
July 1978

This manual is directed to the TRAX application designer. This person is
responsible for studying the functional specification of a proposed system
and developing an appropriate technical design. The application designer
may have one of several titles - system analyst, analyst/programmer, chief
programmer. If you are responsible for selecting an approach for an
application or if you must make technical design decisions while developing
a TRAX application, you should read this manual.

TRAX
Application Designer's Guide

Order No. AA-D328A-TC

SUPERSESSION/UPDATE INFORMATION: This is a new manual.

OPERATING SYSTEM AND VERSION: TRAX 1.0

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation · maynard. massachusetts

First Printing, August 1978

The information in this document is subject to change without notice and should not be construed as a
commitment by J?igital Equipment Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license and may only be used or copied in
accordance with the terms of such license.

No responsibility is asswned for the use or reliability of software on equipment that is not supplied by
DIGITAL or its affiliated companies.

Copyright © 1978 by Digital Equipment Corporation

The postage-prepaid READER'S COMMENTS form on the last page of this document requests the user's
critical evaluation to assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL
DEC
PDP
DECUS
UNIBUS
COMPUTER LABS
COMTEX
DDT
DECCOMM
ASSIST-II

DECsystem-l0
DECtape
DIBOL
EDUSYSTEM
FLIP CHIP
FOCAL
INDAC
LAB-8
DECSYSTEM-20
RTS-8

8/78 - 14

MASSBUS
OMNIBUS
OS/8
PHA
RSTS
RSX
TYPESET-8
TYPESET-II
TMS-Il
ITPS-I0

CONTENTS

PART 1 Page

PREFACE ... xi

CHAPTER 1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11

CHAPTER 2
2.1
2.2
2.3

CHAPTER 3
3.1
3.2

3.3
3.4
3.5
3.6
3.6.1
3.6.2

CHAPTER 4
4.1
4.1.1
4.1.1.1
4.1.1.2
4.1.1.3
4.1.1.4
4.1.1.5
4.1.2
4.1.2.1
4.1.2.2
4.1.2.3
4.1.2.4
4.2
4.2.1
4.2.2
4.2.3

INTRODUCfION TO TRAX 1-1
THE TRANSACTION ... 1-1
WHAT IS A TRANSACTION PROCESSING SYSTEM? .. 1-1
RESPONSE TIME AND THROUGHPUT 1-2
FORMS AND TRANSACTION PROCESSING. .. 1-2
TRAX APPLICATION TERMINALS. .. 1-2
DISTRIBUTED DATA PROCESSING 1-3
DATA MANAGEMENT SYSTEM .. 1-3
RELIABILITY. .. 1-4
LANGUAGES .. 1-5
OVERNIGHT PROCESSING .. 1-5
HOW DOES TRAX DO ALL THIS? .. 1-6

THE TRAX SAMPLE APPLICATION 2-1
THE BUSINESS PROBLEM ... 2-1
THE SAMPLE APPLICATION ADDRESSES THE BUSINESS PROBLEM 2-2
THE EXAMPLES IN THIS MANUAL 2-5

AN INTRODUCTION TO TRANSACfION PROCESSORS . 3-1
A SAMPLE TRANSACTION " .. 3-1
IMPLEMENTING THE SAMPLE TRANSACTION ON SYSTEMS OTHER
THANTRAX .. 3-1
IMPLEMENTING THE SAMPLE TRANSACTION ON TRAX 3-1
FORMS ARE IMPORT ANT TO TRANSACTION PROCESSORS 3-4
IMPORT ANT TRANSACTION PROCESSOR TERMS 3-6
A TRANSACTION PROCESSOR AT WORK . : 3-11

The Components Involved .. 3-11
The Sequence of Events .. 3-12

TRANSACTION PROCESSING PATHS AND THEIR CONTROL 4-1
FUNDAMENTALS: STATIONS AND MESSAGES 4-1

Stations .. 4-1
Terminal Stations .. 4-2
TST Stations . 4-2
Batch Submit and Batch Slave Stations . 4-3
Link Master and Link Slave Stations. 4-3
Mailbox Stations _ 4-3
Messages . 4-3
Exchange Messages . 4-4
Response Messages ... 4-4
Report Messages ... 4-6
Mailbox Messages .. 4-7

THE TRANSACTION DEFINITION 4-7
Exchange Label 4-8
Form Name .. 4-8
Routing List ... 4-8

iii

4.2.4
4.2.5
4.2.6
4.2.7
4.2.8
4.3
4.3.1
4.3.2
4.3.3
4.3.4
4.3.5
4.4
4.4.1
4.4.2
4.4.3
4.4.4
4.4.5
4.4.6
4.5

CHAPTER 5
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11

CHAPTER 6
6.1
6.2
6.3
6.3.1
6.3.2
6.4
6.4.1
6.4.2
6.4.3
6.5
6.5.1
6.5.2
6.6
6.7
6.8

CONTENTS <CONT.)
Page

The NOWAIT Option ... _ 4-8
The REPEAT Option ... 4-9
Subsequent Action .. 4-9
Exchange Time Limit ... 4-10
General Transaction Parameters. 4-10

THE EFFECTS OF TERMINAL FUNCTION KEYS 4-10
The AFFIRM Key ... 4-11
The STOP REPEAT Key ... 4-13
The CLOSE Key .. 4-13
The ABORT Key '. 4-13
The User Function Keys ... 4-13

THE RESPONSE MESSAGES .. 4-13
The PRCEED Message '.' . 4-14
The STPRPT Message ... 4-15
The TRNSFR Message . 4-15
The CLSTRN Message .. 4-15
The REPLY Message .. 4-16
The ABORT Message .. 4-17

AN EXAMPLE OF TRANSACTION PROCESSING PATHS 4-17

FORMS AND THE APPLICATION TERMINAL LANGUAGE 5-1
THE PURPOSE AND SCOPE OF THE APPLICATION TERMINAL LANGUAGE 5-1
PREPARING A FORM DEFINITION WITH ATL 5-1
KINDS OF FORMS .. 5-2
FORMS AND FIELDS .. 5-2
ATL LANGUAGE ELEMENTS. 5-3
STATEMENT GROUPS•............... 5-5
STATEMENT ORDER .. 5-6
COMMENTS IN FORM DEFINITIONS 5-6
SHORTHAND NOTATION ... 5-7
ATL AND FORM DESIGN ... 5-8
A TYPICAL FORM DEFINITION .. 5-8

TRANSACTION STEP TASKS . • . . • .. 6-1
THE PURPOSE OF TSTS -. 6-1
GENERAL STRUCTURE OF A TST .. 6-2
PROGRAMMING A TST . 6-3

Input Parameters .. 6-3
System Calls ... 6-6

DEBUGGING A TST ... 6-6
Stand-alone Debugging .. 6-6
Debugging in a Transaction Processor . . . • .. 6-7
Traced Operation in a Transaction Processor . 6-7

INSTALLING A TST ... 6-8
TST Station Parameters . 6-8
The TST Task Image .. 6-8

EXECUTING A TST .. 6-8
APPLICATION FILE ACCESS FROM TSTS .. 6-9
STUDYING A TYPICAL TST .. 6-9

iv

CHAPTER

CHAPTER

CHAPTER

7
7.1
7.2

8
8.1
8.2
8.3
8.4
8.5
8.6
8.6.1
8.6.2
8.6.3
8.7
8.7.1
8.8
8.8.1

9
9.1

9.1.1
9.1.2
9.1.3
9.2
9.2.1
9.2.2
9.2.3

CHAPTER 10
10.1
10.1.1
10.1.2
10.1.3
10.1.4
10.2
10.2.1
10.2.2
10.2.3
10.3
10.3.1
10.3.2
10.3.3

CHAPTER 11
11.1

11.1.1
11.1.2

CONTENTS (CONT.)
Page

PRESERVING TRANSACTION INSTANCE CONTEXT 7-1
THE TRANSACTION SLOT 7-1
CONTEXT REQUIREMENTS OF FILE ACCESS. .. 7-3

APPLICATION DATA FILES. • .. 8-1
RMS .. 8-1
FILE ACCESS FROM TSTS 8-2
WORK. FILES 8-3
RECORD LOCKING. .. 8-3
STAGING . • .. 8-4
DATA FLOW DURING FILE ACCESS OPERATIONS .. 8-5

Data Flow During a Read .. 8-5
Data Flow During an Un staged Update .. 8-5
Data Flow During a Staged Update 8-5

JOURNALING ... 8-6
Reconstructing J oumals .". 8-9

LOGGING .. 8-9
Inspecting and Analyzing Log Entries .. 8-9

INITIATING TRANSACTION INSTANCES .. 9-1
INITIATING TRANSACTION INSTANCES FROM AN APPLICATION
TERMINAL ... 9-1

Terminals That Can Invoke Only One Transaction ~. 9-1
Terminals That Can Execute Several Transactions. .. 9-1
Terminals That Require User Sign-On .. 9-2

INITIATING TRANSACTION INSTANCES IN OTHER WAYS. 9-4
Spawned Transactions. .. 9-4
Support Environment Programs. .. 9-4
Other Transaction Processors 9-5

SECURITY, REUABILITY, AND PERFORMANCE 10-1
SECURITY " .. 10-1

Application Terminals and Support Terminals 10-1
Work Classes and Signing On 10-1
Terminals Running a Single Transaction 10-2
Logging .. 10-2

RELIABILITY•....................................... 10-2
Exchange Recovery. .. 10-2
Crash Recovery ... 10-3
Data File Recovery . 10-3

PERFORMANCE 0 0. 10-3
Record Locking0. • • • • . • • • . • . . • • • . •• 10-4
Internal System Design 0 ••••••••••••••••••••••••••••• 10-4
Caching .. 10-4

TRANSACTION PROCESSORS AND DISTRIBUTED PROCESSING• 11-1
INTERFACE BETWEEN TRANSACTION PROCESSORS AND
SUPPORT ENVIRONMENT. .. 11-1

Path Initiated by the Transaction Processor. .. 11-1
Path Initiated by a Support Environment Program 11-3

v

CONTENTS (CONT.)
Page

11.2 INTERFACE BETWEEN TWO TRANSACTION PROCESSORS 11-4
11.2.1 Master and Slave Transaction Processors .. 11-4
11.2.2 How the Interface Works .. 11-4
11.2.3 Cooperation Between Master and Slave .. 11-7
11.2.4 Links and Sublinks .. 11-7
11.3 INTERFACE WITH NON-TRAX SYSTEMS 11-10

PART 2

CHAPTER 12
12.1
12.1.1
12.1.2
12.2
12.2.1
12.2.2
12.2.3
12.2.4
12.2.5
12.2.6

CHAPTER 13
13.1
13.2
13.3
13.4

CHAPTER 14
14.1
14.1.1
14.1.2
14.1.3
14.2
14.2.1
14.2.2
14.2.3
14.2.3.1
14.2.3.2
14.2.3.3
14.3
14.4
14.4.1
14.4.2
14.4.3

CHAPTER 15
15.1
15.2
15.3

REVIEWING BUSINESS ANALYSIS TECHNIQUES _ . .. 12-1
STUDYING BUSINESS ACTNITIES 12-1

Studying Business Procedures .. 12-1
Studying Business Data Storage 12-2

DEVELOPING SYSTEM FUNCTIONAL SPECIFItATIONS 12-2
System Scope .. 12-2
Fundamental System Alternatives : 12-3
Specifying Transaction Processing Functions .. 12-3
Specifying Batch Processing Functions .. 12-3
Specifying Data Storage Requirements .. 12-3
Specifying System Reliability Requirements 12-4

AN INTRODUCTION TO TRAX TECHNICAL DESIGN. 13-1
DESIGN OF USER-SYSTEM CONVERSATION 13-1
PROCESSING DESIGN. .. 13-2
APPLICATION RELIABILITY ISSUES .. 13-2
STEPS IN THE TRAX DESIGN PROCESS .. 13-3

DESIGNING THE OVERALL STRUCTURE OF A TRANSACTION. 14-1
TRANSACTION STRUCTURE DIAGRAM. .. 14-1

An Example Transaction 14-1
Diagram Symbols .. 14-2
Transaction Control Flow 14-6

OVERLAPPED PROCESSING 14-6
Overlap via Response Messages 14-6
Overlap via the NOWAIT Option 14-7
Restrictions on Overlapped Processing 14-7
No Communication with Terminal during Overlapped Processing 14-8
No Overlap Possible if Exchange Recovery Selected 14-8
Restriction on the Duration of Overlap .. 14-8

TRANSACTION DATA STRUCTURES 14-8
TRANSACTION ACCESS SECURITY TECHNIQUES 14-14

Tenninal-Based Access. .. 14-14
User-Based Access ... '. .. 14-14
Access Control Design .. 14-15

SEVERAL TRANSACI10N DESIGN EXAMPLES. .. 15-1
THE APPLICATION PROBLEM 15-1
A SIMPLE TRANSACTION DESIGN. .. 15-1
AN ALTERNATNE DESIGN WITH ONLY ONE EXCHANGE 15-4

vi

15.4
15.5
15.6
15.7
15.8

CHAPTER 16
16.1
16.2
16.2.1
16.2.2
16.2.3
16.3
16.4
16.4.1
16.4.2
16.5

CHAPTER 17
17.1
17.2
17.3
17.4
17.5
17.6
17.6.1
17.6.2
17.7

CHAPTER 18
18.1
18.1.1
18.1.2
18.1.3
18.2
18.2.1
18.2.2
18.3
18.3.1
18.3.2

CHAPTER 19
19.1
19.2
19.3
19.3.1
19.3.2
19.3.3
19.3.3.1
19.3.3.2

CONTENTS (CONT.)
Page

THE EFFECT OF THE REPEAT OPTION 15-8
ALLOWING THE USER TO BROWSE THROUGH THE FILE 15-10
IMPROVING THE BROWSING CAPABILITY 15-10
BROWSING ON TWO INDEXES. .. 15-11
ERROR MESSAGES .. 15-18

DOCUMENTING THE TRANSACTION DESIGN 16-1
STANDARDIZING TRANSACTION COMPONENTS .. 16-1
DEFINING STATIONS .. 16-1

Terminal Stations. .. 16-1
TST Station. .. 16-2
Special Station Types ... 16-5

WORK CLASSES AND USER AUTHORIZATIONS. .. 16-5
TRANSACTION DEFINITIONS 16-8

Overall Transaction Parameters .. 16-8
Exchange Definitions ... 16-13

TRANSACTION DOCUMENTATION 16-14

DESIGNING FORMS 17-1
REVIEWING THE FUNCTIONS OF ENTRY FORMS 17-1
THE BASIC FORM LAYOUT 17-1
INITIAL FIELD VALUES .. 17-2
BUILDING THE EXCHANGE MESSAGE. .. 17-4
DESIGNING REPLIES .. 17-4
SPECIAL PURPOSE FORMS .. 17-4

Output-Only (Report) Forms 17-4
Transaction Selection Forms. ... 17-5

WRITING THE FORM DEFINITIONS 17-5

EXAMPLES OF FORM DESIGN 18-1
THE RELATIONSHIP BETWEEN THE TRANSACTION AND ITS FORMS 18-1

Requirement for Two Forms 18-1
Characteristics of the First Form .. 18-1
Characteristics of the Second Form 18-4

DESIGNING THE FIRST FORM 18-7
DeSign Points .. 18-7
The Finished Form Defmition .. 18-12

DESIGNING THE SECOND FORM. .. 18-12
Design Points .. 18-12
The Finished Form Definition. .. 18-22

DESIGNING AND SPECIFYING TSTS 19-1
REVIEWING TST OPERATION 19-1
CHOOSING A PROGRAMMING LANGUAGE 19-2
DESIGNING FOR OPTIMUM TST PERFORMANCE .. 19-2

Programming Language Considerations 19-2
File Access Considerations .. 19-4
Minimizing Access Conflicts in Shared Files. .. 19-4
The Duration of Record Locks .. 19-4
Avoiding Access Conflicts 19-5

vii

19.3.4
19.3.4.1
19.3.4.2
19.3.4.3
19.3.4.4
19.4
19.5

CHAPTER 20
20.1
20.2
20.3

CHAPTER 21
21.1
21.2
21.3
21.4
21.5
21.5.1
21.5.2
21.5.3
21.6
21.6.1
21.6.2
21.6.3
21.7
21.8
21.9
21.10
21.11

CHAPTER 22
22.1
22.2

CHAPTER 23
23.1
23.1.1
23.1.2
23.1.3
23.1.4
23.1.5
23.1.6

CONTENTS (CONT.)

Page

Solutions to Possible Bottlenecks. .. 19-6
Allowing Multiple Copies of TSTs .. 19-6
Adjusting TST Priority .. 19-7
Designing Transactions with Overlapped Processing .. 19-7
Designing Transactions with Background Processing 19-7

DOCUMENTING THE TST DESIGN 19-8
CODING STANDARDS AND DEVELOPMENT TECHNIQUES 19-9

TST DESIGN EXAMPLES .. 20-1
THE RDCUST TST .. 20-1
THE V ALIDC TST . 20-12
THE REWRIT TST ... 20-20

DESIGNING AND SPECIFYING FILES 21-1
FILE DESIGN PREREQUISITES 21-1
DATA RECORDING FORMAT 21-2
CODES ... 21-2
RELATIONSHIPS BETWEEN FIELDS 21-3
COMPUTING FIELD AND RECORD SIZES 21-4

Large Records 21-4
Occasionally-Used Fields 21-4
Variable Record Lengths in Relative Files 21-4

POTENTIAL RECORD USE PROBLEMS 21-4
High Activity on Particular Records .. 21-5
Large Working Set of Records .. 21-5
Record Locks of Long Duration 21-5

CHOOSING A FILE ORGANIZATION 21-5
CALCULATING FILE SIZES .. 21-6
FILE RELIABILITY AND RECOVERY 21-6
CHECKING FILE PERFORMANCE 21-7
DOCUMENTING THE FILE DESIGN 21-7

A FILE DESIGN EXAMPLE 22-1
DESIGN CONSIDERATIONS 22-1
DESIGN DOCUMENTATION 22-2

THE COMPLETE TRANSACTION PROCESSOR DOCUMENTATION 23-1
THE TRANSACTION PROCESSOR DEFINITION SHEET 23-1

Transaction Documentation . 23-2
Form Documentation ... 23-2
TST Documentation .. 23-2
File Documentation .. 23-2
Station Documentation .. 23-2
Access Security Documentation 23-2

INDEX Index-l

viii

PART 1

FIGURE 3-1
3-2
3-3
34

3-5
3-6
4-1
4-2
4-3
5-1
7-1
8-1
8-2
8-3

11-1
11-2
11-3
114
11-5
11-6
11-7

PART 2

FIGURE 14-1
14-2
14-3
14-4
14-5
14-6
15-1
15-2
15-3
154
15-5
15-6
15-7
15-8
15-9
16-1
16-2
16-3
16-4
16-5
16-6
16-7
16-8
16-9

FIGURES

Page

First Form of Change Customer Transaction 3-2
Second Fonn of Change Customer Transaction· .. 3-2
Implementation of Sample Transaction System Other than TRAX 3-3
Implementation of Sample Transaction TRAX using a TRAX Transaction

Processor 3-5
Application Terminals & Support Terminals 3-9
A Transaction Processor at Work. .. 3-13
Relationship Between Response Messages and Exchange Messages 0 •• 4-6
Effects of Terminal Function Keys ;..................... 4-12
An Example of Transaction Processing Paths•.... 4-18
ATL Statement Syntax Diagram 54
A Transaction Slot .. 7-2
Flow of Data During Read .. 8-6
Flow of Data During Nonstaged Update 8-7
Flow of Data During Staged Update .. 8-8
Interface Between a Transaction Processor and the Support Environment 11-2
Interface Initiated by a Transaction Processor 11-3
Interface Initiated by a Support Program 11-5
Interface Between Two Transaction Processors .. 11-6
Interconnection of Multiple TRAX Systems 11-8
Links and Sublinks .. 11-8
Duplexed LinkS and Sub links 11-9

A Transaction Structure Diagram 144
Specification Sheet for Exchange Messages 14-9
Specification Sheet for Transaction Workspace 14-10
Specification Sheet for Response Message 14-11
Specification Sheet for Report Message .. 14-12
Specification Sheet for Mailbox Message .. 14-13
A Simple Transaction Design 15-2
A Transaction Where Each Exchange is Entered Only Once 15-5
A Transaction Having Only One Exchange 15-6
A Transaction Where Each Exchange is Entered Twice. .. 15-7
Using the REPEAT Option .. 15-9
Allowing the User to Browse 15-12
Substitute REPLY Message for REPEAT Option 15-14
Browsing with Two Indexes 15 -16
Adding Error Messages to Figure 15-8 15-19
Terminal Station Specification Sheet 16-3
TST Station Specification Sheet 164
Master Link Station Specification Sheet 16-6
Special Purpose Station Specification Sheet .. 16-7
Work Class Specification Sheet 16-9
User Authorization Specification Sheet. .. 16-10
Transaction Specification Sheet 16-11
Transaction Specification Sheet Continuation 16-12
System Workspace Worksheet .. 16-15

ix

FIGURE 17-1
18-1
18-2
18-3
184
18-5
18-6
18-7
18-8
18-9
19-1
19-2
20-1
20-2
20-3
204
20-5
20-6
20-7
21-1
21-2
22-1
22-2
22-3
23-1
23-2

FIGURES (CONT.)
Page

Video Terminal Forms Specification Sheet 17-3
Structure of Change Customer Transaction .. 18-2
Exchange Message for Exchange 1 18-5
Reply Message for Exchange 1 18-6
PRCEED Message for Exchange 1•.............. 18-8
Exchange Message for Exchange 2 18-9
REPLY Message 1 for Exchange 2 18-10
REPLY Message 2 for Exchange 2 .. 18-11
Sketch of First Exchange Form .. 18-13
Sketch of Second Exchange Form 18-21
Data Available to a TST .. 19-3
TST Specification Sheet .. 19-10
READ TST Specification Sheet .. 20-2
Description of RDCUST TST Purpose and Processing 20-2
V AlinC TST Specification Sheet 20-12
Description of V ALIDC TST Purpose and Processing. .. 20-12
Transaction Workspace Format for Change Customer Transaction 20-13
WRITE TST Specification Sheet .. 20-20
Description of REWRIT TST Purpose and Processing 20-20
Record Layout Sheet ... 21-8
File Defmition Sheet .. 21-9
Description of Customer File 22-2
Record Layout Sheet ... 22-3
File Definition Sheet for Customer File 224
Blank Transaction Processor Specification Sheet. .. 23-3
Completed Transaction Processor Specification Sheet 23-4

x

PREFACE

This manual is directed to the TRAX application designer. This person is responsible for studying
the functional specification of a proposed system and developing an appropriate technical design.
The application designer may have one of several titles - system analyst, analyst/programmer,
chief programmer. If you are responsible for selecting an approach for an application or if you
must make technical design decisions while developing a TRAX application, you should read
this manual.

This manual presents the structure and operation of TRAX transaction processing applications.
The manual has two main parts:

Part One. Chapters 2 through 11 present general concepts and facilities of the TRAX sys
tem. This Part gives an application designer the background needed to develop a business
application - what TRAX is,and what it can do.
Part Two. Chapters 12 through 23 describe the procedure an application designer follows
when designing a TRAX business application. This Part presents methods and techniques
for the design process and provides worksheets for many phases of the design process.

You can get details on the TRAX support environment and other specific technical topics by
consulting these TRAX reference manuals:

TRAX Application Programmer's Guide
TRAX Application Terminal Language (ATL) Reference Manual
TRAX Support Environment User's Guide
TRAX System Manager's Guide
TRAX System Generation Manual
TRAX SORT Reference Manual
TRAX DAT ATRIEVE User's Guide
TRAX BASIC-PLUS-2 Language Reference Manual
TRAX BASIC-PLUS-2 User's Guide
TRAX COBOL Language Reference Manual
TRAX COBOL User's Guide
DEC EDITOR Reference Manual
TRAX Linker Reference Manual

AA-D329A-TC
AA-D330A-TC
AA-D331A-TC
AA-D33 2A-TC
AA-D335A-TC
AA-D346A-TC
AA-D347A-TC
AA-D336A-TC
AA-D337A-TC
AA-D338A-TC
AA-D339A-TC
AA-D347 A-TC
AA-D342A-TC

PART ONE

Introduction to TRAX Concepts and Facilities

CHAPTER 1

INTRODUCTION TO TRAX

TRAX is a computer system specially designed to meet the requirements of business transaction
processing.

Here are some of its features:

• On-line terminals suitable for transaction processing as well as management information
systems (MIS)

• Excellent response time and throughput characteristics
• A system of modest size that can be tailored to the business organization
• Facilities for a network of systems, permitting distributed data processing (DDP)
• A sophisticated data management system called RMS
• Reliable, recoverable data processing - complete with journals, audit trails, and (when

necessary) transaction restart
• A choice of two standard, high-level languages: ANSI-74 COBOL and DIGITAL's

BASIC-PLUS-2
• Unattended batch processing

The rest of this chapter is a brief description of TRAX features and their application to business
data processing.

1.1 THE TRANSACTION
A transaction, is the exchange of information, money, or goods between two or more parties. You
execute a transaction when you withdraw money from your bank account, purchase gasoline with
a credit card, leave a forwarding address with the post office, or make a plane reservation.

Sometimes, a transaction involves several interactions between parties. For example, in a store you
might see something that does not have a marked price. If you are interested, you first ask the
price, and then perhaps decide to purchase the item. This transaction has two interactions between
yourself and the storekeeper; with TRAX we would call this a two-exchange transaction.

Transactions are basic to business. And although electronic data processing has been used for many
years to process and record transactions, most processing is done after the fact, using written
records of the original transactions. In comparison, TRAX is designed to process transactions as
they occur.

1.2 WHAT IS A TRANSACTION PROCESSING SYSTEM?
A transaction processing system is an on-line system for processing business transactions. Even
though it is an on-line system, a transaction processing system does not necessarily process trans
actions as they occur. Transactions can still be recorded manually or by other automated means
and then entered into the transaction processing system.

1-1

Introduction to TRAX

More and more, though, business is realizing the benefits of having a real-time transaction proc
essing system available at the time the transaction occurs. Paperwork can be eliminated, and the
system always contains up-to-date data.

A real-time transaction processing system can check entered data immediately. Errors can be
caught and corrected promptly while the customer is available for questioning and the user has
the transaction in mind.

This approach, real-time transaction processing, demands a reliable system with backup and audit
trail capabilities, because paperwork has been eliminated.

1.3 RESPONSE TIME AND THROUGHPUT
Transaction processing also demands good response time. This means that the transaction proc
essing system must record the transaction in an amount of time that will not annoy or frustrate
the transaction's participants ... one of whom will often be an impatient customer.

On the other hand, adequate throughput refers to the system's capability of keeping up with its
workload - that is, being able to process data quickly enough to keep it from backing up.

The portions of TRAX that handle on-line transaction processing are designed for maximum
throughput and optimum response times. These system characteristics are important to any appli
cation designer. The design methods by which these are accomplished are discussed in later chap
ters of this manual.

1.4 FORMS AND TRANSACTION PROCESSING
Most businesses make extensive use of forms. They do this because forms are more convenient
than blank paper. Forms structure a task by specifying the information needed; and they save
writing effort by preprinting routine information. An order blank is a typical form. A good order
blank is easy to fill out, because it lets the customer know what information is needed - a catalog
page number, a shipping and handling charge, and the like.

Not only is the order blank more convenient for the customer, it speeds the processing of the
order. Firms that use preprinted order blanks can usually process orders faster than firms that
do not, because the form helps staff members to collect complete, sequenced information.

TRAX makes extensive use of the "forms" concept. In fact, all communication between applica
tion terminal users and the system is done with forms. Within the system, the user is the
"customer" and the system is the "salesperson." But the effect is the same: the system does
not have to "interview" the user. TRAX displays a predefined form and leaves the user to fill it
out. Until the user is finished, TRAX is not involved in the user data entry. Only when the form
has been completed does TRAX begin to process the user's data.

1.5 TRAX APPLICATION TERMINALS
The efficiency of TRAX forms is greatly enhanced by the microprocessor-based terminals that
are used with the system. These terminals receive complete forms from TRAX, display them,
and assure that the user enters data correctly to those forms. With these terminals, TRAX is
freed from monitoring user input. No central system support is needed from the time the empty
form is sent to the terminal until the time the correctly completed form is returned to the system.

1-2

Introduction to TRAX

TRAX is the first system to support this terminal, the VT62. The VT62 provides a variety of
screen display methods and user data entry checks, all under the control of its resident micro
processor. In addition, it offers features not generally available in terminals of its type:

• Synchronous data communication protocol for maximum data transmission reliability
and speed

• Multi-drop capability to allow several terminals to be connected to a single data com-
munication line

• Attached (but completely independent) hard-copy printers
• Editing keys to allow the user to edit the contents of data entry fields
• Function keys that can be enabled and sensed by application programs
• Internally generated error messages for common data entry errors
• Full numeric keypad

You can find more about the VT62 terminal and its forms-display capabilities in the TRAX
Application Terminal Language Reference Manual.

1.6 DISTRIBUTED DATA PROCESSING
Distributed data processing (DDP) is the technique of adapting to business organizations a number
of small, widely dispersed data processing stations, rather than a big centralized data processing
systems. DDP enables the manager to support his operational area with an appropriate data proc
essing system, while relying on other departments' data processing systems where necessary.

TRAX is well suited for distributed data processing applications for several reasons:

• TRAX handles inter-system transactions, as well as transactions originated from terminals.
• TRAX provides extensive inter-system communication facilities.
• TRAX systems are moderate size - large enough to accommodate impressive processing

power yet small enough to be deployed outside traditional data processing centers.

In fact, the microcomputers inside the VT62 application terminals represent the first level of a
distributed data processing configuration: some processing is done within the terminal itself.

1. 7 DATA MANAGEMENT SYSTEM
A system that lacks a sophisticated data management system cannot be effectively used for business
applications. If a good data management system does not exist, you must build it before applica
tion implementation can proceed.

For most business applications, this means support for at least three major kinds of files:

• Seq uen tial files
• Relative-record (random) files
• Indexed files

1-3

Introduction to TRAX

Indexed file structures are the most powerful and convenient for programmers to access; they are
generally the most often used kind of file in business applications. For maximum flexibility in
business applications, indexed files should permit:

• Multiple or alternate indexes (that is, cross-reference indexes)
• Retrieval of a series of records in sequential key order
• Random retrievals of specific records

TRAX provides all of these features and more through DIGITAL's business-oriented data manage
ment system, RMS.

One more data management feature is mandatory in any transacation processing system: the
ability for many users to share access to common data files. Here, TRAX provides such features
as a record-locking capability, automatic retry of retrievals on locked records, the ability to access
locked records in a read-only fashion, and more. Taken together, these features allow many dif
ferent users to work in the same files with minimum interaction.

1.8 RELIABILITY
As transaction processing techniques are adopted, two things begin to take place:

• An increasing proportion of business records are recorded on magnetic media within
the transaction processing system

• A decreasing proportion of business records remain on paper or other tangible, hard
copy media.

This means that many transaction processing systems carry data that are unavailable from any
other source. Even if data are available from other sources, conversion and replacement may not
be economically feasible. The loss of this data might be disastrous to a business, so you must
assure that the data on your transaction processing system are safe.

Data safety means:

• Unauthorized access must be prohibited.
• Authorized access to sensitive data must be logged.
• Catastrophic system failures must not risk massive data loss.

NOTE
In many applications, any data loss - however
sligh t - cannot be permitted.

Even if a system catastrophe does not cause loss of data, the unavailability of a transaction proc
essing system may cause problems. If the system is unavailable, the business may not be able
to function.

Several other system reliability requirements are:

• Proven hardware reliability
• Quick recovery from system catastrophes

1-4

Introduction to TRAX

• Ability to reconfigure a system or divert work to other systems
• Fault detection and measurement facilities that detect faults before they tum to disaster

TRAX provides you with the facilities you need to satisfy these system requirements.

1.9 LANGUAGES
Most application designers try to program their business applications in an accepted, high-level
language, using as many of the language's standard features as possible and avoiding system
dependent features where feasible. This approach:

• Minimizes training of your application programmers
• Makes hiring additional qualified programmers easier
• Allows new programmers to adapt to the resulting programs with minimal confusion
• Develops better programs with programmers of average skill
• Makes testing and debugging easier.

TRAX provides you with your choice of two high-level languages that have been popular for
business applications: COBOL and BASIC-PLUS-2. Both languages are straightforward extensions
of their industry counterparts.

COBOL-II conforms closely to the standards of ANSI-74 COBOL, except for a few features
required by the architecture of TRAX. These changes have been held to a minimum, and TRAX
allows a COBOL programmer to work easily with the COBOL he knows. In particular, the methods
that TRAX uses to control application terminals avoid many problems often created when COBOL
is used with interactive devices. With TRAX, data coming from and going to application terminals
resembles fixed-length records from ordinary data files - something that COBOL handles
extremely well.

BASIC-PLUS-2 has always been strong in on-line applications. Its interactive debugging sessions
speed the programmer's work. The version of BASIC-PLUS-2 supplied with TRAX builds on the
strengths of BASIC, while adding features that are important in business applications: longer
mnemonic variable names, data structures for input/output operations, and improved
commenting facilities.

Choose a language according to your preference and the background of your programming staff.
Either choice gives you a strong, flexible language for a transaction processing environment.

1.10 OVERNIGHT PROCESSING
Business applications require occasional overnight or other batch-oriented processing. Files
must be reorganized and backed up, printed reports must be run, and other activities must be
accomplished with minimum human intervention.

These activities are best handled with a batch processing facility, where predetermined sequences
of operations are performed on request or on a periodic schedule. A good batch processing system
keeps a log of batch processing events, runs with minimum human intervention, and reacts
appropriately to faults and error conditions during a batch run.

1-5

Introduction to TRAX

TRAX provides these capabilities and more. Several batch processors can operate at once, working
from a common work queue or separate queues. Printing despoolers allow work to be optimally
scheduled among printer units. And assignable device names allow complete operator flexibility
in setting up each batch run.

1.11 HOW DOES TRAX DO ALL THIS?
A TRAX system has several elements:

• A kernel (an underlying operating system) provides rudimentary peripheral device support,
memory allocation, and scheduling services.

• A support environment is used for non transaction processing: batch processing and on-line
programming, debugging, and system management. Programmers and operators sitting at
support environment terminals have access to a general-purpose time-sharing environment
which is not available to application terminals. The multi-user nature of this environment
allows quicker program development and permits program development to proceed in
parallel with application operation.

• A transaction processor handles each set of on-line application terminals that runs a particu
lar application. A transaction processor is a set of software modules and tabular specifica
tions that can process a predefined set of transactions, and makes these transactions avail
able to users at application terminals by predefined access rules.

A TRAX system can have several transaction processors defined. Each can be started
or stopped as desired. Depending on the size and capacity of the system, two transaction
processors may be active concurrently.

The support environment and the transaction processors are kept separate by the TRAX kernel.
Programming and system management terminals can access only the support enviomment;
application terminals can access only an assigned transaction processor. This separation provides
superior system security and allows each part of the system to be optimally deisgned for its
primary purpose.

To design and build an efficient transaction processing system, you must concentrate on the con
struction of an appropriate transaction processor - and this is what the remainder of this manual
will cover.

1-6

CHAPTER 2

THE TRAX SAMPLE APPLICATION

Throughout this manual and other TRAX manuals, you find examples of business applications.
These are drawn from a prototype business application supplied with each TRAX system. This
prototype application is called the TRAX Sample Application.

2.1 THE BUSINESS PROBLEM
The TRAX Sample Application is designed to solve a paperwork problem for a moderately large
wholesale distribution business specializing in collectable American coins.

The system supports other processing and the associated invoicing and payment cycle. It also assists
certain other company operations such as maintaining an up-to-date customer list.

The coin firm is called the TRAX Coin Corporation. It deals primarily with retailers rather than
individual collectors. Most sales are made on credit; that is, the ordered coins are shipped with an
invoice for payment. Most business is done by mail or over the phone, but customers also buy coins
over the counter.

TRAX Coin Corporation has several order handling policies they intend to keep even after the new
system is installed:

• Orders are accepted for coins that are not presently in stock, and TRAX Coin then tries to
acquire the specified coins from its suppliers. Items in this status are called "back-ordered."

• If only a few items on an order are back-ordered, the remainder of the order is shipped
right away. But partial quantities of any item are never shipped.

• When replacement stock is received, back-orders are given priority over current orders.
That is, orders are always filled on a first-come, first-served basis for each item.

• Invoices are sent after each shipment. The balance on the invoice is due when received.
• A single order can, of course, have several shipments. (This will occur for any order that

has a back-ordered item.) Each of these shipments is accompanied by a separate invoice;
each invoice covers only the coins in that shipment.

• The balance for each invoice is carried in TRAX Coin Corporation books until it is paid.
If payments are received without specific instructions, the funds are applied against the
oldest invoices first.

• The TRAX Coin Corporation keeps a journal of invoices and payments received.

Figure 2-1 shows the order processing cycle from the time the order is received until corresponding
invoices are paid. This is the cycle that the new system is meant to support.

2-1

The TRAX Sample Application

2.2 THE SAMPLE APPLICATION ADDRESSES THE BUSINESS PROBLEM
The functions of the TRAX Sample Application correspond with the manual functions shown in
Figure 2-1. The system handles the following activities, significantly reducing the manual
paperwork:

• Order entry
• Miscellaneous functions, such as checking stock availability and price
• Printing multi-part order paperwork
• Keeping the back-order file
• Activating back-order paperwork when new stock arrives
• Keeping the invoice file
• Keeping the payments journal
• Keeping related master files, such as the customer fIle and the inventory fIle

The Sample Application supports a large proportion of its processing in an on-line transaction
processing mode. That is, the company personnel assigned to many of the tasks listed here are given
conversational terminals attached to the system, and they enter data through those terminals as
they go about their task. The system records the data they enter, and it occasionally takes other
actions such as printing order paperwork.

In addition to on-line transaction-oriented processing, the Sample Application also needs some off
line batch processing. I This is periodic processing that needs no human intervention - such as file
reorganization and backup.

The Sample Application uses the following data files:

• Customer File. This file provides expanded customer names, addresses, and related infor
mation by a unique customer identification number. It is used so that the customer's full
name and address need not be included in other fIles.

• Order and Invoice File. This file contains complete information on each order:
General order information, such as the customer identification number, order data,
and shipping instructions
Each order line item, including quantity and price
A record of each invoice issued for the order

• Inventory File. This file contains a record of each stock item carried by TRAX Coin
Corporation. The file carries data such as quantity on hand, price, stock number, and
description.

• Payments File. This file records payments received and the invoices to which they are
applied.

• Back-Order File. This fIle records items that are in "back-order" status.

(If you study the Sample Application carefully, you will see that the order and invoice file really
is two data files for technical design reasons: the main order and invoice fIle, containing the data
listed before, and an order access fIle that serves as a cross-reference to relate all of the data for a
given order.)

INot supplied with the TRAX distribution list.

2-2

/ '0' bac.o"'.,,
[-:~ :::.::::;stCOOY

~ for invoicing File copy

-41 Invoicing copy

\:
fills orders, Warehouse d

k back-ordere mar s .
merchandise

P cker checks
a seals carton, order, t

and breaks apar
paperwork

~

CJ).
~ !J:----- Invoice file copy ~1Ig:::""::~", , I nvoice copy ~ W r----T

ds and packing
Goo mer
list to custo

Backorder cO~~d
to file if reqUir

I Application The TRAX Samp e

Credit de~artment
mails invoice, V files second copy

~~
~ 1=,)'1 o II

\) Q

der clerk
Backor backorders

~ writes up , es
----- when stoe k arnv

.Cr

~ Credit department
Yment records pa, nd

'nst inVOice a agal

also in I
ents journa paym

Customer
pays
invoice

Figure 2-1 . Cycle o der Processmg TRAX Coin Corp. r

2-3/2-4

The TRAX Sample Application

2.3 THE EXAMPLES IN THIS MANUAL
The examples in this manual are taken from the group of four on-line transactions used to maintain
the customer file. These transactions are:

• Add Customer. Inserts a new customer record into the customer fue.
• Change Customer. Changes data in a customer record.
• Delete Customer. Marks a customer record obsolete, so that a subsequent file reorganiza

tion will remove it.
• Display Customer. Displays the data in a customer record or a sequence of customer

records.

Although these functions are only a small subset of the entire TRAX Sample Application, they
provide enough examples of situations in which an application designer is required to make impor
tan t decisions.

2-5

CHAPTER 3

AN INTRODUCTION TO TRANSACTION PROCESSORS

By now you know that a TRAX transaction processor supports on-line transaction-oriented proc
essing and consists of a collection of tabular specifications and software modules.

Before you begin to design applications with TRAX, you must learn more details about trans
action processors and how they operate. First, though, you will probably Imd it helpful to have
an overview of how a transaction processor works and how this method of on-line processing
differs from others.

3.1 A SAMPLE TRANSACTION
A sample transaction that changes customer records is used as an example throughout this chap
ter. This transaction involves a two-step conversation with a terminal user each time it is executed.

• First, the transaction asks for the identification number of the customer whose data is
going to be changed (Figure 3-1). The user enters an identification number, the corres
ponding record is retrieved from the customer file, and the transaction moves to the
second step.

• Second, the data from the file is displayed (Figure 3-2). The user is permitted to change
whatever data he likes. When he is done, the final version of the data is checked for con
sistency and replaced in the customer file.

This is the overall structure of the transaction. There are of course several additional path varia
tions in actual use, to permit error messages and corresponding error recovery procedures.

3.2 IMPLEMENTING THE SAMPLE TRANSACTION ON SYSTEMS OTHER THAN TRAX
To implement the sample transaction on an interactive business sytem other than TRAX, you
would probably use the technique shown in Figure 3-3. This figure shows several terminals, each
associated with its own copy of a transaction program.

If a user at terminal 2, for instance, wants to execute this sample transaction, he needs a copy of
the appropriate program from the program library. Within this program would be enough code
to support the functions of asking for a customer identification number, reading the record from
the customer file, displaying it, helping the user edit the data, checking the final data values, and
rewriting the data into the customer file.

If other terminals wish to execute the same transaction, each needs its own copy of the same
program. Further, each of the programs is "active" for the duration of its own transaction -
even though the program spends most of its time "waiting" for the user to finish typing his input.

3.2 IMPLEMENTING THE SAMPLE TRANSACTION ON TRAX
Implementing this transaction on TRAX is entirely different.

3-1

An Introduction to Transaction Processors

Figure 3-1 First Form of Change Customer Transaction

Figure 3-2 Second Fonn of Change Customer Transaction

3-2

An Introduction to Transaction Processors

CHANGE Program CHANGE Program CHANGE Program

READ READ READ I

Routines B B 8
WRITE E WRITE

Terminal 1 Terminal 2 Terminal 3

Figure 3-3 Implementation of Sample Transaction System Other than TRAX

3-3

An Introduction to Transaction Processors

To implement the sample transaction under TRAX, you would construct a transaction processor.
You would include in the processor the necessary programs for reading the customer record, vali
dating the new data, and writing the modified record back into the file. Although this may sound
similar to the usual method of implementing on-line business sytems, there are two important
differences:

• The programs are never directly associated with any given terminal; rather, each program
is capable of communicating with all terminals that are associated with the transaction
processor.

• The programs are never directly associated with any given transaction; rather, any program
can process part of any transaction.

This means that application programs no longer "control" either a terminal or a transaction.
Instead, they become a generally available resource to be invoked whenever necessary. The control
of transaction execution rests with two other components of a transaction processor:

1. Sets of tabular specifications composed by you when you set up a transaction processor.
They determine the sequence of programs used at any stage in the execution of a
transaction.

2. System software modules provided with TRAX and customized to the requirements of
each transaction processor. They interpret the tabular specifications and manage the
activities of the transaction processor accordingly.

Figure 3-4 shows how a transaction processor migh t handle the sample transaction. When a user
at terminal 2 enters a customer identification number, this information is sent to the first program
(called RDCUST), so that the corresponding customer record can be read (Step. in Figure 3-4).
This program is selected by the transaction processor according to a predefined list of programs
that specify the processing for this particular transaction.

The RDCUST program reads the record and sends the data back to the terminal (Step 8). The
RDCUST program is now free to process other data from other terminals.

When the data is displayed at the terminal, the user can change the data as he wishes. He then
sends it back to the transaction processor. The transaction processor consults the list of programs
used by this transaction and forwards the user's data to the V ALIDC program (Step .). When
this program assures that the data is valid, it terminates. The transaction processor sends the same
data to the REWRIT program (Step.). This program rewrites the updated data into the customer
file. A confirming message is then sent to the terminal signaling the end of the transaction.

3.4 FORMS ARE IMPORTANT TO TRANSACTION PROCESSORS
Terminal conversation in a transaction processor is strictly forms oriented. This means that all
conversation between a transaction processor and an application terminal is accomplished via pre
defmed specifications. These specifications are called form definitions.

Terminals are controlled by system software modules that are part of each transaction processor.
These system software modules use form definitions that you have prepared. The form definitions
describe the displays that must be presented and the rules for user data entry. These specifications
are forwarded to TRAX application terminals at the proper time, and the specifications are inter
preted and execu ted by microprocessors inside each terminal. In this way, terminals can be effec
tively controlled during data entry without an active application program to control them.

3-4

An Introduction to Transaction Processors

READ Program VERIFY Program WRITE Program

RDCUST VALIDC REWRIT

,., .' ~ ---.---..... " "
/

,
I "'- And on to)
l' Data from", I

next program
I • file to " /

• \ terminal \

(GReVised data

/
\

\ / Final

\
,

confirmation
Customer 1O '"

/
\

\ \
to program / message

to program "'-
,-

"- \,\ /
/

"- '"
\~ /

""'- ".

............
,-

......... \ ~
/'

"'" ~,-

Terminal 1 Terminal 2 Terminal 3

Figure 34 Implementation of Sample Transaction TRAX using a TRAX Transaction Processor

3-5

An Introduction to Transaction Processors

The conversation at an application terminal follows this sequence:

1. A form is displayed according to its definition.
2. The user enters data in predefined fields or edits data already in those fields. During this

process, he must conform to the data entry rules that are part of the form definition.
3. The user presses a function key, which sends the data to the transaction processor.
4. The transaction processor takes one of two actions after processing the data:

It may direct the user to another form, and this series of steps is repeated using the new
form; or

It may direct changes to the current form and the series of steps repeat for the modified
form. The transaction processor can only select modifications that are defined and
included in the form definition.

This approach differs significantly from a typical conversational approach where questions appear
one by one on the terminal screen and are answered as they appear.

Each form available to a transaction processor is defined by a form definition. This definition
specifies the appearance of the form and the placement of fields and captions. It also specifies:

• How data coming from a preceding program is interpreted and included in the display
• Where and how the user enters data to the screen
• Which function keys the user employs
• What data is assembled from the user entries and sent to subsequent programs
• Where and how error messages (and other form modifications) are displayed

In summary, then, forms are important to transaction processors because they are the means by
which the transaction processor communicates with its terminals. Application programs cannot
communicate directly with terminals and are not active when communication takes place. To
design workable transaction processors, you must think exclusively in terms of a forms-oriented
conversation between application programs and the transaction processor.

3.5 IMPORTANT TRANSACTION PROCESSOR TERMS
It is time to introduce some important transaction processor terms. These terms refer to compo
nents of a transaction processor or to the transaction processor's unique methods of handling
transactions.

• A Transaction is a generalized procedure for the exchange of information, money, or goods.
It does not refer to the details of any particular act of exchange.

• A Transaction Instance is a specific execution of a transaction.

For example, the procedure for buying a coin involves a sequence of actions, both for the customer
and for the salesman. This sequence of actions is a Transaction. But when a specific customer
buys a specific coin, this is a Transaction Instance. The Transaction is the sequence of actions by
which business is transacted; a Transaction Instance is a specific case in which a transaction is
executed.

So, if the manager of a coin shop talks about how to sell a certain kind of coin, we would say he
was discussing a Transaction. On the other hand, if he talks about a particular customer and the
specific coins that the customer recently purchased, we would say he was discussing a Transaction
Instance.

3-6

An Introduction to Transaction Processors

Maintaining a distinction between these two terms is important to you. You must be comfortable
with their meanings.

• An Application Terminal is a terminal that is served by a transaction processor; that is, it
is a terminal used for transaction processing.

The connection between an Application Terminal and a transaction processor is made when
the transaction processor is started. In effect, a transaction processor "seizes" a speci-
fied set of terminals when it begins execution (such as the beginning of the business day).
These terminals cannot be used for another purpose until the transaction processor is
stopped. But once stopped, the transaction processor releases its terminals and these
terminals may be seized by any other transaction processor that subsequently begins
execution.

Terminals that have access to the support environment of a TRAX system are called
Support Environment Terminals, even though a user may be running an application-related
program. That program would be a stand-alone support environment program; it would
not be related to a transaction processor; and the terminal would not be considered an
Application Terminal.

Application Terminals are handled by TRAX in a way different from support environment
terminals. You can see this in the communication methods used with Application Termi
nals: synchronous communication lines, multi-drop configurations, and formal line pro
tocol. None of these are possible with support environment terminals. The distinction
between Application Terminals and support environment terminals is made during the
configuration and sysgen processes, and a single terminal cannot be used for both the
support and application programs.

This distinction between Application Terminals and support environment terminals
improves system security (Section 10.1.1).

Figure 3-5 shows the distinction between Application Terminals and support environment
terminals. This figure shows a large TRAX system, with two transaction processors and
on-line application development proceeding at the same time. Notice that some of the
application terminals are not attached to any active transaction processor; these terminals
cannot access the support environment. For these terminals to be placed in service, one
of the two active transaction processors must be stopped and another started.

Application Terminals can be either video displays or hard copy devices. The video dis
plays are used only as interactive (that is, transaction processing) devices; hard copy
devices are used only as unattended output-only printers.

In the output-only mode of operation, a terminal receives and prints data for any trans
action instance. In the interactive mode of operation, a terminal is associated with a given
transaction instance until that transaction instance terminates.

• An Exchange. A transaction often requires several steps - that is, several interactions -
between the transaction's participants. Each of these interactions is called an Exchange.

To understand this, let's return to the example of the coin firm. The purchase of a coin
is frequently a three-exchange transaction.

1. You ask the clerk to recite the list of coins available in the category that interests you.
2. After listening to the list, you may ask to buy a coin.
3. Finally, after being given the coin, you pay for it. The clerk returns your change with

a receipt.

3-7

An Introduction to Transaction Processors

Each Exchange, then, is an interaction between the party requesting service (you) and the
server (the coin store clerk). In a transaction processor, each Exchange is an interaction
between the terminal user and the transaction processor. The terminal user enters data;
the transaction processor processes it and usually returns an answer to the user.

• A Transaction Step Task (TST) is an application program within a transaction processor.
It is really a subroutine that helps process various transactions. A TST is not a complete,
stand-alone program for it does not have control of the transactions it participates in.

In the coin store example, the clerk is like a TST. The clerk receives something (a question,
an order, or some money) from the customer, takes some action, and then returns some
thing else (information, a coin, or change and a receipt) to the customer.

Notice something important about this example: the clerk can handle several customers
at the same time. While you are selecting a coin, another customer can be asking about
coins, ordering, or paying for his purchase. In fact, if you had the clerk to yourself, you
would be wasting his time while you select a coin.

We can extend this example to illustrate transactions involving two or more TSTs in one
exchange. Although the clerk serves customers by himself, he may have a cashier to take
customer money and wrap purchases. When you buy a coin, both the clerk and the cashier
become involved. The clerk handles the first exchange (where you ask questions) and the
second exchange (where you buy a coin). But the third exchange (where you pay for a
coin and receive change and a receipt) requires the participation of the cashier.

Notice that both the clerk and the cashier can handle other orders between the steps (or
Exchanges) of your order, even if other customers are looking at or buying different
merchandise. Both the clerk and the cashIer approach their jobs one task at a time. This
same characteristic applies to TSTs within a transaction processor.

• A Message is the data structure that elements of a transaction processor use to communicate
with each other. For example, data must be sent from an application terminal to one or
more application programs (TSTs) for processing. The data are sent to the TST in Messages.

There are many different kinds of messages that can be sent within a transaction processor.
They are classified by their purpose and destination. The two most frequently used kinds
of messages are exchange messages and response messages.

Exchange Messages are messages that travel from an application terminal to a series
of TSTs; they carry data entered by the user.
Response Messages are messages generated by TSTs and directed to the user's terminal.

In the coin example, your questions, requests, and money represent exchange messages;
the clerk's answers are response messages.

• A Station receives messages for a component of a transaction processor. The Station serves
the same purpose as the "in-box" on your desk, constantly ready to receive messages. In
the same way that an "in-box" keeps you from being interrupted by arriving mail, a Station
keeps its transaction processor component from being interrupted by arriving messages.
The Station buffers the messages and releases them one at a time as needed.

There are many kinds of stations. The two most frequently used kinds of stations are
terminal stations and TST stations.

Terminal Stations receive messages that are directed to their terminals. Each Applica
tion Terminal has its own Terminal Station.
TST Stations receive messages that have been directed to their TSTs. Each TST has its
own TST Station.

3-8

W
I

\0

Application Terminals
~------------------------------~-------------------------------~

Terminals attached Terminals attached

to transaction processor A to transaction processor B

Transaction
Processor

A

Application

Terminal Handler

Transaction
Processor

B

Unattached

terminals

Kernel
Operating System

Figure 3-5 Application Terminals & Support Terminals

Support environment

terminal

Support

Environment

Terminal Handler

Support
Environment

~
~

~
~
~
~
C":>
c·
~

c
~
~
~
~
~
C":> c·
~

~
C":>

~
o
~

An Introduction to Transaction Processors

Stations are supported by system software within the transaction processor, and each type
of station requires special support. For example, messages arriving at Terminal Stations
must be interpreted according to a specific forms definition before they can be passed to
the terminal. Messages arriving at a TST station require the TST to be loaded into memory
and executed. Other types of stations require different processing support.

• A Routing List is the list of stations to which an exchange message is addressed. An
exchange message can have several addresses, and it visits each station on its Routing List
in turn. Usually, these stations are TST stations.

An exchange message is the only message that can have a Routing List. All other messages
have a single address.

Routing lists for the exchange message of a transaction are specified in the definition of
the transaction. By consulting this definition, the transaction processor knows where to
send the exchange message.

In addition, the Routing List for any exchange message can be modified by any TST that
processes that message. This applies only to a single exchange message and does not affect
other similar exchange messages belonging to other transaction instances. This facility
allows customized exchange message routing under program control.

• A Form is a data structure presented through an application terminal that is an interface
between the user at that terminal and the transaction processor.

In other words, a Form is a fill-in-the-blanks display. If a user wishes to send data to the
system, he fills in fields on a form and sends the form to the system. If the system wishes
to send data to the user, it fills in fields on a form and sends the form to the user's Applica
tion Terminal. One Form can be used to send data in both directions with careful design -
for instance, a user can ask a question using certain fields on a form and the system can
answer using other fields on the same form.

• A Form Definition tells a transaction processor how to present and handle each different
form. Besides describing the position and size of each field on the form, a Form Defini
tion also:

Describes the attributes of each field, including its appearance, behavior, and the
characters that can be entered
Describes the way that the data entered by the user is formatted into an exchange
message for routing to TST stations
Describes the terminal function keys the user may use after filling out the form
Describes the ways that the form can be modified, such as in response to a user data
entry error

Every exchange normally has its own Forms Definition. These definitions are identified
by unique names and are kept in a special file within the transaction processor. The defini
tions are consulted each time data arrives from an Application Terminal and each time a
message arrives at a terminal station.

• A Transaction Definition sets the structure of each of the transactions a transaction proc-
essor can handle. The Transaction Definition specifies parameters such as:

How many exchanges comprise the transaction
What form definition is used with each exchange
Where each exchange message is routed
In what sequence exchanges are executed
Whether specialized reliability or recovery procedures, such as exchange recovery,
are needed

3-10

An Introduction to Transaction Processors

In the chapters ahead, you will see how a terminal user or a TST programmer can alter the
course of a transaction - that is, change the sequence of events from that specified in the
transaction defmition. As you study those techniques, remember that the structure of the
transaction always starts with the Transaction Definition; the techniques you read about
can only alter a pre-existing transaction structure within certain prescribed limits.

NOTE
In most cases, these structure modification
techniques are not necessary and should not
be used.

• A Transaction Workspace is a scratch area associated with each transaction instance. Two
terminals executing the same transaction have different Transaction Workspaces, as would
two executions of the same transaction from the same terminal. The Transaction Work
space can be accessed by every TST that becomes involved in the processing of the corres
ponding transaction instance.

The Transaction Workspace is different from an exchange message: The exchange message
is regenerated for each new exchange, using fresh input from the user; the Transaction
Workspace is available throughout the life of a Transaction Instance. Its data content
remains unchanged unless explicitly modified by a TST. This is a valuable method of
transferring information between the TSTs that process the Transaction Instance, both
between TSTs in the same exchange and between TSTs in different exchanges.

3.6 A TRANSACTION PROCESSOR AT WORK
Now let's return to the sample transaction introduced in Section 3.3: the Change Customer trans
action that allows a terminal user to update a record in the Customer File.

3.6.1 The Components Involved
These transaction processor components playa part in the execution of the Change Customer
transaction:

• Terminals and Terminal Stations. Figure 3-6 shows three terminals, each with its own
terminal station. The number of terminals is not important. As you follow this example,
though, remember that all the terminals are likely to be active in a system, not just one
terminal. Imagine what each step of the transaction would be like with transactions from
other terminals underway.

• Transaction Step Tasks and Their Stations. Each of the programs shown in Figure 3-6 is,
of course, a TST. Every TST has its own station. The functions of the three TSTs are:

RDCUST - To read a customer record and pass it to the user's terminal
VALl DC - To validate the new data subnlitted by the user
REWRIT - To rewrite the updated customer record into the customer file

• Forms and Form Definitions. The Change Customer transaction has two exchanges and
requires two forms. The functions of the two forms are:

CHCUSI

CHCUS2

To let the user specify the customer whose record is to be read for possible
update
To display the old customer data, allow the user to enter new data, and
return the new data to the transaction processor.

3-11

An Introduction to Transaction Processors

The transaction definition is stored in the transaction processor's Transaction Defmition
File, with the definitions of other transactions handled by the transaction processor.

There is, in addition, one component of the transaction processor that is not shown in Figure 3-6:
the set of system software modules that manage many of the transaction processor's internal
operations. Master copies of these system software modules are supplied with each TRAX system,
and the generation of a transaction processor includes making customized copies of each of them.
It is these modules that interpret forms definitions, transaction definitions, and the other specifi
cations that guide the operation of a transaction processor.

