ASCII characters, 1-3, 7-6, 7-8
5-24, 5-25, 5-28 ASG, 4-2, 4-4

.MAC, 1-4 Asterisk, autoload indicator, 5-20

.MAP, 1-4, 3-6, 5-22 ' AUTOLOAD, 6-1

.NAME directive, 5-10, 5-13, Autoload indicator, 6-1
5-18, 5-23, 5-24, 5-29 Autoload vectors, 6-5

.OBJ, 1-4, 5-13, 5-18, 5-19, Autoloadable data segments, 6-6
5-27

.0bL, 1-4, 5-11, 5-22
.PSECT directive, 5-11, 5-18,

5-23, 5-24 BASIC-PLUS-2, 2-1, 2-6, 2-7
.ROOT DIRECTIVE, 5-8, 5-10, 5-11, BASIC-PLUS-2, overlaying
5-13, 5-17, 5-18, 5-19, 5-24 programs, 5-19
.STB, 1-4, 3-5, 3-9 Branches, 5-21
.TSK, 1-4, 3-6, 5-22 Build command, 2-6, 3-3

Building the task, 5-16

/BASIC command qualifier, 3-1,

3-3 CALL, 6-1
/CHECKPOINT command qualifier, Co-trees, 3-2, 5-5, 5-7, 5-12 to
3-1, 3-3 5-15, 5-18
/CONCATENATED input file COBOL, creating standard ODL
qualifier, 3-6, 3-7 files, 5-27
/CROSSREFERENCE command COBOL ODL merge utility, 5-27
qualifier, 3-2, 3-3 Coding, 2-1
/DEBUG command qualifier, 3-2, Comma operator, 5-17
3-3 Command qualifiers, 2-4
/DEFAULT-LIBRARY input file Comments, 2-7
qualifier, 3-6, 3-7 COMMON, 4-2, 4-3
/DUMP command qualifier, 3-2, Compiling, 2-1
3-3 Compiling COBOL programs, 2-2
/FULL SEARCH command qualifier, Concatenated files, 3-6
3-2, 3-4 Contents of the memory allocation
/KE switch, 2-2 file, B-5
/LIBRARY input file qualifier, Control of the memory allocation
3-6, 3-7 file contents and format,
/MAP command qualifier, 3-2, 3-4 B-12
/MAP input file qualifier, 3-6, Creating source language
3-8 statement files, 2-2
/OPTIONS command qualifier, 3-2, Creating standard COBOL ODL
3-4 files, 5-27

/OVERLAY command option, 3-2, 3-5
/SELECT-SYMBOLS input file
qualifier, 3-6, 3-9
/SEQUENTIAL command option, 3-2, Debugging, 2-1
3-5 Debugging, user-written module,
/SYMBOLS command option, 3-2, 3-5 3-2, D-1
/TASK command qualifier, 3-2, 3-6 DEC editor, 2-2, 5-27

Index-1

INDEX (Cont.)

Default system library, 3-7

Defining a multi-tree structure,
5-12

Defining the ODL file, 5-16

Device specification options,
4-3

Disk resident overlay structures,
5-~1

Dump, post-mortem, 3-2, 7-1, 7-2

Dump, snapshot example, 7-8

Dumps, memory, 7-1

Editing, 2-1

Error messages, A-1 to A-9
Example, multiple-tree, 5-13
Example of a snapshot dump, 7-8
EXTTSK, 4-2

Figure, post-mortem dump
sample, 7-4 to 7-5
File,
contents of memory allocation,
B-5
defining ODL, 5-16
link command, 2-7, 4-1
merging standard ODL, 5-26
modifying compiler generated,

5-28
overlay descriptor, 3-2
symbol, 3-2

task image, 3-2, 3-7
File specifications, 2-4
File types table, 1-4
Files,

concatenated, 3-6

creating standard COBOL ODL,

5-27

indirect, 5-10
Flow-charting, 2-1
Format of the SNAPS$ MACRO, 7-7
Format of the SNPBKS$ MACRO, 7-6
Formats, link command, 2-4

