

Error Code

B

D

E

I

L

M

N

o

DIAGNOSTIC ERROR MESSAGE SUMMARY

Meaning

.BLKB/.BLKW/.REPT -- Other than an absolute
value or an expression which reduces to an
absolute value has been specified with the
directive.

4. Multiple expressions are not separated by a
comma. This condition causes the next
symbol to be evaluated as part of the
current expression.

CATEGORY 5: ILLEGAL FORWARD REFERENCE.

This type of error results from either of two
possible conditions:

1. A global assignment statement
(symbol==expression) contains a forward
reference to another symbol.

2. An expression defining the value of the
current location counter contains a forward
reference.

Bounding error. Instructions or word data are
being assembled at an odd address. The location
counter is incremented by 1.

Doubly-defined symbol referenced. Reference was
made to a symbol which is defined more than once.

End directive not found. When the end-of-file is
reached during source input and the .END directive
has not yet been encountered, MACRO generates this
error code, ends assembly pass 1, and proceeds
with assembly pass 2.

Illegal character detected. Illegal characters
which are also non-printable are replaced by a
question mark (?) on the listing. The character
is then ignored.

Input line is greater than 132(10) characters in
length. Currently, this error condition is caused
only through excessive substitution of real
arguments for dummy arguments during the expansion
ofa macro.

Multiple definition of a label. A label was
encountered which was equivalent (in the first six
characters) to a label previously encountered.

A number contains a digit that is not in the
current program radix. The number is evaluated as
a decimal value.

Opcode error. Directive out of context.
Permissible nesting level depth for conditional
assemblies has been exceeded. Attempt to expand a
macro which was unidentified after .MCALL search.

D-3

Error Code

P

Q

R

T

u

z

DIAGNOSTIC ERROR MESSAGE SUMMARY

Meaning

Phase error. A label's definition of value varies
from one assembly pass to another or a multiple
definition of a local symbol has occurred within a
local symbol block. Also, when in a local symbol
block defined by the .ENABL LSB directive, an
attempt has occurred to define a local symbol in a
program section other than that which was in
effect when the block was entered. A P error code
also appears if an .ERROR directive is assembled.

Questionable syntax. Arguments are missing, too
many arguments are specified, or the instruction
scan was not completed.

Register-type error. An invalid use of or
reference to a register has been made, or an
attempt has been made to redefine a standard
register symbol without first issuing the .DSABL
REG directive.

Truncation error. A number generated more than 16
bits in a word, or an expression generated more
than 8 significant bits during the use of the
.BYTE directive or trap (EMT or TRAP) instruction.

Undefined symbol. An undefined symbol was
encountered during the evaluation of an
expression; such an undefined symbol is assigned
a value of zero. Other possible conditions which
result in this error code include unsatisfied
macro names in the list of .MCALL arguments and a
direct assigment (symbol=expression) statement
which contains a forward reference to a symbol
whose definition also contains a forward
reference; also, a local symbol may have been
referenced that does not exist in the current
local symbol block.

Instruction error. The instruction so flagged is
not compatible among all members of the PDP-II
family. See Section 5.3 for details.

0-4

APPENDIX E

SAMPLE CODING STANDARD

E.l INTRODUCTION

Standards eliminate variability and the requirement to make a
decision. Much of the difficulty in establishing standards stems from
the notion that they should be optimal. However, to be successfully
applied, standards must represent an agreement on certain aspects of
the programming process.

This Appendix contains DIGITALis PDP-II Program Coding Standard. It
is suggested that this be used as a model to assist users in preparing
standards for their own installations.

E.2 LINE FORMAT

All source lines shall co·nsist of from one to a maximum of eight
characters. This program is described in the DEC Editor Reference
Manual (see Section 0.3 in the Preface) •

Assembly language code lines shall have the following format:

1. Label Field - if present, the label shall start at tab stop 0
(column 1).

2. Operation field - the operation field shall start at tab stop
1 (column 9).

3. Operand field - the operand field shall start at tab stop 2
(column 17).

4. Comm~nts field - the comments field shall st~rt at tab stop 4
(column 33) and may continue to column 80.

Comment lines that are included in the code body shall be delimited by
a line containing only a leading semicolon. The comment itself
contains a leading semicolon and starts in column 3. Indents shall be
1 tab.

If the operand field extends beyond tab stop 4 (column 33) simply
leave a space and start the comment. Comments which apply to an
instruction but require continuation should always line up with the
character position which started the comment.

E-l

SAMPLE CODING STANDARD

E.3 COMMENTS

Comment all coding to convey the global role of an instruction, rather
than simply a literal translation of the instruction into English. In
general this will consist of a comment per line of code. If a
particularly difficult, obscure, or elegant instruction sequence is
used, a paragraph of comments must immediately precede that section of
code.

Preface text, which describes formats, algorithms, program-local
variables, etc., will be delimited by the character sequence ;+ at the
start of the text and ;- at the end; these delimiters facilitate
automated extraction of narrative commentary. The comment itself will
start in column 3.

For example:

i+
THE INVERT ROUTINE ACCEPTS
A LIST OF RANDOM NUMBERS AND

i APPLIES THE KOLMOGOROV ALGORITHM
i TO ALPHABETIZE THEM.
i-

E.4 NAMING STANDARDS

E.4.1 Register Standards

E.4.1.1 General Purpose
permitted as register
purpose:

Registers - Only
names; and may

the
not

following names are
be used for any other

RO=%O
RI=%1
R2=%2
R3=%3
R4=%4
R5=%5
SP=%6
PC=%7

;REG 0
;REG I
;REG 2
;REG 3
;REG 4
;REG 5
;STACK POINTER (REG 6)
iPROGRAM COUNTER (REG 7)

E.4.1.2 Hardware Registers - These
identically to the hardware definition.

registers must be named
For example, PS and SWR.

