July 1978

This manual describes the use of the MACRO assembler on
TRAX systems.

TRAX
MACRO Reference Manual

Order No. AA-D340A-TC

OPERATING SYSTEMS AND VERSIONS: TRAX Version 1.0

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation - maynard, massachusetts

First Printing, April 1978

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright C) 1978 by Digital Equipment Corporation

The postage-prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre-
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0s/8

DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-11
DECCOMM DECSYSTEM-20 TMS-11

ASSIST~11 RTS-8 ITPS-10

CONTENTS

PAGE

PREFACE ix

1 MANUAL OBJECTIVES AND READER ASSUMPTIONS ix
2 STRUCTURE OF THE DOCUMENT ix
3 ASSOCIATED DOCUMENTS X
4 DOCUMENT CONVENTIONS X

PART I INTRODUCTION TO MACRO

=
|
=

CHAPTER 1 MACRO FEATURES

1.1 OVERVIEW OF MACRO
1.1.1 Assembly Pass 1
1.1.2 Assembly Pass 2

HrrH
N

N
I

CHAPTER 2 SOURCE PROGRAM FORMAT

|
AU BN Lad

PROGRAMMING STANDARDS AND CONVENTIONS
STATEMENT FORMAT
.1 Label Field
.2 Operator Field
3
4

Operand Field
Comment Field
FORMAT CONTROL

[(SESHSH SH.SN SN N
[}

PART II PROGRAMMING IN MACRO ASSEMBLY LANGUAGE

w
I

CHAPTER

w

SYMBOLS AND EXPRESSIONS

!
HEHERREOJUTOULEE WD Ll

CHARACTER SET
Separating and Delimiting Characters
Illegal Characters
Unary and Binary Operators
MACRO SYMBOLS
Permanent Symbols
User-Defined and Macro Symbols
DIRECT ASSIGNMENT STATEMENTS
REGISTER SYMBOLS
LOCAL SYMBOLS
CURRENT LOCATION COUNTER
NUMBERS
TERMS 3-14
EXPRESSIONS 3-15

¢ o
wN -~

* L]
N

wwwwu&rwwwwwu

WWwwwuwwwwwwwwuww
* e e

WOV WNODNND -

Y

CHAPTER RELOCATION AND LINKING 4-1

w

CHAPTER ADDRESSING MODES
REGISTER MODE

REGISTER DEFERRED MODE
AUTOINCREMENT MODE

(S0,),]
[V S]

iii

5.4 AUTOINCREMENT DEFERRED MODE

5.5 AUTODECREMENT MODE

5.6 AUTODECREMENT DEFERRED MODE

5.7 INDEX MODE

5.8 INDEX DEFERRED MODE

5.9 IMMEDIATE MODE

5.10 ABSOLUTE MODE

5.11 RELATIVE MODE

5.12 RELATIVE DEFERRED MODE

5.13 SUMMARY OF ADDRESSING FORMS

5.14 BRANCH INSTRUCTION ADDRESSING

5.15 USING TRAP INSTRUCTIONS

PART III MACRO DIRECTIVES
CHAPTER 6 GENERAL ASSEMBLER DIRECTIVES

6.1 LISTING CONTROL DIRECTIVES

6.1.1 .LIST and .NLIST Directives

6.1.2 Page Headings

6.1.3 .TITLE Directive

6.1.4 .SBTTL Directive

6.1.5 .IDENT Directive

6.1.6 .PAGE Directive/Page Ejection

6.2 FUNCTION DIRECTIVES: .ENABL AND .DSABL

6.3 DATA STORAGE DIRECTIVES

6.3.1 .BYTE Directive

6.3.2 .WORD Directive

6.3.3 ASCII Conversion Characters

6.3.4 .ASCII Directive

6.3.5 .ASCIZ Directive

6.3.6 .RAD50 Directive

6.3.7 Temporary Radix-50 Control Operator: "R

6.4 RADIX AND NUMERIC CONTROL FACILITIES

6.4.1 Radix Control and Unary Control Operators

6.4.1.1 .RADIX Directive

6.4.1.2 Temporary Radix Control Operators: °D,
"0, and "B

6.4.2 Numeric Directives and Unary Control
Operators '

6.4.2.1 .FLT2 and .FLT4 - Floating-Point Storage
Directives

6.4.2.2 Temporary Numeric Control Operators: °C
and °F

6.5 LOCATION COUNTER CONTROL DIRECTIVES

6.5.1 .EVEN Directive

6.5.2 .ODD Directive

6.5.3 .BLKB and .BLKW Directives

6.6 TERMINATING DIRECTIVES

6.6.1 .END Directive

6.6.2 .EOT Directive

6.7 PROGRAM BOUNDARIES DIRECTIVE: .LIMIT

6.8 PROGRAM SECTIONING DIRECTIVES

6.8.1 .PSECT Directive

6.8.1.1 Creating Program Sections

6.8.1.2 Code or Data Sharing

6.8.1.3 Memory Allocation Considerations

6.8.2 .ASECT and .CSECT Directives

6.9 SYMBOL CONTROL DIRECTIVE: .GLOBL

6.10 CONDITIONAL ASSEMBLY DIRECTIVES

6.10.1 Conditional Assembly Block Directives:
.IF, .ENDC

6.10.2 Subconditional Assembly Block Directives:

.IFF, .IFT, .IFTF

iv

M
a
=

oottt on
OO & & WWW

6.10.3 Immediate Conditional Assembly Directive:
LIIF

~

CHAPTER MACRO DIRECTIVES
DEFINING MACROS
.MACRO Directive
.ENDM Directive
.MEXIT Directive
MACRO Definition Formatting
CALLING MACROS
ARGUMENTS IN MACRO DEFINITIONS AND MACRO
CALLS
Macro Nesting
Special Characters in Macro Arguments
Passing Numeric Arguments as Symbols
Number of Arguments in Macro Calls
Creating Local Symbols Automatically
Keyword Arguments
Concatenation of Macro Arguments
MACRO ATTRIBUTE .DIRECTIVES: .NARG, .NCHR,
AND .NTYPE
1 .NARG Directive
2 .NCHR Directive
3 .NTYPE Directive
.ERROR AND .PRINT DIRECTIVES
INDEFINITE REPEAT BLOCK DIRECTIVES: .IRP
AND .IRPC
1 .IRP Directive
2 .IRPC Directive
REPEAT BLOCK DIRECTIVE: .REPT, .ENDR
MACRO LIBRARY DIRECTIVE: .MCALL

" e e 0
LY)
> W N

NN NNNNN
o

dWwwwwwwww WN M=

s o o 0 o e o o
e o o e o o o
NSOy e W -

NN NNNNN N

PART v OPERATING PROCEDURES
CHAPTER 8 OPERATING PROCEDURES

TRAX OPERATING PROCEDURES
Invoking MACRO Under TRAX
TRAX Command String Format
TRAX Macro Qualifiers
TRAX File Specification Qualifiers
Cross-Reference Processor (CREF)
TRAX MACRO in Batch Mode
TRAX Indirect Command Files
TRAX FILE SPECIFICATION FORMAT
MACRO ERROR MESSAGES

€0 O 0 e 0O €O €O €O CO OO
. L] . L] . . . * L] .
Y N Y L
L] . . L] . . .
N U W

APPENDIX MACRO CHARACTER SETS

ASCII CHARACTER SET
RADIX-50 CHARACTER SET

APPENDIX B MACRO ASSEMBLY LANGUAGE AND ASSEMBLER
DIRECTIVES

B.1 SPECIAL CHARACTERS

B.2 - SUMMARY OF ADDRESS MODE SYNTAX

B.3 ASSEMBLER DIRECTIVES
APPENDIX C PERMANENT SYMBOL TABLE (PST)
C
C

1 OP CODES
2 MACRO DIRECTIVES

NN NN
| I I

HONNIOO0 U WWWwNHPE =

o

B
=

00 00 0O CO 0O O OO O O

[l OO BWNHHFH ~

>

=

>
[
>

PAGE

APPENDIX D DIAGNOSTIC ERROR MESSAGE SUMMARY D-1
D.1 MACRO ERROR CODES D-1
APPENDIX E SAMPLE CODING STANDARD E-1
E.1l INTRODUCT ION E-1
E.2 LINE FORMAT E-1
E.3 COMMENTS E-2
E.4 NAMING STANDARDS E-2
E.4.1 Register Standards E-2
E.4.1.1 General Purpose Registers E-2
E.4.1.2 Hardware Registers E-2
E.4.1.3 Device Registers E-2
E.4.2 Processor Priority E-3
E.4.3 Other Symbols E-3
E.4.4 Using the Standard Symbolics E-3
E.4.5 Symbols E-3
E.4.5.1 Global Symbols E-3
E.4.5.2 Symbol Examples E-4
E.4.5.3 Program-Local Symbols E-4
E.4.5.4 Macro Names E-5
E.5 PROGRAM MODULES E-5
E.5.1 General Comments on Programs E-5
E.5.2 The Module Preface E-5
E.5.3 Formatting the Module Preface E-7
E.5.4 Modularity E-8
E.5.4.1 Calling Conventions (Inter-Module) E-8
E.5.4.2 Exiting E-9
E.5.4.3 Intra-Module Calling Conventions E-9
E.5.4.4 Success/Failure Indication E-9
E.5.4.5 Module Checking Routines E-9
E.6 FORMATTING STANDARDS E-9
E.6.1 Program Flow E~-9
E.6.2 Common Exits E-11
E.6.3 Code with Interrupts Inhibited E-12
E.7 PROGRAM SOURCE FILES E-12
E.8 FORBIDDEN INSTRUCTION USAGE E-12
E.9 RECOMMENDED CODING PRACTICE E-13
E.9.1 Conditional Branches E-13
E.10 PDP-11 VERSION NUMBER STANDARD E-13
E.10.1 Displaying the Version Identifier E-~14
E.10.2 Use of the Version Number in the Program E-15
APPENDIX F SAMPLE ASSEMBLY AND CROSS REFERENCE LISTING F-1
INDEX Index-1
FIGURES
FIGURE 3-1 Assembly Listing Showing Local Symbol Block 3-11
3-2 Sample Assembly Results 3-12
6—-1 Example of Line Printer Assembly Listing 6-6
6-2 Example of Terminal Assembly Listing 6-7
6-3 Listing Produced With Listing Control
Directives 6-9
6-4 Assembly Listing Table of Contents 6-12
6-5 Example of .ENABL and .DSABL Directives 6-16
6-6 Example of .BLKB and .BLKW Directives 6-30
7-1 Example of .IRP and .IRPC Directives 7-17
8-1 Sample CREF Listing 8-5

vi

PAGE

TABLES

TABLE

Special Characters Used in MACRO 3-1
Legal Separating Characters 3-3
Legal Argument Delimiters 3-3
3-4
3-5

Legal Unary Operators

Legal Binary Operators

Symbolic Arguments of Listing Control

Directives 6

Symbolic Arguments of Function Control

Directives 6

Symbolic Arguments of .PSECT Directive 6

Non-TRAX Program Section Default Values 6~
6
6
8

mwwt?:ww
HuUbdwNh -

I
U W N

Legal Condition Tests for Conditional
Assembly Directives

Subconditional Assembly Block Directives
File Specification Default Values

Ll =)

vii

PREFACE

0.1 MANUAL OBJECTIVES AND READER ASSUMPTIONS

MACRO is supported in TRAX to enable Application Programmers to write
transaction step tasks (TSTs). In addition it may be used to write
Support Environment subroutines which do not perform. This manual
provides a reference for the MACRO language. No prior knowledge of
the MACRO Relocatable Assembler is assumed.

Although the description of the assembly language is wholly
self-contained within this manual, the reader is assumed to be
familiar with the PDP-11 processors and related terminology, as
presented in the PDP-11 Processor Handbooks. No attempt is made in
this document to describe the PDP-11 hardware or the functions of the
various PDP-11 instructions.

The development of transaction step tasks (TSTs) also requires
knowledge of the library of RMS-1l1 macros as presented in the TRAX RMS
MACRO Reference Manual.

In presenting MACRO, a tutorial bias has been adopted to enlarge upon
the reference material. This posture s reflected in the examples and
the accompanying commentary describing MACRO language elements in
typical applications.

NOTE

Utilization of MACRO will eliminate
compatibility of user applications with
future members of a planned family of
TRAX systems.

0.2 STRUCTURE OF THE DOCUMENT

This manual contains four parts. Part I, consisting of two chapters,
briefly introduces MACRO. Chapter 1 lists the key features of MACRO,
and Chapter 2 identifies the advantages of following programming
standards and conventions. Also described is the format used in
coding MACRO source programs.

Part II, consisting of three chapters, presents general information
essential to programming with the MACRO assembly language. Chapter 3
describes the symbols, terms, and expressions that form the elements
of MACRO instructions. The character set is listed, and the types of
programming symbols that may be defined by the user are discussed.

ix

Chapter 4 describes the output of MACRO and presents concepts
essential to the proper relocation and linking of object modules by
the Linker. Chapter 5 briefly describes how data stored in memory can
be accessed and manipulated using the addressing modes recognized by
the PDP-11 hardware.

Part III, consisting of two chapters, describes the MACRO directives
that control the processing of source statements during assembly.
Chapter 6 discusses directives which accomplish generalized MACRO
functions, while Chapter 7 deals with directives used 1in the
definition and expansion of macros.

Part IV, consisting only of Chapter 8, presents the operating
procedures essential to the assembly, linking, and initiating of MACRO
programs.

Finally, several appendixes are provided, supplying additional
information of interest to the MACRO programmer.

Appendix A lists the ASCII and Radix-50 character sets that may be
used in MACRO programs. Appendix B 1lists the special characters
recognized by MACRO, summarizes the syntax of the various addressing
modes used in PDP-11 processors, and briefly describes the MACRO
directives in alphabetical order. The permanent symbols that have
been defined for use with MACRO are listed alphabetically in Appendix
C.

The diagnostic error codes produced by MACRO to identify various types
of errors detected during the assembly process are listed

alphabetically in Appendix D. Appendix E contains a sample coding
standard that is recommended practice in preparing MACRO programs.

0.3 ASSOCIATED DOCUMENTS

The reader should refer to the TRAX documentation directory for
descriptions of documents associated with this manual.

0.4 DOCUMENT CONVENTIONS
The symbols defined below are used throughout this manual.
Symbol Definition

[1 Brackets indicate that the enclosed argument is
optional.

] Vertical bars indicate that a single <choice must be
made from a list of arguments.

. e Ellipsis indicates optional continuation of an argument
list in the form of the last specified argument.

UPPER~-CASE Upper-case characters indicate elements of the language

CHARACTERS that must be used exactly as shown.

lower—-case Lower-case characters indicate elements of the language

characters that are supplied by the programmer.

(n) In some instances the symbol (n) is used following a
number to indicate the radix. For example, 100 (8)

indicates that 100 is an octal wvalue, while 100(10)
indicates a decimal value.

X

PART I

INTRODUCTION TO MACRO

CHAPTER 1

MACRO FEATURES

The MACRO Assembler provides the following features:
1. Program and command string control of assembly functions
2. Device and filename specifications for input and output files
3. Error listing on command output device

4. Alphabetized, formatted symbol table 1listing; optional
cross-reference listing of symbols

5. Relocatable object modules

6. Global symbols for linking independent object modules
7. Conditional assembly directives

8. Program sectioning directives

9. User-defined macros and macro libraries

10. Comprehensive system macro library

11. Extensive program and command string control of 1listing
functions

12, An indirect command file facility for controlling the
assembly process.

1.1 OVERVIEW OF MACRO

MACRO is a 2-pass assembler. The functions and operations relevant to
each assembly pass are described in the following sections.

1.1.1 Assembly Pass 1

The main purpose of assembly pass 1 is to locate and read all required
macros from libraries; to build symbol tables and program section
tables for the program; while also performing a rudimentary assembly
of each source statement.

The first stage of assembly pass 1 is the initialization of all impure
data areas that MACRO uses internally for the assembly process. These
areas include all dynamic storage areas and buffer areas used as file
storage regions.

MACRO FEATURES

After initializing memory areas, MACRO 1issues a call to a system
subroutine which transfers a command line into memory. This command
line contains the specifications of the files to be used during
assembly. After scanning the command line for proper syntax, MACRO
initializes the specified output files. These files are opened to
determine if valid output file specifications have been passed in the
command line. They are then <closed to minimize requirements for
active file space.

As the assembly process begins, MACRO initiates a routine which
retrieves source 1lines from the 1input file. If no such file is
currently open, as is the case at the beginning of assembly, MACRO
opens the next input file specified in the command line previously
read and begins to assemble the source statements. MACRO determines
the length of each instruction and assembles it accordingly as one
word, two words, or three words.

At the end of assembly pass 1, MACRO reopens the output files
described above and writes out information that is to be used later by
the Linker in linking the object modules. Such information as the
object module name, the program version number, and the global symbol
directory (GSD) entries for each program section are output to the
object file. After writing out the GSD entries for a given program
section, MACRO scans through the symbol tables to find all the global
symbols that are bound to that particular program section. MACRO then
writes out GSD records to the object file for these symbols. This
process continues for each program section, bringing to a close
assembly pass 1.

1.1.2 Assembly Pass 2

As an integral part of pass 2, MACRO simultaneously writes the object
records to the output file and generates the assembly listing,
followed by the symbol table listing for the program. A
cross-reference listing may also be generated. See Section 8.1.4.

Basically, assembly pass 2 consists of the same steps performed in
assembly pass 1, except that all source statements containing
MACRO-detected errors are flagged with an error code as the assembly
listing file is created. The object file that is created as the final
consequence of pass 2 contains all the object records, together with
relocation records containing information necessary for subsequent
Linker linking of the object file.

The information thus passed to the Linker enables the global symbols
in the object modules to be associated with absolute or virtual memory
addresses, thereby forming an executable body of code.

The user may wish to become familiar with the macro object file format
and description. This information is presented in the TRAX Linker
Reference Manual (see Section 0.3 in the Preface).

CHAPTER 2

SOURCE PROGRAM FORMAT

2.1 PROGRAMMING STANDARDS AND CONVENTIONS

Assembly level programming deals directly with the host hardware.
Hence, great care must be exercised in establishing programming
standards and conventions to enable code written by one group to be
interchanged easily with another group. Standards provide a number of
advantages. When applied to the program development process,
standards make the programming effort easier to:

Plan
Comprehend
Test
Modify
Convert.

Even though standards must accommodate 1local requirements, many
aspects of the program development process have universal
applicability. The standards common to all of DIGITAL's PDP-11
software products are presented in Appendix E as a model for users.
Observance of these standards is beneficial to DIGITAL and its users,
by simplifying both communications and the continuing task of software
maintenance and enhancement.

2.2 STATEMENT FORMAT

A source program is composed of a sequence of source coding 1lines.
Each 1line contains a single assembly-language statement. MACRO will
accept a source line of 132 characters, but 80 characters 1is the
recommended 1length, because of constraints imposed by listing format
and terminal line size.

A MACRO statement may consist of as many as four fields. These fields
are identified by their order of appearance within the statement
and/or by specified separating characters between fields. The general
format of a MACRO statement is:

Label: Operator Operand ;Comment (s)

The label and comment fields are optional. The operator and operand
fields are interdependent, 1i.e., when both fields are present in a
source statement, each field is evaluated by MACRO in the context of
the other.

A statement may contain an operator field and no operand field, but
the reverse 1is not true. A statement containing an operand with no
operator does not conform to established MACRO coding conventions;
such a statement is currently interpreted by MACRO during assembly as
an implicit .WORD directive (see Section 6.3.2).

2-1

SOURCE PROGRAM FORMAT

MACRO interprets and processes source program statements one by one,
generating one or more binary instructions or data words, or
performing a specified assembly process. Blank lines, although legal,
have no significance in the source program.

An assembly-language statement must be completed on one source line;
no continuation lines are allowed in MACRO.

The tab character can be usedhin the source statement to format the
fields into aligned columns in accordance with DIGITAL's standard
source program format, as shown below:

Label - begins in column 1
Operator - begins in column 9
Operand (s) - begin(s) in column 17
Comment (s) - begin(s) in column 33.

For example, the following statement should be formatted in the source
program into specific columns, increasing its readability in the
assembly listing:

REGTST:BIT#MASK,VALUE ; COMPARES BITS IN OPERANDS.
1 9 17 33 (columns)
REGTST: BIT #MASK ,VALUE ;s COMPARES BITS. IN OPERANDS.

The above formatting conventions are not mandatory in coding MACRO
programs (free-field coding is permissible). However, it is
recommended that source programs be prepared in accordance with these
conventions for consistency and clarity.

2.2.1 Label Field

A label is a means of symbolically referring to a location in a
program.

A label is a user-defined symbol which is assigned the value of the
current location counter and entered into the user—-defined symbol
table. The current location counter 1is the means by which MACRO
assigns memory addresses to the source program statements as they are
encountered during the assembly process. The address value of the
label 1is absolute or relocatable, depending on whether the current
program section being assembled 1is absolute or relocatable. (The
concept of program sections and the attributes that may be specified
for them are discussed in detail in Section 6.8.)

In the case of an absolute program section, the value of the current
location counter 1is likewise absolute, i.e., its value references an
absolute virtual memory address (such as location 100). Similarly,
‘the value of the current location counter in a relocatable program
section is also relocatable; however, a relocation bias calculated by
the Linker will be added to the apparent value of the current location
counter to establish its effective absolute virtual address at
execution time.

SOURCE PROGRAM FORMAT

If present, a label always appears as the first field in a source
statement and must be terminated by a colon. For example, if the
current location counter value is absolute 100(8), the statement:

ABCD: MOV A,B

assigns the value 100(8) to the label ABCD. Subsequent references to
this 1label would then vyield a value of absolute 100(8). In this
example, if the location counter value were relocatable, the final
value of ABCD would be 100(8)+K, where K represents the relocation
bias of the program section, as calculated by the Linker at link time.

More than one label may appear within a single 1label field. Each
label so specified is assigned the same address value. For example,
if the current location counter value is 100(8), the multiple 1labels
in the following statement:

ABC: $DD: A7.7: MOV A,B
are each assigned the value 100(8).

Multiple labels may also appear on successive lines. For example, the
statements

ABC:
SDD:
A7.7: MOV A,B

likewise cause the same current location counter value to be assigned
to all three labels.

Of the two methods of assigning multiple labels shown above, the
second is preferred, because consistency of field positioning within
the source program improves readability.

A double colon (::) defines the label as a global symbol. Such a
label <can be referenced by independently-assembled object modules.
References to this label in other modules will be resolved by the
Linker when the modules are linked as a composite executable task.
For example, the statement

ABCD:: MOV A,B

establishes the label ABCD as a global symbol. The distinguishing
attribute of a global symbol is that it can be referenced from within
an object module other than the module in which the symbol is defined
(see Section 6.9).

The legal characters for defining labels are:

A through 2
0 through 9
. (Period)
$ (Dollar Sign)

NOTE

By convention, the dollar sign ($) and
period (.) are reserved for wuse in
defining DIGITAL system software
symbols. Therefore these characters
should not be used in defining labels in
MACRO source programs.

2-3

SOURCE PROGRAM FORMAT

A label may be any length; however, only the first six characters are
significant and, therefore, must be unique among all the labels in the
source program. All labels are terminatd by a colon (:), which is not
considered part of the label. It is a mandatory delimiter. An error
code (M) is generated 1in the assembly 1listing if the first six
characters in two or more labels are the same (see Appendix D).

A symbol used as a label must not be redefined within the source
program. If the symbol is redefined, a 1label with a multiple
definition results, causing MACRO to generate an error code (M) in the
assembly listing (see Appendix D). Furthermore, any statement in the
source program which references a multi-defined label results in an
additional diagnostic message; in this case, an error code (D) is
generated in the assembly listing (see Appendix D).

2.2.2 Operator Field

The operator field specifies the action to be performed. It may
consist of an instruction mnemonic (op code), an assembler directive,
or a macro call.

The operator field follows the label field in a source statement.
Chapters 6 and 7 describe these three types of operator field entries.

When the operator is an instruction mnemonic, the mnemonic op code
specifies the machine instruction to be generated. MACRO then
continues with the evaluation of the address(es) of the operand(s)
which follow(s). When the operator 1is a directive, the directive
causes MACRO to perform certain control actions or processing
operations during the assembly of the source program. When the
operator is a macro call, MACRO inserts the code generated by the
macro expansion.

The operator field need not be preceded by a label; but it may be
preceded by one or more labels and followed by one or more operands
and/or a comment. Furthermore, leading and trailing spaces or tabs in
the operator field have no significance; such characters serve only
to separate the operator field from the preceding and following
fields.

An operator is terminated by a space, tab, or any non-RAD50 character,
as in the following examples:

MOV A,B ;THE SPACE TERMINATES THE OPERATOR
;MOV.

MOV A,B ;THE TAB TERMINATES THE OPERATOR MOV.

MOV@A,B ;THE @ CHARACTER TERMINATES THE

;OPERATOR MOV.

Although the statements above are all equivalent in function, the
second statement is the recommended form because it conforms to MACRO
coding conventions.

2.2.3 Operand Field

When the operator field contains an instruction mnemonic (op code),
the operand field specifies those program variables that are to be
evaluated/manipulated by the operator. The operand field may also be

SOURCE PROGRAM FORMAT

used to supply arguments to MACRO directives and macro calls, as
described in Chapters 6 and 7, respectively.

Operands may be expressions or symbolic arguments (within the context
of the specified operation). Multiple expressions used in the operand
field of a MACRO statement must be separated by a comma; multiple
symbolic arguments similarly wused may be delimited by any legal
separator, i.e., a comma, tab, and/or space. An operand should be
preceded by an operator field; if it is not, the statement is treated
by MACRO as an implicit .WORD directive (see Section 6.3.2).

When the operator field contains an op code, associated operands are
always expressions, as shown in the following statement:

MOV R0O,A+2 (R1)

On the other hand, when the operator field contains a MACRO directive
or a macro call, associated operands are normally symbolic arguments,
as shown in the following statement:

.MACRO ALPHA ARGl,ARG2

Refer to the description of each MACRO directive to determine the type
and number of operands required in issuing the directive.

The operand field is terminated by a semicolon when the field Iis
followed by a comment. For example, in the following statement:

LABEL: MOV A,B ; COMMENT FIELD

the tab between MOV and A terminates the operator field and defines
the beginning of the operand field; a comma separates the operands A
and B; and a semicolon terminates the operand field and defines the
beginning of the comment field. When no comment field follows, the
operand field is terminated by the end of the source line.

2.2.4 Comment Field

The comment field normally begins in column 33 and extends through the
end of the line. This field is optional and may contain any ASCII
characters except null, RUBOUT, carriage-return, line-feed,
vertical-tab or form-feed. All other characters appearing in the
comment field, even special characters reserved for use in MACRO, are
checked only for ASCII 1legality and then included in the assembly
listing as they appear in the source text.

All comment fields must begin with the semicolon character(;). When
lengthy comments extend beyond the end of the source line (column 80),
the comment may be resumed in a following line. Such a 1line must
contain a leading semicolon, and it is suggested that the body of the
comment be continued in the same columnar position in which the
comment began. A comment 1line can also be included as an entirely
separate line within the code body.

Comments do not affect assembly processing or program execution.
However, comments are useful in source listings for later analysis,
debugging, or documentation purposes.

SOURCE PROGRAM FORMAT

2.3 FORMAT CONTROL

Horizontal formatting of the source program is controlled by the space
and tab characters. These characters have no effect on the assembly
process unless they are embedded within a symbol, number, or ASCII
text string, or unless they are used as the operator field terminator.
Thus, the space and tab characters can be used to provide an orderly
and readable source program, as reflected by the following statements:

LABEL:MOV (SP) +,TAG; POP VALUE OFF STACK.

No spaces or tabs have been used to separate the fields 1in this
statement. Note the difficulty in recognizing where one field ends
and the next begins.

LABEL: MOV (SP)+,TAG ;POP VALUE OFF STACK.

This statement conforms to the standard horizontal formatting
conventions, i.e., the statement elements are separated into four
distinct fields and are therefore easily discernible.

Page formatting and assembly listing considerations are discussed in
Chapter 6 in the context of MACRO directives that may be specified to
accomplish desired formatting operations. Appendix E describes the
coding conventions used 1in all DIGITAL PDP-11 operating system
software.

SOURCE PROGRAM FORMAT

PART II

PROGRAMMING
IN MACRO ASSEMBLY
LANGUAGE

CHAPTER 3

SYMBOLS AND EXPRESSIONS

This chapter describes the components of MACRO instructions. The
character set, the conventions observed in constructing symbols, and
the use of numbers, operators, terms and expressions are discussed as
they relate to MACRO programming.

3.1 CHARACTER SET
The following characters are legal in MACRO source programs:
1. The letters A through Z. Both upper- and lower—-case letters
are acceptable, although, upon input, lower-case letters are
converted to upper-case (see Section 6.2, .ENABL LC).

2. The digits 0 through 9.

3. The characters . (period) and § (dollar sign). These
characters are reserved for use as Digital Eguipment
Corporation system program symbols.

4, The special characters listed in Table 3-1.

Table 3-1
Special Characters Used in MACRO

Character Designation Function
: Colon Label terminator.
HE Double colon Label terminator; defines the

label as a global label.

= Equal sign Direct assignment operator;
and macro keyword indicator.
== Double equal Direct assignment operator;
sign defines the symbol as a global
symbol.
% Percent sign Register term indicator.
Tab Item or field terminator.
Space Item or field terminator.

(continued on next page)

SYMBOLS AND EXPRESSIONS

Table 3-1 (Cont.)

Special Characters Used in MACRO

Character Designation Function

Number sign Immediate expression
indicator.

Q At sign Deferred addressing indicator.

(Left parenthesis Initial register indicator.

) Right parenthesis Terminal register indicator.

. Period Current location counter

’ Comma Operand field separator.

; Semicolon Comment field indicator.

< Left angle Initial argument or expression

bracket indicator.

> Right angle Terminal argument or expres-

bracket sion indicator.

+ Plus sign Arithmetic addition operator
or autoincrement indicator.

- Minus sign Arithmetic subtraction opera-
tor or autodecrement indica-
tor.

* Asterisk Arithmetic multiplication op-
erator.

/ Slash Arithmetic division operator.

& Ampersand Logical AND operator.

1 Exclamation point Logical inclusive OR operator.

" Double quote Double ASCII character indica-
tor.

! Single quote Single ASCII character indica-
tor; or concatenation
indicator.

- Up arrow or Universal unary operator or

circumflex argument indicator.

\ Backslash Macro call numeric argument

indicator.

3.1.1 Separating and Delimiting Characters

Legal separating characters and legal arqument delimiters are defined
below in Tables 3-2 and 3-3 respectively.

SYMBOLS AND EXPRESSIONS

Table 3-2
Legal Separating Characters

Character

Definition Usage

Space

One or more spaces A space is a legal separator
and/or tabs between instruction fields and
between symbolic arguments
within the operand field.
Spaces within expressions are
ignored (see Section 3.9).

Comma A comma is a legal separator
between symbolic arguments
within the operand field.
Multiple expressions used in
the operand field must be
separated by a comma.

Table 3-3
Legal Argument Delimiters

Character

Definition Usage

ews

“XeooX

Paired angle brackets Paired angle brackets may be
used anywhere in a program to
enclose an expression for
treatment as a single term.
Paired angle brackets are also
used to enclose a macro
argument, particularly when
that argument contains separ-
ating characters (see Section
7.3).

Up-arrow (unary oper- This construction 1is equiva-
ator) construction, lent in function to the paired
where the up-arrow is angle brackets described above
followed by an argu- and 1is generally used only
ment that is bracketed where the argument itself con-
by any paired printing tains angle brackets.

characters (x).

3.1.2 1I1
A charact

1.

2.

legal Characters
er is determined to be illegal for one of two reasons:

A character 1is not an element of the recognized MACRO
character set. A character of this kind is replaced in the
listing by a question mark, and an error code (I) is printed
in the assembly listing (see Appendix D). The exception to
this is an embedded null which, when detected, terminates the
scan of the current line.

A legal MACRO character is illegal in the context of its
usage within the source statement, i.e., 1its syntax is
illegal or questionable. Such a character causes an error
code (Q) to be printed in the assembly listing.

3-3

SYMBOLS AND EXPRESSIONS

3.1.3 Unary and Binary Operators

Legal MACRO unary operators are described in Table 3-4. Unary
operators are used in connection with single terms (arguments or
operands) to indicate an action to be performed on that term during
assembly. A term preceded by a unary operator is considered to
contain that operator. The term 'so specified thus becomes a value
which can be used alone or as an element of an expression.

Table 3-4
Legal Unary Operators

Unary
Operator | Explanation Example Effect

+ Plus sign +A Produces the positive
value of A.

- Minus sign -A Produces the negative
(2's complement) value of
A,
- Up-arrow, univer- “Cc24 Produces the l's comple-
sal unary operator. ment value of 24(8).
(This usage is
described in detail “D127 Interprets 127 as a
in Section 6.4.) decimal number.

“F3.0 Interprets 3.0 as a
1-word, floating-point
number.

034 Interprets 34 as an octal
number.

"B11000111 Interprets 11000111 as a
binary number.

“"RABC Evaluates ABC in Radix-50
form.

Unary operators can be used adjacent to each other or in constructions
involving multiple terms, as shown below:

-"D50 (Equivalent to -<"D50>)
“C"012 (Equivalent to "C<"012>)

Legal MACRO binary operators are described in Table 3-5. 1In contrast
to unary operators, binary operators specify actions to be performed
on multiple items or terms within an expression. Table 3-5 shows the
relationships that can be established between expression terms through
the use of binary operators.

SYMBOLS AND EXPRESSIONS

Table 3-5
Legal Binary Operators
Binary
Operator | Explanation Example
+ Addition A+B
- Subtraction A-B
* Multiplication A*B (16-bit product returned)
/ Division A/B (l6-bit quotient returned)
& Logical AND AsB
! Logical inclusive OR A!B

All binary operators have equal priority. Items or terms can be
grouped for evaluation within an expression by enclosing them within
angle brackets. Terms so enclosed are evaluated first, and remaining
operations are performed from left to right, as shown in the examples
below:

.WORD 1+2%3 ;EQUALS 11(8).
.WORD 1+<2%3> ;EQUALS 7(8).

3.2 MACRO SYMBOLS

Three types of symbols may be defined for wuse within MACRO source
programs: permanent symbols, user-defined symbols, and macro symbols.
MACRO maintains three types of symbol tables: the Permanent Symbol
Table (PST), the User Symbol Table (UST), and the Macro Symbol Table
(MST). The PST contains all the permanent symbols defined within (and
thus automatically recognized by) MACRO and is part of the MACRO task
image. The UST and MST are constructed as the source program is
assembled.

3.2.1 Permanent Symbols

Permanent symbols consist of the instruction mnemonics (see Appendix
C) and MACRO directives (see Chapters 6 and 7 and Appendix B). These
symbols are a permanent part of the MACRO task image and need not be
defined before being used in the operator field of a MACRO source
statement (see Section 2.2.2).

3.2.2 User-Defined and Macro Symbols

User—-defined symbols are those symbols treated by the programmer as
labels (see Section 2.2.1) or that are equated to a specific value
through a direct assignment statement (see Section 3.3) or appear as
macro names or dummy arguments. These symbols are added to the User
Symbol Table as they are encountered during assembly. Macro symbols
are those symbols used as macro names (see Section 7.1). Similarly,
these symbols are added to the Macro Symbol Table ;- as they are
encountered during assembly.

