PREFACE

CHAPTER

CHAPTER

MANUAL OBJECTIVES
INTENDED AUDIENCE
STRUCTURE OF THIS DOCUMENT
ASSOCIATED DOCUMENTS
CONVENTIONS USED IN THIS DOCUMENT

TRAX FORMS PROCESSING

INTRODUCTION

The CURSOR

The VT62 Terminal Keyboard
System Function Keys
User Function Keys
The VT62 LED Display Panel
A SAMPLE TERMINAL SESSION — THE USER’S
PERSPECTIVE
Using a Transaction Selection Form
Using Entry Forms '
Using a Report Form

THE APPLICATION TERMINAL LANGUAGE —

AN OVERVIEW

Statements
Descriptions of ATL Form Definition Statement
ATL Compiler Directive Statement Descriptions
Clausesccciiinnnnn
Summary of ATL Clause Types
ATL SYNTAX RULES

................

A TYPICAL TRANSACTION
DEFINING FORMS
TRANSACTION DEFINITION
DATA FLOW IN A TRANSACTION
TRAX APPLICATION PROGRAMS — TSTs
FORMS AND FORM DEFINITIONS
Replies
THE TERMINAL STATION
MESSAGES ...t
Exchange Messages
Response Messages
THE APPLICATION TERMINAL
Using the VT62 Application Terminal

.................

CONTENTS

Page

iii

CONTENTS (Cont.)

CHAPTER

CHAPTER

iv

2.2.1
2.2.2
2.2.3
224
225
2.2.6
2.2.7
2.3

2.3.1
2.3.2

w

. . e . . . e e
[R T e T

WWLWW W WwwWww W
D s et et et ek b bk e et
NP~

Page
General Statement Format, 29
Statement Orderingt nnrnnenannnnns 2-10
AbbreviatingKeywords i i, 2-11
Literal Text Delimiterciitiiieiinnnnn. 2-11
Using Comments in ATL Statements 2-11
The “DOT” Constructsc.cuviiiirrrnreneeeneneennn 2-13
Assumed ATL Utility Default Conditions 2-13
ATL LANGUAGE SUMMARY i, 2-14
Conventions Used to Describe the Language 2-14
Summary of ATL Statementsand Clauses 2-15
EXAMPLES OF HOW TO CODE ATL FORM
DEFINITIONS i e e ieineenannnn 3-1
CODING AFORMDEFINITION 3-1
Coding an Entry Form Definition 3-1
Setting the Default Specifications 3-1
Coding the Form Statement 34
Coding the Display Areao eennnnnnnn 34
Codingthe Form Areat iinennnnnnn. 3-5
Definingthe Reply Screens, 3-10
Defining the Message Statement 3-11
Using the KEY and KEYCAP Parameters 3-17
CODING A REPORT FORM DEFINITION 3-20
Coding the FORM Statementc0ivivninn... 3-20
CODING THE TRANSACTION SELECTION FORM 3-25
Coding the FORM Statementc.0... 3-26
Coding the Display Area Using Menu Fields 3-26
Coding Repliesttt 3-28
Coding a Selection Form for UserInput 3-30
Coding the Prompt and Input Fields 3-30
USING THE ATL UTILITY ittt iannnnannn 4-1
THE FORMS DEFINITIONFILE, 4-1
TRAX UTILITY DIALOG CONVENTIONS 4-1
INVOKING THE ATL UTILITY iiiinnnnnn. 4-3
ADDING FORMS TO A FORM DEFINITIONFILE 4-4
COMPILING FORMS FOR DEBUGGING PURPOSES 4-5
DELETING FORMS FROM A FORMS DEFINITION FILE 4-8
DISPLAYING THE FORM DEFINITION FILEINDEX 4-9
PURGING VERSIONS OF THE FORM DEFINITION FILE 4-10
RENAMING FORMS IN A FORMS DEFINITIONFILE 4-12
REPLACING FORMS IN A FORM DEFINITIONFILE 4-14
DISPLAYING A FORM DEFINITIONRECORD 4-17

4.12
4.12.1
4.12.2
4.12.3
4124
4.12.5
4.12.6
4.12.7
4.12.8
4.12.9
4.12.10
4.12.11
4.12.11.1
4.12.11.2
4.12.11.3

CHAPTER 5

5.1
5.2
5.3
54
5.5
5.6
5.7
5.8
59
5.10
5.11

APPENDIX A

Al
A2
A3

APPENDIX B

B.1
B.2

CONTENTS (Cont.)

Page
ANNOTATED ATL UTILITY OUTPUT LISTINGS 4-19
Forms Definition Statements — Page L-1toL-5 4-19
Summary of General Form Parameters — Page F-1 4-26
Summary of Input Field Declarations —Page F-2 4-27
Summary of Prompt Field Declarations — Page F-2 4-28
Summary of DISPLAY Field Declarations — Page F-3 4-30
Summary of MENU Field Declarations 4-30
Summary of PRINT Field Declarations 4-31
Exchange Message Layout — Page F4 4-33
Initial Screen Request Layout 4-34
Reply Message Layout —Page F-5 4-34
Screen Display Format Listings 4-35
Initial Screen Display —Page S-1 4-36
Reply Screen Display #1 4-38
Reply Screen Display #2 i 4-40
DETAILED ATL STATEMENT DESCRIPTIONS 5-1
THE DEFAULT STATEMENT 5-2
THE DISPLAY STATEMENT, 5-7
THE END STATEMENT 5-12
THE FORM STATEMENT 5-13
THE INPUT STATEMENT i, 5-20
THE MENU STATEMENT 5-28
THE MESSAGE STATEMENT 5-31
THE PRINT STATEMENT 5-34
THE PROMPT STATEMENT 5-37
THE REPEAT AND REND STATEMENTS 5-41
THE REPLY STATEMENT i, 544
ATL UTILITYMESSAGES A-1
WARNING MESSAGES i A-1
FATAL ERRORMESSAGES A-3
ATL UTILITY DIALOG ERRORMESSAGES A-5
ATL LANGUAGE SUMMARY, B-1
CONVENTIONS USED TO DESCRIBE THE LANGUAGE B-1
ATL STATEMENTS AND CLAUSES B-2
.. Index-1

CONTENTS (Cont.)

FIGURE

vi

]
[y

RN

EN

-bWN'—‘OO\)O\M

3-5a
3-5b
3-6a
3-6b

3-8
3-9
3-10
3-11
3-12
3-13
3-14
3-15
4-1
4-2
4-3

4-5
4-6
4-7
4-8
4-9a
4-9b
4-9¢
4-10
4-11
4-12
4-13
4-14
4-15

Page
A Transaction Structure Diagram 14
A Two-exchange Transactioncciiiiiininnennnn. 1-5
Terminal Keyboard i, 1-10
A Transaction SelectionForm 1-17
Entry Form — The Initial Screen Display 1-18
Completed Entry Form i, 1-19
Entry Form after Reply #1 i, 1-19
Report Form Output to LA180 Terminal 1-20
Sample Form Specification Sheet 3-2
Form Specification Sheet for Entry Form ADCUST 3-3
Customer File Record Layout i, 3-6
ATL Utility Listing of REPEATBlock 3-8
Form Specification for Reply #1 of ADCUST 3-12
Response Message Specification for Reply #1 3-13
Form Specification for Reply #1 of ADCUST 3-14
Response Message Specification for Reply #2 3-15
Exchange Message Layout for Add Customer Exchange 3-16
Initial Screen for Form ADCUST e 3-17
TST Coding (COBOL) to Test Function Key Input 3-19
Report Form Specification Sheet — “PRTCUS” 3-21
Report Message Specification Form 3-22
LA180 Listingof Report Form 3-25
Menu-type Transaction Selection Form 3-27
Transaction Selection Form 3-29
Initial Screen Display for Input-type Transaction Selection Form 3-31
ADD Command Dialog iiiiiiinnnnnnn. 4-5
COMPILE Command Dialog, 4-8
DELETE Command Dialog cuiiuru... 4-10
INDEX Command Dialog icu.nn.. 4-11
PURGE Command Dialogciiiiiuiinninnnnn. 4-13
RENAME Command Dialog, 4-14
REPLACE CommandDialog 4-16
SHOW Command Dialog i iiiiiiininnnnn. 4-18
Initial Screen Display Listing 4-18
Reply 1 Screen Display Listing 4-19
Reply 2 Screen Display Listing 4-20
ANNOTATED Statement Listings (5 Sheets) 4-21
ANNOTATED Form ListingPage F-1 4-27
ANNOTATED Form ListingPage F-2 4-29
ANNOTATED Form ListingPage F-3 4-30
ANNOTATED Form Listing “SELECT” Page F-3 4-31
ANNOTATED Form Listing “PRTCUS” Page F-3 4-32

TABLE

4-16
4-17
4-18
4-19
4-20
4-21

2-1

CONTENTS (Cont.)

Page
ANNOTATED Form ListingPage F4 4-33
ANNOTATED Form Listing “PRTCUS” Page F-2 4-34
ANNOTATED Form ListingPage F-5 4-35
ANNOTATED Screen ListingPage S-1 4-37
ANNOTATED Screen ListingPage S-2 4-39
ANNOTATED Screen ListingPage S-3 441
ATL Keywords & Abbreviationscuu... 2-12

PREFACE

0.1 MANUAL OBJECTIVES

This manual is both a tutorial and a reference document. The concepts of forms processing in a
TRAX application are presented, and a sample terminal session is illustrated to help the reader
understand how forms are used.

The manual presents the facilities of the Application Terminal Language (ATL), and uses a series of
coordinated examples to show how to define and code forms using ATL, and how to incorporate
coded form definitions into a transaction processor. An extensive description of the ATL language
is included.

0.2 INTENDED AUDIENCE

This document is written for use by the TRAX application designer and application programmer.
It assumes no prior knowledge of ATL, but requires an understanding of the way an application is
designed and integrated into a TRAX transaction processor.

0.3 STRUCTURE OF THIS DOCUMENT
This manual is divided into 5 chapters and 2 appendices. The following list gives a general descrip-
tion of each section:

1. Chapter 1 — Introduces forms processing and defines and describes a number of the con-
cepts required by a forms designer. The VT62 terminal is described, and a sample TRAX
application is shown in an illustrated example of how to use a form.

2. Chapter 2 — Describes the syntax of ATL, gives a description of each statement and clause
type, and describes various rules to be followed when you are coding forms.

3. Chapter 3 — Is a tutorial chapter which describes how to code each of the three major types
of TRAX forms, transaction selection, report, and data entry and display forms.

4. Chapter 4 — Describes how to use the ATL utility program to incorporate form definition
source files into a transaction processor.

5. Chapter 5 — Is a detailed description of the Application Terminal Language. It is organized
in alphabetical order by statement name, and describes the effect of each statement, and the
effect of clauses as they pertain to specific ATL statements.

6. Appendix A — Lists the Error Messages produced by the ATL utility when it compiles form
definitions.

7. Appendix B — Is a Table of ATL Statements and Clauses designed for quick reference.

0.4 ASSOCIATED DOCUMENTS

Before reading this document, you must read the Introduction to TRAX (DEC AA-D327A-TC). If
you are not familiar with the program development facilities supported under TRAX, you should
read the TRAX Support Environment User’s Guide (DEC AA-D331A-TC), and the DEC Editor
Reference Manual (DEC AA-D345A-TC). If you are designing the application, you must read the
TRAX Application Designer’s Guide (DEC AA-D328A-TC) prior to using this document.

ix

0.5 CONVENTIONS USED IN THIS DOCUMENT
Throughout this manual, ATL is used to refer to the Application Terminal Language. This follow-
ing conventions are used in examples:

CTRL/x

(RET)

(nn)

Red text

The CTRL key and another key pressed simultaneously (e.g.,
CTRL/Z)

The RETURN key (carriage-return/line feed).

The number in the circle on an example output listing refers to
the similarly numbered paragraph in the annotation text.

Where examples contain both user input and computer output,
the characters you type are in red; the characters the computer
prints are in black.

The following symbols are used to annotate the ATL Language Descriptions:

[]

K

Lower-ase letters
UPPER-CASE LETTERS
Underlining

Special brackets indicate optional information can be omitted
from a statement or clause.

Braces indicate a choice of one or more parameters from the
set enclosed by the braces. You can also specify a parameter
more than once as part of the same clause.

Parameters in lower-case letters indicate data that you must
supply such as a label, number, or text-string.

Parameters shown in upper-case letters are keywords. They
must be specified and spelled, as shown in the parameter list.

The default parameter values assumed for certain clauses
(ATTRIBUTES, for example) are underlined.

An ellipsis indicates that repetition of a clause or a parameter
specification may occur at this position.

CHAPTER 1
TRAX FORMS PROCESSING

1.1 INTRODUCTION
TRAX is a forms-oriented transaction processing system. All communication between the applica-
tion terminal user and the transaction processing software is done with forms.

TRAX displays a predefined form on the user terminal and allows you to fill it out. Until the user
completes the form, TRAX is not involved in the data entry process. Only when the form has been
completed does TRAX begin to process the data.

The interactive forms used in TRAX applications are specified by a system designer or applica-
tion programmer using a set of statements, clauses, and parameters known as the Application
Terminal Language (ATL). The ATL statements and clauses that describe a form are called a
form definition.

In a TRAX system, the application terminals are controlled by system software modules, called
terminal stations, that are part of each transaction processor. Terminal stations control terminal
operations with a set of instructions generated from the form definitions that you have defined.

These form definitions specify the form displays that the user sees on the screen, and the restric-
tions that govern data entry. These specifications are interpreted and executed by microprocessors
inside the application terminal. In this way, terminals are controlled without having an active ap-
plication program.

1.2 A TYPICAL TRANSACTION
A typical session between a terminal user and the system consists of the following sequence of
interactions.

1. On the initial form display, the user selects the desired transaction, and presses a function
key which tells the terminal station that a transaction selection has been made.

2. The terminal station retrieves and displays the form defined for the first exchange of the
specified transaction.

3. The user enters data in the form’s fields, or edits data in those fields. During this process,
he conforms to the data entry restrictions specified in the form definition.

4. After the form is completed, pressing a user function key sends the data to the terminal
station.

5. The terminal station accepts the data it receives from the terminal and formats it according
to the specifications in the form definition. The resulting data structure is called an ex-
change message.

6. The terminal station then passes the exchange message to a transaction processor, where
one or more application programs perform data processing upon the input data.

1-1

Forms Processing

7. After the transaction processor has completed processing, it can take one of two actions:
® It can send information back to the terminal station that modifies the current form
according to the specifications in the form definition (via a reply response message).
Steps 2 through 7 are repeated using the current form.
® It can send information to the terminal station causing the display of another form
(using a proceed response message). Steps 2 through 7 are performed using the new
form display.
8. If the user wants to return to select a new transaction, (Step 1), the transaction must be
designed so that the selection form is displayed after the user has pressed a system function
key to close the current transaction.

The forms displayed and completed at an interactive TRAX terminal replace the paper forms and
punched cards that have traditionally been used to process business transactions.

As an example, consider a traditional catalog-store business where customer orders are called in
over the telephone to an order processing center. An order taker receiving a call for an order must
complete a paper form which is then sent to the data entry section for conversion to machine-
readable media such as cards, tape, or disk.

In the same business using TRAX, the order taker enters the order information directly onto a
form display at an interactive terminal. When the data entry operation is completed, a function
key is pressed that sends the data on the form to the transaction processor, where system and ap-
plication software combine to process the data.

In a TRAX-based application, paper forms and a separate data entry operation are no longer needed,
since the forms defined for use with the microprocessor-based application terminal performs several
crucial operations when the user enters the data:

® The data is collected in a machine-readable format.

® The terminal validates the data according to the specifications in the form definition.

® Data is sent to the terminal station as a package, rather than having every character trans-
mitted and echoed by the main system.

1.3 DEFINING FORMS
When the application designer has determined the layout of the forms used by a business, the ATL
statements and clauses are used to code the set of source statements that specify a form definition.

The form definition specifies the appearance of the form and the placement of fields and captions.
It also specifies:

® How data from a preceding program is interpreted and included in the display
® Where and how the user enters data

® Which function keys the user employs

® What data is assembled from the user entries for subsequent programs

® Where and how error messages (and other modifications) are displayed

Once they are coded, the ATL statements detailing the form definition are entered into a machine-
readable file using the DEC Editor.

Forms Processing

The file of ATL source statements is then submitted to the ATL utility. The ATL utility is a forms
compiler. It converts the form definition source statements into a form definition record that
contains screen formats and terminal commands that govern the appearance and operation of an
application terminal.

1.4 TRANSACTION DEFINITION
A transaction definition sets the structure of each transaction that a transaction processor can
perform. The transaction definition specifies parameters such as:

® The number of exchanges in the transaction

® The form definition for each exchange

® The processing route for each exchange message
® The execution sequence for exchanges

A transaction can have one or more exchanges. For example, the transaction in Figure 1-1 adds a
new record to a file. It requires one exchange.

On the other hand, a transaction that modifies information in a data file might require two ex-
changes: one exchange to specify the record, and a second exchange to display the requested data,
to allow user modifications, and then to process the changed data. A two-exchange transaction is
described in Figure 1-2.

1.5 DATA FLOW IN A TRANSACTION
The single exchange transaction in Figure 1-1 (following page) illustrates the flow of data between
forms and the transaction processor.

® The exchange begins when the transaction processor displays the form specified for the
exchange, in this example, it is the exchange to add a record to the customer file.

® Then the user completes the input fields on the form display and presses a user function key.

® When the user function key is pressed, the data entered on the screen is sent from the
terminal to the transaction processor, where it is formatted into a data structure called
an exchange message.

® The transaction processor then passes the exchange message to the exchange routing list,
which consists of two application programs called TSTs. The first TST validates the ex-
change message and passes control to the second TST.

® As the second TST completes processing, it passes the results back to the terminal station
using a TRAX system call known as a reply response message.

® The terminal station uses the reply response message and the reply specifications in the
form definition to write the customer number on the screen along with the message
TRANSACTION COMPLETE.

® The exchange is completed, and the user is instructed to press the AFFIRM function key
to continue adding customers to the file.

1.6 TRAX APPLICATION PROGRAMS — TSTS
A Transaction Step Task (TST) is a TRAX application program.

When the terminal station receives data from an application terminal, it formats the exchange
message as specified in the form definition. Then, it invokes one or more TSTs to process the
exchange message. To learn more about coding and using TSTs, refer to the TRAX Application
Programmer’s Guide (AA-D329A-TC).

Forms Processing

TRANSACTION PROCESSOR | SJA[MIPIL IE |

TRANSACTION NAME {Alplp]clv]s | pace [11] or [11]
EXCHANGE NAME talp[D[E[X]1]
FORM NAME (A[D[cV[sS]T]
CONVERSATION l MESSAGES J PROCESSING
INITIAL DISPLAY
REPLY
RESPONSE MESSAGE
CONTAINS CUSTOMER
NUMBER
 REPLY
RESPONSE WRITE
HMESSAGE
coiTans \ NEW RECORD
ERROR TEXT ERROR R E
AsstgN
ERROR | cysoMeER
NUMBER
ERROR | VALIDATE
TER EXCHANBGE MESSAGE EXCHANGE
- CLoSE| FUNcTioN 24 MESSAGE
T KEys OATA

TRANS,
sescnow | AFFRM (AFTSR *1)
(To NEW COPY OF CUSIOMER DATA FORM)

ATEND: [] - REPEAT [J - NexT - WAIT
— NOREPEAT [X] - FIRsT [] - nowaiT
[- mimAL

Figure 1-1 A Transaction Structure Diagram

14

EXCHANGE: DPYEX1 ForM : PPCUSL

Forms Processing

CLbse

SeimeaNsACT| oR MUMBER CUSIOMER MUMBER AND NAME FIELDS.

N FORM

CONVERSATION] MESSAGES 1 PROCESSING
INITIAL DISPLAY
ENTER Rerd CoRpecT
USER ENTERS CUSTOMER
CUSTOMER NAME EXCHANGE MESSAGE CONTAINS RECORD

.

PRCEED

RESPONSE MESSAGE CONTAINS CUSTOMER RECORD

EXCHANGE : DPYEX 2

AT END : No REPEAT, NEXT; WAIT

FORM : DPCUS 2.

CONVERSATION MESSAGES l PROCESSING
=]
§ § INITIAL DISPLAY
o DiseLay
customer | PRCEED
RESPONSE MESSAGE
CONTRINS CUSIDMER. RECORP
FORM “PRTCUS"
ReAp
NEXT RECORD
SEND REPORT
MESSAGE T’ev
OUTPUT ONLY—
RESPONSE MESSpGE OVERWRITES DBPLAY FIELD selp RepLy T
ScreeN 21
Yes
ENTER €
CLOSE AwWAIT keYeap s
-t USER. AC KEY})OT EXCHAMNGE MESSAGE w KYDOT'
o TRANSACTION TION COOTAINS KEYCAP TEXT
SELEATION FORM
ST0P REPEAT |

To FIRST EXCHANGE

AT END: REPEAT, FIRST,

WAIT

Figure 1-2 A Two-exchange Transaction

1-5

Forms Processing

17 F ORMS AND FORM DEFINITIONS
A form is a terminal screen display that contains instructions, information, and space for entering
and/or displaying data.

TRAX applications use three types of forms. Each type of form serves a specific purpose and must
be coded using ATL language elements. Once the form definitions are processed by the ATL
utility, the resulting object code is stored in the transaction processor’s form definition file.

The three types of forms are:

1. Transaction Selection Forms are used to select a transaction and initiate it at the terminal.
When a terminal station is defined using the STADEF utility (see the TRAX Application
Programmer’s Guide AA-D329A-TC.), the name of an initial form is specified for the sta-
tion. This initial form is automatically displayed on the terminal when:
® A transaction processor is startea.
® A transaction instance terminates, and its subsequent action parameter specifies that the

initial form is to be displayed.
In a typical TRAX application, the user chooses the type of transaction to be processed and
specifies the name of that transaction from a list of defined transaction types. The initial
form defined for an application terminal is normally a transaction selected form.

2. Entry . . . Forms, the most commonly used forms in a TRAX application, allow the user to
enter data onto a terminal screen directly, as well as to retrieve and display information
from a data base. When you define an exchange, you usually specify the name of an entry
form as part of the exchange definition.

3. Report Forms are used to format information for printing on an output-only terminal
device. You specify a form name as part of the library call that sends a report message to
an output-only station. These forms are never interactive; they are always invoked by a TST
and sent to a hard-copy terminal.

Once the designer specifies a form, and a set of ATL statements is coded to implement the specifica-
tion, the DEC Editor is used to enter the ATL language source statements into an ATL source state-
ment file. The source statements are compiled, using the TRAX ATL utility program, into a set of
screen formatting commands that collectively are called a form definition record. This form defini-
tion record is stored in the form definition file, along with all other form definitions for the trans-
action processor.

In a set of ATL form definition source statements, you specify:

1. The form layout as it appears on the application terminal. Forms are laid out in two major
areas, the Display area and the Form area. The top of the screen is the Display area, the
remainder is the Form area. Within each area, you can define certain types of fields.

A field is a defined contiguous section of the screen that has attributes and characteristics

specified by the form definition. There are five types of fields:

A. Display Fields present user instructions and display messages from the transaction
processor. Display fields appear in the Display area.

B. Menu Fields list items that can be selected by the user and sent directly to the trans-
action processor. A Menu field appears in a form’s Display area.

Forms Processing

C. Prompt Fields provide instructions to the user filling the form. These prompts appear in
the Form area.
D. Input Fields provide space in the form where the user can enter new data or edit existing
information. Input fields appear in the Forms area.
E. Print fields, similar to prompt fields, are used to display instructions and data on forms
specified for an output-only terminal. Print fields are specified on Report forms only.
. The data entry restrictions that terminal users must observe. These include field content
and justification attributes (for example, allowing only numeric characters in an Input field).
. The field dimensions and their initial contents.
. How the data in a response message is used to initialize field contents on a form display.
. Format specifications to construct exchange messages from user input.
. Function keys enabled for use at a particular time.
. Sets of form modifications (replies) applied when reply messages are received from an
application TST.

[\

~NONwnm AW

1.7.1 Replies

When the TST has processed the data from an exchange, the transaction processor sends a new
visual display to the terminal. This may be a new form, a fresh copy of the current form, or a set
of modifications, called a reply, to the current form.

In the case of a reply, the transaction processor acts upon the current form in one or more of the
following ways:

1. It displays new instructions, text, or data field contents.
2. It enables a new set of user and system function keys.
3. It causes the terminal bell to sound, alerting the user.

Replies are specified by the REPLY statement in the ATL form definition. Each form can have
up to 64 numbered REPLYSs specified in the form definition.

1.8 THE TERMINAL STATION

A terminal station is a logical location in a transaction processor that controls the flow of data to
and from an application terminal. You may think of it as the interface between forms and TSTs.
The terminal station extracts information from data entered by the terminal user, and formats that
information to create exchange messages. It also merges data from response messages into form
definition records, creating screen displays that are returned to the application terminal.

1.9 MESSAGES

Messages are the structures used to transfer data between a TST and the terminal. Exchange mes-
sages carry information from the terminal to the application program. Response messages carry
information from the application program to the terminal.

1.9.1 Exchange Messages

When a user function key is pressed, the data contained in a form’s Input fields is sent from the
terminal to the terminal station. At the terminal station, the transaction processor formats this
data into an exchange message. The formatting is specified by the parameters contained in the
MESSAGE statement in that form’s ATL form definition.

1-7

Forms Processing

The exchange message contains one or more of the following types of data:

1. Data entered by the user into a form’s Input fields

2. System-supplied information, such as the current date and time

3. The contents of a menu field selected by the user

4. A text-string identifying the user function key that sent the data to the terminal station.

After the terminal station formats the exchange message, it is made available to each of the TSTs
that do the processing for the exchange.

1.9.2 Response Messages

Response messages are the TSTs answer to exchange messages. Response messages can cause
modifications to the current form, or they can display another form on the application terminal.
Both classes of response messages can optionally include data for display on the form. A response
message is sent to the terminal station where the exchange message originated.

One type of response message is a “reply response message”’.

An important distinction to note in TRAX applications is the difference between a reply and a
“reply response message”. A reply is the set of modifications, specified in a form definition, that
the terminal station makes to a screen display when a “reply response message” is sent by a TST
to the form. '

Each form definition can contain one or more numbered reply definitions. Each reply definition
specifies modifications that might be applied to that form. Some aspects of a form can be modi-
fied by a reply, such as:

® The text display in any field

® The set of enabled function keys

® The cursor position

® Sounding the terminal bell upon display of a reply

Other form aspects are “frozen” when a form is first displayed. These features cannot be changed
by areply:

® A field’s size

® A field’s data entry restrictions

® A field’s display mode (such as, black on white)
® The format of the exchange message.

When a TST sends a reply response message to a terminal station, it specifies a reply number in the
response message parameter list. The transaction processor matches that reply number against the
numbered replies stored in the form definition record. The corresponding set of screen modifica-
tions is then made to the form on the application terminal.

Replies are commonly used to tell the terminal user of a completed action or an error discovered
during the processing of a transaction. A reply allows the terminal user to continue in the same
exchange without forcing the transaction processor to refresh the form.

Forms Processing

For example, if a TST detects an error in the input data or encounters a system error during
processing, it sends a reply response message, specifying a reply number in the parameter list.
After the reply screen is received at the terminal, the user can study the modified form and then
edit the contents of the form’s Input fields. The process of entering a form, receiving a reply,
and reentering data can be repeated any number of times before proceeding to the next exchange
specified by the transaction definition.

Other types of response messages transfer the processing to another exchange. Depending on the
type of response message, the new exchange (and the associated new form) may be the next ex-
change, the first exchange, or some other exchange defined for the current transaction type.

The various types of response messages are described in the TRAX Application Designer’s Guide
(AA-D328A-TC), and the way they are sent from TSTs is described in the TRAX Application
Programmer’s Guide (AA-D329A-TC).

For a transaction to display data on a terminal, two distinct programming efforts are involved:

1. A TST issuing a response message system call must include a parameter specifying the data
to be included in the response message.

2. In the form definition, you must specify how the terminal station is to display the data
included in the requesting response message. Using the ATL REQUEST function, you can
specify the way that data is extracted from a response message and placed into Display,
Menu, Print, Prompt, and Input fields.

1.10 THE APPLICATION TERMINAL

TRAX supports two types of application terminals: the V762, a cathode ray tube (CRT) terminal
which is used to process interactive transactions; and the LA180, an output-only hard-copy
terminal used for printing reports.

1.10.1 Using the VT 62 Application Terminal

This section explains how to use the interactive TRAX application terminal, the VT62. The VT62
is a “smart” video terminal that was designed expressly for use with TRAX. The VT62 keyboard
is shown in Figure 1-3. The VT62 has a display screen which consists of 23 programmer-defined
and user-accessible display lines, with a 24th line used to display system and error messages. The
keyboard is a standard typewriter keyboard, with a number of control and function keys added

to provide the user with increased data entry capability. The right-hand keypad provides a full set
of numeric data entry keys. In addition, it contains four system function keys, and utilizes the
SHIFT key to provide six user function keys.

The VT62 improves overall performance by checking input data for a number of attributes and
conditions at the time the data is typed, rather than having to send the data to a verification pro-
gram before processing can begin. If a user types an invalid character, the terminal locks the key-
board, sounds the bell and displays an error message on line 24 of the terminal screen. When a

form is completed to the user’s satisfaction, it can be transmitted to the terminal station by pressing
an enabled user function key. When a transaction is completed, the user may determine the next
terminal screen display by pressing an enabled system function key.

The VT62 also allows fields to be highlighted in reverse video. Normal video characters are seen as
light characters on a dark background. Reverse video, as the name implies, displays characters as
dark symbols on a light background.

Forms Processing

Figure 1-3 Terminal Keyboard

1.10.2 The CURSOR

The VT62 has one visible cursor. The cursor flashes its current position by turning that character
position from regular to reverse video and back again. If you have defined any Menu fields on a
form, you can use the NEXT FIELD, FORWD FIELD, BACK FIELD key to position the cursor

in any Menu field in the display area. If you have defined any Input fields, you may use these same
keys as well as the right arrow (—>) and left arrow («) keys to position the cursor at any location

in an Input field. You may not position the cursor in an Input field with the NOMODIFY attribute.

1.10.3 The VT62 Terminal Keyboard

The application terminal keyboard has a number of specialized keys that assist the terminal user.
The keys used to control keyboard operations are listed below, along with a description of the ac-
tion that each key performs.

NEXT FIELD

When you press the NEXT FIELD key, the cursor moves from its current location to the
beginning of the next defined Input or Menu field. If the current location is at the beginning
or in the middle of an Input field, when the terminal fills the remaining characters in that
field with the CLEAR character defined for that field. Consider the following fields:

Maanard, MA 03060

In this example, the cursor is positioned over the “y” in ‘“Maynard”. If you press the NEXT
FIELD key, the letters to the right of the ‘““y” are cleared (the CLEAR character specified for
this field is a space), and the cursor is positioned at the start of the next field, the zip code.

May 060

You use the NEXT FIELD key most often in initial data entry operations, where you want
to blank the remainder of the field after entering the required data. In cases where the field
initially contains a value, you can use the FORWD FIELD and BACK FIELD keys to move
from one field to another without altering the field contents.

FORWD FIELD

When you press the FORWD FIELD key, the cursor moves to the first position of the next
Input or Menu field without altering the contents of the current field. If you continue to
press this key, it repeats the same function at the rate of ten times per second. This key is

Forms Processing

very useful for editing existing information on a form, since it allows you to skip over correct
fields without altering the contents.

BACK FIELD

If you press the BACK FIELD key when the cursor is in the middle of an Input field, the
cursor will return to the beginning of the current field. If the BACK FIELD key is pressed
when the cursor is at the beginning of an Input or Menu field, the cursor will move to the
beginning of the preceding field. The BACK FIELD key never alters the contents of a field,
and is useful for skipping backward to incorrect fields. If you continue to press this key, it
repeats the same function at the rate of ten times per second.

HOME FORM
When you press the HOME FORM key, the cursor moves to the start of the first Input field
defined on the form.

HOME DISPLAY
If you press the HOME DISPLAY key (Shift + HOME FORM), the cursor moves to the start
of the first Menu field defined on the form.

SELECT

The SELECT key is enabled only when a form has been defined with Menu fields. When you
position the cursor in a Menu field and then press SELECT, the terminal displays the selected
field in reverse video. If, after selecting a menu item, you press an enabled user function

key (ENTER, KEYDOT, KEYO0, KEY1, KEY2, KEY3), the terminal sends the contents of
the selected Menu field to the terminal station.

DESELECT

If you find that a selected Menu field is incorrect before you transmit the selected field, you
can deselect the menu item by pressing the DESELECT key. (To use the DESELECT key

you must simultaneously press the SHIFT key and the SELECT key.) The terminal will return
the field to normal video, and you may then begin selecting another menu item.

CLEAR

In the case of Menu fields, the CLEAR key functions as a global DESELECT key. Regardless
of where the cursor is positioned, all selected fields are restored to normal video and deselected.
The cursor returns to the first character of the first menu item.

If the form has Input fields, first pressing the CLEAR key erases all Input field contents,
filling them with their defined CLEAR character(s). The terminal then returns the cursor to
the start of the first Input field defined for that form.

ERASE CHAR

The ERASE CHAR key allows you to erase characters selectively from an Input field. If the
field has been defined as left-justified (the default), pressing the ERASE CHAR key erases the
character immediately to the left of the cursor. If you continue to press this key, it will
repeat the same function at the rate of ten times per second.

~ " The cursor then moves left one position, and a CLEAR character is inserted in the right-
most position in the field. If the character is in the leftmost position of a field, pressing

Forms Processing

1-12

ERASE CHAR deletes that character and moves all other characters in the field one position
to the left. Consider the following example:

Magjard, MA

Initially, the cursor is on the *“‘y”.

Pressing, the ERASE CHAR key causes the following string to be displayed:

Magnard, MA

Notice that the second ‘‘a” has been erased, and the cursor is still on the “y”.

The action of the ERASE CHAR key is similar for right-justified fields:

1,200§00

Initially, the cursor is the 5.

Pressing the ERASE CHAR key causes the following string to be displayed:

1,20 00

In this case, the “0” to the left of the ‘5’ was erased. The cursor is still on the “5”.

DELETE FIELD

When you press the DELETE FIELD key, the terminal erases the contents of the current field
and fills it with the defined CLEAR character for that field. The cursor is returned to the
start of the field.

DELETE CHAR

Pressing the DELETE CHAR key deletes the character under the cursor. This key repeats its
function at the rate of ten times per second. For left-justified fields, all characters to the
right of the deleted character are shifted left one position. The following examples illustrate
the action of this key:

Maaynard, MA

Initially, the cursor is on the first “a”.

Pressing the DELETE CHAR key causes the following string to be displayed:
Maynard, MA

The first “a” has been deleted. The cursor is on the remaining “a”.

The action of the DELETE CHAR key is similar for right-justiﬁed fields:

1,200 00

Forms Processing

Initially, the cursor is on the “5”.