E.4.1.3 Device Registers - These are symbolically named identically
to the hardware notation. For example, the control status register
for the RK disk is RKCS. Only this symbolic name may be used to refer
to this register.

E-2

SAMPLE CODING STANDARD

E.4.2 Processor Priority

Testing or altering the processor priority is done using the symbols

PRO, PRl, PR2, •••••• PR7

which are equated to their corresponding priority bit pattern.

E.4.3 Other Symbols

Frequently-used bit patterns such as CR and LF will be
conventional symbolics on an as-needed basis.

E.4.4 Using the Standard Symbolics

made

The register standards will be defined within the assembler. All
other standard symbols will appear in a file and will be linked prior
to program execution.

E.4.S Symbols*

E.4.5.l Global Symbols - Global symbols should be easily recognized
by their format. The following standards apply and completely define
symbol standards for PDP-II Medium/Large software products.

symbol pos-1 pos-2 pes-3 pes-4 pes-5 pes-6 length

nen-glbl-sym letter a-numl a-numl a-numl a-numl a-numl >=1
null null null null null

glbl-sym $1. a-num a-numl a-numl a-numl a-numl >=1
*** null null null null null

glbl-offset letter $1. a-num a-numl a-numl a-numl >=3
*** null null null

gl bl-pit-ptrn letter a-num $1. a-numl a-numl a-numl >=4

lecal-sym number $ >=2
**

* Symbols that are branch targets are also called labels, but we will
always use the term "symbol".

** Number is in the range O<number<65535.

*** The use of $ or • for global names is reserved for DEC-supplied
software.

E-3

where:

a-num
non-glbl-sym
local-sym

glbl-sym
glbl-offset

glbl-bit-ptrn

SAMPLE CODING STANDARD

is an alphanumeric cha~acter.
are non-global symbols.
local symbols, as defined by

MACRO.
are global symbols (addresses).
are global offsets (absolute
quantities).

are global bit patterns.

A program never contains a .GLOBL statement without showing cause.

E.4.S.2 Symbol Examples

Non-Global Symbols

AlB

ZXCJl

INSRT

Global Address Symbols

$JIM

.VECTR

$SEC

Global Absolute Offset Symbols

A$JIM

A$XT

A.ENT

Global Bit Pattern Symbols

Al$20

B3.6

JI.M

Local Symbols

37$

271$

6$

E.4.S.3 Program-Local Symbols - Self-relative address arithmetic
(.+n) is absolutely forbidden in branch instructions; its use in
other contexts must be avoided if at all possible and practical.

E-4

SAMPLE CODING STANDARD

Target symbols for branches that exist solely for positional reference
will use local symbols of the form

<num>$:

Use of non-local symbols is restricted, within reason, to those cases
where reference to the code occurs external to the code.
Local-symbols are formatted such that the numbers proceed sequentially
down the page and from page to page.

E.4.5.4 Macro Names - The last two characters (with the last
character possibly being null) have special significance. The next to
last character is a $, the last, a character specifying the mode of
the macro.

For example, in the three macro forms in-line, stack, and p-section,
the in-line form has no suffix, the stack has an <S>, and the
p-section a <C>. Thus the Queue I/O macro can be written as any of

QIO$

QIO$S

QIO$C

depending on the form required. These are not reserved letters. Only
the form of the name is standard.

E.5 PROGRAM MODULES

E.5.l General Comments on Programs

In our software, a program provides a single distinct function. No
limits exist on size, but the single function limitation should make
modules larger than lK a rarity. Since any software may eventually
exploit the virtual memory capacity of the 11/40 and 11/45, programs
should make every attempt to maintain a dense reference locus (don't
promiscuously branch over page boundaries or ·over a large absolute
address distance).

All code is read-only.
contains explanatory
read-write data.

Code and data areas are distinct and each
text. Read-only data should be segregated from

E.5.2 The Module Preface

Each program module in the system shall exist as a separate file. The
filename will reflect the name of the module and the file extension
shall be of the form 'NNN'. The 'NNN' signifies the edit number or
the version number. The version number shall be changed only when a
new base level is:·creat~d. Furthermore, if no corrections are made to
a file from one~base level to the next, the version number will not be
changed. The availability of File Control Services and File Control
Primitives will greatly simplify version number maintenance. Program
modules adhere to a strict. format. This format adds to the
readability and understandability of the module. The following
sections are included in each module:

E-5

SAMPLE CODING STANDARD

For the Code Section:

1. A .TITLE statement that specifies the name of the module. If
a module contains more than one routine, subtitles may be
used.

2. An .IDENT statement specifying the version number. The
PDP-II version number standard appears in section E.IO.

3. A .PSECT statement that defines the program section in which
the module resides.

4. A copyright statement, and the disclaimer.

S.

COPYRIGHT (C) 1976
DIGITAL EQUIPMENT CORPORATION, ,MAYNARD, MASS.

