PDP-11 MACRO-11
Language Reference Manual
AA-V027A-TC

March 1983

This document describes how to use the MACRO-11 relocatable as-
sembler to develop PDP-11 assembly language programs. Although no
prior knowledge of MACRO-11 is required, the user should be familiar
with the PDP—11 processor addressing modes and instruction set. This
manual presents detailed descriptions of MACRO-11’s features, includ-
ing source and command string control of assembly and listing func-
tions, directives for conditional assembly and program sectioning, and
user-defined and system macro libraries. The chapters on operating
procedures previously were found in two separate manuals (the
PDP-11 MACRO-11 Language Reference Manual and the /AS/RSX
MACRO-11 Reference Manual). This manual should be used with a
system-specific user’s guide as well as a Linker or a Task Builder man-
ual.

This manual supersedes previous editions, Order Numbers
AA-5075B-TC, published 1980, AA-5075A-TC, published 1977, and
DEC—-11-0OIMRA-B-D, published 1976.

Operating System: VAX/VMS Version 3
RSTS/E Version 8
RSX-11M Version 4
RSX-11M-PLUS Version 2

Software: MACRO-11 Version 5

To order additional documents from within DIGITAL, contact the Software Distribution
Center, Northboro, Massachusetts 01532.

To order additional documents from outside DIGITAL, refer to the instructions at the back
of this document.

digital equipment corporation - maynard, massachusetts

First Printing, August 1977
Revised, January 1980
Updated, December 1981
Revised, March 1983

The information in this document is subject to change without notice and should not
be construed as a commitment by Digital Equipment Corporation. Digital Equipment
Corporation assumes no responsibility for any errors that may appear in this docu-
ment.

The software described in this document is furnished under a license and may be used
or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is
not supplied by DIGITAL or its affiliated companies.

© Digital Equipment Corporation 1977, 1980, 1981, 1983.
All Rights Reserved.

Printed in U.S.A.

A postage-paid READER’S COMMENTS form is included on the last page of this
document. Your comments will assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

clialiltlali

DEC MASSBUS UNIBUS
DECmate PDP VAX
DECsystem—10 ‘ P/OS VMS
DECSYSTEM-20 Professional VT

DECUS Rainbow Work Processor
DECwriter RSTS

DIBOL RSX

M19400

PREFACE

PART I

CHAPTER

CHAPTER

PART 11

CHAPTER

CHAPTER

CHAPTER

CONTENTS

MACRO-11: ASSEMBLY AND FORMATTING

1 THE MACRO-11 ASSEMBLER
1.1 ASSEMBLY PASS 1
1.2 ASSEMBLY PASS 2

N

SOURCE PROGRAM FORMAT

PROGRAMMING STANDARDS AND CONVENTIONS
STATEMENT FORMAT

Label Field

Operator Field

Operand Field

Comment Field
FORMAT CONTROL

« s

. e
“ e
BN

NN DNDNDNDN
.
WNNNDNDDN -
.

PROGRAMMING IN MACRO-11 ASSEMBLY LANGUAGE

w

SYMBOLS AND EXPRESSIONS

CHARACTER SET
Separating and Delimiting Characters
Illegal Characters
Unary and Binary Operators
MACRO-11 SYMBOLS
Permanent Symbols
User-Defined and Macro Symbols
DIRECT ASSIGNMENT STATEMENTS
REGISTER SYMBOLS
LOCAL SYMBOLS
CURRENT LOCATION COUNTER
NUMBERS
TERMS
EXPRESSIONS

.
.

W W ww
.
W N =

.
N =

.

.
QO ITDHNHDWNNDN -

WWWwwwwwwww
.

frN

RELOCATION AND LINKING

wu

ADDRESSING MODES

REGISTER MODE

REGISTER DEFERRED MODE
AUTOINCREMENT MODE
AUTOINCREMENT DEFERRED MODE
AUTODECREMENT MODE
AUTODECREMENT DEFERRED MODE
INDEX MODE

INDEX DEFERRED MODE
IMMEDIATE MODE

o« e e

(GG RS N E O UL IRV 0}
“ e .
O 0~ W N

iidi

Page

ix

=

|
HHOMNDINA DWW

[

WWwWwWwwwwwwwuwww
1 i
[l
[S2 8]

1
o
w

3-16

oyt
|
AAUTUd D WNDDN

PART III

CHAPTER

5.10
5.11
5.12
5.13
5.14

MACRO-11

6

. .
.

. e . .
. « .
N UL WN

NAANAAN DN
.

NN N = b e

. .

N

* e o 0
" e e

. P
. . .
O~ WN -

.
b
.
—

ADDDHANIADNANNDNTY H OV DD
.

A DMDWWWWWWWWW
.

.
N

[o o)
.

NI
.
NN
.

.
R
.

« »
.

[) o) BEe)) e WG) IS) W) Wie) Wie) Bie) Bie) Bie) Bie) Bie) B o) Jie) BRG) RS) Ju) JR6) ko) Be) J6))
. e s s+ s v s e s
HHEHEHEOWOWOWOOOI~NIdINIINd~THhutnutuon
. . s e T
=W N

.
.

.
. .
B W N b
N
w

.

“ e e 4 e s
Qe s e .
. e W N = N
N~

-

ABSOLUTE MODE

RELATIVE MODE

RELATIVE DEFERRED MODE

BRANCH INSTRUCTION ADDRESSING
USING TRAP INSTRUCTIONS

DIRECTIVES
GENERAL ASSEMBLER DIRECTIVES

LISTING CONTROL DIRECTIVES
.LIST and .NLIST Directives
.TITLE Directive
.SBTTL Directive
.IDENT Directive
.PAGE Directive/Page Ejection
.REM Directive/Begin Remark Lines
FUNCTION DIRECTIVES
.ENABL and .DSABL Directives
Cross-Reference Directives: .CROSS
and .NOCROSS
DATA STORAGE DIRECTIVES
.BYTE Directive
.WORD Directive
ASCII Conversion Characters
.ASCII Directive
.ASCIZ Directive
.RAD5@ Directive
Temporary Radix-50# Control Operator
.PACKED Directive
RADIX AND NUMERIC CONTROL FACILITIES
Radix Control and Unary Control Operators
.RADIX Directive
Temporary Radix Control Operators
Numeric Directives and Unary Control
Operators
Floating-Point Storage Directives
Temporary Numeric Control Operat
“C and "F
LOCATION COUNTER CONTROL DIRECTIVES
.EVEN Directive
.0DD Directive
.BLKB and .BLKW Directives
.LIMIT Directive
TERMINATING DIRECTIVE: .END DIRECTTIVE
PROGRAM SECTIONTNG DIRECTIVES
.PSECT Directive
Creating Program Sections
Code or Data Sharing
Memory Allocation Considerations
.ASECT and .CSECT Directives
.SAVE Directive
.RESTORE Directive
SYMBOL CONTROL DIRECTIVES
.GLOBL Directive
.WEAK Directive
CONDITIONAL ASSEMBLY DIRECTIVES
Conditional Assembly Block Directives
Subconditional Assembly Block Directives
Immediate Conditional Assembly Directive
FILE CONTROL DIRECTIVES
.LIBRARY Directive
.INCLUDE Directive

£s:

C

iv

6-51
6-52
5-53
5-53
6-56
6-59
6-64
6-64
6-61

CHAPTER 7 MACRO DIRECTIVES 7-1
7.1 DEFINING MACROS 7-1
7.1.1 .MACRO Directive 7-1
7.1.2 .ENDM Directive 7-2
7.1.3 .MEXIT Directive 7-3
7.1.4 MACRO Definition Formatting 7-4
7.2 CALLING MACROS 7-4
7.3 ARGUMENTS IN MACRO DEFINITIONS AND MACRO

CALLS 7-4
7.3.1 Macro Nesting 7-6
7.3.2 Special Characters in Macro Arguments 7-7
7.3.3 Passing Numeric Arguments as Symbols 7-7
7.3.4 Number of Arguments in Macro Calls 7-8
7.3.5 Creating Local Symbols Automatically 7-8
7.3.6 Keyword Arguments 7-10
7.3.7 Concatenation of Macro Arguments 7-11
7.4 MACRO ATTRIBUTE DIRECTIVES: .NARG, .NCHR, AND

.NTYPE 7-12
7.4.1 .NARG Directive 7-12
7.4.2 .NCHR Directive 7-13
7.4.3 .NTYPE Directive 7-14
7.5 .ERROR AND .PRINT DIRECTIVES 7-16
7.6 INDEFINITE REPEAT BLOCK DIRECTIVES: .IRP AND

. IRPC 7-17
7.6.1 .IRP Directive 7-17
7.6.2 .IRPC Directive 7-18
7.7 REPEAT BLOCK DIRECTIVE: .REPT, .ENDR T-20
7.8 MACRO LIBRARY DIRECTIVE: .MCALL 7-20
7.9 MACRO DELETION DIRECTIVE: .MDELETE 7-21

PART IV OPERATING PROCEDURES

CHAPTER 8 IAS/RSX-11M/RSX-11M-PLUS OPERATING PROCEDURES 8-1
8.1 RSX-11M/RSX-11M-PLUS OPERATING PROCEDURES 8-1
8.1.1 Initiating MACRO-11 Under RSX-11M/

: RSX-11M-PLUS 8-2
8.1.1.1 Method 1 - Direct MACRO-11 Call 8-2
8.1.1.2 Method 2 - Single Assembly 8-2
8.1.1.3 Method 3 - Install, Run Immediately, and

Remove On Exit 8-2
8.1.1.4 Method 4 - Using the Indirect Command

Processor 8-3
8.1.2 Default File Specifications 8-3
8.1.3 MCR Command String Format 8-4
8.1.4 DCL Operating Procedures 8-8
8.1.5 MACRO-11 Command String Examples 8-13
8.2 IAS MACRO-11 OPERATING PROCEDURES 8-14
8.2.1 Initiating MACRO-11 Under IAS 8-14
8.2.2 IAS Command String 8-14
8.2.3 IAS Indirect Command Files 8-16
8.2.4 IAS Command String Examples 8-16
8.3 CROSS-REFERENCE PROCESSOR (CREF) 8-17
8.4 IAS/RSX-11M/RSX-11M-PLUS FILE SPECIFICATION 8-19
8.5 MACRO-11 ERROR MESSAGES UNDER IAS/RSX-11M/

RSX-11M-PLUS 8-20

CHAPTER 9 RSTS/RT-11 OPERATING PROCEDURES 9-1
9.1 MACRO-11 UNDER RSTS 9-1
9.1.1 RT-11 Through RSTS 9-1

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

1.2 RSX Through RSTS

2 INITTIATING MACRO-11 UNDER RT-11
3 RT-11 COMMAND STRING

4 FILE SPECIFICATION OPTIONS

5

OPTION
Obtaining a Cross-~Reference Table

MACRO-11 Error Messages Under RT-11
A MACRO-11 CHARACTER SETS

1 ASCII CHARACTER SET
.2 RADIX-5# CHARACTER SET

B MACRO-11 ASSEMBLY LANGUAGE AND ASSEMBLER

DIRECTIVES

SPECIAL CHARACTERS
SUMMARY OF ADDRESS MODE SYNTAX
ASSEMBLER DIRECTIVES

www
.
N

C PERMANENT SYMBOL TABLE (PST)
c.1 OP CODES

c.2 MACRO-11 DIRECTIVES

D ERROR MESSAGES

E SAMPLE CODING STANDARD

LINE FORMAT
COMMENTS
NAMING STANDARDS

Registers
1 General Purpose Registers
.2 Hardware Registers
E.2.1.3 Device Registers
Processor Priority
Symbols
1 Symbol Examples
2 Local Symbols
.3 Global Symbols
4
5

. e

B I I s B o B s I |
L]
PWWWWN
PR
-
.

Macro Names
General Symbols
PROGRAM MODULES

.
.

.
WWwwWwwwwN
.

DEHEmEHEDODE@mEEEE e
.

B S ASDLDDWWWW W W
.

.4.1 The Module Preface
4.2 The Module
.4.3 Module Example
4.4 Modularity
A.4.1 Calling Conventions (Inter-Module/
Intra-Module)
E.4.4.2 Exiting
E.4.4.3 Success/Failure Indication
E.4.4.4 Module Checking Routines
E.5 CODE FORMAT
E.5.1 Program Flow
E.5.2 Common Exits
E.5.3 Code with Interrupts Inhibited
E.5.4 Code 1in System State
E.6 INSTRUCTION USAGE
E.6.1 Forbidden Instructions
E.6.2 Conditional Branches
E.7 PROGRAM SOURCE FILES

vi

CROSS-REFERENCE (CREF) TABLE GENERATION

9.5.1
9.5.2 Handling Cross-Reference Table Files
9.5.3

wr:Jw
W=

¢
U

mmmmmmmmmtﬁmmmmmmmmm
O~JUUUdS_LSDdWWNONDNDNDNDRFE

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDI X

FIGURE

TABLE

L]

try oy o
w N+

Q

N

(DO

jas)

—
N

[

Qg g
w N =

NSOy OV O Aoy W W
1 [T O I TN I | L T I T |
WNH I D W N =N

[N IS
N =S

PDP-11 VERSION NUMBER STANDARD
Displaying the Version Identifier
Use of the Version Number in the Program

ALLOCATING VIRTUAL MEMORY

GENERAL HINTS AND SPACE-SAVING GUIDELINES
MACRO DEFINITIONS AND EXPANSIONS
OPERATIONAL TECHNIQUES

WRITING POSITION-INDEPENDENT CODE

INTRODUCTION TO POSITION-INDEPENDENT CODE
EXAMPLES

SAMPLE ASSEMBLY AND CROSS-REFERENCE LISTING

OBSOLETE MACRO-11 DIRECTIVES, SYNTAX, AND
COMMAND LINE OPTIONS

OBSOLETE DIRECTIVES AND SYNTAX
OBSOLETE COMMAND LINE OPTION

RELEASE NOTES

CHANGES -- ALL VERSIONS OF MACRO-11
CHANGES -- MACRO-11/RSX VERSION ONLY
CHANGES -- MACRO-11/RT VERSION ONLY

FIGURES

Assembly Listing Showing Local Symbol Block
Sample Assembly Results

Example of Line Printer Assembly Listing
Example of Teleprinter Assembly Listing
Listing Produced with Listing Control
Directives

Assembly Listing Table of Contents
Example of .ENABL and .DSABL Directives
Example of .BLKB and .BLKW Directives
Example of .SAVE and .RESTORE Directives
Example of .NARG Directive

Example of .NCHR Directive

Example of .NTYPE Directive in Macro
Definition

Example of .IRP and .IRPC Directives
Sample CREF Listing

Example of Position-Dependent Code
Example of Position-Independent Code

TABLES

Special Characters Used in MACRO-11
Legal Separating Characters

Legal Argument Delimiters

Legal Unary Operators

Legal Binary Operators

Addressing Modes

vii

o)) [e) e) |E]
NN

DD
| R T SO I R B B | [|
[o) WU I w

WO WWD WD

HWNHMWNDEEJ

Symbols Used in Chapter 5

Directives in Chapter 6

Symbolic Arguments of Listing Control
Directives

Symbolic Arguments of Function Control
Directives

Symbolic Arguments of .PSECT Directive
Program Section Default Values

Legal Condition Tests for Conditional
Assembly Directives

Subconditional Assembly Block Directives
File Specification Default Values
MACRO-11 File Specification Switches
DCL Command Qualifiers

DCL Paraemeter Qualifiers

Default File Specification Values

File Specification Options

/C Option Arguments

0ld and New Directives and Syntax

viii

| A T T I O B)
w ~)

— WO WYOWO WO N

HOASBWHON DML

PREFACE

#.1 MANUAL OBJECTIVES AND READER ASSUMPTIONS

This manual is intended to enable users to develop programs coded in
the MACRO-11 assembly language.

