RT-11 System
Utilities Manual
AA-M239B-TC

July 1984

This document describes how to- use the RT-11 operating system. The
manual provides the information required to perform ordinary tasks such
as program development, program execution, and file maintenance by
using RT—11 system utility programs.

This manual supersedes the RT-17 System Utilities Manual,
AA-M239A-TC.

Operating System: RT-11 Version 5.1

To order additional documents from within DIGITAL, contact the Software Distribution
Center, Northboro, Massachusetts 01532.

To order additional documents from outside DIGITAL, refer to the instructions at the back
of this document.

digital equipment corporation - maynard, massachusetts

First Printing, March 1983
Revised, July 1984

The information in this document is subject to change without notice and should not
be construed as a commitment by Digital Equipment Corporation. Digital Equipment
Corporation assumes no responsibility for any errors that may appear in this docu-
ment.

The software described in this document is furnished under a liceﬁse and may be used
or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is
not supplied by DIGITAL or its affiliated companies.

© Digital Equipment Corporation 1983, 1984.
All Rights Reserved.

Printed in U.S.A.

A postage-paid READER’S COMMENTS form is included on the last page of this
document. Your comments will assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

dlilaliltlali

DEC MASSBUS RT-11
DECmate PDP UNIBUS
DECsystem—10 P/OS VAX
DECSYSTEM—-20 Professional VMS

DECUS Rainbow VT

DECwriter RSTS Work Processor
DIBOL RSX

M34000

e

Contents

Preface
Part | Utility Programs

Chapter 1 Command String Interpreter (CSI)

1.1 CSISyntax e
1.2 Prompting Characters

Chapter 2 Binary File Comparison Program (BINCOM)

2.1 Calling and Terminating BINCOM.
2.2 BINCOM Command String Syntax.
2.3 Using Wildcards with BINCOM
24 Options oo
2.5 Output Format
26 Exampleso
2.7 Creating a SIPP Command File

Chapter 3 Backup Utility Program (BUP)

3.1 Calling and Terminating BUP e e e e
3.2 BUP Command String Syntax
3.3 Options

3.3.1 File Backup Operation.
3.3.2 Volume Backup Operation (/)
3.3.3 Directory Option ¢/L). L
3.34 RestoreOption (/X)
3.3.5 Initialize Option ¢/Z)

Chapter 4 Directory Program (DIR)

4.1 Calling and Terminating DIR
4.2 Directory Command String Syntax.
4.3 Reading Directory Listings.
44 Options Lo e

Page
xvii

iii

44.1 Alphabetical Option VA) 4-2

4.4.2 Block Number Option (/B) 44
4.4.3 Columns Option ¢/C[:n]) 4-4
4.4.4 Date Option (/D[:datel). 4-5
445 EntireOption UE) 4-5
446 FastOption (/F) oo 45
447 BeginOption (/G)00 4-6
4.4.8 Since Option (/J(:datel). 4-6
4.4.9 Before Option (K[:datel) 4-6
4410 ListingOption (/L).o 4-7
4.4.11 Unused AreasOption /M) 4-7
4.4.12 Summary Option /N) 4-7
4.4.13 Octal Option (/O).o 4-8
4.4.14 Exclude Option (/P) 4-8
4.4.15 Deleted Option (/Q) 49
4416 ReverseOption (/R) 4-9
4.4.17 Sort Option (/S[XXX]).« o« 4-9
4.4.18 Protection Option ¢/T) 4-11
4.4.19 No Protection Option VU) 4-11
4.4.20 Volume ID Option (/V[:ONLD 4-11

Chapter 5 DUMP Program (DUMP)

Chapter 6

iv

5.1
5.2
5.3
5.4

Calling and Terminating DUMP. 5-1
DUMP Command String Syntax 5-1
Options« . L L e e 5-1
Example Commands and Listings 5-3

Device Utility Program (DUP)

6.1
6.2
6.3

Calling and TerminatingDUP 6-1
DUP Command String Syntax 6-1
Options o e 6-1
6.3.1 Create Option (/C[/G:mn]) 6-2
6.3.2 Image Copy Option (/D). 6-5
6.3.3 BadBlock SeanOption /K) 6-7
6.3.4 File Option (/F) e e 6-8
635 BootOption (O) e 6-9
6.3.6 Boot Foreign Volume Option (/Q). 6-10
6.3.7 Squeeze Option (/S) 6-11
6.3.8 ExtendOption (/T'm) 6-12
6.3.9 Bootstrap Copy Option (Ulxx]) 6-13
6.3.10 Volume ID Option ¢(VE:ONL]D 6-14
6.3.11 Wait for Volume Option ¢(W). 6-15
6.3.12 No Query Option (/Y) 6-15
6.3.13 Directory Initialization Option (/Z[n]) 6-16

6.3.13.1 Changing Directory Segments (/N:n) 6-16

6.3.13.2 Changing Volume ID (V) 6-17

6.3.13.3 Replacing Bad Blocks (R[:RETD) 6-17

6.3.13.4 Covering Bad Blocks ¢(B:RETH. 6-19

6.3.13.5 Restoring a Disk (/D). e 6-19

M

Chapter 7

Chapter 8

Chapter 9

File Exchange Program (FILEX)

7.1
7.2
7.3

File Formats. o« e 7-2
Calling and Terminating FILEX 7-2
Options e 7-2
7.3.1 Transferring Files Between RT-11 and DOS/BATCH

or RSTS (US) o o e 7-4
7.3.2 Transferring Files Between RT-11 and

Interchange Diskette YU) 7-6
7.3.3 Transferring Files to RT-11 from DECsystem-10 (/T). 7-8
7.3.4 Listing Directories ¢UL). 7-9
7.3.5 Deleting Files from DOS/BATCH (RSTS) DECtapes

and Interchange Diskettes (/D). 7-10
7.3.6 Initializing the Directories of DECtapes and Interchange

Diskettes (/Z) 7-11
7.3.7 Interchange Diskette Volume ID Option (/V[:ONLD). 7-12
7.3.8 Wait Option (/W).o 7-12

Volume Formatting Program (FORMAT)

8.1
8.2
8.3
8.4

Calling and Terminating FORMAT 8-1
FORMAT Command String Syntax. 8-2
FORMAT Confirmation Prompts. 8-2
Optionso 8-3
84.1 Default Format 84
8.4.2 Pattern Verification Option (/Pmn) 84
8.4.3 Single-Density Option (/S) 8-6
8.4.4 Verification Option (V[:ONLD 86
845 WaitOption (W). o 8-7
846 NoQueryOption (/Y) 8-7

Logical Disk Subsetting Utility (LD)

9.1
9.2
9.3

Calling and Terminating LD 9-1
LD Command String Syntax 9-2
Options e e 9-2
9.3.1 Assign Logical Device Name Option (/Aiddd) 9-2
9.3.2 Validate Logical Disk Assignments Option (/C). 9-3
9.3.3 Define Logical Disk Option (/Lin). 9-3
9.3.4 Write-Lock Logical Disk Option /Rin) 94
9.3.5 Write-Enable Logical Disk Option (W:m). 9-4

Chapter 10 Librarian (LIBR)

10.1 Calling and Terminating LIBR. 10-1
10.2 LIBR Command String Syntax. 10-2
10.2.1 Creating a Library File 10-3
10.2.2 Inserting Modules into a Library. 10-3
10.2.3 Merging Library Files 10-4

Chapter 11

vi

10.3 Option Commands and Functions for Object Libraries :

10.3.1 Include All Global and Absolute Global Symbols

Option (JA).
10.3.2 Command Continuation Options (/Cor /).
10.3.3 Delete Option (/D)
10.3.4 Extract Option VE).
10.3.5 Delete Global Option (/G)
10.3.6 Include Module Names Option U/N).
10.3.7 Include P-Section Names Option (/P)
10.3.8 Replace Option VR)
10.3.9 Update Option (/U).
10.3.10 Wide Option /W)
10.3.11 Creating Multiple Definition Libraries Option (/X)
10.3.12 Listing the Directory of a Library File
10.3.13 Combining Library Option Functions.

10.4 Option Commands-and Functions for Macro Libraries

10.4.1 Command Continuation Options (/Cor /).
10.4.2 Macro Option /M[:n]) L.

Linker (LINK)

11.1 Overview of the Linking Process

11.1.1 What the Linker Does
11.1.2 How the Linker Structures the Load Module

11.1.2.1 Absolute Section
11.1.2.2 Program Sections.

11.1.3 Global Symbols: Cummunication Links Between Modules. . .

11.2 Calling and Terminating the Linker
11.3 Link Command String Syntax
114 Inputand Outputo

11.4.1 Input Object Modules
11.4.2 Input Library Modules.
11.4.3 Output Load Module.
1144 OutputloadMap

11.5 Creating an Overlay Structure.

11.5.1 Low Memory Overlays.
11.5.2 Extended Memory Overlays

11.5.2.1 Virtual Address Space
11.5.2.2 Physical Address Space.
11.5.2.3 Virtual and Privileged Jobs
11.5.2.4 Extended Memory Overlay Option (/V:n[:m])

11.5.3 Combining Low Memory Overlays with Extended
Memory Overlays e
1154 Load Mapo

11.6 Options o o e

11.6.1 Alphabetical Option (A)
11.6.2 Bottom Address Option /B:in)
11.6.3 Centinuation Option (/Cor/)

11.7

11.6.4 Duplicate Global Symbol Option (D) 11-45

11.6.5 Extend Program Section Option (Em) 11-47
11.6.6 Default FORTRAN Library Option ¢/F). 11-47
11.6.7 Directory Buffer Size Option (/G). 11-48
11.6.8 Highest Address Option (Hmm) 11-48
11.6.9 Include Option (/I)« o oo 11-49
11.6.10 Memory Size Option (Km) 11-49
11.6.11 LDA Format Option (/L) 11-49
11.6.12 Modify Stack Address Option /M[m}). 11-50
11.6.13 Cross-Reference Option /N) 11-50
11.6.14 Low Memory Overlay Option (Om) 11-51
11.6.15 Library List Size Option (/Pm) 11-52
11.6.16 Absolute Base Address Option (/Q) 11-52
11.6.17 REL Format Option (R[tn]) 11-53
11.6.18 Symbol Table Option (/S). 11-53
11.6.19 Transfer Address Option (/T[n]) 11-54
11.6.20 Round Up Option (/U:mn)« . L« o o oo 11-55
11.6.21 Extended Memory Overlay Option ¢(Vin[m} 11-55
11.6.22 Map Width Option (W) 11-55
11.6.23 Bitmap Inhibit Option ¢/X). 11-56
11.6.24 Boundary Option /Ymm) 11-56
11.6.25 Zero Option (/Z:n)o 11-56
Linker Prompts 11-57

Chapter 12 MACRO-11 Program Assembly

Chapter 13

12.1
12.2
12.3
124
12.5

12.6

Calling the MACRO-11 Assembler. 12-1
MACRO-11 Assembler Command String Syntax 12-2
Terminating the MACRO-11 Assembler 12-3
Assigning the Temporary Work File 12-3
File Specification Options 124
12.5.1 Listing Control Options (/L:arg and /N:arg). 124
12.5.2 Function Contro! Options (/D:arg and /E:arg). 12-6
12.5.3 Macro Library File Designation Option (M) 12-8
12.5.4 Cross-Reference (CREF) Table Generation Option 12-8

12.5.4.1 Obtaining a Cross-Reference Table 12-8

12.5.4.2 Handling Cross-Reference Table Files 12-10
MACRO-11Error Codes. 12-12

Peripheral Interchange Program (PIP)

13.1
13.2
13.3
13.4

Calling and Terminating PIP 13-1
PIP Command String Syntax. 13-1
Using Wildcards with PIP 13-2
Options«o 13-3
13.4.1 Operations Involving Magtape /M:n). 13-5
13.4.2 Copy Operations« 13-8

13.4.2.1 ImageModeo 13-8

13.4.2.2 ASCIH Mode (/A)« . 13-8

13.4.2.3 BinaryMode U/B).o 13-9
13.4.3 Date Option (/Cl:date]) oo oo . .. 139

vii

13.4.4 Delete Option (/D) 13-9

1345 WaitOption VE) 13-10
13.4.5.1 Single-Drive Operation. 13-11
13.4.5.2 Double-Drive Operation 13-11

13.4.6 Protection Option (/F) 13-12

13.4.7 Ignore Errors Option (/G) 13-13

13.4.8 VerifyOption VH) 13-13

13.4.9 Since Option (I[:datel) 13-14

13.4.10 Before Option (/J[:datel) 13-14

13.4.11 Copies Option (V/K:n) 13-14

13.4.12 No Replace Option U/N). 13-14

13.4.13 Predelete Option (/O). 13-14

13.4.14 Exclude Option (/P) 13-15

18.4.15 Query Option (/Q) 13-15

13.4.16 Rename Operation /R). 13-15

13.4.17 Single-Block Transfer Option (/S). 13-16

13.4.18 Set Date Option (/Tf:date]) 13-16

13.4.19 Concatenate Option (/U) 13-16

13.4.20 Multivolume Option (/V) 13-17

13.4.21 Logging Option (W) 13-17

13.4.22 Information Option (/X) 13-18

13.4.23 System Files Option ¢/Y) 13-18

13.4.24 No Protection Option (/Z). 13-18

Chapter 14 Resource Utility Program (RESORC)

141
14.2

Calling and Terminating RESORC. 14-1
Options e 14-2
1421 All Option (/A). 14-2
14.2.2 Software Configuration Option (/C). 14-3
14.2.3 Device Handler Status Option ((dd:¥VD). 14-3
14.2.4 Hardware Configuration Option ¢(H) 14-5
14.2.,5 Loaded Jobs Option () 14-5
14.2.6 Device Assignments Option /L) 14-6
14.2.7 Current Monitor Option /M) 14-7
14.2.8 Special Features Option ¢/O) 147
14.2.9 Show Queue Option (/Q) 14-8
14.2.10 Disk Subsetting Option ¢/S) 14-8
14.2.11 Terminal Status Option ¢T) 14-9
14.2.12 Physical Memory Layout Option (/X). 14-10
14.2.13 Summary Option ¢/Z). 14-11

Chapter 15 Source Comparison (SRCCOM)

viii

151
15.2
15.3
15.4
15.5

15.6

Calling and Terminating SRCCOM 15-1
SRCCOM Command String Syntax. 15-1
Using Wildcards with SRCCOM 15-2
Options e e e 15-3
Differences Listing Format. 15-3
155.1 Sample Text. 15-3
15.5.2 Sample Differences Listing. 15-4
15.5.3 Changebar Option ¢/D{/Viidl) 15-17
Creating a SLP Command File. 15-8

Part Il System Jobs

Chapter 16

Chapter 17

Chapter 18

Error Logging Subsystem

16.1 USES. . « v v v e i e e e e e e e e e e e e e e e e
16.2 Error Logging Subsystem 0L
16.3 Calling and Using the Error Logger with the SJ Monitor.
16.4 Calling and Using the Error Logger with the FB or XM Monitor . . .

16.4.1 Using ELINIT,

16,5 Using ERROUT
16.6 Report Analysis e e

16.6.1 Storage Device Error Report
16.6.2 Memory Error Report
16.6.3 Summary Error Report. e e e e e e e

Queue Package

17.1 Calling and Using the Queue Package

1731 Running QUEUE
17.1.2 Running QUEMAN

172 QUEMAN Options. o o v v v o v v vt

17.2.1 Terminating QUEUE (/A)
17.2.2 Date Option (/Clidate])
17.2.3 Deleting Input Files After Printing /D)
17.2.4 Printing Banner Pages (Hmn)
17.2.5 Since Option (/Il:date])
17.2.6 Before Option (/J[:date])
17.2.7 Printing Multiple Copies (Kin).
17.2.8 Listing the Contents of the Queue (L)
17.2.9 Removing a Job from the Queue (M).
17.2.10 No Banner Pages Option /N)
17.2.11 Setting Queue Package Defaults (/P)
17.2.12 Query Option (/Q)« . . . oo
17.2.13 Suspending Output (/S)
17.2.14 Resuming/Restarting Output ¢(R).
17.2.15 Log Option /W) o
17.2.16 Information Option (/X)
17.2.17 Continuing a Command String (/)

Transparent Spooling Package (SPOOL)

18.1 SPOOL Components« v v v v v v v v e oo
182 Rumning SPOOL. oo oo

18.2.1 Loading the Line Printer Handler e e e
18.2.2 Running the SPOOL Program
18.2.3 Assigning a Logical Nameto'SP

183 SPOOL Work File« o v vt v
18.4 SPOOL Output Device.
18.5 Starting SPOOL from an Indirect Command File.

ix

18.6 SPOOL SET Commands 184
18.7 SPOOL Status. v v v v e v e 18-5

Chapter 19 Virtual Terminal Communication Package (VTCOM)

19.1 Communication Hardware 19;1
19.2 Communication Software 19-2
19.3 Running VICOMo 19-2
19.3.1 Installingthe Handler 19-2
19.3.2 Loading and Unloading the Handler 19-3
19.3.3 Starting VTCOM 194
19.4 Communicating withthe Host 194
19.4.1 Control Commands. 19-5
19.42 VTCOM Commands 19-5
19.5 Transferring ASCII Files with VICOM 19-7
19.5.1 Copying ASCII Files to Host System 19-8
19.5.2 Copying ASCII Files from Host System. 19-8
19.6 TRANSF Files Transfer Program 19-9
19.6.1 TRANSF Command Syntax 19-10
19.6.2 TRANSF Confirmation Messages. 19-11

Part lli Debugging and Altering Programs

Chapter 20 On-Line Debugging Technique (ODT)

20.1 CQCalling and Using ODT 20-1
20.2 Relocation. s 20-5
20.3 Commands and Functions 20-6
20.3.1 Printout Formats 20-6
20.3.2 Opening, Changing, and Closing Locations 20-7
20321 Slash() 20-7

20322 Backslash(). 0-8

20.3.23 LINEFEEDKey LF) 20-8

20.3.2.4 Circumflex or Up-Arrow ("or 7). 20--8

20.3.2.5 Underline or Back-Arrow (_or <) 20-8

20.3.2.6 Open the Addressed Location (@). 20-9

20.3.2.7 Relative Branch Offset (=) 20-9

20.3.2.8 Return to Previous Sequence (<) 20-9

20.3.3 Accessing General Registers 0-7 20-9
20.3.4 Accessing Internal Registers 20-10
20.3.5 Radix-60Mode (X). 20-11
20.3.6 Breakpointso 20-12
20.3.7 Running the Program (r;G andr;P). 20-13
20.3.8 Single-InstructionMode 20-14
20.3.9 Searches. o 20-15
20.3.9.1 WordSearch @x;W) 20-15

20.3.9.2 Effective Address Search (;E) 20--16

Chapter 21

Chapter 22

20.3.10 Constant Register ;C).« o oo
90.3.11 Memory Block Initialization GFand;D).
20.8.12 Calculating Offsets (r;0) v oo oo
20.3.13 Relocation Register Commands.
920.3.14 The Relocation Calculators, n!andnR
90.3.15 ODT Priority Level ($P)
90.3.16 ASCII Input and Output (r;nA).

20.4 Programming Considerations

20.4.1 Using ODT with Foreground/Background Jobs
20.4.2 Functional Organization
20.4.3 Breakpointso
20.4.4 Searches. o e e e e e e e e e
20.4.5 Terminal Interrupt. oo

920.5 Error Detection « . oo s

Object Module Patch Program (PAT)

21.1 Callingand Using PAT oo
921.9 PAT Command String Syntax
921.3 How PAT Effects Updates« . . .

2131 ImputFile oo
21.3.2 Correction File.o oo

21.4 Updating Object Modules

21.4.1 Overlaying Linesina Module
21.4.2 Adding a Subroutine to a Module

21.5 Determining and Validating the Contents of a File.

Save Image Patch Program (SIPP)

221 Callingand Using SIPP oo
222 SIPP Options« . v v v v vt e e
223 SIPPDialog « . . . o o e e e e e e
929.4 SIPP Commands. . . . « « « « v v v v v v [

22.4.1 Opening and Modifying Locations Within a File
22.4.2 Backing Up Through Files.
92.43 AdvancinginByteso
22.4.4 Entering Octal Values GO).
22.4.5 Displaying and Entering ASCII Values.
22.4.6 Displaying and Entering Radix-50 Values
922.4.7 Searching Through Files(GS).
2248 Verifying GV) oo
22.4.9 Backing Up to a Previous Prompt
22.4.10 Completing Code Modifications.
92.4.11 Extending Files and Overlay Segments.

29.4.11.1 Nonoverlaid Program.
99.4.11.2 Overlaid Program, Low Memory Overlays Only. . .
292.4.11.3 Overlaid Program, Extended Memory
OverlaysOnly
99.4.11.4 Overlaid Program, Both Low Memory and
Extended Memory Overlays

xi

22.5
22.6
22.1

SIPP Checksum 22-15
Running SIPP from an Indirect File 22-16
Running SIPP from a BATCH Stream 22-17

Chapter 23 Source Language Patch Program (SLP)

23.1
23.2
23.3
234
23.5

Calling and Terminating SLP 23-1
SLP Command String Syntax 23-1
Options s 23-2
Example. 23-2
Creating and Maintaining a Command File 23-4
23.5.1 Update Line Format 23-4
23.5.2 Creating a Numbered Listing 23-6
23.5.3 Adding LinestoaPFile. 23-7
23.5.4 Deleting LinesinaFile 23-9
23.5.,5 Replacing Linesina File. 23-10
23.5.6 Determining and Validating the Contents of a File. 23-11

Appendix A BATCH

Xii

Al
A2

A3
A4

Hardware and Software Requirements A-1
Control Statement Format A-2
A21 CommandFields. A-2
A211 CommandNames A-3
A212 Command FieldOptions A-3
A22 Specification Fields A-3
A.22.1 Physical Device Names. A-6
A.2.2.2 File Specifications A-6
A.2.23 Wildcard Construction A6
A.224 Specification Field Options AT
A23 CommentFields. A7
A24 BATCH Character Set A-8
A25 TemporaryFiles. A-10
General Rules and Conventions A-11
Commands., A-11
A4l S$BASIC A-13
Ad42 $CALL A-14
A4.3 SCHAIN. A-14
Ad4 SCOPY A-15
A45 SCREATE A-16
A46 SDATA A-17
A.4.6.1 Using $DATA with FORTRAN Programs. A-18
Ad477 $DELETE A-18
A48 S$DIRECTORY o A-19
A49 S$DISMOUNT A-19
A410 SEOD A-20
Adl1l SEOJ A-20
CA4.12 SFORTRAN A-21
A4.13 SJOB A-23

e’

e

Ab

A6
AT

A8

A4.14 SLIBRARY o o v oo e A-24

A4.15 SLINK. oot A-25
A416 SMACRO o i vt e e A-26
A4.17 SMESSAGE o o A-29
A4.18 SMOUNT o v vt e e e e e e e A-30
A4.19 SPRINT o o v e o e e e A-31
A4.20 SRTIL o o e e e A-32
A421 SRUN o ot e A-32
A4.22 $SEQUENCE o o o oo v b A--33
A.4.23 Sample BATCH Stream« A-33
RT-11Mode. . . . o o v o v e e e e e e e e A-35
A51 Communicating with RT-11 A-36
A5.2 Creating RT-11 Mode BATCH Programs. A-37

AB21 Labels o o« c e A-37

AB5.292 Variables oo A-37

AB5.28 Terminal /O Control. A-40

A5.2.4 Other Control Characters. A-40

AB525 Comments . . . v v v v v v e e e e e e e A-41
A5.3 RT-11 Mode Examples. oo A-41
Creating BATCH Programs on Punched Cards A-42
Operating Procedures e A-43
A7.1 Loading BATCH. e e e e A-43
A7.2 Running BATCHo A-45
A.7.3 Communicating with BATCH Jobs. A48
A74 Terminating BATCH.« A-51
Differences Between RT-11 BATCH and RSX-11D BATCH A-51

Appendix B System Utility Program Options and Monitor

Index

Figures

Co

11-1
11-2
11-3
11-4
11-5
11-6
11-7
11-8
11-9

11-10
11-11
11-12
11-13

11-14

mmand Equivalents

Library Searches o+« o oo 11-14
Sample Load Map.« . ..o 11-18
Sample Overlay Structure for a FORTRAN Program 11-21
Overlay Scheme« o o o 11-22
Run-Time Overlay Handler — Low Memory 11-23
Sample Subroutine Calls and Return Paths 11-25
Memory Diagram Showing BASIC Link with Overlay Regions. . . .11-29
Program Virtual Address Space. 11-30
Physical Address Space for Program with Low

Memory Overlays. « o« c oo e 11-31
Virtual and Physical Address Space.« 11-32
Virtual and Physical Address Space. 11-34
Extended Memory Partitions that Contain Sharing Segments11-35
Memory Diagram Showing Low Memory and

Extended Memory Overlays.« o oo o vt o 11-37
Load Map for Program with Unmapped and Virtual Overlays11-38

xiii

Tables

Xiv

11-15
11-16
11-17
12-1
12-2
16-1
16-2
16-3
164
16-5
16-6
16-7
16-8
20-1
21-1
21-2
A-1

10-1
10-2
11-1
11-2
11-3
11-4
11-5
11-6
11-7
11-8
11-9
11-10
12-1
12-2
12-3
12-4
12-5
12-6
13-1
14-1

Extended Memory Overlay Handler. 11-41

Global Data Section with CON Attribute 11-46
Global Data Section with OVR Attribute 11-47
Sample Assembly Listing 12-5
Cross-Reference Table 12-11
Error Logging Subsystem — FBand XM. 164
Error Logging Subsystem — SJ 16-4
Sample Storage Device Error Report 16-9
Sample Memory Parity Error Report 16-10
Sample Cache Memory Error Report 16-11
Sample Summary Error Report for Device Statistics. 16-12
Sample Summary Error Report for Memory Statistics 16-13
Sample Report File Environment and Error.Count Report. 16-13
Linking ODT with a Program. 20-2
Updating a Module Using PAT 21-2
Processing Steps Required to Update a Module Using PAT 21-3
EOF Card A-43
Prompting Characters 1-3
BINCOM Options. 2-3
BUPOptions 3-2
DIR Options 4-3
Sort Codes 4-10
DUMP Options o 5-2
DUP Option Combinations 6-2
DUPOptions 6-3
Default Directory Sizes 6-17
Supported FILEX Devices. 7-1
FILEX Options 7-3
FORMAT Options 8-3
Verification Bit Patterns 8-5
LDOptions. 9-2
LIBR Object Options 10-5
LIBR Macro Options 10-14
P-Sect Attributes 11-5
Section Attributes 11-6
P-SectOrder e e e e 11-6
Global Reference Resolution 11-7
Linker Defaults. 11-9
Linker Options 11-10
Absolute Block Parameters 11-17
Line-by-Line Sample Load Map Description. 11-19
Line-by-Line Sample Load Map Description 11-39
Linker Prompting Sequence. 11-57
Default File Specification Values 12-3
File Specification Options. 12-4
Arguments for /L and /N Listing Control Options 12-6
Arguments for /E and /D Function Control Options 12-7
/C Option Arguments 12-9
MACRO-11Error Codes 12-12
PIP Options 13-4
RESORC Options., 14-2

man”

15-1
16-1

16-2
17-1
19-1
19-2
20-1
20-2
20-3
20-4
20-5
22-1
22-2
22-3
224
22-5
23-1
23-2
A-1
A-2
A-3
A4
A-5
A-6
AT
B-1

SRCCOM Options. v v v v v v v v oo oo e 154
Line-by-Line Analysis of the Sample Storage

Device Error Report v« o oo 16-10
Line-by-Line Analysis of the Sample Memory Error Report 16-11
QUEMAN Options« v o v v v oo 17-3
VTCOM Commands. . . .+ « « v v o v v v v o o o v e oo e 19-6
TRANSF Options for RT-11 and RTEM-11 Hosts 19-10
Forms of Relocatable Expressions (r)« .« .. 20-6
Internal Registers« e 20-10
Radiz—50 Terminators « v« o v v e oo e 2011
Single-Instruction Mode Commands. 20-14
ASCII Terminators . . . « « v v v v v e e e e e e e 20-20
SIPP Options v v v v o v v v 22-3
SIPP Commands« « v v o v v e e e e e e e e e e e e 224
Overlaid Program Segment Limits 22-14
Overlaid Program Segment Limits 22-14
Overlaid Program Segment Limits 22-15
SLP Options e e e e e e 23-3
SLP Command File Operators. « « . o v o v o oo 23-5
Command Field Options« . o o v oo A-4
BATCHF File TYPES . .« « « « v v v e o vt e e e e e e e e A-T
Specification Field Options o« o oo A-8
Character Explanation oo A-9
BATCH CommandS. . . . « « v v v v v v o o v oo v e e A-12
Operator Directives to BATCH Run-Time Handler A-49
Differences Between RT-11 and RSX-11D BATCH A-51
System Program/Monitor Command Equivalents B-1

XV

Préface

This manual describes how to use the RT-11 system utilities. You can use
the RT-11 system utilities instead of the keyboard monitor commands de-
scribed in the RT-11 System User’s Guide to perform program develop-
ment, program execution, and file maintenance.

The manual is written for you if you are already familiar with computer
software fundamentals and have some experience using RT-11 and RT-11
keyboard monitor commands. If you have no RT-11 experience, you should
first read the Introduction to RT-11 and the RT-11 System User’s Guide
before consulting this manual. If you have experience with an earlier re-
lease of RT—11 (this is Version 5), you should read the RT-11 System Re-
lease Notes to learn how RT—11 Version 5 differs from earlier versions. If
you are interested in more sophisticated programming techniques or in
system programming, you should read this manual first and then proceed
to the RT-11 Programmer’s Reference Manual and the RT-11 Software
Support Manual.

The next section, Chapter Summary, briefly describes the chapters in this
manual and suggests a reading path to help you use the manual efficiently.

Chapter Summary

Part I, Utility Programs, Chapters 1-15, describes the Command String
Interpreter (CSI) and many utility programs provided with the RT-11 sys-
tem. These programs include:

BINCOM Binary file comparison program

BUP Backup utility program

DIR Directory program

DUMP Dump program

DUP Device utility program

FILEX File exchange program
FORMAT Volume formatting program

LD Logical disk subsetting program
LIBR Librarian program

LINK Linker program

xvii

xviii

MACRO MACRO-11 assembler

PIP Peripheral interchange program
RESORC Resource program

SRCCOM Source comparison program

Part II, System Jobs, Chapters 16-19, describes four utilities that run un-
der the foreground/background (FB) or extended memory (XM) monitor as
foreground or system jobs: the Error Logger, the Queue Package, the trans-
parent spooler (SPOOL) package, and the communication package
(VITCOM). To run them as system jobs, you must enable system job support
through the system generation process. The Error Logger also runs under
the single-job (SJ) monitor.

Part III, Debugging and Altering Programs, Chapters 20-23, describes the

four utility programs that permit you to examine and change assembled

programs and source files. These utilities are:

oDT On-line debugging technique
PAT Object module patch program
SIPP Save image patch program

SLP Source language patch program

Appendix A describes BATCH processing. Appendix B contains a summary

of the system utility programs and their keyboard monitor command equiv-
alents.

Documentation Conventions

A description of the symbolic conventions used throughout this manual
follows. Familiarize yourself with these conventions before you continue
reading.

1. Wherever possible, éxamples appear as if they are computer output.
What you should type appears in red

2. This manual uses the symbol to represent a carriage return, @ to
represent a line feed, 6 for a space, and @ to represent a tab. Unless
the manual indicates otherwise, terminate all commands or command

strings with a carriage return.

3. Terminal and console terminal are general terms used throughout all
RT-11 documentation to represent any terminal dev1ce including
DECwriters and video termlnals

4. To produce certain characters,m system commands, you must type a
letter key while pressing the control key. For example, while
holding down the CTRL key, type C to produce the CTRL/C character.
Key combinations of this type are documented as €RICS), €RIO), and so
on.

5. In discussions of command syntax, uppercase letters represent the com-
mand name, which you must type. Lowercase letters represent a varia-
ble, for which you must supply a value.

Square brackets ([]) enclose options; you may include the item in brackets,
or you may omit it, as you choose.

The ellipsis symbol (...) represents repetition. You can repeat the item that
precedes the ellipsis. :

This is a typical illustration of command syntax:

.R PIP
*out-filespec[/option...] = in-filespec[/option...]

This example shows that you must run the utility program PIP as shown,
and enter file specifications and options of your choice (none are required)
on the line that follows. The first file specification represents the output
file, and the second represents the input file. Here is a typical command
string:

¢+ R PIP
¥ DLiI:MYFIL.BAK=DLO:MYFIL.MAC/A/J

Part |

Utility Programs

Part I of this manual presents, in alphabetical order, most of the utility
programs available with RT-11. You can take advantage of nearly all of
the capabilities of RT—11 by using the keyboard commands (described in
Chapter 4 of the RT—11 System User’s Guide), but it is the utility programs
that actually perform many of the system’s functions. For example, when
you issue the CREATE command, the utility program DUP performs the
create operation.

This part of the manual explains how to carry out utility operations, those
not performed directly by the monitor, by running a specific utility program
instead of using the keyboard monitor commands. It is not necessary to
have an understanding of the material contained in Part I of this manual in
order to use the RT-11 system. However, the information in this part may
be of interest to you if you have experience with a previous version of
RT-11, or if you are a systems programmer and need to perform certain
functions with the utility programs that are not available with the key-
board monitor commands.

Note that the syntax required by the Command String Interpreter for input
and output specifications is different from the syntax you use to issue a
keyboard monitor command. Chapter 1, Command String Interpreter, de-
scribes the general syntax of the command string that the system utility
programs accept, and explains certain conventions and restrictions. Read
this chapter carefully before you use any of the system utility programs
directly, and bear in mind that there are many differences between issuing
a keyboard command and running a utility program. Chapters 2 through
15 describe the system utility programs themselves.

R

Chapter 1
Command String Interpreter (CSI)

The Command String Interpreter (CSI) is the part of RT-11 that accepts a
line of ASCII input, usually from the console terminal, and interprets it as
a string of input specifications, output specifications, and options for use by
a utility program.

To call a utﬂity program, respond to the dot (.) printed by the keyboard
monitor by typing R followed by a program name and a carriage return.
This example shows how to call the directory program (DIR):

* R DIR G

The CSI prints an asterisk (*) at the left margin of the terminal, indicating
that it is ready to accept a list of specifications and options. The following
section describes the syntax of the specifications and options you can enter.

You can use the single-line editor, described in Section 4.3 of the RT-11
System User’s Guide, to edit CSI commmand strings and terminal input as
well as keyboard monitor commands.

1.1 CSI Syntax

Once you have started a system program, you must enter the appropriate
information before any operation can be performed. You type a specifica-
tion string with the following general syntax in response to the prompting
asterisk: '

output-filespecs/options = input-filespecs/options

A few system programs — BINCOM, for example — require you to enter
this information differently. Complete instructions .are provided in the ap-
propriate chapters. ‘

In all cases, the syntax for output-filespecs is:
dev:filnam.typ[n]),...dev:filnam.typ{n]
The syntax for input-filespecs is:

dev:filnam.typ,...dev:filnam:typ

1-1

The syntax for /option is:

/o[:oval]
or

/o[:dval].
where:

dev:

filnam.typ

[n]

/ol:oval]
or
/o[:dval].

represents either a logical device name or one of the
physical device names from Table 3-1 in the RT-11
System User’s Guide.

If you do not supply a device name, the system uses
device DK:. DK:, or whatever device you specify for the
first file in a list of input or output files, applies to all
the files in that input or output list until you supply a
different device name. For example:

% DYL:FIRST.OBJ+LP:=TASK.1,DL1:TASK.,2,TASK.3

This command is interpreted-as follows:

*DY1:FIRBT.OBJ/LP:=DK:TASK.1+DL1:TASK.2,+DL1:TASK

File FIRST.OBJ is stored on device DY1:. File TASK.1
is stored on default device DK:. Files TASK.2 and
TASK.3 are stored on device DL1:. Notice that file
TASK.1 is on device DK:. It is the first file in the input
file list and the system uses the default device DK:.
Device DY1: applies only to the file on the output side
of the command.

is the name of a file (consisting of one to six alphanu-
meric characters followed optionally by a period and a
zero- to three-character file type). No spaces or tabs are
allowed in the file name or file type. As many as three
output and six input files are allowed. If you omit the
dot and the file type, the system may apply a default
file type that the program specifies.

is an optional declaration of the number of blocks you
need for an output file; n is a decimal number (up to
65,535) enclosed in square brackets immediately follow-
ing the output filnam.typ to which it applies.

is one or more options whose functions vary according
to the program you are using (refer to the option table
in the appropriate chapter). The variable oval is either
an octal number or one to three alphanumeric charac-
ters (the first of which must be alphabetic) that the pro-
gram converts to Radix—50 characters. The variable
dval. is a decimal number followed by a decimal point.
You can use a minus sign (~) to denote negative octal or
decimal numbers.

1-2 Command String Interpreter (CSI)

e

This manual uses the /o:oval construction throughout,
except for the keyboard monitor commands, where all
values are interpreted as decimal (unless indicated oth-
erwise) and the decimal point after a value is not neces-
sary. However, the /o:dval. format is always valid. Gen-
erally, these options and their associated values, if any,
should follow the device and file name to which they

apply.

If the same option is to be repeated several times with
different values (for example, /L:MEB/L:TTM/L:CND)
you can abbreviate the line as /L:MEB:TTM:CND. You
can mix octal, Radix-50, and decimal values.

is a delimiter that separates the output and input fields.
You can use the < sign in place of the = sign. You can
omit this separator entirely if there are no output files.

NOTE

Except where noted, all numeric values you supply to the CSI
must be in octal.

Concise Command Language (CCL) also uses CSI syntax. See Section 4.7 of
the RT-11 System User’s Guide for information on using CCL.

1.2 Prompting Characters

Table 1-1 summarizes the characters RT—11 prints either to indicate that
the system is waiting for your response or to specify which job (foreground,
system, or background) is producing output.

Table 1-1:

Prompting Characters

Character

Explanation

. (dot)

A

The keyboard monitor is waiting for a command.

When the console terminal is being used as an input file, the cir-
cumflex prompts you to enter information from the keyboard. Typ-
ing a CTRL/Z marks the end-of-file. See Section 3.6 of the RT-11
System User’s Guide for details on special function keys.

If a foreground or system job is active, the > character identifies
which job, foreground, system, or background, is producing the out-
put that currently appears on the console terminal. Each time out-
put from the background job is to appear, B> prints first, followed
by the output. If the foreground job is to print output, F> prints
first. If a system job is to print output, jobname> appears first,
where jobname represents the name of the system job.

The current system utility program is waiting for a line of specifica-
tions and options.

Command String Interpreter (CSI) 1-3

Chapter 2
Binary File Comparison Program (BINCOM)

The RT-11 binary comparison program (BINCOM) compares two volumes
or binary files and lists the differences between them. BINCOM can either
print the results at the terminal or line printer, or store them in a file.
BINCOM is particularly useful when you need to compare two executable
programs, because it provides a quick way of telling whether two data files
are identical. Another use of BINCOM is to verify whether two versions of
a program produce identical output files when given identical input files.

BINCOM examines the two input files word by word (or byte by byte),
looking for differences. When BINCOM finds a mismatch, it prints the
block number and offset within the block at which the difference occurs, the
octal values from each input file, and the logical exclusive OR of the two
values. This last number helps you find the bits that are different in. the
two values.

You can also use BINCOM to create an indirect command file that invokes
the save image patch program (SIPP, described in Chapter 22) to patch one
version of a file so that it matches another version. Section 2.6 describes the
procedure you can use to create an indirect command file for SIPP.

2.1 Calling and Terminating BINCOM

To call BINCOM from the system device, respond to the dot (.) printed by
the keyboard monitor by typing:

R BINCOM GED

The Command String Interpreter (CSD) prints an asterisk at the left margin
of the terminal and waits for you to enter a command string. If you respond
to the asterisk by entering only a carriage return, BINCOM prints its cur-
rent version number. You can type a CTRL/C to halt BINCOM and return
control to the monitor when BINCOM is waiting for input from the console
terminal. You must type two CTRL/Cs to abort BINCOM at any other time. .
To restart BINCOM, type R BINCOM or REENTER and a carriage return

in response to the monitor’s dot.

2-1

2.2 BINCOM Command String Syntax

BINCOM accepts command strings with the following syntax:

[output-spec[/option]][,patch-spec[/option]] = old-filespec,
new-filespec[/option...]

where:

output-spec represents the file or volume to which you want the
differences between the two files or volumes you are
comparing sent. If omitted, the default is TT:. -

patch-spec represents the file that you can run as an indirect
command file; it will contain the commands neces-
sary to patch old-filespec so it matches new-filespec.

old-filespec represents the first file to be compared.

new-filespec represents the second file to be compared.

option is one or more of the options listed in Table 2-1.

The console terminal is the default output device. There is no default file
type for input files; you must always specify the file type. BINCOM assigns
.DIF as the default file type for the difference output file, and .COM as the
default file type for the SIPP indirect command file.

2.3 Using Wildcards with BINCOM

You can use wildcards to perform multiple binary file comparisons by typ-
ing only one command line. However, you can use wildcards only to com-
pare files; you cannot use wildcards when creating a SIPP indirect com-
mand file. '

You can use wildcards in either input file specification (old-filespec or new-
filespec). A different type of comparison is performed depending on whether
you use wildecards in only one or in both of the input file specifications.

If you use wildcards in only one of the input file specifications, BINCOM
compares the file you specify without any wildcards to all variations of the
file specification that contains wildcards. The wildcards represent the part
of the file specification to be varied. You can use this method to compare
one particular file to several other files. For example, when the following
command line is executed, BINCOM compares the file TEST1.SAV on de-
vice DYO: to all files on device DY1: with the filename TESTZ2:

% TEST=DYO:TEST1.5AV DY1:TESTZ,*
You can send the results of all the comparisons to a file on a volume rather
than to the console by specifying an output file. In the last example, all

differences from the comparisons are sent to the file TEST.DIF on device
DK.:.

2-2 Binary File Comparison Program (BINCOM)

If you use wildcards in both input file specifications, the wildcards represent
a part of the file specifications that you want to be the same in both files

7 being compared. You can use this method to compare several pairs of files;
each input file specification is compared to only one other input file specifica-
tion. For example, when the following command line is executed, BINCOM
compares pairs of files; the first input file in each pair has the file name
PROG]1, and the second has the file name PROG2. The file type of both files
in each pair must match.

DYO:PROGL.%,DY1:PROGZ,#

BINCOM searches for the first file on DYO: with the file name PROG1, and
takes note of its file type. Then, BINCOM searches DY1: for a file with the
file name PROG2 and the same file type as PROG1. If a match is found,
BINCOM compares the two files and lists the differences on the console (or
sends the differences to an output file if one is specified). BINCOM then
searches DYQO: for more files with the file name PROG1 and DY1: for PROG2
files with matching file types.

2.4 Options

Table 2-1 summarizes the options that you can use with BINCOM. Except
for the /O option, you can place these options anywhere in the command
string, but it is conventional to place them at the end of the command string.

) Table 2-1: BINCOM Options
Option Function-
/B ‘Compares the input files byte by byte. If you do not specify this option,

BINCOM compares the files word by word.

/D Compares two entire volumes starting with block 0. If one volume is longer,
BINCOM prints a message and compares the volumes up to the point where
the shorter volume ends and the longer one continues. Invalid when creating a
/ SIPP command file.

/E:n Ends comparison at block n, where n is an octal value. If you do not include this
option, BINCOM ends the comparison when it reaches end-of-file on one of the
input files, or end-of-device on one of the input devices.

/H . Types on the console terminal the list of available options.

/0 Creates an output file or patch file, even if there are no differences between the
two input files. If you enter this option after the differences output file,
BINCOM creates the differences output file whether or not there are differ-
ences between the two input files:

If you enter this option after the SIPP indirect command file, BINCOM creates
a SIPP indirect command file whether or not differences exist. You can enter
this option at the end of the command line if you want both output files.

' This option is useful in BATCH streams to prevent later job steps‘from failing
because BINCOM did not create the expected control file. :

{Continued on next page)

Binary File Comparison Program (BINCOM) 2-3

Table 2-1: BINCOM Options (Cont.)

Option Function

Q Suppresses the printing of the differences and prints only the message
?BINCOM-W-Files are different or ’BINCOM-W-Devices are different if appli-
cable (or ZBINCOM-I-No differences found). This option is useful in BATCH
control files when you want to test for differences and perhaps abort execution,
but do not want the log file filled with output. '

/S:n Starts the comparison at block n, where n is an octal value.

2.5 Output Format

This section describes the BINCOM output file format and explains how to
interpret it.

If you include an output file specification in the command line, BINCOM cre-

ates a file that contains the differences between the two input files or

devices. If you do not specify an output file, BINCOM prints the differences

only on the terminal. If you include the /Q option, BINCOM does not print
* the differences and does not create an output file.

The first line of the difference listing is a header line that identifies the files
or devices you are comparing. Next, BINCOM prints a blank line and then
lists the differences between the two files or devices. Each difference line has
the following format:

bbbbbb ooo/ ffffff ssssss xxxxXX
where;

bbbbbb isthe octal number of the block that contains the difference

000 is the octal offset within the block
ety is the value in the first file or device
SSSSSS is the value in the second file or device

xxxxxx isthelogical exclusive OR of the two values

If there are several differences in a block, BINCOM prints the block number
only once for that block. Thus, each time you see a block number appear, it
indicates that the differences being printed are in a new block.

If you specify the /B option to compare byte by byte, BINCOM prints ffffff,
ssssss, and xxxxxx as three-digit, octal byte values.

When BINCOM reaches the end of one of the input files or devices, it checks
its position in the other. If the files or devices have different lengths,
BINCOM prints the message:

TBINCOM-W-File is longer DEV:FILNAM,TYP

2-4 Binary File Comparison Program (BINCOM)

P—

or

?BINCOM-W-Device is londer DEV:

BINCOM prints the following message on the terminal if it encountered
any differences:

?BINCOM-W-Files are different

or

?BINCOM-W-Devices are different

If the two files or devices are identical up to that point, BINCOM prints this
message:

?BINCOM-I-No differences found

If you include a SIPP indirect command file specification in the command
line, BINCOM creates a file that is a valid command file for the save image
patch program (see Chapter 22). This command file contains commands
that instruct SIPP to patch the first input file so that it matches the second
input file. If you want BINCOM to create only the patch file, enter a comma
before the patch file specification in the command line, in place of the
output file specification.

2.6 Examples

The first example compares files TEST1.TST and TEST3.TST, both on de-
vice DK:. Notice that there are no output files and no options in the com-
mand line.

+ R BINCOM

* TEST1.TST,STEST3.TST ‘
BINCOM comparing/DK:TESTL.T8T - DK:TEST3.7ST

QO0000 QOZ/ 51511 051302 000013
?BINCOM-W-Files are different

Notice the fourth line in the above example. The third number, 051511,
represents the contents of location 2, block 0, in file TEST1.TST. The fourth
number, 051502, represents the contents of the same location in file
TESTS.TST. The last number is the logical exclusive OR of the two values.

The next example specifies the output file FOO1 as the file in which to
store the differences between TEST1.TST and TEST3.TST.

+ R BINCOM

* FOO1=TEST1.TSTsTEST3.TST
TBINCOM-W-Files are different

Binary File Comparison Program (BINCOM) 2-5

The contents of file FOO1 from the last example follow. Note that FOO1
has the default file type .DIF. '

+ TYPE FOO1.DIF
BINCOM comparing/DK:TEST1,T8T - DK:TEST3.TST

000000 002/ 051511 081502 000013

2.7 Creating a SIPP Command File

You can use BINCOM to create an indirect command file that invokes the
save image patch program (SIPP, described in Chapter 20) to patch one
version of a file you are comparing to match the other version. As noted
earlier in this chapter, you specify this indirect file as the second output file
in the CSI command string. If you wish to create only the indirect file as
output, place a comma before the output file specification in the command
line, in place of the first output file specification.

The example that follows specifies FOO2-as the patch output file, which
will contain the commands necessary to patch file TEST1.TST so it matches
TEST3.TST. Notice the comma that appears before the patch file specifica-
tion. This indicates that a difference output file is not requested, resulting
in the printing of all the differences at the terminal when the command is
executed. '

+ R BINCOM
* yFOD2=TEST1.TEBT»TEST3.TET (
BINCOM comparing/DR:TEST1.78T - DK:TEST3.TST

000000 002/ 031511 031502 000013

PBINCOM-W-Files are different

The contents of file FOO2 follow. Note that BINCOM assigns to this file the
.COM file type.

+ TYPE FDOZ.COM
R SIPP

DK:TEST1.TST/A
Qo000
000000002
051502

Y

“C

The file FOO2 from the previous example can be run as an indirect com-
mand file to make TEST1.TST match TEST3.TST. This can be done with
the following command, when typed in response to the keyboard monitor
dot:

BF00Z2.,COM

2-6 Binary File Comparison Program (BINCOM)

Chapter 3
Backup Utility Program (BUP)

The backup utility program (BUP) is a specialized file transfer program for
) storing large files or volumes. BUP allows you to copy a file or volume to
' several volumes that are smaller than the input file or volume. BUP also
performs the reverse operation of restoring the fragmented file or volume to
its original form on a single large volume.

Since you cannot use the file or volume while it is fragmented on several
smaller volumes, BUP is most useful as a means of backing up information
that you want to store.

) 3.1 Calling and Terminating BUP |

To call BUP from the system device, respond to the keyboard monitor
prompt (.) by typing:

, R BUP @D

The Command String Interpreter (CSI) prints an asterisk at the left margin
) of the terminal and waits for you to type a command string. If you enter
only a carriage return at this point, BUP prints its current version number
and prompts you again for a command string. You can type CTRL/C to
terminate BUP and return to the monitor when BUP is waiting for input
from the console terminal. You must type two CTRL/Cs to terminate BUP
at any other time. :)

3.2 BUP Command String Syntax

Chapter 1, Command String Interpreter, describes the general syntax of

the command line BUP accepts, but you can type only one input specifica-

tion and only one output specification. You must specify the input file name

and type. DK: is the default device for both input and output. Wildcards are

ignored when initializing or obtaining the directory of a backup volume.

Wildcards are not allowed in either the input or output file specification for
) backup and restore operations.

3-1

You can use random-access volumes as either input or output volumes for
both backup and restore operations. Magtapes, however, can be used only as
output volumes for a backup operation, and only as input volumes for a
restore operation. If you use TSV05 magtapes as backup volumes, you must
set the extended features switch (switch SO on switch pack E58) if you want
the tape to stream at 100 in/s. See Appendix A of either the TSV05
Installation Guide or the TSV05 User’s Guide for more information on set-
ting the Extended Features Switch.

Output volumes for backup operations, except magtape, must be initialized
by BUP. See Section 3.3.5 for information on initializing backup volumes.

3.3 Options

BUP options, summarized in Table 3-1, permit you to perform various oper-
ations with BUP. If you specify none of these options, BUP assumes that you
want to back up a file to smaller volumes.

Table 3-1: BUP Options

Option Section Function

1 3.3.2 Backs up an entire volume to smaller volumes in image mode.
Also used with /X during restore operations.

/L 3.3.3 Prints a directory listing of a backup volume. Cannot be used
' with any other option. ‘

X 3.34 Restores a file that has been backed up using BUP. Use with /1
to restore a volume.

Y 3.3.5 Used with /Z to suppress the BUP confirmation message printed
during initialization. ‘

1Z 3.3.5 Initializes a volume specifically for use as an output volume in a
backup operation. Cannot be used with any other option except
/Y.

3.3.1 File Backup Operation

When you specify no options in the BUP command line, BUP assumes that
you want to back up a file. BUP performs all copy operations in image mode.

You must first initialize the output volumes, unless the output volumes are
magtape, by using the BUP /Z option, so BUP can recognize the volumes as
backup volumes and to ensure that the volumes contain no bad blocks. (The
/Z option is invalid with magtape; BUP initializes magtapes during the
backup operation.) See Section 3.3.5 for details on initializing volumes for
BUP operations.

32 Backup Utility (BUP)

Use the following syntax to perform a file backup operation.
output-spec = input-spec
where:

output-spec represents the device in which you will mount the output
' volumes for the backup operation, and the file to which
you are copying the input file. If you specify no output.file
name, BUP uses the input file name. The default output
file type is .BUP. Wildcards are invalid in the output

specification.

input-spec represents the device and file specification of the file you
want to back up. Wildcards are invalid in the input
specification.

BUP copies the input file to the first output volume until the output volume
is full. If the entire input file fits on the first output volume, BUP prints an
error message unless the output volume is magtape.

?BUP-F-Enoush space on one volume -- use PIP

When the first of the output volumes is full, BUP prompts you to mount the
next output volume. BUP also tells you which volume BUP is creating so
you can properly label each volume.

Mount outeput volume in <dev:3d Continue? Y
?BUP-I-Creating volume n

BUP repeats this process until the entire input file has been copied.

The output file’s creation date recorded in the directory is the system date
during the backup operation. If no system date was set, no creation date is
entered in the directory.

If BUP detects an output volume that has not been initialized as a backup
volume (see Section 3.3.5), BUP prints a message and allows you to either
initialize the volume as a backup volume or replace that volume with an
already initialized backup volume.

TBUP-W-Not a backup volume DEV:
¢dev:»/BUP Initialize’ Are vou sure? Y

If you are using magtape for the backup volumes, BUP always attempts to
initalize the output volume, and asks you to confirm the initialization.

If BUP detects a volume that is not a valid RT-11 volume, or a volume that
already contains files, BUP prints the appropriate message and allows you
to either initialize the volume or replace that volume with another initial-
.ized backup volume.

Uolume not RT-11 format. Are vou sureT?

Backup Utility (BUP) 3-3

or

Yolume contains files. Are vou sure?

Type Y or any string beginning with Y, followed by a carriage return, to ini-
tialize the volume alréady mounted. BUP automatically performs the copy
operation once the initialization completes. If you choose not to initialize the
volume, type anything other than Y. BUP prompts you to mount another
volume.

Mounmt output volume in {deQ}§ Continue?
The following example shows a large file 4being backed up to RX02 diskettes.

BUP finds that the second diskette has not been initialized as a backup vol-
ume, and queries for initialization.

% DYO:=DL1:LGFIL.DAT

Mount outePut volume in DYO3F Continue? Y
?BUP-I-Creating volume 1
Mount output volume in DYOS Continue? Y

7BUP-W-Not a bacKkup volume DYOQ:
D¥G:/BUP Inmitialize’ Are vou sure? Y
Uolume contains files. Are vou sure?
PBUP-I-Bad hlock scan started...
PBUP-I-No had blocks detected
?BUP-I~-Creating volume 2

3.3.2 Volume Backup Operation (/1)

i
To back up an entire volume in image mode, use the /I option.

You must first initialize the output volumes, unless the output volumes are
magtapes, by using the the BUP /Z option, so BUP can recognize the vol-
umes as backup volumes and to ensure that the volumes contain no bad
blocks. (The /Z option is invalid with magtapes; BUP initializes magtapes
during the backup operation.) See Section. 3.3.5 for details on initializing
volumes for BUP operations.

Use the following syntax to perform an image mode backup operation.
output-spec = input-device/I
where:

output-spec represents the device in which you will mount the output
volumes for the backup operation, and the file specifica-
tion for the backup file. You must copy to a file even when
you are backing up a volume. If you specify no output file
name, BUP uses the 2-letter mnemonic of the input
device (for example, DL for an RL02). The default output
file type is .BUP. Wildcards are invalid in the output
specification.

34 Backup Utility (BUP)

input-device represents the device and unit number in which you will '
mount the volume to be backed up.

BUP copies the input volume to the first of the output volumes until the out-
put volume is full. If the entire input volume fits on the first of the output
volumes, BUP prints an error message unless the output volume is magtape:

7PBUP-F-Evnoudh space on one volume -- use PIP

When the first of the output volumes is full, BUP prompts you to mount the
next output volume. BUP also tells you which volume BUP is creating so
you can properly label each volume.

Mount output volume iw <dewr3 Continue?Y
?PBUP-I-Creating volume mn

BUP repeats this process until the entire input volume has been copied.

The output file’s creation date recorded in the directory is the system date
during the backup operation. If no system date was set, no creation date is
entered in the directory.

If BUP detects an output volume that has not been initialized as a backup
volume (see Section 3.3.5), BUP prints a message and allows you to either
initialize the volume as a backup volume or replace that volume with an
already initialized backup volume.

?BUP-W-Not a backur uwolume DEW:
sdevs*/BUP Initialize’ Are vou sure? Y

If you are using magtape for the backup volumes, BUP always attempts to
initialize the output volume, and asks you to confirm the initialization.

If BUP detects a backup volume that is not a valid RT-11- volume, or a vol-
ume that already contains files, BUP prints the appropriate message and
allows you to either initialize the volume or replace that volume with
another initialized backup volume.

Uolume wot RT-11 format, Are vou sure?

or

Yolume contains files, Are vou sure?

Type Y or any string beginning with Y to initialize the volume already
mounted. BUP automatically performs the copy operation once the initiali-
zation completes. If you choose not to initialize the volume, type anything
other than Y. BUP prompts you to mount another volume by printing the
following message.

Mourt outeut volume in «<dev 3 Continue?

Backup Utility (BUP) 3-5

The following command backs up an RL02 volume to several RX02 disk-
ettes. The backup volumes will contain the file DL.BUP when the backup
operation is complete.

o DY:=DL1:/1

3.3.3 Directory Option (/L)

Use the /L option to display on the terminal the directory of the backup vol-
ume you specify. The syntax of the command is:

device/L
where:

device represents the volume whose directory you want to
display

The listing for random-access volumes begins with the system date and the
volume number of the specified backup volume. The volume number indi-
cates that volume’s position within the set of volumes that compose a single
file or volume. The volume number is followed by a four-column listing of
information about each volume in the set. The first column lists the volume
numbers. The second column lists the name of the file, part of which resides
on that volume. The third column lists the number of blocks from the file
each volume contains. The last column lists the date on which the file or vol-
ume was backed up. Underneath the four columns, BUP prints the number
of free blocks on the specified volume. Since this directory information is
determined when you first begin a backup operation, all the predetermined
backup directory information prints when you use this option even if you do
not complete the backup operation.

The following command lists the backup information for backup volume 3 of
the four-volume set that composes the file CAFIL.TXT.

% DYO:/L
23-Jan-83

YOLUME 3 OF 4

YOLUME FILENAME BLDCKS DATE

U1 CAFIL .BUP 880 23-Jan-83
Uz CAFIL +BUP . BBO‘ 23-Jdan-B3
W3 CAFIL .BUP 980 23-Jan-83
v CAFIL BUP 400 23-Jan-83

1 files 980 blocks
O free blocKs

3-6 Backup Utility (BUP)

s

For magtapes, the listing appears in the same four-column format. However,
only the current system date, and information for the magtape specified, is
displayed. The third column lists the total number of blocks used in the set
of magtapes that compose the file or volume.

The next example shows the backup information for a magtape.

¥ MT1:/L
.. 23-Jan-83
VOLUME FILENAME BLOCKS DATE
Vi DL1. +BUP 27430 23-Jan-83

3.3.4 Restore Option (/X)

The /X option restores a file or volume from several backup volumes to a sin-
gle file or volume on a regular RT-11 structured volume. Type a command
with the following syntax to restore a file.

output-spec = input-spec/X
where:

output-spec represents the device, and file name and type to which
you want to restore the backup volumes. If you specify no
output file, BUP uses the input file name and type.
Wildcards are invalid in the output specification.

input-spec represents the device and file to restore. Wildcards are
invalid in the input specification.

Use the following command syntax to restore a volume.

output-dev = input-spec/I/’X

where:
outpu‘.c-dev represents the volume to which you want to copy the
backup volumes. Wildcards are invalid in the output
specification.
input-spec represents the input volume (and optionally the file

-name under which it is stored) to restore. Wildcards are
invalid in the input specification.

BUP prompts you to mount volume 1 of the set of volumes that contain the
file or volume and tells you when the restore operation begins:

Mount inPut volume n in <dewvrs Continue? Y
2BUP-I-Restore orPeration started fram volume n

When BUP has copied all of the first input volume to the output volume,
BUP prompts you to mount the next volume. BUP continues this process

Backup Utility (BUP) 3-7

until the entire set of backup volumes composing the original file or volume
have been copied to a single volume. If you mount a volume with the wrong
volume number, BUP prints an error message and prompts you to mount the
correct volume.

TBUP-E-Wrong volume numhber
Mount inPut volume v in <deuxi Continue?

If you mount a volume with the correct volume number but it contains the
wrong file, BUP notifies you and prompts you to mount the correct volume.

TBUP-W-File nqt found DEV:FILNAM,TYP)
Mount input volume number v in <dev:i Continue?

In either case, type any string beginning with Y after you have replaced the
incorrect volume with the correct volume. Type any string beginning with N
to abort the entire operation. Any other response causes BUP to continue to
prompt you to mount the proper volume.

The following example shows a backup file being restored from two RX02
diskettes to a single file on an RL02 disk.

*¥ DL1=DYIsLGFIL.DAT/Y

Mount inPut vwolume 1 in DY13 Continue?
*BUP-I-Restore operation started from volume 1
Mourmt inPut volume 2 in DY13 Continue?
PBUP-I-Restore operation started from volume 2
TBUP-I-Cory orPeration is complete

The next command restores a volume from RX02 diskettes to an RLO2 disk.

¥ DLIe=DYOs/ N/

3.3.5 |Initialize Option (/Z)

You must use the /Z option to initialize any volume, except magtape, before
you can use that volume for output during a backup operation. (The /Z
option is invalid with magtape. BUP initializes magtapes during the backup
operation.) The /Z option clears the directory of the volume and writes infor-
mation into the home block (block 0) so BUP can recognize the volume as a
backup volume. In addition, /Z scans the volume for bad blocks, since backup
volumes must not contain bad blocks.

The syntax of the initialization command is as follows:
device:/Z
where:

device represents the device that contains the volume you want
to initialize

3-8 Backup Utility (BUP)

i

RN

BUP prompts you to confirm the initialization. Type Y or any string begin-
ning with Y to continue with the initialization of the backup volume. If your
response begins with anything other than Y or you type CTRL/C, the opera-
tion is aborted and the CSI asterisk appears.

You can use the /Y option with /Z to suppress the confirmation message that
prints during initialization.

The following command initializes a double-density diskette as a backup
volume:

g DYO:1/Z

D¥Q:/BUP Initialize’ Are vou sure? ¥

7BUP-I-Bad block scan started...
?BUP-I-No bad blocks detected

If BUP detects bad blocks, BUP prints the following message to notify you
that the volume could not be successfully initialized:

?BUP-1-Bad hlocks detectedi use another volume

You must mount and initialize another volume.

After BUP initializes a volume, no files exist in the directory. Therefore, if
you attempt to have BUP initialize a volume that already contains files,
BUP warns you that files exist and asks you to confirm the initialization.

Yolume contains files, Are vou sure?
Type anything that begins with Y to continue the initialization operation.
Type anything else to abort the operation.

To return a BUP-initialized volume to an RT-11 structure volume for use
other than with BUP, initialize the volume using DUP. Refer to Chapter 6 of
this manual for more information on initializing volumes with DUP.

Backup Utility (BUP) 3-9 -

S

Chapter

4

Directory Program (DIR)

The directory program (DIR) performs a wide range of directory listing

" operations. It can list directory information about a specific device, either

4.1 Callin

in summarized form — where only the number of files stored per segment
is given — or in more detailed form — where file names, file types, crea-
tion dates, and other file information is given. DIR can organize its listings
in several ways, such as alphabetically or chronologically.

g and Terminating DIR

To call DIR from the system device, respond to the dot (.) printed by the
keyboard monitor by typing:
R DIR @

+

The Command String Interpreter (CSI) prints an asterisk at the left margin
of the terminal and waits for you to enter a command string. If you enter
only a carriage return in response to the asterisk, DIR prints its current
version number. You can type CTRL/C to halt DIR and return control to
the monitor when DIR is waiting for input from the console terminal. You
must type two CTRL/Cs to abort DIR at any other time. To restart DIR,
type R DIR or REENTER in response to the monitor’s dot.

4.2 Directory Command String Syntax

‘Chapter 1, Command String Interpreter, describes the general syntax of

the command line that DIR accepts. Unless otherwise indicated, numeric
arguments are interpreted as octal. Remember to put a decimal point after
a decimal number to distinguish it from an octal number.

Some of the DIR options accept a date as an argument in the command line.
The syntax for specifying the date is:

dd..mmm:yy.

where:

dd. represents the day (a decimal integer in the range 1-31)

4-1

mmm represents the month (the first three characters of the
name of the month)

vy. represents the year (a decimal integer in the range
73-99)

You can specify only one input device and one output device, but you can
specify up to six file names on the input device. The default device for
output is the terminal. The default file type for an output file is .DIR. The
default device for input is DK:. If you omit the input specification com-
pletely, DIR uses DK:*.*. If you do not supply an option, DIR performs the
/L operation. Note that wildcards are valid with DIR for the input specifica-
tion only. -

If you have selected timer support through the system generation process,
but have not selected automatic end-of-month date advancement, make
sure that you set the date at the beginning of each month with the DATE
.command. If you fail to set the date at the beginning of each month, DIR
prints -BAD- in the creation date column of each file created beyond the
end-of-month. (Note that you can eliminate a -BAD- entry by using the
RENAME/SETDATE command after you have set the date.)

4.3 Reading Directory Listings

Directory listings normally print on the terminal in two columns. Read the
entries across the columns, moving from left to right, one row at a time.
Directory listings that are sorted, however, are an exception to this. (Sorted
directories are produced by /A, /R, and /S options.) Read these listings by
reading the left column from top to bottom, then reading the right column
from top to bottom.

4.4 Options

You can perform many different directory operations by specifying options
in the DIR command line. Table 4-1 summarizes the operations these op-
tions permit you to perform with DIR. The sections following the table
describe the various DIR options and give examples; the options are ar-
ranged alphabetically in these sections.

4.4.1 Alphabetical Option (/A)

The /A option lists the directory of the device you specify in alphabetical
order by file name and type. Note that /A sorts numbers after letters. It has
the same effect as the /S:NAM option. The following example lists the direc-
tory of device DYO: in alphabetical order.

* DYO:/A
14-Mar-83
BUILD .SAV 100 0B-Ser-B2 SHWAP ,SYS 25 05-Dec-82
- DY +8YS 3 0B-S5ep-82 SYSMAC .MAC 41 19-Nov-B2
MYPROG«MAC 36P 12-0ct-BZ2 ™ +MAC 25 27-Nov-82
RFUNCT.SYS 4 19-Nov-8BZ2 1T +8YS 2 19-Nov-82
7 18-Nov-BZ

RT1184,8Y5 67 19-Nov-82 YTMAC JMAC
10 Filess 306 BlocKks ’
180 Free BlocKs

4-2 Directory Program (DIR)

Table 4-1: DIR Options

Option

Section

Operation

1A

/B

/Cl:n]

/Dl:date]

/F

G
/J:date]

/Kl.date}
/L
M

IN
/0

/P

e

R

/S[:xxx]

44.1

4.4.2

44.3

44.4

4.4.5
4.4.6

4.4.7

4438

4.4.9
4.4.10
44.11

4.4.12

4.4.13
4.4.14

4.4.15

4.4.16 -

4.4.17

Lists the directory of the volume you specify in alphabetical
order by file name and type (this is the same as /S:NAM).

Lists the directory of the volume you specify, including file
names and types, creation dates, starting block numbers, and
the number of blocks in each file. For magtape, the starting
block number is the file sequence number. Note that DIR lists
bleck numbers in decimal, unless you use the /O option.

Lists the directory in n columns; n is an integer in the range
1-9. The default value is two columns for normal listings and
five columns for abbreviated listings.

Lists a directory containing only those files having the date you
specify. If you do not supply a date, DIR uses the system’s cur-
rent date.

Adds unused spaces and their sizes to the listing of the volume
directory.

Prints a five-column, short directory (file names and types
only) of the volume you specify.

Lists the file you specify and all files that follow it in the direc-
tory. This option does not list any files that precede the file you
specify.

Prints a directory of the files created on or after the date you
specify. If you do not supply a date, DIR uses the system’s cur-
rent date.

Prints a directory of files created before the date you specify. If
you do not supply a date, DIR uses the system’s current date.

Lists the directory of the volume you specify, including the
number of files, their dates, and the number of blocks each file
occupies. (This is the default operation.)

Lists a directory of unused areas of the volume you specify.
Lists a summary of the device directory.

Similar to /L but lists the sizes and block numbers of the files in
octal. :

Prints a directory of the volume you specify, excluding the files
you list. -

Lists a directory of the volume you specify, listing the file
names and types, sizes, creation dates, and starting block num-
bers of files that have been deleted and whose file name infor-
mation has not been destroyed.

Lists the files in the reverse order of the sort specified with /A
or /8.

Lists the directory of the volume you specify in the order you
specify; xxx indicates the order in which DIR sorts the listing
(xxx can be DAT, NAM, POS, SIZ, or TYP).

(Continued on next page)

Directory Program (DIR) 4-3

Table 4-1: DIR Options (Cont.)

Option Section Operation
/T 4.4.18 Lists a directory of all files on the volume you specify that are
) -, protected against deletion.
u 4.4.19 Lists a directory of all files on the volume you specify that are
not protected against deletion.
/V[:ONL] 4.4.20 Lists the volume ID and owner name as part of the directory

listing header. If you specify /V:ONL, DIR lists only the volume
ID and owner name.

4.4.2 Block Number Option (/B)

The /B option includes the starting block number in decimal of all the files
listed in a directory of the volume you specify. The following example lists
the directory of device DYO:, including the starting block numbers of files.

x DYO:/B
id-Jan-83
FSM +MAC 31P 19-Npou-82
ELCOPY .MAC 8P 19-Nou-B82
" ELTASK MAC 15P 19-Nov-B2
ERRTXT MAC 9P 19-Nov-82
SYSTBL .BL 4P 19-Npu-BZ
SYSTBL.DIS 4P 19-Nov-82
ABSLOD.SAY 48 15-MAR-8Z2
PETAL .8AV 36 11-Sep-B2
WUMPUS , SAY 30 {6-Mar-82Z2
17 Filessy 348 Blocks
138 Free blocks

2855
3088
3111
3174
3186
3195
3204
3292
3357

4.4.3 Columns Option (/C[:n])

BATCH +MAC
ELINIT.MAC
ERROUT .MAC
SYCND .BL

SYCND .DIS
SYCND +HD

CHESS .SAV
LAMP . SAV

102ZP
15P
48P
3P
5P
5P
40
29

19-Nogu-82
19-Nou-82
19-Now-82
19-Nov-82
19-Nov-82
19-Nouw-82
17-Aug-82
16-Mar-82

2986
3086
3126
3183
31890
3199
3252

3328

The /C[:n] option lists the directory in the number of columns you specify.
The argument, n, represents an integer in the range 1-9. If you do not use
the /C:n option, DIR lists the directory in two columns for normal listings
and five columns for abbreviated listings. The following command, for exam-

ple, lists the directory of device DY1: in one column.

4 DY¥1:/C21
4-Jan-83
SWAP .8YS
RT115J.8YS
RT11FB.8YS
RT11BL.8YS

TT +8Y8
DT +8YS
DP +8Y¥8
7 Files

242 Free

25P
B7P
80P
G4P
2P
3P
3P
244 B1
blockKs

44 Directory Program (DIR)

19-Nov-82

19-Nov-82-

19-Now-82

19-Nov-82

19-Nov-82

19-Nov-82

19-Nov-82
ocks

4.4.4 Date Option (/D[:date])

The /D[:date] option includes in the directory listing only those files having
the date you specify. The default date is the system’s current date. For exam-
ple, the following command lists all the files created on January 14, 1983.

¥ DYO:/Dz:14.:JAN:83.,

15-Jan-83
RT115J.,8YS
RT11BL.8YS

SWAP .8YS
DP +SYS
LP +8YS8
DUP +SAY
DIR +SAY
EDIT .SAUV
SRCCOM,SAY
sLp +SAY

20 Files

B7P
G3P
Z5P
3P
2P
a1
17
19
13
9

73 Free blocks

14-Jan-83
14-Jan-83
14-Jan-83
14-Jan-83
14-Jan-83
14-Jan-83
14~Jan-83
14-Jan-83
14-4an~83
14-Jan-83

412 BlocKs

4.4.5 Entire Option (/E)

RTL1FB.SYS

X +8YS
TT +SYS
DY +8Y8
PIP + SAY
RESORC.SAV
RK +8YS
DD +8Y8
BINCOM,SAY
SIPP .SAY

BOP
3P
zp
ap

16

15

5
11
14

14-Jan-83
14-Jan-83
1d4-dan-83
14-Jan-83
14-Jan-83
14-dJan-83
14-Jan-83
14-Jan-83
14-Jan-83
14-Jan-83

The /E option lists the entire directory including the unused areas and their
sizes in blocks (decimal). Use it to find free space before you extend a file
(with the monitor CREATE command or DUP /C option). The following
example lists the entire directory of device DY1:, including unused areas.

DY1:/E

20-Mar-83
SWAP .8YS
RT11FB,SYS
7T +SYS
DP +8Y8
DY +8Y8
RK +SYS
DM +SYS
(9] +8YS
LS +BYS
MS +8YS

DISMTL.COM
NUMBER + PAS
NUM3 JLST
29 Files

25P

BOP
2P
3P
4ap
3P
5P
5P
zP
9P
ap
1
1

164 Free blocks

23-0ct-82
19-Now-82
19-Nou-82

23-0ct-B2 -

19-Now-82
19-Nov-82
23-0ct-82
23-0ct-82
19-Nouw-B2
27-Nou-82
27-Nou-82
11-Dec-82
13-Dec-82

322 Blocks

4.4.6 Fast Option (/F)

RT115J.5Y8
RT11BL.SYS

DT +8YS
X +8YS
RF +8YS
DL +S5YS8
DS +8YS
LP +SY8
CR +8Y8
MTHD .8YS
MMHD .SY¥S
TONY +AGP
4 UNUSED

23-0Dct-82
19-Nov-82
19-Nov-82
19-Nouv-82
19-Nov-82
23-0ct-82
19-Nov-B2
23-0ct-82
19-Nov-82
23-0ct-82
19-Nov-82
17-Aug-82

The /F option lists only file names and file types, omitting file lengths and
associated dates. For example, the following command lists only file names
and types from device DYO:.

*DYO:/F
16-Aug-82

DY +8YS

RT118J48Y8S
10 Files

PIP

+SAY

RT11FB.SYS

174 Free klocks

312 Blocks

DIR

+5AY

DupP

RT11BL.BYS TT

+ SAY
+8YS

SWAP ,5YS
DT +8YS

Directory Program (DIR) 4-5

4.4.7 Begin Option (/G)

The /G option lists the directory of the volume you specify, beginning with
the file you specify and including all the files that follow it in the directory.

Usually, the disk you are using as a system device contains a number of files
the operating system needs. These files include .SYS monitor files, .SAV
utility program files, and various .OBdJ, MAC, and .BAK files. They are gen-
erally grouped together and usually listed at the beginning of a normal vol-
ume directory. Files that you create and use, such as source files and text
files, are also generally grouped together and follow the operating system
files in the directory. If you specify the name of the last system file with the
/G in the command line, DIR prints a directory of only those files that you
created and stored on the volume.

.The following command, for example, lists the last system file (CT.SYS) and
all the user files that follow it.

* DYO:CT.8YS/G

10-Jan-83
CT +8YS S 10-Aung-82 DIR +8AY 17 03-Aug-82
RK +8Y8 3 13-Aug-82 EDIT .S5AV 18 03-Aug-B82
STARTS.COM 1 27-Aug-B2 bp +8Y8 5 19-Aug-82
SRCCOM.SAY 13 13-Aug-B2 BINCOM,SAY 11 05-0ct-82
SLP + SAY 9 13-Aug-82 SIPP +BAV 14 05-0ct-BZ

10 Filess 107 BlocKs
73 Free blocKs

4.4.8 Since Option (/J[:date])

The /J[:date] option lists a directory of all files stored on the device you
specify created on or after the date you supply. The default date is the sys-
tem’s current date. The following command lists all files on device DYO: cre-
ated on or after January 20, 1983.

* DYO:/Je20,3JAN:8B3,

20-Mar-83

RT11S5J.8YS 87P 2B-Jan-83 RT11FB.SYS 80P 02-Fek-B83
RT11BL.SY¥S B3P 19-Feb-83 e +8Y¥8 3P 10-Mar-83
SWAP . BYS 25P 02-Feb-83 TT +SYS 2P 15-Mar-83
SIPP + 8AY 14 0Z2-Feb-83

7 Filessy 154 Blocks
332 Free blockKs

4.4.9 Before Option (/K[:date])

The /K[:date] option prints a directory of files created before the date you
specify. The default date is the system’s current date. The following com-
mand lists all files stored on device DY1: created before March 15, 1983.

g DY1:/K:13,:MAR: B3,

20-Mar-83

FORTRA.SAY 191 14-Mar-83 BASIC .BAV 51 25-Feb-B83
2 Filesy 242 BlockKks ’

38 Free blocKs

4-6 Directory Program (DIR)

4.410 Listing Option (/L)

The /L option lists the directory of the volume you specify. The listing con-
tains the current date, all files and their associated creation dates, the num-
ber of blocks used by each file, total free blocks on the device (if disk), the
number of files listed, and the total number of blocks used by the files. File
lengths, number of blocks, and number of files are indicated as decimal val-
ues. For example, the following command lists on the line printer the direc-
tory for device DY1.:.

LPz=D¥Y1:/L

The line printer output looks like this:

20-Nov-B2

RT118J.8Y8 B7P 03-Jul-B8Z2 RT11FB.SYS BOP 13-Aug-82
RT11BL.SYS B3P 15-Mar-B2 % +8¥8 3P 13-Aug-82
SWAP ,8YS 25P 13-Aug-BZ TT +SY8 2P 13-Aug-82
DP +8Y8 3P 13-Aug-82 DY +BYS 4P 13-Ang-82
LP +8YS 2P 20-Nouw-82 PIP + SAY 16 25-Jul-8Z2
DUP +SAY 41 26-Mar-82 RESORC.SAY 15 13-Aug-B2
EDIT +8AY 19 13-Aug-82 STARTS.COM 1 27-Aug-82"
SIPP ,8AY 14 13-Aug-82

13 Filess 413 BlocKs
73 Free blocKs

Note that if you specify no options in the command string, this is the default
directory operation.

4.4.11 Unused Areas Option (/M)

The /M option lists only a directory of unused areas and their size on the vol-
ume you specify. For example, the following command lists all the unused
areas on device DLO:.

% DLO:/M
14-Dec-82
< UNUSED > i1 < UNUSED = 2
< UNUSED > 26 4 UNUSED = 32
7 UNUSED 1 < UNUSED 525
< UNUSED > 0 £ UNUSED *» SGS
O Filess O BlockKs

1162 Free blocks

4.4.12 Summary Option (/N)

The /N option lists a summary of the volume directory. The summary lists
the number of files in each directory segment and the number of segments in
use on the volume you specify. The segments are listed in the order in which
they are linked on the volume.

Directory Program (DIR) 4-7

The following command lists the summary of the directory for device DK:.

* /N
i4-Jan-83

44 Files in segment 1
46 Filés in sedgment 4
37 Files in segment 2
34 Files in segment O
38 Files in segment 3
16 Available sedments, S in use

199 Filess 3647 BlockKks
1115 Free blocKs

4.4.13 Octal Option (/O)

The /O option is similar to the /L option, but lists the sizes (and starting
block numbers if you use /B) of the files in octal. If the device you specify is a
magnetic tape, DIR prints the sequence number in octal. For example, the
following command lists the directory of device DYO0:, with sizes in octal.

% DY0:/0

id-Jan-83 Octal
MYPROG.MAC 44P 12-Nov-B2 ™ +MAC 31 Z27-Nov-82
UTMAC +MAC 7 18-0ct-BZ2 SYSMAC . MAC 51 19-Nov-B2
SWAP .8Y¥S 31 05-Sep-82 ANTON .MAC 4 18-Novw-82
RT11S54.8Y8 103 19-Nouw-BZ2 TT +8YS 2 19-Nou-82
DX +SYS 3 29-Aug-82 BUILD «MAC 144 19-Nov-82

10 Filess 462 BlocKs
264 Free blocKs

4.4.14 Exclude Option (/P)

The /P option lists a directory of all files on a volume, excludmg those that
you specify. You may specify up to six files.

#DY¥1:_%,85AU/P

29-Feb-83

RT118J.MAC B7P 0B6-Jan-B3 RT11iFB.MAC 80P 0B-Jan-B83
RT11BL.MAC B3P OB-Jan-83 DY +MAC 3P 06-Jan-83
SWAP W MAC 25P 0B-Jan-83 TT +MAC 2P 0B-~Jan-83
DP +MAC 3P 0B-~Jan-83 DY +MAC 4P 06-Jan-83
LP +MAC 2P 0B6-Jan-83 RK +«MAC 3 06-Jan-83
STARTS.COM 1 27-Jan-B83 DD +MAC S 06-Jan-B83

12 Files» 258 BlockKks
73 Free blocks

This command lists all files on device DY1: except .SAV files.

4-8 Directory Program (DIR)

R

T

4.4.15 Deleted Option (/Q)

The /Q option lists a directory of the volume you specify, listing the file
names, types, sizes, creation dates, and starting block numbers in decimal of
files that have been deleted but whose file name information has not been
destroyed. The file names that print represent either tentative files or files
that have been deleted. This can be useful in recovering files that have been
accidentally deleted. Once you identify the file name and location, you can
use DUP to rename the area. See Section 6.3.1 for this procedure.

¥ DISK.DIR=/0
This command creates a file called DISK.DIR on device DK: that contains

directory information about unused areas from device DK:. Use the monitor
TYPE command to read the file:

, TYPE DISK.DIR/LOG
Files coried:

DK:DISK.DIR to TT:

12-Dct-B2 .
EXAMPL.FOR 23 03-Ser-82 1403 MTHD . SMP 3 09-Ser-B82 2895
SCOPE +PIC 3 22-Ser-BZ 2926

O Files, O Blocks

O Free blocKs

4.416 Reverse Option (/R)

The /R option lists a directory in the reverse order of the sort you specify
with the /A or /S option. ’

% DY0:/8:81Z/R

14-Jan-83]
BUILD +MAC 100 0B-Sepr-B82 ™ +MAC 25 27-Nou-82
RT118.J.8Y8 67 19-Nou-B82 YTMAC MAC 7 189-Nou-B2
SYSMAC . MAC 41 19-Nou-82 RFUNCT.SYS 4 19-Nou-82
MYPROG,MAC 36P 12-0ct-82 X +8Y8 3 0B6-Ser-B2
SWAP ,8%¥8 25 05-Dec-82 TT +8YS 2 19-Nou-82

10 Filessy 306 BlocKs
180 Free blocks

This command lists the directory of device DYO: in reverse file size order
(from largest to smallest). :

4.4.17 . Sort Option (/S[:xxx])

The /S[:xxx] option sorts the directory of the specified volume according to a
three-character code you specify as :xxx. Table 4-2 summarizes the codes
and their functions.

Directory Program (DIR) 4-9

Table 4-2: Sort Codes

Code Function

DAT Chronological by creation date. Files that have the same date are
sorted alphabetically by file name and file type.

NAM Alphabetical by file name. Files that have the same file name are sorted
alphabetically by file type (this has the same effect as the /A option).

POS According to the position of the files on the device. This is the same as
using /S with no code.

SIZ Based on file size (in blocks). Files that are the same size are sorted
alphabetically by file name and file type. Files are sorted from smallest
to largest unless you also use /R.

TYP Alphabetical by file type. Files that have the same file type are sorted

alphabetically by file name.

The following examples illustrate the /S option.