Communication between the terminals and TSTs require exchange messages and response mes
sages. These messages, shown in Figure 3-6 as arrows flowing between stations, are:

• Exchange Messages (shown as solid arrows) contain data derived from the user's input
and are generated according to specifications contained in the corresponding form defini
tion. The messages are routed to one or more TST stations for processing.

• Response Messages (shown as dashed arrows) originate with TSTs and are directed to the
terminal that sent the exchange message.

3.6.2 The Sequence of Events
The Change Customer transaction causes the following sequence of events:

1. The Transaction Begins. The user selects this transaction from a menu or list of trans
actions. This process is described in Chapter 9.

2. Displaying the First Exchange's Form. The first exchange begins with the display of a
form. The form is specified in the transaction definition, and the form definition itself
can be found in the form definition file.

3. First User Input. The user responds to this fonn by entering a customer identification
number and pressing the ENTER key.

4. Exchange Message Constructed. System software within the transaction processor takes
this input and formats it into an exchange message according to the specifications in the
form definition.

5. Exchange Message Routing. The transaction processor consults the transaction definition
to find which TST (or TSTs) the exchange message should be routed to. In this case, the
message is routed only to the RDCUST TST.

6. Processing by RDCUST TST. The exchange message waits at the TST station until a copy
of the TST is available to process it. The TST then reads the specified customer record
from the file.

7. Generation of Response Message. Having read the record, the TST generates and sends a
response message containing the data from the customer record. The TST selects the
proper response message so that the transaction processor moves to the next exchange
of the transaction.

8. The Second Exchange. The second exchange is entered because the response message
from the previous exchange directed that this occur. The second exchange displays the
old customer data and asks the user to edit it.

9. Displaying the Second Exchange's Form. The process by which this form is displayed
makes use of the data returned in the first exchange response message. (That is how the
old customer data is transferred from the file to the terminal screen.) The form defini
tion specifies the manner in which the data from the previous response message is used.

3-12

Transaction
Definition

File

An Introduction to Transaction Processors

Transaction Processor

READ Program VERIFY Program

RDCUST VALIDC

Terminal ______

Station <-....

Terminal 1 Terminal 2

Figure 3-6 A Transaction Processor at Work

3-13

WRITE Program

REWRIT

Terminal 3

An Introduction to Transaction Processors

10. Second User Input. The user's input in the second exchange is not necessarily a data
entry operation; the existing data might be edited slightly - or not at all.

11. Exchange Message Constructed. When the user presses the ENTER key, the data is
formatted into an exchange message according to specifications in the form defmition.
All customer data is included in this exchange message, even if it has not been changed
by the user.

12. Exchange Message Routing. The transaction processor again checks the transaction
defmition to see where the exchange message should be routed. In the second exchange,
the message is routed sequentially to two TSTs. First, the VALIDC TST checks the data,
and then the REWRIT TST writes the updated record in the file.

13. Processing by VALIDC TST. As in the first exchange, the exchange message may have to
wait at the TST station. Eventually, it is processed. When this TST terminates, the trans
action processor forwards the exchange message to the second station on the routing list.

14. Processing by REWRIT TST. Again, the exchange message may have to wait at the
corresponding TST station. After writing the customer data into the customer file,
this TST generates and sends a response message.

15. Generation of Response Message. This response message contains no data but informs
the user that the update has been accomplished.

16. Response Message Arrives at Terminal Station. When the response message arrives at the
terminal station, it causes a confirmation message (previously encoded as part of the form
defmition) to be displayed. It also unlocks the AFFIRM key on the terminal.

17. User Presses AFFIRM Key. As soon as he sees the confrrmation message, the user presses
the AFFIRM key, ending the transaction instance. The terminal screen returns to the
fIrst form of the transaction, awaiting another execution of the same transaction.

18. User Returns to Transaction Selection Screen. If he does not wish to execute another
change transaction, the user presses the CLOSE key to return to the transaction menu.

3-14

CHAPTER 4

TRANSACTION PROCESSING PATHS AND THEIR CONTROL

The principal difference between TRAX and other systems is that TRAX does not have contin
uously active application programs to' guide each user's on-line processing. In a TRAX transaction
processor, each user's interactive processing is influenced by many system components. These
system components interact to determine the way any transaction instance proceeds.

This chapter examines these influences and the way they interact.

4.1 FUNDAMENTALS: STATIONS AND MESSAGES
At the lowest level, the sequence of processing applied to any transaction instance depends on the
content of a series of messages, the stations where these messages are directed, and what happens
at each station when the message is processed.

4. 1.1 Stations
A station in a transaction processor holds messages until they can be processed.

Stations are strictly first-in, first-out facilities. The message that arrives first will be processed first.

There are several different kinds of stations; they are distinguished by the kind of message
processing facility they serve. The different kinds of stations are:

• Terminal Stations. These stations receive messages for their particular application
terminals.

• TST Stations. These stations receive messages addressed to a particular TST.
• Batch Submit and Batch Slave Stations. These stations handle messages destined for, or

coming from, the support environment.
• Link Master and Link Slave Stations. These stations handle messages destined for, or

coming from, other transaction processors - perhaps on other computer systems.
• Mailbox Stations. These stations store messages for TSTs until they are called.

Each station serves a message processing facility. Only TST stations serve application modules.
Others serve system software modules that manage the transaction processor. For instance,
terminal stations serve the system software modules that interpret forms definitions and
communicate with application terminals. TST stations, of course, serve TSTs.

As you work with transaction processors, you may find it convenient to mentally combine
stations with their respective message processing facilities and use the term "station" to apply to
the combination. This simplifies the discussion. For example, you could say:

"Then, the exchange message is sent to the TST station XYZ, which looks up the part
number in the part file."

4-1

Transaction Processing Paths and Their Control

Of course, this statement is not strictly true; the statio~'s purpose is to receive, store, and forward
the message; it is the 'FST itself that eventually looks up the part number in the part file. This is a
subtle distinction, however, and usually unimportant. Accordingly, the distinction will only be
maintained in this manual where it is significant. Otherwise, you will see the term "station"
applied loosely to both the station proper as well as the message processing facility that it serves.

An important step in creating a transaction processor is specifying its set of stations. Once they
are specified, a TRAX utility program called STADEF is used to install the list of stations in the
transaction processor. Determining the proper set of stations is discussed in Part Two of this
manual; the procedures used with the STADEF utility program are described in the TRAX
Application Programmer's Guide.

The following sections explain some of the special characteristics of different stations.

4.1.1.1 Terminal Stations - Terminal stations receive messages directed to their terminals by
TSTs. For interactive terminals, response messages alter the screen display. For output-only
terminals, the messages contain data to be printed.

Messages arriving at a terminal are always interpreted according to a form definition. The form
definition guides the terminal-handling software as it processes the message.

The parameters needed to define a terminal station are discussed in Section 16.2.

4.1.1.2 TST Stations - TST stations receive exchange messages and wait for their TSTs to
process them. Most exchange messages come from terminal stations, but other transaction
processor components can originate transaction instances and, consequently, generate exchange
messages.

Earlier, you read that stations operate on a first-in, first-out basis. It is important to realize that
this FIFO rule applies only to the TST station, and not to the processing of the messages by the
TST proper. Each TST station can serve multiple copies of a TST, and different copies may
process messages with varying speed.

The number of TST copies that can be active at once is specified when the station is defined.
When a TST finishes processing an exchange message, the TST is given another exchange message
from its station. If no messages are waiting at the station, the TST copy is deactivated.

While they are processing exchange messages, TSTs can also generate messages. These messages
are attributed to the corresponding TST station. For example, when a TST spawns a new
transaction instance that transaction instance and its exchange message are attributed to the
TST station. The TST station name is returned when some other TST issues a system call asking
for the source of the spawned exchange message.

The parameters required to derme a TST station are discussed in Section 16.2. You can fmd more
about TSTs and how to program them in:

• Chapter 19 of this manual
• The TRAX Application Programmer's Guide

4-2

Transaction Processing Paths and Their Control

4.1.1.3 Batch Submit and Batch Slave Stations - You will only use these stations if some of
your transactions need to communicate with the support environment. For information about
these stations, consult Chapter 11.

4.1.1.4 Link Master and Link Slave Stations - You will only use these stations if some of
your transactions need to communicate with other transaction processors - either those running
on the same computer or on remote computers. For information about these stations, consult
Chapter 11.

4.1.1.5 Mailbox Stations - Mailbox stations hold messages that are deposited and retrieved by
TSTs. There is no restriction on which TSTs can deposit or retrieve messages. Messages can be
sent to mailbox stations across exchanges of a transaction instance, between two transaction
instances of the same type, or between two unrelated transactions.

Like other stations, mailbox stationsi operate on a first-in, first-out basis. This means that a
transaction instance that deposits a message in a mailbox station and then retrieves a message from
that station may not get its own message. TSTs cannot wait for a message to arrive at a mailbox
station. If a message is not present, TSTs receive an error code and they continue execution.
TSTs can determine the number of messages in a mailbox station before asking for a message.

The contents of a mailbox station is stored on disk and is not affected by system shutdown. The
contents of a mailbox station is therefore available when the system begins operation again.

The parameters required to define a mailbox station are discussed in Section 16.2.

4.1.2 Messages
Messages are the data structures through which components of a transaction processor communi
cate with each other. So far, you have been introduced to two kinds of messages: exchange
messages and response messages. There are four different kinds of messages used by transaction
processors:

• Exchange Messages
• Response Messages

There are six varieties of response messages:

PRCEED
STPRPT
TRNSFR
CLSTRN
REPLY
ABORT

• Report Messages
• Mailbox Messages

4-3

Transaction Processing Paths and Their Control

4.1.2.1 Exchange Messages - An exchange message is usually originated by an interactive
application terminal. It contains data entered by the terminal user, and it is directed to a series of
TST stations (or possibly other stations) that must process the data it contains.

An exchange message is the only kind of message that can have a routing list - that is, a list of
several destination stations. Other messages have only one destination. Exchange messages are
routed sequentially to the designated destination stations; when a station has processed the
message, it is sent to the next station on the routing list.

The routing list of an exchange message has an influence on the sequence of processing steps
applied to a user's input. The user input is only seen by those stations listed in the exchange
message routing list, and the processing done by the various stations must be applied in the correct
order. This way, the routing list acts as the top level of control for transaction processing.
Essentially, it prescribes a series of subroutines that are called to process the contents of the
message.

The initial routing list for each exchange message comes from the appropriate transaction defini
tion. The definition gives a different routing list for each exchange message in each transaction.

But once the exchange message is constructed and dispatched, any TST that processes the
message can change the routing list. These changes, made with TRAX system calls, do not affect
the original routing list in the transaction definition. They affect only the routing list of the
exchange message being processed at that moment. The changes can be additions, deletions, or
complete erasures of the routing list.

In addition, a TST can change the contcnt as wcll as the routing of an exchange message. The new
content will be seen by all "downstream" stations on the routing list - that is, those stations to
which the message has not yet been routed. This technique is necessary for any of the batch
or link stations, because they require a special exchange message format that is probably best
generated by a TST "upstream" from the batch or link station. (For details on batch and link
stations, see Chapter 11.) In most other cases, avoid designing TSTs that change the content of
exchange messages, transaction processors using such designs are difficult to debug. The transac
tion workspace is meant to be used as a scratch area, and you should use it for that purpose in
preference to the exchange message.

An exchange message survives until it has been processed by the last station on its routing list.
When the final station has finished with it, the exchange message is purged from the transaction
processor.

Remember that only one exchange message can exist for a transaction instance at one time. This
restriction becomes important in several design instances.

4.1.2.2 Response Messages - A response message is generated by a TST and directed back to
the application terminal station that issued the exchange message that the TST is processing.

4-4

Transaction Processing Paths and Their Control

Remember that a TST is only activated to process an exchange message; this means that any active
TST must be working on an exchange message. This exchange message is associated with a
transaction instance and the terminal station that originated the transaction instance. This is the
station to which the TST's response message is always directed. (In fact, a TST does not even
direct response messages to specific terminals - the transaction processor automatically directs
each response message to the appropriate terminal station.)

The response message tells the terminal user the outcome of the exchange message processing and
directs the transaction processor to a new exchange. The precise exchange chosen depends on the
type of response message sent by the TST as well as certain details of the transaction definition.
The six response messages, the relevant transaction definition parameters, and their combined
effects are discussed in Section 4.4

Response messages, unlike exchange messages, have a single destination station - the terminal
station that issued the associated exchange message.

The transaction processor expects (with one exception) one response message for each exchange
message. So, if an exchange message is processed by a series of TSTs, only one of these TSTs
should issue a response message. Additional response messages will cause the transaction instance
to be aborted. (The exception occurs with the NOWAIT option described later in Section 4.2.4.
When this option is used, no response messages are allowed.)

What happens if the TST that issues the response message is not the last station on the exchange
message routing list? This situation is shown in Figure 4-1. Here, an exchange message is routed
to three TST stations. The second of the three sends the response message, leaving one station to
process the exchange message. The following things happen:

• Sending the response message does not terminate TST2. This TST can continue to
execute.

• The response message is generated and dispatched as soon as TST2 issues the appropriate
system call. For a time, both the exchange message and the response message exist.

• Sending the response message does not erase TST3 from the exchange message routing
list. The exchange message continues to TST3 as soon as TST2 tenninates.

• In parallel with the progress of the exchange message, the response message arrives at the
proper tenninal station. The arriving message triggers a display action at the terminal,
allowing the user to see a new screen display. The message is then discarded.

• The user proceeds to enter data to the new form as if the processing for the first exchange
had been completed.

• Meanwhile, the exchange message is finally processed by TST3 and discarded.

Interleaving user conversation and exchange message processing in this way is a form of parallel
processing and can result in complex transaction designs. Most transaction processing situations can
be handled in a straightforward way by requiring the last TSI for an exchange message to send the
response message before it terminates. Alternatively, if you want an earlier TST to send a
response message (for instance. one containing an error message), be sure that your IST erases all
"downstream" TSIs from the exchange message routing list. The issuing TSI therefore becomes
the last in the routing list, and you will again have a simple nonoverlapped processing arrangement.
Do not attempt overlapped processing designs until you are familiar with transaction processors
and their operation.

4-5

Transaction Processing Paths and Their Control

Form 1

JMNNII.N I'-___ ~'

~.-,---....,.

\J\I\.MMM ,..-------..

\ANMMN ''-___ 1

TST 1

I
Exchange

ENTER--~J--------------~M~e-SS-ag-e--------~~

TST 2

Response
Message

TST 3 1.

Form 2 •

I ENTER

To Next Exchange
I
I

Figure 4-1 Relationship Between Response Messages and Exchange Messages

4.1.2.3 Report Messages - Report messages send data to an output-only application terminal
where the data is printed. Report messages are always sent by TSTs and are always directed to a
terminal station associated with an output-only terminal. (There is no way to print data at an
interactive application terminal, if that terminal did not initiate the transaction instance in question.
There is no way to involve more than one interactive terminal in any given transaction instance.)

Remember that everything printed, displayed, or entered at an application terminal is controlled by
a form definition. This is true for output-only terminals, and each page printed at an output-only
terminal is printed in the format prescribed in a form definition.

4-6

Transaction Processing Paths and Their Control

The report message consists of two parts:

1. It specifies the form that controls the format of the printed output.
2. It contains the data to be inserted on the form during the printing process.

Constant data can be included as part of the form definition; only the variable data need be
included in the report message itself.

Each report message must contain data to fill a page of output. Several report messages cannot be
combined to fill a single form.

A single output-only terminal station can receive report messages from a variety of TSTs. Pages
from the output-only terminal will be interleaved without regard for transaction instance, and
your transaction processor design must allow for this.

4.1.2.4 Mailbox Messages - Mailbox messages allow communication between two transaction
instances or a method of data batching for later processing.

Mailbox messages are generated by TSTs and can only be sent to mailbox stations. Mailbox
messages may have any data content. They wait at mailbox stations on a strict first-in, first-out
basis until another TST asks for them.

4.2 THE TRANSACTION DEFINITION
Transaction definitions associate exchanges, forms, routing lists, and other transaction parameters
to give an overall framework to a transaction. Each type of transaction that a transaction processor
handles needs a definition.

Parameters specified in a transaction definition are not binding. Many parameters depend not only
on the transaction definition, but also on the message content or particular terminal function keys.
I t is the interaction of all these factors that determines how any transaction instance proceeds.
The transaction definition provides a framework in which the other elements can be applied.

A transaction definition divides a transaction into exchanges. For each exchange, it specifies:

• A name for the exchange
• The form to be used
• A routing list for the exchange message
• Optional selection of the NOWAIT option (explained next)
• Optional selection of the REPEAT option (explained next)
• What will happen when the exchange is completed
• A time limit for the exchange

Transaction definitions for a transaction processor are kept in one file, called the transaction
definition file. Definitions are entered into this file with a utility program called TRADEF, which
executes in the support environment of the TRAX system. The TRADEF utility program serves as
an editing and listing facility for transaction definitions as well as a means of entering them.

4-7

Transaction Processing Paths and Their Control

4.2.1 Exchange Label
The exchange label is a short name (up to six characters) that identifies the exchange within the
transaction definition. A TST can use this label, for instance, when it wants the transaction
processor to transfer to a specific exchange without regard to the other transaction definition
parameters.

4.2.2 Form Name
This transaction definition parameter specifies the form to be displayed during the exchange. Most
transactions are initiated from interactive terminals. For these transactions, the content of the
exchange messages are derived from user input, and this input can only occur under the control of
a form.

Only one form Can be displayed during any exchange. The only modifications that are permitted
to the basic form display are those defined within the form definition itself.

Transactions initiated by other than interactive terminals do not need forms. These alternative
transaction initiation techniques are explained in Chapter 9.

4.2.3 Routing List
The transaction definition contains a routing list for each exchange. This routing list is assigned
to the exchange message when it is generated.

NOTE
The content of the exchange message is specified
by the form definition used for the exchange: the
routing of the exchange message is specified by
the transaction definition.

Once an exchange message is generated, addressed, and sent, its routing list may be changed by any
TST that processes it. Such a change affects only that particular exchange message and does not
affect the master routing list in the transaction definition.

Most transaction processing requirements can be met easily withou t having TSTs change the
routing lists of exchange messages. A good design allows TSTs only to remoJ)e entries from the
routing lists and then possibly only all entries at once. That is, you should be able to design most
transaction processors so that the only changes made to routing lists are deletions of remaining
destinations - a cancellation of further routing. More complex or varied changes are likely to
result in a transaction processor whose structure and operation is more difficult to understand.

4.2.4 The NOWAIT Option
A transaction processor normally waits for a response message in answer to each exchange message.
Until the response message is received, the user's terminal cannot proceed to the next conversational
step - either to a new exchange or to another cycle through the current exchange.

The NOWAIT option tells the transaction processor that a response message is not coming for an
exchange message. The transaction processor therefore proceeds to the next conversational step as
soon as the exchange message is constructed and dispatched, and the TSTs that process the exchange
message cannot send a response message.

4-8

Transaction Processing Paths and Their Control

This option is not often used. It is included in the transaction definition for exchanges where no
response message is necessary. It might be profitably used, for example, for "blind data entry" -
that is, data entry to a file without any edit checks or error messages. The absence of edit checks
and error messages makes response messages unnecessary; and, in such instances, the NOWAIT
option can be used to improve transaction response times.

4.2.5 The REPEAT Option
The REPEAT option, when used, indicates that an exchange should be repeated. This loop is
repeated until an appropriate terminal function key or response message instructs otherwise.
(Terminal function keys and specific response messages are described in Sections 4.3 and 4.4,
respectively.)

The REPEAT option causes each repeated execution of the exchange to begin with a fresh copy of
the exchange form. All modifications that occurred during the previous execution of the exchange
are removed, along with any user-entered data.

This option might be used in a transaction that enters orders to an order file. Such a transaction
might consist of three exchanges:

• A preliminary exchange that would collect general order information: customer name,
address, ship-to address, and so forth.

• An exchange that would collect individual order lines - that is, each execution of the
exchange would allow the entry of one order line: quantity, stock number, price,
description, and so forth.

• A final exchange that would verify the order, calculate the total price, and accept payment.

The middle exchange in this transaction would probably use the REPEAT option. It should be
repeated until the terminal operator tells the system that all order lines have been entered. Ways in
which a terminal operator or a TST could signal an end to the repeated exchange are discussed in
Section 4.3.2.

4.2.6 Subsequent Action
The transaction processor needs to know what to do when an exchange (including repeat cycles,
if any) has been completed. The parameter that provides this information for each exchange is
called the subsequent action parameter. Three choices are possible:

• NEXT. This indicates that the next exchange in the transaction definition should begin.
• FIRST. This indicates that the current transaction instance is to be terminated; and the

form from the first exchange of the transaction then is to be displayed so that the terminal
user can begin another transaction of the same type.

• INITIAL. This indicates that the current transaction instance is to be terminated. After
this, the transaction selection menu (or other initial operating mode defined for the
terminal) is to be displayed. (Transaction selection forms and initial operating modes refer
to what an application terminal displays when it is idle; these terms are discussed in detail
in Section 9.1.)

4-9

Transaction Processing Paths and Their Control

In the order entry example in Section 4.2.5, the subsequent action parameter would probably be
set as follows for each exchange:

• In the first exchange, the parameter is set to NEXT.
• Similarly, in the second exchange, the parameter is set to NEXT. This parameter would

only come into play, however, when the REPEAT-option loop had been terminated.
• In the third exchange, the parameter could be set either to FIRST or INITIAL. The fonner

would be appropriate if the user were likely to begin another order; the latter if the user
were likely to choose another transaction.

4.2.7 Exchange Time Limit
A time limit (in minutes) is provided for each exchange so that the transaction cannot "hang"
indefinitely. There are several things that can cause a transaction to "hang" or suspend itself in an
exchange - for instance, the lack of a response message where one is needed. There can also be
run-time problems, such as an extreme delay during communication with another transaction
processor.

The time specified in the time limit starts when the user presses a user function key. If the time
limit expires before a response message has been received, the transaction is aborted.

4.2.8 General Transaction Parameters
Besides the parameters listed before, which apply to each exchange, the transaction definition also
includes some parameters that apply to the transaction as a whole:

• Transaction Name. Each transaction is identified with a short name (up to six characters).
• Exchange Recovery. Exchange recovery is a technique for reprocessing exchanges after

certain error conditions. The transaction definition specifies whether the transaction
supports exchange recovery. Exchange recovery is fully described in Section 10.2.1.

• Message Logging. Exchange messages and other messages sent during the transaction can
be logged to the system journal device if desired.

• Data Structure Sizes. The size of the largest exchange message, the size of the transaction
workspace, and the size of the system workspace must all be specified in the transaction
definition. (The system workspace is explained in Chapter 7.)

4.3 THE EFFECTS OF TERMINAL FUNCTION KEYS
Video display application terminals have ten function keys:

System Function Keys
AFFIRM
STOP REPEAT
CLOSE
ABORT

User Function Keys
ENTER
DOT (.)
o
I
2
3

4-10

Transaction Processing Paths and Their Control

These keys cannot be used either to enter or edit data on a form. Instead, they are used to initiate
some action once all data entry and editing have been completed.

There are two groups of function keys:

• System Function Keys do not cause an exchange message to be constructed. A terminal
user avoids exchange processing by pressing one of these keys. Depending on the transac
tion definition in use and the exact key pressed, these keys can either send the user to
another exchange or terminate the transaction instance.

• User Function Keys do cause an exchange message to be constructed from the user input.
The exchange message is then routed to processing stations (usually TSTs) by the routing
list specified in the transaction definition. All the keys in this group have an identical
function; they only differ by the legend on the key cap. This legend (or a substitute
legend, if desired) can be included in the exchange message, so the TSTs can determine
which key was struck.

The terminal function keys in both groups (except the ABORT function kcy) can be enabled and
disabled in the course of a transaction. This enabling and disabling is under the control of form
definitions. The form definition specifies the keys to be enabled when the form is first displayed
and specifies how keys are to be enabled and disabled. for each reply definition. (Reply definitions
are explained in Section 4.4.5.)

The ABORT key is always enabled.

Function keys can be pressed only when the transaction processor is expecting input from the
user's terminal. For example, the user could press a function key while he is completing a form; he
could not press a function key after he has pressed ENTER and his exchange message is being
processed. This is also true for the ABORT key - it cannot abort exchange message processing
that is already in progress.

Figure 4-2 summarizes the effect of each terminal function key. Note that all the user function
keys are treated as a single type of key, because they each have the same effect on the flow of a
transaction.

4.3.1 The AFFIRM Key
The AFFIRM key interacts with two parameters in the transaction definition: REPEAT/
NOREPEAT and subsequent action.

• When the AFFIRM key is pressed, the transaction processor first tests the REPEAT /
NOREPEAT parameter for the current exchange. If this parameter is set to REPEAT,
the terminal screen is erased and the exchange is repeated. If set to NOREPEAT, the
transaction processor tests the second parameter, subsequent action.

• The subsequent action parameter can have one of three values:
NEXT. If this value is found, the transaction processor moves the user to the next
exchange in the transaction definition. If there is no "next exchange," the transac
tion processor acts as if the INITIAL value had been chosen.
FIRST. If this value is found, the transaction processor ends the current transaction
instance. Then the user is brought back to the first exchange of the same transaction
for another execution.

4-11

Terminate this
transaction
instance
abnormally;
return to
transaction
menu screen or
other initial
terminal
operating mode.

Transaction Processing Paths and Their Control

~I

W\MWW\ I

~ I

~I

~I

- - - - - - -- - - - - --- - - - - - -
User

Function Keys
AFFIRM
STPRPT
CLOSE
ABORT

Yes

I

I

I

I

I

- -- -- -

f

,.

Repeat
Exchange

?

No

1.

Last
Exchange

?

NEXT

Yes

Subsequent
Action

?

FIRST

Build and send
exchange message

INITIAL ~

No -J~ _______________ ~-

Erase screen;
repeat the
exchange.

Goto
next
exchange
in
transaction
definition.

Terminate this
transaction
instance;
return to first
exchange and
prepare for
another
execution of
the same
transacti on.

Figure 4-2 Effects of Terminal Function Keys

4-12

,

Terminate this
transaction
instance;
return to
transaction
menu screen
or other
initial terminal
operating mode.

Transaction Processing Paths and Their Control

INITIAL. Like FIRST, this value causes the transaction to be terminated. But the
user is taken to the terminal's transaction selection menu or other initial operating
mode. The user can then select a new transaction.

4.3.2 The STOP REPEAT Key
The STOP REPEAT key is similar to the AFFIRM key. The difference is that the STOP REPEAT
key never causes the REPEAT /NOREPEAT parameter in the transaction definition to be tested.
The exchange is always treated as if that parameter were set to NOREPEAT.

The STOP REPEAT key uses the subsequent action parameter as the AFFIRM key does.

4.3.3 The CLOSE Key
The CLOSE key terminates the transaction instance. The user is returned to the terminal's
transaction selection menu or other initial operating mode. The user can then select another
transaction.

4.3.4 The ABORT Key
The ABORT key terminates the transaction instance with an "abnormal" status. This means that
certain statistics are recorded, and staged file updates that are pending for the transaction instance
are not done. The user is returned to the terminal's transaction selection menu or other initial
operating mode. The user can then select a new transaction.

The ABORT key is unique in that it is the only function key that cannot be disabled. The user
may press it at any time that his keyboard is unlocked.

4.3.5 The User Function Keys
The user function keys (ENTER, DOT, 0, 1,2, and 3) have an identical effect on the flow of the
transaction: they cause an exchange message to be constructed from the form, and the exchange
message is routed to the appropriate list of stations.

User function keys are enabled and disabled in the same way as system function keys. Usually,
the ENTER key is left enabled and the others are disabled. Additional user function keys can
be enabled if a TST must be able to distinguish between two or more user data entry actions.

User function keys indicate a user's choice between several alternatives. Several user function keys
can be enabled, and the user chooses one by pressing it. If the form designer has included the
identifier of the function key in the exchange message, the TSTs that process the exchange
message can tell which key was pressed.

The user must press the Shift key when he presses a user function key. (The user function keys are
part of the numeric keypad when the Shift key is not pressed.) The ENTER key is an exception.
The ENTER key does not need a Shift key.

4.4 THE RESPONSE MESSAGES
Response messages are TST answers to exchange messages. During normal transaction processing,
each exchange message is answered by one response message. The response message is sent by one
of the TSTs that processes the exchange message, and it is sent to the terminal station that initiated
the exchange message.

4-13

Transaction Processing Paths and Their Control

Response messages serve two purposes:

• They can contain data that the TSTs have generated during the processing of the exchange
message. For example, if an exchange message contained a customer identification
number, the corresponding response message might contain that customer's record in a
Customer file.

• They can give instructions to the transaction processor to move to a specific exchange.

It is the second function - controlling movement between exchanges - that we cover next.

In most cases, response messages alone do not determine which exchange is executed next. Like
function keys, they interact with two parameters in the transaction definition. The final choice of
an exchange depends on both the specific response message and the two transaction definition
parameters.

There are six different kinds of response messages.

PRCEED
STPRPT
TRNSFR
CLSTRN
REPLY
ABORT

These response messages can be distinguished by their instruction to the transaction processor
concerning the next exchange to be executed.

Each message can include data that the TST wishes to send to the terminal. The data included in
the message does not alter the effect of the message; that is, the data cannot affect which exchange
is executed next. The data can only be used to construct the destination exchange's fQrm. The
effect of the message is determined by the kind of message the TST chooses to send.

4.4.1 The PRCEED Message
The PRCEED message is the kind of response message most commonly used by TSTs. When a TST
sends this message, the exchange executed next depends on two transaction definition parameters:
REPEAT/NO REPEAT and subsequent action.

• The transaction processor first checks the REPEAT/NO REPEAT parameter for the current
exchange. If the REPEAT parameter is set, the terminal screen is erased and the current
exchange is executed again. If the NO REPEAT parameter is set, the second transaction
definition parameter is checked.

• The second parameter can have one of three values:
If the parameter is set to NEXT, the next exchange in the transaction definition is
executed. If there is no "next exchange", the transaction processor acts as if the
INITIAL value was present instead.
If the parameter is set to FIRST, the current transaction instance is terminated. Then,
the first exchange of the same transaction definition is begun as a new transaction
instance.

4-14

Transaction Processing Paths and Their Control

If the parameter is set to INITIAL, the current transaction instance is terminated. But,
instead of preparing to execute the same transaction again, the transaction processor
returns the terminal to its initial operating mode. This will probably be a transaction
selection menu, and the user can choose a new transaction.

If a PRCEED response message contains application data, that data is used with the newly selected
exchange form definition to build the form.

4.4.2 The STPRPT Message
The STPRPT response message is like the STOP REPEAT terminal function key: it ignores the
REPEATjNOREPEAT option in the transaction definition. In other respects, the STPRPT message
is similar to the PRCEED message.

4.4.3 The TRNSFR Message
The TRNSFR response message allows a TST to override the transaction definition parameters and
select the exchange to be executed next. This type of response message is useful when a TST must
choose among two or more possible successor exchanges to the current exchange. The parameters
in the transaction definition allow only two alternatives upon completion of each exchange -
termination of the current transaction instance, or the execution of the next exchange in the
transaction definition. If you need a transaction that can take several alternative paths out of an
exchange, you must use the TRNSFR message in your transaction design to overcome this limitation.

When a TST issues a system call to send a TRNSFR response message, it must specify an exchange
name. This name, which corresponds to the short name (or label) given to an exchange in the
transaction definition, identifies the exchange to be executed. The transaction instance transfers
execution to this exchange, no matter where the exchange may be in the transaction definition.

If a TST chooses an exchange name that happens to be the first exchange in the transaction
definition, a new transaction instance is not begun. The same transaction instance continues, just
as if the chosen exchange were elsewhere in the transaction definition.

NOTE
This is a different effect from the interaction
between a PRCEED message and a FIRST
parameter in the transactio-n definition, where a
new transaction instance would begin.

If a TRNSFR response message contains application data, that data is used with the form definition
from the specified exchange to build a form at the user's terminal.

4.4.4 The CLSTRN Message
The CLSTRN response message causes the current transaction instance to be terminated. The
terminal reverts to its initial operating mode, which will probably consist of a transaction selection
menu. The user can then choose a new transaction.

4-15

Transaction Processing Paths and Their Control

If a CLSTRN response message contains application data, that data is used with the form definition
for the terminal's initial operating mode. That is, if the terminal's initial operating mode consists
of a transaction selection menu, the application data is available to the definition of that form and
may be included when the form is displayed at the terminal. Similarly, the application data is
available to the form definition of the first form of the designated transaction, if that is the
terminal's initial operating mode. (Initial operating modes are described in Chapter 9.)

4.4.5 The REPLY Message
The REPLY response message indicates that the user should remain in the current exchange. But
before the user is allowed to enter data to the exchange form, the form will be modified as defined
in the form definition.

REPLY response messages are typically used to return error messages and similar data to the
terminal. The REPLY response message tells the user to "try again" with different input data. If

. he enters different data, it will be processed like his first entries.

Each form definition can contain one or more reply definitions. Each reply definition specifies
several modifications that might be applied to that form. Some aspects of a form can be modified
by a reply, such as:

• The text displayed in any field
• The set of function keys that are enabled
• The position of the terminal cursor

Yet, some aspects of a form are "frozen" when a form is first displayed and cannot be changed by
a reply:

• The size of a field
• The data entry rules for a field
• The mode in which a field is displayed (such as, black-on-white)
• The rules for assembling an exchange message

Reply definitions are given identifying numbers in the form definition. A TST specifies the
appropriate identifying number when it issues the system call that sends the REPLY response
message.

When the REPLY response message is received at the terminal station, the form modifications
specified in the specified reply definition are _made. The user is then allowed to enter data and/or
press any of the enabled function keys. If the user presses a user function key, an exchange message
is constructed exactly as during the first cycle through the exchange. That exchange message is
given the same routing list, and the exchange processing begins again with the new exchange message.

If a REPLY response message contains application data, that data is used with the specified reply
definition from the current form. Thus, the data is available to the reply definition and may be
displayed on the form as part of the reply modifications.

4-16

Transaction Processing Paths and Their Control

For example, a reply definition for error messages might specify that 80 characters of text are to be
taken from the REPLY response message and placed in a field on the form. A TST could then
invoke this reply definition by sending a REPLY response message. The message would have to
specify the proper reply definition number, as well as 80 characters of error message text.

4.4.6 The ABORT Message
The ABORT response message is similar to the REPLY response message. The difference is that
after the reply definition is applied to the form, any function key struck by the user acts like an
ABO R T function key.

This message enables a TST to inform the user of the reasons for the ABORT condition and lets
the user read the informational message before the terminal reverts to its initial operating mode.

Do not confuse the ABORT response message with the TABORT system call. The TABORT call
aborts the transaction instance immediately, and the user's terminal reverts to fts initial operating
mode without any possibility of an informational message. Consult the TRAX Application
Prog,ammer's Manual for further information about the T ABORT system call.

4.5 AN EXAMPLE OF TRANSACTION PROCESSING PATHS
Let us return to the change customer transaction we have been using for an example in previous
chapters.

Figure 4-3 shows how the transaction is divided into exchanges and shows the form and TSTs for
each exchange. The arrows are possible processing paths.

Two things about the processing flow in Figure 4-3 deserve special attention:

1. Figure 4-3 shows two response messages during the processing of the second exchange.
One message displays a data input error message, and the other displays a confirmation
message. Only one of these messages is sent during each execution of the transaction.
If the VALIDC TST decided that a data field was invalid, it would send an error message
and remove the REWRIT TST from the routing list of the exchange message. However,
if the V ALIDC TST found no problems with the data, it would not send the error
message, and the REWRIT TST would send the confirmation message to end the
transaction.

2. At the end of the second exchange (after the confirmation message has been displayed)
two function keys are enabled: The AFFIRM and the CLOSE keys. (The ENTER key
has been disabled.) These two function keys have these effects:
• The AFFIRM key takes the user back to the beginning of the transaction so that

another customer record can be changed.
• The CLOSE key takes the user to the transaction selection menu, so that another

transaction can be chosen.
Both keys end the current transaction instance.

You may have noticed that there is no provision in the first exchange for a nonexistent customer
identification number or an invalid input format. As an exercise, you may want to add a transac
tion processing path to the diagram for this kind of error message. What kind of response message
will the TST send? Will the TST include application data in the message? If so, what will this data
be? What will have to be added to the first exchange's form definition to process this message
properly?

4-17

Transaction Processing Paths and Their Control

TRANSACTION STRUCTURE DIAGRAM

TRANSACTION PROCESSOR

TRANSACTION NAME

IslAIMlplLIEI

/CIHIGICIUISI

IclHIGIEIXlll
IclHlclul sill

PAGECI:D OF rn
EXCHANGE NAME

FORM NAME

CONVERSATION

INITIAL DISPLAY

START

REPLY __

0

CLOSE to enter
To transaction customer number
selection form

AT END: D - REPEAT

0- NOREPEAT

MESSAGES

REPLY
Response message contains

ENTER

error message text

Exchange message contains
customer number

[8] - NEXT

D - FIRST

D -INITIAL

PROCESSING

D
D
D
D
D

"'--ERROR

Read
customer

record

[R] - WAIT

D-NOWAIT

Figure 4-3 An Example of Transaction Processing Paths

4-18

To

CHGEX2

FROM

CHGEX1

CLOSE

Transaction Processing Paths and Their Control

TRANSACTION STRUCTURE DIAGRAM

TRANSACTION PROCESSOR ISIAIMI plL IE I
ICIHIGICIUISI

ICIHIGIEIXI21

jCIHlclulslll

TRANSACTION NAME

EXCHANGE NAME

FORM NAME

CONVERSATION

INITIAL DISPLAY

REPLY

REPLY

ENTER

MESSAGES

Response message contains
error message text

Response message contains
no data

Exchange message contains
customer data

PAGE ~ OF []I]

PROCESSING

D
D
D
D

Verify
data

OK

Write new
data into

file

To first exchange

AT END: 0 - REPEAT

~ - NOREPEAT

D - NEXT

00 - FIRST

o -INITIAL

00- WAIT

D-NOWAIT

• Only enabled when form is first displayed and after reply 1. • Only enabled after reply 2.

Figure 4-3 An Example of Transaction Processing Paths (Cont.)

4-19

CHAPTERS

FORMS AND THE APPLICATION TERMINAL LANGUAGE

This chapter explains important forms characteristics and introduces the language you will use to
write form definitions. At the end of the chapter, there is a form definition for an example
transaction.

5.1 THE PURPOSE AND SCOPE OF THE APPLICATION TERMINAL LANGUAGE
The Application Terminal Language (ATL) is the language you will use to write form definitions.
You can express every aspect of form design and usage with ATL. This includes:

• The layout of the form as it appears on the user's terminal
• The rules for how the user fills out the data fields on the form, including special

restrictions for characters entered in each field and rules for field justification
• The function keys that the user uses at various points in the conversation
• The format of the response messages, if any, that supply data while the form is being

generated at the user's terminal
• The format of the exchange message constructed from the data the user enters
• The modification to the form on instruction from a TST
• Special form options, such as whether the form is to be designated as a transaction

selection menu

Because ATL is a specification language, you will probably find it convenient to write form
definitions yourself rather than ask an application programmer to write them. It will not take you
long to learn ATL. In fact, you may find that writing your own form definitions saves you
significant paperwork, because once you prepare a form definition, the ATL compiler (see
Section 5.2) generates most of the documentation your application programmers need - even
mockups of each form, drawn to scale!

5.2 PREPARING A FORM DEFINITION WITH ATL
ATL is a compiled language. This means that there is an ATL compiler, and the compiler
processes your source file into an encoded form definition that the transaction processor can use.

Creating an ATL source file is like creating a source file for any TRAX language. You use a
support environment terminal and the EDIT program. Follow your preference about creating your
source file: you can write the definition on paper and enter it at a terminal, or you can sit at the
terminal and enter the definition as you develop it. The relative simplicity of A TL, as well as the
power of the EDIT program when run from a video display terminal, makes either method
feasible.

Once you prepare a source file, you must compile it. The A TL utility program does this for you.
This utility program also manages the form definition files. You can use the A TL utility program
to see what forms have been installed or to delete forms from the system, as well as to compile
and install new forms.

5-1

Forms and the Application Terminal Language

When you use it to compile a form definition, the ATL utility program will do this:

• Scan your source file, checking your ATL statements for validity and consistency
• Generate an encoded form definition that can be used by a transaction processor
• Generate printed output that documents the compilation process and selected form

parameters

The ATL utility program provides options that allow you to print all, part, or none of the
compilation output and to install the finished form definition in a transaction processor form
definition file.

5.3 KINDS OF FORMS
You can use the Application Terminal Language to define three kinds of forms:

• Entry Forms. These forms are used at the beginning of each exchange to collect data from
the user. Your transaction processor will probably have more of this form than any other.
The names of these forms appear in transaction definitions.

• Transaction Selection Forms. These are the "menu" forms that let a user choose the
transaction he wishes to execute. As such, they are never part of the definition of any
transaction. Instead. a terminal can be assigned one of these transaction selection forms,
and the form will be displayed between transactions. Usually, these forms collect one
item of data: the name of the chosen transaction.

• Report Forms. These forms are used to print data at output-only application terminals.
Like transaction selection forms, they are never part of a transaction definition. Instead,
each report message containing data to be printed also specifies a report form that
determines the format to be used. Unlike the other two forms, report forms are never used
interactively: that is, they never collect data from a terminal user. So, they never generate
exchange messages and use only a small proportion of the ATL language facilities.

Even though only one type of form (the entry form) ever becomes part of a transaction definition,
all three forms are kept in the transaction processor's form definition file. Within the file, they are
identified by a short name (up to six characters in length) that is assigned when they are placed in
the file. This six-character name is used to access forms within the transaction processor.

5.4 FORMS AND FIELDS
A form is composed of fields. Each field is a defined, contiguous area of the screen that has
predefined characteristics.

Fields may not overlap one another; in other words, each character position on the screen or page
may belong to only one tleld.

Any area of the screen or page that is not part of a field cannot contain application data.

There are five kinds of tlelds in A TL:

• Two fields, DISPLAY and PROMPT, are used to display information for the user.
• Two other fields, MENU and INPUT, are used to collect information from the user.
• The last field, PRINT, is used to print information on a hard-copy device.

5-2

Forms and the Application Terminal Language

Fields can continue from the end of one line to the beginning of the next line. This is considered
a "contiguous~~ field, and the field uses the two lines as one long line.

5.5 ATL LANGUAGE ELEMENTS
The statement is the fundamental grammatical unit in the Application Terminal Language. There
are twelve statements in ATL. Each statement begins on a new source line, and has a unique
statement keyword.

A statement keyword is often followed by one or more statement parameters. These parameters
provide additional information about the statement's desired effect. Parameters are separated from
the statement keyword by the equal symbol (=) and from each other by commas.

Following the statement keyword and the optional statement parameters, there may also be one
or more clauses. Each clause modifies the effect of its associated statement.

Each clause has a clause keyword (by which it is recognized) and perhaps one or more clause
parameters (which specify the effect desired). Like statement keywords and statement parameters,
clause keywords and clause parameters are separated from each other by an equal symbol (=), and
the clause parameters are separated from each other by commas.

A typical ATL statement is shown here. Note the statement components:

Connector

LENGTH = 15
CLEAR = "X"
ATTRIBUTES = REQUIRED

/LABEL = NAMED1,

Clause / \ ~ Clause
Keyword Parameters

Connector

5-3

Forms and the Application Terminal Language

The format of this statement is arbitrary; the_ format shown was selected for easy reading. The
only format restriction is that the statement keyword (INPUT) must begin on a new line.

Figure 5-1 might help you see the general syntax rules for ATL statements. This figure shows
which ATL language elements follow one another. As long as you follow the arrows in a forward
direction, any path through this diagram will describe a legal ATL statement. (Of course, specific
ATL statements make further restrictions upon syntax.)

~
New

Line

Statement - Statement
Keyword ~ - Parameter ~

'-- ,--
-,

Clause

Keyword

--
I "

, Clause
Parameter

t --
-

"

End

of

Statement

Figure 5-1 ATL Statement Syntax Diagram

5-4

Forms and the Application Terminal Language

You might find it helpful to take the typical ATL statement shown before and verify that it is
legal according to the syntax diagram in Figure 5-1.

5.6 STATEMENT GROUPS
Remember, a form definition serves many purposes. Each aspect of a form must be specified in the
form definition; and each specification must be handled by a separate group of one or more kinds
of ATL statements.

These groups are listed in Table 5-1. with the ATL statements for each group. You can learn more
about these statements and how they are used in the ATL Language Reference Manual.

Table 5-1 ATL Statements (Grouped by Purpose)

Usage

Transaction
Entry Selection Report

Group Purpose Keyword Forms Forms Forms

A Define General Form
Parameters FORM x x x

B Define Fields on Screen INPUT x x
PROMPT x x
DISPLAY x x
MENU x x

C Define Fields on Report PRINT x

D Define Exchange Message MESSAGE x 1

E Define Reply Actions REPLY x 2

F Compiler Directives DEFAULT x x x
REPEAT x x x
REND x x x
END x x x

Ipossible in special circumstances
2These replies are not activated by a TST; they are used for error messages during transaction selection

5-5

Forms and the Application Terminal Language

5.7 STATEMENTORDER
Because A TL is a specification language and not an algorithmic language, the order in which
statements appear in the definition is generally unimportant.

There are, however, five instances where the order of statements becomes important:

• Each form definition should begin with a FORM statement and must end with an END
statement.

• The INPUT statement (Group B, Table 5-1) defines a field so the user can enter data. The
user's cursor advances from INPUT field to INPUT field in the order these fields are defined
in the form definition.

• The placement of DEF AUL T statements (Group F) is important, because these statements
affect only those statements that follow them in the form definition.

• The placement of REPEAT and REND statements (Group F) is important, because they
affect only those statements between them.

• The placement of statements that use the dot symbol (.) in statement or clause parameters
is important, because the value of this symbol depends on preceding statements. The dot
symbol is explained in Section 5.9.

Although statement order is generally not important to the ATL compiler~ you should organize
your form definitions in sections conforming to statement Groups A through E in Table 5-1.
Statements in group F, of course. must be scattered throughout the form definition.

This way, you will have distinct sections within each form definition corresponding to the
different purposes of a form. For example, one section might define the fields and where they
appear, another section might define the format of the exchange message, and so forth. This
makes your form definition easy to understand and maintain.

You can preserve these distinct sections of the form definition even if you use the REPEAT and
REND statements. (These statements allow you to define a series of related fields, or other
aspects of a form, without having to enter separate specifications for each field. To preserve the
distinct sections of the form definition, use several REPEAT/REND pairs: one pair in the section
that defines fields; another in the section that defines the exchange message; and perhaps another
in the section that defines the effect of replies. You could define the fields, their position in the
exchange message, and their modifications during replies in a single REPEAT/REND sequence - bu t
you would have to abandon separate form definition sections.

Use multiple REPEAT/REND sequences without worrying about their effect on system performance.
REPEAT/REND sequences are only a compiler shorthand, and they do not result in statement
loops that are executed at run time!

See the ATL Language Reference Manual for details on REPEAT/REND.

5.8 COMMENTS IN FORM DEFINITIONS
Comments are a valuable part of form definitions. Consequently, ATL allows you to insert
comments in a fonn definition at any point in the source file. These comments help document
the application and simplify maintenance of the form definition.

5-6

Forms and the Application Terminal Language

Begin each comment with an exclamation point (!). The ATL compiler ignores source text
beginning with an exclamation point. (This does not include exclamation points within text
literals.) After an exclamation point, the ATL compiler resumes scanning text at the next source
file line.

5.9 SHORTHAND NOTATION
ATL allows two shorthand notations to reduce bulk in your source files and to speed the process
of writing form definitions.

1. REPEAT and REND Statements (Section 5.7) allow you to avoid repetitious sections of
a form definition. Enter a portion of a repetitious section, and the compiler expands it
for you when the form definition is compiled.

2. The Dot Symbol (.) allows you to have a numeric parameter behave in a sequential
manner. For example, the position of an INPUT statement might be better expressed as
"two spaces to the right of the last field" rather than as an exact row and column
position. You can use the dot symbol in two places:
a. Group Band C Statements. You may use the dot symbol in both the row and column

parameters of Group Band C statements. When used in a line-number parameter, the
dot symbol stands for the line on which the previous field was placed. When used in
a column-number parameter, it stands for the first column to the right of the previous
field.

b. The REQUEST Function. The REQUEST function is the ATL construct that you
use to retrieve data from a response message. You may use the dot symbol as the
first parameter of this function; it specifies the byte position in the response message
where the data is to be found. In this case, the dot symbol stands for the first byte
of the response message immediately after the last data accessed by the REQUEST
function. Successive REQUEST functions can retrieve seq uential fields from a
response message by using the dot symbol together with explicit field lengths as the
second REQUEST parameter.

Whenever you are allowed to use the dot symbol, you can combine it with a numeric offset either
plus or minus. For instance, to indicate the line below the previous field, the parameter .+ I might
be used.

Several examples of the dot symbol are listed here.

INPUT = .,20

DISPLAY = .+2,1

PROMPT = .,.

VALUE = REQUEST (.,6)

An INPUT field on the same line as the
previous field, but beginning at column 20

A DISPLAY field two lines down from the
previous field, beginning at the left margin

A PROMPT field immediately to the right
of the previous field

Retrieves a 6-character data field from
a response message, beginning at the end
of the previously retrieved data field

5-7

Forms and the Application Terminal Language

WRITE = FLDOI,REQUEST(.+IO,25)

5.10 ATL AND FORM DESIGN

Retrieves a 25-character data field from a
response message, beginning 10 characters
after the end of the previously retrieved
data field

ATL is a simple language, but that does not limit the forms it can define. Good form design is
a challenge, and it is an exercise in human factors and aesthetics as well as a technical activity.
When your application is installed, the forms are its most visible component. And, mediocre fonn
design takes its toll in user productivity and morale. With this in mind, be sure to spend the
necessary effort and time to design suitable forms for your applica tion.

5.11 A TYPICAL FORM DEFINITION
A typical fonn definition begins on page 5-9. It is the fonn from the second exchange of the
change customer transaction.

As you recall, this form displays the old values from a customer record and allows the user to edit
those values. The new values are then sent back to the system in an exchange message.

This form has two defined replies:

Reply I: This reply displays error messages received from TSTs. The enabled function keys
are not changed, so the user can edit the dCi ta he has entered and send it again.

Reply 2: This reply is used only after the new customer data has been written in the
customer file. It displays a confirmation message for the user and adjusts the
function keys so that the user can press only the AFFIRM key.

5-8

Forms and the Application Terminal Language

1*** , , , ,
1
1
1
1
1
1

The seco~d form fo~ t~e C"a~ge Custo~er tra~.actio~

Thi. form disc 1ays the selected customer master file record
a~d .,lows the user to change the data contai~ed ;n it,
The eh.~ged data is the~ sent baCk to the System ;n an
exehange message,

1***

'***
1
, Grouo A State~e"ts • Define Ge"era1 Parameters
1
1**

Of FAULT

FOR~

E~ABLE = AFFIRM
ENABLE : CLOSE
CLEAR : " "

SPLIT:8 18 lines of display area

1***
1
1 GrouD B Stateme~t9 • Define FieldS 0" Scr~en

1
1***
1=====================================::=========================

The two error text f1e108 are used to display error
meSsages contained i~ response mes.ages

1===-==
DISPLAV = 3,12

VALUE: "Customer ~astpr File Subsyste~ - C~anQe Customer Tra"s8ct10~"
LENGTH : 60
ATTRIBUTE : REVERSE,~OBLANK

DISPLAY = 5,1
LABEL = REPLY,T~XT,A
LENGTH = 80

DISPLAY = b,1
LABEL = REPLY,TEXT.B
LENGTH = 80

5-9

Forms and the Application Terminal Language

PRO~PT = 1,1
VALUE = "CUltome~ Number"

INPUT I: .,20
LABEL = CUST.NO
VALUE = REQUEST(.,~)
~TTRIBUTE = REVE~SE,NOMODIFY

PRO~PT = .+1,1
VALUE = "Cu.tome~ Name"

INPIIT ::z .,2e
LABEL = CUST,NAME
LENGTH = 3(:5
VALUE = REQUESTC,,]0)
ATTRIBUTE = REQUI~ED,REVERSE

PROMPT = .+2,1
VALUE = "Add~es8"

INPIIT = ,,2~
LABEL = ADDRESS.'
LtNGTH = 30
VALUE = REQUESTC,,]"')
ATTRIBUTE = REVE~SE

INPtJT = .+1,20
LABEL = ADDRESS.S
LENGTH = 317,1
VALUE = REQUEST(,,3~)
A1T~IBUTE = REVEqSE

INPIIT = .+1,20
LABEL = ADD~E55.C
LENGTH = 30
VALUE = REQUEST(.,30)
ATTRIBUTE = REVERSE

PRO"'PT = ,+1,1
VALUE = "ZIP Co~e"

INPtJT = .,'45
LABEL = ZIP,CODE
LE~GTH = 15
VALUE = REQUEST(.,S)
ATTRIBUTE ::I PEVERSE,NUME~IC,FULL

PF'Qfo1PT = .+1,1
VALUE = "Te'epho~e"

pRO""PT = .,21&3
VALUE = "C"

INPUT c "_
LABEL = TEL,AREA,CODE
LENGTH = 3
VALUE = REQUESTC,,])
ATTRIBUTE = TAe,REVERSE,NU~ERIC,FULL

5-10

Forms and the Application Terminal Language

PROMPT = ."

INPUT :I

VALUE c ") "

, , ,
LABEL = TEL. EXCHANGE
LENGTH = 3
VALUE = REQUESTC,,3)
ATTRIBUTE = TAB, REVERSE, NUMERIC , FULL

PROMPT :I '"

INPUT =
VALUE = "_It

. , ,
LABEL = TEL.EXTN,NO
LENGTt-I = t4

VALuE = R~QUEST("a)
ATTRIBUTE = REVERSE,NUMERIC,FuLL

PRO"'PT = ,+2,1
VALUE = "Atte~t.o~"

I~PIJT I: .,2k'
LABEL = ATTE~TION
LENGTH = 2~
VALUE :I REQUESTC.,20)
ATTkIBUTE = REVEwSE

PRO~PT = ,+2,1
VALUE = "C~ed1t Li~it ($)"

INPUT = ,,20
LABEL = CREDIT.LIMIT
LENGTH = 12
VALuE = REQUESTC.,12)
CLEAR = t10"
ATTRIBUTE = RIGHT.REVERSE,SIGNED

I~=================:===

This 11 a pro~pt field t~at tell. tne user what
fu~ction keys may be used. The eont~nt of this field
mav be c~.nged by reDly definitions (see be'o~) if tnole
re~ly definition. c~.~ge the enabled function keys.

J~.====:===

PRO~PT • 15,1
LABEL = KEY.P~OMPT
LENGTH = 80
VALUE = "Functio" Keyll H,

"ENTER to ref1'e custome~ ~eeord, ",
"CLOSE to Quit ~1thout filing"

ATTRIBUTE. REVERSE

5-11

Forms and the Application Terminal Language

a**
I
I Grouc 0 State~e~ts • Oef1~e Exe~.~ge ~es •• ge ,
1**

MFS5AGE = 1
VALUE a

CUST,NO,
CUST,NA~1E,

ADDRESS,A,
ADDRESS,B,
ADDRESS,C,
ZIP.CODE,
TEL,ARE.,COOE,TEL,EXCHANGE,TEL,EXTN,NO,
ATTENTION,
CREDIT.LIMIT

1*****·*******-*********·_*******-*_·**·******************* ,
, Groue E Stateme~ts - Def1~e Ree14es ,
1*************************************·********************

Icc:_==================:=:=========:===:=====:============= , ,
I , , ,
I
I , , ,

Reclv 1 ., effir~ative reclYI

Enable AFFIRM Key
Disen'e all ot~er function keys
~r1te "TRANSACTION COMPLETE" O~ seree~

Erase old funct1o~ key ~essage
write ne~ fu"etio~ key messaQe
~r1te ass1g~ed Cu,to~er Nu~ber o~ screen
~rite Replv Nu~ber into Screen header

1==
REPI.Y = 1

ENABLE = AFFIRM
DISABLE = tNTER
~~ITE = REPLY.TEXT,A," *** TRANSACTIO~ COMPLETE ***"
~RITE = KEY.PROMPT,FILL(" ",80)
WRITE = KEY.PROMPT,"Funct1on Keys: AFFIRM to croceed"

I·==~====================================:============ =====

Re~lv 2 ~s t~e re~'y fo~ va11dat;o~ error ~essagel

Write 2 80-c~araeter error mesleqe8 o~to .eree~
write recly number .~to le~een header

le:===
R~PL.Y = 2

WRITE • REPLY,T~XT,A, REQUEST(1,80)
WRITE a REPLY,TEXT,B, REQUEST(81,80)

END

5-12

CHAPTER 6

TRANSACTION STEP TASKS

This chapter explains how transaction step tasks (TSTs) are written, compiled, debugged, and
finally installed as part of a transaction processor.

6.1 THE PURPOSE OF TSTS
TST stations are usually responsible for the application-related processing in a transaction processor.
Other stations play primarily "overhead" or "housekeeping" roles - managing terminals, storing
messages, transmitting data to other transaction processors. It is typically the TST stations in a
transaction processor that do the application processing - checking user input, calculating results,
reading records from files, updating files.

As you know from earlier chapters, a TST accomplishes this by accepting an exchange message
that contains data to be processed and returning a response message that contains results of that
processing. Each TST in a transaction processor has a predefined purpose and applies a specified
sequence of processing steps to an arriving exchange message. The definition of each transaction
determines which TSTs are activated to process that transaction's exchange messages.

While processing an exchange message, TSTs typically take one or more of these actions:

• If the transaction instance has originated at an application terminal, the exchange message
contains user input. The TST can validate this input and perhaps edit it to packed rather
than display format.

• The TST retrieves the data file records needed to process the transaction instance. Fre
quently, the retrieved records are then placed in the transaction workspace so that sub
sequent TSTs access them easily.

• The TST applies logical and arithmetic calculations to the data in the exchange message
and also to the data retrieved from files. The results of these calculations are placed in the
transaction workspace, if necessary, for the benefit of subsequent TSTs.

• The TST updates data files. It updates records read by previous TSTs, as well as records
that it has read itself.

• The TST controls the progress of the transaction instance by altering the contents of the
exchange message, the routing list, or the exchange that will be executed next. In circum
stances that warrant it, the TST terminates the transaction instance.

• The TST creates, writes in, or reads from work files. Work files are not part of the appli
cation's permanent data file set but are temporary files used by transaction instances.

• The TST deposits messages at a mailbox station and retrieves messages left at mailbox
stations.

• The TST spawns other transaction instances. That is, the TST itself initiates new trans
action instances with exchange messages of its own construction. These spawned transac
tion instances have a life of their own, separate from the transaction instance the TST is
processing at the time.