SYMBOLS AND EXPRESSIONS

User-defined and macro symbols can be composed of alphanumeric
characters, dollar signs ($), and periods (.) only; any other
character is illegal.

NOTE

The dollar sign ($) and period (.)
characters are reserved for use in
defining Digital Equipment Corporation
system software symbols. For example,
READS is a file-processing system macro.
The user 1is cautioned not to employ
these characters in constructing
user-defined symbols or macro symbols in
order to avoid possible conflicts with
existing or future Digital Equipment
Corporation system software symbols.

The following rules govern the creation of user-defined and macro
symbols:

1. The first character of a symbol must not be a number (except
in the case of local symbols; see Section 3.5).

2. The first six characters of a symbol must be unique.

3. A symbol can be written with more than six legal characters,
but the seventh and subsequent characters are checked only
for ASCII legality and are not otherwise evaluated or
recognized by MACRO.

4. Spaces, tabs, and illegal characters must not be embedded
within a symbol. The legal MACRO character set is defined in
Section 3.1.

The value of a symbol depends upon its use in the program. When a
symbol appears in the operator field, it may be any one of the three
symbol types described above i.e., permanent, user-defined, macro. To
determine the value of an operator-field symbol, MACRO searches the
symbol tables in the following order:

1. Macro Symbol Table
2. Permanent Symbol Table
3. User-Defined Symbol Table

This search order allows redefinition of Permanent Symbol Table
entries as macro symbols. That is, permanent symbols may be used as
macro symbols. But the user must keep in mind the sequence in which
the search for symbols is performed 1in order to avoid incorrect
interpretation of the symbol's use.

When a symbol appears in the operand field, the User-Defined Symbol
Table is searched first, then the Permanent Symbol Table is searched.

Depending on their use in the source program, user-defined symbols
have either a 1local (internal) attribute or a global (external)
attribute.

Normally, MACRO treats all user-defined symbols as 1local, that 1is,
their definition is 1limited to the module in which they appear.

SYMBOLS AND EXPRESSIONS

However, symbols can be explicitly declared to be global symbols
through one of three methods:

l. Use of the .GLOBL directive (see Section 6.9).

2. Use of the double colon (::) in defining a label (see Section
2.2.1).

3. Use of the double equal (== sign in a direct assignment
statement (see Section 3.3).

All symbols within a module that remain undefined at the end of
assembly are treated as default global references.

NOTE

Undefined symbols at the end of assembly
are assigned a value of 0 and placed
into the user-defined symbol table as
undefined default global references. 1If
the .DSABL GBL directive is 1in effect,
however, (see Section 6.2), the
automatic global reference default
function of MACRO is inhibited, causing
the statement containing the undefined
symbol to be flagged with an error code
(U) in the assembly listing (see
Appendix D).

Global symbols provide linkages between independently-assembled object
modules within the task image. A global symbol defined as a label,
for example, may serve as an entry-point address to another section of
code within the task image. Such symbols are referenced from other
source modules in order to transfer control throughout the task's
execution. These global symbols are resolved by the Linker at link
time, ensuring that the resulting task image is a 1logically coherent
and complete body of code.

3.3 DIRECT ASSIGNMENT STATEMENTS
A direct assignment statement allows you to equate a symbol to a
specific value. When a direct assignment statement is first used to
define a symbol, that symbol is entered into the User-Defined Symbol
Table. A symbol defined in this manner may be redefined in a
subsequent direct assignment statement by assigning a new value to the
previously-defined symbol.
The general format for a direct assignment statement is:
symbol=expression

or

symbol==expression

where: expression - can have only one level of forward reference
(see 5. Dbelow).

- cannot contain an undefined global reference.

SYMBOLS AND EXPRESSIONS

A direct assignment statement embodying the double equal (==) sign, as
shown above, defines the symbol as global (see Section 6.9).

The following examples illustrate the coding of direct assignment
statements:

A=1 ;THE SYMBOL A IS EQUATED TO THE
;VALUE 1.
B=A-1&MASKLOW ;THE SYMBOL B IS EQUATED TO THE

;VALUE OF THE ENTIRE EXPRESSION
;WHICH FOLLOWS.

D=, ;THE SYMBOL D IS EQUATED TO ., AND

E: MOV #1,ABLE ;THE LABELS C AND E ARE ASSIGNED A
;VALUE THAT IS EQUAL TO THE LOCATION
;OF THE MOV INSTRUCTION.

The last of the three examples above is provided only to illustrate
the performance of MACRO in such situations. See Section 3.6 for a
description of the period (.) as the current location counter symbol.

The following conventions apply to the coding of direct assignment
statements:

1. An equal sign (=) or double equal sign (==) must separate the
symbol from the expression defining the symbol's value.
Spaces preceding and/or following the direct assignment
operators, although permissible, have no significance in the
resulting value.

2. The symbol being assigned in a direct assignment statement is
placed in the label field.

3. Only one symbol can be defined in a single direct assignment
statement.

4, A direct assignment statement may be followed only by a
comment field.

5. Only one level of forward referencing is allowed, as shown in
the following example:

X=Y (I1legal forward reference)
V=2 (Legal forward reference)
zZ=1

The above example would result in the generation of an error code (U)
in the assembly 1listing on the line containing the illegal forward
reference.

Although one 1level of forward referencing 1is allowed for local
symbols, a global symbol defined in a direct assignment statement must
not contain a forward reference, 1i.e., the global assignment
expression must not itself contain an undefined reference to another
symbol. Such a forward reference is illegal, causing an error code
(A) to be generated in the assembly listing.

SYMBOLS AND EXPRESSIONS

3.4 REGISTER SYMBOLS

The eight general registers of the PDP-11 processor are numbered 0
through 7 and can be expressed in the source program in the following
manner:

%0
%1

37

where % indicates a reference to a register rather than a 1location.
The digit specifying the register can be replaced by any legal,
absolute term that can be evaluated during the first assembly pass.
Use standard symbolic names for all register references.

The register definitions listed below are automatically assigned by
MACRO, 1i.e., these definitions are the normal default values and
remain valid for all register references within the source program.

RO=3%0 ;REGISTER 0 DEFINITION.
R1=%1 ;REGISTER 1 DEFINITION,
R2=%2 ;REGISTER 2 DEFINITION.
R3=%3 ;REGISTER 3 DEFINITION.
R4=%4 ;REGISTER 4 DEFINITION.
R5=%5 ;REGISTER 5 DEFINITION.
SP=%6 ;STACK POINTER DEFINITION.
pc=%7 ; PROGRAM COUNTER DEFINITION.

Note that registers 6 and 7 are given special names because of their
unique system functions.

A register symbol may be defined in a direct assignment statement
appearing in the program. The defining expression of a register
symbol must be a legal, absolute value. Although you can reassign the
standard register symbols through the use of the .DSABL REG directive
(see Section 6.2), this practice is not recommended. An attempt to
redefine a default register symbol without first specifying the .DSABL
REG directive to override the normal register definitions causes that
assignment statement to be flagged with an error code (R) in the
assembly 1listing. The symbolic default names assigned to the
registers, as listed above, are the conventional names used in all
DIGITAL-supplied PDP-11 system programs. For this reason, you are
well advised to follow these conventions.

All non-standard register symbols must be defined before they are
referenced in the source program. A register expression less than 0
or greater than 7 is flagged with an error code (R) in the assembly
listing.

The % character may be used with any legal term or expression to
specify a register. For example, the statement

CLR $3+1
is equivalent in function to the statement
CLR %4

and clears the contents of register 4.

SYMBOLS AND EXPRESSIONS

In contrast, the statement
CLR 4

clears the contents of virtual memory location 4.

3.5 LOCAL SYMBOLS

Local symbols are specially formatted symbols used as labels within a
block of coding that has been delimited as a local symbol block.
Local symbols are of the form n$, where n is a decimal integer from 1
to 65535, inclusive. Examples of local symbols are:

1$
27$
59%
104s$

A local symbol block is delimited in one of three ways:

l. The range of a local symbol block usually consists of those
statements between two normally-constructed symbolic labels
(see Figure 3-1). Note that a statement of the form:

ALPHA=expression

is a direct assignment statement (see Section 3.3), but does
not <create a label and thus does not delimit the range of a
local symbol block.

2, The range of a local symbol block is normally terminated upon
encountering a .PSECT, .CSECT, or .ASECT directive in the
source program (see Figure 3-1).

3. The range of a local symbol block is delimited through MACRO
directives, as follows:

Starting delimiter: .ENABL LSB (see Section 6.2)
Ending delimiter: .ENABL LSB
or
.DSABL LSB (see Section 6.2)
followed by one of: Symbolic label

.PSECT (see Section 6.8.1)
.CSECT (see Section 6.8.2)
.ASECT (see Section 6.8.2)

Local symbols provide a convenient means of generating 1labels for
branch instructions and other such references within a local symbol
block. Using local symbols reduces the possibility of symbols with
multiple definitions appearing within a user program. In addition,
the use of local symbols differentiates entry-point labels from local
labels, since 1local symbols cannot be referenced from outside their
respective local symbol block. Thus, local symbols of the same name
can appear in other 1local symbol blocks without conflict. Local
symbols do not appear in cross-reference listings.

3-10

SYMBOLS AND EXPRESSIONS

Local symbols require less symbol table space than other types of
symbols. Their use is recommended. When defining local symbols, use
the range from 1$ to 63$ first, then the range from 128% to 65535S$.
Local symbols within the range 64$ through 127$, inclusive, can be
generated automatically as a feature of MACRO. Such local symbols are
useful in the expansion of macros during assembly and are described in
detail in this context in Section 7.3.5.

Be sure to avoid multiple definitions of local symbols within the same
local symbol block. For example, if the local symbol 10$ is defined
two or more times within the same local symbol block, each symbol
represents a different address value. Such a multi-defined symbol
causes an error code (P) to be generated in the assembly listing.

For examples of local symbols and local symbol blocks as they appear
in a source program, see Figure 3-1.

121 i

122) PROGRAM INITIALIZATION CODE

123)

124

125 Q000e0? +PSECT XCTPRG,GBL

126 240200 Q12700 oee2000' XCTPRGyIMOV #IMPURE,RD JIMPURE DATA INITIALIZATION
127 omoeea 025020 183 CLR (RQ)»

128 Q20006 022722 Dproeee’ (414 NIMPURT,RY

129 000012 103374 Bml 18

139

131 eneonne +PSECT xCTPAS,GBL

132 eveeea 01272 ee@neR! XCTPASt MOV #IMPPAS,RQ BPASS INITIALIZATION
133 209P04 Q05A2n 182 CLR (RO)+

134 PN0RO6 022700 @AAR220! cmpP WIMPPAT,RO

135 omo@t12 121374 anl 13

136

137 Qednp9 +PSECT XCTLIN,GBL

138 200022 012700 PeeQpeR' XCTLINgsMOV SIMPLIN,RQ JLINE INITIALIZATION
139 eaneed 0P5020 181 CLR (RO)

142 000R06 922703 oralAR! cme wIMPLIT,RO

141 AN2012 191374 BMl 13

142

Figure 3-1 Assembly Listing Showing Local Symbol Block

3.6 CURRENT LOCATION COUNTER

The period (.) is the symbol for the current location counter. When
used in the operand field of an instruction, it represents the address
of the first word of the instruction, as shown in the first example
below. When used in the operand field of a MACRO directive, it
represents the address of the current byte or word, as shown in the
second example below.

A: MOV #.,R0 ;THE PERIOD (.) REFERS TO THE ADDRESS
;OF THE MOV INSTRUCTION.

(The function of the # symbol is explained in Section 5.9.)

SAL=0
.WORD 177535,.+4,SAL ;THE OPERAND .+4 IN THE .WORD
;DIRECTIVE REPRESENTS A VALUE
;THAT IS STORED AS THE SECOND
;OF THREE WORDS DURING)
;ASSEMBLY.

Assume that the current value of the location counter is 500. During
assembly, MACRO reserves storage in response to the .WORD directive
(see Section 6.3.2), beginning with location 500. The operands
accompanying the .WORD directive determine the values so stored. The

3-11

SYMBOLS AND EXPRESSIONS

value 177535 is thus stored in location 500. The value represented by
.+4 1is stored in location 502; this value is derived as the current
value of the location counter (which is now 502), plus the absolute
value 4, thereby depositing the value 506 in location 502. Finally,
the value of SAL, previously equated to 0, is deposited 1in 1location
504.

Figure 3-2 illustrates the result of the example.

LOCATION CONTENTS
500 177535
502 506
504 0

Figure 3-2 Sample Assembly Results

At the beginning of each assembly pass, MACRO resets the location
counter. Normally, consecutive memory locations are assigned to each
byte of object data generated. However, the value of the location
counter can be changed through a direct assignment statement of the
following form:

.=expression

Similar to other MACRO symbols, the current location counter symbol
(.) has an attribute of relocatability associated with it: it is
either absolute or relocatable, depending on the specific such
attribute of the current program section. (A program section and its
attributes are defined through the use of the .PSECT directive
described 1in Section 6.8.1.) The existing attribute (or mode) of the
current location counter cannot be changed by specifying a defining
expression having a different attribute.

Furthermore, such a defining expression must not force the 1location
counter into another program section (.PSECT area), even though the
program sections so involved may both be absolute or relocatable. The
expression defining the 1location counter value must not contain a
forward reference, i.e., the expression must not contain a reference
to a symbol that 1is not previously defined. Such violations
constitute a general assembly error, resulting in an error code (A) in
the assembly listing.

Thus, the attribute (or mode) of the current location counter takes on
the attribute of the current program section. Therefore, its
attribute from program section to program section can be changed only
through the program sectioning directives (.PSECT, .ASECT, and
.CSECT), as described in Section 6.8.

The following coding illustrates the use of the current location
counter:

.ASECT
.=500 ;SET LOCATION COUNTER TO
;ABSOLUTE 500 (OCTAL).
FIRST: MOV .+10,COUNT ; THE LABEL "FIRST" HAS THE VALUE

;500 (OCTAL) .
; .+10 EQUALS 510(OCTAL). THE
;CONTENTS OF THE LOCATION

SYMBOLS AND EXPRESSIONS

3510 (OCTAL) WILL BE DEPOSITED
;IN THE LOCATION "COUNT."

.=520 ;THE ASSEMBLY LOCATION COUNTER
;NOW HAS A VALUE OF
;ABSOLUTE 520 (OCTAL).

SECOND: MOV . s INDEX ;THE LABEL SECOND HAS THE
; VALUE 520 (OCTAL).
; THE CONTENTS OF LOCATION
3520 (OCTAL) , THAT IS, THE BINARY
;CODE FOR THE INSTRUCTION
; ITSELF, WILL BE DEPOSITED IN THE
; LOCATION "INDEX."

.PSECT

.=.+20 ;SET LOCATION COUNTER TO
;RELOCATABLE 20 OF THE
;UNNAMED PROGRAM SECTION.

THIRD: .WORD 0 ;THE LABEL THIRD HAS THE
;VALUE OF RELOCATABLE 20.

Storage areas may be reserved in the program by advancing the location
counter. For example, if the current value of the location counter is
1000, each of the following statements:

0=.+40
or

.BLKB 40
or
.BLKW 20

reserves 40(8) bytes of storage space in the source program. The
.BLKB and .BLKW directives, however, are recommended as the preferred
ways to reserve storage space (see Section 6.5.3).

3.7 NUMBERS

MACRO assumes that all numbers in the source program are to be
interpreted 1in octal radix, unless otherwise specified. An exception
to this is that operands associated with Floating Point Processor
instructions and Floating Point Data directives are treated as decimal
(see Section 6.4.2). This default radix can be altered with the
.RADIX directive (see Section 6.4.1.1). Also, individual numbers can
be designated as decimal, binary, or octal numbers through temporary
radix control operators (see Section 6.4.1.2).

For every statement in the source program that contains a digit that
is not 1in the «current radix, an error code (N) is generated in the
assembly listing. However, MACRO' continues with the scan of the
statement and evaluates each such number encountered as a decimal
value.

Negative numbers must be preceded by a minus sign; MACRO translates
such numbers into two's complement form. Positive numbers may (but
need not) be preceded by a plus sign.

A number containing more than 16 significant bits, i.e., greater than
177777(8), 1is truncated from the left and flagged with an error code
(T) in the assembly listing.

SYMBOLS AND EXPRESSIONS

Numbers are always considered to be absolute values, i.e., they are
not relocatable.

Single-word floating-point numbers may be generated with the °F
operator (see Section 6.4.2.2) and are stored in the following format:

15 14 7 6 0
Sign 8-bit 7-bit
Bit Exponent Mantissa

Refer to the appropriate PDP-11 Processor Handbook for details of the
floating-point number format.

3.8 TERMS

A term is a component of an expression and may be one of the
following:

1. A number, as defined in Section 3.7, whose 1l6-bit value is
used.

2. A symbol, as defined in Section 3.2. Symbols are evaluated
as follows:

a. A period (.) specified in an expression causes the value
of the current location counter to be used.

b. A defined symbol is located in the User-Defined Symbol
Table (UST) and its value is used.

c. A permanent symbol's basic value is wused, with zero
substituted for the addressing modes. (Appendix C lists
all op codes and their values.)

d. An undefined symbol is assigned a value of zero and
inserted in the User-Defined Symbol Table as an undefined
default global reference. If the .DSABL GBL directive
(see Section 6.2) is in effect, the automatic global
reference default function of MACRO 1is inhibited, in
which case, the statement containing the undefined symbol
is flagged with an error code (U) in the assembly
listing.

3. An ASCII conversion operation is performed, using either a
single quote followed by a single ASCII character, or a
double quote followed by two ASCII characters. This type of
expression construction is explained in detail in Section
6.3.3.

4. A term may also be an expression enclosed in angle brackets
(<>). Any expression so enclosed is evaluated and reduced to
a single term before the remainder of the expression in which
it appears is evaluated. Angle brackets, for example, may be
used to alter the left-to-right evaluation of expressions (as
in A*B+C versus A*<B+C>), or to apply a unary operator to an
entire expression (as in -<aA+B>).

SYMBOLS AND EXPRESSIONS

3.9 EXPRESSIONS

Expressions are combinations of terms Jjoined together by binary
operators (see Table 3-5) and which reduce to a 16-bit expression
value. The evaluation of an expression includes the determination of
its attributes. A resultant expression value may be any one of four
types (as described later in this section): absolute, relocatable,
external, or complex relocatable.

Expressions are evaluated from 1left to right with no operator
hierarchy rules, except that wunary operators take precedence over
binary operators. A term preceded by a unary operator 1is considered
to contain that operator. (Terms are evaluated, where necessary,
before their use in expressions.) Multiple unary operators are wvalid
and are treated as follows:

-+=A
is equivalent to:
—<+<-A>>

A missing term, expression, or external symbol 1is interpreted as a
zero. A missing or 1illegal operator terminates the expression
analysis, causing an error code (A) or (Q), or both, to be generated
in the assembly 1listing, depending on the context of the expression
itself. For example, the expression:

TAG ! LA 177777
is evaluated as
TAG ! LA

because the first non-blank character following the symbol LA is not a
legal binary operator, an expression separator (i.e., a comma), or an
operand field terminator (i.e., a semicolon or the end of the source
line). It should be noted that spaces within expressions are ignored.

The value of an external expression is equal to the value of the
absolute part of that expression. For example, the expression
EXTERN+A, where "EXTERN" is an external symbol, has a value at
assembly-time that 1is equal to the value of the internal symbol A.
This expression, however, when evaluated by the Linker at 1link time
takes on the resolved value of the symbol EXTERN, plus the value of
symbol A.

Expressions, when evaluated by MACRO, are determined to be one of four
types: absolute, relocatable, external (or global), or complex
relocatable. The following distinctions are important:

1. An expression 1is absolute if its wvalue 1is fixed. An
expression whose terms are numbers and ASCII conversion
characters will reduce to an absolute value. A relocatable
expression or term minus a relocatable term, where both
elements being evaluated belong to the same program section,
are also absolute, since such an expression is reduced to a
single term by MACRO upon completion of the expression scan.
For example, the expression TAG2-TAGl, where both TAGl and
TAGZ2 are defined in the same program section, is an absolute
expression.

SYMBOLS AND EXPRESSIONS

2. An expression is relocatable if its value is fixed relative
to the base address of the program section in which it
appears, but it will have an offset value added at task-build
time. Expressions whose terms contain 1labels defined in
relocatable program sections will have a relocatable value;
similarly, a period {.) 1in a relocatable program section,
representing the value of the current location counter, will
also have a relocatable value.

3. An expression is external (or global) if it contains a single
global reference (plus or minus an absolute expression value)
that is not defined within the current program. Thus, an
external expression 1is only partially defined following
assembly and must be resolved by the Linker at link time.

4. An expression is complex relocatable if any of the following
conditions applies:

- It contains a global reference and a relocatable symbol.
- It contains more than one global reference.

- It contains relocatable terms belonging to different
program sections.

- The value resulting from the expression has more than one
level of relocation. For example, 1if the relocatable
symbols TAGl and TAG2 associated with the same program
section are specified in an expression construction in the
form TAGl+TAG2, two levels of relocation would be
introduced, since each symbol is evaluated in terms of the
relocation bias in effect for the program section.

- An operation other than addition 1is specified on an
undefined global symbol.

- An operation other than addition, subtraction, negation, or
complementation is specified for a relocatable value.

The evaluation of relocatable, external, and complex relocatable
expressions is completed at link time.

CHAPTER 4

RELOCATION AND LINKING

The output of MACRO is an object module which must be processed by the
Linker before it can be loaded and executed. Essentially, the Linker
fixes (i.e., makes absolute) the values of external or relocatable
symbols in the object module, thus transforming the object module, or
several such object modules, into an executable task 1image. This
process is called linking.

To enable the Linker to fix the value of an expression, MACRO issues
certain directives to the Linker, together with other required
parameters. In the case of relocatable expressions in the object
module, the Linker adds the base of the associated relocatable program
section to the value of the relocatable expression provided by MACRO.
In the case of external expression values, the Linker determines the
value of the external term -‘in the expression (since the external
symbol must be defined in one of the other object modules being linked
together) and then adds it to the absolute portion of the external
expression, as provided by MACRO.

All instructions that require modification by the Linker are flagged
in the assembly 1listing, as illustrated in the example below. The
apostrophe (') following the octal expansion of the instruction
indicates that simple relocation is required; the letter G indicates
that the value of an external symbol must be added to the absolute
portion of an expression; and the letter C indicates that complex
relocation analysis by the Linker is required in order to £fix the
value of the expression.

EXAMPLE:
005065 CLR EXTERN (R5) ;THE VALUE OF THE "EXTERN" SYMBOL IS
000000G ;ASSEMBLED AS ZERO AND IS TO BE
sRESOLVED BY THE TASK BUILDER.
005065 CLR EXTERN+6 (R5) ;THE VALUE OF THE SYMBOL "EXTERN"
000006G ;IS TO BE RESOLVED BY
;THE TASK BUILDER AND ADDED TO
; THE ABSOLUTE PORTION (+6) OF
;THE EXPRESSION.
005065 CLR RELOC (RS) ;ASSUMING THAT THE VALUE OF THE
000040 ;SYMBOL "RELOC" IS RELOCATABLE
740, THE TASK BUILDER WILL ADD A
;RELOCATION BIAS TO THIS VALUE.
005065 CLR —<EXTERN+RELOC> (R5) ;THIS EXPRESSION IS COMPLEX
000000C sRELOCATABLE BECAUSE IT REQUIRES

:;THE NEGATION OF AN EXPRESSION
. THAT CONTAINS A GLOBAL (EXTERN)
REFERENCE AND A RELOCATABLE TERM.

RELOCATION AND LINKING

For a complete description of object records output by MACRO, refer to
the TRAX Linker Reference Manual (see Section 0.3 in the Preface).

CHAPTER 5

ADDRESSING MODES

The program counter (PC) always contains the address of the next word
to be fetched, i.e., the address of the next instruction to be
executed, or the second or third word of the current instruction.

In order to understand how the address modes operate and how they
assemble, the action of the program counter must be understood. The
key rule to remember is:

"whenever the processor implicitly uses the program counter
(PC) to fetch a word from memory, the program counter is
automatically incremented by 2 after the fetch operation is
completed. "

In the case of 2- or 3-word instructions, the processor uses the PC to
fetch the following words as well.

The following symbols are used 1in describing addressing modes
throughout this chapter:

1. E is any expression, as defined in Chapter 3.
2. R is a register expression, i.e., any expression containing a

term preceded by a percent sign (%) or a symbol previously
equated to such a term, as shown in the examples below:

RO=%0 ;GENERAL REGISTER O.
R1=R0O+1 ; GENERAL REGISTER 1.
R2=1+%1 ;GENERAL REGISTER 2.

The symbol R may also represent any of the normal default
register definitions (see Section 3.4).

3. ER is a register expression or an absolute expression in the
range 0 to 7, inclusive.

4. A is a general addressing specification which produces a
6-bit mode address field, as described 1in the PDP-11
Processor Handbooks. The addressing specification, A, is
described in terms of E, R, and ER, as defined above. Each
addressing specification within this section 1is illustrated
using either the single operand instruction CLR or the double
operand instruction MOV,

5.1 REGISTER MODE

The register itself (R) contains the operand to be manipulated by the
instruction.

Format for A:
Example:

CLR

ADDRESSING MODES

R

R3

5.2 REGISTER DEFERRED MODE

The register

(R) contains the

by the instruction.

Format for A:
Examples:
CLR

CLR
CLR

@R or (ER)

€R1
(R1)
(1)

5.3 AUTOINCREMENT MODE

;CLEARS REGISTER 3.

address of the operand to be manipulated

;ALL THESE INSTRUCTIONS CLEAR
;THE WORD AT THE ADDRESS
;CONTAINED IN REGISTER 1.

The contents of the register (ER) are incremented immediately after
being used as the address of the operand (see Note below).

Format for A:
Examples:
CLR

CLR
CLR

(ER) +

(RO)+
(R4) +
(R2) +

;EACH INSTRUCTION CLEARS
;THE WORD AT THE ADDRESS
;CONTAINED IN THE SPECIFIED
sREGISTER AND INCREMENTS

; THAT REGISTER'S CONTENTS
;BY TWO.

NOTE

Certain special instruction/address mode

combinations,

which are rarely or never

used, do not operate exactly the same on
all PDP-11 processors, as described

below.

In the autoincrement mode, both the JMP
and JSR instructions autoincrement the
register before its use on the

PDP-11/40, but

not on the PDP-11/45 or

11/10.

In double operand instructions héving
the addressing form Rn, (Rn) + or
Rn,-(Rn), where the source and

destination registers are the same, the

source operand
autoincremented

value, but the

is evaluated as the
or autodecremented
destination register, at

the time it is used, still contains the
originally-intended effective address.
In the following example, as executed on

5-2

ADDRESSING MODES

the PDP-11/40, Register 0 originally
contains 100 (8):

- MOV RO, (RO) + ; THE QUANTITY 102 IS MOVED
; TO LOCATION 100.

MOV RO,-(RO) ;THE QUANTITY 76 IS MOVED
;TO LOCATION 100.

The use of these forms should be
avoided, since they are not compatible
with the entire family of PDP-11
processors.

An error code (Z) 1is printed in the
assembly 1listing with each instruction
which 1is not compatible among all
members of the PDP-11 family.

5.4 AUTOINCREMENT DEFERRED MODE

The register (ER) contains a pointer to the address of the operand.
The contents of the register are incremented after being used as a
pointer.

Format for A: @ (ER) +
Example:
CLR @(R3)+ ; THE CONTENTS OF REGISTER 3 POINT
;TO THE ADDRESS OF A WORD TO BE

;CLEARED BEFORE THE CONTENTS OF THE
;REGISTER ARE INCREMENTED BY TWO.

5.5 AUTODECREMENT MODE

The contents of the register (ER) are decremented before being used as
the address of the operand (see Note above in Section 5.3).

Format for A: - (ER)
Examples:
CLR -(RO) ;DECREMENT THE CONTENTS OF THE SPECI-
;FIED REGISTER (0, 3, OR 2) BY TWO
CLR -(R3) ;BEFORE USING ITS CONTENTS
CLR -(R2) ;AS THE ADDRESS OF THE WORD TO BE
;CLEARED.

5.6 AUTODECREMENT DEFERRED MODE

The contents of the register (ER) are decremented before being used as
a pointer to the address of the operand.

ADDRESSING MODES

Format for A: @-(ER)

Example:

CLR @-(R2) ;DECREMENT THE CONTENTS OF
: ;REGISTER 2 BY TWO BEFORE
;USING ITS CONTENTS AS A POINTER
;TO THE ADDRESS OF THE WORD TO BE
;CLEARED.

5.7 INDEX MODE

The value of an expression (E) is stored as the second or third word
of the instruction. The effective address of the operand is
calculated as the value of E, plus the contents of register ER. The
value E is the offset of the instruction, and the contents of register
ER form the base.

Format for A: E (ER)

Examples:

CLR X+2 (R1) ;THE EFFECTIVE ADDRESS OF THE WORD
;TO BE CLEARED IS X+2, PLUS THE
;CONTENTS OF REGISTER 1.

MOV RO,-2(R3) ;THE EFFECTIVE ADDRESS OF THE
;DESTINATION LOCATION IS -2, PLUS
;THE CONTENTS OF REGISTER 3.

5.8 INDEX DEFERRED MODE

An expression (E), plus the contents of a register (ER), yields a
pointer to the address of the operand. As in index mode above, the
value E is the offset of the instruction, and the contents of register
ER form the base.

Format for A: @QE (ER)

Example:

CLR @114 (R4) ;IF REGISTER 4 CONTAINS 100, THIS
;VALUE, PLUS THE OFFSET 114, YIELDS
;THE POINTER 214. IF LOCATION 214
;CONTAINS THE ADDRESS 2000, LOCATION
;2000 WOULD BE CLEARED.

5.9 IMMEDIATE MODE

Immediate mode allows the operand itself (E) to be stored as the
second or third word of the instruction. This mode is assembled as an
autoincrement of the PC.

Format for A: #E

Examples:
MOV #100,R0O ;MOVE THE VALUE 100 INTO REGISTER 0.
MOV #X,R0 ;MOVE THE VALUE OF SYMBOL X INTO

;REGISTER 0.

5-4

ADDRESSING MODES

The number sign (#) in the MACRO character set has special
significance as an addressing mode indicator. When this character
appears in the operand field, as shown above, it specifies the
immediate addressing mode, indicating to MACRO that the operand itself
immediately follows the instruction word.

The operation of this mode can be shown through the first example,
MOV #100,R0, which assembles as two words:

Location 20: 01 2 7 0O
Location 22: 0 0 01 00
Location 24: Next instruction

Note that the source operand (the value 100) is assembled immediately
following the instruction word, i.e., as the second word in the
instruction. Upon execution of the instruction, the processor fetches
the first word (MOV) and increments the PC by 2 so that it points to
location 22 (which contains the source operand).

After the next fetch and increment cycle, the source operand (100) is
moved into register 0, leaving the PC pointing to location 24 (the
next instruction).

5.10 ABSOLUTE MODE

Absolute mode is the equivalent of immediate mode deferred. The
address expression @#E specifies an absolute address which is stored
as the second or third word of the instruction. In other words, the
value immediately following the instruction word is taken as the
absolute address of the operand. Absolute mode 1is assembled as an
autoincrement deferred of the PC.

Format for A: Q#E

Examples:
MOV @#100,R0 sMOVE THE CONTENTS OF LOCATION 100
; INTO REGISTER RO.
CLR e#X ;CLEAR THE CONTENTS OF THE LOCATION

;WHOSE ADDRESS IS SPECIFIED BY
;THE SYMBOL X,

The operation of this mode can be shown through the first example,
MOV @#100,R0, which assembles as two words:

Location 20: 01 3 7 0 0
Location 22: 0 0 01 00
Location 24: Next instruction

Note that the absolute address 100 is assembled immediately following
the instruction word, i.e., as the second word in the instruction.
Upon execution of the instruction, the processor fetches the first
word (MOV) and increments the PC by 2 so that it points to location 22
(which contains the absolute address of the source operand). After
the next fetch and increment cycle, the contents of absolute address
100 (the source operand) are moved into register 0, leaving the PC
pointing to location 24 (the next instruction).

ADDRESSING MODES

5.11 RELATIVE MODE

Relative mode is the normal mode for memory references within vyour
program. It is assembled as index mode, using the PC as the index
register.

Format for A: E

Examples:
CLR 100 ;CLEAR LOCATION 100, RELATIVE TO
;THE CONTENTS OF THE PC.
MOV RO,Y ;MOVE THE CONTENTS OF REGISTER 0

;TO LOCATION Y, RELATIVE TO THE
;CONTENTS OF THE PC.

In relative mode, the offset for the address calculation is assembled
as the second or third word of the instruction. This value is added
to the contents of the PC (the base register) to yield the address of
the source operand.

The operation of relative mode can be shown with the statement
MOV 100,R3, which assembles as two words:

Location 20: 01 6 7 0 3
Location 22: 0 0 0 0 5 4
Location 24: Next instruction

Note that the constant 54 1is assembled immediately following the
instruction word, i.e., as the second word in the instruction. Upon
execution of the instruction, the processor fetches the first word
(MOV) and increments the PC by 2 so that it points to location 22
(containing the value 54). After the next fetch and increment cycle,
the processor calculates the effective address of the source operand
by taking the contents of location 22 (the offset) and adding it to
the current value of the PC, which now points to location 24 (the next
instruction). Thus, the source operand address is the result of the
calculation OFFSET+PC = 54+24 = 100(8), causing the contents of
location 100 to be moved into register 3.

Since MACRO considers the contents of the current location counter (.)
as the address of the first word of the instruction, an equivalent
index mode statement is shown below:

MOV 100-.-4(PC) ,R3

This instruction has a relative addressing mode because the operand
address 1is calculated relative to the current value of the location
counter. The offset is the distance (in bytes) between the operand
and the current value of the location counter.

5.12 RELATIVE DEFERRED MODE

The relative deferred mode is similar in operation to the relative
mode above, except that the expression E is used as a pointer to the
address of the operand. 1In other words, the operand following the
instruction word is added to the contents of the PC to yield a pointer
to the address of the operand.

Format for A: QE

ADDRESSING MODES

Example:

MOV @Xx,R0 ;RELATIVE TO THE CURRENT VALUE OF
;THE PC, MOVE THE CONTENTS OF THE
; LOCATION WHOSE ADDRESS IS POINTED
;TO BY LOCATION X INTO REGISTER 0.

5.13 SUMMARY OF ADDRESSING FORMS

Each PDP-11 instruction takes at least one word. Operands of the form
listed below do not increase the length of an instruction.

Form Meaning

R Register mode

@R or (ER) Register deferred mode (see Note below)
(ER) + Autoincrement mode

@ (ER) + Autoincrement deferred mode

- (ER) Autodecrement mode

@- (ER) Autodecrement deferred mode

Operands of the following forms add one word to the instruction length
for each occurrence of an operand of that form:

Form Meaning

E (ER) Index mode

QE (ER) Index deferred mode

#E Immediate mode

@#E Absolute mode (see Note below)
E Relative mode

QE Relative deferred mode

The syntax of the addressing modes 1is summarized in Appendix B.
Additional discussion of addressing modes 1is provided in the
applicable PDP-11 Processor Handbook.

