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Preface

Purpose and Audience

Design

The purpose of the RT-11 Software Support Manual is to provide detailed
descriptions of the software components of the RT-11 operating system.

It is intended for programmers with experience in MACRO-11 assembly
language who are interested in system-level programming, and for all ap-
plication programmers who want to improve their technical understanding
of the RT-11 operating system. (While the RT-11 Software Support
Manual is not strictly a tutorial manual, it does provide valuable
background information for application programmers.)

This manual will be particularly useful to you if you are a system program-
mer and your job is to support RT-11 for other users, you need to use
devices that RT-11 does not already support, or you plan to alter the
RT-11 software components. This manual can help you design more effi-
cient programs if you are an applications programmer, especially if you plan
to use the foreground/background, extended memory, or multi-terminal
capabilities of RT-11.

NOTE

DIGITAL does not maintain software that you have
changed in any way! Altering the RT-11 software com-
ponents voids. your warranty and terminates your
maintenance service, so refrain from making changes un-
less you have the technical expertise to be responsible for
the system afterwards.

Before you read this manual you should be familiar with the topics covered
in the RT-11 System User’s Guide and with the programmed requests
documented in the RT-11 Programmer’s Reference Manual. The RT-11
Software Support Manual contains information that can help you use
system resources and the programmed requests more effectively.

The resource that can best help you while you are using this manual —
especially if you are interested in monitor internals — is the microfiche
listing of the RT-11 commented source files.

This manual consists of ten chapters and three appendixes. The first two
chapters provide an overview of the RT-11 system in general as well as in-
formation on the components, their arrangement in memory, and their
gross structure. The chapters that follow describe the previously introduc-
ed system components in greater depth.
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xxii

Chapter 1 provides an overview of the history of RT-11’s development.

Chapter 2 describes how the software components are arranged in memory
and shows how the arrangement changes dynamically. It also provides an
overview of the components themselves.

Chapter 38 describes the internals of the Resident Monitor that are generally
common to the three RT-11 monitors. Topics that it covers include ter-
minal service, timer service, I/0 queuing, foreground/background considera-
tions, system jobs, and data structures.

Chapter 4 describes the internals of the Resident Monitor that are the basis
of extended memory systems. It provides information on how the memory
management hardware works, how RT-11 implements support for 124K
words of memory, and how to design and code application programs.

Chapter 5 covers a special feature of RT-11: the ability to use more than
one terminal, or multi-terminal support. The chapter includes an example
application program.

Chapter 6 is an introduction to interrupt service in RT-11. It is useful to
programmers who need to add a device to their system configuration that is
not already supported by RT-11. The chapter defines the structure and
contents of an in-line interrupt service routine, and includes information for
servicing interrupts in different RT-11 monitor environments.

Chapter 7 is a logical continuation of Chapter 6. It explains the differences
between in-line interrupt service routines and device handlers. It describes
how to design, code, install, and debug a device handler. The chapter also
covers some special features of handlers ‘and gives considerations for
handlers that will operate in various RT-11 monitor environments. Lastly,
it lists requirements for system device handlers, and describes the
bootstrap.

Chapter 8 describes the structure and format of RT-11 files. It covers
stream ASCII, LDA, REL, OBJ, STB, and SAYV files, library files, error log-
ging files, CREF files, and files with overlays. ‘

Chapter 9 provides information on device directories, file storage, and for-
mats. It documents the structure of directories for random-access devices,
and shows how to repair a directory that has been corrupted. It also
describes the structure of magtapes and cassettes.

Chapter 10 describes unique attributes of various physical devices and pro-
vides information necessary for programming specifically for those devices.

Appendix A provides commented listings of three RT-11 device handlers:
RK, DX, and PC.

Appendix B explains how to convert device handlers that were written for
V03 or VO3B of RT-11 to the current device handler format.

Appendix C contains a listing of a sample application program that uses in-
line interrupt service to control an analog-to-digital converter in a typical
laboratory situation.
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Documentation Conventions

The following symbolic and vocabulary conventions are used throughout
this manual. Familiarize yourself with them before you continue reading.

Memory refers to all kinds of physical storage in the computer itself; it in-
cludes core and semiconductor memory. It is distinguished from storage on
peripheral devices, such as disk or tape.

In all diagrams of memory, the high addresses are at the top of the picture
and the bottom of the figure represents address 0. In descriptions of data
structures and tables, low addresses and offsets are at the top of each table.

In discussions of extended memory systems, low memory refers to memory
below the 28K-word boundary. However, for LSI computers with the
MSV11-DD memory board and a special jumper installed, low memory con-
sists of the memory locations below the 30K-word boundary.

The following acronyms are used throughout this manual:

Name Meaning

USR User Service Routine
RMON Resident Monitor
KMON Keyboard Monitor

FB Foreground/Background
XM Extended Memory

SJ Single-Job

BL Baseline

EOT End-of-tape

EOF End-of-file

LEOT ' Logical end-of-tape
BOT . Beginning-of-tape
CSwW Channel Status Word
PS Processor Status word

For your convenience, the following table shows the octal mask used to set,
clear, or test each bit in a 16-bit word.

Bit Octal Mask
0 1
1 2
2 4
3 10
4 20
5 40
6 100
7 200
8 400
9 1000

10 2000

11 4000

12 10000

13 20000

14 40000

15 100000
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Chapter 1
Historical Overview

At its conception in 1972, RT-11 was designed to be a small, fast, easy-to-
use operating system for the PDP-11 family of minicomputers. It was
developed as a single-user system for real-time and computational use; its
target applications were data acquisition, process control, and, of course,
program development.

The following sections provide an overiew of the history of RT-11's
development, showing how the operating system has evolved over the
course of eight years and four major releases. For a comprehensive over-
view of the hardware, software, and documentation components of today’s
RT-11 operating system, see Chapter 1 of the RT-11 System User’s Guide.

The year 1971 was an exciting time for the computer industry. The PDP-11
computer was only a year old and DIGITAL was making computing power
feasible for thousands of applications with the introduction of this relative-
ly inexpensive 16-bit minicomputer. *

The software then available for the PDP-11 consisted of PTS (Paper Tape
Software, which included the PAL-11S Assembler) and DOS-11 (a batch-
oriented system). Clearly, the situation called for a low-cost, interactive
system that could be used for real-time and computational applications, and
for program development.

A popular operating system for the PDP-8, called OS/8, was the design
model for the new PDP-11 operating system, tentatively called OS-11. The
new operating system was designed to be a small, single-user, interactive
system with event-driven real-time I/O, that would run on PDP-11 com-
puters with 28K words of memory or less. It was designed to have a simple,
modular structure; device handlers would be used for I/O transfers so ap-
plication programming could be device-independent, and files would be
stored in contiguous blocks on disk so record management would not be a
programming concern.

1.1 Version 1

Actual development work on OS-11 began in the fall of 1972. A group of
five system programmers and one technical writer set about refining the
design for OS-11 and producing the software and the manual. The ground-
work was laid to make OS-11 compatible with OS/8 and TOPS-10.

The first version of OS-11 included the single-job monitor and a set of pro-
gram development tools: EDIT, MACRO-11, LINK, ODT, PIP, PATCH,

! Computer Engineering: A DEC View of Hardware Systems Design, by C. Gordon Bell, J.
Craig Mudge, and John E. McNamara, Digital Press, 1978.
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EXPAND and ASEMBL (tools for developing macros in 8K-word systems),
and PIPC (for cassettes). BASIC-11, the first product to require RT-11 as
its base system, was also part of Version 1. The single-job monitor provided
necessary services to running programs and supervised the queued I/O
system. The operating system supported seven devices: RK, LP, TT, CT,
PR, PP, and DT.

0OS-11 was renamed first to RTPS-11 (Real-Time Programming System),
then to RT-11 (Real Time). Version 1 of RT-11 was completed in the fall of
1973, and support for the GT40 video display was added in early 1974.

1.2 Version 2

It soon became apparent that RT-11 was successful. More system pro-
grammers and technical writers were added to the group, and development
for another release was begun. Versions 2, 2B, and 2C brought some signifi-
cant new features to the operating system. A new monitor was developed
that permitted two jobs to run in a foreground/background environment.
Support was added for new peripheral devices, including MM, MT, CR, DP,
RF, DX, and DS. A number of utility programs were added to improve the
set of program development tools. These included CREF, LIBR, PATCHO,
DUMP, FILEX, SRCCOM, and BATCH. FORTRAN IV was released with
Version 2, and the operating system software included a library of
FORTRAN:-callable subroutines, called SYSLIB. Version 2 was completed
in the fall of 1974; the 2C update was released in early 1976.

1.3 Version 3

1-2

Version 3 of RT-11 was another major release. Most significant was the
development of the extended memory monitor from a conditional assembly
of the foreground/background monitor source files. This permitted RT-11
to support systems with up to 124K words of physical memory. Products
such as FORTRAN 1V, CTS-300, and Multi-User BASIC-11 took advan-
tage of this feature in ways that were transparent to application programs.
Support was included for multi-terminal systems as well, and device error
logging was implemented. DCL (DIGITAL Command Language) was
developed so that almost all system programs could be accessed by
English-like monitor commands. Indirect files provided an easy-to-use alter-
native to BATCH.

Again, support was added for new DIGITAL peripheral devices; DL, DM,
DY, NL, and PC (which replaced PR and PP). And, more system utility pro-
grams were introduced: PIP was divided into PIP, DUP, and DIR. Other
new utilities included PAT, FORMAT, and RESORC. System generation
was designed to permit customization and provide system flexibility. The
TECO editor was included in the distribution kits for the first time. Version
3 was completed in the fall of 1977, and the 3B update was made available
in early 1978.
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1.4 Version 4

“Things are more like they are now than they ever were before.”

With Version 4, RT-11 could be called a mature product. The specific goals
of this development effort were to make RT-11 easier to install and
maintain. Tools were provided, in the form of BINCOM, SIPP, SRCCOM,
and SLP, to make the generation and installation of patches almost
automatic. System jobs (special foreground jobs provided by DIGITAL)
handled error logging and file queuing. Monitor files were separated from
system device handler files, providing greater flexibility while saving
storage space. Not least among the accomplishments was a change to the
linker that permitted overlays to reside in extended memory rather than on
a mass storage device. The KED and K52 Keypad Editors were included in
the distribution kits.

Version 4 was completed in early 1980. By then there were well over
seventeen thousand RT-11 systems installed around the world, making
this operating system a successful venture indeed.
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Chapter 2
System Components and Memory Layouts

This chapter introduces the components of the RT-11 system that can be
memory resident. It provides maps of physical memory that show where
the components are located, and it indicates how their positions can change
dynamically. The components this chapter covers are divided into two
groups: static components, which have a relatively fixed position in
memory, and dynamic components, whose locations are changeable.

The components are arranged to leave the most space available for user pro-
grams and to be flexjble. Flexibility is obtained by positioning the com-
ponents after determining the total amount of memory at bootstrap time.
Normally, you do not have to take any special steps to move RT-11 from
one PDP-11 computer to another.

2.1 Static Components

The static components have fixed locations in memory. Their actual ad-
dresses vary from one PDP-11 computer to the next, depending on how
much memory each computer has available. The static components or areas
are as follows:

e Trap vectors

e System communication area

¢ Interrupt vectors

e I/O page

¢ System device handler

* Resident Monitor

e Background job

21.1 Trap Vectors

Table 2-1 shows the memory locations from 0 to 36, an area that contains
the trap vectors. A plus sign (-+) marks the locations that are reserved for
use by RT-11. You should not attempt to modify these locations; a bitmap
protects them each time you load a program. An asterisk (*) marks the loca-
tions that your programs can use. Figure 2-1 is a summary of the trap vec-
tor area information.
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Table 2-1: Trap Vectors

Location

Contents

0,2+

4,6+

10,12 +

14,16*
20,22*
24,26*

30,32 +
34,36*

Monitor restart, executes the .EXIT request and returns control to the
monitor (has additional uses in XM systems).

Odd address and bus time-out trap; RT-11 sets this to point to its inter-
nal trap handler.

Reserved instruction trap; RT-11 sets this to point to its internal trap
handler.

BPT (breakpoint trap), T-bit trap (used by debugging utility programs).
10T, input/output trap.

Powerfail and restart trap. Your programs can use this location unless
you included support for powerfail restart through system generation. If
your system includes the powerfail restart feature, locations 24 and 26
are reserved for use by RT-11.

EMT, emulator trap; RT-11 uses this for programmed requests.

TRAP instruction. Note that you cannot use the TRAP instruction in
assembly language subroutines linked with FORTRAN IV, BASIC-11,
or MU BASIC-11 programs; these languages use the TRAP instruction
for internal error reporting.

Figure 2-1: Trap Vector Area

Y
28K MEMOR
/ LOCATION CONTENTS
/ 34,36 TRAP INSTRUCTION
/
/ 30, 32 EMT INSTRUCTION
/
/ 24,26 POWERFAIL AND RESTART
/
/ 20,22 10T TRAP
// 14,16 BPT TRAP
// 10,12 RESERVED INSTRUCTION TRAP
/ 4,6 ODD ADDRESS/BUS TIME-QUT
36
TRAP VECTORS 0,2 MONITOR RESTART
0 R —
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212 System Communication Area

The memory locations from 40 through 57 are called the system com-
munication area. This area holds information about the program currently
executing, as well as certain information normally used only by the monitor.

The diagram in Figure 2-2 is a summary of the system communication area

information. Table 2-2 describes the contents of each location.

Figure 2-2: System Communication Area

MEMORY
28K
// LOCATION CONTENTS
/ 57,56 FILL COUNT ] FILL CHARACTER
/
/ 54 RMON STARTING ADDRESS
/
/ 53,52 USER ERROR BYTE MONITOR ERROR BYTE
/
// 50 HIGHEST ADDRESS AVAILABLE TO PROGRAM
// 46 USR LOAD ADDRESS; NORMALLY 0
/ 44 JOB STATUS WORD (JSW)
56 | SYSTEM
20 | coMmUNICATION AREA 42 INITIAL VALUE OF STACK POINTER
36 \\\
o TRAP VECTORS ~— 40 PROGRAM START ADDRESS

Table 2-2: System Communication Area

Location

Contents

40,41

42,43

Start address of job. When you link a file to create an RT-11 executable
image, the linker sets the word at address 40 in the program’'s file to the
starting address of the program. This word is loaded into memory loca-
tion 40 at run time. When a foreground job executes, the FRUN proc-
essor relocates this word to contain the actual starting address of the
program,

Initial value of stack pointer. If the user program does not set this value
with an .ASECT directive, the value defaults to 1000 or to the top of the
program’s absolute section, whichever is larger. If a foreground p>ogram
does not specify a stack pointer in this word (by using an .ASECT direc-
tive), the FRUN processor allocates a default stack of 128 decimal bytes
immediately below the program, and the initial stack pointer value is
1000. You can use the linker /B:n option to set the initial value of the
background job’s stack pointer.
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Table 2-2: System Communication Area (Cont.)

Location

Contents

44,45

46,47

50,51

52

53

54,55

56

57

Job Status Word (JSW). This is a flag word for the monitor. The monitor
maintains some of the bits itself, and your program can set or clear
others. See Section 2.1.2.2 for more information on the JSW.

USR load address. This word is normally 0, but you can set it in the file
or at run time to any valid word address in your program. If this word is
0, the USR loads in its default location through an address contained in
offset 266 of RMON. If this word is not 0, the USR simply loads at the
address it specifies, unless the USR is set NOSWAP. This location is
cleared by an exit to KMON (via .EXIT, CTRL/C, or fatal error).

High memory address. In this word the monitor maintains the highest
address your program can use. The linker sets this word initially to the
high-limit value. You can modify it by using the .SETTOP programmed
request. Your program must never modify this word directly. In XM
systems, locations 50 and 51 in the file contain the address that is the
top of the root section plus the low memory (/O) overlays. In memory,
locations 50 and 51 contain the same value unless the program issues a
SETTOP. In this case, these locations contain the highest available vir-
tual address (see Section 4.4.4.6).

EMT error code. If a monitor request results in an error, the code
number of the error is always returned in byte 52 in memory and the
carry bit is set. Each monitor call has its own set of possible errors. Byte
52 in the job’s file has a different meaning (see Chapter 8).

NOTE

Always address location 52 as a byte, never as a word, since
byte 53 has a separate function.

User program error code (USERRB). If a user program encounters errors
during execution, it indicates the error by using this byte in memory. See
Section 2.1.2.1 for more information about this byte. See Chapter 8 for
its meaning in the job’s file.

Address of the begining of the Resident Monitor. RT-11 always loads
the monitor into the highest available memory locations of low (rather
than extended) memory; this word in memory points to its first location.
Never alter this word — doing so causes RT-11 to malfunction. See
Chapter 8 for the meaning of this word in the job’s file.

Fill character (seven-bit ASCII). Some high-speed terminals require fill
(null) characters after printing certain characters. Byte 56 in memory
should contain the ASCII seven-bit representation of the character after
which fills are required. See Chapter 8 for the meaning of this bit in the
job’s file.

Fill count. This byte in memory specifies the number of fill characters
that are required. The number of characters is determined by hardware.
If bytes 57 and 56 are 0, no fill is required. See Chapter 8 for the meaning
of this byte in the job’s file. For more information on the terminals that
require fill characters, see the RT-11 Installation and System Genera-
tion Guide.
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2.1.2.1 User Error Byte — The Keyboard Monitor examines the user error
byte when a program terminates. If your program has reported a signifi-
cant error in this byte, KMON can abort any indirect command files in use.
This prevents spurious results from occurring if subsequent commands in
the indirect file depend on the successful completion of all prior commands.

A program can exit in one of the following states:

e  Success

e Warning

e Error

e Severe error

¢ Unconditionally fatal error

The program status is success when the execution of the program is free of
errors.

The warning status indicates that warning messages occurred, but the pro-
gram ran to completion.

The error status indicates that a user error occurred and the program did
not run to completion. This level is also used by RT-11 system programs
when they produce an output file even though it may contain errors. For ex-
ample, a compiler can use the error level to indicate that an object file was
produced, but the source program contains errors. Under these conditions,
execution of the object file will not be successful if the module containing
the error is encountered.

The severe status indicates that the program did not produce any usable
output, and any command or operation depending upon this program out-
put will not execute properly. This type of error can result when a resource
needed by the program to complete execution is not available — for exam-
ple, insufficient memory space to assemble or compile an application
program,

The unconditionally fatal status indicates that not only has an operation
completely failed, but that the integrity of the monitor itself is
questionable.

Utility programs and the Keyboard Monitor always set the user error byte
to reflect the result of each monitor command you issue. Normally, indirect
command files abort when there has been a monitor command error. By set-
ting the error level to unconditionally fatal with the SET ERROR NONE
command, you guarantee that indirect command files will continue to ex-
ecute despite individual monitor command errors. Only unconditionally
fatal errors that indicate problems within the Keyboard Monitor itself abort
indirect files at the SET ERROR NONE level. Table 2-3 shows the bits of
byte 53, their status, and the status code printed by the RT-11 system util-
ity program messages.
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Table 2-3: User Error Byte

Bit Mask Status RT-11 Message

0 1 Success ?prog-1-text, or none
1 2 Warning prog-W-text

2 4 Error ?prog-E-text

3 10 Severe ?prog-F-text

4 20 Fatal 7prog-U-text

Bits 5 through 7 of the user error byte are reserved for DIGITAL’s future
use; do not use them in your programs. Programs should never clear byte
53, and should set it only through a BISB instruction, as the following ex-
ample shows. If more than one bit is set at any given time, the highest bit is
the one that RT-11 recognizes.

USERRB =53

SUCCS$ =1

WARNS$ =2

ERROR$ =4

SEVER$ =10

UFATLS =20

ERROR: BISB #ERRORS$,@#USERRB ;SET ERROR STATUS
CLR RO ;HARD EXIT
EXIT

Note that this byte is meaningful only for the Keyboard Monitor and for
background jobs. This is because it was designed to be used by system util-
ity programs and language processors, which run as background jobs. A
foreground job can set it, but that action has no effect on the system.

2.1.2.2. Job Status Word (JSW) — Bytes 44 and 45 make up the Job Status
Word, or JSW. Table 2-4 shows the meanings of the bits in this word. The
bits marked with an asterisk (*) can be set by a user program during execu-
tion. Bits marked with a plus sign ( + ) are set at load time. Note that some
bits can be set at both load and run time. Unused bits are reserved for
future use by DIGITAL. Figure 2-3 shows a summary of the JSW.

Table 2-4: Job Status Word (JSW)

Bit
Number Meaning When Set
15 USR swap bit (SJ only). The monitor sets this bit when a program does
not require the USR to swap. (See Section 2.2.3 for details on the USR.)
Your program must not alter this bit.
14+* Lower-case bit. Disables automatic conversion of typed lower-case to

upper-case characters. EDIT sets it when you type the EL command.
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Table 2-4: Job Status Word (JSW) (Cont.)

Bit
Number Meaning When Set
13 +* Reenter bit. Indicates that a program can be restarted from the terminal
when you type the REENTER command.
12 +* Special mode terminal bit. Indicates that the job isin a special keyboard

mode of input. Refer to the explanation of the . TTYIN and .TTINR pro-
grammed requests in the RT-11 Programmer's Reference Manual for
details.

11 +* Pass line to KMON bit. Indicates, when a program exits, that the pro-
gram is passing a command line to KMON. This action causes any open
indirect file to abort. The command line should be stored in the CHAIN
information area, locations 500 through 776. Refer to the example pro-
gram for .EXIT in the RT-11 Programmer’s Reference Manual. This bit
is not available to foreground or system jobs under the FB and XM
monitors.

10 + Virtual image bit (XM only). Indicates that the job to be loaded is a vir-
tual job. You must set this bit yourself in the executable file before you
attempt to run the program. Do this at assembly time by using an
ASECT directive and modifying the JSW, or before run time by patch-
ing this location in the file. See Chapter 4 for more information on virtual
jobs.

9 Overlay bit. This bit is set by the linker if the user program uses the
linker overlay feature.

8+ CHAIN bit. This bit can be used in two ways. If it is set in a job’s save
image, the monitor loads words 500 through 776 from the save file when
the job is started, even if the job is entered with .CHAIN. (These words
are normally used to pass parameters from one job to another across a
.CHAIN,)

The monitor sets this bit when the job is running if and only if the job
was actually entered with a .CHAIN.

T+* Error halt bit (SJ only). Indicates that the system should halt when an
1/0 error occurs. If you want the system to halt when a device I/O error
occurs, you should set this bit.

6+* Inhibit terminal wait bit (FB and XM only). Inhibits the job from enter-
ing a console terminal wait state. For more information, refer to the sec-
tions concerning .TTYIN, .TTINR, .TTYOUT and .TTOUTR in the
RT-11 Programmer’s Reference Manual.

4-5 Reserved.

3+* Nonterminating .GTLIN bit. When bit 3 of the JSW is set and your
program encounters a CTRL/C in an indirect command file, the .GTLIN
request collects subsequent lines from the terminal. If you then clear bit 3
of the JSW, the next line collected by the .GTLIN request is the CTRL/C
in the indirect command file; this causes the program to terminate. Fur-
ther input will come from the indirect command file, if there are any more
lines in it. The LINK, DUP, SIPP, SLP, QUEMAN, SRCCOM, and LIBR
utilities make use of this feature. To activate it in an indirect file, put an
uparrow (") followed by a C on a line by itself in the file. This causes the
utilities to accept the response from the terminal instead of taking it
directly from the file.

The following indirect file shows how to obtain a response from the termi-
nal:
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Table 2-4: Job Status Word (JSW) (Cont.)

Bit
Number Meaning When Set
RUN LINK
TEST,TEST = MOD1,LIB/I
“c
All further input to the linker will come from the terminal, as a result of
the “C in the indirect command file.
0-2 Reserved.

Figure 2-3: Job Status Word (JSW) Summary

15 14%+ 13%+ 12%+ 1M1+ 10+ 9 8+
1= 1= 1 - 1= 1= 1= =
NO USR LOWER REENTER TT PASS VIRTUAL OVERLAID CHAIN
SWAPPING CASE CAN SPECIAL LINE TO JoB JOB BIT
(SJONLY) ENABLED START JOB MODE KMON (XM ONLY)
1= 1= NON-
HALT ON NOTT RESERVED TERMINATING RESERVED
/O ERROR | WAIT STATE .GTLIN
(SJONLY)

7%+ 6+ 5 4 3%+ 2 1 0

BITS MARKED WITH AN ASTERISK (") ARE BITS THAT YOU CAN SET DURING EXECUTION.
BITS MARKED WITH A PLUS SIGN {+) CAN BE SET AT LOAD TIME.

2.1.3 Interrupt Vectors

Table 2-5 shows the locations in the low memory area that are reserved for
interrupt vectors. Figure 2-4 shows how the interrupt vector area relates to
the rest of memory.

Table 2-5: Interrupt Vectors

Location Contents

60,62 DL11: Console terminal input
64,66 DL11: Console terminal output
70,72 PC11: Paper tape reader
74,76 PC11: Paper tape punch
100,102 KW11-L: Line clock
104,106 KW11-P: Programmable clock
110,112 Reserved !
114,116 Memory system errors: parity, cache, and uncorrectable ECC errors
120,122 XY11: X/Y Plotter 2
124,126 DR11-B: DMA interface 2

! This vector is used by RSTS/E. Take this into consideration if you run both RT-11 and
RSTS/E on the same PDP-11.
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Table 2-5: Interrupt Vectors (Cont.)

Location Contents
130,132 ADO1: Analog to digital subsystem *
134,136 AFC11: Analog input subsystem 2
140,142 AA11: Digital to enalog subsystem 2
144,146 AA11: (requires two vectors) 2
150,152 Reserved
154,156 Reserved
160,162 RL11/RLV11: RL0O1/RLO02 Disk cartridge
164,166 Reserved
170,172 LP/LS/LV11 Line printer #1 2
174,176 LP/LS/LV11 Line printer #2 ?

200,202 LP/LS/LV11 Line printer #0 (includes 1.LA180 parallel interface)
204,206 RH11,RH70: RS03/RS04 Fixed-head disk;
RF11: Fixed-head disk
210,212 RK611/RK711: RK06/RK07 Disk cartridge
214,216 TC11: DECtape '
220,222 RK11/RKV11: RKO05 Disk cartridge
224,226 RH11/RH70: TU16, TE16, TU45 Magtape;
TM11: TU10/TE10 Magtape;
TS03: Magtape
TS11: Magtape first controller (others float)
230,232  CD11/CM11/CR11: Card reader
234,236 UDCI11: Digital control subsystem *
240,242 PIRQ, (programmed interrupt request) ®
244,246 FPP or FIS floating-point exception
250,252 KT11: Memory management fault
254,256 RP11: RP02/03 Disk;
RH11/RH70: RP04/05/06/RM02/03 Disk
260,262 TA11l: Cassette tape
264,266 RX11/RXV11/RX211/RX2V1: RX01 RXO02 Diskette
270,272 LP/LS/LV11 Line printer #3 *
274,276 LP/LS/LV11 Line printer #4 *
300,302 Start of the floating vector area
320,322 VT11/VS60 Graphics terminal (requires three vectors)
324,326 VT11/VS60
330,332 VT11/VS60

2 Thig vector is assigned to a hardware device that is optional in RT-11. If your configura-
tion includes this device, use this vector for it.

8 This vector is assigned to hardware that is not supported by RT-11.
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Figure 2-4: Interrupt Vector Area
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21.4 /O Page

The highest 4K words of addressing space in PDP-11 computers are reserv-
ed for device control, status, and data buffer registers. This area is called
the I/O page. In addition to the device registers, it also contains the Pro-
cessor Status word (except on the PDP-11/03), and, for some processors,
the system’s general registers (RO through R5), the stack pointer (R6), and
the program counter (R7). Locations in the I/O page are directly ad-
dressable by application programs and system software, but since they are
bus addresses and not memory locations, they cannot be used to store code
and data. Figure 2-5 shows where the I/O page is addressed in relation to
the rest of the system components. You can find more information on the
I/O page and the device registers for your own processor and peripherals in
the PDP-11 Processor Handbook, the PDP-11 Peripherals Handbook, the
Microcomputer Processor Handbook, the Memories and Peripherals Hand-
book, and in most hardware manuals.
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Figure 2-5: I/O Page
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2.1

The system device handler is the handler for the device from which the

system was bootstrapped. Chapter 7 describes the structure of a system
device handler in detail.

At bootstrap time, the monitor is linked together with the system device
handler file found on the system volume. The system device handler is
loaded into memory first, immediately below the I/O page. The Resident
Monitor is loaded below the system device handler. Once it is read into
memory, the system device handler remains resident and does not change
its location. Figure 2-6 shows where the system device handler resides in
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.5 System Device Handler

memory.
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[ ]

[ ]
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760 000 START OF 1/0 PAGE
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Figure 2-6: System Device Handler
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2.1.6 Resident Monitor (RMON)

The Resident Monitor (RMON) is the RT-11 monitor component that is
always resident in memory. When you bootstrap an RT-11 system, the
bootstrap routine determines how much main memory is available. RMON
loads at the highest possible low memory address, just below the system
device handler. It does not move during system operation.

RMON contains routines to handle the programmed requests in RT-11. It
also contains the background job’s impure area in FB and XM systems, the
error processor, timer routines, console terminal service routines, USR
swap routines, and other monitor functions. Figure 2-7 shows a summary
of the contents of the Resident Monitor. In the figure, components marked
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with an asterisk (*) are not part of the SJ Resident Monitor. See Chapter 3
for more information on the Resident Monitor.

Link maps of the distributed RT-11 monitors (base-line, single-job, and
foreground/background) are part of the distribution kit. They exist as files
named RTBL.MAP, RTSJ.MAP, and RTFB.MAP. Listings of the maps
also appear in Appendix G of the RT-11 Installation and System Genera-
tion Guide. Table 2-6 lists the p-sects that make up the Resident and
Keyboard Monitors.

Figure 2-7; Resident Monitor (RMON)

(AN ASTERISK (*) MARKS ITEMS THAT ARE
NOT NORMALLY PART OF THE SJ RESIDENT

MONITOR.)
s
1/0 PAGE / SYSTEM STACK
s
MEMORY il MULTI-TERMINAL ROUTINES (ONLY IN MULTI-TERMINAL SYSTEMS)
28K s,
SYSTEM ' M
DEVIGE HANDLER P XM PROGRAMMED REQUESTS * (XM ONLY)
RESIDENT MONITOR CONTEXT SWITCH ROUTINE *
\ FORK PROCESSOR
\
\ : COMMON INTERRUPT ENTRY AND EXIT
\
\ CLOCK INTERRUPT HANDLER
\
\ 1/0 QUEUE MANAGER
\
\ MESSAGE HANDLER *
\
\ TT HANDLER*
\
\ TTY 1/0 INTERRUPT HANDLERS
\
\\ PROGRAMMED REQUESTS (SCATTERED ABOVE)
\\ EMT DISPATCHER
‘\ ERROR PROCESSOR
476 \
6o | INTERRUPT VECTORS \ BACKGROUND IMPURE AREA
56 I \
SYSTEM
ABLE
40 | COMMUNICATION AREA \\ MONITOR TABLES
3g TRAP VECTORS \ FIXED OFFSETS
Table 2-6: Monitor P-sects
P-sect Name Contents
RT11 Keyboard Monitor
RMNUSR USR buffer and code \
RTDATA Resident Monitor fixed offsets and database
OWNERS$ SOWNER table
UNAM1S $UNAM1 table
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Table 2-6: Monitor P-sects (Cont.)

P-sect Name Contents
UNAM2$ $UNAM2 table

PNAME$ $PNAME table

ENTRY$ SENTRY table

STATS $STAT table

DVREC$ $DVREC table

MTTY$ Multi-terminal terminal control blocks
RMON Resident Monitor

XMSUBS Extended Memory routines

MTEMTS Multi-terminal programmed requests
MTINTS Multi-terminal interrupt service
STACKS$ Resident Monitor stacks (not in SJ)
PATCHS$ Patch space

OVLYnn Keyboard Monitor overlays containing command processors

2.1.7 Background Job

The user job in an SJ system and the background job in an FB system are
essentially identical for the purpose of this discussion. The RT-11 utility
programs, such as PIP, DUP, and DIR, run as user jobs. In FB systems,
they run as background jobs. Figure 2-8 shows the general structure of a
background job, as well as its relative location in memory.

As you can see from Figure 2-8, the background job usually begins loading
into memory at location 1000, and loads up to its high limit. There are three
ways in which RT-11 can load a background job: RUN, R, and .CHAIN.
They are described in the following three sections.

2.1.7.1 RUN Command — One way to load a job (if it is not a virtual job) is to
use the keyboard monitor RUN command. The RUN command is the same
as the GET and START commands combined. First, if the SAV file is not
on the system device, RUN (or GET) loads the handler for the proper
device. When this occurs the Keyboard Monitor and the USR, which nor-
mally occupy the space above the background job and below RMON,
relocate themselves, if necessary. For more information on the USR and the
Keyboard Monitor, see later sections of this chapter.

The space available for background job loading consists of the background
job area, the space occupied by KMON, and the space occupied by the USR
(unless the USR is set to NOSWAP). If the job needs more space than these
three areas, an error message prints and then control returns to the
Keyboard Monitor.
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Figure 2-8: Background Job
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Once the job passes the size tests, RUN loads memory locations 0 through
476 from the file, if they are not protected. To check for protection, RUN
looks at the bitmap in RMON, and does not load any locations that are pro-
tected either by RMON or by another job.

Next, RUN loads all the memory locations from 500 through 776 from the
file. This area is the default stack tor the background job.

To load locations 1000 and up, RUN examines the core control block, called
the CCB, which starts at location 360 in the job file. The CCB is a bitmap
created by the linker in which each bit represents one block in the file. When
the linker takes data out of the OBJ file to go into the SAYV file, it sets the
CCB bit for each block of the SAYV file that actually contains code or data.
For example, if you link a file with a base address of 2000, the locations in
your file from 1000 through 1776 do not contain data, and therefore the
linker does not set the corresponding bit in the CCB. RUN loads blocks
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from the file into memory only if the corresponding CCB bits for them
are set.

If a block fits in memory in the area below KMON that is reserved for the
background job, RUN loads it directly. If a block would overlay either
KMON or the USR, RUN copies the block out to the disk file SWAP.SYS.
This process continues until the entire file is loaded into memory, or into
memory plus SWAP.SYS. SWAP.SYS is just large enough to hold the
amount of program code that would overlay the KMON and the USR.

Finally, RUN (or START) jumps to RMON. If SWAP.SYS is in use, RMON
reads its contents into memory, overlaying KMON and possibly the USR as
well. Then RMON starts the program’s execution. Figure 2-9 summarizes
how the RUN command loads a job image into memory.

When the program terminates, RMON reads KMON and the USR back into
memory from the monitor .SYS file. The memory area up to the bottom of
KMON contains the background job image. If the job overlaid KMON, the
remainder of the job image is written out to SWAP.SYS. This procedure
allows the Examine and Deposit commands to operate on the job image on
disk, even though KMON has written over the job’s locations in memory,
and the RESTART command can restart the program.

21.7.2 R Command — The R command is similar to the RUN command.
One initial difference, however, is that the file to be loaded must reside on
the system device (SY:). The reason for this restriction is that the R com-
mand is not capable of loading another device handler in order to read the file.

The R command loads memory locations 0 through 776 the same way the
RUN command does. It has a different procedure for loading locations 1000
and up. The R command ignores the core control block in the file and it sets
up parameters for RMON. RMON loads the rest of the file (up to its high
limit; it does not load overlays) even if it overlays KMON and the USR. It
ignores the file SWAP.SYS. Figure 2-10 summarizes how the R command
loads a job image into memory.

If the job is a virtual job, the monitor creates for the job a virtual memory
partition, a static window and static region definition block, and then sets
up the user mapping registers. At this point it starts the job’s execution.
(See Chapter 4 for more information on virtual jobs.)

As with the RUN command, jobs (excluding virtual jobs) loaded with R use
the SWAP.SYS file, if necessary, at program termination so that the Ex-
amine and Deposit commands function correctly. Note that if a job issues a
.SETTOP request to lower its high limit before it exits, it may prevent the
monitor from writing SWAP.SYS.

21.7.3 .CHAIN Request — The third way to load a job is to chain to it from
another job. The first job issues the .CHAIN programmed request to do
this. The second job can use information in memory locations 500 through
776 that was placed there by the first job. Consequently, the only difference
between loading a job wth the RUN command and starting a job by chain-
ing to it is that chaining does not load memory locations 500 through 776
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from the second file unless you set the chain bit in the JSW of the second
file at assembly time.

Figure 2-9: RUN Command
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Note that in XM systems, a virtual job cannot pass information when
chaining to another job. In addition, you cannot chain to a virtual job. (See
Chapter 4 for more information on virtual jobs.) Note also that chaining to
a FORTRAN job does not preserve channel information from the previous
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job. This is because FORTRAN itself closes the channels and discards the
impure area.

Figure 2-10: R Command
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2.2 Dynamic Components

Dynamic components do not always load into fixed places in memory. Once
loaded, some of them can continue to shift location based on the state of the
rest of the system. The dynamic components and areas are as follows:

e Device handlers (device drivers) and free space

e Foreground and system jobs

e User Service Routine

e Keyboard Monitor
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As you read about the rest of the dynamic components, you will also learn
how the system manages free space in memory. You have already seen how
the system device handler and the Resident Monitor load at the highest
possible addresses, and how the background job begins loading at location
1000 and up. The strategy behind the way the system manages free
memory is that it attempts to make the most space available for foreground
and background application jobs.

221 Device Handlers and Free Space

Device handlers (drivers) are routines that provide the interface to the com-
puter’s hardware devices. The handlers drive, or service, peripheral devices
and take care of moving data between memory and devices. Chapter 7
describes device handlers in greater detail.

RT-11 uses a dynamic scheme to provide memory space for loaded
handlers, foreground jobs, system jobs, indirect file and command line ex-
pansion, and the display text scroller. Memory is allocated in the region
above the KMON/USR section and below RMON. If there is not enough
memory in this region (initially, after the system is bootstrapped, there is
nonej, memory is taken from the background region by “‘sliding down’’ the
KMON and USR the required number of words.

When memory allocated in this manner is released, the memory area is
returned to a singly-linked free memory list, the head of which is located in
RMON. Any contiguous blocks are concatenated into a single larger block.
A block found to be contiguous with the KMON/USR is reclaimed by
“sliding up”” the KMON/USR, thus removing the block from the list.

Figure 2-11 shows an SJ system with a small application job and two load-
ed device handlers. When you issue the LOAD monitor command the
handler loads into the memory area just above the USR and KMON. The
USR and KMON slide down in memory to provide the handlers with
enough space, leaving less space for the user program. The GT ON com-
mand is similar to the LOAD command, except that it specifically loads the
VT11/VS60 video display handler. The GT handler is located in a Keyboard
Monitor overlay instead of a .SYS file on a storage volume. Except for the
fact that it is not stored as a separate handler file on a mass storage device,
it functions the same as other handlers.

Once handlers are brought into memory, they do not move up or down, as
the USR and KMON do. Figure 2-12 shows the system after the monitor
UNLOAD command has removed one handler from memory. In the figure,
the free space above handler #2 has not been reclaimed and is available for
later use. A handler that is the same size as the empty space, or smaller, can
be loaded there without causing any other components to move.

Figure 2-13 shows the system after the second handler was unloaded. This
time there is free space directly above the USR (the space formerly occupied
by the two handlers), so the USR and KMON slide up into it, making more
space available for the user program. The GT OFF command is similar to
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the UNLOAD command, except that it specifically unloads the VT11/VS60
video display handler.

Figure 2-11: SJ System with Two Loaded Handlers
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2.2.2 Foreground and System Jobs
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In an FB or XM system, foreground jobs and system jobs are essentially
identical. A system job is simply a special kind of foreground job that
DIGITAL provides for you. The two RT-11 system jobs in the FB and XM
environments are the error logger (EL) and the file queuing program
(QUEUE). Figure 2-14 shows the general structure of a foreground job, as
well as its relative location in memory. Handlers loaded after the fore-
ground job are placed below it in memory, and above the USR. (See Chapter
3 for more information on foreground and system jobs.)
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Figure 2-12: SJ System with One Handler Unloaded
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22.2.1 Difference Between Foreground and Background Jobs — There are some
significant differences between foreground and background jobs.

1. The impure area (described in Chapter 3) for the foreground job is
located immediately below the job area itself. For background job, the
impure area is always in the Resident Monitor.

2. Another major difference is that a foreground job cannot dynamically
change its memory allocation: the job is a fixed size. You can only
change the size at FRUN time by using the /BUFFER:n option to in-
crease the memory allocation. (Note that this option is ignored in XM
systems for virtual .SAV files started with the FRUN or SRUN com-
mand.)
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3. You must load all the handlers a foreground job needs before the job
attempts to use them. A background job, on the other hand, can use
the .FETCH programmed request to load a handler when it is needed.

4. For FB systems only, if the USR is swapped out and the foreground
job needs it, the foreground job must allocate 2K words of program
space for the USR to swap over. (See Section 2.2.3 for more informa-
tion on the USR.)

Figure 2-13: SJ System with Both Handlers Unloaded
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2222 FRUN Command — The FRUN command loads a foreground pro-
gram into memory and starts execution. The SRUN command, which per-
forms the same functions for system jobs, is essentially identical. You can
also use FRUN or SRUN to start a virtual .SAV job, since these jobs do not
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Figure 2-14: Foreground Job
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require relocation. (See Chapter 4 for more information on virtual jobs.)
Before you start a job with FRUN, you must load all the handlers the job re-
quires. You can use the FRUN/PAUSE option, load the handlers, then
resume the foreground job. In any case, the handlers need to be loaded only
before the job actually uses them.

FRUN first opens the .REL file or virtual .SAV file, reads its first block
(locations 0 through 776), and determines how much memory the job re-
quires. The job’s total memory requirement is equal to the sum of the pro-
gram itself (as indicated by location 50 in block 0 of the file), the size of the
impure area, the extra space allocated with the FRUN/BUFFER:n com-
mand, and the extra space (if any) allocated with the
LINK/FOREGROUND:stacksize command. If you do not allocate extra
stack space, the default stack size is used. If there is not enough memory
available to run the job, an error message prints and the monitor dot prints
on the terminal.

Once FRUN gets the memory space the job needs, it sets up the job’s im-
pure area. FRUN also sets up the job context on the foreground job’s stack,
for FB systems, or in the job’s impure area, for XM systems. So, when you
first load a foreground job, it appears to be context-switched out. (See
Chapter 3 for more information on context switching and other FB monitor
functions.)
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Next, FRUN loads the foreground main program into memory and
relocates addresses in the root to reflect the current load address. Virtual
.SAYV files do not require relocation. If the job is overlaid, there is one more
step before execution can begin. FRUN reads and relocates just the root of
an overlaid program. Then it reads the overlay relocation information into a
buffer. One by one, each overlay segment is then read into memory,
relocated, and written back to disk. Finally, FRUN starts job execution.
Figure 2-15 shows a summary of how the FRUN command loads a
foreground job image into memory.

2.2.2.3 Starting Foreground and System Jobs — Figure 2-16 illustrates the pro-
cedure DIGITAL recommends for starting up a system that has both
system jobs and a foreground job. In general, group high in memory the
device handlers and programs that you expect to be running for the longest
time. Lower in memory, put the handlers and programs that you plan to run
only for a short time. This organization enables the Resident Monitor to
reclaim free memory when you unload programs and handlers that you no
longer need.

In the example in Figure 2-16, the two handlers that the QUEUE program
needs are loaded first, since the error logger and the QUEUE program are
both intended to run as long as the system runs. (The QUEUE program
needs handlers for the device to which it will copy files, as well as handlers
for the devices on which those files are currently stored. The error logger
needs no specific handler; it logs errors from any handler that calls it.) The
SRUN command is used next to start the more important of the two system
jobs (the error logger). Then the second system job (QUEUE) is started,
also with SRUN. This ordering of system jobs gives the error logger higher
priority by default than the QUEUE program. (Note that if it is not conve-
nient for you to load the higher priority system job first, you can assign
priorities to the system jobs with the SRUN/LEVEL:n command.) Lastly,
the foreground job, which requires no other handler, is started with the
FRUN command. In Figure 2-16 the foreground job, which always has the
highest priority, is loaded last because it will only run for a short time
before it is stopped, unloaded, and replaced by a different foreground job.
After you stop a job by typing two CTRL/Cs, you must use the monitor
commands to unload it and replace it with another. RT-11 does not provide
a way for one foreground job to automatically start another.

NOTE

Since the system job feature permits up to six system jobs
to execute simultaneously, it is possible to have more than
one copy of a specific job in memory at any one time. That
is, you can use SRUN to start a job called STAT.SYS, for
example, and then use SRUN again to start up a second
copy in memory of the same job from the same disk image,
STAT.SYS. However, this procedure is valid only for pro-
grams that are not overlaid.

The disk image of an overlaid program is in constant use,
since the relocated overlay segments are occasionally read
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into memory from the file. Thus, to execute multiple copies
of overlaid programs, you must maintain separate copies of
the programs on disk. For example, to run two copies of an
overlaid program called STAT.SYS, store an additional
copy of the program on disk as STAT1.SYS, and use
SRUN to start both jobs.

Figure 2-15: FRUN Command
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Figure 2-16: FB System
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2.2.2.4 Foreground Stack — The foreground job’s stack is located im-
mediately above the impure area. Its default size is 128 decimal bytes. You
can change the size of the stack at link time by using the
/FOREGROUND:stacksize option.

You can also change the location of the foreground stack. To do this, use the
/STACK:n option at link time, and specify either an octal value for the stack
pointer or a global symbol name. If you change the stack location, you are
responsible for allocating space for the stack in your program.

Be careful not to let the stack overflow during execution. Since RT-11
neither checks for this error nor makes any attempt to correct it, the most
likely result is that your program or the impure area will be corrupted.
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2225 Foreground Impure Area — The memory locations just below the
foreground job area contain job-dependent information. This area is called
the impure area, and its contents are maintained by the Resident Monitor.
Chapter 3 lists the information contained in this area.

223 User Service Routine (USR)

The User Service Routine (USR) is the part of the RT-11 operating system
that provides support for the RT-11 file structure. It contains instructions to:

e Fetch device handlers

e Get the status of device handlers
¢ Open existing files

® Create new files

* Delete and rename files

¢ (Close files

In addition, the USR contains the Command String Interpreter (CSI),
which interprets device, file, and option specifications. The default memory
location for the USR is directly above the background area, or directly
below the system jobs, foreground job, and loaded device handlers, if there
are any. You can change this default location by setting an address in loca-
tion 46 in low memory.

The USR does not always have to be resident in memory. In fact, it was
designed to be swappable in order to make as much space as possible
available for user jobs when they need it. In general, for SJ and FB
systems, the USR is needed only when file-oriented operations are required.
The USR is always resident in the XM monitor, so swapping is not a con-
sideration for XM jobs.

22.31 Structure — The USR consists of two basic parts: the buffer area
and the permanent code area. The first section, which is two blocks long,
contains code when the USR is brought into memory. This area also serves
as the buffer in which the USR stores a device directory segment. The sec-
ond section contains permanent code. Figure 2-17 shows an overview of the
USR'’s structure and its memory location in an SJ system.

The first routine in the USR buffer section consists of initialization code to
relocate pointers in the USR and KMON. This relocation code becomes ac-
tive the first time the USR is entered after it is brought into memory. It
relocates internal pointers in the USR that point to the Resident Monitor
and to other important locations within the USR. If the USR was called
from KMON, it also relocates pointers to RMON within KMON.

For SJ systems, the next segments of code are:

1. The EMT 376 processor, which contains the text and the routines to
print fatal monitor error messages.
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2. Code that processes the .CDFN programmed request.
3. Routines to handle the .SRESET and .HRESET programmed

requests.

Figure 2-17: USR
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For FB and XM systems, the next section of code handles the .EXIT pro-
grammed request. The last segment of code in the buffer area processes the
.QSET programmed request for SJ and FB monitors. A small amount of
scratch space takes up the remainder of the two-block buffer area.

Following the buffer area is the USR’s permanent code which starts at off-
set 2000 from the beginning of the USR. The permanent code consists of
routines' that process the following programmed requests:

.DELETE
JFETCH
.CLOSE
.ENTER

.LOOKUP
.RENAME
.DSTATUS

.QSET (for XM only)

The Command String Interpreter occupies the end of the USR, where the
.GTLIN, .CSIGEN and .CSISPC programmed requests are processed.

System Components and Memory Layouts



2232 Execution — The general flow of execution in the USR is straightfor-
ward. When a fresh copy of the USR is brought into memory, its buffer area
contains the code described in the previous section. When a program issues
a USR programmed request, the first code to execute is the relocation code.
This code then calls the routine to process the particular request that was
issued. If the USR stays in memory, subsequent USR requests go directly
to the routines that process them. The initialization code is not called again.

Usually, a USR request requires a device directory segment. If the correct
segment is already in the USR buffer, the USR does not read in a fresh copy
of that segment. If the correct segment is not in memory, or if the USR has
no segment at all, the USR reads the directory segment into its buffer.
When it does this, the USR stores two words of information in the Resident
Monitor fixed offset area. BLKEY, at offset 256, contains the number of
the directory segment currently in the USR buffer. CHKEY, at offset 260,
contains the device’s unit number in the high byte, and an index into the
monitor device tables in the low byte.

It can be useful to you to know under what circumstances the USR reads in
a new directory segment. The following conditions cause the USR to read in
a new directory segment:

1. Anything that causes the USR to swap out. When a fresh copy of the
USR is brought into memory, it will have no directory segment in its
buffer and will be forced to read one from a device.

2. Executing code in the buffer area. Since the code to process some pro-
grammed requests is located in the USR buffer area, attempting to
process one of those requests always causes a fresh copy of the USR to
be brought into memory. The requests that cause this to happen are:

.CDFN (for SJ)

.SRESET (for SJ)

.HRESET (for SJ)

.QSET (for SJ and FB)

.EXIT (if your program was loaded over any part of KMON)

3. An SJ monitor error occurs. This situation requires the EMT 376 proc-
essor code, which is located in the USR buffer ares and causes a fresh
copy of the USR to be read into memory.

4. Issuing an ENTER programmed request. This always causes the USR
to read a fresh directory segment.

5. Issuing a .LOOKUP programmed request with a different device or file
specification from the previous .LOOKUP. Note that doing a
.LOOKUP with the same device specification as the previous
.LOOKUP does not necessarily cause the USR to read in a fresh copy
of the same directory segment. This is why you cannot remove a
volume from a given device unit, replace it with another volume, and
expect the USR to have the new volume’s directory segment in
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memory. However, in this situation, you can force the USR to read a
directory segment from the new volume by locking the USR to gain ex-
clusive use of it, storing a value of 0 in BLKEY (RMON fixed offset
256), and then issuing a .LOOKUP programmed request with the same
arguments as the previous .LOOKUP. Clearing BLKEY causes the
USR to “forget’” the current directory segment and read a fresh one
from the new volume.

2.2.3.3 Swapping Considerations — Because the USR does not always have
to be resident in memory for SJ and FB systems, you have a variety of op-
tions to consider when you design an application program. You can keep the
USR in memory at all times (the simplest case), or you can arrange to have
the USR swap into memory only when your program needs it. The latter
procedure permits your program to use and extra 2K words of memory
when the USR is swapped out. The guidelines that follow can help you
design programs that handle USR efficiently.

In XM systems, the USR is always resident (that is, SET USR NOSWAP is
always in effect). Of the sections that follow, only those that describe a resi-
dent USR are meaningful for programs in XM.

NOTE

In general, the burden of USR swapping should be under-
taken by the program, not by the operator who runs it.
SET USR NOSWAP is useful to override the default ac-
tion of programs outside an operator’s control (such as
FORTRAN), but its use requires operators to understand
internal programming details — a requirement that should
be avoided if at all possible.

Keeping the USR Resident in an SJ System

In an SJ system, the normal location for the USR is just below the Resident
Monitor and loaded device handlers (see Figure 2-17). If your program does
not need the space the USR occupies, you can force the USR to remain resi-
dent while your program is executing by issuing the monitor SET USR
NOSWAP command before you run the program. In any case, if the space is
not needed, the USR does not swap. Note that the USR can still slide up or
down in memory, as Section 2.2.1 describes.

For a FORTRAN main program, you can keep the USR resident by using
the FORTRAN/NOSWAP command (or the /U compiler option) at compile
time. This forces the USR to remain resident while the program is ex-
ecuting. You cannot use this option if your FORTRAN programs require
the extra 2K words of memory.

Keeping the USR resident means that 2K words less memory is available to
your program. However, the directory operations involved in file opening
and closing and in program loading will be faster because this arrangement
eliminates swapping and disk I/O. In addition, the program will have a
much simpler design. To keep the USR resident, a MACRO program should
avoid issuing a .SETTOP request for memory above the base of the USR.
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Remember that even though the USR is set to NOSWAP, there are some
programmed requests that can cause a fresh copy of the USR to be brought
into memory. For an SJ system, these requests are .CDFN, .SRESET,
HRESET, .EXIT, and .QSET. If the USR is swappable and if the
background program issues a .SETTOP request for memory above the base
of the USR, the USR loads into the area specified by the contents of loca-
tion 46 in low memory. If location 46 contains 0, as it should when you in-
tend to keep the USR resident, the USR loads in its usual place, below
RMON. However, if for any reason you move a different value to location 46
and then execute one of the requests that loads a fresh copy of the USR, the
USR will then load into the area you specified. If you execute a program
that keeps the USR resident, the monitor ignores the contents of location 46.

Allowing the USR to Swap with an ST MACRO Program

The only reason to allow the USR to swap in an SJ system is to gain access
to the extra 2K words of memory that swapping makes available. To enable
USR swapping, make sure that the SET USR SWAP command is in effect.
(This is the default condition.)

A MACRO program gains access to the 2K words of memory because its
high limit requires it, or because it does a .SETTOP to an address within
the USR area. (Refer to Figures 2-9 and 2-10 for a summary of how the
RUN and R commands load programs that overlay the USR area.) When
the program issues a programmed request that requires the USR, the part
of the program that occupies the USR area is written out to SWAP.SYS,
and a fresh copy of the USR is brought into memory from the monitor file
on the system volume. Location 46 should contain a value of 0 if you want
the USR to swap into memory at its default location. If you want it
elsewhere, put the starting address into location 46 during you program’s
initialization routine. When the programmed request completes, the part of
the program in SWAP.SYS is copied back into memory, overlaying the
USR. This sequence of events occurs for each programmed request that re-
quires the USR, even if your program issues two or more requests in a row.

To make more efficient use of the USR, your program can issue the .LOCK
programmed request before any other USR requests. This swaps part of
your program out, reads the USR in, and returns to your program. After
this, the USR remains in memory at the location you specified in location 46
(if any). You can now issue a number of USR programmed requests and
avoid the overhead of USR swapping. When your program next needs the
2K words of space, use an .UNLOCK request to release the USR.

When the USR is swappable, it is important that you put it in a safe place in
your program. This means that the area the USR will swap over must not
contain code or data that will be needed at the same time the USR is in
memory. The following is a list of code and data that must not be overlaid
by the USR:

® Device block and/or CSI or .GTLIN file description string for the
current request

¢ Active device handlers
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e Active completion routines

e Active interrupt service routines

e Active I/O buffers

¢ Queue elements from .QSET

¢ I/O channels from .CDFN

e The program stack

¢ The memory list from .DEVICE

e Trap service routines from .SPFA and .TRPSET

e (Code executed between the .LOCK and .UNLOCK requests

You can control USR swapping by careful use of the .SETTOP request. A
typical practice that many system utility programs use is to issue a .SET-
TOP request to obtain space up to the base of the USR. The programs then
perform all their USR operations. Finally, the programs issue an additional
.SETTOP request to obtain as much memory as possible, if necessary.

Another situation to be aware of occurs when a program issues a .SETTOP
request for more memory than is available. In this case, the program is
given only the amount of memory that is available. After issuing a .SET-

TOP request, a program must always use the value returned to RO (or loca-

tion 50 in low memory) as the true high limit of the program. For example, a
program can issue a .SETTOP request for memory above the base of the
USR when the USR is set to NOSWAP. However, the value returned to the
program as its true high limit is just below the base of the USR.

Allowing the USR to Swap with an SJ FORTRAN Program

As with a MACRO program in an SJ system, the only reason to permit the
USR to swap with a FORTRAN program is to gain access to an additional
2K words of memory. The USR normally swaps over the FORTRAN OTS
(Object Time System). However, problems occur when the FORTRAN OTS
and the program together are less than 2K words long. In this case, the
USR swaps over the program’s impure data area, with unpredictable
results. (Since this error is frequently made by inexperienced programmers,
setting the USR to NOSWAP and retrying a program is the first thing you
should do when debugging a FORTRAN program that doesn't execute
properly.) And, unlike MACRO, USR swapping does not depend on your
program’s high limit — that is, if the USR is allowed to swap, it most
definitely will swap. So, do not permit USR swapping unless your program
really needs the extra memory. To enable swapping for a FORTRAN pro-
gram, make sure the SET USR SWAP command is in effect, and eliminate
the INOSWAP or the /U option at compile time.

You have already read about the role that location 46 plays in determining
where the USR will swap. For a FORTRAN program, the FORTRAN OTS
places a value in location 46 to set up the USR swapping location. It is im-
portant to understand where and how the USR swaps so you can design
your FORTRAN program correctly.
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The FORTRAN compiler examines the sections of your program and sorts
them based on two major attributes: read-only versus read-write, and pure
code versus data. Generally, program instructions are read-only, and pro-
gram data is read-write. If you use assembly language routines, use the
same p-sects as the FORTRAN compiler. That is, place pure and read-only
data in section USERSI, and impure data in USER$D. The compiler forces
p-sects into the order shown in Table 2-7.

Table 2-7: P-sect Ordering for FORTRAN Programs (Low to High
Memory)

Section
Name Attributes Contents

OTSs$I RW,I,LCL,REL,CON Pure code and data for the
OTS initialization module

OTSs$P RW,D,GBL,REL,OVR Pure tables of addresses of
other OTS modules

SYS$I RW,I,.LCL,REL,CON RT-11 SYSLIB routines

USERSI RW,I,LCL,REL,CON  Program’s pure code and
read-only data

$CCDE RW,I,LCL,REL,CON Start of program; read-write
data

OTS$0 RW,ILLCL,REL CON OTS routines sensitive to
USR swapping

SYS$0 RW,I,LCL,REL,CON

SDATAP RW,D,LCL,REL,CON Constants

OTS$D RW,D,LCL,REL,CON Pure data referenced by the
OTS module

OTS$S RW,D,LCL,REL,CON Scratch storage referenced
by the OTS module

SYS$S RW,D,LCL,REL,CON

$DATA RW,D,LCL,REL,CON " Local variables

USERS$D RW,D,LCL,REL,CON Program’s impure data

3888, RW,D,GBL,REL,OVR Blank COMMON

Named COMMON

blocks RW,D,GBL,REL,OVR

This ordering collects all pure sections before impure data in memory. The
USR can safely swap over sections OTS$I, OTS$P, SYS$I, USERSI, and
8CODE. Figure 2-18 shows the arrangement of components when a
FORTRAN Program is loaded into memory. The global symbol $$OTSI
marks the start of the pure code area. The global symbol $$0TSC marks its
end, and the beginning of the impure data area. FORTRAN puts the value
of $$0OTSI into location 46, and the USR swaps into memory starting at
that address, thus overlaying the first 2K words of your program.
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Figure 2-18: A FORTRAN Program in Memory
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As with a MACRO program, your FORTRAN program should not have
certain instructions or data in the area where the USR will swap. As a
general rule, the following items should not be in the USR swap area:

e Routines that request USR functions (such as IENTER and
LOOKUP)

¢ Data structures for USR requests
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¢ Interrupt service routines
e Completion routines

® Data areas for interrupt service routines and completion routines

The FORTRAN system itself must also be concerned with USR swapping
and its inherent restrictions. For example, the p-sect OTS$0 contains the
FORTRAN OTS routines to open files. This p-sect follows $CODE in the
p-sect ordering. If the start of OTS$0 is within 2K words of $$0TSI, the
essential information for the file operation is stored on the job stack before
the USR swaps over the code in OTS$O.

The best way to make sure that the USR swaps into a safe place in your
FORTRAN program is to examine the link map to determine if the USR
will swap over restricted sections. That is, see if the first 2K words above
$80TSI can be overlaid safely. If not, relink the program and change the
order of object modules and libraries you specify to the linker. One problem
is caused by using SYSLIB routines that place important USR data in the
lower 2K words of the job image. An example is the IFETCH routine, which
uses a device block in the program. The USR swaps over the device block
just before it is used, causing an error. To avoid a situation like this, do not
set up device names as constants for a SYSLIB call. Instead, use DATA-
initialized variables. This ensures that the information will be stored high
enough in the job image to avoid being overlaid by the USR.

For more information on this topic, see the RT-11/RSTS/E FORTRAN IV
User’s Guide and the PDP-11 FORTRAN Language Reference Manual.

Keeping the USR Resident in an FB System

As with an SJ system, the easier way to deal with the USR in an FB system
is to keep it resident. Use the SET USR NOSWAP command, or the
INOSWAP (/U) FORTRAN compiler option. This arrangement is suitable if
the background, foreground, and system jobs have enough memory. The
USR is brought into memory at its usual place, just below any loaded
handlers and below the foreground job and it remains in memory during
program execution. Neither job has to allocate program space for the USR,
and programs execute faster without the overhead of USR swapping and
disk 1/0.

The important issue in an FB system with the USR resident is determining
which job should have control of the USR. Because only one job can use the
USR at a time, both jobs must be aware of sharing this resource. Since a
program in an SJ system can lock the USR in order to process a number of
USR programmed requests, in an FB system, either the background job or
the foreground job can lock the USR to gain exclusive use of it.