+ DYO:/S:DAT

4-Feb-B83
BUILD .MAC 100 0B-Sep-82
DY +BYS 0G6-Sep-82
MYPROG.MAC 36P 12-0ct-BZ
RFUNCT .MAC 19-Nou-82
RT118J.8Y8S 87 19-Nou-Bz

10 Filess 3086 Blocks

180 Free blockKks

% DYO:/5:NAM
4-Feb-83

BUILD .MAC 100

DY +8Y8
MYPROG.MAC
RFUNCT.SYE

RT118J.8Y8 67

0B-5epr-82
0B-Ser-B2

3BP 12-0ctv-82

19-Now-B2
19-Nouw-8B2

10 Files, 306 BlockKs

180 Free Blocks

* DY0:/5:P0S

4-Fehb-83

RT118J.8%¥8 67 19-Nov-8Z
DY +8YS 3 0B-Ser-B82
MYPROG.MAC 36P 12-0ct-8Z2
SWAP ,8BYS 2% 05-Dec-BZ
RFUNCT.SY8 4 19-Nou-82

10 Filess 306 BlocKs

180 Free bklockKs

% DY0:/8:812

4-Jan-83
TT +8Y8 2 19-Nou-B2
DY +8YS 3 0B-Ser-82
RFUNCT.S5YS 4 19-Novw-BZ
UYTMAC +MAC 7 19-Nouv-82
SWAP .8YS 25 (05-Dec-82

10 Filess 306 Blocks

180 Free blocks

4-10 Directory Program (DIR)

S¥8MAC.MAC

TT +8Y5
YTMAC MAC
™ +MAC
SWAP .8YS
SWAP .8YS
SYSMAC .MAC
™ +MAC
TT +8Y8

UTMAC +MAC

BUILD .MAC
SYSMAC.MAC
™ +MAC
UYTMAC MAC
TT +SYS

™ +MAC
MYPROG.MAC
SYSMAC .MAC
RT118J.8YS
BUILD .MAC

i3

L3I0 B B g I g

-3 ™

| g I S A

~ U e

100

25

)~

25
36P

B7
100

19-Now-8B2
19-Now-B2
i9-Nou-82
27-Nou-82
05-Dec-8B2

05-Dec-82
19-Nov-B2
27-Nou-82
19-Nov-82
18-Novw-82

O6-SepP-82
19-Nov-B82
27-Now-82
19-Nouw-B2
19-Novw-82

27-Nov-82
i2-0ct-B2
19-Nov-82
19-Nouw-82
0B-Ser-B2

DYO:/8:TYP

14-Dec-8B2
BUILD +MAC 100 0B-Sep-82 DY +8Y8 3 0OG6-Sepr-82
MYPROG.MAC 3G6P 12-0ct-82 RFUNCT.SYS 4 19-Novw-82
SYSMAC .+ MAC 41 19-Nou-B2 RT118J.8YS 67 19-Nouw-82
™ +MAC 25 27-Nou-82 SWAP +8Y¥S 25 (5-Dec-82
UTMAC +MAC 7 19-Nou-82 TT +8Y 2 19-Nov-B2

10 Filess 306 BlocKs
180 Free blocks

4.4.18 Protection Option (/T)

The /T option includes in the directory listing only those files on the volume
you specify that are protected against deletion. A letter P next to the block
size number in the file’s directory entry indicates that the file is protected.
The following command lists only those files on DK: that are protected.

DK:/S:8IZ/R/T

5-Jan-83

BUILD .MAC 100P 0G-Ser-82 ™ +MAC 25P 27-Nov-82
RT11Sd B7P 19-Nouv-82 VTMAC +MAC 7P 19-Nou-82
SYSMAC.MAC 41PF 19-Nou-82 RFUNCT.SYS 4P 19-Nouv-8Z2
MYPROG.MAC 36P 12-0ct-82 " +8YS 3P 0G-Sepr-82Z2
SWAP .8Y8 25P 05-Dec-B2 TT +8YS 2P 19-Nouv-82

10 Filess 306 BlocKs
5584 Free blocKs

4.4.19 No Protection Option (/U)

The /U option includes in the directory listing only those files on the volume
you specify that are not protected against deletion. Files that are not pro-
tected do not have a P in the file’s directory entry. The following command
lists only those files on DK: that are not protected.

/8:5IZ/R/U

14-Dec-82
COUNT .MAC 100 06-Sep-82 SBT +TXH 25 27-Nov-BZ
ASCII +MAC 67 19-Nou-82 MAIL.MAI 7 19-Nou-82
SUBONE.MAC 41 19-Now-82 SORT.FOR 4 19-Nov-82
MYPROG.MAC 36 12-0ct-B2 X +8Y8 3 06-Sep-B2

8 Filess 283 BlocKs
325 Free blocks

4.4.20 Volume ID Option (/V[:ONL])
The /V option prints the volume identification and owner name as part of the

directory listing header. The optional argument, :ONL, prints only the vol-
ume ID and owner name. You can combine /V with any other option.

Directory Program (DIR) 4-11

The following example uses the /V option.

* DY:/W

14-Jan-83

Volume ID: BACKUPZ

Owner : Marcvy
SWAP .SY¥S 25P 19-Now-82 RT118J.8Y8 G7P 19-Nou-82
RT11FB.5YS BOP 19-Nov-82 RT11BL.8YS 4P 19-Nouw-82
TT +8Y5 2P 19-Now-B82 DT +8Y8 3P 19-Nov-82
DP +BYS 3P 18-Now-B2 X +8YS 3P 19-Now-82
DY +8Y8 4P 18-Nou-82 RF +5Y8 3P 19-Nov-82
RK +8YS 3P 19-Now-82 DL +8YS 4P 19-Nou-82

12 Filesy» 271 BlocKs
215 Free blocKs

The next example uses the :ONL-argument.
% DYO:/U:ONL

Yolume ID: RT11 WS
Qwner : Donna

4-12 Directory Program (DIR)

Chapter 5
Dump Program (DUMP)

The DUMP program prints on the console or line printer, or writes to a file,
all or any part of a file as words or bytes (in octal), ASCII characters, or
Radix—50 characters. DUMP is particularly useful for examining directo-
ries and files that contain binary data.

5.1 Calling And Terminating DUMP

To call the DUMP program from the system device, respond to the dot (.)
printed by the keyboard monitor by typing:

+ R DUMP GED

The Command String Interpreter (CSI) prints an asterisk at the left margin
of the console terminal when it is ready to accept a command line. If you
respond to the asterisk by typing only a carriage return, DUMP prints its
current version number.

You can type CTRL/C to halt DUMP and return control to the monitor
when DUMP is waiting for input from the console terminal. You must type
two CTRL/Cs to abort DUMP at any other time. To restart DUMP, type R
DUMP or REENTER in response to the monitor’s dot.

5.2 -DUMP Command String Syntax

Chapter 1, Command String Interpreter, describes the general syntax of
the command line that DUMP accepts. If you do not specify an output file,
the listing prints on the line printer. If you do not specify a file type for an
output file, the system uses .DMP.

5.3 Options

Table 51 summarizes the options that are valid for DUMP.

5-1

Table 5-1: DUMP Options

Option ' Function

/B Outputs bytes, in octal.

/Emn Ends output at block n, where n is an octal block number.

G Ignores input errors.

/N Suppresses ASCII output.

/O:n Outputs only block n, where n is an octal block number. With this
option, you can dump only one block for each command line.

/S Starts output with block n, where n is an octal block number. For
random-access devices, n may not be greater than the number of
blocks in the file. ,

T Defines a tape as non-file-structured.

W Qutputs words, in octal (the default mode).

X Outputs Radix—-50 characters.

ASCII characters are always dumped unless you type /N.

If you specify an input file name, the block numbers (n) you supply are
relative to the beginning of that file. If you do not specify a file name, that
is, if you are dumping a device, the block numbeérs are the absolute (physi-
cal) block numbers on that device. Remember that the first block of any file .
or device is block 0.

NOTE
DUMP does not print data from track 0 of diskettes.

DUMP handles operations that involve magtape differently from opera-
tions involving random-access devices.

If you dump an RT-11 file-structured tape and specify only a device name
in the input specification, DUMP reads only as far as the logical EOF1.
Logical end-of-tape is indicated by an end-of-file label followed by two tape
marks. For non-file-structured tape, logical end-of-tape is indicated by two
consecutive tape marks. For magtape dumps, tape mark messages appear
in the output listing as DUMP encounters them on the tape.

If you use /S:n with magtape, n can be any positive value. However, an
error can occur if n is greater than the number of blocks written on the
tape. For example, if a tape has 100 written blocks and n is 110, an error
can occur if DUMP accesses past the 100th block. If you specify /E:n, DUMP
reads the tape from its starting position (block 0, unless you specify other-
wise) to block n or to logical end-of-tape, whichever comes first.

5-2 DUMP Program (DUMP)

5.4

Example Commands and Listings

This section includes sample DUMP commands and the listings they

-produce.

The following command string directs DUMP to print, in words, information

contained in block 1 of the file DMPX.SAYV stored on device

* DMPX.SAU/0:1

DMPX.SAW/0:1
BLOCK NUMBER 000001

000/
020/
040/
B0/
100/
120/
140/
160/

340/
360/
400/
420/
440/
460/
300/
S20/
340/
SB60/
GO0/
B20/
640/
GG/
700/
720/
740/
760/

042062 *.
*,

Q01002 *

004001 * 4

045504 043072 046111 030505 044456 04BSZ3 *,

000000 QOO000 000000 GO0000 QROOOOD VOO0D0 *,

000000 000000 OOOO0O00 000000 00OOO0 000000 *,

*
L)
*
*
*,
L)
*

GOO0O00 000000 000000 OO0C0O QOQO0O0 00OO0N0 DOO0DO DO0OQAQ *,

QOQOOQ0 818 0 00QO00
OOO000

DK..

+

+

e ¥
Ve e ¥
v Do
e ¥
+ISM*
e ¥
e e ¥
.
R
e e ¥
e ®
te s B
e ¥
R
voae e
e ¥

% % k ok &k %k Kk K Kk k Kk k

In the printout above, the heading shows which block of the file follows. The
numbers in the leftmost column indicate the byte offset from the beginning
of the block. Remember that these are all octal values and that there are two
bytes per word. The words that were dumped appear in the next eight col-
umns. The rightmost column contains the ASCII equivalent of each word.
DUMP substitutes a dot (.) for nonprinting codes, such as those for control

characters.

DUMP Program (DUMP) 5-3

The next command dumps block 1 of file PIP.SAV. The /N option suppresses
ASCII output.

% PIP,SAV/N/D:1

SY:PIP.BAV/N/D:1
000001

BLOCK NUMBER

000/
Q20/
0d4a/
0G0/
100/
1207/
140/
164G/
200/
220/
240/
260/
300/
320/
340/
360/
400/
420/
440/
460/
00/
520/
sS40/
360/
800/
B0/
640/
BBO/
700/
720/
740/
760/

0DBOS02
022812
012802
011501
000743
003147
QOOO2Z3
ooo01d

OOo0O30

010046
001406
012601
177724
003562
014100
000470
005764
014102

010146
012100
QIZ2600
016701
Q15260
0OQOzZ2
004537
004337
0044837

010246
005046
011503
Qo012
05562
Q00211
001002
001002
001002

000000

000422
011146
QO0OZ205
005021

Qo022

NOOO36

062701
010246
104376
0201867
002112
00002

0DOB4SE
014102
014120

001100

104217
175400

Q03562
000423
004337
004537

012102
103403
012787
103774
000013
014100
001002
001002

000000

The following command dumps block 1 of SYSMAC.MAC in bytes. ASCII
equivalents appear underneath each byte.

% BYSMAC . MAC/B/0:1

SY:8¥SMAC.MAC/B/D:1
BLOCK NUMBER

QQa/

020/

040/

080/

100/

1za/

1407/

120 040
P
101 122

5-4 DUMP Program (DUMP)

000001

117 106 040

0 F

105 040 040

E
040

015 O

+ +

=l
&

R
2 073

k)
111 117 116

N

27 101 122

R

24 117 040

— = o e
D

040 124
T
111 123
I)
101 116
A N
040 124
T
o400 111
I
105 040
E
103 110
C H

110 105
H E
040 040
123 106
g F
110 105
H E
116 040
N

111 123
I S
101 116
A N

040 040 123

110

108

040

040

107

—
3
B

O = Y e T o o~ = 30— [T =

[

[y

[5) —

@

fa) —- " 191}
- - — =
- - g ™
- [©2] J P

w
-
[}
o

040

117 106
105 102
103 104
106 117
123 040
102

1

J
040 127

W

124

131 015

056 015

-1
-3
o
-
1]

117

K]
w

103

a

11 124

— o T =) = = -
]

s’

160/

200/

220/

240/

260/

300/

3240/

340/

360/

400/

420/

440/

460/

00/

520/

sS40/

360/

GOG/

620/

640/

660/

700/

720/

740/

760/

The next example shows block 6 (the directory) of device RKO:.

110

101

ad0

ad0

117

116

040

101

040

(]

-3
£~

= [T = — —= — = T
K o "3 K
on ~

-
-3

036

103
C
0G4
4

124
T
o480

108
E
040

131

AV
4

105
E
117
0
114
L
120
P
124
I
101
A
015
105
E
111
I
102
B
101
A
101
A
061
1
058
056
105
E
056

Q40

040

Q40

040

040

040

123

040

116

110

103

040

117
117
117
103
107
012

012

115
015

013

103
C

o
umow

r

3
w

R
=

S = T O e U OO 2 e
fe) (] — — . -, e .
~ I~ o ~

)]
M

L]
o
93]

111

114

—
L4

-3
=

103

063
5

103
c
10d
D
124
T
115
M
101
A
103
C
012
108
E
114
L
040

040

]
I~

._..
G

= ef =) = Z e]
. 5] [R
=3 s

T
®

105
040
122
R

111
114
117
073
;

123
111
117

040

D~ C > =
bed 3 R [
—- . iy ~J

—
9]
-

115
0354
036

058

in octal words with Radix-50 equivalents below each word.

% RRKO:/N/X/0:86

RRKO:/N/X/0:6
BLOCK NUMBER

QQ0/

020/

040/

GO0020

p

075273

5YS

A%

000002

B

A
|

GP9

000031 Q00000027147
GP9
027147002000
Ky

Q00046 002000 075131
8 Y X SWA
0O2000 071677 142302

YR RT1 154
071677 141262 073273
RT1 iFB SYS

122

R
040

040

124

T
122
R
117
8]
101
A
040

120
P
114
L
036
+
0B0O
0
036
+
056
+
126
Y
115
M
103
C
115
M
054
4
036

’

—
3

-
a

=]
L8]

056
;03
061
101
101
061
0356

056

073
j

117
104
105
121
117
111
117
040
040
040
105
110
114

013

.
iy
)

e

9]
o

e O e Doe d
— 4]
N [#)]

=
~
3]

- i
0

114
L
054
14
056

103
c

The output is

QB2000

P

078273

SYS

OO0120

B

DUMP Program (DUMP)

040

124
T
040

116
N

o

12
U
12

]

R
107
G
040

1086
F
122
R
040

Q40

111
I
111
I
01z
oiz

056

103
C
065
B
061
1
122
R
114
L
056

+

056

115
M

B0/
100/
120/
140/
160/
200/
220/
240/
260/
300/
320/
340/
360/
400/
420/
440/
480/
300/
520/
540/
S0/
BOO/
620/
840/
660/
700/
720/
740/

760/

56 DUMP Program (DUMP)

027147
GPY
002000

Y X
013600
DP

073273
8Ys

027147
GP9
002000

(YAY]
[IFAY

014840
DD

027147
GP9
002000
Y X
015173
DIS
014400
D
073273
SYS

027147
GP9
Q02000

A,
l//\

023752
FOR
OBO223
ORC
073376
SAY
QODO82
AB

GPS
NOZ000

(Yavs
LI

‘016040

075273
8Y8

027147
GP9
OO2000

LYAY]
LIFAY

013770
DS

027547
GWOD
QO2000
R
051520
MMH
QS2200
MT2
073273
SY8

027147
GP8
002000

(YAY]
LIVAY

016130
DupP
050374
MAT
073376
SAY
000021
Q
000000

027147
GPO

002000071677
VX RT1

5YS
075273000003
5Y8 C

GP3
Q27147002000
GP9 YK
0Q2000015340

YA DL

......

DoOoooOR7147
GP9
027147002000
GP2 Y
OOZ000052150
VX MTH
015173052177
DIS MT1
014400073273
D 8Y8
012445000010
COM H

QOO00O0027147
QPS
Q27147002000
GPI VX
DOZ000012740
YK CT
BA
QOOOO0O073376
gAY
073376000023
SAY - 8§
0
000000027147
GPO
Q27147002000
GPY YK
QO2000042614
it KED

141034
1BL
073273
5Y8
000003

027147
GP8
002000

s
LIV

071070
RK

075273
SY8

027147
GP9
OO2000
Y
052070
MS
014400
D
012445
COoM

027147
GP9
QQZ2000
¥
062240

073273
8Y8
000051
AA
Q00000

027147
GPOD
002000
YX
017751
EDI
000000

Q75273

027147
GPg
GO2000

X
Q70360
RF

027147
GP9
002000

(Vav]
[IFAY

012620
CRr

073273
SYS
000011

027347
GWO
Q2000

X
0B2170
PC

075273

g8Y¥8

0ooo07
G

027147
GP8
002000

(Yav]
(X

075273
8Y8
076400
T
073376
SAV

QOO100

027147
GP9
002000

LYaY]
LIRAN

018350
DY

027147
GP9
002000

LAY}
LIFA

046770
LS

027147
GPO
GO2000
YX
054540

NL

027147
GP8
002000

(YAY]
LAY

013172
DIR
050553
MAC
073376
SAY
000073
AS

027147
GP9
002000

LAY
T

016300

027147
GP9
OO2000

Y
046600
LP

075273
5Y8
000011

027547
GWO
QOZ2000
Y%
052100

MSH

027147
GPY
QQ2000
YX
070533
RES
Q00000

074324
SML
000023
=]
000000

Chapter 6
Device Utility Program (DUP)

The device utility program (DUP) is a device maintenance program that
creates files on file-structured RT-11 devices (disks, single- and double-
density diskettes, DECtape II, and magtape). It can also extend files on
certain file-structured devices (disks, single- and double-density diskettes,
and DECtape II), and it can compress, image copy, initialize, or boot RT-11
file-structured devices. DUP does not operate on non-file-structured devices
(line printer, terminal).

6.1 Calling and Terminating DUP

To call DUP from the system device, respond to the dot (.) printed by the
keyboard monitor by typing:

+ R DUP @D

The Command String Interpreter (CSI) prints an asterisk (*) at the left
margin of the terminal and waits for you to type a command string. If you
enter only a carriage return at this point, DUP prints its current version
number and prompts you again for a command string. You can type
CTRL/C to halt DUP and return control to the monitor when DUP is wait-
ing for input from the console terminal. You must type two CTRL/Cs to
abort DUP at any other time. Note that the /S, /T, and /C operations lock
out the CTRL/C command until the operation completes; these three opera-
tions cannot be interrupted with CTRL/C. To restart DUP, type R DUP or
REENTER in response to the monitor’s dot.

6.2 DUP Command String Syntax

Chapter 1, Command String Interpreter, describes the general syntax of
the command line that DUP accepts. DUP accepts only one input file speci-
fication and one output file specification in the command line.

6.3 Options

Certain options are available for use with DUP. These options are divided
into two categories: action, and mode. Action options cause specific opera-
tions to occur. You can use these options alone or with valid mode options.

6-1

Usually, you can specify only one action option at a time. Mode options
modify action options. Table 6-1 illustrates which mode options you can use
with a particular action option.

Table 6-1: DUP Option Combinations

Action Mode
C W, Y, G
D W, Y
I Y,GEF,HR
K W,F,G,E,F,H,R
6] QWY
S W,X,Y
T W,Y
U W, Y
A" W, Y
Z W,B,N,R,V,Y,D

Note that /V can be either an action or a mode option, depending on how you
use it.

You can use DUP action options to perform operations such as creating files,
copying devices, scanning for bad blocks, performing a bootstrap operation,
and initializing volumes. You can use the DUP mode options to modify the
action options, where necessary. .

The following sections describe the various DUP options and give examples
of typical uses. Table 6-2 summarizes the options you can use with DUP.

6.3.1 Create Option (/Cl/G:n))

The /C option creates a file with a specific name, location, and size on the
random-access device that.you specify. This option is useful in recovering
files that have been deleted, and for creating files to assign as logical disks
(see Chapter 8). The /C option creates only a directory entry for the file. It
does not store any data in the file. You must specify both the file name and
file type of the file to be created.

The syntax of the command is:
filespec[n] =/C[/G:n]
where:

filespec[n] represents the device, file name, and file type of the file to
be created; [n] is a decimal number representing the size
in blocks of the file to be created. Note that the brackets
here are part of the command; that is, they do not indicate
n is optional. If you do not specify this number, DUP cre-
ates a one-block file.

6-2 Device Utility Program (DUP)

Table 6-2: DUP Options

Option

Section

Function

/BI:RET]

IC

/D

/E:n

/F

/G:n

/H

11

K

/N:n

/0
Q

/R{:RET]

6.3.13.4

6.3.1

6.3.13.5

6.3.2

6.3.4

6.3.1

6.3.2

6.3.2

6.3.3

6.3.13.1 .

6.3.5
6.3.6

6.3.13.3

Use with /Z to write files with the file type .BAD over
any bad blocks DUP finds on the disk to be initialized.
Use :RET to retain through initialization all .BAD
entries created by a previous /B.

Creates a file on the volume you specify. DUP creates
the file in the first available location, unless you specify

~ astarting block number by using the /G option.

Use with /Z to uninitialize (restore) a device. Use only if
no files have been transferred to the device since it was
initialized.

Specifies the ending block number for a read operation
(used with the /I and /K options).

Use with the /K option to transfer the file name con-
taining the bad block together with the relative block
number of the bad block in the file. Or use with /I either
to copy a file to an output device or copy a device to an
output file.

Specifies the starting block number for a read operation
(on an input device) and the starting block number for
a write operation {on an output device); n is an integer
that represents a block number. Use this option with
the /C, /1, and /K options.

Use with the /I option to verify that the output is equal
to the input.

Copies the image of a disk to another disk or magtape
or from magtape to disk. Use with /G and /E if you want
to specify block numbers.

Scans a device for bad blocks and outputs the octal
address of the bad blocks to the output device. Use with
/G and /E if you want to specify block numbers as
boundaries for the scan.

Use with /Z to set the number of directory segments you
require if you do not want the default size; n is an inte-
ger in the range 1-37 (octal).

Boots the device or file you specify.

Use with /O to boot a volume that is not RT-11, or is a
pre—Version 4 volume of RT-11.

Use with /Z to scan a device that supports bad block
replacement for bad blocks, or with /I to preserve the
output volume’s bad block replacement table. When used
with /Z, /R creates a replacement table on the disk for any
bad blocks DUP finds. If you use /R:RET with /Z, DUP
retains the replacement table that is already on the disk
and does not prescan the disk for bad blocks.

(Continued on next page)

Device Utility Program (DUP) 6-3

Table 6-2: DUP Options (Cont.)

Option Section Function
/S 6.3.7 Compresses a disk onto itself or onto another disk; the
output device, if any, must be initialized.
/Tin 6.3.8 Extends an existing file by the number of blocks that n
indicates.
/U}:xx] 6.3.9 Writes the bootstrap portion of the monitor file in

blocks 0 and 2-5 of the target device. The optional
argument, xx, represents the target system device
name.

/V[:ONL] 6.3.10 Prints the user ID and owner name. Use it with /Z (as a
mode option) to place a new user ID and owner name in
block 1 of the initialized disk, or in the VOL1 header
block on magtape. Using /V:ONL with /Z changes only
the ID and owner name, and does not initialize the
device (not applicable for magtape).

W 6.3.11 Use with any action option except /I (but only one) to
initiate an operation and then pause to allow you to
change volumes. This is useful on small, single-disk
systems because it lets you replace the system device
with another disk before performing an operation.

X 6.3.7 Use with /S to inhibit automatic booting of the system
device when it is compressed.

Y 6.3.12 Use with /C, /1,/0, /S, /T, U, V, or /Z to ensure immedi-
' ate execution of the operation by inhibiting the confir-
mation messages.

/Z[:n] 6.3.13 Initializes the directory of the device you specify. The
size of the directory defaults to the standard RT-11
size; use n to allocate extra directory words for each
entry beyond the default.

/G:n represents the octal numeric value of the starting block of
the file to be created. If you do not use /G:n, DUP creates
the file in the first unused area large enough to contain
the file. Use a decimal point with n (n.) to specify a deci-
mal starting block number.

You can use the /C option to cover bad blocks on a disk by creating a file with
a file type .BAD to cover the bad area.

Use /C to recover accidentally deleted files. In this case, use DIR to obtain a
listing of the device. Use the /E and /Q options in DIR to list files, tentative
files, empty areas, and the sizes of all areas. You can then assign a file name
to the area that contains the data you lost.

You can also use DUP to set aside a file on a disk without performing any
input or output operations on the file.

6-4 Device Utility Program (DUP)

When you use the /C option, make sure that the area in which the file is to be
created is empty (using the DIR /E and /Q options). If there are more blocks
. in the empty area than the file you are creating needs, DUP attempts to put
the extra blocks in empty areas that are contiguous to the file you are creat-
ing. If there is not enough room in contiguous empty areas, the error mes-
sage ?DUP-F-No room for file DEV:FILNAM.TYP prints, and DUP does not
create the file.

The /C option checks for duplicate file names. If the file name you specify
already exists on the device, DUP issues an error message and does not cre-
ate a second file with the same name.

If you attempt to create a file over a tentative file (one that was opened but
never closed) and the foreground is loaded, the system prompts you to
confirm the operation. If you type Y to continue, DUP writes over the tenta-
tive file. Be sure that you do not write over a tentative file being used by the
foreground job; this will corrupt the file and cause unpredictable results.

The following example ﬁses /C to create a file named FILE.MAC consisting
of blocks 140, 141, and 142 on device DK1.:.

% DK1:FILE.MACL31=/C/G:140

6.3.2 Image Copy Option (/l)

The /1 option copies block for block from one volume to another. This opera-
tion is applicable for magtape only when copying to or from a random-access
volume, such as disk or diskette. The /I option is often used to copy one disk
to another without changing the file structure or location of files on the
device. For this purpose, it is an added convenience that you do not have to
copy a boot block to the device. You can also copy disks that are not in RT-11
format, if they have no bad blocks. If DUP encounters a bad block on either
the input or output volume, it retries the operation and performs the copy
one block at a time. If no error message prints, you can assume that the
transfer completed correctly.

Qualifiers to the /I option let you:

1. Specify the blocks to be read from the input device and a starting block
number for the write operation on the output device.

2. Copy a file to a device, or a device to a file, by speéifying a file name with
either the input or output device. For example, you can copy a diskette to
a file on an RL02, or a file on an RL02 to a diskette.

3. Preserve the output volume’s bad block replacement table when you are
copying between like volumes that support bad block replacement.

4. Verify that the output matches the input after a copy operation.

NOTE

When you use /I in an operation involving magtape, you must
specify a file name and follow it with the /F option.

Device Utility Program (DUP) 6-5

The syntax of the command is:

output-device: filename [/F][/G:rn}= input-device[filename}/I[/G:rn/E:rn][/FI/HI/R]
*

where:

filename

/G:rn

/E:rn

/F

/H
/R

represents the file name to which you are copying the input
device, or (when specified with the input device) represents
the input file name you are copying to the output device.
You must specify a file name when you use the /F option. If
you specify an input file and you do not use /F, use the

‘dummy file name * with the output specification. Note that

you can use a file name with either the input or output, but
never with both. ’

represents a dummy file name (required when you do not
use the /F option, and when the output device is not a mag-
tape). Note that either filename or *, but not both, can be
specified with the output device.

when specified with the output device, represents the start-
ing block number for the write operation. When specified
with the input device, it represents the starting block num-
ber of the read operation.

represents the ending block number on the input device for
the read operation.

indicates that you want to copy a file to an output volume,
or that you are copying an entire input volume to an output
file. You must also use the /F option when you specify mag-
tape as the input or output device (because you must
always specify a file on the magtape).

verifies that the input matches the output.

preserves the output volume’s bad block replacement table.
DUP copies all blocks from the input volume to the output
volume except those blocks that contain the input volume’s
bad block replacement table.

The command string must include an input and an output specification;
there is no default device.

If one device is smaller than the other, DUP copies only the number of blacks
of the smaller device. DUP may therefore copy the entire directory of the
input volume, but not all of its files. If you copy a larger device to a smaller
one, DUP asks you to confirm the copy operation before DUP performs the
operation. If you use the /G:n and /E:n options, DUP asks you to confirm the
copy only if the number of blocks to be copied is larger than the area on the
output volume defined by the /G:n option.and the end of the output volume.

6-6 Device Utility Program (DUP)

DUP pri’nts the confirmation message after the normal copy confirmation.
Do not use the /I option with the /W option.

If the /F option is used the relative sizes of the input and output volumes
are ignored and you are not asked to confirm the copy. The confirmation
messages can also be suppressed by using the /Y option.

You can use the /H option with /I to verify that the input matches the
output after an image mode copy operation.

NOTE

The /1 option does not copy track O of diskettes. However, this
restriction has no impact on any copy operations involving
RT-11 formatted diskettes.

The following examples use the /I option. The file name * is not significant;
it is a dummy file name required by the Command String Interpreter.

DLis#=DLO:/1I
DLi:/Copvi Are vou sure?

The command shown above copies all blocks from DLO: to DL1.:.

DL1:%#/G:S01=DL0O:/I1/G:0/E:500
DLi:/Copvi Are vou sure? VY

The command shown above copies blocks 0-500 from DLO: to blocks
501-1000 on DL1:

¥ DL1:FLOPPY.BAK/F=DY(0:/1
DL1:/CopPvi Are vou sure? Y

The last command copies device DYO: to a file named FLOPPY.BAK on
DL1..

6.3.3 Bad Block Scan Option (/K)

Some mass storage volumes (disks, diskettes, and DECtape II) have bad
blocks, or they develop bad blocks as a result of age and use. You can use
the /K option to scan a device and locate bad blocks on it. DUP prints the
absolute block number of those blocks that return hardware errors when
DUP tries to read them. If you specify an output file, DUP prints the bad
block report in that file. Remember that block numbers are octal and the
first block on a device is block 0. If DUP finds no bad blocks, it prints an
informational message. A complete scan of a volume takes from one to
several minutes depending on the size of the volume. It does not destroy
data that is stored on the device.

Device Utility Program (DUP) 6-7

You can scan selected portions of a device by specifying beginning and
ending block numbers. The syntax of this command is:

[filespec = Jlinput-device:/K[/G:m][/E:n]
where: '

filespec represents the output file specification for the bad block
report. If no bad blocks are found, no file is created.

/G:m represents the block number of the first block to be
scanned.

/E:n represents the block number of the last block to be
scanned.

If you specify only a starting block number, DUP scans from the block you
specify to the end of the device.

If the device to be scanned has files on it, you can use /F with the /K option
to print the name of the file containing the bad block and the relative block
number within the file thakt is bad.

The following command scans the entire diskette in DY1:.

% DY1lez/K

The next command scans blocks 100 to 200(decimal) of the diskette in DY1:
and sends the bad block report to DYO:BLOCKS.BAD.

DYO:BLOCKS.BAD=DY1:/K/G:100,/E:100,

Sometimes a block that is reported as bad can recover. To verify whether
the reported bad blocks are the result of soft or hard errors (that is, whether
a bad block can recover), perform a second bad block scan and compare the
two reports. Blocks reported as bad on both reports are caused by hard
errors and cannot recover. Blocks that are reported as bad on the first
report but not on the second report indicate that a soft error has occurred,
and the blocks have recovered.

6.3.4 File Option (/F)

The file option serves two different purposes as a mode option, depending
on whether you use it with /K or with /1.

When you use /F with /K, DUP does a bad block scan and displays a file
name for each bad block it finds. DUP then prints a list of these bad block
files along with their locations within the file. This list includes the rela-
tive block number of each bad block within the file and a report on whether
each bad block is hard or soft. An example of such a list, along with the
command line that generated it, follows.

6-8 Device Utility Program (DUP)

i

¥ DYO:/K/F

Block Tvrre File Block
Q0717 463+ Hard NUMBER.PAS 000546 358,
000725 469. Hard ' ANTONY .MAC 000354 364,
DO0732 474, Hard CAESAR.MAC Q00561 369,
000743 483, Hard 4 UNUSED > 000372 378,
NO0751 489, Hard < UNUSED » 000800 384,
000754 492, Hard < UNUSED >

000603 387,
?DUP-W-Bad blocks detected B. :

DUP outputs the following list if you use /F with /K on a disk that supports
bad block replacement. In the column marked Type, DUP lists whether the
bad block is replaced in the manufacturer’s bad block replacement table or
if it is hard or soft.

DM1:/K/F

Block Tvre File Block
Q3055 1581, Rerplaced MSX +8Y¥Y8 000007 7
003465 1845, Rerlaced DRV +OBJ 000077 63,
037061 15921, Rerlaced < UNUSED » 010350 4436,
0561068 23622, Rerlaced < UNUSED = 027373 121327,
058210 23688, Rerlaced < UNUSED » 027877 12223,
077521 32593+ Rerlaced ¢ UNUSED > 051210 21128,
143116 507686+ Rerlaced < UNUSED > 043374 18172,
145337 51935, Rerlaced < UNUSED » 045615 18341.

?DUP-W-Bad bklocks detected 8,

When you use /F with /I, you use it either to copy a file from an input device
to an output device, or to copy an input device to an output file. Note that /I
does not copy track 0 of diskettes. If you use a magtape for either the input
or output device, you must specify a file name for the magtape followed by
the /F option. Do not include wildcards in either the input or output file
specification when you use the /F option.

6.3.5 Boot Option (/O)

The /O option can perform two operations: a hardware bootstrap of a spe-
cific device containing an RT-11 system, and a bootstrap of a particular
RT-11 monitor file that does not affect the bootstrap blocks on the device.

The command syntax for a device bootstrap is as follows:
dev:/O

This operation has the same results as a hardware bootstrap, Valid devices
for the boot operation follow:

DDO0:-DD1: DW:

DK: DX0:-DX1:
DL0:-DL3: DYO0:-DY1:
DMO:-DM7: DZ0:-DZ1:
DS0:-DS7: RKO0:-RKT:
DUO0:-DU7: SY:

Device Utility Progiam (DUP) 6-9

NOTE

The following unsupported devices are also valid for the /O
option:

DTO0:-DT7:
DPO0:-DPT7:
PDO:-PD1:
RF:

Use the following syntax to boot a monitor without changing the bootstrap
on the device: '
dev:monitor-name/O -

This makes it easy for you to switch from one monitor to another. Whether
bootstrapping a specific monitor or a specific device, DUP checks to see if
the bootstrap blocks are correctly formatted. If the boot operation you re-
quest is invalid, DUP prints an error message and waits for another com-
mand.

When you reboot with the /O option, you do not have to reenter the date
and time of day with the monitor DATE and TIME commands. However,
the clock does lose a few seconds during the reboot.

The following command reboots the RT-11 system under the SJ monitor:

% DLO:RT11854.8YS/0
RT-115J Yos.00

To boot a different monitor, for example the FB monitor (for DY0:), type:

% DYO:RT11FB.BYS/0

6.3.6 Boot Foreign Volume Option (/Q)

Use the /Q option with /O to boot a volume that has a monitor other than
the RT-11 Version 4 or 5 monitor. Note that you must use /Q to boot any
version of RT—11 previous to Version 4.

The following example boots an RT-11 Version 3B volume.

% DY0:/0/0
.RT-118.4 VO3B-00B

DUP does not retain the date and time when you use the /Q option.
6.3.7 Squeeze Option (/S)

Use the /S option to compress a volume (disk, diskette) onto itself or onto
another disk. To do this, DUP moves all the files to the beginning of the

6-10 Device Utility Program (DUP).

volume, producing a single, unused area after the group of files. The
squeeze operation does not change the bootstrap blocks of a volume. Since it
is critical to perform an error-free squeeze operation, be sure to scan a
volume (with /K) before you use /S.

The output volume you specify, if any, must be an initialized volume. If you
specify an output volume, DUP does not request confirmation before it
performs the operation. If you do not specify an output volume, DUP prints
the Are you sure? message and waits for your response before proceeding.
You must type Y followed by a carriage return for the command to be
executed.

The /S option does not operate on files with .BAD file types, preventing you
from reusing bad blocks that occur on a disk. You can rename files contain-
ing bad blocks, giving them a .BAD file type, and therefore cause DUP to
leave them in place when you execute a /S. During a squeeze operation,
files with a .BAD file type are renamed FILE.BAD. DUP inserts files before
and after .BAD files until the space between the last file it moved and the
BAD file is smaller than the next file to be moved.

If an error occurs during a squeeze operation, DUP continues the operation,
performing it one block at a time. If no error message prints, you can
assume that the operation completed correctly.

The syntax of the command is:
[output-device = Jinput-device/S

Do not use /S on the system device (SY:) when a foreground or system job is
loaded. A ?DUP-F-Can’t squeeze SY: while foreground loaded error mes-
sage results if you attempt this, and DUP ignores the /S operation. You
must unload the foreground job before using the /S option. Also, you should
not attempt to squeeze any volume that a running foreground job is using.
Data may be written over a file that the foreground job has open, thereby
corrupting the file and possibly causing a system crash.

NOTE

If you perform a compress operation on the system volume,
the system automatically reboots when the compress opera-
tion is completed. This occurs to prevent system crashes that
can occur when a system file is moved.

You can use /X with /S to suppress the automatic reboot and leave DUP
running. However, you should use /X only if you are certain that the moni-
tor file will not move. Even then, you should reboot the system when the
squeeze operation completes if the device handlers have moved.

The following examples use the /S option:

¥ 8Y:/8
SY:/Saueeze’ Are vou sure? Y

RT-115J Yos.,00

Device Utility Program (DUP) 6-11

The command shown above compresses the files on the system volume and
reboots the system when the compress operation completes.

NOTE

If you compress your system volume, make sure the DUP
program has the name DUP.SAV. If not, a system failure
may occur.

DYOe:%=DY¥1:/S

This command transfers all the files from device DY1: to device DYO:,
leaving DY1: unchanged. The file name * is not significant; it is a dummy
file name required by the Command String Interpreter.

6.3.8 Extend Option (/T:n)

Use the /T optiofl to extend the size of a file. The syntax of the command is:
filespec=/T:n
where:

ﬁleépec represents the device, file name, and file type of the file to
be extended

n represents the number of blocks to add to the file

You can extend a file in this manner only if it is followed by an unused area
at least n blocks long. Any blocks not required by the extend operation
remain in the unused area.

The following example uses the /T option:

DY1:ZYZ,T8T=/T:100

This command assigns 100 more blocks to the file named ZYZ.TST on de-
vice DY1:. '

6.3.9 Bootstrap Copy Option (/U[:xx])

In order to use a volume as a system volume, you must copy a bootstrap
onto it. To do this, first make sure that the appropriate monitor file and
handler are stored on the volume. For a double-density diskette system, for
example, check to see that the file DY.SYS is in the diskette directory. If it
is, then you can copy the desired monitor onto the diskette, using the /U
option.

The option argument, Xx, represents a target system device name. For ex-
ample, you can use this argument when you are creating a bootable RX01
diskette if the current system is on an RX02 system.

6-12 Device Utility Program (DUP)

NOTE

When you use the /U option, make sure that the input vol-
ume is also the output volume.

To copy a bootstrap for the SJ monitor on DL1:, for example, use the follow-
ing procedure:

1. Obtain a formatted disk. (Most disks, diskettes, and DECtape II vol-
umes are formatted by the manufacturer. However, Chapter 8, FOR-
MAT, does outline the procedure for reformatting RK05, RK06, RK07,
RP02, and RP03 disks, and RX01 and RX02 diskettes.)

Initialize the disk with /Z (see Section 6.3.13).

3. Copy files onto the disk.

4. Copy the monitor and RL02 handler, DL.SYS, onto the disk.
5

Do

Copy the monitor bootstrap onto the disk with /U.

The following example shows how to initialize a diskette, copy files to it,
and write a bootstrap onto the diskette:

% DY1:/2/Y

The command shown above (step 2 of the procedure described above) initial-
izes the diskette.

DY1:%#=DY0:/8

This command, which combines steps 3 and 4, squeezes all the files from
DYO0: onto DY1..

DY1:#=DYO:RTL11FB,SYS/U

The last command (step 5) writes the bootstrap for the FB monitor onto the
bootstrap blocks (blocks 0 and 2-5) of DY1:. The file name * is not signifi-
cant; it is a dummy file name required by the Command String Interpreter.

6.3.10 Volume ID Option (/V[:ONL])

You can use the /V option as an action option to print the volume ID of a
device or to change the volume ID.

The syntax of the command is:

device:[/Z)/V[:ONL] -
where:
device: is the device whose volume ID you want to display or
change

Device Utility Program (DUP) 6-13

If you specify only /V, DUP prints out on the console terminal the volume
ID and owner name of the device you specify. If you specify /Z with /V, DUP
initializes the device and prompts you for a new volume ID and owner
name. If you specify /Z/V:ONL, DUP assumes you want only to change the
volume ID and owner name and not initialize the device.

When you specify either /Z/V or /Z/V:ONL, DUP prompts you for a volume
ID:

Yolume ID?

Respond with a volume ID that is up to 12 characters long for an RT-11
directory-structured volume or up to six characters long for magtape. Ter-
minate your response with a carriage return. DUP then prompts for an
owner name: ' 4 ' '

Owner?

Respond with an owner name that is up to 12 characters long for an RT-11
directory-structured volume or up to 10 characters long for magtape. Ter-
minate your response with a carriage return. DUP ignores characters you
type beyond the valid length.

You cannot change the volume ID of a magtape without initializing the
entire tape. The /V:ONL command changes only the volume ID and owner
name; it does not initialize the device. Section 6.3.13.2 describes how to use
/V with the /Z option to initialize a device and write new volume identifica-
tion on it.

The following example uses the /V:ONL option:

* ‘DLis/Z/V:0NL

DLO:/Yolume ID change’ Are vou sure? Y
Volume ID? FORTRAN VOL
ODwner? Nancy

This command writes a new volume ID and owner name on device DL1:.

6.3.11 Wait for Volume Option (/W)

The /W option causes DUP to prompt you for the volumes to operate on, and
waits for you to mount them. It is useful for single-disk systems or diskette
systems. /W is a mode option that you can use with any of the action
options, but you can specify only one action with it in a command line. Do
not use the /W option with the /I option.

The /W option initiates execution of a command, but then pauses and prints
the message Mount input volume in <device>; Continue?, where <device>
represents the device into which you mount the input volume. At this time
you can remove the system volume (if necessary) and mount the volume on

6-14 Device Utility Program (DUP)

—

which you actually want the operation to take place. When the new volume
is loaded, type Y or any string beginning with Y followed by a carriage
return to execute the operation. If you type N or any string beginning with
N, or CTRL/C, the operation is not completed. Instead DUP prompts you to
remount the system volume if you have removed it and returns control to
the keyboard monitor. Any other response causes the message to repeat.

If you type Y, DUP prompts you for the input volume, if any. When the
operation completes (except the /O operation, which boots the system), the
Mount system volume in <device>; Continue? message prints. Replace the
system device and type Y or any string beginning with Y followed by a
carriage return. If you type any other response, DUP prompts you to mount

~ the system volume until you type Y. When you type Y, the asterisk (¥)

prompt prints, and DUP waits for you to enter another command.

The following example uses the /W option:

% DY1:/K/F/MW

Mount input volume in DY13 Continue? ¥
7DUP-I-No hkad blocks detected DY1:

Mount system volume in D¥15 Continue? Y
*

This command directs DUP to scan the diskette for bad blocks. During the
first pause, the system diskette is removed and another diskette is
mounted. A Y is typed and the scan operation executes. During the second
pause, the system disk (on which DUP is stored) is replaced and another Y
is typed. DUP prompts for another command. When you use /W, make sure
that DUP is on the system volume.

6.3.12 No Query Option (/Y)

Use the /Y option to suppress the query messages that some commands
print.

Certain options normally print the Foreground job loaded, Continue? mes-
sage if a foreground job is loaded when you issue one of them (/C, 1, /0, 1Q,
/S, IT, and /Z). You must respond to the query message by typing Y or any
string beginning with Y followed by a carriage return for the operation to
proceed. Some other options (/C, /I, /O, /S, /V, and /Z) print the Are you
sure? message and wait for your response. If a foreground job is loaded and
you specify one of these options, DUP combines the two query messages
into one message and waits for your response. You can suppress all these
messages and the pause associated with them by specifying /Y in the com-
mand string.

Note, if you use /Y with /Z to initialize your system volume, the system
ignores /Y.

Device Utility Program (DUP) 6-15

6.3.13 Directory Initialization Option (/Z[:n])

You must initialize a device before you can store files on it. Use the /Z
option to clear and initialize the directory of an RT-11 directory-structured
device. The /Z option must always be the first operation you perform on a
new device after you receive it, formatted, from a manufacturer. After you
use /Z, there are no files in the directory.

The syntax of the command is as follows:
device:/Z[:n}
where:
device represents the device you want to initialize.

n is an octal integer (greater than or equal to 1) that repre-
sents the size increase, in words, of each directory entry.
DUP adds this number to the default number of words allo-
cated for each entry (valid only for directory-structured de-
vices).

The size of the directory determines the number of files that can be stored
on a device. The system allows a maximum of 72 files per directory seg-
ment, and 31 directory segments per device. Each segment uses two blocks
of disk space. If you do not specify n, each entry is seven words long (for file
name, creation date, and file position information). When you allocate ex-
tra words, the number of entries per directory segment decreases. The for-
mula for determining the number of entries per directory segment is:

(512-7Y/((mumber of extra words)+7)

For example, if you use /Z:1, you can make 63 entries per segment. RT-11
does not normally support nonstandard directory formats, and DIGITAL
does not recommend altering the directory format.

6.3.13.1 Changing Directory Segments (/N:n) — If you do not want the default
directory size of the device, use /N with /Z to set the desired number of
directory segments for entries in the directory. The syntax is as follows:

1Z/N:n

In this option, n is an integer in the range 1-31 that represents the number
of directory segments you want the directory to have.

Table 6-3 lists the default directory sizes, in segments, for RT-11-sup-
ported directory-structured devices.

If the default directory size for diskettes is too small for your needs, see the
RT-11 Installation Guide for details on increasing the default number of
directory segments.

6-16 Device Utility Program (DUP)

Table 6-3: Default Directory Sizes

Number (decimal) of

Device Segments in Directory
DD 1
DL (RLO1) 16
DL (RL02) 31
DM 31
DU (disk) 31
DU (diskette) 1
DW (RD50) 16
DW (RD51) 31
DX 1
DY (single-density) 1
DY (double-density) 4
DZ (RX50) 4
RK 16

The following example initializes the directory on device DL1: and allocates
six directory segments.

DL1:/Z/N:B
DLi:/Initialize} Are vou sure? Y

6.3.13.2 Changing Volume ID (/V) — When you initialize a disk or magtape,
DUP normally maintains the volume ID and owner name. If at initializa-
tion time you want to change the volume ID and owner name, use the /V
option with /Z. For example, the following command initializes device DL1:
and prompts you for a volume ID and owner name. Section 6.3.10 illus-
trates these prompts and shows how to use them.

¥ DL1:/Z/V

DLis/Initializes Are vou sure? Y
Yolume ID? VOUCHERS
Owner? PAYABLES

6.3.13.3 Replacing Bad Blocks (/R[:RET]) — If you have RK06, RK07, RLO1,
or RLO02 disks, you can use the /R option with either /I or /Z.

Use this option with /I to preserve the output volume’s bad block replace-
ment table. DUP copies all blocks from the input volume to the output
volume except those blocks that contain the input volume’s bad block re-
placement table. '

Use this option with /Z to scan a disk for bad blocks. If DUP finds any bad
blocks, it creates a replacement table so that routine operations access good
blocks instead of bad ones. Thus, the disk appears to have only good blocks.
Note, though, that accessing this replacement table slows response time for
routine input and output operations. If you use :RET with /R, DUP initial-
izes the volume and retains the bad block replacement table (and

Device Utility Program (DUP) 6-17

" FILE.BAD files) created by the previous /R command. Note that the :RET
argument is invalid when you use /R with /L.

Note that the monitor file cannot reside on a block that contains a bad
sector error (BSE) if you are doing bad block replacement. If this condition
occurs, a boot error results when you attempt to bootstrap the system. If
this occurs, move the monitor.

With an RK06, RK07, RLO01, or RL02 you have the option of deciding which
bad blocks you want replaced if the number of bad blocks exceeds what can
fit in the replacement table (replacement table overflow). The RK06s and
RKO07s support up to 32(decimal) bad blocks in the replacement table; the
RLO1s and RL02s support up to 10.

With an RK06 or RK07 disk, DUP can replace only those bad blocks that
generate a BSE. Of the blocks DUP cannot replace, DUP can report a bad
block as being hard or soft. If you perform two bad block scans and a block
is reported as bad in both reports, this indicates a hard error. If in the
second report the block is not reported as bad, the block has recovered from
a soft error.

With an RLO1 or RL02, DUP can replace any kind of bad block. The follow-
ing paragraphs describe how to designate which blocks to replace on an
RKO06, RK07, RLO1, or RLO2 disk.

When you use /R, DUP prints out a list of replaceable bad blocks as in the
following sample:

Block - Tyre
030722 12754, Rerlaceable
115046 39462, Rerlaceable
133617 46991, Rerlaceable
136175 48253+ Rerlaceable
136277 48319, Rerlaceable
136401 48385, Rerlaceahble
140405 49413+ Rerplaceable
146252 52394, Rerlaceable
?DUP-W-Bad blocks detected B,

If there is a replacement table overflow, DUP prompts you to indicate
which blocks you want replaced as follows:

?DUP-W-Rerlacement table overflow DEV:
Tvee {RET>s Oy or nonnnn (SRET)
Rerlace bhlock #

The value nnnnnn represents the octal block number of the block you want
the system to replace.

After you enter a block number, DUP responds by repeating the Replace
block # prompt. Type a 0 at any time if you do not want any more blocks
replaced, and this will end prompting. DUP marks any blocks not placed in
the replacement table as FILE.BAD.

6-18 Device Utility Program (DUP)

If you enter a carriage return at any time, DUP places all bad blocks you
have not entered into the replacement table, starting with the first on the
disk, until the table is full. DUP assigns the name FILE.BAD to any re-
maining bad blocks and prompting ends.

If you use /Y with /R, the effect will be as if you entered a carriage return in
response to the first Replace block # prompt.

6.3.13.4 Covering Bad Blocks (/B[:RET]) — To scan the volume for bad blocks
and write files over them, use the /B option with /Z. For every bad block
DUP encounters on the device, it creates a file called FILE.BAD to cover it.
After the disk is initialized and the scan completed, the directory consists
only of FILE.BAD entries that cover the bad blocks. If DUP finds a bad

lock in the boot block or the directory, it prints an error message and the
disk is not usable.

If you specify :RET with /B, DUP will retain through initialization all
FILE.BAD files created by a previous /B. If you use the /B option to initial-
ize a volume that has been previously initialized using the /R option, DUP
creates FILE.BAD files to cover the bad blocks on the volume, and the
system then ignores the bad block replacement table.

If the volume being initialized contains bad blocks, the system prints the
locations of the bad blocks in octal and in decimal, as in the following
example:

% DYOs:/2/B
DYO:/Initialize: Are vou sure ? Y

Block Trre
Q00120 80, Hard
000471 313+ Hard
Q00321 337, Hard

?DUP-W-Bad bhlocks detected 3.

The left column lists the locations in octal, and the middle column lists the
locations in decimal. The right column indicates the type of bad block
found: hard or soft.

6.3.13.5 Restoring a Disk (/D) — Use /D to uninitialize (restore) a volume if
you have not transferred any files to it since initialization. DUP will re-
store all files and directory entries that were present before the volume was
initialized. This option is useful if you initialize a volume by mistake. How-
ever, you cannot restore volumes that support bad block replacement if bad
blocks were fourid during initialization.

The following command restores volume DY1..

* D¥1:/2/D

Note that /D does not restore boot blocks. Thus, if you use /D to restore a
previously bootable volume, use the bootstrap copy option, /U[:xx], to make
the volume bootable again.

Device Utility Program (DUP) 6-19

Chapter 7
File Exchange Program (FILEX)

The file exchange program (FILEX) is a general file transfer program that
converts files from one format to another so that you can use them with var-
ious operating systems. You can copy files between any block-replaceable
RT-11 directory-structured device and any device listed in Table 7-1.

Table 7-1: Supported FILEX Devices

Valid as Valid as

Device Input Output
PDP-11 X X
DOS/BATCH
DECtape
DOS/BATCH X
disk
RSTS X X
DECtape
DECsystem—10 X
DECtape
Interchange X X

diskette (RX01,
RX02 single-density,
PDT-11/150)

FILEX does not support magtapes, cassettes, or double-density diskettes in
any operation. Note that you can transfer only one file at a time to inter-
change diskette format.

Section 4.2 of the RT-11 System User’s Guide describes how to use wild-
cards, which you can use in the FILEX command string. The default device
for all FILEX operations is DK:. You can use wildcards when transferring

7-1

from interchange to RT-11 format. However, you cannot use embedded
wildcards in any file name or file type. For example, the following line repre-
sents a valid file specification.

* #+«MAC

The next line is an invalid file specification for FILEX.

* T%78T.MAC

7.1 File Formats

FILEX can transfer files created by four different operating systems: RT-11,
DECsystem—10, universal interchange format (IBM) system (see the RT-11
Software Support Manual), and DOS/BATCH (PDP-11 Disk Operating
System). You can use the following three data formats in a transfer: ASCII,
image, and packed image. ASCII files conform to the American Standard
Code for Information Interchange in which each character is represented by
a 7-bit code. In ASCII mode, FILEX deletes null and rubout characters, as
well as parity bits:

NOTE
If you attempt to use RT-11 volumes for both input and out-
put, FILEX generates an error message.

Because the file structure and data formats for each system vary, options are
needed in the command line to indicate the file-structures and the data for-
mats involved in the transfer. These options are discussed in Section 7.3.
FILEX assumes that all devices are RT—11-structured. You can use options
to indicate otherwise.

7.2 Calling and Terminating FILEX

To call FILEX from the system device, respond to the keyboard monitor
prompt by typing:

« R FILEX

The Command String Interpreter (CSD prints an asterisk at the left margin
of the terminal and waits for you to enter a command.

Type CTRL/C to halt FILEX when it is waiting for console terminal input
and return control to the monitor. To restart FILEX, type R FILEX or
REENTER in response to the monitor’s dot.

7.3 Options

Table 7—2 lists the options that initiate various FILEX operations. The table
contains four categories: transfer, operation, modifier, and device.

7-2 File Exchange Program (FILEX)

—

Transfer options direct FILEX to copy data in a certain mode. The three
transfer modes are: ASCII, image, and packed image.

Operation options perform other functions in addition to the data transfer.
These additional functions include deleting files, producing listings, and
zeroing device directories. FILEX accepts one transfer option and one opera-
tion option in a single command.

Modifier options cause transfers and operations to be performed in a certain
manner. For example, when you use the /Y option to modify the /Z option,
FILEX suppresses the /Init are you sure? message. There are three modifier
options: /V[:ONL], /W and /Y.

Device options indicate the formats of devices that are involved in a trans-
fer. These formats are DOS/BATCH or RSTS, DECsystem—10, and inter-
change. You can specify one device option for each file involved in the trans-
fer. The device options (/S, /T, and /U) must appear following the device and
file name to which they apply; other options may appear anywhere in the
command line. These options are explained in more detail in the sections fol-
lowing Table 7-2.

Table 7-2: FILEX Options

Options Function
Transfer
/A Indicates a character-by-character ASCII transfer in which FILEX

deletes rubouts and nulls. If you use /U with /A, FILEX also ignores
all sector boundaries on the diskette and assumes that records are to
be terminated by a line feed, vertical tab, or form feed. If you use /A
with /T, FILEX assumes that each PDP-10 36-bit word contains five
7-bit ASCII bytes. The transfer terminates when a CTRL/Z is encoun-
tered. (This feature is included for compatibility with RSTS.) FILEX
does not transfer the CTRL/Z.

/1 Performs an image mode transfer. If the input is DOS/BATCH, RSTS,
or RT-11, the transfer is word-for-word. If the input is from
DECsystem~10, /I indicates that the file resembles a file created on
DECsystem-10 by MACY11, MACX11, or LNKX11 with the /1
option. In this case, each PDP-10 36-bit word will contain one
PDP--11 8-bit byte in its low-order bits. If input or output is an inter-
change diskette, FILEX reads and writes four diskette sectors for each
RT-11 block.

/P Performs a packed image mode transfer. If the input is DOS/BATCH,
RSTS, or RT-11, the transfer will be ‘word-for-word. If the input is
from DECsystem-10, /P indicates that the file resembles a file created
on DECsystem—10 by MACY11, MACX11, or LNKX11 with the /P
option. In this case, each PDP-10 36-bit word will contain four
PDP-11 8-bit bytes aligned on bits 0, 8, 18, and 26. This is the default
mode. If the output is interchange diskette, FILEX writes the data as
EBCDIC.

(Continued on next page)

File Exchange Program (FILEX) 7-3

Table 7-2: FILEX Options (Cont.)

Options Function
Operation
/D Deletes the file you specify from the device directory. This option is
valid only for DOS/BATCH, RSTS DECtape, and interchange
diskette.
/F Produces a brief listing of the device directory on the terminal. It lists

only file names and file types. FILEX can only list directories of block-
replaceable devices, and those directories only on the console
terminal.

/L Produces a complete listing of the device directory on the console ter-
minal, including file names, block lengths, and creation dates.

1Z Initializes the directory of the device you specify. This option is valid
only for DOS/BATCH, RSTS DECtape, and interchange diskette.

Modifier

/V]:ONL] /V is used with /Z and /U|:n] together to write a volume identification
on an interchange diskette during initialization. A volume identifica-
tion can be up to six characters long. Using /V:ONL with /Z and /U[:n]
changes only the ID and does not initialize the interchange diskette.
You can also use /V[:ONL] with /F or /L to list the volume identifica-
tion of an interchange diskette as well as its directory.

W Transfers files in a single- or small-disk system. FILEX initiates the
transfer, but pauses and waits for you to mount the volumes involved
in the transfer.

Y Used with /Z to suppress the dev:/Init are you sure? message.

Device

IN] Indicates that the device is a valid DOS/BATCH or RSTS block-
replaceable device.

1T Indicates that the device is a valid DECsystem—10 DECtape.

/Ul:n.] Indicates that the device is an interchange diskette. The symbol n.

represents the length of each output record, in characters. The argu-
ment n. is a decimal integer in the range 1-128. The default value is
80: n. is not valid with an input file specification, or with /A or /1.

7.3.1 Transferring Files Between RT-11 and DOS/BATCH or
RSTS (/S)

You can transfer files between block-replaceable devices used by RT-11 and
the PDP-11 DOS/BATCH system. Input from DOS/BATCH may be either
disk or DECtape. You can use both linked and contiguous files.

If the input device is a DOS/BATCH disk, you should specify a DOS/BATCH
user identification code (UIC) in the form [nnn,nnn]. The initial default
value is [1,1]. The UIC you supply will be the default for all future transfers.

7—4 File Exchange Program (FILEX)

If you do not specify a UIC, FILEX will use the current default UIC. Note
that the square brackets ([1) are part of the UIC; you must type them when
you specify a UIC.

Output to DOS/BATCH is limited to DECtape only. You do not need a UIC
in a command line where you are accessing only DECtape. Individual users
do not own files on DECtape under DOS. However, no error occurs if you do
use a UIC. DECtape used under the RSTS system is valid as both input and -
output, since its format is identical to DOS/BATCH DECtape. You may use
any valid RT-11 file storage device for either input or output in the transfer.
The RT-11 device DK: is assumed if you do not indicate a device.

An RT-11 DECtape can hold more information than a DOS/BATCH or
RSTS DECtape. When you copy files from a full RT-11 tape to a DOS
DECtape, some information may not transfer. In this case, an error message
prints and the transfer does not complete.

When a transfer from an RT-11 device to a DOS DECtape occurs, the block
size of the file can increase. However, if the file is later transferred back to
an RT-11 device, the block size does not decrease.

To transfer a file from a DOS/BATCH block-replaceable device or RSTS
DECtape to an RT—11 device, type a command with the following syntax:

output-filespec = input-filespec/S|/option]
where:

output-filespec .represents any valid RT-11 device, file name, and
file type (if the device is not file structured, you may
omit the file name and file type).

input-filespec represents the DOS/BATCH or RSTS device, UIC,
file name, and file type to be transferred. (See Table
7-1 for a list of valid devices.)

/S is the option that designates a DOS/BATCH or RSTS
block-replaceable device. (This option must be
included in the command line.)

/option is one of the three transfer options from Table 7-2,
and the /W modifier option if necessary. .

To transfer files from an RT-11 storage device to a DOS/BATCH or RSTS
DECtape, type a command with the following syntax:

DTn:output-filename/S[/option}=input-filespec
where:

DTn:output-filename represents the file name and file type of the file
to be created, as well as the DOS/BATCH or
RSTS DECtape on which to store the file.

input-filespec represents the device, file name, and file type of
the RT-11 file to be transferred.

File Exchange Program (FILEX) 7-5

IS is the option that designates a DOS/BATCH or
RSTS DECtape. (This option must be included
in the command line.)

/option is one of the three transfer options from Table
‘ 7-2, and the /W modifier option if necessary.

The following examples illustrate the use of the /S option.

The following command instructs FILEX to transfer a file called SORT.ABC
from the RT-11 default device DK: to a DECtape in DOS/BATCH or RSTS
format on unit DT2. The transfer is in image mode.

DT2:50RT,ABC/S=80RT.ABC/I

The next command allows a file to be transferred from DOS/BATCH (or
RSTS) DECtape to the line printer under RT-11. The transfer is done in
ASCII mode.

LP:=DT2:FIL.TYP/E/A

The next command causes the file MACR1.MAC to be transferred from the
DOS/BATCH disk on unit 1, stored under the UIC [1,2], to the RT-11 device
DK:. [1,2] becomes the default UIC for any further DOS/BATCH operations.

% DK:#,#=RK1:0[1,2IMACR1.MAC/S

7.3.2 Transferring Files Between RT-11 and Interchanlge Diskette (/U)

You can transfer files between block-replaceable devices used by RT-11 and
interchange format diskettes. Files are transferred in one of three formats:
ASCII, image, and packed image EBCDIC mode.

A universal diskette consists of 77 tracks (some of which are reserved), each
containing 26 sectors numbered from 1 to 26. A sector contains one record of
128 or fewer characters. When an interchange diskette is in packed image
mode, records always begin on a sector boundary. There is only one record
per sector. If a record does not fill a sector, the remainder is filled with
blanks. Since packed image EBCDIC mode is inefficient and wastes space,
packed image mode is recommended only to read or write diskettes that
must be compatible with IBM 8741 format. Packed image (EBCDIC) mode is
generally compatible with IBM 3741 format. (Although IBM 3741 format
supports error mapping of bad sectors and multivolume files, FILEX does
not.) Packed image (EBCDIC) is the default mode, so you must use one of the
options from Table 7-2 to specify ASCII or image mode. All records of a file
must be the same size. You indicate this with the /U:n. option.

NOTE

File types are not usually recognized in interchange format;
instead, a single, 8-character file name is used. However, in
order to provide uniformity throughout RT-11, FILEX has

7—6 File Exchange Program (FILEX)

e

e

been designed to accept a 6-character file name with a 2-
character file type. If you transfer a file from RT-11 to inter-
change diskette, any 3-character file type is truncated to two

characters.

To transfer files from RT-11 format to interchange format, type a command
with the following syntax:

output-filespec/U[:n.][/option] = input-filespec

where:

output-filespec

/Uln.]

/option

input-filespec

represents the device, file name, and file type of the
interchange file to be created. Note that you cannot
use wildcards in the output file specification.

is the option that designates an interchange diskette.
This option must be included in the command line.
The argument n. represents the length of each out-
put record, in characters; n is a decimal integer in
the range 1 to 128 (default is 80). The argument n is
invalid with either /A or /1.

is one of the three transfer options from Table 7-2,
and the /W modifier option if necessary.

represents the device, file name, and file type of the
RT-11 file to be transferred. The file name is six
characters long, with a 2-character file type. Any 3-
character file type is truncated to two characters.

To transfer files from interchange diskette to RT-11 format, type a com-
mand with the following syntax:

output-filespec = input-filespec/Ul/option]

where:

output-filespec

input-filespec

g

/option

represents the device, file name, and file type of the
RT-11 file to be created. Note that you can use wild-
cards as input.

represents the device, file name, and file type of the
interchange file to be transferred.

is the option that designates an interchange diskette.
(This option must be included in the command line.)

is one of the three transfer options from Table 7-2,
and the /W modifier option if necessary.

The following command transfers the file IVAN.CAT from RT-11 RKO05 unit
2 to the diskette on unit 1. The transfer is done in exact image mode (indi-
cated by /1), ignoring all sector boundaries.

* DX1:IVAN,.CA/U/I=RKZ2:IVAN.CAT

File Exchange Program (FILEX) 7-7

The next command instructs FILEX to transfer the file BENMAR.FRM from
the RT-11 disk unit 2 to the diskette on unit 0, and rename it KENJOS.JO.
The /U option indicates that the format is to be changed from ASCII to the
interchange format. There will be one record per sector of 128 or fewer char-
acters. If there are fewer than 128 characters, the remainder of the sector
will be filled with spaces.

DXO:KENJOS,JO/U=RKZ2:BENMAR.,FRM

The next command transfers the file TYPE.SET from RT-11 diskette unit 0
to the interchange diskette on unit 2. The exchange converts ASCII to inter-
change format, putting a maximum of seven (indicated by :7.) characters
into each sector until the entire record has been transferred. Records in
excess of seven characters will be broken up and placed in succeeding sectors
on the diskette. New records always begin on a sector boundary; carriage
returns and line feeds are discarded. However, if you use /A or /I, FILEX
ignores boundary limits and preserves carriage returns and line feeds.

DHZ:TYPE.SE/U:7.=DX0O:TYPE.SET

File TYPE.SET before transfer:
ABCDEFGHIJKLMN
File TYPE.SET after transfer:’

ABCDEFG----(spaces up to 128 characters) Sector 1
HIJKLMN----(spaces up to 128 characters) Sector 2

The next command copies file IVAN.CA from the interchange diskette on
unit 1 to the RT-11 line printer, treating the input as ASCII characters.
Note that once a record has been divided into sectors, it cannot be trans-
ferred back to its original size.

LP:=DX1:IVAN.CA/U/A

7.3.3 Transferring Files to RT-11 from DECsystem-10 (/T)

Output may be to any valid RT-11 device. DECsystem~10 DECtape is the
only valid input device. .

To transfer files from DECsystem—10 format to RT-11 format, use this com-
mand syntax: :

output-filespec = input-filespec/T[/option]
where:

output-filespec represents any valid RT-11 device, file name, and
file type. (If the device is not file-structured, you can
omit the file name and file type.)

input-filespec represents the DECtape unit, file name, and file type
of the DECsystem-10 file to be transferred.

7-8 File Exchange Program (FILEX)

/T is the option that signifies a DECsystem-10" .
DECtape (When you use /T, and especially when you
also use /A, the system clock loses time. Examine the
time, and reset it if necessary with the TIME
command.) '

/option is one of the three transfer options from Table 7-2,
and the /W modifier option if necessary.

You cannot convert RT—11 files to DECsystem~10 format directly. However,
there is a two-step procedure for doing this. First, run RT-11 FILEX and
convert the files to DOS formatted DECtape. Then run DECsystem—10
FILEX to read the DOS DECtape.

The following command converts the ASCII file STAND.LIS from
DECsystem—~10 ASCII format to RT-11 ASCII format and stores the file
under RT-11 on DECtape unit 2 as STAND.LIS.

DT2:STAND.LIS=DTL1:5TAND.LIS/T/A

Transfers from DECsystem—-10 DECtape to RT-11 may cause an
<UNUSED> block to appear after the file on the RT-11 device. This is a
result of the way RT-11 handles the increased amount of information on a
DECsystem—10 DECtape.

The next command indicates that all files on the DECsystem—10 formatted
DECtape on unit 0 with the file type .LIS are to be transferred to the RT-11
system device using the same file name and a file type of NEW. The /P
option is the assumed transfer mode.

* SY:# NEW=DTO:z#,LIS/T

Files may not be transferred to RT-11 devices from a DECsystem-10
DECtape if a foreground job is running. This restriction is due to the fact
that when FILEX reads DECsystem-10 files, it accesses the DECtape con-
trol registers directly instead of using the RT-11 DECtape handler.

7.3.4 Listing Directories (/L)

You can- list at the terminal a directory of any of the block-replaceable
devices used in a FILEX transfer. The command syntax is:

device:/L/option
where:

device represents the block-replaceable device. These are the valid
device types: '

DOS/BATCH, RSTS DTn:, RKn:
DECsystem~10 DTn: '
Interchange diskette DXn: DYn:

File Exchange Program (FILEX) 7-9

/L is the listing option. (You can substitute /F if you want a brief
listing of file names only.)

/option is /S, /T, or /U, and the /W modifier option if necessary. These
are the valid format and option combinations:

DOS/BATCH, RSTS /S
DECsystem—l(_) /T
Interchange diskette /U

The following example shows the complete disk directory for UIC[1,7] of the
device RK1:. The letter C following the file size on a DOS/BATCH or RSTS
directory listing indicates that the file is contiguous.

* RK1:/L/S

18-FEB-83
BADB +8Y8 1 18-FEB-B83
MONLIB CIL 175C 1B-FEB-83
pUl1l +PAL 45 - 1B-FEB-B3
VERIFY +LDA B7C 18-FEB-83
CILUS +LDA 39 1B-FEB-B3

The next example is a command that lists all files with the file type .PAL
that are stored on DECtape unit 1.

% DT1:%,PAL/L/S

The next command produces a brief directory listing of the interchange disk-
ette on unit 0, giving file names only.

x DXO:/U/F

The following command lists all files on the DECsystem—10 formatted

DECtape on unit 1, regardless of file name or file type; with the /F, a brief
directory is requested in which only file names print.

DTles.%/F/T

7.3.5 Deleting Files from DOS/BATCH (RSTS) DECtapes and
interchange Diskettes (/D)

Use FILEX to delete files frdm DOS/BATCH and RSTS formatted
DECtapes, and from interchange diskettes.

To delete files, type a command with the following syntax:
filespec/D/option
where:

filespec represents the device, file name, and file type of the file to be
deleted.

7-10 File Exchange Program (FILEX)

/D is the delete option.

/option can be either /S, for DOS/BATCH and RSTS block-
replaceable devices, or /U, for interchange diskettes. You
can also include the /W modifier option, if necessary.

The following command deletes all files with the file type .PAL on DECtape
unit 0.

DTO:#.,PAL/D/S

The next command deletes the file TABLE.OBJ from the DECtape on unit 2.
DT2Z:TABLE.OBJ/D/S

The next command deletes all files with an .RNO file type from the inter-
change diskette on unit 0.

% DXO:%,RN/D/U

7.3.6 Initializing the Directories of DECtapes and interchange
Diskettes (/2)

You can also use FILEX to initialize the directories of DOS/BATCH
DECtapes, RSTS DECtapes, and interchange diskettes.

Use this command syntax:
device:/Z/option[/Y]
where:

device represents the DOS/BATCH or RSTS DECtape, or the inter-
change diskette to, be zeroed.

1Z is the initialize option.

/option can be either /S, for DOS/BATCH and RSTS DECtapes, or /U,
for interchange diskettes. You can also include the /W modi-
fier option, if necessary.

Y inhibits the FILEX confirmation message.

The following command directs FILEX to initialize the directory of the
interchange diskette on unit 0.

* DX0O:/2/7U

FILEX prints a confirmation message:
DXO:/Initializei are vou sure?
Respond with a Y or any string beginning with Y followed by a carriage

return for initialization to begin. Any other response aborts the command.

File Exchange Program (FILEX) 7-11

The next command initializes the DECtape on unit 1 in DOS/BATCH
(RSTS) format. Note that by using the /Y option you suppress the confirma-
tion message.

DT1:/2/87¥%

NOTE

The directory of an initialized interchange diskette has a sin-
gle file entry, DATA, that reserves the entire diskette. You
must delete this file before you can write any new files on the
-diskette. This is necessary for IBM compatibility. Do this by
using the following command:

+ DXO:DATA/D/U

7.3.7 Interchange Diskette Volume ID Option (/V[:ONL])

The /V option enables you to write a volume identification on an interchange
diskette when it is initialized. This option is used with the /U[:n] and /Z
options together. You can also use /V[:ONL] with /L or /F to list a volume ID.

When you use this option, FILEX prompts you for a volume ID. Respond by
typing a volume identification of up to six characters. Any string over six
characters is truncated. If you type only a carriage return in response to the
volume ID prompt, the defailt volume ID RT11A is written on the inter-
change diskette.

Use /V:ONL to change only the volume ID without initializing the inter-
change diskette.

The following command initializes an interchange diskette and writes a vol-
ume identification:

% DXOs/Z/U/7%
Volume ID? Naney

The next command changes only the volume ID of an interchange diskette.

% DXO:/Z/U/V:ONL
\Y2

Yolume ID chande§ are vou sure? \
Yolume ID? Nawer

7.3.8 Wait Option (/W)

The /W option permits you to replace the system volume with another vol-
ume during an operation. You can use the /W option for a delete, directory
listing, and initialization operation on a single-disk system, or to copy files
between volumes when the system volume is neither the input nor the out-
put volume if you have two drives available. When you use the /W option,
you cannot use wildcards in the input specification.

7-12 File Exchange Program (FILEX)

When you use the /W option, FILEX guides you through a series of steps in
the process of completing the operation. After you enter the initial command
string, FILEX prints a message telling you which volume to mount. After
you complete each step, type Y or any string beginning with Y followed by a
carriage return to proceed to the next step. If you type N or any string begin-
ning with N, or CTRL/C, FILEX prompts you to mount the system volume if
you have removed it and the operation is not performed. Any other response
causes the message to repeat.

When the operation is complete, FILEX prints a message instructing you to
mount your system volume. Mount the system volume and type Y or any
string beginning with Y followed by a carriage return. If you type any other
response, FILEX prompts you to mount the system volume until you type Y.

When you use /W, make sure that FILEX is on your system volume.
The procedure for copying files with /W follows:

With your system volume mounted, enter a command string according to the
FILEX syntax. After you have entered the command string, FILEX
responds with the message:

Mount input volume in <devicexi Continue?

Type Y or any string beginning with Y followed by a carriage return to con-
tinue the operation when you have mounted the input volume. FILEX then
prints:

Mount outeut volume in <device’s Continue?

Type Y or any string beginning with Y followed by a carriage return to con-
tinue the operation after you have mounted the output volume.

When the file transfer is complete, FILEX prints the following message if
you had to remove the system volume from <device>:

Mount svstem wvolume in <device:*} Continue?

Type Y or any string beginning with Y followed by a carriage return to ter-
minate the copy operation. If you type any other response, FILEX prompts
you to mount the system volume until you type Y.

File Exchange Program (FILEX) 7-13

i

e

Chapter 8 _~
Volume Formatting Program (FORMAT)

The FORMAT utility program formats disks and diskettes. You can also
use FORMAT to convert single-density diskettes to double-density and vice
versa. FORMAT can format RX01/RX02 diskettes, RD50/RD51 disks, RK05
disks; RK06/RK07 disks, and RP02/RP03 disks.

Formatting a volume makes that volume usable by RT-11. When you for-
mat a volume, FORMAT writes headers on each block in that volume. The
header of a block contains data the device controller uses to transfer infor-
mation to and from that block.

RD50/RD51 disks can be formatted for the DW: handler only.

When you use FORMAT to convert a single-density diskette to double den-
sity, or vice versa, FORMAT writes media density marks on each block of
the diskette. You can format a diskette only in a double-density diskette
drive, DY:. If you attempt to format a diskette in a single-density diskette
drive, DX:, FORMAT prints an error message.

Reformatting with the FORMAT program can also eliminate bad blocks
that disks and diskettes sometimes develop as a result of age and use.
Although formatting does not guarantee that each bad block will be elimi-
nated, formatting can reduce the number of bad blocks.

NOTE
FORMAT destroys any data that currently exists on the disk.

8.1 Calling And Terminating Format

To call FORMAT from the system device, respond to the dot (.) printed by
the keyboard monitor by typing:

+ R FORMAT GED

The Command String Interpreter (CSI) prints an asterisk (*) at the left
margin of the terminal and waits for a command string. If you enter only a
carriage return in response to the asterisk, FORMAT prints its current
version number. You can type CTRL/C to halt FORMAT and return control
to the monitor when FORMAT is. waiting for input from the console termi-

8-1

nal. You cannot halt FORMAT during an operation by typing two
CTRL/Cs.

" If you interrupt the program during a formatting operation by some other
means, the disk or diskette involved is not completely formatted. You must
restart the operation on the same disk or diskette and allow it to run to
completion.

8.2 FORMAT Command String Syntax

Chapter 1, Command String Interpreter, describes the general syntax of
the command line that system utility programs accept. FORMAT accepts
one device specification (either a physical or logical device name) followed,
if necessary, by one or more options. An RK05 disk you wish to format can
be located in any unit (0-7) of device RK:. A diskette you need to format
must be mounted on an RX02 device (device DY:), but it can be located in
any unit (0-3) of that device. You cannot format diskettes on an RX01
device. '

8.3 FORMAT Confirmation Prompts

FORMAT automatically prints the device-name:/Are you sure? message
before it begins any operation. The device name that prints out in the
message is the physical name of the device you specify in the command
line. Therefore, if you use a logical device name in the command line, the
device name that FORMAT displays in the confirmation message is differ-
ent from the name you type. If you want the operation to continue, type Y
or any string beginning with Y followed by a carriage return in response to
the confirmation message. Type N or CTRL/C to prevent the formatting
operation from occurring. Any other response causes FORMAT to repeat
the prompt. ‘

You can use FORMAT from an indirect command file. To satisfy the device-
name:/Are you sure? message, enter a Y as the next line of the indirect file
immediately following the FORMAT command line. You can suppress the
confirmation message completely by using the /Y option in the FORMAT
command line. If you use /Y, you do not need to enter the Y on the following
line.

If you try to format a volume while a foreground job is loaded, the system
prints the following message.

Foredround Loaded,
{dev:>/FORMAT~Are vou sure? .

Type Y or any string beginning with Y followed by a carriage return to
continue with the formatting operation. Type N or any string beginning
with N, or CTRL/C, to abort the operation. Any other response causes the
message to repeat.

NOTE

Although you can fdrmat or verify a volume while a fore-
ground job is loaded, it is not recommended. If you try to

8-2 Volume Formatting Program (FORMAT)

:

format or verify a volume that the foreground job is using,
data on the volume will be written over and corrupted, which
may cause the foreground job or the system to crash.

If you try to format a volume that contains protected files, the system
prints the following message.

Volume contains protected filesi Are vou sure?

Type Y or any string beginning with Y to continue the formatting opera-
tion. Type N or any string beginning with N, or CTRL/C, to abort the
operation. Any other response causes the message to repeat.

After you format a disk, you should use the INITIALIZE command to pre-
pare the volume for use with RT-11. See Chapter 4 of the RT-11 System
User’s Guide for more information on the INITIALIZE command.

8.4 Options

Options that you specify in a command line to the FORMAT program per-
form several functions. Table 8-1 summarizes these options and the opera-
tions they perform. You can combine these options, if necessary, in any
order. More detailed explanations of the options are arranged alphabeti-
cally by option name in the sections that follow the table.

Table 8-1: FORMAT Options

.Option Section Function

none 8.4.1 If you do not supply an option, FORMAT formats the volume
you specify. If you specify an RX01 or RX02 diskette, the de-
fault operation that occurs is double-density diskette format-
ting. You can use /Y and /W with the default operation.

/Pn 8.4.2 Pattern verification option, where n represents an octal integer
in the range 0 to 177777. The option specifies the specific
16-bit word pattern that FORMAT uses to write to the volume,
and read from the volume, during the process of verification. If
you do not use this option, FORMAT defaults to /P:200.

S 8.4.3 Single-density option. This option formats a diskette in a sin-
gle-density format. :

/V[:ONL] 8.44 Verification option. When you specify /V in the command line,
FORMAT first formats the specified volume, then verifies it. If
you specify /V:ONL, FORMAT only verifies the specified de-
vice. Note that you can use /V:ONL with RX01 diskettes,
RLO1/RL02 disks, TU56 (DECtape I), and TU58 (DECtape II).

W 8.4.5 Wait option. This option permits you to substitute another vol-
ume for the volume you specify in the command line, format
the second volume, then replace the original volume. Note that
this option is invalid for RC25 disks, RD51 disks, and RX50
diskettes. '

Y 8.4.6 No query option. This option suppresses the Are you sure? mes-
sage FORMAT automatically prints before each operation.

Volume Formatting Program (FORMAT) 8-3

8.4.1 Default Format

To format diskettes in double-density mode, specify the device name in the
command line. You can also use /Y to suppress the query message, and /W to
pause for a volume substitution. The following example formats the diskette
in DY: evice unit 1 as a double-density diskette.

#» DY1
DY1:/FORMAT-Are vou sure? V

?FORMAT-I-Formatting comPlete
*

To format an RK05 or RK06/07 disk, specify the device name in the com-
mand line. You can also use /Y to suppress the query message and /W to
pause for a volume substitution. The following example formats an RK05
disk in RK: device unit 1:

% RK1:
RK1:/FORMAT-Are vou sure?

?FORMAT-I-Formatting compPplete
*

When you format an RK06 or RK07 disk, FORMAT lists the block numbers
of all the bad blocks in the manufacturer’s bad block table and in the sofware
bad block table.

8.4.2 Pattern Verification Option (/P:n)

When you use the /P:n option with /V[:ONL] in the command line, you can
specify the 16-bit word pattern you want FORMAT to use when it performs
volume verification. The argument n represents an octal integer in the
range 0 to 177777 that specifies the pattern or successive patterns you want
FORMAT to use. Table 8-2 lists the verification patterns FORMAT uses and
the corresponding values of n.

In /P:n, the number you specify for n indicates the value for the bit patterns
to be run during verification. Bits set in /P:n select the patterns to be run.
Table 8-2 shows which bit, when set, corresponds to each 16-bit verification
pattern. To calculate the equivalent value of n, convert the bit set to an octal
number. For example, FORMAT runs pattern 3 when bit 2 is set. When bit 2
alone is set, the equivalent octal number is 4.

Table 8-2 gives the equivalent n value for each verification bit pattern. If
you want to run more than one bit pattern, add the values of n for the pat-
terns you select. For example, suppose you want to run bit patterns 1, 3, and
5. The corresponding values of n are 1, 4, and 20, for a sum of 25. This is the
value of n you would specify with /P to run all three bit patterns.

FORMAT converts the number you specify into a binary number; the num-
ber of each set bit specifies which patterns to run. The number 25 translates
to the binary number 010 101. In the number 010 101, bits 0, 2, and 4 are

84 Volume Formatting Program (FORMAT)

Table 8-2: Verification Bit Patterns

Pattern . Bit Set n 16-Bit Pattern

"1 0 1 000000
2 1 2 177777
3 2 4 163126
4 3 10 125252
5 4 20 052525
6 5 40 007417
7 6 100 021042
8 7 200 104210
9 8 400 155555
10 9 1000 145454
11 10 2000 146314
12 11 4000 *
13 12 10000 *
14 13 20000 *
15 14 40000 *
16 15 100000 *

* These patterns are reserved for future use. Currently
these bit patterns run the default bit pattern
(pattern 8).

set. As Table 8-2 shows, bit 0 specifies pattern 1, bit 2 specifies pattern 3,
and bit 4 specifies pattern 5. If you specify /P:25, FORMAT runs patterns 1,
3, and 5. If you specify /P:255, FORMAT runs patterns 1, 3, 4, 6, and 8. If you
specify /P:777, FORMAT runs patterns 1 though 9 during verification. If you
do not use the /P:n option, FORMAT runs only pattern 8.

When you use the /P:n option, and you specify more than one pattern,
FORMAT runs each pattern successively. After it completes verification,
FORMAT prints at the terminal each bad block it found during each verifi-
cation pass. The format of the verification report is:

PATTERN #x

nnnnnn

In the example above, x represents the pattern number, and nnnnnn repre-
sents the bad block number. FORMAT makes a separate verification pass
for each pattern it runs, and reports on each pass.

The sample command line that follows formats volume RK1: and verifies it
with patterns 4, 5, and 6.

