
August 1978

This manual provides an overview of the TRAX system. This overview includes
a general system description, a sample terminal session, and specific information
on various TRAX system features.

Introduction
to

TRAX
Order No. AA-D327 A-TC

OPERATING SYSTEM AND VERSION: TRAX Version 1.0

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation · maynard. massachusetts

First Printing, August 1978

The information in this document is subject to change without notice and should not be construed as a
commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license and may only be used or copied in
accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by
DIGITAL or its afflliated companies.

Copyright©1978 by Digital Equipment Corporation

The postage-prepaid READER'S COMMENTS form on the last page of this document requests the user's
critical evaluation to assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL
DEC
PDP
DEC US
UNIBUS
COMPUTER LABS
COMTEX
DDT
DECCOMM
ASSIST-II

DECsystem-l0
DEC tape
DIBOL
EDUSYSTEM
FLIP CHIP
FOCAL
INDAC
LAB-8
DECSYSTEM-20
RTS-8

MASSBUS
OMNIBUS
OS/8
PHA
RSTS
RSX
TYPESET-8
TYPESET-II
TMS-ll
ITPS-I0

PREFACE

CHAPTER 1
1.1
1.1.1
1.1.2
1.1.3
1.2
1.2.1
1.2.2
1.2.3
1.3
1.3.1
1.3.2
1.3.3
1.3.4
1.3.5
1.3.6
1.4
1.4.1
1.4.2
1.4.3

1.5
1.5.1
1.5.2
1.5.3
1.5.4
1.5.5
1.5.6
1.6
1.6.1
1.6.2
1.6.3

CHAPTER 2
2.1
2.2
2.3
2.4
2.5

TABLE OF CONTENTS

Page

INTRODUCTION .. 1-1
WHAT IS A TRAX TRANSACTION? 1-1

Transactions and Exchanges 1-1
An Order Entry Transaction 1-2
Structure of the TRAX Transaction Processing System. 1-5

TERMINAL USER ORIENTATION 1-5
The VT62 Terminal 1-6
TRAX Forms .. 1-8
Communication Between User and Application 1-8

APPLICATION PROGRAMMER ORIENTATION 1-9
Transaction Processor Structure 1-9
COBOL and BASIC-PLUS-2 1-11
Transaction Step Tasks (TSTs) 1-13
ATL, The Forms Language 1-13
Definition Files .. 1-14
Steps in Implementing a Transaction Processor. 1-14

COMMUNICATION(S) , 1-16
TRAXjTL Data Communication .. 1-16
TRAX-to-IBM Data Communication 1-18
Communication Between the TRAX Application and
Support Environments 1-19

SYSTEM PERFORMANCE 1-19
Data Management Services (RMS) .. 1-19
Software Cache ... 1-19
Use of Microprocessor Controlled Terminals. 1-20
Microprocessor Communications Controller 1-20
Optimized System Code 1-20
"Stationary" Message 1-20

DATA INTEGRITY 1-21
Data Backup and Journaling 1-21
Maintaining Integrity of Data Records 1-21
Security Provisions 1-21

A SAMPLE TERMINAL SESSION 2-1
THE TRANSACTION SELECTION FORM 2-1
ADD TRANSACTION. .. 2-5
DISPLAY TRANSACTION. .. 2-9
CHANGE TRANSACTION 2-14
DELETE TRANSACTION 2-15

iii

CHAPTER 3
3.1
3.1.1
3.1.2
3.1.3
3.1.4
3.1.5
3.1.6
3.1.7
3.1.8
3.1.9
3.1.10
3.2
3.2.1
3.2.2
3.2.3
3.2.4

CHAPTER 4
4.1
4.1.1
4.1.2
4.1.3
4.1.4
4.1.5
4.1.6
4.1.7
4.1.8
4.1.9
4.1.10

4.2
4.2.1
4.2.2
4.2.3
4.2.4
4.2.5
4.3
4.3.1
4.3.2
4.3.3

TABLE OF CONTENTS (Cont.)

Page

TRAX SYSTEM OPERATION 3-1
BASIC SYSTEM CONCEPTS 3-1

Forms and Forms Definitions 3-1
Transaction Step Tasks (TSTs) -............... 3-4
Transaction Instances 3-4
Exchange Messages 3-6
Response Messages 3-7
Stations. .. 3-7
Exchanges ... 3-8
User Function Keys. .. 3-10
System Function Keys 3-1 2
Reply and Proceed Messages 3-1 2

HO\VTO CREATE A TRANSACTION PROCESSOR 3-14
Structure of a Transaction Processor 3-14
Organization of the Elements 3-14
The "TRADEF" Definition File ' " 3-14
Additional Definition Files .. 3-16

SPECIAL TRAX CAPABILITIES 4-1
ADVANCED SYSTEM FEATURES " 4-1

Record Locking .. 4-1
System and User Workspace 4-2
Staging ... 4-2
10urnaling .. 4-3
Transaction Logging 4-3
Exchange Recovery 4-3
Output-only Stations 4-4
Additional Stations 4-4
Batch Processing 4-4
Communication Between TPs: TRAX to TRAX and
TRAX to IBM .. 4-5

TRAX SECURITY AND RELIABILITY. .. 4-5
Application Terminals and Support Terminals 4-5
Terminal and User Authorizations 4-6
Initial Transaction Selections 4-6
The Sign-on Transaction 4-6
Reliability .. 4-7

TRAX DATA MANAGEMENT SYSTEM 4-8
Sequential Files ... 4-8
Relative Files ... 4-9
Indexed Files ... 4-9

iv

CHAPTER 5
5.1
5.2
5.3
5.3.1
5.3.2
5.4
5.4.1
5.4.2
5.5
5.5.1
5.5.2
5.5.3
5.6

APPENDIX A

APPENDIX B

APPENDIX C

TABLE OF CONTENTS (Cont.)

Page

THE TRAX SUPPORT ENVIRONMENT 5-1
THE KERNEL OPERATING SYSTEM 5-1
THE TRAX FILE SYSTEM 5-1
THE DIGITAL COMMAND LANGUAGE 5-1

Spooling Files to the Line Printer .. 5-2
Other DCL Commands 5-2

PROGRAMMING LANGUAGES 5-2
COBOL ... ,. 5-2
BASIC-PLUS-2 ... 5-3

TRAX SYSTEM UTILITIES. .. 5-3
SORT .. , ... 5-3
DATATRIEVE ... 5-3
Transaction Processing Utilities .. 5-3

BATCH PROCESSING IN THE SUPPORT ENVIRONMENT 5-4

TRAX USERS AND THE MANUAL SET A-I

GLOSSARY OF TERMS C-l

v

Introduction to TRAX

PREFACE

This manual introd uces the concepts of the TRAX Transaction Processing System, and describes the
operation of a TRAX transaction processor to provide a general background for reading other
manuals of the TRAX document set.

The intended audience for this manual ranges from a nontechnical manager who is considering
installing a transaction processing system, to an application designer who needs to understand the
system in detail.

If you want a brief introduction to the TRAX system, read Chapters I and 2. If you need further
detail on TRAX system operation, read Chapters 3, 4 and 5.

The following list summarizes the content of each chapter.

Chapter

Chapter I -
Introduction

Chapter 2-
Sample Terminal Session

Chapter 3 -
TRAX System Operation

Chapter 4-
Special TRAX Capabilities

Chapter 5 -
The Support Environment

Appendix A-
TRAX Users and the
Manual Set

Appendix B
Programming Examples

Appendix C-
Glossary

Content

Provides an overview of the TRAX system.

Provides a sample terminal session running a transaction processor to
illustrate the end product of the system.

Describes the various elements of a transaction processor and how
they interrelate. Describes the program flow within a transaction
processor and describes which elements control it.

Describes a number of special features of the TRAX system, such as
staging and journalling.

Introduces the nontransaction processing capabilities of the TRAX
system. Transaction processors are developed in the support
environment.

Describes different users of the TRAX system and the different
manuals in the TRAX manual set.

Provides actual examples of the coding for specific forms and Trans
action Step Tasks.

Provides a glossary of key TRAX terms.

vii

CHAPTER 1

INTRODUCTION

Many computer applications require on-line access to a data base. For example, when you call a
catalog office to check on your order, it is vital that their representative be able to find your
record quickly to verify delivery. The catalog office representative might also have to check
inventories if the pertinent order involved is a hard-to-get or backordered item. Such an on-line
access to a data base to add, delete, change, or verify information is an example of a transaction.

In TRAX, a number of terminal users can simultaneously access the data base from their respective
terminals, and each user appears to have sole access to the data base. Further, any changes to a
data file are made immediately, rather than being held for later processing.

Another characteristic of TRAX is the use of predefined forms. Forms are the structured
arrangement of data on a video terminal, or occasionally, on a hard-copy terminal. For example
when your catalog order is displayed on the representative's screen, its data is formatted so that
your name always appears in one place on the screen, your address in another, and so on.

1.1 WHAT IS A TRAX TRANSACTION?
A transaction consists of all the processing steps required to perform one logical data-processing
operation. For example, an order entry transaction might consist of a number of interactions
between the system and the terminal user, but all of these interactions are part of the overall
operation of entering an order. All together, these interactions or exchanges represent one
transaction.

1.1.1 Transactions and Exchanges
Transactions therefore, consist of one or more exchanges. Each exchange represents one complete
interactive cycle with the user. Figure 1-1 illustrates a simple exchange, which starts with a form
requesting data from the user. The user types in the data, presses the ENTER key and the data is
processed by the application program. The application responds by displaying "TRANSACTION
COMPLETE" or by displaying the results of the processing. The application also provides
instructions to the user specifying the next step to take.

This communication cycle between the user and the system is called an exchange. The word
exchange is used because this cycle represents a complete "exchange" of information between
the user and the system. Figure 1-2 illustrates a transaction comprising three exchanges. To
perform the transaction, the terminal user first selects Transaction A from a "menu" of possible
transactions. The transaction then begins. A form appears on the terminal requesting data from
the user. The user inputs the required data and presses the ENTER key. The data is then processed
by the application. When the processing is complete, rather than responding to the user within
the same exchange, control passes directly to the next exchange, Exchange 2.

1-1

Introduction

Form appears.
User types in data
and presses ENTER.

System responds and
gives directions for
next step.

Processing

Figure 1-1 A Simple Exchange

Exchange 2 is performed in the same manner as Exchange 1, except that the data requested at the
terminal and the processing required are both different. Notice that in both cases, after the user
presses the ENTER key, a different form appears.

In Exchange 3, the same sequence of data entry and processing occurs. In addition, the system
responds to the user by displaying a message such as "TRANSACTION COMPLETE", and by
supPlying directions for the next step.

1 .1.2 An Order Entry Transaction
Figure 1-3 illustrates a typical TRAX transaction. The general format of the transaction is identical
to that shown in Figure 1-2. The transaction consists of three exchanges, and is used to enter an
order on-line. The transaction demonstrates that in TRAX a transaction represents the entire
sequence of processing necessary to perform one logical operation: in this case, entering an order.

To run the transaction, the user first selects the Enter Order transaction and presses the ENTER
key. The procedure for making the selection is described in Chapter 2. The system starts an
Enter Order transaction beginning with its first form, shown in Exchange 1. The user types in
either customer number or customer name, as desired, and presses ENTER. The application finds
the record for the customer in the customer file and retains the information for use in Exchange 3.

The form shown in Exchange 2 appears after the user presses ENTER in Exchange 1. The form
requests certain general information regarding the order such as purchase order number, and
identity of the order taker. The user types in this data and again presses ENTER. The application
holds the data for Exchange 3.

1-2

Form appears.
User types in data
and presses ENTER.

Form appears.
User types in data
and presses ENTER.

Form appears.
User types in data
and presses ENTER.

System responds and
gives directions for
next step.

Figure 1-2 A Multiple Exchange Transaction

Introduction

1-3

Introduction

User selects
"ENTER" transaction
and presses the
ENTER key.

Exchange 1

User types information
to identify customer
and presses ENTER.

User types general
information for the
order and presses
ENTER.

User types stock
number and quantity
for each order item,
then presses ENTER.

Application displays
the price, number
available, and the
extention for each
item. User presses
AFFI RM to return
to Transaction
Selection Form.

*AII forms shown are mock-ups for illustrative purposes.

Processing
Find customer record
specified by either
Customer No. or

Processing
Hold order
information just
entered for next step.

Processing
• Update customer

record (balance,
etc.)

• Write a record in
the order file

• Update inventory
file

• Print a picking list

Figure 1-3 An Order Entry Transaction

1-4

Introductio n

Exchange 3 begins with a form which requests the specific line items of the order. In the form
shown, the user has already typed in three such items, giving the stock number and quantity for
each. When the order is complete, the user presses ENTER. The application then performs the
necessary processing for the order. The application makes sure that inventory of each item is
sufficient, and if not, displays an error message. The application totals the order, and makes sure
that the customer's credit limit is sufficient. If not, it displays an error message. If the order is
satisfactory, the application changes the customer's balance in the customer record, writes a
record in the order file, changes the inventory file to reflect the items to be shipped, and prints
a picking list for the stock picker. The application then modifies the form to show the price,
quantity available, and extension for each item. Finally, the user presses the AFFIRM key to
return to the original Transaction Selection Form.

Notice that each exchange uses a different form. This is another characteristic of an exchange:
that it may have only one form. The form may be modified (as in Exchange 3), but a totally
different form may not be used.

1.1.3 Structure of the TRAX Transaction Processing System
The TRAX Transaction Processing System provides a complete support structure for creating and
running a transaction processor. A transaction processor is the software used to run one or more
transaction processing applications. In addition, the TRAX Transaction Processing System provides
a number of services for other non-transaction processing functions. These are known as "support
environment services." They include batch processing of data and a number of services such as
creating, editing, compiling, debugging and running programs for users at "support terminals",
which are terminals other than those used for transaction processing.

The general structure of TRAX is illustrated in Figure 1-4. Notice that the diagram is divided into
two parts: the application environment and the support environment. The application environment
contains up to two transaction processors, with their corresponding application terminals. A
second transaction processor, which is allowed on certain system configurations can be used for
testing improvements to the standard transaction processor.

The support environment supplies services both to batch processors and to application programmers
working at support terminals. The TRAX kernel services both the application and the support
environment. Trax is a multi-tasking system; it can support a large number of simultaneous tasks
(or programs).

In a TRAX system, transaction processors have priority over support environment programs.

1.2 TERMINAL USER ORIENTATION
Operationally TRAX is designed to be easy for the terminal user. This ease of operation is achieved
in three ways:

• The VT62 video terminal itself is easy to use.
• The forms that appear on the terminal screen can be patterned after paper forms which

are normally familiar and accessible to the user.
• The communication between the user and the application is simple and straightforward.

Each of these topics is discussed below.

1-5

Introduction

Terminals

=====:===

Application
Terminals

=========

Support
Terminals

========= -T-------

APPLICATION ENVIRONMENT SUPPORT ENVIRONMENT

Figure 1-4 TRAX System Structure

1.2.1 The VT62 Terminal
The VT62 video terminal (shown in Figure 1-5) is used as the interactive application terminal in
the TRAX system. The user actually performs transactions using this terminal. The VT62 contains
a microcomputer that can perform a number of data processing functions within the terminal itself,
thereby reducing the workload on the rest of the system. This results in instantaneous response to
individual keystrokes. In addition, the VT62 provides a series of keys which simplify the process
of data entry and perform special functions when used with a TRAX Transaction Processor. A few
of the features of the VT62 terminal are:

Block Mode. The VT62 terminal is a block mode terminal, which means that it transmits all
user-entered data at one time. In practice, a user can type in a complete screen of data, make
any corrections, and then transmit the data to the system by pressing the ENTER key. Handling
a complete screen of data in this way is faster for the user and creates a greater sense of control.

Reverse Video. The VT62 allows reverse video or black-on-white to be selected for individual
fields on the screen. The reverse video field appears as a white rectangle against the normally dark
screen background. A prime advantage of displaying fields in reverse video is that you can see how
many empty spaces remain in the field, thereby simplifying data entry.

1-6

Introduction

Figure 1-5 The VT62 Terminal

INSERT MODE and DELETE CHARACTER Keys. These two keys provide for direct editing of
characters. Characters can be inserted or deleted at the location of the cursor (the flashing square)
on the screen. This makes it easy to correct individual data items without having to retype a whole
line.

Right-Justified Fields. The VT62 allows alphanumeric characters to be entered onto the field in
the same way as if entered onto a pocket calculator, which is, right-justified or always aligned with
the right border of the field. This avoids the necessity of having to type in leading zeros in a
numeric field that is half full.

1-7

Introduction

Numeric and Alphabetic Fields. The VT62 terminal allows any given field to be defined as numeric
or alphabetic only. For example, if a terminal operator types a Y into a zip code field that is
specified as numeric by the application programmer, the terminal beeps, the keyboard locks, and
an error message appears on the screen saying "NUMERIC ONLY." To correct the error, the
user must press the ERROR RESET key, and then typing can continue. This error correction
sequence is performed by the terminal itself, and does not require application program assistance.

Other Features. The VT62 terminal has a number of other features. For example, there are a
wide variety of ways of positioning the cursor on the screen. (See the TRAX Application
Terminal (ATL) Language Manual). The VT62 also handles the Digital Data Communications
Message Protocol (DDCMP) and can exist in a multi drop environment as well as point-to-point.
Finally, the VT62 allows connection of an optional forms pointer without additional interfacing
hardware.

1.2.2 TRAX Forms
TRAX forms are another system feature that make it easy for the terminal user to operate the
system. A form is a structured arrangement of data that appears on the VT62 screen. The use of
forms allows the user to input a complete screen of data at a time, rather than having to input it,
piecemeal making it easier for the user to handle data.

One advantage of forms is that they allow data to be formatted on a video terminal in a way that
duplicates existing paper forms. For example, a typical purchase order (a paper form) is shown
in Figure 1-6. The implementation of this paper form into a TRAX form is shown in Figure 1-7.
Notice that all fields on the form requiring user input are shown in reverse video.

1.2.3 Communication Between User and Application
The TRAX system provides a series of function keys which allow for easy communication between
the user and the application. These keys are:

• ENTER
• CLOSE
• AFFIRM
• STOP-REPEAT
• ABORT
• Certain other user-defined keys

These keys allow the user to control the flow through the exchanges of a transaction. For example,
in the transaction example shown in Figure 1-8, the user first selects the DISPLAY transaction from
the Transaction Selection Form. Form 1 of that transaction then appears to request the customer
number or the customer name for the customer record to be displayed. The user then types in
this data and presses ENTER. Optionally, the user could press CLOSE, which would cause the
Transaction Selection Form to reappear. After pressing ENTER, Form 2 of the transaction
appears, displaying the contents of the customer record.