No prior knowledge of the MACRO-11 Relocatable Assembler 1is assumed,
but the reader should be familiar with the PDP-11 processors and
related terminology, as presented in the PDP-11 Processor Handbooks.
The reader 1is also -encouraged to become familiar with the linking
process, as presented in the applicable system manual (see Section
#.3), Dbecause 1linking is necessary for the development of executable
programs.

If a terminal is available to the reader, he/she 1is advised to try
some of the examples in the manual or to write a few simple programs
that illustrate the concepts covered. Even experienced programmers
find that working with a simple program helps them to understand a
confusing feature of a new language.

The examples in this manual were done on an RT-11 system. MACRO-11
may also be used on IAS/RSX-11M, RSX-11M-PLUS and RSTS systems (see
Part IV for information about operating procedures).

It can be assumed that all references to RSX-11M also apply to

RSX-11M-PLUS with the exception of those in Chapter 8, which deals
with each system individually.

@.2 STRUCTURE OF THE DOCUMENT

This manual has four parts and eight appendices.

Part I introduces MACRO-11.
Chapter 1 lists the key features of MACRO-11.
Chapter 2 identifies the advantages of following programming
standards and conventions and describes the format used in coding

MACRO-11 source programs,

Part II presents general information essential to programming with the
MACRO-11 assembly language.

Chapter 3 lists the character set and describes the symbols,

terms, and expressions that form the elements of MACRO-11
instructions.

ix

Chapter 4 describes the output of MACRO-11 and presents concepts
essential to the proper relocation and linking of object modules.

Chapter 5 describes how data stored in memory can be accessed and
manipuleted wusing the addressing modes recognized by the PDP-11
hardware.

Part ITII describes the MACRO-11 directives that control the processing
of source statements during assembly.

Chapter 6 discusses directives used for generalized MACRO-11
functions.

Chapter 7 discusses directives wused in the definition anad
expansion of macros.

Part IV presents the operating procedures for assembling MACRO-11
programs.

Chapter 8 covers the IAS, RSX-11M, and RSX-11M-PLUS systems.
Chapter 9 covers the RSTS/RT-11 systems.

Appendix A lists the ASCII and Radix-50# character sets wused in
MACRO-11 programs.

Appendix B 1ists the speclal cheracters recognized by MACRO-11,
summarizes the syntax of the various addressing modes used in PDP-11
processors, and briefly describes the MACRO-11 directives in
alphabetical order.

Appendix C lists alphabetically the permanent symbols that have been
defined for use with MACRO-11.

Appendix D lists alphabetically the error codes produced by MACRO-11
to 1identify various types of errors detected during the assembly
process.

Appendix E contains a coding standard that is recommended practice in
preparing MACRO-11 programs.

Appendix F discusses several methods of conserving dynamic memory
space for users of small systems who may experience difficulty in
assembling MACRO-11 programs.

Appendix G is a discussion of position-independent code (PIC).

Appendix H contains an assembly and cross-reference listing.

Appendix I contains obsolete MACRO-11 directives, syntax, and command
line options.

Appendix J describes the differences from the last release of
MACRO-11.

#.3 ASSOCIATED DOCUMENTS

For descriptions of documents associated with this manual, refer to
the applicable documentation directory listed below:

IAS Documentation Directory

RSX-11M-PLUS Information Directory and Index

RSX-11M/RSX-11S Information Directory and Index

Guide to RT-11 Documentation

RSTS/E Documentation Directory

@.4 DOCUMENT CONVENTIONS

The color red is used in command string examples to indicate wuser

type-in.

The symbols defined below are used throughout this manual.

Symbol

(]

UPPER-CASE
CHARACTERS

lower-case
characters

(n)

Definition

Brackets indicate that the enclosed argument is
optional.

Ellipsis indicates optional continuation of an argument
list in the form of the last specified argument.

Upper-case characters indicate elements of the language
that must be used exactly as shown.

Lower-case characters indicate elements of the language
that are supplied by the programmer.

In some instances the symbol (n) is used following a
number to indicate the radix. For example, 100(8)
indicates that 108 is an octal wvalue, while 100(14)
indicates a decimal value.

Xi

CHAPTER 1

THE MACRO-11 ASSEMBLER

MACRO-11 provides the following features;
1. Source and command string control of assembly functions
2. Device and filename specifications for input and output files
3. Error listing on command output device

4, Alphabetized, formatted symbol table 1listing; optional
cross-reference listing of symbols

5. Relocatable object modules

6. Global symbols for linking object modules
7. Conditional assembly directives

8. Program sectioning directives

9. User-defined macros and macro libraries
18. Comprehensive system macro library

11. Extensive source and command string control of ‘listing
functions.

MACRO-11 assembles one or more ASCII source files containing MACRO-11
Statements into & single relocatable binary object file. The output
of MACRO-11 consists of a binary object file and a file containing the
table of contents, the assembly listing, and the symbol table. An
optional cross-reference listing of symbols and macros 1is available.
A sample assembly listing is provided in Appendix H.

1.1 ASSEMBLY PASS 1

During pass 1, MACR0O-11 locates and reads all required macros from
libraries, builds symbol tables and program section tables for the
program, and performs a rudimentary assembly of each source statement.

In the first step of assembly pass 1, MACRC-11 initializes all the
impure data areas (areas containing both code and data) that will be
used internally for the assembly process. These areas include all
dynamic storage and buffer areas used as file storage regions.

THE MACRO-11 ASSEMBLER

MACRO-11 then calls a system subroutine which transfers a command line
into memory. This command 1line contains the specifications of all
files to be used during assembly. After scanning the command line for
proper syntax, MACRO-11 initializes the specified output files. These
files are opened to determine if valid output file specifications have
been passed in the command line. -

MACRO-11 now initiates a routine which retrieves source lines from the
input file. 1If no input file is open, as is the case at the beginning
of assembly, MACRO-11 opens the next input file specified in the
command line and starts assembling the source statements. MACRO-11
first determines the length of the instructions, then assembles them
according to length as one word, two words, or three words.

At the end of assembly pass 1, MACRO-1]1 reopens the output files
described above. Such information as the object module name, the
program version number, and the global symbol directory (GSD) for each
program section are output to the object file to be used later in
linking the object modules. After writing out the GSD for a given
program section, MACRO-11 scans through the symbol tables to find all
the global symbols that are bound to that particular program section.
MACRO-11 then writes out GSD records to the object file for these
symbols. This process is done for each program section.

1.2 ASSEMBLY PASS 2

On pass 2 MACRO-11 writes the object records to the output file while
generating both the assembly listing and the symbol table listing for
the program. A cross-reference listing may also be generated.

Basically, assembly pass 2 consists of the soeme steps performed in
assembly pass 1, except that all source statements containing
MACRO-11-detected errors are flagged with an error code as the
assembly 1listing file is created. The object file that is created as
the final consequence of pass 2 contains all the object records,
together with relocation records that hold the information necessary
for linking the object file.

The information in the object file, when passed to the Task Builder or
Linker, enables the global symbols in the object modules to be
associated with absolute or virtual memory addresses, thereby forming
an executable body of code.

The user may wish to become familiar with the macro object file format
and description. This information 1is presented in the applicable
system manual (see Section 9.3 in the Preface).

CHAPTER 2

SOURCE PROGRAM FORMAT

2.1 PROGRAMMING STANDARDS AND CONVENTIONS

Programming standards and conventions allow code written by a person
(or group) to be easily understood by other people. These standards
also make the program easier to:

Plan
Comprehend
Test
Modify
Convert

The actual standard used must meet local user requirements. A sample
coding standard 1is provided in Appendix E. Used by DIGITAL and its
users, this coding example simplifies both communications and the
continuing task of software maintenance and improvement.

2.2 STATEMENT FORMAT

A source program is composed of assembly-language statements. Each
statement must be completed on one line. Although a line may contain
132 characters (a longer line causes an error (L) in the assembly
listing), a line of 8@ characters 1is recommended because of
constraints imposed by listing format and terminal line size. Blank
lines, although legal, have no significance in the source program.)

A MACRO-11 statement may have as many as four fields. These fields
are identified by their order within the statement and/or by the
separating characters between the fields. The dgeneral format of a
MACRO-11 statement is:

[Label:] Operator Operand [;Comment (s)]

The label and comment fields are optional. The operator and operand
fields are interdependent; in other words, when both fields are
present in a source statement, each field is evaluated by MACRO-11 1in
the context of the other.

A statement may contain an operator and no operand, but the reverse is
not true. A statement containing an operand with no operator is
illegal and is interpreted by MACRO-11 during assembly as an implicit
.WORD directive (see Section 5.3.2).

MACRO-11 interprets and processes source program sStatements one by
one, Each statement causes MACRO-11 either to perform a specified
assembly process or to generate one or more bilnary instructions or
data words.

2.2.1 Label Field

A label is a user-defined symbol which is assigned the wvalue of the
current location counter and entered 1into the user-defined symbol
table, The current location counter is used by MACRO-11 to assign
memory addresses to the source program statements as they are
encountered during the assembly process. Thus, a label is a means of
symbolically referring to a specific statement.

When a program section is absolute, the value of the current location
counter 1is absolute; 1its value references an absolute virtual memory
address (such as location 106). Similarly, when a program section is
relocatable, the value of the current location counter is relocatable;
a relocation bias calculated at link time is added to the apparent
value of the current 1location <counter to establish its effective
absolute virtual address at execution time. (For a discussion of
program sections and their attributes, see Section 6.7.)

If present, a label must be the first field in a source statement and
must be terminated by a colon (:)s For example, if the value of the
current location counter is absolute 14¢(8), the statement:

ABCD: MOV A,B

assigns the value 10@(8) to the label ABCD. 1If the 1location counter
value were relocatable, the final value of ABCD would be 10@(8)+K,
where K represents the relocation bias of the program section, as
calculated by the Task Builder or Linker at link time.

More than one label may appear within a single 1label field. Each
label so specified is assigned the same address value. For example,
if the value of the current location counter 1s 1066(8), the multiple
labels in the following statement are each assigned the value 106(8):

ABC: $DD: A7.7: MoV A,B

Multiple labels may also appear on successive lines. For example, the
statements

ABC:
SDD:
A7.7: MOV A,B

likewise cause the same value to be assigned to all three 1labels.
This second method of assigning multiple labels is preferred because
positioning the fields consistently within the source program makes
the program easier to read (see Section 2.3).

A double colon (::) defines the 1label as a global symbol. For
example, the statement

ABCD:: MOV A,B

establishes the label ABCD as a global symbol. The distinguishing
attribute of a global symbol is that it can be referenced from within
an object module other than the module in which the symbol is defined
(see Section 6.8) or by independently assembled object modules.
References to this label in other modules are resolved when the
modules are linked as a composite executable image,

SOURCE PROGRAM FORMAT

The legal characters for defining labels are:

A through 2
g through ¢
(Period)
(Dollar Sign)

Y e

NOTE

By convention, the dollar sign ($) and
period (.) are reserved for wuse in
defining DIGITAL system software
symbols. Therefore these characters
should not be used in defining labels in
MACRO-11 source programs.

A label may be any length; however, only the first six characters are
significant and, therefore, must be unique among all the labels in the
source program. An error code (M) 1is generated 1in the assembly
listing if the first six characters in two or more labels are the
same,

A symbol used as a label must not be redefined within the source
program. If the symbol 1is redefined, a 1label with a multiple
definition results, causing MACRO-11 to generate an error code (M) in
the assembly 1listing. Furthermore, any statement 1in the source
program which references a multi-defined label generates an error code
(D) in the assembly listing.

2.2.2 Operator Field

The operator field specifies the action to be performed. It may
consist of an instruction mnemonic (op code), an assembler directive,
or a macro call. Chapters 6 and 7 describe these three types of
operators.

When the operator is an instruction mnemonic, a machine instruction is
generated and MACRO-11 evaluates the addresses of the operands which
follow. When the operator is a directive MACRO-11 performs certain
control actions or processing operations during the assembly of the
source program. When the operator is a macro call, MACRO-11 inserts
the code generated by the macro expansion.

Leading and trailing spaces or tabs in the operator field have no
significance; such characters serve only to separate the operator
field from the preceding and following fields.

An operator is terminated by a space, tab, or any non-RADS5#
character*, as in the following examples:

MOV A,B ;The space terminates the operator MOV.
MOV A,B ;The tab terminates the operator MOV.
MOV@A,B ;The @ character terminates the operator MOV.