¥ RK1:/7W/P:70

RK1:/FORMAT-Are vou sure? Y
TFORMAT-I-Formatting compPlete
PATTERN #B

PATTERN #3

PATTERN #4

TFORMAT-I-Verification comprlete
*

Volume Forimatting Program (FORMAT) 8-5

The next sample command line verifies volume DLO: with pattern 2.

% DLO:/V:0ONL/P:2 .
DLO:/YERIFY-Are vou sure? '
PATTERN #2
PFORMAT-I-~Verification complete

8.4.3 Single-Density Option (/S)

Use /S to format a diskette in single-density mode. You can also use /Y to
suppress the query message and /W to pause for a volume substitution.

The following example formats the diskette in DY: device unit 1 as a single-
density diskette. :

% DY1:/8

DY1:/FORMAT-Are vou sure?
?FORMAT-I-Formatting comprlete
*

8.4.4 Verification Option (/V[:ONL])

Use the /V[:ONL] option to provide a verification of all blocks on a volume
immediately following formatting. If you use the optional argument :ONL,
FORMAT executes only the verification procedure. Although FORMAT can
format only a limited assortment of storage volumes, it can verify any disk,
diskette, or DECtape II.

~ In the process of verifying a storage volume, FORMAT first writes a 16-bit
word pattern on each block of the specified volume, and then reads each pat-
tern. For each read or write error it encounters, FORMAT prints at the ter-
minal the block number for each block that generated the error.

NOTE
FORMAT destroys data on any storage volume it verifies.

The following command line uses /V to verify an RK05 disk after formatting.

% RKO:/U

R¥0:/FORMAT-Are vou sure?
?FORMAT-I-Formatting complete
PATTERN =B
?FORMAT-I-Verification complete

The next example uses /V:ONL to verify, but not format, an RX01.

DX1:/4:0NL

¥1:/VERIFY-Are vou sure?
PATTERN #B
PFORMAT-I-Verification compPplete

8-6 Volume Formatting Program (FORMAT)

8.4.5 Wait Option (/W)

Use /W to pause before formatting begins in order to substitute a second vol-
ume for the disk you specify in the command line. This is useful for single-
disk systems.

After the FORMAT program accepts your command line, it pauses while you
exchange volumes. Type Y or any string beginning with Y followed by a car-
riage return in response to the Continue? prompt when you are ready for for-
matting to begin. If you type N or any string beginning with N, or CTRL/C,
the operation is not performed and the monitor prompt (.) appears. Any
other response causes the message to repeat. ,

When formatting completes, the program pauses again while you replace
the original volume. Respond to the Continue? prompt by typing Y or any
string beginning with Y followed by a carriage return.

You can combine /W with any other option. The following example formats
the diskette in DY: device unit 1 as a single-density diskette.

* DY1:/W/8

DY¥1:/FORMAT-Are vou sure? Y

Mount imnPut volume in —<dew:x§ Continue? ¥
?FORMAT-I1-Formattingd comprlete

Mount svstem volume in —<devsxi Continue? v

*

When you use the /W option, make sure that FORMAT is on the system
volume.

8.4.6 No Query Option (/Y)

Use /Y to suppress the Are you sure? confirmation message FORMAT prints
before each operation begins. When you use /Y, formatting begins as soon as
FORMAT accepts and interprets your command line.

The following example formats the diskette in DY: device unit 1 as a double-
density diskette.

DYi:/¥%

?FORMAT-I-Formatting complete
M .

Volume Formatting Program (FORMAT) 8-7

e

Chapter 9
Logical Disk Subsetting Program (LD)

The logical disk subsetting utility (LD) allows you to define and access logi-
cal disks, which is a way of subsetting physical disks. You define a logical
disk by associating a logical disk unit number with a file. Once defined, you
can use keyboard commands and utility programs to initialize, copy, and uti-
lize these logical disks as if they were physical disks. For example, the
COPY/DEVICE command can be used to copy logical disks as well as phys-
ical disks.

Disk subsetting is particularly useful when you work with large disks such
as RC25, RL01/02, and RK06/07. Large disks such as these often run out of
directory entry space before the volume is full. Since each logical disk has its
own directory, dividing a physical disk into several logical disks creates
more directory entry space. Logical disk subsetting provides a convenient
way to group files into logical collections. Logical disk subsetting also allows
you to perform some device and file operations more quickly.

9.1 Calling and Terminating LD

To call LD from the system device, first be sure that LD is installed (see the
INSTALL command in Chapter 4 of the RT-11 System User’s Guide). Then
respond to the keyboard monitor prompt (.) by typing:

+ R LD.S¥S

When running under the XM monitor, type:
+ R LDX,SYS

The Command String Interpreter (CSI) prints an asterisk at the left margin
of the terminal and waits for you to type a command string. If you enter only
a carriage return, LD prints its current version number and prompts you
again for a command string. You can type CTRL/C to terminate LD and
return control to the monitor when LD is waiting for input from the console
terminal. You must type two CTRL/Cs to terminate LD at any other time.

9-1

9.2 LD Command String Syntax

Specify the LD command string in the following general format:

input-specs/options

where:

input-specs

options

9.3 Options

represents the files to be assigned as logical disk units.
You can specify up to six input file specifications in a
command line. The default file type is .DSK.

represents an option from Table 9-1. You must specify
at least one option in a command line, and you can
specify more than one as long as the operations you
specify do not conflict.

The logical disk subsetting options allow you to mount and dismount logical
disk unit numbers and associate them with files; write-lock or write-enable
logical disks; and verify and correct logical disk assignments. Table 9-1
summarizes these options. The sections following Table 9-1 describe the LD
options and give examples.

Table 9-1: LD Options

Option Section

Function

/A:ddd 9.3.1
/C 9.3.2
Len 9.3.3
/R:n 9.3.4
/W:n 9.3.5

Assigns a logical device name to a logical disk. Must be used
with /L.

Verifies all logical disk assignments against the files on the
volumes currently mounted.

Mounts a logical disk and associates it with a file on a disk, or
dismounts a logical disk and disassociates it from a file on a
disk.

Write-locks a logical disk. When you use /R:n the logical disk
you specify has read-only access.

Write-enables a logical disk. When you use /W:n, read/write
access is allowed for the logical disk you specify.

9.3.1 Assign Logical Device Name Option (/A:ddd)

Use the /A:ddd option with /L to assign a logical device name to a logical
disk. The variable ddd represents the logical device name, from one to three
characters long, that you want to assign. The first character must be a letter.

You can optionally

include a colon after the logical device name. After you

have assigned a logical device name to a logical disk, you can refer to the
logical disk by using the form LDn: or by using the logical device name.

9-2 Logical Disk Subsetting Program (LD)

The following command assigns the logical device name VOL to logical disk
unit 2 (LD2:) when it is assigned to the file DK:LOGFIL.DSK.

LOGFIL.DSK/L:2/A:V0L

9.3.2 Validate Logical Disk Assignments Option (/C)

The /C option validates all logical disk assignments. When you use /C, LD
checks the current logical disk assignments against the files on volumes
that are mounted.

The /C option is most useful after you have moved or removed files on a vol-
ume, or after you have removed a volume from a device. If a logical disk file
has moved, LD takes note of the new location so that you can continue to use
that logical disk. If you have deleted a logical disk file or the volume contain-
ing a logical disk file is no longer mounted, LD disconnects the logical disk
assignment. In the case of a volume that you have removed, the disconnec-
tion is temporary. You can reestablish the assignment when you remount
the volume by using the /C option.

Note that after a squeeze (DUP /S option) or bootstrap operation, the system
automatically performs a /C operation to update logical disk assignments.

The /C option must be used alone on a command line. The following com-
mand verifies current logical disk assignments.

* /C

9.3.3 Define Logical Disk Option (/L.:n)

The /L:n option mounts a logical disk by associating it with afileon a device,
or frees a logical disk number so it can be associated with another file.

Use the following command syntax to mount a logical disk unit number.
filespec/L:n
where:

filespec represents the file to be associated with a logical disk unit
number. The file can reside on either a physical disk or
another logical disk.

n represents the logical disk unit-number to associate with the
file. After it is mounted, the logical disk is referenced by
using the device name LDn:. The variable n must be an inte-.
ger in the range 0-7.

NOTE

You must be careful to avoid accidentally destroying files
while performing logical disk subsetting. LD allows you to
assign logical disk unit numbers to both protected and SYS
files, and to write to those files.

Logical Disk Subsetting Program (LD) 9-3

To free a logical disk unit number from a file association, type a command
with the following syntax.

/Lin

You can mount and dismount several logical disks on the same command

line. For example, the following command associates logical disk unit 0 with

file MYFILE.DSK on DLO:, logical disk unit 4 with DATFIL.DSK on DYO:,
- and dismounts logical disk unit 2.

* DLO:MYFILE/L:0ODY0O:DATFIL.DSK/Lsd /L2

You can also reassign a logical disk unit number by simply specifying the /L
option with the same logical disk unit numberand a different file name.

9.3.4 Write-Lock Logical Disk Option (/R:n)

Use the /R:n option to write-lock a logical disk. You then have read-only
access to that logical disk. The variable n represents the logical disk unit
number; n must be an integer in the range 0-7. The default mode is /W
(write-enabled).

The following command mounts logical disk unit 3 to JMS.TXT on DY1: and
write-locks it.

JMS THT/L:3/R:3

The next command write-locks logical disk unit 4.

* /R:d

9.3.5 Write-Enable Logical Disk Option (/W:n)

Use the /W:n option to write-enable a logical disk. You then have read/write
access to that logical disk. The variable n represents the logical disk unit
number; n must be an integer in the range 0-7. This is the default mode.

The following command mounts logical disk unit 5 to file JMS.DSK on DLO:
and write-enables the new logical disk.

DLO:2JMB/L:5/W:S

94 Logical Disk Subsetting Program (LD)

Chapter 10
Librarian (LIBR)

The librarian utility program (LIBR) lets you create, update, modify, list,
and maintain object library files. It also lets you create macro library files to
use with the V03 and later versions of the MACRO-11 assembler.

A library file is a direct access file (a file that has a directory) that contains
one or more modules of the same module type. The librarian organizes the
library files so that the linker and MACRO-11 assembler can access them
rapidly. Each library contains a library header, library directory (or global
symbol table, or macro name table), and one or more object modules, or
macro definitions. The object modules in a library file can be routines that
are repeatedly used in a program, routines that are used by more than one
program, or routines that are related and simply gathered together for con-
venience. The contents of the library file are determined by your needs. An
example of a typical object library file is the default system library that the
linker uses, SYSLIB.OBJ. An example of a macro library file is
SYSMAC.SML, which MACRO uses to process programmed requests.

You access object modules in a library file from another program by making
calls or references to their global symbols; you then link the object modules
with the program that uses them, producing a single load module (see
Chapter 11).

Consult the RT—11 Software Support Manual for more information on the
internal data structure of a library file.

10.1 Calling and Terminating LIBR

To call the RT-11 librarian from the system device, respond to the dot ()
printed by the keyboard monitor by typing: .

+ R LIBR GeD

The Command String Interpreter (CSI) prints an asterisk at the left margin
of the console terminal when it is ready to accept a command line. o

Type two CTRL/Cs to halt the librarian at any time (or a single CTRL/C to
halt the librarian when it is waiting for console terminal input) and return
control to the monitor. To restart the librarian, type R LIBR or REENTER
in response to the monitor’s dot. -

10-1

10.2 LIBR Command String Syntax

10-2

Chapter 1, Command String Interpreter, describes the general syntax of
the command line LIBR accepts. :

Specify the LIBR command string in the following general format:
library-filespec[n],list-filespec[n] = input-filespecs/option

where:

library-filespec[n] represents the library file to be created or up-
' dated. The optional argument n represents the
number of blocks to allocate for the output file.

list-filespec[n] represents a listing file for the library’s con-
tents. The optional argument n represents the
number of blocks to allocate for the listing file.

input-filespecs represents the input obje‘ct modules (you can
specify up to six input files); it can also repre-
sent a library file to be updated.

option represents an option from Table 10-1.

You specify devices and file names in the standard RT-11 command string
syntax, with default file types for object libraries assigned as follows:

Object File Default File Type
List file LST
Library output file .OBJ
Input file (library or module) .OBJ

If you do not specify a device, the default device (DK:) is assumed.

Each input file consists of one or more object modules and is stored on a
given device under a specific file name and file type. Once you insert an
object module into a library file, you no longer reference the module by the
name of the file of which it was a part; instead you reference it by its
individual module name. You assign this module name with the assembler
with either a .TITLE statement in the assembly source program, or with
the default name .MAIN. in the absence of a .TITLE statement or the
subprogram name for FORTRAN routines. Thus, for example, the input file
FORT.OBJ can exist on DY1: and can contain an object module called ABC.
Once you insert the module into a library file, reference only ABC (not
FORT.OBJ).

The input files normally do not contain main programs but rather subpro-
grams, functions, and subroutines. The library file must never contain a
FORTRAN BLOCK DATA subprogram because there is no undefined
global symbol to cause the linker to load it automatically.

This section and Section 10.3 explain how to use the librarian to create and
maintain object libraries; Section 10.4 describes how to create macro librar-
ies.

Librarian (LIBR)

N

10.2.1 Creating a Library File

To create a library file, specify a file name on the output side of a command
line.

The following example creates a new library called NEWLIB.OBJ on the
default device (DK:). The modules that make up this library file are in the
files FIRST.OBJ and SECOND.OBJ, both on the default device.

NEWLIB=FIRST,SECOND

10.2.2 Inserting Modules into a Library

Whenever you specify an input file without specifying an associated option,
the librarian inserts the input file’s modules into the library file you name
on the output side of the command string. You can specify any number of
input files. : '

If you include section names (by using /P) in the global symbol table and if
you attempt to insert a file that contains a global symbol or PSECT (or
CSECT) having the same name as a global symbol or PSECT already exist-
ing in the library file, the librarian prints a warning message (see Section
10.3.11 for multiple definition library creation). The librarian does, how-
ever, update the library file, ignore the global symbol or section name in
error, and return control to the CSI. You can then enter another command
string.

-Although you can insert object modules that exist under the same name (as
assigned by the .TITLE statement), this practice is not recommended be-
cause of possible confusion when you need to update these modules (Sec-
tions 10.3.8 and 10.3.9 describe replacing and updating).

NOTE

The librarian performs module insertion, replacement, dele-
tion, merge, and update when creating the library file.
Therefore, you must indicate the library file to which the
operation is directed on both the input and output sides of the
command line, since effectively the librarian creates a new
output library file each time it performs one of these opera-
tions. You must specify the library file first in the input field.

The following command line inserts the modules included in thé files
FA.OBJ, FB.OBJ, and FC.OBJ on DY1: into a library file named DXY-

NEW.OBJ on the default device. The resulting library also includes the
contents of library DXY.OBJ.

% DMYNEW=DXY DY1:FAFB,FC

Librarian (LIBR) 10-3

The next command line inserts the modules contained in files THIRD.OBJ
and FOURTH.OBJ into the library NEWLIB.OBJ.

% NEWLIBLIST=NEWLIB,THIRD,FOURTH

Note that the resulting library contains the original library plus some new
modules, and replaces the original library because the same name was used
in this example for the input and output library.

10.2.3 Merging Library Files

You can merge two or more library files under one file name by specifying in
a single command line all the library files to be merged. The librarian does
not delete the individual library files following the merge unless the output
file name is identical to one of the input file names.

The command syntax is as follows:
library-filespec = input-filespecs
where:

library-filespec represents the library file that will contain all the
merged files. (If a library file already exists under
this name, you must also indicate it in the input side
of the command line so that it is included in the
merge.)

input-filespec represents library files to be merged.

Thus, the following command combines library files MAIN.OBJ, TRIG.OBJ,
STP.OBJ, and BAC.OBJ under the existing library file name MAIN.OBJ;
all files are on the default device DK:. Note that this replaces the old con-
tents of MAIN.OBJ.

#* MAIN=MAINTRIG:STP,BAC

The next command.creates a library file named FORT.OBJ and merges
existing library files A.OBJ, B.OBJ, and C.OBJ under the file name
FORT.OBJ.

% FORT=A:B.C

NOTE

Library files that you combine using PIP are invalid as input
to both the librarian and the linker.

10.3 Option Commands and Functions for Object Libraries

You maintain object library files by using option commands. Functions that
you can perform include object module deletion, insertion, replacement, and
listing of an object library file’s contents.

104 Librarian (LIBR)

Table 10—1 summarizes the options available for you to use with RT-11
LIBR for object libraries and tells on which command line you must use each
option. The following sections, which are arranged alphabetically by option,
describe the options in greater detail.

Table 10~1: LIBR Object Options

Command
Option Line Section Function

/A First 10.3.1 Puts all globals in the directory, including all
absolute global symbols.

/C Any 10.3.2 Command continuation; allows you to type the

but last input specification on more than one line.

/D First 10.3.3 Delete; deletes modules that you specify from a
library file.

/E First 10.3.4 Extract; extracts a module from a library and
stores it in an OBJ file.

G First 10.3.5 Global deletion; deletes global symbols that you
specify from the library directory.

/M[:n] First 10.4.2 Creates a macro library.

/N First 10.3.6 Names; includes the module names in the
directory. :

/P First 10.3.7 P-sect names; includes the program section
names in the directory.

R First 10.3.8 Replace; replaces modules in a library file. This
option must follow the file specification to which
it applies.

19 First 10.3.9 Update; inserts and replaces modules in a
library file. This option must follow the file spe-
cification to which it applies.

W First 10..3.10 Indicates a wide format for the listing file.

IX First 10.3.11 Allows multiple definitions of global entry
points to appear in the library entry point table.

I First 10.3.2 Command continuation; allows you to type the

and last input specification on more than one line.

There is no option to indicate module insertion. If you do not specify an
option, the librarian automatically inserts modules into the library file.

10.3.1 Include All Global and Absolute Giobal Symbols Option (/A)

Use the /A option when you want all the global symbols to appear in the

library file’s directory. When you use /A, the librarian includes in the direc-

tory all absolute global symbols, including those that have a value of 0.

Librarian (LIBR) 10-5

Normally, the librarian includes in the directory only global entry points
(labels), and not absolute global symbols.

The following example places all the global symbols from modules MOD1
and MOD2 in the library directory for ALIB.OBJ.

% ALIB=MOD1,MODZ/A

10.3.2 Command Continuation Options (/C Or //)

You must use a continuation option whenever there is not enough room to
enter a command string on one line. The maximum number of input files
that you can enter on one line is six; you can use the /C option or the /
option to enter more.

Type the /C option at the end of the current line and repeat it at the end of
subsequent command lines as often as necessary, so long as memory is
available; if you exceed memory, an error message prints. Each continua-
tion line after the first command line can contain only input file specifica-
tions (and no other options). Do not specify a /C option on the last line of
input. If you use the // option, type it at the end of the first input line and
again at the end of the last input line.

The following example creates a library file on the default device (DK:)
under the file name ALIB.OBJ; it also creates a listing of the library file’s
contents as LIBLST.LST (also on the default device). The file names of the
input modules are MAIN.OBJ, TEST.OBJ, FXN.OBJ, and TRACK.OBJ, all
from DY1.. .

ALIB#IBLST=DY1:MAIN,TEST sFXN/C
% DY1:TRACK

The next example creates a library file on the default device (DK:) under
the name BLIB.OBJ. It does not produce a listing. Input files are
MAIN.OBJ from the default device, TEST.OBJ from DL1:, FXN.OBJ from
DLO:, and TRACK.OBJ from DY1:.

BLIB=MAIN//
DL1:TEST
DLO:FXN
DY1:TRACK//

sk %k &k ok

Another way of writing this command line is:

% BLIB=MAIN,,DL1:TEST +DLOzFXN//
% DY1:TRACK
% //

10.3.3 Delete Option (/D)

The /D option deletes modules and all their associated global symbols from
a library file’s directory. Since modules are deleted only from the directory

106 Librarian (LIBR)

(and not from the object module itself), all modules that were previously
deleted are restored whenever you update that library, unless you use /D
again to delete them.

When you use the /D option, the librarian prompts:

Module name?

Respond with the name of the module to be deleted, followed by a carriage
return. Continue until you have entered all modules to be deleted. Type a
carriage return immediately after the Module name? message to terminate
input and initiate execution of the command line.

The following example deletes the modules SGN and TAN from the library
file TRAP.OBJ on DY1..

DY1:TRAP=DY1:TRAP/D
Module name? SGN
Module namae? TAN
Module name?

The next example deletes the module FIRST from the library LIBFIL.OBJ;
all modules in the file ABC.OBJ replace old modules of the same name in
the library. It also inserts the modules in the file DEF.OBJ into the library.

LIBFIL=LIBFIL/DABC/RsDEF
Module name? FIRST
Module name?

In the following example, the librarian deletes two modules of the same
name from the library file LIBFIL.OBJ.

LIBFIL=LIBFIL/D

Module name? X
A\

Module name? A

Module name?

10.3.4 Extract Option (/E)

The /E option allows you to extract an object module from a library file and
place it in an .OBJ file. :

When you specify the /E option, the librarian prints:

Global?

Respond with the name of the object module yoi1 want to extract. If you
specify a global name, the librarian extracts the entire module of which
that global is a part. Type a carriage return to terminate the prompting for
a global.

You cannot use the /E option on the same command line as another option.

Librarian (LIBR) 10-7

The following example extracts the ATAN routine from the FORTRAN
library, SYSLIB.OBJ, and stores it in a file called ATAN.OBJ on DX1..

DX1:ATAN=SYSLIB/E
Global? ATAN '
Global?

The next example extracts the $PRINT routine from SYSLIB.OBJ and
stores it on DM1: as PRINT.OBJ.

¥ DM1:PRINT=SYSLIB/E
Global? $PRINT
Global”?

10.3.5 Delete Global Option (/G)

The /G option lets you delete specific global symbols from a library file’s
directory.

When you use the /G option, the librarian prints:

Global?

Respond with the name of the global symbol you want to delete followed by
a carriage return; continue until you have entered all globals to be deleted.
Type a carriage return immediately after the Global? message to terminate
input and initiate execution of the command line.

The following command instructs LIBR to delete the global symbols
NAMEA and NAMEB from the directory found in the library file
ROLL.OBJ on DK:.

% ROLL=ROLL/G
Global? NAMEA
Global? NAMEB
Glokal?

The librarian deletes globals only from the directory (and not from the
library itself). Whenever you update a library file, all globals that you
previously deleted are restored unless you use the /G option again to delete
them. This feature lets you recover if you delete the wrong global. .

10.3.6 Include Module Names Option (/N)

When you use the /N option on the first line of the command, the librarian

‘includes module names in the directory. The linker loads modules from
libraries based on undefined globals, not on module names. The linker also
provides equivalent functions by using global symbols and not module
names. Normally, then, it is a waste of space and a performance compro-
mise to include module names in the directory.

108 Librarian (LIBR)

If you do not include module names in the directory, the MODULE column
of the directory listing is blank, unless the module requires a continuation
line to print all its globals. A plus (+) sign in the MODULE column indi-
cates continued lines. The /N option is useful mainly when you create a
temporary library in order to obtain a directory listing.

If the library does not have module names in its directory, you must create
a new library to include the module names. The following example illus-
trates how to do this. It creates a temporary new library from the current
library (by specifying the null device for output) and lists its directory on
the terminal. The current library OLDLIB remains unchanged.

NL:TEMP,TT:=0LDLIB/N
RT-11 LIBRARIAN V05,00 WED 02-MAR-83 20:36:41

NL:TEMP.OBJ ' TUE 02-MAR-83 20:36:40

MODULE GLOBALS . GLOBALS GLOBALS
IRADSO IRADSO RADSO

JMUL JMUL

LEN LEN

SUBSTR SUBSTR

JADD JADD

JCMP JCMP

10.3.7 Include P-Section Names Option (/P)

The librarian does not include program section names in the directory un-
less you use the /P option on the first line of the command. The linker does
not use section names to load routines from libraries — in fact, including
the names can decrease linker performance. Including program section
names also causes a conflict in the library directory and subsequent
searches, since the librarian treats section names and global symbols iden-
tically. ‘

This option is provided for compatibility with RT-11 V2C. DIGITAL recom-
mends that you avoid using it with later versions of RT-11.

10.3.8 Replace Option (/R)

Use the /R option to replace modules in a library file. The /R option replaces
existing modules in the library file you specify as output with the modules
of the same names contained in the file(s) you specify as input. In the
command string, enter the input library file before the files used in the
replacement operation. :

If an old module does not exist under the same name as an input module, or
if you specify the /R option on a library file, the librarian prints an error
message followed by the module name and ignores the replace command.

The /R option must follow each input file name containing modules for
replacement.

Librarian (LIBR) 10-9

The following command line indicates that the modules in the file INB.OBJ
are to replace existing modules of the same names in the library file
TFIL.OBJ. The object modules in the files INA.OBJ and INC.OBJ are to be
added to TFIL. All files are stored on the default device DK:.

TFIL=TFIL+INA+INB/R:INC

The same operation occurs in the next command as in the preceding exam-
ple, except that this updated library file is assigned the new name XFIL.

% XFIL=TFILINA,INB/RINC

10.3.9 Update Option (/U)

The /U option lets you update a library file by combining the insert and
replace functions. If the object modules that compose an input file in the
command line already exist in the library file, the librarian replaces the old
modules in the library file with the new modules in the input file. If the
object modules do not already exist in the library file, the librarian inserts
those modules into the library. (Note that some of the error messages that
might occur with separate insert and replace functions do not print when
you use the update function.) '

/U must follow each input file that contains modules to be updated. Specify
the input library file before the input files in the command line.

The following command line instructs the librarian to update the library
file BALIB.OBJ on the default device. First the modules in FOLT.OBJ and
BART.OBJ replace old modules of the same names in the library file, or if
none already exist under the same names, the modules are inserted. The
modules from the file TAL.OBJ are then inserted; an error message prints
if the name of a module in TAL.OBJ already exists.

% BALIB=BALIB,FOLT/U.TAL,BART/U

In the next example, there are two object modules of the same name, X, in
both Z and XLIB; these are first deleted from XLIB so that both the mod-
ules called X in file Z are correctly placed in the library. Globals SEC1 and
SEC2 are also deleted from the directory but automatically return the next
time the library XLIB.OBJ is updated.

HLIB=XLIB/DZ/U/G
Module name? X
Module name? X
Module name?
Global? SECI
Global? SECE

Global?

10-10 Librarian (LIBR)

10.3.10 Wide Option (/W)

The /W option gives you a wider listing if you request a listing file. The
wider listing has six global columns instead of three, as in the normal
listing. This is useful if you list the directory on a line printer or a terminal
that has 132 columns.

10.3.11 Creating Multiple Definition Libraries Option (/X)

The /X option lets you create libraries that can have more than one defini-
tion for a global entry point. These libraries are called multiple definition
libraries. They are processed differently from libraries that contain only
one definition for each global entry point name that appears in the library’s
directory (for more information on processing multiple definition libraries,
see Chapter 11).

In multiple definition libraries, two library modules may use the same
global entry point name, and both definitions may appear in the entry point
table (EPT). At least one entry point hame should be unique in each mod-
ule so that you can easily identify it.

When you use the /X option, the librarian does not issue the 7ZLIBR—W-In-
valid insert of AAAAAA message when it encounters a duplicate global
symbol name, and the global name will appear in the directory for each
module that defines it. In addition, the /X option causes the librarian to
turn on the /N option (see Section 10.3.6).

The following example creates the multiple definition library MLTLIB
from modules MOD1, MOD2, and MODS3, and lists the library on the termi-
nal. Since MODS contains only absolute global symbols, this example must
also use the /A option.

#MLTLIB,TT:=MOD1 +MODZ ,MOD3/K/A

RT-11 LIBRARIAN VOT.00 THU 11-NOV-82 08:45:31

DK:MLTLIB.OBJ THU 11-NOV-82 08:45:31

MODULE GLOBALS GLOBALS GLOBALS

MOD1 OMASR EWPs ATPS

MODZ ATPS OMASR MER$CR
LBM

MOD3 ATP$ OMASR MER$CR
ENTZ

10.3.12 Listing the Directory‘o‘f a Library File

You can request a listing of the contents of a library file (the global symbol
table) by indicating both the library file and a list file in the command line.
Since a library file is not being created or updated, you do not need to
indicate the file name on the output side of the command line; however, you
must use a comma to designate a null output library file.

Librarian (LIBR) 10-11

The command syntax is as follows:
,LP:=library-filespec
or
Jlist-filespec = library-filespec
~ where: .
library-filespec represents the existing library file

LP: indicates that the listing is to be sent directly to
the line printer (or terminal, if you use TT:)

list-filespec A represents a list file of the library file’s contents

The following command outputs to DY1: as LIST.LST a listing of all. mod-
ules in the library file LIBFIL.OBJ, which is stored on the default device.

* +DY1:LIST=LIBFIL

The next command sends to the line printer a listing of all modules in the
library file FLIB.OBJ, which is stored on the default device.

% sLP:=FLIB

Here is a sample section of a large directory listing:

* +TT:=8YSLIB
RT-11 LIBRARIAN V05,00 TUE 02-NOV-82 21:01:01

DK:SYSLIB.OBJ TUE 02-NOV-B2 20:59:47
MODULE GLOBALS GLOBALS - GLOBALS
DCO% ECO$% . FCO%
+ GCOs% RCI%
DIC$IS DIC$MS DIC%PS
+ DIC%SS $DIVC $DVC
ADD$IS ADD$MS ADD%PS
+ ADD%SS SUD%$IS SUD$MS
+ SUD$PS sUDs88 $ADD

The first line of the listing file shows the version of the librarian that was
used and the current date and time. The second line prints the library file
name and the date and time the library was created. Each line in the rest of
the listing shows only the globals that appear in a particular module. If a
module contains more global symbol names than can print on one line, a
new line will be started with a plus (+) sign in column 1 to indicate contin-
uation.

If you request a listing of a library file that was created with the /X or /N
option, the listing includes module names under the MODULE heading.

10-12 Librarian (LIBR)

—”

10.3.13 Combining Library Option Functions

You can specify two or more library functions in the same command line,
with the exception of the /E and /M options, which cannot be specified on

‘the same command line with any other option. The librarian performs func-

tions (and issues appropriate prompts) in the following order:
1. /Cor/

2. D

3. /G

4. /U

5. /R

6. Insertions

7. Listing

Here is an example that combines options:

% FILE:;LP:=FILE/D »MODX MODY/R
Module name? XKYZ

Module name? A

Module name?

The librarian performs the functions in this example in the following order:
1. Deletes modules XYZ and A from the library file FILE.OBJ.

2. Replaces any duplicate of the modules in the file MODY.OBJ.

3. Inserts the modules in the file MODX.OBJ.

4. Lists the directory of FILE.OBJ on the line printer.

10.4 Option Commands and Functions for Macro Libraries

The librarian lets you create macro libraries. A macro library works with
the VO3 or later MACRO-11 assembler to reduce macro search time.

The .MACRO directive-produces the entries in the library directory (macro
names). LIBR does not maintain a directory listing file for macro libraries;
you can print the ASCII input file to list the macros in the library.

The default input file type for macro files is .MAC. The default output file
type for macro library files is .MLB.

If you give the library file the same name as one of the input files, the
librarian prints the error message: ?LIBR-F-Output and input filnames
the same.

Librarian (LIBR) 10-13

The librarian removes all comments from your source input file except for
those within a macro (that is, between a .MACRO and .ENDM pair of direc-
tives). Because comments take up space during the assembly and in the
library, remove them from the macros wherever possible before creating a
macro library, if saving space and shortening assembly time are important
to you.

Table 10-2 summarizes the options you can use with macro libraries.

The options are explained in detail in the following two sections.

Table 10-2: LIBR Macro Options

Command
Option Line Section Meaning
IC Any ' 104.1 Command continuation; allows you to
but last type the input specification on more than
one line.

/M[:n] First 10.4.2 Macro; creates a macro library from the
ASCII input file containing .MACRO
directives.

/ First ' 10.4.1 Command continuation; allows you to

and last type the input specification on more than
one line.

10.4.1 Command Continuation Options (/C or//)

These options are the same for macro libraries as for object libraries. See
Section 10.3.2.

10.4.2 Macro Option (/M[:n])

The /M[:n] option creates a macro library file from an ASCII input file that
contains .MACRO directives. The optional argument n determines the
amount of space to allocate for the macro name directory by representing the
number of macros you want the diréctory to hold. Remember that n is inter-
preted as an octal number; you must follow n with a decimal point (n.) to
indicate a decimal number. One block of library directory space holds 64
macros. The default value for n is 128, enough space for 128 macros, which
will use 2 blocks for the macro name table.

The command syntax is as follows:
library-filespec = input-filespec/M[:n]
where:

library-filespec represents the macro library to be created

input-filespec represents the ASCII input file that contains
.MACRO definitions

10-14 Librarian (LIBR)

The continuation options (/C or /) are the only options you can use with the
macro option.

The following example creates the macro library SYSMAC.SML from the

ASCII input file SYSMAC.MAC. Both files are on device DK.:.

SYSMAC.SBML=8YSMAC/M

Librarian (LIBR) 10-15

Chapter 11
Linker (LINK)

The linker (LINK) converts object modules to a format suitable for loading
and execution. If you have no previous experience with the linker, see the
Introduction to RT-11 for an introductory-level description of the linking
process.

To make this chapter easy to use, the description that follows outlines the
organization of this chapter.

Section 11.1, Overview of the Linking Process, explains:

® Some of the terms used exclusively in this chapter

® The functions of the linker

e How the linker structures your program to prepare it for execution

@ The communication links between modules within your program

Section 11.2, Calling and Terminating the Linker, describes how to invoke
the linker from the system device and how to terminate the linker.

Section 11.3, LINK Command String Syntax, describes how to enter a LINK
command string. This section also provides a summary of the options you
can use in the command string.

Section 11.4, Input and Output, lists and describes the files valid for input to
and output from the linker. This section also explains how to use library
files, and how the linker processes library files, which you create with the
librarian utility (see Chapter 10).

Section 11.5, Creating an Overlay Structure, describes how to design and
implement overlay structures for your programs. This section provides
detailed descriptions and illustrations of how overlaid programs work and
how they reside in memory. This section also explains how to create an over-
lay structure in extended memory.

Section 11.6, Options, lists and describes the options you can use with the
linker.

Section 11.7, Linker Prompts, lists and explains the prompts the linker
prints at the terminal after you enter a command line.

11-1

11.1 Overview of the Linking Process

A few of the terms used frequently within this chapter, along with their defi-
nitions, are listed below. Although the descriptions are brief, you can find
more information on these terms in the Introduction to RT—11 or the RT—11
Software Support Manual.

Program section

Object module

Load module

Library file

Library module

Root segment

Overlay segment

Global symbol

Low memory

A named, contiguous unit of code (instructions or data)
that is considered an entity and that can be relocated
separately without destroying the logic of the program.
Also known as a p-sect.

The primary output of an assembler or compiler, which
can be linked with other modules and loaded into mem-
ory as a runnable program. The object module is com-
posed of the relocatable machine language code, reloca-
tion information, and the corresponding global symbol
table defining the use of the symbols within the pro-
gram. Also known as a module.

A program in a format ready for loading and executing.

A file containing one or more relocatable object mod-
ules, which are routines that can be incorporated into
other programs.

A module from a library file.

The segment of an overlay-structure that, when loaded,
remains resident in memory during the execution of a
program. Also known as the root.

A section of code treated as a unit that can overlay code
already in memory and be overlaid by other overlay
segments when called from the root segment or
another overlay segment. Also known as an overlay.

A global value or global label.
Physical memory from 0 to 28K words.

Extended memory Physical memory above the 28K word boundary.

11.1.1 What the Linker Does

When the linker processes the object modules, it performs the functions

listed below.

® Relocates your program module and assigns absolute addresses

® Links the modules by correlating global symbols that are defined in one
module and referenced in another

11-2 Linker (LINK)

Creates the initial control block for the linked program that the GET, R,
RUN, SRUN, and FRUN commands use

Creates an overlay structure, if specified, and includes the necessary run-
time overlay handlers and tables

Searches the library files you specify to locate unresolved global symbols

Produces a load map, if specified, that shows the layout of the load module

Produces a symbol table definition file, if specified

The linker requires two passes over the input modules. During the first pass
it constructs the symbol table, which includes all program section names
and global symbols in the input modules. Next, the linker scans the library
files to resolve undefined global symbols. It links only those modules that
are required to resolve undefined global symbols. During the second pass,
the linker reads in object modules, performs most of the functions listed
above, and produces the load module.

The linker runs in a minimal RT-11 system of 16K words of memory; any
additional memory is used to facilitate linking and to extend the size of the
symbol table. The linker accepts input from any random-access volume on
the system; there must be at least one random-access volume (disk, diskette,
or DECtape II) for memory image or relocatable format output.

11.1.2 How the Linker Structures the Load Moduie

When the linker processes the assembled or compiled object modules, it cre-
ates a load module in which it has assigned all absolute addresses, has cre-
ated an absolute section, and has allocated memory for the program
sections.

11.1.2.1 Absolute Section — The absolute section is often called the ASECT
because the assembler directive .ASECT allows information to be stored
there. The absolute section appears in the load map with the name . ABS,,
and is always the first section in the listing. The absolute section typically
ends at address 1000 (octal) and contains the following:

® A system communication area
® Hardware vectors

® A user stack

The system communication area resides in locations 0-377, and contains
data the linker uses to pass program control parameters and a memory
usage bitmap. Section 11.4.3 provides a detailed description of each location
in the system communication area.

The stack is an area that a program can use for temporary storage and sub-
routine linkage. General register 6, the stack pointer (SP), references the
stack.

Linker (LINK) 11-3

11.1.2.2 Program Sections — The program sections (p-sects) follow the abso-
lute section. The set of attributes associated with each p-sect controls the
allocation and placement of the section within the load module. The p-sect,
as the basic unit of memory for a program, has:

@ A name by which it can be referenced

® A set of attributes that define its contents, mode of access, allocation, and
placement in memory

® A length that determines how much storage is reserved for the p-sect

You create p-sects by using a COMMON statement in FORTRAN, or the
.PSECT (or .CSECT) directive in MACRO. You can use the .PSECT (or
.CSECT) directive to attach attributes to the section. Note that the attri-
butes that follow the p-sect name in the load map are not part of the name;
only the name itself distinguishes one p-sect from another. You should make
sure, then, that p-sects of the same name that you want to link together also
have the same attribute list. If the linker encounters p-sects with the same
name that have different attributes, it prints a warning message and uses
the attributes from the first time it encountered the p-sect.

Program Section Attributes

The linker collects from the input modules scattered references to a p-sect
and combines them in a single area of the load module. The attributes,
which are listed in Table 111, control the way the linker collects and places
this unit of storage.

The scope-code is meaningful only when you define an overlay structure for
the program. In an overlaid program, a global section is known throughout
the entire program. Object modules contribute to only one global section of
the same name. If two or more segments contribute to a global section, then
the linker allocates that global section to the root segment of the program.
In contrast to global sections, local sections are only known within a particu-
lar program segment. Because of this, several local sections of the same
name can appear in different segments. Thus, several object modules
contributing to a local section do so only within each segment. An example
of a global section is named COMMON in FORTRAN. An example of a local
section is the default blank section for each macro routine.

The alloc-code determines the starting address and length of memory allo-
cated by modules that reference a common p-sect. If the alloc-code indicates
that such a p-sect is to be overlaid, the linker stores the allocations from
each module starting at the same location in memory. It determines the
total size from the length of the longest reference to the p-sect. Each
module’s allocation of memory to a location overwrites that of a previous

" module. If the alloc-code indicates that a p-sect is to be concatenated, the
linker places the allocations from the modules one after the other in the load
module; it determines the total allocation from the sum of the lengths of the
contributions.

11-4 Linker (LINK)

N

Table 11-1: P-Sect Attributes

Attribute Value Explanation
Access-code* RW Read/Write — data can be read from, and written into, the p-
sect.
RO Read Only — data can be read from, but cannot be written
into, the p-sect.
Type-code D Data — the p-sect contains data, concatenated by byte.
I Instruction — the p-sect contains either instructions, or data

and instructions, concatenated by word.

Scope-code GBL Global — the p-sect name is recognized across segment bound-
aries. The linker allocates storage in the root for the p-sect
from references outside the defining overlay segment. If the
p-sect is referenced only in one segment, that p-sect has space
allocated in that segment only.

LCL Local — the p-sect name is recognized only within each indi-
vidual segment. The linker allocates storage for the p-sect
from references within the segment only.

SAV Save — the p-sect name is recognized across segment bound-
aries. The linker always allocates storage in the root for the
p-sect.

Reloc-code REL Relocatable — the base address of the p-sect is relocated rela-

tive to the virtual base address of the program.

ABS Absolute — the base address of the p-sect is not relocated. It is

always 0.

Alloc-code CON Concatenate — all allocations to a given p-sect name are con-
catenated. The total allocation is the sum of the individual
allocations.

OVR Overlay — all allocations to a given p-sect name overlay each

other. The total allocation is the length of the longest individ-
ual allocation.

* Not supported

Any data (D) p-sect that contains references to word labels must start on a
word boundary. You can do this by using the .EVEN assembler directive at
the end of each module’s concatenated p-sect. (If you do not do this, the pro-
gram may fail to link, printing the message ?LINK-F-Word relocation error
in FILNAM.)

The allocation of memory for a p-sect always begins on a word boundary. If
the p-sect has the D (data) and CON (concatenate) attributes, all storage
that subsequent modules contribute is appended to the last byte of the pre-
vious allocation. This occurs whether or not that byte is on a word boundary.
For a p-sect with the I (instruction) and CON attributes, however, all stor-
age that subsequent modules contribute begins at the nearest following
word boundary.

Linker (LINK) 11-5

The .CSECT directive of MACRO is converted internally by both MACRO
and the linker to an equivalent .PSECT with fixed attributes. An unnamed
CSECT (blank section) is the same as a blank PSECT with the attributes
RW, I, LCL, REL, and CON.

A named CSECT is equivalent to a named PSECT with the attributes RW, I,
GBL, REL, and OVR. Table 11-2 shows these sections and their attributes.

Table 11-2: Section Attributes

Access- Type- Scope- Reloc- Alloc-

Section Code Code Code Code Code
CSECT RW I LCL REL CON
CSECT name RW I GBL REL OVR
ASECT (. ABS) RW I GBL ABS OVR
COMMON/name/ RW GBL REL OVR
VSECT (. VIR) RW GBL REL CON

The names assigned to p-sects are not considered to be global symbols; you
cannot reference them as such. For example:

May #PNAME »RO

This statement, where PNAME is the name of a section, is invalid and gen-
erates the undefined global error message if no global symbol of PNAME
exists. A name can be the same for both a p-sect name and a global symbol.
The linker treats them separately.

Program Section Order

The linker determines the memory allocation of p-sects by the order of occur-
rence of the p-sects in the input modules. Table 11-3 shows the order in
which p-sects appear for both overlaid and nonoverlaid files.

Table 11-3: P-Sect Order

Nonoverlaid File

Overlaid File

Absolute (. ABS)
Blank
Named NAME)

Absolute (. ABS)

Overlay handler (SOHAND)
Overlay table (§OTABL)
Blank

Named (NAME)

11-6 Linker (LINK)

If there is more than one named section, the named sections appear in the
order in which they occur in the input files. For example, the FORTRAN
compiler arranges the p-sects in the main program module so that the USR
can swap over pure code in low memory rather than over data required by
the function making the USR call.

If the size of the blank p-sect is 0, it does not appear in the load map.

11.1.3 Global Symbols: Communication Links Between Modules

Global symbols provide the link, or communication, between object modules.
You create global symbols with the .GLOBL or .ENABL GBL assembler
directive (or with double colon, ::, double equal sign, = =, or = =1).

If the global symbol is defined in an object module (as a label using :: or by
direct assignment using = =), other object modules can reference it. If the
global symbol is not defined in the object module, it is an external symbol
and is assumed to be defined in some other object module. If a global symbol
is used as a label in a routine, it is often called an entry point —that is, it is
an entry point to that subroutine.

As the linker reads the object modules it keeps track of all global symbol
definitions and references. It then modifies the instructions and data that
reference the global symbols. The linker always prints undefined globals on
the console terminal after pass 1. A list of undefined globals is also included
in any load maps you generate.

Table 11—4 shows how the linker resolves global references when it creates -
the load module. : :

Table 11—4: Global Reference Resolution

Module Global Global
Name Definition Reference
IN1 B1 A
B2 L1
C1
XXX
IN2 A B2
B1
IN3 ' B1

In processing the first module, IN1, the linker finds definitions for B1 and
B2, and references to A, L1, C1, and XXX. Because no definition currently
exists for these references, the linker defers the resolution of these global
symbols. In processing the next module, IN2, the linker finds a definition for
A that resolves the previous reference, and a reference to B2 that can be
immediately resolved.

Linker (LINK) 11-7

When all the object modules have been processed, the linker has three unre-
solved global references remaining: L1, C1, and XXX. A search of the
default system library resolves XXX. The global symbols L1 and C1 remain
unresolved and are, therefore, listed as undefined global symbols.

The relocatable global symbol, B1, is defined twice and is listed on the termi-
nal as a global symbol with multiple definitions. The linker uses the first
definition of such a symbol. An absolute global symbol can be defined more
than once without being listed as having multiple definitions, as long as
each occurrence of the symbol has the same value.

11.2 Calling and Termmatmg the Linker

To call the linker from the system device, respond to the dot printed by the
keyboard monitor by typing:

. R OLINK
The Command String Interpreter (CSI) prints an asterisk at the left margin
of the console terminal when it is ready to accept a command line. If you

enter only a carriage return at this point, the linker prints its current ver-
sion number.

Type two CTRL/Cs to halt the linker at any time (or a single CTRL/C to halt
the linker when it is waiting for console terminal input) and return control
to the monitor. To restart the linker, type R LINK or REENTER in
response to the monitor’s dot.

11.3 Link Command String Syntax

The first command string you enter in response to the linker’s prompt has
this syntax:

[bin-filespec],[map-filespec],[stb-filespec] = obj-filespec[/option...][,...obj-filespec[/option...]]
where:

bin-filespec represents the device, file name, and file type to be
assigned to the linker’s output load module file

map-filespec represents the device, file name, and file type of the load
map output file

stb-filespec represents the device, file name, and file type of the sym-
‘ bol definition file

~ obj-filespec represents an object module, a library file, or a symbol
table file, created in a previous link

/option is one of the options listed in Table 11-6

11-8 Linker (LINK)

In each file specification above, the device should be a random-access device,
with these exceptions: the output device for the load map file can be any
RT-11 device, as can the output device for an .LDA file if you use the /L
option. If you do not specify a device, the linker uses default device DK.:.
Note that the linker load map contains lowercase characters. Use the SET
LP LC command to enable lowercase printing if your printer has lowercase
characters.

If you do not specify an output file, the linker assumes that you do not want
the associated output. For example, if you do not specify the load module and
load map (by using a comma in place of each file specification) the linker
prints only error messages, if any occur.

Table 11-5 shows the default values for each specification.

Table 11-5: Linker Defaults

Device File Name File Type
Load Module DK: None SAV,REL(R), LDA(/L)
Load Map DK:or None MAP
same as

load module

Symbol DK: or same None STB
Definition as previous

Output output device

Object Module DK: or same None OBJ

as previous
object module

If you make a syntax error in a command string, the system prints an error
message. You can then retype the new command string following the aster-
isk. Similarly, if you specify a nonexistent file, a warning message occurs;
control returns to the CSI, an asterisk prints, and you can reenter the com-
mand string.

Table 116 lists the options associated with the linker. You must precede
the letter representing each option with the slash character. Options must
appear on the line indicated if you continue the input on more than one line,
but you can position them anywhere on the line. The column titled
Command Line lists on which line in the command string the option can
appear. (Section 11.6 provides a more detailed explanation of each option.)

Linker (LINK) 11-9

Table 11-6: Linker Options

Option Command

Name Line Section Explanation
/A First 11.6.1 Lists global symbols in program sections in
alphabetical order.
/B:n First 11.6.2 Changes the bottom address of a program to n
(invalid with /H and /R).
/C Any but 11.6.3 Continues input specification on another com-
last mand line. (You can also use /C with /V and

with /O; do not use /C with the // option.)

/D First 11.6.4 Allows the global symbol you specify to be de-
fined once in each segment that references
that symbol. These symbols must be defined in
library modules.

/E:n First 11.6.5 Extends a particular program section in the
root to a specific value.

/F First 11.6.6 Instructs the linker to use the default
FORTRAN library, FORLIB.OBJ; this option
is provided only for compatibility with pre-
vious versions of RT-11.

/G First 11.6.7 Adjusts the size of the linker’s library direc-
tory buffer to accommodate the largest multi-
ple definition library directory.

/Hmn First 11.6.8 Specifies the top (highest) address to be used
by the relocatable code in the load module.
Invalid with /B, /R, /Y and /Q.

1 First 11.6.9 Extracts the global symbols you specify (and
. their associated object modules) from the
library and links them into the load module.

/K:n First 11.6.10 Inserts the value you specify (the valid range
for n is from 2 to 28.) into word 56 of block 0 of
the image file. This option allows you to limit
the amount of memory allocated by a
SETTOP request to n K words (decimal).

Invalid with /R.

/L First 11.6.11 Produces a formatted binary output file (inval-
id for overlaid programs and for foreground
links).

/Ml[:n] First 11.6.12 Causes-the linker to prompt you for a global

symbol that represents the stack address or
that sets the stack address to the value n. Do
not use with /R.

/N First 11.6.13 Produces a cross-reference in the load map of
all global symbols defined during the linking
process.

(Continued on next page)

11-10 Linker (LINK)

R

Table 11-6: Linker Options (Cont.)

Option Command

Name Line Section Explanation
/O:mn Any but 11.6.14 Indicates that the program is an overlay struc-
first ture; n specifies the overlay region to which
the module is assigned. Invalid with /L.
/P:n First 11.6.15 Changes the default amount of space the
linker uses for a library routines list.
Q First 11.6.16- Lets you specify the base addresses of up to
eight root program sections. Invalid with /H or
/R.
/Rl:n] First 11.6.17 Produces output in relocatable format and
optionally indicates stack size for a foreground
job. Invalid with /B, /H, /K, and /L.
S First 11.6.18 Makes the maximum amount of space in mem-
ory available for the linker’s symbol table.
(Use this option only when a particular link
stream causes a symbol table overflow.)
/T[:n] First 11.6.19 Cause the linker to prompt you for a global
symbol that represents the transfer address or
that sets the transfer address to the value n.
/Umn First 11.6.20 Rounds up the root program section you
specify so that the size of the root segment is a
whole number multiple of the value you sup-
ply (n must be a power of 2).
v First 11.6.21 Enables special .SETTOP and .LIMIT features
provided by the XM monitor. Invalid with /L.
/V:n[:m] Any but 11.6.21 Indicates that an extended memory overlay
first segment is to be mapped in virtual region n,
and optionally in partition m.
W First 11.6.22 Directs the linker to produce a wide load map
listing.
X First 11.6.23 Does not output the bitmap if the code is
placed over the bitmap (location 360-377).
This option is provided only for compatibility
with the RSTS operating system.
/Y:n First 11.6.24 Starts a specific program section in the root on
a particular address boundary. Invalid with
/H.
1Z:n First 11.6.25 Sets unused locations in the load module to the
value n.
I First and 11.6.3 Allows you to specify command string input on
last additional lines. Do not use this option with

/C.

Linker (LINK) 11-11

11.4

Input and Output

Linker input and output is in the form of modules; the linker uses one or
more input modules to produce a single output (load) module. The linker
also accepts library modules and symbol table definition files as input, and
can produce a load map and/or symbol table definition file. The sections that
follow describe all valid forms of input to and output from the linker.

11.4.1 Input Object Modules

Object files, consisting of one or more object modules, are the input to the
linker. (Entering files that are not object modules may result in a fatal
error.) Object modules are created by language translators such as the
FORTRAN compiler and the MACRO-11 assembler. The module name item
declares the name of the object module (see Section 11.4.4).

The first six Radix—50 characters of the .TITLE assembler directive are
used as the name of the object module. These six characters must be
Radix—50 characters (the linker ignores any characters beyond the sixth
character). The linker prints the first module name it encounters in the
input file stream (normally the main routine of the program) on the second
line of the map following TITLE:. The linker also uses the first identity label
(issued by the .IDENT directive) for the load map. It ignores additional mod-
ule names.

The linker reads each object module twice. During the first pass it reads
each object module to construct a global symbol table and to assign absolute
values to the program section names and global symbols. The linker uses the
library files to resolve undefined globals. It places their associated object
modules in the root if the global symbols in the module are referenced from
more than one overlay segment or from the root. If you use the /D option and
the global symbols are not referenced from the root, the linker places a copy
of the global symbols you specify in each segment that references them. (See
Section 11.6.4 for more information on the /D option.) On the second of its
two passes, the linker reads the object modules, links and relocates the mod-
ules, and outputs the load module.

Symbol table definition files are special object files that can serve as input to
LINK anywhere other object files are allowed.

11.4.2 Input Library Modules

The RT-11 linker can automatically search libraries. Libraries consist of
library files, which are specially formatted files produced by the librarian
program (described in Chapter 10) that contain one or more object modules.
The object modules provide routines and functions to aid you in meeting
specific programming needs. (For example, FORTRAN has a set of modules
containing all necessary computational functions —SQRT, SIN, COS, and so
on.) You can use the librarian to create and update libraries. Then you can

11-12 Linker (LINK)

easily access routines that you use repeatedly or routines that different pro-
grams use. Selected modules from the appropriate library file are linked as
needed with your program to produce one load module. Libraries are further
described in Chapter 10.

NOTE

Library files that you combine with the monitor COPY com-
mand or with the PIP /U or /B option (described in Chapter 13)
are invalid as input to both the linker and the librarian.

You specify libraries in a command string in the same way you specify nor-
mal modules; you can include them anywhere in the command string. If you
are creating an overlay structure, specify libraries before you specify the
overlay structure. Do not specify libraries on the same line as overlay seg-
ments. If a global symbol is undefined at the time the linker encounters the
library in the input stream, and if a module is included in the library that
contains that global definition, then the linker pulls that module from the
library and links it into the load image. Only the modules needed to resolve
references are pulled from the library; unreferenced modules are not linked.

Modules in one library can call modules from another library; however, the
libraries must appear in the command string in the order in which they are
called. For example, assume module X in library ALIB calls Y from the
BLIB library. To correctly resolve all globals, the order of ALIB and BLIB
should appear in the command line as:

#2=BALIB,BLIB

Module B is the root. It calls X from ALIB and brings X into the root. X in
turn calls Y, which is brought from BLIB into the root.

Library Module Processing

The linker selectively relocates and links object modules from specific user
libraries that were built by the librarian. Figure 11-1 diagrams this general
process. During pass 1 the linker processes the input files in the order in
which they appear in the input command line. If the linker encounters a
library file during pass 1, it takes note of the library in an internal save sta-
tus block, and then proceeds to the next file. The linker processes only non-
library files during the initial phase of pass 1. In the final phase of pass 1 the
linker processes only library files. This is when it resolves the undefined
globals that were referenced by the nonlibrary files.

The linker processes library files in the order in which they appear in the
input command line. The default system library (SY:SYSLIB.OBJ) is
always processed last.

Linker (LINK) 11-13

Figure 11-1: Library Searches

START

OPEN FILE

UNDEFINED
GLOBALS
. ?

THIS IS
/1 PASS

READ AS MUCH
OF LIBRARY
DIRECTORY AS
POSSIBLE

/X LIBRARY
?

MORE
LIBRARY

TO READ
?

DIRECTORY

UNDEFINED
GLOBALS IN
LIBRARY

SEARCH FOR

SEARCH FOR
UNDEFINED
/I GLOBALS
iN LIBRARY

MORE
LIBRARY
DIRECTORY
TO F;EAD

YES

PROCESS
LIBRARY
MODULES

THIS IS
NOT /I
PASS

'

REPOSITION TO
BEGINNING OF
LIBRARY FILE

ABORT

ES

/X LIBRARY
?

NEW
UNDEFINED
GLO?BALS

11-14 Linker (LINK)

CLOSE -
LIBRARY

The search method the linker uses allows modules to appear in any order in
the library. You can specify any number of libraries in a link and they can
be positioned anywhere, with the exception of forward references between
libraries, and they must come before the overlay structure. The default sys-
tem library, SY:SYSLIB.OBJ, is the last library file the linker searches to
resolve any remaining undefined globals.

Some languages, such as FORTRAN, have an Object Time System (0OTS)
that the linker takes from a library and includes in the final module. The
most efficient way to accomplish this is to include these OTS routines (such
as NHD, OTSCOM, and V2NS for FORTRAN) in SY:SYSLIB.OBJ. See the
RT-11 Installation Guide for details on how to do this.

Libraries are input to the linker the same way as other input files. Here is a
sample LINK command string:

TASKO1»LP:=MAIN,MEASUR

This causes program MAIN.OBJ to be read from DK: as the first input file.
Any undefined symbols generated by program MAIN.OBJ should be
satisfied by the library file MEASUR.OBJ specified in the second input file.
The linker tries to satisfy any remaining undefined globals from the default
library, SY:SYSLIB.OBJ. The load module, TASKO01.SAV, is stored on DK:
and a load map prints on the line printer.

Multiple Definition Libraries

In addition to the libraries explained so far, LINK processes multiple defini-
tion libraries. DIGITAL does not recommend that you use this type of
library in normal situations; its primary purpose is to provide special func-
tions for RSTS. These libraries differ from other libraries in that they can
contain more than one definition for a given global. You specify multiple
definition libraries in the command line the same way you specify normal
libraries. Modules that LINK obtains from multiple definition libraries
always appear in the root.

It is useful to be aware of the differences between processing normal and
multiple definition libraries. When you include modules from a multiple
definition library, LINK has to store that library’s directory in an internal
buffer. A library’s directory is often called an entry point table (EPT). If a
library EPT is too large to fit into the internal buffer, LINK prints a mes-
sage instructing you to use the /G option. The /G option changes the buffer’s
size to accommodate the largest EPT of all the multiple definition libraries
you are using. Use the /G option only when LINK indicates it is required.

When a global symbol from a multiple definition library matches an
undefined global, LINK removes from the undefined global list all other
globals defined in the same library. LINK does this before it processes the
library module. Thus, two modules with identical globals will not appear in
the linked module.

Linker (LINK) 11-15

NOTE

The order of modules in multiple definition libraries is very.
important and will affect which modules LINK uses. The
increased EPT size (due to duplicate entries, in addition to
module name entries) will also slow LINK down.

11.4.3 Output Load Module

The primary output of the linker is a load module that you can run under
RT-11. The linker creates as a load module a memory image file (file type of
.SAV) for use under a single-job system or as the background job under the
FB monitor; save images can also be run as virtual foreground jobs under
the XM monitor. If you need to execute a program in the foreground, use the
/R option to produce a relocatable format (file type of .REL) foreground load
module. The linker can produce an absolute load module (file type of LDA) if
you need to load the module with the Absolute Loader. See the RT-11
Software Support Manual for more details on these formats.

The load module for a memory image file is arranged as follows:

Root Segment Overlay Segments
(optional)

For a relocatable image file the load modules are arranged as follows:

Root Segment Overlay Segments Relocation information for root
(optional) and overlay segments

The first 256-word block of the root segment (main program) contains the
memory usage bitmap and the locations the linker uses to pass program con-
trol parameters. The memory usage bitmap outlines the blocks of memory
that the load module uses; it is located in locations 360 through 377.

Table 11-7 lists the parameters that appear in the absolute block, the
addresses the parameters occupy, and the conditions under which they are
set.

The linker stores default values in locations 40, 42, and 50, unless you use
options to specify otherwise. The /T option affects location 40, for example,
and /M affects location 42. You can also use the .ASECT directive to change
the defaults. The overlay bit is located in the job status word. LINK auto-
matically sets this bit if the program is overlaid. Otherwise, the linker ini-
tially sets location 44 to 0. Location 46 also contains zero unless you specify
another value by using the .ASECT directive.

You can assign initial values to memory locations 0—476 (which include the
interrupt vectors and system communication area) by using an .ASECT
assembler directive. The values appear in block 0 of the load module, but

11-16 Linker (LINK)

R

Table 11-7: Absolute Block Parameters

Address Parameter When Set
0 Identification of a program that was Only with /V
created with /V option
2 Highest virtual memory address used Only with /V
by the program
14,16 (XM only) BPT trap Only with /R
20,22 (XM only) IOT trap Only with /R
34,36 TRAP vector Only with /R
40 Start address of program Always
42 Initial setting of SP (stack Always
pointer)
44 Job Status Word (overlay bit set by Always
LINK)
46 USR swap (set by user) address; Always
(0 implies normal location)
50 Highest memory address used by the Always
program (high limit)
52 Size of root segment in bytes Only with /R
54 Stack size in bytes (value with /R Only with /R
or default 128)
56 Size of overlay region in bytes Only with /R
60 Identification of a file in relo- Only with /R
catable ((REL) format
62 Relative block number for start of Only with /R
relocation information
64 Start address of overlay table With /O or
v
66 Start of virtual overlay segment Only with /V
information in overlay handler
tables
360-377 Memory usage bitmap Always,
except with
[Xor/L

there are restrictions on the use of .ASECT directives in this region. You
should not modify location 54 or locations 360-377 because the memory
usage map is passed in those locations. In addition, for foreground links,
modifications of words 52—62 are not permitted because additional param-

eters are passed to the FRUN command in those locations.

Linker (LINK)

You can use an .ASECT directive to set any location that is not restricted,
but be careful if you change the system communication area. The program
itself must initialize restricted areas, such as locations 360—-377. There are
no restrictions on . ASECT directives if the output format is LDA.

Locations in addresses 0-476 might not be loaded at execution time, even
though your program uses an .ASECT to initialize them. For background
programs, this is because the R, RUN, and GET commands do not load
addresses that are protected by the monitor’s memory protection map. For
foreground programs, the FRUN command loads only locations 14-22 and
34-50 and ignores all other low memory locations. To initialize a location at
run time, use the PROTECT programmed request. If it is successful, follow
it with a MOV instruction to modify the location.

11.4.4 Output Load Map

The linker can produce a load map following the completion of the initial
pass. This map, shown in Figure 11-2, diagrams the layout of memory for
the load module.

The load map lists each program section that is included in the linking pro-
cess. The line for a section includes the name and low address of the section
and its size in bytes. The rest of the line lists the program section attributes,
as shown in Table 11-2. The remaining columns contain the global symbols
found in the section and their values.

Figure 11-2: Sample Load Map

1 RT-11 LINK VoG, 01 Load Mar Friday 14-Jan-83 11:25 Pade 1
2 TEST +5AY Title: TEST Ident:

3

4 Section Addr Size Global Value Global Yaluye Global Value
5

6 + ABS. Qo000 001000 = 2586, words (RW+I+GBL »ABS +0OUR)

7 001000 000200 = 64, words {RW,I+LCL/REL »CON)

8 TEST 001200 000174 = G2, words (RWs»I+LCL +REL +CON)

9 START 001200 EXIT 001240

10

11 Transfer address = Q01200 High limit = 001372 = 381. words

Table 11-8 describes each line in the sample load map above.

The map begins with the linker version number, followed by the date and
time the program was linked. The second line lists the file name of the pro-
gram, its title (which is determined by the first module name record in the
input file), and the first identification record found. The absolute section is
always shown first, followed by any nonrelocatable symbols. The modules
located in the root segment of the load module are listed next, followed by
those modules that were assigned to overlays in order by their region num-
ber (see Section 11.5). Any undefined global symbols are then listed. The
map ends with the transfer address (start address) and high limit of reloca-
table code in both octal bytes and decimal words. If you use the /N option, a

11-18 Linker (LINK)

e

e

Table 11-8: Line-by-Line Sample Load Map Description

Line Contents
1 Load map header.
2 Program name, program title (MAIN. default) and identity (default is blank).
4 P-sect description header. Section indicates the p-sect name; Addr indicates

the p-sect start address; Size indicates p-sect length in octal bytes; Global and
Value list the p-sect globals and their associated octal values.

6 Absolute p-sect, . ABS. This line includes the absolute p-sect’s start address,
length and attributes (for a complete descr iption of these abbreviations, see
Table 11-1). The linker always includes a . ABS. p-sect in the link.

7 Unnamed p-sect. This p-sect appears in the load map after the absolute p-sect.
For overlaid programs, the unnamed p-sect appears in the load map after the
overlay table p-sect (see Figure 11-11).

8-9 TEST p-sect. Line 9 lists TEST’s two globals, START and EXIT, with their
associated values.
11 Transfer address indicates the address in memory where the program starts.

High limit indicates the last address used by the program. The number of
words in the program appears last.

cross-reference of all global symbols defined during the linking process fol-
lows the transfer address line. See Figure 11-14 for a sample and descrip-
tion of a global cross-references table.

NOTE

The load map does not reflect the absolute addresses for a REL
file that you create to run as a foreground job; you must add
the base relocation address determined at FRUN time to
obtain the absolute addresses. The linker assumes a base
address of 1000.

For example, assume the FRUN command is used to run the program TEST:

+ FRUN TEST/P

Loaded at 127276

The /P option causes FRUN to print the load address, which is 127276 in this
example. To calculate the actual location in memory of any global in the pro-
gram, first subtract 1000 from that global’s value. (The value 1000 repre-
sents the base address assigned by the linker. This offset is not used at load-
time.) Then add the result to the load address determined with /P. The final
result represents the absolute location of the global.

Linker (LINK) 11-19

11.5 Creating an Overlay Structure

The ability of RT—11 to handle overlays gives you virtually unlimited mem-
ory space for an assembly language or FORTRAN program. A program
using overlays can be much larger than would normally fit in the available
memory space, since portions of the program reside on a storage device such
as disk. To utilize this capability, you must define an overlay structure for
your program.

Prior to Version 4, RT-11 permitted overlays to be placed only in low mem-
ory. Now you can place them in extended memory, too, if you run your pro-
gram on a system that has an extended memory configuration and XM mon-
itor. Overlays that reside in low memory are called low memory overlays,
and those in extended memory are called extended memory overlays.

Section 11.5.1, Low Memory Overlays, describes low memory overlays in
general and shows how to define a low memory overlay structure for your
program. Section 11.5.2, Extended Memory Overlays, deals specifically with
extended memory overlays, and shows how to define an overlay structure
that has either extended memory overlays only or both extended memory
and low memory overlays.

Read 11.5.1 before reading 11.5.2, because much of the information con-
tained in the first section applies to the second section.

11.5.1 Low Memory Overlays

An overlay structure divides a program into segments. For each overlaid
program there is one root segment and a number of overlay segments. Each
overlay segment is assigned to a particular area of available memory called
an overlay region. More than one overlay segment can be assigned to a given
overlay region. However, each region of memory is occupied by one (and only
one) of its assigned segments at a time. The other segments assigned to that
region are stored on disk, diskette, or DECtape II. They are brought into
memory when called, replacing (overlaying) the segment previously stored
in that region. The root segment, on the other hand, contains those parts of
the program that must always be memory resident. Therefore the root is
never overlaid by another segment.

Figure 11-3 diagrams an overlay structure for a FORTRAN program. The
main program is placed in the root segment and is never overlaid. The var-
ious MACRO subroutines and FORTRAN subprograms are placed in over-
lay segments. Each overlay segment is assigned to an overlay region and
stored on DECtape until called into memory. For example, region 2 is shared
by the MACRO subroutine A currently in memory and the MACRO subrou-
tine B in segment 4. When a call is made to subroutine B, segment 4 is
brought into region 2 of memory, overlaying or replacing segment 3.

The overlay file, shown on the DECtape in Figure 11-3, is created by the
linker when you specify an overlay structure. The overlay file contains at all
times a copy of the root segment and each overlay segment, including those
overlay segments currently in memory.

11-20 Linker (LINK)

Figure 11-3: Sample Overlay Structure for a FORTRAN Program

\ high

low

R

/

REGION 3

SEGMENT 6
FORTRAN subprogram

Region 3
segment 6

Region 3
segment 5

REGION 2

SEGMENT 3
MACRO subroutine A

Region 2

segment 4

MACRO
subroutine B

Region 2
segment 3

REGION 1

SEGMENT 2
FORTRAN subprogram

Region 1
segment 2

Region 1
segment 1

ROOT

FORTRAN main program

memory

ROOT
FORTRAN
main program

Block O
of Overlay File

Linker (LINK) 11-21

You specify an overlay structure to the linker by using the /O option (see
Figure 11-4). To specify an overlay structure that uses extended memory,
use the /V option (see Section 11.5.2 for a discussion of extended memory
overlays). This option is described fully in Section 11.5.2.4.

Figure 11-4: Overlay Scheme

Command line:

A=A/l =Root high 77777
B/0:1 =Segment 1 = Region 1 D ‘ E Region 2
C/0:1 =Segment 2 W
B c Region 1
E//SZQ =gegmenti = Region 2 :
’ =oegment v A Root
1 low L

The linker calculates the size of any region to be the size of the largest seg-
ment assigned to that region. Thus, to reduce the size of a program (that is,
the amount of memory it needs), you should first concentrate on reducing
the size of the largest segment in each region. The linker delineates the
overlay regions you specify, and prefaces your program with the run-time
overlay handler code shown in Figure 11-5. The linker also sets up links
between the overlay handler and program references to routines that reside
in overlays. When, at run time, a reference is made to a section of your pro-
gram that is not currently in memory, these links cause an overlay to be
read into memory. The overlay segment containing the referenced code
becomes resident.

There is no special formula for creating an overlay structure. You do not
need a special code or function call. However, some general guidelines must
be followed. For example, a FORTRAN main program must always be
placed in the root segment. This is true also for a global program section
(such as a named COMMON block) that is referenced by more than one over-
lay segment.

The assignment of region numbers to overlay segments is crucial. Segments
that overlay each other (have the same region number) must be logically
independent; that is, the components of one segment cannot reference the
components of another segment assigned to the same region. Segments that
need to be memory resident simultaneously must be assigned to different
regions.

When you make calls to routines or subprograms that are in overlay seg-
ments, the entire return path must be in memory. This means that from an
overlay segment you cannot call a routine that is in a different segment of
the same region. If this is done, the called routine overlays the segment
making the call, and destroys the return path.

11-22 Linker (LINK)

S

Figure 11-5: Run-Time Overlay Handler — Low Memory

+TITLE OHANDL LOW MEMORY OVERLAY HANDLER
+8BTTL THE RUN-TIME OVERLAY HANDLER
+ENABL GBL

+

THE FOLLOWING CODE IS INCLUDED IN THE USER‘S PROGRAM BY THE
LINKER WHENEYER LOW MEMORY OVERLAYS ARE REGQUESTED BY THE USER,
THE RUN-TIME LOW MEMORY OVERLAY HANDLER IS CALLED BY A DUMMY
SUBROUTINE OF THE FOLLOWING FORM:

JER RS $0URH iCALL TD COMMON CODE FOR LOW MEMORY OYERLAYS
+WORD ZOVERLAY #%B: i# OF DESIRED SEGMENT
+WORD “ENTRY ADDFR: FACTUAL CORE ADDRESS (VIRTUAL ADDRESS)

ONE DUMMY ROUTINE OF THE ABOYE FORM IS STORED IN THE RESIDENT FORTION

OF THE USER‘S PROGRAM FOR EACH ENTRY POINT TO A LOW MEMORY OVERLAY SEGMENT,
ALL REFERENCES TOD THE ENTRY POINT ARE MODIFIED BY THE LINKER TO BE
REFERENCES TO THE APPROPRIATE DUMMY ROUTINE, EACH OVERLAY SEGMENT

IS CALLED INTO CORE AS A UNIT AND MUST BE CONTIGUOUS IN CORE, AN

OVERLAY SEGMENT MAY HAVE ANY NUMBER OF ENTRY POINTS. TO THE LIMITS

OF CORE MEMORY., ONLY ONE SEGMENT AT A TIME MAY OCCUPY AN OVERLAY REGION,

THERE IS ONE WORD PREFIXED TO EVERY OVERLAY REGION THAT IDENTIFIES THE

INTO THE OVERLAY TABLE, AND POINTS AT THE OVERLAY SEGMENT INFORMATION,

UNDEFINED GLOBALS IN THE DOVERLAY HANDLER MUST BE NAMED "$0YDF1" TO
"$0UDFn" SUCH THAT A RANGE CHECK MAY BE DONE BY LINK TO DETERMINE IF

THE UNDEFINED GLOBAL NAME IS FROM THE QUERLAY HANDLER. A CHECK IS

DONE ON THE ,RAD50 CHARACTERS "$0U", AND THEN A& RANGE CHECK IS5 DONE ON
THE +RADSO CHARACTERS "DF1" TO “DFn". THESE GLOBAL SYMBOLS DO NOT APPEAR
ON LINK MAPS, SINCE THEIR WALUE IS NOT KNOWN UNTIL AFTER THE MAP HAS BEEN
PRINTED. CURRENTLY $DUDF1 TO $0YDFS5 ARE IN USE.

GLOBAL SYMBOLS O$READ AND O0%$DONE ARE USEFUL WHEN DEBUGGING OWERLAID
PROGRAMS .

+McAaLL

+SBTTL
+PSECT
+ENABL

i $0VURH

$OURH: :

1%z

i
H
i
H
i
H
H
H
H
i
H
i
H
i
H
H
H
H
i
i BEGMENT CURRENTLY RESIDENT IN THAT OYERLAY REGION. THIS WORD IS AN INDEX
H
§
H
i
H
i
H
H
i
i
j
H
i
i
i
H
i
H
e

O$READ:: WILL APPEAR IN THE LINK MAP AND LOCATES THE +READNW
STATEMENT IN THE OYERLAY HANDLER,

OD$DONE:: WILL APPEAR IN THE LINK MAP AND LOCATES THE FIRST
INSTRUCTION AFTER THE ,READW IN THE OYERLAY HANDLER .
oREADN’ooU1~o

UL, iVi FORMAT

OYERLAY HANDLER. CODE

$0HAND +sGBL

LSB

IS THE ENTRY POINT TO THE OVERLAY HANDLER

+RADSBO /OVR/ iTHIS KEEPS HANDLER THE SAME SIFE AS Y03
Moy RO+-(5P) i/0 OVERLAY ENTRY POINT
MOy R1,-(85P) iSAVE REGISTERS
Mow R2,-(8P)
BR 3 FFIRST CALL ONLY * % %
MOW BRI k1 SPICK UP OVERLAY NUMBER
ADD #$0UTAB-6 :R1 iCALC TABLE ADDR
MOW (R1)+R2 iGET FIRST ARG, OF OVERLAY SEG. ENTRY
CMP (RS)+,@R2 ilS OVERLAY ALREADY RESIDENT?
BEG 3% SYES» BRANCH TO IT
(Continued on next page)

Linker (LINK) 11-23

+

THE .READW ARGUMENTS ARE AS FOLLOWS: :

CHANNEL NUMBER: CORE ADDRESS: LENGTH TO READ. RELATIVE BLOCK ON DISGK.
THESE ARE USED IN REVERSE ORDER FROM THAT SPECIFIED IN THE CALL.

O$READ:: READMW 17+R24BR1 +(R1)+ iREAD FROM OVERLAY FILE
D$DONE:: BCS 44
3%: Moy (SP)+,R2 iRESTORE USERS REGISTERS
MOy (SP)+R1
Moy (SP)+,RO
MoV BRS RS iGET ENTRY ADDRESS
RTS RS iENTER OVERLAY ROUTINE AND RESTORE USER’S RS
4% EMT 376 iSYSTEM ERROR 10 (OVERLAY 1/0)
+BYTE 04373
5% Mow #11501 1% IRESTORE SWITCH INSTR (MOV _BRSR1)
Mow $0DF1)R1 iSTART ADDR FOR CLEAR OPERATION
G%: CLR (R1)+ sCLEAR ALL OWERLAY REGIONS
.CMP R1:$0DF2 iDONET
BLO 6% ilL0 -> NO: REPEAT
BR 1% $AND RETURN TO CALL IN PROGRESS
$0DF1:: JWORD - $0UDFL JHIGH ADDR OF ROOT SEGMENT + 2 (NXT AVAIL)
$0DF2:: +WORD $0WDF2 iHIGH ADDRESS OF /0 OVERLAYS + 2 (NXT AVAIL)

+DSABL LSB
+SBTTL $0VTAB OVERLAY TABLE

+
DVERLAY TABLE STRUCTURE:

LOC G4 -% $0UTAB:
+WORD “CORE ADDR»+<RELATIVE BLK: <WORD COUNT?X /0 DVERLAYS
DUMMY SUBROUTINES FOR ALL OWERLAY SEGMENTS

+PSECT $0TABL +D »GBL »OVR
$0VTAB:

+END

Figure 116 illustrates a sample set of subroutine calls and return paths. In
the example, solid lines represent valid subroutine calls and dotted lines
represent invalid calls.

Suppose the following subroutine calls were made:
1. The root calls segment 8
2. Segment 8 calls segment 4

3. Segment 4 calls segment 3

Segment 3 can now call any of the following, in any order:

Itself
Segment 4
Segment 8
The root

11-24 Linker (LINK)

S

Figure 11-6: Sample Subroutine Calls and Return Paths

region2

region 1

root

These segments and the root, of course, are all currently resident in
memory.

Segment 3 cannot call any of the following segments because this would
destroy its return path:

Segments 2 and 1
Segment 5
Segments 6 and 7

Look at what might happen if one of these invalid calls is made. Assume
that segments 3, 4, and 5 all contain MACRO subroutines. Suppose segment
4 calls segment 3 and segment 3 in turn calls segment 5. Segment 5 is not
resident in region 2, so an overlay read-in occurs: segment 5 is read into

Linker (LINK) 11-25

11-26

memory, thus destroying the memory-resident copy of segment 4. The sub-
routine in segment 5 executes and returns control to segment 3. Segment 3
finishes its task and tries to return control to segment 4. Segment 4, how-
ever, has been replaced in memory by segment 5. Segment 4 cannot regain
control and the program loops indefinitely, traps, or random results occur.

The guidelines already mentioned and some additional rules for creating
overlay structures are summarized below.

1. SYSLIB must be present to create an overlay structure because it con-
tains the overlay handler.

2. Overlay segments assigned to the same region must be logically inde-
pendent; that is, the components of one segment cannot reference the
components of another segment assigned to the same region.

3. The root segment contains the transfer address, stack space, impure
variables, data, and variables needed by many different segments. The
FORTRAN main program unit must be placed in the root segment.

4. A global program section (such as a named COMMON block or a
PSECT with the GBL attribute) that is referenced in more than one
segment is placed in the root segment by the linker. This permits com-
mon access across the different segments.

5. Object modules that are automatically acquired from a library file will
automatically be placed in an overlay segment, so long as that library
module is referenced only by that segment. If a library module is refer-
enced by more than one segment, LINK places that library module in

the root unless you use the /D option. See Section 11.6.4 for more details
on /D.

Do not specify a library file on the same command line as an overlay seg-
ment. You must specify all library modules before specifying any over-
lay modules. Link places in the root any modules from a multiple defini-
tion library and any modules included with the /I option.

6. All COMMON blocks that are initialized with DATA statements must
be similarly initialized in the segment in which they are placed.

7. When you make calls to overlay segments, the entire return path to the
calling routine must be in memory. (With extended memory overlays,
the entire return path must be mapped. See Section 11.5.2.) This means
you should take the following points into account:

a. You can make calls with expected return (as from a FORTRAN main
program to a FORTRAN or MACRO subroutine) from an overlay
segment to entries in the same segment, the root segment, or to any
other segment, so long as the called segment does not overlay in
memory part of your return path to the main program.

'b. You can make jumps with no expected return (as in a MACRO pro-
. gram) from an overlay segment to any entry in the program with one
exception: you can not make such a jump to a segment if the called

Linker (LINK)

10.

11.

12.

13.

14.

15.

segment will overlay an active routine (that is, a routine whose
execution has begun, but not finished, and that will be returned to) in
that region.

c. Calls you make to entries in the same region as the calling routine
must be entirely within the same segment, not within another seg-
ment in the same region.

You must make calls or jumps to overlay segments directly to global
symbols defined in an instruction p-sect (entry points). For example, if
ENTER is a global tag in an overlay segment, the first of the following
two commands is valid, but the second is not:

JMP ENTER sUALID
JMP ENTER+G FINVALID

You can use globals defined in an instruction p-sect (entry points) of an
overlay segment only for transfer of control and not for referencing data
within an overlay segment. The assembler and linker cannot detect a
violation of this rule so they issue no error. However, such a violation
can cause the program to use incorrect data. If you reference these glo-
bal symbols outside of their defining segment, the linker resolves them
by using dummy subroutines of four words each in the overlay handler.
Such a reference is indicated on the load map by a @ following the
symbol. o

The linker directly resolves symbols that you define in a data p-sect. It is
your responsibility to load the data into memory before referencing a
global symbol defined in a data section.

You cannot use a section name to pass control to an overlay because it
does not load the appropriate segment into memory. For example, JSR
PC,OVSEC is invalid if you use OVSEC as a .CSECT name in an over-
lay. You must use a global symbol to pass control from one segment to
the next.

In the linker command string, specify overlay regions in ascending
order.

Overlay regions are read-only. Unlike USR swapping, an overlay han-
dler does not save the segment it is overlaying. Any tables, variables, or
instructions that are modified within a given overlay segment are rein-
itialized to their original values in the SAV or REL file if that segment
has been overlaid by another segment. You should place any variables
or tables whose values must be maintained across overlays in the root
segment.

Your program cannot use channel 17 (octal) because overlays are read
on that channel.

MACRO and FORTRAN directly resolve all global symbols that are
defined in a module. If LINK moves the p-sect where they are defined
from an overlay segment to the root, LINK will not generate an overlay
table entry for those symbols.

Linker (LINK) 11-27

Refer to the RT-11/RSTS/E FORTRAN IV User’s Guide for additional
information.

The absolute section (. ABS.) never takes part in overlaying in any way. It
is part of the root and is always resident.

This set of rules applies only to communications among the various modules
that make up a program. Internally, each module must only observe stand-
ard programming rules for the PDP-11 (as described in the PDP-11
Processor Handbook and in the FORTRAN and MACRO-11 Language
Reference Manuals).

Note that the condition codes set by your program are not preserved across
overlay segment boundaries.

The linker provides overlay services by including a small resident overlay

handler in the same file with your program to be used at program run time.

The linker inserts this overlay handler plus some tables into your program

beginning at the bottom address. The linker then moves your program up in

memory to make room for the overlay handler and tables, if necessary. The
- handler is stored in SYSLIB. This scheme is diagrammed in Figure 11-7.

11.5.2 Extended Memory Overlays

You can use LINK to create an overlay structure for your program that uses
extended memory. Although you need a hardware configuration that
includes a memory management unit to run a program that has overlays in
extended memory, you can link it on any RT-11 system. Read Section
11.5.1, Low Memory Overlays, before reading this section — much of the
information contained in that section applies to extended memory overlays
as well.

Usually, you can convert an overlaid program to use extended memory with-
out modifying the code. The extended memory overlay handler and the key-
board monitor include all the programmed requests necessary to access
extended memory (see the RT-11 Software Support Manual for details on
extended memory restrictions). The overlay tables also include additional
data used by these requests, so you can access extended memory automati-
cally without using extended memory programmed requests in your pro-
gram. Refer to the RT-11 Software Support Manual for more information on
extended memory.

The extended memory overlay structure is different from the low memory
overlay structure in that extended memory overlays can reside concurrently
in extended memory. This allows for speedier execution because, once read
in, your program requires fewer [/O transfers with the auxiliary mass stor-
age volume. If all program data is resident, and the program is loaded, the
program may be able to run without an auxiliary mass storage volume.
However, you must observe the same restrictions with extended memory
overlays that apply to low memory overlays, especially regarding return
paths. This section describes how to create a program with overlays in
extended memory and ends with an example of such a program.

11-28 Linker (LINK)

Figure 11-7: Memory Diagram Showing BASIC Link with Overlay

Regions

~)
1/0 PAGE

28K

MONITOR

N
(¢
h)!
«

free memory

) OVERLAY REGION 2

optional functions, initialization code, user area

SEGMENT IDENTIFICATION WORD

[l

OVERLAY REGION 1

DATE/TIME
conversion
overlay

execute edit file 1/0 error message
overlay overlay overlay overlay

SEGMENT IDENTIFICATION WORD

ROOT SEGMENT OF PROGRAM

optional functions, initialization code, user area

OVERLAY HANDLER AND TABLES
(INCLUDED BY THE LINKER)

1000
SYSTEM AREA

ADDRESS

NOTE

Overlays that reside in extended memory can contain impure

data, but impure data is not automatically initialized each

time a new overlay segment maps over a segment that con-
"} tains impure data.