• The TST sends data to an output-only terminal to be printed.
• If it is processing a transaction instance initiated by a user at an application terminal, the

TST sends data to the terminal for display.

6-1

Transaction Step Tasks

6.2 GENERAL STRUCTURE OF A TST
The central element in a TST is an application program. This program can be written in your
choice of three languages:

• COBOL
• BASIC-PLUS-2
• MACRO-II

NOTE
MACRO-II is not recommended for applications.

You can find more about these languages in the corresponding TRAX language reference manual.

The application program is written as a subroutine. That is, the program has the same structure
that it would have if you were going to call it from a mainline program written in the same language.

As a subroutine, the application program must accept two parameters: an exchange message data
structure and a transaction workspace data structure. Each time the TST is activated, the trans
action processor will provide a pair of parameters - an exchange message and its corresponding
transaction workspace.

The entry point in this application program (that is, the instruction at which execution must
begin) must always be called TSTEP. This stands for "TST Entry Point" and marks the place
in the program where the transaction processor will start execution. For COBOL and BASIC
PLUS-2, this means that the program must be called TSTEP as well, because these languages
use the same name for the entry point in the compiled code as for the name of the entire module.
You will have to use comments in each program to identify the program, and the "official" pro
gram name must be TSTEP.

NOTE
The term "program name" in the preceding
paragraph applies to the name declared in the
program itself. For example, it refers to the
name used in the PROGRAM-ID clause of a
COBOL program. This is the name that must
always be declared as TSTEP. The source
file where the program's source code resides
and the task image file where the executable
program image resides can be given any name
you wish.

The central application program in each TST can have separately compiled subroutines if you wish.
The languages that you can use to write subroutines will depend on the capabilities of the language
you have chosen for the central program. For example, COBOL programs can have subroutines
written in MACRO-II; but MACRO-II programs cannot have subroutines written in COBOL. For
further information about a language's restrictions on separately compiled subroutines, consult
the appropriate language reference manual.

6-2

Transaction Step Tasks

A TST in its ready-to-execute state is a task image. As such, it will contain additional code besides
the compiled application program and its subroutines. These additional support routines serve
several purposes:

• Initialization when the TST is first activated
• Support for special transaction processor functions, such as the system calls available to

TSTs
• Linkage to RMS, the TRAX file access subsystem
• Linkage to run-time support for the programming language

For system efficiency and memory conservation, each TST task image does not contain copies of
all supporting routines. Instead, a single set of support routines (called the TST library) is kept in
the transaction processor. Each TST then contains only the minimum linkage routines, and the
TST library is connected to the TST task image by memory mapping techniques when the TST is
activated. This results in smaller TST task images, quicker TST task loading from disk, and lower
memory requirements for a running transaction processor.

6.3 PROGRAMMING A TST
You will find that programming a TST is similar to any programming project in the language you
have selected. You must remember, of course, to provide the two input parameters to your TST;
and you must familiarize yourself with the system calls that TSTs use to interact with the trans
action processor. Other than these two considerations, coding TSTs is straightforward.

6.3.1 Input Parameters
The application program you write for a TST is a subroutine, and this subroutine has two input
parameters: the exchange message and the transaction workspace for a transaction instance.

These parameters are passed by name and not by value. This means that the master copy of these
data structures is passed to the application program; if the application program changes data in
either of the two data structures, the changes will be seen by the TSTs that subsequently receive
them.

In addition, the data structures are passed without moving them in memory. That is, an exchange
message does not move from TST to TST; it remains in a fixed memory location and the TSTs are
"connected" to it by memory mapping techniques. This means that the TST must use specific
language constructs to access these parameters:

• In COBOL, the linkage is accomplished through the LINKAGE section of the DATA
division and the USING clause of the PROCEDURE division.

The data structures for both input parameters are defined in the LINKAGE section, and
they are given data names so they can be referenced in the rest of the program.

Then the USING clause names the two data structures. The first data name designates
the data structure that will be used to access the exchange message; the second, the trans
action workspace.

Once this linkage is set up, the COBOL programmer can access the exchange message and
transaction workspace without concern for special techniques.

The following example shows fragments of a COBOL TST, illustrating the LINKAGE
section and the USING clause.

6-3

Transaction Step Tasks

IDENTIFICATION DIVISION.

PROGRAM- 10 TS'I'EP.

DATA DIVISION.

LINKAGE SECTION.

01 EXCHANGE-MESSAGE.

03 FIELD-l

01 WORKSPACE.

03 WKSPC-FIELD-l

WORKING-STORAGE SECTION.

USAGE COMP-3

USAGE DISPLAY

PIC 999V99.

PIC X (20) .

r A "'-
PROCEDURE DIVISION USING EXCHANGE-MESSAGE, WORKSPACE.

FIRST-PARAGRAPH.

LAST-PARAGRAPH.

EXIT PROGRAM.

6-4

Transaction Step Tasks

• In BASIC-PLU5-2, the linkage is accomplished with enhancements to the language features
normally used when writing subroutines.

Instead of starting his program with the SUBROUTINE statement, a BASIC-PLUS-2 pro
grammer starts a TST with a special TST statement. This statement declares the program
a TST, assigns the mandatory name TSTEP to the program, and designates the two manda
tory parameters: the exchange message and the transaction workspace.

If the programmer wishes to break the exchange message into component fields for easier
programming, he uses one or more MSGMAP statements. The MSGMAP statement is simi
lar to the MAP statements used to break a record into component fields, except the
MSGMAP statement operates on the exchange message rather than a record in a flie.

Or, if the programmer wishes to break the transaction workspace into component fields
for easier programming, he uses one or more WRKMAP statements. The WRKMAP state
ment is similar to the usual MAP statement, except the WRKMAP statement operates on
the transaction workspace rather than·a record in a file.

Finally, the programmer ends his program with the TSTEND statement rather than the
END statement.

Once these conventions are satisfied, the TST programmer accesses fields in the exchange
message and the transaction workspace by using the variable names declared in the
MSGMAP and WRKMAP statements.

Here are portions of a BASIC-PLUS-2 TST, illustrating these conventions.

100 TST TSTEP (MSG.SPACE$,WRK.SPACE$)

200 MSGMAP
EM.CUSTOMER.REC$ =36

210 MSGMAP
EM.CUSTOMER.NO$ =6
EM. CUSTOMER. NAME $ =30

300 WRKMAP
TEMPl$ =10
TEMP2$ =25

(BODY OF PROGRAM)

32767 TSTEND

6-5

Transaction Step Tasks

• In MACRO-II, the parameters passed are not the data structures themselves, but addresses
where those data structures may be found. The data structures are mapped into the TST
address space before the TST is activated, and the address parameters are always 16-bit
addresses within the TST address space.

You can find more information about MACRO-II TST programming techniques in the
TRAX Application Programmer's Guide.

6.3.2 System Calls
A TST must use a TRAX system call whenever it undertakes some action which is not supported
directly by the language in which the TST is programmed. These actions are primarily control
functions for the transaction processor: adding or deleting stations on routing lists; sending response,
mailbox, or report messages; asking for information about the state of the system or the current
transactior instance. Each of the available system calls is discussed in the TRAX Application
Programmer's Guide.

The language you use to write a TST will affect the way in which the system calls are programmed:

• In COBOL, the CALL verb is used with its USING clause. The parameter following the
CALL verb is a data name or character string containing the name of the routine being
called. Following this comes the USING clause, which lists each of the parameters being
passed to or from the routine.

• In BASIC-PLUS-2, the CALL verb is used with its BY REF clause. The parameter follow
ing the CALL verb is the name of the routine being called. This is followed by the BY
REF clause, which lists each of the parameters being passed to or from the routine.

NOTE
A routine name is coded directly into the CALL
statement; the routine name is not held in a
string variable or string constant as with COBOL.

6.4 DEBUGGING A TST
Unlike programs written for other systems or for use in the support environment of a TRAX system,
TSTs are not invoked directly from a terminal. TSTs execute in a "background" mode without
direct connection to application terminals. This means that programmers have to use a different
technique to test and debug TSTs they write.

TRAX provides three debugging techniques for TSTs. These techniques are presented here as they
would probably be used during the testing of a newly written TST. The methods are:

• Stand-alone debugging
• Debugging in a transaction processor
• Traced operation in a transaction processor

6.4.1 Stand-alone Debugging
For rudimentary debugging, the programmer must build a stand-alone task image containing the
TST and necessary support software: RMS access methods, TST library modules, support routines
(the Object Time System or OTS) for the programming language, and so forth.

6-6

Transaction Step Tasks

These modules are included in the task image because the task image will be debugged in the sup
port environment and not under the supervision of a transaction processor. The task image must
therefore be self-supporting.

During this phase of debugging, the TST cannot receive exchange messages and system workspaces
from the transaction processor nor can it send messages to other transaction processor components.
Instead, the programmer prepares a file containing test exchange messages and workspaces, and any
messages sent by the TST are saved for the programmer's inspection. Similarly, any calls the TST
makes to the TST library will be noted and logged for the programmer's inspection; but the calls
will have no other effect in most cases.

The programmer can use the features of his programming language to assist the debugging process.
For instance, he will be able to use BASIC-PLUS-2's extensive breakpoint and variable inspection
facilities.

6.4.2 Debugging in a Transaction Processor
Once the TST begins to function on a rudimentary level, it can be installed in a transaction proc
essor for in-place testing. This involves the building of a new task image, because many of the
modules that were included in the stand-alone task image are no longer required. The modules
will be provided by the transaction processor via memory-mapping techniques.

In this phase of debugging, the TST becomes an operating part of the transaction processor; but it
still retains a connection to a support environment terminal so the application programmer can
inspect the TST operation.

The TST is activated in the usual way when exchange messages arrive at its TST station. When it
is activated, a breakpoint previously set within the TST activates the support environment termi
nal. The programmer can step through the TST as it processes the newly arrived exchange message.
Now, all file accesses and system calls can have their proper effect, because the TST has been
installed as part of the transaction processor.

For this phase of debugging, then, there will be two terminals involved with the TST: the applica
tion terminal that provides the exchange message the TST is processing and the support environ
ment terminal the programmer will use to debug the TST.

6.4.3 Traced Operation in a Transaction Processor
A third debugging technique is sometimes useful to debug TSTs as they operate in a transaction
processor. This technique involves a trace log, which records significant events as they occur in
the transaction processor.

In this technique, no support environment terminal is involved. The transaction processor runs on
its own, without outside intervention. But a special option is invoked that causes the transaction
processor to record each event: messages being sent, system calls being isssued, and so forth.

After some period of traced operation, the transaction processor can be stopped and the trace log
inspected. Typically, the trace log is most useful in finding system-integration problems - that
is, problems with interaction between TSTs rather than problems isolated in one TST.

6-7

Transaction Step Tasks

6.5 INSTALLING A TST
Installing a TST involves two separate procedures:

• Making sure the TST station has the proper parameters
• Making sure the TST task image is built correctly

6.5.1 TST Station Parameters
The parameters you assign to a TST station will have a direct and significant effect on the way
the TST behaves. For example, you can specify the maximum number of executing copies of the
TST that can be active at one time. Your choice of this parameter will affect the performance
(and perhaps the correct operation) of the TST.

The TST station parameters and their effects on TST operation are discussed further in
Section 16.2.

6.5.2 The TST Task Image
TST task images are built with the TSTBLD utility program. This program can build the different
task images required for normal TST operation as well as the three modes of TST debugging. When
a TST is installed, you must be sure that the task image has been constructed so that it is compat
ible with the way you will be installing and using it.

The TRAX Application Programmer's Guide tells how to use the TSTBLD utility program.

6.6 EXECUTING A TST
Once installed in a transaction processor, a TST remains idle until an exchange message arrives at
its TST station. The TST's location on the system disk is remembered, though, so that the TST
task image can be located quickly when it must be activated.

When an exchange message arrives, the transaction processor attempts to start the TST. However,
there may be several obstacles:

• There may be too many active copies of this TST already. If so, the new exchange message
will have to wait.

• The TST task image may not be in memory. If so, an area of memory must be allocated
and the image read from disk.

• Even if an area of memory is available, there may be a TST of higher priority waiting to
be activated. If this is the case and if that TST will fit into the available memory, it will
be given priority and the other TST will have to wait.

In most situations, though, none of these obstacles will be present. The maximum-copies limit
will not be exceeded, and a TST task image will be in memory from a previous execution of that
TST. The TST can therefore be activated promptly and can begin to process the exchange message.

Once a TST has been started successfully, it runs as a separate task under the TRAX kernel oper
ating system. It runs independently of and parallel to the management services of the transaction
processor. The TST is run as a non-checkpointable task, which means that it will run to comple
tion without being interrupted or swapped out of memory. The only pauses in its execution will be
those necessary to handle its system calls and input/output operations.

6-8

Transaction Step Tasks

6.7 APPLICATION FILE ACCESS FROM TSTS
Although application programmers use normal programming language verbs to read and write
application data files, the requirements of shared file access and transaction processor architecture
make the flow of data different from that in a stand-alone program. This topic is discussed in
Chapter 8.

6.8 STUDYING A TYPICAL TST
Perhaps the best way to gain a familiarity with TSTs and their use is to study an existing TST.
You can find examples of TSTs programmed in various languages in the TRAX Application
Programmer's Guide.

6-9

CHAPTER 7

PRESERVING TRANSACTION INSTANCE CONTEXT

A stand-alone program provides its own context: values stored in its own program variables let the
stand-alone program know what has been done and what must be done. In a transaction processor,
a TST's working storage cannot be used for this purpose; each TST executes only a short time, and
many different TSTs execute as part of a single transaction instance.

This means that the transaction processor must maintain enough information for each transaction
instance so that TSTs and system support modules that work on that transaction instance can tell
what has happened previously. This information is called the transaction instance context.

A discussion of transaction instance context must center on two subjects:

• The transaction slot
• Context requirements for file access by TSTs

7.1 THE TRANSACTION SLOT
The transaction instance slot, or transaction slot for short. is the primary repository of context
information. Each transaction instance has a transaction slot, and it contains three principal kinds
of data:

1. It contains the current exchange message for the transaction instance.
2. It contains the transaction workspace for the transaction instance.
3. It contains the system workspace for the transaction instance.

The exchange message and transaction workspace have been discussed in earlier chapters. The
third section of the transaction slot, the system workspace, is introduced here for the first time.
The transaction processor uses this section of the transaction slot to keep context information it
needs to support the transaction instance.

If a copy of the transaction slot is made immediately after a new exchange message has been
constructed and before the first TST begins to process that exchange message, this copy can be
used as a check poin t to restart the transaction instance. This is possible because the transaction
slot at that moment completely defines the state of the transaction instance.

When you specify exchange recovery for a transaction, you are asking the transaction processor
to do exactly this. With exchange recovery, each time an exchange message is built the entire
transaction slot is written to a disk file. Should anything go wrong during the processing of the
exchange message, a TST can request that this copy be read back from the disk so that processing
can start again. Except for updates to unstaged files, this restart will be transparent to the user at
the terminal. (Exchange recovery is discussed in detail in Section 10.2.1.)

7-1

Preserving Transaction Instance Context

Figure 7-1 shows a transaction slot.

The transaction workspace and system workspace are of constant size; they are allocated according
to parameters in the transaction definition.

The exchange message, of course, can be of varying size. The exchange message area in the
transaction slot, however, is of constant size; the transaction slot is allocated to hold the largest
exchange message used by the transaction. Smaller exchange messages will fill only a part of the
space allocated.

As you know, the exchange message and transaction workspace are accessible to the TST
programmer in a read/write manner. The system workspace is never accessible to a TST program
mer; it is accessible only to system support software within the transaction processor.

The transaction slot also plays a role in transaction j ournaling. When a transaction uses journaled
files, the transaction slot is written to the journal device as each transaction instance finishes. This
records the state of the transaction instance at the end of transaction execution and provides
a record of the transaction instance. If a TST updates a file that is supposed to be journaled, a
copy of each updated record is placed in the system workspace. When the transaction slot is
written to the journal device, these copies of the updated records will be written too. A record of
file updates is therefore maintained via the transaction slot. (J ournaling is described in detail in
Section 8.7.)

Exchange Message
Area

Transaction
Workspace

System
Workspace

}

\ These two segments are

Current Exchange
Message

.,1 ___ - accessible to

TST programmer

This segment is
...... It---accessible only to

TRAX system software

Figure 7-1 A Transaction Slot

7-2

Preserving Transaction Instance Context

7.2 CONTEXT REQUIREMENTS OF FILE ACCESS
Although it is TSTs that read, lock, and update records in data files, a transaction processor cannot
associate these activities with the TSTs that actually do them. Instead, the activities must be
associated with the transaction instances whose exchange messages are being processed.

An example may clarify this point. In the Change Customer transaction we have been using for
an example, a TST in the first exchange must read and lock a record in the customer file. A TST
in the second exchange will subsequently update that record and release the lock. In an ordinary
system using stand-alone programs, only the program that issues a read and a lock can subsequently
issue the update. This is insufficient for a transaction processor, since two programs executing
at different times must cooperate to achieve the update: one to read and lock the record, the
other to update it.

The need for extensive context in file operations is more evident when we look closely at the TST
that reads and locks records. This TST is not serving one application terminal alone; it will process
exchange messages coming from many terminals for many different transaction instances. The
fact that the TST has locked a record for one user does not mean that it will access that same
record for another user; in fact, the opposite is true: it must not access a record for a second user
if it has read and locked that same record for a previous user.

For these reasons, TRAX transaction processors keep track of file access operations by transaction
instances rather than by TSTs. This is possible because the file access operations are handled by a
central file access facility within the transaction processor, and it is this facility that operates the
file access and locking mechanisms.

7-3

CHAPTER 8

APPLICATION DATA FILES

A carefully designed, efficient set of data files is a necessity in any transaction processing
application. Poor file design will have many effects on such an application, from poor performance
to total loss of data. This chapter discusses the TRAX facilities for file access from TSTs and
presents design considerations that you must analyze when you design data files.

8.1 RMS
RMS is a data management system that is available for several operating systems on the PDP-II
family of processors. It provides extensive facilities for the reading, writing, and insertion of
records in many file organizations.

Application data file access under TRAX is done through RMS. This provides file structures that
are compatible between transaction processors and support environment programs and also
permits the transfer of data files between a TRAX system and other operating systems that
support RMS.

On TRAX systems, RMS provides access to three main categories of files:

• Sequential files. Sequential files are accessed by starting with the first record in the file
and proceeding to subsequent records. These files are good choices if an entire file is to
be processed at one time or if the records are arranged in the file in the order they will
be needed. (If individual records must be found at random within the file, another file
organization would be better.)

• Relative Files. In these files, each record is identified by a number. The first record in
the file is labeled "'one," the next "two," and so forth. Records may be retrieved from
such a file by specifying record numbers. Any record may be retrieved with low overhead,
as long as its record number is known. This file is a good choice for retrievals and updates,
so long as some scheme can be devised to calculate the record numbers. These files can
also be read sequentially, like a sequential file.

• Indexed Files. This type of file is the most flexible file organization supported by TRAX.
Each indexed file has one or more indexes, and each index enables the programmer to
retrieve any record from the file once its index entry is known. For example, if a list of
customers were placed in an indexed file, any customer's record could be retrieved once
its customer number was known.

The efficiency of retrieval varies from file to file within this group, depending on factors
such as record size, index entry size, and file activity patterns.

Indexed files can have one or more indexes. Each index has an entry for every record in
the file, so different indexes provide different ways of finding the same records. For
example, a customer file might have two indexes: one by customer number and another
by customer last name.

8-1

Application Data Files

The first index is called the primary index. Each record must have a unique entry in the
primary index; it is this entry that identifies the record within the file. In our example,
the index by customer number would be the best choice for the primary index.

Other indexes are called secondary indexes. The entries in these indexes need not be
unique; that is, several records in the same file can have identical entries. For example,
in a customer file the last name index would be a secondary index, and the file organiza
tion would allow several customers to have identical last names.

Records in an indexed file can be retrieved in two ways:
By a key value in a specified index

- Sequentially, beginning with a previously retrieved record and proceeding according
to the index used for the previous retrieval.

F or example, we could retrieve a specific customer record from the customer file by
specifying a customer number. Having done that, we could retrieve additional customers
in customer number order.

Indexed files are good choices where random retrievals are necessary and record numbers
(such as would be needed with a relative file) would be hard to calculate. They are also
the best choice in situations requiring record insertion between existing records. But in
situations where one of the other organizations will suffice, they would be a better choice
because they will generally be more efficient.

For a detailed discussion of the features and capabilities of RMS, consult the RMS-II reference
manuals.

8.2 FILE ACCESS FROM TSTS
Each of the TRAX programming languages has its way of accessing RMS files:

• For COBOL and BASIC-PLUS-2, this interface consists of the language's standard file
access verbs. That is, the application programmer can use the usual file access statements
and clauses.

• For MACRO-II, a set of macro instructions is provided that generate the proper
subroutine calls for linkage to RMS.

Tasks that use RMS to access files must include RMS support code in their task image. In a TRAX
transaction processor, most of the RMS support code is kept in the transaction processor's common
area. This minimizes code that must appear in each TST's task image. Only simple linkage
routines appear in the TST, while the bulk of RMS remains in a separate task that supports all
TSTs at one time. The simple linkage routines are inserted in each TST task image (if required)
by the TSTBLD utility program.

For a detailed discussion of the interface between a specific programming language and RMS or
for details of the linking procedures required for RMS, consult the appropriate language user
manual and language reference manual.

8-2

Application Data Files

8.3 WORK FILES
When a designer thinks of files and file access, he is usually thinking of permanent data files that
are accessed and updated by many simultaneous users.

In many applications, another type of file is also required. This file, called a work file, is created
and used by a single user in the course of a transaction instance. A transaction, for example,
might require a large scratch area in which to assemble user input. If enough room is not available
in the transaction workspace, a file could be used instead. This file would be created for the
transaction instance, used as a scratch area, and then destroyed upon transaction termination.

Transaction processors allow TSTs to create, access, and delete work files much the same as
permanent data files. Work files must conform to special rules, however:

• Work files must be defined with the FILDEF utility, just as permanent files are defined.
Part of the definition declares the file to be a work file.

• When a work file is defined, it is given a logical file name and a physical file specification.
The file specification, however, does not include a version number. Each time a work file
is created, a new physical file is generated having a unique version number.

• After the first TST in a transaction instances creates a work file, other TSTs accessing that
logical file will have access to the same physical file. In other words, only one physical
work file of a given logical name can be created by a transaction instance.

• A TST cannot access any work file that its current transaction instance did not create.
• A TST can discove~ tJ:1e_ (ile specification (including version) of a work file it is accessing

by issuing an appropriate system call. (See the TRAX Application Programmer's Manual
for further information.)

• After discovering the file specification for a work file, a TST can pass that specification to
a support environment program through the usual interface methods (Chapter 11).

• The TST programmer uses the usual language verbs to create and delete work files.

8.4 RECORD LOCKING
For proper operation of a multi-user transaction processing system, some means of controlling
access to individual records in shared files is essential. Without this control, users might attempt
to update the same record simultaneously, and the effect of at least one of the updates could be
lost.

TRAX transaction processors implement this control with a record lock facility. Any TST can
lock a record for the transaction instance it is processing. When it does, access by any TST
processing a different transaction instance (including even that same TST, if it subsequently begins
to process another transaction instance) will be restricted. The restriction is removed when that
TST or another TST, again processing the same transaction instance, explicitly releases the lock,
or when the transaction instance terminates.

Depending on your specifications for a particular file, the restriction imposed by a lock is either:

• No TST processing another transaction instance can read or upda te the locked record, or
• No TST processing another transaction instance can update the locked record - but any

TST can read the record.

8-3

Application Data Files

Remember that the lock is imposed for the transaction instance and not for the TST itself. This
allows one TST to read and lock a record, and a second TST in a later exchange to update and
unlock the record for the same transaction instance. Conversely, the first TST cannot access the
locked record for another transaction instance even though it locked the record for the first
transaction instance.

Record locks are enforced and arbitrated by system software within the transaction processor.
This means that access conflicts between TSTs in the same transaction processor will be correctly
handled; but it also means that there is no way of resolving access conflicts between TSTs in two
transaction .processors or between a TST and a support environment program. For this reason,
only a single transaction processor or a single support environment program can have update access
to an RMS file at one time.

The application programmer controls the locking and unlocking of records by using LOCK and
UNLOCK clauses in file access statements.

If a TST encounters a locked record, the unsuccessful file access operation will be retried after a
short period. (This period is specified when the file is defined.)

If the record remains locked after the second try, the file access statement will return an error
code. If the transaction was defined to include exchange recovery, and if the transaction instance
has no outstanding record locks from other exchanges, the TST can issue an exchange recovery
request to restart the processing of the exchange. This will release all the locks currently held by
the transaction instance, and the exchange pro~essing will start over.

8.5 STAGING
Staging is the delay of inserts, deletes, and updates to a file until the transaction instance requesting
them terminates. TRAX supports staging, and each file used by a transaction processor must be
specified as staged or unstaged.

• Staged Files. Staged files are files where update operations are automatically postponed
until the transaction instance that requested them terminates normally.

• Unstaged Files. Unstaged files are files where update operations take effect immediately.

The principal benefit of staging is that staged operations will not be applied against a file if the
transaction instance that requested them terminates abnormally - that is, if it aborts. An aborted
transaction instance will have no effect on staged files, because the operations it has requested have
not been done on the file.

Staging usually lengthens the time that records are locked. This is necessary because the records
must remain locked until they are updated, not just until the update request has been made by a
TST. In other words, the transaction processor must prolong a record lock during the time an
update is being delayed. In some cases, this prolonging of record locks may be significant; in any
event, you must consider this effect whenever you specify a staged file.

8-4

Application Data Files

Because staging separates the request for an update operation from its execution, staging may
confuse some application programmers unless you are careful to explain the use of staged files.
You must explain that if a programmer updates a record in a staged file, there is no way to release
the lock on that record before the transaction instance terminates. This includes explicit "release
lock" statements in the\programming language. However, explicit "release-lock" statements will
take effect, even on staged files, if the record in question has only been read and not updated.

Staged records take considerable space in the system workspace. Each staged record (that is, a
record destined for a staged file) is saved in the system workspace until the end of the transaction
instance. The staging of a large number of records during any transaction instance will require the
definition of a correspondingly large system workspace, with a corresponding increase in the
memory requirements of the transaction processor.

For efficient use of a system's memory, you should design transactions that stage a predictable
number of records. This way, your system workspaces will always be as small as practicable, and
they will be used to their greatest capacity.

8.6 DATA FLOW DURING FILE ACCESS OPERATIONS
When a TST issues a file access instruction, the flow of control and data is different from many
other systems. This flow has been carefully designed to optimize flexibility, efficiency, and
compatibility with other systems. As an application designer, a knowledge of this flow will help
you to design more efficient files and file access procedures.

8.5.1 Data Flow During a Read
Figure 8-1 shows a typical flow of data during a simple RMS read operation requested by a TST.
In this example, assume that a TST has requested a read operation and the data is to be placed in
the transaction workspace. The read operation would proceed as follows:

• The TST makes the file read request; that is, an appropriate READ statement is
encountered in the program.

• Linkage rou tines included in the TST task image handle the read request and transmit it
to the transaction processor.

• The transaction processor system software includes a copy of RMS, and the request is
given to the appropriate module.

• The RMS module reads the record from the file, using its own work buffers.
• When the record has been read and deblocked, it is copied into the designated destination

buffer - in this case, the transaction workspace.

8.5.2 Data Flow During an Unstaged Update
Figure 8-2 shows the data flow that occurs when a TST requests an update operation on an
unstaged file. The data flows exactly the reverse of the "read" example in Section 8.5.1, traveling
from the source data structure to the file through the actions of the TST, the TST's resident
linkage routines, and the common RMS code. The source data structure in this example is the
transaction workspace but it could be any data structure in the TST.

8.5.3 Data Flow During a Staged Update
Figure 8-3 shows the data flow that occurs when a TST requests an update operation on a staged
file. Like the previous example, the source of the data is the transaction workspace, although it
could be any other data structure in the TST.

8-5

Application Data Files

Transaction Slot

Exchange Transaction System
Message Workspace Workspace

~

Linkage

\ Routines
Transaction \ ,..--I \ Processor

\

TST "- System
......

~
Software

'---

-{_~MS 1

i'-----"

File

Figure 8-1 Flow of Data During Read

As you can see, the data flows from the source data structure to the file in two steps:

• In the first step, the TST issues the update request with an appropriate language statement.
The TST's resident linkage routines pass the request to the transaction processor, as with
the other examples. But the transaction processor notices that the file in question must be
staged, and so the data is not given to RMS to be written in the file. Instead, it is saved
temporarily in the transaction instance's system workspace. The TST is given a successful
return code, as if the record had been written in the tile. .

• The second step occurs when the transaction instance terminates normally. When this
happens, the transaction processor takes each record saved in the system workspace and
gives it to RMS to be written in the file. This process is invisible to the TSTs in the
transaction instance; they were not aware that the record was staged.

If a transaction instance terminates abnormally (that is, it is aborted for some reason), the second
step never happens. The updates to the file are never applied, and the transaction instance has no
effect on the staged files.

8.7 JOURNALING
For those applications that require a record of data file updates, or that require the reconstruction
of certain data files after a system crash, TRAX provides a journaling facility.

8-6

Application Data Files

Transaction Slot

Exchange Transaction System
Message Workspace Workspace

Linkage

\ Routines
Transaction " .---I \~ Processor

" System
TST ...

~ Software

'--- r-l ... _~MS I

r

~

File

Figure 8-2 Flow of Data During Nonstaged Update

The mechanism of this journaling facility is simple and efficient. As you know, the transaction slot
contains a complete picture of the state of its corresponding transaction instance. It contains the
most recent exchange message, the transaction workspace, and the system workspace. As you have
read, the system workspace contains all records that are destined for staged files. TRAX can
therefore achieve a complete journaling facility in the following manner:

• Any file that is to be journaled is automatically staged. All updated records destined for
this file will therefore be kept in the system workspace pending successful termination of
the transaction instance.

• The transaction slot is written to a journal device at the end of the transaction instance,
before staged records are written in their respective files. This preserves status information
about the transaction instance at its termination. This includes, of course, copies of all
staged records.

When you specify a transaction processor's files, you must specify whether each file is to be
journaled or not. Each journaled file will automatically be staged (Section 8.5) so that updated
records destinated for that file will appear in the system workspace at transaction instance
termination.

Because of the staging requirement for journaled files, an aborted transaction instance has no effect
on journaled files. The transaction has aborted before the journal entries could be made. The
journal thus agrees with the actual updates to journaled files.

8-7

Application Data Files

Transaction Slot

Exchange Transaction System
Message Workspace Workspace

~

en ...
(l)

"'0
I'.)

Linkage , Routines rr . \
\ r--I

' ransactlon \ ,
" Processor :

\, " System I
TST " Step~ I

Software I
/

L.......-

RMS'
'"

I,
'-----'"

File

Figure 8-3 Flow of Data During Staged Update

Journal entries are only made for those transaction instances that make at least one update to a
journaled file. Other transaction instances do not have their transaction slot journaled when they
terminate.

Journal entries are written in the native mode of the journal device. That is, the journal data is
written without logical file structur~(~ther than that provided by the hardware itself. This is to
ensure the maximum device r~liability; a logical file structure on the journal device would open
the possibility of data loss should that file structure be corrupted.

The operator of a TRAX system can specify a primary and a secondary journal device:

• The Primary Journal Device is used first. When it is full, the system will shift automatically
to the secondary journal device, if one has been designated. Otherwise, transaction
processing will stop, while the journal device is taken off-line and another tape or disk
mounted.

• The Secondary J oumal Device stands ready to relieve the primary journal device when it
becomes full. The secondary journal device accepts journal entries until it is full, then the
primary device again takes over.

Both magnetic tape and disk devices may be used for the journaling devices. While it is designated
as a journaling device, a device cannot be used for any other purpose.

8-8

Application Data Files

8.7.1 Reconstructing Journals
A special utility program, RECOVR, is provided with each TRAX system. This utility program
can reconstruct application data files, given a backup copy of that data file and all journals from
that point to the time of a crash. It reads through the journals, locates the updated records in the
system workspace of each transaction slot, and applies the updates.

8.8 LOGGING
A TST can write data into the system journal independently of the automatic journal entries made
by the transaction processor. This process is called logging.

Log entries can have any format desired by the application programmer. When a log entry is
ready, the TST must issue the appropriate system call. The log entry will be saved in a buffer and
when there are enough log entries to warrant setting the journal device in motion, the blocked log
entries will be written as a single journal entry.

8.8.1 Inspecting and Analyzing Log Entries
A special utility program, SHOLOG, is provided with each TRAX system as an aid to the inspection
and analysis of log entries. This utility program reads a journal, selects specified log entry classes,
and prints or displays them.

Log entries can be useful for system debugging and as an audit trail of system operation. When
used for system debugging, log entries can provide a record of when TSTs are activated; they
can also record any data that the TST programmer thinks might be helpful. When used as an audit
trail, log entries can record the relevant data for each execution of a sensitive transaction. If
properly done, logging can thus ensure that the transaction cannot be executed without creating
a record of its execu tion.

8-9

CHAPTER 9

INITIATING TRANSACTION INSTANCES

Little has been said so far about how transactions are invoked - that is, how transaction in
stances are initiated.

There are several methods by which transactions can be invoked. Most of these involve application
terminals, but there are methods that allow transactions to be invoked without any terminal. This
chapter describes all of these methods.

9.1 INITIATING TRANSACTION INSTANCES FROM AN APPLICATION TERMINAL
Most transaction instances will be initiated from application terminals. This section describes the
three methods by which this can be done.

9.1.1 Terminals That Can Invoke Only One Transaction
When a transaction processor is defined, some terminals are defined so that they execute only one
transaction. When no transaction instance is active, the terminal displays the form from the first
exchange of its transaction.

The display presented at a terminal when it is not involved in a transaction instance is called the
initial operating mode of the terminal.

When you define a terminal station within a transaction processor, you must specify an initial
operating mode for its associated terminal. If you specify a transaction definition as an initial
operating mode, that terminal executes only that transaction and displays the form from the
first exchange of the transaction when the terminal is idle.

A user initiates a transaction instance from this terminal by filling in the displayed form and send
ing the data to the system. An instance of the transaction is then underway.

When the transaction instance terminates, the terminal reverts to a display of the form from the
first exchange of the transaction.

9.1.2 Terminals That Can Execute Several Transactions
This class of terminals can initiate any of a group of transactions. The transactions will be available
to each user that sits at the terminal.

To get a terminal to operate in this way, you must specify a form definition as the initial operating
mode when you define the terminal station. This form definition must include the SELECT clause
in its FORM statement, thus designating one of the fields on the form to contain the selected trans
action name. Such a form is called a transaction selection form, because its purpose is to collect the
name of a transaction from the user.

The transaction selection form will not be part of any transaction definition. It is displayed when
ever the terminal is idle (that is, whenever a transaction instance is not active at that terminal).

9-1

Initiating Transaction Instances

To invoke a transaction from such a terminal, the user must fill in the name of the desired transac
tion on the transaction selection form. This will be the short name (six characters or less) by which
the transaction definition is known within the transaction processor. (If the form is defined with
Menu fields instead of Input fields, the user may select one of the displayed transaction names
rather than type in the transaction name.)

Each of these terminals is restricted to a list of transactions. These are the only transactions that
can be executed from the terminal, irrespective of the transaction names listed on the transaction
selection form or entered by the user.

A terminal is assigned this restriction list by specifying a work class for the terminal. A work class
is a list of transactions, identified to the transaction processor by logical name of six or fewer
characters. The terminal's work class is assigned when its terminal station is defined.

So, for example, a terminal might be assigned to work class CLASS2. If this work class contained
the names of three transactions - ADDCUS, CHGCUS, and DYPCUS - these would be the trans
actions accessible from that terminal. Other transactions would not be accessible, whether or not
they were listed on a transaction selection form or entered by the user.

In certain circumstances, you may want a transaction selection form to collect data in addition to
the transaction name. You can do this by adding ordinary Input fields to the transaction selection
form and using them to define an exchange message. If the transaction selection form generates an
exchange message, this exchange message will be used for the first exchange of the selected transac
tion and that exchange's form will not be used.

In any case, once the transaction name has been entered or selected, the user sends it to the system.
Except in the one situation described above, the system responds by displaying the form for the
first exchange of that transaction.

The transaction instance will begin as soon as the user fills in this first form and sends the data to
the system.

When the transaction instance ends, the transaction definition may specify either FIRST or
INITIAL as the subsequent action. (See Chapter 4 for more information about transaction defini
tions and the subsequent action parameter.) If the parameter is FIRST, the terminal will display
the first form again and prepare for another instance of the same transaction. If the parameter is
INITIAL, the terminal will display the transaction selection form and the cycle will begin again.

9.1.3 Terminals That Require User Sign-On
This class of terminals can execute only a limited set of transactions until a user identifies himself
to the system with a user identification and password. This process of identification is called
signing on.

NOTE
The process of signing on, which involves an ap
plication terminal user and an application termi
nal, is not related to the procedure by which op
erating or programming staff identify themselves
at support terminals. The latter process uses a
different set of identifying codes and passwords.

9-2

Initiating Transaction Instances

This kind of terminal can be in any of three states:

• Idle, Signed Off. In this state, there is no transaction instance active at the terminal and a
user has not identified himself to the system.

• Idle, Signed On. In this state, the terminal still does not have a transaction instance active,
but a user has identified himself to the system.

• Executing a Transaction Instance. In this state, the user has selected a transaction and is
executing it.

In the first state, idle but signed off, the terminal behaves in a manner identical to the terminals
described in Section 9.1.2. The transaction selection form and the terminal's work class govern
the set of transactions that can be executed. If a user selects a transaction that is permitted by
the work class, the terminal moves directly to the third state - executing a transaction instance -
without passing through the second state.

In most cases, the only transaction you will include in the terminal's work class is the SIGNON
transaction. This transaction and all its supporting TSTs are supplied as part of each TRAX system.
When the user executes this transaction, he is asked to enter a user identification and password. If
he does this correctly, he will become signed on and the terminal will enter the second state.

W~ile the terminal is in the second state, the terminal's work class does not apply. Instead, the user
will have his own work class or classes, and he will be allowed to execute any transaction listed in
those work classes. He will be able to execute these transactions even if the original terminal work
class would have prohibited them.

The same transaction selection form remains on the screen after the user has signed on. The termi
nal has only one transaction selection form, and this form is used in both the first and second
states - Idle and Signed Off, and Idle and Signed On. Only the applicable work classes change.

In either the first or second states, users initiate transaction instances just as was described in
Section 9.1.2. The user chooses one of the available transactions by entering a transaction name or
selecting its name on a menu; then the transaction processor displays that transaction's first form.
The transaction instance begins when the user fills out the first of the transaction's forms and sends
it to the system.

When a transaction instance terminates, the same two subsequent action parameters apply as in
Section 9.1.2. If the parameter is set to FIRST, the same transaction is executed again. If the
parameter is set to INITIAL, the transaction selection form will be displayed. In either case, the
terminal will revert to the same state (signed on or signed oft) that it was in before the transaction
instance was begun.

If a user has signed on but wishes to leave the terminal, he executes the SIGNOF transaction. The
SIGNOF transaction is also supplied with each TRAX system. When it is executed, the terminal
reverts to the first state (idle but signed oft) and the terminal's work class again applies.

NOTE
The terminal's work class must include the SIGNON
transaction, and each user's work class must include
the SIGNOF transaction. Otherwise, the terminal
will not operate properly.

9-3

Initiating Transaction Instances

9.2 INITIATING TRANSACTION INSTANCES IN OTHER WAYS
Besides application terminals, there are three other ways of initiating transaction instances.

9.2.1 Spawned Transactions
A TST may initiate a transaction instance while processing an exchange message. This procedure,
called spawning, creates a new and independent transaction instance. The original transaction
instance (the one whose exchange message was being processed) continues.

The TST supplies an exchange message when it spawns the new transaction instance. The instance
is limited to a single exchange.

The TST that spawns a transaction instance does not wait for the spawned transaction instance to
terminate, and so the spawned transaction instance may not return a response message to the TST.

Spawning a transaction is a useful technique in a variety of situations. For example, a transaction
might be spawned to execute a series of processing steps that require significant time. In this way,
the user's terminal is not tied up for a long period.

9.2.2 Support Environment Programs
A program running in the support environment initiates a transaction instance in much the same
way as a TST. As with transaction instances spawned by a TST, these transaction instances are
limited to a single exchange. The exchange message for that exchange is supplied by the support
environment program at the time it initiates the transaction instance.

Each active transaction instance initiated by a support environment program uses a slave batch
station. This station serves the same purpose as a terminal station for transaction instances initi
ated by an application terminal. The number of transaction instances that can be simultaneously
initiated by support environment programs depends on the number of slave batch stations in the
transaction processor.

Because of the slave batch stations, transaction instances initiated through such stations may send
response messages back to their source stations. These response messages are forwarded to the
support environment program that initiated the transaction instance.

The support environment program is suspended while the transaction instance executes and is
activated again when the response message is returned.

This technique is useful when a support environment program (a batch program, for example) must
acquire some data via a transaction in a transaction processor. The technique also allows a support
environment program to print data on a transaction processor's output-only terminals by activating
an appropriate transaction.

Data communication between a transaction processor and programs in the support environment is
discussed in detail in Chapter 11.

9-4

Initiating Transaction Instances

9.2.3 Other Transaction Processors
Another transaction processor, either within the same TRAX system or in another system, may re
quest that a transaction instance be initiated. This technique is used to advantage, for example, in
a distributed processing network. Each node of the network initiates transactions in other nodes.
Transaction instances initiated in this way can have multiple exchanges. For each exchange, the
initiating transaction processor supplies an exchange message.

Each exchange message is fed to a slave link station in the second transaction processor. The slave
link station serves the same purpose as terminal stations, initiating each exchange and waiting for
the corresponding response message.

When the response message is received, it is forwarded to the initiating transaction processor. That
transaction processor terminates the transaction instance or sends another exchange message.

The number of slave link stations in a transaction processor determines how many transaction in
stances can be initiated at one time by remote transaction processors. The number of slave link sta
tions associated with each remote transaction processor determines how many transaction instances
that remote transaction processor can initiate at one time in the local transaction processor.

This technique is useful where one transaction processor acquires data held by another transaction
processor, perhaps in a remote system. For example, a transaction on a local transaction proc@ssor
may permit users to display inventory data. This may require the local transaction processor to
interrogate several remote transaction processors to determine the inventory at remote locations.
This technique can also be used to post local work to remote files or to print data on remote
output-only terminals.

Data communication between transaction processors is covered in detail in Chapter 11.

9-5

CHAPTER 10

SECURITY, RELIABILITY, AND PERFORMANCE

Tight security, excellent reliability, and good performance are requirements in most transaction
processing systems. In previous chapters, you learned many of the characteristics that help TRAX
applications meet these requirements. In this chapter, these characteristics are reviewed and their
contribution to system security, reliability, and performance is discussed. Several more features of
TRAX are introduced that also contribute to satisfactory transaction processing.

10.1 SECURITY
A secure system is one where each user is restricted to the functions he is meant to use and can
only access the data he is meant to see.

Several TRAX features contribute to the security of transaction processing applications built on it.

10.1.1 Application Terminals and Support Terminals
The most serious breach of system security occurs when a user gains unauthorized access to the
operating system and its terminal commands. In TRAX, this is unauthorized access to the support
environment. If a user gains access to the support environment, he can instruct the system to copy
data files, alter programs, and even alter or halt the operating system itself.

TRAX prevents this by keeping application terminals and their machine interfaces strictly and
physically separate from support environment terminals and their machine interfaces. Once the
system has been properly generated and communication lines properly installed, it is impossible for
an application terminal to gain access to the TRAX support environment. To do so would require
the physical reconnection of the terminal to a different communication line and machine interface.

Everything that occurs at application terminals is under the control of transaction definitions and
form definitions. Any function that has not been defined as a transaction simply cannot be exe
cuted from an application terminal.

This places TRAX apart from other on-line systems where a single terminal serves as both a pro
grammer's console and an application terminal. In those systems, users can often "escape" from
an application program and use the programmer's system command language. This is impossible
under TRAX, because an application terminal has no control over the system.

Security against unauthorized access depends only upon the physical security surrounding a sys
tern's support terminals, their communication lines, and their machine interfaces. If physical
access to these components is not allowed, security of the operating system and application pro
grams is assured.

10.1.2 Work Classes and Signing On
Any application is likely to have transactions that need some security arrangement. For instance,
a transaction that displays a customer's credit records should be more restricted than one that

10-1

Security, Reliability, and Performance

displays outstanding orders. This means that some users should be allowed access to a transaction,
while others should be denied access.

Chapter 9 discussed work classes, how they are assigned to particular terminals, and how they are
assigned to particular users. These work classes, together with the SIGNON and SIGNOF transac
tions supplied with each TRAX system, give you the tools you need to implement almost any
transaction security arrangement.

And, once these restrictions are in place, they cannot be defeated from an application terminal
because of the distinction between application and support environment terminals. To change
the work class assigned to a terminal or a user, someone must first gain access to a support envi
ronment terminal. Even the privileged, knowledgeable system programmer can not make such
changes from an application terminal.

10.1.3 Terminals Running a Single Transaction
Chapter 9 also described a terminal restricted to a single transaction. No other transactions could
be executed from that terminal, no matter how privileged or knowledgeable the user.

This feature is useful for terminals in insecure locations. A terminal placed in a bank lobby, for
example, might allow customers to check their account balances. This terminal could be con
nected to a system that has sensitive customer data and privileged transactions. But so long as the
initial operating mode of the bank lobby terminal limits that terminal to the one transaction, no
breach of system security can occur. In fact, not even the system designer himself could defeat
the security restrictions of the bank lobby terminal.

10.1.4 Logging
Although it will not prevent unauthorized access, the logging facility described in Section 8.8 can
be used by an application programmer to record each use of a transaction and therefore detect
unauthorized use.

The log entries are written on the system journal device and cannot be accessed from an application
terminal.

10.2 RELIABILITY
A reliable system is available when needed, and its data loss is infrequent.

Several TRAX features contribute to the reliability of applications, in addition to the recognized
reliability of the PDP-II processors on which it mns. Some of these features are outlined in the
following paragraphs.

10.2.1 Exchange Recovery
Because a picture of each transaction instance is maintained in its corresponding transaction slot
(see Chapter 7), TSTs can recover from certain errors during the processing of an exchange.

If you specify exchange recovery for a transaction, the transaction slot will be copied to disk at
the start of each exchange. Then this information can be used (at a TST's request) to restart the
transaction instance from that point. For example, a long-term record lock encountered by a TST
could prompt the TST to restart the exchange.

10-2

Security, Reliability, and Performance

Exchange recovery is invisible to the user at an application terminal, except that response times
may be slightly extended during exchange recovery attempts.

10.2.2 Crash Recovery
System software errors and hardware errors can cause a TRAX system to crash. When this occurs,
the system is automatically reinitialized in the following way:

1. The operating system kernel restarts itself if necessary.
2. Each transaction instance that was active at the time of the crash is terminated. The

effect on a transaction instance is the same as if an ABORT key had been pressed at
the moment of the crash. These effects will vary depending on whether or not the
transaction !lses exchange recovery and whether it accesses staged or unstaged files.

3. Unstaging is completed for each transaction instance that was in the process of unstaging
when the crash occurred.

4. The transaction processors that were active at the time of the crash are restarted.
5. The application terminals attached to each active transaction processor are reinitialized.

They will be placed in the same state as when the transaction processor is first started.
That is, each terminal will display either the first form of a transaction or a transaction
selection form. At those terminals that require user sign-on, users must re-enter their
identification codes and passwords.

Crash recovery is a feature that you select or decline for each transaction processor. If selected, it
adds a slight overhead to transaction processing to maintain the transaction status table. The
effectiveness of crash recovery depends on your use of two other TRAX facilities, staging and
exchange recovery.

10.2.3 Data File Recovery
Rarely, a system interruption destroys application data files. This kind of failure is typically a
severe hardware failure, such as a head crash on a disk.

In failures of this sort, it is imperative that data loss be held to a minimum and that the manual
effort of reconstructing data be limited. The TRAX data file journaling facility, described in
Section 8.7, meets this requirement. Using a backup copy of a data file and journals that repre
sent the processing against that file since the time of the backup, a TRAX system can automati
cally recreate the data file as it appeared immediately before the failure.

The effectiveness of this facility depends on your file design and the selection of joumaling for
appropriate files. Journaling a file introduces a slight overhead in the processing of transactions.

10.3 PERFORMANCE
A system that performs well processes transactions quickly enough to accommodate workload
and quickly enough to satisfy its users.

Several TRAX features contribute to performance in applications built upon it: some are outlined
here. Good performance, of course, depends on good application design, as well as the facilities of
the operating system.

10-3

Security, Reliability, and Performance

10.3.1 Record Locking
TRAX enforces file access on a record basis. A transaction instance can lock one record in a file,
while allowing other transaction instances access to other records. This contributes to system per
formance by reducing the effects of interaction between transaction instances.

10.3.2 Internal System Design
Many design features of TRAX were selected for their beneficial effect on system performance.
For example, the messages that travel from station to station in the transaction processor do not
really move in a physical sense; they remain in one area of system memory and they are
"attached" to various processing modules by memory mapping techniques. This procedure (which
is transparent to the application programmer) is more complex than moving the data from place to
place, but it improves system efficiency.

1 0.3.3 Caching
TRAX transaction processors make effective use of the available disk access capability through
caching, which is the intermediate storage of disk-resident data in buffer areas.

With the caching technique, a data structure fetched from disk is not discarded when it is no
longer needed. It remains identified in a buffer. If the data structure is needed later and is still
in the buffer, the buffer copy is used instead of reading the data structure from the disk.

When data structures are written, they are updated on the disk and in the buffer. The cached
copy of the data structure and the disk-resident copy therefore match at all times.

Data structures are purged from the buffer as space is needed for other data structures. This
purging is done according to a least-recently-used algorithm, so the data structures purged are
least likely to be needed soon.

The caching technique applies to most data structures on the disk. These include:

• Transaction definitions
• Form definitions
• Data file records
• Data file indexes
• Messages needing long-term storage
• Transaction slots
• TST task images

10-4

CHAPTER 11

TRANSACTION PROCESSORS AND
DISTRIBUTED PROCESSING

As you have read, transaction processors are well adapted for centralized on-line transaction process
ing applications. But the architecture of transaction processors also permits interfacing them to
systems and subsystems for various kinds of distributed processing.

Interfacing a transaction processor to other systems or subsystems demands that you have a clear
understanding of transaction processors. Distributed processing is a more advanced technique than
the design of a simple, stand-alone transaction processor. For this reason, interfacing to other sys
tems and subsystems has not been discussed in earlier chapters.

Three interfaces are possible between a transaction processor and other systems or sUbsystems:

1. An interface between a transaction processor and the support environment of the TRAX
system where it runs

2. An interface between two transaction processors, either running on the same TRAX sys
tem or on two TRAX systems

3. An interface between a transaction processor running on a TRAX system and a similar
subsystem running on a different operating system

This chapter discusses the general capabilities of these interfaces. Consult the TRAX Application
Programmer's Guide and the TRAX Support Environment User's Guide for details about the ex
change message formats, the support environment features, and the success and failure codes for
each operation.

11.1 INTERFACE BETWEEN TRANSACTION PROCESSORS AND SUPPORT ENVIRONMENT
Figure 11-1 shows a TRAX system. This system has a transaction processor and a support environ
ment. Within the support environment is a batch processor utility program and an application pro
gram (perhaps controlled by a different batch processor or a support environment terminal.)

There are two possible interface paths between a transaction processor and the support environ
ment (Figure 11-1): one path is initiated by the transaction processor and the other by the support
environment applIcation program.

11.1.1 Path Initiated by the Transaction Processor
The interface shown in the upper portion of Figure 11-1 shows a path initiated by the transaction
processor.

11-1

Transaction Processors and Distributed Processing

Transaction Processor

(

,
;'

"
"-

TRAX System

Work Request

Success Code __ ---

1ransaction Request

" Transaction Result

Support Environment

Figure 11-1 Interface Between a Transaction Processor and the Support Environment

A transaction processor's only method of interface with the support environment is the submission
of batch processor requests. (For information about batch processors, see the Introduction to
TRAX and the TRAX Support Environrnent User's GUide.) This is a unidirectional interface; the
support environment can return only a simple success code indicating that a request has been
accepted.

The interface is accomplished via a submit batch station in the transaction processor and the queue
manager utility program in the support environment. When an exchange message is routed to a
submit batch station, the station looks for a legal SUBMIT command. (SUBMIT commands to
enter batch or work requests are normally issued at a support environment terminal.)

The command is passed to the queue manager in the support environment, and the queue manager
checks the validity of the command before entering the work request on the work queue. The
queue manager passes a success code to the submit batch station, which places it in the exchange
message. The success code indicates whether the work request has been successfully entered. (See
more about the success code in the TRAX Application Programmer's GUide.) This code is usually
inspected by a "downstream" TST where the exchange message is subsequently routed. Figure 11-2
shows the process.

NOTE
The success code does not indicate that the work
request has been executed, only that it has been
entered in the queue.

11-2

Transaction Processors and Distributed Processing

Transaction Processor

Work Request

in

Success Code

in
Exchange Message

Support Environment

Work

Queue

Queue

Manager

Batch

Processor

Processing Steps: • • • • • •

Work request arrives at a submit batch station in the form of an exchange message.
Submit batch station forwards request to the support environment queue manager.
Batch command file is located and placed in corresponding queue.
Success or failure code is returned to submit batch station.
Success or failure code is placed in exchange message, and exchange message is
passed to next processing station.
Some time later, file works its way to head of batch processor queue and is processed.

Figure 11-2 Interface Initiated by a Transaction Processor

It may be some time before the request is processed; in fact, the support environment batch
processor may not be running when the request is entered. The transaction processor waits only
for the successful entry of the request in a queue, not for its execution.

11.1.2 Path Initiated by a Support Environment Program
The interface in the lower portion of Figure 11-1 shows a path initiated by a program in the support
environment. This could be a program run at a support environment terminal or by a batch proces
sor in the support environment.

This is a bidirectional interface. The support environment program requests that a transaction be
executed in the transaction processor. The program awaits the results of the transaction, which are
returned in a response message and then forwarded to the support environment program. This inter
face contrasts with that in Section 11.1.1, where the transaction processor could not wait for results
from the support environment processing.

11-3

Transaction Processors and Distributed Processing

The support environment program makes the transaction initiation request by using a system call.
At the end of the transaction instance, up to 24 bytes of the response message generated by one of
the transaction TSTs are returned to the calling program.

Support environlnent programs may initiate only single-exchange transactions. The exchange mes
sage provided by the support environment program must be formatted properly for the transaction
TSTs.

A support environment program can initiate the same transactions that can be initiated from an
application terminal; when initiated from the support environment, form names in the transaction
definition are ignored.

The process is shown in Figure 11-3. The station in the transaction processor that receives the ex
change message contents from the support environment program, routes the exchange message to
the processing stations, and forwards the response message to the support environment is called
the source station. For these transactions, a slave batch station is always the source station. The
maximum number of transaction instances initiated from the support environment that can be
executing in a transaction processor at once depends on the number of slave batch stations in that
transaction processor. Each transaction instance occupies one slave batch station during its
execution.

11.2 INTERFACE BETWEEN TWO TRANSACTION PROCESSORS
The interface between two transaction processors is similar whether the transaction processors re
side on the same TRAX system or on two remote systems. Two remote systems require a physical
communication link; two transaction processors on the same TRAX system require a logical com
munication link. The only difference between the two situations is the planning and installation
of the physical communication network.

11.2.1 Master and Slave Transaction Processors
The interface between two transaction processors requires one transaction processor to initiate
transactions in a second transaction processor and to receive the results. The first transaction
processor is called the master transaction processor; the second, the slave transaction processor.

The terms "master" and "slave" are not fixed designations. Each of the pair of transaction proces
sors can initiate transactions in the other. Therefore, both can be "master" or "slave." It is only
in a request for transaction initiation that the terms "master" and "slave" have any significance.

11.2.2 How the Interface Works
Figure 11-4 shows how this interface works. In the master transaction processor, an exchange
message arrives at a master link station. This station is associated with an external transaction
processor, either:

• A local transaction processor having a logical communication link to the master transac
tion processor, or

• A remote transaction processor having a physical communication link to the master trans
action processor.

The exchange message arrives at the master link station with control information and the text of
an exchange message that is to be processed in the slave transaction processor. The master link
station extracts the embedded exchange message and transmits it to the slave transaction processor.

11-4

Transaction Processors and Distributed Processing

Support Environment Transaction Processor

/ Exchange
/ Message

Processing Steps:

• Support program issues a call which includes the text of an exchange message. The
transaction processor selects a slave batch station which will act as the source station for
the exchange message.

• A transaction instance is initiated through the selected slave batch station, and the
specified exchange message is routed to the list of stations named in the transaction
definition.

• One of the processing stations (usually the last) issues a response rnessage addressed to the
source station.

• The response is forwarded to the support program.

Figure 11-3 Interface Initated by a Support Program

In the slave transaction processor, the extracted exchange message serves as the basis of an exchange.
This could be the first (and possibly only) exchange of a newly initiated transaction instance, or it
could be the second or subsequent exchange of a previously initiated transaction instance.

In the slave transaction processor, a slave link station is the source station for the exchange. That
is, a slave link station is allocated (or retained, if this is a subsequent exchange) as the source sta
tion for the exchange message and the forwarding agent for the response message. The active
number of transaction instances executing in a slave transaction processor initiated by master
transaction processors depends on the number of slave link stations in that transaction processor.

When the exchange processing in the slave transaction processor is finished, a slave transaction
processor TST sends a response message. This message returns to the slave link station in the slave
transaction processor, which reformats and forwards the message to the master link station in the
master transaction processor.

11-5

Transaction Processors and Distributed Processing

Master
Transaction Processor Slave Transaction Processor

Transaction Initiation
Request

in Exchange
Message

"Transaction
\nitiation Request

Reply Placed
in

Exchange Message

•
•

Processing Steps.:

•
•
• • • •

An exchange message arrives at a master link station in the master transaction processor
containing a transaction request for another transaction processor.
The transaction initiation request is forwarded to the slave transaction processor, and a
slave link station is assigned to initiate the transaction instance. (If the request is to
continue a previous transaction instance, an initiating station will have already been
assigned).
The exchange message embedded in the request is extracted and circulated to the
appropriate stations in the slave transaction processor.
One of the stations which processes the exchange message (usually the last one) directs
a response message to the initiating station.
The response message is forwarded to the master transaction processor.
The master link station in the master transaction processor places the response in the
exchange message of the original transaction instance and sends the exchange message
to its next destination.