THIS SOFTWARE IS FURNISHED UNDER A LICENSE FOR USE
ONLY ON A SINGLE COMPUTER SYSTEM AND MAY BE COPIED
ONLY WITH THE INCLUSION OF THE ABOVE COPYRIGHT
NOTICE. THIS SOFTWARE, OR ANY OTHER COPIES THEREOF,
MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO
ANY OTHER PERSON EXCEPT FOR USE ON SUCH SYSTEM AND TO
ONE WHO AGREES TO THESE LICENSE TERMS. TITLE TO AND
OWNERSHIP OF THE SOFTWARE SHALL AT ALL TIMES REMAIN
IN DEC.

THE INFORMATION IN THIS DOCUMENT IS SUBJECT TO CHANGE
WITHOUT NOTICE AND SHOULD NOT BE CONSTRUED AS A
COMMITMENT BY DIGITAL EQUIPMENT CORPORATION.

DEC ASSUMES NO RESPONSIBILITY FOR THE USE OR
RELIABLILITY OF ITS SOFTWARE ON EQUIPMENT WHICH IS
NOT SUPPLIED BY DEC.

The version number of the file.

The PDP-II version number standard is described in section
E.IO.

6. The name of the principal author and the date on which the
module was first created.

7. The name of each modifying author and the date of
modification. Names and modification dates appear one per
line and in chronological order.

8. A brief statement of the function of the module.

Note: Items 1-8 should appear on the same page.

9. A list of the definitions of all equated local symbols used
in the module. These definitions appear one per line and in
alphabetical order.

10. All local macro definitions, preferably in alphabetical order
by name.

11. All local data. The data should indicate

a. Description of each element (type, size, etc.)
b. Organization (functional, alpha, adjacent, etc.)
c. Adjacency requirements

E-6

SAMPLE CODING STANDARD

12. A more detailed definition of the function of the module.

13. A list of the inputs expected by the module. This includes
the calling sequence if non-standard, condition code
settings, and global data settings.

14. A list of the outputs produced as a result of entering this
module. These include delivered results, condition code
settings, but not side effects. (All these outputs are
visible to the caller.)

15. A list of all effects (including side effects) produced as a
result of entering this module. Effects include alterations
in the state of the system not explicitly expected in the
calling sequence, or those not visible to the caller.

16. The module code.

E.5.3 Formatting the Module Preface

Rules:

1. The first eight items appear on the same page and will not
have explicit headings. Item 3 may be omitted if the blank
p-section is being used.

2. Headings start at the left margin*i
indented 1 tab position.

descriptive text is

3. Items 7-14 will have headings which start at the left margin,
preceded and followed by lines containing only a leading <i>.
Items which do not apply may be omitted.

A template for the module preface follows.

FILE-EXAMPL.SOI

.TITLE

.IDENT

.PSECT

EXAMPLE
/01/
KERNEL

COPYRIGHT (C) 1976
DIGITAL EQUIPMENT COPORATION, MAYNARD, MASS.

THIS SOFTWARE IS FURNISHED UNDER A LICENSE FOR USE ONLY ON A
SINGLE COMPUTER SYSTEM AND MAY BE COPIED ONLY WITH THE
INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE, OR
ANY OTHER COPIES THEREOF, MAY NOT BE PROVIDED OR OTHERWISE
MADE AVAILABLE TO ANY OTHER PERSON EXCEPT FOR USE ON SUCH
SYSTEM AND TO ONE WHO AGREES TO THESE LICENSE TERMS. TITLE
TO AND OWNERSHIP OF THE SOFTWARE SHALL AT ALL TIMES REMAIN
IN DEC.

THE INFORMATION IN THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT
NOTICE AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL
EQUIPMENT CORPORATION.

*The left margin consists of a <i> a <space> then the heading, so the
text of the heading begins in column 3.

E-7

SAMPLE CODING STANDARD

DEC ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF
ITS SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DEC.

VERSION 01

JOE PASCUSNIK I-JAN-72

MODIFIED BY:

RICHARD DOE 21-JAN-73

SPENCER THOMAS 12-JUN-73

Brief statement of the module's function

EQUATED SYMBOLS

List equated symbols

LOCAL MACROS

Local Macros

;
LOCAL DATA

Local data

;+
Module function-details

INPUTS:

Description of inputs

OUTPUTS:

Description of outputs

EFFECTS:

Description of effects
i-

Begin Module Code

E.S.4 Modularity

No other characteristic has more impact on the
success of a system than does modularity.
Software Engineering's products consists of the
single-function philosophy described in section
to a set of calling and return conventions.

ultimate engineering
Modularity for PDP-II

application of the
E.S.l, and adherence

E.S.4.1 Calling Conventions (Inter-Module) - The following calling
conventions must be observed.

E-8

SAMPLE CODING STANDARD

Transfer of Control

Macros will exist for call and return. The actual transfer will
be via a JSR PC instruction. For register save routines, a
JSR Rn,SAVE will be permitted.

The CALL macro is:

CALL subr-name

The RETURN macro is:

RETURN

Register Conventions

On entry, a subroutine minimally saves all registers it intends
to alter except result registers. On exit it restores these
registers. (State preservation is assumed across calls.)

Argument Passing

Any registers may be used, but their use should follow a coherent
pattern. For example, if passing three arguments, pass them in
RO, RI and R2 rather than RO, R2, RS. Saving and restoring
occurs in one place.

E.S.4.2 Exiting - All subroutine exits occur through a single RETURN
macro.

E.S.4.3 Intra-Module
consistency favors a
inter-module sequence.

Calling
calling

Conventions - Designer optional, but
sequence identical to that of the

E.S.4.4 Success/Failure Indication - The C bit will be used to return
the success/failure indicator, where success equals 0, and failure
equals 1. The argument registers can be used to return values or
additional success/failure data.