At this point, the user has three options:

• Press ENTER to display the next sequential record in the file.
• Press AFFIRM to return to form 1 so as to enter a different customer number or name.
• Press CLOSE to return to the Transaction Selection Form to select a new transaction.

1-8

Introduction

Acme Processing Co. INTERNAL PURCHASE REQUISITION
I PURCHASEOROER N00l

I BADGE N00ll REQUISITIONER

I-R_EC_O_M_M_EN_D_ED_SU_P_PL_IE_R ______ ~t·VIAI ~ gil nRMSI t==J IACCT N°I 3

I I

l"B, UVE,R, C,OOE I ',' CJ,', , ',TR, ACT,' "i RE~, ,~.SI,;"IO, ~'" ;Oi i I SHIP TO I
1--____________ ~I~FIRMtNGNAME.;.,.DATE "j' rNOoRECEIVING 10 °

REPORT REQUIRED 1---------------1
ATTN: 0 L--___________ --l

ITEM QUANTITY DESCRIPTION NUMBER UNIT PRICE AMOUNT
,

"

TOTAL

ESTIMATED TOTAL COST

PRINTED APPROVAL NAME APPROVAL SIGNATURE AND DATE
PURCHASING COpy

Figure 1-6 A Purchase Order (Paper Form)

Function keys allow the user to select the next operation to be performed. The actual keys used
are determined by the application programmer following general system guidelines.

1.3 APPLICATION PROGRAMMER ORIENTATION
The TRAX system is designed to be an easy system in which to implement an application. The
general structure of a transaction processor, and some of the system features which make it
simple for the application programmer to create a transaction processor, are described below.

1.3.1 Transaction Processor Structure
The general structure of a transaction processor is shown in Figure 1-9. A transaction processor
consists of a combination of user-written elements and system-supplied elements.

A TRAX system consists of a kernel which performs the normal operating system peripheral
management functions, one or more transaction processors, application programs, and support
programs. The transaction processor consists of the TRAX Transaction Processor Executive,
application program elements defined by the user, and a dynamic buffer area called the software
cache.

1-9

Introduction

Figure 1-7 A Purchase Order as a TRAX Form

The Transaction Processing Executive performs a wide range of services for the transaction processor
such as file management and application flow control. If not provided, such functions would have
to be specially programmed by the user for the particular application.

The application program elements defined by the user fall into three categories:

• Transaction Step Tasks
• Forms Definitions
• Definition Files

Transaction step tasks (TSTs) are the specific user-written program segments necessary for the
system to perform the processing for the pertinent application. TSTs may be written in COBOL,
or BASIC-PLUS-2 in the form of subroutines.

Forms definitions are file records that define the exact appearance of the forms on the applicative
terminals. Forms definition records specify all possible forms modifications which might be
required for such purposes as sending error messages to the user, or providing directions for the
next user operation.

1-10

Return To
Transaction
Selection Form

Repeat
Transaction

Display Next
Record In
the File

* As Seen By the Terminal User

Display Transaction *

AFFIRM

Figure 1-8 Effects of Function Keys in a Sample Transaction

Introduction

In addition to transaction step tasks and forms definitions, a transaction processor is defined by a
series of user-created entries in several files. These definition files are created by the user through
use of interactive utilities. The files perform such functions as specifying the interaction between
different transaction step tasks and the different forms through which data is displayed and entered
at an application terminal. Definition files serve to separate control from procedure and assure
simplified system maintenance and modification.

1.3.2 COBOL and BASIC-PLUS-2
The TRAX system provides support for user-written applications. These application programs are
written in COBOL or BASIC-PLUS-2. The ANSI 74 COBOL provides the user with a recognized
standard language for data processing applications. BASIC-PLUS-2, an extended version of the

1-1]

Introduction

1-12

Transaction Processor

Application
Terminals

D
=========

D
=========

D
=========

D
=========

TRAX Operating
System

TRAX Transaction
Processing Executive

Forms
Definitions

Transaction
Step
Tasks

Definition
Files

Figure 1-9 Transaction Processor Structure

Introduction

BASIC language, provides the user with a language that is easy to program and that provides a
number of features for commercial and data-record oriented applications.

Because the systems-level programming is provided in TRAX, the user can write application-specific
code in these higher-level languages without fear of poor efficiency and slow execution time. The
user gains all the benefits of writing in higher-level languages : no retraining of programmers,
faster coding, ease in understanding programs, and simpler maintenance.

1.3.3 Transaction Step Tasks (TSTs)
The user writes the code in COBOL or BASIC-PLUS-2 for a specific application in the form of short
subroutines, or program sections, called transaction step tasks (TSTs). A given exchange in a trans
action contains one, or more, TSTs. As illustrated in Figure 1-4, the data from one exchange can
be processed by several TSTs.

A TST normally represents one logical step in the processing. For example, the function of a
given TST may be to read one record from a file.

Dividing a program into a series of TSTs provides distinct advantages to the application programmer.
Each TST can be coded and debugged separately. Since each TST is a logical unit of processing, it
becomes easier to understand the operation of the application as a whole by examining the
interrelationship of these logical units.

1.3.4 ATL, The Forms Language
In the TRAX system, the forms displayed on the terminals are not part of the application code
(the TSTs), but rather are coded and stored separately. TRAX provides a forms language called
Application Terminall.anguage (ATL), which is used to specify the structure of the forms. Using
English words and simple formatting rules, the application programmer can quickly code any
given form.

ATL allows the programmer to specify the initial appearance of the form as it is displayed on the
terminal along with any possible modification to that form such as error messages or directions
to the terminal user concerning the next step to take. ATL allows the application programmer to
specify certain attributes of each field, such as whether a field is to be displayed in reverse video
or whether it is a field into which the user can input data. ATL also allows the programmer to
specify which function keys are "enabled" or "disabled" at a particular point in user/application
interactive dialogue. If a key is enabled,_ pressing it will produce the appropriate response for that
particular key. If a key is disabled, pressing it will produce no response at all.

To create a form using ATL, the application programmer first creates a source file containing the
proper ATL coding. The programmer then compiles this file using the ATL utility program. The
ATL utility generates a listing which provides a variety of information about that particular form.
The ATL utility also creates a record representing the form in a file called the Forms Definition
File. When the transaction processor is running, the Executive refers to this file to find the
information it needs to display a particular form.

For the application programmer, use of the ATL forms language simplifies the task of creating a
transaction processor. Coding for the forms is performed separately from the procedural coding
for the application. As a consequence, it is easier to make modifications to the forms later to
improve their usefulness. Also ATL performs error checks which simplify the process of correctly
coding a form.

1-13

Introduction

1.3.5 Definition Files
After coding the forms and the transaction step tasks (TSTs) for a particular transaction, the
application programmer uses a series of interactive utilities to define the interrelationship of the
various components for that transaction. These definitions are stored in definition files which are
then used by the system to control such things as the sequence of execution of the different TSTs
in a transaction.

Three important definition files include the transaction definition file, the file definition file, and
the station definition file.

The transaction definition file contains definitions of all transactions for a given transaction
processor, including the name of each exchange in the transaction, the name of the form for
each exchange, and the sequence of TSTs for each exchange. Functionally, this file defines
how all the components of a transaction interrelate. The file definition file contains a
definition of each data file in the application, including such definitions as record size,
logical name, and file organization. The station definition file provides a definition of each
logical element in the system such as a terminal or a TST. Stations are described in further
detail in Chapter 3.

A sample listing of a terminal session with one of the interactive utilities is shown.in Appendix B.
The utility of interest produces the transaction definition file. Those items which the user inputs
are underlined. If the user wants more information concerning a question asked by the system,
he can type a question mark. The values enclosed in angle brackets « » indicate the default
values for a question if the user types only a carriage return. For a detailed explanation of this
utility, see the TRAX Application Programmer's Reference Manual.

Use of these definition files in the TRAX system provides several advantages. For example when
it is necessary to change the system, you need only change the corresponding definition file. In
addition, to add two more terminals to a transaction processor, the application programmer need
only add the terminal station definitions in the station definition file. Also, the transaction
definition file provides an overview of a transaction processor's organization which simplifies the
job of maintaining the transaction processor.

1.3.6 Steps in Implementing a Transaction Processor
The process of implementing a transaction processor (Figure 1-10) consists of five steps: design,
implementation, unit debug, transaction debug and production.

Design
This initial phase consists of translating the business problem to be solved into transactions and
data files. Next each transaction is broken down into forms to be displayed and TSTs to process
the entered data.

Implemen ta tion
Source files for forms and TSTs are written and entered into TRAX system via the TRAX
interactive editor EDT.

Forms are compiled utilizing the ATL utility and TSTs are compiled utilizing the appropriate
language processor, COBOL or BASIC +2.

1-14

Definition

• Code and compile forms

• Code and compile TSTs

• Use interactive utilities to create
definition files

Debug

• Use TSTBLD to link an individual
TST for standalone debug

• Run DEBUG utility to debug
individual TSTs

• Use TSTBLD to link TSTs for
debugging

• Install and start transaction
processor in trace mode

• Find and correct errors, using
TPTRAC as an aid

Start

• Use TSTBLD to link TSTs for
final version of the transaction
processor

• Install and start transaction
processor

Figure 1-10 Steps in Implementing a Transaction Processor

Introduction

1-15

Introduction

Creation of the definition files for such elements as transactions, stations, forms, and files, is
performed by running the TRAX definition utilities and answering the questions asked by each
utility.

Unit Debug
Before TSTs can be executed, they must be built into tasks. This process is performed through
use of the TRAX utility TSTBLD.

After being built, TST's are individually debugged in the support environment utilizing the TRAX
TST debugger utility DEBUG. Once the logic of each TST has been tested, the TSTs can be
integrated into a transaction processor.

Transaction Debug
At this point, a transaction processor must be built. This involves:

1. Building TSTs for transaction debug, using TSTBLD.
2. Installing and starting the transaction processor via the TPCTRL utility.

Each transaction is now tested utilizing an application terminal. The tools available for transaction
debug include:

1. A TRACE feature which will log each operation performed and provide a formatted
report.

2. A software error logger which records all errors caused by improper TST operations.
A formatted report is provided.

3. Inclusion of a language debugger, with direct access through a support terminal.
4. Ability to set the entire data base to read only.

Production Use
To prepare for production use, the TSTs must be rebuilt using TSTBLD and the transaction
processor must be re-installed without use of debugging features.

1.4 COMMUNICATION(S)
An integral part of the TRAX design is the ability to distribute the system resources. Because
terminals are multi-drop and utilize Digitals standard communication protocal DDCMP, they can
be clustered on a single communication's line and placed where needed.

The system through its TRAXjTL transaction link allows multiple TRAX systems to form a
distributed data processing network, thereby placing the processing power where it is needed. In
addition, the TRAX/TL-3271 allows a one or more TRAX system to be linked to IBM system
running the CICS transaction processor monitor.

A different aspect of communications is the ability to communicate between support environment
and application environment. This TRAX supplied feature is described in Section 1.4.3.

1.4.1 TRAX/TL Data Communication
In a TRAX/TL link, two or more TRAX systems may communicate with each other so as to share
resources, especially their data files. For example, Figure 1-11 illustrates three TRAX systems, one
in Los Angeles, one in Chicago and one in Boston. Each is used for processing transactions at its

1-16

Los
Angeles

TRAX
CPU

Chicago

TRAX
CPU

TRAX
CPU

Figure 1-11 TRAX to TRAX Data Communication

Introduction

1-17

Introduction

respective location. However, from time to time each system requires access to data files from
another system. To handle this requirement, the Los Angeles system has a data communications
link with the Chicago CPU and a link with the Boston system. These links allow any system to
access any set of data files in either of the other systems. For example, the Los Angeles transaction
processor can initiate a remote transaction which accesses the Boston or Chicago data files as if it
were a local transaction. In effect, a transaction processor in a given TRAX system can initiate a
remote transaction to access the data base or other resources of any other TRAX system to which
that system is connected.

1.4.2 TRAX-to-IBM Data Communication
A TRAX-to-IBM link might be used to place processing capabilities near the users, as in the previous
example, or it might be used to provide additional transaction processing capabilities to an already
existing IBM system. Optionally both might be combined.

Figure 1-12 illustrates a typical TRAX-to-IBM link. The TRAX system is a fully operational trans
action processing system, complete with its own data files. In addition, it has a data link to an IBM
system running CICS. The two CPUs may be in the same room or across the country. Other TRAX
systems could be linked in as well.

1-18

IBM
CPU

(Running CICS)

Figure 1-12 TRAX to IBM Data Communication

Introduction

To the IBM system, a TRAX system appears to be set of terminals. Under this arrangement, the
TRAX system can perform transactions as if they were being performed on the IBM machine itself.

1.4.3 Communication Between the TRAX Application and Support Environments
Communication between a TRAX system application and support environment involves batch
processing and initiation of a single exchange transaction. In the application environment, an
application program can be designed to allow the terminal user to submit a batch job for subsequent
processing in the support environment. In the support environment, any program operating in that
environment can initiate a single exchange transaction to be executed for that program.

The ability to submit a batch job from the application environment allows the processing of large
or complex tasks without tying up the user terminal. It also facilitates maintenance of the TRAX
data base.

Initiation of single exchange transaction from the support environment allows the use of existing
application environment programs by programs in the support environment. The result is greater
system efficiency as well as optimum use of system resources.

1.5 SYSTEM PERFORMANCE
TRAX is designed to provide high performance in transaction processing applications, in terms of
both response time and rat'e of transaction throughput. Some of the system features which
contribute to TRAX performance are discussed below:

• A data management service (RMS) which is both resident and shareable.
• Software Cache
• Use of Micro Processor Controlled Terminals
• Optimized System Code
• "Stationary" Messages

1.5.1 Data Management Services (RMS)
The TRAX data management service (RMS) provides a set of general purpose file handling capabilities
that allow user-written application programs to create, access and maintain system data files in an
efficient and timely manner. With RMS, you have a choice of implementing sequential, relative
and indexed file structures.

Indexed files are reorganized incrementally when new records are inserted, therefore, insertions can
be made on-line without off-line reorganization. Three methods of key searching are provided;
exact, generic, and approximate.

Record access and retrieval can be done sequentially or randomly and records can be accessed
concurrently. Provisions are made for efficient use of the file space as well as for high speed
accessing of files.

Finally, RMS is equipped with language interfaces for both COBOL and BASIC-PLUS-2. Also
comprehensive set of utilities are furnished to support efficient file transfer.

1.5.2 Software Cache
To reduce the number of times TRAX must read from the data files on disk, the system maintains
a software cache in memory (Figure 1-13). Each time the system transfers a data block from disk

1-19

Introduction

to memory, it is stored in software cache. Before transfering a block from disk, the system checks
to see if that block is already in the cache. If so, the block is accessed directly from memory, and
a disk operation is eliminated.

r,

t'-- ~
Application Software

Program Requests --- Cache In
:- Data Files -

For Data Records Memory On Disk

- ..

Figure 1-13 Operation of Software Cache

All data stored on disk is cached in this way. Caching applies not only to the user's data files on
disk, but also to TSTs and forms definitions as well.

Experience shows that a significant percentage of blocks will be in the cache when needed. The
size of the cache is user-determined. Generally all extra available memory is used for the cache.
The greater the cache size, the greater the likelihood that a given block will be in the cache,
thereby improving system performance.

1.5.3 Use of Microprocessor Controlled Terminals
One factor in the high performance of TRAX systems is the use of the VT62 terminal which operates
under control of an internal microprocessor. The terminal user performs all data entry and editing
operations at the terminal. Only after making changes and verifying the data entered, is the data
sent to the TRAX system. Since the VT62 is a block mode terminal, the data is sent as a block
rather than a smaller data units thereby providing for more efficient processing.

1.5.4 Microprocessor Communications Controller
All communications lines between application terminals and the TRAX system are controlled by
microprocessors (KMC-ll); thereby reducing the load on the host system.

1.5.5 Optimized System Code
In TRAX systems, the systems programming is supplied as shared routines. These shared routines
which perform the various system management and application support functions are resident in
system memory and are directly available to all application programs as needed. As a result, the
application, developer need only prepare those parts of a program which are application specific.

1.5.6 "Stationary" Message
TRAX is a message-oriented, system where basic system execution depends on the transmission of
messages from terminals to TSTs and back to terminals. In TRAX, after messages have been
received by the terminal and formatted, none of these messages are actually moved within the
system. Rather, only pointers showing the location of the messages are moved. The result is
greater system performance.

1-20

Introduction

1.6 DATA INTEGRITY
Maintaining the security and accuracy of the user's data files is a prime design objective of the TRAX
system. There are three main system capabilities which promote data integrity:

• Data Backup and Journaling
• Maintaining Integrity of Data Records
• Security Provisions

1.6.1 Data Backup and Journaling
In transaction processing, a prime concern is the ability to recover from a disk failure without loss
of data. In TRAX this is accomplished through a combination of disk backup and journaling.

The TRAX system provides a command that initiates copying of the user's data base onto another
disk or to magnetic tape so that the user's disk files are "backed up". This backup procedure can
be performed as frequently as desired, once a day being the general case. In the event of a disk
failure, another command is available to restore the data base to its state as of the last backup.

In TRAX the problem of restoring transactions processed since the last back up function was per
formed can be solved by journaling. When journaling has been specified, the system writes a record
onto magnetic tape or other medium for each change to the data base. These records can then be
used to reconstruct the data base up to the time of disk failure. The system provides a utility
program to perform this function.

1.6.2 Maintaining Integrity of Data Records
TRAX provides two system features; logical record locking and staging for maintaining the integrity
of individual records in the set of data files.

Where two application-terminal users update the same record simultaneously, the effect of at least
one of the updates would be lost. Locking is the system's primary means of protecting files from
information loss due to simultaneous updates. A logical record requested by a TST can be locked
in order to maintain data file set integrity by preventing simultaneous updates.

Staging is a system feature which, when specified, causes the system to retain all updates to the
data base until a transaction has been completed. At that point, all changes are made at once.
However, if in the middle of the transaction the terminal user changes his mind and decides to
terminate the transaction, none of the updates are made. This insures that the data base is never
left in an "in between" state with some records for a given transaction changed and others not.

1.6.3 Security Provisions
TRAX provides several features that make sure that only authorized persons can perform transactions
or otherwise alter the data base. For example, application terminals are kept separate from support
environment terminals so that it is impossible to gain direct access to the system from an application
terminal.

Also, only certain user-preassigned transactions can be performed at a given application terminal. In
addition, users can sign on, and after supplying a correct password can perform only the transactions
for which they are authorized. In this way, it is possible to maintain rigid control of what persons
or terminals have access to what transactions.