Figure 11-4 Interface Between Two Transaction Processors

The master link station places the returned data in the original exchange message in the master
transaction processor, and the transaction instance in the master transaction processor routes that
exchange message to its next destination.

Meanwhile, the transaction instance in the slave transaction processor either is terminated or is
suspended awaiting another exchange message from the master transaction processor. If it is
terminated, its slave link station is released; if it is suspended awaiting further exchanges, its slave
link station is retained. The suspended slave link station is accessible only to the transaction in
stance in the master transaction processor that allocated it, and the slave transaction instance is
aborted if the master transaction instance aborts or terminates normally while the slave link station
is allocated.

11-6

Transaction Processors and Distributed Processing

11.2.3 Cooperation Between Master and Slave
You have probably noted that this interface method can handle multi-exchange transactions in the
slave transaction processor. The progress of the slave transaction is controlled by its transaction
definition (as defined in the slave transaction processor) and the control information interpreted
by the master link station. This control information serves much like application terminal function
keys, interacting with the applicable transaction definition to determine the progress of the trans
action instance.

The master and slave transaction instances cooperate so that the exchange messages are supplied at
the proper times and are processed in the proper way. Mismatched messages and processing cause
trouble; the design of both master and slave transactions is critical. Extreme situations are handled
by the respective transaction processors; for example, the automatic abort of a slave transaction
instance if the master transaction instance aborts. But the mundane and subtle aspects of trans
action cooperation are handled with transaction definitions and TST processing logic.

The control parameters in the master exchange message are important to this cooperation. They
are described in the TRAX Application Programmer's Guide.

11.2.4 Links and Sublinks
The data path between a master transaction processor and any of its slave transaction processors is
called a link. A link includes a master link station within the master transaction processor.

The link is divided into one or more sublinks. While the links are permanent, sublinks are created
and dissolved as transactions initiate and terminate in the remote transaction processor. Each
sublink has a master link station at the master end, a slave link station at the slave end, and a
logical data path between them.

Each remotely initiated transaction instance requires a slave link station and its corresponding sub
link for the duration of the transaction instance. This includes the time between exchanges in the
slave transaction processor, when that transaction processor awaits another exchange message from
the master transaction processor.

Both links and sub links are logical data paths; many links and their sublinks share a physical data
communications facility. Each communication line between systems is point-to-point; multi-drop
lines are not supported to join multiple TRAX systems. The interconnection of three TRAX sys
tems requires three communication facilities, as shown in Figure 11-5.

Figure 11-6 shows two transaction processors on different TRAX systems. The figure shows a
master link station in the left transaction processor, and two slave link stations in the right trans
action processor. The left transaction processor, processor A, initiates up to two concurrent
transaction instances in processor B with this arrangement. Transaction processor B can not
initiate transaction instances in processor A; it can only respond to transaction requests made by
processor A.

11-7

Transaction Processors and Distributed Processing

Point-to-point

Communication

Line

Point-to-point

Communication

Line

Point-to-point

Communication

Line

Figure 11-5 Interconnection of Multiple TRAX Systems

TRAX System A

Transaction Processor 1

Physical Data

Communication

8 Master Link Station

G) Slave Lin k Station

FtjJility

Link

Sublink

TRAX System B

Transaction Processor 2

Figure 11-6 Links and Sublinks

11-8

Transaction Processors and Distributed Processing

TRAX System A

Transaction Processor 1

Physical Data
Communication

Facility
~

o Master Link Station

o Slave Link Station

TRAX System B

Transaction Processor 2

Figure 11-7 Duplexed Links and Sublinks

Figure 11-7 shows a duplexed arrangement where each transaction processor acts as a "master"
transaction processor and initiates transaction instances in the other. Each transaction processor
has a master link station, a link to the other transaction processor, and a pool of two slave link
stations in the opposite transaction processor. Both links operate at the same time; that is, each
transaction processor has active transaction instances processing in the other processor
simultaneously.

The configuration of links, sublinks, and physical data communication facilities is determined in
two steps;

• When the TRAX operating system is generated, the physical communication lines are con
figured. These communication lines are given identifiers for the second step .

• When the stations for a transaction processor are defined, the ST ADEF utility program will
ask questions about each master and slave link station. The answers to these questions de
termine how the transaction processors will be connected, which physical communication
lines (if any) are used by the transaction processor, and how many links exist on those com
munication lines.

See the TRAX Support Environment User's Guide for information about how to define master and
slave link stations using the STADEF utility program.

11-9

Transaction Processors and Distributed Processing

11.3 INTERFACE WITH NON-TRAX SYSTEMS
TRAX transaction processors also interface with one non-TRAX system: a CICS application run
ning on an IBM processor.

An application running under CICS operates much the same as a TRAX transaction processor, and
this similarity makes interface possible. The CICS application receives input records from peripheral
devices and processes them, generating one set of output records for each input record. This is
similar to the way TRAX processes exchange messages and generates response messages.

TRAX treats a CICS application as a slave transaction processor, allowing TRAX master transaction
processors to initiate transactions in the CICS application.

Several restrictions apply for this interface, when compared to the normal master-slave relationship
between two TRAX transaction processors:

• A sublink, in TRAX terminology, corresponds to a device/control-unit address in IBM
terminology. The appropriate parameters in each system are selected so that they corre
spond, and both systems know how many sublinks (DCU addresses) are active at one time.

• TRAX acts like IBM model 3270 terminal units for the CICS application. This applies only
to the network architecture and device addressing, however. TRAX system software will not
generate or process any 3270 control codes; this must be done by application TSTs.

• CICS does not support multi-exchange transactions, and therefore all transactions have only
one exchange.

• CICS never acts as a master transaction processor and never originates transactions in the
TRAX system.

Interfaces to CICS applications require special communication line configurations and station
definitions. Configurations are described in the TRAX System Generation Manual and the TRAX
Support Environment User's Guide (see the ST ADtF utility program).

11-10

PART TWO

Building a TRAX Application

CHAPTER 12

REVIEWING BUSINESS ANALYSIS TECHNIQUES

Before you design an application to run under TRAX, you must analyze the business environment that the applica
tion will serve. This chapter presents the analysis steps that you should perform. These are:

1. Identifying business activities
a. Studying business procedures
b. Studying data storage requirements

2. Developing system functional specifications
a. Specifying system scope
b. Choosing between fundamental system alternatives
c. Specifying transaction processing functions
d. Specifying batch processing functions
e. Specifying data storage capabilities
f. Specifying system reliability requirements

12.1 STUDYING BUSINESS ACTIVITIES
Your first task is to study the business activities that your automated system is to serve. This means that you must
become familiar not only with computers and data processing, but also with the business operation itself.

Your study concentrates on two topics:

• The business procedures
• The business data kept, and how it is used

12.1.1 Studying Business Procedures
This portion of your study concentrates on activities and decision-making. It tells you how, why, and when certain
business activities take place.

For example, an analysis of the business procedures in a wholesale distribution business (like that in the TRAX
Sample Application) might answer these questions:

• How do orders arrive?
• How are picking lists generated for the warehouse staff?
• Are credit checks made and, if so, on what basis?
• How does the warehouse staff locate goods in the warehouse?
• Is there a separate packing staff, or do the pickers in the warehouse pack the goods too?
• Is the contents of each order double-checked by anyone?
• How are customers billed?
• How are backorders handled?
• Will partial orders be shipped if one or more items are unavailable or back ordered?
• How is stock procured from suppliers? What initiates orders for more stock?
• How is inventory managed?
• What procedures are used to accept incoming stock from suppliers?
• How are invoices for incoming stock approved and paid?
• Does the firm have catalogs? How are they mailed?

12-1

Reviewing Business Analysis Techniques

12.1.2 Studying Business Data Storage
To determine an application's data storage requirements, study the transient information the business uses each day
and the permanent information it must keep on fIle.

Each business activity requires information. Your task is to determine the information needed by each business
activity, and then find the common set of information needed for all business activities.

F or example, an analysis of the data storage requirements of the TRAX Sample Application would attempt to
answer these questions:

• Is the business using centralized fIles or distributed fIles? If distributed fIles, are they duplicates, or are
certain data kept in different places?

• What different kinds of information does the business need?
• What data elements are in each kind of information - for instance, what data elements are included in a

customer fue?
• Which data elements appear in varying numbers or in varying sizes?
• What is the total quantity of data required?
• How quickly must the business retrieve each piece of information?
• Which data elements are used for computation? Which for decision making? And which are only displayed

for general information?
• Which data elements are part of the business's official records?
• Which data elements have access restrictions or other security requirements?
• Is there a journal for accesses to certain data elements?
• How frequently is the data updated? Are there journals for these updates?
• How is data retrieved? For instance, are customer data retrieved by customer number, last name, or some

other index?
• How long are data kept?
• Who decides when data can be discarded and on what basis?

12.2 DEVELOPING SYSTEM FUNCTIONAL SPECIFICATIONS
After you have studied the operation of the business, design a system that will address the business's need for auto
mation. You do this primarily from the point of view of the business's requirements, although you must always
keep in mind the limits of technical feasibility.

The result is a functional specification for the proposed system. A functional specification describes what the
proposed system will do, but not how the system will be implemented. This does not mean that you can ignore
technical feasibility; you should always have a feasible method in mind for accomplishing anything you propose in a
functional specification. But, for the moment, the technical implementation of the system is not of interest. You
must propose and document a system from a business point of view, so that you can prove its utility and receive
authorization to proceed with its implementation.

The functional specification should cover these topics:

• System scope
• Fundamental system alternatives
• Transaction processing functions
• Batch processing functions
• Data storage requirements
• System reliability requirements

12.2.1 System Scope
First determine the scope of the proposed system. Often, you will not be automating the entire business. Many
manual methods are adequate. Your analysis should identify the business areas that need automation now and in
the immediate future. These areas should be confirmed by the business management.

12-2

Reviewing Business Analysis Techniques

Having chosen the system scope, try to stay with it. Build the originally-proposed system first; then add features
later if it seems desirable. This will help you to meet development schedules.

12.2.2 Fundamental System Alternatives
You are planning a TRAX system for transaction-based, on-line processing. But, like most applications, your system
will probably need some off-line or batch processing. One of the steps in a functional specification is choosing
whether each business activity will be supported by on-line or off-line processing.

On-line processing is not always the best alternative. Many processes are schedule-oriented, that is, they are done at
regular intervals with little human intervention. These are natural choices for off-line or batch processing.

Hybrid processing is also possible. For instance, you can use on-line processing to place data in a fIle, and off-line
processing to print a report using that data.

12.2.3 Specifying Transaction Processing Functions
TRAX supports on-line functions with transactions. You must develop detailed functional specifications for each
transaction. This involves the following design specifications:

• The purpose and function of the transaction - how it corresponds to manual business functions
• The information collected from its user
• The data retrieved from and stored in permanent data flIes
• The calculations done or decisions made
• The information presented to the user or to others
• The transaction volume expected and the speed with which the transaction must be executed
• Requirements for logging, journaling, and other security issues

12.2.4 Specifying Batch Processing Functions
The batch processing portions of the proposed system must also be specified.

NOTE
Because batch processing represents a more traditional
form of data processing - one with which most readers
will be familiar - the batch processing portion of a
business application is not discussed in great detail in
this manual.

As you specify the batch portion of your system, you will be considering these issues:

• The purpose and function of each batch processing sequence (or stream)
• The source and format of the data
• The schedule that controls the processing, or other initiating event that controls it
• The processing that must be done
• The destination and format of output
• The volume of data to be processed, and the time available for processing it.

12.2.5 Specifying Data Storage Requirements
Specify the data storage requirements of your application by outlining the set of data mes needed to support the
on-line and batch processing activities.

The me structures available under TRAX are:

• Sequential files
• Relative-record files
• Indexed-sequential mes with mUltiple indexes

12-3

Reviewing Business Analysis Techniques

You can develop a functional me design by using these basic me structures. The most important design issues at
this stage are the generic types of data to be stored and their methods of retrieval. Calculations of specific field and
record sizes, recording methods, and other detailed technical decisions should be left until the detailed design phase.

Also consider such things as the performance impact that multiple on-line users will have on your me design, and the
impact your me design will have on the throughput and response times of each transaction. Compare these perfor
mance estimates to the throughput and response time requirements you have determined from your business
analysis. Resolve any conflicts.

12.2.6 Specifying System Reliability Requirements
System reliability requirements mayor may not be important in your functional specification. Some applications
are not sensitive to reliability issues; others are particularly sensitive. When specifying system reliability require
ments, consider these questions:

• Must the system be ''up'' most of the time?
• What is the penalty if it is "down"?
• How much effort is it worth to improve reliability, thereby reducing "down" time?
• How essential and valuable is the data in the system's mes?
• If files are destroyed by system accident, to what extent must they be reconstructed?
• How much time and effort can be invested in me reconstruction?
• How much system time (or user time) should be invested on an ongoing basis - that is, during system

operation - to reduce reconstruction time and effort?

12-4

CHAPTER 13

AN INTRODUCTION TO TRAX TECHNICAL DESIGN

Three aspects of TRAX application design are significantly different compared to other implementation
environments:

• The conversation between the system and its on-line users
• The sequence of processing applied to on-line user input
• Issues relating to system reliability and recovery of on-line processing results

For this reason, the remainder of this manual concentrates on the detailed technical design of the on-line portion of
a TRAX application. These techniques will be new even to the seasoned application designer. If you need help with
the off-line or batch portions of your application, review the TRAX Support Environment User's Guide (Order No.
AA-D331A-TC) and perhaps a text on the design of batch processing systems.

The remainder of this manual will continue to use terms and concepts introduced in Part One of this manual. For
example, the term "transaction processor" denotes the portion of the fmished system that handles the on-line
processing for the application. If you are not comfortable with these terms, stop from time to time to review the
TRAX capabilities discussed in Part One.

13.1 DESIGN OF USER-SYSTEM CONVERSATION
As described in Part One of this manual, a TRAX application converses with its terminal users through forms.
Forms are a transaction processor's only interface with its on-line users.

The extensive use of forms has an impact on both the system and its users:

• For the system, forms allow efficient processing. The user's completion of a form is similar to reading a
unit record from a card reader or a record from a file. All data is received with a single operation.

• F or the user, it is often easier to enter data when all data entry fields are available than respond to ques
tions one at a time.

The concept of forms-oriented conversation affects TRAX application designs. Your application must collect a
complete record of information from a user, rather than individual fields.

Two TRAX system concepts work together to determine the flow of user conversation:

• Form definitions specify the characteristics of each form. The form definitions are kept in a form defmi
tion fIle where they are available to the transaction processor.

• Form sequence depends on the defmition of each transaction, as well as the actions taken by TSTs and the
terminal operator's use of function keys.

When you design the user conversation for a transaction, you should begin with a mental image of the conversation
process. Starting from this mental image, adjust the form definitions, the transaction definition, and the transac
tion's TSTs to achieve the desired sequence.

13-1

An Introduction to TRAX Technical Design

Many TRAX concepts interact closely during the execution of a transaction, and their interaction affects the flow
of user conversation significantly. Here are examples of such interactions:

• The response messages sent by TSTs must agree with the transaction definition and its form definitions.
• Form defInitions are a primary means of controlling the use of terminal function keys. Terminal func

tion keys, especially the system function keys, significantly affect the flow of conversation.

13.2 PROCESSING DESIGN
With traditional implementation environments, one application program collects data through conversation with
the user and then processes that data. But because TRAX uses forms to converse with the user, the application
program (now called a TST) is free to concentrate on data processing rather than data acquisition.

The processing applied to a user's data in a TRAX application depends on three hierarchical factors:

1. At the highest level, processing depends on the sequence of exchanges executed within the transaction.
This sequence is controlled by the transaction definition, which can be overridden by TST response
messages and by the user via function keys.

2. At the middle level, processing for an exchange depends on the TST station routing list for the exchange
message. The original routing list comes from the transaction definition, but the routing list can be
modified by any TST processing the exchange message.

3. At the lowest level, processing at a TST station depends on each TST's programmed sequence of
operations. In addition to controlling the flow of logic within the TST itself, a TST can alter the routing
list for the e'Fchange message being processed, sending it to a different series of stations; and the TST
can also alter the sequence of exchanges for the transaction, directing execution of a particular exchange
in the transaction defmition regardless of the sequence specified in the definition.

An important phase in designing a TRAX application is partitioning its processing: partitioning the application
into transactions; partitioning the transactions into exchanges; and partitioning the exchanges into the individual
stations in the routing lists.

Separation of data processing from user conversation has many benefits. It helps structure the application design
process. It simplifies application programs. And it improves system efficiency, because the user conversation
is managed by resident system code. Since more time is generally spent in conversation than in processing, the
time that application programs are in use is reduced.

This division between data processing and user conversation implies a formal interface between them. To accom
plish this, TRAX uses exchange messages (a way for user input to be sent to processing programs) and response
messages (a way for results and instructions to be returned to the user). As you design TRAX transactions, pay
close attention to the content and timing of these messages.

Most of the stations that process exchange messages are TST stations. The processing done at these stations is
specified when the corresponding TST is programmed. There are other stations, however, that may also process
exchange messages. These stations (discussed in Part One of this manual) support such activities as communica
tion with batch processing and communication between two transaction processors. The processing at these sta
tions is done by software supplied with TRAX, and no additional code need be developed to use these stations.

13.3 APPLICATION RELIABILITY ISSUES
DeSigning a good on-line application for multiple users is a challenge. Multiple users must not interfere with each
other, and the work processed by the application must be recorded so that it is not lost if the system fails.

TRAX has many features and facilities to assist you in implementing these necessary aspects of on-line applications.
Staging, journaling, logging, exchange recovery, and crash recovery were presented in Part One of this manual.
You should have a good understanding of these terms before proceeding with a TRAX application design.

13-2

An Introduction to TRAX Technical Design

However, TRAX can only offer capabilities. You must select from the available options and configure your applica
tion appropriately.

Experienced designers of commercial applications know that there are no "good" or "bad" solutions, only tradeoffs
and compromises. Applications constructed under TRAX are no exception: one attractive feature can adversely
impact another. Many times, the inclusion of all optional system features is the worst design strategy.

For instance, TRAX supports a sophisticated staging mechanism where me updates may be delayed until successful
transaction completion. This feature is invaluable to you when transactions terminate unsuccessfully, and you wish
them to have no effect on data meso The staging mechanism, however, extends the time that records are locked
and therefore unavailable to other transaction instances. It also increases the size of the transaction's system work
space. By selecting the staging option to improve application reliability, you increase multiple-user interference -
users lock each other out of data records and compete for available memory.

The final effect of these system reliability features depends on your design of the user conversation and processing
portions of the application. For instance, if one transaction overlaps conversation with data processing, exchange
recovery may not have the effect you desire.

As another example, consider the common practice of placing a control record at the front of a data ftle. This
record might carry the next available customer number, as it does in the TRAX Sample Application. Adding a cus
tomer to the file requires that this control record be read, updated, and written before the new customer record can
be inserted.

Such a record usually has high access frequencies, because adding customer records to the fue requires access to the
control record first. It is important, therefore, that each user read and update the record in the minimum time so
that other users can access it.

But consider what happens if the staging facility is selected for this me. Once the control record is read and locked
by a user, it cannot be unlocked until the entire transaction has been completed. If this process were to have other
exchanges with their associated user interaction, considerable time might elapse before the record is unlocked.
The result would certainly be unacceptable response time.

13.4 STEPS IN THE TRAX DESIGN PROCESS
Designing a TRAX application involves two principal activities:

1. Designing files to support the application's data storage requirements
2. Designing transactions and batch processing streams to support the application's processing requirements

File design for TRAX is like ftIe design for other commercial, multi-user systems. This design process focuses on
the structure of the fIles and the problems of shared access to those fIles.

Processing design for TRAX is signifIcantly different from other systems, particularly for on-line or transaction
oriented processing. Design focuses on the transaction structure and the transaction components: transaction
defInitions, forms, station defmitions, TST specifications, and so forth. These components, which are all inter
related, must be assembled to provide the desired transaction behavior.

File design and processing design usually proceed in parallel. As the content and structure of mes are refined, trans
action designs must be adjusted; as transactions are refmed, me designs must be adjusted.

Processing design topics are covered in Chapters 14 through 20. File design topics are covered in Chapters 21 and
22. The topics are discussed in this order because the processing topics will be new to most readers, while the me
topics will be familiar to many.

13-3

CHAPTER 14

DESIGNING THE OVERALL STRUCTURE OF A TRANSACTION

This chapter describes procedures for designing the overall structure of a transaction. It covers these major topics:

• Transaction structure diagrams
• Overlapped processing
• Transaction data structures
• Transaction access security techniques

The transactions identified during your preliminary analysis must be considered individually, and appropriate
technical designs must be developed for each of them. Under TRAX, the implementation of each transaction will
involve:

• An overall structure relating the user interactions, processing descriptions, and decision paths during
transaction processing

• A detailed specification of each interaction with the user
• A detailed specification of each processing step that is required to process the data entered by the user

The first item, the overall structure of the transaction, is the best place to begin.

14.1 TRANSACTION STRUCfURE DIAGRAM
When you design TRAX transactions, you should develop diagrams that show the elements of a transaction and how
they interact during transaction execution. These diagrams are called transaction structure diagrams. You should
develop one for each transaction in your application.

When you develop these diagrams, try to concentrate on two goals:

• A working transaction design. That is, doublecheck your work against the materi3.1. in Part One of this
manual to make sure that the transaction can be implemented under TRAX and that it will operate as you
intended.

• A sensibly organized and easy-to-use transaction. That is, imagine what it would be like to execute your
transaction from an application terminal.

Your finished diagram should reflect both these aspects of transaction design - technical feasibility as well as ease of
use.

14.1.1 An Example Transaction
The Change CU$tomer transaction from the Sample Application provides a good example of a transaction structure
diagram.

This transaction reads a 'record from the customer me and allows a terminal user to change the record and replace it.
The processing steps in the transaction are:

1. When the transaction begins, the user is shown a form on which he enters the number of the customer
whose record is to be changed.

2. The user either presses the CLOSE key, terminating the transaction, or enters a customer number as
requested. If the customer number is entered to the form, the user presses the ENTER key.

14-1

Designing the Overall Structure of a Transaction

3. Processing begins to locate and read the specified record.
4. If the record is not found, the user is so advised. The form is left on the screen, including the

user's input, and the user either presses the CLOSE key or tries a new customer number. In other
words, the user is returned to Step 1.

S. If the record is located, the user sees a new screen display showing the data from the record.
6. The user then either presses the CLOSE key, terminating the transaction, or he alters the displayed

data and presses the ENTER key.
7. If the user alters the data and presses the ENTER key, processing begins to place the modified data

in the file. This processing is done in two stages - data validation and then me update.

14.1.2 Diagram Symbols
A transaction structure diagram can show all of the important components of a transaction design. Figure 14-1
shows a transaction structure diagram for a typical transaction, the change customer transaction from the TRAX
Sample Application.

These components of a transaction design can be shown on a transaction structure diagram:

• Exchange Boundaries. Each page of the diagram represents one exchange. Each page is labeled for the
exchange it represents.

• Exchange Activities. There are two principal activities within each exchange: terminal conversation and
exchange message processing. The former is shown on the left portion of the page; the latter, on the
right.

• Initial Display of Form. The initial display of the form is shown by a "video display" symbol. The
symbol contains a description of the form's purpose or effect.

• Reply Definitions. Each reply defmition is represented by another "video display" symbol. Each
reply symbol contains a description of the reply's purpose or effect, and is labeled with the appropriate
reply number. Arrows designating REPLY messages pass through the appropriate reply symbol and then
to the exchange's user action symbol.

• User Action. After the initial display of the form and each reply, the terminal user must take one of
two actions:

Press a system function key. This causes an immediate transfer to a new exchange specified by a
combination of the transaction defmition and the key used.

NOTE
Certain of these keys can also cause the transaction in
stance to be terminated.

Enter data and then press the ENTER key or some other user function key. This creates an exchange
message and sends it to the stations on the exchange routing list.

The user action symbol (there can be only one in each exchange) shows the point where the exchange.
awaits the user action. The arrows leading from this symbol show the various function keys the user can
press, and what happens when he presses each.

System function keys and user function keys are treated differently in a transaction structure diagram
because they have different effects:

System function keys repeat the exchange, enter a new exchange, or terminate the transaction
instance. Each key is shown by a single arrow, usually directed to the margin of the page with an
annotation of the key's effect. Each arrow is labeled with the name of its function key.
User function keys generate an exchange message and cause it to be routed to a series of processing
stations. All enabled user function keys therefore share a common series of arrows on the transaction
structure diagram. This series of arrows represents the path of the exchange message. It begins at

14-2

Designing the Overall Structure of a Transaction

the user action symbol and proceeds through the processing stations on the exchange routing list.
The segment of the arrow between the user action symbol and the first processing station should
be labeled with the names of the enabled user function keys.

Because some function keys may be enabled or disabled by a reply definition, some function key arrows
may require footnotes explaining the circumstances in which the user may employ them. For example,
a function key arrow might carry a footnote explaining that the key is only enabled after the invocation
of Reply 1.

• Processing Stations. These symbols, at the right side of the diagram, show the stations that receive
the exchange message; usually they represent TST stations. Each symbol represents a separate station.

• TST Actions. TSTs may take several actions in processing an exchange message. These actions are shown
in the transaction structure diagrams as arrows originating from within the TST, in addition to the
exchange message arrows. When a TST takes an action, exchange message processing is not necessarily
terminated; the TST can take an action and still process the exchange message.

The TST actions that can appear on a transaction structure diagram are:

Response message to activate reply. If the TST modifies the present screen display and allows the
terminal user to take another action, it must send a REPLY response message. This message is
shown as an arrow coming from the TST to a reply symbol on the left side of the same exchange.
The arrow is annotated to explain the purpose and content of the REPLY message and the reply
number it will invoke.
Response message to begin a new exchange. A TST can send several kinds of response messages to
cause the user's terminal to proceed to a new exchange. These messages are:

PRCEED
STPRPT
TRNSFR

These messages are also represented on the diagram as arrows coming from the issuing TST. The
arrows proceed to the margin of the page and are labeled with the destination exchange's exchange
label. Each arrow should be annotated with the message purpose, content, and message type.
Response message to terminate the transaction instance. A TST can send two kinds of messages
that terminate the transaction instance:

1. A CLOSE message terminates the transaction instance immediately. This message is represented
by an arrow pointing to the margin of the page, with an annotation for the message and its
effect. (This will usually be a return to the transaction menu.)

2. An ABORT message is similar to a REPLY message and is drawn like that message.

Report Messages. If a TST must print data on an output-only terminal, it sends a report message
with the data to that terminal's station. This action is shown by an arrow from the issuing TST to
a standard flowchart "document" symbol at the right side of the page. The arrow is labeled with
the report's purpose, content, and destination station name.
Mailbox messages. If a TST must deposit data in a mailbox station, it sends a mailbox message to
that mailbox station. When a TST interrogates a mailbox to see how many messages it contains or
retrieves a mailbox message from a mailbox, a TST issues the appropriate library call. The mailbox
is represented by a standard flowchart "transmittal tape" symbol and the flow of mailbox messages
by suitable arrows .

• Exchange Parameters. The effect of response messages and function keys depends to an extent on two
parameters in each exchange of the transaction definition: the REPEAT parameter and the subsequent
action parameter. These parameters are shown at the bottom of Figure 14-1 (Sheet 1 of 2), so that the
correct paths for response messages and function keys can be determined and easily verified.

14-3

Designing the Overall Structure of a Transaction

TRANSACTION STRUCTURE DIAGRAM

TRANSACTION PROCESSOR I S I A I M I P I LIE I
TRANSACTION NAME I C I H I G I C I u I s I PAGE [ill OF [TIJ
EXCHANGE NAME I C I HI G I E I X I 1 I
FORM NAME I C I H I C I u I s I 1 I

CONVERSATION

INITIAL DISPLAY

START

REPLY __

a
REPLY __

a
CLOSE to enter

To transaction customer number selection form

AT END: D - REPEAT

[R] - NOREPEAT

MESSAGES

REPLY
Response message contains

error message text

ENTER
Exchange message contains

customer number

[8J - NEXT

D - FIRST

D - INITIAL

PROCESSING

D
D
D
D
D

----Error

Read
customer

record

[E] - WAIT

D - NOWAIT

Figure 14-1 A Transaction Structure Diagram

14-4

To
CHGEX2

From
CHGEX1

CLOSE

Designing the Overall Structure of a Transaction

TRANSACTION STRUCTURE DIAGRAM

TRANSACTION PROCESSOR I s I A I M I P I LIE I
TRANSACTION NAME I C I H I G I C I u I S I
EXCHANGE NAME I C I H I G I E I X I 2 I
FORM NAME I c I H I C I u I s I 2 I

CONVERSATION MESSAGES

INITIAL DISPLAY

REPLY

REPLY

Response message contains
error message text

Response message contains
no data

PAGE [TIJ OF []II

PROCESSING

D
D
D
D

REPLY __ ---- Error

a
ENTER

Verify
data

OK

Write new
data into

file To transaction
selecti n form •

Exchange message contains
L-___-___ ---I customer data

AFFIRM
To first exchange

AT END: 0- REPEAT

[g] - NOREPEAT

D - NEXT

[K] - FIRST

D -INITIAL

[K] - WAIT

D-NOWAIT

• Only enabled when form is first displayed and after reply 1. • Only enabled after reply 2.

Figure 14-1 (Cont.) A Transaction Structure Diagram

14-5

Designing the Overall Structure of a Transaction

Stop here to be sure that you can identify the following transaction components in Figure 14-1:

• Two exchanges
• Three TSTs
• The entry point from the transaction menu
• Exit points from the transaction
• The conversation and processing phases of each exchange
• The path of the exchange message in each of the two exchanges
• The initial display of each exchange's form
• The reply defined in the first exchange's form definition
• Two replies defined in the second exchange's form definition
• The point in each exchange where the user must enter data or press a function key
• The function keys enabled in each exchange
• A REPLY response message for errors in the first exchange's processing phase
• The PRCEED response message that causes the transition between the first and second exchanges
• A REPLY response message for errors in the second exchange's processing phase
• A REPLY response message that causes a transaction completion message to be displayed on the

terminal screen

14.1.3 Transaction Control Flow
Three kinds of arrows on a transaction structure diagram are important: those representing exchange messages,
response messages, and the effects of system function keys. These components of a transaction determine the
transaction's flow of control - that is, the sequence in which steps of the transaction are executed.

As you construct transaction structure diagrams, be sure that these three kinds of arrows conform to TRAX trans
action processor architecture. Make sure, too, that your arrows reflect your specifications for the REPEAT and
subsequent action parameters. For example, if an AFFIRM key is shown going to the next exchange via the NEXT
option, a PRCEED message must be shown as having the same destination.

Be sure you understand why each step of the transaction will occur the way you designed it. You cannot throw
together a flowchart of a transaction without regard for the rules of transaction processor architecture and expect
that transaction to work properly under TRAX. Your design must consider from the outset the capabilities of
transaction processors.

Refer to Part One of this manual when you have specific questions about transaction processors and their
capabilities.

14.2 OVERLAPPED PROCESSING
In typical transaction designs, response messages are sent by the last TST in each exchange's routing list shortly
before the TST terminates. This causes the transaction instance to alternate user conversation and TST processing.
First, the user enters data; then the system processes it; the user enters more data; and so forth.

It is pOSSible, however, to overlap user conversation with the processing of exchange messages. In certain circum
stances, this technique can improve a transaction's apparent response time. On the other hand, it is easy for an
application designer to unintentionally overlap the conversation and processing phases of two exchanges by choos
ing the wrong timing for response messages or the wrong transaction definition parameters. A good understanding
of the concepts in overlapped processing helps you to choose situations where it may be useful. It also helps you
appreciate how transaction processors work, even if you never use overlapped processing in your transaction deSigns.

14.2.1 Overlap via Response Messages
One method of overlapped processing results from the distinction between when a TST sends a response message
and when the TST terminates execution. Any TST in a routing list can send the response message; this is inde
pendent of the TST termination and other TSTs that must still process the exchange message.

14-6

Designing the Overall Structure of a Transaction

By sending a response message, a TST releases the user's terminal for another conversational phase. The response
message can:

• Invoke a reply and invite further data entry on the same form
• Repeat the exchange, using a new copy of the form
• Transfer to a new exchange and display the exchange's form
• Terminate the transaction instance, and follow with the display of the transaction's first form
• Terminate the transaction instance, and follow with the display of a transaction menu

If a response message is sent before exchange message processing is finished, the remaining processing phase of that
exchange and the conversational phase of the new exchange proceed in an overlapped or parallel fashion.

You might use this technique in transactions where the user enters data that must be written into a file. Data
entered this way usually has two processing steps:

1. The data entered by the user is checked for accuracy and consistency. If the user has made any errors,
the processor stops and an error message is generated.

2. If the data is acceptable, it is written into the file. By this point, the only errors that can occur are system
or hardware errors; while they may abort the transaction, the user cannot correct or avoid them.

The user is interested only in the results of the first processing step. If the data passes the consistency checks, the
user can enter the next set of data. Meanwhile, the previous set of data can be written into the file.

You can get this effect under TRAX by sending the response message as soon as the data is successfully checked,
leaving the same TST or another TST to continue processing in parallel with the conversatonal phase of the next
exchange.

14.2.2 Overlap via the NOWAIT Option
If you wish to completely overlap exchange message processing with the conversational phase of the next exchange,
TRAX allows a second overlap technique: the NOWAIT option in the transaction definition. If you specify this
option for an exchange, the transaction processor will not wait for a response message from a TST before allowing
the user's terminal to proceed to the conversational phase of the next exchange. The transfer will happen as soon
as the exchange message is constructed.

You can only use this technique in transactions where a user enters data that can be written into a me without
programmed edit checks. This mode of operation is frequently called "blind data entry." By using the NOWAIT
option, you can design transactions with the best response times. But remember, the user receives no feedback
for the data he enters.

NOTE
The NOWAIT option is not equivalent to having the
first TST in the routing list send an immediate response
message. Before a TST can send a response message, it
must begin to process the corresponding exchange mes
sage. This means that if the exchange message waits in
the TST's station queue, the response message will be de
layed and optimum response times will not be secured.

14.2.3 Restrictions on Overlapped Processing
There are three restrictions on overlapped processing.

1. No further communication is possible between TSTs and application terminals once overlap begins.
2. Overlapped processing cannot be achieved in transactions for which exchange recovery is selected.
3. There is a restriction on the duration of overlap.

14-7

Designing the Overall Structure of a Transaction

14.2.3.1 No Communication with Terminal during Overlapped Processing - Remember that a series of TSTs
can issue only one response message to each exchange message. This means that when you use a response message
to achieve overlap, no further response messages are possible as part of that exchange. When you use the NOWAIT
option, you must not allow the exchange message processing to issue any response messages whatsoever.

This restriction makes sense in another important way. As soon as a TST issues a response message or a NOWAIT
option is encountered, the display on the terminal screen is modified and the user's keyboard is unlocked. Further
response messages - even if the transaction processor allowed them - would be pointless, because the old form
that collected the exchange message data is no longer on the terminal screen. Response messages would disturb
the terminal user as he worked on the new form.

14.2.3.2 No Overlap Possible if Exchange Recovery Selected - Overlapped processing cannot be achieved if
you select exchange recovery for the transaction. Overlapped processing can cause the user and the transaction
processor to be at two different points in the transaction defmition. Exchange recovery is impossible when two
such asynchronous events must be recorded and preserved. To avoid this problem, TRAX transaction processors
delay messages issued by TSTs until the processing phase is completed. So even if you attempt overlapped proc
essing in exchange-recovery transactions, no overlap occurs. Instead, you are using up storage space in the trans
action processor to hold the delayed messages.

14.2.3.3 Restriction on the Duration of Overlap - A final restriction involves the extent of overlap between
processing phases and conversational phases. Only one exchange message can exist for a transaction instance at a
time. Therefore, if a user has begun overlapped conversation, the processing phase for the subsequent exchange
cannot begin until the processing phase for the previous exchange ends. To have two processing phases active
for a single transaction instance would require two exchange messages.

If a user completes an overlapped conversational phase before the previous exchange's processing phase has com
pleted and he presses the ENTER key or other user function key to transmit the entered data to the transaction
processor, the transaction processor will not accept the data until the prior processing phase terminates. The trans
action processor remembers that the user tried to send data and automatically interrogates the terminal later to
acquire the data. No additional user action is required. But the transaction instance cannot proceed until the
prior processing phase ends.

14.3 TRANSACTION DATA STRUCTURES
Once you diagram the flow of each transaction, the next step is to layout the data structures to be passed between
elements of the transaction processor when the transaction is executed. You must determine the size and contents
of the following data structures:

• Exchange Messages. Each exchange needs an exchange message format. Remember, the exchange
message carries information entered by the user or derived from the form displayed on the user's ter
minal. If you allow the terminal user to choose between more than one user function key, you must
reserve space in the exchange message for the identifier of the selected key. This is the way a TST deter
mines which user function key was used.

• Transaction Workspace. You must specify a transaction workspace format that will satisfy all exchanges
of the transaction. The workspace should accommodate all data passed between the TSTs that work on
the transaction.

• Response Messages. You must specify the format of each of the response messages the TSTs can send.
Some response messages need not contain any data other than the required parameters for the corre
sponding library call; in many cases, the call itself is sufficient. But if a response message contains data
which will be displayed on the user's terminal, the format of this information must be specified.

• Other Messages. If any TSTs in the transaction send report or mailbox messages, these must also be
specified.

Each of these data structures should be defmed on specification sheets similar to those shown in Figures 14-2
through 14-6.

14-8

Transaction Processor

Transaction Name

Exchange Label

Field No. Starting Byte

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Designing the Overall Structure of a Transaction

EXCHANGE MESSAGE S~ECIFICATION SHEET

Length (Bytes) Contents

Figure 14-2 Specification Sheet for Exchange Messages

14-9

Transaction Processor

Transaction Name

Designing the Overall Structure of a Transaction

TRANSACTION WORKSPACE SPECIFICATION SHEET

Field No. Starting Byte Length (Bytes) Contents

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Figure 14-3 Specification Sheet for Transaction Workspace

14-10

Transaction Processor

Transaction Name

Exchange Label

Type of Message

Designing the Overall Structure of a Transaction

RESPONSE MESSAGE SPECIFICATION SHEET

o -R EPL Y (Activates reply no. ,--I -,--",,---,I)
D - PRCEED

D - STPRPT

D - CLSTRN

o - ABORT (Activates reply no. I I)
D - TRNSFR (To exchange I I I I I I P

Field No. Starting Byte Length (Bytes) Contents

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Figure 14-4 Specification Sheet for Response Message

14-11

Designing the Overall Structure of a Transaction

REPORT MESSAGE SPECI FICATION SHEET

Transaction Processor 1 1'---''------''----1.--1---1
T ra nsacti on Na me L-I 1'---''------''---<--'---'
Report Form Name 1 1'----''------''---''--1---1

Field No. Starting Byte Length (Bytes) Contents

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Figure 14-5 Specification Sheet for Report Message

14-12

Transaction Processor

Mailbox Station Name

Sending Transaction Name

Receiving Transaction Name

Field No. Starting Byte

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Designing the Overall Structure of a Transaction

MAILBOX MESSAGE SPECIFICATION SHEET

Length (Bytes)

TST

TST

Contents

Figure 14-6 Specification Sheet for Mailbox Message

14-13

Designing the Overall Structure of a Transaction

The system workspace should also be considered at this time. You need not specify its exact size or format, but
you should consider what data structures the transaction processor will have to store in the system workspace.
If your transaction design places unreasonable demands upon the system workspace, such as staging a large number
of lengthy records, system performance may suffer and you should redesign the transaction. The size required
for the system workspace is computed in the transaction design documentation process described in Chapter 16.

14.4 TRANSACTION ACCESS SECURITY TECHNIQUES
When you design each transaction, you must consider which users or classes of users are to be allowed access to it.
In many commercial applications, this consideration is as important as the operation of the transaction itself.

Two techniques are available to control access to TRAX transactions:

1. Terminal-Based Access. Anyone using a particular terminal (or a particular dial-up port) is allowed
access to a common set of transactions. With this technique, a user does not identify himself to the
system.

2. User-Based Access. The set of transactions available from any particular terminal or dial-up port depends
on the user requesting access. With this technique, each user identifies himself to the system when he
begins work at a terminal and informs the system when he leaves the terminal.

Both of these access control techniques depend on work classes, which are defmed sets of transactions. Work
classes are described in Chapter 9.

14.4.1 Terminal-Based Access
Terminal-based access can be implemented either with or without a transaction selection form:·

• If more than one transaction is to be available from the terminal, a transaction selection form is needed
to allow the user to make his choice. The terminal should also be assigned a work class that specifies
which transactions the terminal can execute.

• If only one transaction is to be available, the transaction selection form and work class are unnecessary;
the terminal always displays the first form of its only transaction when it is idle.

14.4.2 User-Based Access
User-based access is implemented with the following special transaction processor components, supplied with each
TRAX system generation kit:

• A SIGNON transaction that identifies the user to the system
• A SIGNOF transaction that informs the system that the user is leaving the terminal
• Utility programs that maintain the AUTOEF me, which contains the names and attributes of the system

users.

Those terminals that require user identification must be assigned to the SIGNON work class. This work class must
contain the SIGNON transaction. It can also contain other transactions you wish to be accessed from such terminals
without further user identification.

At least one of each user's work classes must include the SIGNOF transaction. When a user executes this trans
action, the terminal reverts to its original SIGNON work class. Another user can subsequently identify himself
with the SIGNON transaction.

14-14

Designing the Overall Structure of a Transaction

14.4.3 Access Control Design
Use a two-step process to select access control techniques.

1. Divide the' application's permanent terminals, dial-up ports, and users into groups by access
requirements.

2. Select groups of transactions appropriate for each.

You may find that terminal-based access techniques are adequate, or that user-based access techniques are ade
quate. Usually, a combination is best.

14-15

CHAPTER 15

SEVERAL TRANSACTION DESIGN EXAMPLES

This chapter provides several examples of the transaction structure diagram as you might use it to design a trans
action. The chapter begins with a simple transaction design and progresses to sophisticated design.

15.1 THE APPLICATION PROBLEM
The transaction described in this chapter is the Display Customer transaction from the TRAX Sample Application.
This transaction is one of several that are used to maintain a customer master file for the application. The purpose
of the transaction is to allow users to inspect the contents of the customer master me.

The customer master file is an indexed me whose primary index is the customer number. The file also has a
secondary index by customer name.

Besides the fields of primary and secondary indexes, the me has the following fields:

• Address
Street
City
State Code
Zip Code

• Full Telephone Number
• Contact Name
• Credit Limit
• Current Balance
• Purchases to Date
• Next Order Number
• Next Payment Number

15.2 A SIMPLE TRANSACTION DESIGN
Figure 15-1 illustrates, perhaps, the simplest transaction design that solves the application problem.

The transaction requires two exchanges, because the transaction requires the entry of a customer identification
number before that record can be shown on the terminal screen.

1. The form for the first exchange collects a customer number from the user, and the customer number
is sent as an exchange message to a TST. This TST reads the specified record and returns the data
from the record as a response message.

The response message is a PRCEED message and the subsequent action for the exchange is NEXT,
so the transaction moves to the second exchange.

2. This exchange displays the customer data from the response message and solicits a function key from
the user. This gives the user time to read the displayed data.

There is no processing for the second exchange. After reading the data, the user presses the AFFIRM
function key if he wishes to see a new customer record.

During the conversation phase of both exchanges, the CLOSE function key is enabled. Pressing this key ter
minates the transaction and returns the user to the appropriate transaction selection screen.

15-1

Several Transaction Design Examples

TRANSACTION STRUCTURE DIAGRAM

TRANSACTION PROCESSOR

TRANSACTION NAME

IslAIMlplLIEI

IDfplvlclulsl

IDlplvlElxlll

IDlplclulslll

PAGE LEJ OF rn
EXCHANGE NAME

FORM NAME

CONVERSATION

INITIAL DISPLAY

START

Q
REPLY __

a
REPLY __

a
CLOSE

To transaction

User enters
customer number

AT END: 0 - REPEAT

~ - NOREPEAT

ENTER

MESSAGES

Generates exchange message
containing customer number

[R] - NEXT

0- FIRST

o -INITIAL

PROCESSING

D
D
D
D
D

Read
customer

record

o -WAIT

0- NOWAIT

Figure 15-1 A Simple Transaction Design

15-2

PRCEED
Response message

From
DPCUS1

CLOSE
To transaction

AFFIRM
To first exchange

Several Transaction Design Examples

TRANSACTION STRUCTURE DIAGRAM

TRANSACTION PROCESSOR I S I A I M I P I LIE I
TRANSACTION NAME I Dip I y I C I u I S I
EXCHANGE NAME I Dip I y I E I x I 2 I
FORM NAME I Dip I c I u I S I 2 I

CONVERSATION MESSAGES

INITIAL DISPLAY

REPLY __

a
REPLY __

a
REPLY __

a

PAGE D1J OF []}]

PROCESSING

D
o
[~J
[~J

o
D

AT END: 0 - REPEAT

0- NOREPEAT

D - NEXT

0- FIRST

o -INITIAL

~-WAIT

0- NOWAIT

Figure 15-1 (Cont.) A Simple Transaction Design

15-3

Several Transaction Design Examples

Conversation and processing are not overlapped in this design: both exchanges use the WAIT option rather than
NOWAIT, and the TST in the first exchange's processing waits until its processing is done before sending the re
sponse message.

Neither exchange uses the REPEAT option; each is executed once during the transaction.

The subsequent action for the first exchange is NEXT, indicating that when a PRCEED response message is received,
the transaction should move to the conversation phase of the next change.

The subsequent action for the second exchange is FIRST. This indicates that when the user presses the AFFIRM
key in response to the second exchange, the transaction instance will be terminated. After the current transaction
instance is terminated, the transaction processor will display the form from the first exchange and prepare for
another instance of the same transaction. If we were to select instead a subsequent action of INITIAL, the
AFFIRM key would still terminate the transaction - but the transaction processor would display the appropriate
selection form instead of the first form for the transaction. If the user is expected to execute several of these trans
actions in a row, the FIRST option is more appropriate; if the transaction is normally executed only once, then the
INITIAL option is more appropriate.

An implementation of this transaction would require two forms and one TST. The second exchange does not need
a TST, because no processing is required. The exchange exists only to allow a function key to be pressed when the
displayed data has been read.

15.3 AN ALTERNATIVE DESIGN WITH ONLY ONE EXCHANGE
The transaction design shown in Figure 15-1 has two exchanges. The user interaction which collects the customer
number is in one exchange, and the user interaction which displays the data and confirms that the data has been
read is in a second exchange.

Figure 15-2 shows the result of this transaction design: alternating conversation and processing, where the con
versation phase and processing phase of each exchange are entered exactly once.

Figure 15-3 shows an alternative transaction design using a single exchange. However, two user interactions are
still possible, because the conversational phase of the exchange is entered twice during each execution of the
transaction.

1. During the first entry, the user enters a customer number and presses the ENTER key.
2. During the second entry, the user presses the AFFIRM key to acknowledge that the data has been read.

Between these two entrances to the conversational phase, there is a processing phase where a TST reads the selected
record. The data from this record is returned in a REPLY response message, rather than in the PRCEED response
message used in Figure 15-1. The REPLY message causes the transaction to re-enter the conversational phase of
the exchange, rather than proceed to the next exchange of the transaction.

The REPLY message activates a defined reply in the form definition and supplies the customer data used by that
reply definition. The reply definition designates the positions on the screen where the data will be displayed.

Figure 15-4 shows the result of this transaction design. Where the simple design in Figure 15-1 resulted in alter
nating conversational and processing phases for each exchange, the design for a single exchange in Figure 15-3 results
in a looping flow where each conversational phase is visited twice and each processing phase, once.

The transaction designs shown in Figures 15-1 and 15-3 appear almost identical to a user at an application terminal.
The only apparent difference between the two designs is that in the simple design (Figure 15-1), the entrance to the
second exchange causes the terminal screen to be erased and a new form to be constructed. This is always the case

15-4

Several Transaction Design Examples

Exchange 1

Processing

Exchange 2

Conversation Processing

Exchange 3

Conversation Processing

Figure 15-2 A Transaction Where Each Exchange is Entered Only Once

15-5

Several Transaction Design Examples

TRANSACTION STRUCTURE DIAGRAM

START

CLOSE

TRANSACTION PROCESSOR I S I A I M I P I LIE I
TRANSACTION NAME I Dip I y I C I u I S I
EXCHANGE NAME I Dip I y I E I X I 1 I
FORM NAME I Dip I C I u I s I 1 I

CONVERSATION MESSAGES

INITIAL DISPLAY

REPLY __

a
REPLY __

a

EPLY
Response message contains

customer r.ecord

ENTER

To transaction o Exchange message contains
customer number

~------r-----~

AFFIRM
To first exchange

AT END: D - REPEAT

0- NOREPEAT

• Enabled only on mitial form display

0- NEXT

[R] - FIRST

D -INITIAL

• Enabled only after reply

PAGE [JJJ OF rn

PROCESSING

D
D
D
D
D

Read
customer

record

[E)-WAIT

D - NOWAIT

Figure 15-3 A Transaction Having Only One Exchange

15-6

Several Transaction Design Examples

Processing

Exchan

Processing

Figure 154 A Transaction Where Each Exchange is Entered Twice

15-7

Several Transaction Design Examples

when a new exchange is entered. In contrast, the simple exchange design in Figure 15-3 does not erase the screen;
activating a reply affects only those fields named in the reply definition. (In fact, activating a reply is the only way
the conversational phase of an exchange can be re-entered without erasing and redisplaying the exchange form.)

Although the single-exchange design (Figure 15-3) achieves economy by reducing the number of forms required,
this savings may have undesirable side effects. For example, the single-exchange design gives you considerably less
flexibility in the ways you can change the screen display between the first and second steps of the transaction.
Remember that the characteristics of each field are determined when a form is first displayed; from that time on,
the content of the field may be changed by replies but the field's characteristics cannot be changed. Because the
design in Figure 15-3 uses only one form (using replies as a substitute for a complete second form) the character
istics of each field must remain the same during the transaction instance. For instance, if a.field is displayed in
reverse video in the first step of the exchange, it must remain in reverse video for the second step.

An implementation of the single exchange transaction requires one form and one TST. The form, however, must
have a reply definition so that a REPLY response message containing customer data can display that data in the
appropriate fields of the form. The REPLY message must also disable the ENTER key, which was enabled on the
first entrance to the conversational phase, and enable the AFFIRM key for use during the second entrance to the
conversational phase. It is the enabling and disabling of function keys that allows the exchange to operate differ
ently for these two entrances.

15.4 THE EFFECT OF THE REPEAT OPTION
The single-exchange transaction design shown in Figure 15-3 activates a transaction instance each time a customer
record is displayed. This happens because the exchange definition specifies NO REPEAT and the sl,lbsequent action
parameter specifies FIRST. Therefore, the user's terminal is set for the execution of a new transaction instance
after each display operation is finished.

Consider what happens when this transaction design is modified by substituting REPEAT instead of NOREPEAT
in the definition of the exchange. This change is shown in Figure 15-5.

To the user, this transaction design is identical to that shown in Figure 15-3. The only difference is in the system's
handling of the transaction.

With the specification of REPEAT, the AFFIRM key no longer terminates the transaction instance and prepares
for another. Instead, the AFFIRM key continues the same transaction instance with another execution of the ex
change just completed. The exchange starts from the beginning, with a fresh copy of the exchange form.

It must be emphasized that the user sees the same screen display in Figures 15-3 and 15-5, after pressing the
AFFIRM key. The difference is that in Figure 15-3 a transaction instance terminates and another is ready to begin;
in Figure 15-5, the transaction instance continues. This distinction is invisible to the user, and affects only the
application design, its implementation, and its execution within the system.

Some effects of the continuing transaction instance are:

• Staged records continue to be staged and are not written to the files.
• Staged records continue to be locked.
• No journaling occurs at this time.
• The same transaction workspace continues to be used.

None of these effects is important in the display customer transaction, because that transaction does not use record
locking or updating and uses no transaction workspace. In other transactions, however, these effects are important.

15-8

Several Transaction Design Examples

TRANSACTION STRUCTURE DIAGRAM

START

CLOSE
To transaction
selection form

AFFIRM

To first exchange

TRANSACTION PROCESSOR I S I A I M I pi LIE I
TRANSACTION NAME I Dip I y I C I u I S I
EXCHANGE NAME I Dip 1 y 1 E 1 X 11 1

FORM NAME I Dip 1 C lui S 11 1

CONVERSATION MESSAGES

INITIAL DISPLAY

REPLY __

o
REPLY __

o

Response message contains

customer record

ENTER

o Exchange message contains
customer number

AT END: [8J - REPEAT

0- NOREPEAT

D - NEXT

~ - FIRST

D -INITIAL

• Enabled only on initial form display • Enabled"only alter reply

PAGE OJ] OF []JJ

PROCESSING

D
D
D
D
D

Read
customer

record

[8] -WAIT

0- NOWAIT

Figure 15-5 Using the REPEAT Option

15-9

START

CLOSE
To transaction

AT END

Several Transaction Design Examples

TRANSACTION STRUCTURE DIAGRAM

TRANSACTION PROCESSOR I S I A I M I P I LIE I

TRANSACTION NAME 10 I plY I C I u I S I PAGE D:D OF []I]
EXCHANGE NAME I 0 I plY I E I x I 1 I

FORM NAME I Dip I c I u I s I 1 I

CONVERSATION MESSAGES

INITIAL DISPLAY

REPLY __

a
REPLY __

a
REPLY

a
customer number

D -- REPEAT

~ - NOREPEAT

ENTER
Generates exchange message

containing customer number

0- I\lEXT

D - FIRST

D - INITIAL

PROCESSING

D
D
D
D
D

Read

customer

record

~ -WAIT

0- NOWAIT

Figure 15-6 Allowing the User to Browse

15-12

PRCEED
Response message

Several Transaction Design Examples

TRANSACTION STRUCTURE DIAGRAM

From
DPCUSl

CLOSE

TRANSACTION PROCESSOR I S I A I M I P I LIE I

TRANSACTION NAME I Dip I y I C I u I S I
EXCHANGE NAME I Dip I y I E I xl 21
FORM NAME 1 Dip 1 C 1 u 1 S 1 2 I

CONVERSATION

INITIAL DISPLAY

Display

customer

record

REPLY __

a
REPLY __

a
REPLY __

a
Await

user action

I MESSAGES

PRCEED
Response message contains

customer record

ENTER
Exchange message contains no data

To transaction 1
selection form L..----r-----'

STOP JEPEAT I
To first exchange

AT END- [8] - REPEAT

D - NOREPEAT

D - NEXT

[R] - FIRST

D -INITIAL

I

PAGE [TIJ OF []2]

PROCESSING

D
D
D
D
D

I

Read
next record

[R] - WAIT

0- NOWAIT

Figure 15-6 (Cont.) Allowing the User to Browse

15-13

START

CLOSE
To transaction
selection form

I
AT END

Several Transaction Design Examples

TRANSACTION STRUCTURE DIAGRAM

TRANSACTION PROCESSOR

TRANSACTION NAME

IslAIMlplLIEI

IDlplvlclulsl PAGE [li] OF [J2]
EXCHANGE NAME IDlplvlElxl I
FORM NAME IDlplclulsl I

CONVERSATION MESSAGES PROCESSING

INITIAL DISPLAY

D
REPLY __ D a

D REPLY __

a CJ
CJ

Read correct
ENTER custo'mer PRCEED

customer number Exchange message contains record
Response message

or name customer number and name fields contains customer
I record

I
D - REPEAT 0- NEXT [8] -WAIT

0- NOREPEAT D-FIRST D - NOWAIT

D - INITIAL

Figure 15-8 Browsing with Two Indexes

15-16

Several Transaction Design Examples .

TRANSACTION STRUCTURE DIAGRAM

TRANSACTION PROCESSOR IslAIMI pi LIEI

IDlply\clu\sl

IDlpIYIEIX\21
1 Dip I' C 1 u \ s \ 2 1

TRANSACTION NAME

From
DPCUSl

CLOSE
To transaction
selection form

AFFIRM

EXCHANGE NAME

FORM NAME

CONVERSATION

INITIAL DISPLAY

REPLY __

o
REPLY __

o
To first exchange

AT END: 0 - REPEAT

[R] - NO REPEAT

REPLY

MESSAGES

Response message contains
customer record

ENTER
Exchange message contains no data

0- NEXT

[g] - FIRST

D -INITIAL

PAGE [ill OF [TIJ

PROCESSING

D
D
D
D
D

Read next
record for

correct key.

[8] - WAIT

0- NOWAIT

Figure 15-8 (Cant.) Browsing with Two Indexes

IS-17

Several Transaction Design Examples

15.8 ERROR MESSAGES
Error messages are required in the preceding designs before they can be used in a commercial application. Consider
the previous example with error messages included. This final design is shown in Figure 15-9.

Error messages are almost always implemented with REPLY response messages, because the user must usually
correct his input and enter it again.

The text of an error message can be generated in three ways:

1. The text can be specified as the VALUE clause in the definition of a DISPLAY field. (This field should
not include the NOBLANK option.) Naming this field in the WRITE clause of a REPLY definition
causes the text to be displayed. The text is automatically removed from the screen when another reply
is activated.

2. The text can be specified directly in the WRITE clause of a REPLY statement. In this way different
messages can be made to appear in a field depending on the activated reply definition.

The field is usually a DISPLAY field without the NOBLANK option, so the message is erased when
another reply is activated. But if you wish, the error message can appear in any field and in either
the display or forms area of the form.

3. The error message text can be inserted into the response message by a TST and moved to a field on
the screen by a REQUEST keyword in the WRITE clause of a REPLY definition. This method gives
the TST programmer flexibility in specifying error message text, but it makes the documentation of
error messages more important - they are no longer in the form definition.

Method 1 requires as many fields on the screen as there are different error messages. Method 2 can place several
alternative messages in the same field, but it requires a separate reply definition for each different message text.
Method 3 requires only a single field and a single reply definition to handle an unlimited variety of error messages.

The design in Figure 15-9 uses Method 3.

The form used by the first exchange in Figure 15-9 must therefore have a reply definition added. This reply is
activated by a TST, via a REPLY response message, in instances where the specified record cannot be located or
read.

The form used by the second exchange has a reply definition, but it is inappropriate for the display of error
messages. It treats the incoming REPLY message as a data record and divides it in fields to be displayed on the
screen. A second reply is defined in this form to handle the error message. It is activated in situations like an
end-of-file condition, where there are no further records for display.