Linker (LINK)

11-29

11.5.2.1 Virtual Address Space — When you set up an extended memory over-
lay structure, you set it up as though you had locations 0 to 177777 (that is,
32K words of memory) available for your use. Physically, not all these loca-
tions are available to you in low memory; your program’s absolute section
resides, typically, in locations 0 to 500, and the monitor takes up a good deal
of memory starting at location 160000, going downward. Also, the computer
sets aside addresses 160000 to 177777 for the I/O page. But, because of mem-
ory management, you can structure your program as though you had all
32K words of memory for your use. This space is called the program virtual
address space (PVAS). The memory management hardware and the monitor
will allow part of your 32K address space to reside in extended memory.

The PVAS is divided into eight sections called pages, numbered 0—7. Each
page contains 4K words. RT-11 references each page by the Active Page
Register (APR). The APR contains the relocation constant, which controls
the mapping for each page. Figure 11-8 illustrates the PVAS, divided into
pages. Keep in mind the structure of your program in terms of how it uses
the virtual address space so that you can design its overlay structure cor-
rectly and efficiently.

Figure 11-8: Program Virtual Address Space

PVAS
177777
APR 7 { PAGE 7
160000
APR 6 { PAGE 6
140000
APR 5 { PAGE 5
120000
APR 4 { PAGE 4
100000
APR 3 { PAGE 3
: 60000
APR 2 { PAGE 2
40000
APR 1 { PAGE 1
20000
APR 0 { PAGE 0
0

11-30 Linker (LINK)

Each overlay that is to reside in extended memory must start on one of the
4K-word pge boundaries. The linker automatically rounds up the size of
each segment to achieve this. The linker thereby restricts you to a region
reserved for the root, and a maximum of seven virtual overlay regions, each
starting on a page boundary. If any of these segments extends beyond a 4K
word boundary, then one fewer virtual overlay regions is available. For
example, if the root is 5K words long, then the static region uses the
addresses referenced by APRs 0 and 1. Only six virtual overlay regions will
remain, those referenced by APRs 2 through 7.

11.5.2.2 Physical Address Space — When LINK creates the load module for a
program that has overlays in extended memory, it defines how each overlay
will be mapped to extended memory during run time. LINK handles
extended memory overlays differently from low memory overlays. Figures
11-9 and 11-10 compare the differences.

Figure 11-9 shows the physical address space of a program that has low
memory overlays. Overlay segments share each region, and each is read in
from an auxiliary mass storage volume when called.

Figure 11-9: Physical Address Space for Program with Low
Memory Overlays

177777
/0 PAGE
160000
MONITOR
= free memory I~

OVERLAY REGION 2
(segments 3,4)

OVERLAY REGION 1
{segments 1,2)

PROGRAM ROOT

overlay handler

ABSOLUTE SECTION

Linker (LINK) 11-31

Figure 11-10: Virtual and Physical Address Space

PHYSICAL ADDRESS SPACE

y overlay segment 4
’
/ y. overlay segment 3
/ 7/
/ 7/
/7 / overlay segment 2 .
; !/ 7/
/’// // p overlay segment 1 -
/
v,
VIRTUAL ADDRESS SPACE //// ,/
177777 /// /,
/0 PAGE 7 f—r 1/0 PAGE
e
/
17,7 .
MONITOR ,,/’, ~ MONITOR
1/s7
~ free memory =~ /5%/ >
. ////)
i s e
17 7 2
VIRTUAL ‘# ree memory
OVERLAY REGION 1 APR 1
20000
ROOT ROOT
overlay tables — APR 0 ————m—————p=] overlay tables
overlay handler & tables — - ’ overlay handler & t_abies
ABSOLUTE SECTION - ABSOLUTE SECTION

In Figure 11-10, the diagram on the left shows the program virtual address
space (0 to 177777). The diagram on the right shows the physical address
space. In the program virtual address space, there is only one overlay region,
and it starts on a 4K word boundary (APR 1 references this region). The
regions of address space that will map to extended memory are called virtual
overlay regions. Notice the arrows that point from the virtual overlay region
to a number of overlay segments that appear on the right.

The overlay segments in the virtual overlay region shown use the space
specified by APR 1 (20000 to 37777), but they occupy contiguous areas of
extended memory, called partitions. At run time, overlay segments 1
through 4, once called, are concurrently resident in extended memory, and
no further disk I/0 is done to access these segments.

11.5.2.3 Virtual and Privileged Jobs — The amount of virtual address space
available to your program depends on the type of program you are running.
Background, foreground, and system jobs can fall into two categories: vir-
tual and privileged. :

11-32 Linker (LINK)

Virtual jobs can-use all 32K words of the virtual address space, but they can-
not directly access the I/O page, the monitor, the vectors, or other jobs.
Unless you need to access these protected areas of memory, make your jobs
virtual by setting bit 10 of the JSW. :

Privileged jobs also have 32K words of virtual addressing space, but by
default, the protected areas (monitor, I/O page, vectors, and so on) are part of
this addressing space. Just as you may lose access to protected areas if you
implement your own extended memory mapping, you may-lose access to the
monitor and I/O page if you use extended memory overlays with a privileged
job.

Virtual and privileged jobs can map to extended memory. You can use
extended memory overlays with any type of virtual or privileged job (fore-
ground, system, background). :

See the RT-11 Software Support Manual for more details on virtual and
privileged jobs, and see the RT-11 Programmer’s Reference Manual for
instructions on how to make a job virtual.

11.5.2.4 Extended Memory Overiay Option (/V:n[:m]) — Use the /V option to
describe your program’s structure in terms of virtual overlay regions (areas
of virtual address space) and partitions (areas of physical address space).
The argument, n, represents a virtual overlay region, and m represents a
partition. As you specify successive extended memory overlay segments in
the command string, make sure that the n and m in the /V:n[:m] notation
are in ascending order. The following examples show how to use the /V:n[:m]
option.

In the first example, program PROG has four segments to be mapped to
extended memory. The four segments are named SEG1, SEG2, SEG3, and
SEG4. '

+ B LINK

* PROG=PROG//
% SEG1/V:1

% SEG2/4Y:1

SEG3/Vs1l

« SEG4/V:1/7/

These segments map to extended memory exactly as Figure 11-10 shows.
Notice how each segment fits into its own partition in extended memory.
Because each segment fits into its own partition, no storage volume access is
necessary to change (or swap) segments once they have been read in.

NOTE

The /V:n[:m] option works differently from the /O:n option. If
/O:n were used in the previous example, the four segments
would share the same physical locations, obviously requiring
storage volume I/O as each segment is called. With /V:n[:m],
each segment from the previous example occupies a unique
area in extended memory, and no mass storage 1/O is neces-
sary after each segment is called.

Linker (LINK) 11-33

The next example places the same four segments into virtual overlay
regions 1 and 2. Although the program in this example uses two virtual
overlay regions at run time, the segmients will reside in memory the same as
the segments shown in Figure 11-10. The virtual address space will be dif-
ferent for this example, however (see Figure 11-11). SEG1 and SEG2 use
APR 1 (20000 to 37777), while SEG3 and SEG4 use APR 2 (40000 to 57777).

R LINK
PROG=PROG//
SEG1/U:1
SEG2/V:1
BEG3/V:2
SEGA/V:Z2//

k k Kk ok K -

Figure 11-11: Virtual and Physical Address Space

PHYSICAL ADDRESS SPACE

/ overlay segment 4
/ overlay segment 3
/' A
i
/7 overlay segment 2
rr A
/7 7 overlay segment 1
‘s 1 4 g
i 7 7/
/7 7/
VIRTUAL ADDRESS SPACE / /
177777 S0 ,
1/0 PAGE 7= 1/0 PAGE
/, ///
/
MONITOR ya— MONITOR
7] /7
~ ——tt
~ free memory =] 77
V4 /
/
/
/ Y
VIRTUAL / 4
OVERLAY REGION 2 Y/
v I free memory ~~
4
U4
VIRTUAL /’
OVERLAY REGION 1
ROOT s ROOT
overlay tables overlay tables
Sverlay handler & tables " overlay handler & tables
ABSOLUTE SECTION -~ ABSOLUTE SECTION

11-34 Linker (LINK)

The argument, m in /V:n[:m], represents the partition in extended memory
for the overlay segment. If you use m, segments can share the same partition
in extended memory. That is, a segment, when called by your program, can
be read in from auxiliary storage, thus overlaying the segment that cur-
rently occupies the same partition. When segments share partitions, the
program requires auxiliary storage for /O during run time, as does a pro-
gram with low memory overlays.

LINK makes each partition the size of the largest segment it must accommo-
date. The following example generates the overlay structure shown in
Figure 11-12.

R LINK
PROG=PROG//
SEGL/VW:lsd
SEGZ2/Uzl:1
SEG3/U:2
SEG4/V:2
SEGS/W:2:1
SEGG/V:eZ:1//

d %k %k ok kK K dk «

Figure 11-12: Extended Memory Partitions that Contain Sharing

Segments
i PHYSICAL ADDRESS SPACE
UNUSED
4 overlay segment 5 or 6
/
’
/ overlay segment 4
/ / °
/7 ;
/7 7 4 overlay segment 3
/7 7 7
/7 7/ /
VIRTUAL ADDRESS SPACE /',0 0 A overtaysegmentior2
4 / /
/
1/0 PAGE ‘v, /
/s 0 117777
MONITOR 1/ /’ 1/0 PAGE
/777 /
/
/7% /
~ free memory = 77 / MONITOR
4/
47 /
/)
VIRTUAL f y
OVERLAY REGION 2 /l
/
/ g free memory]
/
VIRTUAL 4
OVERLAY REGION 1
ROOT ROOT
overlay tables overlay tables
overlay handler & tables overlay handler & tables
ABSOLUTE SECTION ABSOLUTE SECTION

Linker (LINK)

Notice that there are four segments specified for virtual overlay region 2,
and that two segments share partition 1. The m value in /V:n:m groups seg-
ments in a region. The only reason to use the argument m is to create a par-
tition that contains two or more segments. As shown in the previous exam-
ple, the m argument is specified in ascending order within each virtual
overlay region. This means you can renumber m from 1 for each virtual
overlay region. -

If you specify four segments for the same virtual overlay region, as in
Example 1 below, the result is the same as if you specified Example 2.
Because two segments are not specified to share the same partition, the par-
tition order is as Example 2 shows.

Example 1

SEG1/V:
BEGZ/U:
SEG3/V:
SEG4A/V:

* %k ok %k
P

Example 2

SEGL/V:
SEG2/V:
SEG3/V:
SEG4/V:

EE I
P N e
 an oan oww
B~

11.5.3 Combining Low Memory Overlays with Extended Memory
Overlays

You can combine low memory overlays and extended memory overlays in
the same program structure. If you do so, however, each low memory overlay
region you use makes your remaining virtual address space smaller.

It is important to note that as you combine low memory overlays with
extended memory overlays, you must list your regions in ascending order,
whether or not one is a low memory overlay region and the next is a virtual
region. That is, if the first overlay region is a low memory overlay region,
specify it as region 1. If the next region is a virtual region, specify it as
region 2. Note that you must specify low memory overlays before extended
memory overlays.

The following example creates a low memory overlay region and a virtual
overlay region above it.

R LINK

PROG=PROG//
SEG1/0:
SEG2/0:
SEG3/U:
SEG4/V:
SEGS3/V:
SEGB/V:
SEG7/U:
SEGB/U:2:
SEGH/V:2:
SEG10/WY3//

rJ [V I 0 g R Bl

J

d %k ok ok ok R ok Kk Kk Kk Kk -

11-36 Linker (LINK)

Figure 11-13 shows how low memory and extended memory might appear if
the program from this example were loaded.

Figure 11-13: Memory Diagram Showing Low Memory and
Extended Memory Overlays

PHYSICAL ADDRESS SPACE

A overlay segment 10
/
/)‘ overlay segments 8,9
/ / i
/ / 4 overlay segments 5,6,7
/oyt
1 1y
7 ! /7 4 overlay segment 4
/e ‘
!y //// overlay segment 3
// Y / //
VIRTUAL ADDRESS SPACE / ////// /
2 / 1y :
1/0 PAGE 1Ly 1/0 PAGE
¢ 11y /
- / 1//1/ /
MONITOR // /fr/r/r MONITOR
/
A ‘ R /2
] free memory S s 7
/ Y /
/ INZS
/ ////
VIRTUAL Vil
OVERLAY REGION 3 Y L L
p // _ free memory ~
i/
VIRTUAL / .
OVERLAY REGION 2
UNMAPPED UNMAPPED
OVERLAY REGION OVERLAY REGION
(segments 1,2) (segments 1,2)
‘ROOT ROOT

overlay tables

overlay tables

overlay handler & tables

overlay handler & tables

ABSOLUTE SECTION

ABSOLUTE SECTION

Linker (LINK) 11-37

11.5.4 Load Map

Figure 11-14 shows a sample load map for PROG.SAV, whose overlay struc-
ture is defined below. :

PROG»PROG=MODO//
MOD1/0:1
MODZ/0:1
MOD3/U:Z
MODA/V:3//

% ok k %k Kk

Table 11-9 describes the portions of this load map devoted to low memory
and extended memory overlays.

Figure 11-14: Load Map for Program with Unmapped and Virtual

Overlays
1 RT-11 LINK V08,00 Load Mar Thursday 04-Nou-82 14:15 Pade 1
2 4 +SAY Title: +MAIN, Ident:
3
4 Section Addr Size Global Walwue Global Walue Global Value
5 : :
6 , ABS., 000000 001000 = ZE56. words . (RWsIGBL:ABS»OVR)
7 $0HAND 001000 000252 = 85, words (RW,I.GBL.REL,CON)
8 $OURHY 001000 $0OURH 001004 VSREAD 001034
9 U$DONE 001046 $YDFS 001234 $VDF4 001236
$UDF1 001246 $VYDFZ2 001250
$0TABL Q01252 000114 = 38, words {(RW.D,GBLRELOVR)
001366 000410 = 132, words (RWIsLCL.RELsCON)
MAIN 001776 000070 = 28, words (RWsIs+LCLsREL +CON)
START 001776 RET1 002010 RETZ2 002014
. LIMIT 002024
LMLY 002066 000028 = .11+ words (RW+IGBL.REL,CON)
MSGL 002066
LMLS 002114 0000268 = 11, words (RW,I:GBL,REL,CON)

MSGLZ 002114
Sedment size = 002142 = 5G61. words

Overlay redion 000001 Sedment 000001

LML2 002144 000032 = 13, words (RWsI,LCL.REL:CON)
START1E 002144
Segment size = 000032 = 13, words

Gverlav redgion COO0O01 Segment 000002

LML3 002144 0000368 = 15. words (RW,»I,LCL:+RELCON)
STARTZ2E 002144
Sedgment size = Q00036 = 15. words

Partition 000001 Sedgment 000003 .

LML7 020002 000034 = 14, words (RW,ILCLREL,CON)
START3 020002

LMLE Q20036 000042 = 17. words (RWs1GBLJREL,CON)}
MSGL3 020036 RET4 020050

Segmentsize = 000076 = 31. wo.rds

Virtual overlay redion Q00003

B b e B e b i 00 G0 GO 0O 00 00 GO GO 0O GO N DD RD B DD DD DD RO DD DD H b et b b e
ONMAWNROOWD-IONRARWNONHOWOIRNRWNHOSOOIRHTTARWNFO

(Continued on next page)

11-38 Linker (LINK)

Partition 00000E Sedment Q00004
LMLS 040002 000076 = 31, words (RW:I,GBL,REL,CON)
MSGLOR 040002
Sedment size = 000076 = 31, words
Transfer address = 001776 High limit = 002200 = 576, words
Wirtual high limit = 040076 = 8223, words, next free address = QBOOOO
Extended memory reauired = Q00200 = G4, words

RT-11 LINK WOB,00 Global Svm

$0UDF1 UVHANDL+
$0UDF2 VHANDL+
$0UDF3 UHANDL+
$0UDF4 WVHANDL+
$0WDFS VHANDL+
$0URH WVHANDL#+
$O0URHY UHANDL #+
$UDF1 UHANDL#+
$UDFZ2 UHANDL#+
$UDF4 UHANDL#+
$UDFS UHANDL#+
LIMIT MAIN.#
M8GL TMATN . #
MSGLZ «MAIN,#
MEGL3 JMAIN.#

MEGLY JMAIN, +MAIN, #
RET1 +MAIN, #
RETZ2 TMAIN . #

RET4 +MAIN, #

START MAIN.#%

STARTL +MAIN, +MAIN . #
STARTZ +MAIN, +MAIN, #
START3 +MAIN.#

YSDONE VHANDL#+

YSREAD YVHANDL#+

tol Cross Reference Tahle Pasge 1

Table 11-9 gives a line-by-line description of the load map above. This table
makes references only to those portions of the load map that are unique to
overlaid programs, and also describes the global cross-reference table (which
is not unique to overlaid programs). For details on other parts of the load
map, see Section 11.4.4.

Table 11-9: Line-by-Line Sample Load Map Description

Line Description

7-10 $OHAND p-sect. This is the overlay handler for overlays in both low
and extended memory.

11 $OTABL p-sect. This program section contains tables of data used by
the overlay handler.

12 Blank p-sect. The load map for overlaid programs lists the blank p-
sect, when present, after the JOHAND and $OTABL p-sects.

20 Contains data about the size of the program’s root. The sections of the

load map that follow provide information on the part of the program

that is overlaid.

(Continued on next page)

Linker (LINK) 11-39

Table 11-9: Line-by-Line Sample Load Map Description (Cont.)

Line

Description

22
23-24

25
32

37
41

42
44
47
50

53

56

59

60-87

Header for overlay region 1, segment 1 (low memory overlay region).

LML2 p-sect. This is the only p-sect in segment 1. Notice in line 24 the
@ character next to the global START1. This character indicates that
its associated global is accessed through data contained in the overlay
table p-sect, SOTABL, which is in the root.

Contains data on the size of segment 1.

Delineates the portion of the load map devoted to low memory from
the portion devoted to extended memory.

Header for virtual overlay region 2. Note that overlay regions are
numbered in ascending order, whether in low or extended memory.

Header for partition 1, segment 3.

Notice the absence of the @ character for the globals in p-sect LML6.
This indicates that LMLG is not called outside segment 3.

Contains data on the size of overlay segment 3.
Header for virtual overlay region 3.
Header for partition 2, segment 4.

Contains data on the size of segment 4. Notice that segments 3 and 4
have the same length. LINK automatically rounds up the size of vir-
tual overlay segments to multiples of 32 (decimal) words (or 100 octal
bytes). LINK adds an overlay segment number word to the segment
size number (the number 000076 that follows 040002 in line 48) to
give the actual segment size.

Transfer address and high limit. The transfer address is the start
address of the program. The high limit is the last low memory address
used by the root and unmapped overlays.

Virtual high limit. Indicates the last virtual address used by the part
of the program in extended memory. The next free address is the
address of the next page not in use by the program.

Indicates the amount of extended memory required by the program.
Make sure you check this figure to ensure you have adequate space for
your program at run time.

Cross-reference section of defined global symbols. Displays a cross-
reference of all global symbols defined during the linking process.
Note that global symbols are listed alphabetically and are followed by
the names of the modules in which the global symbols are either de-
fined or referenced. A pound sign (#) following a module name indi-
cates that the global symbol is definéd in that module. A plus sign (+)
following a module name indicates that the module is from a library.

1140 Linker (LINK)

Figure 11-15 shows the extended memory overlay handler.
Figure 11-15: Extended Memory Overlay Handler

+SBTTL THE RUN-TIME OWERLAY HANDLER
+ENABL GBL

+
THE FOLLOWING CODE IS INCLUDED IN THE USER‘S PROGRAM BY THE
LINKER WHENEVER LOW MEMORY OVERLAYS ARE REQUESTED BY THE USER.
THE RUN-TIME LOW MEMORY OVERLAY HANDLER IS CALLED BY A DUMMY
SUBROUTINE OF THE FOLLOWING FORM:

JBR RS s 0VRH iCALL TO COMMON CODE FOR LOW MEMORY OYWERLAYS
+WORD ZOVERLAY #%6» i# OF DESIRED SEGMENT
+WORD “ENTRY ADDR:» JACTUAL CORE ADDRESS (VIRTUAL ADDRESS)

ONE DUMMY ROUTINE OF THE ABOYE FORM IS STORED IN THE RESIDENT PORTION

OF THE USER‘S PROGRAM FOR EACH ENTRY POINT TO A LOW MEMORY OVERLAY SEGMENT .,
ALL REFERENCES TO THE ENTRY POINT ARE MODIFIED BY THE LINKER TO BE
REFERENCES TO THE APPROPRIATE DUMMY ROUTINE., EACH OWERLAY SEGMENT

I8 CALLED INTO CORE AS A UNIT AND MUST BE CONTIGUOUS IN CORE. AN

OVERLAY SEGMENT MAY HAVE ANY NUMBER OF ENTRY POINTS, TO THE LIMITS

OF CORE MEMORY., ONLY ONE SEGMENT AT A TIME MAY OCCUPY AN OVERLAY REGION.

IF OVERLAYS IN EXTENDED MEMORY ARE SPECIFIED, THE FOLLOWING DUMMY SUBROUTINE
IS5 USED AS THE ENTRY POINT TO THE EXTENDED MEMORY OVERLAY HANDLER,

JBR RS +$0VRHY FENTRY FOR /V (EXTENDED MEMORY) OVERLAYS
+WORD “OVERLAY #%G>» i# OF DESIRED SEGMENT
+WORD “WIRTUAL ENTRY ADDRESS:» jVIRTUAL ADDRESS 0OF SEGMENT

’

¥

1

1

1

1)

¥

kl

1

3

b

¥

1

¥

)

1

l

’

3

1

k)

5

1

1

i

i ADDITIONAL DATA STRUCTURES IN THE EXTENDED MEMORY QVERLAY HANDLER AND THE
i OVERLAY TABLE PERMIT USE OF EXTENDED MEMORY., ONE REGION DEFINITION

i BLOCK IS DEFINED IN THE HANDLER, AND XM EMT'S ARE ALSO INCLUDED, WINDOW
i DEFINITION BLOCKS FOR THE EXTENDED MEMORY PARTITIONS FOLLOW THE DUMMY

i SUBROUTINES IN THE OWERLAY TABLE.

1
3
]
k)
)
i
1
1
¥
i
1
3
¥
j
¥
1
1
1
i
’
H.

THERE IS DNE WORD PREFIXED TO EVERY OWERLAY REGION THAT IDENTIFIES THE
SEGMENT CURRENTLY RESIDENT IN THAT QUERLAY REGION. THIS WORD IS AN INDEX
INTO THE OVERLAY TABLE AND POINTS AT THE OVERLAY SEGMENT INFORMATION.

UNDEFINED GLOBALS IN THE OVERLAY HANDLER MUST BE NAMED "$0VDF1" TO
"$0UDFn" SUCH THAT A RANGE CHECK MAY BE DONE BY LINK TO DETERMINE IF

THE UNDEFINED GLOBAL NAME IS FROM THE OVERLAY HANDLER, A CHECK IS

DONE ON THE .RADSO CHARACTERS “$0V", AND THEN A RANCE CHECK IS DONE ON

i THE .RADS0O CHARACTERS "DF1" TO "DFn", THESE GLOBAL SYMBOLS DO NOT APPEAR
ON LINK MAPS, SINCE THEIR WALUE IS NOT KNOWN UNTIL AFTER THE MAP HAS BEEN
PRINTED, CURRENTLY #%0VDF1 TO $0YDFS ARE IN USE,

GLOBAL SYMBOLS Y#READ AND W$DONE ARE USEFUL WHEN DEBUGGING OVERLAID
PROGRAMS.

U$SREAD:: WILL APPEAR IN THE LINK MAP AND LOCATES THE .READW
STATEMENT IN THE OVERLAY HANDLER,

V$DONE:: WILL APPEAR IN THE LINK MAP AND LOCATES THE FIRST
INSTRUCTION AFTER THE ,READW IN THE OVERLAY HANDLER.

+MCALL +WDBDF + RDBDF 4+ + PRINT » JEXIT» READK ++ U1,
eVl iVl FORMAT
+WDBDF iDEFINE WDB OFFSETS
+RDBDF iDEFINE RDB OFFSETS

+SBTTL OVERLAY HANDLER CODE
+PSECT $0OHAND GBL

+ENABL LSB
(Continued on next page)

Linker (LINK) 11-41

1142

+
THERE ARE TWO ENTRY POINTS TO THE OVERLAY HANDLER: $0WRHY FOR /V
(EXTENDED MEMORY) OQVERLAYS: AND $0VRH FOR /0 (LOW MEMORY) DOVERLAYS.

$OVRHY : : INC (PC)+ FSET /Y OYERLAY ENTRY SWITCH
10%: +WORD 0 i=0 IF /0 § =1 IF /4 DVERLAY ENTRY
$0VRH:: MOV RO +-(BP) i/0 OVERLAY ENTRY POINT
Moy R1+-(8P) iSAVE REGISTERS
Mow R24+-(5P)
20%:
BR 90¢ IFIRST CALL ONLY * % *
3 Moy BRS :R1 SPICK UP OVERLAY NUMBER
ADD #$0UTAB-GBR1 iCALCULATE TABLE- ADDRESS
Mouw (R1)+R2 iGET FIRST ARG, OF OVERLAY SEG, ENTRY
TST 10% iIS THIS /Y ENTRYT
BNE GO$ JIF NON-ZERO THEN YES
30%: CMP (RS)+,BRZ iIS OVERLAY ALREADY RESIDENT?
BE®Q 404 iYES: BRANCH TO IT

+
THE READW ARGUMENTS ARE AS FOLLOWS:
CHANNEL NUMBER,» CORE ADDRESS: LENGTH 7O READ: RELATIVE BLOCK ON DISK.
THESE ARE USED IN REVERSE ORDER FROM THAT SPECIFIED IN THE CALL.

n am am s ww

Y$READ:: .READW 17,R2:€R1:(R1)+ FREAD FROM OVERLAY FILE

VY$DONE: :BCS S0%
40%: Mo (SP)+R2 fRESTORE USERS REGISTERS

Moy (SP)+R1

Moy (8P)+R0O

Moy BRS RS SGET ENTRY ADDRESS

CLR 10% SCLEAR /Y FLAG

RTS RS fENTER OQOVERLAY ROUTINE AND RESTORE USER’S RS
S0%: EMT 376 ISYSTEM ERROR 10 (OVERLAY 1/0)

+BYTE 04,373

i

i VIRTUAL OVERLAY SEGMENTS IN THE SAME REGION BUT IN DIFFERENT PARTITIONS
i USE DIFFERENT WDB’S. ONLY ONE OF THESE WINDOWS EXISTS AT ANY TIME.

i THIS IS BECAUSE WHEN A NEW WINDOW IN A WIRTUAL OVERLAY REGION IS CREATED:
i THE MONITOR IMPLICITLY ELIMINATES ANY WINDOW THAT EXISTS IN THAT

i WIRTUAL OVERLAY REGION. THUS, IF THE CALLED OVERLAY SEGMENT I8 NOT

i CURRENTLY MAPPED, ITS WINDOW MUST BE RE-CREATED (.,CRAW'ED) BESIDES

i BEING MAPPED. THE MAPPING IS DONE IMPLICITLY IN THE FOLLOWING CODE

i SINCE THE WS.MAP BIT I8 SET IN ALL OF THE YIRTUAL OVERLAY SEGMENTS’

i WDB'S.

k)

BO%: TSTB @Rz iDO WE NEED TO CREATE A WINDOW (,CRAW)?
BEQ 70% iYES
Mow BW.NBAS(RZ) +RO SGET INDEX OF SEGMENT NOW MAPPED
BE® 70% FTHERE ISN'T ONE3 WE MUST JCRAW
CHMP $0UTAB-G(RO) »R2 5IS DVERLAY REGION SAME AS THIS ONE?
BEQ 80% SIF EQUAL » JUST WORRY ABOUT DISK I/0
70%: MOW #AREA+Z 4RO iPOINT TO EMT ARGUMENT BLOCK + 2
MOW RZ+BRO iSTUFF ADDRESS OF WDB IN EMT AREA
Mow 30.%°0400+2,,-(RO) I8TUFF .CRAW CODESF RO -:*EMT AREA
EMT 375 iD0O THE EMT
BCS 110% iCARRY SET MEANS ERROR!
80%: Mow W.NBAS(R2) »R2 iGET MEMORY ADDRESS OF OVERLAY
BR 30% JCHECK IF DISK I/0 IS NECESSARY
90%: Mow #11501 4,204 JRESTORE SWITCH INSTR (MOW BRSR1)
Mow $UDF1R1 iSTART ADDRESS FOR CLEAR OPERATION
100%: cHMP R1,$VDFZ iARE WE DONE?
BHIS 20% iHIS -» DONE, OR ND /0 OVERLAYS
CLR (R1)+ iCLEAR ALL LOW MEMORY OVERLAY REGIONS
BR 100%

(Continued on next page)

Linker (LINK)

i ERROR MESSAGE

1108: MOy #MSGZ RO SOTHERWISE ERROR
+PRINT FAND PRINT MESSAGE
JEXIT SAND EXIT

+DSABL LEB

+SBTTL IMPURE AREA

+ENABL LC

+NLIST BEX

MSGZ: .ASCI1Z /VHANDL-F-Window error/

LIST BEX

VEVEN

AREA: +WORD 010 ' SEMT AREA BLOCK FOR CRAMW

$UDFS:e +WORD $0VDFS $POINTER TO WORD AFTER WDB'S IN OVERLAY TABLE
$UDF4:: +WORD $0VDF4 $POINTER TO START OF WDB’S IN OUWERLAY TABLE
RGADR: +WORD 0 STHREE WORD REGION DEFINITION BLOCK

RGSIZ: JWORD $OVDF3 .0 3$0YDF3 -» SET BY LINK = SIZE OF REGION
$UDF1l:: +WORD $0VDF1 JHIGH ADDR ROOT SBEGMENT + 2 (NXT AVAIL)
$UDF2:: JWORD $0VDF2 $HIGH ADDR /0 DUERLAYS + 2 (NXT AVAIL)

+SBTTL $0OVTAB OVERLAY TABLE

+
OVERLAY TABLE STRUCTURE:

LOC 64 - $0VTAB:
+WORD {CORE ADDR» »<RELATIVE BLK>,{WORD COUNT: /0 DVERLAYS
LOC BB =2 +KWORD <WDB ADDR> < RELATIVE BLK>,{WORD COUNT: /Y OVERLAYS
DUMMY -SUBROUTINES FOR ALL OVERLAY SEGMENTS
$UDF4 - WINDOW DEFINITION BLOCKS FOR EXTENDED MEMORY OVERLAYS (WAD]
$UDFS -3 WORD AFTER -THE END OF THE WINDOW DEFINITION BLOCKS (/W)

am ASA N wE AE aE e aE e wE

+PSECT $0TABL.D,GBLOWVR
$0UTAB:

+END

11.6 Options

Full descriptions of the options summarized in Table 11-6 follow in alpha-
betical order.

11.6.1 Alphabetical Option (/A)

The /A option lists global symbols in program sections in alphabetical order.

11.6.2 Bottom Address Option (/B:n)

The /B:n option supplies the lowest address to be used by the relocatable
code in the load module. The argument, n, is a six-digit unsigned, even octal
number that defines the bottom address of the program being linked. If you
do not supply a value for n, the linker prints:

PLINK-F-/B no value

Linker (LINK) 1143

Retype the command line, supplying an even octal value.

When you do not specify /B, the linker positions the load module so that the
lowest address is location 1000 (octal). If the ASECT size is greater than
1000, the size of ASECT is used.

If you supply more than one /B option during the creation of a load module,
the linker uses the first /B option specification. /B is invalid when you are
linking to a high address (/H). The /B option is also invalid with foreground
links. Foreground modules are always linked to a bottom address of 1000
(octal).

The bottom value must be an unsigned, even, octal number. If the value is
odd, the ?LINK-F-/B odd value error message prints. Reenter the command
string specifying an unsigned, even octal number as the argument to the /B
option.

11.6.3 Continuation Option (/C or //)

The continuation option (/C or /) lets you type additional lines of command
string input.

Use the /C option at the end of the current line and repeat it on subsequent
command lines as often as necessary to specify all the input modules in your
program. Do not enter a /C option on the last line of input.

The following command indicates that input is to be continued on the next
line; the linker prints an asterisk.

: DUTPUTsLP:=INPUT/C

An alternate way to enter additional lines of input is to use the // option on
the first line. The linker continues to accept lines of input until it encounters
another // option, which can be either on a line with input file specifications
or on a line by itself. The advantage of using the // option instead of the /C
option is that you do not have to type the // option on each continuation line.
This example shows the command file that links the linker:

R LINK

LINKLINK=LINKO LNKLB1/D//
LINK1/O:1

LINKZ/0:
LINK3/0:
LINK4/D:
LINKS/0:
LINKG/0O:
LINK7/0:
LINK8/0:
‘LNREM/OD:
BITST
GETBUF
WRITO
WRTLRU
ZSMWFIL
GED

b b ek ph b b b ek

~
~

11-44 Linker (LINK)

You cannot use the /C option and the // option together in a link command
sequence. That is, if you use // on the first line, you must use // to terminate
input on the last line. If you use /C on the first line, use /C on all lines but the
last.

11.6.4 Duplicate Global Symbol Option (/D)

The /D option allows you to specify library modules that you want to reside
in more than one overlay segment. Type /D on the first command line. After
you have typed all input command lines, the linker prompts:

Duplicate symbhol?

Type the names of the global symbols in the library module that you want to
be defined once in each segment that references those symbols. Follow each
global symbol with a carriage return. A carriage return on a line by itself
terminates the list of symbols. Only global symbols defined in library mod-
ules can be duplicated. If you use the /D option and specify a global symbol
that is defined outside of a library module, the symbol definition is not dupli-
cated and LINK prints the message ?LINK-W-Duplicate symbol SYMBOL

‘defined in DEV:FILNAM.TYP.

When you do not use the /D option and a global symbol defined in a library
module is externally referenced (that is, the global symbol is referenced
from a segment other than the one in which it is defined), the linker places
the library module in the program’s root segment. Therefore, if a library
module is referenced by more than one global symbol, each of the global
symbols in the library module that is referenced should be named in
response to the /D option. Otherwise, the library module will be placed in the
root segment. Also, if any of a library module’s global symbols are ref-
erenced from the root, the library module will be placed in the root even if
you have named the global symbols in response to the /D option. In each of
these cases when a library module that link places in the root contains glo-
bal symbols declared with /D, LINK prints the following message and the
global symbol is not duplicated.

PLINK-W-Durlicate symbol SYMBOL is forced to the root

Special Programming Considerations for the /D Option

Even when a library module you duplicate is not referenced from the root,
any global section within that module that is referenced from more than one
segment is always placed in the root. If local sections within the same
library module have no need to communicate with each other, define the glo-
bal section with the CON attribute. This causes the linker to place a sepa-
rate copy of the global section in the root for each copy of the library
module’s local sections placed in overlays. Although the global section
resides in the root while the local sections reside in overlays, each copy of the
library module retains its identity as a separate copy of the module. Since
each copy of the global section is bound to its own local section in an overlay,
this ensures that references between the local and global sections will be
bound to the correct definitions.

Linker (LINK) 1145

1146

However, when a library module that you want to duplicate will be placed in
overlay segments that exchange information, another consideration exists.
If the library module contains a section of global data to be referenced by
local sections within the module, but the global section does not reference
any local section within the module, you should move a copy of the global
section to the root. To move this section to the root, define the section with a
unique name and give the section the GBL and OVR attributes. When this
section is placed in the root, the local sections from the duplicated library
module that reside in the overlay segments can reference the global section
in the root. Since the global section has been given the OVR attribute rather
than CON, the local sections can pass information to specific locations in the
global section, and the local sections can access the same locations to send
and receive data. .

Figure 11-16 illustrates a duplicated library module whose global data sec-
tion has been forced to the root with the CON attribute. The arrows show
each local section accessing information from its copy of the global section
within the root. Notice, however, that the local sections (which are identical)
cannot exchange data becuse their references are bound to different loca-
tions. Figure 11-17 illustrates the same duplicated library module, this
time with the global data section forced to the root with the OVR attribute.
Notice that the two local sections can now reference the same location in the
global section to exchange information.

Figure 11-16: Global Data Section with CON Attribute

MOD:
Global data
section A CON B
Local
section B B
Duplicated library module MOD.
Local section B references section A, Segment 1
which contains global data.
Segment 2
A from segment 2 <
- A from segment 1

MYPROG ROOT

Program MYPROG

Linker (LINK)

- Figure 11-17: Global Data Section with OVR Attribute

MOD: [Giobal data

. L.ocal
section A section B
GBL, OVR Local
Local section B
section B Segment 1
Segment 2
Duplicated library module MOD.
Local section B references section A,
which contains global data, but section = | loe e o e e e e e —
A does not refereng:e section B. Global location: INFO D
o section A i
MYPROG ROOT

11.6.5 Extend Program Section Option (/E:n)

The /E:n option allows you to extend a program section in the root to a spe-
cific value. Type the /E:n option at the end of the first command line. After
you have typed all input command lines, the linker prompts with:

Extend section?

Respond with the name of the program section to.be extended, followed by a
carriage return. The resultant program section size is equal to or greater
than the value you specify, depending on the space the object code requires.
The value you specify must be an even byte value. Note that you can extend
only one section. '

The following example extends section CODE to 100 (octal) bytes.

¥ My TTe=LKOO1/E:100
Extend section® CODE

11.6.6 Default FORTRAN Library Option (/F)

By indicating the /F option in the command line, you can link' the
FORTRAN library (FORLIB.OBJ on the system device SY:) with the other
object modules you specify. You do not need to specify FORLIB explicitly.
For example:

* FILEsLP:=AB/F
The object module AB.OBJ from DK: and the i‘equired routines from the

FORTRAN library SY:FORLIB.OBJ are linked together to form a load mod-
ule called FILE.SAV.

Linker (LINK) 11-47

The linker automatically searches a default system library,
SY:SYSLIB.OBJ. The library normally includes the modules that compose
FORLIB. The /F option is provided only for compatibility with other versions
of RT-11. You should not have to use /F. ‘

See the RT-11 Installation Guide for details on combining SYSLIB and
FORLIB library files..

11.6.7 Directory Buffer Size Option (/G)

When you are using modules for your program that are from a multiple defi-
nition library, LINK has to store that library’s directory in an internal
buffer. Occasionally, this buffer area is too small to contain an entire direc-
tory, in which case LINK is unable to process those modules. The /G option
instructs LINK to adjust the size of its directory buffer to accommodate the
largest directory size of the multiple definition libraries you are using.

You should use /G only when required because it slows down linking time.
Use it only after an attempt to link your program failed because the buffer
was too small. When a link failure of this sort occurs, LINK prints the mes-
sage ?LINK-F-Library EPT too big, increase buffer with /G.

11.6.8 Highest Address Option (/H:n)

The /H:n option allows you to specify the top (highest) address to be used by
the relocatable code in the load module. The argument n represents an
unsigned, even octal number. If you do not specify n, the linker prints:

PLINK-F-/H no value

Retype the command, supplying an even octal number to be used as the
value. ‘

If you specify an odd value, the linker responds with:

PLINK-F-/H odd value

Retype the command, supplying an even octal number.

If the value is not large enough to accommodate the relocatable code, the
linker prints:

PLINK-F-/H value too low =

Relink the program with a larger value.

The 7H option cannot be used with the /R, /Y, or /B options.

1148 Linker (LINK)

e

NOTE

Be careful when you use the /H option. Most RT-11 programs
use the free memory above the relocatable code as a dynamic
working area for I/O buffers, device handlers, symbol tables,
etc. The size of this area differs according to the memory
configuration. Programs linked to a specific high address
might not run in a system with less physical memory because
there is less free memory.

11.6.9 Include Option (/1)

The /I option lets you take global symbols from any library and include
them in the linking process even when they are not needed to resolve glo-
bals. This provides a method for forcing modules that are not called by
other modules to be loaded from the library. All modules that you specify
with /I go into the root. When you specify the /I option, the linker prints:

Library search?

Reply with the list of global symbols to be included in the load module; type
a carriage return to enter each symbol in the list. A carriage return alone
terminates the list of symbols.

The following example includes the global $SHORT in the load module:

» SCCA=RK1:SCCA/I @
Library search? $SHORT G
Library search?

11.6.10 Memory Size Option (/K:n)

The /K:n option lets you insert a value into word 56 of block 0 of the image
file. The argument n represents the number of 1K words of memory re-
quired by the program; n is an integer in the range 2-28 (decimal). This
option allows you to limit the amount of memory allocated by a .SETTOP
request to nK words. You cannot use the /K option with the /R option.

11.6.11 LDA Format Option (/L)

The /L option produces an output file in LDA format instead of memory
image format. The LDA format file can be output to any device including
those that are not block-replaceable. It is useful for files that are to be
loaded with the absolute loader. The default file type .LDA is assigned
when you use the /L option. You cannot use the /L option with the low
memory overlay option (/O), the foreground link option (/R), or the extended
memory overlay option (/V).

The following example links files IN and IN2 on device DK: and outputs an
LDA format file, OUT.LDA, to the diskette and a load map to the line
printer.

DY:0UT LP:=IN,INZ2/L

Linker (LINK) 1149

11.6.12 Modify Stack Address Option (/M[:n])

The stack address, location 42, is the address that contains the initial value
for the stack pointer. The /M option lets you specify the stack address. If
you use the /R:n option (foreground link) with /M, LINK ignores the value
on /R:n. The argument n is an even, unsigned, six-digit octal number that
defines the stack address. '

After all input lines have been typed, the linker prints the following mes-
sage if you have not specified a value for n:

Stack symbol?

In this case, specify the global symbol whose value is the stack address and
follow with a carriage return. You must not specify a number. If you specify
a nonexistent symbol, an error message prints and the stack address is set
to the system default (1000 for .SAV files) or to the bottom address if you
used /B. If the program’s absolute section extends beyond location 1000, the
default stack space starts after the largest .ASECT allocation of memory.

Direct éssignment (with .ASECT) of the stack address within the program
takes precedence over assignment with the /M option. The statements to do
this in a MACRO program are as follows:

+ABECT

» =42

+WORD INITSP FINITIAL BTACK SYMBOL VALUE
+ PSECT SRETURN TO PREVIOUS SECTION

The foIlowing example modifies the stack address.

% OUTPUT=INPUT/M GO
Stack symhol? BEG @

11.6.13 Cross-Reference Option (/N)

The /N option includes in the load map a cross-reference of all global sym-
bols defined during the linking process. The global symbols are listed al-
phabetically. Each global symbol is followed by the names of the modules
(also listed alphabetically) in which the symbol is defined or referenced. A
pound sign (#) next to the module name indicates that the symbol is de-
fined in that module. A plus sign (+) indicates that the module is from a
library. The cross-reference section, if requested, begins on a new page at
the end of the load map. See Figure 11-14 (and Table 11-9) for an illustra-
tion of a global cross-reference listing.

When you request a global symbol cross-reference listing with the /N op-
tion, LINK generates the temporary file DK:CREF.TMP.

If DK: is write-locked or if it contains insufficient free space for the tempo-
rary file, you can designate another device for the file. To designate another
device for the temporary file, assign the logical name CF to the device by
using the following command:

+ ASSIGN deu: CF

11-50 Linker (LINK)

If you have assigned CF to a physical device for MACRO cross-reference
~ listing temporary file CREF.TMP, that device will also serve as the default
" device for the LINK global symbol cross-reference temporary file.

11.6.14 Low Memory Overlay Option (/O:n)

The /O option segments the load module so that the entire program is not
memory resident at one time. This lets you execute programs that are
larger than the available memory.

The argument n is an unsigned octal number (up to five digits in length)
specifying the overlay region to which the module is assigned. The /O op-
tion must follow (on the same line) the specification of the object modules to
which it applies, and only one overlay region can be specified on a com-
mand line. Overlay regions cannot be specified on the first command line;
that is reserved for the root segment. You must use /C or // for continuation.

You specify coresident overlay routines (a group of subroutines that occupy
the overlay region and segment at the same time) as follows:

0BJA,0BJB,0BJC/0:1/C
% 0BJDOBJE/D:2/C

+
+

All modules that the linker encounters until the next /O option will be
coresident overlay routines. If you specify, at a later time, the /O option
with the same value you used previously (same overlay region), then the
linker opens up the corresponding overlay area for a new group of su-
broutines. This group occupies the same locations in memory as the first
- group, but it is never needed at the same time as the previous group.

The following commands to the linker make R and S occupy the same
memory as T (but at different times):

MAIN,LP:=ROOT/C
*# R+5/0:1/C
T/0:1

The following example establishes two overlay regions.

QUTPUT sLP:=INPUT//
0BJA/0:
0BJB/0:
0BJC/0:
0B8JD/03s
s

ok ok Ak &k Kk XK

3) o

You must specify overlays in ascending order by region number. For exam-
ple: , :

* A=A/C
B/0:1/C
C/0:1/C
D/0:1/C
¥ G/0:2

Linker (LINK) . 11-51

The following overlay specification is invalid since the overlay regions are
not given in ascending numerical order. An error message prints in each
case, and the overlay option immediately preceding the message is ignored.

X=LIBRO//
x LIBR1/0:1
x LIBRZ/D:0

PLINK-W-/0 or /V oPtion error: re-enter line
M '

In the above example, the overlay line‘immedi.ately preceding the error
message is ignored, and should be re-entered with an overlay region num-
ber greater than.or equal to one.

11.6.15 Library List Size Option (/P:n)

The /P:n option lets you change the amount of space allocated for the li-
brary routine list. Normally, the default value allows enough space for your
needs. It reserves space for approximately 170 unique library routines,
which is the equivalent of specifying /P:170. (decimal) or /P:252 (octal). See
the RT-11 Installation Guide for details on customizing this default num-
ber for the library routine list.

The error message ?LINK-F-Library list overflow, increase size with /P
indicates that you need to allocate more space for the library routine list.
You must relink the program that makes use of the library routines. Use
the /P:n option and supply a value for n that is greater than 170 (decimal).

You can use the /P:n option to correct for symbol table overflow. Specify a
value for n that is less than 170. This reduces the space used by the library
routine list and increases the space allocated for the symbol table. If the
value you choose is too small, the 7ZLINK-F-Library list overflow, increase
size with /P message prints. -

In the fol'lowing command, the amount of space for the library routine list
is increased to 300 (decimal).

% SCCA=RK1:8CCA/P:300.

11.6.16 Absolute Base Address Option (/Q)

The /Q option lets you specify the absolute base addresses of up to eight p-
sects in your program. This option is particularly handy if you are prepar-
ing your program sections in absolute loading format for placement in ROM
storage. :

When you use this option in the first command line, the linker prompts you
for the p-sect names and load addresses. The p-sect name must be six char-
acters or less, and the load address must be an even octal number. Termi-
nate each line with a carriage return. If you enter only a carriage return in
response to any of the prompts, LINK ceases prompting.

11-52 Linker (LINK)

If you use /E, /Y, or /U with /Q, LINK processes those options before it pro-
cesses Q.

When you use the /Q option, observe the following restrictions:

o Enter only even addresses. If you enter an odd address, no address, or
invalid characters, LINK prints an error message and then prompts you
again for the p-sect and load address.

@ /Qisinvalid with /H or /R. These options are ndutually exclusive.

e LINK moves your p-sects up to the specified address; moving down might
destroy code. If your address requires code to be moved down, LINK prints
an’error message, ignores the p-sect for which you have specified a load
address, and continues. '

The following example spec1ﬁes the load addresses for three p-sects.

* - FILE TT 'FILE:FILEi/D/L (4]
Load Sect1on Address? PSECT1:1000 @D

Load Section:Address? PSECT3:4000 @9
Load Section:Address? PSECTZ: 2500
Load Section:Address? gg

11.6.17 REL Format Option (/R[:n])

The /R[:n] option produces an output file in REL format for use as a fore-
ground job with the FB or XM monitor. You cannot use .REL files under the
SJ monitor. The /R option assigns the default file type .REL to the output
file. The optional argument n represents the amount of stack space to allo-
cate for the foreground job; it must be an even, octal number. The default
value is 128 (decimal) bytes of stack space. If you also use the /M option, the
value or global symbol associated with it overrides the /R value.

The following command links files FILEL.OBJ and NEXT.OBJ and stores
the output on DY1: as FILEO.REL. It also prints a load map on the line
printer.

* DY1:FILEQsLP:=FILEI JNEXT/R:200

You cannot use the /B, /H, or /L option with /R since a foreground REL job
has a temporary bottom address of 1000 and is always relocated by FRUN.
An error message prints if you attempt this. The /K option is also-invalid
with /R.

11.6.18 Symbol Table Option (/S)

The /S option instructs the linker to allow the largest possible memory area
for its symbol table at the expense of input and output buffer space. Because
this makes the linking process slower, you should use the /S option only if an
attempt to link a program failed because of symbol table overflow. When you
use /S, do not specify a symbol table file or a map in the command string.

Linker (LINK) 11-53

11.6.19 Transfer Address Option (/T[:n])

The transfer address is the address at which a program starts when you
initiate execution with an R, RUN, SRUN (GET, START), or FRUN com-
mand. It prints on the last line of the load map. The /T option lets you
specify the start address of the load module. The argument n is a six-digit
unsigned, even octal number that defines the transfer address.

If you do not specify n the following meSsage prints:

"Transfer symbol?

In this case, specify the global symbol whose value is the transfer address of
the load module. Terminate your response with a carriage return. You
cannot specify a number in answer to this message. If you specify a nonex-
‘istent symbol, an error message prints and the transfer address is set to 1
so that the program traps immediately if you attempt to execute it. If the
transfer address you specify is odd, the program does not start after loading
and control returns to the monitor. "

Direct assignment ((ASECT) of the transfer address within the program
takes precedence over assignment with the /T option. The transfer address
assigned with a /T option has precedence over that assigned with an .END
assembly directive. To assign the transfer address within a MACRO pro-
gram, use statements similar to these:

+ASECT
+=40 .
+WORD STARTI1 iSYMBOL VALUE FOR TRANSFER ADDRESS
+ PSECT $RETURN TO PREVIOUS SECTION
START1: +
or
BTART2: . $SECONDARY STARTING ADDRESSE
) .
+END STARTZ

The following example links the files LIBR0.OBJ and ODT.OBJ together
and starts execution at ODT’s transfer address.

LBRODT LBRODT=LIBRO0DT/T/W//
LIBR1/0:1

LIBRZ/0:1

* LIBR3/0:
* LIBR4/0:s
*
*
*
T

> s e

LIBRS/0:
LIBRGB/0D:1
LBREM/Dsi//

ransfer symbeol? 0.00T

11-54 Linker (LINK)

11.6.20 Round Up Option (/U:n)

The /U:n option rounds up the section you name in the root so that the size of

~ the root segment is a whole number multiple of the value you specify. The

argument n must be a power of 2. When you specify the /U:n option, the

~ linker prompts:

Rourd section?

Reply with the name of the program section to be rounded, followed by a car-
riage return. The program section must be in the root segment. Note that
you can round only one program section.

The following example rounds up section CHAR.

* LKOO7,TT:=LKOO7/U200
Round section? CHAR

If the program section you specify cannot be found, the linker prints ?LINK-
W-Round section not found AAAAAA and the linking process continues
with no rounding.

11.6.21 Extended Memory Overlay Option (/V:n[:m])

Use the /V option to create an extended memory overlay structure for your
program. The variable n represents the overlay region number, and m repre-

- sents a partition number. See Section 11.5.2 for a complete description of

this option.

If you use /V on the first command line with no arguments, you enable spe-
cial .SETTOP features provided by the XM monitor and special .LIMIT fea-
tures. When used on the first line of the command string, this option allows
virtual or privileged foreground or background jobs to map a work area in
extended memory with the .SETTOP programmed request. Thus, your pro-
gram does not need an extended memory overlay structure to make use of
the XM .SETTOP features. See the RT-11 Programmer’s Reference Manual
and the RT—11 Software Support Manual for more details on these features
and extended memory.

'11.6.22 Map Width Option (W)

The /W option directs the linker to produce a wide load map listing. If you do
not specify the /W option, the listing is wide enough for three global value
columns (normal for paper with 80-character columns). If you use the /W
command, the listing is six columns Wlde which is suitable for a 132-column

page.

Linker (LINK) 11-55

11.6.23 Bitmap Inhibit Option (/X)

The /X option instructs the linker not to output the bitmap if code lies in
locations 360 to 377 inclusive. This option is provided for compatibility with
the RSTS operating system. The bitmap is stored in locations 360~-377 in
block 0 of the load module, and the linker normally stores the program mem-
ory usage bits in these eight words. Each bit represents one 256-word block
of memory. This information is required by the R, RUN, and GET commands
when loading the program; therefore, use care when you use this option.

11.6.24 Boundary Option (/Y:n)

The /Y:n option starts a specific program section in the root on a particular
address boundary. Do not use this option with /H. The linker generates a
whole number multiple of n, the value you specify, for the starting address of
the program section. The argument n must be a power of 2. The linker
extends the size of the previous program section to accommodate the new
starting address.

When you have entered all the input lines, the linker prompts:

Boundary section?

Respond with the name of the program section whose starting address you
are modifying. Terminate your response with a carriage return. Note that
you can specify only one program section for this option. If the program sec-
tion you specify cannot be found, the linker prints LINK-W-Boundary sec-
tion not found, and the linking process continues.

The RT-11 monitors have internal two-block overlays. The first overlay seg-
ment, OVLYO0, must start on a disk block boundary:

% RT11SJ.5YS=BTSJ RMSJ KMSJsTBSI/Y:1000
Boundary Section? oWLY O

11.6.25 Zero Option (/Z:n)

The /Z:n option fills unused locations in the load module and places a specific
value in these locations. The argument n represents that value. This option
can be useful in eliminating random results that occur when the program
references uninitialized memory by mistake. The system automatically
zeroes unused locations. Use the /Z:n option only when you want to store a
value other than zero in unused locations. You cannot use the R, RUN,
FRUN, or GET commands to load into memory a load image block of fill
characters. .

11-56 Linker (LINK)

e

11.7 Linker Prompts

Some of the linker operations prompt for more information, such as the
names of specific global symbols or sections. The linker issues the prompt
after you have entered all the input specifications, but before the actual
linking begins. Table 11-10 shows the sequence in which the prompts occur.

Table 11-10: Linker Prompting Sequence

Prompt Option
Transfer symbol? /T
Stack symbol? M
Extend section? /E:n
Boundary section? /Y':n
Round section? /U:n
Load section:address? Q
Library search? /1
Duplicate symbol? /D

The library search, load section, and duplicate symbol prompts can accept
more than one symbol and are terminated by a carriage return in response
to the prompt.

Note that if the command lines are in an indirect file and the linker encoun-
ters an end-of-file before the prompting information has been supplied, the
linker prints the prompt messages on the terminal.

The following example shows how the linker prompts for information when
you combine options.

#LKOO1=LKOOL1/T/M/E:100/Y:400/U0:20/1/0/D @D
Transfer symbaol? 0.0DT

Stack symbol? ST3

Extend section? CHAR @D

Boundary section? CODE

Round section? STKSP

Load sectiontaddress? MAIN:100000
Load section:address?™ @D

Library search? $SHORT

lLibrary search? @B

Duplicate svmbol? RTN

Duplicate symbol? @O

*

Linker (LINK) 11-57

Chapter 12
MACRO-11 Assembler Program (MACRO)

This chapter describes how to assemble MACRO-11 programs under the
RT-11 operating system.

Output from the MACRO-11 assembler includes any or all of the following:

1. A binary object file — the machine-readable logical equivalent of the
MACRO-11 assembly language source code

2. Alisting of the source input file

3. A cross-reference file listing

4. A table of contents listing

5. A symbol table listing

To use the MACRO-11 assembler, you should understand how to:

1. Initiate and terminate the MACRO-11 assembler (including how to for-
mat command strings to specify files MACRO-11 uses during assembly)

2. Assign temporary work files to nondefault devices, if necessary

3. Use file specification options to override file control directives in the
source program

4. Interpret error codes

The following sections describe these topics.

12.1 Calling the MACRO-11 Assembler

To call the MACRO-11 assembler from the system device, respond to the
system prompt (a dot printed by the keyboard monitor) by typing:

« R MACRO

When the assembler responds with an asterisk (¥), it is ready to accept com-
mand string input. (You can also call the assembler using the keyboard
monitor MACRO command; see Chapter 4 of the RT-11 System User’s
Guide for a description of this command.)

12-1

122 MACRO-11 Assembler Command String Syntax

The assembler expects a command string consisting of the following items,
in sequence:

1. Output file speciﬁcation‘s‘
2. Anequalsign (=)
3. Input ﬁle specifications

Format this command string as follows (punctuation is required where
shown):

dev:obj,dev:list,dev:cref/s:arg = dev;sourcei,...,dev:sourcen/s:arg

where:

dev is any valid RT-11 device for output; any file-structured
device for input.

obj is the file specification of the binary object file that the assem-
bly process produces; the dev for this file should not be TT or
LP.

list is the file specification of the assembly and symbol listing that
the assembly process produces.

cref is the file specification of the CREF temporary cross-reference

file that the assembly process produces. (Omission of dev:cref
does not preclude a cross-reference listing, however.)

/s;:arg is a set of file specification options and arguments. (Section
12.5 describes these options and associated arguments.)

sourcei is a file specification for MACRO-11 source files or MACRO

and library files. (These files contain the MACRO language pro-

sourcen grams to be assembled. You can specify as many as six source
files.)

The following command string calls for an assembly that uses one source file
plus the system MACRO library to produce an object file BINF.OBJ and a
listing. The listing goes directly to the line printer.

* DK:BINF,DBJsLP:=DK:SRC.MAC
All output file specifications are optional. The system does not produce an
output file unless the command string contains a specification for that file.

The system determines the file type of an output file specification by its posi-
tion in the command string. Use commas in place of files you wish to omit.
For example, to omit the object file, you must begin the command string
with a comma. The following command produces a listing, including cross-
reference tables, but not binary object files.

sLP:/C=(source file specification)

12-2 MACRO-11 Assembler Program (MACRO)

s

You need not include a comma after the final output file specification in the
command string. : :

Table 12—1 lists the default values for each file specification.

vTable 12-1: Default File Specification Values

‘ Default Default Default
File Device File Name File Type
Object DK: ' Must specify LOBJ =
Listing Same as for object Must specify LST
o file
Cref . DK: Must specify TMP
First source DK: Must specify .MAC
Additional source Same as for preceding Must specify MAC
source file
System MACRO ~ System device SY: SYSMAC .SML
library
User MACRO DK. if first file, Must specify .MLB
library otherwise same as for

preceding source file

12.3 Terminating the MACRO-11 Assembler

If you have typed R MACRO and received the asterisk prompt but have not
yet entered the command string, you can terminate MACRO-11 control by
typing CTRL/C once. After you have completed the command string (thus
beginning an assembly) you can halt the assembly process at any time by
typing CTRL/C twice. This returns control to the system monitor, and a sys-
tem monitor dot prompt appears on the terminal.

To restart the assembly process, type R MACRO in response to the system
monitor prompt.

12.4 Assigning the Temporary Work File

Some assemblies need more symbol table space than available memory can
contain. When this occurs the system automatically creates a temporary
work file called WRK.TMP to provide extended symbol table space.

The default device for WRK.TMP is DK. To cause the system to assign a dif-
ferent device, enter the following command:

* ASSIGN devs: WF
The dev parameter is the physical name of a file-structured device. The sys-

tem assigns WRK.TMP to this device.

MACRO-11 Assembler Program (MACRO) 12-3

12.5 File Specification Options

At assembly time you may need to override certain MACRO directives
appearing in the source programs. You may also need to direct MACRO-11
on the handling of certain files during assembly. You can satisfy these needs
by including special options in the MACRO-11 command string in addition
to the file specifications. Table 12-2 lists the options and describes the effect
of each. '

The general format of the MACRO-11 command string is repeated below for
your convenience:

dev:obj,dev:list,dev:cref/s:arg = dev:sodfcei, ...,dev:sourcen/s:arg

Table 12-2: File Specification Options -

Option Function

/C:arg Control contents of cross-reference listing’ﬂ'
/D:arg Object file function disabling; overrides source program directive .DSABL

/E:arg Object file function enabling; overrides source program directive . ENABL/L:arg
listing control, overrides source program directive .LIST

/L:arg Listing control; overrides source program directive .LIST
M Indicates input file is MACRO library file -

/N:arg Listing control; overrides source program ’directive NLIST

The /M option affects only the particular squrce file specification to which it
is directly appended in the command string.

Other options are unaffected by their plaéément in the command string. The
/L option, for example, affects the listing file, regardless of where you place it
in the command string.

The following subsections describe how to use the file specification options.

12.5.1 Listing Control Options (/L:arg and /N:arg)

Two options, /L:arg and /N:arg, pertain to listing control. By specifying these
options with a set of selected arguments (see Table 12-3) you can control the
content and format of assembly listings. You can override at assembly time
the arguments of .LIST and .NLIST directives in the source program.

Figure 12-1 shows an assembly listing of a small program. This illustration
shows the more important listing features. It labels each feature with the
mnemonic ASCII argument that determines its appearance on the listing;
the argument SEQ, for instance, controls the appearance of the source line
sequence numbers.

124 MACRO-11 Assembler Program (MACRO)

[muz.rm_l_ d3153N03Y LVHL DNIH1S ANVINWO3 40 AdOD _II|I|V

(S30¥d 7) SU4OM L@V

Jintdldiadstd/saantasolvydiiagziagn’

S39¥d €9 403 ITHYTIVAY KdOh3W DIwV¥NXQ

$038Nn XdOW3IW TYNLUITA

§ 803103130 SUOYY3

g2po govzpee 950ud
1477 pdoep
apY oe20e0 °Sdy °
sranae = ZHJINS 99 d20a00 LHyIsS o 4ec00pe w3zJdne
petnae =NTIEL® sstane =74079° sennes = PMaNg 210900 = 47 T80 dorB00e HIAMSNY
:) angvl 706WXS
T=f 49¥d [GIirQAl0@ bol=NN[=9 ¢2°nVA OMOYW °NIVK®
LHYLS ani3*® 4000808 &4
NA44NY AINTG ThaNI® °*ZL gv7e° td4a44Ng gseFen 12
HYHOLS SAMSHY 4y) 230 MyTa° 2dAnSNY 9vo0ny 02
ssto. dna (B }—esever vreeoa
ile1d oL Nuntran? LIx3° ybo00e €
M¥SHY NI AH0LS anNv? HAMSNY G AW TUvovy L96B1I8 ovverde gl
¢ydnNs 24 Asp aAgn008 L9Lbe9 omsomw . n
*Hane ¥aMlo Tryd sS4’ 2dens 11%D yteeer |
S 1y I am o wIN v w3n? rdvas $09 29LEQS TEvopd of
AAC] 1yD 41 1M1 9 oW
14ENS 4 Dd uspe 000009 (9LYA9 9Zeeer3 . n
oDy 1Y) Adnany? 14409 11D . 9Z@e@e §
T¥4NS Ana rN333n9)SHQY = €3¢ tdvdqa4091 LIV 0Se0a8 t2LZie Tlpgee 1
0M3Z HLT® 4NTT 40 OmMT H¥T4 48737 +(73) aind tlesetr e¢2peee €1
ONTAYTY 4AAN = F40n? st ind LLEIN® 91esen 21 ny
2A44d dNTT ¥ LI Sym! ELERET gdnd 212008 L2026 21@0#d 1)
HA3ANA N 30 QNve +(28)%py BAGW Tl eleped o1
¥ OINT A4VHD ¥ aviy? NIALL® $1 €o00p0 002068 00L8w b nvy
(4334Nw)Sday = zH!¢ eHi3ddngs Aow Bldvis s NGADE0 ZULEZLO sssmmw 8
12483 ¥ dn14d0¢ 90d4d LJ4SD° foe L
SANTLNONANS TyndILlY] oulLl ZHANS 1 1d44nS w801y ° fsssosa esasss\ edores opoeees 9 ny
: WunNa® an — (3
AnYN’D4 NS |/
0nddYy ¥ISN ¥ ANt ddu’f AnYN TIND 0do¥w’ X34 11
LIX3°® NIALL® T¥In° 27011 2
(- 0344 AnIT Ho4 10915 ¢ Ziv ad1 \ t1e2e8, 1
—~ el &
[ve] E3
L\ J
TN
1 99¥d LS3€0%00 6L=NNC=9 Q@°HOA OHDYN °NIVW®

o

Sunsry Alquessy ojdweg :1-g1 sandig

WAS

12-5

MACRO-11 Assembler Program (MACRO)

Specifying the /N option with no argument causes the system to list only the
symbol table, table of contents, and error messages.

Specifying the /L option with no arguments causes the system to ignore
.LIST and .NLIST directives that have no arguments.

The following example lists binary code throughout the assembly using the
132-column line printer format, and suppresses the symbol table listing.

* 1 ,4LP:/L:MEB/N:SYM=FILE

Table 12-3: Arguments for /L and /N Listing Control Options

Argument Default Listing Control
BEX List Binary extensions
BIN List Generated binary code
CND List Unsatisfied conditionals, .IF and .ENDC statements
COM List Comments
LD No list List control directives with no drguments
LOC List Address location counter
MC List Macro calls, repeat range expansion
MD List Macro definitions, repeat rahge expansion
ME No list Macro expansions |
MEB No list Macro expansion binéry code
SEQ List Source line sequence numbers
SRC List Source code
SYM List Symbol table
TOC List Table of contents
TT™ No list 132-column line printer format when not specified,

terminal mode when specified

12.5.2 Function Control Options (/D:arg and /E:arg)

Two options, /E:arg and /D:arg, allow you to enable or disable functions at
assembly time, and thus influence the form and content of the binary object
file. These functions can override . ENABLE and .DSABL directives in the
source program.

Table 12—4 summarizes the acceptable /E and /D function arguments, their
normal default status, and the functions they control.

12-6 MACRO-11 Assembler Program (MACRO)

Table 12-4: Arguments for /E and /D Function Control Options

Argument Default Mode Function
ABS : Disable Allows absolute binary output
AMA Disable Assembles all absolute addresses as relative
addresses
CDR Disable Treats all source information beyond column 72 as
commentary
CRF Enable Allows cross-reference listing; disabling this function

inhibits CREF output if option /C is active

FPT Disable Truncates floating point values (instead of rounding)
GBL Enable Treats undefined symbols as globals

LC Enable Allows lowercase ASCII source input

LCM Disable Causes the MACRO-11 conditional assembly direc-

tives .IF IDN and .IF DIF to sense differences between
uppercase and lowercase letters.

LSB Disable Allows local symbol block
MCL Disable Causes MACRO to search all MACRO libraries for a
MACRO definition if an undefined op code is found
"PNC Enable Allows binary output
REG Enable Allows mnemeonic definitions of registers

For example, if you type the following commands the system assembles a file
while treating columns 73 through 80 of each source line as commentary.

R PIP
SRCPRG.MAC=CR:/A

ETRLIC

R MACRD
+LP:=SRCPRG.MAC/E:CDR

* . Kk ke

Because MACRO-11 is a two-pass assembler, you cannot read directly from
any non-file-structured device. You must use PIP (or the keyboard monitor
COPY command) to transfer input to a file-structured device before begin-
ning the assembly. '

Use either the function control or listing control option and arguments at
assembly time to override corresponding listing or function control direc-
tives in the source program. For example, assume that the source program
contains the following sequence:

+NLIST MEB
.(MACRO references)

,LIST MEB

MACRO-11 Assembler Program (MACRO) 12-7

In this example, you disable the listing of macro expansion binary code for
some portion of the code and subsequently resume MEB listing. However, if
you indicate /L:MEB in the assembly command string, the system ignores
both the .NLIST MEB and the .LIST MEB directives. This enables MEB list-

ing throughout the program.

12.56.3 Macro Library File Designation Option (/M)

The /M option is meaningful only if appended to a source file specification. It
designates its associated source file as a macro library.

If the command string does not include the standard system macro library
SYSMAC.SML, the system automatically includes it as the first source file
in the command string. '

When the assembler encounters an .MCALL directive in the source code, it
- searches macro libraries according to their order of appearance in the com-
mand string. When it locates a macro record whose name matches that
given in the MCALL,.it assembles the macro as indicated by that definition.
Thus if two or more macro libraries contain definitions of the same macro
name, the macro library that appears rightmost in the command string
takes precedence. '

Consider the following command string:

x (output file specification)=ALIB . MLB /M /BLIB.MLB/M XIZ

Assume that each of the two macro libraries, ALIB and BLIB, contain a
macro called .BIG, but with different definitions. Then, if source file XIZ con-
tains a macro call .MCALL .BIG, the system includes the definition of .BIG
in the program as it appears in the macro library BLIB.

Moreover, if macro library ALIB contains a definition of a macro called
.READ, that definition of .READ overrides the standard .READ macro defi-
nition in SYSMAC.SML.

12.5.4 Cross-Reference (CREF) Table Generation Option (/C:arg)

A cross-reference (CREF) table lists all or a subset of the symbols in a source
program, identifying the statements that define and use the symbols.

12.5.4.1 Obtaining a Cross-Reference Table — To obtain a CREF table you
must include the /C:arg option in the command string. Usually you include
the /C:arg option with the assembly listing file specification. You can in fact
place it anywhere in the command string.

If the command string does not include a CREF file specification, the system
- automatically generates a temporary file on device DK:. If you need to have
a device other than DK: contain the temporary CREF file, you must include
the dev:cref field in the command string.

12-8 MACRO-11 Assembler Program (MACRO)

e

If the listing device is ﬁlagtape, load the handler for that device before
issuing the command string, using the monitor LOAD command (described
in Chapter 4 of the RT—11 System User’s Guide).

A complete CREF listing contains the following six sections:

1. A cross-reference of program symbols; that’is, labels used in the pro-
gram and symbols defined by a direct assignment statement.

2. A cross-reference of register equate symbols. These normally include
the symbols RO, R1, R2, R3, R4, R5, SP, and PC, unless the REG func-
tion has been disabled through a .DSABL REG directive or the /D:REG
option. Also included are any other symbols that are defined in the
program by the construct:

symbol = %n
where 0°<n"<7 and n represents the register number.

3. A cross-reference of MACRO symbols; that is, those symbols defined by
MACRO and .MCALL directives.

4. A cross-reference of permanent symbols, that is, all operation mnemon-
" ics and assembler directives. ‘

5. A cross-reference of program sections. These symbols include the names
you specify as operands of .CSECT or .PSECT directives. Also included
are the default program sections produced by the assembler, the blank
p-sect, and the absolute p-sect, .ABS.

6. A cross-reference of errors. The system groups and lists all flagged er-
rors from the assembly by error type.

You can include any or all of these six sections in the cross-reference listing

by specifying the appropriate arguments with the /C option. These argu-
ments are listed and described in Table 12-5.

Table 12-5: /C Option Arguments

Argument CREF Section

Control and program sections

Error code grouping

MACRO symbolic names

Permanent symbols including instructions and directives

Register symbols

ww Y2 E O

User-defined symbols

MACRO-11 Assembler Program (MACRO) 12-9

NOTE

Specifying /C with no argument is equivalent to specifying
/C:S:M:E. That special case excepted, you must explicitly
request each CREF section by including its arguments. No
cross-reference file occurs if the /C option is not specified, even
if the command string includes a CREF file specification.

12.5.4.2 Handling Cross-Reference Table Files — When you request a cross-
reference listing by means of the /C option, you cause the system to gen-
erate a temporary file, DK:CREF.TMP.

If device DK: is write-locked or if it contains insufficient free space for the
temporary file, you can allocate another device for the file. To allocate
another device, specify a third output file in the command string; that is,
include a dev:cref specification. (You must still include the /C option to
control the form and content of the listing. The dev:cref specification is
ignored if the /C option is not also present in the command string.)

The system then uses the dev:cref file instead of DK:CREF.TMP and de-
letes it automatically after producing the CREF listing.

The following command string causes the system to use RK2:TEMP.TMP
as the temporary CREF file.

+LP:+RR2:TEMP,TMP=80URCE/C

Another way to assign an alternate device for the CREF.TMP file is to
enter the following command prior to entering R MACRO:

+ ASSIGN dews CF

This method is preferred if you intend to do several assemblies, because it
relieves you from having to include the dev:cref specification in each com-
mand string. If you enter the ASSIGN dev: CF command, and later include
a CREF specification in a command string, the specification in the com-
mand string prevails for that assembly only.

If you assign. CF to a physical device, that device also becomes the default
device for the LINK temporary file CREF.TMP created when you use the
LINK/GLOBAL (/N) option.

The system lists requested cross-reference tables following the MACRO
assembly listing. Each table begins on a new page. (Figure 12-2 combines
the tables to save space, however.)

The system prints symbols and also symbol values, control sections, and
error codes, if applicable, beginning at the left margin of the page. Refer-
ences to each symbol are listed on the same line, left-to-right across the
page. The system lists references in the form p-1, where p is the page in
which the symbol, control section, or error code appears, and 1 is the line
number on the page.

A number sign (#) next to a reference indicates a symbol .definition. An
asterisk (*) next to a reference indicates a destructive reference — that is,
an operation that alters the contents of the addressed location.

12-10 MACRO-11 Assembler Program (MACRO)

Figure 12-2: Cross-Reference Table

JMAIN, MACPO VPA4.RQ 6=JUMeT79 Q03A3157 PAGEL S=l
CROS8S REFERENCE TABLE (CREF Voleps)

+GLOBA {e6

»TTYIN {=9

ANSWER 1=18% 1=30%

BUFFER 1o8 1214 1=218

LF 1ol 1=1]

START {o8s 116 1222

SUBR1 1e6 115

SUBR? 1eb 147

JMAIN, MACRO V23,02 69JUNeTT 4AW1¢31587 PAGE Kel

CrPOSS REBERENCE TABLE (CREF Vateps)

PC
RQ
R2
R3

JMATN,

CROSS REFEReNCE TABLE (CREF

JEXTT
JITYLN
CALL

JMAIN,

+BLKB
oBLKwW
JCSECT
JEND
JHACRO
JMCALL
BCS
BNE
CLR®
CMPR
EMT
JSR
MOV
MOVveE

JMAIN,

. ABS,
PROG

WMAIN,

fot%e

{212
194

1] 4

12174

telt

feie

1=18
1213

VACRO V3,20 6=JUNeT77 3031233157 VAGE Mwel

1224
1=2%
Leds

1e19

115

Vaiteps)

1=y7

MACRO VU2 6=JuN=T7Q ¥A1A31ST PAGE Pel
CROSS REFERENCE TABLE (CREF V@ieps)

je2t
1229
{e?

1222
1e3

te2

I1=16
tel12
113
i=11
1e19
{=15
1=8

119

=14

-

1<t8

MACRO V23,82 60JUNe?7 42103157 PAGE Cel
CROSS REFERENCE TABLE (CREF Vipleg5)

dod
deoy
{7

MACPO VO4eRB0Q 6=JUNeT9 90143157 PAGE Fel
CROSS REFERENCE TABLE (CREF Valeps)

Py
]
o

=6

t=9
19

1e12
1=12 t=45 1=17

MACRO-11 Assembler Program (MACRO)

12-11

12.6 MACRO-11 Error Codes

The MACRO-11 system prints diagnostic error codes as the first character
of a source line on which the assembler detects an error. This error code
identifies the type of error; for example, a code of M indicates a multiple defi-
nition of a label. Table 12—6 shows the error codes that might appear on an
assembly listing. For detailed information on error code interpretation and
debugging, see the PDP-11 MACRO-11 Language Reference Manual.

Table 12-6: MACRO-11 Error Codes

Error Code Meaning

A Addressing or relocation error. This code can be generated by any of the
following:

1. A conditional branch instruction target that is too far above or below
the current statement. Conditional branch targets must be within —128
to —127 (decimal) words of the instruction.

2. A statement that makes an invalid change to the current location coun-
ter. For example, a statement that forces the current location counter to
cross a .PSECT boundary can generate this code.

3. A statement that contains an invalid address expression. For example,
an absolute address expression that has a global symbol, relocatable
value, or complex relocatable value can generate this code. The direc-
tives .BLKB, .BLKW, and .REPT must have an absolute value or an
expression that reduces to an absolute value.

4, Separate expressions in the statement that are not separated by
commas.

5. A global definition error. If ENABL GBL is set, MACRO-11 scans the
symbol table at the end of the first pass and marks any undefined sym-
bols as global references. If one of these symbols is subsequently defined
in the second pass, a general addressing error occurs.

6. A global assignment statement that contains a forward reference to
another symbol.

7. An expression that defines the value of the current location counter and
contains a forward reference.

8. Aninvalid argument for an assembler directive
9. An unmatched delimiter or invalid argument construction.

B Instruction or word data is being assembled at an odd address. The system
increments the location counter by 1, and continues.

D A nonlocal label is defined more than once, specifically in an earlier
statement.

E The .END assembler directive at the end of the source input is missing. The
system supplies an .END statement and completes the current assembly
pass.

(Continued on next page)

12-12 MACRO-11 Assembler Program (MACRO)

Table 12-6: MACRO-11 Error Codes (Cont.)

Error Code

Meaning

MACRO-11 has detected one or more invalid characters. A question mark
(?) replaces each invalid character on the assembly listing, and MACRO-11
continues after ignoring the character.

An input line is longer than 132 characters. In particular, this error occurs
when the expansion of a macro causes excessive substitution of real argu-
ments for dummy arguments.

A label is the same as an earlier label (multiple definition of a label). For
example, two labels whose first six characters are identical can generate
this error.

A number is not in the current program radix. MACRO-11 processes this
number as a decimal value.

Op-code error. Exceeding the permitted nesting level for conditional assem-
blies causes this error. Attempting to expand a macro that remains uniden-
tifled after an . MCALL search can also generate this code.

Phase error. The definition or value of a label differs from one assembler
pass to the next, or a local symbol occurs more than once in a local symbol
block.

Questionable syntax. For example, missing arguments, too many argu-
ments, or an incomplete instruction scan can generate thi s error code.

Register-type error. For example, if the source program attempts an invalid
reference to a register, the assembler can gene rate this error code.

Truncation error. A number that generates more than 16 bits in a word, or
an expression in a .BYTE directive or trap instruction, can cause this error
code.

Undefined symbol. The assembler assigns the undefined symbol a constant
zero value.

Incompatible instruction. This code is a warning that the instruction is not
defined for all PDP-11 hardware configurations.

MACRO-11 Assembler Program (MACRO) 12-13

SR

Chapter 13
Peripheral Interchange Program (PIP)

The peripheral interchange program (PIP) is a file transfer and file mainten-
ance utility program. You can use PIP to transfer files between any of the
RT-11 devices (listed in Table 3—1 of the RT—11 System User’s Guide) and to
merge, rename, delete, and change the protection status of files.

13.1 Calling and Terminating PIP
To call PIP from the system device, respond to the keyboard monitor prompt
() by typing:

LR PIP @

The Command String Interpreter (CSI) prints an asterisk at the left margin
of the terminal and waits for you totype a command string. If you enter only
a carriage return at this point, PIP prints its current version number and

" prompts you again for a command string. You can type CTRL/C to halt PIP .
and return control to the monitor when PIP is waiting for input from the
console terminal. You must type two CTRL/Cs to abort PIP at any other
time. To restart PIP, type R PIP or REENTER followed by a carriage return
in response to the monitor’s dot.

13.2 PIP Command String Syntax

Chapter 1, Command String Interpreter, describes the general syntax of the

- command line PIP accepts. You can type as many as six input file names, but
only one output file name is allowed. Some of the PIP options accept a date
as an argument. The syntax for specifying the date is:

[:dd.l[:mmml][:yy.]

where:
dd. represénts the day (a decimal integer in the range 1-31)
mmm represents the first three characters of the name of the month

vy. represents the year (a decimal integer in the range 73-99)

13-1

The default value for the date is the current system date. If you omit any of .
the date values (dd, mmm, or yy), the system uses the values from the cur-
rent system date. For example, if you specify only the year ::82. and the cur-
rent system date is May 4, 1983, the system uses the date 4.:MAY:82.. If the
current date is not set, it is considered 0 (the same as for an undated filein a
directory listing).

On random-access devices such as disks, and in transfers from magtape, PIP
operations retain a file’s creation date. If the file’s creation date is 0, PIP
gives it the current system date. However, in transfers to magtape, PIP
always gives files the current system date.

If you have selected timer support through the system generation process,
but have not selected automatic end-of-month date advancement, make sure
that you set the date at the beginning of each month with the DATE com-
mand. If you fail to set the date at the beginning of each month, the system
prints -BAD- in the creation date column of each file created beyond the end-
of-month. (Note that you can eliminate -BAD- by using the RENAME/
SETDATE command after you set the date.)

If you specify a command involving random-access devices for which the out-
put specification is the same as the input specification, PIP does not move
any files. However, it can change the creation dates on the files if you use /T,
it can rename the files if you use /R, it can protect files if you use /F, or it can
remove protection from files if you use /Z.

Because PIP performs file transfers for all RT-11 data formats (ASCII,
object, and image), it does not assume file types for either input or output
files. You must explicitly specify all file types where file types are applicable.

13.3 Using Wildcards with PIP

13-2

You can use all variations of the wildcard construction for the input file
specifications in the PIP command line (Section 4.2 of the RT-11 System
User’s Guide describes wildcard usage). Output file specifications cannot
contain embedded wildcards. If you use any wild character in an input file
specification, the corresponding output file name or file type must be an
asterisk. (The concatenate copy operation is an exception to this rule
because it does not allow wildcards in the output specification.) The follow-
ing example shows wildcard usage:

* #,B=A%B.MAC
In this example, the embedded percent character (%) represents any single,

valid file name character. In the output file specification, the asterisk repre-
sents any valid file name.

The following commaﬁd deletes all files with the file type .BAK (regardless
of their file names) from device DK:.

* #.BAK/D

Peripheral Interchange Program (PIP)

The next command renames all files with a .BAK file type (regardless of file
names) so that these files now have a .TST file type (maintaining the same
file names).

% #,TS8T=#.BAK/R

In most cases, PIP performs operations on files in the order in which they
appear in the device directory. In transfers from magtape (and for all other
transfers requested on the same command line), PIP performs operations on
files in the order in which they appear on the volume. When you use wild-
cards in the input file types, PIP ignores system files with the file type .SYS
unless you also use the /Y option. PIP prints the error message ?PIP-W-No
.SYS action if you omit the /Y option on a command that would operate on
SYS files. .

NOTE

You cannot perform any operations that result in deleting a
protected file. For example, you cannot transfer a file to a vol-
ume if a protected file with the same name already exists on
the output volume.

PIP ignores all files with the file type .BAD unless you explicitly specify both
the file name and file type in the command string. PIP does not print a warn-
ing message when it does not include .BAD files in an operation.

This example transfers all files, including system files (regardless of file
name or file type) from device DK: to device DL1:. It does not transfer .BAD
files. ’

* DL1:#,#/Y=%,%

13.4 Options

PIP options, summarized in Table 13-1, permit you to perform various oper-
ations with PIP. If you do not specify an option, PIP assumes that the opera-
tion is a file transfer in image mode. You can put command options at the
end of the command string or type them after any file name in the string.
Operations involving magtape are an exception, because the /M option is
device-dependent and has a different meaning when you specify it on the
input or output side of a command line. Type any number of options in a
command line, as long as only one operation (copy, delete, or rename) is
represented. You can, however, combine copy and delete operations on one
line. Also, the protect and noprotect options can be combined with copy and
rename operations.

Peripheral Interchange Program (PIP) 13-3

Table 13-1: PIP Options

Option

Section

Function

/A

/B

/C|.date]

/D

/B

/F

IG

/H
/1[:date]
1J{:date]
/Kn

M:n
/N

o)

/P

13.4.2.2

13.4.2.3

13.4.3

13.4.4

13.4.5

13.4.6

13.4.7

13.4.8

13.4.9

13.4.10

13.4.11

13.4.1
13.4.12

13.4.13

13.4.14

Copies files in ASCII mode, ignoring and discarding nulls and
rubouts. It converts input file to 7-bit ASCII and treats CTRL/Z
(32 octal) as the logical end-of-file on input (the default copy mode
is image).