1-21

Introduction

CHAPTER 2

A SAMPLE TERMINAL SESSION

One of the best ways to understand transaction processing under TRAX is to run through a sample
application at a terminal. In demonstrating this sample application, it is assumed that you are
actually sitting at a terminal and running transactions.

All TRAX applications are written by the user. The sample application described is an example of
the type of program that you might write for your own application. Many features of the sample
represent the way the application programmer chose to code this application and do not represent
general TRAX features.

This sample application maintains an on-line file of customer records, each containing customer
number, name, address, telephone number, "attention" line, and credit limit. This application can
be used to add, delete, change, and display a customer record.

2.1 THE TRANSACTION SELECTION FORM
Generally the first form to appear on a screen is a Transaction Selection Form. The Transaction
Selection Form for this transaction processor is shown in Figure 2-1. Throughout the sample session,
the terminal used is the VT62.

A given application may consist of a large number of transactions. In this sample application there
are four transactions:

• Add customer to master file
• Change customer file record
• Delete customer from master file
• Display customer file record

The Transaction Selection Form allows you to choose one of these transactions.

The structure of this transaction processor is shown in Figure 2-2. Notice that there are two levels:
you are at either the level of selecting a transaction or at the level of performing the selected trans
action. In order to perform another transaction it is necessary to exit from the current transaction
and return to the Transaction Selection Form.

In selecting the transaction, note that the cursor (see Figure 2-1) is initially on the "A" of ADDCUS,
the "add customer" transaction. When you press the NEXT FIELD key (see Figure 2-3) the cursor
moves to the initial "C" of CHGCUS, and when you press the NEXT FIELD key again, the cursor
moves to the initial "D" of DELCUS. If you want to select the DELCUS delete customer from
master file, transaction, you have to press the SELECT key causing the name DELCUS displayed in
reverse video, as shown in Figure 2-4. If you press the ENTER key, the first form of the delete
customer transaction appears.

2-1

Introduction

2-2

ADDCUS

Add
Transaction

Figure 2-1 Transaction Selection Form

Transaction Processor

CHGCUS

Change
Transaction

Transaction
Selection

Form

DELCUS

Delete
Transaction

DPYCUS

Display
Transaction

Figure 2-2 Structure of Sample Transaction Processor

Introduction

2-3

Introduction

Figure 2-4 Delete Customer Transaction is Selected

If you make a mistake in selecting a transaction, you need only deselect the transaction by pressing
the DESELECT key, which is the shift form of the SELECT key. After you press the DESELECT
key, the DELCUS is displayed in a normal manner indicating that it is no longer "selected."

To demonstrate the operation of the sample application, you can add a record. To do this, first
select the AD DC US transaction by positioning the cursor on the letter A. To move the cursor back
to this position, press the HOME DISP (home display) key. The only positions on this form which
the cursor can be moved are the initial letters of ADDCUS, CHGCUS, DELCUS, and DPYCUS
which are the names of the different transactions assigned by the application programmer. To
select the AD DC US transaction, press the SELECT key; in response, "ADDCUS" appears in reverse
video. (See Figure 2-5.)

In this example, the six character fields containing the words ADDCUS, CHGCUS, DELCUS, and
DYPCUS are known as Menu fields. Menu fields, which are features of the VT62, allow you to
select one item from a group of items using the "select" procedure described above. Menu fields
allow you to specify a transaction without having to remember the name of the transaction.

2-4

Introduction

Figure 2-5 Add Customer Transaction is Selected

2.2 ADD TRANSACTION
After you select the transaction, press the ENTER key to display the first form in the add trans
action (Figure 2-6). The form consists of a line on top that identifies the transaction, a line of
instructions, a series of blank fields for customer data, and a final line that instructs you on what to
do after you enter data. The customer number is shown as question marks to indicate that it is to
be supplied by the program. In fact, in the example shown here, you cannot write into the customer
number field; attempts to type characters in will not have any effect on the field.

To enter a customer record, first type the name and address of the customer. If the address consists
of only two lines, the third line of the three shown on the screen may be omitted. Use the NEXT
FIELD key in between lines entered. This key performs typewritter carriage return, moving the
cursor from a field on one line to the beginning field on the next line. Next, you enter the telephone
number. As one field is filled, the cursor automatically skips to the next field where data is required.
This feature is known as automatic tabbing.

2-5

Introduction

Figure 2-6 First Form of the Add Transaction

When typing the telephone number, you might accidentally type a letter rather than a number.
Since TRAX is designed to accept only numeric characters in a numeric field, the keys lock, and a
"NUMERIC ONLY" error message is displayed at the bottom of the screen (Figure 2-7). Notice
that, the erroneous letter, is not displayed on the screen. In order to cancel the error message, press
the ERROR RESET key and data entry can proceed normally. This error detection occurs com
pletely within the terminal, the VT62 terminal initiates the audible alarm, locks the keyboard, and
displays the error message. No system intervention is necessary.

Retype the telephone number, and then, if appropriate, type the "Company Contact" line. This is
the line on the bottom of a mailing address in the form:

Attention: John Doe

The Company Contact line is often used when the customer name is a company. Finally, type the
credit limit of the customer in question. The credit limit field is a right-justified field. That is, as
each character is entered, the characters before it move to the left to make room for the new
character, which always remains at the right margin of the field.

2-6

Introduction

Figure 2-7 Terminal Error Message

As you enter the above data on the form shown in Figure 2-8, notice how the reverse video fields
help in showing how many spaces remain in the field.

To enter this record in the master file, you need only press the ENTER key. If you press the CLOSE
key instead, the record is not written and the Transaction Selection Form reappears. When you press
the ENTER key, the system formats and sends the data from the screen to the application program,
which then checks it and writes it to the customer file. After it writes the record to the customer
file, the system modifies the form on the screen so that it appears as shown in Figure 2-9. Notice
that the customer number is assigned by the program, the word "TRANSACTION COMPLETE"
appear on the screen, and the message "Function Keys: Press AFFIRM to Add Another Customer -
Press CLOSE to quit" appears on the bottom of the form. All of these features are determined by
the application programmer.

At this point in the processing, only two function keys with one exception, mentioned below are
"enabled" that is have any effect on the system: AFFIRM and CLOSE. Pressing the ENTER key
produces no result. If you press the AFFIRM key, the initial blank form (Figure 2-6) reappears and
you are ready to enter another customer record. However, if you want to display the record you
just typed in order to verify that it is correct, press the CLOSE key. This causes the initial Trans
action Selection Form to reappear so you can select the display transaction.

2-7

Introduction

Figure 2-8 Completed Record for Customer

Figure 2-9 Customer Number Supplied by System

2-8

Introduction

The third enabled function key is the ABORT key (Shift "7" on the numeric keypad to the right of
the main keyboard). The ABORT key is always enabled, that is, always functions. It causes the
system to abandon all processing and bring you back to the Transaction Selection Form. For
example, if you type all the data shown above and then press the ABORT key, all of the data is lost.

When "staging" is employed, the ABORT key allows you to terminate an erroneous transaction
without concern over what changes to the files were made as a result of the error. See the discussion
of staging in Chapter 4 for more information. Although the ABORT key is always enabled, it is not
referred to specifically in the remainder of the manual. Therefore the statement "Only the CLOSE
and ENTER keys are enabled" actually means "Only the CLOSE, ENTER and ABORT keys are
enabled."

2.3 DISPLAY TRANSACTION
Having pressed the CLOSE key, the Transaction Selection Form reappears. Press NEXT FIELD
three times to move the cursor to "DPYCUS - Display Customer File Record" and then press
SELECT. The word "DPYCUS" appears in reverse video. Press ENTER, and the first form of the
display transaction appears, as shown in Figure 2-10. Notice that you can use either customer num
ber or customer name as a way of specifying a unique customer.

Figure 2-10 First Form of Display Transaction

2-9

Introduction

If, for example, you decide to specify the record by name. You then press the NEXT FIELD key to
move the cursor to the customer name field and type the name which you previously entered for
the customer: "SMITH, ROBERT T". The name must, of course, be typed exactly as before. The
form now appears as in Figure 2-11. Press the ENTER key, and the second form of this transaction
(Figure 2-12) appears, showing the data previously entered. Notice that this form is different from
the add transaction form on which the data was originally entered. The data fields on the right side
of the form are new: Current Balance, Purchase to Date, Next Order No. and Next Payment No.
These fields are all set to zero since your customer has not yet made any purchases. These new
items represent additional data in the customer file which is accessed by other transactions. The
current sample application is designed to be a subset of a larger application.

One other way in which the display transaction form differs from the add transaction form is that
you cannot enter any data or move the cursor in the display transaction form.

Figure 2-11 Using Customer Name as a Key

2-10

Introduction

Figure 2-12 Second Form of Display Transaction

After you have displayed the record, only three keys on the keyboard have any effect on the system
(other than the ABORT key): ENTER, CLOSE and KEYDOT. The CLOSE key on the system,
takes you back to the Transaction Selection Form. The "KEYDOT" key - the shift version of the
(.) ,key on the numeric keypad to the right of the keyboard - can be used to print a copy of a given
record on a hard copy terminal. The ENTER key allows you to browse through the file in alpha
betic order by customer name. Press the ENTER key, and assuming there are other records in the
file, a new record, such as shown in Figure 2-13, will appear on the terminal. You may continue
pressing ENTER and a new record appears each time, arranged in alphabetic order by name.

In this last example, you displayed customer records based on customer name. If you want to dis
playa record based on customer number first press CLOSE to get back to the Transaction Selection
Form, again select the display transaction and press ENTER. This procedure causes the first form of
the display transaction (Figure 2-10) to reappear. Since the customer number of the record you
entered is 2001, as an experiment, try typing one less than that number, i.e., 2000 (Figure 2-14).
Press ENTER, and the record shown in Figure 2-15 appears on the screen. Notice that the customer
number is, in fact, 2000. Press ENTER for "next record". The record for Customer Number 2001,
the same record displayed in Figure 2-12, appears on the screen. Press ENTER again, and the
"Reached End-of-File" message reappears on the screen, as shown in Figure 2-16. The reason for
this is that the record which you entered will have the highest customer number in the file
(assuming that no one is entering data on another terminal at the same time). Therefore, an attempt
to read the next (in numeric sequence) record in the file will fail.

2-11

Introduction

Figure 2-13 The Next Record in the File

Figure 2-14 Using Customer Number as a Key

2-12

Introduction

Figure 2-15 Displaying the Record for Customer 2000

Figure 2-16 Display Form Showing End-of-File Message

2-13

Introduction

This error message is generated by the application program and not, as in the previous case, by the
VT62 terminal. In addition to the "end-of-file" message, several codes are printed which would be
useful to the application programmer in case of severe file errors.

2.4 CHANGE TRANSACTION
The change transaction is used to make changes to a customer record. To invoke the change trans
action, first press the CLOSE key to exit the display transaction. The Transaction Selection Form
appears. Select the change transaction (CHGCDS) and press ENTER. The first form of the change
transaction then appears. For the change transaction, you must identify the individual record by
customer number. Enter the customer number (in this case 200 1) of the record you typed pre
viously; the form will then appear as shown in Figure 2-17.

Press the ENTER key and the customer record appears as in Figure 2-18, just as previously entered.
Notice that the form is essentially identical to that used for the add transaction, except for the
header line which now reads "Change Customer Transaction", and the function keys line on the
bottom of the screen which refers to "refiling" the record.

Figure 2-17 First Form of Change Transaction

2-14

Introduction

Figure 2-18 Second Form of Change Transaction

Suppose that you want to make a complete address change for the customer. To do this, first press
the FORWARD FIELD key twice to position the cursor at the beginning of the address field.
Retype each field and press NEXT FIELD. The retyped version is shown in Figure 2-19. After you
type the correct address, press the ENTER key to refile the record. The program then prints
"TRANSACTION COMPLETE" and "Function Keys: AFFIRM to proceed," as shown in Figure
2-20. At this point, if you press the AFFIRM key, the first form of the transaction, requesting
customer number reappears, now you are ready to perform another change transaction. In order to
get back to the Transaction Selection Form, press CLOSE.

2.5 DELETE TRANSACTION
To delete a record, first select the delete transaction (DELCDS) and press the ENTER key to display
the first form of the delete transaction. (Figure 2-21) In order to delete the previously entered
record, you type the customer number (200 1) and press ENTER. Pressing ENTER causes the record
to be displayed (Figure 2-22) so that you can verify that it is, the correct record. Notice that the
form is similar to those in the add and change transactions.

2-15

Introduction

Figure 2-19 The Address Change Has Been Typed

Figure 2-20 The Change Has Been Made to the File

2-16

Introduction

Figure 2-21 First Form of Delete Transaction

Figure 2-22 Second Form of Delete Transaction

2-17

Introduction

Since the record is the correct one, press the ENTER key. Had the record been an incorrect one,
pressing the CLOSE key would prevent it from being deleted, and would take you back to the
Transaction Selection Form. Pressing ENTER causes the message "TRANSACTION COMPLETE"
and the instructions "AFFIRM to proceed" to be displayed, as shown in Figure 2-23. Pressing
AFFIRM then takes you back to the first form (Figure 2-21) of the delete transaction, ready to
delete another record.

Figure 2-23 The Record Has Been Deleted

Again it should be emphasized that the sample application described here is only an example of a
small application written by one application programmer. Although it demonstrates a number of
features of the TRAX system, it represents only one of a large number of possible ways of coding
this application.

2-18

CHAPTER 3

TRAX SYSTEM OPERATION

This chapter describes the general operation of the TRAX Transaction Processing System, the com
ponents of a transaction processor, and the relationship of the components. Chapter 2 demon
strated the various transactions of a sample application. In addition, this chapter shows the relation
ship between components of the sample application developed in Chapter 2, and how you can
create a transaction processor for a given application.

3.1 BASIC SYSTEM CONCEPTS
TRAX can support up to two transaction processors operating simultaneously (Figure 3-1). Each
transaction processor consists of the TRAX Transaction Processing Executive including Data Man
agement Services (RMS), the application terminals where transactions are performed, and the three
components; forms definitions, transaction step tasks, and definition files which the user defines for
the application.

3 .1.1 Forms and Forms Definitions
A form is the structured arrangement of fields displayed on a video terminal. The word form may
also apply to structured data printed on a hard-copy device such as the LA-180 printer. In this case,
it is called a report form. Forms are the medium through which the application program and the
terminal user communicate.

The use of forms in conjunction with the VT62 terminal has distinct advantages over conventional
data entry techniques, such as the DISPLAY and ACCEPT statements in COBOL, or the PRINT
and INPUT statements in BASIC. Some of these advantages are:

• Forms allow the data comprising an entire screen to be transmitted at one time. Since all
preliminary work is handled by the VT62 terminal, system overhead is minimized, mak
ing more computer time available to speed up transaction response time.

• Forms allow the user to see a complete screen of data, thereby clarifying the interrela
tionship between data items for the user. Also, changes can be made in one operation,
and the results visually verified before being entered.

• Forms, takes the place of conventional paper forms, so that the user deals with data in a
familiar manner.

You code forms using the TRAX Application Terminal Language (ATL) which is a series of simple
English-like statements which define the nature of every field on the screen. These same statements
also predefine possible modifications of those fields such as displaying responses for the user.

The programmer uses DEC EDITOR to create a file of statements in ATL source language (see
Figure 3-2) and then compiles this file using the ATL utility program. The result is a record in the
Forms Definition File which contains information to instruct the TRAX executive on how to dis
playa given form on the VT62 terminal.

3-1

TRAX System Operation

3-2

Application
Terminals

D

D
=======;::

D
=========

TRAX Operating
System

TRAX Transaction
Processing Executive

Forms
Definitions

Transaction
Step
Tasks

Definition
Files

RMS Data
Management

System

Figure 3-1 Transaction Processor Structure

Defining the Form

Programmer
Codes Forms
In ATL Source
Language

ATL Source
Forms Coding

Form In Use

Requests For a
Form

Forms Are
Compiled

ATL
Utility

Executive Finds the
Form on Disk and ...

TRAX
Transaction Processing

Executive

TRAX System Operation

Forms Definition File
Stored On Disk

... Displays It Quickly
and Efficiently

** ADD TRANSACTION **
Custo ... r Nu.b .. r _______ _
Custo ... r N ______________ _
Addr ____________________ _

Zip
Attr.: ______________________ _

Credit U.it ________ • __

Press ENTER To Add custo •• r
Pr .. ss CLOSE To Qui t

= - - - --- - - --- - - --

Figure 3-2 Defining and Using Forms

3-3

TRAX System Operation

In addition to defining the data fields appearing on the displayed form, the form definition record
contains codes that predefine modifications to the form such as error messages, to inform the user
of processing errors, and user instructions concerning error recovery. Such modifications change
certain fields of the form, but do not alter the basic form identity.

Appendix B contains a sample of an ATL source file. Further explanation is provided in the TRAX
Application Terminal Language (ATL) Reference Manual.

3.1.2 Transaction Step Tasks (TSTs)
Transaction Step Tasks (TSTs) are user-written application programs written in the form of a sub
routine. Each TST perfonns one processing step of the pertinent Transaction.

In this manner TRAX allows the application programmer to segment the processing of exchange
data into a series of smail sequentially executed application programs.

The Transaction Processing Executive controls the simultaneous execution of many TSTs, a set of
which performs the processing for each transaction.

Figure 3-3 shows the data flow between a form and two TSTs for the add transaction described in
Chapter 2. The symbol in the upper left corner of Figure 3-3 that resembles a video terminal is used
to represent the form that appears on the screen. The user types in customer data on the form and
presses the ENTER key:The system then transmits this data to TST I which validates it. Then the
same data is passed on to TST 2, which writes it into the customer file on disk. Finally, TST 2 sends
a message back to the fonn to tell the user that the transaction is complete, and to instruct the user
as to the next step to take. The second illustration of the fonn is shown as dotted to indicate that
this is not a new form, but a modification to the original form. Coding for a sample TST, in COBOL,
is shown in Appendix B.

3.1.3 Transaction Instances
When discussing transaction processing, it is necessary to distinguish between a transaction in gen
eral, (that is, the definition of the transaction), and a specific example of a transaction running on a
terminal. A transaction running on a terminal is known as a transaction instance. The word instance
in this context is used in its normal dictionary meaning, which is "a case or example."

Figure 3-4 illustrates a transaction processor with four terminals and distinguishes between transac
tion and transaction instance. Three of the terminals are running an add transaction and one is
running a change transaction. The illustration, then, shows two kinds of transactions and four trans
action instances altogether. Although the three add transactions represent the same transaction
definition, each is a unique transaction instance. The data entered by the user and processed by the
system for each transaction instance is totally different. Each transaction instance can proceed at
its own rate, depending on the available system resources and the speed with which the user enters
data.

