
July 1978

This manual describes tbe use of the MACRO assembler on
TRAX systems.

TRAX
MACRO Reference Manual

Order No. AA-D340A-TC

OPERATING SYSTEMS AND VERSIONS: TRAX Version 1.0

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation · maunard, massachusetts

First Printing, April 1978

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright © 1978 by Digital Equipment Corporation

The postage-prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL
DEC
PDP
DECUS
UNIBUS
COMPUTER LABS
COMTEX
DDT
DECCOMM
ASSIST-Il

DECsystem-10
DECtape
DIBOL
EDUSYSTEM
FLIP CHIP
FOCAL
INDAC
LAB-8
DECSYSTEM-20
RTS-8

MASSBUS
OMNIBUS
OS/8
PHA
RSTS
RSX
TYPESET-8
TYPESET-ll
TMS-ll
ITPS-lO

CONTENTS

PAGE

PREFACE ix

0.1 MANUAL OBJECTIVES AND READER ASSUMPTIONS ix
0.2 STRUCTURE OF THE DOCUMENT ix
0.3 ASSOCIATED DOCUMENTS x
0.4 DOCUMENT CONVENTIONS x

PART I INTRODUCTION TO MACRO

CHAPTER 1 MACRO FEATURES 1-1

1.1 OVERVIEW OF MACRO 1-1
1.1.1 Assembly Pass 1 1-1
1.1.2 Assembly Pass 2 1-2

CHAPTER 2 SOURCE PROGRAM FORMAT 2-1

2.1 PROGRAMMING STANDARDS AND CONVENTIONS 2-1
2.2 STATEMENT FORMAT 2-1
2.2.1 Label Field 2-2
2.2.2 Operator Field 2-4
2.2.3 Operand Field 2-4
2.2.4 Comment Field 2-5
2.3 FORMAT CONTROL 2-6

PART II PROGRAMMING IN MACRO ASSEMBLY LANGUAGE

CHAPTER 3 SYMBOLS AND EXPRESSIONS 3-1

3.1 CHARACTER SET 3-1
3.1.1 Separating and Delimiting Characters 3-2
3.1.2 Illegal Characters 3-3
3.1.3 Unary and Binary Operators 3-4
3.2 MACRO SYMBOLS 3-5
3.2.1 Permanent Symbols 3-5
3.2.2 User-Defined and Macro Symbols 3-5
3.3 DIRECT ASSIGNMENT STATEMENTS 3-7
3.4 REGISTER SYMBOLS 3-9
3.5 LOCAL SYMBOLS 3-10
3.6 CURRENT LOCATION COUNTER 3-11
3.7 NUMBERS 3-13
3.8 TERMS 3-14
3.9 EXPRESSIONS 3-15

CHAPTER 4 RELOCATION AND LINKING 4-1

CHAPTER 5 ADDRESSING MODES 5-1

5.1 REGISTER MODE 5-1
5.2 REGISTER DEFERRED MODE 5-2
5.3 AUTO INCREMENT MODE 5-2

iii

PART

5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15

III

CHAPTER 6

6.1
6.1.1
6.1.2
6.1.3
6.1.4
6.1.5
6.1.6
6.2
6.3
6.3.1
6.3.2
6.3.3
6.3.4
6.3.5
6.3.6
6.3.7
6.4
6.4.1
6.4.1.1
6.4.1.2

6.4.2

6.4.2.1

6.4.2.2

6.5
6.5.1
6.5.2
6.5.3
6.6
6.6.1
6.6.2
6.7
6.8
6.8.1
6.8.1.1
6.8.1.2
6.8.1.3
6.8.2
6.9
6.10
6.10.1

6.10.2

AUTO INCREMENT DEFERRED MODE
AUTODECREMENT MODE
AUTODECREMENT DEFERRED MODE
INDEX MODE
INDEX DEFERRED MODE
IMMEDIATE MODE
ABSOLUTE MODE
RELATIVE MODE
RELATIVE DEFERRED MODE
SUMMARY OF ADDRESSING FORMS
BRANCH INSTRUCTION ADDRESSING
USING TRAP INSTRUCTIONS

MACRO DIRECTIVES

GENERAL ASSEMBLER DIRECTIVES

LISTING CONTROL DIRECTIVES
.LIST and .NLIST Directives
Page Headings
.TITLE Directive
.SBTTL Directive
.IDENT Directive
.PAGE Directive/Page Ejection

FUNCTION DIRECTIVES: .ENABL AND .DSABL
DATA STORAGE DIRECTIVES

.BYTE Directive

.WORD Directive
ASCII Conversion Characters
.ASCII Directive
.ASCIZ Directive
.RAD50 Directive
Temporary Radix-50 Control Operator: AR

RADIX AND NUMERIC CONTROL FACILITIES
Radix Control and Unary Control Operators
.RADIX Directive
Temporary Radix Control Operators: AD,
AO, and AB
Numeric Directives and Unary Control
Operators
.FLT2 and .FLT4 - Floating-Point Storage
Directives
Temporary Numeric Control Operators: AC
and AF

LOCATION COUNTER CONTROL DIRECTIVES
.EVEN Directive
.ODD Directive
.BLKB and .BLKW Directives

TERMINATING DIRECTIVES
.END Directive
.EOT Directive

PROGRAM BOUNDARIES DIRECTIVE: .LIMIT
PROGRAM SECTIONING DIRECTIVES

.PSECT Directive
Creating Program Sections
Code or Data Sharing
Memory Allocation Considerations
.ASECT and .CSECT Directives

SYMBOL CONTROL DIRECTIVE: .GLOBL
CONDITIONAL ASSEMBLY DIRECTIVES

Conditional Assembly Block Directives:
• IF, .ENDC
Subconditional Assembly Block Directives:
• IFF, • I FT, • I FTF

iv

PAGE

5-3
5-3
5-3
5-4
5-4
5-4
5-5
5-6
5-6
5-7
5-8
5-8

6-1

6-1
6-1
6-8
6-11
6-11
6-12
6-12
6-13
6-17
6-17
6-18
6-19
6-20
6-21
6-22
6-23
6-24
6-24
6-24

6-25

6-26

6-27

6-27
6-29
6-29
6-29
6-30
6-30
6-31
6-31
6-31
6-32
6-32
6-36
6-37
6-38
6-38
6-39
6-40

6-40

6-43

6.10.3

CHAPTER 7

PART

7.1
7.1.1
7.1.2
7.1.3
7.1.4
7.2
7.3

7.3.1
7.3.2
7.3.3
7.3.4
7.3.5
7.3.6
7.3.7
7.4

7.4.1
7.4.2
7.4.3
7.5
7.6

7.6.1
7.6.2
7.7
7.8

iv

CHAPTER 8

8.1
8.1.1
8.1.2
8.1.3
8.1.4
8.1.5
8.1.6
8.1.7
8.2
8.3

APPENDIX A

A.l
A.2

APPENDIX B

B.l
B.2
B.3

APPENDIX C

C.l
C.2

Immediate Conditional Assembly Directive:
.IIF

MACRO DIRECTIVES

DEFINING MACROS
.MACRO Directive
.ENDM Directive
.MEXIT pirective
MACRO Definition Formatting

CALLING MACROS
ARGUMENTS IN MACRO DEFINITIONS AND MACRO
CALLS

Macro Nesting
Special Characters in Macro Arguments
Passing Numeric Arguments as Symbols
Number of Arguments in Macro Calls
Creating Local Symbols Automatically
Keyword Arguments
Concatenation of Macro Arguments

MACRO ATTRIBUTE_DIRECTIVES: .NARG, .NCHR,
AND .NTYPE

.NARG Directive

.NCHR Directive

.NTYPE Directive
.ERROR AND .PRINT DIRECTIVES
INDEFINITE REPEAT BLOCK DIRECTIVES: .IRP
AND .IRPC

.IRP Directive

.IRPC Directive
REPEAT BLOCK DIRECTIVE: .REPT, .ENDR
MACRO LIBRARY DIRECTIVE: .MCALL

OPERATING PROCEDURES

OPERATING PROCEDURES

TRAX OPERATING PROCEDURES
Invoking MACRO Under TRAX
TRAX Command String Format
TRAX Macro Qualifiers
TRAX File Specification Qualifiers
Cross-Reference Processor (CREF)
TRAX MACRO in Batch Mode
TRAX Indirect Command Files

TRAX FILE SPECIFICATION FORMAT
MACRO ERROR MESSAGES

MACRO CHARACTER SETS

ASCII CHARACTER SET
RADIX-50 CHARACTER SET

MACRO ASSEMBLY LANGUAGE AND ASSEMBLER
DIRECTIVES

SPECIAL CHARACTERS
SUMMARY OF ADDRESS MODE SYNTAX
ASSEMBLER DIRECTIVES

PERMANENT SYMBOL TABLE (PST)

OP CODES
MACRO DIRECTIVES

v

PAGE

6-45

7-1

7-1
7-1
7-2
7-3
7-3
7-3

7-4
7-5
7-6
7-6
7-7
7-7
7-9
7-10

7-11
7-11
7-12
7-13
7-14

7-15
7-16
7-16
7-18
7-18

8-1

8-1
8-1
8-1
8-2
8-3
8-4
8-6
8-6
8-7
8-8

A-I

A-I
A-4

B-1

B-1
B-1
B-2

C-l

C-l
C-4

APPENDIX

APPENDIX

APPENDIX

INDEX

FIGURE

D

D.l

E

E.l
E.2
E.3
E.4
E.4.l
E.4.l.l
E.4.l.2
E.4.l.3
E.4.2
E.4.3
E.4.4
E.4.S
E.4.S.l
E.4.S.2
E.4.S.3
E.4.S.4
E.S
E.S.l
E.S.2
E.S.3
E.S.4
E.S.4.1
E.S.4.2
E.S.4.3
E.S.4.4
E.S.4.S
E.6
E.6.l
E.6.2
E.6.3
E.7
E.8
E.9
E.9.l
E.1O
E.1O.l
E.lO.2

F

3-1
3-2
6-1
6-2
6-3

6-4
6-S
6-6
7-1
8-1

DIAGNOSTIC ERROR MESSAGE SUMMARY

MACRO ERROR CODES

SAMPLE CODING STANDARD

INTRODUCTION
LINE FORMAT
COMMENTS
NAMING STANDARDS

Register Standards
General Purpose Registers
Hardware Registers
Device Registers
Processor Priority
Other Symbols
Using the Standard Symbolics
Symbols
Global Symbols
Symbol Examples
Program-Local Symbols
Macro Names

PROGRAM MODULES
General Comments on Programs
The Module Preface
Formatting the Module Preface
Modularity
Calling Conventions (Inter-Module)
Exiting
Intra-Module Calling Conventions
Success/Failure Indication
Module Checking Routines

FORMATTING STANDARDS
Program Flow
Common Exits
Code with Interrupts Inhibited

PROGRAM SOURCE FILES
FORBIDDEN INSTRUCTION USAGE
RECOMMENDED CODING PRACTICE

Conditional Branches
PDP-II VERSION NUMBER STANDARD

Displaying the Version Identifier
Use of the Version Number in the Program

SAMPLE ASSEMBLY AND CROSS REFERENCE LISTING

PAGE

D-1

D-1

E-1

E-1
E-1
E-2
E-2
E-2
E-2
E-2
E-2
E-3
E-3
E-3
E-3
E-3
E-4
E-4
E-5
E-5
E-5
E-5
E-7
E-8
E-8
E-9
E-9
E-9
E-9
E-9
E-9
E-11
E-12
E-12
E-12
E-13
E-13
E-13
E-14
E-15

F-1

Index-1

FIGURES

Assembly Listing Showing Local Symbol Block
Sample Assembly Results
Example of Line Printer Assembly Listing
Example of Terminal Assembly Listing
Listing Produced With Listing Control
Directives
Assembly Listing Table of Contents
Example of .ENABL and .DSABL Directives
Example of .BLKB and .BLKW Directives
Example of .IRP and .IRPC Directives
Sample CREF Listing

vi

3-11
3-12
6-6
6-7

6-9
6-12
6-16
6-30
7-17
8-5

TABLE 3-1
3-2
3-3
3-4
3-5
6-1

6-2

6-3
6-4
6-5

6-6
8-1

TABLES

Special Characters Used in MACRO
Legal Separating Characters
Legal Argument Delimiters
Legal Unary Operators
Legal Binary Operators
Symbolic Arguments of Listing Control
Directives
Symbolic Arguments of Function Control
Directives
Symbolic Arguments of .PSECT Directive
Non-TRAX Program Section Default Values
Legal Condition Tests for Conditional
Assembly Directives
Subconditional Assembly Block Directives
File Specification Default Values

vii

PAGE

3-1
3-3
3-3
3-4
3-5

6-3

6-13
6-33
6-38

6-41
6-43
8-8

PREFACE

0.1 MANUAL OBJECTIVES AND READER ASSUMPTIONS

MACRO fs supported in TRAX to enable Application Programmers to write
transaction step tasks (TSTs). In addition it may be used to write
Support Environment subroutines which do not perform. This manual
provides a reference for the MACRO language. No prior knowledge of
the MACRO Relocatable Assembler is assumed.

Although the description of the assembly language is wholly
self-contained within this manual, the reader is assumed to be
familiar with the PDP-II processors and related terminology, as
presented in the PDP-II Processor Handbooks. No attempt is made in
this document to describe the PDP-II hardware or the functions of the
various PDP-II instructions.

The development of transaction step tasks (TSTs) also requires
knowledge of the library of RMS-II macros as presented in the TRAX RMS
MACRO Reference Manual.

In presenting MACRO, a tutorial bias has been adopted to enlarge upon
the reference material. This posture s reflected in the examples and
the accompanying commentary describing MACRO language elements in
typical applications.

NOTE

Utilization of MACRO will eliminate
compatibility of user applications with
future members of a planned family of
TRAX systems.

0.2 STRUCTURE OF THE DOCUMENT

This manual contains four parts. Part I, consisting of two chapters,
briefly introduces MACRO. Chapter 1 lists the key features of MACRO,
and Chapter 2 identifies the advantages of following programming
standards and conventions. Also described is the format used in
coding MACRO source programs.

Part II, consisting of three chapters, presents general information
essential to programming with the MACRO assembly language. Chapter 3
describes the symbols, terms, and expressions that form the elements
of MACRO instructions. The character set is listed, and the types of
programming symbols that may be defined by the user are discussed.

ix

Chapter 4 describes the output of MACRO and presents concepts
essential to the proper relocation and linking of object modules by
the Linker. Chapter 5 briefly describes how data stored in memory can
be accessed and manipulated using the addressing modes recognized by
the PDP-II hardware.

Part III, consisting of two chapters, describes the MACRO directives
that control the processing of source statements during assembly.
Chapter 6 discusses directives which accomplish generalized MACRO
functions, while Chapter 7 deals with directives used in the
definition and expansion of macros.

Part IV, consisting only of Chapter 8, presents the operating
procedures essential to the assembly, linking, and initiating of MACRO
programs.

Finally, several appendixes are provided, supplying
information of interest to the MACRO programmer.

additional

Appendix A lists the ASCII and Radix-50 character sets that may be
used ~n MACRO programs. Appendix B lists the special characters
recognized by MACRO, summarizes the syntax of the various addressing
modes used in PDP-II processors, and briefly describes the MACRO
directives in alphabetical order. The permanent symbols that have
been defined for use with MACRO are listed alphabetically in Appendix
C.

The diagnostic error codes produced by MACRO to identify various types
of errors detected during the assembly process are listed
alphabetically in Appendix D. Appendix E contains a sample coding
standard that is recommended practice in preparing MACRO programs.

0.3 ASSOCIATED DOCUMENTS

The reader should refer to the TRAX documentation directory for
descriptions of documents associated with this manual.

0.4 DOCUMENT CONVENTIONS

The symbols defined below are used throughout this manual.

Symbol

[]

II

UPPER-CASE
CHARACTERS

lower-case
characters

(n)

Definition

Brackets indicate that the enclosed
optional.

argument is

Vertical bars indicate that a single choice must be
made from a list of arguments.

Ellipsis indicates optional continuation of an argument
list in the form of the last specified argument.

Upper-case characters indicate elements of the language
that must be used exactly as shown.

Lower-case characters indicate elements of the language
that are supplied by the programmer.

In some instances the symbol (n) is used following a
number to indicate the radix. For example, 100(8)
indicates that 100 is an octal value, while 100(10)
indicates a decimal value.

x

PART I

INTRODUCTION TO MACRO

CHAPTER 1

MACRO FEATURES

The MACRO Assembler provides the following features:

1. Program and command string control of assembly functions

2. Device and filename specifications for input and output files

3. Error listing on command output device

4. Alphabetized, formatted symbol table listing;
cross-reference listing of symbols

5. Reloc'atable object modules

6. Global symbols for linking independent object modules

7. Conditional assembly directives

8. Program sectioning directives

9. User-defined macros and macro libraries

10. Comprehensive system macro library

optional

11. Extensive program and command string control of listing
functions

12. An indirect command file facility for controlling the
assembly process.

1.1 OVERVIEW OF MACRO

MACRO is a 2-pass assembler. The functions and operations relevant to
each assembly pass are described in the following sections.

1.1.1 Assembly Pass I

The main purpose of assembly pass 1 is to locate and read all required
macros from libraries; to build symbol tables and program section
tables for the program; while also performing a rudimentary assembly
of each source statement.

The first stage of assembly pass 1 is the initialization of all impure
data areas that MACRO uses internally for the assembly process. These
areas include all dynamic storage areas and buffer areas used as file
storage regions.

1-1

MACRO FEATURES

After initializing memory areas, MACRO issues a call to a system
subroutine which transfers a command line into memory. This command
line contains the specifications of the files to be used during
assembly. After scanning the command line for proper syntax, MACRO
initializes the specified output files. These files are opened to
determine if valid output file specifications have been passed in the
command line. They are then closed to minimize requirements for
active file space.

As the assembly process begins, MACRO initiates a routine which
retrieves source lines from the input file. If no such file is
currently open, as is the case at the beginning of assembly, MACRO
opens the next input file specified in the command line previously
read and begins to assemble the source statements. MACRO determines
the length of each instruction and assembles it accordingly as one
word, two words, or three words.

At the end of assembly pass 1, MACRO reopens the output files
described above and writes out information that is to be used later by
the Linker in linking the object modules. Such information as the
object module name, the program version number, and the global symbol
directory (GSD) entries for each program section are output to the
object file. After writing out the GSD entries for a given program
section, MACRO scans through the symbol tables to find all the global
symbols that are bound to that particular program section. MACRO then
writes out GSD records to the object file for these symbols. This
process continues for each program section, bringing to a close
assembly pass 1.

1.1.2 Assembly Pass 2

As an integral part of pass 2, MACRO simultaneously writes the object
records to the output file and generates the assembly listing,
followed by the symbol table listing for the program. A
cross-reference listing may also be generated. See Section 8.1.4.

Basically, assembly pass 2 consists of the same steps performed in
assembly pass 1, except that all source statements containing
MACRO-detected errors are flagged with an error code as the assembly
listing file is created. The object file that is created as the final
consequence of pass 2 contains all the object records, together with
relocation records containing information necessary for subsequent
Linker linking of the object file.

The information thus passed to the Linker enables the global symbols
in the object modules to be associated with absolute or virtual memory
addresses, thereby forming an executable body of code.

The user may wish to become familiar with the macro object file format
and description. This information is presented in the TRAX Linker
Reference Manual (see Section 0.3 in the Preface) .

1-2

CHAPTER 2

SOURCE PROGRAM FORMAT

2.1 PROGRAMMING STANDARDS AND CONVENTIONS

Assembly level programming deals directly with the host hardware.
Hence, great care must be exercised in establishing programming
standards and conventions to enable code written by one group to be
interchanged easily with another group. Standards provide a number of
advantages. When applied to the program development process,
standards make the programming effort easier to:

Plan
Comprehend
Test
Modify
Convert.

Even though standards must accommodate local requirements, many
aspects of the program development process have universal
applicability. The standards common to all of DIGITAL's PDP-II
software products are presented in Appendix E as a model for users.
Observance of these standards is beneficial to DIGITAL and its users,
by simplifying both communications and the continuing task of software
maintenance and enhancement.

2.2 STATEMENT FORMAT

A source program is composed of a sequence of source coding lines.
Each line contains a single assembly-language statement. MACRO will
accept a source line of 132 characters, but 80 characters is the
recommended length, because of constraints imposed by listing format
and terminal line size.

A MACRO statement may consist of as many as four fields. These fields
are identified by their order of appearance within the statement
and/or by specified separating characters between fields. The general
format of a MACRO statement is:

Label: Operator Operand ;Comment(s)

The label and comment fields are optional. The operator and operand
fields are interdependent, i~e., when both fields are present in a
source statement, each field is evaluated by MACRO in the context of
the other.

A statement may contain an operator field and no operand field, but
the reverse is not true. A statement containing an operand with no
operator does not conform to established MACRO coding conventions;
such a statement is currently interpreted by MACRO during assembly as
an implicit .WORD directive (see Section 6.3.2).

2-1

SOURCE PROGRAM FORMAT

MACRO interprets and processes source program statements one by one,
generating one or more binary instructions or data words, or
performing a specified assembly process. Blank lines, although legal,
have no significance in the source program.

An assembly-language statement must be completed on one source line;
no continuation lines are allowed in MACRO.

The tab character can be used in the source statement to format the
fields into aligned columns in accordance with DIGITAL's standard
source program format, as shown below:

Label - begins in column 1

Operator - begins i.n column 9

Operand(s) - begin(s) in column 17

Comment(s) - begin(s) in column 33.

For example, the following statement should be formatted in the source
program into specific columns, increasing its readability in the
assembly listing:

REGTST:BIT#MASK,VALUE;COMPARES BITS IN OPERANDS.

1 9 17 33 (columns)

REGTST: BIT #MASK,VALUE ;COMPARES BITS IN OPERANDS.

The above formatting conventions are not mandatory in coding
programs (free-field coding is permissible). However,
recommended that source programs be prepared in accordance with
conventions for consistency and clarity.

2.2.1 Label Field

MACRO
it is
these

A label is a means of symbolically referring to a location in a
program.

A label is a user-defined symbol which is assigned the value of the
current location counter and entered into the user-defined symbol
table. The current location counter is the means by which MACRO
assigns memory addresses to the source program statements as they are
encountered during the assembly process. The address value of the
label is absolute or relocatable, depending on whether the current
program section being assembled is absolute or relocatable. (The
concept of program sections and the attributes that may be specified
for them are discussed in detail in Section 6.8.)

In the case of an absolute program section, the value of the current
location counter is likewise absolute, i.e., its value references an
absolute virtual memory address (such as location 100). Similarly,
'the value of the current location counter in a relocatable program
section is also relocatable; however, a relocation bias calculated by
the Linker will be added to the apparent value of the current location
counter to establish its effective absolute virtual address at
execution time.

2-2

SOURCE PROGRAM FORMAT

If present, a label always appears as the first field in a source
statement and must be terminated by a colon. For example, if the
current location counter value is absolute 100(8), the statement:

ABCD: MOV A,B

assigns the value 100(8) to the label ABCD. Subsequent references to
this label would then yield a value of absolute 100(8). In this
example, if the location counter value were relocatable, the final
value of ABCD would be 100(8)+K, where K represents the relocation
bias of the program section, as calculated by the Linker at link time.

More than one label may appear within a single label field. Each
label so specified is assigned the same address value. For example,
if the current location counter value is 100(8), the multiple labels
in the following statement:

ABC: $00: A7.7: MOV A,B

are each assigned the value 100(8).

Multiple labels may also appear on successive lines. For example, the
statements

ABC:
$DD:
A7.7: MOV A,B

likewise cause the same current location counter value to be assigned
to all three labels.

Of the two methods of assigning multiple labels shown above, the
second is preferred, because consistency of field positioning within
the source program improves readability.

A double colon (::) defines
label can be referenced
References to this label in
Linker when the modules
For example, the statement

ABeD:: MOV A,B

the label as a global symbol. Such a
by independently-assembled object modules.
other modules will be resolved by the
are linked as a composite executable task.

establishes the label ABCD as a global symbol. The distinguishing
attribute of a global symbol is that it can be referenced from within
an object module other than the module in which the symbol is defined
(see Section 6.9).

The legal characters for defining labels are:

A through Z
o through 9

(Period)
$ (Dollar Sign)

NOTE

By convention, the dollar sign ($) and
period (.) are reserved for use in
defining DIGITAL system software
symbols. Therefore these characters
should not be used in defining labels in
MACRO source programs.

2-3

SOURCE PROGRAM FORMAT

A label may be any length; however, only the first six characters are
significant and, therefore, must be unique among all the labels in the
source program. All labels are terminatd by a colon (:), which is not
considered part of the label. It is a mandatory delimiter. An error
code (M) is generated in the assembly listing if the first six
characters in two or more labels are the same (see Appendix D).

A symbol used as a label must not be redefined within the source
program. If the symbol is redefined, a label with a multiple
definition results, causing MACRO to generate an error code (M) in the
assembly listing (see Appendix D). Furthermore, any statement in the
source program which references a multi-defined label results in an
additional diagnostic message; in this case, an error code (D) is
generated in the assembly listing (see Appendix D).

2.2.2 Operator Field

The operator field specifies the action to be performed. It may
consist of an instruction mnemonic (op code), an assembler directive,
or a macro call.

The operator field follows the label field in a source statement.
Chapters 6 and 7 describe these three types of operator field entries.

When the operator is an instruction mnemonic, the mnemonic op code
specifies the machine instruction to be generated. MACRO then
continues with the evaluation of the address (es) of the operand{s)
which follow{s). When the operator is a directive, the directive
causes MACRO to perform certain control actions or processing
operations during the assembly of the source program. When the
operator is a macro call, MACRO inserts the code generated by the
macro expansion.

The operator field need not be preceded by a label; but it may be
preceded by one or more labels and followed by one or more operands
and/or a comment. Furthermore, leading and trailing spaces or tabs in
the operator field have no significance; such characters serve only
to separate the operator field from the preceding and following
fields.

An operator is terminated by a space, tab, or any non-RAD50 character,
as in the following examples:

MOV A,B

MOV A,B

MOV@A,B

iTHE SPACE TERMINATES THE OPERATOR
iMOV.

iTHE TAB TERMINATES THE OPERATOR MOV.

iTHE @ CHARACTER TERMINATES THE
iOPERATOR MOV.

Although the statements above are all equivalent in function, the
second statement is the recommended form because it conforms to MACRO
coding conventions.

2.2.3 Operand Field

When the operator field contains an instruction mnemonic Cop code),
the operand field specifies those program variables that are to be
evaluated/manipulated by the operator. The operand field may also be

2-4

SOURCE PROGRAM FORMAT

used to supply arguments to MACRO directives and macro calls, as
described in Chapters 6 and 7, respectively.

Operands may be expressions or symbolic arguments (within the context
of the specified operation). Multiple expressions used in the operand
field of a MACRO statement must be separated by a commai multiple
symbolic arguments similarly used may be delimited by any legal
separator, i.e., a comma, tab, and/or space. An operand should be
preceded by an operator fieldi if it is not, the statement is treated
by MACRO as an implicit .WORD directive (see Section 6.3.2).

When the operator field contains an op code, associated operands are
always expressions, as shown in the following statement:

MOV RO,A+2(RI)

On the other hand, when the operator field contains a MACRO directive
or a macro call, associated operands are normally symbolic arguments,
as shown in the following statement:

.MACRO ALPHA ARGI,ARG2

Refer to the description of each MACRO directive to determine the type
and number of operands required in issuing the directive.

The operand field is terminated by a semicolon when the field is
followed by a comment. For example, in the following statement:

LABEL: MOV A,B iCOMMENT FIELD

the tab between MOV and A terminates the operator field and defines
the beginning of the operand fieldi a comma separates the operands A
and Bi and a semicolon terminates the operand field and defines the
beginning of the comment field. When no comment field follows, the
operand field is terminated by the end of the source line.

2.2.4 Comment Field

The comment field normally begins in column 33 and extends through the
end of the line. This field is optional and may contain any ASCII
characters except null, RUBOUT, carriage-return, line-feed,
vertical-tab or form-feed. All other characters appearing in the
comment field, even special characters reserved for use in MACRO, are
checked only for ASCII legality and then included in the assembly
listing as they appear in the source text.

All comment fields must begin with the semicolon character(i). When
lengthy comments extend beyond the end of the source line (column 80),
the comment may be resumed in a following line. Such a line must
contain a leading semicolon, and it is suggested that the body of the
comment be continued in the same columnar position in which the
comment began. A comment line can also be included as an entirely
separate line within the code body.

Comments do not affect assembly processing or program execution.
However, comments are useful in source listings for later analysis,
debugging, or documentation purposes.

2-5

SOURCE PROGRAM FORMAT

2.3 FORMAT CONTROL

Horizontal formatting of the source program is controlled by the space
and tab characters. These characters have no effect on the assembly
process unless they are embedded within a symbol, number, or ASCII
text string, or unless they are used as the operator field terminator.
Thus, the space and tab characters can be used to provide an orderly
and readable source program, as reflected by the following statements:

LABEL:MOV(SP)+,TAGiPOP VALUE OFF STACK.

No spaces or tabs have been used to separate the fields in this
statement. Note the difficulty in recognizing where one field ends
and the next begins.

LABEL: MOV (SP)+,TAG iPOP VALUE OFF STACK.

This statement conforms to the standard horizontal formatting
conventions, i.e., the statement elements are separated into four
distinct fields and are therefore easily discernible.

Page formatting and assembly listing considerations are discussed in
Chapter 6 in the context of MACRO directives that may be specified to
accomplish desired formatting operations. Appendix E describes the
coding conventions used in all DIGITAL PDP-II operating system
software.

2-6

SOURCE PROGRAM FORMAT

PART II

PROGRAMMING
IN MACRO ASSEMBLY

LANGUAGE

CHAPTER 3

SYMBOLS AND EXPRESSIONS

This chapter describes the components of MACRO instructions. The
character set, the conventions observed in constructing symbols, and
the use of numbers, operators, terms and expressions are discussed as
they relate to MACRO programming.

3.1 CHARACTER SET

The following characters are legal in MACRO source programs:

1. The letters A through Z. Both upper- and lower-case letters
are acceptable, although, upon input, lower-case letters are
converted to upper-case (see Section 6.2, .ENABL LC).

2. The digits 0 through 9.

3. The characters (period) and $
characters are reserved for use
Corporation system program symbols.

(dollar sign). These
as Digital Equipment

4. The special characters listed in Table 3-1.

Table 3-1
Special Characters Used in MACRO

Character Designation Function

: Colon Label terminator.

.. Double colon Label terminator; defines the
label as a global label.

= Equal sign Direct assignment operator;
and macro keyword indicator.

-- Double equal Direct assignment operator;
sign defines the symbol as a global

symbol.

% Percent sign Register term indicator.

Tab Item or field terminator.

Space Item or field terminator.

(continued on next page)

3-1

Character

@

(

)

<

>

+

*

/

&

!

"

I

\

SYMBOLS AND EXPRESSIONS

Table 3-1 (Cont.)
Special Characters Used in MACRO

Designation

Number sign

At sign

Left parenthesis

Right parenthesis

Period

Comma

Semicolon

Left angle
bracket

Right angle
bracket

Plus sign

Minus sign

Asterisk

Slash

Ampersand

Exclamation

Double quote

Single quote

Up arrow or
circumflex

Backslash

point

Function

Immediate expression
indicator.

Deferred addressing indicator.

Initial register indicator.

Terminal register indicator.

Current location counter

Operand field separator.

Comment field indicator.

Initial argument or expression
indicator.

Terminal argument or expres
sion indicator.

Arithmetic addition operator
or autoincrement indicator.

Arithmetic subtraction opera
tor or autodecrement indica
tor.

Arithmetic mUltiplication op
erator.

Arithmetic division operator.

Logical AND operator.

Logical inclusive OR operator.

Double ASCII character indica
tor.

Single ASCII character indica
tor; or concatenation
indicator.

Universal unary operator or
argument indicator.

Macro call numeric argument
indicator.

3.1.1 Separating and Delimiting Characters

Legal separating characters and legal argument delimiters are defined
below in Tables 3-2 and 3-3 respectively.

3-2

SYMBOLS AND EXPRESSIONS

Table 3-2
Legal Separating Characters

Character Definition Usage

Space One or more spaces A space is a legal separator
and/or tabs between instruction fields and

between symbolic arguments
within the operand field.
Spaces within expressions are
ignored (see Section 3.9) •

, Comma A comma is a legal separator
between symbolic arguments
within the operand field.
Multiple expressions used in
the operand field must be
separated by a comma.

Table 3-3
Legal Argument Delimiters

Character Definition Usage

< ••• > Paired angle brackets Pai~ed angle brackets may be
used anywhere in a program to
enclose an expression for
treatment as a single term.
Paired angle brackets are also
used to enclose a macro
argument, particularly when
that argument contains separ
ating characters (see Section
7.3) •

AX ••• x Up-arrow (unary oper
ator) construction,
where the up-arrow is
followed by an argu
ment that is bracketed
by any paired printing
characters (x).

This construction is equiva
lent in function to the paired
angle brackets described above
and is generally used only
where the argument itself con
tains angle brackets.

3.1.2 Illegal Characters

A character is determined to be illegal for one of two reasons:

1. A character is not an element of the recognized MACRO
character set. A character of this kind is replaced in the
listing by a question mark, and an error code (1) is printed
in the assembly listing (see Appendix D). The exception to
this is an embedded null which, when detected, terminates the
scan of the current line.

2. A legal MACRO character is illegal in the context of its
usage within the source statement, i.e., its syntax is
illegal or questionable. Such a character causes an error
code (Q) to be printed in the assembly listing.

3-3

SYMBOLS AND EXPRESSIONS

3.1.3 Unary and Binary Operators

Legal MACRO unary operators are described in Table 3-4. Unary
operators are used in connection with single terms (arguments or
operands) to indicate an action to be performed on that term during
assembly. A term preceded by a unary operator is considered to
contain that operator. The term 'so specified thus becomes a value
which can be used alone or as an element of an expression.

Table 3-4
Legal Unary Operators

Unary
Operator Explanation Example Effect

+ Plus sign +A Produces the positive
value of A.

- Minus sign -A Produces the negative
(2' s complement) value of

A.

.... Up-arrow, univer- "'C24 Produces the lis comple-
sal unary operator. ment value of 24 (8) •
(This usage is
described in detail "'D127 Interprets 127 as a
in Section 6.,; 4.) decimal number.

"'F3.0 Interprets 3.0 as a
I-word, floating-point
number.

"'034 Interprets 34 as an octal
number.

"'Bl1000lll Interprets 11000111 as a
binary number.

"'RABC Evaluates ABC in Radix-SO
form.

Unary operators can be used adjacent to each other or in constructions
involving multiple terms, as shown below:

-"'DSO
"'C"'012

(Equivalent to -<"'DSO»
(Equivalent to ... C< 012»

Legal MACRO binary operators are described in Table 3-S. In contrast
to unary operators, binary operators specify actions to be performed
on multiple items or terms within an expression. Table 3-S shows the
relationships that can be established between expression terms through
the use of binary operators.