The .LLOCK request gives ownership of the USR to one job. The .UNLOCK
request releases the USR, making it available for the other job. The request
.TLOCK can determine whether or not the other job has exclusive owner-
ship of the USR. It permits a program to try for a .LOCK, but to continue
with execution if the attempt fails.
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The LOCK/UNLOCK system permits one job to lock out another for a con-
siderable length of time. During a lockout, interrupt service and completion
routines can run, but not mainline code. This could cause serious difficulties
in a real-time foreground program. There are some ways to minimize or
eliminate this lockout problem:

1. Be sure to separate USR operations from real-time operations.

2. Avoid using devices with slow directory operations, such as cassette,
magtape, and DECtape 11. :

3. Organize your real-time foreground program so that real-time opera-
tions are in interrupt service routines and completion routines and will
not be affected if the mainline code is locked out with a pending USR
request.

Typically, a real-time foreground job can be organized in three parts: an in-
itialization phase, which opens all required channels and begins real-time
operations; a real-time phase, which does interrupt service and I/O opera-
tions; and a completion phase, which stops real-time activity and closes the
channels. With this arrangement, the background program can perform
USR operations during the real-time phase without locking out the
foreground. The foreground program can use .LOCK and .UNLOCK to pre-
vent interference from the background job during initialization and comple-
tion phases.

Swapping Considerations for Background Jobs

When either the background job or the foreground job needs the extra 2K
words of memory that swapping the USR provides, both jobs must be con-
cerned with USR swapping. The general concerns for background jobs are
those listed in the previous sections.

The easiest approach for the background job is to swap the USR into its
default location, the highest 2K words of program space. If this is not
convenient for any reason, the background job can select any other con-
tiguous 2K words of program space. In this case, it must also put the start-
ing address of the USR swap area into location 46 in the system com-
munication area. This location is context-switched in the FB system, so it
always contains the correct value for the job that is currently executing.

The background job must not place any USR-sensitive code or data in the
area where the USR will swap. In addition to the list in the section Allowing
the USR to Swap with an SJ MACRO Program, the following items must
not be in the USR swap area:

e Memory list from the .CNTXSW request
e Active message buffers
e Code containing the .LOCK or .TLOCK requests

You must also be careful that the background job does not lock the USR for
an unreasonable length of time so it can block the foreground job from
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running. If you lock the USR in a background job, remember to unlock it as
well.

Swapping Considerations for Foreground Jobs

If the background job issues a .SETTOP that causes the USR to swap, or if
the background job is large enough to force the USR to swap, the
foreground job must be concerned with USR swapping. However, while the
background job can simply allow the USR to swap into its default position
(the highest 2K words of the background job area), the foreground job has
no default location for the USR. It must allocate 2K words within its pro-
gram bounds in which to swap the USR — space that must not contain any
USR-sensitive code or data. The foreground job must also place the starting
address of that space in location 46 in the system communication area. This
location is context-switched during normal foreground/background execu-
tion, so it always contains the correct swapping address for whichever pro-
gram is currently executing.

The foreground program could also be concerned with sharing the USR
with the background job. The .LOCK/.UNLOCK requests can give the
foreground job exclusive ownership of the USR to prevent interference by
the background job. The foreground job should avoid keeping the USR per-
manently locked, which sometimes happens strictly because of a program-
mer’s oversight.

22.4 Keyboard Monitor (KMON)

The Keyboard Monitor (KMON) is the part of the RT-11 system that
provides the communication link between you at the console terminal and
the rest of the RT-11 system. Keyboard monitor commands permit you to
assign logical names to devices, load device handlers, run programs, control
foreground/background operations, control system jobs, invoke indirect
command files, and examine or modify memory locations. KMON is
brought into memory when the background job completes. When KMON is
in memory, the USR is also present directly above it.

The Keyboard Monitor consists of a root segment and a number of overlays
that contain the command processors. KMON runs as an ordinary
background job, in user mode. The root segment is ~ontained in the p-sect
RT-11. See Table 2-6 for a summary of all monitor p-sects.

When KMON interprets a keyboard monitor command that you type at the
terminal, it expands the command text into an internal indirect file. For
example, the command COPY MYFILE DL:MYFILE <RET > expands
internally into:

R PIP< RET>
DL:MYFILE = DK:MYFILE <RET>
A

C

KMON stores this internal indirect file in the command expansion buffer
area. KMON creates space in memory for this buffer area immediately
above the USR. When KMON and the USR slide up or down in memory, the
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command buffer spaces moves with them. Figure 2-19 shows the Keyboard
Monitor in memory.

Figure 2-19: Keyboard Monitor
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Chapter 1 of the RT-11 System User’s Guide gives an overview of KMON
command processing. The RT-11 Installation and System Generation
Guide describes how to remove individual commands or groups of
commands from a system you create through the system generation
process. If you are interested in modifying KMON itself to change the
monitor command set, obtain the microfiche listings of the commented
sources. Extensive comments in KMON sources outline the procedure for
adding new commands and changing existing commands. Note that
because the procedure is very complex, DIGITAL does not recommend
modifying the keyboard monitor commands.

2.3 Sizes of Components

2-38

Table 2-8 shows the sizes of some of the components in the distributed
RT-11 systems.

If you are not using a distributed system, and you need to know the sizes of
the components, you should follow the guidelines in the next few sections.
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Table 2-8: Sizes of Distributed Components in Memory

Monitor KMON USR RMON
BL 17000 2K 1857
(base-line) octal bytes words decimal words
SJ 17000 2K 1996
octal bytes words decimal words
FB 17000 2K 4220
octal bytes words decimal words

2.3.1 Size of the USR

For SJ and FB systems, the size of the USR is always 2K words. For XM
systems the USR, which is always resident, is somewhat larger. Your run-
ning program can determine the exact size of the USR by examining
RMON fixed offset 374, USRAREA, which contains the size of the USR
in bytes.

2.3.2 Size of KMON

The size of KMON is the same as the size of the p-sect RT-11. Examine the
link map that resulted from the system generation for your system to ob-
tain this value.

2.3.3 Size of RMON

To determine the size of RMON, issue the SHOW CONFIGURATION moni-
tor command. This command prints the base address of RMON. If your
system has 28K words of low memory, subtract the base of RMON from
160000 to obtain RMON’s size. If you have an LSI system with 30K words of
low memory, subtract the base of RMON from 170000. If your system has
fewer than 28K words of memory, subtract the base of RMON from the
highest memory address. The resulting value represents the size of RMON
plus the size of the system device handler.

2.3.4 Size of Device Handlers

The size of each device handler, in bytes, is contained in location 52 of the
handler’s .SYS file. You can also obtain this value by issuing a .DSTATUS
programmed request on the device from a running program.
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Chapter 3
Resident Monitor

The main purpose of the Resident Monitor (RMON) is to provide services to
running programs and to the Keyboard Monitor. The services include field-
ing traps and interrupts, providing the programmed requests, and acting as
the central manager of the device-independent I/O system. In a multi-job
system, the monitor also arbitrates the demands of up to eight jobs for proc-
essor time.

This chapter describes the functions of the Resident Monitor that are gen-
erally common to all RT-11 systems. It provides information on the mon-
itor’s terminal service for a single console terminal. (See Chapter 5 for infor-
mation on multi-terminal systems.) It also describes how clock interrupts
are handled and explains how timer support is implemented. The queued
I/O system is discussed, scheduling for multi-job systems is described, and
the system job feature is introduced. Lastly, information on the Resident
Monitor’s data structures is provided.

3.1 Terminal Service

RT-11 provides terminal service through the Resident Monitor. Terminal
service is always resident, and it is part of RMON itself. Because of the way
RT-11 implements terminal service, no handler is involved in the
interaction between you at the terminal and the running system. Thus,
terminal service is distinct from the services provided through the TT
handler. (The TT handler implements .READ and .WRITE programmed
requests for the console terminal.) It is designed to be a good interface
between a person and the system, rather than an interface between a
peripheral device and the system.

As part of the resident terminal service, RMON provides special pro-
grammed requests for terminal I/O. Because it uses ring buffers to
implement the terminal service, RMON provides support for line-by-line
editing. The terminal input interrupts are always enabled, which means
that you can get the system’s attention at any time by typing CTRL/C,
CTEL/B, CTRL/F, and so on. You can also type ahead to the system
without losing characters.

The ring buffers are the heart of the terminal service implementation. In
SJ, one input ring buffer and one output ring buffer are located in RMON.
For FB and XM systems, each job has its own set of ring buffers locatec in
its impure area. The ring buffers store text in a buffer zone between you at
the terminal and a running program in memory. The default size of the
input ring buffer is 134 decimal bytes; the default size of the output ring
buffer is 40 decimal bytes.
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3.1.1 Output Ring Buffer

An output ring buffer consists of the buffer area, three pointers, and a byte
count. The buffer, or ring, itself is a block of bytes reserved for storing
characters. Two of the three pointers store and retrieve characters. The
PUT pointer marks the location where the next character will be stored and
is used by the programmed requests that fill the buffer, such as .TTYOUT,
.TTOUTR, and .PRINT. The GET pointer marks the next character to be -
retrieved and is used by the output interrupt service routine that sends
characters to the terminal. The third pointer, HIGH, points to the first
memory location past the buffer. Lastly, the monitor maintains a byte
count for the number of characters currently in the buffer. Figure 3-1
shows an output ring buffer in memory just after the system was
bootstrapped.

Figure 3-1: Output Ring Buffer
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3.1.1.1 Storing a Character in the Output Ring Buffer — The output ring buffer
is filled by characters that are passed by .TTYOUT, .TTOUTR, and
.PRINT. Characters that echo what you type on the terminal are also stored
here, including sets of backslashes to enclose text you rub out with the
DELETE key on a hard copy terminal. To store a character in the output
ring buffer, the monitor first compares the buffer size to the byte count to
check for room. If there is no room, the character cannot be stored. In FB
systems, this condition is sufficient to block a job if the job is doing output.
(If the output is the result of echoing, it is simply discarded.) If there is
enough room, the monitor checks to see if the PUT pointer is equal to the
HIGH pointer. This check ensures that the PUT pointer is pointing to a
location that is within the buffer. If the PUT and HIGH pointers are the
same, the monitor subtracts the size of the buffer from the current PUT
pointer to obtain the new PUT pointer. By doing this, the monitor ‘“wraps”
around the ring to move from the highest address in the buffer to the lowest
one.
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Next, the monitor moves a byte into the buffer and it increments both the
PUT pointer and the byte count. Figure 3-2 shows how characters are
stored in the output ring buffer.

Figure 3-2: Storing Characters in the Output Ring Buffer
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3.1.1.2 Removing a Character from the Output Ring Buffer — The terminal out-
put interrupt service routine removes characters from the output ring buf-
fer. I[f the character count is 0, the routine terminates. The routine checks to
see if the GET pointer is equal to the HIGH pointer. If it is, this means it is
time to “wrap’’ around the ring to move from the highest address in the buf-
fer to the lowest one. The wrap routine subtracts the size of the buffer from
the current GET pointer to obtain the new value of the GET pointer. This
check ensures that the GET pointer is pointing to a location that is within
the buffer.

Next, the output interrupt service routine removes one character through
the GET pointer and prepares to send it to the terminal. It increments the
GET pointer and decrements the byte count.

3.1.2 Input Ring Buffer

The input ring buffer is similar to the output ring buffer except that in addi-
tion to the GET, PUT, and HIGH pointers, it has a LOW pointer that
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points to the first byte of the buffer. This pointer is useful when the
pointers are moving backward through the buffer as a result of CTRL/U or
DELETE. It indicates when to “wrap’’ the buffer in the reverse direction,
from the lowest address to the highest.

The monitor also keeps a count of the number of lines that are stored in the
input ring buffer. A line is any sequence of characters terminated by line
feed, CTRL/Z, or CTRL/C. (Each time you type a carriage return at the ter-
minal, RT-11 stores two characters in the input ring buffer: a carriage
return and a line feed.) In normal mode, the monitor does not pass input
characters to a program until an entire line is present. This is why you can
use DELETE to rub out a character and CTRL/U to remove an entire line
when you are typing at the terminal. Since the monitor provides for line-by-
line editing, application programs need not have this overhead themselves.

In special mode, however, the monitor passes bytes to a program exactly as
they are typed on the terminal. In the latter case, the program itself must
be able to interpret editing characters such as DELETE and CTRL/U.

NOTE

Special mode does not provide the complete transparency
required to handle devices other than terminals — such as
communication lines — through the Resident Monitor ter-
minal service. You can achieve transparency through the
multi-terminal feature of RT-11 by using the ‘“read pass-
all” and “write pass-all” modes. These are described in
Chapter 5.

Figure 3-3 shows the input ring buffer just after the system was
bootstrapped.

Figure 3-3: Input Ring Buffer

X+SI1ZE —=— HIGH
X4SIZE—1
. RING BUFFER
L] L]
— PUT —e——— GET —=—— LOW
BYTE COUNT: 0
LINE COUNT: 0

Resident Monitor



3.1.21 Storing a Character in the Input Ring Buffer — When you type
characters at the terminal, the keyboard interrupt service routine stores
them in the input ring buffer. First, the routine checks to see if there is room
in the buffer. If there is no room, it rings the terminal bell (by putting a bell
character in the output ring buffer). If there is room, the routine increments
the byte count, increments the PUT pointer, wrapping it if necessary, and
stores the byte in the ring buffer. It also increments the line counter, if the
character typed is a valid line terminator. Figure 3-4 shows how characters
are stored in the input ring buffer.

Figure 3-4: Storing Characters in the Input Ring Buffer
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3.1.22 Removing a Character from the Input Ring Buffer — The monitor
removes characters from the input ring buffer when it processes the
TTYIN, .TTINR, .GTLIN, .CSIGEN, and .CSISPC programmed requests.
First it increments the GET pointer, wrapping around the ring if necessary.
Then it gets a byte from the buffer and decrements the byte count. It
decreases the line count as well if the character is a valid line terminator.

3.1.3 High Speed Ring Buffer

RT-11 provides an optional, additional high speed ring buffer that you can
enable by setting the conditional HSR$B in SYCND.MAC to 1 and
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reassembling the monitor. This adds an extra input ring buffer to RMON; it
adds an extra output ring buffer only if your system has multiple DL
interfaces.

When the high speed ring buffer is present, all character processing and in-
terpretation is performed at fork level. The high speed buffer is used to pass
characters from interrupt level to fork level. The advantage of having the
high speed buffer is that it allows the monitor to handle short bursts of
characters coming in at a very high rate. This is useful for systems with
VT100 or other intelligent terminals that report their status by sending a
burst of information to the host computer. It is also useful for connecting
one computer to another over a serial line.

The disadvantage to using the high speed ring buffer is that a . FORK call is
required for each burst of characters, and, thus, overall terminal service
may be slower.

3.1.4 Terminal /O Limitations

Terminal input and output limitations are completely separate; you use dif-
ferent methods to change each of them.

RT-11 accepts terminal input in either of two forms: a line at a time, or a
character at a time. In line mode, characters you type at the terminal are
stored in the input ring buffer until you type a valid line terminator such as
carriage return, line feed, CTRL/Z, or CTRL/C. Only then does a running
program receive the line of data. The factor limiting the length of the input
line is the size of the input ring buffer. (The setting of the terminal right
margin bears no relation to the length of the input line.) In RT-11 V04, the
default length is 134 decimal bytes, but you can change this through the
system generation process. Any attempt to insert characters beyond this
limit causes the terminal bell to ring, and the extra characters are lost. The
Command String Interpreter can accept only 81 characters per line. Most
utility programs, including PIP and BASIC-11, use the CSI to obtain lines
of data from the terminal.

In character mode, a running program receives each character immediately
after you type it at the terminal. In this mode, you can enter any number of
characters without using a line terminator, EDIT uses character mode, and
can thus accept lines of any length.

The length of terminal output lines is not related to the size of the output
ring buffer; instead, it is related to the setting of the terminal right margin.
Use the SET TT: WIDTH = n command to adjust the right margin. (See the
RT-11 System User’s Guide for details on SET TT: WIDTH and SET TT:
CRLF.)

3.1.5 Control Functions

A special aspect of RT-11’s terminal service is its response to control
characters that you type at the terminal. The monitor handles each
character differently, depending on the special function of each one. The
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following sections describe the different processes involved for the various
control characters.

3.1.5.1 CTRL/C — When you type one CTRL/C at the terminal, the terminal
interrupt service routine puts it into the input ring buffer, just as it would
any other character. The monitor treats it as a line delineator and passes it
to the running program.

However, if you type two CTRL/Cs in a row, the monitor processes them en-
tirely differently. Instead of passing them directly to the program, the
monitor aborts the running job. A program can use the .SCCA programmed
request to intercept CTRL/C and prevent the abort (see the RT-11
Programmer’s Reference Manual for a description of .SCCA).

3.1.5.2 CTRL/IO — When the terminal interrupt service routine detects a
CTRL/O, it never places the character in the input ring buffer, even if it is in
special mode. The monitor simply toggles a flag in the impure area. (In FB
and XM systems, this flag is the sign bit of the output ring buffer byte
count.)

The first time you type CTRL/O, the monitor echoes it, then clears the out-
put ring buffer byte count. It empties the ring by setting the GET and PUT
pointers equal to each other, and output from a running program is thrown
away. In FB and XM systems, this can unblock a job waiting for room in
the output buffer. The next time you type CTRL/O or your job issues the
.RCTRLO programmed request, normal output resumes.

3.1.5.3 CTRL/S and CTRL/Q — RT-11 implements terminal synchronization
through the characters CTRL/S and CTRL/Q. CTRL/S, or XOFTF, is a signal
that stops a host computer from transmitting data to a terminal. The
CTRL/Q, or XON, signal causes the computer to resume the transmission.
Although XOFF has many uses, RT-11 supports only the two most
common,

In a typical situation, you may be doing program development using a
video terminal. When you use the TYPE monitor command to review a file,
the text scrolls past faster than you can read. You can type CTRL/S to stop
the display so that you can read it, and then type CTRL/Q to resume the
scrolling. You initiate the XOFF yourself, in this case.

In another situation, the computer may send characters to a terminal faster
than the terminal can display them. So, the terminal itself sends the XOFF
signal to the computer, empties its internal silo, and sends XON when it is
ready to accept more data. This procedure is transparent to you.

A flag in RMON, called XEDOFF, indicates the XOFF/XON status. Typ-
ing CTRL/S sets the flag; typing CTRL/Q clears it. When XEDOFTF is set,
the monitor disables terminal output interrupts and stops emptying the
output ring buffer. See the RT-11 System User’s Guide for a description of
the SET TT: NOPAGE command, which disables CTRL/S and CTRL/Q
processing for FB and XM systems, and for those SJ systems with the
multi-terminal special feature.
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3.1.5.4 CTRL/B, CTRL/F, and CTRL/X — In FB and XM systems CTRL/B and
CTRL/F direct terminal I/O to the correct job. (In SJ systems these
characters have no special meaning.) CTRL/X performs the same function
for systems with system jobs. (See Section 3.5.9 for more information on
communicating with system jobs.) The CTRL/B, CTRL/F, and CTRL/X
characters are not put into the input ring buffer. Instead, they are recogniz-
ed by the input interrupt service routine (unless SET TT: NOFB is in effect,
in which case the characters have no special meaning) and the monitor
switches the set of ring buffers it is using.

The interrupt service routine uses two control words, TTOUSR and
TTIUSR, to point to the impure area of the correct job. The job’s identifica-
tion is stored in a special buffer in the impure area. The foreground job ID is
F>: the background job ID is B>; the ID for a system job is its job name.
When terminal I/O is directed to a different job, the new job’s identification
prints on the terminal.

3.1.6 SET Options Status Word

The word TTCNFG in the Resident Monitor is a status word that indicates
which terminal SET options are in effect. For multi-terminal systems, each
terminal control block has a status word similar to TTCNFG. TTCNFG
reflects the status of the SCOPE, PAGE, FB, FORM, CRLF, and TAB op-
tions. Table 3-1 shows the meanings of the bits. Unused bits are reserved
for future use by DIGITAL.

Table 3-1: SET Options Status Word

Bit Meaning When Set

SET TT: TAB option is in effect.
SET TT: CRLF option is in effect.
SET TT: FORM option is in effect.
SET TT: FB option is in effect.
Reserved.
SET TT: PAGE option is in effect.
8-14 Reserved.

15 SET TT: SCOPE option is in effect.

3 & W N = O

To get the status word and current width of the terminal (in systems
without the multi-terminal special feature), use the following lines of code:

Mov @#30,Rn
MoV - (Rn),STATUS
MOVB -~ 6(Rn),WIDTH

Use the following additional line to obtain the value of the current carriage
or cursor position (a value of 0 means the cursor or carriage is at the left
margin);

MOvB - 1(Rn),POSIT
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3.2 Clock Support and Timer Service

You do not need a system clock in order to run RT-11 on a PDP-11 com-
puter. However, if your computer does have a clock, RT-11 can provide
basic support for keeping time of day, or it can provide timer service —
standard with FB systems, and a system generation special feature for SJ
systems.

3.2.1 SJ Systems Without Timer Service

An SJ system without the timer feature (the default condition) provides
basic support for a system clock. Essentially, RT-11 keeps track of the
time of day, but does not provide a means to implement mark time or timed
wait requests.

The bootstrap routine looks for a clock on the system. If it finds one, it sets
the clock bit in RMON’s configuration word at fixed offset 300. If the clock
has a CSR (Control and Status Register), the bootstrap turns the clock on.
If the clock does not have a CSR (as is the case with some LSI-11 and
PDP-11/23 computers), no executing routine can turn the clock on or off:
there may be a switch for the clock on the front panel.

RMON maintains the time of day in a two-word counter. The counter is
called $TIME (high-order word) and $TIME + 2 (low-order word). RT-11
stores time of day as the number of ticks since midnight if you set the time
with the monitor TIME command. If you do not set the time, RT-11 stores
the number of ticks since the system was last bootstrapped.

RT-11 supports KW11-L and similar line frequency clocks, and KW11-P
programmable clocks. (Support for the programmable clock is a feature that
you select through system generation.) The default interrupt frequency for
the clocks is the same as the line frequency. That is, the clock interrupts 60
times per second with 60 Hz power, and 50 times per second with 50 Hz
power. Each time the clock interrupts, it adds one tick to the two-word time
of day counter.

In a simple system with a clock and no timer service you can use the
monitor TIME command to set the time of day or get the current time. A
running program can use the .GTIM programmed request to obtain the cur-
rent time, and .SDTTM to set it.

3.22 SystemsWith Timer Service

Timer service is always included in FB and XM systems. It is a system
generation special feature for SJ systems. Timer service provides three ex-
tra programmed requests: the mark time request (MRKT), the cancel mark
time request (CMKT), and the timed wait request (TWAIT, in FB and XM
only). In addition, another system generation special feature provides
device time-out support through the time-out macro (TIMIO) and the
cancel time-out macro (.CTIMIO), which are described fully in Chapter 7.

Because timer support itself requires the fork queue, selecting this feature
in SJ results in real, rather than simulated, fork processing. (Usually in SJ a
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.FORK request returns immediately to the following instructions.) With a
real fork queue in SJ, .FORK requests are serialized and do not interrupt
one another. For more information on the .FORK request, see Chapter 6.

To implement timer services, RT-11 uses a timer queue, which is a linked
list of queue elements, sorted in order of expiration time. The element that
expires soonest is at the head of the queue. The MRKT, .TWAIT, and
.TIMIO requests use the timer queue. They schedule completion routines to
be executed after a certain time interval elapses.

The monitor uses the timer queue internally to implement the TWAIT pro-
grammed request, which causes the job that issues it to be suspended. The
monitor places a timer request in the timer queue, with the .RSUM pro-
grammed request code as its completion routine. The job waits until the
specified time interval has elapsed. Execution resumes when the monitor
itself issues the .RSUM request as a completion routine.

Figure 3-5 shows the format of a timer queue element. It includes the sym-
bolic names and offsets as well as the contents of each word in the data
structure. Note that time is stored as a two-word number — a modified ex-
pression of the number of ticks until the timed wait expires.

Figure 3-5: Timer Queue Element Format

NAME OFFSET CONTENTS

C.HOT 0 HIGH-ORDER TIME

C.LOT 2 LOW-ORDER TIME

C.LINK 4 LINK TO NEXT QUEUE ELEMENT; 0 {F NONE

C.JNUM 6 OWNER’S JOB NUMBER

C.SEQ 10 OWNER'S SEQUENCE NUMBER ID

C.SYS 12 —1 IF SYSTEM TIMER ELEMENT;
—3 IF .TWAIT ELEMENT IN XM

C.COmMP 14 ADDRESS OF COMPLETION ROUTINE
THREE ADDITIONAL WORDS ARE PRESENT IN
XM SYSTEMS. THEY ARE UNUSED, AND ARE
RESERVED FOR FUTURE USE BY DIGITAL.

To store the time of day in all systems with timer support, RT-11 uses a
two-word pseudo clock called PSCLOK (low-order word) and PSCLKH
(high-order word). In this pseudo clock RMON stores the time, in ticks, that
has elapsed since the system was bootstrapped. Each clock interrupt adds
one tick to the counter. Two other words — $TIME and $TIME + 2 — con-
tain a constant that, when added to the value of the pseudo clock, yields the
current time of day.
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The monitor uses the pseudo clock to implement timer requests. When a
new queue element is put on the queue, the monitor adds the low-order word
of the pseudo clock to the two-word time value in the queue element and it
stores the resulting value, a modified time, in the queue element time
words. Whenever the pseudo clock carries into the high-order word (approx-
imately every 18 minutes), the monitor subtracts 1 from the high-order
word of time in each pending timer queue element. The element expires
when the high-order time word is 0 and the low-order time word is less than
or equal to the pseudo clock low-order word. This method of storing time in-
formation means that handling timer requests requires only test and com-
pare instructions, which execute rapidly, and a pass over the queue roughly
every 18 minutes to correct the time words.

Every time the system clock interrupts, the monitor increments the pseudo
clock. It then checks the first element in the timer queue. If the high-order
word of the timer element is 0 and the low-order word is greater than the
low-order word of the pseudo clock, the element has expired. The monitor
removes it from the timer queue and processes it as a completion routine for
the correct job. The monitor continues to check the timer queue until it
finds an element that has not yet expired or the queue is empty.

There are several uses for system timer elements. If C.SYS is — 1, the ele-
ment is being used by .TIMIO for device time-out support, or by RMON for
multi-terminal device time-out. If C.SYS is — 3, the element is being used to’
implement a .TWAIT request in an XM system. For . MRKT and other
.TWAIT requests, C.SYS is 0.

In XM, completion routines that have — 1 in C.SYS are run in kernel mode
and the queue element is discarded. That is, the queue element is not linked
into the list of available elements. If C.SYS is — 3, the completion routine is
still run in kernel mode. However, the queue element is linked into the
available queue when the completion routine is run. (The timer queue ele-
ment is used as the completion queue element.) In all other cases, the queue
element is linked into the available queue and completion routines run in
user mode. (Chapter 4 provides more information on extended memory
systems.)

3.3 Queued I/O System

RT-11 performs I/O transfers through a queued I/O system. A job can thus
have multiple I/O requests outstanding at a given time — that is, it can
issue an I/0 request and still continue processing.

RT-11 implements queued I/O through the queue elements, the device
handlers, and the routines in the Resident Monitor. Once a device handler is
in memory and the job has opened a channel, any .READ or .WRITE re-
quests for the corresponding peripheral device are interpreted by the
monitor and translated into a call to the handler. Figure 3-6 illustrates the
relationship between these components.
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Figure 3-6: Components of the Queued I/0O System
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3.3.1 /0 Queue

The RT-11 I/O queue system consists of a linked list of queue elements for
each resident device handler and a queue of available elements for each job.
I/O queue elements are seven words long for SJ and FB systems, and 10
decimal words long for XM systems. RT-11 provides one queue element in
the Resident Monitor for the SJ environment. For the FB and XM en-
vironments, each job has one queue element in its impure area. One queue
element is sufficient for a job that uses wait-mode I/O.

Figure 3-7 shows the format of an I/O queue element. It includes the sym-
bolic names and offsets, as well as the contents of each word in the data
structure.

If your program uses asynchronous I/O, you must allocate more queue
elements for it by using the .QSET programmed request. Otherwise, if the
program initiates an I/O transfer and no queue element is available, RT-11
must wait for a free element before it can queue up the new request. Ob-
viously, this slows processing. The number of queue elements is always suf-
ficient when you allocate n new elements, where n is the total number of
pending requests that can be outstanding at one time for a particular pro-
gram. This produces a total of n + 1 available elements, since the original
single queue element is added to the list of available elements.
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Figure 3-7: 1/O Queue Element Format

NAME OFFSET CONTENTS
Q.LINK 0 LINK TO NEXT QUEUE ELEMENT; 0 IF NONE
Q.Csw 2 POINTER TO CHANNEL STATUSWORD IN 1/0
CHANNEL (SEE FIGURE 3-29)
Q.BLKN 4 PHYSICAL BLOCK NUMBER
Q.FUNC 6 RESERVED | JOB DEVICE | SPECIAL
Q.UNIT 7 NUMBER | UNIT FUNCTION
Q.JNUM 7 (1 BIT) (4 BITS) (3BITS) | CODE
0=BG (8 BITS)
Q.BUFF 10 USER BUFFER ADDRESS (MAPPED THROUGH PAR1
WITH Q.PAR VALUE, IF XM)
QWCNT 12 IF <0, OPERATION IS WRITE
WORD COUNT <IF =0, OPERATION IS SEEK
IF >0, OPERATION IS READ
THE TRUE WORD COUNT IS THE ABSOLUTE
VALUE OF THIS WORD.
Q.COMP 14 COMPLETION (IF 0, THIS IS WAIT-MODE 1/0
ROUTINE IF 1, JUST QUEUE THE REQUEST
CODE AND RETURN
IF EVEN, COMPLETION ROUTINE
ADDRESS
Q.PAR 16 PAR1 VALUE (XM ONLY)
RESERVED (XM ONLY)
RESERVED (XM ONLY)

The list header, called AVAIL, is a linked list of free queue elements. It con-
tains a pointer to an available queue element. If AVAIL is 0, no elements
are currently available. Figure 3-8 shows an I/0 queue with three queue
elements, all of which are available. In this diagram, AVAIL points to ele-
ment 1. The first word in each queue element is a pointer to the next ele-
ment in the queue. Thus, element 1 is linked to element 2, element 2 is link-
ed to element 3, and element 3 is the last element in the linked list; its link
word is 0.

When a program initiates a request for an I/O operation, the monitor
allocates a queue element for the request by removing it from the list of
available elements. The monitor then links the element into the I/O queue

for the appropriate device handler. This is accomplished by using two words
in the handler header — ddLQE and ddCQE.

The fourth word of the handler is a pointer to the last element in its queue.
This pointer is called ddLQE, where dd is the two-character physical device
name. The fifth word of the handler, called ddCQE, is a pointer to the cur-
rent queue element.
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Figure 3-8: I/O Queue with Three Available Elements
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Figure 3-9 shows the status of the queue elements when one I/O request is
pending. The monitor removes the first queue element from the available
list and puts it on the device handler’s queue.

When a program requests a second I/O transfer for the same handler before
the first transfer completes, the monitor removes another queue element
from the available list and adds it to the queue for that handler. Figure 3-10
illustrates this.

When the transfer currently in progress completes, the monitor returns
queue element 1 to the available list and initiates the transfer indicated by
queue element 2. Figure 3-11 illustrates the queue status when one element
is returned.

When the 1/0 operation indicated by queue element 2 finishes, the monitor
returns that element to the available list, as Figure 3-12 indicates. Note
that the elements are now linked in a different order from that shown
previously in Figure 3-8.

In SJ systems, the monitor always puts the new queue element at the end of
the device queue. By using ddLQE it can do this quickly. In FB and XM
systems, the device queue is sorted in order by job number, with the queue
elements belonging to the highest job number appearing at the beginning of
the queue and those belonging to the lowest job number at the end. The
monitor puts the new element in the queue at the end of the list within a
specific job group. Thus, if two requests are queued waiting for a particular
handler, the request with the higher job number is honored first. At no time
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though, does the monitor abort an I/O transfer already in progress to start a
higher priority request. The operation in progress always completes before

the monitor initiates another transfer.
Figure 3-9: 1/0 Queue with Two Available Elements
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Figure 3-10: I/O Queue with One Available Element
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Figure 3-11: 1/O Queue When One Element Is Returned
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Figure 3-12: I/O Queue When Two Elements Are Returned
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Figure 3-13 illustrates a large queue for a device handler. The monitor adds
the new element, an I/O request from the foreground job, to the queue at
the end of the list of other foreground job elements. Note that the monitor
does not preempt the current queue element, even though it is a request
from the background job.

Figure 3-13: Device Handler Queue When a New Element Is Added
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3.3.2 Completion Queue
In FB and XM systems, the monitor maintains a completion queue for each

job, using it to serialize completion routines for each job. The head of the
completion queue is called .CMPL and it is located at offset 6 from the
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start of the impure area. .CMPE, at offset 4, points to the end of the com-
pletion queue. By using I.CMPE, the monitor can quickly add a new com-
pletion queue element to the end of the queue.

A completion routine is a section of code in a program that begins to ex-
ecute as soon as an asynchronous event occurs. For example, the READC
programmed request starts an I/O transfer and provides the address in the
program at which execution is to begin when the I/O transfer completes.
See the RT-11 Programmer’s Reference Manual for a more thorough
description of completion routines.

When an I/O transfer completes, the monitor checks Q.COMP at offset 14
octal from the start of the I/O queue element. If the value is greater than 1
it specifies a completion routine address. The monitor then transforms the
I/O queue element into a completion queue element and places it on the com-
pletion queue for the job whose job number appeared in Q. JNUM at offset 7
from the start of the I/0 queue element.

Figure 3-14 shows the format of a completion queue element. It includes
the symbolic names and offsets, as well as the contents of each word in the
data structure.

Figure 3-14: Completion Queue Element Format

NAME OFFSET CONTENTS
Q.LINK 0 LINK TO NEXT QUEUE ELEMENT; 0 IF NONE
2 RESERVED
4 RESERVED
6 RESERVED
Q.BUFF 10 CHANNEL STATUS WORD
QWCNT 12 OFFSET FROM START OF CHANNEL AREA TO THIS CHANNEL
Q.comp 14 COMPLETION ROUTINE ADDRESS
THREE ADDITIONAL WORDS ARE PRESENT IN XM SYSTEMS. THEY
ARE UNUSED, AND ARE RESERVED FOR FUTURE USE BY DIGITAL.

3.3.2.1 SJ Considerations — The SJ monitor does not maintain a completion
queue. As a result, completion routines in SJ are never serialized. (Whether
or not you select timer support at system generation time does not affect
the serialization of completion routines.) When you issue a completion-mode
programmed request (such as .READC or .WRITC) and the I/O transfer
completes, the monitor does not transform the I/O queue element into a
completion queue element. Instead, it returns the element to the list of
available queue elements. It then moves the Channel Status Word to RO
and the channel number to R1, and begins executing the program’s comple-
tion routine. Thus, the completion of another I/O transfer could interrupt
the current completion routine and begin execution of another one.

3.3.2.2 .SYNCH Conslderations — The .SYNCH request also makes use of
the completion queue in FB and XM systems but it does not use an 1/0
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queue element. When you issue a .SYNCH call, you supply as an argument
the address of a seven-word area in your program, called the synch block.
The synch block contains, among other things, the address of the routine to
be executed. Figure 3-15 shows the format of a synch block, or synch queue
element. When the monitor interprets your .SYNCH request there is no cur-
rent I/0 queue element for it to modify. So, it uses your seven-word area as
a completion queue element. The monitor puts the synch block at the head
of the appropriate job’s completion queue.

Figure 3-15: Synch Queue Element Format

NAME OFFSET CONTENTS

Q.LINK 0 LINK TO NEXT QUEUE ELEMENT; 0 IF NONE

Q.Ccsw 2 JOB NUMBER

Q.BLKN 4 RESERVED

Q.FUNC 6 RESERVED

Q.BUFF 10 SYNCH ID

QWCNT 12 —1(CUE THAT THIS IS A SYNCH ELEMENT)

Q.COMP 14 SYNCH ROUTINE ADDRESS
THREE ADDITIONAL WORDS ARE PRESENT IN XM SYSTEMS. THEY
ARE UNUSED, AND ARE RESERVED FOR FUTURE USE BY DIGITAL.

3.3.3 Flow of Events in /O Processing

As the central manager of the device-independent I/O system, the Resident
Monitor supervises the I/O procedure, using a queue element as the com-
munication link between a device handler and a program that requests an
I/O transfer. The following sections describe the sequence of events that oc-
cur in a simple read or write operation.

3.3.3.1 Issuing the Request — Before a program can request an I/O transfer,
it has to open a new file or find an existing file on a device. This procedure
sets up a channel containing five words of information about the location
and length of the file. A channel number is associated with the five-word
block so that you can refer to the block later by specifying this number in a
single byte. The monitor uses the channel information when it needs to pro-
cess an I/O request.

A running program initiates an I/O procedure by issuing a request to read
from or write to a particular channel. MACRO-11 programs, for example,
can use the READ, . READW, .READC, .WRITE, .WRITW, WRITC, and
.SPFUN programmed requests. Programs written in other languages use
similar statements to read and write data.

When the I/O request executes, the monitor uses the channel number the re-
quest specifies to find the corresponding device handler. Then the inonitor
calls its queue manager routine, which allocates a queue element from the
list of available elements and fills in the necessary information.
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When a queue element is not available in SJ systems, the monitor executes
in a tight loop, waiting for a queue element to appear in the list of available
elements. This condition is satisfied when a device interrupts and the
handler issues the .DRFIN macro, which indicates that an I/O transfer is
complete, and the monitor returns the queue element for that transfer to
the available list.

When a queue element is not available in FB and XM systems, the job re-
quests a scheduling pass starting with the job whose priority is immedi-
ately below that of the current job. When the original job gets a chance to
run again, it first checks the available list for a free queue element. If no ele-
ment is available, it requests another scheduling pass. In FB systems, there
is no blocking bit associated with queue element availability. Therefore, the
job that needs a queue element is not officially blocked, even though it can-
not run effectively until it gets a queue element.

3.3.3.2 Queuing the Request in SJ — Once a new queue element has been
allocated by the queue manager, the element is put on the device handler’s
queue. In an SJ system the new element always goes at the end of the
queue. To prevent interference from a device interrupt (which might remove
a different element from the same queue), the SJ monitor goes to priority 7
to manipulate the queue.

If the queue is empty, the monitor makes the new element both the current
and the last element in the queue. It increments the count of queue
elements on this channel (the byte at offset 10 octal in the channel area), and
returns the priority to its previous level. It then jumps to the handler’s I/O
initiation section to start up the transfer. The handler starts the transfer
and returns control to the monitor with an RTS PC instruction.

If the queue is not empty, the handler is busy so the monitor puts the new
element at the end of the queue. It increments the count of queue elements
on this channel (the byte at offset 10 octal in the channel area), and returns
the priority to its previous level.

Whether or not the queue was empty, the queue manager checks to see if
this request is for wait-mode I/O. If it is, the system executes in a tight loop
until the transfer specified by this queue element finishes. If this request is
not for wait-mode I/0, control returns to the program, which executes while
1/0 occurs simultaneously.

3.3.3.3 Queuing the Request in FB and XM — In FB and XM systems, all jobs
(system utility programs, application programs, and language processors)
and the Keyboard Monitor run in user state. Each job uses its own stack. In
user state a low-priority job that is running can be replaced by a higher-
priority job that is runnable. Similarly, a higher-priority job that is unable
to run for any reason can be replaced by a runnable lower-priority job.

The FB and XM monitors switch to system state to modify important data
structures and to perform operations that do not run entirely within a job.
Stack operations and interrupts in system state use the monitor’s stack
rather than a job’s stack. Jobs cannot run when the monitor is in system
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state, and switching between lower- and higher-priority jobs is postponed
until the monitor returns to user state. In system state, then, the monitor
can safely modify critical data structures without the risk that another job
could gain control and corrupt the same data structures. (Section 3.4.1
describes system and user state in greater detail.)

Because in SJ systems there is only one execution state, the terms ‘“‘user
state’’ and ‘“‘system state’’ are not meaningful in those systems.

In an FB or XM system, the monitor switches to system state before it puts
the new element on the device handler’s queue in order to prevent in-
terference from other jobs. It does not raise the priority to 7, as does the SJ
monitor, because this would lock out device interrupts for too long a time.
However, a device interrupt could remove an element from the queue while
the monitor is adding the new element and adjusting the LQE and CQE
pointers. To ensure the integrity of the queue, the monitor holds the
handler while it performs the modification.

Holding a handler prevents any other process or routine from changing the
I/O queue. For example, when a device interrupts and an I/O operation com-
pletes, the handler issues a .DRFIN call to return to the monitor and
remove the current queue element from the I/0 queue. Depending on the
type of I/O request the program issued, the current element should either
go back to the linked list of available queue elements, or it should go onto
the completion queue for the appropriate job. However, if the handler is
held when it issues the .DRFIN, the monitor does not remove the current
queue element from the I/0 queue. Instead, it delays this action by setting a
flag that it checks later. Similarly, when a job aborts, the abort routine
holds a handler while it removes queue elements belonging to the aborted
job. This prevents the monitor from starting up the next transfer queued
for this device until all elements for the aborted job are gone. After the
monitor holds the device handler, it checks to see if the queue is empty.

If the queue is empty, the monitor clears the hold flag for the handler right
away, and then makes the new element both the current and the last ele-
ment in the queue. It increments both the count of queue elements on this
channel (the byte at offset 10 octal in the channel area), and the total
number of I/O requests for this job. Remaining in system state, the monitor
jumps to the device handler’s 1/O initiation section to start up the transfer.
When the handler starts the transfer and returns control with an RTS PC
instruction, execution of the program continues in user state within the
queue manager. That is, the monitor is executing ‘‘for the program”.

If the queue is not empty, the monitor continues to hold the handler until it
finishes modifying the queue. Elements in the queue are sorted by job
number, as Section 3.3.1 explains. The monitor searches the queue from
front to back, and places the new element at the end of the group of
elements belonging to this job. It increments both the count of queue
elements on this channel (the byte at offset 10 octal in the channel area), and
the total number of I/O requests for this job. Since the device handler is
busy, the monitor cannot start up an I/O transfer for this request, so its
queue element sits in the queue. The queue manager returns to user state.
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Whether or not the queue was empty, the queue manager checks to see if
this request is for wait-mode I/O. If so, the program waits for the transfer to
complete. If this request is not for wait-mode I/0, execution of the program
continues concurrently with the I/O transfer.

3.3.3.4 Performing the /O Transfer — After the monitor and a device handler
have started up an I/O transfer, a peripheral device performs the actual
operation and interrupts when it is finished. The interrupt causes control to
pass to the device handler’s interrupt service section, where the code
assesses the results of the I/O operation and restarts it if necessary. When
the transfer is done, the handler uses the .DRFIN macro to return to the
monitor and remove the current queue element from its I/O queue.

Figure 3-16 summarizes the relationship between the parts of a device
handler and the Regident Monitor. Chapter 7 provides a detailed descrip-
tion of the internal operation of a device handler.

Figure 3-16: Device Handler/Resident Monitor Relationship

DEVICE HANDLER RESIDENT MONITOR

PREAMBLE SECTION

HEADER SECTION PUTS NEW QUEUE ELEMENT ON THIS
HANDLER'S QUEUE AND CALLS THE
1/0 INITIATION SECTION s HANDLER AS A CO-ROUTINE.
DEVICE RTS PC # RUNS THIS JOB, OR WAITS FOR

INTERRUPT THIS TRANSFER TO COMPLETE.
—— e INTERRUPT SERVICE SECTION

1/0 COMPLETION SECTION
L]

DRFIN RETURNS QUEUE ELEMENT TO THE
LIST OF AVAILABLE ELEMENTS, OR
PUTS IT ON THE COMPLETION QUEUE.

HANDLER TERMINATION SECTION

3.3.3.5 Completing the /0 Request — When a device interrupts, an I/O
transfer completes, and the handler issues the .DRFIN call, it is the
monitor that must take the appropriate action to complete the I/O pro-
cedure. In general, this means that the monitor must remove the current
queue element from the handler’s I/O queue and put it in the list of available
elements or on the completion queue. In an FB or XM system, another 1/0
request could cause the monitor to hold the handler while it adds an element
to the queue. In this case, the monitor simply sets a flag, dismisses the in-
terrupt, and returns to the interrupted process, removing the element later.

In all SJ systems, and in those FB or XM systems in which the handler is
not held, the monitor first decrements the count of queue elements on this
channel. In an FB system, when the count reaches 0, it makes runnable a
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job that is waiting for activity on this channel to complete. In FB and XM
systems only, the monitor next decrements the total number of I/O re-
quests pending for this job. Again, if this number becomes 0, it makes run-
nable a job that is waiting for all its I/O to complete. When either count
reaches 0, it can cause the scheduler to run.

Next, for all systems, the monitor removes the queue element from the
handler’s queue. If there is another element in the handler’s queue waiting
to be processed, the monitor calls the handler again to start the next opera-
tion as soon as the final disposition of the current element is resolved. The
monitor raises the priority to 7 for a short time as it links the element into
either the list of available elements or (except for SJ systems) the job’s com-
pletion queue. In FB, if the element specifies a completion routine address
at offset 14 octal, the monitor transforms the I/O queue element into a com-
pletion queue element and puts it at the end of the job’s completion queue.
Then the monitor returns control to the process or program that was inter-
rupted. In SJ, if the element specifies a completion routine, the monitor
merely returns the I/O queue element to the list of available elements. Then
it puts the Channel Status Word in R0, puts the channel number in R1, and
begins immediate execution of the completion routine.

In all SJ systems, and in those FB and XM systems in which the element
does not specify a completion routine address, the monitor simply returns
the element to the available list. Control returns to the process or program
that was interrupted, or (except in SJ systems) the scheduler can run.

3.4 Scheduling in Foreground/Background Systems

In an FB or XM system the monitor must arbitrate the demands of up to
eight jobs for processor time, in addition to performing all its other func-
tions. Clearly then, because of the implications of having more than one job,
the FB and XM systems are considerably different from the SJ system. The
FB and XM monitors use a number of special tools to implement support
for more than one job.

The scheduler is the part of the monitor that determines which job is eligi-
ble to run and gives control of the processor to it. The scheduler uses a sim-
ple algorithm to determine which job should run. It looks at the jobs in
order from highest priority to lowest. If a job exists and is runnable, the
monitor restores its context and returns to it. Status bits in a flag word
(I.BLOK, at offset 36 octal from the start of the impure area) reflect the
blocking conditions that can prevent a job from running and thereby give a
lower-priority job a chance to execute. Context switching is the procedure
through which the monitor saves a job’s context — its machine environ-
ment and important job-specific information — and begins execution of
another job.

All the processes that are job-dependent are kept separate from those that
are monitor functions. The monitor functions are, therefore, re-entrant.
Data structures that contain job-specific information are located in the im-
pure area for each job, and each job has its own stack. Routines that run in
a job-dependent environment, including some parts of the monitor, use the
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job’s stack and run as part of the user job in user state. Any routines that
run outside a job’s context, including interrupts, use the monitor’s stack
and execute in system state. This arrangement allows the monitor to ‘“un-
wind” the stack after a series of interrupts without changing jobs or stacks.

Two or more jobs can share a peripheral device, so the queued I/0 system
(as Section 3.3 explains) must keep track of the priority of the job re-
questing an I/O transfer and act accordingly. The USR is interlocked —
that is, it cannot be shared by two jobs; all jobs must take turns using the
USR.

Lastly, monitor routines check for blocking conditions, change execution

“state, interlock parts of the monitor to prevent corruption of important

data structures, request a scheduling pass, and so on. The following sec-
tions describe the components of FB and XM systems and provide an
understanding of the scheduling process in a multi-job environment.

3.4.1 User and System State

In order to isolate job-dependent functions from monitor processes, the FB
and XM systems provide two execution states: user state and system state.
All jobs and the Keyboard Monitor run in user state. Each job maintains
relevant data in its impure area, and each job uses its own stack. Context
switching is enabled in user state. That is, a lower-priority job that is run-
ning can be replaced by a higher-priority job that is runnable. A higher-
priority job that is unable to run for any reason can be replaced by a run-
nable lower-priority job.

The monitor switches to system state and the system stack for several
reasons. Jobs cannot run when the monitor is in system state, and context
switching is delayed until the monitor returns to user state. Consequently,
the monitor can modify important data structures in system state without
interference from other jobs. The monitor uses system state for operations
that do not run entirely within a job context. These operations, which must
not be interrupted by context switching, include the following:

e Blocking a job

e Starting up an I/O transfer

e Aborting an I/O transfer

e Servicing a timer request

e Executing the . PROTECT programmed request

e Executing the .CHCOPY programmed request

¢ Interlocking the USR

e Executing any XM mapping programmed request
e Servicing an interrupt

¢ Executing device handler code (except for .TIMIO completion routines
and .SYNCH routines, which run in user state in a specific job’s
context)
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Because it is chiefly system or monitor routines that execute in system
state, monitor errors are fatal. Traps to 4 (odd address errors, and illegal or
nonexistent memory addressing errors) and traps to 10 (illegal or reserved
instruction errors) occurring in system state halt the system. .
3.4.1.1 Switching to System State Asynchronously — The monitor switches
from user state to system state asynchronously whenever an interrupt oc-
curs. As a result of the interrupt the monitor may modify important data
structures. The switch to system state prevents interference from a context
switch while the modifications are in progress. In FB the monitor switches
from the job’s stack to the system stack. In XM the monitor does not per-
form the stack switch because the hardware does it automatically. Subse-
quent interrupts that occur in system state put information on the system
stack. Note that these subsequent interrupts do not cause another switch
to system state.

Interrupt Level Counter

The monitor recognizes three levels of execution state. It uses a counter
called INTLVL to distinguish among the three levels. Every interrupt in-
crements this counter. When INTLVL is —1, execution is in user state.
When INTLVL is 0, execution is in system state at level zero. When
INTLVL is positive, execution is still in system state, but at a deeper inter-
rupt level. Table 3-2 summarizes the relationship between the number of in-
terrupts pending and the execution state.

Table 3-2: Values of the Interrupt Level Counter (INTLVL)

Number of Interrupts Value of INTLVL Execution State
0 -1 User State
1 0 System State Level Zero
2 or more 1 or greater Deeper System State

Figure 3-17 shows how interrupts influence the flow of events in a running
system.

SINTEN Monitor Routine

When an interrupt occurs, control passes to the routine specified in the in-
terrupt vector, and the current PS and PC are put on the job’s stack. In
RT-11, both device handlers and in-line interrupt service routines call the
monitor at the common interrupt entry point, SINTEN. Device handlers
use the .DRAST macro to call the monitor; in-line interrupt service routines

- use the .INTEN macro.

$INTEN is the monitor routine that performs the switch to system state.
The routine assumes that it was called because an interrupt occurred.
Therefore, it expects the old PS and PC to be on the job's stack. The priori-
ty should be 7, and the interrupt service routine must not have destroyed
any registers between the time the interrupt occurred and the time
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S8INTEN was called. Device handlers generally call the monitor immedi-
ately, before they do any processing at all. In-line interrupt service routines
sometimes perform crucial operations immediately, at priority 7, then call
$INTEN to lower processor priority to device priority.

Figure 3-17: Interrupts and Execution States

USER STATE SYSTEM STATE ZERO DEEPER SYSTEM STATE
JOB 1
INTERRUPT 1
- ROUTINE A
INTERRUPT 2
=1 ROUTINE B
INTERRUPT 3
1 ROUTINEC
C FINISHES
B FINISHES
A FINISHES
e

JOB 1
CONTINUES

S$INTEN assumes it was called with the following instruction sequence, or
its equivalent:

JSR R5,@$INTEN
.WORD “C< priority*40>&340

$INTEN's first action is to save R4 on the job’s stack. Since the JSR
instruction already saved R5, the job’s stack now appears as shown in
Table 3-3.

Table 3-3: Job’s Stack after SINTEN

Byte Offset Contents Agent
0 R4 SINTEN
2 R5 .DRAST macro (JSR R5)
4 PC interrupt
6 PS interrupt
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Next, $INTEN increments the INTLVL counter from — 1 to 0. It saves the

job’s stack pointer in a memory location and switches to the system stack.

$INTEN then lowers processor priority to device priority, and calls the

device handler or interrupt service routine back as a co-routine. The inter-
rupt service routine continues to execute in system state.

3.4.1.2 Switching to System State Synchronously — The monitor switches to
system state sychronously — that is, without depending on an interrupt —
whenever other monitor routines need to go to system state temporarily to
ensure the integrity of a certain operation. In these circumstances, the
monitor routines can call the $ENSYS routine to switch to system state.

In special circumstances, a routine in a running job (rather than in the
monitor) needs to switch to system state. The routine can do this by
artificially mimicking an interrupt and using the .INTEN macro to call the
$INTEN monitor routine.

SENSYS Monitor Routine

The $ENSYS routine is voluntarily and synchronously called by any other
monitor routine that needs to switch to system state. SENSYS mimics an
interrupt by altering the job’s stack so it duplicates the stack condition im-
mediately after an interrupt. Routines call SENSYS by using the following
instructions:

JSR R5,$ENSYS
WORD <return address>~ .
WORD 340

The instructions following the call to SENSYS execute in system state.
When the routine that must execute in system state completes, it issues an
RTS PC instruction. Control then passes in user state to the routine
specified in the calling sequence as <return address>.

Table 3-4 shows how SENSYS manipulates the stack to imitate an
interrupt.

Table 3-4: Job’s Stack after SENSYS

Byte Offset Contents
0 R5
return address
4 0
INTEN Macro

When a routine in a user job needs to switch to system state, it can use a
procedure similar to $ENSYS, which is used solely by monitor routines.
Essentially, the routine must push the PS and PC onto the stack, and then
call the monitor $INTEN routine with a JSR R5 instruction, which puts R5
on the stack as well.
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A device handler or a user program subroutine can use the following in-
structions to switch to system state:

MOV @SP, —(SP) ;MAKE ROOM ON THE STACK
CLR 2(SP) ;FAKE INTERRUPT PS = 0
.MTPS #340 ;GO TO PRIORITY 7

INTEN  0O,PIC ;ENTER SYSTEM STATE

This routine must be executed with a return address on the top of the stack.

3.41.3 Returning to User State — Any routine that is executing in system
state issues an RTS PC instruction when it completes. The monitor “un-
winds”’ its stack from one or more interrupts as each RTS PC instruction is
issued. As each routine completes, the monitor decrements the INTLVL
counter.

When INTLVL is greater than 0, it indicates that the routine that was just
interrupted was executing in system state. The monitor defers some special
chores until it is just about to return to user state. If it is time to decrement
INTLVL after an RTS PC instruction, and the value of INTLVL is current-
ly 0, the monitor knows that it is about to drop back to user state. At this
time, there are four special considerations for the monitor:

e Is there an outstanding fork routine? (Fork routines run before jobs or
their completion routines.)

e Is a scheduling pass required? (As a result of an interrupt, a job that
was previously blocked may now be runnable.)

e Are there outstanding clock ticks? (The monitor may need to normalize
its time of day counter and check the timer queue.)

e Is there an outstanding floating-point interrupt?

After taking these considerations into account, the monitor is ready to
return to user state. It decrements INTLVL to — 1 and switches to the ap-
propriate job’s stack. It restores R4 and R5, and then executes the RTI in-
struction to begin execution in user state.

3.4.2 Context Switching

Context switching occurs as a result of the scheduler’s command to run a
different job. Its purpose is to restore the context for a job so that it can
run. Context switching can occur for one of two reasons:

e The current job becomes blocked and a lower-priority job is runnable.
¢ A higher-priority job than the current job becomes runnable.

Note that the RT-11 monitor never saves a job’s context simply because it
switches to system state. For example, if there is only one job running, the
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monitor does not bother to save or restore its context. A job’s context is
only significant when there are two or more jobs running. Many other
multi-user operating systems switch out the user job every time they leave
user state and enter system state. RT-11 avoids the overhead of un-
necessary context switching by saving and restoring the context only when
it runs a different job. This is a significant saving because there are many
situations in which a job is running, an interrupt triggers a switch to
system state, and control passes back to the same job once the interrupt is
serviced.

When the monitor saves a job’s context, it saves the job-dependent infor-
mation on the job’s stack and in the job’s impure area. The following infor-
mation és saved in a context switch:

e PS

e PC

¢ Stack Pointer (saved in the impure area)

* Registers RO through R5

¢ Kernel PAR1 (XM only)

¢ Memory management fauit trap vector (XM only)

e BPT vector (XM only)

e JOT vector (XM only)

e TRAP vector

* System communication area (locations 40-52)

¢ Location 56 (multi-terminal systems only)

e FPP status word and floating-point registers (if floating-point hard-
ware present)

e All data specified by the program in a .CNTXSW programmed request

* Stack and impure area (which are, of course, part of the job)

When the monitor switches in the new job’s context, it tests for a pending
completion routine by checking a status bit in I.STATE. If the job’s com-
pletion queue has a completion queue element on it, the monitor puts a
pseudo-interrupt on the job’s stack to call the completion queue manager
when the scheduler actually starts up the job.

3.4.3 Blocking Conditions

A running job is blocked if it cannot proceed until some asynchronous event
happens. Table 3-5 lists the blocking conditions, the bits in I.BLOK (at im-
pure area fixed offset 36 octal) that reflect the conditions, and the events
that unblock a job. Unused bits are reserved for future use by DIGITAL.
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Table 3-5: Blocking Conditions

I.BLOK Bit,
Name, and
Blocking Agent Mask Unblocking Agent

Any request that uses the 4 The USR release routine, DEQUSR,
USR; any monitor command; USRWTS$ when the USR is free and no
an exit from a background job. 20 higher-priority job needs it.
The keyboard monitor 6 The Keyboard Monitor, when an
SUSPEND command. KSPND$ operator types the RESUME

100 command.
The .EXIT request; a job 8 I/O completion from device
that aborts EXIT$ handlers, when the job’s total I/0

400 count is 0.
Termination of the foreground 9 None. Only the Keyboard Monitor
or system job. NORUNS$ can clear this bit by removing

1000 the job image from memory.
The .SPND or the TWAIT . 10 The monitor’s .RSUM processor,
programmed request. SPND$ when the .RSUM request executes

2000 or a TWAIT completion routine

runs,
The .READW, .WRITW, 11 I/O completion from device
WAIT, .SDATW, .RCVDW, CHNWT$ handlers, when the I/O count for
.MWALIT programmed 4000 the specified channel is 0.
requests.
The .EXIT programmed 12 The monitor’s terminal service
request issued from a TTOEM$ output routine, when the output
foreground or system job; 10000 ring buffer is empty or CTRL/O is
the .MTSET request issued for typed.
a DZ line; MTDTCH issued
for any terminal but a shared
console.
The .TTYOUT, .PRINT, 13 The monitor’s terminal output
.MTOUT, and MTPRNT TTOWT$ interrupt service routine, when
programmed requests. 20000 there is room in the output
ring buffer.

The .TTYIN request (with 14 The monitor’s terminal input
JSW bit 6 clear); the .CSIGEN, TTIWTS$ interrupt service routine, when
.MTIN, .CSISPC, and .GTLIN 40000 a line or character is available.
programmed requests.
Any request that needs a none The monitor’s queue element

queue element when none is
available.

return routine, when a queue
element becomes free.

Note that there is no bit that indicates that a job is waiting for a queue ele-
ment. This is a special case and the monitor handles it by checking the list
of available queue elements. If there are none, it requests a scheduling pass
to give a lower-priority job a chance to run. The monitor continues to check
the available list until a queue element becomes available.
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3.4.3.1 How the Monitor Blocks a Job — A job becomes blocked when it en-
counters any of the circumstances listed in Table 3-5. These circumstances
are brought about when one of the three following events occurs:

® The job issues one of the programmed requests listed in Table 3-5.
® The monitor SUSPEND command is typed.
e The job aborts.

Typically the job, which is running in user state, issues a programmed re-
quest, such as .EXIT. The monitor remains in user state while it processes
the programmed request. It then checks to see if the job is waiting because
of a blocking condition. The .EXIT request, for example, must wait for all
the job’s I/0 requests to complete before it actually terminates the job.
Since waiting for all 1/0 to complete is a blocking condition, the monitor in-
itiates the appropriate test to see if there are outstanding 1/0 requests and
this job is now blocked.

The monitor calls its $SYSWT routine whenever it needs to determine
whether or not a job is blocked. The monitor passes to $SYSWT a bit mask
for the bit in I.BLOK corresponding to this particular condition. (Table 3-5
lists the bit masks for I.BLOK; bit 8 corresponds to the .EXIT request con-
dition.) It also passes a decision subroutine, which is a routine that deter-
mines whether or not a job is blocked for a particular reason. There is a
unique decision subroutine for each call to $SSYSWT, except the waiting for
a queue element condition, which has none. The decision subroutine returns
with the carry bit set if the job is indeed blocked. Note that a job can be
blocked for only one reason at a time.

When control eventually returns to the job, it executes within the monitor
in user state at $SYSWT again. (That is, the monitor runs under the
auspices of the job, executing code on its behalf.) The blocking condition
must be checked once more in order to reblock a job that may have been
unblocked to allow a completion routine to run. (Completion routines are
part of a job, but they can run even if the main part of the job is blocked.
The monitor unblocks the job to run the completion routine, then runs
$SYSWT to reblock the job when the completion routine finishes. Section
3.4.5 discusses the implications of completion routines for scheduling.)

3.4.3.2 $SYSWT Monitor Routine — $SYSWT is the monitor routine that
decides whether or not a job is blocked. If a job is blocked, $SYSWT sets
the appropriate blocking bit. The flowchart in Figure 3-18 shows how
$SYSWT works.

First, 3SYSWT runs the decision subroutine passed by the monitor to
determine whether or not the job is blocked for a specific reason (point A in
Figure 3-18). If the job is not blocked, control returns to the job and it con-
tinues to run (point B). In the .EXIT case, for example, a job is not blocked
if there is no pending 1/0 to delay the exit procedure.

