
July 1978

This document describes the use of the Linker on the TRAX system.

TRAX

Linker Reference Manual

Order No. AA-D342A-TC

OPERATING SYSTEM AND VERSIONS: TRAX Version 1.0

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipm:""'" Corporation, Maynard, Massachusetts 01754

digital equipment corporation · maynard. massachusetts

First Printing, August 1978

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright © 1978 by Digital Equipment Corporation

The postage-prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre­
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL
DEC
PDP
DECUS
UNIBUS
COMPUTER LABS
COMTEX
DDT
DECCOMM
ASSIST-II

DECsystem-10
DECtape
DIBOL
EDUSYSTEM
FLIP CHIP
FOCAL
INDAC
LAB-8
DECSYSTEM-20
RTS-8

MASSBUS
OMNIBUS
OS/8
PHA
RSTS
RSX
TYPESET-8
TYPESET-II
TMS-II
ITPS-IO

CHAPTER 1
1.1
1.2
1.3
1.4
1.5

CHAPTER 2
2.1
2.1.1
2.1.2
2.1.3
2.1.4
2.2
2.2.1
2.2.2
2.2.3
2.2.4
2.2.5
2.2.6
2.2.6.1

ChAPTER 3
3.1
3.1.1
3.1.2
3.1.3
3.1.4
3.1.5
3.1.6
3.1.7
3.1.7.1
3.1.7.2
3.1.8
3.1.9
3.1.1f.l
3.1.11
3.2
3.2.1
3.2.2
3.2.3
3.2.3.1
3.2.3.2
3.2.4
3.2.5

CHAPTER 4
4.1
4.1.1
4.2
4.2.1

TABLE OF CONTENTS

INTRODUCTION
MANUAL OBJECTIVES AND READER ASSUHPTIONS
STRUCTURE OF THE DOCUMENT
ASSOCIA'l'ED DOCUHENTS
INTRODUCTION TO THE LINKER
RMS FILE SPECIFICATION INFORMATION

PROGRAlvl DEVELOPI·1EN'I' AND THE LINK COMMAtJD
AN OVERVIEW OF THE PROGRAM DEVELOPMENT PROCESS

Creating Source Language Statement Files
Compiling the COBOL Programs
Linking the 'Task
Running Your Program

THE 'l'RAX LINKER
LINK Command Formats
Command Qualifiers
File Specifications
OPTIONS
Multiple Line Input
Indirect Command File Facility
Comments

COMMAND AND FILE QUALIFIERS
COMMAND QUALIFIERS

The BASIC Command Qualifier
The CROSS-REFERENCE Command Qualifier
The DEBUG Command Qualifier
l 'he DUf~P Command Qual if ier
'The FULL-SEARCH Command Qual ifier
The rtJAP Command Qualifier
The OP'I'IGNS Command Qual if ier
Interactive Format
Command File Format
The OVERLAY Command Qualifier
'I'he SEQUEt~TIAL Command Qual if i!;~r
The SYMBOLS Command Qualifier
'The TASK Cormnand Qua 1 if ie r

INPUT FILE QUALIFIERS
The CO~CA~ENATED Input File Qualifier
The DEFAULT LIBRARY Input File Qualifier
The LIBRARY Input File Qualifier
Resolve All Clobal Symbols
Include Selected Libr3ry Modules
The MAP Input File Qualifier
The SELECT SYMBGLS Input File Qualifier

car·n-1AND OprIIONS
ALLOCATION OPTIONS

EXTTSK (External Task Memory)
STORAGE-ShARING OPTIO~S

COMMON (System-Owned Common Block)
LIER (System-Owned Resident Library)

iii

Page

1-1
1-1
1-1
1-2
1-2
1-3

2-1
2-1
2-2
2-2
2-3
2-3
2-3
2-4
2-4
2-4
2.-5
2-5
2-5
2-7

3-1
3-2
3-3
3-3
3-3
3-3
3-4
3-4
3-4
3-5
3-5
3-5
3-5
3-5
3-5
3-7
3-7
3-7
3-7
3-7
3-8
3-8
3-9

4-1
4-2
4-2
4-3
4-3

CHAPTER

CHP.Fl'EH

4.3
4.3.1
4.3.2
4.4
4.4.1
4.4.2

5
5.1
5.1.1
5.1.2
5.1.2.1
5.1.2.2

5.1.2.3

5.1.2.4

5.1.3
5.1.3.1
5.1.3.2
5.1.3.3
5.1.3.4
5.1.3.5
5.1.4
5.1.4.1
5.1.4.2
5.1.5
5. 1. 6

5. 1. 7
5.1. 8
5.2
5.3
5. 3. 1
5.4
5.4. 1
5.4.2
5.4. 3
5.4. 4

5.4.5

5.4. 6
5.4. 7
5.4. 8
5.4. 9

5.4.10

6
6.1
6. 1. 1
6.1. 2
6. 1. 3
6.1.4
6.2

DEVICE SPECIFICATION OPTIONS
UNITS (Logical Unit Usage)
ASG (Device Assignment)

STORAGE-ALTERING OPTIONS
ABSPAT (Absolute Patch)
GBLDEF (Global Symbol Definition)

OVERLAY CAPABILITY
OVERLAY DESCRI?TION

Disk-Resident Overlay Structures
Over lay Tree
Loading Mechanism
Resolution of Global Symbols in a
MUlti-segment 1ask
Resolution of Global Symbols from the
Default Library
Resolution of P-sections in a
MUlti-segment Task
Overlay Descriptor Language (DDL)
.ROOT and .END Directives
.FCTR Directive
.NAME Directive
.PSECT Directive
Indirect Files
Multiple-Tree Structures
Defining a Multiple-Tree Structure
Multiple-Tree Example
Overlay Core Image
Overlaying Programs written in a
Higher Level Language
Defining the ODL File
Building the 1ask

SUM~ARY OF TaE OVERLAY DESCRIPTOR LANGUAGE
OVERLAYING BASIC-PLU8-2 PROGRAMS

Overlays
USING OVERLAYS WITH TRAX COBOL

Standard ODL File
ODL File Head~r
OLL File Body
ODL Generated for OverlDYs Containing
Only One PSECT
ODL Generated for Overlays Containing
More Than One PSECT
Merging Standard ODL Files
Including Non-COBOL Programs in a Task
Creating a Standard COBOL ODL File
Rearranging a Compiler-generated
eDL File
Modifying the Compiler-generated
ODL File

LOADING HECHANISr·:S
AU'I'OLOAD

Autoload Indicator
Path-Loading
Autoload Vectors
Autoloadable Dat~ Segments

GLOBAL CROSS-REFERENCE OF AN OVERLAID TASK

iv

4-3
4-3
4-4
4-4
4-4
4-5

5-1
5-1
5-1
5-3
5-4

5-4

5-6

5-7
5-8
5-8
5-9
5-10
5-11
5-11
5-12
5-12
5-13
5-14

5-15
5-16
5-16
5-16
5-19
5-19
5-23
5-23
5-23
5-23

5-24

5-24
5-26
5-27
5-27

5-28

5-28

6-1
6-1
6-1
6-3
6-5
6-6
6-7

CHAPTER 7
7.1
7.2
7.2.1
7.2.2
7.2.3

APPENDIX A

APPENDIX B
B.l
B.2
B.2.1
B.3
8.4
B.4.1
B.4.2

APPENDIX C

FIGURE 5-1
5-2
5-3
5-4
6-1
7-1
7-2
7-3
7-4
7-5
B-1
B-2
B-3
B-4

TABLE 1-1
1-2
3-1
3-2
4-1
B-1

tvlEMORY DUf.1PS
POST-MORTEM DUMPS
SNAPSHOT DurY'JP

Format of the SNPBK$ Macro
Format of the SNAPS Macro
Example of a Snapshot Dump

ERROR MESSAGES

MEMORY ALLOCATION
TASK MEMORY STRUC~bRE
TASK IMAGE MEMORY

P-Sections
l'ASK IMAGE FILE
MEMORY ALLOCATION FILE

Contents of the Memory Allocation File
Control of Memory Allocation File
Contents and Format

RESERVE SYMBOLS

Overlay Structure
Over 1 ay l'a th

FIGURES

Merged ODL File Listing
Iviod if ied ODL Fi Ie
Sample Overlaid Cross-Reference Listing
Sample Post-Mortem Dump (Truncated)
Format of Snapshot Dump Control Block
Sample Program that Calls for Snapshot Dumps
Sample Snapshot Dump (Words Octal and RAD50)
Sample Snapshot Dump (Bytes Octal ~nd ASCII)
Task Memory Structure
Memory Allocation File for IMGl.TSK
Cross Reference Listing for MPl.MAP
Memory Allocation for Sample Program

TABLES

Link Command Qualifier
Input File Qualifiers
TRAX Link Command Options
P-section Attributes

v

7-1
7-1
7-3
7-6
7-7
7-8

B-1
B-1
B-2
B-2
B-4
B-5
B-5

8-12

C-l

5-20
5-21
5-28
5-29
6-7
7-4
7-6
7-9
7-10
7-11
B-1
B-6
B-8
B-13

3-1
3-6
4-2
B-3

CHAPTER 1

INTRODUCTION

1.1 MANUAL OBJECTIVES AND READER ASSUMPTIONS

This manual is a tutorial, intended to introduce the user to the
concepts and capabilities of the TRAX Linker.

Examples are used to introduce and describe features of the Linker.
These examples proceed from the simplest case to the most complex.

The user should be familiar with the basic concepts of the TRAX system
described in the Introduction to TRAX, and with basic operating
procedures described in the TRAX Support Environment User's Guide.
(See Section 1.3.)

1.2 STRUCTURE OF THE DOCUMENT

The manual has seven chapters. Chapters 1 through 4 describe the
basic capabilities of the Linker, and Chapters 5 and 6 describe its
advanced capabilities. Chapter 7 discusses memory dumps. The
appendixes include error messages, data formats, and a glossary.

Chapter 1 outlines the capabilities of the Linker.

Chapter 2 describes the command sequences used to interact with the
Linker.

Chapter 3 lists the command qualifiers.

Chapter 4 discusses options that you can specify in a LINK command
line.

Chapter 5 describes the overlay capability and the language used to
define an overlay structure.

Chapter 6 gives the two methods that can be used for loading overlay
segments.

Chapter 7 describes two memory dumps--Post-mortem and Snapshot.

1-1

INTRODUCTION

1.3 ASSOCIATED DOCUMENTS

Other manuals closely allied with the purpose of this document
are the TRAX:

• Support Environment User's Guide

• BASIC-PLUS-2 User's Guide and the

• COBOL User's Gu ide.

1.4 INTRODUCTION TO THE LINKER

The fundamental executable unit in the TRAX support environment is the
task. A routine becomes an executable task image, as follows:

1. The routine is written in a supported source language.

2. It is entered as a text file, through the editor.

3. It is translated to an object module, using the appropriate
language translator.

4. The object module is converted to a task image by the Linker
program.

S. The task is run.

If errors are found in the routine as a result of executing the task,
the user makes corrections to the text file using the editor, and then
repeats steps 3 through 5.

If a single routine is to be executed, the use of the Linker is
appropriately simple. The user specifies as input only the name of
the file containing the object module produced from the translation of
the program, and specifies as output a name for the task image.

Typically, however, a collection of routines is run rather than a
single program. In this case the user names each of the object module
files, and the Linker links the object modules, resolves any
references to the system library, and produces a single task image,
ready to be installed and executed.

The Linker makes a set of assumptions (defaults) about the task image
based on typical usage and storage requirements. These assumptions
can be overridden by including switches and options in the
task-building terminal sequence. This allows the user to build a task
that is tailored to its own input/output and storage requirements.

The Linker also produces, upon request, a memory allocation file (map)
that contains information describing the allocation of storage, the
modules that make up the task image, and the value of all global
symbols. The user can also request that a list of global symbols,
accompanied by the name of each referencing module, be appended to the
file (global cross-reference).

The Linker provides the user with an overlay capability as a means of
reducing the memory requirements of a task. A task can be divided
into several overlay segments that reside on disk. Disk-resident
overlays are loaded into memory when they are needed.

If the task is configured as an overlay structure (that is, as a
multi-segment task), the user becomes responsible for loading segments
into memory as they are needed. The method provided for loading
overlay segments is called autoload.

1-2

INTRODUCTION

with the autoload method, no special calls are required to load the
task's overlay segments. The segments are loaded automatically by the
Overlay Runtime System according to the structure defined by the user
at the time the task was built.

The user can become familiar with the capabilities of the Linker by
degrees. Chapter 3 gives sufficient basic information about Linker
commands to handle many applications. The remaining chapters deal
with special features and capabilities for handling advanced
applications and tailoring the task image to suit the application.

This manual describes the development of an example application, BILL.
In the first treatment of BILL, the user builds a task using all the
default assumptions. Successive treatments illustrate the main points
of each chapter in a realistic manner. Qualifiers and options are
added as they are required, an overlay structure is defined when the
task increases in size, the loading of overlays is illustrated, and
finally the task is moved from a development system to a system with a
different configuration.

"The memory allocation files for the various stages of task development
are included. The effect of a change can be observed by examining the
map for the previous example and the map for the example in which the
change is made.

1.5 RMS FILE SPECIFICATION INFORMATION

A TRAX file specification conforms to standard RMS conventions. It
has the following form:

device: [ufd]filename.filetypeiversion

where:

device

[ufd]

file name

is the name of the physical device on which the volume
containing the desired file is mounted. The name consists
of two ASCII characters followed by a 1- or 2-digit octal
unit number and a colon(:)i for example, DMO: or DBl:.
A logical device name may also be used.

is the user file directory specification consisting of two
octal numbers in the range of 1 through 377 (octal).
These numbers must be enclosed in brackets and separated
by a comma and must be in the following format:

[group,member]

For example, member 225 of group 300 would use the
following entry:

[300,225]

is the name of the desired file. The file name can be
from one to. nine alphanumeric charactersi for example,
BILLRTN. You must always specify the ftle name. There is
no default specification for this component. Failure to
specify the file name causes an error to be generated.
The lone exception is when the wild card (*) specification
is used. The wild card (*) specification causes the
system to process all file names on the specified user
file directory.

1-3

file type

version

Item

device

[ufd]

version

INTRODUCTION

is the 3-character file type identification. Separate the
file name and file type with a period(.). Files with the
same name but different functions are distinguished from
one another by the file type; for example, BILL.TSK and
BILL.OBJ might be the task file and the object file,
respectively, for the program BILL. You may omit the file
type, but you should avoid this practice when dealing with
system programs which generally assume a default file type
for various operations. The wild card (*) specifier may
be used in place of a file type. The action specified
will be applied to all file types associated with a given
file name or wild card file name. (E.G. *.* specifies
the current version of all files in the user file
directory.)

is the octal version number of the file in the range 1
through 77777 (octal). Separate the extension and version
by a semicolon(;). Various versions of the same file are
distinguished from each other by the version number; for
example, BILL.OBJ;l and BILL.OBJ;2 are successive versions
of the same file. The version number may be omitted, in
which case the current (highest-numbered) version is
assumed. To act upon all versions of a file, you can use
the wild card (*) specification.

The device, user file directory code, file type, and the
version specification are all optional.

Table 1-1 lists the default assumptions applied to missing
components of a file specification. Table 1-2 lists the
file types assumed by PDP-II system software.

Table 1-1

Default

user's current default device

user's current default [ufd]

for an input file, the default version number is the
existing version with the highest (octal) number.

For an output file, the default is calculated as one
greater than the highest existing version number for
that file.

Table 1-2

File Contents
Description

Default
File type

task image file
memory allocation file
symbol definition file
object module
object module library file
overlay description file
indirect command file
COBOL source text file
BASIC-PLUS-2 source file
MACRO source file

1-4

.TSK

.MAP

.STB

.OBJ

.OLB

.ODL

.CMD

.CBL

.B2S

.MAC

CHAPTER 2

PROGRAM DEVELOPMENT AND THE LINK COMMAND

This chapter is divided into two parts. The first part describes the
program development process as it applies to the TRAX Support
Environment. Illustrations of the steps in program development are
made using examples similar to those found in TRAX Support Environment
applications.

The second part presents the concept of linking a task image, and
describes the LINK command in terms of syntax rules and available
features.

2.1 AN OVERVIEW OF THE PROGRAM DEVELOPMENT PROCESS

The program development process can be divided into several distinct
parts. Consider the following outline in developing a program to be
run on the PDP-II.

1. Define the operations to be performed. (Flow-charting)

2. Code the defined procedure into source language statements.
(Coding)

3. Create a source statement file in machine-readable form.
(Editing)

4. Compile the source language statements into an object module.
(Compiling)

5. Correct errors and recompile until your program is clean.
(Debugging)

6. Link the compiled object modules and required system
libraries to form an executable task image file. (Linking)

7. Run your program.

This manual assumes that you can define a procedure and code it into
appropriate source language statements. In the case of TRAX, COBOL
and BASIC-PLUS-2 are supported languages. For details about syntax
and coding of these languages, refer to the TRAX Language Reference
Manual and User's Guide for the language you are using.

The remaining parts of this section describe the last five steps of
program development as listed above, and how they are implemented in
the TRAX Support Environment.

2-1

PROGRAM DEVELOPMENT AND THE LINK COMMAND

2.1.1 Creating Source Language Statement Files

After you have defined your procedure and translated the definition
into appropriate source language statements, the next step is to enter
the source statements into the computer. In the TRAX Support
Environment, this is done from a "support" terminal using the DEC
Editor. Consult your system manager for the location of your
installation's support terminals, and the procedure required to log in
to the Support Environment.

The DEC Editor is a utility program which will allow you to create and
maintain text files from a video or hard-copy terminal. If you are
unfamiliar with the Editor's operations, consult the DEC Editor
Reference Manual or the Beginner's Guide to the DEC Editor.

The Editor is entered by typing the command string:

>EDIT [file-specification]

The file-specification is to be supplied by you according to the rules
discussed in Section 1.5 for RMS files. When you are creating a new
file, the file specification should be a new file name, and the file
type should follow the style suggested in Section 1.5 for the
particular source language you are using. (E.G. COBOL source files
should have a .CBL file type; BASIC-PLUS-2 files should have a .B2S
file type etc.).

2.1.2 Compiling the COBOL Programs

After you have created source language input files with the help of
the DEC Editor, the next step in the program development process is
compilation. The compiler is a system program which translates your
high-level source language statements into object modules which
consist of machine language instructions coded as octal numbers. If
you were to compile the example programs that were entered into a
source file in Section 2.1.1, you would invoke the COBOL compiler with
the following command string:

>COBOL/LIST/SWITCHES: (/KE:ST)
FILE? STATE
>COBOL/LIST/SWITCHES: (/KE:LA)
FILE? LABELS
>COBOL/LIST/SWITCHES: (/KE:CR)
FILE? CREDLM
>COBOL/LIST/SWITCHES: (/KE:EX)
FILE? EXCEPT

The first command invokes the COBOL compiler and directs it to take
source input from STATE.CBL and place the relocatable object code in
INRTN.OBJ. The remaining commands perform similar actions for the
source files LABELS.CBL, CREDLM.CBL, and EXCEPT.CBL. The /LIST and
/SWITCHES: (/KE:) keywords inform the COBOL compiler that a listing is
to be spooled to the line printer, and that the four routines are to
be compiled with the kernel names specified by the /KE switch.
Further information regarding language compilers and the features
available can be obtained by consulting the appropriate TRAX User's
Guide for the source language you are using.

The listing output from your compilation will indicate errors in your
source language text, and will provide information regarding the cause
of the error. You then can use the DEC Editor to make the required
corrections to your source statements, and recompile. Several

2-2

PROGRAM DEVELOPMENT AND THE LINK COMMAND

iterations of the compile and editing process are usually needed to
obtain an error-free compilation. Once the compiler has reported that
your compilation is error-free or "clean", you may then proceed to the
next program development step, linking the object modules to form a
task. In the higher-level languages, such as COBOL and BASIC-PLUS-2,
you must first run a language utility to create the appropriate
overlay description file for your program.

2.1.3 Linking the Task

The Linker is a system program that takes object modules
library modules as input, and merges this information to
image file. The task image file can be copied into memory
the operating system. Linking is the final step in
development process.

and system
form a task
and run by
the program

The example programs that have been entered and compiled in the
previous sections can be linked by issuing the following command
string:

>LINK/TASK:STATEMENT/MAP: STATE/OVERLAY: STATE/OPTIONS
OPTIONS? UNITS=7
OPTIONS? ASG=TI:l
OPTIONS? ASG=SY:2:3:4:5:6:7

The LINK command specifies the name of the task image file
(BILL.TSK;l), the name of the memory allocation file (BILL.MAP;l), and
the name of the input ODL file. Section 2.2 of this manual presents
the Link command, and describes the syntax required to use it.
Chapter 3 discusses the Qualifiers that may be used with the Link
command, and Chapter 4 explains the Options that may be selected.

2.1.4 Running Your Program

After all steps of program development (editing, compiling and
linking) have been successfully completed, you may run your program by
entering the run command followed by the file name of the task image
file that was created by the Linker. In our example programs, the
command string:

>RUN STATEMENT

will tell the TRAX operating system to copy
BILL.TSK into memory and execute the program.
are available to be used with the RUN command.
the TRAX Support Environment User's Guide.

2.2 THE TRAX LINKER

the task image file
A number of Qualifiers
They are described in

The TRAX Linker combines the input files and resolves references to
the system libraries to create a single executable task image. The
Linker produces output files according to the command qualifier
settings. A task image file is produced by default, although the
qualifier /TASK: [filespec] can be used to give the task image file a
different name from the input file. Generation of the task image file
can be suppressed by using the /NOTASK command qualifier. A memory
allocation map, which identifies the size and location of components
within the task, is produced on the line printer by explicit use of

2-3

PROGRAM DEVELOPMENT AND THE LINK COMMAND

the /MAP qualifier. The /MAP: [filespec] qualifier produces a memory
allocation file which is stored on the user's system device. The
/SYMBOLS qualifier must be specified to produce a symbol definition
file that contains the global symbol definitions in the task and their
virtual or relocatable addresses, in a format suitable for
reprocessing by the Linker.

Output task image files assume the file name of the first input file
unless the command qualifier specifies a particular file specification
as part of the qualifier.

2.2.1 LINK Command Formats

The standard LINK command format is:

You must separate the command qualifiers from the input file
specification by inserting at least one space between them. To use
the Linker in an interactive prompting mode, first invoke the Linker
by typing:

> LINK[/command qualifiers]

The system responds with a file? prompt. You then enter the input
file description arguments as shown:

> FILE?[file-specification[/file-qualifiers]]

You must respond to a FILE? prompt with at least one file
specification when you are in the interactive mode. You may specify
more than one input file specification, but must separate them with a
comma, a space or a tab character as a delimiter.

2.2.2 Command Qualifiers

Command Qualifiers are keywords which are used to specify output if
files, and to tell the Linker to search for and include certain system
library modules in the executable task image file. They always begin
with a slash (/) and may be abbreviated to the fewest number of digits
that causes the qualifiers to remain unique. Inserting NO between the
/ and the first letter of the keyword results in the negation of that
qualifier. Command Qualifiers are presented in table form and
discussed in detail in Chapter 3.

2.2.3 File Specifications

File specifications conform to the RMS standard format shown in
Section 1.5. Output file specifications are appended to their
corresponding keywords after a colon (:). Some special types of input
files (DEBUG ,OVERLAY) are also specified following a command
qualifier. Input object modules and system library files are
specified following the command qualifiers in the input string. A
space must appear between the last command qualifier and the first
input file specification. Multiple input files may be specified, and
must be delimited by a space, comma, or tab character. Input and
library files may be qualified through the use of file-qualifiers
which are described in Section 3.2 of this manual.

2-4

PROGRAM DEVELOPMENT AND THE LINK COMMAND

2.2.4 OPTIONS

Options are used to specify the characteristics of the task being
built. If you type the command qualifier /OPTIONS as part of the LINK
command, the Linker prompts for additional input by displaying
OPTIONS?: on the line following the last line of the input file
specification. You then enter one of the Linker options and terminate
the line by entering a carriage return. Prompting continues on
successive lines until you type a slash (/) followed by a carriage
return in response to an OPTIONS?: prompt. This sequence of
characters causes the prompting to cease and activates the Linker to
process your command string. A second form of option specification is
/OPTIONS: [filespec] where option input keywords and arguments are
contained in the file specified by the /OPTIONS command qualifier.
The second form suppresses interactive prompting for option input.