3-4

SYMBOLS AND EXPRESSIONS

Table 3-5
Legal Binary Operators

Binary
Operator Explanation Example

+ Addition A+B

- Subtraction A-B

* Multiplication A*B (16-bit product returned)

/ Division A/B (16-bit quotient returned)

& Logical AND A&B

! Logical inclusive OR A!B

All binary operators have equal priority. Items or terms can be
grouped for evaluation within an expression by enclosing them within
angle brackets. Terms so enclosed are evaluated first, and remaining
operations are performed from left to right,.as shown in the examples
below:

• WORD
• WORD

1+2*3
1+<2*3>

3.2 MACRO SYMBOLS

iEQUALS 11(8).
iEQUALS 7(8) •

Three types of symbols may be defined for use within MACRO source
programs: permanent symbols, user-defined symbols, and macro symbols.
MACRO maintains three types of symbol tables: the Permanent Symbol
Table (PST), the User Symbol Table (UST), and the Macro Symbol Table
(MST). The PST contains all the permanent symbols defined within (and
thus automatically recognized by) MACRO and is part of the MACRO task
image. The UST and MST are constructed as the source program is
assembled.

3.2.1 Permanent Symbols

Permanent symbols consist of the instruction mnemonics (see Appendix
C) and MACRO directives (see Chapters 6 and 7 and Appendix B). These
symbols are a permanent part of the MACRO task image and need not be
defined before being used in the operator field of a MACRO source
statement (see Section 2.2.2).

3.2.2 User-Defined and Macro Symbols

User-defined symbols are those symbols treated by the programmer as
labels (see Section 2.2.1) or that are equated to a specific value
through a direct assignment statement (see Section 3.3) or appear as
macro names or dummy arguments. These symbols are added to the User
Symbol Table as they are encountered during assembly. Macro symbols
are those symbols used as macro names (see Section 7.l)~ Similarly,
these symbols are added to the Macro Symbol Table ~ as they are
encountered during assembly. . .

3-5

SYMBOLS AND EXPRESSIONS

User-defined and macro symbols
characters, dollar signs ($),
character is illegal.

can be composed
and periods (.)

of alphanumeric
only; any other

NOTE

The dollar sign ($) and period (.)
characters are reserved for use in
defining Digital Equipment Corporation
system software symbols. For example,
READ$ is a file-processing system macro.
The user is cautioned not to employ
these characters in constructing
user-defined symbols or macro symbols in
order to avoid possible conflicts with
existing or future Digital Equipment
Corporation system software symbols.

The following rules govern the creation of user-defined and macro
symbols:

1. The first character of a symbol must not be a number (except
in the case of local symbols; see Section 3.5).

2. The first six characters of a symbol must be unique.

3. A symbol can be written with more than six legal characters,
but the seventh and subsequent characters are checked only
for ASCII legality and are not otherwise evaluated or
recognized by MACRO.

4. Spaces, tabs, and illegal characters must not be embedded
within a symbol. The legal MACRO character set is defined in
Section 3.1.

The value of a symbol depends upon its use in the program. When a
symbol appears in the operator field, it may be anyone of the three
symbol types described above i.e., permanent, user-defined, macro. To
determine the value of an operator-field symbol, MACRO searches the
symbol tables in the following order:

1. Macro Symbol Table

2. Permanent Symbol Table

3. User-Defined Symbol Table

This search order allows redefinition of Permanent Symbol Table
entries as macro symbols. That is, permanent symbols may be used as
macro symbols. But the user must keep in mind the sequence in which
the search for symbols is performed in order to avoid incorrect
interpretation of the symbol's use.

When a symbol appears in the operand field, the User-Defined Symbol
Table is searched first, then the Permanent Symbol Table is searched.

Depending on their use in the source program, user-defined symbols
have either a local (internal) attribute or a global (external)
attribute.

Normally, MACRO treats all user-defined symbols
their definition is limited to the module

3-6

as local, that is,
in which they appear.

SYMBOLS AND EXPRESSIONS

However, symbols can be explicitly declared to be global symbols
through one of three methods:

1. Use of the .GLOBL directive (see Section 6.9).

2. Use of the double colon (::) in defining a label (see Section
2.2.1).

3. Use of the double equal (==) sign in a direct assignment
statement (see Section 3.3).

All symbols within a module that remain undefined at the end of
assembly are treated as default global references.

NOTE

Undefined symbols at the end of assembly
are assigned a value of 0 and placed
into the user-defined symbol table as
undefined default global references. If
the .DSABL GBL directive is in effect,
however, (see Section 6.2), the
automatic global reference default
function of MACRO is inhibited, causing
the statement containing the undefined
symbol to be flagged with an error code
(U) in the assembly listing (see
Appendix D).

Global symbols provide linkages between independently-assembled object
modules within the task image. A global symbol defined as a label,
for example, may serve as an entry-point address to another section of
code within the task image. Such symbols are referenced from other
source modules in order to transfer control throughout the task's
execution. These global symbols are resolved by the Linker at link
time, ensuring that the resulting task image is a logically coherent
and complete body of code.

3.3 DIRECT ASSIGNMENT STATEMENTS

A direct assignment statement allows you to equate a symbol to a
specific value. When a direct assignment statement is first used to
define a symbol, that symbol is entered into the User-Defined Symbol
Table. A symbol defined in this manner may be redefined in a
subsequent direct assignment statement by assigning a new value to the
previously-defined symbol.

The general format for a direct assignment statement is:

symbol=expression

or

symbol==expression

where: expression - can have only one level of forward reference
(see 5. below).

- cannot contajn an undefined global reference.

3-7

SYMBOLS AND EXPRESSIONS

A direct assignment statement embodying the double equal (==) sign, as
shown above, defines the symbol as global (see Section 6.9).

The following examples illustrate the coding of direct assignment
statements:

A=l i~HE SYMBOL A IS EQUATED TO THE
iVALUE 1.

B=A-l&MASKLOW iTHE SYMBOL B IS EQUATED TO THE
iVALUE OF THE ENTIRE EXPRESSION
iWHICH FOLLOWS.

C:
D=.
E: MOV #l,ABLE

iTHE SYMBOL D IS EQUATED TO ., AND
iTHE LABELS C AND E ARE ASSIGNED A
iVALUE THAT IS EQUAL TO THE LOCATION
iOF THE MOV INSTRUCTION.

The last of the three examples above is provided only to illustrate
the performance of MACRO in such situations. See Section 3.6 for a
description of the period (.) as the current location counter symbol.

The following conventions apply to the coding of direct assignment
statements:

1. An equal sign (=) or double equal sign (==) must separate the
symbol from the expression defining the symbol's value.
Spaces preceding and/or following the direct assignment
operators, although permissible, have no significance in the
resulting value.

2. The symbol being assigned in a direct assignment statement is
placed in the label field.

3. Only one symbol can be defined in a single direct assignment
statement.

4. A direct assignment statement may be followed only by a
comment field.

5. Only one level of forward referencing is allowed, as shown in
the following example:

X=Y (Illegal forward reference)

y=z (Legal forward reference)

Z=l

The above example would result in the generation of an error code (U)
in the assembly listing on the line containing the illegal forward
reference.

Although one level of forward referencing is allowed for local
symbols, a global symbol defined in a direct assignment statement must
not contain a forward reference, i.e., the global assignment
expression must not itself contain an undefined reference to another
symbol. Such a forward reference is illegal, causing an error code
(A) to be generated in the assembly listing.

3-8

SYMBOLS AND EXPRESSIONS

3.4 REGISTER SYMBOLS

The eight general registers of the PDP-II processor are numbered 0
through 7 and can be expressed in the source program in the following
manner:

%0
%1

%7

where % indicates a reference to a register rather than a location.
The digit specifying the register can be replaced by any legal,
absolute term that can be evaluated during the first assembly pass.
Use standard symbolic names for all register references.

The register definitions listed below are automatically assigned by
MACRO, i.e., these definitions are the normal default values and
remain valid for all register references within the source program.

RO=%O
Rl=%l
R2=%2
R3=%3
R4=%4
R5=%5
SP=%6
pc=%7

iREGISTER 0 DEFINITION.
iREGISTER 1 DEFINITION.
iREGISTER 2 DEFINITION.
iREGISTER 3 DEFINITION.
iREGISTER 4 DEFINITION.
iREGISTER 5 DEFINITION.
iSTACK POINTER DEFINITION.
iPROGRAM COUNTER DEFINITION.

Note that registers 6 and 7 are given special names because of their
unique system functions.

A regi~ter ~ymbol may be defined in a direct assignment statement
appearIng In the program. The defining expression of a register
symbol must be a legal, absolute value. Although you can reassign the
standard register symbols through the use of the .DSABL REG directive
(see Section 6.2), this practice is not recommended. An attempt to
redefine a default register symbol without first specifying the .DSABL
REG directive to override the normal register definitions causes that
assignment statement to be flagged with an error code (R) in the
assembly listing. The symbolic default names assigned to the
registers, as listed above, are the conventional names used in all
DIGITAL-supplied PDP-II system programs. For this reason, you are
well advised to follow these conventions.

All non-standard register symbols must be defined before they are
referenced in the source program. A register expression less than 0
or greater than 7 is flagged with an error code (R) in the assembly
listing.

The % character may be used with any legal term or expression to
specify a register. For example, the statement

CLR %3+1

is equivalent in function to the statement

CLR %4

and clears the contents of register 4.

3-9

SYMBOLS AND EXPRESSIONS

In contrast, the statement

CLR 4

clears the contents of virtual memory location 4.

3.5 LOCAL SYMBOLS

Local symbols are specially formatted symbols used as labels within a
block of coding that has been delimited as a local symbol block.
Local symbols are of the form n$, where n is a decimal integer from 1
to 65535, inclusive. Examples of local symbols are:

1$
27$
59$

104$

A local symbol block is delimited in one of three ways:

1. The range of a local symbol block usually consists of those
statements between two normally-constructed symbolic labels
(see Figure 3-1). Note that a statement of the form:

ALPHA=expression

is a direct assignment statement (see Section 3.3), but does
not create a label and thus does not delimit the range of a
local symbol block.

2. The range of a local symbol block is normally terminated upon
encountering a .PSECT, .CSECT, or .ASECT directive in the
source program (see Figure 3-1).

3. The range of a local symbol block is delimited through MACRO
directives, as follows:

Starting delimiter: .ENABL LSB (see Section 6.2)

Ending delimiter: .ENABL LSB

or

• DSABL LSB (see Section 6.2)

followed by one of: Symbolic label

.PSECT

.CSECT

.ASECT

(see Section 6.8.1)
(see Section 6.8.2)
(see Section 6.8.2)

Local symbols provide a convenient means of generating labels for
branch instructions and other such references within a local symbol
block. Using local symbols reduces the possibility of symbols with
multiple definitions appearing within a user program. In addition,
the use of local symbols differentiates entry-point labels from local
labels, since local symbols cannot be referenced from outside their
respective local symbol block. Thus, local symbols of the same name
can appear in other local symbol blocks without conflict. Local
symbols do not appear in cross-reference listings.

3-10

SYMBOLS AND EXPRESSIONS

Local symbols require less symbol table space than other types of
symbols. Their use is recommended. When defining local symbols, use
the range from 1$ to 63$ first, then the range from 128$ to 65535$.
Local symbols within the range 64$ through 127$, inclusive, can be
generated automatically as a feature of MACRO. Such local symbols are
useful in the expansion of macros during assembly and are described in
detail in this context in Section 7.3.5.

Be sure to avoid multiple definitions of local symbols within the same
local symbol block. For example, if the local symbol 10$ is defined
two or more times within the same local symbol block, each symbol
represents a different address value. Such a multi-defined symbol
causes an error code (P) to be generated in the assembly listing.

For examples of local symbols and local symbol blocks as they appear
in a source program, see Figure 3-1.

121
122 PROGRAM I~ITIALIZATIO~ CODE
123
12'
125 000000 .PSECT XCTPRG,GBL
126 o ill 0 IiIl 00 012700 0Q1000~1 lICTP~GIIMOV .IMPURt.,R0 'IMPURE DATA INITIAL.IZATION
127 1!l~0"'0' 005020 iSl CLR (R0).
128 00"~06 02270~ 0rI1J00~' CMP .IMPURT,~",

129 01lJ00t2 10137' 8"'1 15
13~
131 000'" o III .PSECT lICTPAS,G8L
132 00000W'l "1270P PP01Hl0 ' lICTPASll MOV ·I~PPAS,~0 ,PASS INITIALIZATION
133 0001110' 00502'" lS. CLR (I~IIl) •

134 111"'0006 Q!227~0 PiII"';tI0" , CMP .I"'PPAT,~0

135 0"'0"'12 101374 8"'1 15
136
137 00""''''0 .PSECT lIClL.IN,GBl
138 1/l00"1iIl'" 11112700 11'00(1100' lCCTLINIC"OV *IMPLIN,RQ! 'L.I~E INITIAlIZATIO~
139 0~0"'04 01115020 lSI CLR (R0'.
140 01lJ01i106 022700 011l11H"""" CMP .YMPL.IT,RQ!
1'1 U001? li11J74 8111 IS
1'2

Figure 3-1 Assembly Listing Showing Local Symbol Block

3.6 CURRENT LOCATION COUNTER

The period e.) is the symbol for the current location counter. When
used in the operand field of an instruction, it represents the address
of the first word of the instruction, as shown in the first example
below. When used in the operand field of a MACRO directive, it
represents the address of the current byte or word, as shown in the
second example below.

A: MOV #. ,RO iTHE PERIOD (.) REFERS TO THE ADDRESS
iOF THE MOV INSTRUCTION.

(The function of the # symbol is explained in Section S.9.)

SAL=O
• WORD l77535,.+4,SAL iTHE OPERAND .+4 IN THE .WORD

iDIRECTIVE REPRESENTS A VALUE
iTHAT IS STORED AS THE SECOND
iOF THREE WORDS DURING
iASSEMBLY.

Assume that the current value of the location counter is 500. During
assembly, MACRO reserves storage in response to the .WORD directive
(see Section 6.3.2), eeginning with location 500. The operands
accompanying the .WORD directive determine the values so stored. The

3-11

SYMBOLS AND EXPRESSIONS

value 177535 is thus stored in location 500. The value represented by
.+4 is stored in location 502; this value is derived as the current
value of the location counter (which is now 502), plus the absolute
value 4, thereby depositing the value 506 in location 502. Finally,
the value of SAL, previously equated to 0, is deposited in location
504.

Figure 3-2 illustrates the result of the example.

LOCATION

500

502

504

CONTENTS

177535

506

o

Figure 3-2 Sample Assembly Results

At the beginning of each assembly pass, MACRO resets the location
counter. Normally, consecutive memory locations are assigned to each
byte of object data generated. However, the value of the location
counter can be changed through a direct assignment statement of the
following form:

.=expression

Similar to other MACRO symbols, the current location counter symbol
(.) has an attribute of relocatability associated with it: it is
either absolute or relocatable, depending on the specific such
attribute of the current program section. (A program section and its
attributes are defined through the use of the .PSECT directive
described in Section 6.8.1.) The existing attribute (or mode) of the
current location counter cannot be changed by specifying a defining
expression having a different attribute.

Furthermore, such a defining expression must not force the location
counter into another program section (.PSECT area), even though the
program sections so involved may both be absolute or relocatable. The
expression defining the location counter value must not contain a
forward reference, i.e., the expression must not contain a reference
to a symbol that is not previously defined. Such violations
constitute a general assembly error, resulting in an error code (A) in
the assembly listing.

Thus, the attribute (or mode) of the current location counter takes on
the attribute of the current program section. Therefore, its
attribute from program section to program section can be changed only
through the program sectioning directives (.PSECT, .ASECT, and
.CSECT), as described in Section 6.8.

The following coding illustrates the use of the current location
counter:

.ASECT
.=500

FIRST: MOV • +lO,COUNT

;SET LOCATION COUNTER TO
;ABSOLUTE 500(OCTAL) •
;THE LABEL "FIRST" HAS THE VALUE
;500 (OCTAL) •
;.+10 EQUALS 5l0(OCTAL). THE
;CONTENTS OF THE LOCATION

3-12

.=520

SECOND: MOV .,INDEX

.PSECT
.=.+20

THIRD: • WORD o

SYMBOLS AND EXPRESSIONS

;510 (OCTAL) WILL BE DEPOSITED
;IN THE LOCATION "COUNT."
;THE ASSEMBLY LOCATION COUNTER
;NOW HAS A VALUE OF
;ABSOLUTE 520{OCTAL).
;THE LABEL SECOND HAS THE
;VALUE 520{OCTAL).
;THE CONTENTS OF LOCATION
;520{OCTAL}, THAT IS, THE BINARY
;CODE FOR THE INSTRUCTION
iITSELF, WILL BE DEPOSITED IN THE
iLOCATION "INDEX."

;SET LOCATION COUNTER TO
iRELOCATABLE 20 OF THE
iUNNAMED PROGRAM SECTION.
iTHE LABEL THIRD HAS THE
iVALUE OF RELOCATABLE 20.

Storage areas may be reserved in the program by advancing the location
counter. For example, if the current value of the location counter is
1000, each of the following statements:

.=.+40

or

.BLKB 40

or

.BLKW 20

reserves 40(8) bytes of storage space in the source program. The
.BLKB and .BLKW directives, however, are recommended as the preferred
ways to reserve storage space (see Section 6.5.3).

3.7 NUMBERS

MACRO assumes that all numbers in the source program are to be
interpreted in octal radix, unless otherwise specified. An exception
to this is that operands associated with Floating Point Processor
instructions and Floating Point Data directives are treated as decimal
(see Section 6.4.2). This default radix can be altered with the
.RADIX directive {see Section 6.4.l.l}. Also, individual numbers can
be designated as decimal, binary, or octal numbers through temporary
radix control operators (see Section 6.4.1.2).

For every statement in the source program that contains a digit that
is not in the current radix, an error code {N} is generated in the
assembly listing. However, MACRO continues with the scan of the
statement and evaluates each such number encountered as a decimal
value.

Negative numbers must be preceded by a minus sign; MACRO translates
such numbers into two's complement form. Positive numbers may (but
need not) be prec~ded by a plus sign.

A number containing more than 16 significant bits, i.e., greater than
l77777(8), is truncated from the left and flagged with an error code
(T) in the assembly listing.

3-13

SYMBOLS AND EXPRESSIONS

Numbers are always considered to be absolute values, i.e., they are
not relocatable.

Single-word floating-point numbers may be generated with the AF
operator (see Section 6.4.2.2) and are stored in the following format:

15 14

8-bit
Exponent

7 6 a

7-bit
Mantissa

Refer to the appropriate PDP-II Processor Handbook for details of the
floating-point number format.

3.8 TERMS

A term is a component of an expression and may be one of the
following:

1. A number, as defined in Section 3.7, whose l6-bit value is
used.

2. A symbol, as defined in Section 3.2. Symbols are evaluated
as follows:

a. A period (.) specified in an expression causes the value
of the current location counter to be used.

b. A defined symbol is located in the User-Defined Symbol
Table (UST) and its value is used.

c. A permanent symbol's basic value is
substituted for the addressing modes.
all op codes and their values.)

used, with zero
(Appendix C lists

d. An undefined symbol is assigned a value of zero and
inserted in the User-Defined Symbol Table as an undefined
default global reference. If the • DSABL GBL directive
(see Section 6.2) is in effect, the automatic global
reference default function of MACRO is inhibited, in
which case, the statement containing the undefined symbol
is flagged with an error code (U) in the assembly
listing.

3. An ASCII conversion operation is performed, using either a
single quote followed by a single ASCII character, or a
double quote followed by two ASCII characters. This type of
expression construction is explained in detail in Section
6.3.3.

4. A term may also be an expression enclosed in angle brackets
«». Any expression so enclosed is evaluated and reduced to
a single term before the remainder of the expression in which
it appears is evaluated. Angle brackets, for example, may be
used to alter the left-to-right evaluation of expressions (as
in A*B+C versus A*<B+C», or to apply a unary operator to an
entire expression (as in -<A+B>).

3-14

SYMBOLS AND EXPRESSIONS

3.9 EXPRESSIONS

Expressions are combinations of terms joined together by bin~ry
operators (see Table 3-5) and which reduc~ to a 16-bit expresslon
value. The evaluation of an expression includes the determination of
its attributes. A resultant expression value may be anyone of four
types (as described later in this section): absolute, relocatable,
external, or complex relocatable.

Expressions are evaluated from left to right with no operator
hierarchy rules, except that unary operators take precedence over
binary operators. A term preceded by a unary operator is considered
to contain that operator. (Terms are evaluated, where necessary,
before their use in expressions.) Multiple unary operators are valid
and are treated as follows:

-+-A

is equivalent to:

-(+(-A»

A missing te~m, expression, or external symbol is interpreted as a
zero. A mlssing or illegal operator terminates the expression
analysis, causing an error code (A) or (Q), or both, to be generated
in the assembly listing, depending on the context of the expression
itself. For example, the expression:

TAG! LA 177777

is evaluated as

TAG ! LA

because the first non-blank character following the symbol LA is not a
legal binary operator, an expression separator (i.e., a comma), or an
operand field terminator (i.e., a semicolon or the end of the source
line). It should be noted that spaces within expressions are ignored.

The value of an external expression is equal to the value of the
absolute part of that expression. For example, the expression
EXTERN+A, where "EXTERN" is an external symbol, has a value at
assembly-time that is equal to the value of the internal symbol A.
This expression, however, when evaluated by the Linker at link time
takes on the resolved value of the symbol EXTERN, plus the value of
symbol A.

Expressions, when evaluated by MACRO, are determined to be one of four
types: absolute, relocatable, external (or global), or complex
relocatable. The following distinctions are important:

1. An exp~ession is absolute if its value is fixed. An
expresslon whose terms are numbers and ASCII conversion
characters will reduce to an absolute value. A relocatable
expression or term minus a relocatable term, where both
elements being evaluated belong to the same program section,
are also absolute, since such an expression is reduced to a
single term by MACRO upon completion of the expression scan.
For example, the expression TAG2-TAGl, where both TAGI and
TAG2 are defined in the same program section, is an absolute
expression.

3-15

SYMBOLS AND EXPRESSIONS

2. An expression is relocatable if its value is fixed relative
to the base address of the program section in which it
appears, but it will have an offset value added at task-build
time. Expressions whose terms contain labels defined in
relocatable program sections will have a relocatable value;
similarly, a period ,.) in a relocatable program section,
representing the value of the current location counter, will
also have a relocatable value.

3. An expression is external (or global) if it contains a single
global reference (plus or minus an absolute expression value)
that is not defined within the current program. Thus, an
external expression is only partially defined following
assembly and must be resolved by the Linker at link time.

4. An expression is complex relocatable if any of the following
conditions applies:

- It contains a global reference and a relocatable symbol.

- It contains more than one global reference.

- It contains relocatable terms belonging to
program sections.

different

The value resulting from the expression has more than one
level of relocation. For example, if the relocatable
symbols TAGI and TAG2 associated with the same program
section are specified in an expression construction in the
form TAGI+TAG2, two levels of relocation would be
introduced, since each symbol is evaluated in terms of the
relocation bias in effect for the program section.

- An operation other than addition is specified on an
undefined global symbol.

- An operation other than addition, subtraction, negation, or
complementation is specified for a relocatable value.

The evaluation of relocatable, external, and complex relocatable
expressions is completed at link time.

3-16

CHAPTER 4

RELOCATION AND LINKING

The output of MACRO is an object module which must be processed by the
Linker before it can be loaded and executed. Essentially, the Linker
fixes (i.e., makes absolute) the values of external or relocatable
symbols in the object module, thus transforming the object module, or
several such object modules, into an executable task image. This
process is called linking.

To enable the Linker to fix the value of an expression, MACRO issues
certain directives to the Linker, together with other required
parameters. In the case of relocatable expressions in the object
module, the Linker adds the base of the associated relocatable program
section to the value of the relocatable expression provided by MACRO.
In the case of external expression values, the Linker determines the
value of the external term in the expression (since the external
symbol must be defined in one of the other object modules being linked
together) and then adds it to the absolute portion of the external
expression, as provided by MACRO.

All instructions that require modification by the Linker are flagged
in the assembly listing, as illustrated in the example below. The
apostrophe (I) following the octal expansion of the instruction
indicates that simple relocation is requiredi the letter G indicates
that the value of an external symbol must be added to the absolute
portion of an expressioni and the letter C indicates that complex
relocation analysis by the Linker is required in order to fix the
value of the expression.

EXAMPLE:

005065 CLR
OOOOOOG

005065 CLR
000006G

005065 CLR
000040 1

005065 CLR
OOOOOOC

EXTERN (R5)

EXTERN+6 (R5)

RELOC (R5)

iTHE VALUE OF THE "EXTERN" SYMBOL IS
iASSEMBLED AS ZERO AND IS TO BE
iRESOLVED BY THE TASK BUILDER.

iTHE VALUE OF THE SYMBOL "EXTERN"
iIS TO BE "RESOLVED BY
iTHE TASK BUILDER AND ADDED TO
iTHE ABSOLUTE PORTION (+6) OF
iTHE EXPRESSION.

iASSUMING THAT THE VALUE OF THE
iSYMBOL "RELOC" IS RELOCATABLE
i40, THE TASK BUILDER WILL ADD A
iRELOCATION BIAS TO THIS VALUE.

-(EXTERN+RELOC> (R5) iTHIS EXPRESSION IS COMPLEX
RELOCATABLE BECAUSE IT REQUIRES
THE NEGATION OF AN EXPRESSION
THAT CONTAINS A GLOBAL (EXTERN)
REFERENCE AND A RELOCATABLE TERM.

4-1

RELOCATION AND LINKING

For a complete description of object records output by MACRO, refer to
the TRAX Linker Reference Manual (see Section 0.3 in the Preface).

4-2

CHAPTER 5

ADDRESSING MODES

The program counter (PC) always contains the address of the next word
to be fetched, i.e., the address of the next instruction to be
executed, or the second or third word of the current instruction.

In order to understand how the address modes operate and how they
assemble, the action of the program counter must be understood. The
key rule to remember is:

"whenever the processor implicitly uses the program counter
(PC) to fetch a word from memory, the program counter is
automatically incremented by 2 after the fetch operation is
completed."

In the case of 2- or 3-word instructions, the processor uses the PC to
fetch the following words as well.

The following symbols are used in describing addressing
throughout this chapter:

1. E is any expression, as defined in Chapter 3.

modes

2. R is a register expression, i.e., any expression containing a
term preceded by a percent sign (%) or a symbol previously
equated to such a term, as shown in the examples below:

RO=%O
Rl=RO+l
R2=1+%1

jGENERAL REGISTER O.
jGENERAL REGISTER 1.
jGENERAL REGISTER 2.

The symbol R may also represent any of the normal default
register definitions (see Section 3.4).

3. ER is a register expression or an absolute expression in the
range 0 to 7, inclusive.

4. A is a general addressing specification which produces a
6-bit mode address field, as described in the PDP-II
Processor Handbooks. The addressing specification, A, is
described in terms of E, R, and ER, as defined above. Each
addressing specification within this section is illustrated
using either the single operand instruction CLR or the double
operand instruction MOV.

5.1 REGISTER MODE

The register itself (R) contains the operand to be manipulated by the
instruction.

5-1

ADDRESSING MODES

Format for A: R

Example:

CLR R3 iCLEARS REGISTER 3.

5.2 REGISTER DEFERRED MODE

The register (R) contains the address of the operand to be manipulated
by the instruction.

Format for A:

Examples:

CLR
CLR
CLR

@R or (ER)

@Rl
(Rl)
(1)

iALL THESE INSTRUCTIONS CLEAR
iTHE WORD AT THE ADDRESS
iCONTAINED IN REGISTER 1.

5.3 AUTOINCREMENT MODE

The contents of the register (ER) are incremented immediately after
being used as the address of the operand (see Note below).

Format for A:

Examples:

CLR
CLR
CLR

(ER)+

(RO)+
(R4)+
(R2)+

iEACH INSTRUCTION CLEARS
iTHE WORD AT THE ADDRESS
iCONTAINED IN THE SPECIFIED
iREGISTER AND INCREMENTS
iTHAT REGISTER'S CONTENTS
iBY TWO.

NOTE

Certain special instruction/address mode
combinations, which are rarely or never
used, do not operate exactly the same on
all PDP-II processors, as described
below.

In the autoincrement mode, both the JMP
and JSR instructions auto increment the
register before its use on the
PDP-ll/40, but not on the PDP-ll/45 or
11/10.

In double operand instructions having
the addressing form Rn,(Rn)+ or
Rn,-(Rn), where the source and
destination registers are the same, the
source operand is evaluated as the
auto incremented or autodecremented
value, but the destination register, at
the time it is used, still contains the
originally-intended effective address.
In the following example, as executed on

5-2

MOV

MOV

ADDRESSING MODES

the PDP-ll/40, Register a originally·
contains 100(8):

RO, (RO) +

RO,-(RO)

The use
avoided,
with the

iTHE QUANTITY 102 IS MOVED
iTO LOCATION 100.

iTHE QUANTITY 76 IS MOVED
iTO LOCATION 100.

of these forms should be
since they are not compatible
entire family of PDP-II

processors.

An error code (Z) is printed in the
assembly listing with each instruction
which ~s not compatible among all
members of the PDP-II family.

5.4 AUTOINCREMENT DEFERRED MODE

The register (ER) contains a pointer to the address of the operand.
The contents of the register are incremented after being used as a
pointer.

Format for A: @(ER)+

Example:

CLR @(R3)+

5.5 AUTODECREMENT MODE

iTHE CONTENTS OF REGISTER 3 POINT
iTO THE ADDRESS OF A WORD TO BE
iCLEARED BEFORE THE CONTENTS OF THE
iREGISTER ARE INCREMENTED BY TWO.

The contents of the register (ER) are decremented before being used as
the address of the operand (see Note above in Section 5.3).

Format for A:

Examples:

CLR

CLR
CLR

-(ER)

-(RO)

-(R3)
-(R2)

5.6 AUTODECREMENT DEFERRED MODE

iDECREMENT THE CONTENTS OF THE SPECI
iFIED REGISTER (0, 3, OR 2) BY TWO
iBEFORE USING ITS CONTENTS
iAS THE ADDRESS OF THE WORD TO BE
iCLEARED.

The contents of the register (ER) are decremented before being used as
a pointer to the address of the operand.

5-3

Format for A:

Example:

CLR

5.7 INDEX MODE

@-(ER)

@-(R2)

ADDRESSING MODES

iDECREMENT THE CONTENTS OF
iREGISTER 2 BY TWO BEFORE
iUSING ITS CONTENTS AS A POINTER
iTO THE ADDRESS OF THE WORD TO BE
iCLEARED.

The value of an expression (E) is stored as the second or third word
of the instruction. The effective address of the operand is
calculated as the value of E, plus the contents of register ER. The
value E is the offset of the instruction, and the contents of register
ER form the base.

Format for A: E(ER)

Examples:

CLR X+2(Rl}

MOV RO,-2(R3}

5.8 INDEX DEFERRED MODE

iTHE EFFECTIVE ADDRESS OF THE WORD
iTO BE CLEARED IS X+2, PLUS THE
iCONTENTS OF REGISTER 1.
iTHE EFFECTIVE ADDRESS OF THE
iDESTINATION LOCATION IS -2, PLUS
iTHE CONTENTS OF REGISTER 3.

An expression (E), plus the contents of a register (ER), yields a
pointer to the address of the operand. As in index mode above, the
value E is the offset of the instruction, and the contents of register
ER form the base.

Format for A: @E(ER}

Example:

CLR @114(R4}

5.9 IMMEDIATE MODE

iIF REGISTER 4 CONTAINS 100, THIS
iVALUE, PLUS THE OFFSET 114, YIELDS
iTHE POINTER 214. IF LOCATION 214
iCONTAINS THE ADDRESS 2000, LOCATION
i2000 WOULD BE CLEARED.

Immediate mode allows the operand itself (E) to be stored as the
second or third word of the instruction. This mode is assembled as an
autoincrement of the PC.

Format for A: #E

Examples:

MOV
MOV

#lOO,RO
#X,RO

iMOVE THE VALUE 100 INTO REGISTER O.
iMOVE THE VALUE OF SYMBOL X INTO
iREGISTER O.

5-4

ADDRESSING MODES

The number sign (i) in the MACRO character set has special
significance as an addressing mode indicator. When this character
appears in the operand field, as shown above, it specifies the
immediate addressing mode, indicating to MACRO that the operand itself
immediately follows the instruction word.

The operation of this mode can be shown through the first example,
MOV ilOO,RO, which assembles as two words:

Location 20: 0 1 2 7 0 0

Location 22: 0 0 0 1 0 0

Location 24: Next instruction

Note that the source operand (the value 100) is assembled immediately
following the instruction word, i.e., as the second word in the
instruction. Upon execution of the instruction, the processor fetches
the first word (MOV) and increments the PC by 2 so that it points to
location 22 (which contains the source operand).

After the next fetch and increment cycle, the source operand (100) is
moved into register 0, leaving the PC pointing to location 24 (the
next instruction).

5.10 ABSOLUTE MODE

Absolute mode is the equivalent of immediate mode deferred. The
address expression @iE specifies an absolute address which is stored
as the second or third word of the instruction. In other words, the
value immediately following the instruction word is taken as the
absolute address of the operand. Absolute mode is assembled as an
autoincrement deferred of the PC.

Format for A: @iE

Examples:

MOV @#lOO,RO

CLR @#X

iMOVE THE CONTENTS OF LOCATION 100
iINTO REGISTER RO.
iCLEAR THE CONTENTS OF THE LOCATION
iWHOSE ADDRESS IS SPECIFIED BY
iTHE SYMBOL X.

The operation of this mode can be shown through the first example,
MOV @ilOO,RO, which assembles as two words:

Location 20: 0 1 3 7 0 0

Location 22: 0 0 0 1 0 0

Location 24: Next instruction

Note that the absolute address 100 is assembled immediately following
the instruction word, i.e., as the second word in the instruction.
Upon execution of the instruction, the processor fetches the first
word (MOV) and increments the PC by 2 so that it points to location 22
(which contains the absolute address of the source operand). After
the next fetch and increment cycle, the contents of absolute address
100 (the source operand) are moved into register 0, leaving the PC
pointing to location 24 (the next instruction).

5-5

ADDRESSING MODES

5.11 RELATIVE MODE

Relative mode is the normal mode for memory references within your
program. It is assembled as index mode, using the PC as the index
register.

Format for A: E

Examples:

CLR 100

MOV RO,Y

iCLEAR LOCATION 100, RELATIVE TO
iTHE CONTENTS OF THE PC.
iMOVE THE CONTENTS OF REGISTER a
iTO LOCATION Y, RELATIVE TO THE
iCONTENTS OF THE PC.

In relative mode, the offset for the address calculation is assembled
as the second or third word of the instruction. This value is added
to the contents of the PC (the base register) to yield the address of
the source operand.

~he operation of relative mode can be shown with the statement
MOV 100,R3, which assembles as two words:

Location 20: 0 1 6 7 0 3

Location 22: 0 0 a 0 5 4

Location 24: Next instruction

Note that the constant 54 is assembled immediately following the
instruction word, i.e., as the second word in the instruction. Upon
execution of the instruction, the processor fetches the first word
(MOV) and increments the PC by 2 so that it points to location 22
(containing the value 54). After the next fetch and increment cycle,
the processor calculates the effective address of the source operand
by taking the contents of location 22 (the offset) and adding it to
the current value of the PC, which now points to location 24 (the next
instruction). Thus, the source operand address is the result of the
calculation OFFSET+PC = 54+24 = 100(8), causing the contents of
location 100 to be moved into register 3.

Since MACRO considers the contents of the current location counter (.)
as the address of the first word of the instruction, an equivalent
index mode statement is shown below:

MOV 100-.-4(PC),R3

This instruction has a relative addressing mode because the operand
address is calculated relative to the current value of the location
counter. The offset is the distance (in bytes) between the operand
and the current value of the location counter.

5.12 RELATIVE DEFERRED MODE

The relative deferred mode is similar in operation to the relative
mode above, except that the expression E is used as a pointer to the
address of the operand. In other words, the operand following the
instruction word is added to the contents of the PC to yield a pointer
to the address of the operand.