If the job is blocked, $SYSWT calls $ENSYS to enter system state (point
C). Then it sets the appropriate blocking bit. In the . EXIT example, a job is
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Figure 3-18: $SYSWT Monitor Routine
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blocked if there are pending I/0 requests; $SYSWT sets the EXITS$ bit, bit
8, in I.BLOK.

Next, $SYSWT runs the decision subroutine again. If the job is still block-
ed, $SYSWT requests a scheduler pass (point E). It does this to give a run-
nable lower-priority job a chance to execute.

3-32 Resident Monitor



If the job is no longer blocked, $SYSWT clears the blocking bit and returns
(point E). When the monitor switches back to user state, the scheduler runs
if a scheduling pass is pending. When control finally returns to this job (the
one for which $SYSWT originally ran), the monitor continues execution on
the job’s behalf at the beginning of the $SYSWT routine (point A).

8SYSWT runs the decision subroutine twice because interrupts can occur
while $SYSWT is running. Since an interrupt can signal the removal of a
blocking condition, the job’s status can change even as $SYSWT is trying
to determine it.

An interrupt can occur after the decision subroutine (point A) declares a job
to be blocked, but before $SYSWT sets the blocking bit. This time interval
is shown as “Window 1” in Figure 3-18. In this situation $SYSWT sets the
blocking bit erroneously. But, when it runs the decision subroutine the sec-
ond time, it discovers that the job is not blocked anymore. $SYSWT clears
the bit and returns to the job (point E).

“Window 2”’ in Figure 3-18 indicates the second time interval in which an
interrupt can occur. The interrupt can remove the blocking condition im-
mediately after $SYSWT correctly sets the blocking bit. In this case, the
monitor’s UNBLOK routine clears the blocking bit and requests a schedul-
ing pass because this job became runnable. Control returns to $SYSWT
(point D), which runs the decision subroutine again. Since the job is no
longer blocked, execution leaves $SYSWT (point E) and the scheduler runs
immediately before the monitor returns to user state.

3.4.3.3 How the Monitor Unblocks a Job — An asynchronous event initiates
the monitor’s procedure to unblock a job. Table 3-5 lists the significant
events that can unblock a job. The completion of all I/O for a specific chan-
nel is a significant event, for example, and unblocks a job whose CHNWT$
bit is set.

When an interrupt occurs, control passes to an interrupt service routine.
The interrupt routine enters system state by executing the $INTEN
monitor routine. Then the interrupt service routine assesses the meaning of
the interrupt and takes appropriate action. In a device handler, for example,
an interrupt can indicate that an I/O transfer is complete. The handler
returns to the monitor to remove the current element from the I/O queue.

In all cases, the monitor clears the blocking bit and requests a scheduling
pass if the significant event removes a blocking condition.

3.4.4 Scheduler Operations

The scheduler runs only if there is an outstanding request for a scheduling
pass. The monitor checks a flag byte called INTACT each time it is ready to
switch from system to user state. If INTACT is not equal to zero, the
scheduler runs.

3.4.41 How the Monitor Requests a Scheduling Pass — The monitor requests
a scheduling pass by calling the SRQTSW monitor routine. It does this
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whenever a job’s ability to run changes. (That is, whenever a running job
becomes blocked, or whenever a blocked job becomes runnable.)

3.44.2 Characteristics of a Runnable Job — A job that does not have any
blocking bit set is runnable. However, there is one circumstance in which a
job with a blocking bit set can still be runnable. A job’s completion routine
can run even though the mainline program is blocked. Section 3.4.5
discusses scheduling implications for completion routines.

3.4.43 $RQTSW Monitor Routine — The $RQTSW routine posts a request for
a scheduling pass for a specific job by placing a value in the flag byte, IN-
TACT. INTACT holds the job number of the highest-priority job that re-
quested a scheduling pass. $RQTSW ignores a scheduling request for a job
if its priority is lower than that of the running job. When a job whose priori-
ty is higher than that of the running job requests a scheduling pass,
$RQTSW saves the job’s number in INTACT, which holds the number in
the following format:

INTACT = Jobnumber , 54,

3.44.4 How the Scheduler Works — The scheduler runs just before the
monitor returns to a job. Remember that INTLVL, the interrupt level
counter, is 0 when it is time to return to user state.

A scheduling pass needed to make a job runnable happens asynchronously,
as a result of an interrupt that removed a blocking condition. A scheduling
pass needed to make the current job non-runnable happens synchronously,
after a job issues a programmed request, after the monitor SUSPEND com-
mand is typed, or after a job aborts.

The scheduler runs only if INTACT is not equal to 0. When INTACT is 0, it
indicates that no job changed its status, and, therefore, the same job that
was interrupted should run again. When INTACT is not 0, it contains the
number of the highest-priority job that changed its status. The scheduler
runs only if the job number in INTACT is greater than the current number
of the current job, which is kept in JOBNUM in the monitor.

The scheduler examines jobs in order of descending priority. It starts with
the job whose number is in INTACT, which is not necessarily the highest-
priority job in the system. As soon as the scheduler finds a runnable job,
the monitor switches context and runs the job. If no jobs at all are runnable,
the system idles — that is, it runs the null job briefly, then scans all jobs
again for runnability.

3.45 Implications for Completion Routines
A job’s completion routine can run even though the mainline program is

blocked. When an asynchronous event occurs, such as the completion of an
I/O request, the interrupt service routine enters system state through the
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$INTEN monitor routine. The device handler’s interrupt service routine
returns to the monitor when 1/0O completes, so the monitor can remove the
I/O queue element from the device handler’s queue. If the I/O request
specified a completion routine address, the monitor changes the I/O queue
element into a completion queue element and puts it on the job’s completion
queue. The monitor sets bit 7 in the job state word (I.STATE, the first word
in the job’s impure area) to indicate that a completion routine is pending.

As the monitor switches from system to user state, it checks the completion
pending bit in I.STATE in the job’s impure area. If a routine that just ran
in system state queued one or more completion routines for this job and the
job is not currently running a completion routine, the monitor clears the
blocking bit so the scheduler can run the job. This action permits comple-
tion routines to execute even though the mainline program is blocked.

When all the completion routines finish, the mainline program begins to ex-
ecute. However, since it was recently blocked, the monitor executes for the
job at the start of the $SYSWT routine. $SSYSWT runs the relevant deci-
sion subroutine (the routine for the condition that originally blocked this
job) and reblocks the job, if necessary.

3.5 System Jobs

Through the system generation process you can create an FB or XM
monitor that is capable of running up to six simultaneous jobs in addition
to a foreground job and a background job. RT-11 offers the system job
feature in order to make two valuable system jobs available: the error log-
ger, called EL, and the file queuing program, called QUEUE. You can run
either system job as the foreground job in an RT-11 FB or XM system that
does not have the system jobs feature.

Keep in mind that even though RT-11 permits up to eight jobs to run
simultaneously, this feature does not mean that RT-11 is a ‘“‘multi-user’’ or
“multi-tasking”’ system in any sense of the terms. The system jobs RT-11
provides are designed to monitor hardware reliability and to write files to
peripheral devices through a queue mechanism. Both jobs are in keeping
with the philosophy that RT-11 is essentially a single-user system, and
RT-11 still provides no protection for one job from another, or for the
operating system software from any job. In the few cases where RT-11 ap-
pears to support multiple users, a single application program or language
processor that supports multiple terminals is actually running. In Multi-
User BASIC-11, for example, the BASIC-11 interpreter is the single user,
and it alone is responsible for preserving the integrity of each
programmer’s work space.

The Resident Monitor in a system job environment is approximately 300
decimal words larger than an equivalent monitor that does not support
system jobs. DIGITAL does not encourage customers to write their own
system jobs; it reserves the remaining four potential system jobs for future
use.
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3.5.1 Characteristics

System jobs are similar to ordinary foreground jobs in that, for both kinds
of jobs, object code must be stored in relocatable object file format. In addi-
tion, system jobs are subject to the same restrictions as foreground jobs —
that is, they use restricted arithmetic with global variables.

One difference between system and foreground jobs is that the default file
type for a system job is .SYS, not .REL. To link a system job, use the
following command line format:

LINK/FOREGROUND/EXECUTE:dev:filnam.SYS dev:filnam.OBJ

Remember to use  EXECUTE to explicitly include the .SYS file type for the
resulting executable module and override the default .REL file type that
[FOREGROUND produces.

3.5.2 Logical Names

You reference a system job by its logical name, which, by default, is its file
name. However, you can assign a new name when you start the job by using
the SRUN monitor command with the /NAME:logical-job-name option.
Logical job names must be unique.

The foreground and background jobs have default logical names as well as
their actual file names. For the foreground, the default logical name is F; for
the background, it is B. F and B are permanently assigned; you cannot use
them for system jobs. In addition, EL is the logical job name permanently
assigned to the error logger system job. You can assign another logical
name to the foreground job, in addition to F by using the FRUN monitor
command with the /NAME:logical-job-name option.

The job name is stored in ASCII at offset .LNAM in the job’s impure area.

3.5.3 Job Number

In an FB or XM system without the system job feature the background job
number is 0 and the foreground job number is 2. In an environment that
supports system jobs, the background job number is still 0, but the fore-
ground job number is always 16 octal. By default, each system job takes
the next highest available job number. Job numbers are multiples of 2, and
range from 0 to 16 octal. For example, the first system job you start with
the SRUN command has a job number of 14, the second system job has a
job number of 12, and so on.

3.5.4 Priority

A monitor that supports the system job feature provides the same event-
driven, static priority schéduler that ordinary FB and XM systems use. The -
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monitor services jobs according to their priority. The background job
always has priority 0, the lowest priority. The foreground job always has
the highest priority, which is 7. You cannot change these assignments.

To assign a priority to a system job you can:

1. Use the SRUN command to start the jobs in order of their importance
so that the first job you start gets priority 6, the second job gets priori-
ty 5, and so on.

2. Explicitly specify the priority when you start the system job. Use the
SRUN/LEVEL:priority command to do this. You can specify a priority
level for each job in the range 1 through 6, as long as another job is not
currently assigned to the level you choose.

The job number is equal to the priority times 2.

NOTE

You can assign a priority only when you start a system job
with the SRUN command. The priority levels do not
change dynamically, and you cannot change the priority of
a job while it is running.

3.5.5 Design Considerations

If you are planning to write or run system jobs, you should keep in mind
two major design considerations:

1. RT-11 provides an event-driven, static priority scheduler.

2. Addressing space is at a premium in an RT-11 environment, and cer-
tain parts of each job must reside in low (rather than extended)
memory.

3.5.5.1 Scheduling Considerations — The RT-11 scheduler arbitrates the
demands jobs make for CPU time, awarding the use of system resources to
the highest-priority job that is not blocked. Thus, a compute-bound job can
lock out all the jobs with a lower priority. On the other hand, an I/0-bound
job, such as the RT-11 QUEUE program, is often blocked waiting for I/O
transfers to complete. As a result, it does not interfere significantly with
lower priority jobs. If you are running a text editor in the background, for
example, the fact that the QUEUE program is active is practically
transparent to you.

When you design a program to run as a system job, then, consider carefully
how often it will require system resources. Keep in mind, too, the fact that
RT-11 does not permit parallel use of the USR by two or more jobs. Write
the program in such a way that it does not monopolize the system and lock
out other jobs.
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3552 Space Conslderations — In an FB system, the main concern is that
the number and size of jobs is limited by the amount of space available. As
Chapter 2 explains, KMON and the USR slide down in memory each time
you load a foreground job, a device handler, or a system job above them.
However, KMON cannot slide below location 1000 octal. Since the FB
monitor and KMON are about 4K words in size each, this leaves about 20K
words of memory for foreground jobs, device handlers, and system jobs.
Each job carries a fixed overhead of roughly 220 decimal words for the im-
pure area and channel space.

XM systems have more restrictions that apply to foreground and system
jobs. First, the USR is always resident in XM. In addition, the USR cannot
slide down in memory into the area mapped by kernel PAR1 (addresses
20000 through 40000). That is, the USR must not slide below location 40000
in low memory. As a result of these two restrictions, about 11K words of
memory are available for foreground jobs, device handlers, and system jobs
in an XM environment. Each job carries a fixed overhead of approximately
340 decimal words for the impure area and channel space.

However, the XM environment provides other means to load and execute
jobs. The only parts of foreground and system jobs that must reside in low
memory are the impure area, queue elements, channels, and interrupt ser-
vice routines. (Like the USR, these four parts of a job cannot reside in the
PARI1 area.) The XM system provides three ways to make use of extended
memory (memory above the 28K-word boundary) for foreground and
system jobs:

1. Use the XM .SETTOP feature in your program.

2. Segment your program and use the /V linker option to make the
overlays resident in extended memory.

3. Use the memory management programmed requests in a MACRO pro-
gram to increase the program’s physical address space.

These methods provide the means to circumvent the XM restrictions and
execute code in extended memory. They are described in detail in Chapter 4.

3.5.6 Programmed Requests

Two programmed requests — .GTJB and .CHCOPY — have optional argu-
ments that are meaningful only in an FB or XM environment with the
system job feature. The .GTJB request obtains job status information for
any job in the system. You can reference another job by either logical job
name or job number, The .CHCOPY request opens a channel for input,
logically connecting it to a file that is currently open for another job for in-
put or output. See the RT-11 Programmer’s Reference Manual for a detail-
ed explanation of these requests.

3.5.7 Message Handling

In addition to the .SDAT/.RCVD/MWAIT system through which fore-
ground and background jobs communicgte with each other, RT-11 pro-
vides an easy way for all jobs, including system jobs, to send and receive
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messages. The new message handling system is implemented through the
message queue, or MQ, handler. This handler is a part of the Resident Moni-
tor for all FB and XM systems, whether or not they include the system job
feature. The MQ handler is written as a standard RT-11 device handler for a
“gpecial” device. This means that the pseudo-device has a non-RT-11 for-
mat. The MQ handler does not accept .SPFUN calls. One advantage of using
a device handler in the message system is that you can still debug the send/re-
ceive mechanism if one of the jobs involved in the system is not in memory.

For most other purposes, the MQ handler performs like the other RT-11
device handlers. Essentially, it makes another job appear to be a peripheral
device. As a result, you can open a channel to any other job by using the
.LOOKUP programmed request. You can send a message by issuing a
.WRITW request. Then you can receive a message to the job by using a
.READW request. The first word of the received data buffer contains a count
of the words transferred.

There is one significant difference between other RT-11 device handlers and
the MQ handler, which becomes apparent when a job exits (with the .EXIT
programmed request) or when it aborts (because of CTRL/C or a fatal monitor
error). The monitor allows outstanding I/O requests that are queued for the
job to complete, but discards any messages that are queued for the job by
examining the queue for the MQ handler and removing queue elements that
send messages to the job.

The XM monitor normally uses a special intefnal macro to transfer message
data via the MTPI instruction. This procedure is slow, but safe, since it does
not use a PAR to map any buffers. You can use a faster, but riskier, transfer
procedure by setting the conditional assembly symbol MQH$P2 equal to 1.
When the MQ handler is assembled, the assembler will generate code which
uses kernel PAR2 to map the user buffers. In this case, all the kernel PAR1
restrictions also apply to PAR2. So, the USR, queue elements, channels, and
interrupt service routines cannot reside within locations 20000 through 60000
in a system that actually uses the MQ handler. Note that the QUEUE pro-
gram uses the MQ handler.

3.5.8 Monitor Commands

The collection of monitor commands has some special features that reflect the
system job environment. This section describes them briefly. See Chapter 4 of
the RT-11 System User’s Guide for a complete description.

3.5.8.1 SRUN and FRUN Commands — Use the SRUN command to start
execution of a system job. You can also use the FRUN command to begin
execution of a system job in the foreground partition.

NOTE

If you use SRUN or FRUN to start a system job and a job with
the same name is already in memory but has finished execut-
ing, the monitor unloads the job in memory and brings in a new
copy from a peripheral device.

3.5.8.2 LOAD and UNLOAD Commands — Use the LOAD command to bring a
device handler into memory and to assign ownership of a peripheral device
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to a specific job. Different jobs can own different units of a file-structured
device. Since a system job must already be in memory before you can assign
a device to it, remember to start the job with SRUN before you use the
LOAD command. Note that you cannot assign ownership of SY or MQ.

The UNLOAD command removes a device handler or a system job from
memory. Be sure to type a colon (:) after the name of the device handler.
This distinguishes it from the name of a system job. For example, RK could
be both the name of a system job and the name of a device handler. To
remove the device handler, type:

UNLOAD RK:

To unload the system job, type:
UNLOAD RK

3.5.8.3 SUSPEND and RESUME Commands — Use the SUSPEND command
to stop execution of a system job.

Use the RESUME command to continue execution of a system job that was
stopped by the SUSPEND command or the /PAUSE option for SRUN or
FRUN.

3.5.84 SHOW JOBS Command — Use the SHOW JOBS command to display
status information about all system jobs currently in the system.

3.5.8.5 SET TT: NOFB Command — Use the SET TT: NOFB command to
disable the special control keys CTRL/F, CTRL/B, and CTRL/X you use to
communicate with foreground, background, and system jobs.

3.5.9 Communicating with a System Job

In a system job environment you use CTRL/X to communicate with a
system job in much the same way that you use CTRL/F for a foreground
job and CTRL/B for a background job. By directing input to the correct job
and by labeling output, this mechanism permits two or more jobs to share
one terminal. When you type CTRL/X, the monitor sends a carriage
return/line feed combination to the terminal, followed by the Job? prompt.
While waiting for your response, the monitor simulates a full output ring
buffer. This prohibits output from any other job from garbling the CTRL/X
dialogue. (This also blocks a job that is waiting for output.)

Respond to the prompt by typing the job’s logical name, followed by a line
terminator (carriage return, line feed, or CTRL/Z). DELETE (or RUBOUT)
and CTRL/U are valid editing commands in a CTRL/X sequence.
Remember that F and B are reserved for the foreground and background
jobs. If the job you specify is not running, or does not exist, the monitor
prints a question mark (?). As a result of the CTRL/X sequence, the monitor
directs terminal input characters to the appropriate job’s input ring buffer.

To cancel the CTRL/X sequence before you finish typing the job name, type
CTRL/C. This does not abort any job. It simply returns to the state of the
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terminal before you typed CTRL/X. To actually abort a system job, type
CTRL/X followed by the job name ‘and a line terminator. Then type two
CTRL/Cs.

While terminal input is directed to one job’s input ring buffer, other jobs
can still send output characters to the terminal. To avoid confusion, the
monitor prints an identifying label every time the output user changes. The
terminal identity string is stored at I.JID in each job’s impure area and it
consists of a carriage return/line feed combination, followed by the job
name, a right angle bracket ( >), and another carriage return/line feed
combination. :

The following sequence shows how two system jobs can share one terminal.
Type a CTRL/X sequence and send a message to the first job:

CTRL/X
Job? SY1< RET >
HELLO TO JOB 1< RET >

Job 2 sends a message to the terminal:

SY2 >
HI FROM JOB 2

Send another message to job 1. Note that you do not type the SY1 >label
yourself. The monitor prints it when it echoes your input characters.

sY1 >
HELLO AGAIN TO JOB 1< RET >

Job 2 sends two more messages:

sy2 >
HI AGAIN FROM JOB 2
HI A THIRD TIME FROM JOB 2

Finally, job 1 sends a message:

Sy1 >
HI FROM JOB 1

3.5.10 How to Queue Files from an Application Program

Usually you queue files that you want to copy to another device by using
the monitor PRINT command. If the QUEUE program is running when
you issue the PRINT command, the files you specify are queued
automatically and the monitor dot prints on your terminal almost
immediately.

Your application programs can also copy files to output devices through the
QUEUE program. The method your program must use to do this depends
on which monitor is currently running. If an FB or XM monitor that in-
cludes the system job feature is running, your program must communicate
with QUEUE through the message queue (MQ) handler by using
.LOOKUP, .WRITW, and .READW programmed requests. Using the MQ
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handler is beneficial because it frees the monitor for other tasks, and takes
advantage of the existing queued I/O system. Note that the MQ handler in
an XM system borrows kernel PAR2 for its own use; see Section 3.5.7 for
more information on this topic.

If an FB or XM monitor without the system job feature is running, your
program must communicate with QUEUE through the .SDAT and .RCVD
programmed requests.

To queue one or more files, follow these simple steps:

1. Set up a job block in your program for a logical group of files to be
queued.

2. Set up a file block for each file to be queued.

Issue the .LOOKUP programmed request for the QUEUE program.
(Omit this step if your system does not have the system job feature.)

4. Issue the WRITW request (or the .SDATW request if your system
does not have the system job feature) to send the QUEUE request and
establish a pointer to the job and file blocks.

5. Issue the READW request (or the .RCVDW request if your system
does not have the system job feature) to receive acknowledgment from
QUEUE.

Once QUEUE acknowledges your request, your program is free to continue
processing or to exit. Figure 3-23 shows a program that uses .LOOKUP,
.READW, and .WRITW to queue one file, then exits.

3.5.10.1 Setting Up the Job Block — Set up a job block in memory for a logical
group of files. The job block defines the logical name by which you can later
reference the entire group of files.

If you copy files to a file-structured device (rather than to the line printer,
for example) all the files belonging to the job are concatenated and stored in
a file called “‘jobname’’ with the file type .JOB. The handler for the device to
which you send the job must be made resident in memory through the
monitor LOAD command. Figure 3-19 shows the format of the job block.

Figure 3-19: Job Block

FLAG BITS+FLG.JR

# OF BANNERS # OF COPIES

OUTPUT DEVICE (RADIX-50)

SIX-CHARACTER JOB NAME
(TWO RADIX-50 WORDS)

# OF FILE BLOCKS FOLLOWING
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The flag word in each job block defines the action QUEUE should take on
each file. Table 3-6 lists the definitions of the bits. Bits 4 through 15 are
reserved for DIGITAL.

The job block must have bit FLG.JR set. If FLG.CP is set, QUEUE sets
the default number of copies to queue for this job from the low byte of the
second word in the job block. If FLG.HD is set, QUEUE sets the number of
banners to queue for this job from the high byte of the second word in the
job block.

Table 3-6: Request Flag Bits

Bit Name Mask Meaning
0 FLG.DE 1 Delete file after copying it.
FLG.CP 2 Make multiple copies (get number of copies
from second word in block).
2 FLG.HD 4 Create banner pages (get number of pages
from second word in block).
3 FLG.JR 10 For initial request and job block.

3.6.10.2  Setting Up the File Block — Immediately after the job block, your
program must set up a file block for each file that is part of the job. Arrange
the blocks contiguously in memory, with the job block first. Figure 3-20
shows the format of the file block.

Figure 3-20: File Block

FLAG WORD _

# OF BANNERS # OF COPIES

FOUR RADIX-50 WORDS
CONTAINING DEVICE, FILE
NAME, AND FILE TYPE OF THE
FILE TO BE QUEUED

In each file block you can specify the number of banner pages and the
number of copies for the file by setting flag bits FLG.CP and FLG.HD, and:
putting values into the second word of the block. If you omit the flag bits,
QUEUE ignores the second word of the file block and checks the flag bits of
the job block instead. If they are set, QUEUE takes the values from the sec-
ond word of the file block. Finally, if the flag bits are clear in both the file
and the job blocks, QUEUE uses the system default of no banners and one
copy of the file, or the current default parameters as set by the QUEMAN
/P option.
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3.5.10.3 Setting Up the QUEUE Request Block — The last data structure you
must establish is called the QUEUE request block. It need not be con-
tiguous in memory with the job and file blocks. Figure 3-21 shows the for-
mat of the QUEUE request block. This block contains the information that
QUEUE needs to begin processing the files.

Figure 3-21: QUEUE Request Block

FLG.JR

SIX-CHARACTER FILE NAME
OF YOUR PROGRAM
(THREE ASCII WORDS)

ADDRESS OF JOB BLOCK

0

3.5.10.4 Issulng the .LOOKUP Request — In the executable section of your -
program, you must issue a .LOOKUP programmed request to make the
first contact with the QUEUE program and establish a communication
channel. Issue the . LOOKUP for MQ:QUEUE, following the example pro-
vided in Section 3.5.10.7. (Omit this step if your system does not have the
system job feature.)

3.5.10.5 Issuing the Request to QUEUE — If the LOOKUP is successful (or if
you omitted it), you next issue the .WRITW programmed request (or the
.SDATW request if your system does not have the system job feature) to
send your request to QUEUE. The text you send to QUEUE is the QUEUE
request block. See the example provided in Section 3.5.10.7.

If your request is valid, QUEUE inserts the request blocks into the queue,
which is a workfile on device DK:. The workfile is a first-in/first-out list; it
can contain requests for different output devices. QUEUE does not main-
tain a separate workfile for each device.

3.5.10.6 Receiving Acknowledgment from QUEUE — When QUEUE
acknowledges your request, your program can continue execution, or exit,
as you desire. You obtain this acknowledgment by issuing the . READW
programmed request (or the . RCVDW request if your system does not have
the system job feature). QUEUE’s response takes the form shown in Figure
3-22.

Your program must wait for this acknowledgment. QUEUE maintains only
a limited number of extra queue elements. If QUEUE sends a message to
your program that your program is not prepared to accept, a queue element
is needlessly kept out of the list of available elements; this could block
another job in your system.
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Figure 3-22: Request Acknowledgment Block

FLAG BITS

SIX-CHARACTER NAME

“QUEUE "

(THREE ASCII WORDS)

0

If the acknowledgment is positive, the flag word contains 0. If the
acknowledgment is negative, the sign bit of the flag word is set in addition
to one of the low three bits. Table 3-7 shows the meanings of the
acknowledgment flag bits.

Table 3-7: Acknowledgment Flag Bits

Bit Name Mask Meaning
0 FLG.RA 0 Request accepted.
15,0 FLG.IR 100001 Illegal job request.
15,1 FLG.QF 100002 Insufficient room in workfile.
15,2 FLG.NQ 100004 QUEUE being aborted from console.

3.5.10.7 QUEUE Example Program — Figure 3-23 contains a listing of an ex-
ample program, MYPROG, that uses QUEUE in a system with the system
job feature to copy a data file to the line printer.

Figure 3-23: QUEUE Example Program

MYFROG . MAC

N ONO UGS O

MACRO V04,00

000001

000002
000004

+TITLE

.
i
.
H
.
]
i

i

14-0CT-79 18141!113 FAGE 1

MYFROG.MAC

THIS EXAMFLE SHOWS HOW AN AFFLICATION FROGRAM CAN
SEND FILES THROUGH THE QUEUE SYSTEM.

+ENARL
JMCALL

FLAG ERITS FOR

FLG.DE

FLG.CF
FLGHD

LC

+WRITW, .LOOKUF, JEXITy» .FRINT» .READW

REQUEST

= 1 JDELETE FILE AFTER
FPRINTING

= 2 iMULTIFLE COFIES

= 4 t BANNER FAGES
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Figure 3-23: QUEUE Example Program (Cont.)
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FLG,JR

+FSECT

=10 JREQUEST AND JOE
$REQUEST INDICATOR

QUETST

3 EXECUTAERLE SECTION

START?:

11%:

2%

MERR

3 RLOCK

LKUF:

AREA:

+LOOKUF
BCC
JFRINT
JEXIT
JWRITW

ECC
+FRINT
JEXIT
+READW

ECS
18T

ENE
+FRINT
JEXIT

+FRINT
JEXIT

#AREAY#16/#LKUF § ,LOOKUF QUEUE

1 #ERROR?
$LUFERR $YES» PRINT TEXT
FAND QUIT

¥AREAs #1646, #REQST#6 i SEND INITIAL
JREQUEST TO QUEUE

2% {ERROR?
#REQERR FYES» FRINT TEXT
FAND QUIT

$AREA» #1646 #REFLY s #6 FWAIT FOR ACK FROM
$QUEUE ., WORD COUNT OF
$ACK IN REFLY!, TEXT IN

JREQST
11% # BRANCH ON ERROR
REQST $}ACK OK? (FIRST WORD OF
FACK SHOULD ERE 0)
MERR s BRANCH ON ERROR
#ACKMSE §FRINT TEXT

FEND OF LAE EXFERIMENT,
iRAW DATA SENT TO
fLINE FRINTER.
$NAKMSG JFRINT ERROR TEXT
FAND QUIT

+FSECT QUEITA

FOR .LOOKUF ON QUEUE

+RADSO
+ASCIZ

+EBLRKW

/MQ/
/QUEUE/

S {EMT AREA

i ACK FROM QUEUE GOES HERE

REFLY?

i ELOCK

REQST ¢

i RLOCK

JOREBLK

+WORD

0 #WORD COUNT FROM ,READW

FOR REQUEST

+WORD
+ASCII

+WORD
+WORD

FOR JOR

+WORD

+BYTE

+RADSO
+RADSO

FLG.JR FINITIAL REQUEST
/MYFROG/ iCALLING FROG NAME
JORELK JAIIR OF JOEB EBLOCK

0 JEND OF INITIAL REQUEST

“FLG. JR+FLG.HD+FLG.CF> #FLAGS FOR JOE»
i BANNERSy AND COFIES

293 2 COFIES, 3 RANNERS
/LF/ $SENDI TO FRINTER
/RAUDTA/ FLOGICAL JOE NAME FOR



Figure 3-23: QUEUE Example Program (Cont.)

72 sFILE OF RAW DATA
74 0000S2 000001 +WORD 1 JONE FILE FOLLOWS
7%
76 i BRLOCK FOR FILE
77
78 000054 000000 FILRLK: JWORD 0 iNDO FLAGSy USE DEFAULTS
7% 0000%56 000 +BYTE 0s0 sDEFAULT EBANNERS» COFIES
J00007 000
30 000040 015270 JRADSO  /IIK/ sFILESFEC OF FILE TO ERE
81 000062 100014 +RADSO /TSTFIL/ sQUEUELD.,
000064 023364
82 000046 014474 +RADNSO  /DAT/
B3
84 +NLIST REX
83
2 i MESSAGES
87
88 000070 115 LUFERR! .ASCIZ /MYFROG-F-QUEUE rot running/
89 000123 115 REQERR: .ASCIZ /MYFROG-F-Inmnitial reauest error/
90 000162 115 NAKMSG! .ASCIZ /MYPROG-W-QUEUE ackriowleddment nesgative/
?1 000231 115 ACKMSG: .ASCIZ /MYFROG-I-QUEUE acknowledgment OK/
Q2
93 «EVEN
P4 SLIST REX
9o 000000 JEND START
SYMBOL TAERLE
ACKMEG 000231K 003 FLG.JR= 000010 REFLY 000022K 003
AREA 000010R 003 JOEELK 000040R 003 REQERR 000123R 003
FILELK 000054R 003 LKUF 000000R 003 REQST 000024RG 003
FLG.CF= 000002 LUFERR 000070FR 003 START 000000k o002
FLLG.DE= 000001 MERR 000150R 002 ,..,V1 = 000003
FLG,HD= 000004 NARKMSG O000162R 003 ...V2 = 000027
« ARS. 000000 000
000000 001
QUETST 000160 002
QUEDTA 000272 003
ERRORS DETECTED:! O
YIRTUAL MEMORY USED: 9216 WORDS ( 36 FAGES)
DYNAMIC MEMORY AVAILAERLE FOR 73 FAGES

yMYFROG/L I TTM=MYPROG

3.6 Data Structures

The following sections describe some of the data structures in the Resident
Monitor.

3.6.1 Fixed Offseis

Some words always have fixed positions relative to the start of the Resident
Monitor. These words are called fixed offsets. In general, they contain
either status words or pointers to other significant information. The fixed
offset area in RMON is located at the start of the RTDATA p-sect.

To access the fixed offsets from a running program, use the .GVAL pro-
grammed request, as follows:

.GVAL #area,#offse
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Here, area represents a two-word argument block, and offse is a byte offset
from Table 3-8. Your programs should never modify the contents of the
fixed offsets.

Table 3-8: Resident Monitor Fixed Offsets

Byte
Length
Offset  Symbol (Octal) Description
0 $RMON 4 Common interrupt entry point; contains the in-
struction JMP $INTEN. The .INTEN macro
uses it.
4 3$CSW 240 Background job channel area (16 decimal chan-
nels; each is five words long).

244 $SYSCH 12 Internal channel used for system functions; the
Keyboard Monitor uses this channel.

246 2 SJ only: Reserved.

250 2 SJ only: Reserved.

252 I.SERR/ 2 SJ only: An indicator for hard or soft errors.

I.SPLS

254 I.SPLS 2 SJ only.

256 BLKEY 2 Segment number of the directory now in
memory. A value of 0 implies that no directory
is there. See Section 2.2.3.2 for a method of in-
hibiting directory caching.

260 CHKEY 2 Device index and unit number of the device
whose directory is in memory. The low byte con-
tains the device index into the monitor tables;
the high byte is the unit number.

262 $DATE 2 Current date value.

264 DFLG 2 “Directory operation in progress’ flag. This is
non-zero to inhibit CTRL/C from aborting a job
while a directory operation is in progress.

266 $USRLC 2 Address of the normal USR area. This is where the

USR resides when it is called into memory by the
background job and location 46 is 0. In other words,
the foreground job must provide space for the USR
to swap. (Note: if the foreground job calls in the
USR and location 46 is 0, the foreground job aborts.)
See Chapter 2 for information on USR swapping.

270 QCOMP 2 Address of the I/O exit routine for all devices. The
exit routine is an internal queue management
routine through which all device handlers exit once
the I/O transfer is complete. Any new device
handlers you add to RT-11 must also use this exit
location; use the .DRFIN macro in your handler to
generate the exit code automatically.
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Table 3-8: Resident Monitor Fixed Offsets (Cont.)

Byte
‘ Length
Offset  Symbol (Octal) Description
272 SPUSR 2 Special device error word. Non RT-11 file-

structured devices, such as magtape, use this word
to report errors to the monitor.

274 SYUNIT 2 The high byte contains the unit number of the
system device. This is the unit number of the device
from which the system was bootstrapped.

276 SYSVER 1 Monitor version number. You can always access the
version number in this fixed offset to determine if
you are using the most recent version of the soft-
ware. For RT-11 Version V04, this value is 4.

277 SYSUPD 1 Monitor release level. This number identifies the
release level of the monitor version specified in byte
276. For RT-11 Version V04.00, this value is 0.

300 CONFIG 2 Configuration word. These 16 bits indicate informa-
tion about either the hardware configuration of the
system or a software condition. Another configura-
tion word located at fixed offset 370 contains addi-
tional data. See Section 3.6.1.1 for the meaning of

each bit.
302 SCROLL 2 Address of the VT11 scroller.
304 TTKS 2 Address of the console keyboard status register.

The default value is 177560. See Chapter 5 for
details on changing the hardware console interface
to another terminal.

306 TTKB 2 Address of the console keyboard buffer register.
The default value is 177562.

310 TTPS 2 Address of the console printer status register. The
default value is 177564,

312 TTPB 2 Address of the console printer buffer register. The
default value is 177566.

314- MAXBLK 2 The maximum file size allowed in a 0 length

.ENTER programmed request. The default value is
177777 octal blocks, allowing an essentially
unlimited file size. You can change this value from
within a running program (although this is not
recommended), or by using SIPP to patch this
location.

316 E16LST 2 Offset from the start of RMON to the dispatch table
for EMTs 340 through 357. The BATCH processor
uses this.

320 CNTXT 2 FB and XM only: A pointer to the impure area for
the current executing job.

322 JOBNUM 2 FB and XM only: The executing job’s number.
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Table 3-8: Resident Monitor Fixed Offsets (Cont.)

Offset

Symbol

Byte
Length
(Octal)

Description

320
322
324

326

362

3564

356

360

362

364

366
370

372

374

376

$TIME
$TIME + 2
SYNCH

LOWMAP

USRLOC

GTVECT

ERRCNT

S$MTPS

$MFPS

SYINDX

STATWD
CONFG2

SYSGEN

USRARE

ERRLEV

Resident Monitor

24

SJ only: Two words of time of day.

Address of monitor routine to handle .SYNCH re-
quests. Your interrupt routines can issue the
.SYNCH programmed request, which enters the
monitor through this address to synchronize with
the job they are servicing.

Start of the low-memory protection map. This map
protects vectors at locations 0 through 476. See Sec-
tion 3.6.1.2 for more information on the low-memory
bitmap.

A pointer to the current entry point of the USR.
This may be 0, if the USR is not in memory; it may
be the relocation code in USRBUF, if the USR was
just brought into memory; it is the processing code,
in all other cases.

Address of VT11 or VS60 display processor display
stop interrupt vector (default is 320).

Low byte is the error count byte for use by system
utility programs. The high byte is reserved.

Entry point of the move to PS routine. The MTPS
macro calls this routine to perform processor in-
dependent moves to the Processor Status word.

Entry point of the move from PS routine. The
.MFPS macro calls this routine to do processor in-
dependent moves from the Processor Status word.

Index into the monitor device tables for the system
device. See Section 3.6.5 for information on the
device tables.

Indirect file and monitor command state word.

Extension configuration word. This is a string of 16
bits indicating the presence of an additional set of
hardware options on the system. See Section 3.6.1.3
for the meaning of each bit.

System generation features word. The bits in this
word indicate the presence or absence of some
system generation special features. See Section
3.6.1.4 for the meaning of each bit.

Size of the USR in bytes. Your program can use this
information to dynamically determine the size of the
region you need in order to swap the USR. (The USR
is always resident in XM systems.)

Error severity at which to abort indirect files. You
can change this level with the SET ERROR com-
mand. The default setting is ERROR. See Chapter 2
for more information.



Table 3-8: Resident Monitor Fixed Offsets (Cont.)

Byte
Length
Offset Symbol (Octal) Description

377 IFMXNS 1 Depth of nesting of indirect files. The default
nesting level is 8. You can change this value by us-
ing SIPP to patch this location. Be sure to refer to
offset 377 as a byte, not as a word.

400 EMTRTN 2 Internal offset for use by BATCH only.

402 FORK 2 Offset to fork processor from the start of the Resi-
dent Monitor. (Location 54 contains the starting ad-
dress of RMON.) Use the .DREND macro in your
device handler to automatically set up a pointer to
the fork processor.

404 PNPTR 2 Offset to the SPNAME table from the start of the
Resident Monitor.

406 MONAME 4 Two words of Radix-50 containing the name of the
current monitor file,

412 SUFFIX 2 One word of Radix-50 containing the suffix used by
the current monitor to name device handlers. For SJ
and FB systems, this word is normally blank. For
XM, it is normally X, right-justified. This word is
set up by the bootstrap; you can modify it there (see
the RT-11 Installation and System Generation
Guide for details).

414 DECNET 2 Reserved.

3.6.1.1 Configuration Word — The configuration word, CONFIG, indicates
information about either the hardware configuration of the system or a soft-
ware condition. Table 3-9 lists the bits and their meanings. Unused bits are
reserved for future use by DIGITAL.

Table 3-9: The Configuration Word, Offset 300

Bit Meaning

0 0 = SJ Monitor.

1 (If bit 12 = 0): FB Monitor.
(If bit 12 = 1): XM Monitor.
1 Reserved.
2 1 = VTI11 or VS60 graphics display hardware
exists.

3 1= BATCH is in control of the background.

4 Reserved.
5 0 = 60-cycle clock.
1 = 50-cycle clock.

The value of bit 5 is patchable to indicate
the current line frequency.
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Table 3-9: The Configuration Word, Offset 300 (Cont.)

Bit Meaning
6 1 = FP11 floating-point hardware exists.
7 0 = No foreground or system job is in memory.
1 = A foreground or system job is in memory.
1 = User is linked to the graphics scroller.
9 1 = USR is permanently resident, via SET

USR NOSWAP. (USR is always resident in
XM and this bit is always set.)

10 1 = The QUEUE program is running.

11 1 = Processor is a PDP-11/03. The Processor
Status word on this system cannot be ac-
cessed by means of an address in the I/0

page.

12 1 = A mapped system is running under the XM
monitor,

13 1 = The system clock has a status register.

14 1 = A KWI11-P clock exists and programs can
use it.

15 1 = There is a system clock (L clock, P clock, or

11/03-11/23 line-frequency clock).

3.6.1.2 Low-Memory Protection Bitmap — RT-11 maintains a bitmap that
reflects the protection status of low memory, locations 0 through 477. This
map is required in order to avoid conflicts in the use of the vectors. In FB
and XM, the .PROTECT programmed request allows a program to gain ex-
clusive control of a vector or a set of vectors. When a vector is protected,
RMON updates the bitmap to indicate which words are protected. If a word
in low memory is not protected, it is loaded from block 0 of the executable
file. If a word in low memory is protected, it is not loaded from block 0 of the
file. In addition, if the word is protected by a foreground job, it is not
destroyed when you run a new background program.

The bitmap is a 20-byte decimal table that starts 326 octal bytes from the
beginning of the Resident Monitor. Table 3-10 lists the offset from RMON
and the corresponding locations represented by that byte.

Each byte in the table reflects the status of eight words of memory. The
first byte in the table controls locations 0 through 17, the second byte con-
trols locations 20 through 37, and so on. The bytes are read from left to
right. Thus, if locations 0 through 3 are protected, the first byte of the table
contains 11000000.

NOTE

Only words are protected, not individual bytes. Thus, pro-
tecting word 0 means that bytes 0 and 1 are both
protected.

Resident Monitor



Table 3-10: Low-Memory Bitmap

Locations Locations
Offset (Octal) Offset (Octal)
326 0-17 340 240-257
327 20-37 341 260-277
330 40-57 342 300-317
331 60-77 343 320-337
332 100-117 344 340-357
333 120-137 345 360-377
334 140-157 346 400-417
335 160-177 347 420-437
336 200-217 350 440-457
337 220-237 351 460-477

If locations 24 through 27 are protected, the second byte of the table con-
tains 00110000.

The leftmost bit of each byte represents lower memory locations; the
rightmost bit represents higher memory locations. For example, to protect
locations 300 through 307, the leftmost four bits of the byte at offset 342
must be set to result in a value of 360 for that byte: 11110000.

The SJ monitor does not support the . PROTECT programmed request. If
you need to protect vectors in $J, either use SIPP to manually modify. the
bitmap or dynamically modify the bitmap from within a running program.

For example, the following instructions protect locations 300 through 306
dynamically:

MOV @#54,R0
BISB #"B11110000,342(R0)

Protecting locations with SIPP means that the vector is permanently pro-
tected, even if you rebootstrap the system. The dynamic method provides a
temporary measure and does not remain effective across bootstraps. Be
aware that the dynamic method involves storing data directly into the
monitor. For this reason, DIGITAL recommends that you use SIPP to pro-
tect vectors in SJ.

The RT-11 monitor uses the low-memory bitmap to automatically protect
some locations in low memory. The locations it protects are as follows:

0-16

24-32

50-66

100-102 (line-frequency clock)

104-106 (if KW11-P selected as system clock)
114-116

244-246

250-252 (for XM systems only)

System device handler interrupt vector
Interrupt vectors for loaded device handlers
Vectors for all interfaces supported in a multi-terminal system
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NOTE

Vectors of device handlers that you load with the LOAD
command are protected; vectors of device handlers that
you bring into memory with the FETCH programmed re-
quest are not protected.

3.6.1.3 Extenslon Configuration Word — The extension configuration word,
CONFG?2, indicates the presence of an additional set of hardware options on
the system. Table 3-11 lists the bits and their meanings. Unused bits are
reserved for future use by DIGITAL.

Table 3-11: Extension Configuration Word, Offset 370

Bit Meaning

0 1 = Cache memory is present.

1 1 = Parity memory is present,

2 1 = A readable switch register is present.

3 1 = A writeable console display register is
present.

4-7 Reserved.

8 1 = The Extended Instruction Set (EIS) option
is present.

9 0 = VT11 display hardware exists if bit 2 at off-

set 300 is set.
1 = VS60 display hardware exists if bit 2 at off-
set 300 is set.

10-13 Reserved.
14 1 = The processor is a PDP-11/70.
15 1 = The processor is a PDP-11/60.

3.6.1.4 System Generation Features Word — The system generation features
word, SYSGEN, indicates which major system generation features are pre-
sent. Table 3-12 lists the meaning of each bit. Unused bits are reserved for
future use by DIGITAL. In addition, do not set or clear any bits in this
word yourself.

Note that the values of the first three bits must correspond to the condi-
tional variables you use when you assemble your device handler files. At-
tempts to use handlers that are not compatible with the monitor cause the
?KMON-F-Conflicting SYSGEN options error message to appear.

3.6.2 Impure Area

The impure area is an area of memory where the monitor stores all job-

dependent data. For each job, the impure area contains job-specific informa-

tion, such as terminal ring buffers and I/O channels. The monitor sets up
~ the impure area and maintains its contents.
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Table 3-12: System Generation Features Word, Offset 372

Bit Meaning
0 1 = The error logging feature is present.
1 = The memory management feature is
present.
2 1 = The device I/O time-out feature is present.
3-8 . Reserved.
9 1 = The memory parity feature is present. .
10 1 = The SJ mark time feature is present.
11-12 Reserved.
13 1 = The multi-terminal feature is present.
14 1 = The system job feature is present.
15 Reserved.

3.6.2.1 Single-Job Monitor Impure Area — In the SJ system, there is no
distinct impure area for the single job. Instead, information relating to the
job is stored in various places throughout the Resident Monitor.

3.6.2.2 Foreground/Background Monitor Impure Area — In an FB system, the
impure areas contain all the information the monitor requires to run two or
more independent jobs. The information stored in the impure area is job-
specific. The impure area for the background job is located at the start of
the p-sect RMON in the Resident Monitor and it is permanently resident.
The impure area for a foreground or system job is located in memory below
the start of the job itself. The size of the impure area is the value of the
global symbol in FMPUR, which you can find by looking at your monitor’s
link map.

The monitor maintains a table of one-word pointers to the impure areas of
all jobs in the system. This table is located at $IMPUR, and is either eight
or two words long, depending on whether the system job feature is present
or not.

In RT-11, a background job is always present. It is the Keyboard Monitor
if no other background job exists. The foreground or system job impure
area pointer may be 0 if no such job is in memory. When you issue an FRUN
command, the monitor creates an impure area for the foreground job.
Similarly, the SRUN command creates an impure area for a system job. In
both cases, the monitor also updates the job’s SIMPUR entry to point to
the impure area.

Table 3-13 shows the contents of the impure area, which are the same for
both the background and the foreground jobs. The offset in the table is the
offset from the start of the impure area itself. In some cases, the contents of
the impure area depend on which system generation features you select.
These cases are indicated by a ‘‘Feature only:” phrase in the ‘“Description”’
column, ,
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Table 3-13: Impure Area

Byte
Length

Offset Symbol (Octal) Description

0 I.STATE 2 Job state word bits. See Table 3-14 for the mean-

ing of each bit.

2 I.QHDR 2 Head of available queue element linked list.

4 I.CMPE 2 Last entry in the completion queue.

6 I.CMPL 2 Head of the completion queue.

10 IL.CHWT 2 Pointer to channel during 1/0 wait. When a job is
waiting for I/0 on a channel to complete, the ad-
dress of that channel area is stored here.

12 I.LPCHW 2 Saved I.CHWT during execution of a completion
routine.

14 I.PERR 2 Error bytes 52 and 53 saved during completion
routines.

16 I.TTLC 2 Terminal input ring buffer line count (for non-
multi-terminal systems).

20 LPTTI 2 Previous terminal input character (for non-multi-
terminal systems).

16 I.CNSL 2 Multi-terminals only: Pointer to terminal control
block (TCB) for this job’s console terminal.

20 unused 2 Multi-terminals only: Unused.

22 L.TID 2 Pointer to job ID area, later in impure area.

24 I.JNUM 2 Job number of the job that owns this impure
area.

26 I.CNUM 2 Number of I/O channels defined. The default is
16 decimal; you can use .CDFN to define more.

30 1.CSW 2 Pointer to the job’s channel area.

32 L.IOCT 2 Total number of I/O operations outstanding.

34 I.SCTR 2 Suspension counter. A value less than 0 means
the job is suspended.

36 I.BLOK 2 Job blocking bits. See Table 3-15 for the mean-

ing of each bit.

The following offsets are not guaranteed to remain constant from release to release. In fact,
since the pointers and status words can vary depending on the special features you select
through system generation, you should consult the link map from the monitor assembly to
find the correct offsets for your system. Note that some items, such as the input and output
ring buffers, have a variable length.

1.JID

I.LNAM
I.NAME

Resident Monitor
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10

Job’s terminal prompt string. If the system job
feature is present, the length of I.JID is 14 octal.

System jobs only: Logical job name in ASCII.

File name and file type, in Radix-50, of the runn-
ing job.



Table 3-13: Impure Area (Cont.)

Byte.
Length
Offset Symbol (Octal) Description
— I.SPLS 2 Pointer to nonlinked .DEVICE list.
- IL.TRAP 2 Address of trap to 4 and 10 routine defined via
.TRPSET.
— IL.FPP 2 FPU only: Address of FPP exception routine
defined via .SFPA.
— I.SPSV 2 XM only: Bottom of saved SP data.
- I.SWAP 4 Pointer to extra swap information specified in
the .CNTXSW programmed request.
— 1.SP 2 Saved stack pointer.
- I.BITM 24 Bitmap for protection.
— I.CLUN 2 Multi-terminals only: LUN of job’s console.
- LTTLC 2 Multi-terminals only: Terminal input ring buffer
line count.
— LIRNG 2 Input ring buffer low limit.
- LIPUT 2 Input PUT pointer for interrupts.
— I.ICTR 2 Input character count.
— IIGET 2 Input GET pointer for .TTYIN.
— LITOP 2 Input ring buffer high limit.
— _ TTYIN Input ring buffer.
— I.OPUT 2 Output PUT pointer for .TTYOUT.
— I.OCTR 2 Output character count.
— I.OGET 2 Output GET pointer for interrupts.
— I1.OTOP 2 Output ring blszer high limit.
— _ TTYOUT  Output ring buffer.
— 1.QUE QWDSIZ  The initial queue element; 16 octal bytes (24
byteg if XM).
= I.MSG 4 The'internal message channel.
— I.SERR 6 The third word of the message channel is used as
. the hard/soft error flag.
- IL.TERM 2 Terminal status word.
— I.TRM2 2 Terminal status word 2.
- I.SCCA 2 CTRL/C terminal status word set via .SCCA.
—_ 1.SCCI 2 XM only: PAR1 value of I.SCCA for XM.
- I.DEVL 2 Pointer to linked .DEVICE list.
— I.FPSA 2 XM and FPU only: Pointer to FPU save area,

later in impure area.
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Table 3-13: Impure Area (Cont.)

Byte
Length
Offset Symbol (Octal) Description

— 1.sCOM 36 XM only: system communication save area (for
non-multi-terminal systems).

—_— 1.sCOM 40 XM and multi-terminals only: System com-
munication save area.

— I.LRSAV 20 XM only: Register save area.

— LLWPTR 2 XM only: Pointer to window control blocks, at
L.WNUM later in impure area.

- LRGN RGWDSZ XM only: Region control blocks.

- IL.WNUM 2 XM only: Number of window blocks.

- —_ WNWDSZ XM only: Window control blocks.

- I.FSAV 62 XM and FPU only: FPU save area.

- I.VHI 2 XM only: Virtual high limit of job; nonzero if
linker /V option used.

— I.SCHP 2 Pointer to the job’s system channel. The monitor
uses this channel for its own calls, such as
.DSTATUS.

- I.SYCH 14 The job’s system channel, for all foreground and

system jobs. The background job’s channel is in
the fixed offset area of the Resident Monitor.

Job State Word Bits

The job state word, I.STATE, indicates status information about a job.
Table 3-14 shows the meaning of each bit. Unused bits are reserved for
future use by DIGITAL.

Table 3-14: Job State Word Bits, Offset 0

Mnemonic Bit- Meaning When Set
ABPNDS$ 0 An abort has been requested for this job.
BATRNS$ 1 BATCH is running for this job.
CSIRN$ 2 The CSI is running for this job.
USRRNS$ 3 The USR is running for this job.
4 Reserved.
ABORTS 5 The job is being aborted.
6 Reserved.
CPEND$ 7 This job has a completion routine pending.
8-11 Reserved.
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Table 3-14: Job State Word Bits, Offset 0 (Cont.)

Mnemonic Bit Meaning When Set
WINDWS$ 12 This is a virtual job.
13-14 Reserved.
CMPLT$ 15 A completion routine is running for this job.
Job Blocking Bits

The job blocking word, I.BLOK, indicates which condition is blocking a job.
Unused bits are reserved for future use by DIGITAL. Table 3-15 shows the
meaning of each bit.

Table 3-15: Job Blocking Bits, Offset 36

Mnemonic Bit Meaning When Set
0-3 Reserved.
USRWT$ 4 The job is waiting for the USR.
5 Reserved.
KSPND$ 6 The job is suspended as a result of the monitor
SUSPEND command.
7 Reserved.
EXIT$ 8 The job is waiting for all I/O to complete.
NORUNS$ 9 The job is not running (that is, it is a foreground or
system job that has completed).
SPND$ 10 The job is suspended.
CHNWTS$ 11 The job is waiting for I/O on a channel to complete.
TTOEMS$ 12 The job is waiting for the output ring buffer to be
empty.
TTOWTS 13 The job is waiting for room in the output ring buffer.
TTIWTS$ 14 The job is waiting for terminal input.
15 Reserved.

3.6.3 Queue Element Format Summary

This section summarizes the formats of the various types of queue
elements. For detailed information on clock support and timer service, see
Section 3.2, which also describes the timer queue element. Section 3.3 con-
tains more information on the queued I/O system and includes descriptions
of the I/O queue element, the completion queue element, and the synch
queue element.
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3.6.3.1 1O Queue Element — Figure 3-24 shows the format of an I/O queue

element.

Figure 3-24: 1O Queue Element Format

NAME OFFSET CONTENTS
Q.LINK 0 LINK TO NEXT QUEUE ELEMENT; O IF NONE
Q.Csw 2 POINTER TO CHANNEL STATUS WORD IN I/0
CHANNEL (SEE FIGURE 3-29)
Q.BLKN 4 PHYSICAL BLOCK NUMBER
Q.FUNC 6 RESERVED | JOB DEVICE | SPECIAL
Q.UNIT 7 NUMBER | UNIT FUNCTION
Q.JNUM 7 (1 BIT) (4 BITS) (3BITS) | CODE
' 0=BG . (8 BITS)
Q.BUFF 10 USER BUFFER ADDRESS (MAPPED THROUGH PAR1
WITH Q.PAR VALUE, IF XM)
QWCNT 12 IF <0, OPERATION IS WRITE
WORD COUNT <IF =0, OPERATION IS SEEK
IF >0, OPERATION IS READ
THE TRUE WORD COUNT IS THE ABSOLUTE
VALUE OF THIS WORD.
Q.COMP 14 COMPLETION (IF 0, THIS IS WAIT-MODE 1/0
ROUTINE IF 1, JUST QUEUE THE REQUEST $
CODE AND RETURN
IF EVEN, COMPLETION ROUTINE
ADDRESS
Q.PAR 16 PAR1 VALUE (XM ONLY)
RESERVED (XM ONLY)
RESERVED (XM ONLY)

Figure 3-25: Completion Queue Element Format

NAME OFFSET CONTENTS
Q.LINK 0 LINK TO NEXT QUEUE ELEMENT; 0 IF NONE
2 RESERVED
4 RESERVED
6 RESERVED
Q.BUFF 10 CHANNEL STATUS WORD
Q.WCNT 12 OFFSET FROM START OF CHANNEL AREA TO THIS CHANNEL
Q.COmMP 14 COMPLETION ROUTINE ADDRESS
THREE ADDITIONAL WORDS ARE PRESENT IN XM SYSTEMS. THEY
ARE UNUSED, AND ARE RESERVED FOR FUTURE USE BY DIGITAL.
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3.6.3.2 Completion Queue Element — Figure 3-25 shows the format of a com-
pletion queue element.

3.6.3.3 Synch Queue Element — Figure 3-26 shows the format of a synch
queue element.

Figure 3-26: Synch Queue Element Format

NAME OFFSET CONTENTS

Q.LINK 0 LINK TO NEXT QUEUE ELEMENT; 0 IF NONE

Q.Csw 2 JOB NUMBER

Q.BLKN 4 RESERVED

Q.FUNC 6 RESERVED

Q.BUFF 10 SYNCH ID

QWCNT 12 —1 (CUE THAT THIS IS A SYNCH ELEMENT)

Q.COMP 14 SYNCH ROUTINE ADDRESS
THREE ADDITIONAL WORDS ARE PRESENT IN XM SYSTEMS. THEY
ARE UNUSED, AND ARE RESERVED FOR FUTURE USE BY DIGITAL.

3.6.3.4 Fork Queue Element — Figure 3-27 shows the format of a fork queue
element,

Figure 3-27: Fork Queue Element Format

NAME OFFSET CONTENTS

F.BLNK 0 LINK TO NEXT QUEUE ELEMENT; 0 IF NONE
F.BADR 2 FORK ROUTINE ADDRESS

F.BR5 4 RE5 SAVE AREA

F.BR4 6 R4 SAVE AREA

3.6.3.5 Timer Queue Element — Figure 3-28 shows the format of a timer
queue element.

3.6.4 1/0 Channel Format

Figure 3-29 shows the format of an I/O channel. Since each channel uses
five words, the size of the monitor’s channel area is five times the number of
channels. RT-11 allocates 16 channels for each job. The channel area is 80
decimal words long. For SJ, a single channel area is located in RMON. For
FB and XM, one channel area for each job is located in the job’s impure
area. The .CDFN programmed request can provide more channels. Table
3-16 shows the significant bits in the Channel Status Word.
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Figure 3-28: Timer Queue Element Format

NAME OFFSET CONTENTS

C.HOT 0 HIGH-ORDER TIME

C.LOT 2 LOW-ORDER TIME -

C.LINK 4 LINK TO NEXT QUEUE ELEMENT; O IF NONE

C.JNUM 6 OWNER'S JOB NUMBER

C.SEQ 10 OWNER'S SEQUENCE NUMBER ID

C.SYS 12 —1 IF SYSTEM TIMER ELEMENT;
—3 IF .TWAIT ELEMENT IN XM

C.COMP 14 ADDRESS OF COMPLETION ROUTINE
THREE ADDITIONAL WORDS ARE PRESENT IN
XM SYSTEMS. THEY ARE UNUSED, AND ARE
RESERVED FOR FUTURE USE BY DIGITAL.

Figure 3-29: 1/0 Channel Description

NAME OFFSET CONTENTS
0 CHANNEL STATUS WORD
C.SBLK 2 STARTING BLOCK NUMBER OF THIS FILE
(0 IF NON-FILE-STRUCTURED)
C.LENG 4 LENGTH OF FILE (IF OPENED BY .LOOKUP)
SIZE OF EMPTY AREA (IF OPENED BY .ENTER)
C.USED 6 HIGHEST BLOCK WRITTEN
C.DEVQ 10 DEVICE NUMBER OF REQUESTS
UNIT NUMBER PENDING ON THIS CHANNEL

3.6.5 Device Tables

Tables in the Resident Monitor keep track of the devices on the RT-11
system. These tables are contained in the module SYSTBL.MAC, which is
created by system generation and assembled separately from the module
RMON. SYSTBL is linked with RMON and other modules to form the Resi-
dent Monitor. The symbol $SLOT in SYSTBL, which is defined at system
generation time, defines the maximum number of devices the system can
have. The value of $SLOT is greater than or equal to 3, and less than or
equal to 31 decimal.

3.6.5.1 $PNAME Table — The permanent name table is called $SPNAME. It
is the central table around which all the others are constructed. The total
number of entries is fixed at assembly time; you can allocate extra slots
then. Entries are made in $SPNAME at monitor assembly time for each
device that is built into the system.
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Table 3-16: Channel Status Word (CSW)

Bit Meaning
0 Hard error bit.
0 = No error.
1 = Hard error.
1-5 Index into the $SPNAME table and other device tables.
6 RENAME flag.
0 = No RENAME is in progress.

1

A RENAME operation is in progress.

7 0 = The file was opened with a .LOOKUP, The monitor does
not modify the directory when the file is closed.
1 = The file was opened with an .ENTER. The monitor
modifies the directory when the file is closed.
8-12 The number of the directory segment containing this
entry.
13 End-of-file (EOF) bit.

0 = No end-of-file.
1 = End-of-file was found on this channel.

14 Reserved.

15 0
1

The channel is free.
The channel is active.

Each table entry consists of a single word that contains the Radix-50 code
for the two-character physical device name. (For example, the entry for
DECtape is .RAD50 /DT/.) The TT device must be first in the table; the
system device is always second. After that, the position of a device in this
table is not critical. Once the entries are made into this table, their relative
position (that is, their order in the table) determines the general device in-
dex used in various places in the monitor. Thus, the other tables are
organized in the same order as $PNAME. The offset of a device name entry
in $PNAME serves as the index into the other tables for a given device.

The bootstrap checks the system generation parameters of a handler with
those of the current monitor (by inspecting the low three bits of SYSGEN
at RMON fixed offset 372), and zeroes the SPNAME entry for that device if
the parameters do not match. The INSTALL monitor command cannot in-
stall a handler whose conditional parameters do not match those of the
monitor.

3.6.5.2 $STAT Table — The device status table is called $STAT. Entries to
this table are made at assembly time for those devices that are permanently
resident in the RT-11 system, such as TT and MQ in FB and XM systems.
When the system is bootstrapped, the entries for all other devices are filled
in when the handler is installed by the bootstrap or the INSTALL monitor
command. Each device in the system has a status entry in its correspon-
ding slot in $STAT. The device status word identifies each physical device
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and provides information about it, such as whether it is random or sequen-
tial access. The device status word is part of the information returned to a
running program by the .DSTATUS programmed request. See Chapter 7
for details on the status word.