NOTE

An alternate form for @R is (ER) .
However, the form @ (ER) is only
logically, but not physically equivalent
to the expression @O0 (ER) . The
addressing form Q#E differs from form E
in that the second or third word of the
instruction contains the absolute
address of the operand, rather than the
relative distance between the operand
and the PC. Thus, the instruction CLR
@#100 clears absolute location 100, even
if the 1instruction 1is moved from the

ADDRESSING MODES

point at which it was assembled. See
the description of the .(ENABL AMA
function in Section 6.2, which causes
all relative mode addresses to be
assembled as absolute mode addresses.

5.14 BRANCH INSTRUCTION ADDRESSING

The branch instructions are l-word instructions. The high-order byte
contains the operator, and the low-order byte contains an 8-bit signed
offset (seven bits, plus sign), which specifies the branch address
relative to the current value of the PC. The hardware calculates the
branch address as follows:

1. Extends the sign of the offset through bits 8-15.

2. Multiplies the result by 2, creating a byte offset rather
than a word offset.

3. Adds the result to the current value of the PC to form the
effective branch address.

MACRO performs the reverse operation to form the word offset from the
specified address. Remember that when the offset is added to the
current value of the PC, the PC is pointing to the word following the
branch instruction; hence, the factor -2 in the following
calculation:

Word offset = (E-PC)/2 truncated to eight bits.
Since the value of the PC = .+2, we have:
Word offset = (E-.-2)/2 truncated to eight bits.

In using branch instructions, you must exercise care to avoid the
following error conditions:

1. Branching from one program section to another;

2. Branching to a 1location that 1is defined as an external
(global) symbol; or

3. Specifying a branch address that is out of range, 1i.e., the
branch offset 1is a value that does not lie within the range
-128(10) to +127(10).

The above conditions cause an error code (A) to be generated in the
assembly listing for the statement in error.

5.15 USING TRAP INSTRUCTIONS

The EMT and TRAP instructions do not use the 1low-order byte of the
instruction word, allowing information to be transferred to the trap
handlers in the low-order byte. If the EMT or TRAP instruction is
followed by an expression, the value of the expression is stored in
the low-order byte of the word. However, if the expression is greater
than 377(8), it 1is truncated to eight bits and an error code (T) is
generated in the assembly listing.

ADDRESSING MODES

PART III

MACRO DIRECTIVES

Chapters 6 and 7 describe all the directives used with MACRO.
Directives are statements that cause MACRO to perform certain
operations during assembly. Chapter 6 describes several types of
directives, 1including those which control symbol interpretation,
listing header material, program sections, data storage formats, and
assembly 1listings. Chapter 7 describes those directives concerning
macros, macro arguments, and repetitive coding sequences.

MACRO directives can be preceded by a label (subject to any
restrictions associated with specific directives) and followed by a
comment. A MACRO directive occupies the operator field of a source
statement. Only one directive can be included in any given source
line. The operand field may be occupied by one or more operands or
left blank; 1legal operands differ with each directive specified.

CHAPTER 6

GENERAL ASSEMBLER DIRECTIVES

This category of directives includes:

1. Listing control
2. Function control
3. Data storage
4. Radix and numeric control
5. Location counter control
6. Terminators
7. Program boundaries
8. Program sectioning
9. Symbol control

10. Conditional assembly

11. PAL-11R conditional assembly.

Each is described in its own section of this chapter.

6.1 LISTING CONTROL DIRECTIVES

Listing control directives control the content, format, and pagination
of all 1line printer and teleprinter listing output generated during
assembly. Facilities also exist for creating object module names and
other identification information in the listing output.

6.1.1 .LIST and .NLIST Directives

Listing control options can be specified in the text of a MACRO
program through the .LIST and .NLIST directives. These directives are
of the form:

.LIST
.LIST arg
.NLIST
.NLIST arg

where: arg represents one or more of the optional symbolic
arguments defined in Table 6-1.

6-1

GENERAL ASSEMBLER DIRECTIVES

As indicated above, the listing control directives may be used without
arguments, in which <case the 1listing directives alter the listing
level count. The listing level count is initialized to zero. At each
occurrence of a .LIST directive, the 1listing 1level count Iis
incremented; at each occurrence of an .NLIST directive, the 1listing
level count is decremented. When the listing level count is negative,
the listing 1is suppressed (unless the 1line contains an error).
Conversely, when the 1listing 1level count is greater than zero, the
listing is always generated. Finally, when the count 1is zero, the
line is either listed or suppressed, contingent upon the other listing
controls currently in effect for the program. For example, the
following macro definition employs the .LIST and .NLIST directives to
selectively list portions of the macro body when the macro is
expanded:

.MACRO LTEST ;LIST TEST
; A-THIS LINE SHOULD LIST ; LISTING LEVEL COUNT IS 0.
«NLIST ;LISTING LEVEL COUNT IS -1.
; B-THIS LINE SHOULD NOT LIST
.NLIST ;LISTING LEVEL COUNT IS -2.
; C~-THIS LINE SHOULD NOT LIST
.LIST ; LISTING LEVEL COUNT IS -1.
; D-THIS LINE SHOULD NOT LIST
.LIST ;LISTING LEVEL COUNT IS 0.
; E-THIS LINE SHOULD LIST ;LISTING LEVEL COUNT IS BACK TO 0.
.ENDM
.LIST ME ;LIST MACRO EXPANSION.
LTEST sCALL THE MACRO
; A-THIS LINE SHOULD LIST ;LISTING LEVEL COUNT IS 0.
; E-THIS LINE SHOULD LIST ;LISTING LEVEL COUNT IS BACK TO 0.

An important purpose of the level count is to allow macro expansions
to be 1listed selectively and yet exit with the listing level count
restored to the value existing prior to the macro call.

When used with arguments, the listing directives do not alter the
listing 1level count; however, the .LIST and .NLIST directives can be
used to override current listing control, as shown in the example
below:

.MACRO XX
.LIST ;LIST NEXT LINE.
X=.
.NLIST ;DO NOT LIST REMAINDER OF MACRO
. ; EXPANSION.
.ENDM
.NLIST ME ;DO NOT LIST MACRO EXPANSIONS.
XX
X=,

The symbolic arguments allowed for use with the listing directives are
described 1in Table 6-1. These arguments can be used singly or in
combination with each other. If multiple arguments are specified in a
listing directive, each argument must be separated by a comma, tab, or
space. For any argument not specifically included in a 1listing

GENERAL ASSEMBLER DIRECTIVES

control statement, the associated default assumption (List or No list)
is applicable throughout the source program. The default assumptions
for the listing control directives also appear in Table 6-1.

Symbolic Arguments

Table 6-1
of Listing Control Directives

Argument

Default

Function

SEQ*

LOC*

BIN*

List

List

List

Controls the 1listing of source line
sequence numbers. MACRO assigns
sequence number 1 to the first source
line in a file, and increments the
sequence number for each additional line
in the file. If this field is
suppressed through an .NLIST SEQ
directive, MACRO generates a tab,
effectively allocating space for the
field, but fills the field with blanks.
Thus, the inter-positional relationships
of subsequent fields in the 1listing
remain undisturbed. During the assembly
process, MACRO examines each source line
for possible error conditions. For any
line in error, an appropriate error flag
is printed preceding the 1line sequence
number field (see Appendix D). MACRO
does not assign sequence numbers for
files that have had sequence numbers
assigned by other programs, such as an
editor.

Controls the 1listing of the current
location counter field. Normally, this
field is not suppressed. However, if it
is suppressed through the .NLIST LOC
directive, MACRO does not generate a
tab, nor does it allocate space for the
field, as is the case with the source
line sequence number field (SEQ)
described above. Thus, the suppression
of the current 1location counter (LOC)
field effectively 1left-justifies all
subsequent fields (while preserving
inter-positional relationships) to that
position otherwise normally occupied by
this field.

Controls the listing of generated binary
code. If this field 1is suppressed
through an NLIST BIN directive,
left-justification of the source code
field occurs in the same manner
described above for the current location
counter (LOC) field.

(continued on next page)

* If the .NLIST arguments SEQ, LOC, BIN, and SRC are in effect at the
same time, i.e., if all four significant fields in the listing are to
be suppressed, the printing of the resulting blank line is inhibited.

Symbolic

GENERAL ASSEMBLER DIRECTIVES

Table 6-1 (Cont.)
Arguments of Listing Control Directives

Argument

Default

Function

BEX

SRC*

COM

MD

MC

ME

MEB

CND

LD

TOC

List

List

List

List

List

No list

No list

List

No list

List

Controls the listing of binary
extensions, i.e., the locations and
binary contents beyond those that will
fit on the source statement line. This
is a subset of the BIN argument.

Controls the listing of source lines.

Controls the listing of comments. This
is a subset of the SRC argument. The
.NLIST COM directive reduces listing
time and space when comments are not
desired.

Controls the listing of macro
definitions and repeat range expansions.

Controls the listing of macro calls and
repeat range expansions.

Controls the listing of macro
expansions.

Controls the listing of macro expansion
binary code. A .LIST MEB directive
causes only those macro expansion
statements that generate binary code to
be listed. This is a subset of the ME
argument.

Controls the 1listing of unsatisfied
conditional <c¢oding and associated .IF
and .ENDC directives 1in the source
program. This argument permits
conditional assemblies to be listed
without including unsatisfied
conditional coding.

Controls the 1listing of all 1listing
directives having no arguments, i.e.,
those listing directives that alter the
listing level count.

Controls the listing of the table of
contents during assembly pass 1 (see
Section 6.1.4 describing the .SBTTL
directive). This argument does not
affect the printing of the full assembly
listing during assembly pass 2.

(continued on next page)

* If the .NLIST arguments SEQ, LOC, BIN, and SRC are in effect at the
same time, i.e., if all four significant fields in the listing are to
be suppressed, the printing of the resulting blank line is inhibited.

GENERAL ASSEMBLER DIRECTIVES

Table 6-1 (Cont.)
Symbolic Arguments of Listing Control Directives

Argument Default Function

SYM List Controls the listing of the symbol table
resulting from the assembly of the
source program.

TTM List Controls the listing output format. The
default can be set by the system
manager. If the system manager does not
set a default, it is set to line printer
format. Figure 6-1 illustrates the line
printer output format. Figure 6-2
illustrates the teleprinter output
format.

An example of an assembly listing, as sent to a 132-column 1line
printer, is shown in Figure 6-1. Note that binary extensions for
statements generating more than one word are formatted horizontally on
the source line.

An example of an assembly listing, as sent to a teleprinter (in the
same format as for an 80-column line printer), is shown in Figure 6-2.
Notice that binary extensions for statements generating more than one
word are printed on subsequent lines. There is no explicit truncation
of output to 80 characters by the assembler.

Any argqument specified in a .LIST/.NLIST directive other than those
listed in Table 6-1 causes the directive to be flagged with an error
code (A) in the assembly listing.

The listing control options can also be specified at assembly time
through switches included in the command string to MACRO (see Chapter
8). The use of these switches overrides all corresponding 1listing
control (.LIST or .NLIST) directives specified in the source program.

CSITSY =« TEST
READ AND PARSE

209
210
214
212
213
214
218
216
217
218
219
220
221
222
223
224
22%
226
227
228
229
23e
23
232
233
234
235
236
2y7
238
239
240
241y
242
243
244
245
246
247
248
249

221230
001244
2n1246
201254
A021300
P01324
201326
221332
201336
281360
oa1404
201412
201416
Pe1424
21459
Pa1474

PA1476
201502
na1504
221512
201520
8ags522
201526
pR1552
021576
oa1602
ga1620
01622
Pa1626
001634
001636
091662
201666
pai7ed
221706
eaty12
ea1720
ent722

OF €81}y
COMMAND

103003

103064
016046
166716

066060
162662
166060

220655

205760
001652
112767
132760
paj4e2
185267

103441

132760
001360

103407

132762
ve1360
eoedy2

ANC {312 MACRO M@7p7

LINES

200020
202004

anee16
000002
aeeeys

200N

220060
novR4p

1764146

20020

peae2e

Figure

290020

200002

176432
oo00e!

o0p0ay

200001

GETLNS

18¢

108
OPARSE Y

IPARSE ;

SBYTL

GCMLS
BCC
EXITSS
TYPE
CSIsy
BCC
MOV
suB
TYPE
TYPE
ADD
suB
sus
TYPE
TYPEM
BR

787
BEQ
MOVB
BITB
BEQ
INCB
TYPEM
TYPEM
CaLL
Cs1s2
BCS
CaLL
8178
BNE
TYPEM
CaLLl
csis2
8CS
Call
8178
BNE
B8R

09=JUL=74 15147 PAGE §

READ AND PARSE COMMAND LINES

#GCLBLK JGET LINE VIA GCML
18 JSKIP 1F NO ERROR
JELSE, &XIT
G,CMLD42(RB),G,CMLD(RR),n'0 JSEND OUT THE INPUT LINE
¥CSIBLK,GCLBLK+G,CMLDe2,6GCLBLK®G,CMLD
2s JBRANCH IF NO ERROR DETECYED

C,FILDe2(RD),=(SP) JPUT STRING ERROR ADDR IN S8TK
C,CMLD+2(RD), (SP) JCALCULATE LENGTH OF FIRST PART
C,CMLD#2(RA), (SP),¥'S $SEND OUTY FIRSY PART OF STRING
C.FILD+2(RD),C,FILD(RB),®'S JSEND OUY SECOND PART
C,FILD(R®),C FILD+2(R@) JCALC ADDR OF LAST PART OF STRING

(SP)+,C,CMLD(RO) JDEDUCT LENGTH OF FIRST PART
C.FILD(R®),C,CMLD(RD) JCALC LENGTH OF LAST PART
C,FILD+2(R@),C,CMLD(RO),»40Q 1SEND QUTY LAST PARY
STX,40 JSEND SYNTAX ERROR MESSAGE

GETLN JTRY FOR MORE

C,CMLD(RO) JCHRECK LENGTH OF LINE

GETLN JIF NULL, SKIP BACK FOR NEXT LINE
#10,EQUBLT JASSUME EQUAL SIGN NOT FOUND
¥CS,EQU,C,STAT(RD) JCHECK STATUS

10§ 18KIP IF EQUAL SIGN NOT SEEN

EQUBIT JELSE, INDICATE EQUAL SIGN FOUND
EQU, 40 JSEND EQUAL SIGN STATUS MESSAGE
0PT,40 JSEND OQUTPUT SCAN MESSAGE

INIT2 JINIT LOCNS FOR CSI2 CALL/TESTY
+OUTPUT,#SWTBL JPARSE OUTPUT SPEL

CS2ERR JSKIP ON ERROR

EVALUS JEVALUATE RESULTS OF SEMANTIC PARSE
#CS,MOR,C,STAT(RO) JADDITIONAL OUTPUT SPECS?
OPARSE JYES, CONTINUE WITH OUTPUT SCAN
1PT,42 JSEND INPUT SCAN MESSAGE

INIT2 JINIT LOCNS FOR CSI2 CALL/TESY

» INPUT, #SWTBL JPARSE INPUT SPEC

CS2ERR 3SKIP ON ERROR

EVALUSB JEVALUATE RESULTS OF SEMANTIC PARSE
¥CS,MOR,C,STAT(R@®) JADDITIONAL INPUT SPECS?

IPARSE $YES, CONTINUE WITH INPUT SCAN
JMPGETY FGET ANOTHER COMMAND LINE

6-1 Example of Line Printer Assembly Listing

SIAILOIYIA YATHWIASSY TVIINTD

GENERAL ASSEMBLER DIRECTIVES

CSITST we TESY OF CSI{ AND CS12 MACRO MB707 @9-~JUL=74 15359 PAGE 5
READ AND PARSE COMMAND LINES

299 «SBTTL READ AND PARSE COMMAND LINES
10
211 081230 GETLNt GCMLS #GCLBLK JGET LINE VIA GCML
212 201244 123003 BCC 18)SKIP IF NO ERROR
213 201246 EXITSS JELSE, EXIT
214 901254 182 TYPE G,CMLD+2(R2),6,CMLD(RO),n'D JSEND OUTY THE INPUT LINE
215 001300 CSIsy #CSIBLK,GCLBLK*G,CMLD+2,GCLBLKG,CMLD
216 201324 103064 BCC 28 JBRANCH IF NO ERROR DETECTED
217 @081326 016046 MOV C,FILD+2(RD),~(SP) JPUT STRING ERROR ADDR IN STK
eeen29
218 201332 166016 sus CoCMLD42(RB), (SP) JCALCULATE LENGTH OF FIRSY PART
229004
219 2801336 TYPE C.CMLD*2(RB),(SP),n!'S 3JSEND OUT FIRSY PART OF STRING
220 @a1360 TYPE C.FILD#2(RO),C,FILD(RB),®'S$ JSEND OUT SECOND PARY
221 001404 066360 ADD C,FILD(RA),C,FILDe2(RA) JCALC ADDR OF LAST PARY OF STRING
000016
200020
222 801412 162660 sus (SP)+,C,CMLO(RD) JDEDUCT LENGTH OF FIRST PART
000002
223 901416 166060 suB C,FILD(RO),C.CMLD(RO) JICALC LENGTW OF LAST PARY
eaen16
200002
224 001424 TYPE C,FILD#2(RA),C,CMLD(RB), %40 JSEND OUT LAST PART
225 0031450 TYPEM 5Tx,42 JSEND SYNTAX ERROR MESSAGE
226 0201474 0R0655 BR GETLN 3 TRY FOR MORE
227
228 (391476 @0A5760 231 T8T C.CMLD(RO) JCHECK LENGTH OF LINE
V00002
229 09@1502 001652 BEQ GETLN JIF NULL, SKIP BACK FOR NEXT LINE
230 P@1504 112767 MOVR #'0,EQUBIT JASSUME EQUAL SIGN NOT FOUND
0oen6n
176432
231 @e1512 132762 BITR #CS,EQU,C,STAT(RA) JCHECK STATUS
@opvde
020001
232 00152 001402 BEQ 108 $SKIP IF EQUAL SIGN NOT SEEN
233 0031522 105267 INCB EGUBLTY JELSE, INOICATE EQUAL SIGN FOUND
176416
234 pn1526 1081 TYPEM EGU, 40 JSEND EQUAL SIGN STATUS MESSAGE
235 8A1552 TYPEM OPT, 40 JSEND QUTPUT SCAN MESSAGE
236 4041576 OPARSEt CalLlL INIT2 JINIT LOCNS FOR CSI2 CALL/TEST
237 021692 CSISs2 +OUTPUT,#SWTBL JPARSE OUTPUT SPEC
238 901620 19344}y BCS CS2ERR 1SKIP ON ERROR
219 001622 CALL EvaLug JEVALUATE RESULTS OF SEMANTIC PARSE
240 0201626 132760 8178 #CS,MOR,C,STAT(RD) JADDITIONAL OUTPUT SPECS?
020020
000001
24y 021634 001360 BNE OPARSE $YES, CONTINUE wITH OUTPUY SCAN
242 021636 TYPEM IPT,4¢ JSEND INPUT SCAN MESSAGE
243 2m1662 IPARSEs CALL INIT2 JINIT LOCNS FOR CSI2 CALL/TEST
244 201666 csis2 » INPUT, #SW TBL JPARSE INPUT SPEC
245 p2a1704 103407 BCS CS2€ERR)JSKIP ON ERROR
246 001706 CALL EVALUB JEVALUATE RESULTS OF SEMANTIC PARSE
247 BA1712 132760 BITB #CS,MOR,C,STAT(R®) JADDITIONAL INPUT SPECS?
20200290
000001
248 201720 001360 BNE IPARSE IYES, CONTINUE WITH INPUT SCAN

Figure 6-2 Example of Terminal Assembly Listing

GENERAL ASSEMBLER DIRECTIVES

Figure 6-3 shows a 1listing, produced in 1line printer format,
reflecting the wuse of the .LIST and .NLIST directives in the source
program and the effects such directives have on the assembly listing
output. i

6.1.2 Page Headings

MACRO prints each assembly page in the format shown in either Figure
6-1 or Figure 6-2, depending on the listing mode (see TTM, Table 6-1).
On the first line of each page, MACRO prints the following (from left
to right):

1. Title of the object module, as established through the .TITLE
directive (see next section).

2. Assembler version identification.
3. Date.

4., Time-of-day.

5. Page number{

The second line of each assembly listing page contains the subtitle
text specified in the last-encountered .SBTTL directive (see Section
6.1.4).

27
28
29

30
32

JMAIN,

33
34
35
36
3’
38

39
41

42
a3
44

poveé2 LSTMAC
«NLIST
000062 0000201 0QP002 Q00003 «WORD
000072 0Q00D24 QQ0Q0%
JLIST
200074 LSTMAC
 NL1ST
P20074 0ROQAOY 0QQRP2 Q02003 +WORD
WLI8T
MACRO M0787 0@9«JULw74 161290 PAGE =}
LI8T TT™
200106 LSTMAC SEQ
LNLIST SEQ
eoei106 000001 +«NORD 102,3,4,5
Q00110 000002
200112 200003
200114 POOVO4
270116 Q00QAQ5
,LIST 8EQ
f2n0L2e LSTMAC BEX
LNLIST BEX
222120 200001 + WORD 102,3,4,5
LI8Y BEX
[-I.L1-I.3 W +END

coM JCOMMENT LINES TEST

com

1,2,3,4,5

com

<COM,BEX> JCOMMENT LINES AND EXTENDED BINARY TEST
COM,BEX

1,2,3,4,5
COM,BEX

JNARROW LISTING MODE 1S IN EFFECT
JSEQUENCE NUMBERS TEST
JTHIS I8 A COMMENT

JEXTENDED BINARY TEST

JTHIS IS A COMMENT

Figure 6-3 Listing Produced With Listing Control Directives

SIAILOAYIA YATAWASSY TVIINID

0T-9

JMAIN,

O ®N N WA~

10

18
19
20

21
23

24
25
26

MACRO M@707

2a0012

000001
LU LT

200024
Qeee24

2aealé
200236

[LI'LLL]

eaeesoe
200056

Figure 6-3 (Cont.) Listing Produced

peean2
2200205

eeoeay

200001
200004

200003

«NLIST
+WORD

oeee02

feoen2
e00095

@9=JuUL=74 16129 PAGE 1

oNLIST
JL18T

TT™M
ME

} LISTING CONTROL TEST MACRO

)

oNLIST
+WORD
BIN
1,2,3,4,5
200003
8oee0l

MACRO LSTMAC ARG
+NLIST ARG

+ WORD 102,3,4,5
WLISTY ARG

«ENDM

L8STMAC (OC

Loc

192,3,4,5

JLIST Loc

LSTMAC BIN

JTHIS IS A COMMENT
JLIST BIN

LSTMAC BEX

+NLISY BEX

«WORD 1,2,3,4,5
LIST BEX

LSTMAC SRC

L1887 SRC

IWIDE LISTING MODE IS IN EFFECT
JLIST MACRO EXPANSIONS

JTHIS IS A COMMENTY

JLOCATION COUNTER TEST

JTHIS 1S 4 COMMENT

JGENERATED BINARY TEST

JEXTENDED BINARY TVEST

JTHIS IS A COMMENT

}SOURCE LINES TESTY

With Listing Control Directives

STATILOIYIA YITIWISSY TVIINID

GENERAL ASSEMBLER DIRECTIVES

6.1.3 L.TITLE Directive

The .TITLE directive is used to assign a name to the object module as
the first entry in the header of each page in the assembly listing.
The name so assigned is the first six non-blank characters following
the .TITLE directive. This name should be six Radix-50 characters or
less in length; any characters beyond the first six are checked for
ASCII 1legality, but they are not used as part of the object module
name. For example, the directive:

.TITLE PROGRAM TO PERFORM DAILY ACCOUNTING

causes the assembled object module to be named PROGRA. Note that this
6-character name bears no relationship to the filename of the object
module, as specified in the command string to MACRO. The name of an
object module (specified in the .TITLE directive) appears in the
Linker load map. This is also the module name which the Librarian
will recognize.

If the .TITLE directive is not specified, MACRO assigns the default
name .MAIN. to the object module. If more than one .TITLE directive
is specified in the source program, the last .TITLE directive
encountered establishes the name for the entire object module.

All spaces and/or tabs up to the first non-space/non-tab character
following the .TITLE directive are ignored by MACRO when evaluating
the text string.

If the .TITLE directive is specified without an object module name, or
if the first non-space/non-tab character in the object module name is
not a Radix-50 character, the directive is flagged with an error code
(A) in the assembly listing.

Section A.2 of Appendix A contains a table of Radix-50 characters.

6.1.4 .SBTTL Directive

The .SBTTL directive 1is wused to produce a table of contents
immediately preceding the - assembly 1listing and to further identify
each page in the listing. In the latter case, the text following the
.SBTTL directive 1is printed as the second line of the header of each
page in the listing, continuing until altered by a subsequent .SBTTL
directive in the program. For example, the directive:

+.SBTTL CONDITIONAL ASSEMBLIES
causes the text
CONDITIONAL ASSEMBLIES

to be printed as the second 1line in the header of the assembly
listing.

During assembly pass 1, a table of contents 1is printed for the
assembly 1listing, containing the 1line sequence number, the page
number, and the text accompanying each .SBTTL directive. The 1listing
of the table of contents 1is suppressed whenever an .NLIST TOC
directive is encountered in the source program (see Table 6-1). An
example of a table of contents listing is shown in Figure 6-4.

GENERAL ASSEMBLER DIRECTIVES

CSITST ~= TEST OF CS!1 AND CSI2 MACRO M@727 @9»JUL«74 15147
TABLE OF CONTENTS

2= 65 MACRO DEFINITIONS

3= 74 MESSAGE STRINGS

4=~153 MISCELLANEOUS DATA

5-209 READ AND PARSE COMMAND LINES
6255 EVALUATE THE SEMANTIC ANALYSIS
7=345 SUBROUTINES

Figure 6-4 Assembly Listing Table of Contents

6.1.5 LJIDENT Directive

The .IDENT directive provides an additional means of labeling the
object module produced by MACRO. In addition to the name assigned to
the object module with the .TITLE directive (see Section 6.1.3), a
character string up to six Radix-50 characters can be specified
between paired printing delimiters to label the object module with the
program version number. This directive takes the following form:

.IDENT /string/

where: string represents six legal Radix-50 characters or less
which establish the program identification or
version number. This number is included in the
global symbol directory of the object module.

/ / represent delimiting characters. These delimiters
may be any paired printing characters, other than
the equal sign (=), the left angle bracket (<), or
the semicolon (;), as 1long as the delimiting
character is not contained within the text string
itself. If the delimiting characters do not
match, or if an illegal delimiting character is
used, the .IDENT directive 1is flagged with an
error code (A) in the assembly listing.

An example of the .IDENT directive is shown below:
.IDENT /V05A/

The character string VO5A is converted to Radix-50 representation and
included in the global symbol directory of the object module. This
character string also appears in the Linker load map and the Librarian
directory listings.

When more than one .IDENT directive is encountered in a given program,

the 1last such directive encountered establishes the character string
which forms part of the object module identification.

6.1.6 .PAGE Directive/Page Ejection
Page ejection is accomplished in one of four ways:

1. After reaching a count of 58 1lines 1in the 1listing, MACRO
automatically performs a page eject to skip over page
perforations on 1line printer paper and to formulate
teleprinter output into pages.

6-12

GENERAL ASSEMBLER DIRECTIVES

2. In addition, the .PAGE directive is used within the source
program to perform a page eject at desired points in the
listing. The format of this directive is:

.PAGE

This directive takes no arguments and causes a skip to the
top of the next page when encountered. It also causes the
page number to be incremented. The .PAGE directive does not
appear in the listing.

When used within a macro definition, the .PAGE directive is
ignored during the assembly of the macro definition. Rather,
the page eject operation is performed as the macro itself is
expanded. In this case, the page number is also incremented.

3. A page eject is performed when a form-feed character Iis
encountered. If the form-feed character appears within a
macro definition, a page eject occurs during the assembly of
the macro definition, but not during the expansion of the
macro itself. A page eject resulting from the use of the
form-feed character 1likewise causes the page number to be
incremented.

4. Encountering a new source file causes the page number to be
incremented and the line sequence count to be reset.

6.2 FUNCTION DIRECTIVES: .ENABL AND .DSABL

Several function control options are provided by MACRO through the
.ENABL and .DSABL directives. These directives are included in a
source program to invoke or inhibit certain MACRO functions and
operations incidental to the assembly process itself. These
directives take the following form:

.ENABL arg
.DSABL arg

where: arg represents one or more of the optional symbolic
arguments defined in Table 6-2.

Table 6-2
Symbolic Arguments of Function Control Directives

Argument Default Function

AMA Disable Enabling this function causes all
relative addresses (address mode 67) to
be assembled as absolute addresses
(address mode 37). This function is
useful during the debugging phase of
program development.

(continued on next page)

GENERAL ASSEMBLER DIRECTIVES

Table 6—-2 (Cont.)
Symbolic Arguments of Function Control Directives

Argument

Default

Function

CDR

CRF

FPT

LC

LSB

Disable

Enable

Disable

Disable

Disable

Enabling this function causes source
columns 73 and greater, i.e., to the end
of the line, to be treated as a comment.
The most common use of this feature is
to permit sequence numbers 1in card
columns 73-80.

Disabling this function inhibits the
generation of cross-reference output.
This function only has meaning if
cross-reference output generation is
specified in the command string.

Enabling this function causes floating-
point truncation; disabling this
function causes floating-point rounding.

Enabling this function causes MACRO to
accept lower-case ASCII input instead of
converting it to upper-case. If this
function “is not enabled, all text is
converted to upper-case.

This argument permits the enabling or
disabling of a 1local symbol block.
Although a 1local symbol block is
normally established by encountering a
new symbolic label or a .PSECT directive
in the source program, an .ENABL LSB
directive establishes a new local symbol
block which is not terminated until (1)
another .ENABL LSB 1is encountered, or
(2) another symbolic 1label or .PSECT
directive 1is encountered following a
paired .DSABL LSB directive.

Although the .ENABL LSB directive
permits a local symbol block to cross
.PSECT boundaries, local symbols cannot
be defined 1in a program section other
than the one that was in effect when the
block was entered. The basic function
of this directive with regard to
.PSECT's 1is 1limited to those instances
where it is desirable to leave a program
section temporarily to store data,
followed by a return to the original
program section. Attempts to define
local symbols in an alternate program
section are flagged with an error code
(P) in the assembly listing.

An example of the .ENABL LSB and .DSABL
LSB directives, as typically used in a
source program, is shown in Figure 6-5.

(continued on next page)

6-14

GENERAL ASSEMBLER DIRECTIVES

Table 6-2 (Cont.)
Symbolic Arguments of Function Control Directives

Arugment

Default

Function

PNC

REG

GBL

Enable

Enable

Enable

Disabling this function inhibits binary
output wuntil an .ENABL PNC statement is
encountered within the same module.

When specified, the .DSABL REG directive
inhibits the normal MACRO default
register definitions; if not disabled,
the default definitions . listed below
remain in effect.

R0O=%0
R1=%1
R2=%2
R3=%3
R4=%4
R5=%5
SP=%6
PC=%7

The .ENABL REG statement may be used as
the logical complement of the .DSABL REG
directive. The use of these directives,
however, is not recommended. For
logical consistency, use the normal
default register definitions 1listed
above.

When the .ENABL GBL directive is
specified, MACRO treats all symbol
references that are undefined at the end
of assembly pass 1 as default global
references; when the .DSABL GBL
directive is specified, MACRO treats all
such references as undefined symbols.
In assembly pass 2, if the .DSABL GBL
function 1is still 1in effect, these
undefined symbols are flagged with an
error code (U) in the assembly listing;
otherwise, they continue to be regarded
by MACRO as global references.

Specifying any argument in an .ENABL/.DSABL directive other than those
listed 1in Table 6-2 causes that directive to be flagged with an error
code (A) in the assembly listing.

)]
|

9T

SQUEEZE MACRO Ma707

272
273
274
275
276
277
278 @eel3i42
279 003144
280 AY3146
281 0MA3150
282 2083182
283 003156
284 003160
285 203162
286
287 Q03164
288 0083166
289 0a3170
290 @m3172
294 003176
292 onl200
293 p03204
294 093206
295 p@a321e
296 903212
297 003214
298 003216
299 003220
300
3ot
o2

210103
060203
02030}
001422
124327
001373
910322
000412

060102
220201
201412
124227
201773
121227
021770
205202
160102
00024y
ore40!
200261

Figure 6-5

89=JUL=74 15313

000073

000011
[J31-LT]

PAGE 4

FNDSMI

183

SKPBLK 1
1081

208

3as:
40%:

JENABL

MOV
ADD
cmp
BEG
cMPB
BNE
MOV
BR

ADD
cMp
BEQ
cMPB
BEQ
cMPB
BEQ
INC
SuB
cLe

B8R

SEC
RETURN
0SABL

Example of .ENABL and

LS8

R{,R3

R2,R3

R3I,RY

308
=(R3),#SEMIC
18

R3,R2

208

R{,R2

R2,RY

3Jos
»(R2),#TAB
10%
(R2),¥BLANK
18$

R2

R1,R2

408

LSB

JPUT ADDR OF LINE IN R3

JPOINT R3 PAST LAST CHAR IN LINE
JD0ES R3 POINT TO STARY OF LINE?
JIF S0, LEAVE INDICATING FAILURE
318 THE LAST CHARACTER SEMICOLON?
INO, CONTINUE LOOKING

JYES, POINT R2 PAST NEW END=OF=_ INE
JLEAVE VIA COMMON SUCCESS CODE

JPOINY R2 PAST END<OF=LINE

JOOES R2 POINT TO START OF LINE?
JIF 80, LEAVE WITH FAILURE

318 THE LAST CHARACTER & TAB?
JIF SO, IGNORE IT

JI8 1T A BLANK?

JIF SO, IGNORE 1ITY

INON=BLANK CHARACTER==POINT PASTY 1IT
JRE=COMPUTE LINE LENGTH
JINDICATE SUCCESS

JBRANCH YO LEAVE

FINDICATE FAILURE

Y

.DSABL Directives

SHAILOIYIA YIATIWIASSY TYIINID

GENERAL ASSEMBLER DIRECTIVES

6.3 DATA STORAGE DIRECTIVES

A wide range of data and data types can be generated with the
following directives, ASCII conversion characters, and radix-control
operators:

.BYTE
.WORD
1

.ASCII
.ASCIZ
LFLT2
.FLT4
RADS50

.
~

~

> > D

wOmoOw

>

These MACRO facilities are described in the following sections.

6.3.1 .BYTE Directive

The .BYTE directive is used to generate successive bytes of binary
data in the object module. The directive is of the form:

.BYTE exp ;STORES THE BINARY VALUE OF THE
;EXPRESSION "EXP" IN THE NEXT BYTE.

.BYTE expl,exp2,expn ;STORES THE BINARY VALUES OF THE LIST
;OF EXPRESSIONS IN SUCCESSIVE BYTES.

