
MDE/T-11
User's Guide
and Reference Manual
M-M845B-TK

Microcomputer Development Environment
for MICRO/T-11

MDE/T-11
User's Guide
and Reference Manual
AA-M845B-TK

August 1982

This manual explains how to use the MDEIT -11 development system
for the MICROff -11 microprocessor. Included in this manual are de
scriptions of MDEff-11 hardware and software functions, explanations
of how to use MDEff-11, a description of all MDEff-11 commands,
and a list of MDEff-11 messages.

This manual supersedes the VAX/VMS MDE/T-11 User's Guide and
Reference Manual, AA-M845A-TE.

Operating Systems: VAX/VMS Version 3.0
RSX-11 M Version 4.0
RSX-11 M-PLUS Version 2.0
RT-11 Version 4.0

Software: MDEff-11 Symbolic Debugger Version 1.0

To order additional copies of this document, contact the Software Distribution Center,
Digital Equipment Corporation, Northboro, Massachusetts 01532

digital equipment corporation· maynard, massachusetts

First Printing, June 1982
Revised, August 1982

The information in this document is subject to change without notice and should not
be construed as a commitment by Digital Equipment Corporation. Digital Equipment
Corporation assumes no responsibility for any errors that may appear in this docu~
ment.

The software described in this document is furnished under a license and may be used
or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is
not supplied by DIGITAL or its affiliated companies.

© 1982 by Digital Equipment Corporation.
All Rights Reserved.

Printed in U.S.A.

A postage-paid READER'S COMMENTS form is included on the last page of this
document. Your comments will assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC
DECmate
DECsystem-10
DECSYSTEM-20
DECUS
DEC writer
DIBOL

MASSBUS
PDP
P/OS
Professional
Rainbow
RSTS
RSX

M19300

UNIBUS
VAX
VMS
VT
Work Processor

PREFACE

CHAPTER

CHAPTER

CHAPTER

CHAPTER

1

1.1
1.1.1
1.1. 2
1.2

2

2.1
2.2
2.2.1
2.2.2
2.2.3
2.2.3.1
2.2.3.2
2.2.3.3

3

3.1
3.-2
3.2.1
3.2.1.1
3.2.1.2
3.2.1.3
3.2.1.4
3.2.1.5
3.2.2
3.3

4

4.1
4.1.1
4.1. 2
4.1.2.1
4.1.2.2
4.1.3
4.1.3.1
4.1.3.2
4.1.4
4.2
4.2.1
4.2.2
4.3
4.4
4.5

CONTENTS

INTRODUCING MDE/T-ll

SYSTEM ARCHITECTURE
Hardware
Software

HOST SYSTEMS

HARDWARE FUNCTIONS

DEVELOPMENT SYSTEM
MDE/T-ll SYSTEM

MICRO/T-ll Emulator
Memory Simulator
State Analyzer
Event Detection
Bus Cycle Tracing
External Probes

SOFTWARE FUNCTIONS

IN-CIRCUIT EMULATION
STATE ANALYSIS

Event Detection
Setting User-Defined Events
State Analyzer Flags
State Template
Event Actions
Bus Cycle Tracing
State Analysis Commands

MEMORY SIMULATION

MDE/T-ll OPERATOR AIDS

TERMINAL SUPPORT
Special Character Support
Command Keypad Support
Predefined Keys
User-Defined Keys
VT100 Display Support
Status Information
Command Input Information
Activation of Special SoftwareOSupport

INDIRECT COMMAND FILES
General Indirect Command Files
Start-up Initialization File

LOG FILES
HELP FACILITY
ERROR REPORTING

iii

Page

vi i

1-1

1-4
1-4
1-5
1-5

2-1

2-1
2-2
2-3
2-6
2-8
2-9
2-11
2-12

3-1

3-1
3-3
3-3
3-3
3-4
3-4
3-5
3-5
3-6
3-8

4-1

4-1
4-1
4-2
4-2
4-4
4-4
4-4
4-5
4-5
4-5
4-6
4-7
4-7
4-7
4-7

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

5

5.1

5.2
5.2.1
5.2.2
5.3
5.4
5.4.1

5.4.2
5.5
5.5.1
5.5.2
5.5.3
5.6
5.6.1
5.6.2

6

6.1
6.2
6.3
6.4
6.4.1
6.4.2
6.5
6.6
6.7
6.8
6.9

7

7.1
7.1.1
7.1. 2
7.1. 3
7.1.3.1
7.1.3.2
7.1. 4
7.1. 5
7.2
7.2.1
7.2.2
7.2.3
7.2.4

8

8.1
8.2

9

9.1
9.2
9.3
9.4
9.5

PROGRAM DEVELOPMENT

POWER UP MDE/T-ll AND ENTER VIRTUAL
TERMINAL MODE
LOG ONTO OR BOOTSTRAP YOUR HOST SYSTEM

Logging onto al VAX/VMS Host
Logging onto an RSX-IIM Host

BOOTSTRAP THE RT-ll HOST
CREATE A FILE FOR YOUR SOURCE PROGRAM

CALC Source Listing for VAX/VMS
or RSX-IIM Host
CALC Source Listing for RT-ll Host

ASSEMBLE CALC WITH MACRO-II
Assembling CALC on VAX/VMS Host
Assembling CALC on RSX-IIM Host
Assembling CALC on RT-IIXM Host

LINC CALC
Linking CALC on VAX/VMS or RSX-IIM Host
Linking CALC on RT-ll Host

DEBUGGING

START MDE/T-ll
RECORD YOUR DEBUGGING SESSION
SET UP THE TARGET
LOAD CALC

Assembly Listings
Applicable Commands

EXECUTE YOUR PROGRAM
EXAMINE AND CHANGE MEMORY AND REGISTERS
SET AND CANCEL EVENTS
TRACE BUS CYCLE
END THE DEBUGGING SESSION

COMMAND LANGUAGE

EXPRESSIONS
Numbers
Symbols
Special Characters
Current Address Indicator
Previous Address Indicator
Operators
Order of Evaluation

MODES
Radix Mode
Display Mode
Address Mode
Mode Commands

COMMANDS

COMMAND FORMAT
COMMANDS

MESSAGES

MESSAGE FORMAT
SUCCESS MESSAGES
INFORMATION MESSAGES
WARNING MESSAGES
ERROR MESSAGES

iv

5-1

5-3
5-4
5-4
5-4
5-5
5-5

5-6
5-7
5-7
5-7
5-8
5-8
5-8
5-8
5-11

6-1

6-1
6-4
6-4
6-5
6-6
6-7
6-8
6-9
6-10
6-12
6-13

7-1

7-1
7-1
7-2
7-2
7-3
7-3
7-3
7-4
7-5
7-5
7-5
7-6
7-6

8-1

8-1
8-2

9-1

9-1
9-2
9-2
9-4
9-5

9.5.1
9.5.2
9.5.3

APPENDIX A

A.l
A.2
A.3
A.4

APPENDIX B

B.l
B.1. 1
B.l.2
B.1. 3
B.1. 4
B.l.S
B.2
B.2.1
B.2.2

APPENDIX C

C.l

C .1.1
C.1. 2
C.2
C.3
C.4
c.s
C.6
C.7
C.S

APPENDIX D

D.l
D.2
D.2.1
D.2.2

APPENDIX E

INDEX

Severe Error Messages
Internal Error Messages
Fatal Error Messages

PAUSE STATE MACHINE

PAUSE STATE
PAUSE STATE ENTRY
PAUSE STATE MACHINE EXECUTION
PAUSE STATE EXIT

MICRO/T-ll

PROGRAMMING CHARACTERISTICS
General-purpose Registers
Processor Status Word
PDP-II Instruction Set
Interrupt Handling
Feature Selection

ARCHITECTURAL CHARACTERISTICS
MICRO/T-ll Clock
MICRO/T-ll Control Signals

DIAGNOSTICS

BOOTSTRAPPING MDE/T-ll AND LOADING
DIAGNOSTICS

Bootstrapping MDE/T-Il
Loading Diagnostic Programs

LSI-Il/23 CPU DIAGNOSTIC CJKDxD.LDA
MXVII-AC DIAGNOSTIC CVMXxA.LDA
MEMORY SIMULATOR DIAGNOSTIC VCDAx0.LDA
STATE ANALYZER DIAGNOSTIC VCDBx0.LDA
MICRO/T-Il EMULATOR DIAGNOSTIC VCDCx0.LDA
SYSTEM BUS DIAGNOSTIC VCDDx0.LDA
RUNNING THE CONFIDENCE TEST

MACRO-II PROGRAMMING TECHNIQUES

MAKING SYMBOLS GLOBAL
POSITIONING CODE IN ABSOLUTE LOCATIONS

Padding with .BLKB Directives
Overlaying PSECTs

AC POWER CONFIGURATION

v

9-5
9-11
9-13

A-I

A-l
A-I
A-2
A-2

B-1

B-1
B-1
B-1
B-2
B-2
B-2
B-2
B-2
B-3

C-I

C-I
C-2
C-2
C-3
C-4
C-6
C-7
C-9
C-11
C-l2

D-l

D-l
D-l
D-2
D-4

E-l

Index-l

FIGURE

TABLE

1-1

1-2

1-3

1-4
2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
3-1
4-1
4-2
5-1
5-2
6-1
6-2
8-1

4-1
9-1

FIGURES

The MDE/T-ll Microcomputer Development
System
The Microcomputer Development Cycle without
MDE/T-11
The Microcomputer Development Cycle with
MDE/T-ll
MDE/T-ll Hardware Components
Development System Major Components
MDE/T-ll System Hardware Components
MICRO/T-ll Emulator
Pod Switch Connections
Memory Simulator Functions
State Analyzer Functions
State Template Word Format
Trace RAM Fields and Addressing
Memory Configuration Example
MDE/T-ll Command Keypad
VT100 Screen Format
Program Development Cycle
Front Panel of MDE/T-ll Cabinet
Connecting MDE/T-ll to the Target
Pod Clock Switches
Software-Selected Emulator Clock

TABLES

Control Characters
MDE/T-ll Message Codes

vi

1-2

1-3

1-3
1-4
2-1
2-3
2-4
2-5
2-7
2-9
2-10
2-11
3-10
4-3
4-4
5-2
5-3
6-2
6-3
8-12

4-2
9-2

PREFACE

This manual tells you how to develop MICRO/T-II applications using the
tools provided by the MDE/T-II development system. The manual
explains the operation of the MDE/T-II system, shows you how to make
optimal use of its time-saving features, and provides a reference
section in the form of detailed descriptions of all MDE/T-II commands.

Related Manuals

You should be thoroughly familiar with the contents of the
Microprocessor User's Guide prior to reading this manual.
also be familiar with the:

PDP-II MACRO-II Language Reference Manual

RSX-IIM/RSX-IIM PLUS Task Builder Reference Manual

RT-ll System User's Guide, Version 4.0

Overview of this Manual

This manual contains nine chapters and five appendixes.

MICRO/T-II
You should

Chapter 1 introduces the hardware and software components of the
MDE/T-II system.

Chapter 2 describes MDE/T-II hardware functions -- emulation, memory
simulation, state analysis -- and the hardware through which these
functions are performed.

Chapter 3 describes the MDE/T-II software functions that provide the
user interface to MDE/T-II hardware for in-circuit emulation •.

Chapter 4 describes MDE/T-ll operator aids.

Chapter 5 explains how to use MDE/T-Il in program development. By
means of a demonstration program; this chapter takes you through the
steps of the program development cycle.

Chapter 6 explains how to debug with the MDE/T-II
It uses the demonstration program introduced
illustrate the use of MDE/T-II commands in a
session.

symbolic debugger.
in Chapter 5 to
typical debugging

Chapter 7 discusses the elements of the MDE/T-ll command language.

Chapter 8 describes all MDE/T-II commands in detail and provides
examples of their use.

vii

Chapter 9 lists and explains MDE/T-II messages that you may encounter
when developing MICRO/T-II applications. This chapter describes the
format of MDE/T-II messages and lists them alphabetically by message
type.

Appendix A describes the MICRO/T-Il pause state, pause state entry,
pause state execution, and pause state exit.

Appendix B describes the MICRO/T-ll programming and architectural
characteristics that are relevant to MDE/T-II operation.

Appendix C describes the procedures for using MDE/T-II diagnostics.

Appendix D describes the MACRO-II programming techniques you will need
when using your program's symbols in debugging wlth MDE/T-Il and when
positioning code in absolute locations.

Appendix E explains how to configure the MDE/T-ll system hardware for
120 or 240 Vac operation.

Documentation Conventions

The following conventions are used in this manual.

In examples, user inputs are in boldface red type. Boldface
black type indicates commands and, in Chapter 9, system messages.

A carriage
otherwise,
return.

return is indicated by <RET>. Unless indicated
end all commands and command strings with a carriage

Terminal keys typed
slashes--for example:

at the same time are indicated
CTRL/C, CTRL/O, CTRL/U, and so forth.

viii

by

CHAPTER 1

INTRODUCING MDE/T-Il

MDE/T-ll, with its host operating system--VAX/VMS, RSX-IIM, or
RT-IIXM--is a development system for microcomputer systems based on
the MICRO/T-ll microprocessor, a single-chip LSI version of the
PDP-II. MDE/T-ll lets you use all the MICRO/T-ll features during
real-time hardware and software debugging through in-circuit
emulation, a hardware technique that provides a real-time debugging
environment (see Chapter 2 for more details).

MDE/T-ll comprises symbolic debugger software and in-circuit emulation
hardware. The symbolic debugger consists of:

• Control software

• Implementation software

• Communication software

The control software is down-line loaded from the host into the
MDE/T-ll system and lets you control the MDE/T-ll system with commands
that you input through a console terminal. The control software calls
action routines to implement your commands.

The implementation software resides on the host and tells the control
software what actions to take in response to your commands.

Control software communicates with implementation software over the
communication line connecting the host to the MDE/T-ll system
hardware. This communication is controlled by communication software
residing on the host and in the MDE/T-ll system.

The in-circuit emulation hardware consists of the emulator, the memory
simulator, and the state analyzer. These three modules communicate
with one another over a high-speed bus interconnect in the MDE/T-ll
backplane. The modules communicate with the MDE/T-ll software over an
LSI-II bus also located in the MDE/T-ll backplane.

Figure 1-1 illustrates the hardware and software components of the
MDE/T-ll system.

1-1

INTRODUCING MDE/T-ll

CONSOLE
TERMINAL

VAX

I
11/780
HOST

LSI-11/23 MXV11-AC

LSI-118US

POD MICROIT-11 STATE MEMORY - EMULATOR ANALYZER SIMULATOR

SYSTEM BUS

TARGET

ML-002-82

Figure 1-1 The MDE/T-ll Microcomputer Development System

In a typical development cycle without MDE/T-ll (Figure 1-2), you must
build and test key circuits in your target before pioceeding to the
final stages of target system construction. In contrast, MDE/T-ll
debugs most components of target software, including interrupt-driven
software, in the absence of target hardware. (See Figure 1-3.)

Thus MDE/T-ll lets system integration take place earlier in the
development cycle, eliminating many of the time-consuming steps caused
by separate debugging of application hardware and software.

1-2

INTRODUCING MDE/T-ll

r---------- ---- - --- -- --, r--- - -------,
I HARDWARE DEVELOPMENT PHASE I INTEGRATION PHASE
I I

t J I
I
I
I
I
I
I
L __

r-
I
I
I
I
I
I

I BUILDING AND PAPER - DEBUGGING
I

DESIGN - I
PROTOTYPE

I
I
I

--- - - - ----------~

------------ ----,
SOFTWARE DEVELOPMENT PHASE I

I

CODING, I
PAPER .. ASSEMBLING I
DESIGN AND DEBUGGING I

PROGRAM l I

• I
I I

I
I

I ... -I
I
I
I
I SYSTEM
I INTEGRATION
I
I
I
I
I .. -I
I
I
I L ____________________ .J L ____________ --1

ML-005-82

Figure 1-2 The Microcomputer Development Cycle without MDE/T-ll

r------ -,
I DESIGN PHASE I

HARDWARE I
I

PAPER l
DESIGN

I

I
I

SOFTWARE I
PAPER I
DESIGN ;

I
I

___ ..J

I

J

r----------------,

I
I
I
!
I
I
I
I
I
I
I
L_

BUILDING, TESTING AND INTEGRATION PHASE I

~-
BUILD

AND DEBUG

~SYSTEM PROTOTYPE

CODE, ASSEMBLE INTEGRATI~

AND
DEBUG PROGRAM

i
-------------' ML-006-82

Figure 1-3 The Microcomputer Development Cycle with MDE/T-ll

1-3

INTRODUCING MDE/T-ll

1.1 SYSTEM ARCHITECTURE

The hardware and software components of the MDE/T-11 system work
together to provide a real-time debugging environment for use at the
chip level.

1.1.1 Hardware

MDE/T-11 hardware comprises LSI-II system components (Figure 1-1) and
in-circuit emulation components (Figure 1-4).

r-------,
I I
I TARGET POD

I I L _______ J

MICRO/T-11
EMULATOR

LSI-11 BUS

STATE
ANALYZER

SYSTEM BUS

Figure 1-4 MDE/T-11 Hardware Components

System Components

MEMORY
SIMULATOR

ML-004-82

• LSI-11/23 processor -- executes MDE/T-11 software and controls
in-circuit emulation hardware.

• Multifunction board -- controls two serial lines, one of which
interfaces to the console terminal and the other to the host
system, a 32KB RAM for MDE/T-ll control software, and MDE/T-ll
bootstrap ROMs.

• LSI-II bus -- provides communication between LSI-II system
components and in-circuit emulation components.

In-circuit Emulation Components

• Emulator -- with the pod, implements timing and control for
in-circuit emulation hardware.

• Pod -- contains MICRO/T-ll microprocessor and buffering logic
used in in-circuit emulation.

1-4

INTRODUCING MDE/T-ll

• State analyzer -- contains four comparators, four counters,
one trace RAM, and eight external logic probe lines. These
components let you monitor activity on the MICRO/T-ll bus. An
MDE/T-ll system can have one, two, or three state analyzers.
Eight additional external probe lines can be added to the
second state analyzer, for a total of 16 probe lines in an
MDE/T-ll system.

• Memory simulator -- contains 32KB of memory that you can
configure into MICRO/T-ll address space and provides detection
of memory access violations. An MDE/T-ll system can have one
or two memory simulators.

• System bus -- provides high-speed link for the emulator, state
analyzer, and memory simulator and prevents bus contention
between the LSI-ll/23 and the MICRO/T-ll microprocessor.

1.1. 2 Software

MDE/T-ll software gives you a symbolic debugger that allows access to
the emulator, state analyzer, and memory simulator through a set of
English commands. Application programs can be written, assembled, and
linked on a host operating system (VAX/VMS, RSX-IIM, or RT-II) and
loaded into MICRO/T-ll address space using MDE/T-ll commands.

After loading an application program, you can debug it with the
MDE/T-ll's symbolic reference feature. This feature offers forward
and backward translation of user-definable and global symbols. You
can use a symbol instead of a value to represent an address and can
display the values of addresses in "symbol+offset" format.

MDE/T-ll software also lets you implement event detection and bus
cycle tracing in hardware. The event-detection mechanism lets you use
both predefined events (tracepoints, watchpoints, and breakpoints) and
events that you can specify (UDEs); it is much faster than software
event-detection mechanisms. The bus cycle tracing mechanism lets you
store MICRO/T-ll logic signals on every processor cycle of the
MICRO/T-ll for display and analysis.

1.2 HOST SYSTEMS

The MDE/T-ll system is connected to a host system over a communication
line through one of the serial line ports on the LSI-Il/23 processor.
The VAX/VMS, RSX-11M, and RT-11 operating systems can run on the host
system.

The host operating system provides all file storage and development
software, including editors, an assembler, and a linker or task
builder utility. When you develop your application program on the
host, MDE/T-ll provides transparent routing of terminal I/O between
your terminal and the host system.

1-5

CHAPTER 2

HARDWARE FUNCTIONS

MDE/T-ll simulates portions of MICRO/T-ll hardware that may not be
available on a target system during hardware and software development.
In addition, MDE/T-ll hardware detects MICRO/T-ll bus activity and
events in real time for display and analysis.

2.1 DEVELOPMENT SYSTEM

As shown in Figure 2-1, major development system components include
the host system, MDE/T-ll system hardware, and the target hardware in
which the MICRO/T-ll microprocessor and software are installed.

HOST
SYSTEM

COMMUNICATION
LINE ., -----------...,

I MDEfT-11 CABINET I

I LSI-11 MDE/T-11 I
CONSOLE SYSTEM SYSTEM I TARGET

TERMINAL HARDWARE HARDWARE I
HARDWARE

I
I I
L __ _

ML-007-82

Figure 2-1 Development System Major Components

The host system provides the environment in which application programs
are written, edited, assembled, and linked (also called task
building). During these stages of MICRO/T-ll software development, no
system hardware is involved except the console terminal and LSI-II
system hardware operating as a virtual terminal connected to the host
system. The host system provides all file access for MDE/T-ll
software and application programs.

A single communication line between MDE/T-ll hardware and the host
system provides the interface for:

Operator commands issued to the host system

Host system messages for display on the operator's console

Down-line loading of MDE/T-ll software

Down-line loading of application software (programs and data)

2-1

HARDWARE FUNCTIONS

Two main system components are in the MDE/T-ll cabinet:
system hardware and the MDE/T-ll system hardware. The
hardware includes a PDP-ll/23 microprocessor, memory, a
interface, and bootstrap ROM hardware components. These
components perform several functions:

Provide operator access to the host system

the LSI-II
LSI-II system
serial line

LSI-II system

Provide the operator MDE/T-Il command/display interface to
MDE/T-II hardware

Provide software control over the in-circuit emulation hardware

No local file storage is required.
cabinet provides operating power
components.

A power supply in the MDE/T-ll
for LSI-II and MDE/T-ll system

The console terminal provides the operator command/display interface
for the development system. MDE/T-ll software uses display features
available on DIGITALis VT100 video terminal with the VT100-AS advanced
video option. It also supports DIGITAL LA120 hard-copy terminal
features. Other terminals can be used, but no special display
features or keypad support is provided.

The target hardware is the prototype hardware for which the
application software is developed. The target is connected to the
MDE/T-ll system by means of the MDE/T-ll pod. The pod includes cables
that connect to the hardware in the MDE/T-ll cabinet, and a flat cable
and 40-pin plug that connects to the target by means of the targetls
MICRO/T-ll socket.

A MICRO/T-ll microprocessor in the pod provides all normal MICRO/T-ll
functions while permitting control and access by MDE/T-ll hardware
functions. The cables connecting the target to the pod have minimum
effect on the dynamic characteristics of the target in a real-time
operating environment.

An optional user-supplied probe can be connected to the MDE/T-ll
system to monitor various logic signals on the target hardware. The
probe permits the monitoring of up to eight logic signals for display
and analysis. A second probe can be connected to the MDE/T-ll system
if it contains two or more state analyzers, for monitoring up to 16
logic signals.

2.2 MDE/T-ll SYSTEM

As shown in Figure 2-2, three MDE/T-ll system hardware components
provide the main functions necessary for real-time application
development: the MICRO/T-ll emulator, the memory simulator, and the
state analyzer.

2-2

r-------,
I I

I TARGET
I I L _______ J

POD

HARDWARE FUNCTIONS

MICRorr-l1
EMULATOR

LSI-l1 BUS

STATE
ANALYZER

SYSTEM BUS

Figure 2-2 MDE/T-ll System Hardware Components

MEMORY
SIMULATOR

ML-004-82

These three hardware components communicate with each other in real
time over the system bus, a high-speed bus integral to the MDE/T-ll
backplane. In addition, each of the three components interfaces with
LSI-II system components by means of the LSI-II bus, providing
MDE/T-ll software control and monitoring of all MDE/T-ll hardware
functions.

2.2.1 MICRO/T-ll Emulator

MICRO/T-ll emulator hardware consists of two modules: the emulator
and the pod. The pod contains a MICRO/T-ll microprocessor and has the
cables and plug for connecting the target hardware to the MDE/T-ll
system hardware.

The MICRO/T-ll emulator (Figure 2-3) performs in-circuit MICRO/T-ll
microprocessor functions for the target hardware. These functions let
you monitor and control the MICRO/T-ll and debug your target
application software in real time.

2-3

HARDWARE FUNCTIONS

LSI-11 BUS

r-------,
I I
I
I TARGET !-II--+I
I I ·L _______ "

POD

EXTERNAL CLOCK
CONNECTOR

MICRO/T-11
SUPPORT

LOGIC

LSI-11 BUS
CONTROL LOGIC

SYSTEM BUS
CONTROL LOGIC

SYSTEM BUS

Figure 2~3 MICRO/T-ll Emulator

MICRO/T-ll support logic provides the
emulating certain target hardware
microprocessor operation.

following
functions

ML-008-82

functions for
and controlling

• Processor clock source -- Circuits let you select
microprocessor clock signals from one of three sources.

Target-generated clock (selected manually via switches in
the pod)

5.0688 MHz MDE/T-ll system-generated clock

External clock (connected via EXTERNAL CLOCK connector)

Figure 2-4 illustrates the connections of the pod
switches in the emulator. Refer to the description of
the CONFIGURE CLOCK command in Chapter 8 for details on
how to use these switches.

2-4

•

HARDWARE FUNCTIONS

Emulator Clock,
internal or from
external connector
(TTL)

Pod
Switches

Figure 2-4 Pod Switch Connections

MICRO/T-ll mode register source
source bits can be selected
user-programmable mode register.
register lets you select:

-- MICRO/T-il mode register
from the target hardware or a

The user-programmable mode

The MICRO/T-II bus width (8- or l6-bit data)

Start/Restart addresses

Normal/Delayed and long/short bus cycles

Static (no refresh) or dynamic
including size of memory chips

(refresh) memory,

MICRO/T-il processor clock signals or constant clock
signals (half frequency)

• Timeout -- Circuits let you specify timeout detection for
excessively long times between instruction fetches.

• Power-up (PUP) signal source -- You can simulate PUP signal
generation by means of MDE/T-II commands or allow assertion of
PUP by the target hardware.

NOTE

The term Rpower up" does not refer
to the presence of 5 volts on the
power pin (Vcc) of the MICRO/T-il.

• Interrupt simulation -- Circuits let you select
target-generated interrupts or simulated interrupts.
Simulated interrupts let you specify coded priority interrupts
with implicit vectors (in the MICRO/T-Il microprocessor) or
external interrupt vectors. When simulated interrupts are
selected, DMA cycles (produced only by target hardware) are
not executed, but target-generated HALT and PF interrupts are
executed in a normal fashion.

• Pause state machine -- The pause state machine (Appendix A)
suspends MICRO/T-II execution as certain events are detected
or when halted by MDE/T-II software functions. The pause
state machine consists of logic circuits and routines that
simulate a halt state by suspending and preserving the
execution environment of the MICRO/T-II application program.

2-5

•

HARDWARE FUNCTIONS

In the pause state, no application program execution takes
place, and neither DMA cycles nor interrupts are executed.
For this reason, examining MICRO/T-ll bus signals with
external test equipment during the pause state reveals bus
activity unrelated to the application program. Consequently,
analysis of this activity is neither necessary nor recommended
for application program development.

Single
program
machine
execute

NOTE

HALT and power fail (PF) MICRO/T-ll
interrupts are pseudo edge sensitive;
that is, an interrupt is generated
whenever either signal is negated and
followed by an assertion. To prevent
erroneous HALT and PF interrupts
resulting from pause-state machine entry
and exit, both interrupt signals are
latched during each MICRO/T-ll bus cycle
(except when in the pause state). When
in the pause state, the state of both
signals is preserved. On exiting the
pause state, the signals are latched
again during each bus cycle, and normal
HALT and PF interrupt operation is
enabled.

stepping -- Circuits let you single-step through
execution. At each step, execution halts (pause-state
invoked) until you issue an MDE/T-ll command to
the next instruction.

2.2.2 Memory Simulator

Memory simulator hardware consists of one or two memory simulator
modules, each having 32KB of memory. Two memory simulators are
required for simulating the entire MICRO/T-ll address space.

Memory simulator hardware (Figure 2-5) lets you select target and
simulated memory, or either, during MICRO/T-ll application program
development. You can also simulate RAM, ROM, or no memory and
configure various combinations of target and simulated memory.

2-6

HARDWARE FUNCTIONS

LSI·11
BUS

LSI·11 BUS
CONTROL LOGIC

MEMORY
MAPPING

LOGIC

MEMORY
PROTECTION

LOGIC

The memory array
logic responds
use as simulated
must be observed
3.3.

SYSTEM BUS
CONTROL LOGIC

SYSTEM
BUS

Figure 2-5 Memory Simulator Functions

ML-009-82

consists of four 8KB blocks of RAM. Memory mapping
to MDE/T-ll commands by mapping these 8KB blocks for
memory at addresses you specify. Certain guidelines
regarding address boundaries, as described in Section

2-7

HARDWARE FUNCTIONS

Memory protection logic responds to MDE/T-ll commands by designating
2S6-byte increments of the 8KB block or the entire block for:

RAM (neither read nor write protected)

ROM/PROM (write protected)

Absent (both read and write protected)

Simulating target memory is useful during the early stages of hardware
development. Rather than delay debugging because memory is
unavailable, you can simulate target memory by allocating memory in
the memory simulator and proceeding with software development.

Simulating ROM is useful for developing PROM-based application
software because you can perform real-time debugging without
programming and installing PROM chips on the target. Memory simulator
commands let you load code and data into areas of the memory simulator
or target and simulate ROM by write-protecting those areas.

During all MICRO/T-Ilmemory access cycles, addresses are passed to
the memory simulator by means of the emulator and the system bus. The
memory simulator looks at the addresses to determine if the physical
memory resides in the target or the memory simulator. A signal is
then passed back to the emulator so it can enable the correct data
paths.

The memory simulator also looks at the protection status of the
addresses and compares it with the type of bus transaction taking
place. If a violation occurs, such as trying to access unmapped
memory or write in write-protected memory, the error is f~d back to
the emulator, and emulation is halted at the next instruction fetch
boundary. If the violation occurs during an instruction fetch cycle,
the instruction is not executed. Memory violations detected and
reported in this manner are useful when debugging ROM/PROM
applications.

2.2.3 State Analyzer

Each MDE/T-ll system contains one to three state analyzers. Each
state analyzer has 4 event detection circuits, permitting up to 12
events to be defined simultaneously.

Figure 2~6 illustrates the major components of a state analyzer.

2-8

HARDWARE FUNCTIONS

LSI-11 BUS
CONTROL LOGIC

EVENT DETECTION

LSI-11
BUS

TRACE
RAM

ACTION COMPARATORS
LOGIC AND

COUNTERS

SCOPE
TRIGGER
CONNECTOR

SYSTEM
BUS

PROBE A
(OR PROBE B)
CONNECTOR

SYSTEM BUS
CONTROL LOGIC

ML-010-82

Figure 2-6 State Analyzer Functions

State analysis functions performed by the state analyzer let you
moni tor MICRO/T-II appl ication program execution, detect and repo.rt
software and MICRO/T-II hardware events that you define using MDE/T-II
commands, and capture data from the MICRO/T-Il bus for display and
analysis. These functions are accomplished in hardware through event
detection and bus cycle tracing. These functions are described in
greater detail in the following paragraphs. External probes are
discussed separately at the end of this chapter.

2~2.3.1 Event Detection - Event detection circuits consist of
comparators and counters that monitor the MICRO/T-II bus for
predefined or user-defined events. If the conditions defining the
event are met, a counter is decremented. The event is signaled only
if the conditions are detected and counted a specified number of
times. When the event is signaled, various actions are taken by the
event detection circuits in response to parameters specified in event
detection commands. These actions include placing the MICRO/T-II in
the pause state and displaying a message.

2-9

HARDWARE FUNCTIONS

Events are defined by loading a state template (60-bit data pattern
consisting of fields illustrated in Figure 2-7) into one of the four
comparators on a state analyzer, and detected by comparing the state
template pattern with data patterns made up of MICRO/T-ll bus signals,
state analyzer flag bits, and external probe bits. When a match
occurs, an event is detected.

MDE/T-ll commands let you define events and/or use three predefined
events (breakpoints, tracepoints, watchpoints). In predefined events,
MDE/T-ll software translates your commands into state templates that
are loaded into the comparators.

o 15 16 31

I : : : : : : ~DD~ES~ : : : : : I : : : : : : :0+< : : : : : : ~
32 47 48 55 56 59

) I

CONTROL LINES EXTERNAL PROBES FLAGS
I I I I I I I I

I I I I I I I I I I

TRANS SPARE SEL AI EVENT QUAL,
I I

32 35 36 37 38 39 40 47 56 57 58 59 ML-Oll-82

Figure 2-7 State Template Word Format

MICRO/T-11 bus signals are represented
through 47. Parameters in MDE/T-l1
logical state or mask (don't-care)
user-defined events.

in state
commands

for each

template bits 0
let you specify the
bit when setting

NOTE

TRANS bits are not taken directly from
the MICRO/T-ll bus. They are encoded by
the emulator to signify one of the
MICRO/T-ll transaction types.

Sixteen external probe bits -- eight for state analyzer A (PROBE A)
and eight for state analyzer B (PROBE B) -- specify the logical states
of up to sixteen external probe lines for event detection. Each probe
can monitor eight logic signals. You can use only one probe (eight
probe bits) for an event. A second state analyzer is required when
using a second external probe.

Four state analyzer flags are in each state analyzer. The flags are
represented as four bits in the state template (bits 56 through 59).
Two event flags, 0 and 1, are set automatically whenever comparator 0
and 1, respectively, declare events. Two additional flags, called
qualifier flags, are set only as specified for user-defined event
actions.

Flags are useful for defining events that depend on other events being
signaled. Event flags can be used only for event detection within the
same state analyzer. However, qualifier flags, which are set
simultaneously in all state analyzers, let you set events that depend
on actions in other state analyzers. Event and qualifier flags can be
cleared by various means and conditions as described in Section 3.2.1.

