
July 1978

This document, which is intended primarily for reference use,
describes the structure and organization of the four major
COBOL divisions as well as the rules governing syntaxand
semantics.

TRAX
COBOL Language
Reference Manual

Order No. AA-D338A-TC

OPERATING SYSTEM AND VERSION: TRAX Version 1.0

SOFTWARE VERSION: TRAX COBOL V03.5

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation · maynard, massachusetts

First Printing, July 1978

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright © 1978 by Digital Equipment Corporation

The postage-prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL
DEC
PDP
DECUS
UNIBUS
COMPUTER LABS
COMTEX
DDT
DECCOMM
ASSIST-II

DECsystem-lO
DECtape
DIBOL
EDUSYSTEM
FLIP CHIP

. FOCAL
INDAC
LAB-8
DECSYSTEM-20
RTS-8

MASSBUS
OMNIBUS
OS/8
PHA
RSTS
RSX
TYPESET-8
TYPESET-II
TMS-ll
ITPS-IO

6178-15

PREFACE

ACKNOWLEDGMENT

CHAPTER 1

1.1
1.1.1
1.1.2
1.1.3
1.2
1.2.1
1.2.2
1.2.3
1.2.3.1
1.2.3.2
1.2.4
1.2.4.1
1.2.4.2
1.2.5
1.2.6
1.2.7
1.3
1.3.1
1.3.2
1.3.3
1.4
1.4.1
1.4.1.1
1.4.1.2
1.4.1.3
1.4.1.4
1.4.1.5
1.4.1.6
1.4.1.7
1.4.1.8
1.4.1.9
1.4.2
1.5
1.5.1
1.5.2
1.5.3
1.5.4
1.5.5

CHAPTER 2

2.1
2.2
2.3
2.4

CONTENTS

OVERALL LANGUAGE ELEMENTS AND TERMINOLOGY

NOTATIONS USED IN FORMATS AND RULES
General Format
Syntax Rules
General Rules

LANGUAGE ELEMENTS
COBOL Character Set
Character-Strings
COBOL Words
User-Defined Words
Reserved Words
Literals
Numeric Literal
Alphanumeric Literals
Separators
Format Punctuation
Use of Certain Special Characters in Formats

META LANGUAGE ELEMENTS
Underline
Brackets and Braces
The Ellipsis

COBOL SOURCE REFERENCE FORMAT
Conventional Reference Format
Sequence Numbers
Continuation/Comment Indicator Area
Area A
Area B
Identification Field
Continuation of Lines
Blank Lines
Conunent Lines
Short Lines and Tab Characters
Terminal Reference Format

LANGUAGE ORGANIZATION
Division Header
Section Header
Paragraph, Paragraph Header, Paragraph-name
Data Division Entries
Dec1aratives

IDENTIFICATION DIVISION

GENERAL DESCRIPTION
ORGANIZATION
THE PROGRAM-ID PARAGRAPH
THE DATE-COMPILED PARAGRAPH

iii

Page

ix

xi

1-1

1-1
1-2
1-3
1-3
1-3
1-3
1-3
1-4
1-4
1-4
1-7
1-7
1-8
1-8
1-9
1-10
1-10
1-10
1-10
1-11
1-11
1-12
1':"'14
1-14
1-14
1-14
1-14
1-15
1-15
1-15
1-16
1-17
1-17
1-18
1-18
1-19
1-20
1-20

2-1

2-1
2-1
2-3
2-4

CHAPTER 3

3.1
3.2
3.3
3.4
3.4.1
3.4.2
3.4.3
3.5
3.5.1
3.5.2
3.6
3.6.1
3.7

CHAPTER 4

4.1
4.1.1
4.1.2
4.1
4.2.1
4.2.2
4.3
4.3.1
4.3.2
4.3.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.13.1
4.13.2
4.13.3
4.13.4
4.13.5
4.13.6
4 .. 13.7
4.13 .. 8
4.13.9
4.13.10
4.13.11

4.14
4.15
4 .. 16
4 .. 17
4.18
4.19
4.20

CONTENTS (CONT.)

ENVIRONMENT DIVISION

GENERAL DESCRIPTION
ORGANIZATION
STRUCTURE
CONFIGURATION SECTION

The SOURCE-COMPUTER Paragraph
The OBJECT-COMPUTER Paragraph
The SPECIAL-NAMES Paragraph

INPUT-OUTPUT SECTION
File Organizations
Access Modes

THE FILE-CONTROL BARAGRAPH
The File-Control Entry

THE I-O-CONTROL PARAGRAPH

DATA DIVISION

OVERALL APPROACH
Data Division Organization
Data Division Structure

FILE SECTION
Fi1e-Description-Entry
Record-Description-Entry

WORKING-STORAGE SECTION
Noncontiguous Working-Storage
Working-Storage Records
Initial Values

LINKAGE SECTION
THE FILE DESCRIPTION - COMPLETE ENTRY SKELETON
THE BLOCK CONTAINS CLAUSE
THE CODE-SET CLAUSE
THE DATA RECORDS CLAUSE
THE LABEL RECORDS CLAUSE
THE LINAGE CLAUSE
THE RECORD CONTAINS CLAUSE
THE VALUE OF CLAUSE
DATA DESCRIPTION CONCEPT

Logical Record and File Concept
Physical Aspects of a File
Conceptual Characteristics of a File
Record Concepts
Concept of Levels
Level-Numbers
Concept of Classes of Data
Selection of Numeric Character Representation
Algebraic Signs
Standard Alignment Rules
Item Alignment for Increased Object-Code
Efficiency

THE DATA DESCRIPTION - COMPLETE ENTRY SKELETON
THE BLANK WHEN ZERO CLAUSE
THE DATA-NAME OR FILLER CLAUSE
THE JUSTIFIED CLAUSE
LEVEL-NUMBER
THE OCCURS CLAUSE
THE PICTURE CLAUSE

iv

Page

3-1

3-1
3-1
3-2
3-3
3-3
3-4
3-5
3-8
3-8
3-9
3-10
3-10
3-18

4-1

4-1
4-1
4-2
4-2
4-2
4-2
4-3
4-3
4-3
4-3
4-3
4-5
4-6
4-8
4-9
4-10
4-11
4-14
4-16
4-17
4-17
4-17
4-17
4-18
4-18
4-18
4-19
4-20
4-20
4-20

4-21
4-22
4-25
4-26
4-27
4-28
4-29
4-32

4.21
4.22
4.23
4.24
4.25
4.26

CHAPTER 5

5.1
5.1.1
5.1.2
5.1.3
5.2
5.3
5.4
5.4.1
5.4.2
5.4.3
5.4.4
5.4.5
5.4.6
5.4.7
5.4.8
5.4.8.1
5.4.8.2
5.4.8.3
5.4.8.4

5.4.8.5
5.4.8.6
5.4.9
5.4.9.1

5.4.9.2
5.4.9.3
5.5
5.5.1
5.5.2
5.6
5.6.1
5.6.2.
5.6.3
5.6.4
5.6.5

5.6.6
5.6.7

5.6.8
5.6.9
5.6.10
5.6.11
5.6.12
5.6.13
5.6.14
5.7

CONTENTS (CONT.)

THE REDEFINES CLAUSE
THE RENAMES CLAUSE
THE SIGN CLAUSE
THE SYNCHRONIZED CLAUSE
THE USAGE CLAUSE
THE VALUE CLAUSE

PROCEDURE DIVISION

GENERAL DESCRIPTION
Dec1aratives
Procedures
Execution

THE PROCEDURE DIVISION HEADER
PROCEDURE DIVISION BODY
STATEMENTS AND SENTENCES

Conditional Statement
Conditional Sentence
Compiler Directing Statement
Compiler Directing Sentence
Imperative Statement
Imperative Sentence
Specific Statement Formats
Uniqueness of Reference
Qualification
Subscripting
Indexing
Internal Formats of Subscripts, Index-names
and Index-data-items
Identifier
Condition-Name
Explicit and Implicit Specifications
Explicit and Implicit Procedure Division
References
Explicit and Implicit Transfers of Control
Expl~cit and Implicit Attributes

ARITHMETIC EXPRESSIONS
Arithmetic Operators
Formation and Evaluation Rules

CONDITIONAL EXPRESSIONS
Simple Conditions
Relation Condition
Comparison of Numeric Operands
Comparison of Alphanumeric Operands
Comparisons Involving Index-Names and/or
Index Data Items
Class Condition
Condition-Name Condition (Conditional
Variable)
Switch-Status Condition
Sign Condition
Complex Conditions
Negated Simple Conditions
Combined and Negated Combined Conditions
Abbreviated combined Relation Conditions
Condition Evaluation Rules

COMMON PHRASES AND GENERAL RULES FOR STATEMENT
FORMATS

v

Page

4-42
4-44
4-46
4-48
4-50
4-52

5-1

5-1
5-1
5-1
5-2
5-2
5-3
5-4
5-4
5-4
5-5
5-5
5-5
5-6
5-7
5-8
5-8
5-9
5-10

5-11
5-11
5-12
5-12

5-13
5-13
5'-14
5-14
5-14
5-15
5-16
5-16
5-17
5-18
5-18

5-19
5-20

5-20
5-21
5-21
5-21
5-22
5-22
5-24
5-25

5-26

5.7.1
5.7.2
5.7.3
5.7.4
5.7.5
5.7.6
5.7.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20

·5.21
5.22
5.23
5.24
5.25
5.26
5.27
5.28
5.29
5.30
5.31
5.32
5.33
5.34
5.35
5.36
5.37
5.38
5.39
5.40
5.41
5.42
5.43
5.44
5.45

CHAPTER 6

6.1
6.1.1
6.2
6.2.1
6.2.2

CHAPTER 7

7.1
7.2

CONTENT S (CONT .)

The ROUNDED Phrase
The SIZE ERROR Phrase
The CORRESPONDING Phrase
The Arithmetic Statements
Multiple Results in Arithmetic Statements
Overlapping Operands
Incompatible Data

THE ACCEPT STATEMENT
THE ADD STATEMENT
THE ALTER STATEMENT
THE CALL STATEMENT
THE CLOSE STATEMENT (SEQUENTIAL)
THE CLOSE STATEMENT (INDEXED & RELATIVE)
THE COMPUTE STATEMENT
THE DELETE STATEMENT (INDEXED & RELATIVE)
THE DISPLAY STATEMENT
THE DIVIDE STATEMENT
THE EXIT STATEMENT
THE GO TO STATEMENT
THE IF STATEMENT
THE INSPECT STATEMENT
THE MOVE STATEMENT
THE MULTIPLY STATEMENT
THE OPEN STATEMENT (SEQUENTIAL)
THE OPEN STATEMENT (INDEXED & RELATIVE)
THE PERFORM STATEMENT
THE READ STATEMENT (SEQUENTIAL)
THE READ STATEMENT (RELATIVE)
THE READ STATEMENT (INDEXED)
THE REWRITE STATEMENT (SEQUENTIAL)
THE REWRITE STATEMENT (RELATIVE)
THE REWRITE STATEMENT (INDEXED)
THE SEARCH STATEMENT
THE SET STATEMENT
THE START STATEMENT (RELATIVE)
THE START STATEMENT (INDEXED)
THE STOP STATEMENT
THE STRING STATEMENT
THE SUBTRACT STATEMENT
THE UNLOCK STATEMENT
THE UNSTRING STATEMENT
THE USE STATEMENT
THE WRITE STATEMENT (SEQUENTIAL)
THE WRITE STATEMENT (RELATIVE)
THE WRITE STATEMENT (INDEXED)

SEGMENTATION

ORGANIZATION
Non-Overlayab1e vs. Over1ayab1e Segments

USING THE SEGMENTATION FACILITY
The SEGMENT-LIMIT Clause
Segment Numbers

THE LIBRARY MODULE

FUNCTION
THE COpy STATEMENT

vi

Page

5-26
5-26
5-27
5-27
5-28
5-29
5-29
5-30
5-32
5-34

·5-35
5-37
5-42
5-44
5-45
5-47
5-49
5-52
5-53
5-54
5-56
5-63
5-67
5-69
5-73
5-76
5-85
5-88
5-92
5-96
5-98
5-100
5-103
5-108
5-:-110
5-112
5-114
5-115
5-118
5-120
5-121
5-125
5-126
5-130
5-133

6-1

6-1
6-1
6-2
6-2
6-2

7-1

7-1
7-1

APPENDIX A

GLOSSARY

INDEX

FIGURE

TABLE

1-1

3-1
3-2
5-1

5-2

5-3

5-4
5-5

CONTENT S (CaNT.)

Page

RESERVED WORDS A-I

Glossary-l

Index-l

FIGURES

COBOL Programming Form

TABLES

Access Modes and File Organizations
possible Combinations of Status Keys 1 and 2
Combination of Symbols in Arithmetic
Expression
Combinations of Conditions, Logical Operators,
and Parentheses
Relationship of Categories of Files and the
Formats of the CLOSE Statement
Permissible Statements
Permissible Statements

vii

1-13

3-9
3-15

5-16

5-23

5-38·
5-70
5-74

PREFACE

This manual describes the COBOL language as it has been implemented in
the Digital Equipment Corporation Transaction Processing System (TRAX).
The goal of TRAX COBOL'S implementors was a strict adherence to the
1974 ANSI standard. Furthermore, the organization and textual material
in this manual is based on th~ American National Standard COBOL,
X3.23-1974 document.

Chapter 1 contains the overall language considerations; the reader
should be familiar with its contents before using the remaining
chapters. Chapters 2 through 5 detail the four major divisions of a
COBOL program. Chapter 6 covers the Segmentation module, and Chapter
7 discusses the Library module, which provides a capability for
specifying source text that is to be copied from a library file.
Appendixes A and B contain the COBOL reserved word list and charts of
the ASCII character set.

!his manual is a reference manual intended primarily as an accurate
presentation of the rules governing the syntax and semantics of all
language elements implemented in'TRAX COBOL. It assumes that the
reader has a knowledge of the COBOL language;' it is not a tutor ial
guide for beginning COBOL programmers. Those wishing to learn the
COBOL language are referred to the following books:

Farina, Mario V., COBOL Simplified, New Jersey~ Prentice
Hall, Inc., 1968.

'McCameron, Fritz A., COBOL Logic and
Edition, Homewood, Illinois, Richard D.

Programming,
Irwin, Inc.,

Third
1974.

McCracken, Daniel D. and Garbassi, Umberto, A Guide to
COBOL Programming, Second Edition, New York, John Wiley and
Sons, In~., 1970.

McCracken, Daniel D., A Simplified Guide to Structured COBOL
Programming, New York, John Wiley & Sons, Inc., 1976.

The COBOL programmer is referred to the TRAX COBOL User's Guide and
the TRAX SORT User's Guide, the companion manuals to this language
reference manual. They contain additional information on the
compiler, the runtime system, a complete list of the TRAX COBOL
compiler error messages and the utility programs.

ix

ACKNOWLEDGMENT

COBOL is an industry language. It is not the property of any company
or group of companies, or of any organization or group of
organizations.

No warranty, expressed or implied, is made by any contributor or by
the CODASYL Programming Language Committee as to the accuracy and
functioning of the programming system and language. Moreover, no
responsibility is assumed by any contributor or by the committee in
connection therewith.

The authors and copyright holders of the copyrighted material used
herein are: FLOW-MATIC (trademark of Sperry Rand Corporation),
programming for the Univac (R) I and II, Data Automation Systems
copyrighted 1958, 1959, by Sperry Rand Corporation; IBM Commercial
Translator Form No. F28-80l3, copyrighted 1959 by IBM; FACT, DSI
27A5260-2760, copyrighted 1960 by Minneapolis-Honeywell.

They have specifically authorized the use of this material, in whole
or in part, in the COBOL specifications. Such authorization extends
to the reproduction and use of COBOL specifications in programming
manuals or similar publications.

xi

CHAPTER 1

OVERALL LANGUAGE ELEMENTS AND TERMINOLOGY

1.1 NOTATIONS USED IN FORMATS AND RULES

This chapter contains general information about 'the special terms,
language elements, and general formats required for an ANSI standard
COBOL source program. It describes the documentation strategy used to
present the language elements to you and also provides you with a
description of the meta language elements which describe the COBOL
language. Actual source language statements are discussed in
subsequent chapters.

The COBOL language consists of the following elements:

• Divisions

• Sections

• Paragraphs

• Sentences

• Clauses

• Statements

• Entries

• Words

• Characters

These elements combine to form the framework for a COBOL source
program. TRAX COBOL provides four divisions; the Identification
Division, the Environment Division, the Data Division, and the
Procedure Division. Each division can consist of zero or more
sections containing zero or more paragraphs. Each paragraph can
contain one or more sentences, clauses, statements, or entries. Each
of these are composed of words made up from characters or
character-strings.

1-1

OVERALL LANGUAGE ELEMENTS AND TERMINOLOGY

The meta language elements, those elements which "appear in text but
are not actually coded into COBOL source statements, serve only to
describe the language in terms of allowable use. These elements,
completely described in Section 1.3, are as follows:

• Underlined Words

• Brackets and Braces

• Ellipsis

The COBOL language elements (divisions, sections, paragraphs, etc.)
are presented according to the following outline:

1. Each COBOL division begins a separate chapter.

2. Each section, clause or statement constituting a division
begins on a new page and constitutes a new section.

3. Each section, clause, or
subsections as follows:

statement is

A. Name (section, clause, or statement)

B. Description or function

C. General Format

D. Syntax Rules

E. General Rules

F. Example (if required)

1.1.1 General Format

described in

A general format depicts the specific arrangement of the elements of ~
clause, statement, paragraph, etc. These elements are described in
Section 1.5, Language Organization. Throughout this document, a
format i~ shown adjacent to information defining a language element.
When more than one specific arrangement is permitted, the general
format is separated into numbered formats. You must write clauses in
the sequence given in the general formats. Optional clauses, if you
use them, must also appear in the sequence shown. In certain cases
(stated explicitly in the rules associated with a given format) the
clauses may appear in sequences other than that shown. Application
requirements or restrictions are shown as rules.

1-2

OVERALL LANGUAGE ELEMENTS AND. TERMINOLOGY

1.1.2 Syntax ~ules

Syntax rules define the order in which words or elements are arranged
to form larger elements such as sentences, clauses, or statements.
Syntax rules also impose restrictions on individual words or elements.
These rules define how you must write the statements; that is, the
order in which each element may appear, and what each represents.

1.1.3 General Rules

General rules define the meaning of an element or the relationship of
meanings of a set of elements. They define the semantics of the
statement and its effect on execution or compilation.

1.2 LANGUAGE ELEMENTS

The elements which make up a statement, clause, sentence, etc.
consist of the COBOL character set, character-strings, COBOL words,
reserved words, user-defined words, separators/punctuation, and
literals.

1.2.1 COBOL Character Set

The basic and indivisible unit of the COBOL language is the character.
The individual characters of the language are concatenated to form
separators and character-strings. The set of characters used to form
COBOL character-strings and separators includes the letters A through
Z, the digits 0 through 9, and the special characters +, -, *, I, **,
>, <, and (Separators are discussed in Section 1.2.5, Separators.)

NOTE

Special characters are always required
when they appear in formats.

1.2.2 Character-Strings

A character-string is a character or a
characters that form a COBOL word,
character-string, a comment-entry, etc.

1-3

sequence of
a literal,

contiguous
a PICTURE

OVERALL LANGUAGE ELEMENTS AND TERMINOLOGY

1.2.3 COBOL Words

A COBOL word is a character-string of not more than 30 ASCII
characters. There are two classes of words: user-defined words and
reserved-words. Within a given source program, these classes are
mutually exclusive; moreover a COBOL word may belong to one and only
one of these classes.

1.2.3.1. User-Defined Words - A user-defined word is a COBOL word that
you must supply to satisfy the format of a clause or statement. You
must select each character of a user-defined word from the letters A
through Z, the digits 0 through 9, and the hyphen (-).

NOTE

Do not use the hyphen as the first or
last character of a user-defined word.

There are 12 types of user-defined words:

1. condition-name

2. data-name

3. file-name

4. index-name

5. level-number

6. mnemonic-name

7. paragraph-name

8. program-name

9. record-name

10. section-name

11. segment-number

12. text-name

Each of these user-defined word typ~s is described in the glossary
which appears at the end of this manual.

1.2.3.2 Reserved Words - A reserved word is a COBOL word that is one
of a specific list that may be used in COBOL source programs but only

1-4

OVERALL LANGUAGE ELEMENTS AND TERMINOLOGY

as specified in the general formats. You can not use a reserved
as a user-defined word; the two are mutually exclusive.
Appendix A for a complete list of COBOL reserved words).

There are six types of reserved words:

1. Key words

word
(See

A key word is required when the format in which the word
appears is used in a source program. Within each format, key
words are upper case and underlined. Consider the following
example.

COMPUTE identifier-l [ROUNDED] [, identifier-2 [ROUNDED]] •••

=arithmetic-expression [iON SIZE ERROR imperative-statement]

In this 'case, the words COMPUTE, ROUNDED, SIZE, and ERROR are
key words.

2. Optional Words

Within each format, upper case words that are not underlined
are called optional words. You may use or omit these words
indiscriminately. The presence or absence of an optional
word does not' alter the semantics of the COBOL program in
which it appears. Consider the previous example; the word
ON in this case, is an optional word.

3. Connectives

There are three types of connectives:

a. Qualifier connectives that associate a data-name, a
condition-name, or a text-name with its qualifiers: OF,
IN. (See Section 5.4.8.1, Qualification.)

b. Series connectives that link two or more consecutive
operands, (separator comma) or (separator semicolon).

c. Logical connectives that are used in the formation of the
following conditions:

AND, OR, AND NOT, OR NOT.

4. Special Registers

The TRAX COBOL compiler provides a reserved word that names
and refers to a special register. This word, LINAGE-COUNTER,
refers to a compiler generated storage area. It is used to
store information produced .in conjunction with the use of a
specific COBOL feature. LINAGE-COUNTER is described in
Section 4.9, The LINAGE Clause.

1-5

OVERALL LANGUAGE ELEMENTS AND TERMINOLOGY

5. Figurative Constants

Certain reserved words, Figurative Constants, are used to
name and refer to specific constant values.

Figurative constant values are generated by the compiler and
referenced through the use of the reserved words given below.
These words must not be bounded by quotation marks when used
as figurative constants. The singular and plural forms of
figurative constants are equivalent and may be used
interchangeably.

The figurative constant values and the reserved words used to
reference them are as follows:

ZERO
ZEROS
ZEROES

SPACE
SPACES

HIGH-VALUE
HIGH-VALUES

LOW-VALUE
LOW-VALUES

QUOTE
QUOTES

ALL literal

Represents the value 10 1, or one or more of the
character 10 1, depending on context.

Represents one or more of the character space
from the computer IS character set.

Represents one or more of the character
has the highest ordinal position in
computer IS collating sequence (octal 177).

Represents one or more of the character
has the lowest ordinal position in
computer IS collating sequence (octal 000).

Represents one or more of the character III I

that
the

that
the

Represents one or more repetitions of the
string of characters comprising the literal.
The literal must be either an alphanumeric
literal or a figurative constant other than ALL
literal. When a figurative constant is used,
the word ALL is redundant and is used for
readability only.

When a figurative constant represents a string of one or more
characters, the 'length of the string is determined by the
compiler from context according to the following rules:

1. When a figurative constant is associated with another
data item, for example, when the figurative constant
is moved to or compared with another data item, the
string of characters specified by the figurative
constant is repeated character by character (or
truncated in the case of ALL literal) on the right
until the size of the resultant string is equal to the
size in characters of the associated data item. This
is done prior to and independent of the application of
any JUSTIFIED clause that may be associated with the
data item.

1-6

OVERALL LANGUAGE ELEMENTS AND TERMINOLOGY

2. When a figurative constant is not associated with
another data item, for example, when the figurative
constant appears in a DISPLAY, STRING, UNSTRING or
STOP statement, the length of the string is one
character.

A figurative constant may be used wherever a literal appears
in a format, except that whenever the literal is restricted
to numeric characters, the only figurative constant permitted
is ZERO (ZEROS, ZEROES).

Each reserved word that is used to reference a
constant value is a distinct character-string
exception of the construction ALL literal, which is
of two distinct character-strings.

6. Special-Character Words

figurative
with the

composed

The arithmetic operators +, , *, /, ** and relation
characters <,>, and = are reserved words.

1.2.4 Literals

A literal is a character-string whose value is determined by the
ordered set of characters of which it is composed. You can also use a
figurative constant as a literal. There are two types of literals,
numeric, and alphanumeric.

1.2.4.1 Numeric Literal - A numeric literal is a character-string of
from 1 to 20 characters selected from the digits 0 through 9, the plus
sign, the minus sign, and/or the decimal point. The rules for the
formation of numeric literals are as follows:

1. A literal must contain at least 1 digit and no more than 18
digits.

2. A literal must not contain more than one sign character. If
a sign is used, it must appear as the leftmost character of
the literal. If the literal is unsigned, it is positive.

3. A literal must not contain more than one decimal point. The
decimal point is treated as an assumed decimal point, and may
appear anywhere within the literal except as the rightmost
character. If the literal contains no decimal point, the
literal is an integer.

The word, integer, appearing in a general format, represents
a non-zero, positive, numetic literal with no decimal point.

If a literal conforms to the rules for the formation of
numeric literals, but is enclosed in quotation marks, it is
an alphanumeric literal and is treated as such by the
compiler.

1-7

OVERALL LANGUAGE ELEMENTS AND TERMINOLOGY

4. The value of a numeric literal is the algebraic quantity
represented by the characters in the numeric literal. Every
numeric literal is category numeric. (See Section 4.20, The
PICTURE Clause.) The size of a numeric literal is equal to
the number of digits specified by the user, including leading
zeros, if any.

1.2.4.2 Alphanumeric Literals - An alphanumeric literal is a
character-string representing from 1 to 132 characters, delimited on
both ends by quotation marks and consisting of any allowable character
in the computer's character set. An opening quotation mark must be
immediately preceded by a space or left parenthesis. A closing
quotation mark must be immediately followed by one of the separators
(space, comma, semicolon, or right parenthesis) or by the terminator,
period.

To represent a single quotation mark character within an alphanumeric
literal, two contiguous quotation marks must be used. The value of an
alphanumeric literal in the object progr·am is the string of characters
itself, except that:

1. The delimiting quotation marks are excluded, and

2. Each embedded pair of contiguous quotation marks represents a
single quotation mark character.

All other punctuation characters are part of the value of the
alphanumeric literal rather than separators; all alphanumeric
literals are category alphanumeric. (See Section 4.20, The PICTURE
Clause.)

1.2.5 Separators

A separator is a string of one or more punctuation characters. The
rules for forming separators are:

1. Space

a. Anywhere a space is used as a separator, more than one
space may be used.

b. A space may immediately precede all separators except the
closing quotation mark. Here the space is considered
part of an alphanumeric literal, not a separator.

NOTE

The only exception to the above rules is
described in Section 1.4, COBOL Source
Reference Formats.

1-8

OVERALL LANGUAGE ELEMENTS AND TERMINOLOGY

c. A space may immediately follow any separator except the
open quotation mark. In this case, a following space is
considered part of an alphanumeric literal, not a
separator.

2. Comma and Semicolon

The punctuation characters, the comma and semicolon, are
separators only when immediately followed by a space. You
may insert these separators only where explicitly permitted
by the general formats, by format punctuation rules, by
statement and sentence structure definitions, or by reference
format rules.

3. Right Parenthesis and Left Parenthesis

Left parenthesis and right parenthesis are separators only
when used in balanced pairs to delimit subscripts or indices.

4. Quotation Marks

Quotation marks may only be used in balanced pairs to delimit
alphanumeric literals. (The rules which govern the format
and use of alphanumeric literals are detailed in Section
1.2.4.2, Alphanumeric Literals.)

5. Horizontal Tab

The horizontal tab character is governed by the same rules
that govern the space character. It is normally used to
vertically align statements or clauses on successive lines of
the source program listing. The compiler, upon encountering
a tab character, generates one or more space characters
consistent with the tab character position in the source
line. (See Sections 1.4.1, Conventional Reference Format;
and 1.4.2, Terminal Reference Format.)

1.2.6 Format Punctuation

The punctuation characters, the comma, semicolon, and period, appear
in some formats. Where shown, the comma and semicolon are optional
and interchangeable. You can specify a comma where a semicolon is
specified or vice versa. The period, however, is mandatory. You must
supply a period wherever one is shown. You also must specify a period
to terminate a paragraph. (See Section 1.5.3, Paragraph, Paragraph

. Header, and Paragraph-name.)

1-9

OVERALL LANGUAGE ELEMENTS AND TERMINOLOGY

1.2.7 Use of Certain Special Characters in Formats

The characters +, -, *, I, **, >, <, and
although not underlined, are required.

when appearing in formats,

1.3 META LANGUAGE ELEMENTS

Meta language elements appear in formats but are not coded into source
language statements. They serve only to describe the allowable use of
the language elements being described.

1.3.1 Underline

The underline is used to denote reserved key words (upper case words).
Key words (upper case underlined words) are required when you use a
function of which they are a part. The absence of an underline in an
upper case word denotes that the word is optional. You may use or
omit the word at your discretion.

NOTE

Upper case words, whether underlined or
not, must be spelled correctly.

1.3.2 Brackets and Braces

When brackets, [], enclose a portion
that an optional portion that may
Braces, { }, enclosing a portion of a
must select one of the options
following example:

of a general format, it denotes
be included or omitted as needed.
general format denote that you
within the braces. Consider the

[MEMORY SIZE integer {
WORDS }~ CHARACTERS
MODULES

The brackets indicate that the entire clause is optional. The braces
indicate that if the clause is used, a choice of one of the words
vertically stacked within the braces must be specified.

Wherever a choice is
stacked either within

required,
brackets

example.

IJ{S YNCHRON I ZED}
~SYNC

!-LEFT II
tRIGH~J

the possibilities are vertically
or braces. Consider the following

1-10

OVERALL LANGUAGE ELEMENTS AND TERMINOLOGY

The outside brackets indicate that the entire clause is optional. The
braces indicate that if the clause is used, a choice of a word
vertically stacked within the braces must be made. The insid~
brackets indicate that you may optionally select a vertically stacked
word within.

NOTE

Possibilities vertically ~tacked between
brackets indicate that you have the
option of overriding a default
condition. The default condition is
described in the general rules for the
clause.

1.3.3 The Ellipsis

The ellipsis (•..) indicates that you may repeat the item preceding
it. The preceding item is usually enclosed either by brackets or
braces to remove any ambiguity as to which item may be repeated.
Consider the following example.

[SAME [RECORD] AREA FOR file-name-l{file-name-2} •••] ••.

The ellipsis following the outside brackets indicates that the entire
clause, if used, may be repeated. The ellipsis within the outside
brackets and following the item which is enclosed in braces indicates
that the item may also be repeated within the clause.

1.4 COBOL SOURCE REFERENCE FORMAT

PDP-II COBOL provides you with two formats for coding your source
programs, conventional and terminal. Both formats are described in
terms of character positions in a line on an input medium.

The rules
discussion
precedence
spacing.

NOTE

for spacing given in
of reference formats
over all other rules

this
take

for

The conventional format is based on the traditional COBOL format as
applied to an aO-column punched card. The terminal format is a
DEC-specified format and allows a source line to be shortened by using
horizontal tabs and carriage returns. The terminal format is very
convenient for use with a context editor and an on-line computer
terminal.

1-11

OVERALL LANGUAGE ELEMENTS AND TERMINOLOGY

NOTE

The TRAX COBOL compiler assumes the
terminal format as a default when
compiling, but is capable of compiling
either format. (See the TRAX COBOL
User's Guide for operational details.)

A reformatting program (REFOID1AT) is provided to reformat terminal
format programs into conventional format for ease in transporting
source programs to other COBOL compilers. (The REFORMAT program is
described in the TRAX COBOL User's Guide.)

1.4.1 Conventional Reference Format

The conventional reference format is based on
format as it applies to an 80-column punched
format, it is more than likely that you will
on a standard COBOL coding form. For this
Programming Form) is provided as a basis for

1-12

the traditional COBOL
card. If you choose this
code your source program
reason, Figure 1-1 (COBOL
this discussion.

COBOL PROGRAMMING FORM

PAGE OF" ___ _
PROGRAMMER ____________________________ _

73

IDENT[I II I I 80 I I I PROGRAMNAME ___________________________ __

0
<
I:I'J

~
tot
tot

tot
)II
Z
G')

~ 111 ;
8
fJ)

)II
Z
0

8
t:rJ

~
H
Z
0
tot
0
G')
to<

Figure 1-1 COBOL Programming Form

OVERALL LANGUAGE ELEMENTS AND TERMINOLOGY

1.4.1.1 Sequence Numbers - Character positions 1 through 6 of the
standard format are reserved for source line sequence numbers. This
sequence number field serves only to assist you in locating and
editing source lines within a source file or listing. Sequence
numbers are ignored by the compiler.

1.4.1.2 Continuation/Comment Indicator Area - Charact~r position 7
gives you the ability to direct the compiler to process the source
line consistent with the character content of this column. The
options available to you are listed below:

Option

blank ()

hyphen (-)

asterisk (*)

slash (/)

Results

Default - The source line is treated normally.

Continuation line - The compiler will process this
line as a continuation of the previous source
line. (See Section 1.4.1.6.)

Comment line - The compiler will transfer the
contents of this line, as is, to the source
listing. No syntax checking is performed on this
line. (See Section 1.4.1.8.)

Comment line - The compiler treats the line as if
it were a comment line except that it advances the
sourGe listing to the top of the next page before
printing the contents of the line.

1.4.1.3 Area A - Character positions 8 through 11 constitute Area A
of the conventional format. This area is reserved for the beginning
of division headings (Section 1.5.1), section-names (Section 1.5.2),
paragraph-names (Section 1.5.3), level-indicators (Section 1.5.4), and
certain level numbers (Section 1.5.4).

1.4.1.4 Area B - Character positions 12 through 72 constitute Area B
of the conventional format. This area is reserved for all other COBOL
text.

1.4.1.5 Identification Field - Character position 73
constitute the identification field, which is for
purposes only and has no effect on compilation.

1-14

through 80
documentation

OVERALL LANGUAGE ELEMENTS AND TERMINOLOGY

1.4.1.6 Continuation of Lines - Any sentence or entry that requires
more than one line must be continued in Area B of the next tine.

When you break a word or numeric literal from one line to the next,
you must place a hyphen (-) in character position 7 of the
continuation line. The first non-blank character that you enter in
Area B will become the next character of the word' or numeric literal
being continued.

When you break an alphanumeric literal from one line to the next, you
must place a hyphen in character position 7 of the continuation line.
You must also precede the first character of the continuation literal
with a quotation mark. The literal may begin anywhere within area B
of the continuation line. Consider the following example.

001010 01 CONTINUATION-NUMERIC.
001020 02 NUMERIC-LITERAL PIC 9(18) VALUE IS 12345678912345
001030- 6789.
001040 01 CONTINUATION-ALPHANUMERIC.
001050 02 ALPHANUMERIC-LITERAL PIC X(26) VALUE IS "ABCDEFGHIJKLM
001060- "NOPQRSTUVWXYZ".
001070 PROCEDURE DIVISION.
001080 CONTINUATION-SENTENCE.
001090 IF NUMERIC-LITERAL NOT EQUAL TO ALPHANUMERIC-LITERAL
001100 GO TO END-PROGRAM
001110 ELSE GO TO CONTINUATION-SENTENCE.
001120 END-PROGRAM.
001130 STOP RUN.

Source lines 001010 through 001030 show how a numeric literal can be
continued to another line, and source lines 001040 through 001060 show
how an alphanumeric literal can be continued to another line.
Finally, source lines 001090 through 001110 show how a sentence can be
continued to successive lines.

1.4.1.7 Blank Lines - A blank line is blank from character position 7
through 72 and cannot immediately precede a continuation line.
Otherwise, a blank line can appear anywhere in the source program.

1.4.1.8 Comment Lines - A comment line is any line with an asterisk
(*) in charact~t position 7. A comment line can not precede the
Identification Division. Otherwise, a Comment line may appear
anywhere in a source program.

A comment line may be composed of ~ny of the characters from the full
COBOL character set. Comments can begin in Area A or B of the source
line. Each comment line will be reproduced on the source listing, but
they serve as documentation only. Successive comment lines are
allowed, but each must contain an asterisk in character position 7.

1-15

OVERALL LANGUAGE ELEMENTS AND TERMINOLOGY

No'rE

If a slash character (/) is used instead
of an asterisk (*), the results are the
same except that the source listing is
advanced to the top- of the next page
before the comment entry is printed.

1.4.1.9 Short Lines and Tab Characters - Conventional format source
lines may be shortened if a medium other than punched cards is used.
This is accomplished by terminating the line by a carriage return,
inserting tab characters within the line to replace space characters,
or a combination of both.

When the compiler recognizes a carriage return-character, it treats it
as a redefinition of character position 72. When a tab character is
encountered, the compiler generates the required number of space
characters consistent with the tab character position on the line.
Tab stops are set within the compiler at character positions 7, 8, 12,
20, 28, 36, 44, 52, 60, 68, and 73. Consider the following example.

NOTE

carriage return character

tab character

Shortened conventional source line

000130 01 GD FILE-A. G2:)

000140 GD 02 DATA-FIELD-A. GO

000150 ~ ~ 03 DESCRIPTION-A ~ PIC X(20).

000160 ~ ~ 03 DESCRIPTION-B ~ PIC X(20) .

000170 ~ ~ 03 DESCRIPTION-C C§) PIC X(20) •

Source line as interpreted by the compiler

000130 01
000140
000150
000160
000170

FILE-A.
02 DATA-FIELD-A.

03 DESCRIPTION-A
03 DESCRIPTION-B
03 DESCRIPTION-C

1-16

PIC X(20).
PIC X(20).
PIC X(20).

G:O

GO

G0

OVERALL LANGUAGE ELEMENTS AND TERMINOLOGY

1.4.2 Terminal Reference Format

Terminal reference format is the TRAX COBOL default format. It
makes your life easier by providing a format that is easy to use with
a computer terminal. Terminal format is shorter and less space
consuming than its conventional counterpart. The sequence number and
identification fields are eliminated, and the indicator field is
combined within Area A.

Tab characters can be used to position source entries within a line,
and a line ends at the first occurrence of a carriage return
character.

The terminal reference format for a source line is represented as
follows:

Character Position

1 through 4

5 through 65

Contents

Area A

Area B

NOTE

Continuation line (-), comment line (*),
and skip to top of page (/) indicator
characters, when used, must be placed in
character position 1.

For the terminal format, Area A and Area B contain the same kinds of
source entries as their conventional format counterparts. (See
Sections 1.4.1.3 and 1.4.1.4.)

Like the conventional format, tab characters, when encountered by the
compiler, will generate a commensurate number of spaces consistent
with the tab character position on the line. Tab stops are set to
character positions 5, 13, 21, 29, 37, 45, 53, 61, and 66.

1.5 LANGUAGE ORGANIZATION

A COBOL program is organized by division, divisions are organized by
sections, sections are organized by paragraphs, and paragraphs by
sentences, statements, clauses, entries, etc. Each of these
divisions, sections, and paragraphs are composed of headers followed
by source text. The following sections describe these headers and
what source text comprises each.

1-17

OVERALL LANGUAGE ELEMENTS AND TERMINOLOGY

1.5.1 Division Header

A division header is a combination of words followed by a period that
indicates the beginning of a division. The division headers for a
TRAX COBOL program in their order of appearance are:

IDENTIFICATION DIVISION.

ENVIRONMENT DIVISION.

DATA DIVISION.

PROCEDURE DIVISION.

A division header must start in Area A. After the division header, no
text may appear before the following section header, paragraph header,
or paragraph-name. The only exception is that the key word
DECLARATIVES followed by a period may appear after the Procedure
Division header.

1.5.2 Section Header

A section header is a combination of words followed by a period that
indicates the beginning of a section in the Environment, Data, and
Procedure Divisions. In the Environment and Data Divisions, a section
header is composed of reserved words followed by-the word SECTION
followed by a period. In the Procedure Division, a section header is
composed of a user-defined word followed by the word SECTION followed
by a period. The permissible section headers are:

In the Envirdnment Division

CONFIGURATION SECTION.

INPUT-OUTPUT SECTION.

In the Data Division

FILE SECTION.

WORKING-STORAGE SECTION.

LINKAGE SECTION.

In the Procedure Division

user-name SECTION

The section header must start in Area A. After the section header, no
text may appear before the following paragraph header or
paragraph-n~me. The only exception is the USE sentence in the
Procedure Division.

1-18

OVERALL LANGUAGE ELEMENTS AND TERMINOLOGY

A section consists of paragraphs in the Environment anq Procedure
Divisions, and data entries in the Data Division.

1.5.3 Paragraph, Paragraph Header, Paragraph-name,

A paragraph in the Procedure Division consists of a paragraph-name
followed by a period and zero, one, or more entries. In the
Identification and Environment Divisions, a paragraph consists of a
paragraph header followed by zero, one, or more entries.

A paragraph header consists of a reserved word followed by a period.
A paragraph header indicates the beginning of a paragraph. The
permissible paragraph headers are: .

In the Identification Division

PROGRAM-ID.

AUTHOR.

INSTALLATION.

DATE-WRITTEN.

DATE-COMPILED ..

SECURITY.

In the Environment Division

SOURCE-COMPUTER.

OBJECT-COMPUTER.

SPECIAL-NAMES.

FILE-CONTROL.

I-O-CONTROL.

A paragraph-name is a user-defined word followed by a period. It
identifies and begins a paragraph in the Procedure Division.

A paragraph header or paragraph name starts in Area A of the first
source line following a division or section. The first sentence of a
paragraph begins either on the same line as the paragraph header or
paragraph-name or in Area B of the next non-blank line that is not a
comment line. Successive sentences or entries begin either on the
same line as the previous sentence or entry or in Area B of the next
non-blank line that is not a comm~nt line. Sentences that are too
long to fit on one line may be continued on successive lines. (See
Section 1.4.1.6.)

1-19

OVERALL LANGUAGE ELEMENTS AND TERMINOLOGY

1.5.4 Data Division Entries

Each Data Division entry begins with a level indicator or a
level-number, followed by a space, followed by the name of a data
item, followed by a sequence of independent descriptive clauses. Each
clause, except the last clause of an entry, may be terminated by the
separator semicolon or the separator space. The last clause is always
terminated by a period followed by a space.

There are two types of Data Division entries: those which begin with
a level indicator and those which begin with a level-number.

The only level indicator is FD.

In those Data Division entries that begin with a level indicator, the
level indicator begins in Area A followed by a space and followed in
area B with its associated data-name and appropriate descriptive
information.

Those Data Division entries that begin with level-numbers are called
data description entries.

A level-number has a value taken from the set of values 1 through 49,
66, 77, and 88. Level-numbers in the range 1 through 9 may be written
either as a single digit or as a zero followed by a significant digit.
At least one space must separate a level-number from the word
following the level-number.

In those data description entries that begin with a level-number 01,
66, or 77, the level-number begins in Area A followed by a space and
followed in area B by its associated record-name and appropriate
descriptive information.

Successive data description entries may have the same format as the
first or may be indented according to level-number. The entries in
the output listing are indented only' if the input is indented.
Indentation does not affect the magnitude of a level-number.

When level-numbers are to be indented, each new level-number may begin
any number of spaces to the right of margin A. The extent o~
indentation to the right is determined only by the width of Area B.

1.5.5 Declaratives

The key words DECLARATIVES and END DECLARATIVES, that precede and
follow, respectively, the declaratives portion of the Procedure
Division must appear on a line by themselves. Each must begin in Area
A and be followed by a period and a space.

1-20

IDENTIFICATION DIVISION

CHAPTER 2

IDENTIFICATION DIVISION

2.1 GENERAL DESCRIPTION

The Identification Division must be included in every COBOL source
program. It identifies the source program and the resultant output
listing. In addition, you may include the date the program was
written and such other information as desired under the paragraphs in
the general format shown below.

2.2 ORGANIZATION

Fixed paragraph names identify the type of information contained in
the paragraph. You must specify the name of the program in the first
paragraph, which is the PROGRAM-ID paragraph. The other paragraphs
are optional; if included, they must be presented in the order shown
by the general format below.

Structure

The following is the general format of the paragraphs in the
Identification Division, as well as a definition of the order of
presentation of the source program. Sections 2.3 and 2.4 define
the PROGRAM-ID paragraph and the DATE-COMPILED paragraph •.
Although the other paragraphs are not defined, each general
format is formed in the same manner.

General Format

IDENTIFICATION DIVISION.

PROGRAM-ID. program-name.

[AUTHOR. [comment-entry] .••]

[INSTALLATION. [comment-entry] .••]

2-1

IDENTIFICATION DIVISION

[DATE-WRITTEN. [comment-entry] .•.]

[DATE-COMPILED. [comment-entry] •.•]

[SECURITY. [comment-entry] •..]

Syntax Rules

The Identification Division must begin with the reserved words
IDENTIFICATION DIVISION followed by a period and.a space.

General Rules

The comment-entry may be any combination of the characters from
the full character set. The continuation of the comment-entry by
using the hyphen in the continuation indicator area is not
permitted; however, the comment-entry may be contained on one or
more lines.

2-2

IDENTIFICATION DIVISION

PROGRAM-ID

2.3 THE PROGRAM-ID PARAGRAPH

Function

The PROGRAM-ID paragraph identifies the program.

General Format

PROGRAM-ID. program-name.

Syntax Rules

The program-name must contain from one to nine characters from
the set A through Z and 0 through 9. The hyphen is not allowed.
Only the first six characters are meaningful.

General Rules

1. The PROGRAM-ID paragraph must contain program name and must
be pre$ent in every program.

2. A program-name is a user-defined word that identifies a COBOL
program. Program-names may not exceed nine characters in
length and may not contain a hyphen. The program-name
identifies the object program entry point.

3. In the TRAX application environment, the program-name is
always TSTEP.

2-3

IDENTIFICATION DIVISION

DATE-COMPILED

2.4 THE DATE-COMPILED PARAGRAPH

Function

The DATE-COMPILED paragraph provides the compilation date in the
Identification Division source program listing.

General Format

DATE-COMPILED. [comment-entry] .•.

Syntax Rules

The comment-entry may be any combination of characters from the
full character set. Continuation of the comment-entry by using
the hyphen in the continuation indicator area is not permitted;
however, the comment-entry may be contained on one or more lines.

General Rules

1. The paragraph-name, DATE-COMPILED, causes the current date to
be inserted during program compilation. If a DATE-COMPILED
paragraph is present, it is replaced during compilation with
a paragraph of the form:

DATE-COMPILED. comment-entry.
current-date

2. All listings produced during compilation contain the
compilation date in the header line of each page.

Example

DATE-COMPILED paragraph before compilation

IDENTIFICATION DIVISION.
PROGRAM-ID. BAGINS.
AUTHOR. BILBO BAGINS.
DATE-COMPILED. TODAY.
ENVIRONMENT DIVISION.
SOURCE-COMPUTER. PDP-II.

2-4

IDENTIFICATION DIVISION

DATE-COMPILED paragraph after compilation.

00001
00002
00003
00004
00005
00006
00007
00008

IDENTIFICATION DIVISION.
PROGRAM-ID. BAGINS.
AUTHOR. BILBO BAGINS.
DATE-COMPILED. TODAY.

27-0CT-76 •
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. PDP-II.

2-5

ENVIRONMENT DIVISION

CHAPTER 3

ENVIRONMENT DIVISION

3.1 GENERAL DESCRIPTION

The Environment Division specifies a standard method of expressing
those aspects of a COBOL program that are dependent upon the physical
characteristics of a specific computer. The division allows you to
specify the configuration of the compiling computer and object
computer. You can also specify information about input-output
control, special hardware characteristics, and control techniques.

NOTE

The Environment Division must be
included in every COBOL source program.

3.2 ORGANIZATION

Two sections make up the Environment Division: the Configuration
Section and the Input-Output Section.

The Configuration Section describes the source computer and object
computer characteristics. This section is divided into three
paragraphs: the SOURCE-COMPUTER paragraph, which describes the
computer configuration on which the source program is compiled: the
OBJECT-COMPUTER paragraph, which describes the computer configuratio~
on which the object program produced by the compiler is to be run;
and the SPECIAL-NAMES paragraph, which relates the specific compiler
features available to the mnemonic-names used in the source program.

The Input-Output Section describes the information needed to control
transmission and handling of data between external media and the
object progiam. This section is divided into two paragraphs: the
FILE-CONTROL paragraph, which names and associates the files with
external media; and the I-O-CONTROL paragraph, which defines special
control techniques to be used in the object program.

3-1

ENVIRONMENT DIVISION

3.3 STRUCTURE

The general format of the sections and paragraphs in the Environment
Division, in the in order of presentation in the source program,
follows:

ENVIRONMENT DIVISION.

[CONFIGURATION SECTION.

[SOURCE-COMPUTER. source-computer-entry]

[OBJECT-COMPUTER. object-computer-entry]

[SPECIAL-NAMES. special-names-entryO

[INPUT-OUTPUT SECTION.

FILE-CONTROL. {file-control-entry} ••.

[I-O-CONTROL. input-output-control-entry]

3-2

ENVIRONMENT DIVISION

3.4 CONFIGURATION SECTION

CONFIGURATION-SECTION
SOURCE-COMPUTER

3.4.1 The SOURCE-COMPUTER Paragraph

Function

The SOURCE-COMPUTER paragraph identifies the computer in which
the program is to be compiled.

General Format

SOURCE-COMPUTER. PDP-II.

General Rules

This·paragraph is for documentation only.

3-3

OBJECT-COMPUTER

3.4.2 The OBJECT-COMPUTER Paragraph

Function

The OBJECT-COMPUTER paragraph iden~ifies the computer in which
the program is to be executed.

General Format

OBJECT-COMPUTER. [. MEMORY SIZE integer

[, PROGRAM COLLATING SEQUENCE IS alphabet-name]

PDP-II
{

WORDS ~
CHARACTERS
MODULES

[, SEGMENT-LIMIT IS segment-number].

Syntax Rule

Segment-number must be an integer ranging in value from 00
through 49.

General Rules

1. The MEMORY SIZE clause is for documentation purposes only.

2. The PROGRAM COLLATING SEQUENCE clause is for documentation
purposes only. The native collating sequence is ASCII.

3. Use the SEGMENT-LIMIT clause to specify a number from which
the compiler can determine which program segments are
overlayable or non-overlayable. (Program segmentation ia
described in Chapter 6.)

a. Program segments which have a segment number equal to or
greater than the segment limit are overlayable segments.

b. Program segments which have a segment number less than
the segment limit are non-overlayable segments.

4. When the SEGMENT-LIMIT clause is omitted, all
segments are non-overlayable.

3-4

program

ENVIRONMENT DIVISION

SPECIAL-NAMES

3.4.3 The SPECIAL-NAMES Paragraph

Function

The SPECIAL-NAMES paragraph relates TRAX COBOL features to
user-specified mnemonic-names and alphabet-names (specified in
the object-computer paragraph) to character sets and/or collating
sequences.