3-4

TRAX System Operation

Form 1
User Types In
Customer Data

** ADD TRANSACTION **
Custoller Nu.ber _______ _
Custo.er H ______________ _
Address ____________________ _

Zip'
At.tn: _" _______________________ _

Credit. lillit ___ . _____ • __

Press ENTER To Add Custo .. er
Press CLOSE To aui t

Same Form With
Modifications To Indicate
"Transaction Complete"

r-------------.
I ,
, ** TRANSACTION COI1PLETE ** I
I CIJst.olfJer NIJlrtt"ler .. ----"---- I
I ~~~~~::r __ ~::~ ._=============== I

..

TST 1

Validate Data
Entered By
Customer

TST2

Write Record
Containing Customer
Data To Disk

I ------ -- -------- ------------- , -1---------------------1
I ~~~n: ___ ______ ______________ I
I Credi t l. i .. i t ---------. -- I
I Press AFFIRI1 To Proceed I
I I r------------1
I =========- I &..._------------'

Figure 3-3 An "Add" Transaction Showing a Form and Two TSTs

Add
Transaction

Transaction
Processor

Add
Transaction

-------- ---------------

Add
Transaction

--------------. --------

Figure 3-4 Four Transaction Instances

Change

Transaction

Customer
File

DISK

3-5

TRAX System Operation

3.1.4 ExchangeMessages
In the sample transactions described in Chapter 2, a common data entry sequence involved typing
some data and then pressing the ENTER key. Upon receipt of the data, TRAX formats the data
into an exchange message according to the forms definition. An exchange message is a formatted
sequence of data sent from a form to one or more TSTs. Figure 3-5 illustrates this operation for the
add transaction shown in Chapter 2.

After TRAX formats the data, it sends it to the series of TSTs that will process it. This is illustrated
in Figure 3-6. The exchange message goes to the first TST, where the data in the exchange message
is processed.

3-6

User Types In Customer
Data and Presses ENTE R

** ADD TRANSACTION **

Press ENTER To Add Custoffier
Press CLOSE To Quit

Customer Customer Address Address Address Zip Telephone
No. Of Number Name line - 1 line - 2 line - 3 Code Number Line
Characters --- 6 30 30 30 30 5 10 20

Figure 3-5 Creation of a Typical Exchange Message

To
TSTs

TRAX System Operation

Form

User Types In
Customer Data and

Presses ENTER

** ADD TRANSACTION **
Custo •• r Nu.b.r _______ _
Custo •• r N ••• ______________ _
Add •• S5 ____________________ _

Zip
Attn: ______________________ _
Credit Liait ________ , __

P •• "s ENTER To Add Custo •••
P.OPS5 CLOSE To aui t

Exchange Message

Sends Customer Data To TST

TST 1

Validate Data
Entered By
User

Exchange Message (-----------'
Is Passed On To I
Next TST 'TST 2 \.-------

Write Record

Customer
File

Containing Customer DISK
Data To Disk

Figure 3-6 Transfer of the Exchange Message

A routing list associated with each exchange message specifies the sequence of TSTs that will pro
cess the particular exchange message. Notice that the diagram shown in Figure 3-6 is divided into
three sections: user interactiqn, messages, and processing. The user interaction section comprises
forms and user interaction with the forms. The message section shows the messages that are sent
between forms and TSTs. The processing section consists of the TSTs that perform the actual
processing for the application.

3.1.5 Response Messages
The data structure genera ted by a TST and directed to the user's terminal is called a response
message (Figure 3-7). The response message is the means by which TSTs return data to the user's
terminal. When a terminal interface, or other data source, sends an exchange message to be pro
cessed, it will wait for only one response message. Therefore, a single TST cannot send multiple
response messages and only one TST of all those visited by an exchange message can send a response
message.

3.1.6 Stations
A station is a message-handling location within the transaction processor. Stations can send and
receive messages. There are several kinds of stations which are classified according to the kind of
transaction processing element that uses the station to send and receive messages. The two most
important kinds of stations are terminal stations and TST stations.

Each terminal station is associated with a particular application terminal. Data received from a ter
minal is formatted into an exchange message by the terminal station and sent to the appropriate list
of processing locations. The response message for that exchange message will be received at the
same terminal station, interpreted according to the current state of the user's conversation, and
then forwarded to the appropriate terminal.

3-7

TRAX System Operation

Form

** ADD TRANSACTION **
Cusloa.r Nuab.r _______ _
Cusloa.r N.a. ______________ _
Addr.ss ____________________ _

Zip Attn: ______________________ _
Cr.dil liait. ________ , __

Pr.ss ENTER To Add Custoa.r
Pr •• s CLOSE To Quit

Same Form, Modified
r------------...
I I
I ** TRANSACTION COMPLETE ** I
I Custoa.r N'Jab.r ________ I

Exchange Message

Sends Customer Data To TST

TST 1

TST 2

Validate Data
Entered By
User

I ;~:~:::r _~~~~_=============== 1 .. ~ ___ Re_S_po_n_s_e _M_e_ss_ag_e ___ ----I
II ii;.-------------------------- !, Sends Modifications

Write Record
Containing Customer
Data To Disk

Atln: ----------------------- To Form I Cr.dit. Uait. -------- '-- ,

I Pr ••• AFFIRM To Proc •• d ,

I , r-----------,
I ========= I &...= ___ :...=.=.= ___ ~=-J

Figure 3-7 Transfer of the Response Message

Customer
File

DISK

TST stations are associated with Transaction Step Tasks (TSTs). Exchange messages received at a
TST station cause a copy of the TST to be activated in order to process the exchange message. The
number of copies of a TST can be limited and exchange messages in excess of this limit will await a
free TST copy to process them.

3.1.7 Exchanges
An exchange is the basic unit of processing in the TRAX system. From the terminal user's view
point, an exchange typically consists of three steps:

1. The system displays a form containing a request for data
2. The user types in data, and press the enter key
3. The system responds.

From an applicatioJ?, programmer's view point, an exchange consists of an exchange message being
routed to a series of TSTs. An exchange normally consists of the following elements in this order:

1. A form
2, An exchange message (generated when the user enters data and presses ENTER)
3. A series of one or more TSTs that process the exchange message
4. A response message, sent by one of the TSTs in the exchange.

A typical exchange is one shown in Figure 3-8. This is the same transaction used in the previous
illustrations. Notice that this is a one-exchange transaction. However, a transaction can have many
exchanges.

3-8

TRAX System Operation

** TRANSACTION SELECTION FORK **
ADD
CHANGE
DELETE
DISPLAY

SELECT On. Tr.ns.ction
Th.n Pr.ss ENTER

==

** ADD TRANSACTION **
Custo •• r Nu.b.r _______ _
Custo •• r N ••• ______________ _
Addr.ss ____________________ _

lip ____ _
Attn: ______________________ _
Cr.dit Li.it ________ • __

Pr.s" ENTER To Add Custo •• r
Pr.ss CLOSE To·Quit

Exchange 1 (Only Exchange)

= TST 1

Keys Enabled
ENTER--~--------~~~~~~----~
CLOSE (Contains Customer Data)

Form 1 (modified)
r------------ ...
I I
I ** TRANSACTION COKPLETE.. I
I Custo •• r Nu.b"r ________ I

I ~~~~~::r _~~~~_===============I ____ R~e-sp-o-n-s-e-M-e-s-sa-ge------_i
I ii;-------------------------- (Modifies Form)
I Attn: ______________________ _ ! ::::' .~:::: ;:-;::::- i
r------------1
I -======== I "-- - - - - - - - =~

Keys Enabled
AFFIRM
CLOSE

Validate Data
Entered By
User

Write Record
Containing Customer
Data To Disk

Figure 3-8 A One Exchange Transaction

Customer
File

3-9

TRAX System Operation

In the add transaction shown in Figure 3-8, the user selects the add transaction and presses ENTER.
In response, the ~ystem starts the transaction beginning with Form 1. The transaction selection
process is not considered to be an exchange, since the transaction has not actually begun.

Figure 3-8 shows several new elements not shown in Figure 2-6: the Transaction Selection Form and
a bar below indicating that the add transaction was selected. The exchange itself is enclosed in a
gray box.

In addition, the symbol for a form contains a new box entitled "Keys Enabled." This box specifies
which function keys such as CLOSE, AFFIRM, STOP-REPEAT, ENTER are permitted to function
at this stage of the processing. If a key is disabled, pressing it has no effect. If a key is enabled,
pressing it causes the pertinent function to be performed. The application programmer specifies
which keys are to be enabled and which disabled when he codes the form for the exchange. A
response message which modifies a form can alter the keys enabled.

In Figure 3-8, the exchange begins with a form which requests data from the user. The user types in
the data and presses ENTER. The system then generates an exchange message containing this data
and sends it to a preassigned routing list of TSTs. After TST I has validated the data, the exchange
message passes to the second TST. TST 2 writes the customer data from the exchange message to
disk. When it is finished, it sends a response message to the form changing the keys enabled, saying
"TRANSACTION COMPLETE," and giving the user instructions on the next step to take.

It is common for a form to be changed during the processing that occurs in a given exchange. How
ever, an exchange cannot have more than one form. The form may be modified - keys may be
enabled or disabled, certain fields may be changed - but the basic form remains the same. For
example, input fields, the fields into which the user types data, cannot be changed. Further, all
changes must be predefined when the form is first coded.

It is evident that the structure of exchanges has a profound effect on the way in which an applica
tion designer structures a given application. For a given transaction, each exchange represents an
"exchange" of information between the user and the system. The basic design process is essentially
one of breaking the application down into appropriate transactions and exchanges.

3.1.8 User Function Keys
The VT62 keyboard (see Figure 3-9) has several keys known as user function keys. The user func
tion keys are ENTER and the shift versions of 0, I, 2, 3 and. (dot) located to the right of the key
board on the numeric keypad (Figure 3-9). All of these keys have the same function as ENTER:
each causes the system to generate an exchange message. However, by a simple step in coding a
form, the keys can be made program distinguishable. Thus, the user function keys may be assigned a
fixed function in a user's application program. For example, in a sales-statistics application, keys
might have the followings meanings in regard to a specific report:

Key 0 - results, overall summary
Key I - results, summary compared with previous years
Key 2 - results, broken down by product line
Key 3 - results, broken down by territory

In this manner, the application designer may assign a logical set of functions to the keys.

3-10

TRAX System Operation

3-11

TRAX System Operation

User function keys are made TST distinguishable through a TRAX function called key caps. A key
cap is a string of text assigned to a given user function key when the application programmer codes
the form. When a key is pressed, an exchange message is created which contains, in addition to
other data, the text string assigned to the particular key pressed. These text strings can be a letter, a
word or a phrase. For example, in a warehouse inventory application, certain keys might be assigned
the following text strings:

Key. - ITEM MISSING FROM STOCK
Key ° - ITEM PICKED (FULL COUNT)
Key 1 - ITEM PICKED (PARTIAL COUNT)
Key 2 - ITEM SUBSTITUTED

When the terminal user presses one of the function keys, the system sends an exchange message con
taining one of the text strings along with other data entered on the terminal. The application pro
gram then tests to see which text string was received, and performs the processing associated with
that string.

3.1.9 System Function Keys
In addition to user function keys, the VT62 has several keys known as system function keys. Sys
tem function keys are: AFFIRM, CLOSE, STOP REPEAT, and ABORT. System function keys do
not cause an exchange message to be created; rather, allow the terminal user to specify one of
several alternative paths in the system.

In the example shown in Figure 3-10, when the user presses AFFIRM at the end of the exchange,
the exchange is restarted with a fresh copy of the form. Similarily, when the user presses CLOSE,
the terminal returns to the Transaction Selection Form. After pressing a system function key and
until a system response is displayed the keyboard is locked and no user input is possible.

3.1.10 Reply and Proceed Messages
Up to this point, all messages which originate from a TST were called response messages. There are,
however, a number of different types of response messages. Two of the most important are reply
and proceed messages. Other types are discussed in the TRAX Application Programmers Reference
Manual.

The response message, shown in Figure 3-10, is an example of a reply message. A TST sends a reply
message to a form in order to modify the form and to enable user input. In this example, the reply
message: (1) changes the top of the screen to say "TRANSACTION COMPLETE," (2) changes the
instructions at the bottom of the screen to read "Function Keys: Press AFFIRM to Proceed; Press
CLOSE to quit function," (3) disables the ENTER key, and (4) enables the AFFIRM key. All of
these actions were precoded on the form as reply number 2. When the TST sends reply message
number 2 to the form, all of the above actions occur. The application programmer implements a
reply message by calling a standard system-supplied subroutine called REPLY.

3-12

E o
u.
iij
.~

·c
o
I
o

** TRANSACTION SELECTION FORM __

ADD
CHANGE
DELETE
DISPLAY

SELECT On. Transaction
Th .. n Pr.ss ENTER

** ADD TRANSACTION **
Custo •• r Nu.b.r _______ _
Custo •• r N ••• ______________ _
Addr •• s ____________________ _

Zi .. Attn: ______________________ _
Cr.di t Li.i t ________ • __

Pr .. ss ENTER To Add CustD •• r
Pr .. ss CLOSE To Qui t

=

TRAX System Operation

TST 1

Keys Enabled Exchan Message
ENTER--~--------------~----~------_4~

Validate Data
Entered By
User CLOSE (Contains Customer Data)

Form 1 (modified)
r------------...
I I
I ** TRANSACTION COMPLETE ** I
I Custo •• r Ny.b .. r ________ I
I ;~~~~::r _~~:~_=============== .. 1 .. ____ R....,..eS_p_o_n_s_e_M_e_s_s_a_ge _____ oooooo!

I ----------------------------- (Modifies Form
I !!~n: ---------______________ Including Keys Enabled)
I Cr .. dit li.i t --------. -- I
: Pr ... s AFFIRM To Proc d I

r------------1
I -======:: I L-_ ______ _--'

Write Record
Containing Customer
Data To Disk

(!)L.-__ ~i--__ +-_

Figure 3-10 Example of System Function Key Actions

3-13

TRAX System Operation

In addition to the specific functions involved in displaying the form (Figure 3-10), the system per
forms a general function of unlocking the keyboard. After the user presses ENTER, as shown in the
top form of the diagram, the system locks the keyboard. The reply message unlocks the keyboard,
although in this case it enables only the AFFIRM and CLOSE keys. One function of a reply message
is to return control to the user. However, the form that the user sees when control is returned is the
same form as before. A reply message can modify a form, but cannot create a new form.

A reply message always functions within the current exchange. If the designer wants to have a fresh
version of the form at this point, it is necessary to leave the exchange. One way to do this is with
the proceed message.

A proceed message is a message sent by a TST that causes the transaction to go to the exchange
specified by the subsequent action. A proceed message can also optionally pass data, for example a
record, to the new exchange. Figure 3-11, which is a diagram of the display transaction described in
Chapter 2, illustrates this point. Notice that this is a two-exchange transaction.

3.2 HOW TO CREATE A TRANSACTION PROCESSOR
This section describes how the various components of a transaction processor interrelate, along with
the TRAX system logic, and how you combine all components to create a transaction processor.
The sample application described in Chapter 2 continues to be the basis for the following discussion.
The intention in this section is to define the logical units in a TP and how you combine them as to
create a transaction processor.

3.2.1 Structure of a Transaction Processor
There is a major difference between the structure of a TRAX Transaction Processor (TP) and that
of an application program in a more conventional system. A conventional application program
consists of a large code sequence, generally divided into subroutines or other logical units. This
code, sequence along with the execution sequence and conditions, is contained in the body of the
application program.

Compared to conventionally coded applications the file-defined logic of a TRAX TP makes it easier
to understand and diagram application program flow. The basic program flow is documented by
listing one file. This results in faster application design, faster coding, easier debugging, simpler
maintenance, and greater ease in changing or upgrading an application program.

3.2.2 Organization of the Elements
The basic elements of a transaction are forms and TSTs combined into exchanges. To create a
transaction processor, you must reduce the processing into transactions and then into exchanges,
and then code the forms and TSTs for each exchange. You must then inform TRAX of the associa
tion between the pertinent forms and the TSTs which comprise the individual exchanges through
use of the Transaction Definition Utility (TRADEF, see Section 3.2.3).

3.2.3 The "TRADEF" Definition File
The most important file for controlling the operation of a TP is the TRADEF (TRAnsaction
DEFinition) file. The TRADEF utility creates this file through an interactive dialog with the appli
cation programmer. The TRADEF file contains the essential logic, in coded form, for each exchange
in a transaction.

3-14

TRAX System Operation

A

From Transaction
Selection Form

.~tation Messages Processing

DISPLAY TRANSACTION

Exchange 1

Form 1

** DISPLAY TRANSACTION .*
Cu.to •• r Nu.b.r _________

or
Custo •• r N ••• _______________

Pr ••• ENTER To S •• R.cord
Pr.". CLOSE To Quit

TST 1 - - - - - - - - -- - - - - --- - - - - - - - -
Read Customer

Keys Enabled Exchange Message File Using
ENTER Either Customer
CLOSE Sends Customer Name Number Or Name

Or Number As Key

tEnd: NEXT

Proceed Message

Sends Customer Data
To Form 2

Exchange 2

Form 2 1

** DISPLAY TRANSACTION .*
Cu.to •• r Nu.b.r _________
Cu.to •• r N ••• _______________
Addr ••• _____________________ Proceed Message
----------------------------- - Sends New Customer Zi~ -----Attn: _______________________

Data To Form Cr.dit Li.it. _________ • __

Pr.". ENTER For N."t R.cord
Pr ... CLOSE TO QUIT

- - - - - - - - - TST 2 - - - - - - - - -- - - - - - - - -
Keys Enabled Exchange Message Read Next

ENTER -- Record From
CLOSE Customer File

At End: REPEAT, FIRST

Figure 3-11 Diagram of a Display Transaction

Customer
File

~ -r--- -'

- DISK

.........

Customer
File

~ -....
......... --- DISK

......... -'

3-15

TRAX System Operation

3.2.4 Additional Definition Files
In addition to the TRADEF file, several other files are used to define a transaction processor. These
are:

3-16

TPDEF (Transaction Processor Definition). This file contains general system parameters for all
TPs. The TPDEF file contains records for each TP on the TRAX system.
STADEF (Station Definition). This file contains a list of all stations for a given TP such as TST
stations, terminal stations, and the like. (Several other types of station types are mentioned in
the next chapter.)
FILDEF (File Definition). This file lists all the data files used by the application program and
provides information on file organization (sequential, relative, or indexed), record size and so
on for each.
WORDEF (Work Class Definition). This file sets a series of work classes. The given work class,
"CLERK" for example, is authorized to perform certain transactions. Another work class, say
"SUPER," is authorized to perform another (perhaps greater) number of transactions. See the
section on system security in Chapter 4.
AUTDEF (Authorization Definitions).This optional file works in conjunction with the work
class file and is used to assign a user number, a password, and one or more classes to a given
individual. See the section on system security in Chapter 4.