Copies files in formatted binary mode (the default copy mode is
image).

Used with other options to include only files with the specified
date in the operation. If you use /C and do not specify a date, PIP
includes only files with the current date in the specified
operation. .

Deletes input files from a specific device. Note that PIP does not
automatically query before it performs the operation. If you com-
bine /D with a copy operation, PIP performs the delete operation
after the copy completes. This option is invalid in an input specifi-
cation with magtape.

Transfers files in a single- or small-disk system. PIP initiates the
transfer, but pauses and waits for you to mount the volumes
involved in the transfer.

Protects files from deletion. Gives protected status to output files
during a copy operation so you cannot delete them. If you use nei-
ther /F nor /Z, the output files retain the protection status of the
input files. Can also be used with /R. Invalid for magtapes.

Ignores any input errors that occur during a file transfer and con-
tinues copying.

Verifies that the output file matches the input file after a copy
operation. Cannot be used with /A or /B.

Used with other options to include only files created on or after
the specified date.

Used with other options to include only files created before the
specified date.

Makes n copies of the output files to any sequential device, such
as LP:;, TT:, or PC..

Used when I/O transfers involve magtape.

Does not copy or rename a file if a file with the same name exists
on the output device. This option protects you from accidentally
deleting a file. It is invalid for magtape in the output
specification.

Deletes a file on the output device if you copy a file with the same
name to that device. The delete operation occurs before the copy
operation. This option is invalid for magtape in the output
specification. "

Copies or deletes all files except those you specify.

(Continued on next page)

13-4 Peripheral Interchange Program (PIP)

S

Table 13-1: PIP Options (Cont.)

Option Section Function

Q 13.4.15 Use only with another operation. The /Q option causes PIP to
print the name of each file to be included in the operation you
specify. You must respond with a Y to include a particular file.

R 13.4.16 Renames the file you specify. This operation is invalid for
magtape.
/S 13.4.17 Copies files one block at a time.

/T:date] 13.4.18 Puts the specified date on all files involved in the operation. This
option is invalid when copying to magtape; operations involving
magtape devices always use the current date.

a 13.4.19 Copies and concatenates all files you specify.

A% 13.4.20 Copies files from one input volume to two or more smaller output
volumes.

W 13.4.21 Prints on the terminal a log of all files involved in the operation.

/X 13.4.22 Causes PIP to print an information message instead of a fatal
message when it cannot find a file you specified in the command
line.

Y 13.4.23 Includes .SYS files in the operation you specify. You cannot

modify or delete these files unless you use the /Y option when you
use wildcards in the input file types.

WA 13.4.24 Removes protected status from output files so you can delete
them. If you use neither /F nor /Z, the output files retain the pro-
tection status of the input files. When used with /R, enables files
for deletion if they have been previously protected with /F.
Invalid for magtapes.

13.4.1 Operations Involving Magtape (/M:n)

PIP handles magtape, which is a sequential-access device, differently from
random-access devices, such as disks, diskettes, and DECtape II. On mag-
tape, files are stored serially, one after another, and there is no directory at
the beginning of each device that lists the files and gives their location.
Thus, you can access only one file at a time on each sequential-access device
unit. Avoid commands that specify the same device unit number for both the
input and output files — they are invalid.

The /M:n option makes operations that involve magtape more efficient. This
option lets you specify different tape handling procedures for PIP to follow.
The following sections outline the operations that involve magtape and
describe the different procedures for using these devices that you can specify
with the /M:n option. Remember that when you use the /M:n option, n is
interpreted as an octal number. You must use n. (n followed by a decimal
point) to represent a decimal number.

Periphefal Interchange Program (PIP) 13-5

Magnetic tape is a convenient auxiliary storage medium for large amounts
of data, and is often used as backup for disks. Reflective strips indicate the
beginning and end of the tape. A special label (an EOF1 or EOV1 tape label)
followed by two tape marks indicates the end of current data and also where
new data can begin.

The following PIP options are valid for use with magtape: /A, /B, /C[:date], /
¥, /G, /H, 1, /d, /M, /P, /Q, /S, /U, /V (only when magtape is the output vol-
ume), /W, /X, /Y, and /Z. These options are invalid with magtape: /E, /K, /R,
/T, and /V (when magtape is the input volume). The /M:n option lets you
direct the tape operation; you can move the tape and perform an operation at
the point you specify. Note that /D is invalid for input from magtape; /N and
/O are invalid for output to magtape.

The /M:n option can be different for the output and input side of the com-
mand line. Since the option applies to the device and not to the files, you can
specify one /M:n option for the output file and one for each input file.

Sometimes PIP begins an operation at the current position. To determine
the current position, the magtape handler backspaces from its present posi-
tion on the tape until it finds either an EOF indicator or the beginning of
tape (BOT), whichever comes first. PIP then begins the operation with the
file that immediately follows the EOF or BOT. The magtape handler also
has a special procedure for locating a file with sequence number n:

1. If the file sequence number is greater than the current position, PIP
searches the tape in the forward direction.

2. If the file sequence number is more than one file before the current posi-
tion, or if the file sequence number is less than five files from BOT, the
tape rewinds before PIP begins its search.

3. If the file sequence number is at the current position, or if it is one file
past the current position, PIP searches the tape in the reverse direction.

Whenever you fetch or load a new copy of the magtape handler, the tape
position information is lost. The new handler searches backward until it
locates either BOT or a label from which it can learn the position of the tape.
It then operates normally, according to steps 1, 2, and 3 described above.

If you omit the /M:n option, the tape rewinds between each operation. Using
/M:0 has the same effect as omitting /M:n. When n is positive, it represents
the file sequence number. When n is negative, it represents an instruction to
the magtape handler.

In copying from magtapes, /M:n functions as follows:
1. IfnisO:

The tape rewinds and PIP searches for the file you specify. If you specify
more than one file, the tape rewinds before each search. If the file specifi-
cation contains a wildcard, the tape rewinds only once and then PIP
copies all the appropriate files.

13-6 Peripheral Interchange Program (PIP)

i

. If nis a positive integer:

PIP goes to file sequence number n. If the file it finds there is the one you
specified, PIP copies it. Otherwise, PIP prints the ?PIP-F-File not found -
DEV:FILNAM.TYP message. If you use a wildcard in the file specifica-
tion, PIP goes to file sequence number n and then begins to search for
matching files.

. Ifnis-1:

PIP starts the search at the current position. If the current position is not
the beginning of the tape, PIP may not find the file you specify, even
though it does exist on the tape.

In writing to magtapes, /M:n functions as follows:

1.

IfnisO:

The tape rewinds before PIP copies each file. PIP prints a warning mes-
sage if it finds a file with the same name and file type as the input file and
does not perform the copy operation.

. If nis a positive integer:

PIP goes to the file sequence number n and enters the file you specify. If
PIP reaches logical end-of-tape (LEOT) before it finds file sequence num-
ber n, it prints the ?PIP-F-File sequence number not found message. If
you specify more than one file or if you use a wildcard in the file specifica-
tion, the tape does not rewind before PIP writes each file, and PIP does
not check for duplicate file names.

. Ifnis-1:

PIP goes to the LEOT and enters the file you specify. It does not rewind,
and it does not check for duplicate file names.

. Ifnis-2:

The tape rewinds between each copy operation. PIP enters the file at
LEOT or at the first occurrence of a duplicate file name.

If PIP reaches the physical end-of-tape before it completes a copy operation,
it cannot continue the file on another tape volume. Instead, it deletes the
partial file by backspacing and writing a logical end-of-tape over the file’s
header label. You must restart the operation and use another magtape.

If you type consecutive CTRL/Cs during any output operation to magtape,
PIP does not write a logical end-of-tape at the end of the data. Consequently,
you cannot transfer any more data to the tape unless you follow one of the
following recovery procedures.

1.

Transfer all good files from the interrupted tape to another tape and ini-
tialize the interrupted tape in the following manner:

* devis®,¥=deus¥,*
_

N R DUP

* devQs/2/Y

Peripheral Interchange Program (PIP) 13-7

2. Determine the sequential number of the file that was interrupted and use
the /M:n construction to enter a replacement file (either a new file or a
dummy) over the interrupted file. PIP writes the replacement file and a
good LEOT after it. The following example assumes the bad file is the
fourth file on the tape:

sdevO:ifilesnew/Mid=file.,dum

13.4.2 Copy Operations

PIP copies files in image, ASCII, and binary format. Other options let you
change the date on the files, access .SYS files, combine files, change a file’s
protection status, and perform other similar operations. PIP automatically
allocates the correct amount of space for new files in copy operations. For
block-replaceable devices, PIP stores the new file in the first empty space
large enough to accommodate it. If an error occurs during a copy operation,
PIP prints a warning message, stops the copy operation, and prompts you for
another command. You cannot copy .BAD files unless you specifically type
each file name and file type.

13.4.2.1 Image Mode — If you enter a command line without an option, PIP
copies files onto the destination device in image mode. Note that you cannot
reliably transfer memory image files to the line printer or console terminal.
PIP can image-copy ASCII and binary data but it does not do any of the data
checking described in Section 13.4.2.3.

The following command makes a copy of the file named XYZ.SAV on device
DK: and assigns it the name ABC.SAV. (Both files exist on device DK: after
the operation.)

% ABC,BAU=XYZ,.5AY
The next example copies from DK: all .MAC files whose names are three
characters long and begin with A. PIP stores the resulting fileson DY1:.

* DY 1, %=A%% . MAC

13.4.2.2 ASCIl Mode (/A) — Use the /A option to copy files in 7-bit ASCII
mode. PIP ignores and eliminates nulls and rubouts during file transfer. PIP
treats CTRL/Z (32 octal) as logical end-of-file if it encounters that character
in the input file. You cannot use the /A option with the /V option.

The following command copies F2.FOR from device DK: onto device DY1: in
ASCII mode and assigns it the name F1.FOR.

DY1:F1,FOR=FZ.FOR/A

138 Peripheral Interchange Program (PIP) .

13.4.2.3 Binary Mode (/B) — Use the /B option to transfer formatted binary
files (such as .OBdJ files produced by the assembler or the FORTRAN com-
piler and .LDA files produced by the linker). You cannot use the /B option
with the /V option.

The following command transfers a formatted binary file from device DLO:
to device DK: and assigns it the name FILE.OBJ.

ORK:FILE.OBJ=DL:/B

When performing formatted binary transfers, PIP prints a warning if a
checksum error occurs. If there is a checksum error and you did not use /G to
ignore the error, PIP does not perform the copy operation. You cannot copy
library files with the /B option. Copy library files in image mode.

13.4.3 Date Option (/C[:date])

The /C[:date] option includes only those files with the specified date. If no
date is specified only those files with the current date are included. Specify
/C only once in the command line; it applies to all the file specifications in
the entire command.

The following command copies (in ASCII mode) all files with the file type
.MAC on DLO: that also have the date January 12, 1983. It also copies the file
RDWR.MAC, if'it has the date January 12,1983, from DYO0: to DY1:. It com-
bines all these files under the name NN3.MACon DY1.:.

DYI:NNB.MAC=DLO:.MAC/C:12.:JAN:BB.’DYO:QDNR.MAC/Q/U

The next command copies all files with the current date (except .SYS and
.BAD files) from DK: to DY1:. This is an efficient way to back up all new files
after a session at the computer.

wDYLi%, k=%, %/C

13.4.4 Delete Option (/D)

Use the /D option to delete one or more files from the device you specify. Note
that PIP does not query you before it performs this operation unless you use
/Q. Remember to use the /Y option to delete .SYS files if you use wildcards in
the input file types. You cannot delete .BAD files, unless you name each one
specifically, including file name and file type. You can specify only six files
in a delete operation unless you use wildcards. You must always indicate a
file specification in the command line. A delete command consisting only of a
device name (dev:/D) is invalid. The delete option is also invalid for
magtape.

The following examples illustrate the delete operation.

#FILEL,SAY/D

Peripheral Interchange Program (PIP) 13-9

The command shown above deletes FILE1.SAV from device DK.:.

¥ DY¥1ls#,%/D
PPIP-W-No ,8YS action
*

The command shown above deletes all files from device DY1: except those
with a .SYS or .BAD file type. Since there is a file with a .SYS file type, PIP
prints a warning message to remind you that this file has not been deleted.

* ¥ ,MAC/D

This command deletes all files with a .MAC file type from device DK:.

13.4.5 Wait Option (/E)

If you have a single-disk system or a diskette system, you will find the /E
option useful for copy operations. Use this option when you need to change
storage volumes during a copy procedure. The general format of the com-
mand line follows.

filespec/E = filespec

You can use any option with /E that is valid with your RT-11 configuration.
You cannot use wildcards as input. When you use /E, make sure that PIP is
on your system volume.

When you use the /E option, PIP guides you through a series of steps in the
process of completing the file transfer. PIP initiates execution of the com-
mand, but then pauses and prints the message Mount input volume in
<device>; Continue?, where <device> represents the device into which you
mount the input volume. At this time you can remove the system volume (if
necessary) and mount the volume on which you actually want the operation
to take place.

When the new volume is loaded, type Y or any string beginning with Y fol-
lowed by a carriage return to execute the operation. If you type N or any
string beginning with N, or CTRL/C, the operation is not completed. Instead
PIP prompts you to remount the system volume if you have removed it and
the monitor prompt (.) appears. Any other response causes the message to
repeat. :

If you type Y, PIP prompts you for the input volume, if any. When the opera-
tion completes the Mount system volume in <device>; Continue? message.
prints. Replace the system device and type Y or any string beginning with Y
followed by a carriage return. If you type any other response, PIP prompts
you to mount the system volume until you type Y. When you type Y, the
asterisk (*) prompt prints, and PIP waits for you to enter another command.

The sections that follow describe the procedures for single-drive and double-
drive transfer.

13-10 Peripheral Interchange Program (PIP)

13.4.5.1 Single-Drive Operation — If you want to transfer a file between two
storage volumes, and you have only one drive for that type of storage vol-
ume, follow the procedure below.

1. Enter a command string according to this general syntax:
*output-filespec/E = input-filespec

where output-filespec represents the destination device and file specifica-
tion, and input-filespec represents the source device and file specification.

2. PIP responds by printing the following message at the terminal.

Mount ineput volume in <devicexi Continue?

where <device> represents the device into which you are to mount your
input volume. Type Y or any string beginning with Y followed by a car-
riage return after you have mounted your input volume. If you type any
string beginning with N or if you type CTRL/C, the operation is not per-
formed and the monitor prompt (.) appears. If you have removed the sys-
tem volume, PIP prompts you to remount it.

3. PIP continues the copy procedure and prints the following message on the
terminal:

Mount outPut wolumein <devicerxs Continue?

After you have removed your input volume from the device, mount your
output volume and type Y or any string beginning with Y followed by a
carriage return. If you type any string beginning with N or if you type
CTRL/C, the operation is not performed and the monitor prompt (.)
appears. If you have removed the system volume, PIP prompts you to
remount it.

4. Depending on the size of the file, PIP may repeat the transfer cycle (steps
2 and 3) several times before the transfer is complete. When the transfer
is complete, PIP prints the following message if you had to remove the
system volume from <device>:

Mount svstem volume in <devicesi Continue?

When you remount the system volume and type Y or any string begin-
ning with Y followed by a carriage return in response to the last instruc-
tion, you complete the copy operation. If you type anything other than Y,
PIP continues to prompt you to remount the system volume until you
type Y.

13.4.5.2 Double-Drive Operation — You can use the /E option for transferring
files between two nonsystem volumes. The procedure for transferring files
this way follows.

Peripheral Interchange Program (PIP) 13-11

1. With your system volume mounted, enter a command string according to
~ the following general syntax:

output-filespec/E = input-filespec

where output-filespec represents the destination device and file specifica-
tion, and input-filespec represents the source device and file specification.

2. After you have entered the command string, PIP responds with the mes-
sage:

Mourt input wolume in <devicer’ Conmtinue?

Type Y or any string beginning with Y followed by a carriage return
when you have mounted the input volume. If you type any string begin-
ning with N or if you type CTRL/C, the operation is not performed and
the monitor prompt: (.) appears. If you have removed the system volume,
PIP prompts you to remount it.

3. PIP then prints:

Mount output volume in <device>$ Continue?

Type Y or any string beginning with Y followed by a carriage return after
you have mounted the output volume. If you type any string beginning
with N or if you type CTRL/C, the operation is not performed and the
monitor prompt (.) appears. If you have removed the system volume, PIP
prompts you to remount it.

4. Unlike the single-volume transfer, the double-volume transfer involves
only one cycle of mounting the input and output volumes. When the file
transfer is complete, PIP prints the following message if you had to
remove the system volume from <device>:

Mouvit svstem volume in <devicer’ Continue?

When you type Y or any string beginning with Y followed by a carriage
return in response to the last instruction, you complete the copy opera-
tion. If you type anything other than Y, PIP continues to prompt you to
mount the system volume until you type Y.

13.4.6 Protection Option (/F)

Use the /F option to protect files. The letter P next to the block size number
in the file’s directory entry indicates the file is protected.

If a file is protected you cannot perform any operations on it that result in
deleting the file. You can copy a protected file to another volume or change
its name. However, you cannot change its protected status unless you use
the /Z (no protection) option. Note that the contents of a protected file are not
protected; that is, although you cannot delete a protected file, you can
change or delete its contents.

13-12 Peripheral Interchange Program (PIP)

You can also use the /F option during copy operations to protect the output
file, and with /R to change a file’s protection status. If during a copy opera-
tion you use neither /F nor /Z, the output files retain the protection status of
the input files.

The following command protects all files with the file type .MAC on DK..

s #,MAC/F

The following command copies all files with file type .ORI from DLO: to DL1..
The resulting output files on DL1: are protected from deletion.

DL1:%,%=DLO:*,0RI/F

If you use the /F option with a file that is already protected, no operation is
performed on that file regardless of any other options in the command
string. For example, the following command requests PIP to protect the file
DY1:CALCAB.MAC and change its creation date to April 21, 1983.
However, because the file is already protected, PIP performs neither
operation.

% DL1:CALCAB.MAC/F/T:21.,:APR:83.

13.4.7 Ignore Errors Option (/G)

The /G option copies files, but ignores all input errors. This option forces a
single-block transfer, which you can invoke at any other time with the IS
option. Use the /G option if an input error occurred when you tried to per-
form a normal copy operation. The procedure can sometimes recover a file
that is otherwise unreadable. If an error still occurs, PIP prints the ?PIP-W-
Input error DEV:FILNAM.TYP message and continues the copy operation.

The following command, copies the file TOP.SAV in image mode from device
DY1: to device DK: and assigns it the name ABC.SAV.

%« ABC,SAU=DY1:TOP.SAV/G
The next command copies files F1.MAC and F2.MAC in ASCII mode from

device DYO: to device DY1:. This command creates one file with the name
COMB.MAC, and ignores any errors that occur during the operation.

% DOY1:COMB.MAC=DYO:F1.MAC,F2,MAC/A/G/U

13.4.8 Verify Option (/H)

Use the /H option to verify that the output file matches the input file when a
copy operation is performed. If the two files are different a message is
printed on the terminal. This option cannot be used with /A or /B.

The following command verifies that the output file A.BAK on DY1: is the
same as the input file AMAC on DYO:.

% DY1:A.BAK=DYO:A.MAC/H

Peripheral Interchange Program (PIP) 13-13

13.4.9 Since Option (/I[:date])

The /I[:date] option includes only those files created on or after the specified
date. If no date is specified, PIP uses the current date.

The following command copies from DK: only those .MAC files created on or
after January 4, 1983:

% DLO:*,MAC=%,MAC/I:4.,:JAN:B3,

13.4.10 ' Before Option (/J[:date])

The /J[:date] option includes only those files created before the specified
date. If you do not-specify a date, PIP uses the current date.

The following command copies only those MAC files created before January
'14,1983:

DLO:* . MAC=% . MAC/J:14.,:JAN:B3.

13.4.11 Copies Option (/K:n)

The /K:n option directs PIP to generate n copies of the file you specify. The
only valid output devices are the console terminal and the line printer.
Normally, each copy of the file begins at the top of a page; copies are sepa-
rated by form feeds.

LP:=8STOTLE.LST/K:3

This command, for example, prints three copies of the listing file,
STOTLE.LST, on the line printer.

13.4.12 No Replace Option (/N)

The /N option prevents execution of a copy or rename operation if a file with
the same name as the output file already exists on the output device. This
option is not valid when output is to magtape.

The following example uses the /N option.
DYO:CT.5YS=DK:CT.S¥YS/Y/N

TPIP-W-Dutput file founds» no operation performed DK:CT.5Y¥S
*

The file named CT.SYS already exists on DYO0:, and the copy operation does
not proceed.

13.4.13 Predelete Option (/O)

The /O option deletes a file on the output device if you copy 4 file with the
same name to that device. PIP deletes the file on the output device before the

13-14 Peripheral Interchange Program (PIP)

RN

ot

copy operation occurs. Normally, PIP deletes a file of the same name after
the copy completes. This option is not valid when output is to magtape.

The following example uses the /O option.

DL1:TEST1.MAC=DY1:TEST.MAC/0

If a file named TEST1.MAC already exists on DL1:, PIP deletes it before cop-
ying TEST.MAC from DY1: to TEST1.MAC on DL1.:.

13.4.14 Exclude Option (/P)

The /P option directs PIP to include all files in the operation except the ones
you specify. Note that if you want to include system (.SYS) files and you use
the /P option, you must always use the /Y option with it.

DYOr®,%#=DY1:%.,MAC/P

This command directs PIP to transfer all files from DY1: to DYO0: except the
.MAC files. The .SYS files will also be excluded from the operation because
the /Y option was not specified.

13.4.15 Query Option (/Q)

Use the /Q option with another PIP operation to list all files and to request
confirmation for each file before it is included. Typing Y or any string begin-
ning with Y followed by a carriage return causes the named file to be pro-
cessed; typing anything else excludes the file.

The following example deletes four files from DY1..

¥ DY¥1l:#,#/D/0Q
Files deleteds:
DY1:FIX4B63,8AU7T
DY¥1:GRAPH,BAK
DY1:DMPX,MAC
DY¥1:MATCH.BAS
DY13yEXAMP,.FOR
DY1:GRAPH.FOR
DY¥1:GLOBAL.MAC? 1
DY1:PROSEC,MACT
DY1:KB+MAC 7

x) 2 2] ad -a)

-"DY1:EXAMP,MAC 7

*

13.4.16 Rename Operation (/R)

Use the /R option to rename a file you specify as input, giving it the name
you specify in the output specification. The input and output volumes for a
rename operation must be the same. PIP prints an error message if the com-
mand specifications are not valid. Use the /Y option if-you rename .SYS files
and you use wildcards in the input file types. You cannot use /R with
magtape.

" Peripheral Interchange Program (PIP) 13-15

The following examples illustrate the rename operation.

% DY1:F1.MAC=DY1:FO.MAC/R

The command shown above renames FO.MAC to F1.MAC on device DY1:.

% DL1:0QUT.B8YS=DL1:CT.8YS/R

This command renames file CT.SYS to OUT.SYS.

The rename command is particularly useful when a file contains bad blocks.
By giving the file a .BAD file type, you can ensure that the file permanently
resides in that area of the device. Thus, the system makes no other attempts
to use the bad area. Once you give a file a .BAD file type, you cannot move it
during a compress operation. You cannot rename .BAD files unless you spe-
cifically indicate both the file name and file type.

13.4.17 Single-Block Transfer Option (/S)

The /S option directs PIP to copy files one block at a time. On some devices,
this operation increases the chances of an error-free transfer. You can com-
bine the /S option with other PIP copy options. For example:

4 DL1:TEST.MAC=DLO:TEST . MAC/S
PIP performs this transfer one block at a time.

13.4.18 Set Date Option (/T[:date])

This option causes PIP to put the specified date on all files involved in the
operation. If you specify no date, PIP uses the current system date.
Normally, PIP preserves the existing file creation date on copy and rename
operations. This option is invalid when copying to magtape, because PIP
always uses the current date for these operations.

The following command copies all the files with file type .COM copied from
DYO0: to DY1:, and assigns the output files the date January 24, 1983.

% DY 1o#,%#=DYV0O:%,COM/Y/T:24,:JAN:83,

13.4.19 Concatenate Option (/U)

To combine more than one file into a single file, use the /U option. This
option is particularly useful when you want to combine several object mod-
ules into a single file for use by the linker or librarian. PIP does not accept
wildcards on the output specification. Use the /B option with /U if you are
concatenating object (.OBJ) files.

The following examples show the /U option.

« DK:AA,0BJ=DY1:BB.0BJ,CC,0OBJ,DD.OBJ/U/B

13-16 Peripheral Interchange Program (PIP)

The command shown above transfers files BB.OBJ, CC.OBJ, and DD.OBJ to
device DK: as one file and assigns it the name AA.OBJ.

* DL1:MERGE.MAC=DLO:FILE2.MAC’FILEB.MAC/A/U

This command merges ASCII files FILE2.MAC and FILE3.MAC on DLO:
into one ASCII file named MERGE.MAC on device DL1:.

13.4.20 Muitivolume Option (/V)

The /V option copies files from an input volume to two or more smaller out-
put volumes. This option is useful when you are copying several files from a
large input volume and you are not sure whether all the files will fit on one
output volume.

When you use this option PIP copies files to the output volume until the sys-
tem finds a file that will not fit. PIP continues to search that file’s directory
segment, copying all files from the segment that will fit onto the output vol-
ume. When no more files from that segment will fit on the output volume,
PIP prompts you to mount the next output volume and prints the Continue?
message. Mount another output volume of the same type and type Y or any
string beginning with Y followed by a carriage return to continue the copy
operation. If you type any string beginning with N or if you type CTRL/C,
the operation is aborted and the monitor prompt (.) appears.

When you type Y to continue, PIP copies the first file that would not fit to the
previous output volume to the new output volume. PIP continues to copy
files from that directory segment until no more files from that segment will
fit on the output volume or until all files from that directory segment have
been copied. If all files from that segment have been copied, PIP begins copy-
ing files from the next directory segment. File copying continues in this
fashion until all the specified input files have been copied.

The following example copies all files on DLO: to several double-density
diskettes:

¥ DYQs#,#=DLOz#,%/Y

Mournt next outeut volume in DYO:i Continue? i
Mount next outeput volume in DY¥0O:§ Continue? |
Mourmt next output volume in DYO:3 Continue® f
#*

13.4.21 Logging Option (/W)

When you use the /W option, PIP prints a list of all files included in the
operation. The /W option is useful if you do not want to take the time to use
the query mode (the /Q option, described in Section 13.4.15), but you do want
a list of the files operated on by PIP.

Peripheral Interchange Program (PIP) 13-17

PIP prints the log for an operation on the terminal under the command line.
This example shows logging with the delete operation. '

* DY¥l:x,%x/D/W
TPIP-W-No ,8Y¥S action
Files deleted:
DY1:TEST.MAC
DY¥1sFIX4B83,8AY
DY1:GRAPH.BAK
DY1:DMPX,MAC
DY1:MATCH.BAS
DY1:EXAMP,.FOR
DY1:GRAPH.FOR
DY1:GLOBAL «MAC
D¥1:PROSEC.MAC
DY1:EXAMP . MAC
*

13.4.22 Information Option (/X)

The /X option causes PIP to print an information message when PIP fails to
find all of the files you specify in a command line. If you do not use the /X
option, PIP prints a fatal error message when it is unable to find an input
file, and control returns to the keyboard monitor after the operation com-
pletes. Use /X in indirect command files to ensure that processing will con-
tinue even if PIP fails to find a file you specify.

In the following example, the input files FILE1.TXT and FILE3.TXT are
copied to DL1:. However, since the system is unable to find DLO:FILE2.TXT,
PIP prints a message to inform you.

* DL1s%,#=DLOsFILEL THTHFILE2.THTHFILEJWTHT
PPIP-I-File not found DLO:FILEZ.TXT

13.4.23 System Files Option (/Y)

Use the /Y option if you need to perform an operation on system (.SYS) files
and you use wildcards in the input file type. For example:

¥ ok, w=DY1ls#,%/Y

This command copies to device DK:, in image mode, all files (including .SYS
files) from device DY1:. Note that you must always use /Y with the /P option
to include .SYS files, even when you use no wildcards.

13.4.24 No Protection Option (/Z)

Use the /Z option to remove protected status from files, so that you can delete
or change those files. You can also use the /Z option with /R to change the
protection status of a file, and during copy operations to remove protection
from the output file.

Note that since you cannot delete files assigned as logical disks, you cannot
use the /Z option to remove protection from these files.

13-18 Periphera!l Interchange Program (PIP)

The following command removes protection from all . MAC files on DK.:.
*% ,MAC/Z

The following command copies the file PROGRM.MAC from DYO0: to DY1..
The resulting output file on DY 1: is enabled for deletion.

*DY¥Y1:PROGRM.MAC=DY0O:PROGRM,MAC/Z

If you use the /R option with a file that is already unprotected, no operation
is performed on that file regardless of any other-options in the command
string. For example, the following command requests PIP to unprotect the
file DY1:CALCAB.MAC and change its creation date to April 21, 1983.
However, because the file is already unprotected, PIP performs neither
operation.

*DL1:CALCAB.MAC/R/T:21,:APR:83.

Peripheral Intérchange Program (PIP) 13-19

R

Chapter 14
Resource Utility Program (RESORC)

14.1

The resource utility program lists system resource information on the termi-
nal. You can use RESORC to display the following data about your system:

@ Monitor version number
e SET options in effect
@ Hardware configuration

@ Total amount of memory in system

Organization of physical memory

Currently loaded jobs

System generation special features in effect

Device assignments

Status of currently active terminals (on multiterminal systems)

Device handler status

Logical disk subsetting information

Calling and Terminating RESORC

To call RESORC from the system device, respond to the keyboard monitor
dot (.) by typing:

+ R RESORC @D

The Command String Interpreter (CSI) prints an asterisk (*) at the left mar-
gin of the terminal and waits for your input. At this point, enter the
RESORC option or options required to obtain the information you need.
Section 14.2 describes these options, and Table 14-1 summarizes them.

If you enter only a carriage return in response to the asterisk, RESORC
prints its name and current version number. To abort RESORC while it is
executing, type two CTRL/Cs. Type one CTRL/C to return control to the
monitor when RESORC is waiting for input (that is, when an asterisk has
printed on the terminal).

141

14.2 Options

By specifying one or more of the options /C, /D, /H, /J, /L, /M, /O, /S, /T, and
/X, you choose the information that RESORC lists on the terminal. If you

use two or more options, you can enter them in any order, although RE-
SORC lists the information in the order /M, /C, /H, /O, /D, /L, /3, IT, /X, /S.

RESORC offers two additional options that are equivalent to combinations
of options. The /Z option has the samie effect as a combination of the /M, /C,
/H, /J, and /O options. The /A option has the same effect as a combination of
all the options except /Q and /Z.

Table 14-1: RESORC Options

N

Option R Display
/A The result of a combination of all RESORC options (except /Z)
/C The device from which you bootstrapped the system and the monitor SET

options in effect

[dd:]/D A list of the device handlers, their status, and their vectors; when [dd:] is
included, lists the status of only that device

/H The hardware configuration, including the system’s total amount of memory
(in bytes)

J Information about the currently running and loaded jobs

/L Device assignments

/M The monitor type, version number, and update level

/0 The system generation special features in effect

Q Lists the contents of the queue for QUEUE or SPOOL or both

S Information about logical disk subsetting

T The status and options in effect for currently active terminals on multitermi-
nal systems

X The organization of physical memory

1Z The result of a combination of /M, /C, /H, /J, and /O options

14.2.1 All Option (/A)

The /A option has the same effect as a combination of all the other RESORC
options (except /Z). When you enter /A, all RESORC information is printed
on the terminal in the order shown below.

1. Monitor configuration (that is, the monitor type and version number; the
device from which the monitor was bootstrapped; what the SET options
are; whether a foreground job is loaded; and the indirect file nesting
depth)

2. Hardware configuration

14-2 Resource Utility Program (RESORC)

S

System generation special features in effect
Device handler status

Device assignments

Job status

Status of currently active terminals

Organization of physical memory

© ® N e oo ®

Subsetting of physical disks into logical disks

See the following sections for details on these topics.

14.2.2 Software Configuration Option (/C)

The /C option displays:
The device from which you bootstrapped the system
Whether a foreground job is loaded (if applicable) |

1

2

3. The monitor SET options
4. Indirect file nesting depth
5

Global .SCCA flag support (enabled or disabled)
The following example uses the /C option.

/C
Booted from DLO:RT1LFB

USR is set SWAP

EXIT is set SWAP

KMON is set IND

TT is set QUIET

ERROR is set ERROR

gL is set OFF

EDIT is set EDIT

KMON nesting depth is 3
Glokal .SCCA flad is disabled

14.2.3 Device Handler Status Option ([dd:]/D)

RESORC’s /D option displays a list of your system’s device handlers, along
with their status, CSR addresses, and vectors. The /D option lists only those
handlers whose special features match those of the currently booted moni-

_tor. If a handler is loaded, RESORC prints its load address.

If you specify a device name in front of the /D option (dd:/D), RESORC lists
information for only that device. The variable dd represents the 2-letter
permanent device name for the device (see Table 3—1 in the RT-11 System
User’s Guide). If you specify DU as the device, RESORC lists the device’s
unit, port, and partition settings.

Resource Utility Program (RESORC) 14-3

The following sample shows the table that RESORC prints when you use the

/D option.
% /D

DEVICE

DY

VECTOR(S)

STATUS C8R

122620 177170 264
Installed 176500 300 304
Installed 174400 160

Not installed 177170 264
Installed 176500 300 304
Installed 1775814 200
Installed 172522 224 300
Installed 172150 154
Installed QOQO00 Q0o
Installed QOOO00 Q00
Installed 177440 210
Installed 177572 000
Resident 177400 220

Not installed OQOOQ000 000
Installed 172520 224

Not installed 172440 224

In this table, the status column can list one of the following messages:

Message

Installed

Not installed

-Not installed

Resident

nnnnnn

Meaning

The device handler is in the system tables, but you have not
loaded it in main memory (you can load it with the LOAD
command).

The device handler is not in the system tables, but you can
add the handler with the INSTALL command (if there is a
free slot).

The device handler special features do not match those of
the monitor; you cannot install the handler. (The minus
sign in front of any message means that you cannot install

the handler.)

The device handler is permanently in memory; you cannot
remove or unload it.

The beginning address of a loaded handler.

The last column in the /D listing identifies vectors. If the handler has multi-
ple vectors, the /D option prints the additional vectors in this column.

The next example shows handler status information for the device DU.

% DU:/D
DUO: is
DUL: is
DUZ2: 1is
DU3: is
Dud: is
DUS: is
DUBG: is
DU7: is

set
set
set
set
set
set
set
set

UNIT=0,PART=04PORT=0
UNIT=1,PART=0PORT=0
UNIT=4,PART=0PORT=1
UNIT=5,PART=0,PORT=1
UNIT=6,PART=0,PORT=1
UNIT=17PART=2 +PORT=1
UNIT=22,PART=0+PORT=0
UNIT=23,PART=0,PORT=0

14-4 Resource Utility Program (RESORC)

s

14.2.4 Hardware Configuration Option (/H)

When you use the /H option, RESORC lists the processor type, the total
amount of memory (in bytes) that the system contains, and all the special
hardware features in your system configuration. The processor is one of the
following:

LSI11 PDP 11/23
MICRO/PDP-11 PDP 11/23 PLUS
PC325/PC350 PDP 11/24

PDT 130/150 , PDP 11/34

PDP 11/04 PDP 11/35,40
PDP 11/05,10 PDP 11/44

PDP 11/15,20 PDP 11/45,50,55
SBC 11/21 PDP 11/60

SBC 11/21 PLUS PDP 11/70

Any special hardware is chosen from the following list. (The /H option
displays the features in the order they occur in the list.)

FP11 Hardware Floating Point Unit
Commercial Instruction Set (CIS)
Extended Instruction Set (EIS)
Floating Point Instruction Set (FIS)
KT11 Memory Management Unit
Parity Memory

Cache Memory

VT11 or VS60 Graphics Hardware

The next item that appears in the /H listing is the clock frequency (50 or 60
cycles), and the last is the KW11-P programmable clock (if your system has
one and you are not using it as the system clock).

The following example shows the /H option.

* /H

PDP 11/23 PLUS Processor

1024KB of memory

FFil Hardware Floating Point Unit
Extended Instruction Set (EIB)
KT11 Memory Manadement Unit
Parity Memorvy

60 Cvcle Svstem Clock

14.2.5 Loaded Jobs Option (/J)

The /J option prints information about the currently loaded jobs. For each
job, RESORC displays:

1. The job number and name (if you have not enabled system job support
on your monitor, the foreground job name appears as FORE, and its
priority level is 1 in FB or XM)

2. The console the job is running on (with a nonmultiterminal monitor,
this space is blank)

Resource Utility Program (RESORC) 14-5

3. The priority level of the job

4. The job’s state (running, suspended, or done but not unloaded)

5. The low and high memory limits of the job

6. The start address of the job’s impure area

The following example uses the /J option.

*/J

Jobk Name Console Level State Low High ImpPure
16 MFUNCT 1 7 Suspend 113350 127444 114412
14 EL 0 B 132404 141452 130663
12 QUEUE 0 &) 132345 163243 144231
0 RESORC 0 Q Run 000000 113144 133374

14.2.6 Device Assignments Option (/L)

When you type /L in response to the CSI asterisk, RESORC displays your
system’s device assignments. The devices RESORC lists are those in the sys-
tem tables. The listing also includes additional information about particular
devices. The informational messages and their meanings follow.

Message

(RESORC) or =RESORC

F)or =F

(jobname) or =jobname

(Loaded)
(Resident)

= logical-device-name(1),

logical-device-name(2)...

,Jlogical-device-name(n)

xx free slots

14-6 Resource Utility Program (RESORC)

Meaning

The device or unit is assigned to the back-
ground job RESORC (for FB and XM monitors
only).

The device or unit is assigned to the foreground
job (only for FB and XM monitors that do not
have system job support).

The device or unit is assigned to the system or
foreground job (only for FB and, XM monitors
that have system job support), where jobname
represents the name of the foreground or
system job.

The handler for the device has been loaded into
memory with the LOAD command.

The handler for the device is included in the
resident monitor.

The device or unit has been assigned the indi-
cated logical device names with the ASSIGN
command.

The last line tells the number of unassigned
(free) devices.

The following example was created under an FB monitor. It shows the status
of all devices known to the system.

s /L
TT (Resident)
DL (Resident)
pLi = 8Y » DK » 0BJ,» SRC: BIN
DLZ = LST,» MAP
MQ (Resident)
RK -
DM
b (Loaded)
DXO: (F)
X1 (RESORC)
MT
LP
BA
NL

g free slots

14.2.7 Current Monitor Option (/M)

When you use the /M option RESORC prints the type, version number, and
update level of the currently running monitor. The designation BL, SJ, FB,
or XM identifies the monitor type as base-line, single-job, foreground/
background, or extended memory, respectively.

The following example uses the /M option.
% /M

RT-11FB (8) U03,00

14.2.8 Special Features Option (/O)

The special features chosen during system generation are listed on the ter-
minal when you use the /O option. Whatever features are in effect are
printed out in the same order as the following list of possible special
features.

Option Function

Device I/O timeout support Permits device handlers to do the equivalent of
a mark time without doing a .SYNCH request;
DECnet applications require this support.

Error logging support Keeps a statistical record of all I/O operations
on devices that are supported by this feature;
detects and stores data on any errors that occur
during I/O operations.

Multiterminal support Permits you to use as many as 16 terminals.

Memory parity support Causes the system to print an error message
when a memory parity error occurs.

Resource Utility Program (RESORC) 14-7

SJ timer support Configures the SJ monitor to include mark-
time and cancel mark-time programmed re-
quests and to support the .FORK process.

System job support Allows you to run up to six jobs in the fore-
ground in addition to the foreground and
background jobs.

Global .SCCA support Reports whether global .SCCA support was

chosen during system generation.

The following example shows the /O option.

% /0

Device I/0 time-out suPPOTrt
Error logding suppPort
Multi-terminal surpPOTrt
Memory parity surPoOrt

If there are no special features in effect, RESORC prints NO SYSGEN
options enabled. :

14.2.9 Show Queue Option (/Q)

The /Q option lists the contents of the queue for QUEUE, SPOOL, or both if
both are running. If there are no files in a queue, RESORC prints:

TRESORC-I-No queues active

The following example shows files queued for printing with SPOOL run-
ning:

/0

Unit © status

Device is active

0004S blocks are srpooled for output
00954 blocks are free to he spooled

14.2.10 Disk Subsetting Option (/S)

The /S option displays information about the subsetting of physical disks
into logical disks. When you use the /S option, RESORC displays the logical
disk unit with the file name to which it is assigned, and the size of the
logical disk in decimal blocks.

The following example illustrates the /S option by showing the logical disks
into which the physical disks DLO: and DL1: are divided.)

% /8

LDO is DLO:DISK.LETL4000.,1]
LD2 is DL1:DISK.SRCL1200,1%
LD1 is DL1:WORK.DSKLBOQO.1

14-8 Resource Utility Program (RESORC)

An asterisk (*) following the file information indicates that, although the
logical disk assignment exists, the file does not exist on the volume that is
currently mounted in the drive unit. A pound sign (#) indicates that the
device handler is not loaded. These symbols are especially useful to-deter-
mine the status of logical disk assignments after you use the SET LD
CLEAN command or the LD /C option.

14.2.11 Terminal Status Option (/T)

The /T option displays information about currently running active termi-
nals on multiterminal systems. Therefore, if your system does not include
multiterminal support, RESORC prints:

No multi-terminal support

Since multiterminal support is not part of the distributed RT-11 monitors,
such support is present on your system only if you have included it during
system generation; that is, multiterminal support is a special feature.

If your system does include multiterminal support, and you enter the /T
option in response to RESORC’s asterisk, RESORC prints a table similar to
the following:

* /T

Unit Quner Tyre WIDTH TAB CRLF FORM SCOPE SPEED
0 RESORC S-Console DL 132 No Yes No No N/A
1 FORE Lacal DZ 8O Yes No No Yes 4800

Note that in this table, the unit number refers to the terminal; RT-11 multi-
terminal support permits you to use as many as 16 terminals.

The Unit column lists the terminal unit number, and the Owner column
lists the name of the job (foreground, system, background, or none) to which
the terminal is assigned. If the running monitor does not have system job
support, RESORC prints FORE and RESORC, where applicable.

The Type column of this table shows the type of terminal — local, remote,
console, or S-console (a console shared between background, system, and

foreground jobs) — and the type of hardware interface the terminal uses —
DL or DZ. '

The WIDTH column indicates the width in characters (up to 255) of the ter-
minal listing or display text.

The next four columns indicate which SET options are in effect on the termi-
nal. If you have set TAB, the terminal can execute hardware tabs. If you
have set CRLF, the terminal issues a carriage return and line feed whenever
you attempt to type past the right margin. The terminal is capable of execut-
ing hardware form feeds if you have set FORM and, on graphics terminals,
capable of echoing RUBOUT characters as backspace-space-backspace if you
have set SCOPE.

Resource Utility Program (RESORC) 14-9

The last column, SPEED, lists the terminal’s baud rate (if interface is DZ).
An N/A under the SPEED column indicates that the baud rate is not alter-
able (DL interface).

14.2.12 Physical Memory Layout Option (/X)

The /X option shows the organization of physical memory. The listing dis-
plays such information as where jobs are loaded, where the device handlers
are loaded, where KMON and the USR reside, and the number of words of
memory each occupies. Memory addresses are displayed in octal.

If you are running under the XM monitor, the listing is divided into two sec-
tions, the first for extended memory and the second for kernel memory.

The following example displays the organization of physical memory when
running under the SJ monitor.

/X

Address Module vNords
160000 IDPAGE 4096,
187400 RK 120,
127274 RMON 8170,
126112 DY 313,
Q01000 ++BGY 21797,

The next example shows the organization of physical memory when running
under the XM monitor.

* /X

Extended Memory

Address Module Words
01000000 UM 3932186,
00180000 v uivaas 102400,

Kernel Memorvy

Address Module Words
160000 I0OPAGE 4096,
137350 RK 140,
124144 RMON G970,
122612 DY 365,
111610 USR 2308,
001000 ++BGY - 10620,

14-10 Resource Utility Program (RESORC)

14.2.13 Summary Option (/Z)

The /Z option has the same effect as a combination of the /M, /C, /H, /J, and
/O options. In other words, /Z lists the following information about your
system:

® Monitor configuration

@ Set options in effect on the monitor

® Hardware configuration

@ System generation special features in effect

This information prints out in the order shown in the following sample.

* /2

RT-11FB(S) YOS+ xx
Booted from DLO:RT11FB

USSR is set SWAP

EXIT is set SWAP

KMON is set IND

TT is set NOQUIET

ERROR is set ERROR

SL is set OFF

EDIT is set EDIT

KMON nesting derpth is 3
Global .SCCA flag ig disabled

PDP 11/23 PLUS Processor
1024KB of Memorv

Extended Instruction Set (EIS)
KT11 Memory Manadement Unit
Parity Memory

6O Cvycle Svystem ClocK

Resource Utility Program (RESORC) 14-11

Chapter 15
Source Comparison (SRCCOM)

The RT-11 source comparison program (SRCCOM) compares two ASCII
files and lists the differences between them. SRCCOM can either print the
results or store them in a file. SRCCOM is particularly useful when you
want to compare two similar versions of a source program. A file comparison
listing highlights the changes made to a program during an editing session.

SRCCOM is also useful for creating a command file that you can run with
the source language patch program (SLP), described in Chapter 23. When
you use SRCCOM for creating a command file, you can patch one version of
a source file so that it matches another version. Section 15.6 describes how
to create a command file for SLP. '

15.1 Calling and Terminating SRCCOM

To call SRCCOM from the system device, respond to the dot (.) printed by the
keyboard monitor by typing: 4

,R SRCCOM

The Command String Interpreter (CSI) prints an asterisk at the left margin
ofthe terminal and waits for you to enter a command string. If you respond
to the asterisk by entering only a carriage return, SRCCOM prints its cur-
rent version number.

You can type CTRL/C to halt SRCCOM and return control to the monitor
when SRCCOM is waiting for input from the console terminal. You must
type two CTRL/Cs to abort SRCCOM at any other time. To restart
SRCCOM, type R SRCCOM or REENTER and a carriage return in response
to the monitor’s dot.

15.2 SRCCOM Command String Syntax

The syntax of the SRCCOM command string is:
[output-filespec],[SLP-filespec= Jold-filespec,new-filespec[/option...]

15-1

where:;

output-filespec represents the destination device or file for the list-
ing of differences.

SLP-filespec represents the destination device or file for the com-
mand file to be run with SLP. See Section 15.6 for
more information on creating a command file for

SLP.
old-filespec represents the first file to be compared.
new-filespec represents the second file to be compared.
option is one of the options listed in Table 15-1.

Note that you can specify the input files in any order if you want only a com-
parison. If you are creating a patch for use with the SLP utility, then specify
the input files in the old-file, new-file order shown above. The console termi-
nal is the default output device. The default file type for input files is MAC.
SRCCOM assigns .DIF as the default file type for differences files. The
default file type for a SLP command file is .SLP.

Either or both output file specifications can be omitted. However the output
file specifications are position-dependent. If you specify a SLP-filespec but no
output-filespec, you must place a comma before the SLP file specification to
denote the absence of an output-filespec.

SRCCOM examines the two source files line by line, looking for groups of
lines that match. When SRCCOM finds a mismatch, it lists the lines from
each file that are different. SRCCOM continues to list the differences until a
specific number of lines from the first file matches the second file. The spe-
cific number of lines that constitutes a match is a variable that you can set
with the /L:n option.

15.3 Using Wildcards with SRCCOM

You can use wildcards to perform multiple source file comparisons by typing
only one command line. However, you can use wildcards only to compare

files; you cannot use wildcards when creating a command file to run with
SLP.

You can use wildcards in either input file specification (old-filespec or new-
filespec). A different type of comparison is performed depending on whether
you use wildcards in only one or in both of the input file specifications.

If you use wildcards in only one of the input file specifications, SRCCOM
compares the file you specify without any wildcards to all variations of the
file specification with wildcards. The wildcard represents the part of the file
specification to be varied. You can use this method to compare one file to sev-
eral other files. For example, when the following command line is executed,
SRCCOM compares the file TEST1.MAC on device DYO: to all files on device
DY1: with the file name TEST2:

% TEST=DYO:TEST1 MACDY1:TEST2 %

15-2 Source Comparison (SRCCOM)

S

You can send the results of all the comparisons to a file on a volume rather .
than to the console by specifying an output file. In this example, all differ-
ences from the comparisons are sent to the file TEST.DIF on device DK:.

If you use wildcards in both input file specifications, the wildcards represent
a part of a file specification that you want to be the same in both files being
compared. You can use this method to compare several pairs of files; each
input file is compared to only one other input file. For example, when the fol-
lowing command line is executed, SRCCOM compares pairs of files; the first
input file in each pair has the file name PROG1, and the second has the file
name PROG2. The file type of both files in each pair must match.

% DYO:PROG! . #,DY1:PROGZ, *

SRCCOM searches for the first file on DYO: with the file name PROG1, and
takes note of its file type. Then, SRCCOM searches DY1: for a file with the
file name PROG2 and the same file type as PROG1. If a match is found,
SRCCOM compares the two files and lists the differences on the console (or
sends the differences to an output file if one is specified). SRCCOM then -
searches DYO: for more files with the file name PROG1 and DY1: for PROG2
files with matching file types.

15.4 Options

Table 15-1 summarizes the operations you can perform with SRCCOM
options. You can place these options anywhere in the command string, but it
is conventional to place them at the end of the command line.

15.5 Differences Listing Format

This section describes the SRCCOM differences listing format and explains
how to interpret it.

15.5.1 Sample Text
It will be helpful first to look at a sample text file, DEMO.BAK:

. FILE1
" HERE'S A BOTTLE AND AN HONEST FRIEND!
WHAT WAD YE WISH FOR MAIR, MAN?
WHA KENS: BEFORE HIS LIFE MAY END.
WHAT HIS SHAME MAY BE 0’ CARE: MANY
THEN CATCH THE MOMENTS AS THEY FLY:
AND USE THEM AS YE OUGHT. MAN:--
BELIEVE ME, HAPPINESS IS SLY .
AND COMES NOT AYE WHEN SOUGHT: MAN.

--SCOTTISH SONG

Source Comparison (SRCCOM) 15-3

Table 15-1: SRCCOM Options

Option . Function

/A Lets you specify an’ audit trail (a string of characters that marks each up-
dated line of a patched source file). Use /A with the SLP output file specifica-
tion to create a file that can be used as command file input for the source
language patch program SLP (see Chapter 23).

/B Compares blank lines; normally, SRCCOM ignores blank lines.

IC Ignores comments (all text on a line preceded by a semicolon) and spacing
(spaces and tabs). A line consisting entirely of a comment is still included in
the line count.

/D Creates a listing of the new file specified in the command line with the differ-
ences from the old file marked with vertical bars (!) to indicate insertions
and bullets (o) to indicate deletions.

/F Includes form feeds in the output listing; SRCCOM normally compares form
feeds, but does not include them in the differences listing.

/L{:n] Specifies the number of lines that determines a match; n is an octal integer in
the range 1 through 310. The default value fornis 3.

I8 Ignores spaces and tabs.

T Compares blanks and tabs that appear at the end of a line. Normally
SRCCOM ignores these trailing blanks and tabs.

/V:id Used with /D to specify the characters you want SRCCOM to use in place of
vertical bars and bullets. This option is useful if your terminal does not print
the vertical bar character. Both i and d represent the numeric codes for ASCII
characters in the range 40 through 176 (octal), where i represents the code for
the insertion character and d the deletion character code.

This file contains two typing errors. In the fourth line of the song, shame
should be share. In the seventh line, sly should be shy. Here is a file called
DEMO.TXT that has the correct text:

FILE2
HERE‘'S A BOTTLE AND AN HONEST FRIEND!
WHAT WAD YE WISH FOR MAIR.: MAN?
WHA KENS: BEFORE HIS LIFE MAY END:
WHAT HIS SHARE MAY BE 0’ CARE,» MANT
THEN CATCH THE MOMENTS AS THEY FLY:
AND USE THEM AS YE QUGHT: MAN:--
BELIEVE ME: HAPPINESS IS5 SHY:
AND COMES NOT AYE WHEN SOUGHT» MAN.

-~-GCOTTISH SONG

15.5.2 Sample Differences Listing

SRCCOM can list the differences between the two files. The example below
compares the original file, DEMO.BAK, to its edited version, DEMO.TXT:

154 Source Comparison (SRCCOM)

N

_DEMO.BAK »DEMO,TXT/L:1
1) DK:DEMO.BAK
2) DK:DEMD.TKT

o E KRR

131 FILE1L .
1) HERE’S A BOTTLE AND AN HONEST FRIEND!
* % %R

21 FILEZ

2) HERE‘S A BOTTLE AND AN HONEST FRIEND!
TR E LR

Hit WHAT HIS SHAME MAY BE O’ CARE., MANT
1) THEN CATCH THE MOMENTS AS THEY FLY.
o H _

a1 WHAT HIS SHARE MAY BE 0’ CARE, MANT?
2) THEN CATCH THE MOMENTS AS THEY FLY»

* R R ERER

1)1 BELIEWE ME, HAPPINESS IS SLY:

1) AND COMES NOT AYE WHEN SOUGHT: MAN,
*3 %%

21 BELIEVE ME, HAPPINESS IS SHY,

2) AND COMES NOT AYE WHEN SOUGHT: MAN.
X I3 2T

?GRCCOM-W-Files are different

If the files are different, SRCCOM always prints the file name of each file as
identification:

1) DK:DEMO.BAK
2) DK:DEMO.TXT

The numbers at the left margin have the form n)m, where n represents the
source file (either 1 or 2) and m represents the page (delineated by form
feeds) of that file on which the specific line is located.

SRCCOM next prints ten asterisks and then lists the differences between
the two files. The /L:n option was used in this example to set to 1 the number
of lines that must agree to constitute a match.

The first line of both files differs. SRCCOM prints the first line from the first
file, followed by the second line as a reference. SRCCOM then prints four
asterisks, followed by the corresponding two lines of the second file.

i1 FILEL

)y HERE’S A BOTTLE AND AN HONEST FRIEND!
* & _

231 FILEZ .

2) HERE'S A BOTTLE AND AN HONEST FRIEND!
KRR KR .

The fourth line contains the second discrepancy. SRCCOM prints the fourth
line from the first file, followed by the next matching line as a reference.

01 WHAT HIS SHAME MAY BE O’ CARE, MANT?
1) THEN CATCH THE MOMENTS AS THEY FLY:
* %K%

Source Comparison (SRCCOM) 15-5

The four asterisks terminate the differences from the first file. SRCCOM
then prints the fourth line from the second file, again followed by the next
matching line as a reference:

2)1 WHAT HIS SHARE MAY BE DO’ CAREs MANT?
2) THEN CATCH THE MOMENTS AS THEY FLY,
HEERRAHFEER

The ten asterisks terminate the listing for a particular differences section.

SRCCOM scans the remaining lines in the files in the same manner. When
. it reaches the end of each file, it prints the 2SRCCOM-W-Files are dlfferent
message on the terminal.

The following example is slightly different. The default value for the /L:n
option sets to 3 the number of lines that must agree to constitute a match.
The output listing is directed to the file DIFF.TXT on device DK:.

DIFF.TAT=DEMO.BAK DEMO.TX
P?SRCCOM-W-Files are different

The monitor TYPE command lists the information contained in the output
file:

+ TYPE DIFF.TXT
1) DR:DEMO.BAK
2) DK:DEMO.,TXT

LA S XL L X T

it FILEL .

1) HERE’S A BOTTLE AND AN HONEST FRIEND!
%R

2)1 FILE2

2) HERE’S A BOTTLE AND AN HONEST FRIEND!
HEXRXERRE¥

i1 WHAT HIS SHAME MAY BE 0O’ CAREs MANT
n THEN CATCH THE MOMENTS AS THEY FLY
H AND USE THEM AS YE OUGHTs MAN:--

1) BELIEVE ME, HAPPINESS IS SLY.,

1) AND COMES NOT AYE WHEN SOUGHT s MAN,
* ¥ FE R

231 WHAT HIS SHARE MAY BE 0O’ CAREs MAN?
2) THEN CATCH THE MOMENTS AS THEY FLY:
2) AND USE THEM AS YE OUGHT,» MAN:--

2) BELIEVE ME, HAPPINESS IS SHY,

2) AND COMES NOT AYE WHEN SOUGHT s MAN,
222222 YT

As in the first example, SRCCOM prinfs the file name of each file:

1) DK:DEMD.BAK
2) DK:DEMO.TXT

The first line of both files differs, so SRCCOM prints the first two lines of
both files, as in the listing at the terminal from the previous example:

i FILEL
1) HERE’S A BOTTLE AND AN HONEST FRIEND!
* % %%

156 Source Comparison (SRCCOM)

R

2)1 FILEZ
2) HERE’S A BOTTLE AND AN HONEST FRIEND!
R R

Again, the fourth line differs. SRCCOM prints the fourth line of the first file,
followed by the next matching line:

0Nl WHAT HIS SHAME MAY BE 0’ CARE: MANT
1) THEN CATCH THE MOMENTS AS THEY FLY:

However, SRCCOM did not find a match (three identical lines) before it
encountered the next difference. So, the second matching line prints, fol-
lowed by the next differing line from the first file:

1) AND USE THEM AS YE OUGHT: MAN:--
1) BELIEVE ME, HAPPINESS IS SLY:

Again, the next matching line prints:

1) AND COMES NOT AYE WHEN SOUGHT: MAN.

The /B option to include blank lines in the comparison was not used in this
example. Thus, SRCCOM recognizes only one more line before the end of
file. Since the two identical lines do not constitute a match (three are
needed), SRCCOM prints the last line as part of the differences for the first
file:

]

1 --SCOTTISH SONG
1

* % *#

In a similar manner, SRCCOM prints the differences for the second file, end-
ing the listing with the ?2SRCCOM-W-Files are different message.

NOTE

Regardless of the output specification, the differences mes-
sage always prints on the terminal. If you compare two files
that are identical and specify a file for the differences listing,
the message ?SRCCOM-I-No differences found prints on the .
terminal and SRCCOM does not create an output file.

15.5.3 Changebar Option (/D[/V:i:d])

When you use the /D option in the SRCCOM command line, SRCCOM cre-
ates a listing in which it inserts vertical bars () and bullets (o) to denote
the differences between the two files in the command line. The vertical bar
indicates insertion; the bullet indicates deletion. If you do not specify an out-
put file, SRCCOM prints the listing at the terminal.

Source Comparison (SRCCOM) 15-7

If you include the /V:i:d option with /D (you cannot use /V:i:d without /D),
you can specify what characters you would like in place of the vertical bar
and/or bullet. The argument i represents the ASCII code (between 40 and
176 octal) for the character you want in place of the vertical bar. The argu-

- ment d represents the ASCII code (between 40 and 176 octal) for the charac-
ter you want to use in place of the bullet.

In the following command line, SRCCOM compares DEMO.BAK to
DEMO.TXT:.

* DEMD.BAKDEMO.TXT/D/L:1

When SRCCOM processes the last command, it prints at the terminal the
following listing:

H FILEZ
HERE’'S A BOTTLE AND AN HONEST FRIEND!
WHAT WAD YE WISH FOR MAIR: MANT
WHA KENS s BEFORE HIS LIFE MAY END:
! WHAT HIS SHARE MAY BE 0’ CARE:s MANT
THEN CATCH THE MOMENTS AS THEY FLY
AND USE THEM AS YE OUGHTs MAN:--
i BELIEVE ME, HAPPINESS IS SBHY:
AND COMES NOT AYE WHEN SOUGHT s MAN.
--GCOTTISH SO0ONG
PSRCCOM-W-Files are different

15.6 Creating a SLP Command File

You can use SRCCOM to create an input command file to the source lan-
guage patch program, SLP, described in Chapter 23. Specify a SLP file
specification in the SRCCOM command line. The SRCCOM option /A can
be used for specifying an audit trail while creating this command file.

When you specify a SLP-filespec file in the SRCCOM command line,
SRCCOM creates a file you can use as the SLP input command file. If you
specify both an output-filespec and a SLP-filespec, SRCCOM creates both a
differences listing and a SLP input command file. If you specify only an
output-filespec, SRCCOM generates only a differences listing. If you specify
only a SLP-filespec, SRCCOM creates only a SLP input command file.

In the following sample command line, SRCCOM creates an output file,
MOD.SLP, which contains the necessary commands that, when used with
SLP, can modify DEMO.BAK so that it matches DEMO.TXT.

* +sMOD=DEMO .BAK »DEMO, TXT

You can use the /A option to specify an audit trail. When SLP updates a file,
it creates two output files. One output file is the patched source file; the sec-
ond is a listing file. The listing file contains a numbered listing of the

15-8 Source Comparison (SRCCOM)

patched file, and it also has an audit trail SLP has appended to each changed
line. The audit trail is a string of characters that keeps track of the update
status of each line in the patched source file. SLP appends the audit trail to
the right margin of each updated line in the patched source file. Note that
when SLP must change a line, it appends an additional audit trail below the
audit trail of the changed line. The additional audit trail keeps track of the
number of consecutive lines that change.

When you use the /A option you can specify what characters you want in the
audit trail. SRCCOM prompts you for the audit trail:

Audit trail?

Respond with a string of up to 12 characters. Do not use a slash (/) in the
audit trail. The example below provides a sample of a SLP listing file that
contains a meaningful audit trail: the author’s initials and the date of the
patch.

SLP W05.,00 ADDRSS yADDRS55=ADDRES sADDRES
1. FOURSCORE AND SEYEN YEARS AGO.
2. OUR FATHERS BROUGHT FORTH ON THIS CONTINENT
3. A NEW NATION: CONCEIVED IN LIBERTY JAL-4%289% 1863
4. AND DEDICATED TO THE PROPOSITION FAL-4%29%1863
S THAT ALL MEN ARE CREATED EQUAL, FER-2
6. NOW WE ARE ENGAGED IN A GREAT CIVIL WAR:
7 TESTING WHETHER THAT NATION, OR ANY NATION FAL-4%29%1863
8. S0 CONCEIYED AND S0 DEDICATED: X |
9. CAN LONG ENDURE.

Source Comparison (SRCCOM) 15-9

™

Part I

System Jobs

Part II describes four utilities that you can run as system jobs: the Error
Logger and the Queue, SPOOL, and VICOM Packages. System job support
is a special feature, available only through the system generation process.
The Queue, SPOOL, and VTCOM Packages must run under an FB or XM
monitor. The Error Logger runs under the SJ monitor as well as under the
FB and XM monitors. For an in-depth description of the system job feature,
see the RT-11 Software Support Manual.

Chapter 16 describes the error logging subsystem that keeps statistical
records of all I/O transfers, I/O errors, memory parity errors, and cache
memory errors. Chapter 17 describes the Queue Package that sends files for
output to any valid RT-11 device. Chapter 18 describes the transparent
spooler (SPOOL) that automatically intercepts, stores, and sends data to
the line printer. Chapter 19 describes the communication package
(VICOM) that lets you communicate with a host while running RT-11.

Note that you can run these utilities as foreground jobs, but running them
as system jobs enables you to run a foreground and a background job in
addition.

e

Chapter 16
Error Logging Subsystem

e

R

The Error Logger monitofs the hardware reliability of the system. The
Error Logger keeps a statistical record of all I/O operations that occur on
any of the following devices:

DD DX
DL DY
DM DZ
DU RK
DW

In addition to keeping these statistics, the Error Logger detects and records
memory parity or cache errors and any errors that occur during I/O opera-
tions. At intervals you determine, the Error Logger produces individual
and/or summary reports on some or all of these errors. The Error Logger is
available only as a special feature: that is, you must perform the system
generation process to create the error logging files and enable error log-
ging. It is available under the SJ monitor, the FB monitor, or the XM
monitor. When you run the Error Logger with the FB or XM monitor, the
Error Logger runs as either a foreground or system job.

Uses

Error logging reports are useful for maintaining the hardware on which
RT-11 runs. Problems such as line noise, static discharges, or inherently
error-prone media can cause recoverable errors on systems that are other-
wise functioning normally. By studying error logging reports, you can learn
to distinguish these errors from those that might be symptoms of an impend-
ing device failure. Also, some recoverable errors that are insignificant in
themselves might be related to other more serious errors; their effects might
not be immediately apparent to you. Information contained in the reports
about each error and about the status of the system when the error occurred
may alert you to a previously unforeseen hardware problem.

Sometimes a device fails so quickly that you are unable to prevent it. In this
case, you can determine the cause more quickly if a report is available that
describes the errors that occurred immediately prior to the failure.

In general, the error logging subsystem:
@ Gathers device error and I/0 transfer information from the handlers

@ Gathers memory error information from the monitor

16-1

® Stores the information in a file or in an internal buffer

@ Formats the information to produce a report

NOTE

Because the Error Logger can record data on each I/O trans-
fer, thereby using additional computer time and memory, you
may wish to use the Error Logger only when you experience
difficulty with a device. Keeping a backup system volume on
which the Error Logger is enabled makes this easy. You can
also issue the command SET dd: NOSUCCES (dd represents
the device mnemonic) before running the error logger. This
command causes the device to call the Error Logger only
when an I/O transfer fails. Successful I/O transfer statistics
are not recorded. (Remember to reload the dd handler after
issuing the SET dd: NOSUCCES command.)

16.2 Error Logging Subsystem

When used with the FB and XM monitors, the Error Logger consists of three
programs and a statistics file. When you run the Error Logger, you coordi-
nate these programs to gather I/O and error-related information into its
statistics file and create the error report you want. The Error Logger names
the statistics file it creates ERRLOG.DAT. At any time you specify, you call
another Error Logger program, ERROUT, to create error reports from the
information it has gathered in ERRLOG.DAT.

When used with the SJ monitor, the Error Logger uses only two programs,
and ERRLOG.DAT is not created. Instead, the Error Logger gathers I/O and
error-related information in an internal buffer area. You can then generate
a report from the information in the internal buffer by calling a second Error
Logger program, ERROUT.

The names and functions of the Error Logger programs follow

EL.SYS A pseudohandler used with the SJ monitor to gather infor-
mation about errors that occur during I/O transfers. The
device handlers detect success and error information as
each I/O tranfer occurs. The handlers communicate this
information to EL.SYS, which gathers all the necessary
statistics for an error report. EL.SYS stores these statistics
in an internal buffer whose default size is 1 block. You can
change the size of the internal buffer by setting the condi-
tional ERLS$S (in SYCND.MAC) to n, where n is the num-
ber of blocks you want to reserve for the internal buffer.
The variable n is interpreted as an octal number, unless
you include a decimal point.

16-2 Error Logging Subsystem

i

ERRLOG.REL A foreground or system job that gathers information about

ELINIT

ERROUT

I/0 transfers and system errors. The device handlers detect
success and error information as each I/O transfer occurs.
The handlers communicate this information to
ERRLOG.REL, which stores all the necessary statistics for
an error report in an internal buffer. The buffer’s contents
are transferred to ERRLOG.DAT periodically, and when-
ever you request an error report. When you initiate error
logging with the FB or XM monitor, ERRLOG.REL
instructs you to start up the second error logging program,
ELINIT.

A background job under the FB or XM monitor that creates
and maintains the statistics file, ERRLOG.DAT. You can
direct ELINIT to initialize ERRLOG.DAT every time you
have a session at the terminal, or you can direct ELINIT to
continue compiling statistics in ERRLOG.DAT on a daily
basis.

When you run ELINIT, it prompts you for the information
it needs to maintain ERRLOG.DAT’s size. By default,
ELINIT allocates 100 decimal blocks for ERRLOG.DAT.
Each time you run ELINIT, it prints a message that tells
how many of those 100 blocks are filled. If ERRLOG.DAT
fills to its limit, EL.REL is unable to store more informa-
tion in it. So that you can increase ERRLOG.DAT’s size,
ELINIT prompts you for a file size change each time you
run the program.

If you bootstrap a monitor whose features differ from those
of the monitor under which ERRLOG.DAT was created,
ELINIT may print a message indicating that it must ini-
tialize ERRLOG.DAT to make the statistics it has been
maintaining compatible with the new configuration. When
this happens, ELINIT renames the ERRLOG.DAT it for-
merly maintained to ERRLOG.TMP and creates a new
ERRLOG.DAT. The Error Logger can still create a report
from ERRLOG.TMP.

Note that you do not use ELINIT when you run the Error
Logger with the SJ monitor. Instead, the Error Logger com-
piles statistics in an internal buffer area. When the inter-
nal buffer area fills to its limit EL is unable to store more
information in it. You can generate a report from the infor-
mation in the internal buffer or purge the internal buffer at
any time.

A background job under the FB or XM monitor, or a pro-
gram under the SJ monitor. ERROUT creates a report from
the statistics in the EL internal buffer area, or from

Error Logging Subsystem 16-3

ERRLOG.DAT or any file of that format. When you run
ERROUT, you can direct the program to list the error
report at the terminal or to create a file for the error report.
You can also indicate whether you want a detailed report
on each error that occurred or simply a summary report.

Figure 16—1 provides a diagram of the error logging subsystem under the FB
and XM monitors. Figure 16-2 provides a diagram of the error logging sub-
system under the SJ monitor.

Figure 16—1: Error Logging Subsystem — FB and XM

R ELINIT
DEVICE HANDLERS ELINIT
RK
.FRUN ERRLOG
or
.SRUN ERRLOG
op CALL BUFFER
EL DISK FILE
ERRLOG.DAT
DT EL
€L JOB .R ERROUT
or
DX .SHOW ERRORS
. Output device
. /A {default) X
. full report printer
ERROUT terminal
/s <k £l
summary report disk file
. .
Figure 16-2: Error Logging Subsystem — SJ
DEVICE HANDLERS
RK
.LOAD EL
.SET EL LOG Qutput device
DP CALL BUFFER 1A idefaut) printer
EL full report
.R ERROUT
or ERROUT terminal
.SHOW ERRORS /s
DT EL summary report disk file
EL HANDLER
DX

164 Error Logging Subsystem

16.3 Calling and Using the Error Logger with the SJ Monitor

To run the Error Logger with the SJ monitor, you must first load the Error
Logger pseudohandler. Type in response to the keyboard monitor dot (.):

. LOAD EL

Then type the following command in response to the keyboard monitor dot
(.) to enable error logging:

+ SET EL LOG

When you type this command, the Error Logger begins to gather I/O trans-
fer and error information in an internal buffer. The Error Logger also gath-
ers statistics on the number of successful I/O transfers but does not create
detailed records about successful transfers in the internal buffer. EL creates
detailed records only for errors; these records contain such information as
the device involved, when the error occured, register contents, and number
of retries. If the buffer becomes full, EL continues to compile I/O transfer
statistics but writes no further detailed records to the internal buffer. When
this occurs, the Error Logger displays the following message:

?EL-W-Buffer is full, logding suspended

You can clear the contents of the internal buffer when it becomes full, or at
any other time, by typing in response to the keyboard monitor dot (.):

« SET EL PURGE

This command clears only the detailed records on errors stored in the inter-
nal buffer; the I/O statistics are retained. Before you clear the contents of the
buffer you can generate an error report. Section 16.5 describes how to gener-
ate and interpret a report.

To suspend error logging, type in response to the keyboard monitor dot (.):

« SET EL NOLOG

You can resume error logging by typing the SET EL LOG command.

You can disable error logging and unload the EL pseudohandler when you
are through using the Error Logger by typing:

+ UNLOAD EL

This command clears the EL internal buffer area and all I/O statistics as
well. If you want to save the contents of the internal buffer, copy it to a file
before you unload EL. To save the internal buffer contents, type a command
with the following syntax in response to the keyboard monitor prompt:

» COPY EL: dev:ifilmnam.tvrp

Error Logging Subsystem 16-5

16.4 Calling and Using the Error Logger with the FB or XM Monitor |

With the FB or XM monitors, the Error Logger runs only as a foreground or
system job. To run the Error Logger as a foreground job, call the Error
Logger from the system device by typing in response to the keyboard moni-
tor dot (.):

+« FRUN ERRLOG

To run the Error Logger as a system job, type in response to the keyboard
monitor dot:

+ BRUN ERRLOG

The Error Logger returns with a prompt, telling you how to initiate the
error logging process.

PERRLOG-I-To initiate Error Logding, RUN ELINIT

To terminate the Error Logger if it is running as a foreground job, type a
CTRL/F followed by two CTRL/Cs. If it is running as a system job, type a
CTRL/X and then specify ERRLOG as the system job you want to terminate
(followed by two CTRL/Cs).

16.4.1 Using ELINIT

After you type RUN ELINIT (or R ELINIT) followed by a carriage return,
ELINIT returns with a prompt. This prompt asks you to specify which device
you want the statistics file ERRLOG.DAT written to. The format of this
prompt follows.

What is the name of the device for the ERRLOG.,DAT file «<S8Y:7?

Type a carriage return in response to the last prompt if you want ELINIT to
write ERRLOG.DAT to the system device.

ELINIT then prints a message indicating how many blocks allocated to
ERRLOG.DAT are in use. This message is followed by a prompt asking you
if you want ELINIT to initialize ERRLOG.DAT. The format of the block
usage message and the initialization prompt follows (where xx represents
the number of blocks in use).

XX hlocKks currently in use of xx Possible total in ERRLOG.DAT file

Do vou want to zero the ERRLOG.DAT file and re-initialize (YES/NO) LNOF?

Type YES followed by a carriage return if you want ELINIT to initialize
ERRLOG.DAT. When ELINIT initializes ERRLOG.DAT, it does not create
a backup file for the statistics that were present prior to initialization. Enter
a carriage return or type NO followed by a carriage return if you want
ELINIT to retain the statistics already compiled in ERRLOG.DAT.

16-6 Error Logging Subsystem

ELINIT proceeds by issuing the following prompt, asking you to indicate the
number of blocks you want ELINIT to allocate to ERRLOG.DAT:

How manv blocks for the ERRLOG.DAT file <nnn:?

The variable nnn represents the default size of 100, or the size of the current
ERRLOG.DAT file. Type a carriage return if you want ERRLOG.DAT’s file
size to remain at the size indicated. If you want the file to be a different size,
you can specify the number of blocks you want the file to have, followed by a
carriage return. The only size limitation for ERRLOG.DAT is the amount of
available space on the device in which it resides, and ERRLOG.DAT must be
larger than one block.

NOTE

Because of a rearrangement of your RT-11 configuration or
bad header information in ERRLOG.DAT, it may be neces-
sary for ELINIT to initialize ERRLOG.DAT even if you do not
want it to. In this case, ELINIT automatically renames the
current ERRLOG.DAT to ERRLOG.TMP, prints a message
indicating it has done so, and returns the prompt How many
blocks for the ERRLOG.DAT file <100>?.

After you have responded to the file size prompt, ELINIT prints the follow-
ing message:

RT-11 US.0 ERROR LOGGING INITIATED

After the Error Logger has printed the last message, you can proceed.

16.5 Using ERROUT

The Error Logger program, ERROUT, creates a report from the information
compiled in the file ERRLOG.DAT or in EL’s internal buffer. You can
instruct ERROUT to generate a report either indirectly, by typing the
SHOW ERRORS command, or directly by running ERROUT. See Chapter 4
of the RT-11 System User’s Guide for more information on the SHOW
ERRORS command. To call ERROUT directly from the system device, type
in response to the keyboard monitor dot (.):

« RUN ERROUT

The Command String Interpreter (CSI) prints an asterisk at the left margin
of the terminal and waits for you to enter a command string according to the
following general syntax:

[output-filespec = J[input-filespecl/option

Error Logging Subsystem 16-7

where:

output-filespec represents the device to which you want ERROUT to

input-filespec

option

type the report. If you do not specify an output device,
ERROUT prints the report at the terminal.. If you
specify a file name, ERROUT writes the error report to
that file. '

represents ERRLOG.DAT or any file of the Error
Logger statistics file format. (Thus, you can rename
ERRLOG.DAT at any time and save it for later report
formatting.) If you do not specify an input file,
ERROUT assumes ERRLOG.DAT when running
under the FB or XM monitor, and EL.SYS’s internal
buffer area when running under the SJ monitor.

is one of the options listed below.

/A creates a report on each error in addition
to a summary report of the errors and I/O
transfers that occurred with each device.

/F:date use to create an error report for errors
logged from the date you specify. Specify
the date in the form dd:mmm:yy, where dd
represents the two-digit day, mmm repre-
sents the first three letters of the month,
and yy represents the last two digits of the
year. ERROUT interprets the date you
enter as octal; use a decimal point with the
day and year to indicate the date is in deci-
mal. If you do not use /F:date, ERROUT
creates a report starting with the first
error logged in the work file.

/S creates only a summary report of the
errors and I/O transfers that occurred with
each device.

/T:date use to create an error report for errors
logged up to the date you specify. Specify
the date as with the /F:date option above.
If you do not use /T:date, ERROUT creates
a report that includes the last error logged

in the work file.

If you enter only a carriage return in response to the CSI asterisk, ERROUT
types a full report from ERRLOG.DAT at the terminal.

16.6 Report Analysis

This section provides a line-by-line analysis of each different report the
Error Logger creates. Basically, there are three report categories:

16-8 Error Logging Subsystem

® Storage device error report
@ Memory error report

® Summary report

16.6.1 Storage Device Error Report

When a device handler encounters an error during an I/O transfer, it auto-
matically retries that transfer as many as eight times (the actual number of
times a handler retries an unsuccessful transfer depends on the particular
device handler and on the value you specify for n with the SET dd:
RETRY =N command). Regardless of the number of retries, each unsuccess-
ful transfer will be recorded as only one entry in the error report, unless the
registers change during the retries. In that case, the Error Logger creates a
report for each retry.

Figure 16-3 provides an example of a storage device error report. This
example is a report of the second attempt for a read operation on an RX02
double-density diskette. Table 161 tells what some of the lines in the report
mean. For ease of reference, each line in this example report is numbered
(although lines in the actual report are not numbered).

Figure 16-3: Sample Storage Device Error Report

OCWO-ITMH UL LN

FEEREERFEERE AR R LRI E XKL AL REE KR AR RREEE AR AR R AR AR AR R R AR R KR
DISK DEVICE ERROR

LOGGED 8-0CT-82 16:1Z:45
FEEREREFFREEFEFFEREEXRE R AR AR F LR RREH A RN R RN RHE R R R RN H R NH

UNIT IDENTIFICATION

PHYSICAL UNIT NUMBER 000001

TYPE RUZLL/RAOZ2
SOFTWARE STATUS INFORMATION:

MAXIMUM RETRIES =

REMAINING RETRIES G

DCCURRENCES OF THIS ERROR WITH IDENTICAL REGISTERS 2.

DEVICE INFORMATION

REGISTERS:

RXZCS 114880

RXZ2DB 010400

RHXZES Q00120

ACTIVE FUNCTION READ
BLOCK Q00001
PHYSICAL BUFFER ADDRESS START 003734
TRANSFER SIZE IN BYTES 512,

Table 16—1 explains each line in the sample report shown in Figure 16-3.

Error Logging Subsystem 16-9

Table 16-1: Line-by-Line Analysis of the Sample Storage Device

Error Report
Line Explanation
1-4 Report header. Includes the date and time error was logged.
6-8 Unit identification. Identifies the drive number, the device controller, and the

storage device type.

10-13 Retry count. Line 11 shows the maximum number of retries the device handler
can perform. Line 12 tells the number of retries left before the transfer fails. If the
number of remaining retries is 0, the transfer has failed. If the number of remain-
ing retries is not 0, this usually indicates that a soft error has occurred, or that the
transfer failed and the registers differed. In this example, with 6 retries remain-
ing, the report was generated on the second retry. Line 13 tells how many times
the error occurred with the same register contents.

15 Labels the section on device information. The lines that follow provide statistics
on the device registers and address information.

16-19 Register contents. Each device has a number of hardware registers, the contents
of which are listed in these lines.

21 I/O transfer type. Tells whether the I/O transfer was a read or write operation.
22 Device block number. Tells which device block the error occurred in.
23 Physical buffer start address. Tells the physical address in memory of the user

data buffer for this I/O transfer.

24 Transfer size in bytes. Tells the size in bytes of the unit of data the device handler
has attempted to transfer.

16.6.2 Memory Error Report

There are two kinds of memory errors for which the Error Logger creates
reports: memory parity errors and cache memory errors. Figure 16—4 pro-
vides an example of a memory parity error report. As with the storage device
report, this listing is numbered in the manual to aid in describing its con-
tents. The listings that you obtain do not have line numbers.

Figure 16—4: Sample Memory Parity Error Report

HEFREREERERE R EEEEE KRR EREREREEEE R EERE LR R ERE A AR ERREE LR AR RN R R KR
MEMORY PARITY ERROR

LOGGED B-0CT-82 16:13:22

HREREEEEEEE LR R KRR R EREREEKEE AR R R RR A AR RN R A IR LR RE XA XXX RE LR R R

SOFTWARE STATUS INFORMATION:
SYBTEM REGISTERS:
PC 001026
PSW QOO000
OCCURRENCES OF THIS ERROR WITH IDENTICAL PC 3.

== OO0 U WK+

O

(Continued on next page)

16-10 Error Logging Subsystem

SO

12

DEVICE INFORMATION
MEMORY REGISTERS:
ADDRESS CONTENTS
172100 100001

MEMORY SYSTEM ERROR REGISTER: 100000
CACHE CONTROL REGISTER: QOOOO0
HIT/MISS REGISTER: 027000
ERROR TY¥PE IS8 MEMORY

Table 16-2 tells what each line in the last report shown in Figure 16—4
means.

Table 16—2: Line-by-Line Analysis of the Sample Memory Error
Report

Line Explanation

1-4 Report header. Tells the date and time the error was logged.

7-10 System register contents. Gives the contents of the program counter and the pro-
cessor status word at the time of the error, as well as the number of times the pro-
gram counter was the same for this error.

13-15 Memory parity register contents. Identifies your system’s memory parity control
and status register(s) and gives their contents.

17-19 Cache memory register contents. This information is displayed for both a memory
parity error and a cache memory error if your system includes cache memory. See
the PDP-11 Processor Handbook for more information on the cache memory
registers.

21 Error type. Tells whether the error was a memory error or a cache memory error
(see the following cache memory report for cache memory statistics).

The report in Figure 16-5 is an example of the report the Error Logger cre-
ates when it logs a cache memory error.

Figure 16-5: Sample Cache Memory Error Report

[Nele J3EN e rRw) ST NRVER Ol

HEEEREEREEEERERFFREXR LR RIE R AR L ERREERE AR R LR EER R RFRRRE AR RREHE AR
CACHE MEMORY ERROR

LOGGED B8-0CT-82 1B:21:20
HEEREEERRRERRERFFERE RS RRRK A LRI AR LR R R R R R ERERERAXEE R AR L RRH

SOFTWARE STATUS INFORMATION:
SYSTEM REGISTERS:
PC 001026
PSNW QO0000
OCCURRENCES DOF THIS ERROR WITH IDENTICAL PC 3,

DEVICE INFORMATION

MEMORY REGISTERGS:
ADDREGS CONTENTS

(Continued on next page)

Error Logging Subsystem 16-11

172100 100001

MEMORY SYSTEM ERROR REGISTER:
CACHE CONTROL REGISTER:
HIT/MISS REGISTER:

ERROR TYPE IS CACHE

DOOZ200

000032

The description provided in Table 16-2 also applies to Figure 16—5. Line 21

indicates that the memory error was in cache memory.

16.6.3 Summary Error Report

The summary error report provides statistics for all the devices the Error
Logger supports. These statistics include counts for successful and unsuc-
cessful I/O transfers for storage devices, and error counts for memory errors.

The report consists of three sections:
® Device statistics
® Memory statistics

@ Report file environment and error count

Figure 16-6 provides an example of a summary error report.