Pressing the DELETE CHAR key causes the following string to be displayed:

1,200b00

The “5°” has been deleted, the cursor is now on the decimal point (.).

INSERT MODE

Pressing the INSERT MODE key allows you to insert characters into a previously filled Input
field. If you type data into a left-justified field while in INSERT MODE, all characters to the
right of the cursor move one position to the right. When typing into right-justified fields, all
characters to the left of the cursor move one position to the left. Consider the examples below:

swfj

Initially, the cursor is on the “T”
you press the INSERT MODE key, then type “I”, the following string is displayed:

SMIfjH

The ““I”” has been inserted, and the cursor is still on the “T”. To exit from insert mode,
press the SHIFT key and the INSERT MODE key simultaneously.

Right-justified fields can be modified in the same way:

12345

Initially, the cursor is on the decimal point (.).
you press the INSERT MODE key then type <0, the following string results:

123045

The 0’ has been inserted to the left of the decimal point, and the cursor is still on the decimal
point (.). Again, to exit from insert mode, press the SHIFT and INSERT MODE keys simultaneously.

You can determine if the keyboard is in insert mode by looking at the line of red lights on the
extreme right of the keyboard. If the light labelled INSERT MODE is lit, you must press
SHIFT and INSERT MODE to return the keyboard to its normal state.

Typing beyond an Input field boundary while in insert mode causes the keyboard to lock and
the terminal bell to ring.

< (CURSOR LEFT)

Pressing the < key moves the cursor one position to the left in an Input field. If you are

at the left-most character position of a field, the cursor does not move. This key is a repeat-
ing key.

1-13

Forms Processing

- (CURSOR RIGHT)

Pressing the = key moves the cursor one position to the right in an Input field. If you are at
the right-most character position of a field, the cursor does not move. This key is a repeating
key.

ERROR RESET

When it detects a typing error or an attempt to enter improper data, the terminal writes a brief
error message on the last line of the terminal screen, rings the bell, and locks the keyboard.
When you acknowledge the error by pressing the ERROR RESET key, the keyboard is un-
locked, and you can make corrections and resubmit the data.

1.10.4 System Function Keys

The VT62 has four system function keys that allow you to modify the flow of processing from the
application terminal. Proper use of these function keys allows you to choose a number of different
actions once an exchange is completed. TRAX supports the following system function keys on the
terminal keypad:

STOPREPEAT

The STOP REPEAT key causes any exchange to leave that exchange and go to the exchange
specified in the subsequent action section of the transaction definition. You must enable the
STOP REPEAT key in the form definition before it can be used to control the actions of a
transaction from an application terminal. This key is used to override the repeat exchange
specification in the exchange definition.

CLOSE

Pressing the CLOSE key ends the transaction instance, and redisplays the initial form on the
terminal screen. You must enable the CLOSE key in the form definition before it can be used
to close a transaction from an application terminal.

AFFIRM

Pressing the AFFIRM key returns the application terminal to the form specified by the sub-
sequent action section of the current transaction definition. You must enable the AFFIRM
key in the form definition before it can be used to transfer control in a transaction instance.
Pressing AFFIRM in a repeated exchange causes the form for that exchange to be redisplayed
with cleared Input fields.

ABORT

To use the ABORT key, you must simultaneously press the SHIFT key and the 7 key (labeled
as ABORT) on the function keypad. When you use the ABORT key, the transaction processor
aborts the transaction instance, and returns the terminal to its initial screen display. You can-
not disable the ABORT key.

1.10.5 User Function Keys

The VT62 has six user function keys on the terminal keypad. The effect of any of these keys is
identical: the form’s Input fields and any selected menu items are transmitted to the terminal
station. The terminal station formats an exchange message for subsequent application processing.
The advantage of having multiple user function keys is that transaction can be designed so that
different processing paths are followed depending on which data entry function key is pressed.

1-14

Forms Processing

For example, pressing the KEYDOT might cause a hard-copy report to be produced, while pressing
ENTER might cause the next record to be displayed.

You differentiate processing modes by specifying the VALUE = KEY clause in the MESSAGE
statement; this causes the appropriate keycap text-string value to be inserted in the exchange
message and passed to the TST, where a simple test can be made to determine which key caused
this message to be sent from the terminal to the TST.

Default keycap text-string values may be overridden by using the KEYCAP clause in the FORM
statement.

The user function keys that can be enabled for use at an application terminal are:

ENTER
The ENTER key is the standard user function key. The ENTER key is assumed to be enabled
unless you disabled it as part of a form definition. Pressing ENTER or any other user function

key causes the contents of a form’s Input fields and selected menu items (if any) to be trans-
mitted. The key text value for the ENTER key is “ENTER”.

KEYDOT

KEYDOT is the SHIFT key and the DOT key (.) on the function keypad. The default keycap
text value is “KEYDT”.

KEY0

KEYO consists of the SHIFT key and the 0 key on the function keypad. The default keycap
text value is “KEY00”.

KEY1

KEY1 consists of the SHIFT key and the 1 key on the function keypad. The default keycap
text value is “KEY01”.

KEY2

KEY?2 consists of the SHIFT key and the 2 key on the function keypad. The default keycap
text value is “KEY02”.

KEY3

KEY3 consists of the SHIFT key and the 3 key on the function keypad. The default keycap
text value is “KEY03”.

1.10.6 The VT62 LED Display Panel

The VT62 is equipped with a set of 8 Light Emitting Diodes (referred to in this section as LEDs
or lights) which are located on the extreme right of the keyboard. These LEDs provide status
information to the terminal user. The following list gives the LED legends, and explains the sig-
nificance of the LED in both lighted and unlighted modes.

READY — When the READY light is on, it indicates that the terminal is enabled for user
input. If the READY light is not on, the user cannot type on the terminal screen.

1-15

Forms Processing

INSERT MODE — When the user invokes INSERT MODE, this light goes on. It remains on
until INSERT MODE is terminated by the user, or until the NEXT FIELD, FORWD FIELD,
or BACK FIELD keys are pressed.

KEYBOARD LOCKED — When the KEYBOARD LOCKED light is on, no input is possible.
The KEYBOARD LOCKED light is turned on by a keying error, or when a user or system
function key is pressed. The keyboard locked light is turned off by pressing ERROR RESET
in the case of a keying error, or when a REPLY or a new form is received by the terminal
from a transaction processor.

DISPLAY AREA — This light goes on when the cursor is positioned in a Menu field in the
terminal’s display area. In general, only the keys used to move through fields or from field
to field are enabled when the DISPLAY AREA light is on. No data may be entered on the
form when this light is on.

KEYING ERROR — When the user types an illegal character or attempts a prohibited opera-

tion from the terminal keyboard (such as skipping a required field), this light goes on and the
keyboard is locked. The keying error light is turned off and the keyboard unlocked when the
user presses ERROR RESET.

CLEAR TO SEND - If the TRAX transaction processor is polling the application terminal,
this light will go on during the poll and turn off once the polling operation is completed. If
no activity is seen in this light, the system manager should be contacted to determine why the
poll is lost.

FUNCTION KEYPAD — The VT62 can be set to 2 mode where the keys on the numeric
keypad are directly enabled as function keys, and the user does not have to press the SHIFT
key concurrently with a user function key. If this mode has been enabled, the FUNCTION
KEYPAD light is on.

CARRIER — When the carrier light is on, it indicates that a physical line connection exists
between the terminal and the computer.

1.11 A SAMPLE TERMINAL SESSION — THE USER’S PERSPECTIVE
The examples in this chapter are based upon four transactions from the TRAX sample application.
These transactions include:

1. Adding a customer record to a file

2. Changing customer records on a file
3. Deleting customer records from a file
4. Deleting customers from a file

1.11.1 Using a Transaction Selection Form

To invoke a transaction from an application terminal, you use a special type of form, known as a
transaction selection form. This form lists the names of transactions defined in a transaction
processor, and allows you to select or specify one of the named transactions. When a transaction
processor is installed and running, the application terminals assigned to that transaction processor
display an initial form any time that a transaction instance is not active on that terminal. In most

1-16

Forms Processing
transaction processing applications, a terminal will have a transaction selection form defined as its
initial form.

If the sample transactions were placed on a transaction selection form defined as the initial form
for your terminal, you might see the following initial display on the terminal screen:

Figure 1-4 A Transaction Selection Form

The screen display in Figure 14 is a transaction selection form that allows you to choose a trans-
action from a menu. If you want to add a customer record to a file, you must first select the
ADDCUS transaction from the menu, and then invoke it.

To select a transaction, move the cursor (using the NEXT FIELD key) to the desired transaction
name, and press the SELECT key. In the case of the form SELECT, ADDCUS is the first menu
item, and the cursor is already there, so all you have to do to select ADDCUS is press the SELECT
key. To initiate the ADDCUS transaction, press the ENTER key after you have selected ADDCUS.
Pressing ENTER causes the menu selection to be transmitted to the transaction processing executive,
which invokes the ADDCUS transaction and initiates it at your application terminal. When ADDCUS
is initiated, a copy of the first form defined for that transaction is displayed on your terminal
screen. The first (and only) form of the ADDCUS transaction is shown in Figure 1-5. This form

is the entry form used to gather the data required to add a customer record to the customer file.

1.11.2 Using Entry Forms
The entry form for the ADDCUS transaction contains a number of fields; some display instructions,
while others are actual data entry fields (highlighted in reverse video). You begin typing data in the

1-17

Forms Processing

Customer Number
Customer Name
Address

Zip Code
Telephone #:
Company Contact
Credit Limit (%)

Figure 1-5 Entry Form — The Initial Screen Display

customer name field, and complete all Input fields as they appear on the form. Once you enter

the data required to complete an Input field, press the NEXT FIELD key. NEXT FIELD fills the
remaining character positions (if any) in the field with the clear character for that field, and moves
the cursor to the first position of the next Input field. When you type the telephone number on
the form, however, you may type all ten characters as if they were a single field. This is possible
since the first two parts of the telephone number were defined with the ATL TAB attribute, causing
the cursor to advance automatically when the field is full.

When you complete the data entry operation, the entry form will look like the screen display shown
in Figure 1-6.

To transmit the completed form to the terminal station for processing, you follow the instructions
shown on the last line of the screen display; that is, press the ENTER key. The data on the form
is sent to the terminal station where it is formatted into an exchange message and passed to the
exchange routing list. The TSTs associated with this transaction process the exchange message to
create a new customer record. After writing the new record to the customer file, the last TST in
the exchange sends a reply response message back to the entry form. The reply message contains
a 6-character customer ID that is written to REPLY screen number 1. The completed REPLY
screen number is shown in Figure 1-7.

After the reply screen has been written, you may press one of two enabled system function keys,
the AFFIRM key or the CLOSE key. The AFFIRM key ends that transaction instance, and re-
displays the empty data entry screen, while the CLOSE key ends the transaction instance, and
causes the transaction selection form to appear on the terminal screen.

1-18

Custorer Mumber
Customer Nawme
Address

Zip Code
Telephone %:
Company Contact
Credit Limit (%)

tomer to the File,

Comp

Figure 1-6 Completed Entry Form

Figure 1-7 Entry Form after Reply #1

Forms Processing

Forms Processing

1.11.3 Using a Report Form

A report is a form used to display information on an output-only device such as the LA180 DEC-
printer. Using a report requires you to code an output-only form definition using ATL PRINT
statements. In addition, a report-type response message must be sent to the output-only terminal
from an application TST. You must also define the output-only terminal with a station name using
the STADEEF utility. (See the TRAX Application Programmers Guide AA-D329A-TC.)

Report forms can be used to produce a wide variety of hard-copy reports, for example, picking
lists, shipping invoices, account statements, or order forms.

In the transaction processor SAMPLE (used for examples in this manual), the display customer
transaction is set up with a report capability. After retrieving a record from the customer file, you
can press the KEYDOT user function key from the second exchange of the display customer
transaction DPYCUS. The TST associated with this exchange checks your input, and if KEYDOT
is detected, generates a Report using the data from the customer record currently displayed on the
application terminal. Figure 1-8 illustrates the report form sent to the output-only station.

Customer Master File Subsuystem - Account Summary
Customer Number 001006
Customer Name Luynchburd Stams and Coin
Address Suite 29X

S Business Road
Lynchburgs VA

ZIF Code 24505
Telerhone (804) 537-5144

Comrany Contact! A L Shanalian

Credit Limit (%) 500,00

AHOKKRKKKKKKKKKKKKKKXX Statement of Account - As of 18-AFR-78 XXKRKKXEKIKKRKEKKKK KK

Current BRalance Furchases to Date Next Order No. Next Fasment No.
.00 .00 0001 0001

Figure 1-8 Report Form Output to LA180 Terminal

1-20

CHAPTER 2
THE APPLICATION TERMINAL LANGUAGE—
AN OVERVIEW

2.1 HOW TO USE THE ATL LANGUAGE
ATL consists of a set of statements, clauses, and parameters.

You can use ATL to create form definitions for transaction processors. Using ATL, you can specify
the layout and appearance of each form, the attributes of each field on those forms, the format of
the exchange message created from user input, and the set of replies used by the transaction proces-
sor to respond to user input.

A form is designed and included in a transaction definition by the following steps:

1. The application designer examines the needs of the business, and determines the input and
display operations required from an application terminal.
2. Once the transaction is divided into exchanges, the designer specifies the forms required for
each exchange.
. The designer or an application programmer codes the form definition using ATL.
. The coded form definition is entered into a source file using the DEC Editor.
. The source file is submitted to the ATL utility for compilation and debugging.
. Once a form has compiled without errors, the ATL utility is run to add the form to the
forms definition file of the transaction processor.
7. The transaction processor is installed and started, and the form is tested to insure it func-
tions properly.

[« 2RS4 I NN]

2.1.1 Statements

The statement is the fundamental element of ATL. There are 12 distinct types of statements.
These fall into two major classes: form definition statements and ATL complier directive state-
ments.

The form definition statements are used to define a form and its associated fields and messages.
These statements require that at least one clause be specified in addition to the statement keyword
and the statement parameters.

Each statement must begin on a new line of the source file. A statement keyword is often followed
by one or more statement parameters. These parameters provide locational and structural informa-
tion about the field or message being defined by the statement. The equal sign (=) is used to separ-
ate a statement keyword from its associated parameters.

The most common statement parameters are the row and column position of the field, and a num-

ber parameter whose use varies according to the statement types. Most statements also have one or
more clauses associated with them.

2-1

ATL Language Overview

The following section describes the 12 ATL statement types:

2.1.1.1 Descriptions of ATL Form Definition Statements

FORM

The FORM statement is used to specify general form parameters. You can also enable or disable
function keys, cause the bell to ring, and divide the form into Display and Form areas by using the
SPLIT clause.

The following five statements define fields on a form. Input and Prompt fields are in the Form area
of the screen. Menu and Display fields are in the display area of the screen. Print fields are used
only by output-only forms.

~ In all five field definition statements, you must specify location parameters as part of the statement,
in the form:

statement-keyword = row-number, column-number

For example:
INPUT=1,1

The row parameter specifies the field location relative to the beginning of the area in which the field
is specified. Thus DISPLAY = 1,1 positions a display field on the first line of the display area, while
INPUT = 1,1 positions a display field on the first line of the form area. In a PRINT statement, the
row parameter specifies the field location relative to the top of the form.

INPUT

The INPUT statement is used to specify Input fields used in data entry operations. As part of an
INPUT statement, you can specify the data entry and character representation attributes of the
field, a label for the field, the length of the field, the initial value of the field, and the clear charac-
ter used by the transaction processor to fill empty field positions.

PROMPT

The PROMPT statement is used to specify Prompt fields that provide instructions in the Form area
of a screen. As part of a PROMPT statement, you can specify the initial value of the field, the
length of the field, a label for the field, and either normal or reverse video display characteristics.

DISPLAY

The DISPLAY statement is used to specify Display fields. Display fields provide instructions and
reply message data in the Display area of a screen. As part of a DISPLAY statement, you can spec-
ify the initial content of the field, the length of the field, a label for the field, normal or reverse
video, and whether or not the field is blanked on the initial and subsequent form displays.

MENU
The MENU statement is used to specify Menu fields used to list items for user selection. The
MENU statement requires that you specify an initial value for the field.

PRINT
The PRINT statement is used to specify the fields on a Report form sent to an output-only termi-
nal. You must specify an initial value as part of the PRINT statement.

ATL Language Overview

The MESSAGE and REPLY statements are used to define the interface between the form and the
TSTs that use the form. The MESSAGE statement defines the format of the exchange message.
The REPLY statement defines the modifications that occur when a TST sends a reply-type response
message back to the form.

MESSAGE

The MESSAGE statement is used to specify the format of the exchange message constructed from
the Input and Menu fields of the form. The MESSAGE statement allows you to specify a beginning
character position for the message, and a number of different types of data that the terminal station
places directly into the exchange message.

REPLY

The REPLY statement is used to specify the set of modifications made to a form when a reply-type
response message is received by the form. You use the REPLY statement to specify how various
labelled fields are modified, to enable or disable function keys, ring the terminal bell, or to move the
cursor to a specific Input of Menu field. You must supply a number parameter to the REPLY state-
ment. This number corresponds to the number parameter sent with the reply message.

2.1.1.2 ATL Compiler Directive Statement Descriptions — The compiler directive statements are
used to control the way in which the ATL utility compiles source statements. The four compiler
directive statements are:

DEFAULT
The DEFAULT statement is used to change the defaults assumed by the ATL utility. Using this

statement, you can specify a new set of default field attributes, enabled function keys, and a clear
character.

REPEAT

The REPEAT statement is used to delimit the beginning of a block of ATL statements that are to
be repeatedly compiled by the ATL utility. The number parameter specifies the repeat count. You
must specify the WITH clause as part of the REPEAT statement. This allows you to set up dummy
parameters in the repeated statements, which are changed with each execution of the repeat block.

REND
The REND statement delimits the end of a repeat block.

END
The END statement delimits the end of a form definition source file.

2.1.2 Clauses

Each clause modifies the form, field, or message specified by the statement. Clauses generally have
parameters associated with them, either keywords, values, or literal text strings. A clause keyword
is separated from its associated parameters by the equal sign (=). Clause parameters are separated
from each other by commas (,).

2.1.2.1 Summary of ATL Clause Types—The following clauses are permitted in ATL statements.
This listing is only a summary. Complete clause specification information is given in Chapter 5.

2-3

ATL Language Overview

ATTRIBUTES
The ATTRIBUTES clause can be specified as part of the DEFAULT, DISPLAY, INPUT, and
PROMPT statements. This clause lets you specify the way data must by entered and/or displayed
in a field. A complete list of attribute keywords is given in Section 2.3.2. The attribute keywords
are explained briefly here, and in Chapter 5 as part of the individual statement descriptions. The
most commonly specified attribute keywords are:

2-4

ANY

LETTERS
NUMERIC
ALPHANUMERIC

SIGNED

LEFT
RIGHT
NOTAB

TAB

FULL

NOFULL

REQUIRED

NOREQUIRED

MODIFY

An Input field can contain any displayable ASCII character in the
range OCTAL 040 to 176.

An Input field can contain only the letters A through Z, a through z,
and space.

An Input field can contain only the numbers O through 9. Spaces are
not permitted.

An Input field can contain any character that is a number, a letter, or
a space.

An Input field can contain signed numeric data: The numbers 0
through 9, the sign characters + and -, and field punctuation characters
(, and.). Spaces are not permitted.

Data entered into an INPUT field appears in a left-justified format.
Data entered into an INPUT field appears in a right-justified format.
To advance to another Input field, the terminal user must press the
NEXT FIELD or FORWD FIELD key after typing data into an Input
field.

After the user has completely filled the current field, the cursor
moves automatically to the next Input field.

The user must type enough characters to completely fill the Input
field.

The user may skip past a field specified with the FULL attribute by
pressing the FORWARD FIELD key.

Input fields need not be filled completely.

The user must enter data into this field before going on to the next
field.

The user may skip past this field without entering data.

The terminal user may change the contents of an Input field specified
with this attribute.

ATL Language Overview

NOMODIFY The terminal user cannot change the contents or enter data in an
Input field specified with this attribute. Furthermore, the user cannot
position the cursor in this field.

NORMAL The Input, Prompt or Display field appears as white characters on a
dark background.
REVERSE The Input, Prompt or Display field appears as dark characters on a

white background. Spaces appear as white squares.

BLANK This attribute can be specified for Display fields only. A Display field
with this attribute is not displayed on the initial screen representation
of the form. The field appears only on the reply screen displays
defined for a form. If a reply does not specify text for a Display field
with the BLANK attribute, that field is blanked on the reply screen.

NOBLANK A Display field defined as NOBLANK is displayed on the screen as
part of the initial form. It is not automatically blanked for a REPLY
but a REPLY may explicitly blank or overwrite it.

NOECHO An Input field can be specified with the NOECHO attribute. When
the user types data into such a field, it never appears on the screen.
Only one field per form can have this attribute. NOECHO fields are
limited to 40 characters in length.

BELL
The BELL clause can be specified as part of the FORM and REPLY statements. This clause lets
you specify when and for how long the terminal bell sounds.

CLEAR

The CLEAR clause can be specified as part of the DEFAULT and INPUT statements. This clause
lets you specify the character used to fill empty spaces in Input fields, both at the time they are
first displayed, and when they are transmitted to the terminal station.

CURSOR
The CURSOR clause can be specified as part ot the REPLY statement. This clause lets you specify
where the cursor is positioned when a reply screen has been displayed.

DISABLE

The DISABLE clause can be specified as part of the DEFAULT, FORM, and REPLY statements.
This clause lets you specify which user and system function keys are to be disabled when a form or
reply screen is displayed.

ENABLE

The ENABLE clause can be specified as part of the DEFAULT, FORM, and REPLY statements.
This clause lets you specify which user and system function keys are to be enabled when a form
or reply screen is displayed.

2-5

ATL Language Overview

KEYCAP

The KEYCAP clause can be specified as part of the FORM statement. This clause allows you to
specify new keycap text strings for user function keys. The value specified in this clause can be
transmitted to the terminal station by specifying the VALUE=KEY clause in the MESSAGE state-
ment for that form. See Section 3.1.1.5 for a detailed explanation of how this clause is used.

LABEL

The LABEL clause can be specified as part of the DISPLAY ,INPUT, or PROMPT statement. This
clause allows you to name a field for subsequent reference in a MESSAGE statement VALUE
clause, or a REPLY statement WRITE clause.

LENGTH

The LENGTH clause can be specified as part of the DISPLAY, FORM, INPUT, and PROMPT state-
ments. When used with the FORM statement, this clause lets you specify the number of lineson a
form. When used with the DISPLAY, INPUT, or PROMPT statements, this clause specifies the
number of characters in the field defined by the statement.

SELECT

The SELECT clause can be specified as part of the FORM statement. This clause identifies a form
as a transaction selection form. This clause also specifies the reply screens to be displayed if a
selected transaction is not known to the transaction processor, or is not authorized for display on
the selecting terminal.

SPLIT

The SPLIT clause can be specified as part of the FORM statement. This clause is used to define the
size of a form’s Display area. On a VT62, the maximum value specified as the parameter is 23. If
the SPLIT clause is omitted, the default value is SPLIT = 0 (i.e. the form has no display area).

VALUE

The VALUE clause can be specified as part of the DISPLAY, INPUT, MENU, MESSAGE, PRINT,
and PROMPT statements. In addition, the VALUE clause parameters are also permissible as WRITE
clause parameters in a REPLY statement. This clause lets you specify the contents of a field or a
message. The VALUE clause parameters allow you considerable flexibility in initializing fields and
constructing exchange messages. You can specify a number of parameters as part of a VALUE
clause. These parameters are listed in Section 2.3.2, and described briefly here, and in detail as part
of the statement descriptions in chapter 5.

MENU The contents of the selected MENU items are placed in the
exchange message. The length assumed for this parameter is
equal to the length of the longest defined menu field. The
null character (OCTAL 000) is used to pad any unfilled
character positions in the exchange message.

label-name The contents of the Input field described by the label pa-
rameter are placed in the exchange message.

KEY When a user function key is pressed the text string associat-
ed with that function key is placed in the exchange message.

2-6

“string3’

FILL (“‘character”, count)

DATE

TIME

TRANSACTION

NAME

STATION

REQUEST (postition, count)

ATL Language Overview

(See Section 3.1.1.5 for a discussion of this feature.) The
length of the field to be defined is the length of the longest
defined key text.

A string of characters enclosed by quotation marks. The en-
closed string is displayed on the screen exactly as typed,
without the quotation marks.

The character you specify in the first parameter is written
into the field the number of times specified by the second
parameter.

The current date is written into the field in the format:
DD-MMM-YY

The current time of day is written into the field in the for-
mat: HH:MM:SS

The system-determined transaction instance number is writ-
ten into the field as ten ASCII characters.

The 6-character name of the transaction that is currently
being run from the application terminal is written into the
field.

The 6-character terminal station name is written into the
field.

The REQUEST function allows you to obtain information
contained in the response message that requested this form.

When you specify a field with a VALUE clause containing
the REQUEST function, the field is filled with text from
the requesting response message, beginning at the character
postition specified by the first parameter, and continuing
for the number of characters specified by the second param-
eter.

The first character position in the requesting response mes-
sage can be referenced by specifying 1 as the first parameter
of the REQUEST function.

Characters are moved from the requesting message to the
field in left-to-right order, regardless of the field justifica-
tion attribute of the receiving field.

When a VALUE clause is used to specify the contents of an Input, Display, Menu, Print, or Prompt
field, a length is implicitly specified as the number of characters supplied by the VALUE clause

ATL Language Overview

parameters. ATL permits an explicit length value through the LENGTH clause. When a field has
both an implicit and explicit length specification, ATL assigns the greater value as the field length.

WIDTH
The WIDTH clause can be specified as part of the FORM statement. This clause lets you specify the
logical page width of a form used on an output-only device.

WITH

The WITH clause can be specified as part of the REPEAT statement. The parameters of the WITH
clause let you specify initial values and increments for dummy integer and character variables used
as part of statements in a repeat block.

WRITE

The WRITE clause allows you to specify modifications to be made when a REPLY acts upon a pre-
viously defined field. The WRITE clause paramenters identify a field, and describe how it is filled
when the reply screen is displayed.

When a BLANK display field is referenced by a WRITE clause, any portion of the field that is not
explicitly specified in a VALUE parameter is erased automatically on the reply screen.

If you specify a WRITE clause with only the label-name parameter, and do not specify the field
contents, the REPLY writes the specified field according to the VALUE clauses specified in the
original field definition statement.

In this case, the original field definition must have at least oneVALUE clause and that VALUE
clause must not contain the REQUEST () parameter.

The WRITE clause must contain a label-name parameter. A number of VALUE parameters may
also be specified. A brief description of these parameters is listed here. Detailed explanations of
these parameters are found in the description of the REPLY statement in Chapter 5.

label-name The label-name parameter specifies the label-name of the
field written into by the subsequent parameters in the
WRITE clause. The field specified by this label can be an
Input, Display or Prompt field but not a Menu field.

“string” A string of characters enclosed by quotation marks.
FILL (‘“‘character”, count) The character specified in the first parameter is written into
the field referenced by the label the number of times spec-

ified in the second parameter.

DATE The current date is written to the specified field in the for-
mat: DD-MMM-YY

TIME The current clock time is written tothe specified field in
the format: HH:MM:SS

2-8

TRANSACTION

NAME

STATION

REQUEST (position, count)

2.2 ATL SYNTAX RULES

2.2.1 General Statement Format

ATL Language Overview

The system-determined transaction instance number is writ-
ten to the specified field as ten ASCII characters.

The 6-character name of the current transaction is written
to the specified field.

The 6-character terminal station ID is written to the speci-
fied field.

The REQUEST function allows you to obtain information
contained in the response message that requested the
current reply screen. A field written using the REQUEST
function in a WRITE clause is filled with text from the re-
questing response message beginning at the character posi-
tion specified by the first parameter, and continuing for the
number of characters specified by the second parameter.

An ATL statement has the general format:

Statement-keyword [=statement-parameters]

clause 1
clause 2

clause n

An ATL clause has the general format:

‘Clause-keyword [=parameter 1, parameter 2, . . . , parameter n]

The following diagram identifies the various parts of a typical ATL source statement:

Statement Delimiter

Statement

Keyword r l

— INPUT = 2,20

LENGTH =30 -

{ LABEL = CUSTOMER, NAME =
ATTRIBUTES 7 REQUIRED, REVERSE <+—

Clause W Clause
Keywords

Parameters

Parameters

ATL Language Overview

ATL statements are generally free-form, allowing you to code source statements for easy reading.
ATL assumes a few syntax conventions. They require that:

VAW -

[=))

10.

11.

. Only one statement may be coded on a source line.

. A statement may be continued on more than one line.

. A statement keyword must be separated from its statement parameters by an equal sign (=).
. Clause keywords must be separated from the parameter list by an equal sign (=).

. Statements must be separated from clauses, and clauses from each other by one or more

spaces, tabs, and/or line terminators.

. Additional spaces and tabs may be inserted anywhere in a source line, except within a keyword

or parameter specification.

. In ATTRIBUTE and VALUE clauses, and in the VALUE parameter of the WRITE clause, you

can specify any number of parameters in any order you require.

. In the VALUE and WRITE clauses, you can specify the same parameter keyword or parameter

type more than once in the same clause.

. When you specify more than one parameter to a clause, you must separate items with a

comma.

You can specify only one ATTRIBUTE clause keyword from a keyword grouping. For ex-
ample, you cannot specify SIGNED and NUMERIC attributes for the same field.

Fields may not overlap each other.

The following illustrates different forms of the same ATL statement:

INPUT = 2,20 ATTRIBUTES = TAB, REVERSE, NUMERIC

or
INPUT = 2,20
ATTRIBUTES = TAB
REVERSE,
NUMERIC

2.2.2 Statement Ordering
The order in which statements are used in an ATL form definition is generally unimportant. There
are, however, a few instances where the statement sequence becomes important.

1

. Each form definition must end with an END statement.

2. The set of defaults specified by a DEFAULT statement apply only to statements that follow

the DEFAULT statement. They remain in effect until overridden by a subsequent default
statement.

. The visible cursor advances from Input field to Input field in the order they are defined in the

form definition. Similarly, the cursor moves form Menu field to Menu field in the order in
which they were defined.

. REPEAT and REND statements affect only those statements between them.
. The values taken by the row and column parameters of the statements that use the dot con-

struct (See Section 2.2.6) depend on the location and length of the preceding field.

ATL Language Overview

2.2.3 Abbreviating Keywords
All examples in this manual use the full spelling of keywords. For purposes of clarity and readabil-
ity, you are strongly advised to use the full spelling of a keyword whenever possible.

However, if you wish, you may abbreviate statement keywords, clause keywords, and parameter
keywords. The abbreviation must contain at least three characters and must uniquely identify the
keyword. An example of the concept of uniqueness is illustrated in the following ATL statement:

INPUT = 1,10
LABEL = CUSTOMER-NAME
ATTRIBUTES = REQ, NUM, REV
LENGTH=6

If you were to attempt to compile this statement using the ATL utility, a syntax error would occur,
since the keyword REQ is not unique. REQ is the first three letters of two keywords, REQUIRED,
and REQUEST. In this case, you must specify REQUI in order to properly abbreviate REQUIRED.
A complete listing of ATL keywords and unique abbreviations is contained in Table 2-1.

You can use both upper- and lower-case characters in source statements. All lower-case source state-
ment text that is not part of a literal string is translated to upper case by the ATL utility.

2.2.4 Literal Text Delimiter

All literal text strings in a form definition must be delimited by either the double quotation mark
(‘) character or the single quotation mark (¢) character. If you wish to include a quoted string as
part of some literal text, you must first quote the entire literal text string using one type of quota-
tion mark, then enclose that quoted text string with a pair of the other type of quote marks. The
following example shows how you can enter literal text as part of a source statement:

PROMPT = 2,10
VALUE = “Customer Number:”

To insert quotes in a literal text string, use both delimiters:

PROMPT = 2,10
VALUE = ¢ “E0Q” Quantity:’

The null text-string is specified by two adjacent quotation characters (‘’ or *).

2.2.5 Using Comments in ATL Statements

A comment is delimited by an exclamation point (!). All text between an exclamation point and
the line terminator (or another exclamation point) is considered a comment, printed on your state-
ment listing, and otherwise ignored by the ATL utility. Exclamation points contained in a quoted
text are considered part of the text, and are not comment delimiters.

2-11

ATL Language Overview

Table 2-1

ATL Keywords & Abbreviations
KEYWORD ABBR “ KEYWORD ABBR
AFFIRM AFF MESSAGE MES
ALPHANUMERIC ALP MODIFY MOD
ANY ANY NAME NAM
ATTRIBUTES ATT NOECHO NOEC
BELL BEL NOENTER NOEN
CLEAR CLE NOFULL NOF
CLOSE CLO NOMODIFY NOM
CURSOR CUR NOREQUIRED NORE
DATE DAT NORMAL NORM
DEFAULT DEF NOTAB NOT
DISABLE DISA PRINT PRI
DISPLAY DISP PROMPT PRO
ENABLE ENA REND REN
END END REPEAT REPE
ENTER ENT REPLY REPL
FILL FIL REQUEST REQUE
FORM FOR REQUIRED REQUI
FULL FUL REVERSE REV
INPUT INP RIGHT RIG
KEY KEY SELECT SEL
KEYO KEY0 SIGNED SIG
KEY1 KEY1 SPLIT SPL
KEY2 KEY?2 STATION STA
KEY3 KEY3 STOPREPEAT STO
KEYCAP KEYC TAB TAB
KEYDOT KEYD TIME TIM
LABEL LAB TRANSACTION TRA
LEFT LEF VALUE VAL
LENGTH LEN WIDTH WID
LETTERS LET WIDTH WIT
MENU MEN WRITE WRI

A comment can consist of an entire source line. The example below shows how comments can be
used to graphically enhance your ATL source statements:

Pokeckokoskokokokkokokokok kekok kkokokdeckskekokkkokskkkkkskkskkkshskokoke skskskskokoksksk ke sk sk ok sksk ek ko skskkok |
! !
! FORM NAME: CHCUSI !
! !
!***!

2-12

ATL Language Overview

Comments can also appear as part of a statement or clause:

INPUT = 1,20
LABEL = CUST. NO 1 Assign label name to field
LENGTH=6 Define field length
ATTRIBUTE = TAB, NUMERIC !Field is right-justified

REV, RIGHT Inumeric, reverse video + auto tab.

2.2.6 The “DOT” Constructs
The field definition statements (DISPLAY, INPUT, MENU, PRINT, and PROMPT) require that you
specify row and column parameters to define the initial character position of the field.

To simplify the coding of forms, you can specify row and column values as relative offsets from the
previous field through the use of the ATL “dot” constructs. A “.” in a row or column parameter of
an ATL statement refers to the character position immediately following the previous field.

You may also specify spacing by supplying .+nn or .-nn values in the row and column parameters.
For example, the following DISPLAY statement specifies that the field is to begin ten characters
past the end of the preceding field.