15-18

START

CLOSE
To transaction

~IOCTfo'm

Several Transaction Design Examples

TRANSACTION STRUCTURE DIAGRAM

TRANSACTION PROCESSOR IslAIMlplLIEI

IDlplvlclulsl

IDlplVIEIXlll

IDlplclulslll

TRANSACTION NAME

EXCHANGE NAME

FORM NAME

CONVERSATION

INITIAL DISPLAY

REPLY __

a
REPLY __

a

MESSAGES

REPLY
Response message contains

error message

PAGE LID OF []I]

PROCESSING

D
D
D
D
D

~ Error

customer number
or name

ENTER
Exchange message contains

customer number and name fields

PRCEED

Read correct
customer

record Response message
contains customer

'-------........ ' record

AT END: 0- REPEAT

[g] - NOREPEAT

[8J NEXT

0- FIRST

o -INITIAL

[8] - WAIT

0- NOWAIT

Figure 15-9 Adding Error Messages to Figure 15-8

15-19

From

DPCUSl

Several Transaction Design Examples

TRANSACTION STRUCTURE DIAGRAM

TRANSACTION PROCESSOR I S I A I M I pi LIE I

TRANSACTION NAME I Dip I y I C I u I S I

EXCHANGE NAME 1 Dip I y I E I X I 21

FORM NAME I Dip I C lui S I 21

CONVERSATION MESSAGES

INITIAL DISPLAY

REPLY

REPLY

REPLY

Response message contains
customer record

Response message contains
error message

PAGE CIT] OF [TIJ

PROCESSING

D
D
D
D

o D
CLOSE

To transaction
selection form

AFFIRM

To first exchange

AT END: 0- REPEAT

0- NOREPEAT

ENTER

-4-- Error

Exchange message contains no data

D - NEXT

[R] - FIRST

D - INITIAL

Read next
record for

correct key

~ -WAIT

D - NOWAIT

Figure 15-9 (Cont.) Adding Error Messages to Figure 15-8

15-20

CHAPTER 16

DOCUMENTING THE TRANSACTION DESIGN

16.1 STANDARDIZING TRANSACTION COMPONENTS
After laying out the overall flow of each transaction and defining transaction data structures, it is time to compare
the transactions you have designed. The object of this comparison is to identify similarities between transactions.
Similarities sometimes allow transaction components to be used for several transactions or portions of one com
ponent to be used in another component.

Similarities are found often in these transaction components:

• TSTs. Frequently, a portion of a TST is useful in another TST. Using the copying features of the TRAX
text editor or the programming language can often save significant programming effort. See Section 19.5.

• Forms. Sometimes parts of a form can be used in two or more transactions. This is likely when several
transactions operate on the same set of data - for instance, a set of data maintenance transactions oper
ating on a master file. Such a set probably includes add, change, delete, and display transactions for the
basic data record. With careful design, the forms for these transactions can share a considerable portion
of their form definitions.

• Data Structures. Consistent data structures save considerable development time and make software main
tenance easier. For example, standardizing data structures such as exchange messages and response
messages allows their declarations in form definitions and TSTs to be coded once and used many times.
This is such a time-saver that it helps to add filler fields to some data structures to make them compatible·
with others, and therefore sharable without modification.

Carefully document your list of required transaction processor components. You will refer to this list frequently
as the implementation proceeds.

Give each form a six-character name. This name identifies the form within the transaction processor, so be care
ful to select meaningful mnemonic names.

Each TST and its corresponding TST station should also be assigned a six-character name. (You can use the same
name to identify both the TST and its station as long as the name ends with a letter.) Again, attempt to select
meaningful mnemonic names.

16.2 DEFINING STATIONS
Next, you must define the set of stations needed by the transaction processor.

Usually, you will have two types of stations in your transaction processor: terminal stations and TST stations.
Occasionally, you may have other types of stations.

16.2.1 Terminal Stations
Your transaction processor needs a terminal station for each application terminal it serves. This rule also holds
for clustered or multi~ropped terminals. Each terminal device, video display or printer, requires a station.

Use the form shown in Figure 16-1 to define the terminal stations. This form can later be used to enter the ter
minal station definitions to the transaction processor via the STADEF utility program.

16-1

Documenting the Transaction Design

For each terminal station, you must make the following design decisions:

1. Station Name. You must choose a station name (up to six characters) that uniquely identifies the station
within the transaction processor. If you need a series of terminal stations with similar characteristics, you
may use a station name of four characters and two asterisks - for instance, TERM**. The STADEF
utility program expands this dummy name to a set of terminal station names by replacing the asterisks
with a series of 2~igit numbers.

2. Device Name. You must associate a terminal device identifier with the station you are defining. A ter
minal device identifier of up to six characters is assigned to each attached application terminal during the
TRAX system generation. The designated terminal will be served by this terminal station.

3. Device Type. If the terminal station is to initiate transactions, choose BOTH. If it is to print reports
produced by transactions executed at other terminals, choose OUTPUT.

4. System Messages. If you want operating system messages (such as operator broadcast messages) to appear
on this application terminal, enter YES.

5. Work Classes (Interactive Terminals Only). The work class you assign to this terminal determines the
set of transactions that can be executed from the terminal. Definition of work classes is discussed in
Section 16.3.

6. Initial State (Interactive Terminals Only). You may choose one of two displays to be used when the
terminal is idle:
• If you wish the terminal to display the first form of a transaction, choose the TRANSACTION option

and enter the name of the transaction. This will be the only transaction executable from the terminal.
• If you wish the terminal operator to select from a list of transactions, choose the INITIAL FORM

option and enter the name of a transaction selection form. Be sure the names of transactions displayed
on the transaction selection form agree with the transactions the terminal's work class allows.

The work class and initial state options for interactive terminals are important because they affect system security.
Refer to Part One of this manual for a description of your choices and their effects.

16.2.2 TST Stations
Your transaction processor will need one station for each TST. If you allow mUltiple copies of a TST to execute at
the same time, multiple station definitions are not necessary. Instead, use the "Number of Active Copies" parameter
discussed later in this section.

Use the form shown in Figure 16-2 to define the TST stations. This form can later be used to enter the TST station
definitions to the transaction processor via the STADEF utility program.

For each TST station, you must make the following design decisions:

1. Station Name. Choose a station name that identifies the station within the transaction processor. These
names may be up to six characters and must end with a letter.

2. Task Image File Specification. Enter the name of the task image file that contains the TST's executable
task image. The task image file need not exist at this time; just assign the name that will be used when
the TST is coded and linked. The file specification can contain a device name, a VIC, a filename and ex
tension, and a version number if desired. (See TRAX Support Environment User's Guide for discussion
of file specifications.) If you do not enter portions of the file specification, the following default speci
fications will be used:

Device: SY:
VIC: [1,300]
Extension: .TSK
Version: Latest

16-2

TERMINAL STATION SPECIFICATION SHEET

Transaction Processor Name: I
Device System

Station Name Device Name Type Messages Work Class Run A Dedicated Transaction?

[I I I I I 1 I I I 1 D - BOTH D -YES I I I I I DYes - Transaction Name: I I
-

I
D - OUTPUT D -NO o No - Initial Form Name: I 1]

II D - BOTH D -YES DYes - Transaction Name: [T I
D - OUTPUT D -NO o No - Initial Form Name: I

0- BOTH o -YES t::::l II I TTl DYes - Transaction Name: I C

D -NO
~ 0- OUTPUT o No - Initial Form Name: I Ii::
~

0- BOTH o -YES DYes - Transaction Name: I ~ IlTlTTl --..
~'

0- OUTPUT D -NO o No - Initial Form Name: I s.
.-. ~

0\ 0- BOTH o -YES DYes - Transaction Name: I I I I I ~ w $:::j

0- OUTPUT D -NO o No - Initial Form Name: I ;::::
~
~ --..

DYes - Transaction Name: I (S,
I f1 JIll fTlll-rl 0- BOTH 0- YES ;::::

t::::l o -OUTPUT o -NO o No - Initial Form Name: I ~
~

fl 0- BOTH o -YES DYes - Transaction Name: I I I I
C§'

0- OUTPUT D -NO o No - Initial Form Name: I 10

fifrlli l_f 1 J Lll o -BOTH o -YES DYes - Transaction Name: [TTT 0 -]
0- OUTPUT D -NO o No - Initial Form Name: I I I I I I ~

ITl II II CT]~ll~ D-BOTH 0- YES DYes - Transaction Name: OTT II I
o -OUTPUT D -NO o No - Initial Form Name: I I I 1 I IJ

[Tl-rTTi ~TTj11i o --BOTH 0- YES DYes - Transaction Name: DTTIJ I
0- OUTPUT o -NO o No - Initial Form Name: I I I I I I]

Figure 16-1 Terminal Station Specification Sheet

Documenting the Transaction Design

TST STATION SPECIFICATION SHEET

Transaction Processor Name: I I I I I I I
No.

Station Active Serially
Station Name Priority Task Image File Specification Copies Reusable?

I I ITIJ ITIJ:[ITIJ,ITIJ] I I.ITIJ;[IJ ITJ o -YES

o -NO

I I ITIJ ITIJ:[ITIJ.ITIJ] I I.ITIJ;[IJ CD o -YES

D -NO

I I I I I ITIJ ITIJ:[ITIJ,ITIJ] I I.ITIJ;[IJ CD D - YES

D-NO

ITIJ ITIJ:[ITIJ,ITIJ] I I I I I I.ITIJ;[I] OJ o -YES

D -NO

ITIJ ITIJ:[ITIJ.ITIJ] I I.ITI~;IT] CD o -YES

D -NO

I I I I I ITIJ ITIJ:[ITIJ,ITIJ] I I.ITIJ;IT] OJ D -YES

o -NO

I I ! ! ITIJ ITIJ:[ITIJ,ITIJ] I !.ITIJ;[IJ OJ o -YES

D-NO

! I I I ITIJ ITIJ:[ITIJ,ITIJ] IT I I.ITIJ;IT] OJ o -YES

D -NO

I I I I I ITIJ ITIJ:[ITIJ,ITIJ] I I I I.ITIJ;IT] OJ o -YES

D-NO

ITIJ ITIJ:[ITIJ,ITIJ] I I I I I.ITIJ;[I] OJ o -YES

o -NO

I I ITIJ ITIJ:[ITIJ,ITIJ] I I I.ITIJ;IT] OJ o -YES

D-NO

I I ITIJ ITIJ:[ITIJ,ITIJ] I I I.ITIJ;[I] OJ o -YES

D--NO

ITIJ ITIJ:[ITIJ,ITIJ] I I I.ITIJ;IT] OJ D-YES

D-NO

I ! ITIJ ITIJ:[ITIJ,ITIJ] ! I I.ITIJ;IT] OJ D-YES

D-NO

I I ITIJ ITIJ:[ITIJ,ITIJ] [I I.ITIJ;[IJ OJ D-YES

D-NO

Figure 16-2 TST Station Specification Sheet

164

Documenting the Transaction Design

3. Station Priority. The normal priority of a TST station is 128. You may choose another priority; larger
priority numbers indicate higher TST priority and vice-versa. When TSTs are waiting for execution, the
transaction processor activates the TST of the highest priority among those which can be satisfied by the
available resources. Once they are activated, TSTs are not interrupted until they terminate of their own
accord. You must keep this scheduling rule in mind as you modify TST priorities to adjust transaction
processor behavior.

4. Number of Active Copies. Specify the maximum number of copies of a TST that can be active at a time.
Multiple copies are only activated if there are a sufficient number of exchange messages arriving to keep
multiple copies busy. If you specify a large number of copies, exchange messages will not have to wait at
the TST station before TST copies are activated to process them. But you may want to specify a single
copy, if you want to exchange messages to be processed one at a time or if multiple TSTs might
encounter such bottlenecks as contention for memory or contention for data file records.

5. Serially Reusable. This choice depends on the programming language selected for the TST and how
your programmers use features of that language. If you tell the transaction processor that a TST is seri
ally reusable, it may not fetch a fresh copy of the TST task image to begin processing each exchange
message. This means that a serially reusable TST must completely initialize its own variables and data
structures. Variables and data structures that are initialized only when the TST is linked do not allow a
TST task image to be reused.

A problem often develops with COBOL programmers because they do not realize that VALUE IS
clauses in the DATA DIVISION of their programs are initialized at link time, rather than execution time.
To ensure that a COBOL program is serially reusable, the programmer should only use VALUE IS
clauses for data items that are never changed during program execution. COBOL programmers should
use MOVE statements at the start of the PROCEDURE DIVISION to initialize data items that may be
changed during program execution.

BASIC-PLUS-2 variables are automatically initialized to zeros and null strings at execution time rather
than link time. BASIC-PLUS-2 programs are therefore always serially reusable.

16.2.3 Special Station Types
Besides terminal and TST stations, you may need special purpose stations:

• Batch Submit or Batch Slave Stations. If your transaction processor needs an interface to TRAX batch
processing facilities, you must define batch submit or batch slave stations.

• Master Link or Slave Link Stations. If your transaction processor must exchange data with other trans
action processors, you must define some master link or slave link stations.

• Mailboxes. If your transaction processor needs facilities for the deposit and recall of mailbox messages,
you must define one or more mailbox stations.

Part One of this manual provides you with additional. details concerning these special types of stations. If you
require any master link stations, defme them on the form shown in Figure 16-3. If you require any slave link
stations, submit or slave batch stations, or mailbox stations, defme them on the form shown in Figure 16-4. This
data can then be entered via the ST ADEF utility program, just as for the other station types.

16.3 WORK CLASSES AND USER AUTHORIZATIONS
When you derme each interactive terminal station (Section 16.2.1), you specify one of three initial states:

1. If only one transaction is to be executed from the terminal, you specify the name of that transaction.
2. If anyone at the terminal is to be allowed access to a common set of transactions, you specify two

things: the name of a transaction selection form and the name of a work class.
3. If various people sitting at the terminal are to be allowed access to different sets of transactions, you

specify the same two parameters. But the terminal's work class must be SIGNON and one of the trans
actions permitted by the SIGNON work class (possibly the only available transaction) must be the
SIGNON transaction.

16-5

Documenting the Transaction Design

MASTER LINK STATION SPECIFICATION SHEET

Transaction Processor Name: I I I I I

Connected to Number of
Station Name Slave Link Type Sublinks

I I I I I I o -Node Name: ITIJ Slave TP Name I
D - Local ITIJ Slave TP Name I I I I
D -IBM ITIJ Line Number ITIJ
o -Node Name: [II] Slave TP Name I I I I I I
o -Local [II] Slave TP Name I I I I
o -IBM [II] Line Number ITIJ
o -Node Name: ITIJ Slave TP Name I I I I
D - Local ITIJ Slave TP Name I I I I
D -IBM ITIJ Line Number ITIJ
o -Node Name: [II] Slave TP Name fTl I I I o -Local [II] Slave TP Name I I I I IlJ
o -IBM [II] Line Number ITIJ
o -Node Name: ITIJ Slave TP Name I I I I
D - Local ITIJ Slave TP Name I I I I
D -IBM ITIJ Line Number ITIJ
o -Node Name: ITI [II] Slave TP Name I I I I I I
D - Local ITIJ Slave TP Name I I I I I
o -IBM ITIJ Line Number ITIJ
o -Node Name: ITIJ Slave TP Name I I I I
D - Local ITIJ Slave TP Name I I I I
D -IBM ITIJ Line Number ITIJ
o -Node Name: ITIJ Slave TP Name I I I I I I
o -Local ITIJ Slave TP Name I I I I I
D IBM ITIJ Line Number ITIJ
D - Node Name: ITIJ Slave TP Name I I I I
D - Local ITIJ Slave TP Name I I I I
D -IBM ITIJ Line Number ITIJ

I I o -Node Name: ITIJ Slave TP Name I I I I I I
D - Local ITIJ Slave TP Name I I I I I
o -IBM ITIJ Line Number ITIJ
o -Node Name: ITIJ Slave TP Name I I I I
D - Local ITIJ Slave TP Name I I I I
D -IBM ITIJ Line Number ITIJ

Figure 16-3 Master Link Station Specification Sheet

16-6

Documenting the Transaction Design

SPECIAL PURPOSE STATION SPECIFICATION SHEET

Transaction Processor Name: L-.I.--,--,I,--,-I--,-I ~I

Station Name

I I I I I I

OTI~

I I

Station Type

o - MAILBOX - Max. Message Size: L...IL-...JL..-.L---,I bytes (Must be 64-8192).

o -SLAVE LINK

D - SUBMIT BATCH

o -SLAVE BATCH

o - MAILBOX - Max. Message Size: L...IIo-.....I~---'I bytes (Must be 64-8192).

o -SLAVE LINK

D - SUBMIT BATCH

o -SLAVE BATCH

o - MA I LBOX - Max. Message Size: L...I ..L-..L..-.L---,I bytes (Must be 64-8192).

o -SLAVE LINK

D - SUBMIT BATCH

o -SLAVE BATCH

o - MAILBOX - Max. Message Size: L...IIo-.....I~---'I bytes (Must be 64-81921.

o -SLAVE LINK

D - SUBMIT BATCH

o -SLAVE BATCH

o -MAILBOX - Max. Message Size: L-I10-.....1,--,----,1 bytes (Must be 64-81921.

o -SLAVE LINK

D - SUBMIT BATCH

o -SLAVE BATCH

o - MAILBOX - Max. Message Size: LI ..L-..JL-L....JI bytes (Must be 64-81921.

o -SLAVE LINK

D - SUBMIT BATCH

D - SLAVE BATCH

o - MAILBOX - Max. Message Size: L...I ..L-L..-.L---,I bytes (Must be 64-81921.

D - SLAVE LINK

D - SUBMIT BATCH

D - SLAVE BATCH

o -MAILBOX - Max. Message Size: L-IIo-.....I~---'I bytes (Must be 64-81921.

D - SLAVE LINK

D - SUBMIT BATCH

D - SLAVE BATCH

Figure 164 Special Purpose Station Specification Sheet

16-7

Documenting the Transaction Design

If you used the second option, you must define the work classes that you assigned to the terminals.

If you used the third option, you must defme the SIGNON work class assigned to idle terminals, the user identi
fiers and passwords used by the SIGN ON transaction, and the work classes assigned to each user.

Use the specification sheet shown in Figure 16-5 to define work classes. List all of the transactions defined in the
transaction processor down the left side of the sheet. List the work classes you wish to define across the top. Then
place an "X" in the appropriate row and column to indicate the transactions included in each work class. The data
on this sheet can be entered later into the WORDEF utility program, which installs it in the transaction processor.

Use the specification sheet shown in Figure 16-6 to define user identifiers and passwords and to assign work classes
to each user. This specification sheet is similar to the work class form in Figure 16-5, except you must enter user
identifiers and passwords on the left and work classes across the top. Again, place an "X" in the appropriate row
and column to indicate users who can access each work class. A user can access at most 64 work classes. This
data can later be entered into the transaction processor via the AUTDEF utility program.

16.4 TRANSACTION DEFINITIONS
Now that the components of each transaction are defined, you can assemble the transaction definitions that provide
an overall framework.

To defme a transaction within a transaction processor, you must supply the data itemized in Figure 16-7. Use one
of these specification sheets to define each transaction.

There are two parts to the transaction definition sheet. The first part asks you to specify parameters for the entire
transaction. In the second part, you define each of the exchanges for the transaction. (If your transactions have
more exchanges than can be defined on this sheet, use the continuation sheet shown in Figure 16-8.)

The data on these sheets is entered into the transaction processor via the TRADEF utility program.

16.4.1 Overall Transaction Parameters
Refer to the upper portion of Figure 16-7. On this part of the sheet, you must specify the following transaction
parameters:

1. Transaction Name. You must assign a six-character name to the transaction. This name will appear on
transaction selection screens, and users will select transactions with these names. Transaction names
must be unique within the transaction processor.

2. Exchange Recovery. Specify YES if you want the transaction to use exchange recovery. (Exchange
recovery is discussed in Part One of this manual.) Remember that exchange recovery has side effects:

• System overhead increases during the execution of the transaction.
• Messages generated by TSTs are delayed until an exchange's processing phase terminates.
• Staged files are usually required.

Use exchange recovery only after you fully understand its benefits and side effects.
3. Log Exchange Messages. Specify YES if you wish the transaction processor to record each exchange

message from this transaction as a log entry in the system journal. You can use this feature for system
debugging and as an audit trail during system operation.

4. Log Independent Messages. Specify YES if you wish to log response, mailbox, and report messages.
You can use this feature for system debugging and as an audit trail during system operation.

5. Maximum Size of Exchange Message. Determine this parameter by inspecting the transaction data
structures you have prepared. Select the largest exchange message in the transaction and record its
length here.

6. Transaction Workspace Size. Enter the size of the workspace that you defmed for this transaction.

16-8

Documenting the Transaction Design

WORK CLASS SPECIFICATION SHEET

Transaction Processor Name: I I I I I I I

Work Class Names

Transaction Name

IT

Figure 16-5 Work Class Specification Sheet

16-9

Documenting the Transaction Design

USER AUTHORIZATION SPECIFICATION SHEET

Transaction Processor Name: I I I I I I I

Work Class Names

User Identifier Password ////II I!// I!/!/II

I I
I I

Figure 16-6 User Authorization Specification Sheet

16-10

Documenting the Transaction Design

TRANSACTION SPECI FICATION SHEET

Transaction Processor Name:

Transaction Name:

Exchange Recovery?

Log Exchange Messages?

Log Other Station Messages?

Maximum Size of Exchange Message:

Transaction Workspace Size:

System Workspace Size
(Calculate according to formula on
worksheet - "Calculating the system

workspace".)

Transaction Slot Size Calculation:

D-YES

D-YES

D-YES

L.......JL...-..I----II bytes

D-NO

D-NO

D-NO

'----'--'----1....-1 ~I bytes

L--'----'L--..JL--JI (64-byte blocks)

Divide Exchange Message Size by 64 and round up:

Divide Transaction Workspace Size by 64 and round up:

Enter System Workspace Size:

Add to find Transaction Slot Size:

blocks

blocks

blocks

blocks

NOTE: A Transaction Exchange Definition should be prepared for each exchange associated with the transaction you
have just defined.