Figure 16-6: Sample Summary Error Report for Device Statistics

O T WD

HEFFEKE R LA R AR R R RF AR AR R ERRRREE R E R LR ERERRR R R R ERRE RN HF R HHE RN

DEVICE STATISTICS
LOGGED SINCE 8-0CT-B2 16:01:12

EEREEEREEEXE K REI K AE KL FRRE R R RS LR R NI FRFARAREFERFARE AR X EXFRE R

UNIT IDENTIFICATION
PHYSICAL UNIT NUMBER
TYPE

DEVICE STATISTICS FOR THIS UNIT:
NUMBER OF ERRORS LOGGED
NUMBER OF ERROR RECEIVED
NUMBER OF READ SUCCESSES
NUMBER OF WRITE SUCCESSES

UNIT IDENTIFICATION
PHYSICAL UNIT NUMBER
TYPE

DEVICE STATISTICS FOR THIS UNIT:
NUMBER OF ERRORS LOGGED
NUMBER OF ERRORS RECEIVED
NUMBER OF READ SUCCESSES
NUMBER OF WRITE SUCCESSES

UNIT IDENTIFICATION
PHYSICAL UNIT NUMBER
TYPE

DEVICE STATISTICS FOR THIS UNIT:
NUMBER OF ERRORS LOGGED
NUMBER OF ERRORS RECEIVED
NUMBER OF READ SUCCESSES
NUMBER OF WRITE SUCCESSES

16-12 Error Logging Subsystem

O,
0.
B3,
4,

b

0,
0.
Lot

0.

RLI1/RLOZ2/RLOZ

RRZ1T1I/RX0O2

RXE1L1/RXOZ

N

M

The Error Logger provides summary statistics for each device. Notice that
for each device, the count of the number of errors logged and the count of the
number of errors received can be different. Sometimes, the Error Logger
may receive an error but be unable to log it. This is usually due to full buff-
ers or some other momentary software limitation. However, even if the
Error Logger is unable to log an error, it is at least able to inform you of this
fact.

Figure 16—7 provides an example of the second section of the summary error
report, memory statistics. This report immediately follows the report on
device statistics.

Figure 16-7: Sample Summary Error Report for Memory Statistics

00 =3O U LODND =

HEERERFERE AR REE IR REREERER I AL R XL RREK AL R R AK AR REE A AR AR RN H
MEMORY STATISTICS

LOGGED SINCE 8-0CT-82 1B:01:1Z2

FERKEEEEEE IR KK R AR R R XXX R X IR AR R E IR R ERRE LR R EREEX R XA K R ¥

STATISTICS:

NUMBER OF MEMORY PARITY ERRORS 3
NUMBER OF CACHE ERRORS (¢18

Figure 16-8 provides an example of the third section of the error report sum-
mary, the report file environment and error count.

Figure 16-8: Sample Report File Environment and Error Count

Report
1 REPORT FILE ENVIRONMENT:
2 INPUT FILE DLO:ERRLOG.DAT
3 OUTPUT FILE LP : WLST
4 OPTIONS /A
5 DATE INITIALIZED B-0CT-82
6 DATE OF LAST ENTRY B-0CT-82
7
8 TOTAL ERRORS LOGGED 15,
9 MISSED REPORTS (TASK NOT READY) 11,

10 MISSED REPORTS (BUFFER FULL) (¢
11 MISSED REPORTS (FILE FULL) O
12 UNKNOWN DEVICE STATISTICS ENTRIES 0
13 UNKNOWN ERROR RECORD ENTRIES 0y

The segment of the report file environment shown in Figure 16-8 provides
information concerning the input report file name (usually ERRLOG.DAT
or ERRLOG.TMP) and the output report file name (any name that you
specify in the initial ERROUT command line). In line 5, the report tells
when the input report file was initialized, and in line 6, the date of the last
error entry to the input report file.

Lines 8 through 13 count additional error count statistics. Lines 9 through
11 count the number of missed reports. A missed report is an I/O transfer or
error for which the Error Logger was unable to gather information because
ERRLOG was running but ELINIT had not been run, the internal buffer
was full, or the ERRLOG.DAT statistics file was full.

Error Logging Subsystem 16-13

Line 12 provides a count of unknown device statistics entries. An unknown
device statistics entry occurs when ERROUT does not recognize the device
identifier byte the EL program recorded in the statistics portion of the
ERRLOG.DAT file. (All DIGITAL-distributed device handlers that support
Error Logging can be identified by ERROUT, so this problem occurs most
often with user-written handlers. See the RT—-11 Software Support Manual
for details on adding a device to ERROUT.)

Line 13 keeps a count of the unknown error record entries. This condition
occurs when the ERROUT task cannot identify a device error recorded in the
ERRLOG.DAT file. (Again, this condition occurs most often with user-
written handlers.)

16-14 Error Logging Subsystem

Chapter 17
Queue Package

17.1

The Queue Package is a utility you can use for sending files to any valid
RT-11 device. Although the Queue Package is particularly useful for queu-
ing files for printing, queuing is not restricted to a line printer or any other
serial device.

The Queue Package consists of two programs and a work file that contains
the lineup of files, or queue, waiting to be output:

QUEUE Queues and sends the files you specify. QUEUE runs as a
foreground or system job.

QUEMAN A background job that processes command lines and file
specifications you enter, and sends that information to
QUEUE. It serves as the interface between you and the
Queue Package.

QUFILE.WRK Contains the queue for the files QUEUE sends to the
: device(s) you specify.

The Queue Package runs only with the FB or XM monitor.

NOTE

To prevent QUEUE and another job from intermixing output
on the same non-file-structured device, use the LOAD com-
mand to assign exclusive ownership of a device to QUEUE.

Calling and Using the Queue Package

To use the Queue Package; you must first run QUEUE from the system vol-
ume as either a foreground or system job. (Note that system job support is a
special feature. You can perform the system generation process to build a
monitor and handlers that support system jobs.) You can then run
QUEMAN in the background when you are ready to output files.

17.1.1 Running QUEUE

To run QUEUE as a foreground job, call QUEUE from the system volume by
typing in response to the keyboard monitor dot (.):

+ rRUN QUEUE

17-1

To run QUEUE as a system job, type in response to the keyboard monitor
dot:

v+ SRUN QUEUE

To halt QUEUE, see Section 17.2.1.

17.1.2 Running QUEMAN

To run QUEMAN from the system volume, type in response to the keyboard
monitor dot (.):

+ R QUEMAN

The Command String Interpreter (CSI) prints an asterisk at the left margin
of the terminal, indicating it is ready to accept input. Enter a command
string according to this general syntax:

[dev:[jobname[/options]] =] filespecl/options][,filespec[/options]...]
where:

dev: represents any valid RT-11 device. (The default output
device is LPO:.)

jobname represents the output job name. This is the logical name
for all the files specified in the command. If you send a job
to a file-structured device, QUEUE uses this name as the
file name of the job, and assigns a .JOB file type. If you do
not specify a job name, QUEMAN uses the file name of
the first input file. The job name can have up to six
characters.

filespec represents the input file specification. If you do not
specify a file type, QUEMAN assumes a .LST file type.

options represents one or more of the options from Table 17-1.

If you use commas in place of file specifications, QUEMAN ignores all
remaining file specifications on the command line. (Note, however, that if
your command string consists of several lines, entering commas in place of a
file specification does not affect file specifications on subsequent lines in the
command string. Using commas in place of a file specification affects only
those remaining files in that particular command line.)

17.2 QUEMAN Options

Table 17-1 summarizes the options you can use in the QUEMAN command
line. The sections that follow Table 17—1 provide detailed explanations and
examples of each option. Note that some of the options are position-
dependent — that is, their function depends on where you place them in the

17-2 Queue Package

Table 17-1: QUEMAN Options

Option Section Function

1A 17.2.1 Terminates QUEUE.

/Cl:date] 17.2.2 Prints only those files with the specified date. If you use /C and do
not specify a date, QUEMAN prints only those files with the cur-
rent date.

/D 17.2.3 Deletes the input file(s) after printing. This option is position-
dependent.

/H:n 17.2.4 Prints n banner pages for each specified input file, where n is a
decimal number. This option is position-dependent.

k [.date] 17.2.5 Prints only those files created on or after the specified date.

/J[:date] 17.2.6 Prints only those files created before the specified date.

/Kin 17.2.7 Prints n copies of each specified file, where n is a decimal number.
This option is position-dependent.

/L 17.2.8 Lists the contents of the queue.

M 17.2.9 Removes a job from the queue.

/N 17.2.10 Specifies no banner pages for the input file(s).

/P 17.2.11 Sets two Queue Package default values: the number of banner
pages, and whether you want QUFILE. WRK deleted when you ter-
minate QUEUE.

Q 17.2.12 Causes QUEMAN to request confirmation that a particular file

. should be included in the operation. QUEMAN prints the name of
each file that can be included in the operation. You must respond Y
to include a particular file. ‘

/R 17.2.14 Resumes sending the current job after it has been suspended, or
restarts the current file in the job being sent.

S 17.2.13 Suspends output at the end of the current file.

W 17.2.15 Prints on the console a log of the files involved in the operation.

X 17.2.16 Allows QUEMAN to continue processing instead of halting when it
cannot find a file you specified in the command line.

I 17.2.17

Continues command on the next line.

command line. Also, some of the options accept a date as an argument. The
syntax for specifying the date is:

[:dd.[:mmm][:yy.]

where:
dd. represents the day (a decimal integer in the range 1-31)
mmm represents the first three characters of the name of the month
vy. represents the year (a decimal integer in the range 73-99)

Queue Package 17-3

The default value for the date is the current system date. If you omit any of
these values (dd, mmm, or yy), the system uses the values from the current
system date. For example, if you specify only the year ::82. and the current
system date is May 4, 1983, the system uses the date 4.:MAY:82.. If the cur-
rent date is not set, it is considered O (the same as for an undated file in a
directory listing). The date values are position-dependent. If you omit the
day (dd) or month (mmm), you must use a colon (:) in place of the value.

If you have selected timer support through the system generation process,
but have not selected automatic end-of-month date advancement, make sure
that you set the date at the beginning of each month with the DATE com-
mand. If you fail to set the date at the beginning of each month, the system
prints -BAD- in the creation date column of each file created beyond the end-
of-month. (Note that you can eliminate -BAD- by using the RENAME/
SETDATE command after you set the date.)

If QUEUE is sending a job that has multiple input files to an RT-11 file-
structured volume, QUEUE copies each input file to a separate output file
with the same file name and type as the input file. The jobname is used in
the JOBNAME field of the banner page (if you request banner pages).

17.2.1 Terminating QUEUE (/A)

When you type /A in response to the CSI asterisk, QUEMAN terminates
QUEUE. If you use /A while a job is printing, QUEUE halts output. If
QUEUE is running as a foreground job, using /A has the same effect as typ-
ing CTRL/F and two CTRL/Cs. If QUEUE is running as a system job, using
/A has the same effect as typing CTRL/X and then specifying QUEUE as the
system job to which you want to direct input, followed by two CTRL/Cs.

The following example terminates QUEUE

« R QUEMAN
* /A

If you use CTRL/Cs to termiante QUEUE, this may take a few seconds
because QUEUE performs the following I/O rundown before terminating:
® Waits for all current I/O transfers to complete

® Removes protection from the input file if it was unprotected before
QUEUE began copying it to the output device

® Closes the work file if you have chosen to save the work file

17.2.2 Date Option (/C[:date])
The /C[:date] option prints only those files with the specified date. If no date

is specified only those files with the current date are printed. Specify /C only
once in the command line; it applies to all the file specifications in the entire

174 Queue Package

command. The following command prints on LPO: all files named ITEM1
and ITEMZ2 that also have the date March 20, 1983.

ITEM1/C:20,:MAR:83. ,ITEM:

17.2.3 Deleting Input Files After Printing (/D)

Use the /D option to delete input files after QUEUE has sent them. This
option is position-dependent. If you use it with the job name, /D applies to all
the input files. If you use it with an input file specification, /D applies only to
that input file.

The following example deletes all input files after they have been sent:

% MYJOB/D=FILE!l FILE2FILE3

The following example deletes FILE1 and FILE3 but retains FILE2 after
QUEUE has sent them: .

% MYJOB=FILE1/D,FILEZ/FILE3/D

Input files are protected from deletion while QUEUE is copying them to the
output device. This protects input files from accidental deletion.

17.2.4 Printing Banner Pages (/H:n)

Use the /H:n option to print banner pages for the input files you specify,
where n is a decimal number selecting the number of banner pages. This
option is position-dependent. If you use /H:n with the jobname, QUEUE
prints n banner pages for each input file. If you use /H:n with an input file
specification, QUEUE prints n banner pages for that file, and prints the
default number of banner pages for the remaining input files. (Note that
you set the default number of banner pages with the /P option, described in
Section 17.2.11. If the default number of banner pages set with the /P
option is 0, n defaults to 1.)

The sample command line that follows prints four banner pages for each
input file:

' % LAUGHN/H:4=ROWANTXT »MARTIN,TXT

The following sample command prints four banner pages for MARTIN.TXT
and the default number of banner pages for ROWAN.TXT:

% LAUGHN=ROWAN.THT +MARTIN.TXT/H:4

Note that QUEUE never prints a banner for the job; it prints banners only
for the input files.

Queue Package -17-5

17.2.5 Since Option (/I[:date])

The /I[:date] option prints only those files created on or after the specified
date. If you specify no date QUEMAN uses the current system date. The fol-
lowing command prints only those .MAC files on device DK: created on or
after April 21, 1983:

4 # MAC/T:21:APR:B3,

17.2.6 Before Option (/J[:date])

The /J[:date] option copies only those files created before the specified date. If
you specify no date QUEMAN uses the current system date. The following
command prints only those .MAC files on device DK: created before April 21,
1983:

* ¥ MAC/J:21.:APR:83.,

17.2.7 Printing Multiple Copies (/K:n)

Use the /K:n option to specify the number of copies of the input files you
specify, where n is a decimal number. The /K:n option is position-dependent.
If you use /K:n with the job name, QUEUE prints n copies of each input file.
If you use /K:n with an input file specification, QUEUE prints n copies of
that particular file. '

The next command line prints four copies of LAUREL.LST and four copies of
HARDY.LST:

x JOB/K:4=LAUREL +HARDY

The following sample command line prints four copies of LAUREL.LST and
the default number of copies of HARDY.LST:

» JOB=HARDY »LAUREL/K:4

17.2.8 Listing the Contents of the Queue (/L)

Use the /L option to get a listing of the contents of the queue. The listing
gives the output device, job.name, input files, job status, and number of
copies for each job that is in the queue. The job STATUS column prints P if
the job is currently being sent, S if the job being sent is suspended, or Q if the
job is waiting to be sent. If you have a large queue and your console is a video
terminal, you can use the keyboard CTRL/S and CTRL/Q commands to con-
trol the scrolling of the listing.

The sample command line that follows lists the queue:

17-6 Queue Package

* /L

DEVICE JoB STATUS COPIES FILES
LPOs LAB2 P 1 PASS3 .LST
' 2 PASS4 JLST
2 PASSS LST
LPO: HODG Q 3 MESMAN.DOC
MT1: JUDITH Q 2 PARTL .DOC
2 PARTZ .DOC
LPGO: JOYCE ") 1 55M .DOC
DOCPLN,DOC

17.2.9 Removing a Job from the Queue (/M)

Use the /M option to remove a job from the queue. When you use this option,
specify the job name followed by /M and the equal sign (=). The following
example removes the job LAB4 from the queue:

LAB4/M=

When you use /M, you do not have to specify the input files, only the job

' name. You remove all the files associated with the job name.

17.2.10 No Banner Pages Option (/N)

Use the /N option to specify that you do not want QUEUE to print any ban-
ner pages for the input file(s). Use /N if you have previously set the default
number of banner pages with the /P option (see Section 17.2.11). The /N
option is position-dependent; that is, if you use it after the job name, it
applies to each input file. Use /N after an input file to apply to only the par-
ticular file.

The following example uses /N to specify no banner pages for each file in the
job, MYJOB2.

MYJOB2/N=PASS1 ,PASSZ yPAGE3

The /N option has the same effect as /H:0 (see Section 17.2.4).

17.2.11 Setting Queue Package 'Defa_ults (/P)

Use the /P option to set defaults for two values:

1. Number of banner pages printed for each input file. You can override the
default number of banner pages by using the /H option.

2. Whether you want the work file, QUFILE.WRK, deleted when you halt
QUEUE. (Note that QUFILE.WRK contains the lineup of files, or queue,
waiting to be sent to an output device.)

Queue Package 17-7

When you type /P in response to the CSI asterisk, QUEMAN prints the fol-
lowing prompt at the terminal:

1) Number of banner Pades 7

QUEUE uses the number you type as the default number of banner pages it
prints for each file it sends to a device. If you type only a carriage return,
QUEMAN assumes 0. This value remains in effect until the work file,
QUFILE.WRK, is deleted (see below).

After you have responded to the previous prompt, QUEMAN prints the fol-
lowing prompt at the terminal:

2) Delete workfile 7

If you type N followed by a carriage return, or only a carriage return,
QUEUE maintains the current QUFILE.WRK after you halt QUEUE. That
is, if you start QUEUE later, QUFILE.WRK retains the queue it had prior
to the halt. By maintaining QUFILE.WRK between the times QUEUE is
halted, you have an automatic queue restart capability. This value remains
in effect until you reset it.

If you type Y followed by a carriage return, QUEUE deletes QUFILE.WRK
when you halt QUEUE. The next time you start QUEUE, it creates a new
QUFILE.WRK. This value remains in effect only until the next time you
start QUEUE.

17.2.12 Query Option (/Q)

Use the /Q option to list all files and to confirm individually which of these
files should be printed. Typing Y or any string beginning with Y followed by
a carriage return causes the named file to be printed. Typing anything else
excludes the file. The following example prints files that reside on DY1..

% D¥Ylse,%/0Q

DY¥1:FIX4B3.5ANY ~ to LP: 7
DY1:GRAPH,.BAK to LP: 7 Y
DYi:DMPX.MAC to LP: 7
DY1:MATCH.BAS to LP: 7
DY1:EXAMP.FOR to LP: 7
DY1:GRAPH,.FOR to LP: 7 Y
DY1:GLOBAL .MAC to LP: ? ¥
DY1:PROSEC.MAC to LP: ? ¥
DY1:KB,MAC to LP: 7
DY1:EXAMP .MAC to LP: 7

17.2.13 Suspending Output (/S)

Use the /S option to suspend output of a job being sent. When you type /S in
response to the CSI asterisk, QUEUE suspends output only after it has com-
pleted output of the current file in the job. This option is useful if you want
access to an output device while a large job is being sent to it.

To resume output, use the /R option (Section 17.2.14).

17-8 Queue Package

17.2.14 Resuming/Restarting Output (/R)

Use the /R option either to resume output of a suspended job, or to restart
output of the current file in the job from the beginning of the file. Note that a
job resumes if you previously suspended it with /S, and a job restarts if you
have not previously suspended it.

Resuming a job with multiple input files when the job is being sent to an
RT-11, file-structured volume can be useful if the volume involved is too
small to contain the entire job. You can suspend the job being sent (using the
/S option), change volumes, and resume output of the remainder of the job on
the new volume. QUEUE uses the same file name for both parts of the job.

17.2.15 Log Option (/W)

When you use the /W option, QUEMAN prints a list of all files printed or
copied to a file. The /W option is useful if you do not want to take the time to
use the query mode (the /Q option, described in Section 17.2.12), but you do
want a list of the files printed or copied by QUEMAN.

QUEMAN prints the log for an operation on the terminal under the com-
mand line. This example shows logging when files are queued to be printed
on LPO:.

DY1la#,. %/
Files gueued:

DY1:TEST.MAC to LP:
DY1:FIX463.,5AY to LP:
DY¥1:GRAPH.BAK to LP:
DY¥1:DMPX.MAC to LP:
DY1:MATCH.BAS to LP:
DY¥1:EXAMP,.FOR to LP:
DY1:GRAPH.FOR to LP:
DY¥1:GLOBAL.MAC to LP:
DY1:PROSEC.MAC to LP:
DY1:EXAMP.MAC to LP:

17.2.16 Information Option (/X)

The /X option causes QUEMAN to print an information message when
QUEMAN fails to find all of the files you specify in a command line. If you do
not use /X, QUEMAN prints a fatal error message when it is unable to find
an input file, and returns control to the keyboard monitor after the rest of
the operation completes. Use /X in indirect command files to ensure that
processing will continue even if QUEMAN fails to find a file you specify.

In the following example, QUEMAN is unable to.find the file FILE2.MAC.
QUEMAN prints a message informing you that the file was not found and
continues processing. - :

% LPs®,%=DLO:FILEl .,MAC,FILEZ.MAC FILE3.MAC
PQUEMAN-I-File not found DLO:FILEZ.MAC

Queue Package 17-9

17.2.17 Continuing a Command String (//)

Use the // option to continue a command string on subsequent lines. This
option is useful if you want to output more files than you can specify on one
line. When you want to include several lines in a CSI command string, type
// at the end of the first line, and again at the end of the command string.

The following command string uses the // option:
4 JOBNAM=LML1.MAC LML2A,MAC//

» LMLS1.MACLMLAS, MAC
» LMLAMAC »LMLSB . MAC//

17-10 Queue Package

Chapter 18
Transparent Spooling Package (SPOOL)

The transparent spooling package (SPOOL) is a utility you can use for
sending files to any RT-11 device. Although SPOOL is especially useful for
spooling files for printing, the output device is not restricted to the line
printer, but must be a serial non-file-structured device. SPOOL is distrib-
uted with two default output devices, LP and LS, but you can change the
default output device by applying the customization in Section 18.4.

SPOOL is functionally similar to the Queue Package. However, use of the
transparent spooling package is, as its name. implies, transparent. Once
running, SPOOL automatically intercepts all data directed to the line
printer or other designated output device, stores it, then forwards it to the
line printer or output device. You can send output to the line printer expli-
citly, by typing a command such as COPY MYFIL.MAC LP:, or implicitly
by typing a command whose default is to send output to the line printer,
such as MACRO/LIST MYFIL. In either case, you need not type a specific

command to spool output, as is necessary when you use the Queue Package.

Another major advantage to using SPOOL is that SPOOL begins sending
output as it is received. The Queue Package must wait until a complete file
is available before it can begin sending output. Therefore, using SPOOL
can be considerably faster than using QUEUE.

o n

i8.i SPOOL Components

The transparent spooling package consists of a program, a pseudo-device
handler, and a work file:

SPOOL.REL Gathers output directed to the line printer or other output
device, stores (spools) it in a work file, and sends the out-
put to the line printer or other designated output device.
SPOOL runs as a foreground or system job.

SP A pseudo-device handler for SPOOL. The handler file is
SP.SYS for the FB monitor and SPX.SYS for the XM mon-
itor.

SPOOL.SYS The work file where SPOOL stores output before sending
it to the line printer or other output device.

18-1

When output it directed to the line printer, the SP pseudohandler causes
SPOOL to receive the data and spool it in the work file SPOOL.SYS. As
soon as one block of information is available in SPOOL.SYS, SPOOL begins
sending the output to the line printer. Since SPOOL runs as a foreground
or system job, you can continue working in the background while files are
spooled and printed.

18.2 Running SPOOL

To use SPOOL, you must make sure the output device’s handler is loaded,
run the SPOOL program as a foreground or system job, and assign the SP
pseudohandler the name of the output device as a logical name. System job
support is a special feature available through the system generation pro-
cess.

The following sections describe the commands you must issue to run
SPOOL. You can include the commands in your start-up indirect command
files so SPOOL is automatically available whenever you run under the FB
or XM monitor.

18.2.1 Loading the Line Printer Handler

Use the SHOW command to see if the LP handler is loaded. If it is not, load
the LP handler by typing this command:

+ LOAD LPEEDD

If you are running on a Professional 300 series computer, or you have a
serial-line printer, load the LS handler instead:

. LOAD LS@®

If you customize your system to use an output device other than the line
printer, substitute your output device’s mnemonic for LP or LS.

You need not load the SP handler itself.

18.2.2 Running the SPOOL Program

You can run SPOOL as a foreground or system job. If you are running
under the FB monitor, you must set the USR to NOSWAP (SET USR
NOSWAP) before running SPOOL. After you issue the command to run
SPOOL, you can allow the USR to swap (SET USR SWAP). Under the XM
monitor, you need not set the USR to NOSWAP to run SPOOL.

To run SPOOL as a foreground job, type this command:

+ FRUN SPOOL/BUF:256., 6D

18-2 Transparent Spooling Package (SPOOL)

To run SPOOL as a system job, type this command:
+ SRUN SPOOL/BUF:258.@ED

The FRUN command assumes SPOOL.REL is on the default volume (DK:).
The SRUN command assumes SPOOL.REL is on the system volume (SY:).
If SPOOL.REL is on another volume, include the device mnemonic in the
command (ddn:SPOOL).

. NOTE

The option /BUF:256. should not be included in the command
to run SPOOL when running under the XM monitor. SPOOL
will allocate working space in extended memory.

18.2.3 Assigning a Logical Name to SP

In order for SPOOL to work transparently, you must assign the device
mnemonic of the line printer as a logical name for SP, the SPOOL pseu-
dohandler. This causes SP to intercept output directed to the line printer.

To assign LP as the logical device name, type this command:

+ ASSIGN SPO: LP:

To ensure that logical LP: and LPO: are the same, also type this command:
+ ASSIGN SPO: LPO:

If you want SPOOL to intercept output directed to another physical device,
assign that device’s mnemonic as SP’s logical device name. For example, if
you want SPOOL to intercept all output directed to LS, make the following
logical assignment:

+ ASSIGN SPO: LS:

18.3 SPOOL Work File

SPOOL attempts to create its work file, SPOOL.SYS, on the device whose
logical name is SFD (spool file device). If you have not assigned the logical
name SFD to any device, SPOOL creates SPOOL.SYS on the system vol-
ume.

SPOOL allocates by default 1000(decimal) blocks on SFD: or SY: for its
work file SPOOL.SYS. You can change the default size of SPOOL.SYS by
applying the software customization located in Section 2.7.52 of the RT-11
Installation Guide.

- Transparent Spooling Package (SPOOL) 18-3

If there is not enough room on the volume for a work file of the default size,
SPOOL.SYS occupies the largest empty area on the volume.

Do not squeeze the volume on which SPOOL.SYS resides while spooling is
in progress. SPOOL.SYS may be moved, causing unpredictable results.

18.4 SPOOL Output Device

SPOOL attempts to send output to the device whose logical name is SOO. If
you have not assigned the logical name SO0 to any device, SPOOL sends
output to the line printer LP. If LP is not installed on your system, SPOOL
sends output to the line printer LS.

You can change SPOOL’s default output device to any other RT-11 non-
file-structured device by installing the software customization located in
Section 2.7.53 of the RT—11 Installation Guide.

You cannot cause SPOOL to send output to another device by assigning the
logical name LP to the device. SPOOL bypasses the logical translation and
finds physical LP instead.

18.5 Starting SPOOL from an Indirect Command File

If you want SPOOL to run automatically whenever you run RT-11, include
a sequence of commands like the following in your start-up 1nd1rect com-
mand file. These commands run SPOOL as a foreground job under the FB
monitor.

FRUN SY:SPOOL/BUF:256./PAUSE
#ASSIGN LS: LP:

LOAD LP:=F .
SET USR NOSWAP
RESUME

ASSIGN SFO LP
ASSIGN SPO LPO
SET USR SHWAP

* Enter this command line only when using a Professional 300 series Processor.

18.6 SPOOL Set Commands

Although SPOOL operates transparently, you can use SET commands to
control spooling operations. The following table lists and explains the SET

- command options for SPOOL. Most of these options require you to specify
the unit number 0 (SET SP0), because SPOOL as distributed supports only
one output device at a time.

Type the SET command in response to the keyboard monitor prompt (.).
You can set several conditions on a single command line by separating the
conditions with commas. For example:

+ SET SPO WIDEsFLAG=3

184 Transparent Spooling Package (SPOOL)

This command sets SPOOL to generate 132-column banner pages, and sets
the default number of banner pages to 3.

You must unload SP and load a fresh copy for a SET command to take

effect.

Option

SP0 FLAG=n

SP0 FORMO

SP0 NOFORMO
SP0O KILL
SP0 NEXT

SP0 WAIT

SP0 NOWAIT

SP0 WIDE

SP0 NOWIDE

18.7 SPOOL Status

Function

Sets the number of banner pages to generate whenever
SPOOL begins printing a file. The value n can be any
integer in the range 0 to 4. The default value for n is 0.

Issues a form feed each time SPOOL encounters block
0 of a file to be printed; useful if the output device is
part of a multiterminal system, or if the output device
handler does not support its own FORMO option. The
default mode is NOFORMO.

NOTE

Setting SPO and either LS or LP to
FORMO simultaneously generates mul-
tiple form feeds.

Turns off FORMO mode. This is the default mode.
Removes all spooled output from SPOOL’s work file.

Stops printing the current file, discards the remaining
spooled output for that file, and begins printing the
next listing in SPOOL’s work file.

Suspends sending output from SPOOL’s work file to
the output device, but does not delete anything from
the work file. SPOOL continues to accept input when
SET SP0 WAIT is in effect.

Resumes sending spooled output suspended by the
command SET SP0 WAIT.

Causes SPOOL to generate 132-column flag pages.
This is the default setting.

.Causes SPOOL to generate 80-column flag pages.

You can check the spooler’s status by using the SHOW QUEUE command.
The SHOW QUEUE command tells whether or not the spooler is active,
and gives the number of blocks spooled for output and the number of blocks
in the SPOOL work file free for spooling.

Transparent Spooling Package (SPOOL) 18-5

The following is an example of the SHOW QUEUE display.

+ SHOW QUEUE

Unit 0 status

Device is active

00045 blocks are spooled for outerut
00954 blocks are free to be srPpooled

If QUEUE is running, the SHOW QUEUE command prints a QUEUE
status report as well. ‘

18.8 SPOOL Flag Pages -

SPOOL flag page support is included in the distributed monitors. However,
SPOOL generates flag pages only after you issue the command SET SPO
FLAG=n. This command causes SPOOL to print that number (n) of flag
pages for all files subsequently spooled for printing, unless the files are
spooled without an associated file name. For example, the command .PIP
LP:=MYFIL.MAC sends output to the line printer without an associated
file name, so no flag pages would be generated.

You can exclude SPOOL flag page support through system generation. Ex-
cluding SPOOL flag page support saves 927(decimal) words in the monitor.

186 Transparent Spooling Package (SPOOL)

Chapter 19
Virtual Terminal Communication Package (VTCOM)

The virtual terminal communication package (VICOM) utility lets you
communicate with a host system while you run under RT-11, making your
stand-alone system a local terminal. With VTCOM, you can use resources
available on host systems, such as electronic mail and programming lan-
guages, and still use RT-11 resources. You can also transfer ASCII and
binary files between the host and your RT-11 stand-alone system.

The virtual terminal communication package is the software that lets you
take advantage of these features. However, VTCOM requires certain hard-
ware components.

19.1 Communication Hardware

Your stand-alone system can be connected to a host by a hard-wired connec-
tion or by a modem and telephone line. If the host is nearby, you can use a
hard-wired connection.

To communicate with a more distant host, you must use a modem and
telephone line. When you communicate over a telephone line, the electrical
impulses generated by the computers must be converted to audio tones.
This is done by the modem, which is connected to your computer system
and to your telephone.

Whichever connection is used, the stand-alone end of the connection must
be one of these serial interfaces:

DL~type interface
PDT-11/150 modem port
Professional computer communication port

If your modem requires DTR (data terminal ready) signals, you must use a
serial interface that asserts DTR when used with a modem. DL-11E,
DLV-11E, and DLV-11F interfaces, the PDT communication port, and the
Professional 300 communication port all assert DTR.

Your system must also include a line time clock, and DIGITAL recom-
mends 28KW of memory if you want to run VTCOM as a foreground job.

19-1

19.2 Communication Software
The virtual terminal communication package consists of four components:

VTCOM.REL Once you are connected to a host, this program transfers
information and ASCII files between the host system
and your RT-11 stand-alone computer. VTCOM can run
as a foreground or system job under the FB monitor, so .
you can perform other RT-11 operations in the back-
ground while you are linked to the host system. You can
also run VITCOM under the SJ monitor or as a back-
ground job under the FB monitor.

VTCOM.SAV A virtual version of VTCOM.REL. You can run
VTCOM.SAV as a background, foreground, or system
job under the XM monitor.

XCor XL The device handler for your RT-11 stand-alone system’s
‘ communication port. The handler file is XC.SYS for Pro-
fessional 300 series systems, and XL.SYS for PDP-11
and PDT-11/150 computers (XCX.SYS and XLX.SYS if
you are running under the XM monitor).

TRANSF.SAV A file transfer program. TRANSF.SAV transfers data
between an RT-11 or RTEM-11 host system and your
stand-alone computer while you are running VITCOM.
Although TRANSF.SAV is provided on the RT-11 dis-
tribution kit, this program must be installed on the host
system.

19.3 Running VTCOM

VTCOM requires that your monitor include timer support. If you want to
run VTCOM under the SJ monitor, you must generate a special monitor to
include timer support.

To run VI'COM, you must first make sure the XC or XL handler is cor-
rectly installed. If you want to run VTCOM as a foreground or system job,
you must also load the handler before running VI'COM. System job support
is a special feature available through the system generation process.

19.3.1 Installing the Handler

The XC or XL handler should install automatically when you bootstrap
your system. Use the command SHOW DEVICE to make sure the handler
has installed correctly.

If XC or XL is not listed as installed, make sure that the handler special
features (included during system generation) match the monitor special
features. If XL still does not install, correct the CSR and vector addresses
by typing the following commands:

+ SET XL CBR=n
+ BET XL VECTOR=n

19-2 Virtual Terminal Communication Package (VTCOM)

Substitute for n the correct CSR and vector addresses for your system’s
serial port. The default CSR and vector settings are 176500 and 300 respec-
tively.

XC should always install correctly if the monitor and handler special fea-
tures match, because the CSR and vector addresses are fixed at 173300 and
210 respectively. Therefore, these commands are invalid for Professional
325 and 350 computers. However, you can set the baud rate for data trans-
mission on the Professional computers with the following command:

+ SET XC SPEED=n

The default value for n is 1200 baud. Valid baud rates are:

50 1200
75 1800
110 2000
134 2400
150 3600
200 4800
300 9600
600 19200

When you specify a value of 134 for n, the baud is actually 134.5 bits/s.
19.3.2 Loading and Unloading the Handler

Before starting VTCOM, you must load the XC or XL handler. To prevent
another job from using the handler while VTCOM is running, assign exclu-
sive ownership of XL or XC to VTCOM.

If you plan to run VICOM as a foreground job, type:

+ FRUN UTCOM/PAUSE
+ LOAD XL=F
+ RESUME

or

« FRUN UTCOM/PAUSE
+ LOAD XC=F
+ RESUME

If you plan to run VICOM as a system job, type:

« SRUN WTCOM/PAUSE
+ LOAD XL=UTCOM
+ RESUME VTCOM

or

+ SRUN UTCOM/PAUSE
+ LOAD XC=UTCOM
« RESUME UTCOM

Virtual Terminal Communication Package (VICOM) 19-3

These command sequences are included in the distributed start-up com-
mand files. To implement a command sequence, edit out the semicolon
comment delimiters. The handler will then correctly load when you boot-
strap your system.

Before unloading the XL or XC handler, you must explicitly exit from
VTCOM. :

19.3.3 Starting VTCOM
To run VICOM as a foreground or system job under the FB monitor, type:

, FRUN UTCOM (foreground job)
or
, SRUN UTCOM (system job)

To run VICOM under the SJ monitor or as a background job under the FB
monitor, type either of these commands:

« R UTCOM.REL

or

+ RUN UTCOM.REL

Under the XM monitor, you can run VICOM as a background, foreground,
or system job by typing any of the commands shown above, but specify the
file VTCOM.SAV in the command line rather than VTCOM.REL. These
commands assume that VICOM.REL or VTCOM.SAV is on your system
volume. Otherwise, include the volume’s device mnemonic in the VICOM
file specification.

19.4 Communicating with the Host
Now that VI'COM is running, you must establish a link with your host
system. If your stand-alone system is connected to the host by a hard-wired
connection, the link will be established just by starting VTCOM. However,
if you plan to communicate with the host over a telephone line, you must
dial a call to establish a connection. If you are using a modem other than

DIGITAL’s DF03, follow the instructions provided for that particular mo-
dem. If you are using a DF03 modem, follow these steps:

1. Set the ANL, ST, RDL, and DTL pushbuttons to the out position.

2. Make sure the CAR light is off and the DTR light is on. If the DTR light
is off, make sure you are using a serial interface capable of asserting
DTR.

194 Virtual Terminal Communication Package (VTCOM)

3. Set the HS pushbutton for the speed you want:

In — high speed (1200 baud)
Out — low speed (300 baud or less)

Make sure the communication port speed matches the speed you pick. If
you are running on a Professional 300 series computer, use the com-

mand SET XC SPEED =n.
4. Set the DATA/TALK pushbutton to the in position.
5. Lift the telephone handset and listen for a dial tone.

6. Dial the number of the host computer. You can dial the number directly
from the telephone or by using the VTCOM command DIAL (see Sec-
tion 19.4.2). If you use the DIAL command, the DATA/TALK pushbut-
ton must be in the out position.

7. When you hear the answer tone, set the DATA/TALK pushbutton to
the out position.

8. Hang up the telephone handset.
9. Make sure the DSR and CAR lights are on.
10. Make sure the HS light is on if the modem is in high-speed mode.

If you log on to a host computer, be sure to log off the system before break-
ing the telephone connection. To break the telephone connection, set the
DATA/TALK pushbutton to the in position. The DSR and CAR lights
should go out; the DTR light should remain lit.

19.4.1 Control Commands

Once the connection is established, you can communicate with the host by
placing your system in terminal mode.

If VTCOM is running as a foreground job, type <CTRL/F>. The
prompt F> prints.

JOB> prints and waits for you to type the job name (VTCOM).

You can then issue the VICOM commands described in the next section, or
log on to the host system.

While VICOM maintains a link with the host, RT-11 continues to run in
the background. To leave terminal mode and communicate with your
RT-11 operating system, type <CTRL/B>. The prompt B> appears. Press
RETURN, and the keyboard monitor prompt (.) appears.

19.4.2 VTCOM Commands

You use VICOM commands to control the transfer of files and data be-
tween your RT-11 stand-alone system and a host system.

Virtual Terminal Communication Package (VICOM) 19-5

To issue a VI'COM command, first enter terminal mode by typing
<CTRL/F> or <CTRL/X> and the system job name. Then, type
<CTRL/P> to enter VICOM command mode. VTCOM prompts:

TT::UTCOM

Now type any of the commands listed in Table 19—-1 and press RETURN.
The shortest valid abbreviation for each command is underlined. You can
display a list of VITCOM commands on your terminal by typing the VTCOM
command HELP or by pressing RETURN in response to the VICOM

prompt.

Table 19-1;

VTCOM Commands

Command

Function

X

BREAK
CLEAR

CLOSELOG

CONTINUE

CTRL/P

DIAL

EXIT

FAST

HELP

Lets VTCOM transmit CTRL characters that would normally be inter-
cepted: <CTRL/B>, <CTRL/F>, <CTRL/O>, <CTRL/P>,
<CTRL/Q>, <CTRL/S>.

Transmits a break signal to the host, as if you had pressed the BREAK
key.

Clears any <CTRL/S> characters that have been sent, and starts
sending characters to the terminal again.

Stops recording input in a log file and closes the log file. Use this
command to make a log file permanent when you have finished
transferring a file from the host to your stand-alone system.

Returns your system to terminal mode. Use this command to exit
VTCOM command mode and continue communication with the host
system.

Sends a <CTRL/P> character to the host. VICOM normally inter-
cepts <CTRL/P> characters and interprets them as a request to enter
a VICOM command.

Causes the modem to dial the telephone dial string you specify. When
you type the DIAL command and press RETURN, VTCOM prompts
you for a string of numbers, letters, or symbols:

TT::WTCOM:Dial string?

Type the string you want the modem to dial and press RETURN.
VTCOM remembers this number for future DIAL commands until you
dial a new number, exit VICOM, or reboot the system.

Apply the appropriate software customization provided in the RT-11
Installation Guide to set a default telephone dial string.

Terminates the VICOM program and the XC or XL handler. To re-
start VI'COM, you must use the FRUN or SRUN command.

Lets VTCOM transmit ASCII characters to the host at high speed
during a SEND operation. This command is valid only if the host
system supports XON/XOFF for its input service.

Prints a list of VTCOM commands on your console.

(Continued on next page)

19-6 Virtual Terminal Communication Package (VICOM)

Table 19-1:

VTCOM Commands (Cont.)'

Command

Function

NOLOG

OPENLOG

PAUSE

RESET

SEND

SHOW

SLOW

Resumes recording data in a log file after a NOLOG command.

Suspends the recording of data in a log file. If you are transferring a
file from a host to your stand-alone system, the transfer continues and
information will be lost.

Opens a log file to receive ASCII input from the host system, and
starts recording input in the log file. Use this command to transfer
files from the host to your stand-alone system. You can have only one
log file open at a time. If you try to open a second log file, VTCOM
closes the first log file before opening the new one.

Ends VICOM program control, but leaves the XL or XC handler run-
ning to receive input from the host.

Halts file transfers using TRANSF and VTCOM SEND operations.
RESET does not halt the VTCOM OPENLOG operation, and does not
halt logging.

Transfers an ASCII file from your stand-alone system to a host as if
the file were being typed.

Displays status of the following VI'COM characteristics:

Data transfers in progress
Logging status — on or off
SEND status — slow or fast
Current dial string

For example:

PacKets sent = 4
PacKkets received =3
PacKet size = 256
Next active block = 3

Lodging is OFF
SEND is SLOW
Dial string is not set

Causes VI'COM to transmit ASCII characters to the host at slow speed
during a SEND operation. This is useful when the host’s terminal
service does not support XON/XOFF,

19.5 Transferring ASCII Files with VTCOM

The easiest, most reliable method of transferring files between your RT-11
stand-alone system and a host system is to use a storage device common to
both systems and physically carry volumes between the two systems. For
example, if your stand-alone system and the host system both include an
RLO02 device, copy files onto an RL0O2 volume and carry the volume between

the systems.

If the two systems have no common storage devices, or if it is inconvenient
to carry volumes between the systems, you can use the following methods
to copy ASCII files from your stand-alone system to the host and from the
host to your stand-alone system. :

Virtual Terminal Communication Package (VTCOM) 19-7

It is recommended that you use the ASCII file transfer methods described
in the following two sections only if the TRANSF utility, described in Sec-
tion 19.6, is not available on the host. TRANSF transfers are more reliable.
Furthermore, TRANSF will not automatically convert lowercase characters

to uppercase when copying files to some hosts, as sometimes happens when
using other methods of file transfer.

19.5.1 Copying ASCII Files to Host System

| Begin by starting VTCOM and establishing a link to your host system (see
Sections 19.3 and 19.4). When you have logged on to the host system, follow
these steps:

1. Type the command appropriate for your host’s operating system to send
terminal input to a file. For example, if your host system is RT-11,

type:

+COPY TT: filnam,tyr@D

filnam.typ represents the name and type of the output file to which you
are copying.

2. Type <CTRL/P> to enter command mode, and type the SEND com-
mand:

TT::VTCOM>SENDGED

3. VTCOM prompts you for the name and type of the file you want to send
to the host system. Type the file specification for the file you want to
send to the host, and press RETURN. :

TT::YTCOM>Send File named? filvnam,tyrED

This completes the SEND command, and VITCOM leaves command
mode. VTCOM begins to transfer the file. As the file is transferred, it is
displayed on your screen.

4. When VTCOM finishes sending the file (the file finishes scrolling on
the screen), type <CTRL/Z>. This closes the newly created file on the
host.

19.5.2 Copying ASCII Files from Host System |

Begin by starting VICOM and establishing a link to your host system (see
Sections 19.3 and 19.4). When you have logged on to the host system, follow
these steps:

1. Type:

TYPE filnam+stvp

ﬁlnam.typ. represents the name and type of the file you want copied to
your stand-alone system. Do not press RETURN.

19-8 Virtual Terminal Communication Package (VTCOM)

2. Type <CTRL/P> to enter command mode, and type the OPENLOG
command: :

TT::VTCOM> OPENLOGED

3. VTCOM prompts you for the name and type of the file on your stand-
alone system to which you want to send the host file. Type the file
specification.

TT::UTCOM>Lod File name? filnam.tyr@D

This completes the OPENLOG command, and VTCOM leaves command
mode.

4. Press RETURN once again. VTCOM begins to transfer the file. As the
file transfers, it is displayed on the screen.

5. When VTCOM finishes sending the file (the file finishes scrolling on
the screen and the host system prompt appears), enter VITCOM com-
mand mode once again by typing <CTRL/P>.

6. Type the CLOSELOG command and press RETURN. This closes the
newly created file on your stand-alone system.

TT::VTCOM> CLOSELOGED

The file on your stand-alone system will contain extra characters transmit-
ted from the host: a carriage return, line-feed combination at the beginning
of the file, and the host system’s prompt character at the end of the file.
Delete these extra characters by editing the file with a text editor such as
KED.

19.6 TRANSF File Transfer Program

While VTCOM can transfer only ASCII files, the TRANSF program can
transfer ASCII and binary files between your stand-alone system and the
host. TRANSF must be installed on a host running RT-11 or RTEM-11.
TRANSF runs only on the host processor. Do not run TRANSF on your
local terminal.

Since TRANSF is distributed only in binary format, you cannot copy
TRANSF to the host by using the ASCII file transfer techniques described
in Section 19.5. To install TRANSF on the host, you must copy
TRANSF.SAV from your RT-11 volume to a common volume, carry the
volume to the host, and copy TRANSF.SAV from the volume to the host.

The following section describes how to transfer files using TRANSF, from a

host to your stand-alone system and from your stand-alone system to a
host. '

Virtual Terminal Communication Package (VICOM) 19-9

NOTE

If the host system supports the XON/XOFF feature, TRANSF
can transfer files at any baud rate you choose. However, if
the host does not support XON/XOFF, the maximum speed
you can use depends on host input buffer size and system
load. If a transfer fails at a given baud rate, reduce the baud
rate until the transfer is successful.

19.6.1 TRANSF Command Syntax

To run TRANSF on your host system, type a command with the following
syntax in response to your host system’s prompt: '

TRANSF output-filespec[/options] = input-filespecl/options]
where:

output-filespec is the device, file name, and file type to which you
want a file copied.

input-filespec is the device, file name, and file type of the file
you want to copy.

options’ represents the options listed in Table 19-2.

RT-11 and RTEM-11 file specifications can include only a device, a file
name of up to six characters, and a three-character file type. You cannot
use wildcards in any file specifications for TRANSF.

Table 19-2: TRANSF Options for RT-11 and RTEM-11 Hosts

Option Function

/S Rings terminal bell when log messages are printed during file transfers. Au-
tomatically enables log messages.

/T Indicates which file is the RT—11 stand-alone system file. To copy a file from
the host to your stand-alone system, use /T with the output-filespec. To copy
to the host, use /T with the input-filespec. If you do not specify /T in the
command line, TRANSF assumes you are copying from the host to your stand-
alone system. You cannot use /T on both sides of the command string.

W Causes TRANSF to print log messages during file transfers, but does not ring
the terminal bell.

In the following example, the file RELSYS.SAV is transferred from an
RTEM-11 host system to the file RELSYS.SAV on an RT-11 stand-alone
system.

+ TRANSF RELSYS.SAU/T=RELS?S.SAU/W

The following command string produces the same result.

. TRANSF RELSYS.S5AV=RELSYS.S5AV/W

19-10 Virtual Terminal Communication Package (VTCOM)

The next example transfers the file SYSBLD.COM from a stand-alone sys-
tem to a file named SYSBLD.COM on a host running RTEM-11.

. TRANSF 8Y¥SBLD.COM=DW:SYSBLD.COM/T

19.6.2 TRANSF Confirmation Messages

TRANSF, when used with the /W option, confirms the start of the transfer
by printing this message:

Creatingd [TT::l<output-filespec> from [TT::l{inPut-filesrec>.

In the message:

TT:: represents the stand-alone system, and will appear with the in-
put or output file specification.

output-filespec is the device, file name, and file type of the file being
created.

input-filespec represents the device, file name, and file type of the file
being copied.

If you have chosen either the /W or /S option, TRANSF prints the following
information when the file transfer is complete:

Number of blocks transferred and number of retries

Number of characters saved through compression coding (Compres-
sion coding enables TRANSF to transfer data using fewer characters
than normal, which saves transfer time.)

Confirmation of file transfer

The following example shows a typical file transfer, from a stand-alone
system to a host.

. TRANSF REL12.,MAC=REL1Z,MAC/T/HW
Creatind REL12.MAC from TT::REL12.MAC
10 blocks transferred with O retries
1198 characters saved throudh compression encoding
REL12,MAC created from TT::REL1Z2.MAC

Virtual Terminal Communication Package (VTCOM) 19-11

Part Il

Debugging and Altering Programs

Part III of this manual consists of the following four topics: on-line debug-
ging technique (ODT), object module patch program (PAT), save image
patch program (SIPP), and source language patch program (SLP). The four
programs that these chapters describe can help you debug programs, exam-
ine or change assembled programs, and patch source programs.

Chapter 18 describes ODT. This program aids you in debugging assembly
language programs. With ODT, you can control your program’s execution,
examine locations in memory and alter their contents, and search the object
program for specific words.

Chapter 19 describes PAT, which patches or updates code in a relocatable
binary object module. PAT accepts a file containing corrections or addi-
tional instructions and applies these corrections and additions to the origi-
nal object module.

Chapter 20 describes SIPP. You can use SIPP to examine or modify individ-
ual locations within programs linked with the RT-11 V04 or later linker.
Using SIPP, you can also create an indirect command file that contains a
patch and the commands necessary to install it.

Chapter 21 describes SLP. SLP provides an easy way to make changes to
source files. This program can accept an indirect command file created by
the DIFFERENCES/SLP:filespec command (or by specifying a SLP-filespec
to SRCCOM) to make two source programs match.

Chapter 20
On-Line Debugging Technique (ODT)

On-line debugging technique (ODT) is a program that aids in debugging
assembly language programs. ODT performs the following tasks:

Prints the contents of any location for examination or alteration

Runs all or any portion of an object program using the breakpoint feature

Searches the object program for specific bit patterns

Searches the object program for words that reference a specific word

Calculates offsets for relative addresses

Fills a single word, block of words, byte, or block of bytes with a desig-
nated value

Make sure you have an assembly listing and a link map available for the
program you want to debug with ODT. You can make minor corrections to
the program on line during the debugging session, and you can then execute
the program under the control of ODT to verify the corrections. If you need
to make major changes, such as adding a missing subroutine, note them on
the assembly listing and incorporate them in a new assembly.

See the RT-11 Software Support Manual for debugging the following rou-
tines and jobs: interrupt service routines, device handlers, multiterminal
jobs, extended memory and virtual jobs.

20.1 Calling and Using ODT

ODT is supplied as a relocatable object module. You can link ODT with
your program (using the RT-11 linker) for an absolute area in memory and
load it with your program. When you link ODT with your program, it is a
good idea to link ODT low in memory relative to the program. If you do link
ODT high in memory, be sure that the buffer space for your program is
contained within program bounds. Otherwise, if your program uses dy-
namic buffering, program execution may destroy ODT in memory. Figure
20-1 shows the relationship between ODT and the program MYPROG in
memory.

20-1

To link ODT low in memory relative to your program, the program must
declare a named p-sect by using the PSECT directive. Since the linker
orders blank p-sects below named p-sects in memory, your program should
declare a named p-sect so that ODT will be linked lower in memory than
your program.

For example, if you include the directive .PSECT MYPROG in the program
MYPROG, the following command will cause the linker to link ODT low in
memory relative to MYPROG, and create the executable module
MYPROG.SAV:

« LINK/DEBUG/MAP:TT: MYPROG

Figure 20-1: Linking ODT with a Program

HIGH MEMORY N
{ %namic obT dynamic \ \ODT
) Wering \ buffering \ \
MZP_ROG W
and its \
buffers \dy mic
MYPROG MYPROG oot xbu:faering§
buffers
v oDpT oDT MYPROG MYPROG
LOW MEMORY
_ _J - —~— _ ;V_J
Reco;gended Also Correct Not Recommended

Once loaded in memory with your program, ODT has three legal start or
restart addresses. Use the lowest (O.0ODT) for normal entry, retaining the
current breakpoints. The next (0.0DT +2) is a restart address that clears
all breakpoints and reinitializes ODT, thus saving the general registers
and clearing the relocation registers. Use the last address (0.0ODT+4) to
reenter ODT. A reenter saves the processor status and general registers,
and removes the breakpoint instructions from your program. ODT prints
the bad entry (BE) error message. Breakpoints that were set are reset by
the next ;G command. ;P is invalid after a BE message.) The ;G and ;P
commands control program execution and are explained in Section 20.3.7.

The system uses as an absolute address the address of the entry point
O.0DT shown in the linker load map.

NOTE

If you link ODT with an overlay-structured file, it should
reside in the root segment so that it will always be in memory.
Remove all breakpoints from the current overlay segment
before execution proceeds to another overlay segment. A
breakpoint inserted in an overlay is destroyed if it is overlaid
during program execution.

20-2 On-Line Debugging Technique (ODT)

The following exandple links ODT low in memory relative to MYPROG, cre-
ating the executable module MYPROG.SAV. Running MYPROG causes
ODT to start automatically.

+ LINK/MAP:TT:/DEBUG MYPROG

RT-11 LINK VY0B.0O Load Map Thursdav 0d-Now-82 14:15 Page
MYPROG . +SAY Title: ODT Ident: 05,00
Section Addr Size Global WYalue Glokal VYalue Glokal Value
+ ABS, 000000 001000 = 258, words (RW,I,GBL,»ABS ,0UR)
$0DT% 001000 006152 = 1589, words (RW:I,LCLsREL:CON)
0.0DT 001232
PROG 007182 Q02032 = 333, words (RW:I,LCL,REL +CON)

START NO7132
Transfer address = D01232, High limit = Q11222 = 2377, words
+ R MYPROG

.ODT Yas.00
*

The following example links MYPROG low in memory relative to ODT and
specifies O.0DT as the transfer address. Running MYPROG causes ODT to

- start automatically. The advantage to this method is that MYPROG is
loaded at its normal, execution-time address.

v LINK/MAP:TT: MYPROG,ODT/TRANSFER
Transfer symbol? 0.,0DT

RT-11 LINK 08.00 Load Map Thursdavy 04-Nov-~-82 143215 Pade 1
MYPROG +SAY Title: 0ODT Ident: 05,00
Section Addr Size Global Yalue Global WYalue Global VWalue

+ ABS. 000000 001000
PROG 001000 002052

256, words (RW,I.GBL,ABS,0UR)
533, words (RW,I.LCL/RELCON)
START 001000
$0DT% 003052 008152 = 1588, words (RW,I,LCL.,REL.CON)
0.0DT 003304

Transfer address = 003304, High limit = 011222 = 2377, words
s R MYPROG

ODT U05.00
*

The following example is similar to the previous example, except that execu-
tion does not automatically begin with ODT. When you start the program
(MYPROG in this case), you must specify the address of 0.0ODT as shown in
the link map.

On-Line Debugging Technique (ODT) 20-3

v LINK/MAP:TT: MYPROG,O0DT ‘
RT-11 LINK Y08.00 Load Map Thursdav 0d-Now-82 14:15

Page 1

MYPROG +8AY Title: O0ODT Ident: 05,00

Segction . Addr Size Glokal WYalue Global Walue Glokal VYalue
+ ABS. 000000 001000 256, words (RW:I:GBLABS »OVR)

PROG Q01000 Q02032 533, words (RW,IsLCL,)REL:CON)
. START Q01000
$0DT% OO3032 006152 = 1589, words (RWsIsLCLsRELCON)
0.0DT 03304
Transfer address = 003304, High limit = 011222 = 2377, words

,» GET MYPROG
, START 3304

ODT WO5.,00
* .

The next example links ODT with a bottom address of 4000, then loads
ODT.SAV and MYPROG.SAYV into memory. As in the example above, when
you start the program, you must specify the address of O.ODT as shown in
the link map.

o LINK/MAP:TT: ODT/BOTTOM:4000

RT-11 LINK 08,00 Load Mar Thursday 04-Nou-8Z 14:15
Page 1
obT +«BAY Title: ODT Ident: 05,00 /B:O04000
Section Addr Size Global ‘Yalue Global VWalue Global Walwue
+ ABS. .C)C)C)C)C)O Q4000 = 1024, words (RK+I,GBL+ABS OUR)
$0DT% 004000 006152 = 1589, words (RWsIsLCL/RELsCON)
0.0DT 004232
Transfer address = Q042324 High limit = 012150 = 26812, words

, GET ODT.SAW
, GET MYPROG.SAY
, START 004232

ODT WOS,00
*

You can restart ODT by specifying O.ODT +2 as the start address. This
reinitializes ODT and clears all breakpoints. For example:

s START 4234
*

You can reenter ODT by specifying O.0DT +4 as the start. address. For
example:

20—4 On-Line Debugging Technique (ODT)

+ START 4236

BEGO4Z42
*

If ODT is waiting for a command, a CTRL/C from the keyboard calls the key-
board monitor. The monitor responds with a AC on the terminal and waits
for a command. (You can use the REENTER command to reenter ODT only
if your program has set the reenter bit and ODT is linked high in memory
relative to the program; otherwise, ODT is reentered at address O.ODT +6.)

If you type CTRL/U during a search printout, the search terminates and
ODT prints an asterisk.

20.2 Relocation

When the assembler produces a relocatable object module, the base address
of the module is assumed to be location 000000. The addresses of all pro-
gram locations, as shown in the assembly listing, are relative to this base
address. After you link the module, many of the values and all of the ad-
dresses in the program will be incremented by a constant whose value is
the actual absolute base address of the module after it has been relocated.
This constant is called the relocation bias for the module. Since a linked
program may contain several relocated modules, each with its own reloca-
tion bias, and since, in the process of debugging, these biases will have to be
subtracted from absolute addresses continually in order to relate relocated
code to assembly listings, ODT provides automatic relocation.

The basis of automatic relocation is the eight relocation registers,
numbered 0 through 7. You can set them to the values of the relocation
biases at different times during debugging. Obtain relocation biases by
consulting the link map. Once you set a relocation register, ODT uses it to
relate relative addresses to absolute addresses. For more information on
the relocation process, see Chapter 11.

ODT evaluates a relocatable expression as a 16-bit, six-digit (octal) num-
ber. You can type an expression in any one of the three forms presented in
Table 20-1. In this table, the symbol n stands for an integer in the range 0
to 7 inclusive, and the symbol k stands for an octal number up to six digits
long, with a maximum value of 177777. If you type more than six digits,
ODT takes the last six digits typed, truncated to the low-order 16 bits. The

. symbol k may be preceded by a minus sign, in which case its value is the
two’s complement of the number typed. For example:

k (mumber typed) Values
1 . ' 000001
-1 177777
400 000400
-177730 000050
1234567 ‘ 034567

On-Line Debugging Technique (ODT) 20-5

Table 20-1: Forms of Relocatable Expressions (r)

Form Expression Value of r
k The value of k.
B nk The value of k plus the contents of relocation register n.

(If the n part of this expression is greater than 7, ODT
uses only the last octal digit of n.)

C Cor Whenever you type the letter C, ODT replaces C with
Ckor the contents of a special register called the constant
n,Cor register. (This value has the same role as the k or n
c.C that it replaces. The constant register is designated by
the symbol $C and may be set to any value, as indicated
below.) - .

Section 20.3.13 describes the relocation register commands in greater de-
tail.

20.3 Commands and Functions

When ODT starts it indicates its readiness to accept commands by printing
an asterisk at the left margin of the terminal. You can issue most of the ODT
commands in response to the asterisk. You can examine a word and change
it; you can run the object program in its entirety or in segments; you can
search memory for specific words or references to them. The discussion
below explains these features.

20.3.1 Printout Formats

Normally, when ODT prints addresses it attempts to print them in relative
form (Form B in Table 20-1). ODT looks for the relocation register whose
value is closest to, but less than or equal to, the address to be printed. It
then represents the address relative to the contents of the relocation regis-
ter. However, if no relocation register fits the requirement, the address
prints in absolute form. Since the relocation registers are initialized to -1
(the highest number), the addresses initially print in absolute form. If you
change the contents of any relocation register, it can then, depending on
the command, qualify for relative form.

For example, suppose relocation registers 1 and 2 contain 1000 and 1004
respectively, and all other relocation registers contain much higher num-
bers. In this case, the following sequence might occur (the slash command
causes the contents of the location to be printed; the line feed command, LF,
accesses the next sequential location):

¥ 1000351R ;sets relocation register 1 to 1000
¥ 14432R ;sets relocation register 2 to 1004
% 774/000000 ;opens location 774

OO07768 /000000 <LF: ;opens location 776

1,000000 /000000 <LF: ;absolute location 1000
14000002 /7000000 <LF:> ;absolute location 1002

2,000000 /000000 ;absolute location 1004

20-6 On-Line Debugging Technique (ODT)

The printout format is controlled by the format register, $F. Normally this
register contains 0, in which case ODT prints relative addresses whenever
possible. You can open $F and change its contents to a nonzero value,
however. In that case all addresses will print in absolute form (see Section
20.3.4, Accessing Internal Registers).

20.3.2 Opening, Changing, and Closing Locations

An open location is one whose contents ODT prints for examination, making
those contents available for change. In a closed location, the contents are no
longer available for change. Several commands are used for opening and
closing locations.

Any command (except for the slash and backslash commands) that opens a
location when another location is already open causes the currently open
location to be closed. You can change the contents of an open location by typ-
ing the new contents followed by a single-character command that requires
no argument (that is, LF, ~, RET, «, @, >, <).

20.3.2.1 Slash (/) — One way to open a location is to type its address followed
by a slash. For example:

#1000/ 012746

This command opens location 1000 for examination and makes it ready to be
changed. '

If you do not want to change the contents of an open location, press the
RETURN key to close the location. ODT prints an asterisk and waits for
another command. However, to change the word, simply type the new con-
tents before giving a command to close the location. For example:

#1000/012745 0123435
*

This command inserts the new value, 012345, in location 1000 and closes the
location. ODT prints another asterisk, indicating its readiness to accept
another command.

Used alone, the slash reopens the last location opened. For example:

#1000/012345 2340
#/002340

This command opens location 1000, changes its address to 002340, and then
closes the location. ODT prints an asterisk, indicating its readiness to accept
another command. The / character reopens the last location opened and
verifies its value.

Note again that opening a location while another is open automatically
closes the currently open location before opening the new location.

On-Line Debugging Technique (ODT) 20-7

Also note that if you specify an odd numbered address with a slash, ODT
opens the location as a byte, and subsequently behaves as if you had typed
a backslash (see Section 20.3.2.2).

20.3.2.2 Backslash (\) — ODT operates on bytes, as well as on words. Typing
the address of the byte followed by a backslash character opens the byte.
This causes ODT to print the byte value at the specified address, to inter-
pret the value as ASCII code, and to print the corresponding character (if
possible) on the terminal. (ODT prints a ? when it cannot interpret the
ASCII value as a printable character.)

*1001N101 =A

A backslash typed alone reopens the last open Byte. If a word was previ-
ously open, the backslash reopens its even byte:

*¥1002/000004 \N004 =7

20.3.2.3 LINE FEED Key (LF) — If you type the LINE FEED key when a
location is open, ODT closes the open location and opens the next sequen-
tial location:

#1000/ 002340 ©
001002 /7012740

In this example, the LINE FEED key caused ODT to print the address of
the next location along with its contents and to wait for further instruc-
tions. After the above operation, location 1000 is closed and 1002 is open.
You may modify the open location by typing the new contents.

If a byte location was open, typing a line feed opens the next byte location.

20.3.2.4 Circumflex or Up-Arrow (" or 1) —If you type the circumflex (or up-
arrow) when a location is open, ODT closes the open location and opens the
previous location. To continue from the example above:

#001002/7 012740 "
001000 /002340

This command closes location 1002 and opens location 1000. You may mod-
ify the open location by typing the new contents.

If the opened location was a byte, then the circumflex opens the previous
byte.

20.3.2.5 Underline or Back-Arrow (_ or «<-) — If you type the underline (or
back-arrow) to an open word, ODT interprets the contents of the currently
open word as an address indexed by the program counter (PC) and opens
the addressed location: '

#1006/ 000006 -
0010168 /000405

20-8 On-Line Debugging Technique (ODT)

Notice in this example that the open location, 1006, is indexed by the PC as
if it were the operand of an instruction with addressing mode 67 (PC rela-
tive mode).

You can make a modification to the opened location before you type a line
feed, circumflex, or underline. Also, the new contents of the location will be
used for address calculations using the underline command. For example:

% L00/000222 4 ;modifies to 4 and open next location
000102 /000111 B~ :modifies to 6 and open previous location
000100 /000004 200_ ;changes to 200 and open location indexed
000302 /123456 : ;by PC

20.3.2.6 Open the Addressed Location (@) — You can use the at (@) symbol
to optionally modify a location, close it, and then use its contents as the
address of the location to open next. For example:

#1006/001044 @ ;opens location 1044 next

001044 /000500

#100B/001044 21008 ;modifies to 2100 and opens location
002100 /000167 ;2100

20.3.2.7 Relative Branch Offset (>) — The right-angle bracket (>) optionally
modifies a location, closes it, and then uses its low-order byte as a relative
branch offset to the next word to be opened. For example:

#*1032/000407 301 ;ymodifies to 301 and interprets as a
000636 /000010 ;relative branch

Note that 301 is a negative offset (~77). ODT doubles the offset before it
adds it to the PC; therefore, 1034 + (~176) =636.

20.3.2.8 Return to Previous Sequence (<) — The left-angle bracket (<) lets
you optionally modify a location, close it, and then open the next location of
the previous sequence that was interrupted by an underline, @, or right-
angle bracket command. Note that underline, @, or right-angle bracket
causes a sequence change to the open word. If a sequence change has not
occurred, the left-angle bracket simply opens the next location as a LINE
FEED does. This command operates on both words and bytes.

#1032/000407 3015 ;> causes a sequence change
OO0B36 /000010 < ;returns to original sequence
001034 /001040 @ ;@ causes a sequence.change
001040 /000405 MN0O5 = % ;< now operates on byte
001035 \002 =7 ~ ;< acts like <LF>

001036 \004 =7

20.3.3 Accessing General Registers 0~7

Open the program’s general registers 0—7 with a command in the following
format:

$n/

On-Line Debugging Technique (ODT) 20-9

The symbol, n, is an integer in the range 0-7 that represents the desired reg-
ister. When you open these registers, you can examine them or change their
contents by typing in new data, as with any addressable location. For

example:

* no0033%0/ 8ET ;examines register 0 then closes it

M > X

* 000474 $4/ 46 a@;opens register 4, changes its contents

* ‘ ;to 000464, then closes the register

The example above can be verified by typing a slash in response to ODT’s
-asterisk:

* ooodsd /.

You can use the LINE FEED, circumflex, or @ command when a register is
open.

- 20.3.4 Accessing Internal Registers

The program’s status register contains the condition codes of the most recent
operational results and the interrupt priority level of the object program.
Open it by typing $S. For example:

* 000311%5/

$S represents the address of the status register. In response to $S in the
example above, ODT prints the 16-bit word, of which only the low-order
eight bits are meaningful. Bits 0-3 indicate whether a carry, overflow, zero,
or negative (in that order) has resulted, and bits 5-7 indicate the interrupt
priority level (in the range 0-7) of the object program. (Refer to the PDP-11
Processor Handbook for the Status Register format.)

You can also use the $ to open certain other internal locations listed in
Table 20-2.

Table 20-2: Internal Registers

Register Section Contents

$B 20.3.6 First word of the breakpoint table

$M 20.3.9 Mask location for specifying which bits are to be examined
during a bit pattern search

$p 20.3.15 Defines the operating priority of ODT

$S 20.3.4 Condition codes (bits 0-3) and interrupt priority level (bits
5-7)

$C 20.3.10 Constant register

3R 20.3.13 Relocation register 0, the base of the Relocation Register
table -

$F 20.3.1 Format register

20-10 On-Line Debugging Technique (ODT)

20.3.5 Radix-50 Mode (X)

Many PDP-11 system programs employ the Radix-50 mode of packing cer-
tain ASCII characters three to a word. You can use Radix-50 mode by
specifying the MACRO .RAD50 directive. ODT provides a method for ex-
amining and changing memory words packed in this way with the X com-
mand.

When you open a word and type the X command, ODT converts the con-
tents of the opened word to its three-character Radix-50 equivalent and
prints these characters on the terminal. You can then type one of the re-
sponses from Table 20-3.

Table 20-3: Radix-50 Terminators

Response Effect
RETURN key (RET) Closes the currently open location. _
LINE FEED key (LF) Closes the currently open location and opens the next one in
sequence.
Circumflex (~) Closes the currently open location and opens the previous one

in sequence.

Any three Converts the three characters into packed Radix—50 format.
characters whose Valid Radix—50 characters for this response are:
octal code is 040
(space) or greater $
Space
0 through 9
A throughZ

If you type any other characters, the resulting binary number is unspecified
(that is, no error message prints and the result is unpredictable). You must
type exactly three characters before ODT resumes its normal mode of oper-
ation. After you type the third character, the resulting binary number is
available to be stored in the opened location. Do this by closing the lecation
in any one of the ways listed in Table 20-3. For example:

#1000/ 042431 X =KBI CBA
#1000/ 011421 X =CBA

NOTE

After ODT converts the three characters to bihary, the binary
number can be interpreted in one of many different ways,
depending on the command that follows. For example:

¥ 234/ 063337 X =PRO XIT/ 013704
Since the Radix-50 equivalent of XIT is 113574, the final

slash in the example will cause ODT to open location 113574
if it is a valid address.

On-Line Debugging Technique (ODT) 20-11

20.3.6 Breakpoints

The breakpoint feature helps you monitor the progress of program execu-
tion. You can set a breakpoint at any instruction that is not referenced by
the program for data. When a breakpoint is set, ODT replaces the contents of
the breakpoint location with a BPT trap instruction so that program execu-
tion is suspended when a breakpoint is encountered. Then the original con-
tents of the breakpoint location are restored, and ODT regains control.

With ODT you can set up to eight breakpoints, numbered 0 through 7, at
any one time. Set a breakpoint by typing the address of the desired location
of the breakpoint followed by ;B. Thus, r;B sets the next available
breakpoint at location r. (If all eight breakpoints have been set, ODT ignores
the r;B command.) You may set or change specific breakpoints by the r;nB
command, where n is the number of the breakpoint. For example:

102038 ;sets breakpoint 0
10303B ;sets breakpoint 1
104038 ;sets breakpoint 2
1032318 ;resets breakpoint 1

* %k %k Kk &

The ;B command removes all breakpoints. Use the ;nB command to remove
only one of the breakpoints, where n is the number that identifies the
breakpoint. For example:

* 72B ;removes breakpoint 2
*

ODT keeps a table of breakpoints that you can access. The $B/ command
opens the location containing the address of breakpoint 0. The next seven
locations contain the addresses of the other breakpoints in order. You can
sequentially open them by using the LINE FEED key. For example:

*$B/001020 @

001136 /001032
Q01140 /007070
001142 /7007070
001144 /007070
001146 /001046
Q01150 /001066
001152 /7007070

Cod (o W (o0 B (o R vl
)) [(n

In this example, breakpoint 0 is set to 1020, breakpoint 1 is set to 1032,
breakpoint 5 is set to 1046, and breakpoint 6 is set to 1066. The other
breakpoints are not set.

Note that a repeat count in a proceed command (;P) refers only to the
breakpoint that ODT most recently encountered. Execution of other break-
points is determined by their own repeat counts. See Section 20.3.7.

20-12 On-Line Debugging Technique (ODT)

20.3.7 Running the Program (r;G and r;P)

ODT controls program execution. There are two commands for running the
program: r;G and r;P. The r;G command starts execution (go) and r;P contin-
ues (proceed) execution after halting at a breakpoint. For example:

% 1000306

This command starts execution at location 1000. The program runs until it
encounters a breakpoint or until it completes. If it gets caught in an infinite
loop, it must be either restarted or reentered. as explained in Section 20.1.

On execution of either the r;G or r;P commgnci, the general registers 0-6 are
set to the values in the locations specified as $0—$6. The processor status reg-
ister is set to the value in the location specified as $S.

When ODT encounters a breakpoint, execution stops and ODT prints Bn;
(where n is the breakpoint number), followed by the address of the
breakpoint. You can then examine locations for expected data. For example:

¥ 1010338 ;sets breakpoint 3 at location 1010
¥ 10005G ;starts execution at location 1000
B33i001010 ;stops execution at location 1010

*

To continue program execution from the breakpoint, type ;P in response to
ODT’s last prompt (*).

When you set a breakpoint in a loop, you can allow the program to execute a
specified number of times through the loop before ODT recognizes the
breakpoint. Set a proceed count by using the r;P command. This command
specifies the number of times the breakpoint is to be encountered before
ODT suspends program execution (on the kth encounter). The count k refers
only to the numbered breakpoint that most recently occurred. You can
specify a different proceed count for the breakpoint when it is encountered.
Thus:

B3i001010 ;halts execution at breakpoint 3

% 102633B ;resets breakpoint 3 at location 1026

43P ;sets proceed count to 4 and
B35001026 ;continues execution; the program loops

* ;through the breakpoint three times and halts on
i . ;the fourth occurrence of the breakpoint

Following the table of breakpoints (as explained in Section 20.3.6) is a table
of proceed command repeat-counts for each breakpoint. You can inspect
these repeat counts by typing $B/ and nine line feeds. The repeat count for
breakpoint O prints (the first seven line feeds cause the table of breakpoints
to be printed; the eighth types the single-instruction mode, explained in the
next section, and the ninth line feed begins the table of proceed command
repeat counts). The repeat counts for breakpoints 1 through 7 and the re-

On-Line Debugging Technique (ODT) 20-13

peat count for the single-instruction trap follow in sequence. ODT initial-
izes a proceed count to 0 before you assign it a value. After the command
has been executed, it is set to —1. Opening any one of these provides an
alternative way of changing the count. Once the location is open, you can
modify its contents in the usual manner by typing the new contents fol-
lowed by the RETURN key. For example:

4
+

‘

nnnnnn /001036 ;address of breakpoint 7

nnnnnn /Q0BB30 ;single instruction address

nnnnnn /000000 13 ;count for breakpoint 0; changes to 15

nnnnnn /000000 ;count for breakpoirit 1

+

+

*

nnnnnn /000000 ;count for breakpoint 7

nnnnnn /nannnn ;repeat count for single instruction
;mode.

Both the address indicated as the single-instruction address and the repeat
count for single-instruction mode are explained in the following section.

20.3.8 Single-Instruction Mode

With this mode, you specify the number of instructions to be executed be-
fore ODT suspends the program run. The proceed command, instead of
specifying a repeat count for a breakpoint encounter, specifies the number
of succeeding instructions to be executed. Note that breakpoints are disa-
bled in single-instruction mode. Table 20—4 lists the single-instruction
mode commands.

Table 20—4: Single-Instruction Mode Commands

Command Function

nS Enables single-instruction mode (n can be any digit and serves only to
distinguish this form from the form ;S, which disables single-instruction
mode). Breakpoints are disabled.

n;P Proceeds with program run for next n instructions before reentering ODT.
(If n is missing, it is assumed to be 1.) Trapping instiuctions and associated
handlers can affect the proceed repeat count (see Section 20.4.2).

;S Disables single-instruction mode.

When the repeat count for single-instruction mode is exhausted and the pro-
gram suspends execution, ODT prints:

B8 innnnnn

20-14 On-Line Debugging Technique (ODT)

where nnnnnn is the address of the next instruction to be executed. The $B
breakpoint table contains this address following that of breakpoint 7.
However, unlike the table entries for breakpoints 0-7, direct modification
has no effect.

Similarly, following the repeat count for breakpoint 7 is the repeat count for
single-instruction mode. You can modify this table entry directly. This is an
alternative way of setting the single-instruction mode repeat count. In such
a case, ;P implies the argument set in the $B repeat count table rather than
an assumed 1.

20.3.9 Searches

With ODT you can search any specific portion of memory for bit patterns or
references to a particular location.

20.3.9.1 Word Search (r;W) — Before initiating a word search, you must
specify the mask and search limits. The location represented by $M speci-
fies the mask of the search. $M/ opens the mask register. The next two
sequential locations (opened by LINE FEEDs) initially contain the lower
and upper limits of the search. ODT examines in the search all bits set to 1
in the mask and ignores other bits.

You must then give the search object and the initiating command, using the
r;W command, where r is the search object. When ODT finds a match (that
is, each bit set to 1 in the search object is set to 1 in the word ODT searches
over the mask range), the matching word prints. For example:

* $M Q00000 177400 ;tests high-order eight bits
r,nnnnnn—/ 000000 1000 ;sets low address limit
r,nnnnnn—/ 00000 1040 ;sets high address limit

* 400 5KW ;initiates word search

O01010 /Qd0770
001034 /7000404
*

In the above example, nnnnnn is an address internal to ODT; this location
varies and is meaningful only for reference purposes. In the first line above,
the slash was used to open $M, which now contains 177400; the LINE
FEEDs open the next two sequential locations, which now contain the upper
and lower limits of the search. *

'In the search process, ODT performs an exclusive OR (XOR) with the word

currently being examined and the search object; the result is ANDed to the
mask. If this result is 0, a match has been found and ODT reports it on the
terminal. Note that if the mask is 0, all locations within the limits print.
This provides a convenient method for dumping all memory locations within
given limits using ODT.

Typing CTRL/U during a search printout terminates the search. |

N

On-Line Debugging Technique (ODT) 20-15

20.3.9.2 Effective Address Search (r;E) — ODT provides a search for words
that reference a specific location. Open the mask register only to gain ac-
cess to the low- and high-limit registers. After specifying the search limits
(as explained for the word search), type the command r;E (where r is the
effective address) to initiate the search.

Words that are an absolute address (argument r itself), a relative address
offset, or a relative branch to the effective address print after their
addresses. For example:

*$M/ 177400 (B ;opens mask register only to gain
roannnnn /001000 1010 @ ;access to search limits
rannnnn /001040 1060 @D - -

*10343E ;initiates search

Q01016 /0010086 ;relative branch

001054 /002767 ;relative'branch

*102035E ;initiates a new search

OO1022 /177774 relative address offset

001030 /001020 ;:absolute address

Pay particular attention to the reported effective address references. A word
can have the specified bit pattern of an effective address without actually
being used as one. ODT reports all possible references whether they are
actually used or not.

Typing CTRL/U during a search printout terminates the search.

20.3.10 Constant Register (r;C)

It is often desirable to convert a relocatable address into its value after relo-
cation, or to convert a number into its two’s complement and then to store
the converted value into one or more places in a program. Use the constant
register to perform this and other useful functions.

Typing r;C evaluates the relocatable expression to its six-digit octal value,
prints the value on the terminal, and stores it in the constant register.
Invoke the contents of the constant register in subsequent relocatable
expressions by typing the letter C. Examples follow:

¥-443235C=173346 ;places the two’s complement of 4432 in the
;constant register

#66327/062701 C ;stores the contents of the constant
;register in location 6632

*100051IR :sets relocation register 1 to 1000

#1427235C=005272 ;reprints relative location 4272 as an
;:absolute location and stores it in the
;constant register

20.3.11 Memory Block Initialization (;F and ;i)

Use the constant register with the commands ;F and ;I to set a block of mem-
ory to a specific value. While the most common value required is 0, other
possibilities are + 1, -1, ASCII space, etc.

20-16 On-Line Debugging Technique (ODT)

P

S

When you type the command ;F, ODT stores the contents of the constant reg-
ister in successive memory words, starting at the memory word address you
specify in the lower search limit and ending with the address you specify in
the upper search limit.

Typing the command ;I stores the low-order eight bits in the constant regis-
ter in successive bytes of memory, starting at the byte address you specify in
the lower search limit and ending with the byte address you specify in the
upper search limit. ‘

For example, assume relocatibn. register 1 contains 7000, 2 contains 10000,
and 3 contains 15000. The following sequence sets word locations 7000-7776
to 0, and byte locations 10000-14777 to ASCII spaces:

:opens the mask register to gain

#$M/000000 ’ :access to search limits
rannnnn /000000 1,0 :sets the lower limit to 7000
roannnnn /000000 2,-2 @ :sets the upper limit to 7776
*03C=000000 o ’ :sets the constant register to zero
*3F :sets locations 70007776 to zero
*$M/000000
r,nnnnnn /0Q7000 2,0 ;sets the lower limit to 10000
roannonn /007776 3,-1 :sets the upper limit to 14777
*403C=000040 :sets the constant register to 40
. ;(space)

*51 ;sets the byte locations

;10000-14777
* :to the value in the low-order

;eight bits of the constant

. ;register

20.3.12 Calculating Offsets (r;0)

Relative addressing and branching involve the use of an offset. An offset is
the number of words or bytes forward or backward from the current location
to the effective address. During the debugging session it is sometimes neces-
sary to change a relative address or branch reference by replacing one
instruction offset with another. ODT calculates the offsets in response to the
r;O command.

The command ;0 causes ODT to print the 16-bit and 8-bit offsets from the
currently open location to address r. For example:

*#3456/000034 41430 000044 QZ2 22 RET
*#/000022

This command opens location 346, calculates and prints the offsets from
location 346 to location 414, changes the contents of location 346 to 22 (the
8-bit offset), and verifies the contents of location 346. '

The 8-bit offset prints only if it is in the range —128(decimal) to 127(decimal)
and the 16-bit offset is even, as was the case above. In the next example, the

offset of a relative branch is calculated and modified so that it branches to
itself.

%1034/103421 103430 177776 377 \021 =7 377@DH
*/103777

On-Line Debugging Technique (ODT) 20-17

Note that the modified low-order byte 377 must be combined with the
unmodified high-order byte.

20.3.13 Relocation Register Commands

The use of the relocation registers is described briefly in Section 20.2. At
the beginning of a debugging session it is desirable to preset the registers
to the relocation biases of those relocatable modules that will be receiving
the most attention. Do this by typing the relocation bias, followed by a
semicolon and the specification of relocation registers, using the following
syntax:

r;nR

The symbol r may be any relocatable efcpfession, and n is an integer in the
range 0-7. If you omit n, it is assumed to. be 0. For example:

#100035R :puts 1000 into relocation register 5
¥3+10035R ;adds 100 to the contents
* ;of relocation register 5

Once a relocation register is defined, you can use it to reference relocatable
values. For example:

*2000351R ;puts 2000 into relocation register 1
*1+2176/ 002466 ;examines the contents of location 4176
*1:371230B ;sets a breakpoint at location 5712

Sometimes programs may be relocated to an dddress below the ohe at which
they were assembled. This could occur with PIC code (position-independent
code), which is moved without usirnig the linker. In this case, the appropriate
relocation bias would be the two’s complement of the actual downward dis-
placement. One method for easily evaluating the bias and putting it in the
relocation register is illustrated in the following example.

Assume a program was assembled at location 5000 and was moved to loca-
tion 1000. Then the following sequence enters the two’s complement of 4000
in relocation register 1.

#1000 1R
#1»~-300031R
*

Relocation registers are initialized to —1 so that unwanted relocation regis-
ters never enter into the selection process when ODT searches for the most
appropriate register. '

To set a relocation register to —1, type ;nR. To set all relocation registers to
-1, type ;R.

ODT maintains a table of relocation registers, beginning at the address
specified by $R. Opening $R ($R/) opens relocation register 0. Successively
typing a LINE FEED opens the other relocation registers in sequence. When
a relocation register is opened in this way, you can modify it as you would
any other memory location.

20-18 On-Line Debugging Technique (ODT)

20.3.14 The Relocation Calculators, n! and nR

When a location has been opened, it is often desirable to relate the relocated
address and the contents of the location back to their relocatable values. To
calculate the relocatable address of the opened location relative to a particu-
lar relocation bias, use the following syntax:’

n!

The symbol n specifies the relocation register. This calculator works with
opened bytes and words. If you omit n, the relocation register whose contents
are closest to, but less than or equal to, the opened location is selected auto-
matically by -ODT. In the following example, assume that these conditions
are fulfilled by relocation register 3, which contains 2000. Use the following
command to find the most likely module that a given opened byte is in:

*#2500\011 = 1=3,0003500

To calculate the difference between the contents of the opened location and a
relocation register, use the following syntax:

nR

The symbol n represents the relocation register. If you omit n, ODT selects
the relocation register whose contents are closest to, but less than or equal
to, the contents of the opened location. For example, assume the relocation
bias stored in relocation register 1 is 7000:

*1,3500/011032 1R;17002032
The value 2032 is the content of 1,500, relative to the base 7000. The next
example shows the use of both relocation calculators.