* Appendix A.2 contains a table of Radix-5@ characters.

2-3

Although the statements above are all equivalent in function, the
second statement 1is the recommended form because it conforms to
MACRO-11 coding conventions.

2.2.3 Operand Field

When the operator is an instruction mnemonic (op code), the operand
field contains program variables that are to be evaluated/manipulated
by the operator. The operand field may also supply arguments to
MACRO-11 directives and macro calls, as described in Chapters 6 and 7,
respectively.

Operands may be expressions or symbols, depending on the operator.
Multiple expressions used in the operand field of a MACRO-11 statement
must be separated by a comma; multiple symbols similarly used may be
delimited by any 1legal separator (a comma, tab, and/or space). An
operand should be preceded by an operator field; if it 1is not, the
statement 1is treated by MACRO-11 as an implicit .WORD directive (see
Section 6.3.2).

When the operator field contains an op code, associated operands are
always expressions, as shown in the following statement:

MOV RO ,A+2 (R1)

On the other hand, when the operator field contains a MACRO-11
directive or a macro call, associated operands are normally symbols,
as shown in the following statement:

-MACRO ALPHA SYM1,SYM2

Refer to the description of each MACRO-11 directive (Chapter 7) to
determine the type and number of operands required in issuing the
directive.

by a sem

emi
mple, in the

The operand field is termina

ni te C
followed by a comment. For ex

olon when the i
following statement:

1
[y
[«7
[
/)]

]
a
a

LABEL: MOV A,B ;Comment field

the tab between MOV and A terminates the operator field and defines
the beginning of the operand field; a comma separates the operands A
and B; and a semicolon terminates the operand field and defines the
beainning of the comment field. When no comment field follows, the
operand field is terminated by the end of the source line.

2.2.4 Comment Field

The comment field normally begins in column 33 and extends through the
end of the 1line. This field is optional and may contain any ASCII
characters except null, RUBOUT, carriage-return, line-feed,
vertical-tab or form-feed. All other <characters appearing in the
comment field, even special characters reserved for use in MACRO-11,
are checked only for ASCII legality and then included in the assembly
listing as they appear in the source text.

SOURCE PROGRAM FORMAT

All comment fields must begin with a semicolon (;). When lengthy
comments extend beyond the end of the source line (column 88), the
comment may be resumed in a following line. Such a line must contain
a leading semicolon, and it is suggested that the body of the comment
be continued in the same columnar position in which the comment began.
A comment line <can also be included as an entirely separate line
within the code body.

Comments do not affect assembly processing or program execution.

However, comments are necessary in source listings for later analysis,
debugging, or documentation purposes.

2.3 FORMAT CONTROL
Horizontal formatting of the source program is controlled by the space
and tab characters. These characters have no effect on the assembly
process unless they are embedded within a symbol, number, or ASCII
text string, or unless they are used as the operator field terminator,
Thus, the space and tab characters can be used to provide an orderly
and readable source program.
DIGITAL's standard source line format is shown below:

Label - begins in column 1

Operator - begins in column 9

Operands - begin in column 17

Comments - begin in column 33.
These formatting conventions are not mandatory; free-field coding 1is
permissible. However, note the increase readability after formatting
in the example below:

REGTST:BIT#MASK,VALUE;COMPARES BITS IN OPERANDS.

1 9 17 33 (columns)

REGTST: BIT #MASK,VALUE ;Compares bits in operands.
Page formatting and assembly listing considerations are discussed in
Chapter 6 in the context of MACRO-11 directives that may be specified

to accomplish desired formatting operations. Appendix E contains a
sample coding standard.

CHAPTER 3

SYMBOLS AND EXPRESSIONS

This chapter describes the components of MACRO-11 instructions: the
character set, the conventions observed in constructing symbols, and
the use of numbers, operators, terms and expressions.

3.1 CHARACTER SET
The following characters are legal in MACRO-11 source programs:

1. The letters A through Z. Both upper- and lower-case letters
are acceptable, although, upon input, lower-case letters are
converted to upper-case (see Section 6.2.1, .ENABL LC).

2. The digits @ through 9.

3. The characters . (period) and § (dollar sign). These
characters are reserved for wuse as Digital Equipment
Corporation system program symbols.

4. The special characters listed in Table 3-1.

Table 3-1
Special Characters Used in MACRO-11

Character Designation Function
: Colon Label terminator.
HE Double colon Label terminator; defines the

label as a global label.

]

Equal sign Direct assignment operator and
macro keyword indicator.

Lalac

== Double equal Direct assignment operator;
sign defines the symbol as a global

symbol.
=: Equal sign colon Direct assignment operator;
macro keyword indicator;

causes error (M) in listing if
an attempt is made to change
the value of the symbol.

{(continued on next page)

SYMBOLS AND EXPRESSIONS

Table 3-1

(Cont.)

Special Characters Used in MACRO-11

Character Designation Function
==: Double equal Direct assignment operator;
sign colon defines the symbol as a global
symbol; causes error (M) in
listing if an attempt is made
to change the value of the
symbol.

% Percent sign Register term indicator.

Tab Item or field terminator.
Space Item or field terminator.

Number sign Immediate expression
indicator.

@ At sign Deferred addressing indicator.

(Left parenthesis Initial register indicator.

) Right parenthesis Terminal register indicator.

. Period Current location counter.

’ Comma Operand field separator.

; Semicolon Comment field indicator.

< Left angle Initial argument or expression

bracket indicator.

> Right angle Terminal argument or

bracket expression indicator.

+ Plus sign Arithmetic addition operator
or autoincrement indicator.

- Minus sign Arithmetic subtraction
overator or Antndecrement
indicator.

* Asterisk Arithmetic multiplication
operator.

/ Slash Arithmetic division operator.

& Ampersand Logical AND operator.

Exclamation point

Double quote

Logical inclusive OR operator.

Double ASCII character
indicator.

(continued on next page)

SYMBOLS AND EXPRESSIONS

Table 3-1 (Cont.)
Special Characters Used in MACRO-11

Character Designation Function

Single quote Single ASCII character
indicator; or concatenation
indicator.

. Up arrow or Universal wunary operator or
circumflex argument indicator.
\ Backslash Macro call numeric argument
indicator.
3.1.1 Separating and Delimiting Characters

Legal separating characters and legal argument delimiters are defined
in Tables 3-2 and 3-3 respectively.

Table 3-2
Legal Separating Characters

Character Definition Usage
Space One or more spaces A space is a legal separator
and/or tabs between instruction fields and

between symbolic arguments
within the operand field.
Spaces within expressions are
ignored (see Section 3.9).

Comma A comma is a legal separator
between symbolic arguments
within the operand field.
Multiple expressions used in
the operand field must be
separated by a comma.

3.1.2

Illegal Characters

A character is illegal for one of two reasons:

1.

If a character is not an element of the recognized MACRO-11
character set, it 1is replaced in the listing by a question
mark, and an error <code (I) 1is printed 1in the assembly
listing. The exception to this is an embedded null which,
when detected, terminates the scan of the current line.

If a legal MACRO-11 character is used in a source statement
with 1illegal or questionable syntax, an error code (Q) is
printed in the assembly listing.

SYMBOLS AND EXPRESSIONS

Table 3-3
Legal Argument Delimiters

Character Definition Usage
Koo Paired angle Paired angle brackets may be
brackets used anywhere in a program to

enclose an expression for
treatment as a single term.
Paired angle brackets are also

used to enclose

a macro

argument, particularly when

that argument contains
separating characters (see
Section 7.3).

“X...X Up-arrow (unary This construction is
operator) con- equivalent in function to the
struction, where paired angle brackets
the up-arrow is described above and is
followed by an generally used only where the
argument that is argument itself contains angle
bracketed by any brackets.

paired printing
characters (x).

3.1.3 Unary and Binary Operators

Legal MACRO-11 unary operators are described 1in Table
operators are used in connection with single terms
operands) to indicate an action to be performed on that
assembly. Because a term preceded by a unary operator

3-4. Unary
(arguments or
term during
is considered

to contain that operator, a term so specified can be used alone or as

~] AL A
an eiement of an €Xpression.

Table 3-4
Legal Unary Operators

Unary

Operator Explanation Example Effect

+ Plus sign +A Produces the positive
value of A.

- Minus sign -A Produces the negative

(2's

complement)

value of A.

(continued on next page)

SYMBOLS AND EXPRESSIONS

Table 3-4 (Cont.)
Legal Unary Operators

Unary

Operator Explanation Example Effect

- Up—-arrow, universal “Cc24 Produces the 1's
unary operator. complement value of
(This usage is 24(8).
described in
detail in “D127 Interprets 127 as a
Section 6.4.) decimal number.

“F3.0 Interprets 3.0 as a
l-word,
floating-point
humber.

034 Interprets 34 as an

octal number.

“Bl1@@@111 Interprets 11900111
as a binary number.

“RABC Evaluates ABC in
Radix-50 form.

Unary operators can be used adjacent to each other or in constructions
involving multiple terms, as shown below:

-"D50 (Equivalent to -<"D56>)
“C"012 (Equivalent to "C<"012>)

Legal MACRO-11 binary operators are described in Table 3-5. In
contrast to unary operators, binary operators specify actions to be
performed on multiple items or terms within an expression.

Table 3-5
Legal Binary Operators

Binary

Operator Explanation Example

+ Addition A+B

- Subtraction A-B

* Multiplication A*B (signed 16-bit
product returned)

/ Division A/B (signed 16-bit
quotient returned)

& Logical AND A&B

! Logical inclusive OR AlB

SYMBOLS AND EXPRESSIONS

All binary operators have equal priority. Terms enclosed by angle
brackets are evaluated first, and remaining operations are performed
from left to right, as shown in the examples below:

.WORD 1+2*3 ;Equals 11(8).
.WORD 1+<2*3> ;Equals 7(8).

3.2 MACRO-11 SYMBOLS

MACRO-11 maintains a symbol table for each of the three symbol types
that may be defined in a MACRO-11 source program: the Permanent
Symbol Table (PST), the User Symbol Table (UST), and the Macro Symbol
Table (MST). The PST contains all the permanent symbols defined
within (and thus automatically recognized by) MACRO-11 and is part of
the MACRO-11 1image. The UST (for user-defined symbols) and MST (for
macro symbols) are constructed as the source program is assembled.

3.2.1 Permanent Symbols

Permanent symbols consist of the instruction mnemonics (see Appendix
C) and MACRO-11 directives (see Chapters 6 and 7 and Appendix B).
These symbols are a permanent part of the MACRO-11 image and need not
be defined before being used 1in the operator field of a MACRO-11
source statement (see Section 2.2.2).

3.2.2 User-Defined and Macro Symbols

User-defined symbols are those symbols that are equated to a specific
value through a direct assignment statement (see Section 3.3), appear
as labels (see Section 2.2.1), or act as dummy arguments (see Section
7.1.1). These symbols are added to the User Symbol Table as they are
encountered during assembly.

Macro symbols are those symbols used as macro names (see Section 7.1).
They are added to the Macro Symbol Table as they are encountered
during assembly.

The following rules govern the <creation of user-defined and macro
symbols:

1. Symbols can be composed of alphanumeric characters, dollar
signs ($), and periods (.) only (see Note below).

2. The first character of a symbol must not be a number (except
in the case of local symbols; see Section 3.5).

3. The first six characters of a symbol must be unique. A
symbol <can be written with more than six legal characters,
but the seventh and subsequent characters are checked only
for ASCII legality and are not otherwise evaluated or
recognized by MACRO-11.

4, Spaces, tabs, and illegal characters must not be embedded

within a symbol. The legal MACRO-11 character set is defined
in Section 3.1.

SYMBOLS AND EXPRESSIONS

NOTE

The dollar sign ($) and period (.)
characters are reserved for wuse in
defining Digital Equipment Corporation
system software symbols. For example,
READS is a file-processing system macro.
The wuser 1is cautioned not to employ
these characters in constructing
user~defined symbols or macro symbols in
order to avoid possible conflicts with
existing or future Digital Equipment
Corporation system software symbols.

The value of a symbol depends upon its use in the program. A symbol
in the operator field may be any one of the three symbol types
described above; permanent, user-defined, or macro. To determine the
value of an operator-field symbol, MACRO-11 searches the symbol tables
in the following order:

1. Macro Symbol Table
2. Permanent Symbol Table
3. User-Defined Symbol Table

This search order allows permanent symbols to be used as macro
symbols, But the user must keep in mind the sequence in which the
search for symbols 1is performed in order to avoid incorrect

interpretation of the symbol's use.
When a symbol appears in the operand field, the search order is:

1. User-Defined Symbol Table

2. Permanent Symbol Table
Depending on their use in the source program, user-defined symbols
have either a 1local (internal) attribute or a global (external)
attribute.
Normally, MACRO-11 treats all user-defined symbols as local, that 1is,
their definition 1is 1limited to the module 1in which they appear.
However, symbols can be explicitly declared to be global symbols
through one of three methods:

1. Use of the .GLOBL directive (see Section 6.8.1).

2. Use of the double colon (::) in defining a label (see Section
2.2.1).

3. Use of the double equal sign (==) or double equal colon sign
(==:) in a direct assignment statement (see Section 3.3).

All symbols within a module that remain undefined at the end of
assembly are treated as default global references.

SYMBOLS AND EXPRESSIONS

NOTE

Undefined symbols at the end of assembly
are assigned a value of @ and placed
into the user-defined symbol table as
undefined default global references. 1If
the .DSABL GBL directive is in effect,
however, (see Section 6.2.1) the
statement containing the undefined
symbol is flagged with an error code (U)
in the assembly listing.

Global symbols provide linkages between independently-assembled object
modules within the task image. A global symbol defined as a label,
for example, may serve as an entry-point address to another section of
code within the image. Such symbols are referenced from other source
modules in order to transfer «control throughout execution. These
global symbols are resolved at link time, ensuring that the resulting
image is a logically coherent and complete body of code.

3.3 DIRECT ASSIGNMENT STATEMENTS
The general format for a direct assignment statement is:
symbol=expression
or
symbol==expression

where: expression - can have only one level of forward reference
(see 5. below).