The example in Section 2.1.3 illustrates interactive prompting for
options:

An example of the second form of
Section 2.2.6. The syntax and
option are described in Chapter 4.

/OPTIONS qualifier is given in
interpretation of each TRAX Linker

The form of an option is a keyword followed by an equal sign (=) and
an argument list. The arguments in the list are separated from one
another by colons (:). In the preceding example, the first option
consists of a keyword UNITS and a single argument 6 indicating that
the task being linked is to be assigned 6 logical units. The second
option consists of the keyword ASG and an argument list DB2:5,DBl:6
indicating that disk unit 2 has been assigned to logical unit 5, and
disk unit 1 to logical unit 6. This is a demonstration of the manner
in which several arguments may be presented within the same option
argument list. In the absence of the /OPTIONS qualifier, the user
task is linked using the default option settings.

2.2.5 Multiple Line Input

LINK command lines are often complex, requIrIng command qualifiers and
file specifications that cause the command string to exceed the number
of characters allowed on a single input line. To enter a LINK command
line over more than one line, type a hyphen (-) as the last printing
character on the line, then continue the command on the next line.

>LINK/TASK: STATEMENT/MAP: STATE­
DCL>/OVERLAY:STATE/DEBUG/OPTIONS
OPTIONS?

2.2.6 Indirect Command File Facility

The LINK command string can also be entered as a text file and later
invoked through the indirect command file facility. To use the
indirect command file facility, you prepare a file that contains the
desired command string input to link object modules into a task-image
file. The contents of the indirect command file are invoked by typing
@ followed by the file name of the indirect command file.

> @AFIL

When the symbol "@" is encountered, search for commands is directed to
the file specified following the "@" symbol. While accepting input

2-5

PROGRAM DEVELOPMENT AND THE LINK COMMAND

from an indirect file, the Linker does not display prompting messages
on the terminal. If the input file specifications are not in the
indirect command file, prompting for the input file follows the last
item in the command file. If the /OPTIONS command qualifier appears
in the indirect command file without an accompanying file
specification, interactive prompting for option input will occur.

The single line command string which references the indirect command
file AFIL.CMD is equivalent to the following keyboard sequence:

LINK/TASK:STATEMENT/MAP:STATE/OVERLAY:STATE/DEBUG­
DCL>/OPTIONS:BFIL

When you create the indirect command file, you must follow the syntax
rules for command qualifiers, file specifications, and options which
are associated with the LINK command.

Suppose the file BFIL.CMD contains a set of standard options that are
requested by a number of users at an installation. That is, every
programmer in the group uses the options in BFIL.CMD. These standard
options can be included in a link command file by modifying AFIL.CMD
to include an input file reference to BFIL.CMD as the file
specification following the /OPTIONS: command qualifier.

The contents of BFIL.CMD are:

UNITS=7
ASG=TI:l
ASG=SY:2:3:4:5:6:7

You include this file specification in the file AFIL.CMD

If the command:

> @AFIL

is issued, it then becomes the equivalent of the following sequence:

LINK/TASK: STATEMENT/MAP: STATE/OVERLAY: STATE/DEBUG­
DCL>/OPTIONS

OPTIONS?
OPTIONS?
OPTIONS?
OPTIONS?
>

UNITS=7
ASG=TI:l
ASG=SY:2:3:4:5:6
//

The /OPTIONS command qualifier is described in Section 2.2.4, and
detailed examples of its use are given in Chapter 4. A complete
discussion of indirect command files is included in the TRAX Support
Environment User's Guide. The discussion includes examples of how
several different types of TRAX commands can be used in the same
indirect command file.

In the case of BASIC-PLUS-2 tasks, the BUILD command is issued to the
BASIC-PLUS-2 compiler which then creates an indirect command file
containing the command qualifiers, file specifiers, and standard
options required to create the desired task-image file from the BASIC
object module. For example, consider a BASIC-PLUS-2 source program
and object modules called SORT02. The BUILD command produces a file
called SORT02.CMD which may be input to the Linker by typing:

>LINK/BASIC SORT02

2-6

PROGRAM DEVELOPMENT AND THE LINK COMMAND

You should not modify the generated command file produced by the BUILD
command in BASIC-PLUS-2, because unpredictable and possibly fatal
results may occur.

2.2.6.1 Comments - You can document the purpose and status of a task
by adding comments to the Link command file. Comments can be placed
at any point in the command file. Begin a comment with an exclamation
point (1), and terminate it with a carriage return. The Linker
interprets the text between the exclamation point and the carriage
return as a comment and does not process it.

Consider the annotation of the following LINK command string which is
to be executed as an indirect command file. Comments have been added
to the lines of the command string to document the functions performed
by the Linker, as well as a brief description of the contents of the
input object modules. A note concerning the current status of the
task has been inserted at the end of the file.

TASK STATEMENT
COBOL TASK USING COBOL MERGE ODL FILE STATE.ODL
FOUR INPUT MODULES
STATE - MAINLINE STATEMENT PROGRAM
LABELS - SUBROUTINE TO PRINT LABELS
CREDLM - SUBROUTINE TO WRITE CREDIT LETTERS
EXCEPT - EXCEPTION PROCESSING SUBROUTINE

LINK/TASK: STATEMENT/MAP:STATE/OVERLAY: STATE/DEBUG­
/OPTIONS:BFIL
1 7 UNITS USED, 1 TO TI:, 2-7 for SY:

This feature is extremely useful for installations where maintenance
of existing programs and tasks is not generally performed by the
original developer. The comment capability allows you to explain your
logic in building a task in the same way as you would place comments
in a source program file.

2-7

CHAPTER 3

COMMAND AND FILE QUALIFIERS

Command qualifiers provide information to the TRAX Linker. This
information is used by the Linker to determine how it will process
your compiler-generated object modules into executable task image
files. Command qualifiers allow you to provide the Linker with four
general types of information:

1. You may specify the types of output files to be created by
the Linker. You are given the option of specifying file
names for the output files.

2. You may tell the Linker to include predefined or user-defined
object modules in the task image.

3. You may specify how the Linker is to search for object
modules in system libraries.

4. You may specify input files of a specialized type. The
Linker recognizes the qualifier and links the task based upon
the contents of the specialized input file.

Table 3-1 lists the command qualifiers in alphabetical order. A short
description of their function is also included. Section 3.1 gives a
more detailed explanation of each command qualifier.

Input File Qualifiers allow you to instruct the Linker to perform
specialized processing with certain types of input files. The Input
File Qualifiers are shown in Table 3-2, and described in detail in
Section 3.2.

Table 3-1
Link Command Qualifiers

Keyword Function

/BASIC Tells the Linker that the input file is a
command file created by the BASIC-PLUS-2
compiler.

/CHECKPOINT[:keyword] The Linker should include checkpoint
capability in the task image file. The
optional keyword specifies TASK or SYSTEM
checkpoint space allocation.

(Continued on next page)

3-1

COMMAND AND FILE QUALIFIERS

Keyword

/CROSS_REFERENCE

/DEBUG[:filespec]

/DUMP

/FULL_SEARCH

/MAP[:filespec(/file­
qualifier)

/OPTIONS

/OPTIONS[:filespec]

/OVERLAY[:filespec]

/SEQUENTIAL

/SYMBOLS[:filespec]

/TASK [: filespec]

3.1 COMMAND QUALIFIERS

Table 3-1 (Cont.)
Link Command Qualifiers

Function

Tells the Linker to include a global
symbol cross-reference listing in the
memory allocation file.

Includes a debugging aid in the task
image file. Optional file name contains
a user-written debugging module.

The task image is linked with modules
that provide a post-mortem dump in the
event of abnormal task termination.

Controls symbol table searching
overlaid tasks with co-trees.

in

Tells the Linker to produce a memory
allocation file.

file-qualifiers:

/FULL Include all modules in map.

/NARROW Format map for 72-col.
output.

/SHORT Produce only a summary map.

/WIDE Format map for 132-col.
output.

Apply LINK command options
after command string.

specified

Apply Link Command options contained in
the specified file.

The Linker does its processing according
to the specified overlay description
file.

Task object modules are allocated memory
sequentially.

Instructs the Linker to produce a symbol
table file.

The Linker is to produce a task image
file.

A detailed description of each command qualifier is presented in this
section. The meaning and effect of each qualifier are described and
the default condition is identified.

3-2

COMMAND AND FILE QUALIFIERS

3.1.1 The BASIC Command Qualifier

Syntax: LINK/BASIC [Command File Specification]

The input file is a command file created when you issued the BUILD
command to the BASIC-PLUS-2 compiler. The Linker decodes the command
file and links the task image file according to the information
supplied in the command file. No prompting for files or options
occurs.

The /BASIC command qualifier should only be specified in
with BASIC-PLUS-2 compiler-generated command files.
information, see the discussion of the BUILD command
BASIC-PLUS-2 User's Guide.

CAUTION

Do not attempt to modify the command
file after it has been created.
Unpredictable or fatal results may occur
when user-edited BASIC-PLUS-2 command
files are supplied to the Linker.

3.1.2 The CROSS-REFERENCE Command Qualifier

Syntax: /CROSS_REFERENCE

conjunction
For further

in the TRAX

A global symbol cross-reference listing is produced. The cross
reference listing is appended to the memory allocation (MAP) file. An
example of this listing is provided in Appendix A.

The Linker will not produce a global symbol cross reference listing
unless this qualifier is specified.

3.1.3 The DEBUG Command Qualifier

Syntax: /DEBUG[:file specification]

This qualifier instructs the Linker to include a debugging aid in the
task image file. If the file specification is omitted, the system's
debugging aid (ODT) is assumed to be the default module. If a file
specification is present, the debugging aid contained in the specified
file will be linked into the task image. The user-generated debugging
aid must be in object module format. See Appendix 0 for additional
information on including a debugging aid.

3.1.4 The DUMP Command Qualifier

Syntax: /DUMP

This qualifier instructs the Linker to include system modules in the
task image file that will provide a post-mortem dump in the event that
your task is abnormally terminated.

Memory dumps are discussed in detail in Chapter 7.

The default assumption is /NODUMP

3-3

COMMAND AND FILE QUALIFIERS

3.1.5 The FULL-SEARCH Command Qualifier

Syntax: /FULL_SEARCH

When processing modules from the default object module library, the
presence of this qualifier causes the Linker to search all co-tree
overlay segments for a matching definition or reference.

If this switch is negated, unintended global references between
co-tree segments are eliminated. Definitions of global symbols from
the default library are restricted in scope to references in the main
root and the current tree. Use of this qualifier is discussed in
detail in Chapter 6.

/NOFULL_SEARCH is the default setting assumed by the Linker.

3.1.6 The MAP Command Qualifier

Syntax: /MAP[:filespec] or /MAP[:filespec/filequalifier]

This qualifier instructs the Linker to produce a memory allocation
(.MAP) file as it links the task image file.

If the file specification is present, the file type field may be
omitted. The Linker assumes the .MAP file type.

If this qualifier is present and no file is specified, the memory
allocation file is spooled directly to the line printer. The memory
allocation file (is deleted after printing) (remains on your user file
directory, taking the file name of the task image file, and the file
type .MAP).

The Linker assumes a default of /NOMAP. The following qualifiers may
be applied to the file specification:

/FULL

/NARROW

/SHORT

The Linker will include all modules in the memory
allocation file, even those which explicitly or by default
have the /NOMAP input file qualifier (see Section 3.2.4).

The Linker produces a map listing 72 characters wide,
suitable for printing on an output terminal.

Tells the Linker to include only the segment headings in
the memory allocation file.

/WIDE Produce a map 132 characters wide, suitable for printing
on a line printer. When /MAP is specified, this is the
default file qualifier.

3.1.7 The OPTIONS Command Qualifier

Two forms of the /OPTIONS command qualifier are ayailable. The first
form prompts you for option input. The second form allows you to
specify a file which contains option input strings. The syntax for
each form appears before the text explaining its usage. Chapter 4
contains detailed information on TRAX Linker options.

3-4

COMMAND AND FILE QUALIFIERS

3.1.7.1 Interactive Format - Syntax: /OPTIONS

The Linker interactively prompts for option input lines after you have
supplied the command qualifiers and input file specifications to the
Linker. Prompting will continue until you enter a slash (/) followed
by a carriage return in response to an OPTIONS?: prompt. The slash
and carriage return sequence signals the Linker that all option input
has been supplied. The Linker then begins processing the input files.

3.1.7.2 Command File Format - Syntax: /OPTIONS: [file specification]

When the filespec is supplied with the /OPTIONS qualifier, the Linker
treats that file as a series of option input-lines. Interactive
prompting for options does not occur. The default file type for the
input file is .CMD.

3.1.8 The OVERLAY Command Qualifier

Syntax: /OVERLAY: [ODL File Specification]

The input file specified with the /OVERLAY command qualifier is
assumed to be an Overlay Description Language (ODL) file. The Linker
creates the task image file according to the overlay structure defined
in the specified input file.

An overlay description file must be supplied with this qualifier. The
user cannot supply another input file. The Linker will not accept any
input files other than those described in the supplied ODL file.

Overlay descriptions are discussed in Chapter 6. ODL files are also
discussed in the TRAX COBOL and TRAX BASIC-PLUS-2 User's Guides.

3.1.9 The SEQUENTIAL Command Qualifier

Syntax: /SEQUENTIAL

The task image is constructed
order stated in the LINK
allocation of storage within
the allocation performed
allocation that results when

from the specified object files in the
command string. Chapter 5 describes the

the task image, and gives an example of
under the default assumption and the
the /SEQUENTIAL qualifier is specified.

The Linker does not reorder the program files alphabetically. This
qualifier must not be used for modules that rely upon alphabetical
program section allocation; in TRAX such modules include RMS modules
from RMSLIB.

The default condition is non-sequential storage allocation.

3.1.10 The SYMBOLS Command Qualifier

Syntax: /SYMBOLS[file specification]

This qualifier tells the Linker to produce a symbol definition file.
If the file specification is present, the file type field is optional.
The Linker assumes the .STB file type.

3-5

COMMAND AND FILE QUALIFIERS

If the filespec is absent, the first input file name becomes the
symbol table·definition file name, and .STB the assumed file type.

/NOSYMBOLS is the default setting for this qualifier.

3.1.11 The TASK Command Qualifier

Syntax: /TASK[:file specification]

This qualifier instructs the Linker to create a task image file. It
is set by default, with the file name being taken from the first input
file, and the file type assumed to be .TSK.

If a file name is specified, the file type is optional; in that case
the default assumption file type is .TSK.

Use of the /NOTASK qualifier causes the Linker to process the input
files for unresolved symbol references, but suppresses creation of a
task image file.

Table 3-2
Input File Qualifiers

Keyword

/CONCATENATED

/DEFAULT_LIBRARY[:filespec]

/LIBRARY[:modl: •.. :mod n]

/MAP

/SELECT_SYMBOLS

Function

The input file consists of
concatenated object modules. The
/NO prefix with this qualifier
instructs the Linker to take only
the first object module from a
series of concatenated files.

Directs the Linker to use the
specified file as the system
default library. If this
qualifier is absent, the default
is LBO: [l,l]SYSLIB.OLB.

Identifies the input file as an
object module library file.
Module specifiers direct the
Linker to read only those modules
from the library.

This qualifier tells the Linker to
include the modules in the
associated file in the memory
allocation (.MAP) file. /NOMAP
results in the modules not being
listed in the map.

The input
selectively
unresolved
references.
which resolve
be included
file.

3-6

file is to be
searched for

global symbol
Only those modules
global symbols will
in the task image

COMMAND AND FILE QUALIFIERS

3.2 INPUT FILE QUALIFIERS

Input File Qualifiers tell the Linker that specialized processing is
to be performed on the associated input file.

3.2.1 The CONCATENATED Input File Qualifier

Syntax: Input File Specification/[NO]CONCATENATED

The Linker normally processes all modules in the input file to form
the task image. When /NOCONCATENATED is present, the Linker processes
only the first module in the task image, regardless of the number
present. Do not use this qualifier with the /LIBRARY qualifier, as it
will be overridden.

/CONCATENATED is the default setting for this qualifier.

3.2.2 The DEFAULT LIBRARY Input File Qualifier

Syntax: /DEFAULT_LIBRARY:file specification

The Linker searches the specified library file when it is resolving
undefined global symbol references. This qualifier overrides the
default system library LBO: [l,l]SYSLIB.OLB.

If the specified library is empty (no modules have been inserted into
it), the default library reverts to the system library.

The Linker assumes a default system library ([l,l]SYSLIB.OLB). Any
other default library name must be specified by the use of this file
qualifier.

3.2.3 The LIBRARY Input File Qualifier

There are two forms of this qualifier. The first form allows you to
provide a Library (.OLB) file as input to the Linker. The Library is
used to resolve global symbol referenc~s. The second form allows you
to specify certain modules from an existing Library file as input to
the Linker. The named modules are included in the task image file
being created by the Linker.

3.2.3.1 Resolve all Global Symbols - Syntax: Input File
Specification/LIBRARY

The Linker searches the specified input library file to resolve
undefined global symbol references. The Linker extracts any modules
which resolve global references, and includes them in the task image
file.

You must append /LIBRARY to any input library file.

3-7

COMMAND AND FILE QUALIFIERS

3.2.3.2 Include Selected Library Modules - Syntax: Input file
specification/LIBRARY: [(]mod-l[, ... ,mod-n)]

The input module is assumed to be a library (.OLB) file of relocatable
object modules from which the modules named in the argument list are
to be copied for inclusion in the task image. The module names are
those defined at assembly time by the .TITLE directive (or if no
.TITLE directive, the file name (first six characters) when inserted
by the Librarian). Up to eight modules can be specified. The Linker
includes only the specified object modules in the task image file.

The /LIBRARY file qualifier must be appended to the input file
specification. It is never assumed as a default.

NOTE

To direct the Linker to search a library
file for both global symbol references
and selected modules that are needed in
the task image, the You must name the
library file twice. First, specify the
/LIBRARY qualifier and no other
arguments. Second, specify the desired
modules, directing the Linker to include
those modules in the task image file
that is being created. See Section
3.2.3.2 to see how you may specify named
modules with the /LIBRARY file
qualifier.

3.2.4 The MAP Input File Qualifier

Syntax: Input File Specification/MAP

This qualifier instructs the Linker to include the input file when it
creates the memory allocation file.

If /NOMAP is specified, no details of modules contained in the file
will appear in the memory allocation map or cross-reference listing.

User supplied input object module files are assumed to have the input
file qualifier /MAP as a default.

For system library files, resident libraries, and common area, /NOMAP
is assumed as the default file qualifier.

NOTE

The /NOMAP qualifier, when it is
qualifying an input file, is overridden
by /FULL SEARCH. (See Table 3-1 and
Section 3.1.6).

3-8

COMMAND AND FILE QUALIFIERS

3.2.5 The SELECT SYMBOLS Input File Qualifier

Syntax: Input File Specification/SELECT_SYMBOLS

This qualifier tells the Linker to selectively search the input file.
The search is made for only those global symbols for which an
undefined reference exists. The Linker includes only the required
symbol definitions from the specified file as distinct from all global
symbols of that file. This qualifier is useful when an input file is
the symbol table (.STB) output of another Link command, because it
reduces the size of symbol table searches.

If this file qualifier is absent, all global symbols from the input
file will be included in the task image file. This is the default
condition.

If the input file specified with this qualifier is a Library or
concatenated file, the qualifier is active for each module in the
input file.

3-9

CHAPTER 4

COMMAND OPTIONS

LINK Command Options are keywords that allow you to supply the Linker
with information about task memory requirements and references to
other global symbols, libraries, and logical units.

Most of these options interest all system
interest only to the MACRO Programmer.
identified by the word (MACRO) in Table 4-1.

users. A few are of
These options have been

Options may be divided into four general classes. The identifying
mnemonics and a brief description of each category are listed below:

1. Allocation options allow you
allocation at execution time.

to modify
(Alloc)

the task's memory

2. Storage-sharing options provide your task with access to
shareable global areas. (Share)

3. Device-specifying options let you specify the number of units
required by the task and allow you to assign physical devices
to logical unit numbers. (Device)

4. Content-altering options permit you to define a global symbol
and value. You can also use them to introduce patches in the
task-image. (Alter)

Table 4-1 briefly describes each LINK command option, and also
provides the interest range and option class for each option.

NOTE

TRAX restricts the use of MACRO to
subroutines which do not require RMS
file-handling facilities.

Unless noted in the table, all options can be used for high-level and
MACRO tasks. The category to which the option belongs is also
indicated in the table.

The options are then described in detailed fashion, by category, in
Section 4.1.

4-1

Option Category

ABSPAT Alter

ASG Device

COMMON Share

EXTTSK Alloc

GBLDEF Alter

LIBR Share

UNITS Device

COMMAND OPTIONS

Table 4-1
TRAX LINK Command Options

Allows
values.

you to
(MACRO)

Meaning

declare absolute patch

Allows you to assign physical devices to
logical units.

Allows you to declare a task's intention to
access a shared region of executable code.

Allows you to extend task memory allocation
at task installation time.

Allows you
definition.

to declare a global
(MACRO)

symbol

Allows you to declare a task's intention to
access a shared library region.

Allows you to specify the maximum number of
logical units required by the task.

4.1 ALLOCATION OPTIONS

This option directs the Linker to change the allocation of task
memory.

4.1.1 EXTTSK (Extend Task Memory)

The EXTTSK option declares the amount of additional memory to be
allocated to the task when RUN in a system-controlled partition.

The amount of memory available to the task is the sum of the task size
plus the increment specified in the EXTTSK keyword (rounded up to the
nearest 32-word boundary). If the task is Linked for a
user-controlled partition, the allocation of task memory reverts to
the partition size.

Syntax:

EXTTSK

where:

length

length

is a decimal number specifying the increase in task
memory allocation (in words).

4-2

COMMAND OPTIONS

4.2 STORAGE-SHARING OPTIONS

When you wish to access a shared region of memory, such as a global
common area or a shared library or Object Time System, you can use two
options: COMMON and LIBR. These options are of interest to all users
of the system.

The COMMON option indicates that the shared region contains only data,
while the LIBR option indicates a shared global region that contains
only object code.

4.2.1 COMMON (System-Owned Common Block) LIBR (System-Owned Resident Library)

The identical options. The COMMON and LIBR options declare that the
task is to access a system-owned shared global region. There is no
default setting for either of these options; they must be specified
by you.

Syntax:

COMMON name: access-code

or

LIBR = name:access-code

where:

name is the 1- to 6-character
specifying the library.

alphanumeric name

access-code is the code RW (read-write) or the code RO
(read-only) indicating the type of access the task
requires.

4.3 DEVICE SPECIFICATION OPTIONS

The two device specification options are of interest to all users of
the system. The UNITS option declares the maximum number of logical
input-output units that the task can use. All units from 1 to the
number specified are made available to the task. The ASG option
declares the devices that are assigned to these units.

Using a logical unit number greater than this option will cause an
error at task execution time.

To increase the number of units and assign devices to these units,
enter the UNITS option first and then the ASG option. Because Linker
processes the options as they are encountered, entering the options in
the reverse order can produce an error message.

4.3.1 UNITS (Logical Unit Usage)

The UNITS option declares the maximum number of logical units that the
task can use.

Syntax:

UNITS max-units

4-3

where:

max-units

COMMAND OPTIONS

is a decimal integer in the range 0-250 specifying
the maximum number of logical units. A device may
be assigned up to a maximum of eight logical unit
numbers.

The Linker assumes a default value of 6 UNITS.

4.3.2 ASG (Device Assignment)

The ASG option assigns the physical devices to their corresponding
logical units.

,Syntax:

ASG device-name:unit-num-l:unit-num-2: .•• :unit-num-8

where:

device-name is a 2-character alphabetic device name followed
by a 1- or 2-decimal unit number.

unit-num-l
unit-num-2

are decimal integers indicating the logical unit
numbers.

unit-num-8

The default logical units assignments are:

ASG = SYO:l:2:3:4,TIO:5,CLO:6

4.4 STORAGE-ALTERING OPTIONS

Storage-altering options cause the Linker to modify the task image and
are of interest only to the experienced MACRO programmer. The GBLDEF
option declares a global symbol and value. The option ABSPAT allows
you to insert a patch into the task image.