Format for A: @E

5-6

Example:

MOV @X,RO

ADDRESSING MODES

iRELATIVE TO THE CURRENT VALUE OF
iTHE PC, MOVE THE CONTENTS OF THE
iLOCATION WHOSE ADDRESS IS POINTED
iTO BY LOCATION X INTO REGISTER O.

5.13 SUMMARY OF ADDRESSING FORMS

Each PDP-II instruction takes at least one word. Operands of the form
listed below do not increase the length of an instruction.

Form Meaning

R Register mode

@R or (ER) Register deferred mode (see Note below)

(ER) + Autoincrement mode

@(ER)+ Autoincrement deferred mode

- (ER) Autodecrement mode

@- (ER) Autodecrement deferred mode

Operands of the following forms add one word to the instruction length
for each occurrence of an operand of that form:

Form Meaning

E (ER) Index mode

@E (ER) Index deferred mode

#E Immediate mode

@#E Absolute mode (see Note below)

E Relative mode

@E Relative deferred mode

The syntax of the addressing modes is
Additional discussion of addressing
applicable PDP-II Processor Handbook.

summarized
modes is

in Appendix
provided in

NOTE

An alternate form for @R is (ER).
However, the form @(ER) is only
logically, but not physically equivalent
to the expression @O(ER). The
addressing form @#E differs from form E
in that the second or third word of the
instruction contains the absolute
address of the operand, rather than the
relative distance between the operand
and the PC. Thus, the instruction CLR
@#100 clears absolute location 100, even
if the instruction is moved from the

5-7

B.
the

ADDRESSING MODES

point at which it was assembled. See
the description of the .ENABL AMA
function in Section 6.2, which causes
all relative mode addresses to be
assembled as absolute mode addresses.

5.14 BRANCH INSTRUCTION ADDRESSING

The branch instructions are I-word instructions. The high-order byte
contains the operator, and the low-order byte contains an 8-bit signed
offset (seven bits, plus sign), which specifies the branch address
relative to the current value of the PC. The hardware calculates the
branch address as follows:

1. Extends the sign of the offset through bits 8-15.

2. Multiplies the result by 2, creating a byte offset rather
than a word offset.

3. Adds the result to the current value of the PC to form the
effective branch address.

MACRO performs the reverse operation to form the word offset from the
specified address. Remember that when the offset is added to the
current value of the PC, the PC is pointing to the word following the
branch instruction; hence, the factor -2 in the following
calculation:

Word offset = (E-PC)/2 truncated to eight bits.

Since the.value of the PC = .+2, we have:

Word offset = (E-.-2)/2 truncated to eight bits.

In using branch instructions, you must exercise care to avoid the
following error conditions:

1. Branching from one program section to another;

2. Branching to a location that is defined as an external
(global) symbol; or

3. Specifying a branch address that is out of range, i.e., the
branch offset is a value that does not lie within the range
-128(10) to +127(10).

The above conditions cause an error code (A) to be generated in the
assembly listing for the statement in error.

5.15 USING TRAP INSTRUCTIONS

The EMT and TRAP instructions do not use the low-order byte of the
instruction word, allowing information to be transferred to the trap
handlers in the low-order byte. If the EMT or TRAP instruction is
followed by an expression, the value of the expression is stored in
the low-order byte of the word. However, if the expression is greater
than 377(8), it is truncated to eight bits and an error code (T) is
generated in the assembly listing.

5-8

ADDRESSING MODES

PART III

MACRO DIRECTIVES

Chapters 6 and 7 describe all the directives used with MACRO.
Directives are statements that cause MACRO to perform certain
operations during assembly. Chapter 6 describes several types of
directives, including those which control symbol interpretation,
listing header material, program sections, data storage formats, and
assembly listings. Chapter 7 describes those directives concerning
macros, macro arguments, and repetitive coding sequences.

MACRO directives can be preceded by a label (subject to any
restrictions associated with specific directives) and followed by a
comment. A MACRO directive occupies the operator field of a source
statement. Only one directive can be included in any given source
line. The operand field may be occupied by one or more operands or
left blank; legal operands differ with each directive specified.

CHAPTER 6

GENERAL ASSEMBLER DIRECTIVES

This category of directives includes:

1. Listing control

2. Function control

3. Data storage

4. Radix and numeric control

5. Location counter control

6. Terminators

7. Program boUndaries

8. Program sectioning

9. Symbol control

10. Conditional assembly

11. PAL-llR conditional assembly.

Each is described in its own section of this chapter.

6.1 LISTING CONTROL DIRECTIVES

Listing control directives control the content, format, and pagination
of all line printer and teleprinter listing output generated during
assembly. Facilities also exist for creating object module names and
other identification information in the listing output.

6.1.1 .LIST and .NLIST Directives

Listing control options can be specified in the text of a MACRO
program through the .LIST and .NLIST directives. These directives are
of the form:

where:

.LIST

.LIST arg

.NLIST

.NLIST arg

arg represents one or more of the optional symbolic
arguments defined in Table 6-1.

6-1

GENERAL ASSEMBLER DIRECTIVES

As indicated above, the listing control directives may be used without
arguments, in which case the listing directives alter the listing
level count. The listing level count is initialized to zero. At each
occurrence of a .LIST directive, the listing level count is
incrementedi at each occurrence of an .NLIST directive, the listing
level count is decremented. When the listing level count is negative,
the listing is suppressed (unless the line contains an error).
Conversely, when the listing level count is greater than zero, the
listing is always generated. Finally, when the count is zero, the
line is either listed or suppressed, contingent upon the other listing
controls currently in effect for the program. For example, the
following macro definition employs the .LIST and .NLIST directives to
selectively list portions of the macro body when the macro is
expanded:

• MACRO LTEST
A-THIS LINE SHOULD

.NLIST
B-THIS LINE SHOULD

.NLIST
C-THIS LINE SHOULD

• LIST
D-THIS LINE SHOULD

.LIST
E-THIS LINE SHOULD

.ENDM

• LIST ME
LTEST

LIST

NOT

NOT

NOT

LIST

A-THIS LINE SHOULD LIST
E-THIS LINE SHOULD LIST

LIST

LIST

LIST

iLIST TEST
iLISTING LEVEL COUNT IS
iLISTING LEVEL COUNT IS

iLISTING LEVEL COUNT IS

iLISTING LEVEL COUNT IS

iLISTING LEVEL COUNT IS
iLISTING LEVEL COUNT IS

iLIST MACRO EXPANSION •
iCALL THE MACRO

o.
-1.

-2.

-1 .

o.
BACK TO O.

iLISTING LEVEL COUNT IS O.
iLISTING LEVEL COUNT IS BACK TO O.

An important purpose of the level count is to allow macro expansions
to be listed selectively and yet exit with the listing level count
restored to the value existing prior to the macro call.

When used with arguments, the listing directives do not alter the
listing level count; however, the .LIST and .NLIST directives can be
used to override current listing control, as shown in the example
below:

X=.

X=.

.MACRO XX

.LIST iLIST NEXT LINE.

.NLIST

• ENDM

• NLIST ME
XX

iDa NOT LIST REMAINDER OF MACRO
iEXPANSION •

iDO NOT LIST MACRO EXPANSIONS •

The symbolic arguments allowed for use with the listing directives are
described in Table 6-1. These arguments can be used singly or in
combination with each other. If multiple arguments are specified in a
listing directive, each argument must be separated by a comma, tab, or
space. For any argument not specifically included in a listing

6-2

GENERAL ASSEMBLER DIRECTIVES

control statement, the associated default assumption (List or No list)
is applicable throughout the source program. The default assumptions
for the listing control directives also appear in Table 6-1.

Table 6-1
Symbolic Arguments of Listing Control Directives

Argument Default

SEQ* List

LOC* List

BIN* List

Function

Controls the listing of source line
sequence numbers. MACRO assigns
sequence number 1 to the first source
line in a file, and increments the
sequence number for each additional line
in the file. If this field is
suppressed through an .NLIST SEQ
directive, MACRO generates a tab,
effectively allocating space for the
field, but fills the field with blanks.
Thus, the inter-positional relationships
of subsequent fields in the listing
remain undisturbed. During the assembly
process, MACRO examines each source line
for possible error conditions. For any
line in error, an appropriate error flag
is printed preceding the line sequence
number field (see Appendix D). MACRO
does not assign sequence numbers for
files that have had sequence numbers
assigned by other programs, such as an
editor.

Controls the listing of the current
location counter field. Normally, this
field is not suppressed. However, if it
is suppressed through the .NLIST LOC
directive, MACRO does not generate a
tab, nor does it allocate space for the
field, as is the case with the source
line sequence number field (SEQ)
described above. Thus, the suppression
of the current location counter (LOC)
field effectively left-justifies all
subsequent fields (while preserving
inter-positional relationships) to that
position otherwise normally occupied by
this field.

Controls the listing of generated binary
code. If this field is suppressed
through an .NLIST BIN directive,
left-justification of the source code
field occurs in the same manner
described above for the current location
counter (LOC) field.

(continued on next page)

* If the .NLIST arguments SEQ, LOC, BIN, and SRC are in effect at the
same time, i.e., if all four significant fields in the listing are to
be suppressed, the printing of the resulting blank line is inhibited.

6-3

GENERAL ASSEMBLER DIRECTIVES

Table 6-1 (Cont.)
Symbolic Arguments of Listing Control Directives

Argument Default

BEX List

SRC* List

COM List

MD List

MC List

ME No list

MEB No list

CND List

LD No list

TOC List

Function

Contr'ols the listing of binary
extensions, i.e., the locations and
binary contents beyond those that will
fit on the source statement line. This
is a subset of the BIN argument.

Controls the listing of source lines.

Controls the listing of comments. This
is a subset of the SRC argument. The
.NLIST COM directive reduces listing
time and space when comments are not
desired.

Controls the listing of macro
definitions and repeat range expansions.

Controls the listing of macro calls and
repeat range expansions.

Controls the listing of macro
expansions.

Controls the listing of macro expansion
binary code. A .LIST MEB directive
causes only those macro expansion
statements that generate binary code to
be listed. This is a subset of the ME
argument.

Controls the listing of unsatisfied
conditional coding and associated .IF
and .ENDC directives in the source
program. This argument permits
conditional assemblies to be listed
without including unsatisfied
conditional coding.

Controls the listing of all listing
directives having no arguments, i.e.,
those listing directives that alter the
listing level count.

Controls the listing of the table of
contents during assembly pass 1 (see
Section 6.1.4 describing the .SBTTL
directive). This argument does not
affect the printing of the full assembly
listing during assembly pass 2.

(continued on next page)

* If the .NLIST arguments SEQ, LOC, BIN, and SRC are in effect at the
same time, i.e., if all four significant fields in the listing are to
be suppressed, the printing of the resulting blank line is inhibited.

6-4

GENERAL ASSEMBLER DIRECTIVES

Table 6-1 (Cont.)
Symbolic Arguments of Listing Control Directives

Argument Default Function

SYM List Controls the listing of the symbol table
resulting from the assembly of the
source program.

TTM List Controls the listing output format. The
default can be set by the system
manager. If the system manager does not
set a default, it is set to line printer
format. Figure 6-1 illustrates the line
printer output format. Figure 6-2
illustrates the teleprinter output
format.

An example of an assembly listing, as sent to a l32-column line
printer, is shown in Figure 6-1. Note that binary extensions for
statements generating more than one word are formatted horizontally on
the source line.

An example of an assembly listing, as sent to a teleprinter (in the
same format as for an 80-column line printer), is shown in Figure 6-2.
Notice that binary extensions for statements generating more than one
word are printed on subsequent lines. There is no explicit truncation
of output to 80 characters by the assembler.

Any argument specified in a .LIST/.NLIST directive other than those
listed in Table 6-1 causes the directive to be flagged with an error
code CA) in the assembly listing.

The listing control options can also be specified at assembly time
through switches included in the command string to MACRO (see Chapter
8). The use of these switches overrides all corresponding listing
control (.LIST or .NLIST) directives specified in the source program.

6-5

eSITST _. TEST OF CSI1 AND CSI2 MACRO M0707 09-JUL-74 15147 PAGE 5
READ AND PARSE COMMA~O LINES

209 ,saTTL READ AND PARSE COMMA~D LINES
210
211 001230 GETLN, GCMLS 'GCLBLI< 'GET LINE VIA GCML
212 01211244 103003 BCC 11 'SKIP IF NO ERROR
213 001246 EXITSS HLSt, UIT
214 001254 lSI TYPE G,CMLD.2(R0),G,CMLD(R0)"!0 'SEND OUT TME INPUT LINE
:Z15 01211300 CSISI 'CSIBLK,GCLBLK.G.CMLO+2,GCLBLK.G.CMLO
216 001324 103064 BCC 25 'SRANCH I~ NO ERROR DETECTED
217 001326 016046 000020 MOV C,FILD.2(R0),~(SP) 'PUT STRING ERROR ADDR IN STK
218 001332 166A16 000004 SUB C.CMLD+2(~0),(SP) 'CALCULATE LENGTM OF FIRST PART
219 001336 TYPE C.CMLD+2CR0),(SP),,'S 'SEND OUT FIRST PART O~ STRING (j)
220 001360 TYPE C.FILD+2(R0),C,FILD(H0),.'5 ,SEND OUT SECOND PART tr:l
221 001404 066060 000016 000020 ADD C.FILO(R0),C,FILO.2(H0) 'CALC AOOR OF LAST PART OF STRING Z

tr:l 222 01111412 162660 000002 SUB (SP)+,C,CMI.O(R0) 'DEDUCT LENGTM OF FIRST PART
~ 223 001416 166060 00001 b 000002 SUB C.FILD(A0),C,C~LD(R0) 'CALC LENGTH OF LAST PAAT

224 001424 TVPE C.FILO+2CR0),C,CMLDCH0), •• 0 'SEND OUT LAST PART 1:'"1
225 001450 TYPEM STX,40 'SEND SYNTAX ERROR MESSAGE)II 226 01211474 00065!) BR GETLN ,un- FOR MORE til 227 til
228 001416 005760 000~02 251 TST C,CMI.O(R0) 'CHECK LENGTM OF LINE tr:l
229 001!)02 001652 BEQ GETLN ,IF NULL, SKIP S.CK FOR ~ExT LINE 3:

~ 230 001504 112767 000060 176432 MOvB .'0,EQUBIT 'ASSUME EQUAL SIGN NOT FOUNO Il1
I 1:'"1
~ 231 0~1512 132760 Pl00040 000001 BITB 'CS,EQU,C,STAT(R0) 'C~ECK STATUS tr:l

232 O01520 001402 BEQ US 'SKIP If EQUAL SIGN NOT S~EN !:tI
233 001522 105267 176416 INCS [QUBIl 'ELSE, INDICATE EQUAL SIGN FOUND tj 234 001526 1051 TYPEM EQU,40 ,SEND EQUAL SIGN STATUS MESSAGE t-I
23!5 001552 TYPE'" OPT,40 'SEND OUTPUT SCAN MESSAGE ~
236 0~1!)76 OPARSEI CALL INIT2 'INIT LOCNS FOR CSI2 CALL/TEST tr:l
237 O01602 CSIS2 ,OUTPUT,*SwTBL 'PARSe OUTPUT SPEC (')

t-3 238 001620 103441 Bes CS2ERR 'SKIP ON ERROR t-I
239 001622 CALL EVALU8 'EVALUATE RESULTS OF SEMANTIC PARSE t;j 240 O01626 132760 ,,"'0020 000001 BITS 'CS.MD~,C,STAT(R0) 'ADDITIONAL OUTPUT SPECS?
241 001634 00136O BNE OPARSE 'YES, CONTINUE wITH OUTPUT SCAN til
242 001636 TYPEM IPT,40 'SEND INPUT SCAN MESSAGE
243 001662 IPARSEI CALL INIT2 IINIT LOC~S FOR CSI2 CALL/TEST
244 001666 CS152 ,INPUT"swTSL 'PARSE INPUT SPEC
245 001704 103407 BCS CS2EHR 'SKIP ON ERROR
246 01111706 CALL EVALU8 'EVALUATE RESULTS OF SEMANTIC PARSE
247 0/i!1712 132760 000020 000001 SITB 'CS,MOR,C,STAT(R0) 'ADOITIO~AL INPUT SPECS?
248 001120 001360 BNE IPARSE 'YES, CONTINUE wITH INPUT SCAN
249 001722 000412 SR JMPGET 'GET ANOTHER COMMAND LINE

Figure 6-1 Example of Line Printer Assembly Listing

GENERAL ASSEMBLER DIRECTIVES

CSIT5T •• TEST OF CSIl AND C5I2 MAC~O M0101 09~JUL.74 15159 PAGE 5
READ AND PARSE COMMAND LINES

209
210
211 001230
212 001244
213 001246
214 001254
215 001300
216 001324
217 001326

218 001332

219 001336
220 001360
221 001404

222 001412

223 001416

224 001424
225 0014M'J
226 1/101474
221
228 01111476

229 0015P12
230 001504

231 001512

232 001520
233 001!522

234 0A1526
235 001552
236 001576
237 0~1602

103003

103064
016046
1/100020
166016
000004

066060
000016
000020
162660
000002
166061/1
000016
000002

000655

GETLIIII

lSI

005761/1 251
000002
001652
112167
000060
176432
132760
000040
000001
001402
1~5261
176416

• SBTTL

GCMLS
Bec
Exnss
TyPE
CSISl
ace
MO¥

SUB

TYPE
TYPE
ADD

SUB

SUB

TYPE
TYP[M
BH

TST

BEQ
MOVB

BIT8

BEQ
INC8

1051 TYPEM
TYPEM

238 001620 103441
239 01211622

OPARSEt CALL
CSU2
BCS
CALL

240 01/11626

241 0\H6:H
242 001636
243 001662
244 001666
245 (IHH704
246 001106
241 001712

248 001120

132160
01110020
000001
001360

103401

132760
000020
000001
001360

BITB

BNE
TYPEM

IPARSEI CAL~
CSIS2
BCS
CALL
BITB

BNE

READ AND PARSE COMMAND LIIIIES

'GCLBLK ,GET LINE VIA GCML
15 ,SKIP IF NO ERROR

,ELSE, EXIT
G.CMLD.2(R0),G.CMLD(R0),"0 'SEND OUT THE INPUT LINf
.CSIBLK,GCLBLK.G.CMLD.2,GCLBLK.G.CMLD
2S 'BRANCH IF NO ERROR DETECTED
C.FILD.2(R0),-(SP) ,PUT STRING ERROR ADDR IN STK

'CALCULATE LENGTH OF FI~ST PART

C.CMLD.2(R0),(SP),.'S 'SEND OUT FIRST PART OF STRING
C.FILD.2(R0),C.FILD(RS),.'S ,SEND OUT SECO~D PART
C.FILD(R0),C.FILD.2(H0) 'CALC ADDR OF ~AST PART OF STRI~G

'DEDUCT LENGTH OF FIRST PART

C.FILD(R0),C.C~LD(R0) ICALC LENGTH OF LAST PART

C.FILO.2(R0),C.CMLD(R0),'40 'SE~D OUT LAST PART
STX,40 ,SEND SYNTAX ERROR MESSAGE
GETLN ,TRY FOW MORE

C.CMLD(R0)

GETL"~
.'0,EQUBIT

,CHECK LENGTM OF lINE

,IF NUL~, SKIP BACK FOR NExT ~INE
,ASSUME EQUAL SIGN NOT FOU~D

.CS,EQU,C.STAT(R0) 'CHECK STATuS

105
EQUe IT

EQU,40
OPT,40
INIT2
,OUTPUT,.SwTBL
eS2E"RR
EVALU8

'SKIP IF EQUAL SIGN NOT SEEN
'ELSE, I~DICATE EQUAL SIG~ FOUND

,SEND EQUAL SIGN STATUS MESSAGE
,SEND OUTPUT SCAN MESSAGE
,INIT LOCNS FOR CsI2 CALL/TEST
,PARSE OUTPUT SPEC
'SKIP ON ERROR
,EVALUATE RESULTS OF SEMANTIC PARSE

'CS.MOR,C.STAT(H0) 'ADDITIONA~ OUTPUT SPECS?

OPARSE ,YES, CONTINUE wIT~ OUTPUT SCAN
IPT,4~ ,SEND INPUT SCAN MESSAGE
INIT2 ,INIT LOCNS FOR CSI2 CAL~/TEST
,INPUT,.SwTBL 'PARSE INPUT SPEC
CS2ERR 'S~IP ON ERROR
EVALU8 'EVALUAT~ RESULTS OF SEMANTIC PARSE
.CS,"OR,C.STAT(R0) 'ADDITIONAL INPUT SPECS1

IPARSE IYES, CONTINUE wITM INPUT SCAN

Figure 6-2 Example of Terminal Assembly Listing

6-7

GENERAL ASSEMBLER DIRECTIVES

Figure 6-3 shows a listing, produced in line printer format,
reflecting the use of the .LIST and .NLIST directives in the source
program and the effects such directives have on the assembly listing
output.

6.1.2 Page Headings

MACRO prints each assembly page in the format shown in either Figure
6-1 or Figure 6-2, depending on the listing mode (see TTM, Table 6-1).
On the first line of each page, MACRO prints the following (from left
to right):

1. Title of the object module, as established through the .TITLE
directive (see next section).

2. Assembler version identification.

3. Date.

4. Time-of-day.

5. Page number.

The second line of each assembly listing page contains the subtitle
text specified in the last-encountered .SBTTL directive (see Section
6.1.4).

6-8

27
28
29 000062 ~STMAC COM 'COMMENT LINES TEST

,N~ IS T COM
1/)1/)0062 011J111001 001/) 0f/.I 2 1/)00003 ,1II0RD 1,2,3,4,5
000070 00011J04 130001/15

,~IST COM
30
31
32 000074 L!TMAC cCOM,8EX> 'COMMENT LINES AND EXTENDED BINARY TEST

, NLlST COM,BEX
011J1B074 1/)00001 000002 000003 ,!IIORD 1,2,3,4,5

.I.IST COM,8EX

en
ttl
2:
trJ

~
t"4

)II

,MAIN. MACRO 1040707 e9 .. JUI. .. 74 16129 PAGE 1-1 til
til
ttl
3:

0'\ 33 tEl
I 34 t"4
~ trJ

35 ~
36 ,~IST TTM ,NARROW LISTING MODE IS IN EFFECT
3' t:1
38 000106 L!TMAC SEQ ,SEQUENCE NUM8ERS T~ST

H

• NL 1ST SEQ ~
100106 GJ0000t ,wORD 1,2,3,4,5 ,THIS IS A COMMENT n
000110 000002 t-3
000112 000003

H
<:

000114 000004 trJ
I1JCI)IIJ 116 000005 til

.~IST SEQ
39
40
41 000120 ~STMAC SEx JEXTENDED 8INARY TEST

,NLIST BEX
000120 000001 ,WORD 1,2,3,4,5 ,THIS IS A COMMENT

,~IST BEX
42
43
u 000001 ' ,END

Figure 6-3 Listing Produced With Listing Control Directives

,MAIt\I. MACRO M0'0' 09-JUL-14 16.29 PAGE 1

1 ,NLIST TT'" 'WIDE LISTING MODE IS IN EFFECT
2 .LIST ME .LIST MACHO EXPANSIONS
3
4
5 LISTI~G CONTROL TEST MACRO
6 , ,MACRO LSTMAC ARG
8 .NLIST ARG
9 .wORD 1,2,3,4,5 'TMIS IS A COMMENT

10 • LI ST AHG
11 .[NOM

Ci) 12
~ 13 Z 14 ~

15 ~ 16
17 0U012 LSTMAC LOC .LOCATION COUNTER TEST I:"'t

• NLI S T Loe > 000001 000002 000003 .wORD 1,2,3,4,5 .TMIS IS A COMMENT til
1/100004 000005 til

~ .L.IST L.OC 3C 0'\ 18 tn I
19 I:"'t I-'

~ 0 20 000024 LSTMAC BIN 'GE~ERATED BINARY TEST
~ ,NLIST BIN

0f1l0024 ,!IIORD 1,2,3,4,5 ,TMIS IS A COMMENT t1
.UST BIt\I t-f

21 ~
~ 22 n

23 000036 LSTMAC SEX ,EXTENDED BINARY TEST ~
,NU S T BEX t-f

000036 000001 000002 000003 .wORO 1,2,3,4,5 ,TMIS IS A COMMENT <:
~ .LIST BEX til

24
25
26 000050 L.STMAC SRC 'SOURCE L.INES TEST

0AB0S0 000001 0"'0002 0000O3
000056 000004 000005

.LIST SRC

Figure 6-3 (Cont.) Listing Produced With Listing Control Directives

GENERAL ASSEMBLER DIRECTIVES

6.1.3 .TITLE Directive

The .TITLE directive is used to assign a name to the object module as
the first entry in the header of each page in the assembly listing.
The name so assigned is the first six non-blank characters following
the .TITLE directive. This name should be six Radix-50 characters or
less in length; any characters beyond the first six are checked for
ASCII legality, but they are not used as part of the object module
name. For example, the directive:

.TITLE PROGRAM TO PERFORM DAILY ACCOUNTING

causes the assembled object module to be named PROGRA. Note that this
6-character name bears no relationship to the filename of the object
module, as specified in the command string to MACRO. The name of an
object module (specified in the .TITLE directive) appears in the
Linker load map. This is also the module name which the Librarian
will recognize.

If the .TITLE directive is not specified, MACRO assigns the default
name .MAIN. to the object module. If more than one .TITLE directive
is specified in the source program, the last .TITLE directive
encountered establishes the name for the entire object module.

All spaces and/or tabs up to the first non-space/non-tab character
following the .TITLE directive are ignored by MACRO when evaluating
the text string.

If the .TITLE directive is specified without an object module name, or
if the first non-space/non-tab character in the object module name is
not a Radix-50 character, the directive is flagged with an error code
(A) in the assembly listing.

Section A.2 of Appendix A contains a table of Radix-50 characters.

6.1.4 .SBTTL Directive

The .SBTTL directive is used to produce a table of contents
immediately preceding the· assembly listing and to further identify
each page in the listing. In the latter case, the text following the
.SBTTL directive is printed as the second line of the header of each
page in the listing, continuing until altered by a subsequent .SBTTL
directive in the program. For example, the directive:

.SBTTL CONDITIONAL ASSEMBLIES

causes the text

CONDITIONAL ASSEMBLIES

to be printed as the second line in the header of the assembly
listing.

During assembly pass 1, a table of contents is printed for the
assembly listing, containing the line sequence number, the page
number, and the text accompanying each .SBTTL directive. The listing
of the table of contents is suppressed whenever an .NLIST TOC
directive is encountered in the source program (see Table 6-1). An
example of a table of contents listing is shown in Figure 6-4.

6-11

GENERAL ASSEMBLER DIRECTIVES

CSITST •• TEST OF CSl1 AND CSI2 MACRO M0707 09.JUL.74 15,47
TABLE OF CONTENTS

2- 55
3- 74
4-153
5·209
6-255
'-345

MACRO DEFINITIONS
MESSAGE STRINGS
MISCELLANEOUS DATA
READ AND P'~SE COMMAND LINES
EVALUATE THE SEMANTIC ANALYSIS
SUBROUTINES

Figure 6-4 Assembly Listing Table of Contents

6.1.5 .IDENT Directive

The .IDENT directive provide~ an additional means of labeling the
object module produced by MACRO. In addition to the name assigned to
the object module with the .TITLE directive (see Section 6.1.3), a
character string up to six Radix-50 characters can be specified
between paired printing delimiters to label the object module with the
program version number. This directive takes the following form:

where:

.IDENT /string/

string

/ /

represents six legal Radix-50 characters or less
which establish the program identification or
version number. This number is included in the
global symbol directory of the object module.

represent delimiting characters. These delimiters
may be any paired printing characters, other than
the equal sign (=), the left angle bracket «), or
the semicolon (i), as long as the delimiting
character is not contained within the text string
itself. If the delimiting characters do not
match, or if an illegal delimiting character is
used, the .IDENT directive is flagged with an
error code (A) in the assembly listing.

An example of the .IDENT directive is shown below:

.IDENT /V05A/

The character string V05A is converted to Radix-50 representation and
included in the global symbol directory of the object module. This
character string also appears in the Linker load map and the Librarian
directory listings.

When more than one .IDENT directive is encountered in a given program,
the last such directive encountered establishes the character string
which forms part of the object module identification.

6.1.6 .PAGE Directive/Page Ejection

Page ejection is accomplished in one of four ways:

1. After reaching a count of 58 lines in
automatically performs a page eject
perforations on line printer paper
teleprinter output into pages.

6-12

the listing, MACRO
to skip over page
and to formulate

GENERAL ASSEMBLER DIRECTIVES

2. In addition, the .PAGE directive is used within the source
program to perform a page eject at desired points in the
listing. The format of this directive is:

• PAGE

This directive takes no arguments and causes a skip to the
top of the next page when encountered. It also causes the
page number to be incremented. The .PAGE directive does not
appear in the listing.

When used within a macro definition, the .PAGE directive is
ignored during the assembly 'of the macro definition. Rather,
the page eject operation is performed as the macro itself is
expanded. In this case, the page number is also incremented.

3. A page eject is performed when a form-feed character is
encountered. If the form-feed character appears within a
macro definition, a page eject occurs during the assembly of
the macro definition, but not during the expansion of the
macro itself. A page eject resulting from the use of the
form-feed character likewise causes the page number to be
incremented.

4. Encountering a new source file causes the page number to be
incremented and the line sequence count to be reset.

6.2 FUNCTION DIRECTIVES: .ENABL AND .DSABL

Several function control options are provided by MACRO through the
.ENABL and . DSABL directives. These directives are included in a
source program to invoke or inhibit certain MACRO functions and
operations incidental to the assembly process itself. These
directives take the following form:

where:

.ENABL arg
• DSABL arg

arg represents one or more of the optional symbolic
arguments defined in Table 6-2.

Table 6-2
Symbolic Arguments of Function Control Directives

Argument Default Function
"._ ...•...

AMA Disable Enabling this function causes all
relative addresses (address mode 67) to
be assembled as absolute addresses
(address mode 37) • This function is
useful during the debugging phase of
program development.

(continued on next page)

6-13

GENERAL ASSEMBLER DIRECTIVES

Table 6-2 (Cont.)
Symbolic Arguments of Function Control Directives

Argument Default

CDR Disable

CRF Enable

FPT Disable

LC Disable

LSB Disable

Function

Enabling this function causes source
columns 73 and greater, i.e., to the end
of the line, to be treated as a comment.
The most common use of this feature is
to permit sequence numbers in card
columns 73-80.

Disabling this function inhibits the
generation of cross-reference output.
This function only has meaning if
cross-reference output generation is
specified in the command string.

Enabling this function causes floating
point truncation; disabling this
function causes floating-point rounding.

Enabling this function causes MACRO to
accept lower-case ASCII input instead of
converting it to upper-case. If this
function ~s not enabled, all text is
converted to upper-case.

This argument permits the enabling or
disabling of a local symbol block.
Although a local symbol block is
normally established by encountering a
new symbolic label or a .PSECT directive
in the source program, an .ENABL LSB
directive establishes a new local symbol
block which is not terminated until (1)
another .ENABL LSB is encountered, or
(2) another symbolic label or .PSECT
directive is encountered following a
paired .DSABL LSB directive.

Although the .ENABL LSB directive
permits a local symbol block to cross
.PSECT boundaries, local symbols cannot
be defined in a program section other
than the one that was in effect when the
block was entered. The basic function
of this directive with regard to
.PSECT's is limited to those instances
where it is desirable to leave a program
section temporarily to store data,
followed by a return to the original
program section. Attempts to define
local symbols in an alternate program
section are flagged with an error code
(P) in the assembly listing.

An example of the .ENABL LSB and .DSABL
LSB directives, as typically used in a
source program, is shown in Figure 6-5.

(continued on next page)

6-14

GENERAL ASSEMBLER DIRECTIVES

Table 6-2 (Cont.)
Symbolic Arguments of Function Control Directives

Arugment Default

PNC Enable

REG Enable

GBL Enable

Function

Disabling this function inhibits binary
output until an .ENABL PNC statement is
encountered within the same module.

When specified, the .DSABL REG directive
inhibits the normal MACRO default
register definitions; if not disabled,
the default definitions .listed below
remain in effect.

RO=%O
Rl=%l
R2=%2
R3=%3
R4=%4
R5=%5
SP=%6
PC=%7

The .ENABL REG statement may be used as
the logical complement of the .DSABL REG
directive. The use of these directives,
however, is not recommended. For
logical consistency, use the normal
default register definitions listed
above.

When the .ENABL GBL directive is
specified, MACRO treats all symbol
references that are undefined at the end
of assembly pass 1 as default global
references; when the • DSABL GBL
directive is specified, MACRO treats all
such references as undefined symbols.
In assembly pass 2, if the .DSABL GBL
function is still in effect, these
undefined symbols are flagged with an
error code (U) in the assembly listing;
otherwise, they continue to be regarded
by MACRO as global references.

Specifying any argument in an .ENABL/.DSABL directive other than those
listed in Table 6-2 causes that directive to be flagged with an error
code (A) in the assembly listing.

6-15

SQUEEZE MACRO M0707 09-JUL-74 15113 PAGE 4

272
273
274
275
276 ,ENABI. L.SB
277
278 003142 010103 FNOSMI I MOV Rt,R3 'PUT AOOR OF LINE IN ~3 Cj')
279 003144 060203 ADD R2,R3 ,POINT R3 PAST LAST CHAR IN LINE tzl
280 ",,3146 020301 lSI CMP HJ,H1 'DOES RJ POINT TO START OF LINE? 2:
281 003Hi0 001422 BEQ 305 IIF SO, LEAVE INDICATING FAILURE tzl

282 003 HI2 124327 000073 CMPB -(R3),*SEMIC '15 THE LAST CHARACTER SEMICO~ON? ~
283 003156 001373 Bt.JE 11 INO, CONTINUE LOO~ING t"1
284 0QJ3160 010302 MOV R3,R2 IYES, POINT R2 PAST NEW ENO-OF-LINE > 285 0A3162 000412 BR 205 'LEAVE VIA COMMON SUCCESS CODE til 286 til
287 003164 060102 SKPBL.I< I ADO R1,R2 IPOINT R2 PAST ENO-Of-LINE tzl m 288 003166 020201 105 I CMP R2,R1 100ES R2 POINT' TO SURT OF LINE? 3:

I
289 003170 001412 SEQ 305 'IF SO, LEAVE w!T~ FAILURE

c:g,
t"1 m 290 003172 124227 000011 CMPB .. (R2),UAB lIS THE LAST CHARACTER A TAB? tzl

291 003176 001773 SEQ U5 I IF SO, IGNORE' IT !:t'
292 003200 121227 0~0040 CMP8 (R2),*BLAN~ lIS IT A BLANK?

0 293 003204 001770 BEQ US 'IF SO, IGNORE IT t-t
294 003206 005202 INC H2 ,NON-BLANK C~ARACTER--POINT PAST IT !:t'
295 003210 1&0102 2051 SUR R 1, R2 ,RE-COMPUTE LINE LENGTH tzl
296 003212 000241 CLoC ,INOICATE SUCCESS n
297 003214 000401 SR 4U 'BRANC~ TO LEAV~ t-3

t-t 298 0A3216 000261 30$1 SEC .INOICATE FAILURE <:
299 003220 40$1 RETURN , tzl
300 ,OSABL LSB til
301
302

Figure 6-5 Example of .ENABL and .DSABL Directives

GENERAL ASSEMBLER DIRECTIVES

6.3 DATA STORAGE DIRECTIVES

A wide range of data
following directives,
operators:

and data types can be generated with the
ASCII conversion characters, and radix-control

.BYTE

. WORD

"
.ASCII
.ASCIZ
.FLT2
.FLT4
.RAD50
AB
AC
AD
AF
AO
AR

These MACRO facilities are described in the following sections.