CHAPTER 4

SPECIAL TRAX CAPABILITIES

Chapter 3 developed the basic system concepts necessary to understand TRAX. This chapter builds
on these concepts and presents a number of features of the TRAX system which increase its overall
flexibility.

4.1 ADVANCED SYSTEM FEATURES
In the prior chapters, several special TRAX features and capabilities have been omitted, or only
mentioned, while developing a general understanding of the system. These special features include:

• Record locking
• System and user workspace
• Staging
• J ournalling
• Transaction logging
• Exchange Recovery
• Output-only stations
• Additional stations
• Batch processing
• Communication between transaction processors
• Links between TRAX and other computers

The following sections discuss each of these features.

4.1.1 Record Locking
To understand record locking and the advantages of this feature consider the following example.
Two users on different terminals make changes to the same file and record. One changes the cus
tomer's name, and another changes the address of the same customer who had moved. Both press
ENTER, assuming that their changes will be made. Both transaction instances rewrite the original
record, but the changed record written first (name) is destroyed by the changed record written
later (address). As a consequence the customer's new address, is lost and the integrity of the data
base is corrupted.

This problem is solved in TRAX by the record locking feature. When reading a record with the
intention of changing and rewriting it, the application programmer may specify a "read with lock."
This means that that particular record cannot be read for purposes of updating it until the record is
again unlocked. This feature applies to a single record and not to the whole file. The record locking
feature and is supported by both COBOL and BASIC-PLUS-2.

4-1

Special TRAX Capabilities

4.1.2 System and User Workspace
The concept of an exchange message, specifically a message which passes data from a terminal sta
tion to a routing list of TSTs, is illustrated in Figure 3-5. Other elements associated with an
exchange message were not shown at that time to simplify the diagram. These elements are shown
in Figure 4-1.

Exchange Message User Workspace System Workspace

Figure 4-1 Structure of the Transaction Slot

When a user presses ENTER and the system sends an exchange message, the exchange message is a
part of a larger structure called the transaction slot. The word "slot" is used here in the same sense
as a slot into which you place a coin; that is, a slot is a predefined space into which something is
put. In particular, the system maintains three areas in the transaction slot: the exchange message,
the transaction workspace, and the system workspace.

As previously indicated the exchange message consists of data entered at a terminal and sent by the
system when the user presses ENTER or another user function key. The format of the exchange
message for a particular exchange is specified in the form for that exchange. It is then up to the
application programmer to use the same format in a given TST that will handle the data.

The exchange message along with the entire transaction slot associated with that message is sent to
the routing list of TSTs or other stations. The two other sections of the transaction slot are the
transaction workspace and the system workspace. The system workspace cannot be accessed directly
by the application programmer. It is used to maintain systems-related information concerning a
given transaction instance.

Conversely, the transaction workspace, is available to the application programmer to use in any
manner desired. It exists for the entire time that the transaction instance is active, and can be used
to pass data between TSTs, or for any other purpose.

4.1.3 Staging
Staging in the TRA~ system is the delay of each update to a file until the end of the transaction
instance requesting the update.

If for any user or system-initiated reason the transaction instance is aborted, then the updates
will not occur and the data file remains intact without cleanup operations. Staged records are
stored in the system workspace to await the end of the transaction instance.

Naturally, records that are staged must be locked to prevent simultaneous update (see Record Lock
ing). In addition, the storage of the updates utilizes system resources. TRAX allows staging to be
specified on a file basis, thus limiting use of system resources to the minimum level required.

4-2

Special TRAX Capabilities

As an example of an application of staging, consider the following situation arising in an order proc
essing department for a toy manufacturer. A store owner calls up and orders a number of different
types of toys, some of which are on back-order. When the salesperson is entering the order, the store
owner decides that the toys are too expensive and too many are back-ordered, so he cancels the
order.

Without staging, at this point there could be records for this order in several files: items back
ordered, inventory items to be picked, and an entry in the invoice file. A tedious examination of the
file would have to be made and each record created for this transaction deleted. With staging, how
ever, the user need only press the ABORT key on the terminal, since no records have been physi
cally updated, the data files remain intact.

4.1.4 Journalling
In many applications, it is extremely important to insure that system failures do not impact the data
base. For example, a hardware disk failure might cause the contents of the disk to be destroyed. In
such situations it is important to be able to reconstruct the data files up to the time of failure. In
general, this situation is handled by copying files onto another peripheral device at periodic inter
vals. (Refer to the TRAX System Manager's Guide for details on this procedure.) But in such situa
tions, the problem remains: how to reconstruct the changes made to a file since the last backup
copy was made.

In TRAX, this problem may'be solved by specifying the journalling feature. When journalling is
specified, information necessary to reconstruct the results of each transaction are written onto
another peripheral device such as a tape drive. A system-supplied utility program can then use the
tape to reconstruct the files up to the point where failure occurred.

Journalling is accomplished by writing the transaction slot as it exists at the end of the transaction
onto the journal device. Files whose integrity must be protected by journalling also require staging.
As a consequence when joumalling is specified, you also get staging. A t the end of a transaction, the
transaction slot contains a copy of all records in that file to be added or changed. This provides the
necessary data to be able to reconstruct the files.

4.1.5 Transaction Logging
In many applications, it may be important to the application designer to provide an audit trail, or
some way to reconstruct the processing performed by a given transaction processor. TRAX provides
the application designer with a system program to create an audit trail by writing any specified data
to the journal medium. In addition, the designer may assign a given alphabetic character to each
type of log entry. This character may be used later to identify the type of entry.

To read the transaction logging file TRAX provides a utility program called "SHOLOG" which is
capable of selecting and printing log records, SHO LOG is also capable of producing an RMS com
patible file of selected log records.

4.1.6 Exchange Recovery
Exchange recovery provides a method of restarting an exchange without requiring subsequent input
of the user data being processed by the exchange. Before the exchange begins, a copy of the
exchange message is saved on disk. In the event restart is requested by a TST, then the system
fetches the message and begins the exchange processing again.

4-3

Special TRAX Capabilities

Exchange recovery is particularly effective in recovery from resource interlock problems such as a
record required by a transaction instance is already locked by another transaction instance. Since
exchange recovery requires additional disk operations and therefore reduces system throughout, its
use should be limited to "must" situations.

4.1.7 Output-only Stations
So far two types of TRAX stations have been described: TST stations and terminal stations. This
section describes another type of terminal station the output-only station.

In TRAX the LA-I 80 output-only terminal is assigned as an output-only device to serve as a hard
copy station. This terminal can be used to print reports on-line. Such a "report" consists of a form
specially coded for the output-only terminal, and is typically used for relatively short data items
such as a stock picking list or a hard-copy version of a record displayed on the VT62 terminal. For
longer management-type reports consisting of a number of pages of data, a job would normally be
submitted to the batch processor to print the report on the line printer. The TRAX line printer
cannot be used as an output-only station.

Printing a report on an output-only terminal is initiated within a TST by calling the system sub
routine REPORT. The output-only terminal can be used by any transaction. If more than one
report is sent to the terminal at a time, the system places additional reports in a queue to wait
until the previous reports are printed.

4.1.8 Additional Stations
The TRAX system provides seven types of stations:

• Terminal stations

• TST stations

• Mailbox stations

• Submit batch station

• Slave batch station

• Master link station

• Slave link station

Terminal stations and TST stations have been discussed previously. Mailbox stations are a special
type of station that allows one TST to send a message to another TST. A mailbox station will retain
all messages sent to it until they are picked up by the appropriate TST, consequently, a mailbox
station can be used as a depository of messages. The remaining four kinds of stations are discussed
in the next two sections that follow.

4.1.9 Batch Processing
Under TRAX it is possible to have a batch-processor running in the support environment. On sys
tems with sufficient memory, a batch processor and one or more transaction processors may run
simultaneously. It is also possible to have a limited degree of communication between a transaction
processor (TP) and a support-environment batch job. Two special stations are provided for this
function.

4-4

Special TRAX Capabilities

A submit batch station is a station in a TP that can submit a batch job, that is, request it to be
placed in the batch queue, to be processed in the support environment. This is accomplished by
sending a correctly formatted exchange message containing a SUBMIT request to the submit batch
station which would be one of the stations on the routing list.

A slave batch station is a station in a TP that can be instructed by a program in the support environ
ment to run a single-exchange transaction within a TP. Thus, while a submit-batch station allows a
transaction to initiate processing in the support environment, a slave-batch station allows a support
environment program to initiate processing within a transaction processor.

TRAX supplies the system library program that can initiate a transaction from the support environ
ment. (See the TRAX Application Programmer's Guide for details.)

4.1.10 Communication Between TPs: TRAX to TRAX and TRAX to IBM
TRAX allows for communication between two or more TPs running on different CPUs. Two types
of stations perform this communication: master link stations and slave link stations.

A master link station is the initiating station. If one TP is required to start a transaction in another
TP, a message must first be routed to a master link station in the initiating TP. The master link sta
tion in turn initiates a data transfer to the TP at the other TRAX system.

A slave link station in the other TRAX system is the receiving station for the data. This station then
begins the transaction in the receiving CPU. After the transaction is complete at the receiving TP,
data may be sent back along the same set of links to the transaction at the initiating TP. One master
link station may initiate transactions through a number of slave link stations.

TRAX allows for intercommunication with another TRAX computer or with an IBM computer on
which CICS is run. In TRAX-to-TRAX communication, a master link station and one or more
slave link stations perform the link. In IBM-to-TRAX data communications, a master link station
serves as a link on the TRAX end and CICS serves as a link on the IBM end. See the TRAX Appli
cation Programmer's Guide for details.

4.2 TRAX SECURITY AND RELIABILITY
The security and reliability of a computer system are of prime importance. A system must be secure
to prevent it from being used in unauthorized ways or by unauthorized people. A system must be
reliable in performing its assigned jobs, without loss of processing ability or data stored on the sys
tem. The TRAX transaction processing system provides a number of features, described below,
which make it a secure and reliable system for a wide range of data-processing applications.

4.2.1 Application Terminals and Support Terminals
In the TRAX system, the terminals assigned to transaction processing are called application termi
nals. Application terminals are kept completely segregated from support terminals which are used
to create programs and communicate with the operating system. This restriction is strictly
enforced; the system even uses separate interface devices for application terminals and support
terminals. Therefore, it is, impossible for any terminal or other device connected through an appli
cation terminal interface to gain access to the TRAX operating system. As described in Chapter 2,
the operation of an application terminal is strictly defined by the TP. The user is prevented from
performing actions other than those specifically provided for by the application programmer.

4-5

Special TRAX Capabilities

Support terminals provide access to the operating system. However, they are used only for program
development and system management; they need never be placed in a location where they would be
accessible to anyone except the data processing staff. Furthermore, a production TRAX system
requires only one or two support terminals that could reside in a machine room. Such placement
would provide even greater security.

4.2.2 Terminal and User Authorizations
The TRAX system is designed to maintain user and terminal authority files, for authorization to run
individual transactions. A given terminal may be assigned one set of transactions. A given user may
be authorized to use another set of transactions. If a user tries to run a transaction he is not author
ized to use, he is denied access to that transaction.

The system maintains two definition files on user authorization, the work class file and the author
ization file. The work class file contains a series of work classes and a set of possible transactions
for each. For example, the work class "CLERK" may be assigned one set of transactions, while the
work class "MANAGR" may be assigned a different set of transactions.

The defined work classes can be used in two ways. A terminal may be assigned a certain work class.
Here, a sign-on procedure might be unnecessary. In this case the terminal would be located in a
place where only people qualified to perform those transactions would have access to it.

In addition, each user authorization may have one or more work classes assigned to it. This informa
tion is stored in the authorization file. This is the file that stores the user identification and pass
word mentioned under "sign-on" below. A user may sign-on to a terminal previously assigned to a
given work class and by signing on, may alter the number or type of transactions permitted to be
performed.

This hierarchy of authorization has two purposes: to provide the application designer with the
ability to design a system that exactly matches the variations of processing needed for the particular
application, and to maintain a high degree of security at each point in that processing.

4.2.3 Initial Transaction Selections
Another way of providing system security is to define the system in such a way that, for individual
terminals, the transaction selection form does not appear, only the initial form of a preassigned
transaction appears. This means that for that terminal, only that transaction may be performed.
This option might be useful for a situation where a person is responsible for one transaction, and
there is no security problem involved in running that transaction. This arrangement would provide
security by not allowing any other transactions to be run at that terminal.

4.2.4 The Sign-on Transaction
The TRAX system also provides security through a sign-on procedure. TRAX provides prewritten
sign-on and sign-off transactions. In addition, for certain unusual applications, users can modify
these transactions by adding their own TSTs.

A normal sign-on procedure is as follows, In a typical application, when a terminal operator turns on
a terminal, the first form displayed is the Transaction Selection Form. Two of the transactions on
the form will be SIGNON (sign-on) and SIGNOF (sign-off). This situation is illustrated in Figure 4-2.
The Transaction Selection Form also contains a number of other possible transactions.

4-6

Special TRAX Capabilities

Figure 4-2 Transaction Selection Form Containing Sign-On and Sign-Off

If a user who is not signed on attempts to select any transaction other than SIGNON, the system
will respond with an error message saying that he is not authorized to use that transaction. To sign
on, the user selects the SIGNON transaction and presses ENTER. The sign-on form shown in
Figure 4-3 will appear on the screen.

To complete the sign-on procedure, the user merely types his name, or other user identification, on
the top line, and a password consisting of a prearranged group of numbers or letters on the second
line. The password characters are not displayed on the screen as typed to prevent another user from
learning that user's name and password. After signing on, the user can use any transaction for which
he has authorization.

To sign-off, the user selects the SIGNOF transaction and presses ENTER. The sign-off form appears
on the screen displaying the message "Press Key Enter to Sign Off." The user merely presses ENTER
and is signed off.

4.2.5 Reliability
The TRAX system has a number of features that provide for system reliability. Many of these were
described in previous sections. For example, record locking and staging are designed to ensure the
integrity of the data base. Journalling and transaction logging ensure data backup in case of system

4-7

Special TRAX Capabilities

Figure 4-3 The Sign-On Form

failure. In addition, under power failure recovery, another system reliability feature, the system
automatically restarts itself after a power failure or other system problems. All of these features
ensure that the TRAX system maintains the highest possible degree of reliability.

4.3 TRAX DATA MANAGEMENT SYSTEM
The TRAX Data Management Service (RMS) is a system resource that can be used both by a given
transaction processor and by programs in the support environment. RMS supports three types of
files: sequential, relative, and indexed. Each of the three types of files is described below.

4.3.1 Sequential Files
In a sequential file records are placed one after the other in a continuous sequence. To read a given
record in a sequential file, you must first read every record prior to the record being accessed.
Further, to read a record before the current one, you must first close and then reopen the file.

When writing a sequential file, you can only write a record following all those previously written. In
other words, you cannot insert a record into the middle of a file.

4-8

Special TRAX Capabilities

4.3.2 Relative Files
A relative file is a file divided into a sequence of numbered, fixed-size cells. The cell size is deter
mined by the size of the largest record to be stored in the file. These cells may contain records, but
there is no requirement that a given cell will contain a record. Empty cells may be interspersed with
cells containing records.

Each cell from the first to the last has a number. Since cell numbers are unique, they may be used to
identify a given record. In a relative file, the record may be addressed by number. On a disk file it
is possible to read record 27 without having to read all the previous records. Further, it is possible
to write a record in an empty cell in the middle of the file. A relative file can also be written and
read in the same manner as a sequential file.

4.3.3 Indexed Files
In many data processing situations, it is desirable to store records in a file and then be able to locate
a given record based on certain data contained within the record itself. For example, in an employee
file it is useful to be able to identify each record in the file by the badge number or employee name.

A useful file type for this situation is the indexed file. Access to such a file is controlled by an
index maintained by RMS. In a single-key indexed file, all records in the file are accessed according
to the value of a certain specified field in the record known as a key.

Assume that the key is the 'employee name. Then RMS will construct an index based on employee
names. For every record in the file, the index will contain the employee name for that record and
the location of that record in the file. RMS will be able to locate the record for employee ABLE, the
record for employee JONES, the record for employee SMITH, and so on.

Notice that RMS does not care what is stored in the field used as the key. Numbers, letters, special
characters or any combination of these can be used. RMS merely constructs an index based on
whatever is contained within the specified field.

All indexed files must have at least one key, known as the primary key. In addition, the file may have
have a number of alternate keys. Assume that the employee's badge number is an alternate key.
RMS would construct two indexes, a primary index and an alternate index. Any record in the file
can be accessed either by the employee name for that record or the badge number for that record.

In TRAX, a requirement for the primary key is that no two records in the file can have the same
key. For the alternate key, however, duplicate keys are allowed. In the example shown, it would
probably make sense to interchange the two keys in order to make the badge number the primary
key and the employee name the alternate key. A badge number is normally unique, but there could
be two employees with the same name.

Under RMS, indexed files may be maintained only on disk. To use an indexed file, it is necessary to
create an empty structure or shell before any records can be added. The RMS utility program
RMSDEF is used for this process. Records can be added to the file either by another RMS utility,
or by a user program which can be either a TST or a program in the support envirionment. Notice
that the add transaction shown in Chapter 2 contains an example of such a TST.

4-9

Special TRAX Capabilities

An application program may use indexed files in a variety of ways. For a given key, either employee
name or badge number, a program can read, write, change or delete a record; for example, the
record for employee "Jones" or for badge number "11733").

In addition, an indexed file can be used in a sequenced manner because the indices are arranged in
alphabetic or numeric order. After a read based on badge number 11781, a program may perform a
statement of the form "read next record." If this is done, this record with badge number 11782
or the next sequential record in the file is returned. Successive "read next record" statements read
records with sequentially ordered badge numbers.

Similarly if the "read next record" statement follows a read based on employee name JONES, the
statement would return the next record in alphabetic order by customer name - perhaps JOYCE.
Successive "read next record" statements would then read r~cords in alphabetic order by customer
name.