General Format

[SPECIAL-NAMES.

[II
CARO-REAOER l
PAPER-TAPE-READER
CONSOLE
LINE-PRINTER (
PAPER-TAPE-PUNCH)

[SWITCH integer-l

IS mnemonic namel·· J

{

ON STATUS IS condition-name-l [,OFF STATUS IS condition-name-2]}] •.•

OFF STATUS IS condition-name-2 [,ON STATUS IS condition-name-l]

[Alphabet-name t
TIVE

~ IS
STANDARD-l

[CURRENCY SIGN IS literal-2]

[DECIMAL-POINT IS COMMA] .

Syntax Rules

1. The SPECIAL-NAMES paragraph is required only if
mnemonic-names, condition-names, alphabet-names, the
DECIMAL-POINT clause, or the CURRENCY SIGN clause are used.

2. Integer-l represents any integer from 1 to 16.

3-5

ENVIRONMENT DIVISION

General Rules

1. The names CARD-READER, PAPER-TAPE-REAqER, and CONSOLE refer
to input devices. The assigned mnemonic-names may be used
with the ACCEPT verb in the Procedure Division to transfer
data from the device.

2. The names CONSOLE, LINE-PRINTER, and PAPE~-TAPE-PUNCH refer
to output devices. The assigned mnemonic names may be used
with the DISPLAY verb in the Procedure Division to transfer
data to the device.

3. The name SWITCH refers to a logical switch to which a
can be assigned by the operator at run-time.
condition-name specified for the ON or OFF STATUS
switch, can be used in a conditional expression.
Section 5.6.8, Switch Status Condition.)

value
The

of a
(See

4. A condition-name is assigned to a specific value, set of
values, or range of values within a complete set of values
that a data item may assume. The data item itself is called
a conditional variable.

Condition-names maybe defined in the Data Division"or in the
SPECIAL-NAMES paragraph in the Environment Division where a
condition-name must be assigned to the ON STATUS or OFF
STATUS of switches that may be set at ~rogram execution time.

A condition-name is used only in conditions as an
abbreviation for the relation condition; such use causes the
associated conditional variable to be tested for equality
with anyone of the set of values to which that
condition-name is assigned.

5. The alphabet-name clause provides a means for relating a name
to a specified character code set and/or collating sequence.
When alphabet-name is referenced in the PROGRAM COLLATING
SEQUENCE clause, the alphabet-name clause specifies a
collating sequence. When alphabet-name is referenced in a
CODE-SET clause in a file description entry (see Section
4.12, The CODE-SET Clause), the alphabet-name clause
specifies a character code set.

a. If the STANDARD-l phrase is specified, the character code
set or collating sequence identified is that defined in"
American National Standard Code for Information
Interchange, X3.4-l968.

b. Since the native character code set of the PDP-II is
equivalent to the ASCII code, specification of the NATIVE
phrase is equivalent to specification of the STANDARD-l
phrase.

3-6

ENVIRONMENT DIVISION

6. The literal that appears in the CURRENCY SIGN IS literal
clause is used in the PICTURE clause to represent the
currency symbol. The literal is limited to a single
character and must not be one of the following characters:

a. Digits 0 through 9

b. Alphabetic characters A,B,C,D,L,P,R,S,V,X,Z or the space

c. Special characters *, +, -, " ., i, (,), ", / or

If this clause is not present, only the currency sign ($) is
used in the PICTURE clause.

7. The DECIMAL-POINT IS COMMA clause means that the function of
comma and period is exchanged in the PICTURE character-string
and in numeric literals.

3-7

ENVIRONMENT DIVISION

3.5 INPUT-OUTPUT SECTION

The Input-output section provides you with the ability to access
records of data stored on an external media in various file
organizations. The file organizations supported by TRAX COBOL and
the access methods available for processing them are introduced below.
You are advised to refer to the TRAX COBOL User's Guide for a
complete and in-depth discussion on file organizations and accessing
methods.

3.5.1 File Organizations

TRAX COBOL provides you with three file organizations:

• Sequential

• Relative

• Indexed

Sequential files are organized such that records are positioned one
behind the other. Each record (except the last) has another record
following it. The location of any particular record is fixed in
relationship to the records preceding and succeeding it. Sequential
files can be processed only in a serial fashion. That is, to access a
record in the middle of the file, all the records immediately
preceding it must be processed.

Relative files, which can only be created on disk storage devices,
consist of successively numbered records. Each record is assigned a
record number relative to its position in the file. Therefore, the
first record in a file occupies the first position and receives a
relative record number of 1, the second record occupies the second
position and receives a relative record number of 2, and so on. An
individual record within a relative file can be directly accessed by
specifying its relative record number. Also, like sequential files,
records can be addressed in a serial fashion.

Indexed files, like relative files, can be created only on disk
devices. Indexed files are organized such that records are arranged
according to a hierarchy of indexes according to a keyes) within each
record.

Indexed files have a more complex structure than sequential or
relative files. However, instead of being accessed by the
specification of a relative record number, indexed files are accessed
by the contents of a specified data field(s) (also called keys) within
each record. Indexed files can also be accessed in a serial fashion.

3-8

ENVIRONMENT DIVISION

3.5.2 Access Modes

File organization determines the access modes that can be used to
retrieve and store records within the file. Its organization is fixed
when the file is created and it cannot be altered. An access mode,
however, is fixed at the time a program opens a particular file.
Therefore, the access mode used to process records within a file can
differ for each program that opens the file.

TRAX COBOL supports three access modes:

• Sequential

• Random

• Dynamic

Sequential access is the process of accessing records from a file in a
serial fashion. The first record must be accessed before the second
can become available, the second before the third, and so on.

Random access is the process of accessing records individually by the
sp~cification of a random record number or a data key.

Dynamic access allows you to choose between sequential or relative
access at will.

Only certain combinations of file organizations and access mode are
permitted. Table 3-1 lists these allowed combinations.

Table 3-1
Access Modes and File Organizations

Access Mode

File Organization Sequential Random Dynamic

Sequential Yes No No

Relative Yes Yes Yes

Indexed Yes Yes Yes

The relationship between the access modes and the supported file
organizations is described in the TRAX COBOL User's Guide.

3-9

ENVIRONMENT DIVISION

FILE-CONTROL

3.6 THE FILE-CONTROL PARAGRAPH

Function

The FILE-CONTROL paragraph names each file
specification of other file-related information.

General Format

FILE-CONTROL. {file-control-entry}

3.6.1 The File-Control Entry

Function

and allows

The file-control entry names a file and may specify other
file-related information.

General Formats

Format 1

SELECT [OPTIONAL] file-name

ASSIGN TO literal-l

[RESERVE integer-l {::S}]
G ORGANIZATION IS SEQUENTIAL]

G ACCESS MODE IS SEQUENTIAL]

G FILE STATUS IS data-name~4J

3-10

ENVIRONMENT DIVISION

Format 2

SELECT file-name

ASSIGN TO literal-l

[; RESERVE integer-l
{

AREA }~
AREAS ~

ORGANIZATION IS RELATIVE

ACCESS MODE IS I { :::~::TI}AL
DYNAMIC

[; FILE STATUS IS data-name-4]

Format 3

SELECT file-name

ASSIGN TO literal-l

{
AREA ~ RESERVE integer-l
AREAS

ORGANIZATION IS INDEXED

{
SEQUENTIAL }J

ACCESS MODE IS RANDOM
DYNAMIC

RECORD KEY IS data-name-2

[, RELATIVE KEY IS data-name-l] I
' RELATIVE KEY IS data-name-l

[: ALTERNATE RECORD KEY IS data-name-3 GvITH DUPLICATES]] ••.

[; FILE STATUS IS data-name-4]

Syntax Rules

All Formats

1. The SELECT clause must be specified first in the file control
entry. The clauses that follow the SELECT clause may appear
in any order.

3-11

ENVIRONMENT DIVISION

2. Each file described in the Data Division must be named once
and only once as file-name in the FILE-CONTROL paragraph.
Each file specified in the file control entry must have a
file description entry in the Data Division.

3. Sequential access is assumed if the ACCESS MODE IS clause is
not specified.

4. Literal-l must be an alphanumeric literal.

5. Data-name-4 must be defined in the Working-Storage Section of
the Data Division as a 2-character alphanumeric data item.

6. Data-name-l; data-name-2, data-name-3, and data-name-4 may be
qualified.

Format 1

7. Sequential organization is assumed if the ORGANIZATION IS
SEQUENTIAL clause is not specified.

8. The OPTIONAL phrase may be specified only for input files.
Its specification is required for input files that are not
always present each time the object program is executed.

Format 2

9. If a relative file is to be referenced by a START statement,
the RELATIVE KEY phrase must be specified for that file.

10. Data-name-l must not be defined in a record description entry
associated with file-name.

11. The data item referenced by data-name-l must be defined as an
unsigned integer.

Format 3

12. The data items referenced by data-name-2 and data-name-3 must
each be defined as alphanumeric data items within a record
description entry associated with that file-name.

13. Neither data-name-2
variable-sized item.

nor data-name-3 can describe a

14. Data-name-3 cannot reference an item whose leftmost character
position corresponds to the leftmost character position of an
item referenced by data-name-2 or by any other data-name-3
associated with this file.

3-12

ENVIRONMENT DIVISION

General Rules

All Formats

1. The ASSIGN clause specifies the association
referenced by file-name to a storage medium.
be a file specification in command-string
Section 4.11, The VALUE OF Clause).

of the file
Literal-l must
format. (See

2. The ORGANIZATION clause specifies the logical organization of
data 'on a file. The file organization is established at the
time a file is created. Once established, the file
organization cannot be changed.

3. If the FILE STATUS clause is specified, a value is placed
into the specified 2-character data item (data-name-4) during
the execution of a CLOSE, DELETE, OPEN, READ, REWRITE, START,
or WRITE statement, before any applicable USE procedure is
executed. This value indicates to the COBOL program the
status of any input-output operation.

The leftmost character position of the FILE STATUS data item
is known as Status Key 1. It is set to one of the following
values upon completion of an input-output operation:

o Successful Completion

1 At End

2 Invalid Key

3 Permanent Error

9 DEC Defined

The rightmost character position of the FILE STATUS data item
is known as Status Key 2. It is used to further describe the
results of the input-output operation. This character will
contain one of the following values:

0 No Further Information

1 Sequence Error

2 Duplicate Key

3 No Record Found

4 Boundary Violation

5 Allocation Failure

6 Buffer Failure

3-13

ENVIRONMENT DIVISION

7 = No File Found

8 Close Error

9 Close Reel Error

NOTES

1. The possible combinations of Status Keys 1 and
2 are shown in Table 3-2.

2. See Appendix C for a complete listing of the
possible File Status Keys and a description of
each.

3. See also the Chapters on COBOL-supported. file
types in the TRAX COBOL User's Guide.

3-14

w
I
I-'
U1

Table 3-2
Possible Combinations 6f Status Keys land 2

Status Key 2
Status

Key 1 No Further Sequence Duplicate No Record Boundary
Information Error Key Found Violation

(0) (l) (2) (3) (4)

Successful
Completion X X(***)

(0)

At
End X

(l)

Invalid
Key X(***) X(**) X(**) X(**)

(2)

Permanent
Error X X (*)

(3)

DEC
Defined X (!) X (! !) X (! ! !)

(9)

-- -- ---

Valid for sequentially organized files only. *
** Valid for indexed and relatively organized files only.

'I .
I I

Valid for indexed organized files only.
File locked by another task

Record locked by another task

Allocation
Failure

(5)

X

No sequential READ previous to a REWRITE or DELETE operation I I ..

Buffer
Failure

(6)

X

No File CLOSE
Found Error

(7) (8)

X X

CLOSE
REEL
Error

(9)

X (*)

I

I

tJj

~
H

~

~
Z
1-3

C
H
<:
H
(I)
H

~

ENVIRONMENT DIVISION

Format 1

4. With this format the RESERVE clause allows you to specify the
number of input-output areas allocated for sequential files.
The number of input-output areas allocated is equal to the
value of integer-I. However, integer-l cannot be less than 1
or greater than 2. If the RESERVE clause is not specified, a
value of 1 is assumed.

5. Sequential files are accessed by predecessor/successor record
relationships established by the execution of WRITE
statements when the file is created or extended.

Format 2

6. With this format, the RESERVE clause allows you to specify
the number of input-output areas allocated for relative
files. The number of input-output areas allocated is equal
to the value of integer-I. However, integer-l cannot be less
than 1 or greater than 2. If the RESERVE clause is not
specified, a value of I is assumed.

7. When the access mode is sequential, records in the file are
accessed in the sequence dictated by the file organization.
This sequence follows the order of ascending relative record
numbers of existing records in the file.

8. If the access mode is random, the value of the RELATIVE KEY
data item indicates the record to be accessed.

9. When the access mode is dynamic, records in the file may be
accessed sequentially and/or randomly.

10. All records stored in a relative file are uniquely identified
by relative record numbers. The relative record number of a
given record specifies the logical ordinal position of the
record in the file. The first logical record has a relative
record number of one (1), and subsequent logical records have
relative record numbers of 2, 3, 4, .••.

11. The data item specified by data-name-l is used to communicate
a relative record number between the user and the Record
Management Services.

Format 3

12. With this format, the RESERVE clause allows you to specify
the number of input-output areas allocated for indexed files.
The number of input-output areas allocated is equal to the
value of integer-I. However, integer-l must be greater than
or equal to 2. If the RESERVE clause is omitted, a value of
2 is assumed.

3-16

ENVIRONMENT DIVISION

13. When the access mode is sequential, records in the file are
accessed in the sequence dictated by the file organization.
For indexed files, this sequence follows the order of
ascending record key values within a given key of r~ference.

14. If the access mode is random, the value of the record key
data item indicates the record to be accessed.

15. When the access mode is dynamic, records in the file may be
accessed sequentially and/or randomly.

16. The RECORD KEY clause specifies the prime record key for the
file. The values of the prime record key must be unique
among file records. It provides an access path to records in
an indexed file.

17. An ALTERNATE RECORD KEY clause specifies an alternate record
key for the file. It provides an alternate access path to
records in an indexed file.

18.

19.

The data descriptions of data-name-2 and data-name-3 as
as their relative locations within a record must be the
as those used when the file was created. Alternate
specification sequencing must be the same as those used
the file was created.

The DUPLICATES phrase specifies that the value of
associated alternate record key may be duplicated within
of the file records. If the DUP~ICATES phrase is
specified, the value of the associated alternate record
must not be duplicated in any of the records file.

3-17

well
same

key
when

the
any
not
key

ENVIRONMENT DIVISION

I-O-CONTROL

3.7 THE I-O-CONTROL PARAGRAPH

Function

The I-O-CONTROL paragraph specifies the memory area to be shared by
different files and the location of sequential files on a multiple
file reel.

General Format

I-O-CONTROL.

[RECORD] AREA FOR file-name-l , {file-name-2} . ..]
MULTIPLE FILE TAPE CONTAINS file-name-3 [POSITION integer-~

[, file-name-4 [pOSI'rION integer-2]] .. .J
[, APPLY PRINT-CONTROL ON file-name-5 [,file-name-6] .• oJ ...

Syntax Rules

1. The I-O-CONTROL paragraph is optional.

2. The two forms of the SAME clause (SAME AREA, SAME RECORD
AREA) are considered separately in the following:

More than one SAME clause may be included in a program,
however:

a. A file-name must not appear in more than one SAME AREA
clause.

b. A file-name must not appear in· more than one SAME RECORD
AREA clause.

c. If one or more file-names of a SAME AREA clause appear in
a SAME RECORD AREA clause, all of the file-names in that
SAME AREA clause must appear in the SAME RECORD AREA
clause. However, additional file-names not appearing in
that SAME AREA clause may also appear in that SAME RECORD
AREA clause.

3. The files referenced in the SAME AREA or SAME RECORD AREA
clause need not have the same organization or access.

3-18

ENVIRONMENT DIVISION

General Rules

1. The SAME AREA clause specifies that two or more files are to
use the same memory area during processing. The area being
shared includes all buffer areas assigned to the files
specified; therefore, it is not valid to have more than one
of the files open at the same time.

2. The SAME RECORD AREA clause specifies that two or more files
are to use the same memory area for processing the current
logical record. All the files may be open at the same time.
A logical record in the SAME RECORD AREA is considered as a
logical record of each opened output file whose file-name
appears in this SAME RECORD AREA clause and of the most
recently read input file'whose file-name appears in this SAME
RECORD AREA clause. This is equivalent to an implicit
redefinition of the area, i.e., records are aligned on the
leftmost character position.

3. The rule that only one of the files mentioned in a SAME AREA
clause can be open at any given time takes precedence over
the rule that all files mentioned in a SAME RECORD AREA
clause can be open at any given time.

4. The MULTIPLE FILE, clause is for documentation purposes only.
It is used when more than one file shares the same physical
reel of tape. Regardless of the number of files on a single
reel, only those files that are used in the object program
need be specified. If all file-names have been listed in
consecutive order, the POSITION clause need not be given. If
any file in the sequence is not listed, the position relative
to the beginning of the tape must be given. Not more than
one file on the same tape reel may be open at one time.

5. Default techniques' are used when the APPLY clause is not
present; hence, the clause is never required.

A sequential file may be written with WRITE statements that
use the ADVANCING clause to control line spacing. The APPLY
PRINT-CONTROL clause may be specified for a printable file
if the FD entry does not specify a LINAGE clause. The APPLY
PRINT-CONTROL clause supplies a default LINAGE clause. If
neither PRINT-CONTROL nor LINAGE is specified for the file, a
WRITE statement with the, ADVANCING option will cause
formatting information to be included in the user-record.

3-19

DATA DIVISION

CHAPTER 4

DATA DIVISION

4.1 OVERALL APPROACH

The Data Division describes the data that the object program is to
accept as input, to manipulate, to create, or to produce as output.
Data to be processed falls into three categories:

1.

2.

That which is contained in files and
internal memory of the computer
areas.

enters or leaves the
from a specified area or

That which is developed internally
intermediate or working storage, or
format for output reporting purposes.

and placed into
placed into specific

3. Constants which are defined by the user.

4.1.1 Data Division Organization

The Data Division, which is one of the required divisions in a
program, is subdivided into three sections; the File Section, the
Working-Storage Section, and the Linkage Section.

The File Section defines the structure of data files. Each file is
defined by a file description entry and one or more record
descriptions. Record descriptions are written immediately following
the file description entry.

The Working-Storage Section describes records and noncontiguous data
items that are not part of external data files but are developed and
processed internally. It also describes data items whose values are
assigned in the source program.

The Linkage Section appears only in the called program and describes
data items that are to be referred to by the calling program and the
called program. Its structure is the same as the Working-Storage
Section.

4-1

DATA DIVISION

4.1.2 Data Division Structure

The following information gives the general format of the sections in
the Data Division and defines the order of their presentation in the
source program.

DATA DIVISION.

[FILE SECTION.

[file-description-entry [record-description-entry] •..] •. J
~ORKING-STORAGE SECTION.

[

77-level-descriPtion-entr y]]

record-description-entry

[LINKAGE SECTION.

[

77-level-descriPtion-entr y]]

record-description-entry

4.2 FILE SECTION

The File Section contains descriptions of files required by the object
program.

4.2.1 File-Description-Entry

In a COBOL program the file-description-entry (FD) represents the
highest level of organization in the File Section. The File Section
header is followed by a file-description-entry consisting of a level
indicator (FD), a file-name, and a series of independent clauses. The
FD clauses specify the size of the logical and physical records, the
presence or absence of label record, the value of DEC-defined label
items, and the names of the data records that make up the file. The
entry itself is terminated by a period.

4.2.2 Record-Description-Entry

A record description-entry is a set of data description entries that
describe the characteristics of a particular record. Each data
description entry consists of a level-number followed by a data-name
if required, followed by a series of independent clauses as required.
A record description has a hierarchical structure; therefore, the
clauses used with an entry may vary considerably, depending upon
whether or not it is followed by subordinate entries.

4-2

DATA DIVISION

4.3 WORKING-STORAGE SECTION

The Working-Storage Section is composed of the section header,
followed by data description entries for noncontiguous data items
and/or record description entries. Each Working-Storage Section data
name must be unique.

4.3.1 Noncontiguous Working-Storage

Items and constants in Working-Storage that bear no hierarchical
relationship to one another need not be grouped into records, provided
they do not need more subdividing. Instead, they are classified and
defined as noncontiguous elementary itemi. Each of these items is
defined in a separate data description entry.

4.3.2 Working-Storage Records

Data elements and constants in Working-Storage that bear a definite
hierarchical relationship to one another must be grouped into records
according to the rules for formation of record descriptions. All
clauses used in record descriptions in the File Section can be used in
record descriptions in the Working-Storage Section.

4.3.3 Initial Values

The initial value of any item in the Working-Storage Section, except
an index data item, is specified by using the VALUE clause (see
Section 4.11) with the data item. The initial value of any index data
item is unpredictable.

4.4 LINKAGE SECTION

The Linkage Section in a program is meaningful if and only if the
object program is to function under the control of a CALL statement
(see Section 5.11), and the USING phrase in the PROCEDURE DIVISION
header is not empty (see Section 5.~).

The Linkage Section is used for describing data that is available
through the calling program but is to be referred to in both the
calling and the called program. No space is allocated in the program
for data items defined in the Linkage Section of that program.
Procedure Division references to these data items are resolved at
object time by equating the reference in the called program to the
location used in the calling program. In the case of index-names, no
such correspondence is established. Index-names in the called and
calling program always refer to separate indices.

4-3

DATA DIVISION

Data items defined in the Linkage Section of the called program may be
referenced within the Procedure Division of the called program if and
only if they are:

1. Operands of the USING phrase of the Procedure Division
header.

2. Subordinate to operands of the USING phrase of the Procedure
Division header.

3. Defined with a REDEFINES or RENAMES clause, the object of
which is an operand of the USING phrase of the Procedure
Division header.

4. Items subordinate to any of the items defined in paragraph 3
above.

5. Condition-names and index-names associated with data items
that meet any of the above conditions.

The structure of the .Linkage Section is the same as that previously
described for the Working-Storage Section, beginning with a section
header, followed by Record Description entries.

4-4

DATA DIVISION

FD

4.5 THE FILE DESCRIPTION - COMPLETE ENTRY SKELETON

Function

The file description furnishes information about the physical
structure, identification, and record names pertaining to a given
file.

General Format

FD file-name

[: BLOCK CONTAINS [integer-l TO] integer-2

[; RECORD CONTAINS [integer-3 TO] integer-4

l

RECORD IS l I STANDARD I
RECORDS ARE~ OMITTED

[
; VALUE OF ID IS !data-name-l lJ

literal-l ~

[
[

~ RECORD IS }
DATA) . data-name-3

l RECORDS ARE

LINAGE IS ldata-name-sl

integer-S
LINES

[. data-narne-4] • • .J

[

, WITH FOOTING AT Idata-name-6 1J
integer-6 f

[
• LINES AT TOP l~ata-name-7n. [LINES AT BOTTOM

ll.nteger-7 U !

data-name-slJJ

integer-S J

[i CODE-SET IS alphabet-name]

Syntax Rules

1. The level indicator FD identifies the beginning of a file
description and must precede the file-name.

2. The clauses that follow the name of the file are optional in
many cases, and their order of appearance is immaterial.

3. One or more record description entries must follow the file
description entry.

4-5

DATA DIVISION

BLOCK CONTAINS

4.6 THE BLOCK CONTAINS CLAUSE

Function

The BLOCK CONTAINS clause specifies the mapping of a logical
record into physical blocks recorded on the storage media.

General Format

BLOCK CONTAINS [integer-l TO] {
RECORDS }

integer-2
CHARACTERS

Syntax Rules

1. The reserved word RECORD does not appear in this clause;
therefore, if integer-2 has the value 1, the clause must be
written as BLOCK CONTAINS 1 RECORDS.

General Rules

1. Integer-I, if present, is ignored.

2. The size of the block may be stated in terms of RECORDS,

a. If the file is assigned to magnetic tape and the records
are fixed in size (see the RECORD CONTAINS clause,
Section 4.10), each block except the last block will
contain integer-2 records. Integer-I, if present, is
ignored.

b. If the file is assigned to magnetic tape and the records
are variable in size (see The RECORD CONTAINS clause,
Section 4.10), the value of integer-2 is used to
calculate a buffer size by multiplying the largest record
size, plus four bytes, by integer-2. The input-output
system then blocks or unblocks as many variable sized
records from this buffer as will fit.

c. For a sequential file assigned to a disk d~vice, the
values of integer-I, if present, and integer-2 are
ignored. There are no unused bytes on any block and the
records may span block boundaries.

4-6

DATA DIVISION

d. If the file has relative or indexed organization and it
is assigned to a directory device, the value of integer-2
is used to calculate the size of the block. This size
mayor may not be equal to the record size times
integer-2 because of overhead bytes. (See the TRAX
COBOL User's Guide.)

3. The size of the block may be stated in terms of characters,

a. If the file is assigned to a magnetic tape, the size of
the block is the maximum of either,

(1). Integer-2 bytes

(2). The size of the largest iecord (add four overhead
bytes for variable l~ngth records)

b. If the file has sequential organization and is assigned
to a disk device, the clause is ignored and the records
are packed together on each physical block. There are no
unused bytes on any block and the records may span block
boundaries.

c. If the file has relative or indexed organization, the
size of the block is integer-2 bytes. Integer-2 must be
at least as large as the largest record, plus any
overhead bytes, and should be a multiple of 512 bytes.
(See the TRAX COBOL User's Guide.)

4. When the clause is not present, the size of the block is
calculated in the following manner:

a. If the file is assigned to magnetic tape, the size of the
block is the size of the largest record plus any overhead
bytes.

b. If the file has sequential organization and is assigned
to a disk device, the records are packed together on each
physical block. There are no unused bytes on any block,
and the records may span block boundaries.

c. If the file has relative or indexed organization, the
least number of physical blocks that can contain one
record, plus any overh~ad bytes is the block size.

4-7

DATA DIVISION

CODE-SET

4.7 THE CODE-SET CLAUSE

Function

The CODE-SET clause specifies the character code set used to
represe~t data on the external media.

General Format

CODE-SET IS alphabet-name

Syntax Rules

1. When the CODE-SET clause is specified for a file, all data in
that file must be described as USAGE IS DISPLAY and any
signed numeric data must be described with the SIGN IS
SEPARATE clause.

2. The CODE-SET clause may only be specified for files whose
organization is sequential.

General Rules

1. If the CODE-SET clause is specified, alphabet-name specifies
the character code convention used to represent data on the
external media. It also specifies the algorithm for
converting the character codes on the external media from/to
the native character codes. This code conversion occurs
during the execution of. an input or output operation. (See
Section 3.4.3, The SPECIAL-NAMES Paragraph.)

2. If the CODE-SET clause is not specified, the native character
code set is assumed for data on the external media.

4-8

DATA DIVISION

DATA RECORDS

4.8 THE DATA RECORDS CLAUSE

Function

The DATA RECORDS clause serves only as documentation for the
names of data records with their associated file.

General Format

{

RECORD IS }
DATA

RECORDS ARE

Syntax Rules

data-name-l [, data-name-2] •••

1. Data-name-l and data-name-2 are the names of data records and
must have 01 level-number record descriptions, with the same
names, associated with them.

General Rules

1. This clause is documentary only and is never required. The
names of the records are not checked against the names
appearing in the following 01 record descriptions.

2. Conceptually, all data records within a file share the same
area. This is in no way altered by the presence of more than
one type of data record within the file.

4-9

DATA DIVISION

LABEL RECORDS

4.9 THE LABEL RECORDS CLAUSE

Function

The LABEL RECORDS clause specifies whether labels are present.

General Format

{
RECORD IS } {STANDARD}

LABEL
RECORDS ARE OMITTED

Syntax Rules

This clause is required in every file description entry.

General Rules

1. OMITTED specifies that no explicit labels exist for the file
or the device to which the file is assigned. OMITTED may be
specified only for files that are assigned to non-directory
devices.

2. STANDARD specifies that labels exist for the file or the
device to which the file is assigned and that the labels
conform to the file system label specifications.

3. STANDARD is required for all files assigned to directory
devices.

4-10

DATA DIVISION

LINAGE

4.10 THE LINAGE CLAUSE

Function

The LINAGE clause may only be used for sequential output files.
It is provided as a means for specifying the depth of a logical
page in terms of number of lines. It also provides for
specifying the size of the top and bottom margins on the logical
page, and the line number, within the page body, at which the
footing area begins.

General Format

{
data-name-l} [

LINAGE IS . LINES ,
lnteger-l {

data-name-2}]
WITH FOOTING AT .

lnteger-2

[{
data-name-3}~

, LINES AT TOP
. integer-3 [{

data-narne-4}]
, LINES AT BOTTOM .

lnteger-4

Syntax Rules

i. Data-name-l, data-name-2, data-name-3, data-name-4 ·must
reference elementary unsigned numeric integer data items.

2. The value of integer-l must be greater than zero.

3. The value of integer-2 must ·not be greater than integer-I.

4. The value of integer-3, integer-4 may be zero.

General Rules

1. The LINAGE clause provides a means for specifying the size of
a logical page in terms of number of lines. The logical page
size is the sum of the values referenced by each phrase
except the FOOTING phrase. If the LINES AT TOP or LINES AT
BOTTOM phrases are not specified, the values for these
functions are zero. If the FOOTING phrase is not specified,
the assumed value is equal to integer-lor the contents of
the data item referenced by data-name-l, whichever is
specified.

There is not necessarily any relationship between the size of
the logical page and the size of a physical page.

4-11

DATA DIVISION

2. The value of integer-lor the data item referenced by
data-name-l specifies the number of lines that can be written
and/or spaced on the logical page. The value must be greater
than zero. That part of the logical page in which these
lines can be written and/or spaced is called the page body.

3. The value of integer-3 or the ~ata item referenced by
data-name-3 specifies the number of lines constituting the
top margin on the logical page. The value may be zero.

4. The value of integer-4 or the data item referenced by
data-name-4 specifies the number of lines that make up the
bottom margin on the logical page. The value may be zero.

5. The value of integer-2 or the data item referenced by
data-name-2 specifies the line number within the page body at
which the footing area begins. The value must be greater
than zero and not greater than the value of integer-lor the
data item referenced by data-name-l.

The footing area comprises the area of the logical page
between the line represented by the value integer-2 or the
data item referenced by data-name-2 and the line represented
by the value' integer-lor the data item referenced by
data-name-l, inclusive.

6. During the execution of an OPEN statement with the OUTPUT
phrase specified, the value of integer-I, integer-3, and
integer-4, if specified, will be used at the time the file is
opened to specify the number of lines that make up each of
the indicated sections of a I09ical page. The value of
integer-2, if specified, will be used at that time to define
the footing area. These values are used for all logical
pages written during a given execution of the program.

7. The values of
data-name-3,
follows:

the data items referenced by data-name-l,
and data-name-4, if specified, will be used as

a. The values of the data items, at the time an OPEN
statement with the OUTPUT phrase is executed for the
file, will be used to specify the number of lines that
are to constitute each of the indicated sections for the
first logical page.

b. The values of the data items, at the time a WRITE
statement with the ADVANCING PAGE phrase is executed or
page overflow condition occurs (see Section 5.42, The
WRITE Statement), will be used to specify the number of
lines that are to constitute each of the indicated
sections for the next logical page.

4-12

DATA DIVISION

8. The value of the data item referenced by data-name-2, if
specified, at the time an OPEN statement with the OUTPUT
phrase is executed for the file, will be used to define the
footing area for the first logical page. At the time a WRITE
statement with the ADVANCING PAGE phrase is executed or a
page overflow condition occurs, it will be used to define the
footing area for the next logical page.

9. A LINAGE-COUNTER is generated by the presence
clause. The value in the LINAGE-COUNTER at
represents the line number at which the device
within the current page body. The rules
LINAGE-COUNTER are as follows:

of a LINAGE
any given time
is positioned
governing the

a. A separate LINAGE-COUNTER is supplied for each file
described in the File Section whose file description
entry contains a LINAGE clause.

b. LINAGE-COUNTER may be referenced but not modified by
Procedure Division statements. Because more than one
LINAGE-COUNTER may exist in a program, the user must
qualify LINAGE-COUNTER by file-name when necessary.
LINAGE-COUNTER is implicitly described as PIC S9999 COMP.

c. LINAGE-COUNTER is automatically modified, according to
the following rules, driring the execution of a WRITE
statement to an associated file:

(1) When the ADVANCING PAGE phrase of the WRITE
statement is specified, the LINAGE-COUNTER is
automatically reset to one.

(2) When the ADVANCING identifier-2 or integer phrase of
the WRITE statement is specified, the LINAGE-COUNTER
is incremented by integer or value of the data item
referenced by identifier-2.

(3) When the ADVANCING phrase of the WRITE statement is
not specified, the LINAGE-COUNTER is incremented by
the value one. (See Section 5.42, The WRITE
Statement.)

(4) The value of LINAGE-COUNTER is automatically reset
to one when the device is repositioned to the first
line that can be written on for each of the
succeeding logical pages. (See Section 5.44, The
WRITE Statement.)

d. The value of LINAGE-COUNTER is automatically set to one
at the time an OPEN statement is executed for the
associated file.

10. Each logical page is contiguous to the next with no
additional spacing provided.

4-13

DATA DIVISION

RECORD CONTAINS

4.11 THE RECORD CONTAINS CLAUSE

Function

The RECORD CONTAINS clause specifies the size of data records.

General Format

RECORD CONTAINS [integer-l TO] integer-2 CHARACTERS

General Rules

1. The size of each data record is completely defined within the
record description entry; therefore, this clause never
alters the storage allocated to the records in the computer
memory.

2. For files with relative organization, record size on the
storage media is fixed and equal to a value that is large
enough to hold the largest record described in the file.
This rule is not affected by the RECORD CONTAINS clause.

3. For files with sequential or indexed organization, record
size on the storage media may be fixed or variable, If the
record descriptions for a file yield record sizes that vary
in size, the record storage areas allocated on the storage
media will vary in size and will be preceded by a byte count
word supplied automatically by the Record Management
Services.

4. If the record descriptions for a file yield record sizes that
are all the same size, the record storage areas allocated on
the storage media will be fixed in size and will not be
preceded by a byte count word. However, the programmer may
force a variable size record format, with the byte count word
suffix on each record, by using a RECORD CONTAINS clause with
the "integer-l TO" phrase.

a. Integer-2 may not be used by itself unless all the data
records in the file have the same size. In this case
integer-2 represents the exact number of characters in
the data record. If integer-l and integer-2 are both
shown, they refer to the number of characters in the
smallest size data record and the number of characters in
the largest size data record, respectively.

4-14

b. The size is
positions
regardless
the items
record is
characters
required by

DATA DIVISION

specified in terms of the number of character
required to store the logical record,

of the types of characters used to. represent
within the logical record. The size of a
determined by the sum of the number of
in all elementary items, plus any characters
implicit or explicit synchronization.

c. Except for the use of the RECORD CONTAINS clause to force
a variable record storage size on the media, the clause
is documentary.

4-15

DATA DIVISION

VALUE OF

4.12 THE VALUE OF CLAUSE

Function

The VALUE OF clause particularizes the description of an item in
the label records associated with a file.

General Format

VALUE OF 10 IS

Syntax Rules

{
data-name}

literal

1. The VALUE OF 10 clause must not be stated when LABEL RECORDS
ARE OMITTED is specified.

2. Data-name cannot b~ subscripted or indexed, nor can it be
described with the USAGE IS INDEX clause.

3. Data-name must be in the Working-Storage Section.

4. Data-name must be an alphanumeric elementary item.

5. Literal must be a alphanumeric literal.

General Rules

1. For an existing file, the value of literal or data-name is
used to supply information to the Record Management System to
properly locate and identify the desired file.

2. For an output file, the value of literal or data-name is used
to supply information to the Record Management System to
properly create the desired file.

3. The value of literal or data-name is taken as a file
specification in command string format.

4-16

DATA DIVISION

DATA DESCRIPTION

4.13 DATA DESCRIPTION CONCEPT

To make data as computer independent as possible, the characteristics
or properties of the data are described in relation to a standard data
format rather than an equipment-oriented format. This standard data
format is oriented to general data processing applications. It uses
the decimal system to represent numbers and the remaining characters
in the COBOL character set to describe alphanumeric data items.

4.13.1 Logical Record and File Concept

The approach taken in defining file information is
between the physical aspects of the file and
characteristics of the data contained within the file.

4.13.2 Physical Aspects of a File

to distinguish
the conceptual

The physical aspects of a file describe the data as it appears on the
input or output media and include such features as:

1. The grouping of logical records
limitations of the file medium.

within

2. The means by which the file can be identified.

4.13.3 Conceptual Characteristics of a File

the physical

The conceptual characteristics of a file are the explicit definition
of each logical entity within the file itself. In a COBOL program,
the input or output statements refer to one logical record.

It is important to distinguish between a physical record and a logical
record. A COBOL logical record is a group of related information,
uniquely identifiable, and tre?ted asa unit.

A physical record is a physical unit of information whose size and
recording mode is convenient to a particular computer for the storage
of data on an input or output device. The size of a physical record
is hardware dependent and bears no direct relationship to the size of
the file of information contained on a device.

One or more logical record(s) may be contained within a single
physical unit; or, in the case of formatted storage media, a logical
record may require more than one physical unit to contain it. There
are source language methods available for describing the relationship of

4-17

DATA DIVISION

logical records and physical units. When a permissible relationship
has been established, control of the accessibility of logical records
as related to the physical unit is provided by the interaction of the
object program on the hardware and/or software system. In this
document, references to records means to logical records, unless the
term 'physical record' is specifically used.

The concept of a logical record is not restrIcted to file data but is
carried over into the definition of working storage. Thus, working
storage may be grouped into logical records and defined by a series of
record description entries.

4.13.4 Record Concepts

The record description consists of a set of data description entries
that describe the characteristics of a particular record. Each data
description entry consists of a level-number followed by a data-name,
if required, followed by a series of independent clauses, as required.

4.13.5 Concept of Levels

A level concept is inherent in the structure of a logical record.
This concept arises from the need to specify subdivisions of a record
for data reference. Once a subdivision has been specified, it may be
further subdivided to permit more detailed data referral.

The most basic subdivisions of a record, that is, those not further
subdivided, are called elementary items; consequently, a record is
said to consist of a sequence of elementary items, or the record
itself may be an elementary item.

To refer to a set of elementary
combined into groups. Each group
or more elementary items. Groups,
groups of one or more groups,
belong to more than one group.

4.13.6 Level-Numbers

items, the elementary items are
consists of a named sequence of one

in turn, may be combined into
etc. Thus, an elementary item may

A system of level-numbers shows the organization of elementary items
and group items. Since records are the most inclusive data items,
level-numbers for records start at 01. Less inclusive data items are
assigned higher (not necessarily successive) level-numbers not greater
in value than 49. There are special level-numbers, 66, 77, and 88,
which are exceptions to this rule (see below). Separate entries are
written in the source program for each level-number used.

A group includes all group and elementary items following it until a
level-number less than or equal to the level-number of that group is
encountered. All items which are immediately subordinate to a given
group item must be described using identical level-numbers greater
than the level-number used to describe that group item.

4-18

DATA DIVISION

Three types of entries exist for which there is no true concept of
level. These are:

1. Entries that identify RENAMES items

2. Entries that specify non-contiguous working storage data
items

3. Entries that specify condition-names

Entries that specify RENAMES items and can be used only as described
in Format 2 of the data description skeleton have been assigned the
special level-number 66.

Entries that specify non-contiguous data items which are not
subdivisions of other items and are not themselves subdivided, have
been assigned the special level-number 77.

Entries that specify condition-names to be associated with particular
values of a conditional variable have been assigned the special
level-number 88.

4.13.7 Concept of Classes of Data

The five categories of data items (see Section 4.20, The PICTURE
Clause) are grouped into three classes: alphabetic, numeric, and
alphanumeric. For alphabetic and numeric, the classes and categories
are synonymous. The alphanumeric class includes the categories of
alphanumeric edited, numeric edited and alphanumeric (without
editing) . Every elementary item except an index data item belongs to
one of the classes and, further, to one of the categories. The class
of a group item is treated at object time as alphanumeric regardless
of the class of elementary items subordinate to that group item. The
following chart depicts the relationship of the class and categories
of data items.

LEVEL OF ITEM CLASS CATEGORY

Alphabetic Alphabetic

Numeric Numeric

Elementary Numeric Edited

Alphanumeric Alphanumeric Edited

Alphanumeric

Alphabetic

Numeric

Non-Elementary Alphanumeric Numeric Edited

(Group) Alphanumeric Edited

Alphanumeric

4-19

DATA DIVISION

4.13.8 Selection of Numeric Character Representation

The value of a numeric item may be represented in either binary or
decimal form. The form of representation may be selected with the
USAGE clause of the data-description entry; the binary form (with an
assumed decimal position) is the COMPUTATIONAL or COMP item (see
Section 4.25, The USAGE Clause), and the decimal form (ASCII 8-bit) is
the DISPLAY item (see Section 4.25, The USAGE Clause). (DISPLAY,
DISPLAY-6, and DISPLAY-7 are all synonymous and may be used
interchangeably.)

4.13.9 Algebraic Signs

Algebraic signs fall into two categories: operational signs, which
are associated with signed numeric data items to indicate their
algebraic properties; and editing signs, which appear on edited
reports to identify the sign of the item.

The SIGN clause permits the programmer to state explicitly the
location of the operational sign. The clause is optional; if it is
not used, operational signs will be represented by a default. (See
Section 4.23, The SIGN Clause.)

Editing signs are inserted into a data item by using the sign control
symbols of the PICTURE clause.

4.13.10 Standard Alignment Rules

The standard rules for positioning data within an elementary item
depend on the category of the receiving item. These rules are:

1. If the receiving data item is described as numeric:

a. The data is aligned by decimal point ~nd is moved to the
receIvIng character positions with zero fill or
truncation on either end as required.

b. When an assumed decimal point is not explicitly
specified, the data item is treated as if it had an
assumed decimal point immediately following its
rightmost character and is aligned as in paragraph l.a.
above.

2. If the receiving data item is a numeric edited data item, the
data moved to the edited data item is aligned by decimal
point with zero fill or truncation at either end as required
within the receIvIng character positions of the data item,
except where editing requirements cause replacement of the
leading zeros.

3. If the receiving data item
numeric edited, data
alphabetic, the sending
character positions and
position in the data item
the right, as required.

is alphanumeric (other than a
item), alphanumeric edited or

data is moved to the receiving
aligned at the leftmost character

with space fill or truncation to

If the JUSTIFIED clause is specified for the receIvIng item,
these standard rules are modified as described in the
JUSTIFIED Clause. (See Section 4.17, The JUSTIFIED Clause.)

4-20

DATA DIVISION

4.13".11 Item Alignment for Increased Object-Code Efficiency

All COMPUTATIONAL items are automatically SYNCHRONIZED RIGHT and word
aligned as follows: if the item is specified as being less than 5
characters long, it will be in 1 machine word; if it is from 5 to 9
characters long, it will be in 2 words; from 10 to 14 characters will
be in 3 words, and from 15 to 18 characters will be in 4 words. The
SYNCHRONIZED clause (see Section 4.24, The SYNCHRONIZED Clause)
may be used to control word alignment of DISPLAY data if
desired.

All INDEX data items are automatically SYNCHRONIZED RIGHT and occupy
one machine word.

4-21

DATA DIVISION

DATA DESCRIPTION -
SKELETON
4.14 THE DATA DESCRIPTION - COMPLETE ENTRY SKELETON

Function

A data description entry specifies the characteristics of a
particular item of data.

General Format

Format 1

{
data-name-l}

level-number
FILLER

[i REDEFINES data-name-2]

~ {P:~:URE} IS character-str ingJ

t· ['U.M..G..E IS] I ~~::TIONALI]
DISPLAY-6
DISPLAY-7

r; [SIGN IS] {LEADING l [SEPARATE CHARACTER0 L TRAILING' J
I; {SYNCHRONIZED {!-LEFT J]
L SYNC 'lRIGBT

r; {JUSTIFIED t RIGHTl

L JUST , J
[i BLANK WHEN ZERO]

[i VALUE IS literal]

E {
integer-l TO integer-2 TIMES DEPENDING ON data-name-3}

OCCURS
integer-2 TIMES

[{
ASCENDING t KEY IS data-name-4 [data-name-S] •.. J
DESCENDING'

[INDEXED BY index-narne-l [index-narne-2] 0 0 oJ] 0

4-22

DATA DIVISION

Format 2

66 data-name-l; RENAMES data-name-2

[{ ::::UGH} data-name-3 J.
Format 3

[literal-3

{
VALUE IS } literal-l r!{ THROUGH}

VALUES ARE ~ THRU

[C:::UGH} literal-~]."
literal-~ 88 condition-name;

Syntax Rules

1. The level-number in Format 1 may be any number from 01-49 or
77.

2. The clauses may be written in any order with two exceptions:
the data-name-l or FILLER clause must immediately follow the
level-number; the REDEFINES clause, when used, must
immediately follow the data-name-l clause;

3. The PICTURE clause must be specified for every elementary
item except an index data item, in which case use of this
clause is prohibited.

4. The words THRU and THROUGH are equivalent.

General Rules

1. A data-name is a user-defined word that names a data item.
When used in the general formats, data-name represents a word
which can neither be subscripted nor indexed unless
specifically permitted by the rules of that format.
Data-names need not begin with an alphabetic character; the
alphabetic characters may be positioned anywhere within the
data-name. Qualification is permitted; therefore, all
data-names need not be unique.

2. The SYNCHRONIZED, PICTURE, JUSTIFIEDj and BLANK WHEN ZERO
clauses must not be specified except for an elementary data
item.

4-23

DATA DIVISION

3. Format 3 is used for each condition-name. Each
condition-name requires a separate entry with level-number
88. Format 3 contains the name of the condition and the
value, values, or range of values associated with the
condition-name. The condition-name entries for a particular
conditional variable must follow the entry describing the
item with which the condition-name is associated. A
condition-name can be associated with any data description
entry which contains a level-number, except the following:

a. Another condition-name

b. A group containing items
JUSTIFIED, SYNCHRONIZED
DISPLAY)

c. An index data item

d. A level 66 item.

4-24

with descriptions, including
or USAGE (other than USAGE IS

DATA DIVISION

BLANK WHEN ZERO

4.15 THE BLANK WHEN ZERO CLAUSE

Function

The BLANK WHEN ZERO clause permits the blanking of an item when
its value is zero.

General Format

BLANK WHEN ZERO

Syntax Rules

The BLANK WHEN ZERO clause can be used only for an elementary
item whose PICTURE is specified as numeric edited or numeric.
(See Section 4.20, The PICTURE Clause.)

General Rules

1. When the BLANK WHEN ZERO clause is used as a rece1v1ng field
for a numeric value, the items will contain nothing but
spaces if the value being stored is o.

2. When the BLANK WHEN ZERO clause is used for an item whose
PICTURE is numeric, the category of the item is considered to
be numeric edited.

4-25

DATA DIVISION

OAT A-NAME/FILLER

4.16 THE DATA-NAME OR FILLER CLAUSE

Function

A data-name specifies the name of the data being described. The
word FILLER specifies an elementary item of the logical record
that is not to be referenced explicitly.

General Format

{
data-name}
FILLER

Syntax Rules

1. In the File, Working-Storage and Linkage Sections, a
data-name or the key word FILLER must be the first word
following the level-number in each data description entry.

General Rules

1. The key word FILLER may be used to name an elementary item in
a record. Under no circumstances can a FILLER item be
referred to explicitly. However, the key word FILLER may be
used as a conditional variable because such use does not
require explicit references to the FILLER item, but to its
value. (See General Rule 3 in Section 4.14 for an
explanation of the condition variable.)

4-26

DATA DIVISION

JUSTIFIED

4.17 THE JUSTIFIED CLAUSE

Function

The JUSTIFIED clause specifies non-standard positioning of data
within a receiving data item.

General Format

{
JUSTIFIED}

JUST

Syntax Rules

RIGHT

1. The JUSTIFIED clause can be specified only at the elementary
item level.

2. JUST is an abbreviation for JUSTIFIED.

3. The JUSTIFIED clause cannot be specified for any data item
described as numeric or for which editing is specified.

General Rules

1. When a receIvlng data item is described with the JUSTIFIED
clause and the sending data item is larger than the receiving
data item, the leftmost characters are truncated. When the
receIvlng data item is described with the JUSTIFIED clause
and it is larger than the sending data item, the data is
aligned at the rightmost character position in the data item
with space fill for the leftmost character positions.

2. When the JUSTIFIED clause is omitted, the standard rules for
aligning data within an elementary item apply. (See Section
4.13.10, Standard Alignment Rules.)

4-27

DATA DIVISION

LEVEL-NUMBER

4.18 LEVEL-NUMBER

Function

The level-number shows the hierarchy of data within a logical
record. It is also used to identify entries for non-contiguous
working storage items, condition-names, and the RENAMES clause.

General Format

level-number

Syntax Rules

1. A level-numb~r is required as the first element in each data
description entry.

2. Data description entries subordinate to an FD entry must have
level-numbers with the values 01-49, 66, or 88.

3. Data description entries in the Working-Storage Section and
LINKAGE SECTION must have level numbers with the values 01-49,
66, 77, or 88.

General Rules

1. The level-number 01 identifies the first entry in each record
description.

2. Special level-numbers have been assigned to certain entries
where there is no real concept of level:

a. Level-number 77 is assigned to identify noncontiguous
working storage data items or noncontiguous data items
and can be used only as described by Format 1 of the data
description skeleton. (See Section 4.14, The Data
Description - Complete Entry Skeleton.)

b. Level-number 66 is assigned to entries that define
RENAMES items and can be used only in Format 2 of the
data descr iption skeleton. (See Section 4.14, the Data
Description-Complete Entry Skeleton.)

c. Level-number 88 is assigned to entries that define
condition-names associated with a conditional variable
and can be used only in Format 3 of the data description
skeleton. (See Section 4.14, The Data
Description - Complete Entry Skeleton.)

3. Multiple level 01 entries subordinate to an FD level
indicator represent implicit redefinitions of the same area.

4-28

DATA DIVISION

OCCUR-S

4.19 THE OCCURS CLAUSE

Function

The OCCURS clause eliminates the need for separate entries for
repeated data items and supplies information required for the
application of subscripts or indices.

General Format

Format 1

OCCURS integer-2 TIMES

Format 2

n{ ASCENDING } KEY IS da ta-name-2 [, da ta-name-3] .•. J ...
~ DESCENDING

[INDEXED BY index-name-l [, index-name-2]]

OCCURS integer-l TO integer-2 TIMES DEPENDING ON data-name-l

Syntax Rules

I~{ ASCENDING } KEY IS data-name-2 [,data-name-3] ••. J ...
~ DESCENDING

[INDEXED BY index-name-l [,index-name-2] •.•]

1. Where both integer-l and integer-2 are used, the value of
integer-l must be less than the value of integer-2. Integer-l
must be greater than or equal to 1.