A legal expression must reduce to eight bits of data or 1less. The
operands of a .BYTE directive are evaluated as word expressions before
being truncated to the low-order eight bits. The 16-bit value of the
specified expression must have a high-order byte (which is truncated)
that is either all zeros (0) or all ones (l). Each expression value
is stored in the next byte of the object module. Multiple
expressions, which must be separated by commas, are stored in
successive bytes, as described below:

SAM=5
.=410
.BYTE “D48,SAM ;THE VALUE 060 (OCTAL EQUIVALENT OF 48
;DECIMAL) IS STORED IN LOCATION 410.
;s THE VALUE 005 IS STORED IN LOCATION
;411.

If the high-order byte of the expression reduces to a value other than
0 or -1, the value 1is truncated to the low-order eight bits and
flagged with an error code (T) in the assembly listing.

The construction "D in the first operand of the .BYTE directive above
illustrates the use of a temporary radix-control operator. The
function of such special unary operators 1is described 1in Section
6.4.1.2.

At link time, it is likely that a relocatable expression will result
in a value having more than eight bits, in which case the Linker

6-17

GENERAL ASSEMBLER DIRECTIVES

issues a truncation diagnostic for the object module in question. For
example, the following statements create such a possibility:

.BYTE 23 ;STORES OCTAL 23 IN NEXT BYTE.
A:
.BYTE A ;RELOCATABLE VALUE A WILL PROBABLY
; CAUSE LINKER TRUNCATION
;DIAGNOSTIC.

If an expression following the .BYTE directive 1is null, it 1is
interpreted as a zero, as described below:

.=420
.BYTE e ; ZEROS ARE STORED IN BYTES 420, 421,
7422, AND 423.

Note that in the above example, four bytes of storage result from the
.BYTE directive. The three commas in the operand field represent an
implicit declaration of four null values, each separated from the
other by a comma. Hence, four bytes, each containing a value of zero
(0), are reserved in the object module.

6.3.2 .WORD Directive

The .WORD directive is used to generate successive words of data in
the object module. The directive is of the form:

«WORD exp ;STORES THE BINARY EQUIVALENT OF THE
;EXPRESSION EXP IN THE NEXT WORD.

. WORD expl,exp2,expn ;STORES THE BINARY EQUIVALENTS OF THE
;LIST OF EXPRESSIONS IN SUCCESSIVE
;WORDS.

A legal expression must result in 16 bits of data or less. Each
expression is stored in the next word of the object program. Multiple
expressions must be separated by commas and stored in successive
words, as shown in the following example:

SAL=0
.=500
.WORD 177535,.+4,SAL ;STORES THE VALUES 177535, 506, AND
/ ;0 IN WORDS 500, 502, AND 504,
;RESPECTIVELY.

If an expression following the .WORD directive contains a null value,
it is interpreted as a zero, as shown in the following example:

.=500
. WORD /5, ;STORES THE VALUES 0, 5, AND 0 IN
; LOCATION 500, 502, AND 504,
;RESPECTIVELY.

A statement containing a blank operator field, i.e., a symbol that is
not recognized by MACRO as a macro call, an instruction nmemonic, a
MACRO directive, or a semicolon is interpreted during assembly as an
implicit .WORD directive, as shown in the example below:

.=440
LABEL: 100,LABEL ;STORES THE VALUE 100 IN LOCATION 440
;AND THE VALUE 440 IN LOCATION 442,

GENERAL ASSEMBLER DIRECTIVES

CAUTION

You should not wuse this technique to
generate .WORD directives because it may
not be 1included in future PDP-11
assemblers.

6.3.3 ASCII Conversion Characters

The single quote (') and the double quote (") characters are unary
operators that can appear in any MACRO expression. When so used,
these characters cause a l6-bit expression value to be generated.

When the single quote is used, MACRO takes the next character in the
expression and converts it from its 7-bit ASCII value to a 16-bit
expression value. The 16-bit value is then used as an absolute term
within the expression. For example, the statement:

MOV #'A,RO

results in the following 16-bit expression value being moved into
register O0:

00000000 (01000001

t——Binary Value of ASCII A

Thus, in the example above, the expression 'A results in a value of
101 (8). Note that the high-order byte 1is always zero (0) in the
resulting expression value when the single quote unary operator is
used.

The ' character must not be followed by a carriage-return, null,
RUBOUT, 1line-feed, or form-feed character; 1if it is, an error code
(A) is generated in the assembly listing.

When the double quote is used, MACRO takes the next two characters in
the expression and converts them to a 16-bit binary expression value
from their 7-bit ASCII values. This 16-bit value is then used as an
absolute term within the expression. For example, the statement:

MOV #"AB,RO

results in the following 16-bit expression value being moved into
register 0:

01000010|01000001

I—— I—-Binary Value of ASCII A

Binary Value of ASCII B

Thus, in the example above, the expression "AB results in a value of
041101(8).

GENERAL ASSEMBLER DIRECTIVES

The " character also must not be followed by a carriage-return, null,
RUBOUT, 1line-feed, or form-feed character; 1if it is, an error code
(A) is likewise generated in the assembly listing.

The ASCII character set is listed in Section A.l, Appendix A.

6.3.4 .ASCII Directive

The .ASCII directive translates character strings into their 7-bit
ASCII equivalents and stores them in the object module. The format of
the .ASCII directive is as follows:

.ASCII /string 1/.../string n/

where: string is a string of printable ASCII characters. All
printable ASCII characters are legal. The
vertical-tab, null, 1line-feed, RUBOUT, and all
other non-printable ASCII characters, except
carriage-return and form-feed, are illegal

characters. Such an illegal non-printing
character is flagged with an error code (I) in the
assembly listing. The carriage-return and

form-feed characters terminate the scan of the
source line. This premature termination of the
.ASCII statement results in the generation of an
error code (A) in the assembly 1listing, because
MACRO is wunable to complete the scan of the
matching delimiter at the end of the character
string.

/ / represent delimiting characters. These delimiters
may be any paired printing characters, other than
the equal sign (=), the left angle bracket (<), or
the semicolon (;), as 1long as the delimiting
character is not contained within the text string
itself. If the delimiting characters do not
match, or if an illegal delimiting character 1is
used, the .ASCII directive 1is flagged with an
error code (A) in the assembly listing.

A non-printing character can be expressed in an .ASCII statement only
by enclosing 1its equivalent octal value within angle brackets. Each
set of angle brackets so used represents a single character. For
example, in the following statement:

.ASCII <15>/ABC/<A+2>/DEF/<5><4>

the expressions <15>, <A+2>, <5>, and <4> represent the values of
non-printing characters. Furthermore, the expressions must reduce to
eight bits of absolute data or less, subject to the same rules for
generating data as with the .BYTE directive (see Section 6.3.1).

Angle brackets can be embedded between delimiting characters in the
character string, but angle brackets so used do not take on their
usual significance as delimiters for non-printing characters. For
example, the statement:

.ASCII /ABC<expression>DEF/

GENERAL ASSEMBLER DIRECTIVES

contains a single ASCII character string, and performs no evaluation
of the embedded, bracketed expression. This use of the angle brackets
is shown in the third example of the .ASCII directive below:

.ASCII /HELLO/ ;STORES THE BINARY REPRESENTATION
;OF THE LETTERS HELLO IN FIVE
; CONSECUTIVE BYTES.

.ASCII /ABC/<15><12>/DEF/ ;STORES THE BINARY REPRESENTATION
;OF THE CHARACTERS A,B,C,CARRIAGE
sRETURN,LINE FEED,D,E,F IN EIGHT
; CONSECUTIVE BYTES.

.ASCII /A<15>B/ ;STORES THE BINARY REPRESENTATION
;OF THE CHARACTERS A, <, 1, 5, >,
;AND B IN SIX CONSECUTIVE BYTES.

The semicolon (;) and equal sign (=) can be wused as delimiting
characters in an ASCII string, but care must be exercised in so doing
because of their significance as a comment indicator and assignment
operator, respectively, as illustrated in the examples below:

.ASCII ;ABC;/DEF/ ;STORES THE BINARY REPRESENTATION OF
;THE CHARACTERS A, B, C, D, E, AND F
;IN SIX CONSECUTIVE BYTES; NOT
; RECOMMENDED PRACTICE.

.ASCII /ABC/;DEF; ;STORES THE BINARY REPRESENTATIONS OF
;THE CHARACTERS A, B, AND C IN THREE
; CONSECUTIVE BYTES; THE CHARACTERS D,
+E, F, AND ; ARE TREATED AS A COMMENT.

.ASCII /ABC/=DEF= ;STORES THE BINARY REPRESENTATION
;OF THE CHARACTERS A, B, C, D, E, AND
;F IN SIX CONSECUTIVE BYTES; NOT
; RECOMMENDED PRACTICE.

An equal sign is treated as an assignment operator when it appears as
the first character in the ASCII string, as illustrated by the
following example:

.ASCII =DEF= ;THE DIRECT ASSIGNMENT OPERATION
; .ASCII=DEF IS PERFORMED, AND A Q
; (SYNTAX) ERROR IS GENERATED UPON
s ENCOUNTERING THE SECOND = SIGN.

6.3.5 .ASCIZ Directive

The .ASCIZ directive is equivalent to the .ASCII directive described
above, except that a zero byte is automatically inserted as the final
character of the string. Thus, when a list or text string has been
created with an .ASCIZ directive, a search for the null character in
the last byte can effectively determine the end of the string, as
reflected by the coding below:

CR=15

LF=12

HELLO: .ASCIZ <CR><XLF>/MACRO VO01lA/<KCR><LF> ;INTRODUCTORY MESSAGE
.EVEN

GENERAL ASSEMBLER DIRECTIVES

MOV #HELLO,R1 ;GET ADDRESS OF MESSAGE.

MOV #LINBUF,R2 ;GET ADDRESS OF OUTPUT BUFFER.
108: MOVB (R1)+, (R2) + ;MOVE A BYTE TO OUTPUT BUFFER.

BNE 108 ;IF NOT NULL, MOVE ANOTHER BYTE.

The .ASCIZ directive is subject to the same checks for character
legality and proper character string construction as described above
for the .ASCII directive.

6.3.6 .RAD50 Directive

The .RAD50 directive allows the user to generate data 1in Radix-50
packed format. Radix—-50 form allows three characters to be packed
into sixteen bits (one word); therefore, any 6-character symbol can
be stored in two consecutive words. The form of the directive is:

.RAD50 /string 1/.../string n/

where: string represents a series of characters to be packed
(three characters per word). The string must
consist of the characters A through Z, 0 through
9, dollar sign ($), period (.) and space (). An
illegal printing character causes an error flag
(Q) to be printed in the assembly listing.

If fewer than three characters are to be packed,
the string 1is packed left-justified within the
word, and trailing spaces are assumed.

As with the .ASCII directive described in Section
6.3.4, the vertical-tab, null, line-feed, RUBOUT,
and all other non-printing characters, except
carriage-return and form-feed, are illegal
characters, resulting in an error code (I) in the
assembly listing. Similarly, the carriage-return
and form-feed characters result in an error code
(A) because these characters end the scan of the
line, preventing MACRO from detecting the
terminating matching delimiter.

/ / represent delimiting characters. These delimiters
may be any paired printing characters, other than
the equal sign (=), the left angle bracket (<), or
the semicolon (;), provided that the delimiting
character is not contained within the text string
itself. If the delimiting characters do not
match, or if an illegal delimiting character is
used, the .RAD50 directive 1is flagged with an
error code (A) in the assembly listing.

Examples of .RAD50 directives are shown below:

.RAD50 /ABC/ ;PACKS ABC INTO ONE WORD.
.RAD50 /AB/ ;PACKS AB (SPACE) INTO ONE WORD.
.RAD50 /ABCD/ ;PACKS ABC INTO FIRST WORD AND

;D (SPACE) (SPACE) INTO SECOND WORD.
.RAD50 /ABCDEF/ ;PACKS ABC INTO FIRST WORD, DEF INTO

; SECOND WORD.

GENERAL ASSEMBLER DIRECTIVES

Each character 1is translated into 1its Radix-50 equivalent, as
indicated in the following table:

Character Radix-50 Octal Equivalent
(space) 0

A-7 1-32

$ 33

. 34
(undefined) 35

0-9 36-47

The Radix-50 equivalents for characters 1 through 3 (C1,C2,C3) are
combined as follows:

Radix-50 Value = ((C1l*50)+C2)*50+C3
For example:
Radix-50 Value of ABC = ((1*50)+2)*50+3 = 3223

Refer to Section A.2 in Appendix A for a table of Radix-50
equivalents.

Angle brackets (<>) must be used in the .RAD50 directive whenever
special codes are to be inserted in the text string, as shown in the
example below:

.RAD50 /AB/<35> ;STORES 3255 IN ONE WORD.

CHR1=1
CHR2=2
CHR3=3

.RAD50 <CHR1><CHR2><CHR3> ;EQUIVALENT TO .RADS50 /ABC/.

~

6.3.7 Temporary Radix-50 Control Operator: R
The "R operator specifies that an argument is to be converted to
Radix-50 format. This allows up to three characters to be stored in
one word. The "R operator is coded as follows:

“"Rccc

where ccc represents a maximum of three characters to be converted to
a l6-bit Radix-50 value. If more than three characters are specified,
any following the third character are ignored. If fewer than 3 are
specified, it is assumed that the trailing characters are blanks. The
following example shows how the "R operator might be used to pack a
3-character file type specifier (MAC) into a single 1l6-bit word.

MOV #"RMAC,FILEXT ; STORE RAD50 MAC AS FILE EXTENSION

The number sign (#) is used to indicate immediate data, i.e., data to
be assembled directly into object code. "R specifies that the
characters MAC are to be converted to Radix-50. This wvalue 1is then
stored in location FILEXT.

GENERAL ASSEMBLER DIRECTIVES

6.4 RADIX AND NUMERIC CONTROL FACILITIES

6.4.1 Radix Control and Unary Control Operators

The normal default assumption for numeric values or expression values
appearing in a MACRO source program 1is octal. However, numerous
instances may occur where an alternate radix is useful for portions of
a program or for variables within a given statement. It may be
useful, for example, to declare a given radix for applicability
throughout a program or to specify a numeric value or expression value
in a manner that causes it to be interpreted as a binary, octal, or
decimal value during assembly. In other such instances, it may be
useful to complement numeric values or expression values. These MACRO
facilities are described in the following sections.

NOTE

When two or more unary operators appear
together, modifying the same term, the
operators are applied, from right to
left, to the term.

6.4.1.1 .RADIX Directive - Numbers used in a MACRO source program are
initially considered to be octal values; however, you can declare any
one of the following radices for applicability throughout the source
program or within specific portions of the program:

2, 8, 10
This is accomplished via a .RADIX directive of the form:
.RADIX n

where: n represents one of the three acceptable radices
listed above. If the argument n is not specified,
the octal default radix is assumed.

The argument in the .RADIX directive 1is always interpreted as a
decimal value. Any alternate radix declared in the source program
through the .RADIX directive remains in effect until altered by the
occurrence of another such directive, i.e., a given radix declaration
is valid throughout a program until changed. For example, the
statement:

.RADIX 10 ;BEGINS A SECTION OF CODE HAVING A
;DECIMAL RADIX.

.RADIX ;REVERTS TO OCTAL RADIX.

Any value other than null, 2, 8, or 10 specified as an argument in the
.RADIX directive causes an error code (A) to be generated in the
assembly listing.

In general, macro definitions should not contain or rely on radix
settings established with the .RADIX directive. Rather, temporary
radix control operators should be used within a macro definition.
Where a possible radix conflict exists within a macro definition or in

GENERAL ASSEMBLER DIRECTIVES

possible future uses of that code, it is recommended that the user
specify numeric or expression values using the temporary radix control
operators described below.

6.4.1.2 Temporary Radix Control Operators: °“D, "0, and "B - Once the
user has specified a given radix for a section of code or has decided
to use the default octal radix, he may discover a number of cases
where an alternate radix is more convenient or desirable (particularly
within macro definitions). The creation of a mask word, for example,
might best be accomplished through the use of a binary radix.

MACRO has three unary operators that allow the user to establish an
alternate radix, as shown below:

“D"number" ("number" is evaluated as a decimal number)
“O"number" ("number" is evaluated as an octal number)
“B"number"” ("number" is evaluated as a binary number)

Thus, an alternate radix can be declared temporarily to meet a
localized requirement in the source program. Such a declaration can
be made at any time, regardless of the existence of the default octal
radix or another specific radix declaration elsewhere in the program.
In other words, the effect of a temporary radix control operator is
limited to the term or expression immediately following the operator.
Any value specified in connection with a temporary radix control
operator 1is evaluated during assembly as a 16-bit entity. Temporary
radix control declarations can be included 1in the source program
anywhere a numeric value is legal.

The expressions below are representative of the methods of specifying
temporary radix control operators:

“D123 Decimal radix
"0 47 Octal Radix
“B 00001101 Binary Radix
“0<A+13> Octal Radix

Note that the up—-arrow and the radix control operator may not be
separated, but the radix control operator and the following term or
expression can be physically separated by spaces or tabs for
legibility or formatting purposes. A multi-element term or expression
that is to be interpreted in an alternate radix should be enclosed
within angle brackets, as shown in the last of the four temporary
radix control expressions above.

The following example also illustrates the use of angle brackets to
delimit an expression that is to be interpreted in an alternate radix:

.RADIX 10
A=10
.WORD “O<A+10>*10

When the temporary radix expression in the .WORD directive above is
evaluated, it effectively yields the following equivalent statement:

. WORD 180.

MACRO also allows a temporary radix change to decimal by specifying a
number, immediately followed by a decimal point (.), as shown below:

100. Equivalent to 144 (8)
1376. Equivalent to 2540(8)
128, Equivalent to 200(8)

6-25

GENERAL ASSEMBLER DIRECTIVES

The above expression forms are equivalent in function to those 1listed
below:

“D100
"D1376
D128

6.4.2 Numeric Directives and Unary Control Operators

Two storage directives and two numeric control operators are available
to simplify the wuse of the floating-point hardware on the PDP-11.
These facilities allow floating-point data to be created 1in the
program, and numeric values to be complemented or treated as
floating-point numbers.

A floating-point number is represented by a string of decimal digits.
lxe string (which can be a single digit in length) may optionally
contain a decimal point, and may be followed by an optional exponent
indicator in the form of the letter E and a signed decimal integer
exponent. The number may not contain embedded blanks, tabs or angle
brackets and may not be an expression. Such a string will result in
one or more errors (A or Q) in the assembly listing.

The list of numeric representations below contains seven distinct,
valid representations of the same floating-point number:

3
3.
3.0
3.0E0
3EC
.3E1
300E-2

As can be inferred, the list could be extended indefinitely (e.g.,
3000E-3, .03E2, etc.). A leading plus sign is optional (e.g., 3.0 is
considered to be +3.0). A leading minus sign complements the sign
bit. No other operators are allowed (e.g., 3.0+N is illegal).

All floating-point numbers are evaluated as 64 bits in the following
format:

64 63 56 55 0

S EEEEEEEE MMM.....MMM
Mantissa (55 bits)
Exponent (8 bits)
Sign (1 bit)

MACRO returns a value of the appropriate size and precision via one of
the floating—-point directives. The values returned may be truncated
or rounded (see Section 6.2).

Floating-point numbers are normally rounded. That 1is, when a
floating-point number exceeds the limits of the field in which it is
to be stored, the high-order bit of the unretained word is added to
the low-order bit of the retained word, as shown below. For example,
if the number is to be stored in a 2-word field, but more than 32 bits
are needed to express its exact value, the highest bit (32) of the
unretained field is added to the least significant bit (0) of the

6-26

GENERAL ASSEMBLER DIRECTIVES

retained field (see illustration below). The .ENABL FPT directive is
used to enable floating-point truncation; .DSABL FPT 1is used to
return to floating-point rounding (see Table 6-2).

Bit Bit Bit Bit
32 0 32 31 0

Unretained
field

Retained
field

I

Note that all numeric operands associated with Floating Point
Processor instructions are automatically evaluated as single-word,
decimal, floating-point values unless a temporary radix control
operator is specified. For example, to add (floating) the octal
constant 41040 to the contents of floating accumulator zero, the
following instruction must be used:

ADDF #7041040,F0
where: F0 is assumed to represent floating accumulator zero.

Floating-point numbers are described 1in greater detail 1in the
applicable PDP-11 Processor Handbook.

6.4.2.1 .FLT2 and .FLT4 - Floating-Point Storage Directives - MACRO
supports two directives that evaluate successive floating-point
numbers and store the results in the object module. These directives
are similar to the .WORD directive and are of the form:

.FLT2 argl,arg2,...
.FLT4 argl,arg2,...

where: argl,arg2,... represent one or more floating point numbers
- as described 1in Section 6.4.2. Multiple
arguments must be separated by commas.

.FLT2 causes two words of storage to be generated for each argument,
while .FLT4 generates four words of storage for each argument.

6.4.2.2 Temporary Numeric Control Operators: “C and °F - The °C
unary operator allows you to specify an argument that is to be
complemented as it 1is evaluated during assembly. The “F unary
operator allows you to specify an argqument consisting of a l-word
floating-point number.

As with the radix control operators described above, the numeric
control operator ("C) can be used anywhere in the source program that
an expression value is legal. Such a construction is evaluated by
MACRO as a 1l6-bit binary value before being complemented. For
example, the following statement:

TAG4: .WORD “Cc151

causes the 1's complement of the value 151 (octal) to be stored as a
l6-bit wvalue 1in the program. The resulting value expressed in octal
form is 177626(8).

GENERAL ASSEMBLER DIRECTIVES

Because the “C construction is a unary operator, the operator and its
argument are regarded as a term. Thus, more than one unary operator
may be applied to a single term. For example, the following
construction:

“Cc°D25

causes the decimal value 25 to be complemented during assembly. The
resulting binary value, when expressed in octal form, reduces to
177746 (octal).

The term created through the use of the temporary numeric control
operator thus becomes an entity that can be wused alone or in
combination with other expression elements. For example, the
following construction:

“C2+6
is equivalent in function to:

<"C2>+6
This expression is evaluated during assembly as the 1l's complement of
2, plus the absolute value of 6. When these terms are combined, the
resulting expression value generates a carry beyond the most
significant bit, leaving 000003 (8) as the reduced value.
As shown above, when the temporary numeric control operator and its
argument are coded as a term within an expression, angle brackets

should be used as delimiters to ensure precise evaluation and
readability.

MACRO also supports a unary operator for numeric control which allows
you to specify an argument consisting of a l-word floating-point
number. For example, the following statement:

A: MOV $#"F3.7,R0

creates a l-word floating-point number at location A+2 containing the
value 3.7 formatted as shown below.

BIT 15 14 7 6 0

S EEEEEEEE MMMMMMM

Sign (bit 15) Exponent (bits 14-7) Mantissa (bits 6-0)

The importance of ordering with respect to unary operators 1is shown
below.

F1.0 = 020400
"F-1.0 = 120400
-"F1.0 = 157400
-"F-1.0 = 057400

The value created by the “F unary operator and its argument is then a
term that can be used)b"QOitself or in an expression. For example:

"C°F6.2
is equivalent to:

“"C<"F6.2>

GENERAL ASSEMBLER DIRECTIVES

For this reason, the use of angle brackets 1is advised. Expressions
used as terms or arguments of a unary operator must be explicitly
grouped.

6.5 LOCATION COUNTER CONTROL DIRECTIVES

The directives used in controlling the value of the current location
counter and 1in reserving storage space 1in the object program are
described in the following sections.

In this connection, it should be noted that several MACRO statements
may cause an odd number of bytes to be allocated, as listed below:

1. .BYTE directive
2. . .BLKB directive
3. .ASCII or .ASCIZ directive
4. .ODD directive

5. A direct assignment statement of the form .=.+expression,
which results in the assignment of an odd address value.

In cases that yield an odd address value, the next word-boundaried
instruction automatically forces the location counter to an even
value, but that instruction is flagged with an error code (B) in the
assembly listing.

6.5.1 L.EVEN Directive

The .EVEN directive ensures that the current location counter contains
an even value by adding 1 if the current value is odd. If the current
location counter is already even, no action is taken. Any operands
following an .EVEN directive are flagged with an error code (Q) in the
assembly listing.

The .EVEN directive is used as follows:

.ASCIZ /THIS IS A TEST/ .

.EVEN ; ENSURES THAT THE NEXT STATEMENT WILL
;BEGIN ON A WORD BOUNDARY.

.WORD XYZ

6.5.2 .0DD Directive

The .0ODD directive ensures that the current location counter contains
an odd value by adding 1 if the current value is even. If the current
location counter is already odd, no action 1is taken. Any operands
following an .ODD directive are also flagged with an error code (Q) in
the assembly listing.

GENERAL ASSEMBLER DIRECTIVES

6.5.3 .BLKB and .BLKW Directives

Blocks of storage can be reserved in the object program by means of
the .BLKB and .BLKW directives. The .BLKB directive is used to
reserve byte blocks; similarly, the .BLKW directive reserves word
blocks. The two directives are of the form:

.BLKB exp
.BLKW exp

where: exp represents the specified number of bytes or words
to be reserved in the object program. If no
argument is present, a default value of 1 is
assumed. These directives should not be used
without arguments. Any expression that is
completely defined at assembly-time and that
reduces to an absolute value 1is legal. If the
expression specified in either of these directives
is not an absolute value, the statement is flagged
with an error code (A) in the assembly listing.

Figure 6-6 illustrates the use of the .BLKB and .BLKW directives.

166 @o0000 +PSECY IMPURE,D

167 000000 PASS11 (BLKNW 1 }PASS FLAG

168 JINEXY GROUP MUST STAY TOGETHER
169 200000 .PSECT IMPPAS,D,GBL

170 000000 SYMBOL s, BLKW 2 §SYMBOL ACCUMULATOR

171 000004 MODEt . JMODE/FLAGS BYTE

172 000004 FLAGSI: ,BLKB 1 }

173 ag008sS SECTORt:,BLKB 1 JSYMBOL/EXPRESSION TYPE

174 200006 VALUESss ,BLkW 1 JEXPRESSION VALUE

175 000010 RELLVL13, ,BLKW 1 JRELOCATION LEVEL

176 200203 «REPT MAXXMTe<< «SYMBOL>/2>

177 +BLKW 1

178 + ENDR

179

180 000020 CLCNAMg: BLKW 2 JCURRENT LOCATION COUNTER NAME
18] 2a0024 CLCFGSss,BLKB 1)

182 @agev2s CLCSECss,BLKB { ’

183 po0026 CLCLOCt s, ,BLKW 1)

184 AGe0O30 CLCMAX 3 ,BLKW 1 JEND OF GROUPED DATA

185 @aa0032 CHRPNT S BLKW 1 JCHARACTER POINTER

186 000034 SYMBEG: ,BLKK 1 JPOINTER TQO START OF SYMBOL
187 202836 ENDFLGSS ,BLKW 1 ’

188 900000 JPSECY

Figure 6-6 Example of .BLKB and .BLKW Directives
The .BLKB directive in a source program has the same effect as the
following statement:
.=.+expression
which causes the value of the expression to be added to the current
value of the 1location counter. The .BLKB directive, however, is

easier to interpret in the context of the source code in which it
appears and is therefore recommended.

6.6 TERMINATING DIRECTIVES

GENERAL ASSEMBLER DIRECTIVES

6.6.1 .END Directive

The .END directive indicates the logical end of the source input, and
takes the following form:

.END exp

where: exp represents an optional expression value which, 1if
present, indicates the program-entry point, i.e.,
the transfer address at which program execution is
to begin.

When MACRO encounters a valid occurrence of the .END directive, it
terminates the current assembly pass. Any additional text beyond this
point in the current source file, as well as in additional source
files identified in the command line, will be ignored.

When creating a task image consisting of several object modules, only
one object module may be terminated with an .END exp statement
specifying the starting address. All other object modules must be
terminated with an .END statement without an address argument;
otherwise, the Linker will issue a diagnostic message. If no starting
address is specified in any of the object modules, task execution will
begin at location 1 of the task and immediately fault because of an
odd addressing error.

The .END statement must not be used within a macro expansion or a
conditional assembly block; 1if it is so used, it is flagged with an
error code (0O) in the assembly listing. The .END statement may be
used, however, 1in an immediate conditional statement (see Section
6.10.2).

If the source program input is not terminated with an .END directive,
an error code (E) results in the assembly listing.

6.6.2 L.EOT Directive

Under the TRAX operating system, the MACRO .EOT directive 1is ignored
and simply treated as a directive without effect, i.e., as a no-op.

6.7 PROGRAM BOUNDARIES DIRECTIVE: .LIMIT

It is often desirable to know the upper and lower address boundaries
of the task image. When the .LIMIT directive is specified in the
source program, MACRO effectively generates the following instruction:

.BLKW 2

causing two storage words to be reserved in the object module. Later,
at 1link time, the address of the bottom of the task's stack is
inserted into the first reserved word, and the address of the first
free word following the task 1image 1is inserted into the second
reserved word.

During linking, the size of the task image is rounded upward to the
nearest 2-word boundary.

GENERAL ASSEMBLER DIRECTIVES

For a discussion of task memory allocation and mapping, refer to the
applicable Linker reference manual (see Section 0.3 in the Preface).

6.5 PROGRAM SECTIONING DIRECTIVES

The MACRO program sectioning directives are used to declare names for
program sections and to establish certain program section attributes
essential to Linker processing. .

6.8.1 .PSECT Directive

The .PSECT directive allows absolute control over the memory
allocation of a program at 1link time, because any program attributes
established through this directive are passed to the Linker.

For exampie, if you are writing programs for a multi-user environment,
a program section containing pure code (instructions only) or a
program section containing impure code (data only) may be explicitly
declared through the .PSECT directive. Furthermore, these program
sections may be explicitly declared as read-only code, qualifying them
for use as protected, reentrant programs.

In addition, program sections exhibiting the global (GBL) attribute
can be explicitly allocated in a task's overlay structure at link
time.

The advantages gained through sectioning programs in this manner
therefore relate primarily to control of memory allocation, program
modularity, and more effective partitioning of memory. Refer to the
applicable Linker reference manual for a discussion of memory
allocation (see Section 0.3 in the Preface).

The .PSECT directive is formatted as follows:

.PSECT name,argl,arg2,...argn

where: name represents the symbolic name of the program
section, as described in Table 6-3.
, represents any legal separator (comma, tab and/or
space) .
argl, represent one or more of the legal symbolic
arg2,... arguments defined £for use with the .PSECT
argn directive, as described in Table 6-3. The slash

separating each pair of symbolic arguments listed
in the table indicates that these optional
arguments are mutually exclusive, i.e., one or the
other, but not both, may be specified. Multiple
arguments must be separated by a legal separating
character. Any symbolic argument specified in the
.PSECT directive other than those listed in Table
6-3 will cause that statement to be flagged with
an error code (A) in the assembly listing.

GENERAL ASSEMBLER DIRECTIVES

Table 6-3

Symbolic Arguments of .PSECT Directive

Argument

Default

Meaning

NAME

RO/RW

1/D

GBL/LCL

Blank

RW

LCL

Establishes the program section name,
which is specified as one to six
Radix-50 characters. If this argument
is omitted, a comma must appear in place
of the name parameter. The Radix-50
character set 1is listed in Section A.2
of Appendix A.

Defines which type of access is
permitted to the program section:

RO=Read-Only Access
RW=Read/Write Access

NOTE

IAS and RSX-11D set hardware
protection for RO program
sections. TRAX does not provide
such protection.

Defines the program section as
containing either instructions (I) or
data (D). These attributes allow the
Linker to differentiate global symbols
that are program entry-point
instructions (I) from those that are
data values (D).

Defines the scope of the program
section, as subsequently interpreted by
the Linker.

In building single-segment programs, the
GBL/LCL arguments have no meaning,
because the total memory allocation for
the program will go into the root
segment of the task. The GBL/LCL
arguments apply only in the case of
overlays.

If an object module contains a local
program section, then the storage
allocation for that module will occur
within the segment in which the module
resides. Many modules can reference
this same program section, and the
memory allocation for each module is
either concatenated or overlaid within
the segment, depending on the argument
of the program section (.PSECT) defining

(continued on next page)

6-33

GENERAL ASSEMBLER DIRECTIVES

Table 6-3 (Cont.)

Symbolic Arguments of .PSECT Directive

Argument

Default

Meaning

GBL/LCL
(cont'd)

ABS/REL

LCL

REL

its allocation requirements (see CON/OVR
below). If an object module contains a
global program section, the
contributions to this program section
are collected across segment boundaries,
and the allocation of memory for that
section will go into the segment nearest
the root in which the first contribution
to this program section appeared. (The
term contribution implies an allocation
of memory to the program section.)

Defines the relocatability attribute of
the program section:

ABS=Absolute (non-relocatable). When
the ABS argument is specified, the
program section is regarded by the
Linker as an absolute module, thus
requiring no relocation. The
program section 1is assembled and
loaded, starting at absolute virtual
address 0.

The location of data in absolute
program sections must fall within
the virtual memory limits of the
segment containing the progr am
section; otherwise, an error
results at link time. For example,
the following code, although wvalid
at during assembly, may generate a
Linker error message if virtual
location 100000 is outside the
segment's virtual address space:

.PSECT ALPHA,ABS
.=.+100000
. WORD X

The above coding assembles properly,
but the resulting load address may
be outside the respective segment's
boundaries. In such cases, the
Linker recognizes this as an attempt
to load data outside the task image
and rwith an error message.

REL=Relocatable. When the REL argument
is specified, the Linker calculates
a relocation bias and adds it to all
references to locations within the
program section, i.e., all
references to the program section
must have a relocation bias added to
them to make them absolute.

(continued on next page)

6-34

GENERAL ASSEMBLER DIRECTIVES

Table 6-3 (Cont.)
Symbolic Arguments of .PSECT Directive

Argument Default Meaning

CON/OVR CON Defines the allocation requirements of
the program section:

CON=Concatenated. All program section
contributions are to be concatenated
with other references to this same
program section in order to
determine the total memory
allocation requirement for this
program section.

OVR=0Overlaid. All program section
contributions are to be overlaid.
Thus, the total allocation

requirement for the program section
is equal to the largest allocation
request made by any individual
contribution to this program
section.

The only argument in the .PSECT directive that is position-dependent
is NAME. If it is omitted, a comma must be used in its place. For
example, the directive:
.PSECT ,GBL

shows a .PSECT directive with a blank name argument and the GBL
argument. Default values (see Table 6-3) are assumed for all other
unspecified arguments.
Once the attributes of a program section are declared through a .PSECT
directive, MACRO assumes that these attributes remain in effect for
all subsequent .PSECT directives of the same name that are encountered
within the module.
MACRO provides for 256 (10) program sections, as listed below:

1. One default absolute program section (. ABS.)

2. One default unnamed relocatable program section

3. Two-hundred-fifty-four named program sections.
The .PSECT directive enables the user to:

1. Create program sections (see Section 6.8.1.1)

2. Share code and data among program sections (see Section
6.8.1.2).

For each program section specified or implied, MACRO maintains the
following information:

1. Program section name

2. Contents of the current location counter

GENERAL ASSEMBLER DIRECTIVES

3. Maximum location counter value encountered

4. Program section - attributes, i.e., the .(PSECT arguments
described in Table 6-3 above.

6.8.1.1 Creating Program Sections - MACRO automatically begins
assembling source statements at relocatable zero of the unnamed
program section, i.e., the first statement of a source program is
always an implied .PSECT directive.