E.S.4.S Module Checking Routines - Modules are responsible for
verifying the validity of arguments passed to them. The design of a
module's calling sequence should aim at minimizing the validity checks
by minimizing invalid combinations. Programmers may add test code to
perform additional checks during checkout. All code should aim at
discovering an error as close (in terms of instruction executions) to
its occurrence as possible.

E.6 FORMATTING STANDARDS

E.6.l Program Flow

Programs will be organized on the listing such that they flow down the
page, even at the cost of an extra branch or jump.

E-9

SAMPLE CODING STANDARD

For example:

PROCESS

BBB

COMMON

shall appear on the listing as:

AAA:

BBB:

CMN:

TST
BNE

BR

Rather than:

AAA:

CMN:

BBB:

TST
BNE

BR

BBB

CMN

BBB

CMN

E-IO

AAA

SAMPLE CODING STANDARD

E.6.2 Common Exits

A common exit appears as the last code sequence on the listing.
the flow chart:

1 2 3 4

EXIT

will appear on the listing as:

PR1:

BR EXIT

PR2:

....
BR EXIT

PR3:

BR EXIT

PR4-:

EXIT:

And not as:

PRl:

EXIT:

PR2:

BR EXIT

PR3:

BR EXIT

PR4:

IiR EXIT

E-ll

Thus

SAMPLE CODING STANDARD

E.6.3 Code with Interrupts Inhibited

Code that is executed with interrupts inhibited, shall be flagged by a
three semicolon (iii) comment delimiter. For example:

•• ERTZ: ;ENABLE BY RETURNING
iBY SYSTEM SUBROUTINES,

10$:

BIS
BIT
BEQ
RTT

#PR7,PS
#PR7,+2(SP)
10$

; ; ;
; ; ;
; ; ;
; ; ;
; ; ;
i ; ;
; ; ;
; ; ;
; ; ;

INHIBIT INTERRUPTS
C

0
M

M
E

N
T

S

E.7 PROGRAM SOURCE FILES

Source creation and maintenance shall be done in base levels. A base
level is defined as a point at which the program source files have
been frozen. From the freeze point to the next base level,
corrections will not be made directly to the base level itself.
Rather a file of corrections shall be accumulated for each file in the
base level. Whenever an updated source file is desired, the
correction file will be applied to the base file.

The accumulation of corrections shall proceed until a logical breaking
point has occurred (i.e. a milestone or significant implementation
point has been reached). At this time all accumulated corrections
shall be applied to the previous base level to create a new base
level. Correction files will then be started for the new base level.

E.8 FORBIDDEN INSTRUCTION USAGE

1. The use of instructions or index words as literals of the
previous instruction. For example:

MOV @PC,Register

BIC Src,Dst

uses the bit clear instruction as a literal. This may seem
to be a very "neat" way to save a word but what about
maintaining a program using this trick? To compound the
problem, it will not execute properly if I/D space is enabled
on the 11/45. In this case @PC is a D bank reference.

2. The use of the MOV instruction instead of a JMP instruction
to transfer program control to another location. For
example:

MOV #ALPHA,PC

transfers control to location ALPHA. Besides taking longer
to execute (2.3 microseconds for MOV vs. 1.2 for JMP) the
use of MOV instead of JMP makes it nearly impossible to pick
up someone else's program and tell where transfers of control

E-12

SAMPLE CODING STANDARD

take place. What if one would like to get a jump trace of
the execution of a program (a move trace is unheard of)? As
a more general issue, perhaps even other operations such as
ADD and SUB from PC should be discouraged. Possibly one or
tWb words can be saved by using these operations but how many
such occurrences are there?

3. The seemingly "neat" use of all single word instructions
where one double-word instruction could be used and would
execute faster and would not consume additional memory.
Consider the following instruction sequence:

CMP -(Rl) ,(-Rl)

CMP -{Rl} ,-{Rl}

The intent of this instruction sequence is to subtract 8 from
register Rl (not to set condition codes). This can be
accomplished in approximately 1/3 the time via a SUB
instruction (9.4 vs. 3.8 microseconds) at no additional cost
in memory space. Another question here is also, what if RI
is odd? SUB always wins since it will always execute
properly and is always faster!

E.9 RECOMMENDED CODING PRACTICE

E.9.1 Conditional Branches

When using the PDP-II conditional branch instructions, it is
imperative that the correct choice be made between the signed and the
unsigned branches.

SIGNED

BGE
BLT
BGT
BLE

UNSIGNED

BHIS (BCC)
BLO
BHI
BLOS (BCS)

A common pitfall is to use a signed branch (e.g. BGT) when comparing
two memory addresses. All goes well until the two addresses have
opposite signs; that is, one of them goes across the 16K (lOOOOO{8»
bound. This type of coding error usually shows itself as a result of
re-linking at different addresses and/or a change in size of the
program.

E.IO PDP-II VERSION NUMBER STANDARD

The PDP-II Version Number Standard applies to all modules, parameter
files, complete programs, and libraries which are written or caused to
be written, as part of the PDP-II Software Development effort. It is
used to provide unique identification of all released, pre-released,
and in-house software.

It is limited in that, as currently specified, only six characters of
identification are used. Future implementations of the Macro
Assembler, Task Builder, and Librarian should provide for at least

E-13

SAMPLE CODING STANDARD

nine characters, and possibly twelve. It is expected that this
standard will be enhanced as the need arises.