- cannot contain an undefined global reference.
The colon format for a direct assignment statement is:
symbol=:expression
or
symbol==:expression

where: expression - can have only one level of forward reference
(see 5. Dbelow).

- cannot contain an undefined global reference.
All the direct assignment statements above allow the user to equate a

symbol with a specific value. After the symbol has been defined it is
entered into the User-Defined Symbol Table. 1If the general format Iis

used (= or ==) the value of the symbol may be changed in subsequent
direct assignment statements. If, however, the colon format 1is wused
(=: or ==:) any attempt to <change the value of the symbol will

generate an error (M) in the assembly listing.

A direct assignment statement embodying either the double equal (==
sign or the double equal colon (==:) sign, as shown above, defines the
symbol as global (see Section 6.8.1).

SYMBOLS AND EXPRESSIONS

The following examples illustrate the coding of direct assignment
statements.

Example 1:

A=10 ;Direct assignment

B==3¢ ;Global assignment

A=15 ;Legal reassignment

L=:5 ;Equal colon assignment
M==:A+2 ;Double equal colon assignment

;M becomes equal to 17

L=4 ;Illegal reassignment
;M error is generated

Example 2:

;The symbol D is equated to ., and

MOV #1,ABLE ;the labels C and E are assigned a
;value that is equal to the location
;of the MOV instruction.

mY O
i e

The code in the second example above would not usually be used and is
shown only to 1illustrate the performance of MACRO-11 1in such
situations. See Section 3.6 for a description of the period (.) as
the current location counter symbol.

The following conventions apply to the coding of direct assignment
statements:

1. An equal sign (=), double equal sign (==), equal colon sign
(=:) or double equal colon sign (==:) must separate the
symbol from the expression defining the symbol's value.
Spaces preceding and/or following the direct assignment
operators, although permissible, have no significance in the
resulting value.

2. The symbol being assigned in a direct assignment statement is
placed in the label field.

3. Only one symbol can be defined in a single direct assignment
statement.

4. A direct assignment statement may be followed only by a
comment field.

5. Only one level of forward referencing 1is allowed. The
following example would cause an error code (U) in the
assembly listing on the line containing the illegal forward
reference:

X=Y (Illegal forward reference)
Y=2 (Legal forward reference)
z=1

Although one 1level of forward referencing 1is allowed for local
symbols, no forward referencing 1is allowed for global symbols. 1In
other words, the expression being assigned to a global symbol can
contain only previously defined symbols. A forward reference in a
direct assignment statement defining a global symbol will cause an
error code (A) to be generated in the assembly listing.

3.4 REGISTER SYMBOLS

The eight general registers of the PDP-11 processor are numbered @

through 7 and can be expressed in the source program in the following
manner:

30
21

%7

where % indicates a reference to a register rather than a 1location.
The digit specifying the register can be replaced by any legal,
absolute term that can be evaluated during the first assembly pass.

The register definitions listed below are the normal default values
and remain wvalid for all register references within the source
program.

RO=%0 ;Register # definition.
R1=%1 ;Register 1 definition.
R2=%2 ‘ ;Register 2 definition.
R3=%3 ;Register 3 definition.
R4=%4 ;Register 4 definition.
R5=%5 ;Register 5 definition.
SP=%6 ;Stack pointer definition.
PC=%7 ;Program counter definition.

Registers 6 and 7 are given special names because of their unique
system functions. The symbolic default names assigned to the
registers, as listed above, are the conventional names wused 1in all
DIGITAL-supplied PDP-11 system programs. For this reason, you are
advised to follow these conventions.

A register symbol may be defined in a direct assignment statement
appearing in the program. The defining expression of a register
symbol must be a legal, absolute value between @ and 7, inclusive, or
an error code (R) will appear in the assembly listing. Although you
can reassign the standard register symbols through the wuse of the
.DSABL REG directive (see Section 6.2.1), this practice 1is not
recommended. An attempt to redefine a default register symbol without
first specifying the .DSABL REG directive to override the normal
register definitions causes that assignment statement to be flagged
with an error code (R) 1in the assembly listing. All non-standard
register symbols must be defined before they are referenced in the
source program.

SYMBOLS AND EXPRESSIONS

The % character may be used with any 1legal term or expression to
specify a register. For example, the statement

CLR $3+1

is equivalent in function to the statement
CLR %4

and clears the contents of register 4,

In contrast, the statement
CLR 4

clears the contents of virtual memory location 4.

3.5 LOCAL SYMBOLS

Local symbols are specially formatted symbols used as labels within a
block of coding that has been delimited as a local symbol block.
Local symbols are of the form n$, where n is a decimal integer from 1
to 65535, inclusive. Examples of local symbols are:

1s
27$
598
104$

A local symbol block is delimited in one of three ways:

1. The range of a local symbol block usually consists of those
statements between two normally-constructed symbolic labels
(see Figure 3-1). Note that a statement of the form:
ALPHA=EXPRESSION
is a direct assignment statement (see Section 3.3) but does
not create a label and thus does not delimit the range of a
local symbol block.

2. The range of a local symbol block is normally terminated upon
encountering a .PSECT, .CSECT, .ASECT, or .RESTORE directive

in the source program (see Figure 3-1).

3. The range of a 1local symbol block 1is delimited through
MACRO-11 directives, as follows:

Starting delimiter: .ENABL LSB (see Section 6.2.1)

/‘\\
| e e
Ending delimiter: .ENABﬁ’“fgé T Q{;@/’
S Mm“‘““‘w.
or T
\\
one of the following: \\

Symbolic label (see Section 2.2.1)
.PSECT (see Section 6.7.1) |
.CSECT (see Section 6.7.2)
.ASECT (see Section 6.7.2)
.RESTORE (see Section 6.7.4) J__

e
encountered after a (DSABL LSB (see
Section 6.2.1). ’\,///

Local symbols provide a convenient means of generating 1labels for
branch instructions and other such references within local symbol
blocks. Using local symbols reduces the possibility of symbols with
multiple definitions appearing within a user program. In addition,
the use of local symbols differentiates entry-point labels from 1local
labels, since 1local symbols cannot be referenced from outside their
respective local symbol blocks. Thus, local symbols of the same name
can appear in other 1local symbol blocks without conflict. Local
symbols do not appear in cross-reference 1listings and require less
symbol table space than other types of symbols. Their use is
recommended.

When defining local symbols, use the range from 1$ to 299998 first.
Local symbols within the range 30008$ through 65535$%, inclusive, can
be generated automatically as a feature of MACRO-11. Such 1local
symbols are useful in the expansion of macros during assembly (see
Section 7.3.5).

Be sure to avoilid multiple definitions of local symbols within the same
local symbol block. For example, if the local symbol 10$ is defined
two or more times within the same local symbol block, each symbol
represents different address value. Such a multi-defined symbol

ANIaAn Aanm AvvAar ~adAAa DY ~n hAa AMarmAar
LUUOoTOo “id CTLLWwVL o \L ww 'S

For examples of local symbols and local symbol blocks as they appear
in a source program, see Figure 3-1.

1 it
2 i Simrle illustration of locasl sumbolsi the second block is delimited
3 i by the label XCTPAS,
4 -
5
6 000000 012700 XCTFPRG! MOV #IMPUREYRO iPoint to imrure ares
0000006
7 000004 005020 1% CLR (RO 4+ iClear 3 word
8 0000046 020027 CHP RO s #IMPURT iTest if at tor of area
0000006
? 000012 001374 BNE 1s ilIterate if not
ig $F3ll in to rerform rass initialization
12 000014 012700 XCTFAS: MOV $IMPPASYRO iFoint to rass storade ares
0000006
13 000020 005020 1% CLR (RO + iClear the ares
14 000022 020027 CHMP ROs#IMPFPAT iTest if at to» of ares
0000006
15 000026 001374 BNE 1s ilterate of not
16 000030 000207 RTS FC iReturn if so

Figure 3-1 Assembly Listing Showing Local Symbol Block

SYMBOLS AND EXPRESSIONS

3.6 CURRENT LOCATION COUNTER

The period (.) is the symbol for the current location counter. When
used in the operand field of an instruction, the period represents the
address of the first word of the instruction, as shown in the first
example below. When wused in the operand field of a MACRO-11
directive, it represents the address of the current byte or word, as
shown in the second example below.

Az MoV $.,R0O ;The period (.) refers to the address
;of the MOV instruction.

(The function of the number sign (#) is explained in Section 5.9.)

SAL=0
.WORD 177535,.+4,SAL ;The operand .+4 in the .WORD
;directive represents a value
;that is stored as the second
;of three words during
;assembly.

Assume that the current value of the location counter is 540. During
assembly, MACRO-11 reserves storage in response to the .WORD directive
(see Section 6.3.2), beginning with Jlocation 508. The operands
accompanying the .WORD directive determine the values so stored. The
value 177535 is thus stored in location 50@. The value represented by
.+4 is stored in location 5@2; this value is derived as the current
value of the location counter (which is now 582), plus the absolute
value 4, thereby depositing the value 506 in location 5#2. Finally,
the value of SAL, previously equated to @, is deposited 1in location
504.

Figure 3-2 illustrates the result of the example.

LOCATION CONTENTS
500 177535
502 506
504 2

Figure 3-2 Sample Assembly Results

At the beginning of each assembly pass, MACRO-11 resets the location
counter. Normally, consecutive memory locations are assigned to each
byte of object data generated. However, the value of the 1location
counter can be changed through a direct assignment statement of the
following form:

.=expression
The current Jlocation counter symbol (.) is either absolute or

relocatable, depending on the attribute of the current program
section.

SYMBOLS AND EXPRESSIONS

The attribute of the current location counter can be changed only
through the program sectioning directives (.PSECT, .ASECT, .CSECT and
.RESTORE) , as described in Section 6.7. Therefore, assigning to the
counter an expression having an attribute different than that of the
current program section will generate an error <code (A) in the
assembly listing.

Furthermore, an expression assigned to the counter may not contain a
forward reference (a reference to a symbol that 1s not previously
defined). The user must also be sure that the expression assigned
will not force the counter into another program section, even if both
sections involved have the same relocatability. Either of these
conditions causes MACRO-11 to generate incorrect object file code, and
may cause statements following the error to be flagged with an error
code (P) in the assembly listing.

The following coding illustrates the wuse of the current location
counter:

.ASECT

.=500 ;Set location counter to
;absolute 5@0@(octal).

FIRST: MOV .+10 ,COUNT ;The label "FIRST" has the value
;580 (octal).

+18 equals 51@(octal). The

ontents of the location

1d(octal) will be deposited

in the location "COUNT".

he assembly location counter

ow has a value of

bsolute 52@(octal).

he label "SECOND" has the

alue 526 (octal).

he contents of location

20 (octal), that is, the binary

ode for the instruction

self, will be deposited in the

r
San W L
on "INDEX".

U1 Qe

.=520

SECOND: MOV ., INDEX

WO ME Ne Ne Ne Ne e NE We we Ve N6 we wo

HEe QU3 <o 3

Q

Q
0
or
b

. PSECT
L=.420 ;Set location counter to
;relocatable 28 of the
;unnamed program section.
THIRD: .WORD] ;:The label "THIRD" has the
;value of relocatable 20.

Storage areas may be reserved in the program by advancing the location
counter, For example, if the current value of the location counter is
1008, each of the following statements:

.=.+40
or
.BLKB 490
or
.BLKW 240
reserves 40 (8) bytes of storage space in the source program. The

.BLKB and .BLKW directives, however, are the preferred ways to reserve
storage space (see Section 5.5.3).

SYMBOLS AND EXPRESSIONS

3.7 NUMBERS

MACRO-11 assumes that all numbers in the source program are to be
interpreted in octal radix, unless otherwise specified. An exception
to this assumption is that operands associated with Floating Point
Processor instructions and Floating Point Data directives are treated
as decimal (see Section 6.4.2). This default radix <can be altered
with the .RADIX directive (see Section 6.4.1.1). Also, individual
numbers can be designated as decimal, binary, or octal numbers through
temporary radix control operators (see Section 6.4.1.2).

For every statement in the source program that contains a digit that
is not in the <current radix, an error code (N) is generated in the
assembly listing. However, MACRO-11 continues with the scan of the
statement and evaluates each such number encountered as a decimal
value.

Negative numbers must be preceded by a minus sign; MACRO-11
translates such numbers into two's complement form. Positive numbers
may (but need not) be preceded by a plus sign.

A number containing more than 16 significant bits (greater than
177777(8)), 1is truncated from the left and flagged with an error code
(T) in the assembly listing.

Numbers are always considered to be absolute values; therefore, they
are never relocatable.

Single-word floating-point numbers may be denerated with the °F
operator (see Section 6.4.2.2) and are stored in the following format:

15 14 6)
Sign 8-bit 7-bit
Bit Exponent Mantissa

Refer to the appropriate PDP-11 Processor Handbook for details of the
floating-point number format.

3.8 TERMS

A term is a component of an expression and may be one of the
following:

1. A number, as defined in Section 3.7, whose 16-bit wvalue is
used.

2. A symbol, as defined in Section 3.2. Symbols are
as follows:

{

D
<
")
|-
)
t
17
[o1)

A. A period (.) specified in an expression causes the value
of the current location counter to be used.

B. A defined symbol is located in the User-Defined Symbol
Table (UST) and its value is used.

C. A permanent symbol's basic wvalue 1is wused, with zero
substituted for the addressing modes. (Appendix C lists
all op codes and their values.)

P R e e e e]

SYMBOLS AND EXPRESSIONS

D. An undefined symbol is assigned a value of =zero and
inserted in the User-Defined Symbol Table as an undefined
default global reference. 1If the .DSABL GBL directive
(see Section 6.2.1) is in effect, the automatic global
reference default function of MACR0O-11 is inhibited, and
the statement containing the undefined symbol is flagged
with an error code (U) in the assembly listing.

3. A single quote followed by a single ASCII character, or a
double gquote followed by two ASCII characters. This type of

expression construction is explained in detail in Section
6.3.3.