Exchange
Label

I I I
Form Name

I I I I I

TRANSACTION EXCHANGE DEFINITIONS

Destination
Station L·st Wait Repeat

I I OWAIT D REPEAT

DNOWAIT o NOREPEAT

OWAIT DREPEAT

D NOWAIT 0 NOREPEAT

Figure 16-7 Transaction Specification Sheet

16-11

Subsequent Time
Action Limit

o INITIAL o:J MINS

D FIRST

DNEXT

o INITIAL o:J MINS

o FIRST

DNEXT

Exchange
Label

1 1 I 1

Form Name

1 1 1 1 1

Documenting the Transaction Design

TRANSACTION EXCHANGE DEFINITIONS

Destination
Station LOst Wait Repeat

o WAIT 0 REPEAT

o NOWAIT 0 NOREPEAT

o WAIT 0 REPEAT

Subsequent Time
Action Limit

D INITIAL CIJ MINS

o FIRST

DNEXT

D INITIAL CIJ MINS

o NOWAIT 0 NOREPEAT 0 FIRST

I I DNEXT

o WAIT 0 REPEAT

I I 0 NOWAIT 0 NOREPEAT

I I

1 1 I I OWAIT DREPEAT

""'--'1 "0"1-'-1 Tn 0 NOWAIT 0 NOREPEAT

I I I I I I

o WAIT 0 REPEAT

~~~ I I D NOWAIT 0 NOREPEAT 

I I 
I I 
I I 

I 

D INITIAL o=J MINS 

D FIRST 

DNEXT 

o INITIAL [I] MINS 

o FIRST 

o NEXT 

o INITIAL [I] MINS 

o FIRST 

DNEXT 

Figure 16-8 Transaction Specification Sheet Continuation 

16·12 



Documenting the Transaction Design 

7. System Workspace Size. A system workspace is necessary only if your transaction uses exchange recovery 
or staged fIles. This is the area where the transaction processor keeps messages and updated data base 
records until successful exchange or transaction completion. Compute the system workspace size using 
the worksheet shown in Figure 16-9. Then. enter the result here. 

16.4.2 Exchange Defmitions 
Refer to the lower portion of Figure 16-7. In this part of the specification sheet, you must defme the exchanges 
that make up the transaction. For each exchange, you must specify: 

1. Exchange Label. You must give each exchange in the transaction a unique label. This name must be 
unique within the transaction but may be identical to exchange names in other transactions. TST pro
grammers use these labels to select successor exchanges. 

2. Form Name. Most transactions are initiated from application terminals, and most exchanges in these 
transactions must have a form. If the exchange you are defining needs a fonn, enter the six-character 
name of the form. 

Exchanges do not need a form in the following circumstances: 

• None of the exchanges in a transaction need form names if the transaction is initiated only by source 
stations other than application terminal stations - for instance, by a TST. 

• The first exchange of a transaction does not need a form name if the transaction selection forms 
supply exchange messages and if the exchange is not entered from within the transaction. 

3. Routing List. Enter the list of stations to which the exchange message must be sent. Each time the 
exchange is executed, its exchange message is assigned this routing list. The routing list may subse
quently be changed by the TSTs that process that message. 

4. WAIT Option. The normal selection for this option is WAIT, meaning that a response message is 
expected from one of the TSTs processing the exchange message. Be sure you thoroughly understand 
this option before selecting NOW AlT. 

S. REPEAT Option. This is one of two important options that determine which exchange follows the 
exchange being defined. This option is t~sted when the terminal operator presses an enabled AFFIRM 
key or when a TST sends a PRCEED response message. If you specify REPEAT, the exchange is fol
lowed by another execution of the same exchange. 

6. Subsequent Action. This is the second of the two options mentioned before. You have three choices 
for the subsequent action option: 

• NEXT selects the next exchange in the transaction defmition as the successor to this exchange. 
• FIRST terminates the transaction after the current exchange is fmished. Then the transaction 

processor prepares to execute the transaction again by displaying the form from the first exchange. 
• INITIAL also terminates the transaction after the current exchange is fmished, but the transaction 

processor causes the terminal to revert to its initial state. As you recall, this may vary depending 
on the defmition of the corresponding terminal station. 

This option is tested in the following four cases: 

• When a terminal user presses an enabled AFFIRM key and the REPEAT option is not specified. 
• When a teQ11inal user presses an enabled STOP-REPEAT key, regardless of whether the REPEAT 

option is specified. 
• When a TST issues a PRCEED response message and the REPEAT option is not specified. 
• When a TST issues a STPRPT response message, regardless of whether the REPEAT option is 

specified. 

16-13 





CHAPTER 17 

DESIGNING FORMS 

Once you determine the overall structure of the transactions in your application, you can design the forms for the 
transaction. 

Before you begin designing TRAX forms, you should review the information in Chapter 5 and read the ATL 
Language Reference Manual. 

Remember that design requirements will vary depending on the purpose of the form and the terminal where it will 
be used. Entry forms, transaction selection forms, and report forms require different design. 

This chapter covers several factors involved in designing a form: 

• The functions of entry forms 
• Basic form layout 
• Initial field values 
• Building the exchange message 
• Designing reply defmitions 
• Special purpose forms 

17.1 REVIEWING THE FUNCTIONS OF ENTRY FORMS 
Entry forms are the most complex kind of form to design. This is because they must serve many purposes during 
transaction execution: 

• They must provide a functional, pleasing design that allows the user to enter and read information easily. 
• They must accept data in response messages and include this data in the display for the user. 
• They must build exchange messages in a specified format from data entered by the user. 
• They must accept reply messages that instruct them to alter the data displayed for the user and change 

the function keys available to the user. 

Sections 17.1 through 17.6 discuss issues that will help you satisfy these requirements for entry forms. 

17.2 THE BASIC FORM LAYOUT 
Your first step is to devise a basic layout of fields on the form. These fields may be either data entry fields or 
prompt fields. You must consider not only the fields' positions and sizes, but also their attributes. 

Details of typographic layout and field positioning are important, just as with ordinary forms. A form is more 
readable and easier to use with careful graphic design. 

Don't become entranced with cleverness. Clever forms design sometimes leads to better forms, but more often it 
leads to complex forms that are harder to understand and use. Clever arrangements of fields, for example, are 
counterproductive if they do not correspond with the user's train of thought as he enters data. Default rules are 
worse than none if the user cannot remember them. A reduction of user keystrokes may be detrimental to overall 
productivity if the design requires more thought from the clerical user. 

17-1 



Designing Forms 

Field attributes are powerful tools for controlling user data entry. Among other things, you can: 

• Protect fields against data entry, or open them to data entry. 
• Require entries in certain fields or make them optional. 
• Restrict the characters that can be entered in a field. 
• Cause a field to be right- or left-justified. 

You should arrange data entry fields so that frequently used fields are near the top of the form and optional fields 
are near the bottom; otherwise the user must skip past unused fields to reach required fields further down the form. 

Make sure that each data entry field is visible to the user. It is difficult to enter a field that is indistinguishable from 
its surroundings and whose position and size are unclear. TRAX has three ways of making fields visible: 

1. Reverse Video. TRAX video display terminals can display fields in either white-an-black or black-on
white. The black-on-white style is called "reverse video." Designating data entry fields as reverse video 
fields makes them visible without introducing other data editing complications. 

2. The CLEAR Character. A CLEAR character fills the field when the form is first displayed. It is also 
placed in the field (or in a portion of the field) when the user employs a DELETE-type editing key. Thus 
the CLEAR character effectively marks the position and size of the field. Periods, hyphens, and under
score characters are excellent choices for use as a CLEAR character. (Remember, though, that any 
CLEAR characters remaining in the field when the exchange message is built are included in the message, 
and the exchange's TSTs must edit them out.) 

3. Initial Values. You might also use initial values to mark a field's size and position. Text inserted in a field 
as an initial value, though, is not replaced on the screen when the user uses a DELETE-type editing key. 
Initial values override any CLEAR character that you may have defined for a field. 

When you are satisfied with your basic form design, sketch it on the specification sheet shown in Figure 17-1. This 
sheet gives you a grid the size of a video terminal screen, with the rows and columns labeled for reference. 

At the top of the sheet, fill in the name of the form. Mark the box labeled "Initial Display" to distinguish this sheet 
from ones you may later create for replies. 

The sheet also includes questions such as the set of function keys to be enabled, whether the terminal warning bell 
should be sounded when the form is first displayed, positioning of the cursor, and so forth. Check the appropriate 
"enabled" or "disabled" boxes for the function keys, and fill in the other parameters where required. 

17.3 INITIAL FIELD VALUES 
Many fields must contain text when the form is first displayed. This text is called "initial field values" and can come 
from two sources: 

1. Form Definition. Text can originate in the form definition, as either literal text or built-in variable data 
items recognized by ATL. The latter include the name of the terminal station being used, the transaction 
being u.sed, the time of day, and so forth. Text specified in this way is always displayed without 
modification. 

2. Response Message. Text can originate in the response message that causes the form to be invoked. For 
instance, a PRCEED response message from a preceding exchange could contain data destined for display 
as part of the current form. The format of these response messages was discussed in Section 14.2.1. 
During forms design, you must decide where this data is to be placed on the form. This placement is done 
on a field-by-field basis. 

NOTE 
The second option is only available in exchanges entered 
as a result of a response message - not in exchanges 
entered as a result of a system function key. 

17-2 



I-' 
-.l 
W 

FORM SPECIFICATION SHEET 

Transaction Processor: IT I TTTJ 0 - Initial Display D - Reply Number Form Name: IL....-..... I_ ...... I---L---L..----'---' 

Split: 

Lines 
Display 
Area 

0 I 
1 2 34 56 78 90 12 34 56 78 90 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

Bell: Rung for []·I 1. I periods 

Cursor: Positioned at field IT.] 

Use blue ink to give instructions, field types etc. 

12 

Use red ink to show actual text that appears on screen 

2 
34 56 78 

3 4 5 
910 12 34 56 789 1 2 34 56 78 90 1 2 34 56 78 90 

System Function Keys 

Enabled Disabled 

ABORT 0 D 
CLOSE D D 
AFFI RM 0 D 
STOPREPEAT D D 

Figure 17-1 Video Terminal Forms Specification Sheet 

6 7 ~ 
12 34 56 78 90 1 2 34 56 78 90 

User Function Keys 

Enabled Disabled 

ENTER D D 
KEYDOT 0 D 
KEYOO D D 
KEYOl D D 
KEY02 D D 
KEY03 D D 

~ 
~. 
;::s 
~. 

~ 
~ 
~ 



Designing Forms 

17.4 BUILDING THE EXCHANGE MESSAGE 
Working from your exchange message layout (Figure 14-2), decide which fields on the form are the sources of the 
data in the exchange message. 

Not all the data in the exchange message needs to come from fields entered by the user. You may also include the 
following data in the exchange message: 

• Text in protected fields (that is, those not accessible to the user) 
• Literal text coded into the form defmition 
• Identifiers assigned to user function keys 
• ATL built-in variable data items such as those discussed in Section 17.3. 

17.5 DESIGNING REPLIES 
Replies are a powerful, flexible feature of TRAX forms. Chapter 14 discussed the role of replies in a transaction 
structure. Having already devised a transaction structure diagram for each of your transactions, you know thp 
replies each form needs. Now you must decide the details of how each reply operates. 

Identify the replies in each form by number. You may use any numbers you wish, but it is better if you use low 
reply numbers. (The space occupied by a form defmition depends, to a small extent, on the highest reply number 
you use in that fonn.) You should also defme as few replies in each form as possible. Replies significantly increase 
the size of a fonn defmition. 

A response message invoking a reply can carry data supplied by the sending TST. (Message format is discussed in 
Section 14.3.) Specify where this data is to be placed on the form. This placement can only be done on a field-by
field basis. 

A reply can also cause literal text or ATL built-in data items to be written in specific fields. If you wish this, you 
must include it in your reply design. 

You may document a complex reply by drawing the form as it will appear after the reply is activated. Use another 
form specification sheet like the one you used to sketch the original form (Figure 17-1). Complete the extra infor
mation fields at the bottom of the sheet. At the top of the sheet, label your sketch as a reply and fill in the reply 
number. 

17.6 SPECIAL PURPOSE FORMS 
The design of special purpose forms is similar to those we have just discussed. Special considerations are presented 
in the following sections. 

17.6.1 Output-Only (Report) Forms 
Output-only (report) forms print data on a printer. The data is sent to the printer's station as a report message, with 
a specification of the form to be used. 

Defmitions of output-only forms usually have two sections: 

1. Defmitions for each field 
2. Specifications for the portion of the report message used to fill each field 

Output-only forms have no data entry fields and never generate exchange messages. Consequently, they never have 
replies. Their role is to take data from the incoming report message and print it in the format specified. 

174 



Designing Forms 

17.6.2 Transaction Selection Fonns 
Transaction selection fonns are used to select a transaction. These fonns are never part of a transaction, although 
they can collect data for the first exchange of a transaction. 

Transaction names are usually presented in a set of menu fields for user selection. Alternatively, you can designate 
one of the fields on each transaction selection fonn where the user can enter the transaction name. 

Transaction selection fonns do not usually generate exchange messages. For special purposes, however, you can 
add ordinary data entry fields to a transaction selection fonn, and use these fields to generate an exchange message. 
If you do this, the first fonn in the chosen transaction is skipped: the exchange message generated by the tnms
action selection fonn is used in the processing phase of the first exchange. 

17.7 WRITING THE FORM DEFINITIONS 
When you have made the design decisions discussed in Sections 17.2 through 17.6, you are ready to write the form 
defmitions. 

Remember the form roles (Section 17.1) and write your form defmitions so that they have a clearly defmed section 
for each of those roles. This simplifies enhancement and maintenance of the forms. 

When you compile each form with the ATL utility program, the compiler output includes much of the application 
documentation you need for the development effort. For example, the compiler prints the formats of exchange and 
response messages, as well as a mockup of the form as initially displayed and after each reply. This output saves you 
a significant documentation effort. 

Once you are satisfied with a form defmition, subsequent adjustments can be left to application programmers. 

17-5 





CHAPTER 18 

EXAMPLES OF FORM DESIGN 

This chapter presents two examples of form design. These two forms are taken from the change customer trans
action in the TRAX Sample Application. 

These examples are based on the following design documentation for that transaction: 

• The overall transaction structure 
• The format of the first exchange's 

exchange message 
• The format of the first exchange's 

REPLY response message 
• The format of the first exchange's 

PRCEED response message 
• The format of the second exchange's 

exchange message 
• The format of the second exchange's 

first REPLY response message 
• The format of the second exchange's 

second REPLY response message 

Figure 18-1 
Figure 18-2 

Figure 18-3 

Figure 18-4 

Figure 18-5 

Figure 18-6 

Figure 18-7 

18.1 THE RELATIONSHIP BETWEEN THE TRANSACTIQN AND ITS FORMS 
The relationship between the transaction and its form is shown in the transaction structure diagram, Figure 18-1. 

18.1.1 Requirement for Two Fonns 
The most important relationship is the requirement for two forms. Notice that the transaction has two exchanges; 
it will therefore need two forms. These two exchanges and their corresponding forms serve the following purposes: 

1. The first exchange asks the user to identify the customer whose record is to be read from the file and 
presented for change. The form for this exchange asks for a customer identification number. 

2. The second exchange- presents the existing data for the customer, allows the user to inspect and modify 
this data, and then places the updated data in the file. The form for this exchange must display the 
data retrieved by the first exchange and then allow the user to change the data. 

An inspection of the transaction structure diagram can determine further characteristics of these two forms. 

18.1.2 Characteristics of the First Fonn 
The transaction structure diagram (Figure 18-1) shows four characteristics of the first form: 

1. No initial values must be retrieved from a response message. 
2. The ENTER and CLOSE keys are enabled. 
3. A reply is required for displaying an error message. 
4. An exchange message and a response message must be defined. 

The first form does not require initial values for its fields. That is, the data displayed on the first form does not 
depend on the results from prior processing. 

18-1 



Examples of Form Design 

TRANSACTION STRUCTURE DIAGRAM 

TRANSACTION PROCESSOR 

TRANSACTION NAME 

EXCHANGE NAME 

IslAIMI pi LI EI 

ICIHIGICIUISI 

ICIHIG/E/X/11 

IC/Hlclu/s/11 

PAGE [D] OF rn 
FORM NAME 

CONVERSATION 

INITIAL DISPLAY 

START 

REPLY __ 

0 

CLOSE to enter 
To transaction customer number selection form 

AT END: 0 - REPEAT 

[R] - NOREPEAT 

MESSAGES 

REPLY 
Response message contains 

error message text 

ENTER 
Exchange message contains 

customer number 

[8] - NEXT 

0- FIRST 

o -INITIAL 

PROCESStNG 

D 
D 
D 
D 
D 

...-Error 

Read 
customer 

record 

00 -WAIT 

D-NOWAIT 

Figure 18-1 Structure of Change Customer Transaction 

18-2 

To 
CHGEX2 



From 
CHGEX1 

CLOSE 

Examples of Form Design 

TRANSACTION STRUCTURE DIAGRAM 

TRANSACTION PROCESSOR I s I A I M I P I LIE I 

TRANSACTION NAME I C I HI G I C I u I S I 
EXCHANGE NAME I C I H I G I E I x I 2 1 
FORM NAME I c I H 1 C I u I s I 21 

CONVERSATION MESSAGES 

INITIAL DISPLAY 

REPLY 

REPLY 

Response message contains 
error message text 

Response message contains 
no data 

ENTER 

PAGE rn OF []1J 

PROCESSING 

D 
D 
D 
D 

----- Error 

Verify 
data 

OK 

Write new 
data into 

file To transaction 
selecti n form • 

Exchange message contains 
'--___ .,....=-_~ customer data 

AFFIRM 
To first exchange 

AT END: 0- REPEAT 

~ - NOREPEAT 

D - NEXT 

[R] - FIRST 

o -INITIAL 

[!] - WAIT 

0- NOWAIT 

• Only enabled when form is first displayed and after reply 1. • Only enabled after reply 2 . 

Figure 18-1 (Cont.) Structure of Change Customer Transaction 

18-3 



Transaction Processor 

Transaction Name 

Exchange Label 

Type of Message 

Examples of Form Design 

RESPONSE MESSAGE SPECI FICATION SHEET 

IslAIMlplLIEI 

ICIHIGICTUTSJ 

IClHIGIEIXI11 

o -REPLY (Activates reply no. I 

D - PRCEED 

D - STPRPT 

D - CLSTRN 

D - ABORT (Activates reply no. I I) 

D - TRNSFR (To exchange I I I I I I Il 

Field No. Starting Byte Length (Bytes) Contents 

1 1 80 Error Message (Part One) 

2 81 80 Error Message (Part Two) 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

Figure 18-3 Reply Message for Exchange 1 

18-6 



Examples of Form Design 

processing phase. The text of the displayed message is always the same and can be specified as part of 
the reply definition. It is necessary, however, for this second reply to disable the ENTER and CLOSE 
keys and enable the AFFIRM key. 

The second form must process or generate four messages: 

1. The response message from the prior exchange (Figure 18-4) provides the data displayed in the form's data 
entry fields. This message contains the set of fields from the customer file. 

2. The exchange message generated by the form (Figure 18-5) contains the same data after it has been up
dated by the user. 

3. The response message for the first reply (Figure 18-6) is like that in the first form: two SO-character 
error message lines, or 160 total characters. 

4. The response message for the second reply (Figure 18-7) contains no data. 

18.2 DESIGNING THE FIRST FORM 
The first form of the change customer transaction is simple. This section discusses some design points and then pre
sents the finished form definition. 

18.2.1 Design Points 
A sketch of the form's layout is shown in Figure IS-8. Note the following design features: 

• The application name and transaction name appear on the form. The user can easily determine what is 
going on at a terminal displaying the form. 

• Fields are provided for error messages. When you design forms, you must decide if you have room for 
an error message field opposite each data entry field or if one error message field can serve the entire form. 

• The data entry field has a prompt. Avoid abbreviations unless lack of space requires them. The abbre
viations you do use should be standard so their meaning is clear. Most abbreviations are understandable 
without the period, which takes up space. But you may find apostrophes (') useful: the abbreviation 
"pay't ," for instance, is clearer than "payt". If you use upper- and lower-case prompts (Figure 18-8), 
your forms will be easier to read. 

• The prompt is separated from the data entry field by one or more spaces. Use two spaces if you can, be
cause that keeps the prompt from appearing to run into the data entry field. 

• The data entry fields are displayed in reverse video so that their position and size are clear. (Other methods 
of marking the position and size of the data entry fields can also be used (Section 17.2). It is usually 
preferable to highlight the data entry field in reverse video rather than the caption. The caption is read 
easily without highlighting. 

• Function keys and their effect are explained to the user. In Figure IS-8, the function key message is some
what lengthy. In other applications, brief messages may suffice. But interactive forms should have some 
function key explanation for the user. 

• The form has proportion and attractive design. 

Other design features are annotated in Figure 18-8: 

• The sketch indicates that this is the initial display of the form. It is distinguished from other sketches 
of the form that show the effects of replies. 

• The enabled function keys are checked. 
• If the terminal bell is to sound when the form is displayed, the duration of the sound (in bell periods) is 

shown on the sheet. 



Transaction Processor 

Transaction Name 

Exchange Label 

Type of Message 

Examples of Form Design 

RESPONSE MESSAGE SPECIFICATION SHEET 

IslAIMlplLIEI 

Ltl81 G I CTIilll 
[CIHI GI Elxl11 

o - REPLY (Activates reply no. rrn) 
[K] - PRCEED 

D - STPRPT 

0- CLSTRN 

D - ABORT (Activates reply no. rrn) 
o -TRNSFR (To exchange I I I I I I P 

Field No. Starting Byte Length (Bytes) Contents 

1 1 6 Customer Number 

2 7 30 Customer Name 

3 37 30 Address Line One 

4 67 30 Address Line Two 

5 97 30 Address Line Three 

6 127 5 Zip Code 

7 132 3 Telephone Area Code 

8 135 3 Telephone Exchange 

9 138 4 Telephone Extension 

10 142 20 Attention - Of 

11 162 12 Credit Limit (9,999,999.99) 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

Figure 18-4 PRCEED Message For Exchange 1 

18-8 



Transaction Processor 

Transaction Name 

Exchange Label 

Examples of Form Design 

EXCHANGE MESSAGE SPECIFICATION SHEET 

IslAIMlplLjEI 

ICIHIGICIUISI 
ICIHIGIEIXI21 

Field No. Starting Byte Length (Bytes) Contents 

1 1 6 Customer Number 

2 7 30 Customer Name 

3 37 30 Address Line One 

4 67 30 Address Line Two 

5 97 30 Address Line Three 

6 127 5 Zip Code 

7 132 3 Telephone Area Code 

8 135 3 Telephone Exchange 

9 138 4 Telephone Extension 

10 142 20 Attention - Of 

11 162 12 Credit Limit (9,999,999.99) 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

Figure 18-5 Exchange Message for Exchange 2 

18-9 



Transaction Processor 

Transaction Name 

Exchange Label 

Type of Message 

Examples of Form Design 

RESPONSE MESSAGE SPECIFICATION SHEET 

IslAIMlplLIEI 

lllB I G I CTUTSJ 
[cIHIGIElxI21 

o -REPLY (Activates reply no. ITJ2l) 
D - PRCEED 

D - STPRPT 

D - CLSTRN 

D - ABORT (Activates reply no. UTI) 
D - TRNSFR (To exchange I I I I I I P 

Field No. Starting Byte Length (Bytes) Contents 

1 1 80 Error Message (Part One) 

2 81 80 Error Message (Part Two) 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

Figure 18-6 REPLY Message 1 for Exchange 2 

18-10 



Transaction Processor 

Transaction Name 

Exchange Label 

Type of Message 

Examples of Form Design 

RESPONSE MESSAGE SPECIFICATION SHEET 

IslAIMlplLIEI 

ICIHIGICTUISJ 

IclHIGIEIxI21 

[8] - REPLY (Activates reply no. I 
0- PRCEED 

D - STPRPT 

0- CLSTRN 

D - ABORT (Activates reply no. I I I I) 
o -TRNSFR (To exchange I I I I I I II 

Field No. Starting Byte Length (Bytes) Contents 

1 

N 0 N E - -2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

Figure 18-7 REPLY Message 2 for Exchange 2 



T~I~', Proc, ~Ime: 
FOI"I11 nl"'el 

SP"PU:. 
CHCU~l 

Examples of Form Design 

Devicel Vlb2 
Le"qt"" 24 

Pag. L-l 
02.00 PM ll-Jul-18 

, , , . , ... , , , . , , ... , ........ , ....... , ........... , ............................ , .... . 
1*************************************************************** 
I 
1 
I , 
1 
I 
I 
I 

TMe fi~.t fo~m for t~e C~lnQe Cu.to"'er tran.action 

In t~41 fo~m, t~e IYltem 'I~I t~e u .... for. cu.tome .. 10 
nu~ber .0 tMat t~, de.fred customer r,col"d ca~ be read 

1*************************************************************** 

1*************************************************************** 
I 
I Group A State~.nt. • Oef1ne Gene ... l p .... ~et.r. , 
'**************************************************************** 

CLEAR • " " 
ENABLE • CLOSE 

SPLITae Ie 1i,., •• of di.pl.y ar.a 

'*************************************************************** , 
, G~ouP 8 St.t.m,nt. • Oef4n. Field. on Scr.," , 
'*************************************************************** , ................... : .......... : ................................• , , , , , , 

TM, two er~ol" t.xt fi.ld •• re u •• d to di.pl.v error 
~ ••• ag •• cont.1n.d in .... pon •• m •••• g •• 

, .•..•.........................................•.............•..• 
DISPLAY. 3,12 

VALUE' "Cu.tom.r M •• t'r Fil, Sub.v.t.m • Change Cu.to~.~ Tran.~ct.o"· 
LENGTH • 60 
ATTRIBUTE. PEVERSE,NOBLANK 

DISPLAY. 5,1 
LABEL' REPLY.TEXT,A 
LENGTH • 80 

DISPLAY. ',1 
LABEL. REPLY.TEXT.S 
LENGTH • 8121 

""O"'T • 1,1 
VALUE • "Cu.tom, .. NUll'lbe .. " 

18-14 



T r .. r'I 5 • P,. 0 e. ~l .:t IT' e : 
Fo,.,.,. n8i1'1e: 

Examples of Form Design 

Ti-IA" Ft,; ..... S ")E.Fl~ITI()r-..· (I/l.v' 

S~"~PLt. 
r,..CijS 1 

Device: lTb2 
Ler'lgtrq ~'" 

Page L-i 
~210a PM 10~Ju'.78 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• L.BEL = c ... S T. ;.0 
LENGT!-i = e 
CLEAR = "~J:" 
.TT~I~UTE : ~EVE~5E,RIG~T 

1==::=::==::=:======:====:===:==:=::==:==:==:==:==.==:_c ••••• : ••• , 
1 , 
1 
I , 

T~.S ;! a oro~ct f4el~ t~at tell. t"e user W"at 
fu~ction ~eys may be useo. T~e conte~t of t~1. field 
mav ~e C"enged bv reoly definition' C.e. e'lo~) if t"o •• 
reoly de11nitions c~a"Qe t". enabled function keYI. 

P~O""PT = 15,1 
LABEL • KEV.P~O~PT 

LENGTI'i = 80 
VALUE = "Function Key,. ", 

"E~lE~ to fete" customer ,..cord, ", 
"CLOSE to ouit fu~etion" 

ATTRIBUTE = ~EVE~SE 

1*******************-*-**-*-*-*-*-**--****·*****-*-*-****** , 
, Group 0 Statement. • Oef4ne Exc~8nge M •••• ge , 
1**********-*****************·********************.******** 

MfSSAGE • 1 
VALUE • 

cus T. ~"o 

1**·***********--**·******·**************-***************** , 
, G,.oup E 5t.t,me~t. • Defin. Reel1 •• , 
,******************----****-*-**-**-**-**-***************** 

, •••••••••••••• : •• : ••••• : •••• ::=.= ••• :.: •••••• : •••••••••••• , , , , , 
I 

Write 2 80-c"a"act.r .rror m •••• o •• onto 'cr"" 
writ. ,..plv ~u~b.~ i"to 'C~"M h •• d.r 

, .............•...................... : ..................... . 
R!'PLV • 2 

END 

WRITE. REPLV.TEXT.A, REQUEST(1,80) 
WRITE. REPLY.TEXT.S, REQUEST(81,80) 

18-15 



T~.~'. Proe. ~.~el 

FO"", "."'el 

Examples of Form Design 

TPAX FO~~S CEFI~ITION (Vl.0 

SAMPlF 
C~C~51 

Devieel ~Tb2 
LenQt", 24 

Pag. ,,-] 
la-Ju1-78 ............... , ........................ ,', ... ,.,"', .. ,., .. , .................. . 

FJELD 

• 

b bytes 

DISPL. DESCRIPTION 

-----------------_._._--------------.... __ .---... _ ......... --..... --•.......•... 

T~.I"I'. ~roc. ~8me' 
F~"I'!' n.",e: 

b CUST.NO 

T~AX FO~~S DEFINITIO~ (WI.0 

S~M~LE 

r:HClJSl 
Oeviee: vT62 
Le"9t"". 24 02100 PM 

Pag_ F-" 
10-Ju1-78 .................................................................... , .......... . 

RepL.V II Me.,a(le Lavout 

RFPL.V tI 2 f. •• ,age Lavout 

FIELD 

" 
!)ISFL. L.ENGTH DESCRIPTIOI'<. 

._.-_.-.. _.-._----_._.-._._--_._---._ .. _.-
1 
2 

1 
~1 

REPLY.TEXT.A 
REPLY.TEXT.S 

18-18 



Examples of Form Design 

TKA~ FOR~S OE~INITION (Vl.0 

T~.~ •• Prec. h8~e: SA~PLE 
Fo~~ ~.mel CHCWS1 

Oevicel ~Tb2 
Le,.,gt~: 24 

Pag. S·l 
02100 PM 10·Jijl-18 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
INITIAL SC~EEN PRESENTATION 

11111111112222222222333333333344q44444445555555555bbbbbbbb6677777771771 
123q5D789~123456789~12345b189~12345b789012345b789012345b789012345678'lli345671'1 

.--.. --------------.. ---------.----------_ ..... -... -..... ---_ ........ -_ .....•.•. 

........................................................•....•..••..•.••..•.•••• 
123"5b78q012345b789012345b7890123456789012345b789012345611'11Z345.71'll234S.7'" 

111111111122222222223333333333444444444455555555556." •••••• ,7711717111 

ENTER ABORT CLOSE 

18-19 



T~I~s. p~oc. Namel 
Fo,.", n.""e: 

S~I~PLE 

C He uS·1 

Examples of Form Design 

Device. vT"2 
LeMQtt,a 24 02.00 PM 

PI;. a-2 
10-Jul-78 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
I'!ITI~L SCREEN AfTE~ APPL.VI~G REPLY #I 2 

111111111122222222223333333333444444444455555555556666bb6bbb77171777178 
1Z3"5b78q~12345b78ge12345b789~1123450789~12345b78q012345b7890123~5b7e901i345b7e90 

-----_._------_._.---_._._------.-._._----------------.--_ ...•..... -... -_ ...... . 
CUltome~ Maste,. File Subsystem • Change CUltomer Trln.letton 

++--._----------_._._--------------------_ .. --._.-----._---_ ........... -......•• ++.----------------------------------_ .. __ .. _---------........................•• 

Fun~tio~ Keyll E~TER to 1etc~ CU8to~e" record, CL.OSE to Quit funct40n 

-----.. _-----._-----... -----_._._------.-.---------_.-..........••..• -......•... 
123"5b7e9012345678q0123~s6789~123qS678q~1234Sb7890123q567eQ012345b7eQ01z345b7890 

1111111111222222222233333333334U44444444S555555555bbb&bb6bb677711777718 

Key. _"Ibledl ENTE~ A80RT CLOSE 

18-20 



-00 
N -

FORM SPECIFICATION SHEET 

Transaction Processor: [SJAJMJ pJIIEl 00- Initial Display D - Reply Number CTT-] Form Name: I c I Hie I U I s I 21 

Split: 0 I 2 3 4 5 6 7 8 
1 2 34 56 78 90 1 2 34 56 78 90 1 2 34 56 78 90 1 2 34 56 78 910 1 2 34 56 78 90 1 2 34 56 78 90 1 2 34 56 78 90 1 2 34 56 78 90 

_8_ 
Lines 
Display 
Area 

1 
2 
3 ~~ IV"' 1l:.lL" 
4 
5 
~. 

7 
8 
9 3J A 

I':' V 1'1 ~r'Ii 
10 f'", I~ .... A~ '~~ ~A ~'l! 11 
12 A~ III I , ~/.:~.c:; 
13 
14 
15 ZI '(J rt,r, O'E. 
16 'f~~ VN 

17 
18 All ,.~ ~'1 i',t)~ 
19 , 
20 ~It ~ID Irr ILi!, t,4'/11 ~~ 
21 

122 
123 J;lf. IArt" tTlf O~ f(~ I),~ .. ~f.J 17~ .. 
24 

Bell: Rung for 0[-1 I perlocis 

Cursor: Positioned at field rn 

Use blue ink to give instructions, field types etc. 

( 

Iii 

~A StT lEI' ~I ~IC ~ ~ ~ 1"1 ~ - I2v 5tr ~11'J 'c:~ 

/",11 VF. 
~~ ~~ /l ~I(,VI 

I) . 

i 
10 l~~ FI I~ t,;. I~ ,""W '~R 112~ i.o'J .... ,. ~ 1'11<: IJ: t7h G'kJ 

"I 

System Function Keys 

Enabled Disableci 

ABORT ~ D 
CLOSE ~ D 
AFFIRM D ~ 
STOPREPEAT ~ D 

Use red ink to show actual text that appears on screen 

Figure 18-9 Sketch of Second Exchange Form 

rr~ ~ 1"'ii:,Q JJ'v 

! 

t'rr I/Aill ~,.. r r:;{ v.II, I.A5 
L .~'--

User Function Keys 

Enabled Disabled 

ENTER 0 D 
KEYDOT D W 
KEYOO D [8] 
KEYOl D W 
KEY02 D [R] 

KEY03 D 0 

~ 
~ 
~ 
1:'.1 

~ 
~ 
~ 
t:J 
~ 
1:'.1 
~. 
;::::: 



Examples of Form Design 

18.3.2 The Finished Fonn Definition 
Here is the finished definition of the second form, as it is printed by the ATL utility program. 

T~."e. p~oc. Na~e: 
Fo~", "I",e • 

~Ap..ClLE 

C~CUS2 

Device; VT62 
Lel"lgtl'l, 24 

Ploe L-l 
02124 PH 10-Ju1.18 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • , •••••••••••••••••••••••••••••••••••••• t •••• 

1*************************************************************** 
I 
I 
I 
I 
I 
1 
I , , , 

Def;I"Iftion of 1o~'" C~CuS2 

T~ie tor~ d4101avI t~e lelected cu.tome~ ~.ste~ ff1e ~eco~d 
and .110ws the user to cha"Qe t~. data contained 1" it. 
Tne c~a"geo oat. i. t~e~ se"t bac~ to the .v.t.~ in en 
e.cha~Qe ~ell.ge. 

1*************************************************************** 

1*************************************************************** , 
, Group A Statement. - Define General P.r.~.ter. , 
'*****~***********.**.******* •• ********************************** 

D~FAULT 
ENABL.E • AFFIRM 
ENA8L.E • CLOSE 
CLEAR • " " 

18 lin •• of d1.~lay I~el 

1*************************************************************** , 
, G~ouP B Stlte~ent. • O.fine Fi.ld. 0" Screen , 
1*************************************************************** , •••••••••••••••• a=.K= ••••• ==K.=.==== •• == ••••••• = •••••••••••••••• , 
I , , , , 

Th •• e .re the .pc11Clt40n fi.,d. 

Th. two error t.xt fi.ldS .re u •• d to di.play .rro~ 
m •••• g •• cont.in.d in ~e.pon~e m •••• g •• 

DISPLAY. 3,12 
VALUE • MCu.tom.~ M •• t'r Fil. Sub.v.t.~ • thlnge Cu.tom.r TrlnllettO"
LENGTH • 60 
ATTRIBUTE • ~EVERSE,NOBLANK 

DISPLAY. 5,1 
LABEL. REPLV,TEXT.A 
LENGT'" • 80 

DISPLAY • ~,I 
LABEL. AEPLY.TEXT.B 
LENGTH • 80 

PROMPT. 1,1 

18-22 



T~.~ •• Proc. ~Imel SAMPLE 
Fo~. "8mel C~CUS2 

Examples of Form Design 

l>evicel ~Tf>2 
Le"qt"l 2'6 

Peg. L-Z 
02.24 PM ll-Jul-?8 ................ , ......... , .................. , ............... , , ................ . 

VALUE • "Cu.to~e~ ~umbe~" 

INPUT· • ,,20 
LAfH.L. CUST.NO 
VALUE. REGUESTC.,b) 
ATTRIBUTE :I ~EvEP5E,NO~ODIFY 

PfolO"'''T II .+1,1 
VALUE • "eu.tome~ ~.~e" 

!IIIPIJT • ,,20 
LABEL • CUST.NA~E 
LENGT .... 3P. 
VALUE • REQUEST(.,3~) 
ATTRI8UTE • REQUIRED,~E~ERSE . 

PRO"'PT ..... 2,1 
VALUE. ".ddr.'." 

INpuT •• ,20 
LABEL. AOORESS.A 
LE.NGT~ :I 30 
VALUE • QEQ~EST(.,3v.) 
ATT~I8UTE • REVE~SE 

INpuT •• +1,20 
LABEL. ADDRESS.S 
LENGTH • 30 
VALUE. REQuESTC.,30) 
ATTRI8UTE • REVERSE 

INPuT •• +1,20 
LABEL. ADORESS,e 
LENGTH • 30 
VALuE • REQ~EST(,,30) 
ATTRIBUTE :I ~EVE~SE 

pfPO",pT • ,+1,1 
VALUE. "ZIP Code" 

I"'PuT •• ,uS 
LABEL. ZIP.CODE 
LENGTH • 'S 
VALUE. REQUESTC •• S) 
ATTRIBUTE • REVE~8E,NUMERIC,FULL 

pROMPT •• +1,1 
VALUE • "Telep~o"." 

pfPOPl'pT •• ,20 
VALUE. "e" 

INPuT • ., , 
LABEL. TEL.AREA,COCE 
LENGTH :I 3 

18-23 



T~I~" p~oc. Ne~e: 

FO~'" 1'\1",1' 
S 4 ~lPLE 

C~CllS2 

Examples of Form Design 

Device, VTb2 
Le,.,gt h • 24 

Plge L-] 
02124 PM la~Jul.78 ...................................................... , ........................ . 

VALUE = ~E~~fST(.,3) 
ATTHIBUTE = TAR,~EVEHSE,NU~ERIC,FUL~ 

PROMPT. ," 

INPuT • 

"ALUE I: I') II 

. , . 
L~BEL I: TEL.EXC~A~GE 
LE~GT~ II: 3 
VALuE I: REQUEST(.,3) 
ATTRIBUTE z TAB,REVERSE,~u~ERIC,FULL 

PJifOMPT •• ,. 
VALUE • "_" 

. , . 
LABEL • TEL.EXT~.NO 

L.ENGTH • '* 
VAL.UE • REQUEST(.,") 
ATTRIBUTE I: REVERSE, NUMERIC, FULL 

PRO"'PT •• +2,1 
VALUE. "Attentiol'\" 

INPUT •• ,2111 
~ABE~ I: ATTENTION 
L.ENGTH I: 20 
VAL.UE • REQUEST(.,2~) 
ATTRI8UTE • RE"E~SE 

PRO"'PT • • +Z,l 
VALUE • "C~edtt L.mit ($)" 

INpUT •• ,20 
LABEL. CREDIT.LIMIT 
LENtiTH • 12 
VALuE. REQUEST(.,12) 
CL.EAR • "0" 
ATTRIBUTE I: RIGHT,REVERSE,SIGNED 

, •••••••••• I: ••• I: ••••••• = •• = ••• I:.I:=zz.== •• = •• ===== •••••••••••• 1: ••• , , 
I , , , 

Thil il I ~~o~~t field t~.t telll the u.e~ whit 
functio" kevi mlV be u •• d. The contel'\t of tht. field 
mlV be chl"geo bv ~eolv oefil'\it1onl Clee below) if tho.e 
~.plv definition. c"l"oe the '1'\lbled fUl'\ctiol'\ keVI. 

PRO~PT • 15,1 
LABEL. KEV.PROMPT 
LENGTH • 80 
VALuE. "Fu"ctio" ~eVII ", 

"ENTER to ~ef1l. cu.tom.~ record, ", 
~CLOSE to ~uit without f1111'\9" 

18-24 



T~'"I. Proe. ~'Me: 
Fo,.", ~.mel 

SAf".FLt 
C~~CUS2 

Examples of Form Design 

uevfeel VTb2 
L.e!"lQti'\: 2U 

P.;. 1.·'4 
02:2~ PM 10-Jul-78 ...... , .................................................... , ................... . 

ATTkI8UTE = ~fVE~SE 

1********************************************************** 
1 
1 G~ouP 0 State~@~t8 - Def;ne E~c~.nge ~e81'Qe , 
1********************************************************** 

MESSAGE I: 1 
VALUE r: 

CUST."O, 
CUST.~A"'E, 
AODRF~S.A, 
ADDRESS.S, 
ADDRESS.C, 
ZIP.CODE, 
TlL.A~EA.CCOE,TEL.E~CHA~GE,TEL.EXTN.NO, 
ATTENTION, 
C~EOI1.LIMIT 

1********************************************************** 
I 
I G~oup E Statement. • Oef4ne Rep14 •• 
1 
1********************************************************** 

En.ble AFFIRM Kev 
Dt •• ble .11 ot~e~ function ~ev. 
~rfte "TRANSACTION COMPI.ETE" On .c~e'n 
f~ •• e old function ~.V m •••• g. 
~r1te n.w function k.y m •••• g. 
W~ite ••• ign.d Cu.to~.r NUm~.~ On 'C~"n 
Writ. Replv Numbe~ into .c~.en ~ •• d.,. 

RfPLY • 1 
ENABLE I: AFFIR~ 
DISABLE • ENTER 
~RITE • REPLY.TEXT.A," *** TRANSACTION COMPLETE ***" 
~RITE • KEY.PROMPT,FILLC· ",80) 
~RITE • KEY.PROMPT,"Fu"ct10" keVI' AFFIR~ to p~oc •• d" 

, ••••••••••••• :.=: •••• = •••••• :.: •• : •• =.==: •• :.:= •••••• :ac •• , 
I 
I 
I 
I , W~1te 2 8~·Ch.r.cte~ er"o~ m •••• g •• onto .c~.e" 

w~tt. ~.plv numb.~ into .c~.en h •• der 

18-25 



T~8~1. p~oc. ~a~el 

FO!"'" 1'1 8"' e 1 

Examples of Form Design 

TRAX ~Ow~S OEFI~ITION (V1.~ 

SAMPLE 
C1-4CuS2 

Deviee. ilTb2 
LeM9tl'll 2" 

Peoe L-! 
0212~ PM 10-Jul-78 ............ , ............................................... , .................. . 

I·==·z===:======================:=========:=========~=:====-

R~PL.Y = Z 
w~ITE • R~P~Y.TtXT.A, RE~uEST(1,80) 
~~JTE = REPLY.TEXT.S, REQUEST(81,ee) 

T~81"1" Proc. ~·a"e: 
Fo,.", l'Iame: 

~t.~~L~ 

CNCUS2 
IJeviee: vTo2 
~el"lgt"'l 2'" 0212" PM 

·Peoe F-l 
ll.i.Jul-78 ......... , ..................................... , ............................... . 

G~I'I~r81 For~ P8ra~eters 

Trll"l'8ctfo~ oroeesscr: 
,..o~'" l'Ie".e. 

Le~9th o~ C~.ol.v Area: 
L~I'IQth of For~. AreA: 

~ 14 'H~I 
15 1i~el 

Num~e~ of error 1fl"l,.: 
Ot."lIY wiot~q 

1 l1"e • Hl'le 2'" 
8~ coluIT'1'I1 

11 INPUT Fielol Uec 1 ... ed 
'1 PRO~PT F1elns Deel.~ed 

3 OISPLAY Field. Decl.red 
o ~ENU Field. Oec18re~ 

M~x'mu~ lel'lgth of Mlhu ~1eld.r 
Lel'loth of Exc~anqe mel.lgel 

FUl'lctiol'l KEYS el'llbleo 01'1' 

~ 

173 

II'I1t111 Sereel'll ENTE~ ABORT AFFR~ CLOSE 
REPLY. 11 ABORT ~FFR~ CLOSE 
REPLY. 21 ENTE~ ABORT AFF~M CLOSE 

18-26 



Examples of Form Design 

T~A. FO~~S UEFI~ITIO~ (Vl.~ 

T~a~ •• p~oc. Ne~e. SAMPLe 
FO~~ "ame: r.~eUS2 

Device. IJToc 
L."gt"q 2~ 

Page ".Z 
02124 PM 11·Jul-78 ...................................................................... , ........ . 

I~PUT Field O.ele~et1o".. 

Ste"de,.a ettribut ••• ALL,LEFT,NOT'B,~OFULL,NOREQUIRED 
MODIFV, NORMAL, ECHO 

FLD ROW COL LNG CLEAR LABEL (ATTRIBUTES) 

" .. " CHAR ..........................................................•..•..•••..•.•.•••.••• 
1 1 20 0 
2 2 20 3~ 

3 4 20 321 
4 5 l0 3e, 
5 & 20 3k1 
II 7 45 5 
7 e 21 3 
e 8 26 3 
~ 8 30 " 10 10 20 2 ()I 

1 1 12 20 12 

FLD ROW COL LNG 
• • * 

" " CUST.NO (NOMOOIfY,REVERSE) 
" " CUST.N_ME (REQUIRED, REVERSE) 
" " ADORESS.A (REVERSE) 
" " AODRESS.13 (REVERSE) 
" " ADDRESS.e (REVERSE) 
" " ZIP.CODE (NUMERIC, FULL, REVERSE) 
" " TEL.AREA.CODE (NU MERIC,TA8,fULl,REYERIE) 
" " TEl.EXCMANGE (NUMERIC,TAB,FULl,REYERS!) 
" " TfL.EXTN.NO (NUMERIC, FULL, REVERS!) 
" " ATTENTION (~EVERSE) 

"0" CREOIT.LI!I4IT (SIGNED,RIGHT,REVERSE) 

PROMPT Field O.cla~at.o". 

LABEL (ATTRIBUTES) 

.............................................................•........•.•.•.•••• 
1 1 1 15 
2 2 1 13 
] 4 1 7 
4 7 1 8 
5 8 1 CJ 
6 e 20 1 
7 8 24 2 
8 8 29 1 
9 10 1 CJ 

III 12 1 III 
11 15 1 80 KEY,PROMPT (REVERS!) 

DISPLAY F •• 1d O.cl.~.tion. 

Standa,.d att,.ibut ••• r-,ORtwlAL, BlANt( 

'LD ROtlil COL LNG LABEL (ATTRIBUTES) 
• " .. ....•..............................................•..................•••.•...•• 

1 
2 

3 
5 

12 
1 

(REVERSE,NOBLANK) 
REPLY.TEXT.A 

18-27 



T~8~'. p~Oc. N8~~: 
FOr'" l"I8/T1el 

Examples of Form Design 

TRA~ FORMS DE~I~ITlaN (Vl.0 

SA ;'i~LE 
C1-4CUS2 

Device. vTb2 
Length: 24 

Pig. F-3 
021i4 PM le-Jul-?8 ............................................................................ , . ,. 

3 b 1 8~ ~EPLY.TEXT.~ 

Trll"l" Proc. Nlme. 
1"0,"", "Imel 

TRAX fO~~S DEFINITION (Vl.0 

SA~PLE 

C~CuS2 

Device. VTb2 
Le!"lgt"" 24 

Peg. '-4 
02.24 PM le-Jul-?8 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

Ewc~."ge M •••• O. L.yout 

Le"Qth. 

FIELD 
• 

173 bytes 

DISPL • Lf"4GTH UESCRIPTION 

.. -........ _ ..... _-.. _-.....•..• -.................... -._--.---........•...•..•.. 
tA 1 b eUST.NQ 
18 7 30 eUST.NAME 
, C 37 30 ADDRESS.A 
, 0 67 30 ADDRESS.B 
IE en lill ADDRESS.e 
, F 127 5 ZIP.CODE 
lG 132 3 TEL.4REA.eODE 
lH 135 3 TEL. EXCHANGE 
tI 138 4 TEL.EXTN.NO 
tJ 142 20 ATTENTION 
1I( 162 12 CREOIT.Llp.4IT 

18-28 



T~I"'. p~OC. Nlme. 
Fo",., "1"'1, 

Examples of Form Design 

TRAX FORMS OEFINITION (Vl.e 

SAMPLE 
CHCUS~ 

DevicI' VT02 
I.engt"'11 24 

P.o. '-5 
02.24 PM 11.J~1-18 

•••• I ••••••••••••••••••••••••••••••••••••••••••••••••• , • , •• , •••••••••••••••••• , • 

173 byte. 

I.ENGTH DESCRIPTION .... -..... _ ...... ----_ ..•....•........ 
1 0 
7 30 

37 3 III 
6T 30 
qT 30 

127 5 
132 3 
135 3 
138 " 142 20 
,62 12 

T ... ~ •• Proe. N.~el 
FO!"", ~.m'l 

CUST.NO 
CUST.NA~E 
AODRESS,A 
ADDREss.e 
~DDRE8S.C 
ZIP.CODE 
TEL.AREA.CODE 
TEL,EXCHANGE 
TEL,EXTN.r-..O 
ATTfNTION 
CREOIT.LIMIT 

T~AX FORMS DEFINITION (Vl.0 

SAMPL.E 
CHCU52 

Dev4cI' \/T02 
Lengt'" 24 

'.0. ,-, 
02.24 PM ll-Ju1-78 ............................................................. , ................. . 

AfP~Y * 2 M •••• ge Llvout (Length a lb~) 

FIELO 

* 
DISPL.. LENGTH DESCRIPTION 

.... _--.. -..•.•........ -..... _ ....•....... 
1 
Z 

1 
81 

80 
80 

REPL.Y.TEXT.A 
REPLY.TEXT.S 

18-29 



T"81"18. p,.CC. ;,e~el S~'''PLt 

Fo,.~ ~8~e: C~CJd2 

Examples of Form Design 

!~; e " ice ~ V T ~ 2 
I..e"qtr,: 24 

Peg. a-I 
02a2~ PM 10-Ju1-78 ................................................ , ........ , ... , .... , ............. . 

111111111122c2c2222?3333333333~a~44~44a~SS555S~55Sbbb66606b677777777778 
123u5b78q~123u~~7cqv 123U5b7~q~1234~67Aq~1234~678Q01234Sb78Q012345b78Q01234S678Q0 

---.-_._._------ ...... -._-_.-.-- .. ------_ .... _--------._._._.------.-._._.-._.-. 

Cu.to~~" ~aste" File Subsyste~ - Che"ge Custome,. Transaction 

CUs"cl'I1er l'.umbe r 
Custo",.,. 1\;8rre 

ZIft COd. 
T@l ~ID"'C"·'I. 

+t e _++ 
++---------------------_ ... _++ 

++._------------------------++ 
+t--------------------------++ ++--------------------------++ ++-++ (+++) +++-++++ 

.tte~t1o~ ++----------------++ 

--_._------_._. __ ._----_._-_ .... -..... --_ .•. _._ .. -.. -... _---....•.... -_ ........ . 
1?3U5b7eQ~123~sb78q0123"5b78q012345676q~12345678q0123~5~7eq012345678q01Z345b78qe 

1111111111222222222233333333334~4~444444SSS5555S5S6b66b6666677777777778 

l~TER ABORT 4FFRM CLOS~ 

18-30 



T~I"I. p~Oc. N.~el 
Fo",,,, "'I"'e. 

Examples of Form Design 

T~A~ FOR~S DEFINITION (Vl.0 

SAMPLE 
C~CUS2 

Devicel IIT02 
L.e",gtt,. 24 

Peg. S-2 
02124 PM 10-Jul-18 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
INITIAL SCREEN AFTER APPLvING REPLY * 

111111111122222222223333333333~U4Q~4"44U55555555556bb666666671777171778 
1~3~5678q~12345b789012345618q~12345b18q012345&78q01234567890123456189012345.7890 

---.-_.-------------------... _-----------------_.-------... _ ..............•...•. 

*** TRANSACTION CO~PLETE *** 

Cu.to"'.~ Numb.,. 
CUltO"'." NI"'. 

lIP Code 
Te'epho",e 

++ •• ++ 
++ •••••••••••••••••••••••••• ++ 

++ •••••• __ •• _._ •••• _ •• _._ ••• ++ 
++_ ••••••••••••••••••••••••• ++ 
••••••••••••••••••••••••••••• + 

(+++) +++.++++ 

C~.d.t L4M4t (S) + ••••••••• ++ 

......................................................................•...•.•.•• 
lZ3Q5.78901c345&189~12345&78q~1234567e901234567e9012345678ge12345.78911Z34S67890 

11111111112222222222333331313344444444445555555555 •••• 66 •••• 77117"1778 

ABOPT AFF~M CLOSE 

18-31 



T"ar"ls. PI"oc. "Cll""e: 
Fe,. ... "aTE': 

Examples of Form Design 

i ::. t. ~ f- f· - ,~ rEF 1', 1 r I )~.. (II 1 • ~:1 

~ :,",J '- ': 
C 'ir:;~2 

I.'ellice: '>lToZ 
ltar"Qt"': ~Q 

Pege S"3 
le-Jul-18 .................................... , ..................... , .................... . 

1111111 11122?~r.~2222j33333S~33~4i~~~~~q~455555S5S55bob6bob6b677777771778 
1?3U!678q~123~~b1~q '23~5~7~Q·123~5~7Pq~1234567~Q~123~5~78Q~123~5b78q~123q567890 

----.. ---------------~-----------.--------.-------.----~-.---.--.-.--.----.---.. 

++-----------_ .. _ .. -----_._---,-----------_._------... ------------------_.-._-++ ++.---------------_ .... _----------- .. _---------------------_._--_._ .. _._------++ 

c U 8 • 0 ". e ,. ," U 1'\ r- e ,. 
CUlt o",e" ;"a.,.,e 

ZIP Coae 
T ... lftP"o"e 

Attftntfol"l 

++--------_._---------------++ 
++_._-_ ..• _-----------------++ 
++------------.-------------++ ++------_._---------------.. ++ 

(+++l +++-+++. 

++----------------++ 

++._-._---++ 

E~TE~ to re f ile custo~e~ record, CLOSE to Quit without ftli"; 

.----------------------------------------------------------------.-----_ ...... -. 
1?3U5b7dq~12345b7eq~123~S67PQ~1234So78q~1234Sb78q01234 5b78q0123~5b78q01Z3~567890 

1111111111~2??~22222333~33333~U4Q~uU"UU45S55555555bobbb6060671777777718 

18-32 



CHAPTER 19 

DESIGNING AND SPECIFYING TSTS 

During the transaction design process, you tentatively divided your application processing into TSTs. Now you 
must add further design details to each TST, so that an application programmer can implement it. 

As you proceed with this detailed design, you may fmd that your tentative set of TSTs is inadequate. If this hap
pens, decide on a better set of TSTs, and correct the design to reflect the changes. Then continue with the detailed 
TST design procedure described in this chapter. 

This chapter discusses important considerations to remember during the detailed TST design: 

• TST operation 
• TST programming languages and their capabilities 
• TST performance 
• TST design documentation 
• TST coding standards and development techniques 

19.1 REVIEWINGTSTOPERATION 
Before we continue with TST design concepts, let's review: what is a TST and how does it operate? 

A TST is a program associated with a TST station. When an exchange message arrives at that station, the TST 
processes the exchange message. 

The sources of data available to the TST during this processing are shown in Figure 19-1. When it is activated, the 
TST is given two data structures: the exchange message and the corresponding transaction workspace. These two 
parameters are passed to the TST as subroutine parameters, and the TST is programmed to receive them in that 
form. 

During processing, the TST has access to these additional sources of data: 

• The TST can read or write application data files. 
• The TST can send report messages to output-only terminal stations, thus producing hard-copy reports. 
• The TST can deposit mailbox messages in a mailbox station or can retrieve mailbox messages from a 

mailbox station. 
• The TST can issue programmed calls to discover certain attributes of the transaction instance it is 

processing. 

As you can see, these sources (or destinations) can cross transaction instance boundaries. For example, a message 
deposited in a mailbox can be picked up by another TST processing a different transaction instance's exchange 
message; data read from application data mes can be placed there by some other transaction instance. 

However, three data structures used by the TST are only accessible during the rest of the same transaction instance: 

• If the TST issues a response message, it affects subsequent processing of the transaction instance. 
• The exchange message, modified by the TST, passes to subsequent stations in the processing phase of the 

curren t exchange. 
• The transaction workspace, also modified by the TST, is passed to subsequent TSTs in the current and 

following exchanges of the transaction instance. 

19-1 



Designing and Specifying TSTs 

When a TST begins processing an exchange message, it has no ~'memory" of prior processing other than the contents 
of the transaction workspace. It behaves like a newly loaded and initiated program. As a result, TST designs fall 
into a style where each TST has a small system "perspective"; that is, it has a well delineated purpose and uses a 
small, formal set of inputs and outputs. Further, most TSTs have only small processing path variations in them; they 
apply substantially the same processing to each exchange message they process. 

Remember these TST characteristics as you design your own TSTs. Your fmished application will perform better if 
you use TST characteristics to advantage. 

19.2 CHOOSING A PROGRAMMING LANGUAGE 
TRAX provides two application programming languages: 

• COBOL 
• BASIC-PLUS-2 

Both of these languages can be used to program TSTs. You should choose the language that you and your applica
tion programmers are most familiar with. 

Once you have selected a programming language, study its reference manual. If you are familiar with the language, 
you can design TSTs that are easier to program and that perform well. 

If you or your application programmers are not familiar with either of the languages, refer to the Software Product 
Descriptions (SPDs) and language reference manuals for both COBOL and BASIC-PLUS-2. Choose the language that 
fits the background and experience of your programming staff. 

Although TRAX allows you to program TSTs in different languages for the same application, you should select a 
single language for your TSTs. Multiple languages make system documentation difficult, and application program
mers using different languages have difficulty communicating. 

19.3 DESIGNING FOR OPTIMUM TST PERFORMANCE 
The following aspects of a TST design are particularly important: 

• Making the best use of a programming language 
• Making the best use of me access methods 
• Minimizing access conflicts in shared files 
• A voiding bottlenecks 

19.3.1 Programming Language Considerations 
There are two aspects of a language that you must consider when designing TSTs: 

1. Convenience depends on how easily a language expresses a concept or procedure. 
2. Efficiency depends on how quickly a language executes a set of statements, and the proportion of system 

resources the language requires to execute those statements. 

Before you design TSTs, identify those aspects of your chosen language that are convenient to use and efficient. Try 
to design TSTs so that your application programmers can use.convenient and efficient language features. Try to 
avoid situations where application programmers have to use awkward or inefficient aspects of the language. 

If you are unsure of a language's convenience or efficiency after studying the Language Reference Manual and u."er','\ 
Guide, develop some test cases and analyze the results. 

19-2 



Designing and Specifying TSTs 

EXCHANGE 
MESSAGE 

TRANSACTION 
WORKSPACE 

~ U gBO~ ,,--------__ DATA 
STATIONS FILES 

TST 

\YS::L~AL)' '---------'~~:~~;~ I 

TRANSACTION ATTRIBUTES, 
TIME OF DAY, ETC. 

KEY: 

RESPONSE 
MESSAGE 

INPUTS FROM 
TRANSACTION 
INSTANCE 

EXCHANGE 
MESSAGE 

DATA US~D OR 
GENERATED BY 
TST 

TRANSACTION 
WORKSPACE 

HARD COpy 
REPORTS VIA 

REPORT MESSAGES 

OUTPUTS USED 
LATER IN TRANSACTION 
INSTANCE 

Figure 19-1 Data Available to a TST 

19-3 



Designing and Specifying TSTs 

19.3.2 File Access Considerations 
The discussion in Section 19.3.1 also applies to ftIe access techniques. Study RMS carefully. Determine which ftIe 
access operations you will be using and their relative cost in system overhead. 

The design of me access techniques is crucial to a commercial application. Poor performance in commercial applica
tions is frequently caused by a ftIe access bottleneck. Disk drives are a heavily used system resource, and you do not 
want to waste that resource with inefficient design techniques. 

Avoid the temptation to use the simplest RMS me structures and then ask your application programmers to imple
ment more complex ftIe structures based upon them. You will often lose more in performance than you gain. If 
you need an indexed me structure, use an RMS indexed file structure. 

An example helps to illustrate the importance of ftIe access design. Assume your application calls for an indexed 
ftIe, and a transaction must retrieve two records from this me. The records are neighbors in index sequence, except 
that there may be one record between them. How do you design this file access? 

A straightforward technique is to use two RMS READ operations, each specifying a key for one of the two records. 
This works - but RMS must search twice through the index structure to fmd two records that are close neighbors. 

A better technique is to locate the second record with one or two sequential read operations after the first record is 
found. This operation is more efficient than a second search through the me's index structure. 

19.3.3 Minimizing Access Conflicts in Shared Files 
To allow shared access to application data files, TRAX TSTs lock specific records in those meso Any TST that 
attempts to access a record locked by another transaction instance creates an access conflict. The TST is not given 
access until a TST processing the other transaction instance unlocks the record. 

Avoiding repeated or lengthy access conflicts is important to application design. You must pay careful attention to 
the TSTs that access files as well as to the design of the fIles themselves. 

19.3.3.1 The Duration of Record Locks - The duration of a record lock depends on other things besides the 
design of the TST. Files configured with staging or journaling prolong record locks until the end of each transaction 
instance, instead of releasing the records after they are unlocked or updated. This creates access conflict. 

Records are locked on behalf of the transaction instance the TST is processing, rather than for the TST itself. This 
means that record locks can remain in force for three different periods: 

1. Within a TST. Records can be locked by a TST and then unlocked by the same TST before it terminates 
execution. This record lock rarely impacts system performance, because there is minimal delay between 
the locking of the record and its release. Unless the TST becomes snared in an endless computational loop, 
nothing interrupts it and the record is unlocked in timely fashion. 

NOTE 
This does not apply if the me is staged or journaled; see 
the NOTE in item 3. 

2. Within an Exchange. Records can be locked by a TST and unlocked by another TST in the same 
exchange. This record lock has greater impact on system performance, because a delay is always possible 
in the startup of the second TST. This TST could have other exchange messages queued at its station, 
and several seconds (or minutes) could elapse until the exchange message is processed. Meanwhile, the 
record remains locked. 

194 



Designing and Specifying TSTs 

NOTE 
If the me is staged or journaled, the second TST may 
not unlock the record; it may remain locked until the 
end of the transaction instance. See the NOTE in 
item 3. 

3. Across Exchanges. Records can be locked by a TST, and then unlocked by another TST in a subsequent 
exchange. This situation has an extreme impact on system performance, because the record remains 
locked during the intervening exchanges. The time required to complete an exchange depends on how fast 
the user completes the form and transmits it to the system; in some situations, this could take many 
minutes or even hours. 

NOTE 
Delay is often introduced where the me is defined with 
staging or journaling options. If a TST updates and then 
attempts to unlock a record in such a me, the record 
remains locked until the end of the transaction instance. 
If this involves intervening conversational phases of other 
exchanges, serious access conflicts can occur because of 
lengthy delays. 

19.33.2 Avoiding Access Conflicts - If your design locks a record across several exchanges and this extended 
lock results in unacceptable access conflict, there are several things you might do. 

1. Select a me defmition option which allows other TSTs to read a locked record but not lock or update it. 
This option allows some transactions to display record data while another updates it. See Section 21.l1. 

2. Add a field to the record and use this field as an application-level record lock or record status indicator. 
This design uses the RMS record locking facility to protect the record only while it is read and the 
status field changed and rewritten. At all other times, RMS considers the record to be unlocked. Each 
application program must then check the record status flag before using data from the record to see if 
some other application program is using the record. 

Although this technique is useful, watch for these pitfalls: 

• This method relies on application programmers to inspect the record status field each time a record 
is read. 

• This method increases the number of file accesses, since the record status byte must be updated. 
• This method can result in records appearing to be permanently locked should an application program 

abort without restoring the status indicator. 

3. Restructure the transaction or the me to avoid the difficulty. 

For instance, a common design technique uses an applicaton file with a control record in addition to its 
data records. In a customer fIle, this control record might contain the next available customer number. 
It would be consulted each time a new customer is added to the file and then incremented so that the 
next customer is assigned the next identification number. 

Although you may not have an access conflict problem with the customer records in this file, you would 
probably have a problem with the control record. This record is read, locked, and updated by each 
transaction instance that adds a new customer to the fIle. Each transaction instance must keep this 
record locked for the shortest possible time, because the time the record is locked has a significant effect 
on the throughput and response times of the application. 

19-5 



Designing and Specifying TSTs 

Consequently, your design should put the updating process (reading, locking, updating, unlocking) in one 
TST. This minimizes the time the control record is unavailable to other transaction instances. The 
updating of this control record must never be spread across two or more exchanges; and you should avoid 
spreading it across two TSTs in the same exchange whenever possible. 

Be sure to consider the effects of staging and journaling. If the me in the previous example were staged 
or journaled, one of two situations would arise: 

• If the control record update occurred in the last exchange, the situation would be marginally acceptable 
because the end of the transaction (the actual unlocking and updating) occurs soon after the reading 
and locking. 

• If there were intervening exchanges between the point where the control record was locked and the end 
of the transaction instance, you would have to redesign the file or the transaction. For example, the 
control record might be removed from the me and placed in a separate fIle which is neither staged nor 
journaled. 

193 .4 Solutions to Possible Bottlenecks 
Every application has potential bottlenecks. Bottlenecks are places in the application where much processing is done 
by a relatively small group of processing entities. Work backs up at bottlenecks when the application is pushed to its 
performance limit. 

Bottlenecks have two detrimental effects on an application: 

1. Increased Response Time. Bottlenecks may degrade response times at the user's terminal. That is, the user 
waits an excessively long time during the execution of a transaction. 

2. Reduced Throughput. Bottlenecks may also reduce the total work the application can do in a given time 
period. That is, the application may not process work as fast as it is entered by users. 

As you design around possible bottlenecks, remember which symptom you are trying to avoid - degraded response 
times or reduced throughput. Focusing on one of these two symptoms is important, because most techniques for 
avoiding bottlenecks trade one symptom for the other. 

The rest of this section discusses several techniques that can be used to avoid bottlenecks: 

• Allowing multiple copies of TSTs 
• Adjusting TST priorities 
• Designing transactions with overlapped processing 
• Designing transactions with background processing 

193.4.1 Allowing Multiple Copies of TSTs - TRAX allows you to specify the number of TST copies that can 
execute at the same time. You can set this number to one, so that arriving exchange messages process one by one. 
Or, you can set this parameter to a higher number and allow several exchange messages to process in parallel. 

With multiple TST copies, you can solve bottlenecks stemming from TST execution times; that is, bottlenecks that 
arise because a TST cannot process exchange messages fast enough. 

To use this technique effectively, you must be certain that: 

• TST execution speed is the problem and not other program-delaying factors such as me access conflicts. 
• Adequate resources are available to execute the copies of the TST without new conflicts such as conten

tion for main memory or the central processor (CPU). 

19-6 



Designing and Specifying TSTs 

The number of TST copies you allow will vary by the severity of the bottleneck and the system resources available. 
F or a severe bottleneck, you might set the parameter to a high number; but if many mUltiple copies cause problems 
in the application, you might limit the parameter to a relatively small number - say two or four. 

193.4.2 Adjusting TST Priority - Another way of solving a TST bottleneck is to adjust the priority with which 
that TST is executed. 

Like the multiple-copies method (Section 19.3.4.1), this method is best for correcting bottlenecks stemming from 
TST execution speed. Increasing the priority of a TST usually does not expedite its fIle accesses; the only effect 
of an increased priority is in contention for main memory and other TST startup resources. 

Remember: when you raise the priority of one TST, you do so at the expense of another. You cannot raise the 
throughput of your application by adjusting TST priorities; you can only adjust the relative throughput of various 
transactions. 

193.4.3 Designing Transactions with Overlapped Processing - Section 14.2 describes the technique of oyer
lapping the processing phase of one exchange and the conversational phase of the text. This technique often 
nnproves the transaction response time seen by the user, but it cannot improve the throughput capability of the 
application as a whole. 

As you design the TSTs in those transactions that use overlapped processing, remember where they appear in the 
transaction: are they executed before the exchange response message is sent or during the overlapped processing 
after the message is sent? TSTs executing during the overlapped portion of an exchange must conform to special 
restrictions, notably the restriction against issuing a response message. 

Make sure that you understand the difference between sending a response message and terminating the TST. 
Once you understand the consequences of each, communicate this understanding to your application programmers. 

By using the overlapped processing technique, you can design transactions where the user's conversation proceeds 
ahead of the processing of his last input. But this overlap is limited to one conversational cycle. If the original 
exchange's processing is not fmished when the user's second set of input is ready, he cannot go to a third set of 
input. He must wait until the processing of the first input is complete and the processing of the second set begins. 

19.3.4.4 Designing Transactions with Background Processing - If one of your transactions demands extended 
overlap or user entry of all data without waiting for processing to begin or terminate, you must use a background. 
processing technique. 

This technique divides a transaction into two parts: 

1. An on-line transaction initiated by the user collects data and stores it temporarily. 
2. A special transaction or a series of one or more support environment programs processes the stored data 

later. 

One use of the background-processing technique spawns a separate transaction instance to process the data. To 
do this, you must design two transactions: 

1. In the on-line transaction that converses with the user to collect data, one TST issues a system call to 
spawn the second transaction. The collected data can be passed in the spawned exchange message, in 
a mailbox message, or in a me. 

2. The TSTs in the second transaction retrieve the data and then process it. These TSTs cannot converse 
with the user and are restricted to a "background" environment. 

19-7 



TST Name: 

Input Object Modules: 

Language: 

Is there a resident OTS for the language? 

Debug Mode? 

TST Name: 

Input Object Modules: 

Language? 

Is there a resident OTS for the language? 

Debug Mode? 

TST Name: 

Input Object Modules: 

Language: 

Is there a resident OTS for the language? 

Debug Mode? 

Designing and Specifying TSTs 

TST SPECIFICATION SHEET 

'---'----L-....L.' --1'---,---,' .. I 
~ 

,---,---,-----,1:[,--,1 '------L-....J1.UIJ] 1 , , 1 1 1 I. [TJ""J; [I] 

,---,---,-----,I: [I '. LLLJ] 1 I I 1 1 1 I. ITl""J; [I] 

o -COBOL 

o -BASIC-PLUS-2 

o -MACRO-11 

o -YES 

D -NO 

D -No 

o -Transaction Processor (Device:' I , I:) 

D - Standalone (Initializing Module: 1 I I , I 

L........L.-I -L1---l1L...-.L-1 .....&....-....1 .. i 
~ 

,---,---,-----,1:[,--,1 ~I ,LLLJ] 1 I I I I I I. ITl""J; [I] 
L-....L--...L-.JI:[I I,LLLJ] 1 I I I I I I.ITl""J;[IJ 

o -COBOL 

o - BASIC-PLUS-2 

D - MACRO-11 

o -YES 

D -NO 

D -No 

D - Transaction Processor (Device:' , I I:) 
o -Standalone (Initializing Module: I I , 1 I 

L........L.-I -LI ---lIL...-l...-I .....&....-....1.. I 
~ 

,---,---,-----,1:[,--,1 '------L-....JI.LLLJJ 1 I I I I I I. ITl""J; [I] 
,---,---,-----,I: [I I, LLLJ ] 1 1 I I I I I. [TJ""J; [I] 

D -COBOL 

D - BASIC-PLUS-2 

D- - MACRO-11 

o -YES 

D -NO 

o -No 

o - Transaction Processor (Device: I I I 1 :) 
o - Standalone (Initializing Module: I I I I I 

Figure 19-2 TST Specification Sheet 

19-10 



CHAPTER 20 

TST DESIGN EXAMPLES 

Three examples of TST design are presented in this chapter. Each example includes the documentation an applica
tion designer would supply to the application programmer as well as the source code that the programmer would 
generate. The source code is included so you can compare the design specifications with the finished TST. 

The three TSTs in these examples are from the change customer transaction in the TRAX Sample Application. 
This transaction's forms were discussed in Chapter 18. The transaction structure diagram for this transaction is 
shown in Figure 18-1 ; itis normally included in the documentation for the programmer, although it is not reproduced 
in this chapter. 

20.1 THE RDCUST TST 

NOTE 
The transaction structure diagram (Figure 18-1) calls for 
records to be locked across exchange boundaries. This'is 
acceptable because in this application conflicts over cus
tomer records are unlikely. In a complex application, a 
more sophisticated approach to record sharing is neces
sary. 

Together with the transaction structure diagram (Figure 18-1) the following figures comprise the documentation 
needed by an application programmer to write the RDCUST TST. 

• RDCUST TST Specification Sheet 
• Description of RDCUST TST Purpose and Processing 
• Exchange Message Format 
• REPLY Message Format 
• PRCEED Message Format 
• Customer Record Format 

The finished TST is shown on pages 20-3 through 20-11. 

20-1 

Figure 20-1 
Figure 20-2 
Figure 18-2 
Figure 18-3 
Figure 184 
Figure 22-1 



TST Design Examples 

TST SPECIFICATION SHEET 

TST Name: IRIDlc1u1slT11I( i 
~ 

Input Object Modules: ISlyl 1:[ITTO,[ill]]]]IRIDI clul sl TI.[ill]K];CD 

ITTI:[ITTI,CIIJ]I I I I I I I.ITl~;CD 

Language: lliJ - COBOL 

o - BASIC-PLUS-2 

o - MACRO-" 

Is there a resident OTS for the language? [R] - YES 

D -NO 

Debug Mode? o -No 

D - Transaction Processor (Device: I I I I:) 
o -Standalone (Initializing Module: I I I I· I 

Figure 20-1 READ TST Specification Sheet 

The RDCUST TST is the only TST in the first exchange of the change 

customer transaction. It receives the identification number 01 a 

customer via the exchange message and attempts to read the corre

sponding record from the customer file. 

If the read operation is successful, the TST formats the data into 

punctuated display format (that is, ready for display on the terminal 

screen) and sends it back in a PRCEED response message. 

If the read operation is not successful, the TST returns an error 

message in a REPLY response message. This message is sen t as reply 1. 

Figure 20-2 Description of RDCUST TST Purpose and Processing 

20-2 



T~.~ •• P~oe. Neme. 
FO,.,," 1'I,"'el 

Examples of Form Design 

T~AX FOR~S DEFINITION (Vt.0 

SAMPLE 
C~CiJS2 

Deviee: \lT02 
L.e,..gt "" 24 

Peo. S·2 
02124 PM le·Jul.78 

....•.•.•..............................................•..••••••••.•••• ~ ....... . 
INITIAL SCREE~ AFTER APPLvING REPLY. 

111111tl11222222222233333333334"44444444~5555555556boo00066677777777778 
1~3QS678q~12345b1e9~12345678q~12345b18q01234So78901234507890123456789012345671'0 

-----_._--------_ .. -------._-----_ ... _---.. -._----._.-....................•...•. 

*.* TRANSACTION CO~PLETE *** 

Cu.tOI'/\'~ Numb.~ 
Cu.to",.~ N,,,,_ 

ZIP COd. 
Te'epho"e 

++-----_._---_ ••••• __ ._ ••••• ++ 

++ ••••••• _. __ ._ ••••••••• _ ••• ++ 
++ ••••••• _ •• _._.-••••• _-_ ••• ++ 
++ ••• _ ••••••••••• _ •••••••••• ++ 

++.++ 
(+++) +++.++++ 

C"edit L.fmft (I) ++ •••••••• ++ 

........... -.......•.... -.................•.... _ ......................•...•...•• 
lZ345.78901234567e9~12345678q012345678901234567890123456789012345678981234567198 

11111111112222222222333333313344444444445555555555 •••••••••• 77777111718 

key •• ""bl.d. A80PT AFFHM CLOSE 

18-31 



T"8~S. prooc. ",1IIt'"e: 
""C',. ... "8'1""., 

Examples of Form Design 

T :;. ,. ~ F- ( ... ,:; rEF 1 0 I 1 r 1 J~" (v 1 • ~~ 

I~ e \/1 c e: " T [:) 2 
l~r"qttq ~'" 

Pege 8-3 
10-Jul-78 .......................................................... ,', .......... , ....... . 

11111111 1122~~r.~2222j33333S~33U4'~~Jqq~44555555555Sbbb6bbbbbb77777777178 
1?3U~678q~123~~b7~9 123~5~7~Q·123~5~7eq~1234S678Q~123~5~18q~123~5b18q~123qSb78Q0 

.----.-----------.----------.----.-----~------.------- ---------._._ .. _. __ ._._ ... 
Custorr,~,. roaste" ~; 1e Sl.Jt:>svste m " CI'I8r'1c:;e Custo",er Tranlactio" 

++------------.---.-.-.--.----.---------.------.---~-. ------------------_.-._-++ +.----------------.-- .. -.--------~-----------.-------- ------------._._-----.. -++ 

CUI. 0 It' e r ," U PI'I r- e r 
Cu. to 0'" e" : ... II 'TI e 

ZJ~ Coae 
T .. lftPt,o"'e 

Attftnt101'1 

CI"en1t Lirr·it (~) 

FUI"!/"t1o,., Keys: 

++--++ 

++--------------------------++ 
++---._---------------------++ ++--------------------------++ ++--------------------------++ 

++----------------++ 
++_ •• _--_ .... + 

E~TE~ to re f 11e custo~er record, CLOSE to auit without filing 

---.--------------------------------------------------------------._.--... -.. ---
1~3u5b7dq~t2345b7~~y123~S67PQ~123"So78q~1234Sb78q01234 Sb18q~12345b78q012345b78Q0 

111111111122?2~22222333~33333~4qqquUUaU4SSSSSS5SS5bbbbbbbbbb77777777778 

Key! e!"'8b 1 f!i·:H 

18-32 



CHAPTER 19 

DESIGNING AND SPECIFYING TSTS 

During the transaction design process, you tentatively divided your application processing into TSTs. Now you 
must add further design details to each TST, so that an application programmer can implement it. 

As you proceed with this detailed design, you may fmd that your tentative set of TSTs is inadequate. If this hap
pens, decide on a better set of TSTs, and correct the design to reflect the changes. Then continue with the detailed 
TST design procedure described in this chapter. 

This chapter discusses important considerations to remember during the detailed TST design: 

• TST operation 
• TST programming languages and their capabilities 
• TST performance 
• TST design documentation 
• TST coding standards and development techniques 

19.1 REVIEWING TST OPERATION 
Before we continue with TST design concepts, let's review: what is a TST and how does it operate? 

A TST is a program associated with a TST station. When an exchange message arrives at that station, the TST 
processes the exchange message. 

The sources of data available to the TST during this processing are shown in Figure 19-1. When it is activated, the 
TST is given two data structures: the exchange message and the corresponding transaction workspace. These two 
parameters are passed to the TST as subroutine parameters, and the TST is programmed to receive them in that 
form. 

During processing, the TST has access to these additional sources of data: 

• The TST can read or write application data files. 
• The TST can send report messages to output-only terminal stations, thus producing hard-copy reports. 
• The TST can deposit mailbox messages in a mailbox station or can retrieve mailbox messages from a 

mailbox station. 
• The TST can issue programmed calls to discover certain attributes of the transaction instance it is 

processing. 

As you can see, these sources (or destinations) can cross transaction instance boundaries. For example, a message 
deposited in a mailbox can be picked up by another TST processing a different transaction instance's exchange 
message; data read from application data fIles can be placed there by some other transaction instance. 

However, three data structures used by the TST are only accessible during the rest of the same transaction instance: 

• If the TST issues a response message, it affects subsequent processing of the transaction instance. 
• The exchange message, modified by the TST, passes to subsequent stations in the processing phase of the 

current exchange. 
• The transaction workspace, also modified by the TST, is passed to subsequent TSTs in the current and 

following exchanges of the transaction instance. 

19-1 



Designing and Specifying TSTs 

When a TST begins processing an exchange message, it has no "memory" of prior processing other than the contents 
of the transaction workspace. It behaves like a newly loaded and initiated program. As a result, TST designs fall 
into a style where each TST has a small system "perspective"; that is, it has a well delineated purpose and uses a 
small, formal set of inputs and outputs. Further, most TSTs have only small processing path variations in them; they 
apply substantially the same processing to each exchange message they process. 

Remember these TST characteristics as you design your own TSTs. Your fmished application will perform better if 
you use TST characteristics to advantage. 

19.2 CHOOSING A PROGRAMMING LANGUAGE 
TRAX provides two application programming languages: 

• COBOL 
• BASIC-PLUS-2 

Both of these languages can be used to program TSTs. You should choose the language that you and your applica
tion programmers are most familiar with. 

Once you have selected a programming language, study its reference manual. If you are familiar with the language, 
you can design TSTs that are easier to program and that perform well. 

If you or your application programmers are not familiar with either of the languages, refer to the Software Product 
DeSCriptions (SPDs) and language reference manuals for both COBOL and BASIC-PLUS-2. Choose the language that 
fits the background and experience of your programming staff. 

Although TRAX allows you to program TSTs in different languages for the same application, you should select a 
single language for your TSTs. Multiple languages make system documentation difficult, and application program
mers using different languages have difficulty communicating. 

19.3 DESIGNING FOR OPTIMUM TST PERFORMANCE 
The following aspects of a TST design are particularly important: 

• Making the best use of a programming language 
• Making the best use of me access methods 
• Minimizing access conflicts in shared files 
• Avoiding bottlenecks 

19.3.1 Programming Language Considerations 
There are two aspects of a language that you must consider when designing TSTs: 

1. Convenience depends on how easily a language expresses a concept or procedure. 
2. Efficiency depends on how quickly a language executes a set of statements, and the proportion of system 

resources the language requires to execute those statements. 

Before you design TSTs, identify those aspects of your chosen language that are convenient to use and efficient. Try 
to design TSTs so that your application programmers can use convenient and efficient language features. Try to 
avoid situations where application programmers have to use awkward or inefficient aspects of the language. 

If you are unsure of a language's convenience or efficiency after studying the Language Reference Manual and u.~er'.~ 
Guide, develop some test cases and analyze the results. 

19-2 



Designing and Specifying TSTs 

STATIONS 

EXCHANGE 
MESSAGE 

TST 

TRANSACTION 
WORKSPACE 

\YS:E:l~AL)' ~-----~G~3~~ I 
TRANSACTION ATTRIBUTES, 
TIME OF DAY, ETC. 

KEY: 

RESPONSE 
MESSAGE 

INPUTS FROM 
TRANSACTION 
INSTANCE 

EXCHANGE 
MESSAGE 

DATA USED OR 
GENERATED BY 
TST 

TRANSACTION 
WORKSPACE 

HARD COpy 
REPORTS VIA 

REPORT MESSAGES 

OUTPUTS USED 
LATER IN TRANSACTION 
INSTANCE 

Figure 19-1 Data Available to a TST 

19-3 



Designing and Specifying TSTs 

19.3.2 File Access Considerations 
The discussion in Section 19.3.1 also applies to me access techniques. Study RMS carefully. Determine which fue 
access operations you will be using and their relative cost in system overhead. 

The design of me access techniques is crucial to a commercial application. Poor performance in commercial applica
tions is frequently caused by a fue access bottleneck. Disk drives are a heavily used system resource, and you do not 
want to waste that resource with inefficient design techniques. 

Avoid the temptation to use the simplest RMS me structures and then ask your application programmers to imple
ment more complex fue structures based upon them. You will often lose more in performance than you gain. If 
you need an indexed me structure, use an RMS indexed file structure. 

An example helps to illustrate the importance of fue access design. Assume your application calls for an indexed 
file, and a transaction must retrieve two records from this fue. The records are neighbors in index sequence, except 
that there may be one record between them. How do you design this file access? 

A straightforward technique is to use two RMS READ operations, each specifying a key for one of the two records. 
This works - but RMS must search twice through the index structure to fmd two records that are close neighbors. 

A better technique is to locate the second record with one or two sequential read operations after the first record is 
found. This operation is more efficient than a second search through the me's index structure. 

19.3.3 Minimizing Access Conflicts in Shared Files 
To allow shared access to application data mes, TRAX TSTs lock specific records in those fues. Any TST that 
attempts to access a record locked by another transaction instance creates an access conflict. The TST is not given 
access until a TST processing the other transaction instance unlocks the record. 

A voiding repeated or lengthy access conflicts is important to application design. You must pay careful attention to 
the TSTs that access files as well as to the design of the mes themselves. 

19.3.3.1 The Duration of Record Locks - The duration of a record lock depends on other things besides the 
design of the TST. Files configured with staging or journaling prolong record locks until the end of each transaction 
instance, instead of releasing the records after they are unlocked or updated. This creates access conflict. 

Records are locked on behalf of the transaction instance the TST is processing, rather than for the TST itself. This 
means that record locks can remain in force for three different periods: 

1. Within a TST. Records can be locked by a TST and then unlocked by the same TST before it terminates 
execution. This record lock rarely impacts system performance, because there is minimal delay between 
the locking of the record and its release. Unless the TST becomes snared in an endless computational loop, 
nothing interrupts it and the record is unlocked in timely fashion. 

NOTE 
This does not apply if the file is staged or journaled; see 
the NOTE in item 3. 

2. Within an Exchange. Records can be locked by a TST and unlocked by another TST in the same 
exchange. This record lock has greater impact on system performance, because a delay is always possible 
in the startup of the second TST. This TST could have other exchange messages queued at its station, 
and several seconds (or minutes) could elapse until the exchange message is processed. Meanwhile, the 
record remains locked. 

194 



Designing and Specifying TSTs 

NOTE 
If the file is staged or journaled, the second TST may 
not unlock the record; it may remain locked until the 
end of the transaction instance. See the NOTE in 
item 3. 

3. Across Exchanges. Records can be locked by a TST, and then unlocked by another TST in a subsequent 
exchange. This situation has an extreme impact on system performance, because the record remains 
locked during the intervening exchanges. The time required to complete an exchange depends on how fast 
the user completes the form and transmits it to the system; in some situations, this could take many 
minutes or even hours. 

NOTE 
Delay is often introduced where the me is defined with 
staging or journaling options. If a TST updates and then 
attempts to unlock a record in such a file, the record 
remains locked until the end of the transaction instance. 
If this involves intervening conversational phases of other 
exchanges, serious access conflicts can occur because of 
lengthy delays. 

19.3 .3.2 Avoiding Access Conflicts - If your design locks a record across several exchanges and this extended 
lock results in unacceptable access conflict, there are several things you might do. 

1. Select a me defmition option which allows other TSTs to read a locked record but not lock or update it. 
This option allows some transactions to display record data while another updates it. See Section 21.l1. 

2. Add a field to the record and use this field as an application-level record lock or record status indicator. 
This design uses the RMS record locking facility to protect the record only while it is read and the 
status field changed and rewritten. At all other times, RMS considers the record to be unlocked. Each 
application program must then check the record status flag before using data from the record to see if 
some other application program is using the record. 

Although this technique is useful, watch for these pitfalls: 

• This method relies on application programmers to inspect the record status field each time a record 
is read. 

• This method increases the number of me accesses, since the record status byte must be updated. 
• This method can result in records appearing to be permanently locked should an application program 

abort without restoring the status indicator. 

3. Restructure the transaction or the fIle to avoid the difficulty. 

For instance, a common design technique uses an applicaton me with a control record in addition to its 
data records. In a customer fIle, this control record might contain the next available customer number. 
It would be consulted each time a new customer is added to the me and then incremented so that the 
next customer is aSSigned the next identification number. 

Although you may not have an access conflict problem with the customer records in this me, you would 
probably have a problem with the control record. This record is read, locked, and updated by each 
transaction instance that adds a new customer to the fIle. Each transaction instance must keep this 
record locked for the shortest possible time, because the time the record is locked has a significant effect 
on the throughput and response times of the application. 

19-5 



Designing and Specifying TSTs 

Consequently, your design should put the updating process (reading, locking, updating, unlocking) in one 
TST. This minimizes the time the control record is unavailable to other transaction instances. The 
updating of this control record must never be spread across two or more exchanges; and you should avoid 
spreading it across two TSTs in the same exchange whenever possible. 

Be sure to consider the effects of staging and journaling. If the me in the previous example were staged 
or journaled, one of two situations would arise: 

• If the control record update occurred in the last exchange, the situation would be marginally acceptable 
because the end of the transaction (the actual unlocking and updating) occurs soon after the reading 
and locking. 

• If there were intervening exchanges between the point where the control record was locked and the end 
of the transaction instance, you would have to redesign the file or the transaction. For example, the 
control record might be removed from the fIle and placed in a separate me which is neither staged nor 
journaled. 

193.4 Solutions to Possible Bottlenecks 
Every application has potential bottlenecks. Bottlenecks are places in the application where much processing is done 
by a relatively small group of processing entities. Work backs up at bottlenecks when the application is pushed to its 
performance limit. 

Bottlenecks have two detrimental effects on an application: 

1. Increased Response Time. Bottlenecks may degrade response times at the user's terminal. That is, the user 
waits an excessively long time during the execution of a transaction. 

2. Reduced Throughput. Bottlenecks may also reduce the total work the application can do in a given time 
period. That is, the application may not process work as fast as it is entered by users. 

As you design around possible bottlenecks, remember which symptom you are trying to avoid - degraded response 
times or reduced throughput. Focusing on one of these two symptoms is important, because most techniques for 
avoiding bottlenecks trade one symptom for the other. 

The rest of this section discusses several techniques that can be used to avoid bottlenecks: 

• Allowing multiple copies of TSTs 
• Adjusting TST priorities 
• Designing transactions with overlapped processing 
• Designing transactions with background processing 

19.3.4.1 Allowing Multiple Copies of TSTs - TRAX allows you to specify the number ofTST copies that can 
execute at the same time. You can set this number to one, so that arriving exchange messages process one by one. 
Or, you can set this parameter to a higher number and allow several exchange messages to process in parallel. 

With multiple TST copies, you can solve bottlenecks stemming from TST execution times; that is, bottlenecks that 
arise because a TST cannot process exchange messages fast enough. 

To use this technique effectively, you must be certain that: 

• TST execution speed is the problem and not other program-delaying factors such as ftle access conflicts. 
• Adequate resources are available to execute the copies of the TST without new conflicts such as conten

tion for main memory or the central processor (CPU). 

19-6 



Designing and Specifying TSTs 

The number of TST copies you allow will vary by the severity of the bottleneck and the system resources available. 
For a severe bottleneck, you might set the parameter to a high number; but if many multiple copies cause problems 
in the application, you might limit the parameter to a relatively small number - say two or four. 

19.3.4.2 Adjusting TST Priority - Another way of solving a TST bottleneck is to adjust the priority with which 
that TST is executed. 

Like the multiple-copies method (Section 19.3.4.1), this method is best for correcting bottlenecks stemming from 
TST execution speed. Increasing the priority of a TST usually does not expedite its fue accesses; the only effect 
of an increased priority is in contention for main memory and other TST startup resources. 

Remember: when you raise the priority of one TST, you do so at the expense of another. You cannot raise the 
throughput of your application by adjusting TST priorities; you can only adjust the relative throughput of various 
transactions. 

19.3.4.3 Designing Transactions with Overlapped Processing - Section 14.2 describes the technique of oyer
lapping the processing phase of one exchange and the conversational phase of the text. This technique often 
unproves the transaction response time seen by the user, but it cannot improve the throughput capability of the 
application as a whole. 

As you design the TSTs in those transactions that use overlapped processing, remember where they appear in the 
transaction: are they executed before the exchange response message is sent or during the overlapped processing 
after the message is sent? TSTs executing during the overlapped portion of an exchange must conform to special 
restrictions, notably the restriction against issuing a response message. 

Make sure that you understand the difference between sending a response message and terminating the TST. 
Once you understand the consequences of each, communicate this understanding to your application programmers. 

By using the overlapped processing technique, you can design transactions where the user's conversation proceeds 
ahead of the processing of his last input. But this overlap is limited to one conversational cycle. If the original 
exchange's processing is not fmished when the user's second set of input is ready, he cannot go to a third set of 
input. He must wait until the processing of the first input is complete and the processing of the second set begins. 

19.3.4.4 Designing Transactions with Background Processing - If one of your transactions demands extended 
overlap or user entry of all data without waiting for processing to begin or terminate, you must use a background. 
processing technique. 

This technique divides a transaction into two parts: 

1. An on-line transaction initiated by the user collects data and stores it temporarily. 
2. A special transaction or a series of one or more support environment programs processes the stored data 

later. 

One use of the background-processing technique spawns a separate transaction instance to process the data. To 
do this, you must design two transactions: 

1. In the on-line transaction that converses with the user to collect data, one TST issues a system call to 
spawn the second transaction. The collected data can be passed in the spawned exchange message, in 
a mailbox message, or in a me. 

2. The TSTs in the second transaction retrieve the data and then process it. These TSTs cannot converse 
with the user and are restricted to a "background" environment. 

19-7 



Designing and Specifying TSTs 

This technique for background processing affects system performance like the simpler overlap technique (Section 
19.3.4.3): the apparent response times are improved for the user, but the overall throughput of the application 
cannot be improved. 

Remember, too, that a design that allows the user to enter data faster than it can be processed seriously affects 
application performance during busy periods. Be sure that this artificially high processing load does not exceed your 
application's processing capacity and create performance problems greater than those you are trying to avoid. 

19.4 DOCUMENTING THE TST DESIGN 
To document a TST design, write a specification for the processing flow. Because of the modular nature of TSTs 
and the corresponding "perspective" (Section 19.1), you can describe processing for many TSTs in one or two 
paragraphs. Such a specification, together with the relevant transaction structure diagram, is all that is normally 
needed. 

Some detailed documentation of TST processing may be required. A customer inVOicing transaction, for example, 
may require precise accounting procedures and methods for interest calculation. In these situations, you will 
naturally supply formulas or detailed flowcharts of the relevant program segments. Remember: application 
programmers are more comfortable with concepts described in algorithms, rather than in the formal language of 
mathematics. 

For instance, if a TST must compute an average (or mean), you should not write documentation for the application 
programmer that looks like this: 

n 

L X 
i= I n 

M where, Xn is the nth list element and 
n M is the mean of the list Xl' ... , Xn 

It is better to communicate concepts like these in algorithms: 

"Determine the mean ( or average) of the list of account balances by computing the sum of the balances 
and then dividing the sum by the number of balances in the list." 

In general, you should not draw more than one uncrowded page of flowchart to describe any TST. (There are 
exceptions, of course, for detailed computational procedures.) Any TST requiring more than one page of flowchart 
should normally be divided into two or more TSTs, and the design of each transaction using that TST should be 
modified to reflect the change. 

Besides the processing flow documentation, you should give your application programmers documentation for 
relevant transaction data structures. This includes exchange messages, response messages, other messages, and the 
transaction workspace. Also include record layouts for each data fIle record accessed. 

Be sure the application programmer knows what to do with these data structure formats. Be sure he knows when to 
use working storage within his program for the storage of temporary results and when to place those results in the 
transaction workspace instead. And be sure he knows which structures are initialized to known values and which 
have unspecified contents when his TST begins execution. 

Be careful to document situations where the TST alters data in the exchange message or transaction workspace for 
processing at other stations. These data modifications will be important for proper operation of the transaction and 
must be implemented to agree with your design. 

19-8 



Designing and Specifying TSTs 

To minimize confusion, you should avoid changes to exchange messages except where necessary. Use the trans
action workspace for communication between processing stations, not the exchange message. Then your application 
programmers will access the exchange message in a read-only manner, and some application errors might be avoided. 

Finally, include a TST specification sheet as a cover sheet for each TST documentation package (Figure 19-2). This 
sheet shows the TST name, the associated TST station, and other parameters such as the maximum number of exe
cuting copies and the execution priority. The application programmer uses this information when the TST and its 
corresponding station are installed in the transaction processor. 

19.5 CODING STANDARDS AND DEVELOPMENT TECHNIQUES 
As the application designer, with responsibility for the successful implementation of an application, you should do 
more than generate functional designs for each of the application TSTs. Take additional steps to ensure that the 
T8Ts can be implemented quickly, easily, and accurately. You can do this by suggesting coding standards and 
development techniques in your TST design documentation. 

Coding standards are rules of style for the programmer to use when writing programs. There are nearly infinite ways 
to write a program. But only a few result in programs that are clear, easy to understand, and operationally correct. 

Clear expression is of major importance in a commercial application program. Business requirements change fre
quently, often faster than a data processing system can be changed. An obscure program takes more time and effort 
to modify; and there is less chance that the modification will work properly. 

Coding standards for your application programmers might include the following topics: 

• Conventions for naming data items 
• Guidelines for commenting programs 
• Guidelines for segmenting programs into elements like sections, paragraphs, and subroutines 
• Language features that should not be used 
• Guidelines for formatting program source text, like indentation and use of tabs 
• Guidelines for the treatment of complex conditional statements such as nested IF-THEN-ELSE statements 
• Hints for obtaining the maximum execution efficiency in the selected language 

Carefully devised coding standards go hand in hand with optimum development techniques. The on-line debugging 
features ofBASIC-PLUS-2, for example, are most productive when your programmers have coded their programs in 
a clear and straightforward style'. 

Development techniques you may want to suggest include: 

• Developing program segments or subroutines which can be included in the source code of several TSTs. 
(In COBOL, you can do this with the COpy statement or by using the text editor to include the selected 
source text. In BASIC-PLUS-2, you can use the APPEND command or the text editor.) This technique is 
particularly useful for transaction data structures (exchange message, response message, and transaction 
workspace formats). 

• Creating a "skeleton" program containing program overhead items. This is often useful when there are 
several TSTs superficially similar but with somewhat different processing procedures. This includes major 
headings for program sections, source code normally the same in all programs, and perhaps the defmitions 
of working storage variables and record formats for files. Each time a programmer begins work on a new 
TST, he can take a copy of this "skeleton" and then fill in the segments which are unique to his program. 

Used appropriately, these techniques can significantly improve programmer productivity. They are most efficient, 
of course, when they are used with sensible coding standards. 

19-9 



TST Name: 

Input Object Modules: 

Language: 

Is there a resident OTS for the language? 

Debug Mode? 

TST Name: 

Input Object Modules: 

Language? 

Is there a resident OTS for the language? 

Debug Mode? 

TST Name: 

Input Object Modules: 

Language: 

Is there a resident OTS for the language? 

Debug Mode? 

Designing and Specifying TSTs 

TST SPECIFICATION SHEET 

L...-.L..---L-...1-1 ---I.I---,-~I ~ i 
~ 

'----'--''-----I1:[L----J1 ,-------,------1,1 1 1 IJ 1 1 1 1 1 1 I. ITT]; IT] 

L--L-...I-----,I:[I I.UlJJ 1 1 I I I 1 I.[TJ"J; IT] 

D -COBOL 

o -BASIC-PLUS-2 

o -MACRO-" 

D -YES 

D -NO 

D -No 

D - Transaction Processor (Device: 1 1 1 1 :) 
o - Standalone (Initializing Module: I I I I I 

L.......L-I --,-1--11,---,--1 ...L.--JI ( i 
~ 

'----'--''-----II:[L-JI L--.l....-JI, UlJ J 1 I I 1 I I I. [TJ"J; IT] 
L-IL-J'---II:[ 1 I, UlJ J I I I I 1 I I. [TJ"J; IT] 

o -COBOL 

o - BASIC-PLUS-2 

D - MACRO-11 

o -YES 

o -NO 

D -No 

o -Transaction Processor (Device: 1 1 1 1 :) 

o -Standalone (Initializing Module: 1 1 I 1 

L...-.L..I--II,--,-I ---,I~--,I ~ i 
~ 

L-IL-J-----,I: [L--J1 ,--,---,I,UlJ J I I I 1 I I I. [TJ"J; IT] 
L--.I'-----''-----II:[I I,UlJJI I 1 1 1 I I.[TJ"J;IT] 

D -COBOL 

D - BASIC-PLUS-2 

0" - MACRO-" 

o -YES 

D -NO 

o -No 

D - Transaction Processor (Device: UTI :) 
D - Standalone (Initializing Module: 1 I I I I 

Figure 19-2 TST Specification Sheet 

19-10 

I) 



CHAPTER 20 

TST DESIGN EXAMPLES 

Three examples of TST design are presented in this chapter. Each example includes the documentation an applica
tion designer would supply to the application programmer as well as the source code that the programmer would 
generate. The source code is included so you can compare the design specifications with the finished TST. 

The three TSTs in these examples are from the change customer transaction in the TRAX Sample Application. 
This transaction's forms were discussed in Chapter 18. The transaction structure diagram for this transaction is 
shown in Figure 18-1 ; it is normally included in the documentation for the programmer, although it is not reproduced 
in this chapter. 

20.1 THE RDCUST TST 

NOTE 
The transaction structure diagram (Figure 18-1) calls for 
records to be locked across exchange boundaries. This"is 
acceptable because in this application conflicts over cus
tomer records are unlikely. In a complex application, a 
more sophisticated approach to record sharing is neces
sary. 

Together with the transaction structure diagram (Figure 18-1) the following figures comprise the documentation 
needed by an application programmer to write the RDCUST TST. 

• RDCUST TST Specification Sheet 
• Description of RDCUST TST Purpose and Processing 
• Exchange Message Format 
• REPLY Message Format 
• PRCEED Message Format 
• Customer Record Format 

The finished TST is shown on pages 20-3 through 20-11. 

20-1 

Figure 20-1 
Figure 20-2 
Figure 18-2 
Figure 18-3 
Figure 18.4-
Figure 22-1 



TST Design Examples 

TST SPEC I FICATION SHEET 

TST Name: IRlolclulslTIII( I 
~ 

Input Object Modules: I s I vi 1:[[ITfl.[ill]]J] I RI 01 ci ul sl T 1.C!TIJK];o::::J 

rrn:[rrn.rrn]I I 1 1 I I I.ITl""];o::::J 
Language: [R] - COBOL 

o - BASIC-PLUS-2 

o - MACRO-ll 

Is there a resident OTS for the language? [R] - YES 

D -NO 

Debug Mode? o -No 

D - Transaction Processor (Device: I 1 I 1 :) 

D - Standalone (Initializing Module: I 1 1 1 I 

Figure 20-1 READ TST Specification Sheet 

The RDCUST TST is the only IST in the first exchange of the change 

customer transaction. I t receives the identification number of a 
customer via the exchange message and attempts to read the corre

sponding record from the customer file. 

I f the read operation is successful, the TSI formats the data into 
punctuated display format (that is, ready for display on the terminal 

screen) and sends it back in a PRCEED response message. 

I f the read operation is not successful, the ISI returns an error 
message in a REPLY response message. This message is sent as reply 1. 

Figure 20-2 Description of RDCUST IST Purpose and Processing 

20-2 



TST Design Examples 

C~D!RDCUST,~OCUST=~[C0ST/T~T 

I n E "I TIl 9 ~ 1 2 1 

0"'''~1 
0t"0~2 

0~"'('I3 
(21 Pl0 1t14 
0P'P1I'J5 
0!'!00b 
~f,1007 

0['10218 
!iJtII00q 
0~01~ 

0"'011 
01'1~12 
0P1e1! 
0P1014 
"0Q!lS 
011101b 
0{11ra17 
til{ll018 
0t1101q 
0P1020 
0P1Q!21 
0P!022 
0P1023 
0Q1024 
0"'025 
0P102& 
00,027 
QlQf028 

0t1102q 
0P1~n0 

00031 
0{11Q\32 
0tA 033 
01'1034 
0P1035 
0P!03& 
0P1037 
00038 
2Ipt03Q 
00040 

I r~ t. '. 'T I FIe A TIe; , ~ .) I V I 5 lOr •• 
*************-********************************************** 
* * * T S TOE S C ~ I P T ION * 
* * 
************t*********************************************** 
* * TST NA~EI ~DCUST 

* * TR~~SACTIO~: CHGCUS - C~.~GE CUSTO~ER RECORD 

* * FU~CTIO~: THIS TST ACCEPTS A CUSTO~ER NUMBER SUPPLIED 
* BY THE TERMINAL OPERATOR AND USES IT TO FETCH 
* DESIRED RECORD FROM THE CUSTO~ER MASTER FILE, 
* ~HEN IT FINDS IT, THE DATA IS fORMATTED AND SENT 
* TO THE SECUND EXCHANGE BY USE OF A PROCEED 
• ~~ESSAGE. 

* * FILES: CUSTOMER MASTER FILE "CUSTO~.DAT" 

* * INPUT FOR~I CHCUSl - SUPPLY CUSTOMER NUMBER TO FETCH RECORD 

* * CUTPUT FOR~: CHCUS2 - DISPLAY AND EDIT CUSTOMER DATA. 

* 
* 
* 
************************************************************ 

SRCIROCU51,CRL,7 13-JUL-78 12110.40 PAGE 002 

1************ •• *************************************** ****** 
* * * THE * 
* 
* 
* 
* 

IDE ~ T I F I C • T ION D I v I S I 0 til * 
* 
* 
* ************************************************************ 

PROG~A~-IO. TSTEP. 
DATE-CO~PILEO. TODAY. 

20-3 



(;0"'01. 3,05 

0010'-1 
0Pl0Q2 

0Ot 0"3 
0910'-4 
tlIt'l0Q5 
0£1104& 
0~041 
0P1048 
11J0I04~ 
0 P1 050 
0{)1051 
0f1'052 
0A 053 
0il'0S4 
0P1055 
0f111050 
a0P57 
0P058 
0P10S9 
0"'000 
001001 
0P!002 
00003 
IPlloG 
21"005 
0,00b 
00007 
1001>8 
IPJ01>9 
10170 
""'071 
09J072 

TST Design Examples 

13-JUL-76 12.10140 PAGE 003 

1*********************************************************** 
* * * THe. * 
* * 
* 
* 
* 

E ~ v I RON ~ E N T D I V I S ION * 
* 
* 

************************************************************ 

13-Ji.JL·7~ • 
ENVTRGNMENT DIVISION, 
CO~FIGURATIO~ SECTION. 

SCuRCE-Cu~PuTER. PDP-ll, 
G8JECT-CQ~PUTER. POP-l1. 

************************************************************ 
* * 
* 
* 

I ~ PUT • 0 U T ~ U T SEC T ION * 
* 

************************************************************ 

I~FUT-OUTPuT SECTION. 

F ll.E-CONTROL. 

SELECT CUSTOM ASSIGN TO "CUSTOM,DAT" 
O~GA~IZ.TIO~ IS INDEXED 
ACCESS MODE IS DY~AMIC 
RECORD KEY IS CuSTOMER-NUMBER 
ALTER~ATE RECORD KEY IS CUSTOMER.N~ME WITH OUPLIC~TES 
FILE STATUS IS CUSTOMER-FILE-STATUS. 

20-4 



~PlCo173 

e~~~H4 

~r"l1'75 
~""~7b 
0(A~77 
1')1'11078 
0c"e 7q 
00'08e 
0t"281 
0r"P.82 
00'083 
0(:1108" 
~We85 

0"'08b 
2IPlP87 
0P1088 
0v0S9 
0(:110q~ 

l'I"'0ql 
0l'10Q2 
0(1!0q3 
0P10q4 
,,(II0QS 
0fi!0Q6 
000Q7 
0P1"Q8 
e?0Qq 
""'100 
0"'101 
0(1!UJ2 
0i1l03 
Pt.'l104 
IP.105 
IPl106 
001107 
11lI108 
""'10q 
IP.t110 
''''111 
IPl112 
efl113 
112!114 
10115 
0111116 
10117 
1"118 
10119 
101il 
119121 
1"122 
,Ptil 
''''124 
1"125 
'e126 
1(lJ127 
IfJ128 
119IZQ 
1"'130 

TST Design Examples 

SPC: IoI C(UST.CrL1 7 13-JUL-78 12:10140 PAGE ~04 

1*********** ••• *************************************** ****** 
* * 
* 
* 
* 
* 
* 

T ~ E 

D I v 151 0 N 

* 
* 
* 
* 
* ************************************************************ 

OATA ClvISIO". 

************************************************************ 
* * 
* 
* 

F I L E 5 E C T ION * 
* ************************************************************ 

FILE SE.CTIC~:. 

FD CUS1U~ 

LbBEL RECO~DS ARE STANDA~D 
v~LUE OF 10 IS CUSTOM-CHANNEL-NU~8ER 
DATA ~~CCRD IS CUSTOMER-FILE-RECORD. 

01 CUSTOMER-FILE-RECQkD. 

~3 CUSTOMER~NUMeER 

~3 CUSTO~ER-NAME. 

?3 AOCRESS-LINE-l 
~3 600RESS-LINE-2 
03 ADDRESS-LINE-3 
~3 ADDRESS-ZIP-CODE 
23 TELEPHONE-~UMBER 
03 ATTENTIO~-LINE 
03 CREDIT-LIMIT-A~OUNT 
~3 CURRENT-BALANCE 
Vr3 PURCHASES-yTD 
~3 NEXT-ORDER-SEQUENCE-NUMBER 
~3 NEXT-PAYMENT-SEQUE~CE-NUMBER 

PIC X(o), 
PIC X(30). 
PIC X(]0). 
PIC X(30). 
PIC X(l0l. 
PIC Q(5). 
PIC 'eull. 
PIC X(Z0). 
PIC geHUV9', 
PIC '(10)V9'. 
PIC QC1I)V9'. 
PIC 9(4), 
PIC Q(4). 

************************************************************ 
* * * w 0 R KIN G - S TOR A ~ ESE C T ION * 
* * ************************************************************ 

WORKING-STORAGE SECTION. 

************************************************************ 
* F I L E C HAN N E ~ S * 
************************************************************ 

01 CUSTOM_CHANNEL-NUMBER PIC XC11l 
VALUE IS "CUSTO~/C~13", 

20-5 



0!i1131 
e~132 
0~133 
0fJ113" 
011'135 
0t1'13~ 

0 91 137 
0(,'1138 
011'13Q 
0P11"0 
0~1"1 
0Q11UZ 
0~143 

0911"4 
0tl1145 
0~146 
0f11147 
0",148 
0Cl1 1 I.&q 
0~150 
0f1'15t 
0P1152 
0~153 

"PlI5" 
011tl55 
0(,'1156 
0~157 
011'158 
0(,'1159 
0P1160 
00!1bl 
0P162 
"(,'1163 
0"'164 
0P1165 
0Q111b6 
0A167 
0(,'1168 
GlJfII169 
0A170 

TST Design Examples 

S~C:KCC!)~T.C2LJl 

************************************************************ 
* F I L EST A T J 5 N A M E 5 * 
************************************************************ 
~1 FrLE-STAT05-~O~O PIC xx. 

'II CI.'ST(;~ER-FILE-STATl;S PIC XX. 

***************.*********.********************************** 
* M E 5 5 AGE A R GUM E N T S * 
************************************************************ 

01 8UFFER-SIlt PIC 9999 COMP. 

~3 STATUS-~ORO-l 
03 STATUS·~GRr-2 

~3 RM-CUSTO~ER-~UMBER 
~3 R~-CUSTOME~-NAME 
~3 RM-AOORESS-LINE-l 
~3 RM-ADDRESS-LINE-2 
03 R~-ADORESS-LINE-3 
03 RM-AQORESS-ZIP.CODE 
e3 RM-TELEPHONE-NUMBER 
~3 ~~-ATTENTION_LINE 

~3 ~M-CREOIT-LIMIT-AMOUNT 

~1 REPLY-MESSAGE-aUFFER. 
~3 ~EPLV.MESSAGE·TEXT 
~3 REPLY-FILLER 

VALUE IS "F.l. StatuI ~o~dl ". 
03 R~B-FSIi 
~3 ~M5-FILE·NA~E 

20-6 

PIC S9C4) COMP. 
PIC 59(4) COMP. 

PIC 59(4) COMP. 

PIC X('). 
PIC X(30). 
PIC X(30). 
PIC X(30). 
PIC X(l0). 
PIC 9(5). 
PIC 9(10). 
PIC X(20). 

PIC z,ZZZ,ZZZ.9', 

PIC X(80). 
PIC X(18) 

PIC XCZ). 
PIC X(60). 



0""171 
0r172 
0P'173 
tlj rJI t14 
~:q75 

"tA17b 
0"'177 
0C~ 1 7 e 
0V'17Q 
0tJ1161l! 
0f.11t81 
0"'182 
0~l83 
0~181J 

0(,11165 
0t1'16& 
0P167 
0Pl88 
0(,1116Q 
0"'190 
0P1191 
0~lQ2 
0t11tq] 
0~194 
0(11195 
QJPlt9& 
0P1lQ7 
0P198 
0(111Qq 
QJ",200 
00201 
0"202 
0(11203 
00204 
0"205 
0P20& 
0"201 
00208 
0021q 
10210 
1"211 
1"212 
1"213 
10214 
1"215 
118216 
11217 
1"218 
11121' 
111221 
111221 
10222 
111223 
111224 
1"225 
11I2Z6 
111227 
IfIIZ28 

TST Design Examples 

1*************.****.* •• ****.************************** ****** 
* * 
* 
* 

L I ~. "" .\ G E 5 E C T ION * 
* ********************.******* •••• **************************** 

***** M E. S S ~ G E 

***** w 0 ~ K 5 PAC E 

~2 ~S-CUSTOME~-FILE-RECORO. 

~3 ~S-CUSTOMER-NUM8ER 
e,] ~S-CUSTOMER-NAME 
~3 ~S-AOORE5S-LINE-l 
~3 ~S-ADORESS-LINE-2 
P3 wS-40DRESS-LINE-3 
~3 ~S-ADORE5S-ZIP-COOE 
~3 ~S-TELEP~O~E-NUMBER 
~3 wS-ATTENTION-LINE 
~3 ~S-CREDIT-LIMIT-AMOUNT 
03 wS-CURRENT-8ALANCE 
03 wS-PURCHASES-YTD 
~3 wS-NEXT-DROER-SEQUENCE-NUM 
03 wS-NEXr-PAYMENT-SEQUENCE-NUM 

***** 

PIC XCbl, 

***** 

PIC X(6), 
PIC X(38), 
PIC X(30), 
PIC XC]0;, 
PIC XC30', 
PIC q(5), 
PIC 'cun, 
PIC X(20), 
PIC Q(11)y,q, 
PIC 'C1IlY". 
PIC 'C1IlY". 
PIC '(4), 
PIC '(4), 

************************************************************ 
* * * THE * 
* 
* 
* 

PRO CEO U R E D I V I S ION * 
* 
* ************************************************************ 

PROCEDURE DIVISION USING EXCHANGE-MESSAGE, TRANSACTION-WORKIPACE. 

DECL.ARATIVES. 
************************************************************* * 1-0 ERROR ST4TUS RETURN SECTION * 
* * * TMIS SECTIO~ IS I~VOKED A~TER THE OPERATING SYSTEM * 
* HAS DETECTED SOME FORM OF 1-0 EAROR. THE ~ILE-STATUI * 
* WORO IS EXAMINED BY THE ROUTINE, 4ND AN APPROPRIATE * 
* ERROR MESSAGE IS FORMATTED AND PL4CED INTO THE REPLY * 
* MESSAGE BUFFER, THE GO TO SELECTS THE DESIRED ACTION * 
* TMAT FOLLOwS, TwO CASES CU~RENTLY EXIST, THE REPLY * 

20-7 



CO~OL 3.QlS 

0r--229 
0t1!230 
0~23t 
0(1,232 
0{11233 
0(;'23" 
0P235 
0~23b 
0~237 
0P1238 
QlrJl239 
0ft1!240 
0P1241 
0~242 
0""243 
QlQJ24U 
0~245 
0r1!24& 
0~247 
0e248 
0{11249 
0~250 
0M251 
0~252 
0P1253 
0P125u 
00255 
0"25b 
0(11251 
0(11258 
IQJ259 
0fi1260 
00261 
0P1262 
0(11263 
0P26U 
002b5 
0(112bb 
00261 
0(11268 
0"269 
0(11210 
0P1271 
121"'272 
1210273 
1210274 
12IP1275 
1210276 
0(11277 
0P278 
05'1279 
0P1280 
00281 
12IP.'282 
0P1283 
(/JPl284 
12IP1285 
0"'286 

TST Design Examples 

S~C:;:"DClJ5T.CP.LJ7 13-JUL-78 1211~14~ PAGE 007 

* MESSAGE ~~IC~ RtSTART5 THE C~RRENT EXCH.~GE AND S~OWS • 
* T~E E~RO~EOJS OATA UN T~E OPERATOR'S SCREE~, AND TME • 
* AHr~T ~EPLV ~ESSAGE ~HICM CAUSES THE CURRENT TRANSACT-. 
* IIJ~I TO tlE AR.ORTED wHEt .. A SEVERE ERROR IS ENCOUNTERED. 
* '~D ~EC0VERV IS I~~OSSI8LE. * 
************************************************************* 

I-O-EP~O~ SECTIO~. 
uSE AFTER STA~OA~O ERROR PROCEDURE ON CUSTOM, 

C~ECK.FILE-STATU5-CODE. 

~"VE CUSTG~E~-FILE-STATUS TO FILE-STATUS-WORD,RMS-FSW. 
~OvE ~ Logical File Name. CUSTOM -CH3" TO 
~"'8·FILf-NAMt:.. 

IF FILE-STATUS-~O~D IS EQUAL TO "10" 
~CvE ~Reec~ed E"d-of-Fi'e" 
TO REPLY-MESSAGE-TEXT 
GO TO SENO-REPLY-~ESSAGE. 

IF FILE-ST.TuS-~ORD IS EQUAL TO "21" 
~CVE "Primary Key SeQuence Error on WRITE" 
TO REPLY-MESSAGE-TEXT 
GO TO SENO-ABO~T-MESSAGE. 

IF FILE-STATUS·~ORD IS EQUAL TO "22" 
MOvE "Duplicate Key Error" 
TO REP~Y.MESSAGE-TEXT 
GO TO SENO-A80~T.MESSAGE. 

IF FILE-STATUS-~ORD IS EQUA~ TO "23" 
~OvE "No Record Exi.t. u"der that Key" 
TO ~EPLY-MESSAGE-TEXT 
GO TO SEND-REPLY-MESSAGE. 

IF FILE-STATUS-~ORO IS EQUAL TO "2q" 
MOVE "Boundary Error on Write Statement" 
TO REPLY-MESS4GE-TEXT 
GO TO SE~D-ABORT-MESSAGE. 

IF FILE-STATUS-WORD IS EQUAL TO "30" 
~O~E "Un.pecified 1/0 Er~or" 
TO REPLV-MESSAGE-TEXT 
GO TO SE~D-ABORT.MESSjGE. 

IF FILE-STATUS-WORD IS EQUAL TO "34" 
MOvE "Per~anent Boundary E~~or on WRITE St.teme~t· 
TO REPLY-MESSAGE-TEXT 
GO TO SENO-ABORT-MESSAGE. 

IF FILE-STATUS-wORO IS EQUAL TO "91" 
~OvE "File locked by enother ta.k" 
TO REPLY.M~SSAGE-TEXT 
GO TO SEND-REPLY-MESSAGE. 

IF FILE·STATUS-~ORO IS EQUAL TO "92" 
~ovE "T~e Record you wa"ted 1. 

" locked bY anot~er user. You may pre •• C~OSE to •• it, 

20-8 



lOFlOL 3,05 

A~287 
l!H~288 

0 r"28Q 
~~2q0 

A~291 
~~292 
0~2q3 

0li1294 
0"'295 
0~296 
0rJl 297 
0~298 

0"'299 
0~300 
0~301 
0~3912 
0t1.'303 
0V130" 
09!305 
0!}1306 
0~301 
~~3V18 
0P1309 
01:1131'11 
0"'311 
0'!1312 
0111313 
0031" 
0"'31.5 
0P'316 
0"'311 
""318 
0(>11319 
0(1)320 
0"'321 
0"'322 
0P1323 
IPl32~ 

""'325 
IPl326 
10327 
01'1328 
IPl329 
1"'330 
0"331 
1"332 
QU'333 
110334 
""'335 
IIP133b 
,o331 
110338 
'Pl339 
110340 
1191341 
1111'342 
110343 
111'1344 

C080L 3.05 

10345 
8034b 
10347 
10348 

TST DeSign Examples 

" or you ~~~ ~~1t ~"O cress E~TER to try .g~4~." 
TC WE?Ly·M~SSAGE-~uFFF~. 

(, ,; T [j S t. ·'1 fI- R t p L. y - i'" r: S S A r~ t • 

If. FILE.-ST4TuS-r!)!:(['I IS tGLJAL TO "Q3" 
0uvE ~RE~~ITl or CELETE attemoteo ~it~out ~rio~ 
"~~~~ be1~g ~erformea." 
TO wEPLY.MtSSAGE-TEXT 
GO TO SE~Q·REPLY-~ESS.GE. 

IF FtLE·S1AluS-~OR0 IS E~UAL TO "94" 
~0VE "Impro~er ooeretio~ attempted" 
TO ~~PLY-M.tSSAGE-TEXT 
bO TC SE~D-A60~T-~ESS~GE. 

IF· FILr-~TAlI}S-"'uR() IS I:.~WAL TO "95" 
.q,) v E "A 1 1 0 cat i 0 r"I F ail U f" e • r-.o IP • ceo n de vic e tt 
TO ~~PLY·~~SSAGE.TtXT 
~O TJ S~~O-Ati~RT-~ESSAGE. 

IF Fli..E.-~T.ioTI.,.'S-I/CPC' IS E~UAL TU "qo" 
~ov~ "~O huffe~ space - SAME AREA .1~e.dv in Ule" 
TO RtPLY-~ESSAGE-TEXT 
GO TO SE~O-AeO~T-HESSjGE. 

IF FILE-STATuS-wORD IS E~UAL TO "97" 
~C~E "Ur"leble to find file r"lamedl" 
TO REPLY-MESSAGE-TEXT 
GO TO SE~D-A80RT-MESSAGE. 

IF FILE-STATuS-~ORD IS EQUAL TO "Q8" 
~OvE "fr~or ~hile attempting to CLOSE fil •• " 
TO REPLY_MESSAGE-TEXT 
GO TO SE~D-ABORT.~ESSAGE. 

MOVE "UNKNOWN 1-0 ERHOR" TO REPLY-MESS AGE-TEXT 
~OVE FILE-STATUS-WORD TO RMS-FSw. 
GO TO SENO-ABORT.~ESSAGE. 

SE~D-REPLY.MESSAGE. 

MOVE lb~ TO BUFF~R-SIZE 
MOVE 2 TO REPLY-NU~8ER 
CALL ~REPLY" USING 

REPLY-MESSAGE-SUFFER, 
BUFFER-SIZE, 
REPLY-NUMBEP, 
STATUS-wORDS, 

, GO TO E~u-ERROR.SECTION. 

~OVE 16e TO 8UFFER-SIZE 
~OvE 2 TO ~EPLY-NUMBER 
C~LL "ABORT" USING 

REPLY-MESSAGE-aUFFER 
BUFFER-SIZE 
REPLY-NUM8ER 

SRCIW.DCUST.CBL,7 13-JuL-18 1211~lq~ PAGE 009 

ENO·ER~OR-SECTION. 
END OECLARATIVES. 

20-9 



"~3I.&q 
0P135~ 
0{.1351 
~Ql352 

0""353 
09'351.& 
0!}1355 
0fl135b 
0P13'57 
0[A35~ 

09'359 
e"'360 
0""361 
0"'362 
0"'363 
0P364 
0P365 
0Q136b 
0P1367 
0"'368 
""'369 
01i'1370 
0P1371 
0",372 
0~373 
00374 
0",375 
00376 
00371 
0"'378 
0P1379 
00380 
IPl381 
00382 
0P1383 
0A384 
0P1385 
0P1386 
00387 
00388 
00389 
00390 
00391 
0"'392 
0(11393 
0P1]94 
00395 
ra~396 
1~397 
0"'398 
00399 
0040" 
00401 
0"'402 
0P1403 
0P1404 
00405 
0"406 

TST Design Examples 

13-JUL-78 12110140 PAGE 010 

,*********************************************************** 
* * * MAIS PRUCESSIN~ ROUTINE * 
* * 
************************************************************ 
~41~-TST-ROUTINE SECTION. 

UPE"~ It..;rJuT CUSTO~, 
IF CUSTOME~.FI~E.STATUS IS GREATE~ THAN "09" 
GO TO E~D-PROGRA~. 

IF E~-CUSTOMEP.NuMeE~ IS > "000000" 
GO TO KEY-OK. 

KEy-eK. 

~OVE lb~ TO BUFFER-SIZE, 
MOVE "~ou SDec1~ied I" I"vilid Cu.tom.~ 10 ." 
TO REPLY-MESSAGE-8UFFER, 
~ovE 2 TC REPLY-NUMBER, 
CALL "R~PLY" USING REPLY-MESS AGE-BUFFER, 

BUFFER-SIZE, 
REPLY-NUMBER, 

STATUS-wORDS, 
GO TO END-PROGRAM. 

~OVE E~-CUSTOMER-NUM8EA TO CUSTOMER-NUMBER. 

READ WITH LOCK CUSTOM ~ECORO. 
IF CUSTO~ER-FILE·STATUS IS EQUAL TO "92" AND 
FILE-STATUS-wORD IS EQUAL TO "00" GO TO LOCKED-RECORD. 
IF CUSTO~ER·FILE-STATUS IS GREATER THAN "09" 
GO TO ENO-PROGRAh. 

MOVE CUSTOMER-FILE-RECO~D TO WS-CUSTOMER-FILE-RECORD. 

MOVE CUSTOMER-NUMBER TO RM-CUSTO~ER-NUMBER, 
MOVE CUSTOMER-NAME TO RM-CUSTOMER-NAME. 
~OVE ADORESS-LINE-1 TO RM-AODRESS-LINE-l, 
MOVE AOORESS-LINE-2 TO RM.ADO~ESS-LINE-2, 
MOvE ADORESS-LINE-3 TO ~M-ADD~ESS-LINE-3, 
~OVE ADO~ESS.ZIP-COOE TO RM_AOORESS-ZIP-CODE. 
MOVE TELEPHONE-NUMBER TO RM-TELEPHONE-NUMBER, 
MOVE ATTENTION-LINE TO RM-ATTENTION-LINE. 
MOVE CREDIT-LIMIT-AMOUNT TO R~-CREDIT-LIMIT-AMOUNT, 

MOVE 173 TO BUFFER-SIlE, 
CALL "P~CEED" uSING P~OCEED-MESSAGE-BUFFER, 

BUFFER-SIZE, 
STATUS-wORDS. 

LOCKEO-RECORD. 

MOVE "T~e Reco~d yOU wa"ted il 

20-10 



to.-OL 3.05 

"'''407 
0111408 
Ifl40C, 
1111410 
1"411 
0"412 
1111413 
1"414 
I'141S 
1'1416 
1"417 
1"418 
11II41q 

tOeOL 3.~5 

1"420 
1111421 
00422 
0111423 
0111424 
11l'4iS 
0P14i6 
0P14i7 
0P4i8 
0P142Q 
0P1430 

TST Design Examples 

SRCIROCUST,CRL.7 

" loCked bv ."oth.r u'er. You ~IV Dr ••• CLOSE to •• ft, 
- " or YOU ~IV ~I.t and ~re •• ENTER to try IQlt",-

TO REPLY-MESS'GE.BUFFE~, 

MOVE 160 TO BUFFER-SIZE. 
MOVE 2 TO REPLY-NUMBER. 

CALL "REPLY" USI~G 
REPLY-MESSAGE-BUFFER, 
BUFFER-SIZE, 
REPLY-NUMBER, 
STATUS-wORDS. 

SRCIRDCUST.CBl.,7 13-JUL-78 lille'40 PAGE 012 

1*********************************************************** 
* * * END PRO G ~ A M SEC T ION * 
* * ************************************************************ 

EXIT P~OGRAI"I. 

20-11 



TST Design Examples 

20.2 THE V ALIDC TST 
Together with the transaction structure diagram (Figure 18-1), the following figures comprise the documentation 
needed by an application programmer to write the VALIDC TST. 

• V ALIDC TST Specification Sheet 
• Description of V ALIDC TST Purpose and Processing 
• Exchange Message Format 
• REPLY Message Format 
• Transaction Workspace Format 

Figure 20-3 
Figure 20-4 
Figure 18-5 
Figure 18-6 
Figure 20-5 

The finished TST is shown on pages 20-14 through 20-19. 

TST SPECIFICATION SHEET 

TST Name: IvIAILlllolc'~ i 
..-"'-.... 

Islvl 1:[,--1 --'----....I...'---lll,[]I[@]]l vIAILlll olcI.ITISTK];CD Input Object Modules: 

I I I 1:[1 1 I.rr:o]1 I I I I I I.[IJ~;CD 

Language: [g] - COBOL 

0 - BASIC-PLUS-2 

0 - MACRO-ll 

Is there a resident OTS for the language? [K] - YES 

Debug Mode? 

D - NO 

[8] -No 

o - Transaction Processor (Device: I I I I:) 
o -Standalone (Initializing Module: I I I , I 

Figure 20-3 VALl DC TST Specification Sheet 

The V ALIDC TST is the first of two TSTs in the second exchange of 
the change customer transaction. It receives the updated customer data 
via the exchange message and checks the data entered by the user for 
consistency and proper forma t. During this process, the TST moves the 
data from its punctuated form in the exchange message to its non

punctuated fonn in the transaction workspace. From there, the second 
TST writes it back into the file. 

If there is a format error in the user data, the V ALIOC TST issues a 

REPLY response message containing an error message. This message is 

sent as reply 1. The VALIDC TST then deletes the second TST from 
the exchange routing list (assuring that incorrect data is not written 
into the file) and tenninates. 

Figure 20-4 Description of V ALIDC TST Purpose and Processing 

20-12 

I) 



Transaction Processor 

Transaction Name 

TST Design Examples 

TRANSACTION WORKSPACE SPECIFICATION SHEET 

IslAIMI piLI E I 
IclHIGlclulSI 

Field No. Starting Byte length (Bytes) Contents 

1 1 6 Customer Number 

2 7 30 Customer Name 

3 37 30 Address Line One 

4 67 30 Address Line Two 

5 97 30 Address Line Three 

6 127 5 Zip Code 

7 132 10 Telephone Number 

8 142 20 Attention - Of 

9 162 12 Credit Limit (9(10)V99) 

10 174 12 Current Balance (9(10)V99) 

11 186 12 Purchases Y-T-O (9(10)V99) 

12 198 4 Next Order Sequence Number 

13 202 4 Next Payment Sequence Number 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

Figure 20-5 Transaction Workspace Format for Change Customer Tran~action 

20-13 



TST Design Examples 

C ~ D f V ~ L H· C • ..: to l... F C = v cd ~ .:. CIT ~ T 
InE~'T: t q"'l~? 

~r}!,~ :.~ 1 
",!'}I 0 iil 2 
~'A?(.i!3 

O!~l- ~~IJ 

Qlt"CH',C; 
~!'}I\ht~ 

erJlr. ,H 
0r"'A~A 

0"'~l'q 

0""H~ 
0(}1~11 

(:IIi"012 
0"~13 
0r .. ,~ 1 a 
0~V'llS 

0P'rt'1& 
(li""el1 
0 r"l01 B 
0~01q 

0r)l{i12~ 

0~V'21 
0fi'1~22 

0("'023 
0V102U 
01'1025 
0~02& 
001fl!27 

1 i· r. ;. '1 I rIC.:;. T T r: ~ iJ ~ ./ I SIn .. " • 

*** ••• * •• *************************************************** 
* 
* • 

T S T o ~ s c ~ I P fro N 
* 
* 
* 

***.*******.**.********************************************* 
* * TST ,\t.. "f: 

* 
* * Fij~~CTI0·.: 

* 
* 
* 
* • 
11 

* 
* 

v~llDC 

ACCEPT I~PUT 0AT~ QEFLECTING TEHMINAL OPER
ATG~'S E0IT Of OLO CUSTOMER RECOHD DATA. 
PfRFO~~S EDITING O~ DECIMAL FIE~DS, AND 
PERFORMS ER~OR C~EC~ING o~ KNOW~ FIE~D 
ST~UCTURES. VALIDATED A~n fDITED DATA IS 
PLACED IN THE ~O~K5PACE FOR ~ATtR P~OCESSING 
BY TH~ "Rt~~IT" TST WHICH UPDATES TME 
C U S TO'" E h' ~t A S T E k F 1 L E • 

* P~l!T F CRj,o: C"'CuS2· C HA NGt:. CuS TOMER OAT A #2 - ED IT RECORD 

* * CUTPUT FOR~~ NONE • EXCEPT ~EPLIES IN CASE Of ERROR. 
* 
******.**.************ •• ************************************** 

20-14 



LO~('IL 3. ,"5 

001e.2~ 

QI~"~2q 

0 1f1 03V1 
~t~~31 

t'jPlel2 
0vo"33 
0f11~3" 
l'f~e 35 
~WV\3b 
0c.1~37 

O\f.40 3 8 
\"r'I~3q 

rO~OL 3.v,; 

,!w 0 CH), 

0P'e'Ul 
0\"01 a 2 
0'A~a3 

0f,"~QU 

0"'0U5 
"'C" iii 4 t. 
01}1~47 

~fAr~8 

0(111i'!4Q 
0"'0S~ 
0~~51 
0 P1 052 
"''''053 
QJV'''54 
0(.11055 

TST Design Examples 

t~(:IIf1lI ,C.C~LJ'i 13-JuL-78 12:14:?b PAGE 002 

1*.* •••• *- ••••• ** •• * •• **.***********.** ••• **** ••••• *** •• *.*. 
• • 
* T lot E • 

* 
* 
* 
* 

1 i.. E T 1 ~ 1 C l T I 0 ~ UlvISION 
• 
• 
* 
* •• ***********.**.********.*** •••• *********************.***** 

P~i~G;';.\~··-l:). TSTt:.P. 
G1T~-rC~PI~EO. TeDAY. 

S IJ ( h ~. L 1 :; C • C i L r ~ 13-JGL-78 1211~12o PAGE 003 

1.***********.**.************-* •••• ** ••• *.**********.* **** •• 
• * 
* 
* 
* 
* 
* 

t .>i " I ~ tJ '" ~'. E .... T 

THE 

o I V I S ION 
* • • • 
* ***.*******.*.*.**.***************************************** 

13-JI!L-78. 
f " 'J ! K 0 :" " i:. !'Ii T l) J v J :s I a ~ • 
C n !\ FIG L';;'; A 1 I (i ~., 5 E C T I 0 ;~ • 

snuRCE-C8 MP UTER. PDP-ll. 
0~JECT-CO~PUT~R. PDP-Il. 

20-15 



0"'056 
001057 
0{"Pl58 
0t"~5q 

01'1'0b~ 

0!"061 
QlQl062 
0fi1Q163 
0f;110o~ 

0~0bS 

0~rl16b 
0111067 
0f11~08 
0f.1!06Q 
0 01 ('170 
0P1071 
0~072 
0P1073 
00074 
0r"075 
0P1076 
0(it077 
21"'078 
0~079 
001080 
0~081 
0P082 
0P083 
0(11084 
0P085 
0"'086 
0(11087 
0"'08e 
01'.1108Q 
000q0 
0~091 
0"'092 
0P1093 
ePl094 
21(11095 
00096 
"''''097 
0P1098 

TST Design Examples 

13-JUL-78 12.14.20 PAGE e0~ 

1*********************************************************** 
* * 
* 
* 
* 
* 
* 

C 4 T ~ 

T ~ E 

DIVISIOi\J 
* 
* 
* 
* 
* ************************************************************ 

PtoT/. Ul"'lSlOt,. 

************************************************************ 
* * 
* 
* 

~ 0 ~ ~ I N G - 5 TOR AGE SEC T ION * 
* ************************************************************ 

STATuS-WORDS. 

~3 STATuS-"'ORO-1 PIC S9(4) COMP, 
103 STATUS-~QRO-2 PIC S9('., COMP. 

01 PEPLY-NUtrt8ER PIC S9(4) COMP, 

01 ~EPlY.MESSAGE-BUFFER PIC )(1621), 

01 FORMAT-SUFFER PIC S9(12)V9(6) 
SIGN LEADING SEPARATE CHARACTER. 

~1 FOR~AT-8UFFER·LENGTH PIC 9(3) COMP 
VALUE IS 12. 

~1 FOR~AT·STATUS PIC 9(3) COMP, 

20-16 



01'J10Q9 
0P110~ 

0tl1101 
0P'1~2 
0"'103 
0f11104 
21P1105 
21"'106 
0,,107 
0"'108 
0"'109 
0frl1110 
0"'111 
0"'112 
00113 
00114 
0P1115 
0"'116 
0\4117 
QHH18 
0G1119 
0(1)120 
0(11121 
00122 
0(11123 
0frl1124 
00125 
00126 
IIIIJl21 
00128 
0"129 
10130 
10131 
'''132 
00133 
00134 
10135 
10136 
1,,13'7 
10138 
1"13' 
10141 
1"141 
00142 
10143 
0"144 
lus145 
00146 

TST Design Examples 

5~CIVALIDC.C~Lr~ 13-JUl-78 12.14126 PAGE 005 

1*********************************************************** 
* * * L I ~ K AGE 5 E C T ION * 
* * 
**********.************************************************* 

***** 

***** 

~3 f~-CUSTO~ER-NU~BER 
~3 EM_CUSTOMER-NAME 
03 ~M-ADORESS-lINE-l 
l-3 E~-AOORESS.lINE-2 
~3 E~.AOORESS·lINE-3 
03 ~M.AOORESS.ZIP.CODE 
~3 ~M-TELEPHONE·NUMBER 
03 E~_ATTENTION-lINE 
~3 EM-CREDIT-lIMIT-AMOUNT 

w 0 R K SPA C E 

02 wS-CUSTOMER-FIlE-RECORD. 

03 ~S-CUSTO~ER-~UM8ER 
03 wS-CUSTOMER-NAME 
03 wS-AODRESS-LINE-l 
03 wS-ADDRESS-lINE-2 
03 W$-ADDRESS-LINE-3 
03 wS-ADDRESS-ZIP-CODE 
03 WS-TELEPHONE-NUMBER 
03 wS.ATTE~TION-LINE 
03 ~$·CREDIT-lIMIT·AMOUNT 
03 wS-CURRENT-BALANCE 
03 WS-PURCHASES-YTD 
03 ~S-NEXT·ORDER·SEGUENCE.NUM 
03 WS-NEXT-PAYMENT-SEQUENCE-NUM 

20-17 

***** 

PIC X(,'. 
PIC X(31). 
PIC )((3IJ, 
PIC )((31). 
PIC )(()I). 
PIC XeS). 
PIC )((11). 
PIC )(C21). 
PIC )(C12). 

***** 

PIC )((". 
PIC XC)I). 
PIC XCSI), 
PIe X()I), 
PIC )(CSI), 
PIC 'CS'. 
PIC '(11). 
PIC XCIll, 
PIC 'C1IlY". 
PIC 9(11)V". 
PIC '(II)V". 
PIC 'C4'. 
PIC 9(4). 



~p'IU1 

0fi'!148 
0P1149 
0fi'!lS0 
00151 
"£11152 
0V1153 
00154 
0p1155 
"p'156 
0P1151 
0P!1S8 
0(,11159 
0""60 
0P'161 
01?1162 
0f}116.3 
0"'164 
0~165 
00166 
1(11161 
05'1168 
e~16q 
0PJ170 
8fl1171 
10112 
15'1173 
1~174 
10175 
00171> 
IPt177 
10178 
0"'119 
IP.!180 
11lI181 
10182 
10183 
10184 
10185 
IPl181> 
10187 
IP.!188 
10189 
10190 
10191 
1(11192 
10193 
10194 
10195 
IflI191> 
IPtl" 
IPll'8 
lei" 
15'1211 
11211 
88212 
le213 
1,,214 

TST Design Examples 

SPCJv ALIDC.CtL,5 13-JUL-18 12114126 PAGE 006 

, ••• **************** •• *******.***.* •••• * ••••••• *.**** •••• *** 
• * 
• 
* 
* 
* 

PRO C E D U R [ 

THE 

o I V lSI 0 N 

* 
* 
* 
* *************.***** ••••••• ********************************** 

PPOCEDVRE DIVISION USING EXC~ANGE-~ESSAGE, TRANSACTION-WORKSPA~E. 

~AIN.TST-~OUTINE SECTION. 
EX uq NE-F I ELDS. 

~OvE SPACtS TO REPLY-~ESSAGE·BUFFER, 
~OvE ZERO TO BUFFER-SIZE. 

IF EM-CU5TO~E~-NUMBE~ IS EQUAL TO 
~S.CuSTO~EH-NUMBER GO TO KEY-OK. 

BAO-"EY. 
~OVE 160 TO BuFFER-SIZE, 
MO~E "l~co~~ect V.lue 1" Cu.to~er Nu~b.r Field" 
TO REP~Y-~ESSAGE-BUFFER, 
GO TO BAD-OAT •• 

KEY-OK. 
MOVE EM-CUSTO~ER-NUMBER TO wS-CUSTO~ER-NUM8ER. 

MOVE EM-CUSTO~ER-NA~E TO ~S-CUSTOMER-NAME. 

MOvE EM-ADDRESS-LINE-l TO wS-ADDRESS-LINE-l. 
MOVE E~.AOORESS-LINE-2 TO WS-AOORESS-LINE-Z, 
~OVE E~-ADORESS-LINE-3 TO WS-AOORESS-~INE-3, 
MOVE E~-AOORESS-ZIP-COOE TO wS-AOORESS-ZIP-COOE. 

IF EM-TELEPHONE-NUMBER IS • qq99qqqqqq 
OR E~-TELEP~ONE-NUMBER IS c 0, 
MOVE "TElEP~ONE NUMBER INCORRECT" TO 
REPLY-MESSAGE-BUF~ER, 
MOVE 160 TO BUFFER-SIZE, 
GO TO 8Ao-OATA. 

MOvE EM-TELEPHONE-NUMBER TO wS-TElEPHONE-NUM8ER. 

MOVE EM-ATTENTION-LINE TO WS-ATTENTIO~.LINE. 

*****.******.*********************************************** 
* * * STRNUM IS A SuBPROGRA~ THAT STRIPS EDITING * 
* CHARACTERS FROM A DOLLAR AMOUNT ~IE~O. * 
* THE RESULTING NU~BER IS FOUND IN THE FIE~O * 
* NAMED IN THE SECOND ARGUMENT, IN THIS CASE, * 
* FORMAT-BUFFER * 
* * ************************************************************ 

CALL "STRNUM" USING EM-CREDIT-LIMIT-AMOUNT, 
FORMAT-BUFFER, 

FORMAT-BUFFER-LEN'TH, 

20-18 



I 

I 

lO~OL 

~r"21tl5 

0'"2~6 
0L1207 

""'2i2l7 

(W2'" 7 

0~2~e 
0012~q 

~t421v." 
L}~211 

""'212 
?-~213 

PlDl21" 
09!215 
00121b 
001211 
0~218 

r.~21q 
0~220 

0IA221 
0et222 
~H"223 
0 r"224 
0~225 
Qj?l22b 
001227 
0"'228 
001 22Q 

3. ~"5 

~371 

~37i: 

TST Design Examples 

13-JUL-78 12;14126 PAGE 001 