DISPLAY =.,.+10

An advantage of the dot construct is that it allows you to reposition whole blocks of ATL state-
ments simply by changing the value of the row parameter for the first field. For example, if the
first statement in the display area is:

DISPLAY = 1,1

and all subsequent statements use the dot construct, then changing the row parameter in the first
statement to read:

DISPLAY = 2,1
moves all display area fields down one row.

2.2.7 Assumed ATL Utility Default Conditions
If a form is specified without a FORM statement, or if certain clauses are not specified as part of the
FORM statement, the ATL utility assumes the following default conditions exist:

1. The form being defined contains a Form area only, i.e. there is no Display area. The as-
sumed value of the SPLIT clause is SPLIT = 0.

2. The ABORT system function key, and the ENTER user function key are enabled. All other
system and user function keys are disabled. (To change the set of enabled function keys,
see the ENABLE and DISABLE clause descriptions in this Chapter and in Chapter 5.)

3. The form is not being used to select the next transaction. (A transaction selection form re-
quires a SELECT clause in the FORM statement. See the SELECT clause description.)

2-13

ATL Language Overview

4. The default keycap text values are associated with the user function keys. (You can change
keycap text using the KEYCAP clause. See the KEYCAP clause in this chapter and in Chap-

ter 5.)

5. The Bell will not ring when an initial form display occurs. (The Bell is not rung unless the
BELL clause is specified.)

2.3 ATL LANGUAGE SUMMARY

This section presents the statements, clauses, parameters, and keywords of the ATL language in a
ready-reference format. No attempt is made to define language element usage. A complete discus-
sion of ATL language elements and how they are used is given in Chapter 5.

2.3.1 Conventions Used to Describe the Language

{ |
f
Lower-case letters

UPPER-CASE LETTERS

Bold Face Keywords

2-14

Special brackets indicating optional information that can be omitted
from a statement or clause.

Braces indicating that a choice of one or more parameters must be
made from the set enclosed by the braces. You can also specify

a parameter more than once as part of the same clause.

Parameters described in lower-case letters indicate data that you
must supply such as a label, number, or text-string.

Parameters shown in upper-case are keywords. They must be specified
and spelled as shown in the parameter list.

The default parameter keyword values assumed for certain clauses
(ATTRIBUTES, for example) are shown in bold face.

Ellipsis indicate clauses and parameters can be repeatedly specified.

2.3.2 Summary of ATL Statements and Clauses

DEFAULT

ATTRIBUTES =

[ENABLE = keyname |
[DISABLE = keyname]

[CLEAR = “character”]

ANY
ALPHANUMERIC
LETTERS
NUMERIC
SIGNED

LEFT }
RIGHT

NOTAB }
TAB

NOFULL }
FULL

NOREQUIRED }
REQUIRED

MODIFY }
NOMODIFY

NORMAL }
REVERSE

BLANK }
NOBLANK

ATL Language Overview

2-15

ATL Language QOverview

DISPLAY = row, column

VALUE = “string”

FILL (“character”, count)
DATE

TIME

TRANSACTION

NAME

STATION

REQUEST (position, count)

[LENGTH = count]

ATTRIBUTES = { NORMAL }
REVERSE

{ BLANK }
NOBLANK

[LABEL = label-name]
END
FORM
[SPLIT = length]
[ENABLE = keyname]
[DISABLE = keyname]

[KEYCAP = keyname, “text-string”]

[SELECT = { MENU }
input-field-label
" LENGTH = { line-count }]
L FEED
-
BELL [= periods]]

[WIDTH = form-width]

Jreply-1

“string”’

FILL (*“‘character’’, count)
DATE

TIME

TRANSACTION

NAME

STATION

REQUEST (position, count)

,reply-2
,NOAUTHORIZE

geooe

J

NPUT = row, column

ATTRIBUTES =

{
{
{
{
{
{

{

[VALUE = “string”

DATE
TIME

NAME

b

[LENGTH = count]

[CLEAR = “character”

[LABEL = label-name]
MENU = row, column

“Stl’ing”

ANY
ALPHANUMERIC
LETTERS
NUMERIC
SIGNED

LEFT }
RIGHT

NOTAB }
TAB

NOFULL }
FULL

NOREQUIRED }
REQUIRED

MODIFY }
NOMODIFY

NORMAL }
REVERSE

NOECHO }

FILL (‘““character”, count)

TRANSACTION

STATION
REQUEST (position, count)

VALUE = %

FILL (““character”, count)
REQUEST (position, count)

|

ATL Language Overview

“string”
FILL (“character”, count)
DATE

TIME

TRANSACTION

NAME

STATION

REQUEST (position, count)

“String”
FILL (“‘character”, count)
REQUEST (position, count)

9ooe

2-17

ATL Language Overview

MESSAGE = position

VALUE =

PRINT = row, column

VALUE =

PROMPT = row, column

VALUE =

[ATTRIBUTE =

ELENGTH = count]

“string”

FILL (““character”, count)
DATE

TIME

TRANSACTION

NAME 9
STATION

REQUEST (position, count)
MENU

label-name

KEY

“string”’

FILL (“character, count)
DATE

TIME

TRANSACTION ’
NAME
STATION
REQUEST (position, count) L

“string”™

FILL (‘““character, count)
DATE

TIME

TRANSACTION ’
NAME

STATION

REQUEST (position, count)

NORMAL
REVERSE

[LABEL = label-name]

REPEAT = number

[WITH #n = start [,increment]]

[WITH #n = “character”]

REND LX)

2-18

“string”

FILL (“character”, count)
DATE

TIME

TRANSACTION

NAME

STATION

REQUEST (position, count)
MENU

label-name

KEY

“string”

FILL (“character”, count)
DATE

TIME

TRANSACTION

NAME

STATION

REQUEST (position, count)

“string”

FILL (“‘character™, count)
DATE

TIME

TRANSACTION

NAME

STATION

REQUEST (position, count)

'TXX}

9oee

.

9000

EPLY = number

WRITE = field-label [

’ [CURSOR = field-label]
[ENABLE = keyname]

[DISABLE = keyname]

\ [BELL (= periods]]

“string”

FILL (““character”, count)
DATE

TIME

TRANSACTION

NAME

STATION

REQUEST (position, count)

ATL Language Overview

“string”

FILL (“‘character’, count)
DATE

TIME

TRANSACTION

NAME

STATION

REQUEST (position, count)

(1L |

2-19

CHAPTER 3
EXAMPLES OF HOW TO CODE ATL FORM DEFINITIONS

3.1 CODING A FORM DEFINITION

Before attempting to code a form definition, you should be familiar with the material in Chapters
1 and 2 of this manual. Refer to Chapter 5 for complete definitions of the ATL language elements
used in this chapter.

It is recommended that the application designer sketch the form in advance, using a form specifica-
tion sheet as shown in Figure 3-1.

The form is coded using ATL language elements. The ATL statements are entered into a source
statement file using the DEC Editor. These statements are then processed by the ATL utility (See
Chapter 4) which converts them into a form definition record that can be used by a transaction
Processor.

3.1.1 Coding an Entry Form Definition

Entry forms are the most common type of form used in TRAX applications. They generally consist
of a number of display fields which are used to give general information and instructions, prompt
fields which tell the terminal user what data goes into a particular field, and input fields where the
user types the data that is to be transmitted to the terminal station for formatting and subsequent
processing.

In an entry form, you must also consider which function keys are enabled or disabled, whether
replies must be specified as part of the form definition, and the structure of the exchange message
that the terminal station constructs from the input fields on a form.

ADCUST is the example form used to describe how to code an entry form. This form is used to
capture customer data that is processed by a transaction which adds a record to a customer file.
Figure 3-2 shows a Form Specification Sheet for this form of a type that would be prepared by a
TRAX application designer.

3.1.1.1 Setting the Default Specifications — If you have determined that certain field attributes are
required throughout a form definition, or that certain function keys must always be enabled or dis-
abled, or that a particular character should be used to “clear’ (automatically fill) unused character
positions, then you can specify these items in a DEFAULT statement at the beginning of your form
definition source file.

ATL assumes a set of default conditions that remain in effect unless they are superseded by a
clause in the statements used to specify the form definition. A listing of these assumed defaults
appears in Section 2.2.7.

Split:

Lines
Display
Area

o] [2 3 4 5 6 7
1]2[3]4]s]e[7]8]olof 112]3]4]5]e] 78] 9]o] 1] 2[3]4]s]6[7]8ls] o] 1]2[3[4]s]67]8]ald [2[3[4]5]6[7]e[elol 1]2[3]4]5]e[7]8]eln 1 [2] 3[4 5]6] 7]8le[ol 1]2[3] 4] 5]e 7] 8]9

N] =] =] <] S <[=[=]]—
O O 00 N| O N B W[N] = OO0 [N O] D[N |—=

N NI N
W N —

DISPLAY AREA (0 to 23 lines)
(defined by SPLIT clause in FORM SIMT)

FORM AREA

(0 to 23 lines)

(23 - size of display area)

N
N

Terminal Error Line - Always Line 24

Figure 3-1 Sample Form Specification Sheet

suonurfa(q uiiog 8uipo)

FORM SPECIFICATION SHEET
Transaction Processor: [S[A[M|P[L]E] — Initial Display D — Reply Number D:l:] Form Name: {A[ple US| 7]

Split: 0 | 2 3 4 5 6 7 8
112{3]4/5617]8]9]0]1]2|3]4]5]6]7|8|9[0]{ 112|3{4|516}7(8(9]0] 1]2|3]4]5]6]7|8]9]0(1] 2{3]4|5!6|7]8]9]011]2[3[4|5|6]7]8{9]01{2]|3|4|5]6{7|8|9|0] 1|2|3|4]|5|6]7{8|9|0
B 1 REVERSE
Lines 2 CIUSTIOMER, 18 JASYSTIEM [~ 0#“ erafl= NOBLANK
Display 3 1 Z BLANK
Area 5 g_ e 3 BIANK
6
7 S i —
8 Bl [Apip [¢ VSTOMER [To| THE [F/L [E4) 3 No
9| lCulsTIaMER 2?2212 Tiol |8lE] 1ED | SYISTiE]
10]_loJRITolM 71 ¥ L LET
1] [ApDR |
12 L) Mes| 1A S
13
14] iZi{|P| |CODIE
15[|7 : () =
16 [PANL Y - Co 7
:; (r Fralle:) 8 3 [GHT
19
20
21
22
73 Tio €YS:| |ENTER] |7 0lST ~[[cilosE 7D \@f‘”f 0 AU rrmﬂ
24 [11 RERAN [1 [[TTTIT]
. i System Function Keys User Function Keys
Bell: Rung for .. periods Enabled Disabled Enabled Disabled
Cursor: Positioned at field DZ] ABORT z, D ENTER D
CLOSE] KEYDOT [] X
AFFIRM 0 XK KEY00 []
STOPREPEAT [] KEYOT] X
KEYO02 P
Use blue ink to give instructions, field types etc. D
Use red ink to show actual text that appears on screen KEYO03 D [X]

Figure 3-2 Form Specification Sheet for Entry Form ADCUST.

suonutfo(q w0, 3urpo)

Coding Form Definitions

In the example form ADCUST, the DEFAULT statement took the following form:

DEFAULT 1To set defaults for whole form
ENABLE = CLOSE !Enable control function keys
ENABLE = AFFIRM
CLEAR= "~ ISet space as default clear character

3.1.1.2 Coding the Form Statement — The FORM statement allows you to specify:

® The size of a form’s Display and Form areas.

® Function keys that are enabled or disabled for the initial form display.
® Defined text-strings for the user function keys.

® If the terminal bell should ring when an initial screen is displayed.

If you are defining a form with Display and Form areas, you can specify the screen division by using
the SPLIT clause. In the example form ADCUST, the form is specified with an 8-line Display area,
a 15-line Form area (15 = 23 lines — 8 lines), the default error line on Line 24. You have also
specified that the initial screen display will cause the terminal bell to ring for two periods (310 ms.).

The following example illustrates the required FORM statement coding to perform the functions
listed above:

FORM 'Form Statement
SPLIT=8 18 Line Display at Top of Form
BELL =2 Ring bell for two periods

3.1.1.3 Coding the Display Area — After you specify the number of lines in the Display area, you
may define the contents of the Display fields. Display fields are defined using DISPLAY state-
ments. Suppose that the example form ADCUST requires a title line at the top and two lines that
can be used to display Reply message information to the terminal user. The first Display field that
you would code is the title line:

DISPLAY =2,11 !Indent 11 spaces on Display line 2.
VALUE = “Customer Master File Subsystem - ”’,
“Add Customer Transaction”
ATTRIBUTES = REVERSE, 'Highlight in reverse video
NOBLANK !Don’t erase during replies
!display on initial screen

Specifying the NOBLANK attribute causes the Display field to be written to the initial screen
display. Fields specified as NOBLANK remain on all reply screens of that form unless they are
cleared or rewritten as part of the reply. The length of this field is defined implicitly by the text-
string in the VALUE clause.

34

Coding Form Definitions

After coding the title line; yeu-can-then specify the two lines used to display reply information in
the following way:

DISPLAY =4,1 ISkip 1 Line
LABEL = REPLY.TEXT.A Label for 1st REPLY Line
LENGTH = 80 !'Line covers Full Screen Width
DISPLAY = +1,1 !Move to start of next line
LABEL = REPLY.TEXT.B !Label for 2nd REPLY Line
LENGTH = 80 IFull Screen Width

For the purposes of this example, four DISPLAY statements fully specify the contents of the Dis-
play area. These four fields are also referenced later by the WRITE clause in the REPLY statement
in this form definition. For this reason, these Display fields have been given label names.

The two Display fields labelled REPLY.TEXT.A and REPLY.TEXT.B. have the attribute BLANK
assumed as a default. Having the BLANK attribute means that those fields are not written on the
initial screen display, but can have information displayed in them as part of the reply screens de-
fined for this form. Since no VALUE clause has been specified for either of these two fields, the
LENGTH clause must also be specified. Also note the use of the dot construct to position the field
REPLY.TEXT.B one line below REPLY.TEXT.A.

You can also use Display fields to give instructions to the user. Consider the example for ADCUST.
To inform the user about how data is entered on the form and sent to the system, you could code
a Display field at the bottom of the Display area that looks like the following:

DISPLAY = 8,5 !Last Line of Display Area
VALUE = “To Add a Customer to the File,”,
“Complete all Form Fields and Press ENTER.”
ATTRIBUTE = NOBLANK Display on the First Screen
LABEL = INSTR. TEXT !Label so you can blank in REPLY

Note that this example uses the NOBLANK attribute. This field will appear on the initial screen
and, unless modified in a REPLY statement, will also appear on all reply screens. This instruction
line appears on line 8 of the terminal screen, immediately above the first line of the Form area. The
label clause is specified to allow replies to write into this field.

3.1.1.4 Coding the Form Area — The Form area is the section of the form where the user types in
data to be transmitted directly to the terminal station. The two types of statements used in the
Form area are the PROMPT statement and the INPUT statement.

To instruct the user in the mechanics of filling a given form, you can specify prompting text that

is displayed before an Input field in the Form area. Prompts are specified by the ATL PROMPT
statement. When taken as a whole, in this example, the Input fields describe the contents and data
structure of the customer record. The customer record layout is shown in Figure 3-3. Since
ADCUST is input to an application program that creates a new customer record, only the data fields
through CREDIT-LIMIT need be entered on the form ADCUST. The remaining fields will be
initialized by the application program.

The following ATL statements are required to specify the Prompt and Input fields used to format
a screen display that can be used to input customer data.

3-5

Coding Form Definitions

3-6

Transaction Processor:

File Description:

Logical Filename:

This is Record Format:

Logical Record Length:

Physical Record Length:

RECORD LAYOUT SHEET

[S[AImIPILIE]

CUSTOMER FILE

Cluls[T]o]M]

[1for [11]

[EE_:_I (Tape Only)

Field No. | Starting Byte Length (Bytes) Contents Data Type
1 1 o CUSTOMER I.D.# CHAR
2 7 30 CUSTOMER NAME CHAR
3 37 30 ADDRESS LINE *#{ CHAR
4 o7 30 ADDRESS LINE * 2 CHAR
5 o7 30 ADDRESS LINE *3 CHAR
6 127 5 ZIp CoDE CHAR
7 132 10 TeLePHONE # QHAR
8 142 20 ATTENTION LINE CHAR
9 162 12 CREDIT LIMIT (STORED W/o
0 | 174 12 | CURRENT BALANCE g\"ﬂ %
T 186 12 PURCHASES YTD !

12 198 4 NEXT ORDER ## CHAR
13 202 4 NEXT PAYMENT # CHAR

Figure 3-3 Customer File Record Layout

Coding Form Definitions

Note that the comments in the ATL statements briefly describe the purpose of the line of ATL
code. Chapter 5 has detailed descriptions of each ATL language element.

PROMPT =1,1

VALUE = “Customer Number”

INPUT = .,.+4

LABEL = CUSTOMER.NUMBER

ATTRIB = REVERSE,
NOMODIFY

!Move to Line 1, Column 1 of Form Area
!Identify the empty field that follows

IField starts 4 spaces past prompt
!Assign LABEL for future reference
TFill with ?

'Highlight in Reverse video

Protect field from any entry

Notice the way the dot (.) construct is used in this statement to specify the same row as the pre-
ceding statement and a column position 4 spaces after the end of the preceding field.

PROMPT = .30
LENGTH =30

VALUE = “(To be Supplied by System)”

LABEL = CUSTNO.TEXT

1Skip to Column 30 on this line
!Define length for future reference

'Label for future reference

In the prompt statement that defines CUSTNO.TEXT, the length implied by the VALUE statement
is 26 characters. This length is overridden by the LENGTH clause.

PROMPT = .+1,1

VALUE = “Customer Name”’
INPUT = .,20

LENGTH =30

LABEL = CUSTOMER.NAME

ATTRIB = REVERSE,
REQUIRED,
LETTERS

INext line, column 1
!Prompt text identifies input field

'Field starts on same line, column 20
'Define maximum name length
'Label field for later use

'Highlight with Reverse Video
'Force user to Enter Data

'Restrict characters in field

Specifying the REVERSE ATTRIBUTE for an Input field clearly defines the size of the field on

the screen.

PROMPT = .+1,1
VALUE = “Address”

!Skip a line, return to column 1
Prompt for 3-line address

The ATL REPEAT Statement can be used to speed the task of coding forms. In the current ex-
ample, a 3-line address is required, each line consisting of a 30-character address field. The follow-
ing examples shows how the REPEAT statment is used to specify three identical address lines:

Coding Form Definitions

REPEAT =3 'Use a REPEAT Block to code three fields
WITH #1 = “1” Use to create unique labels
WITH#L =4 !Start address on Line 4

INPUT = #L,20 ISkip to column 20 of line
LABEL = ADDRESS #1 ICreates unique label
LENGTH =30 !Line can have 30 characters
ATTRIBUTE = REVERSE 'Highlight field in reverse video

REND !End the REPEAT Block

The statement listing shown in Figure 34 illustrates how the set of three INPUT statements describ-
ing the address fields is created by the ATL utility when it processes the REPEAT block specified in
the preceding example. Notice how the dummy variables #1 and #L are replaced by values specified
in the WITH clause. See the explanation of the REPEAT statement in Chapter 5 for a complete
description of this feature.

REPFAT =2 3 lUse a REPEAT Rlock to code 3 fields
wWiTH 81 ="y* iUse to create uniaue labels
WIThH #L = 4 {Start Adoress on Lirme 4
INPUT = #,20 1Skip to coluymm 24 of mext line
LABEL = ADDRESS,#1 {Creates 3 uniaue labe) fielas
LENGTH = 38 {Each 1ime can have 32 characters
ATTRIBUTE = REVERSE IHighlight each field {n reverse video
RENNP {End the REPEAT Block

LA A R A A R R Y I R R I R 2 2 R A I I I
LA L A A e R I I Y R T Y T I e I 2 2 R A I I I I
REPFAT LOUOP s}

INPUIT = 4,20 ISkip to column 20 of next line
LABEL = ADDRESS,! iCreates 3 unique labe) fielgs
LENGTH = 32 {Each 1ine can have 30 characters
ATTRIBUTE = REVERSE IHighlight each field {n reverse vigeo

i AR AAAAEA S AR R A A R R R R Yy T R 2 R AR Iy
REPFAT LOUP #2

INPUT =2 5,28 ISkip to column 20 of mext line
LABEL = ADDRESS,?2 {Creates 3 unique label fields
LENGTH 5 32 lEach Yime can have 30 characters
ATTRIBUTE = REVERSE IHighlight each field in reverse video

AR R AR A kR R A AR A A AR AR RN R AR RN IR AR AR R AR R R R AR AR A NI S
REPFAY LOOP #3

INPUT = 6,2¢ 1Skip to columr 22 cf rext line
LABEL = ADDRESS,3 ICreates 3 uniaue label fielas
LENGTH = 30 lEach Yime can have 30 characters
ATTRIBUTE = REVERSE {Righlight each field in reverse viadeo

LAAL A A AR S AR ARl Rl Rl 2l R Y 2 R R R X2 2 2 I
LA R A X XA s R R L R Y N R R R R 2 R 222 2 2R 2 i

Figure 3-4 ATL Utility Listing of REPEAT Block

Coding Form Definitions

PROMPT = .+1,1
VALUE = “Zip Code”

INext line, column 1
'Identify the Input field that follows

INPUT =.,20 I1Skip to column 20 of current line
LABEL = ZIP.CODE Label field for use by MESSAGE st’tment
LENGTH =5 !Zip Code is five digits in U.S.A.

ATTRIB = REVERSE, !Highlight in reverse video

NUMERIC, 'Restrict character set
FULL, !Must type all five digits
REQUIRED 'User cannot skip this field

In the INPUT statement defining the ZIP.CODE field, the ATTRIBUTES NUMERIC and FULL
prevent the user from entering an obviously invalid ZIP CODE. In addition, the REQUIRED
ATTRIBUTE forces the user to complete this field.

Using ATL, you can reduce the terminal user’s effort by specifying fields in any level of detail that
you require. Take the example of the telephone number with three distinct code values that must
be completed. You can code the Telephone number in the manner shown on the example form
ADCUST and produce a screen display of the form:
Telephone number: (617) 493-2211

The coding required to achieve this segmented display is:

PROMPT = .+1,1 I1SKip to column 1 of next line
VALUE = “Telephone : (“ !Prompt tag for telephone line
INPUT =.,. IStart immediately
LABEL = AREA.CODE Label for MESSAGE statement
LENGTH=3 13-digit area code in U.S.A.
ATTRIBUTE = TAB,REVERSE, !Allow auto-tab and reverse video
NUMERIC,FULL, IRestrict Character set and force fill
REQUIRED 'User must enter data

PROMPT =.,. VALUE =) >

INPUT = ...
LABEL = TEL.EXCHANGE
LENGTH =3
ATTRIBUTE = TAB,REVERSE,
NUMERIC,FULL,
REQUIRED

PROMPT =.,. VALUE = “.”

INPUT = .,.
LABEL = TEL.EXTENSION
LENGTH = 4
ATTRIBUTE = REVERSE,
NUMERIC,FULL,
REQUIRED

!1Close area code bracket

1Continue immediately

'Label for MESSAGE statement

13 digit exchange in U.S.A.

1Allow auto-tab and reverse video
!Restrict Character set and force fill
'User must enter data

'Hyphen exchange and extension

!Continue immediately

!Label for MESSAGE statement
'4-digit extension in U.S.A.
'Highlight with reverse video
'Restrict character set and force fill
'User must enter data

Coding Form Definitions

Defining the telephone field in this manner allows the user to fill in all three number fields by
simply typing the ten characters of the telephone number in succession. Since the Input fields
were specified with the TAB attribute, the terminal automatically moves the cursor to the ex-
change and extension fields.

The last fields to be defined in the Form area are the Company Contract and Credit Limit Amount
fields. They are specified in the following manner:

PROMPT = .+1,1 INext line, column 1
VALUE = “Company Contact” Identify the following Input field
INPUT = .,20 1Skip to Column 20 on Same Line
LABEL = ATTENTION !Label for MESSAGE statement
LENGTH =20 !Allow 20-character name
ATTRIB = REVERSE 'Highlight empty field in reverse video
PROMPT = .+1,1 ISkip a line; go to column 1
Value = ““Credit Limit (8$)” Identify the following Input field
INPUT =.,20 !Column 20 of this line
LABEL = CREDIT.LIMIT 'Label for MESSAGE statement
LENGTH =12 !Allows 12 spaces for amount
ATTRIB = REVERSE,SIGNED, 'Highlight, allow commas and periods
RIGHT 'Right-justify for easier typing
CLEAR = “0” !Clear character for this field is O

Notice that, in the last INPUT statement, the CLEAR character of “0” has been specified and the
field has been defined with the RIGHT ATTRIBUTE. Specifying a numeric field in this way is
very helpful to the terminal user, since dollar values can be entered into the field in exactly the
same way they would be typed on a cash register or calculator.

After you define all the INPUT fields on the screen, then you must tell the user what he should do
with the information that has just been typed on the form. A prompt field allows you to give
instructions on the bottom of this form.

PROMPT = 15,3 1Center on last Form area line
LABEL = KEY.PROMPT !Label so we can change in replies
LENGTH =75 Define field length
VALUE = “Function Keys:”, IText of initial form display
“ENTER to Add Customer™,
“- CLOSE to quit Add Function™
ATTRIBUTE = REVERSE 'Highlight in reverse video

3.1.1.5 Defining the Reply Screens — Having defined all the fields in the Display and Form areas,
you next define the possible Reply screens that may occur during the processing of this particular

form. The application designer specifies the REPLY screen layout, and the format of the message

sent back to the form as part of each reply message. In the case of the example form, two REPLY
screens are specified: Reply 1 and Reply 2. Reply #1 writes the message ‘““*TRANSACTION

Coding Form Definitions
COMPLETE**” onto the screen in the Display area and inserts the Customer Number into the
previously restricted field
Reply #2 allows you to insert error messages and user instructions into the Display area fields
REPLY.TEXT.A and REPLY. TEXT.B. These modifications occur when a REPLY message is sent
from a TST with the value 2 specified as the REPLY-NUMBER.

The form and response message specifications for Reply 1 and Reply 2 are shown in Figures 3-5a,
3-5b, 3-6a, and 3-6b.

Reply #1 is specified by the following statement:

REPLY =1
DISABLE = ENTER 'Disable ENTER key for this reply
WRITE = REPLY.TEXT.B,* %%k TRANSACTION COMPLETE %&% >
WRITE = INSTR.TEXT,FILL (*“**,72) 'Blank original instructions
WRITE = CUSTNO.TEXT,FILL (*“ ”,30) !Blank Number Text field

WRITE = KEY.PROMPT, “Function Keys: Press AFFIRM to Add Another”,
“Customer — Press CLOSE to quit”

WRITE = CUSTOMER.NUMBER , REQUEST (1,6)

!This WRITE Clause completes the customer information. !

In the statement defining REPLY #1, the REQUEST function is used to extract data from the
reply response message and placed in the CUSTOMER.NUMBER field. Also, in this reply, nothing
is written to the BLANK Display field REPLY. TEXT.A. As a result, this field is blanked in the
reply. This demonstrates one feature of the BLANK ATTRIBUTE. Note by contrast, that the two
PROMPT fields must be explicitly blanked by use of the FILL function in the REPLY statement.

To code REPLY #2 simply, fill the Reply Text fields using the data in the Reply message:

REPLY =2
DISABLE = AFFIRM 'Disable AFFIRM Key
WRITE = REPLY.TEXT.A , REQUEST (1,80) !Fill 1st 80 characters
WRITE = REPLY.TEXT.B , REQUEST (81,80) !Fill rest of message
WRITE = INSTR.TEXT,FILL (** *,72) 'Blank original instructions

3.1.1.6 Defining the Message Statement — The last step in the form definition process is the
specification of the exchange message. Figure 3-7 shows the exchange message layout planned by

the application designer.

Using the ATL MESSAGE statement you can specify the exchange message by specifying the field
labels you assigned to Input fields.

3-11

ZIl-€

FORM SPECIFICATION SHEET

Transaction Processor: [§|A[M]P|L]E] D — Initial Display — Reply Number [__—I:[I]

Form Name: [A[D[CJUIS]T]

Q
&
&
3
Split: 0 | 2 3 4 5 6 7 8 g
8 1]2|3|4]516]7{819|0{112]3]|4|5(6]7(8[9]0[1]{2[3]4]5|6[7]8]9]0; 1[2|3]4]|5!6]7]8]9]01 1] 2|3|4[5]67|8|9]0| 1{2{3{4]|5/6}7{8]9 2{3141516{7]8 2|3[4]5{6[7(8|9]0 S
1
Lines 2 %
Display 3 §
Area = T clo = <}
6 8
7
®_8 a AT -
P9 = T {
10 &Lﬁ
11
12
13
14
15
16
17
1
19
‘-ﬁ’ 3 “nfﬁ"‘?b B I ausT] - d F['
4 | T I 1] L1 I

© FILL CHARACTERS STARTING @ Col 20 FROM RESPONSE MESSAGE

System Function Keys

Bell: Rung for m periods Enabled Disabled

Cursor: Positioned at field ED ABORT
CLOSE X]
AFFIRM

STOPREPEAT []

Use blue ink to give instructions, field types etc.
Use red ink to show actual text that appears on screen

X000

User Function Keys

ENTER
KEYDOT
KEYOO0
KEYO01
KEY02
KEYO03

Enabled Disabled

[]
[]
L]
[
Wl

XXX X X[

Figure 3-5Sa Form Specification for Reply #1 of ADCUST

Coding Form Definitions

RESPONSE MESSAGE SPECIFICATION SHEET

Transaction Processor

Transaction Name

Exchange Label

Type of Message — REPLY (Activates reply no. EDB)
[] - prCEED
[] -sTerer
[] —cLsTrN

[:] — ABORT (Activates reply no. D::[:])
D — TRNSFR (To exchange D:D:ED)

Field No. Starting Byte Length (Bytes) Contents

-
(=N

6 CUSTOMER. NUMBER AssieNED BY ST

W 0N ;AW N

NN N N NN = e el o e e e e e
N AW N = O © O N gD W = O

Figure 3-5b Response Message Specification for Reply #1

vi-¢

Split:

8

Lines
Display
Area

Transaction Processor: [S]A[M][P[L]E] D — Initial Display g] — Reply Number D:@

FORM SPECIFICATION SHEET

Form Name: Dic|U

! 2 3 4 5 6 7

12 112|3]|4[5]6|7]8]9]0[1]2]3[4|5|6|7(8]910] T|2|3]4]|5|6]|7]8[9]0{ 1} 2|3]4]|5|6|7|8]9]0] 112|3}4/516|7|8 112]3]|4]5|6]7|8]9]0]1]2]3]4|5|6/7]8]9]|0
1
2
3

4 =1 7] o) Y
5 — ‘ﬂ 4 g
6
7
8 | INE
9
10
1
12
13
4
15
16
17
18
19
20
21
22
23
24
System Function Keys User Function Keys
BeH: Rung for [j:l:]:] periods Enabled Disabled Enabled Disabled

Cursor: Positioned at field [| | ABORT X] ENTER Xl]

CLOSE] KEYDOT [] X

AFFIRM] KEY00]

STOPREPEAT [] [X] KEYO1] X

KEYO02
Use blue ink to give instructions, field types etc. D [X]
Use red ink to show actual text that appears on screen KEYO03 [:‘ [z

Figure 3-6a Form Specification for Reply #2 of ADCUST

suouLfa(q wiiod 3urpo)

Transaction Processor

Transaction Name

Exchange Label

Type of Message

[gla[mM]P]L]E]
[Alp]p]e[v]s]

AlD[DIETX]4]

[] - Prceep
[[] -stereT
[] - CLSTRN

[j — ABORT (Activates reply no. I:Ij:l)
(] — TRNSFR (Toexchange [] | | [|]

RESPONSE MESSAGE SPECIFICATION SHEET

IX] — REPLY (Activates reply no. D:IZ])

Coding Form Definitions

Field No.

Starting Byte

Length (Bytes)

Contents

© 0 N OO s W N =

NN N N NN = o oa o e om e e e
g A& W N = O W 0O N OO ;M s W N = O

81

80
{60

ERROR TEXT - LINE 1
ERROR. TEXT - LINE 2

Figure 3-6b Response Message Specification for Reply #2

3-15

Coding Form Definitions

EXCHANGE MESSAGE SPECIFICATION SHEET

Transaction Processor BBUJDE
Transaction Name EEEEB

Exchange Label
Field No. Starting Byte Length (Bytes) Contents

1 1 6 SPACES- HoLD PLACE OF custoMEr #
2 7 30 CUSTOMER NAME IAPUT FIELD
3 57 30
a o7 30 ZAootzess— LUNes 12,3
5 97 30
6 127 5 2Ip COpE. INPUT FIELD
7 132 3 TELEPHONE —~ AREA Cope
8 135 3 TEL. EXCHANGE +#
9 1328 4 TEL. EXTENTION
10 142 20 ATTENTION LINE
" 162 12 CREDIT LIMIT AMOUNT™

N N N NN N = @ e e o w @ o -
A B W N = O © 0N OO s W N

Figure 3-7 Exchange Message Layout for Add Customer Exchange

3-16

Coding Form Definitions

MESSAGE =7 1Start filling in 7th character position
!First six spaces align msg with record.
VALUE = 'Value clause defines the data to be
Iput into the message.
CUSTOMER.NAME,
ADDRESS.1,
ADDRESS.2,
ADDRESS .3,
ZIP.CODE,
AREA.CODE, TEL.EXCHANGE, TEL.EXTENSION,
ATTENTION,
CREDIT.LIMIT
END 'End of this Form Definition

Customer Number
Customer Name
Address

Zip Code
Telephone §:
Company Contact
Credit Limit (%)

Figure 3-8 Initial Screen for Form ADCUST

3.1.1.7 Using the KEY and KEYCAP Parameters — ATL allows you to specify a text-string for
each of the six data entry function keys. This keycap text-string can be specified as part of an

exchange message, and transmitted to a TST where it can be used to differentiate the processing
required by the exchange message.

3-17

Coding Form Definitions

Consider an example where a terminal user wants to examine the records in a customer file. The
terminal user enters the customer number or name on the first form, and the customer record is
displayed on the next form. At this point, the user can:

1. Press the ENTER key to see the next record in the file.
2. Press KEYDOT (SHIFT + ““.”) to make a hard copy of the data currently displayed on
the screen.

Several steps are required to implement this functionality. In the simplest case, the default keycap
text-strings are used, the exchange message is specified as follows:

MESSAGE =1
VALUE =KEY

In the TST to which this exchange message is routed, the programmer must specify an exchange
message map of six ASCII characters. The TST tests this data item. If the value is “ENTER”,
the TST branches to a routine that reads the next record. If the value is “KYDOT”, the TST
branches to a routine that sends a REPORT message to an output-only terminal.