2-10

HARDWARE FUNCTIONS

Each comparator has a counter. The MDE/T-ll command that loads the
state template into the comparator should contain a parameter that
specifies a count value. Each time an event is detected, the count is
decremented. If the count goes to zero, the event is signaled,
appropriate MDE/T-ll action is taken, and the initial value of· the
count is restored.

One of the actions that can be produced when user-defined events are
signaled is generating a scope trigger pulse. This pulse is available
through the SCOPE TRIGGER connector on the front of the MDE/T-ll
cabinet. The pulse can be used to trigger test equipment external to
the MDE/T-ll system.

2.2.3.2 Bus Cycle Tracing - The trace RAM lets you trace each
MICRO/T-ll bus cycle. The trace RAM is composed of high-speed static
memory with 1024 locations and 56 bits in each location. Each
location stores the same information described in the state template
(Figure 2-6), with the exception of flag information. Also, the
information stored matches actual bus cycles as they occur in real
time. You can start or stop bus cycle tracing by specifying
appropriate actions for user-defined events, configure the trace
analyzer to trace always, or trace only a specified number of cycles
(see the CONFIGURE ANALYZER command in Chapter 8).

The trace RAM operates as a circular buffer with a pointer that
indicates the first unused location as shown in Figure 2-8. When
full, the trace RAM retains only the most recent 1024 bus cycles;
previous bus cycles are lost.

1
o

POINTER_

• • •

BUS
TRANS ADDRESS DATA SEL AI PROBE

ML-012-82

Figure 2-8 Trace RAM Fields and Addressing

2-11

HARDWARE FUNCTIONS

2.2.3.3 External Probes - The PROBE A and PROBE B connectors on the
front of the MDE/T-l1 cabinet are for use with optional, user-supplied
external probes. Each connector provides the hardware interface for
one probe containing eight external lines to be monitored by one of
the state analyzers. A second analyzer is required for a second probe
(16 external probe lines).

NOTE

MDE/T-1l accepts Tektronix P6451 (or
equivalent) data acquisition probes.

A clock attached to the probe lines latches data on the
FALLING edge of the clock signal. The parameter (RISING
that you specify in the CONFIGURE CLOCK command determines
edge on which probe line data is latched.

2-12

RISING or
or FALLING)

the clock

CHAPTER 3

SOFTWARE FUNCTIONS

MDE/T-ll software functions provide the user interface
hardware for in-circuit emulation, state analysis,
simulation. The software performs these functions in
three groups of commands:

to MDE/T-Il
and memory

response to

Emulation commands control the operation of MICRO/T-ll in-circuit
emulation, including the mode of operation, starting or stopping
execution, and single-stepping one or more instructions

State analysis commands detect real-time user-defined events and
set breakpoints, watchpoints, and tracepoints

Memory simulation commands simulate various target system RAM
and/or ROM configurations in MDE/T-Il memory simulator hardware

The following sections provide general descriptions of these commands.
Refer to Chapter 8 for detailed descriptions including syntax and
examples of use in a debugging session.

3.1 IN-CIRCUIT EMULATION

In-circuit emulation functions provide the user interface to
MICRO/T-ll emulation hardware. You perform these functions through
the following MDE/T-li emulation commands:

CONFIGURE MODE POWER

CONFIGURE CLOCK HALT

CONFIGURE TIMEOUT WAIT

SHOW CONFIGURE SIGNAL

SHOW TARGET

CONFIGURE MODE

The CONFIGURE MODE command lets you control the source and contents of
the MICRO/T-Il emulator mode register, a 16-bit register through which
all MICRO/T-II operational features are selected. You can direct the
command to configure mode bits in the mode register in the MICRO/T-II
emulator or in the mode register in the target hardware (if one is
provided). The MICRO/T-Il will power up or configure itself using the
mode register source specified.

3-1

SOFTWARE FUNCTIONS

CONFIGURE CLOCK

The CONFIGURE CLOCK command selects the processor clock signal from
the emulator's 5.0688 MHz crystal-controlled source or an external
source connected via the EXTERNAL CLOCK connector on the front of the
MDE/T-II cabinet. (See Figure 2-4.)

CONFIGURE TIMEOUT

The CONFIGURE TIMEOUT command turns the MICRO/T-Il emulator's
processor-timeout detection feature on and off. When this feature is
turned on, the emulator detects the processor's failure to assert a
fetch transaction within a fixed period of time (approximately 0.6
second) •

SHOW CONFIGURE

The SHOW CONFIGURE command displays the memory, state analyzer, and
MICRO/T-ll mode register configurations. The information displayed is
the result of parameters set previously in CONFIGURE MEMORY, CONFIGURE
ANALYZER and CONFIGURE MODE commands.

SHOW TARGET

The SHOW TARGET command displays a one-line report showing whether the
MICRO/T-ll is powered up, running, or in the pause state (Appendix A).
This command also displays the source of interrupts specified in the
SIGNAL command.

POWER

The POWER command lets you simulate a power-on condition and direct
the MICRO/T-ll to begin execution or enter the pause state. This
command also lets you select the power-on initialization (PUP) signal
source from the MDE/T-ll system (for simulated power on) or from the
target system.

HALT

The HALT command puts the MICRO/T-II in the pause state and displays
the contents of all its registers.

WAIT

The WAIT command suspends command input from the terminal or an
indirect command file until the MICRO/T-ll enters the pause state.

SIGNAL

The SIGNAL command selects the target hardware or the MDE/T-ll
emulator as the source of interrupts. When simulating interrupts, you
can specify encoded priority interrupts with implicit vector
addresses, or you can specify external interrupt vectors. Simulated
interrupts are useful when debugging interrupt service routines.

NOTE

DMA requests are ignored whenever
interrupt simulation is in effect.
However, power fail and halt traps
issued by target hardware are executed.

3-2

SOFTWARE FUNCTIONS

3.2 STATE ANALYSIS

State analysis functions provide the user interface for event
detection and bus cycle tracing. State analysis commands let you
capture and analyze MICRO/T-ll bus cycle transactions in real time.

This section gives you an overview of event detection and bus cycle
tracing, including a detailed description of your MDE/T-ll command
interface with the state template, event and qualifier flags, and
user-defined event actions.

3.2.1 Event Detection

Event detection commands let you specify
produce a user-defined event (UDE)
(breakpoints, tracepoints, watchpoints).

particular conditions that
or three predefined events

3.2.1.1 Setting User-defined Events - You specify a user-defined
event by loading a 60-bit state template and a 60-bit mask into one of
the four comparators in a state analyzer. The mask specifies which
conditions or parameters the state analyzer will use when detecting
events. MDE/T-ll software produces the state template and mask in
response to parameters defined in the SET UDE command.

whenever a match
and the pattern on

You can direct
event or after a

The state analyzer detects a user-defined event
occurs between the bits set in the state template
the MICRO/T-ll bus during each processor cycle.
MDE/T-ll to signal an event after each detected
specified number (count) of events are detected by a
(count values range from 1 to 256). When the event
count is automatically set to the initial value.

state analyzer
is signaled, the

For each state analyzer, you can set four events, one for each
comparator, and you can have up to three analyzers in the MDE/T-ll
system. State analyzers are identified by the letters A, B or C.
Comparators on each state analyzer are identified by the numbers 0, 1,
2 or 3. Thus you can specify the third comparator in the first state
analyzer as A:2. For compatibility with other symbolic debuggers,
comparators in the MDE/T-ll system are also assigned ordinals.

Comparator

A:0
A:1
A:2
A:3
8:0
8:1
B:2

3-3

Ordinal

o
1
2
3
4
5
6

SOFTWARE FUNCTIONS

3.2.1.2 State Analyzer Flags - Each state analyzer has four flags
that signal event comparator status.

Two flags, called event flags 0 and 1, are provided on each state
analyzer. They indicate the event detection state of comparators 0
and 1, respectively, in the analyzer. An event flag is automatically
set whenever one of its comparators signals an event. Event flags are
cleared when a RESET action occurs, when you issue a RESET ANALYZER
command, or when you issue a command that sets or modifies an event
for a comparator.

The remaining flags are called qualifier flags 0 and 1. They can be
set by any comparator in the MDE/T-ll system, as opposed to event
flags, which are set only within their respective state analyzers.
Qualifier flags are set only when a user-defined event is signaled and
you specified a SIGNAL QUALIFIER action in its SET UDE command.
Qualifier flags are cleared by RESET actions or RESET ANALYZER
commands or whenever you set or modify an event for comparators 2 or 3
in a particular state analyzer. (Qualifier flags on other state
analyzers are not affected.) Consequently, you should frequently use
the RESET ANALYZER command to initialize qualifier flags as required,
if they are used in more ~han one state analyzer for event detection.

Parameters in the SET UDE command let you define the states of any
event and qualifier flags for event detection conditions. The flags
are useful when you want to detect a series of user-defined events.

3.2.1.3 State Template - The state template for each comparator
(Figure 2-6) is 60 bits long and consists of the following fields:

16 ADDRESS bits

16 DATA pits

8 AI bits

2 SEL bits

4 TRANSaction bits that define the type of bus cycle in progress

READ -- Read transaction

WRITE -- Write transaction

READ DMA -- DMA read cycle

WRITE DMA -- DMA write cycle

FETCH -- Instruction fetch (read transaction)

lACK -- Interrupt acknowledge (vector read transaction)

REFRESH -- Memory refresh cycle

ASPI -- Assert priority in

8 EXTERNAL probe bits

2 EVENT bits

2 QUALifier bits

2 SPARE bits
3-4

SOFTWARE FUNCTIONS

3.2.1.4 Event Actions - All events when signaled produce one or more
actions. Breakpoints, tracepoints, and watchpoints place the
MICRO/T-ll in the pause state (BREAK action); however, tracepoints
are followed by an implicit GO command. User-defined events can
produce one or more of the following actions (specified in the SET UDE
command) :

BREAK

TRIGGER

TRACE

STOP

RESET

SIGNAL QUALIFIER

Stop target program execution (enter pause
state)

Generate an output pulse on the SCOPE TRIGGER
connector on the front of the MDE/T-ll
cabinet

Save the data pattern for each successive bus
cycle in the trace RAM starting with the next
bus cycle

Stop saving the data pattern in the trace RAM
following the next bus cycle

Initialize event counters and clear event and
qualifier flags on all state analyzers

Set a qualifier flag

3.2.1.5 Bus Cycle Tracing - Bus cycle tracing is initiated by TRACE
action parameters and stopped by STOP action parameters. When bus
cycle tracing is in progress, information describing each MICRO/T-ll
bus cycle is stored in sequential locations in the trace RAM. The
trace RAM operates as a circular buffer with storage for 1024 bus
cycles. Only information for the most recent 1024 bus cycles is
retained in the trace RAM (except in a CONFIGURE ANALYZER command that
specifies the RETAIN qualifier).

The information for each bus cycle consists of the:

Frame numbers (sequentially descending decimal numbers that
identify trace RAM locations)

Bus transaction status (type)

Address of the location accessed, instruction fetched, or data
written or read

State of the SEL and AI lines

External probe line logical states (if used)

The DISPLAY TRACERAM command lets you display any (or all) information
in the trace RAM in any radix mode.

3-5

SOFTWARE FUNCTIONS

3.2.2 State Analysis Commands

State analysis commands perform the MDE/T-II hardware functions of
event detection and bus cycle tracing.

Event Detection Commands

• CONFIGURE ANALYZER

• RESET ANALYZER

• SET UDE, SHOW UDE, CANCEL UDE

• SET BREAK, SHOW BREAK, CANCEL BREAK

• SET TRACE, SHOW TRACE, CANCEL TRACE

• SET WATCH, SHOW WATCH, CANCEL WATCH

Bus Cycle Tracing Commands

• CONFIGURE ANALYZER

• DISPLAY TRACERAM

• CLEAR TRACERAM

CONFIGURE ANALYZER

The CONFIGURE ANALYZER command specifies the modes of operation of the
trace RAM. This command also specifies the clocking mode for the
external probe lines.

RESET ANALYZER

The RESET ANALYZER command initializes all comparator event counters
and clears all event and qualifier flags.

SET UDE, SHOW UDE, CANCEL UDE

The SET UDE, SHOW UDE, and CANCEL UDE commands specify, display, and
cancel user-defined events.

The SET UDE command loads the state template and mask into a
comparator that describes the event and specifies a count and the
action to be taken when the event occurs.

The SHOW UDE command displays the current status of a particular event
that is specified by including the state analyzer (letter) and
comparator (number) in the command. Information displayed includes
the:

Event ordinal

Current event count

Action to be taken when the event is signaled

Relevant fields in the event mask

The CANCEL UDE command cancels the specified event.

SET BREAK, SHOW BREAK, CANCEL BREAK

3-6

SOFTWARE FUNCTIONS

The SET BREAK, SHOW BREAK, and CANCEL BREAK commands specify, display,
and cancel breakpoint events.

The SET BREAK command loads a state template and mask describing the
breakpoint into a comparator. Any breakpoint or tracepoint previously
set for the specified location is canceled.

A breakpoint is a predefined event that occurs after an instruction at
an address specified in a SET BREAK command is executed. A breakpoint
occurs only if the detected event occurs the number of times stated in
the COUNT and/or AFTER parameters. The breakpoint causes the
MICRO/T-ll to enter the pause state immediately following instruction
execution, and a breakpoint message is displayed.

The SET BREAK command can include the COUNT parameter to produce
breakpoints only after a specified number of events are detected by
the state analyzer. COUNT has the advantage of counting events in
real time (the MICRO/T-ll does not enter the pause state until the
count is reached), but it is limited to a maximum count of 256.

NOTE

The COUNT parameter initializes
hardware-implemented event counter

a
in

the state analyzer. Thus an event is
reported to MDE/T-ll software only when
the specified number of events are
detected.

In addition to COUNT, the SET BREAK command can include the AFTER
parameter which initializes a software-implemented counter to a
specified value. AFTER causes the breakpoint to occur only when the
specified number of events reported by the state analyzer occurs. The
AFTER counter has the advantage of extending the event count to 65535;
a second advantage is that the current software count of events can be
displayed using the SHOW BREAK command. In addition, you can include
both the COUNT and AFTER parameters in a SET BREAK command. When both
parameters are included, they extend the event count for breakpoints
to a maximum of 16,776,960. For example

SET BREAK/COUNT:256/AFTER:4 1000

As a result of this command, a breakpoint occurs at location 1000 once
every 1024 times the instruction is executed.

NOTE

MDE/T-ll software execution time for
decrementing the AFTER count and
resuming MICRO/T-1l execution is
approximately 0.5 second. Thus the
AFTER parameter should be used
sparingly. Do not use this parameter in
critical real-time applications.

SET TRACE, SHOW TRACE, CANCEL TRACE

The SET TRACE, SHOW TRACE, and CANCEL TRACE commands specify, display,
and cancel tracepoint events in the same manner as described
previously for breakpoints.

3-7

SOFTWARE FUNCTIONS

Tracepoints differ from breakpoints only when the event is reported;
the MICRO/T-ll does not remain in the pause state. Following display
of the tracepoint message, MICRO/T-ll execution is resumed
automatically.

SET WATCH, SHOW WATCH, CANCEL WATCH

The SET WATCH, SHOW WATCH, and CANCEL
and cancel watchpoint events in
previously for breakpoints, except
different.

WATCH commands specify, display,
the same manner as described
that the message content is

A watchpoint is a predefined event that occurs when data is written in
a location specified in a SET WATCH command. A watchpoint occurs only
if the detected event occurs the number of times stated in the COUNT
and/or AFTER parameters.

CLEAR TRACERAM

The CLEAR TRACERAM command clears the trace RAM and initializes the
RETAIN value if it is specified in a CONFIGURE ANALYZER command.

DISPLAY TRACERAM

The DISPLAX TRACERAM command displays the contents of the trace RAM
during bus cycle tracing. Command parameters let you start the
display with any trace RAM location and specify the:

Number of bus cycles to be displayed

MICRO/T-II bus address display type

Radix for various display fields

NOTE

You can display any part (or all) of the
trace RAM when the MICRO/T-II is in the
pause state. When the MICRO/T-II is
running, access to the trace RAM is
limited, and events are disabled for a
short time after displaying the contents
of the trace RAM.

3.3 MEMORY SIMULATION

Memory simulation functions provide the
simulator hardware. You perform these
memory simulation commands that let you:

Map and protect target memory

user interface to memory
functions through MDE/T-II

Load programs, data, and symbols into memory

Examine and deposit memory locations or MICRO/T-II registers

Copy memory contents from one part of memory to another

Memory simulation lets you debug application software with or without
memory on the target hardware. In addition, memory simulation permits
ROM simulation, eliminating the need for programming or reprogramming
ROM chips during program development stages.

3-8

SOFTWARE FUNCTIONS

You accomplish memory simulation by using the following commands:

• CONFIGURE MEMORY

• LOAD

• COpy

• DEPOSIT

• EXAMINE

CONFIGURE MEMORY

The CONFIGURE MEMORY command lets you map MICRO/T-l1 address space in
256-byte increments in the target memory or the memory simulator. The
MICRO/T-11 accesses memory configured in the target via the pod.
Memory configured in the memory simulator is accessed directly by the
MICRO/T-ll. You can protect each 256-byte increment of memory from
read or write access or both (for absent memory). Any attempt by your
application program to access memory configured as absent or to write
to write-protected memory causes the emulator to enter the pause
state, and an error message informing you of the memory addressing
error is displayed.

Each memory simulator contains four 8KB blocks of memory. You can map
each block to any of the eight 8KB segments in the MICRO/T-l1 address
space. Therefore, if you have only one memory simulator in your
MDE/T-11 system, you can configure simulated memory in only four 8KB
segments within the MICRO/T-11 address space. If you have a second
memory simulator, this restriction is removed.

NOTE

The use of any portion of a memory
simulator block allocates the block for
the entire 8KB address segment; the
unused portion cannot be mapped to
addresses outside that segment. Thus,
when simulating memory with only one
memory simulator, you must restrict
memory simulation to addresses within
four 8KB segments. This restriction is
removed if a second memory simulator is
used.

The following example illustrates how you can use CONFIGURE MEMORY
commands to map 3 1/2 blocks of simulated memory and 4 1/2 blocks of
target memory as shown in Figure 3-1.

MDE>CONF MEM FROM 0 to 37777 SIM<RET>

MDE>CONF MEM FROM 40000 to 47777 TARGET<RET>

MDE>CONF MEM FROM 50000 to 57777 SIM NOWRITE<RET>

MDE>CONF MEM FROM 100000 to 137777 TARGET NOWRITE<RET>

MDE>CONF MEM FROM 160000 to 177777 SIM<RET>

3-9

SOFTWARE FUNCTIONS

aKB
BOUNDARIES

•
SIMULATED

(R EAD/WR ITE)

SIMULATED
(READ/WRITE)

TARGET
(READ/WRITE)

SIMULATED
(READ-ONL YI

ABSENT

TARGET
(R EAD-ON L YI

TARGET
(READ-ONL YI

ABSENT

SIMULATED
(READ/WRITE)

000000

017777
020000 <

037777
040000

!
057777

.,I

060000

FOUR BLOCKS ALLOCATED
077777 FOR MEMORY SIMULATOR
100000

117777
120000

137777
140000

157777
160000

177777
ML-013-82

Figure 3-1 Memory Configuration Example

After issuing the commands shown above, the following command would
not be allowed if your MDE/T-il system has only one memory simulator:

MDE> CONF MEM FROM 60000 to 60377 SIM(RET>

The preceding command would not be allowed because a fifth 8K byte
simulator block is required.

However, the command below would be allowed:

MDE> CONF MEM FROM 40000 to 47777 SIM(RET>

This command is allowed because it makes use of an 8K byte block of
simulator memory that is already mapped.

LOAD

The LOAD command transfers your programs and data from disk files to
MICRO/T-II address space. This command also reads global program
symbols into the MDE/T-Il symbol table and sets the MICRO/T-ll PC to
the transfer address (if specified).

SOFTWARE FUNCTIONS

COpy

The COpy command lets you copy memory contents from one physical area
to another (for example, from ROM in the target to RAM in the memory
simulator) and execute an implicit CONFIGURE MEMORY command. This
command also lets you copy data or code from one part of MICRO/T-ll
address space to another. All copy operations are performed in
256-byte increments.

DEPOSIT

The DEPOSIT command lets you write or change the contents of a
specified memory location or MICRO/T-ll register, or a range of memory
locations or MICRO/T-ll registers in any radix mode and format. You
can also use this command to fill a range of locations or MICRO/T-ll
registers with the same value or pattern of values.

EXAMINE

The EXAMINE command lets you display the contents of a specified
memory location or MICRO/T-ll register or a range of memory locations
or MICRO/T-ll registers in several display formats and radices.
EXAMINE is useful for disassembling program segments.

3-11

CHAPTER 4

MDE/T-11 OPERATOR AIDS

This chapter describes a group of operator aids that make the
MICRO/T-ll hardware and software development tools easier to use in
the debugging phase of program development. The MDE/T-ll operator
aids comprise:

• Terminal support

• Indirect command files

• ~g files

• Help facility

• Error reporting

4.1 TERMINAL SUPPORT

MDE/T-ll gives you general software support for non~DIGITAL terminals
and some DIGITAL terminals and special software support for DIGITAL'S
VTl~~ and LA12~ terminals.

The general software support lets you use MDE/T-ll w!th any ASCII
terminal that has an RS232 serial, asynchronous interface. However,
the terminal you use must operate at or above the baud rate of the
communication link between the host and MDE/T-11; maximum baud rate
is 96~0.

MDE/T-ll special terminal support consists of:

• Special character support

• Command keypad support

• VT100 display support

4.1.1 Special Character Support

MDE/T-ll interprets certain terminal characters as control characters
on DIGITAL and non-DIGITAL terminals. Control characters correct
typing errors, interrupt command execution, and stop terminal output.
You execute some of these control characters by pressing the CTRL key
and a letter key simultaneously--for example, CTRL/C. You execute
other control characters by pressing a single key--for example, DELETE
or RUBOUT.

Table 4-1 lists the control characters and their functions.

4-1

Character

CTRL/C

CTRL/Q

CTRL/R

CTRL/S

CTRL/U

DELETE
or

RUBOUT

MDE/T-II OPERATOR AIDS

Table 4-1
Control Characters

Function

Interrupts execution of the EXAMINE, DISPLAY
TRACERAM, and LOAD commands. Aborts and closes
any active command files, aborts any active
user-defined keys, and cancels command input
(see CTRL/U). Echoes as AC. Some delay may
occur in aborting commands, however.

Enables terminal output that has been disabled
with CTRL/S. Does not echo to the terminal.

Retypes the current command line and continues
to accept command input after the last character
that preceded the CTRL/R. Echoes as AR.

Disables terminal output. You can reenable
terminal output by typing CTRL/Q. Does not echo
to the terminal.

Deletes an entire line of text. Echoes as AU.

Cancels the character just typed. pressing it a
second time cancels the next-to-last character
typed, and so on.

MDE/T-ll accepts only the control characters listed above.

4.1.2 Command Keypad Support

MDE/T-ll supports a command keypad feature on the DIGITAL VT100 and
LA120 terminals. This feature lets you use the keys on the keypad
to define and execute MDE/T-ll commands.

4.1.2.1 Predefined Keys - Fourteen frequently used MDE/T-11
commands have been assigned to keys on the keypad (Figure 4-1). You
can execute these commands by pressing a single key. When you enter
predefined commands by using the keypad, the commands are echoed to
the terminal and are recorded in a log file, if you have created
one. (See Section 4.3.)

4-2

POWER
UP/

OWN

MDE/T-ll OPERATOR AIDS

0 TRA

EXA

Predefined Keys

KEYPAD
HELP

ML-014-82

Figure 4-1 MDE/T-11 Command Keypad

All predefined keys operate identically to their command
equivalents, except for the POWER, LOG, and KEYPAD HELP keys.
POWER key turns the MICRO/T-Il's power on and off; the LOG
turns logging on and off.

NOTE

When the MICRO/T-II is powered up and
running, the POWER (up/down) key does
not function. This feature of the
POWER key prevents you from
accidentally hitting this key and
powering down a running target. You
must type out the POWER DOWN command
to power down a running target.

line
The
key

The KEYPAD HELP differs from the HELP command. The KEYPAD HELP key
gives you a diagram of the keypad layout, whereas the HELP command
gives you a brief description of MDE/T-11 commands.

NOTE

You can type a keypad key only in
response to the MDE/T-11 prompt. Keypad
keys used during command line input
issue illegal commands. If you type a
keypad key during command line inputs,
MDE rings the terminal bell and ignores
the keypad key command. If you
inadvertently press a keypad key while
typing an MDE/T-II command, complete or
cancel the command line and then press
the keypad key again.

4-3

MDE/T-ll OPERATOR AIDS

4.1.2.2 User-Defined Keys - You can also assign up to eight MDE/T-ll
commands to keys PFl to PF4 with the KEYDEFINE command. You can then
execute the command or commands by pressing the key you have defined.
(See the KEYDEFINE command description in Chapter 8 for more
information on this feature.)

4.1.3 VTl~~ Display Support

MDE/T-ll uses the graphics and screen-manipulation features of the
VT100 terminal to provide easy-to-read displays (Figure 4-2).

"DEIT-11 Bl7.1 EVENTS RO:
B:O NA C:O NA R2:
B:1 NA C:1 NA R4:
B:2 NA C:2 NA SP:
B:3 NA C:3 NA PC:

10 A:O Breakpoint ICOUNT:1 IAFTER:1 (1 left) Address = START+10
"DE)SET WATCH SU"2
"DE)SET TRACE QUANT
"DE)SHOW All
10 A:O Breakpoint ICOUNT:1 IAFTER:1 (1 left) Address = START+10
11 A:1 Watchpoint ICOUNT:1 IAFTER:1 (1 left) Address = SU"2
12 A~2 Tracepoint ICOUNT:l IAFTER:1 (1 left) Address = QUANT
"DE)GO START
: "DE-I-PROEXESTA, Processor execution started at PC:START

BREAK at PC = START+l0
"DE)GO
; "DE-I-PROEXESTA, Processor execution started at PC:START+14

TRACE at PC = QUANT
"DE)
WATCH at SU"2: value was: 0, is now: 5: current PC = QUANT+12

Figure 4-2 VT100 Screen Format

10
177775
177775

The MDE/T-ll control software divides the VTl~0 screen into two
regions. The static region displays the status of the MDE/T-ll system
and the MICRO/T-ll microprocessor; the scrolling region displays
command input.

4.1.3.1 Status Information - The static region displays status
information about:

• Power and run state of the MICRO/T-ll microprocessor

• State analyzer configuration

• Comparator in use

4-4

MDE/T-ll OPERATOR AIDS

• Contents of the MICRO/T-ll registers (updated on request or
when execution halts)

• Display modes

• Logging status

• Load progress

The LOAD progress display shows the relative block number of the file
being loaded. During the load procedure, this display replaces the
interrupt source display in the lower left corner of the static
region.

The VT100-AB has a highlighting feature not available on the VT100-AA.
By displaying active states and nondefault settings, such as processor
running or hexadecimal display mode, this feature makes it easier to
interpret the display.

4.1.3.2 Command Input Information - The scrolling region on the VT100
lets you see commands as you execute them, as well as the reports
produced by commands. This feature, combined with the split screen,
lets you see the effect of MDE/T-ll commands on the debugger and the
MICRO/T-ll microprocessor immediately.

4.1.4 Activation of Special Software Support

The special software support for DIGITAL terminals is activated when
you start MDE/T-ll. When you issue the RUN MDE/T-ll command, MDE/T-ll
sends the ANSI Device Attributes (DA) escape sequence to your
terminal. If your DIG~TAL LA120 or VT100 terminal responds to the DA
escape sequence, MDE/T-ll turns on the special terminal-support
features.

If MDE/T-ll receives no response or an unknown response from your
terminal, MDE/T-ll operates in its default mode, with special terminal
support turned off. You can use the SET TERMINAL command to turn the
terminal support features on and off manually.

NOTE

Your VT100 does not respond to the DA
escape sequence while operating in the
VT52 compatibility mode. You must
operate your VT100 in ANSI mode to turn
on terminal support automatically. (See
the VT100 User's Guide for further
details.)

4.2 INDIRECT COMMAND FILES

To simplify the typing of commands, MDE/T-ll lets you place several
commands in a file and execute them with the @ character followed by
the file name.

4-5

MDE/T-ll OPERATOR AIDS

There are two types
command files let
commands; start-up
commands to start a

of indirect command files. General indirect
you execute a set of frequently used MDE/T-ll

initialization files let you automatically execute
debugging session.

4.2.1 General Indirect Command Files

MDE/T-ll lets you specify general indirect command
groups of MDE/T-ll commands. For these files, you
command file name, since MDE/T-ll, by default,
extension of .COM or .CMD.

files to execute
need only supply a
supplies a file

You can nest
the logging
files to only
for reading
follows:

indirect command files to three levels unless you turn on
mechanism, in which case you can nest indirect command
two levels; MDE/T-ll software maintains three channels
and writing ASCII files and allocates these channels as

1. Any indirect command file 1 channel

2. Logging in progress 1 channel

3. HELP command issued = 1 channel

Under VAX/VMS and RSX-IIM, make sure to use sequentially formatted
ASCII files for indirect command files. All text editors and the
MDE/T-ll logging facility normally produce sequentially formatted
ASCII files. However, under some circumstances, you can obtain binary
files in image mode that appear to be sequentially formatted ASCII
files when displayed with the TYPE command. Use of files other than
sequentially formatted ASCII files results in the following error
message:

?MDE-E-CMDFILERR, Command file
read error, file closed

At the end of the command sequence in a file, MDE/T-ll closes the
file, frees the channel, and returns to the MDE/T-ll command level
from which the indirect command file was called. If the indirect
command file was called from within another indirect command file,
MDE/T-ll closes the inner command file and executes the next command
in the outer command file. If the indirect command file was called
from the terminal, MDE/T-ll returns to the terminal for its next
command.

By default, commands read from an indirect command file are displayed
at the terminal. If you want to prevent the .command file input from
being displayed, use the SET OUTPUT command with the NOVERIFY
parameter.

Here is an example of an indirect command file called TEST. COM (or
TEST.CMD).

SHOW OUTPUT
SET MODE OCTAL

You can execute TEST.COM by typing @TEST in response to the MDE/T-ll
prompt (MOE», producing the following display:

MOE> SHOW OUTPUT<RET>
Output set to: TERMINAL, VERIFY, LOG (Log file is 'CDS.LOG')

4-6

MDE/T-ll OPERATOR AIDS

MDE>SET MODE OCTAL(RET>

MDE>

4.2.2 Start-up Initialization File

Usually, you issue certain MDE/T-ll commands before you begin to debug
your program. These commands can include one or more CONFIGURE
commands, the POWER UP command, and a LOAD or SET command.

To simplify the MDE/T-ll start-up procedure, you can use a start-up
initialization file (MDE.INI). You create this file just as you do a
general indirect command file under your host operating system. When
you create the start-up initialization file, the host operating system
places it in your default directory. MDE.INI is then executed from
this directory when you start the debugger. MDE/T-ll executes MDE.INI
before prompting you for command input, however.

4.3 LOG FILES

MDE/T-ll lets you record all terminal input and output in a file by
means of the SET OUTPUT command. This log file is helpful if you are
going to repeat a debugging session. Instead of typing in the
commands again, you can use the logging commands and an indirect
command file to reproduce a debugging session.

If you are recording your debugging session with a log file, you can
nest indirect command files to only two levels. In this situation, if
you attempt to use the HELP command or to open a third indirect
command file, your attempt will fail.

For more information on using log files, refer to the description of
the SET LOG and SET OUTPUT commands in Chapter 8.

4.4 HELP FACILITY

The MDE/T-ll on-line help facility contains information on all
MDE/T-Il commands and on some general topics as well. To learn what
kind of information is available for MDE/T-ll commands, type HELP. To
obtain information on specific commands, type HELP, followed by the
topic and, if applicable, the subtopic.

For more detailed information on the use of the on-line help facility,
see the description of the HELP command in Chapter 8.

4.5 ERROR REPORTING

MDE/T-Il reports error conditions, such as user errors and hardware
problems, by means of error messages. In some cases, the error
messages state the source or cause of an error. In other cases, the
error messages help you to pinpoint the cause of an error and the way
to correct it by suggesting possible causes and solutions.

Chapter 9 contains a complete list of MDE/T-ll error messages.

4-7

CHAPTER 5

PROGRAM DEVELOPMENT

This chapter tells you how to use MDE/T-ll to develop MACRO-II
programs under the VAX/VMS, RSX-IIM, and RT-IIXM operating syste~s.
Separate sections list and explain the steps you perform while uSlng
MDE/T-II with these operating systems. The explanations include a
demonstration program that takes you through the steps in the program
development cycle.

Before reading this chapter, however, you should review:

• The PDP-II MACRO-II User's Guide

• Appendix D in this manual, which describes special programming
techniques for MDE/T-ll users

When developing an application program, you take the following steps:

1. Power up the MDE/T-ll system and enter the virtual terminal
mode.

2. Log onto your host system (VAX/VMS, RSX-IlM) or bootstrap
your host system (RT-IIXM).

3. Create a file for your source program.

4. Assemble your program with MACRO-II.

5. Link your program with TASK BUILDER (VAX/VMS, RSX-llM) or
LINK (RT-lIXM).

6. Debug your program (see Chapter 6).

Figure 5-1 shows the program development cycle~

5-1

PROGRAM DEVELOPMENT

LOG ONTO
OR BOOTSTRAP
HOST SYSTEM .

CREATE FILE
FOR SOURCE
PROGRAM

ASSEMBLE THE
APPLICATION
PROGRAM WITH
MACRO-11

YES CORRECT THE
SOURCE PROGRAM

NO

LINK THE
OBJECT
MODULE

NO

DEBUG WITH
MDE/T-11

Figure 5-1 Program Development Cycle

5-2

ML-Ol5-82

PROGRAM DEVELOPMENT

5.1 POWER UP MDE/T-ll AND ENTER VIRTUAL TERMINAL MODE

Powering up MDE/T-ll and entering the virtual terminal mode connects
the MDE/T-ll console terminal to the host under software control so
you can communicate with the host. This feature is the same for all
three host systems.