The first occurrence of a .PSECT directive with a given name assumes
that the current location counter is set at relocatable zero. The
scope of this directive then extends until a directive declaring a
different program section 1is specified. Further occurrences of a
program section name in subsequent .PSECT statements cause the
resumption of assembly where that section previously ended. For
example:

.PSECT ;DECLARES UNNAMED RELOCATABLE PROGRAM
A: -WORD 0 ;SECTION ASSEMBLED AT RELOCATABLE
B: -WORD 0 ;ADDRESSES 0, 2, AND 4.
C: -WORD 0

.PSECT ALPHA ;DECLARES RELOCATABLE PROGRAM SECTION
Xz .WORD 0 ;NAMED ALPHA ASSEMBLED AT RELOCATABLE
Y: -WORD 0 ;ADDRESSES 0 AND 2.

. PSECT . ;RETURNS TO UNNAMED RELOCATABLE
D: -WORD ; PROGRAM SECTION AND CONTINUES ASSEM-
;BLY AT RELOCATABLE ADDRESS 6.

(=]

A given program section may be defined completely upon encountering
its first .PSECT directive. Thereafter, the section can be referenced
by specifying its name only, or by completely respecifying its
attributes. For example, a program section can be declared through
the directive:

.PSECT ALPHA,ABS,OVR
and later referenced through the equivalent directive:
.PSECT ALPHA
which requires no arguments.
By maintaining separate location counters for each program section,
MACRO allows the user to write statements that are not physically

contiguous within the program, but that can be 1loaded contiguously
following assembly, as shown in the following example.

.PSECT SEC1,REL,RO ;START A RELOCATABLE PROGRAM SECTION
A: .WORD 0 ;NAMED SEC1 ASSEMBLED AT RELOCATABLE
B: .WORD 0 ;ADDRESSES 0, 2, AND 4.
C: .WORD 0
ST: CLR A ;ASSEMBLE CODE AT RELOCATABLE
CLR B sADDRESSES 6 THROUGH 12.
CLR C
.PSECT SECA,ABS ; START AN ABSOLUTE PROGRAM SECTION
;NAMED SECA. ASSEMBLE CODE AT
.WORD .+2,A ;ABSOLUTE ADDRESSES 0 AND 2.
.PSECT SEC1 ;RESUME RELOCATABLE PROGRAM SECTION
INC A ;SECl. ASSEMBLE CODE AT RELOCATABLE
BR ST ;ADDRESSES 14 AND 16.

GENERAL ASSEMBLER DIRECTIVES

All labels in an absolute program section are absolute; likewise, all
labels in a relocatable section are relocatable. The current location
counter symbol (.) is also relocatable or absolute when referenced 1in
a relocatable or absolute program section, respectively.

Any labels appearing on a line containing a .PSECT (or .ASECT or
.CSECT) directive are assigned the value of the current location
counter before the .PSECT (or other) directive takes effect. Thus, if
the first statement of a program is:

A: .PSECT ALT,REL

the label A is assigned to relocatable address zero of the unnamed (or
blank) program section.

It is not known during assembly where relocatable program sections
will be loaded, therefore all references between relocatable sections
in a single assembly are translated by MACRO to references relative to
the base of the referenced section. Thus, MACRO provides the Linker
with the necessary information to resolve the linkages between various
program sections. Such information is not necessary, however, when
referencing an absolute program section, because all instructions 1in
an absolute program section are associated with an absolute virtual
address.

In the following example, references to the symbols X and Y are
translated into references relative to the base of the relocatable
program section named SEN.

.PSECT ENT,ABS

.=.+1000
A: CLR X ;ASSEMBLED AS CLR BASE OF
;RELOCATABLE SECTION + 10.
JMP Y ;ASSEMBLED AS JMP BASE OF
;RELOCATABLE SECTION + 6.
.PSECT SEN,REL
MOV RO,R1
JMP A ;ASSEMBLED AS JMP 1000.
Y: HALT
X: .WORD 0
NOTE
In the preceding example, using a

constant in conjunction with the current
location counter symbol (.) in the form
.=1000 would result in an error, because
constants are always absolute and are
always associated with the program's
.ASECT (. ABS.). If the form .=1000
were used, a program section
incompatibility would be detected. See
Section 3.6 for a discussion of the
current location counter.

6.8.1.2 Code or Data Sharing - Named relocatable program sections
with the arguments GBL and OVR operate in the same manner as FORTRAN
COMMON, i.e., program sections of the same name with the arguments GBL
and OVR from different assemblies are all loaded at the same location
by the Linker. All other program sections, 1i.e., those with the
argument CON, are concatenated.

GENERAL ASSEMBLER DIRECTIVES

Note that no conflict exists between internal symbolic names and
program section names, i.e., it is legal to use the same symbolic name
for both purposes. Considering FORTRAN again, using the same symbolic
name is necessary to accommodate the following statement:

COMMON /X/ A,B,C,X

where the symbol X represents the base of the program section and also
the fourth element of that section.

6.8.1.3 Memory Allocation Considerations - The assembler does not
generate an error when a module ends at an odd location. This allows
you to place odd length data at the end of a module. However, when
several modules contain object code contributions to the same program
section having the concatenate attribute (see Table 6-3), odd length
modules (except the 1last) may cause the Linker to link succeeding
modules starting at odd locations, thereby making the 1linked program
unexecutable. To avoid this problem, code and data should be
separated from each other and be placed in separately named program
sections. This permits the Linker to automatically begin each program
section on an even address. Refer to the applicable Linker reference
manual for further information on memory allocation of tasks (see
Section 0.3 in the Preface).

6.8.2 .ASECT and .CSECT Directives

TRAX assembly-language programs use the .PSECT and .ASECT directives
exclusively, since the .PSECT directive provides all the capabilities
of the .CSECT directive defined for other PDP-11 assemblers. MACRO
will accept both .ASECT and .CSECT directives, but assembles them as
though they were .PSECT directives with the default attributes 1listed
in Table 6-4. Also, compatibility exists between other MACRO programs
and the TRAX Linkers, since the respective Linkers recognize the
.ASECT and .CSECT directives that appear in such programs and likewise
assign the default values listed in Table 6-4.

Table 6-4
Non-TRAX Program Section Default Values
Default Value
Attribute
.ASECT .CSECT (named) .CSECT (unnamed)
Name . ABS. name Blank
Access RW RW RW
Type I I I
Scope GBL GBL LCL
Relocation ABS REL REL
Allocation OVR OVR CON

6-38

GENERAL ASSEMBLER DIRECTIVES

The allowable syntactical forms of the .ASECT and .CSECT directives
are:

.ASECT
.CSECT
.CSECT symbol

Note that the statement:
.CSECT JIM

is identical to the statement:
.PSECT JIM,GBL,OVR

because the .CSECT default values GBL and OVR are assumed for the
named program section.

6.9 SYMBOL CONTROL DIRECTIVE: .GLOBL

MACRO produces a relocatable object module and a 1listing file
containing the assembly 1listing and symbol table. The Linker joins
separately-assembled object modules 1into a single executable task
image. During linking, object modules are relocated as a function of
the specified base of the module. The object modules are then linked
via global symbols, such that a global symbol in one module, defined
either by a global assignment operator (==), a global 1label operator
(¢:), or the .GLOBL directive can be referenced from another module.
Thus, all symbols which will be referenced by other program modules
must be singled out as global symbols in the defining modules.

The .GLOBL directive is provided to define (and thus provide 1linkage
to) symbols not otherwise defined as global symbols within a module.
For example, if the .DSABL GBL directive is 1in effect (see Section
6.2), .GLOBL directives might be included in a source program to
effect linkage to library routines. For a global symbol definition,
the directive .GLOBL A,B,C is equivalent to:

==expression (or A::)
B==expression (or B::)
C==expression (or C::)

Thus, the general form of the .GLOBL directive is:

.GLOBL syml,sym2,...symn

where: syml, represent legal symbolic names. When multiple
sym2,... symbols are specified, they are separated by any
symn legal separator (comma, space, and/or tab).

A .GLOBL directive may also embody a 1label field and/or a comment
field.

At the end of assembly pass 1, MACRO determines whether a given global
symbol is defined within the current program module or whether it is
to be treated as an external symbol. All internal symbols appearing
within a given program must be defined at the end of assembly pass 1
or they will be assumed to be default global references. Refer to
Section 6.2 for a description of enabling/disabling of global
references.

GENERAL ASSEMBLER DIRECTIVES

In the example below, A and B are entry-point symbols. The symbol A
has been explicitly defined as a global symbol by means of the .GLOBL
directive, and the symbol B has been explicitly defined as a global
label by means of the double colon (::). Since the symbol C is not
defined as a label within the current assembly, it 1is an external
(global) reference.

DEFINE A SUBROUTINE WITH 2 ENTRY POINTS WHICH CALLS AN
EXTERNAL SUBROUTINE

e Ne Ne we

.PSECT ;DECLARE THE UNNAMED PROGRAM SECTION.
.GLOBL A ;DEFINE A AS A GLOBAL SYMBOL.
A: MOV @ (R5) +,R0 ;DEFINE ENTRY POINT A.
MOV #X,R1
X: JSR PC,C ;CALL EXTERNAL SUBROUTINE C.
RTS R5 ;EXIT.
B:: MOV (R5)+,R1 ;DEFINE ENTRY POINT B.
CLR R2
BR X

External symbols can appear in the operand field of an instruction or
MACRO directive as a direct reference, as shown in the examples below:

CLR EXT
.WORD EXT
CLR QEXT

External symbols may also appear as a term within an expression, as
shown below:

CLR EXT+A
«WORD EXT-2
CLR @EXT+A (R1)

It should be noted that an undefined external symbol cannot be used in
the evaluation of a direct assignment statement or as an argument in a
conditional assembly directive (see Sections 6.10.1 and 6.10.3).

6.10 CONDITIONAL ASSEMBLY DIRECTIVES

Conditional assembly directives allow you to include or exclude blocks
of source code during the assembly process, based on the evaluation of
stated condition tests within the body of the program. This
capability allows several variations of a program to be generated from
the same source code.

6.10.1 Conditional Assembly Block Directives: .IF, .ENDC

The general form of a conditional assembly block is as follows:

.IF cond,argument (s) ;START CONDITIONAL ASSEMBLY BLOCK.
range ;RANGE OF CONDITIONAL ASSEMBLY BLOCK.
.ENDC ;END OF CONDITIONAL ASSEMBLY BLOCK.

where:

cond

argument (s)

range

-ENDC

GENERAL ASSEMBLER DIRECTIVES

represents a specified condition that must be met
if the block 1is to be included in the assembly.
The conditions that may be tested by the
conditional assembly directives are defined in
Table 6-5.

represents any legal separator (comma, space,
and/or tab).

represent (s) the symbolic argument (s) or
expression(s) of the specified conditional test.
These arguments are thus a function of the
specified condition to be tested (see Table 6-5).

represents the body of code that is either
included in the assembly or excluded, depending
upon whether the specified condition is met.

terminates the conditional assembly block. This
directive must be present to end the conditional
assembly block.

A condition test other than those listed in Table 6-5, an 1illegal
argument, or a null argument specified in an .IF directive causes that
line to be flagged with an error code (A) in the assembly listing.

Table 6-5

Legal Condition Tests for Conditional Assembly Directives

Conditions
Arguments Assemble Block If:
Positive | Complement
EQ NE Expression Expression 1is equal to 0
(or not equal to 0).
GT LE Expression Expression is greater
than 0 (or less than or
equal to 0).
LT GE Expression Expression is less than 0
(or greater than or equal
to 0).
DF NDF Symbolic Symbol is defined (or not
argument defined).
B NB Macro-type Argument is blank (or
argument non-blank).
IDN DIF Two macro-type Arguments are identical
arguments (or different).
7 NZ Expression Same as EQ/NE.
G L Expression Same as GT/LT.

GENERAL ASSEMBLER DIRECTIVES

NOTE

A macro-type argument (which is a form
of symbolic argument), as shown below,
is enclosed within angle brackets or
denoted with an up-arrow construction
(as described in Section 7.3.1).

<A,B,C>
~/124/

An example of a conditional assembly directive follows:

.IF EQ ALPHA+l1 ;ASSEMBLE BLOCK IF ALPHA+1=0.

.ENDC

The two operators & and ! have special meaning within DF and NDF
conditions, in that they are allowed in grouping symbolic arguments.

& Logical AND operator
! Logical inclusive OR operator
For example, the conditional assembly statement:

.IF DF SYM1 & SYM2

.ENDC

results in the assembly of the conditional block if the symbols SYM1
and SYM2 are both defined.

Nested conditional directives take the form:

Conditional Assembly Directive
Conditional Assembly Directive

.ENDC
.ENDC

For example, the following conditional directives:

.IF DF SYM1
.IF DF SYM2

.ENDC
.ENDC

can govern whether assembly is to occur. 1In the example above, if the

outermost condition 1is unsatisfied, no deeper level of evaluation of
nested conditional statements within the program occurs.

6-42

GENERAL ASSEMBLER DIRECTIVES

Each conditional assembly block must be terminated with an .ENDC
directive. An L.ENDC directive encountered outside a conditional
assembly block is flagged with an error code (0) in the assembly
listing.

MACRO permits a nesting depth of 16(10) conditional assembly levels.
Any statement that attempts to exceed this nesting level depth is
flagged with an error code (0) in the assembly listing.

6.10.2 Subconditional Assembly Block Directives: .IFF, .IFT, .IFTF

Subconditional directives may be placed within conditional assembly
blocks to indicate:

1. The assembly of an alternate body of code when the condition
of the block tests false.

2. The assembly of a non-contiguous body of code within the
conditional assembly block, depending upon the result of the
conditional test in entering the block.

3. The unconditional assembly of a body of code within a
conditional assembly block.

The subconditional directives are described in detail in Table 6-6.
If a subconditional directive appears outside a conditional assembly
block, an error code (0) is generated in the assembly listing.

Table 6-6
Subconditional Assembly Block Directives

Subconditional
Directive Function

.IFF If the condition tested upon entering the
conditional assembly block 1is false, the code
following this directive, and continuing up to the
next occurrence of a subconditional directive or
to the end of the conditional assembly block, is
to be included in the program.

LIFT If the condition tested upon entering the
conditional assembly block 1is true, the code
following this directive, and continuing up to the
next occurrence of a subconditional directive or
to the end of the conditional assembly block, is
to be included in the program.

JIFTF The code following this directive, and continuing
up to the next occurrence of a subconditional
directive or to the end of the conditional
assembly block, is to be included in the program,
regardless of the result of the condition tested
upon entering the conditional assembly block.

The implied argument of a subconditional directive 1is the condition
test specified upon entering the conditional assembly block, as
reflected by the initial directive in the conditional coding examples

GENERAL ASSEMBLER DIRECTIVES

below. Conditional or subconditional directives in nested conditional
assembly blocks are not evaluated if the previous (or outer) condition
in the block 1is not satisfied. Examples 3 and 4 below illustrate
nested directives that are not evaluated because of previous
unsatisfied conditional coding.

EXAMPLE 1: Assume that symbol SYM is defined.

.IF DF SYM ;TESTS TRUE, SYM IS DEFINED. ASSEMBLE
. ;THE FOLLOWING CODE.
.IFF ;TESTS FALSE. SYM IS DEFINED. DO NOT

;ASSEMBLE THE FOLLOWING CODE.

. IFT ;TESTS TRUE. SYM IS DEFINED. ASSEM-
. ;BLE THE FOLLOWING CODE.

. IFTF sASSEMBLE FOLLOWING CODE UNCONDITION-
. ;ALLY.

.IFT . ;TESTS TRUE. SYM IS DEFINED. ASSEM-

;BLE REMAINDER OF CONDITIONAL ASSEM-
. ;BLY BLOCK.

.ENDC

EXAMPLE 2: Assume that symbol X is defined and that symbol Y is not

defined.
.IF DF X ;TESTS TRUE, SYMBOL X IS DEFINED.
.IJF DF Y ;TESTS FALSE, SYMBOL Y IS NOT DEFINED.
.IFF ;TESTS TRUE, SYMBOL Y IS NOT DEFINED,
. ;ASSEMBLE THE FOLLOWING CODE.
.IFT ;TESTS FALSE, SYMBOL Y IS NOT DEFINED.
. ;DO NOT ASSEMBLE THE FOLLOWING CODE.
.ENDC
.ENDC

EXAMPLE 3: Assume that symbol A is defined and that symbol B is not

defined.

.IF DF A ;TESTS TRUE. A IS DEFINED.
;ASSEMBLE THE FOLLOWING CODE.

MOV A,R1

. IFF ;TESTS FALSE. A IS DEFINED. DO NOT
;ASSEMBLE THE FOLLOWING CODE.

MOV R1,RO

.IF NDF B ;sNESTED CONDITIONAL DIRECTIVE IS NOT

GENERAL ASSEMBLER DIRECTIVES

. ;s EVALUATED.

.ENDC
.ENDC

EXAMPLE 4: Assume that symbol X is not defined and that symbol Y is

defined.
.IF DF X ; TESTS FALSE. SYMBOL X IS NOT DEFINED.
;DO NOT ASSEMBLE THE FOLLOWING CODE.
.IJF DF Y sNESTED CONDITIONAL DIRECTIVE IS NOT
. ;EVALUATED.
.IFF ;NESTED SUBCONDITIONAL DIRECTIVE IS
. ;s NOT EVALUATED.
+IFT * ;s NESTED SUBCONDITIONAL DIRECTIVE IS
. sNOT EVALUATED.
+ENDC
.ENDC

6.10.3 Immediate Conditional Assembly Directive: .IIF

An immediate conditional assembly directive provides a means for
writing a l-line conditional assembly block. In using this directive,
no terminating .ENDC statement is required, and the condition to be
tested is completely expressed within the 1line containing the
directive. Immediate conditional assembly directives are of the form:

LIIF cond,arg,statement
where: cond represents one of the 1legal condition tests
defined for conditional assembly blocks in Table
6-5.
y represents any 1legal separator (comma, space,

and/or tab).

arg represents the argument associated with the
immediate conditional directive, i.e., an
expression, symbolic argument, or macro-type
argument, as described in Table 6-5.

’ represents the separator between the conditional
argument and the statement field. If the
preceding argument is an expression, then a comma
must be- used; otherwise, a comma, space, and/or
tab may be used.

statement represents the specified statement to be assembled
if the condition is satisfied.

For example, the immediate conditional statement:

.IIF DF FOO,BEQ ALPHA

GENERAL ASSEMBLER DIRECTIVES

generates the code
BEQ ALPHA
if the symbol FOO is defined within the source program.
As with the .IF directive, a condition test other than those listed in

Table 6-5, an illegal argument, or a null argument specified in an
.IIF directive results in an error code (A) in the assembly listing.

CHAPTER 7

MACRO DIRECTIVES

7.1 DEFINING MACROS

In assembly-language programming, it is often convenient and desirable
to generate a recurring coding sequence by invoking a single statement
within the program. In order to do this, the desired coding sequence
is first established with dummy arguments as a macro definition. Once
a macro has been defined, a single statement calling the macro by name
with a 1list of real arguments (replacing the corresponding dummy
arguments in the macro definition) generates the desired coding
sequence. This sequence is called the macro expansion.

7.1.1 .MACRO Directive

The first statement of a macro definition must be a .MACRO directive.
This directive takes the form:

label: .MACRO name, dummy argument list
where: label represents an optional statement label.
name represents the programmer-assigned symbolic name

of the macro. This name may be any legal symbol
and may be used as a 1label elsewhere 1in the
program.

' represents any legal separator (comma, space,
and/or tab). :

dummy represents a number of legal symbols (see 3.2.2)
argument that may appear anywhere in the body of the macro
list definition, even as a label. These dummy symbols

can be used elsewhere in the program with no
conflict of definition. Multiple dummy arguments
specified in this directive may be separated by
any legal separator. The detection of a duplicate
or an 1illegal symbol in a dummy argument list
terminates the scan and causes an error code to be
generated.

A comment may follow the dummy argument list in a .MACRO directive, as
shown below:

.MACRO ABS A,B ;DEFINES MACRO ABS WITH TWO ARGUMENTS.

MACRO DIRECTIVES

NOTE

Although it is 1legal for a 1label to
appear on a .MACRO directive, this
practice is discouraged, especially in
the case of nested macro definitions,
because invalid., labels or labels
constructed with the concatenation
character will cause the macro directive
to be ignored. This may result in
improper termination of the macro
definition. This NOTE also applied to
.IRP, .IRPC, and .REPT.

7.1.2 .ENDM Directive

The final statement of every macro definition must be an .ENDM
directive of the form:

.ENDM name

where: name represents an optional argument specifying the
symbolic name of the macro being terminated by the
directive, as shown in the following example:

.ENDM ; TERMINATES THE CURRENT
sMACRO DEFINITION.

.ENDM ABS ; TERMINATES THE CURRENT
sMACRO DEFINITION NAMED ABS.

If specified, the symbolic name in the .ENDM statement must match the
name specified in the corresponding .MACRO directive. Otherwise, the
statement is flagged with an error code (A) in the assembly 1listing
(see Appendix D). In either case, the current macro definition is
terminated. Specifying the macro name in the .ENDM statement thus
permits MACRO to detect missing .ENDM statements or improperly-nested
macro definitions.

The .ENDM directive may be followed by a comment field, but must not
contain a label, as shown below:

.MACRO TYPMSG MESSGE ;TYPE A MESSAGE.

JSR R5,TYPMSG
.WORD MESSGE
.ENDM ;END OF TYPMSG MACRO.

An .ENDM statement encountered by MACRO outside a macro definition is
flagged with an error code (0) in the assembly listing (see Appendix
D).

NOTES

1. Labels on .ENDM directives are ignored.

2. 1Illegal labels will cause the directive
to be bypassed.

MACRO DIRECTIVES

7.1.3 .MEXIT Directive

The .MEXIT directive may be used to terminate a macro expansion before
the end of the macro is encountered. This directive is also legal
within repeat blocks (see Sections 7.6 and 7.7). It is most useful in
the context of nested macros. The .MEXIT directive terminates the
current macro as though an .ENDM directive had been encountered.
Using the .MEXIT directive bypasses the complexities of nested
conditional directives and alternate assembly paths, as shown 1in the
following example:

.MACRO ALTR N,A,B

.IF EQ N © ;START CONDITIONAL ASSEMBLY BLOCK.
.MEXIT ; TERMINATE MACRO EXPANSION.

.ENDC ;END CONDITIONAL ASSEMBLY BLOCK.

. ENDM ;NORMAL END OF MACRO.

Considering the above macro, in an assembly where the real argument
for the dummy symbol N is equal to zero (see Table 6-5), the
conditional block would be assembled, and the macro expansion would be
terminated by the .MEXIT directive. When macros are nested, a .MEXIT
directive causes an exit to the next higher level of macro expansion.

A .MEXIT directive encountered outside a macro definition 1is flagged
with an error code (0O) in the assembly listing.

7.1.4 MACRO Definition Formatting

A form-feed character used within a macro definition causes a page
eject during the assembly of the macro definition. A page eject,
however, is not performed when the macro is expanded.

Conversely, when the .PAGE directive 1is specified within a macro
definition, it is ignored during the assembly of the macro definition,
but a page eject is performed when that macro is expanded.

7.2 - CALLING MACROS

A macro definition must be established by means of the .MACRO
directive (see Section 7.1.1) before the macro can be expanded within
the source program. Macro calls are of the general form:

label: name real arguments
where: label represents an optional statement label.
name represents the name of the macro, as specified in

the .MACRO directive (see Section 7.1.1).

MACRO DIRECTIVES

real represent symbolic arguments which replace
arguments the dummy arguments specified 1in the .MACRO
directive. When multiple arguments are specified,
they are separated by any legal separator.
Arguments to the macro call are treated as
character strings whose usage is determined by the
macro definition. Note that MACRO accepts the
ASCII value of lower-case alphabetic characters
when .ENABL LC has been specified.

When a macro name is the same as a user label, the appearance of the
symbol in the operator field designates the symbol as a macro call;
the appearance of the symbol in the operand field designates it as a
label, as shown below:

ABS: MOV (RO) ,R1 ;ABS IS DEFINED AS A LABEL.
BR ABS ;ABS IS CONSIDERED TO BE A LABEL.
ABS #4 ,ENT ,LAR ;ABS IS A MACRO CALL.

7.3 ARGUMENTS IN MACRO DEFINITIONS AND MACRO CALLS

Arguments within a macro definition or macro call are separated from
other arguments by any of the legal separating characters described in
Section 3.1.1.

Macro definition arguments (dummy) and macro call arguments (real)
normally maintain a strict positional relationship. That is, the
first real argument in a macro call corresponds with the first dummy
argument 1in a macro definition. Only the use of keyword arguments in
a macro call can override this correspondence (see Section 7.3.6).

For example, the following macro definition and its associated macro
expansion contain multiple arguments:

.MACRO REN A,B,C

REN ALPHA ,BETA ,<C1,C2>
Arguments which themselves contain separating characters must be
enclosed in paired angle brackets, as shown above. For example, the
macro call:

REN <MOV X,Y>,#44,WEV
causes the entire expression

MOV X,Y
to replace all occurrences of the symbol A in the macro definition.

Real arguments within a macro call are considered to be character
strings and are treated as a single entity during the macro expansion.

MACRO DIRECTIVES

The up-arrow (") construction is provided to allow angle brackets to
be passed as part of the argument. This construction, for example,
could have been used in the above macro call, as follows:

REN “/<MOV X,Y>/,#44,WEV

causing the entire character string <MOV X,¥> to be passed as an
argument.

The following macro call:
REN #44 ,WEV~/MOV X,Y/

however, contains only two arguments (#44 and WEV"/MOV X,Y/), because
the up-arrow 1is a wunary operator (see Section 3.1.3) and it is not
preceded by an argument separator.

As shown in the examples above, spaces can be used within bracketed
argument constructions to increase the legibility of such expressions.

7.3.1 Macro Nesting

The nesting of macros, where the expansion of one macro includes a
call to another, causes one set of angle brackets in the macro
definition to be removed from an argument with each nested call. The
depth of nesting allowed 1is dependent upon the amount of dynamic
memory used by the source program being assembled.

To pass an argument containing legal argument delimiters to nested
macros, the argument in the macro definition should be enclosed within
one set of angle brackets for each level of nesting, as shown in the
coding sequence below. It should be noted that this extra set of
angle brackets for each level of nesting is required in the macro
definition, not in the macro call.

.MACRO LEVEL1l DUMI1,DUM2
LEVEL2 <DUM1>
LEVEL2 <DUM2>

.ENDM

.MACRO LEVEL2 DUM3
DUM3

ADD #10,RO

"MOV RO, (R1)+
.ENDM

A call to the LEVEL]l macro, as shown below, for example:
LEVEL1 <MOV X,R0>,<MOV R2,R0>

causes the following macro expansion to occur:

MOV X,R0

ADD #10,R0
MOV RO, (R1)+
MOV R2,RO
ADD #10,R0
MOV RO, (R1)+

MACRO DIRECTIVES

When macro definitions are nested, i.e., when a macro definition 1is
contained entirely within the definition of another macro, the inner
definition is not a callable macro until the outer macro has been
called and expanded. For example, in the following coding:

.MACRO LVl A,B

.MACRO LV2 C

. ENDM
.ENDM

the LV2 macro cannot be called and expanded until the LVl macro has
been so invoked. Likewise, any macro defined within the LV2 macro
definition cannot be called and expanded until LV2 has also been
invoked.

7.3.2 Special Characters in Macro Arguments

An argument may include special characters without enclosing them in a
bracketed construction if that argument does not contain spaces, tabs,
semicolons, or commas. For example, the macro definition:

.MACRO PUSH ARG

MOV ARG, - (SP)
.ENDM
PUSH X+3(%2)

causes the following code to be generated:

MOV X+3(%2),-(SP)

7.3.3 Passing Numeric Arguments as Symbols

When macro arguments are passed, an absolute symbol value can be
passed which is treated by the macro as a numeric string. An argument
preceded by the unary operator backslash (\) is treated as a numeric
value in the current program radix. The ASCII characters representing
this value are inserted in the macro expansion, and their function |is
defined 1in the context of the resulting code, as shown in the
following example:

.MACRO INC A,B

CON A,\B ;B IS TREATED AS A NUMBER IN CURRENT .
B=B+1 ; PROGRAM RADIX.
.ENDM
.MACRO CON A,B
A'B: .WORD 4 ;A'B IS DESCRIBED IN SECTION 7.3.6.
.ENDM
C=0 INC X,C

MACRO DIRECTIVES

The above macro call (INC) would thus expand to:

X0: .WORD 4

Note in this expanded code that the label X0: 1is the result of the
concatenation of two real arguments. The single quote (') character
‘in the 1label A'B: causes the real arguments X and O to be
concatenated as they are passed during the expansion of the macro.
This type of argument construction is described in further detail in
Section 7.3.6.

A subsequent call to the same macro would generate the following code:

X1: .WORD 4

and so on, for later calls. The two macro definitions are necessary
because the symbol associated with dummy argument B (i.e., C) cannot
be updated in the CON macro definition, because its numeric value has
already been substituted for its symbolic name, i.e., the character O
has replaced C in the argument string. In the CON macro definition,
the number passed is treated as a string argument. (Where the value
of the real argument is 0, only a single 0 character is passed to the
macro expansion.)

Passing numeric values in this manner is useful in identifying source
listings. For example, versions of programs created through
conditional assemblies of a single source program can be identified
through such coding as that shown below. Assume, for example, that
the symbol ID in the macro call (IDT) has been equated elsewhere in
the source program to the value 6.

.MACRO IDT SYM ;ASSUME THAT THE SYMBOL ID TAKES
.IDENT /VO5A'SYM/ ;ON A UNIQUE 2-DIGIT VALUE.
.ENDM ;WHERE VO05A IS THE UPDATE

. . ;VERSION OF THE PROGRAM.
IDT \1ID

The above macro call would then expand to:

.IDENT /VO05A6/

where 6 is the numeric value of the symbol ID.

7.3.4 Number of Arguments in Macro Calls

If more arguments appear in the macro call than 1in the macro
definition, an error code (Q) is generated in the assembly listing.
If fewer arguments appear in the macro call than in the macro
definition, missing arguments are assumed to be null values. The
conditional directives .IF B and .IF NB (see Table 6-5) <can be used
within the macro to detect missing arguments. The number of arguments
can also be specified using the .NARG directive (Section 7.4.1). Note
that a macro can be defined with no arguments.

7.3.5 Creating Local Symbols Automatically

A label is often required in an expanded macro. In- the conventional
macro facilities thus far described, such a label must be explicitly

MACRO DIRECTIVES

specified as an argument with each macro call. Be careful in 1issuing
subsequent calls to the same macro, to avoid specifying a duplicate
label as a real argument. This concern can be eliminated through a
feature of MACRO which creates a unique symbol where a label is
required in an expanded macro.

As noted in Section 3.5, MACRO can automatically create local symbols
of the form n$, where n is a decimal integer within the range 64
through 127, inclusive. Such local symbols are created by MACRO in
numerical order, as shown below:

643
65%

1268
1278
This automatic facility is invoked on each <call of a macro whose

definition contains a dummy argument preceded by the question mark (?)
character, as shown in the macro definition below:

.MACRO ALPHA, A,?B ;CONTAINS DUMMY ARGUMENT B PRECEDED BY
;s QUESTION MARK.
TST A
BEQ B
ADD #5,A
B:
.ENDM

A local symbol is generated automatically by MACRO only when a real
argument of the macro call 1is either null or missing, as shown in
Example 1 below, which reflects the expansion of the ALPHA macro
defined above.

If the real argument is specified in the macro call, however, MACRO
inhibits the generation of a 1local symbol and normal argqument
replacement occurs, as shown in Example 2 below.

EXAMPLE 1: Generate a Local Symbol for the Missing Argument:

ALPHA Rl ; SECOND ARGUMENT IS MISSING.
TST R1

BEQ 64$; LOCAL SYMBOL IS GENERATED.
ADD #5,R1 '

64S:

EXAMPLE 2: Do Not Generate a Local Symbol:

ALPHA R2,XYZ ;SECOND ARGUMENT XYZ IS SPECIFIED.
TST R2

BEQ XYZ ;NORMAL ARGUMENT REPLACEMENT OCCURS.
ADD #5,R2

XYZ:

Automatically—-generated local symbols are restricted to the first
16 (10) arguments of a macro definition. :

Note that automatically-created local symbols resulting local symbols
from the expansion of a macro, as described above, do not in any way
influence 1local symbol block boundaries. In other words, such
automatically-created 1local symbols do not establish a local symbol
block in their own right.

' MACRO DIRECTIVES

However, when a macro has several argquments earmarked for automatic
local symbol generation, substituting a specific label for one such
argument introduces a risk that assembly errors will result. This is
because MACRO constructs its argument substitution list at the point
of macro invocation. Therefore, the appearance of any 1label, the
.ENABL LSB directive, or the .PSECT directive, in the macro expansion
will create a new local symbol block. This could leave 1local symbol
references in the previous block and the symbol definitions in the new
one, resulting in error codes in the assembly 1listing (see Appendix
D). Furthermore, a subsequent macro expansion that generates local
symbols in the new block may duplicate one of the symbols in question,
resulting in an additional error code (P) in the assembly listing.

7.3.6 Keyword Arguments

Macros may be defined with and/or invoked with keyword arguments. A
keyword argument has the following form:

name=string
where
name represents the dummy argument,
string represents the real symbolic argument.

The keyword argument may not contain embedded argument separators
unless properly delimited as described in section 7.3.

When a keyword argument appears in the dummy argument list of a macro
definition, the specified string becomes the default real argument at
macro call.

When a keyword argument appears in the real argument list of a macro
call, the specified string becomes the real argument for the dummy
argument that exactly matches the specified name, whether or not the
dummy argument was defined with a keyword. If a match fails, the
entire argument specification is treated as the next positional real
argument. A keyword argument may be specified anywhere in the dummy
argument list of a macro definition and 1is part of the positional
ordering of argument. On the other hand, a keyword argqument may be
specified anywhere in the real argument list of a macro call but does
not affect the positional correspondence of the remaining arguments.