2. The data description of data-name-l must describe a positive
integer.

3. Data-name-l, data-name-2, data-name-3, ••• may be qualified.

4. Data-name-2 must either be the name of the entry containing
the OCCURS clause or the name of an entry subordinate to the
entry containing the OCCURS clause.

5. Data-name-3, etc., must be the name of an entry subordinate
to the group item that is the subject of this entry.

4-29

DATA DIVISION

6. An INDEXED BY phrase is required if the subject of this entry
or an entry subordinate to this entry is to be ref&rred to by
indexing. The index-name identified by this clause is not
defiried elsewhere, because its allocation and format are
dependent on the hardware and, not being data, cannot be
associated with any data hierarchy.

7. A data description entry that contains Format 2 of the OCCURS
clause may only be followed, within that record description,
by data description entries which are subordinate to it.

8. The OCCURS clause cannot be specified in a data description
entry that:

a. Has a 01, 77, or an 88 level-number.

b. Describes an item whose size is variable. The size of an
item is variable if the data description of any
subordinate item contains Format 2 of the OCCURS clause.

9. In Format 2, the data item defined by data-name-l must not
occupy a character position within the range of the first
character position defined by the data description entry
containing the OCCURS clause and the last character position
defined by the record description entry containing that
OCCURS clause.

10. If data-name-2 is not the subject of this entry, then:

a. All the items identified by the data-names in the KEY IS
phrase must be within the group item that is the subject
of this entry.

b. Items identified by the data-name in the KEY IS phrase
must riot contain an OCCURS clause.

c. There must not be any entry that contains an OCCURS
clause between the items identified by the data-names in
the KEY IS phrase and the subject of this entry.

11. Index-name-l, index-name-2, ••• must be unique words within
the program.

General Rules

1. The OCCURS clause is used in defining tables and other
homogeneous sets of repeated data items. Whenever the OCCURS
clause is used, the data-name that is the subject of this
entry must either be subscripted or indexed whenever it is
referred to in a statement other than SEARCH. Further, if
the subject of this entry is the name of a group item, then
all data-names subordinate to the group entry must be
subscripted or indexed whenever they are used as operands,
except as the object of a REDEFINES clause.

4-30

DATA DIVISION

2. Except for the OCCURS clause itself, all data description
clauses associated with an item whose description includes an
OCCURS clause apply to each occurrence of the item described.

3. The number of occurrences of the subject entry is defined as
follows:

a. In Format 1, the value of integer-2 represents the exact
number of occurrences.

b. In Format
referenced
occurrences.

2, the current
by data-name-l

value of
represents

the
the

data item
number of

This format specifies that the subject of this entry has a
variable number of occurrences. The value of integer-2
represents the maximum number of occurrences and the value of
integer-l represents the minimum number of occurrences. This
does not imply that the length of the subject of the entry is
variable, but that the number of occurrences is variable.

The value of the data item referenced by data-name-l must
fall within the range integer-l through integer-2. Reducing
the value of the data item referenced by data-name-l makes
the contents of data items, whose occurrence numbers now
exceed the value of the data item referenced by data-name-l,
unpredictable.

4. When a group item having subordinate to it an entry that
specifies Format 2 of the OCCURS clause is referenced, only
that part of the table area that is specified by the value of
data-name-l will be used in the operation.

5. The KEY IS phrase is used to indicate that the repeated data
is arranged in ascending or descending order according to the
values contained in data-name-2, data-name-3, etc. The
ascending or descending order is determined according to the
rules for comparison of operands (see Section 5.6.3,
Comparison of Numeric Operands, and Section 5.6.4, Comparison
of Alphanumeric Operands.) The data-names are listed in their
descending order of significance.

4-31

DATA DIVISION

PICTURE

4.20 THE PICTURE CLAUSE

Function

The PICTURE clause describes the general characteristics and
editing requirements of an elementary item.

General Format

{
PICTURE}

PIC

Syntax Rules

IS character-string

1. A PICTURE clause can be specified only at the elementary item
level.

2. A character-string consists of certain allowable combinations
of characters in the COBOL character set used as symbols.
The allowable combinations determine the category of the
elementary item.

.3. The maximum number of
character-string is 30.

characters allowed

4. The PICTURE clause must be specified
item except an index data item,
prohibited.

5. PIC is an abbreviation for PICTURE.

for every
where the

in the

elementary
clause is

6. The asterisk when used as the zer6 suppression symbol, and
the BLANK WHEN ZERO clause may not appear in the same entry.

General Rules

1. There are five categories of data that can be described with
a PICTURE clause: alphabetic, numeric, alphanumeric,
alphanumeric edited, and numeric edited.

2. To define an item as alphabetic:

4-32

DATA DIVISION

a. Its PICTURE character-string can only contain the
symbols A and B, and

b. Its contents when represented in standard data format
must be any combination of the 26 letters of the
alphabet and the space from the COBOL character set.

3. To define an item as numeric:

a. Its PICTURE character-string can only contain th~
symbols 9, P, Sand V. The number of digit positions
that can be described by the PICTURE character-string
must range from 1 to 18 inclusive.

b. If unsigned, its contents when represented in standard
data format must be a combination of the numerals 0
through 9; if signed, the item may also contain a +, -,
or other representation of an operational sign (See
Section 4.23, The SIGN Clause.)

4. To define an item as alphanumeric:

a. Its PICTURE character-string is restricted to certain
combinations of the symbols A, X, 9, and the item is
treated as if the character-string contained all Xes. A
PICTURE character-string which contains all A's or all
9's does not define an alphanumeric item.

b. Its contents when represented in standard data format
are allowable characters in the full character set.

5. To define an item as alphanumeric edited:

a. Its PICTURE character-string is restricted to certain
combinations of the following symbols: A, X, 9, B, 0,
and I. The character string must contain at least one
of the following combinations

1. B and X

2. a and X

3. I and X

4. 0 and A

5. I and A

b. When represented in standard data format, the contents
are allowable characters in the full character set.

6. To define an item as numeric edited:

a. Its PICTURE character-string is restricted to certain
combinations of the following symbols B, I, P, V, Z, 0,
9, " ., *, +, -, CR, DB, and the currency symbol. The
allowable combinations are determined from the order of
precedence of symbols and the editing rules.

4-33

DATA DIVISION

1. The number of digit positions that can be
represented in the PICTURE character-string must
range from 1 to 18 inclusive.

2. The character-string must contain at least one 0,
B, I, z, *, +, " ., -, CR, DB, or currency symbol.

b. The contents of the character positions of those symbols
that are allowed to represent a digit in standard data
format must be one of the numerals.

7. The size of an elementary item, where size means the number
of character positions occupied by the elementary item in
standard data format, is determined by the number of
allowable symbols that represent character positions. An
integer enclosed in parentheses fol+owing the symbols A, "
X, 9, P, Z, *, B, I, 0, +, -, or the currency symbol
indicates the number of consecutive occurrences of the
symbol. Note that the following symbols may appear only once
in a given PICTURE: S, V, ., CR, and DB.

8. The functions of the symbols used to describe an elementary
item are explained as follows:

A Each A in the
position that
or a space.

character-string represents a character
can contain only a letter of the alphabet

BEach B in the character-string represents a character
position into which the space character will be inserted.

PEach P indicates an assumed decimal scaling position. It
is used to specify the location of an assumed decimal
point when the point is not within the number that
appears in the data item. The scaling position character
P is not counted in the size of the data item. Scaling
position characters are counted in determining the
maximum number of digit positions (18) in numeric edited
items or numeric items. The scaling position character P
can appear only to the left or right as a continuous
string of Ps within a PICTURE description; because the
scaling position character P implies an assumed decimal
point (to the left of Ps if Ps are leftmost PICTURE
characters and to the right if Ps are rightmost PICTURE
characters), the assumed decimal point symbol V is
redundant as either the leftmost or rightmost character
within such a PICTURE description. The character P and
the insertion character. (decimal point) cannot both
occur in the same PICTURE character-string. If, in any
operation involving conversion of data from one form of
internal repres~ntation to another, the data item being
converted is described with the PICTURE character P, each
digit position described by a P is considered to contain
the value 0, and the size of the data item is considered
to include the digit positions so described.

4-34

DATA DIVISION

S The letter S is used in a character-string to indicate
the presence, but neither the representation nor,
necessarily, the position of an operational sign; it
must be written as the leftmost character in the PICTURE.
The S is not counted in determining the size (in terms of
standard data format characters) of the elementary item
unless the entry is subject to a SIGN clause that
specifies the optional SEPARATE CHARACTER phrase. (See
Section 4.23, The SIGN Clause.)

V The V is used in a character-string to indicate the
location of the assumed decimal point. It may appear
only once in a character-string. The V does not
represent a character position and, therefore, is not
counted in the size of the elementary item. When the
assumed decimal point is to the right of the rightmost
symbol in the string, the V is redundant.

X Each X in the character-string is used to represent a
character position that contains any allowable character
from the full character set.

Z Each Z in a character-string may be used only to
represent the leftmost leading numeric character
positions that will be replaced by a space character when
the content of that character position is O. Each Z is
counted in the size of the item.

9 Each 9 in the character-string represents a character
position that contains a numeral and is counted in the
size of the item.

o Each 0 (zero) in the character-string represents a
character position into which the numeral 0 will be
inserted. T~e 0 is counted in the size of the item.

/ Each / (stroke) in the character-string represents a
character position into which the stroke character will
be inserted. The / is counted in the size of the item.

Each, (comma) in the character-string represents a
character position into which the character will be
inserted. This character position is counted in the size
of the item. The insertion character , must not be the
last character in the PICTURE character-string. .

When ihe character (period) appears in the
character-string it is an editing symbol that represents
the decimal point for alignment purposes and, in
addition, represents a char~cter position into which the
character. will be inserted. The character is
counted in the size of the item. For a given program,
the functions of the period and comma are exchanged if
the DECIMAL-POINT IS COMMA clause is stated in the
SPECIAL-NAMES paragraph. In this exchange, the rules for

4-35

DATA DIVISION

the period apply to the comma and the rules for the comma
apply to the period wherever they appear in a PICTURE
clause. The insertion character. must not be the last
character in the PICTURE character-string.

+, -, CR, DB These symbols are used as editing sign control
symbols. When used, they represent the character
position into which the editing sign control symbol will
be placed. The symbols are mutually exclusive in anyone
character-string, and each character used in the symbol
is counted in determining the size of the data item.

*

cs

Each * (asterisk) in the character-string represents a
leading numeric character position into which an * will
be placed when the content of that position is O. Each *
is counted in the size of the item.

The currency symbol in the character-string represents a
character position into which a currency symbol is to be
placed. The currency symbol in a character-string is
represented by either the currency sign ($) or by the
single character specified in the CURRENCY SIGN clause in
the SPECIAL-NAMES paragraph. The currency symbol is
counted in the size of the item.

Editing Rules

1. There are two general methods of performing editing in the
PICTURE clause, either by insertion or by suppression and
replacement. There are four types of insertion editing
available. They are:

2.

a. Simple insertion

b. Special insertion

c. Fixed insertion

d. Floating insertion

There are two types of suppression and replacement editing:

a. Zero suppression and replacement with spaces

b. Zero suppression and replacement with asterisks

The type of editing that may be performed upon an item
dependent upon the category to which the item belongs.
following table specifies which type of editing may
performed upon a given category:

4-36

is
The

be

DATA DIVISION

CATEGORY TYPE OF EDITING

Alphabetic Simple insertion B only

Numeric None

Alphanumeric None

Alphanumeric Edited Simple insertion 0, B and /

Numeric Edited All, subject to rules in rule 3,
below.

3. Floating insertion editing and editing by zero suppression
and replacement are mutually exclusive in a PICTURE clause.
Only one type of replacement may be used with zero
suppression in a PICTURE clause.

4. Simple Insertion Editing. The (comma), B (space), 0
(zero), and / (stroke) are used as the insertion characters.
The insertion characters are counted in the size of the item
and represent the position in the item into which the
character will be inserted.

5. Special Insertion Editing. The. (period) is used as the
insertion character. In addition to being an insertion
character it also represents the decimal point for alignment
purposes. The insertion character used for the actual
decimal point is counted in the size of the item. The use of
th.e assumed decimal point, represented by the symbol 'V' and
the actual decimal point, represented by the insertion
character, in the same PICTURE character-string is
disallowed. The result of special insertion editing is the
appearance of the insertion character in the item in the same
position as shown in the character-string.

6. Fixed Insertion Editing. The currency symbol and the editing
sign control symbols +, ,CR, and DB are the insertion
characters. Only one currency symbol and only one of the
editing sign control symbols can be used in a given PICTURE
character-string. When the symbols CR or DB are used they
represent two character positions in determining the size of
the item and they must represent the rightmost character
positions that are counted in the size of the item. The
symbols + or -, when used, must be either the leftmost or
rightmost character position to be counted in the size of the
item. The currency symbol must be the leftmost character
position to be counted in the size of the item except that it
can be preceded by either a + or a - symbol. Fixed insertion
editing results in the insertion character occupying the same
character position in the edited item as it occupied in the
PICTURE character-string. Editing sign control symbols
produce the following results, depending upon the value of
the data item:

4-37

DATA DIVISION

RESULT
EDITING SYMBOL IN

PICTURE CHARACTER-STRING DATA ITEM DATA ITEM
POSITIVE OR ZERO NEGATIVE

+ + -

- space -

CR 2 spaces CR

DB 2 spaces DB

7. Floating Insertion Editing. The currency symbol and editing
sign control symbols + or are the floating insertion
characters. As such the~ are mutually exclusive in a given
PICTURE character-string.

Floating insertion editing' is indicated in a PICTURE
character-string by uSIng a string of at least two of the
floating insertion characters. This string of floating
insertion characters may contain any of the fixed insertion
symbols or have fixed insertion characters immediately to the
right of this string. These simple insertion characters are
part of the floating string.

The leftmost character of the floating insertion string
represents the leftmost. limit of the floating symbol in the
data item. The rightmost character of the floating string
represents the rightmost limit of the floating symbols in the
data item.

The second floating character from the left represents the
leftmost limit of the numeric data that can be stored in the
data item. Non-zero numeric data may replace all the
characters at or to the right of this limit.

In a PICTURE character-string, there are only two ways of
representing floating insertion editing. One way is to
represent any or all of the leading numeric character
positions on the left of the decimal point by the insertion
character. The other way is to represent all of the numeric
character positions in the PICTURE character-string by the
insertion character.

If the insertion characters are only to the left of the
decimal point in the PICTURE character-string, the result is
that a single floating insertion character will be placed
into the character position immediately preceding either the
decimal point or the first non-zero digit in the data
represented by the insertion symbol string, whichever is
farther to the left in the PICTURE character-string. The
character positions preceding the insertion character are
replaced with spaces.

4-38

DATA DIVISION

If all numeric character positions in the PICTURE
character-string are represented by the insertion character,
the result depends upon the value of the data. If the value
is 0 the entire data item will contain spaces. If the value
is not 0, the result is the same as when "the insertion
character is only to the left of the decimal point.

To avoid truncation, the minimum size of the PICTURE
character-string for the receiving data item must be the
number of characters in the sending data item, plus the
number of non-floating insertion characters being edited into
the receiving data item, plus one for the floating insertion
character.

8. Zero Suppression Editing. The suppression of leading Os in
numeric character positions is indicated by the use of the
alphabetic character Z or the character * (asterisk) as
suppression symbols in a PICTURE character-string. These
symbols are mutually exclusive in a given PICTURE
character-string. Each suppression symbol is counted in
determining the size of the item. If Z is used, the
replacement character will be the space, and if the asterisk
is used, the replacement character will be *.

Zero suppression and replacement is indicated in a PICTURE
character-string by using a string of one or more of the
allowable symbols to represent leading numeric character
positions that are to be replaced when the associated
character position in the data contains a zero. Any of the
simple insertion characters embedded in the string of symbols
or to the immediate right of this string are part of the
string.

In a PICTURE character-string, there are only two ways of
representing zero suppression. One way is to represent any
or all of the leading numeric character positions to the left
of the decimal point by suppression symbols. The other way
is to represent all of the numeric character positions in the
PICTURE character~string by suppression symbols.

If the suppression symbols appear only to the left of the
decimal point, any leading 0 in the data that corresponds to
a symbol in the string is replaced by the replacement
character. Suppression terminates at the first non-zero
digit in the data represented by the suppression symbol
string or at the decimal point, whichever is encountered
first.

If all numeric character positions in the PICTURE
character-string are represented by suppression symbols and
the value of the data is not 0 the result is the same as if
the suppression characters were not specified. If the value
is 0 the entire data item will be spaces if the suppression
symbol is Z or all *, (except for the actual decimal point)
if the suppression symbol is *

4-39

DATA DIVISION

9. The symbols +, -, *, Z, and the currency symbol, when used as
floating replacement characters, are mutually -exclusive
within a given character-string.

Precedence Rules

The following chart shows the order of precedence when using
characters as symbols in a character-string. An X at an
intersection indicates that the symbol(s) at the top of the
column may precede, in a given character-string, the symbol(s) at
the left of the row. Arguments appearing in braces indicate that
the symbols are mutually exclusive. The currency symbol is
indicated by the symbol cs.

At least one of the symbols A, X, Z, 9 or -*, or at least two of
the symbols +, - or cs must be present in a PICTURE string.

Non-floating insertion symbols + and , floating insertion
symbols Z, *, +, -., and cs, and other symbol P appear twice in
the following PICTURE character precedence chart. The leftmost
column and uppermost row for each symbol represent its use to the
left of the decimal point position. The second appearance of the
symbol in the chart represents its use to the right of the
decimal point position.

4-40

DATA DIVISION

PICTURE Character Precedence Chart

First Non-Floating Floating Other Symbols
Symbol Insertion Symbols Insertion Symbols

Second B 0 / (~ C) f'CR- cs (:) (~ {+'\ (~) 9 (~ S V P P , .
"OS- -) cs cs

Symbol

B x x x x x x x x x x x x x x x x x

0 x x x x x x x x x x x x x x x x X

t:n / x x x x x x x x x x x x x x X r-f X x

.[!
~(/)

, x x x x x x x x x x x x x x x x

o I=:
..... 0 x x x x x x x x x x
rz.. .r-!
I+J

I=: ~ (:!:) o Q)
Z t:n

I=:

(:!:) H x x X x x x x x x x x x x x

{CR\
DB} x x x x x x x x x x x x x x

cs x

(:) x x x x x x X

t:n

(:) r-f
0 X X X X X X X X X X x

Olt
(:!:) .S (/) x x x x x X

+J I=:
cU 0 (:) o .r-! x X X X X X X X X X
M+J
rz.. ~

Q)
t:n cs X X X X X X
I=:
H

cs X X X X X X X X X x

9 x x x x x x x x x x x x x x x

rn (~) x x x x x
0

t S
U)

~ V x x x x x x x x x x x x
CD ..c:
+I p 0 X X X X X X X X X X X X

P X X X X X

4-41

DATA DIVISION

REDERNES

4.21 THE REDEFINES CLAUSE

Function

The REDEFINES clause allows the same computer storage area to be
described by different data description entries.

General Format

level-number data-name-li REDEFINES data-name-2

NOTE

Level-number, data-name-l, and the
semicolon are shown in the above format
to improve clarity. Level-number and
data-name-l are not part of the
REDEFINES clause.

Syntax Rules

1. The REDEFINES clause, when specified, must immediately follow
data-name-l.

2. The level-numbers of data-name-l and
identical, but must not be 66 or 88.
redefined.)

data-name-2 must be
(Level 77 items may be

3. This clause must not be used in level 01 entries in the File
Section.

4. The data description entry for data-name-2 cannot contain a
REDEFINES clause. However, data-name-2 may be subordinate to
an item whose data description entry contains a REDEFINES
cl~use. The data description entry for data-name-2 cannot
contain an OCCURS clause. However, data-name-2 may be
subordinate to an item/whose data description entry contains
an OCCURS clause. In this case, the reference to data-name-2
in the REDEFINES clause may not be subscripted or indexed.
Neither the original definition nor the redefinition can
include an item whose size is variable as defined in the
OCCURS Clause. (See Section 4 .. 19, The OCCURS Clause.)

5. No entry having a level-number numerically lower than the
level-number of data-name-2 and data-name-l may occur between
the data description entries of data-name-2 and data-naMe-I.

4-42

DATA DIVISION

General Rules

1. Redefinition starts at the area allocated to data-name-2 and
ends when a level-number less than or equal to that of
data-name-2 is encountered.

2. When the level-number of data-name-l is other than 01, it
must specify the same number of character positions that the
data item referenced by data-name-2 contains. It is
important to observe that the REDEFINES clause specifies the
redefinition of a storage area, not of the data items
occupying the area.

3. Multiple redefinitions of the same character positions are
permitted. The entries giving the new descriptions of the
character positions must follow the entries defining the area
being redefined, without intervening entries that define new
character positions. Multiple redefinitions of the same
character positions must all use the data-name of the entry
that originally defined the area.

4. The entries giving the new
positions must not contain
condition-name entries.

description
any 'VALUE

of the character
clauses, except in

5. Multiple level 01 entries subordinate to an FD level
indicator represent implicit redefinitions of the same area.

4-43

DATA DIVISION

RENAMES

4.22 THE RENAMES CLAUSE

Function

The RENAMES clause permits alternative, possibly overlapping,
groupings of elementary items.

General Format

66 data-name-l; RENAMES data-name-2 [{::::UGH} data-name-~.

Syntax Rules

NOTE

Level-number 66, data-name-l and the
semicolon are shown in the above format
to improve clarity. Level-number and
data-name-l are not part of the RENAMES
clause.

1. All RENAMES entries referring to data items within a given
logical record must immediately follow the last data
description entry of the associated record description entry.

2. Data-name-2 and data-name-3 must be names of elementary items
or groups of elementary items in the same logical record, and
cannot be the same data-name. A 66 level entry cannot rename
another 66 level entry nor can it rename a 77, 88, or 01
level entry.

3. Data-name-l cannot be used as a qualifier, and can only be
qualified by the names of the associated level 01 or FD
entries. Neither data-name-2 nor data-name-3 may have an
OCCURS clause in its data description entry nor be
subordinate to an item that has an OCCURS clause in its data
description entry.

4. The beginning of the area described by data-name-3 must not
be to the left of the beginning of the area described by
data-name-2. The end of the area described by data-name-3
must be to the right of the end of the area described by
data-name-2. Data-name-3, therefore, cannot be subordinate
to data-name-2.

4-44

DATA DIVISION

5. Data-name-2 and data-name~3 may be qualified.

6. The words THRU and THROUGH are equivalent.

7. None of the items within the range, including data-name-2 and·
data-name-3, if specified, can be an item whose size is
variable as defined in the OCCURS clause (see Section 4.1~).

General Rules

1. One or more RENAMES entries can be written for a logical
record.

2. When data-name-3 is specified, data-name-l is a group item
that includes all elementary items starting with data-name-2
(if data-name-2 is an elementary item) or the first
elementary item in data-name-2 (if data-name-2 is a group
item), and concluding with data-name-3 (if data-name-3 is an
elementary item) or the last elementary item in data-name-3
(if data-name-3 is a group item).

3. When data-name-3 is not specified, data-name-2 can be either
a group ·or an elementary item; when data-name-2 is a group
item, data-name-l is treated as a group item, and when
data-name-2 is an elementary item, data-name-l is treated as
an elementary item.

4-45

DATA DIVISION

SIGN

4.23 THE SIGN CLAUSE

Function

The SIGN clause specifies the position and the mode of
representation of the operational sign when it is necessary to
describe these properties explicitly.

General Format

{

LEADING, }
[~ IS] [SEPARATE CHARACTER]

TRAILING

Syntax Rules

1. The SIGN clause may be specified only for a numeric data
description entry whose PICTURE contains the character S, or
a group item containing at least one such numeric data
description entry.

2. The numeric data description entries to which the SIGN clause
applies must be described as USAGE IS DISPLAY.

3. At most one SIGN clause may apply to any given numeric data
description entry.

General Rules

1. The optional SIGN clause, if present, specifies the position
and the mode of representation of the operational sign for
the numeric data description "entry to which it applies, or
for each numeric data description entry subordinate to the
group to which it applies. The SIGN clause applies only to
numeric data description entries whose PICTURE contains the
character S; the S indicates the presence of, but neither
the representation nor, necessarily, the position of the
operational sign.

2. A numeric data description entry whose PICTURE contains the
character S, but to which no optional SIGN clause applies,
has an operational sign. The characterS does not specify
the representation nor, necessarily, the position of the
operational sign. In this (default) case, the sign is a part
of the right-most (trailing) digit (much like an overpunch)
within the item.

4-46

DATA DIVISION

3. If the optional SEPARATE CHARACTER phrase is not present,
then:

a. The operational sign is associated with the leading (or
trailing) digit position of the elementary numeric data
item.

b. The letter S in the PICTURE character-string is not
counted in determining the size of the item (in terms of
standard data format characters).

c. The digit position containing the operational sign holds
a character whose value represents both a numeric digit
and the algebraic sign of the item. The allowable
characters are shown in the following chart for all
combinations of the numeric digits, and the positive and
negative sign values.

DIGIT VALUES
I 2 3 4 5 6 7 8 9 0

POSITIVE A B C D E F G H I {
SIGN

NEGATIVE J K L M N 0 P Q R }
4. If the optional SEPARATE CHARACTER phrase is present, then:

a. The operational sign is the leading (or trailing)
character position of the elementary numeric data item:
this character position is not a digit position.

b. The letter S in a PICTURE character-string is counted in
determining the size of the item (in terms of standard
data format characters).

c. The operational signs for positive and negative are the
standard data format characters + and -, respectively.

5. Every numeric data descriptiori entry whose PICTURE contains
the character S is a signed numeric data description entry.
If a SIGN clause applies to such an entry and conversion is
necessary for purposes 6f computation" or comparisons,
conversion takes place automatically.

4-47

DATA DIVISION

SYNCHRONIZE

4.24 THE SYNCHRONIZED CLAUSE

Function

The SYNCHRONIZED clause specifies the alignment of an elementary
item on the PDP-II memory word. (See Section 4.13.11, Item
Alignment for Increased Object-Code Efficiency.)

General Format

Syntax Rules

{
SYNCHRONI ZED}
SYNC {

LEFT }
RIGHT

1. This clause may appear only with an elementary item.

2. SYNC is an abbreviation for SYNCHRONIZED.

General Rules

1. This clause specifies that the subject data item is to be
aligned on PDP-II words such that no other data item occupies
any of the words delimiting this data item. If the number of
character positions required to store this data item is odd,
the unused character is not used for any other data item.
Such unused character positions, however, are included in:

a. The size of any group item(s) to which the elementary
item belongs.

b. The character positions redefined when this data item is
the object of a REDEFINES clause.

2. SYNCHRONIZED not followed by either RIGHT or LEFT specifies
that the elementary item is to be synchronized left.

3. SYNCHRONIZED LEFT specifies that the elementary item is to be
positioned such that it will begin at the even byte address
of the PDP-II word.

4. SYNCHRONIZED RIGHT specifies that the elementary item is to
be positioned such that it will terminate on the odd byte
address of the PDP-II word.

4-48

DATA DIVISION

5. Whenever a SYNCHRONIZED item is referenced in the source
program, the original size of the item, as shown in the
PICTURE clause, is used in determining any action that
depends on size, such as justification, truncation or
overflow.

6. If the data description of an item contains the SYNCHRONIZED
clause and an operational sign, the £ign of the item appears
in the normal operational sign position, regardless of
whether the item is SYNCHRONIZED LEFT or SYNCHRONIZED RIGHT.

7. When the SYNCHRONIZED clause is specified for an item within
the scope of an OCCURS clause, each occurrence of the item is
SYNCHRONIZED. If the size of a group item that contains an
OCCURS clause is odd, and one or more items within the group
are SYNCHRONIZED, a fill byte will be added to the group
following the last item, causing the group size to become
even and ensuring that each occurrence of an item in the
group will map into PDP-II words in the same manner"as the
first occurrence of that item. (See Section 4.19, The OCCURS
Clause.)

8. All COMP items and all INDEX items are automatically
synchronized and occupy an integral number of words; for
further information (see Section 4.25, The USAGE Clause).

9. All record descriptions in both the File Section and
Working-Storage Section and all non-contiguous data items in
the Working-Storage Section are automatically SYNCHRONIZED.

4-49

DATA DIVISION

USAGE

4.25 THE USAGE CLAUSE

Function

The USAGE clause specifies the format of a data item in the
computer storage.

General Format

{

COMPUTATIONAL}

[USAGE IS] ~LAY
DISPLAY-6
DISPLAY-7
INDEX

Syntax Rules

1. The PICTURE character-string of a COMPUTATIONAL item can
contain only 9s, the operational sign character S, the
implied decimal point character V, one or more Ps. (See
Section 4.20, The PICTURE Clause.)

2. COMP is an abbreviation for COMPUTATIONAL.

3. DISPLAY, DISPLAY-6 and DISPLAY-7 are all equivalent.

4. An index data item can be referenced explicitly only in a
SEARCH or SET statement, a relation condition, the USING
phrase of a Procedure Division header, or the USING phrase of
a CALL statement.

5. The SYNCHRONIZED, JUSTIFIED, ·PICTURE, SIGN, VALUE and BLANK
WHEN ZERO clauses cannot be used to describe group or
elementary items described with the USAGE IS INDEX clause.

General Rules

1. The USAGE clause can be written at any level. If the USAGE
clause is written at a group level, it applies to each
elementary item in the group. The USAGE clause of an
elementary item cannot contradict the USAGE clause of a group
to which the item belongs.

2. This clause specifies the manner in which a data item is
represented in the storage of the PDP-II. It does not affect
the use of the data item, although the specifications for
some statements in the Procedure Division may restrict the
USAGE clause of the operands referred to.

3. A COMPUTATIONAL item is capable of representing a value to be
used in computations and must be numeric. If a group item is
described as COMPUTATIONAL, the elementary items in the group
are COMPUTATIONAL. The group item itself is not
COMPUTATIONAL (cannot be used in computations).

4-50

DATA DIVISION

4. An elementary item described with the USAGE IS INDEX clause
is called an index data item and contains a value which must
correspond to an occurrence number of a table element. The
elementary item cannot be a conditional variable. If a group
item is described with the USAGE IS INDEX clause, the
elementary items in the group are all index data items. The
group itself is not an index data item and cannot be used in
the SEARCH or SET statement or in a relation condition.

5. An index data item can be part of a group that is referred to
in a MOVE or input-output statement, in which case no
conversion will take place.

6. If the USAGE clause is not specified for an elementary item
or for any group to which the item belongs, the usage is
implicitly DISPLAY.

7. A COMPUTATIONAL item is a binary value with an assumed
decimal point that is automatically SYNCHRONIZED and stored
in memory as follows: if the item is specified as being less
than five characters long (PIC S9 to PIC S9(4)), it will be
in one computer word; if it is specified as being from five
to nine characters long (PIC S9(5)) to PIC S9(9)), it will be
in two words; from 10 to 14 will be in three words, and from
15 to 18 will be in four words.

The representation of the binary value in one to four PDP-II
words is independent of the presence of V or one or more Ps
in its PICTURE character-string. The binary value of a
COMPUTATIONAL item represents the exact decimal quantity
whose description is given by the PICTURE character~string as
if it contained no V or P characters. However, the decimal
point indicated by these characters is remembered and used to
properly adjust the binary value before using it in
arithmetic operations. Thus, the binary value represents the
decimal value as though it were an integer, and decimal.
accuracy is achieved, although the representation is binary.

8. A DISPLAY item is a string of bytes stored in PDP-II memory
as two. bytes per word.· The item may begin in th~ even
address byte or the odd address byte subject to the implicit
or explicit synchronization. (See Section 4.24, The
SYNCHRONIZED Clause.)

9. Index data items are stored as one word COMP items with PIC
9 (4) •

Their value is always positive.

Index data items are implicitly SYNCHRONIZED, thus, when they
are described within record descriptions, they may caus~
automatic fill bytes to be supplied.

4-51

DATA DIVISION

VALUE

4.26 THE VALUE CLAUSE

Function

The VALUE clause defines the initial value of Working-Storage
items and the values associated with a condition-name.

General Format

Format 1

VALUE IS literal

Format 2

{
VALUE IS } literal-l [{THROUGH} literal-2l
VALUES ARE THRU j

[Literal-3 [{::UGH} Literal-4]]

Syntax Rules

1. The words THRU and THROUGH are equivalent.

2. A signed numeric literal must have associated with it a
signed numeric PICTURE character-string.

3. All numeric literals in
value that is within
PICTURE clause and must
truncation of nonzero
VALUE clause of an item
the PICTURE clause.

General Rules

a VALUE clause of an item must have a
the 'range of values indicated by the

not have a value which would require
digits. Alphanumeric literals in a

must not ~xceed the size indicated by

1. The VALUE clause must not conflict with other clauses in the
data description of the item or in the data description
within the hierarchy of the item. The following rules apply:

4-52

DATA DIVISION

a. If the category of the item is numeric, all literals in
the VALUE clause must be numeric. If the literal defines
the value of a working storage item, the literal is
aligned in the data item according to the standard
alignment rules. (See Section 4.13.10, Standard
Alignment Rules.)

b. If the category of the item is alphabetic, alphanumeric,
alphanumeric edited or numeric edited, all literals in
the VALUE clause must be alphanumeric literals. The
literal is aligned in the data item as if the data item
had been descr ibed as alphanumer ic. (See paragraph
4.13.10, The Standard Alignment Rules.) Editing
characters in the PICTURE clause are included in
determining the size of the data item (see Section 4.20,
The PICTURE Clause) but have no effect on initialization
of the data item.

c. Initialization takes place independent of any BLANK WHEN
ZERO or JUSTIFIED clause that may be specified.

2. A figurative constant may be substituted in Format 1 and
Format 2 wherever a literal is specified.

Condition-name Rules

1. In a condition-name entry, the VALUE clause is required. The
VALUE clause and the condition-name itself are the only two
clauses permitted in the entry. The characteristics of a
condition-name are implicitly those of its conditional
var iable.-

2. Format' 2 can be used only in connection with condition-names.
(See Section 1.2.3.1 User-Defined Words.) Wherever the THRU
phrase is used, literal-l must be less than literal-2,
literal-3 less than literal-4, etc.

Data Description Entries Other Than Condition-Names

1. Rules governing the use of the VALUE clause differ with the
respective sections of the Data Division:

a. In the File Section and the Linkage Section, the VALUE
clause may be used only in condition-name entries.

b. In the Working-Storage Section, the VALUE clause must be
used in condition-name entries. The VALUE clause may
also be used to specify the initial value of any other
data item except an index data item, in which case the
clause causes the item to assume the specified value at
the start of the object program. If the VALUE clause is
not used in an item description, the initial value is
undefined.

4-53

DATA DIVISION

2. The VALUE clause must not be stated in a data description
entry that contains an OCCURS clause or in an entry that is
subordinate to an entry containing an OCCURS clause. This
rule does not apply to condition-name entries. (See Section
4.19, The OCCURS Clause.)

3. The VALUE clause must not be stated in a data description
entry that contains a REDEFINES clause or in an entry that is
subordinate to an entry containing a REDEFINES clause. This
rule does not apply to condition-name entries.

4. If the VALUE clause is used in an entry at the group level,
the literal must be a figurative constant or a alphanumeric
literal, and the group area is initialized without
consideration for the individual elementary or group items
contained within this group. The VALUE clause cannot be
stated at the subordinate, levels within this group.

5. The VALUE clause must not be written for a group containing
items with descriptions including JUSTIFIED, SYNCHRONIZED, or
USAGE (other than USAGE IS DISPLAY).

4-54

PROCEDURE DIVISION

CHAPTER 5

PROCEDURE DIVISION

5.1 GENERAL DESCRIPTION

The Procedure Division must be included in every COBOL source program.
It specifies the processing to be performed on the files and data
described in the Environment. and Data Divisions. This division
contains declaratives and procedures.

5.1.1 Declaratives

Declarative sections must be grouped at the beginning of the Procedure
Division preceded by the word DECLARATIVES and followed by the key
words END DECLARATIVES. Declarative sections detail the procedures to
be followed whenever an 1-0 error occurs on a particular file. (See
Section 5.41, the USE statement.)

5.1.2 Procedures

Within the Procedure Division a procedure is composed of either a
paragraph, a group of successive paragraphs, a section, or a group of
successive sections. If one paragraph is in a section, then all
paragraphs must be in sections. A ~rocedure-name is a word used to
refer to a paragraph or section in the source program. It consists of
a paragraph-name or a section-name.

The end of the Procedure Division and the physical end of the program
is that physical position in a COBOL source program after which no
further text appears.

A section consists ~f a section header followed by zero or more
successive paragraphs. A section ends immediately before the next
section or at the end of the Procedure Division. In the declaratives
portion of the Procedure Division, the section ends at the key words
END DECLARATIVES.

A paragraph consists of a paragraph-name followed by a period and a
space and by zero or more successive sentences. A paragraph ends

5-1

PROCEDURE DIVISION

immediately before the next paragraph-name or section-name or at the
end of the Procedure Division. In the declaratives portion of the
Procedure Division, a paragraph ends at the key words EN~
DECLARATIVES.

A sentence consists of one or more statements and is terminated by a
period followed by a space.

A statement is a syntactically valid combination of words and symbols
beginning with a COBOL verb.

An identifier is the word or words necessary to make unique reference
to a data Item. (See Section 5.4.8, Uniqueness of Reference.)

5.1.3 Execution

Execution begins with the first statement of the Procedure Division,
excluding declaratives. Statements are then executed in the order in
which they are presented for compilation, except where the rules
indicate some other order.

5.2 THE PROCEDURE DIVISION HEADER

The Procedure Division is identified by and must begin with the
following header:

PROCEDURE DIVISION [~ [data-name-l] [,data-name-2] ..•] •

The USING phrase is present if, and only if, the object program is to
function under the control of a CALL statement. A COBOL program which
is to function under the control of a CALL statement, but which has no
arguments passed to it, is specified by a USING phrase that contains
no data-names (an empty USING phrase).

Each of the operands in the USING phrase of the Procedure Division
header must be defined as a data item in the Linkage Section of the
program in which this header occurs, and it must have a 01 or 77
level-number.

within a called program, Linkage Section data items are processed
according to their data descriptions given in the called program.

When the USING phrase is present, the object program operates as if
data-name-l, of the Procedure Division header in the called program
and data-name-l in the USING phrase of the CALL statement in the
calling program refer to a single set of data that is equally
available to both the called and calling programs. Their descriptions,
however, need not be the same. In like manner, there is an equivalent
relationship between data-name-2, •.. , in the USING phrase of the
called program and data-name-2, .•. , in the USING phrase of the CALL
statement in the calling program. A data-name must not appear more

5-2

PROCEDURE DIVISION

than once in the USING phrase in the Procedure Division header of the
called program: however, a given data-name may appear more than once
in the USING phrase of a CALL statement.

Data items defined in the Linkage Section of the called program may be
referenced within the Procedure Division of the called program if and
only if they are:

1. Operands of the USING phrase of the Procedure Division
header.

2. Subordinate to operands of the USING phrase of the Procedure
Division header.

3. Defined with a REDEFINES or RENAMES clause, the object of
which is an operand of the USING phrase of the Procedure
Division header.

4. Items subordinate to any of the items defined in paragraph 3
above.

5. Condition-names and index-names associated with data items
that meet any of the above conditions.

5.3 PROCEDURE DIVISION BODY

The body of the Procedure Division must conform to one of the
following formats:

Format 1

[DECLARATIVES .'

1section-name SECTION [segment-number].

[paragraph-name. [sentence] •..] •.• } ...

END DECLARATIVES.]

{section-name SECTION [segment-number].

[paragraph-name. [sentence] ...] ... }. ..

Format 2

{paragraph-name. [se"ntence] ..• } ...

5-3

declarative-sentence

PROCEDURE DIVISION

5.4 STATEMENTS AND SENTENCES

There are three types of statements: conditional statements, compiler
directing statements, and imperative statements.

There are three types of sentences: conditional sentences, compiler
directing sentences, and imperative sentences.

5.4.1 Conditional Statement

A conditional statement specifies that the truth value of a condition
is to be determined and that the subsequent action of the object
program is dependent on this truth value.

A conditional statement is one of ' the following:

a. An IF statement or a SEARCH statement.

b. A READ statement that specifies the AT END or INVALID KEY
phrase.

c. A WRITE statement that specifies the INVALID
END-OF-PAGE phrase.

KEY or

d. A REWRITE or DELETE statement that specifies the INVALID KEY
phrase.

e. An arithmetic statement (ADD, COMPUTE, DIVIDE, MULTIPLY,
SUBTRACT) that specifies the SIZE ERROR phrase.

f. A STRING or UNSTRING statement that specifies the ON OVERFLOW
phrase.

5.4.2 Conditional Sentence

A conditional sentence is a conditional statement, optionally preceded
by an imperative statement, terminated by a period, and followed by a
space.

5-4

PROCEDURE DIVISION

5.4.3 Compiler Directing Statement

A compiler directing statement consists of a compiler directing verb
and its operands. The compiler direct'ing verbs are COPY, and USE (see
Sections 7 and 5.41 respectively). A compiler directing statement
causes the compiler to take a specific action during compilation.

5.4.4 Compiler Directing Sentence

A compiler directing sentence is a single compiler directing statement
terminated by a period followed by a space.

5.4.5 Imperative Statement

An imperative statement indicates a specific unconditional action to
be taken by the object program. An imperative statement is any
statement that is neither a conditional statement nor a compiler
directing statement. An imperative statement may consist of a
sequence of imperative statements, each possibly separated from the
next by a separator. The imperative verbs are:

ACCEPT
ADD(l) GO SET
ALTER
CALL INSPECT START (2)

STOP
CLOSE MOVE STRING(4)
COMPUTE (1)

MULTIPLY (1) SUB'I'RACT (1)
DELETE (2) OPEN

PERFORM
DISPLAY READ (3) UNSTRING(4)
DIVIDE (1) WRITE (2)
EXI'r REWRITE (2)

(1) Without the optional SIZE ERROR phrase.
(2) Without the optional INVALID KEY phrase
(3) Without the optional AT END phrase or INVALID KEY phrase.
(4) Without the optional ON OVERFLOW phrase.

When imperative-statement appears in the general format of statements,
it refers to that ~equence of consecutive imperative statements that
must be ended by a period, an ELSE phrase associated with a previous
IF st.atement, or a WHEN phrase associated with the previous SEARCH
statement.

5-5

PROCEDURE DIVISION

5.4.6 Imperative Sentence

An imperative sentence is an imperative statement terminated by a
period, and followed by a space.

Categories of Statements

Category

Arithmetic

Compiler Directing

Conditional

Data Movement

Ending

Verbs

ADD
COMPUTE
DIVIDE
INSPECT (TALLYING)
MULTIPLY
SUBTRACT

{
COpy
USE

ADD (SIZE ERROR)
COMPUTE (SIZE ERROR)
DELETE (INVALID KEY)
DIVIDE (SIZE ERROR)
IF
MULTIPLY (SIZE ERROR
READ (END or INVALID KEY)
REWRITE (INVALID KEY)
SEARCH
START (INVALID KEY)
STRING (OVERFLOW)
SUBTRACT (SIZE ERROR)
UNSTRING (OVERFLOH)
WRITE (INVALID KEY or END-OF-PAGE)

{

ACCEPT (DATE, DAY, or TIME)
INSPECT (REPLACING)
MOVE
STRING
UNSTRING

STOP

5-6

Input-Output

Procedure Branching

Table Handling

PROCEDURE DIVISION

ACCEPT
CLOSE
DELETE
DISPLAY
OPEN
READ
REWRITE
START
STOP (literal)
WRITE

{

ALTER
CALL
EXIT
GO TO
PERFORM

{
SEARCH
SET

IF is used ~s a verb in the COBOL language although it is not a verb
in the English language.

5.4.7 Specific Statement Formats

The specific statement formats, and a detailed discussion of the
restrictions and limitations associated with each, appear in alphabetic
sequence beginning at Section 5.8.

5-7

PROCEDURE DIVISION

5.4.8 Uniqueness of Reference

Uniqueness of reference in a COBOL program is accomplished by
qualifiers, subscripts, indexes, unique identifiers,
condition-names.

5.4.8.1 Qualification

using
and

Every user-specified name that defines an element in a COBOL source
program must be unique, either because no other name has the identical
spelling and hyphenation or because the name exists within a hierarchy
of names such that references to the name can be made unique by
mentioning one or more of the higher levels of the hierarchy. The
higher levels are called qualifiers, and the process that specifies
uniqueness is called qualification. Enough qualification must be
mentioned to make the name unique; however, it may not be necessary
to mention all levels of the hierarchy. Within the Data Division, all
data-names used for qualification must be associated with a level
indicator or a level-number. Therefore, two identical data-names must
not appear as entries subordinate to a group item unless they are
capable of being made unique through qualification. In the Procedure
Division two identical paragraph-names must not appear in the same
section.

In the hierarchy of qualification, names associated with a level
indicator are the most significant, followed by those names associated
with level-number 01, then names associated with level-number 02
through 49. A section-name is the highest (and the only) qualifier
available for a paragraph-name. Thus, the most significant name in
the hierarchy must be unique and cannot be qualified. Subscripted or
indexed data-names and conditional variables, as well as
procedure-names and data-names, may be made unique by qualification.
The name of a conditional variable can be used as a qualifier for any
of its condition-names. Regardless of the available qualification, no
name can be both a data-name and procedure-name.

Qualification is performed by following a data-name, a condition-name,
a paragraph-name, or a text-name by one or more phrases composed of a
qualifier preceded by IN or OF. IN and OF are logically equivalent.

The general formats for qualification are:

Format 1

{
data-name-l } IJ{ °INF} data-name-2]
condition-name ~

Format 2

paragraph-name ~ ~:} section-name]

5-8

PROCEDURE DIVISION

The rules for qualification are as follows:

1. Each qualifier must be of a successively higher level and
within the same hierarchy as the name it qualifies.

2. The same name must not appear at two levels in a hierarchy.

3. If a data-name or a condition-name is assigned to more than
one data item in a source program, the data-name or
condition-name must be qualified each time it is referred to
in the Procedure, Environment, and Data Divisions (except in
the REDEFINES clause, in which qualification must not be
used) .

4. A paragraph-name must not be duplicated within a section.
When a paragraph-name is qualified by a section-name, the
word SECTION must not appear~ A paragraph-name need not be
qualified when referred to from within the same section.

5. A data-name cannot be subscripted when it is being used as a
qualifier.

6. A name can be qualified even . though it does not need
qualifications; if there is more than one combination of
qualifiers that ensures uniqueness, then any such set can be
used.' The complete set of qualifiers for a data-name must
not be the same as any partial set of qualifiers for another
data-name. Qualified data-names may have up to 48
qualifiers.

5.4.8.2 Subscripting

Subscripts can be used only when reference is made to an individual
element within a list or table of like elements that have not been
assigned individual data-names. (See Section 4.19, The OCCURS Clause
in the Data Division.)

The subscript can be represented either by a numeric literal that is
an integer or by a data-name. The data-name must be a numeric
elementary item that represents an integer. When the subscript is
represented by a data-name, the data-name may be qualified but not
subscripted.

The subscript may be signed and, if signed, it must be positive. The
lowest possible subscript value is 1. This value points to the first
element of the table. The next sequential elements of the table are
pointed to by subscripts whose values are 2, 3, ••. The highest
permissible subscript value, in any particular case, is the maximum
number of occurrences of the item as specified in the OCCURS clause.

The subscript or set of subscripts that identify the table element are
delimited by the balanced pair of separators, left parenthesis and
right parenthesis, following the table element data-name. The table

5-9

PROCEDURE DIVISION

element data-name appended with a subscript is called a subscripted
data-name or an identifier. When more than one subscript is required,
they are written in the order of successively less inclusive
dimensions of the data organization.

The format is:

{
data-name } (subscript-l [, subscript-2 [, subscript-3]])
condition-name

5.4.8.3 Indexing

References can be made to individual elements within a table of like
elements by specifying indexing for that reference. An index is
assigned to that level of the table by using the INDEXED BY phrase in
the definition of a table. A name given in the INDEXED BY phrase is
known as an index-name and is used to refer to the assigned index.
The value of an index corresponds to the occurrence number of an
element in the associated table. An index-name must be initialized
before it is used as a table reference. An index-name can be given an
initial value by either a SET, a SEARCH ALL, or a Format 4 PERFORM
statement.

Direct indexing is specified by using an index-name in the form of a
subscript. Relative indexing is specified when the index-name is
followed by the operator + or -, followed by an unsigned integer
numeric literal, all delimited by the balanced pair of separators left
parenthesis and right parenthesis, following the table element
data-name. The occurrence number resulting from relative indexing is
determined by incrementing (where the operator + is used) or
decrementing (where the operator is used) by the value of the
literal, the occurrence number represented by the value of the index.
When more than one index-name is required, they are written in the
order of successively less inclusive dimensions of the data
organization.

At the time of execution of a statement that refers to an indexed
table element, the value contained in the index-name associated with
the table element must neither correspond to a value less than one (1)
nor to a value greater than the highest permissible occurrence number
of an element of the associated table. This restriction also applies
to the value resultant from relative indexing.

The general format for indexing is:

{
data-name } {index-name-l
condition-name (. literal-l

[, I index-name-2

literal-3

Cft} literal-4J I ~ I index-name-3

f L literal-5

5-10

[l±I litera1-6]~}

5.4.8.4 Internal
Index-data-items

PROCEDURE DIVISION

Formats of Subscripts, Index-names and

1. Subscripts are stored as either COMP or DISPLAY numeric
integers with a size that may vary from 1 to 18 digits. They
may contain an operational sign, although at the time of
their use as a subscript the value mUBt be positive.

2. Index-names are stored as 2 part items consisting of a binary
occurrence number and a binary index value. Both values are
always positive.

3. Index data items are stored as I word COMP items consisting
of a binary occurrence number with PIC 9(4). Their value is
always positive.

Index data items are implicitly SYNCHRONIZED; thus, when
they are described within record descriptions they may cause
automatic fill bytes to be supplied.

5.4.8.5 Identifier

An identifier is a term used to indicate that a data-name, if not
unique in a program, must be followed by a syntactically correct
combination of qualifiers, subscripts, or indices necessary to ensure
uniqueness.

The general formats for identifiers follow:

Format 1

data-name-l [{ ~:} data-name-Z J
[, subscr i Pt-3J]l]

Format 2

data-name-l [{ ~:} data-name-z] •••

~subscriPt-l

[

< 1 index-name-l

literal-l

[1
index-name-2

literal-3

D±} 1 i teral-4J}~ lindex-name-3

t literal-5

5-11

[, subscr ipt-2

PROCEDURE DIVISION

Restrictions on qualification, subscripting and indexing fellow:

1. A data-name must not itself be subscripted nor indexed when
that data-name is being used as an index, subscript or
qualifier.

2. Indexing is not permitted where
permitted.

subscripting is not

3. An index name may be modified only by the SET, SEARCH, and
PERFORM statementsw Data items described by the USAGE IS
INDEX clause permit storage of the values associated with
index-names as data in a form called index data items.