Version Identifier = <form> <version> <edit> <patch>

<form>

<version>

<edit>

<patch>

Used to identify a particular form of a module or
program, where applicable, as in the case of
LINK-II. One alphabetic character, if used, and
null (i.e., a binary 0) if not used.

Used to identify the release, or generation, of a
program. Two decimal digits, starting at 00, and
incremented at the discretion of the project in
order to reflect what, in their opinion, is a
major change.

Used to identify the level to which a particular
release, or generation, of a program or module has
been edited. An edit is defined to be an
alteration to the source form. Two decimal
digits, beginning at 01, and incremented with each
edit; null if no edits.

Used to identify the level to which a particular
release, or generation, of a program or module has
been patched. A patch is defined as an alteration
to a binary form. One alphabetic character,
starting at S, and running sequentially toward Z,
each time a set of patches is released; null if
no patches.

These fields are interrelated. When <version> is changed, then
<patch> and <edit> must be reset to nulls. It is intended that when
<edit> is incremented, then <patch> will be re-set to null, because
the various bugs have been fixed.

E.lO.l Displaying the Version Identifier

The visible output of the version identifier should appear as:

Key <letter> <form> <version> - <edit> <patch>,

where the following Key Letters have been identified:

V released or frozen version
X in-house experimental version
y field test, pre-release, or in-house release version

Note that 'X' corresponds roughly to individual support, 'Y' to group
support, and 'V' to company support.

The dash which separates <version> from <edit> is used only if <edit>
and/or <patch> is not nUll. When a version identifier is displayed as
part of program identification, then the format is:

Program
<space><key-letter><form><version>-<edit><patch>

Name

E-14

Examples:

PIP X03
LINK VB04-C
MACRO YOS-Ol

SAMPLE CODING STANDARD

E.lO.2 Use of the Version Number in the Program

All sources must contain the version number in an .IDENT directive.
For programs (or libraries) which consist of more than one module,
each individual module will follow this version number standard. The
version number of the program or library is not necessarily related to
the version numbers of the constituent modulesi it is perfectly
reasonable, for example, that the first version of a new FORTRAN
library, VOO, contain an existing SIN routine, say VOS-Ol.

Parameter files are also required to contain the version number in an
.IDENT directive. Because the assembler records the last .IDENT seen,
parameter files must precede the program.

Entities which consist of a collection of modules or programs,
have an identification module in the first position.
identification module exists solely to provide identification,
normally consists of something like:

iOTS IDENTIFICATION
.TITLE FTNLIB
.IDENT /003010/
.END

E-lS

will
An

and

APPENDIX F

SAMPLE ASSEMBLY AND CROSS REFERENCE LISTING

COPYRIGHT (C) 1977 BY
DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASS.

THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED
ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE
INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER
COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY
OTHER PERSON. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY
TRANSFERRED.

THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE
AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT
CORPORATION.

DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS
SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DIGITAL.

F-1

1 .TITLE TST205
2 .SBTTL LOCAL DATA STRUCTURES
3
4 :
5 000000 FPTRPY:
6 000000 000004 • WORD 4 REPLY MESSAGE FPT
7 000002 000000 MSGRPY: • WORD 0 ADDRESS OF MESSAGE
8 000004 000012' • WORD SIZE ADDRESS OF MSG SIZE
9 000006 000014' • WORD REPLYN ADDRESS OF REPLY NUM

10 000010 000016' . WORD STATUS ADDRESS OF STATUS RETURN til

11 000012 SIZE: ~
12 000012 000043 • WORD 35 • to
13 000014 REPLYN: t"I

til
14 000014 000000 • WORD 0):II
15 000016 STATUS: til
16 000016 000000 000000 . WORD 0,0 til

til
17 000022 FUNC: :I:
18 000022 030060 • WORD "00 ~

t"I
19 000024 030461 • WORD "11 t<
20 000026 031062 • WORD "22 t; 21 000030 031463 • WORD "33
22 000032 025052 • WORD " .. 0

~ 23 000034 027056 . WORD " n
I\J l:tI

0
TST205 MAIN til

en

25 .SBTTL TST205 MAIN l:tI
til

26 "I:J
27 TST205 IS USED IN TRANSACTION TIM08N TO TEST THE TIM til

l:tI
28 ACTION CODE C.KEY. THE TST RECEIVES THE TEXT ASSOCIATED til
29 WITH THE FUNCTION KEY DEPRESSED. THE TEXT IS 35 CHARACTERS 2:

n
30 IN LENGTH. EACH KEY HAS A SPECIFIED TEXT. DEPENDING til

31 ON THE TEXT, THEN, TST206 SENDS ONE OF 7 REPLIES TO DISPLAY t"1
32 THE TEXT. THE MULTIPLE REPLIES ENABLE THE TEXT OF EACH FUNCTION 1-1

33 KEY TO BE DISPLAYED ON A DIFFERENT LINE til
to.;

34 ; 1-1
2: 35 000036 TSTEP: : G'l

36 000036 016504 000002 MOV 2(R5),R4 ADDRESS OF EXCHANGE MSG
37
38
39 000042 012702 000006 MOV #6,R2 INITIALIZE
40 000046 012701 000022' MOV #FUNC,Rl ADDRESS OF POSSIBLE REPLY TEXT
41 000052 20$:
42 000052 022114 CMP (Rl)+,(R4) LOOP UNTIL FUNC TEXT FOUND
43 000054 001401 BEQ 40$
44 000056 077203 SOB R2,20$ END LOOP