4, An expression enclosed 1in angle brackets (<>). Any
expression so enclosed 1s evaluated and reduced to a single
term before the remainder of the expression 1in which it
appears 1is evaluated. Angle brackets, for example, may be
used to alter the left-to-right evaluation of expressions (as

in A*B+C versus A*<B+L>), or to apply a unary operator to an
entire expression (as in -<A+4B>).*

5. A unary operator followed by a symbol or number.

3.9 EXPRESSIONS

Expressions are combinations of terms Jjoined together by binary
operators (see Table 3-5). Expressions reduce to a 1l6-bit value. The

evaluation of an expression 1includes the determination of its
attributes. A resultant expression value may be any one of four types
(as described 1later in this section): relocatable, absolute,

external, or complex relocatable.

Expressions are evaluated from 1left to right with no operator
hierarchy rules, except that unary operators take precedence over
binary operators. A term preceded by a unary operator 1is considered
to contain that operator. {Terms are evaluated, where necessary,
before their use in expressions.) Multiple unary operators are valid
and are treated as follows:*

—+-A
is equivalent to:

—<+<=A>>

* The maximum depth of an expression 1is governed by the MACRO-11
assembler's expression stack space. If an expression exceeds the
assembler's maximum expression depth, the statement is marked with an
(E) error, and processing continues.

3-16

SYMBOLS AND EXPRESSIONS

A missing term, expression, or external symbol 1is interpreted as a
Zero. A missing or illegal operator terminates the expression
analysis, causing error codes (A) and/or (Q), to be generated 1in the
assembly 1listing, depending on the context of the expression itself.
For example, the expression:

A+ B 177777
is evaluated as
A+ B

because the first non-blank character following the symbol B is not a
legal binary operator, an expression separator (a comma), or an
operand field terminator (a semicolon or the end of the source line)

-

NOTE

Spaces within expressions can serve as
delimiters only between symbols, In

other words, the expressions
A+ B
and
A+B

are the same, but the symbols
B17
and
B 17

are not (B 17 is not a single symbol).

At assembly time the value of an external (global) expression is equal
to the wvalue of the absolute part of that expression. For example,
the expression EXTERN+A, where "EXTERN" is an external symbol, has a
value at assembly time that 1is equal to the value of the internal
(local) symbol A. This expression, however, when evaluated at 1link
time takes on the resolved value of the symbol EXTERN, plus the value
of symbol A.

Expressions, when evaluated by MACRO-11, are one of four types:
relocatable, absolute, external, or complex relocatable. The
following distinctions are important:

1. An expression is relocatable if its value is fixed relative
to the base address of the program section in which it
appears; it will have an offset value added at 1link time.
Terms that contain 1labels defined 1in relocatable program
sections will have a relocatable value; similarly, a period
(.) 1in a relocatable program section, representing the value
of the current location counter, will also have a relocatable
value.

SYMBOLS AND BXPRESSIONS

2. An expression 1is absolute if its wvalue 1is fixed. An
expression whose terms are numbers and ASCII conversion
characters will reduce to an absolute value. A relocatable

expression or term minus a relocatable term, where both
elements being evaluated belong to the same program section,
is an absolute expression. This is because every term in a
program section has the same relocation bias. When one term
is subtracted from another, the resulting bias is zero.
MACRO-11 can then treat the expression as absolute and reduce
it to a single term upon completion of the expression scan.
Terms that contain labels defined in an absolute section will
also have an absolute value.

3. An expression is external (or global) if it contains a single
global reference (plus or minus an absolute expression value)
that is not defined within the current program. Thus, an
external expression 1is only partially defined following
assembly and must be resolved at link time.

4. An expression is complex relocatable if any one of the
following conditions applies:

- It contains a global reference and a relocatable symbol.
- It contains more than one global reference.

- It contains relocatable terms belonging to different
program sections.

~ The value resulting from the expression has more than one
level of relocation. For example, 1f the relocatable
symbols TAGl and TAG2, associated with the same program
section, are specified in the expression TAGl+TAG2, two
levels of relocation will be introduced, since each symbol
is evaluated in terms of the relocation bias in effect for
the program section.

- An operation other than addition 1is specified on an
undefined global symbol.

- An operation other than addition, subtraction, negation, or
complementation is specified for a relocatable value.

The evaluation of relocatable, external, and complex relocatable
expressions is completed at link time. The maximum number of terms
that can be specified in a complex expression is 1limited by the
maximum size of the object record. The maximum number of terms is 28
(decimal).

CHAPTER 4

RELOCATION AND LINKING

The output of MACRO-11 is an object module that must be processed or
linked before it <can be loaded and executed. Essentially, linking
fixes (makes absolute) the values of relocatable or external symbols
in the object module, thus transforming the object module, or several
object modules, into an executable image.

To allow the value of an expression to be fixed at link time, MACRO-11
outputs certain instructions in the object file, together with other
required parameters. For relocatable expressions in the object
module, the base of the associated relocatable program section is
added to the value of the relocatable expression provided by MACRO-11.
For exXternal expression values, the value of the external term in the
expression (since the external symbol must be defined in one of the
other object modules being 1linked together) is determined and then
added to the absolute portion of the external expression, as provided
by MACRO-11.

All instructions that require modification at link time are flagged in
the assembly 1listing, as 1illustrated in the example below. The
apostrophe (') following the octal expansion of the instruction
indicates that simple relocation is required; the letter G indicates
that the value of an external symbol must be added to the absolute
portion of an expression; and the letter C indicates that complex
relocation analysis at link time is required in order to fix the value
of the expression.

EXAMPLE:
g05¢65 CLR RELOC (R5) ;Assuming that the value of the
o0004a" ;symbol "RELOC", 4@, is relocatable
;the relocation bias
;will be added to this value.
#B5865 CLR EXTERN (R5) ;The value of the symbol "EXTERN" is
Peeo00aG ;assembled as zero and is

;resolved at link time.

RELOCATION AND LINKING

285865 CLR EXTERN+6 (R5) ;The value of the symbol "EXTERN"
gP0aA6G ;is resolved at link time
;and added to
;the absolute portion (+6) of
;the expression.

#B5865 CLR -<EXTERN+RELOC> (R5) ;This expression is complex

[lslegol 1ol ;relocatable because it requires
;the negation of an expression
;that contains a global "EXTERN"
;reference and a relocatable term.

For a complete description of object records output by MACRO-11, refer
to the applicable system manual (see Section 0.3 in the Preface).

CHAPTER 5

ADDRESSING MODES

To understand how the address modes operate and how they assemble, the
action of the program counter must be understood. The key rule to
remember 1is:

"whenever the processor implicitly uses the program counter
(PC) to fetch a word from memory, the program counter is
automatically incremented by 2 after the fetch operation is
completed."

The PC always contains the address of the next word to be fetched.
This word will be either the address of the next instruction to be
executed, or the second or third word of the current instruction.

Table 5-1 lists the address modes, and Table 5-2 1lists the symbols
used in this chapter to describe the address modes. Each mode of
address in the chapter is illustrated using either the single operand
instruction CLR or the double operand instruction MOV.

Table 5-1
Addressing Modes

Section
Mode Form Reference

Register mode* R 5.1
Register deferred mode* @R or (ER) 5.2
Autoincrement mode* (ER)+ 5.3
Autoincrement deferred mode* @(ER)+ 5.4
Autodecrement mode* -(ER) 5.5
Autodecrement deferred mode* @- (ER) 5.6
Index mode** E (ER) 5.7
Index deferred mode** @E (ER) 5.8
Immediate mode** #E 5.9
Absolute mode** Q#E 5.14
Relative mode** E 5.11
Relative deferred mode** @E 5.12
Branch Address 5.13

* Does not increase the length of an instruction.

** Adds one word to the instruction length for each occurrence of an

operand of this form.

ADDRESSING MUDE

Ui

Table 5-2
Symbols Used in Chapter 5

Symbol Explanation
E Any expression, as defined in Chapter 3.
R A register expression; in other words, any

expression containing a term preceded by a percent
sign (%) or a symbol previously equated to such a
term, as shown below:

RO=%0 ;General register @.
R1=R@+1 ;General register 1.
R2=1+%1 ;General register 2.

This symbol may alsoc represent any of the normal
default register definitions (see Section 3.4).

ER A register expression or an absolute expression in
the range @ to 7, inclusive.

5.1 REGISTER MODE
Format:
R

The register itself (R) contains the operand to be manipulated by the
instruction.

Example:

AT o
CLK

23
w
~
@}
(]
m
Q
~
w
~
T
[Cel
(=
w
cr
a
Lo}
w

5.2 REGISTER DEFERRED MODE
Format:
@R or (ER)

The register (R) contains the address of the operand to be manipulated
by the instruction.

Examples:

CLR @R1 ;All these instructions clear
CLR (R1) ;the word at the address
CLR (%1) ;contained in register 1.

ADDRESSING MODES

5.3 AUTOINCREMENT MODE

Format:

(ER)+

The contents of the register (ER) are incremented immediately
being used as the address of the operand (see Note below).

Examples:

CLR
CLR
CLR

MOV

MoV

(RO)Y+ ;Each instruction clears
(R4)+ ;the word at the address
(R2)+ ;contained in the specified

;register and increments
;that register's contents
; by two.

NOTE

Certain special instruction/address mode
combinations, which are rarely or never
used, do not operate the same on all
PDP-11 processors, as described below.

In the autoincrement mode, both the JMP
and JSR instructions autoincrement the
register before its use on the PDP-11/40
but not on the PDP-11/45 or 11/14.

In double operand instructions having
the addressing form Rn, (Rn)+ or
Rn,-(Rn), where the source and
destination registers are the same, the
source operand 1is evaluated as the
autoincremented or autodecremented
value, but the destination register, at
the time it is used, still contains the
originally intended effective address.
In the following example, as executed on
the PDP-11/48, Register @ originally
contains 10@(8):

RA, (RO) + ;The quantity 1062 is moved

;to location 144.

RO ,-(RO) ;The quantity 76 is moved

;to location 104.

The use of these forms should be
avoided, since they are not compatible
with the entire family of PDP-11
processors.

An error code (Z) is printed in the
assembly 1listing with each instruction
which is not compatible among all
members of the PDP-11 family.

after

ADDRESSING MODES

5.4 AUTOINCREMENT DEFERRED MODE
Format:

@ (ER)+
The register (ER) contains a pointer to the address of the operand.
The contents of the register are incremented after being used as
pointer.
Example:

CLR @(R3)+ ;The contents of register 3 point

;to the address of a word to be

;cleared before the contents of the
;register are incremented by two.

5.5 AUTODECREMENT MODE
Format:
- (ER)

The contents of the register (ER) are decremented before being used as
the address of the operand (see Note in Section 5.3).

Examples:
CLR -(RO) ;Decrement the contents of the speci-
;fied register (@, 3, or 2) by two
CLR -(R3) :before using its contents
CLR -(R2) ;as the address of the word to be

;cleared.

5.6 AUTODECREMENT DEFERRED MODE
Format:
@-(ER)

The contents of the register (ER) are decremented before being used as
a pointer to the address of the operand.

Example:

CLR @-(R2) ;Decrement the contents of
;register 2 by two before
;using its contents as a pointer
;to the address of the word to be
;cleared.

ADDRESSING MODES

5.7 INDEX MODE
Format:
E(ER)

An expression (E), plus the contents of a register (ER), vyields the
effective address of the operand. 1In other words, the value E is the
offset of the instruction, and the contents of register ER form the
base. (The value of the expression (E) is stored as the second or
third word of the instruction.)

Examples:

CLR X+2 (R1) ;The effective address of the word
;to be cleared is X+2, plus the
;contents of register 1.

MOV RO ,-2 (R3) ;The effective address of the
;destination location is -2, plus
;the contents of register 3.

5.8 INDEX DEFERRED MODE
Format:
@E (ER)

An expression (E), plus the contents of a register (ER), vyields a
pointer to the address of the operand. As in index mode above, the
value E is the offset of the instruction, and the contents of register
ER form the base. (The value of the expression (E) is stored as the
second or third word of the instruction.)

Example:

CLR @114 (R4) ;If register 4 contains 109, this
;value, plus the offset 114, yields
;the pointer 214, 1If location 214
;contains the address 200¢, location
;2000 would be cleared.

NOTE

The expression @(ER) may be used, but it
will be assembled as if it were written
@3 (ER), and a word will be used to store
the 7.

5.9 IMMEDIATE MODE

Format:
#E

Immediate mode allows the operand itself (E) to be stored as the
second or third word of the instruction. The number sign (#) is an
addressing mode indicator. Appearing 1in the operand field this
character specifies the immediate addressing mode, 1indicating to
MACRO-11 that the operand itself immediately follows the instruction
word. This mode is assembled as an autoincrement of the PC.

Examples:

MOV #1082 ,R0 ;Move the value 140 into register 4.
MOV #X,R0 ;Move the value of symbol X into
;register 4.

The operation of this mode can be shown through the first example,
MOV #1600 ,R8, which assembles as two words:

Location 20: @ 1 2 7 0 @
Location 22: @ @8 010 @
Location 24: Next instruction

The source operand (the value 100@) is assembled immediately following
the instruction word. Upon execution of the instruction, the
processor fetches the first word (MOV) and increments the PC by 2 so
that it points to the second word, location 22, which contains the
source operand.

After the next fetch and increment cycle, the source operand (10¢) Iis
moved 1into register @, leaving the PC pointing to location 24 (the

5.1 ABSOLUTE MODE
Format:
Q#E

Bbsolute mode is the equivalent of immediate mode deferred. The
address expression @#E specifies an absolute address which is stored
as the second or third word of the instruction. 1In other words, the
value immediately following the instruction word 1is taken as the
absolute address of the operand. Absolute mode is assembled as an
autoincrement deferred of the PC.

Examples:

MOV @#1740,R0 ;Move the contents of absolute
;location 10¢ into register R#.
CLR Q#X ;Clear the contents of the location

;whose address is specified by
;the symbol X.

ADDRESSING MODES

The operation of this mode can be shown through the first example,
MOV @#100,R0, which assembles as two words:

Location 20: 0 1 3 7 @8 @
Location 22: @ 20 ¢ 1 0 @
Location 24: Next instruction

The absolute address 100 is assembled immediately following the
instruction word. Upon execution of the instruction, the processor
fetches the first word (MOV) and increments the PC by 2 so that it
points to the second word, location 22, which contains the absolute
address of the source operand. After the next fetch and increment
cycle, the contents of absolute address 100 (the source operand) are
moved into register 8, leaving the PC pointing to location 24 (the
next instruction).