6.3.1 .BYTE Directive

The .BYTE directive is used to generate successive bytes of binary
data in the object module. The directive is of the form:

• BYTE

.BYTE

exp iSTORES THE BINARY VALUE OF THE
iEXPRESSION "EXP" IN THE NEXT BYTE.

expl,exp2,expn iSTORES THE BINARY VALUES OF THE LIST
iOF EXPRESSIONS IN SUCCESSIVE BYTES.

A legal expression must reduce to eight bits of data or less. The
operands of a .BYTE directive are evaluated as word expressions before
b~ing truncated to the low-order eight bits. The l6-bit value of the
specified expression must have a high-order byte (which is truncated)
that is either all zeros (0) or all ones (1). Each expression value
is stored in the next byte of the object module. Multiple
expressions, which must be separated by commas, are stored in
successive bytes, as described below:

SAM=5
.=410

.BYTE AD48,SAM iTHE VALUE 060 (OCTAL EQUIVALENT OF 48
iDECIMAL) IS STORED IN LOCATION 410.
iTHE VALUE 005 IS STORED IN LOCATION
i4ll.

If the high-order byte of the expression reduces to a value other than
o or -1, the value is truncated to the low-order eight bits and
flagged with an error code (T) in the assembly listing.

The construction AD in the first operand of the .BYTE directive above
illustrates the use of a temporary radix-control operator. The
function of such special unary operators is described in Section
6.4.1.2.

At link time, it is likely that a relocatable expression will result
in a value having more than eight bits, in which case the Linker

6-17

GENERAL ASSEMBLER DIRECTIVES

issues a truncation diagnostic for the object module in question. For
example, the following statements create such a possibility:

.BYTE
A:

• BYTE

23

A

iSTORES OCTAL 23 IN NEXT BYTE.

iRELOCATABLE VALUE A WILL PROBABLY
iCAUSE LINKER TRUNCATION
iDIAGNOSTIC.

If an expression following the .BYTE directive is null, it is
interpreted as a zero, as described below:

.=420
.BYTE , , , iZEROS ARE STORED IN BYTES 420, 421,

i422, AND 423.

Note that in the above example, four bytes of storage result from the
.BYTE directive. The three commas in the operand field represent an
implicit declaration of four null values, each separated from the
other by a comma. Hence, four bytes, each containing a value of zero
(0), are reserved in the object module.

6.3.2 .WORD Directive

The .WORD directive is used to generate successive words of data in
the object module. The directive is of the form:

• WORD

• WORD

exp iSTORES THE BINARY EQUIVALENT OF THE
iEXPRESSION EXP IN THE NEXT WORD.

expl,exp2,expn iSTORES THE BINARY EQUIVALENTS OF THE
iLIST OF EXPRESSIONS IN SUCCESSIVE
iWORDS.

A legal expression must result in 16 bits of data or less. Each
expression is stored in the next word of the object program. Multiple
expressions must be separated by commas and stored in successive
words, as shown in the following example:

SAL=O
.=500

• WORD 177535,.+4,SAL iSTORES THE VALUES 177535, 506, AND
/ i 0 IN WORDS 500, 502, AND 504,

iRESPECTIVELY.

If an expression following the .WORD directive contains a null value,
it is interpreted as a zero, as shown in the following example:

.=500
• WORD ,5, iSTORES THE VALUES 0, 5, AND 0 IN

iLOCATION 500, 502, AND 504,
iRESPECTIVELY.

A statement containing a blank operator field, i.e., a symbol that is
not recognized by MACRO as a macro call, an instruction nmemonic, a
MACRO directive, or a semicolon is interpreted during assembly as an
implicit .WORD directive, as shown in the example below:

.=440
LABEL: 100,LABEL iSTORES THE VALUE 100 IN LOCATION 440

iAND THE VALUE 440 IN LOCATION 442.

6-18

GENERAL ASSEMBLER DIRECTIVES

CAUTION

You should not use this technique to
generate .WORD directives because it may
not be included in future PDP-II
assemblers.

6.3.3 ASCII Conversion Characters

The single quote (I) and the double quote (") characters are unary
operators that can appear in any MACRO expression. When so used,
these characters cause a l6-bit expression value to be generated.

When the single quote is used, MACRO takes the next character in the
expression and converts it from its 7-bit ASCII value to a l6-bit
expression value. The 16-bit value is then used as an absolute term
within the expression. For example, the statement:

MOV #'A,RO

results in the following 16-bit expression value being moved into
register 0:

Binary Value of ASCII A

Thus, i~ the example above, the expression 'A results in a value of
101(8). Note that the high-order byte is always zero (0) in the
resulting expression value when the single quote unary operator is
used.

The 1 character must not be followed by a
RUBOUT, line-feed, or form-feed character;
(A) is generated in the assembly listing.

carriage-return, null,
if it is, an error code

When the double quote is used, MACRO takes the next two characters in
the expression and converts them to a l6-bit binary expression value
from their 7-bit ASCII values. This 16-bit value is then used as an
absolute term within the expression. For example, the statement:

MOV #"AB,RO

results in the following l6-bit expression value being moved into
register 0:

Binary Value of ASCII A

Binary Value of ASCII B

Thus, in the example above, the expression "AB results in a value of
041101 (8) •

6-19

GENERAL ASSEMBLER DIRECTIVES

The" character also must not be followed by a carriage-return, null,
RUBOUT, line-feed, or form-feed character; if it is, an error code
(A) is likewise generated in the assembly listing.

The ASCII character set is listed in Section A.l, Appendix A.

6.3.4 .ASCII Directive

The .ASCII directive translates character strings into
ASCII equivalents and stores them in the object module.
the .ASCII directive is as follows:

their 7-bit
The format of

where:

.ASCII /string l/ •.. /string n/

string

/ /

is a string of printable ASCII characters. All
printable ASCII characters are legal. The
vertical-tab, null, line-feed, RUBOUT, and all
other non-printable ASCII characters, except
carriage-return and form~feed, are illegal
characters. Such an illegal non-printing
character is flagged with an error code (I) in the
assembly listing. The carriage-return and
form-feed characters terminate the scan of the
source line. This premature termination of the
.ASCII statement results in the generation of an
error code (A) in the assembly listing, because
MACRO is unable to complete the scan of the
matching delimiter at the end of the character
string.

represent delimiting characters. These delimiters
may be any paired printing characters, other than
the equal sign (=), the left angle bracket «), or
the semicolon (;), as long as the delimiting
character is not contained within the text string
itself. If the delimiting characters do not
match, or if an illegal delimiting character is
used, the .ASCII directive is flagged with an
error code (A) in the assembly listing.

A non-printing character can be expressed in an .ASCII statement
by enclosing its equivalent octal value within angle brackets.
set of angle brackets so used represents a single character.
example, in the following statement:

only
Each

For

.ASCII <ls>/ABC/<A+2>/DEF/<S><4>

the expressions <15>, <A+2>, <S>, and <4> represent the values of
non-printing characters. Furthermore, the expressions must reduce to
eight bits of absolute data or less, subject to the same rules for
generating data as with the .BYTE directive (see Section 6.3.1).

Angle brackets can be embedded between delimiting characters in the
character string, but angle brackets so used do not take on their
usual significance as delimiters for non-printing characters. For
example, the statement:

.ASCII /ABC<expression>DEF/

6-20

GENERAL ASSEMBLER DIRECTIVES

contains a single ASCII character string, and performs no evaluation
of the embedded, bracketed expression. This use of the angle brackets
is shown in the third example of the .ASCII directive below:

.ASCII /HELLO/ iSTORES THE BINARY REPRESENTATION
iOF THE LETTERS HELLO IN FIVE
iCONSECUTIVE BYTES •

• ASCII /ABC/<lS><12>/DEF/ iSTORES THE BINARY REPRESENTATION
iOF THE CHARACTERS A,B,C,CARRIAGE
iRETURN,LINE FEED,D,E,F IN EIGHT
iCONSECUTIVE BYTES .

• ASCII /A<lS>B/ iSTORES THE BINARY REPRESENTATION
iOF THE CHARACTERS A, <, 1, S, >,
iAND B IN SIX CONSECUTIVE BYTES.

The semicolon (i) and equal sign (=) can be used as delimiting
characters in an ASCII string, but care must be exercised in so doing
because of their significance as a comment indicator and assignment
operator, respectively, as illustrated in the examples below:

.ASCII iABCi/DEF/

• ASCII /ABC/iDEFi

• ASCII /ABC/=DEF=

iSTORES THE BINARY REPRESENTATION OF
iTHE CHARACTERS A, B, C, D, E, AND F
iIN SIX CONSECUTIVE BYTESi NOT
iRECOMMENDED PRACTICE •

iSTORES THE BINARY REPRES~NTATIONS OF
iTHE CHARACTERS A, B, AND C IN THREE
iCONSECUTIVE BYTESi THE CHARACTERS D,
iE, F, AND: ARE TREATED AS A COMMENT •

iSTORES THE BINARY REPRESENTATION
:OF THE CHARACTERS A, B, C, D, E, AND
:F IN SIX CONSECUTIVE BYTES: NOT
:RECOMMENDED PRACTICE.

An equal sign is treated as an assignment operator when it appears as
the first character in the ASCII string, as illustrated by the
following example:

.ASCII =DEF=

6.3.S .ASCIZ Directive

:THE DIRECT ASSIGNMENT OPERATION
:.ASCII=DEF IS PERFORMED, AND A Q
: (SYNTAX) ERROR IS GENERATED UPON
:ENCOUNTERING THE SECOND = SIGN.

The .ASCIZ directive is equivalent to the .ASCII directive described
above, except that a zero byte is automatically inserted as the final
character of the string. Thus, when a list or text string has been
created with an .ASCIZ directive, a search for the null character in
the last byte can effectively determine the end of the string, as
reflected by the coding below:

CR=lS
LF=12
HELLO: .ASCIZ <CR><LF>/MACRO VOIA/<CR><LF> :INTRODUCTORY MESSAGE

.EVEN

6-21

10$:

MOV
MOV
MOVB
BNE

GENERAL ASSEMBLER DIRECTIVES

fHELLO,Rl
fLINBUF,R2
(Rl) +, (R2) +

10$

iGET ADDRESS OF MESSAGE.
iGET ADDRESS OF OUTPUT BUFFER.
iMOVE A BYTE TO OUTPUT BUFFER.
iIF NOT NULL, MOVE ANOTHER BYTE.

The .ASCIZ directive is subject to the same checks for character
legality and proper character string construction as described above
for the .ASCII directive.

6.3.6 .RADSO Directive

The .RADSO directive allows the user to generate data in Radix-50
packed format. Radix-50 form allows three characters to be packed
into sixteen bits (one word)i therefore, any 6-character symbol can
be stored in two consecutive words. The form of the directive is:

where:

.RADSO Istring l/ ••• /string nl

string

/ /

represents a series of characters to be packed
(three characters per word). The string must
consist of the characters A through Z, 0 through
9, dollar sign ($), period (.) and space (). An
illegal printing character causes an error flag
(Q) to be printed in the assembly listing.

If fewer than three characters are to be packed,
the string is packed left-justified within the
word, and trailing spaces are assumed.

As with the .ASCII directive described in Section
6.3.4, the vertical-tab, null, line-feed, RUBOUT,
and all other non-printing characters, except
carriage-return and form-feed, are illegal
characters, resulting in an error code (I) in the
assembly listing. Similarly, the carriage-return
and form-feed characters result in an error code
(A) because these characters end the scan of the
line, preventing MACRO from detecting the
terminating matching delimiter.

represent delimiting characters. These delimiters
may be any paired printing characters, other than
the equal sign (=), the left angle bracket «), or
the semicolon (i), provided that the delimiting
character is not contained within the text string
itself. If the delimiting characters do not
match, or if an illegal delimiting character is
used, the .RADSO directive is flagged with an
error code (A) in the assembly listing.

Examples of .RADSO directives are shown below:

.RADSO IABCI iPACKS ABC INTO ONE WORD.

.RADSO IAB/ iPACKS AB (SPACE) INTO ONE WORD.

.RADSO IABCD/ iPACKS ABC INTO FIRST WORD AND
iD (SPACE) (SPACE) INTO SECOND WORD.

.RADSO IABCDEF/ iPACKS ABC INTO FIRST WORD, DEF INTO
iSECOND WORD.

6-22

GENERAL ASSEMBLER DIRECTIVES

Each character is translated into its Radix-50 equivalent, as
indicated in the following table:

Character

(space)
A-Z
$

(undefined)
0-9

Radix-50 Octal Equivalent

o
1-32

33
34
35

36-47

The Radix-50 equivalents for characters 1 through 3 (Cl,C2,C3) are
combined as follows:

Radix-50 Value «Cl*50)+C2)*50+C3

For example:

Radix-50 Value of ABC = «1*50)+2)*50+3 = 3223

Refer to Section A.2 in Appendix A for a table of
equivalents.

Radix-50

Angle brackets «» must be used in the .RAD50 directive whenever
special codes are to be inserted in the text string, as shown in the
example below:

CHRl=l
CHR2=2
CHR3=3

• RAD50 IAB/<35> iSTORES 3255 IN ONE WORD .

.RAD50 <CHRl><CHR2><CHR3> iEQUIVALENT TO .RAD50 IABC/.

6.3.7 Temporary Radix-50 Control Operator: AR

The AR operator specifies that an argument is to be converted to
Radix-50 format. This allows up to three characters to be stored in
one word. The AR operator is coded as follows:

A
RccC

where ccc represents a maximum of three characters to be converted to
a 16-bit Radix-50 value. If more than three characters are specified,
any following the third character are ignored. If fewer than 3 are
specified, it is assumed that the trailing characters are blanks. The
following example shows how the AR operator might be used to pack a
3-character file type specifier (MAC) into a single 16-bit word.

MOV #ARMAC,FILEXT iSTORE RAD50 MAC AS FILE EXTENSION

The number sign (#) is used to indicate immediate data, i.e., data to
be assembled directly into object code. AR specifies that the
characters MAC are to be converted to Radix-50. This value is then
stored in location FILEXT.

6-23

GENERAL ASSEMBLER DIRECTIVES

6.4 RADIX AND NUMERIC CONTROL FACILITIES

6.4.1 Radix Control and Unary Control Operators

The normal default assumption for numeric values or expression values
appearing in a MACRO source program is octal. However, numerous
instances may occur where an alternate radix is useful for portions of
a program or for variables within a given statement. It may be
useful, for example, to declare a given radix for applicability
throughout a program or to specify a numeric value or expression value
in a manner that causes it to be interpreted as a binary, octal, or
decimal value during assembly. In other such instances, it may be
useful to complement numeric values or expression values. These MACRO
facilities are described in the following sections.

NOTE

When two or more unary operators appear
together, modifying the same term, the
operators are applied, from right to
left, to the term.

6.4.1.1 .RADIX Directive - Numbers used in a MACRO source program are
initially considered to be octal valuesi however, you can declare any
one of the following radices for applicability throughout the source
program or within specific portions of the program:

2, 8, 10

This is accomplished via a .RADIX directive of the form:

.RADIX n

where: n represents one of the three acceptable radices
listed above. If the argument n is not specified,
the octal default radix is assumed.

The argument in the .RADIX directive is always interpreted as a
decimal value. Any alternate radix declared in the source program
through the .RADIX directive remains in effect until altered by the
occurrence of another such directive, i.e., a given radix declaration
is valid throughout a program until changed. For example, the
statement:

.RADIX 10

. RADIX

iBEGINS A SECTION OF CODE HAVING A
iDECIMAL RADIX.

iREVERTS TO OCTAL RADIX •

Any value other than null, 2, 8, or 10 specified as an argument in the
.RADIX directive causes an error code CA) to be generated in the
assembly listing.

In general, macro definitions should not contain or rely on radix
settings established with the .RADIX directive. Rather, temporary
radix control operators should be used within a macro definition.
Where a possible radix conflict exists within a macro definition or in

6-24

GENERAL ASSEMBLER DIRECTIVES

possible future uses of that code, it is recommended that the user
specify numeric or expression values using the temporary radix control
operators described below.

6.4.1.2 Temporary Radix Control Operators: AD, AO, and AB - Once the
user has specified a given radix for a section of code or has decided
to use the default octal radix, he may discover a number of cases
where an alternate radix is more convenient or desirable (particularly
within macro definitions). The creation of a mask word, for example,
might best be accomplished through the use of a binary radix.

MACRO has three unary operators that allow the user to establish an
alternate radix, as shown below:

AD"number"
AO"number"
AS"number"

("number" is evaluated as a decimal number)
("number" is evaluated as an octal number)
("number" is evaluated as a binary number)

Thus, an alternate radix can be declared temporarily to meet a
localized requirement in the source program. Such a declaration can
be made at any time, regardless of the existence of the default octal
radix or another specific radix declaration elsewhere in the program.
In other words, the effect of a temporary radix control operator is
limited to the term or expression immediately following the operator.
Any value specified in connection with a temporary radix control
operator is evaluated during assembly as a 16-bit entity. Temporary
radix control declarations can be included in the source program
anywhere a numeric value is legal.

The expressions below are representative of the methods of specifying
temporary radix control operators:

AD123
AO 47
AS 00001101
AO<A+13>

Decimal radix
Octal Radix
Binary Radix
Octal Radix

Note that the up-arrow and the radix control operator may not be
separated, but the radix control operator and the following term or
expression can be physically separated by spaces or tabs for
legibility or formatting purposes. A multi-element term or expression
that is to be interpreted in an alternate radix should be enclosed
within angle brackets, as shown in the last of the four temporary
radix control expressions above.

The following example also illustrates the use of angle brackets to
delimit an expression that is to be interpreted in an alternate radix:

.RADIX 10
A=lO

• WORD AO<A+lO>*lO

When the temporary radix expression in the .WORD directive above is
evaluated, it effectively yields the following equivalent statement:

• WORD 180.

MACRO also allows a temporary radix change to decimal by specifying a
number, immediately followed by a decimal point (.), as shown below:

100.
1376.

128.

Equivalent to 144(8)
Equivalent to 2540(8)
Equivalent to 200(8)

6-25

GENERAL ASSEMBLER DIRECTIVES

The above expression forms are equivalent in function to those listed
below:

~DIOO

~D1376
~D128

6.4.2 Numeric Directives and Unary Control Operators

Two storage directives
to simplify the use
These facilities allow
program, and numeric
floating-point numbers.

and two numeric control operators are available
of the floating-point hardware on the PDP-II.
floating-point data to be created in the
values to be complemented or treated as

A floating-point number is represented by a string of decimal digits.
]xe string (which can be a single digit in length) may optionally
contain a decimal point, and may be followed by an optional exponent
indicator in the form of the letter E and a signed decimal integer
exponent. The number may not contain embedded blanks, tabs or angle
brackets and may not be an expression. Such a string will result in
one or more errors (A or Q) in the assembly listing.

The list of numeric representations below contains seven distinct,
valid representations of the same floating-point number:

3
3.
3.0
3.0EO
3EO
.3EI
300E-2

As can be inferred, the list could be extended indefinitely (e.g.,
3000E-3, .03E2, etc.). A leading plus sign is optional (e.g., 3.0 is
considered to be +3.0). A leading minus sign complements the sign
bit. No other operators are allowed (e.g., 3.0+N is illegal).

All floating-point numbers are evaluated as 64 bits in the following
format:

64 63 56

S EEEEEEEE

55 o

MMM ••••• MMMI

Mantissa
Exponent
Sign

(55 bits)
(8 bits)
(1 bit)

MACRO returns a value of the appropriate size and precision via one of
the floating-point directives. The values returned may be truncated
or rounded (see Section 6.2).

Floating-point numbers are normally rounded. That is, when a
floating-point number exceeds the limits of the field in which it is
to be stored, the high-order bit of the unretained word is added to
the low-order bit of the retained word, as shown below. For example,
if the number is to be stored in a 2-word field, but more than 32 bits
are needed to express its exact value, the highest bit (32) of the
unretained field is added to the least significant bit (0) of the

6-26

GENERAL ASSEMBLER DIRECTIVES

retained field (see illustration below). The .ENABL FPT directive is
used to enable floating-point truncation; .DSABL FPT is used to
return to floating-point rounding (see Table 6-2).

Bit
32

Retained
field

Bit Bit
o 32 31

I I Unretained
field

Bit
o

Note that all numeric operands associated with Floating Point
Processor instructions are automatically evaluated as single-word,
decimal, floating-point values unless a temporary radix control
operator is specified. For example, to add (floating) the octal
constant 41040 to the contents of floating accumulator zero, the
following instruction must be used:

ADDF #~041040,FO

where: FO is assumed to represent floating accumulator zero.

Floating-point numbers are described in greater detail in the
applicable PDP-II Processor Handbook.

6.4.2.1 .FLT2 and .FLT4 - Floating-Point Storage Directives - MACRO
supports two directives that evaluate successive floating-point
numbers and store the results in the object module. These directives
are similar to the .WORD directive and are of the form:

where:

• FLT2
• FLT4

argl,arg2, •••
argl,arg2, •••

argl,arg2, ••• represent one or more floating point numbers
as described in Section 6.4.2. Multiple
arguments must be separated by commas •

. FLT2 causes two words of storage to be generated for each argument,
while ".FLT4 generates four words of storage for each argument.

6.4.2.2 Temporary Numeric Control Operators: AC and AF - The ~C
unary operator allows you to specify an argument that is to be
complemented as it is evaluated during assembly. The ~F unary
operator allows you to specify an argument consisting of a I-word
floating-point number.

As with the radix control operators described above, the numeric
control operator (~C) can be used anywhere in the source program that
an expression value is legal. Such a construction is evaluated by
MACRO as a l6-bit binary value before being complemented. For
example, the following statement:

TAG4: • WORD

causes the lis complement of the value 151 (octal) to be stored as a
l6-bit value in the program. The resulting value expressed in octal
form is 177626(8).

6-27

GENERAL ASSEMBLER DIRECTIVES

Because the ~C construction is a unary operator, the operator and its
argument are regarded as a term. Thus, more than one unary operator
may be applied to a single term. For example, the following
construction:

causes the decimal value 25 to be complemented during assembly. The
resulting binary value, when expressed in octal form, reduces to
177746(octal).

The term created through the use of
operator thus becomes an entity
combination with other expression
following construction:

is equivalent in function to:

the temporary numeric control
that can be used alone or in
elements. For example, the

This expression is evaluated during assembly as the lis complement of
2, plus the absolute value of 6. When these terms are combined, the
resulting expression value generates a carry beyond the most
significant bit, leaving 000003(8) as the reduced value.

As shown above, when the temporary numeric control operator and its
argument are coded as a term within an expression, angle brackets
should be used as delimiters to ensure precise evaluation and
readability.

MACRO also supports a unary operator for numeric control which allows
you to specify an argument consisting of a I-word floating-point
number. For example, the following statement:

A: MOV

creates a I-word floating-point number at location A+2 containing the
value 3.7 formatted as shown below.

BIT IS 14 7 6 o

S EEEEEEEE MMMMMMMI

Sign (bit 15) Exponent (bits 14-7) Mantissa (bits 6-0)

The importance of ordering with respect to unary operators is shown
below.

~Fl.O
~F-l.O
-~FI.O

-~F-I.O

020400
120400
157400
057400

The value created by the ~F unary operator and its argument is then a
term that can be used)b~QOitself or in an expression. For example:

is equivalent to:

6-28

GENERAL ASSEMBLER DIRECTIVES

For this reason, the use of angle brackets is advised. Expressions
used as terms or arguments of a unary operator must be explicitly
grouped.

6.5 LOCATION COUNTER CONTROL DIRECTIVES

The directives used in controlling the value of the current location
counter and in reserving storage space in the object program are
described in the following sections.

In this connection, it should be noted that several MACRO statements
may cause an odd number of bytes to be allocated, as listed below:

1. .BYTE directive

2. .BLKB directive

3. .ASCII or .ASCIZ directive

4. .000 directive

5. A direct assignment statement of the form .=.+expression,
which results in the assignment of an odd address value.

In cases that yield an odd address value, the next word-boundaried
instruction automatically forces the location counter to an even
value, but that instruction is flagged with an error code (B) in the
assembly listing.

6.5.1 .EVEN Directive

The .EVEN directive ensures that the current location counter contains
an even value by adding I if the current value is odd. If the current
location counter is already even, no action is taken. Any operands
following an .EVEN directive are flagged with an error code (Q) in the
assembly listing.

The .EVEN directive is used as follows:

.ASCIZ /THIS IS A TEST/
• EVEN ;ENSURES THAT THE NEXT STATEMENT WILL

;BEGIN ON A WORD BOUNDARY •
• WORD XYZ

6.5.2 .ODD Directive

The .000 directive ensures that the current location counter contains
an odd value by adding I if the current value is even. If the current
location counter is already odd, no action is taken. Any operands
following an .000 directive are also flagged with an error code (Q) in
the assembly listing.

6-29

GENERAL ASSEMBLER DIRECTIVES

6.5.3 .BLKB and .BLKW Directives

Blocks of storage can be reserved in the object program by means of
the .BLKB and .BLKW directives. The .BLKB directive is used to
reserve byte blocks; similarly, the .BLKW directive reserves word
blocks. The two directives are of the form:

.BLKB exp

.BLKW exp

where: exp represents the specified number of bytes or words
to be reserved in the object program. If no
argument is present, a default value of I is
assumed. These directives should not be used
without arguments. Any expression that is
completely defined at assembly-time and that
reduces to an absolute value is legal. If the
expression specified in either of these directives
is not an absolute value, the statement is flagged
with an error code CA) in the assembly listing.

Figure 6-6 illustrates the use of the .BLKB and .BLKW directives.

166 100000 .PSECT IMPUHE,D
161 0all10 PASS •• .8LKW 1 ,PASS FLAG
168 'NEXT GROUP MUST STAY TOGETHER
169 001111 .PSECT IMPPAS,D,GBL
171 111011 SYMBOL.I.8LKW 2 ,SYMBOL ACCUMULATOR
171 111114 MODE I. ,MODE/FLAGS BYTE
172 11111014 FLAGS II • BLK8 ,
173 001115 SECTOR II. BLK8 ,SYMBOL/EXPRESSION TYPE
174 001016 VALUEII .BLI<W 'EXPRESSION VALUE
175 001010 RELLVLI •• BLKW ,RELOCATION LEVEL
176 1001U)3 .REPT MAXXMT.« •• SYMBOL~/2>
177 .BLKW 1
178 .ENOR
179
180 001020 CLCNAM.I.BLKW 2 'CURRENT LOCATION COUNTER NAME
181 001024 CL.CFGSII.BL.KB 1 ,
182 110025 CLCSECII.BLKB 1 J
183 001026 CLCLOCI •• BLKW 1 ,
184 101031 CLCMAX.I.8L.l<w 1 ,END OF GROUPED DATA
185 000032 CHRPNT II. BLKlrf 1 ,CHARACTER POINTER
186 000034 SYMBEG.,.BLKW 1 ,POINTER TO START OF SYMBOL.
181 101136 ENDH,' II. BL.KW 1 ,
188 001111 .PSECT

Figure 6-6 Example of .BLKB and .BLKW Directives

The .BLKB directive in a source program has the same effect as the
following statement:

.=.+expression

which causes the value of the expression to be added to the current
value of the location counter. The .BLKB directive, however, is
easier to interpret in the context of the source code in which it
appears and is therefore recommended.

6.6 TERMINATING DIRECTIVES

6-30

GENERAL ASSEMBLER DIRECTIVES

6.6.1 .END Directive

The .END directive indicates the logical end of the source input, and
takes the following form:

.END exp

where: exp represents an optional expression value which, if
present, indicates the program-entry point, i.e.,
the transfer address at which program execution is
to begin.

When MACRO encounters a valid occurrence of the .END directive, it
terminates the current assembly pass. Any additional text beyond this
point in the current source file, as well as in additional source
files identified in the command line, will be ignored.

When creating a task image consisting of several object modules, only
one object module may be terminated with an .END exp statement
specifying the starting address. All other object modules must be
terminated with an .END statement without an address argument;
otherwise, the Linker will issue a diagnostic message. If no starting
address is specified in any of the object modules, task execution will
begin at location 1 of the task and immediately fault because of an
odd addressing error.

The .END statement must not be used within a macro expansion or a
conditional assembly block; if it is so used, it is flagged with an
error code (0) in the assembly listing. The .END statement may be
used, however, in an immediate conditional statement (see Section
6.10.2).

If the source program input is not terminated with an .END directive,
an error code (E) results in the assembly listing.

6.6.2 .EOT Directive

Under the TRAX operating system, the MACRO .EOT directive is ignored
and simply treated as a directive without effect, i.e., as a no-ope

6.7 PROGRAM BOUNDARIES DIRECTIVE: .LIMIT

It is often desirable to know the upper and lower address boundaries
of the task image. When the .LIMIT directive is specified in the
source program, MACRO effectively generates the following instruction:

.BLKW 2

causing two storage words to be reserved in the object
at link time, the address of the bottom of the
inserted into the first reserved word, and the address
free word following the task image is inserted
reserved word.

module. Later,
task's stack is
of the first

into the second

During linking, the size of the task image is rounded upward to the
nearest 2-word boundary.

6-31

GENERAL ASSEMBLER DIRECTIVES

For a discussion of task memory allocation and mapping, refer to the
applicable Linker reference manual (see Section 0.3 in the Preface).

6.8 PROGRAM SECTIONING DIRECTIV£S

The MACRO program sectioning directives are used to declare names for
program sections and to establish certain program section attributes
essential to Linker proc~ssing.

6.8.1 .PSECT Directive

The .PSECT directive allows absolute control over the memory
allocation of a program at link time, because any program attributes
established through this directive are passed to the Linker.

For example, if you are writing programs for a multi-user environment,
a program section containing pure code (instructions only) or a
program section containing impure code (data only) may be explicitly
declared through the .PSECT directive. Furthermore, these program
sections may be explicitly declared as read-only code, qualifying them
for use as protected, reentrant programs.

In addition, program sections exhibiting the global (GBL) attribute
can be explicitly allocated in a task's overlay structure at link
time.

The advantages gained through sectioning programs in this manner
therefore relate primarily to control of memory allocation, program
modularity, and more effective partitioning of memory. Refer to the
applicable Linker reference manual for a discussion of memory
allocation (see Section 0.3 in the Preface).

The .PSECT directive is formatted as follows:

where:

.PSECT name,argl,arg2, ••• argn

name

argl,
arg2, ...
argn

represents the symbolic name of the
section, as described in Table 6-3.

program

represents any legal separator (comma, tab and/or
space).

represent one or more of the legal symbolic
arguments defined for use with the .PSECT
directive, as described in Table 6-3. The slash
separating each pair of symbolic arguments listed
in the table indicates that these optional
arguments are mutually exclusive, i.e., one or the
other, but not both, may be specified. Multiple
arguments must be separated by a legal separating
character. Any symbolic argument specified in the
.PSECT directive other than those listed in Table
6-3 will cause that statement to be flagged with
an error code (A) in the assembly listing.

6-32

Argument

NAME

RO/RW

I/O

GBL/LCL

GENERAL ASSEMBLER DIRECTIVES

Table 6-3
Symbolic Arguments of .PSECT Directive

Default

Blank

RW

I

LCL

Meaning

Establishes the program section name,
which is specified as one to six
Radix-50 characters. If this argument
is omitted, a comma must appear in place
of the name parameter. The Radix-50
character set is listed in Section A.2
of Appendix A.

Defines which type of access
permitted to the program section:

RO=Read-Only Access
RW=Read/Write Access

NOTE

lAS and RSX-llD set hardware
protection for RO program
sections. TRAX does not provide
such protection.

is

Defines the program section as
containing either instructions (I) or
data (D). These attributes allow the
Linker to differentiate global symbols
that are program entry-point
instructions (1) from those that are
data values (D).

Defines the scope of the program
section, as subsequently interpreted by
the Linker.

In building single-segment programs, the
GBL/LCL arguments have no meaning,
because the total memory allocation for
the program will go into the root
segment of the task. The GBL/LCL
arguments apply only in the case of
overlays.

If an object module contains a local
program section, then the storage
allocation for that module will occur
within the segment in which the module
resides. Many modules can reference
this same program section, and the
memory allocation for each module is
either concatenated or overlaid within
the segment, depending on the argument
of the program section (.PSECT) defining

(continued on next page)

6-33

Argument

GBL/LCL
(cont'd)

ABS/REL

GENERAL ASSEMBLER DIRECTIVES

Table 6-3 (Cont.)
Symbolic Arguments of .PSECT Directive

Default

LCL

REL

Meaning

its allocation requirements (see CON/OVR
below). If an object module contains a
global program section, the
contributions to this program section
are collected across segment boundaries,
and the allocation of memory for that
section will go into the segment nearest
the root in which the first contribution
to this program section appeared. (The
term contribution implies an allocation
of memory to the program section.)

Defines the relocatability attribute of
the program section:

ABS=Absolute (non-relocatable). When
the ABS argument is specified, the
program section is regarded by the
Linker as an absolute module, thus
requiring no relocation. The
program section is assembled and
loaded, starting at absolute virtual
address O.

The location of data in absolute
program sections must fall within
the virtual memory limits of the
segment containing the program
section; otherwise, an error
results at link time. For example,
the following code, although valid
at during assembly, may generate a
Linker error message if virtual
location 100000 is outside the
segment's virtual address space:

.PSECT ALPHA,ABS
.=.+100000

. WORD X

The above coding assembles properly,
but the resulting load address may
be outside the respective segment's
boundaries. In such cases, the
Linker recognizes this as an attempt
to load data outside the task image
and rwith an error message.

REL=Relocatable. When the REL argument
is specified, the Linker calculates
a relocation bias and adds it to all
references to locations within the
program section, i.e., all
references to the program section
must have a relocation bias added to
them to make them absolute.

(continued on next page)

6-34

Argument

CONjOVR

GENERAL ASSEMBLER DIRECTIVES

Table 6-3 (Cont.)
Symbolic Arguments of .PSECT Directive

Default

CON

Meaning

Defines the allocation requirements of
the program section:

CON=Concatenated. All program section
contributions are to be concatenated
with other references to this same
program section in order to
determine the total memory
allocation requirement for this
program section.

OVR=Overlaid. All program section
contributions are to be overlaid.
Thus, the total allocation
requirement for the program section
is equal to the largest allocation
request made by any individual
contribution to this program
section.

The only argument in the .PSECT directive that is position-dependent
is NAME. If it is omitted, a comma must be used in its place. For
example, the directive:

.PSECT ,GBL

shows a .PSECT directive with a blank name argument and the GBL
argument. Default values (see Table 6-3) are assumed for all other
unspecified arguments.

Once the attributes of a program section are declared through a .PSECT
directive, MACRO assumes that these attributes remain in effect for
all subsequent .PSECT directives of the same name that are encountered
within the module.