45 000060 40$:
46 000060 010267 177730 MOV R2,REPLYN DEFINE REPLY NUMBER
47
48
49 000064 010467 177712 MOV R4,MSGRPY SAVE ADDRESS OF EM FOR FPT
50
51 til
52 000070 012705 000000' MOV iFPTRPY,R5 SEND REPLY

= 53 000074 004767 OOOOOOG CALL REPLY ~
54 000100 000207 RETURN ~

55 000001 .END til

>'
SYMBOL TABLE til

til
til

FPTRPY OOOOOOR MSGRPY 000002R REPLYN 000014R STATUS 000016R TSTEP 000036RG :.:
tX'

FUNC 000022R REPLY = ****** GX SIZE 000012R ~
t<

• ABS. 000000 000 ~
000102 001 ~

1 ERRORS DETECTED: 0 n
w ~ VIRTUAL MEMORY USED: 84 WORDS (1 PAGES) til

DYNAMIC MEMORY: 16142 WORDS 62 PAGES) til

ELAPSED TIME: 00:00:03

= TST205,TST205=TST205 "III
til
l:O
til
Z

SYMBOL TABLE n
til

FPTRPY OOOOOOR MSGRPY 000002R REPLYN 000014R STATUS 000016R TSTEP 000034RG l:'1
I-f

FUNC = ****** GX REPLY = ****** GX SIZE 000012R til
~

• ABS. 000000 000 I-f

000100 001 Z
t:l

ERRORS DETECTED: 0

VIRTUAL MEMORY USED: 84 WORDS (1 PAGES)
DYNAMIC MEMORY: 3532 WORDS 13 PAGES)
ELAPSED TIME: 00:00:02
LI,OBJ/CRF=TST20S.MAC

SYMBOL CROSS REFERENCE

SYMBOL VALUE

FPTRPY 000000 R
FUNC ****** GX

~ MSGRPY 000002 R
I REPLY ****** GX ~

REPLYN 000014 R
SIZE 000012 R
,STATUS 000016 R
TSTEP 000034 RG

REFERENCES

#1-5 1-50
1-38

#1-7 *1-47
1-51
1-9 #1-13
1-8 #1-11
1-10 #1-15

#1-33

CREF VOl

*1-44

til

~
ttl
t:"I
t!3

>'
til
til
t!3
:B:
~
t"'I
I<

~
o
(')
~ o
til
til

~
t!3
t'IiI
t!3
~
tzl
lZ:
(')
tzl

tot
til
toi
lZ:
(j)

Absolute addresses, 6-13
Absolute binary output, 6-13
Absolute expression, 3-16
Absolute mode, 5-5, 5-7
~solute module, 6-34
Absolute program section, 6-37
Address boundaries, 6-31
Address mode syntax, B-1
Address modes, 5-1
Addressing forms, summary, 5-7
Allocating byte data, 6-17
Allocating word data, 6-18
Allocation requirements, 6-35
Alternate radix, 6-25
Ampersand, 3-2
Angle brackets, 3-3, 3-15, 6-4,

6-25, 6-28, 7-4 to 7-5,
7-16 to 7-17

Apostrophe, 7-10
Argument substitution, 7-16
Arithmetic addition operator

or autoincrement indicator,
3-2

Arithmetic division operator,
3-2

Arithmetic multiplication
operator, 3-2

Arithmetic subtraction
operator or autodecrement
indicator, 3-2

ASCII character set, A-I
ASCII conversion, 3-14
ASCII conversion characters,

6-19
.ASCII directive, 6-20
.ASCIZ directive, 6-21
.ASECT directive, 6-38
Assembler directives, 6-1,

B-1, B-2
Assembler version, 6-8
Assembly language, B-1
Assembly listing, 2-6
Assembly pass 1, 1-1
Asterisk, 3-2
At sign (@), 3-2
Attribute of the current

location counter, 3-12
Autodecrement deferred

mode, 5-3, 5-7
Autodecrement mode, 5-7
Autoincrement deferred

mode, 5-3, 5-7
Autoincrement mode, 5-2, 5-7

INDEX

AB operator, 6-25
Backslash, 3-2
Binary operators, 3-15
Blank lines, 2-2
.BLKB directive, 6-30
.BLKW directive, 6-30
Blocks of storage, reserving,

6-30
Branch instruction addressing,

5-8
.BYTE directive, 6-17

AC operator, 6-27
Calling conventions, E-8
Calling macros, 7-3
Changing default radix, 3-13
Changing value of location

counter, 3-12
Character set, 3-1
Character substitution, 7-16
Code and data separation, 6-38
Code or data sharing, 6-38
Coding standard, E-l
Colon, 3-1
Comma, 3-2
Command string format, 8-1
Comment, 6-14, E-2
Comment field, 2-5
Comment field indicator, 3-2
Complementing an argument, 6-27
Complex relocatable expression,

3-16
Complex relocation, 4-1
Concatenated, 6-35
Concatenation of macro arguments,

7-10
Conditional assembly block, 6-41
Conditional assembly directive,

6-41, 6-42
Conditional branches, E-13
Continuation lines, 2-2
Creating local symbols

automatically, 7-7
Creating program sections, 6-36
Cross-reference listing (CREF) ,

8-5
Cross-reference processor, 8-4
.CSECT directive, 6-17, 6-38
Current location counter, 2-2,

3-11, 3-14, 5-6, 6-29

Index-l

INDEX (Cont.)