4-10

CHAPTERS

THE TRAX SUPPORT ENVIRONMENT

The TRAX support environment is the non-transaction processing part of the TRAX system where
program development and system maintenance functions are performed. In a system which sup
ports simultaneous transaction processing and full support environment services, the support envi
ronment user may be unaware that the system is simultaneously processing transactions, except for
slower response times. In systems without a full support environment, only required transaction
processing utilities may be executed. To the support environment user, the system seems to be a
normal multiprogramming system for creating and updating files, developing and running programs,
and the like.

Application terminals which are used for processing transactions cannot be used for program devel
opment in the support environment. To create a transaction processor, the application programmer
first develops all the components (Forms, TSTs, etc.) on a support terminal and then starts the
transaction processor. The ~P then runs on the application terminals.

The purpose of this chapter is to provide a brief introduction to the services available to support
environment programmers or other users. For more information, see the TRAX Support Environ
ment User's Guide.

5.1 THE KERNEL OPERATING SYSTEM
The Kernel operating system is a multitasking operating system that can control and run many tasks
simultaneously. Tasks are created by compiling and linking a program. Tasks can be stored on disk
until they are needed, and then quickly loaded into memory and executed.

5.2 THE TRAX FILE SYSTEM
TRAX provides the user with a number of file-handling capabilities. For example, a user can create
a file at a terminal, and an application program can read from and write onto a file. Such files are
managed through TRAX Data Management Services (RMS). RMS handles sequential, relative and
indexed files. In the support environment, RMS routines are linked directly with the pertinent task
and therefore are non-shareable. Any user program which accesses a file does so through RMS. Fur
ther, any command entered at a support terminal which accesses a file does so through RMS.

5.3 THE DIGITAL COMMAND LANGUAGE
The DIGITAL Command Language (DCL) is a convenient means of communicating with the oper
ating system. Using common English words such as RUN, COPY, EDIT, DIRECTORY and
DELETE, you can request a variety of services including editing, file handling, compiling, linking,
running, printing and many others.

DCL supports two levels of users: privileged and nonprivileged. Privileged users can execute all DCL
commands, some of which can affect the way the system performs for other users. Nonprivileged
users can execute a subset of these commands that provide all normal processing capability. The
commands available to privileged users are defined in the TRAX System Manager's Guide. The
commands for nonprivileged users are defined in the TRAX Support Environment User's Guide.

5-1

The TRAX Support Environment

5.3.1 Spooling Files to the Line Printer
The line-printer spooler allows you to print copies of files on the line printer without having to wait
at the terminal until the line printer is free. To print a file, type PRINT and the file specification,
and the file is immediately placed in a queue to be printed. The TRAX system provides several com
mands to show a file's location in the queue, and to modify the queue if desirable.

5.3.2 Other DCL Commands
There are other DCL commands which perform the functions listed below:

ABORT - stop a running task or a command.
ALLOCATE - assign a device, such as a disk file, to a user for that person's exclusive use.
BASIC - compile a BASIC-PLUS-2 source program.
COBOL - compile a COBOL source program.
DELETE - delete a file.
DIRECTORY - list a selected group of file names and sizes.
EDIT - call the system editor to edit a file.
HELP - provide information on one of the commands.
LOGIN - provide access to the system.
MESSAG E - send messages to other users on the system.
RENAME - assign a different name to a file.
SET - set a number of system parameters.
SHOW - show the value of these same parameters.

The complete set of DCL commands are described in the TRAX Support Environment User's
Guide.

5.4 PROGRAMMING LANGUAGES
The TRAX system supports COBOL and BASIC-PLUS-2.

5.4.1 COBOL
The COBOL that runs on the TRAX system is DIGITAL's version 3.5 COBOL defined as a large
subset of ANSI 1974 COBOL. There are also some extensions for use only in TSTs. Some of these
are the "READ WITH LOCK", "WRITE WITH LOCK", "REWRITE WITH LOCK", and
"UNLOCK" statements. These statements help solve problems involving simultaneous updates to a
file.

The TRAXjCOBOL product includes:

• COBOL compiler and run-time system
• RFRMT source program reformat utility
• CBLMRG COBOL ODL merge utility
• Language extension for record locking

5-2

The TRAX Support Environment

5.4.2 BASIC-PLUS-2
Description:
BASIC is a conversational programming language which uses simple English-like statements to
describe a procedure. The BASIC-PLUS-2 language is a superset of the RSTS/E BASIC-PLUS and
Dartmouth BASIC languages. The BASIC-PLUS-2 compiler runs under the TRAX operating sys
tem, and produces object modules which can be linked by the operating system's linker.

BASIC-PLUS-2Ianguage features include:

• CALL statement - allows interface to separately compiled BASIC-PLUS-2 subroutines.
The subroutines can be called by name and passed several arguments.

• COM or COMMON statement - allows data to be passed between program segments.
• RECORD I/O using the operating system's RMS file structure - allows logical record

manipulation and record locking.
• Multi-key Indexed Sequential Access Method using the RMS indexed file organization

access methods.
• Interactive debugging commands to speed program development.

5.5 TRAX SYSTEM UTILITIES
The TRAX system provides a variety of utilities. Among these are SORT, DATATRIEVE, and vari
ous transaction processing utilities.

5.5.1 SORT
The SORT utility allows you to read any input file, sort the contents, and write sorted data on to
an output file. The sort may be based on any set of keys for a given record. If you do not wish to
sort your data base, you can use sort to extract selected portions of a record from the data base, and
then sort those records according to predetermined keys. SORT handles any file organization sup
ported by RMS: sequential, relative or indexed. Since an indexed file is already sorted through the
index, SORT can be used to sort it by keys different from those maintained by the index. SORT
can only be used in the support environment.

5.5.2 DATATRIEVE
DATATRIEVE is an interactive data-interrogation and report-writing utility for use in the support
environment. Although the same functions could be performed in higher-level languages, DATA
TRIEVE command sequences can be written on line and tested interactively. No compiling and
linking are required. The commands are simple to use, and are forgiving of errors.

DATATRIEVE can be used to interrogate a data base, select certain information, sort the informa
tion and print it in a clear, usable form. In addition, commonly used sequences of code may be
retained in the files and used by other DATATRIEVE users later.

5.5.3 Transaction Processing Utilities
There are several utilities to support the definition and maintenance of transaction processors. For
example, the definition utilities TPDEF, TRADEF, STADEF, FILDEF, WORDEF and AUTDEF
described in Chapter 3 are in this category.

5-3

The TRAX Support Environment

In addition, TRAX provides the following utility programs for transaction processors:

ARCHIVE - allows you to back up files that is, make copies in case of device failure and to
restore the original files in the event of a failure.
RECOVER - allows you to make all changes to a backup file since the last time it was backed
up, provided the transactions were journalled.
SHOLOG - allows you to find and print certain records in a file created by a user-logging
procedure.
IPCIRL - allows you to control execution of a transaction processor. Commands include
INSTALL, START, STOP and REMOVE.
IPMOD - allows you to change certain parameters of a running transaction processor, for
example, to connect or disconnect a terminal station.
SERLOG - logs all software error messages such as messages to indicate a system-aborted
transaction. The messages are written to a file and optionally to a support terminal.
IPSTAT - collects samples of key system statistics at predetermined intervals and records
these on a file. These statistics can then be used to determine system loading and to make
alterations to the system to improve performance.
STAREP - analyzes and displays in a meaningful format the statistical data collected by
TPSTAT.

In addition, there are a number of other utilities described in the TRAX Application Programmer's
Guide and TRAX System Manager's Guide.

5.6 BATCH PROCESSING IN THE SUPPORT ENVIRONMENT
The TRAX system provides a full and flexible batch-processing capability. The user submits a job
for batch processing at any support terminal by typing the SUBMIT command. This causes the
system to place the job in the batch queue to be executed in its turn. If desired, the SUBMIT
AFTER form of the command can be used to initiate a job that is to be run after a certain time.

Another option allows a PRIORITY to be specified, causing the current job to be run sooner or
later than other batch jobs in the queue. In addition, there are a number of commands that allow
the programmer or terminal user to display the current batch queue and make changes to it.

5-4

APPENDIX A

TRAX USERS AND THE MANUAL SET

POTENTIAL USERS OF THE TRAX MANUAL SET
In any given TRAX installation, there are a number of ways individuals can use the system. These
are summarized in the table below. The TRAX manual set is also described in this appendix.

User

Terminal User

Data-Entry Manager

System Manager

Application Designer

Application Programmer

THE TRAX MANUAL SET

TRAX System Users

User Function and Information Needs

Person who runs transactions at an application terminal. Needs
to know clerical procedures and how to operate the application
terminal.

Person who supervises terminal users. May need a complete
understanding of the system or only the minimum required to
instruct employees in how to perform their jobs.

Person who is responsible for the system in general and for
individual user accounts on the system in particular. The
system manager mounts tapes, performs routine maintenance,
makes backup copies of important files, and generally oversees
computer operation. Needs a general understanding of the
system, plus specific procedures to perform individual tasks.

Person who designs the transaction processing application, and
delegates programming of that application to the application
programmer. Needs to understand the system operation in
detail and how to implement a given application on the TRAX
system. Also needs to understand various TRAX features such
as staging and exchange recovery, and how design tradeoffs
affect system performance.

Persons who code a given transaction processing application
based on specifications and directions provided by the appli
cation designer. Needs to know general information about the
support environment, plus specific information about coding
forms, coding transaction step tasks, and running TRAX utility
programs.

The TRAX manual set consists of 19 documents. Each is described, along with its intended audience,
in the following table.

A-I

TRAX Users and the Manual Set

Manual and Order No.

Introduction to TRAX
(Order No. AA-D327A-TC)

TRAX Application
Designer's Guide
(Order No. A-D328A-TC)
(Manual consists of two parts,
Part I and Part II)

TRAX Application
Programmer's Guide
(Order No. AA-D329A-TC)

TRAX Application Terminal
Language (ATL) Reference
Manual
(Order No. AA-D330A-TC)

TRAX Support Environment
User's Guide
(Order No. AA-D33IA-TC)

TRAX System
Manager's Guide
(Order No. AA-D332A-TC)

TRAX System
Generation Manual
(Order No. AA-D33SA-TC)

TRAX BASIC-PLUS-2
Language Reference Manual
(Order No. AA-D336A-TC)

TRAX BASIC-PLUS-2
User's Guide
(Order No. AA-D337 A-TC)

A-2

The TRAX Manual Set

Manual Content and Audience

SYSTEM MANUALS

Provides a general1,lnderstanding of the TRAX system.
Intended audience: all users of the TRAX transaction
processing system, including those who wish only a brief
introduction to the system. (Chapters I and 2)

Provides a detailed and thorough understanding of the
structure and operation of a TRAX transaction processing
application. In addition, provides a method for developing
a given transaction processing application. Intended
audience: application designer.

Provides the specific information needed by an application
programmer to code, debug, and run a transaction process
ing application. Intended audience: application
programmer and application designer.

Describes how to code forms using the Application Termi
nal Language (ATL). Intended audience: application
programmer and application designer.

Describes how to perform normal support environment
functions: logging in on a terminal; creating and editing
files, programs; and so on. Intended audience: all TRAX
programmers.

Describes how to perform system operator functions such
as startup, shutdown, and batch processing control;
transaction processor management functions such as
installing and starting a transaction processor; support
environment management functions such as hardware
error logging and running utilities. Also describes how to
use the DIGITAL Command Language (DCL) for both
privileged and non-privileged commands. Intended
audience: system manager.

Describes, step-by-step, how to run the program that
creates a TRAX system which has been customized to
meet the exact requirements of the particular installation.
Intended audience: system manager.

LANGUAGE MANUALS

Descnbes the general structure and statement format of
BASIC-PLUS-TWO. Intended audience: PASIC-PLUS-2
programmer.

Describes the specific features of BASIC-PLUS-2 as imple
mented on the TRAX system. Intended audience:
BASIC-PLUS-2 programmer.

Manual and Order No.

TRAX COBOL Language
Reference Manual
(Order No. AA-D338A-TC)

TRAXCOBOL
User's Guide
(Order No. AA-D339A-TC)

TRAXMACRO
Language Reference Manual
(Order No. AA-D340A-TC)

DEC EDITOR
Reference Manual
(Order No. AA D347A-TC)

TRAX Linker
Reference Manual
(Order No. AA-D344A-TC)

TRAX RMS MACRO
Programmer's Guide
(Order No. AA-D344A-TC)

TRAXODT
Reference Manual
(Order No. AA-D343A-TC)

TRAX User Mode
Diagnostics Reference Manual
(Order No. AA-D344A-TC)

TRAX SORT
Reference Manual
(Order No. AA-346A-TC)

TRAX Users and the Manual Set

The TRAX Manual Set

Manual Content and Audience

LANGUAGE MANUALS

Describes the general structure and statement format of
COBOL as implemented on DIGITAL computers.
Intended audience: COBOL programmer.

Describes the specific features of COBOL as implemented
on the TRAX system. Intended audience: COBOL
programmer.

Describes how to use the MACRO assembly language.
Intended audience: assembly language programmer.

UTILITY-PROGRAM MANUALS

Describes how to use DEC EDITOR, the utility program
that allows you to perform a wide variety of edits (i.e.,
changes) on files. Intended audience: All TRAX

programmers and those who use the system to store and
maintain documents.

Describes how to use the system linking program.
Intended audience: all TRAX programmers.

Provides detailed information about RMS (Records
Management Services) and shows the MACRO program
mer how to access this structure directly. RMS is a record
and data management system that supports several types
of file organizations, including indexed files. Intended
audience: MACRO programmer.

Describes how to use the ODT (On-line Debugging
Technique) utility for debugging MACRO programs.
ODT provides capabilities such as running the user's
program up to a selected breakpoint, making modifications
and then running it again. Intended audience: MACRO
programmer.

Describes how to run User Mode Diagnostics, a set of
utilities to test out any given peripheral device in case of
suspected errors, or as part of a preventive maintenance
program. Intended audience: system manager.

Describes how to use the SORT utility to sort a file
according to specified keys. A number of different types
of sorts are available. Intended audience: any programmer,
operator or other system user who needs to sort files.

A-3

TRAX Users and the Manual Set

Manual and Order No.

TRAX DATATRIEVE
User's Guide
(Order No. AA-D347A-TC)

A-4

The TRAX Manual Set

Manual Content and Audience

UTILITY-PROGRAM MANUALS

Describes how to use DATATRIEVE, an interactive utility
used to access (and optionally modify) a data base, and
print reports based on that data base. The commands
allow for simple generation of headings, selecting given
records and items in a record, sorting data, and printing
final reports. Intended audience: any data base user.

Figure B-1 Form One of the Display Transaction

B-1

B-2

DEFAULT

FOR~

CLEAR. " "
ENABLE • CLOSE

DISPL.AV • 3,1i
VALUE • 'Culteme~ ~alte~ File SUblYltem • OflPlay Cu.teme~ T~a"laetfo""
LENGTH • 60
ATTRIBUTE. REVfRSE,N08L.ANK

DISPLAV • 5,1
L.A8EL • REPLY.TEXT.A
LENGTH • 80

DISPLAV • 6,1
LABEL. REPLY.TfXT.8
LENGTt04 • 8111

PRO~PT • 1,1
VALUE • "Cu.tome~ Numbe~·

INPUT •• ,20
LABEL. CUST.NO
LENGTt04 • 6
CLEAR • "111"
ATTRIBUTE. REVERSE, RIGHT

PROll1PT •• +2,10
VALUE • II •• OR •• "

PROMPT •• +2,1
VALUE • "Cu.tome~ Name"

INPUT • • ,l"
LABEL. CUST.NAME
L.ENGTH • 3"
ATTRleUT! • REVERSE

PRO~PT • 15,1
LABEL • ~EV.PRO~PT
L.ENGTH • 8111
VALUE • lI~u~ctfo~ KeYI' ",

"ENT!R to I.e cu.teme~ r.eo~d, ",
"CLOSE to Quit fu~ctfo""

'TTR!8UT! • REVERSE

~ESSAGE • 1
VALUE •

CUST.NO,
CUIT.NAME

REPLV • 2

END

WRITE. REPLV.TEXT.A, REQUEST(1,80)
WRITE. REPLV.TEXT.B, REQUESTC81,80)

Figure B-2 ATL Source Code for Form One

00001
00002
00003
0"0"4
00005
00006
0"1"7
0"'''8
0(IJ10"
o "11J1 0
0"011
01012
00"13
"""14
00015
100lft
00017
00018
1101"
00120
00021
00022
00123
11'0024
00025
0002ft
e0021
00128
0002"
000311'
00031
11'0032
""033
00034
00015
00036
00037
00038
11'003.,
00040
00041
00042
00043
00044
00045
00146
01041
"'0048
0004.,
00050
00051
00052
11'0"'51

Figure B-3

IDENTIFICATION DIVISION.

PROGRAM-ID. TSTEP.
AUTHOR. DAVID-BRITT.
INSTALLATION. DEC.
DATE-WRITTEN. 12-DEC-71.
DATE-COMPILED. TODAV.

22-MAR-18 •
ENVIRONMfNT DIVISION.

CON'IGURATION SECTION.
SOURCE-COMPUTER. POP-II.
OBJECT-COMPUTER. POP-II.

INPUT-OUTPUT S!CTION.
FILE-CONTROL.

SELECT CUSTOM ASSIGN TO "CUITOM.DAT
ORGANIZATION IS INDEXED
ACCESS MODE IS DVNAMIC
RfCORD ~!V IS CUSTDMER-NUM!!R
ALTERNAT! R!CORD K!V IS CUSTOMER-NAM!

WITH DUPL.ICATES
FILE STATUS IS CUSTO~ER-FILE-STATUS.

DATA DIVISION.

FILE SECTION.
FD CUlT OM

LABEL RECORDS ARE STANDARD
VALUE OF 10 IS CUSTO~ER-CHANNEL-NUMBER
DATA RECORD IS CUSTOMER-FILE-RECORD.

01 CUSTOMER-FILE-RECORD.
03 CUSTOMER-NUMBER
03 CUSTOMER-NAME
03 ADDRESS-LINE-I
03 ADDRESS-LINE-2
03 ADDRESS-LINE-3
03 ADDRESS-ZIP-CODE
03 TELEPHONE-NUMBER
03 ATTENTION-LINE
03 CREDIT-LIMIT-AMOUNT
03 CURRENT-aALANCE
03 PURCMASES-VTO
03 NEXT-ORDER-SEQUENCE-NUM
03 NEXT-PAVMENT-SEQUENCE-NUM

~ORKING.STORAGE SECTION.

PIC XC,).
PIC X(30).
PIC)(30).
PIC X(31).
PIC XC]I).
PIC "(5).
PIC '(10).
PIC X(20).
PIC .,(UI)V.,q.
'IC 'CUnY',.
PIC 'ClllYQQ.
ItIC '(4).
PIC '(4).