1 .LIST ME
2 ;
3 ; DEFINE A MACRO HAVING KEYWORDS IN DUMMY ARGUMENT LIST
4 ;
5
6 .MACRO TEST CONTRL=1,BLOCK,ADDRES=TEMP
7 - WORD CONTRL
8 .WORD BLOCK
9 +WORD ADDRES
10 .ENDM
11
12
13 H
14 ; NOW INVOKE SEVERAL TIMES
15 H
16
17 000000 - TEST A,B,C

000000 000000G .WORD A

MACRO DIRECTIVES

000002 000000G .WORD B
000004 000000G .WORD C
18
19 000006 TEST ADDRES=20,BLOCK=30,CONTRL=40
000006 000040 -WORD 40
000010 0060030 - WORD 30
000012 000620 - WORD 20
20
21 000014 TEST BLOCK=5
000014 000001 . WORD 1
000016 000005 . WORD 5
000020 000000G . WORD TEMP
22
23 000022 TEST CONTRL=5 ,ADDRES=VARIAB
000022 000005 .WORD 5
000024 000000 . WORD
000026 (000000G . WORD VARIAB
24
25 000030 TEST
000030 000001 .WORD 1
000032 00000C . WORD
000034 o000000G . WORD TEMP
26
27 000036 TEST ADDRES=JACK!JILL
000036 000001 . WORD 1
000040 000000 . WORD
000042 000000C . WORD JACK!JILL
28
29
30 000001 .END

7.3.7 Concatenation of Macro Arguments

The apostrophe or single quote character (') operates as a legal
delimiting character in macro definitions. A single quote that
precedes and/or follows a dummy argument in a macro definition is
removed, and the substitution of the real argument occurs at that
point. For example, in the following statements:

.MACRO DEF A,B,C

A'B: .ASCIZz /C/
.BYTE "'A,''B
.ENDM

when the macro DEF is called through the statement:
DEF X,Y,<MACRO>
it is expanded, as follows:

XY: .ASCIZ /MACRO/
.BYTE 'X,'Y

In expanding the first 1line, the scan for the first argument
terminates upon finding the first ' character. Since A is a dummy
argument, the ' is removed. The scan then resumes with B; B is also
noted as another dummy argument. The two real arquments X and Y are
then concatenated to form the label XY:. The third dummy argument 1is
noted in the operand field of the .ASCIZ directive, causing the real
argument MACRO to be substituted in this field.

MACRO DIRECTIVES

When evaluating the arguments to the .BYTE directive during expansion
of the second line, the scan begins with the first ' character. Since
it is neither preceded nor followed by a dummy argument, this '
character remains in the macro expansion. The scan then encounters
the second ' character, which is followed by a dummy argument and is
therefore discarded. The scan of argument A is terminated upon
“encountering the comma (,). The third ' character is neither preceded
nor followed by a dummy argument and again remains in the macro
expansion. The fourth (and last) ' character is followed by another
dummy argument and 1is 1likewise discarded. (Note that four '
characters were necessary in the macro definition to generate two ‘'
characters in the macro expansion.)

7.4 MACRO ATTRIBUTE DIRECTIVES: .NARG, .NCHR, AND .NTYPE

Three directives are available in MACRO which allow the user to
determine certain attributes of macro arguments. The use of these
directives permits selective modifications of a macro expansion,
depending on the nature of the arguments being passed. These
directives are described separately below.

7.4.1 L.NARG Directive

The .NARG directive is used to determine the number of arguments 1in
the macro call currently being expanded. Hence, the .NARG directive
can appear only within a macro definition; if it does not, an error
code (0) 1is generated in the assembly listing. This directive takes
the form:

label: .NARG symbol
where: label represents an optional statement label.
symbol represents any legal symbol. This symbol is
equated to the number of arguments in the macro
call currently being expanded. If a symbol is not
specified, the .NARG directive is flagged with an
error code (A) in the assembly listing.

An example of the .NARG directive follows:

MACRO DIRECTIVES

«TITLFE NARG

+MACRN NQPP, NUUM
«MNARG Sym

o IF ER,SYM
JMEXIT

. IFF

+REPT NYM

NOP

1@ dENDM

11 «ENDC

12 «ENDM

O®NCN BN

1S Nnooa0e NOPP
L LLELL +NARG SYM
o IF EQ,SYM
oMEXIT
. IFF
«REPT
NDP
+ENDM
JENDC
16
17
18 annaee NOPP 6
NAAAAY .NARG SYM
«IF EOQ,SYM
oMEYTIT
[] YF‘
200026 <REPT &
NOP
«ENDM
2000097 o0a@2un NOP
2ARAN2 NAAp2UR NOP
200204 000240 NOP
eaeene eoR242 NQP
202019 eQ@2un NOP
eaen12 o0n@un NOP
«ENDC
19
20
21 0208001 JENP

7.4.2 .NCHR Directive

The .NCHR directive, which can appear anywhere in a MACRO program, is
used to determine the number of characters in a specified character
string. This directive, which is useful in calculating the length of
macro arguments, takes the following form:

label: .NCHR symbol,<string>
where: label represents an optional statement label.

symbol represents any legal symbol. This symbol is
equated to the number of characters in the
specified character string. If a symbol 1is not
specified, the .NCHR directive is flagged with an
error code (A) 1in the assembly 1listing (see
Appendix D).

7-12

MACRO DIRECTIVES

v represents any legal separator (comma, space,
and/or tab).

<string> represents a string of printable characters. The
character string need be enclosed within angle
brackets (<>) or up-arrows (") only if the
specified character string contains a 1legal
separator (comma, space, and/or tab). If the
delimiting characters do not match or if the
ending delimiter cannot be detected because of a
syntactical error 1in the character string (thus
prematurely terminating its evaluation), the .NCHR
directive is flagged with an error code (A) in the
assembly listing.

An example of the .NCHR directive follows:

1 « TITLE NCHR
2
3 +MACRD (HAR,MESS
4 cNCHR SYM,MESS
< +WORD SYM
[+ASCII /MESS/
7 «EVEN
L} JENDM
]
10
11 Agpanp MSG1 CHAR <HELLO>
PrROAQRS «NCHR SYM, HELLD
000002 RAAANAAS +WORD SYM™
aarpe? 112 +ASCIY /HELLODY/
ol 11 R 105
eaanpa 114
o' Rl L 114
neAPQA6 117
: <EVEN
12
13
14 PARRAAY JENR

7.4.3 .NTYPE Directive

The .NTYPE directive is used to determine the addressing mode of a
specified macro argument. Hence, the .NTYPE directive can appear only
within a macro definition; if it appears elsewhere, it 1is flagged
with an error code (0O) in the assembly listing. This directive takes
the form:

label: .NTYPE symbol,aexp
where: label represents an optional statement label.

symbol represents any legal symbol. This symbol 1is
equated to the 6-bit addressing mode of the
following argument. If a symbol is not specified,
the .NTYPE directive is flagged with an error code
(2) in the assembly listing.

y represents any legal separator (comma, space,
and/or tab).

MACRO DIRECTIVES

aexp represents any legal address expression, as used
with an opcode. If no argument is specified, the
result will be zero.

An example of the use of an .NTYPE directive in a macro definition is
shown below:

1 «TITLE NTYPE
2
3 «MACRO SAVE, ARG
4 +NTYPE SYM, ARG
-] o IF FR,SYMRIe
6 MOV ARG,=(SP) 1REGISTER MODE
7 « JFF
8 Mny #ARG,=(SP) INON=REGISTER MODE
9 +ENDC
10 «ENPM
11
12
13 P20 QAQAARO TEMPS «WORD P
14
15
16 20002 SAVE R1
nepnal +JNTYPE SYM,R{
< 1F EQ,SYMRT7Q
ARGPR2 AIR1UG MAV R{,=(SP) tREGISTER MODE
« IFF
MOV ¥R{,=(SP) tNONeREGISTER MODE
«ENDC
17
18
19 AR2004 SAVFE TEMP
ArNR6T «MTYPE SYM,TEMP
«IF ER,SYMRTQA
MAYy TFMP,=(SP) IREGISTER MNDF
« IFF
PNAPGAL 0127464 MNY #TEMP,= (SP) sNON=RFGISTFR MODE
PAAANP’
2e
21
22 nee201 +FND

For additional information concerning addressing modes, refer to
Chapter 5 and Appendix B, Section B.2.

7.5 .ERROR AND .PRINT DIRECTIVES

The .ERROR directive is used to output messages to the 1listing file
during assembly pass 2. A common use of this directive is to provide
a diagnostic announcement of a rejected or erroneous macro call or to
alert the user to the existence of an illegal set of conditions
specified in a conditional assembly. If the 1listing file 1is not
specified, the .ERROR messages are output to the command output
device. The .ERROR directive takes the form:

label: .ERROR expr stext

where: label represents an optional statement label.

7-14

MACRO DIRECTIVES

expr represents an optional expression whose value is
output when the .(ERROR directive is encountered
during assembly.

: denotes the beginning of the text string.

text represents the specified message associated with
the .ERROR directive.

Upon encountering an .ERROR directive anywhere in a source progranm,
MACRO outputs a single line containing:

l. An error code (P)
2. The sequence number of the .ERROR directive statement
3. The value of the current location counter
4. The value of the expression, if one is specified
5. The source line containing the .ERROR directive.
For example, the following directive:
.ERROR A ; INVALID MACRO ARGUMENT

causes a line in the following form to be output to the listing file:

Seq. Loc. Exp.
No. No. Value Text
P 512 005642 000076 .ERROR A ;s INVALID MACRO ARGUMENT

The .PRINT directive is identical in function to the .ERROR directive,
except that it is not flagged with the P error code.

7.6 INDEFINITE REPEAT BLOCK DIRECTIVES: .IRP AND .IRPC

An indefinite repeat block is a structure that is similar to a macro
definition; essentially a macro definition that has only one dummy
argument. At each expansion of the 1indefinite repeat range, this
dummy argument is replaced with successive elements of a specified
real argument list. An indefinite repeat block directive and its
associated repeat range are coded in-line within the source program.
This type of macro definition and expansion does not require calling
the macro by name, as required in the expansion of conventional macros
previously described in this section.

An indefinite repeat block can appear either within or outside another
macro definition, indefinite repeat block, or repeat block (see
Section 7.7). The rules for specifying indefinite repeat block
arguments are the same as for specifying macro arguments (see Section
7.3).

MACRO DIRECTIVES

7.6.1 .IRP Directive

The .IRP directive is used to replace a dummy argument with successive
real arguments specified in an argument string. This replacement
process occurs during the expansion of an indefinite repeat block
range. This directive takes the following form:

label: .IRP sym, <argument list>
(range of indefinite repeat block)

.ENDM
where: label represents an optional statement label.

sym represents a dummy argument that is successively
replaced with the specified real arguments
enclosed within the angle brackets. If no dummy
argument 1is specified, the L.IRP directive is
flagged with an error code (A) in the assembly
listing.

R represents any legal separator (comma, space,
and/or tab).

<argument list> represents a list of real argquments enclosed
within angle brackets that is to be used in the
"expansion of the indefinite repeat range. A real
argument may consist of one or more characters;
multiple arguments must be separated by any 1legal
separator (comma, space, and/or tab). If no real
arguments are specified, no action is taken.

range represents the block of code to be repeated once
for each occurrence of a real argument in the
list. The range may contain other macro
definitions and repeat ranges. The .MEXIT
directive (see Section 7.1.3) is legal within the
range of an indefinite repeat block.

.ENDM indicates the end of the indefinite repeat block
range.

An example of the use of the .IRP directive is shown in Figure 7-1.

7.6.2 JIRPC Directive

The .IRPC directive 1is available to permit single character
substitution, rather than argument substitution. On each iteration of
the indefinite repeat range, the dummy argument is replaced with each
successive character in the specified string. The .IRPC directive is
specified as follows:

label: .IRPC sym,<string>

(range of indefinite repeat block)

7-16

.ENDM

where:

label

sym

<string>

range

. ENDM

MACRO DIRECTIVES

represents an optional statement label.

represents a dummy argument that 1is successively
replaced with the specified real arguments
enclosed within the angle brackets. If no dummy
argument is specified, the .IRPC directive is
flagged with an error code (A) in the assembly
listing.

represents any legal separator (comma, space,
and/or tab).

represents a list of characters enclosed within
angle brackets to be used in the expansion of the
indefinite repeat range. Although the angle
brackets are required only when the string
contains separating characters, their use is
recommended for legibility.

represents the block of code to be repeated once
for each occurrence of a character in the list.
The range may contain macro definitions and repeat
ranges. The .MEXIT directive (see Section 7.1.3)
is legal within the range of an indefinite repeat
block.

indicates the end of the indefinite repeat block
range.

An example of the use of the .IRPC directive is shown in Figure 7-1.

BN WA -

i@
11
12
13

14
15
16

200000 016720
@n0RR4 016720
AA0N1a Q16720
300014 216720
paee20 016720
020024 16720

«TITLE IRPTST

LIST ME
JIRP X,<AA,BB,CC,0D,EE,FF>
MOV X, (RO)+
JENDM
LTI MOV AA, (RO)+
CTLIILY MOV BR, (RO)+
2002026 MoV CC,(RO)»
#P20206 MOV DD, (RO)»
LTI TI.LIA MoV EE, (RO) e
8000086 MOV FF,(R@)e

+IRPC X,<ABCDEF>
Move #'X,=(R1)

JENDM
@Pen3p 112741 0POABAG MOVB #A,=(R1)
020834 112741 Q200206 MOVB #B,=(RY)
200240 112741 ©PB0206 MOVB #C,=(R1)
@00044 11274) 0APV0OOG MOVB #D,-(R1)
POMASE 112741 @PBOV0G nove BE,~(R1)
#00054 112741 00AG20AG MOVB #F,=(RY)
LLTITIR JEND

Figure 7-1 Example of .IRP and .IRPC Directives

7-17

MACRO DIRECTIVES

7.7 REPEAT BLOCK DIRECTIVE: .REPT, .ENDR

It is sometimes useful to duplicate a block of code a number of times
in-line with other source code. This duplication of code is
accomplished by creating a repeat block, using a directive in the
form:

label: .REPT exp

(range of repeat block)

.ENDM
where: label represents an optional statement label.

exp represents any 1legal expression whose value
controls the number of times the block of code is
to be assembled within the program. When the
expression value 1is less than or equal to zero
(0), the repeat block is not assembled. If this
expression 1is not an absolute value, the .REPT
statement is flagged with an error code (A) in the
assembly listing.

range represents the block of code to be repeated the
number of times determined by the specified
expression value. The repeat block may contain
macro definitions, indefinite repeat blocks, or
other repeat blocks. The .MEXIT directive is
legal within the range of a repeat block.

. ENDM indicates the end of the repeat block range. The
or terminating statement in a repeat block can be
.ENDR either an .ENDM directive or an .ENDR directive.

7.8 MACRO LIBRARY DIRECTIVE: .MCALL

The .MCALL directive allows you to indicate in advance those system
and/or user-defined macro definitions that are required 1in the
assembly of the source program. The .MCALL directive allows you to
specify the names of all system or user macro definitions not defined
within the source program but which are required to assemble the
program. The .MCALL directive must appear before the first occurrence
of a call to any externally-defined macro. The .MCALL directive is of
the form:

.MCALL argl,arg2,...argn

where: argl, represent the symbolic names of the macro
arg2,... definitions required in the assembly of the source
argn program. The symbolic macro names may be

separated by any legal separator (comma, space,
and/or tab).

The .MCALL directive thus provides the means to access both
.user-defined and system macro libraries during assembly.

MACRO DIRECTIVES

The /LIBRARY qualifier is specified in connection with an input file
specification, to indicate to MACRO that the file is a macro library.
When a macro call is encountered in the source program, MACRO first
searches the user macro library for the named macro definitions, and,
if necessary, continues the search with the system macro library.

Any number of such user-supplied macro files may be designated. In
cases of multiple 1library files, the search for the named macros
begins with the last such file specified. The search continues in
reverse order until the required macro definitions are found,
terminating again, if necessary, with a search of the system macro
library.

If any named macro is not found upon completion of the search, 1i.e.,
if the macro is not defined, the .MCALL statement is flagged with an
error code (U) in the assembly 1listing. Furthermore, a statement
elsewhere 1in the source program which attempts to expand such an
undefined macro is flagged with an error code (0) 1in the assembly
listing.

The TRAX command strings to MACRO, through which a file specification
is supplied, are described 1in detail in Sections 8.1.2 and 8.2.2,
respectively.

MACRO DIRECTIVES

PART 1V

OPERATING PROCEDURES

CHAPTER 8

OPERATING PROCEDURES

MACRO assembles one or more ASCII source files containing MACRO
statements into a single relocatable binary object file. The output
of MACRO consists of a binary object file and a file containing the
table of contents listing, the assembly listing, and the symbol table
listing. An optional cross-reference listing of symbols and macros is
available. A sample assembly listing is provided in Appendix I.

8.1 TRAX OPERATING PROCEDURES

The following sections describe the use of MACRO under TRAX.

8.1.1 Invoking MACRO Under TRAX

The MACRO command 1is wused under TRAX to begin MACRO assembler
operations. The command causes MACRO to assemble one or more ASCII
source files containing MACRO statements 1into a relocatable binary
object file. The assembler will also produce an assembly listing,
followed by a symbol table listing. A cross-reference 1listing can
also be produced, by means of the /CROSSREFERENCE qualifier (see
8.2.2, below).

The command can be issued whenever the TRAX Support Environment is at
command level 1in interactive mode. The MACRO command can be input
either directly from the terminal (interactive mode) or from a batch
file (batch mode). When the specified assembly has completed, MACRO
terminates operations and returns control to the Support Environment.
~ (Refer to the TRAX Support Environment User's Guide for further
information about interactive and batch mode operations.)

8.1.2 TRAX Command String Format
A MACRO command string can be specified using either an interactive
mode or a batch mode. A MACRO command string under TRAX has the
following format:

MACRO[/QUALIFIER([S]] FILESPEC[/QUALIFIER[S]] [+FILESPEC+...]
where:

MACRO - is the invoking command.

[/QUALIFIER([S]] - are the optional qualifiers.

OPERATING PROCEDURES

FILESPEC - is the MACRO source file to be assembled.
[/QUALIFIER[S]] - is the optional qualifiers for the source file.
[+FILESPEC+] - is the additional source files to be assembled.

If the FILESPEC parameter is not given the system will respond with
the prompt:

>FILES?

The desired file names and optional qualifiers are entered and
processing continues.

8.1.3 TRAX Macro Qualifiers

The TRAX Macro Qualifiers direct the MACRO assembler to process the
source file with the following options:

QUALIFIERS SPECIFIES ONE OR MORE OF THE FOLLOWING:
output Produce an object file as specified by
/OBJECT[:filespec] filespec (see Section 8.3). The default

is a file with the same filename as the
last named source file and an .OBJ
extension. /OBJECT is always the
default condition.

/NOOBJECT Do not produce an object file.
output Produce an assembly listing file
/LIST[:filespec] according to filespec (see Section 8.3).

If filespec is not specified, the
listing is printed on the line printer.
The default is /NOLIST.

/NOLIST Do not produce a listing file. The
default in interactive mode is /NOLIST
and in batch mode is /LIST.

NOTE
When no listing file is specified, any
errors encountered in the source program
are displayed at the terminal from which
MACRO was initiated.

/CROSSREFERENCE [:argl...arg4]

Produce a cross-reference listing. Argl
through arg4 are as described in Section

8.1.5.
/SWITCHES FUNCTION
/LI:arg Listing control switches; these options
/NL:arg accept ASCII switch values (arg) which

are equivalent in function and name to
and override the arguments of the .LIST

OPERATING PROCEDURES

and .NLIST directives specified in the
source program (see Section 6.1.1).
This switch overrides the arguments and
remains in effect for the entire
assembly process.

/EN:arg Function control switches; these options

/DS:arg accept ASCII switch values (arg) which
are equivalent 1in function and name to
and override the arguments of the .ENABL
and .DSABL directives specified in the
source program (see Section 6.2). This
switch overrides the arguments and
remains in effect for the entire
assembly process.

TRAX accepts the MACRO or S$MACRO command as input and initializes the
MACRO assembler, which in turn processes the specified files according
to the options indicated in the command string. When the operation is
complete, MACRO returns control to PDS to obtain the next command line
either from the terminal or from the batch stream.

8.1.4 TRAX File Specification Qualifiers

The following optional qualifiers may be appended to a file
specification:

/PASS:N If N=1, assemble the associated file on
the first pass.

If N=2, assemble the associated file on
the second pass.

/LIBRARY specifies that an input file is a macro
library £file. As noted in Section 7.8,
any macro that 1is defined externally
must be identified in the .MCALL
directive before it can be retrieved
from a macro library file and assembled
with the user program. In locating
macro definitions, MACRO 1initiates a
fixed search algorithm, beginning with
the last user macro file specified,
continuing in reverse order with each
such file specified, and terminating, if
necessary, with a search of the system
macro library file. If a required macro
definition is not found upon completion
of the search, an error code (U) results
in the assembly 1listing (see Appendix
D). This means that a user macro
library file must be specified in the
command line prior to the source file(s)
that uses any macros defined in the
library file. If more than one library
file is specified, the libraries will be
searched in right-to-left order.

OPERATING PROCEDURES

8.1.5 Cross-Reference Processor (CREF)
The CREF processor 1is wused to produce a 1listing that includes
cross-references to symbols that appear in the source program. The
cross-reference listing is appended to the assembly 1listing. Such
cross-references are helpful in debugging and in reading 1long
programs.
A cross-reference listing can include up to four sections:

1. User-defined symbols

2., Macro symbols

3. Register symbols

4. Permanent symbols
To generate a cross-reference listing, specify the /CR switch in the

MACRO command string. Optional arguments can also be specified. The
form of the switch is:

SYM
/CR : MAC
REG
PST
where:
SYM specifies user-defined symbols (default)
MAC specifies macro symbols (default)
REG specifies register symbols
PST specifies permanent symbols.

If you wish to generate listings for user-defined and macro symbols
only, simply use /CR. No argument is necessary.

However, 1if an argument is specified, only that type of
cross-reference listing is generated. For example:

/CR:SYM
produces a cross-reference listing of user-defined symbols only. No
listing of macro symbols is generated. Thus, to produce all four
types of cross-reference listings, you must specify all four arguments

(the order in which they are specified is not significant). Use a
colon to separate arguments. For example:

/CR:REG:SYM:MAC:PST

The CREF processor is more fully described in the Utilities Reference
Manual supplied with your system.

Figure 8-1 illustrates a complete cross-reference listing.

OPERATING PROCEDURES

PERMANENT SYMBOL TABLE CROSS REFERENCE

SYMBOL

ADD
BCC
8CS
BEQ-
BIS8B
8IT
BITB
BLO
BNE
B8R
CLR
CLRB
CMP
INC
JMP
JSR

MoV

Move
RTS
SEC
ST
7878
«BLKB
oBLKW

«BYTE

«END
+ENDC
« IDENT
o IF

« IFF
oLISY
+MACRO

JNARG

oNLIST
+PSECT
+RADSE
«TITLE
«WORD

REFERENCES

e=227
2=241
2=271
2=203
2=237
2=235
2=250
2=232
2=225
2=282
2=2a7
2=324
2=202
2=252
2-285
2=205
e=281
2=204
=248
2=268
2=310@
2=230@
2=212
2=292
2=246
2=299
2=151
277
e=122
2=152
2=169
2=333
1=179
13
1=174
2=169
2-208
=220
2=240
2=258
2=281
2ei64
1=199
1=46
2=4p
2=205
2=311
1=1
2=75
2=79
1e2
2135

2=256

2=236

 2=305

2=274
2=251
2=264

2=224
2=253
2=331
2=208
2=311
2=206
2=247
2=276
2=312
2=239
2=320

2=318

2=78

2=123
2=164
2=169

2=165
2=2?

2=164
2=169
2=208
2=220
2=243
2258
2=281
2=164

1=75
2=208
2-88

2149

2=1
2=138

2=313

2=275

2=273
2=267
2=231

2=210@

2=209
2=248
2=277
2=31é
2=-307

2=8p

2=124
2=164
2=170

e=166

2=164
2=17¢0
2=208
2=222
2=243
2=258
=281
2=165

1=-83

2=210
2=118
2=164

2=139

2=295

2=3p2
2=2802
2=272

2=219

2=221
2=249
2=278
2=329

2=84

2=125
2=165
2=179

2=167

2=165
2=17@
2=210
2=222
2=243
2=-258
2=281
2=166

1298
2=22@
2=129
2=165
2=140

Figure 8-1 Sample CREF Listing

CREF

2=300

2=298
2=301

2=220

2=223
2=255
2=279
2=330

282
2=126
2= 165

2=167

2=165
2=205
2=21@
2=222
2=243
2=258
2=311
2=168

{e123
2=222

2=166
2=1dy

vei

2=326

2=314

2=222

2=226
2=260
2=284

2=83
2=127
2=166

2=168

2=166
2=205
2=210
2=222
2-243
2=279
2=311
2=170

{=14S
2=24¢9

2=167
2= 142

OPERATING PROCEDURES

8.1.6 TRAX MACRO In Batch Mode

MACRO command strings can be processed via the TRAX batch mode
facility. The batch mode facility imposes no restrictions on MACRO.
Batch mode processing has the following format:

SUBMIT FILESPEC

where:
SUBMIT - is the command to invoke the batch facility.
FILESPEC - is the file containing the MACRO command strings.

The file must have the following structure:
$JOB
MACRO
SDATA
SOURCE DATA

SEOD
SEOJ

where:
SJOB - defines
MACRO ~ invokes the MACRO assembler.

SDATA - specifies the data to be processed.

SOURCE DATA is the MACRO command strings.

$EOD - specifies the end of data.
SEOJ - specifies the end of the job.

For a more complete description of the TRAX batch processing facility
please see the TRAX System command Language Reference Manual.

8.1.7 TRAX Indirect Command Files

The indirect command file facility can be used with MACRO command
strings. This is accomplished by creating an ASCII file that contains
the desired command strings (or portions thereof) in the forms shown
in Section 8.1.2. When an indirect command file reference is used in
a MACRO command string, the contents of the specified file are taken
as all or part of the command string. An indirect command file
reference is specified in the form:

@filespec
where:

Q specifies that the name that follows 1is an indirect
file.

filespec 1is the file specification of a file (see Section 8.2)
that contains a command string. The default extension
for the file name is .CMD.

An indirect command file reference must always be the rightmost entry
in the command.

OPERATING PROCEDURES

8.2 TRAX FILE SPECIFICATION FORMAT

The general form for a file specification in TRAX systems 1is shown
below. Detailed information is provided 1in the applicable system
user 's guide or operating procedures manual (see Section 0.3 in the
Preface).

dev: [g,mlname.ext;ver
where:

dev: is the name of the physical device where the desired
file resides. A device name consists of two characters
followed by a 1- or 2-digit device unit number (octal)
and a colon (e.g., DPl:, DKO:, DT3:). The default
device under TRAX is established initially by the
system manager for each user and can be changed through
the SET command, or 1is given a default value as
specified in Table 8-1 if none is specified.

[g,m] is the User File Directory (UFD) code. This code
consists of a group number (octal), a comma (,), and an
owner (member) number (octal) all enclosed in brackets
([]). An example of a UFD code is: [200,30].

The default UFD is equivalent to the User
Identification Code (UIC) given at log-in time. Under
IAS, this can be changed through the SET DEFAULT
command.

name is the filename and consists of one through nine
alphanumeric characters. There 1is no default for a
filename.

.ext is a 1- to 3-alphanumeric character filename extension
or type that is preceded by a period (.). An extension
is normally used to identify the nature of the file.
Default values depend on the context of the file
specification and are as follows:

.CMD
.LST
-MAC
.OBJ
. CRF

Indirect command (input) file

A listing (print format) file

MACRO source module (input file)
MACRO object module (output file)
Intermediate CREF input file created
by MACRO.

sver is an octal number between 1 and 77777 that is used to
differentiate between versions of the same file. This
number must be prefixed by a semicolon (;).

For input files, the default value 1is the highest
version number of the file that exists.

For output files, the default value 1is the highest
version number of the file that exists increased by 1.
If no version number exists, the value 1 is used.

OPERATING PROCEDURES

Table 8-1
File Specification Default Values
Default Value
File Device
Directory Filename | Type
Object System Current. None .OBJ
File device.
Listing Device used Directory None .LST
File for object used in
file. Object file.
Source 1 | System Current. None .MAC
File device.
Source 2 | Device used Directory None .MAC
to for source 1 or used for
Sourc% n | last source file source 1 or
File specified. last source
file speci-
fied.
User System device, Current, if None .MLB
Macro if macro file macro file
Library is specified is specified
first; if not, first; if not,
device used directory of
by last source last source
file is used. file is used.
System System [1,1] TRAXMAC .SML
Macro device.
Library
Indirect | System Current. None .CMD
Command device.
File
8.3 MACRO ERROR MESSAGES
MACRO outputs an appropriate error message to the command

device when

confused

by MACRO during assembly.

All the error messages listed below, with the exception of the "MAC --
result in the termination of the current
MACRO then attempts to restart by reading
In the case of a command I/0 error, however, MACRO exits, since

COMMAND
assembly;
line.

I/0 ERROR" message,

it is unable to obtain additional command line input.

should
with the diagnostic error messages (see Appendix D) produced

another

one of the error conditions described below is detected.
These error messages reflect operational problems and

. not

command

OPERATING PROCEDURES

Error Message

MAC -- COMMAND FILE OPEN FAILURE

MAC -- COMMAND I/O ERROR

MAC -- COMMAND SYNTAX ERROR

MAC -~ ILLEGAL FILENAME

MAC -- ILLEGAL SWITCH

MAC -- INDIRECT COMMAND SYNTAX ERROR
MAC -- INDIRECT FILE DEPTH EXCEEDED

Meaning

Either the file from which
MACRO is reading a command
could not be opened initially
or between assemblies; or,
the indirect command file
specified as "@filename" in
the MACRO command line could
not be opened. See "OPEN
FAILURE ON INPUT FILE" for
meaning.

An error was returned by the
file system during MACRO's
attempt to read a command
line. This is an
unconditionally fatal error,
causing MACRO to exit. No
MACRO restart 1is attempted
when this message appears.

An error was detected in the
syntax of the MACRO command
line.

Neither the device name nor
the filename was present in
the input file specification
(i.e., the input file
specification is null), or a
"wild card"” convention
(asterisk) was employed in an
input or output file
specification. "Wild card"
options (*) are not permitted
in MACRO file specifications.

An illegal switch was
specified for a file, an
illegal value was specified
with a switch, or an invalid
use of a switch was detected
by MACRO.

The name of the indirect
command file (@filename)
specified in the MACRO
command line is syntactically
incorrect.

An attempt to exceed the
maximum allowable number of
nested indirect command files
has occurred. (Only three
levels of indirect command
files are permitted in
MACRO.)

OPERATING PROCEDURES

Error Message

MAC -- INSUFFICIENT DYNAMIC MEMORY

MAC -- INVALID FORMAT IN MACRO LIBRARY
MAC -- I/0O ERROR ON INPUT FILE

MAC -- I/O ERROR ON MACRO LIBRARY FILE
MAC -- I/0 ERROR ON OUTPUT FILE

MAC -- I/O ERROR ON WORK FILE

Meaning

There is not enough physical
memory available for MACRO to
page its symbol table.
Reinstall MACRO in a larger
partition; or see Section
F.3.

The 1library file has been
corrupted or it was not
produced by the Librarian
Utility Program (LBR).

In reading a record from a
source input file or macro
library file, an error was
detected by the file system,
e.g., a line containing more
than 132(10) characters is
encountered. This message
may also indicate that a
device problem exists or that
either a source file or a
macro library file has been
corrupted with incorrect
data.

Same meaning as I/0 ERROR ON
INPUT FILE, except that the
file is a macro library file
and not a source input file.

In writing a record to the
object output file or the
listing output file, an error
was detected by the file
system. This message may
also indicate that a device
problem exists or that the
storage space on a device has
been exhausted (i.e., the
device is full).

A read or write error
occurred on the work file
used to store the symbol
table. This error is most
likely caused by a problem on
this device, or by attempting
to write to a device that is
full.

OPERATING PROCEDURES

Error Message

MAC -- OPEN FAILURE ON INPUT FILE

MAC -- OPEN FAILURE ON OUTPUT FILE

MAC -- 64K STORAGE LIMIT EXCEEDED

Meaning

1. Specified device does not
exist.

2, The volume is not
mounted.

3. A problem exists with the
device.

4. Specified directory file
does not exist.

5. Specified file does not
exist.

6. User does not have access

to the file directory or
the file itself.

1. Specified device does not
exist.

2., The volume is not
mounted.

3. A problem exists with the
device.

4. Specified directory file
does not exist.

5. User does not have access
to the file directory

6. The volume is full or the
device is write
protected.

64K words of work file memory
are available to MACRO. This
messagde indicates that the
assembler has generated so
many symbols (on the order of
13,000 to 14,000), it has run
out of space. This means
either the source program is
too large to start with, or
it contains a condition that
leads to excessive size, such

as a macro expansion that
recursively calls itself
without a terminating
condition.

The MACRO Assembler uses its stack for the following purposes:

1. Symbol Table. Four words for every symbol,
names and local symbols.
reused.)

2. Control Section Information. Five
.ASECT, or .CSECT.

words for

3. Storage of macro-definition text.
including comments, between
.ENDM is stored on the stack.

Each and every

4. Work space (for code conversion, etc.).

including macro
(Local symbol space, however,

each PSECT,

character,
a .MACRO and the corresponding

OPERATING PROCEDURES

If, during 1its execution, the MACRO Assembler reports a stack
overflow, then either the demands of one or more of the
above-described categories must be reduced, or the program must be
broken up into smaller modules and linked together at Task-Build time.

The default stack size for MACRQ is 4K. This allows approximately
1000 symbols with the trade-offs mentioned above.

A.1 ASCII CHARACTER SET

EVEN 7-BIT
PARITY OCTAL
BIT CODE
0 000
1 001
1 002
0 003
1 004
0 005
0 006
1 007
1 010
0 011
0 012
1 013
0 014
1 015
1 016
0 017
1 020
0 021
1 023
0 024

APPENDIX A

MACRO CHARACTER SETS

CHARACTER

NUL
SOH

STX
ETX
EOT
ENQ
ACK

BEL
BS

HT
LF

vT
FF
CR
510)
SI

DLE
DC1

DC3

DC4

REMARKS

Null, tape feed, CONTROL/SHIFT/P.
Start of heading; also SOM, start
of message, CONTROL/A.

Start of text; also EOA, end of
address, CONTROL/B.

End of text; also EOM, end of
message, CONTROL/C.

End of transmission (END); shuts
off TWX machines, CONTROL/D.
Enquiry (ENQRY) ; also WRU,
CONTROL/E. :
Acknowledge; also RU, CONTROL/F.
Rings the bell. CONTROL/G.
Backspace; also FEO, format
effector. backspaces some
machines, CONTROL/H.

Horizontal tab. CONTROL/I.

Line feed or Line space (new line);
advances paper to next line,
duplicated by CONTROL/J.

Vertical tab (VTAB). CONTROL/K.
Form Feed to top of next page
(PAGE). CONTROL/L.

Carriage return to beginning of
line; duplicated by CONTROL/M.
Shift out; changes ribbon color to
red. CONTROL/N.

Shift in; changes ribbon color to
black. CONTROL/O.

Data link escape. CONTROL/P (DCO).
Device control 1; turns
transmitter (READER) on, CONTROL/Q
(X ON). O0 022 DC2 Device control
2; turns punch or auxiliary on.
CONTROL/R (TAPE, AUX ON).

Device control 3; turns
transmitter (READER)

off, CONTROL/S (X OFF).

Device control 4; turns punch or
auxiliary off. CONTROL/T (AUX
OFF) .

EVEN
PARITY
BIT

7-BIT
OCTAL
CODE

MACRO CHARACTER SETS

CHARACTER

REMARKS

1

(=]

COONMHOMHOOROHHOHOORHOOOHMONOOROMMOORMOMOONMROOMROKKMO

025

026

027

030
031
032
033
034
035
036
037
040
041
042
043
044
045
046
047
050
051
052
053
054
055
056
057
060
061
062
063
064
065
066
067
070
071
072
073
074
075
076
077
100
101
102
103
104
105
106
107
110
111

NAK

SYN

ETB

CAN
EM
SUB
ESC
FS
GS
RS
us

SP
!