In the virtual terminal mode, all characters you type go to the host
system, and all characters sent by the host are displayed on the
MDE/T-ll console terminal. However, two characters that you type at
the MDE/T-ll console cause special actions:

• BREAK -- When you press the BREAK key, this character does not
assert a break on the host serial line, but causes the
LSI-11/23 to halt and to enter console ODT.

• CONTROL UNDERSCORE -- When you type this character at the
MDE/T-ll console terminal, the terminal sends a break to the
host. On VT100 and LA120 terminals, simultaneously hold down
the CTRL key and press the slash (I) key.

On LA36 and VT52 terminals, simultaneously hold down the CTRL
and SHIFT keys and press the underscore key ().

On any other terminal, check the applicable user's guide to
determine how to send the ASCII character whose value is 37
(octal) •

To power up the MDE/T-ll system and enter virtual terminal mode:

1. Put the HALT switch in the RUN (up) position (Figure 5-2).

2. Put the AUX switch in the OFF (down) position to turn off the
line-time clock.

3. Turn on the POWER switch on the MDE/T-ll cabinet.

4. Toggle the RESTART switch on the cabinet.

[~DmDDmD Microcomputer 1
Development
Environment

[~. •) 8~~)]
(PWR 01(RUN RESTART HALT AUX ON/OFF)

Power
Scope External

~
Trigger Clock Probe A Probe B

~ 0 c:J c:J
ML-OI6-82

Figure 5-2 Front Panel of MDE/T-ll Cabinet

5-3

PROGRAM DEVELOPMENT

The MDE/T-ll bootstrap program displays the following message:

[CONNECTED TO HOST]

This message confirms that you are in the virtual terminal mode. If
this message is not displayed, manually bootstrap the MDE/T-ll system
as follows:

1. Halt the LSI-ll/23 CPU by pressing the BREAK key on your
terminal. The CPU halts and displays the console ODT prompt
(@) •

2. Bootstrap the LSI-ll/23 system and place the MDE/T-ll system
in virtual terminal mode by typing:

@773000G<RET>

5.2 LOG ONTO OR BOOTSTRAP YOUR HOST SYSTEM

Before you can begin program development under VAX/VMS or RSX-IIM, you
must log onto the host. The log-in procedures for VAX/VMS and RSX-IIM
are given in Sections 5.2.1 and 5.2.2.

If you have an RT-ll host system, you bootstrap the system.
Section 5.3 for the RT-ll bootstrapping procedure.

5.2.1 Logging onto a VAX/VMS Host

Log onto the VAX/VMS host system as follows:

Skip to

1. Press the RETURN key to get the VAX/VMS user name and
password prompts.

<RET>

2. Type your account name and password:

Username: account-name<RET>
Password: password<RET>

VAX/VMS responds with the following message:

Welcome to VAX/VMS •••

5.2.2 Logging onto an RSX-llM Host

Log onto the RSX-IIM host system as follows:

1. Respond to the RSX-IIM prompt (» by typing:

> HELLO<RET>

2. Type your account or name and password:

ACCOUNT OR NAME: account-name<RET>
PASSWORD: password<RET>

5-4

PROGRAM DEVELOPMENT

RSX-IIM responds with a message similar to the following:

RSX-IIM BL26 MULTI-USER SYSTEM
GOOD AFTERNOON
19-MAY-82 LOGGED ON TERMINAL TT3:

5.3 BOOTSTRAP THE RT-ll HOST

Bootstrap the RT-ll host system as follows:

1. Assert a break to the host
terminal by simultaneously
pressing the slash (/) key.

system on a
holding down

VT100 or LA120
the CTRL key and

Refer to Section 5.1 for asserting a break on
terminals.

Console ODT displays its prompt:

@

2. Bootstrap RT-IIXM on the host by typing:

@773000G<RET)

RT-ll then displays:

RT-IIXM V4.0

NOTE

'Messages sent by VAX/VMS to the MDE/T-ll
console terminal, such as those from the
system operator, are not displayed on
the console screen. These messages are
filtered out by the MDE/T-ll
communications protocol.

5.4 CREATE A FILE FOR YOUR SOURCE PROGRAM

other

After logging onto or bootstrapping your host system, you must create
a file for your source program. The program CALC demonstrates this
step.

1. To create the source file for CALC, use one of the editors
available under VAX/VMS, RSX-IIM, or RT-IIXM. If you are not
familiar with these editors, refer to the VAX-II EDT Editor
Reference Manual or the PDP-II Keypad Editor User's Guide.

2. After creating the file, type the appropriate source listing
for CALC into the file.

5-5

PROGRAM DEVELOPMENT

Source listings for CALC are given below. The first listing applies
to the VAX/VMS and RSX-IIM host systems; the second applies to the
RT-ll host system. The two listings for CALC differ only in the way
code is positioned at absolute locations by the linker you use. (See
Appendix 0 for a description of the techniques used to position code
at absolute memory locations.)

5.4.1 CALC Source Listing for VAX/VMS or RSX-IIM Host

.TITLE CALC
• !DENT /~". 001/

Program CALC accumulates a sum of the elements of the vector v in
SUM1, and the sum of only those elements which are greater than or
equal to 6 in SUM2 •

• PSECT ABS
.=.+4~"0~

V·· .WORD 5
.WORD 3
.WORD 2
.WORD l~

.WORD 4

.WORD 6

.WORD 7

.WORD 3
SUM1:: .WORD
SUM2:: .WORD

START: :

1$:

MOV
CLR
CLR
MOV
MOV
ADD
MOV
JSR
DEC
BGT
BR

11400~~, SP
SUMI
SUM2
Jt8.,Rl
#V,R0
(R0), SUMl
(R~)+, R2
PC,QUANT
Rl
1$
START

iPosition code at relocatable address 40000

iInitialize the array

1Initialize the stack pointer
;Initialize summation values

;Initialize loop counter
;Point to vector
;Add in current vector value
;Get a copy of current value

Subroutine to add a number to SUM2 if number is less than or equal to 6
Call with number in R2

QUANT:: CMP R2,#6
BGT 1$
ADD R2,SUM2

1$: RTS PC

.END START

;Less than 6?
;No, do not add
;Yes, add to SUM2
;Return to caller

iSTART is program transfer address

5-6

PROGRAM DEVELOPMENT

5.4.2 CALC Source Listing for RT-ll Host

.TITLE CALC

.IDENT /00.001/

Program CALC accumulates a sum of the elements of the vector V in
SUMl, and the sum of only those elements which are greater than or

.! equal to 6 in SUM2 •

• ASECT
.=40000

V·· .WORD 5
.WORD 3
.WORD 2
.WORD 10
.WORD 4
.WORD 6
.WORD 7
.WORD 3

SUMl: : • WORD
SUM2: : .WORD

;lnitialize the array

START:: jInitialize the stack pointer MOV SP
CLR
CLR
MOV
MOV

SUMI
SUM2
1/8. ,Rl
I/V,R0

jlnitialize summation values

;Initialize loop counter
jPoint to vector

ADD (R0) , SUMI 1$: jAdd in current vector value
MOV (R0)+, R2 jGet a copy of current value
JSR PC ,QUANT
DEC RI
BGT 1$
BR START

Subroutine to add a number to SUM2 if number is less than or equal to 6
Call with number in R2

QUANT:: CMP R2,1/6
BGT 1$
ADD R2,SUM2

1$: RTS PC

.END START

jLess than 6?
jNo, do not add
jYes, add to SUM2
jReturn to caller

jSTART is program transfer address

5.5 ASSEMBLE CALC WITH MACRO-II

After creating a source file for CALC, assemble CALC with the MACRO-II
assembler. To call the assembler, you use a different command line
for each of the host operating systems, as discussed in the following
subsections.

5.5.1 Assembling CALC on VAX/VMS Host

To assemble CALC and produce a listing under VAX/VMS, type the
following command line:

$MACRO/RSX/LIST CALC(RET)

Since the MACRO command assumes a default source file extension
(.MAC), you do not have to include the file extension.

If CALC assembles successfully, VAX/VMS displays its command prompt
($) •

5-7

PROGRAM DEVELOPMENT

You can now link CALC. Otherwise, look at your listing, correct the
source file, and reassemble CALC.

5.5.2 Assembling CALC on RSX-IlM Host

To assemble CALC and produce a listing under RSX-llM, type the
following command line:

>MACRO CALC,CALC/-SP=CALC<RET>

Since the MACRO command assumes a default source file extension
(.MAC), you do not have to include the file extension.

If CALC assembles successfully, RSX-llM displays its command prompt
(» ~

You can now link CALC. Otherwise, look at your listing, correct the
CALC source file, and reassemble CALC.

5.5.3 Assembling CALC on RT-llXM Host

To assemble CALC and produce a listing under RT-llXM, type

or

.MACRO/LIST:CALC CALC<RET>

.R MACRO(RET>
*CALC,CALC=CALC<RET>
* <CTRL/C>

5.6 LINK CALC

After assembling CALC, you must link it. If you have a VAX/VMS or
RSX-IIM host, use TASK BUILDER (TKB). If you have a RT-IIXM host, use
LINK (RT-ll linker). The linking procedures you use under the
different host operating systems are described in the following
subsections.

5.6.1 Linking CALC on VAX/VMS or RSX-IIM Host

Use TKB for linking CALC u~der VAX/VMS and RSX-IIM. You use TKB with
a VAX/VMS host because you operate in RSX-IIM emulation mode during
program development. When you link your program under a VAX/VMS or
RSX-IIM host, you must declare the following attributes to TKB so the
resulting memory image (.EXE file under VAX/VMS, .TSK file under
RSX-IIM) can run under MDE/T-ll.

• No RSX-IlM task header

• An appropriate stack size

• A partition corresponding to physical memory in the MICRO/T-ll
address space (the MICRO/T-ll application is an unmapped
system)

5-8

PROGRAM DEVELOPMENT

To meet these requirements for the .EXE file or .TSK file:

1. Use the /-HD switch with TKB to create an image without a
task header. The procedure for creating an image without a
task header is described in the RSX-IIM Task Builder Manual.

2. Use the TKB stack option to declare an appropriate stack
size. You declare the maximum size of the stack to be added
to the task image when your program runs in MICRO/T-ll
memory. The stack option adds the number of words you
specify to the beginning of the task image; the default
value is 256(octal).

The value you give for the stack size determines the physical
location at which TKB begins positioning PSECTS. If you
declare a stack size of 0, TKB associates the relocatable
addresses with physical addresses as required by the absolute
code-positioning techniques described in Appendix D.

Set the stack size to 0 as follows:

TKB>STACK=0<RET>

3. Use the TKB partition option to install the task in a
partition that corresponds to the physical memory of the
MICRO/T-11 (0:160000). The partition option identifies the
partition in memory for which the task is built. Since
MICRO/T-ll applications are unmapped, the task is bound to
physical memory. Therefore, you must install the task in a
partition that corresponds to physical memory, as follows:

TKB>PAR=DCTll:0:160000<RET>

Now you can link CALC with TKB.

To link CALC with TKB under VAX/VMS, type the following command line:

$MCR TKB<RET>

To link CALC with TKB under RSX-llM, type the following command line:

>TKB<RET>

For VAX/VMS or RSX-IIM, TKB responds with the following prompt:

TKB>

At this point, link your modules with the following commands:

TKB>tskfile/-HD,mapfile/-SP, symbolfile=modulel,module2, ••• <RET>
TKB>/<RET>
ENTER OPTIONS:
TKB>STACK=0<RET>
TKB>PAR=Tll:0:l60000<RET>
TKB>

5-9

where:

tskfile

mapfile

symbolfile

module

/-HD

/-SP

STACK

PAR

PROGRAM DEVELOPMENT

a memory image (.TSK) file to be loaded by
MDE/T-ll

= a link map (.MAP) for your reference

= a symbol table (.STB) file to be loaded by MDE

an object (.OBJ) file assembled by MACRO-II

= a switch that produces a .TSK file without a
header

a switch that prevents the .MAP file from being
spooled to the line printer

an option that specifies the maximum size of the
stack to be added to the memory image

an option that specifies the partition in memory
for which the task is built

To return to the VAX/VMS or RSX-IIM command level from TKB, type two
slashes in 'response to the TKB prompt, as follows:

TKB>//<RET>

The host responds with $ (VAX/VMS) or > (RSX-IIM).

In the following examples, CALC is used to demonstrate the linking
procedure with TKB under VAX/VMS and RSX-IIM.

Under VAX/VMS:

$ MCR TKB<RET>
TKB>CALC/-HD,CALC/-SP,CALC=CALC<RET>
TKB> /<RET>
ENTER OPTIONS:
TKB>STACK=9<RET>
TKB>PAR=Tll:9:169999<RET>
TKB> / / <RET>
$

Under RSX-IIM:

>TKB<RET>
TKB>CALC/-HD,CALC/-SP,CALC=CALC<RET>
TKB>/<RET>
ENTER OPTIONS:
TKB>STACK=9<RET>
TKB>PAR=Tll:9:169909<RET>
TKB>//<RET>
>

5-lfIJ

PROGRAM DEVELOPMENT

NOTE

If you are using TKB Version 4.0 or
later, you can add the lIP qualifier
after I-HD. Adding the lIP qualifier
extends the upper boundary of the
PARTITION option from 160000 to 177740.
The linker can then locate code in this
additional memory address space.

5.6.2 Linking CALC on RT-11 Host

In the following example, CALC is used to demonstrate the linking
procedure with LINK under RT-11 •

• LINK/LDA/SYMBOLTABLE CALC<RET>

NOTE

Refer to the RT-11 System User's Guide,
Version 4.0, for further details on
LINK.

Once you link CALC, you can down-line load, run, and debug the
program, as described in Chapter 6.

5-11

CHAPTER 6

DEBUGGING

This chapter continues the description of the program development
cycle. This chapter describes how to use MDE/T-ll commands, start
MDE, load CALC, record the debugging session, and exit from MDE/T-ll.

This chapter gives you an opportunity to use MDE/T-ll commands in a
typical debugging session. Use CALC as described in the following
sections, reading the explanations of the commands before using them.

To run CALC, you can use the memory simulator; you do not need target
memory. However, if you decide to use target memory to run CALC,
observe the precautions mentioned in Section 6.1.

To debug with MDE/T-ll:

1. Start MDE/T-ll as described in Section 6.1.

2. Load the MDE/T-ll control software into LSI-ll/23 memory from
your host system.

3. Read the appropriate assembly listing of CALC.

4. Read the explanations of the commands before using them.

5. Type in the commands.

6.1 START MDE/T-ll

Starting MDE/T-ll will vary slightly according to the host operating
system you are using. If you have a VAX/VMS or RSX-IIM host, begin
with step 1. -If you have an RT-ll host, skip to step 2.

1. Log onto or bootstrap your host by performing the steps
listed in Sections 5.1 or 5.2.

2. Disconnect the pod plug from the target, if the plug is
connected.

If you use target memory in running CALC, connect the pod
plug to the target, as shown in Figure 6-1.

CAUTION

Improperly inserting the pod plug into the target
socket will damage the pod, pod plug, or both.

6-1

DEBUGGING

Carefully align PIN 1 on the pod plug with HOLE 1 in the
target socket. The pod plug will slide easily into the
corresponding holes in the target socket.

TARGET HARDWARE

ML·017·B2

Figure 6-1 Connecting MDE/T-Il to the Target

3. If you are running CALC, you do not connect the pod to· 'a
target. in addition, you use the clock signal from the
emulator. Therefore, turn on the clock switches, 81 and 82,
in the pod (Figure 6-2).

Use a small screwdriver to press the ON side of the switches
down.

With pod switches 81 and 82 on, you can use the emulator
clock as the timing source for the MDE/T-ll system or an
externally supplied clock (attached through a connector on
the front panel of the MDE/T-ll cabinet).

Refer to the description of the CONFIGURE CLOCK command in
Chapter 8 for details on the use of the pod switches.

6-2

DEBUGGING

ita I

ML-018-82

Figure 6-2 Pod Clock Switches

4. Log into the account containing the MDE/T-ll software in its
directory and type:

VAX/VMS:
RT-llXM:

$RUN SYS$SYSTEM:MDETll<RET)
• R MDETll<RET)

RSX-llM:) MDE<RET)

5. Down-line load the control software from the VAX/VMS host by
typing L in response to the prompt from the host.

Startup Option (Load,Restart,Diagnostic): L<RET)

[Loading file "CSWB70.LDA", Please wait]

At 9600 baud, down-line loading takes about 40 seconds.
After the down-line load is complete, the MDE/T-ll response
depends on whether you are using a VT100 or another type of
terminal. If you are using a VT100, MDE/T-ll displays a
header message and its prompt, as follows:

MDE/T-1l
MDE)

V1.0

If your console terminal is a VT100 operating in the ANSI mode, the
terminal is autosensed as such, and a scrolling region is set up in
the bottom portion of the screen.

If you are using a VT100 to work with the example program, some of the
information displayed by MDE/T-11 appears in the static display
region.

6-3

DEBUGGING

6.2 RECORD YOUR DEBUGGING SESSION

MDE/T-ll lets you record all input and output of a debugging
This logging consists of creating a file and placing in it
you enter at the terminal and the MDE/T-ll software responses
commands.

The commands for recording debugging sessions are:

MDE)SET LOG CALC.LOG<RET>
MDE)SET OUTPUT LOG <RET>

session.
commands
to those

To specify the name of the log file and to turn the logging mechanism
on, use the commands SET LOG CALC.LOG and SET OUTPUT LOG. When you
execute these commands, your debugging session (from point of
execution onward) is recorded in the file CALC.LOG.

MDE)SHOW OUTPUT<RET>
OUTPUT set to: TERMINAL, VERIFY, LOG (Log file is 'CALC.LOG')

To display the output settings in effect, use the SHOW OUTPUT command.
The display produced by this command includes the name of your log
file and the logging status (on or off).

6.3 SET UP THE TARGET

Before debugging a target with MDE/T-ll, you describe your target to
the MDE/T-ll software. The commands in the the example below describe
the following characteristics of your target:

• The contents of the MICRO/T-ll mode register and the source
from which the mode register is to be read

• The mapping and protection of memory in the MICRO/T-ll address
space

The two commands for setting up the target are shown in following
examples:

MDE>CONFIGURE MODE EMULATOR BIT16 STATIC<RET>

The CONFIGURE MODE command tells the MDE/T-11 debugger to read the
MICRO/T-11 mode register from the emulator. The BIT16 and STATIC
parameters specify that the target has a bus width of 16 bits and
static memory. Other mode register settings are determined by the
default parameters in the CONFIGURE MODE command. (See the
description of the CONFIGURE MODE command in Chapter 8 for these
defau1 ts.)

MDE)CONFIGURE MEMORY 36000:50000 SIMULATOR<RET>

The CONFIGURE MEMORY command tells the debugger to simulate targe~
memory in the memory simulator from location 36000 to location 50000.

MDE>SHOW CONFIGURE<RET>
Mode Register: Read from EMULATOR
Mode settings: NORMAL, STANDARD, STATIC, PROCESSOR, USER,

Start Addr = 140000, Bus Width = 16 bits

Processor Clock: EMULATOR
Fetch Timeout: DISABLED
State Analyzer: Clock A+i AI = INTERRUPTi Trace AFTER /Retain:NA

6-4

DEBUGGING

Memory Map (octal) :

From To Where Write Prot

------ ------ ------ ----------
000000 035777 Absent
036000 050377 Sim No
050400 177777 Absent
MDE>

The SHOW CONFIGURE command displays the current configuration of the
target. In the preceding example, the display shows the:

• Source from which the MICRO/T-ll mode register is read jin
this case, emulator as opposed to target)

• Settings you previously specified for the MICRO/T-ll mode
register

• Source of the processor clock (default shown)

• Status of the fetch timeout feature

• Configuration of the state analyzer (defaults shown)

• Mapping, location, and protection of MICRO/T-ll memory

MDE>SHOW MODE<RET>
The current modes are: OCTAL,INSTRUCTION,SYMBOLIC

The SHOW MODE command shows the display
example above, the debugger's response
indicates that the default display modes
SYMBOLIC) are set.

modes in
to the
(OCTAL,

effect. In the
SHOW MODE command
INSTRUCTION, and

In the OCTAL radix mode, MDE/T-ll interprets and displays numbers in
base 8. The INSTRUCTION display mode displays data in MACRO-II
instruction format. In the SYMBOLIC address mode, MDE/T-Il displays
addresses in a symbol+offset format.

MDE>POWER UP <RET>

The POWER UP command specifies the source of the power-up signal and
sends the power-up signal to the MICRO/T-ll microprocessor. You can
use the CONFIGURE MODE command only when power is down. You must
therefore follow any CONFIGURE MODE command with a POWER UP command.
In the preceding example, the power-up signal comes from the emulator.

After you have executed all the commands in the preceding example, you
can load and run CALC as described in the next section.

6.4 LOAD CALC

Two assembly listings are presented below. The first one is for use
with a VAX/VMS or an RSX-IlM host; the second, with an RT-ll host.

You can determine from the first listing the memory locations of the
padding or other irrelevant data in the memory image (.TSK file)
produced by TKB. Use this information to exclude memory locations or
ranges of locations containing irrelevant data from the .TSK file.

6-5

DEBUGGING

NOTE

If you
Section
assembled

have an RT-1l host,
6.4.2 for a CALC
under an RT-1l host

system.

skip to
listing

operating

6.4.1 Assembly Listings

1. For VAX/VMS or RSX-11M host:

CALC MACRO Ml114 26-MAR-82 11: 39 PAGE 1

03~0~0

.TITLE CALC

PROGRAM CALC COMPUTES TaE SUM OF THE ELEMENTS
OF A VECTOR V IN SUM1 AND THE SUM OF THE
ELEMENTS OF V THAT ARE LESS THAN OR
EQUAL TO 6 IN SUM2 •

• IDENT /00.001/

040000'
.PSECT ABS
.:.+49900 ,PO~ITION CODE AT RELOCATABLE ADDRESS 4~~00

10 340000 000005
11 040002 000993
12 040904 090~02
13 043036 000010
14 040310 000004
15 043312 003006
H 340014 300007
17 040016 030003
1e 040020 000030
19 Ql4C~22 030003

20 04M24 012706 043000
21 043030 005067 177764
22 340034 005067 1777'2
23 040040 312701 000'0J3
24 040044 01279r, 043000'
25 340050 96J0'7 177744
26 040054 U2002
27 040056 004767 003006
28 040062 035301
29 043064 003371
30 040066 00975'
31
32

33
34, 040070 020227 000006

35 040974 093002
36 040976 060267 177720
37 940102 000207
38
39 "46024 I

V:: .weR!) 5
.WORD 3
.WORD 2
.WORD 10
.WORD 4
.WORD 6
.WORD 7
.WORD 3

SUM1:: .WORD
SUM2:: .WORD

START:: MOV '40300,Sp
CLR SUM}
CLR SUM2
MOV f8.,R1
MOV iV,R0

1$: ADD (R0), SUM1
MOV (R0)+, R2
JSR Pc, QUANT
DEC R1
BGT 1$
BR START

,INITIALIZE THE ARRAY

,INITIALIZ E THE S~'ACK POINTER
,INITIALIZE SUMMATION VALUES

,INITIALIZE LOOP COUNTER
,POINT TO VECTOR
,ADD IN CURRENT VECTOR VALUE
;GET A COPY OF CURRENT VALUE

SUBROUTINE TO ADD A NUMBER TO SUM2 IF NUMBER IS
LESS THAN OR EQUAL TO 6

QUANT: : CMP R2,,6 ,LESS THAN OR , , EQUAL TO 61
BGT 1$;NO, DO NOT ADD
ADD R2,SUM2 ;YES, ADD TO SUM2

1$: RTS PC ,RETURN TO CALLER

.END START ;START IS PROGRA'M TRANSFER ADDRESS

CALC MACRO MJl14 26-MAR-82 11:39 ,PAGE 1-1
SYMBOL TABLE

QUANT 94~973RG ~02 START ~4~~24RG

ABS. 000300 008
00889~ 801

ABS ~40184 002
ERRORS DETECTED: 0
VIRTUAL MEMORY USED. 48 WORDS' (1 PAGES)
DYNAMIC MEMORY: 9224 WORDS ~5 PAGES)
ELAPSED TIME: 00.00:05
CALC,CALC/-SP=CALC.MAC

002 SUMI 302 SUM2 340022RG 002 V

6-6

040000RG 002

DEBUGGING

2. For RT-ll host:

CALC MACRO V04.00 26-MAY-82 10:44:12 PAGE 1

1 .TITLE CALC
2 • IDENT /00.001/
3
4 PROGRAM CALC ACCUMULATES A SUM OF THE ELEMENTS OF THE VECTOR V IN
5 SUMl, AND THE SUM OF ONLY THOSE ELEMENTS WHICH ARE GREATER THAN OR

" EQUAL TO 6 IN SUM2.
7
8 000000 .ASECT
9 040000 .=40000

10
11 040000 000005 V:: .WORD 5 ;INITIALIZE THE ARRAY
12 040002 000003 .WORD 3
13 040004 000002 .WORD 2
14 040006 000010 .WORD 10
15 040010 000004 .WORD 4
16 040012 "PleJ011!~ .WORD 6
17 040014 000007 .WORD 7
18 040016 000003 .WORD 3
19 040020 000000 SUMl: : .WORD 0
20 040022 000000 SUM2: : .WORD 0
21
22 040024 01270" 0400M START: : MOV f40000,SP ;INITIALIZE THE Sl'ACR POINTER
23 040030 005067 17776' CLR SUMI ;INITIALIZE SUMMATION VALUES
24 040034 005067 177762 CLR SUM2
25 040040 012701 000010 MOV #8. ,Rl ;INITIALIZE LOOP COUNTER
26 04r044 012700 040000 MOV #V,R(}J ;POINT TO VECTOR
27 040050 061067 177744 1$: ADD (RO) , SUMI ';ADD IN CURRENT VECTOR VALUE
28 040054 012002 MOV (R0)+, R2 ;GET A COpy OF CURRENT VALUE
29 040056 004767 00e006 JSR PC, QUANT
30 040062 005301 DEC RI
31 040064 003371 BGT 1$
32 040066 000756 BR START
33
34 SUBROUTINE TO ADD II NUMBER TO SUM2 IF NUMBER IS LESS THAN OR EQUAL TO 6
35 CALL WITH NUMBER IN R2
36
37 040~70 020227 000~0fi QUANT: : CMP R2,16 ;LESS THAN 67
38 ~40~74 003002 BGT 1$;NO, DO NOT ADD
39 040076 060267 177720 ADD R2,SUM2 ;YES, ADD TO SUM2
40 040'102 000207 1$: RTS PC ;RETURN TO CALLER
41
42 040024 .END START ; S1'ART IS PROGRAM TRANSF'ER ADDRESS

CALC MACRO V04.00 26-MAY-82 10:44:12 PAGE 1-1
SYMBOL TABLE

QUANT 040070 G START 040024 G SUMI 040020 G SUM2 040022 G V 040000 G

• ABS. 040104 000
000000 001

ERRORS DETECTED: 0

VIRTUAL MEMORY USED: 8192 WORDS (32 PAGES)
DYNAMIC MEMORY AVAILABLE FOR 61 PAGES
MD:CALC,MD:CIILC=MD:CALC

6.4.2 Applicable Commands

The commands to load CALC are:

MDE)LOAD/CLEAR/EXCLUDE:(9:37777,59499:169909} CALC<RET)
iMDE-I-LOAINPROG, Binary load in progress, please wait ••.
iMDE-I-LOAINPROG, Symbol load in progress, please wait •••
iMDE-I-LOAINPROG, 5 symbols loaded for CALC 99.991
iMDE-S-LOAGOODLD, Load complete

To load CALC into simulator memory, use
/CLEAR and /EXCLUDE qualifiers.

the LOAD command with the

The /CLEAR qualifier clears the MDE/T-ll internal symbol table and
speeds up the loading process by eliminating the need for MDE/T-ll to
check for duplicate entries in its symbol table.

The /EXCLUDE qualifier excludes address ranges containing irrelevant
portions of the .TSK file such as padding. When you use this
qualifier, you also speed up the loading process, as irrelevant data
in the load has been eliminated.

6-7

DEBUGGING

NOTE

If you have linked CALC using LINK
(RT-II linker), you do not need to use
the /EXCLUDE qualifier with the LOAD
command, because files in LDA format
include only code or data produced
during assembly.

When you execute the LOAD command as shown above, CALC.EXE is loaded
into the MICRO/T-II address space, program symbols are loaded from the
file CALC.STB into the debugger symbol table, and the transfer address
is loaded into the program counter (PC). If you have a VT100 console
terminal, the progress of the load is displayed in the left-hand
corner of the static region.

When you execute LOAD, a number of messages (shown above) are
displayed. The first two messages tell you that your program code and
your program symbols are being loaded. (If you have a VT100 terminal,
this information is presented as relative block numbers in the static
region.) The next message tells you how many program symbols were
loaded. The last message tells you that loading is complete.

MDE>SHOW SYMBOL/ALL<RET>

Symbol
QUANT
START
V
SUM1
SUM2

Value
40070
40024
40000
40020
40022

The SHOW SYMBOL command with the /ALL qualifier displays the CALC
program symbols.

6.5 EXECUTE YOUR PROGRAM

Now execute the program.

Here are the commands you use to execute CALC:

MDE>GO<RET>
iMDE-I-PRQEXESTA, Processor execution started at PC:START

,
The GO command starts program execution at the current PC (in this
case, START). As an option, you can supply a starting address.

MDE>HALT<RET>
iMDE-I-PROHALAT, Processor execution halted at PC:START+4: CLR SUMI

R0: 40020
R1: 0
R2: 3
R3: 0
R4: 0
R5: 0
SP: 40.f2J00
PC: START+4
PS: 340

6-8

DEBUGGING

The HALT command stops program execution. When you execute the HALT
command, MICR'O/T-ll registers are read and updated in the VT100
display. If you are not using a VT100, the registers are displayed
serially (register contents may be different from those shown in this
example). In this example, address may be any instruction boundary in
the program; see either assembly listing of CALC.

MDE>STEP<RET)
;MDE-I-PROSTETO, Processor single stepped to PC:START+10: CLR SUM2

R0: 40020
Rl: 0
R2: 3
R3: 0
R4: 0
R5: 0
SP: 40000
PC: START+10
PS: 344

The STEP command executes one or more program instructions at a time.
As in the HALT command, MICRO/T-ll registers are displayed. If you
are using a VT100 as your console terminal, the registers are
displayed in the static region. If you are using another type of
terminal, such as a VT52 or LA36, the registers are displayed
serially, as shown above.

6.6 EXAMINE AND CHANGE MEMORY AND REGISTERS

The EXAMINE and DEPOSIT commands examine and change memory. In the
following example, the EXAMINE command determines the contents of all
memory locations between the locations symbolized by START and
QUANT+12.

MDE>EXAMINE START:QUANT+12'<RET>
START MOV tv,sp

START+4 CLR SUMI
START+10 CLR SUM2
START+14 MOV t10,R1
START+20 MOV tV,R0
START+24 ADD @R0,SUM1
START+30 MOV (R0)+,R2
START+32 JSR PC ,QUANT
START+36 DEC R1
START+40 BGT START+24
START+42 BR START

QUANT CMP R2,#6
QUANT+4 BGT QUANT+12

QUANT+12 ADD R2,SUM2
QUANT+12 RTS PC

The example above illustrates the disassembly feature of MDE/T-ll.
When you execute the EXAMINE command, all instructions and arguments
within the range of locations specified in your command line are
displayed.

MDE>EXAMINE/WORD SUM1:SUM2<RET>
SUM1 0
SUM2 : 27

6-9

DEBUGGING

To display memory in the current radix, use the EXAMINE command with
the /WORD qualifier. In the example above, EXAMINE/WORD is used to
examine the memory locations containing the results or partial results
of CALC.

MDE)DEPOSIT SUMl:SUM2 = 0<RET>

MDE)DEPOSIT R0:R5 = 0,0,0,0,0,0<RET>

The DEPOSIT command changes the contents of memory locations or
registers or ranges of memory locations and registers. The command
initializes the variables SUMI and SUM2. You initialize registers as
shown in the following example of the DEPOSIT command.

MDE)EXAMINE PC <RET)
PC: START+10

The EXAMINE command can also be used to display MICRO/T-ll registers.
If you are using a VT100, the specified register or registers in the
command are shown in reverse video in the static display region. On
the terminals, the registers are listed serially.

MDE>DE~OSIT 40066 = "BR ."<RET>

In the example above, the DEPOSIT
instruction into a memory location.
assembler, this instruction replaces
location 40066. CALC now executes only
loop caused by the "BR ." instruction.

command deposits a PDP-II
Assembled by the MDE/T-ll line

the BR START instruction at
once and goes into an infinite

6.7 SET AND CANCEL EVENTS

You can set both predefined
MDE/T-ll. The predefined
watchpoints, and tracepoints.

and user-defined events
events you can set are

(UDEs) wi th
breakpoints,

A UDE is a general type of event that detects a specific pattern in
MICRO/T-ll bus signals. UDEs are described in Chapters 3 and 8.

You can use various commands to set and cancel events.

MDE>SET BREAK START+l0<RET>

You use the SET BREAK command to halt execution of the program when
the MICRO/T-ll fetches an instruction at an address specified in your
command line. In the preceding example, program execution halts after
the variables SUMl and SUM2 are initialized.

MDE>SHOW BREAK A:0<RET>
*0 A:0 Breakpoint /COUNT:l /AFTER:l (1 left) Address = START+l0

The SHOW BREAK command displays the:

• Identification number of the event (event ordinal)

• Comparator being used to set the event

• Value of the /COUNT qualifier

• Value of the /AFTER qualifier

6-10

DEBUGGING

• Number of counts remaining

• Address at which the event is set (address expression)

MDE>SET WATCH SUM2<RET>

The SET WATCH command halts program execution when the MICRO/T-ll
writes to a memory location. In the example above, the SET WATCH
command is used to monitor the value in location SUM2.