4.4.1 ABSPAT (Absolute Patch)

The ABSPAT option specifies a series of
specified base address. A maximum of
supplied.

patches starting at the
eight patch values may be

Enter the ABSPAT option in the following format:

Syntax:

ABSPAT seg-name:address:val-l:val-2: ... :val-8

4-4

where:

seg-name

address

val-l

val-2

val-8

default: none

COMMAND OPTIONS

is the 1- to 6-character alphanumeric name of the
segment.

is the octal address of the first patch. The
address may be on a byte boundary; however, two
bytes are always modified for each patch.

is an octal number in the range of 0 to 177777 to
be assigned to address.

is an octal number in the range of 0 to 177777 to
be assigned to address+2.

is an octal number in the range of 0 to 177777 to
be assigned to address+16(octal).

NOTE

All ABSPAT patches must be within the
segment memory limits or a fatal error
is generated.

4.4.2 GBLDEF (Global Symbol Definition)

The GBLDEF option defines a global symbol. The symbol definition is
considered absolute.

Syntax:

GBLDEF symbol-name: symbol-value

where:

symbol-name

symbol-value

is a 1- to 6-character alphanumeric name of the
defined symbol.

is an octal number in the range of 0 to 177777
which is assigned to the defined symbol.

4-5

CHAPTER 5

OVERLAY CAPABILITY

The Linker provides the user with a means of reducing the memory
and/or virtual address space requirements of a task -- tree-like
overlay structures created with the aid of the Overlay Description
Language (ODL). Overlay segments are specified to reside on disk.

5.1 OVERLAY DESCRIPTION

To create an overlay structure, you must divide a task into a series
of segments:

• a single root segment, which is always in memory, and

• any number of overlay segments, which reside on disk and
share virtual address space and memory with one another.

A segment consists of a set of modules and p-sections. Segments that
overlay each other must be logically independent; that is, the
components of one segment cannot reference the components of a segment
with which it shares virtual address space. In addition to the
logical independence of the overlay segments, you must consider the
general flow of control within the task.

The user must also consider the kind of overlay segment to have at a
given position in the structure, and how to construct it. Dividing a
task into disk-resident overlays saves physical space, but introduces
the overhead activity of loading these segments each time they are
needed, but not present in memory.

There are several large classes of tasks that can be handled
effectively by an overlay structure. For example, a task that moves
sequentially through a set of modules is well suited to the use of an
overlay structure. A task that selects one of a set of modules
according to the value of an item of input data is also well suited to
an overlay structure.

5.1.1 Disk-Resident Overlay Structures

Disk-resident overlays conserve memory by sharing it. Segments that
are logically independent need not be present in memory at the same
time. They, therefore, can occupy a common physical area in memory
whenever either needs to be used.

5-1

OVERLAY CAPABILITY

The use of disk-resident overlays is shown in this section by an
example -- task statement, which consists of four overlaid input
files. Each input file consists of a single module having the same
name as the file. The task is built by the command string shown in
Chapter 2.

The user knows that the modules A, B, and C are logically independent.
In this example:

A does not call B or C and does not use the data of B or C.
B does not call A or C and does not use the data of A or C.
C does not call A or B and does not use the data of A or B.

It is possible to define a disk-resident overlay structure in which A,
B, and C are overlay segments that occupy the same storage area in
memory. The flow of control for the task is as follows:

CNTRL calls A and A returns to CNTRL.
CNTRL calls Band B returns to CNTRL.
CNTRL calls C and C returns to CNTRL.
CNTRL calls A and A returns to CNTRL.

In this example, the loading of overlays occurs only four times during
the execution of the task. Therefore, the user can reduce the memory
requirements of the task without unduly increasing the overhead
activity.

The effect of an overlay structure on the allocation of memory for the
task is shown in the following paragraphs.

The lengths of the modules (expressed in octal) are:

CNTRL
A
B
C

10000 bytes
6000 bytes
5000 bytes
1200 bytes

The memory allocation produced as a result of building the task as a
single segment on a system with memory-mapping hardware is as follows:

- 24200
C

- 23000
B

- 15000
A

- 10000
CNTRL

- 0

The memory allocation for a single-segment task requires 24200 (octal)
bytes.

The memory allocation produced as a result of using the overlay
capability and building a multi-segment task is ~s follows:

A Ihr1.I_~-J
, B I C

- 16000

- 10000
CNTRL

- 0

5-2

OVERLAY CAPABILITY

The multi-segment task requires 16000 (octal) bytes. In addition to
the module storage, storage is required for overhead in handling the
overlay structure. This overhead is described further on and
illustrated in the example STATEMENT.

The amount of storage required for the task is determined by the
length of the root segment and by the length of the longest overlay
segment. Overlay segments A and B in this representation are much
longer than overlay segment C. If the user can divide A and B into
sets of logically independent modules, task storage requirements can
be further reduced. A can be divided into a control program (AO) and
two overlays (AI and A2). A2 can then be divided into the main part
(A2) and two overlays (A21 and A22). Similarly, the B overlay can be
divided into a control module (BO) and two overlays (Bl and B2).

The memory allocation for the task produced by the additional overlays
defined for A and B is shown in the following figure:

A21 A22

Al A2

AO

CNTRL

~

B1 B2

BO C

13600

10000

o

A vertical line can be drawn through the memory diagram to indicate a
state of memory. In this diagram, the leftmost vertical line shows
memory when CNTRL, AO, and Al are loaded. The next vertical line
shows memory when CNTRL, AD, and Al are loaded. The next vertical
line shows memory when CNTRL, AO, A2, and A21 are loaded, and so on.

A horizontal line can be drawn through the memory diagram to indicate
segments that share the same storage. The uppermost horizontal line
shows AI, A21, A22, Bl, B2, and C, all of which can use the same
memory. The next horizontal line shows AI, A2, Bl, B2, and C, and so
on.

5.1.2 Overlay Tree

The arrangement of overlay segments in a task can be represented
schematically as a tree-like structure. Each branch in the tree
represents a segment. Parallel branches denote segments that overlay
one another; these segments must be logically independent. Branches
connected end to end represent segments that do not share virtual or
physical memory with each other; these segments need not be logically
independent.

The Linker provides a language for representing an overlay structure
consisting of one or more trees (described in Section 5.1.3).

5-3

OVERLAY CAPABILITY

The memory allocation for the previous example (in Section 5.1.1) can
be represented by the single overlay tree shown below:

By2
AO BO C

~I __________ ~------~I------~I

I
CNTRL

The tree has a root (CNTRL) and three main branches (AD, BO, and C).
It also has six leaves (AI, A21, A22, Bl, B2, and C).

The tree has as many paths as it has leaves. The path down is defined
from the leaf to the root. For example:

A21-A2-AD-CNTRL

The path up is defined from the root to the leaf, for example:

CNTRL-BD-Bl

Knowing the properties of the tree and its paths is important in the
understanding of the overlay loading mechanism and the resolution of
global symbols.

5.1.2.1 Loading Mechanism - Modules can call other modules that exist
on the same path. The module CNTRL is common to every path of the
tree and, therefore, can call and be called by every module in the
tree. The module A2 can call the modules A21, A22, AD, and CNTRLi
but A2 cannot call AI, Bl, B2, BO or C.

When a module in one overlay segment calls a module in another overlay
segment, the called segment must be in memory and mapped, or must be
brought into memory. The method for loading overlays is described in
Chapter 6.

5.1.2.2 Resolution of Global Symbols in a Multi-segment Task - In
resolving global symbols for a multi-segment task, the Linker performs
the same activities as it does for a single-segment task.

In a single-segment task, any module can reference any global
definition. In a multi-segment task, however, a module can reference
only a global symbol that is defined on a path that passes through the
called segment.

The following points, illustrated in the tree figure below, describe
the two distinct cases of multiply-defined symbols, and ambiguously
defined symbols.

5-4

OVERLAY CAPABILITY

In a single segment task, if two global symbols with the same name are
defined, the symbols are multiply-defined, and an error message is
produced.

In a multi-segment task:

• Two global symbols with the same name can be defined if they
are on separate paths, and not referenced from a segment that
is common to both.

• If a global symbol is defined more than once on separate
paths, but referenced from a segment that is common to both,
the symbol is ambiguo~sly defined.

• If a global symbol is defined more than once on a single
path, it is multiply-defined.

The procedure for resolving global symbols can be summarized as
follows:

1. The Linker selects an overlay segment for processing.

2. Each module in the segment is scanned for global definitions
and references.

3. If the symbol is a definition, the Linker searches all
segments on paths that pass through the segment being
processed, and looks for references that must be resolved.

4. If the symbol is a reference, the Linker performs the tree
search as described in step 3, looking for an existing
definition.

5. If the symbol is new, it is entered in a list of global
symbols associated with the segment.

Overlay segments are selected for processing in an order corresponding
to their distance from the root. That is, the Linker considers a
segment farther away from the root, before processing an adjoining
segment.

When a segment is being processed, the search for global symbols
proceeds in the following order:

• the segment being processed

• all segments toward the root

• all segments away from the root

• all co-trees (see Section 6.1.4.1)

5-5

Example:

OVERLAY CAPABILITY

A2l A22
T (def) R(ref)

~~_~yef)

Al
Q(ref)
R(ref)

I

AO
Q(def)
S (def)
T(def)

I

A2
R(def)

I
Bl B2

Q(~
BO

CNTRL
S (ref)

Q (def)
S (def)

I I
The following remarks apply to the use of the symbols Q, R, S, and T,
shown in the diagram above:

Q The global symbol Q is defined in the segment AO and in the
segment BO. The reference to Q in segment A22 and the
reference to Q in segment Al are resolved by the definition
in AD. The reference to Q in Bl is resolved by the
definition in BO. The two definitions of Q are distinct in
all respects and occupy different overlay paths.

R The global symbol ~ is defined in the segment A2. The
reference to R In A22 is resolved by the definition in A2
because there is a path to the reference from the definition
(CNTRL-AO-A2-A22). The reference to R in AI, however, is
undefined because there is no definition for R on a path
through AI.

S The global symbol S is defined in AD and BO. References to S
from AI, A21, or A22 are resolved by the definition in AD,
and references to S in Bl and B2 are resolved by the
definition in BO. However, the reference to S in CNTRL
cannot be resolved because there are two definitions of S on
separate paths through CNTRL. S is ambiguously defined.

T The global symbol T is defined in A21 and AD. Since there is
a single path through the two definitions (CNTRL-AD-A2-A21),
the global symbol T is multiply-defined.

5.1.2.3 Resolution of Global Symbols from the Default Library - The
process of resolving global symbols may require two passes over the
tree structure. The global symbols discussed in the previous section
are included in user-specified input modules that are scanned by the
Linker in the first pass. If any undefined'symbols remain, the Linker
initiates a second pass over the structure in an attempt to resolve
such symbols by searching the default object module library (normally
SYO: [l,l]SYSLIB.OLB). Any undefined symbols remaining after the
second pass are reported to the user.

5-6

OVERLAY CAPABILITY

When multiple tree structures (co-trees) are defined, as described in
Section 5.1.4.1, any resolution of global symbols across tree
structures during a second pass can result in multiple or ambiguous
definitions. In addition, such references can cause overlay segments
to be inadvertently displaced from memory by the overlay loading
routines, thereby causing run-time failures to occur. To eliminate
these conditions, the tree search on the second pass is restricted to:

• The segment in which the undefined reference has occurred

• All segments in the current tree that are on a path through
the segment

• The root segment

When the current segment is the main root, the tree search is extended
to all segments. The user can unconditionally extend the tree search
to all segments by including the /FU (full) switch in the task image
file specification.

5.1.2.4 Resolution of P-sections in a Multi-segment Task - A
p-section has an attribute that indicates whether the p-section is
local (LCL) to the segment in which it is defined or is of global
(GBL) extent.

Local p-sections with the same name can appear in any number of
segments. Storage is allocated for each local p-section in the
segment in which it is declared. Global p-sections that have the same
name, however, must be resolved by the Linker.

When a global p-section is defined in several overlay segments along a
common path, the Linker allocates all storage for the p-section in the
overlay segment closest to the root.

If the programs AD and BO use a common block COMAB, however, the
Linker allocates the storage for COMAB in both the segment that
contains AD and the segment that contains BO. AD and BO cannot
communicate through COMAB. When the overlay segment containing BO is
loaded, any data stored in COMAB by AD is lost.

The tree for the task TKl, including the allocation of the common
blocks COMA and COMAB, is:

Ay2
Al A2 B1 B2 I COMA

T I
I

AD BO C co,
CaE I

CNTRL

The allocation of p-sections can be specified by the user. If AD and
BO need to share the contents of COMAB, the user can force the
allocation of this p-section into the root segment by the use of the
.PSECT directive, described in Section 5.1.3.4.

5-7

OVERLAY CAPABILITY

5.1.3 Overlay Description Language (ODL)

The Linker provides a language that allows the user to describe the
overlay structure of a task. An overlay description is a text file
consisting of a series of ODL directives, one directive per line.
This file is entered in a Linker command line, and is identified as an
ODL file by the presence of the /OVERLAY: switch (see Section 3.1.9)
after the filename. If an overlay description text file is entered,
it must be the only input file specified.

The format for an ODL line is:

label: directive argument-list ; comment

A label is a necessary part of the .FCTR directive only (see Section
5.1.3.2).

Directives act upon argument-lists named input files, overlay
segments, p-sections, and lines in the ODL file itself. Operators
group these named task elements, or attach attributes to them.

If the name belongs to a file, a complete file specification can be
given. Defaults for omitted parts of the file specification are as
described in Chapters 2 and 3, except that the default device is
always SYO, and the default UFO is always taken from the terminal UIC.

In addition, the following restrictions apply to argument-lists:

• The dot character (.) can only be used in a filename.

• Comments cannot appear on a line ending with a filename.

5.1.3.1 .ROOT and .END Directives - There must be one .ROOT directive
and one .END directive. The .ROOT directive tells the Linker where to
start building the tree, and the .END directive tells the L.inker where
the input ends.

The arguments of the .ROOT directive make use of three operators to
express concatenation, overlaying, and memory residency. A pair of
parentheses delimits a group of segments that start at the same
virtual address. The number of nested parenthetical groups cannot
exceed 16.

• The hyphen operator (-) indicates the concatenation of
storage. For example, X-Y means that sufficient memory will
be allocated to contain X and Y simultaneously. X and Yare
allocated in sequence.

• The comma operator (,) appearing within parentheses indicates
the overlaying of virtual memory. For example, Y,Z means
that virtual memory can contain either Y or Z. If no
exclamation point (1) precedes the left parenthesis, Y and Z
also share physical memory.

The comma operator (,) is also used to define multiple tree
structures (as described in Section 5.1.5).

Example:

.ROOT X-(Y,Z-(Zl,Z2))

.END

5-8

OVERLAY CAPABILITY

These directives describe the following tree and its corresponding
memory diagram:

Zl Z2

T
y~

X

Y

Zl r
Z

X

To create the overlay description for the task described in Section
5.1.1, the user creates a file that contains the directives:

.ROOT CNTRL-(AO-(Al,A2-(A21,A22)),BO-(Bl,B2) ,C)

.END

To build the task with that overlay structure, the user types:

>LINK/TASK/OVERLAY:STATEM

The switch /OVERLAY tells the Linker that there is only one input
file, .ODL, and that this file contains an overlay description for the
task.

5.1.3.2 .FCTR Directive - Because the tree that represents the
overlay structure can be complex, the Overlay Description Language
includes another directive, .FCTR, that allows the user to build large
trees and represent them more clearly.

The .FCTR directive has a label to its left at the beginning of the
line, that is pointed to by a reference in a .ROOT or another .FCTR
statement. The .FCTR directive allows the user to extend the tree
description beyond a single line. (There can be only one .ROOT
directive.)

The decision to use the .FCTR directive is based on considerations of
clarity. To simplify the tree given in the file TFIL, the user can
introduce the .FCTR directive into the overlay description as follows:

AFCTR:
BFCTR:

.ROOT CNTRL-(AFCTR,BFCTR,C)

.FCTR AO-(Al,A2-(A21,A22))

.FCTR 80-(Bl,B2)

.END

The label BFCTR, is used in the . ROOT directive to designate the
argument of the .FCTR directive, BO-(Bl,B2). The resulting overlay
description is easier to interpret than the original description. The
tree consists of a root, CNTRL, and three main branches. Two of the
main branches have sub-branches.

The .FCTR directive can be nested (to a level of 16).
modify TFIL as follows:

AFCTR:
A2FCTR:
BFCTR:

.ROOT CNTRL-(AFCTR,BFCTR,C)

.FCTR AO-(Al,A2FCTR)

.FCTR A2-(A21,A22)

.FCTR BO-(Bl,B2)

.END

5-9

The user can

OVERLAY CAPABILITY

5.1.3.3 .NAME Directive - The .NAME directive allows the user to
specify a name for a segment, and in so doing, to attach attributes to
the segment. The name must be unique with respect to filenames,
p-section names, .FCTR labels, and other segment names that are used
in the overlay description.

The chief uses of this directive are:

1. to name uniquely a segment that is to be loaded through the
manual load facility, and

2. to permit a segment that does not contain executable code, to
be loaded through the autoload mechanism.

(Loading mechanisms are discussed in Chapter 6.)

The format of the .NAME directive is

.NAME segname[,attr] [,attr]

where:

segname a 1- to 6-character name composed from the Radix-50
character set, exclusive of the period (.); i.e., A-Z,
0-9, and $

[] denote optional attributes

attr = one of the following:

GBL The name is entered in the segment's global symbol
table.

NODSK

NOGBL

The GBL attribute makes it possible to load
non-executable overlay segments by means of the
autoload mechanism (see Chapter 6).

No disk space is allocated to the named segment.

If a data overlay segment has no initial values,
but will have its contents established by the
running task, no space for the task image on disk
need be reserved. If a NODSK attribute has been
specified, an attempt to initialize a segment with
data at task-build time results in a fatal error.

The name is not entered in the segment's global
symbol table.

If the GBL attribute is not present, NOGBL is
assumed.

DSK Disk storage is allocated to the named segment.

If the NODSK attribute is not present, DSK is
assumed.

The attributes described are not attached to a segment until the name
is used in a .ROOT or .FCTR statement that defines an overlay segment.
When multiple segment names are applied to a segment, the attributes
of the last name given are in effect.

5-10

OVERLAY CAPABILITY

In the following modified tree for TK1, the user gives names to the
three main branches, AO, BO, and C, by specifying them in the .NAME
directive, and using them in the • ROOT directive. The default
attributes NOGBL and DSK are in effect for BRNCHl and BRNCH3, but
BRNCH2 has the complementary attributes (GBL and NODSK) that will
cause the name BRNCH2 to be entered into its segment's global symbol
table, and the allocation of disk space for the segment to be
suppressed. BRNCH2 contains uninitialized storage to be utilized at
run-time.

AFCTR:
BFCTR:

.NAME BRNCHl

.NAME BRNCH2,GBL,NODSK

.NAME BRNCH3

.ROOT CNTRL-(BRNCHI-AFCTR,*BRNCH2-BFCTR,BRNCH3-C)

.FCTR AO-(Al,A2-(A21,A22»

.FCTR BO-*(Bl,B2)

.END

(* is the autoload indicator; it is discussed in Chapter 6.)

The data overlay segment BRNCH2 is loaded by including the following
statement in the user's program.

CALL BRNCH2

This action is immediately followed by an automatic return to the next
instruction in the program.

NOTE

In the absence of a unique name
specification, the Linker establishes a
segment name, using the first .PSECT,
file, or library module name occurring
in the segment.

5.1.3.4 .PSECT Directive - The .PSECT directive allows the placement
of a global p-section in an overlay structure, to be specified
directly. The name of the p-section (a 1- to 6-character name
composed from the set A-Z, 0-9, and $) and its attributes are given in
the .PSECT directive. This allows use of the name to indicate which
segment the p-section will be allocated to.

5.1.3.5 Indirect Files - The Overlay Description Language processor
can accept OOL text indirectly, if the text is included in a file
specified in the proper format. If an @ is the first character in an
DOL line, it instructs the processor to read text from the file
specified immediately after the @. It accepts the DOL text from the
file as input, at the point in the overlay description where the file
is specified.

For example, if the file BINO.OOL contains

B: .FCTR 81-(82,83)

5-11

OVERLAY CAPABILITY

then this text can be replaced by a line beginning with @BIND, at the
position where the text would have appeared:

C:
@BIND

Indirect

.ROOT A-(B,C)

.FCTR Cl-(C2,C3)

.END

Two levels of indirection are allowed.

5.1.4 Multiple-Tree Structures

C:
B:

Direct

.ROOT A-(B,C)

.FCTR Cl-(C2,C3)

.FCTR 8l-(B2,B3)

.END

The Linker allows the definition of more than one tree within the
overlay structure. These multiple tree structures consist of a main
tree and one or more co-trees. The root segment of the main tree is
loaded by the Executive when the task is made active, while segments
within each co-tree are loaded through calls to the Overlay Runtime
System.

Except for this distinction, all overlay trees have identical
characteristics -- a root segment that resides in memory, and usually
two or more overlay segments. The main property of a structure
containing more than one tree is that storage is not shared among
trees. Any segment in a tree can be referenced from another tree
without displacing segments from the calling tree. Routines that are
called from several main tree overlay segments, for example, can
overlay one another in a co-tree. The same considerations in deciding
whether to create memory-resident overlays or disk-resident overlays
in a single tree structure, apply in building a structure containing
co-trees.

The following paragraphs describe the procedure for specifying
multiple trees in the Overlay Description Language, and illustrate the
use of co-trees to produce the memory allocation best suited to the
needs of the task.

5.1.4.1 Defining a Multiple-Tree Structure - Multiple-tree structures
are specified within the Overlay Description Language by extending the
function of the comma operator. As previously discussed, this
operator, when included within parentheses, defines a pair of segments
that share storage. The inclusion of the comma operator outside all
parentheses delimits overlay trees. The first overlay tree thus
defined is the main tree. Subsequent trees are co-trees .

X:
Y:

. ROOT

.FCTR

.FCTR

.END

X,Y
XO-(Xl,X2,X3)
YO-(Yl,Y2)

In the example above, two overlay trees are specified: a main tree
containing the root segment XO and three overlay segments, and a
co-tree consisting of root segment YO and two overlay segments. The
Executive loads segment XO into memory when the task is activated.
The task then loads the remaining segments through calls to the
Overlay Runtime System.

5-12

OVERLAY CAPABILITY

A co-tree must have a root segment to establish linkage with its own
overlay segments. Co-tree root segments need not contain code or
data. A segment of this type, called a null segment, can be created
by means of the .NAME directive. The previous example is modified, as
shown below, to move file YO.OBJ to the root, and include a null
segment.

X:

Y:

• ROOT
.FCTR
• NAME
.FCTR
.END

X,Y
XO-YO-(Xl,X2,X3)
YNUL
YNUL-(Yl,Y2)

The null segment YNUL is created by use of the .NAME directive, and
replaces the co-tree root that formerly contained YO.OBJ.

5.1.4.2 Multiple-Tree Example - The following example illustrates the
use of multiple trees to reduce the size of the task.

In the example, the root segment CNTRL consists of a small dispatching
routine and two modules, CNTRLX and CNTRLY. CNTRL~ and CNTRLY are
logically independent of each other, approximately equal in length,
and must be accessed from modules on all the paths of the main tree.

The user can define a co-tree for CNTRLX and CNTRLY and reduce the
amount of storage required by the task. The overlay description in
TFIL is modified as follows:

.NAME CNTRL2

.ROOT CNTRL-(AFCTR,BFCTR,C) ,CNTRL2-(CNTRLX,CNTRLY)

.END

The co-tree is defined in the .ROOT directive, by the placement of the
comma operator outside all parentheses (immediately before CNTRL2). A
co-tree must have a root segment to establish linkage with the overlay
segments within the co-tree. When no code or data logically belongs
in the root, the .NAME directive can be used to create a null root
segment.