+ N~ =@ 00N

I~

HITQRUBUOAODP®WV I A v OO UNBWNHON:

Negative acknowledge; also ERR,
ERROR. CONTROL/U.

Synchronous file (SYNC) .
CONTROL/V.

End of transmission block; also
LEM, logical end of medium.
CONTROL /W.

Cancel (CANCL). CONTROL/X.

End of medium. CONTROL/Y.
Substitute. CONTROL/Z.

Escape. CONTROL/SHIFT/K.

File separator. CONTROL/SHIFT/L.
Group separator. CONTROL/SHIFT/M.
Record separator. CONTROL/SHIFT/N.
Unit separator. CONTROL/SHIFT/O.
Space.

Accent acute or apostrophe.

MACRO CHARACTER SETS

EVEN 7-BIT
PARITY OCTAL
BIT CODE CHARACTER REMARKS

112
113
114
115
116
117
120
121
122
123

125
126
127
130
131
132
133
134
135
136
137 *x

140 Accent grave.

shift/k.
shift/1.
shift/m.
*

et S N KN ESCCHNIOWOZEPRG

141
142
143
144
145
146
147
150
151
152
153
154
155
156
157
160
16l
162
163
164
165
166
167
170
171
172
173
174
175 This code generated by ALTMODE.

176 This code generated by prefix key

(if present).
177 Delete, Rubout.

~ OCOFHOFHKHOOFRHOMHOOHONRKHOMHOOHHOOHOHR OOHKHOHFROOHHOOHOMNKHOKOOHKOM
N X ELC R QUODZIBEHRURLISTUOUHROIDALODD

Appears as # or t on some machines.

Appears as <« on some machines.

MACRO CHARACTER SETS

A.2 RADIX-50 CHARACTER SET

Character ASCII Octal Egquivalent Radix-50 Equivalent
space 40 0

A-Z 101-132 1-32

$ 44 33

. 56 34

unused 35

0-9 60-71 36-47

The maximum Radix-50 value is, thus,
47%50%*2+47*50+47=174777

The following table provides a convenient means of translating between
the ASCII character set and its Radix-50 equivalents. For example,
given the ASCII string X2B, the Radix-50 equivalent is (arithmetic is
performed in octal):

X=113000
2=002400
B=000002
X2B=115402

Single Char.

or Second Third

First Char. Character Character

Space 000000 Space 000000 Space 000000
A 003100 A 000050 A 000001
B 006200 B 000120 B 000002
C 011300 C 000170 C 000003
D 014400 D 000240 D 000004
E 017500 E 000310 E 000005
F 022600 F 000360 F 000006
G 025700 G 000430 G 000007
H 031000 H 000500 H 000010
I 034100 1 000550 I 000011
J 037200 J 000620 J 000012
K 042300 K 000670 K 000013
L 045400 L 000740 L 000014
M 050500 M 001010 M 000015
N 053600 N 001060 N 000016
(0] 056700 0 001130 0 000017
P 062000 P 001200 P 000020
Q 065100 0 001250 Q 000021
R 070200 R 001320 R 000022
S 073300 S 001370 S 000023
T 076400 T 001440 T 000024
U 101500 U 001510 4) 000025
v 104600 \'% 001560 \'4 000026
W 107700 W 001630 1) 000027
X 113000 X 001700 X 000030
Y 116100 Y 001750 Y 000031
Z 121200 Z 002020 yA 000032
$ 124300 $ 002070 $ 000033

MACRO CHARACTER SETS

SINGLE CHAR.

OR SECOND THIRD

FIRST CHAR. CHARACTER CHARACTER

. 127400 . 002140 . 000034
Unused 132500 Unused 002210 Unused 000035
0 135600 0 002260 0 000036
1 140700 1 002330 1 000037
2 144000 2 002400 2 000040
3 147100 3 002450 3 000041
4 152200 4 002520 4 000042
5 155300 5 002570 5 000043
6 160400 6 002640 6 000044
7 163500 7 002710 7 000045
8 166600 8 002760 8 000046
9 171700 9 003030 9 000047

B.1l SPECIAL CHARACTERS

APPENDIX B

MACRO ASSEMBLY LANGUAGE AND ASSEMBLER DIRECTIVES

Character

g0)| e

)

F N o D

I TN I N

IV A e

\

vertical tab

pace

(comma)

(apostrophe)

Function

Label terminator

Direct assignment operator

Register term indicator

Item terminator or field terminator

Item terminator or field terminator

Immediate expression indicator

Deferred addressing indicator

Initial register indicator

Terminal register indicator

Operand field separator

Comment field indicator

Arithmetic addition operator or auto
increment indicator

Arithmetic subtraction operator or auto
decrement indicator

Arithmetic multiplication operator

Arithmetic division operator

Logical AND operator

Logical OR operator

Double ASCII character indicator

Single ASCII character indicator or
concatenation indicator

Assembly location counter

Initial argument indicator

Terminal argument indicator

Universal unary operator or argument
indicator

Macro call numeric argument indicator

Source line terminator

B.2 SUMMARY OF ADDRESS MODE SYNTAX

Address mode syntax is

following

register number;

symbols:

n

expressed in the summary below using the

is

an integer between 0 and 7 representing a
R is a register expression; E is an expression;

and ER is either a register expression or an expression in the range 0

to 7.

B-1

MACRO ASSEMBLY LANGUAGE AND ASSEMBLER DIRECTIVES

Address
Mode

Format Name

R Register

@R or Register

(ER) deferred

(ER) + Autoincrement

@(ER)+ Autoincrement
Deferred

- (ER) Autodecrement

@-(ER) Autodecrement
Deferred

E (ER) Index

@E (ER) Index Deferred

#E Immediate

Q#E Absolute

E Relative

QE Relative
Deferred

B.3 ASSEMBLER DIRECTIVES

Address
Mode

Number

On

1n

2n

3n

4n

5n

6n

7n

27

37

67

77

Meaning
Register R contains the
operand.
Register R contains the ad-

dress of the operand.

The contents of the register
specified as (ER) are
incremented after being used
as the address of the operand.

The register specified as (ER)
contains the pointer to the
address of the operand; the
register (ER) 1is incremented
after use.

The contents of the register
specified as (ER) are
decremented before being used
as the address of the operand.

The contents of the register
specified as (ER) are
decremented before being used
as the pointer to the address
of the operand.

The expression E, plus the
contents of the register
specified as (ER), form the
address of the operand.

The expression E, plus the
contents of the register
specified as (ER), yield a
pointer to the address of the
operand.

The expression E is the
operand itself.

The expression E is the
address of the operand.

The address of the operand E,
relative to the instruction,
follows the instruction.

The address of the operand is
pointed to by E whose address,
relative to the instruction,
follows the instruction.

The MACRO assembler directives are summarized in the following table.
of each directive, the table contains

For a

detailed description

MACRO ASSEMBLY LANGUAGE AND ASSEMBLER DIRECTIVES

references to the appropriate sections in the body of the manual.

Form

“Bn
“Cexpr

~

Dn
“Fn

“On

“Rccc

.ASCII /string/

Section

Reference

.3.3
.3.6

6.3.3

6.4.1.2
6.4.2.2
6.4.1.2
6.4.2.2
6.4.1.2

6.3.7

6.3.4

Operation

A single gquote (apostrophe)
followed by one ASCII character
generates a word which contains the
7-bit ASCII representation of the
character ‘in the low-order byte and
zero in the high-order byte. This
character is also used as a
concatenation indicator in the
expansion of macro arguments (see
Section 7.3.6).

A double quote followed by two
ASCII characters generates a word
which contains the 7-bit ASCII
representation of the two
characters. The first character is
stored in the low-order byte; the
second character is stored 1in the
high-order byte.

Temporary radix control; causes
the value n to be treated as a
binary number.

Temporary numeric control; causes
the expression's value to be ones-
complemented.

Temporary radix control; causes
the value n to be treated as a
decimal number.

Temporary numeric control; causes
the wvalue n to be treated as a
sixteen-bit floating-point number.

Temporary radix control; causes
the wvalue n to be treated as an
octal number.

Convert ccc to Radix-50 form.

Generates a block of data
containing the ASCII equivalent of
the character string (enclosed in
delimiting characters), one
character per byte.

MACRO ASSEMBLY LANGUAGE AND ASSEMBLER DIRECTIVES

Form

.ASCIZ /string/

.ASECT

.BLKB exp

.BLKW exp

.BYTE expl,exp2,..

.CSECT [name]

.DSABL arg

.ENABL arg

.END [exp]

-ENDC

.ENDM [name]

.ENDR

.EOT

Section

Reference

6.3.5

6.8.2

6.5.3

6.3.1

6.8.2

Operation

Generates a block of data
containing the ASCII equivalent of
the character string (enclosed in
delimiting characters), one
character per byte, with a zero
byte terminating the specified
string.

Begin or resume the absolute
program section.

Reserves a block of storage space
whose length in bytes is determined
by the specified expression.

Reserves a block of storage space
whose length in words is determined
by the specified expression.

Generates successive bytes of data;
each byte contains the value of the
corresponding specified expression.

Begin or resume named or unnamed
relocatable program section. This
directive is provided for
compatibility with other PDP-11
assemblers.

Disables the function specified by
the argument.

Enables (invokes) the function
specified by the argument.

Indicates the logical end of the
source program. The optional
argument specifies the transfer
address where program execution is
to begin.

Indicates the end of a conditional
assembly block.

Indicates the end of the current
repeat block, indefinite repeat
block, or macro definition. The
optional name, if wused, must be
identical to the name specified in
the macro definition.

Indicates the end of the current
repeat block. This directive is
provided for compatibility with
other PDP-11 assemblers.

Ignored; indicates end-of-tape
(which is detected automatically by
the hardware). It is included for
compatibility with earlier
assemblers.

B-4

MACRO ASSEMBLY LANGUAGE AND ASSEMBLER DIRECTIVES

Form

.ERROR exp;text

.EVEN

.FLT2 argl,arg2,...

.FLT4 argl,arg2,...

.GLOBL syml,sym2,...

.IDENT /string/

.IF cond,argl

.IFF

<IFT

+IFTF

.IIF cond,argq,
statement

Section

Reference

7.5

6.4.2.1

6.4.2.1

6.10.1

6.10.2

6.10.2

6.10.2

6.10.3

Operation

User-invoked error directive;
causes output to the listing file
or the command output device
containing the optional expression
and the statement containing the
directive.

Ensures that the current 1location
counter contains an even address by
adding 1 if it is odd.

Generates successive 2-word
floating-point equivalents for the
floating-point numbers specified as
arguments.

Generates successive 4-word
floating-point equivalents for the
floating-point numbers specified as
arguments.

Defines the symbol (s) specified as
global symbol (s).

Provides a means of 1labeling the
object module with the program
version number. The version number
is the Radix-50 string appearing
between the paired delimiting
characters.

Begins a conditional assembly block
of source code which is included in
the assembly only if the stated
condition is met with respect to
the argument (s) specified.

Appears only within a conditional
assembly block, indicating the
beginning of a section of code to
be assembled if the condition upon
entering the block tests false.

Appears only within a conditional
assembly block, indicating the
beginning of a section of code to
be assembled if the condition upon
entering the block tests true.

Appears only within a conditional
assembly block, indicating the
beginning of a section of code to
be assembled unconditionally.

Acts as a 1l-line conditional
assembly block where the condition
is tested for the argument
specified. The statement is
assembled only if the condition
tests true.

MACRO ASSEMBLY LANGUAGE AND ASSEMBLER DIRECTIVES

Form

.IRP sym,
<argl,arg2,...>

.IRPC sym,<string>

.LIMIT

.LIST [arg]

.MACRO name,argl,
arg2,...

.MCALL argl,arg2,...

<MEXIT

.NARG symbol

.NCHR symbol,<string>

.NLIST [arg]

Section

Reference

7.6.1

7.1.3

6.1.1

Operation

Indicates the beginning of an
indefinite repeat block in which
the symbol specified 1is replaced
with successive elements of the
real argument list enclosed within
angle brackets.

Indicates the beginning of an
indefinite repeat block in which
the specified symbol takes on the
value of successive characters,
optionally enclosed within angle
brackets.

Reserves two words into which the
Task Builder inserts the low and
high addresses of the task image.

Without an argument, the .LIST
directive increments the 1listing
level count by 1. With an
argument, this directive does not
alter the listing level count, but

formats the assembly listing
according to the argument
specified.

Indicates the start of a macro
definition having the specified
name and the following dummy
arguments.

Specifies the symbolic names of the
user or system macro definitions
required in the assembly of the
current user program, but which are
not defined within the program.

Causes an exit from the current
macro expansion or indefinite
repeat block.

Can appear only within a macro
definition; equates the specified
symbol to the number of arguments
in the macro call currently being
expanded.

Can appear anywhere 1in a source
program; equates the symbol
specified to the number of
characters in the specified string.

Without an argument, the .NLIST
directive decrements the 1listing
level count by 1. With an
argument, this directive suppresses
that portion of the listing
specified by the argument.

MACRO ASSEMBLY LANGUAGE AND ASSEMBLER DIRECTIVES

Form

.NTYPE symbol,aexp

.0DD

. PAGE

.PRINT exp;text

.PSECT name,attl,...
attn

.RADIX n

.RAD50 /string/

.REPT exp

.SBTTL string

.TITLE string

.WORD expl,exp2,..

Section
Reference

7.4.3

Operation

Can appear only within a macro
definition; equates the symbol to
the 6-bit addressing mode of the
specified address expression.

Ensures that the current 1location
counter contains an odd address by
adding 1 if it is even.

Causes the assembly listing to skip
to the top of the next page, and to
increment the page count.

User-invoked message directive;
causes output to the listing file
or the command output device
containing the optional expression
and the statement containing the
directive.

Begin or resume a named or unnamed
program section having the
specified attributes.

Alters'the current program radix to
n, where n is 2, 8, or 10.

Generates a block of data
containing the Radix-50 equivalent
of the character string enclosed
within delimiting characters.

Begins a repeat block; causes the
section of code up to the next
.ENDM or .ENDR directive to be
repeated the number of times
specified as exp.

Causes the specified string to be
printed as part of the assembly
listing page header. The string
component of each .SBTTL directive
is collected into a table of
contents at the beginning of the
assembly listing.

Assigns the first six Radix-50
characters in the string as an
object module name and causes the
string to appear on each page of
the assembly listing.

Generates successive words of data;
each word contains the value of the
corresponding specified expression.

APPENDIX C

PERMANENT SYMBOL TABLE (PST)

The permanent symbol table (PST) contains those symbols which are
automatically recognized by MACRO. These symbols consist of both op
codes and assembler directives. The op codes (i.e., the instruction
set) are listed first, followed by the directives which cause specific
actions during assembly.

For a detailed description of the instruction set, see the appropriate
PDP-11 Processor Handbook.

C.l OP CODES

OCTAL
MNEMONIC VALUE FUNCTIONAL NAME
ADC 005500 Add Carry
ADCB 105500 Add Carry (Byte)
ADD 060000 Add Source To Destination
ASH 072000 Shift Arithmetically
ASHC 073000 Arithmetic Shift Combined
ASL 006300 Arithmetic Shift Left
ASLB 106300 Arithmetic Shift Left (Byte)
ASR 006200 Arithmetic Shift Right
ASRB 106200 Arithmetic Shift Right (Byte)
BCC 103000 Branch If Carry Is Clear
BCS 103400 Branch If Carry Is Set
BEQ 001400 Branch If Equal
BGE 002000 Branch If Greater Than Or Egual
BGT 003000 Branch If Greater Than
BHI 101000 Branch If Higher
BHIS 103000 Branch If Higher Or Same
BIC 040000 Bit Clear
BICB 140000 Bit Clear (Byte)
BIS 050000 Bit Set
BISB 150000 Bit Set (Byte)
BIT 030000 Bit Test
BITB 130000 Bit Test (Byte)
BLE 003400 Branch If Less Than Or Equal
BLO 103400 Branch If Lower
BLOS 101400 Branch If Lower Or Same
BLT 002400 Branch If Less Than

C-1

MNEMONIC

BMI
BNE
BPL
BPT
BR
BVC
BVS
CALL
ccc
CLC
CLN
CLR
CLRB
CLV
CLZ
CMP

CMPB

COM
COMB

DEC
DECB

DIV
EMT
FADD
FDIV
FMUL
FSUB
HALT
INC
INCB

I0T
JMP
JSR
MARK
MFPI

MFPS

MOV
MOVB

MTPI
MTPS

MUL
NEG
NEGB
NOP
RESET
RETURN
ROL
ROLB
ROR

PERMANENT SYMBOL TABLE (PST)

OCTAL
VALUE

100400
001000
100000
000003
000400
162000
102400
004700
000257
000241
000250
005000
105000
000242
000244
020000

120000

005100
105100

005300
105300

071000
104000
075000
075030
075020
075010
000000
005200
105200

000004
000100
004000
006400
006500

106700

010000
110000

006600
106400

070000
005400
105400
000240
000005
000207
006100
106100
006000

FUNCTIONAL NAME

Branch If Minus
Branch If Not Equal
Branch If Plus
Breakpoint Trap

"Branch Unconditional

Branch If Overflow Is Clear

Branch If Overflow Is Set

Jump To Subroutine (JSR PC,xxX)

Clear All Condition Codes

Clear C Condition Code Bit

Clear N Condition Code Bit

Clear Destination

Clear Destination (Byte)

Clear V Condition Code Bit

Clear Z Condition Code Bit

Compare Source To
Destination

Compare Source To
Destination (Byte)

Complement Destination

Complement Destination
(Byte)

Decrement Destination

Decrement Destination
(Byte)

Divide

Emulator Trap

Floating Add

Floating Divide

Floating Multiply

Floating Subtract

Halt

Increment Destination

Increment Destination
(Byte)

Input/Output Trap

Jump

Jump To Subroutine

Mark

Move From Previous
Instruction Space

Move from PS

(LSI-11)

Move Source To Destination

Move Source To Destination
(Byte)

Move To Previous
Instruction Space

Move to PS

(LSI-11)

Multiply

Negate Destination

Negate Destination (Byte)

No Operation

Reset External Bus

Return From Subroutine (RTS PC)

Rotate Left

Rotate Left (Byte)

Rotate Right

PERMANENT SYMBOL TABLE (PST)

OCTAL
MNEMONIC VALUE FUNCTIONAL NAME
RORB 106000 Rotate Right (Byte)
RTI 000002 Return From Interrupt
(Permits a trace
trap)
RTS 000200 Return From Subroutine
RTT 000006 Return From Interrupt
(inhibits trace trap)
SBC 005600 Subtract Carry
SBCB 105600 Subtract Carry (Byte)
SCC 000277 Set All Condition Code Bits
SEC 000261 Set C Condition Code Bit
SEN 000270 Set N Condition Code Bit
SEV 000262 Set V Condition Code Bit
SEZ 000264 Set Z Condition Code Bit
SOB 077000 Subtract One And Branch
SUB 160000 Subtract Source From
Destination
SWAB 000300 Swap Bytes
SXT 006700 Sign Extend
TRAP 104400 Trap
TST 005700 Test Destination
TSTB 105700 Test Destination (Byte)
WAIT 000001 Wait For Interrupt
XOR 074000 Exclusive OR

OP CODES FLOATING POINT PROCESSOR ONLY

OCTAL

MNEMONIC VALUE FUNCTIONAL NAME

ABSD 170600 Make Absolute Double

ABSF 170600 Make Absolute Floating

ADDD 172000 Add Double

ADDF 172000 Add Floating

CFCC 170000 Copy Floating Condition
Codes

CLRD 170400 Clear Double

CLRF 170400 Clear Floating

CMPD 173400 Compare Double

CMPF 173400 Compare Floating

DIVD 174400 Divide Double

DIVF 174400 Divide Floating

LDCDF 177400 Load And Convert From
Double To Floating

LDCFD 177400 Load And Convert From
Floating To Double

LDCID 177000 Load And Convert Integer To
Double

LDCIF 177000 Load And Convert Integer To
Floating

LDCLD 177000 Load And Convert Long
integer To Double

LDCLF 177000 Load And Convert Long
Integer To Floating

LDD 172400 Load Double

LDEXP 176400 Load Exponent

PERMANENT SYMBOL TABLE (PST)

OCTAL

MNEMONIC VALUE FUNCTIONAL NAME

LDF 172400 Load Floating

LDFPS 170100 Load FPPs Program Status

MFPD 106500 Move From Previous Data
Space

MODD 171400 Multiply And Integerize
Double

MODF 171400 Multiply And Integerize
Floating

MTPD 106600 Move To Previous Data Space

MULD 171000 Multiply Double

MULF 171000 Multiply Floating

NEGD 170700 Negate Double

NEGF 170700 Negate Floating

SETD 170011 Set Double Mode

SETF 170001 Set Floating Mode

SETI 170002 Set Integer Mode

SETL 170012 Set Long Integer Mode

SPL 000230 Set Priority Level

STCDF 176000 Store And Convert From
Double To Floating

STCDI 175400 Store And Convert From
Double To Integer

STCDL 175400 Store And Convert From
Double To Long Integer

STCFD 176000 Store And Convert From
Floating To Double

STCFI 175400 Store And Convert From
Floating To Integer

STCFL 175400 Store And Convert From
Floating To Long Integer

STD 174000 Store Double

STEXP 175000 Store Exponent

STF 174000 Store Floating

STFPS 170200 Store FPPs Program Status

STST 170300 Store FPPs Status

SUBD 173000 Subtract Double

SUBF 173000 Subtract Floating

TSTD 170500 Test Double

TSTF 170500 Test Floating

MACRO DIRECTIVES

DIRECTIVE
.ASCII
.ASCIZ
.ASECT
.BLKB
-BLKW
.BYTE

.CSECT

FUNCTIONAL SIGNIFICANCE

Translates character string to ASCII equivalents.
Translates character string to ASCII equivalents;
inserts zero byte as last character.

Begins absolute program section (provided for
compatibility with other PDP-11 assembliers).
Reserves byte block in accordance with value of
specified argument.

Reserves word block in accordance with value of
specified argument.

Generates successive byte data in accordance with
specified arguments.

Begins relocatable program section (provided for
compatibility with other PDP-11 assemblers).

DIRECTIVE

.DSABL
.ENABL
.END
.ENDC
.ENDM
.ENDR

.EOT
.ERROR

.EVEN
.FLT2

.FLT4

.GLOBL
.IDENT

.IF
. IFF

.IFT
.IFTF
.IIF

.IRP

. IRPC

-LIMIT

.LIST

.MCALL
-MEXIT
.NARG
.NCHR
.NLIST
.NTYPE
.0ODD

. PAGE

«PRINT
.PSECT

.RADIX
.RADS50

.REPT

PERMANENT SYMBOL TABLE (PST)

FUNCTIONAL SIGNIFICANCE

Disables specified function.

Enables specified function.

Defines logical end of source program.

Defines end of conditional assembly block.

Defines end of macro definition, repeat block, or
indefinite repeat block.

Defines end of current repeat block (provided for
compatibility with other PDP-11 assemblers).
Define End of Tape condition (ignored).

Outputs diagnostic message to 1listing file or
command output device.

Word-aligns the current location counter.

Causes two words of storage to be generated for
each floating-point argument.

Causes four words of storage to be generated for
each floating-point argument.

Declares global attribute for specified symbol (s).
Labels object module with specified program
version number.

Begins conditional assembly block.

Begins subconditional assembly block (if
conditional assembly block test is false).

Begins subconditional assembly block (if
conditional assembly block test is true).

Begins subconditional assembly block (whether

conditional assembly block test is true or false).
Assembles immediate conditional assembly statement
(if specified condition is satisfied).

Begins indefinite repeat block:; replaces
specified symbol with specified successive real
arguments.

Begins indefinite repeat block; replaces
specified symbol with value of successive
characters in specified string.

Reserves two words of storage for high and low
addresses of task image.

Controls 1listing 1level count and format of

assembly listing. .MACRO Denotes start of macro
definition.

Identifies required macro definition (s) for
assembly.

Exit from current macro definition or indefinite
repeat block.

Equates specified symbol to the number of
arguments in the macro expansion.

Equates specified symbol to the number of
characters in the specified character string.
Controls 1listing 1level count and suppresses
specified portions of the assembly listing.
Equates specified symbols to the addressing mode
of the specified argument.

Byte-aligns the current location counter.

Advances form to top of next page.

Prints specified message on command output device.
Begins specified program section having specified
attributes.

Changes current program radix to specified radix.
Generates data block having Radix-50 equivalents
of specified character string.

Begins repeat block and replicates it according to
the value of the specified expression.

DIRECTIVE

-SBTTL

.TITLE

.WORD

PERMANENT SYMBOL TABLE (PST)

FUNCTIONAL SIGNIFICANCE

Prints specified subtitle text as the second line
of the assembly listing page header.

Prints specified title text as object module name
in the first 1line of the assembly listing page
header.

Generates successive word data in accordance with
specified arguments.

The MACRO directives listed above are summarized in greater detail in

Appendix B.

APPENDIX D

DIAGNOSTIC ERROR MESSAGE SUMMARY

D.1 MACRO ERROR CODES

A diagnostic error code is printed as the first character in a source
line which contains an error detected by MACRO. This error code
identifies a syntactical problem or some other type of error condition
detected during the processing of a source line. An example of such a
source line is shown below:

Q 26 000236 010102 MOV R1,R2,A

The extraneous argument A in the MOV instruction above causes the line
to be flagged with a Q (syntax) error.

Error Code Meaning

A Assembly error. Because many different types of
error conditions produce this diagnostic message,
all the possible directives which may vyield a
general assembly error have been categorized below
to reflect specific classes of error conditions:

CATEGORY 1l: ILLEGAL ARGUMENT SPECIFIED.

.RADIX -- A value other than 2, 8, or 10 is
specified as a new radix.

.LIST/.NLIST -- Other than a legally defined
arqument (see Table 6-1) is specified with the
directive.

.ENABL/.DSABL -- Other than a legally defined
argument (see Table 6-2) is specified with the
directive.

.PSECT -- Other than a legally-defined argument
(see Table 6-3) is specified with the
directive.

.IF/.IIF -- Other than a legally defined
conditional test (see Table 6-5) or an illegal
argument expression value is specified with the
directive.

«MACRO -- An illegal or duplicate symbol found
in dummy argument list.

D-1

Error Code

A
(Cont'd)

DIAGNOSTIC ERROR MESSAGE SUMMARY

Meaning

CATEGORY 2: NULL ARGUMENT OR SYMBOL SPECIFIED.

.TITLE -- Program name is not specified in the
directive, or first non-blank character
following the directive is a non-Radix-50
character. »

.IRP/.,IRPC -- No dummy argument is specified in
the directive.

.NARG/.NCHAR/.NTYPE —-- No symbol 1is specified
in the directive.

.IF/.IIF -- No conditional arqgument is
specified in the directive.

CATEGORY 3: UNMATCHED DELIMITER/ILLEGAL ARGUMENT

CONSTRUCTION.

.ASCII/.ASCIZ/.RAD50/.IDENT -- Character string
or argument string delimiters do not match, or
an illegal character is used as a delimiter, or
an illegal argument construction is used in the
directive.

.NCHAR -- Character string delimiters do not
match, or an illegal character is used as a
delimiter in the directive.

CATEGORY 4: GENERAL ADDRESSING ERRORS.

This type of error results from one of several
possible conditions:

1. Permissible range of a branch instruction,
i.e., from -128(10) to +127(10) words, has
been exceeded.

2. A statement makes invalid use of the
current location counter, e.g., a
".=expression" statement attempts to force
the current 1location counter to cross
program section (.PSECT) boundaries.

3. A statement contains an invalid address
expression. In cases where an absolute
address expression is required, specifying
a global symbol, a relocatable value, or a
complex relocatable value (see Section 3.9)
results in an invalid address expression.
Similarly, in cases where a reloc¢atable
address expression 1s required, either a
relocatable or absolute value is
permissible, but a global symbol or a
complex relocatable value in the statement
likewise results in an 1invalid address
expression. Specific cases of this type of
error are those which follow:

Error Code

DIAGNOSTIC ERROR MESSAGE SUMMARY
Meaning

.BLKB/.BLKW/.REPT -- Other than an absolute
value or an expression which reduces to an
absolute value has been specified with the
directive.

4, Multiple expressions are not separated by a
comma. This condition causes the next
symbol to be evaluated as part of the
current expression.

CATEGORY 5: ILLEGAL FORWARD REFERENCE.

This type of error results from either of two
possible conditions:

1. A global assignment statement
(symbol==expression) contains a forward
reference to another symbol.

2. An expression defining the value of the
current location counter contains a forward
reference.

Bounding error. Instructions or word data are
being assembled at an odd address. The location
counter is incremented by 1.

Doubly-defined symbol referenced. Reference was
made to a symbol which is defined more than once.

End directive not found. When the end-of-file is
reached during source input and the .END directive
has not yet been encountered, MACRO generates this
error code, ends assembly pass 1, and proceeds
with assembly pass 2.

Illegal character detected. Illegal characters
which are also non-printable are replaced by a
question mark (?) on the listing. The character
is then ignored.

Input line is greater than 132(10) characters in
length. Currently, this error condition is caused
only through excessive substitution of real
arguments for dummy arguments during the expansion
of a macro.

Multiple definition of a 1label. A label was
encountered which was equivalent (in the first six
characters) to a label previously encountered.

A number contains a digit that 1is not 1in the
current program radix. The number is evaluated as
a decimal value.

Opcode error. Directive out of context.
Permissible nesting level depth for conditional
assemblies has been exceeded. Attempt to expand a
macro which was unidentified after .MCALL search.

Error Code

DIAGNOSTIC ERROR MESSAGE SUMMARY
Meaning

Phase error. A label's definition of value varies
from one assembly pass to another or a multiple
definition of a local symbol has occurred within a
local symbol block. Also, when in a local symbol
block defined by the .ENABL LSB directive, an
attempt has occurred to define a local symbol in a
program section other than that which was in
effect when the block was entered. A P error code
also appears if an .ERROR directive is assembled.

Questionable syntax. Arguments are missing, too
many arguments are specified, or the instruction
scan was not completed.

Register-type error. An invalid use of or
reference to a register has been made, or an
attempt has been made to redefine a standard
register symbol without first issuing the .DSABL
REG directive.

Truncation error. A number generated more than 16
bits in a word, or an expression generated more
than 8 significant bits during the use of the
.BYTE directive or trap (EMT or TRAP) instruction.

Undefined symbol. An undefined symbol was
encountered during the evaluation of an
expression; such an undefined symbol is assigned
a value of zero. Other possible conditions which
result in this error code 1include unsatisfied
macro names in the list of .MCALL arguments and a
direct assigment (symbol=expression) statement
which contains a forward reference to a symbol
whose definition also contains a forward
reference; also, a 1local symbol may have been
referenced that does not exist in the current
local symbol block.

Instruction error. The instruction so flagged is
not compatible among all members of the PDP-11
family. See Section 5.3 for details.

APPENDIX E

SAMPLE CODING STANDARD

E.1 INTRODUCTION

Standards eliminate variability and the requirement to make a
decision. Much of the difficulty in establishing standards stems from
the notion that they should be optimal. However, to be successfully
applied, standards must represent an agreement on certain aspects of
the programming process.

This Appendix contains DIGITAL's PDP-11 Program Coding Standard. It
is suggested that this be used as a model to assist users in preparing
standards for their own installations.

E.2 LINE FORMAT

All source lines shall consist of from one to a maximum of eight
characters. This program is described in the DEC Editor Reference
Manual (see Section 0.3 in the Preface).

Assembly language code lines shall have the following format:

1. Label Field - if present, the label shall start at tab stop 0
(column 1).

2, Operation field - the operation field shall start at tab stop
1l (column 9).

3. Operand field - the operand field shall start at tab stop 2
(column 17).

4. Comments field - the comments field shall start at tab stop 4
(column 33) and may continue to column 80.

Comment lines that are included in the code body shall be delimited by
a line containing only a 1leading semicolon. The comment itself
contains a leading semicolon and starts in column 3. Indents shall be
1 tab.

If the operand field extends beyond tab stop 4 (column 33) simply
leave a space and start the comment. Comments which apply to an
instruction but require continuation should always line up with the
character position which started the comment.

SAMPLE CODING STANDARD

E.3 COMMENTS

Comment all coding to convey the global role of an instruction, rather
than simply a literal translation of the instruction into English. 1In
general this will consist of a comment per 1line of code. If a
particularly difficult, obscure, or elegant instruction sequence is
used, a paragraph of comments must immediately precede that section of
code.

Preface text, which describes formats, algorithms, program-local
variables, etc., will be delimited by the character sequence ;+ at the
start of the text and ;- at the end; these delimiters facilitate
automated extraction of narrative commentary. The comment itself will
start in column 3.

For example:

+

THE INVERT ROUTINE ACCEPTS

A LIST OF RANDOM NUMBERS AND
APPLIES THE KOLMOGOROV ALGORITHM
TO ALPHABETIZE THEM.

wo Ne W N W we

E.4 NAMING STANDARDS

E.4.1 Register Standards

E.4.1.1 General Purpose Registers - Only the following names are
permitted as register names; and may not be used for any other
purpose:

RO=%0 ;REG 0

R1=%1 ;REG 1

R2=%2 ;REG 2

R3=%3 sREG 3

R4=%4 ;REG 4

R5=%5 ;REG 5

SP=%6 ;STACK POINTER (REG 6)

PC=%7 ; PROGRAM COUNTER (REG 7)

E.4.1.2 BHBardware Registers - These registers must be named

identically to the hardware definition. For example, PS and SWR.

E.4.1.3 Device Registers - These are symbolically named identically
to the hardware notation. For example, the control status register
for the RK disk is RKCS. Only this symbolic name may be used to refer
to this register.

SAMPLE CODING STANDARD

E.4.2 Processor Priority

Testing or altering the processor priority is done using the symbols

PRO, PR1l, PR2,PR7

which are equated to their corresponding priority bit pattern.

E.4.3 Other Symbols

Frequently-used bit patterns such as CR and LF will be
conventional symbolics on an as-needed basis.

E.4.4 Using the Standard Symbolics
The register standards will be defined within the assembler.

other standard symbols will appear in a file and will be linked
to program execution.

E.4.5 Symbols*

made

All
prior

E.4.5.1 Global Symbols - Global symbols should be easily recognized
by their format. The following standards apply and completely define

symbol standards for PDP-11 Medium/Large software products.

symbol pos-1 pos-2 pos-3 pos-4 pos-5 pos-6 length
non-glbl-sym | letter a-num/ | a-num/ | anum/ | a-num/ | a-num/ =|
null null nuli null nufl
glbl-sym $/. a-num a-num/ | a-num/ | a-num/ | a-num/ =1
rax null null null null null
glbl-offset letter $/. a-num | a-num/ | a-num/ | a-num/ | >=3
rew null null null
glbl-pit-ptrn letter a-num $/. a-num/ | a-num/ | a-num/ | >=
* % *
local-sym number | $ =2
* ¥

* Symbols that are branch targets are also called labels, but we will

always use the term "symbol".

** Number is in the range 0<number<65535.

*** The use of $ or . for global names is reserved for DEC-supplied

software.