If relocation register 1 contains 1000, and relocation register 2 contains
2000, use the following command to calculate the relocatable addresses of
location 3000 and its contents, relative to 1000 and 2000:

*¥3000/ 006410 11=1,002000 21=2,001000 {R=1,005410 2Rr=2,00410

20.3.15 ODT Priority Level ($P)

$P represents a location in ODT that contains the interrupt (or processor):
priority level at which ODT operates. If $P contains the value 377, ODT

- operates at the priority level of the processor at the time ODT is .entered.

Otherwise $P may contain a value between 0 and 7 corresponding to the
fixed priority at which ODT operates.

To set ODT to the desired priority level, open $P. ODT prints the present
contents, which you can then change:

*£p/ 000006 ¢4 :lowers the priority to allow interrupts
* :from the terminal

If you do not change $P, its value is seven.

On-Line Debugging Technique (ODT) 20-19

- You must set ODT’s priority to 0 if you are using ODT in a foreground/
background environment while another job is running.

ODT may not always service breakpoints that are set in routines that run at
different priority levels. For example, a program running at a low priority
can use a device service routine that operates at a higher priority level. If
you set $P low, ODT waits for terminal input at a low priority. If an inter-
rupt occurs from a high-priority routine, the breakpoints in the high-
priority routine will not be recognized because they were removed when the

- earlier breakpoint occurred. Thus, interrupts that are set at a priority
higher than the one at which ODT is running will be serviced, but any
breakpoints will not be recognized. To avoid this problem, set breakpoints at
one priority level at a time. That is, set breakpoints within an interrupt
service routine, but not at mainline code.level. For a more complete discus-
sion of how the PDP-11 handles priority and interrupts, refer to the proces-
sor handbook for your particular machine. ODT disables all breakpoints in
the program whenever it gains control. Breakpoints are enabled when ;P
and ;G commands are executed. For example:

*%P/00007 °

£ 100038

$ 200048

#100035G

BOIOOIOOQO0

* ;an interrupt occurs and is serviced

If a higher-level interrupt occurs while ODT is waiting for input, the inter-
rupt is serviced, and no breakpoints are recognized.

20.3.16 ASCII Input and Output (r;nA)

Inspect and change ASCII text by using a command of this syntax:
r;nA

The symbol r represents a relocatable expression, and n is a character
count. If you omit n, it is assumed to be 1. ODT prints n characters starting
at location r and followed by a carriage return/line feed combination. Table
20-5 lists responses and their effect.

Table 20-5: ASCII Terminators

Response Effect
RETURN Key ODT outputs a carriage return/ line feed combination fol-
(<RET>) lowed by an asterisk, and waits for another command.
LINE FEED Key ODT opens the byte following the last byte that was output.
(<LF>)

Up to n characters of text ~ ODT inserts the text into memory, starting at location r. If
you type exactly n characters, ODT responds with
<CR><LF> address <CRXLF>*. If you type fewer than n
characters, terminate that string with CTRL/U. ODT
responds with 74U <CR><LF> address <CR><LF>.

20-20 On-Line Debugging Technique (ODT)

20.4 Programming Considerations

Information in this section is not necessary for normal use of ODT. How-
ever, it does provide a better understanding of how ODT performs some of
its functions. In certain difficult debugging situations, this understanding
is necessary.

20.4.1 Using ODT with Foreground/Background Jobs

It is possible to use ODT to debug programs written as either background
or foreground jobs. In the background or under the SJ monitor, you can link
ODT with the program as described in the first example in Section 20.1. To
debug a program in the foreground area, DIGITAL recommends that you
run ODT in the background while the program to be debugged is in the
foreground. The sequence of commands to do this is:

,FRUN PROG/P ;loads the foreground program
LOADED AT nnnnnn ;the first address of the job prints
,RUN ODT ;runs ODT in the background

0DT V01,01 ;and sets a relocation register
gnnnnnniOR ;to the start of the job
*$F/00000¢ ¢ ;clears the format register to enable
#0smnnnnn 0B ;proper address printing

;sets a breakpoint
#0336 ;starts the keyboard monitor again
, RESUME ;starts the foreground job

The copy of ODT used must be linked low enough so that it fits in memory
along with the foreground job.

NOTE

Since ODT uses its own terminal handler, it cannot be used
with the display hardware. If GT ON is in effect, ODT ig-
nores it and directs its input and output only to the console
terminal.

If you use ODT in a foreground/background environment while another job
is running, set ODT’s priority bit to 0 as follows:

% $Phooooy O

This puts ODT into the wait state at level 0, not at level 7. If you leave
ODT’s priority at 7, all interrupts (including clock) are locked out while
ODT is waiting for terminal input. ‘

20.4.2 Functional Organization

The internal organization of ODT is almost. totally modularized into inde-
pendent subroutines. The internal structure consists of three major func-
tions: command decoding, command execution, and utility routines.

On-Line Debugging Technique (ODT) 20-21

The command decoder interprets the individual commands, checks for com-
mand errors, saves input parameters for use in command execution, and
sends control to the appropriate command execution routine.

The command execution routines take parameters saved by the command
decoder and use the utility routines to execute the specified command.
Command execution routines either return to the command decoder or
transfer control to your program.

The utility routines are common routines such as SAVE-RESTORE and I/O.
They are used by both the command decoder and the command executers.

20.4.3 Breakpoints

The function of a breakpoint is to give control to ODT whenever a program
tries to execute the instruction at the selected address.

When a breakpoint is executed, ODT removes all the breakpoint instruc-
tions from the code so that you can examine and alter the locations. ODT
then types a message on the terminal in the form Bn;r, where r is the
breakpoint address and n is the breakpoint number. ODT restores the
breakpoints when execution resumes.

There is a major restriction in the use of breakpoints: the program must not
reference the word where a breakpoint was set since ODT altered the word.
You should also avoid setting a breakpoint at the location of any instruction
that clears the T-bit. For example:

MOY #240,177776 iBET PRIORITY TO LEVEL 5

NOTE

Instructions that cause traps or returns from them (for exam-
ple, EMT, RTI) are likely to clear the T-bit, because a new
word from the trap vector or the stack is loaded into the status
register.

A breakpoint occurs when a trace trap instruction (placed in your program
by ODT) is executed. When a breakpoint occurs, ODT operates according to
the following algorithm:

1. Sets processor priority to seven (automatically set by trap instruction).
Saves registers and sets up stack.

If internal T-bit trap ﬂag is set, goes to step 13.

Removes breakpoints.

Resets processor priority to ODT’s priority or user’s priority.

2 A

Makes sure a breakpoint or single-instruction mode caused the
interrupt.

7. Ifthe breakpoint did not cause the interrupt, goes to step 15.

20-22 On-Line Debugging Technique (ODT)

10.
11.

12.
13.
14.
15.
16.
17.

18.

Decrements repeat count.
Goes to step 18 if nonzero; otherwise resets count to one.
Saves terminal status.

Types message about the breakpoint or single-instruction mode
interrupt.

Goes to command decoder.

Clears T-bit in stack and internal T-bit flag.
Jumps to the go proceséor.

Saves terminal status.

Types BE (bad entry), followed by the address.

Clears the T-bit, if set, in the user status and proceeds to the command
decoder.

Goes to the proceed processor, bypassing the TT restore routine.

Note that steps 1-5 inclusive take approximately 100 microseconds.
Interrupts are not permitted at this time, because ODT is running at prior-
ity level 7.

ODT processes a proceed (;P) command according to the following algorithm:

S

Checks the proceed for validity.

Sets the processor priority to seven.

Sets the T-bit flags (internal and user status).

Restores the user registers, status, and program counter.
Returns control to the user.

When the T-bit trap occurs, executes steps 1, 2, 3, 13, and 14 of the
breakpoint sequence, restores breakpoints, and resumes normal program
execution.

When a breakpoint is placed on an IOT, EMT, TRAP, or any instruction
causing a trap, ODT follows this algorithm:

1.
2.

When the breakpoint occurs as described above, enters ODT.

When ;P is typed, sets the T-bit and executes the IOT, EMT, TRAP, or
other trapping instruction.

. Pushes the current PC and status (with the T-bit included) on the stack.

. Obtains the new PC and status (no T-bit set) from the respective trap

vector.

. Executes the whole trap service routine without any breakpoints.

On-Line Debugging Technique (ODT) 20-23

6. When an RTI is executed, restores the saved PC and PS (including the T-
bit). Executes the instruction following the trap-causing instruction. If
this instruction is not another trap-causing instruction, the T-bit trap
occurs; reinserts the breakpoints in the user program, or decrements the
single-instruction mode repeat count. If the following instruction is a
trap-causing instruction, repeats this sequence starting at step 3.

NOTE

Exit from the trap handler must be by means of the RTI
instruction. Otherwise, the T-bit is lost. ODT cannot regain
control because the breakpoints have not yet been reinserted.

Note that the ;P command is invalid if a breakpoint has not occurred (ODT
responds with 7). ;P is valid, however, after any trace trap entry.

The internal breakpoint status words have the following format:

1. The first eight words contain the breakpoint addresses for breakpoints
0—7. (The ninth word contains the address of the next instruction to be
executed in single-instruction mode.)

2. The next eight words contain the respective repeat counts. (The following
word contains the repeat count for single-instruction mode.)

You may change these words at will, either by using the breakpoint com-
mands or by directly manipulating $B.

When program runaway occurs (that is, when the program is no longer
under ODT control, perhaps executing an unexpected part of the program
where you did not place a breakpoint), give control to ODT by pressing the
HALT key to stop the computer and then restarting ODT (see Section 20.1).
ODT prints an asterisk, indicating that it is ready to accept a command.

If the program you are debugging uses the console terminal for input or out-
put, the program can interact with ODT to cause an error because ODT uses
the console terminal as well. This interactive error does not occur when you
run the program without ODT.

Note the following rules concerning the ODT break routine:

1. If the console terminal interrupt is enabled upon entry to the ODT break
routine, and no output interrupt is pending when ODT is entered, ODT
generates an unexpected interrupt when returning control to the
program.

2. If the interrupt of the console terminal reader (the keyboard) is enabled
upon entry to the ODT break routine, and the program is expecting to
receive an interrupt to input a character, both the expected interrupt and
the character are lost.

3. If the console terminal reader (keyboard) has just read a character into
the reader data buffer when the ODT break routine is entered, the
expected character in the reader data buffer is lost.

20-24 On-Line Debugging Technique (ODT)

20.4.4 Searches

The word search lets you search for bit patterns in specified sections of mem-
ory. Using the $M/ command, specify a mask, a lower search limit ($M + 2),
and an upper search limit ($M +4). Specify the search object in the search
command itself.

The word search compares selected bits (where 1s appear in the mask) in the
word and search object. If all of the selected bits are equal, the unmasked
word prints.

The following shows the search algorithm.

1. Fetches a word at the current address.

2. XORs (exclusive OR) the word and search object.
3. ANDs the result of step 2 with the mask.
4

. If the result of step 3 is zero, types the address of the unmasked word and
its contents; otherwise, proceeds to step 5.

5. Adds two to the current address. If the current address is greater than the
upper limit, types * and returns to the command decoder; otherwise, goes
tostep 1.

Note that if the mask is 0, ODT prints every word between the limits, since a
match occurs every time (that is, the result of step 3 is always 0).

In the effective address search, ODT interprets every word in the search
range as an instruction that is interrogated for a possible direct relationship
to the search object. The mask register is opened only to gain access to the
search limit registers.

The algorithm for the effective address search is as follows ((X) denotes con-
tents of X, and K denotes the search object):

1. Fetches a word at the current address X.
If (X) =K [direct reference], prints contents and goes to step 5.
If (X) + X+ 2=K [indexed by PC], prints contents and goes to step 5.

- If (X) is a relative branch to K, prints contents.

S RN

. Adds 2 to the current address. If the current address is greater than the
upper limit, performs a carriage return/line feed combination and
returns to the command decoder; otherwise, goes to step 1.

20.4.5 Terminal Interrupt

When entering the TT SAVE routine, ODT follows these steps:
1. Saves the LSR status register (TKS).

2. Clears interrupt enable and maintenance bits in the TKS.

On-Line Debugging Technique (ODT) 20-25

3. Saves the TT status register (TPS).

4. Clears interrupt enable and maintenance bits in the TPS.

To restore the TT: |

1. Wait for completion of any I/O from ODT.
2. Restore the TKS.

3. Restore the TPS.

NOTE

If the TT printer interrupt is enabled upon entry to the ODT
break routine, the following can occur:

1. If no output interrupt is pending when ODT is entered, an
additional interrupt always occurs when ODT returns con-
trol to the user.

2. If an output interrupt is pending upon entry, the expected
interrupt occurs when the user regains control.

If the TT reader (keyboard) is busy or done, the expected char-
acter in the reader data buffer is lost.

If the TT reader (keyboard) interrupt is enabled upon entry to
the ODT break routine, and a character is pending, the inter-
rupt (as well as the character) is lost.

20.5 Error Detection

ODT detects two types of error: invalid or unrecognizable command and bad
breakpoint entry. ODT does not check for the validity of an address when
you command it to open a location for examination or modification. Thus in
the following example, the command references nonexistent memory,
thereby causing a trap through the vector at location 4.

177774/
TMON-F-Trar to 4 003362

If the program you are debugging with ODT has requested traps through
location 4 with the .TRPSET EMT, the program receives control at its
TRPSET address.

If something other than a valid command is typed, ODT ignores the com-
mand and prints:

(echoes invalid command)?
*

ODT then waits for another command. Therefore, to cause ODT to ignore a
command that has just been typed, type any invalid character (such as 9 or
RUBOUT), and the command will be treated as an error and ignored.

20-26 On-Line Debugging Technique (ODT)

ODT suspends program execution whenever it encounters a breakpoint
(that is, traps to its breakpoint routine). If the breakpoint routine is entered
and no known breakpoint caused the entry, ODT prints:

BEnnnnnn
*

and waits for another command. BEnnnnnn denotes bad entry from location
nnnnnn. A bad entry may be caused by an invalid trace trap instruction, by
a T-bit set in the status register, or by a jump to some random location
within ODT.

On-Line Debugging Technique (ODT) 20-27

Chapter 21
Object Module Patch Program (PAT)

The RT-11 object module patch program (PAT) allows you to update code in
a relocatable binary object module (.OBJ file). PAT does not permit you to
examine the octal contents of an object module. PAT makes the patch to the
object module by means of the procedure outlined in Figure 21-2. One
advantage to using PAT is that you can add relatively large patches to an
object module without performing any octal calculations. PAT accepts a file
containing corrections or additional instructions and applies these correc-
tions and additions to the original object module. You prepare correction
input in source form and assemble it with the MACRO-11 assembler.

Two files form the input to PAT: the original input file, and a correction file
containing the corrections and additions to that input file. The original
input file consists of one or more concatenated object modules, only one of
which can be corrected with a single execution of the PAT utility. The cor-
rection file consists of object code that, when linked by the linker, either
replaces or appends to the original object module. Output from PAT is the
updated input file.

It is always good practice to create a backup version of the file you want to
patch before you use PAT to make the changes.

21.1 Calling and Using PAT

To call PAT from the system device, respond to the dot (.) printed by the key-
board monitor by typing:

v R PAT @O

The Command String Interpreter (CSI) prints an asterisk at the left margin
‘of the console terminal when it is ready to accept a command line. Chapter 1
describes the general syntax of the command line PAT accepts.

Type two CTRL/Cs to halt PAT at any time (or a single CTRL/C to halt PAT
when it is waiting for console terminal input) and return control to the mon-
itor. To restart PAT, type R PAT in response to the monitor’s dot. When
PAT completes an update operation it returns control to CSI level (*).

21-1

Figure 21-1 shows how you use PAT to update a file (FILE1) consisting of
three object modules (MOD1, MOD2, and MODS3) by appending a correction
file to MOD2. After running PAT, you use the linker to relink the updated
module with the rest of the file and to produce a corrected executable pro-

gram.
Figure 21-1: Updating a Module Using PAT

FILE1
MOD1 FILEY
MOD?2 MOD1
MODs3 :> PAT >--.M9‘32_--
UPDATE2
UPDATE2 MOD3

There are several steps you must follow when using PAT to update a file.
First, use a text editor to create the correction file. Then, assemble the
correction file to produce an object module. Next, submit the input file and
the correction file in object module form to PAT for processing. Finally, link
the updated object module, along with the object modules that make up the
rest of the file, to resolve global symbols and create an executable program.
Figure 21-2 shows the processing steps involved in generating an updated
executable file using PAT.

21.2 PAT Command String Syntax

21-2

Specify the PAT command string in the following form:
[output-filespec] = input-filespec[/C[:n]],correct-filespecl[/C[:n]]
where:

output-filespec is the file specification for the output file. If you do
not specify an output file, PAT does not generate
one.

input-filespec is the file specification for the input file. This file
can contain one or more concatenated object mod-
ules.

correct-filespec is the file specification for the correction file. This
file contains the updates being made to a single
module in the input file.

/C specifies the checksum option for the associated
file. This directs PAT to generate an octal value
for the sum of all the binary data composing the
module in that file. (See Section 21.5 for more in-
formation on checksums.)

Object Module Patch Program (PAT)

n specifies an octal value. PAT compares the check-
sum value it computes for a module with the octal
value you specify.

Figure 21-2: Processing Steps Required to Update a Module Using PAT

CORECT.MAC
TEXT e, 1. Createacorrection file using the :>
EDITOR text editor.
CORECT.MAC CORECT.OBJ
2. Execute the assembler (or compiler}
> to create an object module version >
of the file.
CORECT.OBJ
MYFILE.OBJ

v 3 .

3. Execute PAT using as input the

MYEILE OB > correction file and the module to :__‘—,>
be updated.

MYFILE.OBJ MYFILE.SAV

4. a) 1f the corrected object module is

part of something that typically :>
LINKER :> exists as a program (e.qg., BASIC),
execute the linker to resolve new

addresses and create an executable
program.

b) If the corrected module is an
element in a library {e.g., SYSLIB),
run the librarian and create or
update the library to contain the
new {corrected) object module.

c) If the corrected module is some-
thing that typically exists as an
object module {e.g., ODT), you
need do nothing. Whenever you
link this module, the corrections
will be included.

Object Module Patch Program (PAT) 21-3

21.3 How PAT Effects Updates

PAT updates a base input module by using additions and corrections you
supply in a correction file. This section describes the PAT input and correc-
tion files, and gives information on how to create the correction file.

21.3.1 Input File

The input file is the file to be updated; it is the base for the output file and
must be in object module format. When PAT executes, the module in the cor-
rection file applies to this file.

21.3.2 Correction File

The correction file must be in object module format and it is usually created
from a MACRO-11 source file in the following format:

.TITLE inputname
[.IDENT updatenum]

[section name]

inputline
inputline
*
*
%
where:
inputname is the name of the module to be corrected by the PAT
update. That is, inputname must be the same name
as the name on the input file .TITLE directive for a
single module in the input file.
updatenum is any value acceptable to the MACRO-11 assem-

bler. Generally, this value reflects the update ver-
sion of the file being processed by PAT, as shown in
the examples below.

section name is the ASECT, CSECT, or PSECT included in the
correction file.

inputline are lines of input for PAT’s use in correcting and
updating the input file.

During execution, PAT adds any new global symbols that are defined in the
correction file to the module’s symbol table. Duplicate global symbols in the
correction file supersede their counterparts in the input file, provided that
both definitions are relocatable or both are absolute.

21-4 Object Module Patch Program (PAT)

A duplicate PSECT or CSECT supersedes the previous PSECT or CSECT,
provided:

@ Both have the same relocatability attribute (ABS or REL).
@ Both are defined with the same directive (PSECT or .CSECT).

If PAT encounters duplicate PSECT names, it sets the length attribute for
the PSECT to the length of the longer PSECT and appends a new PSECT to
the module.

If you specify a transfer address, it supersedes that of the module you are
patching.

21.4 Updating Object Modules

The following examples show the source code for an input file and a correc-
tion file to be processed by PAT and the linker. The examples show as
output a single source file that, if assembled and linked, would produce a
binary module equivalent to the file generated by PAT and LINK. Two
techniques are described: one is for overlaying lines in a module, and the
other is for appending a subroutine to a module.

21.4.1 Overlaying Lines in a Module

In the following example, PAT first appends the correction file to the input
file. The linker is then executed to replace code within the input file.

The input file for this example is:

+TITLE ABC
«IDENT /01/
+ENABL GBL
ABC::
MOu AsC
JBR PCsXYZ
RTS PC
+END

To add the instruction ADD A,B after the JSR instruction, the following
patch source file is included:

+TITLE ABC
+IDENT /01,017
+ENABL GBL

v =kl 2
ADD AB
RTS PC
+END

Object Module Patch Program (PAT) 21-5

The patch source is assembled using MACRO-11 and the resulting object
file is input to PAT along with the original object file. The following source
code represents the result of PAT processing:

+TITLE ABC
+IDENT /01,01/
+ENABL GBL
ABC: ¢
Moy A»C
JER PCsXYZ
RTS PC
+=ABC
s =12
ADD AB
RTS PC
+END

After the linker processes these files, the load image appears, as this source
code representation shows: '

+TITLE ABC
+IDENT /01,017
+ENABL GBL
ABC::

Moy AC

JEBR PCsXYZ
ADD AsB

RTS PC

+END

The linker uses the .=.+ 12 in the program counter field to determine where
to begin overlaying instructions in the program and, finally, overlays the
RTS instruction with the patch code:

ADD AB
RTS PC

21.4.2 Adding a Subroutine to a Module

In many cases, a patch requires that more than a few lines be added to patch
the file. A convenient technique for adding new code is to append it to the
end of the module in the form of a subroutine. This way, you can insert a JSR
instruction to the subroutine at an appropriate location. The JSR directs the
program to branch to the new code, execute that code, and then return to in-
line processing.

The source code for the input file for the example is:

+TITLE ABC
+IDENT /017
+ENABL GBL
ABC::
Mov AB
JER PC s XY Z
Moy CRO
RTS PC
+END

216 Object Module Patch Program (PAT)

Suppose you wish to add the instructions:

MOY D/RO
ASL RO
between

MO A+B
and

JBR PCsMYZ

The correction file to accomplish this is as follows:

+TITLE ABC

+IDENT /01,017

+ENABL GBL

JSR PC+PATCH

NOP

+PSECT PATCH
PATCH:

Moy AsB

Mou D RO

ASL RO

RTS PC

+END

PAT appends the correction file to the input file, and the linker then proc-
esses the file, generating the following output file:

+TITLE ABC

JIDENT /01.,01/

+ENABL GBL
ABC::

JSR PC+PATCH

NOP

JSR PCyXYZ

MOou CRO

RTS PC

+PSECT PATCH
PATCH:

MOUW AB

MOy . DaRO

ASL RO

RTS PC

+END

In this example, the JSR PC,PATCH and NOP instructions overlay the
three-word MOV A,B instruction. (The NOP is included because this is a
case where a two-word instruction replaces a three-word instruction. NOP is
required to maintain alignment.) The linker allocates additional storage for
PSECT PATCH, writes the specified code into this program section, and
binds the JSR instruction to the first address in this section. Note that the
MOV A,B instruction, replaced by the JSR PC,PATCH, is the first instruc-
tion the PATCH subroutine executes.

Object Module Patch Program (PAT) 21-7

21.5 Determining and Validating the Contents of a File

Use the checksum option (/C) to determine or validate the contents of a
module. The checksum option directs PAT to compute the sum of all binary
data composing a file. If you specify the command in the form /C:n, /C
directs PAT to compute the checksum and compare that checksum to the
value you specify as n.

To determine the checksum of a file, enter the PAT command line with the
/C option applied to the appropriate file (the file whose checksum you want
to determine). For example, PAT responds to the command

sINFILE/C+INFILE.PAT

with the message

?PAT-W-InPut module checKksum is nnnnnn

PAT generates a similar message when you request the checksum for the
correction file.

To validate the changes made to a file, enter the checksum option in the
form /C:n. PAT compares the value it computes for the checksum with the
value you specify as n. If the two values do not match, PAT enters the
changes but displays a message reporting the checksum error as either:

PPAT«W-Input file checKsum error

or

PPAT-W-Correction file checKsum error

Checksum processing always results in a nonzero value.

Do not confuse this checksum with the record checksum byte.

21-8 Object Module Patch Program (PAT)

Chapter 22
Save Image Patch Program (SIPP)

The save image patch program (SIPP) lets you make code modifications to
any RT-11 file that exists on a random-access storage volume. You use
SIPP primarily for maintaining save image files. Although SIPP is de-
signed for maintaining programs that have been created with the RT-11
Version 4 or later linker, you can use SIPP for pre-Version 4 programs that
are not overlaid.

SIPP is also useful for examining locations within a file. If you do not
modify any locations within a file, SIPP makes no changes. Also, you can
run SIPP from an indirect command file, a BATCH stream, or from the
console.

When you run SIPP, you have the option of installing your code modifica-
tions when you close the file, or you can create a command file that con-
tains both the code modifications and the instructions necessary for SIPP to
install them. You can run this command file as an indirect file whenever
you wish. When SIPP patches a file, the creation date of the patched file is
changed to the current system date.

Because SIPP does not install code modifications until you have finished
making them, SIPP’s checksum is not affected by a CTRL/U or DELETE.
This feature also makes the code modification, or patching, procedure eas-
ier for you.

NOTE

DIGITAL does not recommend that you modify the following
data within a.save image file: locations 50, 64, and 66; the
Job Status Word; the overlay handler; the overlay tables; and
the window definition blocks. SIPP uses these locations--for
internal calculations and will automatically update them as
necessary. Note, however, that if you use the /A option, SIPP
does not modify any of these locations.

22.1 Calling and Using SIPP

To call SIPP, respond to the dot (.) printed by the keyboard monitor by
typing: ;

+ R SIPP GBD

221

The Command String Interpreter (CSI) prints an asterisk (*) at the left mar-
gin of the terminal and waits for a command string. If you enter only a car-
riage return in response to the asterisk, SIPP prints its current version
number. If you type a CTRL/C in response to the asterisk, control returns to
the monitor. If you type a CTRL/C in response to any of SIPP’s prompts,
SIPP prints the following confirmation message:

?8IPP - Are vou sure?

If you type Y or any string beginning with Y followed by a carriage return,

- SIPP aborts the patching procedure, and returns control to the monitor,
without making any changes to your file. Any other response returns control
‘to the procedure that was interrupted. You must type two consecutive
CTRL/Cs at any other time, including while running from an indirect com-
mand file, to get the ?SIPP - Are you sure? message.

Enter a command string according to this general syntax:
[com-filespec = Jinput-filespec[/option...]
where:

com-filespec represents the file specifications of the command file
that you want SIPP to create. You can run this file as
an indirect file. The default file type is .COM. If you
do not specify a command file, SIPP does not create
one.

input-filespec represents the file specifications of the file you want
to modify. If you do not specify a file type, SIPP
assumes .SAV.

/option is one of the options listed in Table 22-1.

If you enter only a device specification in response to the CSI asterisk, SIPP
opens the first block of that volume and assumes the /A option.

22.2 SIPP Options

Table 22—-1 summarizes the options that you can use in the CSI command
string to SIPP.

22.3 SIPP Dialog

After you have entered the initial command string to SIPP, SIPP prints a
series of prompts at the terminal. The responses you give to these prompts
guide SIPP to the location in the input file or volume where you want to
begin code modifications. If the input file is overlaid, the first prompt SIPP
prints at the terminal is:

Sedgment?

22-2 Save Image Patch Program (SIPP)

Table 22-1: SIPP Options-:

Option ' Function

/A Prevents SIPP from automatically modifying either location 50, the window
definition blocks, the overlay table, or the overlay handler. Use /A when you
are patching anything other than save image files. When you use the option,
SIPP modifies only those locations that you specify.

/C Requires you to enter a checksum after you finish code modifications. If you
make no modifications, SIPP ignores /C. The command file will automati-
cally contain /C. You cannot use /C and /D together. See Section 22.5 for
more details on the checksum.

/D Use if you do not know the checksum for a particular patch and you want
SIPP to create one. SIPP prints the checksum for the patch after you have
finished entering all the code modifications. If you make no modifications,
SIPP ignores the /D option. You cannot use /C and /D together.

/L When you use /L, SIPP does not modify the input file after the patching
session. This option is useful if you wish only to create a command file and
preserve the input file.

Respond to this prompt by typing the number of the overlay segment that
contains the locations you want to modify. (SIPP does not print this prompt:
if the file you are modifying is not overlaid, if you are using the /A option, or
if you are modifying a volume.) You can find the segment number in the pro-
gram’s load map. Type a carriage return, or 0 followed by a carriage return,
if you want to modify the program’s root segment.

SIPP prompts you for the base address within the program or overlay seg-
ment where you want to begin code modifications or examination. SIPP
prints the following prompt for both overlaid and non-overlaid files. (Note
that the following prompt is the second prompt for overlald files, and the
first prompt for anything else.)

Base?

If the file you are modifying is overlaid, respond to the last prompt by enter-
ing the base address specified on the load map for the segment you want to
modify. If the file is not overlaid, enter the load address of the program sec-
tion you wish to modify or examine.

After you have entered the base address, SIPP prompts you for the offset as
follows:

Offset?
Respond to the offset prompt by typing the offset from the current base
where you want to begin modifying or examining your program.

If the offset you specify is an even number, SIPP opens the corresponding
location as a word. If the offset is odd, SIPP openg the location as a byte.

%

Save Image Patch Program (SIPP) 22-3

Section 22.4 describes how you can alternate between words and bytes as
you proceed to modify or examine the file.

After you have responded to Offset?, SIPP prints the following header:

Sedment Base Offset 0ld New?

If the file is not overlaid, SIPP does not print the segment column. Below the
header, SIPP prints the segment, base, and offset you have specified by
responding to the dialog prompts.

A sample dialog format follows. In this example, SIPP is to begin code
modifications in overlay segment 2 of program PROG.SAV.

+ R SIPPED
* PROG=PROGEED
Segment? Z@H

Base? 20000@ED

Offset? 1 00OGE)

Sedment Base Offset 014 New?
QQOO0N2 20000 20100 103425

Under the column marked Old, SIPP prints the contents of the currently
open location. Under the column designated New?, you can enter either a
new value for the current location and/or a command. Section 22.4 gives
more details on opening and modifying locations. Table 22-2 summarizes
the commands you can enter.

NOTE

SIPP does not make changes to a file as you type them. In-
stead, SIPP stores the changes in a buffer, allowing you to
abort a partially completed patch operation without leaving
behind a partially patched file. When you finish a patching
operation by typing CTRL/Y or multiple CTRL/Zs (see Table
22-2), SIPP makes all the changes in one pass.

22.4 SIPP Commands

Table 22-2 summarizes the commands you can enter during the code modi-
fication procedure and lists the sections in which you can find more details
on each command. You can follow command with either a line feed or a
carriage return.

Table 22-2: SIPP Commands

Command Section - Function

<RET>or <LF> 92.4.1 Closes the current location without modifying it, and opens
and displays the next location.

n<RET> 22.4.1 Enters the value represented by n in the current location,
closes it, and opens the next location.

(Continued on next page)

22-4 Save Image Patch Program (SIPP)

Table 22-2: SIPP Commands (Cont.)

Command Section Function

A<RET> 22.4.2 Closes the current location without modifying it, and opens
the previous location.

. nA<RET> 22.4.2 Enters the value represented by n in the current location,
closes it, and opens the previous location.

\<RET> 22,43 Reopens the current location as a byte (starting with the
low, or even, byte for that word). From this point, SIPP will
continue opening byte locations and accepting byte values.
Do not use this command when in Radix—50 or ASCII mode.

/<RET> 22.4.3 Reopens the current location as a word. SIPP displays the
contents of the currently open word location. All further

displays and input will be word values. Do not use this com-
mand when in Radix—50 or ASCII mode.

;O<RET> 2244 Reopens the current location as an octal word value. This is
the default mode. Use ;O to return to octal after having
been in Radix—50 or ASCII mode. All further displays and
input are octal values.

;A<RET> 22.4.5 Displays the byte of the current location as an ASCII value.
All further displays are in ASCII, and SIPP advances in
byte mode.

;Ax<RET> 22.4.5 Inserts an ASCII character represented by x in the byte of

the current location, closes that byte, and opens and dis-
plays the next location. Use this command for inserting
only one ASCII character at a time. You can also use this
command to search for an ASCII value (see Section 22.4.7).

:R<RET> 22.4.6 Displays the current location as a word of up to three
Radix—50 characters. All further displays are in Radix-50.

;Ryyy<RET> 22.4.6 Inserts up to three Radix—50 characters represented by yyy
into the current location. SIPP then closes the current loca-
tion, and opens and displays the next location. Use this
command for inserting up to three Radix-50 characters.
You can also use this command to search for a Radix—50
value (see Section 22.4.7).

;S<RET> 22.4.7 Searches for a value within the file. When you type this
command, SIPP prompts you for a value for which it is to
search. SIPP also prompts you for the boundaries within
which you want it to conduct the search.

;5V<RET> 22.4.8 Prints all the modifications you have made in the current
patching session. You can use this command at any time,
except in response to Checksum?.

CTRL/Z<RET> 224.9 Backs up to the previous prompt: Offset?, Base?, or
Segment?. This command allows you insert code modifica-
tions in more than one area of the file during the same
patching session.

CTRL/Y<RET> 22.4.10 Completes the current patching session, installs the patch,
creates the command file (if requested), and prompts you
with an asterisk for another file specification.

Save Image Patch Program (SIPP) 22-5

22.4.1 Opening and Modifying Locations Within a File

As stated earlier, after you guide SIPP to the location in the file where you
want to begin making code modifications, SIPP prints out a header under
which it lists the address and contents of the location specified, called the
current location. Under the last column in the header, New?, you can enter a
value that replaces the contents of the current location. After you enter the
new value, type a carriage return to advance to the next location.

In the following example, the value 240 is inserted in the current location.
Next, a carriage return advances SIPP to the next 16-bit location.

Base Dffset 014 New?
001000 OO1200 0047687 2h06E
001000 001202 003106)

If you do not want to modify the current location, simply type a carriage
return to advance to the next location.

22.4.2 Backing Up Through Files

When you type the up-arrow character (~) followed by a carriage return in
place of entering data into the current location, SIPP closes the current loca-
tion and opens the previous location. If you specify a value followed by an
up-arrow, SIPP enters that value into the current location, closes that loca-
tion, and opens that location.

If you type an up-arrow when the offset from a specified base is 0, SIPP opens
the previous location and displays the offset as a double-precision negative
number.

In the following example, the value 112000 is entered into the current loca-
tion, and the previous location is opened.

Base Offset 01d New?
002000 002134 DZ0027. 112000"@®
QO2000 Q02132 001732

In the last example, notice how SIPP decrements the offset by 2 to designate
the previous 16-bit location. '

You can use the up-arrow after you use the backslash (\) to back up to the
previous byte (if currently in word mode). You can also use the up-arrow
after you use the slash (/) to back up to the previous word (if currently in
word mode). '

22.4.3 Advancing in Bytes

By default, SIPP operates in word mode. That is, locations are displayed as
16-bit words, and values are displayed and entered as word values. If you
type the backslash character (\), SIPP closes the current location, and
reopens the low, or even byte, of that location. Values that are displayed and
entered from this point are in bytes.

226 Save Image Patch Program (SIPP)

To revert to word mode, type the slash character (/). When you type the
slash, SIPP reopens the current location as a 16-bit word.

The following example uses the backslash to advance in byte mode, and then
the slash to revert to word mode. Notice that SIPP prints out a new header

each time it changes from word to byte mode, and vice versa.

Base Offset 014 New™
Q020000 OnR112 DO3002
\
Base Offset Old New?
Q02000 002112 00z
Q02000 002113 006
002000 002114 132 GET
/
Base Offset 014 New?
002000 0n2114 003132

If you are in byte mode when you get the Offset? prompt, SIPP automatically
resets itself to word mode.

22.4.4 Entering Octal Values (;0)

Use the ;0 command, followed by a carriage return, to reopen the current
location, and display its contents as an octal value. Since octal mode is the
default setting, you need to use it only if you are currently operating in
ASCII or Radix—50 mode and wish to revert to octal mode. You can also use
the ;O command to switch from byte mode to word mode.

The following example uses the ;O command to switch from ASCII mode to
octal mode.

Base Offset 014 New?
QOZ000 Q02100 051101

002000 002100 spy TAGE

5 ORED

Base Offset 014 New?
0O2000 O02100 051101

Note that unlike the ;A and ;R commands, ;O accepts no optional argument.
If you return to the Offset? prompt, SIPP automatically resets itself to octal
mode.

22.4.5 Displaying and Entering ASCIl Values

Use the ;A command, followed by a carriage return, to open the current loca-
tion as a byte and display its contents as an ASCII value. When you use the
:A command, SIPP continues to display contents in ASCII until you use the
:0 or ;R command. Note that when you operate in ASCII mode, you-advance
through the file in byte mode.

Save Image Patch Program (SIPP) 22-7

The following example uses the ;A command to open the low byte of the cur-
rent location and display its contents as an ASCII value. '

Base Dffset D14 New?
003000 003100 050524 SAGRD
003000 003100 ST: @E
003000 003101 LR

Use the ;Ax command to insert an ASCII character, represented by x, into
the low byte of the current location. When you use the ;Ax command, SIPP
enters the ASCII character directly into the current byte, closes that byte,
opens and displays the next location as an octal, ASCII, or Radix—50 value
(depending on what mode you were in prior to using the ;Ax command). Note
that you can insert only one ASCII character at a time, and that you should
not insert control characters. You can use the ;Ax command when display-
ing in ASCII mode.

The next example uses the ;Ax command to enter the ASCII character, W,
into the current byte and proceed to the next byte.

Base Offset . 014 New?
QQ3000 003100 050524 s AWERED
Q03000 003101 121

You can also use the ;Ax command to search for an ASCII value (see Sec-
tion 22.4.7).

22.4.6 Displaying and Entering Radix—50 Values

Use the ;R command, followed by a carriage return, to reopen the current
location and display its contents in Radix—-50. When you use the ;R com-
mand, SIPP continues in Radix—50 mode until you use either the ;A or ;O
command. Note that Radix—50 mode advances in word mode.

The following example uses the ;R command to reopen the current location
and display its contents as a Radix—50 value.

Base Offset 01d New?
001000 DOSZ220 - 071070 iR
001000 QQS220 SRR =
Q01000 0a5222 “TES:

If the contents of a location is an invalid Radix-50 value, SIPP displays the
contents as <???7>, :

You can use the ;Ryyy command to insert up to three Radix-50 characters,
represented by yyy, into the current location. When you use the ;Ryyy com-
mand, SIPP inserts the Radix—50 value into the current location, closes the
current location, and opens and displays the contents of the next location as
an octal, ASCII, or Radix—50 value (depending on what mode you were in
prior to using the ;Ryyy command).

22-8 Save Image Patch Program (SIPP)

If you use the ;Ryyy command, and you enter only two Radix—50 characters,
SIPP inserts a blank as the third character. Likewise, if you enter only one
Radix—50 character, SIPP inserts blanks for the second and third characters.
If you use an imbedded blank (for example, X Z), SIPP inserts all characters
as typed. Note that you can insert up to only three Radix-50 characters at a
time. Use the :Ryyy command only when the low byte of the current location
is open; SIPP prints an error message if you attempt to insert a Radix—50
value when the high byte of the current location is open.

The following Radix—50 values are valid for use with the ;Ryyy command:

A through Z
0 through 9
$

®

%

Note that a space is also a valid Radix~50 character, and that SIPP trans-
lates the percentage character to a dot (.).

The following example uses the ;Ryyy command to insert three Radix—50
characters in the current location, and proceed to the next location.

Base Offset 014 New?
Q01000 005332 000240 SRABC
Q01000 005334 002110

You can also use the ;Ryyy command to search for a Radix-50 value (see
Section 22.4.7).

22.4.7 Searching Through Files (;S)

You can use the ;S command to search between two specified boundaries of
a file for a given value. With this feature, you can find the location where
you want to make a change by searching for a specific value.

To request a search, type the following in response to aﬁy of SIPP’s dialog
questions or in place of entering new data into the current location.

i5

Do not type the ;S command in response to the Checksum? prompt. After you
type the ;S command, SIPP responds with the following prompt:

Search for?

Enter the value for which you want SIPP to search. You can use the ;Ax or
‘Ryyy command in response to the last prompt to search for ASCII or
Radix—50 values. If you type a backslash after the value you enter, SIPP
searches for a byte value. Otherwise, it searches for a word value. Note that
if you use the ;Ax notation to search for an ASCII value, SIPP conducts the
search in byte mode.

Save Image Patch Program (SIPP) 22-9

SIPP then asks for the lower address limit at which to begin the search:

Start?

Enter an address, followed by a carriage return, or just a carriage return. If
you enter a carriage return, SIPP begins its search at the beginning of the
file. If you enter an address, SIPP begins the search at that address. If you
are searching through an overlay segment, use the following notation for
the start address:

nam

In the n:m notation, n represents the number of the segment you want to
search, and m represents the offset from the start of the segment where you
want SIPP to begin the search.

SIPP then asks for the upper address limit for the search:

End?

You can enter an address (including the n:m notation) or a carriage return.
If you enter a carriage return, SIPP searches to the end of the file or volume.
(If you use the /A option, SIPP searches to the end of the last block in the file
or volume; otherwise it searches up to and including the last address in the
program.) If you enter an address, SIPP conducts the search up to, but not
including, that address.

After you have specified the search limits, the search begins. Each time
SIPP finds a value that matches the one you specified, SIPP prints out the
address of that value. If you use the /A option or if SIPP is searching the root
segment of a program, SIPP prints the search results as follows:

Found at nwnnnn

If a search crosses segments in an overlaid file, SIPP prints the following
each time it finds the specified value:

Found at sed:immmsnnn

In the seg:mmm,nnn notation, seg represents the segment number, mmm
represents the load map address of the segment, and nnn represents the off-
set from the start of the specified segment. Note that if you are searching an
overlaid file, and you have specified the /A option in the command line, SIPP
does not use the seg:mmm,nnn notation.

22.4.8 Verifying (;V)

Use the ;V command to list at the terminal all the changes you have made
during the current patching session. After SIPP prints out the addresses
and new contents of all the locations that have changed, SIPP returns you
to the operation that was interrupted.

22-10 Save Image Patch Program (SIPP)

You can use the ;V command at any time, except in response to the Check-
sum? prompt and the search Start?, and End? prompts. You can use the ;V
command in response to the Search for? prompt.

The following example uses the ;V command to list at the terminal all the
changes that have been made during the current patching session.

Base Dffset 01ld New
003000 003200 003112 240RD
003000 003202 002300 @D
003000 003204 002300 ®ED
003000 003206 000230 2406
003000 003210 000101 SVEED

Base Offset 0ld New?
003000 003200 003112 000240
003000 003208 000230 000240

Base ODffset Dld NewT?
003000 Q03210 000101

Note that when you use the ;V command to verify your modifications, all
displays are in octal words. Note also that if you change a location and later
restore that location to its original contents, SIPP includes that location in
the verification.

22.4.9 BackingUpto a Previous Prompt

You can use the CTRL/Z sequence (or up-arrow Z), followed by a carriage
return, to back up to a previous prompt. For example, after you have modi-
fied a series of locations, you can type CTRL/Z, followed by a carriage
return, to back up to the Offset? prompt. Backing up to a previous prompt
enables you to examine and/or modify other series of locations in your
program.

If you use CTRL/Z in place of entering a value into a location, SIPP prompts
Offset?. If you type CTRL/Z, followed by carriage return, in response to
Offset?, SIPP prompts Base?. If you type yet another CTRL/Z, followed by a
carriage return, SIPP either:

1. Prompts Segment?, if the file is overlaid, or

2. Prompts you for a checksum (if you used /C), then installs the patch Gf
the checksum is valid). (Note that if you have used the /L option, SIPP
does not install the patch, but does create the command file, if re-
quested.)

If the file is overlaid, and you type another CTRL/Z followed by a carriage
return sequence in response to Segment?, SIPP prompts you for a checksum
(if specified) then installs the modifications.

Using CTRL/Y provides a more efficient way of installing a patch (see the
following subsection). The CTRL/Z sequence is designed primarily to re-
quest a particular prompt.

Save Image Patch Program (SIPP) 22-11

22.4.10 Completing Code Modifications

You can type the CTRL/Y sequence (or up-arrow Y), followed by a carriage
return, to install the code modifications you have entered. If you have used
the /C option, which requires you to enter a checksum, SIPP will prompt
you for a checksum before it installs the modifications. If the checksum you
type is valid, SIPP then installs the patch. If you have used the /L option
and you enter the correct checksum, SIPP does not install the patch, but
does create the command file, if requested.

After SIPP installs the modifications, an asterisk appears in the left mar-
gin, indicating that SIPP is ready to accept a new command string.

22.4.11 Extending Files and Overlay Segments

The limits to which you can extend programs and overlay segments while
patching vary, depending on if the program is

® Nonoverlaid

® Overlaid, but has only low memory overlays

® Overlaid, but has only extended memory overlays

® Overlaid, and has both low memory and extended memory overlays

The subsections that follow describe‘in detail the restrictions on extending
programs, root sections, and overlay segments. Each subsection also details
what data within your program SIPP does or does not automatically modify
as you extend root sections and/or overlay segments.

Listed below are the data that SIPP may automatically modify as you make
extensions. (Note that each is identified by an abbreviation; the subsections
that follow reference these data by their abbreviations.)

Location 50 Contains the last address used by the program, if
the program is nonoverlaid. If the program has low
memory overlays, location 50 contains the last
address used by the low memory overlay region(s).
If the program has only extended memory overlays,
location 50 contains the last address used by the

root.

Reg. Size Indicates the size of the extended memory region.
This data appears in the extended memory overlay
handler.

High Root + 2 Indicates the address of the next available location

beyond the root segment. This data appears in
either the low memory overlay handler or the
extended memory handler.

22-12 Save Image Patch Program (SIPP)

——

High /0 + 2 Indicates the address of the next available loca-
tion beyond the last low memory overlay region.
This data appears in either the low memory

overlay handler or the extended memory overlay
handler.

Wdent. in Seg. Indicates the number of words in the current
overlay segment. This data appears in the over-
lay handler segment table.

WDB Size and Length Indicates the window size and length to map in
the window definition block (WDB) for the ex-
tended memory overlay you are extending. This
data appears in each extended memory overlay
segment’s WDB.

WDB Offset Indicates the offset into the extended memory
region of the windows following the segment you
are extending. This data appears in each ex-
tended memory overlay segment’s WDB.

22.4.11.1 Nonoverlaid Program — If necessary, SIPP automatically extends
a nonoverlaid program up to the end of the last block of the save image on
which the program exists (SIPP automatically modifies location 50). Refer
to DUP (Chapter 6) for details on extending a nonoverlaid program beyond
that point.

22.4.11.2 Overlaid Program, Low Memory Overlays Only — If your program is
overlaid, but has only low memory overlays, SIPP does not permit you to
extend the root. If an overlay segment is not in the last overlay region, you
can extend it to the size of the largest segment in its region. If the overlay
segment is in the last overlay region, you can extend it to the end of the last
block of that overlay segment.

Table 22—-3 shows the locations that SIPP modifies if necessary when you
extend the root or overlay segment of a program that has low memory
overlays only. Note in this table that there is a column heading for an
overlay segment that is not the largest in its overlay region (Not Largest in
Region), and for an overlay segment that you extend beyond the largest
overlay segment in its region (Past Largest in Last Region). YES indicates
that SIPP does modify the data in question if necessary, NO indicates SIPP
does not modify the data in question, and N/A indicates that the data in
question is not applicable.

22.411.3 Overlaid Program, Extended Memory Overlays Only — If your pro-
gram is overlaid, but has extended memory overlays only, you can extend
the root segment up -to the end of the last block on which the root resides.
You can also extend any overlay segment up to the end of the last block of

that particular segment, so long as you do not exceed the physical address
space.

Save Image Patch Program (SIPP) 22-13

Table 22-3: Overlaid Program Segment Limits

Not Largest Past Largest
in Region in Last Region

Location 50 NO YES
Reg. Size N/A N/A
High Root + 2 NO NO

High/O + 2 NO YES
Wdcent. in Seg. YES YES
WDB Size and Length N/A N/A
WDB Offset N/A N/A

Table 22—4 shows the locations that SIPP modifies if necessary when you
extend the root or overlay segment of a program that has extended memory
overlays only. Note in this table that there is a column heading for the root
(Root), an overlay segment that is not the largest in its overlay region (Not
Largest), and an overlay segment that you extend beyond the largest over-
lay segment in its region (Past Largest). YES indicates that SIPP does
modify the data in question if necessary, and NO indicates SIPP does not
modify the data in question.

Table 22—4: Overlaid Program Segment Limits

Root NotLargest Past Largest
Location 50 YES NO NO
Reg. Size NO YES YES
High Root + 2 YES NO NO
High/O + 2 YES NO NO
Wdent. in Seg. NO YES YES
WDB Size and Length NO YES YES
WDB Offset NO YES YES

22.4.11.4 Overlaid Program, Both Low Memory and Extended Memory Overlays
— If your program has both low memory and extended memory overlays,
SIPP does not permit you to extend the root segment. You can extend any
low memory overlay segment up to the size of the largest segment in the
same region. If the low memory overlay segment is in the last low memory
overlay region, you can extend it to the end of the last block of that overlay
segment.

22-14 Save Image Patch Program (SIPP)

You can extend any extended memory overlay segment up to the end of the
block limit of that particular segment, so long as you do not exceed your
physical address space.

Table 22-5 shows the locations that SIPP modifies if necessary when you
extend the root or overlay segment of a program that has both low memory
and extended memory overlays. Note in this table that there is a column
heading for a low memory overlay segment that is not the largest in its
overlay region (/O Not Largest), a low memory overlay segment that ex-
tends beyond the largest segment in its region (/O Past Largest), an ex-
tended memory overlay segment that is not the largest in its region (/V Not
Largest), and an extended memory overlay segment that extends beyond
the largest segment in its region (/V Past Largest). YES indicates that
SIPP does modify the data in question if necessary, and NO indicates SIPP
does not modify the data in question.

Table 22-5: Overlaid Program Segment Limits

/0 10 A" v
NotLargest PastLargest NotLargest Past Largest

Location 50 NO YES NO NO
Reg. Size NO NO YES YES
High Root + 2 NO NO NO NO
High/O + 2 NO YES NO NO
Wdent. in Seg. YES YES YES YES
WDB Size and Length NO NO YES YES
WDB Offset NO NO YES YES
NOTE

It is possible when extending extended memory overlay seg-
ments to exceed the 96K word physical address space (SIPP
prints a warning message if you do this). If you do exceed the
96K word limit, use the CTRL/C sequence to abort the patch-
ing session; many system communication area locations will
have already changed to contain invalid data.

225 SIPP Checksum

SIPP’s checksum algorithm creates the checksum only after you have fin-
ished creating a patch. The checksum helps you verify your work. It lets you
compare the patch you make to another that is known to be correct. The
checksum does not tell you where your error is, but it does tell you that an
inconsistency exists. SIPP’s checksum algorithm uses the calculated address
of a changed location and its new contents. SIPP includes in its checksum
only those values of locations that have changed during a patching session.

Save Image Patch Program (SIPP) 22-15

If you change a word several times during a patching session, SIPP enters
into its checksum only the last value you specify. This feature allows you to
correct a mistake, yet maintain a valid checksum.

If you are creating a checksum (/D option), SIPP prints the following when
you finish the patch:

ChecKsum=nnnnnn

If you are verifying a checksum (/C option), SIPP asks the following when
you complete the patch:

ChecKsum?

Respond by entering the checksum for the patch.

If the checksum is incorrect, SIPP prints:

TSIPP~E~ChecKksum error

SIPP then returns to the beginning of its dialog (the Segment? or Base?
prompt), allowing you to find and correct your error without exiting from
the patching session. In this way, you do not lose the changes you have
made; you can go back and verify them (see Section 22.4.8 for details on the
verify command).

SIPP does not install the patch until you enter the correct checksum. You
can type CTRL/C to abort the patching procedure.

22.6 Running SIPP from an Indirect File

The SIPP indirect command file contains the commands necessary to in-
stall a patch in a particular file or volume. The order in which the modifica-
tions appear in the command file may not correspond to the actual sequence
in which you typed them; however, the changes are the same as you typed.
The contents of the command file always appear as octal word values.
When you specify a command file in the initial command string, SIPP
creates that file for use as an indirect command file. If you use the /L option
when you create the command file, SIPP installs the patch contained
within only when you run this file as an indirect command file. By default,
SIPP assigns this file a .COM default file type.

A command file always contains a checksum generated during the console
input session. If you use the /C option, SIPP prompts you for a checksum
after you finish making the code modifications. If the checksum is valid,
SIPP completes this command file, and you can execute this command file
at any time you wish. If you use the /A option, SIPP inserts /A in the
command file.

The command file TEST.COM is created in the following example. (Note
that SIPP does not modify TEST.SAV in the example, because /L was speci-
fied in the command string.)

22-16 Save Image Patch Program (SIPP)

+ R SIPPGED

* TEST=TEST/LED
Base? SO00ED
Offset? Z0O@D

- Base Offset Old New
NO3000 QOO0DZO0 032764 24060
Q03000 NON022 177400 240@H)
QO3000 Qo0o24 QOOO02 101GRE)
005000 0000286 001016
* CRLO

A copy of TEST.COM as it appears in indirect command file format follows.

+ TYPE TEST.COM
RUN SIPP
DK:TEST.S5AV/C
5000

20

240

240

1016

“y

165617

“C

The number 165617 (the last line in the file) is the checksum for that patch.

To run the command file TEST.COM as an indirect file, type the following in
response to the monitor dot.

BTESTEE

If you run a SIPP indirect command file when the SET TT: QUIET setting is
in effect, SIPP overstrikes its output at the terminal but does install the
patch correctly.

20.7 Running SIPP from a Batch Stream

An easy way to install a patch from a BATCH stream is to follow the instruc-
tions for creating a command file. When you get your command file, simply
open it with an editor, enter the BATCH commands, and insert a dot before
the line RUN SIPP, and insert asterisks before each subsequent line.
Remember to remove the CTRL/C (AC) from the command file. An example
of preparing TEST.COM (from the previous section) for a BATCH stream
follows. :

$J0B/RT11
TTYIO

+RUN SIPP

#DK:TEST.SAV/C

#5000

*#20

#240

*240

#1016

%Y

#165617

$EOJ

Save Image Patch Program (SIPP) 22-17

Chapter 23
Source Language Patch Program (SLP)

The source language patch program (SLP), is a patching tool you can use
for maintaining source files that exist on any RT-11 device.

SLP accepts as input a source file you wish to patch and a command file
that you create when you compare two source programs using the source
compare program, SRCCOM, described in Chapter 15. When you use SLP
along with the SRCCOM command file, you can quickly and easily patch
one version of a source program to match another version.

Chapter 15, Source Compare Program (SRCCOM), describes the procedure
you can use to create a patch command file that is suitable for input to SLP.

23.1 Calling and Terminating SLP

To call SLP from the system device, type the following in response to the
keyboard monitor dot (.): ‘

‘R SLPEED

The Command String Interpreter (CSI) prints an asterisk (*) at the left
margin of the terminal and waits for a command string. If you enter only a
carriage return in response to the asterisk, SLP prints its current version
number. You can type CTRL/C to halt SLP and return control to the moni-
tor when SLP is waiting for input from the console terminal. To restart
SLP, type R SLP or REENTER in response to the monitor’s dot.

23.2 SLP Command String Syntax

Chapter 1, Command String Interpreter, describes the general syntax of
the command line that SLP accepts.

Enter a command line according to this general syntax:
[outfill[,listfil] = infil,comfil/{option...]

where:

outfil represents the updated source file. The default file type is
MAC.

23-1

listfil represents the listing file. When you specify this file, SLP
creates a numbered listing of the updates SLP made to the
source file. The default file type is .LST.

infil represents the source file you want SLP to update. The
default file type is . MAC.

comfil represents the command file that contains the commands
for updating the source file. The default file type is .MAC.
You can create this file by specifying a SLP-filespec in a
SRCCOM command line. A SLP input file created by
SRCCOM has the file type .SLP.

/option represents one of the options listed in Table 23-1.

Although either output files can be omitted, you must use ohe or both.

23.3 Options

Table 23-1 lists the options you can use in the command line.

21.4 Example

This section uses SLP to patch the source file, ANTONY.MAC, so that it
matches the source file CAESAR.MAC. CAESAR.MAC consists of the fol-
lowing lines.

FRIENDS» ROMANS s COUNTRYMEN!
LEND ME YOUR EARS!

I COME TD BURY CAESAR:

NOT TO PRAISE HIM.

THE EWIL THAT MEN DO

LIVES AFTER THEM.

THE GOOD IS DFT INTERRED
WITH THEIR BONESS

S0 LET IT BE WITH CAESAR!

The file this example will patch, ANTONY.MAC, follows.

FRIENDS, ROMANS, COUNTRYMEN!
LEN ME YOUR EARS!

I COME TO BURY CAESAR:

NOT TO PRAISE HIM,

THE EVIL THAT MAN DO

LIVES AFTER THEM.

THE GOOD IS OFT ENTERED

WIT THEIR HOMESS

80 LET IT BE WITH CAESAR!

23-2 Source Language Patch Program (SLP)

A

Table 23-1: SLP Options

Option

Function

~ /A

/B
/Cl:n]

/D

/Lin

/N
/P:n

/S:in

/T

Disables audit trail generation. The audit trail is a string of characters that SLP
appends to the end of each updated line in the output files. The audit trail keeps
track of the update status of each line in the output file. You can use the /A option
if you do not want SLP to use the audit trail in both the updated source file and
the listing file.

Inserts spaces instead of tabs between the source line and the audit trail.

Determines or validates the contents of the SLP input file, SLP command file, or
both by using checksums. Use /C to determine the checksum of a file. Use /C:n to
verify the contents of a file. SLP computes the checksum for the file, and compares
the result to the value you specify with n.

Creates a double-spaced listing. When you use this option, SLP double-spaces
between the lines in a listing file.

* Specifies the size of the source line, where n represents the maximum number of

characters you want in the source line. The default buffer size for formatting lines
is 200(decimal) bytes. If you expect the size of the command lines or source lines to
be greater than what can fit in the line buffer, you can use this option to change
the buffer size. SLP interprets the number you specify for n as an octal number; if
you enter a decimal number, use a decimal point. The line buffer must be at least
as long as the sum of the column number where the audit trail begins and the
number of characters in the audit trail.

Suppresses the creation of a backup file when SLP updates the input file.

Specifies the start column of the audit trail, where n represents the column num-
ber in which you want the audit trail to start. If the number you specify for n is
decimal, be sure to use a decimal point after the number. By default, SLP starts
the audit trail in column 73 (decimal). If a source line extends beyond the column
where the audit trail begins, the audit trail can overstrike the source line. If you
use the /P:n option, you start the audit trail in any tab stop column. SLP rounds
up the number you specify to the nearest tab stop column. If, for example, you
specify 46 for n, SLP rounds this number to 49.

Specifies size of the audit trail, where n represents the number of characters you
want in the audit trail. If the number you specify is decimal, be sure to use a deci-
mal point after the number. The default number of characters in the audit trail is
12(decimal). The maximum number of characters you can specify for the audit
trail is 16(decimal).

Retains trailing blanks and tabs in the input source file, By default, SLP removes
spaces and tabs that appear at the end of lines in the input source file.

| By specifying a SLP-filespec in a SRCCOM command line, this example

obtains a command file, CAESAR.SLP. CAESAR.SLP contains the neces-
sary commands to make ANTONY.MAC match CAESAR.MAC. The follow-
ing command line directs SLP to patch ANTONY.MAC so that it matches
CAESAR.MAC.

* R SLP

* ANTONY sANTONY=ANTONY »CAESAR,SLP

Source Language Patch Program (SLP) 23-3

After executing the command above, SLP assigns a .BAK file type to the
input file ANTONY.MAC. It assigns .MAC file type to the updated source
file. SLP has also created a listing of ANTONY.MAC that lists each line by
number and appends an audit trail to each new line. The updated file,
ANTONY.MAC, is now identical to CAESAR.MAC. ANTONY.LST appears

below.
SLP VOS,00 ANTONY ANTONY=ANTONY . MAC +CAESAR . SLP
1, FRIENDS: ROMANS, COUNTRYMEN! SR ENEW**
2, LEND ME YDUR EARS! juk-1
3, 1 COME TD BURY CAESAR,
4, NGT TO PRAISE HIM. TR ENEW**
5, THE EYIL THAT MEN DO TN
G, LIVES AFTER THEM, PR RNEW*#
7, THE GOOD IS OFT INTERRED s RNEW**
8, WITH THEIR BONES; T%-2

9, 50 LET IT BE WITH CAESAR!

Note that when SLP updates a line, it appends an additional audit trail
below the audit trail of the updated line. The additional audit trail keeps
track of the number of consecutive lines that have been updated. In
ANTONY.LST, above, note the audit trails ;**~1 and ;**-2.

23.5 Creating and Maintaining a Command File

SLP is a line-oriented patching tool. That is, you make changes to entire
lines, and not to individual characters or strings of characters within a line.
If you want to change only a few characters within a line, it will be neces-
sary for you to enter a new line.

Although DIGITAL recommends that you create the SLP input command
file by specifying a SLP-filespec in a SRCCOM command line, you can use
any RT-11 editor to create it yourself. The section that follows describes
the commands, or operators, you use to create the command file. This proce-
dure is tedious, however, and in most cases unnecessary. But for complete-
ness, this procedure is included with this chapter. Table 23-2 lists the
commands, or operators, you enter into the command file.

The section ends with a description of various line manipulations that SLP
can effect.

23.5.1 Update Line Format
The general format of the SLP command file update line follows.

-locatorl,[locator2],[/audit trail/l[;]
inputline

23-4 Source Language Patch Program (SLP)

R

Table 23-2: SLP Command File Operators

Operator

Function

%

1

Indicates the start of an update. SLP ignores any data that precedes this
operator in a SLP command file. If SLP finds characters before this operator
in a command file, SLP prints a warning and the characters are ignored. If no
operator of this type is found in a command file, SLP prints an error message
and the CSI prompt (*) appears.

Disables the audit trail. Note that this operator must appear on a line by
itself. If it appears in the first column of a line with additional information
following it, the audit trail will be disabled, but the rest of the command line
will be ignored. If used in any column other than column one, a syntax error
occurs.

Enables the audit trail.

Indicates the end of an update or a series of updates; it appears as the last
character in the command file.

Indicates the end of one of a series of update texts in a single command file;
each text updates one input file. This operator is used when you want to
include updates for more than one file in a single command file. Type the dou-
ble slash (/) on a line by itself after each update text in the series. Then type
on the next line the command line that specifies the next input file to be
updated, and on the succeeding lines the update text for that file. Note that
the command file specified in each command line must be the same as the
command file specified on the first command line.

Serves as an escape character for characters SLP would otherwise interpret
as operators. For example, if you want to include a slash (/) in a source file,
type the less-than character (<) before the slash. Then, SLP will not interpret
the slash as an operator. You can use the less-than character as an escape
character for all SLP command file operators.

where:

indicates that this is an update line..

locatorl represents a character string that serves as a line locator.

SLP moves the line pointer to the line specified by the
line locator. You can specify this line locator with any of
the locator forms described below.

locator2 represents a character string that, when used with loca-

torl, defines the end of a range of lines you want to delete
or replace. You can specify this line locator with any of
the locator forms described below. You cannot define a
range of lines in a backwards direction; the line refe-
renced by locator2 must occur in the source file after the
line referenced by locatorl.

/audit trail/ represents a character string you use as an audit trail.

SLP appends the audit trail to the right of each updated
line. You must delimit the audit trail with slashes (/).

.

Source Language Patch Program (SLP) 23-5

inputline represents a line of new text that SLP inserts into the file
immediately following the current line. You can enter as
many input lines as you want.

; 1s an optional command line terminator.

All fields in the update line are positional. That is, if you specify only loca-
torl and an audit trail, you must use two commas between those two fields.
If you want to specify only the audit trail, you must precede the audit trail
with two commas.

The update lines in a command file must edit the source file in a forwards
direction, from beginning to end. Each locatorl must point to a line that
appears in the source file before the lines pointed to by any succeeding
locatorl.

The line locators can take one of the following forms:

/string/[+ n]
/string...string/[+n]
number|[+ n]

.+n

where:

/string/{ +n] represents an ASCII character string. You must
delimit any string you enter with slashes. SLP
locates the first occurrence of this string, and
moves the line pointer to the line that contains
that string. + n represents the offset from the line

that contains the string. You must use the plus
character (+) with the n notation.

/string...string/[+ n] represents an ASCII character string. SLP locates
the line in which the two strings delimit a larger
string. Use the ellipsis (...) in this locator form to
separate the two strings. + n represents the offset
from the line specified by the string...string
locator.

number| + n] represents the line number to which SLP is to
move the line pointer. +n represents the offset
from the line specified by number.

.+n represents the offset from the current line pointer.
SLP interprets the period (.) as the current line
pointer location, and the +n as the offset from it.
You must use the plus character (+).

23.5.2 Creating a Numbered Listing

You can use SLP to create a numbered listing of the input source file. In cre-
ating a command file, you should use a numbered listing when you prepare
command input. To generate a numbered listing, enter the following lines:

+ R SLP
¥ ylistfile=infile

23-6 Source Language Patch Program (SLP)

Listfile represents the listing file SLP produces, and infile represents the
input source file. Here is a file, PROG.MAC, from which SLP is to create a
numbered listing:

WP

FIRST:

+TITLE. PROG.MAC
+MCALL . TTYOUT

+PRINT #MESSAG

Mow #N RS
MOW #N+1 RO
MoV - #AIR1

VERSION 1

+EXITy +PRINT

The following command line creates a numbered listing, PROG.LST of the
file above, PROG.MAC:

* »PROG=PROG

After SLP processes the command above, it produces the following listing of

PROG.MAC:

SLP WOS5,00
1, +TITLE
3. +MCALL
4,
g KPP +PRINT
B Moy
7 FIRST: MOV
8. Moy

+PROG=PROG,MAC
PROG.MAC VERSION 1
S TTYOUT s +EXIT» +PRINT
#MESSBAG
#N RS

#N+1 R0
#AR1

23.5.3 Adding Lines to a File

To add lines to a file, enter in the command file one of the three locator
forms below:

-number

-[+nl,,[/audittrail/]

-/string/

Notice in the second locator form the two commas between the locator and
the audit trail. You do not have to insert these commas if you are not specify-
ing an audit trail. '

Below isa file, NUMBER.PAS, to which SLP is to add new lines.

PROGRAM NUMBER?

TYPE

VAR

TEX
PTR
WORDNODE=RECORD

FILE OF CHAR:
“WORDNODE 3

WORD:ARRAYL1,,301 OF CHAR}

NEXT:PTR

ENDJ

P+TOP tPTRS
INTEXT :TEXTs

I 1 INTEGER 3

Source Language Patch Program (SLP)

23-7

SLP is to insert the following line between the fourth and fifth lines of
NUMBER.PAS.

The command file, OMEGA.MAC, contains the following update 1 to per-
form this procedure.

-/PTR/
(#*POINTER TO NODE#*)
/

When SLP processes OMEGA MAC with NUMBER.PAS, it produces the
following updated listing file.
SLP V05,00 ‘ NUMBER . PAS yNUMBER=NUMBER . PAS s OMEGA . MAC

1+ PROGRAM NUMBER$

“~

3. TYPE TEX =FILE OF CHAR]

4. PTR ="WORDNODE }

S+ (#POINTER TO NODE#)- FHENEW**
G. WORDNODE=RECORD

7. WORD:ARRAYL1.,.301 OF CHARS
8. NEXT:PTRS

9. END 3

16, ’

11, VAR P+TOP tPTRS

12, INTEX TTEXTS

13. I tINTEGER S

SLP has numbered the lines, inserted the new text, and appended the
default audit trail ;**NEW**) to the new line.

The next example use.s the same source file, but uses this command in the
command file, SIGMA.MAC:

-/WORDNODE=/+2
ID :INTEGERS
/

When SLP processes SIGMA.MAC with the source file NUMBER.PAS, it
generates the following listing file:

SLP W05, 00 NUMBER.PAS yNUMBER=NUMBER .PAS5+SIGMA.MAC

1. PROGRAM NUMBER

3. TYPE TEXT =FILE OF CHAR]

4, PTR ="WORDNODE §

3. WORDNODE=RECORD .

B WORD:ARRAYEL1,.30] OF CHAR}
7. NEXT:PTR

8. ID :INTEGER}

9. END e NEW**
10,

11+ VAR P+TOP tPTR

12, INTEX tTEXTS

13. I tINTEGERS

23-8 BSource Language Patch Program (SLP)

Again, SLP has numbered the lines, and this time it skips two lines after the
first occurrence of string WORDNODE before inserting the new input line.

You can include in one command file update text for several input files. Type
a double slash (/) on a line by itself at the end of the update text for each file.
Begin the update text for the next file with a line containing only the com-
mand line that specifies the input file to be updated by the next text. Then
type the update text on the lines that follow the command line. Type a slash
(/) at the end of the command file.

For example, the command file MTST.MAC contains update text to patch
the files NUMBER.PAS and GTMSG.MAC, in that order.

-/WORDNODE=/+2

ID :INTEGER3:
/7
DYO:NEWMBG=GTMSG MACyMTET MAC

Qo
£l

JIDENT /01,017
-7
ADD A+B
-14
B: .WORD 0
/

23.5.4 Deleting Lines in a File

The SLP command file command syntax for deleting lines from a file is:
-locatorl,locator2,[/audittrail/][;]

where locatorl and locator2 can be any of the forms of the locator fields
described earlier. locatorl specifies the line where SLP is to begin deleting
lines. locator2 specifies the last line SLP is to delete.

If you want to delete lines five through eight in file NUMBER.PAS, it will be
helpful to look at a numbered listing of NUMBER.PAS.

SLP U05.,00 +NUMBER=NUMBER .PAS

1+ PROGRAM NUMBERS

2

aars

3. TYPE TEXT =FILE OF CHAR3

a4, PTR ="WORDNODE 3

S WORDNODE=RECORD

G WORD:ARRAYL1..301 OF CHARS
7 NEXT:PTRS

= END 3

9,

10, UAR P+TOP tPTRS

11, INTEXT :TEXTS

2, I s INTEGER S

In the command file, GAMMA.MAC, the command for deleting lines five
through eight follows.

-/WHORDNODE=/ +/END/
/

Source Language Patch Program (SLP) 23-9

When SLP processes GAMMA.MAC with NUMBER.PAS, it produces this
listing file of NUMBER.PAS.

SLP VOS.00 NUMBER ., PAS sNUMBER=NUMBER .PAS ;GAMMA . MAC

1+ PROGRAM NUMBER;3

e

3+ TYPE TEXT =FILE OF CHAR:

a4, PTR ="ORDNDDE 3

3 ixx-d
6. VAR P:TOP :PTRS :

7 INTEXT :TEXT:

8. I :INTEGER 3

23.5.5 Replacing Lines in a File

When you replace lines, you delete and then add new text. To replace lines
in a file, first enter the full SLP edit command for the delete operation. The
first line locator specifies the first line to be deleted. The second line locator
specifies both the last line to be deleted and the location where SLP is to
insert new text. For example, the command file command instructs SLP to
move the line pointer to line 4.

—ll L] +ll
Then, SLP is to delete the next four lines (represented by +4), including line

4. Finally, SLP is to insert input lines that follow in the command file. SLP
inserts the new lines, beginning at the line pointer’s current location.

The following example illustrates replacing lines in a file. The source file,
BETA.MAC, consists of the following lines:

+TITLE BETA,MAC

+MCALL fTTYOUT s «PRINT, LEXIT
START: +PRINT #MESSAG
Moy #5 3RO

The command file, DELTA.MAC, contains:

-64+6+/3AUDIT TRAIL/
BNE START:
MOWB (RZ)+-(R3)

/

When SLP processes DELTA.MAC with BETA.MAC, it produces the follow-
ing listing file: o

SLP WO5.,00 BETABETA=BETA;DELTA.MAC

1 +TITLE BETAMAC

3 JMeaLl +TTYOUT s WPRINT, JEXIT

4. i

5. GSTART: +PRINT #MESSAG

G BNE START: SAUDIT TRAIL
7 MovB (R2) +-(R3) JAUDRIT TRAIL

23-10 Source Language Patch Program (SLP)

23.5.6 Determining and Validating the Contents of a File

Use the checksum option (/C[:n)) to determine or validate the contents of a
file. The checksum option directs SLP to compute the sum of all ASCII data
in a file. If you specify the command in the form /C:n, /C directs SLP to com-
pute the checksum and compare that checksum to the value you specify as n.

To determine the checksum of a file, enter the SLP command line with the /C
option applied to the appropriate file (the file whose checksum you want to
determine). For example, SLP responds to the command

INFILEsINFILE=INFILE.MAC/C+INFILE.SLP

with the message

PSLP-I1-DEV:FILNAM.TYP checKksum is n

SLP generates a similar message when you request the checksum for the
command file.

To validate the changes made to a file, enter the checksum option in the
form /C:n. SLP compares the value it computes for the checksum with the
value you specify as n. If the two values do not match, SLP enters no changes
and displays a message reporting the checksum error as either a source file
or a correction file checksum error, whichever is appropriate.

?SLP-F-Source file checKsum error
or
?SLP-F-Correction file checKsum error

Checksum processing always results in a nonzero value.

Do not confuse this checksum with the record checksum byte.

S.Qurce Language Patch Program (SLP) 23-11

Appendix A

BATCH

RT-11 BATCH is a complete job control language that allows RT-11 to oper-
ate unattended. BATCH processing is ideally suited to frequently run pro-
duction jobs, large and long-running programs, and programs that require
little or no interaction with you, the user. With BATCH, you can prepare
your job on any RT-11 input device and leave it for the operator to start and
run.

RT-11 BATCH permits you to:
@ Execute an RT-11 BATCH stream from any RT-11 input device
@ Output a log file to any RT-11 output device (except magtape or cassette)

@ Execute the BATCH stream with the SJ monitor or in the background
with the FB monitor or XM monitor

e Generate and support system-independent BATCH language jobs

@ Execute RT-11 monitor commands from the BATCH stream

RT-11 BATCH consists of the BATCH compiler and the BATCH run-time
handler. The BATCH compiler reads the batch input stream you create,
translates it into a format suitable for the RT-11 BATCH run-time handler,

~ and stores it in a file. The BATCH run-time handler executes this file with

the RT-11 monitor. As each command in the batch stream executes, BATCH
lists the command, along with any terminal output generated, by executing
the command on the BATCH log device.

A.1 Hardware and Software Requirements

You can run RT-11 BATCH on any single-job foreground/background or
extended memory system that is configured with at least 16K words of
memory. A line printer, although optional, is highly desirable as the log
device.

BATCH uses certain RT-11 system programs to perform its operations. For
example, the $BASIC command executes the file BASIC.SAV. Make sure
that the following RT-11 programs are on the system device, with exactly
the following names, before you run BATCH:

BASIC.SAV (BASIC users only)
BA.SYS

.BATCH.SAV
CREF.SAV (MACRO users only)

- SYSLIB.OBJ (FORTRAN and MACRO users)
FORTRA.SAV (FORTRAN users only) '
LINK.SAV
MACRO.SAV ¢ (MACRO users only)

PIP.SAV
DIR.SAV

A.2 Control Statement Format

A-2 BATCH

For input to RT-11 BATCH, you can generate a file with the RT-11 editor
and use any RT-11 input device, or you can use punched cards from the card
reader. In both cases, the input consists of BATCH control statements. A
BATCH control statement is divided into three fields, separated from one
another by spaces: command fields, specification fields, and comment fields.
The control statement has the syntax: ,

$command/option specification/option [lcomment]

Each control statement requires a specific combination of command and
specification fields and options (see Section A.4). Control statements cannot
be longer than 80 characters, excluding multiple spaces, tabs, and com-
ments. You can use a hyphen (-) as a line continuation character to indicate
that the control statement is continued on the next line (see Table A—4).
Even if you use the line continuation character, the maximum control state-
ment length is still 80 characters.

The following example of a $FORTRAN command illustrates the various
fields in a control statement.

$FORTRAN/LIST/RUN PROGA/LIBRARY PROGB/EXE !'RUN FORTRAN

command/options spec fields/options comment field

A.2.1 Command Fields

The command field in a BATCH control statement indicates the operation to
be performed. It consists of a command name and certain command field
options. Indicate the command field with a $ in the first character position
and terminate it with a space, tab, blank, or carriage return. :

g

A.2.1.1 Command Names — The command name must appear first in a
BATCH control statement and have a dollar sign ($) in the first position of
the command (for example, $JOB). No intervening spaces are allowed in the
command name. BATCH recognizes only two forms of a command name: the
full name, and an abbreviation consisting of $ and the first three characters
of the command name. For example, you can enter the $FORTRAN com-
mand as:

$FORTRAN

or

$FOR

You cannot enter it as:

S$FORT

or

$FORTR

A.2.1.2 Command Field Options — Options that appear in a command field
are command, qualifiers. Their functions apply to the entire control state-
ment. All option names must begin with a slash (/) that immediately follows
the command name. Table A-1 describes the command field options for
BATCH and indicates the commands on which you can use them. Those
option characters that appear in square brackets are optional. The command
field options are described in greater detail in the sections dealing with the
appropriate commands.

NOTE

All /NO options are the defaults, except the /WAIT option in
the $SMOUNT and $DISMOUNT commands and the /OBJECT
option in the $LINK command. ‘

A.2.2 Specification Fields

Specification fields immediately follow command fields in a BATCH control
statement and apply only to the fields they follow. Use them to name the
devices and files involved in the command. You must separate these fields
from the command field, and from each other, by blanks or spaces.

If a specification field contains more than one file to be used in the same
operation, separate the files by a plus (+) sign. For example, to assemble
files F1 and F2 to produce an object file F3 and a temporary listing file, type:

$MACRG/LIST F1+F2/S0URCE F3/0BJECT

BATCH A-3

Table A~1: Command Field Options

Option

Function

/BAN[NER]
/NOBAN([NER]
/CRE[F]

/NOCRE(F]
/DELIETE]

/NODEL{ETE]
/DOL{LARS]

/NODOL{LARS]

/LIB[RARY]

/NOLIB[RARY]
/LIS[TI

/NOLIS[T]
/MAP

/NOMAP
/OBJ[ECT]

Prints the header of the job on the log file. BATCH allows this
option only on the $JOB command. Note that BATCH outputs the
$JOB command line to the log device sixty times.

Does not print a job header. TS

Produces a cross-reference listing during compilation. BATCH
allows this option only on the $MACRO command.

Does not create a cross-reference listing.

L

Deletes input files after the operation completes. BATCH allows

“this option on the $COPY and $PRINT commands.

Does not delete input files after operation completes.

The data following this command can have a $ in the first character
position of a line. BATCH allows this option on the $CREATE,
$DATA, $FORTRAN, and $MACRO commands. BATCH termi-
nates reading data when you use one of the following commands or
when it encounters a physical end-of-file on thé BATCH input
stream:

$J0B $EOD
$SEQUENCE $EO0J

The data following this command cannot have a $ in the first char-

acter position; a $ in the first character position means a BATCH
control command.

Includes the default library in the link operation. BATCH allows
this option on the $LINK and $MACRO commands.

Does not include the default library in the link operation.

Produces a temporary listing file (see Section A.2.5) on the listing
device (LST:) or writes data images on the log device (LOG).
BATCH allows this option on the $BASIC, 3CREATE, $DATA,
$FORTRAN, $JOB, and $MACRO commands. When you use /LIST
on the $JOB command, /LIST sends data lines in the job stream to
the log device (LOG:).

Does not produce a temporary listing file.

Produces a temporary link map on the listing device (LST).
BATCH allows this option on the $FORTRAN, $LINK, and
$MACRO commands.

Does not create a MAP file.

Produces a temporary object file as output from compilation or
assembly (see Section A.2.5). BATCH allows this option on the
$FORTRAN, $LINK, and $MACRO commands. When you use
/OBJECT on $LINK BATCH 1nc1udes temporary files in the link -
operatlon

A—4 BATCH

(Continued on next page)

Table A-1: Command Field Options (Cont.)

Option Function
" INOOBJI[ECT] Does not produce an object file as output of compilation; with
$LINK, does not include temporary files in the link operation.
/RT11 Sets BATCH to operate in RT-11 mode (see Section A.5). BATCH
allows this option only on the $JOB command.
/NORT11 Does not set BATCH to operate in RT-11 mode.
/RUN Links (if necessary) and executes programs compiled since the last

link-and-go operation or start of job. BATCH allows this option on
the $BASIC, SFORTRAN, $LINK, and $MACRO commands.

/NORUN Does not execute or link and execute the program after performing
the specified command.

/TIM[E] Writes the time of day to the log file when BATCH executes.
BATCH allows this option only on the $JOB command. This com-
mand writes the time after each command that begins with a dollar

sign (3).
/NOTIM[E] Does not write the time of day to the log file.
/UNI[QUE] Checks for unique spelling of options and keynames (see Section
, A.4.13). BATCH allows this option only on the $JOB command.

/INOUNI[QUE] Does not check for unique spelling. k

WAI[T] Pauses for operator action. BATCH allows this option on the
$DISMOUNT, $MESSAGE, and $SMOUNT commands.

/INOWAI[T] Does not pause for operator action.

/WRI[TE] Indicates that the operator is to WRITE-ENABLE a specified
device or volume. BATCH allows this option only on the MOUNT
command. ’

/NOWRII[TE] Indicates that no writes are allowed or that the specified volume is

read-only; informs the operator, who must WRITE-LOCK the
appropriate device.

If you need to repeat a command for more than one field specification, sepa-
rate the files by a comma (,). For example, the following command assembles
F1 to produce F2, a temporary listing file, and a-map file F3. It then assem-
bles F4 and F5 to produce F6 and a temporary listing file.

$MACRO/LIST F1/SOURCE F2/0BJECT E3/MAPFU+FS -
FG/0BJECT ‘ ’ ?/SOUREE

Depending on the command you use, specification fields can contain a device
specification, file specification, or an arbitrary ASCII string. You can use an
appropriate specification field option (see Table A-3) with any of these three
items.

BATCH A-5

A-6 BATCH

A.2.2.1 Physical Device Names — Represent each device in an RT-11
BATCH specification field with a standard two- or three-character device
name. Table 3-1 in Chapter 3 of the RT-11 System User’s Guide lists each
name and its related device. If you do not specify a unit number for devices
that have more than one unit, BATCH assumes unit 0.

In addition to the permanent names shown in Table 8-1, you can assign logi-
cal device names to devices. A logical device name takes precedence over a
physical name, thus providing device independence. With this feature, you
do not need to rewrite a program that is coded to use a specific device if the
device is unavailable. For example, DK: is initially assigned to the system
device, but you can assign that name to diskette unit 1 (DX1:) w1th an
RT-11 monitor ASSIGN command.

You must assign certain logical names prior to running any BATCH job.
BATCH uses these logical names as default devices. These names are:

LOG: BATCH log device (cannot be magtape or cassette) »

LST: Default for listing files generated by BATCH stream

The following are not legal device names in RT-11; if you use them, the
operator must assign them as logical names with the ASSIGN command.
You can use these names in BATCH streams written for other DIGITAL
systems.

DF: Fixed-head disk (RF)

LL: Line printer with uppercase and lowercase characters
M7: 7-track magtape

M9: 9-track magtape

PS: Public storage (DK: as assigned by RT-11)

Refer to the ASSIGN keyboard command in the RT—-11 System User’s Guide
and Section A.7.1 in this manual for instructions on assigning logical names
to devices. : :

A.2.2.2 File Specifications — You can reference files symbolically in a
BATCH control statement with a name of up to six alphanumeric characters
followed, optionally, by a period and a file type of three alphanumeric char-
acters. Tabs and embedded spaces are not allowed in either the file name or
file type. The file type generally indicates the format of a file. It is good prac-
tice to confarm to the standard file types for RT-11 BATCH. If you do not

pemfy d file type for an output file, BATCH and most other RT-11 system

programs assign appropriate default file types. If you do not specify a file

type for an input file, the system searches for that file name with a default
file type. Table A2 lists the standard file types used in RT-11 BATCH.