MACRO provides for 256(10) program sections, as listed below:

1. One default absolute program section (. ABS.)

2. One default unnamed relocatable program section

3. Two-hundred-fifty-four named program sections.

The .PSECT directive enables the user to:

1. Create program sections (see Section 6.8.1.1)

2. Share code and data among program sections (see Section
6.8.1.2).

For each program section specified or implied, MACRO maintains the
following information:

1. Program section name

2. Contents of the current location counter

6-35

GENERAL ASSEMBLER DIRECTIVES

3. Maximum location counter value encountered

4. Program section attributes, i.e., the .PSECT
described in Table 6-3 above.

arguments

6.8.1.1 Creating Program Sections - MACRO
assembling source statements at relocatable
program section, i.e., the first statement of
always an implied .PSECT directive.

automatically begins
zero of the unnamed

a source program is

The first occurrence of a .PSECT directive with a given name assumes
that the current location counter is set at relocatable zero. The
scope of this directive then extends until a directive declaring a
different program section is specified. Further occurrences of a
program section name in subsequent .PSECT statements cause the
resumption of assembly where that section previously ended. For
example:

A:
B:
C:

X:
Y:

D:

.PSECT
• WORD
• WORD
• WORD
.PSECT
• WORD
• WORD
.PSECT
• WORD

o
o
a
ALPHA
a
o

a

jDECLARES UNNAMED RELOCATABLE PROGRAM
jSECTION ASSEMBLED AT RELOCATABLE
jADDRESSES 0, 2, AND 4.

jDECLARES RELOCATABLE PROGRAM SECTION
jNAMED ALPHA ASSEMBLED AT RELOCATABLE
jADDRESSES 0 AND 2.
jRETURNS TO UNNAMED RELOCATABLE
iPROGRAM SECTION AND CONTINUES ASSEM
jBLY AT RELOCATABLE ADDRESS 6.

A given program section may be defined completely upon encountering
its first .PSECT directive. Thereafter, the section can be referenced
by specifying its name only, or by completely respecifying its
attributes. For example, a program section can be declared through
the directive:

.PSECT ALPHA,ABS,OVR

and later referenced through the equivalent directive:

.PSECT ALPHA

which requires no arguments.

By maintaining separate location counters for each program section,
MACRO allows the user to write statements that are not physically
contiguous within the program, but that can be loaded contiguously
following assembly, as shown in the following example.

A:
B:
c:
ST:

.PSECT
• WORD
. WORD
• WORD
CLR
CLR
CLR
.PSECT

• WORD
.PSECT
INC
BR

SEC1,REL,RO
a
o
o
A
B
C
SECA,ABS

.+2,A
SECl
A
ST

jSTART A RELOCATABLE PROGRAM SECTION
jNAMED SECl ASSEMBLED AT RELOCATABLE
iADDRESSES 0, 2, AND 4.

jASSEMBLE CODE AT RELOCATABLE
iADDRESSES 6 THROUGH 12.

iSTART AN ABSOLUTE PROGRAM SECTION
iNAMED SECA. ASSEMBLE CODE AT
jABSOLUTE ADDRESSES a AND 2 •
jRESUME RELOCATABLE PROGRAM SECTION
jSEC1. ASSEMBLE CODE AT RELOCATABLE
jADDRESSES 14 AND 16.

6-36

GENERAL ASSEMBLER DIRECTIVES

All labels in an absolute program section are absolute; likewise, all
labels in a relocatable section are relocatable. The current location
counter symbol (.) is also relocatable or absolute when referenced in
a relocatable or absolute program section, respectively.

Any labels appearing on a line containing a .PSECT (or .ASECT or
.CSECT) directive are assigned the value of the current location
counter before the .PSECT (or other) directive takes effect. Thus, if
the first statement of a program is:

A: .PSECT ALT,REL

the label A is assigned to relocatable address zero of the unnamed (or
blank) program section.

It is not known during assembly where relocatable program sections
will be loaded, therefore all references between relocatable sections
in a single assembly are translated by MACRO to references relative to
the base of the referenced section. Thus, MACRO provides the Linker
with the necessary information to resolve the linkages between various
program sections. Such information is not necessary, however, when
referencing an absolute program section, because all instructions in
an absolute program section are associated with an absolute virtual
address.

In the following example, references to the symbols X and Yare
translated into references relative to the base of the relocatable
program section named SEN.

.PSECT
.=.+1000
A: CLR

JMP

.PSECT
MOV
JMP

Y: HALT
X: • WORD

ENT,ABS

X iASSEMBLED AS CLR BASE OF
iRELOCATABLE SECTION + 10.

Y iASSEMBLED AS JMP BASE OF
iRELOCATABLE SECTION +

SEN,REL
RO,Rl
A iASSEMBLED AS JMP 1000.

0

NOTE

In the preceding example, using a
constant in conjunction with the current
location counter symbol (.) in the form
.=1000 would result in an error, because
constants are always absolute and are
always associated with the program's
.ASECT (. ABS.). If the form .=1000
were used, a program section
incompatibility would be detected. See
Section 3.6 for a discussion of the
current location counter.

6.

6.8.1.2 Code or Data Sharing - Named relocatable
with the arguments GBL and OVR operate in the same
COMMON, i.e., program sections of the same name with
and OVR from different assemblies are all loaded at
by the Linker. All other program sections, i.e.,
argument CON, are concatenated.

program sections
manner as FORTRAN
the arguments GBL
the same location
those with the

6-37

GENERAL ASSEMBLER DIRECTIVES

Note that no conflict exists between internal symbolic names and
program section names, i.e., it is legal to use the same symbolic name
for both purposes. Considering FORTRAN again, using the same symbolic
name is necessary to accommodate the following statement:

COMMON jXj A,B,C,X

where the symbol X represents the base of the program section and also
the fourth element of that section.

6.8.1.3 Memory Allocation Considerations - The assembler does not
generate an error when a module ends at an odd location. This allows
you to place odd length data at the end of a module. However, when
several modules contain object code contributions to the same program
section having the concatenate attribute (see Table 6-3), odd length
modules (except the last) may cause the Linker to link succeeding
modules starting at odd locations, thereby making the linked program
unexecutable. To avoid this problem, code and data should be
separated from each other and be placed in separately named program
sections. This permits the Linker to automatically begin each program
section on an even address. Refer to the applicable Linker reference
manual for further information on memory allocation of tasks (see
Section 0.3 in the Preface).

6.8.2 .ASECT and .CSECT Directives

TRAX assembly-language programs use the .PSECT and .ASECT directives
exclusively, since the .PSECT directive provides all the capabilities
of the .CSECT directive defined for other PDP-II assemblers. MACRO
will accept both .ASECT and .CSECT directives, but assembles them as
though they were .PSECT directives with the default attributes listed
in Table 6-4. Also, compatibility exists between other MACRO programs
and the TRAX Linkers, since the respective Linkers recognize the
.ASECT and .CSECT directives that appear in such programs and likewise
assign the default values listed in Table 6-4.

Table 6-4
Non-TRAX Program Section Default Values

Default Value
Attribute

.ASECT .CSECT (named) .CSECT (unnamed)

Name . ABS. name Blank

Access RW RW RW

Type I I I

Scope GBL GBL LCL

Relocation ABS REL REL

Allocation OVR OVR CON

6-38

GENERAL ASSEMBLER DIRECTIVES

The allowable syntactical forms of the .ASECT and .CSECT directives
are:

.ASECT

.CSECT

.CSECT symbol

Note that the statement:

.CSECT JIM

is identical to the statement:

.PSECT JIM,GBL,OVR

because the .CSECT default values GBL and OVR are assumed for the
named program section.

6.9 SYMBOL CONTROL DIRECTIVE: .GLOBL

MACRO produces a relocatable object module and a listing file
containing the assembly listing and symbol table. The Linker joins
separately-assembled object modules into a single executable task
image. During linking, object modules are relocated as a function of
the specified base of the module. The object modules are then linked
via global symbols, such that a global symbol in one module, defined
either by a global assignment operator (==), a global label operator
(::), or the .GLOBL directive can be referenced from another module.

Thus, all symbols which will be referenced by other program modules
must be singled out as global symbols in the defining modules.

The .GLOBL directive is provided to define (and thus provide linkage
to) symbols not otherwise defined as global symbols within a module.
For example, if the .DSABL GBL directive is in effect (see Section
6.2), .GLOBL directives might be included in a source program to
effect linkage to library routines. For a global symbol definition,
the directive .GLOBL A,B,C is equivalent to:

A==expression (or A::)
B==expression (or B::)
C==expression (or C::)

Thus, the general form of the .GLOBL directive is:

where:

.GLOBL syml,sym2, •.• symn

syml,
sym2, •••
symn

represent legal symbolic names. When multiple
symbols are specified, they are separated by any
legal separator (comma, space, and/or tab).

A .GLOBL directive may also embody a label field and/or a comment
field.

At the end of assembly pass 1, MACRO determines whether a given global
symbol is defined within the current program module or whether it is
to be treated as an external symbol. All internal symbols appearing
within a given program must be defined at the end of assembly pass I
or they will be assumed to be default global references. Refer to
Section 6.2 for a description of enabling/disabling of global
references.

6-39

GENERAL ASSEMBLER DIRECTIVES

In the example below, A and B are entry-point symbols. The symbol A
has been explicitly defined as a global symbol by means of the .GLOBL
directive, and the symbol B has been explicitly defined as a global
label by means of the double colon (::). Since the symbol C is not
defined as a label within the current assembly, it is an external
(global) reference.

A:

X:

DEFINE A SUBROUTINE WITH 2 ENTRY POINTS WHICH CALLS AN
EXTERNAL SUBROUTINE

A
@(RS)+,RO
#X,Rl
PC,C
RS

iDECLARE THE UNNAMED PROGRAM SECTION •
iDEFINE A AS A GLOBAL SYMBOL.
iDEFINE ENTRY POINT A.

iCALL EXTERNAL SUBROUTINE C.
iEXIT.

B··

• PSECT
.GLOBL
MOV
MOV
JSR
RTS
MOV
CLR
BR

(RS)+,Rl
R2

iDEFINE ENTRY POINT B.

X

External symbols can appear in the operand field of an instruction or
MACRO directive as a direct reference,. as shown in the examples below:

CLR
• WORD
CLR

EXT
EXT
@EXT

External symbols may also appear as a term within an expression, as
shown below:

CLR
• WORD
CLR

EXT+A
EXT-2
@EXT+A(Rl)

It should be noted that an undefined external symbol cannot be used in
the evaluation of a direct assignment statement or as an argument in a
conditional assembly directive (see Sections 6.10.1 and 6.10.3).

6.10 CONDITIONAL ASSEMBLY DIRECTIVES

Conditional assembly directives allow you to include or exclude blocks
of source code during the assembly process, based on the evaluation of
stated condition tests within the body of the program. This
capability allows several variations of a program to be generated from
the same source code.

6.10.1 Conditional Assembly Block Directives: .IF, .ENDC

The general form of a conditional assembly block is as follows:

• IF cond,argument(s) iSTART CONDITIONAL ASSEMBLY BLOCK •

range iRANGE OF CONDITIONAL ASSEMBLY BLOCK.

• ENDC iEND OF CONDITIONAL ASSEMBLY BLOCK •

6-40

where: cond

argument(s)

range

.ENDC

GENERAL ASSEMBLER DIRECTIVES

represents a specified condition that must be met
if the block is to be included in the assembly.
The conditions that may be tested by the
conditional assembly directives are defined in
Table 6-5.

represents any legal separator (comma, space,
and/or tab).

represent(s) the symbolic argument(s) or
expression(s) of the specified conditional test.
These arguments are thus a function of the
specified condition to be tested (see Table 6-5).

represents the body of code that is either
included in the assembly or excluded, depending
upon whether the specified condition is met.

terminates the conditional assembly block. This
directive must be present to end the conditional
assembly block.

A condition test other than those listed in Table 6-5, an illegal
argument, or a null argument specified in an .IF directive causes that
line to be flagged with an error code (A) in the assembly listing.

Table 6-5
Legal Condition Tests for Conditional Assembly Directives

Conditions

Positive Complement

EQ NE

GT LE

LT GE

OF NDF

B NB

ION OIF

Z NZ

G L

Arguments

Expression

Expression

Expression

Symbolic
argument

Macro-type
argument

Two macro-type
arguments

Expression

Expression

6-41

Assemble Block If:

Expression is equal to 0
(or not equal to 0).

Expression is greater
than 0 (or less than or
equal to 0).

Expression is less than 0
(or greater than or equal
to 0).

Symbol is defined (or not
defined).

Argument is blank (or
non-blank).

Arguments are identical
(or different).

Same as EQ/NE.

Same as GT/LT.

GENERAL ASSEMBLER DIRECTIVES

NOTE

A macro-type argument (which is a form
of symbolic argument), as shown below,
is enclosed within angle brackets or
denoted with an up-arrow construction
(as described in Section 7.3.1).

(A,B,C)
~/124/

An example of a conditional assembly directive follows:

• IF EQ ALPHA+l iASSEMBLE BLOCK IF ALPHA+l=O •

.ENDC

The two operators & and! have special meaning within DF and NDF
conditions, in that they are allowed in grouping symbolic arguments.

& Logical AND operator

Logical inclusive OR operator

For example, the conditional assembly statement:

.IF DF SYMl & SYM2

.ENDC

results in the assembly of the conditional block if the symbols SYMI
and SYM2 are both defined.

Nested conditional directives take the form:

Conditional Assembly Directive
Conditional Assembly Directive

.ENDC

.ENDC

For example, the following conditional directives:

.IF DF

.IF DF

.ENDC

.ENDC

SYMI
SYM2

can govern whether assembly is to occur. In the example above, if the
outermost condition is unsatisfied, no deeper level of evaluation of
nested conditional statements within the program occurs.

6-42

GENERAL ASSEMBLER DIRECTIVES

Each conditional assembly block must be terminated with an .ENDC
directive. An .ENDC directive encountered outside a conditional
assembly block is flagged with an error code (0) in the assembly
listing.

MACRO permits a nesting depth of 16(10) conditional assembly levels.
Any statement that attempts to exceed this nesting level depth is
flagged with an error code (0) in the assembly listing.

6.10.2 Subconditional Assembly Block Directives: .IFF, .IFT, .IFTF

Subconditional directives may be placed within conditional assembly
blocks to indicate:

1. The assembly of an alternate body of code when the condition
of the block tests false.

2. The assembly of a non-contiguous body of code within the
conditional assembly block, depending upon the result of the
conditional test in entering the block.

3. The unconditional assembly of a body of code within a
conditional assembly block.

The subconditional directives are described in detail in Table 6-6.
If a subconditional directive appears outside a conditional assembly
block, an error code (0) is generated in the assembly listing.

Table 6-6
Subconditional Assembly Block Directives

Subconditional
Directive

.IFF

.IFT

.IFTF

Function

If the condition tested u~on entering the
conditional assembly block 1S false, the code
following this directive, and continuing up to the
next occurrence of a subconditional directive or
to the end of the conditional assembly block, is
to be included in the progr~m.

If the condition tested u~on entering the
conditional assembly block 1S true, the code
following this directive, and continuing up to the
next occurrence of a subconditional directive or
to the end of the conditional assembly block, is
to be included in the program.

The code following this directive, and continuing
up to the next occurrence of a subconditional
directive or to the end of the conditional
assembly block, is to be included in the program,
regardless of the result of the condition tested
upon entering the conditional assembly block.

The implied argument of a subconditional directive is the
test specified upon entering the conditional assembly
reflected by the initial directive in the conditional coding

condition
block, as
examples

6-43

GENERAL ASSEMBLER DIRECTIVES

below. Conditional or subconditional directives in nested conditional
assembly blocks are not evaluated if the previous (or outer) condition
in the block is not satisfied. Examples 3 and 4 below illustrate
nested directives that are not evaluated because of previous
unsatisfied conditional coding.

EXAMPLE 1: Assume that symbol SYM is defined.

.IF OF SYM

.IFF

.IFT

.IFTF

.IFT

• ENDC

iTESTS TRUE, SYM IS DEFINED. ASSEMBLE
iTHE FOLLOWING CODE.

iTESTS FALSE. SYM IS DEFINED. DO NOT
iASSEMBLE THE FOLLOWING CODE.

iTESTS TRUE. SYM IS DEFINED. ASSEM
iBLE THE FOLLOWING CODE.

iASSEMBLE FOLLOWING CODE UNCONDITION
iALLY.

iTESTS TRUE. SYM IS DEFINED. ASSEM
iBLE REMAINDER OF CONDITIONAL ASSEM
iBLY BLOCK •

EXAMPLE 2: Assume that symbol X is defined and that symbol Y is not
defined.

. IF DF X

. IF DF Y

.IFF

• IFT

. ENDC

.ENDC

iTESTS TRUE, SYMBOL X IS DEFINED •
iTESTS FALSE, SYMBOL Y IS NOT DEFINED •
iTESTS TRUE, SYMBOL Y IS NOT DEFINED,
iASSEMBLE THE FOLLOWING CODE.

iTESTS FALSE, SYMBOL Y IS NOT DEFINED •
iDO NOT ASSEMBLE THE FOLLOWING CODE •

EXAMPLE 3: Assume that symbol A is defined and that symbol B is not
defined.

. IF DF A

MOV A,Rl

.IFF

MOV Rl,RO

.IF NDF B

iTESTS TRUE. A IS DEFINED •
iASSEMBLE THE FOLLOWING CODE.

iTESTS FALSE. A IS DEFINED. DO NOT
iASSEMBLE THE FOLLOWING CODE.

iNESTED CONDITIONAL DIRECTIVE IS NOT

6-44

• ENDC
.ENDC

GENERAL ASSEMBLER DIRECTIVES

iEVALUATED •

EXAMPLE 4: Assume that symbol X is not defined and that symbol Y is
defined.

. IF DF X

.IF DF Y

.IFF

.IFT

• EN DC
.ENDC

iTESTS FALSE. SYMBOL X IS NOT DEFINED •
iDO NOT ASSEMBLE THE FOLLOWING CODE.
iNESTED CONDITIONAL DIRECTIVE IS NOT
iEVALUATED.

iNESTED SUBCONDITIONAL DIRECTIVE IS
;NOT EVALUATED.

;NESTED SUBCONDITIONAL DIRECTIVE IS
;NOT EVALUATED •

6.10.3 Immediate Conditional Assembly Directive: .IIF

An immediate conditional assembly directive provides a means for
writing a I-line conditional assembly block. In using this directive,
no terminating .ENDC statement is required, and the condition to be
tested is completely expressed within the line containing the
directive. Immediate conditional assembly directives are of the form:

where:

.IIF cond,arg,statement

cond

arg

represents one of the legal condition tests
defined for conditional assembly blocks in Table
6-5.

represents any legal separator (comma, space,
and/or tab).

represents the argument associated
immediate conditional directive,
expression, symbolic argument, or
argument, as described in Table 6-5.

with the
i.e., an
macro-type

represents the separator between the conditional
argument and the statement field. If the
preceding argument is an expression, then a comma
must be used; otherwise, a comma, space, and/or
tab may be used.

statement represents the specified statement to be assembled
if the condition is satisfied.

For example, the immediate conditional statement:

.IIF DF FOO,BEQ ALPHA

6-45

GENERAL ASSEMBLER DIRECTIVES

generates the code

SEQ ALPHA

if the symbol Foa is defined within the source program.

As with the .IF directive, a condition test other than those listed in
Table 6-5, an illegal argument, or a null argument specified in an
.IIF directive results in an error code CA) in the assembly listing.

6-46

CHAPTER 7

MACRO DIRECTIVES

7.1 DEFINING MACROS

In assembly-language programming, it is often convenient and desirable
to generate a recurring coding sequence by invoking a single statement
within the program. In order to do this, the desired coding sequence
is first established with dummy arguments as a macro definition. Once
a macro has been defined, a single statement calling the macro by name
with a list of real arguments (replacing the corresponding dummy
arguments in the macro definition) generates the desired coding
sequence. This sequence is called the macro expansion.

7.1.1 .MACRO Directive

The first statement of a macro definition must be a .MACRO directive.
This directive takes the form:

where:

label:

label

name

dummy
argument
list

.MACRO name, dummy argument list

represents an optional statement label.

represents the programmer-assigned symbolic name
of the macro. This name may be any legal symbol
and may be used as a label elsewhere in the
program.

represents any legal separator (comma, space,
and/or tab).

represents a number of legal symbols (see 3.2.2)
that may appear anywhere in the body of the macro
definition, even as a label. These dummy symbols
can be used elsewhere in the program with no
conflict of definition. Multiple dummy arguments
specified in this directive may be separated by
any legal separator. The detection of a duplicate
or an illegal symbol in a dummy argument list
terminates the scan and causes an error code to be
generated.

A comment may follow the dummy argument list in a .MACRO directive, as
shown below:

• MACRO ABS A,B iDEFINES MACRO ABS WITH TWO ARGUMENTS •

7-1

MACRO DIRECTIVES

NOTE

Although it is legal for a label to
appear on a . MACRO directive, this
practice is discouraged, especially in
the case of nested macro definitions,
because invalid. labels or labels
constructed with the concatenation

@ character will cause the macro directive
to be ignored. This may result in
improper termination of the macro
definition. This NOTE also applied to
.IRP, .IRPC, and .REPT.

7.1.2 .ENDM Directive

The final statement of every macro definition must be an .ENDM
directive of the form:

.ENDM

where: name

.ENDM

.ENDM

name

ABS

represents an optional argument specifying the
symbolic name of the macro being terminated by the
directive, as shown in the following example:

iTERMINATES THE CURRENT
iMACRO DEFINITION.

iTERMINATES THE CURRENT
iMACRO DEFINITION NAMED ABS.

If specified, the symbolic name in the .ENDM statement must match the
name specified in the corresponding .MACRO directive. Otherwise, the
statement is flagged with an error code (A) in the assembly listing
(see Appendix D). In either case, the current macro definition is
terminated. Specifying the macro name in the .ENDM statement thus
permits MACRO to detect missing .ENDM statements or improperly-nested
macro definitions.

The .ENDM directive may be followed by a comment field, but must not
contain a label, as shown below:

. MACRO
JSR
• WORD
.ENDM

TYPMSG MESSGE
RS ,TYP~ISG
MESSGE

iTYPE A MESSAGE •

iEND OF TYPMSG MACRO.

An .ENDM statement encountered by MACRO outside a macro definition is
flagged with an error code (O) in the assembly listing (see Appendix
D) •

NOTES

1. Labels on .ENDM directives are ignored.

2. Illegal labels will cause the directive
to be bypassed.

7-2

MACRO DIRECTIVES

7.1.3 .MEXIT Directive

The .MEXIT directive may be used to terminate a macro expansion before
the end of the macro is encountered. This directive is also legal
within repeat blocks (see Sections 7.6 and 7.7). It is most useful in
the context of nested macros. The .MEXIT directive terminates the
current macro as though an .ENDM directive had been encountered.
Using the .MEXIT directive bypasses the complexities of nested
conditional directives and alternate assembly paths, as shown in the
following example:

.MACRO ALTR N,A,B

• IF EQ N iSTART CONDITIONAL ASSEMBLY BLOCK •

• MEXIT iTERMINATE MACRO EXPANSION •
• ENDC iEND CONDITIONAL ASSEMBLY BLOCK •

• ENDM iNORMAL END OF MACRO •

Considering the above macro, in an assembly where the real argument
for the dummy symbol N is equal to zero (see Table 6-5), the
conditional block would be assembled, and the macro expansion would be
terminated by the .MEXIT directive. When macros are nested, a .MEXIT
directive causes an exit to the next higher level of macro expansion.

A .MEXIT directive encountered outside a macro definition is flagged
with an error code (0) in the assembly listing.

7.1.4 MACRO Definition Formatting

A form-feed character used within a macro definition causes a page
eject during the assembly of the macro definition. A page eject,
however, is not performed when the macro is expanded.

Conversely, when the .PAGE directive is specified within a macro
definition, it is ignored during the assembly of the macro definition,
but a page eject is performed when that macro is expanded.

7.2 CALLING MACROS

A macro definition must be established by means of the • MACRO
directive (see Section 7.1.1) before the macro can be expanded within
the source program. Macro calls are of the general form:

label: name real arguments

where: label represents an optional statement label.

name represents the name of the macro, as specified in
the .MACRO directive (see Section 7.1.1).

7-3

real
arguments

MACRO DIRECTIVES

represent symbolic arguments which replace
the dummy arguments specified in the • MACRO
directive. When multiple arguments are specified,
they are separated by any legal separator.
Arguments to the macro call are treated as
character strings whose usage is determined by the
macro definition. Note that MACRO accepts the
ASCII value of lower-case alphabetic characters
when .ENABL LC has been specified.

When a macro name is the same as a user label, the appearance of the
symbol in the operator field designates the symbol as a macro calli
the appearance of the symbol in the operand field designates it as a
label, as shown below:

ABS: MOV (RO) ,Rl iABS IS DEFINED AS A LABEL.

BR ABS iABS IS CONSIDERED TO BE A LABEL.

ABS #4,ENT,LAR iABS IS A MACRO CALL.

7.3 ARGUMENTS IN MACRO DEFINITIONS AND MACRO CALLS

Arguments within a macro definition or macro call are separated from
other arguments by any of the legal separating characters described in
Section 3.1.1.

Macro definition arguments (dummy) and macro call arguments (real)
normally maintain a strict positional relationship. That is, the
first real argument in a macro call corresponds with the first dummy
argument in a macro definition. Only the use of keyword arguments in
a macro call can override this correspondence (see Section 7.3.6).

For example, the following macro definition and its associated macro
expansion contain multiple arguments:

.MACRO REN A,B,C

REN ALPHA,BETA,<CI,C2>

Arguments which themselves contain separating characters must be
enclosed in paired angle brackets, as shown above. For example, the
macro call:

REN <MOV X,Y>,#44,WEV

causes the entire expression

MOV X,Y

to replace all occurrences of the symbol A in the macro definition.
Real arguments within a macro call are considered to be character
strings and are treated as a single entity during the macro expansion.

7-4

MACRO DIRECTIVES

The up-arrow (A) construction is provided to allow angle brackets to
be passed as part of the argument. This construction, for example,
could have been used in the above macro call, as follows:

REN A/<MOV X,Y>/,i44,WEV

causing the entire character string <MOV X,Y> to be passed as an
argument.

The following macro call:

REN i44,WEV
A

/MOV X,Y/

however, contains only two arguments (i44 and WEVA/MOV X,Y/), because
the up-arrow is a unary operator (see Section 3.1.3) and it is not
preceded by an argument separator.

As shown in the examples above, spaces can be used within bracketed
argument constructions to increase the legibility of such expressions.

7.3.1 Macro Nesting

The nesting of macros, where the expansion of one macro includes a
call to another, causes one set of angle brackets in the macro
definition to be removed from an argument with each nested call. The
depth of nesting allowed is dependent - upon the amount of dynamic
memory used by the source program being assembled.

To pass an argument containing legal argument delimiters to nested
macros, the argument in the macro definition should be enclosed within
one set of angle brackets for each level of nesting, as shown in the
coding sequence below. It should be noted that this extra set of
angle brackets for each level of nesting is required in the macro
definition, not in the macro call.

• MACRO LEVELl DUMI,DUM2
LEVEL2 <DUMI>
LEVEL2 <DUM2>
.ENDM

• MACRO LEVEL2 DUM3
DUM3
ADD iIO,RO

"MOV RO, (Rl) +
.ENDM

A call to the LEVELl macro, as shown below, for example:

LEVELl <MOV X,RO>,<MOV R2,RO>

causes the following macro expansion to occur:

MOV X,RO
ADD ilO,RO
MOV RO,(Rl)+
MOV R2,RO
ADD ilO,RO
MOV RO, (Rl)+

7-5

MACRO DIRECTIVES

When macro definitions are nested, i.e., when a macro definition is
contained entirely within the definition of another macro, the inner
definition is not a callable macro until the outer macro has been
called and expanded. For example, in the following coding:

• MACRO LVI A,B

• MACRO LV2 C

.ENDM

.ENDM

the LV2 macro cannot be called and expanded until the LVI macro has
been so invoked. Likewise, any macro defined within the LV2 macro
definition cannot be called and expanded until LV2 has also been
invoked.

7.3.2 Special Characters in Macro Arguments

An argument may include special characters without enclosing them in a
bracketed construction if that argument does not contain spaces, tabs,
semicolons, or commas. For example, the macro definition:

• MACRO
MOV
.ENDM

PUSH

PUSH ARG
ARG,-(SP)

X+3(%2)

causes the following code to be generated:

MOV X+3(%2),-(SP)

7.3.3 Passing Numeric Arguments as Symbols

When macro arguments are passed, an absolute symbol value can be
passed which is treated by the macro as a numeric string. An argument
preceded by the unary operator backslash (\) is treated as a numer1C
value in the current program radix. The ASCII characters representing
this value are inserted in the macro expansion, and their function is
defined in the context of the resulting code, as shown in the
following example:

. MACRO
CON

B=B+l
. ENDM
. MACRO

A'B: • WORD
.ENDM

C=o INC

INC A,B
A,\B

CON A,B
4

X,C

;B IS TREATED AS A NUMBER IN CURRENT
;PROGRAM RADIX •

;A'B IS DESCRIBED IN SECTION 7.3.6 •

7-6

MACRO DIRECTIVES

The above macro call (INC) would thus expand to:

xO: • WORD 4

Note in this expanded code that the label XO: is the result of the
concatenation of two real arguments. The single quote (I) character
'in the label AlB: causes the real arguments X and a to be
concatenated as they are passed during the expansion of the macro.
This type of argument construction is described in further detail in
Section 7.3.6.

A subsequent call to the same macro would generate the following code:

Xl: • WORD 4

and so on, for later calls. The two macro definitions are necessary
because the symbol associated with dummy argument B (i.e., C) cannot
be updated in the CON macro definition, because its numeric value has
already been substituted for its symbolic name, i.e., the character a
has replaced C in the argument string. In the CON macro definition,
the number passed is treated as a string argument. (Where the value
of the real argument is 0, only a single a character is passed to the
macro expansion.)

Passing numeric values in this manner is useful in identifying source
listings. For example, versions of programs created through
conditional assemblies of a single source program can be identified
through such coding as that shown below. Assume, for example, that
the symbol ID in the macro call (IDT) has been equated elsewhere in
the source program to the value 6 •

• MACRO
• IDENT
.ENDM

lOT SYM
/V05A 1 SYM/

IDT \ID

iASSUME THAT THE SYMBOL ID TAKES
iON A UNIQUE 2-DIGIT VALUE •
iWHERE VaSA IS THE UPDATE
iVERSION OF THE PROGRAM.

The above macro call would then expand to:

.IDENT /V05A6/

where 6 is the numeric value of the symbol 10.

7.3.4 Number of Arguments in Macro Calls

If more arguments appear in the macro call than in the macro
definition, an error code (Q) is generated in the assembly listing.
If fewer arguments appear in the macro call than in the macro
definition, missing arguments are assumed to be null values. The
conditional directives .IF Band .IF NB (see Table 6-5) can be used
within the macro to detect missing arguments. The number of arguments
can also be specified using the .NARG directive (Section 7.4.1). Note
that a macro can be defined with no arguments.

7.3.5 Creating Local Symbols Automatically

A label is often required in an expanded macro. In· the conventional
macro facilities thus far described, such a label must be explicitly

7-7

MACRO DIRECTIVES

Be careful in issuing
specifying a duplicate
eliminated through a

specified as an argument with each macro call.
subsequent calls to the same macro, to avoid
label as a real argument. This concern can be
feature of MACRO which creates a unique
required in an expanded macro.

symbol where a label is

As noted in Section 3.5, MACRO can automatically create local symbols
of the form n$, where n is a decimal integer within the range 64
through 127, inclusive. Such local symbols are created by MACRO in
numerical order, as shown below:

64$
65$

126$
127$

This automatic facility is invoked on each call of a macro whose
definition contains a dummy argument preceded by the question mark (?)
character, as shown in the macro definition below:

.MACRO ALPHA, A,?B

TST A
BEQ B
ADD i5,A

B:
.ENDM

;CONTAINS DUMMY ARGUMENT B PRECEDED BY
;QUESTION MARK.

A local symbol is generated automatically by MACRO only when a real
argument of the macro call is either null or missing, as shown in
Example 1 below, which reflects the expansion of the ALPHA macro
defined above.

If the real argument is specified in the macro call,
inhibits the generation of a local symbol and
replacement occurs, as shown in Example 2 below.

however, MACRO
normal argument

EXAMPLE 1: Generate a Local Symbol for the Missing Argument:

ALPHA Rl ; SECOND ARGUMENT IS MISSING.
TST Rl
BEQ 64$ iLOCAL SYMBOL IS GENERATED.
ADD i5,Rl

64$:

EXAMPLE 2: Do Not Generate a Local Symbol:

ALPHA R2,XYZ ;SECOND ARGUMENT XYZ IS SPECIFIED.
TST R2
BEQ XYZ iNORMAL ARGUMENT REPLACEMENT OCCURS.
ADD i5,R2

XYZ:

Automatically-generated local symbols are restricted to the first
16(10) arguments of a macro definition.

Note that automatically-created local symbols
from the expansion of a macro, as described
influence local symbol block boundaries.
automatically-created local symbols do not
block in their own right.

7-8

resulting local symbols
above, do not in any way

In other words, such
establish a local symbol

MACRO DIRECTIVES

However, when a macro has several arguments earmarked for automatic
local symbol generation, substituting a specific label for one such
argument introduces a risk that assembly errors will result. This is
because MACRO constructs its argument substitution list at the point
of macro invocation. Therefore, the appearance of any label, the
.ENABL LSB directive, or the .PSECT directive, in the macro expansion
will create a new local symbol block. This could leave local symbol
references in the previous block and the symbol definitions in the new
one, resulting in error codes in the assembly listing (see Appendix
D). Furthermore, a subsequent macro expansion that generates local
symbols in the new block may duplicate one of the symbols in question,
resulting in an additional error code (P) in the assembly listing.

7.3.6 Keyword Arguments

Macros may be defined with and/or invoked with keyword arguments. A
keyword argument has the following form:

name=string

where

name represents the dummy argument,

string represents the real symbolic argument.

The keyword argument may not contain embedded argument separators
unless properly delimited as described in section 7.3.

When a keyword argument appears in the dummy argument list of a macro
definit~on, the specified string becomes the default real argument at
macro call.

When a keyword argument appears in the real argument list of a macro
call, the specified string becomes the real argument for the dummy
argument that exactly matches the specified name, whether or not the
dummy argument was defined with a keyword. If a match fails, the
entire argument specification is treated as the next positional real
argument. A keyword argument may be specified anywhere in the dummy
argument list of a macro definition and is part of the positional
ordering of argument. On the other hand, a keyword argument may be
specified anywhere in the real argument list of a macro call but does
not affect the positional correspondence of the remaining arguments.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17 000000

000000

;

;

OOOOOOG

.LIST ME

DEFINE A MACRO HAVING KEYWORDS IN DUMMY ARGUMENT LIST

• MACRO
• WORD
• WORD
• WORD
.ENDM

TEST CONTRL=l,BLOCK,ADDRES=TEMP
CONTRL
BLOCK
ADDRES

NOW INVOKE SEVERAL TIMES

TEST
• WORD

A,B,C
A

7-9

MACRO DIRECTIVES

000002 OOOOOOG • WORD B
000004 OOOOOOG • WORD C

18
19 000006 TEST ADDRES=20,BLOCK=30,CONTRL=40

000006 000040 • WORD 40
000010 000030 • WORD 30
000012 000020 • WORD 20

20
21 000014 TEST BLOCK=5

000014 000001 • WORD 1
000016 000005 • WORD 5
000020 OOOOOOG • WORD TEMP

22
23 000022 TEST CONTRL=5,ADDRES=VARIAB

000022 000005 • WORD 5
000024 000000 • WORD
000026 OOOOOOG • WORD VARIAB

24
25 000030 TEST

000030 000001 • WORD 1
000032 000000 . WORD
000034 OOOOOOG • WORD TEMP

26
27 000036 TEST ADDRES=JACK!JILL

000036 000001 • WORD 1
000040 000000 • WORD
000042 ooooooe • WORD JACK!JILL

28
29
30 000001 .END

7.3.7 Concatenation of Macro Arguments

The apostrophe or single quote character (') operates as a legal
delimiting character in macro definitions. A single quote that
precedes and/or follows a dummy argument in a macro definition is
removed, and the substitution of the real argument occurs at that
point. For example, in the following statements:

• MACRO DEF A,B,e
A'B: .ASCIZ /e/

.BYTE ' 'A,' 'B

.ENDM

when the macro DEF is called through the statement:

DEF X,Y,<MACRO>

it is expanded, as follows:

XY: .ASCIZ /MACRO/
.BYTE 'X, 'y

In expanding the first line, the scan for the first argument
terminates upon finding the first 'character. Since A is a dummy
argument, the ' is removed. The scan then resu~es with Bi B is also
noted as another dummy argument. The two real arguments X and Yare
then concatenated to form the label XY:. The third dummy argument is
noted in the operand field of the .ASCIZ directive, causing the real
argument MACRO to be substituted in this field.