MDE>SHOW WATCH<RET>
#1 A:l Watchpoint /COUNT:l /AFTER:l (1 left) Address = SUM2

The SHOW WATCH command displays all watchpoints that have been set.

MDE>SET TRACE QUANT<RET>

The SET TRACE command traces instruction fetches at a given address.
When a tracepoint occurs, program execution is halted temporarily, a
message is displayed at the console, and program execution is resumed.
In this example, a tracepoint occurs whenever the subroutine QUANT is
entered.

MDE>SHOW ALL<RET>
#0 A:0 Breakpoint /COUNT:l /AFTER:l (1 left)
#1 A:l Watchpoint /COUNT:l /AFTER:l (1 left)
#2 A:2 Tracepoint /COUNT:l /AFTER:l (1 left)

Address
Address
Address

START+10
SUM2
QUANT

To display the events set thus far in the debugging session, use the
SHOW command with the /ALL parameter.

MDE>GO START<RET>
;MDE-I-PROEXESTA, Processor execution started at PC:START+14

BREAK at PC = START+10

The GO START command starts the execution of CALC at the location
symbolized by START. When your program encounters the breakpoint set
at location START+10, it halts.

MDE>CANCEL BREAK A:0<RET>
MDE>GO<RET>
;MDE-I-PROEXgSTA, Processor execution started at PC:START+14

TRACE at PC = QUANT

WATCH at SUM2; value was: 0, is now: 5; current PC = QUANT+12

To cancel the breakpoint set in comparator 0 on state analyzer A, use
the CANCEL BREAK command. Use the GO command to resume program
execution at the current PC. When you issue the GO command, the
instruction at QUANT is executed and the tracepoint is reported. In
addition, the contents of SUM2 are changed and the watchpoint is
reported. After the watchpoint is reported, CALC halts.

CANCEL WATCH A:l<RET>

6-11

DEBUGGING

To cancel the watchpoint at SUM2 in this example, use the CANCEL WATCH
command.

MDE>GO<RET>
;MDE-I-PROEXESTA, Processor execution started at. PC : QUANT+I 2

TRACE at PC QUANT

TRACE at PC QUANT

TRACE at PC = QUANT

TRACE at PC QUANT

TRACE at PC QUANT

TRACE at PC QUANT

TRACE at PC QUANT

HALT<RET>
;MDE-I-PROHALAT, Processor execution halted at PC:START+42: BR START
R0: 40020
RI: 0
R2: 3
R3: 0
R4: 0
R5: 0
SP: 40000
PC: START+42
PS: 344

MDE>GO<RET>
;MDE-I-PROEXESTA, Processor execution started at PC:START+42

Resume program execution with the GO command.

6.8 TRACE BUS CYCLE

You use the CLEAR TRACERAM to initialize the trace buffer; the CLEAR
TRACERAMcommand does an implicit reset of the trace mode and the
retain count. You specify the conditions of tracing with the
CONFIGURE ANALYZER command. (See the description of CLEAR TRACERAM
and CONFIGURE ANALYZER in Chapter 8 for additional information.)

In the following example, the trace RAM is first cleared of previous
bus cycle trace data and then configured to capture bus cycle data
continuously. After the trace RAM has been configured, CALC is
executed.

MDE>CLEAR TRACERAM<RET>

To initialize the 1024 locations in the trace RAM, use the CLEAR
TRACERAM command.

MDE>CONFIGURE ANALYZER TRACE ALWAYS<RET>

6-12

DEBUGGING

You use the CONwIGURE ANALYZER command to tell MDE/T-l1 to turn on the
trace RAM throuQhout the execution of CALC.

MDE > HALT<LST>
;MDE-I-PR~KALAT, Processor execution halted at PC:START+42: BR START

R0: 40020
R1: 0
R2: 3
R3: 0
R4: 0
R5: 0
SP: 40000
PC: START+42
PS: 344

MDE>DISPLAY TRACERAM 5 6<RET>

Frame Bus Trans
No. Status Address

--------- -----------
5 Fetch START+42
4 Fetch START+42
3 Fetch START+42
2 Fetch START+42
1 Fetch START+42
0 Fetch START+42

SEL AI Probe
Data Lines Lines Lines A

------- -------- --------
777 01 llllllll 00000000
777 01 llllllll 00000000
777 01 llllllll 00000000
777 01 llllllll 00000000
777 01 llllllll 00000000
777 01 llllll11 00000000

When CALC is stopped by the HALT command at START+42, the trace RAM
contains the last 1024 cycles of the MICRO/T-11; the 6 most recent
cycles are displayed by the DISPLAY TRACERAM command. In the example
above, the trace RAM display shows that the MICRO/T-1l is executing
the "BR ." instruction at START+42.

6.9 END THE DEBUGGING SESSION

After completing your debugging session, you may want a listing of the
session. To obtain this listing, turn off the logging mechanism with
the SET OUTPUT NOLOG command and use the appropriate command to print
the listing (PRINT with VAX/VMS, QUE with RSX, PRINT with RT-ll) when
you return to the host operating system. To return to the host
operating system, use the MDE/T-ll EXIT command.

Here are the commands you use in ending a debugging session.

MDE>SET OUTPUT NOLOG<RET>
4

To turn off the logging mechanism, use the SET OUTPUT NOLOG command.
You can later print out the log file when you return to DCL command
level on the host.

MDE>EXIT<RET>

[Comm stats (tot/tmo/cs/sn): 856/1/0/1]

[CONNECTED TO HOST]

6-13

DEBUGGING

The log file (CALC. LOG) for the debugging session you have just
completed is shown below.

SHOW OUTPUT
!Output set to: TERMINAL, VERIFY, LOG (Log
CONFIGURE MODE EMULATOR BITlfi STATIC
CONFIGURE MEMORY 36000:50000 SIMULATOR
SHOW CONFIGURE

Mode Reg ister: Read from EMULATOR

file is 'CALC.LOG')

Mode settings: NORMAL, STANDARD, STATIC, PROCESSOR, USER,
Start Addr = 140000, Bus Width = 16 bits

Processor Clock: EMULATOR
Fetch Timeout: DISABLED
State Analyzer: Clock A+; AI INTERRUPT; Trace AFTER /Retain: NA

Memory Map (octal):

! From To Where Write Prot
!-'----- ------ ------ ----------
!000000 035777 Absent
!03fi000 050377 Sim No
!050400 177777 Absent
SHOW MODE
!The current modes are: OCTAL,INSTRUCTION,SYMBOLIC
POWER UP
LOAD/CLEAR/EXCLUDE: (0: 37777,50400: 1600(0) CALC
!;MDE-I-LOASYMLOA, 5 symbols loaded for CALC
!;MDE-S-LOAGOODLD, Load complete
SHOW SYMBOL/ALL

Symbol
QUANT
START

GO

V
SUMI
SUM2

Value
40070
40024
40000
40020
40022

!;MDE-I-PROEXESTA, Processor execution started at PC:START
HALT
!;MDE-I-PROHALAT, Processor execution halted at PC:START+4: CLR SUMI

R0: 40020
Rl: 0
R2: 3
R3: 0
R4:, 0
R5: 0
SP: 40000
PC: START+4
PS: 340

STEP
!;MDE-I-PROSTETO, Processor single stepped to PC:START+10: CLR SUM2
! R0: 40020
!Rl: 0
! R2: 3
!R3: 0
!R4: 0
!R5: 0
! SP: 40000
!PC: START+10
! PS: 344
EXAMINE START:QUANT+12

START MOV
START+4 CLR

START+10 CLR
START+14 MOV
START+20 MOV
START+24 ADD
START+30 MOV

iV,SP
SUMI
SUM2
U0,Rl
ltV,R0
@R0,SUMI
(R0)+,R2

6-14

DEBUGGING

START+32 JSR
START+36 DEC
START+40 BGT
START+42 BR

QUANT CMP
QUANT+4 BGT
QUANT+6 ADD

QUANT+12 RTS
EXAMINE/WORD SUMl:SUM2

SUMI : (il
SUM2 : 27

DEPOSIT SUMl:SUM2 = 0
DEPOSIT R0:R5 (il,0,0,0,0,0
EXAMINE PC
fPC: START+10
DEPOSIT 40066 = "BR "
SET BREAK START+10
SHOW BREAK A:0

PC,QUANT
Rl
START+24
START
R2,#6
QUANT+12
R2,SUM2
PC

!#0 A:0 Breakpoint /COUNT:l
SET WATCH SUM2

/AFTER:l

SHOW WATCH
!#1 A:l Watchpoint /COUNT:l
SET TRACE QUANT
SHOW ALL
!#0 A:0 Breakpoint
!#1 A:l Watchpoint
!#2 A:2 Tracepoint
qo START

/COUNT:l
/COUNT:l
/COUNT:l

/AFTER:l

/AFTER:l
/AFTER:l
/AFTER:l

(1

(1

(1
(1
(1

left)

left)

left)
left)
left)

!;MDE-I-PROEXESTA, Processor execution started

!BREAK at PC = START+10
CANCEL BREAK A:0
GO

Address = START+10

Address = SUM2

Address START+10
Address SUM2
Address QUANT

at PC:START

!;MDE-I-PROEXESTA, Processor execution started at PC:START+14

!TRACE at PC = QUANT

!WATCH at SUM2; value was: 0, is now: 5; current PC = QUANT+12
CANCEL WATCH A:l
GO
!;MDE-I-PROEXESTA, Processor execution started at PC:QUANT+12

!TRACE at PC QUANT

TRACE at PC QUANT

TRACE at PC QUANT

TRACE at PC QUANT

TRACE at PC QUANT

!TRACE at PC QUANT

!TRACE at PC QUANT
HALT
!;MDE-I-PROHALAT, Processor execution halted at PC:START+42: BR START
!R0: 40020
!Rl: 0
! R2: 3
! R3: 0
!R4: 0
!RS: 0
! SP: 4000fJ
fPC: START+42

6-15

DEBUGGING

IPS: 344
GO
I;MDE-I-PROEXESTA, Processor execution started at PC:START+42
CLEAR TRACERAM
CONFIGURE ANALYZER TRACE ALWAYS
HALT
!;MDE-I-PROHALAT, Processor execution halted at PC:START+42: BR START
!R0: 40020
!RI: 0
! R2: 3
!R3: 0
! R4: 0
!R5: 0
!SP: 4(H'l0'"
!PC: START+42
IPS: 344
DISPLAY TRACERAM 5

Frame Bus Trans
No. Status.

5 Fetch
4 Fetch
3 Fetch
2 Fetch
1 Fetch
o Fetch

SET OUTPUT NOLOG

6

Address Data
----------- ---..,..---

START+42 777
START+42 777
START+42 777
START+42 777
START+42 777
START+42 777

6-16

SEL AI Probe
Lines Lines Lines A

-------- --------
en 11111111 0""HHH,)00
fill 11111111 000001:')131:')
131 11111111 000001:')00
01 11111111 013001:')1:')00
O1 11111111 000000OO
fill 11111111 00000000

CHAPTER 7

COMMAND LANGUAGE

This chapter describes the major elements in the MDE/T-ll command
language.

7.1 EXPRESSIONS

Most numerical values used with MDE/T-ll commands can be entered or
displayed as expressions. You arithmetically combine signed or
unsigned symbols or numbers and special characters to form
expressions. A register, however, cannot be part of an expression.

Some examples of expressions

DOG CAT+14 -BLUE+@HAT VALUE-(LAST-(MID-2»

The results of expressions evaluated by MDE/T-ll are truncated to 16
bits.

7.1. 1 Numbers

Numbers can be entered or displayed in any of four radixes.

Radix Character Set

Binary o and 1

Octal o through 7

Decimal o through 9

Hexadecimal o through 9 and A through F

A hexadecimal number that begins with a letter must be entered with a
leading zero. For example:

0Al

Some examples of numbers:

o 777 0FF lA2

MDE/T-ll uses 16-bit arithmetic in decoding numbers from your commands
and in displaying numbers. In addition, overflow occurring during
number decoding or arithmetic operations is truncated without warning.

7-1

COMMAND LANGUAGE

The following examples illustrate expressions you might use and the
numerical results obtained from these expressions.

Resulting
Radix

Mode You Type Octal

8 777777 177777
8 400000 0

10 65535 + 1 0
8 100000 100000

You can use the following temporary
entering numbers that are not in
7.2.1) :

%D'n' A decimal number

%0' n' An octal number

%X'n' A hexadecimal number

%B'n' A binary number

Value

Decimal

-1
0
0

-32768

radix control operators when
the current radix mode (Section

%R'xxx' From 0 to 3 Radix-50 characters

7.1.2 Symbols

You can use the following symbols.

Your program's global symbols

Symbols you create with MDE/T-ll

MDE/T-ll can use your program's global symbols (but not its local
symbols), provided a symbol table file (.STB) is produced when the
program is linked. In addition, you can create new symbols by using
the DEFINE command.

A symbol can be up to 30 characters long, and can contain any
combination of letters, digits, dollar signs or underscore characters,
but the first character cannot be a digit.

Some examples of symbols:

Al $1 ALPHA$BETA ENTRY 1 TYPE NO

7.1.3 Special Characters

A period (.) represents the current address, and a backslash (\)
represents the previous address.

7-2

COMMAND LANGUAGE

7.1.3.1 Current Address Indica~or - The current address indicator (.)
specifies the address last used by MDE/T-ll in an EXAMINE or DEPOSIT
command. For example, if you want to look at a location in more than
one radix, you can first examine the address by typing the following:

EXAMINE ENTRYl+26

In response to this command, MDE/T-ll prints the
address in the current mode (for example, octal).
location in decimal, you can type the following:

EXAMINE/DECIMAL •

contents of that
To look at the same

The period specifies the current address (ENTRYl+26).

7.1.3.2 Previous Address Indicator - The previous address indicator
(\) specifies the previous value of the current address indicator (.).
For example, consider the following sequence of addresses:

EXAMINE 1000
EXAMINE 2000

If you want to reexamine location 1000, you can type the following:

EXAMINE \

This displays the contents of the previous address (1000).

7.1.4 Operators

The arithmetic operators are as follows:

+ (addition)

- (subtraction)

* (multiplication)

/ (division)

All results of arithmetic are truncated to 16 bits.

The fetch operator is an at-sign (@); you can also use a period (.)
as a fetch operator.

The fetch operator lets you specify the contents of memory locations
in expressions (in addition to addresses). For example, suppose you
have the following locations.

Symbol

ALPHA
BETA
GAMMA

Value

36020
36022
36024

Contents

3
5

36022

7-3

COMMAND LANGUAGE

The EXAMINE command displays the contents.

MDE)EXAMINE ALPHA(RET)
ALPHA: 3

The SHOW SYMBOL command gets the value.

MDE)SHOW SYMBOL ALPHA(RET)

Symbol

ALPHA

Value

36020

And to change the contents of ALPHA to the contents of BETA, you need
a fetch operator for BETA.

MDE)DEPOSIT ALPHA=@BETA(RET)

This command changes the contents of ALPHA to 5.

7.1.5 Order of Evaluation

MDE/T-ll evaluates expressions according to the following priorities:

Fi rst: signed numbers, signed expressions, and @ operations

Second: * and / operations

Third: + and - operations

If successive operators have the same priority, evaluation is from
left to right.

You can override the
enclosing operations
following expression:

@V + 6

normal order of
in parentheses.

evaluation by selectively
For example, consider the

Since the fetch operator has highest priority, the expression is
evaluated as if parentheses were inserted.

(@V) + 6

This expression resolves to the value of the contents of location V
incremented by 6. To specify the contents of location V + 6, you must
insert parentheses.

@ (V + 6)

The EVALUATE command evaluates expressions and can be used to check
the value of expressions before use.

7-4

COMMAND LANGUAGE

7.2 MODES

The mode setting establishes the form in which MDE/T-ll interprets or
displays numerical values when more than one form is possible. Three
settings are always in effect, one for each of the following modes.

Mode Settings

Radix BINARY OCTAL DECIMAL HEXADECIMAL

Display WORD BYTE INSTRUCTION ASCII RAD50

Address SYMBOLIC NOSYMBOLIC

7.2.1 Radix Mode

The radix mode affects the way numbers are interpreted by MDE/T-ll
when you type them in, as well as the way numbers are displayed. If
you enter a temporary radix control operator (Section 7.1.1), you
override the current radix for the number you are typing but MDE/T-ll
continues to display numbers in the current radix.

MDE/T-ll recognizes the following four radixes:

BINARY

OCTAL

DECIMAL

HEXADECIMAL

Consider the following command:

MDE> SET BREAK 1000<RET>

This sets the breakpoint at location 1000. Whether it is 1000 binary,
octal, decimal or hexadecimal depends on the setting of the radix
mode. The default radix is OCTAL. If the radix is not set, the
location is interpreted as 1000 octal.

7.2.2 Display Mode

The following display modes specify the length and format of values.

BYTE - An 8-bit number

WORD - A 16-bit number

ASCII - Two ASCII characters in 16 bits (low-order byte followed
by high-order byte)

INSTRUCTION - A PDP-II instruction in as many words as required

RAD50 - Three Radix-50 encoded characters in 16 bits

7-5

COMMAND LANGUAGE

Display modes do not affect the way input is interpreted. In the
following example, suppose the current display mode is WORD and the
current radix is OCTAL:

MDE>DEPOSIT l~~~ = 136252(RET)

This command deposits the value 136252 in location 1~00.

Now consider the following possibilities for different display modes.

. Command Result

EXAMINE/WORD 1000 1000 136252

EXAMINE/BYTE 1000 1000 252

EXAMINE/BYTE 1001 1001 274

EXAMINE/WORD 1001 ERROR (an odd address
in WORD mode is illegal)

7.2.3 Address Mode

Whether or not MDE/T-11 displays addresses symbolically depends on the
address mode setting.

SYMBOLIC

NOSYMBOLIC

If SYMBOLIC is in effect, addresses are displayed as symbols whenever
possible; that is, in symbol+offset format, with the offset within a
limit of 1024 bytes from the nearest symbol having a smaller value.

Conversely, if the current address mode setting is NOSYMBOLIC,
addresses are displayed numerically in the current radix.

7.2.4 Mode Commands

The SET MODE command sets the modes. For example, the following
command sets the radix mode to decimal:

MDE> SET MODE DECIMAL(RET>

If a mode is not set, the following defaults are in effect.

Mode Default

Radix OCTAL

Display INSTRUCTION

Address SYMBOLIC

7-6

COMMAND LANGUAGE

The SHOW MODE command displays the mode settings. In response to this
command, MDE/T-ll might display the following:

The current modes are: OCTAL, SYMBOLIC, WORD

CANCEL MODE cancels any modes set and restores the initial default
settings.

You can temporarily override a mode in some commands by typing a mode
qualifier after the command. This override applies to output only,
however. A mode qualifier consists of a value preceded by a slash
(/) • For example, if the display mode is WORD and you want to print
the contents of a memory location in an instruction format, you can
use the INSTRUCTION qualifier in the EXAMINE command.

MDE>EXAMINE /INSTRUCTION l000:l002<RET>

With this command, the contents of locations 1000 through 1002 are
displayed in the instruction format. The display mode, however, is
not changed. The next command is interpreted according to the display
mode, which in this case is WORD.

7-7

CHAPTER 8

COMMANDS

This chapter describes the format, functions, syntax, parameters and
qualifiers of all MDE/T-ll commands. It also gives examples of these
commands.

8.1 COMMAND FORMAT

The MDE/T-ll command format has four basic elements.

Command

Keyword

Qualifier

Parameter

Combined in a sequence, these elements tell MDE/T-ll what task to
perform. In some commands, some of the elements may not be required.

The general format of an MDE/T-ll command is

command keyword /qualifier parameter !comment

where Command is a verb specifying the function to be pe~formed.

Keyword is a noun or verb further specifying the function to be
performed.

Qualifier is a word that modifies the command (some qualifiers
take a numerical argument; an argument can be any single value
or expression enclosed in parentheses).

Parameter is an expression on which the command and keyword
operate.

Comment is an optional text message to be ignored by MDE/T-ll.

8-1

COMMANDS

In Section 8.2 the following conventions are used in presenting
command syntax.

Brackets enclose one or more optional elements.

} Braces enclose two or more mandatory elements;
choose one.

Ellipses follow an element that can be repeated.

you must

c=J A box encloses a default element or value or initial value.

EV Boldface characters denote abbreviations.

8.2 COMMANDS

This section describes the functions, syntax and basic elements of
each MDE/T-II command.

8-2

COMMANDS

@file-spec

The @file-spec command invokes indirect commands from the file
specified. The file must be a sequential ASCII file such as that
produced by a text editor or the SET OUTPUT LOG and SET LOG commands.
Indirect command files can be invoked wherever any other command can
be given. You can use any valid MDE/T-ll command in an indirect
command file.

You can nest indirect command files to three levels, unless you turn
on the logging mechanism. If you turn on the logging mechanism, you
can nest indirect command files to only two levels.

Syntax

@ file-spec invokes a command file.

Parameter

File-spec is the indirect command file to be executed. If you do not
give a file extension, MDE/T-ll looks for a file with a .COM
extension, and if unsuccessful tries the .CMD extension.

You can abort execution of an indirect command file at any time by
typing two CTRL/Cs.

8-3

COMMANDS

CANCEL BREAK

The CANCEL BREAK command cancels a breakpoint or all breakpoints. You
must include one of the three available parameters (board:comparator,
event-ordinal, address-expression) or the /ALL qualifier in this
command.

Syntax

CANCEL BREAK

fALL
#event-ordinal

address-expression

The shortest form of CANCEL BREAK is CAN BR

Parameters

Board:comparator specifies the state analyzer (A, B or C) and
comparator (0, 1, 2 or 3) through which the breakpoint is set.

#event-ordinal is an identification number from 0 through 11 preceded
by a number sign, assigned to the breakpoint by MDE/T-11.

Address-expression specifies the address of the breakpoint to be
canceled.

Qualifier

/ALL cancels all breakpoints.

Examples

Command

CAN BR U

CAN BR START+UI

CAN BR A:3

CAN BR/ALL

Related Commands

SET BREAK

SHOW BREAK

Result

Cancels breakpoint specified by event ordinal
U

Cancels breakpoint at location symbolized by
START+20

Cancels breakpoint assigned to comparator 3,
analyzer A

Cancels all breakpoints

8-4

COMMANDS

CANCEL MODE

The CANCEL MODE command cancels all modes and sets them to their
default values (octal, symbolic, instruction).

Syntax

CANCEL MODE

The shortest form of CANCEL MODE IS CAN M

Example

Command

CAN M

Related Commands

SET MODE

SHOW MODE

Resul t

Sets all modes to default values (octal,
symbolic, instruction)

8-5

COMMANDS

CANCEL TRACE

The CANCEL TRACE command cancels a tracepoint or all tracepoints. You
must include one of the three available parameters (board:comparator,
event-ordinal, address-expression) or the /ALL qualifier in this
command.

Syntax

CANCEL TRACE

tALL
#event-ordinal

address-expression

The shortest form of CANCEL TRACE is CAN T

Parameters

Board:comparator specifies the state analyzer (A, B or C) and
comparator (0, 1, 2 or 3) through which the tracepoint is set.

levent-ordina1 is an identification number from 0 through 11 preceded
by a number sign, assigned to the tracepoint by MDE/T-ll.

Address-expression specifies the address of the tracepoint to be
canceled.

Qualifier

/ALL cancels all tracepoints.

Examples

Command

CAN T ,4

CAN T START+6

CAN T/ALL

Related Commands

SET TRACE

SHOW TRACE

Resu1 t

Cancels tracepoint associated with ordinal 4

Cancels tracepoint at location symbolized by
START+6

Cancels all tracepoints

8-6

COMMANDS

CANCEL UOE

The CANCEL UDE command cancels a user-defined event (UDE) or all such
events. You must include one of the two available parameters
(board:comparator, event-ordinal) or the /ALL qualifier in this
command.

Syntax

CANCElUDE

fAll
#event-ordinal

The shortest form of CANCEL UDE is CAN UDE

Parameters

Board:comparator specifies the state analyzer (A, B or C) and
comparator (0, 1, 2 or 3) used to set the event.

#event-ordinal is an identification number from 0 through 11 preceded
by a number sign, assigned to the event by MDE/T-ll.

Qualifier

/ALL cancels all user defined events.

Examples

Command

CAN UDE A:2

CAN UDE '5
CAN UDE/ALL

Related Commands

SET UDE

SHOW UDE

Resul t

Cancels event set in comparator 2, analyzer A

Cancels event associated with ordinal 5

Cancels all events

8-7

COMMANDS

I CANCEL WATCH

The CANCEL WATCH command cancels a watchpoint or all watchpoints. You
must include one of the three available parameters (board:comparator,
event-ordinal, address-expression) or the /ALL qualifier in this
command.

Syntax

CANCEL WATCH

fALL
#event-ordinal

address-expression

The shortest form of CANCEL WATCH is CAN W

Parameters

Board:comparator specifies the state analyzer (A, B or C) arid
comparator (0, 1, 2 or 3) through which the watchpoint is set.

#event-ordinal is an identification number from 0 through 11 preceded
by a number sign, assigned to the watchpoint by MDE/T-ll.

Address-expression specifies the address of the watchpoint to be
canceled.

Qualifier

/ALL cancels all watchpoints.

Examples

Command

CAN W U

CAN WA SUMl

CAN W/ALL

Related Commands

SET WATCH

SHOW WATCH

Resul t

Cancels watchpoint associated with
ordinal 1

event

Cancels watchpoint at location symbolized by
SUMl

Cancels all watchpoints

8-8

COMMANDS

CLEAR TRACERAM

The CLEAR TRACERAM command initializes the MICRO/T-ll bus cycle trace
buffer.

Syntax

CLEAR TRACERAM

The shortest form of CLEAR TRACERAM is CLE TRACER

Example

Command

CLE TRACER

Result

Clears trace buffer; initializes RETAIN
count if any was specified in CONFIGURE
ANALYZER command

8-9

COMMANDS

CONFIGURE ANALYZER

The CONFIGURE ANALYZER command determines the modes of operation of
the state analyzer. These- modes include the clock edge at which
external probe lines are sampled, the trace-RAM operation, and the
time at which AI lines are sampled by the state analyzer.

Syntax

CONFIGURE ANALYZER
[CLOCK {A { J J] B FALLING

or -

The shortest form of CONFIGURE ANALYZER is CON ANA

Parameters

CLOCK causes sampling of external probe information to occur at the
RISING (+) or FALLING (-) edge of the externally supplied probe clock
signal. The RISING parameter causes the probe data to be latched on
the rising edge of the probe clock signal. The FALLING parameter
causes the probe data to be latched on the falling edge of the probe
clock signal.

TRACE determines how bus cycles are captured in the trace RAM. If you
specify

TRACE ALWAYS Every bus cycle is captured and TRACE and STOP
event actions are ignored.

TRACE AFTER

TRACE UNTIL

Tracing begins when an event with a TRACE action
occurs.

Tracing begins with program execution.

With TRACE AFTER or TRACE UNTIL, tracing 90ntinues until an event with
a STOP action occurs or program execution ends or is halted. EVENT is
an optional keyword that does not affect the command. The default
trace-RAM mode is TRACE AFTER EVENT with no RETAIN limit.

8-10

COMMANDS

AI determines when the AI lines are sampled; the default is
INTERRUPT.

ROW Lead ing edge of RAS

COLUMN Leading edge of CAS

INTERRUPT Trailing edge of CAS

REFRESH ON captures memory refresh cycles in the trace RAM. The
default is OFF. This parameter applies only when the MICRO/T-ll is in
a dynamic mode.

Qualifier

/RETAIN causes the trace RAM to stop after the number of cycles
specified by its argument have been collected. With no argument, the
retain count is 1024 (decimal). If /RETAIN is not given, tracing
continues until stopped for some other reason (described previously).

Examples

Command

CON ANA AI=ROW

Result

AI lines examined when ROW information is
present

CON ANA TRACE ALWAYS AI=ROW
AI lines examined when ROW information is
present; all bus cycles captured

CON ANA TRACE UNTIL EVENT /RETAIN:20

Related Commands

CLEAR TRACERAM

DISPLAY TRACERAM

SET UDE

Tracing begins on execution; ends after 20
bus cycles are captured, when an event with
STOP action occurs or when emulation is
halted.

8-11

COMMANDS

CONFIGURE CLOCK

The CONFIGURE CLOCK command selects the processor clock signal from
the emulator's 5.0688 MHz crystal-controlled source or from an
external source connected by the EXTERNAL CLOCK connector. If you
want either of these options, you must place the pod switches in the
ON position. The MICRO/T-ll must be powered down to use this command.

As shown
emulator
To avoid
following

1.

Pod
Switches

Emulator Clock. ~
internal or from ----t-I~...;..;.;.;..;;;;1-===...J
external connector '
(TTL) gnd

Figure 8-1 Software-Selected Emulator Clock

in Figure 8-1, the target clock signal supplied from the
(switches on) appears on the XTAL lines of the MICRO/T-ll.
interfering with the target clock signal, observe the
precautions:

Do not drive the XTAL lines or connect them to circuitry that
could interfere with the clock signal.

2. Use caution when using the clock signal to drive TTL inputs
so as not to overload or interfere with the signals.

You can also select the clock signal produced on the target hardware
by placing the two switches on the MDE/T-ll pod in the OFF position
(Chapter 6). When this is done, the CONFIGURE CLOCK command does not
control the processor clock source.

Syntax

CONFIGURE CLOCK \
I EMULATOR I)
EXTERNAL ~

The shortest form of CONFIGURE CLOCK is CON CLO

Parameters

EMULATOR (the default) selects the emulator's 5.0688 MHz clock.

EXTERNAL selects the input signal on the EXTERNAL CLOCK connector.

When you select the EXTERNAL parameter, the signal input into the
EXTERNAL clock connector must meet MICRO/T-ll clock specifications for
TTL clock input; the signal must be a TTL-level, low-noise, 50%
duty-cycle square wave.

8-12

Examples

. Command

CON CLO EMULATOR

CON CLO EXTERNAL

COMMANDS

Result

Selects 5.0688 MHz processor clock

Selects externally generated processor clock

8-l3

COMMANDS

CONFIGURE MEMORY

The CONFIGURE MEMORY command defines MICRO/T-ll address space in the
target or in the memory simulator. Memory is mapped and protected in
256-byte increments, and each increment can be write-protected.
Addresses not configured with this command are considered absent from
MICRO/T-ll address space. Addresses configured with this command are
aligned along 256-byte boundaries.

See Section 3.3 for an explanation of memory allocation and for a
description of restrictions in the use of simulator memory when one
memory simulator is used.

Syntax

CONFIGURE MEMORY [FROM] address-1 {

ABSENT

} address-2 {TARGET }
SIMULATOR [~]t NOWRITE j

The shortest form of CONFIGURE MEMORY is CON MEM

Parameters

Address-l and address-2 specify the low and high limits of the memory
range to be mapped and protected.

TARGET configures memory in the target, SIMULATOR configures memory in
the simulator, and ABSENT specifies that memory cannot be read from or
written to.

WRITE specifies that memory may be written to, and NOWRITE
write-protects memory (write protection does not change contents of
protected location). The default is WRITE.

Initially, all memory is configured ABSENT.

Examples

Command Result

CON MEM FR 1gee TO 1777 SIMULATOR NOWRITE
Reserves two segments in simulator· with
NOWRITE access for locations 1000 thru 1777

CON MEM FR 2ge9 TO 4777 TARGET
Reserves six segments in target with WRITE
access for locations 2000 thru 4777

CON MEM FR 9 TO 5777 ABSENT
Designates
prohibits
reading and

8-14

locations
access to
writing

o thru
these

5777 ABSENT;
locations for

Related Commands

COPY

LOAD

SHOW CONFIGURE

COMMANDS

8-15

COMMANDS

CONFIGURE MODE

The CONFIGURE MODE command selects operating and timing features of
the MICRO/T-ll by setting bits in the mode register. This command
also determines the source of the mode register. The MICRO/T-ll must
be powered down when you use this command.

You can direct MDE/T-ll to configure mode bits in the mode register in
the MICRO/T-ll emulator or to declare the setting of the mode bits in
the target hardware. The MICRO/T-ll emulator will execute using the
mode register source specified. This command lets you emulate the
MICRO/T-ll in all its operating modes.

Number of bits -- You can select the 8-bit or l6-bit data bus
configuration.

Memory refresh -- You can select static (no refresh) or dynamic
(refresh). If you select dynamic, you can specify large (64K) or
small (4K or 16K) memory chips depending on your application
hardware.

Triggering -- You can specify normal or delayed read/write
cycles, and standard or long pulses for bus cycle timing.

Clock -- You can select a normal processor clock frequency
(supplied as directed in your CONFIGURE CLOCK command) or a
constant clock (one-half the normal processor clock frequency).

Start/Restart address

See the MICRO/T-ll User's Guide> for· a complete description of
MICRO/T-ll operating modes.

Syntax

[
(EMULATOR ~ [~l [

CONFIGURE MODE ~ (
~ TARGET J BITS

ISTATIC!

{ LARGE
DYNAMIC SMALL

[
ISTANDARD! 1 [

CLOCK
LONG

[
I NORMAL ! 1
DELAYED

~ ! PROCESSOR! l 1 [
t CONSTANT }

ISTART! ~ # index II]
t address

The shortest form of CONFIGURE MODE is CON M

Parameters

TARGET takes the mode register from the target, and EMULATOR takes the
mode register from the emulator. You must specify one or the other.
If you specify TARGET, you must also specify any of the remaining
parameters that are not defaults.

BIT8 selects a bus width of 8 bits and BIT16 a bus width of 16 bits.
The default is BIT16.

STATIC, DYNAMIC SMALL or DYNAMIC LARGE selects the memory refresh
mode. The default is STATIC.