A.2.2.3 Wildcard Construction — You may use wildcards in certain BATC
control statements (such as, $COPY, $CREATE, $DELETE, $DIRECTORY,
$PRINT). You can use the asterisk as a wildcard to designate the entire file
name or file type. See Chapter 4 of the RT-11 System User’s Guide for a com-
plete description of the wildcard construction.

Table A-2: BATCH File Types

File Type ' Explanation

.BAS BASIC source file (BASIC input)

BAT BATCH command file

.CTL - BATCH control file generated by the BATCH compiler

.CTT BATCH temporary file generated by the BATCH compiler

.DAT BASIC or FORTRAN data file

.DIR Directory listing file

FOR FORTRAN IV source file (FORTRAN input)

LST Listing file

.LOG BATCH log file

.MAC " MACRO source file (MACRO or SRCCOM input)

.MAP Link map output from $LINK operation

.OBJ Object file output from compilation or assembly

S0U Temporary source file

SAV Runnable file or program image output from $LINK
NOTE

You cannot use embedded wild cards (* or %) in BATCH con-
trol statements. However, you can use them in the keyboard
monitor commands if you use the RT—11 mode of BATCH.

A.2.2.4 Specification Field Options — Specification field options follow file
specifications in a BATCH control statement and designate how the file will
be used. These options apply only to the field in which they appear. Option
names begin with a slash. The specification field options for RT-11 BATCH
are listed in Table A-3. Optional characters in the option names are in
square brackets.

A.2.3 Comment Fields

Comment fields, which document a BATCH stream, are identified by an
exclamation point (!) appearing anywhere except in the first character posi-
tion of the control statement. BATCH treats any character following the !
and preceding the carriage return/line feed combination as a comment. For

‘example:

$RUN PIP 'DELETE FILES ON DK:

This command runs the RT-11 system program PIP. BATCH ignores the
comment.

BATCH A-7

Table A-3: Specification Field Options

Option : Explanation

/BAS[IC] BASIC source file

/EXE[CUTABLE] Indicates the executable program image file to be created as the
. result of a link operation

/FOR[TRAN] - FORTRAN source file
/INP[UT] Input file; default if you specify no optiox'ls v
/LIB[RARY] Library file to be included in link operation (prior to default
' library)
LIS "+ " Listing file
/LOG[ICAL] Indicates that the device is a logical device name; use in
$DISMOUNT and $MOUNT commands
/MAC[RO] MACRO souI:ce file
/MAP T Linker map file
/OBJ [ECT] Object file (output of assembly or compilation)
/OUT[PUT] Output file
/PHY[SICAL] Indicates physical device name
/SOU[RCE] Indicates source file
/NID Volume identification

You can also include comments as separate comment lines by typing a § in
character position 1, followed immediately by the ! operator and the com-
ment. For example:

$!DELETE FILES ON DK:

A.2.4 BATCH Character Set

The RT-11 BATCH character set is limited to the 64 uppercase characters

~(ASCII 40 through 137). The current ASCII set is assumed (character 137 is

underscore and not left-arrow, and character 136 is circumflex, not up-
arrow). The BATCH job control language does not support any control char-
acters other than tab, carriage return, and line feed.

" Table A—4 shows how BATCH normally interprets certain characters.

A-8 BATCH

Character interpretations are different if you use RT-11 mode (see Section
A.5).

Gyl ml
¥ S

Table A—4: Character Explanation

Character

Explanation

space

0-9

CR/LF

Specification field delimiter. It separates arguments in control state-
ments. BATCH considers any string of consecutive spaces and tabs
(except in quoted strings) as a blank (that is, equivalent to a single
space).

Comment delimiter. The inl):,ut ro:utirlié ig,nlox:es all characters after the
exclamation point, up to the carriage return/line-feed combination.

Passes a text string containing delimiting characters where the nor-
mal precedence rules would create the wrong action. For example, use
it to include a space in a volume identification (/VID).

BATCH control statement recognition character. A dollar sign ($) in
the first character position of a BATCH input stream line indicates
that the line is a control statement.

Delimiter for file type.

Indicates line continuation if the character after the hyphen is one of
the following:

® A carriage return/line feed

® Any number of spaces or tabs followed by a carriage return/line
feed

@ A comment delimiter (!)

@ Spaces followed by a comment delimiter (!)

If any other character follows the hyphen, the hyphen is assumed to
be a minus sign indicating a negative value in an option

Precedes an option name. An alphanumeric string must immediately
follow it.

Numeric string components.

Immediately follows a device name. You can also use it to separate an
option name from its value or to separate an option value from its sub-
value (you can use : interchangeably with = for this purpose).

Alphabetic string components.
Separates an option name from a value.

Illegal character except when it precedes a directive to the BATCH
run-time handler from the operator (see Section A.7.3). (To include \
in an RT-11 mode command, use \ \.) -

File delimiter. Separates multiple files in a single specification field.
Also indicates a positive value in options.

Separates sets of arguments for which the comimand is to be repeated.
A wildeard in utility command file speciﬁcations.

Carriage return/line feed. It indicates end-of-line (or end of logical
record) for records in the BATCH input stream.

BATCH A-9

A.2.5 Temporary Files

When you do not include field specifications in a BATCH command line,
BATCH sometimes generates temporary files. For example, you can enter a
$FORTRAN command that is followed in the BATCH stream by the
FORTRAN source program as:

$FORTRAN/RUN/OBJECT/LIST
FORTRAN source prosram
$EQD

This command generates a temporary source file from the source statements
that follow, a temporary object file, a temporary listing file, and a temporary
memory image file. ' ‘

BATCH sends temporary files to the default device (DK:) or the listing
device (LST:) according to their type. If the device is file-structured, BATCH
assigns file names and file types as follows:

nnnmmm.LST for temporary listing files (sent to LST:)
nnnmmm.MAP for temporary mabp files (sent to LST:)

nnnppp.OBJ for temporary object files (sent to DK:)
OOOOOO.SAV for temporary memory image files (sent to DK:)
nnnppp.SOU for temporary source files (sent to DK:)
where:
nnn represents the last three digits of the sequence number

assigned to the job by the $SEQUENCE command (see
Section A.4.22). Thus, a sequence number of 12345 pro-

duces a file name beginning 345. If you do not use the
$SEQUENCE command, BATCH sets nnn to 000.

mmm represents the number of listing (or map) files BATCH
generated since the BATCH run-time handler (BA.SYS)
was loaded. The first such file, listing or map, is 000.
Each time BATCH generates a new temporary file, it
increments the file name by 1. Thus, the second listing
file produced under job sequence number 12345 is
345001.LST, and the first map file produced is
345000.MAP.

PPP represents the number of object or source files in the cur-
rent BATCH run. The first such file (object or source) is
000. Each time BATCH generates a new temporary file,
it increments the file name by 1. BATCH resets these file
names to 000 every time you run BATCH and after every
$LINK, $MACRO, or $FORTRAN command that uses
the temporary files. '

A-10 BATCH

A.3 General Rules and Conventions

You must adhere to the following general rules and conventions associated
with RT-11 BATCH processing.

1.

Always place a dollar sign ($) in the first character position of a command
line.

. Each job must have a $JOB and $EOJ command (or card).

. You can spell out command and option names entirely or you can specify

only the first three characters of the command and required characters of
the option.

Specify wildcard construction (*) only for the utility commands ($COPY,
$CREATE, $DELETE, $DIRECTORY, and $PRINT) and for commands
that normally accept wildcards in RT—11 mode.

Include comments at the end of command lines or in a separate comment
line. When you include comments in a command line, place them after
the command but precede them by an exclamation mark.

Include only 80 characters per control statement (card record), excluding
multiple spaces, tabs, and comments.

. When you omit file specifications from BATCH commands and supply

data in the BATCH stream, the system creates a temporary file with a
default name (see Section A.2.5).

. You can use the RT-11 monitor type-ahead feature only with BATCH

handler directives (see Section A.7.3) to be inserted into a BATCH pro-
gram. No other terminal input (except input to a foreground program)
can be entered while a BATCH stream is executing.

. You cannot use an indirect command file to call BATCH.

A.4 Commands

Place BATCH commands in the input stream to indicate to the system
which functions to perform in the job. All BATCH commands have a dollar
sign (3) in the first character position (for example, $JOB). Intervening
spaces are not allowed in command names. The command name must
always start in the first character position of the line (card column 1).

BATCH commands are presented in alphabetical order in this chapter for
ease of reference. However, if you are not familiar with BATCH, read the
commands in a functional order as listed in Table A-5. The characters
shown in square brackets are optional.

BATCH A-11

Table A-5: BATCH Commands

Command Section Function

$SEQ[UENCE] A.4.22 Assigns an arbitrary identification number to a job.

$JOB A4.13 Indicates the start of a job.
$EOJ A411 Indicates the end of a job.
$MOUINT] A4.18 Signals the operator to mount a volume on a device and

optionally assigns a logical device name.

$DISIMOUNT] A49 Signals the operator to dismount a volume from a device
and deassigns a logical device name.

$FOR[TRAN] A412 Compiles a FORTRAN source program.

$BASIIC] A4l Compiles a BASIC source program.

$MACIRO] A4.16 Assembles a MACRO source program.

$LIB[RARY] Ad.14 Specifies libraries for BATCH to use in link operations.

$LIN[K] A415 Links modules for execution.

$RUN A421 Causes a program to execute.

$CALI[L] A4.2 Transfers control to another BATCH file, executes that
BATCH file, and returns to the calling BATCH stream.

$CHAIIN] A4.3 Passes control to another BATCH file.

3DATI]A] A46 Indicates the start of data.

$EOD A4.10 Indicates the end of data.

$MES[SAGE] A4.17 Issues a message to the operator.

$COP[Y] Ad4 Copies files.

$CRE[ATE] A45 Creates new files from data included in the BATCH
stream.

$DEL[ETE] A47 Deletes files.

SDIR[ECTORY] A48 Provides a directory of the specified device.

$PRI[NT] A.4.19 Prints files.
$RTI11] A.4.20 Specifies that the following lines are RT-11 mode
commands.

For each command listed below, the term filespec represents a device name,
or file name, and a file type. Filespec has this form:

dev:filnam.typ

As a general rule, BATCH assumes device DK: if you omit a device
specification.

A-12 BATCH

A4.1 $BASIC

The $BASIC command calls RT-11 single-user BASIC to execute a BASIC
source program. The $BASIC command has the following syntax:

$BASIC[/option...] [filespec/option]] [lcomments]

where:

/option indicates an option you can append to the $BASIC com-
mand. The options are as follows:

/RUN " indicates that BATCH should execute the
source program.

/NORUN indicates that BATCH should only com-
pile the program and send error messages
to the log file.

/LIST writes data images that are contained in
the job stream to the log file (LOG:).

/NOLIST writes data images to the log file only if
you specify $JOB/LIST.

filespec indicates the name and type of the source file and the
device on which it resides. If you omit the file type,
BATCH assumes .BAS. If you omit this specification, the
source statements must 1mmed1ately follow the $BASIC
command in the mput stream g N -

Terminate the source program after a $BASIC statement
with either a $EOD command or with any other BATCH
command that starts with a $ in the first position. '

/option indicates an option that can follow the source file name.
BATCH assumes any file name with no option appended
is the name of a source ﬁle This option can have one of
the following values (or you can omit it):

/BASIC indicates that the file name you specify is a
BASIC source program.

/ISOURCE performs the same function as /BASIC.
/INPUT performs the same function as /BASIC.

You can follow the $BASIC command with the source program, BASIC com-
mands (such -as RUN), or data. The following two BATCH streams, for
example, produce the same results (but BATCH does not echo the same out-
put format for both streams).

$BASIC $BASIC/RUN
10 INPUT A 10 INPUT A
20 PRINT A 20 PRINT A
30 END 30 END

RUN $DATA

123 123

$EOD $EOD

BATCH A-13

A4.2 S$SCALL

The $CALL command transfers control to another BATCH control file, tem-
porarily suspending execution of the current control file. BATCH executes
the called file until it reaches $EOJ or until the job aborts; control then
returns to the statement following the $CALL in the originating BATCH
control file. You can nest calls up to 31 levels. BATCH includes the log file
for the called file in the log file for the originating BATCH program. (See
NOTE following the $EOJ command.)

The syntax of the $CALL command is:
$CALL filespec[!comments]

Options are not allowed in the $CALL command. BATCH saves $JOB com-
mand options across a $CALL; however, they do not apply to the called
BATCH file. If you specify .CTL as the file type, BATCH assumes a precom-
piled BATCH control file. If you do not specify a file type, BATCH assumes
.BAT and compiles the called BATCH stream before execution.

NOTE

If the called program generates temporary files, those files can
supersede existing temporary files if the two jobs have the
same sequence number. For example consider the following

two BATCH streams:
$FOR/70BJ A $FOR/0BJ A
$FOR/0BJ B $CALL C
sLINK/RUN $FOR/0BJ B

The called BATCH file (C.BAT) contains the following:

$J0B
$FOR/0BJ Al
$FOR/0BJ Bl
$LINK/RUN
$EQJ

'~ The temporary object files C.BAT generates change the
behavior of the previous two BATCH statement sequences.
The first temporary file created by C.BAT (000000.0Bd)
supersedes the temporary file produced by the first
$FORTRAN command (000000. OBJ). You can avoid this sit-
uation by giving the BATCH job C.BAT a unique sequence
number (see Section A.4.22).

A.4.3 SCHAIN

The $CHAIN command transfers control to a named BATCH control file but
does not return to the input stream that executed the: $CHAIN command.
The syntax of the $CHAIN command is:

SCHAIN filespec[!comments] : R

A-14 BATCH

BATCH does not permit options in the $CHAIN command. If you specify
.CTL as the file type, BATCH assumes a precompiled BATCH control file. If
you do not specify a file type, BATCH assumes .BAT and compiles the
chained BATCH stream before execution.

A $EOJ command should always follow the $CHAIN command in the
BATCH stream.

a

NOTE

The values of BATCH run-time variables remain constant
across a $CALL, $CHAIN,- or return-fromcall. SeeSection
A.5.2.2 for a description of these variables.

Use the $CHAIN command to transfer control to programs that you need to
run only once at the end of a BATCH stream. For example, you could use the
following BATCH? program (PRINT. BAT) to print and then'délete all tempo-
rary listing files generated during the current BATCH job.

$.J0B PPRINT ALL LIST FILES
$PRINT/DELETE #.LST
$EOJ ‘ L

R B . O A EER

You could then run PRINT.BAT with the $CHAIN command as follows:

$J0B

$MACRO/RUN A ALST/LIST
$MACRO/RUN B BLST/LIST
$CHAIN PRINT .

$EOJ

A.4.4 S$SCOPY

The $COPY command copies files in image mode from one device to another.
You can use the wild card construction (see Section A.2.2.3) in the input and
output file specifications. You can concatenate several input files to form one
output file (as long as the output specification does not contain a wild card).
The $COPY command has the following syntax:

$COPY[/option] output-filespecl...,output-filespec/OUTPUT-
input-filespec|...,input-filespec][/INPUT][!comments]

where:
/option indicates options that you can append to the $COPY
command.
/DELETE deletes input files after the copy
operation.
/INODELETE does not delete input files after the copy
operation.

output-filespec represents an output file; you must specify a file type.

BATCH A-15

/OUTPUT indicates that a file specification is for an output file.

input-filespec represents a file to be copied. (BATCH copies files to the
_output file in the order that you list them, except when
you use wildcards.)

/INPUT indicates that a file specification is for an input file; if ybu
do not specify an option, BATCH assumes INPUT.

The following are examples of the $COPY command:

$COPY #.BAS/0UTPUT DT1:#.BA8

This command copies all files with the file type .BAS from the DECtape on
unit 1 to the default storage device DK:.

$COPY FILEZ.FOR/OUTPUT FILEOQ.FOR+FILEL.FOR

This command merges the input files FILEO.FOR and FILE1.FOR to form
one file called FILE2.FOR and stores FILE2.FOR on device DK:.

$COPY #.,#/0UT DTO:# . FOR,» DT1s#.#/0UT DTO:a. @

This command copies all files with the file type .FOR from DTO0: to DK: and
all files on DTO: to DT1:.

A45 SCREATE

The $CREATE command generates a file from data records that follow the
$CREATE command in the input stream. An error occurs if the data does
not immediately follow the $CREATE command. You cannot precede the
data records with a $DATA command.

You can follow the $CREATE data with a $£OD command to signify the end
of data, or you can use any other BATCH control statement to indicate end
of data and initiate a new function. The $CREATE command has the follow-
ing syntax:

$CREATE[/option...] filespec [lcomments]

where:
/option indicates an option you can append to the $CREATE
command. The options are:
/DOLLARS indicates that the data following this

command can have a $ in the first
character position of a line.

/NODOLLARS indicates that a $ cannot be in the
first character position of a line.

/LIST writes data image linesto the log file.

A-16 BATCH

/NOLIST does not write data image lines to the
log file. If you specify $JOB/LIST,
BATCH ignores this option.

filespec represents the file you want to create.

NOTE

If you use the /DOLLARS option, you must follow the last
data record with a $EOD command (see Table A-1).

The following is an example of the $CREATE command: ‘

$CREATE/LIST PROG.FOR
FORTRAN sourece file
$EQD

The data records following the SCREATE command become a new file
(PROG.FOR) on the default device (DK:). BATCH generates a listing on
logical device LOG:.

A.4.6 SDATA

Use the $DATA command to include data records in the input stream. Data
you include in this manner needs no file name. BATCH transfers the data to
the appropriate program as though it were input from the console terminal.
For example, you can follow the $RUN command for a particular program
by a $DATA command and the data records for the program to process. The
data records must be valid data for the program that is to use them.

The $DATA command has the following syntax:
$DATA[/option...] [lcomments]
Four options that you can use with the $DATA command are as follows:

/DOLLARS Indicates that the data following this command can have
a § in the first character position of a line.

/NODOLLARS . Indicates that a $ cannot be in the first character position

of a line.
/LIST Writes data image lines to the log file.
/NOLIST Does not write data images to the log file. If you specify

$JOB/LIST, BATCH ignores this option.

NOTE

Any command beginning with a § normally follows the last
data record. However, if you specify $DATA/DOLLARS, you
must follow the last data record with $EOD.

BATCH A-17

The following example shows data entered into a BASIC program
(TEST1.BAS).

$BASIC/RUN TEST1.BAS
$DATA

294975 +1284,1486
180,210,+520,:874

$ECD

A.4.6.1 Using $DATA with FORTRAN Programs — When you use the $DATA
command to provide input to a FORTRAN program, you must insert a
CTRL/Z into the BATCH file after the last data line and before $EOD (or
before the next BATCH command if you do not use $EOD). This procedure
permits FORTRAN to properly detect an end-of-file after it reads the last
data line. For example:

$FORTRAN/RUN A.FOR

$DATA

1

3 .

‘7 @ O
$E0D
$RUN PIP

The above program reads three numbers from the input stream and then
detects an end-of-file when it attempts to read a fourth number. If you
include an END =n statement in your FORTRAN program, statement n
gets control when the end-of-file is detected. If the CTRL/Z <RET> <LF> is
not present, the program aborts when it reaches $EOD and never executes
the END =n statement.

A.4.7 SDELETE

Use the $DELETE command to delete files from the device you specify. This
command has the syntax:

$DELETE filespec|...,filespec][!comments]

filespec represents the name of a file to be deleted

The following exainple deletes all files named TEST1 on the default device
DK..

$DELETE TESTIL.=*

The following example deletes all files with .FOR file types on DT1:, then
deletes all files with .MAC file types on DK.:.

$DELETE DT1:%,FOR +»#,MAC

A-18 BATCH

S

A.4.8 S$DIRECTORY

The $DIRECTORY command outputs a directory of the device you specify to
a listing file. If you do not specify a listing file, the listing goes to the BATCH

log file. This command has the syntax:

$DIRECTORY [filespec/LIST] [filespecl...,filespec]J/INPUT]
[lcomments]

where:
filespec/LIST indicates the name of the directory listing file

filespec/INPUT indicatesb the input files to be included in the directory
(default) - B ‘

The following command outputs a directory of the ‘deviée DK: to the BATCH
log file. B

$DIRECTORY

This next command creates on the device DK: a directory file (FOR.DIR)
that contains the names, lengths, and dates of creation of all FORTRAN
source files on that device.

SDIRECTORY FOR.DIR/LIST #,.FOR

A.49 S$SDISMOUNT

The $DISMOUNT command removes the logical device name assigned by a
$MOUNT command. When BATCH encounters $DISMOUNT while execut-
ing a job, it prints the entire $DISMOUNT command line on the console ter-
minal. This message tells the operator which device to unload. This com-
mand has the syntax: ‘

$DISMOUNT[/option] logical-device-name:[/LOGICAL] [lcomments]
where: R

/option indicates an option you can append to the $DISMOUNT
command. The options are:

/WAIT indicates that the job must pause until the
operator enters a response. If you do not
specify either /WAIT or /NOWAIT,
BATCH assumes /WAIT. BATCH rings a
bell at the terminal, prints the physical
device name to be dismounted followed by
a question mark (?), and waits for a
response. (At this point you can enter
input to the BATCH handler. See Section
A7.3)

BATCH A-19

/NOWAIT does not pause for operator response;
BATCH prints the physical device name to
be dismounted.

logical-~ is the logical device name to be deassigned from the phys-
device-name: icaldevice.

/LOGICAL identifies the device specification as a logical device
name. :

The following example instructs the operator to dismount the physical
device with the logical device name OUT: and removes the logical assign-
ment of device OUT:. In this example, OUT: is DT0:. The operator dismounts
DTO0: and then types a carriage return.

$DISMOUNT/WAIT OUT:/LOGICAL
DTO?

A.4.10 S$SEOD

The $EOD command indicates the end-of-data record or the end of a source
program in the job stream. The syntax of this command is:

$EOD [lcomments]

The $EOD command can signal the end of data associated with any of the
following commands:

$BASIC $FORTRAN
$CREATE $MACRO
$DATA

In the following example, the $EOD command indicates the end of a source
program that is to be compiled, linked, and executed.

$FORTRAN/RUN

source program
$E0D

A.4.11 SEOJ

The $EOJ command indicates the end of a job. This command must be the
last statement in every BATCH job. The command has the following syntax:

$EOJ [lcomments]

If BATCH encounters a $JOB command, a $SEQUENCE command, or a
physical end-of-file in the input stream before $EOJ, an error message

appears in the log file.
NOTE
Make sure that the $EOJ command is the last line.in a-
BATCH file.

A-20 BATCH

A4.12 $SFORTRAN

The $FORTRAN command calls the FORTRAN compiler to compile a source
program. Optionally, this command can provide printed listings or list files
and can produce a link map in the listing. The $FORTRAN command has

the following syntax:

$FORTRAN[/option...] [source-filespec[/option]] [filespec/ OBJECT]-
[filespec/LIST] [filespec/EXECUTE]-
[filespec/MAP] [filespec/LIBRARY] [!lcomments]

where:

/option

indicates an option you can append to the

$FORTRAN command. The options are as follows:

/RUN

/NORUN
/OBJECT
/NOOBJECT

/LIST

/NOLIST
/MAP

/INOMAP
/DOLLARS

/NODOLLARS

source-filespec

indicates that FORTRAN is to com-
pile the source program, link it
with the default library, and
execute it. The default library is
SYSLIB.OBJ. You can change it
with the $LIBRARY command.

compiles the program only.
produces a temporary object file.

does not produce a temporary object
file.

produces a list file on the listing
device (LST:).

does not produce a list file.

produces a link map on the listing
device (LST:).

does not create a MAP file.

indicates that the data following
this command can have a $ in the
first character position of a line.

indicates that a $ cannot be in the
first character position of a line.

indicates the device, file name, and file type of the

FORTRAN source file. If you do not specify the file
name, the $FORTRAN source statements must
immediately follow the $FORTRAN command in
the input stream; BATCH generates a temporary
source file that it deletes after FORTRAN compiles
the temporary source file (see Section A.2.5).

BATCH A-21

A-22 BATCH

/option

filespec/OBJECT

filespec/LIST

filespec/EXECUTE

filespec/MAP

You can terminate the source program included
after a $FORTRAN statement by either a $EOD
command or by any other BATCH command. If,
however, you use dollar signs in the first position in
the source program, you must enter the source pro-
gram with $CREATE/DOLLARS. In this case, you
cannot use $FORTRAN/DOLLARS.

represents an option that can have one of the follow-
ing values:

/FORTRAN indicates that the file name you
specify is a FORTRAN source pro-
gram. BATCH assumes that any
file name with no option appended
is the name of a source file.

/ISOURCE performs the same function as
/FORTRAN.

/INPUT performs the same function as
/FORTRAN.

indicates the device, file name, and file type of the
object file produced by compilation. The object file
remains on the device you specify after the job fin-
ishes. You must follow the object file specification, if
you include it, with the /OBJECT option.

If you omit the object file specification but specify
$FORTRAN/OBJECT, BATCH creates a temporary
object file. BATCH includes this temporary file in
any $LINK operations that follow it in the job, and
deletes it after the link operation.

indicates the name you assign to the list file created
by the compiler. BATCH does not automatically
print the list file if you assign LST: to a file-
structured device, but you can list it using the
$PRINT command. Follow the list file specification
with the /LIST option.

indicates the name you assign to a memory image
file. Follow the memory image file specification with
the /EXECUTE option. If you do not include this
field, BATCH generates a temporary memory image
file (see Section A.2.5) and then deletes the tempo-
rary file.

indicates the name you assign to the link map file
created by the linker. Follow the map specification
with the /MAP option.

filespec/LIBRARY indicates that BATCH must include the file you
specify in the link procedure as a library before .
SYSLIB.OBJ. The file must be a library file (pro-
duced by the RT-11 librarian). Follow the library
specification with the /[LIBRARY option.

The following command calls FORTRAN to compile and execute a source
program named PROGA.FOR.

$FORTRAN/RUN PROGA.FOR

The next command sequence compiles the FORTRAN program but does not
produce an object file. BATCH creates a temporary listing file on LST:.

$FORTRAN/NOOBJ/LIST

source program
$EOD
NOTE

See Section A.4.6.1 for instructions on usmg the $DATA com-
mand with FORTRAN programs.

A4.13 $JOB

The $JOB command indicates the beginning of a job. Each job must have its
own $JOB command. This command has the following syntax:

$JOB[/option...] [lcomments]
BATCH allows the following options in the $JOB command:

/BANNER Prints a header (a repetition of the $JOB line or card) on
the log file.

/INOBANNER Does not print a job header.

/LIST Writes data image lines that are contained in the job
stream to the log file.
/NOLIST Writes data image lines to the log file only when a /LIST

option exists on a BASIC, $CREATE, or $DATA command
that has data lines following it.

/RT11 If no $ appears in column 1 when BATCH expects one,
BATCH assumes that the line or card is an RT-11 mode
command (see Section A.5).

/NORT11 Does not process RT—-11 mode commands.

/TIME Writes the time of day to the log file when BATCH executes
command lines (except $DATA command lines).

BATCH A-23

/INOTIME Does not write the time of day.

/UNIQUE Checks for unique spelling of options and keynames. When
you use this option, you can abbreviate commands and
options to the fewest number of characters that still make
their names unique. For example, you can abbreviate the

- /DOLLARS option to /DO since no other option begins with
the characters DO.

/NOUNIQUE Checks only for normal option and keyname spellings.

End each job with a $EOJ command if you want to run it. If an input stream
consists of more than one job, BATCH automatically terminates one job
when it encounters the $JOB command for the next job. BATCH will never
run a job terminated with another $JOB command; instead, an error mes-
sage will appear in the log.

The following $JOB command writes the time of day to the log file before
BATCH executes each command beginning with a $. It also accepts unique
abbreviations of BATCH commands and options.

$JOB/TIME/UNIQUE

A.4.14 SLIBRARY

The $LIBRARY command lets you specify a list of library files for inclusion
in FORTRAN links or other link operations that have the /[LIBRARY option.
By default, the list of libraries contains only SYSLIB.OBJ, the RT-11 sys-
tem library. This command has the syntax:

$LIBRARY filespec [\comments]

or
$LIBRARY filespec +SYSLIB [!lcomments]
where: '
filespec represents a library file; the default file type is .OBJ
SYSLIB is the RT-11 system library that you create at system
generation

Libraries are linked in order of their appearance in the $LIBRARY
command.

The following example shows two libraries (LIB1.OBJ and LIB2.0BJ) that
are included in FORTRAN links before SYSLIB.OBJ.

$L.IBRARY LIBL1,0BJ+LIB2,0BJ+SYELIB,0OBJ

A-24 BATCH

A.4.15 SLINK

Use the $LINK command to produce memory image files from object files.
This command links any files you may specify with any temporary object
files created since the last link or link-and-go operation.

Temporary object files are those files you create as a result of a $FORTRAN
or $MACRO command without naming an object file (with the /OBJECT
option) by suppressing an object file (with the /NOOBJECT option). Create
permanent object files by using the /OBJECT option on a $FORTRAN or
$MACRO file descriptor.

BATCH links files in the following order:
1. Temporary files — in the order in which they were compiled

2. Permanent files — in the order in which they are specified in the $LINK
command

3. Any library specified by the $LINK command — provided that unresolved
references remain '

4. The default library list — if you specified $LINK/LIBRARY

The syntax for this command is:

$LINK[/option...] [filespec/OBJECT] [filespec/LIBRARY]-
[filespec/MAP] [filespec/ EXECUTE] [lcomments]

where:

/option indicates an option that you can append to the
$LINK command. The options are as follows:

/LIBRARY includes the RT-11 system
library (SYSLIB.OBJ) and any
default libraries specified in the
$LIBRARY command in .this
$LINK operation. Use this
option when the files being
linked do not include any tempo-
rary FORTRAN object files. You

" can also use it when you specify
- $FORTRAN without the /RUN
or./MAP option, but want to
search the default library list for

. unresolved references.
/NOLIBRARY does not include the default
libraries.
/MAP produces a temporary load map

. on the listing device (LST:).

BATCH A-25

INOMAP does not produce a mabp file.

/OBJECT includes temporary object files in
the link. If you specify neither
/OBJECT nor /NOOBJECT,
BATCH assumes $LINK

/OBJECT.
/NOOBJECT does not include temporary files
in the link.

/RUN executes the memory image files
A associated with this $LINK com-
mand when the link is complete.

/INORUN only links the program and does
not execute it.

filespec/OBJECT indicates the name of the object file BATCH must
link; if you do not specify /OBJECT, BATCH
assumes it as the default.

filespec/LIBRARY indicates that the file you specify is to be included
in the link procedure as a library; the file you

specify must be a library file (produced by the
RT-11 librarian).

filespec/ MAP indicates the load map file BATCH must create as
aresult of the $LINK command.

filespec/’EXECUTE indicates the memory image file BATCH must
create as a result of the $LINK command.

The following command links all temporary object files created since the last
$LINK command, or the last SFORTRAN/OBJ or MACRO/OBJ command.
$LINK/RUN

The next command links the temporary files and the object files PROG1.0BJ
and PROG2.0BJ to form a memory image file named PROGA.SAV. 1t also
creates and outputs a temporary map file.

$L.INK/MAP PROG1,0BJ+PROGZ.0B.J/0BJ PROGA,SAV/EXE

A4.16 SMACRO

The $MACRO command calls the MACRO assembler to assemble a source
‘program and, optionally, to provide printed listings or list files. You must
specify any MACRO listing directives in the source program; you cannot
enter them at BATCH command level.

The $MACRO command has the following syntax:

$MACROI[/option...] [source-filespec[/option]] [ﬁlespe'c/OBJECT]-
[filespec/LIST] [filespec/MAP] [filespec/LIBRARY]-
(filespec/EXECUTE] [lcomments]

A-26 BATCH

where:

3 /option

source-filespec

indicates an option you can append to the
$MACRO command. The options are as follows:

/RUN assembles, links, and runs the
source program.

/NORUN only assembles the source pro-
gram.

/OBJECT produces a temporary object file.

INOOBJECT does not produce a temporary
object file.

/LIST produces a listing file on the list-
ing device (LST:).

/NOLIST does not produce a list file.
/CREF produces a cross-reference listing
during assembly.

/INOCREF does not produce a cross-
reference listing during assem-
bly.

/MAP produces a link map as part of
the listing file on LST:.

/NOMAP does not create a MAP file.

/DOLLARS indicates that the data following
this command can have a $ in the
first character position of a line.

/NODOLLARS indicates that a $ cannot be in
the first character position of a
line.

/LIBRARY includes the default library in
the link operation.

/NOLIBRARY does not include the default
~ library in the link operation.

indicates the name of the source file. If you do not
specify a file name, the $MACRO source state-
ments must immediately follow the $MACRO
command in the input stream.

You can terminate the source program you
include after a $MACRO statement with either a
$EOD command or any other BATCH command.

BATCH A-27

A-28 BATCH

/option

filespec/OBJECT

filespec/LIST

filespec/MAP

filespec/LIBRARY

filespec/’EXECUTE

If, however, you include dollar signs in the first
position in the source program, use the
$CREATE/DOLLARS command to enter the
source program. In this case, you cannot use

$MACRO/DOLLARS.
can have one of the following values:

/MACRO indicates that the file name you
specify is a MACRO source pro-
gram. BATCH assumes that any
file name with no option
appended is the name of a source

file.

/ISOURCE performs the same function as
/MACRO.

ANPUT performs the same function as
/MACRO.

indicates the name you assign to the object file
produced by compilation. The object file remains
on the device you specify after the job finishes. If
you include an object file specification, follow it
with the /OBJECT option.

If you omit the object file specification but specify
$MACRO/OBJECT, BATCH creates a temporary
object file. BATCH also includes the temporary
object file in any $LINK operations that follow the
$MACRO command in the job, and deletes it after
the link operation (see Section A.2.5).

indicates the name you assign to the list file cre-
ated by the assembler. BATCH does not print the
list file if you assign LST: to a file-structured
device, but you can list it using the $PRINT com-
mand. The /LIST option must follow the list file
specification.

indicates the file to which BATCH must output
the storage map.

indicates that BATCH must include the file you
specify in the link procedure as a library. The
/LIBRARY option must follow the library file
specification.

indicates the name you assign to a memory image
file. The /EXECUTE option must follow the mem-
ory image file specification. If you do not include
this field but do use SMACRO/RUN, BATCH gen-
erates and runs a temporary memory image file
(see Section A.2.5).

The following $MACRO command assembles a program named
PROGO.MAC, and creates a temporary object file and a temporary listing
file.

$MACRO/LIST/0BJECT PROGO,.MAC

A.4.17 SMESSAGE

Use the $SMESSAGE command to issue a message to the operator at the con-
sole terminal. It provides a means for the job to communicate with the oper-
ator. The SMESSAGE command has the syntax:

$MESSAGE[/option] message [\comments]

where:
/option indicates an option you can append to the $SMESSAGE
command. The options are:

/WAIT indicates that the job is to pause until the
operator either types a carriage return to
continue or enters commands to the
BATCH handler followed by a carriage
return (see Section A.7.3).

/NOWAIT does not pause for operator response.

message is a string of characters that must fit on one console line.

BATCH prints the message on the console.

For example, if you include the following message in the input stream:

$MESSAGE/WAIT MOUNT SCRATCH TAPE ON MTO:
The message:

MOUNT SCRATCH TAPE ON MTO:

appears on the console terminal and a bell sounds. The operator mounts the
tape and types carriage return to allow further processing of the job. (See
.Section A.7.3 for operator interaction with BATCH.)

NOTE

BATCH compresses multiple spaces and tabs in BATCH com-
mand lines; therefore, attempts to format $MESSAGE output
with tabs or spaces may not provide you with the desired
results.

BATCH A-29

A.4.18 SMOUNT

The $MOUNT command assigns a logical device name and other character-
istics to a physical device. When BATCH encounters $MOUNT during the
execution of a job, it prints the entire $MOUNT command line on the console
terminal to notify the operator which volume to use. ‘

The $MOUNT command has the syntax:

$MOUNT[/option...] physical-device-name:[/PHYSICAL][/VID =x]
[logical-device-name:/LOGICAL] [!comments] ‘

where:
/option indicates an option you can append to the
$MOUNT command. The options are:
/WAIT indicates that the job is to pause

until the operator enters a
response. If you do not specify
either /WAIT or /INOWAIT,
BATCH assumes /WAIT.
BATCH rings a bell, prints the
physical device name and a
question mark (?), and waits for
a response. (The response can
consist of input for the BATCH
handler; see Section A.7.3.)

/NOWAIT does not pause for operator
response. BATCH prints the
name of the physical device to
be mounted.

/WRITE tells the operator to write-
enable the volume.

/NOWRITE tells the operator to write-
protect the volume.

physical-device-name is required and specifies the physical device
name and an optional unit number followed
by a colon (for example, DT1:). If you specify a
device name without a unit number, the oper-
ator can enter one in response to the question
mark printed by the $MOUNT command. If
you want the operator to supply a unit num-
ber, do not use the /NOWAIT option, because
it assumes unit 0.

/PHYSICAL identifies the device specification as a physical
unit specification. If you do not specify either
/PHYSICAL or /LOGICAL, BATCH assumes
/PHYSICAL. :

A-30 BATCH

o

/VID=x provides volume identification. The volume
/VID =“x" identification is the name physically attached
to the volume. Include it to help the operator
locate the volume. Use this option only on the
physical device file speciication. If x contains

e_”

spaces, specify it as "x”.

NOTE

This volume identification is only a visual check for the opera-
tor. Make the identification match the visual label on the vol-
ume, not the identification that you wrote onto the volume at
initialization time with the INIT/VOLUMEID command.

logical-device-name/LOGICAL
is required to identify any logical device name
you may assign to the device. The /LOGICAL
option must follow the logical device name
specification.

The following command instructs the operator to select a DECtape unit and
mount DECtape volume BATO1 on that unit, write-enabled. It informs the
operator by printing:

$MOUNT/WAIT/WRITE DT:/VID=BATO1 Z2:/LOGICAL
DT?

The operator selects a unit, mounts DECtape volume BATO1, write-enabled,
and.responds to the question mark by typing the unit number (such as, 1)
followed by a carriage return. BATCH assigns logical device name 2 to the
physical device (in this case, DT1:) and proceeds.

If no unit number response is necessary, as this command shows,

$MOUNT/WAIT/WRITE DT1: 2:/LOGICAL

#the operator responds with a carriage return after mounting the DECtape

and write-enabling the device.

A4.19 SPRINT

Use the $PRINT command to print the contents of the files you specify on
the listing device (LST:). This command has the syntax:

$PRINT[/option] filespec [...,filespec]l/INPUT] [lcomments]
where:

/option indicates an option you can append to the $PRINT com-
mand. The options are:

/DELETE ~ deletes input files after printing.

BATCH A-31

/NODELETE does not delete input files after printing.

filespec represents a file to be printed.
/AINPUT indicates that the file is an input file; BATCH assumes
/INPUT if you omit it.

The following command prints a listing of files with file type .MAC that are
stored on default device DK.:.

$PRINT *,MAC

The following example creates listing files for the programs A and B, prints
the listing files, and then deletes them. '

$MACRO A.MAC A/LIST
$MACRO B,MAC B/LIST
$PRINT/DELETE A.LST B.LST

A4.20 SRTi1

The $RT11 command allows the BATCH job to communicate directly with
the RT-11 system. DIGITAL recommends that you use RT-11 mode if you
use BATCH. This command puts BATCH in RT-11 mode until BATCH
encounters a line beginning with $. In RT-11 mode, BATCH interprets all
data images as commands to the RT-11 monitor, to RT-11 system programs,
or to the BATCH run-time system. The $RT11 command has the syntax:

$RT11 [lcomments]
See Section A.5 for a complete description of the RT-11 mode.

A.4.21 S$SRUN

The $RUN command executes a program for which a memory image file
(.SAV) was previously created. It can also run RT-11 system programs.

The $RUN command has the syﬁtax:
$RUN filespec [lcomments]
where:

filespec represents the file to be executed. If you omit the file
type, BATCH assumes .SAV.

For example, if DIR is on DK:, you can run DIR to print a directory listing:

$RUN DIR
$DATA
LP:=DK:/L
$E0D

A-32 BATCH

A.4.22 $SEQUENCE

The $SEQUENCE command is an optional command. If you use it, it must
immediately precede a $JOB command. The $SEQUENCE command
assigns a job an arbitrary identification number. BATCH assigns the last
three characters of a sequence number as the first three characters of a tem-
porary listing or object file (see Section A.2.5). If a sequence number is less
than three characters long, BATCH fills it with zeroes on the left.

The syntax of this command is:.
$SEQUENCE id [lcomments]
where:

id represents an unsigned decimal number that indicates
the identification number of a job

The following are examples of the $SSEQUENCE command:

$SEQUENCE 3 ISEQUENCE NUMBER IS Q03
$J0B
$BEQUENCE 100 |SEQUENCE NUMBER IS 100
$J0B

A.4.23 Sample BATCH Stream

The following sample BATCH stream creates a MACRO program, assem-
bles and links that program, and runs the memory image file. It then deletes
the object, memory image, and source files it created and prints a directory
of DK: showing the files the BATCH stream created.

$J0B

$MESSAGE THIS IS AN EXAMPLE BATCH STREAM
$MESSAGE NOW CREATE A MACRO PROGRAM
$CREATE/LIST XAMPL . MAC

+TITLE EXAMPL FOR BATCH
+MCALL +PRINT.,,EXIT

START: +PRINT #MESSAG
JERIT
MESGAG: ,ASCIZ /EXAMPLE MACRO PROGRAM FOR BATCH/
+END START
$EOD
$MACRO EXAMPL EXAMPL/OBJECT EXAMPL/LIST IASSEMBLE
$LINK XAMPL EXAMPL/EXECUTE TAND LINK
$PRINT/DELETE EXAMPL,LGT)
$MESSAGE RUN THE MACRO PROGRAM
$RUN EXAMPL 'AND EXECUTE
$DELETE EXAMPL, OBJ+EXAMPL . SAU+EXAMPL /MAC
$MESSAGE PRINT A DIRECTORY
$DIRECTORY DK:EXAMPL ., *
$MESSAGE END OF THE EXAMPLE BATCH STREAM
$EQJ

BATCH A-33

To run this batch stream, type the following commands at the console.

BATCH prints the messages.

. LOAD BALP

, ASSIGN LP:LOG

, ASSIGN LP:LST

.k BATCH
%+ EXAMPL

THIS I8 AN EXAMPLE BATCH STREAM
NOW CREATE A MACRO PROGRAM

RUN THE MACRDO PROGRAM -

PRINT A DIRECTORY .

END OF THE EXAMPLE BATCH STREAM

END BATCH

+

The above sample BATCH stream produces the following log file on the line

NOTE

The amount of free memory and the directory format are vari-

printer:
able.
$J0B
$MESSAGE THIS IS AN EXAMPLE BATCH STREAM
$MESSAGE NOW CREATE A MACRO PROG.
$CREATE/LIST EXAMPL . MAC

+TITLE EXAMPLE FOR BATCH
+MCALL +PRINT . EXIT
START: JPRINT #MESSAC

JEXIT

MESSAG: .ASCIZ /EXAMPLE MACRO PROGRAM FOR BATCH
+EVEN
+END START

$EO0D

$MACRO XAMPL EXAMPL/OBJECT EXAMPL/LIST IASSE

ERRORS DETECTED: ©

EXAMPLE FOR BATCH MACRO WO3,00 21-JUN-77 O
1 +TITLE
3 000000 START:
4 000006 .o
3 000010 1058 130 101 MESSAG:
Q00013 115 120 114
Q00016 103 040 115
Q00021 101 103 122
000024 117 040 120
DOOO27 122 117 107
0DOOO32 122 101 115
Q00035 040 106 117
QOO040 122 040 102
000043 101 124 103
0O00d6 110 [sYa]s]

6]

7 000000

A-34 BATCH

/

MBLE

0:105:29

EXAMPLE
+MCALL
+PRINT
JEXIT
+ASCIZ

+EVEN
+END

PAGE 1

FOR BATCH
+PRINT s EXIT
#MESSAG

/EXAMPLE MAC%U PROGRAM FOR BATCH

START

EXAMPLE FOR BATCH MACRO Y03.,00 Z1-JUN-77 00:05:29 PAGE
SYMBOL TABLE
MESSAG 0QOGOL1O0OR START QOODO0OR
. ABS., QOOO0O0 " OO0
GOOOSO 001

ERRORS DETECTED: ©

VIRTUAL MEMORY USED: S08 WORDS (2 PAGES)

DYNAMIC MEMORY AVAILABLE FOR 48 PAGES

EXAMPL JEXAMPL=EXAMPL

$LINK EXAMPL EXAMPL/EXECUTE TAND LINK

$PRINT/DELETE EXAMPL.LST

$MESSAGE RUN THE MACRO PROGRAM
$RUN EXAMPL TAND EXECUTE
EXAMPLE MACKRO PROGRAM FOR BATCH

$DELETE EXAMPL.OBJ+EXAMPL,SAV+EXAMPL . MAC

$MESSAGE PRINT A DIRECTORY
$DIRECTORY DK:EXAMPL . *
21-JUN-77
EXAMPL . BAK 2 14-JUN-77 EXAMPL . BAT 2 21-JUN-77
EXAMPL.CTL 3 21-JUN-77

3 FILES, 7 BLOCKS
1903 FREE BLOCKS

$MESSAGE END OF THE EXAMPLE BATCH STREAM

$EOJ

A5 RT-11 MODE

RT-11 mode lets you enter. commands to the RT-11 monitor or to system
programs, and lets you create BATCH programs. You can enter RT-11 mode
with either the $JOB/RT11 command or the $RT11 command. If you enter
RT-11 mode with the $JOB/RT11 command, RT11 mode remains in effect
until BATCH encounters the next $JOB command. If you enter RT-11 mode
with the $RT11 command, RT-11 mode is in effect until BATCH encounters

a $ in the first position of the command line.

When the characters ., $,*, and tab or space appear in the first position of a
line (or card column. 1), they are control characters and indicate the

following:

Command to the RT-11 monitor, for example,

+ R PIP

Data line; any line not intended to go to the RT—11 monitor or to
the BATCH run-time handler, such as a command to the RT-11
PIP program:

* FILE1.DAT/D

BATCH A-35

NOTE

BATCH does not pass the * as data to the pro-
gram. Comment lines (!) cannot appear on data
lines, as BATCH would consider them as data.

3 BATCH command. It causes an exit from RT-11 mode if you
entered RT—11 mode with the $RT11 command. For example:
$RT11 'ENTER RT-11 MODE
‘R PIP
*FILE1.DAT/D
$FORTRAN ILEAVE RT-11 MODE

space/tab Separator to indicate a line directed to BATCH run-time han-
dler. This separator is indicated by a <TAB> in the following
descriptions. .

A5.1 Communicating with RT-11

The most common use of RT-11 mode is to send commands to the RT-11
monitor and to run system programs. For example, you can insert the follow-
ing commands in the BATCH stream to run PIP and save backup copies of
files on DECtape:

$RT1L
+R PIP
#DT1e#,%=%,F0OR

You must anticipate and include in the BATCH input stream responses that
the called program requires, such as the Y response to DUP’s Are you sure?
query. Place a line in your BATCH file consisting of Y and RETURN or use
the DUP /Y option to suppress the query. For example:

$RT11
JINITIALIZE RK1:
* \‘I

You can communicate directly with the RT-11 monitor by using the key-
board monitor commands that are described in Section 4.5 of the RT-11
System User’s Guide. For example:

$RT11
+DELETE/NOQUERY DX1:%.MAC

This command deletes all files with a file type of .MAC from device DX1:.

You cannot mix BATCH standard commands w1th RT-11 mode data hnes
(lines beginning with an asterisk). For example, the proper way to do a
$MOUNT within a sequence of RT-11 mode data commands is:

A-36 BATCH

$J0B/RT11

+R MACRO

#Al=A1

#AZ2=AZ

$MOUNT DTO:/PHYSICAL
+R MACRO

#B1=DT:B1

#B2=DT:B2

A.5.2 Creating RT-11 Mode BATCH Programs

Advanced system programmers can use RT-11 mode to create BATCH pro-
grams. These BATCH programs consist of standard RT-11 mode commands
(monitor commands, data lines for input to system programs, etc.) plus spe-
cial RT—11 mode commands. The BATCH run-time handler interprets these
special commands to allow dynamic calculations and conditional execution
of the RT—11 mode standard commands. The following can help you create
BATCH programs and dynamically control their execution at run-time:

@ Labels
® Variable modification:
1. Equating a variable to a constant or character (LET statement)
2. Passing the value of a variable to a program
3. Incrementing the value of a variable by 1
4

. Conditional transfers on comparison of variable values with numeric
or character values (IF and GOTO statements)

® Commands to control terminal I/O
® Other control characters

e Comments

A5.2.1 Labels — You define labels in RT-11 mode to provide a symbolic
means of referring to a specific location within a BATCH program. If pres-
ent, a label must begin in the first character position, must be unique within
the first six characters, and must terminate with a colon (:) and a carriage
return/line feed combination.

A5.2.2 Variables — A variable in RT-11 mode is a symbol representing a
value that can change during program execution. The 26 variables BATCH
permits in a BATCH program have the names A-Z; each variable requires
- one byte of physical storage. There are four ways to modify variables.

You can assign values to variables in a LET statement.

You can then test these values by an IF statement to control the direction of
program execution.

BATCH A-37 .

Assign values to variables with a LET statement of the following form:

<TAB>LET x="c

where:
X represents a variable name in the range A-Z
“c indicates the ASCII value of a character

For example:

MBLET A="0

This example indicates that the value of variable A is the 7-bit ASCII value
of the character 0 (60).

The LET statement can also specify an octal value in the form:
<TAB>LET A=n
where:

n represents an 8-bit signed octal value in the range 0-377.
Positive numbers range from 0-177; negative numbers range
from 200--377 (-200 to —1).

You can use variables to introduce control characters, such as ESCAPE, into
a BATCH stream. For example, wherever A’ appears in the following
BATCH stream, BATCH substitutes the contents of variable A (the code for
an ESCAPE):

$JOB/RT11
LET A=33
'A IS AN ESCAPE
+R EDIT
*EBFILE.MAC’'A’ ‘A’
*RIAIIAI
'EDIT FILE TO CHANGE THE YERSION NUMBER TO 2
#GVERSION="A'DIZ'A’'A’
*EX'A'A’

Increment the value of a variable by 1 by placing a percentage sign (%)

before the variable. For example:
TAB% A
This command indicates that BATCH must increase the unsigned contents

of variable A by 1.

Indicate with an IF statement conditional transfers of control according to
the value of a variable. The IF statement has the syntax:

<TAB>IF(x-“c) labell, label2, label3
or

<TAB>IF(x-n) labell, label2, label3

A-38 BATCH

X represents the variable to be tested

“c is the ASCII value to be compared with the contents of the
variable

n is an octal integer in the range 0-377

labell

label2 represent the names of labels included in the BATCH stream
label3

When BATCH evaluates the expression (x-¢) or (x-n), the BATCH run-time
handler transfers control to:

@ labell if the value of the expression is less than zero
- @ label2 if the value of the expression is equal to zero

@ label3 if the value of the expression is greater than zero

If you omit one of the labels, and the condition is met for the omitted label,
control transfers to the line following the IF statement.

NOTE

Since this comparison is a signed byte comparison, 377 is con-
sidered to be -1.

The characters + and — allow you to control where BATCH begins search-
ing for labell, label2, and label3. If you precede the label by a minus sign (-),
BATCH starts the label search just after the $JOB command. If a plus sign
(+) or no sign precedes the label, the label search starts after the IF state-
ment. For example:

@IF(B-"9) -LOOP, LOOPL,

This statement transfers program control to the label LOOP following the
$JOB command if the contents of variable B are less than the ASCII value of
9. Tt transfers control to the label LOOP1 following the IF statement if B is
equal to ASCII 9. If the contents of variable B are greater than the ASCII
value of 9, program control goes to the next BATCH statement in sequence.

The GOTO statement unconditionally transfers program control to a.label
you specify as the argument of the statement. You can use one of the follow-
ing three forms of this statement: o

<TAB>GOTO label Transfers control to the first occurrence of label
that appears after this GOTO statement in the
BATCH stream

<TAB>GOTO +label Same as GOTO label

BATCH A-39

A—40 BATCH

<TAB>GOTO -label Transfers control to the first occurrence of label
that appears after the $JOB command

The following GOTO statement transfers control unconditionally to the next
label LOOP if such a label appears in the BATCH stream following the
GOTO statement.

@pGOTO LOOP

NOTE

If BATCH cannot find a label (for example, you unintention-
ally omit a minus sign), the BATCH handler searches until it
reaches the end of the .CTL file and ends the job.

A.5.2.3 Terminal /O Control — You can issue commands directly to the
BATCH run-time handler to control logging console terminal input and out-
put. If you do not enter any of the following commands, BATCH assumes
TTYOUT (this includes indirect command files).

<TAB>NOTTY Does not write terminal input and output to the log
file. Comments to the log are still logged.

<TAB>TTYIN Writes only terminal input to the log file.

<TAB>TTYIO Writes terminal input and output to the log file. (You
should enter this command if using RT-11 mode so
that RT-11 mode commands go to the log file.)

<TAB>TTYOUT Writes only terminal output to the log file (default).

A.5.2.4 Other Control Characters — The system permits other control charac-
ters in an RT-11 mode command that begins with a period (.) or an asterisk
(*). Following are these control characters and their meanings:

‘text’ command to BATCH run-time handler, where text can be
one of the following: .

CTY accepts input from the console terminal;
notifies the operator that action is required
by ringing a bell and printing a question

mark (7).

FF outputs the current log buffer.

NL inserts a new line (line feed) in the
BATCH stream.

X inserts the contents of a variable where x

is an alphanumeric variable in the range
A through Z. It indicates that BATCH
should insert the contents of the variable
as an ASCII character at this place in the
command string.

R

“message” directs the message to the console
terminal.

The following commands allow the operator to enter the name of a MACRO
program to be assembled. The BATCH stream contains:

The operator receives the following message at the terminal and types a
response, followed by a carriage return; BATCH processing continues.

" ENTER MACRO COMMAND STRING

To run the same BATCH file on several systems with different configura-
tions you need to assign a device dynamically. The following RT-11 mode
command lets you request that the listing device name be entered by the
operator.

The operator receives the message and responds with the device to be used
as the listing device (DT2:).

PLEASE TYPE LST DEVICE NAME
?

A.5.2.5 Comments — You can include comments in RT-11 mode as separate
comment statements. Include comments by typing a separator followed by a
! and the comment. For example:

A5.3 RT-11 Mode Examples

The following are examples of BATCH programs using the RT-11 mode.

This BATCH program assembles, lists, and maps 10 programs with only 12
BATCH commands.

BATCH A-H41

The following program lets you set up a master control stream to run several
BATCH jobs with one call to BATCH. First set up a BATCH job (INIT. BAT)
that performs a SCHAIN to the master control stream:

$JOB/RT11

LET I="0

IINITIALIZE INDEX :
$CHAIN MASTER IGD TO MASTER
$EOJ

The following is the master control stream (MASTER.BAT) td which INIT
chains.

$JO0B/RT11 IMASTER CONTROL STREAM
4l
LBUMP INDEX BY 1t
IF(I-"7)++END
+R BATCH)
ITHIS 1S A $CHAIN
*J0B/1’
'RUNS JOB1-40B7
END:
$MESSAGE END OF BATCH RUN
$EO0J

Each job MASTER.BAT will run must contain the following:

'$J0B

IBATCH COMMANDS
$CHAIN MASTER
$EO0J

Activate the master control stream by calling BATCH as follows:

«R BATCH
*INIT

A.6 Creating BATCH Programs on Punched Cards

A—42

To create a BATCH program on punched cards, punch into the cards the
commands described in Section A.4. Each command line occupies a single
punched card. Only one card, the EOF card, is different from the standard
BATCH commands. The EOF (end-of-file) card terminates the list of jobs
from the card reader.

To create the EOF card, hold the MULT PCH key on the keypunch keyboard
while typing the following characters:

- & 0167829

This procedure produces an EOF card with holes punched in the first column
(see Figure A-1).

BATCH

R

Figure A-1: EOF Card

]

IDDUODDOUDUO0030000000000000000000000000
3 S 6 1§ 0N 125 M E 1L 8193C2 23 22075 6 2020 00 230036 T 83340042 41 4445 45 47 BAOSOSH 5253 5355 E0 50 SUSH G061 B2 E3 G5 W BTSNEN I I RTINS 5 11181380
TSR RRRR AR AR RN AR AR RN RN ERRRRRRY! [RRRRRRERR AR RN R R R R R RN AR R AR RE RN

272222222772202222222220222222222222222212
$313333333333333533333333332333333333333333333333333333333303333333333333333333113
AAA44d 4408 d At aAt i faddddiadddadiatiad et aaadataadsaditaial
553555555555555555555555555555555555555555
IBGESGSGEGESGSESGESBEBGSSGEf566668655656656656566666656BG66665655665666666656556
|1117?I777777777777777777777777777177l7777717777777717777f7777777777771717777177
iuﬂﬂ&ﬂ@ﬁ&ﬂﬁﬁaEﬂ688BﬂBBBBBBBE3883BBBRR88EﬂﬂﬂﬂBBBBHSSEBBSBB&BBSBBESBH&BaB%ﬂﬂEBHGBE
I8539599?9%%2%523399&99999953999Qﬂe?W99999999999993999959991999999899599999ﬂ999

PR SR S S N R L R o L r L L E L L N AT S AR AR RU R R R S AT w530 Sl A G2 LISIBSRLC BRIINIE T T Mk e
(om (326

To run multiple jobs from the card reader, simply combine the jobs into a
single card deck. Make sure that each job has its own $JOB and $EOJ card,
and then follow the last $EOJ card with two EOF cards.

Although in general, you terminate BATCH jobs on cards by placing two
EOF cards after the last $EOJ card, some card readers may require that you
type —F followed by a carriage return. Put two EOF cards and a blank card
in the reader and make sure that the card reader is ready. Note that a small
card deck (less than 512 characters) may require more than two EOF cards
to terminate the deck.

A.7 Operating Procedures

This section describes the operations you must perform to prepare for using
BATCH, and for running BATCH.

A.7.1 Loading BATCH

After you bootstrap the RT-11 system and enter the date and time, you must
make the BATCH run-time handler resident by typing the RT-11 LOAD
command as follows: '

. OAD BA:

You detach and unload the BATCH run-time handler with the /U option in
the BATCH compiler command line (see Section A.7.2).

NOTE

If BATCH crashes, you must unload BATCH with the
UNLOAD command and then reload BATCH with the LOAD
command. This ensures that the BATCH handler is properly
initialized when you rerun BATCH.

BATCH A—43

You must make the BATCH log device and list device resident unless the log
or list device is SY:, or unless it is a device for which the handler is already
resident. Load the log device, using the following syntax:

.LOAD log-device
where:

log-device represents the device to which BATCH must write the
log file

For example:

¢+ LOAD LP:

You cén, of course, load device handlers with a single LOAD command. For
example:

+ LDAD BA::LP:

You must then assign the logical device name LOG to the log device. Use the
RT-11 monitor ASSIGN command in the form:

.ASSIGN log-device LOG
For example, if LP: is the log device, type:

+ ASSIGN LP LOG

Then assign the logical device name LST: using the RT-11 ASSIGN com-
mand in the form:

ASSIGN list-device LST
where:

list-device represents the physical device BATCH must use for
listings

If, for example, you want to produce listings on the line printer, type:
+ ASSIGN LP LST
NOTE

Do not use the DEASSIGN command with no arguments in a
BATCH program since it deassigns the log and list devices,
possibly causing the BATCH job to terminate.

You must also make resident the BATCH run-time handler input device
(compiler output device). If this device is already resident or is SY:, you do
not need to load it. For example, to load the DECtape handler as the input
device, type:

+ LOAD DT

A—44 BATCH

If the input file to the BATCH compiler is on cards, load the card reader han-
dler by typing:

, LOAD CR

NOTE

If input is on cards, you must use the RT-11 monitor SET
command (before loading the handler) to specify CRLF and
NOIMAGE modes. That is, the following command appends a
carriage return/line feed combination to each card image.

., BET CR CRLF

The following command translates the card by packing card
code into ASCII data, one column per byte.

,SET CR NOIMAGE

If card images do not properly translate to ASCII, you may

have to change the card translation codes by using one of the
following commands:

,8ET CR CODE=29

or

.S5ET CR CODE=Z2G

See Section 4.4.

A.7.2 Running BATCH

When you have loaded all necessary handlers, run the BATCH compiler as
follows:

.k BATCH

BATCH responds by printing an asterisk (*) to indicate its readiness to
accept commands. In response to the *, type the output file specifications for
the control file followed by an equals sign. Then type the input file specifica-
tions for the BATCH file as follows:

[[output-filespec]l,log-filespec]l/option...] = linput-filespecl...,
input-filespec]{/option...]

where:

output-filespec is the BATCH compiler output device and file the
BATCH run-time handler must use. The device you
specify must be random-access. Your BATCH job
should not delete or move this file. Your BATCH job

BATCH A-45

A—46 BATCH

log-filespec

input-filespec

/option

should avoid compressing the system volume with the
SQUEEZE command or the DUP /S option. If you omit
output-filespec, BATCH generates a file on the default
device DK: with the same name as the first input file
but with a .CTL file type. If you do not specify a file
type in output-filespec, BATCH assumes .CTL.

is the log file created by the BATCH run-time handler.
If you do not specify a log device, BATCH assumes
LOG:. The device name you specify for log-filespec
must be the same as you assign to LOG:.

You can change the size of a log file on a file-structured
device from the default size of 64(decimal) blocks. To
make this change, enclose the required size in square
brackets. For example:

% +FILE.LOGL1OI=FILE

The default file type for the log-filespec is .LOG.

represents an input file. If you do not specify a file type,
BATCH assumes .BAT. If you specify a .CTL file,
BATCH assumes a precompiled file that must be the
only file in the input list.

is an option from the following list:

IN compiles but does not execute. This option
creates a BATCH control file (.CTL), gen-
erates an ABORT JOB message at the
beginning of the log file, and returns to the
RT-11 monitor.

/T:n if n=0, sets the /INOTIME option as the
default on the $JOB command. If n=1, the

default option on the $JOB command is
/TIME.

a indicates that the BATCH compiler must
detach the BATCH run-time handler from
the RT-11 monitor and unload the han-
dler.

NOTE

You need not specify the RT-11 monitor UNLOAD BA
command to remove the handler. Specifying /U to
BATCH causes the handler to detach and unload.

/X indicates that the input is a precompiled
BATCH program. Use this option when
you do not specify the .CTL file type.

<RET> prints the version number of the BATCH
compiler.

The following example calls BATCH to compile and execute three input files
(PROG1.BAT, PROG2.BAT, PROG3.BAT) to generate on DK: the compiler
output files, and to generate on LOG: a log file.

+ R BATCH
* PROG1.BAT +PROGZ.BAT »PROG3,BAT

The following commands print the version number of BATCH, then compile
and run SYBILD.BAT.

+ R BATCH
*

@D
BATCH W04.,00A -
¥ SYBILD

The following commands compile PROTO.BAT to create PROTO.CTL but do
not run the compiled BATCH stream.

+ R BATCH
¥ PROTO/N

Type the following commands to unlink BA.SYS from the monitor and to
unload it.

+R BATCH
*/U

The following commands compile FILE.BAT from magtape to create
FILE.CTL on RK1: They execute the compiled file and create a log file
named FILE.LOG (of size 20) on LOG:.

«R BATCH
T¥RK1:FILE,FILELZ01=MT:FILE

The following commands execute a precompiled job called FILE.TST.

+R BATCH
*FILE.TST/X

The following commands execute a precompiled job called FILE.CTL.

+R BATCH
*FILE/X

BATCH A-47

The following commands accept input from the card reader to create a file
called TEMP.CTL. BATCH stores this file on DK: and executes it.

, R BATCH
* CR:

The following commands accept input from the card reader to create a file
called JOB.CTL. BATCH stores the file on DK: and executes it.

, R BATCH
¥ JOB=CR:

A.7.3 Communicating with BATCH Jobs

During the execution of a BATCH stream, BATCH can request the operator
to service a peripheral device, to provide information, or to insert a com-
mand line into the BATCH stream. The operator does this by typing direc-
tives to the BATCH handler on the console terminal.

NOTE

These directives are equivalent to the compiler output that
BATCH generates in the .CTL file. The .CTL file is an ASCII
file that you can list by using the PRINT or TYPE commands
or by running PIP.

These directives have the form:
\dir
where:
dir ' represents one of the directives listed in Table A6

To use these directives, the operator must get control of the BATCH run-
time handler. This can be achieved through a /WAIT or a CTY in the
BATCH stream, or by typing a carriage return on the console terminal. If a
carriage return is typed, the operator does not know exactly where the
BATCH stream has been interrupted. When BATCH executes a command,
it acknowledges the carriage return and prints a carriage return/line feed
combination at the terminal. The operator can then enter a directive from
Table A—6. The most useful directives are marked with an asterisk (*). Some
directives are not particularly useful in this mode, but are listed to explain
completely the BATCH compiler output. ’

In the following example, the operator must interrupt the BATCH handler
to enter information from the console. As a result of a /WAIT or ‘CTY’ in the
BATCH stream, the following message appears at the terminal:

$MESSACE/WAIT WRITE NECESSARY FILES TO DISK

A-48 BATCH

Table A-6: Operator Directives to BATCH Run-Time Handler

Directive Function
\@ Sends the characters that follow to the console terminal.

*\NA Changes the input source to be the console terminal.

*\B Changes the input source to be the BATCH stream.

*\C Sends the following characters to the log device.

*\D Considers the following characters as user data.

*\E Sends the following characters to the RT-11 monitor.

*\F Forces the output of the current log block. If this directive is followed
by any characters other than another BATCH backslash (\) directive,
the BATCH job prints an error message and terminates. BATCH then
returns control to the RT-11 monitor. -

\G Gets characters from the console terminal until a carriage return is

' encountered.)

\Hn Help function that changes the logging mode. n specifies the

following:

0 Logonly . TTYOUT and .PRINT

1 Log.TTYOUT, .PRINT, and .TTYIN

2 Donotlog . TTYOUT, .PRINT, and .TTYIN
3 Logonly TTYIN

\Ivxlabell? IF statement that causes conditional transfer, where v is a variable

label2? name in the range A-Z; x is a value for the signed 8-bit comparison (v-

label3? x); and labell, label2, label3 are 6-character labels to which control is
transferred under certain conditions. (All labels must be six charac-
ters in length; if too short, pad with spaces.) If v-x is less than 0, con-
trol transfers to labell; if v-x is equal to 0, control goes to label2; if v-x
is greater than 0, control goes to label3. The direction for the label
search is indicated by ?; if ? is 0, the search begins at the beginning of
this job; if ? is 1, the label search begins after the IF statement.

\dJlabel? Jump, unconditional transfer; where label is a 6-character label and ?
is 0 or 1. (All labels must be six characters in length; if too short, pad
with spaces.) If ?=0, label is a backward reference; if?=1, label is a
forward reference.

\Kv0 Increment variablg v, where v is a variable name in the range A-Z.

\Kvin Stores the 8-bit number n in variable v.

\Kv2 Takes the value in variable v and returns it to the program (via
JTTYIND.

\Llabel ° Inserts label as a 6-character alphanumeric string in the BATCH

stream. (All labels must be six characters in length; if too short, pad
with spaces.) Labels must not include backslash characters.
Characters beyond six are ignored.

BATCH A-49

R BATCH
*COMPIL
OK 70 T
TAA\E

\ER EDIT

*ERFILE,
*EWFILE.,
*PRETRY @
*\L$%
RETRY:
49
30
51
52

To divert BATCH stream input from the current file to the console terminal,
the operator types \E, enters commands to the RT-11 monitor, then types \B.
Control then returns to the BATCH stream. The following example illus-
trates this procedure.

.k BATCH
*NEXT

WRITE NECESSARY FILES TO DISK
?\A\E

\ECOPY DT1:FILE.MAC RK:

FILES COPIED: -
DT1:FILE.MAC T0 RRK:FILE.MAC

\E\F\B

3

END BATCH

The following BATCH program lets you make frequent edits to a file and list
only the edits. First, create a BATCH program that assembles with a listing
and link the file. This BATCH program, called COMPIL.BAT, contains:

$J0B/RT11

TTYIOD

TWRITE TERMINAL I/0 TO LOG FILE
+R MACRO

'CALL THE MACRO ASSEMBLER
#FILE,FILE/C=FILE
$MESSAGE/MWAIT DK TO TYPE EDIT COMMANDS
R LINK

ICALL THE RT-11 LINKER
#FILEsLOG:=FILE
$EDJ

At run time, you can insert commands into the BATCH stream from the con-
sole terminal. These commands search for the section of the listing file that
has been edited, then list this section to the log. You must insert the com-
mand after the R MACRO command but before the R LINK command. The
following example illustrates this procedure.

¥YPE EDIT COMMANDS

LST%%
SEC%
$=J%%
0 jHIGH ORDER BIT USED FOR "RESET IN PROGRESS FLAG
QODO20 01B705 177764 Moy RKCQE sRS iGET 9 P
QO0024 Q11302 MoW @RS sR2 iR2 = BL
QOOO26 016304 000002 Moy 2(RD) R4 iR4 = UN
QODO3Z 00B204d ASR . R4 . i ISOLATE

A-50 BATCH

53 000034 O00BZ04 ASR Rd

54 000036 00BZ04 ASR R4

55 000040 000304 SWAB R4

55 Q00042 042704 017777 BIC #°C41B0000 sR4

57 000048 000404 BR 2% JENTER C
¥EHSS
ENC\B
END BATCH

A.7.4 Terminating BATCH

When BATCH terminates normally, it prints the following message and
returns control to the RT-11 monitor:

END BATCH

To abort BATCH while it is executing a BATCH stream, interrupt the
BATCH handler by typing a carriage return. When BATCH executes the
next command after the carriage return, it prints a carriage return/line feed
combination at the console terminal. You then gain control of the system.
Type \F followed by a carriage return. The BATCH handler responds with
the FE (forced exit) error message and writes the remainder of the log
buffer. Control returns to the RT-11 monitor.

Typing two CTRL/Cs terminates BATCH immediately. Use two CTRL/Cs
when BATCH is in a loop or when a long assembly is running. In these
cases, BATCH responds slowly to your carriage return interrupt.

" A.8 Differences Between RT-11 BATCH and RSX-11D BATCH

Some programmers run their RT-11 BATCH programs under RSX-11D.
Note the differences between the two BATCH implementations listed in
Table A—7. BATCH programs that run under both systems must be compati-
ble with both RT-11 and RSX-11D BATCH.

Table A-7: Differences Between RT-11 and RSX-11D BATCH

Characteristic RT-11 RSX-11D
File descriptors filespec/option SY:filnam.typ/option v
Default listing file type .LST(or .LIS) .LIS
 Executable file type SAV .EXE

Incompatible commands $BASIC $MCR
$CALL
$CHAIN
$LIBRARY
$RT11
$SEQUENCE

tContinued on next page)

BATCH A-51

Table A-7: Differences Between RT-11 and RSX~-11D BATCH (Cont.)

Characteristic RT-11 RSX~11D

Incompatible options $COPY/DELETE
$CREATE/DOLLARS
$CREATE/LIST
$DATA/DOLLARS
$DATA/LIST
$DIR file/LIST $DIR file/DIRECTORY
S$DISMOUNT/WAIT
$DISMOUNT lun:/LOGICAL
$FORTRAN/DOLLARS
$FORTRAN/MAP
$JOB/BANNER $JOB/NAME
$JOB/LIST $JOB/LIMIT
$JOB/RT11 $JOB/MCR
$JOB/TIME
$JOB/UNIQUE
$SLINK/LIBRARY $LINK/MCR
$LINK/OBJECT
$MACRO/CREF
$MACRO/DOLLARS
$MACRO/LIBRARY
$MACRO/MAP
$MESSAGE/WAIT
$MESSAGE/WRITE
$PRINT/DELETE

$DATA input Appears as if Appears as if from
from input a file named
FORO01.DAT

Logical device names Iri SMOUNT and Logical unit numbers
v $DISMOUNT only

$RUN You must specify RSX11DBAT.EXE is
file name default

A-52 BATCH

Appendix B

System Utility Program Options and Monitor Command

Equivalents

Table B-1 lists all the system programs and options with their keyboard
monitor equivalents. Note that some system program options are inaccessi-
ble through any keyboard monitor command; each is marked by an asterisk.

In this table:

@ The first column lists the éystem program.

® The second column lists the system program’s option.

® The third column lists the keyboard monitor command by which the Sys-
tem program is invoked.

® The fourth column lists the monitor equivalent of the system program

option.

Note also that some system programs are accessible through more than one
keyboard monitor command (for example, DUP is accessed through BOOT,
COPY, CREATE, DIRECTORY, INITIALIZE, and SQUEEZE).

Table B~1: System Program/Monitor Command Equivalents

System Keyboard Monitor
Program Option Command Option
BINCOM

/B DIFFERENCES/BINARY /BYTES

/D DIFFERENCES/BINARY /DEVICE

/E:n DIFFERENCES/BINARY /END[:n]

/H *

/0 DIFFERENCES/BINARY /ALWAYS

Q DIFFERENCES/BINARY /QUIET

/Sin DIFFERENCES/BINARY /START(:n}
BUP BACKUP -

/1 BACKUP /DEVICE

/L DIRECTORY /BACKUP

X BACKUP /RESTORE

Y BACKUP /INOQUERY

17 INITIALIZE /BACKUP

(Continued on next page)

B-1

Table B-1: System Program/Monitor Command Equivalents (Cont.)

System Keyboard Monitor
Program Option Command Option
DIR
/A DIRECTORY /ALPHABETIZE
/B DIRECTORY /BLOCKS (disks)
/POSITION (magtapes)
/C:n DIRECTORY /COLUMNS:n
/D[:date] DIRECTORY /DATE[:date]
/E DIRECTORY /FULL
/F DIRECTORY /FAST
G DIRECTORY /BEGIN
/J[:date] DIRECTORY /SINCE[:date]
/K[.date] DIRECTORY /BEFORE]|:date]
/L *
/M DIRECTORY /FREE
IN DIRECTORY /ISUMMARY
/0 DIRECTORY /OCTAL
/P DIRECTORY & /EXCLUDE
Q DIRECTORY /DELETED
R DIRECTORY /REVERSE
/S[:xxx] DIRECTORY /SORT{:category]
/T DIRECTORY /PROTECTION
J DIRECTORY /NOPROTECTION
/VI:ONL] DIRECTORY /VOLUMEIDI[:ONLY]
DUMP
/B DUMP /BYTES
/E:n DUMP /END:n
G DUMP /IGNORE
/N DUMP /NOASCII
/O:n DUMP /ONLY:n
/S:n DUMP /START:n
IT DUMP /FOREIGN
W DUMP /WORDS
/X DUMP /RAD5S0
DUP
/B[:RET] INITIALIZE /BADBLOCKS[:RET]
/C CREATE
/D INITIALIZE /RESTORE
/E:n COPY /END:n
/F COPY, DIRECTORY /FILES
/G:n COPY,CREATE /ISTART:n
/H *
n COPY /DEVICE
1L ASSIGN, DEASSIGN
/K DIRECTORY /BADBLOCKS
/N:n INITIALIZE /SEGMENTS:n
10 BOOT
Q BOOT /FOREIGN
/R:RET] COPY /RETAIN
INITIALIZE /REPLACE[:RETAIN]
/S SQUEEZE
/T'n CREATE /EXTENSION:n

(Continued on next page)

B-2 System Utility Program Options and Monitor Command Equivalents

Table B-1: System Program/Monitor Command Equivalents (Cont.)

System Keyboard Monitor
Program Option Command Option
/U[:xx] COPY /BOOT(:val]
/V[:ONL] INITIALIZE /VOLUMEID|:ONLY]
W DIRECTORY, COPY,
INITIALIZE, SQUEEZE,
BOOT /WAIT
/X *
Y COPY, INITIALIZE,
SQUEEZE /INOQUERY
1Z[:n] INITIALIZE
ERROUT
/A SHOW ERRORS /ALL
/F:date SHOW ERRORS /FROM:date
8 SHOW ERRORS /[SUMMARY
/T:date SHOW ERRORS /TO:date
FILEX
/A COPY /ASCII
/D DELETE
/F DIRECTORY /FAST
1 COPY /IMAGE
/L DIRECTORY
/P CorPY /PACKED
8] COPY /DOS
/T COPY /TOPS
/Ul:n.] COPY /INTERCHANGEI:size]
/V[:ONL] DIRECTORY,
INITIALIZE /VOLUMEID[:ONLY]
W COPY, DELETE,
DIRECTORY,
INITIALIZE [WAIT
Y INITIALIZE /NOQUERY
1Z INITIALIZE
FORMAT
/P:n FORMAT /PATTERN:value
IS FORMAT /SINGLEDENSITY
/V[:ONL] FORMAT /VERIFY[:ONLY]
W FORMAT /WAIT
Y FORMAT /INOQUERY
IND Not accessible through keyboard monitor commands
LD
/A:ddd ASSIGN -
/C SET LDn CLEAN
/Lin MOUNT, DISMOUNT
/Rin MOUNT, DISMOUNT NOWRITE
/W:n MOUNT, DISMOUNT WRITE
LIBR
/A *
/C LIBRARY /PROMPT

(Continued on next page)

System Utility Program Options and Monitor Command Equivalents B-3

Table B-1: System Program/Monitor Command Equivalents (Cont.)

System Keyboard Monitor
Program Option Command Option
/D LIBRARY /DELETE
/B LIBRARY /EXTRACT
/G LIBRARY /REMOVE
/M[:n] LIBRARY /MACRO{:n]
/N *
/P *
/R LIBRARY /REPLACE
/U LIBRARY /UPDATE
/W *
X *
" *
LINK
/A LINK /{ALPHABETIZE
/B:n LINK /BOTTOM.:value
/C LINK /PROMPT
/D LINK, EXECUTE /DUPLICATE
/E:n LINK /EXTEND:n
/F *
G
/H:n LINK /TOP|:value]
il LINK /INCLUDE
/K:n LINK /LIMIT:n
/L LINK /LDA
/M[:n] LINK /STACK|:value]
/N LINK, EXECUTE /GLOBAL
/O:n *
/Pin *
Q *
/R{m] LINK /FOREGROUND[:STACKSIZE]
/S LINK /SLOWLY
/T[:n] LINK /TRANSFER/:valuel
/Un LINK /ROUND:n
/V:n[:m] LINK /XM
W LINK /WIDE
X LINK /NOBITMAP
/Y:n LINK /BOUNDARY:value
/Z:n LINK /FILL:n
I *
MACRO
/C:arg MACRO /CROSSREFERENCE(:typel...:typell
/D:arg MACRO /DISABLE]|:typel....typell
/E:arg MACRO o /ENABLE:typel...:typell
/L:arg MACRO /SHOW:type
™M MACRO /LIBRARY
/N:arg MACRO /INOSHOW:type
oDT Not accessible through keyboard monitor commands
PAT Not accessible through keyboard monitor commands

(Continued on next page)

B—4 System Utility Program Options and Monitor Command Equivalents

Table B-1: System Program/Monitor Command Equivalents (Cont.)

System Keyboard Monitor
Program Option Command Option
PIP
/A COPY /ASCII
/B COPY /BINARY
/Cl:date] COPY,DELETE, PRINT
PROTECT, RENAME
TYPE, UNPROTECT /DATE[:date],/ NEWFILES
/D DELETE -
PRINT, TYPE /DELETE
/E COPY, DELETE, PRINT,
PROTECT, RENAME
TYPE, UNPROTECT /WAIT
/F COPY, RENAME /PROTECTION
PROTECT -
G COPY /IGNORE
/H COPY /VERIFY
/f:date] = COPY,DELETE, PRINT,
PROTECT, RENAME
TYPE, UNPROTECT /SINCE(:date]
/Jl:date] COPY,DELETE, PRINT,
PROTECT, RENAME
TYPE, UNPROTECT /BEFORE|:date]
/K:n PRINT, TYPE /COPIES:n
/M:n COPY,DELETE /POSITION:n
/N COPY, RENAME /NOREPLACE
/0 COPY /PREDELETE
/P COPY, DELETE
PROTECT, UNPROTECT /EXCLUDE
Q COPY,DELETE, PRINT
PROTECT, RENAME
TYPE, UNPROTECT /QUERY
/R RENAME -
IN] COPY /SLOWLY
/T[:date] COPY, PROTECT
RENAME, UNPROTECT /SETDATE[.date]
U COPY /ICONCATENATE
A" COPY /MULTIVOLUME
W COPY, DELETE, PRINT
PROTECT, RENAME
TYPE, UNPROTECT /LOG
X COPY, DELETE, PRINT
PROTECT, RENAME
TYPE, UNPROTECT /INFORMATION
Y COPY, DELETE, PRINT
PROTECT, RENAME,
TYPE, UNPROTECT /ISYSTEM
1Z COPY, RENAME /NOPROTECTION
UNPROTECT -
QUEMAN
/A *
/C[:date] PRINT /DATE[:date], NEWFILES
/D PRINT /DELETE

(Continued on next page)

System Utility Program Options and Monitor Command Equivalents B-5

Table B-1: System Program/Monitor Command Equivalents (Cont.)

System Keyboard Monitor
Program Option Command Option
/H:n PRINT /[FLAGPAGE:n
/l:date] PRINT [SINCE[:date]
/J[:date] PRINT /BEFORE[:date]
/K:n PRINT /COPIES:n
/L SHOW QUEUE
M DELETE /[ENTRY
/N PRINT /INOFLAGPAGE
/P *
I{a) PRINT /QUERY
R *
IS *
W PRINT /LOG
/X PRINT /INFORMATION
Iz PRINT /PROMPT
RESORC
/A SHOW ALL
/C *
[dev:/D SHOW DEVICES[dd:]
/H *
J SHOW JOBS
/L SHOW
M *
/0 *
18] SHOW QUEUE
/8 SHOW SUBSET
/T SHOW TERMINALS
X SHOW MEMORY
1Z SHOW CONFIGURATION
SIPP Not accessible through keyboard monitor commands
SLP Not accessible through keyboard monitor commands
SRCCOM
/A DIFFERENCES /AUDITTRAIL
/B DIFFERENCES /BLANKLINES
e DIFFERENCES /NOCOMMENTS
/D DIFFERENCES /CHANGEBAR
/F DIFFERENCES /FORMFEED
/Le{n] DIFFERENCES /MATCH:[n]
8 DIFFERENCES /NOSPACES
/T DIFFERENCES /NOTRIM
V:id *

B-6 System Utility Program Options and Monitor Command Equivalents

INDEX

/A
DIR option, 4-2
Error Logger option, 16-8
FILEX option, 7-2
LD option, 9-2
LIBR option, 10-5
LINK option, 11-43
PIP option, 13-7
QUEMAN option, 17-4
RESORC option, 14-2
SIPP option, 22-3
SLP option, 23-3
ABS
p-sect attribute, 11-5
Absolute block parameters (table),
11-17
Absolute load module
creating, 11-16
Absolute program section
attributes (table), 11-6
contents of, 11-3
Access code
p-sect attributes, 11-5
Active page register
definition of, 11-30
Alloc-code
function of, 11-4
p-sect attributes, 11-5
APR
See Active page register
ASCII files
copying, 13-7
ASECT
See Absolute program section
Audit trail
SLP, 23-5
disabling, 23-5
enabling, 23-5
specifying, 15-8
specifying size of, 23-3

/B

BINCOM option, 2-3

DIR option, 4-4

DUP option, 6-19

LINK option, 11-43

PIP option, 13-8

SLP option, 23-3
Background jobs

debugging with ODT, 20-21

Backup utility program
See BUP
Backup volumes (BUP)
initializing, 3-8
Bad block replacement, 6-17
Bad block scans
including name of files with
bad blocks, 6-9
performing, 6-8
Bad blocks
covering, 6-19
replacing, 6-17
.BAD files
copying, 13-2
deleting, 13-2
PIP treatment of, 13-2
Banner pages
printing specified number of,
175
setting default number of, 17-7
suppressing printing of, 17-7
$BASIC
BATCH command, A-13
BATCH, A-1 to A-52
assembling MACRO source files
using, A-26
calling another BATCH con