7-10

MACRO DIRECTIVES

When evaluating the arguments to the .BYTE directive during expansion
of the second line, the scan begins with the first' character. Since
it is neither preceded nor followed by a dummy argument, this
character remains in the macro expansion. The scan then encounters
the second' character, which is followed by a dummy argument and is
therefore discarded. The scan of argument A is terminated upon
encountering the comma (,). The third' character is neither preceded
nor followed by a dummy argument and again remains in the macro
expansion. The fourth (and last) , character is followed by another
dummy argument and is likewise discarded. (Note that four
characters were necessary in the macro definition to generate two
characters in the macro expansion.)

7.4 MACRO ATTRIBUTE DIRECTIVES: .NARG, .NCBR, AND .NTYPE

Three directives are available in MACRO which allow the user to
determine certain attributes of macro arguments. The use of these
directives permits selective modifications of a macro expansion,
depending on the nature of the arguments being passed. These
directives are described separately below.

7.4.1 .NARG Directive

The .NARG directive is used to determine the number of arguments in
the macro call currently being expanded. Hence, the .NARG directive
can appear only within a macro definition; if it does not, an error
code (0) is generated in the assembly listing. This directive takes
the form:

label: .NARG symbol

where: label represents an optional statement label.

symbol represents any legal symbol. This symbol is
equated to the number of arguments in the macro
call currently being expanded. If a symbol is not
specified, the .NARG directive is flagged with an
error code (A) in the assembly listing.

An example of the .NARG directive follows:

7-11

t
2
3
4

5
6
1
8
q

10
\ t
\2
13
\4
1'5 ot9l000P1

16
11
18 0~A'H"A

00000~

0~"'''''2
00000a
00(l10~6

000P110
01;11l21t;'1\2

0V1e24~

0101"2401
0I0IClI2aOl
POl0l2al2l
00,02aCll
0I0I02a'"

000001

MACRO DIRECTIVES

.TITLF NA~G

.MAc~n "OPP,t.JI)M

.MARt; Sy~

.IF r.t;I,~y,..

.MEXIT

.T~F

.~EPT NU~

N('\I'
.ENDM
.ENOC
.EN/)M

~opp

.NARG SVM

.IF EQ,SY~

.MExtT

.IFF

.REPT
NOf)

.EN['I~

.~~OC

N(')PP &
• ~'ARG SYM
.J~ EO,SYt.1
.~FxtT

.TFF

.~EPT 6
Nnp
.E'N"M
N(')P
Nt'lP
N~P

NOP
N("IP

N"P
.E~DC

.EN"

7.4.2 .NCBR Directive

The .NCHR directive, which can appear anywhere in a MACRO program, is
used to determine the number of characters in a specified character
string. This directive, which is useful in calculating the length of
macro arguments, takes the following form:

label: .NCHR syrnbol,(string>

where: label represents an optional statement label.

symbol represents any legal symbol. This symbol is
equated to the number of characters in the
specified character string. If a symbol is not
specified, the .NCHR directive is flagged with an
error code (A) in the assembly listing (see
Appendix 0).

7-12

MACRO DIRECTIVES

represents any legal separator (comma, space,
and/or tab).

<string> represents a string of printable characters. The
character string need be enclosed within angle
brackets «» or up-arrows (~) only if the
specified character string contains a legal
separator (comma, space, and/or tab). If the
delimiting characters do not match or if the
ending delimiter cannot be detected because of a
syntactical error in the character string (thus
prematurely terminating its evaluation), the .NCHR
directive is flagged with an error code (A) in the
assembly listing.

An example of the .NCHR directive follows:

1 .TtTLF. NC-H~

2
3 .lo1ACPO CHA'l,MESS
IJ • ~;CHQ SYM,Mf:SS
!\ .WOR!,) SV~

& .ASCII IMESSI
7 .EVEN
tl .EN,,'"
Q

1('1
11 PI"'~OI"'''' MSGlt C~A~ <~F.LLO>

"''''~~~c; !C~p SVM,tofE'LLC'
000L'1t'10 ",01"0105 .wn~D Sv~

00~e~? t 1 ~ .!SCYr IHFLLOI
0~0I0P.3 1'''5
0"'~t'I~" '1a
0Q'~~~5 t,a
"''''0010& 1\7

.eVE~

12
t 3
llJ "'''''''~0!1 .EN'"

7.4.3 .NTYPE Directive

The .NTYPE directive is used to determine the addressing mode of a
specified macro argument. Hence, the .NTYPE directive can appear only
within a macro definition; if it appears elsewhere, it is flagged
with an error code (0) in the assembly listing. This directive takes
the form:

label: .NTYPE symbol,aexp

where: label represents an optional statement label.

symbol represents any legal symbol. This symbol is
equated to the 6-bit addressing mode of the
following argument. If a symbol is not specified,
the .NTYPE directive is flagged with an error code
(A) in the assembly listing.

represents any legal separator (comma, space,
and/or tab).

7-13

aexp

MACRO DIRECTIVES

represents any legal address expression, as used
with an opcode. If no argument is specified, the
result will be zero.

An example of the use of an .NTYPE directive in a macro definition is
shown below:

1 .TYTLE NTVPE
2
3 .~Ar.R(l SAVE',A~G
u .~TVPE SVM,ARG
5 .IF F~,SVMlt7~

6 ~Ov .~G,.(SP' ,~EGISTE~ MODE
7 .TFF
8 M"V *ARG,-(SP) ,NON-REGISTER "~O"E
q .ENDC

10 .E~"M

t 1
12
13 P10Q11?1~0 ",,,,,,,01,,,01 TF.~Pt • IrJ OR I')

'" 1"
15
16 QI"''''~0I2 SAVE Rt

0100010' .t.JTVPF:' Sv~,~t

.TF F:Q,SV~~71l'

0"''''''''''2 "'lp1a~ Mnv ~l,-(SP) ,~EGISTr:R '40["lE'
.IFF
a.10V .Rt,-eSp) ,t..iON-REGISTFR M('IOE
.eNnc

17
18
tQ "'''''0010a SAVE' TE~P

"''''0I~~7 • t.:TvPE SVM,TE~P

.IF EQ,SV~1t.7~

~t"V TFMP,-~~P) J~E'C:ISTER MnOF
.TFF

0"'0p(1Ia t'l127U~ Mnv *TEMP,_(SP) , t.J(H·J- R FG I ST FR M(,OE
~t'lQ!"OIP'

.EN"'C
20
21
22 PI"'0~01 .FNO

For additional information concerning addressing modes, refer to
Chapter 5 and Appendix B, Section B.2.

7.5 .ERROR AND .PRINT DIRECTIVES

The .ERROR directive is used to output messages to the listing file
during assembly pass 2. A common use of this directive is to provide
a diagnostic announcement of a rejected or erroneous macro call or to
alert the user to the existence of an illegal set of conditions
specified in a conditional assembly. If the listing file is not
specified, the .ERROR messages are output to the command output
device. The .ERROR directive takes the form:

label: .ERROR expr ;text

where: label represents an optional statement label.

7-14

expr

text

MACRO DIRECTIVES

represents an optional expression whose value is
output when the .ERROR directive is encountered
during assembly.

denotes the beginning of the text string.

represents the specified message associated with
the .ERROR directive.

Upon encountering an .ERROR directive anywhere in a source program,
MACRO outputs a single line containing:

1. An error code (P)

2. The sequence number of the .ERROR directive statement

3. The value of the current location counter

4. The value of the expression, if one is specified

5. The source line containing the .ERROR directive.

For example, the following directive:

.ERROR A iINVALID MACRO ARGUMENT

causes a line in the following form to be output to the listing file:

P

Seq. Loc.
No. No.

Exp.
Value

512 005642 000076

Text

.ERROR A iINVALID MACRO ARGUMENT

The .PRINT directive is identical in function to the .ERROR directive,
except that it is not flagged with the P error code.

7.6 INDEFINITE REPEAT BLOCK DIRECTIVES: .IRP AND .IRPC

An indefinite repeat block is a structure that is similar to a macro
definitioni essentially a macro definition that has only one dummy
argument. At each expansion of the indefinite repeat range, this
dummy argument is replaced with successive elements of a specified
real argument list. An indefinite repeat block directive and its
associated repeat range are coded in-line within the source program.
This type of -macro definition and expansion does not require calling
the macro by name, as required in the expansion of conventional macros
previously described in this section.

An indefinite repeat block can appear either within or outside another
macro definition, indefinite repeat block, or repeat block (see
Section 7.7). The rules for specifying indefinite repeat block
arguments are the same as for specifying macro arguments (see Section
7.3).

7-15

MACRO DIRECTIVES

7.6.1 .IRP Directive

The .IRP directive is used to replace a dummy argument with successive
real arguments specified in an argument string. This replacement
process occurs during the expansion of an indefinite repeat block
range. This directive takes the following form:

label: .IRP sym,<argument list>

where:

(range of indefinite repeat block)

.ENDM

label represents an optional statement label.

sym represents a dummy argument that is successively
replaced with the specified real arguments
enclosed within the angle brackets. If no dummy
argument is specified, the .IRP directive is
flagged with an error code (A) in the assembly
listing.

represents any legal separator
and/or tab).

(comma, space,

<argument list> represents a list of real arguments enclosed
within angle brackets that is to be used in the
expansion of the indefinite repeat range. A real
argument may consist of one or more characters;
multiple arguments must be separated by any legal
separator (comma, space, and/or tab). If no real
arguments are specified, no action is taken.

range

.ENDM

represents the block of code to be repeated once
for each occurrence of a real argument in the
list. The range may contain other macro
definitions and repeat ranges. The .MEXIT
directive (see Section 7.1.3) is legal within the
range of an indefinite repeat block.

indicates the end of the indefinite repeat block
range.

An example of the use of the .IRP directive is shown in Figure 7-1.

7.6.2 .IRPC Directive

The .IRPC directive is available to permit single character
substitution, rather than argument substitution. On each iteration of
the indefinite repeat range, the dummy argument is replaced with each
successive character in the specified string. The .IRPC directive is
specified as follows:

label: .IRPC sym,<string>

(range of indefinite repeat block)

7-16

where:

.ENDM

label

sym

MACRO DIRECTIVES

represents an optional statement label.

represents a dummy argument that is successively
replaced with the specified real arguments
enclosed within the angle brackets. If no dummy
argument is specified, the .IRPC directive is
flagged with an error code (A) in the assembly
listing.

represents any legal separator
and/or tab).

(comma, space,

<string> represents a list of characters enclosed within
angle brackets to be used in the expansion of the
indefinite repeat range. Although the angle
brackets are required only when the string
contains separating characters, their use is
recommended for legibility.

range represents the block of code to be repeated once
for each occurrence of a character in the list.
The range may contain macro definitions and repeat
ranges. The .MEXIT directive (see Section 7.1.3)
is legal within the range of an indefinite repeat
block.

.ENDM indicates the end of the indefinite repeat block
range.

An example of the use of the .IRPC directive is shown in Figure 7-1.

1 • TITLE IRPTST
2 .LIST ME
J
4
5
6 , IMP X,c,.,B8,CC,DD,EE,FF~
7 MOV X,(R0) •
8 • END'"

00111000 016720 ClJ00GlIGUlG MOV &A, eR0).
0~0004 016720 01110P100G MOV BR,(M0).
PI;J)0~10 01672111 001000G MOV ee,(NI).
000014 016720 0P10000G MOV DD,(R0).
1/100020 01672111 1Il11l00t1110G MOV EE,(NI).
0I1l0024 016720 01110000G MOV FF,(R0).

9
1IIl
11 ,IMPC x,cAaCDEF~

12 Mova ,IX,-(Rn
13 .ENDM

o IlH/JII1 30 112741 111I11000G MOVe u,-o~t)

IUI/l034 112741 000000G Mova .B,-CRt)
11.10111040 112741 100100G Mova .e, - C R 1)
000044 112741 11I00000G Mova 'D,-CRt)
00P11!1~0 112741 00111011.1G Mova 'E,-(Rt)
000054 112741 10000111G ... ova IF,-(Nl)

14
15
16 000001' ,END

Figure 7-1 Example of .IRP and .IRPC Directives

7-17

MACRO DIRECTIVES

7.7 REPEAT BLOCK DIRECTIVE: .REPT, .ENDR

It is sometimes useful to duplicate a block of code a number of times
in-line with other source code. This duplication of code is
accomplished by creating a repeat block, using a directive in the
form:

label: .REPT exp

where:

(range of repeat block)

.ENDM

label

exp

range

.ENDM
or

• ENDR

represents an optional statement label.

represents any legal expression whose value
controls the number of times the block of code is
to be assembled within the program. When the
expression value is less than or equal to zero
(0), the repeat block is not assembled. If this
expression is not an absolute value, the .REPT
statement is flagged with an error code (A) in the
assembly listing.

represents the block of code to be repeated the
number of times determined by the specified
expression value. The repeat block may contain
macro definitions, indefinite repeat blocks, or
other repeat blocks. The .MEXIT directive is
legal within the range of a repeat block.

indicates the end of the repeat block range. The
terminating statement in a repeat block can be
either an .ENDM directive or an .ENDR directive •

7.8 MACRO LIBRARY DIRECTIVE: • MCALL

The .MCALL directive allows you to indicate in advance those system
and/or user-defined macro definitions that are required in the
assembly of the source program. The .MCALL directive allows you to
specify the names of all system or user macro definitions not defined
within the source program but which are required to assemble the
program. The .MCALL directive must appear before the first occurrence
of a call to any externally-defined macro. The .MCALL directive is of
the form:

where:

.MCALL argl,arg2, ••• argn

argl,
arg2, •.•
argn

represent the symbolic names of the macro
definitions required in the assembly of the source
program. The symbolic macro names may be
separated by any legal separator (comma, space,
and/or tab).

The • MCALL directive thus provides the means to access
user-defined and system macro libraries during assembly.

both

7-18

MACRO DIRECTIVES

The /LIBRARY qualifier is specified in connection with an input file
specification, to indicate to MACRO that the file is a macro library.
When a macro call is encountered in the source program, MACRO first
searches the user macro library for the named macro definitions, and,
if necessary, continues the search with the system macro library.

Any number of such user-supplied macro files may be designated. In
cases of multiple library files, the search for the named macros
begins with the last such file specified. The search continues in
reverse order until the required macro definitions are found,
terminating again, if necessary, with a search of the system macro
library.

If any named macro is not found upon completion of the search, i.e.,
if the macro is not defined, the .MCALL statement is flagged with an
error code (U) in the assembly listing. Furthermore, a statement
elsewhere in the source program which attempts to expand such an
undefined macro is flagged with an error code (0) in the assembly
listing.

The TRAX command strings to MACRO, through which a file specification
is supplied, are described in detail in Sections 8.1.2 and 8.2.2,
respectively.

7-19

MACRO DIRECTIVES

PART IV

OPERATING PROCEDURES

CHAPTER 8

OPERATING PROCEDURES

MACRO assembles one or more ASCII source files containing MACRO
statements into a single relocatable binary object file. The output
of MACRO consists of a binary object file and a file containing the
table of contents listing, the assembly listing, and the symbol table
listing. An optional cross-reference listing of symbols and macros is
available. A sample assembly listing is provided in Appendix I.

8.1 TRAX OPERATING PROCEDURES

The following sections describe the use of MACRO under TRAX.

8.1.1 Invoking MACRO Under TRAX

The MACRO command is used under TRAX to begin MACRO assembler
operations. The command causes MACRO to assemble one or more ASCII
source files containing MACRO statements into a relocatable binary
object file. The assembler will also produce an assembly listing,
followed by a symbol table listing. A cross-reference listing can
also be produced, by means of the /CROSSREFERENCE qualifier (see
8.2.2, below).

The command can be issued whenever the TRAX Support Environment is at
command level in interactive mode. The MACRO command can be input
either directly from the terminal (interactive mode) or from a batch
file (batch mode). When the specified assembly has completed, MACRO
terminates operations and returns control to the Support Environment.
(Refer to the TRAX Support Environment Userls Guide for further
information about interactive and batch mode operations.)

8.1.2 TRAX Command String Format

A MACRO command string can be specified using either an interactive
mode or a batch mode. A MACRO command string under TRAX has the
following format:

MACRO[/QUALIFIER[S]] FILESPEC[/QUALIFIER[S]] [+FILESPEC+ •••]

where:

MACRO - is the invoking command.

[/QUALIFIER[S]] - are the optional qualifiers.

8-1

OPERATING PROCEDURES

FILESPEC - is the MACRO source file to be assembled.

[/QUALIFIER[S]] - is the optional qualifiers for the source file.

[+FILESPEC+] - is the additional source files to be assembled.

If the FILESPEC parameter is not given the system will respond with
the prompt:

)FILES?

The desired file names and optional qualifiers are entered and
processing continues.

8.1.3 TRAX Macro Qualifiers

The TRAX Macro Qualifiers direct the MACRO assembler to process the
source file with the following options:

QUALIFIERS

output
/OBJECT[:filespec]

/NOOBJECT

output
/LIST[:filespec]

/NOLIST

SPECIFIES ONE OR MORE OF THE FOLLOWING:

Produce an object file as specified by
filespec (see Section 8.3). The default
is a file with the same filename as the
last named source file and an .OBJ
extension. /OBJECT is always the
default condition.

Do not produce an object file.

Produce an assembly listing file
according to filespec (see Section 8.3).
If filespec is not specified, the
listing is printed on the line printer.
The default is /NOLIST.

Do not produce a listing file. The
default in interactive mode is /NOLIST
and in batch mode is /LIST.

NOTE

When no listing file is specified, any
errors encountered in the source program
are displayed at the terminal from which
MACRO was initiated.

/CROSSREFERENCE[:argl ••• arg4]

/LI:arg
/NL:arg

/SWITCHES

Produce a cross-reference listing. Argl
through arg4 are as described in Section
8.1.5.

FUNCTION

Listing control switches; these options
accept ASCII switch values (arg) which
are equivalent in function and name to
and override the arguments of the .LIST

8-2

/EN:arg
/DS:arg

OPERATING PROCEDURES

and .NLIST directives specified in the
source program (see Section 6.1.1).
This switch overrides the arguments and
remains in effect for the entire
assembly process.

Function control switches; these options
accept ASCII switch values (arg) which
are equivalent in function and name to
and override the arguments of the .ENABL
and .DSABL directives specified in the
source program (see Section 6.2). This
switch overrides the arguments and
remains in effect for the entire
assembly process.

TRAX accepts the MACRO or $MACRO command as input and initializes the
MACRO assembler, which in turn processes the specified files according
to the options indicated in the command string. When the operation is
complete, MACRO returns control to PDS to obtain the next command line
either from the terminal or from the batch stream.

8.1.4 TRAX File Specification Oualifiers

The following optional qualifiers may be appended to
specification:

a file

/PASS:N

/LIBRARY

If N=l, assemble the associated file on
the first pass.

If N=2, assemble the associated file on
the second pass.

specifies that an input file is a macro
library file. As noted in Section 7.8,
any macro that is defined externally
must be identified in the • MCALL
directive before it can be retrieved
from a macro library file and assembled
with the user program. In locating
macro definitions, MACRO initiates a
fixed search algorithm, beginning with
the last user macro file specified,
continuing in reverse order with each
such file specified, and terminating, if
necessary, with a search of the system
macro library file. If a required macro
definition is not found upon completion
of the search, an error code (U) results
in the assembly listing (see Appendix
D). This means that a user macro
library file must be specified in the
command line prior to the source file(s)
that uses any macros defined in the
library file. If more than one library
file is specified, the libraries will be
searched in right-to-left order.

8-3

OPERATING PROCEDURES

8.1.5 Cross-Reference Processor (CREF)

The CREF processor is used to produce a listing that includes
cross-references to symbols that appear in the source program. The
cross-reference listing is appended to the assembly listing. Such
cross-references are helpful .in debugging and in reading long
programs.

A cross-reference listing can include up to four sections:

1. User-defined symbols

2. Macro symbols

3. Register symbols

4. Permanent symbols

To generate a cross-reference listing, specify the /CR switch in the
MACRO command string. Optional arguments can also be specified. The
form of the switch is:

SYM
JCR MAC

REG
PST

where:

SYM specifies user-defined symbols (default)

MAC specifies macro symbols (default)

REG specifies register symbols

PST specifies permanent symbols.

If you wish to generate listings for user-defined and macro symbols
only, simply use JCR. No argument is necessary.

However, if an argument is specified, only
cross-reference listing is generated. For example:

/CR:SYM

that type of

produces a cross-reference listing of user-defined symbols only. No
listing of macro symbols is generated. Thus, to produce all four
types of cross-reference listings, you must specify all four arguments
(the order in which they are specified is not significant). Use a
colon to separate arguments. For example:

/CR:REG:SYM:MAC:PST

The CREF processor is more fully described in the Utilities Reference
Manual supplied with your system.

Figure 8-1 illustrates a complete cross-reference listing.

8-4

OPERATING PROCEDURES

P!RMAN!NT SYMBOL TABLE C~OSS REFERENCE C~E' VIII

SYMBOL REFERENCES

ADD 2-227 2-256 2-313
Bec 2-241
Bes 2-271
BEQ;- 2-203 2-236 2-275 2-2C,5 2-300 2-S16
BISB 2-237
BIT 2-235 2-305
BIT8 2-250 2-274
810 2-232
BN! 2-225 2-251 2-273 2-302
BR 2-282
CLR 2-207 2-264 2-267 2-280 2-2q8
CLRB 2-304
C~P 2-2"'2 2-224 2-231 2-272 2-3211 2-314
INC 2-252 2-253
JMP 2-285 2-331
JSR 2-205 2-208 2-Z1Gl1 2-21 9 2-220 2-222

2-28\ 2-311
MOV 2-204 2-206 2-20q 2-221 2-223 2-226

2-245 2-247 2-248 2-24q 2-255 2-260
2-268 2-276 2-277 2-278 2-27q 2-284
2-31'" 2-312 2-31e 2-32q 2-330

Move 2-23~ 2-239 2-307
RTS 2-2t? 2-320
SEC 2-2C,2
TST 2-246 2-318
TSTB 2-29q
.8lKB 2-151
.BlI<W 2-17 2-78 2-~0 2-81 2-82 2-83

2-122 2-123 2-124 2-125 2-12b 2-127
.BYTE 2-152 2-164 2-164 2-t65 2-t6'5 2-166

2-tbq 2-tb9 2-t10 2-170
.END 2-333
.ENOe 1-17q 2-165 2-166 2-167 2-167 2-168
.IDENT 1-3 2-2
.IF 1-174 2-164 2-10 4 2-165 2-105 2-166

2-16q 2-t69 2-11~ 2-170 2-205 2-205
2-208 2-208 2-2G1'8 2-210 2-210 2-210
2-220 2-220 2-222 2-222 2-222 2-222
2-240 2-243 2-243 2-243 2-243 2-243
2-25e Z-25e 2-258 2-258 2-258 2-211
2-281 2-281 2-281 2-281 2-311 2-]11

.IFF 2-104 2-U~4 2-165 2-106 2-108 2-110

.lIST 1-t9q

.r.t'CRO 1-46 1-75 1-83 t-fle 1-123 l-t45
2-40

.NARG 2-205 2-208 2-210 2-22~ 2-222 2-241
2-311

.NlIST I-I

.PSEtT 2-15 2-88 2-118 2-t2q

.RAD50 2-79 2-149 2-164 2-t65 2-U~6 2-161

.TITLE 1-2 2-1

.WORD 2-135 2-138 2-13e, 2-140 2-141 2-142

Figure 8-1 Sample CREF Listing

8-5

OPERATING PROCEDURES

8.1.6 TRAX MACRO In Batch Mode

MACRO command strings can be processed via the TRAX batch mode
facility. The batch mode facility imposes no restrictions on MACRO.
Batch mode processing has the following format:

SUBMIT FILESPEC

where:

SUBMIT - is the command to invoke the batch facility.

FILESPEC - is the file containing the MACRO command strings.

The file must have the following structure:

$JOB
MACRO
$DATA
SOURCE DATA
$EOD
$EOJ

where:

$JOB - defines

MACRO - invokes the MACRO assembler.

$ DATA - specifies the data to be processed.

SOURCE DATA - is the MACRO command strings.

$EOD - specifies the end of data.

$EOJ - specifies the end of the job.

For a more complete description of the TRAX batch processing facility
please see the TRAX System command Language Reference Manual.

8.1.7 TRAX Indirect Command Files

The indirect command file facility can be used with MACRO command
strings. This is accomplished by creating an ASCII file that contains
the desired command strings (or portions thereof) in the forms shown
in Section 8.1.2. When an indirect command file reference is used in
a MACRO command string, the contents of the specified file are taken
as all or part of the command string. An indirect command file
reference is specified in the form:

@filespec

where:

@ specifies that the name that follows is an indirect
file.

filespec is the file specification of a file (see Section 8.2)
that contains a command string. The default extension
for the file name is .CMD.

An indirect command file reference must always be the rightmost entry
in the command.

8-6

OPERATING PROCEDURES

8.2 TRAX FILE SPECIFICATION FORMAT

The general form for a file specification in TRAX systems is shown
below. Detailed information is provided in the applicable system
user's guide or operating procedures manual (see Section 0.3 in the
Preface).

dev: [g,m]name.extiver

where:

dev:

[g,m]

name

is the name of the physical device where the desired
file resides. A device name consists of two characters
followed by a 1- or 2-digit device unit number (octal)
and a colon (e.g., DPl:, DKO:,OT3:). The default
device under TRAX is established initially by the
system manager for each user and can be changed through
the SET command, or is given a default value as
specified in Table 8-1 if none is specified.

is the User File Directory (UFO) code. This code
consists of a group number (octal), a comma (,), and an
owner (member) number (octal) all enclosed in brackets
([]). An example of a UFO code is: [200,30].

The default
Identification
lAS, this can
command.

UFO is equivalent to the User
Code (UIC) given at log-in time. Under
be changed through the SET DEFAULT

is the filename and consists of one through nine
alphanumeric characters. There is no default for a
filename •

• ext is a 1- to 3-alphanumeric character filename extension
or type that is preceded by a period (.). An extension
is normally used to identify the nature of the file.
Default values depend on the context of the file
specification and are as follows:

.CMD Indirect command (input) file

.LST A listing (print format) file

.MAC = MACRO source module (input file)

.OBJ = MACRO object module (output file)

.CRF = Intermediate CREF input file created
by MACRO.

iver is an octal number between 1 and 77777 that is used to
differentiate between versions of the same file. This
number must be prefixed by a semicolon (i).

For input files, the default value is the highest
version number of the file that exists.

For output files, the default value is the highest
verSion number of the file that exists increased by 1.
If no version number exists, the value 1 is used.

8-7

OPERATING PROCEDURES

Table 8-1
File Specification Default Values

Default Value
File Device

Directory Filename Type

Object System Current. None .OBJ
File device.

Listing Device used Directory None .LST
File for object used in

file. Object file.

Source 1 System Current. None .MAC
File device.

Source 2 Device used Directory None .MAC
to for source 1 or used for

Sourc% n last source file source 1 or
File specified. last source

file speci-
fied.

User System device, Current, if None .MLB
Macro if macro file macro file
Library is specified is specified

first; if not, first; if not,
device used directory of
by last source last source
file is used. file is used.

System System [1,1] TRAXMAC .SML
Macro device.
Library

Indirect System Current. None .CMD
Command device.
File

8.3 MACRO ERROR MESSAGES

MACRO outputs an appropriate error message to the command output
device when one of the error conditions described below is detected.
These error messages reflect operational problems and should .not be
confused with the diagnostic error messages (see Appendix D) produced
by MACRO during assembly.

All the error messages listed below, with the exception of the "MAC -
COMMAND I/O ERROR" message, result in the termination of the current
assembly; MACRO then attempts to restart by reading another command
line. In the case of a command I/O error, however, MACRO exits, since
it is unable to obtain additional command line input.

8-8

OPERATING PROCEDURES

Error Message

MAC -- COMMAND FILE OPEN FAILURE

MAC -- COMMAND I/O ERROR

MAC -- COMMAND SYNTAX ERROR

MAC -- ILLEGAL FILENAME

MAC -- ILLEGAL SWITCH

MAC -- INDIRECT COMMAND SYNTAX ERROR

MAC -- INDIRECT FILE DEPTH EXCEEDED

8-9

Meaning

Either the file from which
MACRO is reading a command
could not be opened initially
or between assemblies; or,
the indirect command file
specified as "@filename" in
the MACRO command line could
not be opened. See "OPEN
FAILURE ON INPUT FILE" for
meaning.

An error was returned by the
file system during MACRO's
attempt to read a command
line. This is an
unconditionally fatal error,
causing MACRO to exit. No
MACRO restart is attempted
when this message appears.

An error was detected in the
syntax of the MACRO command
line.

Neither the device name nor
the filename was present in
the input file specification
(i.e., the input file
specification is null), or a
"wild card" convention
(asterisk) was employed in an
input or output file
specification. "Wild card"
options (*) are not permitted
in MACRO file specifications.

An illegal switch was
specified for a file, an
illegal value was specified
with a switch, or an invalid
use of a switch was detected
by MACRO.

The name of the indirect
command file (@filename)
specified in the MACRO
command line is syntactically
incorrect.

An attempt to exceed the
maximum allowable number of
nested indirect command files
has occurred. (Only three
levels of indirect command
files are permitted in
MACRO.)

OPERATING PROCEDURES

Error Message

MAC -- INSUFFICIENT DYNAMIC MEMORY

MAC -- INVALID FORMAT IN MACRO LIBRARY

MAC -- I/O ERROR ON INPUT FILE

MAC -- I/O ERROR ON MACRO LIBRARY FILE

MAC -- I/O ERROR ON OUTPUT FILE

MAC -- I/O ERROR ON WORK FILE

8-10

Meaning

There is not enough
memory available for
page its symbol
Reinstall MACRO in
partition; or see
F.3.

physical
MACRO to

table.
a larger
Section

The library file has been
corrupted or it was not
produced by the Librarian
Utility Program (LBR).

In reading a record from a
source input file or macro
library file, an error was
detected by the file system,
e.g., a line containing more
than 132(10) characters is
encountered. This message
may also indicate that a
device problem exists or that
either a source file or a
macro library file has been
corrupted with incorrect
data.

Same meaning as I/O ERROR ON
INPUT FILE, except that the
file is a macro library file
and not a source input file.

In writing a record to the
object output file or the
listing output file, an error
was detected by the file
system. This message may
also indicate that a device
problem exists or that the
storage space on a device has
been exhausted (i.e., the
device is full).

A read or write error
occurred on the work file
used to store the symbol
table. This error is most
likely caused by a problem on
this device, or by attempting
to write to a device that is
full.

OPERATING PROCEDURES

Error Message

MAC -- OPEN FAILURE ON INPUT FILE

MAC -- OPEN FAILURE ON OUTPUT FILE

MAC -- 64K STORAGE LIMIT EXCEEDED

Meaning

1. Specified device does not
exist.

2. The volume is not
mounted.

3. A problem exists with the
device.

4. Specified directory file
does not exist.

S. Specified file does not
exist.

6. User does not have access
to the file directory or
the file itself.

1. Specified device does not
exist.

2. The volume is not
mounted.

3. A problem exists with the
device.

4. Specified directory file
does not exist.

S. User does not have access
to the file directory

6. The volume is full or the
device is write
protected.

64K words of work file memory
are available to MACRO. This
message indicates that the
assembler has generated so
many symbols (on the order of
13,000 to 14,000), it has run
out of space. This means
either the source program is
too large to start with, or
it contains a condition that
leads to excessive size, such
as a macro expansion that
recursively calls itself
without a terminating
condition.

The MACRO Assembler uses it~ stack for the following purposes:

1. Symbol Table. Four words for every symbol, including macro
names and local symbols. (Local symbol space, however, is
reused.)

2. Control Section Information.
.ASECT, or .CSECT.

Five words for each PSECT,

3. Storage of macro-definition text. Each and every character,
including comments, between a .MACRO and the corresponding
.ENDM is stored on the stack.

4. Work space (for code conversion, etc.).

8-11

OPERATING PROCEDURES

If, during its execution, the MACRO Assembler reports a stack
overflow, then either the demands of one or more of the
above-described categories must be reduced, or the program must be
broken up into smaller modules and linked together at Task-Build time.

The default stack size for MACRQ is 4K. This allows approximately
1000 symbols with the trade-offs mentioned above.

8-12

A.l ASCII CHARACTER SET

EVEN
PARITY
BIT

o
I

1

o

1

o

o
I
1

o
o

1
o

1

1

o

1
o

1

o

7-BIT
OCTAL
CODE

000
001

002

003

004

005

006
007
010

011
012

013
014

015

016

017

020
021

023

024

APPENDIX A

MACRO CHARACTER SETS

CHARACTER

NUL
SOH

STX

ETX

EOT

ENQ

ACK
BEL
BS

HT
LF

VT
FF

CR

SO

SI

DLE
DCl

DC3

DC4

REMARKS

Null, tape feed, CONTROL/SHIFT/P.
Start of heading; also SOM, start
of message, CONTROL/A.
Start of text; also EOA, end of
address, CONTROL/B.
End of text; also EOM, end of
message, CONTROL/C.
End of transmission (END); shuts
off TWX machines, CONTROL/D.
Enquiry (ENQRY); also WRU,
CONTROL/E.
Acknowledge; also RU, CONTROL/F.
Rings the bell. CONTROL/G.
Backspace; also FEO, format
effector. backspaces some
machines, CONTROL/H.
Horizontal tab. CONTROL/I.
Line feed or Line space (new line);
advances paper to next line,
duplicated by CONTROL/J.
Vertical tab (VTAB). CONTROL/K.
Form Feed to top of next page
(PAGE). CONTROL/L.
Carriage return to beginning of
line; duplicated by CONTROL/M.
Shift out; changes ribbon color to
red. CONTROL/N.
Shift in; changes ribbon color to
black. CONTROL/O.
Data link escape. CONTROL/P (DCO).
Device control 1; turns
transmitter (READER) on, CONTROL/Q
(X ON). 0 022 DC2 Device control
2; turns punch or auxiliary on.
CONTROL/R (TAPE, AUX ON).
Device control 3; turns
transmitter (READER)
off, CONTROL/S (X OFF).
Device control 4; turns punch or
auxiliary off. CONTROL/T (AUX
OFF) •

A-I

EVEN
PARITY
BIT

1

1

o

o
1
1
o
1
o
o
1
1
o
o
1
o
1
1
o
o
1
1
o
1
o
o
1
o
1
1
o
1
o
o
1
1
o
o
1
o
1
1
o
1
o
o
1
o
1
1
o
o
o

7-BIT
OCTAL
CODE

025

026

027

030
031
032
033
034
035
036
037
040
041
042
043
044
045
046
047
050
051
052
053
054
055
056
057
060
061
062
063
064
065
066
067
070
071
072
073
074
075
076
077
100
101
102
103
104
105
106
107
110
III

MACRO CHARACTER SETS

CHARACTER

NAK

SYN

ETB

CAN
EM
SUB
ESC
FS
GS
RS
US
SP
!
II

i
$
%
&
•
(
)

*
+

.
/
o
1
2
3
4
5
6
7
8
9

<
=
>
?
@
A
B
C
o
E
F
G
H
I

REMARKS

Negative acknowledge;
ERROR. CONTROL/U.

also ERR,

Synchronous
CONTROL/V.

file (SYNC) •

End of transmission block; also
LEM, logical end of medium.
CONTROL/W.
Cancel (CANCL). CONTROL/X.
End of medium. CONTROL/Y.
Substitute. CONTROL/Z.
Escape. CONTROL/SHIFT/K.
File separator. CONTROL/SHIFT/L.
Group separator. CONTROL/SHIFT/M.
Record separator. CONTROL/SHIFT/N.
Unit separator. CONTROL/SHIFT/O.
Space.