4. Literal-I, literal-3, literal-5 in the above format must be
positive numeric integers. Liter~1-2, literal-4, literal-6
must be unsigned numeric' integers.

5.4.8.6 Condition-Name

Each condition-name must be unique or be made unique
qualification and/or indexing or subscripting.

through

If qualification is used to make a condition-name unique, the
associated conditional variable may be used as the first qualifier.
If qualification is used, the hierarchy of names associated with the
conditional variable or the conditional variable itself must be used
to make the condition-name unique.

If references to a conditional variable require indexing or
subscripting, then references to any of its condition-names also
require the same combination of indexing or subscripting.

The format and restrictions on the combined use of qualification,
subscripting, and indexing of condition-names are exactly that of
'identifier' except that data-name-l is replaced by condition-name-l.

In the general formats, 'condition-name' refers to a condition-name
qualified, indexed or subscripted, as necessary.

5.4.9 Explicit and Implicit Sp~cifications

There are three types of explicit and implicit specifications that
occur in COBOL source programs:

1. Explicit and implicit Procedure Division references

2. Explicit and implicit transfers of control

3. Explicit and implicit attributes

5-12

PROCEDURE DIVISION

5.4.9.1 Explicit and ~mplicit Procedure Division References

A COBOL source-program can reference data items either explicitly or
implicitly in Procedure Division statements. An explicit reference
occurs when the name of the referenced item is written in a Procedure
Division statement or when the name of the referenced item is copied
into the Procedure Division by the processing of a COPY statement. An
implicit reference occurs when the item is referenced by a Procedure
Division statement without the name of the referenced item being
written in the source statement. Such an implicit reference occurs
if, and only if, the data item contributes to the execution of the
statement.

5.4.9.2 Explicit and Implicit Transfers of Control

In a COBOL program, each statement is executed in the sequence in
which it was written in the source program unless an explicit transfer
of control overrides this sequence. The transfer of control from
statement to statement occurs without writing an explicit Procedure
Division statement and, therefore,_ is an implicit transfer of control.

COBOL provides both explicit and implicit means of altering the
implicit control transfer mechanism.

In addition to the implicit transfer of control between consecutive
statements, implicit transfer of control also occurs when the normal
flow is altered without the execution of a procedure branching
statement. COBOL provides the following types of implicit control
flow alterations that override the statement-to-statement transfers of
control:

1. If a paragraph is being executed under control of another
COBOL statement (for example, PERFORM, USE) and the paragraph
is the last paragraph in the range of the controlling
statement, then an implied transfer of control occurs
following the last statement in the paragraph to the control
mechanism of the last executed controlling statement.

2. When any COBOL statement is executed that results in the
execution of a declarative section, an implicit transfer of
control to the declarative section occurs. Note that another
implicit transfer of control occurs after execution of the
declarative section, as described in 1. above.

An explicit transfer of control consists of an alteration of the
implicit control transfer mechanism by the execution of a procedure
branching or conditional statement. (See Section 5.4 Statements and
Sentences.) An explicit transfer of control can be caused only by the
execution of a procedure branching or conditional statement. The
execution of the procedure branching statement ALTER does not in
itself constitute an explicit transfer of control, but affects the
explicit transfer of control that occurs when the associated GO TO
statement is executed. The procedure branching statement EXIT PROGRAM
causes an explicit transfer of control when the statement is executed
in a called program.

5-13

PROCEDURE DIVISION

In this document, the term 'next executable statement' is used to
refer to the next COBOL statement to which control is transferred
according to the rules above and the rules associated with each
language element in the Procedure Division.

5.4.9.3 Explicit and Implicit Attributes

Attributes may be implicitly or explicitly specified. Any attribute
which has been explicitly specified is called an explicit attribute.
If an attribute has not been specified explicitly, then the attribute
takes on the default specification. Such an attribute is known as an
implicit attribute.

For example, the usage of a data item need not be specified, in which
case data item usage is DISPLAY.

5.5 ARITHMETIC EXPRESSIONS

An arithmetic expression can be an identifier of a numeric elementary
item, a numeric literal, such identifiers and literals separated by
arithmetic operators, two arithmetic expressions separated by an
arithmetic operator, or an arithmetic expression enclosed in
parentheses. Any arithmetic expression may be preceded by a unary
operator. The permissible combinations of variables, numerIC
literals, arithmetic operator and parentheses are given in Table 5-1,
Combination of Symbols in Arithmetic Expressions, Section 5.5.2.

Those identifiers and literals appearing in an arithmetic expression
must represent either numeric elementary items or numeric literals on
which arithmetic may be performed.

5.5.1 Arithmetic Operators

An arithmetic operator is a single character or a fixed 2-character
combination.

There are five binary arithmetic operators and
operators that may be used in arithmetic
represented by specific characters that must
followed by a space.

5-14

two unary arithmetic
expressions. They are

be preceded by and

PROCEDURE DIVISION

Binary Arithmetic
Operators

+

*
/
**

Unary Arithmetic
Operators

+

5.5.2 Formation and Evaluation Rules

Meaning

Addition
Subtraction
Multiplication
Div1sion
Exponentiation

Meaning

The effect of multiplication
by numeric. literal +1

The effect of multiplication
by numeric literal -1.

1. Parentheses may be used in arithmetic expressions to specify
the order in which elements are to be evaluated. Expressions
within parentheses are evaluated first, and within nested
parentheses, evaluation ~roceeds from the least inclusive set
to the most inclusive set. When parentheses are not used or
parenthesized expressions are at the same level of
inclusiveness, the following hierarchical order of execution
is implied:

1st - Unary plus and minus
2nd - Exponentiation
3rd - Multiplication and division
4th - Addition and subtraction

2. Parentheses are used either to eliminate ambiguities in logic
where consecutive operations of the same hierarchical level
appear or to modify the normal hierarchical sequence of
execution in expressions where it is necessary to have some
deviation from the normal precedence. When the sequence of
execution is not specified by parentheses, the order of
execution of consecutive operations of the same hierarchical
level is from left to right.

3. The ways in which operators, variables, and parentheses may
be combined in an arithmetic expression are summarized in
Table 5-1, where:

5-15

PROCEDURE DIVISION

a. The letter P indicates a permissible pair of s~mbols.

b. The character - indicates an invalid pair.

c. The term variable indicates an identifier or literal.

Table 5-1
Combination of Symbols in Arithmetic Expression

FIRST SECOND SYMBOL
SYMBOL Variable * / ** - + Unary + or - ()

Variable - p - - p

* / ** + - p - p p -
Unary + or - P - - p -

(

)

p - p p -

- p - - p

4. An arithmetic expression may only begin with an open
parenthesis, a plus sign, a minus sign, or a variable and may
only end with a close parenthesis or a variable. There must
be a one-to-one correspondence between left and right
parentheses of an arithmetic expression such that each left
parenthesis is to the left of its corresponding right
parenthesis.

5. Arithmetic expressions allow the user to combine
operations without restrictions on composite
and/or receiving data items.

arithmetic
of operands

5.6 CONDITIONAL EXPRESSIONS

Conditional expressions identify conditions that are tested to enable
the object prog~am to select between alternate paths of control
depending upon the truth value of the condition. Conditional
expressions are specified in the IF, SEARCH, and PERFORM statements.
There are two categories of conditions associated with conditional
expressions: simple conditions and complex conditions.

5.6.1 Simple Conditions

The simple conditions are the relation, class, condition-name,
switch-status, and sign conditions. A simple condition has a truth
value of true or false.

5-16

PROCEDURE DIVISION

5.6.2 Relation Condition

A relation condition causes a comparison of two operands, each of
which may be the data item referenced by an identifier or a literal or
the value resulting from an arithmetic expression. A rel~tion
condition has a truth value of true if the relation exists between the
operands. Comparison of two numeric operands is permitted regardless
of the formats specified in their respective USAGE clauses. However,
for all other comparisons the operands must have the same usage. If
either of the operands is a group item, the non-numeric comparison
rules apply.

The general format of a relation condition is as follows:

(

IS [NOT] GREATER THAN)
IS [NOT] LESS THAN

identifier-l IS [NOT] EQUAL TO
literal-l IS [NOT] >

{arithmetic-expreSSion-l} IS [NOT) <
is [NOT] =

literal-2
~identifier-2 I
'arithmetic-expression-2

NOTE

NOTE: The required relational characters
>, <, and = are not underlined to avoid
confusion with other symbols such as
greater-than-or-equal-to.

The first ~perand (identifier-I, literal-I, or
arithmetic-expression-l) is called the subject of the condition; the
second operand (identifier-2, literal-2, or arithmetic-expression-2)
is called the object of the condition. The subject and the object may
not both be literals.

The relational operator specifies the type of comparison to be made in
a relation condition. A space must precede and follow each reserved
word comprising the relational operator. When used, NOT and the next
key word or relation character are one relational operator that
defines the compar ison to be executed for tru'th value: e. g. , NOT
EQUAL is a truth test for an unequal comparison; NOT GREATER is a
truth test for an equal or less comparison. The meaning of the
relational operators is as follows:

.Meaning Relational Operator

Greater than or not greater than IS [NOT] GREATER THAN
IS [NOT] >

Less than or not less than IS [NOT] LESS THAN
IS [NOT] <

Equal to or not equal to IS [NOT] EQUAL TO
IS [NOT]

5-17

PROCEDURE DIVISION

NOTE

The required rela~ional characters >, (,
and are not underlined to avoid
confusion with other symbols such as
greater-than-or-equal-to.

5.6.3 Comparison of Numeric Operands

For operands whose class is numeric (see Section 4.13.7, Concepts of
Classes of Data), a comparison is made with respect to the algebraic
value of the operands. The length of the literal or
arithmetic-expression operands, in terms of number of digits, is not
significant. Zero is considered a unique value regardless of the
sign.

Comparison of these operands is permitted regardless of the manner in
which their usage is described. Unsigned numeric operands are
considered positive for purposes of comparison.

5.6.4 Comparison of Alphanumeric Operands

For nonnumeric operands, or one numeric and one nonnumeric operand, a
comparison is made with respect to a specified collating sequence of
characters (See Section 3.4.2, The OBJECT-COMPUTER paragraph). If one
of the operands is specified as numeric, it must be an integer data
item or an integer literal:

1. If the nonnumeric operand is an elementary data item or a
nonnumeric literal, the numeric operand is treated as though
it were moved to an elementary alphanumeric data item of the
same size as the numeric data item (in terms of standard data
format characters), and the -contents of this alphanumeric
data item were then compared to the nonnumeric operand. (See
Section 5.22, The MOVE Statement and Section 4.20, The
PICTURE Clause.)

2. If the nonnumeric operand is a group item, the numeric
operand is treated as though it were moved to a group item of
the same size as the numeric data item (in terms of standard
data format characters), and the contents of this group item
were then compared to the nonnumeric operand. (See Section
5.22, The MOVE Statement and Section 4.20, The PICTURE
Clause.)

3. A non-integer numeric operand cannot be compared to a
nonnumeric operand.

5-18

PROCEDURE DIVISION

The size of an operand is the total number of standard data format
characters in the operand. Numeric and nonnumeric operands may be
compared only when their usage is the same.

There are two cases to consider: operands of equal size and operands
of unequal size.

1. Operands of equal size.

If the operands are of equal size, comparison effectively
proceeds by comparing characters in corresponding character
positions starting from the high order end and continuing
until either a pair of unequal characters is encountered or
the low order end of the operand is reached, whichever comes
first. The operands are determined to be equal if all pairs
of characters compare equally through the last pair, when the
low order end is reached.

The first encountered pair of unequal characters is compared
to determine their relative position in the collating
sequence. The operand that contains the character that is
positioned higher in the collating sequence is considered to
be the greater operand.

2. Operands of unequal size.

If the operands are of unequal size, comparison proceeds as
though the shorter operand were extended on the right by
sufficient spaces to make the operands of equal size.

5.6.5 Comparisons Involving Index-Names and/or Index Data Items

Relation tests may be made between:

1. Two index-names. The result is the same as
corresponding occurrence numbers were compared.

if the

2. An index-name and a data item (including an index data item)
or literal. The occurrence number that corresponds to the
value of the index-name is compared to the data item or
literal.

3. An index data item and an index data item. The actual values
are compared.

4. Index data items may not be compared with literals or other
data items that are not index data items.

5-19

PROCEDURE DIVISION

5.6.6 Class Condition

The class condition determines whether the operand is numeric or
alphabetic. Numeric consists entirely of the characters 0 through 9,
with or without the operational sign. Alphabetic consists entirely of
the characters A through Z and space. The general format for the
class condition is as follows:

. {NUMERIC ~
identifier IS [NOT]' (

- ~ALPHABETIC'

The usage of the operand being tested must be described as display.
When used, NOT and the next key word specify one class condition that
defines the class test to be executed for truth value, that is, NOT
NUMERIC is a truth test for determining that an operand is nonnumeric.

The NUMERIC test cannot be used with an item whose data description
describes the item as alphabetic or as a group item composed of
elementary items whose data description indicates the presence of
operational sign(s). If the data description of the item being tested
does not indicate the presence ·of an operational sign, the item being
tested is determined to be numeric only if the contents are numeric
and an operational sign is not present. If the data description of
the item does indicate the presence of an operational sign, the item
being tested is determined to be numeric only if the contents are
numeric and a valid operational sign is present. Valid operational
signs for data items described with the SIGN IS SEPARATE clause are
the standard data format, characters, + and -. (See Section 4.23, The
SIGN Clause, for the format of valid operational signs when the SIGN
IS SEPARATE clause is not present).

The ALPHABETIC test cannot be used with an item whose data description
describes the item as numeric. The item being tested is determined to
be alphabetic only if the contents consist of any combination of the
alphabetic characters A through Z and the space.

5.6.7 Condition-Name Condition (Conditional Variable)

In a condition-name condition, a conditional variable is tested to
determine whether or not its value is equal to one of the values
associated with a condition-name. The general format for the
condition-name condition is as 'follows:

condition-name

If the condition-name is associated with a range or ranges of values,
then the conditional variable is tested to determine whether or not
its value falls in this range, including the end values.

The rules for comparing a conditional variable with a condition-name
value are the same as those specified for relation conditions.

5-20

PROCEDURE .DIVISION

The result of the test is true if one of the values corresponding to
the condition-name equals the value of its associated conditional
variable.

5.6.8 Switch-Status Condition

A switch-status condition determines the ON or OFF status of a
numbered switch. The switch number and the ON or OFF value associated
with the condition must be named in the SPECIAL-NAMES paragraph of the
Environment Division. The general format for the switch-status
condition is as follows:

condition-name

The result of the test is true if the switch is set to the specified
position corresponding to the condition-name.

5.6.9 Sign Condition

The sign condition determines whether or not the algebraic value of an
arithmetic expression is less than, greater than, or equal to O. The
general format for a sign condition is as follows:

arithmetic-expression
, POSITIVE ~

IS [NOTll~TIVEJ

When used, NOT and the next key word specify one sign condition that
defines the algebraic test to be executed for truth value, that is,
NOT ZERO is a truth test for a nonzero (positive or negative) value.

An operand is positive if its value is greater than 0, negative if its
value is less than 0, and 0 if its value is equal to O.

5.6.10 Complex Conditions

A complex condition is formed by combining sim~le conditions combined
conditions and/or complex conditions with logical connectors (logical
operators AND and OR) or negating these conditions with logical
negation (the logical operator NOT). The truth value of a complex
condition, whether parenthesized or not, is that truth value which
results from the interaction of all the stated logical operators on
the individual truth values of simple conditions, or the intermediate
truth values of conditions logically connected or logically negated.

5-21

PROCEDURE DIVISION

The logical operators and their meanings are:

Logical Operator

AND

OR

NOT

Meaning

Logical conjunction; the truth value is
true if both of the conjoined conditions
are true; false if one or both of the
conjoined conditions is false.

Logical inclusive OR; the truth value
is true if one or both of the included
conditions is true; false if both
included conditions are false.

Logical negation or reversal of truth
value; the truth value is true if the
condition is false; false if the
condition is true.

The logical operators must be preceded by a space and followed by a
space.

5.6.11 Negated Simple Conditions

A simple condition (Section 5.6.1) is negated through the use of the
logical operator NOT. The negated simple condition affects the
opposite truth value for a simple condition. Thus, the truth value of
a negated simple condition is true if, and only if, the truth value of
the simple condition is false; the truth value of a negated simple
condition is false if, and only if, the truth value of the simple
condition is true. The inclusion in parentheses of a negated simple
condition does not change the truth value.

The general format for a negated simple condition is:

NOT simple-condition

5.6.12 Combined and Negated Combined Conditions

A combined condition results
the logical operators AND
condition is:

COndition!{::D}

from connecting conditions with one of
or OR. The general format of a combined

condition I

5-22

PROCEDURE DIVISION

where condition may be one of the following.

1. A simple condition

2. A negated simple condition

3. A combined condition

4. A negated combined
operator followed
parentheses

condition, that is, the NOT logical
by a combined condition enclosed within

5. Combinations of the above, specified according to the rules
summarized in Table 5-2, Combinations of Conditions, Logical
Operators, and Parentheses.

Although parentheses need never be used when either AND or OR (but not
both) is used exclusively in a combined condition, parentheses may be
used to effect a final truth value when a mixture of AND, OR and
NOT is used. (See Table 5-2, Combinations of Conditions, Logical
Operators, and Parentheses, and Section 5.14 Condition Evaluation
Rules.

Table 5-2 indicates the ways in which conditions and logical operators
may be combined and parenthesized. There must be a one-to-one
correspondence between left and right parentheses such that each left
parenthesis is to the left of its corresponding right parenthesis.

Table 5-2
Combinations of Conditions, Logical Operators, and Parentheses

Location in In a left-to-right sequence of elements:
conditional
expression Element, when not Element when not

Given the follow- first, may be last, may be
ing element immediately pre- immediately fol-

First Last ceded by only: lowed by only:

simple-condition Yes Yes OR, NOT, AND, (OR, AND,)

OR or AND No No simple-condition,) simple-condition,
NOT, (

NOT Yes No OR, AND, (simple-condition, (

(Yes No OR, NOT, AND, (simple-condition,
NOT, (

) No Yes simple-condition,) OR, AND,)

5-23

PROCEDURE DIVISION

Thus, the element pair OR NOT is permissible while the pair.NOT OR is
not permissible; NOT (is permissible while NOT NOT is not
permissible.

5.6.13 Abbreviated Combined Relation Conditions

When simple or negated simple relation conditions are combined with
logical connectives in a consecutive sequence such that a succeeding
relation condition contains a subject or subject and relational
operator that are common with the preceding relation condition, and no
parentheses are used within such a consecutive sequence, any relation
condition except the first may be abbreviated by the omission of one
of the following:

1. The subject of the relatton condition, or

2. The subject and relational operator
condition.

of the

The format for an abbreviated combined relation condition is:

relation

relation-condition t {:D} [NOT] [relational-operator] obj ect 1

Within a sequence of relation conditions both of the above forms of
abbreviation may be used. The effect of using such abbreviations is
as if the last preceding stated subject were inserted in place of the
omitted subject, and the last stated relational operator were inserted
in place of the omitted relational operator. The result of such
implied insertion must comply with the rules of Table 5-2,
Combinations of Conditions, Logical Operators, and Parentheses. This
insertion of an omitted subject and/or relational operator terminates
once a complete simple condition is encountered within a complex
condition.

The interpretation applied to the use of the word NOT in an
abbreviated combined relation condition is as follows:

1, If the word immediately following NOT is GREATER or .>, LESS
or <, or EQUAL or = then the NOT participates as part of the
relational operator; otherwise,

2. The NOT is interpreted as a logical operator and, therefore,
the implied insertion of subject or relational operator
results in a negated relation condition.

Some examples of abbreviated combined and negated combined relation
conditions and expanded equivalents follow.

5-24

PROCEDURE DIVISION

Abbreviated Combined
Relation Condition Expanded Equivalent

a > b AND NOT < c OR d «a > b) AND (a NOT < c)) OR (a NOT < d)

a NOT EQUAL b OR c (a NOT EQUAL b) OR (a NOT EQUAL c)

NOT a = b OR c (NOT (a = b» OR (a = c)

NOT (a GREATER b OR < c) NOT ((a GREATER b) OR (a < c»

NOT (a NOT > b AND c AND NOT d) NOT ««a NOT > b) AND (a NOT > c» AND
(NOT (a NOT > d) »)

5.6.14 Condition Evaluation Rules

Parentheses may be used to specify the order in which individual
conditions of complex conditions are to be evaluated when it is
necessary to depart from the implied evaluation precedence.
Conditions ~ithin parentheses are evaluated first, and, within nested
parentheses, evaluation proceeds from the least inclusive condition to
the most inclusive condition. When parentheses are not used or
parenthesized conditions are at the same level of inclusiveness, the
following hierarchical order of logical evaluation is implied until
the final truth value is determined:

1. Values are established for arithmetic expressions. (See
Formation and Evaluation Rules, Section 5.5.2.)

2. Truth values for simple conditions are established in the
following order:

a. Relation (following the expansion of any abbreviated
relation condition)

b. Class

c. Condition-name

d. Switch-status

e. Sign

3. Truth values for negated simple conditions are established.

4. Truth values for combined conditions are established (AND
logical operators, followed by OR logical operators).

5. Truth values for negated combined conditions are established.

6. When the sequence of evaluation is not completely specified
by parentheses, the order of evaluation of consecutive
operations of the same hierarchical level is from left to
right.

5-25

PROCEDURE DIVISION

5.7 COMMON PHRASES AND GENERAL RULES FOR STATEMENT FORMATS

In the statement descriptions that
frequently: the ROUNDED phrase,
CORRESPONDING phrase.

follow, several
the SIZE ERROR

phrases appear
phrase, and the

In the discussion below, a resultant-identifier is that identifier
associated with a result of an arithmetic operation.

5.7.1 The ROUNDED Phrase

If, after decimal point alignment, the number of places in the
fraction of the result of an arithmetic operation is greater than the
number of places provided for the fraction of the
resultant-identifier, truncation is relative to the size provided for
the resultant-identifier. When rounding is requested, the absolute
value of the resultant-identifier is increased by 1 whenever the most
significant digit of the excess is greater than or equal to 5.

When the low-order integer positions in a resultant-identifier are
represented by the character P in the PICTURE clause for that
resultant-identifier, rounding or truncation occurs relative to the
rightmost integer position for which storage is allocated.

5.7.2 The SIZE ERROR Phrase

If, after decimal point alignment, the absolute value of a result
exceeds the largest value that can be contained in the associated
resultant-identifier, a size error condition exists. Division by ·0
always causes a size error condition. The size error condition
applies only to the final results of an arithmetic operation and does
not apply to intermediate results, except in the MULTIPLY and DIVIDE
statements. Then the size error condition applies to the intermediate
results as well. If the ROUNDED phrase is specified, rounding takes
place before checking for size error. When such a size error
condition occurs, the subsequent action depends on whether or not the
SIZE ERROR phrase is specified.

1. If the SIZE ERROR phrase is not specified and a size error
condition occurs, the value of those resultant-identifier(s)
affected is undefined. Values of resultant-identifier(s) for
which no size error condition occurs are unaffected by size
errors that occur for other resultant-identifier(s) during
execution of this operation.

2. If the SIZE ERROR phrase is specified and a size error
condition occurs, then the value of the
resultant-identifier(s) affected by the size errors is not
altered. Values of resultant-identifier(s) for which no size
error condition occurs are unaffected by size errors that
occur for other resultant-identifier(s) during execution of

5-26

PROCEDURE DIVISION

this operation. After completion of the execution of this
operation, the imperative statement in the SIZE ERROR phrase
is executed.

For the ADD statement with the CORRESPONDING phrase and the
SUBTRACT statement with the CORRESPONDING phrase, if any of
the individual operations produces a ~size error condition,
the imperative statement in the SIZE ERROR phrase is not
executed until all of the individual additions or
subtractions are completed.

5.7.3 The CORRESPONDING Phrase

For the purpose of this discussion, dl and d2 must each be identifiers
that refer to group items. A pair of data items, one from d 1 and one
from d2 correspond if the following conditions exist:

1. A data item in d and a data item in d are not designated by
the key word FILLER and have the same data-name and the same
qualifiers up to, but not including, d and d .

2. In the case of a MOVE statement with the CORRESPONDING
phrase, at least one of the data items is an elementary data
item; in the case of the ADD statement with the
CORRESPONDING phrase or the SUBTRACT statement with the
CORRESPONDING phrase, both of the data items are elementary
numeric data items.

3. The description of dl and d2 must not contain level-number
66, 77, or 88 or the USAGE IS INDEX clause.

4. A data item that is subordinate to dl or d2 and contains a
REDEFINES, RENAMES, OCCURS, or USAGE IS INDEX clause is
ignored, as well as those data items subordinate to the data
item that contains the REDEFINES, OCCURS, or USAGE IS INDEX
clause. However, dl and d2 may have REDEFINES or OCCURS
clauses or be subordinate to data items with REDEFINES or
OCCURS clauses. (See Section 4.19, The OCCURS Clause.)

5.7.4 The Arithmetic Statements

The arithmetic statements are the ADD, COMPUTE, DIVIDE, MULTIPLY, and
SUBTRACT statements. They have several common features.

1. The data descriptions of the operands need not be the same;
any necessary conversion and decimal point alignment is
supplied throughout the calculation.

5-27

PROCEDURE DIVISION

2. The maximum size of each operand is IS decimal digits. The
composite of operands, which is a hypothetical data item
resulting from the superimposition of specified operands in a
statement aligned on their decimal points, must not contain
more than IS decimal digits.

5.7.5 Multiple Results in Arithmetic Statements

The ADD, COMPUTE, DIVIDE, MULTIPLY, and SUBTRACT statements may have
multiple results. Such statements behave as though they had been
written in the following way:

1. A statement that performs all arithmetic necessary to arrive
at the result to be stored in the receiving items, and stores
that result in a temporary storage location.

2. A sequence of statements transferring or combining the value
of this temporary location with a single result. These
statements are considered to be written in the same
left-to-right sequence in which the multiple results are
listed.

The result of the statement

ADD a, b, c TO c; d (c), e

is equivalent to

ADD a, b, c GIVING temp
ADD temp TO c
ADD temp TO d (c)
ADD temp TO e

where temp is an intermediate result item defined as follows:

The number of integer places in temp is the maximum of the
integer places of all the operands in the statement. The
number of decimal places is the maximum of all the operands
in the statement. If the sum of the number of integer places
and decimal places is greater than IS, then the number of
integer places will be reduced until the sum is equal to IS.
Therefoxe, high-order truncation could occur in some
receIvIng operands, depending on the resulting value of the
arithmetic statement. 1

5-2S

PROCEDURE DIVISION

5.7.6 Overlapping Operands

When a sending and a receiving item in an arithmetic statement or
INSPECT, MOVE, SET, STRING, or UNSTRING statement share a part of
their storage areas, the result of the execution of such a statement
is undefined. The compiler does not detect overlapping or potentially
overlapping operands.

5.7.7 Incompatible Data

Except for the class condition (see Section 5.6.6, Class Condition),
when the contents of a data item are referenced in the Procedure
Division and the contents of that data item are not compatible with
the class specified for that data item by its PICTURE clause, then the
result of such a reference is undefined.

5-29

PROCEDURE DIVISION

ACCEPT

5.8 THE ACCEPT STATEMENT

Function

The ACCEPT statement causes low volume data to be made available
to the specified data item.

General Format

Format 1

ACCEPT identifier [FROM mnemonic-name]

Format 2

ACCEPT identifier FROM 1 ~~~E I
TIME

Syntax Rules

1. The mnemonic-name in Format 1 must be specified in the
SPECIAL-NAMES paragraph of the Environment Division and must
be associated with a hardware device.

General Rules

Format 1

1. The ACCEPT statement causes the transfer of data from the
hardware device. This data replaces the contents of the data
item named by the identifier.

2. The ACCEPT statement causes the information requested to be
transferred to the data item specified by the identifier,
with no editing or conversion.

Format 2

3. The ACCEPT statement causes the information requested to be
transferred to the data item specified by the identifier
according to the rules of the MOVE statement. DATE, DAY, and
TIME are conceptual data items and, therefore, are not
described in the COBOL program. Their usage is DISPLAY.

4. DATE is composed of the data elements year of century, month
of year, and day of month. The sequence of the data element
codes shall be from high order to low order (left to right),
that is, year of century, month of year, and day of month.
Therefore, July 4, 1976 would be express~d as 760704. DATE,
when accessed by a COBOL program, behaves as if it had been
described in the COBOL program as an unsigned elementary
numeric integer data item six digits in length.

5-30

PROCEDURE DIVISION

5. DAY is composed of the data elements year of century and day
of year. The sequence of the data element codes shall be
from high order to low order (left to right). That is, year
of century, day of year. Therefore, July 4, 1976 would be
expressed as 76186. DAY, when accessed by a COBOL program,
behaves as if it had been described in a COBOL program as an
unsigned elementary numeric integer data item five digits in
length.

6. TIME is composed of the data elements hours, minutes, seconds
and hundredths of a second. TIME is based on elapsed time
after midnight on a' 24-hour clock basis: thus, 2:41 p.m.
would be expressed as 14410000. TIME, when accessed by a
COBOL program behaves as if it had been described in a COBOL
program as an unsigned elementary numeric integer data item
eight digits in length. The minimum value of TIME is
00000000: 'the maximum value of TIME is 23595999.

Formats 1 and 2

1. The ACCEPT statement format 1 is effective only in the TRAX
support environment.

2. The ACCEPT statement format 2 is effective in both the TRAX
application and support environments.

5-31

PROCEDURE DIVISION

ADD

5.9 THE ADD STATEMENT

Function

The ADD statement causes two or more numeric operands to be added
together and the result to be stored.

General Format

Format 1

{

identifier-I}
ADD

literal-l

Format 2

[

identifier-2]
, ... TO identifier-3

, literal-2

[, ident{fier-4 [ROUNDED]]

[iON SIZE ERROR imperative-statement]

l identifier-l~ [identifier-2j
ADD (,

literal-l , literal-2 [

, identifier-3] .•.

, literal-3

[ROUNDED]

GIVING identifier-4 [ROUNDED] G identifier-5 [ROUNDED]]

[i ON SIZE ERROR imperative-statement]

Format 3

{

CORRESPONDING}
ADD

CORR
identifier-l TO identifier-2 [ROUNDED]

[i ON SIZE ERROR imperative-statement]

Syntax Rules

1. In Formats 1 and 2'1 each identifier must refer to an
elementary numeric item, except that in Format 2
identifier-4, following the word GIVING, must refer to either
an elementary numeric item or an elementary numeric edited
item. In Format 3, each identifier must refer to a group
item.

2. Each literal must be a numeric literal.

3. The composite of operands must not contain more than 18
digits (see Section 5.7.4, The Arithmetic Statements).

5-32

PROCEDURE DIVISION

a. In Format 1, the composite of operands is determined by
using all of the operands in a given statement.

b. In Format 2, the composite of operands is determined by
using all of the operands in a given statement excluding
the data items that follow the word GIVING.

c. In Format 3 the comoosite of operands is determined
separately for each pair of corresponding data items.

4. CORR is an abbreviation for CORRESPONDING.

General Rules

1. See Section 5.7.1, The ROUNDED Phrase: Section 5.7.2, The
SIZE ERROR Phrase: Section 5.7.3, The CORRESPONDING Phrase:
Section 5.7.4, The Arithmetic Statements: Section 5.7.6,
Overlapping Operands: and Section 5.7.5, Multiple Results in
"Arithmetic Statements.

2. If Format 1 is used, the values of the operands preceding the
word TO are added together, then the sum is added to the
current value of identifier-3, and the result is stored into
identifier-3. This process is repeated for each operand
following the word TO.

3. If Format 2 is used, the values of the operands preceding the
word GIVING are added together, then the sum is stored as the
new value of each identifier-4, ,identifier-5, .•• ,.

4. If Format 3 is used, data items in identifier~l are added to
and stored in corresponding data items in identifier-2.

5. The compiler ensures that enough places are carried so that
no significant digits are lost during execution.

5-33

PROCEDURE DIVISION

ALTER

5.10 THE ALTER STATEMENT

Function

The ALTER statement modifies the destination of a GO TO
statement.

General Format

ALTER procedure-name-l TO [PROCEED TO] procedure-name-2

[, procedure-name-3 TO [PROCEED TO] procedure-name-4]

Syntax Rules

1. Each procedure-name-l, procedure-name-3, •.. , is the name of a
paragraph that contains a single sentence consisting of a GO
TO statement without the. DEPENDING phrase.

2. Each procedure-name-2, procedure-name-4, ••• , is the name of
a paragraph or section in the Procedure Division.

General Rules

Execution of the ALTER statement modifies the GO TO statement in
the paragraph named with procedure-name-l, procedure-name-3 so
that subsequent executions of the modified GO TO statements cause
transfer of c~ntrol to procedure-nane-2, procedure-name-4, .•. ,
respectively.

5-34

PROCEDURE DIVISION

CALL

5.11 THE CALL STATEMENT

Function

The CALL statement causes control to be transferred from one
object program to another within the run unit.

General Format

CALL literal-l [USING data-name-l[,data-name-2] •••]

Syntax Rules

1. Literal-l must be a nonnumeric literal, consisting of the
characters 0-9 and A-Z, and must be six or less characters in
length. Literal-l is the entry point in the called
subprogram. For COBOL subprograms, literal-l is the first
six characters of the called programs PROGRAM-ID.

2. The USING phrase is included in the CALL statement only if
there is a non-empty USING phrase in the Procedure Division
header of the called program. The number of operands in each
USING phrase must be identical.

3. Each of the operands in the USING phrase must have been
defined as a data item in the File Section, Working-Storage
Section, or Linkage Section. Data-name-l, data-name-2, ... ,
may be qualified and/or subscripted.

General Rules

1. The program whose name is specified by the value of literal-l
is the called program; the program in which the CALL
statement appears is the calling program.

2. The execution of a CALL statement causes control to pass to
the called program.

3. A called program is in its initial state the first time it is
called within a run unit.

On all other entries into the called program, the state of
the program remains unchanged from its state when last
exited. This includes all data fields, the status ·and
positioning of all files, and all alterable switch settings.

4. Called programs may contain CALL statements. However, a
called program must not contain a CALL statement that
directly or indirectly calls the calling program.

5. The order of appearance of the data-names in the USING phrase
of the CALL statement and the USING phrase in the PROCEDURE
DIVISION header is critical. Corresponding data-names refer
to a single set of data that is available to the called and
calling program. The correspondence is positional, not by

5-35

PROCEDURE DIVISION

name. In the case of index-names, no such correspondence is
established. Index-names in the called and calling program
always refer to separate indices.

6. The CALL statement may appear anywhere within the PROCEDURE
DIVISION of a program. The implement ion will provide all
controls necessary to insure that the proper logic flow is
maintained when segmentation of user code causes overlaying.

5-36

PROCEDURE DIVISION

CLOSE

5.12 THE CLOSE STATEMENT (SEQUENTIAL)

Function

The CLOSE statement terminates the processing of reels/units and
files with optional rewind and/or lock or removal where
applicable.

General Format

CLOSE file-name-l

, file-name-2

Syntax Rules

{
REEL}
UNIT

WITH

IWITH NO REWINOl
l!0R REMOVAL -J

{
NO REWIND}
LOCK

[{
REEL} IWITH NO REWINOlJ
UNIT ~OR REMOVAL J
WITH {NO REWIND}

LOCK

...

1. The REEL UNIT phrase must be used only for sequential files.

2. The files referenced in the CLOSE statement need not all have
the same organization or access.

General Rules

Except where otherwise stated in the general rules below, the
terms REEL and UNIT are synonymous and completely interchangeable
in the CLOSE statement. Treatment of sequential mass storage
files is logically equivalent to the treatment of a file on tape
or analogous sequential media.

1. A CLOSE statement may be executed for a file only when the
file is open.

2. For the purpose of showing the effect of various types of
CLOSE statements as applied to various storage media, all
files are divided into the following categories:

a. Non-reel/unit. A file whose input or output medium is
such that the concept of rewind and reels/units have no
meaning.

b. Sequential single-reel/unit. A sequential file that is
entirely contained on one reel/unit.

c. Sequential multi-reel unit. A sequential file that is
contained on more than one reel/unit.

5-37

PROCEDURE DIVISION

3. The results of executing each type of CLOSE for each category
of file are summarized in Table 5-3, Relationship of
Categories of Files and the Formats of the CLOSE Statement.

Table 5-3
Relationship of Categories of Files and the Formats

of the CLOSE Statement

File Category

CLOSE Sequential Sequential
Statement Single- Multi-

Format Non-Reel/Unit Reel/Unit Reel/Unit

CLOSE C C,G C,G,A

CLOSE WITH LOCK C,E C,G,E C,G,E,A

CLOSE WITH NO REWIND X C,B C,B,A

CLOSE REEL/UNIT X X F,G

CLOSE REEL/UNIT X X F,D,G
FOR REMOVAL

CLOSE REEL/UNI'r X X F,B
WITH NO REWIND

The definitions of the symbols in the table 'are given below.
Where the definition depends on whether the file is an input,
output, or input-output file, alternate definitions are
given; otherwise, a definition applies to input, output, and
input-output files.

A Previous Reels/Units Unaffected

Input Files and Input-Output Files:

All reels/units in the file prior to the current
reel/unit are processed according to the standard
reel/unit swap procedure, except those reels/units
controlled by a prior CLOSE REEL/UNIT statement. If the
current reel/unit is not the last in the file, the
reels/units in the file following the current one are not
processed.

Output Files:

All reels/units in the file prior to the current
reel/unit are processed according to th~ standard
reel/unit swap procedure, except those reels/units
controlled by a prior CLOSE REEL/UNIT statement.

5-38

PROCEDURE DIVISION

B No Rewind of Current Reel

The current reel/unit is left in its current position.

C Close File

Input Files and Input-Output Files:

If the file is positioned at its end and label records
are specified for the file, the labels are processed
according to the Record Management Services. Closing
operations specified by the Record Management Services
are executed. If the file is positioned at its end and
label records are not specified for the file, label
processing does not take place but other closing
operations specified by the Record Management Services
are executed. If the file is positioned other than at
its end, the closing operations specified by the Record
Management Services are executed, but there is no ending
label processing.

Output Files:

If label records are specified for the file, the labels
are processed according to the standard label convention.
Closing operations specified by the Record Management
Services are executed. If label records are not
specified for the file, label processing does not take
place but other closing operations specified by the
Record Management Services are executed.

D Reel/Unit Removal

A Record Management Services defined technique is
supplied to ensure that the current reel or unit is
rewound when applicable, and that the operating system is
notified that the reel or unit is logically removed from
this.run unit; however, the reel or unit may be accessed
again, in its proper order of reels or units within the
file if a CLOSE statement without the REEL or UNIT phrase
is subsequently executed for this file followed by the
execution of an OPEN statement for the file.

5-39

PROCEDURE DIVISION

E File Lock

A technique is supplied to ensure that this file cannot
be opened again during this execution of this run unit.

F Close Reel/Unit

Input Files:

The following operations take place:

(1) A reel/unit swap.

(2) The standard beginning reel/unit label procedure is
executed.

The next executed READ statement for that file makes
available the next data record on the new reel/unit.

Output Files and Input-Output Files:

The following operations take place:

(l) (For output files only) The standard
reel/unit label procedure is executed.

ending

(2) A reel/unit swap.

(3) The standard beginning reel/unit label procedure is
executed.

For input-output files, the next executed READ statement
that references that file makes the next logical data
record on the next mass storage unit available. For
output files, the next executed WRITE statement that
references that file directs the next logical data record
to the next reel/unit of the file.

G Rewind

The current reel or analogous device is positioned at its
physical beginning.

X Illegal

This is an illegal combination of a CLOSE
file category. t The object program
terminated.

option and
execution

a
is

4. If the file is in the open mode when a STOP RUN statement is
executed or when the object program execution is prematurely
terminated, the file will be closed automatically.

5-40

PROCEDURE DIVISION

5. If the OPTIONAL phrase has been specified for the file in the
FILE-CONTROL paragraph of the Environment Division and the
file is not present, the standard end-of-file processing is
not performed for that file.

6. If a CLOSE statement without the REEL or UNIT phrase has been
executed for a file, no other statement can be executed that
references that file, either explicitly or implicitly, unless
an intervening OPEN statement for that file is executed.

7. The· WITH NO REWIND and FOR REMOVAL phrases will have no
effect at object time if they do not apply to the storage
media on which the file resides.

8. Following the successful execution of a CLOSE st~tement
without the REEL or UNIT phrase, the record area associated
with a file-name is no longer available.

9. If an error occurs during the execution of a CLOSE statement
issued without the UNIT or REEL phrase specified, the CLOSE
will not occur. The value 98 is placed in the FILE STATUS
data item (if one was specified) associated with the file.

10. If an error occurs during the execution of a CLOSE statement
issued with the UNIT or REEL phrase specified, the CLOSE will
not occur. The value 99 is placed in the FILE STATUS data
item (if one was specified) associated with the file.

5-41

PROCEDURE DIVISION

CLOSE

5.13 THE CLOSE STATEMENT (INDEXED & RELATIVE)

Function

The CLOSE statement terminates the processing of files with
optional lock.

General Format

CLOSE f ile-name-l (ivITH LOC~ [. f ile-name-2 ~ITH LOC~]
Syntax Rules

The files referenced in the CLOSE statement need not all have the
same organization or access.

General Rules

1. A CLOSE statement may only be executed for a file in an open
mode.

2. The results of executing each type of CLOSE for a relative or
indexed file are summarized below.

Close File

a. Input Files and Input-Output Files (Sequential Access
Mode) :

b.

If the file is positioned at its end, the labels are
processed according to the standard label convention.
Closing operations specified by the Record Management
Services are executed. If the file is positioned other
than at its end, the closing operations specified by the
Record Management Services are executed, but there is no
ending label processing.

Input Files and Input-Output Files (Random
Access Mode) ; Output Files (Random,
Sequential Access Mode):

or Dynamic
Dynamic, or

Labels are processed according to the standard label
convention. Closing operations specified by the Record
Management Services are executed.

File Lock

A technique is supplied to ensure that this file cannot
be opened again during this execution of the program.

3. If a file is in the open mode when a STOP RUN statement is
executed or when the object program execution is prematurely
terminated, the file will be closed automatically.

5-42

PROCEDURE DIVISION

4. If a CLOSE statement has been executed for a file, no other
statement can be executed that references that file, either
explicitly or implicitly, unless an intervening OPEN
statement for that file is executed.

5. Following the successful execution of a CLOSE statement, the
record area associated with file-name is no longer available.

6. If an error occurs during the execution of a CLOSE statement,
the CLOSE will not occur. The value 98 is placed in the FILE
STATUS data item (if one was specified) associated with the
file.

7. The CLOSE statement performs a disconnect channel in the TRAX
application environment.

5-43

PROCEDURE DIVISION

COMPUTE

5.14 THE COMPUTE STATEMENT

. Function

The COMPUTE statement assigns to one or more data items the value
of an arithmetic expression.

General Format

COMPUTE identifier-l [ROUNDED] G identif ier-2 [ROUNDED]]

arithmetic-expression [: ON SIZE ERROR imperative-statement]

Syntax Rules

1. Identifiers that appear only to the left of = must refer to
either an elementary numeric item or an elementary numeric
edited item.

General Rules

1. See Section 5.7.1, The ROUNDED Phrase; Section 5.7.2, The
SIZE ERROR Phrase; Section 5.7.4, The Arithmetic Statement;
Section 5.7.6 Overlaying Operands; and 5.7.5, Multiple
Results in Arithmetic Statements.

2. An arithmetic expression, consisting of a single identifier
or literal, provides a method of setting the values of
identifier-I, identifier-2, etc., equal to the value of the
single identifier or literal. (See Section 5.5, Arithmetic
Expressions.)

3. If more than one identifier is specified for the result of
the operation, that is preceding , the value of the
arithmetic expression is computed, and then this value is
stored as the new value of each of identifier-I,
identifier-2, etc., in turn.

4~ The COMPUTE statement allows the user to combine arithmetic
operations without the restrictions on composite of operands
and/or ._ receiving data items imposed by the arithmetic
statements ADD, SUBTRACT, MULTIPLY, and DIVIDE.

5-44

PROCEDURE DIVISION

DELETE

5.15 THE DELETE STATEMENT (INDEXED & RELATIVE)

Function

The DELETE statement logically removes a record from a file on a
directory device.

General Format

DELETE file-name RECORD ~ INVALID KEY imperative-statement]

Syntax Rules

1. The INVALID KEY phrase must not be specified for a DELETE
statement that references a file which is in sequential
access mode.

2. The INVALID KEY phrase must be specified for a DELETE
statement that references a file that is not in sequential
access mode and for which an applicable USE procedure is not
specified.

General Rules

1. The associated file must be open in the 1-0 mode at the time
of the execution of this statement.

2. For files in the sequential access mode, the last
input-output statement executed for file-name prior to the
execution of the DELETE statement must have been a
successfully executed READ statement. ~he record that was
accessed by that READ statement is logically removed from the
file. If the last input-output statement executed for the
associated file was not a successfully executed READ
statement, the DELETE statement is not attempted, and the
value of "93" is placed in the File Status data item, if any,
associated with the file, to indicate an unsuccessful DELETE
operation.

3. When the INVALID KEY condition is recognized, actions are
taken in the following order:

a. A value is placed into the
specified for this file,
condition.

FILE STATUS data item, if
to indicate an INVALID KEY

b. If the INVALID KEY phrase is specified in the statement
causing the condition, control is transferred to the
INVALID KEY imperative statement. Any USE procedure
specified for this file is not executed.

c. If the INVALID KEY phrase is not specified, but a USE
procedure is specified, either explicitly or implicitly,
for this file, that procedure is executed.

5-45

PROCEDURE DIVISION

When the INVALID KEY condition occurs,
input-output statement that recognized
unsuccessful and the file is not affected.

execution of the
the condition is

4. For a relative file in random or dynamic access mode, that
record identified by the contents of the RELATIVE KEY data
item associated with file-name is logically removed from the
file. An INVALID KEY condition may arise; the action taken
is as follows:

a. If the record specified by the contents of the RELATIVE
KEY data item does not exist, the value 23 is placed in
the FILE STATUS data item, if any, associated with the
file to indicate an unsuccessful DELETE operation.

b. If the contents of the RELATIVE KEY data item does not
lie within the range of the key values corresponding to
the allocated space for this file, a boundary violation
exists. The value 24 is placed in the FILE STATUS data
item, if any, associated with the file to indicate an
unsuccessful DELETE operation.

5. For an indexed file accessed in random or dynamic mode, the
record identified by the contents of the prime record key
data item is logically removed from the file. If the
specified record does not exist, a value of 23 (Invalid Key
Condition) is placed in the FILE STATUS data item associated
with file-name.

6. After the successful execution of a DELETE statement, the
identified record has been logically removed from the file
and can no longer be accessed.

7. The execution of a DELETE statement does not affect the
contents of the record area associated with file-name.

8. The current record pointer is not affected by the execution
of a DELETE statement.

9. A DELETE statement will fail if it is executed on a record
that is being simultaneously accessed by another task. The
value 92 is placed in the FILE STATUS data item if one was
specified for the file.

10. If an unexplained error occurs during the execution of a
DELETE statement, the execution will fail. A value of 30 is
placed in the FILE STATUS data item if one was specified for
the file.

5-46

PROCEDURE DIVISION

DISPLAY

5.16 THE DISPLAY STATEMENT

Function

The DISPLAY statement causes low volume data to be transferred to
an appropriate hardware device.

General Format

DISPLAY ~ identifier-l} [identifier-2l ...
{literal-l ,literal-2 J

[UPON mnemonic-name] ~ITH NO ADVANCINcD

Syntax Rules

1. The mnemonic-name is associated with a hardware device in the
SPECIAL-NAMES paragraph in the Environment Division.

2. Each literal may be any figurative constant except ALL.

3. If the literal is numeric, it must be an unsigned integer.

General Rules

1. The DISPLAY statement causes the contents of each operand to
be transferred to the hardware device in the order listed,
with no editing or conversion.

2. If a figurative constant is specified as one of the operands,
only a single occurrence of the figurative constant is
displayed.

3. When a DISPLAY statement contains more than one operand, the
size of the sending item is the sum of the sizes associated
with the operands, and the values of the operands are
transferred in the sequence in which the operands are
encountered.

4. When the WITH NO ADVru~CING phrase is not specified, a line
feed character and a carriage return character are appended
to the sending item. If the sending item exceeds the size of
a line on the hardware device, the excess characters may
appear on following line (s) or may be lost·, depending on the
device driver routine. Vertical and horizontal formatting
characters may be placed in the sending item.

5-47

PROCEDURE DIVISION

5. When the WITH NO ADVANCING phrase is specified, the line-feed
and carriage return characters are not appended to the sending
item. If the device handler allows it, the device will remain
positioned on the same line and on the character position
following the last character displayed. This is especially
useful when typing prompting messages on the console.

6. If the UPON phrase is not used, the data is written on the
user's standard display device.

7. The DISPLAY statement is valid only in the TRAX support
environment.

5-48

PROCEDURE DIVISION

5.17 THE DIVIDE STATEMENT

Function

The DIVIDE statement divides one numeric data item
and sets the values of data items equal to the
remainder.

General Format

Format 1

{

identifier-I}
DIVIDE

literal-l
INTO identifier-2

[, identifier-3 [ROUNDED]]

[ROUNDED]

[. ON SIZE ERROR imperative-statement]

Format 2

DIVIDE

into others
quotient and

{

identifier-I}
DIVIDE

literal-l
INTO {identifier-2}GIVING identifier-3 [ROUNDED]

literal-2

[, identifier-4 [ROUNDED]]

ON SIZE ERROR imperative-statement]

Format 3

{

identifier-I}
DIVIDE .

literal-l
BY

{

identifier-2}
GIVING identifier-3 [ROUNDED]

literal-2

[, identifier-4 [ROUNDED]].

ON SIZE ERROR imperative-statement]

Format 4

{

identifier-I}
DIVIDE

. literal':"l {

identifier-2j
GIVING identifier-3 [ROUNDED]

literal-2

REMAINDER identifier-4 [; ON SIZE ERROR imperative-statement]

5-49

Format 5

lidentifier-ll
DIVIDE

literal-l

PROCEDURE DIVISION

BY

1
identifier-21

GIVING identifier-3 [ROUNDED]
literal-2

REMAINDER identifier-4 [iON SIZE ERROR imperative-statement]

Syntax Rules

1. Each identifier must refer to an elementary numeric item,
except that any identifier associated with the GIVING or
REMAINDER phrase must refer to either an elemen~ary numeric
item or an elementary numeric edited item.

2. Each literal must be a numeric literal.

3. The composite of operands, which is the hypothetical data
item resulting from the superimposition of all receiving data
items (except the REMAINDER data item) of a given statement
aligned on their decimal points, must not contain more than
18 digits.