Figure 3-9 shows the coding from a TST that maps on to the exchange message, and tests the
function key input to determine the correct processing path.

In some cases, you may want the data entry function keys to have different text strings associated
with them. Suppose you were coding a form used to list goods that are sent from a warehouse to
one of five different retail outlets. If you define the keycap text strings to contain the outlet name
and location, you can save work for both the data entry clerk and the TST. In this example, sup-
pose the outlets were located in the following cities:

Nashua, NH 03060
Maynard, MA 01754
Boston, MA 02108
Worcester, MA 01608
Merrimack, NH 03054

If you specified these city names in a FORM statement as the set of keycap text-strings in the form
definition, the terminal user using that form can place the city, state, and zip code in the exchange
message with a single keystroke. The following example shows how the KEYCAP clause is used.

FORM
SPLIT =8
KEYCAP =KEYDOT,“Nashua, NH 03060”
KEYCAP =KEYO0,*“Maynard, MA 01754
KEYCAP =KEY1,“Boston, MA 02108
KEYCAP =KEY?2, “Worcester, MA 01608”
KEYCAP =KEY3,“Merrimack, NH 03054
DISABLE = ENTER

On this form, you would use the KEY parameter in the MESSAGE statement to insert the appropri-
ate text-string into the exchange message. For example:

3-18

Coding Form Definitions

INENTIFICATION DIVISION,
PROVRAM«ID, TSTEP,

[4
ENVIRONMENT DIVISION,

DATA DIVISION,

[]
LINKAGE SECTION,
21 EXCHANGE=MESSAGE,
P2 KEY=TEXT PIC X(6),

PROCEDURE DIVISION USING EXCHANGE=MESSAGE, TRANSACTION=WORKSPACE,
DECLARATIVES,

END DECLARATIVES,
MAIN=TSTwROUTINE=SECTION,
TESTeFUNCTION=KEY,

IF KEY=TEXT IS EQUAL TO "ENTER " PERFORM TESTeKEY
ELSE PERFORM PRINT=REPORT,

PRINTREPORT,

L]
**ROUTINE TO SEND REPORT MESSAGE TO OUTPUT«=ONLY STATIONw»

TEST=KEY,

«*ROUTINE TO READ NEXT RECORD FROM FILE#+

Figure 3-9 TST Coding (COBOL) to Test Function Key Input

3-19

Coding Form Definitions

MESSAGE =1
VALUE = “Receiving Department”’,
“TRAX Coin and Stamp”,
KEY,

You should note that the keycap text-strings in this example have differing lengths. In order to pass
a fixed length exchange message to the TST, ATL pads all keycap text-strings to the length of the
longest string defined. In this example, the KEY parameter represents a string of 19 characters.

The padding character used by ATL is the null character, OCTAL 000.

3.2 CODING A REPORT FORM DEFINITION

You use Report forms to display information on an output-only terminal. The example form to
illustrate this section is a hard-copy Report form that prints Customer Account information. Figure
3-10 shows the form layout envisioned by the application designer.

3.2.1 Coding the FORM Statement

When you use a Report form on a hard-copy terminal, you may find it useful to specify the dimen-
sions of the form, page length and column width, in the FORM statement. The FORM statement
allow you to define the form so that alignment with preprinted paper stock is possible.

You specify the page size for a REPORT form through clauses in the FORM statement. For ex-
ample, a 22-line by 80-column report would have the following FORM statement:

FORM
LENGTH =22 122 lines per form
WIDTH = 80 180 columns per line
BELL =2 IRing bell twice

A form specified in this fashion prints one record every 22 lines (an 11-inch form has 66 lines),
the hard-copy terminal bell sounds for about a half second when the form is printed.

Coding the remainder of the Report form is a matter of specifying the location and contents of
Print fields using PRINT statements and VALUE clauses. You must also use the REQUEST con-
struct to extract information from the Report message sent by a TST that initiated the printing of
the report. In the example used in this section, a TST sends a 205-character Report message that
contains all fields in the Customer Record. Figure 3-11 describes the Report message sent to this
form.

3-20

FORM SPECIFICATION SHEET
Transaction Processor: [SJA[M]P[L [E] —‘lzrgtpiglkl‘?_isplay D — Reply Number D:D Form Name: [PIRITICIU[S]

Split: 0 i 2 3 4 5 6 7 8]
'I234567890]23458‘7[8901[2]3456[7890]1’234567]89 1[2[3]4l5]6]7]8]9]0[112[3]4]5]6]7]8]9]0]1]2[3]4|5|6]7{8]9]0]1]2]3]4|5]6]7|8|9]0
1 E [- [| ba
Lines 2
Displ 3 NGra |
P Hiricbsiraues
5 IAD;
6
7] lzl1l¢@ e
8| T éc € 4) -
9| [CoM Y] CONTACT
:? Epl 1 L(MIT
12
}i X ST MENT OF AcC - AS| OF 'a
15
:6 U T A P D T A
1
19
20
21
22
23
24
System Function Keys User Function Keys
Bell: Rung for .- periods Enabled Disabled Enabled Disabled
Cursor: Positioned at field [|] ABORT (]] ENTER]]
CLOSE]] KEYDOT []]
FORM DIMEMNSIONS
AFFIRM O O KEY00 []]
WIOTH - LengTH- [2]2] STOPREPEAT []] KEYOT]]
KEYO02
Use blue ink to give instructions, field types etc. D D
Use red ink to show actual text that appears on screen KEYO03 D D

IC-€

Figure 3-10 Report Form Specification Sheet — “PRTCUS”

suonulfaq w0 Sutpon

Coding Form Definitions

REPORT MESSAGE SPECIFICATION SHEET

Transaction Processor mmmm L|E]
Transaction Name ﬂmﬂﬂm
Report Form Name EE’B

Field No. Starting Byte Length (Bytes) Contents
1 i © CUsTOMER NUMBER.
2 7 30 CUSOMER NAME
3 37 30 ADDRESS LINE {
4 67 30 ADDRESS LINE 2
5 97 S0 ADDRESS ULINE 3
6 127 5 ZIP coDE
7 132 3 TEL. AREA CoDE
8 135 3 TEL. EXCHANGE
9 138 4 TeL. EXTENTION
10 142 20 COMPANY coNTRCT
1 lo2 12 CREDIT LIMIT
12 174 12 CURRENT BALANCE
13 186 12 PURCHASES YTD
14 198 4 NEXT ORDER #
15 202 4 NEXT SEQUENCE #

Figure 3-11 Report Message Specification Form

3-22

Coding Form Definitions

In the following set of PRINT statement, notice how the fields are filled from this requesting
message through the use of the REQUEST construct. Also, note the use of the dot construct for
positioning fields on the Report form and for extracting data from the requesting message.

PRINT =

PRINT =

PRINT =

PRINT =

PRINT =

PRINT =

PRINT =

PRINT =

PRINT =

PRINT =

PRINT =

PRINT =

PRINT =

PRINT =

1,16

VALUE =“Customer Master File Subsystem—Account Summary

3,1

VALUE =“Customer Number”

.20

VALUE = REQUEST (1,6) Print customer number from response message
41,1

VALUE =“Customer Name”

.20

VALUE =REQUEST (.,30) IPrint customer name from response message
2,1

VALUE =¢Address”

.20

VALUE =REQUEST (.,30) !Print first address line from response message
41,20

VALUE =REQUEST (.,30) !1Second address line

.+1,20

VALUE =REQUEST (.,30) 1Third address line

41,1

VALUE =°“ZIP” Code’

45

VALUE =REQUEST (.,5) !Print Zip Code from response message

41,1

VALUE =“Telephone”

.,20

VALUE =¢(

VALUE =REQUEST (.,3) !Print telephone area code

3-23

Coding Form Definitions

PRINT = .,.
VALUE =%)”
PRINT = ...
VALUE =REQUEST (.,3) 'Print telephone exchange number
PRINT = .,.
VALUE =%-=”
PRINT = .,.
VALUE =REQUEST (.,4) 1Print telephone extension number
PRINT = .+2,1
VALUE =“Company Contact:”
PRINT = .,20
VALUE =REQUEST (.,20) !Print attention line name
PRINT = 42,1 |
- VALUE =*Credit Limit ($)”
PRINT = .20 R
... VALUE =REQUEST (,,12) Print credit limit amount
PRINT = 43,1

VALUE =¢#®*¥*dkkkkkkkxk 2k %% Statement of Account - As of »,
DATE"‘ sk 3k 3k 3 ok o ofe ke e ok ok ok ks ke sk sk sk ok ok 02

Note the use of the “dot” construct in the following set of statements. Rather than forcing you to
specify a row of headings followed by a row of data items, ATL allows you to define a heading,
drop down to define the associated data field, and to use the “.-” notation to return and code the
header information for the next column of information.

PRINT = .+2,5 - I1Skip to summary heading line
VALUE =“Current Balance” '
PRINT = .+1,7 ' 'Information on this line
VALUE =REQUEST (.,12) Print current balance amount
PRINT = .-1,25 !Return for next column header
' VALUE =“Purchases to Date”
" PRINT= +1,27
VALUE =REQUEST (.,12) Print purchase amount to date
PRINT = .-1,47 IReturn for next column header

VALUE =“Next Order No.”

3-24

Coding Form Definitions

PRINT = .+1,52
VALUE =REQUEST (.,4) Print order sequence number
PRINT = .-1,63 IReturn for next column header

VALUE =“Next Payment No.”

PRINT = .+1,69
VALUE =REQUEST (.,4) Print payment sequence number

END

Figure 3-12 shows an example of the hard-copy Report form that is printed when a Customer
Record is supplied to the form as the requesting message.

Customer Master File Subsystem - Account Summary

Customer Number 001005
Customer Name C G Kuchagian Stame and Coin

Address llert SV6

572 RBush Road

Lincolns VA
ZIF Code 22078
Telerhone (804) 581-2478

Comrans Contact!? C G Kuchadian

Credit Limit ($) 500,00

RKKKKKKKKKKKKKKKXKAXKK Statement of Account - As of 18-AFR-=-78 XXKKHKKKKKKKKAKKKAOK KK

Current Balance Furchases to liate Next Order No. Next Fagument No.
«00 + 00 0002 0001

Figure 3-12 LA180 listing of Report Form

3.3 CODING THE TRANSACTION SELECTION FORM
The Transaction Selection form is a specific type of ATL form that enables a terminal user to select
a defined transaction, and initiate it from an application terminal.

Most commonly, a Transaction Selection Form consists of a list of defined transactions in the form
of a Menu. One menu item (in this case, a transaction name) can be selected by the user using the
SELECT key. When a form has been specified as a Transaction Selection Form, the user must select
exactly one menu item. If more or less than one item is selected, the bell sounds, and a VT62 error
message appears on the terminal error line.

When the user presses ENTER after selecting a MENU item, the transaction named by that selection
is invoked by the transaction processor. The first form defined for that transaction is then displayed
and the user begins the data entry operation.

Optionally, you may specify that the terminal user must type the desired transaction name into an
INPUT field.

3-25

Coding Form Definitions

To illustrate the manner in which a Transaction Selection Form is coded, assume that you wish to
code such a form for a set of four transactions:

1. ADDCUS — Adding a Customer Record
2. CHCUS — Changing a Customer Record
3. DELCUS — Deleting a Customer Record
4. DPYCUS - Displaying a Customer Record.

The form envisioned by the application designer is shown in Figure 3-13.

Since you can specify MENU Fields only in the Display area of a Form, a Transaction Selection
Form using the MENU parameter is generally defined with the entire screen, except the terminal
error line, as a Display area.

3.3.1 Coding the FORM Statement
To specify a form with only display area, use the FORM statement:

FORM
SPLIT = 23 1All Display Area
SELECT = MENU,1,2 !Selection is made from a Menu.

When you specify the SELECT clause in the FORM statement, you are instructing the ATL utility
to compile a form definition that allows the terminal user to specify the transaction to be initiated
at the application terminal. Two methods are available: MENU selection or typing the transaction
name into a labeled INPUT field.

In the SELECT clause shown above, MENU selection has been chosen. The number 1 specifies that
Reply #1 is displayed when the user selects a non-existent transaction. The number 2 in the
SELECT clause parameter list means that Reply #2 of this form is displayed when a terminal user
selects a transaction not included in the work class for that terminal.

If the keyword NOAUTHORIZE is specified in the last parameter position of the SELECT clause,

no user authorization checking is performed. (See the TRAX Application Programmers Guide
AA-D329A-TC for an explanation of work class assignments.)

3-26

FORM SPECIFICATION SHEET
Transaction Processor: [S[A[M[P[L]E] [X] — Initial Display D — Reply Number [[]] Form Name: [§]E][L[E[C]T]

Split: 0 ! 2 3 4 5 6 7 3
2327 R0l [2[3[alsle[7lele ol 2B Ialslel7 Ielelol 23l 5 le 78l lo T 2I3Ials 6 7Ielelo [2[3lalsl6 7[ele[o T [2[a[2 le 7[elelol i [2[3[a[56l Z[8lalo]
23 1] IclusT] (el 1SIUBSYSTEM |- rioM BlEledrio U Jial Tl T (O] |
Lines 2
Display 3
Area g
6
7 D S = Cl ¢ 5
8 L1 |
g CHEcpS -l o Ta [E] £co
0
11 DELCJS - CUISTOMER mﬁra 124
12
13 ds F olJs| A pRY
14
15
16
1; er /A T TLO [TH| CiT T RRE
19
20
21
22
73
24
System Function Keys User Function Keys
Bell: Rungfor [| | | | periods Enabled Disabled Enabled Disabled
Cursor: Positioned at field [| | ABORT] ENTER N
CLOSE] KEYDOT []
AFFIRM [] X KEY00 []
STOPREPEAT [] [X] KEYO1 (]
KEY02
Use blue ink to give instructions, field types etc. D IXI
Use red ink to show actual text that appears on screen KEY03]

Lee

Figure 3-13 Menu-type Transaction Selection Form

suopufaq widog Suipo)

Coding Form Definitions

3.3.2 Coding the Display Area Using Menu Fields

Since you specified the transaction Selection Form with only Display area, you may use two types
of statements to define the screen layout. You use DISPLAY statements to code the explanatory

text and user instructions, and you use MENU statements to define the contents of the Menu data

items.
DISPLAY =1,1 !Give terminal ID and title line
VALUE =“Customer Master File Subsystem — ”’,
“Transaction Selection Menu”’,
“ for station ”,STATION
ATTRIBUTE = NOBLANK,REVERSE
MENU =7,20 'Put Add Customer in menu list
VALUE =“ADDCUS”
DISPLAY = .,. .
VALUE =* — Add Customer to Master File”
ATTRIBUTE = NOBLANK
MENU =.42,20 !Put Change Customer in menu list
VALUE =“CHGCUS”
DISPLAY = ...
VALUE = — Change Customer File Record”
ATTRIBUTE = NOBLANK
MENU = +2,20 'Put Delete Customer in menu list
VALUE =“DELCUS”
DISPLAY = .,.
VALUE =* — Delete Customer from Master File”
ATTRIBUTE = NOBLANK
MENU = .,+2,20 'Put Display Customer in menu list
VALUE = “DPYCUS”
DISPLAY = .,.
VALUE =* — Display Customer File Record”
ATTRIBUTE = NOBLANK
DISPLAY = . +4,10 !For use in explaining error replies
LABEL = REPLY.TEXT
LENGTH =171
DISPLAY = .+2,10 User instructions

VALUE =“Select a transaction using the SELECT key, then press ENTER”
ATTRIBUTE = NOBLANK

3-28

Coding Form Definitions

3.3.3 Coding Replies
The two REPLY statements correspond to the second and third parameters in the SELECT Clause
of the FORM statement. Reply 1 informs the user that the transaction selected is not known to the

transaction processor:

REPLY =1 !Error Reply 1
WRITE = REPLY.TEXT,“You have selected an unknown transaction. ”,
“Please choose again.”

Reply 2 allows you to inform the terminal that the transaction selected does not have the same
work class as the terminal station.

REPLY =2 !Error Reply 2
WRITE = REPLY.TEXT,“You have selected a transaction you are ,

“not authorized to use.”
END 'End of Form: SELECT

Figure 3-14 is a photograph of the VT62 screen display that appears on an application terminal
after you code the Transaction Selection Form definition shown in this section. You use the ATL
utility (see Chapter 4) to compile it and place it into a transaction processor forms definition file.
Then you use the STADEF utility (see the TRAX Application Programmers Guide) to assign that
form name as the initial form for the terminal station associated with the application terminal you
are using.

Figure 3-14 Transaction Selection Form

3-29

Coding Form Definitions

3.3.4 Coding a Selection Form for User Input

You can also use an Input field to specify the transaction to be selected. In this case, you must
specify a SPLIT clause as part of the FORM statement, define an Input field using an INPUT state-
ment, and supply the label of that field in the SELECT clause of the form statement. The follow-
ing statements describe the FORM and INPUT statements and clauses required for this method.

FORM
SPLIT =20 !Top 20 lines are Display area
SELECT = TRANS-NAME, 1,2 'Specify field label and reply number

The Display area is coded as before, except the menu fields are coded as Display fields.

3.3.4.1 Coding the Prompt and Input Fields — The form area coding requires the following two
statements.

PROMPT = 1,1 'First position in Form area
VALUE = “Enter the Transaction Name you wish to perform:”

INPUT = .43 !Start Input field
LABEL - TRANS-NAME Identify for use by SELECT clause
LENGTH =6 'Length of transaction name
ATTRIBUTES = REQUIRED, 'Require input
FULL, 'Field must be full

REVERSE 'Highlight with reverse video
The rest of the form remains the same as before, except that the Menu fields have been merged with

the existing Display fields. Figure 3-15 shows the screen display that appears when this form is used
instead of the menu-type Transaction Selection Form coded earlier in this chapter.

3-30

Coding Form Definitions

TRAX FORMS DEFINITION (V1,0)

Troans, Proc, Nomeit SAMPLE Devicet V762 Page 8ef
Form nmamet SELINP Lemgtht 24 V6110 PM 2Sejyune78

000000000 0CRQPIN0RRCR0RDRNINRODONPRORNIBRIRCOIQEIIOINCRIRORBONRRUEDONRRISDNOONOEOINENINIOIPRRSCOIDRETSD

INITIAL SCREEN PRESENTATION

1111113111222222222233333333334440440444555555555566860606666677777777778
123u5678912345678901234567801112345678901234567890123456789012345678901234567892

Customer Master File Subsystem = Trangaction Selection Form for station STemld

ADDCUS = Add Customer to Master File
CHGCUS = Change Customer File Record
DELCUS = Delete Customer from Master File
DPYCUS = Display Customer Fi{le Record

Type the Next Transactiom Name, ther press ENTER

1234567890123456789n12345678901234567892123456708901234567890123456789¢123456789¢
1111111111222222222233333333334UUUUUUyUuSS555555556686606660677777777778

Keys onebledl ENTER ABORT

Figure 3-15 Initial Screen Display for Input-type Transaction Selection Form

331

CHAPTER 4
USING THE ATL UTILITY

4.1 THE FORMS DEFINITION FILE

Each transaction processor has associated with it a forms definition file. This file is created by the
TRAX definition utility TPDEF at the time a transaction processor is defined. A transaction pro-
cessor’s forms definition file resides in UFD [1,300], and takes its filename from the name of the
transaction processor. The filetype for a forms definition file is . FDF. For example, if you name a
transaction processor SAMPLE, its forms definition file will have the following file specification:

SY:[1,300] SAMPLE,FDF

The forms definition file is the library for all compiled form definitions used by that transaction
processor. Each form definition has its own record in the forms definition file. Additions, dele-
tions, and updates to the forms definition file are performed by the ATL utility program, which is
described in the remaining sections of this chapter.

4.2 TRAX UTILITY DIALOG CONVENTIONS
The ATL Utility adheres to the following TRAX utility dialog conventions:

1. Help Text — If the question does not give enough information to enable you to answer,
you can access help text by typing a question mark followed by the RETURN (®&r) key.
For example:

List ALL>? ?Cur)

The utility responds with an explanation and repeats the question. For example:
The allowed options are: ALL, STATEMENTS, FORMS, NONE
List <ALL>?

2. The RETURN Key — Pressing the RETURN key (aT) terminates your response. If you
have specified valid input, the utility proceeds to the next question.

Command <COMPILE>? Cur)
Form name? SELECT Cmr)
ATL source file <SELECT.ATL>?

3. Responses — The content of each question indicates the type of response expected by the
utility. The utility checks the input as you enter it. If the input is incorrect in any way,
the utility returns an error message and sepeats the question.

The ATL Utility

4. Defaults — If the utility assumes a default value as a response to a question, that value is

shown in brackets following the question.

Command <COMPILE>?
You accept the default by pressing the RETURN key. Values other than the default are
specified as a normal response to the question. For example, to accept the default, simply
press RETURN:

Command <COMPILE>?

To specify a different value, type the response followed by a carriage return.

COMMAND <COMPILE>? ADD

. YES/NO Answers — If a question requires a YES or NO answer, you can respond by typing

Y, YE, YES, N, or NO as a response to the question.

Really DELETE forms definition record “ADCUS1*? YES

. Abbreviating Responses — If a question asks you to select an item from a known set (utility

commands, for example), you need to enter only the number of characters required to
uniquely identify the selected item within the set.

Command? 1

I stands for INDEX, one command from a set that includes ADD, COMPILE, DELETE,
INDEX, EXIT, PURGE, RENAME, REPLACE, and SHOW.

. The Key — All utilities ask questions in a specific order. To reverse the order, that is,

to return to the last question asked, press Cesc).
Device Type <VT62>?
LIST <ALL>?

Device Type <VT62>?

. to Exit — You can make an orderly exit from a TRAX utility after a question by

typing in response to the question.
Command <COMPILE> (cRiz).

>

The ATL Utility

4.3 INVOKING THE ATL UTILITY
You invoke the ATL utility from a TRAX support environment terminal by typing the command
line:

RUN $ATL

The ATL utility program responds with identifying text:

ATL V1.0
TRAX Forms Definition File Utility

The utility then issues the question line:
Transaction processor name <‘‘ *">?

If you are simply compiling a form, you can respond with a carriage return. If you are performing
any other operation, you must supply the name of the previously defined transaction processor
whose forms definition file is accessed by the ATL utility during this terminl session.

If you were using the TRAX Sample Application, you would type the transaction processor name
SAMPLE:

Transaction processor name <** *>? SAMPLE (rer)

If the ATL utility is able to find an existing forms definition file under {1,300] SAMPLE .FDF, the
utility then issues the question line:

Command <COMPILE>?
You respond by typing one of the following command keywords:

ADD
COMPILE
DELETE
EXIST
INDEX
PURGE
RENAME
REPLACE
SHOW

The ATL utility processes each of these commands in a different fashion. To simplify the explana-
tion of how each command works, the interaction between you and the utility is explained for
each of the commands in a separate subsection. These command descriptions are in alphabetical
order beginning with the ADD command.

The ATL Utility

4.4 ADDING FORMS TO A FORM DEFINITION FILE

The ADD Command

Before you can use a form definition as part of a transaction processor, you must first add it to the
transaction processor’s forms definition file. To do this, you invoke the ATL utility and specify the
ADD command. The ATL utility compiles the form definition source file and flags fatal and warn-
ing errors. If no errors are encountered, the form definition is added to the forms definition file.

If warning errors are encountered, you are asked to decide if the form definition should be added.
If fatal errors are encountered, the forms definition file remains unchanged.

Every time you use the ADD command, the ATL utility creates a new version of the forms defini-
tion file. To remove unwanted earlier versions of forms definition files, use the ATL PURGE
command.

The dialog for the ADD command is illustrated in the following example. In this case, the form
SELECT, coded in Chapter 3, is being added to the forms definition file SAMPLE (specified in the
first section of this discussion).
First, you specify ADD in response to the command question:

Command <COMPILE>? ADD
The ATL utility issues the question for the form name, and you specify SELECT in response.

Form name? SELECT
The ATL utility then asks you for the name of the form definition source file. If your file has the
same filename as the form name you just specified, and a filetype of .ATL. you simply respond with
a carriage return. If you answer this question by specifying a file, ATL compiles the source state-
ments in that file. If you do not specify a filetype, the ATL utility assumes a default filetype of
ATL.

ATL source file <SELECT.ATL>?
Since the default value was correct, the carriage return response was sufficient.
The ATL utility then asks you for the device on which the form is to be displayed. The default
device assumption is the VT62 CRT terminal. The only other legal device you can specify is the
LA180 output-only device. The legal response keywords are VT62 and OUTPUT ONLY.

Device type <VT62>?
The ATL utility then asks you for the types of output listings that you want it to generate. Typing
a question mark in response to any question causes help text to be displayed and the question re-
issued. For example:

List <ALL>? ?

The allowed options are: ALL, STATEMENTS, FORMS, NONE.

The ATL Utility

The option keywords cause the following listings to be generated:

1. ALL — You want the ATL utility to create a complete set of listings for this form defini-
tion. This is the default.

2. STATEMENTS - You want only the compiled statements to be listed.

3. FORMS - You want the listings of the form field and message layout tables as well as the
screen display listings.

4. NONE — You don’t want any listings to be produced. This option increases ATL compiler
speed, but provides no means for tracking down errors that occur.

Once you specify the types of listings to be generated, the ATL utility asks you for the device

or file where the output listings are written. The default is LP:. If you want to save form definition
listings in a file, you must specify a filename where the information is to be stored. If you specify a
filename, and omit the filetype, the ATL utility assumes .LST as the filetype for the listing file. In
the following example, you are requesting the ATL utility to store the generated listings of the form
definition SELECT on your system device with the file specification SELECT.LST:

Listing device or file <LP:>? SELECT.LST

After you respond to this question, the ATL utility then processes the source file. When processing
is completed, the utility issues the question:

Command <COMPILE>? EXIT (Crer)

You can specify another command, accept the default command, COMPILE, or exit from the ATL
utility. Specifying a command name causes the utility to enter that command. Responding to the
Command question by typing EXIT causes the ATL utility to terminate normally.

Figure 4-1 is a complete terminal listing showing the sequence of questions and responses described
in this section.

4.5 COMPILING FORMS FOR DEBUGGING PURPOSES

The COMPILE Command

The COMPILE command allows you to process your ATL source statements without altering a
transaction processor’s forms definition file. A recommended practice is to run the initial form
definition source statements through the ATL utility in the COMPILE command, then use

the listings generated by the COMPILE pass to debug and streamline your form definition. Once
you have compiled a form without errors, you then use the ADD or REPLACE commands to in-
sert the new form definition in the form definition file.

If you specify‘ the COMPILE command, the ATL utility discards the transaction processor name

that you previously specified. If you were to REPLACE a form, COMPILE a second form, and
finally REPLACE the second form, you must reenter the transaction processor name before specify-
ing the REPLACE command for the second form. You do this by pressing the ESCAPE (&sc)

key when the “Command?” question appears. Pressing (&sc) returns you to the previous question,

4-5

The ATL Utility

where you can enter the transaction processor name. If you have neglected to reenter the transac-
tion processor name, when you specify the REPLACE command, the ATL utility issues the error
message:

% Selected command requires TP name — restarting dialog.

followed by the transaction processor name question.

>RUN S$ATL

ATL V1.0
TRAX Forms Definition File Utilitw

Transaction rrocessor name <"'>? SAMPLE

Command <COMPILE>? ADD (2T

Form name? SELECT (R

ATL source file <SELECT.ATL»?

device ture <VT42:7

List <ALL>? 7

The allowed OPtions are! AlLLy» STATEMENTS» FORMS»y NONE.
List <ALL>?

Listing device or file <LPi»? SELECT.LST

Command <COMPILE>»? “Z

-~

Figure 4-1 ADD Command Dialog

The COMPILE command dialog is similar to that of the ADD command. However, you are not
required to specify a transaction processor name in COMPILE. You may simply type a carriage
return in response to the question:

Transaction Processor Name < *>

The ATL utility then asks you to select a command. Since COMPILE is the default command as-
sumed by the ATL utility, you can simply type a carriage return:

Command <COMPILE>? (1)

4-6

The ATL Utility

The next question asks you to specify the name of the ATL source file to be compiled. In response
to this question, you specify the source file ADCUST.ATL.

ATL source file? ADCUST.ATL
If you specify only the filename, the ATL utility assumes that the filetype is .ATL.

Next, you are asked to supply the type of device on which the form is intended to be displayed.
This information is required by the ATL compiler to generate the screen layouts and field descrip-
tions.

Device type <VT62>?

Typing a question mark in response to this question causes the utility to display help text for that
question, and then reissue the question. For example:

Device type <VT62>? ?
Currently allowed forms devices are: VT62, OUTPUT ONLY.
Device type <VT62>?

After you specify the device type, the ATL utility then asks you to specify the types of listings that
you want the utility to generate as it processes the source statements.

In the case of initial debugging runs, it is very useful to ask for all listings, statements, form field
descriptions, and screen display listings. These listings are shown and described at the end of this
chapter.

List <ALL>?

You may direct the ATL utility to produce output listings that are stored in a file, or direct these
listings to a physical device. If you accept the ATL default, the listings produced by the ATL
utility are directed to the line printer LP:. To produce the listings on your terminal, you must
specify TI:. If you want to save the compile listings on a file, respond with a file specification. The
filename is required. If no filetype is specified, the ATL utility assumes .LST as a default. In this
example, where a form is being compiled for debugging purposes, the logical place for the output
would be the line printer, since you need to examine the compiler output to debug the form. If
you do not specify a device or file, but simply type a carriage return, the ATL utility sends the
specified listings directly to the line printer.

Listing device or file <LP:>?

At this point, the ATL utility processes the source file and creates the listing that you specified.
When processing is completed, the ATL utility issues the question:

Command <COMPILE>?

The ATL Utility

Specifying EXIT causes the ATL utility to terminate in a normal manner. You can terminate the
ATL utility at any time by typing in response to any ATL utility question.

Figure 4-2 is an actual hard-copy terminal listing of the dialog described in this section.

>RUN SATL

ATL V1.0
TRAX Forms Definition File Utilityw

Transaction processor name <"*>7

Command <COMPILE>?

ATL source file? ADCUST.ATL

Device ture <VT62:7 7

Currently allowed forms devices are! VUTé62y OUTPUT ONLY.
Device twre <VT62>7

List <ALL>? RET

Listing device or file «<LF!:7? RET

Command <COMPILE:»? ~Z

Figure 4-2 COMPILE Command Dialog
4.6 DELETING FORMS FROM A FORMS DEFINITION FILE

The DELETE Command

As your transactions change, you may find it necessary to delete form definitions from a transac-
tion processor. You can delete form definitions by invoking the DELETE command. To do this,
you must specify the DELETE keyword in response to the ATL utility’s command question.

After you type the keyword DELETE, the utility asks you to specify the name of the form to be
deleted. The ATL utility creates a new version of the forms definition file. To remove unwanted
earlier versions of forms definition files, use the ATL PURGE command.

Command <COMPILE>? DELETE

The ATL Utility

The utility responds by asking you to specify the name of the form you wish to delete.
Form name? ADCUSI

The utility then asks you if you really want to delete the form you specified. This allows you to
avoid erroneous deletions due to misspelling the form name.

Really DELETE forms definition record ‘“ADCUS1”"?

Typing a question mark in response to this question causes the utility to display help text and then
reissue the question. For example:

Really DELETE forms definition record “ADCUS1”? ? Crer)

Respond with Y, YE or YES to permit DELETE to occur. Respond with N or NO to skip
DELETE operation. An explicit response MUST be given.

Really DELETE forms definition record “ADCUS1”*? YES

Typing YES causes the utility to delete the specified form definition record. The ATL utility
deletes the record by creating a new version of the forms definition file that omits the deleted
record. Once the new forms definition file is created, the utility again issues the Command ques-
tion, allowing you to go on to other functions or to terminate the session.

Command <COMPILE>?
Typing in response to any question brings the ATL utility to a normal conclusion.
Figure 4-3 is an actual terminal listing of the DELETE command dialog described in this section.
4.7 DISPLAYING THE FORM DEFINITION FILE INDEX

The INDEX Command

During the development of a transaction processor you may require an index of all form defini-
tions contained in the transaction processor’s forms definition file. The INDEX command allows
you to obtain information regarding the state of the .FDF file.

After you invoke the utility and specify the appropriate transaction processor name, you invoke
the INDEX command by typing INDEX in response to the Command question:

Command <COMPILE>? INDEX

The ATL utility then asks you to supply the filename where the ATL utility can write the index, or
the device on which you want to display the index. If you specify a file name, the index will be
written to your account on the system device with the default filetype .LST. The assumed default
is the line printer, but the following example specifies that the index is to be displayed at your sup-
port environment terminal.

Listing device or file <LP:>? TI: Ceer)

4-9

The ATL Utility

>RUN $ATL

ATL V1.0
TRAX Forms Definition File Utilitw

Transaction processor name <°°*»>? SAMFLE
Command <COMPILE»? DELETE

Form name? ADICUSI

Really DELETE forms definition record "ADCUS1°? 7
Resrond with Y» YE or YES to permit DELETE to occur. Resrond
with N or NO to skir DELETE oreration. An exrlicit

response MUST be diven.

Really DELETE forms definition record *aADCUS1*? YES

Figure 4-3 DELETE Command Dialog

The utility then prints an index listing on your terminal in the form shown in the example listing
in Figure 4-4. When the utility completes printing the index listing, it reissues the command ques-
tion, allowing you to terminate the session or enter another command.

Command <COMPILE>? EXIT
Typing EXIT causes the ATL utility to terminate in an orderly fashion.
Figure 4-4 is an actual terminal listing of the INDEX command dialog described in this section.
4.8 PURGING VERSIONS OF THE FORM DEFINITION FILE
The PURGE COMMAND
Any time that you add, replace, rename, or delete a form definition record from a forms definition
file, a new version of that file is created by the ATL utility. Since large applications can create very
large forms definition files, you may want to purge some of the outdated versions. This procedure
can be done by invoking the ATL utility, specifying the transaction processor name whose forms
definition files you wish to purge, and responding to the Command question with the keyword
PURGE.

Command <COMPILE>? PURGE (1)

The ATL utility then finds the earliest (lowest numbered) version of the tile and issues the question:

Earliest version <42>?