01 CUSTOMER-CHANNEL-NUMBER PIC XCII)
VAL.UE IS "CUSTOM/CHI1".

01 CUSTOMER-'ILE.STATUS
01 FILE-STATUS-WORD

PIC XX.
PIC XX.

TST FIND: COBOL Identification, Environment and Data Divisions (l of 2)

B-3

B-4

.9)0054
IUJ055
00056
00057
00058
000S9
00060
00061
00062
00063
00064
00065
00066
00067
00068
0"069
00010
00011
00072
00173
00074
00075
00076
fl0077
00078
00079
01180
10181
00082
00083
00084
00085
00086
00087
le088

Figure B-3

01
01

01
fat

01

BUFFER-SIZE
STATUS-WORDS.
03 STATUS-WORD-l
03 STATUS-WORD-2
REPLY-NUMBER
REPLY-MESSAGE-BUFFER.
03 REPLY-MESSAGE-TEXT
03 REPLY-FILLER
VALUE IS "FILE STATUS
03 RMS-FSw
03 RMS-FILE-NAME
EDIT-'IELD

PIC 9999 COMP.

PIC S9(4' COMP.
PIC 59(4) COMP.
PIC 9999 COMP.

PIC X(80).
PIC X(lb)

~ORO".

PIC X(CI'.
PIC XCb0).

PIC z,ZZZ,ZZZ.99.

LINI(AGf SECTION.
01 fXCHAN~E-MESSAGE.

02 EM-INPUT-FORM-OPCUSI.
03 EM_CUSTOM!R-NUMBER
03 EM-CUSTOMER-NAME

01 TST.~ORKSPACE.
02 wS-CUSTOME~-FILE-RECORO.

PIC XCb).
PIC X(10).

03 wS-CUSTOMfR-NUMBER PIC XCb).
03 wS-CUSTOMER-NAME PIC X(30).
03 wS-ADDRESS-LINE-t PIC X(30).
03 WS-ADDRESS-LINE-Z PIC X(30).
03 WS-ADDRESS-LINE-] PIC X(30).
e] wS-AODRESS-ZIP-COOE PIC 9(5).
03 wS-TELEP~ONE-NUMBER PIC 9Cl~).
03 wS-ATTENTION-LINE PIC X(20),
03 WS-CREDIT-LIMIT-AMOUNT PIC X(12'.
03 wS-CURRENT-BALANCE PIC X(12).
03 WS-PURCHASES-YTO PIC X(12).
0] WS-N!XT-ORDER-SEQUENCE-NUM PIC 9(4'.
03 WS.NEXT-PAY~ENT-SEQUENCE-NUM PIC 9(4).

TST FIND: COBOL Identification, Environment and Data Divisions (2 of 2)

IllS'
111'1
~I"l·

11211
flI21l
01212
'0213
11214
01205
00216
1121'7
11208
0021'
01210
01211
11212
01213
10214
01215
00216
1121'7
10118
9921'
00220
11221
19222
90223
00224
09225
09226
01227
0.0228
1022'
10230
11231
00232
IU123]
00234
09235
09236
00237
00238
0823'
1112"0
102"1
11242
1924]
11244
19245
11246
11247
119248
1924q
90250

PROCEDURE DIVISION USING EXCHANG[-MESSAG!, TST-~ORKSPACE.

DECLARATIVEI.

Note: The DECLARATIVES Section Is Shown In Figure 8-5

END O[CLARATIVES.

TST-PROCESSING-SECTION SECTION.
TEST-FIEL.DS.

OPEN INPUT CUSTOM.
I~ CUSTOM!R-'ILE-STATUS IS GR[ATER THAN '9'
GO TO END-PROGRAM.

IF EM_CUSTOMER-NUMBER IS GREATER THAN "900000"
GO TO READ-SY-NUM8ER.

IF EM_CUSTOMER-NAME IS GREATER THA~ SPACES
GO TO READ-BY-NAME.

GO TO END-PROGRAM.

READ-BY-NUMBER.
MOVE EM-CUSTOMER-NUMBER TO CUSTOMER-NUMBER.
READ CUSTOM
~EY IS CUSTOMER-NUMBER.
IF CUSTOMER-FILE-STATUS IS GREATER THAN "0"
GO TO END-PROGRAM.

GO TO OISPLAY-CUITOMER-RECORO.

READ-ttY-NAME.
MOV! EM_CUSTOM[R-NAME TO CUSTOMER-NAM[.
READ CUSTOM
KEY IS CUSTOMER-NA~E.
I' CUSTOMER-'IL.E-STATUS IS GREATER THAN "0'"
GO TO END-PROGRAM.

GO TO DISPLAY-CUSTOHER-RECORD.

OISPLAY-CUSTOM[R-RECORO.
MOVE 295 TO BUFFER-SIZE.
MOVE CUSTOMER-FILE-RECORD TO WS-CUSTOHER-FILE-RECORO.
MOVE CREDIT-LIMIT-AMOUNT TO EDIT-FIELD.
MOVE EDIT-FIELD TO WS-CREDIT-LIMIT-AMOUNT.
HOVE CURRENT-BALANCE TO EDIT-FIELD.
MOVE EDIT-FIELD TO WS-CURRENT-8ALA~CE.
MOVE PURCHASES.YTD TO EDIT-FIELD.
MOVE EDIT-FIELD TO WS-PURCHASES-YTO.

CALL 'PRCEED" USING wS-CUSTOMER-FILE-RECORD,
BUFFER-SIZE,

STATUS-WORDS.

ENO-PAOGRAM-SECTION SECTION.
END-PROGRAM.

EXIT PROGRAM.
Figure B-4 TST FIND: Procedure Division (Minus Declaratives Section)

B-S

B-6

rUJle,
111'1
100'1
000'2
110'1
101'4
lie"
'Ie"
101'7
110"
000"
11110
00UJl
0010Z
10111
10104
00105
0111'
10107
1010e
1010'
10111
10111
00112
10113
le114
00115
lel1'
10117
00118
0r1l11'
00120
00121
10122
00121
10124
00125
le12'
10127
10128
0012'
10130
00131
10132
10133
00134
00135
0013'
Pl0137
00118
0011'
00140
10141
01142
00143
e0144
00145
0014'
90147
00148
0014'
00150
018151

PROCEDURE DIVISION USING EXCHANGE-MESSAGE, TST-WORKSPACE.

DECL.ARATIVES.
I-O-ERROR SECTION.

USE A~TER STANDARD ERROR PROCEDURE ON CUSTOM.
CHECK-~IL.!-STATUS-CODE.

I~ CUITOMER-'ILE-STATUS IS GREATER THAN "01"
MOVE CUITOMfR-'ILf-STATUS TO 'IL.E-STATUS-WORD
MOVE "LOGICAL ~ILE NAME. CUSTOM -CM3" TO
RMB-~IL,E-NA~E.

IF FIL.E-STATUS-WORD IS EQUAL TO "10"
MOVE ·A"C~ld !~d-of-F1'1"
TO REPLY-MESS AGE-BUFFER
GO TO SEND-REPLY-MESSAGE.

IF FILE-STATUS-WORD IS EQUAL TO "21"
MOVE "P~.m.~v KIV SIQuI"ce E~~o~ 0" WRITE"
TO REPL,Y-MESSlGE-BU,,!R
GO TO SENo-ABORT-MESSAGE.

I' FIL.E-STATUS-WORD IS EQUAL TO "2Z"
MOVE "Duo14cltl Klv E~~or"
TO REPLY-MESS AGE-BUFFER
GO TO SENo-ABORT-MESSAGE.

IF ~ILE-STATUS-WORD IS EQUAL TO "23"
MOVE "No Rlco~d E.1.t. u~dl~ t~lt Klv"
TO R!PL.Y-MfSSAGE-BU~'ER
GO TO SENo-REPLY-MESSAGE.

IF FILE-STATUS-WORD IS EQUAL TO "24"
MOVE "eOu"d'~Y E~~o~ o~ w~.t. St.t.ml~t"
TO REPLY-MESSAGE-eUFFER
GO TO SENO_ABORT-MESSAGE.

IF FILE-STATUS-wORD IS EQUAL TO "]0"
~OVE "U~'D.cif4Id 1/0 E~~o~"
TO REPLY-MESSAGE-eUFFER
GO TO SEND-ABORT-MESSAGE.

IF FILE-STATUS-WORD IS EQUAL TO "34"
MOVE "PI~m'~lnt Aou"dl~V E~~o~ 0" WAIT! Stetlmlnt"
TO REPLY-MESS AGE-BUFFER
GO TO SEND-ABORT-MESSAGE.

IF FILE-STATUS-WORD IS EQUAL TO "ql"
MOVE "F111 locked bv I"othl~ t •• k"
TO REPLY-MESSAGE-eUFFER
GO TO SENO-REPL,Y-MESSAGE.

IF FILE-STATUS-WORD IS EQUAL TO "'Z·
MOVE "Rlco~d lockld bv l"ot~lr t •• k"
TO AEPL,Y-MESSAG!-eUF'ER
GO TO SEND-REPL.Y_MESSAGE.

IF FILE-STATUS-wORD IS EQUAL TO "'3"
MOVE "REWRITE or DELETE .ttlmpted w4t~out P~.o~
"READ b.1"Q o.~fo~mld."
TO REPLY-MESSAGE-BUF'ER
GO TO SEND-REPLY-MESSAGE.

Figure B-S TST FIND: COBOL Dec1aratives Section (1 of 2)

00152
00153
00154
001~5
001Sb
00157
00158
001Sq
001blll
001bl
001b2
001b3
001b4
001b5
001bb
001b7
001be
001bq
0~170

00171
00172
00173
00174
00175
0017b
00177
00118
1017"
00180
00181
1018Z
IUJl83
011184
00185
0018b
00181
00188
0118'
001'0
001~H
001CJZ
001'1
001'4
001C,5
001C,b
001"7
001CJ8
001Q"
00200

IF FILE-STATUS-~ORD IS E~UAL TO "q4"
MOVE "I~p~ope~ oO.~lt4o" Ittl~pted"
TO REPLY-MESS AGE-BUFFER
GO TO SEND~ABORT-MESSAGE.

IF FILE-STATUS-WORD IS EQUAL TO "QS"
MOVE "A110e.tio" Flilure - ~o IPlee 0" device"
TO REPLY-MESSAGE-BUFFER
GO TO SEND-ABORT-MESSAGE.

IF FILE-STATUS-WORD IS E~UAL TO "qb"
MOVE "No buffer IOlce - SAME AREA "~I.dV 1" u •• n

TO AEPLY-MESSAGE-BUFFER
GO TO SEND-ABORT-MESSAGE.

I~ FILE-STATUS-WORD IS EQUAL TO "C,7"
MOVE "U~.bl. to f1"d file "Im.dl~
TO REPLY-MESSAGE-eUF'ER
GO TO SEND-ABORT-MESSAGE.

IF FILE-STATUS-wORD IS EQUAL TO "QS"
MOV! ·E~~or w~1" .tt.~ot1"Q to CLOSE f11 •• "
TO REPLV-MESSAGE-BUFFER
GO TO SEND-ABORT-MESSAGE.

MOVE "UNKNOWN 1-0 ERROR" TO REPLY-MESSAGE-TEXT
MOVE FILE-STATUS-WORD TO RMB-FSw
GO TO SENO-AeORT-~ESSAGE.

SEND-REPLV_MESSAGE.
MOVE lb0 TO BU~FER-SIZE
MOVE 2 TO REPLV-NUMBER
CALL "REPLY" USING

REPLY-MESSAGE-eU'FER,
BUFFER-SIZE,
REPLY-NUMBER,
STATUS-WOROS.

GO TO !NO-ERROR-SECTION.

SEND-A80RT·~ESSAGE.
MOvE lb0 TO BU,FER.SIZE
MOVE 2 TO REPLY-NUMBER
CALL "ABORT" USING

ENO-ERROR-SECTION.
END DECLARATIVES.

REPLV-MESSAGE-eUFFER
BUFFER-SIZE
REPLV-NUMBER
'TATUS-WORDS.

Figure B-S TST FIND: COBOL Declaratives Section (2 of 2)

B-7

1 1***&
1 &

&
FIND &

&
&
&

TST TSTEPCMSG.SPACE$,~RK.SPACE$) , Start TST ~ere &
8.
&
&

File name: FIND,82e &
&

1*************··**&

3P0 1$**&
1 &
, &

C HAN N E LAS S I G N MEN T S &
&

CHA~NEL ~ ASSIGNMENT &
••••• _... _._ ••••• -.-------_._---------•• ------- &

3 Customer File CUSTOM,OAT &
&

1***&

4~0 1$**&
&
&

V A R I A B L E S • N DAR RAY SUS E 0 &
&

NA~E DESCRIPTION &
1 ---- _.-----. __ .------------------. & EDIT.STRG$ DESCRIBES FORMAT OF PACKED FIELO&

&
1***&

\ EDIT.STRG$ ~ "Z,ZZZ,ZZZ.99"

470 1***&

B-8

&
&

F U ~ C T ION SUS E 0 &
&
&
&

LINE~ NA~F DESCRIPTION &
--_ ••• _-- ••• _- _.-_ ••• -----••• _-_._----- ••••• - &

150~1 FN.FOR~~TS UN~ACKS $ AMT INTO EDITED FIELD &
&

1***&

Figure B-6 The BASIC PLUS-2 TST FIND (1 of 8)

6M0 l~**&
£ &
1 &
1 E x C HAN G E ~ E 5 5 AGE 0 E FIN I T ION &
1 &
1 &
1***&

620 J***&

1
, MSGMAfJ
1

, MSGMAP
1

EXCha~ge Message for For~ DPCU51

lDPCUS1! Level I: 02

= 36

lDPCUS11 Level = 03

E~.CUSTOMER.NUMBER$ I: b
EM.CU5TOMER.NA~E$ = 30

8.
&
&
&
&
&
&
&
&
&
&
&
&
&

7~0 1$***********.**&
1 &
1 &
I w 0 R K 5 PAC E D E FIN I T ION &
, &
I &

775 1***&

\ WRKMAP ,
1
\ WRK.MAP
1

&
&

wo~~.~g Sto~Age CUltomer File Record &
&

for TST FIND &

'CUSTO'~' Leve'

~S.CUSTOMER.FILE.RECORD$ = 205

,CUSTOMJ Level

= 02

= 03

&
&
&
&
&
&
&

WS.CUSTOMER,NUMBERS = b &
, WS.CUSTOMER.NAME$ = 30 &
, WS.ADDRfSS.1S = 30 &
, WS,ADDRESS,2$ = 30 &
, WS.ADDRESS.3$ • 30 &
, WS,ZIP.CODE$ • 5 &
, WS.TELEPHONE.NUKBERS = 10 &
, WS.ATTENTION,LINE! = 20 &
I wS.CREDIT.LIMITS • 12 &
, W5.CURRENT.BALANCES • 12 &
, WS.PURC~ASES.YTOS • 12 &
, WS,NEXT.ORDER.NU~BERS." &
, WS.NEXT.PAYMENT.NUMBER$. 4 &
1***&

Figure B-6 The BASIC PLUS-2 TST FIND (2 of 8)

B-9

9~0 1$**& , &
1 &
, 0 I MEN 5 ION 0 EeL A RAT ION S &
1 &
, &
1 &
1 Lf~es 91211-929 de~ote local dimension declarationS, &

Lines 930-949 de"ot~ library dimension oecleret1onl. &
Lines 950-979 de~ote MAP statement., &
Lines q80-999 de~ote IMAGE statements. & ,

1******~**&

q5~ 1~**&

q~2

B-IO

&
&

F I l ERE COR ODE fIN I T ION S &
&
&

'***&

1***&
1 & , &
1 Custo""'er" File Record & , &
\ MAP (CUSTOM) , Level = 01 &

&
CUSTOMER.fILE.RECORD! :: 2~5 &

1 &
\ MAP (CI.ISTOM) , Level = 03 &
l &

CUS TOr-iER, Ni,) M 8ERS, = 6 &
CUS TOMER, NA ~1E$;: 30 &
ADDRESS.l$;: 3~ &
ACDRESS.2$;: 30 &
ADDRESS.3!- I: :S0 &
ZIP.CODE$ II 5 &
TELEPHO~E,NUM8ER$:I 10 &
ATTENTION.LINE$ = 20 &
CREDIT.LIMIT$;: 12 &
CUkRE.NT.BALANCE$ = 12 &
YTD,PURCI-IASES$ = 12 &
NExT.ORDEN,NUMBER$;: 4 & , ~EXT.PAYME~T,NUMBERS ;: 4 & , &

\ ~~p (Cl'STCt-':) , Level ;: 05 &
&

FILLEP$;: 161 &
~CCT.FILLEH$ II b &
ACeT.NUMBERS ;: 6 &

Figure B-6 The BASIC PLUS-2 TST FIND (3 of 8)

1~P7 !$**&
&
8.

~ A I N T S T LOG I C &
&
&

1***&
1 &
, ON ERROR GO TO 19000 &

&
Set UP standard oefault error trap &

!~**********************.*.**.*****.***********.****************&
1 &
1 &

OPE NO. T A F I L E 5 &
&
&

1***&

1***&
1 &

&
o ? E NFl L E CUSTOM. OAT &

\ CUSTOM,CHNLX = 3X
1
1 A •• ig" tMe cna"r"\el number,

\ OPEN ~CU5TOM" AS FILE
(IRGANIZATION

ACCESS
.lL.OW
~AP
PRIMARY KEY
,\L.TERNATE KEY

CUSTQM,CHNLX,
INDEXED
VARIABLE,
READ,
READ,
CUSTOM,
CUSTOMER. NUMBERS,
CUSTOMER,NAMES
DUPLICATES
CHANGES

OpeM th, Customer File.

Figure B-6 The BASIC PLUS-2 TST FIND (4 of 8)

&
&

&
&
&

&
&
&
&
&
&
&
&
&
&
&

"

B-11

3!"lfl1

IS***.************&
1 &
1 &
IDE T E R ~ I NEw H I C H CAS E &
1 &
1 &

\ GO TO 4100- IF EM.CU5TOMER,NUMBERS <> "000000" &
\ GO TO a40~ IF EM.CUSTOME~,NAME$ = H " &
\ GO TO 4200 & , &
1 T~ree cases Dossiblel &
1 eLlS tome r number entered. &
1 Nothing entered (operator error), &
1 Name entered. &

1$**&
1 8.
1 &
1 C U 5 TOM ERN U M B ERE N T ERE 0 &
1 &
1 8.