General Rules

1. See Section 5.7.1, The ROUNDED Phrase; Section 5.7.2, The
SIZE ERROR Phrase; Section 5.7.4, The Arithmetic Statements;
and Section 5.7.6, Overlapping Operands; and Section 5.7.5,
Multiple Results in Arithmetic Statements; for a description

. of these functions. See also, general rules 5 through 7
below for a discussion of the ROUNDED phrase and the SIZE
ERROR phrase as they pertain to Formats 4 and 5.

2. When For@at 1 is used, the value of identifier-lor literal-l
is divided into the value of identifier-2. The value of the
dividend (identifier-2) is replaced by this quotient; the
same applies for identifier-lor literal-l and identifier-3,
etc.

3. When Format 2 is used, the value of identifier-1 or literal-l
is divided into identifier-2 or literal-2 and the result is
stored in identifier-3, identifier-4, etc.

4. When Format 3 is used, the value of identifier-lor literal-l
is divided by the value of identifier-2 or literal-2 and the
result is stored in identifier-3, identifier-4, etc.

5. Formats 4 and 5 are used when a remainder from the division
operation is desired, normally identifier-4. The remainder
in COBOL is defined as the result of subtracting the product
of the quotient (identifier-3) and the divisor from the
dividend. If identifier-3 is defined as a numeric edited
item, the quotient used to calculate the remainder is an
intermediate field that contains the unedited quotient. If
ROUNDED is used, the quotient used to calculate the remainder

5-50

PROCEDURE DIVISION

is an intermediate field that contains the quotient of the
DIVIDE statement, truncated rather than rounded.

6. In Formats 4 and 5, the accuracy of the REMAINDER data item
(identifier-4) is defined by the calculation described above.
Appropriate decimal alignment and truncation (not rounding)
will be performed for the content of the data item referenced
by identifier-4, as needed.

7. When the ON SIZE ERROR phrase is used in Formats 4 and 5, the
following rules pertain:

a. If the size error occurs on the quotient, no remainder
calculation is meaningful. Therefore, the contents of
the data items referenced by both identifier-3 and
identifier-4 will remain unchanged.

b. If the size error occurs on the remainder, the contents
of the data item referenced by identifier-4 remain
unchanged. However, as with other instances of multiple
results of arithmetic statements, the user will have to
do his own analysis to recognize which situation has
actually occurred.

5-51

PROCEDURE DIVISION

EXIT

5.18 THE EXIT STATEMENT

Function

The EXIT statement provides a common end point for a series of
procedures, or marks the logical end of a called program.

General Format

PROGRAM

Syntax Rules

1. The EXIT statement witho~t the PROGRAM phrase must appear
only· in a sentence by itself and comprise the only sentence
in the paragraph.

2. If an EXIT PROGRAM statement appears in a consecutive
sequence of imperative statements within a sentence, it must
appear as the last statement in that sequence.

General Rules

1. An EXIT statement without the optional word PROGRAM serves
only to enable you to assign a procedure-name to a given
point in a program. Such an EXIT statement has no other
effect on the compilation or execution of the program.

2. An execution of an EXIT PROGRAM statement in a called program
causes control to be passed to the calling program. If the
EXIT PROGRAM statement is executed in a program that is not
under the control of a calling program, the EXIT PROGRAM
statement causes execution of the program to continue with
the next executable statement.

5-52

PROCEDURE DIVISION

GO TO

5.19 THE GO TO STATEMENT

Function

The GO TO statement causes control to be transferred from one
part of the Procedure Division to another.

General Format

Format 1

GO TO [procedure-name-l]

Format 2

GO TO procedure-name-l [, procedure-name-2] ••. , procedure-name-n

DEPENDING ON identifier

Syntax Rules

1. Identifier is the name of a numeric elementary item described
without any positions to the right of the assumed decimal
point.

2. When a paragraph is referenced by an ALTER statement, that
paragraph can consist only of a paragraph header followed by
a Format 1 GO TO statement.

3. A Format 1 GO TO statement without procedure-name-l can only
appear in a single statement paragraph.

4. If a GO TO statement represented by Format 1 appears in a
consecutive sequence of imperative statements within a
sentenc~, it must appear as the last statement in that
sequence.

General Rules

1. When a GO TO statement represented by Format 1 is executed,
control is transferred to procedure-name-l or to another
procedure-name if the GO TO statement has been modified by an·
ALTER statement.

2. If procedure-name-l is not specified in Format 1, an ALTER
statement referring to this GO TO statement must be executed
prior to the execution of this GO TO statement.

3. When a GO TO statement represented by Format 2 is executed,
control is transferred to procedure-name-l, procedure-name-2,
etc., depending on whether the value of the identifier is 1,
2, ••• , n. If the value of the identifier is anything other
than the positive or unsigned integers 1, 2, ••• , n, then no
transfer occurs and control passes to the next staiement in
the normal sequence for execution.

5-53

PROCEDURE DIVISION

IF

5.20 THE IF STATEMENT

Function

The IF statement causes a condition (see Section 5.6, Conditional
Expressions) to be evaluated. The subsequent flow of control of
the object program depends on whether the value of the condition
is true or false.

General Format

IF condition; 1 statement-l If;
NEXT SENTENCE l;

ELSE statement-2 t
ELSE NEXT SENTENCE~

Syntax Rules

1. Statement-l and statement-2 represent either
statement or a conditional statement, and
followed by a conditional statement.

an imperative
either may be

2. The ELSE NEXT SENTENCE phrase may be omitted if it
immediately precedes the terminal period of the sentence.

General Rules

1. When an IF statement is executed, the following transfers of
control occur:

a. If the condition is true, statement-l is executed if
specified. If statement-l contains a procedure branching
or conditional statement, control is explicitly
transferred in accordance with the rules of that
statement. (See Section 5.4.6, Imperative Sentences.) If
statement-l does not contain a procedure branching or
conditional statement, the ELSE phrase, if specified, is
ignored and control passes to the next executable
sentence.

b. If the condition is true and the NEXT SENTENCE phrase is
specified instead of statement-I, the ELSE phrase, if
specified, is ignored and control passes to the next
executable sentence.

c. If the condition is false, statement-lor its surrogate
NEXT SENTENCE is ignored, and statement-2, if specified,
is executed. If statement-2 contains a procedure
branching statement or conditional statement, control is
explicitly transferred in accordance with the rules of
that statement. (See Section 5.4.6, Imperative
Sentences.) If statement-2 does not contain a procedure
branching or conditional statement, control passes to the
next executable sentence. If the ELSE statement-2 phrase
is not specified, statement-l is ignored and control
passes to the next executable sentence.

5-54

PROCEDURE DIVISION

d. If the condition is false, and the ELSE NEXT SENTENCE
phrase is specified, statement-l is ignored, if
specified, and control passes to the next executable
sentence.

2. Statement-l and/or statement-2 may contain an IF statement.
In this case the IF statement is said to be nested.

IF statements within IF statements
paired IF and ELSE combinations,
right. Thus, any ELSE encountered is
the .immediately preceding IF that has
with an ELSE.

5-55

may be considered as
proceeding from left to
considered to apply to
not been already paired

PROCEDURE DIVISION

INSPECT

5.21 THE INSPECT STATEMENT

Function

The INSPECT statement provides the ability to count (Format 1),
replace (Format 2), or count and replace (Format 3) occurrences
of single characters or groups of characters in a data item.

General Format

FOrlllat 1

~ identifier-l TALLYING

(. identifier-2 FOR {, {C::DING}

l CHARACTERS

(:::::::~:r-3J~~) INITIAL

j~ AFTER

FORMAT 2

INSPECT identifier-l REPLACING

(CHARACTERS!!! {identifier-6} ~BEFORE) INITIAL

I' literal-4 ~ ~ (identifier-7~
literal-5 ~

~{I{::DIN)
~ =J
FORMAT 3

{

ridentifier-5}

'lu teral-3

INSPECT identifier-l TALLYING

(
identifier-6) [m-:FORF.)

INITIAL
literal-4 AFTER

{identifier-2 roR { [(::DIUG)
L CHARACTERS

(identifier-3~ literal-l rcBEFORE) INITIAL

~ AFTER

REPLACING

CHARACTERS BY (
identifier-6) fJ(REFORF.}
literal-4 ~ AFTER

INITIAL

{{

ALL ~ {(identifier-5l
, LEADING ,

. --- literal-3./
FIRST

m (identifier-6) frBEFORE) INITIAL

literal-4 LlAFTER

5-56

(i~entifier_4}til ••• } •••

11. teral-2 Q(

(i~entifier-7JR •• } •••

11. teral-5 D j

(i~entifier-4J~ .. J ...
l1teral-2 Dj

(i~entifier-7JR •• } •••

Ilteral-5 Dj

Syntax Rules

All Formats

PROCEDURE DIVISION

1. Identifier-l must reference either a group item or any
category of elementary item described (either implicitly or
explicitly) as USAGE IS DISPLAY.

2. Identifier-3 •.• identifier-n must reference
elementary alphabetic, alphanumeric, or
described (either implicitly or explicitly)
DISPLAY.

either an
numeric item
as USAGE IS

3. Each literal must be nonnumeric and may be any figurative
constant except ALL.

4. Literal-I, literal-2, literal-3,
and the data items referenced by
identifier-5, identifier-6, and
length except as specifically
general rules.

Formats 1 and 3 only

literal-4, and literal-5,
identifier-3, identifier-4,
identifier-7 may be any

restricted by syntax and

5. Identifier-2 must reference an elementary numeric data item.

6. If either literal-lor literal-2 is a figurative constant,
the figurative constant refers to an implicit 1 character
data item.

Formats 2 and 3 only

7. The size of the data referenced by literal-4 or identifier-6
must be equal to the size of the data referenced by literal-3
or identifier-5. When a figurative constant is used as
literal-4, the size of the figurative constant is equal to
the size of literal-3 or the size of the data item referenced
by identifier-5.

8. When the CHARACTERS phrase is used, literal-4, literal-5, or
the size of the data item referenced by identifier-6,
identifier~7 must be one character in length.

9. When a figurative constant is used as literal-3, the data
referenced by literal-4 or identifier-6 must be one character
in length.

General Rules

All Formats

1. Inspection (which includes the comparison cycle,. the
establishment of boundaries for the BEFORE or AFTER phrase,
and the mechanism for tallying and/or replacing) begins at
the leftmost tharacter position of the data item referenced

5-57

PROCEDURE DIVISION

by identifier-I, regardless of its class, and proceeds from
left to right to the rightmost character position as
described in general rules 4 through 6.

2. For use in the INSPECT statement, the contents of the data
item referenced by identifier-I, identifier-3, identifier-4,
identifier-5, identifier-6 or identifier-7 will be treated as
follows:

3.

4.

a. If any of the identifiers (identifier-I, identifier-3,
identifier-4, identifier-5, identifier-6, or
identifier-7) is described as alphanumeric, the INSPECT
statement treats the contents of each identifier as a
character-string.

b. If any of the identifiers (identifier-I, identifier-3,
identifier-4, identifier-5, identifier-6, or
identifier-7) is described as alphanumeric edited, numeric
edited, or unsigned numeric, the data item is inspected
as though it had been redefined as alphanumeric (see
general rule 2a) and the INSPECT statement had been
written to reference the redefined data item.

c. If any of the identifiers (identifier-I, identifier-3,
identifier-4, identifier-5, identifier-6, or
identifier-7) is described as signed numeric, the data
item is inspected as though it had been moved to an
unsigned numeric data item of the same length and then
the rules in general rule 2b had been applied. (See
Section 5.16, The MOVE Statement).

In general rules 4 through 11 all references to literal-I,
literal-2, literal-3, literal-4, and literal-5 apply equally
to the contents of the data item referenced by identifier-3,
identifier-4, identifier-5, identifier-6, and identifier-7,
respectively.

During inspection of
by identifier-I,
literal-l is tallied
matched occurrence
(Formats 2 and 3).

the contents of the data item referenced
each properly matched occurrence of
(Formats 1 and 3) and/or each properly
of literal-3 is replaced by literal-4

5. The comparison operation to determine the occurrences of
literal-l to be tallied and/or occurrences of literal-3 to be
replaced occurs as follows:

a. The operands of the TALLYING and REPLACING phrases are
considered in the order they are specified in the INSPECT
statement from left to right. The first literal-I,
literal-3 is compared to an equal number of contiguous
characters, starting with the leftmost character position
in the data item referenced by identifier-I. Literal-I,
literal-3 and that portion of the contents of the data
item referenced by identifier-l match if, and only if,
they are equal, character for character.

5-58

PROCEDURE DIVISION

b. If no match occurs in the comparison of the first
literal-I, literal-3, the comparison is repeated with
each successive literal-I, literal-3, if any, until
either a match is found or there is no next successive
literal-I, literal-3. When there is no next successive
literal-I, literal-3, the character position in the data
item referenced by identifier-l immediately to the right
of the leftmost character position considered in the last
comparison cycle is considered as the leftmost character
position, and the comparison cycle begins again with the
first literal-I, literal-3.

c. Whenever a match occurs, tallying and/or replacing takes
place as described in general rules 8 through 10. The
character position in the data item referenced by
identifier-l immediately to the right of the rightmost
character position that participated in the match is now
considered to be the leftmost character position of the
data item referenced by identifier-I, and the comparison
cy~le starts again with the first literal-I, literal-3.

d. The comparison operation continues
character position of the data
identifier-l has participated in a
considered as the leftmost character
occurs, inspection is terminated.

until the rightmost
item referenced by
match or has been
position. When this

e. If the CHARACTERS phrase is specified, an implied
I-character operand participates in the cycle described
in paragraphs Sa through 5d above, except that no
comparison to the contents of the data item referenced by
identifier-l takes place. This implied character is
considered always to match the leftmost character of the
contents of the data item referenced by identifier-l
participating in the current comparison cycle.

6. The comparison operation defined in general rule S is
affected by the BEFORE and AFTER phrases as follows:

a. If the BEFORE or AFTER phrase is not specified,
literal-I, literal-3, or the implied operand of the
CHARACTERS phrase participates in the comparison
operation as described in general rule 5.

b. If the BEFORE phrase is specified, the associated
literal-I, literal-3 or the implied operand of the
CHARACTERS phrase participates only in those comparison
cycles that involve that portion of the contents of the
data item referenced by identifier-l from its leftmost
character position up to, but not including, the first
occurrence of literal-2, literal-5 within the contents of
the data item referenced by identifier-I. The position
of this first occurrence is determined before the first
cycle of the comparison operation described in general
rule 5 is begun. If, on any comparison cycle, literal-I,

5-59

Format 1

PROCEDURE DIVISION

literal-3 or the implied operand of the CHARACTERS phrase
is not eligible to participate, it is consideted not to
match the contents of the data item referenced by
identifier-I. If there is no occurrence of literal-2,
literal-5 within the contents of the data item referenced
by identifier-l~ its associated literal-I, literal-3, or
the implied operand of the CHARACTERS phrase participates
in the comparison operation as though the BEFORE phrase
had not been specified.

c. If the AFTER phrase is specified, the' associated
literal-I, literal-3 qr the implied operand of the
CHARACTERS phrase may participate only in those
comparison cycles which involve that portion of the
contents of the data item referenced by identifier-I.
The comparison begins from the character position
immed iately to the right of' the rightmost character
position of the fir~t occurrence of literal-2, literal-5
within the contents of the data item referenced by
identifier-l and the rightmost character position of the
data item referenced by identifier-I. The position of
this first occurrence is determined before the first
cycle of the comparison operation described in general
rule 5 is begun. If, on any comparison cycle, literal-I;
literal-3 or the implied operand of the CHARACTERS phrase
is not eligible to participate, it is considered not to
match the contents of the data item referenced by
identifier-I. If there is no occurrence of literal-2,
literal-5 within the contents of the data item referenced
by identifier-I, its associated literal-I, literal-3, or
the implied operand of the CHARACTERS phrase is never
eligible to participate in the comparison operation.

7. The contents of the data item referenced by identifier-2 are
not initialized by the execution of the ·INSPECT statement.

8. The rules for tallying are as follows:

a. If the ALL phrase is specified, the contents of the data
item referenced by identifier-2 is incremented by one (1)
for each occurrence of literal-l matched within the
contents of the data item referenced by identifier-I.

b. If the LEADING phrase is specified, the contents of the
data item referenced by identifier-2 is incremented by
one (1) for ~ach contiguous occurrence of literal-l
matched within the contents of the data item referenced
by identifier-I, provided that the leftmost such
occurrence is at the point where comparison began in the
first comparison cycle in which literal-l was eligible to
participate.

5-60

Format 2

9.

PROCEDURE DIVISION

c. If the CHARACTERS phrase is specified, the contents of
the data item referenced by identifier-2 is incremented
by one (1) for each character matched, in the sense of
general rule 5e, within the contents of the data item
referenced by identifier-I.

The required words ALL, LEADING, and
that apply to each succeeding BY
adjective appears.

FIRST are adjectives
phrase until the next

10. The rules for replacement are as follows:

Format 3

a. When the CHARACTERS phrase is specified, each character
matched, in the sense of general rule 5e, in the contents
of the data item referenced by identifier-l is replaced
by literal-4.

b. When the adjective ALL is specified, each occurrence of
literal-3 matched in the contents of the data item
referenced by identifier-l is replaced by literal-4.

c. When the adjective LEADING is specified, each contiguous
occurrence of literal-3 matched in the contents of the
data item referenced by identifier-l is replaced by
literal-4, provided that the leftmost occurrence is at
the point where comparison began in the first comparison
cycle in which literal-l was eligible to participate.

d. When the adjective FIRST is specified, the leftmost
occurrence of literal-3 matched within the contents of
the data item referenced by identifier-l is replaced by
literal-4.

11. A Format 3 INSPECT statement is interpreted and executed as
though two successive INSPECT statements specifying the same
identifier-l had been written, with one statement being a
Format 1 statement with TALLYING phrases identical to those
specified in the Format 3 statement, and the other statement
being a Format 2 statement with REPLACING phrases identical
to those specified in the Format 3 statement. The general
rules given for matching and counting apply to the Format 1
statement, and the general rules given for matching and
replacing apply to the Format 2 statement.

Examples

Following are five examples of the INSPECT statement:

INSPECT word TALLYING count FOR LEADING "L" BEFORE INITIAL "A"
count-l FOR LEADING "A" BEFORE INITIAL "L".

5-61

Where word
Where word

PROCEDURE DIVISION

LARGE, count = 1, count-l = O.
ANALYST, count = 0, count-l = 1.

INSPECT word TALLYING count FOR ALL "L", REPLACING LEADING "A" BY
"E" AFTER INITIAL "L".

Where word
Where word
Where word

CALLAR, count
SALAMI, count
LATTER, count

2, word
1, word
1, word

CALLAR.
SALEMI.
LETTER.

INSPECT word REPLACING ALL "A" BY "G" BEFORE INITIAL "X".

Where word
Where word

ARXAX, word = GRXAX.
HANDAX, word = HGNDGX.

INSPECT word TALLYING count FOR CHARACTERS AFTER INI'rIAL "J"
REPLACING ALL "A" BY "B".

Where word
Where word
Where word

ADJECTIVE, count = 6, word = BDJECTIVE.
JACK, count = 3, word = JBCK.
JUJMAB, count = 5, word = JUJMBB.

INSPECT word REPLACING CHARACTERS BY "B" BEFORE INITIAL "A".

WORD BEFORE: 1 2 X Z ABC D
WORD AFTER: B B B B B ABC D

INSPECT word REPLACING ALL "X" BY "Y", "B" BY "Z", "W" BY "Q",
AFTER INITIAL "R".

Where word
Where word
Where word

RXXBQWY, word = RYYZQQY.
YZACDWBR, word = YZACDWBR.
RAWRXEB, word = RAQRYEZ.

5-62

PROCEDURE DIVISION

MOVE

5.22 THE MOVE STATEMENT

Function

The MOVE statement transfers data, in accordance with the rules
of editing, to one or more data areas.

General Format

Format 1

I
identifier-l l

MOVE TO
---- literal ~

identifier-2 [,identifier-3] ..•

Format 2

I CORRESPONDING}
MOVE identifier-l TO identifier-2

CORR

Syntax Rules

1. Identifier-l
identifier-2,
area.

and literal represent the
identifier-3, ..• , represent

2. CORR is an abbreviation for CORRESPONDING.

sending area;
the receiving

3. When the CORRESPONDING phrase is' used, both identifiers must
be group items.

4. An index data item cannot appear as an operand of a MOVE
statement.

General Rules

1. If the CORRESPONDING phrase is used, selected items within
identifier-l are moved to selected items within identifier-2,
according to the rules given in Section 5.7.3, The
CORRESPONDING Phrase. The results are the same as if the
user had referred to each pair of corresponding identifiers
in separate MOVE statements.

2. The data designated by the literal or identifier-l is moved
first. to identifier-2, then to identifier-3, ••• The
rules referring to identifier-2 also apply to the other
receivi~g areas. Any subscripting or indexing associated
with identifier-2, •.. , is evaluated immediately before the
data is moved to the respective data item.

Any subscripting or indexing associated with identifier-l is
evaluated only once, immediately before data is moved to the
first of the receiving operands. Consider the following
statement.

MOVE a (b) TO b, c (b)

5-63

PROCEDURE DIVISION

..
The result of this statement is equivalent to:

MOVE a (b) TO temp
MOVE temp TO b
MOVE temp TO c (b)

where temp is an intermediate result item provided by the
compiler.

3. Any MOVE in which the sending and receiving items are both
elementary items is an elementary move. Every elementary
item belongs to one of the following categories: numeric,
alphabetic, alphanumeric, numeric edited, alphanumeric
edited. These categories are described in the PICTURE
clause. Numeric literals belong to the numeric category and
nonnumeric literals belong to the alphanumeric category. The
figurative constant ZERO belongs' to the numeric category.
The figurative constant, SPACE belongs to the alphabetic
category. All other figurative constants belong to the
alphanumeric category.

The following rules apply to an elementary move between these
categories:

a. The figurative constant SPACE, a numeric edited,
alphanumeric edited or alphabetic data item must not be
moved to a numeric or numeric edited data item.

b. A numeric literal, the figurative constant ZERO, a
numeric data item or a numeric edited data item must not
be moved to an alphabetic data item.

c. A non-integer numeric literal or
data item must not be moved
alphanumeric edited data item.

a non-integer numeric
to an alphanumeric or

d. All other elementary moves are legal and are performed
according to the rules given in general rule 4.

4. Any necessary conversion of data from one form of internal
representation to another takes place during legal elementary
moves, as well as any editing specified for the receiving
data item:

a. When an alphanumeric edited or alphanumeric item is a
receiving item, alignment and any necessary space filling
takes place as defined under Standard Alignment Rules,
Section 4.13.10. If the size of the sending item is
greater than the size of the receiving item, the excess
characters are truncated on the right after the receiving
item is filled. If the sending item is described as
being signed numeric, the operational sign will not be
moved; if the operational sign occupied a separate
character position (see Section 4.23, the SIGN Clause),
that character will not be moved and the size of the

5-64

b.

PROCEDURE DIVISION

sending item is considered to be one less tnan its actual
size (in terms of standard data format characters).

When a numeric or numeric edited item is the receiving
item, alignment by decimal point and any necessary
zero-filling takes place as defined under the Standard
Alignment Rules, Section 4.13.10, except where zeros are
replaced because of editing requirements.

1. When a signed numeric item is the receiving item, the
sign of the sending item is placed in the receiving
item. (See Section 4.23, The SIGN Clause.)
Conversion of the representation of the sign takes
place as necessary. If the sending item is unsigned,
a positive sign is generated for the receiving item.

2. When an unsigned numeric item is the receiving item,
the absolute value of the sending item is moved and
no operational sign is generated for the receiving
item.

3. When a data item described as alphanumeric is the
sending item, data is moved as if the sending item
were described as an unsigned numeric integer.

c. When a receiving field is described as alphabetic,
justification and any necessary space-filling takes place
as defined under the Standard Alignment Rules, Section
4.13.10. If the size of the sending item is greater than
the size of the receiving item, the excess characters are
truncated on the right after the receiving item is
filled. -

5. Any move that is not an elementary move is treated exactly as
if it were an alphanumeric to alphanumeric elementary move,
except that there is no conversion of data from one form of
internal representation to another. In such a move, the
receiving area will be filled without consideration for the
individual elementary or group items contained within either
the sending or receiving area.

6. The following chart summarizes the legality of· the various
types of MOVE statements. The reference to general rules
(for example /2a) indicates the rule (above) that prohibits
the move or the behavior of a legal move.

5-65

PROCEDURE DIVISION

CATEGORY OF RECEIVING DATA ITEM

CATEGORY OF ALPHABETIC ALPHANUMERIC EDITED NUMERIC INTEGER
SENDING ALPHANUMERIC NUMERIC NON-INTEGER
DATA ITEM NUMERIC EDITED

ALPHABETIC Yes/4c Yes/4a No/3a
ALPHANUMERIC Yes/4c Yes/4a Yes/4b
ALPHANUMERIC EDITED Yes/4c Yes/4a No/3a
NUMERIC INTEGER No/3b Yes/4a Yes/4b
NUMERIC NON-INTEGER No/3b No/3c Yes/4b
NUMERIC EDITED No/3b Yes/4a No/3a

5-66

PROCEDURE DIVISION

MULTIPLY

5.23 THE MULTIPLY STATEMENT

Function

The MULTIPLY statement causes numeric data items to be multiplied
and sets the values of data items equal to the results.

General Format

Format 1

MULTIPLY fidentifier-ll BY identifier-2 [ROUNDED]

(literal-l

[, identifier-3 [ROUNDED]]

[i ON SIZE ERROR imperative-statement]

Format 2

MULTIPLylidentifier-ll BY I identifier-2)GIVING identifier-3 [ROUNDED]

literal-l -- literal-2)

[,identifier-4 [ROUNDED]]

[i ON SIZE ERROR imperative-statement]

Syntax Rules

1. Each identifier must refer to a numeric elementary item,
except that in Format 2 the identifier following the word
GIVING must refer to either an elementary numeric item or an
elementary numeric edited item.

2. Each literal must be a numeric literal.

3. The composite of operands, which is that hypothetical data
item resulting from the superimposition of all receiving data
items of a given statement aligned on their decimal points,
must not contain more than eighteen (18) digits.

5-67

PROCEDURE DIVISION

General Rules

1. See Section 5.7.1, The ROUNDED Phrase; Section '5.7.2, The
SIZE ERROR Phrase; Section 5.7.4, The Arithmetic Statements;
Section 5.7.6, Overlapping Operands; and Section 5.7.5,
Multiple Results in Arithmetic Statements.

2. When Format 1 is used, the value of identifier-lor literal-l
is multiplied by the value of identifier-2. The value of the
multiplier (identifier-2) is replaced by this product; the
same applies for identifier-lor literal-l and identifier-3,
etc.

3. When Format 2 is used, the value of identifier-lor literal-l
is multiplied by the value of identifier-2 or literal-2 and
the result is stored in identifier-3, identifier-4, etc.

5-68

PROCEDURE DIVISION

OPEN

5.24 THE OPEN STATEMENT (SEQUENTIAL)

Function

The OPEN statement initiates the processing of files. It also
performs checking and/or label writing and other input-output
operations..

General Format

INPUT f ile-name-l[WITH NQ REWIN~ [f ile-name-2 ~ITH NO REWINq]J •••

OUTPUT file-name-3 [WI'rH NO REWINDJ[f ile-name-4 [WITH NO REWIN~J ••

1-0 file-name-5 [, file-name-6]

EXTEND file-name-7 [, file-name-S]

Syntax Rules

1. The NO REWIND phrase can be used only with sequential files.

2. The 1-0 phrase can be used only for files on directory
devices.

3. The EXTEND phrase can be used only for sequential files.

4. The EXTEND phrase must not be specified for files on multiple
file reels.

5. The files referenced in the OPEN statement need not all have
the same organization or access.

General Rules

1. The successful execution of an OPEN statement determines the
availability of the file and results in the file being in an
open mode.

2. The successful execution of an OPEN statement makes the
associated record area available to the program.

3. Prior to the successful execution of an OPEN statement for a
given file, no statement can be executed that refers to that
file, either explicitly or implicitly.

4. An OPEN statement must be successfully executed prior to the
execution of any of the permissible input-output statements.
In Table 5-4, Permissible Statements, X at an intersection
indicates that the specified statement, used in the
sequential access mode, may be used with the sequential file
organization and open mode given at the top of the column.

5-69

Statement Input

READ X

WRITE

PROCEDURE DIVISION

Table 5-4
Permissible Statements

Open Mode

Output Input-Output

X

X

Extend

X

REWRITE X

5. A file may be opened with the INPUT, OUTPUT, EXTEND and 1-0
phrases in the same program. Following the initial execution
of an OPEN statement for a file, each subsequent OPEN
statement execution for that same file must be pre~eded by
the execution of a CLOSE statement, without the REEL, UNIT,
or LOCK phrase, for that file.

6. Execution of the OPEN statement does not obtain or release
the first data record.

7. If label records are specified for the file, the beginning
labels are processed as follows:

a. When the INPUT phrase is specified, the execution of the
OPEN statement causes the labels to be checked in
accordance with the Record Management Services
conventions for input label checking.

b. When the OUTPUT phrase is specified, the execution of the
OPEN statement causes the labels to be written in
accordance with the Record Management Services
conventions for output label writing.

The behavior of the OPEN statement when label records are
specified but not present, or when label records are not
specified but are present, is undefined.

S. The file" description entry for file-name-l, file-name-2,
file-name-5, file-name-6, file-name-7, or file-name-S must be
equivalent to that used when this file was created.

9. If an input file is designated with the OPTIONAL clause in
its SELECT statement, the object program causes an
interrogation for the presence or absence of this file. If
the file is not present, the first READ statement for this
file causes the AT END condition to occur. (See section
5.27, The READ Statement.)

5-70

'PROCEDURE DIVISION

10. The NO REWIND phrase can be used only with sequential single
reel/unit files.

11. The WITH NO REWIND phrase will be ignored if it does not
apply to the storage media on which the file resides.

12. If the storage medium for the file permits rewinding, the
following rules apply:

a. When neither the EXTEND nor the NO REWIND phrase is
specified, execution of the OPEN statement causes the
file to be positioned at its beginning.

b. When the NO REWIND phrase is specified, execution of the
OPEN statement does not cause the file to be
repositioned; the file must be already positioned at its
beginning prior to execution of the OPEN statement.

13. For files being opened with the INPUT or 1-0 phrase, the OPEN
statement sets the current record pointer to the first record
currently existing within the file. If no records exist in
the file, the current record pointer is set so that the next
executed READ statement for the file will result in an AT END
condition.

14. When the EXTEND phrase is specified, the OPEN statement
positions the file immediately following the last logical
record of that file. Subsequent WRITE statements referencing
that file will add records to the file as though the file had
been opened with the OUTPUT phrase.

15. When the EXTEND phrase is specified and the LABEL RECORDS
clause indicates label records are present, the execution of
the OPEN statement includes the following steps:

a. The beginning fil~ labels are processed only in the case
of a single reel/unit file.

b. The beginning reel/unit labels on
reel/unit are processed as though
opened with the INPUT phrase.

the last existing
the file was being

c. The existing ending file labels are processed as though
the file is being opened with the INPUT phrase. These
labels are then deleted.

d. Processing then proceeds as though the file had been
opened with the OUTPUT phrase.

16. The 1-0 phrase permits the opening of a directory file for
both input and output operations. Because this phrase
implies the existence of the file, it cannot be used if the
directory file is being initially created.

5-71

PROCEDURE DIVISION

17. When the 1-0 phrase is specified and the LABEL RECORDS clause
indicates label records are present, the execution of the
OPEN statement includes the following steps:

a. The labels are checked in accordance with the specified
conventions for input-output label checking.

b. The new labels are written in accordance with the
standard conventions for input-output label writing.

18. Upon successful execution of an OPEN statement with the
OUTPUT phrase specified, a file is created. At that time the
associated file contains no data records.

19. The execution of an EXTEND statement will fail for any of the
following reasons:

NOTE

The value in parentheses, following each of the
following statements, is the value that is placed in
the FILE STATUS data item, if one was specified for
the file.

a. An OPEN statement issued to a file that is already opened
for exclusive access by another task. (91)

b. An OPEN statement issued to a device that has no
available file space. (95)

c. An OPEN statement to a file that shares buffer space with
an already opened file. (96)

d. An OPEN statement issued to a file that cannot be found
on its assoc ia ted I/O dev ice. (97)

5-72

PROCEDURE DIVISION

OPEN

5.25 THE OPEN STATEMENT (INDEXED & RELATIVE)

Function

The OPEN statement initiates the processing of files. It also
performs checkirig and/or writing of labels and other input-output
operations.

General Format

Syntax Rules

1

INPUT file-name-l
OUTPUT file-name-3

1-0 file-name-5

[, file-name-2]
[, f ile-name-4]
[, file-name-6]

... "t

... ~

1. The files referenced in the OPEN statement need not all have
the same organization or access.

General Rules

1. The successful execution of an OPEN statement determines the
availability of the file and results in the file being in an
open mode.

2. The successful execution of the OPEN statement makes the
associated record area available to the program.

3. Prior to the successful execution of an OPEN statement for a
given file, no statement can be executed that references that
file, either explicitly or implicitly.

4. An OPEN statement must be successfully executed prior to the
execution of any of the permissible input-output statements.
In Table 5-5, Permissible Statements, X at an intersection
indicates that the specified statement used in the access
mode given for that row may be used with indexed or relative
file organizations and the open mode given at the top of the
column.

5-73

PROCEDURE DIVISION

Table 5-5
Permissible Statments

Open Mode
File Access

Mode Statement Input Output Input-Output

Sequential READ X X
WRITE X
REWRITE X
START X X
DELETE X

Random READ X X
WRITE X X
REWRITE X
START
DELETE X

Dynamic READ X X
READ NEXT X X
WRITE X X
REWRITE X
START X X
DELETE X

5. A file may be opened with the INPUT, OUTPUT, and 1-0 phrases
in the same program. Following the initial execution of an
OPEN statement for a file, each subsequent OPEN statement
execution for that same file must be preceded by the
execution of a CLOSE statement, without the LOCK phrase, for
that file.

6. Execution of the OPEN statement does not obtain or release
the first data record.

7. The labels at the beginning of the file are processed as
follows:

a. When the INPUT phrase is specified, the execution of the
OPEN statement causes the labels to be checked in
accordance with Record Management Services conventions
for input label checking.

b. When the OUTPUT phrase is specified,
OPEN statement causes the labels
accordance with Record Management
for output label writing. The
statement when label records are
present is undefined.

5-74

the execution of the
to be written in

Services conventions
behavior of the OPEN

specified but not

PROCEDURE DIVISION

8. The file description entry for file-name-l, file-name-2,
file-name-5, or file-name-6 must be equivalent to that used
when this file was created.

9. For files being opened with the INPUT or 1-0 phrase, the OPEN
statement sets the current record pointer to the first record
currently existing within the file. For indexed files, the
prime record key is established as the key of reference and
is used to determine the first record to be accessed. If no
records exist in the file, the next executed sequentially
accessed READ statement for the file will result in an AT END
condition.

10. The 1-0 phrase permits the opening of a file for both input
and output operations. Because this phrase implies the
existence of the file, it cannot be used if the file is being
initially created.

11 When the 1-0 phrase is specified, the execution of the OPEN
statement includes the following steps:

a. The labels are checked in accordance with the standard
conventions for input-output label checking.

b. The new labels are written in accordance with the
standard conventions for input-output label writing.

12. Upon successful execution of an OPEN statement with the
OUTPUT phrase specified, a file is created. At that time the
associated file contains no data records.

13. The execution of an OPEN statement will fail for any of the
following reasons:

NOTE

The value in parentheses, following each of the
following statements, is the value that is placed in
the FILE STATUS data item, if one was specified for
the file.

a. An OPEN statement issued to a file that is already opened
for exclusive access by another task. (91)

b. An OPEN statement issued to a device that has no
available file space. (95)

c. An OPEN statement to a file that shares buffer space with
an already opened file. (96)

d. An OPEN statement issued to a file that cannot be found
on its assoc ia ted I/O dev ice. (97)

14. The OPEN statement performs a connect channel in the TRAX
applications environment.

5-75

PROCEDURE DIVISION

PERFORM

5.26 THE PERFORM STATEMENT

Function

The PERFORM statement is used to transfer control explicitly to
one or more procedures and to return control implicitly whenever
execution of the specified procedure is complete.

General Format

Format 1

PERFORM procedure_name_l~THROUGH}
~'rHRU

procedure-name-~
Format 2

PERFORM procedure-name-l ~
THROUGH} procedure-name-~
THRU

jidentifier-11 ----
) TIMES
(integer

Format 3

PERFORM procedure_name_I~THROUGH}
~THRU

procedure-name-~ UNTIL condition-l

Format 4

PERFORM procedure_name_l~'THROUGH} procedure-name-J

~THRU J
{

identifier-2} {identifier-3}
VARYING FROM index-name-2

index-name-l literal-I

{
identifier-4}

BY \ UNTIL condition-l
literal-2

~ {
identifier-5} {identifier-6}

AFTER FROM index-name-4
index-name-3 literal-3

{

identifier-7}
BY UNTIL condition-2

literal-4

{

identifier-8} {identifier-9}
FROM index-name-6

index-name-5 literal-5
~FTER

{
identifier-IO} ~~

. UNTIL condition-3
llteral-6 .

5-76

PROCEDURE DIVISION

Syntax Rules

1. Each identifier represents a numeric elementary item
described in the Data Division. In Format 2, identifier-l
must be described as a numeric integer.

2. Each literal represents a numeric literal.

3. The words THRU and THROUGH are equivalent.

4. If an index-name is specified in the VARYING or AFTER phrase,
then:

5.

a. The identifier in the associated FROM and BY phrases must
be an integer data item.

b. The literal in the associated FROM phrase must be a
positive integer.

c. The literal in the associated BY phrase must be a
non-zero integer.

If an index-name is specified in the FROM phrase, then:
,

a. The identifier in the associated VARYING or AFTER phrase
must be an integer data item.

b. The identifier in the associated BY phrase must be an
integer data item.

c. The literal in the associated BY phrase must be an
integer.

6. Literal in the BY phrase must not be O.

7. Condition-I, condition-2, condition-3 may be any
expression as described in Section 5.6,
Expressions.

conditional
Conditional

8. Where procedure-name-l and procedure-name-2 are both
specified and either is the name of a procedure in the
declarative section of the program, then both must be
procedure-names in the same declarative section.

General Rules

1. The data items referenced by identifier-4, identifier-7, and
identifier-IO must not have a zero value.

2. If an index-name is specified in the VARYING or AFTER phrase,
and an identifier is specified in the associated FROM phrase,
then the data item referenced by the identifier must have a
positive value.

5-77

PROCEDURE DIVISION

3. When the PERFORM statement is executed, control is
transferred to the first statement of the procedure named
procedure-name-l (except as indicated in general rules 6b,
6c, and 6d). This transfer of control occurs only once for
each execution of a PERFORM statement. Where a transfer of
control to the named procedure does take place, and implicit
transfer of control to the next executable statement
following the PERFORM statement is established as follows:

a. If procedure-name-l is a paragraph-name and

b.

c.

procedure-name-2 is not specified, then the return is
after the last statement of procedure-name-l.

If procedure-name-l is a
procedure-name-2 is not specified,
after the last statement of the
procedure-name-l.

section-name and
then the return is

last paragraph in

If procedure-name-2 is
paragraph-name, then the
statement of the paragraph.

specified
return is

and
after

it is a
the last

d. If procedure-name-2 is specified and it is a
section-name, then the return is after the last statement
of the last paragraph in the section.

4. There is no necessary relationship between procedure-name-l
and procedure-name-2 except that a consecutive sequence of
operations is to be executed beginning at the procedure named
procedure-name-l and ending with the execution of the
procedure named procedure-name-2. In particular, GO TO and
PERFORM statements may occur between procedure-name-l and the
end of procedure-name-2. If there are two or more logical
paths to the return point, then procedure-name-2 may be the
name of a paragraph consisting of the EXIT statement to where
all of these paths must lead.

5. If control passes to these procedures via other than a
PERFORM statement, control will pass through the last
statement of the procedure to the next executable statement
as if no PERFORM statement mentioned these procedures.

6. The PERFORM statements operate as follows with rule 5 above
applying to all formats:

a. Format 1 is the basic PERFORM statement. A procedure
referenced by this type of PERFORM statement is executed
once and then control passes to the next executable
statement following the PERFORM statement.

b. Format 2 is the PERFORM ... TIMES. The procedures are
performed the number of times specified by integer-lor
by the initial value of the data item referenced by
identifier-l for that execution. If, at the time of
execution of a PERFORM statement, the value of the data

5-78

PROCEDURE DIVISION

item referenced by identifier-l is equal to 0 or is
negative, control passes to the next executable statement
following the PERFORM statement. Following the execution
of the procedures the specified number of times, control
is transferred to the next executable statement following
the PERFORM statement.

During execution of the PERFORM statement, references to
identifier-l cannot alter the number of times the
procedures are to be executed from that which was
indicated by the initial value of identifier-I.

c. Format 3 is the PERFORM •.• UNTIL. The specified
procedures are performed until the condition specified by
the UNTIL phrase is true. When the condition is true,
control is transferred to the next executable statement
after the PERFORM statement. If the condition is true
when the PERFORM statement is entered, no transfer to
procedure-narne-l takes place, and control is passed to
the next executable statement following the PERFORM
statement.

d. Format 4 is the PERFORM ... VARYING. This variation of the
PERFORM statement is used to augment the values
referenced by one or more identifiers or index-names in
an orderly fashion during the execution of a PERFORM
statement. In the following discussion, every reference
to identifier as the object of the VARYING, AFTER and
FROM (current value) phrases also refers to index-names.
When index-name appears in a VARYING and/or AFTER phrase,
it is initialized and subsequently augmented (as
described below) according to the rules of the SET
statement. When index-name appears in the FROM phrase,
identifier, when it appears in an associated VARYING of
AFTER phrase, it is initialized according to the rules of
the SET statement; subsequent augmentation is described
below.

In format 4, when one identifier is varied, identifier-2
is set to the value of literal-lor the current value of
identifier-3 at the point of initial execution of the
PERFORM statement; then, if the condition of the UNTIL
phrase is false, the sequence of . procedures,
procedure-narne-l through procedure-name-2, is executed
once. The value of identifier-2 is augmented by the
specified increment or decrement value (the value of
identifier-4 or literal-2) and condition-l is evaluated
again. The cycle continues until this condition is true.
At which point, control is transferred to the next
executable statement following the PERFORM statement. If
condition-l is true at the beginning of execution of the
PERFORM statement, control is transferred to the next
executable statement following the PERFORM statement.

5-79

PROCEDURE DIVISION

ENTRANCE

t
Set identifier-2 equal to

current FROM value

• Condition-l True
Exit

~ False

Execute procedure-name-l
TH RU procedure-name-2

+
Augment identifier-2 with

current BY value

Flowchart for the VARYING Phrase of a PERFORM Statement
Having One Condition

In Format 4, when two identifiers are varied,
identifier-2 and identifier-5 are set to the current
value of identifier-3 and identifier-6, respectively.
After the identifiers have been set, condition-l is
evaluated; if true, control is transferred to the next
executable statement; if false, condition-2 is
evaluated. If condition-2 is false, procedure-name-l
through procedure-name-2 are executed once, then
identifier-5 is augmented by identifier-7 or literal-4
and condition-2 is evaluated again. This cycle of
evaluation and augmentation continues until this
condition is true. When condition-2 is true,
identifter-5 is set to the value ofliteral-3 or the
current value of identifier-6, identifier-2 is augmented
by identifier-4 and condition-l is reevaluated. The
PERFORM statement is completed if condition-l is true;
if not, the cycles continue until condition-l is true.

During the execution of the procedures associated with
the PERFORM statement, any change to the VARYING variable
(iden~ifier-2 and index-name-l), the BY variable

5-80

PROCEDURE DIVISION

(identifier-4), the AFTER variable (identifier-5 and
index-name-3), or the FROM variable (identifier-3 and
index-name-2) will be taken into consideration and will
affect the operation of the PERFORM statement.

ENTRANCE

• Set identifier-2 and identifier-5
to current FROM values

t
Condition-l

True
Exit

t False

-'" Condition-2
True

+ False

Execute procedure-name-l Set identifier-5 to its
THRU procedure-name-2 current FROM value

+ t
Augment identifier-5 with Augment identifier-2 with

~ current BY value current BY value

Flowchart for the VARYING Phrase of a PERFORM Statement
Having Two Conditions

At the termination of the PERFORM statement, identifier-5
contains the current value of identifier-6. Identifier-2
has a value that exceeds the last used setting by an
increment or decrement value, unless condition-l was true
when the PERFORM statement was entered. Then,
identifier-2 contains the current value of identifier-3.

When two identifiers are
through a complete cycle
identifier-2 is varied.

varied,
(FROM,

identifier-5 goes
BY, UNTIL) each time

For three identifiers, the mechanism is the same as for
two identifiers except that identifier-8 goes through a
complete cycle each time that identifier-5 is augmented
by identifier-7 or literal-4, which in turn goes through
a complete cycle each time identifier-2 is varied.

5-81

PROCEDURE DIVISION

ENTRANCE

t
Set identifier-2,

identifier-5, identifier-8
to current FROM values

t
Condition-1 True .. Exit

~ False

Condition-2
True

~ False

~ Condition-3
True

'---

! False
II

Execute Set identifier-8 Set identifier-5
procedure-name-1 to its current to its current

TH RU procedure-name-2 FROM value FROM value

!
Augment identifier-8 Augment identifier-5 Augment identifier-2
with current BY value with current BY value with current BY value

Flowchart for the VARYING Phrase of a PERFORM Statement
Having Three Conditions.

5-82

PROCEDURE DIVISION

After the completion of a Format 4 PERFORM statement,
identifier-5 and identifier-8 contain the current value
of identifier-6 and identifier-9, respectively.
Identifier-2 has a value that exceeds its last used
setting by one increment or decrement value, unless
condition-l is true when the PERFORM statement is
entered, in which case identifier-2 contains the current
value of identifier-3.

7. If a sequence of statements referred to by a PERFORM
statement includes another PERFORM statement, the sequence of
procedures associated with the included PERFORM must itself
either be totally included in, or totally excluded from, the
logical sequence referred to by the first PERFORM. Thus, an
active PERFORM statement, whose execution point begins within
the range of another active PERFORM statement, must not allow
control to pass to the exit of the other active PERFORM
statement; furthermore, two or more such active PERFORM
statements may not have a common exit. See the illustrations
below.

x PERFORM a THRU m x PERFORM a THRU m

a a

d PERFORM f THRU j d PERFORM f THRU j

f h

j m

m f

j

x PERFORM a THRU m

a ------------------~

f ----------~

m ------------+-----~

j

d PERFORM f THRU j

8. A PERFORM statement that appears in a section that is not in
an independent segment can have within its range, in addition
to any declarative sections whose execution is caused within
that range, only one of the following:

a. Sections and/or paragraphs wholly contained in one or
more non-independent segments.

5-83

PROCEDURE DIVISION

h. Sections and/or paragraphs wholly contained in a single
independent segment.

9. A PERFORM statement that appears in an independent segment
can have within its range, in addition to any declarative
sections whose execution is caused within that range, only
one of the following:

a. Sections and/or paragraphs wholly contained in one or
more non-independent segments.

h. Sections and/or paragraphs wholly contained in the same
independent segment as that PERFORM statement.

5-84

PROCEDURE DIVISION

READ

5.27 THE READ STATEMENT (SEQUENTIAL)

Function

The READ statement makes available the next logical record from a
file.

General Format

IWITH UNLOCK l . C =l READ LWITH ~ j f1le-name RECORD INTO identifier~

[AT END imperative-statementJ

Syntax Rules

1. The INTO phrase must not be used when the input file contains
logical records of various sizes as indicated by their record
descriptions. The storage area associated with identifier
and the record area associated with file-name must not be
allocated to the same storage area.

2. The AT END phrase must be specified if no applicable USE
procedure is specified for file-name.

3. The WITH UNLOCK clause is present for syntactical purposes
only. For READ operations, all records are assumed to be
unlocked unless explicitly locked. The WITH LOCK option is
implemented for all file organizations.

General Rules

1. The associated file must be open in the INPUT or I-O mode at
the time this statement is executed.

2. The record to be made available by the READ statement is
determined as follows:

a. If the current record pointer was positioned by the
execution of the OPEN statement, the record pointed to by
the current record pointer is made available.

b. If the current record pointer was positioned by the
execution of a previous READ statement, the current
record pointer is updated to point to the next existing
record in the file and then that record is made
available.

3. The execution of the READ statement causes the value of the
FILE STATUS data item, if any, associated with file-name to
be updated.

4. Regardless of the method used to overlap access time with
processing time, the concept of the READ statement· is
unchanged because a record is available to the object program
prior to the execution of any statement following the READ
statement.

5-85

PROCEDURE DIVISION

5. When the logical records of a file are described with- more
than one record description, these records automatically
share the same storage area; this is equivalent to an
implicit redefinition of the area. The contents of any data
items that lie beyond the range of the current data record
are undefined at the completion of the execution of the READ
statement.

6. If the INTO phrase is specified, the record being read is
moved from the record area to the area specified by
identifier according to the rules specified for the MOVE
statement without the CORRESPONDING phrase. The implied MOVE
does not occur if the execution of the READ statement was
unsuccessful. Any subscripting or indexing associated with
identifier is evaluated after the record has been read and
immediately before it is moved to the data item.

7. When the INTO phrase is used, the record being read is
available in both the input record area and the data area
associated with identifier.

8. If, at the time of execution of a READ statement, the
position of current record pointer for that file is
undefined, the execution of that READ statement is
unsuccessful. The FILE STATUS data item, if any, associated
with the file is set to one of the values detailed in General
Rules 11 and 14.

9. If the end of a reel or unit is recognized during execution
of a READ statement and the logical end of the file has not
been reached, the following operations are executed:

a. The standard ending reel/unit label procedure.

b. A reel/unit swap.

c. The standard beginning reel/unit label procedure.

d. The first data record of the new reel/unit is made
available.

10. If a file described with the OPTIONAL clause is not present
at the time the file is opened, then at the time of execution
of the first READ statement for the file, the AT END
condition occurs and the execution of the READ statement is
unsuccessful. The standard end-of-file procedures are not
performed. Execution of the program then proceeds as
specified in General Rule 11 a, b, and c.

11. If, at the time of the execution of a READ statement, no next
logical record exists in the file, the AT END condition
occurs and the execution of the READ statement is considered
unsuccessful.

When the AT END condition is recognized, the following
actions are taken in the specified order:

a. The value 10 is placed into the FILE STATUS data item, if
any, associated with this file to indicate an AT END
condition.

5-86

PROCEDURE DIVISION

b. If the AT END phrase is specified in the statement
causing the condition, control is transferred to the AT
END imperative-statement. Any USE procedure specified
for this file is not executed.

c. If the AT
procedure
implicitly,
executed.

When the AT
input-output
unsuccessful.