The tree for the task TKl now is:

Ay2
Ay By2

AO BO C
I~--------~------~I------~I

I
CNTRL

5-13

CNTRLX CNTRLY
I I

I
CNTRL2

OVERLAY CAPABILITY

The corresponding memory diagram is:

CNTRLX CNTRLY

CNTRL2
---I

A2llA22
~

Al A2 Bl B2

AO BO C

CNTRL

6200

2200

1000

o

The specification of the co-tree decreases the storage allocation by
4000 bytes. CNTRLX and CNTRLY can still be accessed by all modules in
the main tree. The only requirement imposed by the introduction of
the co-tree is the logical independence of CNTRLX and CNTRLY.

Any number of co-trees can be defined. Additional co-trees can access
all modules in the main tree and other co-trees.

5.1.5 Overlay Core Image

The contents of the core image for a task with an overlay structure
are discussed briefly in the following paragraphs.

The root segment of the main tree contains modules that are resident
in memory throughout the execution of the task, along with the
following data required by the overlay loading routines:

• Segment tables

• Autoload vectors

code and data

window descriptors

region descriptors

segment descriptors

autoload vectors

code and data

main tree
root segment

The segment table contains a segment descriptor for every segment in
the task. The descriptor contains information about the load address,
the length of the segment, and the tree linkage.

5-14

OVERLAY CAPABILITY

Autoload vectors appear in every segment that calls modules in another
segment located farther away from the root of the tree. Autoload
vectors are described in the discussion of loading mechanisms in
Chapter 6.

The main tree overlay region consists
overlay segments of the main tree.
area of memory as they are needed.

autoload vectors

code and data

· · ·
autoload vectors

code and data

of memory allocated for the
The overlays are read into this

l
overlay
segment

J

-,
overlay
segment

J

overlay

The co-tree overlay region consists of memory allocated for co-tree
overlay segments.

The co-tree root segment contains modules that, once loaded, must
remain resident in memory.

5.1.6 Overlaying Programs Written in a Higher-level Language

Programs that are written in a higher-level language usually require
the use of a large number of library routines in order to execute.
Unless care is taken when overlaying such programs, the following
problems can occur:

• Linker throughput may be drastically reduced because of the
number of library references in each overlay segment.

• Library references from the default object module library,
which are resolved across tree boundaries, can result in
unintentional displacement of segments from memory at run-time.

• Attempts to task-build such programs can result in multiple and
ambiguous symbol definitions when a co-tree structure is
defined.

The following procedures are effective in solving these problems:

1. Linker throughput can be increased by linking commonly used
library routines into the main root segment.

2. Ambiguous and multiple definitions, and cross-tree references
can be eliminated by using the /NOFULL switch (the default)
to restrict the scope of the default library search.

5-15

OVERLAY CAPABILITY

The user can force library modules into the root by preparing a list
of the appropriate global references and linking the object module
into the root segment.

The appropriate user's guide for the language should be consulted for
other ways to reduce task size.

5.1.7 Defining the ODL File

The user constructs a file, STATE, of ODL directives to represent the
tree for STATE, using the COBOL Merge Utility of the BASIC-PLUS-2
Build Command.

(The * in the ODL description is the autoload indicator;
described in Chapter 6.)

5.1.8 Building the Task

it is

The names of the input files are specified by a single filename that
designates the file containing the overlay description:

The reader should note that the ODL file specification automatically
terminates command input, and the Linker automatically prompts for
options.

5.2 SUMMARY OF THE OVERLAY DESCRIPTION LANGUAGE

1. An overlay structure consists of one or more trees. Each
tree contains at least one segment. A segment is a set of
modules and p-sections that can be loaded by a single disk
access.

A tree can have only one root segment, but it can have any
number of overlay segments.

2. An overlay description is a text file consisting of a series
of ODL directives, one directive per line. This file is
entered in a Linker command line, and is identified as an ODL
file by the presence of the /OVERLAY switch after the
filename. If an overlay description text file is entered, it
must be the only input file specified.

3. The overlay description language provides five directives for
specifying the tree representation of the overlay structure,
namely:

• ROOT
.END
.PSECT
.FCTR
. NAME

5-16

OVERLAY CAPABILITY

These directives can appear in any order in the overlay
description, subject to the following restrictions:

a. There can be only one .ROOT and one .END directive.

b. The .END directive must be the last directive because it
terminates input.

4. The tree structure is defined by the operator's hyphen (-),
comma (,), and by the use of parentheses.

5.

• The hyphen operator (-) indicates that its arguments are
to be concatenated and thus coexist in memory.

• The comma operator within parentheses indicates that its
arguments are to overlay each other either physically if
disk-resident, or virtually if memory-resident.

• The comma operator not within parentheses
overlay trees.

delimits

• The parentheses group segments that begin at the same
point in memory.

For example,

.ROOT A-B-(C,D-(E,F))

defines an overlay structure with a root segment
consisting of the modules A and B. In this structure,
there are four overlay segments: C, D, E, and F. The
outer pair of parentheses indicates that the overlay
segments C and D start at the same location in memory;
and similarly, the inner parentheses indicate that E and
F start at their own shared address.

The .ROOT
arguments
following:

directive defines the overlay structure. The
of the .ROOT directive are one or more of the

• File specifications as described in Section 2.9

• Factor labels

• Segment names

• P-section names

6. The .END directive terminates input.

7. The .FCTR directive provides a means for replacing text by a
symbolic reference (the factor label). This replacement is
useful for two reasons:

a. The .FCTR directive extends the text of the . ROOT
directive to more than one line and thus allows complex
trees to be represented.

b. The .FCTR directive allows the overlay description to be
written in a form that makes the structure of the tree
more apparent.

5-17

OVERLAY CAPABILITY

For example:

. ROOT A - {B - (C , D) ,E - (F ,G) ,H)

.END

can be expressed, using the .FCTR directive, as follows:

.ROOT A-{Fl,F2,H)
Fl: .FCTR B-{C,D)
F2: .FCTR E-{F,G)

.END

The second representation makes it clear that the tree has
three main branches.

8. The .PSECT directive provides a means for directly specifying
the segment in which a p-section is placed. It accepts the
name of the p-section and its attributes. For example:

.PSECT ALPHA,CON,GBL,RW,I,REL

ALPHA is the p-section name and the remaining arguments are
attributes. P-section attributes are described in Chapter 5.

The p-section name (composed from the characters A-Z, 0-9,
and $) must appear first in the .PSECT directive, but the
attributes can appear in any order, or be omitted. If an
attribute is omitted, a default condition is assumed. The
defaults for p-section attributes are RW, I, LCL, REL, and
CON.

In the example above, therefore, it is necessary to specify
only those attributes that do not correspond to the defaults:
.PSECT ALPHA,GBL

9. The .NAME directive provides a means for designating a
segment name for use in the overlay description, and for
specifying segment attributes. This directive is useful for
creating a null segment, naming a segment that is to be
loaded manually, or naming a non-executable segment that is
to be autoloadable. If the .NAME directive is not used, the
name of the first file, p-section, or library module in the
segment is used to identify the segment.

The .NAME directive creates a segment name as follows:

.NAME segname,attr,attr

where segname is the designated name (composed from the
character set A-Z, 0-9, and $), and attr is an optional
attribute taken from the following: GBL, NODSK, NOGBL, DSK.
The defaults are NOGBL and DSK. The defined name must be
unique with respect to the names of p-sections, segments,
files, and factor labels.

10. A co-tree can be defined by specifying an additional tree
structure in the .ROOT directive. The first overlay tree
description in the . ROOT directive is the main tree.
Subsequent overlay descriptions are .co-trees. For example:

• ROOT A - B - {C , D - (E , F)) ,X - (Y , Z) ,Q - (R, S , T)

The main tree in this example has the root segment consisting
of files· A.OBJ and B.OBJ. Two co-trees are defined: the
first co-tree has the root segment X, and the second co-tree
has the root segment Q.

5-18

OVERLAY CAPABILITY

5.3 OVERLAYING BASIC-PLUS-2 PROGRAMS

Programs can be logically broken into sections (subprograms) that are
compiled and input to the task builder as object modules. These
sections can then be overlaid, which allows you to create programs
that would otherwise exceed the maximum in-core program limits.

A program requires overlays when in-core program needs exceed the
system default maximum job size.

5.3.1 Overlays

When you use the Linker's overlay facility, you can specify only one
input file in the command line. This input file describes the overlay
structure, the location of program sections, and the loading
procedures.

Overlay structure is defined by means of the Overlay Description
Language (ODL). This structure is analogous to a tree, with the main
program being the root and the program sections representing the
branches. The ODL directives are contained in a user-created file
that is specified in the command string. The OVERLAY qualifier must
be included in the LINK command line to identify the file as an ODL
file.

Note that you can use the output produced by the BUILD command to
create overlaid program segments. That is, the BUILD command produces
a command file that contains all of the command input required by the
Linker and an ODL file. You can examine the ODL file and use the
Editor to modify its content before the command file is input to the
Linker.

At a minimum, the overlay description must contain a .ROOT and an .END
directive. The . ROOT directive declares the overlay tree structure
and the .END directive signifies the end of input. Note that an
overlay description can contain only one .ROOT directive, which limits
the tree structure declaration to a single line of input. The Linker
truncates an input line that exceeds 80 characters, but this
limitation should not affect the majority of tree structure
declarations because you can use the .FCTR directive to build large
trees and extend the description beyond a single line. For a
description of the .FCTR directive, refer to Section 5.2, item 7.

Suppose, for example, you have a program consisting of a main program
and calls to three external subprograms. One subprogram does
pre-processing of data, the second does primary processing, and the
third does post-processing. The main program and three subprograms
are compiled as object modules named MAIN.OBJ, PRE.OBJ, PROC.OBJ, and
POST.OBJ, respectively.

You can build an overlay structure that causes the main program to be
resident in memory and the three subprograms to share. the same area of
memory. The ODL directive that creates this structure has the form:

.ROOT MAIN-*(PRE,PROC,POST)

.END

In this example:

.ROOT MAIN defines the root of the overlay structure as the
object module named MAIN.OBJ.

5-19

*

()

OVERLAY CAPABILITY

the hyphen indicates that the following modules
are concatenated to the preceding module.

the asterisk indicates that modules are loaded
automatically (autoload). The asterisk must
precede every module. If all modules within
parentheses are to be autoloaded, a single
asterisk preceding the parentheses is used.

parentheses group the descriptions of overlay
sections.

PRE,PROC,POST commas separating object modules contained in
parentheses indicate that the named modules occupy
the same virtual memory area.

Figure 5-1 is a graphic illustration of the overlay structure
specified above as it would appear in memory.

PRE PROe POST

MAIN

Figure 5-1 Overlay Structure

To create an overlaid program by means of the BUILD command, you edit
the ODL file that is generated. That is, a BUILD command produces a
command file (file type .CMD) and an overlay description language file
(file type .ODL). The ODL file must be edited to reflect the desired
overlay structure prior to input to the Linker.

For example, if the object modules described in Figure 5-1 (i.e.,
MAIN, PRE, PROC, and POST) are used as arguments in the BUILD command:

BUILD MAIN,PRE,PROC,POST

the result is a command file (MAIN.CMD) that is invoked by the command
line:

LINK/BASIC MAIN

MAIN.CMD corresponds to the following LINK command string:

LINK/TASK:MAIN/CHECKPOINT/MAP:MAIN/OVERLAY:MAIN/OPTIONS:BASOPT

where the options command file BASOPT consists of the following option
lines:

LIBR=BASIC2:RO
UNITS = 14
ASG=SY:5:6:7:8:9:10:11:12
ASG=TI:13

5-20

OVERLAY CAPABILITY

The BUILD command also generates an overlay
(MAIN.ODL) that appears as follows:

description

USER:
LIBR:

• ROOT
.FCTR
.FCTR
.END

USER
MAIN-PRE-PROC-POST-LIBR
[1,1]BASIC2/LB

You can edit this ODL file to create an overlay as follows:

USER:
LIBR:

• ROOT
.FCTR
.FCTR
.END

USER
MAIN-LIBR-*{PRE-LIBR,PROC-LIBR,POST-LIBR)
[1,1]BASIC2/LB

file

The overlay structure used in this example duplicates that shown in
Figure 5-1. Note that each branch of the structure must be associated
with the library. This procedure ensures that the correct routines
are linked at run time.

The path of an overlay structure is from the root of the structure,
along a serIes of branches, to the outermost section. The root
section can call any overlay section. However, a subprogram in an
overlay section can call another overlay section only if they share a
common path. Therefore, in the previous example, MAIN can call PRE,
PROC, and POST, but the three subprograms cannot call each other.

The concept of paths is better illustrated with a tree diagram. For
example:

.ROOT A-B-*{C,D-{E,F,G»

.END

where A and B are two object modules representing the root section. C
and D are the branches of A and B. E, F, and G are branches of D. A
tree diagram of this structure appears in Figure 5-2.

A

B

I I
D C

I
E F G

Figure 5-2 Overlay Path

5-21

OVERLAY CAPABILITY

The paths of this structure are: A-B-C, A-B-D-E, A-B-D-F, and
A-B-D-G. Within this structure:

1. A and B can call all the sections.

2. D can call E, F, and G.

3. C and D cannot directly call each other.

4. C cannot call E, F, and G.

5. E, F, and G cannot call each other.

Note that if A calls C, C in turn can call B. However, if B
simultaneously calls 0 and then attempts to return to C, an error
occurs. The error is due to B returning to an overlaid segment, i.e.,
o overlays C.

OLD NONAME

Basic 2

COM

Basic 2

BUILD NONAME/IND

Basic2

EXIT

LINK/BASIC NONAME.CMD

In this command series, BUILD is used to create a command file
(NONAME.CMD) composed of a previously compiled object module. The
command file contains all the libraries and options that are required
input to the Linker as well as the BASIC switch (/IND) that enables
the use of RMS indexed I/O. The command file is used as input to the
Linker and results in a map file and an executable task (NONAME.MAP
and NONAME.TSK) .

Note that no additional qualifiers or options can be associated with
the command file input specification. For example:

LINK/NOMAP/BASIC NONAME.CMD

is illegal.

The use of an RMS switch (/VIR, /SEQ, /REL, or /IND) causes the BUILD
command to change the generated. .ODL file as required for RMS I/O.
These changes are made automatically when the appropriate switch is
appended to the BUILD command. Consider the following example of
NONAME.ODL:

USER:
LIBR:
RMS:
@SY: [1,1]

. ROOT

.FCTR

.FCTR

.FCTR

.END

BIROT4-USER,RMS
NONAME-LIBR

[1,1]BASIC2/LB
BI0047
BASIC4

5-22

OVERLAY CAPABILITY

5.4 USING OVERLAYS WITH TRAX COBOL

5.4.1 Standard ODL File

The standard ODL file generated by the TRAX COBOL compiler consists of
a header and a body. The header contains information that is required
to merge one or more ODL files. The body contains ODL directives that
describe the object program.

5.4.2 ODL File Header

The ODL file header consists of a sequence of comment lines. Two are
required in every ODL file, and others are supplied as needed. The
required comment lines are:

iCOBOBJ=XXXXXX.OBJ
iCOBKER=KK

Where:

XXXXXX.OBJ

KK

is the name of the object module being described

is the kernel that was used to generate the PSECT
names for the COBOL program.

The following comment lines are supplied as needed:

iCOBMAIN This comment line is supplied if the program being
described is a main program. The absence of this
line means that the ODL file was generated for a
COBOL subprogram.

iRMSSEQ=CIOOXY This comment line is specified if the program
requires RMS I/O support. One or more lines may
be supplied. X and Y represent integer codes that
respectively specify the file organization and
operational support required for that
organization. File organization is specified by
the following codes:

CODE ORGANIZATION

1 sequential

2 relative

3 indexed

5.4.3 ODL File Body

The ODL file body describes the overlay structure of the COBOL
program. The body contains the following ODL directive types:

1. .PSECT

2. . NAME

defines the name of the code PSECT and makes it
known to the TRAX Linker.

defines the name to be assigned to the overlay
segment by the Trax Linker.

5-23

OVERLAY CAPABILITY

3. • FCTR describes the contents of the segments.

4. • ROOT defines the root.

5. .END informs the TRAX Linker that the end of the OOL
file has been reached.

6. icomments contains comment entries.

The .ROOT and .END directives are not supplied by the COBOL compiler.
They are inserted into the ODL file generated by the Merge Utility.
If you are generating a stand alone ODL file, these directives must be
supplied by you. If the OOL file you are generating is to be used as
input to the Merge Utility, leave these directives out.

Within a compiler-generated OOL file, the directives .PSECT, .NAME,
and .FCTR are generated around the PSECT kernel. If the PSECT name
kernel for a given program is KK, the format of the names generated in
the ODL file is:

Entity

.PSECT

• NAME

.FCTR

Format of Name

$KKMMM

KK$MMM

KKMMM$

Each .PSECT defined in the ODL file begins with a $ followed by the
two-character kernel ($KK). Each .NAME directive begins with the
two-character kernel followed by $ (KK$). Finally, each • FCTR
directive begins with the two-character kernel and ends with a $
(KKMMM$) .

COMPILER-GENERATED OOL FOR COBOL PSECTS

The following sections discuss the OOL directives generated for
different types of overlay requirements. The characters NNN, when
used in examples, refer to the three character suffix generated by the
compiler for each PSECT. The characters KK refer to the kernel
characters that make the PSECT unique to a particular compilation.

5.4.4 ODL Generated for Overlays Containing Only One PSECT

For overlays containing only one PSECT, the following lines are
generated:

.PSECT $KKNNN,GBL,RW,CON,I

• NAME KK$NNN,GBL

KKNNN$.FCTR *KK$NNN-$KKNNN

5.4.5 ODL Generated for Overlays Containing More Than One PSECT

For each overlay that contains more than one PSECT, a .PSECT directive
is generated for each PSECT in the overlay. These .PSECT directives
are followed by a .NAME and .FCTR directive. Consider the following
example.

5-24

OVERLAY CAPABILITY

Example

Two PSECTs, $AAOOI and $AA002, are to be placed in the same overlay.
The segment-number assigned to the PSECTs is 20. The following OOL
directives are generated:

iOEFINE PSECT $AAOOI

.PSECT $AAOOI,GBL,RW,CON,I

iOEFINE PSECT $AA002

.PSECT $AA002,GBL,RW,CON,I

iOEFINE THE OVERLAY NAME

• NAME AA$020,GBL

iOEFINE OVERLAY CONTENTS

AA020$: .FCTR *AA$020-$AAOOI-$AA002

OOL Generated for All Overlayable PSECTS

All .FCTR directives that describe the overlayable PSECTs must be
collapsed into one final .FCTR directive. This directive describes
the entire overlayable portion of the object code. The name
associated with this .FCTR directive is derived from the two-character
kernel assigned to the PSECTs. If the kernel is KK, then the name of
the .FCTR directive that describes the entire overlayable part of the
object code is KKOVR$.

The following example shows how the KKOVR$ factor is developed for
various overlay configurations:

Example 1: All Code Psects Overlay One Another

AAOOI:

AA002$:

AA003$:

AA004$:

AA005$:

AAOVR$:

.PSECT

.NAME

.FCTR

.PSECT

. NAME

.FCTR

.PSECT

. NAME

.FCTR
i
.PSECT
• NAME
.FCTR

$AAOOI,GBL,RW,CON,I
AA$OOI,GBL
*AA$OOl-$AAOOI

$AA002,GBL,RW,CON,I
AA$002,GBL
*AA$002-$AA002

$AA003,GBL,RW,CON,I
AA$003,GBL
*AA$003-$AA003

$AA004,GBL,RW,CON,I
AA$004,GBL
*AA$004-$AA004

.PSECT $AA005,GBL,RW,CON,I

. NAME AA$005,GBL

.FCTR *AA$005-$AA005
iIN THIS EXAMPLE, ALL PSECTS OVERLAY
:ONE ANOTHER •
. FCTR (AAOOI$,AA002$,AA003$,AA004$,AA004$,AA005$)

5-25

OVERLAY CAPABILITY

Example 2: Two Code Psects Are in the Same Overlay

AAOOl$:

AAOO3$:

AAOO4$:

AAOO5$:

AAOVR$:

Example 3:

AAOOl$:

AA003$:

AA005$:

AAOVR$:

.PSECT $AAOOl,GBL,RW,CON,I
i
.PSECT $AAOO2,GBL,RW,CON,I
i
• NAME AA$OOl,GBL
.FCTR *AA$OOl-$AAOOl-$AAOO2

.PSECT $AAOO3,GBL,RW,CON,I

. NAME AA$OO3,GBL

.FCTR *AA$OO3-$AAOO3
i
.PSECT $AAOO4,GBL,RW,CON,I
. NAME AA$OO4,GBL
.FCTR *AA$OO4-$AAOO4
i
.PSECT $AAOOS,GBL,RW,CON,I
. NAME AA$OOS,GBL
.FCTR *AA$OO5-$AAOO5
i
.FCTR AAOOl$,AAOO3$,AAOO4$,AAOO5$

Two Occurrences of Two Psects in the Same Overlay

iIN THIS EXAMPLE, PSECTS $AAOOI AND $AA002
iARE IN THE SAME OVERLAY. PSECTS $AA003
iAND $AA004 ARE IN THE SAME OVERLAY.
iPSECT $AA005 IS IN AN OVERLAY ALL BY ITSELF

iPSECT $AAOOl,GBL,RW,CON,I
i
iPSECT $AAOO2,GBL,RW,CON,I
i
. NAME AA$OOl,GBL
.FCTR *AA$OOl-$AAOOl-$AAOO2
i
iPSECT $AAOO3,GBL,RW,CON,I
i
.PSECT $AAOO4,GBL,RW,CON,I
i
• NAME AA$OO3,GBL
.FCTR *AA$OO3-$AAOO3-$AAOO4

.PSECT $AAOOS,GBL,RW,CON,I

. NAME AA$OOS,GBL

.FCTR *AA$OO5-$AAOO5
;
.FCTR AAOOl$,AAOO3$,AAOO5$

5.4.6 Merging Standard OOL Files

To develop an ODL file for a task composed of more than one COBOL
object program, it is necessary to merge the OOL files for each
individual object program into a single OOL file that describes the
overlay requirements for the task.

All of the OOL files to be merged are partial ODL files. That is,
none of these OOL files can be submitted directly to the Linker to
link a task, because none of the compiler-generated OOL files contain
a .ROOT directive~ The .ROOT directive that describes the task is
supplied by the Merge Utility.

5-26

OVERLAY CAPABILITY

Merging COBOL compiler-generated OOL files is accomplished by
executing the OOL merge utility. (See TRAX COBOL User's Guide Section
2.6, Using the OOL Merge Utility.)

5.4.7 Including Non-COBOL Programs in a Task

To use the Merge Utility to include a non-COBOL object module in a
task image, you must:

1. Create a standard COBOL OOL file (use the DEC editor)

2. Specify this OOL file as input to the OOL Merge Utility.

5.4.8 Creating a Standard COBOL ODL File

A standard COBOL OOL file for a non-COBOL object module contains one
or two directive lines:

1. Object Program 10 Line This
identifies the object module to
image. The format of this line is:

:COBOBJ=XXXXXX.OBJ

line
be

is required. It
included in the task

Where XXXXXX.OBJ is the name of the object module to be
included in the task image.

2. Main Program 10 Line This line is present only for
non-COBOL object modules that are main programs as opposed to
being subprograms. The format of the line is:

:COBMAIN

For each invocation of the COBOL ODL Merge Utility, one and only one
main program OOL file can be specified. If no main program OOL file
is specified, the Merge Utility continues to request more input until
a main program OOL file is specified. If more than one main program
OOL file is specified, all but the first is rejected, and appropriate
diagnostic error messages are issued. Consider the following
examples.

Example 1

MACRO program START.OBJ is a main program in a task consisting of a
main program and several subprograms. The OOL file to be
hand-generated is:

:COBOBJ=START.OBJ
:COBMAIN

Example 2

Macro subprogram SUBX.OBJ is to be part of a task image that consists
of several COBOL subprograms and a COBOL main program. The OOL file
to be hand-generated is:

iCOBOBJ=SUBX.OBJ

5-27

OVERLAY CAPABILITY

5.4.9 Rearranging a Compiler-generated ODL File

The ODL file generated by the compiler can be rearranged to modify the
overlay structure of a task. If the ODL file describes a task that
has overlayable segments, one or more of these segments can be
converted into non-overlayable segments by:

1. Modifying the compiler-generated ODL file.

2. Specifying a one-line Linker option at Link time for each
segment made non-overlayable.

5.4.10 Modifying the Compiler-generated ODL File

Modifying the compiler-generated ODL file requires the following
steps:

1. Each overlayable segment is named in the ODL file by an
ODL.NAME directive. This .NAME directive must be removed.

2. Each name appearing in a .NAME directive is marked with an *
and placed as the first element of a .FCTR directive. For
each .NAME directive removed by step 1, this .FCTR directive
must be removed.