3.6.5.3 $DVREC Table — The device handler block number table is called
$DVREC. Entries to this table are made at bootstrap time for devices that
are built into the system, and at INSTALL time for additional devices. The
entries are the absolute block numbers where each of the device handlers
resides on the system device. Since handlers are treated as files, their posi-
tions on the system device are not necessarily fixed. Thus, each time the
system is bootstrapped, the handlers are located and $DVREC is updated
with their locations on the system device. The pointer in $DVREC points to
block 1 of the file. (Because handlers are linked at 1000, the actual handler
code starts in the second block of the file.) A zero entry in the $DVREC
table indicates that no handler for the device in that slot was necessary
(such as TT or MQ in FB and XM systems). (Note that if block 0 of the
handler file resides on a bad block on the system device, RT-11 cannot in-
stall or fetch the handler.) Note also that 0 is a valid $DVREC entry for per-
manently resident devices.

3.6.5.4 S$ENTRY Table — The handler entry point table is called SENTRY.
Entries in this table are made whenever a handler is loaded into memory by
either the . FETCH programmed request or by the LOAD keyboard monitor
command. The entry for each device is a pointer to the fourth word of the
device handler in memory. The entry is zeroed when the handler is removed
by the .RELEASE programmed request or by the UNLOAD keyboard
monitor command.

Some device handlers are permanently resident. These include the system
device handler and, for FB and XM systems, the TT handler. The SENTRY
values for such devices are fixed at boot time.

3.6.5.5 $HSIZE Table — Each entry in the $HSIZE table contains the size of
a device, in blocks. The value is 0 for a non-file-structured device. For
devices that accept multi-size volumes, the entry contains the size of the
smallest possible volume.

3.6.5.6 $DVSIZ Table — Each entry in the $DVSIZ table contains the size of
a device handler, in bytes. This value indicates the amount of memory need-
ed to load each handler.

3.6.5.7 SUNAM1 and SUNAM2 Tables — The tables that keep track of logical
device names and the physical names that are assigned to them are called
$UNAM1 and $UNAM2. Entries are made in these tables when the
ASSIGN monitor command is issued. The physical device name is stored in
$UNAM1 and the logical name associated with it is stored in the correspon-
ding slot in $UNAM2. When the system is first bootstrapped, there are
two assignments already in effect that associate the logical names DK and
SY with the device from which the system was booted. The value of $SLOT,
which is determined at system generation time, limits the total number of
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logical name assignments. Thus, you can issue one ASSIGN command for
each device in your system. (The initial SY and DK assignments at
bootstrap time do not come out of your total.)

The $UNAMI1 and $SUNAM2 tables are not indexed by the $PNAME table
offset. The fact that the tables are the same size is interesting, but not
significant.

3.6.5.8 $OWNER Table — The device ownership table is called SOWNER
and it is used in the FB and XM environments to arbitrate device owner-
ship. The table is ($SLOT*2) words in length and is divided into two-word
entries for each device. Entries are made into this table when the LOAD
keyboard monitor command is issued. Each two-word entry is in turn divid-
ed into eight four-bit fields capable of holding a job number. The low four
bits of the first byte correspond to unit 0, and the high four bits correspond
to unit 1. The low four bits of the next byte correspond to unit 2, and so on
(see Figure 3-30). Thus, each device is presumed to have up to eight units,
each assigned independently of the others. However, if the device is non-
file-structured, units are not assigned independently: the monitor ASSIGN
code ensures that ownership of all units is assigned to one job.

Figure 3-30: SOWNER Entry

DEVICE UNIT # 3 2 1 0
OWNER # OWNER # OWNER # OWNER #
OWNER # OWNER # OWNER # OWNER #

DEVICE UNIT # 7 6 5 4

When a background job, a foreground job, or a system job attempts to ac-
cess a particular unit of a device, the monitor checks to be sure the unit be-
ing accessed is either public or belongs to the requesting job. If another job
owns the unit, a fatal error is generated.

The device is public if the four-bit field is 0. If the device is not public, the
field contains a code equal to the job number plus 1. Since job numbers are
always even, the ownership code is odd. For example, in a distributed
foreground/background system, the owner field value for the background
job is 1; for the foreground job it is 3. In a foreground/background system
with the system job feature the owner field value for the background job,is
still 1; for the foreground job it is 17. The owner field value for a system job
is 1 plus the job number.

3.6.5.9 Adding a Device to the Tables — You can create free slots in the tables
by deleting or renaming one or more of the device handler files from the
system device and rebooting the system, or by issuing the REMOVE
monitor command. The INSTALL monitor command can install a different
device handler into the table after the system has been booted. However,
INSTALL does not make a device entry permanent. For more information
on installation, the DEV macro, and the bootstrap, see Chapter 7.
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Chapter 4
Extended Memory Feature

After introducing RT-11’s extended memory feature, this chapter provides
an overview of the hardware components that are the basis of the extended
memory system. (The term extended memory refers to physical memory
above the 28K word boundary that can be accessed only by using special
hardware. Low memory is the physical memory between 0 and 28K words.
In some systems with an additional 2K words of low memory, low memory
extends to 30K words and there is no extended memory.) It then shows how
RT-11 implements support for extended memory, and explains how to
design, code, and execute a program in an extended memory environment.
Following these demonstrations is a discussion of the implications of ex-
tended memory support for other system software components and a
description of all the restrictions you must observe when working with ex-
tended memory. Lastly, this chapter describes how to debug an extended
memory application program and provides a sample program that uses
double buffering in extended memory.

4.1 Introduction

The following sections present a brief overview of the circumstances that
led to the RT-11 extended memory implementation. Read it to gain an
understanding of the limitations of 28 K-word systems and the means by
which RT-11 circumvents these limitations.

41.1 16-Bit Addressing

Each computer in the PDP-11 family can directly address 32K words. A
PDP-11 computer can never address more than this amount of memory
directly because its architecture provides only 16-bit addresses. Figure 4-1
illustrates this addressing limitation. Since the PDP-11 computer can ad-
dress bytes individually, you can see from the illustration why its address
space is limited to 32K words.

Remember that one K equals 1024 decimal, or 2 raised to the 10th power.
The RT-11 Pocket Guide provides a convenient reference chart of K-words
and their equivalent octal numbers.

In unmapped PDP-11 systerns (those not using extended memory), the
highest 4K words of address space, called the I/O page, are reserved for
device registers, general registers, and so on. Thus, only 28K words of ad-
dress space are left for use by the operating system software and programs.
On a system with 28K words of memory, all 28K words are available.
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Figure 4-1: 16-Bit Word Addressing Space Limitation

A 16-BIT WORD WITH THE HIGHEST POSSIBLE VALUE, EXPRESSED IN BINARY:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EIERERER I ERENERER KN EE R NN ENERER

THE SAME VALUE EXPRESSED IN OCTAL IS 177777.

THE SAME VALUE EXPRESSED IN DECIMAL IS 65535.

SINCE 0 IS A VALID LOCATION, THE PDP-11 CAN ADDRESS 65536 UNIQUE BYTE LOCATIONS.
THUS, THE PDP-11 (WHICH IS A BYTE-ADDRESSABLE COMPUTER) ADDRESSES 64K BYTES OF
MEMORY, OR 32K WORDS OF MEMORY.

4.1.2 Virtual and Physical Addresses in a 28K-Word System

A virtual address is a value in the range 0 through 177777. It is a 16-bit ad-
dress within a program’s 32K-word address space.

A physical address is the actual hardware address of a specific memory
location. Physical addresses are not limited to 16 bits.

Figure 4-2 shows the relationship between virtual address space and
physical address space in an RT-11 system with 28K words of memory.
Note that in this system, which could be running either the SJ or FB
monitor, there is a one-to-one correspondence between virtual and physical
addresses. For example, virtual address 20000 corresponds directly to
physical address 020000.

4.1.3 Circumventing the 28K-Word Memory Limitation

Before RT-11 provided support for extended memory, systems were
limited to using 28K words of memory. Programmers have traditionally
used two mechanisms to circumvent the 28K-word available memory limita-
tion. One of the mechanisms is called chaining: one program calls a second
program at exit time; the second program provides additional processing
for the data the original program passes to it. The MACRO-11 assembler,
for example, assembles a MACRO-11 source file and chains to CREF,
which produces the cross-reference listing. One way, then, to run a program
that is larger than the amount of memory available is to divide the program
into two or more functionally distinct parts. Then, when the first program
finishes, it can start up the second program by chaining to it.

Another way to run a program that is larger than the amount of memory
available is to divide the program into overlay segments. Separate
segments can then take turns residing in the same place in physical
memory. By using overlays you can run a very large program in a much
smaller amount of physical memory.
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Figure 4-2: Virtual and Physical Addresses in a 28K-Word System

VIRTUAL PHYSICAL ADDRESS
DDRE PACE
39K A SS SPAC 39K SPACE

1/0 PAGE

28K
AVAILABLE
MEMORY
4K| 20 000 e 4K{ 20 000
0 - 0
16-BIT ADDRESSES 16-BIT ADDRESSES

In both chaining and overlaying, instructions and data in the separate pro-
grams or segments use both the same virtual addresses and the same loca-
tions in physical memory. Programs or segments not currently in memory
reside on an auxiliary storage volume. Figure 4-3 illustrates chaining;
Figure 4-4 shows overlaying.

4.1.4 18-Bit Addressing

Although PDP-11 software uses 16-bit words, it is possible to access more
than 32K words of memory through a design that allows the UNIBUS or
QBUS and the CPU to use 18-bit words. This means that the bus and CPU
can address up to 124K words of physical memory, plus a 4K-word 1/0
page. Figure 4-5 shows the addressing range for an 18-bit word.
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Figure 4-3: Chaining

PHYSICAL ADDRESS

SPACE
32K,
1/0 PAGE
28K
MEMORY
STORAGE
VOLUME
PROGRAM 2
PROGRAM 1

AS PROGRAM 1 EXITS, IT CALLS
PROGRAM 2. PROGRAM 2 USES
THE SAME VIRTUAL ADDRESSES
AND PHYSICAL MEMORY
LOCATIONS AS PROGRAM 1.

4.1.5 Virtual and Physical Addresses with Extended Memory
Hardware

The virtual addresses your program uses are always limited to 16 bits so
that your program’s virtual address space is always limited to 32K words.

However, an 18-bit address can reference any location between 0 and 128K
words and in RT-11 systems with more than 28K words of memory,
physical locations are referenced by the hardware as 18-bit addresses.

As Figure 4-6 shows, there can no longer be a direct one-to-one cor-
respondence between virtual and physical addresses.

41.6 Circumventing the 32K-Word Address Limitation

As the price of memory continues to drop, it becomes more and more feasi-
ble to provide PDP-11 systems with more than 28K words of memory.
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Figure 4-4: Overlaying

PHYSICAL ADDRESS

SPACE
32K
1/0 PAGE
28K
MEMORY
STORAGE
VOLUME
SEGMENT 1
SEGMENT 2
SEGMENT 3
OVERLAY
REGION 1
ROOT

AS THE PROGRAM RUNS, SEGMENTS 1, 2, AND 3
TAKE TURNS RESIDING IN OVERLAY REGION 1.
THE SEGMENTS ALL USE THE SAME VIRTUAL
ADDRESSES AND PHYSICAL MEMORY LOCATIONS.

Figure 4-5: 18-Bit Word Addressing Range

AN 18-BIT WORD WITH THE HIGHEST POSSIBLE VALUE, EXPRESSED IN BINARY:

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

tla v a e fal ol el

THE SAME VALUE EXPRESSED IN OCTAL IS 777777.
THE SAME VALUE EXPRESSED IN DECIMAL 1S 262143.
SINCE 0 IS A VALID LOCATION, THE UNIBUS AND CPU CAN ADDRESS 262144

UNIQUE BYTE LOCATIONS. THUS, THE UNIBUS AND CPU HAVE 256K BYTES
OR 128K WORDS OF PHYSICAL ADDRESS SPACE.
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Figure 4-6: Virtual and Physical Addresses with Extended Memory

Hardware
PHYSICAL ADDRESS
SPACE
128K
1/O PAGE
UP TO 124K
~ ~
VIRTUAL h
ADDRESS SPACE
32K 32K
MEMORY
0 0
16-BIT ADDRESSES 18-BIT ADDRESSES

Since the UNIBUS already has the ability to address up to 128K words, it
remains the task of the hardware — the Memory Management Unit — and
the operating system software to set up a correspondence between a pro-

gram’s virtual addresses and physical memory locations so that programs
can access all of memory.

If you select extended memory as a special feature at system generation
time, you can take advantage of the 18-bit addresses. The extended
memory feature permits programs, which are still restricted to using 16-bit
words, to access 124K words of physical memory. RT-11 implements sup-

port for extended memory through a combination of hardware and software
components.
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Through its extended memory (XM) monitor, RT-11 provides a mechanism
to associate a virtual address with a physical address. This process is called
mapping. RT-11 permits programs to access extended memory by mapping
their virtual addresses to physical locations in memory. In summary:

e Every location in memory has an 18-bit physical address; there are
more physical addresses than virtual addresses.

* A program cannot access specific physical addresses unless its virtual
addresses are mapped to those physical locations.

e Programs can access all the available physical memory by using their
virtual addresses over and over again, but with different mapping each
time.

Section 4.3 presents more material on mapping. Be sure you understand the
hardware concepts discussed in the next section before you proceed to 4.3.

In an extended memory system, programs are no longer limited to using
28K words of memory. However, they must still deal with the 32K-word ad-
dressing limitation. Typically, large programs are still divided into smaller
segments, as in the 28K-word systems. While the instructions and data in
separate segments of a program share the same virtual addresses, they can
have unique physical addresses. Figure 4-7 shows a program that is di-
vided into three overlay segments. The three segments are resident
simultaneously in extended memory, but they share the virtual addresses
in overlay region 1.

4.2 Hardware Concepts

There are three hardware requirements for an RT-11 extended memory
system:

e At least 32K words of memory

¢ The Extended Instruction Set (EIS) option

e A Memory Management Unit

This manual provides an overview of the memory management hardware
and its functions. The best sources of detailed information on the memory
management hardware are the hardware manuals for the KT11-C, -CD, and

-D Memory Management Units. Their full titles and order numbers are as
follows:

KT11-C, CD Memory Management Unit User’s Manual: EK-KT11C-OP-001
KT11-D Memory Management Option Manual: EK-KT11D-TM-002
KT11-D Memory Management Option User’s Manual: EK-KT11D-OP-001

Another source of information on the memory management hardware is the
PDP-11 Processor Handbook.
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Figure 4-7: Program Segments Sharing Virtual Address Space

PHYSICAL ADDRESS

. SPACE .
. .
°
SEGMENT 1
VIRTUAL
ADDRESS SPACE
32K ,
SEGMENT 2
SEGMENT 3
OVERLAY
REGION 1
ROOT ROOT
0

SEGMENTS 1, 2, AND 3 HAVE UNIQUE PHYSICAL ADDRESSES, BUT
THEY TAKE TURNS USING THE SAME SET OF VIRTUAL ADDRESSES.

Note that it is not necessary to learn the details of how the Memory
Management Units function in order to understand and use the RT-11 ex-
tended memory system. These manual references are provided for your con-
venience should you choose to do some further background reading.

421 Memory Management Unit

The central component of an XM system is a hardware option referred to
generally as the Memory Management Unit, or MMU. DIGITAL manufac-
tures several types of Memory Management Units, including the KT11-C,
the KT11-D, and the KT11-CD. RT-11 supports the minimal set of func-
tions common to all the memory management units.
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The function of the Memory Management Unit is to intercept a 16-bit vir-
tual address generated by the processor and convert it to an 18-bit physical
address. Figure 4-8 illustrates this process.

Figure 4-8: MMU Address Conversion
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422 Concept of Pages

In an extended memory system the 32K-word virtual address space is
divided into eight sections called pages. Each page begins on a 4K word
boundary, and the pages are numbered from 0 through 7. A page is made up
of units of 32 decimal words each. Since there can be as many as 128 of
these units, a page can vary in size from 0 words to 4096 words, in 32-word
increments. Figure 4-9 shows the virtual address space divided into eight
4K-word pages.

Figure 4-10 shows the virtual address space divided into five pages of vary-
ing lengths. The shaded areas in the virtual address space are not part of
the pages, and are therefore inaccessible. Thus, short pages cause gaps in
the virtual address space.

4.2.3 Relocation

When the Memory Management Unit converts a 16-bit virtual address to
an 18-bit physical address, it relocates the virtual address. This means that
two or more programs can have the same virtual addresses but different
physical addresses. The Memory Management Unit relocates virtual ad-
dresses in units of pages. It assigns a page to a section of physical memory
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Figure 4-9: 4K-Word Pages
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that starts on a 32-word decimal boundary. Figure 4-11 shows how the
Memory Management Unit can relocate the virtual addresses of two dif-
ferent programs.

Figure 4-11: Relocation by Program
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Program 1 in Figufe‘4—11 is relocated by 20000 octal. So, when program 1
references virtual address 0, for example, it actually accesses memory loca-
tion 20000.

Since the Memory Management Unit relocates each page of virtual address
space separately, a program can reside in disjoint sections of memory, as
Figure 4-12 shows.

424 Active Page Register (APR)

The RT-11 monitor communicates with the Memory Management Unit
through the Active Page Registers, which are located in the I/O page. Each
Active Page Register consists of two 16-bit words, as Figure 4-13 shows: a
Page Address Register (PAR), and a Page Descriptor Register (PDR).
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Figure 4-12: Relocation by Page ‘
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Figure 4-13: Active Page Register (APR)
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The Page Address Register and the Page Descriptor Register always act as
a pair. A set of eight Active Page Registers contains all the information
necessary to describe and relocate the eight virtual address pages. The
Page Descriptor Register describes how much of a virtual page to map to
memory. The Page Address Register describes where in memory to put the
virtual page.
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The eight Active Page Registers are numbered from 0 through 7. There is
one Active Page Register for each page in the 32K-word virtual address
space, as Figure 4-14 shows. ‘

Figure 4-14: Correspondence Between Pages and Active Page Registers
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4.2.4.1 Page Address Register (PAR) — The eight Page Address Registers cor-
respond directly to the eight virtual address pages. Bits 0 through 11 of the
Page Address Register contain the physical memory address in 32-word
decimal units, or Page Address Field, for a particular virtual address page.
Figure 4-15 shows the contents of the Page Address Register. Bits 12
through 15 are reserved for future use by DIGITAL.

Figure 4-15: Page Address Register (PAR)
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4.24.2 Page Descriptor Register (PDR) — The Page Descriptor Register con-
tains information about page expansion, page length, and access control for
a particular page. Like the Page Address Registers, the Page Descriptor
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Registers correspond directly to the virtual address pages, as Figure 4-14
shows. Figure 4-16 shows the contents of the Page Descriptor Register.
Unused bits are reserved for future use by DIGITAL.

Figure 4-16: Page Descriptor Register (PDR)
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In Figure 4-16, the field marked ACF represents the Access Control field.
This field describes how a particular page can be accessed, and whether or
not a particular access should cause an abort of the current operation. The
values in this field are as follows:

Value Meaning
00 Nonresident page. Abort any attempt to access it.
01 Resident read-only page. Abort any attempt to write into it. (RT-11 does
not use this value.)
10 Unused code. Abort all attempts to access this page. (RT-11 does not

use this value.)

11 Resident read/write page. All accesses are valid.

The field marked ED is the Expansion Direction field. This bit indicates the
direction in which a page can expand. The codes and their meanings are as
follows:

Value Meaning
0 The page expands to higher addresses. (In RT-11, this field is always 0.)
1 The page expands to lower addresses. (RT-11 does not use this value.)

The field marked W is the Written Into field. It indicates whether the page
has been modified since it was loaded into memory. (RT-11 does not use
this field.)

Some PDP-11 processors, instead of using bit 6 to indicate the page’s
modification status, use one or more of the reserved bits in the Page
Descriptor Register. RT-11 ignores these other bits.

The field marked PLF is the Page Length field. It indicates the length of a
page, in 32-word decimal units.

425 Converting a 16-Bit Address to an 18-Bit Address

The information necessary for the Memory Management Unit to convert a
16-bit virtual address to an 18-bit physical address is contained in the vir-
tual address and in its corresponding Active Page Register set. Figure 4-17
shows the meanings of the fields in the virtual address. These fields repre-
sent a breakdown of the virtual address that is convenient for RT-11 and
the MMU to use. :

Extended Memory Feature



Figure 4-17: Virtual Address
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Bits 13 through 15 of the virtual address constitute the Active Page Field.
This field determines which Active Page Register the Memory Manage-
ment Unit will use to create the physical address.

Bits 0 through 12 of the virtual address are the Displacement Field, which
contains an address relative to the beginning of a page.

The rest of the information necessary to create a physical address is con-
tained in the Page Address field of the appropriate Page Address Register.
Figure 4-18 shows how the Memory Management Unit converts a 16-bit
virtual address to an 18-bit physical address. In this example, Page Ad-
dress Register 6 contains 5460 octal, so virtual address 157746 converts to
physical address 565746.

As you can see from Figure 4-18, bits 13, 14, and 15 of the virtual address
specify which Active Page Register to use. The Memory Management Unit
adds the value in bits 6 through 12 of the virtual address to bits 0 through

Figure 4-18: MMU Address Conversion (Detail)
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11 of the corresponding Page Address Register. The Memory Management
Unit places the result of this addition in bits 6 through 17 of the physical
address. The Memory Management Unit copies the value in bits 0 through
5 of the virtual address into bits 0 through 5 of the physical address to form
the final 18-bit physical address.

426 Status Registers

The Memory Management Unit also communicates with the RT-11
monitor through two status registers. Status Register 0, located at 777572
in the I/O page contains abort error flags, the memory management enable
bit, and other essential information required by RT-11 to recover from an
abort or to service a memory management trap. Status Register 2, located
at 777576, is a read-only register containing the 16-bit virtual address that
the Memory Management Unit is currently converting to an 18-bit physical
address. (RT-11 does not use Status Register 2. However, if a memory
management unit fault occurs in your system, you can examine this
register yourself.)

4.2.7 Kernel and User Processor Modes

In addition to its primary function of managing the address space, the
memory management system must provide some kind of protection for the
monitor. To implement protection, the processor provides two modes of
operation: kernel mode and user mode. The two modes provide a mechanism
for separating system-level functions (kernel mode) from application-level
functions (user mode).

Each mode has its own set of eight Active Page Registers and its own stack
pointer. Therefore, each processor mode also makes its own assignments of
virtual addresses to physical locations: each mode has its own mapping.
Figure 4-19 shows how the value in bits 14 and 15 of the Processor Status
word determine in which processor mode execution takes place.

Routines that run in kernel mode are generally part of the run-time
operating system software and must not be corrupted by other programs.
RT-11 uses the processor’s kernel mode for the Resident Monitor and the
USR, for interrupt service routines, and for device handlers, including
.SYNCH and .FORK routines. Interrupts and traps vector through kernel
mapping and cause execution to continue in kernel mode.

Routines that run in user mode are generally part of application programs.
They are prevented from executing instructions that could corrupt the
monitor or halt the computer. For example, a RESET instruction acts as a
NOP instruction in user mode, and a HALT instruction generates a trap to
10. RT-11 uses the processor’s user mode for the Keyboard Monitor, for
system utility programs, and for application programs and their completion
routines.
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Figure 4-19: Processor Status Word and Active Page Registers
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Since each processor mode uses its own set of Active Page Registers, kernel
mapping is not necessarily identical to user mapping. For example, if user
virtual address 20010 is associated with physical address 40210, it does not
necessarily mean that kernel virtual address 20010 is also mapped to
physical address 40210. In fact, kernel virtual addresses are often mapped
to different sections of physical memory from user virtual addresses. The
mapping depends entirely on the contents of the Active Page Registers.
Thus, changing from user to kernel processor mode has some interesting
implications: referencing the same virtual addresses in different modes can
cause a program to access different physical locations. Figure 4-20 shows
an example in which virtual address 0 in kernel mode maps to physical loca-
tion 0; in user mode, virtual address 0 maps to physical location 500. This is
the mapping scheme RT-11 uses for a virtual job at load time.
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Figure 4-20: Mapping the Same Virtual Addresses to Different Physical
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428 Default Mapping

Mapping is the process of associating virtual addresses with physical loca-
tions (see Section 4.1.6). The RT-11 XM monitor manages the virtual ad-
dress space by controlling the way the virtual addresses map to physical
locations. The monitor does this by putting values into the Active Page
Registers, thereby controlling the Memory Management Unit.

When you first bootstrap an RT-11 extended memory system, kernel and
user mapping are identical. That is, the monitor puts the same values into
both the kernel and user sets of Active Page Registers. Table 4-1 shows the
initial values of the Active Page Registers. Figure 4-21 shows the default
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mapping that results from these values. Table 4-2 shows the default map-
ping for a typical 4K virtual background job that has no extended memory
overlays and no extra regions.

Table 4-1: Initial Contents of Kernel and User APRs

Page and Kernel User

APR No. PAR PDR PAR PDR
7 7600 77406 7600 77406
6 1400 77406 1400 77406
5 1200 77406 1200 77406
4 1000 77406 1000 77406
3 600 77406 600 77406
2 400 77406 400 77406
1 200 77406 200 77406
0 0 77406 0 77406

Figure 4-21: Default Mapping at Bootstrap Time
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Table 4-2: Initial Register Contents for Virtual Job

Page and User
APR No. PAR PDR
7 ? 0
6 ? 0
5 ? 0
4 ? 0
3 ? 0
2 ? 0
1 ? 0
0 5 77406

4.3 Software Concepts

4-20

RT-11 implements support for extended memory through the extended
memory, or XM, monitor. You must perform the system generation process
to obtain an XM monitor, since it results from assembling the FB monitor
source files with the conditional MMGS$T set to 1. One of the major design
considerations for RT-11’s extended memory support was that the XM
monitor should closely resemble the FB monitor.

In addition, you must use a special set of device handlers that can com-
municate between a peripheral device and extended memory. It is part of
the extended memory system design that all device handlers must be resi-
dent in memory (you must load them with the monitor LOAD command)
and that the USR must be permanently resident as well.

The following sections describe the software concepts RT-11 uses in its ex-
tended memory system.

4.3.1 XM System Memory Layout

Figure 4-22 illustrates the locations of the XM system components in
physical memory. (Notice that this layout closely resembles the FB system
arrangement described in Chapter 2.) When you first bootstrap an XM
system, the system device handler and the Resident Monitor use the
available memory just below the 28K-word boundary so that extended
memory — the locations between 28K and 124K — is not used. Other loaded
device handlers occupy the space below the Resident Monitor, followed by
foreground and system jobs, if any, and the USR.

The Resident Monitor executes in processor kernel mode and can access the
low 28K words of memory and the I/O page. The USR also executes in
kernel mode and is always memory resident in an XM system. The
Keyboard Monitor executes in processor user mode, but since it is a
privileged background job, it uses the same mapping as the Resident
Monitor. (Privileged jobs are described in Section 4.3.3.2.) Physical loca-
tions 0 through 500 contain the vectors.
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Figure 4-22: XM System Memory Layout
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43.2 How Programs Control Mapping

Mapping — associating virtual addresses with physical locations — is the
heart of the extended memory system. The XM monitor controls mapping
by putting values into the Active Page Registers, thus controlling the
Memory Management Unit. Obviously, this level of control is elementary
and requires the monitor to keep close watch over the mapping situation.

Fortunately, the monitor provides the means by which system and applica-
tion programs can direct mapping operations and experience the benefits of
accessing extended memory without concern for the specifics of the
Memory Management Unit operations. In fact, your programs should never
access the Active Page Registers or the Memory Management Unit Status
Registers directly. Programs communicate their extended memory re-
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quirements to the monitor through a collection of programmed requests.
These requests store or modify information in data structures within the
programs. Based on the contents of these data structures, the monitor
modifies its own internal control blocks and puts the correct values into the
Active Page Registers to perform the appropriate mapping action.

In order to access extended memory, a program must:

e Tell the monitor how much physical address space it needs.
e Describe the virtual addresses it needs to the monitor.

¢ Direct the monitor to associate the virtual addresses with the physical
locations. That is, it must map the virtual addresses to the physical
locations.

Background, foreground, and system jobs can all access extended memory
by following the three steps described above. Note, however, that none of
the jobs can share physical address space with another job.

The monitor and the programs use certain software concepts to describe the
virtual addresses and the physical memory locations. The following sec-
tions describe the concepts of physical address regions, virtual address win-
dows, and the program’s logical address space.

4.3.21 Physical Address Regions — A program that needs to access extend-
ed memory must communicate to the monitor a description of the physical
memory locations it plans to use. The program does this by defining one or
more regions in extended memory.

A physical address region is a segment of physical memory consisting of
contiguous 32-word decimal units. A region must begin on a 32-word boun-
dary; it can be as large as 96K words. Your job can have as many as four
regions at any time. The monitor assigns identification numbers to the
regions when it creates them. A region identification is actually a pointer
within your job’s impure area to the start of the region’s control block. (You
will read more about region control blocks later.)

The purpose of a region is to describe a portion of the physical address
space, thus making it available for mapping and permitting a program to
use those physical addresses. Sections of physical address space, if any,
that are not part of a region are unavailable to a program. Figure 4-23
shows how memory can be divided into regions. Note that two jobs cannot
share a region in extended memory.

Information about a physical address region is contained in a three-word
data structure in your program, called a region definition block. The
monitor collects information from the region definition block and stores it
in a different internal data structure, called the region control block. The
region control block is located in your program’s impure area. Section 4.6
provides more detailed information on the region definition and control
blocks.
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Figure 4-23: Physical Address Space and Two Regions
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The Static Region

The first region, called the static region, is created for a virtual job by the
monitor at run time. (Section 4.3.3 describes the differences between virtual
programs and privileged programs.) The size of the static region varies,
depending on the size of the program and whether the program is a
foreground or background job, but it is always within the low 28K words of
memory. You can refer to the static region by using an identification of 0.
Your program cannot eliminate the static region or change it in any way.
(You cannot use the first region in privileged jobs, either; its data struc-
tures are reserved and currently unused.)
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The Dynamic Regions

If your program needs to access more memory than the amount allocated at
run time, it can create one to three dynamic regions and map virtual ad-
dress windows to them. A dynamic region is a portion of physical memory
above the 28K word boundary. The static region is created by the monitor
and a program can create up to three more regions. A program can create
and eliminate any of the dynamic regions.

4.3.2.2 Virtual Address Windows — A program that needs to access extended
memory must also communicate to the monitor a description of the virtual
addresses it plans to use. While the monitor uses the concept of pages to
describe virtual addresses to the Memory Management Unit, programs
describe the virtual address space to the monitor by using the software con-
cept of virtual address windows.

A virtual address window is a section of the 32K-word virtual address space
consisting of contiguous 32-word decimal units. A window, like a page,
must begin on a 4K word boundary. However, unlike a page, whose max-
imum size is 4K words, a window can be as large as 32K words and can en-
compass one or more pages. There can be as many as eight virtual address
windows or as few as one. The monitor assigns identification numbers to
the windows when your program creates them. .

The purpose of a window is to describe a section of virtual address space to
the monitor, and thus permit a program to use those virtual addresses. Win-
dows cannot overlap each other. (While a job can describe a new window
that overlaps an existing one, the old one is eliminated when the new one is
created.) And, sections of virtual address space, if any, that are not part of a
window are not available for a program to use, unless the job is privileged.
Each window that is less than 4K words causes a discontinuity in the pro-
gram'’s virtual address space. A memory management fault results if the
program tries to access a virtual address that does not fall within a mapped
window. (A window is not useful until it is also mapped.)

The monitor can assign physical addresses to the virtual addresses encom-
passed by windows by calculating the number and size of the pages involv-
ed and putting values into the corresponding Active Page Registers for
those pages. Figure 4-24 shows how virtual address space can be divided
into windows.

Information about a virtual address window is contained in a seven-word
data structure in your program, called a window definition block. The
monitor collects information from the window definition block and stores it
in a different internal data structure, called the window control block. The
window control block is located in your program’s impure area. Section 4.6
provides more detailed information on the window definition and control

blocks.
The Static Window

The first window, called the static window, is created for a virtual job by the
monitor at run time. (Section 4.3.3 describes the differences between virtual
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Figure 4-24: Virtual Address Space and Three Windows

PAR
AND VIRTUAL ADDRESS
PAGE SPACE
7
3RD WINDOW
6 ? 12K WORDS
5
Y,
N\
4 UNAVAILABLE
ADDRESS SPACE
3
2ND WINDOW
2 6K WORDS
1
1ST WINDOW
. 8K WORDS

jobs and privileged jobs.) The static window begins at virtual address 0,
and its size is equal to the size of your program’s base segment, up to the
program’s high limit. The static window contains your program’s root,
stack, virtual vectors, overlay handler, and low memory overlays. Instruc-
tions, data, and buffers can appear in extended memory overlays or in ex-
tended memory .SETTOP buffers; they are contained in a different window
and region. You can refer to the static window by using an identification of
0. Your program cannot eliminate the static window or change its mapping.
(You cannot use the first window in privileged jobs, either; its data struc-
tures are reserved and currently unused.)

The Dynamic Windows

If your program needs to access more memory than the amount allocated at
run time, it can create one or more dynamic windows and map their virtual
addresses to physical locations. The static window is created by the
monitor and a program can create up to seven more windows. A program
can create, eliminate, map, and remap any of the dynamic windows.

4.3.2.3 Program’s Logical Address Space (PLAS) — A program’s logical ad-

dress space is the range of physical address space effectively available to
the program as a result of mapping operations. That is, all physical loca-
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tions that are part of a region can be accessed by the program through map-
ping operations, and are thus part of its logical address space. The Pro-
gram’s Logical Address Space is abbreviated as PLAS, a term often used to
refer to extended memory support in general.

4.3.3 Two Kinds of Mapping

RT-11 provides two kinds of mapping for jobs that run in an extended
memory environment: virtual mapping and privileged mapping. The follow-
ing sections describe virtual jobs — those that run with virtual mapping —
and privileged jobs — those that run with privileged mapping.

4.3.3.1 Virtual Jobs — Jobs that run with virtual mapping execute in the
processor’s user mode. Virtual jobs do not use kernel mapping; virtual
background jobs load into memory at an offset of 500. Virtual jobs cannot
load over the USR, the Resident Monitor, or the I/0 page. Virtual mapping
is the better mapping mode to use for a job that does not require privileged
access to the vector area, the monitor, or the I/O page, since it protects
these system areas from virtual jobs.

The first 500 bytes of each virtual job image are its virtual vector and
system communication areas. The static window includes the virtual ad-
dresses between the program’s virtual address 0 and its high limit. The size
of the static region varies depending on whether the virtual job is a
foreground or a background job and on the size of the job.

When you first run a virtual job, it can access only those virtual addresses
that are within its own program bounds and that are also mapped to
physical memory. However, a virtual job can use any remaining virtual ad-
dress space between its own high limit and the 32K-word address boundary.
It can create one or more regions in extended memory, and one or more vir-
tual address windows. It can then map a window to a region, thus accessing
extended memory. If a virtual job unmaps a window, it cannot use the vir-
tual addresses encompassed by the window unless it remaps the window.
The virtual job can also use the extended memory .SETTOP feature and ex-
tended memory overlays.

Selecting Virtual Mapping

You indicate that a job is to use virtual mapping by setting bit 10 of the Job
Status Word before you run the program. If a particular job is always vir-
tual, set bit 10 at assembly time. Use the following instructions to do this:

.ASECT
=44
.WORD 2000
.PSECT

Or, if you prefer, select the program’s mapping by running SIPP and patch-
ing location 44 in the job’s .SAV, .REL, or .SYS file before you run the
program.
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NOTE

Do not change the value of bit 10 of the JSW when the pro-
gram is running. Doing so interferes with accurate process-
ing of I/0 requests and can cause unpredictable results.

A Virtual Background Job

Use the monitor R command to start a virtual background job. The file
should have the .SAV file type. A virtual background job loads into
memory starting at physical location 500. Its highest physical address is
equal to the size of the program in octal plus 500.

The static region for a virtual background job begins at physical location
500 and extends to the lowest address used by the USR. This prevents a
virtual background job from ever accessing the physical vector area be-
tween locations 0 and 500. As a result, the vectors are protected from virtual
jobs. Figure 4-25 illustrates the mapping for a virtual background job.
Figure 4-26 shows how a virtual background job can map a window into the
static region to use the available memory just below the USR.

A Virtual Foreground or System Job

Use the FRUN monitor command to start a virtual foreground job and the
SRUN command to start a virtual system job. You should link these jobs as
background jobs with the .SAV file type, rather than as foreground or
system jobs with the .REL or .SYS file types. You can FRUN or SRUN a
virtual .SAV image because virtual foreground jobs require no relocation in-
formation. Thus, the .SAYV files are smaller on disk than .REL or .SYS files,
and they load into memory faster..

When a foreground job is loaded, it uses the physical locations just below
the lowest loaded handler or previously loaded system job. The USR slides
down in memory, if necessary, to accommodate the foreground job. The
foreground job is linked with a default base address of 1000 (unless it is a
.SAV image); its virtual addresses between 0 and 500 represent the virtual
vector and system communication areas. As with the background virtual
job, the static window starts at virtual address 0 and extends to this
foreground program’s high limit, rounded up to a 32-word multiple.

The static region begins at physical location 0 and extends to the program’s
physical high limit. The foreground impure area is located in physical
memory just below the program. However, no virtual addresses are mapped
to the impure area, so a virtual foreground job cannot access the contents of
the impure area. As a result, the impure area is protected from a virtual
foreground job. Figure 4-27 illustrates the mapping for a virtual
foreground or system job.

4.3.3.2 Privileged Jobs — The default mapping in an extended memory
system is privileged. To indicate a privileged job, bit 10 of the Job Status
Word remains 0. The XM environment appears to a privileged job to be
very similar to an SJ or FB environment. A privileged job can access the
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Figure 4-25: Virtual Background Job
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low 28K words of memory as well as the I/O page. All the RT-11 utility pro-
grams run as privileged jobs in an extended memory environment.

Privileged jobs, like virtual jobs, run in user processor mode. However, the
monitor copies the contents of the kernel Active Page Registers into the
user Active Page Registers. The default mapping for privileged jobs is thus
the same as the default kernel mapping.

Privileged jobs do have all 32K words of virtual address space available to
them. But much of that virtual address space is already mapped to
operating system software, the I/O page, and — in the case of a privileged
foreground or system job — to a background job or the Keyboard Monitor.
A privileged job can alter its default mapping through the use of extended
memory overlays or programmed requests. It can map away all or part of
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Figure 4-26: Virtual Background Job Mapping into the Static Region

PHYSICAL ADDRESS

E
SPAC 128K
1/0 PAGE
124K
~ ~
VIRTUAL ADDRESS
PACE
32K 3
DYNAMIC ]
WINDOW 28K
SYSTEM
@\ DEVICE HANDLER
“7,
] ’%\ RMON
o)
THESE VIRTUAL OTHER HANDLERS
ADDRESSES ARE USR
ACCESSIBLE ONLY N
AFTER THE JOB
PERFORMS A
MAPPING
P,
OPERATION FREE SPACE
BG JOB STATIC
BG _ ] $ REGION
HIGH BG JOB
S p——
STACK
STATIC ) b ] ~~\IAPPED
WINDOW W
STACK VIRTUAL VECTORS
500
VIRTUAL VECTORS VECTORS
0 0
BG
LOW /

the operating system to obtain a full 32K words of addressable memory for
itself. For example, a program that needs to access the I/O page for only a
limited time can explicitly map away from the I/O page when it is done us-
ing it.

Note that the static window and static region concept does not apply to
privileged jobs. However, one window and one region are reserved by the
monitor. Thus, privileged jobs have seven dynamic windows and three
dynamic regions available to them, just as virtual jobs do.

When a privileged job creates a window and executes the mapping pro-
grammed requests, the default privileged mapping for that virtual address
space is temporarily unmapped. The monitor maps the window using the
contents of the internal window control block to the new region of memory.
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Figure 4-27: Virtual Foreground or System Job

32K

VIRTUAL ADDRESS

SPACE
A

THESE VIRTUAL
ADDRESSES ARE
ACCESSIBLE ONLY
AFTER THE JOB

PERFORMS A
MAPPING
OPERATION.

FG

HIGH FG JOB

STATIC e

WINDOW STACK
e ——— — -

. VIRTUAL VECTORS
FG LOW g 0

PHYSICAL ADDRESS
SPACE

1/0 PAGE

128K

124K

b)Y

({4}

J)

¢

28K

SYSTEM
DEVICE HANDLER

RMON

OTHER HANDLERS

FG JOB

VIRTUAL VECTORS

IMPURE AREA

?

USR

FREE SPACE

VECTORS

STATIC
REGION

When the privileged job unmaps the window, the monitor remaps that vir-
tual address space according to the contents of the kernel Active Page
Register set. This differs from a virtual job that unmaps a window, in which
the virtual addresses encompassed by the window are unusable until the
window is remapped.

Since interrupt service routines execute in kernel mapping, privileged jobs
containing user interrupt service routines should not change the mapping
of interrupt service routines, the I/O page, or parts of the monitor during
any time period in which an interrupt could possibly occur. The monitor
depends on the fact that kernel and user mapping are identical when it ser-
vices user interrupts.
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Privileged Background Job

Use the monitor R or RUN commands to start a privileged background job.
Figure 4-28 illustrates the mapping for a privileged background job.

Figure 4-28; Privileged Background Job
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Privileged Foreground or System Job

Use the monitor FRUN command to start a privileged foreground job. Use
the SRUN command to start a privileged system job.
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Figure 4-29 illustrates the mapping for a privileged foreground or system
job.

43.3.3 Dilfferences Between Virtual and Privileged Jobs — Table 4-3 sum-
marizes the differences between virtual and privileged jobs.

Figure 4-29: Privileged Foreground or System Job
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4.3.3.4 Context Switching Between Virtual and Privileged Jobs — In an RT-11
system with more than one job, the monitor saves job-dependent informa-
tion when a new job replaces the one currently running. The monitor
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Table 4-3: Comparison of Virtual and Privileged Jobs

Characteristic

Virtual Job

Privileged Job

Value in bit 10 of JSW
Original amount of ad-
dress space available

Amount of potential ad-
dress space

Benefits

Starting procedure

Static window

Static region

Possible number of
windows

Possible number of
regions

1

Accesses only the virtual
addresses within its own
program bounds.

32K words. Creates win-
dows to describe the vir-
tual address space be-
tween its own high limit
and the 32K word
boundary.

Provides protection for
operating system software
and other programs; takes
minimal physical memory
away from other jobs.

BG: R command
(.SAV)

FG: FRUN or SRUN
(REL, .SYS, .SAV;
.SAV isrecommended)

Extends from program'’s
virtual address 0 to its
high limit.

BG: Extends from physi-
cal location 500 to the
lowest address used by the
USR.

FG: Extends from physi-
cal location 0 to the
physical high limit of the
job.

7 plus the static window.

3 plus the static region.

0

32K words. Accesses the
low 28K words of memory
plus the 1/0 page.

32K words. If some por-
tions of virtual address
space are already in use
(by a background job, for
example), this job can un-
map them and remap the
addresses to memory
above 28K words. It must
leave certain areas map-
ped whenever a user inter-
rupt service routine could
run.

Compatible with FB and
SJ systems. -

BG: R or RUN command
(.SAV)

FG: FRUN or SRUN
(.REL, .SYS)

None — all are dynamic.

None — all are dynamic.

7 (1 window reserved)

3 (1 window reserved)

restores this information when the original job executes again. This pro-
cedure, called context switching, is described in detail in Section 3.4.2.

In an XM system, each job in memory could be either a virtual or a privileg-
ed job. The monitor, therefore, has more work to do when it switches con-
text in an XM system.
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When the monitor switches out the current job, it saves the information
listed in Section 3.4.2. However, the monitor never saves the contents of the
Active Page Registers that the current job uses. For this reason, your pro-
grams should never manipulate the Memory Management registers direct-
ly; their contents are lost during a context switch. The monitor also ignores
a .CNTXSW programmed request if it occurs in a virtual job. The entire job
is saved by the switch, and the virtual job is not permitted to access the
vector area in any case.

When the monitor switches in a new job, it assumes at first that the new job
is privileged. It copies the contents of the kernel mapping registers into the
user registers. The job can then access the low 28K words of memory plus
the I/O page. Next, the monitor checks to see if the new job is the Keyboard
Monitor. If it is, execution continues with no further modifications.

If the new job is a privileged job, the monitor next checks the window and
region control blocks in the job’s impure area. If the job defined and map-
ped one or more windows, the monitor restores the mapping based on the
contents of the internal control blocks, thus altering the default privileged
mapping for those windows.

If the new job is virtual, the monitor clears the user mapping registers.
Then it scans the window and region control blocks in the job’s impure area.
The monitor maps only the portion of the job’s virtual address space that
was defined in a window and mapped to a region at the time the job was
switched out. Of course, any attempt to access an unmapped address
causes a memory management fault. Unused portions of virtual address
space remain unmapped unless the virtual job explicitly maps them.

44 Typical Extended Memory Applications

4-34

The following sections assume you understand the fundamental concepts of
extended memory systems; they should help you see how to use extended
memory. Some arrangements are suggested that may suit your own par-
ticular situation. As you read, keep in mind what benefits you want from an
extended memory system. In other words, why do you want to use it?

441 Extended Memory Overlays

The low 28K words of memory fill up rapidly with the Resident Monitor,
device handlers, the USR, a foreground job, one or more system jobs, and a
background job. To optimize use of this space and relieve the congestion,
make the root segments of the foreground, system, and background jobs (if
they are overlaid) as small as possible. Instead of segmenting the programs
and using disk overlays though, you can put the overlays into extended
memory. Make all the programs virtual jobs, unless they really need to ac-
cess the monitor or the I/0 page.

The root segment can be minimal in size. All you need put there are queue
elements, channels, interrupt service routines (if any — there are none in
virtual jobs), and a JMP instruction to the first overlay. The overlay
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segments can be permanently resident in extended memory to speed up

execution.

You can use the linker’s /V option to put your overlay segments into ex-
tended memory. The Keyboard Monitor creates a region at run time, using
information in the overlay handler and tables. The overlay handler creates
and maps windows. Figure 4-30 shows a simple virtual background pro-
gram that uses extended memory overlays. You can find detailed informa-
tion on extended memory overlays in the RT-11 System User’s Guide.

Figure 4-30: Virtual Background Job with Extended Memory Overlays
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Large Buffers or Arrays in Extended Memory

In order to put a large buffer or array into extended memory, you first
create a region large enough to accommodate the array. Next, decide how
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much virtual address space your program can commit to accessing the ar-
ray and create a virtual address window of that size. Then simply write a
subroutine that translates references to the array into instructions to
remap the window into the correct part of the region. Figure 4-31 il-
lustrates this situation. (The extended memory feature of the .SETTOP
programmed request can create an extended memory buffer automatically.
See Section 4.4.4 for information.)

Figure 4-31: Virtual Background Job with an Array in Extended Memory

PHYSICAL ADDRESS

SPACE
128K

1/0 PAGE
ARRAY ENDS —mmi ~ 124K
ARRAY STARTS DYNAMIC
REGION
VIRTUAL ADDRESS J 112K
SPACE
32K
DYNAMIC /
WINDOW
A ~
28K 28K
SYSTEM
COMPONENTS
UNMAPPED
\
8G N y BG JoB ? STATIC
HIGH ™ 3G 108 REGION
L e
STATIC e |- STACK
WINDOW
STACK VIRTUAL VECTORS
- 500
0 VIRTUAL VECTORS VECTORS
0
BG LOW

443 Multi-User Program

An extended memory system is ideal for implementing a multi-user applica-
tion. For example, you could develop a language interpreter that several
programmers could use simultaneously. To implement this application,
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separate your program into two sections: a pure code section that contains
the interpreter, and a separate read/write work area for each user. Select
part of your virtual address space to be the user scratch area, and create a
window of that size. Next, decide how many users you want and create a
‘region equal to the number of users times the size of the window. The inter-
preter can change user context by remapping the window. Figure 4-32

shows a multi-user program.

Your multi-user program can use extended memory overlays. In this case,
use one region for the overlays and one for the work areas.

444 Work Space in Extended Memory

Another application for you to consider is putting a work area into extend-

ed memory instead of writing it to disk.

Figure 4-32: Multi-User Virtual Background Program
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Consider how jobs in an FB system obtain the most space possible for dyna-
mic buffering. A background job gets extra space by issuing a .SETTOP
programmed request. It can obtain the space above the job image up to the
top of the USR. To obtain extra space for a foreground job, you must
allocate it with the FRUN/BUFFER:n command. Once the space is re-
served by FRUN, the program can determine its size and claim it with a
.SETTOP programmed request. In both cases, the extra space is within the
28K words of low memory.

In an XM system, extra space can be allocated from the physical space
either above or below the 28 K-word boundary. This feature can make jobs
runnable that require too much memory for an unmapped RT-11 system.
The ability to allocate extra space is most useful to virtual jobs because
they can obtain space up to virtual address 177776 (32K words) by using
the XM feature of the .SETTOP programmed request. All the memory ob-
tained by .SETTOP is in extended memory; virtual foreground jobs do not
require the FRUN/BUFFER:n command to allocate extra space.

4441 Enabling the XM Feature of the .SETTOP Programmed Request — There
are two ways to enable the XM feature of the .SETTOP programmed re-
quest. If your program has extended memory overlays, using the linker /V
option to create them enables the XM .SETTOP programmed request
automatically. It also enables the XM feature of the .LIMIT directive (see
Section 4.4.4.4), links the extended memory overlay handler (VHANDL)
into your job image, and establishes an extended memory overlay struc-
ture. You use the /V option by issuing the LINK/PROMPT monitor com-
mand, and then specifying /V on a subsequent command line.

If your program has no overlays, or if it has only low memory overlays that
you create with the linker /O option, you enable the XM feature of the
.SETTOP programmed request by using the LINK command with the /XM
option. The /XM option enables the XM .SETTOP programmed request
and the XM .LIMIT directive. It does not link the extended memory
overlay handler into your job image, nor does it establish an extended
memory overlay structure for your program.

For all programs, the .LIMIT directive returns as its high value the next
available location for the job. The extra space your program obtains with
.SETTOP in an extended memory system always begins at the octal ad-
dress returned as the high value from the .LIMIT directive. This is true for
all programs, whether or not they enable the XM feature of the .SETTOP
programmed request.

Section 4.4.4.3 describes how .SETTOP works when you execute a program
in an extended memory environment without enabling the XM feature of
.SETTOP. Section 4.4.4.4 shows how the XM feature of .SETTOP works
after you enable it at link time; it also describes the XM feature of the
LIMIT directive.

4.4.4.2 Program and Virtual High Limits and the Next Free Address — To under-
stand XM .SETTOP, it is important that you understand the differences
between the program high limit, the virtual high limit, and the next free ad-
dress. Figure 4-33 shows a program’s virtual address space. This program
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has both low memory overlays created with the /O linker option, and ex-
tended memory overlays created with the /V linker option. The program
high limit is the highest virtual address used by the program’s root seg-
ment and its low memory (/O) overlay regions, if any exist. The virtual high
limit is the highest virtual address used by the extended memory (/V)
overlay regions, rounded up to a 32-word decimal boundary, minus 2. (In
octal, the low-order two digits of the address are always 76.) This is the

value that prints on the link map as nnnnnn, as the following example
shows:

Virtual high address = nnnnnn = ddddd. words, next free address = mmmmmm

The linker has to calculate the value of the next free address. For a job that
enables the XM feature of .SETTOP, it rounds up the virtual high limit to
the next 4K-word boundary. The next free address, then, is the last word of
the virtual address space encompassed by the highest Page Address
Register used by the job, plus 2. It is always on a 4K-word boundary. (In oc-
tal, the next free address is always a multiple of 20000.)

Figure 4-33: Program and Virtual High Limits, and the Next Free Address
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As an example, consider a job with extended memory overlays whose vir-
tual high limit is 55076. Its next free address calculated by the linker is
60000, or the start of the next 4K words of virtual address space. This is the
value that prints on the link map as the ‘“‘next free address”. The following
example shows the values in our example situation:

Virtual high address = 055076 = ddddd. words, next free address = 060000

Of course, if a program has no extended memory overlays, it does not have
a virtual high limit, and its program high limit is not rounded up. The link
map for programs without overlays and for programs whose overlays were
created solely by the /O option prints the program high limit as mmmmmm,
as the following example shows. (The following line prints on all link maps,
whether or not extended memory is present.)

Transfer address = nnnnnn, High limit = mmmmmm =. ddddd. words

4443 Non-XM .SETTOP — If you do not enable the XM .SETTOP feature
through the linker, using .SETTOP in an extended memory program has
only limited value.

For a privileged job that does not alter the default mapping, .SETTOP
works the way it does in an ordinary SJ or FB system. If a privileged job
creates a virtual address window and maps it to an extended memory
region, the program high limit is not affected by the mapping. The value
returned by .SETTOP still represents the highest address available to the
program in the low 28K words of memory.

When the monitor performs address checking for programmed requests, it
looks first to see if the address (of an argument block, a data buffer, and so
on) is entirely within a mapped dynamic window. If it is not, the monitor
checks to see if the address is within the job’s low memory area. If the ad-
dress fails both these checks, a monitor error results and the job aborts.

If the job is virtual, the program high limit at load time is set to the highest
virtual address used by the root segment and any low memory (/O) overlays.
If your job performs its own mapping operations, they do not affect the pro-
gram high limit as far as .SETTOP is concerned. So, the .SETTOP request
is meaningless to these virtual jobs. The non-XM .SETTOP request deals
exclusively with the low 28K words of memory. Virtual jobs use the proc-
essor user mode and, therefore, are mapped according to the contents of the
user Active Page Register set. The virtual job is prevented from accessing
memory outside itself (because it is not mapped to any memory but its own
dedicated physical space), so issuing a .SETTOP request in a virtual job
without the LINK/XM command or the linker /V option does not obtain any
extra memory. The value returned can be used by the virtual job to do its
own mapping of the area available and then use it.

When the monitor performs address checking for a virtual job, it ignores
the program limits and simply checks to see that the virtual address is
within a window that is currently mapped. If the address is not within a
mapped window, a memory management fault results.
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4444 XM .SETTOP — When you enable the XM feature of .SETTOP, as
Section 4.4.4.1 describes, .SETTOP becomes valuable to privileged and vir-
tual jobs alike, although its value to privileged jobs is limited.

For virtual jobs, not only does .SETTOP obtain virtual address space above
the virtual high limit starting at the program’s next free address, but it also
automatically maps the extra space to physical space. As a result, a job in
an extended memory environment can issue a .SETTOP programmed re-
quest and obtain more usable virtual address space without concern for the
details of managing extended memory.

For privileged jobs, XM .SETTOP functions the way non-XM .SETTOP
does, with the following exception: in privileged jobs, the XM .SETTOP
request uses the new XM .LIMIT high value as the next free address, thus
always returning the start of the buffer on a 4K-word boundary. A
.SETTOP to any address below this 4K-word boundary is not permitted.

For both privileged and virtual programs, the linker puts two words of in-
formation into locations 0 and 2 of the job image file. Location 0 contains
the Radix-50 code for VIR. Location 2 contains the value of the next free
address minus 2, which can be significantly different from the virtual high
limit.

LIMIT Directive

For jobs in SJ and FB systems, and in XM systems without the XM feature
of .SETTOP, the .LIMIT MACRO directive returns two values to your pro-

gram. These values are:

e The lowest virtual address used by the program (usually 0)
e The program high limit + 2 (for example, 1644 + 2, or 1646)

In XM programs that enable the XM feature of .SETTOP, .LIMIT returns
a significantly different value:

e The lowest virtual address used by the program (usually 0)

e The next free address (always on a 4K-word boundary), which is usu-
ally not equal to the program high limit + 2.

Gaps in Virtual Address Space

The linker always starts each extended memory (/V) overlay region at a
4K-word boundary in your program’s virtual address space. This restriction
results from hardware requirements. Because of this there can be a gap be-
tween the program high limit and the start of the virtual overlay region.
Your program causes an error if it attempts to reference the virtual ad-
dresses within this gap. Similarly, any extra virtual address space that XM
.SETTOP obtains for your program also starts on a 4K-word boundary.
This means that a gap can exist, between your program’s virtual high limit
and the start of the extra space. Your program cannot reference the ad-
dresses within this gap. Figure 4-34 illustrates a typical program with both
low memory (/O) and extended memory (/V) overlays.
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Figure 4-34: Gaps in Virtual Address Space
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4.4.45 XM .SETTOP and Privileged Jobs — When a privileged job issues a
SETTOP request, if the next free address is above the base of the USR, the
program is already using the virtual address space above the start of the
monitor. Since there is no free memory that can be mapped starting at the
program’s next free address, the monitor cannot obtain any more space for
this program. Thus, a privileged job can never obtain space above
SYSLOW, the base of the USR. The .SETTOP request returns the value of
the next free address minus 2 to location 50 in your program and to R0. This
is the highest usable address.

If there is memory available, the monitor tries to obtain it, basing the size
of the area on the argument you specify with .SETTOP. The memory is
always within the low 28K words. A privileged job can never obtain an
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amount of virtual address space less than its own next free address minus 2.
In addition, the next free address obtained with XM .SETTOP is alwayson
a 4K-word boundary, and the job cannot issue a .SETTOP for any address
below that. Therefore, the job loses the space between its last used address
and the next 4K-word boundary.

Privileged Background Jobs

Figure 4-35 shows a privileged background job and all its limits. When no
foreground job is present in memory, the background job can obtain some
space through .SETTOP. Often, there is still space available even when a
foreground program is present.

Privileged Foreground Jobs

Since foreground jobs load into memory just below the last device handler
and above the USR, there is no extra space available for them through a
.SETTOP request.

Figure 4-35: Privileged Background Job
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Because of this situation, privileged foreground jobs are prohibited from us-
ing extended memory overlays. This also means they cannot use the linker
IV option (either through LINK/FOREGROUND/PROMPT or through
LINK/FOREGROUND/XM) to enable the XM feature of .SETTOP and
LIMIT.

44.46 XM .SETTOP and Virtual Jobs — The monitor checks to see if there is
some extended memory available. If the next free address is 200000, the
program is already using the virtual address space controlled by Page
Address Register 7. The request returns the value 177776 in location 50 and
in RO.

If .SETTOP can obtain virtual space starting with the next free address (on
a 4K-word boundary), the monitor creates a region in extended memory for
the necessary amount of space. If not enough space is available, the monitor
creates as large a region as possible. (Be sure to check the value .SETTOP
returns.) Then the monitor creates a window and maps it to the new region.
It returns the new value of the highest available address in location 50 and
in RO. If there is no space at all available, or if there are no region or window
control blocks available, the request returns the value of the original
highest available address in location 50 and in RO.

So, for example, if you issue a .SETTOP request with an address argument,
the monitor maps the virtual address space starting at the next 4K-word
boundary above the program’s virtual high limit, up to and including the
address you specify. It maps so that the address specified is mapped, but
up to 31 decimal additional words can also be mapped.

If the address you specify in the .SETTOP request is below the highest
used address, .SETTOP returns the value of the next free address minus 2
in location 50 and in RO. The static window and virtual overlay regions
created with the linker /V option cannot be eliminated by using an argu-
ment to .SETTOP.

Assuming your first .SETTOP succeeded and an extended memory region
exists for your program, you can issue subsequent .SETTOP requests to
control the region. Note, however, that you cannot create yet another region
to obtain any more space.

If the argument you specify in your next .SETTOP request is lower than
the original next free address minus 2 from the link map, the monitor
returns the old next free address minus 2 in location 50 and in RO and
eliminates the region and window, if present (along with any data stored
there). You can, of course, issue another .SETTOP later to create a new
region again. You can also adjust the size of the buffer by remapping within
the same region.

To obtain a larger region, first issue a .SETTOP for a value below the cur-
rent high limit, which eliminates the region and any data stored there. Then
issue another .SETTOP for a larger value, which creates a new region. (Any
data stored in the first buffer will be lost.) Note also that to ensure the in-
tegrity of your data, only one window exists for the .SETTOP area in an ex-
tended memory system.

Extended Memory Feature



To get less memory than a previous .SETTOP obtained, issue another
.SETTOP with an address argument less than the first one but equal to or
greater than the néxt free address. As a result, the size of the window still
equals the size of the region, but a smaller amount of the window is mapped.
This does not make any extended memory available for other users or other
regions.

Virtual Background Jobs

Virtual background and foreground jobs are the most likely candidates for
using the XM feature of the .SETTOP request. The request permits jobs to
create large buffers in extended memory quickly and easily, which can help
to reduce congestion in low memory. Figure 4-36 shows a virtual back-
ground job.

Figure 4-36: Virtual Background Job
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Virtual Foreground Job

The .SETTOP request works in much the same way for foreground jobs as
for background jobs. For a virtual foreground job without the XM .SETTOP
feature, the only extra space available is the space allocated through the
FRUN/BUFFER:n command. For a job with the XM .SETTOP feature, the
/BUFFER option is ignored. (The job cannot have buffers in both low and
extended memory.) Figure 4-37 shows a virtual foreground or system job
with a large buffer in extended memory.

Figure 4-37: Virtual Foreground or System Job
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4447 Summary of SETTOP Action — Figures 4-38 and 4-39 and Tables 4-4
and 4-5 work together to summarize the results of all possible .SETTOP re-
quests. In Figure 4-38, Job A is a background job whose next free address
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is below SYSLOW, the base of the USR. Job B is a background job whose
next free address is above SYSLOW. (In the table, next free address is ab-
breviated to NFA.J The values in parentheses represent specific ranges for
.SETTOP arguments.

Figure 4-38: Background .SETTOP Summary
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Table 4-4: Background .SETTOP Summary

SETTOP
Argument

VIRTUAL ADDRESS SPACE

Virtual Job

ROOT AND
LOW MEMORY
OVERLAYS

Privileged Job

32K

) (4)

} (3

> @

J\_

>(n

Non-XM .SETTOP XM .SETTOP

Non-XM .SETTOP XM .SETTOP

High Limit for Job A After SETTOP

1)
(2
3)
4
#0
#-2

(%)

(2

3)
SYSLOW -2

0
SYSLOW -2

NFA -

NFA -2
map to (3)*
map to (4)*
NFA -2
map to 32K*
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1) NFA -2

2 NFA -2

(3) (3)
SYSLOW-2  SYSLOW -2

0 NFA -2
SYSLOW-2  SYSLOW -2
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Table 4-4: Background .SETTOP Summary (Cont.)