8-16

COMMANDS

NORMAL specifies standard timing-pulse triggering. DELAYED uses the
read or write assertion needed to make the MICRO/T-ll bus a proper
subset of the 813813 bus. The default is NORMAL.

STANDARD specifies the standard timing-pulse width. LONG adds 133 ns
to the standard pulse width for slower-access peripheral circuits.
The default is STANDARD.

CLOCK gives the clock assertion rate. PROCESSOR asserts the clock
once for every microinstruction. CONSTANT asserts the clock at a
constant rate (half the input frequency). The default is CLOCK
PROCESSOR.

START determines
START 1413131313.
column) preceded
directly (second

the power-up address to b~ used. The default is
You can specify the start address by its index (first
by a number sign (#), or by the start address
column) •

Start Restart
Index Address Address

13 1413131313 141313134
1 11313131313 1131313134
2 413131313 41313134
3 21301313 21313134
4 113131313 11313134
5 13 4
6 173131313 17313134
7 172131313 17213134

If the MICRO/T-ll is powered up and you did not issue a CONFIGURE MODE
command, the MICRO/T-ll mode register bits are read from the emulator
and the defaults are BIT16, STATIC, NORMAL, STANDARD, CLOCK PROCESSOR
and START 1413131313 (#13).

Examples

Command Resul t

CONF MODE EMULATOR BITS DYNAMIC SMALL
Emulates mode register using default
settings except for 8-bit bus width and
dynamic memory refresh (small mode)

CONF MODE TARGET DELAYED LONG

Related Command

SHOW CONFIGURE

Reads mode register from target;
declares its contents to be default
settings except for delayed-long pulse
options

8-17

COMMANDS

CONFIGURE TIMEOUT

The CONFIGURE TIMEOUT command enables or disables the emulator
processor-timeout detection feature. When enabled, this feature lets
the emulator detect the processor's failure to assert a fetch within a
fixed time (approximately 0.6 seconds). The emulator is initialized
with this feature disabled.

Syntax

CONFIGURE TIMEOUT [ENABLED 1
IDISABLEDI

The shortest forms of CONFIGURE TIMEOUT are CON TI ENA and CON TI DISA

Parameters

ENABLED turns on the processor timeout feature.

DISABLED (the default) turns off the timeout feature.

8-18

COMMANDS

COpy

The COpy command copies data or code from one place in the target
address space to another. You will find this command especially
useful in editing the contents of the target ROM. To edit the target
ROM, use the COpy command with the SIMULATOR and NOWRITE parameters.
This command line copies the contents of the target ROM into the
memory Simulator at the same addresses as those in the target ROM.

This command performs
destination memory.
data there is
source-start-address
destination address.

an implicit CONFIGURE MEMORY command for the
If destination memory is already configured, any
lost, and 2S6-byte blocks containing
through source-end-address are copied to the

Syntax

COpy [!VERIFY] [FROM] source-address: source-address [TO] destination-address

J TARGET I [IWRITEI 1
l SIMULATOR) NOWRITE

The shortest form of COpy is COP

Qualifier

/VERIFY performs a write-check during the copy operation. If you do
not specify /VERIFY, no write-check is performed.

Parameters

Source-start-address, source-end-address and destination-start-address
are expressions. Source-start-address specifies the first address of
the source,source-end-address specifies the last address of the
source, and destination-start-address specifies the first destination
address. All three addresses are rounded to 2S6-byte boundaries as in
the CONFIGURE MEMORY command.

TARGET or SIMULATOR specifies the memory to be used for the
destination.

WRITE or NOWRITE specifies the protection to be asserted for the
destination memory. The default is WRITE.

Source-start-address and source-end-address define a range.
range must be configured prior to using the copy command.
following restriction applies if the source and destination
located in the same memory.

source-end < destination-start

or

destination-start < source-start

8-19

This
The
are

COMMANDS

Examples

Command Result

COP /VERIFY 1000:1200 4000 TARGET
Configures 4((J00
WRITE; copies
4001, ••• 1377
destination

thru 4377 in target memory as
from 10((J0 to 4000, 1001 to

to 4377; verifies data in

COP 7610:7612 1400S SIM NOWRITE
Configures 1400((J thru 14376 in simulator
memory as \ NOWRITE; copies 256 bytes with
write-check as 740((J to 14000, 7401 to 140((Jl,

7777 to 14377

CONFIGURE MEMORY 10S000:137777 TARGET
COpy 100000:137777 TO 100000 SIM NOWRITE

Assumes configured ROM memory on target;
simulates and write-protects ROM space;
copies contents of target ROM into simulator
memory at same addresses; allows editing of
ROM contents

8-20

COMMANDS

DEFINE

The DEFINE command defines a new symbol as a given value, or redefines
a symbol loaded from the program symbol table.

Syntax

DEFINE symbol = address-expression

The shortest form of DEFINE is DEF

Parameter

Address-expression is a value to be associated with a symbol.
MDE!T-ll evaluates address-expression when the command is executed,
and associates the value of the expression with the symbol. From that
point on, you can use the symbol in place of the value.

Examples

Command

DEF V = 21tHHlJIIJ

DEF V3 = V + 6

DEF V3 = V3 + 1

Related Commands

SHOW DEFINE

UNDEFINE

Result

Defines V as address 20000

Defines V3 as address symbolized by V + 6
(20006)

Increments the defined value of V3

8-21

COMMANDS

DEPOSIT

The DEPOSIT command changes the contents of a specified memory
location or register, or a range of memory locations or registers.
This command can fill a range of locations with a single value, or
distribute a sequence of values over a range of locations. You can
also use the DEPOSIT command to assemble PDP-II instructions and to
deposit the assembled instructions into memory.

Syntax

DEPOSIT [NERIFY] [I;:OT~] [destination [: destination J] value [,value,...]

The shortest form of DEPOSIT is D

Parameters

Destination is an address-expression, a register, or a range of
address-expressions or registers. If destination is omitted, data is
deposited into the memory locations immediately following the last
locations specified by the most recent EXAMINE or DEPOSIT command.
This means you can deposit sequences of PDP-II instructions or data in
contiguous locations without having to type an address each time. If
a deposited instruction takes up more than one word, MDE/T-il keeps
track of the location for the next deposit.

Value is an expression, a PDP-II instruction enclosed in quotes or an
ASCII string enclosed in apostrophes.

Qualifiers

/BYTE or /WORD specifies the size of the storage locations used in the
deposits. The default is WORD unless the current display mode is
BYTE.

/VERIFY performs a write-check on each value deposited in memory.

MDE/T-ll evaluates the first expression following the equal sign, and
stores the value of that expression at the address specified by
destination. If a second expression is given, that expression is
evaluated and its value is stored in the word or byte address
following the one specified (depending on the setting of the length
qual if ier) •

This process continues for any other expressions in the list. Each
time the contents of an address are changed, the current address is
incremented to receive the next value. If you specify a range of
addresses with the number of values less than the number of addresses
in the range, the sequence of values specified for deposit begins
repeating. If you specify a range of registers, your value list must
contain the same number of values as the addresses specified. For
registers, the VTl~~ static display is updated and the contents of the
updated registers are highlighted.

8-22

COMMANDS

You can include PDP-II instructions in source language form in your
list of values, but you must enclose them in quotation marks. These
instructions generate code as if they were assembled in an absolute
program section. For example

DEP 1999=1,2,"MOV @tSTART,3(R9)",4

This command deposits the values 1, 2, 013769, START, 3 and 4 into
locations 1099 through 1012 (octal).

When using PDP-II instructions, you can include

Multiple PDP-II instructions in a single command

Labels (an implicit DEFINE is performed)

PDP-II instruction deposits to an even-numbered address when the
/BYTE qualifier is used or the byte mode is in effect

Comment text preceded by a semicolon (ignored by assembler)

However, you cannot include

PDP-II instruction deposits to ranges (such as DEP 0:1~0=), to
registers, or to add memory addresses

MACRO-II relocations and other operations of the
assembler involved in generating relocatable code

MACRO-II assembler directives and other MACRO-II elements

Blanks within MACRO-II expressions and operands

MACRO-II

MACRO-II angle brackets « » in expressions, or arithmetic
operators other than + or -

A radix override (for example, %0'123')

PDP-II instruction syntax is the same as for MACRO-II assemblers.
However, when using expressions to represent index offsets or the
immediate mode, the expressions are limited to a series of terms, each
preceded or followed by the + or - arithmetic operator. In addition,
terms used in these expressions can consist of

Numbers in the current MDE/T-ll radix mode (numbers immediately
followed by a period are interpreted as decimal)

The MACRO-II current location operator (.), not the MDE/T-II
current address indicator

Any valid symbol

The value of any single ASCII character, preceded by an
apostrophe (for example, MOV t'Q,R9)

If your DEPOSIT command changes the value of an address specified as a
watchpoint, the watchpoint is not triggered.

8-23

Examples

Command

DEPOSIT SUMI=2S

DEPOSIT V:V+12=S

DEPOSIT V+2=IS,11

D • = 14

COMMANDS

Result

Sets contents of location SUMI to 20

Fills memory locations V, V+2, ••• V+12 with
o

Sets contents of location V+2 to 10, and
contents of location V+4 to 11

Sets contents of location last used in a
DEPOSIT or EXAMINE command to 14

DEPOSIT ISS = 1,2,3,4
Sets contents of memory location 100 to 1,
102 to 2, 104 to 3 and 106 to 4, assuming the
current mode is not BYTE

DEPOSIT 2SS:22S = l,e
Sets contents of memory locations 200, 204,
210, to 1, and memory locations 202,
206, 212 ••• to 0, assuming the current
display mode is not BYTE

DEPOSIT RS:R2 = 1,2S,4
Sets contents of R0 to 1, Rl to 20 and R2 to
4

DEPOSIT leeS = "MOV @tSTART,3(RS)"
Sets contents of word locations 1000, 1002
and 1004 to assembled value of PDP-II
instruction MOV @#START,3(R0)

DEPOSIT les = • STRING ,

Related Command

EXAMINE

Deposits the ASCII characters "STRING" into
the 6 bytes starting at address 100.

8-24

COMMANDS

DISPLAY TRACERAM

The DISPLAY
Two CTRL/C
MDE/T-ll to
CTRL/Cs are

TRACERAM command displays the contents of the trace RAM.
characters abort execution of this command and return

the command level. A short delay may occur after the
typed.

Any part or all of the trace RAM can be displayed when the MICRO/T-11
is in the pause state, but access to the trace RAM is limited when the
MICRO/T-11 is running. You are limited to 16 frames of bus cycle data
when using a hard-copy terminal; 13 frames when using a VT100. If
the MICRO/T-l1 is running and event detection is disabled for a short
time, some events can be lost.

Syntax

DISPLAY [Iradix-mode] [laddress-mode] TRACER AM [start] [window]

The shortest form of DISPLAY TRACERAM is DI TRACER

Parameters

Start is a number in the range 0 through 1023 (decimal) specifying the
starting location within the trace RAM. Start is interpreted as a
decimal number; it must be greater than or equal to window - 1.

Window specifies the number of bus cycles to display, counting from
start. The default is 16 for hard-copy terminals or 13 for VT100
terminals. Window is interpreted as a decimal number; it must be
less than or equal to 1024.

Qualifiers

/radix-mode is the desired radix mode.
default.

The current radix is the

/address-mode specifies the display for the address field (SYMBOLIC,
NOSYMBOLIC) •

Examples

Command

DI TRACER 12 10

DI TRACER

DI TRACER/DEC

Resul t

Displays 10 cycles, starting at the 12th
cycle before the last

Displays the last 17 (decimal) cycles in the
current radix and type

Displays the last 17 cycles in decimal

8-25

COMMANDS

MDE/T-ll prints a header line and then the cycle number in decimal and
the fields of the bus cycle in the current radix. For example

Frame Bus T'rans SEL AI Probe
No. Status Address Data Lines Lines Lines A

16 Fetch START 12706 01 11111111 00000000
15 Read START+2 40000 00 11111111 00000000
14 Fetch START+4 5067 01 11111111 00000000
13 Read START+6 177764 00 11111111 00000000
12 Read SUMI 26 00 11111111 00000000
11 Write SUMI 0 00 11111111 00000000
10 Fetch START+10 5067 01 11111111 00000000

9 Read START+12 177762 00 11111111 00000000
8 Read SUM2 12 00 11111111 00000000
7 Write SUM2 0 00 11111111 00000000
6 Fetch START+l4 12701 01 11111111 00000000
5 Read START+16 10 00 11111111 00000000
4 Fetch START+20 12700 01 11111111 00000000
3 Read START+22 40000 00 11111111 00000000
2 Fetch START+24 61067 ell 11111111 00000000
1 Read V 5 00 11111111 00000000
0 Read START+26 177744 00 11111111 00000000

Bus Trans Status is a literal field indicating the MICRO/T-ll
cycle type, which is one of

FETCH
READ
WRITE
lACK
ASPI
READ-DMA
WRITE-DMA
UNKNOWN

Address is printed symbolically if the current address mode is
SYMBOLIC. Symbol names are truncated on the right to fit in a
17-character field allowing for possible offsets.

Data is a 16-bit field displayed in the current radix. Data will
always be less than 377 (octal) when the MICRO/T-ll is operating
in the 8-bit mode.

SEL Lines is a 2-bit binary field.

AI Lines is an 8-bit binary field.

Probe Lines A is an 8-bit binary field. If your system contains
two state analyzers, Probe Lines B is also displayed.

8-26

COMMANDS

EVALUATE

The EVALUATE command performs a computation. You can use this command
to check expressions before using them in other commands.

Syntax

EVALUATE [/radix-mode] expression

The shortest form of EVALUATE is EV

Qualifier

Radix-mode temporarily overrides the current radix mode when
displaying the result of the evaluation, but it does not affect the
interpretation of numbers in the expression to be evaluated. The
radix mode can be OCTAL, DECIMAL, HEXADECIMAL or BINARY.

Examples

Command

EY .+4

EVAL IHEX START+2

Result

Displays memory address designated by .+4;
period C.) specifies last location used in
DEPOSIT or EXAMINE command

Displays memory address designated by START+2
in hexadecimal

MDE/T-1l responds by printing the value of each expression after an
equal sign. For example

MOE> EVAL START+2(RET>
= 4fH126
MOE> EVAL/HEX START+2<RET>
= 4016
MOE>

8-27

COMMANDS

eXAMINE

The EXAMINE command displays the contents of a specified memory
location or the contents of a range of locations, and the contents of
the MICRO/T-ll registers.

Syntax

EXAMINE [/mode...] [argument [,argument...]]

The shortest form of EXAMINE is E

Parameter

Argument can be an expression, a register, or a range of expressions
or registers. A range of expressions has the format

expression-l:expression-2

The address for expression-l must be less than or equal to the address
for expression-2. This displays the contents of locations starting
with expression-l and continuing through expression-2.

If argument is omitted, MDE/T-ll examines the locations following the
last location specified in the most recent EXAMINE or DEPOSIT command.

Qualifier

/mode overrides the current radix, display or address mode.
use

Radix: OCTAL, DECIMAL, HEXADECIMAL or BINARY

Display: BYTE, WORD, INSTRUCTION, ASCII, or RAD50

Address: SYMBOLIC or NOSYMBOLIC

Examples

MDE)EXAMINE START:START+4<RET>

START
START+2
START+4

BR START+2
BEQ TTYSET
MOV #40000,SP

MDE)EXAMINE/WORD/DECIMAL l00:ll0<RET)

MDE> EXAMINE/ASCII STRING:STRING+IOO<RET>

8-28

You can

COMMANDS

EXIT

The EXIT command ends a degugging session, returning to the operating
system command level. This command also closes any log files and
indirect command files. EXIT does not affect the state of the
MICRO/T-ll.

Syntax

EXIT

The shortest form of EXIT is EXI

Example

Command

EXIT

Resul t

Leaves MDE/T-ll and returns to operating
system

8-29

COMMANDS

The GO command
execute code.
current PC.
execution can
for additional

takes the MICRO/T-ll out of the pause state and lets it
If no address is supplied, the program starts at the

The MICRO/T-ll must be powered up before program
be started. See the CONFIGURE MODE and POWER commands

information.

Syntax

GO [address-expression]

The shortest form of GO is G

Parameter

Address-expression
Address-expression
program begins.

Examples

Command

GO START

GO

Related Commands

HALT

SHOW TARGET

STEP

is the
specifies

parameter
the address

for this command.
at which execution of the

Result

Begins execution of program at START

Begins execution of program at address given
in PC

8-30

COMMANDS

HALT

The HALT command stops execution of your program in the target
processsor and displays that processor's registers.

Syntax

HALT

The shortest form of HALT is HA

Examples

Command

HALT

Result

Stops execution of program and
registers

displays

MDE/T-ll responds by giving the address after which execution was
halted (PC), the contents of registers (R0 through R5), the stack
pointer (SP) and the processor status word (PS). Values are given in
the current radix. If the current address mode is SYMBOLIC, the PC is
displayed symbolically. For example

MDE)HALT
;MDE-I-PROEXEHLT, Processor execution halted at PC:START+24

R0: 40000
Rl: 10
R2: 3
R3: 177777
R4: 177777
R5: 177777
SP: 40000
PC: START+24
ps: 340

If you are not using a VT100, registers and their contents are listed
serially as shown above. If you are using a VT100, register contents
are displayed in the static region of the screen.

Related Commands

GO

SHOW TARGET

8-31

COMMANDS

HELP

The HELP command displays information about MDE/T-II commands
including command notation and suggestions for using system features.

Syntax

HELP [toPiC [subtopic...]]

The shortest form of HELP is HE

Examples

Command

HELP

HELP EXAMINE

HELP SET

HELP SET BREAK

HELP SET *
HELP S

Resul t

Displays message listing command verbs and
nouns

Displays message about EXAMINE command

Displays message giving various forms of SET
command

Displays message about SET BREAK command

Displays messages about all SET commands

Displays messages
beginning with S

8.,.32

about all commands

COMMANDS

INITIALIZE

The INITIALIZE command initializes the trace RAM and resets MDE/T-Il
hardware to its default modes of operation. These modes result in

All memory configured as absent

All set events canceled

The trace-RAM mode set to AFTER with no RETAIN count

MICRO/T-II powered down

Fetch timeout disabled

Processor clock taken from emulator (5 MHz)

Whenever you invoke MDE/T-ll, an implicit CONFIGURE MODE EMULATOR
(with all default settings) is performed.

Syntax

INITIALIZE

The shortest form of INITIALIZE is INI

Example

Command

INI

Resul t

Initializes trace RAM and resets MDE/T-II
hardware to default modes of operation

8-33

COMMANDS

KEYDEFINE

The KEYDEFINE command defines a keypad PF key by associating one or
more commands with it, or undefines one or all PF keys. This command
can be used only in the VT100 mode.

Syntax

KEYDEFINE

!CLEAR I keyname 1
fAll f

keyname {'command-string' [[,1 'command-string' . ..] }

The shortest form of KEYDEFINE is K

Parameters

Keyname is PFl, PF2, PF3 or PF4.

Command-string is any valid MDE/T-ll command.
strings can be given.

Up to eight quoted

If KEYDEFINE specifies a keyname and a sequence of one or more quoted
command strings, the key is associated with the command sequence.
After execution of this command, pressing the designated key' causes
the specified sequence of commands to be executed. These commands are
echoed at the terminal and copied to the log file if logging is
enabled.

Qualifiers

/CLEAR used alone undefines one PF key. /CLEAR and /ALL used together
undefine all four PF keys. After execution of /CLEAR, pressing the
designated key or keys produces an error.

Examples

Command Result

KEY PFI IE RIIJ I Associates command IE R0' with PFI key

KEY PF2 IE IIlJIIJI:IIlJ2I1J I 'GO RESTART'

KEY /CLEAR PFI

KEY/CLEAR /ALL

Related Command

SET TERMINAL

Associates EXAMINE and GO commands with PF2
key

Undefines PFI key

Undefines keys PFI thru PF4

8-34

COMMANDS

LOAD

The LOAD command transfers data and code from disk files into
MICRO/T-II address space, and loads global program symbols from disk
files into the MDE/T-II symbol table. You can also use LOAD to
deposit your program's transfer address into the MICRO/T-II program
counter (PC).

LOAD recognizes the RSX-IIM Task Builder (TKB) memory image file
produced by TKB (this file can have a .TKB or .EXE extension). LOAD
also recognizes the symbol table file (.STB). You must configure
memory prior to loading the .TSK (.EXE) or .STB file.

Syntax

LOAD

NERIFY

/EXCLUDE : (address : address •...)

/MAP

/CLEAR

!BINARY: TSK

/SYMBOL : RSX

file-spec

The shortest form of LOAD is L

Qualifiers

/VERIFY performs a read-back check on each byte loaded into MICRO/T-II
address space.

/BINARY:type specifies that the file named will be loaded as a TKB
memory image file (:TSK) or RT-II memory image file (:LDA), as
specified, regardless of the file specification.

NOTE

Under VAX/VMS, TKB (by default) produces
files with an .EXE extension. If
MDE/T-II fails to find a .TSK file and
no extension is specified, MDE/T-II
looks for a file with an .EXE extension.

/SYMBOL:type specifies that the file named be loaded as a symbol table
file. "Type" indicates whether the file was generated by the RT-II
linker (:RT) or by the RSX-IIM linker (:RSX).

/EXCLUDE:(address:address, •••) prevents MDE/T-II from loading any
addresses specified in the exclude list. An exclude list is a list of
address ranges. You enclose all items in the exclude list in
parentheses and separate them with commas. Ranges you declare in the
exclude list are interpreted by MDE/T-II as ranges of bytes.

You will find this qualifier useful if you have configured a large
portion or all of MICRO/T-II address space, but require only a small
portion of the address space to load your program.

Using the /EXCLUDE qualifier, you can load .TSK (.EXE) files quickly,
because you exclude all irrelevant data from the .TSK (.EXE) file.

8-35

COMMANDS

/MAP loads only those sections of an image file for which memory is
configured. If memory is not configured, nothing is loaded. However,
if the MICRO/T-ll is powered up and the image contains a transfer
address, the transfer address is loaded into the MICRO/T-ll PC.

/CLEAR loads symbols from a program symbol table. This qualifier
causes MDE/T-ll's symbol table to be cleared (program and DEFINE
symbols) before your program symbols are loaded. When you use this
qualifier, you speed up the loading process considerably, because
MDE/T-ll does not have to check for duplicate entries when loading
your program symbols into its symbol table.

Parameter

File-spec can be any of the following.

An unquoted file name with no extension -- A default extension is
supplied by MDE/T-ll if a /BINARY or /SYMBOL qualifier is used.
If no such qualifier is used, the .TSK (.EXE) file and the .STB
file are loaded as memory image and symbol table respectively.

An unquoted file name
extension -- This file is
implied by the extension.

with a .TSK (.EXE) or .STB
loaded as a binary or symbol file as

NOTE

Specifying a .STB extension without a
/SYMBOL:RT qualifier causes MDE/T-ll to
assume that the .STB file was produced
by TKB and not LINK.

An unquoted file name with a nonstandard extension -- This file
is loaded as specified in the required /BINARY or /SYMBOL
qualifier.

A full file specification set in single quotes -- You must supply
a file type qualifier (/BINARY or /SYMBOL). Single quoted
file-specs are passed directly to the VAX/VMS operating system.

Examples

Command

LOAD PROG

LOAD PROG.TSK

LOAD PROG.STB

Result

Loads file PROG.TSK (.EXE if .TSK file not
found) into MICRO/T-ll address space (entire
task image is loaded); loads symbols from
symbol table file PROG.STB into MDE/T-ll
symbol table

Loads memory image file into
address space

MICRO/T-ll

Loads symbol table file into MDE/T-ll
internal symbol table; PROG.STB is assumed
to be in TKB format

8-36

LOAD/BINARY:EXE PROG

COMMANDS

Loads file PROG.EXE (.EXE if .TSK file not
found) as memory image file into MICRO/T-ll
address space

LOAD/BINARY:EXE PROG.XYZ
or

LOAD/BINARY:EXE 'PROG.XYZ'
Loads file PROG.XYZ as memory image file into
MICRO/T-ll address space

LOAD/SYMBOL:RT TEST.STB

LOAD PROG.XYZ

LOAD 'PROG.XYZ'

Loads symbols from LINK-generated .STB file
(TEST.STB)

Illegal (MDE/T-l1 does not attempt to parse
quoted file specs, thus cannot determine file
type)

Illegal (MDE/T-ll cannot determine file type)

8-37

COMMANDS

POWER

The POWER command lets you simulate a power-on condition and direct
the MICRO/T-ll to begin execution or enter the pause state. This
command also lets you select the power-on initialization (PUP) signal
from the MDE/T-ll system (for simulated power-on) or the target
system.

Syntax

POWER {Up [/GO] [/TARGET] 1
DOWN

The shortest form of POWER is P

Parameters

POWER UP asserts the PUP signal (briefly sets high, then low), causing
the MICRO/T-ll to read the mode register.

POWER DOWN deasserts the PUP signal (sets high), causing the
MICRO/T-ll to become inactive.

Qualifiers

/GO tells the system not to enter the pause state on power-up and to
begin execution immediately (at the start address).

/TARGET takes the power-up signal from the target. The default takes
the power-up signal from the emulator.

Examples

Command

P UP

PDOWN

PUP/GO

PUP/GO/TAR

Related Commands

CONFIGURE

SHOW TARGET

Resul t

PUP line set high, then low; MICRO/T-ll
pauses at start address specified by
CONFIGURE MODE command

PUP line set high

PUP line set on; execution of program starts
at start address

Source of PUP line switches
hardware

8-38

to target

COMMANDS

RESET ANALYZER

The RESET ANALYZER command initializes all comparator event counters
and software event counters to the /COUNT and /AFTER values specified
previously, and clears all event and qualifier flags.

Syntax

RESET [ANALYZER]

Resets all event counters, and event and qualifier flags.

The shortest form of RESET ANALYZER is RESE

Example

Command

RESET

Related Commands

SET BREAK

SET TRACE

SET UDE

SET WATCH

Result

Initializes all comparator and software event
counters; clears all event and qualifier
flags

8-39

COMMANDS

SET BREAK

The SET BREAK command sets a breakpoint, which is a, point in the
program where MICRO/T-ll target processor execution is halted.

Syntax

SET BREAK [
/COUNT: m
/AFTER: !D

.. 25610 1
address-expression

.. 6553510

The shortest form of SET BREAK is SE BR

Parameter

Address-expression is the address of an instruction. The breakpoint
occurs after the instruction at that address is executed.

If a breakpoint exists at the specified address, the breakpoint is
reestablished with the attributes given or implied by the new command.
If a tracepoint exists at that address, the tracepoint is canceled and
the breakpoint is set.

Qualifier

/COUNT:n signals the breakpoint every nth time it occurs, where n is
any number in the range of 1 to 256. The default assumes a count of
1, and the breakpoint is signaled each time it occurs.

If /AFTER:n is given, signaling of the breakpoint causes the n to be
decremented (n is any number in the range of 1 to 65535). If
decremented to 0, the breakpoint is reported; if not, an implicit GO
is performed.

/COUNT is hardware-implemented and faster, but limited to 256
(decimal). /AFTER is software-implemented and much slower, but can be
as large as 65535 (decimal). In addition, the /AFTER counter is
displayed with the SHOW BREAK command. You can use the /COUNT and
/AFTER counts together in this command. If you use both of these
counts in the SET BREAK command, the event count can be extended to a
maximum of 16,776,960.

Examples

Command Result

SE BR START Breakpoint set at instruction labeled START

SE BR /COU:5 START Breakpoint set at instruction labeled START
to be signaled every 5th time instruction is
executed

8-40

COMMANDS

MDE/T-ll responds to the occurrence of a breakpoint by printing BREAK
at PC = expression. For example

MDE)
BREAK at PC = START+10

Related Commands

CANCEL BREAK

RESET ANALYZER

SHOW BREAK

8-41

COMMANDS

SET LOG

The SET LOG command specifies the name of a log file used to record a
sequence of commands and responses. The logging mechanism is turned
on and off by SET OUTPUT commands. A log file can be used as an
indirect command file to recreate a debugging session. This command
can be given as many times as desired in a debugging session to direct
output to different log files.

Syntax

SET LOG file-spec

The shortest form of SET LOG is SE LOG

Parameter

File-spec may be up to 50 characters long, and it must consist of
valid Radix-50 characters. The default uses CDS. LOG for the log file.

If you give file-spec without quotes and with no extension, MDE/T-ll
uses a default extension of .LOG. If you give it with quotes,
MDE/T-ll passes the enclosed string to the operating system but does
not make any validity checks on the string.

Examples

Command

SE LOG TEST.DTA

SE LOG TEST

Result

Designates TEST.DTA as log file

Designates TEST. LOG as log file

SET LOG 'DKl:TEST.LOG'
Designates DKl:TEST.LOG as log file

The log file contains MDE/T-ll commands and responses. Responses are
preceded by the comment indicator (I) so the log file can be used as
an indirect command file. For example

MDE>SHOW BREAK<RET>
#0 A:0 Breakpoint

Related Commands

SET OUTPUT

SHOW OUTPUT

COMMANDS

SET MODE

The SET MODE command sets the radix, display and address modes.

Syntax

SET MODE { mode } [,mode,...]

The shortest form of SET MODE is SE M

Parameters

The possible modes are

Radix: OCTAL, DECIMAL, HEXADECIMAL or BINARY

Display: INSTRUCTION, ASCII, BYTE, WORD or RAD50

Address: SYMBOLIC or NOSYMBOLIC

The default modes are OCTAL, SYMBOLIC and INSTRUCTION.

Display modes INSTRUCTION and ASCII affect length.
implies that a variable number of words is interpreted.
the WORD length. (See Section 7.2.2.)

INSTRUCTION
ASCII impl ies

Modes are interpreted from left to right. If you set the radix,
display or address mode more than once in a command, the last setting
is used.

Examples

Command Result

SE M INSTRUCTION Sets display mode to INSTRUCTION

SE M DECIMAL, BYTE Sets radix mode to DECIMAL and display mode
to BYTE

SET MODE OCTAL, DECIMAL
Sets radix mode to DECIMAL

Related Commands

CANCEL MODE

SHOW MODE

8-43

COMMANDS

SET OUTPUT

The SET OUTPUT command specifies the kind of output MDE/T~ll produces.

Syntax

VERIFY
SET OUTPUT {[.::: 1 [

TERMINAL

1 [NOVERIFY NOTERMINAL

The shortest form of SET OUTPUT is SE OU

Parameters

LOG turns on the logging mechanism and copies all interactions to the
default log file CDS. LOG or to the file named as the log file in the
most recent SET LOG command. NOLOG (the initial setting) turns off
the logging mechanism.

VERIFY, the initial setting, displays text from a command file on the
terminal. NOVERIFY does not display command file text.

TERMINAL displays all MDE/T-ll responses on the terminal. NOTERMINAL
does not display MDE/T-ll responses. TERMINAL is the initial setting.

Examples

Command Resul t

SE OUT LOG Turns on logging mechanism

SE OUT NOLOG Turns off logging mechanism

SE OUT VERI Displays command file text

SE OUT NOTE Does not display responses on terminal

Related Command

SET LOG

COMMANDS

SET TERMINAL

The SET TERMINAL command tells MDE/T-ll whether you are using a VT100,
LA120 or another terminal.

Syntax

SET TERMINAL
j LA36 l
) VT100 (
t LA120 J

The shortest form of SET TERMINAL is SE TERM

Parameters

VT100 specifies any VT100 series
VT100 with the advanced video
hard-copy terminal. Use LA36 for
SET TERMINAL command is performed

terminal
option.

all other
at program

including, optionally, a
LA120 specifies the LA120
terminals. An implicit
start-up.

Examples

Command

SE TERM VTH'lfJ

SE TERM LA120

SE TERM LA36

SE TERM

Resul t

Puts MDE/T-ll in VT100 mode, displaying and
updating static display and enabling keypad
capabil i ty

Puts MDE/T-ll in LA120 mode, enabling keypad
capabil i ty

Sets terminal to hard-copy mode, disabling
all special terminal capabilities

Lets MDE/T-Il sense type of terminal being
used at program start-up

8-45

COMMANDS

SET TRACE

The SET TRACE command sets a tracepoint, a point in a program where
the execution of the MICRO/T-ll is traced. If a breakpoint exists at
the address given in this command, that breakpoint is canceled and the
tracepoint is set.

Syntax

SET TRACE [
/COUNT: [!] .. 25610 1
/AFTER: ill .. 6553510

address·expression

The shortest form of SET TRACE is SE T

Parameter

Address-expression must evaluate to an address at which a tracepoint
can be set. If a tracepoint exists at the specified address, it is
reset with the attributes given in the new command.

Qualifiers

/COUNT:n activates the associated tracepoint every nth time it is
signaled. The range of n is 1 to 256.

If /AFTER:count is given, signaling of the tracepoint causes the count
to be decremented. If decremented to 0, the tracepoint is reported;
if not, an implicit GO is performed.

/COUNT is hardware-implemented and faster,
(decimal). /AFTER is software-implemented and
as large as 65535 (decimal). Also, the /AFTER
with the SHOW TRACE command.

but limited to 256
much slower, but can be
counter is displayed

When a tracepoint is activated, MDE/T-II prints a message indicating
the location of the tracepoint and then resumes execution of the
target program; that is, an implicit GO is performed.

Examples

Command

BE T START+HJ

SE T /COU:4 START+10

Resul t

Sets tracepoint at location START+10

Sets tracepoint at location START+10 to be
activated every 4th time it is signaled

8-46

COMMANDS

MDE/T-ll responds to the occurrence of a tracepoint by printing TRACE
at PC = address-expression. For example

MOE>
TRACE at PC = QUANT

Related Commands

CANCEL TRACE

RESET ANALYZER

SHOW TRACE

8-47

COMMANDS

SET UOE

The SET UDE command establishes conditions and actions for a
user-defined event (UDE).