3. All references to the name of the .FCTR directive removed in
step 2 must be removed from the ODL file.

4. All PSECTs referenced in the .FCTR directive that was removed
in step 3, must be removed from the ODL file.

Example

The task image contains three overlayable segments, C$$OlO, C$$015,
and C$$020. Segment C$$020 is to be forced into the root. Figure 5-3
contains a listing of the merged ODL file.

:MERGED ODL FILE CREATED ON 26-JAN-77 AT 10:50:00
:COBOL STANDARD ODL FILE GENERATED ON: 26-JAN-77 10:48:37
:COBOBJ=TESTl.OBJ
:COBKER=C$
:COBMAIN

COlO:

C015:

C020:
COVR:
CBOBJ$:
CBOVR$:
CBOTS$:
RMS$:
OBJRT$:

.NAME C$$OlO,GBL

.PSECT C003,GBL,I,RW,CON

.FCTR *C$$010-C003

.NAME C$$015,GBL

.PSECT C004,GBL,I,RW,CON

.FCTR *C$$015-C004

.NAME C$$020,GBL

.PSECT C005,GBL,I,RW,CON

.FCTR *C$$020-C005

.FCTR C010,C015,C020

.FCTR TESTl.OBJ

.FCTR COVR

.FCTR [320,13]COBLIB/LB

.FCTR [l,l]RMSLIB/LB

.FCTR CBOBJ$-CBOTS$-RMS$

.ROOT OBJRT$-(CBOVR$)

.END

Figure 5-3 Merged ODL File Listing

5-28

OVERLAY CAPABILITY

To force segment C$$020 into the root, the merged ODL file must be
modified as follows:

1. The .NAME directive referencing C$$020 must be removed.

2. The .FCTR directive containing *C$$020 must be removed.

3. All references to the PSECTs in the removed .FCTR directive
must be removed.

Figure 5-4 contains the ODL listing after the modifications have been
made.

;MERGED ODL FILE CREATED ON 26-JAN-77 AT 10:55:22
;COBOL STANDARD ODL FILE GENERATED ON: 26-JAN-77 10:48:37
;COBOBJ=TEST1.OBJ
;COBKER=C$
;COBMAIN

COlO:

C015:
COVR:
CBOBJ$:
CBOVR$:
CBOTS$:
RMS$:
OBJRT$:

.NAME C$$OlO,GBL

.PSECT C003,GBL,I,RW,CON

.FCTR *C$$010-C003

.NAME C$$015,GBL

.PSECT C004,GBL,I,RW,CON

.FCTR *C$$015-C004

.FCTR C010,C015

.FCTR TESTl.OBJ

.FCTR COVR

.FCTR [l,l]COBLIB/LB

.FCTR [l,l]RMSLIB/LB

.FCTR CBOBJ$-CBOTS$-RMS$

.ROOT OBJRT$-(CBOVR$)

.END

Figure 5-4 Modified ODL File

5-29

CHAPTER 6

LOADING MECHANISMS

The method for loading disk-resident overlays is called:

Autoload in which the Overlay Runtime System is
automatically called upon to load those segments
that are marked by the user.

In the autoload method, loading and error recovery are handled by the
Overlay Runtime System. Overlays are automatically loaded by being
referenced through a transfer-of-control instruction (CALL, JMP, or
JSR). No explicit calls to the Overlay Runtime System are needed.

Provision must be made for loading the overlay segments of the main
tree, and the root segments and overlay segments of the co-trees.
Once loaded, the root segment of a co-tree remains in memory.

6.1 AUTOLOAD

To use the autoload method, the user places the autoload indicator, *,
in the ODL description of the task, at the points indicating where
loading must take place. The execution of a transfer-of-control
instruction to an autoloadable segment up-tree (farther away from the
root) automatically initiates the autoload process.

6.1.1 Autoload Indicator

The autoload indicator, *, marks as autoloadable the segment or other
task element (as defined below). If the autoload indicator is applied
to an ODL statement enclosed in parentheses, then every task element
named within the parentheses is marked as autoloadable. Applying the
autoload indicator at the outermost parenthesis level of the ODL tree
description marks every module in the overlay segments as
autoloadable.

6-1

LOADING MECHANISMS

If, in the TKI example of Chapter 6, segment C consisted of a set of
modules CI, C2, C3, C4, and CS, the tree diagram would be:

Ay2
CS

Al A2 BI B2 C4
I I I I C3

I I C2
AO Bf CI
I I

I
CNTRL

Placing the autoload indicator at the outermost parenthesis level,
ensures that, regardless of the flow of control within the task, a
module will be properly loaded when it is called. The ODL description
for the task with this provision is:

AFCTR:
BFCTR:
CFCTR:

.ROOT CNTRL-*(AFCTR,BCTR,CFCTR)

.FCTR AO-(Al,A2-(A21,A22»

.FCTR BO-(Bl,B2)

.FCTR CI-C2-C3-C4-CS

.END

To ensure that all modules of a co-tree are properly loaded, the user
must mark its root segment (CNTRL2) as well as its outermost
parenthesis level as follows:

.ROOT CNTRL-*(AFCTR,BFTCR,CFCTR) ,*CNTRL2-*(CNTRLX,CNTRLY)

The example above assumes that one or more modules containing
executable code reside in CNTRL2.

The autoload indicator can be applied to the following elements:

• Filenames - to make all the components
autoloadable.

of the file

• Portions of ODL tree descriptions enclosed in
parentheses - to make all the elements within the
parentheses autoloadable. This includes elements within any
nested parentheses.

• P-section names - to make the p-section autoloadable.
p-section must have the I (instruction) attribute.

The

• Segment names defined by the .NAME directive - to make all
components of the segment autoloadable.

• .FCTR label names - to make the first component of the
factor autoloadable. All elements of the .FCTR are
autoloadable if they are enclosed in parentheses.

6-2

LOADING MECHANISMS

In the following example, the user introduces two .PSECT directives
and a • NAME directive into the ODL description for TKl, and then
applies autoload indicators in the following way:

AFCTR:
BFCTR:
CFCTR:

.ROOT CNTRL-(*AFCTR,*BFCTR,*CFCTR)

.FCTR AO-*ASUBI-ASUB2-*(Al,A2-(A21,A22»

.FCTR (BO-(Bl,B2»

.FCTR CNAM-CI-C2-C3-C4-CS

.NAME CNAM,GBL

.PSECT ASUBl,I,GBL,OVR

.PSECT ASUB2,I,GBL,OVR

.END

The interpretation for each autoload indicator in the
description is as follows:

overlay

(*AFCTR,*BFCTR,*CFCTR)

*ASUBI

The autoload indicator is applied to each factor name.

• *AFCTR=*AO
• *BFCTR=*(BO-(BI-B2»
• *CFCTR=*CNAM

CNAM, however, is an element defined by a .NAME
directive; therefore, all the components of the
segment to which the name applies are made
autoloadable; that is, Cl, C2, C3, C4, and CS.

The autoload indicator is applied to
p-section having the I attribute,
ASUBI is made autoloadable.

the name of a
so the p-section

*(AI,A2-(A21,A22» The autoload indicator is applied to a
portion of the OOL description enclosed in parentheses,
so every element within the parentheses is made
autoloadable (that is, files AI, A2, A21, and A22).

The net effect of this OOL description is to make every element except
file ASUB2 autoloadable.

6.1.2 Path-Loading

Autoload uses the technique of path-loading. That is, a call from one
segment to another segment up-tree (farther away from the root)
ensures that all the segments on the path from the calling segment to
the. called segment will be resident in physical memory and will be
mapped. Path-loading is confined to the tree in which the called
segment resides. A call from a segment in one tree to a segment in
another tree results in the loading of all segments on the path in the
second tree, from the root to the called module.

Example:

I
AO

I

B1
I

I
I

BO
I

CNTRL

6-3

B2
I

CS
C4
C3
C2
Cl
I

LOADING MECHANISMS

In the example above, if CNTRL calls A2, then all the modules
the calling module CNTRL and the called module A2 are loaded.
case, modules AO and A2 are loaded.

between
In this

The Overlay Runtime System keeps a record of the segments that are
loaded and mapped, and issues di~k-load requests only for those
segments not in memory. If CNTRL calls A2 after calling AI, AD is not
loaded again because it is already in memory and mapped.

A reference from one segment to another segment down-tree (closer to
the root) is resolved directly. For example, A2 can immediately
access AD because AO was path-loaded in the call to A2.

6.1.3 Autoload Vectors

When the Linker sees a reference to a global symbol in an autoloadable
segment up-tree, it generates an autoload vector for the referenced
global symbol. The reference is changed to a definition that points
to an autoload vector entry. The autoload vector has the following
format:

JSR PC, sub

$ AUTO

SEGMENT DESCRIPTOR ADDR.

ENTRY POINT ADDRESS

A transfer-of-control instruction to the global symbol executes the
call to the autoload routine, $AUTO.

An exception to the procedure for generating autoload vectors is made
in the case of a p-section with the D (data) attribute. References
from a segment to a global symbol up-tree in a p-section with the 0
attribute are resolved directly.

Because the Linker can obtain no information about the flow of control
within the task, it often generates more autoload vectors than are
necessary. The user, however, can apply knowledge of the flow of task
control and knowledge of path-loading to determine the placement of
autoload indicators. By placing the autoload indicators only at the
points where loading is actually required, the user can minimize the
number of autoload vectors generated for the task.

In the following example, all the calls to overlays originate in the
root segment. That is, no module in an overlay segment calls outside
its segment. The root segment CNTRL has the following contents:

PROGRAM CNTRL
CALL Al
CALL A21
CALL A2
CALL AO
CALL A22
CALL BO
CALL Bl
CALL B2

6-4

LOADING MECHANISMS

CALL Cl
CALL C2
CALL C3
CALL C4
CALL C5
END

If the autoload indicator is placed at the outermost parenthesis
level, thirteen autoload vectors are generated for this task;
however, since A2 and AO are loaded by path-loading to A2l, the
autoload vectors for A2 and AO are unnecessary. Moreover, the call to
Cl loads the segment that contains C2, C3, C4, and C5; therefore,
autoload vectors for C2 through C5 are unnecessary.

The user eliminates the unnecessary autoload vectors by placing the
autoload indicator only at the points where explicit loading is
required~ as follows:

AFCTR:
BFCTR:
CFCTR:

.ROOT CNTRL-(AFCTR,*BFCTR,CFCTR)

.FCTR AO-(*Al,A2-*(A2l,A22))

.FCTR (BO-(Bl,B2))

.FCTR *Cl-C2-C3-C4-C5

.END

With this ODL description, the Linker generates seven autoload
vectors -- those for AI, A2l, A22, BO, Bl, B2, and Cl.

6.1.4 Autoloadable Data Segments

Overlay segments containing no executable code can make use of the
autoload facility in the following way. The user must first include a
.NAME directive with the GBL attribute, as described in Section
6.1.3.4.

For example:

.ROOT A-*(B,C)

.NAME BNAME,GBL
B: .FCTR BNAME-BFIL

.END

The global symbol BNAME is created and entered into the symbol table
of segment BNAME. Since this segment is marked to be autoloaded, root
segment A calls segment BNAME as follows:

CALL BNAME

The segment is autoloaded and an immediate return to in-line code
occurs.

The user should place the data of BFIL in a .PSECT with the D
attribute to suppress the creation of autoload vectors.

6-5

LOADING MECHANISMS

6.2 GLOBAL CROSS-REFERENCE OF AN OVERLAID TASK

Chapter 6 introduced the global cross-reference feature. This section
illustrates a global cross-reference that has been created for an
overlaid task. The task consists of a root segment containing the
module ROOT.OBJ, and two overlay segments composed of modules OVRI and
OVR2. The overlay description of the file is as follows:

.ROOT ROOT-(OVRI,*OVR2)

Only segment OVR2 is autoloadable.

The resulting cross-reference listing is shown
consulting the cross-reference listing, the
following observations.

in Figure
user can

6-1.
make

By
the

The global symbol OVRI is defined in the module OVRI, and a single
non-autoloadable, up-tree reference is made to this symbol by the
module ROOT, as indicated by the circumflex (up-arrow on some
printers). Note that there is no way to load segment OVRI because of
the restriction against mixing manual load and autoload in the same
task.

The asterisk preceding the module OVR2 indicates that the global
symbol OVR2 is an autoload symbol, and is referenced from the module
ROOT through an autoload vector, as shown by the @ character.

Down-tree references to the global symbol ROOT are made from modules
OVRI and OVR2. These references are resolved directly.

The segment cross-reference shows the segment name and modules in each
overlay.

6-6

LOADING MECHANISMS

OVRTST CREATED 8V TI<8 ON 1-0CT-7b .T 121~4 PAGE

GLOeAL CROSS AEFERENCE CQEF Vet1

SYMBOL VALUE REFERENCES",

N.ALER 000010 AUTO • OVRES
N.IDST 000004 OVCTL #I OVRES
N,MRI<S 00001b #I OVRES
N.OVLY 000000 OVCTL • OVRES
N.OVPT 000054 AUTO OVCTL ,. vCTDF
N.ROSG 000014 • OVRES
N.STBL 000002 #I OVRES
N.SlSG 0'-'0012 * OVRES
OVRI 002014-R • OVAl • ROOT
OVR2 002014-R * OVRZ • ROOT
ROOT 00117b- R Ii ROOT
SAL8P1 001320-R #I AUTO
SAL8P2 00141&-R #I AUTO
SALERR t11&i124b-R * ALERR OVDAT
SAUTO 00130Z-R • AUTO
SDS~ 00004& ALERR * VCTDF
SMARKS 00154b-R • OVCTL
SOTSV ~1&i0052 #I VCTOF
SSAVRG 001452-R AUTO • SAVRG
SVEXT ~0005b #I VCTOF
,FSRPT 000050 #I VeTOF
,NALER ~01442-R #I OVOAT
,NIOST 016143&-R #I OVOAT
.NMRKS 0014S0-R #I OVOAT
,NOVLV 001412-R #I OVDAT
,NOVPT 00012142 • OVOAT
,NRDSG 00144b-R #I aVDAT
.NSTBI. 001414-R • OVOAT
,NSZSG 001444-R #I OVDAT

OVRTST CREATED BY TI<B ON t-QCT-7~ AT I. :.? : " lJ p~GE. 2

SEGMENT CROSS REFERENCE C~tF V(?!l

SEGMENT NAME RESIDENT MODIJLES

OVRI OVRl
OVR2 OVR2
ROOT ALERR AUTO OVCTl CVDAT nV~ES ~QOT SAVRG

VCTOF

Figure 6-1 Sample Overlaid Cross-Reference Listing

6-7

CHAPTER 7

MEMORY DUMPS

7.1 POST-MORTEM DUMPS

The task PMD ... generates a post-mortem dump of a task that is
abnormally terminated. A task can be made eligible for a post-mortem
dump in any of three ways:

1.

2.

At task-build time by specifying the /DUMP
task file. /NODUMP disables dumps; it

switch for the
is the default

condition.

When using the ABORT command (described in the
Environment User's Guide), a dump can be
including the switch /DUMP in the command line.

TRAX Support
specified by

The Post-mortem Dump task PMD ... is automatically installed by the
system in a 4K partition in which all other tasks are checkpointable.
This allows the dump to be generated in a timely manner and prevents
the system from being locked up while the dump is being generated.
The dump task is capable of dumping from memory or from the checkpoint
image of the user's task. The Post-mortem Dump task is sensitive to
the location of the aborted task; therefore, if the aborted task is
checkpointed during the dump, the dump task switches to reading the
checkpoint image. Once the task is checkpointed, PMD locks it out of
memory until it has completed formatting the dump.

Dumps are always generated on the system disk under UFD [1,4]. When
the dump task finishes generating the dump, it attempts to queue it to
the print spooler for subsequent printing. If no spooler is
installed, the dump file is left on the disk and can be printed later
using the PRINT Command.

NOTE

Dump files tend to be somewhat large.
The dump of an 8K partition averages
about 340 blocks. Therefore, if there
is little space on the disk, it is
important to print and delete the dump
file without delay. The print spooler
automatically deletes all files with the
type .PMD after printing them.

The following description of the contents of Post-mortem and Snapshot
dumps is keyed to Figure 7-1. Snapshot dumps are explained more fully
in Section 7.2.

7-1

MEMORY DUMPS

Item Description

1 Type of dump ~ Post-mortem or Snapshot. If it is a Snapshot
dump, the dump ID is printed.

2 The name of the task being dumped, and the date and time the
dump was generated.

3 The program counter at the time of the dump; and if it is a
Post-mortem dump, the reason the task was aborted.

4 The general registers, stack pointer, and processor status at
the time of the dump.

5 The task status flags at the time of the dump. See the
description of ATL or TAL in the TRAX Support Environment
User's Guide for the meaning of the flags.

6 The task event flag mask word at the time of the dump. If
the dump is a Snapshot dump, the EFN specified in the SNAP
macro will be ON.

7 The task UFD and the current value of the directive status
word.

8 The task's priority and
outstanding I/O requests,
task was initiated (TI:).

default priority, number of
and the terminal from which the

9 The task load device and the logical block number for the
start of the task image on the device.

10 The floating point unit (FPU) registers or the extended
arithmetic element (EAE) registers if the task is using one
of these hardware features. If the task is not using the FPU
or EAE, these registers are not printed. If the task uses
the FPU and does not specify /FP on the task image file, or
if it uses the EAE unit and has not specified the /EA switch,
the registers are not printed. If the machine being used has
both an FPU and an EAE, PMD assumes the user is using the FPU
because it is the unit of choice for arithmetic computations.

11 The logical unit assignments at the time of the dump. UNIT
is the logical unit number, and DEVICE is the device the
logical unit is assigned to. For Snapshot dumps, file status
displays the file name of any open files. Post-mortem Dumps
will not display this information because all the files will
have been closed as a result of the I/O rundown on the
aborted task.

12 The following are displayed: the overlay segments loaded and
resident libraries mapped at the time of the dump, the
relative block number of the segment, the base address, the
length of the segment, and, for tasks using manual loads, the
segment names. For resident libraries, the library name is
also displayed. The block number can be used to determine
which segment is loaded, by reference to the memory
allocation file generated by the Linker. The starting block
number for each segment is the relative block number of the
segment. By obtaining a match, the name of the segment in
memory can be determined. Zero length segments are usually
co-tree roots.

7-2

Item

13

14

MEMORY DUMPS

Description

The task stack at the time of the dump. The address is
displayed, along with the contents, in octal, ASCII, and
RADSO. Each word on the stack is dumped. If the stack
pointer is above the initial value of the stack (H.ISP), only
one word is dumped. The rest is dumped as part of the task
image.

The task image itself. The partition being dumped and the
limits of interest are displayed. For Post-Mortem Dumps, all
address windows in use are dumped. For Snapshot Dumps, these
are the virtual task limits requested by the user. The dump
routine rounds the requested low limit down to the nearest
multiple of 8 bytes and rounds the requested high limit up to
the nearest multiple of 8 bytes. The dump image displays the
virtual starting address of a four-word block of memory, the
data in both octal and RADSO on the first line, and byte
octal and ASCII on the second line. A four-word block that
is repeated in a contiguous region of memory is printed once,
and then noted by the message

*** DUPLICATE THROUGH xxxxxx ***

where xxx xxx indicates the last word that is duplicated. If
the task was aborted, all address windows in use are dumped.
If the dump is a Snapshot Dump, up to four contiguous blocks
of memory can be dumped, if requested.

7.2 SNAPSHOT DUMP

The task PMD... is also capable of producing edited dumps for running
tasks. These dumps are called Snapshot Dumps, and they are useful as
debugging aids. A Snapshot Dump can be requested any number of times
during the execution of a task. The information generated is under
the control of the programmer.

Snapshot Dumps are generated by the following macros:

SNPDF$

SNPBK$

SNAP$

defines offsets in the Snapshot Dump Control Block,
and control bits, which control the format of the
dump.

allocates the Snapshot Dump Control Block (see Figure
7-2) .

causes a Snapshot Dump to be generated.

SNPBK$ and SNAP$ issue calls to SNPDF$, so, in most cases, the
programmer does not have to issue the SNPDF$ macro call explicitly.

7-3

MEMORY DUMPS

POST-~ORT£M DU~P 0
TASI<I TTf) ® TIMf. 5-0CT-7b 15106

PCI 00072~ 0 lOT EXf,CUlION 0
REGSI ~~, . ~1t'l03"S Rt • 07"400 R2 • 000120 R3 - 140130 } CD

R4 • k'~H:"~~0 RS • C!0"'''0P. SP • 0"~304 PS • 170P100

TASK ST.TUSI "'SG AST OST .CHK HLT SlP REM ~CR ®

1/0 COU~TI ~. Tl DEVICE • Tlb. ®
LOAD DEVIC~ • DA~I ®
FLOATING POI~T UNIT

'HI - (,WI/'.t.0t.i1 ~",r,0"'0 (lI~e'·~p", ItlQH~0~e @
Rt - w~w~~~ ~l-1"'~rt'0 0"''''000 0~e0~~
Rc - V1~I7."~~ bHH'J~~ 0N~ilI00 0~00~""
11:\ - hJ0V"'~'1 ~"'~~~~ 0~"'0"'0 P001f100
Q~ - ?~wv,r~ e~H'''0'' 0~0~00 "000"H~
Rt; - "~~~~L"\~'" ~~"'~1~0 00fHHh~ ~00e"'~~

LOGICAL U~IT5

UNIT rE.vJCE FILE" STATUS

1 I)f;{q

2 Ob~" I
3 Dt<v:

" !)~v:

OVERLAY Str;~E~TS LCADfO AND RESIOE~iT LIB~ARIES Po1APPED }

STARTING RELATIVE eLOC~1 ~0~c~2 BASEl ~"'0~00 LENGTH. 0~la54
ST'RTI~G R~LA'IVE BLOCkl ~~~e~4 RASEI ~~la54 LENGTHI ~0~2ba

Figure 7-1 Sample Post-Mortem Dump (Truncated)

7-4

MEMORY DUMPS

TASt< IMAGf

PAfHITION. GEN VIRTUAL LlfI4ITSI 000~00 . 0~H 771

101000 ~~"~3v.Q "0161~2 00012101 067426 1 Db e4 A Q~P'-'
1"4 ~~~ 162 000 001 000 026 157 10 .. 01

fUJ0" H' ~';3""11 "03401 170017 0~035~ &A03 A03 epo E,,'
~HH ~{17 001 007 ~17 3b0 3Si 00e 1 p J

111020 "'MA3"'1 ~00000 0~P0P'0 1f!00000 Db 1
3"" "'~v. f':00 0~0 "00 000 000 000 10

011030 ",L1I2!,,;vr" 000~00 0~00fl10 (!teA000 1
~'4" ~,~ ,~ f"~0 000 000 .~0A ,,~&!t 00P. 1

00004~ ntlll:WIf."" 1"0162 0741~6 00012101 01Z S10 AI
VI ,,: [' e0~ 162 30~ l~b 170 0"~ 0P.ftl 1 ... ,-

10PJ~5\~ OIt.~~f2I~ ~00"Q0 ~~11e" "Pl00~P, NT 1
~"'v., ~~r~ Ii ~10e 0~~ 1~" ~~2 000 I,HH~ I 0

00006'~ ,,:v-/c·373 ~00~ee 0CHHH!lP P."''-'000
,,, 1

173 (1V·~ U0e ft'I~~ 0Q1C' 1i'0P ~~0 000 H
01101~ ~h1mH3~1 014t50 0i'1P,00" 05'1.6 46 5Jl(0 ~ON'

,,,~,' ~,~'! '" 15Q1 170 V;04 000 246 123 1 "'- &51
00"10~ (Ha~;'V' v ~51&(I& 0€01C0e ~516"'6 "'-ON "'10 ~~ ~

0~,rl I~H" V' 246 123 ~0'" 01210 246 123 I "S &S ,-
IIelte' ~.~ (I ~, ... ~ tl! ~ ~51646 "'0~H"h' ""001A~1 ~ON , ,

~fl:li i.11i'~ 2"b 123 00~ ~~~ "'01 00e 1 &S
00"12~ "'b7·"2~' \fJe0~00 0i-JI 777 "'b1"0" lQXP y~ 03.'