SETTOP

Virtual Job

Privileged Job

Argument Non-XM .SETTOP XM .SETTOP Non-XM .SETTOP XM .SETTOP

High Limit for Job B After .SETTOP

1)
2
3)
(4)
#0
#-2

(1
(2

) NFA -2
) NFA -2

SYSLOW -2 NFA-2
SYSLOW -2 map to (4)*

0

SYSLOW -2

NFA -2

map to 32K*

@ NFA -2
(2) NFA -2
SYSLOW -2 NFA -2
SYSLOW -2 NFA -2
0 NFA -2
SYSLOW -2 NFA -2

* If available; otherwise, as much extended memory as possible is obtained for the .SETTOP region.

Figure 4-39: Foreground .SETTOP Summary
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4.5

Table 4-5: Summary of Foreground Job High Limit After .SETTOP

SETTOP Virtual Job
Argument Non-XM .SETTOP XM .SETTOP
(1) (1) NFA -2
(2) greater of OHIGH or BUFF NFA -2
#0 0 NFA -2
#-2 greater of OHIGH or BUFF Map to 32K

4.4.5 Plan Your Own Application

When you plan your own extended memory application, decide first
whether the semi-automatic ways of using extended memory are useful to
you, If the XM .SETTOP feature is all you need, your program will be fairly
simple to write. Similarly, if you can easily segment your program into
overlays, using the extended memory (/V) overlay feature of the linker may
be simple for you. If you decide to handle the mapping yourself in a
MACRO-11 program, sketch out diagrams ahead of time showing the ar-
rangements of the system components, handlers, and other jobs. Unless
your job needs to access the monitor routines or the I/O page, make it a vir-
tual job. Think about the number of windows and regions you need-and
design the program accordingly. The following sections provide detailed in-
formation about the programmed requests and macro calls that a
MACRO-11 program in extended memory can use, as well as information
about extended memory restrictions.

Introduction to the Extended Memory Programmed Requests

It is not difficult to access extended memory in a MACRO-11 program
through the programmed requests, once you understand the general pro-
cedures you must follow and the tools RT-11 provides. Essentially, if your
program does its own management of extended memory (rather than rely-
ing on any of the semi-automatic means described in the previous section),
you must first establish window and region definition blocks. Next, you
must specify the amount of physical memory the program requires, and
describe the virtual addresses you plan to use. Do this by creating regions
and windows. Then, associate virtual addresses with physical locations by
mapping the windows to the regions. You can then remap a window to
another region or part of a region. You can also eliminate a window or a
region. In any case, once the initial data structures are set up, you can
manipulate the mapping of windows to regions to suit your needs.

Table 4-6 summarizes the actions a program that uses extended memory
may need to take. It also lists the appropriate procedures for the program
to follow. Familiarize yourself with the procedures and the corresponding
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programmed requests and macro calls. The RT-11 Programmer’s Reference
Manual provides detailed information on the format of each programmed
request and macro call. Study this information before you attempt to write
an extended memory program.

Table 4-6: Summary of Activities for a Program in an Extended Memory

System

Activity

Procedure to Follow

Define offsets and symbols for
a region definition block.

Set up a region definition block
and specify the region size.

Create a region.

Confirm the status of the new
region.

Define offsets and symbols for
a window definition block.

Set up a window definition
block and describe the window.

Create a window.

Confirm the status of the new
window.

Associate a window with a par-
ticular region as preparation for
mapping the window.

Map a window to a region
(explicitly).

Map a window to a region
(implicitly).

Obtain the current mapping
status of a particular window.

Unmap a window (explicitly).

Unmap a window (implicitly).

Eliminate a window.

Eliminate a region.

Use the .RDBDF or .RDBBK macro.
Use the . RDBBK macro.

Use the .CRRG programmed request.

Examine the contents of the region definition block
after you use the .CRRG request to create the region.
(Check the status bits in the status word.)

Use the .WDBDF or .WDBBK macro.
Use the WDBBK macro.

Use the .CRAW programmed request.

Examine the contents of the window definition block
after you use the .CRAW request to create the window.
(Check the status bits in the status word.)

Move the region identification from R.GID in the
region definition block to W.NRID in the window
definition block.

Use the M AP programmed request.

Set WS.MAP in the window definition block and load
W.NRID before you issue the .CRAW request to create
the window. This procedure creates the window and
then maps it to a region.

Use the .GMCX programmed request.

Use the UNMAP programmed request.

Use the M AP programmed request to map the window
elsewhere.
You can also unmap a window by eliminating the
region to which it is mapped, or by eliminating the win-
dow itself.

Use the ELAW programmed request.
Use the .ELRG programmed request.
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46 Extended Memory Data Structures

A program in an-extended memory environment communicates with the
monitor through special data structures. For each region it defines, a pro-
gram contains one region definition block to describe the size of the extend-
ed memory region. The monitor also maintains a set of internal data struc-
tures. The region control block, located in the job’s impure area, describes a
region. The monitor can maintain up to four region control blocks per job.
For each window it defines, a program also uses one window definition
block to describe the virtual addresses encompassed by that window. The
window control block, located in the job’s impure area, is the monitor’s in-
ternal description for a window. The monitor can maintain up to eight win-
dow control blocks. The I/0 queue element contains extra information in an
extended memory system. Finally, the monitor allocates regions in extend-
ed memory based on its internal free memory list.

The following sections describe these data structures and show, where
necessary, how to create them.

4.6.1 Region Definition Block

A region definition block is a three-word area in your program that contains
information about a region you define in extended memory. The monitor
uses the region definition block to communicate with your job when you
issue a .CRRG or .ELRG programmed request. You must set up the region
definition block in your program and define its symbolic offsets before you
can create a region in extended memory. You must then place the region’s
size in the region definition block. After you create the region, the monitor
returns its identification and some status information to you through the
region definition block. Each time your program needs to refer to this
region, it uses the region identification. (Since the monitor creates the static
region for you, you do not know its identification. You can always refer to
the static region by using 0 as its identification.) Figure 4-40 and Table 4-7
show the structure of a region definition block.

Figure 4-40: Region Definition Block

R.GID

R.GSIZ

R.GSTS

4.6.1.1 Region Status Word — The region status word contains information
on the status of a region. Table 4-8 shows the bits in the region status word
and their meaning. Bits 0 through 12 are reserved for future use by
DIGITAL.
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Table 4-7: Region Definition Block

Byte
Offset Symbol Modifier Contents
0 R.GID Monitor's .CRRG A unique region identification. Use it
routine later to reference this region. The region
identification is actually a pointer within
the job’s impure area to the region con-
trol block. The identification for the
static region in a virtual job is 0.
2 R.GSIZ .RDBBK macro The size of the region you need, in
or user program  32-word decimal units.
4 R.GSTS Monitor’'s .CRRG The region status word.
routine

Table 4-8: Region Status Word

Bit Name Bit Pattern Meaning When Set

15 RS.CRR 100000 The monitor created this region suc-
cessfully. The .CRRG routine sets this
bit; the .ELRG routine clears it.

14 RS.UNM 40000 One or more windows were unmapped as
a result of eliminating this region. The
.ELRG routine sets this bit when
necessary.

13 RS.NAL . 20000 Not currently used, but reserved.

4.6.1.2 .RDBDF Macro — Use the .RDBDF macro to define symbols for the
region definition block (see the description of . RDBBK in Section 4.6.1.3). It
defines the symbolic offset names for the region definition block and the
names for the region status word bit patterns. In addition, this macro
defines the length of the region definition block by setting up the following
symbol:

R.GLGH = 6

Note that this macro does not reserve space for the region definition block.
The format of the .RDBDF macro is as follows:
.RDBDF

The .RDBDF macro expands as follows:

RGID =0
RGSIZ =2
R.GSTS = 4
R.GLGH =6
RS.CRR = 100000
RS.UNM = 40000
RS.NAL = 20000
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4.6.1.3 .RDBBK Macro — The .RDBBK macro (like the .RDBDF macro)
defines symbols for the region definition block. This macro also actually
reserves space for it (unlike the RDBDF macro). You specify as the argu-
ment to this macro the size of the region you need. If you use . RDBBK you
need not use .RDBDF, since .RDBBK automatically invokes .RDBDF.

The format of the . RDBBK macro is as follows:
.RDBBK rgsiz

rgsiz is the size of the dynamic region, expressed in 32-word decimal units.

The following example uses the . RDBBK macro to create a region definition
block for a region 4K words in size. (4K words is equivalent to 200 32-word
units.) Then it creates the region.

RGADR: .RDBBK #200
.CRRG #ARGBLK,#RGADR ;CREATE REGION

See Section 4.10 for an example program that uses .RDBBK.

4.6.2 Region Control Block

A region control block is a three-word area in your job’s impure area whose
contents are maintained by the monitor. A virtual job dedicates one region
control block to the static region. For a privileged job, one region control
block is reserved by the monitor and cannot be used by a program. Thus, all
jobs can have up to three dynamic regions whose status is maintained by
the monitor in the region control blocks.

Figure 4-41 and Table 4-9 show the structure of a region control block. The
.ELRG programmed request clears all its fields.

Figure 4-41: Region Control Block
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R.BSIZ

R.BNWD R.BSTA

4.6.3 Window Definition Block

A window definition block is a seven-word area in your program that con-
tains information about a virtual address window you define. The monitor
uses the window definition block to communicate with your program when
you issue a .CRAW, .ELAW, .GMCX, or .MAP programmed request. You
must set up the window definition block in your program and define its
symbolic offset names before you can create a virtual address window. You
must then place a description of the window you need in the window defini-
tion block. After you create the window, the monitor returns its identifica-
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Table 4-9: Region Control Block

Byte
Offset Symbol Modifier Contents
0 R.BADD Monitor’s .CRRG The starting address of the region,
routine expressed in 32-word units.
2 R.BSIZ Monitor’s .CRRG The size of the region in 32-word
routine units. If this word is 0, this region
control block is free.
4 R.BSTA The monitor at run This byte is always clear unless
time; the monitor’s the region was created by an XM
.CRRG routine clears .SETTOP. The monitor then sets
this byte bit 1, called R.STOP.
5 R.BNWD Monitor's .CRRG The number of windows currently
routine clears this mapped to this region,

byte; .MAP incre-
ments it; UNMAP
decrements it

tion and some status information to you through the window definition
block. Figure 4-42 and Table 4-10 show the structure of a window defintion
block.

Figure 4-42: Window Definition Block
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4.6.3.1 Window Status Word — The window status word serves a dual pur-
pose. First, it allows the .CRAW request to create a window and map it to a
region in one step when you put a value of 1 in bit 8. Second, the window
status word allows the monitor to communicate status information to your
program. Table 4-12 shows the bits in the window status word and their
meaning. Bits 0 through 7 and 9 through 12 are reserved for future use by
DIGITAL.
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Table 4-10;: Window Definition Block

Byte
Offset Symbeol Modifier Contents

0 W.NID  Monitor's CRAW A unique window indentification.
routine Remember that you can always
refer to the static window by using

0 as its identification.

1 W.NAPR .WDBBK macro; The number of the Active Page
monitor’s .GMCX Register that includes the
routine window’s base address. Remember

that a window must start on a
4K-word boundary. See Table 4-11
for the correspondence between
Active Page Registers and virtual
addresses. For privileged jobs, the
valid range of values is from 0 to 7.
For virtual jobs, the new window
must not overlap the static win-
dow. You can find the lowest valid
value for W.NAPR by issuing a
.GMCX request for the static win-
dow, converting the high virtual
address to an APR value, and in-
crementing it.

2 W.NBAS Monitor’'s CRAW and The base virtual address of this
.GMCX routines window. This value should in-
dicate the same address as
W.NAPR. It is provided as a
validity check. Note that it is ex-
pressed as an octal address, rot in
32-word decimal units.

4 W.NSIZ .WDBBK macro; The size of this window, expressed
monitor’s .GMCX in 32-word units.
routine

6 W.NRID .WDBBK macro; Identification of the region to
monitor’s .GMCX which this window maps. The
routine .GMCX request returns a 0 if the

window is not mapped. Otherwise,
it returns the identification of the
region to which it is mapped. Note
that the value is also 0 if the win-
dow is mapped to the static region.

10 W.NOFF .WDBBK macro; The offset, expressed in 32-word
monitor’s GMCX decimal units, into the region at
routine which to start mapping this win-

dow. The .GMCX request clears
this word if the window is not map-
ped; otherwise, it puts the offset
value here.

12 W.NLEN .WDBBK macro; The amount of this window to
monitor’s .MAP and map, expressed in 32-word units.

.GMCX routines If you put 0 here (or .CRAW with

WS.MAP set)) .MAP maps as
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Table 4-10: Window Definition Block (Cont.)

Byte
Offset Symbol Modifier Contents

much of the window as possible.
On successful completion of the
mapping operation, .MAP puts
the actual length it mapped in
W.NLEN. If you put a value here
(other than 0), .MAP does not
change it. The .GMCX request
clears this word if the window is
not mapped; otherwise, it puts the
actual length mapped here.

14 W.NSTS .WDBBK macro; The window status word. The
monitor’s .CRAW, .GMCX request clears this word if
ELAW, and .GMCX the window is not mapped; other-
routines wise, it sets WS.MAP to 1.

Table 4-11: Correspondence Between Active Page Registers and Virtual
Addresses

Virtual Address Range Active Page Register Number

0-17776
20000-37776
40000-57776
6000077776

100000-117776
120000-137776
140000-157776
160000-177776

SN O N AW = O

46.3.2 .WDBDF Macro — Use the . WDBDF macro to define symbols for the
window definition block (see the description of WDBBK in Section 4.6.3.3).
It defines the symbolic offset names for the window definition block and the
names for the window status word bit patterns. In addition, this macro also
defines the length of the window definition block by setting up the follow-
ing symbol:

W.NLGH = 16
Note that the . WDBDF macro does not reserve any space for the window
definition block.
The format of the .WDBDF macro is as follows:

.WDBDF
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Table 4-12: Window Status Word

Bit Name Bit Pattern Meaning When Set

8 WS.MAP 400 The .CRAW request should also map the new
window in addition to creating it. Set this bit
in the window definition block by specifying it
in the .WDBBK macro. Be sure to load
W.NRID before using .CRAW.

13 WS.ELW 20000 The monitor eliminated one or more windows
as a result of the current operation. The
.CRAW and .ELAW routines can set this bit.

14 WS.UNM 40000 The monitor unmapped one or more windows
as a result of the current operation. The
.CRAW and .ELAW routines can set this bit.
The .MAP and .UNMAP routines set or clear
this bit, as required.

15 WS.CRW 100000 The monitor created this window successfully.
The .CRAW routine sets this bit; the ELAW
routine clears it.

The .WDBDF macro expands as follows:

W.NID =0
W.NAPR =1
W.NBAS =2
W.NSIZ =4
WNRID =6
W.NOFF = 10
W.NLEN = 12
W.NSTS = 14
W.NLGH = 16
WS.CRW = 100000
WS.UNM = 40000
WS.ELW = 20000
WS.MAP = 400

4.6.3.3 .WDBBK Macro — The .WDBBK macro (like the .WDBDF macro)
defines symbols for the window definition block. This macro also actually
reserves space for it (unlike the .WDBDF macro). The macro permits you to
specify enough information about the window to simply create it. Or you
can use the optional arguments to provide more information in the window
definition block. The extra information allows you to create a window and
map it to a region by issuing just the .CRAW programmed request. If you
use .WDBBK you need not use .WDBDF, since . WDBBK automatically in-
vokes .WDBDF.

The format of the .WDBBK macro is as follows:

.WDBBK wnapr,wnsiz[,wnrid,wnoff,wnlen,wnsts]
wnapr is the number of the Active Page Register set that includes the win-

dow’s base address. Remember that a window must start on a 4K-word
boundary. See Table 4-11 for the correspondence between Active Page
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Registers and virtual addresses. The valid range of values is from 0
through 7.

wnsiz is the size of this window. Express it in 32-word decimal units.

wnrid is the identification for the region to which this window maps. This
argument is optional. It is usually filled in at run time, rather than at
assembly time.

wnoff is the offset into the region at which to start mapping this window.
Express it in 32-word decimal units. This argument is optional; supply it if
you need to map this window. The default is 0, which means that the win-
dow starts mapping at the region’s base address.

wnlen is the amount of this window to map. Express it in 32-word decimal
units. This argument is optional; supply it if you need to map this window.
The default value is 0, which maps as much of the window as possible.

wnsts is the window status word. This argument is optional; supply it if you
need to map this window when you issue the .CRAW request. Set bit 8, call-
ed WS.MAP, to cause .CRAW to perform an implied mapping operation.

The example in Figure 4-43 uses the .WDBBK macro to create a window
definition block. First it establishes a convention for expressing K-words in
units of 32 decimal words each. Then it defines the window definition block,
creates the window, and maps the window to a region.

The macro call sets up a window definition block for a window that is 2K
words long. The window begins at address 120000, so Active Page Register
set 5 controls its mapping. The .CRAW request to create this window will
also map it to an area in extended memory. The window will map to the
region starting 2K words from the beginning of the region, and the .CRAW
request will map as much of the window as possible. Note that the program
must move the region identification into this block to select the correct
region before it issues the .CRAW request.

Figure 4-43: WDBBK Macro Example

+MAIN., MACRO V04.00 16-0CT-79 16114125 FAGE 1

i +MCALL .WDBBKy .RDEBKs ,.CRRG».CRAWs JEXIT

2

3 000040 KMMU = 1024,/32., FSIZE IN 32, WORD

4 FUNITS

3 000000 START! .CRRG +AREA» #RGALR $CREATE A REGION

-]

7 i

8 ; *

9 i

10

11 000020 016767 MOV RGADR+R.GIDyWNADR+W.NRID §MOVE REGION

000024
000036

i2 $ID TO WINDOW DEFI-
13 FNITION ELOCK
14 000026 +CRAW #AREAy #WNADR sCREATE WINDOW AND
15 iMAF IT
16
17 i
i8 4
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Figure 4-43: WDBBK Macro Example (Cont.)
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0000446

000050
000050
0000352
000054

000056
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000057
000060
000062
000064
000066
000070
000072

000074

000000
000100
000000

000

003
000000
000100
000000
000100
000000
000400

0000007

EXIT

LIST
RGADR? «RDBEK
«WORD
«WORD
«WORD

WNADR?! WDREK
«BYTE
+BYTE
«WORD
«WORD
«WORD
«WORD
«WORD
+WORD

AREA? «BLKW
JEND

Window Control Block

FEXIT FROGRAM

MEER
2XKMMU #CREATE REGION DEFI-

2X%KMMU

FNITION ELOCK
Gy 2KKMMU» » 2XKMMU» 0> WS, MAP iCREATE

4.1

2%KMMU

2%KMMU

[

WS+ MAF
FWINDOW DEFINITION
$BLOCK

2 FEMT AREA

START

The window control block is a seven-word area in your job’s impure area
whose contents are maintained by the monitor. A virtual job dedicates one
window control block to the static window. For a privileged job, one window
control block is reserved by the monitor and cannot be used by a program.
Thus, all jobs can have up to seven dynamic windows whose status is main-
tained by the monitor in the window control blocks. Figure 4-44 and Table
4-13 show the structure of a window control block.

Figure 4-44: Window Control Block

4.6.5

W.BRCB

W.BLVR

W.BHVR

W.BSIZ

W.BOFF

W.BNPD

W.BFPD

W.BLPD

110 Queue Element

The I/O queue element in an extended memory system is ten words long,
rather than seven words long as it is in FB and SJ systems. Section 7.9.3
describes the XM I/O queue element in detail.
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Table 4-13: Window Control Block

Byte
Offset Symbol Modifier Contents

0 W.BRCB  Monitor's MAP A pointer to the region control
routine; the UNMAP  block of the region to which this
request clears it window is mapped. If the value is

0, the window is not mapped.

2 W.BLVR  Monitor’'s CRAW The window’s low virtual address
routine limit.

4 W.BHVR Monitor’'s MAP The window's high virtual address
routine limit,

6 W.BSIZ Monitor’s .CRAW The window’s size, in 32-word
routine; the ELAW decimal units. If the value is 0,
request clears it this window .control block is free.

10 W.BOFF  Monitor's MAP The offset into the region at which
routine this window begins to map, in

32-word decimal units.
12 W.BFPD Monitor's CRAW The low byte of the address of the

routine

13 W.BNPD

Monitor's MAP

routine

14 W.BLPD

Monitor’'s MAP

routine

first Page Descriptor Register
that affects this window.

The number of Page Descriptor
Registers that affect this window.

The contents of the last Page
Descriptor Register that affects
this window.

4.6.6 Free Memory List

The monitor maintains a data structure called the free memory list, which it
uses to allocate areas of extended memory. The list consists of a table of 10
decimal doublewords. The address of the top of the table is $XMSIZ, and
the table is located in p-sect XMSUBS. The high-order word of each word
pair indicates the size of an available area in extended memory, expressed
as a number of 32-word decimal units. The low-order word of the pair con-
tains the address of the area, divided by 100 octal. A value ofe— 1 ends the
table.

At bootstrap time, the table contains only one entry. The high-order word of
the pair contains the total amount of extended memory. The low-order word
contains the value 1600. When a job requests an extended memory region,
the monitor searches through the table for an area large enough to meet the
request. It returns the area in extended memory that meets the size require-
ment and has the lowest starting address. The monitor reduces the amount
of memory in the first doubleword of the free memory list, and adjusts its
starting address.
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The other nine words of the free memory list are used when jobs return
areas of extended memory to the available pool. In a very active system, the
extended memory area can become quite fragmented.

4.7 Flow of Control Within Each Programmed Request

This section summarizes the activities that take place internally for each
programmed request your program can issue. Consult the RT-11 Program-
mer’s Reference Manual for the detailed syntax of each request.

4.7.1 Creating a Region: .CRRG

Issue the .CRRG programmed request to create a region in physical ad-
dress space.

The monitor’s .CRRG routine first checks R.GSIZ in the region definition
block to make sure that you have requested a region with a valid size. (The
size must be between 1 and 96K.) If the size is invalid, the request returns
with error code 10 in byte 52.

Next, the routine looks for a free region control block. The request returns
with error code 6 in byte 52 if no region control blocks are free.

The routine attempts to allocate the appropriate amount of memory for the
region, based on the amount you specified in the programmed request. To
get the most memory possible, ask for 96K words. The routine scans the
free memory list for a region with the correct size. The request returns with
error code 7 in byte 52 if it cannot allocate a region with the size you re-
quested. In addition, RO contains the largest amount of memory available.
Issue the .CRRG request again for this amount of memory. If this second
request fails, it means that some other job in the system just acquired some
of the memory. Continue to reissue the .CRRG request with the new value
from RO until you finally obtain a region.

The request succeeds when the monitor allocates the region. The routine
puts the region identification into R.GID in the region definition block. It
sets RS.CRR in the region status word; it clears R.BSTA and R.BNWD in
the region control block, and it puts values into R.BADD and R.BSIZ,
which are also located in the region control block. The memory obtained is
then removed from the monitor’s free memory list and reserved for your job.

4.7.2 Creating a Window: .CRAW

Issue the . CRAW programmed request to create a virtual address window.

First, the monitor’s .CRAW routine checks W.NAPR in the window defini-
tion block for a valid value. The request returns with error code 0 in byte 52
if the number of the Active Page Register set is invalid for any reason.

Next, the routine shifts W.NAPR to set up the window’s base address in
W.NBAS, which is also located in the window definition block.
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The routine then checks W.NSIZ in the window definition block to make
sure that you requested a valid size for the window (the window cannot ex-
ceed the 32K-word boundary). If there is any problem with the size, the re-
quest returns with error code 0 in byte 52.

The routine clears bits WS.ELW, WS.UNM, and WS.CRW in the window
status word.

The next check is to see if the new window will overlap with an existing win-
dow. If the job is a virtual job and the new window overlaps with the static
window, the request returns with error code 0. In all other situations where
the new window overlaps an existing window, the routine eliminates the ex-
isting window. If the existing window is mapped, the routine unmaps it.
The .CRAW routine sets WS.ELW in the window status word if it
eliminates a window to create the new one. It sets WS.UNM if it also un-
maps a window as it eliminates it.

Next, the routine looks for an available window control block. The request
returns with error code 1 if there are no free window control blocks.

The request succeeds when the monitor modifies the appropriate data
structures. It puts values in W.BSIZ, W.BLVR, and W.BFPD in the win-
dow control block; it puts the window identification in W.NID in the win-
dow definition block, and it sets WS.CRW in the window status word.

If WS.MAP in the window status word was set when you issued the
.CRAW request, the routine now maps the window to the region whose
identification is stored in the window definition block. To do this, the
routine follows the steps outlined in the .MAP programmed request.

4.7.3 Mapping a Window to a Region: .MAP

Issue the .M AP programmed request to map a virtual address window to a
physical address region. The window definition block must contain the iden-
tification of the region to which the window will map.

First, the monitor’s .MAP routine finds the window control block that cor-
responds to the window you specify in the request. It checks W.NID to do
this, and returns with error code 3 if the value is 0 or not valid.

Next, the routine finds the region control block for the region to which this
window will map. The request returns with error code 2 if the region iden-
tification is invalid for any reason.

The routine looks at the offset into the region at which the window is to
begin mapping. This value is contained in W.NOFF in the window defini-
tion block. If the offset is beyond the end of the region, the request returns
with error code 4.

The routine checks the length of the window it is to map. This value is con-
tained in W.NLEN in the window definition block. If the value is 0, the
routine picks up the size of the region from the offset value to the end of the
region. If this amount of memory is bigger than the window, the routine
reduces the amount until it equals the window size, which it stores in
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W.NLEN. Note that if you put 0 into W.NLEN, the value that is there after
the .MAP request executes is not 0, but is instead the actual length of the
window that was mapped.

If the value of W.NLEN is not 0 at the start of the .MAP routine, it in-
dicates the explicit length of the window to map. If the value is larger than
the window size, or if the window would extend beyond the bounds of the
region, the request returns with error code 4.

The routine increments R.BNWD in the region control block, which main-
tains a count of the number of windows mapped to this region.

If this window is already mapped elsewhere, this routine unmaps it and sets
WS.UNM in the window status word; otherwise, this routine clears
WS.UNM.

The routine next loads the user mode Active Page Register set with the cor-
rect values to map this window to this region.

Finally, the routine updates the window control block values W.BRCB,
W.BHVR, W.BOFF, W.BNPD, and W.BLPD.

474 Getting the Mapping Status: .GMCX

Issue the .GMCX programmed request to obtain the current mapping
status of a particular virtual address window.

First, the .GMCX monitor routine looks at the corresponding window con-
trol block for this window. If you specify a window whose identification is 0,
you obtain the status of the static window for a virtual job. There is no win-
dow with the identification of 0 in a privileged job. If there is any problem
with the window, the request returns with error code 3.

The routine sets W.NAPR in the window definition block to be equal to the
top three bits of W.BLVR in the window control block. This sets up the
starting Active Page Register set number.

Next, the routine puts values into W.NBAS, W.NSIZ, and W.NRID in the
window definition block.

If the window is not currently mapped, the routine clears W.NOFF,
W.NLEN, and W.NSTS in the window definition block. If the window is
mapped, the routine puts the offset into the region in W.NOFF, puts the
length of the window in W.NLEN, and sets the bit WS.MAP in the window
status word.

475 Unmapping a Window: .UNMAP

Issue the .UNMAP programmed request to explicitly unmap a window
from a region.

First, the monitor’'s UNMAP routine finds the appropriate window control
block. It checks W.NID in the window definition block. If the value is 0, or
if it is invalid for any reason, the request returns with error code 3. If the
window is not currrently mapped, the request returns with error code 5.
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To unmap the window, the routine modifies the appropriate data struc-
tures. It clears W.BRCB in the window control block, and decrements
R.BNWD in the region control block.

If the job is virtual, the routine clears the Page Descriptor Registers that
correspond to this window so that your program can no longer reference the
virtual addresses in this window.

If the job is privileged, the monitor copies the kernel Page Descriptor
Register values into the user Page Descriptor Registers so that the map-
ping defaults to that of kernel mode.

Finally, the routine sets WS.UNM in the window status word.

4.7.6 Eliminating a Region: .ELRG

Issue the .ELRG programmed request to eliminate a physical address
region.

First, the monitor's .ELRG routine checks to see if the region identification
you specified is 0. In a virtual job, a region identification of 0 indicates the
static region, which you cannot eliminate. In a privileged job, there is no
region whose identification is 0. In either case, the request returns with er-
ror code 2.

Next, the routine looks for the corresponding region control block for this
region. If the region identification is invalid for any reason, the request
returns with error code 2.

Then, the routine clears RS.CRR and RS.UNM in the region status word. If

there are any windows mapped to this region, the routine unmaps them and
sets RS.UNM.

The routine deallocates the region by returning its physical address space
to the monitor’s list of free memory.

Finally, the routine clears the region control block.

4.7.7 Eliminating a Window: .ELAW

Issue this programmed request to eliminate a virtual address window.

As with the .ELRG request, the .ELAW routine first finds the
corresponding window control block for this window. It checks W.NID in
the window definition block. If the window identification is 0, or is not valid
for any reason, the request returns with error code 3.

The routine next clears WS.CRW and WS.UNM in the window status word.

If the window was mapped, the routine unmaps it and sets WS.UNM. The
routine eliminates the window by clearing W.BSIZ in the window control
block. Finally, the routine sets WS.ELW in the window status word.
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4.7.8 Summary of Extended Memory Programmed Request Error
Codes

Table 4-14 summarizes the error codes that the extended memory program-
med requests can put into byte 52. Table 4-15 shows which error codes each
programmed request can use.

Table 4-14: Extended Memory Programmed Request Error Codes and

Meanings
Byte 52
Code Meaning

0 There is a problem with the window ID. The window is too large, the
value of W.NAPR is greater than 7, or you specified it incorrectly.

1 You tried to create more than seven windows in your program.
Remember that the static window is always defined for a virtual job, and
one window is always reserved by the monitor in a privileged job. You
can either unmap another window and then try to create a window, or
you can redefine your virtual address space into fewer windows.

2 The region identification was invalid for some reason.

3 The window identification was invalid for some reason.

4 The combination of the offset into the region and the size of the window
to map to the region is invalid. '

5 The window you specified was not currently mapped.

6 You tried to create more than three regions in your program. Remember
that the static region is always defined for a virtual job, and one region is
always reserved by the monitor in a privileged job. You can eliminate
another region and then try to create a new one, or you can redefine your
physical address space into fewer regions. Note that extended memory
overlays and XM .SETTOP account for one region each.

7 There is not enough memory available to create a region as large as the
one you requested. The routine returns the size of the largest available
region in RO, but does not create it.

10 You specified an invalid size for a region. A value of 0 or a value greater

than 96K words is invalid.

Table 4-15: Summary of Error Codes

Error Code
Programmed Request 0123456710
.CRRG XXX
.CRAW XX
MAP X X X
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Table 4-15: Summary of Error Codes (Cont.)

Error Code
Programmed Request 012345678910
.GMCX X
.UNMAP X X
.ELRG X
.ELAW X

4.8 Restrictions and Design Implications

The manner in which RT-11’s support for extended memory is im-
plemented imposes some restrictions on the ways you can use the system.
The following sections outline the implications of the design of the extended
memory system,

4.8.1 PAR1 Restriction

The RT-11 monitor sometimes ‘“‘borrows’’ kernel Page Address Register 1
for its own use. For example, it uses PAR1 to map to the EMT area blocks
when it processes a programmed request.

Because the monitor alters kernel PAR1, references to virtual addresses in
the range 20000 through 37777 do not always access the corresponding
physical addresses. To avoid problems due to the occasional remapping of
the virtual addresses controlled by kernel PAR1, observe the following pro-
gramming restrictions.

1. Any channel areas you allocate with the .CDFN program request must
be entirely within the low 28K words of memory. In addition, they
must not be located within the addresses 20000 through 37777.

2. Any queue elements you allocate with the .QSET programmed request
must be entirely within the low 28K words of memory. In addition,
they must not be located within the addresses 20000 through 37777.
Remember to allow 10 decimal words per queue element.

3. Interrupt service routines must be located entirely within the low 28K
words of memory. In addition, they must neither reside in nor
reference addresses in the range 20000 through 37777. Section 6.7
describes the factors you must take into consideration if your program
includes an in-line interrupt service routine. Be sure to execute your
program as a privileged job if it contains an interrupt service routine,
so that it can access the monitor and the device I/O page. Section 7.9
lists the implications of the XM design restrictions on device handlers
and I/0.
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This aspect of RT-11’s design is important for you to understand if you
have a program with its own in-line interrupt service routine, if you put a
data buffer for I/O in extended memory, or if you write a device handler for
an XM system.

48.2 Programmed Requests

Some of the RT-11 programmed requests have special restrictions when
you use them in an extended memory system. These requests and their
restrictions are as follows:

Programmed Request Restriction

.CDFN The channel area you specify in this request must be
entirely within the low 28K words of memory.

.QSET The queue element space you specify must be entirely
within the low 28K words of memory. In addition, you
must allow 10 decimal words for each queue element.

.CNTXSW Virtual jobs cannot use this request, since they have no
need for it in an extended memory system.

4.8.3 PAR2 Restriction

The MQ message handler resides within the physical memory mapped by
Page Address Register 2. If you use the MQ handler to send and receive
messages, be sure to read Section 3.5.7. When you use the MQ handler, all
the PARI1 restrictions apply as well to the virtual addresses controlled by
PAR2: the addresses in the range 40000 through 57777.

4.8.4 Synchronous System Traps

A synchronous system trap is a software interrupt that takes place syn-
chronously with your program’s execution. For example, a TRAP instruc-
tion that a program issues is a synchronous system trap. A program that
issues an illegal instruction causes a trap to 10 to occur, which is also a syn-
chronous system trap. When a trap occurs, the PDP-11 computer pushes
the current PS and PC onto the stack and loads the new PS and PC from the
contents of the trap vector. Table 4-16 lists the sychronous system traps
and their corresponding vectors.

Table 4-16: Synchronous System Traps and Their Vectors

Vector Synchronous System Trap
4 Trap to 4, caused by a reference to an odd address, or by a bus time-out.
10 Trap to 10, caused by an attempt to execute a reserved instruction.
14 Breakpoint trap, usually issued by a debugging utility program such as
ODT.
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Table 4-16: Synchronous System Traps and Their Vectors (Cont.)

Vector Synchronous System Trap
20 1/O trap.
34 TRAP instruction, issued by a program to change the flow of execution.
114 Memory parity trap, caused by a memory parity error.
244 FPU trap, caused by a floating point unit exception or error.
250 Memory management trap, caused by a program’s attempt to reference

a virtual address that is not mapped to a physical address.

In an XM system, sychronous system traps, like device interrupts, take the
new PS and PC from the appropriate vector in kernel space. For example,
when a program issues a BPT instruction, the new PS and PC are taken
from physical locations 14 and 16. As you remember, a privileged job is in-
itially mapped to the kernel vector area, so virtual address 14 in the pro-
gram maps to physical location 14. A virtual job, on the other hand, is
prevented from accessing the kernel vector area. Initially, the virtual job’s
virtual vector area maps to physical addresses starting at location 500, not
0. For a virtual job then, the virtual vector 14 is not in physical location 14.

For each sychronous system trap, RT-11 provides a mechanism to field the
trap and provide values for the new PS and PC from the virtual vector. The
following sections describe the effect of the XM environment on specific
sychronous system traps.

4.8.41 TRAP, BPT, and IOT Instructions — When a program in an XM system
issues a TRAP, BPT, or IOT instruction, execution switches to the proc-
essor’s kernel mode. The hardware picks up the contents of the appropriate
vector (see Table 4-16) from kernel space. However, rather than dis-
patching immediately to the trap handling routine specified in the kernel
vector, the monitor replaces the new PS and PC with values that cause ex-
ecution to continue within a monitor routine. The purpose of the monitor
routine is to pick up the contents of the corresponding virtual vector in user
space, and then transfer control to the routine specified by the virtual PC.
The kernel and user vectors for a privileged job are identical. A virtual job
cannot access the kernel vectors; you can, however, put values into the vir-
tual vectors so that the monitor will pick them up when a trap occurs. In
summary, the net effect of the monitor’s trap handling routine is that con-
trol is transferred to a job’s specific trap routine through the contents of
the job’s virtual vector.

If the virtual vector contains an even, nonzero value, the monitor does not
clear the vector after the first trap. This permits recursion with no effort on
the part of the program.

4.8.4.2 Traps to4 and 10, and FPU Traps — For traps to 4 and 10, and floating
point unit exception traps, the monitor provides a mechanism that protects
the vectors while still permitting you to use your own trap handling
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routines. The .TRPSET and .SFPA programmed requests permit your pro-
gram to set up the addresses of trap handling routines without modifying
either the kernel or the user virtual vector area. These two programmed re-
quests function in XM systems the way they do in FB systems. Thus, you
specify the address of your trap handling routine when you issue the pro-
grammed request and the monitor puts this information in the job’s impure
area. The monitor clears out the routine address in the impure area, so your
trap handling routine should reset this area by issuing either .TRPSET or
.SFPA as its last instruction before returning to the main program.

48.4.3 Memory Management Faults — A memory management fault occurs
when a program references a virtual address that is not mapped to a
physical address. If a memory management fault occurs while execution is
in system state, the entire system halts. If a memory management fault oc-
curs while execution is in user state, the monitor fields the trap through the
kernel vector and provides a new PS and PC from the user virtual vector
area. Once the monitor picks up the contents of a job’s virtual vector, it
clears the vector. If a second fault occurs and the virtual vector is 0, the
monitor prints its 2MON-F-MMU fault message and aborts the job.

To permit recursion, your program’s trap handling routine must reset the
contents of the memory management fault vector (at locations 250 and 252)
in the job’s virtual vector area. If RT-11 permitted automatic recursion,
your program could loop indefinitely on a memory management fault until
you halted the processor.

4.8.4.4 Memory Parity Errors — A hardware device that is an optional part of
your PDP-11 computer system performs memory parity checking. You
enable RT-11 support of this hardware option by selecting the memory
parity special feature at system generation time. If you have memory pari-
ty hardware but do not generate a system with the memory parity checking
special feature, a memory parity error causes a system halt.

For systems that support memory parity checking, the sychronous system
trap procedure is similar to the procedure for memory management faults.
Thus, the monitor fields the trap through the kernel vector at locations 114
and 116. It then picks up the contents of your program’s virtual addresses
114 and 116, clears them, and passes control to your trap handling routine
based on the new PS and PC.

If a second memory parity error occurs and the virtual vector is 0, the
message ?MON-F-Mem err prints and the job aborts. To enable recursion,
your program’s trap handling routine must reset the contents of the
memory parity fault vector at virtual addresses 114 and 116.

49 Debugging an XM Application

Use VDT, the Virtual Debugging Technique, to debug virtual and privileg-
ed jobs in an XM system. VDT also handles correctly jobs in FB and SJ
systems, as well as jobs in multi-terminal systems.
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Use VDT.OBJ the same way you use ODT.OBJ; link it with the program
you need to debug. The transfer address for VDT is O.ODT. The syntax for
VDT commands is the same as the syntax for ODT. See the RT-11 System
User’s Guide for instructions on using ODT.

VDT.OBJ is created from a conditional assembly of ODT.MAC, with the
conditional $VIRT equal to 1. VDT.OBJ is provided on the distribution kit;
you need not assemble it yourself. VDT does not contain the interrupt ser-
vice or priority routines that ODT does. Unlike ODT, which runs at priority
7 and performs its own terminal I/O, VDT runs at the same priority as your
program, and uses .TTYIN and .TTYOUT programmed requests to per-
form terminal I/O.

Because VDT uses .TTYIN and .TTYOUT requests, you can run it from a
job’s console terminal; it is not limited to the hardware console interface.
Since VDT alters the contents of the Job Status Word, it must save the
original contents elsewhere. You can use the $J/ command to obtain the
original contents of the JSW; you can also modify it there.

VDT runs in user, not in kernel mode. When you debug a virtual job with
VDT, you are limited to accessing the job’s area only. You cannot access
the protected system areas such as the monitor, the vectors, and the 1/0
page. When you debug a privileged job with VDT, you have access to the
same memory the job does.

410 Extended Memory Example Program

4-70

Figure 4-45 provides an example program that uses extended memory pro-
grammed requests.

Figure 4-45: Extended Memory Example Program

XMCOFY MACRO V04.00 4-0CT-79 16153102 FAGE 1

1 +TITLE XMCOPY

2 it

3 i THIS IS5 AN EXAMFLE IN THE USE OF THE RT-11 EXTENDED

4 i MEMORY REQUESTS. THE PROGRAM COFIES FILES AND THEN

3 i VERIFIES THE RESULTS. IT USES EXTENDED MEMORY TO

é # IMFLEMENT 4K TRANSFER RUFFERS. THIS FROGRAM USES MOST
7 i OF THE EXTENDED' MEMORY FROGRAMMED' REQUESTS» AND

8 i DEMONSTRATES OTHER FROGRAMMING TECHNIQUES.

9 i

10 +NLIST EREX

11 « +MCALL  UNMAPy .ELRGy .ELAWs ,CRRGy .CRAWy . MAF

12 +MCALL FRINT,.EXIT,.CLOSE, .CSIGEN, .READW, . WRITW
13 +MCALL . RDEEKy WIEBEK, ,TTYOUT» JWDEDF, . RIBOF

14 000044 JEW = 44 $JSW LOCATION

15 002000 JWVIRT = 2000 FVIRTUAL JOR BRIT IN JSW
16 000052 ERREYT = 52 JERROR EBYTE LOCATION

17 000002 AFR = 2 $FPAR/FDR FOR 1ST WINDOW
18 000004 AFR1 = 4 i * ¢ 2ND .

19 000736 EUF = WIE+W,.NEAS FVIRTUAL ADDR OF 18T
20 i BUFFER
21 000762 EUF1 = WDER1+W.NEAS $VIRTUAL ADDR OF 2ND

22 i BUFFER
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Figure 4-45: Extend Memory Ekample Program (Cont.)
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000000

000044
000000

000000

000000

000000
000000
000004
000010
000012

000014
000016
000022
000022
000026
000032
000040
000042
000044

000050

000056
000042
0000462
0000466
000072
000100
000102
000104
000110
000114
000114
000120
000124
000132
000134
000136
000142

000144
000150
000154
000154
000160
000164
000170
600176
000202
000206

000210
000212
000216
000220

000224

010000
000020
000742

000766

000044
002000

012746
012746
005046
104344

103771
105267

012700
012710
012760
104375
103002
000167

016767

105267

012700
012710
012760
104375
103002
000167
105267

012700
012710
012760
104375
103002
000167
005001

012702
105267

012700
012710
010160
016760
010260
005060
104375

103005
105737
001431
000167

010002

START?:

10%2

304

READ?

WRITE?

CORSIZ
FAGSIZ
WRNID

WRNIDI

+ASECT

= JUSW
+WORD
+FSECT

+WDIEDF

+RIEDF

+CSIGEN
MOV
MOV
CLR
EMT

ECS
INCE
+CRRG
MOV
MoV
MoV
EMT
ECC
JMF

MOV

INCE
+CRAW
MOV
MoV
MoV
EMT
ECC
JHF
INCE
+MAF
MoV
MOV
Mov
EMT
ECC
JMF
CLR

MoV
INCE
+READYW
MOV
MoV
Mov
MoV
MOV
CLR
EMT

ECC
TSTR
EEQ
JMF

MOV

= 4096, FSIZE OF BRUFFER IN WORDS
= CORSIZ/256. iFAGE SIZE IN ELOCKS
= WOE+W.NRID JREGION ID ADDR OF 1ST
i REGION
= WOB1+W.NRID FREGION ID ADDR OF 2NI
i REGION
FASSEMBLE IN THE VIRTUAL
i JOR RIT
JLVIRT iMARKE THIS A VIRTUAL JOE

#START CODIE NOW

JCREATE WINDOW DEFINITION
i ELOCK SYMBROLS
CREATE REGION DEFINITION
i BLOCK SYMEOLS

$ENDCRE»#DEFLT,#0 GET FILESFECS»
#ENDCRE»-(6.,)

$DEFLT»-(6.)

=(b,)

~D344

# HANDLERS, OFEN FILES
START i BRANCH IF ERROR
ERRNO JERR = 1X
#CAREA Y #RDE : iCREATE A REGION
$CAREA, %O

$30,%7040040»,(0)
FRDEY2.(0)

~“0375
10¢ FBRANCH IF SUCCESSFUL
ERROR yREFORT ERROR
i (JMF DUE TO RANGE!Y
ROEs WRNID FMOVE REGION II' TO WINLOW
# DEFINITION ELOCK
ERRNO +ERR = 2X
#CAREAs#UDE FCREATE WINDOW...

$CAREAYZO
$30.%70400+2.5(0)
$WDIEy 2., (0)

~037%5

20% # BRANCH IF NO ERROR
ERROR #REFORT ERROR.,..

ERRNO FERR = 3X

#CAREAs #WIDE FEXFLICITLY MAF WINDOW...
#CAREA» %0

$30,%70400+4,,(0)
$#WOE,2,(0)

~0375
308 FBERANCH IF NO ERROR
ERROR $REFORT ERROR
R1 7RI = RT11 BLOCK #

i FOR I/0
#¥CORGSIZ,R2 fR2 = # OF WORDS TO READ
ERRNO FERR = 4X

#RAREA,#3,BUF yR2yR1 3TRY TO READ 4K~-WORTH
#RAREA» 7O
#3+:08.%70400>y(0)

R1,2,(0)
RUF»4,(0)
R2+6.(0)
8.¢0)
~0375
i OF BLOCKS
WRITE . $BERANCH IF NO ERROR
@#ERREYT JEOF?
FASS2 i BRANCH IF YES
ERROR iMUST BE HARD ERROR»
i REFORT IT
ROsR2 tR2 = SIZE OF RUFFER
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Figure 4-45: Extend Memory Example Program (Cont.)

71 i JUST READ
72 00022 JWRITW #RAREA,¥0,RUF,R2yR1 FWRITE OUT THE BUFFER
000226 012700 Hov #RAREAS %0
000232 012710 MOV ¥0+<9.%70400>y(0)
000236 010160 MoV R1s2.(0)
000242 0167460 Moy RUF»4,(0)
000250 010260 MoV R2s6.(0)
000254 005040 CLR 8.,(0)
000260 104375 EMT ~0375
73 0002462 103004 ECC ADDIT § BRANCH IF NO ERROR
74 000264 105267 INCE ERRNO JERR = 35X
75 000270 000167 JMF ERROR #REFORT ERROR
76 000274 062701 ADDIT: ADD #FAGSIZ K1 FADJUST ELOCK #
77 000300 000725 BR READ s THEN GO GET ANOTHER
78 i BUFFER
79 000302 1052467 FASS2! INCE ERRNO JERR = 6X
80 000304 +CRRG #¥CAREAy #RDEL iCREATE A REGION
000306 012700 MoV #CAREA, %O
000312 012710 MoV $#30.%70400+40:(0)
000316 012760 MOV $ROEL,2,(0)
000324 104375 EMT ~03735
81 000326 103002 EBCC 35% $ ERANCH IF NO ERROR
82 000330 000167 JHMF ERROR $REFORT ERROR
83 000334 016767 35%: MOV ROBLyWRNIDL JGET REGION ID TO WINDOW
84 3 DEFINITION ELOCK
8%
86 7% EXAMFLE USING THE ,CRAW REQUEST DOING X
87 i IMPLIELD .MAF REQUEST. X
88
89 000342 105267 INCE ERRNO SERR = 7X
90 000346 +CRAW $CAREAY#UWDERL FCREATE WINDOW USING
000346 012700 MOV $CAREAYZO
000352 012710 MOV #30.%70400+2.,,(0)
000356 012760 MoV $WIE1,2.(0)
000364 104375 EMT ~0375
?1 i IMPLIED .MAF
92 000366 103002 ECC VERIFY i BRANCH IF NO ERROR
93 000370 000167 « JMF ERROR #REFORT ERROR
94 000374 105267 VERIFY:!! INCE ERRNO JERR = 8X
25 000400 005001 CLR R1 iR1 = RT1i BLOCK # AGAIN
96 000402 012702 GETELK! MOV #CORSIZyR2 $R2 = 4K BUFFER SIZE
97 000406 .READW #RAREA»#3,BUF1yR2yR1 jTRY TO GET 4K~WORTH
000406 012700 MOV $#RAREA, %0
000412 012710 MoV $3+<B, %" 04003y (0)
000416 010160 MoV R1,2.(0)
000422 016760 MoV RUF1y4.,(0)
000430 010260 MoV R2v6.(0)
000434 005060 CLR 8.,(0)
000440 1043735 EMT ~0373
28 i OF INFUT FILE
99 000442 103003 ECC 40% § BERANCH IF NO ERROR
100 000444 105737 TSTE @$ERREYT FEOF?
101 000450 001441 BEQ . ENDIT fBERANCH IF YES
102 000452 000167 JMF ERROR $REFORT HARD' ERROR
103 000456 010002 40%: MoV ROYR2 JR2 = SIZE OF BUFFER REALD
104 000460 .READW #RAREA»#0,RBUF,R2,R1 $TRY TO GET SAME SIZE
000460 012700 Mov #RAREA»ZO
000464 012710 MoV $0+8,%X70400:y (0)
000470 010160 MoV R1y2.00)
000474 0146740 MoV EUF»4.(0)
000502 010260 MoV R2y6.,(0)
000506 005060 CLR 8.(0)
000512 104375 EMT ~0375
105 3 FROM OUTFUT FILE
106 000514 103004 ECC S50% § RRANCH IF NO ERROR
107 000516 105267 INCE ERRNO FERR = 9X
108 000522 000167 JMF ERROR $REFORT ERROR
109 000526 0146704 50%: MoV EUF»RA4 $GET OUTFUT RUFFER ADDRESS
110 000532 0146703 MoV RUF1»R3 $GET INPUT BUFFER ADDRESS
111 000536 022423 70%: CHF (R4)+y (R3)+ $VERIFY THAT DATA IS THE
112 i SAME
113 000540 001066 ENE ERRDAT $IT’S NOTy REFORT ERROR
114 000542 003302 DEC R2 JARE WE FINISHED?
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Figure 4-45: Extend Memory Example Program (Cont.)

115
114
117
118
119
120
121

122

[JN]
51

o

126

129
130

131
132
133
134
135
136

137
138

139
140
141

142
143

144
145

146
147

000544
0005446

000552

000554
000554
000560
0005642
000562
000566
000570
000570
000574
000600
0004064

000610
000610
000614
000620
000626

000630
000630
000634
000640
000646
000650
000650
000654
000660
000666

000670
000670

000672

000676
000702
000706
000706
000712
000714
000716
000716
000722
000724

000726
000726
000730
000732

000734
000734
000735
000736
000740
000742
000744
000746
000750

000752
0007352
000754
000756

000760
000760

001374
062701

000713

012700
104351

012700
104374

012700
012710
012760
104375

012700
012710
012760
104375

012700
012710
012760
104375

012700
012710
0127460
104375

104350
113700

062700
110067

012700
104351
000722

012700
104351
000716

000000
000200
000000

000

002
000000
000200
000000
000000
000000
000000

000000
000200
000000

000

ENDIT?

XCLOS?

ERROR?

ERRDAT?

RDE?

WDOE?

ROEL!

WhEL:

ENE
ADD

ER

+FRINT
MOV
EMT
+CLOSE
Mov
EMT
+UNMAF
MoV
MOV
MOV
EMT

+ELAYW
MOV
MoV
MOV
EMT

+ELRG
MoV
MoV
MoV
EMT
+ELRG
MOV
MOV
MoV
EMT

JEXIT
EMT

MOVE

AN
MOVE
+FRINT
MoV
EMT

ER
+PRINT
MOV
EMT

BR

+RIOEEK
+WORD
+WORD
+WORL

+WOEEK
+RYTE
WEYTE
+WORL
+WORD
+WORD
SWORD
+WORD
»yWORD

» RIEEK
s WORD
+WORD
+WORD

+ WIREK
LBYTE '

70%
#PAGSIZ R1

GETELK

$#ENDFRG
$#ENDFPRG X0
~0351

$0

$01+<6.%70400x,2%0

~0374
#CAREA»#WDE
$#CAREA, %O

iBRANCH IF WE AREN‘T
#ADJUST BLOCK # FOR PAGE
i SIZE

360 GET ANOTHER RUFFER

i PAIR

§ANNOUNCE WE‘RE FINISHED

§CLOSE OUTFUT FILE

FEXFLICITLY UNMAF 18T

#30,%70400+5.,5(0)

#WDE»2, (0)
~0375

$CAREA#WDIR
#CAREA» %0

WINDOW

H
FEXFLICITLY ELIMINATE 1ST

$#30.%7040043,,(0)

FWOE,2.(0)
0375

#CAREAs»#RIE
#CAREA» %0

#30.,%70400+15(0)

¥RDBy2,00)

0379

#CAREA,» #RDE1
#CAREA» %0
$30,%70400+1,5¢0)
#RDEL2, (0)
~037%5

~0350

@H+ERREYTsRO

¥'0sRO
ROyERRNO+1
$ERR

¥ERR %0
~0351
XCLOS
$ERRRUF
$ERRRUF y %0
~0351
XCLOS

CORSIZ/32.

CORSIZ/32,

AFR»CORSIZ/32.

AFR

CORSIZ/32.

CORSIZ/32,

CORSIZ/32.

i WINDOW
JELIMIMATE 1ST REGION

FUNMAFy ELIMINATE 2ND

i WINDOW & REGION
JEXIT FROGRAM

iMARKE ERROR
§ 2ND DIGIT
sOF ERROR CODE. ..

FFUT IT IN ERROR MESSAGE
FPRINT IT...

RYTE CONE

60 CLOSE QUTFUT FILE
iREFORT VERIFY FAILED...

60 CLOSE QUTFUT FILE

# RODDEK DEFINES REGION

i DEFINITION ELOCK
FWODEK DEFINES WINDOW

i DEFINITION ELOCK
FOEFINE 2NI' REGION SAME

i WAY

AFR1yCORSIZ/32.5050yCORSIZ/32.,5UWS.MAF
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Figure 4-45: Extend Memory Example Program (Cont.)

000761 004 +EYTE
000762 000000 +WORD
000764 000200 +WORD
000766 000000 +WORD
000770 000000 +WORD
000772 000200 «WORD
000774 000400 +WORD
148
149
150
151 000776 CAREA! JELKW
152 001002 RAREA!  ELRKW
153 001016 000000 DEFLT: .WORD
154 001026 040 ENDFRG:! .ASCIZ
155 001065 077 ERR: +ASCII
156 001120 060 ERRNO?! ASCIZ
157 001123 077 ERRBUF: .ASCIZ
158 001155/ ENDCRE = .
159
160
161 000000° JEND
SYMROL TAELE
ADDIT 000274R J+VIRT= 002000
AFR = 000002 FAGSIZ= 000020
AFR1 = 000004 FASS2 000302K
RUF = 000736R RAREA 001002R
RUF1 = 000762R RIE 000726R
CAREA 000776R ROEL 000752k
CORSIZ= 010000 READ 000154R
DEFLT 001016R RS.CRR= 100000
ENDCRE= 001153R RS.NAL= 020000
ENDIT 00085 4R RS.UNM= 040000
ENDFRG 001026R R.GID = 000000
ERR 001063R R+GLGH= 000006
ERRBUF 001123R R.GSIZ= 000002
ERREYT= 000052 R.GSTS= 000004
ERRDAT 000716K START 000000RG
ERRNO 001120R VERIFY 000374RG
ERROR 000672R WDE 00073 4R
GETELK 000402R WDEL 000760R
Jsu = 000044 WRITE 000224R
+ ARS., 0000446 000
001155 001
ERRORS DETECTED! O
VIRTUAL MEMORY USED:! 104946 WORDS ( 41
DYNAMIC MEMORY AVAILAERLE FOR 73 FAGES

y XMCOFY/L {MER/L I TTM=XMCOFY

Extended Memory Feature

AFR1
CORSIZ/32,
0
0
CORSIZ/ 32,
WS . MAF
# AND 2NDN WINDOW
# (BUT WITH MAFFING
i STATUS SET!)
2 FEMT ARGUMENT ERLOCKS
é
0s050,0 iNO DEFAULT FILE TYFES
/ % ENDI OF XM EXAMFLE FROGRAM %/
/TXM REQUEST OR I-0 ERROR # /
/007

/TOATA VERIFICATION ERROR?/
§FOR CSIGEN - XM
3 HANDLERS LOADED !

START
WRNID = Q000742R
WRNIDL1= 000766k
WS,CRW= 100000
WS.ELW= 020000
WS . MAF= 000400
WS, UNM= 040000
W.NAFR= 000001
W.NEAS= 000002
W.NID = 000000
W.NLEN= 000012
W.NLGH= 000016
W.NOFF= 000010
W.NRID= 000004
W.,NSIZ= 000004
W.NETS= 000014
XCLOS 000362R
v aV1l = 000003
v V2 = 000027
FAGES)



Chapter 5
Multi-Terminal Feature

In describing the multi-terminal feature of RT-11 this chapter provides
background information on the hardware and describes the data structures
of a multi-terminal system. It also describes the interrupt service and poll-
ing routines, the programmed requests available to application programs,
and typical situations in which you can use two terminals without making
use of the multi-terminal special feature. Finally, restrictions are listed and
a sample program is provided.

5.1 Components of a Multi-Terminal System

RT-11 implements support for multiple terminals as a special feature that
you select at system generation time and that is available to SJ, FB, and
XM monitors. Essentially, the multi-terminal feature permits an
application program to control one or more terminals. It does not change
RT-11’s basic characteristic of being a single-user operating system.
Specifically, multi-terminal support does not permit more than one terminal
at a time to be the command terminal, the terminal at which you
communicate with RT-11 through the keyboard monitor commands.

Support for multiple terminals is implemented through the following
components:

e MTTEMT.MAC, which processes the multi-terminal programmed
requests.

¢ MTTINT.MAC, which contains the multi-terminal interrupt service
and polling routines.

e SYSTBL.MAC, which defines the multi-terminal terminal control
blocks.

MTTEMT, MTTINT, and SYSTBL assemble and link together as part of
the Resident Monitor for a multi-terminal system.

There are also some important data structures in multi-terminal systems:
* Terminal control blocks, called TCBs (one per terminal), which contain

information about the terminal and the job. The TCBs also contain the
input and output ring buffers for the terminal.

* Logical unit numbers, called LUNs, through which RT-11 refers to the
terminals that are part of your system.
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e Asynchronous terminal status words, called AST words (one per
LUN), in which RT-11 maintains event flags to reflect the current
status of each terminal. This word is a special feature you can select at
system generation time.

5.2 Hardware Background Information

5-2

This section provides some background information that is useful if you are
unfamiliar with the communication hardware RT-11 supports.

RT-11 can support both the DL series (including DL11 and DLV11, or com-
patible equivalent, such as the PDT-11 terminal and modem ports) and the
DZ series (including DZ11 and DZV11) of serial interfaces. An interface is
similar to a device controller; it stands between the computer and a serial
line. The other end of the line can be connected to a terminal, a communica-
tion device, a peripheral device, or another computer.

The DL interface connects the computer system to a single serial line. Each
DL interface has its own Control and Status Register (CSR) address and
vector address. You can have as many as eight DL interfaces on your com-
puter system, including the hardware console interface. Since each DL in-
terface is a separate controller, there is no real physical unit number; 0 is
assigned for consistency. Note that even though the DLV11-J module con-
tains four serial lines, they appear to the software as four separate and
distinct DL interfaces.

Each RT-11 system must have a hardware console interface so that the
hardware can use it at bootstrap time to locate the console terminal. The .
hardware bootstrap on many systems requires that a terminal be connected
at the standard console addresses for diagnostic purposes and for operator
communication at bootstrap time. Your hardware console interface must be
a local DL. Its interrupt vectors are located at 60 and 64 in low memory,
and its LUN is always 0.

A DZ interface is called a multiplexer; it connects several serial lines
through a single pair of CSR and vector addresses. The DZ11 interface con-
nects the computer system to eight lines that have physical unit numbers
from 0 through 7. The DZV11 is similar to the DZ11, but it connects the
system to only four lines that have physical unit numbers from 0 through 3.
You can have two DZ11 or four DZV11 interfaces, for a total of 16 addi-
tional lines.

Figure 5-1 illustrates DL and DZ interfaces and their physical and logical
unit numbers.

At system generation time, you specify through the SYSGEN dialogue how
many DL and DZ interfaces your target system has. You also indicate how
many of their physical units are actually connected to terminals on the
system. Of those terminals, you must indicate which are local and which are
remote lines. Unlike physical unit numbers, which are numbered starting at
0 for each interface, the logical unit numbers that RT-11 uses are unique.
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Figure 5-1: Interfaces and Physical and Logical Unit Numbers

RT-11 SYSTEM

DL
CONSOLE DL bz
PUN: 0 0 0 1 2 3 4 5 6 7
LUN: 0 1 2 3 4 5 6 7 8 9

They begin at 0 and continue until all terminals have been accounted for.
SYSGEN assigns the physical unit numbers of the interfaces to its soft-
ware logical unit numbers in the following order:

Local DL lines (the hardware console interface is always LUN 0)
Remote DL lines

Local DZ lines

Remote DZ lines

L

The order in which SYSGEN assigns physical lines to logical unit numbers
is also the order in which it generates the terminal control blocks. It
generates one TCB for each lirie you specify in the SYSGEN dialogue. The
TCBs are arranged in RMON in the order in which you specify the lines to
SYSGEN. There are no TCBs for any unused interface physical lines.

PDT-11 systems with cluster controllers, and PDP-11/03 and 11/23
systems with a DLV11-J interface (such as the MINC-11) have three addi-
tional DL interfaces at the standard addresses. The PDT-11 ports are label-
ed with terminal numbers that are the same as the corresponding RT-11
logical unit numbers. MINC-11 systems have SLU (serial line unit) port
numbers; the RT-11 logical unit number corresponding to a port is the SLU
number plus 1.