Syntax

SET UDE
conditions }
conditions, ACTION = ...
ACTION =

The shortest form of SET UDE is SE UDE

Qualifier

!MODIFY lets the command change the setting of an existing event. The
board:comparator parameter you give in the command must specify a
comparator in which a UDE is set. The command changes only the
applicable fields in the associated state template specified in the
command.

Parameters

Board:comparator specifies the comparator to be associated with the
conditions. It has the form

{A}{0}
{B}:{l}
{C}{2}

{ 3 }

The letter specifies the state analyzer board, and the number
specifies the comparator on that board. The first state analyzer
board is A, the second B, and so on. A board comparator of A:l
specifies comparator 1 in analyzer A.

Condition can be any of the following.

QUALIFIER { ~ } = 1 ;} } ADDRESS

DATA
expression

(value) j (o,) } EVENT { ° } t
SEL

AI

EXTERNAL COUNT { QJ .. 25610 }

ADDRESS = expression

DATA = numeric value

SEL = numeric value

AI = numeric value

8-48

COMMANDS

EXTERNAL = numeric value (Does not apply if a comparator in the
third state analyzer is specified. In external field, probe A
applies to state analyzer A only; probe B to state analyzer B
only.)

READ [DMA J
[DMA]

TRANSACTIONS =

WRITE

FETCH

REFRESH

lACK

ASPI

ACTIONS can be any of the following.

BREAK

TRIGGER

SIGNAL

SIGNAL

TRACE

STOP

[QUALIFIER] 0 RESET

[QUALIFIER]

NOTE

The external probe lines are latched on
the leading or trailing edge of the
clock line on the probe unit. Thus,
when the clock line is sampled during a
MICRO/T-ll cycle, the latch contains the
last value clocked. (See the
description of the CONFIGURE CLOCK
command in this chapter for information
on how to specify whether data on the
probe lines is latched on the leading or
trailing edge of the clock signal.

EVENT = numeric value (see subsection 3.2.1.2)

QUALIFIER = numeric value (see subsection 3.2.1.2)

COUNT = expression

You can enter an expression or a single numeric value into a state
template. If you enter an expression, the value of the expression
sets the appropriate field.

You can enter a numeric value by placing it within angle brackets
«». You can further specify the radix of the value with a radix
override (% followed by the first letter of the radix and the numeric
value enclosed in single quotes). For example, you would enter a
binary 3 into a UDE as follows.

DATA = <%B'XXXXXXXX~~~~~~ll'>
You can also enter a numeric value by simply enclosing it within angle
brackets. In this case, the radix will be interpreted as the radix
mode currently set.

8-49

COMMANDS

x specifies a don't-care. For example, suppose the current mode is
octal and the following state template expression is given.

<7XXX>

In this case, bits 0 through 8 are don't-cares; bits 9, 10 and 11 are
Is; bits 12 through 15 are 0s.

You can use a radix override (described in Chapter 7) to specify digit
masks in binary, octal or hexadecimal.

You set the frequency with which the event is signaled by means of the
/COUNT qualifier.

ACTION specifies the actions that are taken if the event described in
the command is signaled. Possible actions are

BREAK

TRIGGER

TRACE

STOP

RESET

SIGNAL

SIGNAL

The behavior
specified in

Stop execution of target program.

Generate output pulse on MDE/T-ll external TRIGGER
connector.

Save data pattern for each successive bus cycle in
trace RAM, starting with next bus cycle.

Terminate data pattern capture in trace RAM after
including data pattern for next bus cycle.

Clear all EVENT and QUALIFIER bits, and reset all
COUNT counters on all state analyzers (reset
action does not reset AFTER counters on
breakpoints, tracepoints and watchpoints).

[QUALIFIER] 0
Set qualifier bit o on all state analyzers.

[QUALIFIER] 1
Set qualifier bit 1 on all state analyzers.

of TRACE and STOP is determined by the way
the CONFIGURE ANALYZER command.

NOTE

Activating an event in comparators 0 or
1 on a given state analyzer implicitly
sets event flags 0 and 1.

tracing was

Examples (assume OCTAL radix mode)

Command Result

SE UDE A:l AD=START+29,ACT=BR
Loads state template, consisting of address
field with value START+20 and all other
fields with ignored values, into comparator 1
in analyzer A. Assumes count of 0. If
template is matched, event is activated and
BREAK is executed, stopping program
execution. Because event is set in
comparator 1, occurrence of event implicitly
sets EVENT bit 1 on analyzer A.

8-50

COMMANDS

SE UDE A:2 DA=20,ACT=TRI
Loads state template, consisting of data
field of 20 and all other fields of ignored
values, into comparator 2 in analyzer A. If
template is matched, event is activated and
TRIGGER is executed, triggering external
signal.

SE UDE B:0 AD=START+20,AI=1,TRAN=FETCH,ACT=TRA
Loads state template, with ADDRESS, AI and
TRANSACTION fields set, into comparator 0 in
analyzer B. If template is matched, event is
activated and TRACE is executed, capturing
bus cycles in trace RAM from next bus cycle
on. Because event is se~ in comparator 0,
occurrence of event implicitly sets EVENT bit
o on analyzer B.

SET UDE /MODIFY 8:0 ADDRESS=START+22
Changes address field of state template
associated with comparator 8:0 to START+22

SET UDE A:3 ADDRESS=LOOP,DATA=<XXXXX4>,ACTION = STOP RESET
If MICRO/T-II cycle, with ADDRESS field equal
LOOP and low-order three bits of DATA field
equal 4, is matched, executes STOP and RESET.
STOP turns off bus cycle tracing after next
bus cycle; RESET resets flags associated
with previous events.

MDE/T-Il responds to the
user-defined event ordinal.

occurrence of a
For example

UDE by printing the

MDE>
UDE #2

Related Commands

CANCEL UDE

RESET ANALYZER

SHOW UDE

8-51

COMMANDS

SET WATCH

The SET WATCH command sets a watchpoint, w.hich specifies a memory
location to be watched. If the MICRO/T-ll performs a write to the
specified location, the watchpoint is signaled, processor execution
halts, and a watchpoint message is displayed. If a watchpoint exists
at the specified address, it is reset with the attributes given in the
new command.

Syntax

SET WATCH [
/COUNT: OJ .. 25610 1

address-expression
/AFTER: OJ .. 65535 10

The shortest form of SET WATCH is SE W

Parameter

Address-expression is a location in memory.

Qualifiers

/COUNT:n activates the associated watchpoint the nth time it is
signaled.

If /AFTER:n is given, signaling of the watchpoint causes the count to
be decremented. If decremented to 0, the watchpoint is reported; if
not, an implicit GO is performed.

/COUNT is hardware-implemented and faster, but limited to 256
(decimal). /AFTER is software-implemented and much slower, but can be
as large as 65535 (decimal). Also, the /AFTER counter is displayed
with the SHOW WATCH command. You can use the /COUNT and /AFTER
qualifiers together in this command, extending the event count for
watchpoints to 16,776,960.

When a watchpoint is activated, MDE/T-ll displays a message indicating
the old and new contents of memory.

Examples

Command Resul t

SE W SUMl Sets watchpoint at memory location SUMI

SE W /COUNT:3 SUMl Sets watchpoint at memory location SUMI to be
activated when contents of SUMI have changed
three times

When a watchpoint occurs, MDE/T-ll displays a message in the following
format.

Watch at PC=address-expression; value was: old-expression, is
now: new-expression; current PC = n

8-52

COMMANDS

For example

WATCH at SUM1; value was: 5, is now: 10; current PC = START+30

Related Commands

CANCEL WATCH

RESET ANALYZER

SHOW WATCH

COMMANDS'

SHOW ALL

The SHOW ALL command displays all events including the ordinal
identifying each event, the value of the counts associated with each
event by the /COUNT and /AFTER qualifiers, the address at which each
event is set, and the event type.

Syntax

SHOW ALL

The shortest form of SHOW ALL is 5H ALL

Examples

Command Resul t

SH ALL Displays status of each type of event

A report like the following is produced.

MDE>SH ALL <RET>
0: A: 0 BREAKpo int /COUNT:I /AFTER:l (1 left) Address = START+10
1: A:l TRACEpoint /COUNT:5 /AFTER:5 (3 left) Address = SUMI
2, A: 2 WATCHpoint /COUNT:l /AFTER:I (1 left) Address QUANT
MDE>

8-54

COMMANDS

SHOW BREAK

The SHOW BREAK command produces a report on the current status of
breakpoints. This report gives the ordinal number assigned to each
breakpoint, the value of the counts associated with each breakpoint by
the /COUNT and /AFTER qualifiers, the state analyzer and comparator in
which the breakpoint is set, and the address at which the breakpoint
is set.

Syntax

SHOW BREAK

fAll
#event-ordinal

address-expression

The shortest form of SHOW BREAK is SH BR

Qualifier

/ALL (or no qualifier or parameter) displays the status of all
breakpoints.

Parameters

#event-ordinal is an identification number from 0 through 11 preceded
by a number sign, assigned to the breakpoint by MDE/T-II.

Board:comparator specifies the state analyzer (A, B or C) and
comparator (0, 1, 2 or 3) used to set the breakpoint.

Examples

Command Result

SH BR/ALL Displays status of all breakpoints

For each breakpoint, MDE/T-11 gives the following information.

Ordinal associated with breakpoint and comparator used

Value of counts associated with breakpoint by /COUNT and /AFTER
qualifiers

Location of breakpoint

For example

MDE>SH BR<RET>
#3 A:3 Breakpoint /COUNT:3 /AFTER:5 (3 left) Address = START+10

8-55

Related Commands

CANCEL BREAK

SET BREAK

COMMANDS

8-56

COMMANDS

SHOW CONFIGURE

The SHOW CONFIGURE command displays the current configuration of the
emulator, memory simulator, and state analyzers.

Syntax

SHOW CONFIGURE

The shortest form of SHOW CONFIGURE is SH CON

Examples

Command Result

SH CON Produces report on configuration

The following is an example of a report produced by this command.

Mode Register:
Mode Settings:

Processor Clock:

Fetch Timeout:
State Analyzer:

Memory Map (octal):

From To

0 35776
36000 50376
50400 177776

Related Commands

CONFIGURE ANALYZER

CONFIGURE MEMORY

CONFIGURE MODE

Read from EMULATOR
NORMAL, STANDARD, STATIC, PROCESSOR, USER
Start address = 140000, Bus Width = 16 bits

>
EXTERNAL

DISABLED
Clock A+;

Where

Absent
Sim
Absent

AI = Row; Trace AFTER /RETAIN:10

Write Prot?

NA
No
NA

8-57

COMMANDS

SHOW DEFINE

The SHOW DEFINE command displays the values assigned to a defined
symbol.

Syntax

SHOW DEFINE { /ALL }
symbol-name

The shortest form of SHOW DEFINE is SH DEF

Parameter

Symbol-name prints the value associated with that symbol.

Qualifier

/ALL displays information about all defined symbols.

Examples

Command

SH DEF FETCH

SH DEF/ALL

Result

Displays value associated with FETCH

Displays values associated with all defined
symbols

The report produced by /ALL lists each defined symbol and its value in
the current radix. For example

MDE)SH DEF/ALL(RET)
Symbol
ELOOP
MAX

Related Commands

DEFINE

UNDEFINE

Value
40044
40004

8-58

COMMANDS

SHOW KEYDEFINE

The SHOW KEYDEFINE command displays your definitions for the keypad PF
keys.

Syntax

SHOW KEYDEFINE

The shortest form of SHOW KEYDEFINE is SH K

Examples

This command produces a display for the defined keys in the form

PFl: 'command string' 'command string'
PF2: 'command string' 'command string'
PF3: 'command string' 'command string'
PF4: 'command string' 'command string'

If a key is not defined, it does not appear in the display.

Related Command

KEYDEFINE

8-59

COMMANDS

SHOW MODE

The SHOW MODE command produces a report on the current radix, display
and address modes.

Syntax

SHOW MODE

The shortest form of SHOW MODE is SH M

Examples

Command Result

SH M Displays current mode settings

This command produced the following report.

The current modes are: OCTAL,WORD,SYMBOLIC

Related Commands

CANCEL MODE

SET MODE

8-60

COMMANDS

SHOW OUTPUT

The SHOW OUTPUT command produces a report on the devices being used
for output.

Syntax

SHOW OUTPUT

The shortest form of SHOW OUTPUT is SH au

Examples

Command Resul t

SH OUT Displays current output settings

This command produces a report in the form

output: [no]verify, [no]terminal, and [no]logging (Log file is
'file-spec')

For example

MDE) SH OUTPUT<RET)
output: VERIFY, TERMINAL, and LOGGING (Log file is 'CALC.LOG')

Related Commands

SET LOG

SET OUTPUT

8.-61

COMMANDS

SHOW SYMBOL

The SHOW SYMBOL command displays the value of a program symbol or the
values of all program symbols.

Syntax

SHOW SYMBOL {fAll }
symbol-name

The shortest form of SHOW SYMBOL is SH SYM

Parameter

Symbol-name displays the value associated with that symbol.

Qualifier

/ALL displays the values for all symbol names.

Examples

Command Result

S8 SYM START Displays value associated with START

The report produced by /ALL lists each symbol and its value in the
current radix. For example

MDE>SH SYM/ALL<RET>
Symbol
QUANT
START
SUMl
SUM2
V

MOE>

Value
40070
40024
40020
40022
40000

8-62

COMMANDS

SHOW TARGET

The SHOW TARGET command displays a one-line report showing whether the
MICRO/T-ll is powered up, running or in the pause state, and the
source of interrupts you specified in a SIGNAL command.

Syntax

SHOW TARGET

The shortest form of SHOW TARGET is SH TA

Examples

Command Resul t

S8 TA Displays target status

The following is an example of a SHOW TARGET report.

Processor is powered up, halted; interrupts taken from target

Related Commands

GO

HALT

POWER

SIGNAL

8-63

COMMANDS

SHOW TRACE

The SHOW TRACE command produces a report on the current status of
tracepoints. This report gives the ordinal number assigned to each
tracepoint, the value of the counts associated with each tracepoint by
the /COUNT and /AFTER qualifiers, the state analyzer and comparator in
which the tracepoint is set, and the address at which the tracepoint
is set.

Syntax

SHOW TRACE

fALL
#event-ordinal

address-expression

The shortest form of SHOW TRACE is SH T

Qualifier·

/ALL (or no qualifier or parameter) displays the status of all
tracepoints.

Parameters

tevent-ordinal is an identification number from 0 through 11 preceded
by a number sign, assigned to the tracepoint by MDE/T-ll.

Board:~omparator specifies the state analyzer (A, B or C) and
comparator (0, 1, 2 or 3) used to set the tracepoint.

Examples

Command Result

SH T Displays status of tracepoints

The report lists all tracepoints set in the program.
tracepoint, the following information is given.

Ordinal associated with tracepoint and comparator used

For each

Value of counts assigned to tracepoint by /COUNT and /AFTER
qualifiers

Location of tracepoint

For example

MDE>SH TRA A:3<RET>
#3 A:3 TRACEpoint /COUNT:5 /AFTER:l (1 left) Address = QUANT

8-64.

Related Commands

CANCEL TRACE

SET TRACE

COMMANDS

8-65

COMMANDS

SHOW UDE

The SHOW UDE command produces a report on the current status of
user-defined events. This report gives the ordinal number, the state
template, the board and comparator, and the count value for each
event.

Syntax

SHOWUDE

fAll
#event-ordinal

The shortest form of SHOW UDE is SH UDE

Parameters

Board:comparator specifies the state analyzer (A, B or C) and
comparator (0, 1, 2 or 3) used to set the event.

#event-ordinal is an identification number from 0 through 11 preceded
by a number sign, assigned to the event by MDE/T-ll.

Qualifier

/ALL (or no qualifier or parameter) displays all user-defined events.

Examples

Command Result

SH UDE Displays status of each user-defined event

The report lists all events set in the program. For each event, the
following information is given.

Ordinal associated with event

Value of count associated with event by /COUNT qualifier

Contents of comparator (state template). Only fields not solely
consisting of don't-cares (ignored bits) are shown.

8-66

The

COMMANDS

form of a report is

#ordinal User Defined Event board:comparator
TRANSACTION = name
ADDRESS = bbbbbbbbbbbbbbbb = nnnnnn
DATA = bbbbbbbbbbbbbbbb = nnnnnn
SEL = bb
EXTERNAL = bbbbbbbb
AI = bbbbbbbb
EVENT 0 b
EVENT 1 b
QUALIFIER 0 b
QUALIFIER 1 b
COUNT count value

where bbb ••• = the binary mask in the given state template
field.

nnn . eo_ the binary mask (with XS interpreted as 0s)
translated into the current radix.

The ordinal and count are printed in decimal regardless of the current
radix. The character string indicates whether a bit is being tested;
X means masked and 1 means tested.

Suppose the following user defined event is set.

MDE>SET UDE A:2 TRANS=FETCH,DATA=<4XXX>,ACTION=STOP TRACE<RET)

The command SHOW UDE produces the following report.

#2 User Defined Event
Transaction = Fetch
Data 0000l00XXXXXXXXX 4000
Action = STOP, TRACE
Count 1

Related Commands

CANCEL UDE

SET UDE

8-67

COMMANDS

SHOW WATCH

The SHOW WATCH command produces a report on the current status of
watchpoints. This report gives the ordinal number assigned to each
watchpoint, the value of the counts associated with each watchpoint by
the /COUNT and /AFTER qualifiers, the state analyzer and comparator in
which the watchpoint is set, and the address at which the watchpoint
is set.

Syntax

SHOW WATCH

fAll
#event-ordinal

address-expression

The shortest form of SHOW WATCH is SH W

Qualifier

/ALL (or no qualifier or parameter) displays the status of all
watchpoints.

Parameters

#event-ordinal is an identification number from 0 through 11 preceded
by a number sign, assigned to the watchpoint by MDE/T-ll.

Board:comparator specifies the state analyzer (A, B or C) and
comparator (0, 1, 2 or 3) used to set the watchpoint.

Examples

Command Resul t

SH W Displays status of watchpoints

The form of a line in a report is

#ordinal: comparator WATCHpoint /COUNT:count /AFTER:n (n left)
Address = address

The ordinal and count are printed in decimal regardless of the current
mode. For example

MDE)SH WAT U
#1 A:l WATCHpoint /COUNT:l /AFTER:5 (3 left) Address SUMI

8-68

Related Commands

CANCEL WATCH

SET WATCH

COMMANDS

8-69

COMMANDS

SIGNAL

,The SIGNAL command selects the target
emulator as the source of interrupts.
command parameters let you specify the CPU
and interrupt vector address.

hardware or the MDE/T-II
When simulating interrupts,
interrupt priority level

NOTE

DMA requests are ignored whenever
interrupt simulation is in effect.
However, power fail and halt traps
issued by target hardware are executed.

Using the PDP-II WAIT instruction causes the MICRO/T-II to hang. In
this situation, MDE/T-II cannot assume control of the MICRO/T-II and
cannot, therefore, control the MICRO/T-II to perform some debugging
functions. You can avoid this problem by using a BR. instruction.
The BR. instruction duplicates the interrupt idling obtained with the
WAIT instruction.

Syntax

SIGNAL {
TARGET [INTERRUPT] t
EMULATOR [INTERRUPT] [ICP: { 0 .. 178 }] [NECTOR: { 0 .. 3748 }])

The shortest form of SIGNAL is SIG

Parameters

TARGET specifies the target as the source of interrupts.
specifies the emulator as the source of interrupts.

Qualifiers

EMULATOR

If you do not give a value for /CP, no interrupt is generated. If you
give a value for /CP, that value is presented to the MICRO/T-ll on the
CP<3> through CP<0> lines.

/VECTOR:n is any multiple of 4 in the range 0 through 374 (octal). If
you do not give a value for /VECTOR, the MICRO/T-II gets the vector
address from an internal fixed table by decoding the inputs HALT, PF,
CP<3:0>. If you give a value, it is presented to the MICRO/T-ll
DAL<7:2>. Do not use bits 1 and 0, because the vector address must be
a multiple of 4.

8-70

Examples

Command

SIG TA

SIG EMU

SIG EMU CP:7

SlG EMU CP:l VEC:100

Related Command

SHOW TARGET

COMMANDS

Resul t

Sets target as source of interrupts

Sets emulator as source of interrupts

Asserts CP<3> = 0 and
default MlCRO/T-11
(octal 114)

CP<2:0> =
vector for

1; uses
interrupt

Asserts CP<3:l> = 1 and CP<0> = 0; presents
vector 100 to MICRO/T-ll during resulting
lACK cycle

8-71

COMMANDS

STEP

The STEP command executes the target program a specified number of
instructions at a time.

Syntax

STEP [increment J
The shortest form of STEP is S

Parameter

Increment is an expression that evaluates to an unsigned l6-bit value.
It specifies how many instructions to step through before halting. If
you do not specify increment, MDE/T-ll stops after one insttuction.

MDE/T-ll single steps the program as many times as indicated by
increment. Since single-stepping alters the performance of the
program, do not use this process if real-time execution is desired.

Examples

Command Result

S Steps one instruction

S 5 Steps five instructions then halts

MDE/T-ll responds by displaying the registers. The following is an
example for a non-VT100 terminal.

MDE>S<RET>
iMDE-I-PROSTETO, Processor single stepped to PC=ELOOP+12 : MOV@#100,R0

R0:
Rl:
R2:
R3:
R4:
R5:
SP:
PC:
PS:
MDE>

40004
7
3

177777
177777
177777

40000
ELOOP+l2

340

For VT100 terminals, the registers are shown in the static display
region of the screen.

Related Command

GO

8-72

COMMANDS

The STOP command lets you leave MOE/T-II and return to
operating system. MOE/T-II closes any files that
description of EXIT command) •

Syntax

STOP

The shortest form of STOP is STO

Example

Command Resul t

STOP

the VAX/VMS
are open (see

STO Closes files and returns to monitor

Related Command

EXIT

8-73

COMMANDS

I· UNDEFINE

The UNDEFINE command removes defined symbols from the symbol table,
symbols you created with the DEFINE command.

Syntax

UNDEFINE symbol [,symbol,...]

The shortest form of UNDEFINE is UND

Parameter

Symbol is any symbol defined by the DEFINE command. Redefined symbols
loaded from the program symbol table return to their initial (loaded)
values. MDE/T-ll cannot remove loaded symbols from the program symbol
table.

Examples

Command Result

UND ALPHA Removes symbol ALPHA

UND ARGl,TEMP Removes symbols ARGI and TEMP

Related Commands

DEFINE

SHOW DEFINE

8-74

COMMANDS

The WAIT command suspends command input until the MICRO/T-ll
is placed in the pause state. This command suspends input
terminal or from an indirect command file. Command input is
when the MICRO/T-ll enters the pause state for any reason.
abort this command by typing CTRL/C twice.

Syntax

WAIT

The shortest form of WAIT is WAI

Example

WAIT

emulator
from the

resumed
You can

The following commands begin program execution at label START,
continue until just prior to execution of the instruction at label
LOOP, and perform other MDE/T-ll commands thereafter.

SET BREAK LOOP
GO START
WAIT

You can place this sequence in an indirect command file, or assign it
to a keypad PF key.

8-75

CHAPTER 9

MESSAGES

This chapter describes MDE/T-11 messages that you may encounter when
developing MICRO/T-ll applications. It explains the general format of
MDE/T-11 messages and provides an alphabetical list of messages by
message type.

9.1 MESSAGE FORMAT

All messages appear in the following form.

sMDE-X-MESSAGE TEXT

The sMDE- field identifies an MDE/T-ll success, information, warning
or error message (rather than a VAX/VMS system message) as follows.

Identifier General Type

;MDE- Success, information

%MDE- Warning

?MDE- Error (severe, internal, fatal)

X- is one of six possible message codes (Table 9-1) indicating
successful completion or the severity of an error.

Following the message code letter, the message type is
uppercase letters as an aid for quick identification.
the message type is nine characters maximum.

displayed in
The length of

The text portion of the message provides more explicit information as
an aid for error recovery or corrective action. For example, the text
may contain information about the particular construct causing an
error.

Unable to cancel activated BREAKpoint 'name'

The quoted string 'name' identifies the breakpoint. For example

Unable to cancel activated BREAKpoint START+20

The remalnlng sections in this chapter list MDE/T-ll
alphabetically by type.

9-1

messages

Level

Success

Information

Warning

Message
Code

S

I

W

Severe error E

Internal error C

Fatal error F

9.2 SUCCESS MESSAGES

MESSAGES

Table 9-1
MDE/T-11 Message Codes

Effect

MDE/T-11 successfully
specified operation.

completed the

MDE/T-11 detected a condition that may
require your attention or some action.

MDE/T-ll detected a condition
cause errors in execution.
action may be necessary.

that may
Corrective

MDE/T-ll command execution failed. This
is generally the result of a serious
error that prevented execution.

An internal MDE/T-l1 error occurred
preventing normal operation. The error
may be the result of a hardware or
software condition that requires the
restarting of the MDE/T-11 system.

A fatal error occurred external to
MDE/T-ll software. MDE/T-11 exits and
operator control returns to the VAX/VMS
command level.

The following success messages report that an
successful. MDE/T-l1 gives success verification
commands. You may assume that any command executed
was successful.

operation was
on just a few

without messages

;MDE-S-LOAGOODLD, Load complete

The LOAD command was successful.

;MDE-S-PROGSTART, Program started at PC = ,nnnnnn

The GO command was successful. The PC at the time the processor
started is given.

9.3 INFORMATION MESSAGES

The following information messages inform you of certain (normal)
actions taken as a result of a command.

;MDE-I-COPDATLOS, Data in destination lost

A COpy operation was completed, but it destroyed data in
configured memory.

9-2

MESSAGES

;MDE-I-EMUCHKPOD, Check POD switches, repeat power up sequence

The MICRO/T-ll cannot be started. It may have no clock signal.
Check the setting of the MDE/T-II pod clock switches.

;MDE-I-KDFNONDEF, None are defined

A KEYDEFINE/CLEAR/ALL was given, and no keypad keys were defined.

;MDE-I-LOANOBIN, No binary file found

You issued a LOAD command that contained an unquoted file
specification with no extension. Therefore the binary and symbol
files were loaded but the binary file was not found.

;MDE-I-LOANOSYM, No symbol file found

LOAD was given with an unquoted file specification and no
extension. Therefore the binary and symbol files were loaded but
the symbol file was not found.

;MDE-I-NOXFRADDR, No transfer address

A binary file (memory image) loaded successfully, but it did not
specify a transfer address.

;MDE-I-PROHALAT, Processor execution halted at PC = base + offset:
instruction

You issued a HALT command, and the MICRO/T-II halted your
application program at the address of the current PC.

;MDE-I-PROSTETO, Processor execution started at PC = base + offset:
instruction

You issued a GO command, and the MICRO/T-II began to execute your
application program at the address of the current PC.

;MDE-I-REPVFYFAL, Verification failed at address nnnnn

You specified /VERIFY in ~ 'LOAD or DEPOSIT command, but the
verification read-back failed at the address displayed.

;MDE-I-SHWNOSYMB, No symbols defined

You issued a SHOW DEFINE or SHOW SYMBOL command, but no symbols
were defined.

;MDE-I-STEPABORT, Single stepping aborted on iteration n

The STEP command you issued was aborted due to the occurrence of
an event. The number of instructions successfully stepped is
reported.

;MDE-I-TIMOUT, Emulator fetch timout

Fetch timeout occurred in response to the CONFIGURE TIMEOUT
ENABLED you issued.

;MDE-I-TRMKEYACT, Keypad is now active

MDE/T-II detected that an LAl20 terminal is being used as the
console terminal. The LAl20 keypad was activated.

9-3

MESSAGES

9.4 WARNING MESSAGES

The following messages are warnings, indicating an MDE/T-ll operation
you specified was completed but some a9normal result occurred.
Warning messages can also indicate some side effect has occurred as a
result of normal action. .

%MDE-W-COPOVRLAP, Destination overlaps source

You issued a COPY command in which the destination block overlaps
the source block. An undesirable side effect may have occurred.

%MDE-W-DEPREGBYT, /WORD assumed in register deposit

You attempted to DEPOSIT in one or more registers when in the
BYTE display mode or with the /BYTE qualifier in the command.
The deposit was executed in WORD mode.

%MDE-W-EMUADRFRC, Target address space read/write forced to word
boundary

You specified an odd address in a DEPOSIT or EXAMINE command,
requiring MDE/T-ll to adjust to the word address.

%MDE-W-EMUVFYFAL, Verification error on load or deposit

You specified /VERIFY in a, LOAD or DEPOSIT command, and
verification read-back failed.

%MDE~W-INIEMPBUS, Empty bus

MDE/T-ll hardware is improperly configured.

%MDE-W-KDFXSSTRS, n excess stringis ignored

The KEYDEFINE commands you issued specified more than eight
commands. The extra KEYDEFINE commands were ignored.

%MDE-W-LOAABOLOA, LOAD aborted via AC

You typed two CTRL/Cs while loading was in progress.

%MDE-W-LOAXFRADD, Transfer Address nnnnnn, not loaded

MDE/T-ll could not load the target PC with the program's transfer
address in response to the LOAD command you issued, because the
target processor was not powered up.

%MDE-W-LOGOUTERR, Log file output error, file closed

The log file currently in use reached its preallocated size;
thus it was closed.

%MDE-W-NOLDXFRAD, Could not load transfer address

MDE/T-ll could not load the target PC with the program's transfer
address. This message normally precedes the %MDE-W-LOAXFRADD
message.

9-4

MESSAGES

9.5 ERROR MESSAGES

Error messages can be severe, internal or fatal.

9.5.1 Severe Error Messages

The following severe error messages indicate an error in constructing
a command or in using MDE/T-ll.

?MDE-E-ARGOUTRNG, Argument out of range

You specified a numerical argument that was too large or too
small.

?MDE-E-BADBUS, System on bus m not legally configured

MDE/T-ll detected an improperly configured backplane. More than
one emulator is present, or the device number configuration is
improper.

?MDE-E-BADEMU, Emulator on bus m failed diagnostics

MDE/T-ll detected a hardware error in the emulator.
before attempting to debug.

Check it

?MDE-E-BADEVTBD, State Analyzer n on bus m failed diagnostics

MDE/t-ll detected a hardware error in a state analyzer. Check it
before attempting to debug.

?MDE-E-BADLOAD, Could not load

The LOAD command you issued failed. MDE/T-ll usually precedes
this message with another identifying the source of the error.

?MDE-E-BADMEMSIM, Memory simulator n on bus m failed diagnostics

MDE/T-ll detected a hardware error in a memory simulator.
it before attempting to use MDE/T-ll debugging commands.

?MDE-E-CLREVTFAL, Event could not be cleared

Check

MDE/T-ll could not clear an event comparator. MDE/T-ll usually
precedes this message with another identifying the source of the
error.

?MDE-E-COMPLEX, Syntax, probably expression, too complex

You probably issued a command containing an expression that had
too many levels of nested parentheses.

?MDE-E-COPNOTCON, Memory not configured or not contiguous

MDE/T-ll detected an attempt to reference memory not configured
with the CONFIGURE MEMORY command.

?MDE-E-COPNOTCOP, No copy performed

The COpy command you issued failed. MDE/T-ll usually precedes
this message with another identifying the source of the error.

9-5

MESSAGES

?MDE-E-DEPARGCNT, Too much or too little data for deposit

You issued a DEPOSIT command to deposit in registers but the
number of data elements did not match the number of registers, or
to deposit in a memory range with more data than the size of the
range you specified permits.

?MDE-E-DEPBADRNG, Illegal deposit range specified

The range you specified in a DEPOSIT command had a bottom address
greater than the top address; for example, 200:100.

?MDE-E-EMUBADHRD, No processor clock, cannot run DCTII

MDE/T-ll detected an attempt to manipulate the MICRO/T-ll
processor, or to examine or deposit target memory or registers,
but the MICRO/T-ll had no clock signal. Check the setting of the
MDE/T-ll pod clock switches.

?MDE-E-EMUBADPWR, Wrong power state for action

MDE/T-ll detected an attempt to manipulate target memory or
registers before powerlng up the MICRO/T-ll. You must first
power up the target hardware.

?MDE-E-EMUINTFAL, TIl failed to take interrupt (check processor
priority)

The SIGNAL INTERRUPT command you issued signaled an interrupt,
but the MICRO/T-ll did not acknowledge it. The CPU priority (in
the PS) probably is too high.

?MDE-E-EVEQUAL, EVENT or QUALIFIER number must be B or I

You incorrectly specified one or more event or qualifier flags in
a SET UDE command.

?MDE-E-EVTBADCMP, Comparator out of range

The comparator you specified in a SET UDE command does not exist.

?MDE-E-EVTBADCNT, Count value out of range

You attempted to set an event using a count value greater than
256.

?MDE-E-EVTCMPUSD, Comparator specified already in use

You attempted to set a UDE using a comparator already in use.

?MDE-E-EVTNOTSET, Event could not be set

The SET BREAK, SET TRACE, SET WATCH or SET UDE command you issued
failed. MDE/T-ll usually precedes this message with another
identifying the source of the error.

?MDE-E-EXCESSDET, Excess State Analyzers ignored

You attempted to configure more than three state analyzers.

?MDE-E-ILLRANGE, range given for memory mapping is not ascending

The memory range you specified in a CONFIGURE MEMORY command is
illegal. The bottom address is greater than the top address.

9-6

MESSAGES

?MDE-E-INIDEVGAP, Noncontiguous device numbers on bus

This indicates an improperly configured MDE/T-II system.
the MDE/T-II hardware installation.

?MDE-E-INIMULEMU, Multiple Emulators on bus

This indicates an improperly configured MDE/T-II system.
the MDE/T-II hardware installation.

?MDE-E-ININOEDET, No event detector on bus

This indicates an improperly configured MDE/T-II system.
the MDE/T-II hardware installation.

?MDE-E-ININOMSIM, No Memory Simulator on bus

This indicates an improperly configured MDE/T-II system.
the MDE/T-II hardware installation.

?MDE-E-ININOTEMU, No target Emulator on bus

This indicates an improperly configured MDE/T-II system.
the MDE/T-II hardware installation.