4-10

The ATL Utility

>RUN $ATL

ATL Vi.0
TRAX Forms Definition File Utilitw

Transaction processor name <"'>? SAMFLE
Command <COMPILE>? pNDEX
Listing device or file <LP!>?P 711

INDEX Listirng of Forms Definition File *"SAMPLE®
18-Jun~78 02%17 PM

NAME LENGTH DEVICE REPLY =w==me=- COMPILE===m==m==
CT. DATE TIME
ADCUST 1608 VTé2 2 21-Apr-=78 09 342 PM
CHCUS1 636 VTé62 2 Ol-Mar-78 11 151 AM
CHCUS2 1574 VTé62 2 21-Apr-78 09 129 PM
DECUSL 636 VTé62 2 2-Apr-78 09 50 PM
DECUS2 1724 VT62 2 21-Apr~78 09 138 PM
nPCUSL 682 VTé62 2 O0i-Mar-78 11 157 AM
DPCUS2 1210 VTé2 2 2-Apr-78 02 $14 PM
FRTCUS 878 OUTFUT 0 20-Mar-78 09 121 AM
SELDEM 746 VT42 2 13-Jan~-78 12 129 FM
SELINF 730 VTé2 2 30-Maw~-78 01 142 FPM
SELSGN 8%0 VUTé2 2 05-Maw-78 12 129 FPM
SIGNOF 186 VTé62 1 O0S5-Maw-78 12 158 PM
SIGNON 186 VTé2 1 05-Maw~-78 12 154 FPM
13 Form Definition records in 32 blocks

Command «<COMFILEX? gx17 (e

Figure 4-4 INDEX Command Dialog

Typing a question mark in response to a question causes the ATL utility to display the help text for
that question and then reissue the question. For example:

Earliest version <42>?9
Respond with starting version # of range to be PURGE.
Earliest version <42>?743 (Grer)

The value in brackets (<42> in this example) represents the lowest version number of the forms
definition file currently found on the directory for UFD [1,300].

4-11

The ATL Utility

If you type a carriage return, the utility assumes that you agree that the proposed version number is
the earliest version you wish to purge. In this example, version 42 was saved. The lowest version
number purged was 43. Any version number you type must be an octal value.

The next question asks for the latest version to the purged. The default value is one less than the
highest existing version number. In this example:

Latest version <44>1?
Displaying the help text tells you to:

Respond with ending version # of range to be PURGEd.

Latest version <44>?
As before, typing a carriage return means that you accept the proposed version as the highest ver-
sion number to be purged. If you type a lower version number in response to this question, any
versions with numbers higher than the value you specify are retained. Any version number you
type must be an octal value.
The utility then asks you:

Really PURGE version 43 through version 44?YES
Typing YES causes the ATL utility to purge the files specified in the question. Note that the
PURGE removes versions 43 through 44 inclusive. The utility responds with a brief message, and
then reissues the Command question, allowing you to specify some other command, or make an
orderly exit from the utility.

Version(s) 43 thru 44 PURGEd.
If, for any reason, the ATL utility cannot purge a version, it will issue the warning message:

Unable to PURGE version nn.

Command <COMPILE>?EXIT
Figure 4-5 is an actual terminal listing of the PURGE command dialog described in this section.
4.9 RENAMING FORMS IN A FORMS DEFINITION FILE

The RENAME Command
At times, you may wish to rename existing form definitions.

Every time you use the RENAME command, the ATL utility creates a new version of the forms

definition file. To remove unwanted earlier versions of forms definition files, use the ATL PURGE
command.

4-12

The ATL Utility

Command <COMPILE>? PURGE

Earliest version <42>7 7

Resrond with starting version & of rande to be PURGEd.
Earliest version <42>7 43

Latest version <44>7 7

Resrond with ending version # of ransge to be PURGEd.
Latest version <44>7

Reallw PURGE version 43 throush version 447 v
Version(s) 43 thru 44 FURGEd.

Command <COMPILEX>? EXIT
>

Figure 4-§ PURGE Command Dialog
In the example shown here, the form AbCUST is renamed to be ADCUSI for purposes of testing it
in the transaction processor SAMPLE. After invoking the utility and specifying the transaction
processor in the normal manner, you must type RENAME in response to the Command question.
Command <COMPILE>?RENAME (rer)
The ATL utility then asks you to supply the existing form name to which you respond ADCUST.
Form name? ADCUST (Crer)
You are then asked to supply the new name for that form,

New form name?? (rer)

Typing a question mark causes help text to be displayed. The form name help text gives the fol-
lowing information:

A Form Name consists of up to six (6) characters, letters, and digits only, identifying the
forms definition record in the Forms Definition File.

New form name? ADCUS1 Crer)

After you specify the new form name, the ATL utility updates the form definition record name
and reissues the Command question.

Command <COMPILE>?EXIT (&)

4-13

The ATL Utility

Figure 4-6 is an actual terminal listing showing RENAME command dialog described in this section.

Command <COMPILE>? RENAME (&er)

Form name? ApcusT

New form name? 7

A Form Name consists of upr 1o six (6) charscters, letters

and didgits onlyy identifwing the forms definition record in the
Forms Definition File.

New form name? ancusi (e

Command <COMFILE>? EXIT
>

Figure 4-6 RENAME Command Dialog
4.10 REPLACING FORMS IN A FORM DEFINITION FILE

The REPLACE Command

To modify an existing form definition, first you must edit the source statement file using the TRAX
Editor, then you may invoke the ATL utility, specify the transaction processor name, and type the
keyword REPLACE to enter the REPLACE command. In the REPLACE command, the ATL
utility compiles the specified source statement file, creates a new form definition record, and then
creates a new version of the form definition file, replacing the existing form definition with the one
just compiled.

The dialog for the REPLACE command is illustrated in the following example. In this case, the
form ADCUST, coded in Chapter 3, is being modified and replaced in the forms definition file
SAMPLE that was specified in the first section of this discussion.

Every time you use the REPLACE command, the ATL utility creates a new version of the forms
definition file. To remove unwanted earlier versions of forms definition files, use the ATL PURGE
command.

To replace an existing form definition, you first must specify REPLACE in response to the Com-
mand question:

Command <COMPILE>? REPLACE

The ATL utility then responds with the question for the form name; you specify ADCUST in
response.

Form name? ADCUST

4-14

The ATL Utility

The ATL utility then asks you for the name of your form definition source file. If your file has the
same filename as the form name you just specified, and a filetype of .ATL, you can enter a carriage
return and accept the default value. If you answer this question with a full file specification, ATL
compiles the source statements in that file. If you omit a filetype, the ATL utility assumes a
default of .ATL. In the following example, the name suggested by the utility was correct, but the
source file was stored in UFD [350,227]. For this reason, the UFD was specified along with the
filename and filetype.

ATL source file <ADCUST.ATL>? {350,227] ADCUST.LST Czer)

The ATL utility then asks you for the device on which the form is to be displayed. The default
device assumption is the VT62 video terminal. The only other legal device that may be specified is
the LA180 output-only device. The legal responses to this question are VT62 and OUTPUT ONLY.

Device type <VT62>?

The ATL utility then asks you for the types of output listings that you desire. Typing a question
mark in response to a question causes help text to be displayed, and the question reissued, for
example:

List <ALL>? ? Crer)
The allowed options are: ALL, STATEMENTS, FORMS, NONE.
The option keywords cause the following listings to be generated.

1. ALL — You want the ATL utility to create a complete set of listings for this form definition.

2. STATEMENTS — You want only the compiled statements to be listed.

3. FORMS — You want only the listings of the form field and message layout tables as well as
the screen display listings.

4. NONE — You don’t want any listings to be produced. This option increases ATL compiler
speed, but provides no means for tracking down errors that occur.

List <ALL>?
Finally, the ATL utility asks you for the device or file where the output listings are written. The
default is LP:. Should you wish to save Form Definition Listings, you must specify a file name
where the information may be stored. If you specify only a filename, .LST is the assumed filetype.
In the following example, ADCUST.LST is a disk file containing the listings from the Form Defini-
tion ADCUST.

Listing device or file <LP:>? ? ()

Typing a question mark in response to a question results in the help text being displayed on the
terminal.

4-15

The ATL Utility

Supply the file specification for the listing device and/or file name where the listing output is
to be written. The default device and file is the line printer.

Listing device or file <LP:>? ADCUST.LST (=)

This is the last question in the dialog. The ATL utility then processes the source file. If no errors
are detected, the new form definition replaces the old one in a new version of the forms definition
file. If warning errors are detected by the ATL utility, you are asked to decide if the erroneous
version is to be posted to the forms definition file. Fatal errors preclude any update of the forms
definition file. When processing is completed, the utility issues the question:

Command <COMPILE>? EXIT (=)

Responding with EXIT causes the ATL utility to terminate normally. The utility may also be ter-
minated by typing a character in response to any question.

Figure 4-7 is an actual terminal listing showing the REPLACE command dialog described in this
section.

»RUN $ATL

ATL vi,0
TRAX Forms Definition File Utilitw

Transaction processor name <"°*>? SAMPLE (=)

Command <COMPILE>? REPLACE (=D

Form name? ADCUST (D)

ATL source file <ADCUST.ATL>? [350,227JADCUST.ATL =)
Device ture <VUT62>? (D)

List <ALL>? 7 (=D

The allowed options are! ALLs STATEMENTS» FORMSs NONE.
List <ALL»? D

Listing device or file <LP:>? ? (&)

Surrlu the file srecification for the listind device
and/or file name where the listing outrut is to be written.

The default device and file is the user’s terminal.,

Listing device or file <LF{>? ADCUST.LST (=)

Figure 4-7 REPLACE Command Dialog

4-16

The ATL Utility

4.11 DISPLAYING A FORM DEFINITION RECORD

The SHOW Command

You can display the screen formats of a form definition from the forms definition file, by invoking
the ATL utility, supplying the desired transaction processor name, and then specifying the SHOW
keyword to cause the utility to invoke the SHOW command. For example:

Command <COMPILE>? SHOW
The ATL utility then asks you which form you want to display:
Form name?

Typing a question mark in response to a question causes help text for that question to be displayed
on your terminal. For example:

Form name? ?

A Form Name consists of up to six (6) characters, letters, and digits only, identifying the
forms definition record in the Forms Definition File.

Form name? ADCUST (xer)

In this example, the form ADCUST was requested. You may also respond with the keyword ALL,
causing all forms in that forms definition file to be shown. The ATL utility then asks you to sup-
plythe filename where the listings should be stored or the device where the display screen listings
could be directed. The line printer is assumed as the default device for this command. If you
specify a filename, the default filetype .LST is assumed.

Listing device or file <LP:>? (xer)

Command <COMPILE>? EXIT (rer)
Figure 4-8 is an actual terminal listing of the SHOW command dialog described in this section.
Figures 4-9a, 4-9b, and 4-9c are the listings of screen display formats produced by the ATL utility

in the SHOW command. Figure 4-9a is the initial screen display, Figure 4-9b shows the screen after
REPLY 1, and Figure 4-9c shows the screen display after REPLY 2.

4-17

The ATL Utility

Command <COMPILE>T SHOW
Form name? %

A Form Name consists of up to six (&) charactersy letters
and digits onlyy identifuing the forms definition record in the
Forms Definition File.

Form name? ADCUST
Listing device or file <LP{:7?

Command <COMFPILE>? ~Z7
Figure 4-8 SHOW Command Dialog

TRAX FORMS DEFINITION (Vi,0)

Tramns, Proc, Name: SAMPLE Devices VTe62 Page Xei
Form nmames ADCUST Lemgths 24 12142 AM 22eJun=78

20000 Q0 CR P00 EOERNROPORRORO0P0R0RRRCRRRRERIITCRCEN000RTRRRRCROECRRBRCOIOCOIEOERIONRINIEOSEROQOOPTOYS

INITIAL SCREEN PRESENTATION

111111111122222222223333333333444444444455555555556666660666677777777778
123456789012345678901234567890123456789012345678909123456789312345678921234567890

Customer Master File Subsystem « Add Customer Transaction

Te Add a Customer to the File, Complete all Form Fields amnd Press ENTER,

Customer Number 27222272 (To be Supplied by System)
Cugtomer Name

Address

Zip Code

Telenhone %3 () -

Comnany Contact
Creoit Limit ($) @eQovenanee

Function Keyss ENTER to Add Customepr= CLOSE to quit Add Function
BFLL rurmg: § perjods

12345678901234567892123456789212345678911234567892123456789012345678901234567890
111111111122222222223333333333444044444U85555555555666666666677777777778

Figure 4-9a Initial Screen Display Listing

4-18

The ATL Utility

TRAX FORMS DEFINITION (V1,0)

Trars, Proc, Namei SAMPLE Devices VT62 Page X=2
Form mame} ADCUST Lengths 24 18342 AM 22« Jynm=78

200000000 Q00R0ERCRNRIPNURNTEORRSIORROPPRORNRRIRNCERECEROOUORSRROOETROUIO0O0CPRDRPO0RPCITRPRTRRORROORRTCECOIRTOIETDPERPNOTERTTS

INITIAL SCREEN AFTER APPLYING REPLY # 1

11111111112222222222333333333344444444445555555555666666666677777777778
12345678901234567890123456789212345678901234567890123456789012345678901234567892

Customer Master File Subsystem = Ado Customer Trangsaction

«es TRANSACTION COMPLETE #aw

Customer Number temmdd
Customer Name

Address

Zio Code

Telephore #1§ () -

COmmany Contact
Creaft Limit ($) garRavReeeare

Fumetion Keyss Press AFFIRM to Add Amother Customer =« Press CLOSE to auit
<Frror text linme>

1234567899123456789¢123456789212345678901234567891801234567899123456789101234567891
111111111122222222223333333333444844444U5555555555666666666677777777778

Figure 4-9b Reply 1 Screen Display Listing

4.12 ANNOTATED ATL UTILITY OUTPUT LISTINGS
This section contains the output listings produced by the ATL utility when you specify the ADD,
COMPILE, or REPLACE commands.

The example used is the data entry and display form, ADCUST, that was coded in Chapter 3 and
processed through the ATL utility in this chapter.

4.12 1 Forms Definition Statements — Pages L-1 to L-5
The ATL utility checks your ATL source statements for errors, and then places them into a listing
format. The listing has a header for every page which gives:

the transaction processor name.

the form name.

the device type on which the form will run.
the number of lines on the form.

bl S

4-19

The ATL Utility

TRAX FORMS DEFINITION (Vi,0)

Trares, Proc, Name: SAMPLE Devices VTé2 Page Xe3
Form mame} ADCUST Lengths 24 10142 AM 22eJyn=78

R R R N N R R I R R R N N R N R R R R Iy
INITIAL SCREEN AFTER APPLYING REPLY # 2

1113811111222222222233333333334444444444555555555566666666667T7777777778

12365678901234567890123456789012345678901234567890123456789012345678901234567890

Customer Master File Subsystem = Add Customer Transaction

(XL I YT YTy P Y T Y T Y Y P Y LT Y Y P P P T T T e Y Y T T Y P Y Y P Y P P PP T Y Y YT YT P Y T T X
X I I T L T P P P Ty Yy T Y Y P Y T Y Y L e T Y T P T Y YL Y PP T T Y T Y)

Customer Number 27217 (To be Supplied by Systenm)
Customer Name

Address

Zip Code

Telenhone #¥i ¢) -

Comeoany Contact
Creait Limit (8) 000020000000

Fumction Keyst ENTER to Add Customer= CLOSE to quit Add Function
<Epror text |ine>

1230567890123456789901234567890123456789012345678901234567890612345678901234567890
111111111122222222223333333333444444444455555555556666666666777T77777778

Figure 4-9c Reply 2 Screen Display Listing

5. the page number. F stands for a FORM listing, L stands for a source statement listing, and
S stands for a sample screen display.
6. the date and time that the form definition was compiled by the ATL utility.

If a syntax error is detected, it appears following the incorrect statement. Sometimes syntax errors
are not detected unti! the utility begins processing the following ATL statement. Thus some ATL
statements that have a syntax error message are in themselves correct, but the preceding statement
is in error.

Additional error messages are printed following the END statement as part of the statement listing
section of ATL utility output listings.

4-20

Fopm nameg

The ATL Utility

TRAX FORMS DEFINITION (V1,0)
Trans, Proc, Namo:E%sAMPLE

ADCUST

Device: VT62
Lengths 24

() Pege L=t
() 10142 A% ~22Jun=T8

9000000000000 0 000000000000 0CINRICE0RROIRREOROCEOEINTOIROSOINIENIPOORIESOSTRONOEEREEOEUOVINQOQTINETORTSETDOEOTDS
R A A RN R A Rk AR R A A R N AN AR RN RN A AR R R AR AR PR R AR AR RN Rk

= o= om p= S= o=

Defimitiomn of form ADCUST

This (s the only form neeced for the ADD Customer

Transaction,

X XE R X s R R R R R R R R R R R A R R R TRl
EE 22 2R R Y R R R R R R R R e R R R R R AR RS

l
|
l
l

The ODEFAULY and FORM Statements are used to set
gerneral assumptions for the form definition,

]i*ititiit*ﬁtttttt*titiitttiﬁﬁi***ﬁt**itii*t?*t*&itiiii*t*t*iititt*itﬁ

DeFAULT

FURM

ENABLE = CLOSE
ENABLE 3 AFFIRM
CLEAR = " v

SPLIT = 8
BELL = 2

{To SET Defaults for whole form
lEnable al! control fumctiom keys

{Set space as default clear character
IForm Statement

18 Line DISPLAY at Top of Form
IRing Bell Twice for Inftial Form

IR X2 2 Y Y R R R R R e Y R R R RS e RS X RS EEYI R 2 X 3

!
l
!
!
i

Detime the DISPLAY Area,

{neluding ocerator

Instructions, and 160 characters for REPLY

Text from Erpror Replies,

IR R Y R R R R R Y A R R S F XS SRS TS 2

DisPLAY

DISPLAY

DISPLAY

DiSPLaY

s 2,11

{Indent 1 Yime and 11 spaces

VALUE 3 "Customer Master File Subsystem « ",
"Add Customer Transaction®

ATTRIBUTES = REVERSE,

NOBL ANK
= 4,
LABEL = REPLY,TEXT,A
LENGTH = 82
3 S,
LABEL = REPLY,TEXT,B
LENGTH = 80
= o*"s
LENGTH & 72

inHighlight {(n reverse video
iDon’t Ersse during Replies

iSkip 1 Line
iLabe) for 1st REPLY Line
iLine covers Full Screen Width

iMove to start of next line
{Lavel for 2nd REPLY Line
IFUll Screen Wigth

list Line of Form Ares

VALUE = "To Add & Customer to the File, ",
"Complete all! Form Fielas amd Press ENTER,"

ATTRIBUTE = NOBLANK
LABEL = INSTR,TEXT

IDisplav on the Fi{rst Screen
iLabe! s0 you can blank {n REPLY

IR 2RI I R R R R R R R R R I T 2 2 e R R SR TSR S S L X2 Y 1)

!
{
!

The FORM ares {3 defirmed beginning at this point,

Figure 4-10 ANNOTATED Statement Listings (1 of 5)

4-21

The ATL Utility

TRAX FORMS DEFINITION (V1,0)

Trarns, Proc, Namei SAMPLE Devicet VTé62 Page L=2
Form mame ADCUST Lengtht 24 10142 AM 22«Jun=T78

S5 0P PP NIRRT PRI RET RPN QOINPRONRINPIERRRORRNDIPOOEIRPITEPRORREROOEROORNY
R e R R R e R A e Ry R e R A I 222y

PROMPT =3 1,1 ISkip a Yime, move to column 1
VALUE = "Customer Number" {Labe) the empty field

PPOMPT = ,,,¢4 {Field starts 4 spaces past prompt
LABEL = CUSTOMER,NUMBER IAssign LABEL for MESSAGE and REPLY
VALUE = "?272?227?27%" IF{11 with ? = System assigns valye
ATTRIB = REVERSE IHighlight {mn REVERSE video

PRO“PT = ,,30 1Skip to Column 32 on this line
LENGTH = 39 iDefine Length for blamkimg out later
VALUE 3 "(To be Suppli{ed by System)"
LABEL = CUSTNO,TEXT iLabe) for Blanking out Later

PROMPT 3 ,+1,1 INext Line, column |
VALUE = "Customer Name"

INPUT = ,,20 {Field starts 2 spaces past prompt
LENGTH = 3@ IDetine Maximum Name Length
LABEL = CUSTOMER, NAME {Labe) Field for later use
ATTRIB = REVERSE, IHighlight with Reverse Video

REQUIRED, IForce Operator to Complete Field
LETTERS iRestrict characters in field

PROVYPT = ,+1,1 I{Skip & Yime, returmn te column |
VALUE s "Address" |Prompt for three=line address

REPFAT 3 3 iUse a REPEAT Bloek to code 3 fields
WITH #1 3"i" lUse to create uniaque labels
WITH #| 3 4 {Start Address on Lime 4

INPUT B R ,20 ISkip to column 23 of mext line
LABEL = ADDRESS,#1 ICreates 3 uyniaue label fields
LENGTH = 30 iEach Yine can have 32 charascters
ATTRIBUTE = REVERSE {Highlight each field in reverse video

RENN JEnd the REPEAT Block

(2 E T2 2 RS XX 22 R 2 X 222222222 2R 22222 2 X2 2 XX RS2 S22 2R RS RXRES2RXT22
(2 E Y2 2 2 R X222 2228222222222 222 X222 22X 22X R 2RSS 22222222222)
REPFAT LOOP #1

IMPUT = 4,20 ISkip to column 2@ of mext line
LABEL = ADDRESS,! ICreates 3 unique label fielas
LENGTH = 30 IEach 1ine can have 32 characters
ATTRISUTE = REVERSE IHighlight each field in reverse video

AR RN AN R R R R R R R AR AR R R R R AR R AR R AR AR R R R RN AN R AN AR R R R AR AR AR R R R AR AR RN R AR R
REPFAT LOOP #2

INPUT & 5,20 ISkip to column 20 of next line
LABEL = ADDRESS,2 iCreates 3 uniaue label fields
LENGTH = 30 IEach Yine car have 30 characters

Figure 4-10 ANNOTATED Statement Listings (2 of 5)

4-22

The ATL Utility

TRAX FORMS DEFINITION (Vi.8)

Namet SAMPLE

ADCUST

Trans, Proc,
Form mames
(AN NN NENNNN] [E N

1o e .
ATTRIBUTE = REVERSE

Devicet VT62
Lengtht 24

(A XX RN AN R NN NN RN N N NN NNN]

Page L=3

10342 AM 22=Jyn=78

e [N N]
{Highl {ght each fi{eld {n reverse video

1322222222 22222 2222222 2 X222 il s s sz iR

REPFAT LOOP #3

IMPUT = 6,20
LABEL = ADDRESS,3
LENGTH = 30
ATTRIBUTE = REVERSE

{Skio to column 22 of next line
ICreates 3 unique label fields

{Each line can have 3¥# characters
IHighlight each field in reverse videe

A2 X222 A 22 22 R AR 2 e s a2 A AR 222222 22X 2222222222 22X 2)
(A2 22222822 AR 2S8R S 2 s 2R A R R R s a2 22 22222 RS2 22 220}

PROMPT 3 41,1
VALUE = "Zi{p Code"
INPUT = L, 45
LABEL = 2IP,CODE
LENGTH = S
ATTRIB = REVERSE,
NUMERIC,
FULL,
REQUIRED

PROMPT 3 L¢1,1
VALUE = "Telephore #1¢ &

INPUT = Y
LABEL = AREA,CODE

LENGTH = 3

ATTRIBUTE = TAB,REVERSE,
NUMERIC,FULL,
REQUJIRED

PROMPT = ,,, VALUE = ") "
INPUT = she
LABEL = TEL,EXCHANGE
LENGTH = 3
ATTRIBUTE = TAB,REVERSE,
NUMERIC,FULL,
REQUIRED
PRO™PT = ,,, VALUE = "atv
INPUT 2 ,,,
LABEL = TEL,EXTENSION

LENGTH = 4

ATTRIBUTE = REVERSE,
NUMERIC,FULL,
REQUIRED

{Next Line, column }
l1denti{fy the Imput Field

1Skip to column-45 of current line
{Label field for use by MESSAGE
12io Code 18 5 digits im U.S,4,
{Highlight {n Reverse Video
IRestrict Character Set

IMust type all S digits

IF{eld must be completed

1Skip to column | of next)inrme
{Prompt taa for telephone fields

IStart Immediately

{Labe) for Message

{3 digit ares code im U,S5,4A,

{Allow autoe=tab and reverse video
|Restr{ct Character set & force ¢i1}
{Operator myst fi1) field

IClose Area Code Bracket

{Continue Immegiately

lLacel for Megsage

13 digit exchange in U,S,4,

{Allow auto=tab amd reverse video
{Restrict Character set & force fi11
{Operator must ¢il11 field

IHyphen exchange and extension

{Continue Immediately

lLabel for Message

14 4igit extension §n U,S,A,
IHighl{ight with reverse video
{Restrict Character set R force f{11}
10perator must fi11 field

Figure 4-10 ANNOTATED Statement Listings (3 of 5)

4-23

The ATL Utility

TRAX FORMS DEFINITION (Vi,2)

Trans, Proc, Names SAMPLE Devices VvTé2 Page L=4
Form namet ADCUST Lemgths 24 10142 AM 22«June78
00 00 0 Q00O 0QUCP PO BRO0CPRORRROPRRPRRRCCRCRIREROOOCECSRRRRRORRTOPPEREPOOQOOPROCSRCOSOOROEOPOROEOTDOVNOY
PROMPT 2 ,+1,1 {Next Lime, Columnm |

VALUE =3 "Company Contact" iLabe) Irmout Field
IMPUT = ,20 i1Skip to Column 30 on Same Linre

LAREL = ATTENTION ILabel for MESSAGE statement

LENGTH = 20 {Allow 27 character name

ATTRIB = REVERSE IHighlight Empty field {n reverse
PROMPT = 41,1 iSkip a Line, go to column |

Valuye = "Credit Limit (S)" iLabel Imput Fiels
INPUT = ,,20 {Column 3¢ of This Line

LAREL = CREDIT,LIMIT {Label for Message

LENGTH = 12 1Al1ows 12 spaces for amount

ATTRIB = REVERSE,SIGNED, IHighlight, 8llow commas and periods

RIGHT iRight=justify for easfer typing
CLEAR = "a" IFI11 im with left zeros

(222222 2222 R 222 2222282222222 2222283222222 2322222222222 2]

!

!

| The Key Prompt field is used to imstruct the operator
! regarding the function keys that may be pressed, Note
! That the contents of this field are altered by a

| WRITE Clause {mn Reply # 1,

l

IR 22222313222 R RS X122 22 2R X222 2R 2R F RS2SRRSR L2222 20 0)

PROMPT = 15,3 jCenter on Last FORM aree Vine
LABEL = KEY,PROMPT lLabe) so we can gpecify in replies
LENGTH =3 75 1Fi1) whole Line
VALUE = "Functior Keyss: ", [Text of initial form display

"ENTER to Add Customer",
"« CLOSE to aquit Add Fumetion"

ATTRIBUTE = REVERSE {Highlight {n Reverse Video
’i*itt****tttt*;t*it*it*tittﬁtttﬁi*t***itt*titttttttttttitttttttttttﬁt
!

l Detime the Two Reoly Screens

!

! Reply | {8 {ssued upon successful completion of
! the tramgsaction,

!

! Replv 2 {8 {ssued when abnormal conditions cause
! The TST to issue a REPLY or ABORT call,

!

l*iitttﬁ**t*i*****ii*tttﬁtttitittttt*iitiiﬂ*ttt***ii*tt**it*titti*t**t

REPLY =
DISABLE = ENTER {Diseble Enter key for this reply
WRITE = REPLY,TEXT,B," w#%« TRANSACTION COMPLETE #wax "
WRITE INSTR,TEXT,FILL(" ",72) {Blank origimal instructions
WRITE CUSTNO., TEXT,FILL(" ",38) 18Vank Number text field
WRITE KEY PROMPT,FILL(" ",75) i18lank this field
WRITE KEY,PROMPT,"Fynction Keyss Press AFFIRM to Add Another ",

"Custemer = Ppress CLOSE to quit"

WRITE = CUSTOMER,NUMBER , REQUEST(1,6)

Figure 4-10 ANNOTATED Statement Listings (4 of 5)

4-24

The ATL Utility

TRAX FORMS DEFINITION (Vi,@)

Trars, Proc, Name: SAMPLE Devices VvTe62 Page L=S
Form ngmes ADCUST Lemngths 24 10342 AM 22eJune=78
[AEEEENEENNNENNNNN) TR 000000 PP EN 0000000000000 0830000 00C0CQRCISIPRIRPOOROEONERTSCEOIOEOIROPOBOEOTECE
I1This WRITE Clause completes the form information,
RFPLY = 2
DISABLE = AFFIRM iDisable Affirm Koy
NRITE s REPLY,TEXT,A , REQUEST(1,8Q) {F{1) 1st 82 chars
WRITE = REPLY,TEXT,B8 , REQUEST(81,89) I1F{1) rest of message
WRITE s INSTR,TEXT,FILL("™ ",72) iBlank orfainal {mstructions

R A A AN A A R N AN R A R A AR AR RN R R AN R AR AR AN N AR RS AR IR A AR RS

l

| Define the Exchange Message
!
!ttttt*tttiitit*ttt**iﬁ!tttﬁttﬁttﬁtiiitiltttttttittttﬁttttttiittﬁtttit
MESSAGE = 7 IStart fillimng in 7th character position
iTo reserve space for Customer _#%,
VALUE s Ivalue clause defines fillimg oroer
CUSTOMER, NAME,
ADDRESS, 1,
ADDRESS.2,
ADDRESS,3,
ZIP,CODE,
AREA,CODE, TEL,EXCHANGE, TEL,EXTENSION,
ATTENTION,
CREDIT,LIMIT
EnD 1End of this Form Definftion

Figure 4-10 ANNOTATED Statement Listings (5 of 5)

4-25

The ATL Utility

4.12.2 Summary of General Form Parameters — Page F-1

Page F-1 is produced by the ATL utility from the source statement file ADCUST.ATL. The in-
formation on this page is a general summary of the transaction processor and form name, the form
dimensions, the number and type of field declarations, the length of MENU fields and exchange
messages, the number of replies, and a listing of enabled function keys and non-standard KEYCAP
text defined for this form.

1.

10.

11.

12.

13

4-26

The “F”’ prefix is assigned by the ATL utility to pages that describe the parameters and
fields of a form definition. The “F’’ pages of the output listing are produced by the ATL
utility when you specify ALL or FORMS in response to the ATL utility prompt:

List <ALL>?

. SAMPLE is the six-character name of the transaction processor that will use the form. The

form is added to the form definition file for SAMPLE. ([1,300] SAMPLE.FDF) The ATL
utility also prints this name at the top of each compiler output page. If you specified the
COMPILE command to the ATL utility, this name would not be displayed since COMPILE
does not modify a forms definition file.

. The form name is ADCUST. This is the six-character form name used to specify this form

definition in the forms definition file, as well as in the transaction and station definitions
for the transaction processor SAMPLE. The form name also appears at the top of each
output page. If you specified the COMPILE command to the ATL utility, this name

. When you specified SPLIT = 8 in the FORM statement, you defined this form with a

Display area of eight screen lines.

. A VT62 terminal has 24 lines on its screen, one of which is always used for terminal-

generated error messages. Specifying an additional 8 lines for a Display area leaves 15
screen lines for the FORM area.

. Form definitions used on a VT62 terminal always reserve the 24th (last) screen line for

terminal error messages.

. The VT62 terminal has 80 columns on its screen. The ATL utility assumes forms used on

a VT62 have 80 column screen width.

. The ATL utility counts the number of each type of field defined on the form.
. No MENU field has been defined. If one had been, the length of the longest MENU field

would appear here. That length would be used to define the length of a MENU entry in

the exchange message when the VALUE = MENU clause was specified in a MESSAGE state-
ment.

The length of the exchange message that will be constructed from this form. The exchange
message length is determined by the position of the last field defined in the exchange
message.

You have defined replies 1 and 2, so the highest reply number is 2. If you had defined
replies 1 and 5, the highest reply number would have been 5.

This form is not a transaction selection form. If a form definition includes a SELECT
clause in its FORM statement, it is a transaction selection form.

. This section summarizes the function keys enabled when the form is initially displayed,

and those enabled after each of the defined replies has been sent. The function keys are
those normally enabled, as modified by DEFAULT statements in the source listings and
those keys changed by explicity ENABLE or DISABLE clauses in FORM and REPLY
statements.

The ATL Utility

14. This line informs you that function key identifiers have not been used in the generation of
the exchange message. A function key identifier can be inserted as part of the exchange
message by using the KEY argument in the VALUE clause of the MESSAGE statement.
This causes a predefined text string to be included in the exchange message; this identi-
fies which function key you pressed. Each data entry function key has a default identi-
fying text string, called a KEYCAP. You can modify this text by using the KEYCAP
clause in the FORM statement. The function key identification text will be shown in this
section of the compiler output listing whenever KEYCAP text is used in the exchange

message.

TRAX FORMS DEFINITION (V1,0) (3

Trans, Proc, Names SAMPLE Devicet VT&2 Pege Fel
Form names ADCUST Lengthy 24 10842 AM 22eJyun=78

900 e8PPSR PV PORP RS PO DO OPPORCRNODN0O0UIPRQOIEO000IR0RCEPD00000C0C0P0O000CO0CF0CBOCT0TSRSCOCRCROPTOPRO0CCTBYTS
General Form Parameters

Transaction processor! SAMPLE(J

Form names ADCUST@

Lenath of Display Ares? 8 11nes()

Lenoth of Forms Area? 1S linres

Numker of error linest 1 line ¢ 1ine 24 C)
Disnlay wiciths 8@ cclumna(}

18 INPUT Flelds Declared
12 PROMPT Fields Declared
4 DISPLAY Fields Declared

@ MENU Fields Declared
Maxtmum length of MENU fields: ¢ ®
Lenath of Exchange message! 173

Highest Defimed REPLY #3 2(]
No Transaction SELECTion made with this form C)

Funetion KEYS enabled ong
Infitisl Screent ENTER ABORT AFFRM CLOSE
REPLY # 13 ABORT AFFRM CLOSE(}
REPLY 8 23 ENTER ABORT CLOSE

Ne KEYCAPs getined for this form (3
Figure 4-11 ANNOTATED Form Listing Page F-1

4.12.3 Summary of Input Field Declarations — Page F-2
1. The standard attributes are the set of default attributes assumed for Input fields by the
ATL utility. If you specify a field with attributes other than those in the Standard attri-
butes list, they will be shown in parentheses to the right of the field name in the input
field declarations table.
2. This line shows the table column headings. The columns contain the following information:

FLD # — is a sequential number given to each INPUT field in the source listing. When you

press the NEXT FIELD key on your terminal, the cursor moves from field to field in
ascending order.

4-27

The ATL Utility

ROW # — is the row on the screen where the field is located. For INPUT fields, this is a row
in the Form area.

COL # — is the column (1 is the leftmost column, 80 the rightmost) at which the field
begins.

LNG - is the length of the field in character positions.
CLEAR CHAR - is the character used to fill the field in the initial form display.

LABEL — is the label, or name, assigned to the field. Only those fields referenced by
other statements in the form definition need labels. Only the first 16 characters of the
label are shown on the listing.

(ATTRIBUTES) — are the attributes specified for a field that are not listed as standard
attributes at the top of the table.

4.12.4 Summary of Prompt Field Declarations — Page F-2
3. The standard attributes are the set of default attributes assumed for Prompt fields by the
ATL utility. If you specify a field with attributes other than those in the Standard attri-
butes list, they will be shown in parentheses to the left of the field name in the Prompt
field declarations table.
4. This line shows the table column headings. The columns contain the following information:

FLD # — is a sequential number given to each Prompt field in the source listing. You
cannot move the cursor to a Prompt field.