GBLEDEF, 4-2, 4-5

Global cross reference on an
overlaid task, 6-7

Global symbol, 4-4, 4-5, 5-5,
5-6

I/0 support, RMS, 5-23
Include selected library modules,
3-8

Including a debugging aid, D-1

Including non-COBOL programs in
a task, 5-27

Indicator, autoload, 5-16

Indirect command file facility,
2-5

Indirect files, 5-10

Input file qualifier table, 3-6

JMP, 6-1
JSR, 6-1

Kernal, 2-2, 5-24

Library, default system, 3-7
Link command, 2-5
Link command file, 2-7,
Link command formats, 2-
Link command options, 2-
LINK command options, 4
Link command string, 2-7
Linkage, 5-13
Linkage section, B-2
LINKER, 1-1, 1-2, 2-3, 2-6,
3-1 to 3-8, 3-9, 4-1, 4-
5-1 to 5-4, 5-6 to 5-8,
5-12, 5-16, 5-19, 5-23,
6-5, a-1, B-1, B-2, B-12,
c-1, D-1
Linking the task, 2-1, 2-3
Loading mechanism, 5-4
Loading mechanisms, 6-1

4-1
4
5
1

MACRO, 4-1, 4-2

Map, memory allocation, 3-8

Memory allocation, B-7

Memory allocation file, B-5

Memory allocation map, 3-8

Memory dumps, 7-1

Merging standard ODL file, 5-26

Modifying the compiler generated
ODL file, 5-28

Module, user-written debugging,
3-2, D-1

Modules, include selected
library, 3-8

Multi-tree structures, 5-12

Multiple line input, 2-5

Multiple-tree example, 5-13

Multiply-defined symbols, 5-4,
5-5

Index-2

INDEX (Cont.)

ODL file body, 5-23

ODL file reader, 5-23

ODL generated overlay containing
more than one PSECT, 5-26

ODL generated overlay containing
only one PSECT, 5-24

Operator, comma, 5-17

Options, 2-5

Overlay capability, 5-1

Overlay core image, 5-14

Overlay description, 5-1

Overlay descriptor file, 3-2

Overlay descriptor language,
3-5, 5-8, 5-9, 5-12, 5-19

Overlay runtime system, 6-1

Overlay trees, 5-3

Overlaying BASIC-PLUS-2
programs, 5-19

Overlaying programs written in a
higher level language, 5-15

Overlays, 5-19

Path loading, 6-3
Post-mortem dump, 3-2, 7-1, 7-2
Post-mortem dump sample, 7-4

to 7-5
Post-mortem dumps, 7-1
Program development, 2-1
P-sections, B-2

Qualifier command, 3-2

Rearranging a compiler generated
opL file, 5-28

Region, shared global, 4-3

Reserved symbols, C-1

Resolution global symbols in a
multi-segment task, 5-4

Resolution of global symbols
from the default library, 5-6

Resolution of P-sections in a
multi-segment task, 5-7

Resolve all global symbols, 3-7

RMS file specification
information, 1-3

RMS I/0 support, 5-23

Root, 5-21

Shared global region, 4-3

Single-segment task, 5-4

Snapshot dump, 7-3

Standard ODL files, 5-23

Storage altering options, 4-4

Storage sharing options, 4-3

Structure, defining multi-
tree, 5-12

Structure, disk resident
overlay, 5-1

Structures, multi-tree, 5-12

Summary of the overlay
descriptor language, 5-16

Symbol file, 3-2

Symbol global, 4-4, 4-5, 5-5,
5-6

Symbols, multiply-defined, 5-4,
5-5

Table, file types, 1-4
Table, input file qualifier,
3-6
Table, link command qualifiers,
3-1
Task,
global cross reference on
overlay, 6-7
including non-COBOL programs
in a, 5-27
single-segment, 5-4
Task image file, 3-2, 3-7, B-4
Task image memory, B-2
Task memory structure, B-1
Task terminator, abnormal, 3-2
TRAX documentation directory, 1-2
TRAX LINKER, 2-3
TRAX Support Environment User's
Guide, 1-2, 2-1, 2-2, 2-6,
7-2
Trees, complex, 5-17
Trees, overlay, 5-17

UNITS, 4-2, 4-3

User-written debugging module,
3-2, D-1

Using overlays with TRAX COBOL,
5-23

Index-3

Please cut along this line.

TRAX
Linker Reference Manual
AA-D342A~-TC

READER'S COMMENTS

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. If you require a written reply and are
eligible to receive one under Software Performance

Report (SPR) service, submit your comments on an SPR
form.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the
page number.

Please indicate the type of reader that you most nearly represent.

Assembly language programmer
Higher-level language programmer
Occasional programmer (experienced)
User with little programming experience
Student programmer

Ooooao

Other (please specify)

Name Date

Organization

Street

City. i State Zip Code

Fold Here

Do Not Tear - Fold Here and Staple

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

Software Documentation
146 Main Street ML5-5/E39
Maynard, Massachusetts 01754