AD operator, 6-25
Data storage directives, 6-17
Date, 6-8
Default object module name,

6-11
Default register definitions,

6-15
Deferred addressing indicator,

3-2
Defining macros, 7-1
Device registers, E-2
Diagnostic, 7-14
Diagnostic error message

summary, D-1
Direct assignment operator, 3-1
Direct assignment statements,

3-7
Directives, 2-5, 5-9, 6-1
Double ASCII character indicator,

3-2
Double colon, 3-1, 3-7
Double equal sign, 3-1, 3-7
Double quote, 3-2, 3-14, 6-19
.DSABL directive, 3-7, 3-9,

6-13 to 6-15, 6-27
Duplication of code, 7-17

EMT, 5-8
.ENABL directive, 5-8, 6-13 to

6-15, 6-27
.END directive, 6-31
.ENDC directive, 6-41
.ENDM directive, 7-2
End of the source input, 6-31
.ENDR directive, 7-18
Entry-point instructions, 6-33
.EOT directive, 6-31
Equal sign, 3-1
Error codes, D-1
.ERROR directive, 7-14
Error messages, 8-8 to 8-11
Evaluation of expressions, 3-15
.EVEN, 6-29
Exclamation point, 3-2
Exiting, E-9
Expressions, 3-14, 3-15
External expression, 3-15, 3-16
External symbols, 6-40
Externally-defined macro, 7-18

AF operator, 3-14, 6-27
File specification format, 8-7
File Specification Qualifiers

TRAX, 8-3

Finding address mode of macro
arguments, 7-13

Finding number of characters
in strings, 7-12

Floating point,
data, 6-26
number, 6-28
number specification, 6-27
rounding, 6-14, 6-26
storage directives, 6-27
truncation, 6-14,- 6-27

.FLT2 directive, 6-27

.FLT4 directive, 6-27
Forbidden instruction usage,

E-12
Form-feed, 6-13, 7-3
Format control, 2-6
Formatting standards, E-9
Forward referencing, 3-8
Function directives, 6-13

General purpose registers, E-2
General registers, 3-9
Global,

label, 6-40
references, 6-15
symbol, 2-3, 6-40
symbol directory, 1-2

.GLOBAL directive, 3-7, 6-39
GSD, 1-2

Hardware registers, E-2
Horizontal formatting, 2-6

.IF directive, 6-40

.IFF directive, 6-43, 6-44

.IFT directive, 6-43

.IFTF directive, 6-43

.IIF directive, 6-45
Illegal characters, 3-3
Immediate conditional assembly,

6-45
Immediate expression indicator,

3-2
Immediate mode, 5-4, 5-7
Immediate mode deferred, 5-5
Implicit .WORD directive, 2-5,

6-18
Indefinite repeat block

directives, 7-15
Index deferred mode, 5-4, 5-7
Index mode, 5-4, 5-7

Index-2

INDEX (Cont.)

Indirect command files, 8-6
Initial argument or expression

indicator, 3-2
Initial register indicator, 3-2
Instruction set, C-l
Invoking MACRO under TRAX, 8-1
.IRP directive, 7-15, 7-16
.IRPC directive, 7-15, 7-16
Item or field terminator, 3-1

Keyword arguments, 7-4, 7-9

Label field, 2-2
Label terminator, 3-1
Left angle bracket, 3-2
Left parenthesis, 3-2
.LIMIT directive, 6-31
Line format, E-l
Linking, 4-1
.LIST directive, 6-1
Listing conditional assemblies,

6-4
Listing control directives, 6-1
Listing control switches, 8-2
Listing level count, 6-2
Listing of binary extensions, 6-4
Listing of comments, 6-4
Listing of generated binary code,

6-3
Listing of macro calls, 6-4
Listing of macro definitions, 6-4
Listing "of macro expansion binary

code, 6-4
Listing of repeat range

expansions, 6-4
Listing of source line sequence

numbers, 6-3
Listing of source lines, 6-4
Listing of the current location

counter, 6-3
Listing of the symbol table, 6-5
Local symbol block, 6-14
Local symbol block delimiters,

3-10
Local symbols, 3-6, 3-10, 3-11
Location counter, 6-36
Location counter control

directives, 6-29
Logical AND operator, 3-2, 6-42
Logical inclusive OR operator,

3-2, 6-42
Lower-case ASCII, 6-14

Macro arguments, 7-6
Macro attribute directives, 7-11
Macro call, 2-5, 7-3, 7-5
Macro call arguments, 7-4
Macro call numeric argument

indicator, 3-2
MACRO character sets, A-l
Macro definition, 7-1, 7-15
Macro definition arguments, 7-4
Macro definition formatting, 7-3
Macro definition termination, 7-2
MACRO directives, 5-9, C-4
Macro directives, 7-1
Macro expansion termination, 7-3
Macro library directive, 7-18
Macro name, 7-1, 7-4
Macro names, E-5
Macro nesting, 7-5
Macro qualifiers, 8-2
Macro symbol table, 3-6
MACRO symbols, 3-5
.MCALL directive, 7-18
Memory allocation, 6-32, 6-33,

6-38
Memory allocation and mapping,

6-32
.MEXIT directive, 7-3
Minus sign, 3-2
Modularity, E-8
Module checking routines, E-9
Module preface, E-5
Multi-defined label, 2-4
Multiple definitions of local

symbols, 3-11
Multiple labels, 2-4

Naming standards, E-2
.NARG directive, 7-11
.NCHR directive, 7-11, 7-12
Negative numbers, 3-13
Nested conditional directives,

6-43
Nested macros, 7-3, 7-5
.NLIST directive, 6-1, 6-11
.NTYPE directive, 7-11, 7-13
Number of arguments in macro

calls, 7-7, 7-11
Number sign, 3-2
Numbers, 3-13
Numeric control, 6-24
Numeric control operators, 6-26,

6-27
Numeric directives, 6-26

Index-3

INDEX (Cont.)