~~~"'1AT-STAT1I5. 

BAD-DATA.

CALL ~~ALLRT" USI~G STATUS-~ORDS.
t-; (; Ii E 2 T 0 FZ E. PLY - ~'J U r-- 8 E R •

CALL PREPLV~ USI~G REPLV-MESSAGE-auFFER,
BUFFEQ-SIZE,
REPL'(-NUMBE~,

ST~TUS-wORD5.

13-JUL-78 12114126 PAGE 0~8

1***-****** •• *****.***************.************.************
• *
* ~ ~ D P k U G RAM SEC T ION *
* *
*****.*.* ••••• **.*********.*****.***************************

20-19

TST Design Examples

20.3 THE REWRIT TST
Together with the transaction structure diagram (Figure 18-1), the following figures comprise the documentation
needed by an application programmer to write the REWRIT TST.

• REWRIT TST Specification Sheet Figure 20-6
Figure 20-7
Figure 20-5
Figure 22-1
Figure 18-7

• Description of REWRIT TST Purpose and Processing
• Transaction Workspace Format
• Customer Record F omtat
• REPLY Message Format

The finished TST is shown on pages 20-21 through 20-29.

TST SPECIFICATION SHEET

TST Name: IRIElwlRlllTI ~ i
~

Input Object Modules: I sl vi 1:[ITIIJ.LlliIT9J] I RI Elwl Rill T I. [fJSTK); [I]

I I I 1:[rrn.UlJ]I I I I I I I.[IJ"];[IJ

Language: [g] - COBOL

0 - BASIC-PLUS-2

0 - MACRO-"

Is there a resident OTS for the language? 00 - YES

Debug Mode?

D - NO

o -No

o - Transaction Processor (Device: I I I I:)

D - Standalone (Initialj;~ing Module: I I I I I

Figure 20-6 WRITE TST Specification Sheet

The REWRIT TST is the second of two TSTs in the second exchange
of the change customer transaction. It receives the verified customer
data via the transaction workspace and writes this data in the customer

file.

After writing the data in the customer file, the REWRIT TST sends a
confirmation message as a REPLY response message containing no text
which invokes reply 2.

The TST aborts the transaction if it encounters an error condition

during the file writing operation.

Figure 20-7 Description of REWRIT TST Purpose and Processing

20-20

TST Design Examples

S R C : 0:' to, Ioc 1 T • (>~ L 7 J

C~D!RE~PIT,kE~RIT=~t~~IT/TST

It'EMTa 194122

0tJ'001
0fl!0Q\2
~~0~3

~"'0~"
e~0V15

0t"'~~b
0(;1007
0~0k:18
00!009
0 fA 010
0~011

0~012
0(11013
001 12.114
QlfI'015
0~01b
0P1017
00JItH 8
0~r;,lq

0P102Q1
0~021
0~022

0~023

121"024
0~&l!25

0~02b

0 r.AQl27
0~028
C'jfJI029
0~030
0f.A031
0~P.l32
001033
0P'034
0~035
0~03b
0!'J1037
0vr038

1 DE rd IF I CAT I:) f. .) 111 IS 1!J "l,
*** •• **********.*******************.*.**********************
* * • T S T 0 ~ 5 C ~ I P T ION *
* * *******************************.****************************
* * T51 ~AME: ~E~~lT

* * T~A"'SACTI"')!~I tH(;CUS - Ci-IA:..jGE CUSTOMER RECORD.

* * FU~CrIJ~1 T~IS TST TA~ES THE INFORMATION FRO~ FOR~ CHCU52
* T~Ar H~S AEE~ VALl~lTED BV THE TST "VALIOC"
* «\0 UPDATES THE CUSTOMER MASTE~ FILE wIT~
* rl-lE EDITE.D CdSTOr-'ER RECORD.
* * FILE.):
*

C~CUS2 - AFTER IT HAS BEEN P~OCESSEO BY VALIDC.

* * OUTPuT FOR~, C~CUS2· REPLY #1 - TXN COMPLETE,
* REPLY #2 - ERROR O~ I-a OPERATION.
*
**********************************.**************************

s "c , t(f' .~ ~ IT. C;.; L , '"

1**.**
* * * THE *
* * * I 0 E ~ T 1 FIe A r 1 Q N 0 I v I S ION *
* *
* *
**

PROGRA~·ID. TST~P.
OATE-COMPILEO, TOCA1.

20-21

0P'~3q

"''!04~
0"'041
0 r)le42
0V!043
0~044
0P1045
0P'046
0~047
0t4048
0~04~

0r.050
0~051
0P052
0"'''53
0~"54
0t1!055
00056
0"057
0C1t"S8
00tC1Sq
0C1t060
001001
0~062
ellt00]
10064
QU'065
0111006
001067
10068
IfII06q
1"070

TST Design Examples

S PC; I ~ E "" '" IT. C ~, L : t.I 13-JJL-78 12116:24 PAGE 003

1****.****** •• *****.".** •••• ·.*****· •• *********.****** ******
* *
* •
"
*
*

r H E

E N V 1 ~ 0 ~ ~ ~ ~ T 0 I V I S ION
*
*
*
*
*

.**.*"***.**.****.****.****.*********.************~*********

13-JUL-78 •
EN~I~O~ME~T OlvI5ION.
CO~FIGURATIO~ S€CTIO~.

SOu~CE-COMPvTER. PDP-ll.
OBJECT-COMPuTER. PDP-li.

******",,************************,,********.*.*****.*.********
* * * I ~ PUT - 0 U T PUT SEC T ION *
* * **

INPUT-OUTPUT SECTIO~.

FILE-CONTROL.

SELECT CUSTOM ASSIG~ TO "CUSTOM.OAT"
O~GA~IZATI0N IS I~DEXEO

ACCESS ~OOE IS OY~A~IC
RECORO ~EY IS CuSTOMER-NUMBER
ALTERNATE ~ECORD ~EY IS CUSTOME~.NAME ~ITH DUPLICAT!I
FILE STATUS IS CUSTO~ER.FILE·STATUS.

20~22

0r-Ql71
0~072

0r.-~73
0~ (H U

0""075
0~r.·7b
0tA~77

~rI~18
01i'e7Q
0pe,ae
0 rJ!P.'61
0tA082
0~083

0 P \'l84
AQl085
0P'08b
05"087
""'088
00089
O",090
01"'091
0P1rt\92
0~~93
00094
0P'09S
0P!096
0012197
01llQl9a
0"'099
0111'10121
00'101
0P102
0P1103
00104
0P1105
0f.l'106
QHII107
0 01 108
0p!109
0Pt110
QlP'111
00112
0~113
00114
001115
011'116
0011"1
1"118
0011q
0P11i0
'''Iii
1(11122
IVl123
IfJ1Z4
IIli5
10126
1012"1
'"12a

TST Design Examples

/.*******.*.*.* •••• ********.*.*****.*.***** ••• **************
* *
• T H f *
*
*
*
*

,) I v I S I G N
*
*
*
* *** ••• ***************************.*******.******************

\.lATA t'IVlSIC-·.

********************************.***************************
* * * r- I L ESE (T I 0 'oj *
* * *******.***************************.**********.*************

FILE SECTION.

FO CUSTOM
LA8EL RECORDS ARE STANUARD
vALUE OF IG IS CUSTO~·CH~~~EL-~UMBER
DATA ~ECORD IS CUSTO~·FILE.RECORD.

01 CUSTu~·FILt·RECORD.

~3 CUSTOMER.NU~~ER
~3 CUSTOMER.~AME

~3 ADDPESS-LINE-l
?3 ADORESS-LINE-2
e3 ADDRESS-LINE-3
v3 ADD~ESS-ZIP-CODE
~3 TELEPHO~E·NUM6ER
~3 ATTE~TID~-LINE
03 CREDIT·LI~IT-A~OUNT
~3 CURRE~T-BALA~C[
~3 PURCH~SE5·VTD
e3 ~EXT-O~DER.SEQUENCE-~UMBER
e3 ~EXT-PAY~ENT·SEQUENCE·NUMBER

PIC X(6),
PIC)(30),
PIC)«30'.
~IC X(3").
PIC XC30"
PIt 9(5),
PIC 9(10),
PIC X(20).
PIC 9(10)Y99,
PIC 9(10)Y99.
PIC 9(10)Y99.
PIC 9C~).
PIC 9(U'.

**
* * * ~ ~ R K I ~ G • S TOR • G ESE C T ION *
* * ***************.***********************-********************

wORKING-STORAGE SECTION.

**
* F I L E C MAN N E L S *
**

01 CUSTOM-C~.NNEL-NuM8ER PIC X(11)
V.LU~ IS "CUSTOM/CHI3",

20-23

0PJ12Q
00132'
0"'131
021132
0(11133
00134
0",135
00136
0~137
0~13e
0f1113q
0U!140
0(11141
00142
00143
00144
0P1145
111146
111141
011148
IPlI4Q
0P150
0f1151
0(11152
00153
00154
111155
1"156

TST Design Examples

13-JUL-78 1211h.24 PAGE 005

**
* F I L EST A T USN A M E S *
**

01 FILE·ST&TUS·~ORD
01 CUSTO~ER·FILE.STATUS

PIC XX.
PIC XX.

**
* ~ E S SAG EAR G U ~ E N T S *
****************.***

01 BUFFER-SIZE PIC "" COMP.

01 STATUS-wOROS.

03 STATUS-itlOqO-l PIC 8'(4) COMft.
03 ST.6TUS-WORO-2 PIC a,(4) COMP.

01 REPLY-NUMBER PIC S'(4) COMP.

01 REPLY-MESSAGE-aUFFER.
1f3 ~EPLY·MESSAGE·TEXT PIC XCe0).
03 REPLY-FILLER PIt xCle,

VALU~ IS "Fl1e StatuI J'fo .. dl " • 03 ~MB·FSw PIC XCZ).
tl3 RHB-FILE-NAME PIe XC,,).

20-24

LOPOl 3.05

0~157
0£"'lS8
001Sc;
0"'160
0P.!lbl
00162
01'1163
00164
1~16S
00166
GI~tb7
ra~lb8
0Plbc;
0"'170
1(11171
00172
0"'173
00174
1P.!175
0(11176
IP177
0"178
'P17q
0P118ra
0P1181
00J82
0t111a3
0"184
~"la5
0Pla6
'''la7
001a8
101SQ
11J1Ql
'''191
10192
lel.3
11J1.4
1"1'5
1"1'6
1"1"
Ill"
1"1"
le21.
Itt211
11212
IIIIJ
le284
"II!
'''216
1"211

TST Design Examples

13-JuL-78 1211bl24 PAGE 006

1************.**
* * * LIN ~ 4 G ESE C T ION *
* *
**

LINKAGE SECT IClt.J.

***** to1 E S SAG E

~1 E~CHANGE-MESSAGE.