:112·~ 15b "e~ 000 377 1d03 00" 1"3 ,
" cl

000111i1 ~1 ~~. ~ 0(1 2 ~2 ~~'iJ000 ~~W&0!l ft!f17'H1!6 ~ 1)(BP~'
-"'2 .. ' ,,~ " ~1!I0 N~e 20~1 ~~1 r~6 017 1

00011.1~' 1 7~h·tA:~ ~~""20 0,1I~HH~~ ~0[1,00P lSP Kit 1 3 ,7'11(-' 310-:,\ 12~
"'" 1

~0~ ti1~0 01?'0 "'0~ 1 p p

00015~' lti~·t:h r~~12e 01"'100 ~003Q5 H'1 P SNP fIt
t 3.' 3c-.~1 12~ ~~0 ~12'0I 17t 3"5 ~0P l.x- p v e

000160 til' l~ vH~ t' 1!le-'H~itHl ~rHHHH~ 0(?1~0;i11rl 1
"'~w .H~v ~('.i0 .,~~ P.0~4 ~'~0 ~0e 0~~ 1

*** DUPLICATE THROUGH ~~~23b ***
00024'" .H.ilihWr ~"p\rl1'ld ~~q 11 it' "h~QlA0e NX

I.~ ,,=, tl ,~rH' ~00 ~"0 11 ~ ~:~2 e,,~ 00~ H
00025tt- r:'1~54 1d002b4 001 ~H·lP. 0 00pe0C TL Of

1~5~ .~". , 26(1 ~QlPI 00J ~~.a 000 Ql00 1 , a
0"0?b~ (/'~N'(701 ile1b12 e7~36l!l ~0I3413 A Vl SN A~Cl

~nl 0~)'\ 212 -,v, 3 30~j 170 LIl13 r01 1 c_
01027~ ~6~.H lj 131574 0~H1~e0 000N~V 1PHi; ••• 1

~14 \(.Ib 174 203 ~00 ~Qlr" e0'" e~r f 13
00030~ "';·1 ~,s 1 ~00~~1 0'"(1l1"5 050114 ~l A 7 L361

·:~51 ;~0.2 ~:01 It'~~ ~45 i~1r'J0 11" 12~ 1) X LPI
00,,3 h' "H;l:\"~V. 0I000~1 0t.,~ 100 00~30U A A)(061

'H;;le ~~ I!I ". ~HH ~00 IN'" e·~~ 3'~" 00r. I • 0
12100321(l c,· .. ·v:'524 ~000100 ~"'0~0~' 000;'0P HT ,

124 ~w 1 lll~0 "',"Ie 0~~ vJee 0~~ 00e IT
el0j3~ ~~ ""~~.; ~ t; ~e~00~ P~~:HO!!I2I" 06301" P ~Ol " . ., {~ I'h~ ~~~ 0'-1~ ~~~ ~00 12114 11.l6 1 fl
00031.l'" t3t5711 ~U7123 1A52121O ~52123 , ... LUI(,."sw "'Stl

1?1I ?(,J 123 116 12c~ 12" 123 121.1 1 13 SN PT STI
00"35~ "HWvP~ 01b746 177734 ~"12746 01~ 1T CTFI

~Id; e'k'I~! 3"" "'35 33(1 371 346 ('.25 1 \ f
000l6~ v:';~ H: '37 104377 1e.34~c ~:'0504b Mr<i Ubt UYF AX81

"'37 ~~ ~;:> 377 21~ '-"S& 2~7 046 e12 1 &

Figure 7-1 (Cont.) Sample Post-Mortem Dump (Truncated)

7-5

MEMORY DUMPS

Symbol Offset Description

SB.CTL 0 Control Flags

SB.DEV 2 Device Mnemonic

SB.UNT 4 Unit Number

SB.EFN 6 Event Flag

SB.ID 10 Snap Identification

SB.LMI (Ll) 12 Memory Block 1
Limits

(HI) 14

(L2) 16 Memory Block 2
Limits

(H2) 20

(L3) 22 Memory Block 3
Limits

(H3) 24

(L4) 26 Memory Block 4
Limits

(H4) 30

SB.PMD 32 "PMD ••• II in,RADSO

34

Figure 7-2 Format of Snapshot Dump Control Block

7.2.1 Format of the SNPBK$ 'Macro

The format of the SNPBK$ macro call is:

SNPBK$

where:

dev

dev,unit,ctl,efn,id,Ll,Hl,L2,H2,L3,H3,L4,H4

is the 2-character ASCII name of the device the dump
is directed to. If it is a directory device, the UFD
[1,4] must be on the volume. The dump is written to
the disk and then spooled to the line printer. If
there is no print spooler, the file is left on the
disk. If the device is not a directory device, the
dump goes directly to the device.

unit is the unit number of the device the dump is directed
to.

ctl is the set of flags that control
dump and the data to be printed.

the format of
The flags are:

the

SC.HDR Print the dump header (items 1-10 in Figure
9-1).

7-6

efn

id

Ll,L2
L3,L4

Hl,H2,
H3,H4

SC.LUN

SC.OVL

SC.STK
SC.WRD

SC.BYT

MEMORY DUMPS

Print information on all assigned LUNs
(item 11).
Print information about all loaded overlay
segments (item 12).
Print the user stack (item 13).
Print the requested memory in octal words
and RAD50 (item 14).
Print the requested memory in octal bytes
and ASCII (item 14).

is the event flag to be used to synchronize the user
program and the task PMD •••

is a number that identifies the Snapshot Dump.
Because dumps can be requested at different times and
under different conditions, this 10 is used to
identify the place or reason for the dump.

are the starting addresses of the memory blocks to be
dumped.

are the ending addresses of the memory blocks to be
dumped.

NOTE

If no memory is to be dumped, each limit
(Ll,L2,L3,L4,Hl,H2,H3,H4) should be
zero.

Only one snap block is allowed. It generates the global label •• SPBK.

NOTE

Because SNPBK$ is used to allocate
storage for the snap block, all
arguments except dev must be valid
arguments for .WORD or .BYTE directives.

7.2.2 Format of the SNAPS Macro

The format of the SNAPS macro is:

SNAPS ctl,efn,id,Ll,Hl,L2,H2,L3,H3,L4,H4

where:

ctl is the set of flags that control
dump and the data to be printed.

SC.HDR Print the dump header.

the format of
The flags are:

the

SC.LUN Print information on all assigned LUNs.
SC.STK Print the user stack.
SC.OVL Print information about all loaded overlay

segments.
SC.WRD Print the requested memory in octal words

and RAD50.
SC.BYT Print the requested memory in octal bytes

and ASCII.

7-7

efn

id

MEMORY DUMPS

is the event flag to be used to synchronize the
program and the task PHD ••••
Wait-For-Single-Event-Flag directive is
generated to perform synchronization.

user
A

always

is a number that identifies the snapshot dump.
Because . dumps caR be requested at different times and
under different conditions, this 10 is used to
identify the place or reason for the dump.

Ll,L2,
L3,L4

are the starting
dumped.

addresses of memory blocks to be

Hl,H2,
H3,H4

are the ending
dumped.

addresses of memory blQcks to be

NOTE

1. If no memory is to be dumped, each limit
(Ll,L2,L3,L4,Hl,H2,H3,H4) should be zero.

2. The control flags can be set in any
combination. They are not mutually
exclusive. Thus, any number of options can
be obtained; e.g., SC.HOR!SC.LUN!SC.WRD
prints the header, LUNs, and the requested
memory in word octal and RA050 mode.

3. Arguments should be specified only to
override the information already in the snap
control block.

4. Because SNAPS generates instructions to move
data into the snap block, its arguments must
be valid source operands for HOV
instructions.

7.2.3 Example of a Snapshot Dump

The sample program shown in Figure 7-3 causes two Snapshot dumps to be
printed directly on LPO:. The first dump uses the parameters defined
in the Snap Control Block. The header is generated, and the data in
relative locations BLK to BLK+220 is displayed, in word octal and
RAD50. The identification on the dump is 1.

The second dump causes the data in the locations BLK to BLK+220 to be
displayed in byte octal and ASCII. A header is also generated. The
dump identification is 64 (100 octal). Figures 7-4 and 7-5 show the
dumps generated by the sample program.

7-8

I'%j
~
C
1"1
(I)

...:J
I

W

(J)
01

= "0
~
(I)

to
1"1
0
~
1"1
01

=
...:J rT
I ::s-

\0 01
rT

()
01
~
~
til

t-n
0
1"'1

00
::s
01
"0
til
::s-
O
rT

t::I
C

= "0 en

S~PTST • TEST SNAP DUMP AND PMD MACRO M1010 03-Jun-78 15157 PAGE 1

1 ,TITLE SNPTST - TEST S~AP DUMp AND PMD
2 ,IDENT 1011
3 ,MC_LL S~P8K',SNAPS,CALL
a ClHHHH'? f!l.ICI SNPI3I<S LP,0,SC.MDRISC,OVLISC.WRD,1,I,BLK,BLK+ZZI
Ii ~'(H'03b 123 11& 120 BUF. .ASCIZ ISNPTSTI

VI~'~V!a 1 124 123 124
l,'~~r a 1.1 v.J0~

b ,EVEN
1 (.h'~V.ll.lb START. SNAP'
A C1t'f421 b "1270~ 000030- MOV lfIIeUF,R0
q ~'h1~22tt CALL SCATS

1~ (1d~22b SNAPS IfIISC,MORISC.OVL1SC,BYT"'lA0
11 ~(A~tJI2 A00004 lOT
12 0IrHHHU.- .END START

aNPTST • T!ST SNAP DUMP AND PMD MACRO M101e 03-Jun-78 15157 PAGE I-I
SYMBOL TABLE

BLK 0(t10000R 18.EI'N. 111116
8U,. ~~0~3bR S8.ID • 110010
IE.AtT. ~~~.** GX SB.I.Ml. 000012
SB.CTL. 0000e!0 88.PMO. 000032
SB.DEv. PI"'0002 S8.,UNT. 000004

A8S. 0~A00rt' 000
0~0414 001

ERRORS DETECTEDI 0

VIRTUAL MEMORY USEO, 1335 WORDS (b PAGES)
DYNAMIC MEMORY AVAILABLE 'OR 31 PAGES
ASSEMSLY TIME (ELAPSED). 00100114
SNPTST,SNPTST.SNPTST

SC.BYT- 00PA40 aC.STK. IPJIItf/J
SC.HDR. fl00001 aC.wRD. 1000Z0
le.LUN. 00PJ0~2 START 01104bR
SC.OVL_ 000004 SCATS • ****** GX

101'" • .***_* laJ(
IIITZ ••••• 27
"SPSK •••••• RG
•• ,SNP ••••• 32

:K
til

~
~
t:I
C

~
00

MEMORY DUMPS
SNAPSHOT DU~P ID! 1

TASkl Tfb TIME! 05-Jun-78~5!06

PCI 0~~Sl2

REGSI R0 - 0~00~0 Rl - 10A104

~4 • 000000 ~5 - ~00000

R2 • ~00e00 R3. 10~t3~

SP • 000300 PS. 110000

TASI< STATUSI ~SG -CHK STP WFR REM MCR

PRIORITY: DEFAULT • 50, RUNNING. 50, 1/0 COUNT! 0. TI DEVICE • TT61

LOAD OFvICf • DB~I

FLOATING POlhT UNI~

STATUS • t210~~PI~

R0 • ~lr.V"'0 0000~0 0"'PI~2'0 000000
Rt - ~t!~@0r. 000000 00(21"00 000.000
Rc • ~h1~i~'00 0~0000 0"~00~ 000000
Rl - ~hH'e.00 000000 000~00 000000
R4 -V:iJep0~ 000000 000"'00 000('100
~S - Ii' V!V r., V'p 0"'0000 000000 00P'A00

OVERl.V SEG~ENTS LOADED AND RESIDENT LIBRARIES ~APPfO

STARTING RELATIVE BLOCK. 0000~2 .BASEI ~00000 LENGTH! 001454

T·AIK IMAGE

PARTtTIO~a GEN VIRTUAL LIMITSI 000300 • 000524

801300 ~~1~51 000001 000025 050114 M3 A U L361
111310 0"'P,~C;H:" 0210001 000001 000304 A • 06'
111320 000524 000000 000000) 00Ql000 MT I
al1330 P~000~ 000000 000000 063014 PI'401
lee340 13157q 041123 052120 052123 I, , , LIJK MIl("'SSI
IIe350 ~fIj~0"'~ 01b146 171734 012746 I Dl~ 7T CTFI
•• e360 0&;}JK:137 104377 1"'3456 005046 I MW Uf)1 UVF .X81
al1310 e12'''& Q!e~100 012746 010336 ICTF 06 CTF EVI
110400 ~t76"6 000000 062766 000002 IEBV PLV sa
ale410 0k.1~~02 01·766b 000002 -000002 I 8 EB8 B 81
81042121 (,,127"& 002507 104377 103435 ICTF 31 U61 UX/I
110430 ~~5046 00~046 005046 005046 IA)(8 .X! Axe Axel
110440 01274~ 000336 017f)46 000000 ICTF EV Eev I
110450 0617b6 00Q10Q12 000002 "11666 IPLV 8 B E881
110460 ~HH!10~'2 1t)0rt'002 012746 0034613 I 8 8 eTF AEt,
.rUJ A7;;) tVJ4]71 103~Hi6 022737 171771 IU61 UQ0 F80 811
IUJe5(11~ I!H.i~v.:cab 11101402 000261 @00405 , e SJ OQ FUI
III51~ Ot167ob 117516 012746 001051 lOIN 5F CTF "'31
(10052", '1P10]77 e12700 00"342 004707 IUbl CSH EZ AWll

Figure i-4 Sample Snapshot Dump (Words Octal and RAD50)

7-10

MEMORY DUMPS

SNAPSHOT DUMP 10. 64

TAS~. TT6 TIME'G5-Jun-78 ~5'0.

PC. 01ti~71b

REGSI R~ • 00~345 R1. 074400 R2. 000120 R3 • 140130

R~ • 0~~e00 A5. 0~~000 SP. 000304 PS· 119~~0

TASK STATUS: ~SG .C~~ STP WFR REM MCR

CURRENT UIe. (007,001] DSW I 1.

PRIORITY. DfF6ULT • 50. RUNNING· S0. 1/0 COU~T I 0. Tl DEVICE .TT ••

LOAD D~~ICE - OB~I

FLOATING POl~T UNIT

STATUS - 000~00

RPI • \~'.'~t!'0~ ~e0000 0~0000 0~0000
Ql • ~1t.'V.It!A0 00~~0~ 0"0000 0002'00
R2 • e~Ci!"'0e e00000 00~~"0 000000
RJ -0~e~~0 ""1t'000 0~(IJe0Y' 000000
R4 • It'!ltH~l00 00~000 00000i' 000000
R~ - "'Vir.f"0~ 000000 00000~ 000000

OVERLAY SEG~ENTS LOADED AND RESIDENT LIBRARIES MAPPED

STARTING RELATIVE BLOCKI 0000~2 8ASE. 000~00 LENGTH. 001454
STARTING RFLATJVE BLOCK. 0000~4 BASEl 001454 LENGTH. 0~e2b4

TASK IMAGE

PARTITION, GEN VIRTUAL LIMITS. 000304 • 000524

18"300 051 r02 folI01 000 045 000 114 120 I) I LPI
'81310 P00 P00 001 000 100 000 304 000 I • o I
111320 ,. 2" e01 e2l0 0e0 0~0 000 00" 000 IT I
111330 00'" ""'0 00.0 000 000 000 014 146 I fl
11134(J1 174 263 123 116 120 124 123 124 113 SN PT STI
111350 " " ~00 346 ~35 334 377]4b "i5 I f , f I
11136'" 037 "P2 377 210 056 207 046 012 I • & I
111370 34b 025 304 1lI00 346 025 336 000 If 0 f . ,
100400 246 V,37 0o" ~00 366 145 002 0021 1& ve I
111410 002 "v.e 266 037 002 000 002 000 I 6 ,
111420 346 '-'215 107 005 377 210 035. 207 lof G ,
'11430 fH'6 ~112 046 012 046 012 046 012 1& & .. , I
111440 346 PiS 33b 000 24b 037 000 000 If • & I
.le4$0 3b6 lu5 002 000 002 000 266 037 1\1. 6 I
IS04bv' 0~2 0e.e 002 ~00 346 025 013 907 , f ,
lee470 317 210 006 20b 337 045 371 377 I ... 1 y ,
el1l50ra "!46 000 002 003 2bl 00'" 005 0(1)1 1& 1 'J
11151'" 34b "35 17b 377]46 025 2151 002 If - f J
leeS2e 317 210 30~ 025 342 00.10 367 011 I • b w ,

Figure 7-5 Sample Snapshot Dump (Bytes Octal and ASCII)

7-11

APPENDIX A

ERROR MESSAGES

The Linker produces diagnostic and fatal error messages.
messages are printed in the following forms:

Error

TKB -- *DIAG*-error-message

or

TKB -- *FATAL*-error-message

Some errors are correctable when command input is from a terminal. In
such a case, a diagnostic error message can be printed, the error
corrected, and the task building sequence continued. If the same
error is detected in an indirect file by the Linker, a correction
cannot be made and the link operation is aborted.

Some diagnostic error messages merely advise the user of an unusual
condition. If the user considers the condition normal to his task, he
can install and run the task image.

This appendix tabulates the error messages
Most of the messages are self-explanatory.
which the error occurred is printed.

produced by the LINKER.
In some cases, the line in

A Software Performance Report (SPR) should be submitted to DIGITAL in
cases where the explanation accompanying a message refers to a system
error.

ALLOCATION FAILURE ON FILE file-name

The Linker could not acquire sufficient disk space to store the
task image file, or did not have write-access to the UFD or
volume that was to contain the file.

BLANK P-SECTION NAME IS ILLEGAL
overlay-description-line

The overlay-description-line printed contains a .PSECT directive
that does not have a p-section name.

COMMAND I/O ERROR

I/O error on command input device.
possible hardware error.)

A-l

(Device may not be online, or

ERROR MESSAGES

COMMAND SYNTAX ERROR
command-line

The command-line printed has incorrect syntax.

COMPLEX RELOCATION ERROR - DIVIDE BY ZERO: MODULE
module-name

A divisor having the value zero was detected in a complex
expression. The result of the divide was set to zero. (Probable
cause - division by a global symbol whose value is undefined.)

FILE file-name ATTEMPTED TO STORE DATA IN VIRTUAL SECTION

The file contains a module that has attempted to initialize a
virtual section with data.

FILE file-name HAS ILLEGAL FORMAT

The file file-name contains an object module whose format is not
valid.

ILLEGAL APR RESERVATION

An APR specified in a COMMON, LIBR, RESCOM, or RESLIB keyword ~s
outside the range 0-7.

ILLEGAL DEFAULT PRIORITY SPECIFIED
option-line

The option-line printed contains a priority greater than 250.

ILLEGAL ERROR-SEVERITY CODE octal-list

System error (no recovery). An SPR should be submitted with a
copy of the message containing the octal-list as printed.

ILLEGAL FILENAME
invalid-line

The invalid-line printed contains a wild card (*) in a file
specification. The use of wild cards is prohibited.

ILLEGAL GET COMMAND LINE ERROR CODE

System error (no recovery).

ILLEGAL LOGICAL UNIT NUMBER
invalid-line

The invalid-line printed contains a device assignment to a unit
number larger than the number of logical units specified by the
UNITS keyword, or assumed by default if the UNITS keyword is not
used.

ILLEGAL MULTIPLE PARAMETER SETS
invalid-line

The invalid-line printed contains mUltiple sets of parameters for
a keyword that allows only a single parameter set.

A-2

ERROR MESSAGES

ILLEGKL NUMBER OF LOGICAL UNITS
invalid-line

The in~lid-line printed contains a logical unit number greater
than 250.

ILLEGAL ODT OR TASK VECTOR SIZE

ODT or SST vector size specified greater than 32 words.

ILLEGAL OVERLAY DESCRIPTION OPERATOR
invalid-line

The invalid-line printed contains an unrecognizable operator in
an overlay description. This error occurs if the first character
in a p-section or segment name is a dot (.).

ILLEGAL OVERLAY DIRECTIVE
invalid-fine

The invalid-line printed contains an unrecognizable overlay
directive.

ILLEGAL PARTITION/COMMON BLOCK SPECIFIED
invalid-~ine

User-defined base or length not on 32-word boundary.

ILLEGAL P-SECTION/SEGMENT ATTRIBUTE
invalid-line

The invalid-line i'rinted contains a p-section
attribute that is not recognized.

ILLEGAL REFERENCE TO LIBR\RY P-SECTION p-sect-name

or segment

A task has attempted to reference a p-sect-name existing in a
resident library (shared region), but has not named the library
in a keyword.

ILLEGAL SWITCH
file-specification

The file-specification printed contains an illegal switch or
switch value.

INCOMPATIBLE REFERENCE TO LIBRARY P-SECTION p-sect-name

A task has attempted to reference more storage in a shared region
than exists in the shared region definition.

INCORRECT LIBRARY MODULE SPECIFICATION
invalid-line

The invalid-line contains a module name with a non-Radix-50
character.

INDIRECT COMMAND SYNTAX ERROR
invalid-line

The invalid-line printed contains a syntactically incorrect
indirect file specification.

A-3

ERROR MESSAGES

INDIRECT FILE OPEN FAILURE
invalid-line

The invalid-line contains a reference to a command input file
which could not be located.

INSUFFICIENT PARAMETERS
invalid-line

The invalid-line contains a keyword with an insufficient number
of parameters to complete its meaning.

INVALID APR RESERVATION
invalid-line

APR specified on a keyword for an absolute library.

INVALID KEYWORD IDENTIFIER
invalid-line

The invalid-line printed contains an unrecognizable keyword.

INVALID PARTITION/COMMON BLOCK SPECIFIED
invalid-line

Partition is invalid for one of the following reasons:

1. The Linker cannot find the partition name in the host system
in order to get the base and length.

2. The system is mapped, but the base address of the partition
is not on a 4K boundary for a non-runnable task or is not 0
for a runnable task.

3. The memory bounds for the partition overlap a shared region.

4. The partition name is identical to the name of a previously
defined COMMON or LIBR shared region.

5. The top address of the partition for a runnable task exceeds
32K minus 32 words for a mapped system, or exceeds 28K minus
1 for an unmapped system.

6. A system-controlled partition was specified for an unmapped
system.

INVALID REFERENCE TO MAPPED ARRAY BY MODULE module-name

The module has attempted to initialize the mapped array with
data. An SPR should be submitted if this problem is caused by
DIGITAL-supplied software.

INVALID WINDOW BLOCK SPECIFICATION
invalid-line

The number of extra address windows specified exceeds 7.

I/O ERROR LIBRARY IMAGE FILE

An I/O error has occurred during an attempt to open or read the
Task Image File of a shared region.

I/O ERROR ON INPUT FILE file-name

A-4

ERROR MESSAGES

I/O ERROR ON OUTPUT FILE file-name

LABEL OR NAME IS MULTIPLY DEFINED
invalid-line

The invalid-line printed defines a name that has already appeared
as a .FCTR, .NAME, or .PSECT directive.

LIBRARY FILE filename HAS INCORRECT FORMAT

A module has been requested from a library file that has an empty
module name table.

LIBRARY REFERENCES OVERLAID LIBRARY
invalid-line

An attempt was made to link the resident library being built to a
shared region that has memory-resident overlays.

LOAD ADDR OUT OF RANGE IN MODULE module-name

An attempt has been made to store data in the task image outside
the address limits of the segment. This problem is usually
caused by one of the following:

1. an attempt to initialize a p-section contained in a shared
region

2. an attempt to initialize an absolute location outside the
limits of the segment or in the task header

3. a patch outside the limits of the segment it applies to

4. an attempt to initialize a segment having the NODSK attribute

LOOKUP FAILURE ON FILE filename
invalid-line

The invalid-line printed contains a filename that cannot be
located in the directory.