END phrase
must be

for this

is not specified, then a
specified, either explicitly
file. That USE procedure

END condition occurs,
statement that caused

execution of
the condition

USE
or
is

the
is

12. Following the unsuccessful execution of any READ statement,
the contents of the associated record area and the position
of the current record pointer are undefined.

13. When the AT END condition has been recognized, a READ
statement for that file must not be executed without first
executing a successful CLOSE statement followed by the
execution of a successful OPEN statement for that file.

14. A Format 1 or Format 2 READ statement that fails for an
undetermined reason will cause the value 30 to be placed in
the FILE STATUS data item if one was specified for the file.

15. The optional WITH LOCK and WITH UNLOCK clauses are effective
only in the TRAX applications environment.

5-87

PROCEDURE DIVISION

READ

5.28 THE READ STATEMENT (RELATIVE)

Function

For sequential access, the READ statement makes available the
next logical record from a file on a directory device. For
random access, the READ statement makes available a specified
record from a file on a directory device. For dynamic access,
two forms of the READ statement are available, allowing the next
logical record or a specified logical record to be made
available.

General Format

Format I

RE· AD rWITH UNLOCK l f' I r,; EXT;-") 0 IT "'TI'TT'II",\ . d . f . J ____ LWITH.~ j ~ e-name L~J REC RD ~ 1 ent1 1er

GAT END imperative-statemen~

Format 2

READ [:i~~ ~CKJ file-name RECORD [INTO identifier]

GINVALID KEY imperative-statemen~

Syntax Rules

1. The INTO phrase must not be used when the input file contains
logical records of various sizes as indicated by their record
descriptions. The storage area associated with identifier
and the record area associated with file-name must not be
allocated to the same storage area.

2. Format 1 must be used for all files in sequential access
mode.

3~ Format 1 with the NEXT phrase specified must be used for
files in dynamic access mode when records are to be retrieved
seqllenti'ally.

4. Format 2 is used for files in random access mode or for files
in dynamic access mode when records are to be retrieved
randomly.

5. The INVALID KEY phrase or the AT END phrase must be specified
if no applicable USE procedure is specified for file-name.

6. The WITH UNLOCK clause is present for syntactical purposes
only. For READ operations, all records are assumed to be
unlocked unless explicitly locked. The WITH LOCK option is
implemented for all file organizations.

5-88

PROCEDURE DIVISION

General Rules

1. The associated files must be open in the INPUT or 1-0 mode at
the time this statement is executed.

2. The record to be made available by a Format 1 READ statement
is determined by updating the current record pointer to point
to the next existing record in the file.

3. Regardless of the method used to overlap access time with
processing time, the concept of the READ statement is
unchanged because a record is available to the object program
prior to the execution of any statement following the READ
statement.

4. When the logical records of a file are described with more
than one record description, these records automatically
share the same storage area; this is equivalent to an
implicit redefinition of the area. The contents of any data
items that lie beyond the range of the current data record
are undefined at the completion of the execution of the READ
statement.

5. If the INTO phrase is specified, the record being read is
moved from the record area to the area specified by
identifier according to the rules specified for the MOVE
statement without the CORRESPONDING phrase. The implied MOVE
does not occur if the execution of the READ statement was
unsuccessful. Any subscripting or indexing associated with
identifier is evaluated after the record has been read and
immediately before it is moved to the data item.

6. When the INTO phrase is used, the record being read is
available in both the input record area and the data area
associated with identifier.

7. If, at the time of execution of a Format 1 READ statement,
the position of current record pointer for that file is
undefined, the execution of that READ statement is
unsuccessful. The FILE STATUS data item, if any, associated
with the file is set to one of the values described in
General Rules 13,14, and 15.

8. If, at the time of the execution of a Format 1 READ
statement, no next logical record exists in the file, the AT
END condition occurs and the execution of the READ statement
is considered unsuccessful.

When the AT END condition is recognized, the following
actions are taken in the specified order:

a. The value -10 is placed into the FILE STATUS data item, if
specified for this file, to indicate an AT END condition.

5-89

PROCEDURE DIVISION

b. If the AT END phrase is specified in the statement
causing the condition, control is transferred to the AT
END imperative-statement. Any USE procedure specIfied
for this file is not executed.

c. If the AT
procedure
implicitly,
executed.

When the AT
input-output
unsuccessful.

END phrase
must be

for this

is not specified, then a
specified, either explicitly
file. That USE procedure

END condition occurs,
statement that caused

execution of
the condition

USE
or
is

the
is

9. Following the unsuccessful execution of any READ statement,
the contents of the associated record area and the position
of the current record pointer are undefined.

10. When the AT END condition has been recognized, a Format 1
READ statement for that file must not be executed without
first executing one of the following:

a. A successful CLOSE statement followed by the execution of
a successful OPEN statement for that file.

b. A successful START statement for that file.

c. A successful Format 2 READ statement for that file.

11. For a file for which dynamic access mode is specified, a
Format 1 READ, statement with the NEXT phrase specified causes
the next logical record to be retrieved from the file (as
described in General Rule 2).

'12. If the RELATIVE KEY clause is specified, the execution of a
Format 1 READ statement updates the contents of the RELATIVE
KEY data item such that it contains the relative record
number of the record made available.

13. The execution of a Format 2 READ statement sets the current
record pointer to, and makes available, the record whose
relative record number is contained in the data item named in
the RELATIVE KEY clause for the file. An INVALID KEY
condition may arise; the READ is considered unsuccessful and
the following action is taken:

a. If the record specified by the contents of the RELATIVE
KEY data item does not exist, the value 23 is placed in
the FILE STATUS data item, if any, associated with this
file to indicate an unsuccessful READ operation.

b. If the contents of the RELATIVE KEY data item do not lie
within the range of the key values corresponding to the
allocated space for this file, a boundary violation
exists. The value 24 is ~laced in the FILE STATUS data
item, if any, associated with the file to indicate an
unsuccessful READ operation.

5-90

PROCEDURE DIVISION

c. If the INVALID KEY phrase is specified in the statement
causing the condition, control is transferred to the
INVALID KEY imperative statement. Any USE procedure
specified for this file is not executed.

d. If the INVALID KEY phrase is not specified, but a USE
procedure is specified, either explicitly or implicitly,
for this file, that procedure is executed.

When the INVALID KEY condition occurs,
input-output statement that recognized
unsuccessful and the file is not affected~

execution of the
the condition is

14. A Form~t 1 or Format 2 READ statement issued to a file that
is being simultaneously accessed by another task will fail.
The value 92 is placed into the FILE STATUS data item if one
was specified for the file.

15. A Format 1 or Format 2 READ statement that fails for an
undetermined reason will cause the value 30 to be placed in
the FILE STATUS data item if one was specified for the file.

16. The optional WITH LOCK and WITH UNLOCK clauses are· effective
only in the TRAX appl~cations env~ronment.

5-91

PROCEDURE DIVISION

READ

5.29 THE READ STATEMENT (INDEXED)

Function

For sequential access, the READ statement makes available the
next logical record from a file. For random access, the READ
statement makes available a specified record from a mass storage
file. For dynamic access both sequential and random access can
be used to obtain the next logical record in a file.

General Format

Format 1

READ IWITH UNLOCKl f'l 0 J C" J ____ LWITH LOCK J 1 e-name NEXT RECORD INTO 1dent1fier

[! AT END imperative-statement]

Format 2

READ IWITH
---- LWITH

G KEY IS

G INVALID

Syntax Rules

UNLOCKl C .:-, LOCK J file-name RECORD INTO identifie~

data-name]

KEY imperative-statemen~

1. The INTO phrase must not be used when the input file contains
logical records of various sizes, which are indicated by
their record descriptions. The storage area associated with
identifier and the storage area that is the record area
associated with file-name must not be the same storage area.

2. Data-name must be the name of a data item specified as a
record key associated with file-name.

3. Data-name may be qualified.

4.. Use Format 1 for all files in sequential access mode.

5. Use Format 1 with the NEXT phrase specified
dynamic access mode when records are to
sequentially.

for
be

files in
retrieved

6. Use Format 2 for files in random access mode or for files in
dynamic access mode when records are to be retrieved
randomly.

7. The INVALID KEY phrase or the AT END phrase must be specified
if no applicable USE procedure is specified for file-name.

8. The WITH UNLOCK clause is present for syntactical purposes
only. For READ operations, all records are assumed to be
unlocked unless explicitly locked. The WITH LOCK option is
implemented for all file organizations.

5-92

PROCEDURE DIVISION

General Rules

1. The associated file must be open in the INPUT or 1-0 mode at
the time this statement is executed.

2. The record to be made available by a Format 1 READ statement
is determined as follows:

3.

a. The record pointed to by the current record pointer is
made available, provided that the current record pointer
has been positioned by the START or OPEN statement and
the record is still accessible through the path indicated
by the current record pointer; if the record is no
longer accessible, which may have been caused by the
deletion of the record or a change in an alternate record
key, the current record pointer is updated to point to
the next existing record within the established key of
reference. Then, that record is then made available.

b. If the current record pointer has been positioned by the
execution of a previous READ statement, the current
record pointer is updated to point to the next existing
record in the file within the established key of
reference. Then that record is made available.

Regardless of the method used to overlap access time with
processing time, the concept of the READ statement is
unchanged in that a record is available to the object program
prior to the execution of any statement following the READ
statement.

4. When the logical records of a file are described with more
than one record description, these records automatically
share the same storage area; this is equivalent to an
implicit redefinition of the area. The contents of any data
items that lie beyond the range of the current data record
are undefined at the completion of the execution of the READ
statement.

5. If the INTO phrase is specified, the record being read is
moved from the record area to the area specified by
identifier according to the rules specified for the MOVE
statement without the CORRESPONDING phrase. The implied MOVE
does not occur if the execution of the READ statement was
unsuccessful. Any subscripting or indexing associated with
identifier is evaluated after the record has been read and
immediately before it is moved to the data item.

6. When the INTO phrase is used, the record being read is
available in both the input record area and the data area
associated with identifier.

7. If, at the time of execution of a Format 1
the position of current record pointer
undefined, the execution of that READ

5-93

READ statement,
for that file is

statement is

PROCEDURE DIVISION

unsuccessful. The FILE STATUS data item, if any, associated
with the file is set to one of the values described in
General Rules 15, 16, or 17.

8. If, at the time of the execution of a Format 1 READ
statement, no next logical record exists in the file, the AT
END condition occurs, and the execution of the READ statement
is considered unsuccessful.

When the AT END condition is recognized, the following
actions are taken in the s~ecified order:

a. A value is placed into the FILE STATUS data item, if
specified for this file, to indicate an AT END condition.

b. If the AT END phrase is specified in the statement
causing the condition, control is transferred to the AT
END imperative statement. Any USE procedure specified
for this file is not executed.

c. If the AT
procedure
implicitly,
executed.

When the AT
input-output
unsuccessful.

END phrase
must be

for this

is not specified, then a
specified, either explicitly
file, and that procedure

USE
or
is

END condition occurs,
statement that caused

execution of the
the condition is

9. Following the unsuccessful execution of any READ statement,
the contents of the associated record area and the position
of the current record pointer are undefined. For indexed
files the key or reference is also undefined.

10. When the AT END condition has been recognized, a Format 1
READ statement for that file must not be executed without
first executing one of the following:

a. A successful CLOSE statement followed by the execution of
a successful OPEN statement for that file.

b. A successful START statement for that file.

c. A successful Format 2 READ statement for that file.

11. For a file for which dynamic access mode is specified, a
Format 1 READ statement with the NEXT phrase specified causes
the next logical record to be retrieved from that file as
described in general rule 2.

12. For an indexed file being sequentially accessed, records
having the same duplicate value in an alternate record key
that is the key of reference are made available in the same
order in which they are released by execution of WRITE
statements or by execution of REWRITE statements that create
such duplicate values.

5-94

PROCEDURE DIVISION

13. If the KEY phrase is specified in a Format 2 READ statement
for an indexed file, data-name is established as the key of
reference for this retrieval. If the dynamic access mode is
specified, this key of reference is also used for retrievals
by any subsequent executions of Format 1 READ statements for
the f1le until a different key of reference is established
for it.

14. If the KEY phrase is not specified in a Format 2 READ
statement, the prime record key is established as the key of
reference for this retrieval. If the dynamic access mode is
specified, this key of reference is also used for retrievals
by any subsequent executions of Format 1 READ statements for
the file until a different key is established for the file.

15. Execution of a Format 2 READ statement causes the value of
the key of reference to be compared with the value contained
in the corresponding data item of the stored records in the
file. When the first record having an equal value is found,
the current record pointer is positioned to this record,
making it available for processing. If no record containing
the key value is found, an INVALID KEY condition exists.

When the INVALID KEY condition is recognized, actions are
taken in the following order:

a. The value 23 is placed into the FILE STATUS data item (if
specified for this file) to indicate an INVALID KEY
condition.

b. If the INVALID KEY phrase is specified in the statement
causing the condition, control is transferred to the
INVALID KEY imperative statement. Any USE procedure
specified for this file is not executed.

c. If the INVALID KEY phrase is not specified, but a USE
procedure is specified for this file, either explicitly
or implicitly, that procedure is executed.

When the INVALID KEY condition occurs,
input-output statement that recognized
unsuccessful "and the file is not affected.

execution of the
the condition is

16. A Format 1 or Format 2 READ statement issued to a record that
is being simultaneously accessed by another task will fail.
The value 92 is placed into the FILE STATUS data item, if one
was specified for the file.

17. A Format 1 or Format 2 READ statement that fails for an
undetermined reason will cause a value of 30 to be placed in
the FILE STATUS data item if one was specified for the file.

18. The optional WITH LOCK and WITH UNLOCK clauses are valid only
in the TRAX applications environment.

5-95

PROCEDURE DIVISION

RE'WRITE

5.30 THE REWRITE STATEMENT (SEQUENTIAL)

Function

The REWRITE statement logically replaces a record existing in a
file on a directory device.

General Format

IWITH UNLOCKl dO' d . f' :r REWRITE LWITH LOCK J recor -name FROM 1 ent1 1er~

Syntax Rules

1. Record-name and identifier must not refer
allocated to the same s·torage area;
aualified.

to data that is
record-name may be

2. Record-name is the name of a logical record in the File
Section of the Data Division.

3. The WITH UNLOCK option leaves the record rewritten unlocked,
whereas the WITH LOCK option locks the record after it is
rewritten. This optional clause is implemented for all file
organizations.

General Rules

1. The file associated with record-name must be a file on a
directory device and must be open in the 1-0 mode at the time
of execution of this statement.

2. The last input-output statement executed for the associated
file prior to the execution of the REWRITE statement must
have been a successfully executed READ statement. The record
that was accessed by the READ statement is logically
replaced. If the last input-output statement executed for
the associated file was not a successfully executed READ
statement, the REWRITE statement is not attempted, and the
value 93 is placed in the FILE STATUS data item, if any,
associated with the file to indicate an unsuccessful REWRITE
operatibb. The data in the record area is unaffected.

3. The number of character positions in the record referenced by
record-name must be equal to the number of character
positions in the record being replaced.

4. The logical record released by a successful execution of the
REWRITE statement is no longer available in the record area
unless the associated file is named in a SAME RECORD AREA
clause, in which case the logical record is available to the
program as a record of other tiles appearing in the same SAME
RECORD AREA clause as the associated 1-0 file as well as to
the file associated with reco~d-name.

5. The execution of a REWRITE statement with the FROM phrase is
equivalent to the execution of:

MOVE identifier TO record-name

5-96

PROCEDURE DIVISION

followed by the execution of the same REWRITE statement
without the FROM phrase. The contents of the record area
prior to the execution of the implicit MOVE statement have no
effect on the execution of the REWRITE statement.

6. The current record pointer is not affected by the execution
of a REWRITE statement.

7. A REWRITE statement that is unsuccessful for any reason will
cause a 30 to be stored in the FILE STATUS data item, if one
was specified for the file.

8. The lock/unlock record option is effective
TRAX applications environment.

5-97

only in the

PROCEDURE DIVISION

REWRITE

5.31 THE REWRITE STATEMENT (RELATIVE)

Function

The REWRITE statement logically replaces a record existing in a
file on a directory device.

General Format

REWRITE ~ii~ ~CKj record-name [!ROM identifier]

G INVALID KEY imperative-statement]

Syntax Rules

1. Record-name and identifier must not refer to data that are
allocated to the same storage area.

2. Record-name is the name of a
Section of the Data Division;

logical record in the File
record-name may be qualified.

3. The INVALID KEY phrase must not be specified for a REWRITE
statement that references a file in sequential access mode.

4. The INVALID KEY phrase must be specified in the REWRITE
statement for files in the random or dynamic access mode for
which an applicable USE procedure is not specified.

5. The WITH UNLOCK option leaves the record rewritten unlocked,
whereas the WITH LOCK option locks the record after it is
rewritten. This optional clause is implemented for all file
organizations.

General Rules

1. The file associated with record-name must be open in the 1-0
mode at the time of execution of this statement.

2. For files in the sequential access mode, the last
input-output statement executed for the associated file prior
to the execution of the REWRITE statement must have been a
successfully executed READ statement. The record that was
accessed by the READ statement is logically replaced. If the
last input-output statement executed for the associated file
was not a successfully executed READ statement, the REWRITE
statement is not attempted and the value "93" is placed in
the FILE STATUS data item, if any, associated with the file
to indicate an unsuccessful REWRITE statement. The data in
the curre~t record area is unaffected.

3. The number of character positions in the record referenced by
record-name must be equal to the number of character
positions in the record being replaced.

5-98

PROCEDURE DIVISION

4. The logical record released by a successful execution of the
REWRITE statement is no longer available in the record area
unless the associated file is named in a SAME RECORD AREA
clause. In that case, the logical record is available to the
program as a record of other files appearing in the same SAME
RECORD AREA clause as the associated 1-0 file, as well as to
the file associated with record-name.

5. The execution of a REWRITE statement with the FROM phrase is
equivalent to the execution of:

MOVE identifier TO record-name

followed by the execution of the same REWRITE statement
without the FROM phrase. The contents of the record area
prior to the execution of the implicit MOVE statement have no
effect on the execution of the REWRITE statement.

6. The current record pointer is not affected by the execution
of a REWRITE statement.

7. For a file accessed in either random or dynamic access mode,
the record specified by the contents of the RELATIVE KEY data
item associated with the file is logically replaced. An
INVALID KEY condition may arise; the REWRITE is considered
unsuccessful, the data in the current record area is
unaffected, and the following action is taken:

8.

a. If the record specified by the contents of the RELATIVE
KEY data item does not exist, the value 23 is placed in
the FILE STATUS data item, if any, associated with this
file to indicate an unsuccessful REWRITE operation.

b. If the INVALID KEY phrase is specified in the statement
causing the condition, control is transferred to the
INVALID KEY imperative statement. Any USE procedure
specified for this file is not executed.

c. If the INVALID KEY phrase is not specified, but a USE
procedure is specified, either explicitly or implicitly,
for this file, that procedure is executed.

A REWRITE statement attempting to replace a record
being simultaneously accessed by another task
unsuccessful. The FILE STATUS data item, if
specified for the file, is set to 92.

that is
will be

one was

9. A REWRITE statement that is unsuccessful for an undetermined
reason causes a 30 to be stored in the FILE STATUS data item,
if one was specified for the file.

10. The lock/unlock record option is effective only in the TRAX
applications environment.

5-99

PROCEDURE DIVISION

REWRITE

5.32 THE' REWRITE STATEMENT (INDEXED)

Function

The REWRITE statement logically replaces a record existing in a
mass storage file.

General Format

REWRITE [:i~~ ~CKj record-name [!ROM identifie~
G INVALID KEY imperative-statement]

Syntax Rules

1. Record-name and identifier must not refer to data that are
allocated to the same storage area.

2. Record-name is the name of a logical record in the File
Section of the Data Division and may be qualified.

3. The INVALID KEY phrase must be specified in the REWRITE
statement for files for which an applicable USE procedure is
not specified.

4. The WITH UNLOCK option leaves the record rewritten unlocked,
whereas the WITH LOCK option locks the record after it is
rewritten. This optional clause is implemented for all file
organizations.

General Rules

1. The file associated with record-name must be open in the 1-0
mode at the time of execution of this statement.

2. For files in the sequential access mode, the last
input-output statement executed for the associated file prior
to the execution of the REWRITE statement must have been a
succeBsfuily executed READ statement. The record that was
accessed by the READ statement is logically replaced. If the
last .input-output statement executed for the associated file
was not a successfully executed READ statement, the REWRITE
statement is not attempted and the value 93 is placed in the
FILE STATUS data item, if any, associated with the file to
indicate an unsuccessful REWRITE statement. The data in the
current record area is unaffected.

3. The number of character positions in the record referenced by
record-name must be equal to the number of character
positions in the record being replaced.

4. The logical record released by a successful execution of the
REWRITE statement is no longer available in the record area
unless the associated file is named in a SAME RECORD AREA
clause. In that case, the logical record is available to the
program as a record of other files appearing in the same SAME
RECORD AREA clause as the associated 1-0 file. It is also
available to the file associated with record-name.

5-100

PROCEDURE DIVISION

5. The execution of a REWRITE statement with the FROM phrase is
equivalent to the execution of:

MOVE identifier TO record-name

followed by the execution of the same REWRITE statement
without the FROM phrase. The contents of the record area
prior to the execution of the implicit MOVE statement have no
effect on the execution of the REWRITE statement.

6. The current record pointer is not affected by the execution
of a REWRITE statement.

7. For a file in the sequential access mode, the record to be
replaced is specified by the value contained in the prime
record key. When the REWRITE statement is executed, the
value contained in the prime record key data item of the
record to be replaced must be equal to the value of the prime
record key of the last record read from this ·file. If this
relationship does not occur, then an INVALID KEY condition
exists.

When the INVALID KEY condition is recognized, actions are
taken in the following order:

a. The value 21 is placed into the FILE STATUS data item if
specified for this file to indicate an INVALID KEY
condition.

b. If the INVALID KEY phrase is specified in the statement
causing the condition, control is transferred to the
INVALID KEY imperative statement. Any USE procedure
specified for this file is not executed.

c. If the INVALID KEY phrase is not specified but a USE
procedure is specified, either explicitly or implicitly,
for this file, that procedure is executed.

When the INVALID KEY condition occurs,
input-output statement that recognized
unsuccessful and the file is not affected.

execution of the
the condition is

8. For a file in either random or dynamic access mode, the
record specified by the contents of the prime .record key data
item associated with the file is logically replaced. If the
value contained in the prime record key does not equal that
of any record stored in the file, an INVALID KEY condition
exists. The value 23 is placed in the FILE STATUS data item,
if one was specified for the file. (See General Rule 7b and
c)

9. The contents of alternate reco~d key data items of the record
being rewritten may differ from those in the record being
replaced. The Record Management Services utilize the
contents of the record key data items during the execution of

5-101

10.

PROCEDURE DIVISION

the REWRITE statement to allow subsequent access of the
record based upon any of the specified record keys. If the
value contained in an alternate record key for which a
DUPLICATE clause has not been specified is equal to that of a
record already stored in the file, the INVALID KEY condition
exists. The value 02 is placed in the FILE STATUS data item
if one was specified for the file. See General Rule 7b and
c.

A REWRITE statement attempting to replace a record that
being simultaneously accessed by another task will fail.
value 92 is placed into the FILE STATUS data item if one
specified for the file.

is
The
was

11. A REWRITE statement that fails for an undetermined reason
will cause the value 30 to be placed in the FILE STATUS data
item if one was specified for the file.

12. The lock/unlock record option is effective only in the TRAX
applications environment.

5-102

PROCEDURE DIVISION

SEARCH

5.33 THE SEARCH STATEMENT

Function

The SEARCH statement is used to search a table for a table
element that satisfies the specified condition and to adjust the
associated index-name to indicate that table element.

General Format

Format 1

SEARCH identifier-l[vARYING {
~dentifier-2 tJ
Index-name-l~

[; AT END imperative-statement-l]

WHEN condition-l
{

imperative-statement-2}

.NEXT SENTENCE

[WHEN condition-2

Format 2

{
imperative-statement-3}] ...

NEXT SENTENCE

SEARCH ALL identifier-l [; AT END imperative-statement-l]

{

data-name-l {~~ EQUAL TO}

WHEN

condition-name-l

{

{
IS

data-name-2 IS

condition-name-2

{
imperative-statement-2}
NEXT SENTENCE

EQUAL TO}

NOTE

{
identifier-3 }l
literal-l .
arithmetic-expression-l

{
identifier-4 II literal-2
arithmeti~-expression-2

The required relational character = is not underlined to
avoid confusion with other symbols.

5-103

PROCEDURE DIVISION

Syntax Rules

1. In both Formats 1 and 2, identifier-l must not be subscripted
or indexed, but its description must contain an OCCURS clause
and an INDEXED BY clause. The description of identifier-l in
Format 2 must also contain the KEY IS phrase in its OCCURS
clause.

2. Identifier-2, when specified, must be described as USAGE IS
INDEX or as a numeric elementary item without any positions
to the right of the assumed decimal point.

3. In Format 1, condition-I,
condition as described
Expressions.

condition-2,
in Section

etc.,
5.6,

may be any
Conditional

4. In Format 2, all referenced condition-names must be defined
as having only a single value. The data-name associated with
a condition-name must appear in the KEY clause of
identifier-I. Each data-name-l, data-name-2 may be
qualified. Each data-name-l, data-name-2 must be indexed by
the first index-name associated with identifier-l along with
other indices or literals as required, and must be referenced
in the KEY claus~ of identifier-I. Identifier-3,
identifier-4, or identifiers specified in
arithmetic-expression-l, arithmetic-expression-2 must not be
referenced in the KEY clause of identifier-lor be indexed by
the first index-name associated with identifier-I.

In Format 2, when a data-nam~ in the KEY clause of
identifier-l is referenced, or when a condition-name
associated with a data-name in the KEY clause of identifier-l
is referenced, all preceding data-names in the KEY clause.of
identifier-lor their associated condition-names must also be
referenced.

General Rules

1. If Format 1 of the SEARCH is used, a serial type of
operation takes place, starting with the current
setting.

search
index

a. If, at the start of execution of the SEARCH statement,
the index-name associated with identifier-l contains a
value that corresponds to an occurrence number that is
greater than the highest permis~ible occurrence number
for identifier-I, the SEARCH is terminated immediately.
The number of occurrences of identifier-I, the last of
which is the highest permissible, is discussed in the
OCCURS clause. (See Section 4.19, The OCCURS Clause.)
Then, if the AT END phrase is specified,
imperative-statement-l is executed; if the AT END phrase
is not specified, control passes to the next executable
sentence.

5-104

PROCEDURE DIVISION

b. If, at the start of execution of the SEARCH statement,
the index-name associated with identifier-l contains a
value that corresponds to an occurrence number that is
not greater than the highest permissible occurrence
number for identifier-l (the number of occurrences of
identifier-I, the last of which is the highest
permissible is discussed in the OCCURS clause; see
Section 4.19, The OCCURS Clause), the SEARCH statement
operates by evaluating the conditions in the order that
they are written, making use of the index settings,
wherever specified, to determine the occurrence of those
items to be tested. If none of the conditions are
satisfied, the index-name for identifier-l is incremented
to obtain reference to the next occurrence. The process
is then repeated using the new index-name settings unless
the new value of the index-name settings for identifier-l
corresponds to a table element outside the permissible
range of occurrence values. In that case, the search
terminates as indicated in la above. If one of the
conditions is satisfied upon its evaluation, the search
terminates immediately and the imperative statement
associated with that condition is executed; the
index-name remains set at the occurrence that caused the
condition to be satisfied.

2. In a Format 2 SEARCH, the results of the SEARCH ALL operation
are predictable only when the following conditions are met:

a. The data in the table is 6rdered in the same manner as
described in the ASCENDING/DESCENDING KEY clause
associated with the description of identifier-I.

b. The contents of the key(s) referenced in the WHEN clause
are sufficient to identify a unique table element.

3. If Format 2 of the SEARCH is used, a nonserial type of search
operation may take place; the initial setting of the
index-name for identifier-l is ignored and its setting is
varied during the search operation, with the restriction that
at no time is it set to a value that exceeds the value which
corresponds to the last element of the table or that is less
than the value that corresponds to the first element of the
table. (For further information, see the TRAX COBOL User's
Guide.) The length of the table is discussed in the OCCURS
clause. (See Section 4.19, The OCCURS Clause.) If any of the
conditions specified in the WHEN clause cannot be satisfied
for any setting of the index within the permitted range,
control is passed to imperative-statement-l of the AT END
phrase, when specified, or to the next executable sentence
when this phrase is not specified; in" either case the final
setting of the index is not predictable. If all the
conditions can be satisfied, the index indicates an
occurrence that allows the conditions to be satisfied, and
control passes to imperative-statement-2.

5-105

PROCEDURE DIVISION

4. After execution of imperative-statement-l,
imperative-statement-2, or imperative-statement-3, that does
not terminate with a GO TO statement, control passes to the
next executable sentence.

5. In Format 2, the index-name that is used for the search
operation is the first (or only) index-name that appears in
the INDEXED BY phrase of identifier-I. Any other index-names
for identifier-l remain unchanged.

6. In Format 1, if the VARYING phrase is not used, the
index-name that is used for the search operation is the ·first
(or only) index-name that appears in the INDEXED BY phrase of
identifier-I. Any other index-names for identifier-l remain
unchanged.

7. In Format 1, if the VARYING index-name-l phrase is specified,
and if index-name-l appears in the INDEXED BY phrase of
identifier-I, that index-name is used for this search. If
this is not the case, or if the VARYING identifier-2 phrase
is specified, the first (or only) index-name given in the
INDEXED BY phrase of identifier-l is used for the search. In
addition, the following operations will occur:

a. If the VARYING index-name-l phrase is used, and if
index-name-l appears in the INDEXED BY phrase of another
table entry, the occurrence number represented by
index-name-l is incremented by' the same amount as and at
the same time as the occurrence number represented by the
index-name associated with identifier-l is incremented.

b. If the VARYING identifier-2 phrase is specified, and
identifier-2 is an index data item, then the data item
referenced by identifier-2 ·is incremented by the same
amount as and at the same time as the index associated
with identifier-l is incremented. If identifier-2 is not
an index data item, the data item referenced by
identifier-2 is incremented by the value one (1) at the
same time as the index referenced by the index-name
associated with identifier-l is incremented.

8. If identifier-l is a data item subordinate to a data item
that contains an OCCURS clause (providing for a 2 or 3
dimensional table), an index-name must be associated with
each dimension of the table through the INDEXED BY phrase of
the OCCURS clause. Only the setting of the index-name
associated with identifier-l (and the data item identifier-2
or index-name-l, if present) is modified by the execution of
the SEARCH statement. To search an entire 2 or 3 dimensional
table, it is necessary to execute a SEARCH statement several
times. Prior to each execution of a SEARCH statement, SET
statements must be executed whenever index-names must be
adjusted to appropriate settings.

A flowchart of the Format 1 SEARCH operation containing two
WHEN phrases follows:

5-106

PROCEDURE DIVISION

START

l
> ri INDEX SETTING; AT END* IMPERATIVE-

HIGHEST PERMISSIBLE ..
OCCURRENCE NUMBER

STATEMENT-l

~

-

+~
CONDITION-l

TRUE IMPERATIVE-
STATEMENT-2

.~ FALSE

* * TRUE IMPERATlVE-
CONDITION-2 STATEMENT-3

~ FALSE

INCREMENT INDEX-NAME
FOR IDENTIFIER-l

(lNDEX-NAME-l
IF APPLICABLE)

l
*

INCREMENT
INDEX-NAME-l

(FOR A DIFFERENT
TABLE) OR

IDENTIFIER-2

*These operations are options included only when specified in
the SEARCH statement.

**Each of these control transfers is to the next executable
sentence unless the imperative-statement ends with a GO TO
statement.

5-107

PROCEDURE DIVISION

SET

5.34 THE SET STATEMENT

Function

The SET statement is used to establish a value in an index-name
or index data-item.

General Format

Format 1

{

identifier-l [, identifier-2]
SET

index-name-l [, index-name-2]

Format 2

... }

... {

identifier-3}
TO index-name-3

integer-l

{

UP BY } {id,entifi.er-4}
SET index-name-4 [, index-name-5] ...

DOWN BY Integer-2

Syntax Rules

1. All references to index-name-l, identifier-I, and.
index-name-4 apply equally to index-name-2, identifier-2, and
index-name-5, respectively.

2. Identifier-l and identifier-3 must name either an index data
item, or an elementary item described as a numeric integer.

3. Identifier-4 must be described as an elementary numeric
integer.

4. Integer-l and integer-2 may be signed.
positive.

General Rules

Integer-l must be

1. Index-names are considered related to a given table and are
defined by being specified in the INDEXED BY clause.

2. Ifindex-name-3 is specified, the value of the index before
the execution of the SET statement must correspond to an
occurrence number of an element in the associated table.
This is guaranteed by the fact that TRAX COBOL
automatically initializes all index-names with a value
corresponding to an occurrence number of one.

5-108

PROCEDURE DIVISION

If index-name-4, index-name~5 is specified, the value of the
index both before and after the execution of the SET
statement must correspond to an· occurrence number of an
element in the associated table. If index-name-l,
index-name-2 is specified, the value of the index after the
execution of the SET statement must coirespond to an
occurrence number of an element in the associated table.

3. In Format 1, the following action occurs:

a. Index-name-l is set to a value causing it to refer to the
table element that corresponds in occurrence number to
the table element referenced by index-name-3,
identifier-3, or integer-I. A new value of the index
value portion of index-name-l is always computed.

b. If identifier-l is an index data item, it may be set
equal to the contents of either the occurrence number
portion of index-name-3 or to identifier-3 where
identifier-3 is also an index data item.

c. If identifier-l is not an index data item, it may be set
only to an occurrence number that corresponds to the
value of index-name-3. Neither identifier-3, nor
integer-l can be used in this case.

d. The process is repeated for index-name-2, identifier-2,
etc., if specified. Each time the value of index-name-3
or identifier-3 is used as it was at the beginning of the
execution of the statement. Any subscripting or indexing
associated with identifier-I, etc., is evaluated
immediately before the value of the respective data item
is changed.

4. In Format 2, the contents of index-name-4 are incremented (UP
BY) or decremented (DOWN BY) by a value that corresponds to
the number of occurrences represented by the value of
literal-2 or identifier-4; thereafter, the process is
repeated for index-name-5, etc. Each time the value of
identifier-4 is used as it was at the beginning of the
execution of the statement.

5. Data in the following chart represents the validity of
various operand combinations in the SET statement. The
references to the preceding general rules (/3b) indicates the
applicable general rule.

Receiving Item
Sending Item

Integer Data Item Index-Name Index Data Item

Integer Literal No/3c Valid/3a No/3b

Integer Data Item No/3c Valid/3a No/3b

Index-Name Valid/3c Valid/3a Valid/3b

Index Data Item No/3c Valid/3a Valid/3b

5-109

PROCEDURE DIVISION

START

5.35 THE START STATEMENT (RELATIVE)

Function

The START statement
within a relative
records.

provides a means of logical positioning
file for subsequent sequential retrieval of

General Format

START file-name {
ri ~E:OTHAN }

IS NOT LESS THAN
IS NOT <

G INVALID KEY imperative-statement]

data-name

NOTE: The required relational characters <, >, and are
not underlined to avoid confusion with other symbols such as
greater than or equal to.

Syntax Rules

1. File-name must be the name of a file with sequential or
dynamic access.

2. The INVALID KEY phrase must be specified if no applicable USE
procedure is specified for file-name.

3. Data-name, if specified, must be the data item specified in
the RELATIVE KEY phrase of the associated file control entry.

4. Data-name may be qualified.

General Rules

1. File-name must be open in the INPUT or 1-0 mode at the time
of execution of the START statement.

2. If the KEY phrase is not specified, the relational operator
IS EQUAL TO is implied.

3. The type of comparison specified by the relational operator
in the KEY phrase occurs between a key associated with a
record in the file referenced by file-name and the data item
referenced by the RELATIVE KEY clause associated with
file-name.

a. The current record pointer is positioned to the first
logical record currently existing in the file whose key
satisfies the comparison.

b. If the comparison is not satisfied by any record in the
file, an INVALID KEY condition exists, the execution of
the START statement is unsuccessful, and the position of

5-110

PROCEDURE DIVISION

the current record pointer is undefined. The following
action is taken:

(1) If the contents of the RELATIVE KEY data item is
within the range of the key values corresponding to
the allocated space for this file, the value "23" is
placed in the FILE STATUS data item, if any,
associated with the file.

(2) If the INVALID KEY phrase is specified in the
statement causing the condition, control is
transferred to the INVALID KEY imperative statement.
Any USE procedure specified for this file is not
executed.

(3) If the INVALID KEY phrase is not specified, but a USE
procedure is specified, either explicitly or
implicitly, for this file, that procedure is
executed.

When the INVALID KEY condition occurs,
input-output statement that recognized
unsuccessful and the file is not affected.

execution of the
the condition is

4. A START statement that repositions the current record pointer
to a record that is being simultaneously accessed by another
task will be unsuccessful. The FILE STATUS data item, if one
was specified for the file, is set to 92.

5. A START statement that is unsuccessful for an undetermined
reason will cause a 30 to be stored in the FILE STATUS data
item, if one was specified for the file.

5-111

PROCEDURE DIVISION

START

5.36 THE START STATEMENT (INDEXED)

Function

The START statement provides a basis for logical positioning
within an indexed file, for subsequent sequential retrieval of
records.

General Format

EQUAL TO
IS

START file-name KEY IS r
s

GREATER THAN } data-name
IS >
IS NOT' LESS THAN

, IS NOT <

[; INVALID KEY imperative-statement]

Syntax Rules

NOTE

The required relational characters , ,
and are not underlined to avoid
confusion with other symbols such as
greater than or equal to.

1. File-name must be the name of a file with sequential or
dynamic access.

2. The INVALID KEY phrase must be specified if no applicable USE
procedure is specified for file-name.

3. If file-name is the name of an indexed file, and if the KEY
phrase is specified, data-name may reference a data item
specified as a record key associated with file-name, or it
may reference any data item of category alphanumeric
subordinate to the data-name of a data item specified as a
record key associated with file-name whose leftmost character
position corresponds to the leftmost character position of
that record key data item.

4. Data-name may be qualified.

General Rules

1. File-name must be open in the INPUT or 1-0 mode at the time
that the START statement is executed.

2. If the KEY phrase is not specified the relational operator IS
EQUAL TO is implied.

5-112

PROCEDURE DIVISION

3. The type of comparison specified by the relational operator
in the KEY phrase occurs between a key associated with a
record in the file referenced by file-name and a data item as
specified in general rule 6. If file-name references an
indexed file and the operands are of unequal size, comparison
proceeds as though the longer one were truncated on the right
such that its length is equal to that of the shorter. All
other nonnumeric comparison rules apply.

a. The current record pointer is positioned to the first
logical record currently existing in the file" whose key
satisfies the comparison.

b. If the comparison is not satisfied by any record in the
file, an INVALID KEY condition exists. The execution of
the START statement is unsuccessful, and the position of
the current record pointer is undefined. The FILE STATUS
data item, if one was specified for the file, is set to
23.

4. If the KEY phrase is specified, the comparison described in
general rule 3 uses the data item referenced by data-name.

5. If the KEY phrase is not specified, the comparison described
in general rule 3 uses the data item referenced in the RECORD
KEY clause associated with file-name.

6. Upon completion of the successful execution of the START
statement, a key of reference is established and used in
subsequent Format 1 READ statement as follows:

a. If the KEY phrase is not specified, the prime record key
specified for file-name becomes the key of reference.

b. If the KEY phrase is specified, and data-name is
specified as a record key for file-name, that record key
becomes the key of reference.

c. If the KEY phrase is specified, and data-name is not
specified as a record key for file-name, the record key
whose leftmost character position corresponds to the
leftmost character position of the data item specified by
data-name becomes the key of reference.

7. If the execution of the START statement is not successful,
the key of reference is undefined.

8. A START statement that repositions the current record pointer
to a record that is being simultaneously accessed by another
task will be unsuccessful. The FILE STATUS data item, if one
was specified for the file, is set to 92.

9. A START statement that is unsuccessful for an undetermined
reason causes a 30 to be stored in the FILE STATUS data item,
if one was specified for the file.

5-113

PROCEDURE DIVISION

STOP

5.37 THE STOP STATEMENT

Function

The STOP statement causes a permanent or temporary suspension of
the execution of the object program.

General Format

{
RUN }

STOP
literal

Syntax Rules

1. The literal may be numeric or nonnumeric or may be any
figurative constant, except ALL.

2. If the literal i~ numeric, then it must be an unsigned
integer.

3. If a STOP RUN statement appears in a consecutive sequence of
imperative statements within a sentence, it must appear as
the last statement in that sequence.

General Rules

1. If the RUN phrase is used, the standard ending procedure is
executed and the object program execution is terminated.

2. If STOP literal is specified, the literal is displayed on the
user's standard display device. The execution of the object
program is temporarily suspended awaiting an ACCEPT from the
console device. Typing a carriage return causes the program
execution to continue. Continuation of the object program
begins with the execution of the next executable statement in
sequence.

5-114

PROCEDURE DIVISION

STRING

5.38 THE STRING STATEMENT

Function

The STRING statement provides concatenation of the partial or
complete contents of two or more data items into a single data
item.

General Format

{
identifier-I} [identifier-2]

STRING
literal-l ,literal-2

[{

identifier-4 t[identifier-s]

,literal-4 f ,literal-5

..• DELIMITED BY

.•• DELIMITED BY

INTO identifier-7 [WITH POINTER. identifier-8]

[:ON OVERFLOW imperative-statement]

Syntax Rules

{

identifier-3}
literal-3

SIZE

{

identifier-6} ..]
literal-6

SIZE

1. Each literal may be any figurative constant without the
optional word ALL.

2. All literals must be described as nonnumeric
all identifiers, except identifier-8, must
implicitly or explicitly as USAGE IS DISPLAY.

1 i terals, and
be described

3. Identi£ier-7 must represent an elementary alphanumeric data
item without editing symbols or the JUSTIFIED clause.

4. Identifier-8 must represent an elementary numeric integer
data item of sufficient size to contain a value equal to the
size, plus 1 of the area referenced by identifier-7. The
symbol P may not be used in the PICTURE character-string of
identifier-8.

5. Where identifier-I, identifier-2, •.• , or identifier-6 is an
elementary numeric data item, it must be described as an
integer without the symbol P in its PICTURE character-string~

5-115

PROCEDURE DIVISION

General Rules

1. All references to identifier-I, identifier-2, identifier-3,
literal-I, literal-2, literal-3 apply equally to
identifier-4, identifier-5, identifier-6, literal-4,
literal-5 and literal-6, respectively, and all recursions
thereof.

2. Identifier-I, literal-I, identifier-2, literal-2 represent

3.

the sending items. Identifier-7 represents the receiving
item.

Literal-3,
the move.
defined by
is moved.
delimiter,
literal.

identifier-3, indicate the character{s) delimiting
If the SIZE phrase is used, the complete data item
identifier-I, literal-I, identifier-2, literal-2

When a figurative constant is used as the
it stands for a single character nonnumeric

4. When a figurative constant is specified as literal-I,
literal-2, literal-3, it refers to an implicit l-charactet
data item whose USAGE IS DISPLAY.

5. When the STRING statement is executed, the transfer of data
is governed by the following rules:

a. Those"characters from literal-I, literal-2, or from the
contents of the data item referenced by identifier-I,
identifier-2 are transferred to the contents of
identifier-7 in accordance with the rules for
alphanumeric to alphanumeric moves, except that no
space-filling will be provided. (See Section 5.22. The
MOVE STATEMENT).

b. If the DELIMITED phrase is specified without the SIZE
phrase, the contents of the data item referenced by
identifier-I, identifier-2 or the value of literal-I,
literal-2 are transferred to the receiving data item in
the sequence specified in the STRING statement beginning
with the leftmost character and continuing from left to
right until the end of the data item is reached or until
the character(s) specified by literal-3 or by the
contents of identifier-3 are encountered. The
character(s) specified by literal-3 or by the data item
referenced by identifier-3 are not transferred.

c. If the DELIMITED phrase is specified with the SIZE
phrase, the entire contents of literal-I, literal-2, or
the contents of the data item referenced by identifier-I,
identifier-2 are transferred, in the sequence specified
in the STRING statement, to the data item referenced by
identifier-7 until all data has been transferred or the
end of the data item referenced by identifier-7 has been
reached.

5-116

PROCEDURE DIVISION

6. If the POINTER phrase is specified, identifier-S is
explicitly available to the programmer, and he is responsible
for setting its initial value. The initial value must not be
less than one.

7. If the POINTER phrase is not specified, the following general
rules apply as if the user had specified identifier-8 with an
initial value of 1.

S.When characters are transferred to the data item referenced
by identifier-7, the moves behave as though the characters
were moved one at a time from the source into the character
position of the data item referenced by identifier-7
designated by the value associated with identifier-8, and
then identifier-S was increased by one prior to the move of.
the next character. The value associated with identifier-8
is changed during execution of the STRING statement only by
the behavior specified above.

9. At the end of execution of the STRING statement, only the
portion of the data item referenced by identifier-7 that was
referenced during the execution of the STRING statement is
changed. All other portions of the data item referenced by
identifier-7 will contain data that was present before this
execution of the STRING statement.

10. If at any point at or after initialization of the STRING
statement, but before execution of the statement is
completed, the value associated with identifier-S is either
less than one or exceeds the number of character positions in
the data item referenced by identifier-7, no (further) data
is transferred to the data item referenced by identifier-7,
and the imperative statement in the ON OVERFLOW phrase is
executed, if specified.

11. If the ON OVERFLOW phrase is not specified when the
conditions described in General Rule 10 above are
encountered, control passes to the next executable statement.

5-117

PROCEDURE DIVISION

SUBTRACT

5.39 THE SUBTRACT STATEMENT

Function

The SUBTRACT statement is used to subtract one or the sum of two
or more numeric data items from one or more items and set the
value of one or more items equal to the results.

General Format

Format I

{
ident.ifier-l} [identifier-2]

SUBTRACT ... FROM identifier-m [ROUNDED]
literal-l ,literal-2

[identifier-n° [ROUNDED]] ...

[; ON SIZE ERROR imperative-statement]

Format 2

{
identifier-I} [identifier-2~

SUBTRACT ..• FROM
literal-l ,literal-2 {

identifier-In}

literal-m

GIVING identifier-n [ROUNDED], [identifier-o [ROONDED]] •.•

[iON SIZE ERROR imperative-statement]

Format 3

{
CORRESPONDING}

SUBTRACT identifier-l FROM identifier-2 [ROUNDED]
CORR

[; on SIZE ERROR imperative-statement]

Syntax Rules

1. Each identifier must refer to a numeric elementary item
except that:

a. In Format 2, each identifier following the word GIVING
must refer to either an elementary numeric item or an
elementary numeric edited item.

b. In Format 3, each identifier must refer to a group item.

2. Each literal must be a numeric literal.

3. The composite of operands must not contain more th~n 18
digits. (See Section 5.7.4, The Arithmetic Statements.)

5-118

PROCEDURE DIVISION

a. In Format 1, the composite of operands is determined by
using all of the operands in a given statement.

b. In Format 2, the composite of operands is determined by
using all of the operands in a given statement excluding
the data item that follows the word GIVING.

c. In Format 3, the composite of operands is determined
separately for each pair of corresponding data items.

4. CORR is an abbreviation for CORRESPONDING.

General Rules

1. See Section 5.7.1, The ROUNDED phrase; Section 5.7.2, The
SIZE ERROR Phrase; Section 5.7.3, The CORR~SPONDING Phrase;
Section 5.7.4, The Arithmetic Statements; Section 5.7.5,
Multiple Results in Arithmetic Statements; and Section
5.7.6, Overlapping Operands.

2. In Format 1, all literals or identifiers preceding the word
FROM are added together, and this total is subtracted from
the current value of identifier-m, storing the result
immediately into identifier-m, and repeating this process
respectively for each operand following the word FROM.

3. In Format 2, all literals or identifiers preceding the word
FROM are added together, the sum is subtracted from literal-m
or identifier-m, and the result of the subtraction is stored
as the new value of identifier-n, identifier-o, etc.

4. If Format 3 is
subtracted from
identifier-2.

used, data items in identifier-l are
and stored into corresponding data items in

5. The compiler insures enough places are carried so as not to
lose significant digits during execution.

PROCEDURE DIVISION

UNLOCK

5.40 THE UNLOCK STATEMENT

Function

The UNLOCK statement unlocks the current record or all records
in the file specified by filename.

General Format

UNLOCK [AL~::RDJ filename

Syntax Rules

1. The RECORD clause unlocks only the current record in the file
specified by filename.

2. The ALL RECORDS clause unlocks all records in the file
specified by filename.

3. The default for the UNLOCK statement is to unlock the current
record in the file specified by filename.

4. The UNLOCK statement is implemented for all file organizations.

General Rules

1. The UNLOCK statement can be used to unlock a record or
records that have been previously locked by execution of the
optional WITH LOCK clause.

2. The UNLOCK statement is effective only in
applications environment.

5-120

the TRAX

PROCEDURE DIVISION

UNSTRING

5.41 THE UNSTRING STATEMENT

Function

The UNSTRING statement causes contiguous data in a sending field
to be separated and placed into multiple receiving fields.

General Format

UNSTRING identifier-I

-cIMITED BY [ALL] {i~entifier-2}['OR [ALL] {i~entifier-3}J ••]
l~ Ilteral-l Ilteral-2

INTO identifier-4[DELIMITER IN identifier-5] [,COUNT IN identifier-6]

[,identifier-7[,DELIMITER IN identifier-8] [,COUNT IN identifier-9]] ...

[WITH POINTER iden,tifier-IO] [TALLYING IN identifier-II]

[; ON OVERFLOW imperative-statement]

Syntax Rules

1. Each literal must be a nonnumeric literal. In addition, each
literal may be any figurative constant without the optional
word ALL.

2. Identifier-I, identifier-2,' identifier-3, identifier-S, and
identifier-8 must be described, implicitly or explicitly, as
an alphanumeric data item.

3. Identifier-4 and identifier-7 may be described as either
alphabetic (except that the symbol B may not be used in the
PICTURE character-string), alphanumeric, or numeric (except
that the symbol P may not be used in the PICTURE
character-string), and must be described as USAGE IS DISPLAY.

4. Identifier-6, identifier-9, identifier-10, and identifier-II
must be described as elementary numeric integer data items
(except that the symbol P may not be used in the PICTURE
character-string).

5. No identifier may name a level 88 entry.

6. The DELIMITER IN phrase and the COUNT IN phrase may be
specified only if the DELIMITED BY phrase is specified.

General Rules

1. All references to identifier-2, literal-I, identifier-4,
identifier-5 and identifier-6 apply equally to identifier-3,
literal-2, identifier-7, identifier-8, and identifier-9,
respectively, and all recursions thereof.