~3 E~·CUSTOMER-NUMBER
~3 E~·CUSTO~ER·~A~E
03 EM-AODRESS.lI~E-l
03 EM-AOO~ESS.lINE-2
~3 E~·.DDRESS·LINE-3
03 E~.ADDRESS-ZIP.CODE
~3 E~-TELEPHONE·NUH8ER
~3 EM-ATTENTION-LINE
03 E~·CREOIT·LIMIT-AMOUNT

~ 0 R K SPA C E

02 WS-CUSTO~-FILE·RECORO.

03 WS-CUSTO~ER-NUMBER
03 ~S.CUSTOMEA-NAME
03 wS-AODRESS-LINE-l
03 wS-AOORESS-LINE.2
03 wS-ADDRESS-LINE-3
03 wS-AODR!SS-ZIP-CODE
0] WS-TELEPHONE-NUMBER
03 WS-ATTENTION-LINE
raJ WS-CREDIT-LIMIT-AMOUNT
0] WS-CURRENT.8ALANCE
03 WS-PURCHASES-YTD
03 WS.NEXT-ORO!R-SEQU£NCE-NUM
03 WS-N!~T.PAYMENT-SEQUENC£.NUM

20-25

P·IC XC 6' ,
PIC)Cell)
PIC X(]I8),
PIC X(31),
PIC XC]I),
PIC Q(5),
PIC '(11),
PIC X(21),
PIC XCI2),

PIC X(6).
PIC XC311,
PIC X(311.
PIC XC]I'.
PIC X(]I),
fllC .(",
PIC '(Ill.
PIC X(21),
PIC '(ll'Y".
PIC '(ll)Y".
PIC '('I)Y",
fllC '(4',
fllC '(4),

0tl!2~8
(jr;a20q
0"'210
0""211
0~212
~1}I213

091214
0r-215
001 216
0""217
0"'218
0rJ1 21q
0P1221(!
"~221
13",222
~"'223
0P'22lJ
0~225
0",22&
l~V!227
0{J1228
0P!22Q
0~230
0"'231
00232
011'233
0~23u

0"'235
Qjl1'236
0"'237
0P1238
0"'23Q
002Ura
0"'241
0"'242
e~243
0P124U
0P'245
efll246
IP.241
IP.lZ48
IIP1Z49
IPliSS
""'Z51
1'-'252
0"253
11",254
1(1)255
I",as,
'''257
1,,258
.,,259 .e2,.
1"2'1
l"a'2
1.2.3
1'2'4
1112'5

TST Design Examples

1***************.***
* *
*
*
*
*

T ,., E

o I II I 5 ION

*
*
*
*

*****************************.*.****************************

PROCEDuRE DIVISIO~ U~I~G EXC~ANGt-~ESSAGE, TRANSACTION-WORKSPACE.
OECLA~ATIVES.

**********.***.*****. * I-U ER~OR ST~TUS ~ETURN SECTION •
* •
* THIS SEeTIO· IS I~VCKEU AFTE~ THE OPERATING SYSTEM •
* ~AS nET~CTED SO~E FORM OF 1-0 ERQOR. THE FILE-STATUS *
* i>jQRO IS E>"Ar--If~ED bY THE PCUTINE, Af'!O A~ ~PPROPRIATE *
* ERROR MESSAGE IS fO~MATTED A~O pLACED I~TO THE REPLY *
* ~ESS~GE ~~fFE~. THE GO TO SELECTS THE DESIRED ACTION *
* THAT FOLLO~S. T~O CASES C~RRENTLY EXIST, T~E REPLY *
* ~tSS.GE ~~IC~ RESTA~T5 T~E CURRE~T EXC~ANGE AND SHO~S *
* T~F. ERRON~OUS D~TA ON THE OPERATUR'S SCREEN, AND THE *
* .eO~T REPLY MESSAGE ~~IC~ CAUSES T~E CUR~ENT TRANSACT-*
* lO~ TO 8E AeOQTED ~HEN A SEVERE ERROR IS ENCOUNTERED *
* ArlO RECOvERY IS IMPOSSIBLE. *

I-O-ERROR SECTIO~.
USE AFTER STA~OARD E~RO~ PROCEDURE ON CUSTOM.

C~ECK-FILE·STATUs-cnDE.

IF CuSTCMER-FI~E·STATUS IS GREATER THAN "01"
~OvE CU5TO~ER.FILE-STATUS TO FILE.STATUS·~ORD,R~B-FSW.

MOvE" Logical Ffle ~8mel CUSTOM -CH3" TO
RM8·FILE·"'A~E.

IF FILE-STATuS-WORD IS EQUAL TO "10"
~OVE "Reached E~d-of-Fi1e"
TO REPLY-MESSAGE-TEXT
GO TO SEND.REPLY-~ESSAGE.

IF FILE-STATUS-WORD IS EQUAL TO "21"
MOVE "Primary Kev S.oue~c. E~ror 0" wRITE"
TO REPLY-MESSAGE-TEXT
GO TO SENO.ASORT-MESSAGE.

IF FILE-STATUS-wORD IS EQUAL TO "2Z"
MOvE "Ou~14c.te ~ey Erro~"
TO REPLY.MESSAGE-TEXT
GO TO SEND-ABORT-MESSAGE.

IF ~ILE-STATUS-wORO IS EQUAL TO "23"
MOVE "No Record E-ilta under that Kev"
TO REPLY-MESSAGE-TEXT
GO TO SEND-REPLY-MESSAGE.

IF ~ILE-STATUS.wORO IS EQUAL TO "24"
~OVE "Bou"darv Error 0" write Statement"

20-26

er'26b
O!DI,67
!2'??'b8
(iIItJ26q
0f.A270
I2Ir.o271
0~272

00'273
0~271J

~l]'27S

0r.a?76
0~277

0111 278
q! nl 27q
0'''280
0~2el
((H--282
011.283
00'28u
0P285
QI~Z8b
0?287
0~28S
0r;a2Sq
0~2q2)

0 l11 Z91
2101292
00'2Ql
00294
0f.l'29S
0?129b
0Q1297
0"'298
0""299
QIIO!100
09'301
0"'302
0~303
QJl'I304
2191305
QJ~30&

0l'131tJ7
0P13es
001309
0"'3121
0~311
1«11312
0tJ1313
0Q1314
091315
0"'316
0('1317
210318
0"319
QJ~320
121321
0"'322
QJ?l121

TST Design Examples

1 3 - .J .J L - 7 ~ 1 2 : 1 6 I 2 tJ p 4 G E 01t18

T0 ~fPLY-~ESSAGE-TE~T
:; i.' T I , ~ t. . L) - '" M C' ;~ T - '.' t:. S SAG t •

IFF I L F.. - ~ TAT '.' 5 -.. C fo(i.; 1 S E.~ U A L TO" 3 0\ "

'O~E ~Jnscecifie0 llC f~ror"
TO 'EPLY-~ESSAG~·TEXT
GO T0 SE~D-AbORT-MESS.GE.

IF FILE-ST'T~S-~:AC I~ E]UAL TO "34"
~GvE "g~rmane~t ~ounda~y Error on ~RIT~ St.te~e~t"
TO ~EPLY-~ESSAGF-TEXT
GO TC SEN~-ABO~T-MtS&~Gt:..

IFF! L E • 5 T ~ T IJ S - .- C R (": I 5 E) U A L T Ci " 9 1 "
~O~E "file loe~e~ bv another talk"
TQ RtP~Y-~ESS~Gt.TEXT

GO TO SE~D·REPLY-~ESSAGE,

I~ ~ILE-5TdTuS-~0~D IS E~UAL TO "92"
~CvF "Reco~d lOCkeo Oy another talk"
TO ~EPL~.~ESSAGE-TEXT
G0 TO SE~D.REPLY-~~SSAGE.

IF FI~E-STAT0S-~UQG IS E~UAL TO "q3"
~GVE "~E~RITE o~ DELETE attempted wit~out o~.o~
"READ hei~9 performed,"
TO REPLY-~ESSAGE-TEXT
GO TO SE~O-QEPLv-MESSAGE.

IF FtLE-3T~TjS-~r~c IS EQUAL TO "q~"

~OvE "I~o~noer ooer.t1on atte~oted"
TO REPLY-MESSAGE-TEXT
~C TO SE~O-A80RT-~ESSAGE.

IF FILE-STATUS-~OQ~ IS E1~AL TO "qS"
~OVE "Al1oe.t1o~ Failure - No loace o~ device"
TO REPLY.MESSAGE-TEXT
G0 TO 5END-.BORT-~E5SAGE.

IF FILE-STATuS·~O~e IS EQUAL TO "9b"
i10VE "NO buffer apaee • S:4r.1E AREA .' dv f~ u •• "
TO REPLY-~ESSAGE-TEXT
GO TO SE~O·ABORT-~ESS.GE.

IF FILE-STATUS-~OwO IS EJUAL TO "q7"
~OVE "U~aole to find file ~.m.dl"
TO REPLY-~ES5AGE-TEXT
GO TO SE~D-ABOqT-~ESSlGE.

IF FILE-STATUS-~ORD IS E~UAL TO "98"
MOvE "Error wh;l •• tt.~ot;~Q to CLOSE fil •• "
TO REPLY-MESSAGE-TEXT
GO TO SE~D-ABORT-MESSAGE.

MOVE "UNK~O~N I-a ERROQ" TO ~EPLY.MESSAGE.TEXT
~OvE FILE.STATUS.~O~O TO RMB.FS~
GO TO SEND-ABa~T.MESSAGE.

20-27

01:'32"
0"325
0""326
0fJ1327
0P.128
0P32Q
0Vl10
0P331
QlfJl332
0r.J1111
0"'13"
C/J rJl 135
0P.33b
0~137
0P11le
0P339
0fJ1140
",Pol"l
efJI342
0P143
1210,13""
0~34'!i

01i11146

TST Design Examples

13-JUL-78 1211612~ PAGE 009

SE~D-REPLV-~~SSAGE.

MOVE 1~~ Tr. BuFFF.Q-SIZE
~OvE 2 TO ~EPLY-NUMBER
CALL "~EPLY" ~SI~G

REPLY-~ESSAGE·~UFFER,
RUFFER-SIZE,
qEPL Y-~U~.,aER,
STATUs-wORns.

GO TO ENO-ERROR-SECTIO~.

SEND-A90RT-~ESSAGE.

~OVE lc~ TO BUFfER-SIZE
~OvE 2 TO ~EPLY-NUM8ER
CALL "AdORT" uSI~G

END-~R~OR-SECTION.
END nECLA~ATlv~5.

REPLV-~ESSAGE-8UFfER
eUFFER-SIZE
I<EPLY-~UMSER
5TATUS-~OROS.

20-28

0~]tP

0v348
0v1]4Q
00'350
091351
3"'352
0 iJl353
00'354
0~3r;5
0\ IJl 3S6
0"'357
001358
0(1'3SQ
0"'360
001361
0"'362
001363
0P1364
BPl3.S
0013.6
0P1367
0"'368
0"']69
0~370

001371
ep.]72
001373
0(11374
0Q1375
0P1376
011)377
0"'378
0P1379
0p1380
1"'381
1038,2
QUIt]8]
'",]84
IQI]85
0"'38.
00381
0P1388

TST Design Examples

13-JUl.-78 12:16124 PAGE 010

1****.**-***********************.***************************
* *
*
*

~AI~ PROCESSING ~OUTINE *
* .**** •• **************.*******.**************.***************

MAIN-TST-~OUTI,,jE SECTIU,·04.
~EwRITE-Cu5TG~E~-RECO~C.

OPE~ 1-0 CUSTC~.
IF CUSTO~EQ-FILE-STATUS IS GREATER THAN "0~"
GO TO E~D-PROG~A~.

~E,",RITe: IIoITH lJNLOCIt CUSTOM-FILE-RECORD
FRO~ wS.CU5TO~-FILE-RECOqD,

IF C U S T Ct.~ E ~ • F 1 L F - S TAT II S IS G REA. T E R T 1"1 A ~ "0 q "
GO TO E~n.PROG~~~.

~OVf 1 TO R~PlY-~U~BE~
~O~E SP.CES TO REPLY·~ESSAGE-BUFFER
MOVE ~ TO BUFFER-SIZE.
CALL ~REPLY" USING QEPLY.MESSAGE-BUFFER,

SUFFER-SIZE,
REPLY-NUMBER,
STATUS·~OROS.

**
* * * E ~ 0 PRO G RAM SEC T ION *
* * **

END-PROGRAM-SECTION SECTION.

EXIT PROG~AM.

20-29

CHAPTER 21

DESIGNING AND SPECIFYING FILES

Files are an important part of commercial data processing systems. Most commercial systems maintain a large
volume of data, and many have a large number of inquiries and updates against that data. In many applications,
fIle design is by far the most important determining factor in the system's performance. For these reasons,
on-line commercial applications require the utmost care in fIle design.

File design is, of necessity, intertwined with other system design steps. For example, you must have some idea
of the mes needed in your application before you can design transactions. And conversely, you must have
some idea of the transactions in your application before you can design meso

This manual cannot provide a complete course in the effective design of fIles for on-line commercial applications.
If you are not experienced in this kind of fIle design, you might fmd it helpful to consult a text on the subject.
But to assist you in designing and specifying TRAX mes, this chapter discusses the following specific topics:

• File design prerequisites
• Data recording formats
• Codes
• Relationships between fIelds
• Computing fIeld and record sizes
• Potential record usage problems
• Choosing a me organization
• Calculating fIle sizes
• File reliability and recovery
• Checking file performance
• Documenting me design

21.1 FILE DESIGN PREREQUISITES
Chapter 12 summarized the systems analysis steps you must take before attempting a detailed me design.
These are:

1. Business Data Requirements. You must study the items of data that your business application requires
you to store in files.

2. Data Groupings. You must understand the groups in which the data are stored and retrieved. For
example, an outstanding balance might be associated with a customer, an order, or an invoice.

3. Data Item Size. You must understand the size and composition of each data item.
4. Data Quantity. You must understand how many of each data item must be kept in the application

fIles.
s. Access Patterns. You must understand how data items are commonly retrieved. For example, a group

of customer data items might commonly be retrieved either by name or by customer number.
6. Data Security Issues. You must know which system users should be given access to a data item and which

should not. For instance, a customer's credit rating should be inaccessible from an order-taker's terminal
but accessible from the credit manager's terminal.

7. Performance Issues. You must understand the business environment and the proposed application
design so that you can predict where me access problems may occur and where these problems would be
serious.

21-1

Designing and Specifying Files

21.2 DATA RECORDING FORMAT
Study the data recording formats available in your programming language. COBOL, for instance, allows computa
tional and display data items. BASIC-PLUS-2 allows string variables and binary numeric variables. In either
language, a numeric quantity can be expressed in both forms; but each language limits what the programmer can
expect with a given data format.

By using the display or string data formats, you usually sacrifice computational speed and space. But you gain
data portability and easy file maintenance. These data formats are character-oriented; their meaning does not
depend on variations of machine architecture, and they can be read by programs written in different languages
and run on different machines.

By using computational or binary data formats, you usually gain computational speed and compactness; but you
may lose data portability and easy file maintenance. These formats often limit your application to one particular
language or machine.

Sometimes, a single overriding concern dictates the format you must use. For example, a system with a large
data base may require a compact data recording format. On the other hand, a system that uses several program
ming languages or one that communicates data to other systems may require maximum portability of data. The
first system should use computational or binary data formats; the second system, string or display formats.

In the absence of overriding application requirements, use the data recording format that is most convenient in
your programming language.

If you decide on a substantial number of binary-format data fields, remember that your application programmers
will have to construct fIle dump utility programs to inspect the fIles and debug their application programs.
Alternatively, your programmers may fmd the DAT ATRIEVE language useful in inspecting and debugging data
fIles. (See TRAX DATATRIEVE User's Guide, AA-D347A-TC.)

21.3 CODES
Where a data field can have only a few possible, known values you can use codes instead of a complete value.
Using such codes saves significant file space.

For example, a customer me may require a field describing each customer's relationship with the business.
Although the relationships might be expressed in words such as SHOPKEEPER, COLLECTOR, and MAILORDER
OPERATOR, it would be more sensible to list the relationships and develop a compact code to be placed in the
file instead.

Do not adopt a coding scheme without careful thought. Code schemes can have significant problems that
adversely affect the performance or reliability of the application.

• Excessive Rigidity. Code schemes must allow expansion and adjustment. For example, a code that
starts with seven values may have fifteen within a few months. If you only allow space in your file for
single-digit codes, you must soon reorganize the file for two digit codes. Plan ahead and you can avoid
this problem.

• Code Interpretation for Users. Although you may find codes attractive because they save me space,
they may be considerably less attractive to your application's users. Where possible, you should allow
users to enter information in its uncoded form. Only within the application programs and data structures
should you rely exclusively on the code values.

• Vulnerability of Coded Data. Coded data is useless if the relationship between the codes and their
meanings is lost or altered. Further, changing the meaning of code instantaneously affects each record
carrying that coded value.

21-2

Designing and Specifying Files

For example, a customer record might carry a coded field specifying the discount that a customer is
allowed. If a discount class is made more liberal and the same identifying code is kept, customers with
that code immediately benefit from the revised discount policy.

This is often the intended effect. But what happens to records of old orders? Order records may carry
references to discount codes. If so, the revised discount policy will be associated with old orders as well
as with current and future orders. This could cause confusion if an old order were subsequently the sub
ject of a customer inquiry. The company's staff would be hard put to justify the original discount amount
which had, in fact, been correctly computed according to the discount policy then in effect.

21.4 RELATIONSHIPS BETWEEN FIELDS
The files you design for your application will probably have relationships between fields. This means that certain
fields contain data that refers to other fields or records. For example, a record describing an order has a customer
identification number. Such a number refers to a record in the customer fue containing the full name and address
of the customer.

Minimize the relationships between fields when designing your application fues. Each new relationship complicates
other aspects of me design, such as updates to shared mes and reliability after system outages.

There are two important kinds of inter-field relationships:

1. Logical relationships are based on the names or values of related fields. A logical relationship indicates
that a set of information is related by name to a second set of information.

2. PhYSical relationships are based on the place or location where related information is found. A physical
relationship indicates that a set of information is related to a second set of information which is found
in a specified place.

For example, an invoice record could be related to a customer record in two ways:

1. A logical relationship could be introduced by placing a customer number in the invoice record. This
customer number represents a logical relationship because it specifies who the invoice belongs to, rather
than where the owner's name can be found.

2. A physical relationship could be introduced by placing a record number in the invoice record. This
record number would represent a physical relationship because it specifies where we can fmd the name
of the customer who owns the invoice, rather than who the customer is.

A logical relationship does not rely upon a me's internal structure or a record's position on a storage device. A fue
with a logical relationship can be moved from place to place, and the relationship is not destroyed. The order of
records in the fue can change (assuming that the me's logical structure remains intact) and the relationships are
still valid. However, more time is required to access data through a logical relationship, because the logical relation
ship must be reduced to a physical relationship by consulting the file's index or other logical structure.

Physical relationships have faster access speeds, which is their principal attraction. Physical relationships can be
disrupted by moving a file or by restructuring it to allow additional records. Two common me operations - fue
reorganization and file backup - can disrupt physical relationships. Trouble arises when a set of files is restored
from backup media, and the fues were not originally backed up on the same date: that is, they are of different
generations. It takes special care to design physical relationships so that situations such as these do not destroy
the proper relationships between fields.

Try to use logical relationships first, and then resort to physical relationships omy where the need for better per
fonnance has been proven. Important application characteristics such as stability, reliability, maintainability,
flexibility, and ease of operation are more easily attained with logical field relationships. Do not needlessly
sacrifice these objectives for performance.

21-3

Designing and Specifying Files

21.5 COMPUTING FIELD AND RECORD SIZES
To compute field and record sizes:

1. Group your application fields into records.
2. Determine each field size.
3. Compute each record size by summing its field sizes.

To detennine the size of each data field, study the data recording techniques of your programming language. (Con
sult the applicable programming language reference manual.) When you compute the size of each record, include
space for growth in the number of fields in the record.

Next, look at the record lengths. These situations are potential problems, and you should redesign your records
to avoid them where possible:

• Large records
• Occasionally-used fields
• Variable record lengths in relative ftles

21.5.1 Large Records
Records with more than 1 SO bytes are large records. Although RMS handles records up to several thousand bytes
long, you gain several advantages by dividing the data into smaller records. For instance, if different users require
access to different subsets of data, you could form these subsets into separate records. Then one user could read
(and lock, if necessary) one set of data while another has similar access to the other set. Besides reducing access
conflicts, this arrangement allows each program to devote less space to record buffers.

If you need large records, devote extra attention to later phases of the me design. Large records make efficient
blocking and deblocking difficult, and poor fIle design wastes large amounts of space as logical record boundaries
conflict with physical device block boundaries. Large records also require more buffer space in each TST, as well
as more space in the transaction's system workspace if they are staged.

21.5.2 Occasionally-Used Fields
If a record has many fields that are only occasionally ftlled with data, the record will contain a lot of wasted space.
Divide such records into two or more segments, each a record itself. One record will contain the fields which are
always ftlled; others contain those fields which are used occasionally. These latter records need not be placed in
the fIle if the corresponding data is not present, and you may save considerable space.

Occasionally-used fields also require you to devise a data value which, when placed in the field, indicates that the
field contains no data. Select a value that does not correspond with a valid data value that might appear in the
field.

21.5.3 Variable Record Lengths in Relative Files
When a relative fIle is constructed, each record slot is allocated the same length; if you use records of different
lengths, you must allocate the size of the largest record. If the record lengths differ significantly and, especially,
if there are more short records in the ftle than long ones, considerable file space is wasted.

21.6 POTENTIAL RECORD USE PROBLEMS
Be careful when you group fields into records. You can create design or performance problems.

Consider the ways that the application's transactions access the records you defined. Watch for these potential
problems:

• High activity on particular records
• A large working set of records
• Record locks oflong duration

214

Designing and Specifying Files

21.6.1 High Activity on Particular Records
When one or more transactions read a common record, the access volume to that record is high. This reduces
system performance and degrades response times. Adapt your design to compensate for this increased volume.

21.6.2 Large Working Set of Records
The set of records needed by a transaction is called its record working set. A transaction that must access (and
perhaps lock) a large number of records simultaneously may cause problems:

• Other transactions may not access the records
• The transaction instance requires a large record buffer space, either in TSTs or in the transaction

workspace
• If any records are staged or journaled, additional buffer space is required in the transaction instance's

system workspace.

A different allocation of data fields between records may reduce a transaction's record working set to manageable
proportions.

21.6.3 Record Locks of Long Duration
Problems arise if a transaction locks records for a lengthy period. If the record is not accessed heavily, there may
be no problem. But you may have a serious problem if the records locked for long periods are also those with high
access volumes.

Study the time that each record is locked to see whether that period of time creates conflicts with other applica
tion users. Remember that updates to staged and journaled mes do not unlock records until the end of each
transaction instance.

Remember, too, that any lock duration that involves user interaction must be assumed to be lengthy.

If you discover potential record locking problems, restructure your mes to eliminate them. For example, if journal
ing or staging are the cause of the problem, segregate data into two or more mes: place data to be journaled or
staged in one fIle and place less sensitive data in another.

A control record at the front of a master fIle is often used to indicate the next available serial number or the num
ber of records in the file. If the data in such a me is staged Of journaled, serious problems can develop. This con
trol record is usually a high-access record, and staging or journaling extends the time any transaction instance locks
it. Place the control record in a different fIle (unstaged, of course) to avoid this problem.

21.7 CHOOSING A FILE ORGANIZATION
After grouping fields into records, you must select a me organization to store and retrieve records efficiently.

Most mes used in commercial applications are either sequential mes or indexed meso Sequential mes are useful for
data that is not accessed randomly from on-line transactions; work mes, history mes, and log fIles fall in this
category. Indexed fIles are indispensable for on-line random access situations. You may al~o find that relative
record fIles are useful in on-line random access situations where physical field relationships are appropriate. (See
Section 21.4.)

The design of sequential fIles presents no special difficulty. However, the design of each indexed file deserves
attention on two levels:

1. Functional design. This involves decisions such as the number of indexes and the composition of each
index. Keep the number of indexes for each fIle to a minimum. Each additional index means overhead
when a record is,added or deleted.

21-5

Designing and Specifying Files

You began this process during the business analysis described in Chapter 12. Now, you must polish
the functional design and see that it is adequate for the additional design you have since done.

2. Technical design. For this, you need to study RMS carefully with your files in mind. RMS is a flexi
ble data management system with many parameters that you can vary as you design each me. These
parameters are important, because each affects the performance of the finished me.

21.8 CALCULATING FILE SIZES
Now you can calculate the size of your data meso This calculation must consider:

1. The size of each type of me record
2. The number of each type of me record
3. Wasted space for such things as blocking factors and inter-record gaps on magnetic tape
4. Space for indexes
5. Space for application growth

You should provide for application growth in two ways:

1. Leaving space in each record to add new data fields.
2. Increasing me size for future records.

With your detailed RMS me design, you can calculate the space wasted for blocking and deblocking disk-based
meso There is no wasted space on magnetic tape, but the space taken by inter-record gaps must be considered.

When you have calculated the size of each me, check that each me physically fits on its designated disk device
or tape reel. If it does not fit, you must partition it. This is done in two ways:

1. The record layout can be partitioned and a portion put in each of two or more meso This creates twice
as many records as in the original file, but each record is proportionally shorter than before. This
method requires extra overhead space to sto~e duplicate indexes for the extra meso

2. The me can be partitioned so that half of the records are placed in each of two meso The record layout
is not changed. This method requires no additional index overhead space. If the original me contained
multiple indexes, though, you must choose one index to govern the me division. When accessing by
that index, TSTs will know which flie to consult. But when accessing by other indexes, they will have
to consult both flies since they will not know beforehand which me may contain the desired record;
this may create a performance or buffer space problem.

21.9 FILE RELIABILITY AND RECOVERY
You laid the groundwork for file security in your design for application mes by selecting a design that allows
orderly shared access and by avoiding inter-field relationships.

Earlier in the previous chapter, you read some of the advantages that can be gained by segregating data into two or
more mes when they might fit in one. File reliability is often gained as well. If you segregate updated fields from
those referenced in read-only fashion, you accomplish several things:

• Only the me containing updated data need be locked when accessed. This reduces access conflicts.
• Only that flie need be staged or joumaled. This reduces the time and buffer space needed for these

functions.
• Only that flie need be reconstructed after a system outage. This reduces the time needed to recover

from a system outage.

Judicious use of the TRAX staging and journaling capabilities make recovery easier and quicker after a system
outage. But remember the impact these options have on system performance; do not choose them without
considering the tradeoffs involved.

21-6

Designing and Specifying Files

It is time to think about the operational aspects of your application design, such as fIle backup schedules. 10urnaled
fues can be reconstructed if a backup for the fIles exists along with a complete set of journals for the period between
the backup and the system outage. The generation and preservation of these backups and journals require carefully
devised operations schedules and policies.

The time needed to reconstruct a fue from journals is proportional to the time between the last backup and the sys
tem outage. A recent backup has fewer journals to process and therefore requires less recovery time. Too many
backups interfere with normal system operation; too few make recovery a lengthy process.

21.10 CHECKING FILE PERFORMANCE
Once you have a detailed design for your application mes, consider whether the design provides the performance
the application demands.

Approach this from two points of view:

1. Search for files or records that may cause a bottleneck. To do this, concentrate on each me in turn;
imagine the pattern of access requests made on the me by the application transactions.

2. Search for transactions that may not provide acceptable response times. To do this, study each trans
action and estimate the time required for the transaction me accesses. Allow time for delayed access to
records with high access volumes.

If you have a borderline case, set up a benchmark test on a TRAX system. You need not program the entire appli
cation or even an entire transaction. But you can set up mes, fill them with dummy data, and then run tests to see
how long each set of accesses takes.

21.11 DOCUMENTING THE FILE DESIGN
When you have a satisfactory file design, document the design so that application programmers can implement it.
This documentation should have at least four items for each me:

1. File Description. Prepare a one-page description summarizing the purpose of the file, the types of records
it contains, what these records represent, how the records are indexed, and other such descriptive
information.

2. Record Layouts. Prepare a record layout sheet (Figure 21-1) for each different record format used in the
me.

3. File Definition Sheet. Prepare a me defmition sheet (Figure 21-2) that specifIes the way the transaction
processor should access the fue.

You may wish to code the record layouts yourself in the selected high-level programming language. The program
fragments defining the record layouts can then be used by each application programm~r as part of his programs.
This saves programming time and promotes standard defInitions for each record, as well as standard data names for
each fIeld in the record.

In addition to the documentation for each me, consider drawing a diagram or chart to show how the files are inter
related. Such a chart helps an application programmer, especially if access paths involve retrievals from a series of
meso These linked access paths are hard to visualize.

21-7

Designing and Specifying Files

RECORD LAYOUT SHEET

Transaction Processor: L-III'---'----'----"----"",----J
File Description:

Logical Filename: I I
This is Record Format: [IJof [IJ
Logical Record Length: I I I I I
Physical Record Length: I I I I I (Tape Only)

Field No. Starting Byte Length (Bytes) Contents Data Type

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Figure 21-1 Record Layout Sheet

21-8

Transaction Processor Name:

Logical Filename:

RMS File Specification:

Work File?

Is This an I ndexed File?

Maximum Concurrent File Accesses?

Read-Only?

Fast Deletions?

Lock Interval

Read Access to Locked Records?

Journal?

Staged File Updates?

Designing and Specifying Files

FI LE DEFINITION

Part One

I I I I

I I

0- Ves (Go to Part Two)

0- No(Continue with next question)

0- Ves: No. of Keys [I]

Maximum Key Length IL--LI~~

0- No: Sequential or Relative File

O-Ves

D-No

O-Ves

O-No

OJ seconds

O-Ves

D-No

0- Ves (Go to Part Two)

0- No (Continue with next question)

O-Ves

O-No

Part Two

File Channel Assignment

Description of File Contents: __________________________ _

Assigned I/O Channel Number OJ

Figure 21-2 File Defmition Sheet

21-9

CHAPTER 22

A FILE DESIGN EXAMPLE

This chapter discusses the design of the customer me from the TRAX Sample Application and presents the set
of m.e documents that would be given to the application programmer.

22.1 DESIGN CONSIDERATIONS
Functional requirements dictate that the customer fIle carry these data items:

Customer number
Customer name
Customer address (three 3D-character lines)
Customer ZIP Code
Telephone number (including area code)
Attention line (20 characters for ATTN:)
Credit limit
Current balance
Purchases year-to-date
Next order sequence number
Next payment sequence number

The data is recorded as display or string variables~ so that data can be exchanged between TSTs written in COBOL
and BASIC-PLUS-2.

NOTE
Using different programming languages in the same ap
plication is normally avoided. Both languages are used
in the Sample Application for demonstration purposes~
he'nce the data format requirement.

No filler space is left in the record because no expansion of the number of fIelds is anticipated.

The fue is indexed. The primary index is by customer number~ and there is a secondary index by name.

There are no inter-fIeld relationships from a record in this me to another me. However~ other flIes in the Sample
Application contain customer numbers creating logical relationships to records in this me.

None of the information in this fue is amenable to coding. (The postal ZIP code is entered directly by the user
and is not evaluated or interpreted by the system in any way.)

The fue is shared by many users executing a variety of transactions. However, few users update customer records;
most just read data from them. Significant access conflict is unlikely.

The frrst record in the fue (customer number 000000) is a control record that contains the next available customer
number ~ since customer numbers are assigned by the application. Although this record might become a bottleneck
if large numbers of customers were added~ a problem is not anticipated with the expected volume of customer
additions.

22·1

A File Design Example

Because of the low volume of changes to this m.e, it is not staged or journaled. In the case of a system failure,
any lost work can be re-entered manually from existing documents.

22.2 DESIGN DOCUMENTATION
The following design documentation is the set of documents an application programmer needs to create and access
the customer file in the TRAX Sample Application.

• File Description
• Record Layout
• File Definition Sheet

Figure 22-1
Figure 22-2
Figure 22-3

The customer file supplies data for individual customers. Each record
in the file represents one customer. It is indexed by customer number
(primary index) and customer name (secondary index).

There is only one record format used in the customer file. The record is
205 bytes long; no space is left for record expansion.

The first record in the customer file (customer number 000000) is a
control record containing the next customer number. This number is
contained in the Credit Limit Amount field of the record layout. When
used in this manner, the Credit Limit field has no assumed decimal
point.

The customer file is not staged or journaled.

Figure 22-1 Description of Customer File

22-2

Transaction Processor:

File Description:

Logical Filename:

This is Record Format:

Logical Record Length:

Physical Record Length:

Field No. Starting Byte

1 1

2 7

3 37

4 67

5 97

6 127

7 132

8 142

9 162

10 174

11 186

12 198

13 202

14

15

16

17

18

19

20

21

22

23

24

25

A File Design Example

RECORD LAYOUT SHEET

IslAIMlplLIEI

Customer Master File ([350,227] CUSTOM.DAT)

IclulslTlolMI

[TI]of [TI]
I 1210151

I I I I I (Tape Only)

Length (Bytes) Contents

6 Customer Number

30 Customer Name

30 Address Line One

30 Address Line Two

30 Address Line Three

5 Zip Code

10 Telephone Number

20 Attention - Of

12 Credit Limit (9(10)V99)

12 Current Balance (9(10)V99)

12 Purchases Y-T-D (9(10)V99)

4 Next Order Sequence Number

4 Next Payment Sequence Number

Figure 22-2 Record Layout Sheet

22-3

Data Type

Transaction Processor Name:

Logical Filename:

RMS File Specification:

Work File?

Is This an I ndexed File?

Maximum Concurrent File Accesses?

Read-Only?

Fast Deletions?

Lock Interval

Read Access to Locked Records?

Journal?

Staged File Updates?

A File Design Example

FILE DEFINITION

Part One

IclulslTlolMI

D - Yes (Go to Part Two)

00 - No (Continue with next question)

[iJ- Yes: No. of Keys ~

Maximum Key Length I 13/01

D - No: Sequential or Relative File

O-Yes

00- No

O-Yes

[8]- No

DlJ seconds

D-Yes

[8]- No

D - Yes (Go to Part Two)

[KJ - No (Continue with next question)

D-Yes

00- No

Part Two

File Channel Assignment

Description of File Contents:~O~n~e~re~c~or~d~f~or~e~ac~h~c~u~st~o~~e~r~~~~~~~~~~~~~~~~~

Assigned I/O Channel Number rn
Figure 22-3 File DefInition Sheet for Customer File

224

CHAPTER 23

THE COMPLETE TRANSACTION PROCESSOR
DOCUMENTATION

In Chapters 12 through 22, you designed a transaction processor.

This chapter summarizes the documentation needed by the application programmers who construct the transaction
processor. This documentation is the basis for future system maintenance and enhancements.

23.1 THE TRANSACTION PROCESSOR DEFINITION SHEET
One final specification sheet, the transaction processor definition sheet, remains to be completed. It describes the
overall characteristics of your application. Your application programmers will need this information to generate
the transaction processor.

A blank transaction processor definition sheet is shown in Figure 23-1. This sheet asks for the following infor
mation:

1. Transaction Processor Name. Assign an abbreviated name (no more than six characters) to identify your
transaction processor. This name must be unique from other transaction processor names on your system.

2. Maximum Number of Transaction Types. Supply the maximum number of different transactions to be
dermed and supported by this transaction processor. If you expect to add a number of transaction defi
nitions in the future, include them in the number you specify.

3. Maximum Number of Concurrent Transaction Instances. Enter the number of transaction instances the
transaction processor must handle simultaneously. Users attempting to begin transaction instances that
exceed this number must wait until some other transaction instance finishes. Be sure to include trans
action instances spawned by TSTs and initiated by batch or link stations, as well as those initiated by
application terminals.

4. Maximum Number of Application Terminals. Enter the number of application terminals supported by
the transaction processor. This number should agree with the number of terminal stations you have
dermed (or the number you expect in the future).

5. Maximum Number of User TSTs. Enter the number of different TSTs supported by this transaction
processor. Again, if you expect new TSTs to be added soon, enter the projected number. Do not count
any TST more than once, even if you will have multiple copies of a TST executing at once.

6. Maximum Number of Master Link Stations. Enter the number of master link stations that your trans
action processor needs.

7. Maximum Number of Slave Link Stations. Enter the number of slave link stations your transaction
processor needs to communicate with master link stations in other transaction processors.

8. Maximum Size of Receive Link Message. If you are including slave link stations, enter the largest link
message that any slave link station can receive from a master link station in another transaction proc
essor. Otherwise, leave this space blank.

9. Maximum Number of Submit Batch Stations. Enter "1" if your transaction processor submits work
to the system's batch processors; enter "0" if it does not.

1 O. Maximum Number of Slave Batch Stations. Enter the number of slave batch stations the transaction
processor needs to initiate transaction instances at the request of support environment programs.

11. Maximum Number of Mailbox Stations. Enter the number of different mailbox stations used by the
transaction processor.

12. Maximum Number of Application Data Files. Enter the number of different application data files
accessed by the transaction processor. This is the total number of different files, not the number ac
cessed concurrently.

23-1

The Complete Transaction Processor Documentation

13. Maximum Size of Transaction Slot. This parameter is derived from three other parameters that you have
calculated for each transaction:

Exchange message size
Transaction worksp~ce size
System workspace size

To calculate the maximum size of the transaction slot, you must consider each transaction in turn. For
each transaction, take the three parameters listed and divide each by 64. Round each result to the next
higher integer. Then add the three rounded results. Do this for each transaction, and then pick the
transaction with the greatest result. Enter this result on the transaction definition form.

14. Automatic Crash Recovery. Select whether or not your transaction processor includes automatic crash
recovery.

Figure 23-2 shows a completed transaction processor definition sheet. This form represents a small transaction
processor having only the four Customer flle transactions discussed in this manual.

23.1.1 Transaction Documentation
For each transaction, you should have:

1. A transaction structure diagram
2. A transaction definition sheet

23.1.2 F onn Documentation
You should have a form definition for each form used by the transaction processor. This includes entry forms,
transaction selection forms, and report forms.

23.1.3 TST Documentation
For each TST, you should have:

1. A description of the TST purpose and a summary of its processing
2. A TST specification sheet
3. A layout sheet for the exchange message the TST will process
4. Layout sheets for response messages, report messages, and mailbox messages that the TST manipulates
S. A layout sheet for the transaction workspace that the 1ST uses
6. Layout sheets for the data file records that the TST uses
7. Perhaps, flowcharts or formulas that define complex processing

23.1.4 File Documentation
For each me, you should have:

1. A me description
2. Record layouts
3. A me definition sheet
4. RMS ftIe parameters

23.1.5 Station Documentation
For each station, you should have completed a section of a station definition sheet.

23.1.6 Access Security Documentation
You should have completed sheets defining work classes, as well as sheets defining users and their access to work
classes.

23-2

The Complete Transaction Processor Documentation

TRANSACTION PROCESSOR SPECIFICATION SHEET

Transaction Processor Definition: I I I I I i

Transaction Processor Name: L-II.I---LI----L.----L-----'--.......I

Maximum number of transaction types: (0-64) rn
Maximum number of concurrent transaction instances: (0-64) rn
Maximum number of application terminals: (0-64)

Maximum number of user TSTs (0-256)

Maximum number of master link stations: (0-10) .m
Maximum number of slave link stations: (0-64) rn

Maximum size of receive link message: (0-4096) I I

Maximum number of submit batch stations: (0-1) D

Maximum number of slave batch stations: (0-16) I I

Maximum number of mailbox stations: (0-10) I I I

Maximum number of application data files: (0-64) fin
Maximum transaction slot size: (1-8192) I I I blocks

Automatic crash recovery: D -YES O-NO

Figure 23-1 Blank Transaction Processor Specification Sheet

23-3

The Complete Transaction Processor Documentation

TRANSACTION PROCESSOR SPECI FICATION SHEET

Transaction Processor Name: I siAl MI pi LIE I

Maximum number of transaction types: (0-64) [TIl

Maximum number of concurrent transaction instances: (0-96) rn
Maximum number of application terminals: (0-256) I 141

Maximum number of user TSTs (0-256) 1110 I

Maximum number of master link stations: (0-10) [JQ]

Maximum number of slave link stations: (0-64) rn
Maximum size of receive link message: (0-4096) 101

Maximum number of submit batch stations: (0-1) @)

Maximum number of slave batch stations: (0"':"'16) 101

Maximum number of mailbox stations: (0-10) 101

Maximum number of application data files: (0-64) 111

Maximum transaction slot size: (1-8192) lal blocks

Automatic crash recovery: D -YES [RJ - NO

Figure 23-2 Completed Transaction Processor Specification Sheet

23-4

ABORT,
key, 4-13
message, 4-1 7, 14-3

Aborted transactions,
staging, 84

Access,
conflicts, 194
control, 14-14, 14-15
terminal-leased, 14-14
transaction, 14-14
user-based, 14-14

Action,
subsequent, 4-9,4-14, 16-13
TST, 14-3
user, 14-2

AFFIRM key, 4-11,16-13
Analysis techniques

Business, 12-1
APPEND command, 19-9
Application data files, 8-1
Application terminal language , 5-1
Application terminals, 1-5,3-7,10-1
ATL,

comment rules, 5-6,5-7
compiler, 5-1
dot symbol, 5-7
form design, 5-7
language elements, 5-3
request function, 5-7
shorthand example, 5-8
shorthand notation, 5-7
statement groups, 5-5
statement order, 5-6
syntax, 54
utility program, 5-1,17-5

Attributes, field, 3-10, 17-1
AUTDEF utility program, 16-8
Audit trails, 16-8

log entries, 8-9
Authorizations,

user, 16-5

Background processing, 19-7
Backup, fIle, 21-7

BASIC-PLUS-2, 6-2
Batch processing, 12-3

batch slave station, 4-1,4-3
Batch station,

submit, 11-2,23-1
slave, 114,23-1
batch submit station, 4-1,4-3

BOTH, 16-2
Bottlenecks, 194
Browsing, 15-10
Business,

Analysis techniques, 12-1
Activities, 12-1
procedures, 12-1

BY REF clause, 6-6

Caching, 104
CALL verb, 6-6
Clause,

BY REF, 6-6
keyword,S -3
parameters, 5-3
using, 6-3,-6
VALUE, 15-18
WRITE, 15-18

CLEAR Character, 17-2
CLOSE key, 4-13

message, 14-3, 16-14
CLSTRN message, 4-15
COBOL, 6-2

linkage techniques, 6-3
Codes, 21-2
Coding standards, 19-9
Command,

SUBMIT, 11-2
APPEND, 19-9

Comment rules,
ATL, 5-6,5-7

Compiler,
ATL, 5-1

Context requirements for
fIle access, 7-1,7-3

Control, Access, 14-14, 14-15
Control flow, transaction, 14-6

Index-l

INDEX

Conversation, user system, 13-1
Copy statement, 19-9
Crash recovery, 10-3, 23-2

overhead, 10-3

Data files,
application, 8-1

Data file recovery, 10-3
Data management system, 8-1
Data processing, distributed, 1-3
Data recording fonnat, 21-2
Data storage requirements, 12-2, 12-3
Data structure, sizes, 4-10

transaction, 14-8
DATATRIEVE, 21-2
Debugging,

stand-alone, 6-6
support terminals, 6-6
techniques, 6-6
transaction processor, 6-7
TST, 6-6

Defming stations, 16-1
Definition,

exchange, 16-13
forms, 34, 3-10, 3-11, 5-1,13-1,17-5
REPLY, 4-16, 14-2, 15-18
transaction, 3-10,3-13,4-7, 10-1, 16-8

Development techniques, 19-9
Design,

me,21-1
forms, 17-1
processing, 13-2, 13-3

file, 13-3
transaction examples, 15-1
TST, 19-1

Device,
identifier, tenninal, 16-2
name, 16-2
type, 16-2

DISPLAY field, 15-18
Distributed data processing, 1-3
Distributed processing, 11-1
Dot symbol,

ATL,5-7
Documen tation,

transaction, 16-14
TST, 19-18

Duplexed links, 11-9

END statement, 6-5
ENTER, 4-13

key, 14-2

Index

Entry forms, 5-2,17-1
Entry point,

TST, 6-2
Environment programs,

support, 94
Environment, support, 1-6
Error messages, 15-18
Exchange, 14-2

defmition, 16-13
label, 4-8, 16-13
message, 3-8, 4-3, 6-2, 7-1,7-2,14-2, 14-8,

16-8,174
recovery, 4-10, 7-1,84,10-2,10-3,16-8
time limit, 4-10, 16-14

Field attributes, 3-10, 17-1
reverse video, 17-2
CLEAR character, 17-2
initial values, 17-2

Field relationships, 21-3
Field sizes, 214
Fields, 5-2

display, 15-18
kinds of, 5-2
occasionally-used, 214

File,
backup, 21-7
documentation, 21-7
organization, 21-5
performance, 21-7
recovery, 21-6
reliability, 21-6

File, access,
context requirements, 7-1, 7-3
from TSTs, 8-2

Files,

Index-2

access, TST, 6-8
data flow, 8-5
design, 13-3,21-1
indexed, 8-1
journal structure, 8-8
locks, 7-3
multiple indexes, 8-1

(see indexed mes)
relative, 8-1
scratch, 8-3
sequential, 8-1
shared, 194
specifications, 8-3, 16-2
staged, 84
unstaged, 84
work, 6-1,8-3

FIRST parameter, 4-9,4-11,4-14, 16-13
Flow,

me data, 8-5
Flowchart, 19-8
Form definitions, 17-5
Format, data recording, 21-2
Forms, 13-1

ATL,5-7
defmition, 34, 3-10, 3-11,5-1,10-1, 13-1
design, 5-1,17-1
entry, 5-2, 17-1
layout, 17-1
name, 4-8, 16-13
output-only, 174
report, 5-2, 174
sequence, 13-1
special purpose, 174
transaction selection,S -2, 16-13

Function keys, 4-10
system, 14-2
user, 4-11, 174

Function,
keys system, 4-11

Functional specifications, 12-1, 12-2

General transaction parameters, 4-10

Identifier,
terminal device, 16-2

Image,
task, 6-3

Indexed files, 8-1
primary, 8-2
secondary, 8-2

INITIAL
display, 14-2
FORM option, 16-2
parameter, 4-9, 4-13, 4-15,16-3
field values, 17-2
operating mode, 4-16, 9-1,10-2
state, 16-2, 16-5

Initiating transaction instances, 9-1
In-place testing, 6-7
Input parameters, 6-3
Installing a TST, 6-8
Instance, transaction, 3-6, 15-8,23-1
Interfield relationships, 21-3
Interleaving, 4-5
Internal system design, 104

Index

Journal device, 7-2
Journal,

device, 8-8
me structure, 8-8
primary device, 8-8
reconstructing, 8-9
secondary device, 8-8
system, 16-8

Journaling, 8-6, -7, 15-8,21-6
staging, 8-7
transaction, 7-2
transaction slot, 8-7

Kernel, 1-6
Key,

ABORT, 4-13
AFFIRM, 4-11, 16-13
CWSE,4-13
ENTER, 14-2
function, 4-10
shift, 4-13
STOP REPEAT, 4-13, 15-10,16-13
terminal function, 4-10
user function, 4-13, 14-2,174

Keypad,
numeric, 4-13

Keyword,
clause, 5-3
REQUEST, 15-18
statement, 5-3

Language,
application terminal, 5-1
ATL elements, 5-J
BASIC-PLUS-2, 6-2
DATATRIEVE, 21-2
MACRO-} 1, 6-2
program, 19-2

Layout, form, 17-1
Library,

TST,6-3
Linkage techniques,

COBOL, 6-3
MACRO-II, 6-6

Linkage section, 6-3
Link master station, 4-1,4-3,23-1
Link slave station, 4-1,4-3,23-1
List, routing, 3-10,4-4,,4-8, 6-1, 16-13
Locking,

record, 8-3, 104

Index-3

Locks,
record, 7-3,194,21-5
file, 7-3

Log entries,
audit trails, 8-9,16-8
inspecting and analyzing, 8-9
system debugging, 8-9

Log,
trace, 6-7

Logging, 8-9, 10-2
message, 4-10

Logical fIlenames,
work fIles, 8-3

Logical relationships, 21-3

MACRO-II, 6-2
linkage techniques, 6-6

Mailbox,
message, 4-7
station, 4-1,4-3,6-1,23-2

Management system,
data, 8-1

Mapping,
memory, 6-3

MAP statement, 6-5
Master link station, 23-1
Memory, mapping, 6-3
Message,

ABORT, 4-17,14-3
CLOSE, 14-3
CLSTRN, 4-15, 16-13
error, 15-18
exchange, 3-8,4-3.,6-2, 7-1, 7-2, 14-8, 16-8, 174
logging, 4-10
mailbox, 4-7, 14-3
PRCEED, 14-3, 16-13
REPLY, 4-16, 14-2, 154,15-10
report, 4-6, 14-3
response, 3-8,4-3,44,4-13,14-3,.14-8
STPRPf, 4-15,14-3,16-13
system, 16-2
TRNSFR, 4-15, 14-3

Modes,
record locks, 8-3

Multiple Copies, 19-6
Multiple indexes,

See Indexed Files, 8-1
MSGMAP statement, 6-5

Index

Name, form,.4-8, 16-13
Name,

device, 16-2
station, 16-2
transaction, 4-10

NEXT parameter, 4-9, 4-11, 4-14, 16-13
NOBLANK option, 15-18
Numeric keypad, 4-13
NOWAIT Option, 4-8
NOREPEAT, REPEAT/, 4-11, 4-14

Operating mode,
initial, 4-16,9-1,10-2

Option
INITIAL FORM, 16-2
NOB LANK, 15-18
NOWAIT, 4-8, 16-13
REPEAT, 4-9,15-8,15-10,16-13
TRANSACTION, 16-2
WAIT, 16-13

OUTPUT, 16-2
Output-only forms, 174
Overlapped processing, 4-5, 14-6, 19-7

restrictions, 14-7

Parallel processing, 4-5
Parameters,

clause, 5-3
exchange, 14-3
FIRST, 4-9,4-11,4-14, 16-13
general transaction, 4-10, 16-8
initial, 4-14
INITIAL, 4-9, 4-13, 4-15,16-13
input, 6-3
NEXT, 4-9,4-11, 16-13
REPEAT, 14-3
subsequent action, 14-3

Paths, transaction processing, 4-1
Performance, 10-1, 10-3

TST, 19-2
Physical relationships, 21-3
PRCEED message, 14-3, 16-13
Primary;

index, 8-2
journal device, 8-8

Processing, 4-5
background, 19-7
design, 13-2

Index-4

Processing (Cont.)
distributed, 11-1
overlapped, 4-5, 14-6, 19-7
parallel, 4-5
stations, 14-3

Processing system,
transaction, 1-1

Processor,
transaction, 1-6
definition sheet, 23-1
documentation, 23-1
name, 23-1

Program,
ATL utility, 5-1, 17-5
AUTDEF utility, 16~
languages, 19-2
"skeleton," 19-9
STADEF utility, 16-1,16-2,16-5
TRADEF utility, 16-8
TSTBLD,6~

WORDEF utility, 16~
Program name, 6-2

Queue manager, 11-2

Real-time transaction
processing, 1-2

Reconstructing journals, 8-9
Record,

locks, 7-3, 8-3,10-4,194,21-5
exchange recovery, 84
modes, 8-3
staging, 84

sizes, 214
variable lengths, 21-4
working set, 21-5

Records,
large, 214
staged 15-8

Recovery,
crash, 10-3,23-2
exchange, 10-3,10-4,7-1,16-8
file data, 10-3

RECOVR, 8-9
Relationships,

field, 21-3
interfield, 21-3
logical, 21-3
physical, 21-3

Relative files, 8-1
Reliability, 10-1, 10-2, 13-2

Index

RMS,8-1
support code, 8-2

REPEAT/NOREPEAT, 4-11, 4-14
REPEAT option, 4-9, 15~, 15-10, 16-13
REPEAT parameter, 14-3
Reply definitions, 4-16, 14-2, 15-18
REPLY message, 4-16, 14-2, 15-4, 15-10
Report

message, 4-6, 14-3
forms, 5-2,174

Request function,
ATL,5·7

REQUEST keyword, 15-18
Reply, 174

numbers, 17-4
Response

message, 3~, 4-3,44,4-13, 14-3, 14-8,
time, 1-2, 19-6

Reverse video, 17-2
Routing list, 3-10,44,4-8,6-1, 16-13

changes, 4-4

Sample Application,
TRAX,2-1

Scratch fues, 8-3
Secondary journal device, 8-8
Security, 10-1, 14-14
Selection form,

transaction, 9-1,9-3, 17-5
Sequential flIes, 8-1
Shared files, 19-4
Shift key, 4-13
SHOLOG,8-9
Shorthand notation,

ATL, 5-7
Signing on, 10-1
SIGNOF transaction, 9-3, 10-2
SIGNON transaction, 9-3, 10-2, 16-5
Sizes,

data structure, 4-10
Skeleton program, 19-9
Slave batch station, 94, 11-2, 11-4,23-1
Slave link station, 9-5, 23-1
Slot, transaction, 7-1,23-2
Source station, 114
Spawned transactions, 6-1,9-4
Special purpose forms, 17-4
STADEF utility program, 16-1, 16-2, 16-5
Staged,

files, 84
records, 15~

Index-5

Staging, 84, 10-3, 13-3,21-6
aborted transactions, 10-3
journaling, 8-7
record locks, 10-3
system workspace, 8-5

Stand-alone debugging, 6-6
Statement,

ATL groups, 5-5
END, 6-5
keyword,S -3
order, 5-6
MAP, 6-5
MSGMAP,6-5
parameters,S -3
SUBROUTINE, 6-5
TST,6-5
TSTEND,6-5
WRKMAP,6-5

Station, 3-8, 4-1
batch slave, 4-1,4-3
batch submit, 4-1,4-3
defining, 16-1
link master, 4-1,4-3
link slave, 4-1,4-3
mailbox, 6-1 , 6-3,23-2
master link, 23-1
name, 16-2
priority, 16-5
processing, 14-3
slave batch, 94,23-1
slave link, 9-5,23-1
source, 114
submit batch, 23-1
terminal, 3-8,4-2,16-1
TST, 3-8,4-1,4-2,6-8, 14-3, 16-2

STOPREPEATkeY,4-13, 15-10, 16-13
STPRPf message, 4-15, 14-3, 16-13
Structure, transaction, 14-1

diagram, 14-1
Submit,

batch station, 11-2, 23-1
command, 11-2

Subroutines,
compiled separately, 6-2
statement, 6-5

Subsequent action, 4-9,4-11,4-14, 16-13
parameter, 14-3

Support code,
RMS,8-2

Index

Support,
debugging terminals, 6-6
environment, 1-6
environment programs, 9-4
environment terminals 3-7

Syntax,
ATL,54

System
alternatives, 12-3
call, 6-6
conversation, user, 13-1
debugging, log entries, 8-9
design, internal, 104
function key, 4-11, 14-2
journal, 16-8
messages, 16-2
reliability, 124
scope, 12-2
staging, 8-5
T ABORT, 4-17
Workspace, 7-1, 14-14, 16-9

TABORT system call, 4-17
Task,

image, 6-3, 6-8
image fill specification, 16-2
transaction step (TST), 3-8, 6-1,6-8

Terminal,
based access, 14-14
application, 1-5,3-7, 10-1
device identifier, 16-2
function keys, 4-10
station, 3-8, 4-1,4-2, 16-1
support environment, 3-7

Testing
in -place, 6-7

Throughput, 1-2, 19-6
Time limit, 4-10

exchange, 4-10, 16-14
Trace log, 6-7
Traced TST operation, 6-7
TRADEF utility program, 16-8
Transaction,

Index-6

access, 14-14
data structures, 14-8
control flow, 14-6
debugging, 6-7
defmition, 3-10, 4-7, 10-1, 16-8
design examples, 15-1

documentation, 16-14
documentation, 16-14
initiating instances, 9-1
instance, 3 -6, 15-8

context, 7-1
concurrent, 23-1

joumaling, 7-2
name, 4-10,16-18
processing, 12-3

paths, 4-1
real-time, 1-2
system, 1-1

processor, 1-6
definition sheet, 23-1
documentation, 23-1
name, 23-1

selection forms, 5-2,16-13,17-5
SIGNOF, 9-3
SIGNON, 9-3, 16-5
slot, 7 -1,8-7,23-2
spawned, 6-1,9-4_
step task (TST), 3-8, 6-1
structure, 14-1
types, 23-1
workspace, 6-1,6-2,7-2, 14-8

TRAX technical design, 13-1
TRAX Sample Application, 2-1
TRNSFR message, 4-15,14-3
TST

access to transaction slot, 7-2
actions, 14-3
BASIC-PLUS-2, 6-2
COBOL,6-2
debugging, 6-6
design, 19-1
documentation, 19-8
entry point, 6-2
execution, 6-8
file access, 6 -8 , 8 -2
input parameters, 6-3
installing, 6-8
library, 6-3
MACRO-l1,6-2
operation, 19-1

traced, 6-7
performance, 19-2
priority, 16-5, 19-7
purpose, 6-1
number of active copies, 16-5
serially reusable, 16-5

Index

TST (Cont.)
statement, 6-5
station, 3-8, 4-1, 4-2, 14-3
station parameters, 6-8
structure, 6-2
task image, 6-8

TSTBLD utility program, 6-8
TSTEND statement, 6-5
TSTEP, 6-2

Unstaged files, 84
User,

authorizations, 16-5
action, 14-2
based access, 14-14
function keys, 4-11,4-13, 14-2, 17-4
system conversation, 13-1

Using clause, 6-3, 6-6
Utility program,

ATL, 5-1
AUTDEF, 16-8
TSTBLD,6-8
STADEF, 16-1,16-2,16-5
TRADEF, 16-8
WORDEF, 16-8

Value Clause, 15-18
Verb,

CALL, 6-6
Version numbers,

work files, 8-3
Video, reverse, 17-2
VT62, 1-3

WAIT option, 16-13
WORDEF utility program, 16-8
Work,

CLASS, 9-2, 9-3, 10-1, 16-2
SIGNON, 16-5
mes, 6-1,8-3
file specifications, 8-3
logical filenames, 8-3
rules, 8-3
version numbers, 8-3

Working storage, 19-8
Workspace,

system, 7-1, 14-8, 16-9
transaction, 6-1, 6-2, 7-1,14-4,15-8,16-8,19-8

WRITE clause, 15-18
WRKMAP statement, 6-5

Index-7

Trax Application
Design Guide
AA-D328A-TC

READER'S COMMENTS

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. If you require a written reply and are
eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR
form.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the
page number.

Please indicate the type of reader that you most nearly represent.

[] Assembly language programmer

[] Higher-level language programmer

[] Occasional programmer (experienced)

[] User with little programming experience

[] Student programmer
[] Other (please specify) __________________________________ ___

Name Date ___________ _

Organization ________________________________ __

Street ___ __

Ci ty __________________ State ________ Zip Code ______ _

or

---Fold lIere--

-- Do Not Tear - Fold Here and Staple ---

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

Software Documentation
146 Main Street ML5-5/E39
Maynard, Massachusetts 01754

FIRST CLASS

PERMIT NO. 33

MA YNARD, MASS.