SAMPLE CODING STANDARD

where:

a-num is an alphanumeric character.

non—~glbl-sym are non—-global symbols.

local-sym local symbols, as defined by
MACRO.

glbl-sym are global symbols (addresses).

glbl-offset are global offsets (absolute
guantities).

glbl-bit-ptrn are global bit patterns.

A program never contains a .GLOBL statement without showing cause.

E.4.5.2 Symbol Examples
Non-Global Symbols
AlB
ZXCJ1
INSRT
Global Address Symbols
SJIM
.VECTR
$SEC
Global Absolute Offset Symbols
ASJIM
ASXT
A.ENT
Global Bit Pattern Symbols
Al1$20
B3.6
JI.M
Local Symbols
378
2718
635

E.4.5.3 Program-Local Symbols - Self-relative address arithmetic
(.+n) is absolutely forbidden in branch instructions; its use in
other contexts must be avoided if at all possible and practical.

SAMPLE CODING STANDARD

Target symbols for branches that exist solely for positional reference
will use local symbols of the form

<num>$:

Use of non-local symbols is restricted, within reason, to those cases
where reference to the code occurs external to the code.
Local-symbols are formatted such that the numbers proceed sequentially
down the page and from page to page.

E.4.5.4 Macro Names - The 1last two characters (with the last
character possibly being null) have special significance. The next to
last character is a $, the last, a character specifying the mode of
the macro.

For example, in the three macro forms in-line, stack, and p-section,
the 1in-line form has no suffix, the stack has an <S>, and the
p-section a <C>. Thus the Queue I/0 macro can be written as any of

QIOS
QIOSS
QI0SC

depending on the form required. These are not reserved letters. Only
the form of the name is standard.

E.5 PROGRAM MODULES

E.5.1 General Comments on Programs

In our software, a program provides a single distinct function. No
limits exist on size, but the single function limitation should make
modules larger than 1K a rarity. Since any software may eventually
exploit the virtual memory capacity of the 11/40 and 11/45, programs
should make every attempt to maintain a dense reference 1locus (don't
promiscuously branch over page boundaries or over a large absolute
address distance).

All code is read-only. Code and data areas are distinct and each
contains explanatory text. Read-only data should be segregated from
read-write data.

E.5.2 The Module Preface

Each program module in the system shall exist as a separate file. The
filename will reflect the name of the module and the file extension
shall be of the form 'NNN'. The 'NNN' signifies the edit number or
the version number. :The version number shall be changed only when a
new base level is:created. Furthermore, if no corrections are made to
a file from one:base level to the next, the version number will not be
changed. The availability of File Control Services and File Control
Primitives will greatly simplify version number maintenance. Program
modules adhere to a strict . format. This format adds to the
readability and understandability of the module. The following
sections are included in each module:

E-5

For the

1.

10.

11.

SAMPLE CODING STANDARD

Code Section:

A .TITLE statement that specifies the name of the module. If
a module contains more than one routine, subtitles may be
used.

An .IDENT statement specifying the version number. The
PDP-11 version number standard appears in section E.10.

A .PSECT statement that defines the program section in which
the module resides.

A copyright statement, and the disclaimer.

COPYRIGHT (C) 1976
DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASS.

THIS SOFTWARE IS FURNISHED UNDER A LICENSE FOR USE
ONLY ON A SINGLE COMPUTER SYSTEM AND MAY BE COPIED
ONLY WITH THE INCLUSION OF THE ABOVE COPYRIGHT
NOTICE. THIS SOFTWARE, OR ANY OTHER COPIES THEREOF,
MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO
ANY OTHER PERSON EXCEPT FOR USE ON SUCH SYSTEM AND TO
ONE WHO AGREES TO THESE LICENSE TERMS. TITLE TO AND
OWNERSHIP OF THE SOFTWARE SHALL AT ALL TIMES REMAIN
IN DEC.

THE INFORMATION IN THIS DOCUMENT IS SUBJECT TO CHANGE
WITHOUT NOTICE AND SHOULD NOT BE CONSTRUED AS A
COMMITMENT BY DIGITAL EQUIPMENT CORPORATION.

DEC ASSUMES NO RESPONSIBILITY FOR THE USE OR
RELIABLILITY OF ITS SOFTWARE ON EQUIPMENT WHICH IS
NOT SUPPLIED BY DEC.

The version number of the file.

The PDP-11 version number standard is described 1in section
E.10.

The name of the principal author and the date on which the
module was first created.

The name of each modifying author and the date of
modification. Names and modification dates appear one per
line and in chronological order.

A brief statement of the function of the module.

Note: Items 1-8 should appear on the same page.

A list of the definitions of all equated local symbols used
in the module. These definitions appear one per line and in
alphabetical order.

All local macro definitions, preferably in alphabetical order
by name.

All local data. The data should indicate
a. Description of each element (type, size, etc.)

b. Organization (functional, alpha, adjacent, etc.)
c. Adjacency requirements

12,
13.

14.

15.

16.

SAMPLE CODING STANDARD

A more detailed definition of the function of the module.

A list of the inputs expected by the module. This . includes
the calling sequence if non-standard, condition code
settings, and global data settings.

A list of the outputs produced as a result of entering this
module. These 1include delivered results, condition code
settings, but not side effects. (All these outputs are
visible to the caller.)

A list of all effects (including side effects) produced as a
result of entering this module. Effects include alterations
in the state of the system not explicitly expected 1in the
calling sequence, or those not visible to the caller.

The module code.

E.5.3 PFormatting the Module Preface

Rules:

1.

The first eight items appear on the same page and will not
have explicit headings. Item 3 may be omitted if the blank
p-section is being used.

Headings start at the 1left margin*; descriptive text is
indented 1 tab position.)

Items 7-14 will have headings which start at the left margin,
preceded and followed by lines containing only a leading <;>.
Items which do not apply may be omitted.

A template for the module preface follows.

FILE-EXAMPL.S01

WO MO NE NE NG NG NG N e NE NS WS W We N N wo

TITLE EXAMPLE
IDENT /01/
PSECT KERNEL

COPYRIGHT (C) 1976
DIGITAL EQUIPMENT COPORATION, MAYNARD, MASS.

THIS SOFTWARE IS FURNISHED UNDER A LICENSE FOR USE ONLY ON A

SINGLE

COMPUTER SYSTEM AND MAY BE COPIED ONLY WITH THE

INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE, OR
ANY OTHER COPIES THEREOF, MAY NOT BE PROVIDED OR OTHERWISE
MADE AVAILABLE TO ANY OTHER PERSON EXCEPT FOR USE ON SUCH

SYSTEM
TO AND
IN DEC.

AND TO ONE WHO AGREES TO THESE LICENSE TERMS. TITLE
OWNERSHIP OF THE SOFTWARE SHALL AT ALL TIMES REMAIN

THE INFORMATION IN THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT
NOTICE AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL
EQUIPMENT CORPORATION.

*The left margin consists of a <;> a <space> then the heading, so the

text of the heading begins in column 3.

SAMPLE CODING STANDARD

DEC ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF
ITS SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DEC.

VERSION 01
JOE PASCUSNIK 1-JAN-72
MODIFIED BY:
RICHARD DOE 21-JAN-73
SPENCER THOMAS 12-JUN-73
Brief statement of the module's function

EQUATED SYMBOLS

MO NG NI NS NE NG NG N MO N Ne N Ne e NB we we

List equated symbols

LOCAL MACROS

LY R Y

Local Macros

LOCAL DATA

e wo “o

Local data

4.
Module function-details

INPUTS:

Description of inputs
OUTPUTS:

Description of outputs
EFFECTS:

Description of effects

EYEE TR YRR YR YRR TR YRR YRR TR TRE TR TIE T YO T

Begin Module Code

E.5.4 Modularity

No other characteristic has more impact on the wultimate engineering
success of a system than does modularity. Modularity for PDP-11
Software Engineering's products consists of the application of the
single-function philosophy described in section E.5.1, and adherence
to a set of calling and return conventions.

E.5.4.1 Calling Conventions (Inter-Module) - The following calling
conventions must be observed.

SAMPLE CODING STANDARD

Transfer of Control

Macros will exist for call and return. The actual transfer will
be wvia a JSR PC instruction. For register save routines, a
JSR Rn,SAVE will be permitted.

The CALL macro 1is:
CALL subr—name
The RETURN macro is:
RETURN
Register Conventions

On entry, a subroutine minimally saves all registers it intends
to alter except result registers. On exit it restores these
registers. (State preservation is assumed across calls.)

Argument Passing

Any registers may be used, but their use should follow a coherent
pattern. For example, if passing three argquments, pass them in
RO, Rl and R2 rather than RO, R2, R5. Saving and restoring
occurs in one place.

E.5.4.2 Exiting - All subroutine exits occur through a single RETURN
macro.

E.5.4.3 Intra-Module <Calling Conventions - Designer optional, but
consistency favors a calling sequence identical to that of the
inter-module sequence.

E.5.4.4 Success/Failure Indication - The C bit will be used to return
the success/failure indicator, where success equals 0, and failure
equals 1. The argument registers can be used to return values or
additional success/failure data.

E.5.4.5 Module Checking Routines - Modules are responsible for
verifying the wvalidity of arguments passed to them. The design of a
module's calling sequence should aim at minimizing the validity checks
by minimizing invalid combinations. Programmers may add test code to
perform additional checks during checkout. All code should aim at
discovering an error as close (in terms of instruction executions) to
its occurrence as possible.

E.6 FORMATTING STANDARDS

E.6.1 Program Flow

Programs will be organized on the listing such that they flow down the
page, even at the cost of an extra branch or jump.

E-9

SAMPLE CODING STANDARD

For example:

PROCESS

BBB AAA

COMMON

shall appear on the listing as:

TST
BNE BBB
AAA: ceee ceas

BR CMN

BBB: cene ceese

CMN: cese ceee

Rather than:

TST
BNE BBB
AAA: ceoe eses

CMN: ceee ceee
BBB: ceee cese

BR CMN

E.6.2 Common Exits

A common exit appears as the last code sequence on the listing.
the flow chart:

SAMPLE CODING STANDARD

- EXIT

will appear on the listing as:

PR1:

PR2:

PR3:

PR4-:

EXIT:

And not

PR1:

EXIT:

PR2:

PR3:

PR4:

e e e e
e e e

s e e e

BR

oo oo
e oo

BR

LRI

BR

s e 00

s e oo
e e e

CRCIC IR

BR

BR

LTI)
LRI

LI

e o0
e e oo

EXIT

e o0
e o o0

EXIT

* e o
e e e

EXIT

LRI Y

EXIT

e e s

EXIT

e ee
LI WY

EXIT

Thus

SAMPLE CODING STANDARD

E.6.3 Code with Interrupts Inhibited

Code that is executed with interrupts inhibited, shall be flagged by a
three semicolon (;;;) comment delimiter. For example:

..ERTZ: $ENABLE BY RETURNING
;BY SYSTEM SUBROUTINES,
BIS #PR7,PS ;3; INHIBIT INTERRUPTS
BIT #PR7,+2 (SP) s3: C
BEQ 108 ii; O
RTT I M
iii M
10$: ceee ees i3 E
cewe veee HEH N
cene oo i T
cens oo 13 S

E.7 PROGRAM SOURCE FILES

Source creation and maintenance shall be done in base levels. A Dbase
level 1is defined as a point at which the program source files have
been frozen. From the freeze point to the next base level,
corrections will not be made directly to the base level itself.
Rather a file of corrections shall be accumulated for each file in the
base level. Whenever an updated source file 1is desired, the
correction file will be applied to the base file.

The accumulation of corrections shall proceed until a logical breaking
point has occurred (i.e. a milestone or significant implementation
point has been reached). At this time all accumulated corrections
shall be applied to the previous base level to create a new base
level. Correction files will then be started for the new base level.

E.8 FORBIDDEN INSTRUCTION USAGE

1. The use of instructions or index words as 1literals of the
previous instruction. For example:

MOV @PC,Register
BIC Src,Dst

uses the bit clear instruction as a literal. This may seem
to be a very "neat" way to save a word but what about
maintaining a program using this trick? To compound the
problem, it will not execute properly if I/D space is enabled
on the 11/45. 1In this case @PC is a D bank reference.

2. The use of the MOV instruction instead of a JMP instruction
to transfer program control to another location. For
example:

MOV #ALPHA ,PC

transfers control to location ALPHA. Besides taking longer
to execute (2.3 microseconds for MOV yvs. 1.2 for JMP) the
use of MOV instead of JMP makes it nearly impossible to pick
up someone else's program and tell where transfers of control

SAMPLE CODING STANDARD

take place. What if one would like to get a jump trace of
the execution of a program (a move trace is unheard of)? As
a more general issue, perhaps even other operations such as
ADD and SUB from PC should be discouraged. Possibly one or
two words can be saved by using these operations but how many
such occurrences are there?

3. The seemingly "neat" use of all single word instructions
where one double-word instruction could be used and would
execute faster and would not consume additional memory.
Consider the following instruction sequence:

CMP -(R1l), (-R1)
CMP -(R1),-(R1)

The intent of this instruction sequence is to subtract 8 from
register R1 (not to set <condition codes). This can be
accomplished in approximately 1/3 the time via a SUB
instruction (9.4 vs. 3.8 microseconds) at no additional cost
in memory space. Another question here is also, what if RI1
is odd? SUB always wins since it will always execute
properly and is always faster!

E.9 RECOMMENDED CODING PRACTICE

E.9.1 Conditional Branches

When wusing the PDP-11 conditional branch instructions, it is
imperative that the correct choice be made between the signed and the
unsigned branches.

SIGNED UNSIGNED
BGE BHIS (BCC)
BLT BLO
BGT BHI
BLE BLOS (BCS)

A common pitfall is to use a signed branch (e.g. BGT) when comparing
two memory addresses. All goes well until the two addresses have
opposite signs; that is, one of them goes across the 16K (100000 (8))
bound. This type of coding error usually shows itself as a result of
re-linking at different addresses and/or a change in size of the
program.

E.10 PDP-11 VERSION NUMBER STANDARD

The PDP-11 Version Number Standard applies to all modules, parameter
files, complete programs, and libraries which are written or caused to
be written, as part of the PDP-11 Software Development effort. It is
used to provide unique identification of all released, pre-released,
and in-house software.

It is limited in that, as currently specified, only six characters of
identification are used. Future implementations of the Macro
Assembler, Task Builder, and Librarian should provide for at least

SAMPLE CODING STANDARD

nine characters, and possibly twelve. It is expected that this
standard will be enhanced as the need arises.

Version Identifier = <form> <version> <edit> <patch>

<form> Used to identify a particular form of a module or
program, where applicable, as in the case of
LINK-11l. One alphabetic character, if used, and
null (i.e., a binary 0) if not used.

<version> Used to identify the release, or generation, of a
program. Two decimal digits, starting at 00, and
incremented at the discretion of the project in
order to reflect what, in their opinion, is a
major change.

<edit> Used to identify the level to which a particular
release, or generation, of a program or module has
been edited. An edit 1is defined to be an
alteration to the source form. Two decimal
digits, beginning at 01, and incremented with each
edit; null if no edits.

<patch> Used to identify the level to which a particular
‘ release, or generation, of a program or module has
been patched. A patch is defined as an alteration
to a binary form. One alphabetic character,
starting at B, and running sequentially toward Z,
each time a set of patches is released; null if
no patches.

These fields are interrelated. When <version> is changed, then
<patch> and <edit> must be reset to nulls. It is intended that when

<edit> is incremented, then <patch> will be re-set to null, because
the various bugs have been fixed.

E.10.1 Displaying the Version Identifier
The visible output of the version identifier should appear as:
Key <letter> <form> <version> - <edit> <patch>,

where the following Key Letters have been identified:

\ released or frozen version
X in-house experimental version
Y field test, pre-release, or in-house release version

Note that 'X' corresponds roughly to individual support, 'Y' to group
support, and 'V' to company support.

The dash which separates <version> from <edit> is used only if <edit>
and/or <patch> is not null. When a version identifier is displayed as
part of program identification, then the format is:

Program
<space><key-letter><form><version>-<edit><patch>
Name

SAMPLE CODING STANDARD

Examples:

PIP X03
LINK VBO04-C
MACRO Y05-01

E.10.2 Use of the Version Number in the Program

All sources must contain the version number in an .IDENT directive.
For programs (or libraries) which consist of more than one module,
each individual module will follow this version number standard. The
version number of the program or library is not necessarily related to
the version numbers of the constituent modules; it is perfectly
reasonable, for example, that the first version of a new FORTRAN
library, V00, contain an existing SIN routine, say V05-01.

Parameter files are also required to contain the version number in an
.IDENT directive. Because the assembler records the last .IDENT seen,
parameter files must precede the program.

Entities which consist of a collection of modules or programs, will
have an identification module in the first position. An
identification module exists solely to provide identification, and
normally consists of something like:

;OTS IDENTIFICATION
.TITLE FTNLIB
.IDENT /003010/
.END

WO N0 WO WE N WG NP WE WO NS NP N N N NP N Ne WO NP N NE NE e NE Ne We e N e we we wo we

APPENDIX F

SAMPLE ASSEMBLY AND CROSS REFERENCE LISTING

COPYRIGHT (C) 1977 BY
DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASS.

THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED
ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE

INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER
COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY

'OTHER PERSON. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY

TRANSFERRED.

THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE
AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT
CORPORATION.

DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS
SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DIGITAL.

MODULE:
VERSION:
AUTHOR:

DATE:

c-d

WO~ WN -

el T T
NV B WN RO

NN
HOWwom

NN
wN

000000
000000
000002
000004
000006
000010
000012
000012
000014
000014
000016
000016
000022
000022
000024
000026
000030
000032
000034

TST205 MAIN

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

000036
000036

000042
000046
000052
000052
000054
000056

000004
000000
000012"
000014’
000016'

000043
000000
000000 000000

030060
030461
031062
031463
025052
027056

016504 000002

012702 000006
012701 000022

022114
001401
077203

i
7
FPTRPY:

MSGRPY:

SIZE:
REPLYN:
STATUS:

FUNC:

STEP::

208:

.TITLE TST205
.SBTTL LOCAL DATA STRUCTURES

.WORD 4
.WORD 0
.WORD SIZE
.WORD REPLYN
.WORD STATUS

REPLY MESSAGE FPT
ADDRESS OF MESSAGE
ADDRESS OF MSG SIZE
ADDRESS OF REPLY NUM
ADDRESS OF STATUS RETURN

e w¢ we ws e

.WORD 35.
.WORD 0

.WORD 0,0
.WORD "00
+WORD "1l
.WORD "22
+WORD "33
+WORD "k*
.WORD "..

.SBTTL TST205 MAIN

TST205 IS USED IN TRANSACTION TIMO8SN TO TEST THE TIM

ACTION CODE C.KEY. THE TST RECEIVES THE TEXT ASSOCIATED
WITH THE FUNCTION KEY DEPRESSED, THE TEXT IS 35 CHARACTERS
IN LENGTH. EACH KEY HAS A SPECIFIED TEXT. DEPENDING

ON THE TEXT, THEN, TST206 SENDS ONE OF 7 REPLIES TO DISPLAY

THE TEXT. THE MULTIPLE REPLIES ENABLE THE TEXT OF EACH FUNCTION

KEY TO BE DISPLAYED ON A DIFFERENT LINE

MOV 2(R5) ,R4 ; ADDRESS OF EXCHANGE MSG

MOV #6,R2 ; INITIALIZE

MOV #$FUNC,R1 ; ADDRESS OF POSSIBLE REPLY TEXT
CMP (R1) +, (R4) ; LOOP UNTIL FUNC TEXT FOUND

BEQ 408

SOB R2,208 ; END LOOP

ONILSI'T FONTYIITY SSOYD ANV XTIWISSY TTIWVS

€~d

45 000060 408

46 000060 010267 177730
47 ;
48 :
49 000064 010467 177712
50 :
51 ;
52 000070 012705 000000°
53 000074 004767 000000G
54 000100 000207
55 000001

SYMBOL TABLE

FPTRPY 000000R MSGRPY 000002R

FUNC 000022R REPLY = **#%k%% GX

. ABS. 000000 000

000102 001
ERRORS DETECTED: O
VIRTUAL MEMORY USED: 84 WORDS (1 PAGES)
DYNAMIC MEMORY: 16142 WORDS (62 PAGES)
ELAPSED TIME: 00:00:03
TST205,TST205=TST205
SYMBOL TABLE
FPTRPY 000000R MSGRPY 000002R

FUNC = kkkkkk GX

. ABS. 000000 000
000100 001

ERRORS DETECTED: O

REPLY = *%%x%x% GX

VIRTUAL MEMORY USED:
DYNAMIC MEMORY: 3532 WORDS (13 PAGES)
ELAPSED TIME: 00:00:02

LI ,OBJ/CRF=TST205.MAC

84 WORDS (1 PAGES)

MOV

MOV

MOV
CALL
RETURN
.END

REPLYN
SIZE

REPLYN
SIZE

R2,REPLYN

R4 ,MSGRPY

#FPTRPY ,R5
REPLY

000014R
000012R

000014R
000012R

DEFINE REPLY NUMBER

SAVE ADDRESS OF EM FOR FPT

; SEND REPLY
STATUS 000016R TSTEP 000036RG
STATUS 000016R TSTEP 000034RG

ONILSIT FIONIYIITY SSOUYD ANV XTAWASSY ATIWVS

SYMBOL CROSS REFERENCE

SYMBOL VALUE

FPTRPY
FUNC
MSGRPY
REPLY
REPLYN
SIZE
‘STATUS
TSTEP

000000
kkkhkk

000002
sk ko
000014
000012
000016
000034

w0

GX

o

oo™

REFERENCES

#1-5
1-38

#1-7
1-51
1-9
1-8
1-10

#1-33

1-50
*1-47
#1-13

#1-11
#1-15

*1-44

CREF

vol

ONILSIT FAONIYIITY SSOYD ANV XTHWASSY ATAWVYS

Absolute addresses, 6-13

Absolute binary output, 6-13

Absolute expression, 3-16

Absolute mode, 5-5, 5-7

Absolute module, 6-34

Absolute program section, 6-37

Address boundaries, 6-31

Address mode syntax, B-1

Address modes, 5-1

Addressing forms, summary, 5-7

Allocating byte data, 6-17

Allocating word data, 6-18

Allocation requirements, 6-35

Alternate radix, 6-25

Ampersand, 3-2

Angle brackets, 3-3, 3-15, 6-4,
6-25, 6-28, 7-4 to 7-5,
7-16 to 7-17

Apostrophe, 7-10

Argument substitution, 7-16

Arithmetic addition operator
or autoincrement indicator,
3-2

Arithmetic division operator,
3-2

Arithmetic multiplication
operator, 3-2

Arithmetic subtraction
operator or autodecrement
indicator, 3-2

ASCII character set, A-1

ASCII conversion, 3-14

ASCII conversion characters,
6-19

.ASCII directive, 6-20

.ASCIZ directive, 6-21

.ASECT directive, 6-38

Assembler directives, 6-1,
B-1, B-2

Assembler version, 6-8

Assembly language, B-1l

Assembly listing, 2-6

Assembly pass 1, 1-1

Asterisk, 3-2

At sign (@), 3-2

Attribute of the current
location counter, 3-12

Autodecrement deferred
mode, 5-3, 5-7

Autodecrement mode, 5-7

Autoincrement deferred
mode, 5-3, 5-7

Autoincrement mode, 5-2, 5-7

INDEX

"B operator, 6-25

Backslash, 3-2

Binary operators, 3-15

Blank lines, 2-2

.BLKB directive, 6-30

.BLKW directive, 6-30

Blocks of storage, reserving,
6-30

Branch instruction addressing,
5-8

.BYTE directive, 6-17

~“C operator, 6-27

Calling conventions, E-8

Calling macros, 7-3

Changing default radix, 3-13

Changing value of location
counter, 3-12

Character set, 3-1

Character substitution, 7-16

Code and data separation, 6-38

Code or data sharing, 6-38

Coding standard, E-1

Colon, 3-1

Comma, 3-2

Command string format, 8-1

Comment, 6-14, E-2

Comment field, 2-5

Comment field indicator, 3-2

Complementing an argument, 6-27

Complex relocatable expression,
3-16

Complex relocation, 4-1

Concatenated, 6-35

Concatenation of macro arguments,
7-10

Conditional assembly block, 6-41

Conditional assembly directive,
6-41, 6-42

Conditional branches, E-13

Continuation lines, 2-2

Creating local symbols
automatically, 7-7

Creating program sections, 6-36

Cross-reference listing (CREF),
8-5

Cross—-reference processor, 8-4

.CSECT directive, 6-17, 6-38

Current location counter, 2-2,
3-11, 3-14, 5-6, 6-29

Index-1

INDEX (Cont.)

“D operator, 6-25

Data storage directives, 6-17

Date, 6-8

Default object module name,
6-11

Default register definitions,
6-15

Deferred addressing indicator,
3-2

Defining macros, 7-1

Device registers, E-2

Diagnostic, 7-14

Diagnostic error message
summary, D-1

Direct assignment operator, 3-1

Direct assignment statements,
3-7

Directives, 2-5, 5-9, 6-1

Double ASCII character indicator,
3-2

Double colon, 3-1, 3-7

Double equal sign, 3-1, 3-7

Double quote, 3-2, 3-14, 6-19

.DSABL directive, 3-7, 3-9,
6-13 to 6~15, 6-27

Duplication of code, 7-17

EMT, 5-8

.ENABL directive, 5-8, 6-13 to
6-15, 6-27

.END directive, 6-31

.ENDC directive, 6-41

.ENDM directive, 7-2

End of the source input, 6-31

.ENDR directive, 7-18

Entry-point instructions, 6-33

.EOT directive, 6-31

Equal sign, 3-1

Error codes, D-1

.ERROR directive, 7-14

Error messages, 8-8 to 8-11

Evaluation of expressions, 3-15

.EVEN, 6-29

Exclamation point, 3-2

Exiting, E-9

Expressions, 3-14, 3-15

External expression, 3-15, 3-16

External symbols, 6-40

Externally-defined macro, 7-18

“F operator, 3-14, 6-27

File specification format, 8-7

File Specification Qualifiers
TRAX, 8-3

Finding address mode of macro
arguments, 7-13
Finding number of characters
in strings, 7-12
Floating point,
data, 6-26
number, 6-28
number specification, 6-27
rounding, 6-14, 6-26
storage directives, 6-27
truncation, 6-14,. 6-27
.FLT2 directive, 6-27
.FLT4 directive, 6-27
Forbidden instruction usage,
E-12
Form-feed, 6-13, 7-3
Format control, 2-6
Formatting standards, E-9
Forward referencing, 3-8
Function directives, 6-13

General purpose registers, E-2
General registers, 3-9
Global,

label, 6-40

references, 6-15

symbol, 2-3, 6-40

symbol directory, 1-2
.GLOBAL directive, 3-7, 6-39
GSD, 1-2

Hardware registers, E-2
Horizontal formatting, 2-6

.IF directive, 6-40

.IFF directive, 6-43, 6-44

.IFT directive, 6-43

.IFTF directive, 6-43

.IIF directive, 6-45

Illegal characters, 3-3

Immediate conditional assembly,
6-45

Immediate expression indicator,
3-2

Immediate mode, 5-4, 5-7

Immediate mode deferred, 5-5

Implicit .WORD directive, 2-5,
6-18

Indefinite repeat block
directives, 7-15

Index deferred mode, 5-4, 5-7

Index mode, 5-4, 5-7

Index-2

INDEX (Cont.)

Indirect command files, 8-6 Macro arguments, 7-6

Initial argument or expression Macro attribute directives, 7-11
indicator, 3-2 Macro call, 2-5, 7-3, 7-5

Initial register indicator, 3-2 Macro call arguments, 7-4

Instruction set, C-1 Macro call numeric argument

Invoking MACRO under TRAX, 8-1 indicator, 3-2

.IRP directive, 7-15, 7-16 MACRO character sets, A-1

.IRPC directive, 7-15, 7-16 Macro definition, 7-1, 7-15

Item or field terminator, 3-1 Macro definition arguments, 7-4

Macro definition formatting, 7-3

Macro definition termination, 7-2

MACRO directives, 5-9, C-4
Keyword arguments, 7-4, 7-9 Macro directives, 7-1

Macro expansion termination, 7-3

Macro library directive, 7-18

Macro name, 7-1, 7-4

Label field, 2-2 Macro names, E-5
Label terminator, 3-1 Macro nesting, 7-5
Left angle bracket, 3-2 Macro qualifiers, 8-2
Left parenthesis, 3-2 Macro symbol table, 3-6
LIMIT directive, 6-31 MACRO symbols, 3-5
Line format, E-1 .MCALL directive, 7-18
Linking, 4-1 Memory allocation, 6-~32, 6-33,
.LIST directive, 6-1 6-38
Listing conditional assemblies, Memory allocation and mapping,
6-4 6-32
Listing control directives, 6-1 .MEXIT directive, 7-3
Listing control switches, 8-2 Minus sign, 3-2
Listing level count, 6-2 Modularity, E~8
Listing of binary extensions, 6-4 Module checking routines, E-9
Listing of comments, 6-4 Module preface, E-5
Listing of generated binary code, Multi-defined label, 2-4
6-3 Multiple definitions of local
Listing of macro calls, 6-4 symbols, 3-11
Listing of macro definitions, 6-4 Multiple labels, 2-4
Listing of macro expansion binary
code, 6-4

Listing of repeat range
expansions, 6-4

Listing of source line sequence Naming standards, E-2
numbers, 6-3 .NARG directive, 7-11
Listing of source lines, 6-4 .NCHR directive, 7-11, 7-12
Listing of the current location Negative numbers, 3-13
counter, 6-3 Nested conditional directives,
Listing of the symbol table, 6-5 6-43
Local symbol block, 6-14 Nested macros, 7-3, 7-5
Local symbol block delimiters, .NLIST directive, 6-1, 6-11
3-10 .NTYPE directive, 7-11, 7-13
Local symbols, 3-6, 3-10, 3-11 Number of arguments in macro
Location counter, 6-36 calls, 7-7, 7-11
Location counter control Number sign, 3-2
directives, 6-29 Numbers, 3-13
Logical AND operator, 3-2, 6-42 Numeric control, 6-24
Logical inclusive OR operator, Numeric control operators, 6-26,
3-2, 6-42 6-27
Lower-case ASCII, 6-14 Numeric directives, 6-26

Index-3

INDEX (Cont.)

“0 operator, 6-25

Object module, 4-1

Object module name, 6-11
Octal radix, 3-13

.ODD directive, 6-29

Op codes, 2-4, C-1

Operand field, 2-4

Operand field separator, 3-2
Operating procedures, 8-1
Operator field, 2-4

Order of symbol table search, 3-6
Other symbols, E-3

Overlaid, 6-35

Overlays, 6-33

.PAGE directive, 6-12

Page eject, 7-3

Page ejection, 6-13

Page formatting, 2-6

Page headings, 6-8

Page number, 6-8

Passing numeric arguments as
symbols, 6-45

Percent sign, 3-2

Permanent symbol table, 3-5, C-1

Plus sign, 3-2

.PRINT directive, 7-14

Processor priority, E-3

Program boundaries directive,
6-31

Program counter, 3-9, 5-1

Program modules, E-5

Program section access, 6-33

Program section name, 6-33

Program sections, 3-12, 6-32

Program source files, E-12

Program-local symbols, E-4

Programming standards and
conventions, 2-1

.PSECT directive, 3-12, 6-32,
6-35

"R operator, 6-23

.RAD50 directive, 3-13, 6-22
Radix control, 6-24

Radix control operators, 6-25
.RADIX directive, 3-13, 6-24
Radix-50 character set, A-4
Radix-50 control operator, 6-23
Radix~-50 data, 6-22

Read-only access, 6-33
Read/write access, 6-33
Register deferred mode, 5-2
Register expression, 5-1
Register, mode, 5-1, 5-7

Register standards, E-2

Register symbols, 3-9

Register term indicator, 3-1

Relative addresses, 6-13

Relative addressing mode, 5-6

Relative deferred mode, 5-6, 5-7

Relative mode, 5-6, 5-7

Relocatability, 6-34

Relocatable expressions, 3-16, 4-1

Relocatable module, 6-34

Relocatable program sections, 6-37

Relocation, 4-1

Relocation bias, 2-2, 6-34

Repeat block directive, 7-18

.REPT directive, 7-18

Reserving storage, 6-30

Reserving storage space, 3-13,
6-30

Right parenthesis, 3-2

.SBTTL directive, 6-8, 6-11

Scope of the program section, 6-33

Semicolon, 3-2

Sending messages to listing file,
7-14

Separating and delimiting
characters, 3-2

Single ASCII character indicator,
3-2

Single quote, 3-2, 3-14, 6-19,
7-10

Slash, 3-2

Source line sequence numbers, 6-3

Space, 3-1

Special characters, B-1

Special characters in macro
arguments, 7-6 '

Stack pointer, 3-9

Statement format, 2-1

Storing Radix-50 data, 6-23

Subconditional assembly, 6-43

Subtitle, 6-8

Success/failure indication, E-9

Symbol control directive, 6-39

Symbol examples, E-4

Symbol table listing, 1-2

Symbolic arguments of listing
control directives, 6-3, 6-4

Symbols, E-3

Symbols and expressions, 3-1

System macro libraries, 7-18

Tab, 3-1
Tab character, 2-2
Table of contents, 6-4, 6-11

Index-4

INDEX (Cont.)

Teleprinter mode, 6-5 Unary operators, 3-15
Terminal argument or expression Unconditional assembly, 6-43
indicator, 3-2 Undefined symbols, 3-7, 3-14
Terminal register indicator, 3-2 Universal unary operator or
Terminating directives, 6-31 argument indicator, 3-2
Terms, 3-14 Up arrow or circumflex, 3-2
Time-of-day, 6-8 Up-arrow, 3-3
.TITLE directive, 6-11 Up-arrow (") construction, 7-5
- Title of the object module, 6-8 User symbol table, 3-5
Translating to ASCII, 6-20, 6-21 User-defined and macro symbols,
Translating to Radix-50, 6-22 3-5
Trap instructions, 5-8 User-defined macro libraries,
TRAX Command String Format, 8-1 7-18
TRAX File Specification Format, Using the standard symbolics, E-3
8-7
TRAX File Specification Qualifiers,
8-3

TRAX Indirect Command Files, 8-6
TRAX MACRO in Batch Mode, 8-6
TRAX MACRO Qualifiers, 8-2

TRAX Operating Procedures, 8-1

Version number, 6-12
Version number standard, E-13

Unary and binary operators, 3-5
Unary control, 6-24
Unary operator ordering, 6-27 .WORD directive, 3-11, 6-18

Index-5

is line

fong th

Please cut alol

TRAX MACRO
Reference Manual
AA-D340A-TC

READER'S COMMENTS

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. Problems with software should be reported
on a Software Performance Report (SPR) form. If you
require a written reply and are eligible to receive
one under SPR service, submit your comments on an SPR
form.

‘Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

Assembly language programmer

Higher-level language programmer

Occasional programmer (experienced)

User with little programming experience

Student programmer

Non-programmer interested in computer concepts and capabilities

000000

Name Date

Organization

Street

City State Zip Code
or

IV mcamdosnny

Fold Here

Do Not Tear - Fold Here and Staple

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

dlilgliltlall

Software Documentation
146 Main Street ML5-5/E39
Maynard, Massachusetts 01754