LOOKUP FAILURE ON SYSTEM LIBRARY FILE

The Linker cannot find the system Library (SYO: [l,l]SYSLIB.OLB)
file to resolve undefined symbols.

LOOKUP FAILURE RESIDENT LIBRARY FILE
invalid-line

No symbol table or task image file can be found for the shared
region.

MAXIMUM INDIRECT FILE DEPTH EXCEEDED
invalid-line

The invalid-line printed gives the file reference that exceeded
the permissible indirect file depth (2).

MODULE module-name AMBIGUOUSLY DEFINES P-SECTION p-sect-name

The p-section p-sect-name has been defined in two modules not on
a common path, and has been referenced from a segment common to
both paths.

A-5

ERROR MESSAGES

MODULE module-name AMBIGUOUSLY DEFINES SYMBOL sym-name

Module module-name references or defines a symbol sym-name whose
definition exists on two different paths, but is referenced from
a segment that is common to both paths.

MODULE module-name ILLEGALLY DEFINES XFR ADDRESS p-sect-name addr

1. The start address printed is odd.

2. The module module-name is in an overlay segment and has a
start address. The start address must be in the root segment
of the main tree.

3. The address is in a p-section that has not yet been defined.
An SPR should be submitted if this is caused by
DIGITAL-supplied software.

MODULE module-name MULTIPLY DEFINES P-SECTION p-sect-name

1. The p-section p-sect-name has been defined more than once in
the same segment with different attributes.

2. A global p-section has been defined more than once with
different attributes in more than one segment along a common
path.

MODULE module-name MULTIPLY DEFINES SYMBOL sym-name

Two definitions for the relocatable symbol sym-name have occurred
on a common path. Or two definitions for an absolute symbol with
the same name but different values have occurred.

MODULE module-name MULTIPLY DEFINES XFR ADDR IN SEG
segment-name

This error occurs when more than one module making up the root
has a start address.

MODULE module-name NOT IN LIBRARY

The Linker could not find the module named on the ILIB switch in
the library.

NO DYNAMIC STORAGE AVAILABLE

The Linker needs
obtain it. (If
partition.)

additional
possible,

symbol
install

table
the

NO MEMORY AVAILABLE FOR LIBRARY library-name

storage and
Linker in a

cannot
larger

The Linker could not find enough free virtual memory to map the
specified shared region.

NO ROOT SEGMENT SPECIFIED

The overlay description did not contain a .ROOT directive.

NO VIRTUAL MEMORY STORAGE AVAILABLE

Maximum permissible size of the work file exceeded. The user
should consult Appendix D for suggestions on reducing the size of
the work file.

A-6

ERROR MESSAGES

OPEN FAILURE ON FILE file-name

OPTION SYNTAX ERROR
invalid-line

The invalid-line printed contains unrecognizable syntax.

OVERLAY DIRECTIVE HAS NO OPERANDS
invalid-line

All overlay directives except .END require operands.

OVERLAY DIRECTIVE SYNTAX ERROR
invalid-line

The invalid-line printed contains a syntax error.

PARTITION partition-name HAS ILLEGAL MEMORY LIMITS

1. The partition-name defined in the
address alignment that is not
system.

host system has a base
compatible with the target

2. The user has attempted to build a privileged task in a
partition whose length exceeds the task's available address
space (8K or 12K).

PASS CONTROL OVERFLOW AT SEGMENT segment-name

System error. An SPR should be submitted with a copy of the ODL
file associated with the error.

PIC LIBRARIES MAY NOT REFERENCE OTHER LIBRARIES
invalid-line

The user has attempted to build a position-independent shared
region that references another shared region.

P-SECTION p-sect-name HAS OVERFLOWED

A section greater than 32K has been created.

REQUIRED INPUT FILE MISSING

At least one input file is required for a task-build.

ROOT SEGMENT IS MULTIPLY DEFINED
invalid-line

The invalid-line printed contains the second .ROOT directive
encountered. Only one .ROOT directive is allowed.

SEGMENT seg-name HAS ADDR OVERFLOW: ALLOCATION DELETED

Within a segment, the program has attempted to allocate more than
32K. A map file is produced, but no task image file is produced.

TASK HAS ILLEGAL MEMORY LIMITS

An attempt has been made to build a task whose size exceeds the
partition boundary. If a task image file was produced, it should
be deleted.

A-7

ERROR MESSAGES

TASK HAS ILLEGAL PHYSICAL MEMORY LIMITS
mapped-array task-image task extension

The sum of the parameters displayed -- mapped array size, task
image size, and task extension -- exceeds 2.2 million bytes. The
quantities are shown as octal numbers in units of 64-byte blocks.
Any resulting task image file should be deleted.

TASK IMAGE FILE filename IS NON-CONTIGUOUS

Insufficient contiguous disk space was available to contain the
task image. A non-contiguous file was created. After deleting
unnecessary files, the /CONTIGUOUS switch in PIP should be used
to create a contiguous copy.

TASK REQUIRES MORE THAN 8 WINDOW BLOCKS

The number of address windows required by the task and any shared
regions exceeds 8.

TASK-BUILD ABORTED VIA REQUEST
option-line

The option-line contains a request from the user to abort the
task-build.

TOO MANY NESTED .ROOT/.FCTR DIRECTIVES
invalid-line

The invalid-line printed contains a .FCTR directive that exceeds
the maximum nesting level (16).

TOO MANY PARAMETERS
invalid-line

The invalid-line printed contains a keyword with more parameters
than required.

TOO MANY PARENTHESES LEVELS
invalid-line

The invalid-line printed contains a parenthesis that exceeds the
maximum nesting level (16).

TRUNCATION ERROR IN MODULE module-name

An attempt has been made to load a global value greater than +127
or less than -128 into a byte. The low-order eight bits are
loaded.

UNABLE TO OPEN WORK FILE

The work file device is not mounted.
on the same device as the Linker.}

UNBALANCED PARENTHESES
invalid-line

(The work file is located

The invalid-line printed contains unbalanced parentheses.

n UNDEFINED SYMBOLS SEGMENT seg-name

The segment named contains n undefined symbols. If no memory
allocation is requested, the symbols are printed on the terminal.

A-8

ERROR MESSAGES

VIRTUAL SECTION HAS ILLEGAL ADDRESS LIMITS
option-line

The option-line printed contains a VSECT keyword whose base
address plus window size exceeds 177777.

WORK FILE I/O ERROR

I/O error during an attempt to reference data stored by the
Linker in its work file.

A-9

APPENDIX B

MEMORY ALLOCATION

The Linker is responsible for allocating the physical memory and
virtual address space required by a task. This allocation can consist
of two parts -- a region containing the task itself, and memory not
physically a part of the task image, containing subroutines or data
that are shared by several tasks.

B.l TASK MEMORY STRUCTURE

Task memory (see Figure B-1) is divided into two physically contiguous
areas containing:

1. The task image, and

2. Additional memory allocated while the task is running, by
means of the Extend Task system directive; or before the
task is running, by means of the Linker EXTTSK option.

task
extension

area

task
image

mapped
array
area

increasing
memory
addresses

Figure B-1 Task Memory Structure

TRAX supports only mapped systems with memory management hardware.

In a mapped system, the task is usually bound to virtual zero and
relocated by the mapping hardware, and therefore, the task can be
installed in any partition large enough to contain it.

In a mapped system, the task can access only memory specifically owned
by the task.

In a mapped system, the largest task size is normally 32K words minus
32 words.

B-1

MEMORY ALLOCATION

B.2 TASK IMAGE MEMORY

The area of memory allocated for task image storage contains a header,
a stack, and a set of named areas called program sections
(p-sections) •

The header contains task parameters and data required by the Executive
and provides a storage area for saving the task's context.

The stack is an area that can be used for temporary storage and
subroutine linkage, and is referenced by general register 6, the stack
pointer (SP).

A p-section is an area of task memory, containing code or data, that
can be referenced by name. Associated with each p-section is a set of
attributes that control the allocation and placement of the section
within the task image.

B.2.l P-sections

A p-section, the basic unit of memory for a task, is composed of the
following elements:

• a name by which it is referenced

• a set of attributes that define its contents, mode of access,
allocation, and placement in memory

• a length that determines how much storage will be reserved for
the p-section

P-sections can be created or referenced in either of the following
ways:

• The language processors automatically include p-sections in
the object module to reserve storage for code or data.

• The user can explicitly create p-sections by using facilities
present in the language processors or Linker.

P-sections are created through the Linkage Section and segmentation
facilities in COBOL or the COMMON statement in BASIC-PLUS-2, or the
.PSECT directive in MACRO. The .PSECT directive allows the MACRO
programmer to attach attributes to the section. A p-section of the
specified name is conveyed to the Linker via the object module,
whether it was created through COMMON or .PSECT.

The Linker's overlay processor allows p-sections to be
inserted at specific points in the overlay structure.
is described in Chapter 5.

created and
This facility

As noted above, each reference to a p-section is accompanied by a
length and set of attributes that define how memory is to be allocated
to the p-section. The Linker collects scattered references to the
p-section in a single area of task memory. The attributes, listed in
Table B-1, control the way the Linker collects and places this
storage.

B-2

ATTRIBUTE

access-code

type-code *

scope-code

alloc-code

reloc-code

VALUE

RW

RO

D

I

GBL

MEMORY ALLOCATION

Table B-1
P-section Attributes

MEANING

Read/Write - Data can be read from,
written into, the p-section.

and

Read Only - Data can be read from, but cannot
be written into, the p-section.

Data - The p-section contains data.

Instruction - The p-section contains either
instructions, or data and instructions.

Global - The p-section name is recognized
across overlay segment boundaries. The
Linker allocates storage for the p-section
from references outside the defining overlay
segment.

LCL Local - The p-section name is recognized only
within the defining overlay segment. The
Linker allocates storage for the p-section
from references within the defining overlay
segment only.

CON Concatenate - All references to
p-section name are concatenated.
allocation is the sum of the
allocations.

a given
The total

individual

OVR Overlay - All references to a given p-section
name overlay each other. The total
allocation is the length of the longest
individual allocation.

REL Relocatable - The base address of the
p-section is relocated relative to the
virtual base address of the task.

ABS Absolute - The base address of the p-section
is not relocated. It is always zero.

memory-code ** HIGH High - The p-section is to be loaded into
high-speed memory.

LOW Low - The p-section is to be loaded into
low-speed memory.

The scope-code and type-code are meaningful only when an overlay
structure is defined for the task. The scope-code is described 1n
Chapter 6, in the context of p-section resolution. The memory-code is
not used by the Linker.

* These codes should not be confused with the I and D space hardware
on PDP-II systems.

** Not used by the Linker.

B-3

MEMORY ALLOCATION

The access-code and alloc-code are used by the Linker to determine the
placement and the size of the p-section in task memory.

The Linker divides storage into read/write and read-only memory, and
places the p-sections in the appropriate area according to
access-code. Memory allocated to read-only p-sections is not hardware
protected.

The alloc-code is used to determine the starting address and length of
memory allocated by modules that reference a common p-section. If the
alloc-code indicates that such a p-section is to be overlaid, the
Linker places the allocation from each module at the same location in
task memory, and determines the total size from the length Qf the
longest reference to the p-section. If the alloc-code indicates that
a p-section is to be concatenated, the Linker places the allocation
from the modules one after the other in task memory, and determines
the total allocation from the sum of the lengths of each reference.

The allocation of memory for a p-section always begins on a word
boundary. If the p-section has the D (data) and CON (concatenate)
attributes, all storage contributed by subsequent modules is appended
to the last byte of the previous allocation. This occurs regardless
of whether that byte is on a word or nonword boundary. For a
p-section with the I (instruction) and CON attributes, however, all
storage contributed by subsequent modules begins at the nearest
following word boundary.

B.3 TASK IMAGE FILE

The Task Image file contains a copy of the task that can be read into
memory and initiated with little system overhead. All binding, memory
allocation, and address resolution are performed by the Linker;
therefore, the only function performed by the system is the loading of
the task image and the transfer of control to it.

In addition to the core image, the task image file contains a label
block group and possibly a checkpoint area. The label block group
contains data that is used by the Install processor to create an entry
for the task in the system task directory.

The checkpoint area is allocated only if the user specifies that the
task is checkpointable, and requests checkpoint space by using the
/CHECKPOINT:filespec. The /CHECKPOINT:filespec switch indicates that
the task is checkpointable, and causes the Linker to allocate
checkpoint space within the task image file. /CHECKPOINT can be used
instead, if the system incorporates dynamic allocation of checkpoint
space. This makes the task checkpointable without the allocation of
extra disk space in the task image file.

When the task is checkpointable and the /CHECKPOINT:filespec switch is
used, the Linker must reserve space in the task image file large
enough to save all of the memory owned by the task.

When the task is to reside in a system-controlled partition, the size
of the required area is determined by the sum of:

• Amount of memory allocated for mapped array storage

• Size of the task image

• Size of the task extension

B-4

MEMORY ALLOCATION

B.4 MEMORY ALLOCATION FILE

The memory allocation (.MAP) file lists information about the
allocation of task memory and the resolution of global symbols. A
global cross-reference list can be appended to the file by means of
the /CROSS_REFERENCE. switch.

B.4.l Contents of the Memory Allocation File

The memory allocation file consists of the following items:

• Page Header

• Task Attributes

• Overlay Description (if applicable)

• Segment Description

• Memory Allocation Synopsis

• Global Symbols

• File Contents

• Summary of Undefined Global Symbols

• Linker Statistics

A sample of the memory allocation file produced by the command is
shown in Figure B-2, where each item is identified. The overlay
description does not apply to this task, and is therefore not shown.

If the /CROSS REFERENCE switch is used to request a
cross-reference~ then the following items are also included:

o Cross-Reference Page Header

o Global Cross-Reference

o Segment Cross-Reference

global

Figure B-3 illustrates a global cross-reference obtained by appending
the /CROSS REFERENCE switch to the memory allocation file
specification of the previous example.

The paragraphs following Figure B-3 discuss the map items in greater
detail.

B-5

MEMORY ALLOCATION

IMG1,TSK,1 MEMORY ALLOCATION MAP TKB ~~6
01 .Jun-78 1115fJ

]
Page

PAGE t - Header

PARTITION NAME • GEN
IDENTIFICATION • II
TASK UIC • [Jll,3831
STACK LIMITS. 11111~ 111171 BB1BAR
TOTAL ADDRESS MINDOWS. 1.
TASK IMAGE SIZE a 51., WORDS
TASK ADDRESS LIMITS. 118111 102151

*** ROOT SEGMENT a IN!

]

Task
0"512, - attributes

section

RIM MEM LIMITS. 801110 102153 002154
DISK BLK LIMITS. 000002 110004 001013]

Segment
01132. - description
00003,

MEMORY ALLOCATION SyNOPSIS.

SECTION TITLE IOtNT FILf
I 8LK,.(R",I,LCL,REL,CON) 0141112 00011100 0APl0PJ.
A .(RW,I,LCL,REL,OVA) 001172 tlt0A300 001fJ2,

0011.,2 000300 1110192. INt '0 I~t.OBJ'l
001112 000250 00168, I~2 '''' I N2.08J,1

B .(R~,I.LCL,REL,CON) A14147~ 00A220 00144.
001472 000tA0 00064. INt '!JIll II'41.0~J'l
'01512 '00U0 0OJP8P. 1"'2 0~ P 12. ORJ. 1

C .(RO,I,LCL,REL,CON) 001732 ~0"'~~0 C1!~1"4.
001732 000150 (l!11'104. INI 0~ r"'l.ORJ,l
011!~102 '''''011150 0~040. 1~3 90 I~l.08J'1

ISS .(AW,I,LCL,REL,CON) 001712 0000~0 00P!16.
8.1112 00002A 00016. XXX ~~ $'(SLI~.OLRJl

-
GLOBAL SYMBOLS.

] Global
A 1"111.-A 82 001112-R XJ(X 2A1712-R - symbols
11 leU1Z-R L! A0t112-A

Memory
- allocation

synopsis

Figure 8-2 Memory Allocation File for IMGl.TSK on an Unmapped System

8-6

MEMORY ALLOCATION

FILE, I Nt,OBJ,1 TITLEt tNt IOE~T. PP.
c. A8S.>, 00~000 000~0~ 0~0~00 0e~0~.

»»»»»» UNDEFINED AEFEAE~CEI Cl

c8 >1 IIJU472 1111/11571 0011JUili ~00&4.
81 1IJ01472-R 82 00147Z-A

CA >, 001172 001471 0011J11IJ1IJ fd0192.
cC >1 0e 173Z 10211/) 1 0011J 150 00 H"'.

FILEI INZ,OBJil TITLEI IN2 IDENTt 00
CA >1 001172 101441 ~00250 0"1&8.

A 10117&-R
c8 >1 0'1572 001711 00012121 "'0080.

81 0U" 7 2-R

IMG1.TSKrl
INI

ME~OAY ALLOCATION MAP TKB ~26

0] - Jun-7f: 11lSQ

FILE, I N1,08J,1 TITLEt IN] IDENT. ~p
cC >, 002102 112151 000050 0~~~~.

FILE, LBR1,OLB,l TITLE, Ll IOENTI 0@
C, BLK.>, 00111Z 001172 1IJ~0~11I0 ~00~~.

Lt 00111Z-R

FILE. SVSlIB,OLB,l TITLE, x.x IOE~Tt 0~
cSSS >. 001112 01/11731 000020 00~t6.

XXX 011Jt7U-R

************]
UNDEFINED RE'EAfNCES,. _ Undefined

references
Cl

*** TlSK BUILDER STATISTICS.

TOTAL ~ORK FILE REFERENCES, &&9.
wOAK FILE READS, 0,
-OAK FILE ~RITES' 0.
SIZE OF COAE POOL, 20&&. wORDS (~. PAGfSl
SIZE OF WOAK FILE. 51l. WORDS C2. PAGES)

ELAPSED TIME,111001tt

File
- contents

section

PAGE 2

Task.
-Builder

statistics

File
contents
section
(cont.)

Figure B-2 (Cont.) Memory Allocation File for IMGl.TSK on an Unmapped System

B-7

MEMORY ALLOCATION

SyMBOL VALUE REfi'ERENCES •••

sOTSV 000052 SCLOSE SEOL SERRPT SF'lO SINlTl
SISNLS SOTI SNETS SSl'P~A SVTNAN"

IOTSVA 016206-R • SOTV .MAIN.
IPUTRE 011662-R SlFW , SPUTRE
,RLCS 0210J4-R • RQLCB RSTf'DS
IRQCS 0211l6-R OPFNB , RQLCB
IR50 011714-R St:RRPT • SR50
ISAVRG 027214-R RQLCB • SAVRG
IS1:SR 001516-R • SFADD
,SEQC Ol6206-R • SOTV
ISST Ol6134-R , SOTV
ISSTO 00tll0-R • SERRPT SOTV
,SSTI 0043i6-R • SERRPT
IS5T2 004330-R • SiRRPT SOTV
ISSTl OOt316-R • SERRPT SOTV
155T4 004l44-R • SERRPT SOTV
'5ST5 004352-R • SERRPT SOTV
,S5T6 0044l&-R , SERRPT SOTV
,SST7 004162-R • SERRPT SDTV
,SVTl, 006002-R • SERRPT
.ASLUN OlO416-R • ASSLLJN
.CLOSE 024102-R • CLOSE SCLOSr.
.FATAL 0114]&-R • COMMO" ~AITI

.rlHIT 025140-R • FINIT $OTI

.FSRCS 024264-R • FCSI'SR ,DTV

.FSRPT 000050 ASSLUN CNEATE FCSFSH (o'lNl T ·UPf·HB
PARDI RSTFDS wAITI XQIUI

.GTOID 025244-R , . GETOID SOPEN
• MBfCT 024J&4-R • fCSfSN
.MOLUN 016214-R • SOTV
.NLUt.S 016212-R • SOTV
.oprNb 0252&2-R • OPFNB SOPl::N
.PPASC 032&04-R PARDI • PPNASC
.PPR50 OJ2132-R DIDfNO • PPNH50
.PUTSQ 021l20-R • iJUTSU SPUTRE
.SAVRI 0]0402-R ASSLUN CKALOC CLOSt: fl~lT GE;TUlD

OPflNB PUTSY • SAVRI SERHPT sOPEN
•• ALCl Ol40l2-R , CKALOC
•• ALOC 033742-R • CKALOC WTwAlT
•• ALUN OJ0442-R • ASSLUh Gl::TDl OPrNb
•• SORC OlO632-R • 80BRlC uPfNB ROW All' WlwAlT
•• HKRG OJ0714-R • t;I<RG CLOS~ Rt.>"'AIT wTwAll
• .CREA OlO734-R , CNEATE O~f'Nli

•• Dt;Ll OJ1122-R , OEL OPfo'NB
• .1>10 OJ221b-R OlOfo"ND • Dll'NU
.~DIDf OJ207&-R • DIDFhD PAHlilD
• .EfCK 0311b2-R • EUFCHK PUTSQ
•• EFC1 031110-R • t;OFCHK
•• ENTR OJ1336-R DeL • DIHt:C'f OPfl'4B
•• EXTD OJ4042-R • CJ(ALOC
•• EXT1 034116-R • CJ(ALUC
• .fCSX 031424-R CLOSt:: • COMMOh CHt:ATE O~fN~ putSQ

~AITI WATSET wt..,AIT
•• FIND 031J52-R DIFND • DIRECT OPfNB
•• FINI 025150-R • f'lhIT OPFNb
• .GTOI 011440-R , GETDi GI::TDIU

Figure B-3 Cross-Reference Listing for MPl.MAP

B-8

MEMORY ALLOCATION

The map items are described in the following paragraphs.

1. The page header shows the name of the task image file and the
overlay segment name, along with the date, time, and version
of the Linker that was used.

2. The task attribute
information:

a. Task name

b. Task partition

section

c. Identification (task version)

d. Task UFD

e. Task priority

contains the following

f. Stack limits -- consisting of the low and high addresses,
followed by the length in octal and decimal bytes

g. ODT transfer address -- starting address of the debugging
aid

h. Program transfer address

i. Task attributes -- shown only if they differ from the
defaults. One or more of the following may be displayed:

AL Task is checkpointable, and task image file
contains checkpoint space allocation

CP Task is checkpointable

DA Task contains debugging aid

FP Task uses floating-point processor

-HD Task image does not contain header

PI Task contains position-independent code and
data

PM

SL

TR

Post-mortem dump requested in the event of
abnormal task termination

Task can be slaved

Task initial PS word has T-bit enabled

j. Total address windows -- the number of address windows
allocated to the task

1. Task extension -- the increment of
allocated through the EXTTSK keyword

physical memory

m. Task image -- the amount of memory required to contain
task code

B-9

n.

MEMORY ALLOCATION

Total task size -- the
mapped arrays, task
above

amount of
extension,

memory allocated to
and task image listed

o. Task address limits the lowest and highest virtual
addresses allocated to the task.

3. The overlay description shows the address limits, length, and
name of each overlay segment. Indenting is used to
illustrate the overlay structure. The overlay description is
printed only when a multi-segment task is created. An
example of overlay description output is shown in Figure 5-1.

4. The segment description gives the name of the segment, along
with the segment address and disk space limits.

5. The memory allocation synopsis gives information about the
p-sections that make up the memory allocated to each overlay
segment. The information shown consists of the p-section
name, attributes, starting address, and length in bytes,
followed by a list of modules that contributed storage to the
section. The entry for each module shows the starting
address and length of the allocation, the module name, module
identification, and file name.

6.

If the /SEQUENTIAL switch
listed in the order of
alphabetical order.

is applied, the p-sections are
input; otherwise they appear in

The following p-section information is omitted:

a. The absolute section, . ABS. is not shown because it
appears in every module and always has a length of O.

b. The unnamed relocatable section, shown as . BLK., is not
displayed if its length is 0, because it appears in every
module.

Global symbols that are defined in
along with their octal values.
value if the symbol is relocatable.
in columns.

the segment are listed
An -R is appended to the
The list is alphabetized

7. The file contents section lists the module name, file name,
p-sections, and global definitions occurring in the module.
Any undefined global references made by the module are also
displayed.