?MDE-E-INSTFMT, MACRO-II assembly error

Check

Check

Check

Check

Check

The assembly of MACRO-II code failed. The offending line and a
pointer to the syntax error precedes the message.

?MDE-E-INSTODD, Attempt to deposit MACRO-II to odd address

The DEPOSIT command you issued specified MACRO-II instructions to
be deposited to an odd address.

?MDE-E-INSTUSE, Use of MACRO-II in register or range deposit

You attempted to deposit MACRO-II code into registers.

?MDE-E-KDFILLKEY, Illegal or undefined key

You attempted to define a nonexistent key.

?MDE-E-KDFKEYDEF, Key PFn already defined

You attempted to define a keypad key that is already defined.
First use the KEYDEFINE/CLEAR command to clear the key.

?MDE-E-KDFNOTI~~, Terminal must be a VTlee or LAl2e

You attempted to define keys on a terminal with an unsupported
keypad. Only LAl20 and VT100 keypads are supported by MDE/T-ll.

?MDE-E-LEXERR, Syntax error at or near ·xxx·

The command syntax you issued contains one or more lexical
errors. Probably the numbers you specified are not in the
current radix, or you made an error in constructing a radix
override (for example, %O'xxx').

?MDE-E-LOAFILCON, Conflicting file type switches specified

You issued a LOAD command in which /SYMBOL and /BINARY were
specified. Only one can be specified.

9-7

MESSAGES

?MDE-E-LOAHASHDR, Task Image has header; rebuild with /-HD

The memory image file built with the RSX-ll task builder is
incorrect (contains a header).

?MDE-E-LOAHRDERR, Hardware error, load aborted

MDE/T-ll could not load target or simulator memory. MDE/T-ll
usually precedes this message with another identifying the source
of the error.

?MDE-E-LOAILLFMT, Bad binary file format, binary load aborted

The memory image file you specified in a LOAD command was not in
the format implied by its name or by the file type switch.

?MDE-E-LOANOFILE, File not found or could not be opened

The file you specified in a LOAD command could not be found or
opened.

?MDE-E-LOAREAERR, Read error, load aborted

A read ~rror occurred while reading a binary or symbol file
during a load operation.

?MDE-E-LOARESOVR, Task Image has memory-resident overlays

The memory image file built with the RSX-ll task builder is
incorrect (contains memory resident overlays).

?MDE-E-LOASYMFMT, Bad symbol file format, symbol load aborted

The symbol file you specified in a LOAD command has an incorrect
internal format.

?MDE-E-LOAUNKFMT, Unknown file format; must use /BINARY or /SYMBOL

You included a quoted file specification, or a file specification
with a nonstandard extension, in a LOAD command without a file
type qualifier.

?MDE-E-LOGTOOLNG, Log file name exceeds 5B characters

The log file name you specified in a SET LOG command is longer
than 50 characters.

?MDE-E-MEMOUTMEM, Insufficient physical memory

You attempted to configure memory, but no free 8KB simulator
memory blocks are available.

?MDE-E-MEMNOTCON, Memory is not configured

The application program attempted to reference memory not
configured by the CONFIGURE MEMORY command.

?MDE-E-MEMREAVIO, Memory read violation, PC = nnnnnn

The application program attempted to access (read)
configured as read-protected and then halted.

9-8

memory

MESSAGES

?MDE-E-MEMWRIVIO, Memory write violation, PC = nnnn

The application program attempted to write to memory configured
as read-only and then halted.

?MDE-E-MICNOTRUN, Processor is not running

You attempted to halt the MICRO/T-II when it was in the pause
state.

?MDE-E-MICWASRUN, Processor is running

You issued a GO or STEP command during application program
execution.

?MDE-E-NOCHAN, No free 10 channels

No channels are available for opening a file. This can happen
when using indirect command files or when attempting to start
logging.

?MDE-E-NOCLOCK, Clock configure failed

MDE/T-II usually precedes this message with another identifying
the source of the error.

?MDE-E-NODEPOSIT, Cannot deposit

The DEPOSIT command you issued failed. MDE/T-II usually precedes
this message with another identifying the source of the error.

?MDE-E-NOEVENT, No such event set

You attempted to cancel an event that was not set.

?MDE-E-NOEVTCLRD, No event(s) cleared

MDE/T-II could not clear an event. MDE/T-II usually precedes
this message with another identifying the source of the error.

?MDE-E-NOEXAMINE, Unable to examine location

The EXAMINE command you issued failed. MDE/T-II usually precedes
this message with another identifying the source of the error.

?MDE-E-NOEXREGS, Cannot examine registers

A register EXAMINE command failed. The MICRO/T-II probably has
no clock signal. Check the setting of the MDE/T-Il pod clock
switches.

?MDE-E-NOFILE, Missing file specification

You did not include a required file specification in a command.

?MDE-E-NOFREECOMP, No free comparator for event

You attempted to set an event when no event comparators were
available on the specified state analyzer. First cancel an event
on that analyzer or use another analyzer.

?MDE-E-NOGO, Could not start at current PC

MDE/T-ll could not start the MICRO/T-Il.

9-9

MESSAGES

?MDE-E-NOHLPCHAN, No free channel for help i/o

No channels are free for opening the help file. This occurs when
a HELP command is issued within a command file.

?MDE-E-NOHLPFILE, Could not find HELP file

MDE/T-ll could not find the help file.

?MDE-E-NOINIT, Hardware was not successfully initialized

Some error occurred that caused the
fail. MDE/T-ll usually precedes
identifying the source of the error.

?MDE-E-NOMEMCON, Memory configure failed

initialization process to
this message with another

?MDE-E-NOMEMSIZ, Memory size configure failed

MDE/T-ll usually precedes this message with another identifying
the source of the error.

?MDE-E-NOMODEREG, Mode register setting failed

MDE/T-ll usually precedes this message with another identifying
the source of the error.

?MDE-E-NONEXHRDW, Non-existent hardware specified in command

You attempted to set an event using a state analyzer that does
not exist.

?MDE-E-NOOPEN, Cannot open file

The file you specified cannot be found, or file access failed.

?MDE-E-NOPOWER, Power configure failed

The MICRO/T-ll probably has no clock signal. Check the setting
of the MDE/T-ll pod clock switches.

?MDE-E-NOSETUP, Emulator setup failed

MDE/T-ll usually precedes this message with another identifying
the source of the error.

?MDE-E-NOSUCHEVT, No such event is set

You attempted to clear an event that was not set.

?MDE-E-NOSUCHSYM, Symbol ·xxx· does not exist

The symbol you specified in a command was not loaded from a
program symbol table or defined by the DEFINE command.

?MDE-E-ODDADDR, Illegal use of odd address

You specified an odd address in an EXAMINE or DEPOSIT command,
but MDE/T-ll was not in the BYTE display mode or you did not
include the /BYTE qualifier.

9-10

MESSAGES

?MDE-E-PCRDFAIL, Could not read PC

MDE/T-ll could not read the target pc. The MICRO/T-ll probably
has no clock signal. Check the setting of the MDE/T-ll pod clock
switches.

?MDE-E-RANGE, Invalid range

You specified an address range in an EXAMINE or DEPOSIT command
with a bottom address greater than the top address (for example,
200:100) •

?MDE-E-READERR, File read error

An attempt to read a previously opened file failed.

?MDE-E-SIGINTNAK, Interrupt not acknowledged by processor

The SIGNAL INTERRUPT command you issued signaled an interrupt,
but the processor did not acknowledge it. The CPU priority (in
the PS) probably is too high.

?MDE-E-SIGXSARGS, Excess arguments supplied for SIGNAL command

You included too many parameters in a SIGNAL command.

?MDE-E-STEPFAIL, Single stepping failed on iteration: n

The MICRO/T-ll could not be single stepped as you specified in a
STEP command.N is the number of instructions that were
successfully executed.

?MDE-E-SYNTAX, Syntax error at or near "xxx·

The command you issued contains a syntax error.

?MDE-E-TOOMANY, (more errors occurred)

Too many errors occurred and error messages were lost.
usually caused by a repeating error.

This is

?MDE-E-TRMKEYUND, Undefined keypad key, type keypad "." for help

You pressed a keypad key that is not defined or not definable.

?MDE-E-TRMKPINAC, Keypad inactive, must be in VT100 or LA120 mode

You pressed a keypad key when not in the VT100 or LA120 mode.
MDE/T-ll supports only VT100 and LA120 keypads.

9.5.2 Internal Error Messages

The following internal error messages report a problem with the
hardware or a condition under which the software cannot operate. If
any of these messages occur, attempt to restore correct operation by
restarting the MDE/T-ll system. If they continue to be displayed,
check MDE/T-ll hardware operation by running diagnostics as directed
in Appendix C. Report any MDE/T-ll software errors to DIGITAL.

?MDE-C-BNOICE, Command available in in-circuit emulation debugger
only

9-11

MESSAGES

?MDE-C-CDSBAD, Unexpected CDS response

?MDE-C-CDSERR, Error reported by CDS, code = ,nnnnnn

?MDE-C-CMDBADCMD, Unknown command

?MDE-C-CMDBADEMU, Illegal emu cmd

?MDE-C-CMDBADEVT, Illegal evt cmd

?MDE-C-CMDBADMEM, Illegal mem cmd

?MDE-C-CMDBADSYS, Illegal sys cmd

?MDE-C-CMDSMLCMD, Command string too small

?MDE-C-CMDUNXCMD, Received send only command

?MDE-C-CNFNSEVDT, No such event detector as one required

?MDE-C-DEVBADBUS, Illegal bus ID

?MDE-C-DEVBADDEV, Illegal sys bus addr for dev

?MDE-C-DEVBADPRM, Illegal parameter sent to device handler

?MDE-C-DEVBADTYP, Illegal dev type

?MDE-C-DEVILLRUN, Illegal when processor is running

?MDE-C-DEVINSPRM, Insufficient parameters in TCL

?MDE-C-DEVNOTRUN, Processor is not running

?MDE-C-DEVWRGDEV, Device is not the mem sim expected

?MDE-C-EVTORDRNG, Event ordinal out of range, was: ,nnnnnn

?MDE-C-EXPERR, Type(TOS)=,nnnnnn

?MDE-C-INTBADINT, Spurious interrupt

?MDE-C-INTBADWCD, Bad interrupt wait code

?MDE-C-INTBRKBIT, No break bit set at interrupt

?MDE-C-MEMBADBUS, Bad bus used in setting prot/map

?MDE-C-MEMLMAOVR, Address out of range allocating simulator mem

?MDE-C-MEMLPAOVR, Address out of range loading memory prot/mapping

?MDE-C-MEMLSAOVR, Address out of range loading simulator memory

?MDE-C-MEMLSBOVR, End of block out of range

?MDE-C-MEMLSRBAD, Readback failed while loading simulator memory

?MDE-C-MEMRPAOVR, Address out of range reading memory prot/map

?MDE-C-MEMRSAOVR, Address out of range reading simulator memory

?MDE-C-MEMRSBOVR, End of block out of range reading simulator mem

9-12

MESSAGES

?MDE-C-MEMSNOBRK, Emulator has break bit but memory does not

?MDE-C-MEMUABBUS, Tried to allocate utility mem on bad bus

?MDE-C-NOSTBFND,

?MDE-C-PARSER,

?MDE-C-STKOVRFLW, Command too long

?MDE-C-TCLBADATA, Null or bad event break msg

?MDE-C-TCLBADPC, Bad PC in event break msg

?MDE-C-TCLREGLIST, Bad reg in event break msg

?MDE-C-TCLUNKDET, Unk event det

?MDE-C-TCLUNKEV, Break not on user event

?MDE-C-TCLWAS, TCL reply was EVT, MEM or EM type

?MDE-C-TIMOUTTOG, Error in toggling the ENABLE TIMEOUT bit

?MDE-C-TRCLRFAIL, Failed to clear Trace RAM

?MDE-C-TRCRDFAIL, Failed to read Trace RAM

?MDE-C-VSTADDR, Bad virt addr ,nnnnnn

9.5.3 Fatal Error Messages

The following fatal error messages indicate conditions caused by
problems external to MDE/T-ll software. These errors cause MDE/T-ll
to exit. Refer such problems to your VAX/VMS system manager.

?MDE-F-VSTCLOSE, Cache file n failed

I/O access to the symbol table temporary file failed making the
symbol mechanism inoperative.

?MDE-F-VSTOPEN, Cache file open failed

The symbol table cache temporary file could not be opened making
the symbol mechanism inoperative.

9-13

APPENDIX A

PAUSE STATE MACHINE

This appendix describes the MICRO/T-II pause state, entry into the
pause state, pause-state machine execution, and exit from the pause
state.

A.I PAUSE STATE

When in the pause state, MICRO/T-II program execution is suspended in
a manner that simulates a CPU halt state. The pause state machine
preserves the execution environment of the application program and
captures the MICRO/T-II bus signals in a manner that is transparent to
the' normal execution environment. Neither DMA cycles nor interrupts
of any kind are executed in the pause state.

NOTE

To prevent erroneous HALT or PF
interrupts resulting from pause-state
machine entry and exit, both interrupt
signals, which are pseudo-edge
sensitive, are latched during each
MICRO/T-Il bus cycle. When in the pause
state, the state of both signals is
preserved. On exiting the pause state,
the signals are again latched during
each bus cycle, and normal HALT and PF
interrupt operation is enabled.

When exiting the pause state, application program execution resumes or
restarts depending on how the pause state was entered and which
command (including qualifiers) is issued to exit the pause state.

A.2 PAUSE STATE ENTRY

The pause state is entered in response to MDE/T-ll command execution,
when invoked by events, or when memory access violations are detected.

A-I

PAUSE STATE MACHINE

MDE/T-ll command execution

HALT

POWER UP (less the /GO qualifier)

STEP (following execution of each instruction)

Invoked by events

Breakpoint

Tracepoint (normal operation resumes following pause state entry
and display of tracepoint message)

Watchpoint

User-defined event in which a break action is specified

Memory access violations

Attempted write in write-protected memory

Attempted read or write in memory configured as absent

A.3 PAUSE STATE MACHINE EXECUTION

When in the pause state, the pause state
disconnects all interrupt sources from the
suspends normal program execution.

machine effectively
MICRO/T-ll pins and

Program execution is suspended following a normal instruction
execution including any associated data transfer bus cycles. Program
suspension is accomplished by forcing the MICRO/T-ll to fetch JMP
instructions, using PC absolute mode addressing with an address value
equal to the PC register contents on pause state entry. Thus, during
the pause state, the PC points to the next normal instruction to be
fetched.

MICRO/T-ll bus activity during the pause state will appear as follows.

000137
aaaaaa

(JMP @#aaaaaa instruction fetch)
(absolute address which restores the PC)

Following execution of each JMP instruction, the PC is updated to the
correct value for normal program execution reentry.

A.4 PAUSE STATE EXIT

Pause state exit occurs when normal instruction fetches are reenabled.
Interrupt request lines return to their previous states.

A-2

PAUSE STATE MACHINE

Pause state exit is initiated by certain MDE/T-II commands and
following all tracepoints.

Immediately following
operation is restored)

tracepoint

In response to the following commands

GO

message

POWER UP/GO (pause state not entered)

display (normal

STEP (pause state entered after executing next instruction)

A-3

APPENDIX B

MICRO/T-ll

This appendix describes MICRO/T-ll programming and architectural
characteristics relevant to MDE/T-ll operation.

B.l PROGRAMMING CHARACTERISTICS

The following MICRO/T-ll programming characteristics relate directly
to MDE/T-ll operation.

Eight general-purpose registers (R0 through R7) with R6 serving
as a stack pointer (SP) and R7 as a program counter (PC).

Processor status word (PS)

Execution of basic PDP-II instruction set (less MARK and EIS/FIS
instructions)

Handling of interrupts through a vectored interrupt structure
with four levels of priority

Feature selection through a programmable mode register

B.l.l General-purpose Registers

MDE/T-ll gives you access to the contents of the eight general-purpose
registers. You can examine (read) or deposit (write) information in
one register 6r a range of registers.

When a VT100 terminal is used as the MDE/T-ll console terminal, the
contents of these registers appear in the static portion of the
screen.

B.l.2 Processor Status Word

The processor status word CPS) is a 16-bit register that contains
information on the current status of the MICRO/T-ll microprocessor.
In MDE/T-ll, the PS is treated like the general-purpose registers.

B-1

MICRO/T-II

B.l.3 PDP-II tnstruction Set

The MICRO/T-ll executes the PDP-II instruction set. To let you take
full advantage of this feature, MDE/T-ll gives you the ability to
assemble and disassemble instructions using MACRO-II syntax during
software debugging. You can do this for instruction locations in
target memory and simulated memory.

B.l.4 Interrupt Handling

The MICRO/T-ll has an interrupt structure that makes use of implied
vectors and priority levels. As an option in MDE/T-ll, you can supply
a vector that overrides the implied vector when simulating interrupts.

B.l.S Feature Selection

The MICRO/T-ll mode register is a l6~bit internal register through
which you can select the following MICRO/T-II features.

A 16-bit or 8-bit data bus width

Dynamic or static memory (refresh or no-refresh respectively)

A 64K or 4K/16K dynamic memory refresh

Start/Restart address

Normal or delayed read/write function

Long or standard microcycle

Constant or processor mode clock

B.2 ARCHITECTURAL CHARACTERISTICS

The following MICRO/T-ll architectural characteristics relate directly
to MDE/T-ll operation.

MICRO/T-ll clock

MICRO/T-ll control signals

B.2.l MICRO/T-ll Clock

The MICRO/T-ll clock runs at a maximum frequency of 7.5 MHz. MDE/T-ll
commands let you select the clock from one of three sources.

B-2

MICRO/T-ll

The MICRO/T-II emulator

An external source

The target hardware (selected manually via MDE/T-II 5.2 SG pod
switches)

If you select the MICRO/T-II emulator as the clock source, the clock
runs at a frequency of 5.0688 MHz.

B.2.2 MICRO/T-ll Control Signals

MDE/T-II commands let you set events based on the logical states of
MICRO/T-Il control signals. In addition, the signals can be examined
through MDE/T-II state analysis hardware and software functions.

Eight MICRO/T-II signals control the functions of
in-circuit emulation. These signals fall into
control strobes and control signals. -RAS, -CAS, -PI
control strobes, and R/-WHB, R/-WLB, SEL0 and SELl
logic signals.

MDE/T-II during
two categories:

and -BCLR are
are steady-state

The leading edge of the row address strobe (-RAS) acknowledges that
the address on the data and address (DAL) lines is stable during
read/write and fetch transactions. This signal also strobes the row
address on the address and interrupt (AI) lines when dynamic memory
support is selected through the mode register.

strobes the
support is
to clock

The leading edge of the column address strobe (-CAS)
column address on the AI lines when dynamic memory
selected. The trailing edge of this signal may be used
interrupt information.

The leading edge of the priority-in (-PI) strobe
data on the DAL lines is stable during write
leading edge also may be used to enable interrupts
(AI<0:7».

acknowledges that
transactions. The
on the AI lines

The bus clear (-BCLR) strobe loads the mode register a~ power-up and
may' be used to initialize target hardware.

The read/write signals (R/-WHB, R/-WLB) control the read/write and
fetch transactions.

The select output signals (SEL0, SELl) flag the transaction taking
place. The operation of SEL0 and SELl during different MICRO/T-Il
transactions can be seen in the following truth tables.

B-3

MICRO/T-ll

SEL Truth Table for Static Mode or 64K Dynamic Mode

SEL<l> SEL<0>

0 0 Read/Wri te

0 1 Fetch

·1 0 Interrupt acknowledge

1 1 DMG

SEL Truth Table for Dynamic 4K/16K Mode

SEL<l> SEL<0>

0 0 Read/Write

rIJ 1 Refresh

1 rIJ Interrupt acknowledge

1 1 DMG

8-4

APPENDIX C

DIAGNOSTICS

This appendix contains procedures for running diagnostic programs that
test MDE/T-ll system hardware. Use these procedures whenever you want
to determine if MDE/T-ll hardware is operating correctly or not.

The procedures in this appendix are based on factory-configured
MDE/T-ll hardware consisting of one memory simulator and one state
analyzer. Detailed procedures for running diagnostics on other
MDE/T-ll hardware configurations are in the MDE/T-ll Technical Manual.
That manual also contains troubleshooting procedures that assist you
in correcting hardware errors detected by the diagnostics.

Six diagnostic programs test the hardware modules in the MDE/T-ll
system. Each is down-line loaded from the host system into the
MDE/T-ll system. After executing a diagnostic program, you must exit
that program and bootstrap the MDE/T-ll system prior to running any
other MDE/T-ll system software or diagnostic. Procedures for
bootstrapping the MDE/T-ll system and loading diagnostics are in
Section C.l. Sections C.2 through C.7 contain procedures for the
following diagnostics.

Section

C.2
C.3
C.4
C.S
C.6
C.7

Diagnostic
Program

CJKDxD.LDA
CVMXxA.LDA
VCDAx0.LDA
VCDBx0.LDA
VCDCx0.LDA
VCDDx0.LDA

NOTE

MDE/T-ll Hardware Tests

LSI-ll/23 microcomputer
MXVll-AC multifunction module
Memory simulator
State analyzer
MICRO/T-ll emulator
System bus

The x characters shown in diagnostic
program names throughout this appendix
stand for letters that indicate the
diagnostic reV1Slon level. Current
revision letters may range from A
through Z.

C.l BOOTSTRAPPING MDE/T-ll AND LOADING DIAGNOSTICS

C-l

DIAGNOSTICS

C.l.l Bootstrapping MDE/T-ll

MDE/T-ll is bootstrapped automatically whenever you turn on system
power as described in Section 5.1, or manually as described below.

1. Unplug the pod from the target hardware.

2. Check that both clock switches in the pod are ON.

3. Set MDE/T-ll panel switches (Figure 5-2) to the following
positions.

Switch Position

HALT Run (up)

AUX ON/OFF OFF (down)

POWER On (switch indicator lit)

4. Press the BREAK key.

The LSI-II microcomputer halts and displays the contents of
the PC followed by the console DDT prompt (@).

5. Bootstrap the system by typing 773000G immediately after the
console DDT prompt as follows.

@773~~~G

The MDE/T-ll system responds by entering the virtual terminal
mode and displaying the following message.

[Connected to HOST]

C.l.2 Loading Diagnostic Programs

You load diagnostics by logging onto the host system and running
MDE/T-ll on the host. MDE/T-ll lets you select application program
down-line loading or restarting, or running diagnostic programs.

Select and load application programs as follows.

1. Log onto the host system (Section 5.1).

2. Type RUN MDE/T-ll<RET>.

MDE/T-ll responds with the following message.

Startup option (Load, Restart, Diagnostic):

3. Enter the diagnostic start-up option by typing D<RET> as
follows.

Startup option (Load, Restart, Diagnostic): D<RET>

C-2

DIAGNOSTICS

MDE/T-ll responds with the following diagnostic
message.

File, in, or "?" for Menu:

prompt

4. You can request a display of the diagnostic menu in response
to the diagnostic prompt.

5.

6.

Select the menu display by typing ?<RET> as follows.

File, in, or "?" for Menu: ?<RET>

MDE/T-ll responds with the following menu.

#0 VCDAx0.LDA - Memory Simulator Diag.

#1 VCDBx0.LDA - State Analyzer Diag.

#2 VCDCx0.LDA - Emulator Diag.

#3 VCDDx0.LDA - System Bus Diag.

#4 CJKDxD.LDA - 11/23 CPU Diag.

#5 CVMXxA.LDA - MXV-IIAC Diag.

File, in, or "?" for Menu:

Respond to
sign (ft)
diagnostic
typing the

the diagnostic prompt message by typing a number
followed by the number in the menu identifying the
program you want to load. Terminate the input by
<RET> key.

For example, you load the LSI-ll/23 diagnostic by typing the
following command in response to the prompt.

File, in, or "?" for Menu: #4<RET>

MDE/T-ll responds by loading the diagnostic and displaying a
message containing the diagnostid file name. For example

[Loading file "CJKDBD.LDA", please wait]

Following diagnostic loading,
depends on the diagnostic you
the steps you must perform, are
in Sections C.2 through C.7.

MDE/T-ll system response
specified. The response, and
described for each diagnostic

Whenever you
d iagno.st ic,
C.l.l. Then
6 above.

stop diagnostic execution and desire to load another
bootstrap the MDE/T-ll system as described in subsection
load the desired diagnostic by performing steps 2 through

C.2 LSI-ll/23 ~PU DIAGNOSTIC CJKDxD.LDA

The LSI-ll/23 diagnostic consists of over 400 tests.

Run the diagnostic as follows.

1. Load the diagnostic as directed in subsection C.l.2, steps 2
through 6.

C-3

DIAGNOSTICS

When loading is completed, the CPU halts and displays the PC
and console ODT prompt as follows.

173512

@

2. Start the diagnostic at location 200 by typing 200G as
follows.

@ 200G

The diagnostic starts
identification message.

and displays

CJKDxD0 DCFII-AA CPU DIAGNOSTIC

the following

After the first successful pass of all tests the following
message is displayed.

END PASS # 1

A similar message is displayed after each of 14 successive
passes of all tests.

If the CPU fails any test, program execution halts and the
CPU enters console ODT.

3. Stop diagnostic execution at any point following the END PASS
#1 message by pressing the BREAK key.

4. Bootstrap the MDE/T-ll system as described in subsection
C.l.l and proceed as desired.

C.3 MXVll-AC DIAGNOSTIC CVMXxA.LDA

The MXVII-AC diagnostic consists of 24 tests.

Run the diagnostic as follows.

1. Load the diagnostic as directed in subsection C.l.2, steps 2
through 6.

When loading is completed, the CPU halts and displays the PC
and console ODT prompt as follows.

173512

@

2. Start the diagnostic at location 200 by typing 200G as
follows.

@ 200G

C-4

DIAGNOSTICS

The diagnostic starts and displays the
identification message and SWR prompt message.

CVMXxA0 MXVl1 DIAGNOSTIC

SWR = 000000 NEW =

following

3. Respond to the SWR prompt by selecting the default (000000)
SWR. You select the default SWR by typing <RET> as follows.

SWR = 000000 NEW = <RET>

The SWR
personnel
program
detected.
diagnostic
an error
detected.

NOTE

prompt lets maintenance
select certain diagnostic

actions when errors are
You have selected continuous

operation with the display of
message for each error

The diagnostic displays the device map (DEVM) prompt as
follows.

DEVM = 000000 NEW =

4. Type 100000<RET> as follows.

DEVM = 000000 NEW =100000<RET>

NOTE

The DEVM value you entered disables
serial line unit 0 (channel 0) testing.
Channel 0 must be disabled for this
diagnostic, because this channel is
reserved for communications between
MDE/T-ll and VAX/VMS system hardware.
It is likely that channel 0 operation is
normal based on successful diagnostic
selection and loading.

The diagnostic displays system configuration information as
follows.

CHAN 0 TESTING DROPPED

CHAN 1 IS CONSOLE

16K MEM PRESENT

At this point the diagnostic is executing tests.

After successfully executing all tests, the
displays the following message.

END PASS # 1

diagnostic

A similar message is displayed for all subsequent successful
completions of diagnostic tests.

C-5

DIAGNOSTICS

If any test results in
displayed. For example

an error, an error message

Testing continues following the error message display.

is

5. Stop diagnostic execution at any point following the END PASS
#1 message by pressing the BREAK key.

6. Bootstrap the MDE/T-ll system as described in subsection
C.l.l and proceed as desired.

C.4 MEMORY SIMULATOR DIAGNOSTIC VCDAxB.LDA

The memory simulator diagnostic consists of 28 tests.

Run the diagnostic as follows.

1. Load the diagnostic as directed in subsection C.I.2, steps 2
through 6.

When loading is completed, the diagnostic automatically
starts and displays an identification message followed by a
question as follows.

DIAG. RUN-TIME SERVICES

MEMORY SIMULATOR DIAG.

UNIT IS MDE/T-Il

DOES THIS SYSTEM HAVE A UNIBUS (L) ?

2. Respond to the question by typing N as follows.

DOES THIS SYSTEM HAVE A UNIBUS (L)? N

The diagnostic displays UNIBUS SYSTEM followed by the
diagnostic prompt (DR» as follows.

UNIBUS SYSTEM

DR>

3. Enter the START command and flags as follows.

DR>START/FLAGS:HOE:PNT<RET>

The diagnostic responds to the START command by asking for
hardware information as follows.

CHANGE HW (L) ?

4. Type N<RET> as follows.

CHANGE HW (L) ? N<RET>

At this point the diagnostic is executing tests.

C-6

DIAGNOSTICS

The diagnostic displays the number of the test in progress.
Following execution of all 28 tests, the diagnostic displays
a message containing the cumulative number of errors detected
during the complete series of tests. Following the
cumulative errors message, test execution continues until you
stop the diagnostic. A typical (partial) display is shown
below.

TST: 001
TST: 002

o
o
o

TST: 028
CVCDA EOP 1

o CUMULATIVE ERRORS

TST: 001
o
o
o

If any test results in
displayed. For example

an error, an

CVCDA DVC FTL ERR 00004 ON UNIT 00 TST 024
DATA ERROR IN MEMORY SIMULATOR
CONTROL REG 6 ERROR
REG" LOAD:000000 READ:000000
REG2 LOAD:000000 READ:177540
REG4 = LOAD:002000 READ:002000
REG6 = LOAD:002000 READ:002377

ERR HLT
DR)

RAM

MASK:000000
MASK:177740

MASK:000000

error message is

SUB 000 pc: 016060

GOOD:000000 BAD:000000
GOOD:000000 BAD:000000

GOOD:002000 BAD:002377

Following the error message, diagnostic testing stops and the
diagnostic prompt is displayed.

5. Stop diagnostic execution at any point following the first 0
CUMULATIVE ERRORS message by holding the CTRL key while
pressing the C key.

The diagnostic echoes ~C and displays the diagnostic prompt.

6. Exit the diagnostic by pressing the BREAK key.

7. Bootstrap the MDE/T-ll system as described in subsection
C.l.l and proceed as desired.

C.5 STATE ANALYZER DIAGNOSTIC VCDBx8.LDA

The state analyzer diagnostic consists of 65 tests.

Run the diagnostic as follows.

1. Load the diagnostic as directed in subsection C.l.2, steps 2
through 6.

C-7

DIAGNOSTICS

When loading is completed, the diagnostic automatically
starts and displays an identification message followed by a
question as follows.

DIAG. RUN-TIME SERVICES

CVCDB-x-0

STATE ANALYZER DIAG.

UNIT IS MDE/T-ll

DOES THIS SYSTEM HAVE A UNIBUS (L) ?

2. Respond to the question by typing N as follows.

DOES THIS SYSTEM HAVE A UNIBUS (L)? N

The diagnostic displays UNIBUS SYSTEM followed by the
diagnostic prompt (DR» as follows.

UNIBUS SYSTEM

DR>

3. Enter the START command and flags as follows.

DR> START/FLAGS: HOE: PNT(RET>

The diagnostic responds to the START command by asking for
hardware information as follows.

CHANGE HW (L) ?

4. Type N(RET> as follows.

CHANGE HW (L) ? N(RET>

At this point the diagnostic is executing tests.

The diagnostic displays the number of the test in progress.
Following execution of all 65 tests, the diagnostic displays
a message containing the cumulative number of errors detected
during the complete series of tests. Following the
cumulative errors message, test execution continues until you
stop the diagnostic. A typical (partial) display is shown
below.

TST: 001
TST: 002

o
o
o

TST: 065
CVCDB EOP 1

o CUMULATIVE ERRORS

TST: 001
o
o
o

C-8

DIAGNOSTICS

If any test results in
displayed. For example

an error, an error message

CVCDB DVC FTL ERR 00004 ON UNIT 00 TST 054 SUB 000 pc: 025702
EVENT COUNTERS OR FOUT 3:0 ERROR
CONTROL REG 6 ERROR
EVNT CNT LOADED: 000004 EVNT CNT BEFORE CNT DOWN: 000004
REG0 LOAD:000600 READ:000600
REG2 LOAD:000017 READ:000017

is

REG4 = LOAD:000012 READ:165000 MASK:170377 GOOD:005000 BAD:005000
REG6 = LOAD:000000 READ:000001

ERR HLT
DR>

Following the error message, diagnostic testing stops and the
diagnostic prompt is displayed.

5. Stop diagnostic execution at any point following the first 0
CUMULATIVE ERRORS message by holding the CTRL key while
pressing the C key.

The diagnostic echoes AC and displays the diagnostic prompt.

6. Exit the diagnostic by pressing the BREAK key.

7. Bootstrap the MDE/T-ll system as described in subsection
C.l.l and proceed as desired.

C.6 MICRO/T-ll EMULATOR DIAGNOSTIC VCDCxe.LDA

The MICRO/T-ll emulator diagnostic consists of 45 tests.

Run the diagnostic as follows.

1. Load the diagnostic as directed in subsection C.l.2, steps 2
through 6.

When loading is completed, the diagnostic automatically
starts and displays an identification message followed by a
question as follows.

DIAG. RUN-TIME SERVICES

CVCDC-x-0

TARGET MULATOR DIAG.

UNIT IS MDE/T-ll

DOES THIS SYSTEM HAVE A UNIBUS (L) ?

2. Respond to the question by typing N as follows.

DOES THIS SYSTEM HAVE A UNIBUS (L)? N

The diagnostic displays UNIBUS SYSTEM followed by the
diagnostic prompt (DR» as follows.

UNIBUS SYSTEM

DR>

C-9

DIAGNOSTICS

3. Enter the START command and flags as follows.

DR>START/FLAGS:HOE:PNT(RET>

The diagnostic responds to the START command by asking for
hardware information as follows.

CHANGE HW (L) ?

4. Type N(RET> as follows.

CHANGE HW (L) ? N(RET>

At this point the diagnostic is executing tests.