When you bootstrap a multi-terminal system, RT-11 checks for the
presence of each interface for which a TCB exists by attempting to access
its CSR, as specified in the SYSGEN dialogue. If the interface does not ex-
ist, the logical unit number associated with that interface is marked as
nonexistent, and any attempt to attach such a LUN results in an error. The
space occupied by the TCB of a nonexistent LUN is not recoverable. You
can use the SHOW TERMINALS monitor command to verify that the in-
formation you supplied during system generation was correct.
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Note that RT-11 does not attempt to determine whether or not a terminal
or modem is actually connected to an interface line; it assumes the connec-
tion is present. For an unconnected line, no input characters can be
generated; output directed to the line is sent out and lost.

5.3 What Is the Console Terminal?

5-4

A potentially confusing aspect of RT-11’s multi-terminal support is its
ability to change the console terminal. This section defines precisely what is
meant by the terms hardware console interface, boot-time console,
background console, and private console. You will avoid confusion if you
familiarize yourself with these terms and use them consistently.

The hardware console interface, as Section 5.2 describes, is the terminal in-
terface located at vectors 60 and 64, whose control and status registers
begin at 177560 in the I/O page. This is the serial line interface the hardware
bootstrap uses at bootstrap time. (Generally, you must have a terminal con-
nected to the hardware console interface in order to bootstrap the system.)
This is almost always the terminal on which RT-11 prints its startup
message. Remember that the hardware console interface is always LUN 0.

The boot-time console is the terminal on which RT-11 prints its startup
message. This is almost always the same as the terminal connected to the
hardware console interface. In a system without the multi-terminal feature,
the CSR for this terminal, 177560, is contained in TTKS. (TTKS is located
at fixed offset 304 from the start of the Resident Monitor.) In a multi-
terminal system, the CSR is located at offset T.CSR in the first TCB in the
Resident Monitor.

The background console, also called the command console, is originally the
same as the boot-time console. (It remains the same until you use the SET
TT: CONSOL command, described below, to move the background console.)
It is the terminal on which you type commands to the Keyboard Monitor,
and through which you communicate with the background job. If you run a
foreground job or system jobs, they can share the background console. In
this case, you must use CTRL/B to communicate with the background job,
CTRL/F for the foreground job, and CTRL/X for the system jobs. For ex-
ample, to abort a job from a shared console, you must type the appropriate
CTRL sequence, followed by two CTRL/C characters. (See Chapter 3 for
more information on control sequences.)

The programmed requests .TTYIN, .TTYOUT, .CSIGEN, .CSISPC,
.GTLIN, and .PRINT interact with the background console for the
background job, and also for any foreground or system jobs that happen to
be sharing this terminal.

NOTE

RT-11 ignores any unit number you specify with device
TT. Therefore, references to TT:, TTO:, TT1:, and so on, are
all equivalent, and default to the background console.
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In a multi-terminal system you can move the background console to
another terminal by issuing the SET TT: CONSOL monitor command. By
specifying another logical unit number in the SET command, you can move
the background console to any other local terminal in the system, except to
a private console.

A private console is a local terminal used by a single foreground or system
job. You give a job its own private console when you start the job by using
the FRUN/TERMINAL:n or SRUN/TERMINAL:n commands. No other
job can share a private console with the original job. A job’s private console
is the terminal with which its .TTYIN, .TTYOUT, .CSIGEN, .CSISPC,
.GTLIN, and .PRINT programmed requests interact. In addition, any
.READ or .WRITE requests to TT that this job makes access the private
console. When a job has its own private console, you can no longer com-
municate with the job through the background console. Thus, you can no
longer use CTRL/F at the background console, for example, to interact with
a foreground job that has its own private console; instead, you must type on
the private console. To abort this foreground job, you must type two
CTRL/Cs on its private console. You cannot issue keyboard monitor com-
mands from a private console.

You cannot change a private console to a different terminal by using the
SET TT: CONSOL command; that command is valid only for the
background console. This is because the Keyboard Monitor runs as a
background job, and it can run only on the background console. The
background console is private if there are no jobs sharing it.

A shared console refers to the background console unless the following con-
ditions apply:

1. In an FB or XM system without the system job feature, the
foreground job is running with a private console.

2. In an FB or XM system with the system job feature, all six system
jobs and the foreground job are running, and each has a private con-
sole.

Remember that a private console can never be shared.

A console simply refers to a terminal being used as the background shared
console, or as a foreground or system job private console.

5.4 Using Two or More Terminals

There are several situations in which you may need to use more than one
terminal, but you do not need any of the special features available through
the multi-terminal programmed requests. The following sections describe
some of those situations and show how to arrange the terminals, often
without generating support for the multi-terminal feature.
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54.1 A Video Console Terminal and a Hard Copy Printing Terminal

A typical situation that arises in RT-11 applications is the case in which it
is desirable to use a video terminal as the background console terminal and
a hard copy terminal as a line printer. The next two sections describe the
procedures to use, depending on whether the video terminal or the hard
copy terminal is the boot-time console.

5.4.1.1 The Video Terminal Is the Boot-Time Console — If your video terminal
is the boot-time console, it is simple to use a hard copy printing terminal as
a line printer. (Note that the hard copy terminal must be on a DL interface
to use this procedure.) You set up the vectors and CSR addresses for the
hard copy terminal in the LS device handler file (by using the SET LS: com-
mands described in the RT-11 System User’s Guide) and install LS. You
can then simply assign LP to LS and proceed to use the hard copy terminal
as a line printer.

This is the simplest of multiple-terminal applications, since it does not in-
volve system generation. This procedure is not effective, however, if the
hard copy terminal is not on a local DL interface.

Under many circumstances, it may be desirable to have the hard copy ter-
minal become the console terminal. Use the procedure described in Section
5.4.2 to do this.

5.4.1.2 The Hard Copy Terminal Is the Boot-Time Console — How you make the
hard copy terminal the line printer when the hard copy terminal is the boot-
time console depends on whether the video terminal is on a DL or DZ inter-
face. If the video terminal is on a DL interface, there are four possible ap-
proaches that permit you to use the hard copy terminal as a line printer.

In Procedure 1 you can perform a system generation (without including the
multi-terminal feature) to make the video terminal appear to be the boot-
time console. Note that the hard copy terminal remains the hardware con-
sole interface. That is, you must still type the name of the system device on
the hard copy terminal in response to the $ prompt. However, RT-11 does
print its boot message on the video terminal. Once the system is bootstrap-
ped, you can use the LS handler to access the hardcopy terminal as a line
printer.

In Procedure 2 you can authorize a DIGITAL Field Service representative
to change your system configuration so that the video terminal is the boot-
time console, and the hard copy terminal is on a local DL interface. Then
you can use the procedure outlined in Section 5.4.1.1.

In Procedure 3 you can use a special program to switch the background con-
sole to the video terminal. Except that the default boot-time console
defaults to the hard copy terminal after each reboot, this is similar to pro-
cedure 1, above. You can use the LS handler to access the hard copy ter-
minal as a line printer. Section 5.4.2 shows the program you run to use Pro-
cedure 3. ’

Procedure 4 is similar to Procedure 3, except that you alter the monitor im-
age on a mass storage device instead of in memory. This procedure is useful
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only in systems without the multi-terminal feature. Figure 5-2 shows the
patch for Procedure 4. You must supply the correct value for the vector,
CSR, protection offset, and protection code (see Section 3.6.1.2) for your ap-
plication.

Figure 5-2: Patch for Procedure 4 .

! Permanent modification of monitor using CSR and Vector addresses
! CSR = 175620-175626 / Vec = 310-316

.R SIPP < RET >

*monitr.SYS < RET > ! monitr represents the file name
Base? ;S <RET> ! of the monitor file you are
Search for? 60< RET > ! changing

Start? 5100 < RET>

End? 5200< RET>

Found at nnnnnn
Base? nnnnnn < RET>
Offset? <RET>

Base ' Offset Old New?
nnnnnn 000000 000060 310<RET>! New vector
nnnnnn 000002 XXXXXX ~Z<RET>
Offset? 6<RET>
Base Offset Old New?
nnnnnn 000006 000064 314<RET>! New vector plus 4
nnnnnn 000010 XXXXXX ~Z<RET>
Offset? ~Z<RET>
Base? $RMON<RET> ! Find the value of $RMON on your
Offset? 304<RET> ! link map.
Base Offset Old New?
$RMON 000304 177560 175620 <RET> ! New CSR
$RMON 000306 177562 175622 <RET> ! New CSR
$RMON 000310 177564 175624<RET > ! New CSR
$RMON 000312 177566 175626 <RET> ! New CSR
$RMON 000314 177777 ~Z<RET>
Offset? 342<RET> 10ffset for protection byte
Base Offset Old New?
$RMON . 000342 000000 17<RET> ! Enable protection
$RMON 000344 000000 ~Y
*~C

If the video terminal is on a DZ interface, you must perform a system
generation for a multi-terminal system. Specify information about your
system configuration to SYSGEN exactly as it exists. Once you bootstrap
the new system, set the LS vector and CSR to those of the hard copy ter-
minal (by using the SET LS: commands described in the RT-11 System
User’s Guide). Note that this action changes the handler file on a mass
storage device, and that you cannot use the hard copy terminal in any
multi-terminal application. You need to modify the vector and CSR only
once.
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Before you use the LS handler, issue the SET TT: CONSOL command to set
the background console to the video terminal. Since this setting reverts to
its original state after each bootstrap, put this SET command in your start-
up indirect command file.

NOTE

You must never issue the SET TT: CONSOL =0 command
or access LUN 0 in any way; this is guaranteed to crash the
system.

5.4.2 Switching the Console Terminal

Figure 5-3 lists a program called CONSOL that you can use to switch the
console terminal to another terminal in a system without the multi-terminal
special feature. Edit the source file to supply values for the CSR and vector
for the new console; use the symbols CSRAD and VEC. To switch the con-
sole back and forth between two terminals, maintain two copies of the pro-
gram, one for each terminal.

Figure 5-3: Program to Switch the Console Terminal

+MAIN. MACRO V04.00 3-JAN-80 18144325 FAGE 1t

1
2 it
3 H FROGRAM TO CHANGE CONSOLE TO ONE
4 H OTHER THAN EOOT CONSOLE
5 i
-3
7 +MCALL  JMTFS» JFRINT, JEXIT
8
9 175620 CSRAL = 175620 iX%% NEW CONSOLE
10 FINFUT CSR kX%
11 000310 VEC = 310 FXX¥ NEW CONSOLE
12 JVECTOR XXX
13 000372 SYSGEN = 372 FOFFSET TO SYSGEN WORD
14 020000 MTTY$ = 20000 FMULTI-TERMINAL BIT IN
15 iSYSGEN WORD
16
17 000017 EMASK = 360/<<15.X<VEC-<20%<VEC/20:>/8x+1%
18 000342 BITMAF = 326+:VEC/20>
19
207 000000 013700 FROC3: MOV @¥54,5RO iRO => RMON
000054
21 000004 032740 RIT FMTTY$»SYSGENC(RO) iMULTI~-TERMINAL SYSTEM?
020000
000372
22 000012 001044 ENE 2% iYES - CAN'T USE THIS
23 i TECHNIQUE!
24 000014 +MTFS 7 iGO TO FRIORITY 7 11}
000014 005046 LIIF NE <7 CLR ~(64)
000016 116716 LIIF NE =7 MOVE 7r(64)
000007
000022 0137446 Mov B¥70545-(6.)
000054
000026 062716 ADD $703605(64)
000360
000032 004736 JSR 700B(64004
25 000034 152740 RISE #BMASKyBRITMAP(RO) #FPROTECT NEW CONSOLE
000017
000342
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Figure 5-3: Program to Switch the Console Terminal (Cont.)

26 $VECTORS
27 000042 062700 ADD $304+R0 $RO = CONSOLE REGISTER
000304
28 FLIST IN RMON
29 000046 012701 MoV #CSRYR1 iR1 => NEW CSR/DIATA
000206
30 $REG LIST
31 000052 005070 CLR 2(R0) fDISAELE OLD INFUT CSR
000000
32 5 INTERRUFTS
33 000056 012120 1% MOV (R1Y+, (RO)+ $MOVE IN NEW CSR/DATA
34 {REGISTER ADDR
35 000060 005711 18T er1 i IONE?
36 000062 100775 EMI 1% $IF MINUSs NO...
37 ;D0 ANOTHER
38 000064 012700 MoV $605R0 5RO = PRESENT CONSOLE
000060
39 $VECTOR
40 000070 011101 MOV @R1,K1 $R1 = NEW VECTOR
a1 000004 JREFT 4
42 MOV (ROY+y (R1) 4 5LOAR NEW CONSOLE VECTORS
43 JENDR
000072 012021 MOV (ROY+s (R1)+ ;LOAD NEW CONSOLE VECTORS
000074 012021 MoV (ROY+y (R1D+ ;LOAD NEW CONSOLE VECTORS
000076 012021 MOV (RO) 4y (R1)+ ;LOAD NEW CONSOLE VECTORS
000100 012021 MOV (ROY+y (R1)+ SLOAD NEW CONSOLE VECTORS
44 000102 MTES 0 $BACK TO FRIORITY 0
000102 005046 JIIF NE <O CLR -(6.)
000104 116716 LIIF NE <0x MOVE 01(bs)
000000
000110 013746 MOV @+ 0545-(6,)
000054
000114 062716 ADD £°03609(6.)
000360
000120 004736 JSR 701006004
45 000122 JEXIT i TERMINATE PROGRAM
000122 104350 EMT ~0350
46
47 000124 2% JFRINT  #NOMT {FRINT ERROR MESSAGE
000124 012700 MOV $NOMT» %0
000134~
000130 104351 EMT ~0351
48 000132 JEXIT i AND' LEAVE
000132 104350 EMT ~0350
49
50 JNLIST EEX
51 000134 077 NOMT!  .ASCIZ /?MULTI-TERMINAL SYSTEMs USE SET TT CONSOL/
52 JEVEN
53
54 000206 175620 CSR$ JWORD  CSRAD $CSR/DATA BUFFER/VECTOR LIST
55 000210 175622 JWORD  CSRAD+2
56 000212 175624 JWORD  CSRAD+4
57 000214 175626 JWORDI  CSRAD+6
58 000216 000310 JWORD  VEC
59 000000 JEND FROC3
SYMBOL TABLE
BITHAF= 000342 CSRAD = 175620 FROC3  000000R
BMASK = 000017 MTTY$ = 020000 SYSGEN= 000372
CSR 000206K NOMT 000134k VEC = 000310
« AES., 000000 000
000220 001
ERRORS DETECTED: 0
VIRTUAL MEMORY USED: 8448 WORDS ( 33 FAGES)
DYNAMIC MEMORY AVAILAELE FOR 56 PAGES

yVAICONSOL/LIMEB/LITTM=V4CONSOL
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5.4.3 A Separate Terminal for Each Job

Once you perform a system generation for the multi-terminal feature, you
can easily establish private consoles for up to eight jobs. Of course, you
must be running an FB or XM monitor with the system job feature in order
to support more than two jobs.

As Section 5.3 describes, simply use the FRUN/TERMINAL:n or SRUN/
TERMINAL:n commands to start foreground and system jobs, and assign
them to private consoles. You need not use any multi-terminal programmed
requests to do this. Remember that each console is truly private — no two
jobs can share terminals through the FRUN or SRUN /TERMINAL:n
mechanism.

Each job can attach its own console terminal and issue subsequent multi-
terminal programmed requests.

5.4.4 Multi-Terminal Applications

Some applications need to take advantage of RT-11's multi-terminal
feature by using the programmed requests to manage more than one ter-
minal per job. Typical DIGITAL applications include MU BASIC-11,
CTS-300, and FMS-11. These represent applications in which one program
controls several terminals. Jobs that must control more than one terminal
use the multi-terminal data structures and programmed requests.

Introduction to Multi-Terminal Programmed Requests

It is not difficult for a program to use more than one terminal in a multi-
terminal system. Table 5-1 summarizes the actions a program may need to
take in order to use a terminal in addition to its own console terminal. It
also lists the appropriate procedures for the program to follow. Familiarize
yourself with the procedures and the corresponding programmed requests.
The RT-11 Programmer’s Reference Manual provides detailed information
on the format of each programmed request. Study this information before
you attempt to write a multi-terminal application program.

Table 5-1: Summary of Activities for a Program in a Multi-Terminal
System

Activity Procedure to Follow

Obtain the status of a multi- TUse the MTSTAT programmed request.
terminal system.

Acquire a terminal. Use the MTATCH programmed request to attach the
terminal and dedicate it to this program. As part of its
startup procedure a program usually attaches all the
terminals it needs. Note that only one job can attach a
shared console, and only the terminal’s owner can issue
multi-terminal programmed requests for it. However,
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Table 5-1: Summary of Activities for a Program in a Multi-Terminal

System (Cont.)

Activity

Procedure to Follow

Examine the characteristics of
each attached terminal.

Change terminal character-
istics if necessary.

Get a character from a terminal
and wait for it.

Get a character from a terminal;
do not wait for it.

Send a character to a terminal
and wait for it.

Send a character to a terminal;
do not wait for it.

Send a line to a terminal; wait
until it prints.

Reset CTRL/O for a terminal,
enabling output.

Relinquish ownership of a ter-
minal so that another job can
use it.

all the jobs sharing the background console can issue
TTYIN, .TTYOUT, .CSIGEN, .CSISPC, .GTLIN, and
.PRINT requests for it, as well as READ and .WRITE
requests for TT.

To detect status changes without issuing a program-
med request, examine the AST word for each terminal.

Use the MTGET programmed request.
Use the MTSET programmed request.
Use the MTIN programmed request.

Use .MTSET to set the status word, then use the
.MTIN programmed request. (You need issue the
.MTSET only once.)

Use the .MTOUT programmed request.

Use .MTSET to set the status word, then use the
.MTOUT programmed request. (You need issue the
.MTSET request only once.)

Use the .MTPRNT programmed request.

Use the MTRCTO programmed request.

Use the MTDTCH programmed request.

5.6 Multi-Terminal Data Structures

The following sections describe the two important data structures for
multi-terminal systems: terminal control blocks, and asynchronous ter-

minal status words.

5.6.1 Terminal Control Block (TCB)

RT-11 creates one terminal control block, called a TCB, for each terminal
you describe at system generation time. Each TCB located in the Resident
Monitor contains terminal characteristics, terminal status, and the input
and output ring buffers and pointers for the terminal. The length of a TCB
varies depending on the special features you select through system genera-
tion. Note, though, that the first 20 decimal words in each TCB are fixed.

Multi-Terminal Feature
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5.6.1.1 Format — Figure 5-4 illustrates the format of the TCB; Table 5-2
describes its contents. An asterisk (*) marks the data structures whose size,
offset, or existence depends on the special features you select through
system generation.

Figure 5-4: Format of the Terminal Control Block (TCB)

T.CNFG
T.CNF2
TECNT | TTFIL
TWID
T.LPOS | T.OCHR
T.OWNR
TSTAT
T.CSR
T.VEC
T.PRI
TPUN | T.JOB
TPTTI | TNFIL
TINFL | T.TCTF
T.TID

TTTLC
T.IRNG
T.IPUT
T.ICTR
T.IAGET
T.ITOP

INPUT RING
* (DEFAULT SIZE =
134 BYTES)

» T.OPUT
* T.OCTR
* T.OGET
* T.OTOP

OUTPUT RING
* (DEFAULT SIZE =
40 BYTES)

* T.RTRY

T.TBLK
(7 WORDS)

T.AST
* (2 WORDS IN XM)

*]  T.XCNT T.XFLG
* T.XPRE

T.XBUF
(3 WORDS)

* T.CNT
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Table 5-2: Contents of the Terminal Control Block (TCB)

Offset

Name

Description

10

12

14

16

20

22
24

T.CNFG

T.CNF2

T.TFIL

T.FCNT

T.WID

T.OCHR
T.LPOS
T.OWNR

T.STAT

T.CSR

T.VEC

T.PRI
T.JOB

The terminal configuration word. A program and the
monitor communicate with each other about terminal
characteristics through the .MTGET and .MTSET pro-
grammed requests. These requests use a four-word status
block within the program to store terminal information.
The first word, M.TSTS, has the same structure as
T.CNFG. Table 5-3 describes the meaning of each bit in
T.CNFG.

The second terminal configuration word. The structure of
this word is the same as that of M.TST2, the second word of
the four-word status block for MTGET and .MTSET pro-
grammed requests. Table 5-4 describes the meaning of each
bit in T.CNF2.

Contains the character after which this terminal requires
one or more fill characters. The counterpart of this byte in
the four-word status block for MTGET and .MTSET pro-
grammed requests is called M.TFIL.

Contains the number of fill characters that this terminal re-
quires. The counterpart of this byte in the four-word status
block for MTGET and .MTSET programmed requests is
called M.FCNT.

Contains the carriage width of this terminal. The courter-
part of this word in the four-word status block for MTGET
and .MTSET programmed requests is called M. TWID. The
maximum value is 255 decimal.

Contains the character to output.
Contains the current carriage position for this terminal.

A pointer to the impure area of the job that currently owns
this terminal. This word has a value when this terminal is a
private console for a job, or, when it is a shared console and
one job has attached it. This word is 0 when this terminal is
a shared console and no job has attached it, or when it is not
a console and no job has attached it. This word is simply
nonzero in an SJ system if the job issues an . MTATCH re-
quest.

Contains the terminal status. Table 5-5 describes the mean-
ing of each bit in T.STAT.

Contains the CSR for the keyboard of this terminal. It is 0
if the bootstrap could not find the CSR; this makes the
LUN unusable.

Contains the first interrupt vector for this terminal.
Contains the device interrupt priority.

Contains the job number of the job that currently owns this
terminal.
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Table 5-2: Contents of the Terminal Control Block (TCB) (Cont.)

Offset Name Description

25 T.PUN Contains the physical unit number of this terminal. This
value is always 0 for terminals on DL interfaces. For ter-
minals on DZ interfaces, the value ranges from 0 through 7
(0 through 3 for DZV11s).

26 T.NFIL Active fill character counter. This byte contains the
number of nulls left to print.

27 T.PTTI Contains the last character typed on the terminal keyboard.

30 T.TCTF Contains the special fill character. (For example, a space is
the special fill character for a tab, and a line feed is the
special fill character for a form feed.)

31 T.TNFL Contains the count for the special fill character. The value
is stored as a negative number.

32 T.TID A pointer to the terminal identification prompt string,
which contains the job name, and which is used only when
the monitor is actually printing an identification. It is 0 at
all other times.

34 —_ Reserved.

36 T.TTLC Contains the terminal line count (the number of lines in the
input buffer).

40 T.IRNG A pointer to the first byte of the input ring buffer. (For
more information on ring buffers, see Chapter 3.)

42 T.IPUT Input PUT pointer.

44 T.ICTR Input character count.

46 T.IGET Input GET pointer.

50 T.ITOP Indicates the top of the input ring buffer. This word points
to the byte just beyond the high limit of the buffer.

52 — Input ring buffer. Its length is determined at system
generation time. It is TTYIN bytes long.

T.OPUT Output PUT pointer.

T.OCTR Output character count.

- CTRL/O flag. A value of 0 means CTRL/O is not in effect; a
value of 1 means that CTRL/O is in effect.

T.OGET Output GET pointer.

T.OTOP Indicates the top of the output ring buffer. This word ac-
tually points to the byte just beyond the high limit of the
buffer.

—_ Output ring buffer. Its length is determined at system
generation time. It is TTYOUT bytes long.

T.RTRY Present if device time-out support or support for modems

Multi-Terminal Feature
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Table 5-2: Contents of the Terminal Control Block (TCB) (Cont.)

Offset Name Description

T.TBLK Present if device time-out support or support for modems
was selected at system generation time. This seven-word
area is the time-out block for this terminal.

T.AST Present if the asynchronous terminal status word was
selected at system generation time. This word is a pointer
to the AST word. In XM systems, the AST pointer is
followed by a second word that contains a PAR1 value for
mapping to the AST word.

T.XFLG Present if the system job feature was selected at system
generation time. If this flag byte is nonzero, it indicates
that a CTRL/X sequence is in progress.

T.XCNT Present if the system job feature was selected at system
generation time. This byte contains the number of
characters typed in a CTRL/X sequence.

T.XPRE Present if the system job feature was selected at system
generation time. This word contains the previous character
typed on the terminal keyboard.

T.XBUF Present if the system job feature was selected at system
generation time. This three-word area contains the
characters typed as part of a CTRL/X sequence.

T.CNT Present if the system job feature was selected at system
generation time. This word contains the number of jobs
that are sharing the background console.

Table 5-3: Terminal Configuration Word, T.CNFG

Bit Meaning

0 Hardware tab bit. When set, it indicates that this terminal has hardware
tab support. The monitor does not convert a tab character to spaces
before sending it to the output ring buffer. Your program can set this bit
for a particular terminal through the .MTSET programmed request
(described in Section 5.7.3). The SET TT: TAB command sets this bit for
the background console.

1 When this bit is set, the monitor sends a carriage return/line feed com-
bination to the terminal when its carriage width is exceeded. Your pro-
gram can set this bit for a particular terminal through the MTSET re-
quest. The SET TT: CRLF command sets this bit for the background
console.

2 Hardware form feed bit. When set, it indicates that this terminal has
hardware form feed support. The monitor does not convert a form feed
character to line feeds before sending it to the output ring buffer. Your
program can set this bit for a particular terminal through the MTSET
programmed request. The SET TT: FORM command sets this bit for the
background console.
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Table 5-3: Terminal Configuration Word, T.CNFG (Cont.)

Bit Meaning

3 When this bit is clear, the monitor treats CTRL/F, CTRL/B, and
CTRL/X as ordinary characters and ignores their special meanings. The
SET TT: NOFB command clears this bit for the background console.
Your program cannot set this bit for other terminals; only the shared
console can use it.

4-5 Reserved.

6 The inhibit TT wait bit. It is similar to bit 6 in the Job Status Word,
which a program can set. When this bit is set, the program does not wait
for 1/O to complete on the terminal before execution continues. Note that
bit 6 in the JSW affects only the job’s current console; it does not affect
any other terminals attached to this job. If the program uses other ter-
minals for 1/0, it can set this bit in each TCB by using the MTSET pro-
grammed request.

If this terminal is a private console for this job, the job can set bit 6 in
the JSW. In a multi-terminal application, the job can set bit 6 in either
the JSW or in the TCB for the console terminal. In any case, setting bit 6
in one place (the TCB or the JSW) results in both bits being set.

7 The XON/XOFF bit. When set, it enables recognition of the XON
(CTRL/Q) and XOFF (CTRL/S) characters. The SET TT: PAGE com-
mand sets this bit for the background console. (See Chapter 3 for more
information on XON/XOFF processing.)

8-11 The haud rate mask for terminals on DZ lines. (The baud rate for ter-
minals on DL lines is not programmable through the MTSET request.)
The values are as follows:

Mask Rate
0000 50
0400 75
1000 110
1400 134.5
2000 150
2400 300
3000 600
3400 1200
4000 1800
4400 2000
5000 2400
5400 3600
6000 4800
6400 7200
7000 9600
7400 not used
12 The special mode bit. It is similar to bit 12 in the Job Status Word,

which affects the job's console. If this terminal is a private console for
this job, the job can set bit 12 in the JSW to enable special mode. In a
multi-terminal application, the job can set bit 12 in either the JSW or in
the TCB for the console terminal. In any case, setting bit 12 in one place
(the TCB or the JSW) results in both bits being set. (See the description
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Table 5-3: Terminal Configuration Word, T.CNFG (Cont.)

Bit

Meaning

13

14

15

of .TTYIN in the RT-11 Programmer’s Reference Manual for more in-
formation on special mode.) If the program uses other terminals for 1/O,
it can set this bit in each TCB by using the .MTSET programmed
request.

The remote terminal bit. It is read-only, and your program cannot alter
it. When set, this bit indicates that this terminal is remote.

When this bit is set, lower- and upper-case typing is enabled. When this
bit is clear, the monitor converts all typed characters to upper-case. If
this terminal is a private console for this job, the job can set bit 14 in the
JSW. In a multi-terminal application, the job can set bit 14 in either the
JSW or in the TCB for the console terminal. In any case, setting bit 14 in
one place (the TCB or the JSW) results in both bits being set.

When this bit is set, the monitor takes the appropriate action for a video
terminal when the DELETE key is pressed. Your program can set this
bit for a particular terminal through the MTSET programmed request.
The SET TT: SCOPE command sets this bit for the background console.

Table 5-4: Second Terminal Configuration Word, T.CNF2

Bit

Meai\ing

0-1

These two bits indicate the length of a character. The DZ11 can transmit
characters that are five, six, seven, or eight bits long. The values are as
follows:

Value Character Length

00 5 bits
01 6 bits
10 7 bits
11 8 bits

These bits are unused for DL interfaces.

Unit stop bit. Depending on the speed, it indicates the number of stop
bits to send. The values are as follows:

0
1

send one stop bit
send two stop bits (one and one-half stop bits if five-bit characters
are used)

This bit is unused for DL interfaces.
The parity enable bit. When set, it enables parity checking.

Indicates whether parity checking will be odd or even. The values are as
follows:

Value Parity Checking
0 even parity
1 odd parity

This bit is unused for DL interfaces.
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Table 5-4: Second Terminal Configuration Word, T.CNF2 (Cont.)

Bit

Meaning

8-14
15

Reserved.

When set, this bit indicates “‘read pass-all” mode. In this mode, RT-11
transmits all eight bits of each character without interpreting or echoing
the characters. This feature is often referred to as ‘“‘transparency.”” For
example, it passes ~ C as 203 in “read pass-all’”” mode if the terminal sets
the high bit upon transmission. If set, the terminal is implicitly in single-
character mode.

Reserved.

When set, this bit indicates ‘‘write pass-all”’ mode. In this mode, RT-11
transmits all eight bits of each character without interpreting the
characters. :

Table 5-5: Terminal Status Word, T.STAT

Bit Meaning When Set

0 Indicates that a fill sequence is in progress.

1-3 Reserved.

4 Indicates that a detach operation is in progress. Input from the terminal
is ignored.

5 This is the TT handler synchronization bit.

6 Indicates that an output interrupt is expected.

7 Indicates that the terminal has sent XOFF to request suspension of
output.

8-9 Reserved.

10 Indicates that this terminal is the shared console.

11 Indicates that the remote terminal has hung up.

12 Indicates that the terminal interface is a DZ.

13 Reserved.

14 Indicates that two CTRL/Cs were typed at this terminal. This bit is reset
by .MTGET.

15 Indicates that this terminal is a console for some job. It can be shared or

private.

5.6.1.2 Patching a TCB — You can use SIPP to make binary patches to the
terminal control blocks in your monitor file, xxxxxx.SYS. The TCBs are
located in p-sect MTTY$, which you can find on your monitor link map.
They appear in the same order in which SYSGEN assigned physical units
to logical unit numbers at system generation time (see Section 5.2). The
first TCB is for LUN 0; it starts at the label DLTCB::. The TCBs are all the
same size; TCBSZ contains their length.
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5.6.2 Asynchronous Terminal Status (AST) Word

The asynchronous terminal status (AST) word is a special feature that you
can select at system generation time. If you select this feature, you can set
aside space for one AST word per LUN in your own program. Then, when
you issue the MTATCH programmed request to attach a terminal to your
job, you specify as an argument, the address of the AST word for that ter-
minal. The purpose of the AST word is to monitor each terminal’s line so
that the program can obtain certain information without issuing a program-
med request. RT-11 sets or clears bits in the AST word as significant
events occur. The AST word contains information on whether:

e Input is available from the terminal
e The terminal’s output ring buffer is empty
e Double CTRL/C was typed on the terminal

e A remote line just dialed in or just hung up

Table 5-6 shows the event flags in the AST word and their meaning. Unus-
ed bits are reserved for future use by DIGITAL.

Table 5-6: Asynchronous Terminal Status (AST) Word

Bit Name Bit Pattern Meaning When Set

15 AS.CTC 100000 Double or multiple CTRL/C was typed on
this terminal. You must reset this bit; the
monitor never turns it off.

14 AS.INP 40000 Input is available from this terminal.
13 AS.OUT 20000 The output ring buffer is empty.
AS.CAR 200 Carrier is present (for remote lines only).
6 AS.HNG 100 This remote line just hung up and RT-11
dropped it.

The monitor sets bit 15, AS.CTC, whenever two or more consecutive
CTRL/Cs are typed on any terminal. Typing two CTRL/Cs on a job’s con-
sole terminal always aborts the job, unless the job already issued the
.SCCA programmed request to intercept the characters. The job must reset
this bit before it continues processing.

The monitor sets bit 14, AS.INP, when input is available from the terminal.
It can be a line of characters in normal mode, or a single character in special
mode. The monitor clears this bit when the program reads the characters.

The monitor sets bit 13, AS.OUT, when the terminal’s output ring buffer is
empty. This occurs after the last character in the ring buffer is printed on
the terminal. The monitor clears this bit when there are characters in the
ring buffer.
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The monitor sets bit 7, AS.CAR, when it answers a remote line. It clears
this bit when the remote line hangs up or drops carrier. Carrier is a tone
transmitted over the remote line. It carries information through its
modulation.

The monitor sets bit 6, AS.HNG, when it drops a remote line that just
hung up.

5.7 Using the Multi-Terminal Prdgrammed Requests

5-20

The routines in MTTEMT, which are part of the Resident Monitor,
dispatch the multi-terminal programmed requests and process them.

The dispatch routine accepts programmed requests that translate into
EMT 375 instructions with a subcode of 37 and a function code in the range .
0 through 10 octal. The dispatch routine first checks to see if the
programmed request is a valid one. Then it verifies the logical unit number
and makes sure that the terminal is installed. If the programmed request is
for an attach operation, the dispatch routine verifies that the terminal is not
already attached. For all other requests, the dispatch routine verifies that
the terminal is attached to the calling program.

If the request passes all the checks in the dispatch routine, control passes
to the EMT processing code for the individual request.

5.7.1 Attaching a Terminal: .MTATCH .

Issue the MTATCH programmed request to attach a terminal to your job.
This permits your program to print characters on the terminal, get
characters from it, and alter its characteristics.

When a job attaches a terminal, the terminal remains attached until the job
issues a .MTDTCH request, or until the job exits or aborts. If the terminal
is detached through the MTDTCH request, the job is blocked until output
in process for the terminal finishes and the monitor detaches the terminal.
If the terminal is detached when the job aborts, the output terminates and
the monitor detaches the terminal immediately.

The attach routine first checks to see if the terminal is the shared console,
but not this job’s console. If so, the routine issues error code 4. If the ter-
minal is already attached to another job, the routine also issues error code 4.
No other errors can occur in the attach operation.

The routine attaches the terminal by setting up two words in the TCB for
this terminal. In FB and XM systems, it stores the job number in T.JOB. In
SJ systems, T OWNR is made nonzero when the terminal is attached. In
FB and XM systems, T OWNR contains a pointer to the owning job’s im-
pure area.

If AST support is part of the system, the routine puts a pointer to the AST
word in T.AST. In XM systems, it also stores a value in T.AST + 2 to be
used as a PARI1 value in mapping to the AST word.
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The routine next moves some bits from the JSW into T.CNFG, if this ter-
minal is the job’s console. It copies bits 14 (for lower case), 12 (special
mode), and 6 (wait inhibit). If the terminal is the background console the at-
tach routine loads T.TFIL from location 56.

5.7.2 Getting Terminal Status: .MTGET

Issue the MTGET programmed request to obtain the status of a terminal.
(The terminal need not be attached to your program in order to obtain the
status.)

The .MTGET routine moves information from the TCB to the status block
in your program. The following transfers occur:

T.CNFG to M.TSTS

T.CNF2 to M.TST2

T.TFIL to M.TFIL

T.FCNT to M.FCNT

T.WID to M. TWID

high byte of T.STAT to M.TSTW

Then, if the terminal is not attached to any job, the routine returns error
code 1. If the terminal is attached, but not to this job, the routine returns er-
ror code 4 and RO contains the job number of the terminal’s owner. If the
terminal is the shared console, but the job has its own private console, RO
contains the job’s own job number. Note that despite the fact that an error
is returned from this operation, the status information is always placed in
the status block in your program.

Finally, if no error was returned, the routine clears bit 14 (CTRL/C) in
T.STAT.

5.7.3 Setting Terminal Characteristics: .MTSET

Issue the MTSET programmed request to set the characteristics of a ter-
minal. If the terminal is not attached to your program, the routine gives er-
ror code 1.

The routine moves the contents of M.TSTS to T.CNFG, except for bit 13
(the remote terminal bit), which is read-only in T.CNFG. If the terminal is
the job’s console, the routine moves some bits from T.CNFG into the JSW.
It copies bits 14 (for lower case), 12 (special mode), and 6 (wait inhibit).

Whether or not the terminal is the job’s console, the routine moves the
following information:

M.TST2 to T.CNF2
M.TFIL to T.TFIL
M.FCNT to T.FCNT
M.TWID to T.WID

If DZ support is part of the system, and if this terminal is on a DZ interface,

the routine waits for any characters to finish printing on this terminal, then
sets up the DZ line parameters.
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NOTE

Always issue an .MTGET request before an .MTSET re-
quest. Change only the fields you are interested in. For a
one-bit field, use a BIS or BIC instruction to set or clear it.
For a multiple-bit field, clear it first with a BIC and then
use BIS to load the field. Use MOVB or MOV instructions
only for byte or word fields. Changing other bits can cause
unusual terminal service errors. Finally, issue the MTSET
specifying the same status block that you used for the
MTGET request.

5.7.4 Getting a Character: .MTIN

Issue the MTIN programmed request to get a character from the terminal.

The routine moves some bits from the JSW into T.CNFG if this terminal is
the job’s console. It copies bits 14 (for lower case), 12 (special mode), and 6
(wait inhibit). If the terminal is the background console, the attach routine
loads T.TFIL from location 56.

The routine gets a character from the input ring buffer and adjusts the ring
buffer pointers. If the terminal is the console, the routine uses the ring buf-
fer in the job’s impure area. If the terminal is not the console, the routine
uses the ring buffer in the terminal’s TCB.

If the input character is CTRL/C on a console terminal, and .SCCA is not in
effect, the job aborts.

5.7.5 Printing a Character: .MTOUT

Issue the .MTOUT programmed request to print a character on the
terminal.

The routine moves some bits from the JSW into T.CNFG if this terminal is
the job’s console. It copies bits 14 (for lower case), 12 (special mode), and 6
(wait inhibit). If the terminal is the background console, the attach routine
loads T.TFIL from location 56.

The routine moves a character from the user buffer into the output ring buf-
fer and adjusts the ring buffer pointers. If the terminal is the console, the
routine uses the ring buffer in the job’s impure area. If the terminal is not
the console, the routine uses the ring buffer in the terminal’s TCB.

5.7.6 Printing a Line: .MTPRNT

Issue the MTPRNT programmed request to print a string of characters on
the terminal. The string can end with a null byte (to print a carriage return
and a line feed at its end) or a 200 octal byte, just as in the .PRINT program-
med request.
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The routine moves a line from the user buffer into the output ring buffer
and adjusts the ring buffer pointers. If the terminal is the console, the
routine uses the ring buffer in the job’s impure area. If the terminal is not
the console, the routine uses the ring buffer in the terminal’s TCB. If there
is no room in the output ring, the job is blocked until room is available,
regardless of the value of bit 6 in T.CNFG.

5.7.7 Resetting CTRL/O: .MTRCTO

Issue the MTRCTO programmed request to enable output on a terminal
even though CTRL/O may have been typed.

This routine clears the CTRL/O flag in the TCB for the terminal and moves
some bits from the JSW into T.CNFG if this terminal is the job’s console. It
copies bits 14 (for lower case), 12 (special mode), and 6 (wait inhibit). If the
terminal is the background console, the attach routine loads T.TFIL from
location 56.

If you ever alter the contents of the JSW, DIGITAL recommends that your
program issue the MTRCTO request immediately afterward so that the
TCB and the JSW always have the same information. In particular, if you
require lower-case input for a .GTLIN request, set bit 14 in the JSW and
issue .MTRCTO or .RCTRLO before using .GTLIN.

5.7.8 Getting System Status: .MTSTAT

Issue the .MTSTAT programmed request to obtain status information
about the multi-terminal system. This request returns the following four
words of information to your program:

e The offset from the start of the Resident Monitor to the first TCB

¢ The offset from the start of the Resident Monitor to the TCB of the current
console terminal for this job

e The value of the highest TCB (equivalent to the highest LUN)
e The size of each TCB in bytes (Note that all TCBs are the same size.)

Remember that the TCBs are located in the Resident Monitor in the order
in which you specified your DL and DZ lines to the SYSGEN dialogue. That
is, the TCBs for local DLs appear first, followed by remote DLs, local DZs,
and remote DZs.

With the information returned to you by .MTSTAT you can find the TCB
for any terminal in the system and examine its contents with the .GVAL re-
quest. Figure 5-4 and Table 5-2 describe the contents of each TCB.

5.7.9 Detaching a Terminal: MTDTCH

Issue the MTDTCH programmed request to detach a terminal from your
job and make it available for use by another job.
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The routine first sets the DTACHS bit, bit 4, in T.STAT to indicate that a
detach operation is in progress. This avoids any race conditions in the
module MTTINT. (A race condition is a situation in which two or more proc-
esses attempt to modify the same data structure at the same time; as a
result, the data structure is corrupted and the integrity of the processes is
compromised.) It then forces XON if XOFF had been previously set. If the
terminal is not a shared console, the output buffer is then flushed. In SJ ,
the routine loops until T.OUTR is clear. In FB and XM, the job is blocked
until T.OCTR is clear.

The words T.OWNR and T.AST are set to zero to detach the terminal.
DTACHS is finally cleared to finish the operation.

Whenever a job aborts, terminals attached to it are detached without hav-
ing their buffers flushed.

5.8 Summary of Multi-Terminal Programmed Request Error Codes
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Table 5-7 summarizes the error codes that the multi-terminal programmed
requests can put into byte 52. Table 5-8 shows which error codes each pro-
grammed request can generate.

Table 5-7: Multi-Terminal Programmed Request Error Codes and

Meanings
Byte 52
Code Meaning

0 There is no character in the input ring buffer for this terminal; or, there
is no room in the output ring buffer for this terminal.

1 The logical unit number is invalid.

2 The logical unit number does not exist.

3 The programmed request you issued is invalid. The function code for
EMT 375, subcode 37, must be in the range 0 through 10 octal.

4 This terminal is already attached to another job. The program cannot at-
tach it, detach it, or set its status.

5 The user buffer address, the status block, or the AST word address is

outside the valid addressing space for this program. This error occurs in
XM systems only.

Table 5-8: Summary of Error Codes

Programmed Error Code

Request 012345
.MTATCH XX XX
.MTGET XXXXX
.MTSET XXX X

Multi-Terminal Feature



Table 5-8: Summary of Error Codes (Cont.j

Programmed Error Code
Request 012345
MTIN XXXX X
MTOUT XXXX X
MTPRNT X X X
.MTRCTO XXX
MTSTAT X
.MTDTCH XXX

5.9 The Console as a Special Case

The console terminal is always a special case for I/O in multi-terminal
systems. Recall that each job has input and output ring buffers and
pointers, both in its console’s TCB and in its impure area. Whenever a job
gets characters from its console terminal, or writes characters to it, the
monitor uses the set of ring buffers located in the job’s impure area. In this
case, the console can be the background console, if this job is sharing it, or it
can be a private console, if this job has one.

For all I/0 requests involving the job’s console, the monitor performs the
request based on the characteristics indicated in the Job Status Word
rather than in the terminal configuration word. However, if you set or clear
a terminal-related bit in the JSW, the monitor automatically sets or clears
the corresponding bit in the terminal configuration word for the job’s con-
sole the next time the job does any kind of input or output request or reset
CTRL/O request for that terminal (see Table 5-3). DIGITAL recommends
that you issue the . MTRCTO request immediately after altering the JSW to
make sure that the contents of the JSW are duplicated in the TCB for the
terminal. Similarly, if you modify the terminal configuration word with
.MTSET for a job's console, the monitor also modifies the JSW.

On enti'y to the EMT processor, R3 contains a pointer to the job’s TCB, and
R5 contains a pointer to the impure area.

Note that a program must issue the .SCCA programmed request to inhibit
CTRL/C on its console terminel.

5.10 Interrupt Service

Terminal service in multi-terminal systems is centralized in the routines
contained in MTTINT. This source file is assembled and linked together
with other files to become part of the Resident Monitor.

In general, RT-11 services terminals in one of two ways, depending on
whether the terminal is connected through a local or a remote line.
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5.10.1 Local Terminals

Local terminals are connected to an interface by a minimum of four wires:

o Receive data ¢ Transmit data

* Receive ground e Transmit ground

Some interface circuitry, such as the EIA RS232-C, combines the receive
ground and transmit ground into one signal ground; for these, a minimum
of three wires is required. In addition, PDT-11 terminal ports require that
the data terminal ready signal be connected and asserted for proper
operation.

RT-11’s interrupt service routine for multi-terminal systems contains the
following data structures:

e Receive CSR I/O page address

¢ Receive data buffer I/O page address
* Transmit CSR I/O page address

e Transmit data buffer I/O page address

RT-11’s interrupt service is essentially simple. The bootstrap sets the in-
put (or receiver) interrupt enable bit; the monitor leaves it set at all times. If
a character is typed on a local terminal, an interrupt occurs and the monitor
picks up the character. If the terminal is not attached to any job, the
character is ignored. In multi-terminal systems with time-out support, the
monitor turns on the interrupt enable bit for each DL once every 30 clock
ticks.

The monitor only sets the output interrupt enable bit when it is ready to
print a character. It clears the bit after the output ring buffer is empty.

5.10.2 Remote Terminals

Remote terminals are connected to RT-11 through modems (also known as
data sets) and telephone lines so that someone can call up the computer and
ring its data phone. When this occurs, it causes an interrupt, which the
monitor recognizes. If the unit is attached, the multi-terminal service
routine answers the phone call and sends out carrier in response. (Carrier is
a tone transmitted over the remote line that carries information through its
modulation.)

The remote terminal can communicate with RT-11 through an approved
protocol. Essentially, the terminal must send its own carrier to the com-
puter. If the terminal immediately sends carrier, RT-11 recognizes the
signal, and I/O can begin. If, however, the terminal does not send its own
carrier immediately, RT-11 sets a 30-second timer. This time interval gives
someone an opportunity to place a telephone receiver into an acoustic
coupler. If the terminal does not send carrier within 30 seconds, RT-11
disconnects the line.
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Once communication has begun, RT-11 never takes the initiative to ter-
minate the connection. It always continues to send carrier. However, there
are two situations in which RT-11 does hang up on the remote line. If the
terminal stops sending carrier for any reason, RT-11 waits two seconds for
it to resume. When the interval expires, RT-11 hangs up on the remote line.
In the other situation, the remote terminal hangs up. RT-11 detects loss of
carrier and waits two seconds before disconnecting the remote line. Special
requirements for customers in the United Kingdom are met through
assemblies based on the U.K. conditional being set to 1.

Remote terminals require a DL11-E, DLV11-E (or equivalent, such as the
PDT-11 modem port), or DZ interface. In addition to the data lines required
for remote terminals, the following control lines must be connected:

¢ data terminal ready
* ring indicator

e  carrier detect

A local terminal can be connected to a remote terminal interface if it is iden-
tified during system generation as a local terminal. The control lines listed
above are then ignored and you can leave them unconnected.

5.11 Polling Routines

RT-11’s multi-terminal support includes two polling routines, which the
following sections describe.

5.11.1 Time-Out Routine for DL Terminals

You can select the time-out polling routine as a special feature at system
generation time. It is an example of the device time-out feature that is
available to application programs through the .TIMIO programmed re-
quest. RT-11 executes this routine once every half second. Its purpose is to
periodically reenable the I/O interrupt enable bits so that noise on a line or
local static electricity cannot seriously affect transmissions.

Every half second, the polling routine examines each DL line on the system.
It turns on the line’s input interrupt enable bit and, if the line is remote, its
modem interrupt enable bit. Then, if output is pending with no output inter-
rupt, it turns the output interrupt enable bit off and then on, to force an out-
put interrupt on the line. (Depending on the hardware failure that caused
the loss of the output interrupt, this may occasionally cause a character to
be repeated.)

The last thing the time-out routine does is schedule itself to run again.

5.11.2 DZ Remote Line Polling Routine

The DZ polling routine polls the terminals connected to the system through
DZ interfaces. It is necessary because these terminals do not interrupt
when their status changes.
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The remote line polling routine schedules a mark time request. It waits 30
seconds after the data set rings to detect carrier. If there is no carrier after
the required amount of time, the routine disconnects the remote line. The
routine takes similar action on line errors and lost carrier. This routine is
automatically included in the multi-terminal service for remote DZ lines.

5.12 Restrictions

5-28

The following restrictions apply to systems with the multi-terminal special
feature:

1. Support of the DL11-W interface requires the presence of a REV E or
later module. In the absence of a REV E module, ECO (Engineering
Change Order) number DEC-O-LOG M7856-S0002 must be applied to
the M7856 module.

Support of the DLV11-J interface requires the presence of a REV E or
later module. In the absence of such a module, ECO M8043-MR002
must be applied to the M8043 module.

2. The multi-terminal handler can support remote terminals. Modem con-
trol is available for both DL11-E and DZ11 interfaces. The DL11 con-
trol answers ring interrupts, permitting terminals to dial in to the
system. Dial-in is possible with the DZ11 interface, despite lack of a
ring interrupt in the DZ11, if the modem is operated in auto-answer
mode. This is achieved through a polling routine that periodically
checks the status of each line on the multiplexer (see Section 5.11.2).
Dial-up support for DZ interfaces requires BELL 103A-type modems
with ‘“common clear to send and carrier’’ jumpers installed. With this
option installed, the modem operates in auto-answer mode.

3. The hardware console interface must be a DL interface, and it must be
a local terminal. You can use the SET TT: CONSOL command to move
the background console to any other local terminal in the system.

4. The number of DL interfaces RT-11 supports, both local and remote, is
limited to eight. This number includes the hardware console interface.

5. The number of DZ11 controllers is limited to two, for a total of 16 lines.
The total of DZV11 controllers is limited to four, for the same total
of 16.

6. The VT11 scroller option is disabled when the multi-terminal special
feature is present in a system. The commands GT ON and GT OFF are
not valid in multi-terminal systems. For this reason, EDIT cannot use
the display support. The use of graphics is still supported, though, and
the display support in TECO works as well.

7. The maximum input data rate for a single terminal is 300 baud. The ag-
gregate total input data rate for a system is 4800 baud.

You can set the output baud rate to any speed; RT-11 sends output as
fast as possible, depending on the capacity of the CPU and the nature
of its load.
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8.

10.

When you type double CTRL/C in an SJ system, the monitor does a
hardware RESET instruction. This causes the DZ multiplexer to reset

'its status and to drop Data Terminal Ready on all lines, thus hanging

them up. This action is part of the general cleanup the system performs
after a program aborts.

If you plan to devote a terminal to use with the LS handler, do not
specify the terminal’s DL interface in the SYSGEN dialogue for a
multi-terminal system. Do not attempt to attach the terminal from a
multi-terminal application program, either.

Setting the baud rate, character length, number of stop bits, and pari-
ty via the MTSET programmed request is supported only for DZ in-
terfaces.

5.13 Debugging a Multi-Terminal Application

Use VDT, the Virtual Debugging Technique, to debug a multi-terminal ap-
plication. See Section 4.9 for more information on VDT.

5.14 Multi-Terminal Example Program

Figure 5-5 shows a program that uses the multi-terminal programmed re-
quests.

Figure 5-5: Multi-Terminal Example Program

MTYSET.MAC -~ MULTI-TERMINAL INI MACRO V04,00 2-JAN-80 01:47:21
TARLE OF CONTENTS

1

3
4
5

=

3.

5

4

7 -

/

8....

NOON N D R e

8]

3

EaliE s s N S i =]

Macros and definitions

Start of rrodram

Terminal ID Log rowutiness error routines
Main terminal setur subroutine

Terminal I/0 & Get baud rate routines
Timeout Comrletion Routine

Baud rate mask & ASCII baud rate tables
Terminal Il tables

Messadge text & Initialization string

+TITLE MTYSET.MAC - MULTI-TERMINAL INITIALIZATION
JENARL  LC

+
MULTI-TERMINAL INITIALIZATION FROGRAM

AUTHOR! L.C.F, ~ 10/79

l
i
’
H
B
i This rrogram will asttach all *krnown® terminals and

i if they are DIGITAL terminals it will determine at what
i baud rate thev are set and rut that informastion in

i their TCEs. ("Foreign" terminals will be assumed to

i be set at the correct baud rate)., As each terminal is

7 "imitialized's its screem will be cleared, 3 "sidn-on"
i messade will be disrlavedy and the terminal ture and

i baud rate will be lodgded omn the backdround consocle.

G-

+SETTL Macros and definitions

+MCALL  MTATCHs JMTDOTCHy MTGET JMTOUTy .MTIN
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Figure 5-5: Multi-Terminal Example Program (Cont.)

23
24
25
26 000007
27 000000
28 000002
29 000004
30 000006
31 007400
32 000100
33 010000
34 004000
35 010000
36 020000
37
38 100000
39 000001
40 000002
41
42 000012
43 000015
44 000033
1
2
3
4
S 000000 012703
001102°
6 000004
000004 012700
001064
000010 012710
017410
000014 010340
000002
000020 005060
000004
000024 104375
7 000026 016302
000004
8 000032 001506
9 000034 016304
000002
10
11 000040 161304
12 000042 001410
13
14 000044 016305
000006
15 000050 005001
16 000052 005201
17
18 000054 160504
19 000056 101375
20 000060 010127
21 000062 000000
22 000064 020267
177772
23 000070 001465
24 000072
000072 012700
001064°
000076 012710
017405
000102 005060
000002
000106 110260
000004
000112 104375
25 000114 103532
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JMCALL
+MCALL

M.TSTW
S.FTCE
S.CTCE
S.NTCE
S.STCE
MSFEED
TCRITS
TTSFCS$
HNGUF$
nZ1iis

REMOT$

KEKSF
TAR
NOCRLF
LF

CR

ESC
+SETTL
+ENAEL

MTYSET:

DIVs$:

CLUN:
1%

JMTERNT » JMTSET s «MTSTAT, EXIT
JHTRCTOy FRINT, TTYOUT, ,MRKT» .CMKT

DN ON

7400
100
10000
4000
10000
20000

[ T N T O T T A | O { A 1

100000

1

2

wonoH

12
15
33

Start of

LSEsLC

MOV

+MTSTAT
MoV

MOV

MoV

CLR

EMT
MoV

REQ
MOV

SUR

EEQ

MOV

CLR
INC

SUE
EHI
MOV
+WORD
CMF

REQ
+MTATCH
MOV

MOV

CLR
MOVE

EMT
ECS

Frogram

#STATIR3

#AREAYR3
$#AREA %0

j0ffset to state word in TCE
i6tat offset to lst TCE offset
iStat offset to console TCE
;Stat offset to # TCE (LUN)
iStat offset to TCER size

$BRaud rate mask = bits 8-11
iInhibit TT wait

sTT srecial bit

sTerminal had hung ur (offline)
inzit

iNZ11 line is remote

iBacksrace for rubout(delete)
}Hardware tab
$XCLEARX CRLF bit

iLine feed

jiCarriade return
iEscare

$MUST enable Lower case!
iR3 =» 8 word status

iGet MTTY status

#31,%70400+8,y (0}

R3r2.(0)

4,(0)

~0375

S«NTCR(R3)sR2 iR2 = # of LUNs

MTEXIT

jJust exit if none!

S.CTCR(R3) R4 iR4 = Dffset to console

@R3IsR4
1¢

S+STCR(R3) RS

R1
R1

RS R4
nIvs

R1y (FC)+
[
R2yCLUN

4%
#AREA, 0
$AREA, %0

iTCE

tR4 = Diff from 1st TCE
iNo differencey sO
FLUNIO = consoles..

RS = Size of TCE

iR1 = Quotient

jDivide diff bw size
jof a TCE

ito det LUN of console
jRereat until done...
iSave console LUN...
jfor later reference
$Is this the Console?

iYes..s.already set wur
yR2 iTryu to attach terminal

$£31.%70400+5.5¢0)

2,00)

R2,4.(0)

~0375
MTERR1

$If carry sety can’t !

'



Figure 5-5: Multi-Terminal Example Program (Cont.)

26 000116 +MTGET #AREAYR3sR2 iGet terminal’s status
000114 012700 MoV #AREA, %O
0010647
000122 012710 MOV $31.%70400+1+(0)
017401
0001246 010360 MOV R3,2.(00)
000002
000132 110260 MOVE R2s4.(0)
000004
000136 104375 EMT ~0375
27 000140 103524 ECS MTERR2 iCan’tt (Very Badg!!!)
28 000142 132763 RITE #$0711%/400,M. TSTW(R3) $1s line a3 DZ117?
000020
000007
29 000150 001451 REQ =% ] iNo...3s5ume a3 DL11
30 000152 132743 BITE $REMOT$/400, M. TSTW(R3) iRemote line?
000040
000007
31 0003160 001404 REQ 2% iNore...
32 000162 132763 RITE +HNGUF$/400s M. TSTW(R3) ils it online?
000010
000007
33 000170 001030 ENE 5¢ iBranch if not
34 000172 004767 2% CALL TSETUF }Fidure out baud rate
000230
35 iand terminal tuyre
36 000176 3¢ +MHTRCTO #AREASR2 iReset CTRL/0
000176 012700 MoV #AREA» %O
00104647
000202 012710 MoV $31.%70400+4.,(0)
017404
000206 010260 MoV K2s4.(0)
000004
000212 104375 EMT ~0375
37 000214 +MTFRNT #AREA»#HELLOYR2 iClear screen (if CRT)
000214 012700 MoV #AREAYZO
0010647
000220 012710 MOV $31.%70400+7.5(0)
017407
000224 012760 MoV $HELLO»2,(0)
0017167
000002
000232 110260 MOVE R2+4.(0)
000004
000236 104375 EMT ~0375
38 iand saw hello...
39 000240 0047647 CALL LOGLUN iLog term Il on console
000052
40 000244 005302 4% DEC R2 iAre we finished?
41 000246 100306 EFL 1% iNo...g0 do another LUN
42 000250 MTEXIT? JEXIT tWe’'re done.,.exit
000250 104350 EMT ~0350
1
2 «SRTTL Terminal Il Log routiness error routines
3
4 000252 5% +FRINT $#0FFLIN jtLog terminal offline
000252 012700 MOU FOFFLIN»ZO
0014657
000256 104351 EMT 0381
S 000260 0047647 CALL FRNLUN yInclude LUN, ..
000064
6 000264 +FRINT #CRLF i+.vsa3nd CRLF
0002464 012700 MOV #CRLF %O
001715
000270 104351 EMT 0351
7 000272 000764 BR 4% iMerde. ..
8
9 000274 052713 6% KIS $#<TTSFC$!TCRIT$>y@R3 sDL11 - Set the
010100
10 isrecial bits in TCE
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Figure 5-5: Multi-Terminal Example Program (Cont.) A

11 000300 012704
001140
12 000304 004767
000240
13
14 000310 004747
000170
15 000314 000730
16
17 000316 LOGLUN:
000316 012700
001550’
000322 104351
18 000324 004767
000020
19 000330
000330 010100
000332 104351
20 000334
000334 012700
001571
000340 104351
21 000342
000342 010400
000344 104351
22 000346 000207
23
24 000350 010200 FRNLUN!?
25 000352 000300
26 000354 062700 7%!
173001
27
28 000360 100375
29
30 000362 062700
035057
31
32 000346
000346 104341
000370 103776
33 000372 000300
34 000374
000374 104341
000376 103776
35 000400 000207
36
37 000402 MTERR1:
000402 012700
001462
000406 104351
38 000410 000403
39
40 000412 MTERR2:
000412 012700
0015217
000416 104351
41 000420 004767 88!
177724
42 000424 000707
1 JSETTL
2
3 000426 012704 TSETUF!
001120°
4 000432 011367
000520
5 000436 052713
010100
6 000442 005724 10%!
7 000444 042713
007400
8 000450 012405
9 000452 050513
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MoV

CALL

CALL
ER

+FRINT
MOV

EMT
CALL

+FRINT
MOV
EMT
JFRINT
MoV

EMT
+FRINT
MOV
EMT
RETURN

MOV
SWAER
ALDD

EFL

AL

WTTYOUT
EMT
BCS
SWAER
L TTYOUT
EMT
ECS
RETURN

$ENDTRL s R4

TERMID

RSET
3%

$ATMSG
¥ATHEG» %0

~03%51
PRNLUN

R1

R1+7%0
~0351
FTINIT
#TINIT,»2%0

~0351
R4

R45%0
~0351

R2sRO
RO
$:-10,%4005+1sRO

7%

#/0%400+/0+10.%400-13,R0O

+FPRINT #MSG1

MOV

EMT
ER

+FRINT
MoV

EMT
cAaLL

BR

#MSG1,%0

~0351
84

#MSG2
#MSG2, %0

~0351
FRNLUN

1%

ilon’t know sreed...
iTry to figure out

ithe terminal ID
iSet new status...

iMerde...

$Frint 1st rpart of log

iFrint LUN...

jseothen terminal ID,..

feseand finalle...

i+eeethe baud rate

iCory LUN into RO
iFut it in hidgh bute
ilivide bw 10 with

irereated subtracts

iQ=Q-10, R=R+1 till

joverflow (V set)

iCorrect 4

iQ & R then
iPrint Q...