GET #CU5TOM,CHNL%, KEY #0 GE EM.CUSTOMER,NUMBER$
\ WS.,CUSTOMER,FILE,RECORD$ = CUSTOMER,FILE,RECORDS
\ GO TO 4800

&
8.
8.
8. 1

1
1
1

Otherwise, read the custom,er file,
;s trapoed at statement 1902~,)

Move the record into workspace,

C"Record not found" 8.
&
&

1$**&
I &
1 &

C U S TOM ERN A H E E N T ERE D &

GET #CUSTO~.CHNLX, KEV *1 GE EM,CUSTOMER.NAMES
, WS,CUSTO~ER.FILE.RECORD$ = CUSTOMER,FILE.RECORDS
, GO 10 4800 ,
1
1
1
1
1

s.t f11. pointer to first customer record for this
CVltomer "am.,

Get the first reco~d ("Heco~d not found" i8 trapped
at statement 19020.)

~ove record to workspace,

8.
&
&

&
8.
&
&
&
&
&
&
&

4~0~ 1$**&
1 &
1 &
1 NOD A T A FRO MOP ERA TOR &
1 &
1 &

Figure B-6 The BASIC PLUS-2 TST FIND (5 of 8)

B-12

4~1~ REPLY,BUFi = "Doerator E~ror - No Dete Supplied " &
, CALL REPLY BY REF (REPLY.8UFS,LEN(REPLY,aUFS),2X,STATUSJ(» &
, GO TO lQQS0 IF STATuSX(0X) <> lX &
, GO TO 32000 &
1 &
, Restart TraMsaet10n with Reply Message &
1 Abort transaction if bad status, &
1 Exit 1ST, &

4~0~ EO,RESULT! = FN.FO~MAT$(EDIT.STRG$,WS,CREOIT,LIMITS) &
\ WS.CREDIT.LIMIT$ = ED,RESULTS &
'EO.RESULT$ = FN,FORMAT$(EOIT.STRGS,~S.CURRENT,8ALANCE$) &
\ WS,CURRENT.BALANCE$ = EO,RESULTS &
'EO,RESULT$ = FN.FORMAT$(EDIT,STRG~,wS.PURCHASES,VTOS) &
\ ~S.PURCHASES.YTO$ = ED.RESULT$ &

5P0P CALL PRCEED BY REF cwS,CUSTOMER.FILE.RECORD$,205%,STATUS~(» &
, GO TO 19950 IF STATUSlC0%) c> 1X &
\ GO TO 32000 &

5~0~ IS*******'**&

1~000

, &
1 &
1 C U S TOM E RIO NOT 0 NFl L E &
1 &
1 &

REPLY,BUFi ~ "No Record u"der t~at ID"
\ CALL REPLY BY REF CREPLY.6U~$,LENCREPLy,8UFS),2X,STATUSX(»
\ GO TO lqq5~ IF STATUSX(0X) <> lX
, GO TO 3200~

1
1
I
I
I

Send Re~ly if Record Not FoY"d
Abort Tr.M.aetio~ if Bad Status Retu~n
Exit TST.

&
&
&
&
&
&
&
&
&

(**************************.* •• ****.***********.***,************&

lS*****************.*.***********.*************.****************&
1 &
, &
1 FUN C T ION S L 0 CAL T 0 &

&
T HIS T S T &

&
&

1***.********.****** •• **&

Figure B-6 The BASIC PLUS-2 TST FIND (6 of 8)

B-13

1'!)~30

15~lJe
1'50'i0

B-14

OfF FN.FORMATS(FIE~D$, INPUTS)
NUr.8ER.FOR~AT$ = TRM$(INPUTS) &
, NUMBER,FORMAT$ = STRING$C~EN(FIELDS).LEN(NUMBER,FORMATS),481) &

+ NUMBER,FORMATS &
, FOR I.FNX = LENCFIELDS) TO 11 STEP -1% &

\ CHAR,FORHAT$ = MID(FIELD$, I,FN', 1X) &
\ GO TO lS~23 IF (C~AR.FORMAT~ = 'q') &

OR (CHAR,FORMAT$ = 'Z') &
\ C~AR.FOR~AT$ = SPACES(lX) IF CHAR.FORMATS = '8' &
\ NUMBER,FOR~AT$ = MIO(NUMBER.FORMATS, 21, I,FNX-1X) &

+ C~AR.FORMAT$ &
+ RIGHT(NUMBER,fORMATS, I,FN~+l¥

~EXT I.FN~ &
\ FOR I,FN~ = 1% TO LE~(FIELD$) &

\ CHAR.FOFHI'~T$ = MID(FIELD!, I.FNX, 1X) &
, CHAR1,FOR~ATS = MIDe NU~8ER,FORMATS, I,FNX, 1X) &
\ GO TO 1503~ IF CHAR.FQRHAT$ = '$' &

OR CHAR,FOR~AT$ = ',' &
OR CHAR.FOR~AT! = '8' &

\ GO TO 153Q~ IF CHAR,FORMATS = '9' &
, IF CHAR1.FORHAT! <> '0' &

ANr CHARl,FOR~AT$ <> ',' &
THEN GO TO 15040 &
ELSE ~UM8ER.FCQ~AT$ = &

SPACE~(l~) &
+ LEFT(NU M8ER,FORMATS, I,FN%-lX) &
+ RI~HT(NUMBER.FORMATS, I.FNX+l%-)

NEXT I.Fr~%
FN.FORMAT$ = NUMBER,FORMAT$

FNENO &

!~**&
S. &

&
S TAN D 4 P D ERR 0 R HAN 0 LIN G &

8.
&

1***&

\ IF ERR = 155%
AND CERL = 4110% OR ERL = 4210%)
THE~~

Trap for customer 10 not on f4le.

, IF ERR = 172% THF~ PESUME 4800
1

Trap for Record Returned but locked

Figure B-6 The BASIC PLUS-2 TST FIND (7 of 8)

&
&
&
&
&
&

&
&
8.

, IF ERR = 15"%
TI'1E~'J
REPLY.8UF$ = "Access Den1ed, Record Locked by Another Taak"

\ -CAL~ REPLY BV REF (REPLV.8UFS,LENCREPLY.BUFS),2X,STATUSX(»

\ REPLY.SUfi = ~ 1-0 Error ~umber "
+~uc~~(ERR)

+flet L4ne 11 "
+NVt-1$(ERL)

For une~cected errors, go to
system oefau't error dump out,

&

&
&
&
&

&
&
&
&
&
&

%$************************************.*************************&
1 &
£ &

A & 0 R T THE T ~ A N 5 ACT ION &
&
&

1***&

CALL ABORl &V REF (KEPLV,BUF$,LEN(REPLV.8UFS),2X,STATUS~(»)
, GD TO la-00~

1
1 Standard ABORT ha nd1ing:

Sena Qeply with Abort to Terminal Station
Ca1l TSTlIS routine to abort tra~sact1on.
NO return is e~Deeted but nevertHeless provide

.~ orderly exit fro~ TST.

&
&
&
&
&
&
&
&

li*************************-************************************&
I &
1 &
1 END 0 F PRO C E 5 SIN G &

&
&

1***&

1$**&
1 &
1 &

f N D OFT 5 T &
&
&

1**.****.* •••••••••• &
! &
, TSTEND

Figure B-6 The BASIC PLUS-2 TST FIND (8 of 8)

B-15

Figure B-7 Form Two of the Display Transaction

B-16

APPENDIXC

GLOSSARY OF TERMS

aborting a transaction Terminating a transaction instance before successful completion.

application A logically related set of data processing operations which support a particular business
activity.

application data file A file which supports an application's data storage requirements. Applications
have two kinds of data files: permanent files, which support the application's ongoing data storage
requirements, and work files, which provide transient data storage.

application program A program written for a particular application. TRAX supports two kinds of appli
cations: Transaction Step. Tasks, which are components of, transaction processors; and stand-alone
application programs, which execute in the support environment.

application terminal A TRAX terminal reserved for use by a transaction processor.

Application terminals can not be con'1ected to the same PDP-11 interface device as support terminals,
but application terminals used by different transaction processors can share a common interface device.

Application Terminal Language (AlL) The language used to create form definitions for transaction
processors. Using A TL, one can specify: the layout and appearance of each form; the attributes of each
field on those forms; the format of the exchange message assembled from the user's input; and the set of
replies with which the transaction processor can respond to the user's input.

ATL (1) Application Terminal language, (2) the TRAX utility program which manages Forms Definition
Files. '

authorization See terminal authorization. user authorization.

batch control command A batch processor directive placed in a batch control file. TRAX batch proces
sors support the following six batch control commands in addition to the DCl commands accepted at
support terminals: $JOB, $DATA. $EOD, $IF, SON, and $EOJ.

batch control file A file containing sufficient support terminal dialogue and batch control commands to
control a batch processor.

batch processor A TRAX system component which executes a series of system commands and sup
port programs as directed by batch control files.

By submitting a batch control file to a batch processor, system commands and support programs can be
executed without operator intervention and without dialogue at a support terminal.

batch stream The processing of a batch cO,ntrol file by a batch processor.

caching Storing a duplicate copy of data into a temporary storage area that can be more quickly
accessed than that data's primary storage area. Caching is done to speed access to frequently used data.

data file access Data file access is provided in two ways, depending upon the nature of the file being
accessed.

Permanent files are automatically opened when the transaction processor is installed, and are kept open
while the transaction processor is In operation. These files are shared among all TSTs in the transaction
processor, and multiple T8Ts can update the same file simultaneously. When referring to these files,
T8Ts use the logical file names specified in the transaction processor generation procedure.

Work files are created, opened, and closed only when directed by a TST. Each create operation produces
a file with a unique file specification. A TST can obtain the unique file specification via a library call. These
files can not be shared between T8Ts, and only one T8T can have update access to a given work file at a
time.

C-l

Glossary of Terms

C-2

deadlock A situation in which each of several transaction instances has successfully acquired a re
source, and in which at least two of the instances simultaneously need access to a resource acquired by
the other in order to proceed.

DIGITAL Command Language (DCl) The command language used in the support environment. Del
can be used for support terminal dialogue and in batch control files.

entry form A form used in a situation where a user response is expected. A transaction instance can
request the display of an entry form only on the terminal which initiated that transaction instance.

exchange A cycle in the processing of a transaction instance consisting of the processing of an
exchange message by one or more stations.

An exchange commences with the placement of the exchange message (containing the data to be
processed) into the transaction slot. It ends when the exchange message is discarded following the
termination of the last transaction step in the message's routing list.

exchange message A station message that resides in a transaction slot and accompanies the transac
tion slot for an entire exchange. Each station in the exchange route can read and/or modify the contents
of the exchange message. The routing list of the exchange message determines the processing of the
associated transaction slot.

exchange recovery The automatic restart of an exchange. Only the processing for the affected ex
change is restarted; the data which began the exchange is not recollected and the same exchange
message is reused. All of the staged file updates done by the previous unsuccessful processing are
automatically removed before the restart is attempted.

Repeated exchange recovery failures will cause the transaction instance to time out and therefore to be
aborted.

file specification A complete RMS-11 file identifier. This identifier consists of device name, account
specifier, file name, file extension, and version number.

File specifications must be used by all support programs when referring to work files. When TSTs refer to
application data files (permanent or work), they must use logical file names.

form The information structure used to collect or display data at application terminals.

form definition A detailed specification of a form. Form definitions specify the layout of a form; the rules
by which a user must fill out the form; the format of the station message that will supply initial field values
for the form; the format of the exchange message that will be built from the user's input; and the format of
each of the replies which the transaction processor can use with the form.

The specifications for all forms used by a transaction processor are stored in a forms definition file. Forms
definitions are written in ATl and placed in the forms definition file by the ATL utility program.

forms definition file A file associated with a transaction processor containing definitions for all forms
used by that transaction processor.

forms definition record A record In a forms definition file. Each forms definition record contains the
coded definition of a Single form.

Journallng Recording updated data file records on an alternate medium to protect against failure of the
primary medium.

If such a failure should occur, a backup version of the primary medium together with the updated records
on the alternate medium can be used to recreate the state of the primary medium at the time of the failure.

TRAX transaction processors achieve journaling by writing the transaction slot to the journal medium at
the conclusion of any transaction instance which updates a file requiring journaling. If journalled, a file will
also be staged so that the updated records will be present in the transaction slot. Because journaling is
postponed until the conclusion of a transaction instance, an aborted transaction will not cause a journal
entry.

Journaling Is specified on a file-by-file basis during transaction processor generation.

Glossary of Terms

link A logical data transmission path between two transaction processors consisting of a master link
station in one transaction processor. one or more slave link stations in another transaction processor or in
an IBM system, and a means of data transfer between them. See also sub-link.

logical file name A name of up to six characters used within a transaction processor to identify an
application data file.

The transaction processor generation procedure associates these logical names with complete file speci
fications.

logging Recording station messages and other TST -specified data onto the journal media.

mailbox message A station message sent from a TST to a mailbox station. The message data is stored
on a disk file by the receiving mailbox station.

mailbox station A station to which mailbox messages are sent to await collection by a TST.

master link station A link station to which exchange messages are routed to cause either the initiation
of a transaction instance within another transaction processor. or the transfer of additional data to such a
transaction instance.

partition A segment of memory allocated to one or more tasks.

priority See station priority.

record lock The restriction of access to a record.

When a transaction instance requires a record for updating, it locks that record so that no other transac
tion instance can update it. (The record can remain available, if desired, for read-only access by other
transaction instances.) When the original transaction instance performs an unstaged update, releases an
un staged lock, or finishes all staged file operations, the lock is removed and the record again becomes
available to other transaction instances for updating.

All locks are exercised on behalf of the transaction instance, rather than on behalf of the transaction step
which issued the lock request. locks therefore survive the termination of individual transaction steps.

Transaction instances which request update access to a locked record are temporarily suspended, and
the access is retried automatically after a pre-defined delay. If the record is still locked at that time, either
the current exchange for the transaction instance will be restarted, or the entire transaction instance
aborted. The designer makes this selection by his choice of exchange recovery for the corresponding
transaction definition.

report form A form used in a situation where no user response is possible. A request (REPORT
MESSAGE) for the display of a report form can be directed only to an output-only terminal station.

response message A station message sent from a TST processing the current exchange message
back to the source station for the transaction instance. Response messages are used to return display
data, exchange control, and form control to the source station.

RMS-11 The PDP-11 file management facility through which TRAX tasks access data files.

RMS-11 is available to 1RAX programs in two modes. TS1s which are part of a transaction processor will
perform all file operations through the TRAX executive service which contains complete RMS-l1 file
support, and 1STs can therefore make full use of standard RMS-11 facilities without having to directly
include RMS-11 support.

Support programs must directly include RMS-l1 file support during the linking process.

RMS-l1 provides facilities to support sequential, relative, and indexed files in combinations of fixed and
variable record lengths.

routing list A list of station names to which an exchange message is to be sent:

slave batch station A station which can initiate a single-exchange transaction upon request from a
support environment program.

slave link station A station which can Initiate a transaction instance upon request of another transaction
processor via a sub-link.

C-3

Glossary of Terms

C-4

spooler A TRAX utility program which processes queued file printing requests.

staging The postponement of updates to a file until successful completion of a transaction instance.
Aborted transactions have no effect on staged files, because no updates will have occurred.

station A logical location within a transaction processor where station messages are received and
processed. Each TRAX transaction processor has a set of stations, each station having a unique name of
up to six alphanumeric characters. Stations are classified as terminal, Transaction Step Task (TST),
master link, slave link, mailbox, slave batch, or submit batch.

station message Formatted data sent to one or more transaction processor stations. There are four
types of station messages, EXCHANGE, RESPONSE, REPORT, and MAILBOX.

station priority An attribute of a TST station which determines the startup priority of its associated
Transaction Step Task.

submit batch station A station to which exchange messages are sent to cause the submission of batch
command files to a batch processor.

sub-link A subdivision of a link consisting of the logical data path between the master link station and a
single slave link station: A link can have one or more sub-links, the number of sub-links being determined
by the number of slave link stations associated with the link.

support environment The facilities which TRAX provides for the execution of support programs. The
support environment is used for the following kinds of processing: control and supervision of transaction
processors, batch processors, and spoolers; execution of application-specific support programs; editing,
compilation, task building, and debugging of programs; generation of transaction processors; file backup
and recovery operations.

None of the facilities described for the transaction processors are available to programs running in the
support environment. Such programs can not update files to which a transaction processor has write
access.

supporfprogram A program which is not part of a transaction processor. Support programs run under
the control of a support terminal or under a batch processor.

support terminal A TRAX terminal which is used for the execution of system commands and support
programs. Support terminals can not be connected to the same PDP-11 interface device as application
terminals.

terminal See application terminal and support terminal.

terminal authorization The association of a set of transaction definitions with an application terminal.
Only those transactions included in the set can be performed at such a terminal while the terminal
authorization remains in effect.

An application terminal's initial terminal authorization can be selected by supplying the name of a work
class when the corresponding terminal station is defined. Terminal authorizations can be overridden by
user authorizations, and are disregarded by those transaction selection forms which do not check au
thorizations.

termlnalstatlon The transaction processor component which controls an application terminal.

The terminal station is responsible for the display of forms, the receipt of user responses to forms, the
construction of exchange messages from these responses, the initiation ~f exchanges using the received
data, and the display of any replies requested during exchange processing.

There are two types of terminal stations: 1) Interactive terminal stations are associated with application
terminals which can initiate transaction instances. Each transaction instance initiated by an application
terminal can direct display requests to the corresponding terminal station. A transaction instance cannot
direct display requests to any Interactive terminal station other than the one associated with its initiating
terminal. 2) Output-only terminal stations are associated with application terminals which are used In an
output-only mode. Any transaction Instance can direct display requests to an output-only terminal station.
These requests will be processed on a first-in, first-out basis at each station.

READER'S COMMENTS

Introduction to TRAX
AA-D327 A-TC

NOTE: This form is for document comments only. DIGITAL will use comments submitted on this form at the
company's discretion. If you require a written reply and are eligible to receive one under Software
Performance Report (SPR) service, submit your comments on an SPR form.

Did you fmd this manual understandable, usable, and well-organized? Please make suggestions for improvement.

Did you fmd errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

o Assembly language programmer
o Higher-level language programmer
o Occasional programmer (experienced)
o User with little programming experience
o Student programmer
o Other (please specify) __________________________ _

Organization _____________________________________ _

Street ___ _

City _________________ _ State ______ Zip Code _______ _

or
Country

---Fold lIere--

-- Do Not Teal' - Fold lIel'e and Staple ---

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

Software Documentation
146 Main Street ML 5-5/E39
Maynard, Massachusetts 01754

FIRST CLASS

PERMIT NO. 33

MA YNARD. MASS.