Accent acute or apostrophe.

A-2

MACRO CHARACTER SETS

EVEN 7-BIT
PARITY OCTAL
BIT CODE CHARACTER REMARKS

1 112 J
0 113 K
1 114 L
0 115 M
0 116 N
1 117 0
0 120 P
1 121 Q
1 122 R
0 123 S
1 124 T
0 125 U
0 126 V
1 127 W
1 130 X
0 131 Y
0 132 Z
1 133 [shift/k.
0 134 \ shift/I.
1 135] shift/me
1 136 *
0 137 ** 0 140 Accent grave.

1 141 a
1 142 b
0 143 c
1 144 d
0 145 e
0 146 f
1 147 g
1 150 h
0 151 i
0 152 j
1 153 k
0 154 1
1 155 m
1 156 n
0 157 0
1 160 P
0 161 q
0 162 r
1 163 s
0 164 t
1 165 u
1 166 v
0 167 w
0 170 x
1 171 Y
1 172 z
0 173
1 174
0 175 This code generated by ALTMODE.
0 176 This code generated by prefix key

(if present).
1 177 Delete, Rubout.

* ... Appears as i or t on some machines.

** _ Appears as +- on some machines.

A-3

MACRO CHARACTER SETS

A.2 RADIX-50 CHARACTER SET

Character

space

A-Z

$

unused

0-9

ASCII Octal Equivalent

40

101-132

44

56

60-71

The maximum Radix-50 value is, thus,

47*50**2+47*50+47=174777

Radix-50 Equivalent

o

1-32

33

34

35

36-47

The following table provides a convenient means of translating between
the ASCII character set and its Radix-50 equivalents. For example,
given the ASCII string X2B, the Radix-50 equivalent is (arithmetic is
performed in octal):

X=113000
2=002400
B=000002

X2B=115402

Single Char.
or

First Char.

Space 000000
A 003100
B 006200
C 011300
D 014400
E 017500
F 022600
G 025700
H 031000
I 034100
J 037200
K 042300
L 045400
M 050500
N 053600
0 056700
p 062000
Q 065100
R 070200
S 073300
T 076400
U 101500
V 104600
W 107700
X 113000
y 116100
Z 121200
$ 124300

Second Third
Character Character

Space 000000 Space 000000
A 000050 A 000001
B 000120 B 000002
C 000170 C 000003
D 000240 D 000004
E 000310 E 000005
F 000360 F 000006
G 000430 G 000007
H 000500 H 000010
I 000550 I 000011
J 000620 J 000012
K 000670 K 000013
L 000740 L 000014
M 001010 M 000015
N 001060 N 000016
0 001130 0 000017
P 001200 p 000020
Q 001250 Q 000021
R 001320 R 000022
S 001370 S 000023
T 001440 T 000024
U 001510 U 000025
V 001560 V 000026
W 001630 W 000027
X 001700 X 000030
y 001750 y 000031
Z 002020 Z 000032
$ 002070 $ 000033

A-4

MACRO CHARACTER SETS

SINGLE CHAR.
OR SECOND THIRD

FIRST CHAR. CHARACTER CHARACTER

127400 002140 000034
Unused 132500 Unused 002210 Unused 000035
0 135600 0 002260 0 000036
1 140700 1 002330 1 000037
2 144000 2 002400 2 000040
3 147100 3 002450 3 000041
4 152200 4 002520 4 000042
5 155300 5 002570 5 000043
6 160400 6 002640 6 000044
7 163500 7 002710 7 000045
8 166600 8 002760 8 000046
9 171700 9 003030 9 000047

A-5

APPENDIX B

MACRO ASSEMBLY LANGUAGE AND ASSEMBLER DIRECTIVES

B.l SPECIAL CHARACTERS

Character

=
%
tab
space
i
@
(
)
, (comma)

+

*
/
&

"
• (apostrophe)

<
> ,.

\
vertical tab

Function

Label terminator
Direct assignment operator
Register term indicator
Item terminator or field terminator
Item terminator or field terminator
Immediate expression indicator
Deferred addressing indicator
Initial register indicator
Terminal register indicator
Operand field separator
Comment field indicator
Arithmetic addition operator or auto

increment indicator
Arithmetic subtraction operator or auto

decrement indicator
Arithmetic multiplication operator
Arithmetic division operator
Logical AND operator
Logical OR operator
Double ASCII character indicator
Single ASCII character indicator or

concatenation indicator
Assembly location counter
Initial argument indicator
Terminal argument indicator
Universal unary operator or argument

indicator
Macro call numeric argument indicator
Source line terminator

B.2 SUMMARY OF ADDRESS MODE SYNTAX

Address mode syntax is e~pressed in the summary below using the
following symbols: n IS an integer between 0 and 7 representing a
register number: R is a register expression: E is an expression:
and ER is either a register expression or an expression in the range 0
to 7.

B-1

MACRO ASSEMBLY LANGUAGE AND ASSEMBLER DIRECTIVES

Format

R

@R or
(ER)

(ER) +

@(ER)+

-(ER)

@- (ER)

E(ER)

@E(ER)

#E

@#E

E

@E

Address
Mode
Name

Register

Register
deferred

Autoincrement

Autoincrement
Deferred

Autodecrement

Autodecrement
Deferred

Index

Index Deferred

Immediate

Absolute

Relative

Relative
Deferred

B.3 ASSEMBLER DIRECTIVES

Address
Mode
Number

On

In

2n

3n

4n

Sn

6n

7n

27

37

67

77

Register
operand.

Meaning

R contains the

Register R contains the ad
dress of the operand.

The contents of the register
spec ified as (ER) are
incremented after being used
as the address of the operand.

The register specified as (ER)
contains the pointer to the
address of the operand; the
register (ER) is incremented
after use.

The contents of the register
specified as (ER) are
decremented before being used
as the address of the operand.

The contents of the register
specified as (ER) are
decremented before being used
as the pointer to the address
of the operand.

The expression E, plus the
contents of the register
specified as (ER), form the
address of the operand.

The expression E, plus the
contents of the register
specified as (ER), yield a
pointer to the address of the
operand.

The expression
operand itself.

E is

The expression E is
address of the operand.

the

the

The address of the operand E,
relative to the instruction,
follows the instruction.

The address of the operand is
pointed to by E whose address,
relative to the instruction,
follows the instruction.

The MACRO assembler directives are summarized in the following table.
For a detailed description of each directive, the table contains

B-2

MACRO ASSEMBLY LANGUAGE AND ASSEMBLER DIRECTIVES

references to the appropriate sections in the body of tne manual.

Form

"

"'Bn

"'Cexpr

"'Rccc

• ASCII /string/

Section
Reference

6.3.3
7.3.6

6.3.3

6.4.1.2

6.4.2.2

6.4.1.2

6.4.2.2

6.4.1.2

6.3.7

6.3.4

Operation

A single quote (apostrophe)
followed by one ASCII character
generates a word which contains the
7-bit ASCII representation of the
character ·in the low-order byte and
zero in the high-order byte. This
character is also used as a
concatenation indicator in the
expansion of macro arguments (see
Section 7.3.6).

A double quote followed by two
ASCII characters generates a word
which contains the 7-bit ASCII
representation of the two
characters. The first character is
stored in the low-order byte; the
second character is stored in the
high-order byte.

Temporary radix
the value n to
binary number.

control; causes
be treated as a

Temporary numeric control; causes
the expression's value to be ones
complemented.

Temporary radix
the value n to
decimal number.

control; causes
be treated as a

Temporary numeric control; causes
the value n to be treated as a
sixteen-bit floating-point number.

Temporary radix
the value n to
octal number.

control; causes
be treated as an

Convert ccc to Radix-50 form •

Generates a block of data
containing the ASCII equivalent of
the character string (enclosed in
delimiting characters), one
character per byte.

B-3

MACRO ASSEMBLY LANGUAGE AND ASSEMBLER DIRECTIVES

Form

.ASCIZ /string/

.ASECT

.BLKB exp

.BLKW exp

.BYTE expl,exp2, .•

• CSECT [name]

.DSABL arg

.ENABL arg

.END [exp]

.ENDC

.ENDM [name]

.ENDR

.EOT

Section
Reference

6.3.5

6.8.2

6.5.3

6.5.3

6.3.1

6.8.2

6.2

6.2

6.6.1

6.10.1

7.1.2

7.7

6.6.2

Operation

Generates a block of data
containing the ASCII equivalent of
the character string (enclosed in
delimiting characters), one
character per byte, with a zero
byte terminating the specified
string.

Begin or resume
program section.

the absolute

Reserves a block of storage space
whose length in bytes is determined
by the specified expression.

Reserves a block of storage space
whose length in words is determined
by the specified expression.

Generates successive bytes of data;
each byte contains the value of the
corresponding specified expression •

Begin or resume named or unnamed
relocatable program section. This
directive is provided for
compatibility with other PDP-II
assemblers.

Disables the function specified by
the argument.

Enables (invokes) the function
specified by the argument.

Indicates the logical end of the
source program. The optional
argument specifies the transfer
address where program execution is
to begin.

Indicates the end of a conditional
assembly block.

Indicates the end of the current
repeat block, indefinite repeat
block, or macro definition. The
optional name, if used, must be
identical to the name specified in
the macro definition.

Indicates the end of the current
repeat· block. This directive is
provided for compatibility with
other PDP-II assemblers.

Ignored; indicates end-of-tape
(which is detected automatically by
the hardware). It is included for
compatibility with earlier
assemblers.

B-4

MACRO ASSEMBLY LANGUAGE AND ASSEMBLER DIRECTIVES

Form

.ERROR exp;text

• EVEN

.FLT2 argl,arg2, •••

.FLT4 argl,arg2, •••

.GLOBL syml,sym2, •••

.IDENT /string/

.IF cond,argl

.IFF

.IFT

.IFTF

.IIF cond,arg,
statement

Section
Reference

7.5

6.5.1

6.4.2.1

6.4.2.1

6.9

6.1.5

6.10.1

6.10.2

6.10.2

6.10.2

6.10.3

Operation

User-invoked error directive;
causes output to the listing file
or the command output device
containing the optional expression
and the statement containing the
directive.

Ensures that the current location
counter contains an even address by
adding 1 if it is odd.

Generates successive 2-word
floating-point equivalents for the
floating-point numbers specified as
arguments.

Generates successive 4-word
floating-point equivalents for the
floating-point numbers specified as
arguments.

Defines the symbol(s) specified as
global symbol(s).

Provides a means of labeling the
object module with the program
version number. The version number
is the Radix-50 string appearing
between the paired delimiting
characters.

Begins a conditional assembly block
of source code which is included in
the assembly only if the stated
condition is met with respect to
the argument(s) specified.

Appears only within a conditional
assembly block, indicating the
beginning of a section of code to
be assembled if the condition upon
entering the block tests false.

Appears only within a conditional
assembly block, indicating the
beginning of a section of code to
be assembled if the condition upon
entering the block tests true.

Appears only within a conditional
assembly block, indicating the
beginning of a section of code to
be assembled unconditionally.

Acts as a I-line conditional
assembly block where the condition
is tested for the argument
specified. The statement is
assembled only if the condition
tests true.

B-5

MACRO ASSEMBLY LANGUAGE AND ASSEMBLER DIRECTIVES

Form

.IRP sym,
(argl,arg2, ••• >

.IRPC sym,(string>

.LIMIT

.LIST [arg]

• MACRO name,argl,
ar 9 2, .•.

• MCALL argl,arg2, .••

.MEXIT

.NARG symbol

• NCHR symbol,(string>

.NLIST [arg]

Section
Reference

7.6.1

7.6.2

6.7

6.1.1

7.1.1

7.8

7.1.3

7.4.1

7.4.2

6.1.1

Operation

Indicates the beginning of an
indefinite repeat block in which
the symbol specified is replaced
with successive elements of the
real argument list enclosed within
angle brackets.

Indicates the beginning of an
indefinite repeat block in which
the specified symbol takes on the
value of successive characters,
optionally enclosed within angle
brackets.

Reserves two words into which the
Task Builder inserts the low and
high addresses of the task image.

Without an argument, the .LIST
directive increments the listing
level count by 1. With an
argument, this directive does not
alter the listing level count, but
formats the assembly listing
according to the argument
specified •

Indicates
definition
name and
arguments •

the start of a macro
having the specified

the following dummy

Specifies the symbolic names of the
user or system macro definitions
required in the assembly of the
current user program, but which are
not defined within the program.

Causes an exit from
macro expansion or
repeat block.

the current
indefinite

Can appear only within a macro
definition: equates the specified
symbol to the number of arguments
in the macro call currently being
expanded .

Can appear anywhere in a source
program: equates the symbol
specified to the number of
characters in the specified string.

Without an argument, the .NLIST
directive decrements the listing
level count by 1. With an
argument, this directive suppresses
that portion of the listing
specified by the argument.

B-6

MACRO ASSEMBLY LANGUAGE AND ASSEMBLER DIRECTIVES

Form

.NTYPE symbol,aexp

.000

• PAGE

.PRINT exp;text

.PSECT name,attl, •..
attn

.RADIX n

• RAD50 /string/

.REPT exp

.SBTTL string

.TITLE string

.WORD expl,exp2, ••

Section
Reference

7.4.3

6.5.2

6.1.6

7.5

6.8~1

6.4.1.1

6.3.6

7.7

6.1.4

6.1.3

6.3.2

Operation

Can appear only within a macro
definition; equates the symbol to
the 6-bit addressing mode of the
specified address expression.

Ensures that the current location
counter contains an odd address by
adding 1 if it is even.

Causes the assembly listing to skip
to the top of the next page, and to
increment the page count.

User-invoked message directive;
causes output to the listing file
or the command output device
containing the optional expression
and the statement containing the
directive.

Begin or resume a named or unnamed
program section having the
specified attributes.

Alters the current program radix to
n, where n is 2, 8, or 10 •

Generates a block of data
containing the Radix-50 equivalent
of the character string enclosed
within delimiting characters.

Begins a repeat block; causes the
section of code up to the next
.ENDM or .ENDR directive to be
repeated the number of times
specified as exp.

Causes the specified string to be
printed as part of the assembly
listing page header. The string
component of each .SBTTL directive
is collected into a table of
contents at the beginning of the
assembly listing.

Assigns the first six Radix-50
characters in the string as an
object module name and causes the
string to appear on each page of
the assembly listing.

Generates successive words of data;
each word contains the value of the
corresponding specified expression.

B-7

APPENDIX C

PERMANENT SYMBOL TABLE (PST)

The permanent symbol table (PST) contains those symbols which are
automatically recognized by MACRO. These symbols consist of both op
codes and assembler directives. The op codes (i.e., the instruction
set) are listed first, followed by the directives which cause specific
actions during assembly.

For a detailed description of the instruction set, see the appropriate
PDP-II Processor Handbook.

C.l OP CODES

MNEMONIC

ADC
ADCB
ADD
ASH
ASHC
ASL
ASLB
ASR
ASRB
BCC
BCS
BEQ
BGE
BGT
BHI
BHIS
BIC
BICB
BIS
BISB
BIT
BITB
BLE
BLO
BLOS
BLT

OCTAL
VALUE

005500
105500
060000
072000
073000
006300
106300
006200
106200
103000
103400
001400
002000
003000
101000
103000
040000
140000
050000
150000
030000
130000
003400
103400
101400
002400

FUNCTIONAL NAME

Add Carry
Add Carry (Byte)
Add Source To Destination
Shift Arithmetically
Arithmetic Shift Combined
Arithmetic Shift Left
Arithmetic Shift Left (Byte)
Arithmetic Shift Right
Arithmetic Shift Right (Byte)
Branch If Carry Is Clear
Branch If Carry Is Set
Branch If Equal
Branch If Greater Than Or Equal
Branch If Greater Than
Branch If Higher
Branch If Higher Or Same
Bit Clear
Bit Clear (Byte)
Bit Set
Bit Set (Byte)
Bit Test
Bit Test (Byte)
Branch If Less Than Or Equal
Branch If Lower
Branch If Lower Or Same
Branch If Less Than

C-l

MNEMONIC

BMI
BNE
BPL
BPT
BR
BVC
BVS
CALL
CCC
CLC
CLN
CLR
CLRB
CLV
CLZ
CMP

CMPB

COM
COMB

DEC
DECB

DIV
EMT
FADD
FDIV
FMUL
FSUB
HALT
INC
INCB

lOT
JMP
JSR
MARK
MFPI

MFPS

MOV
MOVB

MTPI

MTPS

MUL
NEG
NEGB
NOP
RESET
RETURN
ROL
ROLB
ROR

PERMANENT SYMBOL TABLE (PST)

OCTAL
VALUE

100400
001000
100000
000003
000400
102000
102400
004700
000257
000241
000250
005000
105000
000242
000244
020000

120000

005100
105100

005300
105300

071000
104000
075000
075030
075020
075010
000000
005200
105200

000004
000100
004000
006400
006500

106700

010000
110000

006600

106400

070000
005400
105400
000240
000005
000207
006100
106100
006000

FUNCTIONAL NAME

Branch If Minus
Branch If Not Equal
Branch If Plus
Breakpoint Trap

. Branch Unconditional
Branch If Overflow Is Clear
Branch If Overflow Is Set
Jump To Subroutine (JSR PC,xxx)
Clear All Condition Codes
Clear C Condition Code Bit
Clear N Condition Code Bit
Clear Destination
Clear Destination (Byte)
Clear V Condition Code Bit
Clear Z Condition Code Bit
Compare Source To

Destination
Compare Source To

Destination (Byte)
Complement Destination
Complement Destination

(Byte)
Decrement Destination
Decrement Destination

(Byte)
Divide
Emulator Trap
Floating Add
Floating Divide
Floating Multiply
Floating Subtract
Halt
Increment Destination
Increment Destination

(Byte)
Input/Output Trap
Jump
Jump To Subroutine
Mark
Move From Previous

Instruction Space
Move from PS
(LSI-II)

Move Source To Destination
Move Source To Destination

(Byte)
Move To Previous

Instruction Space
Move to PS
(LSI-II)
Multiply
Negate Destination
Negate Destination (Byte)
No Operation
Reset External Bus
Return From Subroutine (RTS PC)
Rotate Left
Rotate Left (Byte)
Rotate Right

C-2

MNEMONIC

RORB
RTI

RTS
RTT

SBC
SBCB
SCC
SEC
SEN
SEV
SEZ
SOB
SUB

SWAB
SXT
TRAP
TST
TSTB
WAIT
XOR

OP CODES FLOATING

MNEMONIC

ABSD
ABSF
AnDD
ADDF
CFCC

CLRD
CLRF
CMPD
CMPF
DIVD
DIVF
LDCDF

LDCFD

LDCID

LDCIF

LDCLD

LDCLF

LDD
LDEXP

PERMANENT SYMBOL TABLE (PST)

OCTAL
VALUE

106000
000002

000200
000006

005600
105600
000277
000261
000270
000262
000264
077000
160000

000300
006700
104400
005700
105700
000001
074000

FUNCTIONAL NAME

Rotate Right (Byte)
Return From Interrupt

(Permi ts a tr ace
trap)

Return From Subroutine
Return From Interrupt

(inhibits trace trap)
Subtract Carry
Subtract Carry (Byte)
Set All Condition Code Bits
Set C Condition Code Bit
Set N Condition Code Bit
Set V Condition Code Bit
Set Z Condition Code Bit
Subtract One And Branch
Subtract Source From

Destination
Swap Bytes
Sign Extend
Trap
Test Destination
Test Destination (Byte)
Wait For Interrupt
Exclusive OR

POINT PROCESSOR ONLY

OCTAL
VALUE FUNCTIONAL NAME

170600 Make Absolute Double
170600 Make Absolute Floating
172000 Add Double
172000 Add Floating
170000 Copy Floating Condition

Codes
170400 Clear Double
170400 Clear Floating
173400 Compare Double
173400 Compare Floating
174400 Divide Double
174400 Divide Floating
177400 Load And Convert From

Double To Floating
177400 Load And Convert From

Floating To Double
177000 Load And Convert Integer To

Double
177000 Load And Convert Integer To

Floating
177000 Load And Convert Long

integer To Double
177000 Load And Convert Long

Integer To Floating
172400 Load Double
176400 Load Exponent

C-3

MNEMONIC

LDF
LDFPS
MFPD

MODO

MODF

MTPD
MULD
MULF
NEGD
NEGF
SETD
SETF
SETI
SETL
SPL
STCDF

STCDI

STCDL

STCFD

STCFI

STCFL

STD
STEXP
STF
STFPS
STST
SUBD
SUBF
TSTD
TSTF

PERMANENT SYMBOL TABLE (PST)

OCTAL
VALUE

172400
170100
106500

171400

171400

106600
171000
171000
170700
170700
170011
170001
170002
170012
000230
176000

175400

175400

176000

175400

175400

174000
175000
174000
170200
170300
173000
173000
170500
170500

FUNCTIONAL NAME

Load Floating
Load FPPs Program Status
Move From Previous Data

Space
Multiply And Integerize

Double
Multiply And Integerize

Floating
Move To Previous Data Space
Multiply Double
Multiply Floating
Negate Double
Negate Floating
Set Double Mode
Set Floating Mode
Set Integer Mode
Set Long Integer Mode
Set Priority Level
Store And Convert From

Double To Floating
Store And Convert From

Double To Integer
Store And Convert From

Double To Long Integer
Store And Convert From

Floating To Double
Store And Convert From

Floating To Integer
Store And Convert From

Floating To Long Integer
Store Double
Store Exponent
Store Floating
Store FPPs Program Status
Store FPPs Status
Subtract Double
Subtract Floating
Test Double
Test Floating

C.2 MACRO DIRECTIVES

DIRECTIVE

• ASCII
.ASCIZ

.ASECT

.BLKB

.BLKW

.BYTE

.CSECT

FUNCTIONAL SIGNIFICANCE

Translates character string to ASCII equivalents •
Translates character string to ASCII equivalents;
inserts zero byte as last character.
Begins absolute program section (provided for
compatibility with other PDP-II assembliers).
Reserves byte block in accordance with value of
specified argument.
Reserves word block in accordance with value of
specified argument.
Generates successive byte data in accordance with
specified arguments.
Begins relocatable program section (provided for
compatibility with other PDP-II assemblers).

C-4

DIRECTIVE

• DSABL
• ENABL
• END
• ENDC
.ENDM

.ENDR

• EOT
• ERROR

• EVEN
.FLT2

• FLT4

• GLOBL
.IDENT

• IF
.IFF

.IFT

.IFTF

.IIF

.IRP

.IRPC

.LIMIT

.LIST

.MCALL

.MEXIT

.NARG

.NCHR

.NLIST

.NTYPE

• ODD
• PAGE
• PRINT
.PSECT

• RADIX
.RADSO

.REPT

PERMANENT SYMBOL TABLE (PST)

FUNCTIONAL SIGNIFICANCE

Disables specified function •
Enables specified function •
Defines logical end of source program •
Defines end of conditional assembly block •
Defines end of macro definition, repeat block, or
indefinite repeat block.
Defines end of current repeat block (provided for
compatibility with other PDP-II assemblers).
Define End of Tape condition (ignored) •
Outputs diagnostic message to listing file or
command output device.
Word-aligns the current location counter •
Causes two words of storage to be generated for
each floating-point argument •
Causes four words of storage to be generated for
each floating-point argument.
Declares global attribute for specified symbol(s) •
Labels object module with specified program
version number.
Begins conditional assembly block •
Begins subconditional assembly block (if
conditional assembly block test is false).
Begins subconditional assembly block (if
conditional assembly block test is true).
Begins subconditional assembly block (whether
conditional assembly block test is true or false).
Assembles immediate conditional assembly statement
(if specified condition is satisfied).
Begins indefinite repeat block; replaces
specified symbol with specified successive real
arguments.
Begins indefinite repeat block; replaces
specified symbol with value of successive
characters in specified string.
Reserves two words of storage for high and low
addresses of task image.
Controls listing level count and format of
assembly listing. .MACRO Denotes start of macro
definition.
Identifies required macro definition(s) for
assembly.
Exit from current macro definition or indefinite
repeat block.
Equates specified symbol to the number of
arguments in the macro expansion.
Equates specified symbol to the number of
characters in the specified character string.
Controls listing level count and suppresses
specified portions of the assembly listing.
Equates specified symbols to the addressing mode
of the specified argument.
Byte-aligns the current location counter •
Advances form to top of next page •
Prints specified message on command output device •
Begins specified program section having specified
attributes.
Changes current program radix to specified radix •
Generates data block having Radix-50 equivalents
of specified character string.
Begins repeat block and replicates it according to
the value of the specified expression.

C-S

DIRECTIVE

.SBTTL

.TITLE

• WORD

PERMANENT SYMBOL TABLE (PST)

FUNCTIONAL SIGNIFICANCE

Prints specified subtitle text as the second line
of the assembly listing page header.
Prints specified title text as object module name
in the first line of the assembly listing page
header.
Generates successive word data in accordance with
specified arguments.

The MACRO directives listed above are summarized in greater detail in
Appendix B.

C-6

APPENDIX D

DIAGNOSTIC ERROR MESSAGE SUMMARY

0.1 MACRO ERROR CODES

A diagnostic error code is printed as the first character in a source
line which contains an error detected by MACRO. This error code
identifies a syntactical problem or some other type of error condition
detected during the processing of a source line. An example of such a
source line is shown below:

Q 26 000236 010102 MOV Rl,R2,A

The extraneous argument A in the MOV instruction above causes the line
to be flagged with a Q (syntax) error.

Error Code

A

Meaning

Assembly error. Because many different types of
error conditions produce this diagnostic message,
all the possible directives which may yield a
general assembly error have been categorized below
to reflect specific classes of error conditions:

CATEGORY 1: ILLEGAL ARGUMENT SPECIFIED •

• RADIX -- A value other than 2, 8, or 10 is
specified as a new radix .

• LIST/.NLIST -- Other than a legally defined
argument (see Table 6-1) is specified with the
directive •

• ENABL/.DSABL -- Other than a legally defined
argument (see Table 6-2) is specified with the
directive •

• PSECT -- Other than a legally-defined argument
(see Table 6-3) is specified with the
directive •

• IF/.IIF -- Other than a legally defined
conditional test (see Table 6-5) or an illegal
argument expression value is specified with the
directive •

• MACRO -- An illegal or duplicate symbol found
in dummy argument list.

~l

Error Code

A
(Cont'd)

DIAGNOSTIC ERROR MESSAGE SUMMARY

Meaning

CATEGORY 2: NULL ARGUMENT OR SYMBOL SPECIFIED.

.TITLE -- Program name is not specified in the
directive, or first non-blank character
following the directive is a non-Radix-SO
character •

• IRP/.IRPC -- No dummy argument is specified in
the directive •

• NARG/.NCHAR/.NTYPE -- No symbol is specified
in the directive •

• IF/.IIF -- No conditional argument is
specified in the directive.

CATEGORY 3: UNMATCHED DELIMITER/ILLEGAL ARGUMENT
CONSTRUCTION •

• ASCII/.ASCIZ/.RAD50/.IDENT -- Character string
or argument string delimiters do not match, or
an illegal character is used as a delimiter, or
an illegal argument construction is used in the
directive •

• NCHAR -- Character string delimiters do not
match, or an illegal character is used as a
delimiter in the directive.

CATEGORY 4: GENERAL ADDRESSING ERRORS.

This type of error results from one of several
possible conditions:

1. Permissible range of a branch instruction,
i.e., from -128(lO} to +l27(lO} words, has
been exceeded.

2. A statement makes invalid use of the
current location counter, e.g., a
".=expression" statement attempts to force
the current location counter to cross
program section (.PSECT) boundaries.

3. A statement contains an invalid address
expression. In cases where an absolute
address expression is required, specifying
a global symbol, a relocatable value, or a
complex relocatable value (see Section 3.9)
results in an invalid address expression.
Similarly, in cases where a relocatable
address expression is required, either a
relocatable or absolute value is
permissible, but a global symbol or a
complex relocatable value in the statement
likewise results in an invalid address
expression. Specific cases of this type of
error are those which follow:

D-2

Error Code

B

D

E

I

L

M

N

o

DIAGNOSTIC ERROR MESSAGE SUMMARY

Meaning

.BLKB/.BLKW/.REPT -- Other than an absolute
value or an expression which reduces to an
absolute value has been specified with the
directive.

4. Multiple expressions are not separated by a
comma. This condition causes the next
symbol to be evaluated as part of the
current expression.

CATEGORY 5: ILLEGAL FORWARD REFERENCE.

This type of error results from either of two
possible conditions:

1. A global assignment statement
(symbol==expression) contains a forward
reference to another symbol.

2. An expression defining the value of the
current location counter contains a forward
reference.

Bounding error. Instructions or word data are
being assembled at an odd address. The location
counter is incremented by 1.

Doubly-defined symbol referenced. Reference was
made to a symbol which is defined more than once.

End directive not found. When the end-of-file is
reached during source input and the .END directive
has not yet been encountered, MACRO generates this
error code, ends assembly pass 1, and proceeds
with assembly pass 2.

Illegal character detected. Illegal characters
which are also non-printable are replaced by a
question mark (?) on the listing. The character
is then ignored.

Input line is greater than 132(10) characters in
length. Currently, this error condition is caused
only through excessive substitution of real
arguments for dummy arguments during the expansion
ofa macro.

Multiple definition of a label. A label was
encountered which was equivalent (in the first six
characters) to a label previously encountered.

A number contains a digit that is not in the
current program radix. The number is evaluated as
a decimal value.

Opcode error. Directive out of context.
Permissible nesting level depth for conditional
assemblies has been exceeded. Attempt to expand a
macro which was unidentified after .MCALL search.

D-3

Error Code

P

Q

R

T

u

z

DIAGNOSTIC ERROR MESSAGE SUMMARY

Meaning

Phase error. A label's definition of value varies
from one assembly pass to another or a multiple
definition of a local symbol has occurred within a
local symbol block. Also, when in a local symbol
block defined by the .ENABL LSB directive, an
attempt has occurred to define a local symbol in a
program section other than that which was in
effect when the block was entered. A P error code
also appears if an .ERROR directive is assembled.

Questionable syntax. Arguments are missing, too
many arguments are specified, or the instruction
scan was not completed.

Register-type error. An invalid use of or
reference to a register has been made, or an
attempt has been made to redefine a standard
register symbol without first issuing the .DSABL
REG directive.

Truncation error. A number generated more than 16
bits in a word, or an expression generated more
than 8 significant bits during the use of the
.BYTE directive or trap (EMT or TRAP) instruction.

Undefined symbol. An undefined symbol was
encountered during the evaluation of an
expression; such an undefined symbol is assigned
a value of zero. Other possible conditions which
result in this error code include unsatisfied
macro names in the list of .MCALL arguments and a
direct assigment (symbol=expression) statement
which contains a forward reference to a symbol
whose definition also contains a forward
reference; also, a local symbol may have been
referenced that does not exist in the current
local symbol block.

Instruction error. The instruction so flagged is
not compatible among all members of the PDP-II
family. See Section 5.3 for details.

0-4

APPENDIX E

SAMPLE CODING STANDARD

E.l INTRODUCTION

Standards eliminate variability and the requirement to make a
decision. Much of the difficulty in establishing standards stems from
the notion that they should be optimal. However, to be successfully
applied, standards must represent an agreement on certain aspects of
the programming process.

This Appendix contains DIGITALis PDP-II Program Coding Standard. It
is suggested that this be used as a model to assist users in preparing
standards for their own installations.

E.2 LINE FORMAT

All source lines shall co·nsist of from one to a maximum of eight
characters. This program is described in the DEC Editor Reference
Manual (see Section 0.3 in the Preface) •

Assembly language code lines shall have the following format:

1. Label Field - if present, the label shall start at tab stop 0
(column 1).

2. Operation field - the operation field shall start at tab stop
1 (column 9).

3. Operand field - the operand field shall start at tab stop 2
(column 17).

4. Comm~nts field - the comments field shall st~rt at tab stop 4
(column 33) and may continue to column 80.

Comment lines that are included in the code body shall be delimited by
a line containing only a leading semicolon. The comment itself
contains a leading semicolon and starts in column 3. Indents shall be
1 tab.

If the operand field extends beyond tab stop 4 (column 33) simply
leave a space and start the comment. Comments which apply to an
instruction but require continuation should always line up with the
character position which started the comment.

E-l

SAMPLE CODING STANDARD

E.3 COMMENTS

Comment all coding to convey the global role of an instruction, rather
than simply a literal translation of the instruction into English. In
general this will consist of a comment per line of code. If a
particularly difficult, obscure, or elegant instruction sequence is
used, a paragraph of comments must immediately precede that section of
code.

Preface text, which describes formats, algorithms, program-local
variables, etc., will be delimited by the character sequence ;+ at the
start of the text and ;- at the end; these delimiters facilitate
automated extraction of narrative commentary. The comment itself will
start in column 3.

For example:

i+
THE INVERT ROUTINE ACCEPTS
A LIST OF RANDOM NUMBERS AND

i APPLIES THE KOLMOGOROV ALGORITHM
i TO ALPHABETIZE THEM.
i-

E.4 NAMING STANDARDS

E.4.1 Register Standards

E.4.1.1 General Purpose
permitted as register
purpose:

Registers - Only
names; and may

the
not

following names are
be used for any other

RO=%O
RI=%1
R2=%2
R3=%3
R4=%4
R5=%5
SP=%6
PC=%7

;REG 0
;REG I
;REG 2
;REG 3
;REG 4
;REG 5
;STACK POINTER (REG 6)
iPROGRAM COUNTER (REG 7)

E.4.1.2 Hardware Registers - These
identically to the hardware definition.

registers must be named
For example, PS and SWR.

E.4.1.3 Device Registers - These are symbolically named identically
to the hardware notation. For example, the control status register
for the RK disk is RKCS. Only this symbolic name may be used to refer
to this register.

E-2

SAMPLE CODING STANDARD

E.4.2 Processor Priority

Testing or altering the processor priority is done using the symbols

PRO, PRl, PR2, •••••• PR7

which are equated to their corresponding priority bit pattern.

E.4.3 Other Symbols

Frequently-used bit patterns such as CR and LF will be
conventional symbolics on an as-needed basis.

E.4.4 Using the Standard Symbolics

made

The register standards will be defined within the assembler. All
other standard symbols will appear in a file and will be linked prior
to program execution.

E.4.S Symbols*

E.4.5.l Global Symbols - Global symbols should be easily recognized
by their format. The following standards apply and completely define
symbol standards for PDP-II Medium/Large software products.

symbol pos-1 pos-2 pes-3 pes-4 pes-5 pes-6 length

nen-glbl-sym letter a-numl a-numl a-numl a-numl a-numl >=1
null null null null null

glbl-sym $1. a-num a-numl a-numl a-numl a-numl >=1
*** null null null null null

glbl-offset letter $1. a-num a-numl a-numl a-numl >=3
*** null null null

gl bl-pit-ptrn letter a-num $1. a-numl a-numl a-numl >=4

lecal-sym number $ >=2
**

* Symbols that are branch targets are also called labels, but we will
always use the term "symbol".