ROW # — is the row on the screen where the field is located. For Prompt fields, this is
a row in the Form area.

COL # — is the column (1 is the leftmost column, 80 the rightmost) at which the field
will begin.

LNG - is the length of the field in character positions.

LABEL — is the label, or name, assigned to the field. Only those Prompt fields referenced
by WRITE clauses in REPLY statements need labels. Only the first 16 characters of the

label are printing on the listing.

(ATTRIBUTES) — are the attributes specified for a field that are not listed as standard
attributes at the top of the table.

4-28

The ATL Utility

TRAX FORMS DEFINITION (Vi,2)

Trers, Proc, Nameg SAMPLE Devices VTé62 Page Fw=?2
Form mames ADCUST Length: 24 10342 AM 22« Jyne78

I A A N BN NN E RN EEENEERNEE ENNE N NN NN ENNE NN SR RN NN N R NN N NN N NN NN NN NN NN NN N NN

INPUT Fi{eld Declarations

Stanhdard attributest ALL-LEFT.NOTAB,NOFULL;NOQEQUIRED()
MODIFY, NORMAL, ECHO

FLD ROW COL LNG CLEAR LABEL tATTRIBUTESJC)
L] . [CHAR
1 2 20 3a wow CUSTOMER (NAME (LETTERS,REQUIRED,REVERSE)
2 4 ry) 32 LA ADDRESS,{ (REVERSE)
3 S rid Je " w ADDRESS, 2 (REVERSE)
4 6 en 30 " on ADDRESS,3 (REVERSE)
] 7 4S8 E) " 21P,CODE (NUMERIC,FULL,REQUIRED,REVERSE)
6 8 el 3 L AREA,CODE (NUMERIC,TA8,FULL,REQUIRED,REVERSE)
7 8 26 3 "ow TEL,EXCHANGE (NUMERIC,TAB,FULL,REQUIRED,KEVERSE)
8 8 30 4 L TELLEXTENSION (NUMERIC,FULL ,REQUIRED,REVERSE)
9 9 2@ 2¢ L ATTENTION (REVERSE)
12 19 20 1e wen CREDIT,LIMIT (SIGNED,RIGHT ,REVERSE)

PROMPT Fiela Declaratiors

Stanrdard Attributes: NORMAL(3)

FLD RO« COL LNG LABEL (ATTRIBUTES)(®)
” ¥ t 4

1 1 115

2 1 2@ 6 CUSTOMER,NUMBER (REVERSE) (5)

3 1 30 32 CUSTNO, TEXT

4 2 1 13

5 31 7

6 7 1 8

7 8 1 2¢

8 8 24 2

9 8 29 1

10 9 115

11 10 1 16

12 1S 3 75 KEY,PROMPT (REVERSE)

Figure 4-12 ANNOTATED Form Listing Page F-2

4-29

The ATL Utility

4.12.5 Summary of DISPLAY Field Declarations — Page F-3
1. The standard attributes are the set of default attributes assumed for DISPLAY fields by the
ATL utility. If you specify a field with attributes other than those in the Standard attri-
butes list, they will be shown in parentheses to the left of the field name in the DISPLAY

field declarations table.
2. This line shows the table column headings. The columns contain the following information:

FLD # — is a sequential number given to each DISPLAY field in the source listing. You
cannot move the cursor to a DISPLAY field.

ROW # — is the row on the screen where the field is located. For DISPLAY fields, this
is a row in the Display area.

COL # — is the column (1 is the leftmost column, 80 the rightmost) at which the field
will begin.

LNG - is the length of the field in character positions.

LABEL - is the label, or name, assigned to the field. Only those DISPLAY fields refer-
enced by WRITE clauses in REPLY statements need labels. Only the first 16 characters
of the label are printed on the listing.

(ATTRIBUTES) — are the attributes specified for a field that are not listed as standard
attributes at the top of the table.

TRAX FORMS DEFINITION (V1,0)

Trans, Proc, Namei SAMPLE Device: VTe62 Page F=3
Form mame} ADCUST Lengths 24 10142 AM 22eJyn=78

8800000000 0CO0ORPERP PR CCORROICRIRIIRNEROROOOPCRETSIOO0TERRD00O0C0RC0O0RCE00C0CQ0COC0COCF0RTRCR0CCPQRTRRTOCOPRRTOIRSTOTTPCSYS

DISPLAY Field Declarationrs

Stanrdard attributes: NORMAL, eunx@

FLD RO4 COL LNG LABEL (ATTRIBUTES) (@
” » »
..-.--....----.-..--.--.---.--...---..'..--.'--....-.-.....-....-.--....-..‘-...
1 2 11 57 (REVERSE, NOBLANK)
2 4 1 8o REPLY,TEXT A
3 S 1 8m REPLY,TEXT,8
¢ 6 5 T2 INSTR, TEXT (NOBLANK)

Figure 4-13 ANNOTATED Form Listing Page F-3

4.12.6 Summary of MENU Field Declarations
—Form “SELECT” Page F-3
1. This line shows the table column headings. The columns contain the following information:

FLD # — is a sequential number given to each MENU field in the source listing. You can

move the cursor to a MENU field. Pressing the SELECT key causes the VT62 to highlight
the entire selected MENU field in reverse video.

4-30

The ATL Utility

ROW # — is the row on the screen where the field is located. For MENU fields, this is
arow in the DISPLAY area.

COL # — is the column (1 is the leftmost column, 80 the rightmost) at which the MENU
field will begin.

'LNG — is the length of the field in character positions.

2. The text string shown in this column are the strings that are transmitted as part of the

MESSAGE statement VALUE = MENU clause, or as the SELECT clause MENU parameter
in a transaction selection form. If you specify a MENU field with more than six-characters
as part of a transaction selection form, only the first six characters are used by the transac-
tion processor when it invokes the next transaction. This is because transaction names are
limited to six characters in length.

TRAX FORMS DEFINITION (V1,2)

Trars, Proc, Namet! SAMPLE Devicet V762 Page F=3
Form mamel SELECT Lengtht 24 433102 PM 1BeJyn=78

000008000 RRRRRT RO PROCPCROORTROINITPRO R OEP00CESOERIOICOEONTIROIOEOIINPINOEROIOROEIOERIEONDOTOORDIOTESRTON

FLD
*

1

MENU Field Declarations

ROW COL LNG SELECTION TEXT@
#
? 20 6 "ADDCUS"
9 20 6 YCHGCUS"
i1 e é "DELCUS"
13 2e é "DPYCUS"

4
3
4

Figure 4-14 ANNOTATED Form Listing “SELECT"” Page F-3

4.12.7 Summary of PRINT Field Declarations
—Form “PRTCUS” Page F-3

1. This line shows the table column headings. The columns contain the following information:

FLD # — is a sequential number given to each PRINT field in the source listing. This
number is the order in which the field is printed, not the order in which it was specified.

ROW # — is the row on the screen where the field is located. For PRINT fields, this is
the distance in lines from the top of the form.

COL # — is the column (1 is the leftmost column, 132 the rightmost) at which the field
will begin. -

LNG --is the length of the field in character positions.

4-31

The ATL Utility

TRAX FORMS DEFINITION (V1,0)

Teams, Proc, Namet SAMPLE Devices OUTPUTONLY Page F=3
Form nmamet PRTCUS Lengths 66 10142 AM 22eJum=78

..'..l....’.l...."'.'.'.."."'.'.'.....'.....'......".I.".....'l..‘.....'.‘.

C) PRINT Field Declarations
FLD ROW COL LNG
]]]
1 1 16 us
2 3 1 15
3 3 en 6
4 4 1 13
E) 4 2e 30
6 6 i 7
7 6 2n 30
8 7 2n 32
9 8 2e 3e
10 9 1 18
11 9 45 5
12 19 1 9
13 1@ 2n 1
14 14 21 3
15 14 24 e
16 10 26 3
17 19 29 i
18 10 3@ 4
19 12 1 16
29 12 20 P35
21 14 1 16
22 14 2n 12
23 17 1 82
24 19 S 15
25 19 es 17
26 19 47 14
27 19 63 1o
28 44 7 12
29 2@ e 12
k1] 2 52 4
31 2a 69 4

Figure 4-15 ANNOTATED Form Listing “PRTCUS” Page F-3

4-32

The ATL Utility

4.12.8 Exchange Message Layout — Page F-4
1. This table describes the exchange message constructed when the user presses an enabled data
entry function key.
2. The number of characters in the exchange message.
3. The column headings for the exchange message table data.

FIELD # identifies the MESSAGE statement and VALUE clause argument where the
field was referenced. The FIELD consists of a number and a letter. The number refers
to the particular MESSAGE statement where the field was referenced. The letter refers
to the particular VALUE argument within the MESSAGE statement.

DISPL. is the character position in the exchange message where the field is inserted into
the message.

LENGTH is the number of characters in the field.

DESCRIPTION identifies the data placed into the exchange message at the position speci-
fied in the DISPL. column. This column shows field labels, literal text, keycap values,
and other legal arguments to a MESSAGE statement VALUE clause.

TRAX FORMS DEFINITION (Vi,0)

Trans, Proc, Namet SAMPLE Devices VT62 Page F=4
Form mamey ' ADCUST Lengths 24 18142 AM 22«Jun=78

00000000 OPRNRCERNIRNRRPOTOIRRRROPNPRO0OPRORORONCSRDIRRINORRRO0RRICPORIPRINIIPIOEOINOREOEPTRIOTOTNS

Exchange Message Layout()

Lenath: 173 bytes (2)

FTELD DISPL, LENGTH DESCRIPTION (3
o
1 6 7227227
1A 7 30 CUSTOMER , NAME
18 37 e ADDRESS,
1 67 30 ADDRESS,2
10 97 32 ADDRESS, 3
1€ 127 5 Z1P,CODE
1F 132 3 AREA,CODE
16 135 3 TEL,EXCHANGE
1M 138 4 TELLEXTENSION
11 142 20 ATTENTION
R 162 12 CREDIT,LIMIT

Figure 4-16 ANNOTATED Form Listing Page F-4

4-33

The ATL Utility

4.12.9 Initial Screen Request Layout
—Form PRTCUS Page F-2

1. This is the total length of data expected from the requesting response message. If the re-
.questing response message is shorter than this length, unpredictable results occur.

2. DISPL. refers to the character position in the requesting response message where the data
specified in the REQUEST function begins.

3. LENGTH refers to the length parameter specified in the request function. If this value is
greater than the length of the receiving form field, the receiving field is automatically ex-
tended to that length. If the length is less than that specified for the receiving field, the
field is always filled beginning with the leftmost character. No change is made to character
positions in that field beyond the length specified in the REQUEST function.

4. DESCRIPTION refers to the field number or label where the REQUEST function places
the data from the requesting response message.

TRAX FORMS DEFINITION (V1,2)

Tramrs, Proc, Namer SAMPLE Devicer OUTPUTONLY Page F=2
For~ names PRTCUS Lengtht 66 10342 AM 22«Jun=T78

000000 0002000000080 00000 0PPIOCICEDRPIEIROIPIIINReINIOETOEPIPOIETSOETRNOTEPIROIEORIESToCRRROECROERSRPSOERTETSRIOTESTS

Initial Screem Reauest Message Layout

Lenath: 285 bytes (1)

DYSPL, LENGTH DESCRIPTION

1 6 PRINT Field & 3

7 k17 PRINT Field 8 5§
37 32 PRINT Fielg # 7
67 30 PRINT Field # 8
97 30 PRINT Field & o
127 S PRINT Field # 11
132 3 PRINT Field » 14
135 3 PRINT Fiela # {6
138 4 PRINT Fleld # 18
142 2@ PRINT Fleld 8 2¢
162 12 PRINT Field ® 22
174 12 PRINT Fiela % 28
186 12 PRINTY Field # 29
198 4 PRINTY Fleld & 30
2r2 4 PRINT Fileld # 3}

Figure 4-17 ANNOTATED Form Listing “PRTCUS” Page F-2

4.12.10 Reply Message Layout — Page F-5
1. This table describes the format of the response message expected from a TST when it acti-
vates a REPLY. Two tables are shown, Reply #1, and Reply #2.
2. The number of characters expected in the requesting response message. For Reply #1, this
value is 6.

4-34

The ATL Utility

3. The column headings for the reply message table data.

FIELD # is the number of the REPLY statement WRITE clause that first references this
field.

DISPL. is the number of character positions past the beginning of the response message
where the field contents are located. In REPLY #1, the field contents start in the first
character position of the response message.

LENGTH is the number of characters in the field. Six characters are required for the cus-
tomer number.

DESCRIPTION identifies the destination of the field data extracted from the response
message. In this example, the field label CUSTOMER.NUMBER indicates that the data
goes into that field.

The second table shows the format of the response message that a TST sends when it
activates reply #2.

4. The length of this response message is 160 characters.
5. The response message fills two 80-character screen lines. The first 80 characters of the mes-
sage go into line A, and the remaining characters go into line B.

TRAX FORMS DEFINITION (V1,2)

Trans, Proc, Namet! SAMPLE Devices VTeZ Page F=5S
Form mame: ADCUST Lengtht 24 12142 AM 22«Jun=78

90008028002 P80 CRICEPP IR0 SOOI OO OSSP ROPRCOPCER QOO RDPOOOBIRNOOERTPOONOEGOEUETOEDORNOETPRPTOBROIROEOERCOQEOTTOTTIYY
REPLY # | Message Lavout (Length = 6)(2)

FIELD DISFL, LENGTH DESCRIPTION (3)
"

) 1 6 CUSTOMER , NUMRER
RFPLY # 2 Message Layout (Length = 160) (a)

FIELD DISPL, LENGTH DESCRIPTION (5)
]

1 1 83 REPLY,TEXT,A
2 81 8¢ REPLY,TEXT,8

Figure 4-18 ANNOTATED Form Listing Page F-5

4.12.11 Screen Display Format Listings

The “S” in the page number indicates that this is a screen display listing produced by the ATL
utility. These listings are produced when you specify ALL or FORMS in response to the List
prompt in the ATL utility dialog.

4-35

The ATL Utility

4.12.11.1 Initial Screen Display — Page S-1

4-36

1. Page S-1 shows the form as it first appears on the terminal screen, that is, before it has been
modified by the user or by any defined replies.

2. The question marks in this field were specified in the VALUE clause of the PROMPT state-
ment that defined the field.

3. Since a blank was specified as the clear character for the name, address, zip code, telephone,
and contact fields, no characters illustrate the Input fields. For debugging purposes, it is
suggested that some displayable character, such as a period be specified as a clear character.
The period is repeated for the number of characters specified in the field definition. Once
you are satisfied with the form layout, simply edit the source file to change the FORM
statement CLEAR clause to a blank.

4. This field had a clear character of “0” specified. This allows you to insure that all charac-
ters in the field are numeric, and that leading zeros are placed in the exchange message.

5. A prompt field tells you about the function keys that can be pressed. The text of this mes-
sage is changed by reply 1.

6. A series of numbers rules off the columns of the form for debugging and design purposes.

7. This line tells you which function keys are enabled when the form is first displayed. This
corresponds to item (13) on page F-1.

The ATL Utility

TRAX FORMS DEFINITION (Vi.0)

Trars, Proc, Nameg SAMPLE Devicesr VvT62 Pesge Se=1
Form mame: ADCUST Lengths: 24 10142 AM 22=Jyn=T78

S0 00000 PP RONBONNSRONIROOEOROIROQRRE0DPPROO0RCECEOSIRNREIOIETNIRNTEERRORPROEOCCOIDRNBPIRPOIPOIECERITREDRIROEOIPNOTROBRDOPDOITITPOTRY

INITIAL SCREEN PRESENTATION @

1111111111222222222233333333334444440444555555555566666666667T7777777778
123456789012345678912345678901234567892123456789¢1234567890312345678921234567890

Customer Magter File Subsystem = Add Customer Transaction

To Add a Customer to the File, Complete all Form Fields and Press ENTER,

Custamer Number ???’??(} (To be Supprl{ed by System)
Customer Name

Address @

Zio Code

Teleaphone #3 () -

Comnany Contact
Crecit Limit ($) @Ppeseoondve (5)

Function Keyst ENTER to Add Customer= CLOSE to auit Add Function (6

17305678G9¢123456789p1234567890123456789021234567890123U56789012345678921234567890
11311111112222222222333333333344U4444UUUSS5555555566666666667T7777777778

Keys enableds ENTER ABORT AFFRM CLOSE (3

Figure 4-19 ANNOTATED Screen Listing Page S-1

4-37

The ATL Utility

4.12.11.2 Reply Screen Display #1

4-38

1.
2.

3.

w

This listing shows the form structure after Reply #1 has modified it.

The text string ““d A TRANSACTION COMPLETE#®#*”’ has been written into the BLANK
DISPLAY field REPLY.TEXT.A.

The symbol “++ - —++" represents the six characters of data that are extracted from the re-
sponse message that activated the reply. This is the customer number assigned and returned
to the form by the TST.

. The function key prompt text has been overwritten by new text.
. These function keys are enabled at the time reply 1 modifies the form.

The ATL Utility

TRAX FORMS DEFINITION (V1,2)

Trars, Proc, Namet SAMPLE Devices VT6h2 Page S=2
Form mames ADCUST Length: 24 10142 AM g2=Jyun=78

00 00000800 Q0C00ESORN0GCN R RORTCCEO QPO CDRITtTRIPRIPCEORCEOETORNORORRIOIRIRRRIPOAEOCTORIRPOPROIPOROERSROIOPTREORIOETDRES

INITIAL SCREEN AFTER APPLYING REPLY & 1@

1111111111222222222233333333334444404UUU55555555556666666666777777777178
1234567890123U45678901234567890123456789012345678971234567892121456789u1234567892

Customer Master Fi{le Subsystem = Add Customer Transactionm

#%» TRANSACTION COMPLETE ### (2)

Customer Number témmty C)
Customer Name

Address

Zip Code

Telephone #3 () -

Comnany Contact
Crecit Lim{t (8$) angorazape2Q

Function Keys: Press AFFIRM to Add Another Customer = Press CLOSE to auit (o)

1234567890123456789n12345678912345678911234567890123456789112345678911234567892
1111111111222222222233333333334444444UUUSE5555555566666666667T777777778

Keys emabled: ABORT AFFRM CLOSE (5)

Figure 4-20 ANNOTATED Screen Listing Page S-2

4-39

The ATL Utility

4.12.11.3 Reply Screen Display #2

1. This listing shows the form structure after Reply #2 has modified it.

2. The two error text fields, REPLY.TEXT.A and REPLY.TEXT.B have been filled with text
from the response message which activated the reply.

3. These question marks remain from the initial display of the form — reply #2 does not alter
this field.

4. The function key text is similarly unchanged.

5. These function keys are enabled after reply #2 has been displayed on the screen.

4-40

The ATL Utility

TRAX FORMS DEFINITION (V1,8)

Trans, Proc, Namei SAMPLE Devicet VT&h2 Page S=3
FOrm mamet ADCUST Lengtht 24 10342 AM 22eJyun=78

00800 S 0000000 0FC¢E0 Q0000 R0O0RSORORPNPROPOCOUPIPOCEROEIOPOIEROCEOTESOEONOIEROIODIUETRNTSOIPOSOEORIEOITEOIBSOQEEPOPOROEOBNPETIOIETS
INITIAL SCREEN AFTER APPLYING REPLY & 2 C)

111111111122222222223333333333444UUU8UULULSSS555555560666666666777777777178

12345678911 234567890123456789012345678901234567892123456789012345678921234567892

Customer Master File Subsystem = Add Customer Transaction

I Y Y Y Y P Y e T Y T T Y P P Y P P T T PP P T Y I P R Y Y Y Y Y X 3

XL P Y P Y T Y Y Y Y Y R R Y Y P R Y T R P R R P P Y P PR P P P YR R R PR RS A S PP Y D L X R 2

Customer Number 222222 (3) (To be Supplied by System)
Customer Name

Address

Zie Coge

Teleohone #§ () -

Company Contact
Cresit Limie (S) A0208022000020

Fumnction Keyst ENTER te Add Customer= CLOSE to aquit Ado Function (o)

LI TS PRI R PR LR R DR L DD R RS R R R RV SRR RN L R R R LR R L A0 X X 0 2 3

12345678902123U456789p1234S6TR92123U5678901234567899123456789¢1274567893123456789¢
111311111122222222223333333333444444044U5555585555666h666666T77777777778

Keys enabled: ENTER ARORT CLOSE (®

Figure 4-21 ANNOTATED Screen Listing Page S-3

441

CHAPTER 5
DETAILED ATL STATEMENT DESCRIPTIONS

The ATL statements are described in alphabetical order. All
valid clauses and parameters are presented for each statement.

5-1

ATL Statement Syntax

DEFAULT

5.1 THE DEFAULT STATEMENT

STATEMENT: DEFAULT

USE: You use the DEFAULT statement to specify default settings for field at-

tributes, declare clear characters, and to enable or disable function keys.

USAGE NOTES:

ATL syntax requires that the DEFAULT statement be followed by at least

one clause.

FORMAT:
DEFAULT

ATTRIBUTES =

{
{
{
{
{
{
i \ {
[ENABLE = keyname]

[DISABLE = keyname]

[CLEAR = “character”]
5-2

ANY
ALPHANUMERIC
LETTERS
NUMERIC
SIGNED

LEFT }
RIGHT

NOTAB }
TAB

NOFULL }
FULL

NOREQUIRED }
REQUIRED

MODIFY }
NOMODIFY

NORMAL }
REVERSE

BLANK }
NOBLANK

Once you specify an attribute or clear character, or enable/disable a func-
tion key in a DEFAULT statement, that specification remains in effect for
the rest of the form definition, or until another DEFAULT statement ex-
plicitly alters the earlier declaration.

||

Clauses and Parameters:

Clause Parameter

ATTRIBUTES=

ANY

LETTERS

NUMERIC

ALPHANUMERIC

SIGNED

LEFT

RIGHT

NOTAB

TAB

ATL Statement Syntax

Description

The ATTRIBUTES clause allows you to specify the
way that Input fields may be completed by the termi-
nal user, or the way that Input, Prompt, and Display
fields are displayed on the terminal screen.

You can specify more than one attribute in the same
ATTRIBUTES clause.

An Input field can contain any displayable ASCII
character in the range OCTAL 040 to 176.

An Input field can contain only the letters A through
Z, a through z, and space.

An Input field can contain only the numbers O through
9. Spaces are not permitted.

An Input field can contain any character that is a num-
ber, a letter, or a space.

An Input field can contain signed numeric data: The
numbers 0 through 9, the sign characters + and --, field
punctuation characters (, and .). Spaces are not per-
mitted.

An error is displayed on the terminal’s error line if the
terminal user attempts to enter a character that is not
allowed by the character representation attribute speci-
field for that Input field.

Each character typed into an Input field appears one
position to the right of the preceding character.

Each character typed into an Input field appears in the
right-most position of the field. All preceding charac-

ters are moved one position to the left. This attribute

is very useful for entering numeric data onto a form.

To advance to another Input field, the terminal user
must press the NEXT FIELD or FORWD FIELD key
after typing data into an Input field.

After the user has completely filled the current field,
the cursor moves automatically to the next Input field

5-3

ATL Statement Syntax

Clause

54

Parameter

FULL

NOFULL

REQUIRED

NOREQUIRED

MODIFY

NOMODIFY

NORMAL

REVERSE

BLANK

NOBLANK

Description

The user must type enough characters to completely
fill the Input field. If the user presses the NEXT
FIELD or FORWD FIELD key before completely fill-
ing a field specified with this attribute, the VT62 error
message is displayed on the terminal error line.

The user may skip past a field specified with the FULL
attribute by pressing the FORWARD FIELD key.

Input fields needs not be filled completely.

The user must enter data into this field before going on
to the next field.

The user may skip past this field without entering data.

The terminal user may change the contents of an Input
field specified with this attribute.

The terminal user cannot change the contents or enter
data in an Input field specified with this attribute.
Furthermore, the user cannot position the cursor in
this field.

The Input, Prompt or Display field appears as white
characters on a dark background.

The Input, Prompt, or Display field appears as dark
characters on a white background. Spaces appear as
white squares. You can assist the terminal user by
defining Input fields with the REVERSE attribute.
The field is then clearly defined on the screen display.

This attribute can be specified for Display fields only.
A Display field with this attribute is not displayed on
the initial screen representation of the form. The field
appears only on the reply screen displays defined for a
form. REPLYs that do not specify text for a Display
field with the BLANK attribute cause that field to be
blanked.

A Display field defined as NOBLANK is written by the
terminal as part of the initial form. It is not blanked
for a REPLY but a REPLY may overwrite it.

Clause

ENABLE=

DISABLE=

Parameter

keyname

ATL Statement Syntax

Description
Allows you to enable user and system function keys.

The ATL utility enables the ENTER and ABORT keys
by default.

To enable other function keys, you must specify the
key name in an ENABLE clause.

If you place the ENABLE clause in a DEFAULT state-
ment that precedes the FORM statement, the key you
specify remains enabled for the initial screen display
and all reply screen displays associated with that form,
unless you specifically override the default specifica-
tion in a FORM or REPLY statement.

You can specify only one key name in an ENABLE
clause. To enable several function keys, you must use
several clauses.

You can specify the following function key names as
valid parameters in an ENABLE clause.

ENTER
CLOSE
AFFIRM
STOPREPEAT
KEYO
KEYDOT
KEY1

KEY?2

KEY3

Allows you to disable user and system function keys.

The ATL utility enables the ENTER and ABORT keys
by default. You cannot disable the ABORT key. You
may disable the ENTER key.

To disable other function keys, you must specify the
key name in a DISABLE clause.

If you place the DISABLE clause in a DEFAULT state-
ment that precedes the FORM statement, the key you
specify remains disabled for the initial screen display
and all reply screen displays associated with that form,

unless you override the disabling in a FORM or
REPLY statement.

5-5

ATL Statement Syntax

Clause

CLEAR=

EXAMPLES:
The following example shows a default statement that requires all input fields to be completed, en-
ables the CLOSE and AFFIRM system function keys, and specifies a period (.) as the default clear

character.

DEFAULT

ATTRIBUTES = REQUIRED

Parameter

keyname

“character”

ENABLE = CLOSE
ENABLE = AFFIRM

CLEAR = .

”

Description

You can specify only one key name in a DISABLE
clause. To disable several function keys, you must use
several clauses.

You can specify the following function key names as
valid parameters in a disable clause.

ENTER
CLOSE
AFFIRM
STOPREPEAT
KEYO
KEYDOT
KEY1

KEY2

KEY3

Allows you to specify the character that is displayed in
empty Input field character positions.

Any Input field character position that is not filled in
by the terminal (using the VALUE clause, or a

REPLY statement WRITE clause) or completed by the
user, is filled using the character specified in this clause.

You can specify any displayable ASCII character as the
parameter to the CLEAR clause. The null character
(ASCII 000) is assumed as the default. The character
you specify as the parameter must be enclosed in single
or double quotation marks.

'To SET Defaults for whole form
'All fields must have data
!Enable system function keys

1Set period as default clear character

ATL Statement Syntax

DISPLAY

5.2 THE DISPLAY STATEMENT

STATEMENT:

USE:

USAGE NOTES:

FORMAT:

DISPLAY
You use the DISPLAY statement to define Display fields.

Display fields are written on the screen by the terminal as part of the initial
form display or as part of replies. They provide a means for communicat-
ing with the terminal user, giving instructions and error information.

Display fields cannot be returned in the exchange message when a user key
is pressed.

Display fields cannot be accessed by the terminal user. That is, the cursor
cannot be positioned in a Display field.

Display fields possessing the BLANK attribute (see below) are very useful
for displaying text received as part of a REPLY.

ATL syntax requires that the DISPLAY statement be followed by at least
one clause.

You must specify the row and column parameters as part of the DISPLAY
statement.

The length of a Display field may be defined explicitly in a LENGTH clause,
or implicitly in a VALUE clause. If both clauses are present, the value ATL
assigns to the field length is the greater of the two length definitions.

DISPLAY = row, column

rVALUE =

[LENGTH = count]

ATTRIBUTES =

“string” “string”’]
FILL (“character”, count) FILL (*‘character”, count)
DATE DATE
TIME TIME
TRANSACTION *\ TRANSACTION oo
NAME NAME
STATION STATION
REQUEST (position, count) REQUEST (position, count)
b —

{ NORMAL }
REVERSE

{ BLANK
NOBLANK

[LABEL = label-name] 5-7

ATL Statement Syntax

Clauses and Parameters:

Clause Parameter
TOW
,column
VALUE=
“string”

FILL (‘“‘character”,count)

5-8

Description

Specifies the screen row where the first character of
the Display field is located. The row number is always
calculated relative to the first line of the form. The
value you specify may not be greater than the value
specified in the SPLIT clause of the FORM statement.

Specifies the character position on the row where the
field begins. You may not specify a character position
that overlaps another Display or Menu field.

Row and column parameters can also be specified
using the ATL “dot” constructs.

You use the VALUE clause to specify the initial con-
tents of a Display field that is defined with the
NOBLANK attribute.

In a DISPLAY statement that specifies a field as having
the BLANK attribute, you may use the VALUE clause
to specify the data displayed in that field as part of

a REPLY. In this case,

1. The DISPLAY field label must be specified in
a REPLY statement WRITE clause.

2. The REPLY statement WRITE clause that
references the Display field cannot contain
other parameters.

3. The DISPLAY statement VALUE clause cannot
contain the REQUEST function in its param-
eter list.

You can specify more than one value for a VALUE
clause by supplying several parameters. You can also
specify a valid parameter more than once as part of a
VALUE clause.

A string of characters enclosed by quotation marks.
The enclosed string is displayed on the screen exactly
as typed, without the quotation marks.

The character you specify in the first parameter is
written into the Display field the number of times
specified by the second parameter.

Clause

LENGTH=

Parameter

DATE

TIME

TRANSACTION

NAME

STATION

REQUEST (position,count)

ATL Statement Syntax

Description

The current date is written into the Display field in the
format: DD-MMM-YY

The current time of day is written into the Display
field in the format: HH:MM:SS

The system-determined transaction instance number is
written into the Display field as ten ASCII characters.
If you specify this parameter on a form used as the
first form of an exchange, the field is filled with ten
characters. (A transaction instance number is assigned
after the exchange message from the first form is re-
ceived at the terminal station.)

The 6-character name of the transaction that is cur-
rently being run from the application terminal is written
into the Display field.

The 6-character terminal station name is written into
the Display field.

The REQUEST function allows you to obtain in-
formation contained in the response message that
requested this form.

When you specify a Display field with a VALUE clause
containing the REQUEST function, the field is filled
with text from the requesting response message, be-
ginning at the character position specified by the first
parameter, and continuing for the number of charac-
ters specified by the second parameter.

You may also use the dot constructs to specify the
character position parameter. A . by itself refers to the
next available position in the requesting response mes-
sage. The values .+n and .—n specify right (+) and left
(—) offsets from the current position in the response
message

The first character position in the requesting response
message can be referenced by specifying 1 as the first
parameter of the REQUEST function.

Use this clause to explicitly define the length of a Dis-
play field.

ATL Statement Syntax

Clause Parameter

count

ATTRIBUTES =

NORMAL

REVERSE

BLANK

NOBLANK

LABEL =

label-name

5-10

Description

A numeric value from 1 to 1920. If the count param-
eter causes the field to overlap another field on the
form a syntax error is flagged by the ATL utility. If
a field extends past the physical right margin, that
field is ‘“‘wrapped around” to continue in the first
column of the next line.

The ATTRIBUTES clause allows you to specify when
and how Display fields appear on the terminal screen.

You can specify more than one attribute in the same
ATTRIBUTES clause.

The Display field appears as white characters on a dark
background.

The Display field appears as dark characters on a white
background. Spaces appear as white squares.

A Display field with this attribute is not displayed on
the initial screen representation of the form. The field
may appear only on the reply screen displays defined
for a form. REPLYs that do not specify text for a
Display field with the BLANK attribute cause that
field to be blanked.

A Display field defined as NOBLANK is written by the
terminal as part of the initial form. It is not blanked
for a REPLY but a REPLY may overwrite it.

Use the LABEL clause to specify a label for a Display
field. Any field that you reference in another ATL
statement (in this case, REPLY) must have a label.

A label can be from 1 to 30 characters long. The first
character must be a letter and the remaining characters
are limited to:

A through Z,
a through z,
0 through 9,
period (.),
hyphen (),
underline ().

ATL Statement Syntax

Clause Parameter Description

In addition, you can use the percent symbol (%) or the
dollar sign (§) as the last character in a label.

The label character set allows you to use the same data
item names in both forms and TSTs. However, if the
label-name in the LABEL clause is the same as (or part
of) an ATL statement, clause or parameter keyword .
the ATL utility issues a Fatal error message.

You can avoid this possibility by always including a
special character (.), (-), (L), (%), or ($) in a label
name. These characters are never used in an ATL re-
served keyword. See Table 2-1 for the list of ATL
reserved words.

EXAMPLES:
Display statements can be used to display data on the initial form and all replies, or on replies only.
In the examples shown here, the first display statement appears on all versions of the form:

DISPLAY =2,11 'Indent 1 line and 11 spaces
VALUE = “Customer Master File Subsystem -,
“Add Customer Transaction”
ATTRIBUTES = REVERSE, !'Highlight in reverse video
NOBLANK !'Don’t Erase during Replies

The second display statement simply defines an 80-character error line, for use during replies. Since
the ATTRIBUTES clause is missing, this display field has the BLANK attribute assumed.

DISPLAY =4,1 I1Skip 1 Line
LABEL = REPLY.TEXT.A 'Label for 1st REPLY Line
LENGTH = 80 'Line covers Full Screen Width

5-11

ATL Statement Syntax

END

5.3 THE END STATEMENT

STATEMENT:

USE:

USAGE NOTES:

FORMAT:

END

5-12

END
You use the END statement to define the end of the form definition.
This statement must be specified as the last item in an ATL source state-

ment file. The ATL utility does not process any text beyond this state-
ment.

ATL Statement Syntax

FORM
5.4 THE FORM STATEMENT
STATEMENT: FORM
USE: You use the FORM statement to specify dimensions and attributes required

as part of the form definition. You can use the FORM statement to:

1. Divide the screen into Display and Form areas.

2. Specify the height and width of the form for hard copy devices.
3. Change default function key text values.

4. Cause the terminal bell to sound when displaying an initial screen.
5. Specify that the form is used to select a transaction.

USAGE NOTES: ATL syntax requires that the FORM statement be followed by at least one
clause.

The ATL utility assumes the following default conditions exist:

1. The form being defined contains a Form area only, i.e. there is no
Display area.

2. All function keys, except the ABORT and ENTER keys, are dis-
abled.

3. This form is not being used to select the next transaction.

4. Default text is associated with the user function keys.

5. The Bell will not ring when an initial form display occurs.

You can override these assumptions by using the FORM statement and its
corresponding clauses.