The diagnostic displays the number of the test in progress.
Following execution of all 45 tests, the diagnostic displays
a message containing the cumulative number of errors detected
during the complete series of tests. Following the
cumulative errors message, test execution continues until you
stop the diagnostic. A typical (partial) display is shown
below.

TST: 001
TST: 002

o
o
o

TST: 045
CVCDC EOP 1

o CUMULATIVE ERRORS

TST: 001
o
o
o

If any test results in
displayed. For example

an error, an error message

CVCDC DVC FTL ERR 00004 ON UNIT 00 TST 036 SUB 000 pc: 024330
CTL 7:0 OR FOAL 7:0 REG ERROR
CONTROL REG 6 ERROR
REG0 LOAD:001002 READ:001002 BAD:001002
REG2 = LOAD:002000 READ:002000
REG6 = LOAD:177400 READ:146000

ERR HLT
DR>

is

Following the error message, diagnostic testing stops and the
diagnostic prompt is displayed.

5. Stop diagnostic execution at any point following the first 0
CUMULATIVE ERRORS message by holding the CTRL key while
pressing the C key.

The diagnostic echoes AC and displays the diagnostic prompt.

6. Exit the diagnostic by pressing the BREAK key.

7. Bootstrap the MDE/T-ll system as described in subsection
C.l.l and proceed as desired.

DIAGNOSTICS

C.7 SYSTEM BUS DIAGNOSTIC VCDDxS.LDA

The system bus diagnostic consists of 13 tests.

Run the diagnostic as follows.

1. Load the diagnostic as directed in subsection C.l.2, steps 2
through 6.

When loading is completed, the diagnostic automatically
starts and displays an identification message followed by a
question as follows.

DIAG. RUN-TIME SERVICES

CVCDD-x-0

SYSTEM BUS DIAG.

UNIT IS MDE/T-ll

DOES THIS SYSTEM HAVE A UNIBUS (L) ?

2. Respond to the question by typing N as follows.

DOES THIS SYSTEM HAVE A UNIBUS (L) ? N

The diagnostic displays UNIBUS SYSTEM followed by the
diagnostic prompt (DR» as follows.

UNIBUS SYSTEM

DR>

3. Enter the START command and flags as follows.

DR>START/FLAGS:HOE:PNT<RET>

The diagnostic responds to the START command by asking for
hardware information as follows.

CHANGE HW (L) ?

4. Type N<RET> as follows.

CHANGE HW (L) ? N<RET>

At this point the diagnostic is executing tests.

C-ll

DIAGNOSTICS

The diagnostic displays the number of the test in progress.
Following execution of all 13 tests, the diagnostic dfsplays
a message containing the cumulative number of errors detected
during the complete series of tests. Following the
cumulative errors message, test execution continues until you
stop the diagnostic. A typical (partial) display is shown
below.

TST: 001
TST: 002

o
o
o

TST: 013
CVCDD EOP 1

o CUMULATIVE ERRORS

TST: 001
o
o
o

If any test results in
displayed. For example

an error, an error message

CVCDD DVC FTL ERR 00012 ON UNIT 00 TST 003 SUB 000 pc: 015434
MS RAM DATA TO TE EIDAL BUS ERROR VIA EODAL + SYSTEM BUS
CONTROL REG 6 ERROR
REG0 LOAD:001006 READ:001006
REG2 LOAD:043020 READ:043020
REG4 = LOAD:000000 GOOD:000110 READ:000110
REG6 = LOAD:125252 READ:177752

ERR HLT
DR>

is

Following the error message, diagnostic testing stops and the
diagnostic prompt is displayed.

5. Stop diagnostic execution at any point following the first 0
CUMULATIVE ERRORS message by holding the CTRL key while
pressing the C key.

The diagnostic echoes AC and displays the diagnostic prompt.

6. Exit the diagnostic by pressing the BREAK key.

7. Bootstrap the MDE/T-ll system as described in subsection
C.l.l and proceed as desired.

C.8 RUNNING THE CONFIDENCE TEST

You can quickly verify that the MDE/T-ll hardware and software are
operating correctly by using the MDE/T-ll confidence test. All files
for this test are distributed with the MDE/T-ll software. This 3- to
5- minute test includes an instruction test of the Micro/T-ll,
something not tested by the hardware diagnostics.

C-12

DIAGNOSTICS

You need the MDE/T-ll software to run the confidence test. Therefore,
you must have the MDE/T-ll system set up and ready to run. This
system should pass all hardware diagnostics (see Section C.?).

Before starting, you must have the following files
distribution kit in your default directory:

from the

MDECTn.COM
MDECTn.CMP
MDEDFn.CMD or .COM
TllINS. LDA
TllINS.STB

{MDE/T-ll indirect command file}
{comparison LOG file}
{System command file to do file compare}
{Micro/T-ll tester -- memory image file}
{Micro/T-ll tester -- symbol file}

In the files above, "n" is a single digit indicating the number of
state analyzer modules in the MDE/T-ll box.

You must also have the necessary privileges to write a new file in the
default directory. For each operating system, the files needed for
the confidence test can be found on the following directory:

RT-ll -- SY: (During installation, you can elect not to copy
these files to SY:. Obtain files from
distribution media if necessary. If distributed
on floppy disks, the files are on the
second--"2/2"--floppy.)

RSX-llM system-device: [1,54]

VAX/VMS SYS$SYSTEM:

Run the MDE/T-ll software, and at the first MDE> prompt, type the
following command, substituting for "n" the number of state analyzer
modules:

MDE>@MDECTn

You will see the commands from this file echo on the screen, but you
will not see any terminal output. Instead, terminal output is being
directed to log file MDECTn.LOG. If this command file should stop
executing commands before exiting, a hardware problem is indicated.
Otherwise, the command file will execute an EXIT command, and you will
be returned to monitor level on the host.

At this point, do a file compare between the generated file MDECTn.LOG
and the distributed file MDECTn.CMP. You can do this manually or by
typing:

@MDEDFn

This command executes the distributed indirect command file to do the
file compare. MDEDFn.COM writes the output file MDECTn.DIF. If no
differences occurred, the test completes successfully. Note that in
some cases, differences can be caused by two lines in the LOG file
(one of which is a WAIT command) being exchanged. You may ignore this
difference.

C-13

APPENDIX 0

MACRO-II PROGRAMMING TECHNIQUES

This appendix describes MACRO-II programming techniques that are
necessary when you are using your program's symbols during debugging
with MDE/T-ll and when you are positioning code in absolute locations.
Section 0.1 applies to the VAX/VMS, RSX-llM, and RT-llXM operating
systems. The remaining sections of this chapter apply primarily to
the VAX/VMS and RSX-llM operating systems.

If you are not experienced with the MACRO-II assembler, refer to the
PDP-II MACRO-II Language Reference Manual for a complete description
of the PDP-II assembly language. However, you should be familiar with
certain MACRO-II programming techniques to debug your program with
MDE/T-ll. These techniques are described in the following sections.

0.1 MAKING SYMBOLS GLOBAL

When you debug your program with MDE/T-Il, you may want to use your
program's symbols during debugging. To use these symbols, you must
declare them as global in your source program. You can do this in two
ways.

• Use two colons to declare labels, as follows:

START:: CLR R~

• Use two equals signs to equate a symbol with an expression, as
follows:

All other symbols (those not declared global) are unavailable during
the debugging process.

0.2 POSITIONING CODE IN ABSOLUTE LOCATIONS

In developing software for the MICRO/T-ll, you may want to place code
at absolute addresses that are not relocatable by TKB. For example,
you may want to initialize interrupt vectors at load time, or align
code at addresses where physical RAM or ROM is located in address
space that is not contiguous.

0-1

MACRO-II PROGRAMMING TECHNIQUES

If you are using LINK (RT-ll linker) to link your application program,
you can use .ASECT directives to position code, as follows:

.ASECT

.= address

{code or data at address }
to be located at address

However, if you attempt to use absolute program sections (ASECTs or
CSECTs) in your program, they will be rejected by the RSX-llM Task
Builder, because TKB produces task lmages that run only in the
partitioned environment of RSX-llM. Thus, you must produce all code
in relocatable program sections (PSECTs). However, within PSECT code
in MACRO-II, you cannot mix compile-time and link-time expressions.
Consequently you cannot give directives such as .=1000 or even
.=.+<1000-.>, because. is a relocatable link-time value and 1000 is
an absolute value.

On the other hand, certain MACRO-II programming techniques let you
place code -at absolute locations. To use these techniques, you must
first understand two characteristics of TKB.

TKB, when producing a memory image from a number of named PSECTs,
concatenates these PSECTs in alphabetical order. Thus, if you
created three PSECTs named AAA, XXX and FFF, the code from these
PSECTs is placed in addresses in the order AAA, FFF, xxx. If you
do not specify a PSECT name, the default is • BLK. Since a space
is included before BLK, this .PSECT, if used, precedes all other
PSECTs.

When code appears in several modules that you declar~ as residing
in a single global PSECT, the code is concatenated in the same
order as the modules you specify in the TKB command line. For
example, if you have three modules whose code you declare as
residing in a PSECT named CODE and you link them with the command

TKB>prog,prog,prog=MODULE2,MODULEl,MODULE3<RET>

the PSECT CODE consists of code from module 2, followed by code
from module 1, followed by code from module 3.

In each of the two techniques described below, the PSECT that precedes
all others alphabetically is placed at physical address 0. Thus,
absolute addresses within this PSECT correspond to equivalent physical
addresses.

You then need to position code at correct absolute addresses
this PSECT. MACRO-II provides two techniques for doing this:
and overlaying.

D-2

within
padding

MACRO-II PROGRAMMING TECHNIQUES

D.2.1 Padding with .BLKB Directives

The first technique you can use to position absolute code is to fill
unused address space with the .BLKB directive. You should use this
technique when positioning code within a single module.

In the demonstration program CALC (Example 1), the padding technique
is used to position the data vector V at location 400 and the main
body of code at address 1000.

Example 1

.TITLE CALC

Program CALC computes the sum of the elements
of a vector V in SUMl and the sum of the
elements of V that are less than or equal to 6 in SUM2 •

BASE: :

• !DENT /00.001/
.PSECT ABS

;Base = reloc 0 (compile-time value)

.BLKB <400-<.-BASE» iposition following at reloc 400

V· • .WORD 5
.WORD 3
.WORD 2
.WORD 10
.WORD 4
.WORD 6
.WORD 7
.WORD 3

iInitialize the array

.BLKB <1000-<.-BASE» iPosition following at reloc 1000

SUM1: :
SUM2: :

START: :

1$:

.WORD

.WORD
MOV #40000, SP
CLR SUMI
CLR SUM2
MOV #8.,Rl
MOV #V,R0
ADD (R0), SUMI
MOV (R0)+, R2
JSR PC,QUANT
DEC Rl
BGT 1$
BR START

iInitialize the stack pointer
iInitialize summation values

iInitialize loop counter
iPoint to vector
iAdd in current vector value
iGet a copy of current value

Subroutine to add a number to SUM2 if number is less than or equal to 6

QUANT:: CMP R2,#6
BGT 1$
ADD R2,SUM2

1$: RTS PC

.END START

iLess than 6?
iNO, do not add
iYes, add to 8UM2
iReturn to caller

i8TART is program transfer address

D-3

MACRO-II PROGRAMMING TECHNIQUES

The .BLKB assembly directives position code at the correct relocatable
addresses (400 and 1000). In ~ddition, TKB positions the PSECT ABS at
absolute location 0 and maps the relocat~ble addr~sses into equivalent
physical addresses.

This method is difficult to use when the code you are positioning in
absolute locations resides in different modules. Calculation of the
.BLKB block sizes in subsequent modules cannot be made using
compile-time expressions or link-time expressions; you must calculate
these block sizes manually.

0.2.2 Overlaying PSECTs

When code resides in separate modules, you can position code at
absolute locations by overlaying code in one PSECT. When you use this
technique, you position code within the overlaidPSECT using the .=.+n
directive.

In using
careful
separate
location

NOTE

this technique, you must be
not to overlay code from

modules at the same absolute
within a PSECT.

To use this technique, the absolute code in each module is preceded by
a .PSECT directive with name, global and overlay attributes and a
.=.+n directive specifying that the absolute location of the code is
n.

In Example 2 the overlay technique is used to perform the same task as
in Example 1. However, here the code is divided into two modules,
CALCI and CALC2, with each module producing code in the same global
overlaid PSECT. When you link all modules that contain code in the
overlaid PSECT ABS, the code is overlaid at the same base address. To
ensure that the PSECT ABS is located at absolute address 0, you must
make sure that the name ABS precedes all others alphabetically and
that you do not use the default .PSECT (.BLK.).

0-4

V· •

MACRO-II PROGRAMMING TECHNIQUES

Example 2

.TITLE CALCI - Data for CALC program

.PSECT ABS,GBL,OVR i Make PSECT global, and overlayed

• = .+400

.WORD 5

.WORD 3

.WORD 2

.WORD 10

.WORD 4

.WORD 6

.WORD 7

.WORD 3

.END

iInitialize the array

.TITLE CALC2 - Code for Program CALC

.PSECT ABS,GBL,OVR

• = • + 1000

Program CALC adds the elements of a vector V. Sum of all
elements is placed in SUMl, sum of all elements less or equal
to 6 is placed in SUM2

SUMl: :
SUM2: :

START: :

1$:

.WORD

.WORD
MOV #40000, SP
CLR SUMI
CLR SUM2
MOV ft8.,Rl
MOV ftV,R0
ADD (R0), SUMI
MOV (R0)+, R2
JSR PC,QUANT
DEC Rl
BGT 1$
BR START

iInitialize the stack pointer
iInitialize summation values

iInitialize loop counter
iPoint to vector
iAdd in current vector value
iGet a copy of current value

Subroutine to add a number to SUM2 if number is less than or equal to 6

QUANT:: CMP R2,#6
BGT 1$
ADD R2,SUM2

1$: RTS PC

.END START

iLess than 6?
iNO, do not add
iYes, add to SUM2
iReturn to caller

iSTART is program transfer address

D-5

APPENDIX E

AC POWER CONFIGURATION

MDE/T-ll system hardware can be configured to run on 120 or 240 Vac.
Voltage selection is accomplished by

Setting a voltage selector switch on the rear of the MDE/T-ll
cabinet

Installing the correct fuse for the selected voltage

Connecting an appropriate line cord for the voltage source

WARNING

Before attempting the
procedure, disconnect the
system from the power source.

Select the input voltage as follows.

following
MDE/T-ll

1. Set the input voltage switch to the proper voltage (120 or
240 Vac).

The switch is located on the lower apron at the rear of the
MDE/T-Il cabinet. A number (120 or 240) on the movable
portion of the switch indicates the voltage selected.

2. Replace the fuse in the fuse holder with a fuse having the
rating listed for the selected voltage.

Fuse ratings and line voltages are listed on a label at the
rear of the MDE/T-ll cabinet.

3. Connect a line cord, with a proper plug for the voltage
source selected, to the MDE/T-ll hardware.

E-l

Actions, see Event actions.
Address bits, 3-4
/AFTER qualifier, 3-7

with SET BREAK command, 8-40
with SET TRACE command, 8-46
with SET WATCH command, 8-52

AI bits, 3-4
Application program

assembling with MACRO-ll, 5-7
creating a source, 5-5
declaring memory image

attributes to TKB, 5-8
down-line loading, see LOAD

command.
linking with RSX-IIM TASK

BUILDER, 5-8 to 5-11
linking with RT-ll LINK

utili ty, 5-11
using partition option with,

5-9
using stack option with, 5-9

Applications, 1-1
Arithmetic operators, 7-3
ASPI transaction, 3-4
Assembly of PDP-ll instructions,

see EXAMINE command.
@file-spec command, 8-3
Auxiliary switch, MDE/T-ll

cabinet, 5-3

Bootstrapping RT-ll host, 5-5
BREAK action, 3-5, 8-50
Breakpoint, 3-7

canceling, 8-4
displaying, 8-55
setting, 8-40 to 8-41

Bus cycle tracing, 1-5, 2-11, 3-5
commands used in, 3-6, 6-12

to 6-13

CALC, see Demonstration program
(CALC) •

CANCEL BREAK command, 6-11, 8-4
CANCEL MODE command, 8-5
CANCEL TRACE command, 3-7, 8-6
CANCEL UDE command, 3-6, 8-7
CANCEL WATCH command, 3-8, 6-12,

8-8

INDEX

Characters, control, 4-2
CTRL/C, 4-2
CTRL/Q, 4-2
CTRL/R, 4-2
CTRL/S, 4-2
CTRL/U, 4-2
DELETE, 4-2
RUBOUT, 4-2

CLEAR TRACERAM command, 3-8, 6-12,
8-9

Command elements
expressions, 7-1
numbers, 7-1 to 7-2
operators, 7-3
symbols, 7-2

Command format, 8-1
comments in, 8-1
keyword, 8-1
parameter, 8-1
qualifier, 8-1
syntax conventions, 8-1

Command keypad, 4-3
Command modes, 7-4

address, 7-6
display, 7-5
radix, 7-5
setting, 7-6

Commands, MDE/T-ll
@file-spec, 8-3
CANCEL BREAK, 6-11, 8-4
CANCEL MODE, 8-5
CANCEL TRACE, 3-7, 8-6
CANCEL UDE, 3-6, 8-7
CANCEL WATCH, 3-8, 6-12, 8-8
CLEAR TRACERAM, 3-8, 6-12, 8-9
CONFIGURE ANALYZER, 3-6, 6-12,

8-10 to 8-11
CONFIGURE CLOCK, 3-2, 8-12
CONFIGURE MEMORY, 3-9, 6-4,

8-14 to 8-15
CONFIGURE MODE, 3-1, 6-4, 8-16

to 8-17
CONFIGURE TIMEOUT, 3-2, 8-18
COPY, 3-11, 8-19 to 8-20
DEFINE, 8-21
DEPOSIT, 3-12, 6-10, 8-22 to

8-24
DISPLAY TRACERAM, 3-8, 8-25 to

8-26
EVALUATE, 8-27

Index-l

Commands, MDE/T-ll (Cant.)
EXAMINE, 3-11, 6-9, 8-28
EXIT, 6-13, 8-29
GO, 6-8, 8-30
HALT, 3-2, 6-8, 8-31
HELP, 8-32
INITIALIZE, 8-33
KEYDEFINE, 8-34
LOAD, 3-10, 6-7 to 6-8, 8-35

to 8-37
/CLEAR qualifier with, 6-7,

8-36
/EXCLUDE qualifier with, 6-7,

8-35
POWER, 3-2, 6-5, 8-38
RESET ANALYZER, 3-6, 8-39
SET BREAK, 3-7, 6-10, 8-40 to

8-41
SET LOG, 6-4, 8-42
SET MODE, 8-43
SET OUTPUT, 6-4, 8-44
SET TERMINAL, 8-45
SET TRACE, 3-7, 6-11, 8-46
SET UDE, 3-6, 8-48 to 8-51
SET WATCH, 3-8, 6-11, 8-52
SHOW ALL, 6-11, 8-54
SHOW BREAK, 6-10, 8-55 to 8-56
S.HOW CONFIGURE, 3-2, 6-5, 8-57
SHOW DEFINE, 8-58
SHOW KEYDEFINE, 8-59
SHOW MODE, 6-5, 8-60
SHOW OUTPUT, 8-61
SHOW SYMBOL, 6-8, 8-62
SHOW TARGET, 3-2, 8-63
SHOW TRACE, 3-7, 8-64
SHOW UDE, 3-6, 8-66 to 8-67
SHOW WATCH, 3-8, 6-11, 8-68
SIGNAL, 3-2, 8-70
STEP, 6-9·, 8-72
STOP, 8-73
UNDEFINE, 8-74
WAIT, 3-2, 8-75

Confidence test, C-13
CONFIGURE ANALYZER command, 3-6,

8-10 to 8-11
CONFIGURE CLOCK command, 3-2,

8-12
CONFIGURE MEMORY command, 3-9,

6-4, 8-14 to 8-15
CONFIGURE MODE command, 3-1, 6-4,

8-16 to 8-17
CONFIGURE TIMEOUT command, 3-2,

8-18
Configuring MDE/T-ll system for

ac powe r, E-l
Connecting pod to target, 6-1

to 6-2
Console terminal, 2-2
Control characters, 4-2
Conventions, document, viii
COpy command, 3-11, 8-19 to 8-20
Copying from memory to memory,

8-19 to 8-20

INDEX

/COUNT qualifier, 3-7
with SET BREAK command, 8-40
with SET TRACE command, 8-46
with SET WATCH command, 8-52

/CP (Coded priority) qualifier,
8-70

CTRL/C, 4-2
CTRL/Q, 4-2
CTRL/R, 4-2
CTRL/S, 4-2
CTRL/U, 4-2
Current address indicator, 7-3

Debugging examples
canceling breakpoints, 6-11
changing memory, 6-9
changing registers, 6-9
displaying breakpoints, 6-10
displaying watchpoints, 6-11
ending session, 6-13
examlnIng memory, 6-9 to 6-10
examining registers, 6-9
executing application programs,

6-8
loading application program

into target, 6-5 to 6-8
recording sessions, 6-4
setting breakpoints, 6-9
setting tracepoints, 6-11
setting up target, 6-4 to 6-5
setting watchpoints, 6-11
starting MDE/T-ll, 6-1 to 6-3
stepping application programs,

6-9
stopping application programs,

6-9
DEFINE command, 8-21
DELETE key, 4-2
Demonstration program (CALC)

assembly listing, 6-6 to 6-7
creating a source file for,

5-5
linking with RT-ll LINK

util i ty, 5-11
linking with TASK BUILDER

(TKB), 5-8 to 5-11
source listing, 5-6, 5-7

overlaying example, D-5
padding example, D-4

DEPOSIT command, 3-11 t 6-10,
8-22 to 8-24

Development software, 1-5
Development system

hardware components, 2-2
processor (LSI-II), 1-4

Diagnostic programs, C-l to C-12
loading, C-2 to C-3
LSI-ll/23 CPU, C-3 to C-4
memory simulator, C-6 to C-7
MICRO/T-ll emulator, C-9
MXVII-AC, C-4 to C-6
state analyzer, C-7 to C-8
system bus, C-ll to C-12

Index-2

DISPLAY TRACERAM command, 3-8,
8-25 to 8-26

Displays, VT100
scrolling region, 4-4
split-screen, 4-4
static display region, 4-4

Down-line loading MDE/T-ll, 6-3

8-bit data bus (MICRO/T-ll) ,
specifying, 8-16

Emulation commands, 3-1
Emulator, see MICRO/T-ll

emulator.
Error messages, 9-5 to 9-13

fatal, 9-13
internal, 9-11 to 9-13
severe, 9-5 to 9-11

Error reporting, 4-7
EVALUATE command, 8-27
Event

predefined, 3-3
See also Breakpoint;

Watchpoint; Tracepoint.
user-defined (UDE), 3-3

Event actions, 3-5, 8-50
BREAK, 3-5, 8-50
RESET, 3-5, 8-50
SIGNAL QUALIFIER, 3-5, 8-50
STOP, 3-5, 8-50
TRACE, 3-5, 8-50
TRIGGER, 3-5, 8-50

Event detection
circuits, 2-9
commands, 3-6
mechanism, 1-5

Event flags, 2-10, 3-4
Event mask, see State template.
Event ordinal, 3-3

with breakpoint, 8-4, 8-54,
8-55

with tracepoint, 8-6, 8-54,
8-64

with UDE, 8-7, 8-54, 8-66
with watchpoint, 8-8, 8-54,

8-fi8
Event transactions

AI bits, 3-4
ASPI, 3-4
Fetch, 3-4
lACK, 3-4
Read, 3-4
Read DMA, 3-4
Refresh, 3-4
Write, 3-4
Write DMA, 3-4

EXAMINE command, 3-11, 6-9, 8-28
EXIT command, 6-13, 8-29
External clock connector, 3-2,

8-12
External probe, 2-2, 2-12

bits in state template, 2-10
External SCOPE TRIGGER connector,

2-11, 3-5

INDEX

FETCH
timeout detection, 2-5, 8-18
transaction, 3-5

File
indirect command, 4-5 to 4-6
log, 4-6
start-up initialization

(MDE.INI), 4-6
File storage, 1-5
Flags

event, 2-10
qualifier, 2-10

Global symbols, 1-5, D-l
GO command, 6-8, 8-30

HALT command, 3-2, 6-8, 8-31
HALT interrupt, 2-6, A-l
HELP command, 8-32
HELP facility, 4-7
HELP key, 4-3
Host system

bootstrapping RT-ll, 5-5
logging onto, 5-4
program development under, 5-2

to 5-11

lACK transaction, 3-4
In-circuit emulation, 3-1 to 3-3

commands for, 3-1
functions, 3-1
hardware, 1-2, 2-3 to 2-5

Indirect command file, for
starting MDE/T-ll, 4-6

INITIALIZE command, 8-33
Interrupt simulation, 2-5, 8-70

KEYDEFINE command, 8-34
Keypad keys, 4-3 to 4-4

predefined, 4-3
HELP key, 4-3
LOG key, 4-3
POWER key, 4-3

user-defined, 4-4

LA120 terminal, 2-2
Linking with RSX-I1M Task

Builder, 5-8 to 5-11
Linking with RT-ll LINK

utility, 5-11
LOAD command, 3-10, 6-7 to 6-8,

8-35 to 8-37
/CLEAR qualifier with, 6-7,

8-36
/EXCLUDE qualifier with, 6-7,

8-35
LOAD progress display, 4-4
Log file, 4-6
LOG key, 4-3

Index-3

Logging, 4-6
LSI-ll/23

bus, 1-1
diagnostic program for, C-3

to C-4
processor, 1-4

MACRO-II programming techniques,
D-l to D-6

making symbols global, D-l
overlaying PSECTs, D-5

example of, D-6
padding with .BLKB directives,

D-3 to D-4
example of, D-4

positioning code in absolute
locations, D-l

MDE.INI, see Start-up
initialization file.

MDE/T-ll bootstrap program, 5-3
MDE/T-ll system, bootstrapping,

5-5, C-2
Memory image file, 5~8, 8-35
Memory mapping, 2-7

commands for, 3-9 to 3-11
logic for, 2-7

Memory protection, 2-8
commands for, 3-9 to 3-11
logic for, 2-7
status of, 2-8

Memory simulation, 2-7
commands for, 3-9

See also COpy command.
Memory simulator, 1-5, 2-6

diagnostic program for, C-6
to C-7

memory array, 2-7
Messages, MDE/T-ll

error, 9-5 to 9-13
fatal, 9-13
internal, 9-11 to 9-13
severe, 9-5 to 9-11

format of, 9-1
information, 9-2 to 9-3
success, 9-2
warning, 9-4

MICRO/T-ll
architectural characteristics,

B-2 to B-4
clock, B-2 to B-3
control signals, B-3 to B-4
emulator, 2-3 to 2-5

diagnostic program for,
C-9 to C-10

general-purpose registers,
B-1

interrupt handling, B-2
microproces~or, 1-1, 2-2, B-1

to B-4
mode register, B-2

feature selection with, B-2
source, 2-5

INDEX

MICRO/T-ll (Cont.)
programming characteristics,

B-1 to B-2
support logic, 2-4 to 2-5

interrupt simulation, 2-5
mode register source, 2-5
pause state machine, 2-5
power-up (PUP) signal

source, 2-5
processor clock source, 2-4
single-stepping, 2-5
timeout, 2-5

Multifunction board, 1-4
diagnostic program for,

C-4 to C-6
MXVII-AC, see Multifunction

board.

Pause state, A-I
entry into, A-I to A-2
exit from, A-2 to A-3
machine, 2-5, A-2
program execution in, A-2

Pod, 1-4, 2-2
clock switches, 6-2
plugging into target, 6-1 to

6-2
POWER command, 3-2, 6-5, 8-38
Power configuration (MDE/T-ll

system)
ac, E-l

Power fail (PF) interrupt, 2-6,
A-I

POWER key, 4-3
Power-up (PUP) signal source,

logic, 2-5
Probe, see External probe.
Processor clock source, logic,

2-5
Program development cycle, steps

in, 5-1

Qualifier flags, 2-10, 3-4

READ DMA transaction, 3-4
READ transaction, 3-4
REFRESH transaction, 3-4
RESET action, 3-5
RESET ANALYZER command, 376, 8-39
ROM simulation, 2-8
RSX-IIM Task Builder, 5-8 to 5-11
RT-ll LINK utility, 5-11
RUB OUT key, 4-2
Running diagnostic programs

LSI-ll/23 CPU, C-4
memory simulator, C-6 to C-7
MICRO/T-ll emulator, C-9 to C-10
state analyzer, C-8 to C-9
system bus, C-ll to C-12

Index-4 r

SCOPE TRIGGER connector, 3-5
Scrolling display region, 4-5
SEL bits, in state template,

3-4
SET BREAK command, 3-7, 6-9,

8-40 to 8-41
SET LOG command, 6-4, 8-42
SET MODE command, 8-43
SET OUTPUT command, 6-4, 8-44
SET TERMINAL command" 8-45
SET TRACE command, 3-7, 6-11,

8-46 to 8-47
SET UDE command, 3-6, 8-48

to 8-51
SET WATCH command, 3-8, 6-11,

8-52
Setting the pod clock switches,

6-2 to 6-3
SHOW ALL command, 6-10, 8-54
SHOW BREAK command, 6-9, 8-55
SHOW CONFIGURE command, 3-2,

6-4 to 6-5, 8-57
SHOW DEFINE command, 8-58
SHOW KEYDEFINE command, 8-59
SHOW MODE command, 6-5, 8-60
SHOW OUTPUT command, 6-4, 8-61
SHOW SYMBOL command, 6-8, 8-62
SHOW TARGET command, 3-2, 8-63
SHOW TRACE command, 3-7, 8-64
SHOW UDE command, 3-6, 8-66 to

8-67
SHOW WATCH command, 3-8, 6-11,

8-68
SIGNAL command, 3-2, 8-70
Signal qualifier action, 3-5
Simulator, memory, 1-5, 2-6

to 2-8
Single stepping, see STEP

command.
logic, 2-6

16-bit data bus (MICRO/T-ll),
specifying, 8-16

Split-screen display, 4-5
Start-up initialization file,

4-6
State analyzer, 1-5, 2-8

diagnostic program for, C-7
to C-8

State analyzer flags
event flags, 2-10
qualifier flags,' 2-10

State template, 2-10
word format, 2-10

INDEX

System bus, 1-5
diagnostic program for, C-11

to C-12

Ta rget, 1-1
Target hardware, 2-2
TASK BUILDER, see RSX-IIM Task

Builder.
Task building, see Linking.
Terminal support

general, 4-1
VT100 and LA120, 4-1 to 4-2

turning on, 4-1
Tests

confidence, C-13
diagnostic, C-l to C-12

TKB, see RSX-11M Task Builder.
TRACE action, 3-5, 8-50
Trace parameter, with CONFIGURE

ANALYZER command, 8-10
Trace RAM, 2-11
Tracepoint, 3-7, 3-8

cancel ing, 8-6
displaying, 8-64
setting, 6-11, 8-46

Transaction signals, 2-10
bits in state template, 3-4

TRIGGER action, 3-5, 8-50
.TSK file, see Memory image

file.
Turning on special terminal

support, 4-1

UNDEFINE command, 8-74
User-defined event (UDE)

canceling, 3-6, 8-7
displaying, 3-6, 8-66
setting, 3-3, 3-6, 8-48

to 8-51
User interface software, 1-5

/VECTOR qualifier, 8-70
Virtual terminal mode, 5-3
VT100

advanced video option, 4-5
scrolling region, 4-5
split-screen format, 4-5
static display region, 4-5

Static display region, 4-4 to 4-5
STEP command, 6-9, 8-72
STOP action, 3-5, 8-50
STOP command, 8-73
Symbolic debugger, 1-5
Symbolic reference feature, 1-5
Symbols

global, 1-5
loading, 8-36
user-definable, 1-5

WAIT command, 3-2, 8-75
Watchpoint, 3-8

canceling, 6-11, 8-8
di$playing, 6-11, 8-68
setting, 6-11, 8-52

WRITE DMA transaction, 3-4
WRITE transaction, 3-4

Index-5

READER'S COMMENTS

MDEIT-ll User's Guide
and Reference Manual

AA-M845B-TK

NOTE: This torm is for document comments only. DIGITAL will use comments submitted on this form at the
company's discretion. If you require a written reply and are eligible to receive one under Software
Performance Report (SPR) service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well organized? Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

o Assembly language programmer
o Higher-level language programmer
o Occasional programmer (experienced)
o User with little programming experience
o Student programmer
o Other (please specify)

Name ___ Date ______________________________ _

Organization

Street

City ______________________ _ State _______ Zip Code _____ _

or Country

DoNotTear-FoldHereandTape - - - - - - - - - - - - - -

~DmDDmD IIIIII

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

SSG/ML PUBLICATIONS, MLO~5/E45
DIGITAL EQUIPMENT CORPORATION
146 MAIN STREET
MAYNARD, MA 01754

- -I

I
No Postage
Necessary

if Mailed in the
United States

&~~-~~ ---------------------

	000
	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	8-21
	8-22
	8-23
	8-24
	8-25
	8-26
	8-27
	8-28
	8-29
	8-30
	8-31
	8-32
	8-33
	8-34
	8-35
	8-36
	8-37
	8-38
	8-39
	8-40
	8-41
	8-42
	8-43
	8-44
	8-45
	8-46
	8-47
	8-48
	8-49
	8-50
	8-51
	8-52
	8-53
	8-54
	8-55
	8-56
	8-57
	8-58
	8-59
	8-60
	8-61
	8-62
	8-63
	8-64
	8-65
	8-66
	8-67
	8-68
	8-69
	8-70
	8-71
	8-72
	8-73
	8-74
	8-75
	8-76
	9-01
	9-02
	9-03
	9-04
	9-05
	9-06
	9-07
	9-08
	9-09
	9-10
	9-11
	9-12
	9-13
	9-14
	A-01
	A-02
	A-03
	A-04
	B-01
	B-02
	B-03
	B-04
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	E-01
	E-02
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	replyA
	replyB