** Number is in the range O<number<65535.

*** The use of $ or • for global names is reserved for DEC-supplied
software.

E-3

where:

a-num
non-glbl-sym
local-sym

glbl-sym
glbl-offset

glbl-bit-ptrn

SAMPLE CODING STANDARD

is an alphanumeric cha~acter.
are non-global symbols.
local symbols, as defined by

MACRO.
are global symbols (addresses).
are global offsets (absolute
quantities).

are global bit patterns.

A program never contains a .GLOBL statement without showing cause.

E.4.S.2 Symbol Examples

Non-Global Symbols

AlB

ZXCJl

INSRT

Global Address Symbols

$JIM

.VECTR

$SEC

Global Absolute Offset Symbols

A$JIM

A$XT

A.ENT

Global Bit Pattern Symbols

Al$20

B3.6

JI.M

Local Symbols

37$

271$

6$

E.4.S.3 Program-Local Symbols - Self-relative address arithmetic
(.+n) is absolutely forbidden in branch instructions; its use in
other contexts must be avoided if at all possible and practical.

E-4

SAMPLE CODING STANDARD

Target symbols for branches that exist solely for positional reference
will use local symbols of the form

<num>$:

Use of non-local symbols is restricted, within reason, to those cases
where reference to the code occurs external to the code.
Local-symbols are formatted such that the numbers proceed sequentially
down the page and from page to page.

E.4.5.4 Macro Names - The last two characters (with the last
character possibly being null) have special significance. The next to
last character is a $, the last, a character specifying the mode of
the macro.

For example, in the three macro forms in-line, stack, and p-section,
the in-line form has no suffix, the stack has an <S>, and the
p-section a <C>. Thus the Queue I/O macro can be written as any of

QIO$

QIO$S

QIO$C

depending on the form required. These are not reserved letters. Only
the form of the name is standard.

E.5 PROGRAM MODULES

E.5.l General Comments on Programs

In our software, a program provides a single distinct function. No
limits exist on size, but the single function limitation should make
modules larger than lK a rarity. Since any software may eventually
exploit the virtual memory capacity of the 11/40 and 11/45, programs
should make every attempt to maintain a dense reference locus (don't
promiscuously branch over page boundaries or ·over a large absolute
address distance).

All code is read-only.
contains explanatory
read-write data.

Code and data areas are distinct and each
text. Read-only data should be segregated from

E.5.2 The Module Preface

Each program module in the system shall exist as a separate file. The
filename will reflect the name of the module and the file extension
shall be of the form 'NNN'. The 'NNN' signifies the edit number or
the version number. The version number shall be changed only when a
new base level is:·creat~d. Furthermore, if no corrections are made to
a file from one~base level to the next, the version number will not be
changed. The availability of File Control Services and File Control
Primitives will greatly simplify version number maintenance. Program
modules adhere to a strict. format. This format adds to the
readability and understandability of the module. The following
sections are included in each module:

E-5

SAMPLE CODING STANDARD

For the Code Section:

1. A .TITLE statement that specifies the name of the module. If
a module contains more than one routine, subtitles may be
used.

2. An .IDENT statement specifying the version number. The
PDP-II version number standard appears in section E.IO.

3. A .PSECT statement that defines the program section in which
the module resides.

4. A copyright statement, and the disclaimer.

S.

COPYRIGHT (C) 1976
DIGITAL EQUIPMENT CORPORATION, ,MAYNARD, MASS.

THIS SOFTWARE IS FURNISHED UNDER A LICENSE FOR USE
ONLY ON A SINGLE COMPUTER SYSTEM AND MAY BE COPIED
ONLY WITH THE INCLUSION OF THE ABOVE COPYRIGHT
NOTICE. THIS SOFTWARE, OR ANY OTHER COPIES THEREOF,
MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO
ANY OTHER PERSON EXCEPT FOR USE ON SUCH SYSTEM AND TO
ONE WHO AGREES TO THESE LICENSE TERMS. TITLE TO AND
OWNERSHIP OF THE SOFTWARE SHALL AT ALL TIMES REMAIN
IN DEC.

THE INFORMATION IN THIS DOCUMENT IS SUBJECT TO CHANGE
WITHOUT NOTICE AND SHOULD NOT BE CONSTRUED AS A
COMMITMENT BY DIGITAL EQUIPMENT CORPORATION.

DEC ASSUMES NO RESPONSIBILITY FOR THE USE OR
RELIABLILITY OF ITS SOFTWARE ON EQUIPMENT WHICH IS
NOT SUPPLIED BY DEC.

The version number of the file.

The PDP-II version number standard is described in section
E.IO.

6. The name of the principal author and the date on which the
module was first created.

7. The name of each modifying author and the date of
modification. Names and modification dates appear one per
line and in chronological order.

8. A brief statement of the function of the module.

Note: Items 1-8 should appear on the same page.

9. A list of the definitions of all equated local symbols used
in the module. These definitions appear one per line and in
alphabetical order.

10. All local macro definitions, preferably in alphabetical order
by name.

11. All local data. The data should indicate

a. Description of each element (type, size, etc.)
b. Organization (functional, alpha, adjacent, etc.)
c. Adjacency requirements

E-6

SAMPLE CODING STANDARD

12. A more detailed definition of the function of the module.

13. A list of the inputs expected by the module. This includes
the calling sequence if non-standard, condition code
settings, and global data settings.

14. A list of the outputs produced as a result of entering this
module. These include delivered results, condition code
settings, but not side effects. (All these outputs are
visible to the caller.)

15. A list of all effects (including side effects) produced as a
result of entering this module. Effects include alterations
in the state of the system not explicitly expected in the
calling sequence, or those not visible to the caller.

16. The module code.

E.5.3 Formatting the Module Preface

Rules:

1. The first eight items appear on the same page and will not
have explicit headings. Item 3 may be omitted if the blank
p-section is being used.

2. Headings start at the left margin*i
indented 1 tab position.

descriptive text is

3. Items 7-14 will have headings which start at the left margin,
preceded and followed by lines containing only a leading <i>.
Items which do not apply may be omitted.

A template for the module preface follows.

FILE-EXAMPL.SOI

.TITLE

.IDENT

.PSECT

EXAMPLE
/01/
KERNEL

COPYRIGHT (C) 1976
DIGITAL EQUIPMENT COPORATION, MAYNARD, MASS.

THIS SOFTWARE IS FURNISHED UNDER A LICENSE FOR USE ONLY ON A
SINGLE COMPUTER SYSTEM AND MAY BE COPIED ONLY WITH THE
INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE, OR
ANY OTHER COPIES THEREOF, MAY NOT BE PROVIDED OR OTHERWISE
MADE AVAILABLE TO ANY OTHER PERSON EXCEPT FOR USE ON SUCH
SYSTEM AND TO ONE WHO AGREES TO THESE LICENSE TERMS. TITLE
TO AND OWNERSHIP OF THE SOFTWARE SHALL AT ALL TIMES REMAIN
IN DEC.

THE INFORMATION IN THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT
NOTICE AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL
EQUIPMENT CORPORATION.

*The left margin consists of a <i> a <space> then the heading, so the
text of the heading begins in column 3.

E-7

SAMPLE CODING STANDARD

DEC ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF
ITS SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DEC.

VERSION 01

JOE PASCUSNIK I-JAN-72

MODIFIED BY:

RICHARD DOE 21-JAN-73

SPENCER THOMAS 12-JUN-73

Brief statement of the module's function

EQUATED SYMBOLS

List equated symbols

LOCAL MACROS

Local Macros

;
LOCAL DATA

Local data

;+
Module function-details

INPUTS:

Description of inputs

OUTPUTS:

Description of outputs

EFFECTS:

Description of effects
i-

Begin Module Code

E.S.4 Modularity

No other characteristic has more impact on the
success of a system than does modularity.
Software Engineering's products consists of the
single-function philosophy described in section
to a set of calling and return conventions.

ultimate engineering
Modularity for PDP-II

application of the
E.S.l, and adherence

E.S.4.1 Calling Conventions (Inter-Module) - The following calling
conventions must be observed.

E-8

SAMPLE CODING STANDARD

Transfer of Control

Macros will exist for call and return. The actual transfer will
be via a JSR PC instruction. For register save routines, a
JSR Rn,SAVE will be permitted.

The CALL macro is:

CALL subr-name

The RETURN macro is:

RETURN

Register Conventions

On entry, a subroutine minimally saves all registers it intends
to alter except result registers. On exit it restores these
registers. (State preservation is assumed across calls.)

Argument Passing

Any registers may be used, but their use should follow a coherent
pattern. For example, if passing three arguments, pass them in
RO, RI and R2 rather than RO, R2, RS. Saving and restoring
occurs in one place.

E.S.4.2 Exiting - All subroutine exits occur through a single RETURN
macro.

E.S.4.3 Intra-Module
consistency favors a
inter-module sequence.

Calling
calling

Conventions - Designer optional, but
sequence identical to that of the

E.S.4.4 Success/Failure Indication - The C bit will be used to return
the success/failure indicator, where success equals 0, and failure
equals 1. The argument registers can be used to return values or
additional success/failure data.

E.S.4.S Module Checking Routines - Modules are responsible for
verifying the validity of arguments passed to them. The design of a
module's calling sequence should aim at minimizing the validity checks
by minimizing invalid combinations. Programmers may add test code to
perform additional checks during checkout. All code should aim at
discovering an error as close (in terms of instruction executions) to
its occurrence as possible.

E.6 FORMATTING STANDARDS

E.6.l Program Flow

Programs will be organized on the listing such that they flow down the
page, even at the cost of an extra branch or jump.

E-9

SAMPLE CODING STANDARD

For example:

PROCESS

BBB

COMMON

shall appear on the listing as:

AAA:

BBB:

CMN:

TST
BNE

BR

Rather than:

AAA:

CMN:

BBB:

TST
BNE

BR

BBB

CMN

BBB

CMN

E-IO

AAA

SAMPLE CODING STANDARD

E.6.2 Common Exits

A common exit appears as the last code sequence on the listing.
the flow chart:

1 2 3 4

EXIT

will appear on the listing as:

PR1:

BR EXIT

PR2:

....
BR EXIT

PR3:

BR EXIT

PR4-:

EXIT:

And not as:

PRl:

EXIT:

PR2:

BR EXIT

PR3:

BR EXIT

PR4:

IiR EXIT

E-ll

Thus

SAMPLE CODING STANDARD

E.6.3 Code with Interrupts Inhibited

Code that is executed with interrupts inhibited, shall be flagged by a
three semicolon (iii) comment delimiter. For example:

•• ERTZ: ;ENABLE BY RETURNING
iBY SYSTEM SUBROUTINES,

10$:

BIS
BIT
BEQ
RTT

#PR7,PS
#PR7,+2(SP)
10$

; ; ;
; ; ;
; ; ;
; ; ;
; ; ;
i ; ;
; ; ;
; ; ;
; ; ;

INHIBIT INTERRUPTS
C

0
M

M
E

N
T

S

E.7 PROGRAM SOURCE FILES

Source creation and maintenance shall be done in base levels. A base
level is defined as a point at which the program source files have
been frozen. From the freeze point to the next base level,
corrections will not be made directly to the base level itself.
Rather a file of corrections shall be accumulated for each file in the
base level. Whenever an updated source file is desired, the
correction file will be applied to the base file.

The accumulation of corrections shall proceed until a logical breaking
point has occurred (i.e. a milestone or significant implementation
point has been reached). At this time all accumulated corrections
shall be applied to the previous base level to create a new base
level. Correction files will then be started for the new base level.

E.8 FORBIDDEN INSTRUCTION USAGE

1. The use of instructions or index words as literals of the
previous instruction. For example:

MOV @PC,Register

BIC Src,Dst

uses the bit clear instruction as a literal. This may seem
to be a very "neat" way to save a word but what about
maintaining a program using this trick? To compound the
problem, it will not execute properly if I/D space is enabled
on the 11/45. In this case @PC is a D bank reference.

2. The use of the MOV instruction instead of a JMP instruction
to transfer program control to another location. For
example:

MOV #ALPHA,PC

transfers control to location ALPHA. Besides taking longer
to execute (2.3 microseconds for MOV vs. 1.2 for JMP) the
use of MOV instead of JMP makes it nearly impossible to pick
up someone else's program and tell where transfers of control

E-12

SAMPLE CODING STANDARD

take place. What if one would like to get a jump trace of
the execution of a program (a move trace is unheard of)? As
a more general issue, perhaps even other operations such as
ADD and SUB from PC should be discouraged. Possibly one or
tWb words can be saved by using these operations but how many
such occurrences are there?

3. The seemingly "neat" use of all single word instructions
where one double-word instruction could be used and would
execute faster and would not consume additional memory.
Consider the following instruction sequence:

CMP -(Rl) ,(-Rl)

CMP -{Rl} ,-{Rl}

The intent of this instruction sequence is to subtract 8 from
register Rl (not to set condition codes). This can be
accomplished in approximately 1/3 the time via a SUB
instruction (9.4 vs. 3.8 microseconds) at no additional cost
in memory space. Another question here is also, what if RI
is odd? SUB always wins since it will always execute
properly and is always faster!

E.9 RECOMMENDED CODING PRACTICE

E.9.1 Conditional Branches

When using the PDP-II conditional branch instructions, it is
imperative that the correct choice be made between the signed and the
unsigned branches.

SIGNED

BGE
BLT
BGT
BLE

UNSIGNED

BHIS (BCC)
BLO
BHI
BLOS (BCS)

A common pitfall is to use a signed branch (e.g. BGT) when comparing
two memory addresses. All goes well until the two addresses have
opposite signs; that is, one of them goes across the 16K (lOOOOO{8»
bound. This type of coding error usually shows itself as a result of
re-linking at different addresses and/or a change in size of the
program.

E.IO PDP-II VERSION NUMBER STANDARD

The PDP-II Version Number Standard applies to all modules, parameter
files, complete programs, and libraries which are written or caused to
be written, as part of the PDP-II Software Development effort. It is
used to provide unique identification of all released, pre-released,
and in-house software.

It is limited in that, as currently specified, only six characters of
identification are used. Future implementations of the Macro
Assembler, Task Builder, and Librarian should provide for at least

E-13

SAMPLE CODING STANDARD

nine characters, and possibly twelve. It is expected that this
standard will be enhanced as the need arises.

Version Identifier = <form> <version> <edit> <patch>

<form>

<version>

<edit>

<patch>

Used to identify a particular form of a module or
program, where applicable, as in the case of
LINK-II. One alphabetic character, if used, and
null (i.e., a binary 0) if not used.

Used to identify the release, or generation, of a
program. Two decimal digits, starting at 00, and
incremented at the discretion of the project in
order to reflect what, in their opinion, is a
major change.

Used to identify the level to which a particular
release, or generation, of a program or module has
been edited. An edit is defined to be an
alteration to the source form. Two decimal
digits, beginning at 01, and incremented with each
edit; null if no edits.

Used to identify the level to which a particular
release, or generation, of a program or module has
been patched. A patch is defined as an alteration
to a binary form. One alphabetic character,
starting at S, and running sequentially toward Z,
each time a set of patches is released; null if
no patches.

These fields are interrelated. When <version> is changed, then
<patch> and <edit> must be reset to nulls. It is intended that when
<edit> is incremented, then <patch> will be re-set to null, because
the various bugs have been fixed.

E.lO.l Displaying the Version Identifier

The visible output of the version identifier should appear as:

Key <letter> <form> <version> - <edit> <patch>,

where the following Key Letters have been identified:

V released or frozen version
X in-house experimental version
y field test, pre-release, or in-house release version

Note that 'X' corresponds roughly to individual support, 'Y' to group
support, and 'V' to company support.

The dash which separates <version> from <edit> is used only if <edit>
and/or <patch> is not nUll. When a version identifier is displayed as
part of program identification, then the format is:

Program
<space><key-letter><form><version>-<edit><patch>

Name

E-14

Examples:

PIP X03
LINK VB04-C
MACRO YOS-Ol

SAMPLE CODING STANDARD

E.lO.2 Use of the Version Number in the Program

All sources must contain the version number in an .IDENT directive.
For programs (or libraries) which consist of more than one module,
each individual module will follow this version number standard. The
version number of the program or library is not necessarily related to
the version numbers of the constituent modulesi it is perfectly
reasonable, for example, that the first version of a new FORTRAN
library, VOO, contain an existing SIN routine, say VOS-Ol.

Parameter files are also required to contain the version number in an
.IDENT directive. Because the assembler records the last .IDENT seen,
parameter files must precede the program.

Entities which consist of a collection of modules or programs,
have an identification module in the first position.
identification module exists solely to provide identification,
normally consists of something like:

iOTS IDENTIFICATION
.TITLE FTNLIB
.IDENT /003010/
.END

E-lS

will
An

and

APPENDIX F

SAMPLE ASSEMBLY AND CROSS REFERENCE LISTING

COPYRIGHT (C) 1977 BY
DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASS.

THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED
ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE
INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER
COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY
OTHER PERSON. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY
TRANSFERRED.

THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE
AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT
CORPORATION.

DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS
SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DIGITAL.

F-1

1 .TITLE TST205
2 .SBTTL LOCAL DATA STRUCTURES
3
4 :
5 000000 FPTRPY:
6 000000 000004 • WORD 4 REPLY MESSAGE FPT
7 000002 000000 MSGRPY: • WORD 0 ADDRESS OF MESSAGE
8 000004 000012' • WORD SIZE ADDRESS OF MSG SIZE
9 000006 000014' • WORD REPLYN ADDRESS OF REPLY NUM

10 000010 000016' . WORD STATUS ADDRESS OF STATUS RETURN til

11 000012 SIZE: ~
12 000012 000043 • WORD 35 • to
13 000014 REPLYN: t"I

til
14 000014 000000 • WORD 0):II
15 000016 STATUS: til
16 000016 000000 000000 . WORD 0,0 til

til
17 000022 FUNC: :I:
18 000022 030060 • WORD "00 ~

t"I
19 000024 030461 • WORD "11 t<
20 000026 031062 • WORD "22 t; 21 000030 031463 • WORD "33
22 000032 025052 • WORD " .. 0

~ 23 000034 027056 . WORD " n
I\J l:tI

0
TST205 MAIN til

en

25 .SBTTL TST205 MAIN l:tI
til

26 "I:J
27 TST205 IS USED IN TRANSACTION TIM08N TO TEST THE TIM til

l:tI
28 ACTION CODE C.KEY. THE TST RECEIVES THE TEXT ASSOCIATED til
29 WITH THE FUNCTION KEY DEPRESSED. THE TEXT IS 35 CHARACTERS 2:

n
30 IN LENGTH. EACH KEY HAS A SPECIFIED TEXT. DEPENDING til

31 ON THE TEXT, THEN, TST206 SENDS ONE OF 7 REPLIES TO DISPLAY t"1
32 THE TEXT. THE MULTIPLE REPLIES ENABLE THE TEXT OF EACH FUNCTION 1-1

33 KEY TO BE DISPLAYED ON A DIFFERENT LINE til
to.;

34 ; 1-1
2: 35 000036 TSTEP: : G'l

36 000036 016504 000002 MOV 2(R5),R4 ADDRESS OF EXCHANGE MSG
37
38
39 000042 012702 000006 MOV #6,R2 INITIALIZE
40 000046 012701 000022' MOV #FUNC,Rl ADDRESS OF POSSIBLE REPLY TEXT
41 000052 20$:
42 000052 022114 CMP (Rl)+,(R4) LOOP UNTIL FUNC TEXT FOUND
43 000054 001401 BEQ 40$
44 000056 077203 SOB R2,20$ END LOOP

45 000060 40$:
46 000060 010267 177730 MOV R2,REPLYN DEFINE REPLY NUMBER
47
48
49 000064 010467 177712 MOV R4,MSGRPY SAVE ADDRESS OF EM FOR FPT
50
51 til
52 000070 012705 000000' MOV iFPTRPY,R5 SEND REPLY

= 53 000074 004767 OOOOOOG CALL REPLY ~
54 000100 000207 RETURN ~

55 000001 .END til

>'
SYMBOL TABLE til

til
til

FPTRPY OOOOOOR MSGRPY 000002R REPLYN 000014R STATUS 000016R TSTEP 000036RG :.:
tX'

FUNC 000022R REPLY = ****** GX SIZE 000012R ~
t<

• ABS. 000000 000 ~
000102 001 ~

1 ERRORS DETECTED: 0 n
w ~ VIRTUAL MEMORY USED: 84 WORDS (1 PAGES) til

DYNAMIC MEMORY: 16142 WORDS 62 PAGES) til

ELAPSED TIME: 00:00:03

= TST205,TST205=TST205 "III
til
l:O
til
Z

SYMBOL TABLE n
til

FPTRPY OOOOOOR MSGRPY 000002R REPLYN 000014R STATUS 000016R TSTEP 000034RG l:'1
I-f

FUNC = ****** GX REPLY = ****** GX SIZE 000012R til
~

• ABS. 000000 000 I-f

000100 001 Z
t:l

ERRORS DETECTED: 0

VIRTUAL MEMORY USED: 84 WORDS (1 PAGES)
DYNAMIC MEMORY: 3532 WORDS 13 PAGES)
ELAPSED TIME: 00:00:02
LI,OBJ/CRF=TST20S.MAC

SYMBOL CROSS REFERENCE

SYMBOL VALUE

FPTRPY 000000 R
FUNC ****** GX

~ MSGRPY 000002 R
I REPLY ****** GX ~

REPLYN 000014 R
SIZE 000012 R
,STATUS 000016 R
TSTEP 000034 RG

REFERENCES

#1-5 1-50
1-38

#1-7 *1-47
1-51
1-9 #1-13
1-8 #1-11
1-10 #1-15

#1-33

CREF VOl

*1-44

til

~
ttl
t:"I
t!3

>'
til
til
t!3
:B:
~
t"'I
I<

~
o
(')
~ o
til
til

~
t!3
t'IiI
t!3
~
tzl
lZ:
(')
tzl

tot
til
toi
lZ:
(j)

Absolute addresses, 6-13
Absolute binary output, 6-13
Absolute expression, 3-16
Absolute mode, 5-5, 5-7
~solute module, 6-34
Absolute program section, 6-37
Address boundaries, 6-31
Address mode syntax, B-1
Address modes, 5-1
Addressing forms, summary, 5-7
Allocating byte data, 6-17
Allocating word data, 6-18
Allocation requirements, 6-35
Alternate radix, 6-25
Ampersand, 3-2
Angle brackets, 3-3, 3-15, 6-4,

6-25, 6-28, 7-4 to 7-5,
7-16 to 7-17

Apostrophe, 7-10
Argument substitution, 7-16
Arithmetic addition operator

or autoincrement indicator,
3-2

Arithmetic division operator,
3-2

Arithmetic multiplication
operator, 3-2

Arithmetic subtraction
operator or autodecrement
indicator, 3-2

ASCII character set, A-I
ASCII conversion, 3-14
ASCII conversion characters,

6-19
.ASCII directive, 6-20
.ASCIZ directive, 6-21
.ASECT directive, 6-38
Assembler directives, 6-1,

B-1, B-2
Assembler version, 6-8
Assembly language, B-1
Assembly listing, 2-6
Assembly pass 1, 1-1
Asterisk, 3-2
At sign (@), 3-2
Attribute of the current

location counter, 3-12
Autodecrement deferred

mode, 5-3, 5-7
Autodecrement mode, 5-7
Autoincrement deferred

mode, 5-3, 5-7
Autoincrement mode, 5-2, 5-7

INDEX

AB operator, 6-25
Backslash, 3-2
Binary operators, 3-15
Blank lines, 2-2
.BLKB directive, 6-30
.BLKW directive, 6-30
Blocks of storage, reserving,

6-30
Branch instruction addressing,

5-8
.BYTE directive, 6-17

AC operator, 6-27
Calling conventions, E-8
Calling macros, 7-3
Changing default radix, 3-13
Changing value of location

counter, 3-12
Character set, 3-1
Character substitution, 7-16
Code and data separation, 6-38
Code or data sharing, 6-38
Coding standard, E-l
Colon, 3-1
Comma, 3-2
Command string format, 8-1
Comment, 6-14, E-2
Comment field, 2-5
Comment field indicator, 3-2
Complementing an argument, 6-27
Complex relocatable expression,

3-16
Complex relocation, 4-1
Concatenated, 6-35
Concatenation of macro arguments,

7-10
Conditional assembly block, 6-41
Conditional assembly directive,

6-41, 6-42
Conditional branches, E-13
Continuation lines, 2-2
Creating local symbols

automatically, 7-7
Creating program sections, 6-36
Cross-reference listing (CREF) ,

8-5
Cross-reference processor, 8-4
.CSECT directive, 6-17, 6-38
Current location counter, 2-2,

3-11, 3-14, 5-6, 6-29

Index-l

INDEX (Cont.)

AD operator, 6-25
Data storage directives, 6-17
Date, 6-8
Default object module name,

6-11
Default register definitions,

6-15
Deferred addressing indicator,

3-2
Defining macros, 7-1
Device registers, E-2
Diagnostic, 7-14
Diagnostic error message

summary, D-1
Direct assignment operator, 3-1
Direct assignment statements,

3-7
Directives, 2-5, 5-9, 6-1
Double ASCII character indicator,

3-2
Double colon, 3-1, 3-7
Double equal sign, 3-1, 3-7
Double quote, 3-2, 3-14, 6-19
.DSABL directive, 3-7, 3-9,

6-13 to 6-15, 6-27
Duplication of code, 7-17

EMT, 5-8
.ENABL directive, 5-8, 6-13 to

6-15, 6-27
.END directive, 6-31
.ENDC directive, 6-41
.ENDM directive, 7-2
End of the source input, 6-31
.ENDR directive, 7-18
Entry-point instructions, 6-33
.EOT directive, 6-31
Equal sign, 3-1
Error codes, D-1
.ERROR directive, 7-14
Error messages, 8-8 to 8-11
Evaluation of expressions, 3-15
.EVEN, 6-29
Exclamation point, 3-2
Exiting, E-9
Expressions, 3-14, 3-15
External expression, 3-15, 3-16
External symbols, 6-40
Externally-defined macro, 7-18

AF operator, 3-14, 6-27
File specification format, 8-7
File Specification Qualifiers

TRAX, 8-3

Finding address mode of macro
arguments, 7-13

Finding number of characters
in strings, 7-12

Floating point,
data, 6-26
number, 6-28
number specification, 6-27
rounding, 6-14, 6-26
storage directives, 6-27
truncation, 6-14,- 6-27

.FLT2 directive, 6-27

.FLT4 directive, 6-27
Forbidden instruction usage,

E-12
Form-feed, 6-13, 7-3
Format control, 2-6
Formatting standards, E-9
Forward referencing, 3-8
Function directives, 6-13

General purpose registers, E-2
General registers, 3-9
Global,

label, 6-40
references, 6-15
symbol, 2-3, 6-40
symbol directory, 1-2

.GLOBAL directive, 3-7, 6-39
GSD, 1-2

Hardware registers, E-2
Horizontal formatting, 2-6

.IF directive, 6-40

.IFF directive, 6-43, 6-44

.IFT directive, 6-43

.IFTF directive, 6-43

.IIF directive, 6-45
Illegal characters, 3-3
Immediate conditional assembly,

6-45
Immediate expression indicator,

3-2
Immediate mode, 5-4, 5-7
Immediate mode deferred, 5-5
Implicit .WORD directive, 2-5,

6-18
Indefinite repeat block

directives, 7-15
Index deferred mode, 5-4, 5-7
Index mode, 5-4, 5-7

Index-2

INDEX (Cont.)

Indirect command files, 8-6
Initial argument or expression

indicator, 3-2
Initial register indicator, 3-2
Instruction set, C-l
Invoking MACRO under TRAX, 8-1
.IRP directive, 7-15, 7-16
.IRPC directive, 7-15, 7-16
Item or field terminator, 3-1

Keyword arguments, 7-4, 7-9

Label field, 2-2
Label terminator, 3-1
Left angle bracket, 3-2
Left parenthesis, 3-2
.LIMIT directive, 6-31
Line format, E-l
Linking, 4-1
.LIST directive, 6-1
Listing conditional assemblies,

6-4
Listing control directives, 6-1
Listing control switches, 8-2
Listing level count, 6-2
Listing of binary extensions, 6-4
Listing of comments, 6-4
Listing of generated binary code,

6-3
Listing of macro calls, 6-4
Listing of macro definitions, 6-4
Listing "of macro expansion binary

code, 6-4
Listing of repeat range

expansions, 6-4
Listing of source line sequence

numbers, 6-3
Listing of source lines, 6-4
Listing of the current location

counter, 6-3
Listing of the symbol table, 6-5
Local symbol block, 6-14
Local symbol block delimiters,

3-10
Local symbols, 3-6, 3-10, 3-11
Location counter, 6-36
Location counter control

directives, 6-29
Logical AND operator, 3-2, 6-42
Logical inclusive OR operator,

3-2, 6-42
Lower-case ASCII, 6-14

Macro arguments, 7-6
Macro attribute directives, 7-11
Macro call, 2-5, 7-3, 7-5
Macro call arguments, 7-4
Macro call numeric argument

indicator, 3-2
MACRO character sets, A-l
Macro definition, 7-1, 7-15
Macro definition arguments, 7-4
Macro definition formatting, 7-3
Macro definition termination, 7-2
MACRO directives, 5-9, C-4
Macro directives, 7-1
Macro expansion termination, 7-3
Macro library directive, 7-18
Macro name, 7-1, 7-4
Macro names, E-5
Macro nesting, 7-5
Macro qualifiers, 8-2
Macro symbol table, 3-6
MACRO symbols, 3-5
.MCALL directive, 7-18
Memory allocation, 6-32, 6-33,

6-38
Memory allocation and mapping,

6-32
.MEXIT directive, 7-3
Minus sign, 3-2
Modularity, E-8
Module checking routines, E-9
Module preface, E-5
Multi-defined label, 2-4
Multiple definitions of local

symbols, 3-11
Multiple labels, 2-4

Naming standards, E-2
.NARG directive, 7-11
.NCHR directive, 7-11, 7-12
Negative numbers, 3-13
Nested conditional directives,

6-43
Nested macros, 7-3, 7-5
.NLIST directive, 6-1, 6-11
.NTYPE directive, 7-11, 7-13
Number of arguments in macro

calls, 7-7, 7-11
Number sign, 3-2
Numbers, 3-13
Numeric control, 6-24
Numeric control operators, 6-26,

6-27
Numeric directives, 6-26

Index-3

INDEX (Cont.)

~O operator, 6-25
Object module, 4-1
Object module name, 6-11
Octal radix, 3-13
.000 directive, 6-29
Op codes, 2-4, C-l
Operand field, 2-4
Operand field separator, 3-2
Operating procedures, 8-1
Operator field, 2-4
Order of symbol table search, 3-6
Other symbols, E-3
Overlaid, 6-35
Overlays, 6-33

.PAGE directive, 6-12
Page eject, 7-3
Page ejection, 6-13
Page formatting, 2-6
Page headings, 6-8
Page number, 6-8
Passing numeric arguments as

symbols, 6-45
Percent sign, 3-2
Permanent symbol table, 3-5, C-l
Plus sign, 3-2
.PRINT directive, 7-14
Processor priority, E-3
Program boundaries directive,

6-31
Program counter, 3-9, 5-1
Program modules, E-5
Program section access, 6-33
Program section name, 6-33
Program sections, 3-12, 6-32
Program source files, E-12
Program-local symbols, E-4
Programming standards and

conventions, 2-1
.PSECT directive, 3-12, 6-32,

6-35

AR operator, 6-23
.RAD50 directive, 3-13, 6-22
Radix control, 6-24
Radix control operators, 6-25
.RADIX directive, 3-13, 6-24
Radix-50 character set, A-4
Radix-50 control operator, 6-23
Radix-50 data, 6-22
Read-only access, 6-33
Read/write access, 6-33
Register deferred mode, 5-2
Register expression, 5-1
Register, mode, 5-1, 5-7

Register standards, E-2
Register symbols, 3-9
Register term indicator, 3-1
Relative addresses, 6-13
Relative addressing mode, 5-6
Relative deferred mode, 5-6, 5-7
Relative mode, 5-6, 5-7
Relocatability, 6-34
Relocatable expressions, 3-16, 4-1
Relocatable module, 6-34
Relocatable program sections, 6-37
Relocation, 4-1
Relocation bias, 2-2, 6-34
Repeat block directive, 7-18
.REPT directive, 7-18
Reserving storage, 6-30
Reserving storage space, 3-13,

6-30
Right parenthesis, 3-2

.SBTTL directive, 6-8, 6-11
Scope of the program section, 6-33
Semicolon, 3-2
Sending messages to listing file,

7-14
Separating and delimiting

characters, 3-2
Single ASCII character indicator,

3-2
Single quote, 3-2, 3-14, 6-19,

7-10
Slash, 3-2
Source line sequence numbers, 6-3
Space, 3-1
Special characters, B-1
Special characters in macro

arguments, 7-6
Stack pointer, 3-9
Statement format, 2-1
Storing Radix-50 data, 6-23
Subconditional assembly, 6-43
Subtitle, 6-8
Success/failure indication, E-9
Symbol control directive, 6-39
Symbol examples, E-4
Symbol table listing, 1-2
Symbolic arguments of listing

control directives, 6-3, 6-4
Symbols, E-3
Symbols and expressions, 3-1
System macro libraries, 7-18

Tab, 3-1
Tab character, 2-2
Table of contents, 6-4, 6-11

Index-4

INDEX (Cont.)

Teleprinter mode, 6-5
Terminal argument or expression

indicator, 3-2
Terminal register indicator, 3-2
Terminating directives, 6-31
Terms, 3-14
Time-of-day, 6-8
.TITLE directive, 6-11
Title of the object module, 6-8
Translating to ASCII, 6-20, 6-21
Translating to Radix-50, 6-22
Trap instructions, 5-8
TRAX Command String Format, 8-1
TRAX File Specification Format,

8-7
TRAX File Specification Qualifiers,

8-3
TRAX Indirect Command Files, 8-6
TRAX MACRO in Batch Mode, 8-6
TRAX MACRO Qualifiers, 8-2
TRAX Operating Procedures, 8-1

Unary and binary operators, 3-5
Unary control, 6-24
Unary operator ordering, 6-27

Unary operators, 3-15
Unconditional assembly, 6-43
Undefined symbols, 3-7, 3-14
Universal unary operator or

argument indicator, 3-2
Up arrow or circumflex, 3-2
Up-arrow, 3-3
Up-arrow (A) construction, 7-5
User symbol table, 3-5
User-defined and macro symbols,

3-5
User-defined macro libraries,

7-18
Using the standard symbolics, E-3

Version number, 6-12
Version number standard, E-13

.WORD directive, 3-11, 6-18

Index-5

READER'S COMMENTS

TRAX MACRO
Reference Manual
AA-D340A-TC

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. Problems with software should be reported
on a Software Performance Report (SPR) form. If you
require a written reply and are eligible to receive
one under SPR service, submit your comments on an SPR
form.

"Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

o Assembly language programmer

o Higher-level language programmer

o Occasional programmer (experienced)

o User with little programming experience

o Student programmer

o Non-programmer interested in computer concepts and capabilities

Name Date ________________________ __

Organization __ _

Street __ __

City ___________________________ State _____________ Zip Code ____________ __

or
,.._ .. _

---F'old lIere---.

. --- Do Not Tear - Fold lIere and Staple --.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

~DmDDmD
Software Documentation
146 Main Street ML5-5/E39
Maynard, Massachusetts 01754

FIRST CLASS

PERMIT NO. 33

MAYNARD, MASS.