~O operator, 6-25
Object module, 4-1
Object module name, 6-11
Octal radix, 3-13
.000 directive, 6-29
Op codes, 2-4, C-l
Operand field, 2-4
Operand field separator, 3-2
Operating procedures, 8-1
Operator field, 2-4
Order of symbol table search, 3-6
Other symbols, E-3
Overlaid, 6-35
Overlays, 6-33

.PAGE directive, 6-12
Page eject, 7-3
Page ejection, 6-13
Page formatting, 2-6
Page headings, 6-8
Page number, 6-8
Passing numeric arguments as

symbols, 6-45
Percent sign, 3-2
Permanent symbol table, 3-5, C-l
Plus sign, 3-2
.PRINT directive, 7-14
Processor priority, E-3
Program boundaries directive,

6-31
Program counter, 3-9, 5-1
Program modules, E-5
Program section access, 6-33
Program section name, 6-33
Program sections, 3-12, 6-32
Program source files, E-12
Program-local symbols, E-4
Programming standards and

conventions, 2-1
.PSECT directive, 3-12, 6-32,

6-35

AR operator, 6-23
.RAD50 directive, 3-13, 6-22
Radix control, 6-24
Radix control operators, 6-25
.RADIX directive, 3-13, 6-24
Radix-50 character set, A-4
Radix-50 control operator, 6-23
Radix-50 data, 6-22
Read-only access, 6-33
Read/write access, 6-33
Register deferred mode, 5-2
Register expression, 5-1
Register, mode, 5-1, 5-7

Register standards, E-2
Register symbols, 3-9
Register term indicator, 3-1
Relative addresses, 6-13
Relative addressing mode, 5-6
Relative deferred mode, 5-6, 5-7
Relative mode, 5-6, 5-7
Relocatability, 6-34
Relocatable expressions, 3-16, 4-1
Relocatable module, 6-34
Relocatable program sections, 6-37
Relocation, 4-1
Relocation bias, 2-2, 6-34
Repeat block directive, 7-18
.REPT directive, 7-18
Reserving storage, 6-30
Reserving storage space, 3-13,

6-30
Right parenthesis, 3-2

.SBTTL directive, 6-8, 6-11
Scope of the program section, 6-33
Semicolon, 3-2
Sending messages to listing file,

7-14
Separating and delimiting

characters, 3-2
Single ASCII character indicator,

3-2
Single quote, 3-2, 3-14, 6-19,

7-10
Slash, 3-2
Source line sequence numbers, 6-3
Space, 3-1
Special characters, B-1
Special characters in macro

arguments, 7-6
Stack pointer, 3-9
Statement format, 2-1
Storing Radix-50 data, 6-23
Subconditional assembly, 6-43
Subtitle, 6-8
Success/failure indication, E-9
Symbol control directive, 6-39
Symbol examples, E-4
Symbol table listing, 1-2
Symbolic arguments of listing

control directives, 6-3, 6-4
Symbols, E-3
Symbols and expressions, 3-1
System macro libraries, 7-18

Tab, 3-1
Tab character, 2-2
Table of contents, 6-4, 6-11

Index-4

INDEX (Cont.)

Teleprinter mode, 6-5
Terminal argument or expression

indicator, 3-2
Terminal register indicator, 3-2
Terminating directives, 6-31
Terms, 3-14
Time-of-day, 6-8
.TITLE directive, 6-11
Title of the object module, 6-8
Translating to ASCII, 6-20, 6-21
Translating to Radix-50, 6-22
Trap instructions, 5-8
TRAX Command String Format, 8-1
TRAX File Specification Format,

8-7
TRAX File Specification Qualifiers,

8-3
TRAX Indirect Command Files, 8-6
TRAX MACRO in Batch Mode, 8-6
TRAX MACRO Qualifiers, 8-2
TRAX Operating Procedures, 8-1

Unary and binary operators, 3-5
Unary control, 6-24
Unary operator ordering, 6-27

Unary operators, 3-15
Unconditional assembly, 6-43
Undefined symbols, 3-7, 3-14
Universal unary operator or

argument indicator, 3-2
Up arrow or circumflex, 3-2
Up-arrow, 3-3
Up-arrow (A) construction, 7-5
User symbol table, 3-5
User-defined and macro symbols,

3-5
User-defined macro libraries,

7-18
Using the standard symbolics, E-3

Version number, 6-12
Version number standard, E-13

.WORD directive, 3-11, 6-18

Index-5

READER'S COMMENTS

TRAX MACRO
Reference Manual
AA-D340A-TC

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. Problems with software should be reported
on a Software Performance Report (SPR) form. If you
require a written reply and are eligible to receive
one under SPR service, submit your comments on an SPR
form.

"Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

o Assembly language programmer

o Higher-level language programmer

o Occasional programmer (experienced)

o User with little programming experience

o Student programmer

o Non-programmer interested in computer concepts and capabilities

Name Date ________________________ __

Organization __ _

Street __ __

City ___________________________ State _____________ Zip Code ____________ __

or
,.._ .. _

---F'old lIere---.

. --- Do Not Tear - Fold lIere and Staple --.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

~DmDDmD
Software Documentation
146 Main Street ML5-5/E39
Maynard, Massachusetts 01754

FIRST CLASS

PERMIT NO. 33

MAYNARD, MASS.