5.11 RELATIVE MODE
Format:
E

Relative mode is the normal mode for memory references within your
program. It 1is assembled as index mode, using the PC as the index
register. The offset for the address calculation is assembled as the
second or third word of the instruction., This value is added to the
contents of the PC to yield the address of the source operand.

Examples:

CLR 10¢ ;Clear absolute location 140
MOV RO,Y ;Move the contents of register 9
;to location Y

The operation of relative mode can be shown with the statement
MOV 14¢,R3, which assembles as two words:

Location 20: 0 1 6 7 @8 3
Location 22: 0 g @& @ 5 4
Location 24: NEXT INSTRUCTION

The offset, the constant 54, is assembled immediately following the
instruction word. Upon execution of the instruction, the processor
fetches the first word (MOV) and increments the PC by 2 so that it
points to the second word, location 22, containing the value 54.
After the next fetch and increment cycle, the processor calculates the
effective address of the source operand by taking the contents of
location 22 (the offset) and adding it to the current value of the PC,
which now points to location 24 (the next instruction). Thus, the
source operand address is the result of the calculation
OFFSET+PC = 54424 = 106(8), causing the contents of location 14# to be
moved into register 3.

The index mode statement:
MOV 19p-.-4(PC) ,R3

is equivalent to the relative mode statement:
MOV 168 ,R3

190-.-4 is the offset for the 1index mode statement. The current
location counter (.) holds the address of the first word of the
instruction (26, in this case) and the PC has to move down 4 bytes to
reach location 24 (the next instruction). So, the offset could be
written as 100-20-4 or 54(8).

Therefore, for the index mode, the offset (54(8)) added to the
PC(24(8)) yields the effective address (54 + 24 = 140 (8)) of the
operand.

Thus, both statements move the contents of location 188 into register
3.

NOTE

The addressing form @#E differs from
form E in that the second or third word
of the instruction contains the absolute
address of the operand, rather than the
relative distance between the operand
and the PC (see Section 5.18). Thus,
the instruction CLR %100 clears
absolute location 10@, even 1if the
instruction is moved from the ©point at
which it was assembled. See the
description of the .ENABL AMA function
in Section 6.2.1, which causes all
relative mode addresses to be assembled

rascoaAao

5.12 RELATIVE DEFERRED MODE
Format:
QE

The relative deferred mode is similar in operation to the relative
mode above, except that the expression E is used as a pointer to the
address of the operand. 1In other words, the operand following the
instruction word is added to the contents of the PC to yield a pointer
to the address of the operand.

Example:

MOV @X ,R@ ;Relative to the current value of
;the PC, move the contents of the
;location whose address is pointed
;to by location X into register #.

ADDRESSING MODES

5.13 BRANCH INSTRUCTION ADDRESSING

The branch instructions are l-word instructions. The high-order byte
contains the operator, and the low-order byte contains an 8-bit signed
offset (seven bits, plus sign), which specifies the branch address
relative to the current value of the PC. The hardware calculates the
branch address as follows:

1. Extends the sign of the offset through bits 8-15.

2. Multiplies the result by 2, creating a byte offset rather
than a word offset.

3. Adds the result to the current value of the PC to form the
effective branch address.

MACRO-11 performs the reverse operation to form the word offset from
the specified address.

Word offset = (E-PC)/2 truncated to eight bits.

When the offset is added to the PC, the PC is moved to the next word
(PC=.+2). Hence the -2 in the following calculation.

Word offset = (E-.-2)/2 truncated to eight bits.

The following conditions generate an error code (A) in the assembly
listing:

1. Branching from one program section to another

2. Branching to a 1location that 1is defined as an external
(global) symbol

3. Specifying a branch address that is out of range, meaning
that the branch offset is a value that does not lie within
the range -128(10) to +127(19).

5.14 USING TRAP INSTRUCTIONS

Since the EMT and TRAP instructions do not use the low-order byte of
the instruction word, information is transferred to the trap handlers
in the low-order byte. If the EMT or TRAP instruction is followed by
an expression, the value of the expression is stored in the low-order
byte of the word. Expressions greater than 377(8) are truncated to
eight bits, and an error <code (T) 1is generated in the assembly
listing.

For more information on traps see the PDP-11 Processor Handbook and
the applicable system manual (see Section .3 in the Preface).

CHAPTER 6

GENERAL ASSEMBLER DIRECTIVES

A MACRO-11 directive is placed in the operator field of a source line.
Only one directive 1is allowed per source line. Each directive may

have a blank operand field or one or more operands.
differ with each directive.

«

e
- a

eral assembler directives are divided into

r
egories:

a1

n
t

1. Listing control

2. Function control

3. Data storage

4. Radix and numeric control

5. Location counter control

6. Terminator

7. Program sectioning and boundaries
8. Symbol control

9. Conditional assembly
1. File control

Each is described in its own section of this chapter

Legal operands

the following

(see Table 6-1

for an alphabetical 1listing of the directives and the associated

section reference).

Table 6-1
Directives in Chapter Six
Section

Directive Function Reference
.ASCII Stores delimited string as a sequence 6.3.4

of the 8-bit ASCII code of their

characters.
.ASCIZ Same as .ASCII except the string is 6.3.5

followed by a zero byte.

(continued on next page)

Table 6-1 (Cont.)
Directives in Chapter Six

Section

Directive Function Reference

.ASECT Similar to .PSECT. 6.7.2

.BLKB Allocates bytes of data storage. 6.5.3

.BLKW Allocates words of data storage. 6.5.3

.BYTE Stores successive bytes of data. 6.3.1

.CROSS Enables cross reference. 6.2.2

.CSECT Similar to .PSECT. 6.7.2

.DSABL Disables specified assembler 6.2.1
functions.

. ENABL Enables specified assembler functions. 6.2.1

. END Indicates end of source input. 6.6

. ENDC Indicates end of conditional a&assembly 5.2.1
block.

. EVEN Ensures that current value of the 6.5.1
location counter is even.

LFLT2 Generates 2 words of stofage for each 6.4.2.1
fioating-point number argument.

.FLT4 Generates 4 words of storage for each 6.4.2.1
floating-point number argument.

.GLOBL Defines listed symbols as global. 5.8.1

. IDENT Provides additional means of labeling 6.1.4
an object module.

JIF Assembles block if specified condi- 6.9.1
tions are met.

.IFF Assembles block 1f condition tests 6.9.2
false. -

LIFT Assembles block 1if condition tests 6.9.2
true.

.IFTF Assembles block regardless of whether 6.9.2
condition tests true or false.

LIIF Permits writing a one line conditional 6.9.3
assembly block.

. INCLUDE, Includes another MACRO-11 source file. 6.10.2

.LIBRARY Adds file to MACRO-11 1library search 6.19.1

list.

{continued on next page)

GENERAL ASSEMBLER DIRECTIVES

Table A-1 (Cont.)
Directives in Chapter Six

Section
Directive Function Reference
.LIMIT Allocates two words for storage. At 6.5.4
link time puts the lowest address of
the 1load 1image 1in the first of the
saved words and the address of the
first free word following the image
in the second.
.LIST Increments listing count or 1lists 6.1.1
certain types of code.
.NLIST Decrements listing count or suppresses 6.1.1
certain types of code.
.NOCROSS Disables cross reference. 6.2.2
.0DD Ensures that the current value of the 6.5.2
location counter is odd.
.PACKED Generates packed decimal data, two 6.3.8
digits per byte.
. PAGE Starts a new listing page. 6.1.5
.PSECT Declares names for program sections 6.7.1
and establishes their attributes.
-RADSO Generates data in Radix-50 packed 6.3.6
format.
.RADIX Changes radices throughout or in 6.4.1.1
portions of the source program.
.REM Delimits a section of comments. 6.1.6
.RESTORE Retrieves a previously .SAVEd program 6.7.4
section.
. SAVE Places the current program section on 6.7.3
top of the program section context
stack.
.SBTTL Produces a table of contents 6.1.3
immediately preceding the assembly
listing and puts subheadings on each
page in the listing.
.TITLE Assigns a name to the object module 6.1.2
and puts headings on each page of
the assembly listing.
.WEAK Defines listed symbols as WEAK. 6.8.2
.WORD Generates successive words of data in 6.3.2

the object module.

GENERAL ASSEMBLER DIRECTIVES

6.1 LISTING CONTROL DIRECTIVES

Listing contreol directives control the content, format, and pagination
of all line printer (see Figure 6-1) and teleprinter (see Figure 6-2)
assembly listing output. On the first line of each page, MACRO-11
prints the following (from left to right):

1. Title of the object module, as established through the .TITLE
directive (see Section 6.1.2).

2. Assembler version identification.

3. Day of the week.

4. Date.

5. Time of day.

6. Page number.
The second line of each assembly listing page contains the subtitle
text specified 1in the last-encountered .SBTTL directive (see Section

6.1.3).

In the 1line printer format (Figure 6-1) binary extensions for
statements generating more than one word are listed horizontally.

In the teleprinter format (Figure 6-2) binary extensions for
statements generating more than one word are listed vertically. There
is no explicit truncation of output to 8@ characters by the assembler.

[y
OVONOWUD LM

000126
000130
000136
000142
000144
000146
000154
000156
000162
000164
000166
000172
000176
000202
000204
000206
000212
000216
000222
000224
000226
000232
000236
000240
000244
0002446
000252
000254
000260

010146
016767
012701
005041
005041
136527
001436
116500
003431
006300
016011

116500
003421
006300
066011

116500
003411
060021

020127
001347
105765
003370

012601
016700
000207

0000006
0000046

000000’

00024627

0004627

0002627

0006027

0002627

0000046

000262

0000006

-+

GETSYM

e wr wp ws ws @

i

GETSYM? i MOV
0000006 MOV
MOV
CLR
CLR
000040 RITD
BEQ
1%¢ MOVE
RLE
ASL
MOV
GETCHR
MOVE
BLE
ASL
ADD
GETCHR
MOVB
RLE
ADD
GETCHR
CMF
ENE
TSTR
RGT
3% SETNE
44 MOV
MOV
RETURN

r3
"

Scan off a RADSO sumbol,
char rast end of sumbol.,
seent In this case scan

R1y-(SF)
CHRPNT»SYMEEG
$SYMEOL+4,R1
-(R1)

-(R1)

Leave with scan rointer set at next non-blank
Sumbol buffer clear and Z set if no sumbol
rointer is unaltered.,

iSave work redgister

iSave scan rointer in case of rescan
iPoint a3t end of sumbol buffer

tNow clear it

CTTBL(RS)»#CT.ALP Test first char for alrhabetic

4%
CTTBL2(RS) RO
3%

RO
RSOTE1(RO)» (R1)

CTTEL2(RS) RO
ks

RO
RSOTRB2(RO)» (R1)

CTTRL2(R3) +RO
3%
ROy (R1)+

R1,#SYMBOL+4
1%
CTTRL2(RS)
2%

(SP)Y+,R1
SYMROL RO

$Exit if not with Z set
iMa= to RADSO

sExit if rnot

iMake word index

iLoad the high char
iGet another char
tHandle it as above

iNow dget low order char
iMar and test it

sJust zdd in the low chary advance rointer
sGet followindg char

iTest if a3t end of sumbol buffer

#Go ads3in if no

iFlush to end of sumbol if ves

iNow scan to a8 nor blank char
iRestore work register

1Set Z if no sumbol found
JExit

Figure 6-1 Example of Line Printer Assembly Listing

SHAILOIYIA ¥YITIWIASSY 'TVIINAD

9-9

000262
000272
000302
000312
000322
000332
000342
000352
000362
000372
000402
000412
000422

200
200
200
200
000
200
036
044
200
010
020
030
200

200
200
200
200
200
200
037
047
001
011
021
031
001

200
200
200
200
200
200
040
200
002
012
022
032
002

-+

Table CTTRL2
Index with 7
If EQ 0 then

- s er W ek

+NLIST
CTTRL2! .BYTE
+BYTE
+BYTE
+BYTE
+BYTE
+BYTE
+BRYTE
+RYTE
+BYTE
+BYTE
+BYTE
+BRYTE
+BYTE

EEX

200+,2005200,200,200,200,200,200
2005200,200,200+200,200,2005200
2005200,200,2005,2005200,200,200
200y2C0,200,200,200,200,200,200
0005200,200,200,033,200,200,200
200,2005200,200,200,200,034,200
0365037,040,041,042,043,044,045
0465047,200,200,2005200,2005,200
2005001,0027003,004,005,006,007
0105011,012,013,014,015+016,017
020,021,022,023,024,025,0265027
0305031,032,200,200+5200,200,200
200,001,002,0035,0045005,0065007

Figure 6-1 (Cont.) Example of Line Printer Assembly

bit ASCII value to det corresronding RANSO value
sracer if LT O then not RADSOF} Other bits reserved.

$

01234567
89
i ABCDEFG
FHIJKLMNO
FPAQRSTUVY
1 XYZ

3 abcdefd

> ws es Wr ws Wb wr e e

Listing

SHATIOAYTA VATAWISSY TVHANTAD

L=-9

N ONOCU DN -

10
11

12
13

14

15

16

18

19
20

000126
000130

000136

000142
000144
000146

000154
000156

000162
000164
0001466

000172
000176

000202
000204
000206

010146
016767
0000006
0000006
012701
000004G
005041
005041
136527
000000°
000040
001436
1146500
0002627
003431
006300
016011
0004627

116500
0002627
003421
006300
066011
0006027

+

wr W wr ws W we

GE

14

GETSYM

Scan off a RADS0 suymbol. Leave with scan rointer set at next non-blank
char rast end of sumbol. Sumbol buffer clear and Z set if no symbol

TSYM! MOV
MOV

MOV

CLR
CLR
EITE

BEQ
: MOVE

ELE
ASL
MOV

GETCHR
MOVR

BLE
ASL
ADD

seens In this case scan rointer is unaltered.