ASCIIfyYs e

iR to low bute...
iPrint it...,

ilLog attatch error

iMerde

ilLog get status error

sInclude LUN

$Try next LUN

Main terminal setur subroutine

MOV

MOV

RIS

18T
RIC

MOV
RIS

#5FTAERL-2sR4
BRISMSTAT
$<TTSFC$ ! TCRITS$>

(R4)+
#MSFEED@R3

(R4)+ RS
R5y@R3

$R4 => EBaud rate table
iSave old status...
+@R3 $Set srecizl bits

iR4 Next table entry
iClear baud rate mask

=

#RS = Raud from table !
iSet it in CONFG1 |



Figure 5-5: Multi-Terminal Example Program (Cont.)

10

11

12

13
14

15

14

17
18

19
20
21
22
23
24

[N R ]

~N o

2B

30

31

32
33
34

35

36
37

38
39
40
41

42
43

44

45 .

a6
47

48
49

000454
000460
000462

000470
000472
000476

000502
000504

000510
000512
000514
000516
000516
000522
000526
000532

000536
000540

000542
0005446

000550
000550

0003554
000560
000564

0003570
000572

000576

0004600
000602

000606
000610

000614
000620
000622
000624

000630
000632

000636
000640

000642

000646
000650

022704

0011607

001430
012767
000032
000410
000305
160567
000402

004767
000046
103757
042713
010100
042113

052113
011404

012700
001064
012710
017400
010360
000002
110260
000004
104375
000207

004767
000254
000763

012700
001064
012710
017400
010360
000002
110260
000004
104375
012705
001302
012501

001420
004767
000044
103773
066701
000246
032701
000001
001401
005201
026721
000332
001362
026721
000326
001357
000207

012701
001634
000261
000207

RSET?

12418
1362

1442

TERMID?

1643

18%:

CMF
REQ
MoV

SWAER

SUER

CALL

RCS
RIC

EIC
KIS
Mov
+MTSET
MoV
MoV
MOV
MOVE

EMT
RETURN

CALL

ER

+MTSET
MoV

MOV

MoV

MOVE

EMT
MoV

MOV

EEQ
CaLL

ECS
ADD

RIT
REQ
INC
CMF

ENE
CMF

ENE
RETURN

MOV

SEC
RETURN

$ENDTEL R4
14%
$32,L0TIN

RG
R3sLOTIM

TERMID

10%

# TTSFCS!TCRITS >

(R1)+s@R3
(R1)+s@R3
CR4AYR4

#AREASR3sR2
$¥AREAS X0

$31.,%70400+0+(0)

R3s2.(0)

R2r4.,(0)

~0375

GETSF
13¢

$AREAYRIIR2
$AREAY %O

$#31,%7040040,¢0)

R352.(0)
R2s4.(0)

~0379
#TTLIST»RS

(RZ)+sR1

18%
TOUT

15¢
OUTCTsR1

¥1,R1

16%

R1

MSGINy (R1)+

15¢
MSGIN+2, (R1)+

15%

$UNKTTyR1

Multi-Terminal Feature

jAre we thru table?

iYes., .use 35 is
iMadic # in MRKT ardg

iFut mask in low bute
iSubtract from madic #

ito det # ticks to wait
iTry to det terminal ID

iNo dice...
r@R3 iClear srecial bits

iTurn off unwanted
jortions

iTurn on desired ortions
iR1 => Terminal ID string
iR4 => ASCII baud rate
iStore status

iReturn to caller
iGet ASCII of baud rate
iMerde. ..

iSet new status

iRS => List of Terminals
iR1 => Terminal srecific
scharacter seaquence

{End of table - leave !
iTry to communicate.,.

no dice
Exrected resronse

iCarry set =
iR1 =X

10dd address?

FNO+w o
FYES! Make it even
iMatch?

iNore...
iStill match?

iNoFre...

iReturn with

iRl =* ortions

iR1 => *Unkown terminal®

iSet carrg...
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Figure 5-5: Multi-Terminal Example Program (Cont.)

LN

D

o

10

11

12
13

14
15
16

17
18

19
20
21

22
23
24
25

26

000652
000656
000662
000662
000666
000672
000676
000702
000710
000712
000714
000720

000724
000724

000730
000734
000742
000750
000756
0007460
000764
000766
000766
000772

000776

001004
0010190

001016
001020

001022

001026
001030

001034
001036
001040

001044
001046
001050

112167
000202
112167
000200

012700
001064
012710
017403
010160
000002
110260
000004
116760
000154
000005
104375
103442
105067
000252
005067
000240

012700
001064
012710
011000
012760
001076
000002
012760
001052
000004
012760
000001
000006
1043735
105767
000206
001775

012700
001064
012710
017402
012760
001162
000002
110260
000004
116760
000044
000005
104375
000207

012704
001122
011305
042705
170377
022405
001403
022724
001612
001373
011404
000207

~

~

~

«SBTTL

TOUT?

19¢¢

20%¢

GETSF?

214

+SETTL

b-34 Multi-Terminal Feature

Terminal I/0 & Get baud rate routines

MOVE
MOVE
+MTOUT
MoV
MOV
MOV
MOVE
MOVE
EMT
RCS
CLRE
CLR

+ MRKT
Moy

MoV

MOV
MOV
MOV
EMT
TSTE
REQ
+MTIN
MOV
MoV

MoV

MOVE
MOVE
EMT
RETURN
MOV

MoV
EIC

CHF
EEQ
CMF

ENE
MOV
RETURN

Timeout

(R1)++s INCNT iGet # char in resronse

(R1)+,0UTCT iGet # char in *"What-
iare-gyou?® sequence

#AREA*R1»R2,0UTCT iSend What-sre-vou?

$AREAY X0

$31.%70400+3.,(0)

R1s2.€0)

2+4.(0)

OUTCT»S.(0)

~0375

208 i0utrut error

TFLG iClear flag
MSGIN+2 finit inrut buffer

#AREA#WAITM»#CRTNE»#1 $Set time-out
$AREA»ZO

$#18.%704004+0,(0)

FWAITM,2.(0)

$CRTNEs4.(0)

$1:6.(0)

~0375

TFLG

19¢

$AREA» #MSGINYR2yINCNT iGet resronses
#AREA» %O

$31.%70400+2.5(0)

#MSGIN»2.(0)

R2s4.(0)

INCNT»S.(0)

~037%5

$(with carry status)
#SFTAEL R4 iR4 => baud rate table
@R3 RS iRS = TCB confid word 1
$"C<MSFEED>»RS iClear a3ll but baud rate
(R4)+>R3 icomrpare it with tsble
22% $Branch if equal
#UNKSFy (R4 + $End of table?
21% iTry another if not
@R4sR4 iR4 =» ASCII baud rate

iReturn to caller

Comrletion Routine



Figure 5-5: Multi-Terminal Example Program (Cont.)

27
28

29
30
31
32
33
34
35
36
37
a8

(4 QAT (e 2

o

10

11

12

13

15
16
17
i8
19
20
21
29

22
23
24
25
26
27

N ONOUD G

PIPI P P = b o b b e e
GINF OV NIINDUWNNHO

r
»

001052

001056

001060
001062
001064
001076
001100
001102

001122
001124
001126
001130
001132
001134
001136
001140
001142
001144
001146
001150
001152
001154
001156
001160

001142
001172

001173
001206
001220
001232
001244
001256
001270

001302
001302
001304
001306
001310
001312
001314

001316

001324
001330

001334
001343

001350

105267
000114

000207

000000
000000

000000
000000

007000
001270
003400
001232’
002400
0012207
006000
001256
005000
001244
002000
0012067
001400
001173
000000
0016127

000

061
061
063
0461
062
064
071

0013167
0013437
0013467
001413/
001437°
000000

004

033
000002

040
002

033

CRTNE! INCE TFLG }Set time-out flasg
RTS PC iReturn to mainline
i Ardument blocks & workind storade
INCNT! JWORD 0 $Inrut bwte count
QUTCT?! J+WORD 0 jOutrut bwte count
AREA! +BLKW S JEMT Argument block
WAITM! L WORD 0 iTime-out ardument
LOTIM! WORL 0 3 Lo order ticks
STAT? +BLKW 8. iStatus block (8 words)
+SETTL BRaud rate mask & ASCII haud rate tables
i BRaud rate table - in "best duess® order
SPTARL?! JWORD 7000y E92600 $9600 baud iScores
+WORD 3400,E1200 §1200 baud $LA120
+WORD 2400,R300 #1300 baud iLA3S
+WORD 4000, E4800 §4800 baud iScores
+WORD 5000,E2400 §2400 baud iScores
+WORD 2000yE150 1150 baud iLA3S
+WORD 1400sE134 1134.5 baud i IEM
MSTAT! WORD 0 iOrig status
ENDTELS WORD UNKSF tEnd-of-table
i=* *Unknown baud*
MSGIN: JELKE 8. iResronse buffer
TFLG? +BRYTE 0 iTime-out flag
+NLIST EREX
E134¢ +ASCIZ /134.5 Raud/
B150¢ +ASCIZ /150 Raud/
E300¢ +ASCIZ /300 BRaud/
B1200! .ASCIZ /1200 Raud/
E2400¢ JASCIZ /2400 Raud/
E4800¢ LASCIZ /4800 Eaud/
E9600¢ JASCIZ /9600 Raud/
+EVEN
+SETTL Terminal ID tables
TTLIST! iTerminal List...

s

VT100¢

+WORD VT100

+WORD VTS2

+WORD LAL120

+WORD LA34

+WORD VTS5

+WORD 0 iTable Storrer

i DEC terminal command sequences

+BYTE 4939ESCy [y ’c FINCNTOUTCNT, "W-A-Y"* sea
+EVEN

+RYTE ESCr'Ly 7?s’1 iResronse
+WORD NOCRLF»<TAR!'KKSP> jUndesiredrllesired
jortions

+ASCIX 7/ VT100/4200> $ASCII terminal ID

+BRYTE 2+2+ESCy»’2

+EVEN

+RYTE ESCy»’/+0+0 iVTS2 resronse varies
jw/ model!
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Figure 5-5: Multi-Terminal Example Program (Cont.)

25 001354 000002 +WORD NOCRLF s <TAR ! BKSF >
26 001360 040 +ASCII / VTS2 /<200
27
28 001367 004 LA120:! LRYTE 4+39ESCy‘Ly’cC
29 +EVEN
30 001374 033 +RYTE ESCy‘Ls’Ty’2
31 001400 000000 +WORD 0,0
32 001404 040 +ASCII / LA120/<200:>
33
34 001413 004 LA34: +BYTE 4y37ESCy 'Ly’
35 +EVEN
36 001420 033 © WBYTE ESCy“L» 79’3
37 001424 000000 +WORL 0r0
38 001430 040 +vASCITI 7/ LA34 /<200
39
40 001437 002 VTSS! +EYTE 2+29ESCy’2Z
41 +EVEN
42 001444 033 +BYTE ESCs» ‘E»0+0
43 001450 000002 +WORD NOCRLFy<TAB! BKSF >
44 001454 040 +ASCITI / VTSS /
45 +EVEN
46
1 +SETTL Messade text & Initialization string
2
3 i Messade text...
4
5 001462 015 M561: +ASCII <CR»<LF>/7?Cannot attach terminal LUN!/
6 001520 200 +ASCITI <200>
7 001521 015 MSG2: +ASCII <CR»<LF»/?Status error - LUN!/<200>
8 001550 015 ATMSG:! +ASCII <CR><LF:>/Attaching LUN!/{200>
? 001571 040 TINIT! ,ASCII / imnitialized at /<200
10 001612 145 UNKSF{ JASCIZ /unknown baud rate/
11 001634 040 UNKTT! ASCII / unidentifiable terminal/<200:
12 001665 124 OFFLIN! ,ASCII /Terminal offline ~ LUN!/<200x
13 001715 000 CRLF! +ASCIZ //
14
15 i Clear screen &% say hello character string...
16
17 001716 033 HELLO: .ASCII <ESC>*[C2J" iVT100 Erase screen
i8 001722 033 +ASCII <ESCH>"* jVUTS2 'Exit hold
19 i screen mode®
20 001724 033 +ASCII <ESC>"H"<ESC>*J* 3VTS52 Home + "Erase-
21 i to-End-of-Screen®
22 001730 015 +ASCIT <CRXx<LF> iCRLF (for hardcory)
23 001732 124 +ASCIZ /TERMINAL INITIALIZED/
24
25 000000’ LEND MTYSET fEnd of eprodgram
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Figure 5-5: Multi-Terminal Example Program (Cont.)

SYMEOL TAERLE

AREA
ATMSG
EKSF =
E1200
B134
E150
1’2400
BR300
k4800
E?600
CLUN

CR =
CRLF
CRTNE
nivs
DZi1¢ =
ENDTEL
ESC =
GETSF
HELLO
HNGUF $=
INCNT

+ ARG,

ERRORS DETECTED?

001064R
0015350k
100000

001232k
001173R
001206R
001244R
001220R
001256K
001270k
000062R
000015

001715k
001052k
000052R
010000

001160R
000033

001022R
001716R
004000

0010460k

000000
001757

000
001

VIRTUAL MEMORY USED!

LAL120
LA34

LF =
LOGLUN
LOTIN
MSGIN
MSG1
MSG2
MSFEED=
MSTAT
MTERR1
MTERR2
MTEXIT
MTYSET
M. TSTW=
NOCRLF=
OFFLIN
ouTCT
FRNLUN
REMOTS$=
RSET
SFTARL

2984 WORDS
DYNAMIC MEMORY AVAILARLE FOR
sVAIMTYSET/LIMER/LITTH=VAIMTYSET

56

001367k STAT 001102R
001413k S.CTCRE= 000002
000012 S+FTCE= 000000
000316R S.NTCE= 000004
001100F S.8TCE= 000006
001162k TAB = 000001
001462R TCEIT$= 000100
001521R TERMID 000SSOR
007400 TFLG 001172k
001156R TINIT 001571R
000402k TOUT 000652R
000412R TSETUF 000426R
000250k TTLIST 0O01302R
000000R TTSPC$= 010000
000007 UNKSF 001612k
000002 UNKTT 001634R
001665R VT100 001316R
0010462R vTS2 001343R
000350k VTSS 001437R
020000 WAITHM 001076R
000504R veeV1 = 000003
001122R
( 39 FAGES)
FAGES

Multi-Terminal Feature
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Chapter 6
Interrupt Service Routines

This chapter describes the ways a program can transfer data between
memory and a peripheral device. First it covers non-interrupt programmed
I/O; next it introduces the concept of using interrupts to handle device I/O
by comparing the advantages and disadvantages of in-line interrupt service
routines and device handlers. After these general points have been discuss-
ed, the chapter continues with a description of the structure of an interrupt
service routine, and shows in detail how to organize and write one. A
skeleton example of a foreground program that contains an interrupt ser-
vice routine ends this discussion of applications. The discussion is followed
by a final section dealing with the considerations involved in using inter-
rupt service routines in an extended memory environment.

6.1 Non-Interrupt Programmed 1/O

One way to move data between memory and a peripheral device is to use
non-interrupt programmed I/O. According to this method, your program
operates with the device interrupts disabled and uses flags to coordinate
the data transfer. Your program checks the ready bit in the status register
for a particular device, moves the data when appropriate, and then either
waits in a tight loop for another ready signal or does other processing and
polls the device occasionally. Programmed I/O is device-specific and does
not make use of operating system features designed for I/O processes. In
addition, it ties up system resources until the I/O transfer is complete.

However, programmed I/O is sometimes the best method to use. For exam-
ple, the Resident Monitor uses programmed I/O to print its ?MON-F-
System halt error message. It first performs a RESET to stop all active 1/O.
Then it waits in a tight loop for the console terminal to print the error
message, one character at a time. Clearly in such a situation, where the
monitor itself may be corrupted, no other job or data transfer could be run-
ning, and the console terminal is the only desirable output device. Also, the
monitor .PRINT routine may have been corrupted and should not be used.
Given these requirements, programmed I/O is the best method to use for
printing this error message.

In an application program you could use non-interrupt programmed I/O for
a time-critical device when the program must respond as soon as a
character becomes available in a register.
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6.2

6-2

The following lines of code from RMON demonstrate non-interrupt pro-
grammed I/O:

; Note that R1 points to the message text.

; TTPS is a word in memory containing the address of
; the terminal printer status register;

; its ready flag is the high-order bit of the low byte.

; TTPB is a word in memory containing the address of
; the terminal printer buffer.

; Moving a character to the printer buffer resets

; the busy flag in the status register.

5%: TSTB @TTPS ;TEST FOR TT BUSY
: BPL 5% ;IF YES, TEST AGAIN
MOvVB (R1)+,@TTPB ;IF NO,; PRINT A CHARACTER
BNE 5% ;BRANCH BACK IF MORE TO PRINT

The device handler for the single-density diskette, DX, provides another ex-
ample of programmed I/0. Reading data from the diskette one sector at a
time, the handler first requests a read of one sector. The diskette completes
the read operation, places the data in an internal silo, and issues an inter-
rupt. The handler then disables diskette interrupts and uses programmed
I/O to move data from the silo into memory. When it is ready to read
another sector, the handler enables interrupts again.

The following lines of code are from the DX handler:

; Note that R4 points to the diskette status register;
; R5 points to the silo;
; R2 points to the data buffer in memory.

ZI'RBYT: TSTB @R4 ;WAIT FOR TRANSFER READY

BPL TRBYT ;BRANCH IF TR NOT UP

EFBUF: MOvB @R5,(R2) + ;TRANSFER A CHARACTER
DEC @SP ;CHECK FOR COUNT DONE
BGT TRBYT ;TRANSFER MORE

Refer to the PDP-11 Processor Handbook for your computer for more infor-
mation on non-interrupt programmed 1/0.

Interrupt-Driven 1/O

Although programmed I/O is useful in a few situations, generally the best
way to handle device 1/0 is through interrupt processing. According to this
method, a program starts an I/O transfer but continues processing. When
the transfer completes, the device issues an interrupt. An interrupt service
routine then determines whether the transfer is incomplete, complete, or
has encountered an error. It takes the appropriate action (restarting the
transfer, returning to the program, or possibly retrying the transfer in case
of error). The advantages of using interrupt-driven I/O are that it enables
two or more processes to run concurrently and it does not monopolize
system resources.
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6.21 How an Interrupt Works

An interrupt is a forced transfer of program execution that occurs because
of some external event, such as the completion of an I/O transfer. The state
of the processor prior to the interrupt is saved on the stack so that process-
ing can continue smoothly after the return from the interrupt. The proc-
essor saves the Processor Status word, or PS, which reflects the current
machine state, and the Program Counter, or PC, which indicates the return
address.

Next, the processor loads new contents for the PS and PC from two
preassigned locations in low memory, called an interrupt vector. These
words contain the address of the interrupt service routine and the new PS,
which indicates the new processor priority. When the interrupt service
routine completes, it executes an RTI instruction, which restores the old PS
and PC from the stack, and execution resumes at the interrupted point in
the original program.

6.2.2 Device and Processor Priorities

Interrupt processing is closely related to device and processor priorities.
Figure 6-1 illustrates the RT-11 priority structure. Each device on the
system has a priority assigned to it and devices that must be serviced as
soon as possible after they interrupt have the highest priority. DECtape,
for example, has priority 6; disks typically have priority 5; terminals and
other character-oriented devices usually have priority 4. This priority
system has been carefully designed and in general is adjustable through a
pluggable priority selector on each I/O device interface. You can control the
ordering of devices with the same priority. For these devices, the one
closest to the CPU on the bus is serviced before other devices when inter-
rupts occur simultaneously.

Figure 6-1: RT-11 Priority Structure

PROCESSOR PRIORITY SOFTWARE PRIORITY
7 - DEVICE HANDLERS
6 ———— AND
5§ — INTERRUPT SERVICE ROUTINES
4 ——
_ FORK ———————— FORK LEVEL

FOREGROUND COMPLETION ROUTINES
— FG < FOREGROUND MAINLINE

BACKGROUND COMPLETION ROUTINES
— B6 —————————< 5ACKGROUND MAINLINE

0 NULL JOB =—————— MONITOR'S iDLE LOOP

The central processor operates at any one of eight levels of priority, from 0
to 7. (The LSI processor is an exception; it operates at either 0 or 7.) When
the CPU is operating at priority 7, no device can interrupt it with a request
for service. When the CPU is operating at a lower priority, only a device
with a higher priority can cause an interrupt. You can adjust the
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processor’s priority from within an interrupt service routine by modifying
the Processor Status word. In an RT-11 system, software tools are provid-
ed to do this for you, so you never directly modify the PS yourself. The tools
include the .MTPS and .MFPS programmed requests, and the INTEN and
.FORK macros.

The interrupt system allows the processor to continually compare its own
priority with that of any interrupting devices and to acknowledge the
device with the highest level above the processor’s. This system can be
nested — that is, the servicing of one interrupt can be left in order to service
an interrupt with a higher priority. Service continues for the lower priority
device when the higher priority device is finished.

See the PDP-11 Processor Handbook for your computer for more informa-
tion on priorities and interrupts. See also the Peripherals Handbook, the
Microcomputer Handbook, the Terminals and Communications Handbook
and the Memories and Peripherals Handbook.

6.2.3 Processor Status (PS) Word

The Processor Status (PS) word occupies the highest address on the I/0
page. (Again, the LSI processor is an exception; its PS is not addressable on
the I/O page. The monitor refers to the PS by using the MTPS and MFPS
instructions.) It contains information on the current status of the machine.
This information includes the current processor priority, current and
previous operational modes, the condition codes describing the results of
the last instruction, and an indicator to cause the execution of an instruc-
tion to be trapped (used for program debugging).

Figure 6-2 illustrates the bits in the PS. Bits 5 through 7 determine the cur-
rent processor priority. (In an LSI system, only bit 7 determines the priori-
ty; priority is either 0 or 7.) By changing bits, you alter the CPU’s priority.
You can change the priority to 7, for example, to prevent any more inter-
rupts from occurring. When you are servicing a particular interrupt, you
can change the processor priority to the priority of that device so that only
devices with a higher priority will interrupt that service routine. (Specific-
ally, the device you are servicing cannot interrupt.) In general, you need not
access the PS yourself; use the macros provided in RT-11, such as .INTEN
and .FORK, to change the processor priority.

6.3 In-Line Interrupt Service Routines Versus Device Handlers

6-4

Because both non-interrupt programmed I/O and interrupt-driven I/O are
valid processes in an RT-11 system, when you need to interface a new
device to your system — one that is not already supported by RT-11 —
your first decision must be whether to use in-line interrupt service or to
write a device handler for it. Whatever your decision, both interrupt service
routines and device handlers can include non-interrupt programmed I1/0
sections as well as interrupt-driven code. The normal RT-11 interface be-
tween the monitor and a peripheral device is a device handler, which exists
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Figure 6-2: Processor Status (PS) Word

15 14 13 12 11 10 8 7 5 4 3 2 1 0

\_\r&f_/ \'—\' J | -~ J

—= CONDITION CODES

= T BIT

» PRIORITY

= GENERAL REGISTER SET *
= PREVIOUS MODE *

-»— CURRENT MODE *

* XM ONLY

as a memory image file on a mass storage device, and resides in memory
when it is needed to perform device I/O (see Chapter 2). A device handler
usually includes an interrupt service routine within it.

If you choose to use an interrupt service routine, you must place the routine
within your program so that your program directly changes the status and
buffer registers for a specific device, and it can service the interrupts within
its own code. This means, of course, that the interrupt service code must
always be resident in memory.

On the other hand, if you choose to use a device handler, the interrupt ser-
vice code is contained within the handler, not in your program. You issue
.READ and .WRITE programmed requests from your main program, and
the monitor and the handler together initiate the data transfer, service the
interrupts, and notify your program when the transaction is done. In an SJ
system, or for a background job in FB, the handler must be resident only
when your program actually needs it to perform I/O. (That is, the handler
must be resident whenever a file or channel is open.) For foreground jobs
and system jobs in an FB or XM system, you must load the handler (by us-
ing the monitor LOAD command) before you execute your program, so that
the handler is always resident.

How you decide which method is more suitable for your new device depends
largely on how you want the device to appear to system and application pro-
grams. In general, you should use in-line interrupt service for sensor or con-
trol devices, such as analog-to-digital converters. You should service

Interrupt Service Routines  6-5



6-6

devices that appear to be block-replaceable, file-structured mass storage
devices, such as disks and diskettes, through device handlers. You can ser-
vice most communications hardware by either method; the decision rests on
other criteria.

The two major advantages of in-line interrupt service routines are their
speed and the amount of control information they provide. Because there is
no monitor overhead involved in a data transfer, an in-line routine can often
handle interrupts faster than a device handler can. If the speed of servicing
interrupts is crucial to your application, you may choose to write an in-line
interrupt service routine even if the device is a disk.

An in-line routine has access to all the device control and status registers
for a device, as well as its data buffer registers. (Of course, a device handler
has access to all the same registers, but the program using the handler does
not.) It can pass a lot of information to the program. This provides a great
deal of flexibility in the way the program calls the interrupt service routine,
and in the amount of information the routine returns to it.

The three major advantages of using device handlers are that they provide
device independence for your programs, they can share processor time with
other processes, and they are simple to use. Device handlers have a stan-
dard protocol for interfacing to the RT-11 monitor. There is also a standard
protocol for the interface between the monitor and a program, so that any
program that conforms to the monitor standards can use the handler. This
includes application programs, system utility programs, and RT-11
language processors such as MACRO-11, FORTRAN IV, and BASIC-11.
Thus, the device handler makes a new device available to a large number of
programs without any special modification. (In addition, a device handler
for a random-access device makes the RT-11 file system available on the
device at no extra cost.) In contrast, an in-line interrupt service routine
makes the new device available to just one application program.

Device handlers are easy to use. Because they are the standard RT-11
means of handling device I/0, the procedure for writing them and using
them is clear and straightforward. This procedure is simplified further by
the fact that RT-11 provides macros to write a handler; there are also
keyboard monitor commands that install handlers into the monitor device
tables and load them into memory. In addition, a device handler permits
you to take advantage of the monitor programmed requests for performing
data transfers. Finally, a device handler is the only way you can interface a
device to a virtual job in an XM system.

Figure 6-3 highlights some differences between in-line interrupt service
routines and device handlers.

If you decide that your new device requires an in-line interrupt service
routine, read the rest of this chapter to learn how to plan and write one. If
you decide that a device handler is more suitable, read the rest of this
chapter and then go on to Chapter 7 to learn how to plan, write, and debug a
handler.
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Figure 6-3: In-Line Interrupt Service Routines and Device Handlers
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6.4 How to Plan an Interrupt Service Routine

6-8

The most important part of writing an in-line interrupt service routine is
taking the time to plan carefully. Follow these guidelines:

e Get to know your device

e Study the structure of an interrupt service routine
e Study the skeleton interrupt service routine

e Think about the requirements of your program

e Prepare a flowchart of your program

¢  Write the code

e Test and debug the program

6.4.1 Get to Know Your Device

Getting to know your new device is crucial to writing an interrupt service
routine that works correctly. If your device is a DIGITAL peripheral, con-
sult the hardware reference manual for that device. You can also learn a lot
from the PDP-11.Peripherals Handbook. If your device is not from
DIGITAL, study the documentation for it carefully. Regardless of the for-
mat of the documentation (whether it is a manual, a brochure, or a set of
engineering prints), it should contain the vital information you need to sup-
port it on a PDP-11 system. Be sure you obtain this information.

In any case, you must understand how the device operates: what it needs
from you, and how it handles data transfers. Use the following checklist to
make sure you have enough device-specific information to write the service
routine. Do not attempt to write any code until you have considered each
question.

Some of the following questions do not apply to all types of devices. Some
are for mass storage devices, some are more appropriate for sensor devices
or communications devices. Consider each question carefully, though, to see
if it applies to your device.

e  What is the interrupt vector (or vectors) for the device?

Decide what the interrupt vector should be. Consider both conflicts
with existing RT-11-supported devices and also conflicts with devices
supported by other PDP-11 operating systems, if you use those
systems. Once you decide on the vector, make sure the device is install-
ed properly and that the hardware is jumpered to that address. RT-11
requires all vectors to be below location 500 and some low-memory
locations are not available for use as vectors. Chapter 2 lists the cur-
rent PDP-11 vector assignments.

e  What are the control and status registers?
Learn where these registers are located and what the bits in each mean.

Interrupt Service Routines



What is the priority for the device?

Is the device DMA (Direct Memory Access) or programmed transfer
(word- or character-oriented)?

What are the data buffer registers?
Learn where these registers are located and what the bits in each mean.

What are the op codes for typical operations?

Learn how to initiate the various operations by manipulating the bits
in the device registers. Device handlers tend to perform read, write,
seek, and reset operations.

When does the device interrupt?

Some devices interrupt for each character; others are word-oriented,
block-oriented, or packet-oriented. Some devices interrupt twice for
certain operations, such as seek or drive reset. Find out if your device
does this, and plan now to take this information into account later.

What is the basic unit for data transfers?

This relates to the previous question, of course, but you must deter-
mine whether to send 1/O requests to the device as byte, word, or block
counts. If, for example, your program deals in terms of words and the
device is character-oriented, you may have to convert the word count
to a byte count in the service routine.

Does the device want a positive or negative byte count?

Some devices require a negative byte or word count. If your device is
one of those, you may need to negate the count in the service routine.

What is the device structure, or geometry?

If the device is a disk, find out how the cylinders, tracks, and sectors
are structured. Determine their size. Find out if the device requires in-
terleaving, and, if so, learn how to optimize for speed. (Interleaving
describes the process for writing data to a spinning device that re-
quires program intervention between sectors. The disk is constantly
moving; data is written into one sector, the program intervenes as the
adjacent sector spins past, then more data is written into the next
available sector.)

What is the buffering arrangement?

Some devices transfer data to your program one character at a time.
Others buffer data internally in a silo, or send it in packets. Decide how
to buffer the data in your program. Make sure the buffer space you
allocate is large enough.

How do you calculate the address of the data on the device?

This relates to the device’s structure. Study the device now and deter-
mine how to find the data you want on it. Note that RT-11 block
numbers must be converted to device-specific addresses. Note also
that some processors have no multiply or divide instructions.

Interrupt Service Routines  6-9



6-10

e What “housekeeping’’ operations does the device require?

Some devices require a drive reset before a retry. Others require that
the device be selected or that a disk pack be acknowledged before you
can perform any operations on it. You must do a drive reset after a seek
incomplete or a drive error, for example.

e How will you handle errors and exception conditions?

First you must decide which errors are hard and will abort the transfer,
and which errors are soft and will retry the transfer. Some typical soft
errors include checksum errors, data late errors, and timing errors.
Decide how many times you will retry the transfer for soft errors, and
how you will handle a hard error condition.

e What are the abort considerations?

Consider whether the device is relatively fast or slow. Keep in mind
that you do not want to issue a controller reset if only one unit of a two-
unit controller is affected by a program’s abort because this can in-
terfere with the operation of the second unit. Similar considerations
may apply to dual-ported devices.

6.4.2 Study the Structure of an Interrupt Service Routine

Section 6.5 describes the structure of an interrupt service routine. Read this
section carefully. Appendix C contains a sample application program that
does in-line interrupt service. Read that program, too, and study its
structure.

6.4.3 Study the Skeleton Interrupt Service Routine

Section 6.6 contains a skeleton outline of a foreground job with an in-line in-
terrupt service routine. Study this outline to be sure you understand the
flow of execution.

6.4.4 Think About the Requirements of Your Program

Remember that the interrupt service routine is part of your program and
decide where to place it in the program. Review the material in Chapter 2 on
swapping the USR. If you plan to execute your program in an XM system,
read Section 6.7 for XM considerations.

6.4.5 Prepare a Flowchart of Your Program

Many experienced programmers prepare flowcharts after all their programs
are written, or they omit them entirely. However, flowcharting a system
with the complexities of interrupt service can help you find loose ends and
point out errors in your logic. Flowcharts are not much help, unfortunately,
in pointing out potential race conditions. (A race condition is a situation in
which two or more processes attempt to modify the same data structure at
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the same time; as a result, the data structure is corrupted and the integrity
of the processes is compromised. It may be caused by a device interrupting
while its interrupt service routine is running, due to improper processor
priority.) When you design your program, examine every step carefully;
keep in mind what would happen if an interrupt occurred at each instruc-
tion. This kind of planning can help you avoid race conditions later.

6.4.6 Write the Code

If you have followed the recommended steps so far, writing the code for the
interrupt service routine itself should be relatively simple. You can borrow
as much code as possible from other interrupt service routines you have
studied. Start with a general outline, then add details to reflect the specifics
of your particular device. When you are satisfied with the code, have check-
ed it thoroughly for logic errors, and it assembles properly, you are ready to
test and debug it.

6.4.7 Test and Debug the Program

The only way to test a program with in-line interrupt service is to try ex-
ecuting it. If the program is operating correctly, it should be able to read or
write data accurately, should not lose any data, and should handle error
conditions properly. Try executing the program in a test situation with data
you have prepared. If you find errors, link the program with ODT (not VDT)
and try running it step by step. Make coding corrections, reassemble the
program, and retry it as necessary.

6.5 Structure of an Interrupt Service Routine

The following sections outline the general structure of an in-line interrupt
service routine. Read them carefully and determine which items apply to
your own situation.

6.5.1 Protecting Vectors: .PROTECT

In FB or XM systems where more than one job can be running, you should
use the .PROTECT programmed request to protect an interrupt vector
before you move a value to it. This process makes sure that the vector does
not already belong to the monitor or to another job. It gives ownership of
the vector to your job, and protects it from interference from another job or
the monitor by setting bits in the monitor bitmap. (Chapter 3 describes the
low-memory bitmap in detail.) Your job should abort immediately if the
PROTECT request fails; your job must not access a vector that is already
in use. See Sections 6.5.2. and 6.6 for examples of how to use .PROTECT.

See the RT-11 Programmer’s Reference Manual for the format of the
.PROTECT programmed request.
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Even though the PROTECT request has no meaning in an SJ system, it is
advisable to use it in your program. The request takes no action, returning
immediately to your program, yet using it simplifies conversion later if your
program needs to run in an FB environment.

6.5.2 Setting Up the Interrupt Vector

Your program must take care of moving the address of your interrupt ser-
vice routine to the first word of the interrupt vector. RT-11 requires all in-
terrupts to raise the processor priority to 7, so your program must fill in the
second word of the interrupt vector with 7 as the new priority. The follow-
ing lines of code show a typical way for a program to set up the two-word in-
terrupt vector. Note that a program should not set up a vector until the vec-
tor is protected. For this example, assume the device name is XX, and the
interrupt vector is at 220 and 222.

XXVEC = 220 ;DEFINE THE VECTOR
PR7 = 340 ;PRIORITY 7 = 340

; The entry point for the interrupt service routine is ISREP:

.PROTECT #AREA,#XXVEC ;PROTECT THE VECTOR
BCS NOVEC ;VECTOR IN USE

MoV #ISREP, @#XXVEC ;SET UP FIRST WORD
MOV #PR7,@#XXVEC + 2 ;SET UP SECOND WORD

6.5.3 Stopping Cleanly: .DEVICE

The .DEVICE programmed request is meaningful only in FB and XM
systems. Its purpose is to turn off a device (by clearing its interrupt enable
bit) if its associated program is aborted with CTRL/C, or when the program
exits. (See the RT-11 Programmer’s Reference Manual for the format of the
.DEVICE programmed request. See Section 6.6 of this manual for an exam-
ple using .DEVICE.)

This request is not required in an SJ environment. However, even though
the request has no meaning in an SJ system, it is advisable to use it in your
program. The request takes no action, returning immediately to your pro-
gram, yet using it simplifies conversion later if your program needs to run
in an FB environment.

When a program in SJ exits, the monitor waits for all I/O to finish if there is
an active queue element outstanding. In FB, when a program exits, the
monitor not only waits if there is an active queue element outstanding, but
in addition, it enters the device handler at its abort entry point. If a job is
aborted with CTRL/C, or if it issues a . HRESET request, the SJ monitor ex-
ecutes a hardware reset to stop I/0 on all devices. If you are designing the
hardware for your device, make sure that it stops cleanly when it receives
the bus-initialize signal.
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6.5.4 Lowering Processor Priority: .INTEN

When an interrupt occurs, control passes to your interrupt service routine
entry point, the address you supplied as the first word of the interrupt vec-
tor. At this point, the processor priority is 7, and all other interrupts are
prohibited. If you need to do anything with all interrupts disabled, this is
where the code belongs. It should be as short and efficient as possible and
should not destroy the contents of any registers. If this code needs to use
registers, it must save them and restore them before issuing the .INTEN
call. If the code executed at priority 7 is too long, system interrupt latency
(a measure of how quickly the system can respond to an interrupt) will suf-
fer. A good guideline is to spend no more than 50 microseconds at priority 7.

You should lower the processor priority to that of the device as soon as
possible. This means that only devices with a higher priority than this one
will be able to interrupt its service routine. To lower the priority, use the
INTEN programmed request. The stack pointer and general registers RO
through R5 must contain the same values when your interrupt service
routine issues the .INTEN request as they did at the interrupt entry point.
If your interrupt service routine is not written in Position-Independent
Code (PIC), use the following format: '

INTEN prio

The .INTEN call generates the following code:

JSR R5,@54
.WORD ~C <PRIO"40> &340

If your interrupt service routine is written in PIC, use the INTEN call with
a second argument, PIC. (The argument can actually be anything at all, as
long as it is not blank.)

INTEN prio,PIC

The second format generates Position-Independent Code:

MoV @#54, - (SP)
JSR R5,@(SP) +
.WORD ~C < PRIO*40 > &340

Both formats cause a jump to the monitor’s INTEN routine, which lowers
the processor priority, and, in FB and XM, switches to system state. The
monitor then calls the interrupt service routine back as a co-routine. R4 and
R5 are available for use on return from the call. You must not destroy the
contents of any other registers. If you need R0 through R3, save them on
the stack or in memory and restore them before you exit. If you need to
preserve values across the . INTEN request, you must save them in memory
before the call and restore them after it. Likewise, if the contents of the PS
are important, such as the values of the condition bits, you should save
them before issuing the .INTEN call. Since .INTEN causes a switch to the
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system stack in FB and XM, you should avoid using the stack excessively
once you are in your interrupt service routine. Save and restore registers
and the PS, as necessary, by using memory locations instead of the stack.

NOTE

Saving values in memory locations may prevent your inter-
rupt routine from being re-entrant. If you intend to use the
routine for multiple devices, be careful about re-entrancy
when you design it.

(See the RT-11 Programmer’s Reference Manual for more information on
INTEN. See Section 6.6 of this chapter for an example using .INTEN. See
Section 6.5.7 for a summary of the interrupt service routine macro calls.)

6.5.5 Issuing Programmed Requests: .SYNCH

The .SYNCH call is useful mainly in the FB and XM environments. Its pur-
pose is to make sure that the correct job is running when an interrupt ser-
vice routine executes a programmed request. Even though the .SYNCH call
has no meaning in an SJ system, it is advisable to use it in your program.
The request takes no action, returning immediately to your program, yet
using it simplifies conversion later if your program needs to run in an FB
environment. (For the complete expansion of this macro, see the listing of
the system macro library in the RT-11 Programmer’s Reference Manual.)
See the RT-11 Programmer’s Reference Manual for the format of the
.SYNCH request.

If you need to issue one or more RT-11 programmed requests from the in-
terrupt service routine, you must first issue the .SYNCH call. Remember
that the .INTEN call switched execution to system state, and programmed
requests can only be made in user state. The .SYNCH call itself handles the
switch back to user state. Note that you should never issue programmed re-
quests requiring the USR from within an interrupt service routine, even
after using .SYNCH. You can also issue .SYNCH after .FORK, which is
covered in Section 6.5.6. When you issue the .SYNCH call, RO through R3
and the stack pointer must contain the same values as they did when the
INTEN request returned to you.

Table 6-1 illustrates the format of the synch block, which acts like a com-
pletion queue element. The information in the seven-word synch block is
placed at the head of the appropriate job’s completion queue. Therefore, the
code following the .SYNCH request executes as a completion routine, in
user state, at priority 0. Because of this, your program must either disable
interrupts before the .SYNCH call, or it must be prepared for the device to
interrupt again before the .SYNCH code executes. The synch block is
available for reuse when Q.COMP (offset 14 octal) is 0. You can test the
synch block easily by issuing another .SYNCH. If control passes to the er-
ror return (the word following the .SYNCH call), the block is still in use.
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Table 6-1: Synch Block

Offset Name Agent Contents

0 Q.LINK _ Reserved

2 Q.CSW user Job number

4 Q.BLKN —_ Reserved

6 Q.FUNC —_— Reserved

10 Q.BUFF user RO argument to pass

12 Q.WCNT monitor -1

14 Q.COMP user Assemble a value of 0 here; the
monitor then maintains the contents
of this word

In general, a long time can elapse between the .SYNCH call and the return.
First, the monitor switches to user state, and a scheduling pass is required
to determine whether or not a context switch is also necessary. Then a
background completion routine may have to wait for a compute-bound
foreground job to become blocked. So, it may take a considerable amount of
time before the code following the .SYNCH actually executes.

In the code following the .SYNCH call, RO and R1 are free for use, as they
are in any completion routine. However, you must preserve R2 through R5
if your .SYNCH routine uses them. This poses a problem for R4 and R5,
which are not preserved across the call. If their contents are important,
save them in memory before the .SYNCH call. You can use Q. BUFF in the
synch block to pass a value into RO for the synch routine.

The .SYNCH call has an unusual error return. The first word after SYNCH
is the return address on error; the second word after .SYNCH is the return
on success. See Section 6.6 for an example using .SYNCH. See Section 6.5.7
for a summary of the interrupt service routine macro calls.

In the SJ environment, routines following .SYNCH calls (and, in fact, com-
pletion routines in general) are nested (that is, they can interrupt each
other). They are serialized in FB and XM. In SJ, the .SYNCH mechanism
simulates the FB and XM scheme but does not duplicate it.

6.5.6 Running at Fork Level: .FORK

The .FORK programmed request gives you another way to lower the pro-
cessor priority. (See the RT-11 Programmer’s Reference Manual for the for-
mat of the . FORK programmed request. For the complete expansion of this
macro, see the listing of the system macro library in that manual.)

When you issue a .FORK call, the fork block is added to a fork queue, which
is a first-in, first-out list. Fork routines (all the code following a .FORK call)
execute in system state at priority 0, after all interrupts have been serviced,
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but before the monitor switches to user state. Context switching is in-
hibited as well during the time fork routines are executing. (See Figure 6-1
for a review of RT-11 priority levels.)

R4 and R5 are preserved across the .FORK call. In addition, RO through R3
are free for use after the call. Like .SYNCH, the .FORK call assumes you
have not changed RO through R3 or the stack since the INTEN call return-
ed to you. See Section 6.5.7 for a summary of the interrupt service routine
macro calls. Note that you cannot issue .FORK without a prior .INTEN
call.

You must provide a four-word block of memory for the fork queue element,
the last three words of which will contain R4, R5, and the return PC. The
first word is a link word, which must be 0 when you issue the .FORK re-
quest. Because a .FORK routine should not be re-entrant, make sure that
the device cannot interrupt between the time you issue the .FORK call and
the time the .FORK routine (the code following the call) begins to execute.

You may not re-use a fork block until the fork routine has been entered. It is
safe to assume that the fork block is free when the call that used it returns.
See Table 6-2 for an illustration of the fork block.

Table 6-2: Fork Block

Offset Name Agent Contents
0 F.BLNK monitor Link word
2 F.BADR monitor FORK routine address
4 F.BR5 monitor R5 save area
6 F.BR4 monitor R4 save area

Generally, .FORK is used in device handlers. To use it in an interrupt ser-
vice routine, you must first set up a pointer, called SFKPTR. The recom-
mended way to do this in a main program is as follows:

MOV @#54,R4
ADD 402(R4),R4

MOV R4,$FKPTR

$FKPTR: .WORD 0
XXFBLK: WORD  0,0,0,0

Then, in the interrupt service routine, you can use the normal form of the
JFORK macro:
.FORK XXFBLK

The .FORK macro expands as follows:

JSR R5,@$FKPTR
.WORD XXFBLK-.
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In an SJ system, there is no real support for .FORK unless you select timer
support as a special feature at system generation time. Instead, the monitor
simulates the process by saving registers RO through R3 before calling the
interrupt service routine back. Beyond that, it does not attempt to serialize
fork routines. Note that in your interrupt service routine, no registers are
free for use before the INTEN call. After the INTEN, you can safely use
R4 and R5. See Section 6.5.7 for a summary of the interrupt service routine
macro calls.

The .FORK request has several applications in a real-time environment
because it permits lengthy but noncritical interrupt processing to be
postponed until all other interrupts are dismissed.

For example, the CR11 card reader handler internally buffers 80 columns of
data. It receives an interrupt once per column, and translates and moves
the character into its internal buffer at interrupt level. It then moves its in-
ternal buffer to the user buffer, a process that can take up to 2.5 msec. In
RT-11 Version 2C, this process took place at priority level 6, which meant
that interrupts at this priority and lower could be locked out for this time.
This can cause data late errors on communications devices when the card
reader is active at the same time.

This problem is not solved by simply dropping priority to 0, since the card
reader could have interrupted a lower-priority device. Lowering priority
causes problems in the other device handlers that are re-entrant. Using a
.SYNCH does not always solve the problem, either, since the SJ monitor on-
ly simulates a .SYNCH and drops priority to 0, which produces the same
problems for re-entrant handlers. The FB monitor must perform a context
switch since .SYNCH returns to the caller in user context, running on the
user stack. The context switch is a lengthy process and does not occur at all
if there is a compute-bound foreground job.

The .FORK request is the solution to the problem. It returns at priority 0,
but only when all other interrupts have been dismissed and before control is
returned to the interrupted user program. (Note that you dismiss an inter-
rupt when you leave interrupt level, by any one of several means.)

6.5.7 Summary of .INTEN, .FORK, and .SYNCH Action

Table 6-3 summarizes the effects of the .INTEN, .FORK, and .SYNCH
macro calls. Figure 6-4 describes the status of the registers for each call.

Table 6-3: Summary of Interrupt Service Routine Macro Calls

Macro New New Registers Available Your Data Preserved
Call Priority Stack to Use After Call Across Call In
INTEN device’s System R4, R5 none
.FORK 0 System RO-R5 R4, R5
SYNCH 0 User RO, R1 RO
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Figure 6-4: Summary of Registers in Interrupt Service Routine Macro

Calls
OPERATION RO R1 R2 R3 R4 RB
l ———————— CONTENTS UNKNOWN — —
INTERRUPT l 1
i i r
j——————— SAVE/RESTORE IF NEEDED ————
. INTEN ‘ {
] \ | }— FReeTO UsE —]
l '—— SAVE/RESTORE ————] ,
L l
l = FREE TO USE |
.SYNCH ‘ J * & * *
l F FREE | } SAVE/RESTORE ———]
(LOADED (CONTAINS
WITH YOUR YOUR DATA)
DATA)
6.5.8 Exiting from Interrupt Service: RTS PC

The .INTEN request causes the monitor to call your interrupt service
routine as a co-routine. At the end of your routine, when it is time to exit,
use an RTS PC instruction. This returns control to the monitor, which
restores R4 and R5 and then executes an RTI instruction.

You also exit from .FORK and .SYNCH routines with an RTS PC instruc-
tion. Be sure that the stack is the same as it was upon entry, and that any
registers that must be preserved have their original contents.

6.5.9 Servicing Interrupts in FORTRAN: INTSET

The INTSET function is available in RT-11 to establish a FORTRAN
subroutine that will be initiated via interrupt and that will run at interrupt
level. See the SYSLIB routines in the RT-11 Programmer’s Reference
Manual for a more complete description of INTSET.
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6.6 Skeleton Outline of an Interrupt Service Routine

Figure 6-5 shows a foreground main program that contains an in-line inter-
rupt service routine, The foreground program performs some initialization
tasks and then suspends itself. When data is available from a peripheral
device the interrupt service routine collects it. When all the data is
gathered, the interrupt service routine resumes the main program, which
can then process the new information before suspending itself again. The
main program’s processing could involve some manipulation of the new
data or it could be writing the data to a file shared by a background data
analysis job. Note that because this example forces the job number to 2, it
cannot execute properly in a system with the system job feature present.

For this example, xx represents the device name.

Figure 6-5: Skeleton Interrupt Service Routine

** MAIN PROGRAM **

xXVEC = vwv ;THE DEVICE VECTOR

PR7 = 340 ;PRIORITY 7

DEVPRI= 5 :DEVICE PRIORITY = 5
;(0-7, NOT 000-340)

xXCSR = nnnnnn ;THE DEVICE CONTROL REGISTER

IENABL = 100 JINTERRUPT ENABLE BIT

START: .PROTECT #LIST,#xxVEC ;PROTECT THE VECTOR

BCS ERROR ;HANDLE .PROTECT ERROR

MOV #ISREP, @#xxVEC ;SET UP FIRST WORD
;OF VECTOR

MOV #PR7,@#xxVEC + 2 ;SET UP SECOND WORD
;OF VECTOR

.DEVICE #LIST #DEVLST ;TO DISABLE DEVICE ON

;EXIT OR ABORT

Lines of code here initialize input buffers in the service routine;
initialize other pointers and flags

SPND: BIS #IENABL, @#xxCSR ;ENABLE INTERRUPTS
.SPND ;WAIT UNTIL THERE IS SOME DATA

; Lines of code here store the data;
; reset some flags

BR SPND ;WAIT FOR MORE DATA
DEVLST: . WORD xxCSR ;LIST FOR .DEVICE
.WORD 0
.WORD 0
LIST: .BLKW 3 ;EMT ARG BLOCK

ERROR: . ;ROUTINES TO HANDLE ERRORS
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** INTERRUPT SERVICE ROUTINE **

ISREP: . ;THE INTERRUPT ENTRY POINT;
;PRIORITY 1S 7

:INTEN DEVPRI ;NOTE: NOT #DEVPRI.
;LOWER TO DEVICE PRIORITY;
;WE ARE IN SYSTEM STATE
sWITH R4 AND R5 AVAILABLE.
; If there is more data to collect:
BR RETURN

; If there is no more data to collect:

.SYNCH #SYNBLK ;GO BACK TO MAIN PROGRAM
;TO PROCESS DATA.
BR SYNERR ;5SYNCH RETURNS HERE ON ERROR
.RSUM ;WAKE UP MAIN PROGRAM
RETURN: RTS PC ;WAIT FOR ANOTHER INTERRUPT
SYNBLK: .WORD 0,2,0,0,0,—1,0 ;NOTE: 2 IS THE JOB NUMBER
;FOR THE FOREGROUND JOB.
SYNERR: ;PROCESS SYNCH ERROR

Interrupt Service Routines in XM Systems

If you are not planning to execute your program in an XM environment,
you need not read this section.

Of the two kinds of jobs in an XM environment, virtual jobs and privileged
jobs, virtual jobs cannot contain in-line interrupt service routines (see
Chapter 4). By the very definition of virtual mapping, virtual jobs cannot
access the device I/O page. Therefore, they cannot set a device’s interrupt
enable bit or move data to or from a device’s data buffer register.

If a job containing an in-line interrupt service routine must run in the XM
environment, it must run as a privileged job. Privileged mapping makes the
low 28K words of memory and the I/O page available to the program and
permits the program to map portions of the user virtual address space into
extended physical memory if the program requires it.

In order to understand the restrictions that the XM environment imposes
on interrupt service routines, you must understand that when an interrupt
occurs in XM, its service routine executes with kernel, not user, mapping.
This means that whether or not the program has mapped some of its virtual
address space into extended memory, the interrupt service routine executes
with the default kernel mapping to the low 28K words of memory plus the
I/O page. It makes, sense, therefore, that the first XM restriction demands
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that the mapping for your interrupt service routine plus any data it uses
must be identical to kernel mapping at any time that an interrupt could
occur.,

Figure 6-6 shows the default kernel mapping scheme, which provides ac-
cess to the low 28K words of memory plus the I/O page. This is also the
mapping scheme for a privileged job when it first begins execution. And,
this is the mapping scheme that takes effect whenever an interrupt is ser-
viced. (The shaded areas in the figure represent memory that the user job
cannot access.) In Figure 6-6, the interrupt vector at 200 and 202 contains
the entry point, called ISREP:, of the interrupt service routine, and the
value 340, which represents the new PS. When an interrupt occurs, the
system uses kernel mapping to locate the interrupt service routine. In this
example, it should start at address 120000. Since privileged mapping and
kernel mapping are identical in this diagram, the interrupt service routine is
located in physical memory exactly where the kernel mapping points, so it
can execute correctly.

Figure 6-6: Kernel and Privileged Mapping

PHYSICAL
ADDRESS SPACE

1/0 PAGE

KERNEL USER

VIRTUAL VIRTUAL

ADDRESS ADDRESS ADDRESS ADDRESS
RANGE PAR SPACE / \ SPACE PAR RANGE
177776 - ; 177776

160 000 160 000

167 77¢ 6 6 167 776
140 000 140 000

INTERRUPT
137776 137776
(120000) 5 ISREP: SERVICE ISREP: 5 130 000
120000 | ROUTINE

117 776
100 000

117 776
100 000

77776 3 3 77776
60 000 60 000

57776 2 P 57776
40 000 40 000

37776 37776
20 000 20 000

17776 17776
00 000 00 000

f

KERNEL PRIVILEGED
MAPPING MAPPING-UNMODIFIED .

Figure 6-7 shows a privileged job that changes the user virtual address
mapping. (The shaded areas in the figure represent memory that the user
job cannot access.) You can see from the example that the interrupt service
routine cannot execute correctly when an interrupt occurs because the in-
terrupt service routine is not located in physical memory where it should be.
The memory area pointed to by the kernel mapping contains random data
or instructions.
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Figure 6-7: Interrupt Service Routine Mapping Error
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KERNEL PRIVILEGED
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The second restriction for interrupt service routines in XM relates to the
way the monitor uses Page Address Register (PAR) 1 with kernel mapping.
PARI1 controls the mapping for virtual addresses 20000 through 37776.
When XM is first bootstrapped with kernel mapping, the virtual addresses
map directly to the same physical addresses. However, the monitor itself
uses PAR1 to map to EMT area blocks and to user data buffers. So,
whenever the system is running, the kernel virtual addresses in the PAR1
range can be mapped just about anywhere in physical memory and you
have no way of controlling it. You must be sure that your interrupt service
routine and any data it needs are not located in the virtual address range
mapped by PARL. Figure 6-8 illustrates this restriction. Valid locations for
interrupt service routines, assuming that privileged mapping is identical to
kernel mapping at the time of the interrupt, are marked on the diagram as
“OK’!

If your interrupt service routine needs a window into memory, it can borrow
PARI1 the same way the monitor does. It must save the contents, set the
value it needs, and restore the original contents before exiting. It can do
this at .INTEN or fork level, but not at synch level.

NOTE

If your system uses the MQ handler to communicate
among system jobs, all the restrictions for PAR1 also ap-
ply to PAR2 — the range of addresses from 40000 through
57777,
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Figure 6-8: PARI1 Restriction for Interrupt Service Routines
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One final piece of information is important if you use .SYNCH in your inter-
rupt service routine. The lines of code following .SYNCH execute almost
like a completion routine. Completion routines in XM execute with the user
registers, the user stack, and with user mapping. But, since the code follow-
ing .SYNCH is still part of an interrupt service routine, it executes with the
user registers, but with kernel mapping. So, the code following a .SYNCH
call in XM must observe the same restriction as the main body of the ser-
vice routine: its mapping must be identical to kernel mapping at any time
that an interrupt could occur, or any time the completion routine could be
executing. Of course, it must observe the PAR1 and PAR2 restrictions as

well.
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Chapter 7
Device Handlers

To write a device handler, you first need to know what points to consider in
the planning stage. These points are listed and cross-referenced in the first
sections of this chapter. The points that have not been treated elsewhere in
this manual are then described in detail. The structure of a standard
handler and a skeleton outline of a typical handler are covered here. After
this, details are given on the optional features available to handlers and
their implementation. Optional features include internal queuing, SET op-
tions, device I/O time-out support, special functions, error logging, and
special services available in XM systems.

To write a bootstrap for a system device, you first need to know the dif-
ferences between a standard handler and a system device handler. These
differences are discussed in several sections before the final sections of the
chapter, where you will find explained the assembly, installation, testing,
and debugging procedures for the new handler.

Be sure to read Chapter 6, Interrupt Service Routines, before you read
about device handlers. Section 6.3 of that chapter can help you decide
whether you need to write an in-line interrupt service routine or a device
handler.

7.1 How to Plan a Device Handler

The most important part of writing a device handler is taking the time to
plan the whole process carefully. Follow these guidelines:

*  (Get to know your device

¢  Study the structure of a standard device handler

e  Study the skeleton device handler

¢ Think about using the special features

¢ Study the sample handlers

® Prepare a flowchart of the device handler

e Write the code

¢ Install, test, and debug the handler

714 Get to Know Your Device

Learning about the characteristics of your device and the bus interface is
crucial to writing a handler that works correctly. Review the material in
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Section 6.4.1 so that you can answer all the pertinent questions about your
device before you attempt to write a handler for it.

7.1.2 Study the Structure of a Standard Device Handler

Section 7.2 describes the structure of a standard device handler. Read this
section carefully; your handler must conform to this structure.

7.1.3 Study the Skeleton Device Handler

Section 7.3 contains a skeleton outline of a standard device handler. You
can use this outline as a starting point when you begin to write your own
handler.

7.1.4 Think About Using the Special Features

Sections 7.4 through 7.9 describe the special features available to device
handlers. Read these sections carefully to determine whether any of the
features are applicable to your handler.

7.1.5 Study the Sample Handlers

Appendix A contains assembly listings of three RT-11 device handlers
(RK, DX, and PC) with extensive explanatory comments. Study these
listings until you feel comfortable with the organization of the handlers,
and you understand how they implement some of the special features. Ob-
tain listings of handlers for other devices that resemble yours; you may be
able to use some of the code that is already written.

7.1.6 Prepare a Flowchart of the Device Handler

Preparing a flowchart for your handler can help you plan the contents of the
various sections. Flowcharting can also help you spot loose ends and errors
in your programming logic. Unfortunately, flowcharts are not much help in
pointing out potential race conditions. (A race condition is a situation in
which two or more asynchronous processes attempt to modify the same
data structure at the same time; as a result, the data structure is corrupted
and the integrity of the processes is compromised.) Therefore, when you
design the handler, examine every step carefully and keep in mind what
would happen if an interrupt occurred at each instruction. This kind of plan-
ning can help you avoid race conditions later.

7.1.7 Write the Code

If you have followed the recommended steps so far, writing the code for the
device handler should be relatively simple. You must write Position-
Independent Code (PIC) for the handler. Review the chapter on PIC code in

Device Handlers



the PDP-11 MACRO-11 Language Reference Manual if you are not already
familiar with it. Copy as much code as possible from the commented device
handlers in Appendix A, or from other reliable sources. Start with a general
outline that conforms to the structure presented in Section 7.2 and then add
details to reflect the specifics of your particular device. When you have
thoroughly checked the code for logic errors and it assembles properly, you
are ready to test and debug it.

7.1.8 Install, Test, and Debug the Handler

Sections 7.11 and 7.12 show how to install a new device handler and how to
begin testing and debugging it.

7.2 Structure of a Device Handler

An RT-11 device handler consists of the following six sections:

¢  Preamble

e Header

e I/O initiation

¢ Interrupt service
¢ 1/O completion

¢ Handler termination

Each section is a separate logical unit, containing code for a particular pur-
pose. Because the RT-11 system macro library provides special macros to
generate much of the required code for these sections, the actual lines of
code that you write yourself are not too complex.

Before you read ahead, take a minute to glance over the sample device
handlers in Appendix A and get a feel for the overall structure of the
handlers.

7.2.1 Preamble Section

The device handler source file begins with the preamble section, which in-
cludes an .MCALL directive for the .DRDEF macro and any other macros
you need that this chapter does not explicitly mention. The preamble also
provides definitions for symbols that you will use later. Much of the work in
the preamble is done by the .DRDEF macro.

7.21.1 .DRDEF Macro — Use the .DRDEF macro near the beginning of your
device handler. This macro performs most of the work of the preamble sec-
tion. Its functions are to:

¢ Issue .MCALL directives for all handler-related macros
* Provide default values for the key system conditionals
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e Invoke the .QELDF macro to define queue element offsets
¢ Define bit patterns for device characteristics

e Define ddDSIZ as the device size in blocks

e Define dd$COD as the device identification

e Set up the device status word from information in ddDSIZ and
dd$COD

e Provide default values for the device CSR in dd$CSR and vector in
dd$VEC

e Make the symbols dd$CSR and dd$VEC global

dd represents the two-character device name.

The format of the .DRDEF macro call is as follows:

.DRDEF name,code,stat,size,csr,vec

name is a two-character device name, such as RK for the RKO05 disk
handler.

code is the octal numeric value that uniquely identifies the device. See Sec-
tion 7.2.1.2.

stat is the device status bit pattern. Your value for stat can use the follow-
ing symbols (described in Section 7.2.1.3):

FILSTS$ WONLY$ HNDLR$

RONLY$ SPECLS$ SPFUN$

size is the size of the device in 256-word blocks; use a value of 0 if the device
is not file-structured (see Section 7.2.1.4).

csr is the default value for the device’s control and status register.

vec is the default value for the device’s interrupt vector.

MCALL Directive

The .DRDEF macro issues the MCALL directive for the following macros:
.DRAST .DRBEG .DRFIN

.DRBOT .DREND .DRSET

.DRVTB .FORK .QELDF

In addition, if you assemble your handler with the conditional TIMS$IT set
to 1, .DRDETF issues an .MCALL directive for these macros:

.TIMIO and .CTIMIO

System Generation Conditionals

RT-11 source files make extensive use of conditional assembly directives.
Sections of source code are included or omitted at assembly time, based on
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the value of conditional symbols. For example, RT-11 uses the conditional
ERLS$G to indicate whether routines for error logging should be assembled.

If you use conditional symbols in your handler, you should conform to
RT-11 standard usage by setting the conditional equal to 0 to indicate that
the feature it represents is not to be included and by setting the conditional
to 1 to include the feature. (Note that RT-11 uses only the values 0 and 1 to
indicate absence or presence of a feature.) See the PDP-11 MACRO-11
Language Reference Manual for information on the conditional assembly
directives .IF EQ, .IF NE, and so on.