5-121

PROCEDURE DIVISION

2. Identifier-l represents the sending area.

3. Identifier-4 represents the data receiving area.
Identifier-5 represents the receiving area for delimiters.

4. Literal-lor the data item referenced by
specifies a delimiter.

identifier-2

5. Identifier-6 represents the count of the number of character?
within the data item referenced by identifier-l that were
isolated by the delimiters for the move to identifier-4.
This value does not include a count of the delimiter
character{s) .

6. The data item referenced by identifier-IO contains a value
that indicates a relative character position within the area
defined by identifier-I.

7. The data item referenced by identifier-II is a counter that
records the number of data items acted upon during the
execution of an UNSTRING statement.

8. When a figurative constant is used as the delimiter, it
stands for a I-character nonnumeric literal.

When the ALL phrase is specified, one occurrence, or two or
more contiguous occurrences of literal-l (figurative constant
or not) or the contents of the data item referenced by
identifier-2 are treated as if it were only one occurrence,
and this occurrence is moved to the receiving data item
according to the rules in general rule 13d.

9. When any examination encounters two contiguous delimiters,
the current receiving area is either space or zero filled
according to the description of the receiving area.

10. Literal-lor the contents of the data item referenced by
identifier-2 can contain any character in the full character
set.

11. Each literal-lor the data item referenced by identifier-2
represents one delimiter. When a delimiter contains two or
more characters, all of the characters must be present in
contiguous positions of the sending item and in the order
given to be recognized as a delimiter.

12. When two or more delimiters are specified in the DELIMITED BY
phrase, an OR condition exists between them. Each delimiter
is compared to the sending field. If a match occurs, the
character(s) in the sending field is considered to be a
single delimiter. No character{s) in the sending field can
be considered a part of more than one delimiter.

Each delimiter is applied to the sending field in the
sequence specified in the UNSTRING statement.

5-122

PROCEDURE DIVISION

13. When the UNSTRING statement is initiated, the current
receiving area is the data item referenced by identifier-4.
Data 1S transferred from the data item referenced by
identifier-l to the data item referenced by identifier-4,
according to the following rules:

a. If the POINTER phrase is specified, the string of
characters referenced by identifier-l .is examined,
beginning with the relative character position indicated
by the content of the data item referenced by
identifier-ID. If the POINTER phrase is not specified,
the string of characters is examined, beginning with the
leftmost character position.

b. If the DELIMITED BY phrase is specified, the examination
proceeds left to right until either a delimiter specified
by the value of literal-lor the data item referenced by
identifier-2 is encountered. (See general rule 11.) If
the DELIMITED BY phrase is not specified, the number of
characters examined is equal to the size of the current
receiving area. However, if the sign of the receiving
item is defined as occupying a separate character
position, the number of characters examined is one less
than the size of the current receiving area.

If the end of the data item referenced by identifier-l is
encountered before the delimiting condition is met, the
examination terminates with the last character examined.

c. The characters thus examined (excluding the delimiting
character(s), if any) are treated as an elementary
alphanumeric data item and are moved into the current
receiving area according to the rules for the MOVE
statement. (See Section 5.22, The MOVE Statement.)

d. If the DELIMITER IN phrase is specified, the delimiting
character(s) are treated as an elementary alphanumeric
d~ta item and are moved into the data item referenced by
identifier-5 according to the rules for the MOVE
statement. (See Section 5.22, The MOVE Statement.) If
the delimiting condition is the end of the data item
referenced by identifier-I, then the data item referenced
by identifier-5 is space filled.

e. If the COUNT IN phrase is specified, a value equal to the
number of characters thus examined (excluding the
delimiter character(s), if any) is moved into the area
referenced by identifier-6, according to the rules for an
elementary move.

f. If the DELIMITED BY phrase is specified, the string of
characters is further examined, beginning with the first
character to the right of the delimiter. If the
DELIMITED BY phrase is not specified, the string of
characters is further examined, beginning with the
character to the right of the last character transferred.

5-123

PROCEDURE DIVISION

g. After data is transferred td the data item referenced by
identifier-4, the current receiving area is the data item
referenced by identifier-7. The behavior described in
paragraph 13b through 13f is repeated until either all
the characters are exhausted in the data item referenced
by identifier-lor until there are no more receiving
areas.

14. The initialization of the contents of the data items
associated with the POINTER phrase or the TALLYING phrase is
the responsibility of the user.

15. The contents of the data item referenced by identifier-IO
will be incremented by one for each character examined in the
data item referenced by identifier-I. When the execution of
an UNSTRING statement with a POINTER phrase is completed, the
contents of the data item referenced by identifier-IO will
contain a value equal to the initial value, plus the number
of characters examined' in the data item referenced by
identifier-I.

16. When the execution of an UNSTRING statement with a TALLYING
phrase is completed, the contents of the data item referenced
by identifier-II contain a value equal to its initial value,
plus the number of data-receiving items acted upon.

17. Either of the following situations causes an
condition:

overflow

a. An UNSTRING is initiated, and the value in the data item
referenced by identifier-IO is less than I or greater
than the size of the data item referenced by
identifier-I.

b. If, during execution of an UNSTRING statement, all
receiving areas have been acted upon, and the data item
referenced by identifier-l contains characters that have
not been examined.

18. When an overflow condition exists, the UNSTRING operation is
terminated. If an ON OVERFLOW phrase has been specified, the
imperative statement included in the ON OVERFLOW phrase is
executed. If the ON OVERFLOW phrase is not specified,
control is transferred to the next executable statement.

19. The e~aluation of subscripting and
identifiers is as follows:

indexing for the

a. Any subscripting or indexing associated with
identifier-I, identifier-lO, identifier-II is evaluated
only once, immediately before any data is transferred as
the result of the execution of the UNSTRING statement.

b. Any subscripting or indexing associated with
identifier-2, identifier-3, identifier-4, identifier-5,
identifier-6 is evaluated immediately before the transfer
of data into the respective data item.

5-124

PROCEDURE DIVISION

USE

5.42 THE USE STATEMENT

Function

The USE statement specifies procedures for input-output error
handling that are in addition to the standard procedures provided
by the File Control System.

General Format

{

EXCEPTION}
USE AFTER STANDARD PROCEDURE

ERROR

Syntax Rules

{

file-name-l
. [, filename-2]

INPUT
ON OUTPUT

1-0
EXTEND

1. A USE statement, when present, must immediately follow a
section header in the Declaratives Section and must be
followed by a period followed by a space. The remainder of
the section must consist of zero, one, or more procedural
paragraphs that define the procedures to be used.

2. The USE statement itself is never executed; it merely
defines the conditions calling for the execution of the USE
procedures.

3. Appearance of a file-name in a USE statement must not cause
the simultaneous request for execution of more than one USE
procedure.

4. The words ERROR and EXCEPTION are synonymous and may be used
interchangeably.

5. The files implicitly or explicitly referenced in a USE
statement need not all have the same organization or access.

General Rules

1. The designated procedures are executed by the input-output
system after completing the standard input-output error
routine or upon recognition of the INVALID KEY or AT END
condition when the INVALID KEY phrase or AT END phrase has
not been specified in the input-output statement. .

2. After execution of a USE procedure, control is returned to
the invoking routine.

3. Within a USE procedure, there must not be any reference to
any non-declarative procedures. Conversely, in the
nondeclarative portion there must be no reference to
procedure-names that appear in the' declarative portion,
except that PERFORM statements may refer to a USE statement
or to the procedures associated with such a USE statement.

4. Within a USE procedure, there must not be the execution of
any statement that would cause the execution of a USE
procedure that had previously been invoked and had not yet
returned control to the invoking routine.

5-125

PROCEDURE DIVISION

WRITE

5.43 THE WRITE STATEMENT (SEQUENTIAL)

Function

The WRITE statement releases a logical record for an output file.
It can also be used for vertical positioning of lines within a
logical page.

General Format

WRITE IWITH UNLOCKl record-name [FROM identifier-~
LWITH LOCK J :J

[
{

BEFORE}- !{identifier-2} 'LINE ll]
ADVANCING integer ~INE~

AFTER ~ ~

[AT ! :-OF-PAGE I PAG:mperative_statement]

Syntax Rules

1. Record-name and identifier-l must not refer to data that is
allocated to the same storage area.

2. The record-name is the name of a logical record in the File
Section of the Data Division; record-name may be qualified.

3. When identifier-2 is used in the ADVANCING phrase, it must be
the name of an elementary integer data item.

4. Integer or the value of the data item referenced by
identifier-2 may be zero.

5. If the END-OF-PAGE phrase is
must be specified in the
associated file.

specified, the LINAGE clause
file description entry for the

6. The words END-OF-PAGE and EOP are equivalent.

7. The WITH UNLOCK clause is present for syntactical purposes
only. For WRITE operations, all records written are unlocked
unless explicitly locked by execution of the WITH LOCK clause.

General Rules

1. The associated file must be open in the OUTPUT or EXTEND mode
at the time of the execution of this statement.

5-126

PROCEDURE DIVISION

2. The logical record Ieleas~d by the successful execution of
the WRITE statement is no longer available in the record area
unless the associated file is named in a SAME RECORD AREA
clause. The logical record is also available to the program
as a record of other files referenced in the same SAME RECO~D
AREA clause as the associated output file, as well as to the
file associated with record-name.

3. The results of the execution of the WRITE statement with the
FROM phrase is equivalent to the execution of:

a. The statement:

MOVE identifier-l TO record-name

according to the rules specified for the MOVE statement,
followed by:

b. The same WRITE statement without the FROM phrase.

The contents of the record area prior to the execution of
the implicit MOVE statement have no effect on the
execution of this WRITE statement.

After execution of the WRITE statement is complete, the
information in the area referenced by identifier-l is
available, even though the information in the area
referenced by record-name may not be.

4. The current record pointer is unaffected by the execution of
a WRITE statement.

5. The maximum record size for a file is established at the time
the file is created and must not subsequently be changed.

6. The number of character positions on a mass storage device
required to store a logical record in a file mayor may not
be equal to the number of character positions defined by the
logical description of that record in the program.

7. The execution of the WRITE statement releases a logical
record to the file Record Management Services.

8. Both the ADVANCING phrase and the END-OF-PAGE phrase allow
control of the vertical positioning of each line on a
representation of a printed page. If the ADVANCING phrase is
not used, automatic advancing will be provided to act as if
the user had specified AFTER ADVANCING 1 LINE. If the
ADVANCING phrase is used, advancing is provided as follows:

a. If identifier-2 is specified, the representation of the
printed page is advanced the number of lines equal to the
current value associated with identifier-2.

5-127

PROCEDURE DIVISION

b. If integer is specified, the representation of the
printed page is advanced the number of lines equal to the
value of integer.

c. If the BEFORE phrase is used, the line is presented
before the representation of the printed page is advanced
according to rules a and b above.

d. If the AFTER phrase is used, the line is presented after
the representation of the printed page is advanced
according to rules a and b above.

e. If PAGE is specified, the record is presented on the
logical page before or after (depending on the phrase
used) the device is repositioned to the next logical
page. If the record to be written is associated with a
file whose file description ~ntry contains a LINAGE
clause, the repositioning is to the first line that can
be written on the next logical page as specified in the
LINAGE clause. If the record to be written is associated
with a file whose file description entry does not contain
a LINAGE clause, the repositioning to the next logical
page is accomplished in accordance with the File Control
System standard. If page has no meaning in conjunction
with a specific device, then advancing will be provided
to act as if the user had specified BEFORE or AFTER
(depending on the phrase used) ADVANCING 1 LINE.

9. If the logical end of the representation of the printed page
is reached during the execution of a WRITE statement with the
END-OF-PAGEphrase, the imperative-statement specified in the
END-OF-PAGE phrase is executed. The logical end is specified
in the LINAGE clause associated with record-name.

10. An end-of-page condition is reached whenever the execution of
a given WRITE statement with the END-OF-PAGE phrase causes
printing or spacing within the footing area of a page body.
This occurs when the execution of such a WRITE statement
causes the LINAGE-COUNTER to equal or exceed the value
specified by integer-2 or the data item referenced by
data-name-2 of the LINAGE clause, if specified. In this
case, the WRITE statement is executed and then the imperative
statement in the END-OF-PAGE phrase is executed.

An automatic page overflow condition is reached whenever the
execution of a given WRITE statement (with or without an
END-OF-PAGE phrase) cannot be fully accommodated within the
current page body.

This occurs when a WRITE statement, if executed, would cause
the LINAGE-COUNTER to exceed the value specified by integer-l
or the data item referenced by data-name-l of the LINAGE
clause. In this case, the record is presented on the logical
page before or after (depending on the phrase used) the
device is repositioned to the first line that can be written

5-128

PROCEDURE DIVISION

on the next logical page as specified in the LINAGE clause.
The imperative statement in the. END-OF-PAGE. clause, if
specified, is executed after the record is written and the
device has been repositioned.

If integer-2 or data-name-2 of the LINAGE clause is not
specified, no end-of-page condition distinct from the page
overflow condition is detected. In this case, the
end-of-page condition and page overflow condition occur
simultaneously.

If integer-2 or data-name-2 of the LINAGE clause is
specified, but the execution of a given WRITE statement would
cause LINAGE-COUNTER to simultaneously exceed the value of
both (integer-2 or the data item referenced by data-name-2)
and integer-l or the data item referenced by data-name-l,
then the operation proceeds as if integer-2 (or data-name-2)
had not been specified.

11. When an attempt is made to write beyond the externally
defined boundaries of a sequential file the Record Management
Services will' attempt to extend the space allocated to the
file on the media. If that attempt is successful, the WRITE
will be executed normally. If it is unsuccessful, an
exception condition exists and the contents of the record
area are unaffected. The following action takes place:

a. The value of the FILE STATUS data item, if any, of the
associated file is set to a value of 34 indicating a
boundary violation.

b. If a USE AFTER STANDARD EXCEPTION declarative is
explicitly or implicitly specified for the file, that
declarative procedure will then be executed.

c. If a USE AFTER STANDARD. EXCEPTION declarative is not
explicitly or implicitly specified for the file, the
execution of the object program is terminated.

12. After the recognition of an end-of-reel or an end-of-unit of
an output file that is contained on more than one physical
reel/unit, the WRITE statement performs the following
operations:

a. The standard ending reel/unit label procedure.

b. A reel/unit swap.

c. The standard beginning reel/unit label procedure.

13. A WRITE statement that is unsuccessful for an undetermined
reason, will cause a 30 to be. stored in the FILE STATUS data
item, if one was specified for the file.

14. The optional WITH LOCK clause is effective only in the TRAX
applications environment.

5-129

PROCEDURE DIVISION

WRITE

5.44 THE WRITE STATEMENT (RELATIVE)

Function

The WRITE statement releases a logical record for an output or
input-output file.

General Format

WRITE [:i;~ ~CKJ record-name [FROM identifier]

[INVALID KEY imperative-statemen~

Syntax Rules

1. Record-name and identifier must not refer to data that are
allocated to the same storage area.

2. The record-name is the name of a logical record in the File
Section of the Data Division; record-name may be qualified.

3. The INVALID KEY phrase must be specified if an applicable USE
procedure is not specified for the associated file.

4. The WITH UNLOCK clause is present for syntactical purposes
only. For WRITE operations, all records written are unlocked
unless explicitly locked by execution of the WITH LOCK clause.

General Rules

1. The associated file must be open in the OUTPUT or 1-0 mode at
the time of the execution of this statement.

2. The logical record released by the successful execution of
the WRITE statement is no longer available in the record area
unless the associated file is named in a SAME RECORD AREA
clause. The logical record is also available to the program
as a record of other files referenced in the same SAME RECORD
AREA clause as the associated output file, as well as to the
file associated with record-name.

3. The results of the execution of the WRITE statement with the
FROM phrase is equivalent to the execution of:

a. The statement:

MOVE identifier TO record-name

according to the rules specified for the MOVE statement,
followed by:

5-130'

PROCEDURE DIVISION

b. The same WRITE statement without the FROM phrase.

The contents of the record area prior to the execution of
the implicit MOVE statement have no effect on the
execution of this WRITE statement.

After execution of the WRITE statement is
information in the area referenced by
available, even though the information
referenced by record-name may not be.

complete, the
identifier is
in the area

4. The current record pointer is unaffected by the execution of
a WRITE statement.

5. The maximum record size for a file is established at the time
the file is created and must not subsequently be changed.

6. The number of character positions on a storage media required
to store a logical record in a file will be greater than the
number of character positions defined by the logical
description of that record in the program.

7. The execution of the WRITE statement releases a logical
record to the Record Management Services.

8. When a file is opened in the output mode, records may be
placed into the file by one of the following:

a. If the access mode is sequential, the WRITE statement
will cause a record to be released to the file control
system. The first record will have a relative record
number of one and subsequent records released will have
relative record numbers of 2, 3, 4, If the
RELATIVE KEY data item has been specified in the file
control entry for the associated file, the relative
record number of the record just released will be placed
into the RELATIVE KEY data item during execution of the
WRITE statement.

b. If the access mode is random or dynamic, prior to the
execution of the WRITE statement the value of the
RELATIVE KEY data item must be initialized in the program
with the relative record number to be associated with the
record in the record area. That record is then released
to the file Record Management Services by execution of
the WRITE statement.

9. When a file is opened in the 1-0 mode and the access mode is
random or dynamic, the WRITE statement allows records to be
inserted in the associated file. The value of the RELATIVE
KEY data item must be initialized by the program with the
relative record number to be associated with the record in
the record area. Execution of a WRITE statement then causes
the contents of the record area to be released to the Record
Management Services.

5-131

PROCEDURE DIVISION

10. An INVALID KEY condition may arise; the WRITE statement is
unsuccessful, the contents of the record area are unaffected,
and the following actions take place.

If the access mode is sequential, a boundary violation may
occur if the WRITE statement attempted to write beyond the
allocated space for the file and the Record Management
Services was unsuccessful in obtaining additional space for
the file. The value 24 is placed in the FILE STATUS data
item, if any, associated with the file.

If the access mode is random or dynamic and the contents of
the RELATIVE KEY data item specifies a record which already
exists in the file, the value 22 is placed in the FILE STATUS
data item, if any, associated with the file.

If the access mode is random or dynamic and the contents of
the RELATIVE KEY data item does not lie in the range of key
values associated with the file, a boundary violation may
occur if the Record Management Services is unsuccessful in
obtaining additional space for the file. The value 24 is
placed in the FILE STATUS data item, if any, associated with
the file.

11. A WRITE statement issued to a file that is being
simultaneously accessed by another task will be unsuccessful.
The FILE STATUS data item, if one was specified for the file,
is set to 92.

12. A WRITE statement that is unsuccessful for an undetermined
reason will cause a 30 to be stored in the FILE STATUS data
item, if one was specified for the file.

13. The optional WITH LOCK clause is effective only in the TRAX
applications environment.

5-132

PROCEDURE' DIVISION

WRITE

5.45 THE WRITE·STATEMENT (INDEXED)

Function

The WRITE statement releases a logical record for an output or
input-output file.

General Format

WRITE [:ii~ ~CKJ record-name [PROM identifie~
[INVALID KEY imperative-statement]

Syntax Rules

1. Record-name and identifier must not refer to
allocated to the same storage area.

data that

2. The record-name is the name of a logical record in the
Section of the Data Division.

3. The INVALID KEY phrase must be specified if an applicable
procedure is not specified for the associated file.

is

File

USE

4. The WITH UNLOCK clause is present for syntactical purposes
only. For WRITE operations, all records written are unlocked
unless explicitly locked by execution of the WITH LOCK clause.

General Rules

1. The associated file must be open in the OUTPUT or I-a mode at
the time of the execution of this statement.

2. The logical record released by the execution of the WRITE
statement is no longer available in the record area unless
the associated file is named in a SAME RECORD AREA clause or
the execution of the WRITE statement is unsuccessful. The
logical record is also available to the program as a record
of other files referenced in the same SAME RECORD AREA clause
as the associated output file, as well as to the file
associated with r~cord-name.

3. The results of the execution of the WRITE statement with the
FROM phrase is equivalent to the execution of:

a. The statement:

MOVE identifier TO record-name

according to the rules specified for the MOVE statement,
followed by:

b. The same WRITE statement without the FROM phrase.

The contents of the record area prior to the ex~cution of the
implicit MOVE statement have no effect on the execution of
this WRITE statement.

5-133

PROCEDURE DIVISION

After execution of the WRITE statement is complete, the
information in the area referenced by identifier is
available, even though the information in the area referenced
by record-name may not be. (See general rule 2).

4. The current record pointer is unaffected by the execution of
a WRITE statement.

5. The maximum record size for a file is established at the time
the file is created and must not subsequently be changed.

6. The number of character positions on a mass storage device
required to store a logical record in a file mayor may not
be equal to the number of character positions defined by the
logical description of that record in the program.

7. The execution of the WRITE statement releases a logical
record to the Record Management Services.

8. Execution of the WRITE statement causes the contents of the
record area to be released. The Record Management Services
utilizes the content of the record keys in such a way that
subsequent access of the record may be made based upon any of
those specified record keys.

9. The value of the prime record key must be unique within the
records in the file.

10. The data item specified as the prime record key must be set
by the program to the desired value prior to the execution of
the WRITE statement.

11. If sequential access mode is specified for the file, records
must be released to the Record Management Services in
ascending order of prime record key values.

12. If random or dynamic access mode is specified, records may be
released to the Record Management Services in any
program-specified order.

13. When the ALTERNATE RECORD KEY clause is specified in the file
control entry for an indexed file, the value of the alternate
record key may be non-unique only if the DUPLICATES phrase is
specified for that data item. In this case the Record
Management Services provides storage of records such that
when records are accessed sequentially, the order of
retrieval of those records is the order in which they are
released to the Record Management Services.

14. The INVALID KEY condition exists under
circumstances:

5-134

the following

PROCEDURE DIVISION

NOTE

The value in parentheses immediately
following each statement is the value
that is placed in the FILE STATUS data
item, if one was specified for the file.

a. When sequential access mode is specified for a file
opened in the output mode and the value of the prime
record key is not greater than the value of the prime
record key of the previous record, (2l)

b. When the file is opened in the output or 1-0 mode and the
value of the prime record key is equal to the value of a
prime record key of a record already existing in the
file, (22)

c. When the file is opened in the output or 1-0 mode and the
value of an alternat~ record key for which duplicates are
not allowed equals the corresponding data item of a
record already existing in the file, (22)

d. When the device to which the file is assigned has no more
space to contain the new record, (24)

e. When an attempt is made to write a record that is being
simultaneously accessed by another task, (92)

f. When an unidentifiable error occurs. (30)

15. The optional WITH LOCK and WITH UNLOCK clauses are effective
only in the TRAX applications environment.

5-135

CHAPTER 6

SEGMENTATION

The COBOL segmentation facility allows you to communicate object
program overlay requirements to the comp'iler. COBOL segmentation
deals only with the segmentation of procedures. Therefore, only the
Procedure Division is considered in determining segmentation
requirements.

6.1 ORGANIZATION

When segmentation is used, the Procedure Division for a source program
must be written as a consecutive group of sections.. Each section is
composed of a series of closely related operations designed to
collectively perform a particular function. Also, each section must
be specified as belonging to the non-overlayable or overlayable
portion of the program.

Using segmentation affects only the ph1sica1 management of the object
program ·during execution. It neither imposes any syntactic
restrictions nor implies any semantic differences over the same
program written without segmentation. The logical sequence of the
program is the same as the physical sequence except for specific
·transfers of control. Flow of control from a non-overlayable segment
to an overlayable segment, or from an overlayable segment to another
overlay able segment is accomplished by the system.

6.1.1 Non-Overlayable vs. Overlayable Segments

A non-overlayable segment is that portion of the program that cannot
be overlaid once it is loaded into memory. An overlayable segment,
however, can overlay or be overlaid by any other overlayable segment.

6-1

SEGMENTATION

6.2 USING THE SEGMENTATION FACILITY

The COBOL segmentation facility requires that you specify the
SEGMENT-LIMIT clause (see Section 3.4.2) in the OBJECT-COMPUTER
paragraph of the Environment Division, and that you assign segment
numbers to each section of the Procedure Division.

6.2.1 The SEGMENT-LIMIT Clause

The SEGMENT-LIMIT clause has the following format:

SEGMENT-LIMIT IS segment-number

where segment-number is an integer ranging from 00 to 49.

The value specified by segment-number is used by the compiler to
determine whether a segment is overlayable. That is, the value you
specify in the SEGMENT-LIMIT clause is compared to the segment-number
you assign to each section in the Procedure Division. Sections having
segment-numbers that are less in value than the one specified by the
SEGMENT-LIMIT clause are non-overlayable. Those having segment-number
values that are greater than or equal to the segment limit are
overlayable.

6.2.2 Segment Numbers

Sections within the Procedure Division are grouped into segments by
means of a system of segment-numbers. A segment-number is included in
the section header.

General Format

Section-name SECTION [segment-number].

Syntax Rules

1. The segment-number must be an integer ranging in value from
00 through 49.

2. If the section-number is omitted, 00 is assumed.

General Rules

1. All sections having the same segment-number constitute a
program overlay. Sections with the same segment-numbers need
not be physically contiguous in the source program.

6-2

SEGMENTATION

2. Segments with segment-numbers less than the number specified
in the SEGMENT-LIMIT clause belong to the non-overlayable
portion of the program.

3. Segments with segment-numbers equal to or greater than the
value specified in the SEGMENT-LIMIT clause belong to the
overlayable portion of the program.

6-3

CHAPTER 7

THE LIBRARY MODULE

7.1 FUNCTION

The Library module provides a capability for specifying text that is
to be copied from a library file.

COBOL library files contain source text that is available to the
compiler for copying at compile time. The effect of the
interpretation of the COPY statement is to insert the text of a file
into the source program where it will be treated by the compiler as
part of the source program.

7.2 THE COPY STATEMENT

Function

The COpy statement incorporates text into a COBOL source program.

General Format

{
text-name}

COpy
literal-3

~ { {
literal-I}

REPLACING ,
word-l

Syntax Rules

{
literal-2} }]

BY ••.
word-2

1. Each text-name must be unique within the file directories
Section 1.2.3.1, available to the compiler. (See

User-defined words)

7-1

THE LIBRARY MODULE

2. The COpy statement must be preceded by a space and terminated
by the separator period.

3. Word-lor word-2 may be any single COBOL word.

4. COPY statement may occur in the source program anywhere a
character-string or a separator may occur except that a COPY
statement must not occur within a COPY statement.

5. Literal-3 is a non-numeric
specification. The use of
specifying "SY:textname.LIB".

literal containing a file
text-name is equivalent to

"General Rules

1. When a COpy statement is
associated with text-name is
The entire COpy statement is
with the reserved word COpy
character period, inclusive.

specified, the library text
copied into the source program.
logically replaced, beginning
and ending with the punctuation

2. If the REPLACING phrase is not specified, the library text is
copied unchanged.

If the REPLACING phrase is specified, the library text is
copied and each properly matched occurrence of word-l and
literal-l in the library text is replaced by the
corresponding word-2, or literal-2.

3. The comparison operation to determine text replacement occurs
in the following manner:

Any separator comma, semicolon and/or space(s) preceding the
leftmost library text-word is copied into the source program.
Starting with the leftmost library text-word and the first
word-I, or literal-I, that was specified in the REPLACING
phrase, the entire REPLACING phrase operand that precedes the
reserved word BY is compared to a library text-word.

Word-I, or literal-I, matches the library text if, and only
if, the text-word that forms word-I, or literal-l is equal,
character for character, to the library text-word.

If no match occurs, the comparison is repeated with each next
successive word-I, or literal-I, if any, in the REPLACING
phrase until either a match is found or there is no next
successive REPLACING operand.

When all the REPLACING operands have been compared and no
match has occurred, the leftmost library text-word is copied
into the source program. The next successive library
text-word is then considered as the leftmost library

7-2

THE LIBRARY MODULE

text-word, and the comparison cycle starts again
first word-I, or literal-I, specified in the
phrase.

with the
REPLACING

Whenever a match occurs between word-I, or literal-I, and the
library text, the corresponding word-2, or literal-2, is
placed into the source program. The library text-word
immediately following the rightmost text-word that
participated in the match is then considered as the leftmost
library text-word. The comparison cycle starts again with
the first word-I, or literal-l specified in the REPLACING
phrase.

The comparison operation continues until the rightmost
text-word in the library text has either participated in a
match or been considered as a leftmost library text-word and
participated in a complete comparison cycle.

4. Comment lines appearing in library text are copied into the
source program unchanged.

5. The text produced as a result of the complete processing of a
COPY statement must not contain a COPY statement.

6. Library text must conform to the rules for COBOL reference
format. A program written in conventional reference format
must COpy only library files also written in conventional
reference format. COpy statements appearing in a file that
was created using terminal format, can only refer to library
files that were created using the same format.

7-3

APPENDIX A

RESERVED WORDS

The ·following is a list of reserved words taken from American National
Standard COBOL, with some additional words that represent TRAX COBOL
extensions to the COBOL language. Words that are not reserved by the
standard are indicated by an asterisk. A single asterisk indicates a
word used in TRAX COBOL. A double asterisk indicates a word used in·
DECsystem-IO COBOL. All of the following words are reserved by TRAX
COBOL and must not be used as user-created words.

ACCEPT
ACCESS

**ACTUAL
ADD

*ADDRESS
ADVANCING
AFTER
ALL
ALPHABETIC
ALSO
ALTER
ALTERNATE
AND

*APPLY
ARE
AREA
AREAS
ASCENDING

**ASCII
ASSIGN
AT
AUTHOR

BEFORE
**BEGINNING
**BINARY

BLANK
BLOCK
BOTTOM
BY

CALL
CANCEL

*CARD-J?UNCH
*CARD-READER

CD
CF
CH

**CHANNEL
CHARACTER

CHARACTERS
CLOCK-UNITS
CLOSE
COBOL
CODE
CODE-SET
COLLATING
COLUMN
COMMA
COMMUNICATION
COMP
COMPUTATIONAL

*COMPUTATIONAL-I
COMPUTE

*COMP-I
CONFIGURATION

*CONSOLE
CONTAINS
CONTROL
CONTROLS
COPY
CORR
CORRESPONDING
COUNT
CURRENCY

DATA
DATE
DATE-COMPILED
DATE-WRITTEN
DAY
DE
DEBUG-CONTENTS
DEBUG-ITEM
DEBUG-LINE
DEBUG-NAME
DEBUG-SUB-I
DEBUG-SUB-2
DEBUG-SUB-3
DEBUGGING

A-I

DECIMAL-POINT
DECLARATIVES

**DECSYS'rEM-IO
**DEFERRED

DELETE
DELIMITED
DELIMI'rER

**DENSITY
DEPENDING
DEPTH
DESCENDING
DESTINATION
DETAIL
DISABLE
DISPLAY

*DISPLAY-6
*DISPLAY-7

DIVIDE
DIVISION
DOWN
DUPLICATES
DYNAMIC

**EBCDIC
EGI
ELSE
EMI
ENABLE
END

**ENDING
END-OF-PAGE
ENTER

**ENTRY
ENVIRONMENT
EOP
EQUAL

**EQUALS
ERROR
ESI

**EVEN

RESERVED WORDS

EVERY LINAGE *PRINT CONTROL
**EXAMINE LINAGE-COUNTER PRINTING

EXCEPTION LINE PROCEDURE
EXI'r LINE-COUNTER PROCEDURES
EXTEND *LINE-PRINTER PROCEED

LINES **PROCESSING
FD LINKAGE PROGRAM
FILE LOCK PROGRAM-I 0
FILE-CONTROL LOW-VALUE

**FILE-LIMIT LOW-VALUES QUEUE
**FILE-LIMITS QUOTE

FILLER **MACRO QUOTES
FINAL *MAP4
FIRST *MAPS RANDOM
FOOTING *MAP6 RD
FOR *MAP7 READ

* * FORTRAN *MAP8 *READ-AHEAD
**FORTRAN-IV MEMORY RECEIVE

FROM MERGE RECORD
MESSAGE **RECORDING

GENERATE MODE RECORDS
GIVING MODULES REDEFINES
GO MOVE REEL

**GO BACK MULTIPLE REFERENCES
GREATER MULTIPLY RELATIVE
GROUP RELEASE

NATIVE REMAINDER
HEADING NEGATIVE **REMARKS
HIGH-VALUE NEXT REMOVAL
HIGH-VALUES NO RENAMES

NOT REPLACING
1-0 **NOTE REPORT
I-O-CONTROL NUMBER REPORTING

*ID NUMERIC REPORTS
IDENTIFICATION RERUN
IF OBJECT-COMPUTER RESERVE
IN OCCURS RESET
INDEX **000 RETURN
INDEXED· OF REVERSED
INDICATE OFF REWIND
INITIAL OMITTED REWRITE
INITIATE ON RF
INPUT OPEN. RH
INPUT-OUTPUT OPTIONAL RIGHT
INSPECT OR ROUNDED
INSTALLATION ORGANIZATION RUN
INTO OUTPUT
INVALID OVERFLOW SAME
IS SD

PAGE SEARCH
JUST PAGE-COUNTER SECTION
JUSTIFIED *PAPER-TAPE-PUNCH SECURITY

*PAPER-TAPE-READER **SEEK
KEY **PARITY SEGMENT

**KEYS **PDP-IO SEGMENT-LIMIT
PERFORM SELECT

LABEL PF SEND
LAST PH SENTENCE
LEADING PIC SEPARATE
LEFT PICTURE SEQUENCE
LENGTH PLUS SEQUENTIAL
LESS POINTER SET
LIMIT POSITION SIGN
LIMITS POSITIVE SIZE

A-2

RESERVED WORDS

SORT TABLE **USER-NUMBER
SORT-MERGE **TALLY USiNG
SOURCE TALLYING
SOURCE-COMPUTER TAPE VALUE
SPACE TERMINAL VALUES
SPACES TERMINATE VARYING
SPECIAL-NAMES TEXT
STANDARD THAN WHEN
STANDARD-l THROUGH WITH
START THRU WORDS
STATUS TIME WORKING-STORAGE
STOP TIMES WRI'rE
STRING TO *WRITE-BEHIND
SUB-QUEUE-l **TODAY
SUB-QUEUE-2 TOP ZERO
SUB-QUEUE-3 **TRACE ZEROES
SUBTRACT 'rRAILING ZEROS
SUM TYPE
SUPPRESS +

*SWITCH UNIT
SYMBOLIC UNLOCK *
SYNC UNSTRING /
SYNCHRONIZED UNTIL **

UP >
UPON <
USAGE
USE

A-3

APPENDIX B

CHARACTER SETS

000 008 016 024 032 040 048 056 064 072 080 088 096 104 112 120

040 050 060 070 100 110 120 130 140 150 160 170

0 0 H P

1 1 I Q

2 * 2 J R

3 + 3 C K S

4 4 < D L T

5 5 E M U

6 F N V

7 G 0 W

Characters used to form words.

~
Value 000 008 016 024 032 040 048 056 064 072 080 088 096 104 112 120

Row
Kra1ue 000 010 020 030 040 050 060 070 100 110 120 130 140 150 160 170

0 NUL BS DLE CAN space (0 8 @ H P X grave h p x

1 SOH DC1 EM !) 1 g. A I Q y a i q y

2 -STX DC2 SUB " * 2 : B J R Z b j r z

3 ETX DC3 ESC # + 3 ; C K S [c k s {

4 EaT DC4 FS $, 4 < D L T \ d 1 t I
5 ENQ NAK GS % - 5 = E M U] e m u }

6 ACK SO SYN RS & . 6 > F N V (1) f n v (ESC)

7 BEL SI ETB US apos / 7 ? G 0 W (~) g 0 w DEL

Characters that may appear within a non-numeric literal in the source text.

B-1

CHARACTER SETS

~
Value 000 008 016 024 032 040 048 056 064 072 080 088 096 104 112 120

Row
lValue 000 010 020 030 040 050 060 070 100 110 120 130 140 150 160 170

0 NUL BS DLE CAN space (0 8 @ H P X grave h p x

1 SOH HT DCl EM !) 1 9 A I Q Y a i q y

2 STX LF DC2 SUB " * 2 : B J R Z b j r z

3 ETX VT DC3 ESC # + 3 ; C K S [c k s {

4 EOT FF DC4 FS $, 4 < D L T \ d 1 t I
5 ENQ CR NAK GS % - 5 = E M U] e m u }

6 ACK SO SYN RS & . 6 > F N V (+) f n v (ESC)

7 BEL SI ETB US apos / 7 ? G 0 W (~) 9 0 w DEL

Characters that may appear in an alphanumeric field in the object program.

000 008 016 024 032 040 048 056 064 072 080 088 096 104 112 120

Characters used to delineate lines of the source text.

B-2

GLOSSARY

ABBREVIATED COMBINED RELATION CONDITION
The combined condition that results from the explicit omission of
a common subject or a common subject and common relational
operator in a consecutive sequence of relation conditions.

ABNORMAL TERMINATION
The premature end of execution of a program due to the detection
of a situation, by the operating system, that prevents further
successful execution of that program.

ACCESS MODE
How records are to be operated upon in a file.

ACTUAL DECIMAL POINT
The physical representation, using a period (.) or comma (,), of
the decimal point position in a data item.

ALPHABET-NAME
A user-defined word that assigns a name to a specific character
set and/or collating sequence, in the SPECIAL-NAMES paragraph of
the Environment Division.

ALPHABETIC CHARACTER
A character from the following set of letters (A, B, C, 0, E, F,
G, H, I, J, K, L, M, N, 0, P, Q, R, S, T, U, V, W, X, Y, Z) and·
the space.

ALPHANUMERIC CHARACTER
Any character in the computer character set.

ALTERNATE RECORD KEY
A key, other than the Prime Record Key, whose contents identify a
record within an indexed file.

Glossary-l

GLOSSARY

ARITHMETIC EXPRESSION
An identifier of a numeric elementary item, a numeric literal,
such identifiers and literals separated by arithmetic operators,
two arithmetic expressions separated by an arithmetic operator,
or an arithmetic expression enclosed in parentheses.

ARITHMETIC OPERATION
The process started by the execution of an arithmeti~ statement
or the evaluation of an arithmetic expression that results in a
mathematically correct solution to that expression, using the
arguments presented.

ARITHMETIC OPERATOR
A single character or a fixed 2-character combination of the
character(s) that belongs to the following set:

Character

+

*
/
**

ASCENDING KEY

Meaning

Addition
Subtraction
Multiplication
Division
Exponentiation

A key upon whose values data are ordered, starting with the
lowest key value and going to the highest key value in accordance
with the rules for comparing data items.

ASSUMED DECIMAL POINT
A decimal point position not involving the existence of an actual
character in a data item. The assumed decimal point has logical
meaning but no physical representation.

AT END CONDITION
A. condition caused:

1. During execution of a READ ~tatement for a sequentially
accessed file when no next logical record exists for the
file or when an optional file is not present.

2. During execution of a RETURN statement when no next
logical record exists for the associated sort or merge
file.

3. During execution of a SEARCH statement when the search
operation terminates without satisfying the condition
specified in any of the associated WHEN phrases.

Glossary-2

BIT

BLOCK

GLOSSARY

The smallest unit in a computer storage structure capable of
expressing two distinct alternatives.

A physical unit of data normally composed of one or more logical
records. For mass storage files, a block may contain a portion
of a logical record. Block size has no direct relationship to
the file size within which the block is contained or to the size
of the logical record(s) that are either contained within the
block or that overlap the block. The term is synonymous with
Physical Record.

BOTTOM MARGIN
An empty area which follows the page body.

CALLED PROGRAM
A program that is the object of a CALL statement ·combined at
object time with the calling program to produce a run unit.

CALLING PROGRAM
A program which executes a CALL to another program.

CHARACTER
The basic indivisible unit of the language.

CHARACTER DATA ITEM
A data item consisting entirely of Standard
characters.

CHARACTER POSITION

Data Format

A character position is the amount of physical storage required
to store a single Standard Data Format character whose usage is
DISPLAY.

CHARACTER-STRING
A sequence of contiguous characters forming a COBOL word, a
literal, a PICTURE character-string, or a comment-entry.

CLASS CONDITION
The proposition (for which a truth .value can be determined) that
the content of an item is wholly alphabetic or wholly numeric.

CLAUSE
A clause is an ordered set of consecutive COBOL character-strings
whose purpose is to specify an entry attribute.

Glossary-3

GLOSSARY

COBOL CHARACTER SET
The complete COBOL character set, except for the contents of
nonnumeric literals, comment-entries, and comment lines, consists
of the 59 characters listed below:

COBOL WORD

Character

0, 1, .• , 9
A, B, , Z

+

*
/

$

"
(
)

>
<

%
&

?
@

(See WORD)

COLLATING SEQUENCE

Meaning

digit
letter
space
plus sign
minus sign (hyphen)
asterisk
str~ke (virgule, slash)
equal sign
currency sign
comma (decimal point)
semicolon
period (decimal point, full stop)
quotation mark
left parenthesis
right parenthesis
greater than
less than
exclamation point
number sign
percent
ampersand
apostrophe
colon
question mark
at sign

The sequence in which the characters acceptable to a computer are
ordered for purposes of sorting, merging, and comparing.

COLUMN
A character position in a print line. The columns are numbered
from 1, by 1, starting at the leftmost character position of the
print line and extending to the rightmost position of the print
line.

COMBINED CONDITION
A condition resulting from the connection of two or more
conditions with the AND or the OR logical operator.

Glossary-4

GLOSSARY

COMMENT-ENTRY
An entry in the Identification Division that may be any
combination of characters from the computer character set.

COMMENT LINE
A source program line represented by an asterisk in the Indicator
Area of th~ line, and any characters from the computer character
set in Areas A and B of that line. The comment line serves only
for program documentation. A special form of comment line
represented by a stroke (/) in the Indicator Area of the line and
any characters from the computer character set in Areas A and B
of that line causes page ejection prior to printing the comment.

COMPILE TIME
The time at which a COBOL source program is translated by a COBOL
compiler to a COBOL object program.

COMPILER DIRECTING STATEMENT
A statement beginning with a compiler directing verb that causes
the compiler to take a specific action during compilation.

COMPLEX CONDITION
A condition where one or more logical operators act upon one or
more conditions. (See NEGATED SIMPLE CONDITION; COMBINED
CONDITION; NEGATED COMBINED CONDITION.)

COMPUTER-NAME
A system-name that identifies the computer upon which the program
is to be compiled or run.

CONCURRENT RUN UNIT
A run unit, other than this run unit, that has been initiated but
not terminated during the time in which this run unit has been
initiated but not terminated.

CONDITION
A program status at execution time for which a truth value can be
determined. Where the term 'condition' (condition-I,
condition-2,. .) appears in these language specifications in
or in reference to 'condition' (condition-I, condition-2, .

-.) of a general format, it is a conditional expression consisting
of either a simple condition optionally parenthesized or a
combined condition consisting of the syntactically correct
combination of simple conditions, logical operators, and
parentheses, for which a truth value can be determined.

Glossary-5

GLOSSARY

CONDITION-NAME
Either a user-defined word that assigns a name to a subset of
values that a conditional variable may assume or a user-defined
word assigned to a status of a switch or device. When
'condition-name' is used in the General Form~ts, it represents a
unique data item reference consisting of a syntactically correct
combination of a condition-name and qualifiers, subscripts, and
indices, as required for uniqueness of reference.

CONDITION-NAME CONDITION
The proposition for which a truth value can be determined that
the value of a conditional variable is a member of the value set
attributed to a condition-name associated with the conditional
variable.

CONDITIONAL EXPRESSION
A simple condition or a complex condition specified in an IF,
PERFORM, or SEARCH statement. (See SIMPLE CONDITION and COMPLEX
CONDITION.)

CONDITIONAL STATEMENT
A conditional statement specifies that the truth value of a
condition is to be determined and that the subsequent action of
the object program depends on this truth value.

CONDITIONAL VARIABLE
A data item whose value(s) has a condition-name assigned to it.

CONFIGURATION SECTION
A section of the Environment Division that describes overall
specifications for source and object computers.

CONNECTIVE
A reserved word used to:

COUNTER

1. Associate a data-name, paragraph-name, condition-name or
text-name with its qualifier.

2. Link two or more operands written in a series.

3. Form conditions (logical connectives). (See LOGICAL
OPERATOR.)

A data item used to store numbers or number representations in a
way that permits them to be increased or decreased by the value
of another number, or to be changed or reset to zero or to an
arbitrary positive or negative value.

Glossary-6

GLOSSARY

CURRENCY SlGN
The $ character in the COBOL character set.

'CURRENCY SYMBOL
The character defined by the CURRENCY SIGN clause in the
SPECIAL-NAMES paragr~ph. If no CURRENCY SIGN clause is present
in a COBOL source program, the currency symbol is identical to
the currency sign.

CURRENT RECORD
The record available in the record area associated with the file.

DATA CLAUSE
A clause in a Data Description entry in the Data Division of a
COBOL program.

DATA DESCRIPTION ENTRY
An entry in the Data Division of a COBOL program that is composed
of a level-number followed by a data-name, if required, and then
followed by a set of data clauses, as required •.

DATA ITEM
A unit of data (excluding literals) defined by the COBOL program.

DATA ITEM VALIDATION
Verification of the proper contents of data items as they are
accessed from, or stored in, the data base.

DATA-NAME
A user-defined word that names a. data item described in a Data
Description entry.' When used in the General Formats, data-name
represents a word which must not be reference-modified,
subscripted, indexed, or qualified unless specifically permitted
by the rules of the format.

DECLARATIVE-SENTENCE
A compiler-directing sentence consisting of a
statement terminated by the separator period.

DECLARATIVES

single USE

A set of one or more special-purpose sections written at the
b~ginning of the Procedure Division, the' first of which is
preceded by the key word DECLARATIVES and the last of which is
followed by the key words END DECLARATIVES. A declarative is
composed of a section header followed by a USE compiler directing
sentence, followed by a set of zero, one, or more associated
paragraphs.

Glossary-7

GLOSSARY

DE-EDIT
The logical removal of all editing characters from a numeric
edited data item to determine its unedited numeric value.

DELIMITER
A character or a sequence of contiguous characters that
identifies the end of a string of characters and separates that
string of characters from the following string of characters. A
delimiter is not part of the string of characters that it
delimits.

DESCENDING KEY
A key upon whose values data are ordered, in accordance with the
rules for comparing data items, starting with the highest value
of key down to the lowest value of key.

DIGIT POSITION
A digit position is the amount of physical storage required to
store a single digit. This amount may vary, depending on the
usage specified in the Data Description entry that defines the
data item. If the Data Description entry specifies that usage is
DISPLAY, then a digit position is synonymous with a character
position.

DIVISION
A collection of zero, one, or more sections or paragraphs, called
the division body, that are formed and combined in accordance
with a specific set of rules. Each division consists of the
division header and the related division body. There are four
(4) divisions in a PDP-II COBOL program:

IDENTIFICATION
ENVIRONMENT
DATA
PROCEDURE

DIVISION HEADER
A combination of words, followed by a
indicates the beginning of a division.
PDP-II COBOL program are:

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.

separator period, that
The division headers in a

PROCEDURE DIVISION [USING [data-name-l] . .) .

Glossary-8

GLOSSARY

DYNAMIC ACCESS
An access mode in which specific logical records can be obtained
from or placed into a mass storage file in a non-sequential
manner and obtained from a file in a sequential manner during the
scope of the same OPEN statement. (See RANDOM ACCESS;
SEQUENTIAL ACCESS.)

EDITING CHARACTER
A single character or a fixed 2-character combination belonging
to the following set:

Character

B
o
+

CR
DB
Z

*
$

/

Meaning

space
zero
plus
minus
credit
debit
zero suppress
check protect
currency sign
comma (decimal point)
period (decimal point)
stroke (virgule, slash)

ELEMENTARY ITEM
A data item that is described as not being further logically
subdivided.

EMPTY SET
A set containing no member records.

END OF PROCEDURE DIVISION

ENTRY

The physical position of a COBOL sO'urce program after which no
further procedures appear.

Any descriptive set of consecutive clauses terminated by a
separator pe~iod and written in the Control Division,
Identification Division, Environment Division, or Data Division
of a COBOL program.

ENVIRONMENT CLAUSE
A clause that appears as part of an Environment Division entry.

EXECUTION TIME
(See OBJECT TIME.)

Glossary-9

GLOSSARY

EXTEND MODE
The state of a file after execution of an OPEN
the EXTEND phrase specified for that file
execution of a CLOSE statement without the REEL
for that file.

statement, with
and before the
or UNIT phrase

EXTERNAL SWITCH
A hardware or software device used to indicate that ~ne of two
alternate states exist.

FIGURATIVE CONSTANT

FILE

A compiler-generated value referenced by using certain reserved
words.

A collection of records.

FILE CLAUSE
A clause that appears as part of a File Description.

File Description (FD)

FILE-CONTROL
The name of an Environment Division paragraph where the data
files for a given source program are declared.

FILE DESCRIPTION ENTRY
An entry in the File Section of the Data Division composed of the
level indicator FD, followed by a file-name, and then followed by
a set of file clauses as required.

FILE-NAME
A user-defined word that names a file described in a File
Description entry within the File Section of the Data Division.

FILE ORGANIZATION
The permanent logical file structure established when a file is
created.

FILE SECTION
The section of the Data Division that contains File Description
entries and their associated Record Descriptions.

Glossary-IO

GLOSSARY

FIXED-LENGTH RECORD
A record associated with a file whose File Description entry
requires that all records contain the same number of character
positions.

FOOTING AREA
The position of the page body next to the bottom margin.

FORMAT
A specific arrangement of a set of data.

GROUP ITEM
A data item that is composed of subordinate data items.

HIGH ORDER END
The leftmost character of a string of characters.

I-O-CONTROL
The name of an Environment Division paragraph in which object
program requirements for specific input-output techniques, rerun
points, sharing of same areas by several data files, and multiple
file storage on a single input-output device are specified.

1-0 MODE
The state of a file after execution of an OPEN statement, with
the 1-0 phrase specified for that file, and before the execution
of a CLOSE statement without the REEL or UNIT phrase for that
file.

IDENTIFIER
A syntactically correct combination of a data-name, reference
modifier and qualifiers, subscripts and indices, as required for
uniqueness of reference, that names a data item. The rules for
'identifier' associated with the General Formats may, however,
specifically prohibit reference modification, qualification,
subscripting, or indexing.

IMPERATIVE STATEMENT

INDEX

A statement that begins with an imperative verb and specifies an
unconditional action to be taken. An imperative statement may
consist of a sequence of imperative statements.

A computer storage area or register, whose contents represent the
identification of a particular element in a table.

Glossary-II

GLOSSARY

INDEX DATA ITEM
A data item in which the values associated with an index-name can
be stored.

INDEX-NAME
A user-defined word that names an index associated with a
specific table.

IND'EXED DATA-NAME
An identifier that is composed of a data-name, followed by one or
more index-names enclosed in parentheses.

INDEXED FILE
A file with indexed organization.

INDEXED ORGANIZATION
The permanent logical file structure which each record is
identified by the value of one or more keys within that record.

INPUT FILE
A file that is opened in the input mode.

INPUT MODE
The state of a file after execution of an OPEN statement, with
the INPUT phrase specified for that file and before the execution
of a CLOSE statement without the file REEL or UNIT phrase.