R1y-(SF) $iSave work resdgister

CHRFNT»SYMBEG iSave scan pointer in case of rescan
$#SYMEOL+4,R1 iPoint a3t end of sumbol buffer

~-(R1) iNow clear it

-(R1)

CTTREL(RS) y#CT.ALF 3Test first char for aslrhabetic

44 fExit if not with Z set
CTTBL2(RS)sRO iMar to RADSO

3% sExit if not

RO iMake word index

RSOTE1(RO)» (R1) jLoad the high char

iCet another char
CTTRL2(RS)sRO sHandle it as above

3%
RO
RSOTER2(RO)» (R1)

Figure 6-2 Example of Teleprinter Assembly Listing

SHAILOHYIA YITIWIASSY TVIHINID

8-9

33

000212
000216

000222
000224
000226
000232

000236
000240

000244
000246
000232
000254

0002460

116500
0002627
003411
060021

020127
0000046
001347
105765
0002627
003370

012601
016700
0000006
000207

243

-+

Table
Index
If EQ

- wp s ws e

Figure 6-2 (Cont.)

GETCHR
MOVE

BLE
ADD
GETCHR
CMF

BNE
TSTB

EGT
SETNE
MOV
MOV

RETURN

CTTRL2

CTTBL2(RS) RO

3%
RO» (R1)+

R1,#SYMBOL 4

13
CTTRL2(R3)

2%

(SP)+sR1
SYMROL »yRO

iNow get low order char

iMar and test

sJust add in
yGet followin

it

the low chary
g char

advance rointer

iTest if at end of ssmbol buffer

iGo again if

no

sFlush to end of sumbol if yes

iNow scan to
iRestore work
iSet Z if ro

sExit

s non blank char

resiister
symbol found

with 7 bit ASCII value to det corresronding RADNSO value
Other bits reserved.,

0 then sracey

+NLIST

EEX

if LT 0 then not RADSO}

Example of Teleprinter Assembly Listing

SHATLOIYIA YIATAWISSY TYIINTD

GENERAL ASSEMBLER DIRECTIVES

.LIST
.NLIST

6.1.1 L.LIST and .NLIST Directives

Formats:

.LIST
.LIST arg
<NLIST
.NLIST arg

where: arg represents one or more of the optional symbolic
arguments defined in Table 6-2.

As indicated above, the listing control directives may be used without
arguments, in which case the 1listing directives alter the listing
level count. The listing level count is initialized to zero. At each
occurrence of a .LIST directive, the 1listing 1level count is
incremented; at each occurrence of an .NLIST directive, the 1listing
level <count is decremented. When the level count is negative, the
listing 1is suppressed (unless the line contains an error) .
Conversely, when the level count is greater than zero, the listing is
generated regardless of the context of the line. Finally, when the
count 1is zero, the line is either listed or suppressed, depending on
the listing controls currently in effect for the program. The
following macro definition employs the .LIST and .NLIST directives to
selectively list portions of the macro body when the macro is
expanded:

.MACRO LTEST ;List test
; A-this line should 1list ;Listing level count is #.

.NLIST ;Listing level count is -1.
; B-this line should not list

.NLIST ;Listing level count is -2,
; C-this line should not list

LLIST ;Listing level count is -1,
; D-this line should not 1list

.LIST ;Listing level count is 4.
; E-this line should list ;Listing level count is 4.
; F-this line should list ;Listing level count is 4.
; G~this line should 1list ;Listing level count is 0.

. ENDM

1.78m ME

.LIST M ;List macro expansicn.
LTEST ;Call the macro

A-this line should list ;Listing level count is @.
E-this line should list ;Listing level count is @.
F-this line should 1list ;Listing level count is 0.
G-this line should 1list ;Listing level count is @.

- N e we

Note that the lines following line E will 1list because the 1listing
level count remains @. If a .LIST directive 1is placed at the
beginning of a program, all macro expansions will be listed unless a
.NLIST directive is encountered.

GENERAL ASSEMBLER DIRECTIVES

An important purpose of the level count is to allow macro expansions
to be 1listed selectively and yet exit with the listing level count
restored to the value existing prior to the macro call.

When used with arguments, the listing directives do not alter the
listing 1level count. However, the .LIST and .NLIST directives can be

used to override current listing control, as shown 1in the example
below:

.MACRO XX
.LIST ;List next line.
X=,
.NLIST ;Do not list remainder of macro
. ;expansion.
. ENDM
.NLIST ME ;Do not list macro expansions.
XX
X=.

The symbolic arguments allowed for use with the listing directives are
described in Table 6-2. These arguments can be used singly or in
combination with each other. 1If multiple arguments are specified in a
listing directive, each argument must be separated by & comma, tab, or
space. For any argument not specifically included 1in the control
statement, the associated default assumption (List or No list) is

applicable throughout the source program. The default assumptions for
the listing control directives also appear in Table A-2,

Table 5-2
Symbolic Arguments of Listing Control Directives

Argument Default Function

SEQ* List Controls the listing of the sequential
numbers assigned to the source lines.
If this number field 1is suppressed
through an .NLIST SEQ directive,
MACRO-11 generates a tab, effectively
allocating blank space for the field.
Thus, the positional relationships of
the other fields in the listing remain
undisturbed. During the assembly
process, MACRO-11 examines each source
line for possible error conditions.
For any line in error, the error code
is printed preceding the number field.

* If the .NLIST arguments SEQ, LOC, BIN, and SRC are in effect at
the same time, that 1is, 1f all four significant fields in the
listing are to be suppressed, the printing of the resulting blank
line is inhibited.

(continued on next page)

GENERAL ASSEMBLER DIRECTIVES

Table 6-2 (Cont.)
Symbolic Arguments of Listing Control Directives

Argument Default Function

MACRO-11 does not assign line numbers
to files that have had such numbers
assigned by other programs (an editor
program, for instance).

LOC* List Controls the listing of the current
location counter field. Normally,
this field is not suppressed.

However, 1if it is suppressed through
the .NLIST LOC directive, MACRO-11
does not generate a tab, nor does it
allocate space for the field, as is
the case with the SEQ field described
above. Thus, the suppression of the
current location counter (LOC) field

effectively left-justifies all
subsequent fields (while preserving
positional relationships) to the

position normally occupied by the
counter's field.

BIN* List Controls the 1listing of generated
binary code. If this field is
suppressed through an .NLIST BIN
directive, left-justification of the
source code field occurs in the same
manner described above for the LOC
field.

BEX List Controls the listing of binary
extensions (the 1locations and binary
contents beyond those that will fit on
the source statement line). This is a
subset of the BIN argument.

SRC* List Controls the listing of source lines.

COM List Controls the 1listing of comments.
This 1is a subset of the SRC argument.
The .NLIST COM directive reduces
listing time and space when comments
are not desired.

MD List Controls the listing of macro
definitions and repeat range
expansions.

MC List Controls the listing of macro calls
and repeat range expansions.

* If the .NLIST arguments SEQ, LOC, BIN, and SRC are in effect at
the same time, that is, if all four significant fields in the
listing are to be suppressed, the printing of the resulting blank
line is inhibited.

(continued on next page)

SSfRL RooLTNDLIN Janle sl VAD

Table 6-2 (Cont.)
Symbolic Arguments of Listing Control Directives

Argument Default Function

ME No list Controls the listing of macro
expansions.

MEB No list Controls the listing of macro
expansion binary code. A .LIST MEB
directive 1lists only those macro
expansion statements that generate
binary code. This is a subset of the
ME argument.

CND List Controls the 1listing of unsatisfied
conditional <coding and associated .IF
and .ENDC directives 1in the source
program. A .NLIST CND directive lists
only satisfied conditional coding.

LD No list Controls the listing of all 1listing
directives having no arguments, in
other words, the directives that alter

Fha Taimkdimea VTawreal ~acem .
LilT L1OLllly dcovod LOUUllL.

TOC List Controls the listing of the table of
contents during assembly pass 1 (see
Section 6.1.3 describing the .SBTTL
directive). This argument does not
affect the printing of the full
assembly 1listing during assembly pass
2.

SYM List Controls the 1listing of the symbol
table resulting from the assembly of
the source program.

TTM No list Controls the 1listing output format.
The default is set to line printer
format. Figure 6-1 1illustrates the
line printer output format. Figure
6-2 illustrates the teleprinter output
format.

Any argument specified in a .LIST/.NLIST directive other than those
listed in Table 6-2 causes the directive to be flagged with an error
code (A) in the assembly listing.

The listing control options can also be specified at assembly time
through switches included in the command string to MACRO-11 (see
Section 8.1.3 and/or the appropriate system manual). The use of these
switches overrides all corresponding listing control (.LIST or .NLIST)
directives specified in the source program.

Figure 6-3 shows a 1listing, produced 1in 1line printer format,
reflecting the wuse of the .LIST and .NLIST directives in the source
program and the effects such directives have on the assembly 1listing
output.

€1-9

LISTING CONTROL EXAMPLE

NN U DN

. e
= O

<

.
H -

-
o

16
17

18
19

MACRO V0S5.00 Saturday 08-Jan-83 9:55 Page 1

+TITLE LISTING CONTROL EXAMPLE
+LIST ME tiList macro exransions
3
+ Listing control test macro
¥
+MACRD LSTMAC ARG
+NLIST ARG
+WORD 1,2,354 iThis is 3 test comment
+LIST ARG
+ENDM
000000 LSTMAC LOC ilLocation counter test
+NLIST LOC
000001 000002 000003 +WORD 1y2+354 tThis is & test comment
000004
JLIST LocC
000010 LSTMAC ERIN iGenerated binary test
+NLIST BRIN
000010 «WORD 152,344 iThis is a3 test comment
JLIST BEIN
000020 LSTMAC EEX iRinary extensions test

000020 000001 (000002 000003

000030

000030 000001 000002 000003

000036 000004

Figure 6-3

+NLIST REX
+WORD 1+2,394 iThis is & test comment
JLIST REX

LSTMAC SRC iSource lines test

Listing Produced with Listing Control Directives

SAAILOFIIA YITAWASSY TVIINID

71-9

[o
18]

M
oo

26
27
28
29

30

31

32
33

000040
000040
000046
0000350

000050

000060
000060
000062

000064
0000464

000070

000070

000001
000004

000001

000001
000002
000003
000004

000001

000001

000002 000003

000002 000003

JLIST TTH
LSTHAC SEQ

+NLIST SEQ
+WORD 1,2+3,4

+LIST SEQ
LSTMAC BEX
+NLIST BEX
+WORD 1,2,3+4
+LIST REX

+END

Figure 6-3 (Cont.)

JLIST SRC

LSTMAC COM iComment lines test
+HLIST COM

+UWORD 1,2,344

JLIST COM

LSTMAC <COMsREX> sComment lines and extended binary test

+NLIST COMsREX

+WORD 1:2+354

JLIST COMsRBEX
iEnable narrow listing
iSezuence numbers test

$iThis is s test comment

iRinary extensions test

iThis is a test comment

Listing Produced with Listing Control Directives

GENERAL ASSEMBLER DIRECTIVES

.TITLE

6.1.2 L.TITLE Directive

Format:
.TITLE string

where: string represents an identifier o¢f 1 or more Radix-5
characters. Appendix A.2 contains a table of Radix-5@
characters.

The .TITLE directive assigns a name to the object module. The name
assigned is the first six non-blank, Radix-5@ characters following the
.TITLE directive. All spaces and/or tabs up to the first
non-space/non-tab character following the .TITLE directive are ignored
by MACRO-11 when evaluating the text string. Any characters beyond
the first six are checked for ASCII legality, but they are not used as
part of the object module name. For example, the directive:

.TITLE PROGRAM TO PERFORM DAILY ACCOUNTING

causes the assembled object module to be named PROGRA. This
6-character name bears no relationship to the filename of the object
module, as specified in the command string to MACRO-11. The name of
an object module (specified in the .TITLE directive) appears in the
load map produced at link time. This is also the module name which
the Librarian will recognize.

If the .TITLE directive is not specified, MACRO-11 assigns the default
name .MAIN. to the object module. If more than one .TITLE directive
is specified 1in the source program, the 1last L.TITLE directive
encountered during assembly pass 1 establishes the name for the entire
object module.

If the .TITLE directive is specified without an object module name, or
if the first non-space/non-tab character in the object module name is
not Radix-5@ character, the directive is flagged with an error code
(A) in the assembly listing.

.SBTTL

6.1.3 .SBTTL Directive

Format:
.SBTTL string

where: string represents an identifier of 1 or more printable ASCII
characters.

GENFERAT. ASSEMRI.ER DIRECTIVES

The .SBTTL directive 1is wused to produce a table of contents
immediately preceding the assembly 1listing and to print the text
following the .SBTTL directive on the second line of the header of
each page in the listing. The subheading in the text will be listed
until altered by a subsequent .SBTTL directive in the program. For
example, the directive:

.SBTTL Conditional assemblies
causes the text
Conditional assemblies

to be printed as the second 1line in the header of the assembly
listing.

During assembly pass 1, a table of contents containing the 1line
sequence number, the ©page number, and the text accompanying each
.SBTTL directive is printed for the assembly listing. The listing of
the table of contents is suppressed whenever an .NLIST TOC directive
is encountered in the source program (see Table 6-2). An example of a
table of contents listing is shown in Figure 6-4,

MTTEMT - RT-11 MULTI-TTY EMT SE MACRO Y05.00 Saturdar 08-Jan-83 10:00
TABLE OF CONTENTS

S50~ 1 +MTOUT - Single character outrut ENMT

S1- 1 +MTRCTO - Reset CTRL/0 EMT

52~ b +MTATCH - Attasch to termimnal EMT

S54- 1 +MTDTCH - Detach from 3 terminal EMT

55~ i +MTPRNT - Print messade EMT

S6- 1 sMTSTAT - Return multi-terminal sustem status EMT
57- 1 MTTIN - Sindle character infut

58~ 1 MTTGET - Get 2 character from the ring buffer

59- 1 TTRSET - Reset terminal status bits

60— 1 MTTPUT - Single character outrut

62~ 1 MTRSET - Stor and detach all terminals sttached to a Job
63~ 1 ESCAFE SEQUENCE TEST SUBROUTINE

Figure 6-4 Assembly Listing Table of Contents

ADENT

6.1.4 L.IDENT Directive

Format:
.IDENT /string/

where: string represents a string of six or fewer Radix-50
characters which establish the program identification
or version number. This string is 1included in the
global symbol directory of the object module and is
printed in the link map and librarian listing.