The .DRDEF macro sets to 0 the system generation conditionals TIM$IT
(for device time-out), MMGST (for extended memory support), and ERL$G
(for error logging), if you do not define them in a prefix file at assembly time.
In addition, if the symbols have values other than 0, .DRDEF sets them
to 1.

Queue Element Offsets

The .DRDEF macro invokes .QELDF to define queue element offsets sym-
bolically. The following example shows the queue element offsets
generated. (See Section 7.9.3 for the queue element in XM systems.)

Q.LINK =0 (Link to next queue element)
Q.CSW =2 {Pointer to channel status word)
Q.BLLKN =4, (Physical block number)
Q.FUNC =8. (Special function code)
Q.JNUM =7. (Job number)

Q.UNIT =7 (Device unit number)

Q.BUFF = ~010 (User buffer address)

Q.WCNT = ~012 (Word count)

Q.COMP = ~ 014 (Completion routine code)
Q.ELGH = ~016 (Length of queue element)

Since the handler usually deals with queue element offsets relative to
Q.BLKN, the .QELDF macro also defines the following symbolic offsets:

Q$LINK = -
Q$Ccsw = -
Q$BLKN =0
Q$FUNC =2
Q$JNUM =3
QS$UNIT =38
Q$BUFF =4
Q$WCNT =6
Q$COMP =10
Symbol Definitions

Use direct assignment statements to define symbols that you will use later
in the handler. Typically, the definitions include the device registers and
other useful internal symbols. Some examples from RT-11 device handlers
follow.
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To define an internal symbol for line feed (ASCII 12):

LF 12 ;ASCIl FOR LINE FEED

To define other device registers:

RKDS = RK$CSR ;DRIVE STATUS REGISTER
RKER = RKDS +2 ;ERROR REGISTER

RKCS = RKDS +4 ;CONTROL STATUS REGISTER
RKWC = RKDS +6 ;WORD COUNT REGISTER

The .DRDEF macro defines the following symbols for you:

HDERR$ =1 ;HARD ERROR BIT IN THE CSW
EOF$ = 20000 ;END OF FILE BIT IN THE CSW

7.2.1.2 Device-ldentifler Byte — The low byte of the device status word, the
device-identifier byte, identifies each device in the system. You specify the
correct device identifier as the code argument to DRDEF. The values are
currently defined in octal as Table 7-1 shows.

Table 7-1: Device-Identifier Byte Values

Value Meaning
0 RKO05 disk
1 TC11 DECtape
2 Reserved
3 Line printer
4 Console terminal or batch handler
5 RLO1/RLO2 disk
6 RX02 diskette
7 PC11 high-speed paper tape reader and punch
10 Reserved
11 TU10 magtape
12 RF11 disk
13 TA11 cassette
14 Card reader (CR11, CM11)
15 Reserved
16 RJS03/RJS04 fixed-head disk
17 Reserved
20 TJU16 magtape
21 RP02/RP03 disk
22 RXO01 diskette
23 RKO06/RKO07 disk
24 Reserved
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Table 7-1: Device-Identifier Byte Values (Cont.)

Value Meaning
25 Null handler
26-30 Reserved (for DECnet)
31-33 Reserved (for CTS-300 LQ, LR, LS)
34 TU58 DECtape I
35 TS11 magtape
36 PDT-11/130
37 PDT-11/150
40 Reserved
41 Serial line printer handler (LS)
42 Internal message pseudo device (MQ)
44 Down-line load handler (XT) (MRRT-11 only)

To create device-identifier codes for devices that are not already supported
by RT-11, start by using code 377 octal for the first device, 376 for the se-
cond, and so on. This procedure should avoid conflicts with codes that
RT-11 will use in the future for new hardware devices.

7.2.1.3 Device Status Word — The device status word identifies each unique
physical device in an RT-11 system and provides other information about
it, such as whether it is random- or sequential-access. The value of the
status word is stored in block 0 of the handler file and in the $STAT table
when the device is installed; the .DSTATUS programmed request returns
this value to a running program. The .DRDEF macro sets up the device
status word based on the arguments code and stat.

Table 7-2 shows the meaning of the bits in the device status word. The
.DRDEF macro uses the symbol ddSTS to represent the device status
word.

Table 7-2: Device Status Word

Bit Symbeol Meaning
0-17 —_ Device-identifier byte (see Section 7.2.1.2)
8-9 —_— Reserved
10 SPFUNSs 0 = .SPFUN requests are invalid
1 = Handler accepts .SPFUN requests
11 HNDLRS$ 0 = Enter handler at abort entry point only if there is an

active queue element belonging to the aborted job

1 Enter handler at abort entry point on all aborts

This bit is ignored in SJ systems.
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Table 7-2: Device Status Word (Cont.)

Bit Symbol Meaning

12 SPECL$ 1 = Special directory-structured device (examples are
MT, CT)

13 WONLY$ 1 = This is a write-only device

14 RONLYS$ 1 = This is a read-only device

15 FILST$ 0 = Thisis a sequential-access device (examples are MT,
CT, PC, LP)

1 = This is a random-access device (examples are RK,

DX)

Note that bit 11 in the status word should be set for device handlers that
remove the queue element on entry and queue internally, and for devices
such as magtape that have internal data that could need modification on
abort. See Section 7.4 for more information on device handlers that do their
own queuing. See Section 7.8.5 for details on special devices (such as
magtape).

All device handlers that have bit 15 set are assumed to be RT-11 file-
structured devices by most of the system utility programs.

An easy way to define the device status word is to use the mnemonics for
the bit patterns that .DRDEF defines for you. Thus, you can create the stat
argument by ORing together the appropriate symbols from the list below.

FILST$ = =100000 ;FILE STRUCTURED RANDOM ACCESS
RONLY$ = = 40000 ;READ ONLY

WONLY$ = = 20000 ;WRITE ONLY

SPECL$ 10000 ;NO DIRECTORY

HNDLR$
SPFUN$

4000 ;ENTER HANDLER ON ABORT
2000 ;ACCEPTS SPECIAL FUNCTIONS

For example, form the stat argument for the RK, MT, and LP handlers as
follows:

For RK: FILSTS$
For MT: SPECL$!SPFUNS$
For LP: WONLY$

7.2.1.4 Device Size Word — The size argument for the .DRDEF macro
defines the size of the device in 256-word blocks. The .DRDEF macro puts
this value into ddDSIZ. If the device is not random access, place the value 0
in size. The size of the RK device is 4800 decimal blocks (11300 octal); the
size for the PC (paper tape) device is 0, since it is not random access.

The .DSTATUS programmed request returns the value of the device size
word to a running program. For examples of the .DRDEF macro, see the
device handler listings in Appendix A.
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7.2.2 Header Section

The second part of an RT-11 device handler is the header section. In the
header section you invoke the DRBEG macro to set up the first five words
of the handler. This macro also stores five words of information in block 0 of
the handler file, in locations 52 through 60, and creates some global sym-
bols. The data you set up in the header section is used when the handler is
brought into memory with the .FETCH programmed request or LOAD
monitor command. The contents of location 176, described below, are used
by the bootstrap when it checks for the presence of device hardware at
handler installation time.

7.2.21 Information in Block 0 —- Table 7-3 shows the five words in block 0
that the . DRBEG macro sets up by using the .ASECT directive. It also
shows the three words .DRBOT sets up for bootable devices (see Section
7.10.2.6). In the table, the associated mnemonics are shown in square
brackets, and the two-character device name is represented by dd.

Table 7-3: Information in Block 0

Location Contents [and Mnemonic]

52 Size of the handler in bytes
[ddEND-ddSTRT]

54 Size of the device in 256-word blocks
[ddDSIZ]

56 Device status word
[ddSTS]

60 A status word to reflect current system generation features
[ERL3G + <MMG$T*2> + <TIMS$IT*4>]

62 A pointer to the start of the primary driver (from .DRBOT)

64 The length of the primary driver, in bytes (from .DRBOT)

66 The offset from the start of the primary driver to the start of the
bootstrap read routine (from .DRBOT)

176 CSR address

[dd$CSR]

7.2.2.2 First Five Words of the Handler — Table 7-4 shows the five words that
the .DRBEG macro generates at the start of the handler’s p-sect. In the
table, dd represents the two-character device name.

7.223 .DRBEG Macro — Use the DRBEG macro to set up the information
in block 0 and the first five words of the handler. This macro also generates
the appropriate global symbols for your handler. Before you use .DRBEG,
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you must have invoked .DRDEF to define dd$CSR, dd$VEC, ddDSIZ, and
ddSTS. The format for .DRBEG is as follows:

.DRBEG name
name is the two-character device name.

For examples of .DRBEG, see the handler listings in Appendix A.

Table 7-4: Handler Header Words

Word Symbol Contents

[y

ddSTRT:: Device vector (for single-vector devices);
Offset to table of vectors (for multi-vector devices)

—_ Offset to interrupt service entry point
_ Priority (340)
ddLQE:: Pointer to the last queue element

G kW N

ddCQE:: Pointer to the current queue element

7.2.2.4 Multi-Vector Handlers: .DRVTB Macro — An RT-11 device handler can
service a device that has more than one vector. The PC handler, for exam-
ple, services interrupts through vector 70 for the paper tape reader, and
through 74 for the paper tape punch.

If your device has more than one interrupt vector associated with it, the
handler must contain a table of three-word entries for each vector. The en-
try for each vector consists of the vector location, the interrupt entry point,
and the Processor Status, or PS, value.

To set up the handler header for a multi-vector device, simply invoke the
.DRVTB macro two or more times. The .DRVTB macro sets up the table of
three-word entries for each vector of a multi-vector device. Place it in your
handler anywhere between the .DRBEG macro and the .DREND (or
.DRBOT) macro, as long as it does not interfere with the flow of control
within the handler. You must invoke this macro once for each vector, and
the macro calls must appear one after the other in the handler.

The format of the .DRVTB macro is as follows:

.DRVTB name,vec,int [,ps]

name is the two-character device name. Specify it on the first .DRVTB call;
leave this argument blank on all subsequent calls.

vec is the location of the vector; it must be between 0 and 474. The first vec-
tor is usually dd$VEC. The value must be a multiple of 4.

int is the symbolic name of the interrupt handling routine; it must appear
elsewhere in the handler. It generally takes the form ddINT, where dd
represents the two-character device name.
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ps is an optional value you can use to specify the low-order four bits of the
new Processor Status word in the interrupt vector. If you omit this argu-
ment, it defaults to 0.

An example of a handler that uses two vectors is the PC handler. The
following example shows the source lines and the code the macros generate.

;  PUNCH-READER VECTOR TABLE

IF EQ PR118X ;IF BOTH READER AND PUNCH
.DRVTB PC,PR$VEC,PRINT ;TABLE FOR READER
.DRVTB ,PP$VEC,PPINT ;TABLE FOR PUNCH

.ENDC

The vector table generated by the .DRVTB macros is as follows:

.WORD PR$VEC,PRINT-.,340!0 ;TABLE FOR READER
.WORD PP$VEC,PPINT-.,340!0 ;TABLE FOR PUNCH
.WORD 0 ;TO END THE TABLE

As you see in the example above, the priority bits of the PS are always set
to 7, even if you omit the ps argument.

7.2.2.5 PS Condition Codes — In the .DRVTB macro, only the condition
code bits of the ps argument are significant. These can be useful if you have
a common interrupt service entry point for two or more vectors and you
need to determine through which vector the interrupt occurred. For exam-
ple, the PC handler has separate interrupt entry points for its two vectors,
80 it can easily determine the source of the interrupt. Interrupts through
vector 70 go to the routine at PRINT:; interrupts through 74 go to PPINT:.

Suppose that the PC handler had only one interrupt entry point, called
PCINT:. In this case, the handler could distinguish which vector took the
interrupt by setting the condition codes in the PS for the vectors. For the
reader vector at 70, it could leave the C bit clear. For the punch vector at 74,
it could set the C bit. Then, at PCINT:, control could pass to different
routines based on the value of the C bit in the new PS. The following exam-
ple shows how to invoke the .DRVTB macro and place values in the condi-
tion codes of the PS.

;  PUNCH-READER VECTOR TABLE

.IF EQ PR11$X ;IF BOTH READER AND PUNCH
.DRVTB PC,PR$VEC,PCINT ;C BIT CLEAR
.DRVTB ,PPSVEC,FCINT,1 ;C BIT SET

.ENDC

7.2.3 /O Initiation Section

The /0 initiation section contains the first executable instructions of the
handler. The purpose of the code in this section is to start a data transfer.
Remember that you must write Position-Independent Code (PIC) for the
handler.
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When a program issues a programmed request that requires device I/O,
such as .READ or .WRITE, control first passes to the Resident Monitor,
which then calls the device handler for the peripheral device with the JSR
PC instruction. The monitor calls the handler at the handler’s sixth word —
that is, the first word immediately after the five-word header. It makes the
call whenever a new queue element becomes the first element in a handler’s
queue. This situation occurs when an element is added to an empty queue,
or when an element becomes first in a queue because a prior element was
released. If any of the parameters in the I/O request are invalid for the
device (for example, the block number is too large, the unit number is too
high, and so on), the handler should proceed immediately to the I/O comple-
tion section and signal a hard (fatal) error.

The I/O initiation code executes at processor priority 0 in system state,
which means that no context switch can occur, no completion routines can
run, and any traps to 4 and 10 cause a system fatal halt. All registers are
available for you to use in this section. The fifth word of the handler header,
ddCQE, contains a pointer to the current queue element at its third word,
Q.BLKN.

The queued I/O system guarantees that requests for data transfers are
serialized so that RT-11 device handlers need not be re-entrant. Therefore,
you can minimize the size of a handler by mixing, rather than separating,
the pure code and the data segments.

Guidelines for Starting the Data Transfer

Since the purpose of the I/O initiation section is to start up the data
transfer, you must now supply the instructions to do this. The following
steps represent guidelines for a generalized I/O initiation section.

1. You should already have decided how many times the handler will
retry a transfer should an error occur. Initialize a retry counter by mov-
ing the maximum number of retries to it. The following two lines of
code illustrate this step.

MOV #RKCNT,(PC) + ;RKCNT = MAXIMUM # OF RETRIES
RETRY: WORD © ;THE RETRY COUNTER

2. Put the pointer to the current queue element into a register, and get
the device unit number and the block number for the transfer from the
queue element. The following lines of code illustrate this.

MOV RKCQE,R5 ;GET POINTER

MOV @R5,R2 ;R2 = BLOCK NUMBER
MOVB Q$UNIT(R5),R4 ;R4 = UNIT NUMBER
BIC #-C<7>,R4

3. Next, perform the steps to calculate the address on the device for the
data transfer to begin. The instructions you use depend on the device s
structure, of course. Once you have calculated the correct address,
save it in a memory location. If you need to retry this transfer, you will
not have to recalculate the address.
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MOV R3,(PC) + ;SAVE ADDRESS IN DISKAD
DISKAD: .WORD 0 ;SAVE CALCULATED ADDRESS HERE

4. Steps 1 through 3 outlined above are executed only once for each data
I/O request from a running program. However, in case of a soft error,
you may find it necessary to restart a transfer as part of the retry
operation. So, by placing a label here to use as the retry entry point,
you avoid repeating steps 1 through 3.

The following steps can be performed more than once: they are ex-
ecuted once for the first 1/O startup, and they can be executed again if
an I/O error causes a retry.

At this point the handler should determine whether the I/O request is a
read, a write, or a seek. It should then generate the appropriate op code
for the operation and move it to the device control and status register.
This is the step that actually initiates the I/O transfer.

CSIE = 100 ;INTERRUPT ENABLE
FNWRITE = 1*2 ;WRITE
CSGO = 1 ;GO BIT

AGAIN: MOV RKCQE,R5 ;POINT TO QUEUE ELEMENT
MOV #CSIE!FNWRITE!CSGO,R3 ;ASSUME A WRITE

MOV #RKDA,R4 ;POINT TO DISK
. ;ADDRESS REGISTER

5. Finally, return to the interrupted program by going through the
monitor first. Then when the 1I/O transfer finishes, the device will inter-
rupt, and control will pass to the handler at the interrupt entry point in
the interrupt service section of the handler.

RTS PC ;AWAIT INTERRUPT

7.2.4 Interrupt Service Section

Control passes to the interrupt service section of the handler when a device
interrupts or when the program requesting the I/O transfer aborts. The code in
this section must first determine if the data transfer had an error, if it was
incomplete, or if it was complete, and then take the appropriate action. The
same register usage restrictions that apply to the interrupt entry point also
apply to the abort entry point (see Table 6-3).

Your first step in coding the interrupt service section is to set up the inter-
rupt entry point and the abort entry point by using the .DRAST macro.
(These entry points are sometimes referred to as the asynchronous trap en-
try points.) The default name for the interrupt entry point is ddINT, where
dd is the device name. Under normal conditions, the handler is called at the

Device Handlers 7-13
March 1981



7-14

interrupt entry point when an interrupt occurs. However, under some cir-
cumstances, the handler is called at the abort entry point. The various
situations are discussed in the following sections.

7.2.4.1 Abort Entry Point — There are a number of situations that cause an
abort in the queued I/O system: (1) a double CTRL/C can abort a running
program; (2) the . HRESET programmed request causes an abort; (3) a trap to
4 or 10, or any other condition that produces the 2MON-F- type of fatal error
message, also causes an abort. On abort, whether or not the handler is entered
at all depends on two factors. The handler is always entered at the abort entry
point (the word immediately before the normal interrupt entry point) if an
active queue element exists and it belongs to the aborting job. In FB and XM,
the handler is also entered regardless of the existence of a queue element if
HNDLRS (bit 11) is set in the device status word. The SJ monitor ignores this
bit. Additionally, handlers are never entered when a job aborts in the SJ
environment; the SJ monitor simply performs a RESET instruction. In all
environments, on entry to the handler, R4 always contains the job number of
the aborting job.

When an abort occurs; it is important to stop I/O on some devices.
Character-oriented devices, such as the paper tape reader/punch, fall into
this category. On abort, the handler must stop the device in order to pre-
vent a tape runaway condition, for example. It must also make sure that the
device cannot interrupt again. So, character-oriented devices generally con-
tain an abort routine; the abort entry point is simply a branch instruction to
that routine. The PC handler, for example, has an abort routine that
disables interrupts on the paper tape reader/punch. Then the handler exits
to the monitor in the I/O completion section. The following line is from the
PC handler (PRCSR is a word in the handler that points to the CSR):

PRDONE: CLR @PRCSR ;TURN OFF THE READER/PUNCH INTERRUPT

Other devices, such as disks, should be allowed to complete an I/O transfer
attempt, even if an abort occurs. In fact, trying to abort in the middle of an
operation can corrupt data or formatting information on a disk. So, instead
of having a separate abort routine, most handlers for disks ignore an abort.
Thus, an RTS PC instruction is located at the abort entry point, which
simply returns control to the monitor.

If you use .FORK in your handler, there is a special procedure you must
follow if an abort occurs. You must move 0 to F.BADR (the fork routine ad-
dress, at offset 2) in the fork block. This prevents the monitor from attempt-
ing to execute a meaningless fork routine after the abort.

7.24.2 Lowering the Priority to Device Priority — When the interrupt occurs,
the handler is entered at priority 7. As with interrupt service routines, the
handler’s first task is to lower the processor priority to the priority of the
device, thus permitting more important devices to interrupt this service
routine. Instead of using the .INTEN call, as in an interrupt service routine,
use the .DRAST macro to lower the priority.

7.2.4.3 .DRAST Macro — Use the .DRAST macro to set up the interrupt en-
try point and the abort entry point, and to lower the processor priority. The
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macro also sets up a global symbol $INPTR, which contains a pointer to the
$INTEN routine in the Resident Monitor. This pointer is filled in by the
bootstrap (for the system device) or at .FETCH time (for a data device).

The format of the .DRAST macro is as follows:
.DRAST name,pri[,abo]

name is the two-character device name.
pri is the priority of the device, and the priority at which the interrupt ser-
vice code is to execute, as well.

abo is an optional argument that represents the label of an abort entry
point. If you omit this argument, the macro generates an RTS PC instruc-
tion at the abort entry point, which is the word immediately preceding the
interrupt entry point.

The following example from the PC handler shows the .DRAST macro call
and the code it generates.

.DRAST PP,4,PRDONE

.GLOBL $INPTR ;MAKE THIS SYMBOL GLOBAL
BR PRDONE ;THE ABORT ENTRY POINT
PPINT:: JSR R5, @$INPTR ;3JUMP TO MONITOR INTEN CODE

WORD ~C<4* ~040> & ~0340 ;NEW PRIORITY

The next example, from the RK handler, does not have an abort routine.

.DRAST RK,5

.GLOBL S$INPTR ;MAKE THIS SYMBOL GLOBAL

RTS PC ;JUST RETURN ON ABORT
RKINT:: JSR R5,@$INPTR 7JUMP TO MONITOR INTEN CODE

.WORD ~C<5* ~040>& ~0340 ;NEW PRIORITY

7.2.4.4 Guidelines for Coding the Interrupt Service Section — Since the purpose
of this section is to evaluate the results of the last device activity, you must
now supply the instructions to do this. Essentially, the code must deter-
mine if the transfer was in error, if it was incomplete, or if it was complete.

1. If an Error Occurred
If an error occurred during the transfer, the handler must distinguish
between a hard error and a soft error that might vanish if the operation
is retried.

If the error is hard, the handler should immediately exit through the
I/O completion section.

If the error is soft, the handler should prepare to retry the transfer. It
should decrement the count of available retries. Then, at fork level, it
should branch back to the I/O initiation section to restart the transfer.
If the transfer has already been retried enough times (the retry count is
0), treat the failure as though it were a hard error. In that case, the
handler should proceed to the I/0 completion section.
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Note that dropping to fork level is not strictly required to process an
error. Whether or not to use .FORK depends on the length of time re-
quired for setting up the retry. The .FORK call is especially useful
because it gives you use of R0 through R3, thus permitting you to use
common routines for the retry. If you do not use .FORK, only R4 and
R5 are available.

2. Perform Retries at Fork Level

As you learned in Chapter 6, the .FORK macro causes a return to the
Resident Monitor, which dismisses the current interrupt. (Review Sec-
tion 6.5.6 for details on the .FORK macro.) The code that follows
.FORK executes at priority 0, rather than at device priority, after all
other interrupts have been serviced, but before any jobs or their com-
pletion routines can execute. The code following .FORK executes, as
does the main body of the interrupt service section of the handler, in
system state. (This is the same state the I/O initiation section runs in.)
Thus, context switching is prevented while the fork level code is ex-
ecuting, and any traps to 4 and 10 cause a system fatal halt.

The following example from the RK handler illustrates how the handler
drops priority to fork level to retry data transfers after a soft error oc-
curred. Fork level is ideal for performing the retries, since this may be a
lengthy process. The .FORK call and its expansion are as follows:

.FORK RKFBLK ;THE FORK CALL

JSR R5,@$FKPTR ;(JUMP TO MONITOR FORK CODE)

WORD RKFBLK-. J(OFFSET TO FORK QUEUE ELEMENT)
RKRETR: CLRB RETRY +1 ;RESET A FLAG

BR AGAIN ;BRANCH INTO I/O INIT SECTION

3. If the Transfer Was Incomplete
In general, a transfer is considered to be incomplete when there are
more characters or more blocks of data left to transfer. The handler
should restart the device and exit with an RTS PC instruction to wait
for the next interrupt.

4. If the Transfer Was Complete
When the transfer is complete, the handler can simply exit through the
1/0 completion section.

7.2.5 1/0 Completion Section

The I/O completion section provides a common exit path to inform the
monitor that the handler is done with the current request, so that the
monitor can release the current queue element. Although the other sections
of the handler are distinct, separate parts, the I/O completion section is ac-
tually an extension of the interrupt service section and the dividing line be-
tween these two sections is artificial. Control does not pass to the I/0 com-
pletion section as a result of a monitor call, a subroutine call, or a jump, but
rather as a result of normal flow of execution through the interrupt service
section. Execution passes to the I/O completion section when a hard error is
detected, when a soft error condition exhausts the number of retries allowed

Device Handlers



for it, or when a data transfer completes. (Note that you can branch directly
to this section from the I/O initiation section if you detect a hard error
immediately.)

1. If an Error Occurred
There are two kinds of errors that cause control to pass to the I/O com-
pletion section: hard errors, which should cause a branch to this section
immediately, and soft errors that have exhausted their allotted
number of retries, which cause a branch to this section after the last
retry fails. Treat both cases alike in handling the exit to the monitor.

First, set the hard error bit, bit 0, in the Channel Status Word for the
channel. The second word of the I/O queue element, Q.CSW, points to

- the Channel Status Word. Then jump to the I/O completion routine in
the Resident Monitor. Use the .DRFIN macro, described below, to
generate the code for this jump.

The following lines of code are from the RK handler. They illustrate
how the handler sets the hard error bit and jumps back to the monitor.

BIS #HDERRS, @-(R5) ;SET HARD ERROR BIT
;(R6 POINTS TO THIRD WORD OF
;QUEUE ELEMENT; POINTER TO
;CSW IS SECOND WORD.)
.DRFIN  RK 7JUMP TO MONITOR

2. If the Transfer Was Complete
For a block-oriented device, such as a disk or diskette, the handler
simply disables interrupts and performs the jump to the monitor. As
the example in point 2 shows, the .DRFIN macro generates the code to
perform the jump.

For a character or word-oriented device, such as paper tape, the pro-
cedure is slightly more complicated because the handler may have to
report end-of-file to the job that requested the I/O transfer. Examples
of conditions that cause end-of-file are absence of tape in the paper tape
reader, and detection of CTRL/Z typed on the console terminal. When
the handler actually detects the EOF condition on a READ operation,
it should set an internal EOF flag, put the last character in the user’s
buffer, and then zero-fill the rest of the buffer. Then the handler should
jump back to the monitor, as it would if EOF were not detected but the
buffer had simply filled up. The handler waits until it is called again to
signal EOF to the user.

The PC handler uses the reader/punch ready bit in the device status
register as the internal EOF flag. The following example shows how
the PC-handler zero-fills the user buffer when it detects end-of-file, sets
an internal EOF flag, and jumps back to the monitor.

PREO1: CLRB @(R4) + ;CLEAR REMAINDER OF BUFFER
(R4 POINTS TO BUFFER ADDRESS)
INC -(R4) ;BUMP BUFFER ADDRESS
DEC BYTCNT-BUFF(R4) ;TEST IF DONE
BNE PREO1 ;BRANCH IF MORE
PRDONE: GCLR @PRCSR ;TURN OFF DEVICE INTERRUPT
PRFIN: .DRFIN PR ;JUMP TO MONITOR
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When the handler is called again with a new queue element for another
READ operation, it first checks its internal EOF flag. Finding it set,
the handler sets the EOF bit of the Channel Status Word, bit 13, and
jumps back to the monitor. The Resident Monitor eventually clears
this bit, when the next I/O request is made for this channel.

The following example shows how the PC handler tests the device
ready bit — which it uses as its internal EOF flag — sets the EOF bit
for the user program, and jumps back to the monitor.

TST @#PR$CSR ;IS READER READY?

BPL PRGORD ;YES, START TRANSFER

BIS #EOF$, @-(R4) ;NO, SET EOF BIT

BR PRDONE ;GO TO COMPLETION
PRDONE: CLR @PRCSR ;TURN OFF DEVICE INTERRUPT
PRFIN: .DRFIN PR WJUMP BACK TO MONITOR

This convention for indicating end-of-file makes character-oriented
devices appear to programs as random-access devices, which is in keep-
ing with the RT-11 philosophy of device independence.

.DRFIN Macro

Use the .DRFIN macro to generate the instructions for the jump back to
the monitor at the end of the handler I/O completion section. The macro
makes the pointer to the current queue element a global symbol, and it
generates Position-Independent Code for the jump to the monitor. When
control passes to the monitor after the jump, the monitor releases the cur-
rent queue element.

The format of the .DRFIN macro is as follows:
.DRFIN name

name is the two-character device name.

For examples of the .DRFIN macro, see the handler listings in Appendix A.

7.2.6 Handler Termination Section

The purpose of the handler termination section is to declare some global
symbols and to establish a table of pointers to offsets in the Resident
Monitor. The pointers are filled in by the bootstrap, if the handler is for the
system device. Otherwise, they are filled in when the handler is made resi-
dent with .FETCH or LOAD. The termination section also provides a sym-
bol to determine the size of the handler. Use the .DREND macro to generate
the handler termination code.

7.2.6.1 .DREND Macro — The format of the .DREND macro is as follows:
.DREND name

Device Handlers



name is the two-character device name.

For examples of the . DREND macro, see the handler listings in Appen-
dix A.

7.2.6.2 Pseudo-Devices — You can write a device handler for a pseudo-
device (one that does not interrupt, and is not a mass storage device) to take
advantage of the queued I/O system and the fact that handlers can remain
memory resident. Examples of handlers for pseudo-devices are NL (the null
device) and MQ (the message queue handler).

All the executable code of such a handler must appear in the I/O initiation
section. The handler should then issue the .DRFIN macro call to terminate
the operation and return the queue element. Since pseudo-devices do not in-
terrupt, the handler needs no interrupt service section, and no .DRAST
macro call.

7.3 Skeleton Outline of a Device Handler

The skeleton outline in Figure 7-1 provides the structure for a simple
device handler. In the figure, SK is the device name.

Figure 7-1: Skeleton Device Handler

+TITLE SK vo4.01

5 SK DEVICE HANDLER
+IDENT /V04.,01/

+SETTL PREAMEBLE SECTION

+MCALL DRIDEF

+ORDEF  SKs377sWONLY$,0,1775145200
SKER
SKIE

SK$CSR+2 iSK BUFFER REGISTER
100 FINTERRUFT ENABLE EIT

+SETTL HEADER SECTION

+IIRREG 8K

JSETTL I/0 INITIATION SECTION

MoV SKCREsR4 iR4 FOINTS TO CRE
ASL QsWCNT(R4) sMAKE WORD COUNT BYTE COUNT
REQ SKDONE iA SEEK COMPLETES IMMEDIATELY
ECC SKERR JTHIS IS A WRITE-ONLY DEVICE -~
sA READ REQUEST IS ILLEGAL
RET? EIS $SKIE,@4#SK$CSR FJENARLE INTERRUFTS
RTS FC iWAIT FOR ONE

+SETTL INTERRUFT SERVICE SECTION

+DIRAST  SKy4rSKIONE

MoV SKCQRE,R4 iRkR4 FOINTS TO CQE
EIT #100200,@#5K$CSR JERROR OR READY?
BEMI RET JERROR - HANG UNTIL CORRECT
EEQ RET FNOT READY - EXIT AND WAIT
RIC #SKIE,P#SK$CSR s DISARLE INTERRUFTS
+FORK SKFELK $FPROCESS REMAINING CODE AT
s FORK LEVEL
Al #QEWCNT R4 }OFFSET QUEUE ELEMENT FOINTER
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Figure 7-1: Skeleton Device Handler (Cont.)

SKNEXT?! TSTE @#SK$CSR FREALDY FOR NEXT CHAR?
EFL RET #NO - BRANCH BRACK
TST @R4 FANY LEFT TO FRINT?
BREQ SKDONE iNO — TRANSFER IS DONE
MOVE @-(R4)sRS iGET A CHARACTER
INC (R4)+ i BUMF BUFFER FOINTER
INC erR4 i BUMF CHARACTER COUNT
RIC #°C<177>9RS i7-BIT ASCII
MOVE RSy @#SKER $SENDI' CHAR TO LEVICE
EBR SKNEXT #TRY FOR ANOTHER

+SBTTL I/0 COMFLETION SECTION

SKERR?! RIS $HOERR$,@-(R4) $SET ERROR EIT IN CSW

SKIONE! RIC $IE,@#S5K$CSK FDISARLE INTERRUFTS
+ORFIN 8K i JUMF TO MONITOR

SKFELK?: JWORLl 050,040 sFORK QUEUE ELEMENT

«SETTL HANDLER TERMINATION SECTION

«DRENLII SK
+END

7.4 Handlers That Queue Internally

7-20

A device handler can maintain one or more of its own internal queues of
outstanding I/O requests instead of using the usual monitor/handler I/O
queue. The purpose of maintaining an internal queue is that it permits
several operations to take place on the device simultaneously — that is, the

~handler can service several requests to access the device at once.

As an example, consider a process controller with input counters and an
A/D converter. Since the converter is a slow device, the IP-11 controller can
read an input counter while running the converter. Another example is the
RT-11 message queue, implemented through the MQ handler, for system
job communication. If one job sends a message to a second job, and the sec-
ond job does not accept the message, the MQ handler waits. However, if a
receive request for the job is next in the queue, the MQ handler processes it.
To do this, it takes the original send request from the monitor/handler
queue, queues it internally, and then services the receive request.

In general, the handler follows a simple procedure to implement internal
queuing. When an I/O request is made for the handler, it is always the first
and only request in the monitor/handler queue. As soon as it comes in, the
handler queues it internally and clears ddCQE and ddLQE to ‘“‘remove’’ the
request from the monitor/handler queue. Note that the queue element is
still busy — it is still in use by the handler.

7.4.1 Implementing Internal Queuing

When the handler is first entered for a request, at the sixth word, it must
check the queue element for validity. An invalid request causes an im-
mediate fatal error.

If the request is for a procedure that completes very quickly, such as a seek
on paper tape, the handler performs the operation. Then it issues the
.DRFIN macro call to release the queue element and inform the requesting
program that the operation completed. In summary, the handler performs
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the operation if it is one that can be taken care of both synchronously and
quickly.

If the request is for a procedure that requires calculation and some time to
complete, the handler places the request on its internal queue by using the
queue element’s link word. The link word is 0, because this element is the
first and only element on the queue.

In summary, the handler queues the request internally if it is one that re-
quires some work and time, and must be taken care of asynchronously. If
the request is the first one on the internal queue, the handler starts the
operation, waits for it to complete, and exits with an RTS PC instruction. If
the request is not the first one on the internal queue, the handler does not
start the operation and simply exits with an RTS PC instruction.

7.4.2 Interrupt Service for Handlers That Queue Internally

When an operation completes, the handler is entered at its interrupt entry
point, ddINT:. After this, various actions are taken depending on the cir-
cumstances. If there is more than one internal queue, the handler deter-
mines which request this interrupt involves. If the operation is not com-
plete, the handler restarts it and returns to the monitor. If the transfer is
complete, the handler must put the internally queued request back on the
monitor/handler I/O queue by setting ddCQE and ddLQE. In this situation,
the handler needs to return the request to the main I/O queue, but it also
needs to continue execution (rather than return immediately to the monitor)
to check its internal queue in case there is another outstanding request.

To return the request to the monitor without exiting, the handler must per-
form a .DRFIN substitute. The following example illustrates how a handler
does this.

R4 points to the queue element on the internal queue, at its third word.

MOV  ddCQE,-(SP) ;IN CASE THE MONITOR/HANDLER QUEUE
;HAS AN ELEMENT WHEN WE TAKE THIS
;INTERRUPT

MOV  R4,ddCQE ;PUTS INTERNAL QUEUE ELEMENT ON THE

MOV  R4,ddLQE ; MONITOR/HANDLER QUEUE

CLR Q$LINK(R4)

MOV  PC,R4 3JSR

ADD  #ddCQE-.,R4 ; VERSION

MOV  @#54,R5 ; OF

JSR PC,@270(R5) ; .DRFIN

MOV  @SP,ddCQE ;RESTORE POSSIBLE OTHER

MOV  (SP)+,ddLQE ;QUEUE ELEMENT

(Check the internal queue now and start another operation if necessary.)

RTS PC ;RETURN
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7.4.3 Abort Procedures for Handlers That Queue Internally

Whether or not your handler queues I/0 requests internally, RT-11 maintains
a count of outstanding I/O requests for each channel. There is one counter in
each channel; the total of outstanding I/O requests is in the Resident Monitor.
When a job aborts, any outstanding I/O requests it has must be removed from
the counters. This occurs automatically if the handler relies strictly on the
monitor/handler I/0 queue.

If, however, the handler implements an internal I/O queue, it must follow a
procedure to reduce the count of outstanding I/O requests. This procedure
involves making sure that the handler will be entered when any job aborts,
whether or not the handler appears to have an active queue element, by
having the handler set bit 11, HNDLRS, in the device status word ddSTS
when it invokes .DRDEF. In FB and XM systems, this forces the handler to
be entered on all aborts, even if there is nothing on its monitor/handler queue.
(The SJ monitor ignores this bit, since there is no problem in a single-job
system.)

If the handler is entered at the abort entry point, then, it must check its
internal queue for elements belonging to the aborted job. (Remember that R4
always contains the job number of the aborting job.) The handler should
purge its internal queue of these elements and use one of the following proce-
dures to reduce the monitor’s count of outstanding I/O requests.

If ddCQE has a non-zero value:

1. Remove any internal elements for the aborting job.

2. Link the elements together via the element’s link word; the last element’s
link word must be 0. Set ddLQE to point to the last element in the
aborting job.

3. If ddCQE points to an element belonging to the aborting job, halt I/O and
issue a .DRFIN. If you cannot halt I/O, then issue an RTS PC instruction,
wait for an interrupt, and then issue a .DRFIN.

If ddCQE does not point to an element belonging to the aborting job,
simply issue the RTS PC instruction.

If ddCQE has the value 0:

1. Remove any internal queue elements that belong to the aborting job. If
there are none, simply issue the RTS PC instruction.

2. Link the elements together, as described in 2 above, setting ddCQE to
point to the first element, and ddL.QE to point to the last element. Note
that the last element’s link word must be 0.

3. Issue the .DRFIN macro.
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7.5 SET Options

The keyboard monitor SET command permits you to change certain charac-
teristics of a device handler. The handler must exist as a dd.SYS file on the
system device (ddX.SYS for XM), where dd is the two-character device
name. For example, the following command changes the column width for the
line printer:

SET LP WIDTH=80 (The default is 132 columns)

Another type of SET command can enable or disable a function. The follow-
ing example shows how a SET command can cause the system to send car-
riage returns to the line printer or to refrain from sending them.

SET LP CR (Send carriage returns; this is the default)
SET LP NOCR (Does not send carriage returns)

Note that you negate the CR option by adding NO to the start of the option.
See Chapter 4 of the RT-11 System User’s Guide for more information on the
SET options available with existing RT-11 device handlers.
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A device handler you write can contain code to implement different options.
Follow the format outlined in the following sections to learn how to add
SET options to your handler. Adding a SET option affects only the handler
file; you need not make any changes to the monitor. Note that SET options
are valid for both data and system devices.

7.5.1 How the SET Command Executes

The SET command is driven entirely by a table in block 0 of the handler file,
and by a set of routines, also in block 0, that modify instructions and data in
blocks 0 and 1 of the handler. Remember that block 0 refers to addresses 0
through 776, and that the handler header starts in block 1 at location 1000
in the file.

When you type a SET command at the console terminal, the monitor parses
the command line and looks for the handler file dd.SYS on the system
device (ddX.SYS in XM). This handler need not be installed in the running
system. The monitor then reads blocks 0 and 1 of the handler into the USR
buffer area in memory. It scans the table in block 0 until it finds the table
entries for the SET option you specified. From the table entry it can find
the particular routine designed to implement that option and the modifiers
permitted by that routine, such as NO or a numeric value. The monitor then
executes the routine, which contains instructions that modify code in
blocks 0 or 1 of the handler. The code in block 1 is part of the body of the
handler and contains the instructions for the default settings of all the SET
options. After the code is modified, the monitor writes blocks 0 and 1 back
out to the system device. Thus, as a result of the SET command, some in-
structions or data in the handler are changed.

7.5.2 SET Table Format

The table for the SET options consists of a series of four-word entries, with
one entry per option. The table begins at location 400 in block 0 of the
handler and ends with a zero word. Use the .DRSET macro, described
below, to generate the table.

The first word of the table is a value to be passed in R3 to the SET routine
associated with the option when the monitor processes this option. This
word can be a numeric value — such as the default column width for the line
printer — or it can be an instruction to substitute for another instruction in
block 1 of the handler. It must not be 0.

The second and third words of the table are the Radix-50 code for the option
name, such as WIDTH or CR. In the table, the characters are left-justified
and filled with spaces.

The low byte of the fourth word is a pointer to the routine that performs the
code modification. The high byte indicates the type of SET parameter that
is valid. Setting the 100 bit shows that a decimal argument is required. A
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value of 140 shows that an octal argument is required. Setting the 200 bit
means that the NO prefix is valid for this option.

Figure 7-2 shows a summary of the SET option table.

Figure 7-2: SET Option Table

VALUE TO PASS IN R3
TO THE SET ROUTINE

RADIX-50 FOR OPTION NAME

{TWO WORDS)
CODE FOR VALID SET POINTER TO SET
COMMAND TYPES ROUTINE

7.5.3 .DRSET Macro

Use the .DRSET macro to set up the option table by calling the macro once
for each option so that the macro calls appear one after the other. You must
use the . DRSET macro after DRDEF and before the .DRBEG macro.

The format for the .DRSET macro is aé follows:

.DRSET option,val,rtnj[mode]

option is the name of the SET option, such as WIDTH or CR. The name can
be up to six alphanumeric characters long and should not contain any
embedded spaces or tabs.

val is a parameter that will be passed in R3 to the routine. It can be a
numeric constant, such as the minimum column width, or an entire instruc-
tion enclosed in angle brackets to substitute for an existing one in block 0 or
1 of the handler. It must not be 0.

rtn is the name of the routine that modifies the code in block 0 or 1 of the
handler. The routine must follow the option table in block 0 and must not go
above address 776.

mode is an optional argument to indicate the type of SET parameter. Enter
NO to indicate that a NO prefix is valid for the option. Enter NUM if a
decimal value is required. Enter OCT if an octal value is required. Omitting
the mode argument indicates that the option takes neither a NO prefix nor
a numeric argument. You can combine the NO and numeric arguments as
follows. The construction<NO,NUM >indicates that either a NO prefix or
a decimal value is required (but not both). The construction<NO,OCT>in-
dicates that either a NO prefix or an octal value is required (but not both).
Omitting the mode argument forces a 0 into the high byte of the last word
of the table entry.
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See the sections below for examples of the .DRSET macro.

The first DRSET macro issues an .ASECT directive and sets the location
counter to 400 for the start of the table. The macro also generates a zero
word for the end of the table. Because the macro leaves the location counter
at the end of the table, you should place the routines to modify code im-
mediately after the .DRSET macro calls in your handler. This makes sure
that they are located in block 0 of the handler file.

7.5.4 Routines to Modify the Handler

Your handler needs one routine for each SET option that is valid. You need
only one routine for an option and the NO version of that option. The pur-
pose of the routine is to modify code in the body of the handler based on the
SET command typed on the console terminal.

The routines must immediately follow the option table, described above,
and they must be located in block 0, after the table and below address 1000.
The code in the body of the handler that the routines modify must be in
block 1 of the handler, within the first 256 decimal words.

The name of the routine is its default entry point. This is the entry point for
options that take a numeric value, for options that take neither a numeric
value nor a NO prefix, and for options that accept a NO prefix but da not
currently have it. The entry point for options that allow and have a NO
prefix is the default entry point + 4.

On entry to the routine, for all options, R3 contains the val word of the op-
tion table and the carry bit is clear. In addition, if numeric values are valid
for this option, RO contains a numeric value from the SET command line.

The routine can indicate that a command is illegal by returning with the
carry bit set. For example, the line printer SET WIDTH option does not
allow a width less than 30. If the option routine indicates failure, the
monitor prints an error message and does not write out blocks 0 and 1.
Thus, the check can be made after the block 1 code is modified.

Once you have added the routines for each option to your handler, you can
use the following line of code to make sure you are within the size bounds:

JIF GT,<.-1000>, .ERROR. -1000 ; SET code too big!
You terminate this section with an .ASECT directive, after which you set
the location counter to 1000. Then you can continue with the rest of the

handler code, starting with the .DRBEG macro, which establishes the
handler header.

7.5.5 Examples of SET Options

The following examples taken from the line printer handler are implementa-
tions of SET options.
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The examples were chosen to reflect the SET command examples shown at
the beginning of this section. The SET commands were as follows:

SET LP WIDTH = 80
SET LP CR
SET LP NOCR

First, the handler invokes the .DRSET macro to set up the option tables for
the two options WIDTH and CR.

The first call indicates that the line printer WIDTH option is being
established, that 30 decimal is a default value of some kind, that O.WIDTH
is the routine that modifies code for it, and that it takes a numeric argu-
ment:

.DRSET WIDTH,30.,0.WIDTH,NUM
The next call indicates that the line printer CR option is being established,
that “NOP” is to be passed to the routine, that O.CR is the name of the

routine that modifies code for this option, and that the CR option can take a
NO prefix:

.DRSET CR,NOP,0.CR,NO

The two macro calls generate the following table:

.ASECT

. = 400
.WORD  30. ;MINIMUM WIDTH
.RAD50 \WIDTH \ ;OPTION NAME
.BYTE <O.WIDTH - 400>/2
.BYTE 100
NOP ;INSTRUCTION TO PASS
.RAD50 \CR \ ;OPTION NAME
.BYTE <O.CR-400>/2
.BYTE 200
WORD 0 ;END OF TABLE

The routines to process these options immediately follow the end of the
table. The following examples show the routines. The body of the code in
block 1 of the handler that the routines modify is shown at the end of the
section.

O.WIDTH: MOV RO,COLCNT ;MOVE VALUE FROM USER TO
MOV RO,RSTC +2 ;TWO CONSTANTS
CMP RO,R3 ;COMPARE NEW VALUE TO
;MINIMUM WIDTH, 30.
RTS PC ;RETURN; C BIT SET ON ERROR

Note in the example above that the instructions in the routine O.WIDTH
change data in two locations in block 1 of the handler.

1.CR: MOV (PC)+,R3 ;ENTRY POINT FOR “CR”; MOVE
;ADDRESS OF NEXT LINE TO R3
BEQ RSTC-CROPT +. ;A NEW INSTRUCTION
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MOV R3,CROPT :ENTRY POINT FOR
"NOCR" (O.CR + 4);
:MOVE EITHER “NOP” OR
:PREVIOUS LINE TO CROPT
RTS PC :RETURN

NOTE
While executing the routines to process a SET option, R4 and
R5 are not available for use.

The routine O.CR has two entry points: for the ““CR’’ option, the routine is
entered at O.CR; for the “NOCR”’ option, the routine is entered at O.CR
+ 4. Note that (1) the routine manages to substitute one of two instructions
for an instruction located in block 1; (2) a NOP instruction is moved to
CROPT if the “NOCR"’ option is selected; (3) if “CR”’ is selected, the BEQ
RSTC-CROPT +. instruction is moved to CROPT.

The construction of the BEQ instruction is necessary because the branch is
being assembled into a location other than the one from which it will be ex-
ecuted. In all the routines, a branch instruction must use the following con-
struction to generate the correct address:

BR A-B+.
A is the destination of the branch instruction.
B is the address of the branch instruction.
. is the current location counter.
Generally, only routines for options that accept NO use these branch
instructions.

Finally, look at the code in the interrupt service section of the handler that
is modified by the routines you have just seen. Remember that the code to
be modified must be located in block 1 of the handler, in the first 256
decimal words.

COLCNT: .WORD  COLSIZ ;# OF PRINTER COLUMNS LEFT
CHRTST: CMPB R5,#HT ;IS CHAR TAB?

BEQ TABSET ;YES, RESET TAB

CMPB R5#LF ;IS IT LINE FEED?

BEQ RSTC ;YES, RESTORE COLUMN COUNT

CMPB R5,#CR ;IS IT CARRIAGE RETURN?
CROPT: NOP ;’NOP” IF “NOCR"” OPTION;

;ELSE IF “CR” OPTION, USE
;”"BEQ RSTC-CROPT +.” FROM
;SET ROUTINES IN BLOCK 0.

CMPB R5,#FF ;1S IT FORM FEED?
BNE IGNORE ;NO, IT IS NON-PRINTING
RSTC: MOV #COLSIZ,COLCNT ;RE-INIT COLUMN COUNTER

From the examples in the first part of this section, you can see how the
routines in block 0 can modify data and instructions in block 1 of the
handler.
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7.6 Device I/O Time-out
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Through the optional feature device time-out, a handler can assign a com-
pletion routine to be executed if an interrupt does not occur within a
specified time interval. Thus, the handler can perform the equivalent of a
mark time operation without the need for a .SYNCH call and its attendant
potential delay.

You can select the device time-out feature at system generation time. Time-
out is used by parts of the RT-11 multi-terminal monitor. The option is
automatically included in your system if you select multi-terminal time-out
support or DZ modem support. Otherwise, if you need to use the feature in
your handler, you must specifically include it at system generation time. It
is also required for DECnet applications.

RT-11 provides two macros to help you implement device time-out in your
handler. The macros, which are described below, are .TIMIO and .CTIMIO.
They are available only to device handlers. If you assemble the handler file
with the conditional TIM$IT equal to 1, the .DRDEF macro issues an
.MCALL directive for the .TIMIO and .CTIMIO macros.

7.6.1 .TIMIO Macro

Use the .TIMIO macro in the handler I/O initiation section to issue the
time-out call. You can issue the request anywhere in the handler except at
interrupt level. If you need to issue the request at interrupt level, you must
issue a .FORK macro call first.

The .TIMIO request schedules a completion routine to run after the
specified time interval has elapsed. The completion routine runs in the con-
text of the job indicated in the timer block. In XM systems, the completion
routine executes with kernel mapping, since it is still a part of the interrupt
service routine. (See Section 6.7 for more information about interrupt ser-
vice routines and the XM monitor.) As usual with completion routines, R0
and R1 are available for use. When the completion routine is entered, RO
contains the sequence number of the request that timed out.

Because you must go to fork level (and processor priority 0) to issue a
.TIMIO or .CTIMIO request, your handler must disable device interrupts
before issuing the .FORK, or must be carefully coded to avoid reentrancy
problems. Note that you cannot reuse a timer block until either the timer
element expires and the completion routine is entered, or the timer element
is cancelled successfully.

The format of the macro is as follows:
.TIMIO tbk,hi,lo
tbk is the address of the timer block, a seven-word pseudo timer queue ele-

ment, described below. Note that you must not use a number sign (#) before
tbk.

hi is a constant specifying the high-order word of a two-word time interval.
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lo is a constant specifying the low-order word of a two-word time interval.

The timer block format is shown in Table 7-5.

Table 7-5: Timer Block Format

Offset Name Agent Contents
0 C.HOT .TIMIO High-order time word
2 C.LOT .TIMIO Low-order time word
4 C.LINK monitor Link to next queue element; 0 indicates
none,
6 C.JNUM user Owner’s job number; get this from the

queue element.

10 C.SEQ user Sequence number of timer request. The
valid range for sequence numbers is from
177400 through 1774717.

12 C.SYS monitor -1

14 C.COMP user Address of the completion routine to ex-
ecute if time-out occurs. The monitor zeroes
this word when it calls the completion
routine, indicating that the timer block is
available for reuse.

Although the .TIMIO macro moves the high- and low-order time words to
the timer block for you, you must take care to specify them properly in the
macro call. Express the time interval in ticks. There are 60 decimal ticks per
second if your system is running with 60-cycle power. If your system is run-
ning with 50-cycle power, there are 50 decimal ticks per second. Time values
for 50-cycle power are shown in square brackets ([ ]) immediately after the
60-cycle figure.

The low-order time word accomodates values of up to 65535 ticks. That is
equal to about 1092 [1310] seconds, or about 18.2 [21.8] minutes. If you need
to specify a time interval of 18.2 [21.8] minutes or less, place a zero in the Ai
argument, and the number of ticks in the lo argument to the . TIMIO macro.

If you need to specify a time interval longer than 18.2 [21.8] minutes, think
of the high-order word as a carry word. Each interval of 18.2 [21.8] minutes’
duration causes a carry of 1 into the high-order word. So, to specify an inter-
val slightly greater than 18.2 [21.8] minutes, supply a 1 to the Ai argument,
and a O to the lo argument. To specify 36.4 [43.6] minutes, move 2 to the hi
argument, 0 to the lo argument, and so on. Since the two-word time permits
you to indicate up to 65565 units of 18.2 [21.8] minutes each, the largest
time interval you can specify is about 2.3 [2.7] years.

The only words of information you must set up yourself in the timer block
are the job number, the sequence number, and the address of the comple-
tion routine. You can get the job number from the current queue element,
and then move it to the timer block. You assign the sequence number
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yourself. Start with 177400 and work up to the highest valid sequence
number, 177477. The job number and sequence number are passed to the
completion routine when it is entered. You must move the address of the
completion routine to the seventh word of the timer block in a position-
independent manner.

The .TIMIO macro expands as follows:

.TIMIO tbk,hi,lo

JSR R5, @$TIMIT ;POINTER AT END OF HANDLER
WORD tbk —.

.WORD 0 ;CODE FOR .TIMIO

WORD hi ;HI ORDER TIME INTERVAL
WORD lo ;LO ORDER TIME INTERVAL

7.6.2 .CTIMIO Macro

When the condition the handler was waiting for occurs, you should issue a
cancel time-out call, which disables the completion routine. Use the
.CTIMIO macro call in your handler to cancel the time-out request. Execu-
tion must be in system state when you issue the call. Be sure to issue a
.FORK call first if you use .CTIMIO at interrupt level.

For example, a line printer handler could check for an off-line condition.
When a program requests an I/O transfer, the handler’s I/O initiation sec-
tion forces an immediate interrupt. The handler’s interrupt service section
then checks the device error bit. If the bit is set, the printer is not on line
and the handler prints a message, sets a two-minute timer with .TIMIO,
and returns to the monitor with an RTS PC instruction to wait for another
interrupt. The device should not interrupt again until the error condition
has been fixed by an operator. If no interrupt occurs within two minutes,
the timer completion routine prints another error message, sets another
two-minute timer, and returns again to the monitor with RTS PC to wait for
an interrupt. (See Figure 7-3 for the line printer handler example.)

In this example, when an interrupt finally occurs and the error bit is clear,
the handler issues the .CTIMIO call to cancel the timed wait.

As another example, a disk handler could set a timer before it starts up a
seek operation. Since seeks interrupt twice, the handler should not cancel
the timer after the first interrupt. When the second interrupt occurs,
though, the seek is complete, and the handler should then cancel the timer.

If the time interval in any application has already elapsed and the device
has, therefore, timed out, the .CTIMIO request fails. Because the comple-
tion routine has already been placed in the queue, the .CTIMIO call returns
with the carry bit set. You can usually ignore this condition.

The format of the .CTIMIO macro call is as follows:
.CTIMIO tbk
tbk is the address of the seven-word timer block described above. Note that

this time block you specify in the .CTIMIO call must be the same one
already used by the corresponding .TIMIO request.
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The .CTIMIO macro expands as follows:

.CTIMIO

JSR R5,@$TIMIT ;POINTER AT END OF HANDLER
WORD tbk —.

.WORD 1 ;CODE FOR .CTIMIO

Note that if a job aborts and your handler is entered at its abort entry point,
you must immediately cancel any outstanding timer requests. However, if a
timer completion routine has already been entered, you must wait for it to
execute.

7.6.3 Device Time-out Applications

Device time-out support is used by RT-11 in only a few instances. However,
there are a number of conditions in which timer requests are appropriate. If
you are writing a handler for your own device, consider the following sec-
tions to determine whether or not timer requests would be useful to you.

7.6.3.1 Multi-terminal Service — The resident multi-terminal service in
RT-11 that supports DZ11 and DZV11 modems uses device time-out to
check the status of remote dial-up lines. The bootstrap starts up a polling
routine to check each modem for a change in status. If a change occurs, the
terminal service takes the appropriate action: it either recognizes a new line,
or disconnects a line when carrier is lost. The last instruction in the polling
routine issues a .TIMIO call to start a half-second timer. The timer comple-
tion routine restarts the polling routine after a half-second elapses.

7.6.3.2 Typical Timer Procedure for a Disk Handler — A disk handler could im-
plement a timer procedure for any disk operation. The purpose of the timer
routine is to cancel or restart any operation that takes too long. If an opera-
tion does not complete within a reasonable amount of time, chances are
good that a disk error of some sort corrupted the operation.

The handler’s I/O initiation section sets a timer by using the .TIMIO call.
Then the handler starts up the operation that a job requested: a read, write,
or seek operation. The handler returns to the monitor with an RTS PC in-
struction and waits for a device interrupt.

If an interrupt occurs before the time limit expires, the handler cancels the
timer and performs its normal sequence of error checking on the results of
the transfer. In general, the handler either drops to fork level to restart an
incorrect operation, or exits to the monitor with .DRFIN to remove the cur-
rent queue element.

If an interrupt does not occur within the time limit, the timer completion
routine begins to execute. Its first action should be to simulate an inter-
rupt. This action duplicates the handler environment after a genuine inter-
rupt and makes sure that the stack has the necessary information. Then the
timer completion routine acts as though the device interrupted but the
transfer was in error. The timer completion routine simply branches to the
correct section of code in the interrupt service section of the device handler
to finish the processing.
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The timer completion routine should use the following instructions to
simulate an interrupt and enter system state:

MOV @SP, - (SP) ;MAKE ROOM ON THE STACK
CLR 2(SP) ;FAKE INTERRUPT PS = 0
.MTPS #340 ;GO TO PRIORITY 7

INTEN 0,PIC ;ENTER SYSTEM STATE

After the handler enters system state, it takes the appropriate action as a
result of the time-out. The handler can try the operation again. To do this, it
decrements the retry count, drops to fork level, and branches to the 1/O ini-
tiation section. The code in the initiation section sets another timer,
restarts the transfer, and returns to the monitor with an RTS PC instruc-
tion to await another interrupt.

If the handler decides that the time-out indicates a serious error, one that
should not be retried, this same procedure can be followed for a transfer
whose retry count is used up. In this case, the handler sets the hard error
bit in the Channel Status Word and then exits to the monitor with the
.DRFIN call to remove the current queue element.

NOTE

Before a handler goes through the .DRFIN routine to
remove the current queue element, it must cancel any timer
request that has not yet expired.

7.6.3.3 Line Printer Handler Example — The extended example shown in
Figure 7-3 consists of excerpts from a version of the RT-11 line printer
handler modified to use timer support to check for the device off-line
condition.

When the handler’s I/O initiation section starts up a transfer, it forces an
immediate interrupt, which causes the handler’s interrupt service section to
check the error bit in the CSR. If there is an error, control passes to the
routine OFFLIN, which issues a .SYNCH call to enter user state, prints an
error message on the console terminal, and then sets a two-minute timer.
The handler then returns to the monitor with an RTS PC instruction and
waits for the device to interrupt.

If the device interrupts, it means that the error condition has been cor-
rected by an operator. The handler cancels the timer and checks the error
bit once again to make sure there are no problems. If there is no error, the
handler proceeds as usual. If there is an error, the handler loops back to the
OFFLIN routine. If an interrupt does not occur within two minutes, the
timer completion routine begins to execute. It prints an error message, sets
another two-minute timer, and returns to the monitor with an RTS PC in-
struction to await an interrupt.
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Figure 7-3: Line Printer Handler Example
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7.7 Error

Figure 7-3: Line Printer Handler Example (Cont.)
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Logging

Error logging is an optional feature of RT-11 designed to help you monitor
the reliability of your system. Device handlers that include support for er-
ror logging call the error logger after each 1/O transfer. The error logger
creates a historical record of the device’s I/O activity that you can use to
check its reliability.

You must perform a system generation to select error logging. Error log-
ging can run in either the FB or XM environment. If your system has the
capability to run system jobs, the error logger runs as a system job; other-
wise, the error logger can run as an ordinary foreground job. The system
generation conditionals for error logging are as follows:

ERL$G If this value = 1, it indicates that error 1ogging is enabled
for this system.

ERL$U This represents the maximum number of individual device
units for which the error logger collects statistics. The
default value is 10, and the absolute maximum number is
30. Each unit adds seven words to the error logger. One
slot is required for each unit. (For example, two slots are re-
quired for a system with an RK05 with two units.) Your
response to a system generation dialogue question
establishes the value of this variable.

You should consider your time and memory requirements before deciding to
use error logging because error logging creates a certain minimal amount of
overhead for each I/O transfer, and the error logger itself uses almost 2K
words of memory. However, the error logger does not have to run constant-
ly, so that the memory it requires can be made available to your programs
when necessary, and calls that your handler makes to the error logger
return immediately. The most convenient way to use the error logging
system is as a check when you suspect device reliability problems, which
means using it only when necessary.

The following sections describe how to implement error logging in your
device handler and what information you should log. They also show you
how to add headings for your device to the error reporting program. See the
RT-11 System User’s Guide for more information on the entire error log-
ging system and how to use it.

All code in your handler that applies strictly to error logging should be
placed inside conditional assembly directives. These directives include the
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error logging code if the symbol ERL$G is 1, and omit it otherwise. This
way, the system parameters select whether or not the error logging code is
included in the handler each time you assemble it.

7.7.1 When and How to Call the Error Logger

A handler calls the error logger after each I/O transfer, whether the transfer
was successful or not. If the transfer was in error, the handler calls the error
logger once for each retry of the transfer, and once again when the allotted
number of retries has been exhausted.-

Since calls to the error logger must be serialized, the handler can issue them
only during I/O initiation or following a .FORK call.

The handler must set up registers before it issues the call to the error log-
ger. The register assignments for the three kinds of calls are described in
the following sections.

7.7.1.1 To Log a Successful Transfer — Set up R4 and R5 as described below
before calling the error logger after each successful transfer.

R5 must point to the third word of the current queue element.

R4 contains two bytes of information: the high byte is the device-
identifier byte, dd$COD); the low byte is ~ 1.

7.71.2 To Log a Hard Error — Set up R2 through R5 as described below
before calling the error logger after a hard error has occurred. Generally,
hard errors are those that are not recoverable. Examples of hard errors are
device off line or not powered up, device write-locked, no tape in paper tape
r