INPUT-OUTPUT FILE
A file that is opened in the 1-0 mode.

INPUT-OUTPUT SECTION
The section of the Environment Division that names the files and
the external media required by an object program and which
provides information required for transmission and handling of
data during execution of the object program.

INTEGER
A numeric literal or a numeric data item that does not include
any character positions to the right of the assumed decimal
point. Where the term integer appears 1n General Formats, it
must not be a numeric data item, m~st not be signed, and must not
be zero unless explicitly allowed by the rules of that format.

INTEGRITY
The ability to ensure that record relationships and data item
contents are not adversely affected by concurrent processes.

Glossary-12

GLOSSARY

INTERMEDIATE DATA ITEM
A signed numeric data item that contains the results developed
during an arithmetic operation before the final result is moved
to the resultant-identifier, if any.

INVALID KEY CONDITION

KEY

At object time, a condition caused when a specific value of the
key associated with an indexed or relative file is determined to
be invalid.

A data item which identifies the location of a record, or a set
of data items which serve to identify the ordering of data.

KEY OF REFERENCE
The prime or alternate key, currently used to access records
within an indexed file.

KEY WORD
A reserved word needed when the format where the word appears is
used in a source program.

LEVEL INDICATOR
Two alphabetic characters that identify a specific type of file
or a position in a hierarchy.

LEVEL-NUMBER
A user-defined word, expressed as a 1 or 2 digit number, which
indicates the hierarchical position of a data item or the special
properties of a Data Description entry. Level-numbers in the
range I through 49 indicate the position of a data item in the
hierarchical structure of a logical record. Level-numbers in the
range 1 through 9 may be written either as a single digit or as a
zero followed by a significant digit. Level-numbers 66, 77 and
88 identify special properties of a Data Description entry.

LIBRARY-NAME
A user-defined word naming a COBOL library for compiler use in a
given source program compilation.

LIBRARY TEXT
A sequence of character-strings and/or separators in a COBOL
library.

Glossary-l3

GLOSSARY

LINAGE-COUNTER

LINE

A special register whose value points to the current position
within the page body.

A division of a page representing one row of horizontal character
positions.

LINE NUMBER
An integer that denotes the vertical position of a report line on
a page.

LINKAGE SECTION
The section in the Data Division of the called program that
describes data items available from the calling program. These
items may be referred to by the calling and the called program.

LITERAL
A character-string whose value is implied by the ordered set of
characters comprising the string.

LOGICAL OPERATOR
One of the reserved words AND, OR, or NOT. In the formation of a
condition, AND or OR or both can be used as logical connectives.
NOT can be used for logical negation.

LOGICAL PAGE
A conceptual entity consisting of the· top margin, the page body,
and the bottom margin.

LOGICAL RECORD
The most inclusive data item. The level-number for a record is
01. A record may be either an elementary item or a group item.

LOW ORDER END
The rightmo.st character ofa string of characters.

MASS STORAGE
A storage medium where data may be organized and maintained in a
sequential and nonsequential manner.

MASS STORAGE FILE
A collection of records assigned to a mass storage medium.

Glossary-14

GLOSSARY

MNEMONIC-NAME
A user-defined word associated in the Environment Division with a
specific implementor-name.

NATIVE CHARACTER SET
The character set associated with the computer specified in the
OBJECT-COMPUTER paragraph.

NATIVE COLLATING SEQUENCE
The collating sequence associated with the computer specified in
the OBJECT-COMPUTER paragraph.

NEGATED COMBINED CONDITION
The NOT logical operator immediately followed by a parenthetical
combined condition.

NEGATED SIMPLE CONDITION
The NOT logical operator immediately followed by a simple
condition.

NEXT EXECUTABLE SENTENCE
The next sentence to which control will be transferred after
execution of the current statement is complete.

NEXT EXECUTABLE STATEMENT
The next statement to which control will be transferred after
execution of the current statement is complete.

NEXT RECORD
The record which logically follows the current file record.

NEXT RECORD POINTER
A conceptual entity that. either points to the next logical
record, indicates the at end condition, or is set to indicate
that no valid next record has been established.

NONNUMERIC ITEM
A data item whose description permits its contents to be composed
of any combination of characters taken from the computer
character set. Certain categories of nonnumeric items maybe
formed from more restricted character sets.

NONNUMERIC LITERAL
A literal bounded by quotation marks. The string of characters
may include any character in the computer character set, some or
all of which may be represented by a symbolic-character-string.

Glossary-lS

GLOSSARY

NUMERIC CHARACTER
A character that belongs to the set of digits 0 through 9.

NUMERIC ITEM
A data item whose description restricts its contents to a value
represented by characters chosen from the digits 0 through 9; if
signed, the item may also contain a +, or some oth~r
representation of an operational sign.

NUMERIC LITERAL
A literal composed of one or more numeric
contain a decimal point, an algebraic sign,
point must not be the rightmost character.
if present, must be the leftmost character.

OBJECT-COMPUTER

characters that may
or both. The decimal
The algebraic sign,

The name of an Environment Division paragraph in which the
computer environment within which the object program is executed
is described.

OBJECT PROGRAM
A set or group of executable machine language instructions and
other material designed to interact with data to provide problem
solutions. In this context, an object program is generally the
machine language result of the operation of a COBOL compiler on a
source program. Where there is no danger of ambiguity, the word
'program' alone may be used in place of the phrase 'object
program'.

OBJECT TIME
When an object program is executed.

OPEN MODE
The condition a file is in between the time an OPEN statement is
issued and the time a CLOSE statement is executed.,

OPERAND
Although the general definition of operand is a component which
is operated upon, in this publication any lower-case word(s) that
appears in a statement or entry format may be considered an
operand and, as such, is an implied reference to the data
indicated by the operand.

OPERATIONAL SIGN
An algebraic sign associated with a numeric data item or a
numeric literal, to indicate whether its value is positive or
negative.

Glossary-16

GLOSSARY

OPTIONAL WORD
A reserved word included in a specific format solely to improve
the readability of the language. Its presence is optional to the
user when the format in which the word appe~rs is used in a
source program.

OUTPUT FILE
A file that "is opened in the output mode or extend mode.

OUTPUT MODE
The state of a file after an OPEN statement is executed, with the
OUTPUT or EXTEND phrase specified, for that file and before the
execution of a CLOSE statement without the REEL or UNIT phrase
for that file.

PADDING CHARACTER

PAGE

An alphanumeric character that fills the unused
positions in a physical record.

character

A vertical division of a report representing a physical
separation of report data, the separation being based on internal
reporting requirements and/or external characteristics of the
reporting medium.

PAGE BODY
That part of the logical page where lines can be written and/or
spaced.

PAGE FOOTING
The logical end of a report page.

PAGE HEADING
The logical beginning of a report page.

PARAGRAPH
In the Procedure Division, a paragraph-name followed
separator period" and by zero, one, or more entries.
Identification and Environment Divisions, a paragraph
followed by zero, one, or more entries.

PARAGRAPH HEADER

by a
In the
header

A reserved word followed by the separator period that indicates
the beginning of a paragraph in the Identification and
Environment Divisions. The permissible paragraph headers are:

Glossary-I7

GLOSSARY

In the Identification Division:

PROGRAM-ID.
AUTHOR.
INSTALLATION.
DATE-WRITTEN.
DATE-COMPILED.
SECURITY.

In the Environment Division:

SOURCE-COMPUTER.
OBJECT-COMPUTER.
SPECIAL-NAMES.
FILE-CONTROL.
I-O-CONTROL.

PARAGRAPH-NAME
A user-defined word that identifies and begins a paragraph in the
Procedure Division.

PHRASE
An ordered set of one or more consecutive COBOL character-strings·
that form a portion of a COBOL procedural statement or of a COBOL
clause.

PHYSICAL RECORD
(See BLOCK.)

PRIME RECORD KEY
A key whose contents uniquely identify a record within an indexed
file.

PROCEDURE
A paragraph or group of
section or group of
Procedure Division~

PROCEDURE-NAME

logically successive paragraphs or a
logically successive sections, within the

A user-defined word used to name a paragraph or section in the
Procedure Division. It consists of a paragraph-name (which may
be qualified) or a section-name.

PROGRAM-NAME
A user-defined word that identifies a COBOL source program.

Glossary-IS

GLOSSARY

PSEUDO-FILE-NAME
A user-defined word that names a file residing on a multiple file
tape for which no File Description entry is specified.

PUNCTUATION CHARACTER
A character that belongs to the following set:

Character Meaning

..
(
)

=

QUALIFIED DATA-NAME

comma
semicolon
colon
period (full stop)
quotation mark
left parenthesis
right parenthesis
space
equal sign

An identifier composed of a data-name followed by
sets of the connectives OF and IN followed
qualifier.

QUALIFIER

one or more
by a data-name

a. A data-name which is used in a reference with another
data-name at a lower level in the same hierarchy.

b. A section-name which is used in a reference with a
paragraph-name specified in that section.

c. A library-name which is used in a reference with a text-name
associated with that library.

RANDOM ACCESS
An access mode in which the program-specified value of a key data
item identifies the logical record that is obtained from, deleted
from or placed into a relative or indexed file.

RECORD
(See LOGICAL RECORD.)

RECORD AREA
A storage area allocated to proces$ the
Record Description entry in the File
Division.

RECORD DESCRIPTION
(See RECORD DESCRIPTION ENTRY.)

Glossary-19

record described
Section of the

in a
Data

GLOSSARY

RECORD DESCRIPTION ENTRY
The total set of Data Description entries associated with a
particular record.

RECORD KEY
A key, either the Prime Record Key or an Alternate Record Key,
whose contents identify a record within an indexed file.

RECORD-NAME
A user-defined word that names a record described in a Record
Description entry In the Data Division of a COBOL program.

RECORD TYPE
The collection of records described by a Record Description
entry.

REFERENCE FORMAT
A format that provides a standard method for describing COBOL
source programs.

RELATION
(See RELATIONAL OPERATOR.)

RELATION CHARACTER
A character that belongs to the following set:

Character

>
<

RELATION CONDITION

Meaning

greater than
less than
equal to

The proposition, for which a truth value can be determined, that
the value of an arithmetic expression or data item has a specific
relationship to the value of another arithmetic expression or
data. item. (S~e RELATIONAL OPERATOR.)

RELATIONAL OPERATOR
A reserved word, a relation character, a group of consecutive
reserved words, or a group of consecutive reserved words and
relation characters used in the construction of a relation
condition. The permissible operators and their meanings are:

Glossary-20

GLOSSARY

Relational Operator Meaning

IS [NOT] GREATER THAN Greater than or not greater than
IS [NOT] >

IS [NOT] LESS THAN Less than or not less than
IS [NOT] <

IS [NOT] EQUAL TO Equal to or not equal to
IS [NOT]

IS UNEQUAL TO Not equal to

EQUALS Equal to

EXCEEDS Greater than

RELATIVE FILE
A file with relative organization.

RELATIVE KEY
A key whose contents identify a logical record in a relative
file.

RELATIVE ORGANIZATION
The permanent logical file structure in which each record is
uniquely identified by an integer value greater than zero, which
specifies the logical ordinal position of the record in the file.

REPEATING GROUP
A group data item whose description contains an OCCURS clause or
a group data item subordinate to a data item whose description
contains an OCCURS clause.

RESERVED WORD
A COBOL word specified in the list of words which may be used in
a COBOL source program but which must not appear in the programs
as user-defined words or system-names.

RESOURCE
A facility or service controlled by the operating system that can
be used by an executing program.

RESULTANT-IDENTIFIER
A user-defined data item that is to contain the result of an
arithmetic operation.

Glossary-21

GLOSSARY

SECTION
A set of zero, one, or more paragraphs or entries, called. a
section body, the first of which is preceded by a section header.
Each section consists of the section header and the related
section body.

SECTION HEADER
A combination of words followed by a separator period. It
indicates the beginning of a Section in the Environment, Data,
and Procedure Division.

In the Environment and Data Division, a section header is
composed of reserved words followed by a separator period. The
permissible section headers are:

In the Environment Division:

CONFIGURATION SECTION.
INPUT-OUTPUT SECTION.

In the Data Division:

FILE SECTION.
WORKING-STORAGE SECTION.
LINKAGE SECTION.

In the Procedure Division, a section header is composed of a
section-name, followed by the reserved word SECTION, followed by
a segment-number (optional), followed by a separator period.

SECTION-NAME
A user-defined word which names a section in the Procedure
Division.

SECURITY
The ability to prohibit access to a data base record by
unauthorized means.

SEGMENT-NUMBER
A user-defirted word which classifies sections in the Procedure
Division for purposes of segmentation. Segment-numbers may
contain only the characters '0', '1', •.• , '9'. A segment-number
may be expressed either as a 1 or 2 digit number.

SENTENCE
A sequence of one or more statements, the last of which is
terminated by a separator period.

Glossary-22

GLOSSARY

SEPARATOR
A character or two contiguous characters used to
character-strings.

SEQUENTIAL ACCESS

delimit

An access mode in which logical records are obtained from or
placed into a file in a consecutive predecessor-to-successor
logical record sequence determined by the order of records in the
file.

SEQUENTIAL FILE
A file with sequential organization.

SEQUENTIAL ORGANIZATION
The permanent logical file structure in which a record is
identified. by a predecessor-successor relationship established
when the record is placed into the file.

SEQUENTIAL PROCESSING
(See SYNCHRONOUS PROCESSING.)

SIGN CONDITION
The proposition for which a truth value can be determined that
the algebraic value of a data item or an arithmetic expression is
either less than, greater than, or equal to zero.

SIMPLE CONDITION
Any single condition chosen from the set:

relation condition
class condition
condition-name condition
switch-status condition
sign condition
(simple-condition)

SOURCE-COMPUTER
The name of an Environment Division paragraph in which the
computer environment within which the source program is compiled
is described.

Glossary-23

GLOSSARY

SOURCE PROGRAM
Although it is recognized that a source program may be
represented by other forms and symbols, in this report it always
refers to a syntactically correct set of COBOL statements. A
COBOL source program commences with an Identification Division
and terminates with the end of the Procedure Division. In
contexts where there is no danger of ambiguity, the word program
by itself may be used in place of the phrase source program.

SPECIAL CHARACTER
A character that belongs to the following set:

Character

+

*
/

$

"
(
)

>
<

%
&

?
@

SPECIAL-CHARACTER WORD

Meaning

plus sign
minus sign
asterisk
stroke (virgule, slash)
equal sign
currency sign
comma (decimal point)
semicolon
period (decimal point, full stop)
quotation mark
left parenthesis
right parenthesis
greater than symbol
less than symbol
exclamation point
number sign
percent
ampersand
apostrophe
colon
question mark
commercial at

A reserved word that is an arithmetic operator or a relation
character.

SPECIAL-NAMES
The name of an Environment Division paragraph in which hardware
devices are related to user-specified mnemonic-names.

SPECIAL REGISTERS
Certain compiler generated storage areas whose primary use is to
store information produced in conjunction with the use of
specific COBOL features.

Glossary-24

GLOSSARY

STANDARD DATA FORMAT
The concept used in describing data in a COBOL Data Division
under which the characteristics or properties of the data are
expressed in a form oriented to the appearance of the data on a
printed page rather than a form oriented to the manner in which
the data is stored internally in the computer or on a particular
external medium.

STATEMENT
A syntactically valid combination of words and symbols, beginning
with a verb, written in the Procedure Division.

SUBPROGRAM
(See CALLED PROGRAM.)

SUBSCRIPT
An integer whose value identifies a particular element in a
table.

SUBSCRIPTED DATA-NAME
An identifier that is composed of a data-name followed by one or
more subscripts enclosed in parentheses.

SWITCH-STATUS CONDITION
The proposition, for which a truth value can be determined, that
a specified switch, capable of being set to an ON or OFF status,
has been set to a specific status.

SYMBOLIC-CHARACTER
A group of from one (1) to thirty (30) characters combined from
the letters A through Z and the numbers 1 through 9, used in a
nonnumeric literal to represent a specific character in a
particular character set.

SYMBOLIC-CHARACTER-STRING
A symbolic-character or a group of symbolic-characters that
appears within a nonnumeric literal enclosed in quotation marks
and separated from each other by either the separator comma or
space. Each symbolic-character represents a character within a
given character set.

SYSTEM-NAME
A COBOL word used to communicate with the operating environment.

Glossary-25

TABLE

GLOSSARY

A set of logically consecutive items of data defined in the Data
Division of a COBOL program by means of the OCCURS clause.

TABLE ELEMENT
A data item that belongs to the set of repeated items comprising
a table.

TEXT-NAME
A user-defined word which identifies library text.

TEXT-WORD
Any character-string or separator, except space, in a COBOL
library.

TOP MARGIN
An empty area which precedes the page body.

TRUTH VALUE
The representation of the result of the evaluation of a condition
in terms of one of two values;

true
false

UNARY OPERATOR
A plus (+) or a minus (-) sign, that precedes a variable or a
left parenthesis in an arithmetic expression and that has the
effect of multiplying the expression by +1 or -1, respectively.

UNSUCCESSFUL EXECUTION
The attempted execution of a statement that d6es not result in
the execution of all the operations specified by that statement.
The unsuccessful execution of a statement does not affect any
data referenced by that statement, but may affect status
indicators.

UPDATE USAGE MODE
The state of a realm during which its record may be both accessed
and modified.

USER-DEFINED WORD
A COBOL word that must be supplied by the user to satisfy the
format of a clause or statement.

Glossary-26

GLOSSARY

VARIABLE
A data item whose value may be changed by execution of the object
program. A variable used in an arithmetic expression must be a
numeric elementary item.

VARIABLE-LENGTH RECORD
A record associated with a file
permits recotds to contain a
positions.

whose File Description entry
varying number of character

VARIABLE-OCCURRENCE DATA ITEM

VERB

WORD

A variable-occurrence data item is
repeated a variable number of times.
Format 2 OCCURS clause in its Data
subordinate to such an item.

a table element which is
Such an item must contain a
Description entry, or be

A word that expresses an action to be taken by a COBOL compiler
or object program.

A character-string of not more than 30 characters that forms a
user-defined word, a system-name, or a reserved word.

WORKING-STORAGE SECTION
The section of the Data Division that describes Working-Storage
data items and constants composed either of noncontiguous items
or of Working-Storage records or both.

Glossary-27

ACCEPT,
general format, 5-30
general rules, 5-30
syntax rules, 5-30

ACCEPT statement, 5-30
ACCESS clause, 3-10
Access modes, 3-9

dynamic, 3-9
random, 3-9
sequential, 3-9

ADD,
general format, 5-32
general rules, 5-33
syntax rules, 5-32

ADD statement, 5-32
Algebraic signs, 4-20
Alignment,

item, 4-21
rules, 4-20

ALL literal, 1-6
Alphabet-name, 3-4, 4-8
Alphanumeric literal, 1-8
Alphanumeric operands,

comparison of, 5-18
ALTER,

general format, 5-34
general rules, 5-34
syntax rules; 5-34

ALTER statement, 5-34
ALTERNATE RECORD KEY clause,

3-11
APPLY PRINT-CONTROL clause,

3-18
Area A, 1-14
Area B, 1-14
Arithmetic,

expressions, 5-14
operators, 5-14
statements, 5-27

Arithmetic statements,
ADD, 5-32
COMPUTE, 5-44
DIVIDE, 5-49
Multiple results, 5-28
MULTIPLY, 5-67
SUBTRACT, 5-118

ASSIGN clause, 3-10
Asterisk, 1-14

Blank, 1-14
Blank line, 1-15
BLANK WHEN ZERO,

clause, 4-25
general format, 4-25
general rules, 4-25
syntax rules, 4-25

INDEX

BLOCK CONTAINS,
clause, 4-6
general format, 4-6
general rules, 4-6
syntax rules, 4-6

Braces, 1-10
Brackets~ 1-10

CALL,
general format, 5-35
general rules, 5-35
statement, 5-35
syntax rules, 5-35

CARD-READER clause, 3-5
Character,

tab, 1-16
Character representation,

numeric, 4-20
Character set,

COBOL, 1-3
Character-string, 1-3, 4-32
Characteristics,

file, 4-17
Class condition, 5-20
Clause,

ACCESS, 3-10
ALTERNATE RECORD KEY,

3-11
APPLY PRINT-CONTROL, 3-18
ASSIGN, 3-10
BLANK WHEN ZERO, 4-25
BLOCK CONTAINS, 4-6
CARD-READER, 3-5
CODE-SET, 4-8
CONSOLE, 3-5
DATA RECORDS, 4-9
DA'I'A-NAME, 4- 2 6
FILE STATUS, 3-10, 3-11
FILLER, 4-26
JUSTIFIED, 4-27
LABEL RECORDS, 4-10
LEVEL-NUMBER, 4-28
LINAGE, 4-11
LINE-PRINTER, 3-5
MEMORY SIZE, 3-4
MULTIPLE FILE, 3-18
OCCURS, 4-29
ORGANIZATION, 3-10
PAPER-TAPE-PUNCH, 3-5
PAPER-TAPE-READER, 3-5
PICTURE, 4-32
PROGRAM COLLATING

SEQUENCE, 3-4
RECORD CONTAINS, 4-14
RECORD KEY, 3-11
REDEFINES, 4-42

Index-l

INDEX (CONT.)

Clause (Cont.)
RENAMES, 4-44
SAME RECORD AREA, 3-18
SEGMENT-LIMIT, 3-4, 6-2
SELECT, 3-10
sign, 4-46
SWITCH OFF STATUS, 3-5
SWITCH ON STATUS, 3-5
SYNCHRONIZE, 4-48
USAGE, 4-50
VALUE, 4-52
VALUE OF 10, 4-16
WITH LOCK, 5-85, 5-88, 5-92,

5-96, 5-98, 5-100, 5-126,
5-130, 5-133

WITH UNLOCK, 5-85, 5-88, 5-92,
5-98, 5-100, 5-126, 5-130,
5-133

CLOSE (indexed),
general format, 5-42
general rule, 5-42
statement, 5-42
syntax rules, 5-42

CLOSE (relative),
general format, 5-42
general rules, 5-42
statement, 5-42
syntax rules, 5-42

CLOSE (Sequential),
general format, 5-37
general rules, 5-37
statement, 5-37
syntax rules, 5-37

COBOL, 1-1
COBOL,

character set, 1-3
division, 1-2
general rules, 1-3
paragraph, 1-2
reserved words, 1-4
section, 1-2
source language format, 1-11
syntax rules, 1-3
words, 1-4

CODE-SET,
clause, 4-8
general format, 4-8
general rules, 4-8
syntax rules, 4-8

Combined condition, 5-22
negated, 5-22

Combined relation condition, 5-24
Comma, 1-9
Comment indicator area, 1-14
Comment line, 1-15
Comment-entry, 2-4
Comparison,

alphanumeric operands, 5-18
index data item, 5-19
index-names, 5-19
numeric operands, 5-18

Compiler directing,
sentence, 5-5
statement, 5-5

Complex condition, 5-21
COMPUTE,

general format, 5-44
general rules, 5-44
statement, 5-44
syntax rules, 5-44

Concept,
classes of data, 4-19
DATA DESCRIPTION, 4-17
file, 4-17
levels, 4-18
logical record, 4-17
record, 4-18

Condition,
class, 5-20
combined, 5-22
combined relation, 5-24
complex, 5-21
condition-name, 5-20
evaluation rules, 5-25
negated combined, 5-22
negated simple, 5-22
sign, 5-21
switch-status, 5-21

Condition-name, 5-12
condition, 5-20
rules, 4-53

Conditional
expressions, 5-16
sentence, 5-4
statement, 5-4
variable, 5-20

Conditions,
relation, 5-17
simple, 5-16

CONFIGURATION SECTION,
OBJECT-COMPUTER, 3-4
SOURCE-COMPUTER, 3-3
SPECIAL-NAMES, 3-5

Connect channel, 5-75
Connectives, 1-6

logical, 1-5
qualifier, 1-5
series, 1-5

CONSOLE clause, 3-5
Constants,

figurative, 1-6
Continuation indicator area,

1-14
Continuation line, 1-15
COPY,

general format, 7-1
general rules, 7-1
statement, 7-1
syntax rules, 7-1

CORRESPONDING phrase,
5-27

Current-date, 2-4

Index-2

Data,
incompatible, 5-29

DATA DESCRIPTION, 4-22
concept, 4-17
general format, 4-22
general rules, 4-23
syntax rules, 4-23

. DATA-DESCRIPTION Entries,
DATA-NAME, 4-26
FILLER, 4-26
JUSTIFIED, 4-27
LEVEL-NUMBER, 4-28
OCCURS, 4-29
PICTURE, 4-32
REDEFINES, 4-42
RENAMES, 4-44
SIGN, 4-46
skeleton, 4-22
SYNCHRONIZE, 4-48
USAGE, 4-50
VALUE, 4-52

DATA DIVISION, 4-1, 4-3
declaratives, 1-20
FILE SECTION, 4-2
level indicator, 1-20
level-numbers, 1-20
LINKAGE SECTION, 4-3
organization, 4-1
structure, 4-2
WORKING-STORAGE SECTION,

4-3
Data item comparison,

index, 5-19
DATA RECORDS,

clause, 4-9
general format, 4-9
general rules, 4-9
syntax rules, 4-9

Data-name, 4-26
DATA-NAME,

clause, 4-26
general format, 4-26
general rules, 4-26
syntax rules, 4-26

DATA-COMPILED paragraph,
2-4

Declarative-sentence, 5-3
Declaratives, 1-20, 5-1
DELETE (indexed),

general format, 5-45
general rules, 5-45
statement, 5-45
syntax rules, 5-45

DELETE (relative),
general format, 5-45
general rules, 5-45
statement, 5-45
syntax rules, 5-45

INDEX (CONT •)

Disconnect channel, 5-33
DISPLAY,

general format, 5-47
general rules, 5-47
statement, 5-47
syntax rules, 5-47

bIVIDE,
general format, 5-49
general rules, 5-49
statement, 5-49
syntax rules, 5-49

Division,
COBOL, 1-2

DIVISION,
DATA, 4-1, 4-3
ENVIRONMENT, 3-1
IDENTIFICATION, 2-1
PROCEDURE, 5-1

Dynamic access modes, 3-9

Editing,
fixed insertion, 4-37
floating insertion, 4-37,

4-38
rules PICTURE, 4-36
simple insertion, 4-37
special insertion, 4-37
symbols PICTURE, 4-34
zero suppression, 4-39

Elements,
language, 1-3
meta language, 1-10

Ellipsis, 1-11
Entries declaratives,

data division, 1-20
Entries level indicator,

data division, 1-20
Entries level-numbers,

data division, 1-20
ENVIRONMENT DIVISION, 3-1

CONFIGURATION SECTION, 3-3
INPUT-OUTPUT SECTION, 3-8
organization, 3-1
structure, 3-2

Execution,
program, 5-2

EXIT,
general format, 5-52
general rules, 5-52
statement, 5-52
syntax rules, 5-52

Explicit specification,
5-12

Expressions,
arithmetic, 5-14
conditional, 5-16

Index-3

FD, 4-5
BLOCK CONTAINS, 4-6
CODE-SET, 4-8
DATA RECORDS, 4-9
LABEL RECORDS, 4-10
LINAGE, 4-11
RECORD CONTAINS, 4-14
VALUE OF ID, 4-16

Figurative constants, 1-6
File characteristics, 4-17
File concept, 4-17
FILE DESCRIPTION,

(FD) 4-5
general format, 4-5
skeleton, 4-5
syntax rules, 4-5

File organization, 3-8
indexed, 3-8
relative, 3-8
sequential, 3-8

FILE SECTION, 4-2
FILE STATUS clause, 3-10,

3-11
File status key 1, 3-13
FILE-CONTROL,

ACCESS, 3-10
ASSIGN, 3-10
ALTERNATE RECORD KEY, 3-11
FILE STATUS, 3-10, 3-11
general format, 3-10
ORGANIZATION, 3-10
paragraph, 3-10
RECORD KEY, 3-11
SELECT, 3-10

File-control-entry, 3-10
File-description-entry, 4-2
FILLER,

clause, 4-26
general format, 4-26
general rules, 4-26
syntax rules 4-26

Fixed insertion editing,
4-37

Floating insertion editing,
4-37, 4-38

Format,
COBOL source language,

1-11
PROCEDURE DIVISION, 5-3
terminal reference, 1-17

General Format,
ACCEPT, 5-30
ADD, 5-32
ALTER, 5-34
BLANK WHEN ZERO, 4-25
BLOCK CONTAINS, 4-6
CALL, 5-35
CLOSE (indexed), 5-42

INDEX (CONT.)

General Format (Cont.)
CLOSE (relative), 5-42
CLOSE (sequential), 5-37
CODE-SET, 4-8
COMPUTE, 5-44
COPY, 7-1
DATA DESCRIPTION, 4-22
DATA RECORDS, 4-9
DATA-NAME, 4-26
DATE-COMPILED, 2-4
DELETE (indexed), 5-45
DELETE (relative), 5-45
DISPLAY, 5-47
DIVIDE, 5-49
EXIT, 5-52
FILE DESCRIPTION, 4-5
FILE-CONTROL, 3-10
FILLER, 4-26
GO TO, 5-53
I-O-CONTROL, 3-18
IF, 5-54
INSPECT, 5-56
JUSTIFIED, 4-27
LABEL RECORDS, 4-10
LEVEL-NUMBER, 4-28
LINAGE, 4-11
MOVE, 5-63
MULTIPLY, 5-67
OBJECT-COMPUTER, 3-4
OCCURS, 4-29
OPEN (indexed), 5-73
OPEN (relative), 5-73
OPEN (sequential), 5-69
PERFORM, 5-76
PICTURE, 4-32
PROGRAM-ID, 2-3
READ (indexed), 5-92
READ (relative), 5-88
READ (sequential), 5-85
RECORD CONTAINS, 4-14
REDEFINES, 4-42
RENAMES, 4-44
REWRITE (indexed), 5-100
REWRITE (relative), 5-98
REWRITE (sequential), 5-96
SEARCH, 5-103
SET, 5-108
SIGN, 4-46
SOURCE-COMPUTER, 3-3
SPECIAL-NAMES, 3-5
START (indexed), 5-112
START (relative), 5-110
STOP, 5-115
STRING, 5-115
SUBTRACT, 5-118
SYNCHRONIZE, 4-48
UNSTRING, 5-120
USAGE, 4-50
USE, 5-124
VALUE, 4-52
VALUE OF ID, 4-16

Index-4

General Format (Cant.)
WRITE (indexed), 5-132
WRITE (relative), '5-129
WRITE (sequential), 5-125

General rules,
ACCEPT, 5-30
ADD, 5-33
ALTER, 5-34
BLANK WHEN ZERO, 4-25
BLOCK CONTAINS, 4-6
CALL, 5-35
CLOSE (indexed) 5-42
CLOSE (relative), 5-42
CLOSE (sequential), 5-37
COBOL, 1-3
CODE-SET, 4-8
COMPUTE, 5-44
COPY, 7-1
DATA DESCRIPTION, 4-23
DATA RECORDS, 4-9
DATA-NAME, 4-26
DATE-COMPILED, 2-4
DELETE (indexed), 5-45
DELETE (relative), 5-45
DISPLAY, 5-47
DIVIDE, 5-49
EXIT, 5-52
FILLER, 4-26
GO TO, 5-53
I-O-CONTROL, 3-19
IDENTIFICATION DIVISION,

2-2
IF, 5-54
INSPECT, 5-56
JUSTIFIED, 4-27
LABEL RECORDS, 4-10
LEVEL-NUMBER, 4-28
LINAGE, 4-11
MOVE, 5-63
MULTIPLY, 5-68
OCCURS, 4-30
OPEN (indexed), 5-73
OPEN (relative),' 5-73
OPEN (sequential), 5-69
PERFORM, 5-77
PICTURE, 4-32
PROGRAM-ID, 2-3
READ (indexed), 5-93
READ (relative), 5-89
READ (sequential), 5-85·
RECORD CONTAINS, 4-14
REDEFINES, 4-43
RENAMES, 4-45
REWRITE (indexed), 5-100
REWRITE (relative), ~-98
REWRITE (sequential), 5-96
SEARCH, 5-104
SET, 5-108
SIGN, 4-46
SOURCE-COMPUTER, 3-3

INDEX (CONT.)

General rules (Cant.)
SPECIAL-NAMES, 3-6
START (indexed), 5-112
START (relative), 5-110
STOP, 5~115

STRING, 5-116
SUBTRACT, 5-119
SYNCHRONIZE, 4-48
UNSTRING, 5-120
USAGE, 4-50
USE, 5-125
VALUE, 4-52
VALUE OF ID, 4-16
WRITE (indexed), 5-132
WRITE (relative), 5-129
WRITE (sequential), 5-125

GO TO,
general format, 5-53
general rules, 5-53
statement, 5-53
syntax rules, 5-53

Header,
division, 1-18
paragraph, 1-19
PROCEDURE DIVISION, 5-2
section, 1-18

HIGH-VALUE, 1-6
HIGH-VALUES, 1-6
Horizontal tab, 1-9
Hyphen, 1-14.

I-O-CONTROL,
APPLY PRINT-CONTROL, 3-18
general format, 3-18
general rules, 3-19
syntax rules, 3-18
MULTIPLE FILE, 3-18
paragraph,' 3-18
SAME RECORD AREA, 3-18

IDENTIFICATION DIVISION,
2-1

general rules, 2-2
organization, 2-1
PROGRAM-ID, 2-3
syntax rules, 2-2

Identification field, 1-14
Identifier, 5-11
IF,

general format, 5-54
general rules, 5-54
state·ment, 5-54
syntax rules, 5-54

Imperative sentence, 5-6
Imperative statement, 5-5
Implicit specification, 5-12

Index-5

Imcompatible data, 5-29
Index data item comparison,

5-19
Index-names comparison,

5-19
Indexed file organization,

3-8
Indexing, 5-10
INPUT-OUTPUT SECTION, 3-8

FILE-CONTROL, 3-10
I-a-CONTROL, 3-18

Insertion editing,
fixed 4-37
floating, 4-37, 4-38
simple, 4-37
special, 4-37

INSPECT,
general format, 5-56
general rules, 5-56
statement, 5-56
syntax rules, 5-56

Item .alignment, 4-21
Item comparison,

index data, 5-19

JUSTIFIED,
clause, 4-27
general format, 4-27
general rules, 4-27
syntax rules, 4-27

Key words, 1-5

LABEL RECORDS,
clause, 4-10
general format, 4-10
general rules, 4~lO
syntax rules, 4-10

Language format,
COBOL source, 1-11

Language organization, 1-17
Left parenthesis, 1-9
LEVEL-NUMBER,

clause, 4-28
general format, 4-28
general rules, 4-28
syntax rules, 4-28

Level-number 01, 4-28
Level-number 66, 4-23, 4-28,

4-44
Level-number 77, 4-23, 4-28
Level-number 88, 4-23, 4-28
Level-numbers, 1-20, 4-18
Levels concept, 4-18
Library module, 7-1

INDEX (CONT •)

LINAGE,
cl"ause, 4-11
general format, 4-11
general rules, 4-11
syntax rules, 4-11

Line,
blank, 1-15
comment, 1-15
continuation, 1-15
short, 1-16

LINE-PRINTER clause, 3-5
LINKAGE SECTION, 4-3
Literal, 1-7

ALL, 1-6
alphanumeric, 1-8
numeric, 1-7

Logical record concept,
4-17

LOW-VALUE, 1-6
LOW-VALUES, 1-6

MEMORY SIZE clause, 3-4
Meta language elements, 1-10

braces, 1-10
brackets, 1-10
ellipsis, 1-10
underline, 1-10

Modes,
dynamic access, 3-9
random access, 3-9
sequential access, 3-9

Module,
library, 7-1

MOVE,
general format, 5-63
general rules, 5-63
statement, 5-63
syntax rules, 5-63

MULTIPLE FILE clause, 3-18
MULTIPLY,

general format, 5-67
general rules, 5-68
statement, 5-67
syntax rules, 5-67

Negated combined condition,
5-22

Negated simple condition,
5-22

Non-over1ayab1e segments, 6-1
Noncontiguous

working storage, 4-3
Numeric character

representation, 4-20
Numeric literal, 1-7
Numeric operands,

comparison of, 5-18

Index-6

OBJECT-COMPUTER,
general format, 3-4
MEMORY SIZE, 3-4
paragraph, 3-4
SEGMENT-LIMIT, 3-4

OCCURS,
clause, 4-29
general format, 4-29
general rules, 4-30
syntax rules, 4-29

OPEN (indexed),
general format, 5-73
general rules, 5-73
statement, 5-73
syntax rules, 5-73

OPEN (relative),
general format, 5-73
general rules, 5-73
statement, 5-73
syntax rules, 5-73

OPEN (sequential),
general format, 5-69
general rules, 5-69
statement, 5-69
syntax rules, 5-69

Operands,
comparison of

alphanumeric, 5-18
comparison of numeric,

5-18
overlapping, 5-29

Operators,
arithmetic, 5-14

Optional words, 1-5
Organization,

DATA DIVISION, 4-1
ENVIRONMENT DIVISION, 3-1
file, 3-8
IDENTtFICATION DIVISION,

2-1
indexed file, 3-8
language, 1-17
relative file, 3"-8
sequential file, 3-8

ORGANIZATION clause, 3-10
Overlapping operands, 5-29
Overlayable segments, 6-1

PAPER-TAPE-PUNCH clause,
3-5

PAPER-TAPE-READER clause,
3-5

Paragraph, 1-19
COBOL 1~2
DATE-COMPILED, 2-4
FILE-CONTROL, 3-10
I-O-CONTROL, 3-18
OBJECT-COMPUTER, 3-4

INDEX (CONT •)

Paragraph (Cont.)
PROGRAM-ID, 2-3
SOURCE-COMPUTER, 3-4
SPECIAL-NAMES 3-5

Paragraph header, 1-19
Paragraph-name, 1-19, 5-3
PDP-II, 3-3
PERFORM,

general format, 5-76
general rules, 5-77
statement, 5-76
syntax rules, 5-77

Period, 1-9
Phrase,

CORRESPONDING, 5-27
ROUNDED, 5-26
SIZE error, 5-26
USING, 5-2

Phrases,
PROCEDURE DIVISION common,

5-26
PICTURE,

clause, 4-32
editing rules, 4-36
editing symbols, 4-34
general format, 4-32
general rules, 4-32
syntax rules, 4-32

PROCEDURE DIVISION, 5-1
ACCEPT, 5-30

Index-7

ADD, 5-32
ALTER, 5-34
body, 5-3
CALL, 5-35
CLOSE (indexed), 5-42
CLOSE (relative), 5-42
CLOSE (sequential), 5-37
common phrases, 5-26
COMPUTE, 5-44
DELETE (indexed), 5-45
DELETE (relative), 5-45
DISPLAY, 5-47
DIVIDE, 5-49
EXIT, 5-52
format, 5-3
GO TO, 5-53
header, 5-2
IF, 5-54
INSPECT, 5-56
MOVE, 5-63
MULTIPLY, 5-67
OPEN (indexed), 5-73
OPEN (relative), 5-73
OPEN (sequential), 5-69
PERFORM, 5-76
READ (indexed), 5-92
READ (relative), 5-88
READ (sequential), 5-85
REWRITE (indexed), 5-100
REWRITE (relative), 5-98

PROCEDURE DIVISION (Cont.)
REWRITE (sequential), 5-96
SEARCH, 5-103
SET, 5-108
START (indexed), 5-112
START (relative), 5-110
STOP, 5-114
STRING, 5-115
SUBTRACT, 5-118
UNSTRING, 5-120
USE, 5-124
USING, 5-2
WRITE (indexed), 5-132
WRITE (relative), 5-129
WRITE (sequential), 5-125

Procedures, 5-1
PROGRAM COLLATING SEQUENCE

clause, 3-4
Program execution, 5-2
PROGRAM-ID paragraph, 2-3
Program-name, 2-3
Punctuation,

comma, 1-9
format, 1-9
period, 1-9
semicolon, 1-9

Qualification, 5-8
Qualifier, connectives, 1-5
Quotation marks, 1-9
QUOTE, 1-6
QUOTES, 1-6

Random access modes, 3-9
READ (indexed),

general format, 5-92
general rules, 5-93
statement, 5-92
syntax rules, 5-92

READ (relative),
general format, 5-88
general rules, 5-89
statement, 5-88
syntax rules, 5-88

READ (sequential),
general format, 5-85
general rules, 5-85
statement, 5-85
syntax rules, 5-85

Record concept, 4-18
logical, 4-17

RECORD CONTAINS,
clause, 4-14
general format, 4-14
general rules, 4-14

Record-description-entry,
4-2

INDEX (CaNT.)

Records,
working-storage, 4-3

REDEFINES,
clause, 4-42
general format, 4-42
general rules, 4-43
syntax rules, 4-42

Reference,
uniqueness of, '5-8

Reference format,
conventional source, 1-12
terminal, 1-17

Registers,
special, 1-5

Relation condition, 5-17
combined, 5-24

Relative file organization,
3-8

RENAMES,
clause, 4-44
general format, 4-44
general rules, 4-45
syntax rules, 4-44

Reserved words, A-I
COBOL, 1-4

REWRITE (indexed),
general rules, 5-100
statement, 5-100
syntax rules, 5-100

REWRITE (relative),
general format, 5-98
general rules, 5-98
statement, 5-98
syntax rules, 5-98

REWRITE (sequential),
general format, 5-96
general rules, 5-96
statement, 5-96
syntax rules, 5-96

Right parenthesis, 1-9
ROUNDED phrase, 5-26
Rules,

alignment, 4-20
COBOL general, 1-3
COBOL syntax, 1-3
condition evaluation,

5-25
condition-name, 4-53

SAME RECORD AREA clause,
3-18

SEARCH,
general format, 5-103
general rules, 5-104
statement, 5-103
syntax rules, 5-104

Section,
COBOL, 1-2
header, 1-18

Index-8

SECTION,
FILE, 4-2
INPUT~OUTPUT, 3-8
LINKAGE, 4-3
WORKING-STORAGE, 4-3

Section-name, 5-3, 6-2
SEGMENT-LIMIT clause, 3-4,

6-2
Segment-number, 3-4, 5-3,

6-2
Segmentation, 6-1
Segments,

non-overlayable, 6-1
overlayable, 6-1

SELECT clause, 3-10
Semicolon, 1-9
Sentence, 5-4

compiler directing, 5-5
conditional, 5-4
imperative, 5-6

Separator, 1-8
Separator comma, 1-9
Separator horizontal tab,

1-9
Separator left parenthesis,

1-9
Separator quotation marks,

1-9
Separator right parenthesis,

1-9
Separator semicolon, 1-9
Separator space, 1-8
Sequence number, 1-14
Sequential access modes,

3-9
. Sequential file

organization, 3-8
SET,

general format, 5-108
general rules, 5-108
statement, 5-108
syntax rules, 5-108

Short line, 1-16
SIGN,

clause, 4-46
general format, 4-46
general rules, 4-46
syntax rules, 4-46

Sign condition, 5-21
algebraic, 4-20

Simple condition,
negated, 5-22

Simple conditions, 5-16
Simple insertion editing,

4-37
SIZE error phrase, 5-26
Skeleton,

DATA DESCRIPTION, 4-22
FILE DESCRIPTION, 4-5

Slash, 1-14

INDEX (CONT.)

Source language format,
COBOL, 1-11

Source reference format
conventional, 1-12
terminal, 1-17

SOURCE-COMPUTER,
general format, 3-3
general rules, 3-3
paragraph, 3-4

Space, 1-8
SPACE, 1-6
SPACES, 1-6
Special characters in

formats, 1-10
Special insertion editing,

4-37
Special registers, 1-5
Special-character words,

1-7
SPECIAL-NAMES,

CARD-READER, 3-5
CONSOLE, 3-5
general format, 3-5
general rules, 3-6
LINE-PRINTER, 3-5
PAPER-TAPE-PUNCH, 3-5
PAPER-TAPE-READER, 3-5
paragraph, 3-5
SWITCH OFF STATUS, 3-5
SWITCH ON STATUS, 3-5
syntax rules, 3-5

Specification,
explicit, 5-12
implicit, 5-12

START (indexed),
general format, 5-112
general rules, 5-112
statement, 5-112
syntax rules, 5-112

START (relative),
general format, 5-110
general rules, 5-110
statement, 5-110
syntax rules, 5-110

Statement,
ACCEPT, 5-30
ADD, 5-32
ALTER, 5-34
CALL, 5-35

Index-9

CLOSE (indexed), 5-42
CLOSE (relative), 5-42
CLOSE (sequential), 5-37
compiler directing, 5-5
COMPUTE, 5-44
conditional, 5-4
COPY, 7-1
DELETE (indexed), 5-45
DELETE (relative), 5-45
DISPLAY, 5-47
DIVIDE, 5-49

Statement (Cont.)
EXIT, 5-52
GO TO, 5-53
IF, 5-54
imperative, 5-5
INSPECT, 5-56
MOVE, 5-63
MULTIPLY, 5-67
OPEN (indexed), 5-73
OPEN (relative), 5-73
OPEN (sequential), 5-69
PERFORM, 5-76
READ (indexed), 5-92
READ (relative), 5-88
READ (sequential), 5-85
REWRITE (indexed), 5-100
REWRITE (relative), 5-98
REWRITE (sequential), 5-96
SEARCH, 5-103
SET, 5-108
START (indexed), 5-112
START (relative), 5-110
STOP, 5-114
STRING, 5-115
SUBTRACT, 5-118
UNLOCK, 5-120
UNSTRING, 5-121
USE, 5-125
WRITE (indexed), 5-133
WRITE (relative), 5-130
WRITE (sequential), 5-126

Statements, 5-4
ADD, 5-32
arithmetic, 5-27
COMPUTE, 5-44
DIVIDE, 5-49
MULTIPLY, 5-67
SUBTRACT, 5-118

STOP,
general format, 5-115
general rules, 5-115
statement, 5-114
syntax rules, 5-115

STRING,
general format, 5-115
general rules, 5-116
statement, 5-115
syntax rules, 5-115

Structure,
DATA DIVISION, 4-2
ENVIRONMENT DIVISION, 3-2

Subscripting, 5-9
SUBTRACT,

general format, 5-118
general rules, 5-119
statement, 5-118
syntax rules, 5-118

Suppression editing,
zero, 4-39

Switch-status condition,
5-21

INDEX (CONT.)

Symbols PCITURE,
editing, 4-34

SYNCHRONIZE,
clause, 4-48
general format, 4-48
general rules, 4-48
syntax rules, 4-48

Syntax rules,
ACCEPT, 5-30
ADD, 5-32
ALTER, 5-34
BLANK WHEN ZERO, 4-25
BLOCK CONTAINS, 4-6
CALL, 5-35
CLOSE (indexed), 5-42
CLOSE (relative), 5-42
CLOSE (sequential), 5-37
COBOL, 1-3
CODE-SET, 4-8
COMPUTE, 5-44
COPY, 7-1
DATA DESCRIPTION, 4-23
DATA RECORDS, 4-9
DATA-NAME, 4-26
DATE-COMPILED, 2-4
DELETE (indexed), 5-45
DELETE (relative), 5-45
DISPLAY, 5-47
DIVIDE, 5-49
EXIT, 5-52
FILE DESCRIPTION, 4-5
FILLER, 4-26
GO TO, 5-53
I-O-CONTROL, 3-18

·IF, 5-54
IDENTIFICATION DIVISION,

2-2
INSPECT, 5-56
JUSTIFIED, 4-27
LABEL RECORDS, 4-10
LEVEL-NUMBER, 4-28
LINAGE, 4-11
MOVE, 5-63
MULTIPLY, 5-67
OCCURS, 4-29
OPEN (indexed), 5-73
OPEN (relative), 5-73
OPEN (sequential), 5-69
PERFORM, 5:"'77
PICTURE, 4-32
PROGRAM-ID, 2-3
READ (indexed), 5-92
READ (relative), 5-88
READ (sequential), 5-85
REDEFINES, 4-42
RENAMES, 4-44
REWRITE (indexed), 5-100
REWRITE (relative), 5-98
REWRITE (sequential), 5-96
SEARCH, 5-104
SET, 5-108

Index-IO

INDEX (CONT.)

Syntax rules (Cont.)
SIGN, 4-46
SPECIAL-NAMES, 3-5
START (indexed), 5-112
START (relative), 5-110
STOP, 5-115
STRING, 5-115
SUBTRACT, 5-118
SYNCHRONIZE, 4-48
UNSTRING, 5-121
USAGE, 4-50
USE, 5-126
VALUE, 4-52
VALUE OF ID, 4-16
WRITE (indexed), 5-133
WRITE (relative), 5-130
WRITE (sequential), 5-126

Tab character, 1-16
Terminal reference format, 1-17

Underline, 1-10
Uniqueness of reference, 5-8
UNLOCK,

general format, 5-120
general rules, 5-120
statement, 5-120
syntax rules, 5-120

UNSTRING,
general format, 5-121
general rules, 5-121
statement, 5-121
syntax rules, 5-121

USAGE,
clause, 4-50
general format, 4-50
general rules, 4-50
syntax rules, 4-50

USE,
general format, 5-125
general rules, 5-126
statement, 5-125
syntax rules, 5-126

User-defined words, 1-4
USING,

PROCEDURE DIVISION, 5-2
USING phrase, 5-2

VALUE,
clause, 4-52
general format, 4-52
general rules, 4-52
syntax rules, 4-52

VALUE OF 10,
clause, 4-16
general format, 4-16
general rules, 4-16
syntax rules, 4-16

Variable,
conditional, 5-20

Words,
COBOL, 1-4
COBOL reserved,1-4
key, 1-5
optional, 1-5
res e r v.e d, A-l
special-character, 1-7
user-defined, 1-4

WORKING-STORAGE SECTION,
4-3

WRITE (indexed),
general format, 5-133
general rules, 5-133
statement, 5-133
syntax rules, 5-133

WRITE (relative),
general format, 5-130
general rules, 5-130
statement, 5-130
syntax, 5-130

WRITE (sequential),
general format, 5-126
general rules, 5-126
statement, 5-126
syntax rules, 5-126

ZERO, 1-6
Zero suppresion editing,

4-39
ZEROES, 1-6
ZEROS, 1-6

Index-II

· ICD
.~

C)
C o

'0

READER'S COMMENTS

TRAX COBOL
Language Reference
Manual
AA-D338A-TC

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. Problems with software should be reported
on a Software Performance Report (SPR) form. If you
require a written reply and are eligible to receive
one under SPR service, submit your comments on an SPR
form.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

o Assembly language programmer

o Higher-level language programmer

o Occasional programmer (experienced)

o User with little programming experience

o Student programmer

o Non-programmer interested in computer concepts and capabilities

Name Date ____________ _

Organization _____________________________________ _

Street __ __

t: i ty _________________________ Sta te _______ Z ip Code ___________ _

or
Country

---Fold lJere--

.--- Do Not Tear - Fold lJere and Staple ---

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

Software Documentation
146 Main Street ML5-5/E39
Maynard, Massachusetts 01754

FIRST CLASS

PERMIT NO. 33

MA YNARD, MASS.