FORMAT:
FORM

[SPLIT =length]
[ENABLE = keyname]
[DISABLE = keyname]

[KEYCAP = keyname, “‘text-string”]

SELECT = { MENU } ;reply-1 {,reply-z }
input-field-label ,NOAUTHORIZE

[LENGTH= { line-count }]
FEED

[BELL [= periods]]
[WIDTH = form-width]

5-13

ATL Statement Syntax

Clauses and Parameters:

Clause Parameter
SPLIT =

line-count
ENABLE =

keyname

5-14

Description

The SPLIT clause permits you to separate the form
into a Display area and a Form area. This clause is
valid only for forms defined for use on interactive
terminals. The Display area is always the top part of
the form. The Form area is the remainder of the
screen.

The line-count specifies the length of the Display area
of the form. Acceptable values for line-count are the
integers from O (the default) to the maximum length
of the form. A line-count value of O creates a form
with no Display area. A line-count value equal to the
maximum form length creates a Form with no Form
area. For the VT62 DECSCOPE, the maximum length
of the form is 23.

Allows you to enable user and system function keys at
the time of the initial screen display.

The ATL utility enables the ENTER and ABORT keys
by default.

To enable other function keys, you must specify the
key name in an ENABLE clause.

If you place the ENABLE clause in a DEFAULT state-
ment before the FORM statement, the key you specify
remains enabled for the initial screen display and all
reply screen displays associated with that form, unless
specifically overridden in a DISABLE clause as part of
a FORM or REPLY statement. Enabling a key in
FORM statement affects only the initial display of the
form.

You can specify only one key name in an ENABLE
clause. To enable several function keys, you must use
several clauses.

You can specify the following function key names as
valid parameters in an ENABLE clause.

ENTER
CLOSE
AFFIRM

ATL Statement Syntax

Clause Parameter Description

STOPREPEAT
KEYO
KEYDOT
KEY1

KEY2

KEY3

DISABLE = Allows you to disable user and system function keys
at the time of the initial screen display.

The ATL utility enables the ENTER and ABORT keys
by default. You cannot disable the ABORT key. You
may disable the ENTER key.

To disable other function keys you must specify the
key name in a disable clause.

If you place the DISABLE clause in a DEFAULT state-
ment that precedes the FORM statement, the key you
specify remains disabled for the initial screen display
and all reply screen displays associated with that form,
unless specifically overridden by a DISABLE clause in
a FORM or REPLY statement. If you disable a key in
the FORM statement, that key is affected only for the
initial screen display.

You can specify only one key name in a disable clause.
To disable several function keys, you must use several
clauses.

keyname You can specify the following function key names as
valid parameters in a disable clause.

ENTER
CLOSE
AFFIRM
STOPREPEAT
KEYO
KEYDOT
KEY1

KEY2

KEY3

KEYCAP = You use the KEYCAP clause to define the text string

associated with a specified user function key. This
clause may be specified only when the form is defined

5-15

ATL Statement Syntax

Clause Parameter
keyname
, 3 ct ext ”
SELECT =
MENU

input-field-label

5-16

Description

for use on interactive terminals. When you press a user
function key, the text defined for that key is entered
into the exchange message at the position specified by
the VALUE=KEY clause in the MESSAGE statement.
(See section 3.1.1.5 for a discussion of this feature.)

If the KEYCAP clause is not present in the FORM
statement, the ATL utility assumes the following de-
fault key texts.

KEY DEFAULT KEY TEXT
ENTER “ENTER "

KEYO “KEY00 ”

KEYI “KEYO1”

KEY2 “KEY02 ”

KEY3 “KEY03 ™

KEYDOT “KYDOT

The name of the user function key whose text is
changed by this KEYCAP clause.

The text string associated with the user function key
specified in the keyname parameter.

NOTE

The total number of characters associated with
the six user function keys is limited to 214.
To determine if you have reached this limit,
add the lengths of all of the text strings
specified in the KEYCAP clause, then add

six characters for each key retaining its

default value.

You use the SELECT clause to tell the ATL utility
that this form definition is used to select a transaction.
You can specify this clause only on forms defined for
use on interactive terminals.

To select a transaction from a list of transaction names
presented as Menu fields on the terminal screen (and
called a menu), you must specify the keyword MENU
as the first parameter in the SELECT clause.

If you want to require the user to type the transaction
identifier, then the first parameter in the SELECT

Clause Parameter
replyl,
reply?2
NOAUTHORIZE
LENGTH =
line-count
FEED
BELL
[=periods]
WIDTH =

ATL Statement Syntax

Description

clause must be the label of the Input field where the
user types the transaction name.

You must specify the number of the reply screen dis-
played if the requested transaction does not exist.

You must specify the number of the reply screen dis-
played when the terminal finds that the user is not
authorized for this transaction type.

You can skip the authorization check by specifying
NOAUTHORIZE as the third parameter.

The LENGTH clause specifies a form’s line-count for a
hard-copy device. You can specify this clause only for
forms used at output-only terminals.

Specifies how long the form is. For example, for an
LA180 using 11-inch paper (6 lines = 1 inch) specify
LENGTH=66. If a 46-line form is displayed on that
paper, the LENGTH clause causes 20 line feeds to be
appended to the form, moving the paper to the top of
the next form.

If the output device you are using has a hardware form
feed, you can specify this parameter. The terminal
executes a hardware form feed when the end of a form
display is reached.

If the LENGTH clause is omitted, neither form feed
nor line feed characters are appended to the form.

You use the BELL clause to specify that the terminal
bell is to sound at the time the initial screen is dis-
played.

The periods parameter is optional. If you do not speci-
fy a period parameter, the default is one period. Speci-
fying a number of periods determines how long the
bell is to ring (155 milliseconds/period for the VT62).
For example, specifying BELL=7 causes the bell on a
VT62 terminal to sound for approximately one second
when an initial form is displayed.

The WIDTH clause specifies the number of characters
that can be printed across the hard-copy device print

5-17

ATL Statement Syntax

Clause Parameter Description

area. You can specify this clause only for an output-
only form.

character-count May be any value less than or equal to the physical
width of the device print line. If the specified width
exceeds the physical width of the device a fatal error
results.

If you specify that a Print field is to extend beyond
the right margin, specified by the WIDTH clause, a
fatal error results. If you specify that a print field is
to extend beyond the hardware-defined right margin,
a warning results and the excess field characters are
“folded” over to the next print line, beginning in
column 1.

EXAMPLES:

The form statement has a number of different uses. In the simplest case, when you define a form
for use on the VT62, you can simply specify the size of the Display area (using the ATL SPLIT
clause), and how many times the bell will ring. For example:

FORM !Form Statement
SPLIT =8 18 Line DISPLAY at Top of Form
BELL =2 'Ring Bell Twice for Initial Form

When you specify the SELECT clause in a form statement, you are defining a transaction selection
form. Depending on the first parameter of the SELECT clause, you specify that the form is a
menu-type selection form, or an input-type selection form. In the first form statement shown here,
the field label TRANS-NAME has been specified in the SELECT clause. The data entered into this
field is used to select and display the next transaction type.

FORM
SPLIT =20 120 lines Display area
SELECT = TRANS-NAME, 1,2 'Input field label and reply numbers

If the keyword MENU is specified as the first parameter in the SELECT clause, then the contents of
the menu field selected by the user will govern the next transaction displayed on the terminal. As
before, the reply number for an invalid transaction is specified. In this example, the user authoriza-
tion check is skipped.

FORM
SPLIT =23 !Form has only Display area
SELECT = MENU,1,NOAUTHORIZE !Menu selection specified

ATL Statement Syntax

A FORM statement used to define a Report form used at an output only station allows you to
specify the dimensions of the form. In the following example, note the use of the LENGTH and
WIDTH clauses.

FORM
LENGTH = 22 !Form has 22 lines (3 forms per page)
WIDTH = 132 1132-character form width
BELL=3 !Bell rings for Y2 sec to alert user

5-19

ATL Statment Syntax

INPUT

5.5 THE INPUT STATEMENT

STATEMENT:

USE:

USAGE NOTES:

5-20

INPUT

You use the INPUT statement to define Input fields in the Form area.
Input fields are transmitted to the terminal station when a user function
key is pressed. The user can move the cursor to an Input field. Input fields
are the only fields on a form where the user can enter or change data. The
terminal may initialize Input fields and a REPLY may overwrite them.

The total number of Input fields may not exceed 127. Furthermore, the
combined total of Input and MENU fields in a single form definition may
not exceed 128.

You must specify the row and column parameters as part of the INPUT
statement.

You must also specify at least one clause following the INPUT statement.

To simplify the coding of forms, you can specify row and column values
as offsets from the previous field through the use of the ATL “dot” con-
structs.

The length of an INPUT field may be defined either explicitly in a
LENGTH clause, or implicitly by a VALUE clause. If both clauses are
present, ATL assigns the greater of the two lengths to the field.

ATL Statement Syntax

FORMAT:
INPUT = row, column

[(ANY ' [1 7]
ALPHANUMERIC
LETTERS

ATTRIBUTES =

NUMERIC e
SIGNED
{ LEFT }
"RIGHT
{ NOTAB }
TAB
{ NOFULL } N oo e
FULL
{ NOREQUIRED }
REQUIRED _—
{ MODIFY } I
NOMODIFY
{ NORMAL }
REVERSE
B \ { NOECHO } i 1
[VALUE = “string” B “string”’ 17
FILL (“character”, count) FILL (““character”, count)
DATE DATE
TIME TIME
TRANSACTION ?) TRANSACTION 9000
NAME NAME
. STATION STATION '
u REQUEST (position, count) REQUEST (position, count) J

[LENGTH = count]
[CLEAR = “character”

[LABEL = label-name]

5-21

ATL Statement Syntax

Clauses and Parameters:

Clause Parameter
row
,column
VALUE =
3 ‘Strin g 2

FILL (‘““character’,count)

DATE

TIME

TRANSACTION

NAME

STATION

5-22

Description

Specifies the screen row where the first character of
the Input field is located. The row number is always
calculated relative to the first line of the form area.
The value you specify may not be greater than the
difference between the value in the SPLIT clause of
the FORM statement and the number of available
lines, 23 in the case of the VT62.

Specifies the character position in the row where the
field begins. You may not specify a character position
that overlaps another Input or Prompt field.

You use the VALUE clause to specify the initial con-
tents of an Input field.

You can specify more than one value for a VALUE
clause by supplying several parameters. You can also
specify a valid parameter more than once as part of
a VALUE clause.

A string of characters enclosed by quotation marks.
The enclosed string is displayed on the screen exactly
as typed, without the quotation marks.

The character you specify in the first parameter is
written into the Input field the number of times speci-
field by the second parameter.

The current date is written into the Input field in the
format: DD-MMM-YY

The current time of day is written into the Input field
in the format: HH:MM:SS

The system-determined transaction instance number is
written into the Input field as ten ASCII characters.

The 6-character name of the transaction that is cur-
rently being run from the application terminal is writ-
ten into the Input field.

The 6-character terminal station name is written into
the Input field.

Clause Parameter

REQUEST (position,count)

ATTRIBUTES =

ANY

LETTERS

NUMERIC

ALPHANUMERIC

ATL Statement Syntax

Description

The REQUEST function allows you to obtain informa-
tion contained in the response message that requested
the current form.

When you specify an Input field with a VALUE clause
containing the REQUEST function, the field is filled
with text from the requesting response message. This
text begins at the character position specified by the
first parameter, and continues for the number of char-
acters specified by the second parameter.

You also may use the dot constructs to specify the
character position parameter. A . by itself refers to the
next available position in the requesting response mes-
sage. The values .+n and .—n specify right (+) and left
(-) offsets from the current position in the response
message.

The first character position in the requesting response
message can be referenced be specifying 1 as the first
parameter of the REQUEST function.

Characters are moved from the requesting message to
the field in left-to-right order, regardless of the field
justification attribute of the receiving field.

The ATTRIBUTES clause allows you to specify the
way that fields may be completed by the terminal user,
or the way that Input fields are displayed on the termi-
nal screen.

You can specify more than one attribute in the same
ATTRIBUTES clause.

An Input field can contain any displayable ASCII
character in the range OCTAL 040 to 176.

An Input field can contain only the letters A through
Z, a through z, and space.

An Input field can contain only the numbers O through
9. Spaces are not permitted.

An Input field can contain any character that is a
number, a letter, or a space.

5-23

ATL Statement Syntax

Clause

5-24

Parameter

SIGNED

LEFT

RIGHT

NOTAB

TAB

FULL

NOFULL

REQUIRED

NOREQUIRED

MODIFY

NOMODIFY

Description

An Input field can contain signed numeric data: The
numbers 0 through 9, the sign characters + and —, field
punctuation characters (, and .). Spaces are not per-
mitted.

An error is displayed on the terminal’s error line if the
terminal user attempts to enter a character that is not
allowed by the character representation attribute speci-
field for that Input field.

Each character typed into an Input field appears one
position to the right of the preceding character.

Each character typed into an Input field appears in the
right-most position of the field. All preceding charac-
ters are moved one position to the left. This attribute
is very useful for entering numeric data onto a form.

To advance to another Input field, the terminal user
must press the NEXT FIELD or FORWD FIELD key
after typing data into an Input field.

After the user has completely filled the current field,
the cursor moves automatically to the next Input field.

The user must type enough characters to completely
fill the Input field. If the user presses the NEXT
FIELD or FORWD FIELD key before completely
filling a field specified with this attribute, a VT62
error is noted and displayed on the terminal error line.

The user may skip past a field specified with the FULL
attribute by pressing the FORWARD FIELD key.

Input fields need not be filled completely.

The user must enter data into this field before going
on to the next field.

The user may skip this field without entering data.

The terminal user may change the contents of an Input
field specified with this attribute.

The terminal user cannot change the contents or enter
data in an Input field specified with this attribute.

Clause Parameter
NORMAL
REVERSE
NOECHO
LENGTH =
count
CLEAR =
“character”
LABEL =

ATL Statement Syntax

Description

Furthermore, the user cannot position the cursor in
this field.

The Input field appears as white characters on a dark
background.

The Input field appears as dark characters on a white
background. Spaces appear as white squares. You can
assist the terminal user by defining Input fields with
the REVERSE attribute. The field is then clearly de-
fined on the screen display.

The terminal suppresses the display of any characters
the user types into an Input field. NOECHO can be
specified for only one field on a form. The field speci-
fied with the NOECHO attribute is limited in length to
40 characters.

Use this clause to explicitly define the length of an
Input field.

A numeric value from 1 to 1920. If the count param-
eter causes the field to overlap another field on the
form, a syntax error is flagged by the ATL utility. If

a field extends past the physical right margin, that field
is “wrapped around” to continue in the first column of
the next line. ’

Allows you to specify the character that is displayed in
empty Input field character positions.

Any Input field character position that is not filled in
by the system (using the VALUE clause, or a REPLY
statement WRITE clause) or completed by the user,
is filled using the character specified in this clause.

You can specify any displayable ASCII character as the
parameter to the CLEAR clause. The null character
(ASCII 000) is assumed as the default. The character
you specify as the parameter must be enclosed in single
or double quotation marks.

Use the LABEL clause to specify a label for an Input
field. Any field that you reference in another ATL
statement (MESSAGE, REPLY, etc.) must have a
label.

5-25

ATL Statement Syntax

Clause Parameter

label-name

EXAMPLES:

Description

A label can be from 1 to 30 characters long. The first
character must be a letter and the remaining characters
are limited to:

A through Z,
a through z,

0 through 9,
period (.),
hyphen (-),
underline (_).

In addition, you can use the percent symbol (%) or the
dollar sign ($) as the last character in a label.

The label character set allows you to use the same data
item names in both forms and TSTs. However, if the
label-name is the same as (or part of) an ATL state-
ment, clause or parameter keyword, the ATL utility
issues a Fatal error message.

You can avoid this possibility by always including a
special character (.), (-), (), (%), or ($) in a label
name. These characters are never used in an ATL re-
served keyword. See Table 2-1 for the list of ATL
reserved words.

The INPUT statements define the only user-accessible ATL fields. A wide range of ATTRIBUTES
are available for use with the INPUT statements, as well as the LABEL clause to assign names to
fields, and the LENGTH clause to explicitly specify field length. In addition, INPUT fields can be
given an initial value through the VALUE clause. The following examples give a brief overview of
the different ways used to specify INPUT fields.

The first INPUT field example is used to specify a zip code field on a form. The field is specified
as a required field that must be full. Hence five characters must always be typed into this field.

INPUT = .45
LABEL = ZIP.CODE
LENGTH = 5
ATTRIB = REVERSE,
NUMERIC,
FULL,
REQUIRED

5-26

ISKkip to column 45 of current line
!Label field for use by MESSAGE
1Zip Code is 5 digits in U.S.A.
'Highlight in Reverse Video
IRestrict Character Set

!Must type all 5 digits

!Field must be completed

ATL Statement Syntax

In the second example of an INPUT statement, the Input field is designed to contain a signed
numeric value. The designer wanted data entered in this field for every customer, and the data was

to be right-justified, and blank spaces were to be zero-filled to assist the TST when it processed the
amount. The resulting INPUT statement to do all this was:

INPUT = .,20 !Column 30 of This Line
LABEL = CREDIT.LIMIT !Label for Message
- LENGTH=12 !Allows 12 spaces for amount
ATTRIB = REVERSE,SIGNED, 'Highlight, allow commas and periods
RIGHT, REQUIRED 'Right-justify for easier typing
1Require input in this field
CLEAR = «“0” !Fill in with left zeros

In the last example, the NOECHO attribute is used to protect the contents of the ACCOUNT-
NUMBER field from being viewed by others.

INPUT = ,,.+10 !Start 10 spaces past prompt
LENGTH=9 Define field length
LABEL = ACCOUNT-NUMBER !Label field name
ATTRIBUTE = REQUIRED,
NOECHO,
NUMERIC Protect account number data

5-27

ATL Statement Syntax

MENU

5.6 THE MENU STATEMENT

STATEMENT:

USE:

USAGE NOTES:

FORMAT:
MENU = row, column

MENU

The MENU statement is used to describe Menu fields that are found in the
Display area of a form. A group of Menu fields forms a Menu. The user
can select one field from a Menu, using the SELECT key and transmit that
field to the terminal station by pressing a user function key.

The cursor may be moved to a Menu field by using the cursor control keys
on the terminal keyboard.

The contents of a Menu field can be selected or deselected by pressing the
SELECT/DESELECT key.

Selected Menu fields are displayed in REVERSE video.

The terminal user may select only one Menu field on a form. If more than
one Menu field is selected, and the user presses a user function key, the
terminal bell will ring, and an error message will be written to the terminal
error line.

The MENU fields are initialized as part of the initial form display. The
terminal user cannot enter data into a menu field and menu fields are not
altered by a reply.

The total number of MENU fields on a single form may not exceed 127.
Furthermore, the total number of Input and MENU fields on a form may

not exceed 128.

You must specify row and column parameters as part of the MENU state-
ment.

ATL syntax requires that the MENU statement be followed by at least one
VALUE clause.

The length of a MENU field is implicitly defined by the VALUE clause.

VALUE = ’ “string” “string”
FILL (“character”, count) o< FILL (“‘character”, count) “qeee
|

REQUEST (position, count)

5-28

REQUEST (position, count)

Clauses and Parameters:

Clause Parameter
row
,column
VALUE =
3 ‘Strin g ’”

FILL(*““character’’,count)

REQUEST (position,count)

ATL Statement Syntax

Description

The value you supply for row tells the terminal the
screen row where the field you are defining is written.
The row number is defined relative to the start of the
form.

The value you supply for the column parameter speci-
fies the character position on the row where the field
begins.

The following MENU statement specifies a field that
appears on the first row of the screen, beginning in
column 20.

MENU=1,20

To simplify the coding of forms, you may specify row
and column values as offsets from the previous field
through the use of the ATL “dot” constructs.

You use the VALUE clause to specify the initial con-
tents of a Menu field.

You can specify more than one value for a VALUE
clause by supplying several parameters. You can also
specify a valid parameter more than once as part of a
VALUE clause.

A string of characters enclosed by quotation marks.
The enclosed string is displayed on the screen exactly
as typed, without the quotation marks.

The character you specify in the first parameter is
written into the Menu field the number of times speci-
fied by the second parameter.

The REQUEST function allows you to obtain informa-
tion contained in the response message that requested
the current form.

When you specify a Menu field with a VALUE clause
containing the REQUEST function, the field is filled
with text from the requesting response message. The
filling operation begins at the character position speci-
fied by the first parameter, and continuing for the
number of characters specified by the second parameter.

5-29

ATL Statement Syntax

Clause Parameter Description

You may also use the dot constructs to specify the
character position parameter. A . by itself refers to the
next available position in the requesting response mes-
sage. The values .+n and .—n specify right (+) and left
(—) offsets from the current position in the response
message.

The first character position in the requesting response
message can be referenced by specifying 1 as the first
parameter of the REQUEST function.

EXAMPLES:
The MENU statement is most commonly specified with a character string value. For example:
MENU = .+1,20 INext Line, Starting at column 20
VALUE = “ADDCUS” !Name of Add Customer Transaction

A MENU statement can also be initialized using the REQUEST function. The following example
shows a field initialized by a requesting response message.

MENU = 1,20

VALUE = REQUEST (1,5) IFill with 1st five characters
lof response message.

5-30

ATL Statement Syntax

MESSAGE
5.7 THE MESSAGE STATEMENT
STATEMENT: MESSAGE
USE: To construct an exchange message, you must specify one or more MESSAGE

statements in the form definition. The MESSAGE statement defines the
structure of the exchange message.

USAGE NOTES: ATL syntax requires that the MESSAGE statement be followed by at least
one VALUE clause.

You must specify a position value as part of the MESSAGE statement.

Multiple MESSAGE statements may be issued, and the first character of a
later MESSAGE need not be contiguous to the last character of the preced-
ing message. However, if you do not explicitly specify the content of a
character position, that position may possibly contain spurious ASCII
values.

The total length of the exchange message corresponds to the number of
character positions specified by all MESSAGE statements in the form
definition. If a longer length is desired, an arbitrary character can be placed
in the message.

FORMAT:
MESSAGE = position
VALUE = “string” “string™

FILL (“‘character”, count) FILL (*“‘character”, count)
DATE DATE
TIME TIME
TRANSACTION TRANSACTION
NAME 9 { NAME LI LA
STATION STATION
REQUEST (position, count) REQUEST (position, count)
MENU MENU
label-name label-name
KEY KEY

5-31

ATL Statement Syntax

Clauses and Parameters:

Clause Parameter
position
VALUE =
“string”

FILL (““character’,count)

DATE

TIME

TRANSACTION

NAME

STATION

MENU

5-32

Description

The value you specify for the position parameter refers
to the character position in the exchange message
where the terminal station is directed to begin placing
the data specified in the VALUE clauses.

The VALUE clause allows you to specify the contents
of the exchange message. You may use more than one
parameter in a value clause, and you may use the same
parameter more than once in the same VALUE clause.

The string you specify is placed in the exchange mes-
sage.

The character specified by the first parameter is placed
in the exchange message the number of times specified
in the second parameter.

The current date is placed in the exchange message in
the format: DD-MMM-YY.

The current clock time is placed in the exchange mes-
sage in the format: HH:MM:SS.

The system-determined transaction instance number is
placed in the exchange message as ten ASCII charac-
ters.

The transaction instance number can be retrieved
through the use of the ATL VALUE clause and
TRANSACTION parameter in the exchange message.
This is the only way the transaction instance number
can be retrieved by the TST.

The 6-character name of the current transaction in-
voked at the application terminal is placed in the
exchange message.

The 6-character terminal station ID is placed in the
exchange message.

The contents of the selected MENU item are placed in
the exchange message. The length assumed for this
parameter is equal to the length of the longest defined
menu field. The null character (OCTAL 000) is used

ATL Statement Syntax

Clause Parameter Description

to pad any unfilled character positions in the ex-
change message.

label-name The contents of the Input field referenced by that
label parameter are placed in the exchange message.

KEY When a user function key is pressed, the text string
associated with that user function key is placed in the
exchange message. (See Section 3.1.1.5, “Exchange
messages”’ for a discussion of this feature.) The length
of the field to be defined is the length of the longest
defined key text.

EXAMPLES:

The message statement specifies the format used to construct the exchange message. In the first
example, the MESSAGE statement starts in position 7. The first six locations are filled with ASCII
000. This is done to allow alighment with the fields in the customer record.

MESSAGE =7 IStart filling in 7th character position
ITo reserve space for Customer _#.

VALUE = 'Value clause defines filling order

CUSTOMER.NAME,

ADDRESS.1,

ADDRESS.2,

ADDRESS.3,

ZIP.CODE,

AREA.CODE, TEL. EXCHANGE, TEL.EXTENSION,

ATTENTION,

CREDIT.LIMIT

A second example of the MESSAGE statement shows how the VALUE = KEY clause is used to
transmit the function key text string to the system.

MESSAGE =1
VALUE =KEY IPlace Key text string in Exch. Msg.

The MESSAGE statement can also specify that the contents of a selected MENU field are placed in
the exchange message:

MESSAGE = 1
VALUE = MENU !Place selected menu item in Exch. Msg.

5-33

ATL Statement Syntax

PRINT

5.8 THE PRINT STATEMENT

STATEMENT:

USE:

USAGE NOTES:

FORMAT:

PRINT

Use the PRINT statement to specify the contents of a field on a form de-
signed for use on a hard-copy device.

ATL Syntax requires that the PRINT statement be followed by at least one
VALUE clause.

The initial character position of the field to be printed is specified by the
row and column parameters.

You may specify PRINT statements in any order.

The ATL utility builds the form definition record by inserting PRINT
statements in the order specified by the values supplied for the row and
column parameters.

To simplify the coding of forms, you may specify row and column values
as relative offsets from the previous field through the use of the ATL *“dot™
constructs.

The length of a PRINT field is implicitly defined by the VALUE clause.

PRINT = row, column

VALUE =

Clauses and Parameters:

Clause

5-34

— —_
“string” “string”
FILL (“character, count) FILL (‘““character”, count)
DATE DATE
TIME TIME
TRANSACTION ?\ TRANSACTION s00e
NAME NAME
STATION STATION
REQUEST (position, count) REQUEST (position, count)
Parameter Description

row

The value you supply for row corresponds to the termi-

nal line where the field you are defining is printed.

The row number is defined relative to line 1, which is

the first printed line of the form.

Clause Parameter
,column
VALUE =
“stﬂng, k]

FILL (*‘character”,count)

DATE

TIME

TRANSACTION

NAME

STATION

REQUEST (position,count)

ATL Statement Syntax

Description

The value you supply for column corresponds to the
character position on the row where the field begins.

To simplify coding of forms, you may specify row and
column values using the ATL “dot” constructs.

The VALUE clause allows you to specify the contents
of a PRINT field. You may specify more than one
parameter to the same value clause. You may also
specify the same parameter more than once in the
same value clause.

A string of characters enclosed by quotation marks.
This might be used to supply column headings on a
hard-copy report.

The character specified by the first parameter is writ-
ten in the PRINT field the number of times specified
in the second parameter. :

The current date is written to the PRINT field in the
format: DD-MMM-YY

The current clock time is written to the PRINT field in
the format: HH:MM:SS

The system-determined transaction instance number is
written to the PRINT field as ten ASCII characters.

The 6-character name of the current transaction is
written to the PRINT field.

The 6-character terminal station ID of the initiating
terminal is written to the PRINT field.

The REQUEST function allows you to obtain informa-
tion contained in the REPORT message that requested
this form. A PRINT field specified with a REQUEST
function in the VALUE clause is filled with text from
the requesting REPORT message. The filling operation
begins at the character position specified by the first
parameter, and continues for the number of charac-
ters specified by the second parameter.

You may also use the dot constructs to specify the char-
acter position parameter. The first character position

5-35

ATL Statement Syntax

Clause Parameter Description

in the requesting response message can be referenced
by specifying 1 as the first parameter of the REQUEST
function.

EXAMPLES:

The following PRINT statement demonstrates the use of the REQUEST function. Six characters

from the requesting response message are placed into the PRINT field that begins at column 20 of
the first printer line.

PRINT =1,20 'Position Print Field
VALUE = IFill this field field with
REQUEST (1,6) !First Six Chars of Message

5-36

ATL Statement Syntax

PROMPT
5.9 THE PROMPT STATEMENT
STATEMENT: PROMPT
USE: The PROMPT statement allows you to specify PROMPT fields in the

FORM area of the terminal screen. Prompt fields are most commonly used
to display user instructions.

USAGE NOTES: The cursor cannot be positioned in a Prompt field and the terminal user
cannot change its contents. Prompt fields are written by the terminal
station and may be overwritten as part of a REPLY. They are not trans-
mitted to the terminal station when a user function key is pressed.

ATL Syntax requires that you specify at least one clause following each
PROMPT Statement.

Y ou must specify row and column parameters following the PROMPT key-
word.

The length of a Prompt field can be defined either explicitly in a length
clause or implicitly by the VALUE clause. When both clauses are present,
ATL assigns the greater of the two lengths to the field.

FORMAT:
PROMPT = row, column
VALUE = “string” “string”]
FILL (*“‘character, count) FILL (‘““character”, count)
DATE DATE
TIME TIME coe
TRANSACTION 9 TRANSACTION ’
NAME NAME
STATION STATION
REQUEST (position, count) REQUEST (position, count)
[[LENGTH = count]
CATTRIBUTE = NORMAL
N REVERSE
[LABEL = label-name] }

5-37

ATL Statement Syntax

Clauses and Parameters:

Clause Parameter
row
,column
VALUE =
“string”

FILL (“‘character’,count)

DATE

TIME

TRANSACTION

NAME

STATION

5-38

Description

The value you supply for the row parameter tells the ter-
minal the screen row where the field you are defining is

written. The row number is always calculated relative to
the first line of the Form area.

The value you supply for the column parameter specifies
the character position on the row where the field begins.

To simplify the coding of forms, you may specify row
and column values as relative offsets from the previous
field through the use of the ATL ““dot” constructs.

You use the VALUE clause to specify the initial con-
tents of a PROMPT field.

You can specify more than one value for a VALUE
clause by supplying several parameters. You can also
specify a valid parameter more than once as part of a
VALUE clause.

A string of characters enclosed by quotation marks.
The enclosed string is displayed on the screen exactly
as typed, without the quotation marks.

The character you specify in the first parameter is
written into the Prompt field the number of times
specified by the second parameter.

The current date is written into the Prompt field in the
format: DD-MMM-YY

The current time of day is written into the Prompt
field in the format: HH:MM:SS

The system-determined transaction instance number is
written into the Prompt field as ten ASCII characters.

The 6-character name of the transaction that is cur-
rently being run from the application terminal is
written into the Prompt field.

The 6-character terminal station name is written into
the Prompt field.

Clause Parameter

REQUEST (position,count)

LENGTH =
count
ATTRIBUTES =
NORMAL
REVERSE
LABEL =

ATL Statement Syntax

Description

The REQUEST function allows you to obtain informa-
tion contained in the response message that requested
the current form.

When you specify a Prompt field with a value clause
containing the REQUEST function, the field is filled
with text from the requesting response message, begin-
ning at the character position specified by the first
parameter, and continuing for the number of charac-
ters specified by the second parameter.

You may also use the dot constructs to specify the
character position parameter. A . by itself refers to the
next available position in the requesting response mes-
sage. The values .+n and .—n specify right (+) and left
(—) offsets from the current position in the response
message.

The first character position in the requesting response
message can be referenced by specifying 1 as the first
parameter of the REQUEST function.

Use this clause to explicitly define the length of a
Prompt field.

A numeric value from 1 to 1920. If the count param-
eter causes the field to overlap another field on the
form, a syntax error is flagged by the ATL utility. If

a field extends past the physical right margin, that field
is “wrapped around” to continue in the first column
of the next line.

The ATTRIBUTES clause allows you to specify the
way that Prompt fields are displayed on the terminal
screen.

The Prompt field appears as white characters on a dark
background.

The Prompt field appears as dark characters on a white
background. Spaces appear as white squares.

Use the LABEL clause to specify a label for a Prompt

field. A Prompt field must be labelled if you intend to
reference it in an ATL REPLY statement.

5-39

ATL Statement Syntax

Clause Parameter Description

label-name A label can be from 1 to 30 characters long. The first
character must be a letter and the remaining characters
are limited to:

A through Z,
a through z,

0 through 9,
period (.),
hyphen (-),
underline ().

In addition, you can use the percent symbol (%) or the
dollar sign ($) as the last character in a label.

The label character set allows you to use the same data
item names in both forms and TSTs. However, if the
label-name is the same as (or part of) an ATL state-
ment, clause or parameter keyword, the ATL utility
issues a Fatal error message.

You can avoid this possibility by always including a
special character (.), (-), (), (%), or (§) in a label
name. These characters are never used in an ATL re-
served keyword. See Table 2-1 for the list of ATL

EXAMPLES: reserved words.

A PROMPT field is most often used to give instructions or information in the form area of a field.
In the following example, three PROMPT fields are shown. The first field identifies the data con-
tained on the line. The second field is displayed as six (?) characters, and labelled so that it can be
referenced by a later reply. The third field tells the user that the preceding field contents will be
assigned by the application TST.

PROMPT = 1,1 1Skip a line, move to column 1
VALUE = “Customer Number” !Label the empty field

PROMPT = .,.+4 IField starts 4 spaces past prompt
LABEL = CUSTOMER.NUMBER 'Assign LABEL to allow filling by REPLY
VALUE = “7727??” 'Fill with ? - System assigns value
ATTRIB = REVERSE 'Highlight in REVERSE video

PROMPT = .,30 ISkip to Column 30 on this line
LENGTH =30 !Define Length for blanking out later
VALUE = “(To be Supplied by System)”’
LABEL = CUSTNO.TEXT !Label for Blanking out Later

Note that even though these three Prompt fields are contiguous, each field is defined separately.
This is to allow the fields to be referenced individually by a REPLY statement.

5-40

The ATL Statement Syntax

REPEAT
REND

5.10 THE REPEAT AND REND STATEMENTS

STATEMENT:

USE:

USAGE NOTES:

FORMAT:
REPEAT = number

REPEAT and REND

The REPEAT and REND statements allow you to reduce coding effort
when defining many similar fields in a single form definition. When you
specify a block of ATL statements delimited by the REPEAT and REND
statements, the ATL utility repeats that block of statements the number of
times specified in the parameter to the REPEAT statement.

Any statement may occur in a REPEAT block except another REPEAT
statement or the END statement.

There is no limit on the number of Repeat blocks you may specify in a
form definition.

The Repeat block begins with the first statement that follows a WITH
clause, and continues until the REND statement is encountered.

You must specify at least one WITH clause when you are using the
REPEAT statement. You may specify up to 36 dummy parameters.

Dummy parameters may be specified anywhere in an ATL statement or
clause.

If the WITH clause parameter that follows the equal (=) sign is enclosed in
quotation marks (*‘ ’, or ¢ *), that parameter is assumed to be a character
parameter.