8. A summary of undefined global references is printed after the
listing of file contents.

9. The display
information,
performance.

of Linker statistics lists
which may be used to

the following
evaluate Linker

• Work File References The number of times that the Linker
accessed data stored in its work file.

• Work File Reads -- The number of times that the work file
device was accessed to read work file data.

• Work File Writes -- The number of times that the work file
device was accessed to write work file data.

B-IO

MEMORY ALLOCATION

• Size of Core Pool -- The amount of memory that
available for work file data and table storage.

was

• Size of Work File -- The amount of device storage that was
required to contain the work file.

• Elapsed Time -- The amount of wall-clock time required to
construct the task image and produce the memory
allocation file. Elapsed time is measured from the
completion of option input to the completion of map
output. This value excludes the time required to
process the overlay description, parse the list of input
file names, and create the cross-reference listing (if
specified).

Appendix D should be consulted for a more detailed
discussion of the work file.

10. The cross-reference page header gives the name of the memory
allocation file, the originating task (TKB), the date and
time the memory allocation file was created, and ·the
cross-reference page number, in the following format:

GLOBAL CROSS REFERENCE PAGE

map file name CREATED BY TKB ON date AT time CREF Vn

SYMBOL VALUE REFERENCES •••

11. The cross-reference list contains an alphabetic listing of
each global symbol along with its va~ue and the name of each
referencing module. When a symbol 1S defined in several
segments within an overlay structure, the last defined value
is printed. Similarly, if a module is loaded in several
segments within the structure, the module name will be
displayed more than once within each entry.

The suffix -R is appended to the value if the symbol is
relocatable.

Prefix symbols accompanying each module name define the type
of reference as follows:

Prefix Symbol

blank

@

*

Reference Type

Module contains a reference
resolved in the same segment
segment toward the root.

that is
or in a

Module contains a reference that is
resolved directly in a segment away from
the root or in a co-tree.

Module contains a reference that
resolved through an autoload vector.

is

Module contains a non-autoloadable
definition.

Module contains an autoloadable definition.

12. The segment cross-reference lists the name of each overlay
segment and the modules that compose it.

B-ll

MEMORY ALLOCATION

NOTE

The reader should consult
and Chapter 6 for a
unfamiliar terms.

the glossary
discussion of

B.4.2 Control of Memory Allocation File Contents and Format

By using the memory allocation and input file switches described
below, the user can eliminate nonessential information from the
output, improve Linker throughput, and obtain output in a format that
is more compatible with the hard-copy device.

The amount of information presented in the memory allocation file is
controlled by the /SHORT and /MAP switches. When the /SHORT switch is
included in the map file specification, the Linker eliminates the ftle
contents section of the allocation listing. The list of global
definitions by module, and the list of unresolved global references
within a module are not produced. All other information can be found
elsewhere in the output.

In general, the short format provides sufficient information for
debugging while reducing task-build time considerably. Listings that
contain a full description of file contents can be obtained at less
frequent intervals and kept for later reference.

The contents of individual input files can
listing by negating the /MAP switch (/NOMAP).
eliminates the following information from
cross-reference output of the excluded file:

be excluded from the
Suppressing such output

the allocation and

• P-section contributions as shown in the memory allocation
synopsis

• Global symbol definitions

• File contents

• Global definitions or references, and module names as shown in
the cross-reference listing.

To disable map output for individual files, the user includes /NOMAP
in the appropriate input file specification. To disable such output
for the default system object module library and all memory-resident
library files, the user includes /NOMAP in the memory allocation file
specification.

The width of the listing is controlled by the /WIDE switch. This
switch is included in the map file specification to increase the
listing format to 132 columns. The global symbols, overlay
description, and cross-reference output are expanded to fill the
additional space.

B-12

MEMORY ALLOCATION
~ARTITION NAME : GEN
IDENTIFICATION : 214097
TASK UIC (0;202]
STACK LIMITS: 000216 001215 001000 00512.
PRG XFR ADDRESS: 141260
TOTAL ADDRESS WINDOWS: 1.
TASK IMAGE SIZE : 32448. WORDS
TASK ADDRESS LIMITS: 000000 176573

• OVERLAY DESCRIPTION:

BASE TOP LENGTH

000000 174331 114340 63112. EXCEPT
114340 174423 000064 00052. EXS025
114340 174743 000404 00260. EX$049
114340 114433 000074 00060. DOS025
114340 114443 000104 00068. CRS025
114340 174673 000334 00220. ST$047
174340 115331 001000 00512. STS048
174340 176573 002234 01180. STS049

••• ROOT SEGMENT: EXCEPT

R/W MEM LIMITS: 000000 114331 174340 63112. .~

MEMORY ALLOCATION SYNOPSIS:

SECTION TITLE

• BLK.:(RW,I,LCL,REL,CON) 001216 001420 00784.
001216 000026 00022. ROCLOS
0012.4 000026 00022. ROCONN
001272 000104 00068. ROCREA

IDENT .FILE

0005CM RMSLI8.0LB;16
0003CN RMSLIB.OLB;16
0012CM RMSLIB.OLB;16

001376 000026 00022. ROFIND- 0004CM RMSLIB.OLB;16

ACDDAT:(RW,O,GBL,REL,OVR)

-----------1
-------J'V,

SSRTS :(RW,I,GBL,REL,OVR)
$$SGDO:(RW,D,LCL,REL,OVR)
$$SGD2: (Rill ,O,LCL,REL-;OVRl
$$VEXO:(RW,D,GBL,REL,OVR)
S$VEXl:(RW,D,GBL,REL,OVR)
S$WNOS:(RW,D,LCL,REL,CON)
.CSID :(RW,I,LCL,REL,CON)
.CSl1 :(RW,I,LCL,REL,CON)

GLOBAL SYMBOLS:

001424 000026
001452 000212
001664 000114
002000 000124
002124 000026
002636 000244
002636 000244

152054 000130
152204 000002
152206 000000
--- -- ------
152346 000002
152350 000004
152354 000000
152354 000000
152354 000142
152516 002464

00022. ROGET 0010CM RMSLIB.OLB;16
00138. ROINIT 0011CM RMSLIB.OLB;16
00076. ROFiWB 0007CM RMSLI8.0LB;16
00084. ROOPEN 0013CM RMSLIB.OLB;16
00022. ROPUT 0004CM RMSLIB.OLB;16
00164.
00164. "CDOIO lA.18 COBLIB.OLB;l

'V

00088~;-
1

ROIMPA 0017CM RMSLIB.OLB;16
00002.
00000.
00002.
00004.
00000.
00000.
00098.
01332.

ACCSUF 002712-R AiIIFB3 013154-R COVALU 111070-R 015010 004232-R EMeE

ACCOIO 00411_~-R AiIIFB4 013766-R CREDLM 122516-R OOCATS 121150-R EMOO

013354-R

017364-R,:

-----------------~~~----------~ ~
$AL80B 023100-R SCOPS 166224-R SGETBK 034166-R

$ALBST 023144-R SCPOOL 023036-R SGETTV 152004-R

••• TASK BUILDER STATISTICS:

TOTAL WORK FILE REFERENCES: 219102.
WORK FILE READS: O.
WORK FILE WRITES: O.
SIZE OF CORE POOL: 17028. WORDS (66. PAGES)
SIZE OF WORK FILE: 15360. WORDS (60. PAGES)

ELAPSED TINE:00:00:46

••• SEGMENT: EXS025

R/W MEM LIMITS: 174340 174423 000064 00052.

MEMORY ALLOCATION SYNOPSIS:

S,RLSBK 041200-R

BRMCLO 001216-R

SECTION TITLE IDENT FILE

'EX006 (RW,I,GBL,REL,CON) 174340 000064 00052.
'SALVC (RW,O,LCL,REL,CON)· 174424 000000 00000.
'SRTS (RW,I,GBL,REL,OVR) 152204 000002 00002.

GLOBAL SYMBOLS:

Ext025 152204-R

'SVFRO 044510-R

'UNLK 047122-R

FCP2 013606-R INTEG 161226-R

FCP3 013610-R IOFLGS' 111060-R
-_.----- --------_._-- _.-

UINIT 173270-R

UINRD 105334-R

Figure B-4 Memory Allocation File SQffiple ~roS[Qm

B-13

APPENDIX C

RESERVED SYMBOLS

Several global symbols and p-section* names are reserved for use by
the Linker.** Special handling occurs when a definition of one of
these names is encountered in a task image.

The definition of a reserved global symbol in the root segment causes
a word in the Task Image to be modified with a value calculated by the
Linker. The relocated value of the symbol is taken as the
modification address.

The following global symbols are reserved by the Linker:

Global
Symbol

• FSRPT

• MOLUN

.NLUNS

.NOVLY

N.OVPT

.NSTBL

.ODTLI

.ODTL2

$OTSV

.TRLUN

$VEXT

Modification
Value

Address of File Storage Region work area (.FSRCB)

Error message output device

The number of logical units used by the task, not
including the Message Output and Overlay units

The overlay logical unit number

Address of Overlay Runtime System work area (.NOVLY)

The address of the segment description tables. Note
that this location is modified only when the number of
segments is greater than one.

Logical unit number for the ODT terminal device TI:

Logical unit number for the ODT line printer device CL:

Address of Object Time System work area ($OTSVA)

The trace subroutine output logical unit number

Address of vector extension area ($VEXTA)

* P-sections are created by .ASECT, .CSECT, or .PSECT directives.
The .PSECT directive obviates the need for either the .ASECT or .CSECT
directive, these being retained only for compatibility with other
systems. In this d, ~ument all sections are referred to as p-sections
unless the specific characteristics of .ASECT or .CSECT apply.

** In addition, all symbols and p-section names containing a •
are reserved for DIGITAL-supplied software.

C-l

or $

RESERVED SYMBOLS

The following p-section names are reserved by the Linker. In some
cases, the definition of a reserved p-section causes the p-section to
be extended if the appropriate option input is specified (see Section
3.2.3.4) •

Section
Name

$$ALVC

$$DEVT

$$FSRl

$$IOBl

$$OBFl

$$RGDS

$$RTS

$$SGDO

$$SGDl

$$SGD2

$$WNDS

Description

Contains segment autoload vectors

The extension length (in bytes) is calculated from the
formula

EXT = <S.FDB+52>*UNITS

Where the definition of S.FDB is obtained from the root
segment symbol table and UNITS is the number of logical
units used by the task, excluding the Message Output,
Overlay, and ODT units.

The extension of this section is specified by the
ACTFIL option input.

The extension of this section is specified by the
MAXBUF option input.

FORTRAN OTS uses this area to parse array type format
specifications. May be extended by FMTBUF keyword.

Contains region descriptors for resident libraries
referenced by the task

Contains return instruction

P-section adjoining task segment descriptors

Contains task segment descriptors

P-section following task segment descriptors

Contains task window descriptors

C-2

APPENDIX D

INCLUDING A DEBUGGING AID

The user can include a program that controls the execution of a task,
by naming the appropriate object module as an input file, and applying
the /DEBUG command qualifier.

When such a program is input, the Linker causes control to be passed
to the program when the task execution is initiated.

Such control programs might trace a task, printing out relevant
debugging information, or monitor the task's performance for analysis.

The switch has the following effect:

1. The transfer address in the debugging aid overrides the task
transfer address.

2. On initial task load, the following registers have the
indicated value:

RO - Transfer address of task
R1 - Task name in Radix-50 format (word #1)
R2 - Task name (word #2)

0-1

AUTOLOAD

CO-TREE

DISK-RESIDENT OVERLAY
SEGMENT

GLOBAL CROSS-REFERENCE

GLOBAL SYMBOL

HOST SYSTEM

MAIN PARTITION

MAIN TREE

MAPPED ARRAY AREA

MEMORY ALLOCATION FILE

OVERLAY DESCRIPTION
LANGUAGE

APPENDIX E

TRAX LINKER GLOSSARY

The method of loading overlay segments, in
which the Overlay Runtime System
automatically loads overlay segments when
they are needed and handles any unsuccessful
load requests.

An overlay tree whose segments, including the
root segment, are made resident in memory
through calls to the Overlay Runtime System.

An overlay segment that shares physical
memory and virtual address space with other
segments. The segment is read in from disk
each time it is loaded (compare
Memory-Resident Overlay Segment).

A list of global symbols, in alphabetical
order, accompanied by the name of each
referencing module.

A symbol whose definition is known outside
the defining module.

The system on which the task is built.

A partition whose memory may be subdivided
into fixed-length sub-partitions, or
dynamically allocated to each task by the
Executive (system-controlled partitions).

An overlay tree whose root segment is loaded
by the Monitor when the task is made active.

An area of the task's physical memory,
preceding the task image, that is used for
storage of large arrays. Space in the area
is reserved by means of the VSECT keyword or
through a Mapped Array Declaration contained
in an object module. Access is through the
mapping directives issued at run-time.

The output file created by the Linker that
describes the allocation of task memory.

A language that describes
structure of a task.

E-1

the overlay

OVERLAY RUNTIME SYSTEM

OVERLAY SEGMENT

OVERLAY TREE

PARTITION

PATH

PATH-DOWN

PATH-LOADING

PATH-UP

P-SECTION

ROOT SEGMENT

RUNNABLE TASK

SEGMENT

SUB-PARTITION

SYMBOL DEFINITION FILE

SYSTEM-CONTROLLED
PARTITION

TARGET SYSTEM

TASK IMAGE FILE

TRAX LINKER GLOSSARY

A set of subroutines linked
overlaid task that are
segments into memory.

as part of an
called to load

A segment that shares physical memory and/or
virtual address space with other segments,
and is loaded when needed.

A tree structure consisting of a root segment
and optionally one or more overlay segments.

An area of memory reserved for the execution
of tasks.

A route that is traced from one segment in
the overlay tree to another segment" in that
tree.

A path toward the root of the tree.

The technique used by the autoload method to
load all segments on the path between a
calling segment and a called segment.

A path away from the root of the tree.

A section of memory that is a unit of the
total allocation. A source program is
translated into object modules that consist
of p-sections with attributes describing
access, allocation, relocatability, etc.

The segment of an overlay tree
loaded, remains in memory
execution of the task.

A task that has a header and stack
can be installed and executed.

that,
during

and

once
the

that

A group of modules and/or p-sections that
occupy memory simultaneously and that can be
loaded by a single disk access.

A partition that resides within a
partition.

main

The output file created by the Task Builder
that contains the global symbol definitions
and values in a format suitable for
reprocessing by the Linker. Symbol
definition files are used to link tasks to
shared regions.

A partition whose memory may be dynamically
allocated by the Executive to several
concurrently active, resident tasks.

The system on which the task executes.

The output file created by the Task Builder
that contains the executable portion of the
task.

E-2

USER-CONTROLLED
PARTITION

VIRTUAL ADDRESS SPACE

TRAX LINKER GLOSSARY

A partition that can accommodate only one
active, resident task.

The set of addresses ranging from 0 to 177777
octal that are contained in a 16-bit word and
referenced directly by a user's program.

E-3

·B2S, 1-4
• CBL, 1-4, 2-2
.CMD, 1-4, 2-6, 3-5, 5-20, 5-22
.END directive, 5-8, 5-17

INDEX

.FCTR directive, 5-9, 5-17 to 5-19,
5-24, 5-25, 5-28

• MAC, 1-4
.MAP, 1-4, 3-6, 5-22
.NAME directive, 5-10, 5-13,

5-18, 5-23, 5-24, 5-29
.OBJ, 1-4, 5-13, 5-18, 5-19,

5-27
.ODL, 1-4, 5-11, 5-22
.PSECT directive, 5-11, 5-18,

5-23, 5-24
.ROOT DIRECTIVE, 5-8, 5-10, 5-11,

5-13, 5-17, 5-18, 5-19, 5-24
.STB, 1-4, 3-5, 3-9
.TSK, 1-4, 3-6, 5-22

/BASIC command qualifier, 3-1,
3-3

/CHECKPOINT command qualifier,
3-1, 3-3

/CONCATENATED input file
qualifier, 3-6, 3-7

/CROSSREFERENCE command
qualifier, 3-2, 3-3

/DEBUG command qualifier, 3-2,
3-3

/DEFAULT-LIBRARY input file
qualifier, 3-6, 3-7

/DUMP command qualifier, 3-2,
3-3

/FULL SEARCH command qualifier,
3-2, 3-4

/KE switch, 2-2
/LIBRARY input file qualifier,

3-6, 3-7
/MAP command qualifier, 3-2, 3-4
/MAP input file qualifier, 3-6,

3-8
/OPTIONS command qualifier, 3-2,

3-4
/OVERLAY command option, 3-2, 3-5
/SELECT-SYMBOLS input file

qualifier, 3-6, 3-9
/SEQUENTIAL command option, 3-2,

3-5
/SYMBOLS command option, 3-2, 3-5
/TASK command qualifier, 3-2, 3-6

Abnormal task terminator, 3-2
ABSPAT, 4-2, 4-4
Allocation options, 4-2
Ambiguous definitions, 5-15
ASCII characters, 1-3, 7-6, 7-8
ASG, 4-2, 4-4
Asterisk, auto~oad indicator, 5-20
AUTOLOAD, 6-1
Autoload indicator, 6-1
Autoload vectors, 6-5
Autoloadab1e data segments, 6-6

BASIC-PLUS-2, 2-1, 2-6, 2-7
BASIC-PLUS-2, overlaying

programs, 5-19
Branches, 5-21
Build command, 2-6, 3-3
Building the task, 5-16

CALL, 6-1
Co-trees, 3-2, 5-5, 5-7, 5-12 to

5-15, 5-18
COBOL, creating standard ODL

files, 5-27
COBOL ODL merge utility, 5-27
Coding, 2-1
Comma operator, 5-17
Command qualifiers, 2-4
Comments, 2-7
COMMON, 4-2, 4-3
Compiling, 2-1
Compiling COBOL programs, 2-2
Concatenated files, 3-6
Contents of the memory allocation

file, B-5
Control of the memory allocation

file contents and format,
B-12

Creating source language
statement files, 2-2

Creating standard COBOL ODL
files, 5-27

Debugging, 2-1
Debugging, user-written module,

3-2, D-l
DEC editor, 2-2, 5-27

Index-l

INDEX (Cont.)

Default system library, 3-7
Defining a multi-tree structure,

5-12
Defining the ODL file, 5-16
Device specification options,

4-3
Disk resident overlay structures,

5-1
Dump, post-mortem, 3-2, 7-1, 7-2
Dump, snapshot example, 7-8
Dumps, memory, 7-1

Editing, 2-1
Error messages, A-I to A-9
Example, multiple-tree, 5-13
Example of a snapshot dump, 7-8
EXTTSK, 4-2

Figure, post-mortem dump
sample, 7-4 to 7-5

File,
contents of memory allocation,

B-5
defining ODL, 5-16
link command, 2-7, 4-1
merging standard ODL, 5-26
modifying compiler generated,

5-28
overlay descriptor, 3-2
symbol, 3-2
task image, 3-2, 3-7

File specifications, 2-4
File types table, 1-4
Files,

concatenated, 3-6
creating standard COBOL ODL,

5-27
indirect, 5-10

Flow-charting, 2-1
Format of the SNAP$ MACRO, 7-7
Format of the SNPBK$ MACRO, 7-6
Formats, link command, 2-4

GBLEDEF, 4-2, 4-5
Global cross reference on an

overlaid task, 6-7
Global symbol, 4-4, 4-5, 5-5,

5-6

I/O support, RMS, 5-23
Include selected library modules,

3-8

Including a debugging aid, D-l
Including non-COBOL programs in

a task, 5-27
Indicator, autoload, 5-16
Indirect command file facility,

2-5
Indirect files, 5-10
Input file qualifier table, 3-6

JMP, 6-1
JSR, 6-1

Kernal, 2-2, 5-24

Library, default system, 3-7
Link command, 2-5
Link command file, 2-7, 4-1
Link command formats, 2-4
Link command options, 2-5
LINK command options, 4-1
Link command string, 2-7
Linkage, 5-13
Linkage section, B-2
LINKER, 1-1, 1-2, 2-3, 2-6,

3-1 to 3-8, 3-9, 4-1, 4-2,
5-1 to 5-4, 5-6 to 5-8, 5-11,
5-12, 5-16, 5-19, 5-23, 5-24,
6-5, A-I, B-1, B-2, B-12,
C-l, D-l

Linking the task, 2-1, 2-3
Loading mechanism, 5-4
Loading mechanisms, 6-1

MACRO, 4-1, 4-2
Map, memory allocation, 3-8
Memory allocation, B-7
Memory allocation file, B-5
Memory allocation map, 3-8
Memory dumps, 7-1
Merging standard ODL file, 5-26
Modifying the compiler generated

ODL file, 5-28
Module, user-written debugging,

3-2, D-l
Modules, include selected

library, 3-8
Multi-tree structures, 5-12
Multiple line input, 2-5
Multiple-tree example, 5-13
Multiply-defined symbols, 5-4,

5-5

Index-2

INDEX (Cont.)

OOL file body, 5-23
OOL file reader, 5-23
OOL generated overlay containing

more than one PSECT, 5-26
OOL generated overlay containing

only one PSECT, 5-24
Operator, comma, 5-17
Options, 2-5
Overlay capability, 5-1
Overlay core image, 5-14
Overlay description, 5-1
Overlay descriptor file, 3-2
Overlay descriptor language,

3-5, 5-8, 5-9, 5-12, 5-19
Overlay runtime system, 6-1
Overlay trees, 5-3
Overlaying BASIC-PLUS-2

programs, 5-19
Overlaying programs written in a

higher level language, 5-15
Overlays, 5-19

Path loading, 6-3
Post-mortem dump, 3-2, 7-1, 7-2
Post-mortem dump sample, 7-4

to 7-5
Post-mortem dumps, 7-1
Program development, 2-1
P-sections, B-2

Qualifier command, 3-2

Rearranging a compiler generated
OOL file, 5-28

Region, shared global, 4-3
Reserved symbols, C-l
Resolution global symbols in a

multi-segment task, 5-4
Resolution of global symbols

from the default library, 5-6
Resolution of P-sections in a

multi-segment task, 5-7
Resolve all global symbols, 3-7
RMS file specification

information, 1-3
RMS I/O support, 5-23
Root, 5-21

Shared global region, 4-3
Single-segment task, 5-4
Snapshot dump, 7-3
Standard OOL files, 5-23
Storage altering options, 4-4
Storage sharing options, 4-3
Structure, defining multi-

tree, 5-12
Structure, disk resident

overlay, 5-1
Structures, multi-tree, 5-12
Summary of the overlay

descrip~or language, 5-16
Symbol file, 3-2
Symbol global, 4-4, 4-5, 5-5,

5-6
Symbols, multiply-defined, 5-4,

5-5

Table, file types, 1-4
Table, input file qualifier,

3-6
Table, link command qualifiers,

3-1
Task,

global cross reference on
overlay, 6-7

including non-COBOL programs
in a, 5-27

single-segment, 5-4
Task image file, 3-2, 3-7, B-4
Task image memory, B-2
Task memory structure, B-1
Task terminator, abnormal, 3-2
TRAX documentation directory, 1-2
TRAX LINKER, 2-3
TRAX Support Environment User's

Guide, 1-2, 2-1, 2-2, 2-6,
7-2

Trees, complex, 5-17
Trees, overlay, 5-17

UNITS, 4-2, 4-3
User-written debugging module,

3-2, 0-1
Using overlays with TRAX COBOL,

5-23

Index-3

· Q)
c

m
c o
o

TRAX
Linker Reference Manual
AA-D342A-TC

READER'S COMMENTS

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. If you require a written reply and are
eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR
form.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the
page number.

Please indicate the type of reader that you most nearly represent.

[] Assembly language progr~er

[] Higher-level language programmer

[] Occasional programmer (experienced)

[] User with little programming experience

[] Student programmer
[] Other (please specify) __________________________________ ___

Name Date ________________________ __

Organization __ __

Street __ ___

Ci ty. ______________ State _______ Zip Code ______ _

or

.--Fold lIere--

-- Do Not Tear· Fold lIere and Staple ---

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

Software Documentation
146 Main Street ML5-5/E39
Maynard, Massachusetts 01754

FIRST CLASS

PERMIT NO. 33

MAYNARD, MASS.