[WITH #n = start [,increment]]

I:WITH #n = “character”

REND L)

Clauses and Parameters:

Clause Parameter Description

number

The number of times you want the ATL utility to
repeat the statements contained in the Repeat block.
Any dummy parameters in those statements are

5-41

ATL Statement Syntax

Clause Parameter
WITH

#n=

start

[,increment]

“character”

EXAMPLES:

Description

replaced by integers or characters according to the
parameters specified in the WITH clauses that follow
the REPEAT statement.

Allows you to set up dummy parameters inside a
Repeat block. The dummy parameter specified in the
WITH clause and the Repeat block is modified accord-
ing to the parameter values of the WITH clause. Two
types of dummy parameters are allowed: integer, and
character.

The dummy parameter must be a character in the
range 0 through 9 and A through Z.

The value initially assigned to the dummy integer
parameter. This parameter may take any numeric
value.

The optional increment to be applied to the dummy
integer parameter. If no increment is specified, 1 is
assumed by default. On each pass through a Repeat
block, the ATL utility ups the value of the dummy
integer parameter by the value specified for an incre-
ment.

The first time the ATL utility processes the statements
in the Repeat block, it replaces the dummy character
parameter with the value specified in this parameter as
a quoted character. Subsequent passes through the
block cause the starting value to be incremented in the
ascending sequence: 0 through 9, then A through Z.

For example, if you specify ““A” as the initial character
parameter in a WITH clause, the first set of statements
in that repeat block will have the letter “A” substituted
by the ATL utility. The second set of statements
created from the Repeat block will have the letter

“B”. The substitution sequence continues until the
REPEAT statement count is exhausted. Any attempt
to increment beyond Z results in an error.

This example demonstrates how to use a Repeat block to minimize the amount of coding required
to specify an ATL form definition. Four identical input fields must be coded, with their initial

542

ATL Statement Syntax

values taken from a requesting response message. Two dummy variables are used. #1 is used to
specify the position in the requesting message where the data to fill the field is located. The
dummy parameter #A is used to assign different field label names to the Input fields being created.

REPEAT =4
WITH #1 =1,3 1#1 IS AN INTEGER; BUMP BY 3 EACH TIME
WITH #A =“A” 1#A IS A CHARACTER

INPUT = .+1,10

VALUE =REQUEST(#1,3)
LABEL=FIELD.#A$

REND REND
The 7-line Repeat block shown above is equivalent to the twelve lines of code shown below.

INPUT = 41,10
VALUE=REQUEST(1,3)
LABEL=FIELD.A$

INPUT = .+1,10
VALUE=REQUEST(4,3)
LABEL=FIELD.BS

INPUT = 41,10
VALUE=REQUEST(7,3)
LABEL=FIELD.C$

INPUT = .+1,10
VALUE=REQUEST(10,3)
LABEL=FIELD.D$

543

ATL Statement Syntax

REPLY

5.11 THE REPLY STATEMENT

STATEMENT:

USE:

USAGE NOTES:

FORMAT:
REPLY = number

WRITE = field-label [“string” “string”

REPLY

The REPLY statement allows you to specify modifications to the current
form displayed at the application terminal. These modifications are applied
when the terminal station receives a Reply-type response message from a
TST. Replies may be used to indicate successful completion of processing
or error conditions, or to prompt for additional or corrected user input.

ATL syntax requires that you specify at least one clause following a
REPLY statement.

Display fields are handled in a special way. If the field is not being filled
as part of a Reply, and if you specified that field with the BLANK attri-
bute, then the field is blank-filled. This allows you to erase Display fields
from previous replies.

FILL (‘“‘character”, count) FILL (‘“‘character’, count)
DATE DATE

TIME TIME

TRANSACTION ' Y TRANSACTION 9
NAME NAME
STATION STATION

REQUEST (position, count) 5 REQUEST (position, count)

[CURSOR = field-label]

[ENABLE = keyname]

[DISABLE = keyname]

[BELL [= periods]]

Clauses and Parameters:

Clause Parameter Description

number

5-44

The number parameter identifies a set of screen modi-
fications. When a TST sends a REPLY message with a
reply number specified as a parameter, then the set of
screen modifications having the same reply number are

Clause

WRITE =

Parameter

label-name

“String”

FILL (“‘character’,count)

DATE

TIME

ATL Statement Syntax

Description

displayed. You may specify several REPLY statements
with the same number parameter. The screen that is
ultimately displayed consists of the combination of all
REPLY statements having the same number parameter.

This highest REPLY number that you can assign is 64.

The WRITE clause allows you to specify modifications
to be made to a previously defined field. The WRITE
clause parameters identify a field, and describe how it
is filled when the reply screen is displayed.

The string you specify in a WRITE clause must have a
length less than or equal to that of the referenced field.
If the string has a length less than the field, the re-
mainder of the field is unaitered. However, in the case
of an Input field, the remainder of the field is filled
with the CLEAR character specified for that field.
Furthermore, in the case of a BLANK Display field,
any portion of the field that is not explicitly written
to by a reply is blanked by the terminal.

If you specify a WRITE clause with only a label, and
do not specify the field contents, the ATL utility fills
the field with the VALUE clauses in the original field
definition. In this case, the original field definition
must have at least one VALUE clause and that VALUE
clause must not contain the REQUEST () parameter.

The label-name parameter specifies the label-name of
the field written into by the subsequent parameters
in the WRITE clause. The field specified by this label
can be an Input, Display or Prompt field but not a
Menu field.

A string of characters enclosed by quotation marks.
The character specified in the first parameter is writ-
ten into the field referenced by the label and the

number of times specified in the second parameter.

The current date is written to the specified field in the
format: DD-MMM-YY

The current clock time is written to the specified field
in the format: HH:MM:SS

5-45

ATL Statement Syntax

Clause Parameter

TRANSACTION

NAME

STATION

REQUEST (position,count)

CURSOR =

label-name

MENU

ENABLE =

546

Description

The system-determined transaction instance number is
written to the specified field as ten ASCII characters.

The 6-character name of the current transaction is
written to the specified field.

The 6-character terminal station ID is written to the
specified field.

The REQUEST function allows you to obtain informa-
tion contained in the response message that requested
the current reply screen. A field written using the
REQUEST function in a WRITE clause is filled with
text from the requesting response message beginning
at the character position specified by the first param-
eter, and continuing for the number of characters
specified by the second parameter. You may also use
the dot constructs to specify the character position
parameter. The first character position in the request-
ing response message can be referenced by specifying 1
as the first parameter of the REQUEST function.

The cursor is always poisitioned on the first character
of the first Input field after the display of a reply
screen unless the CURSOR clause is present.

The label of an Input field where the CURSOR is
positioned after a reply screen has been displayed.

The cursor is positioned on the first MENU field after
a reply screen has been displayed.

Allows you to enable user and system function keys
after the terminal displays a reply screen.

The ATL utility enables the ENTER and ABORT
keys by default.

To enable other function keys you must specify the
key name in an ENABLE clause.

You can specify only one key name in an ENABLE
clause. To enable several function keys, you must use
several clauses.

Clause Parameter
keyname
DISABLE =
keyname
BELL

ATL Statement Syntax

Definition

You can specify the following function key names as
valid parameters in an ENABLE clause:

ENTER
CLOSE
AFFIRM
STOPREPEAT
KEYO
KEYDOT
KEY1

KEY2

KEY3

Allows you to disable user and system function keys
after the terminal displays a reply screen.

The ATL utility enables the ENTER and ABORT keys
by default. You cannot disable the ABORT key. You
may disable the ENTER key.

To disable other function keys you must specify the
key name in a disable clause.

You can specify only one key name in a disable clause.
To disable several function keys, you must use several
clauses.

You can specify the following function key names as
valid parameters in a disable clause:

ENTER
CLOSE
AFFIRM
STOPREPEAT
KEYO
KEYDOT
KEY1

KEY2

KEY3

You use the BELL clause to specify that the terminal
bell is to sound at the time the reply screen is dis-
played. This clause may be specified for any terminal
equipped with an audible bell.

5-47

AL dtatement Syniax

Clause Parameter ' Description

[=periods] The periods parameter is optional. If you do not
specify a period parameter, the default is one period.
Specifying a number of periods determines how long
the bell is to ring (155 milliseconds/period for the
VT62). For example, specifying BELL=3 causes the
bell on a VT62 terminal to sound for 465 ms. when a
reply screen is displayed.

EXAMPLES:
The following example demonstrates how to code a Display field that is displayed only at the time a

REPLY is sent to the terminal:

DISPLAY = 1,1 'Text goes in upper left corner
VALUE = “Error in processing”
ATTRIBUTES = BLANK ISpecify the field as blank
LABEL = ERROR.LINE !Label for use in Reply Message
REPLY= 1 1Specify number for this reply screen
WRITE = ERROR.LINE !Use label to Write the reply line.

548

ATL Statement Syntax

REPLY statements can write to Input, Display, Menu, and Prompt fields using the request clause.
In the following example, a full set of modifications are made to the Add Customer Form. Notice
how the 6-character customer number is written into a Prompt field using the ATL REQUEST
function.

REPLY =1
DISABLE = ENTER
!

! Write the success message in the Display area
1

WRITE = REPLY.TEXT.B,* %%k TRANSACTION COMPLETE s&x >’
!

! Blank the original user instructions
!

WRITE = INSTR.TEXT,FILL(* ”,72)
!

!

WRITE = CUSTOMER.NUMBER,REQUEST(1,6)
!

! Blank out the words: (To Be Supplied by System)
'

WRITE = CUSTNO.TEXT,FILL(** *,30)
!

! Blank out original function key instructions
!

WRITE = KEY.PROMPT,FILL(* »,75)
!

! Write new function key instructions
!

WRITE = KEY.PROMPT,“Function Keys: Press AFFIRM to Add Another ”,
“Customer—Press CLOSE to quit”

5-49

APPENDIX A
ATL UTILITY ERROR MESSAGES

A.1 WARNING MESSAGES
% ATTRIBUTE specified is not legal for this statement.
The ATTRIBUTE is ignored.

% ATTRIBUTE previously specified in this statement.
The subsequent ATTRIBUTE specification is ignored.

% BELL count out of range.
The assumed count is 1. The permitted range is (1 to 255).

% COL parameter outside of device width. Field will wrap around.

% CURSOR value multiply-defined.
The CURSOR is positioned at the last field specified.

% DISPLAY statement not legal for this device type.
Display fields are not allowed on form used by an output-only device.

% FEED value for LENGTH clause allowed only on form statement.
The LENGTH clause is ignored.

% FEED value for LENGTH clause not valid for this device type.
The LENGTH=FEED clause is not legal for VT62 forms.

% Illegal Character “x”—Assumed as SPACE
% INPUT field declaration required for SELECTion through INPUT field

% INPUT statement not legal for this device.
INPUT fields cannot be specified on forms for output-only devices.

% LENGTH value out of device range.
The statement is ignored.

% MENU field declaration required for MENU SELECTion.
% MENU statement not legal for this device type.

% MESSAGE statement not legal for this device type.

% MESSAGE statement references MENU VALUE, but no MENU field defined.

ATL Error Messages

% NOECHO INPUT field longer than maximum of 40 characters.
% Non-positive MESSAGE position illegal, assumed to be 1.

% Non-positive COL parameter illegal.

% NULL string for KEYCAP.
The clause is ignored.

% Only one NOECHO INPUT field allowed
The form will not run on a VT62.

% Only one key value allowed in MESSAGE statement.

% Only one (1) SELECT clause permitted per form definition.
The last SELECT clause is used by the compiler.

% Previous field length exceeded (device) (page) width. Field will wrap around

% PRINT statement not legal for this device type.
A form used on a VT62 cannot have a PRINT statement.

% PROMPT statement not legal for this device type.

% REPLY # out of range (1-64).
The SELECT clause specifies an invalid REPLY #.

% REPLY statement not valid for this device type.
% ROW parameter outside of area, assumed to be 1.

% Should be single letter.
The FILL function requires a single-letter text string.

% Should use a single character string.
The parameter to the CLEAR clause must be a single-letter string.

% Some user function keys must be enabled if form contains MESSAGE statement.
The form will compile. However, it will not run properly.

% Some user function keys must be enabled for SELECT statement.
The form will compile, However, it will not run properly.

% SPLIT value.changed previously.
SPLIT clause is ignored.

% System keys may not have KEYCAPs.
The KEYCAP clause is ignored.

ATL Error Messages
% Too late to change SPLIT value.
The SPLIT clause is ignored.

% Too late to change WIDTH.
The WIDTH clause is ignored.

% Unable to determine MESSAGE length because of unspecified VALUE element.

% WIDTH clause legal only for OUTPUT-ONLY devices.
The WIDTH clause is ignored on a form used by a VT62.

% WIDTH value out of device range.
The WIDTH clause is ignored.

% WITH clause variable initial value not letter or digit. 0 assumed.

% WITH clause variable should be single letter.
All letters after the first letter in the variable are ignored.

A.2 FATAL ERROR MESSAGES
? COL parameter outside of defined device width.

? Copied WRITE VALUE clause is REQUEST type.
This error is caused by a REPLY statement WRITE clause that references a Display field ini-
tially specified with both the BLANK attribute, and a REQUEST function.

? DISPLAY/MENU field #mm overlaps DISPLAY/MENU field #nn.

? Field wraparound exceeds form area.

? Field wraparound exceeds display area.

? Field wraparound exceeds page length

? Forms Definition Record too big—aborting.
The forms definition record must not exceed 8191 bytes.

? Illegal REPLY statement number.
The REPLY number must be in the range (1-64).

? Ilegal VALUE clause for this statement type.
? INPUT/PROMPT field #mm overlaps INPUT/PROMPT field #nn
? Integer out of range

? LABEL clause not legal for this statement.

ATL Error Messages
? LENGTH value out of range.
LENGTH set to 1 for remainder of compilation.
? MESSAGE field #mm overlaps MESSAGE field #nn.
? Missing teit string delimiter
? Only letter or digit can follow #.
? Premature end to input—aborting
? Previous field length exceeded page width.
? PRINT field #mm overlaps PRINT field#nn.
? REPLY #nn CURSOR INPUT field can’t be modified.
? REPLY #nn CURSOR clause references non-existent MENU field.
? REPLY #nn CURSOR field not INPUT field.
? REPLY #m WRITE #n has no VALUE:s.
? REPLY #m, WRITE #n VALUE: too long for WRITE referenced field.
? REPLY #m WRITE #n does not reference INPUT, PROMPT, DISPLAY, or PRINT field.
? REPEAT variable #nn—exceeds “Z”
? SELECT INPUT field referenced by more than one statement.
? SELECT INPUT field can’t be modified.
? SELECT REPLY #2 not defined.
? SELECT REPLY #1 not defined.
? SELECT field not INPUT type.
? SPLIT value out of device range.
? Syntax Error

? Tables too large
No room is left in the ATL utility’s tables.

? Text string too long.
A text string in a MESSAGE statement must be less than 255 characters in length.

A4

ATL Error Messages

? Too many INPUT fields.
You have exceeded 127 INPUT fields on a s1ng1e form.

? Too many INPUT and MENU fields.
You have exceeded 128 INPUT and MENU fields on a single form.

? Too many MENU fields
You have exceeded 127 MENU fields on a single form.

? Total length of KEYCAP strings exceeds maximum of 214 characters.
? Undefined LABEL: xxxxxx.
? VALUE clause field type no INPUT.

? Zero length MESSAGE declared.

A3 ATL UTILITY DIALOG ERROR MESSAGES

% Alphanumeric or asterisks required
The response to this question has characters other than those in the character set A through Z,
a through z, 0 through 9, and the asterisk.

% ATL source file “xxxxxx” does not exist or is LOCKed.
The source file you specified cannot be found, or is LOCKed by another task.

% Can’t find forms definition record “xxxxxx”’.
You attempted to DELETE a forms definition record that doesn’t exist.

% Can’t find forms definition record “xxxxxx”, changing to ADD command.
You attempted to REPLACE a form definition that didn’t exist.

% Forms definition record “xxxxxx” already exists.
You attempted to ADD a form definition record, when one already exists with the same name.

% Illegal file name “‘xxxxxx”
The file name you specified does not conform to TRAX file specification rules.

% Input required
You must answer this question. The utility remains at that point in the dialog until acceptable
input has been supplied. If you don’t know what input is required, you can display the help
text by typing a question mark, or you may exit by typing CTRL Z. You may then consult
the appropriate documentation.

% Integer required
The number you specified must be an integer value.

ATL Error Messages

% Invalid response
Your response was not acceptable to the utility. Consult the help text or the documentation
to determine the legal responses for this question.

% Number exceeds maximum
The number you specified exceeds the maximum value permitted by the utility. Consult the
help text or the documentation for this question.

% Numeric required
Your response must be numeric. Legal numeric characters are O through 9.

% Octal value required
File version numbers must be octal numbers. You have typed a digit (8 or 9) that is unac-
ceptable as an octal number.

% Positive integer required
The number you specify must be a positive integer value.

% Response exceeds maximum length
Your response to this question exceeds the maximum length permitted by the utility. Consult
the help text or the documentation for the permissible length of transaction processor com-
ponent names.

% Response not unique
The utility could not determine your response because the keyword was not unique. Insure
that you specify at least the number of characters to uniquely describe the keyword you are
entering.

% Selected command requires transaction processor name—restarting dialog
Once you specify the COMPILE command, the transaction processor name is erased by the
ATL utility. If you invoke any other command after the COMPILE command, The ATL util-
ity displays this error message and returns to the question: “Transaction processor name
<6¢ ”>?”.

% Transaction processor “‘tpname” does not exist.
You specified a transaction processor name, but the utility couldn’t find the file [1,300]
tpname . FDF.

APPENDIX B
ATL LANGUAGE SUMMARY

B.1 CONVENTIONS USED TO DESCRIBE THE LANGUAGE

Lower-case letters
UPPER-CASE LETTERS

Bold Face Keywords

Special brackets indicating optional information that can be omitted
from a statement or clause.

Braces indicating that a choice of one or more parameters must be
made from the set enclosed by the braces. You can also specify

a parameter more than once as part of the same clause.

Parameters described in lower-case letters indicate data that you
must supply such as a label, number, or text-string.

Parameters shown in upper-case are keywords. They must be specified
and spelled as shown in the parameter list.

The default parameter keyword values assumed for certain clauses
(ATTRIBUTES, for example) are shown in bold face.

Ellipsis indicate clauses and parameters can be repeatedly specified.

B-1

ATL Language Summary

B.2 ATL STATEMENTS AND CLAUSES

DEFAULT

ATTRIBUTES =

[ENABLE = keyname |
[DISABLE = keyname]

[CLEAR = “character”

ANY
ALPHANUMERIC
LETTERS
NUMERIC
SIGNED

LEFT }
RIGHT

NOTAB }
TAB

NOFULL }
FULL

NOREQUIRED }
REQUIRED

MODIFY }
NOMODIFY

NORMAL }
REVERSE

BLANK }
NOBLANK

ATL Language Summary

DISPLAY = row, column

VALUE = “string” “string” —\
FILL (*character”, count) FILL (*“‘character”, count)
DATE DATE
TIME TIME
TRANSACTION ¥\ TRANSACTION eee
NAME NAME
STATION STATION
REQUEST (position, count) REQUEST (position, count)

[LENGTH = count]

ATTRIBUTES = { NORMAL }
REVERSE

{ BLANK }
NOBLANK

[LABEL = label-name]
END
FORM
[SPLIT = length]
[ENABLE = keyname]
[DISABLE = keyname]

[KEYCAP = keyname, “text-string”]

input-field-label ,NOAUTHORIZE

[SELECT = { MENU } reply-1 {,reply-2 }]

- LENGTH = { line-count }]
| FEED

[BELL [= periods]]

[WIDTH = form-width]

B-3

ATL Language Summary

INPUT = row, column

ATTRIBUTES =

{
{
{
{
{
{

{

[VALUE = “string”

DATE
TIME

NAME

L
[LENGTH = count]

[CLEAR = “character”
[LABEL = label-name]
MENU = row, column

VALUE = % “string”’

B-4

ANY
ALPHANUMERIC
LETTERS
NUMERIC
SIGNED

LEFT }
RIGHT

NOTAB }
TAB

NOFULL }
FULL

NOREQUIRED }
REQUIRED

MODIFY }
NOMODIFY

NORMAL }
REVERSE

NOECHO }

FILL (‘“‘character”, count)

TRANSACTION

STATION
‘ REQUEST (position, count)

FILL (“‘character”, count)
REQUEST (position, count)

“string”

FILL (““character’, count)
DATE

TIME

TRANSACTION

NAME

STATION

REQUEST (position, count)

“string”
FILL (“‘character”, count)
REQUEST (position, count)

-

MESSAGE = position

VALUE = “string” “string”
FILL (“character’, count) FILL (*““character™, count)
DATE DATE
TIME TIME
TRANSACTION TRANSACTION
NAME NAME qe oo
STATION STATION
REQUEST (position, count) REQUEST (position, count)
MENU MENU
label-name label-name
KEY KEY
PRINT = row, column
—
VALUE = “string” “string”
FILL (““character, count) FILL (““‘character”, count)
DATE DATE
TIME TIME
TRANSACTION TRANSACTION s00e
NAME NAME
STATION STATION
REQUEST (position, count) REQUEST (position, count)
PROMPT = row, column
— -
VALUE = “string” “string™
FILL (*‘character, count) FILL (*“‘character”, count)
DATE DATE
TIME TIME
TRANSACTION TRANSACTION $o0e
NAME NAME
STATION STATION
REQUEST (position, count) REQUEST (position, count)

ELENGTH‘ = count]

[ATTRIBUTE = NORMAL

[LABEL = label-name |

REPEAT = number

]

REVERSE

ATL Language Summary

I:WITH #n = start [,increment]]

EWITH #n= “character”]
REND LX)

ATL Language Summary

REPLY = number

WRITE = field-label

»
[CURSOR = field-label]

[ENABLE = keyname]
[DISABLE = keyname]

[BELL [= periods]]

“string”

FILL (*‘character’, count)
DATE

TIME

TRANSACTION

NAME

STATION

REQUEST (position, count)

“string”

FILL (“‘character”, count)
DATE

TIME

TRANSACTION

NAME

STATION

REQUEST (position, count)

Abbreviating Keywords, 2-11
Adding forms to form definition file, 44
Annotated ATL utility output listings, 4-19
Application, 2-1, 3-1
designer, 2-1, 3-1, 3-5, 3-20
programmer, 2-1
terminals, 1-1,1-2, 1-3,1-7,19
TST, 1-6
Area, 1-6, 1-15, 34, 3-25
display, 3-3
form, 2-13,34
ATL, 1-1,2-1
clause, 29
comments, 2-11
conventions, 2-14
form definition, 1-7
form definition source file, 1-6
keywords, 2-11
language summary, App. B, 2-14
message, 3-26, 3-28, 4-1
source statements, 2-11
statement, 1-6, 29, 2-11
summary of statements and clauses, 2-15
syntax conventions, 2-9
syntax rules, 2-9
typical source statement, 2-9

utility, 1-2,2-1, 2-11, 2-13, 3-1, 3-5, 3-26, 3-28, 4-1

annotated output listings, 4-19
Display field declarations, 4-30
General form parameters, 4-26
Input field declarations, 4-27
Menu field declarations, 4-30
Print field declarations, 4-31
Prompt field declarations, 4-28

default conditions, 2-13

error messages, A.1

invoking, 4-1

Attribute, 5-2, 5-10, 5-23, 5-39
BLANK, 34, 5-7
FULL, 39
NOMODIFY, 1-10
NUMERIC, 39
REVERSE, 3-7
TAB, 1-17

Attribute keywords
ALPHANUMERIC, 24
ANY, 24
BLANK, 24
FULL, 24
LEFT, 24

INDEX

LETTERS, 24
MODIFY, 24
NOBLANK, 24
NOECHO, 2-4
NOFULL, 24
NOMODIFY, 2-4
NOREQUIRED, 24
NORMAL, 24
NOTAB, 24
NUMERIC, 24
REVERSE, 2-4
RIGHT, 24
SELECT, 24,
SIGNED, 24
SPLIT, 2-3

TAB, 23
VALUE, 2-3

Authorization Checking, user, 3-26

Bell

clause, 2-13
terminal, 1-7, 1-8, 34

Blank

attribute, 34
display field, 3-11

Clause

ATTRIBUTE, 249, 5-2, 5-10, 5-23, 5-29
BELL, 2-3, 2-13, 3-10, 5-17, 5-47
CLEAR, 2-3, 5-6, 5-25

CURSOR, 2-3, 546

DISABLE, 2-3, 2-13, 5-5, 5-14, 5-47
ENABLE, 2-3, 2-13, 5-5, 5-14, 5-47
KEYCAP, 1-14, 2-3

keywords, 2-3

LABEL, 2-3

LENGTH, 2-3,34

parameters, 2-3

SELECT, 2-13, 3-26, 3-28, 3-30
SPLIT, 2-13, 3-30

types, 2-3

VALUE, 2-3, 29,3-20

WIDTH, 2-3

WITH, 2-3,3-8

WRITE, 2-3, 29

CLEAR clause, 5-6, 5-25

character, 1-10, 3-10, 5-6, 5-25

Coding

display area 3-4, 3-26
entry form definition, 3-1

Index-1

Index

form area, 3-5
form statement, 3-20, 3-26
prompt and input fields, 3-30
replies, 3-25
report form definition, 3-20
selection form for user input, 3-30
transaction selection form, 3-25
Column
parameter, 2-10
“dot” construct to specify, 2-10, 2-13, 3-7
values, 2-13
Comments in ATL statements, 2-11
Compiler directive statement, 2-1
Compiling forms for debugging purposes, 4-5
Cursor
clause, 1-8, 1-10, 1-17, 5-46

Data Entry

keys and usage, 1-10

restrictions, 1-6
Debugging purposes, adding forms for, 4-5
DEC Editor, 1-6, 2-1, 2-13, 3-1
DEFAULT Statement, 3-1, 5-2

Format, 5-2
Definition

field, 2-13

form, 1-3,1-7, 1-8, 2-1

reply, 1-8

transaction, 1-3
Deleting forms from a forms definition file, 4-8
DISABLE clause, 2-13, 5-5, 5-14, 5-47
Display

area, 1-6, 1-15, 34, 3-25

area coding, 34, 3-26

field, 1-6, 1-8, 3-30, 5-7

initial form, 2-13, 3-4

reply screen, 4-38, 4-40

size of area, 2-3

statement, 2-2, 2-3, 34, 3-26, 5-7
Display and form areas, 5-13
Display field

blank, 3-11

length, explicit and implicit, 5-7
Display field declarations, summary of, 4-30
DISPLAY statement description, 5-31
Displaying form definition

file index, 4-9

record, 4-17
Dot construct, 2-10, 2-13, 3-5, 3-24

ENABLE clause, 2-13, 5-5, 5-14, 5-46

END statement, 2-10, 5-12
Entry forms, 1-6, 1-16, 1-17

Index-2

coding, 3-1
using, 1-17
Error messages, A.1
VT62,3-25
Exchange, 1-7, 2-1
message, 1-1,1-3,1-6,1-7,1-8, 1-14, 3-10, 3-11, 5.7
message layout, 4-33
routing list, 1-3
Exclamation point, 2-11

Field
attributes, 5-2
definition statement, 2-13
Display, 1-6, 3-30, 5-7
Input, 1-6, 1-10, 1-14, 1-17, 2-10, 3-11, 3-25, 3-30
label, 3-11
Menu, 1-6, 1-10, 2-10, 3-26, 3-30
Print, 1-6
Prompt, 1-6, 3-11
size, 1-8
types, 1-6
FILL function, 3-11
Form, 1-1,1-3, 1:6, 1-7, 1-8, 2-1
areas, 1-6,2-13,34
area coding, 3-5
definition, 1-1,1-2, 1-3,1-6, 1-7, 1-8, 2-10, 4-1
definition coding, 3-1
definition record, 1-2, 1-6, 1-7, 3-1, 4-1
Display area, 1-1, 5-13
Entry, 1-6, 1-16, 1-17
height and width, 5-13
initial, 1-6
Input field, 1-7
layout, 1-2
name, 3-28, 3-30
Report, 1-6, 3-20
Specification sheet, 3-1
statement coding, 3-20
transaction selection, 1-6
types, 2-1
Form definition file, 1-7, 4-1
adding forms, 4-8
deleting forms, 4-8
purging versions, 4-10
renaming forms, 4-12
replacing forms, 4-14
FORM statement, 1-14, 2-1, 2-2, 2-3, 2-13, 34, 3-10,
3-20,3-28,4-19, 5-13
format, 5-13
Format, 5-7
ATL clause, 29
ATL statement, 2-9
Function Keys, 1-6, 1-8, 19, 5-1

System, 1-1,1-7, 19, 1-14,1-17

User, 1-1, 1-3, 1-7, 1.9, 1-14, 2-13, 3-1
Function

FILL, 3-11

REQUEST, 3-11

General form parameters, summary of, 4-26

Initial form display, 1-6, 2-13,34
Initial screen display, 4-36
INPUT
field, 1-6, 1-17, 2-10,
field coding, 3-30
forms, 1-7, 1-8, 1-14
statement, 2-2, 2-3, 3-5, 3-30
Input field declarations, summary of, 4-27
Invoking ATL utility, 4-3

KEY

Parameter, 3-10
Keyboard

VT62 terminal, 1-10
KEYCAP, 1-14

clause, 1-14, 2-13, 3-10
Keypad, 19

function, 1-15
Keywords

abbreviating, 2-11

ATL, 2-11

table, 2-1

LA180, 1-9

LABEL, clause, 5-10, 5-25, 5-39
field, 3-5

Language
conventions, 2-14
summary, 2-14, B-1

Layout, forms, 1-2

LED display
VT62, 1-15

LENGTH, 2-3, 3-5
clause, 34, 59, 5-17, 5-25, 5-39
literal text delimiter, 2-11

MENU, 3-25
field, 1-6, 1-8, 2-10, 3-25, 3-30
field declarations, summary listing, 4-30
item, 3-25, 3-26
parameter, 3-25
selection, 3-26
statement, 2-2, 3-26
Message
exchange, 1-2, 1-3, 1-6, 1-7, 3-5, 3-10

Index

proceed response, 1-1

reply response, 1-1, 1-3, 1-8,34

report, 3-20

response, 1-6, 1-7,1-8,1.9,3-5

statement, 1-7, 1-14, 2.2, 5-31
Message layout

EXCHANGE, 4-33, 5-7

REPLY, 4-34

Output-only terminal, 1-6, 19, 3-20

Page width, 2-8
Parameter, 2-1
column, 2-10, 5-7
row, 2-10, 5-7
Print
field, 1-6, 1-8, 5-34
statement, 1-20, 2-2, 3-20, 5-34
Prompt
field, 1-6, 1-8, 3-11
statement, 2-3, 24, 3-5, 5-37

Quotation mark
double, 2-11
single, 2-11

REPEAT statement, 5-41
block, 3-8
format, 2-8, 542
Reply
coding, 3-28
definition, 1-8
form modifications, 1-6
format, 5-31
message, 34
layout, 4-34
response, 1-1,1-3, 1-8
statement, 2-3, 2-6, 5-44
screen, 2-6, 3-10
screen display, 4-12,11-2
specifications, 1-5
statement, 1-7, 2-1, 3-1, 3-3, 34, 544
Report
coding, 3-20
form, 1-6, 3-2, 3-20
message, 3-20
page size, 3-20
Reverse video, 1-9
Row
parameter, 2-10
values, 2-13

Sample terminal session, 1-16

Index-3

Index

Screen
display, initial, 4-36
display format listings, 4-35
reply, 2-6, 3-10
request layout, initial, 4-34
SELECT
clause, 1-11, 2-13, 3-26, 3-28, 3-30
Source statement
ATL form definition
file, 1-6, 3-1
typical ATL, 2-9
Specification sheet, form, 3-1
SPLIT clause, 2-13, 3-30, 5-14
using, 34
Statement
DEFAULT, 2-3, 2-10
DISPLAY, 2-2,2-3,34,3-26
END, 2-3, 2-10
FORM, 1-14, 2-2,2-3, 3-20, 3-28, 3-30
INPUT, 2-2, 2-3, 3-5,3-30
MENU, 2-2, 3-26
MESSAGE, 1-8, 1-14, 22, 23
ordering, 2-10
PRINT, 2-2, 3-26
PROMPT, 2-2, 2-3, 3-5
REND, 2-3, 2-10
REPEAT, 2-3, 2-10, 3-5
REPLY, 2-2, 2-3,3-11, 3-28, 5-44
source, 2-11
summary, 2-15
Syntax rules, ATL, 2-9
System Function key, 1-1, 1-7, 1-10, 1-14

Terminal
application, 1-1, 1-2, 1-3, 1-7, 1-8, 2-1
bell, 1-7,1-8,34
error line, 3-25
keypad, 1-14
output-only, 19
sample session, 1-6, 1-16
stations, 1-1, 1-3, 1-7, 1-8, 1-14, 3-29
Text
delimiter literal, 2-11
string, keycap, 2-14, 3-17
TPDEF utility, 4-1
Transaction, 2-1

Index-4

definition, 1-3
exchange, 1-3
instance, 1-6, 1-18
processor, 1-1,1-3, 1-6, 1-7
selection form, 1-6, 1-18, 2-6,
coding, 3-25
typical, 1-1
using, 1-16
TRAX
Sample Application, 1-16
Utility dialog conventions, 4-1
TSTs, 1-3, 1-6, 1-7, 1-15, 3-10, 3-20

User authorization checking, 3-26
User function key, 1-1, 1-3, 1-10, 1-14, 2-13,34
Utility

ATL, 1-6,2-1,2-11,3-1, 3-8, 3-29

ATL dialog error messages, A.3

invoking ATL, 4-3

TRAX dialog conventions, 4-1

VALUE
clause, 2-10, 34, 3-20, 5-8, 5-22, 5-29, 5-32, 5-35,
5-38 ‘
parameter, 2-10, 545
Value clause parameters
DATE, 2-7
FILL “‘character count”, 2-7
KEY, 1-15,2-6
Label-name, 2-6
MENU, 2-6
NAME, 2-7
REQUEST, 2-7
STATION, 2-7
“String”, 2-7
TIME, 2-7
TRANSACTION, 2-7
VTé62,19,1-10, 2-6
error message, 3-25
keyboard, 19, 1-10
LED display, 1-15
terminal keyboard, 1-10

WIDTH clause, 2-8, 5-17
WITH clause, 2-8, 3-8, 5-42

FIGUSE CUI UWIvIly 11113 s

Trax Application Terminal
Language Reference Manual
AA-D330A~-TC

READER'S COMMENTS

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. If you require a written reply and are
eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR
form.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the
page number.

Please indicate the type of reader that you most nearly represent.

Assembly language programmer
Higher-level léhguage programmer
Occasional programmer (experienced)
User with little programming experience
Student programmer

ooogoa

Other (please specify)

Name : Date

Organization

Street

City. State Zip Code

Fold Here

Do Not Tear - Fold Here and Staple

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

dlilgliltiall

Software Documentation
146 Main Street ML5-5/E39
Maynard, Massachusetts 01754