GENERAL ASSEMBLER DIRECTIVES

/ / represent delimiting characters. These delimiters may
be any paired printing characters, other than the
equal sign (=), the left angle bracket (<), or the
semicolon (;), as long as the delimiting character is
not contained within the text string itself (see Note
in Section 6.3.4). If the delimiting characters do
not match, or if an illegal delimiting character is
used, the L(IDENT directive is flagged with an error
code (A) in the assembly listing.

In addition to the name assigned to .the object module with the .TITLE
directive (see Section 6.1.3), the .IDENT directive allows the user to
label the object module with the program version number,

An example of the .IDENT directive is shown below:
.IDENT /V01.00/

The character string 1is converted to Radix-50# representation and
included in the global symbol directory of the object module. This
character string also appears in the 1ink map produced at 1link time
and the Librarian directory listings.

When more than one .IDENT directive is encountered in a given program,
the 1last such directive encountered establishes the character string
which forms part of the object module identification.

The RT-11 linker allows only one ,IDENT string 1in a program. The
linker wuses the first .IDENT directive encountered during the first
pass to establish the character string that will be identified with
all of the object modules.

The RSX-11M task builder allows an .IDENT string for each module in
the program. The TASK Builder uses the first .IDENT directive in each
module to establish the character string that will be identified with
that module. Like the RT-11 Linker, the RSX-11M Task Builder uses the
.IDENT directives encountered on the first pass.

.PAGE

5.1.5 .PAGE Directive/Page Ejection

Format:
. PAGE

The .PAGE directive is used within the source program to perform a
page eject at desired points in the listing. This directive takes no
arguments and causes a skip to the top of the next page when
encountered. It also causes the page number to be incremented and the
line sequence counter to be cleared. The .PAGE directive does not
appear in the listing.

When used within a macro definition, the ,PAGE directive 1is ignored
during the assembly of the macro definition. Rather, the page eject
operation is performed as the macro itself is expanded. 1In this case,
the page number is also incremented.

Page ejection is accomplished in three other ways:

1. After reaching a count of 58 lines in the 1listing, MACRO-11
automatically performs a page eject to skip over page
perforations on 1line printer paper and to formulate

teleprinter output into pages. The page number 1is not
changed.

2. A page eject is performed when a form-feed character 1is
encountered. If the form-feed character appears within a
macro definition, a page eject occurs during the assembly of
the macro definition, but not during the expansion of the
macro itself. A page eject resulting from the use of the
form-feed <character causes the page number to be incremented
and the line sequence counter to be cleared.

3. A page eject is performed when encountering a new source
file. In this case the page number is incremented and the
line sequence count is reset.

.REM

h.1l.6 .REM Directive/Begin Remark Lines

Format:
.REM comment-character

where: comment-character represents a character that marks the
end of the comment block when the
character reoccurs.

The .REM directive allows a programmer to insert a block of comments
into a MACRO-11 source program without having to precede the comment

lines with the comment character () The teyxt hetween the csnecified
illnes wlih The comment character ‘il . I'Ne TeXt Detween the specliled

delimiting characters 1is treated as comments. The comments may span
any number of lines. For example:

.TITLE Remark example

.REM &

All the text that resides here is interpreted by MACRO-11
to be comment lines until another ampersand character is

found. Any character may be used in place of the ampersand.&
CLR PC
. END

6.2 FUNCTION DIRECTIVES

The following function directives are included in a source program to
invoke or inhibit certain MACRO-11 functions and operations incidental
to the assembly process itself.

GENERAL ASSEMBLER DIRECTIVES

.ENABL
.DSABL

6.2.1 L.ENABL and .DSABL Directives

Formats:

.ENABL arg
.DSABL arg

where: arg represents one or more of the optional symbolic
arguments defined in Table 6-3.

Specifying any argument in an .ENABL/.DSABL directive other than those
listed 1in Table 6-3 causes that directive to be flagged with an error
code (A) in the assembly listing.

Table 6-3
Symbolic Arguments of Function Control Directives

Argument Default Function

ABS Disable Enabling this function produces absolute
binary output in FILES-11 format. To
convert this output to Formatted Binary
format (as required by the Absolute
Loader), use the FLX utility.

AMA Disable Enabling this function causes all relative
addresses (address mode 67) to be assembled
as absolute addresses (address mode 37).
This function is useful during the
debugging phase of program development.

CDR Disable Enabling this function causes source
columns from 73 to the end of the line, to
be treated as a comment. The most common
use of this feature is to permit sequence
numbers in card columns 73-84.

CRF Enable Disabling this function inhibits the
generation of cross-reference output. This
function only has meaning if
cross-reference output generation is

specified in the command string.

FPT Disable Enabling this function causes floating-
point truncation; disabling this function
causes floating-point rounding.

LC Enable Disabling this function causes MACRO-11 to
convert all ASCII input to upper-case
before processing it.

(continued on next page)

GENERAL ASSEMBLER DIRECTIVES

Table 6-3 (Cont.)

Symbolic Arguments of Function Control Directives

Argument

Default

Function

LCM

LSB

MCL

PNC

Disable

Disable

Disable

Enable

This argument, 1if enabled, causes the
MACRO-11 conditional assembly directives
.IF IDN and .IF DIF to be alphabetically
case sensitive. By default, these
directives are not case sensitive.

This argument permits the enabling or
disabling of a local symbol block.
Although a local symbol block 1is normally
established by encountering a new symbolic
label, a .PSECT directive or a .RESTORE
directive in the source program, an .ENABL
LSB directive establishes a new local
symbol block which is not terminated until
(1) another .ENABL LSB is encountered, or
(2) another symbolic label, .PSECT
directive or .RESTORE directive is
encountered following a paired .DSABL LSB
directive.

The basic function of this directive with
regard to .PSECTS is 1limited to those
instances where it is desirable to leave a
program section temporarily to store data,
followed by a return to the original
program section, This temporary dismissal
of the current program section may also be
accompl ished through the .SAVE and .RESTORE
directives (see Sections 6.7.3 and 6.7.4).

Attempts to define 1local symbols in an
alternate program section are flagged with
an error code (P) in the assembly listing.

An example of the .ENABL LSB and .DSABL LSB
directives, as typically used in a source
program, is shown in Figure 6-5.

This arqgument, if enabled, causes MACRO-11
to search all known macro libraries for a
macro definition that matches any undefined
symbols appearing in the opcode field of a
MACRO-11 statement. By default, this
option 1is disabled. 1If MACRO-11 finds an
unknown symbol in the opcode field, it
either declares a (U) undefined symbol
error, or declares the symbol an external
symbol, depending on the ,ENABL/.DSABL
option setting of GBL (described below).

Disabling this function inhibits binary
output until an .ENABL PNC statement is
encountered within the same module.

(continued on next page)

GENERAL ASSEMBLER DIRECTIVES

Table 6-3 (Cont.)

Symbolic Arguments of Function Control Directives

Argument Default Function
REG Enable When specified, the .DSABL REG directive

inhibits the normal MACRO-11 default
register definitions; if not disabled, the
default definitions listed below remain in
effect.

RA=%0

R1=%1

R2=%2

R3=%3

R4=%4

R5=%5

SP=%6

PC=%7
The .ENABL REG statement may be used as the
logical complement of the .DSABL REG
directive. The use of these directives,
however, 1is not recommended. For logical
consistency, use the normal default
register definitions listed above.

GBL Enable This argument, if disabled, causes MACRO-11

to mark all undefined references 1in
assembly pass 2 with a (U) error in the
assembly 1listing. The default for this
option is enabled, which causes MACRO-11 to
treat all wundefined symbol references as
global, allowing the linker to resolve
them.

.ENABL/.DSABL MACRO V05.00 Saturday. 08~Jan-83 10:26 Pase 1

MO NOWL S Y

20

21

22

000000
000000 124

000033
000033 124

000001

Figure 6-5

150

+TITLE JENABL/.DSABL
it
i ILLUSTRATE .ENABL/.DSABL LC
;_.

+ENABL LT iSTORE MACRO IN LOWER CASE

«MACRD TEXT $$s
+ASCII /This $%% 3 lower case string/

+ENDM

LIST ME

+NLIST BEX

TEXT is iInvoke ma3cro in lower case
151 +ASCII /This is a lower case string/

+DSARL LC iNow disable lower case

TEXT WAS §RE~-INVOKE MACRO IN UPPER CASE
111 +ASCII /THIS WAS A LOWER CASE STRING/

+END

Example of .ENABL and .DSABL Directives

GENERAL ASSEMBLER DIRECTIVES

.CROSS
.NOCROSS

6.2.2 Cross-Reference Directives: .CROSS and .NOCROSS

Formats:
.CROSS
.CROSS syml,sym2,...symn
.NOCROSS
.NOCROSS syml,sym2,...symn
where: syml, represents legal symbolic names. When multiple
sym2,... symbols are specified, they are separated by any
symn legal separator (comma, space, and/or tab).

The .CROSS and the .NOCROSS directives control which symbols are
included 1in the <cross-reference 1listing produced by the MACRO-11
assembler. These directives have an effect only if the /C[R] or the
/CROSS qualifier was wused 1in the command 1line to select the
cross-reference capability.

By default, the cross-reference listing includes the definition and
all the references to every user symbol in the module. The
cross-reference listing can be disabled for all symbols or for a
specified list of symbols.

When the .NOCROSS directive is wused without a symbol 1list, the
cross-reference 1listing of all the symbols in the module is disabled.
The cross-reference listing of all the symbols in the module Iis
reenabled when the .CR0SS directive is used without a symbol list.
Any symbol definition or reference that appears after a .NOCROSS
directive that is wused without a symbol list and before the next
.CR0SS directive that is used without a symbol 1list, is excluded from
the cross-reference listing.

The .NOCROSS directive, wused with a symbol 1list, disables the
cross~reference 1listing for the 1listed symbols. When the .CROSS
directive is used with a symbol list, the cross-reference 1listing of
the listed symbols is reenabled.

In the following example, the definition of LABEL1 and the reference
to LOC1l and LOC2 are not included in the cross-reference listing.

Example:

.NOCROSS ;Stop cross reference
LABEL1: MOV LOC1,L0C2 ;Copy data

.CROSS ;Reenable cross reference

In the next example, the definition of LABEL2 and the reference to
LOC2 are included in the cross reference, but the reference to LOCl is
not included.

Example:
.NOCR0OSS LOC1 ;Do not cross reference LOC1
LABEL2: MOV LOC1,L0C2 ;Copy data
.CROSS LOC1 ;Reenable cross reference
;of LOC1.

6-22

GENERAL ASSEMBLER DIRECTIVES

The .CROSS directive, used without a symbol list, cannot be wused to
reenable the <cross-reference 1listing of a symbol specified in the
symbol 1list of a .NOCROSS directive. In addition, if the
cross-reference 1listing of all the symbols in a module is disabled,
the .CROSS directive used with a symbol list will have no effect until
the <cross-reference listing is reenabled by the .CROSS directive used
without a symbol list.

The .CROSS directive, with no symbol list, is equivalent to the .ENABL
CRF directive, and the .NOCROSS directive, with no symbol list, is
equivalent to the .DSABL CRF directive.

6.3 DATA STORAGE DIRECTIVES

A wide range of data and data types can be generated with the
directives, ASCII conversion characters, and radix-control operators
described in the following sections.

.BYTE

6.3.1 .BYTE Directive

Format:

.BYTE exp ;jStores the binary value of the
;expression in the next byte.

.BYTE expl,exp2,expn ;Stores the binary values of the list
;of expressions in successive bytes.

where: exp, represent expressions that must be reduced to 8 bits
expl, of data or less. Each expression will be read as a
. 16-bit word expression, the high-order byte to be
. truncated. The high-order byte must be either all
. Zeros or a truncation (T) error results.
expn Multiple expressions must be separated by commas.

The .BYTE directive is used to generate successive bytes of binary
data in the object module.

Example:

SAM=5
.=410
.BYTE "D48,SAM ;The value 060 (octal equivalent of 48
;decimal) is stored in location 414.

; . iy
; The value 885 is stored in locatio
;411.

=3

The construction "D in the first operand of the .BYTE directive above
illustrates the use of a temporary radix-control operator. The
function of such special unary operators 1is described in Section
6.4.1.2.

GENERAL ASSEMBLER DIRECTIVES

At link time, it is likely that a relocatable expression will result
in a value having more than eight bits, in which case the task builder
or linker issues a truncation (T) error for the object module 1in
question. For example, the following statements create such a
possibility:

.BYTE 23 ;Stores octal 23 in next byte.

.BYTE A ;Relocatable value A will probably
;cause truncation error.

If an expression following the .BYTE directive 1is null, it is
interpreted as a zero:

.=420
.BYTE e ;Zeros are stored in bytes 424, 421,
;422, and 423.

Note that in the above example, four bytes of storage result from the
.BYTE directive. The three commas in the operand field represent an
implicit declaration of four null values, each separated from the
other by a comma. Hence, four bytes, each containing a value of zero
(8), are reserved in the object module.

.WORD

6.3.2 .WORD Directive

Formats:

.WORD exp ;Stores the binary equivalent of the
;jexpression in the next word.

+WORD expl,exp2,expn ;Stores the binary equivalents of the
;1list of expressions in successive

;words.
where: exp, represent expressions that must reduce to 16 bits of
expl, data or less. Multiple expressions must be separated
. by commas.
expn

The .WORD directive is used to generate successive words of data in
the object module.

Example:

SAL=0
.=500
.WORD 177535,.+4,SAL ;Stores the values 177535, 586, and
;0 in words 5@¢@, 502, and 504,
;respectively.

GENERAL ASSEMBLER DIRECTIVES

If an expression following the .WORD directive contains a null value,
it is interpreted as a zero, as shown in the following example:

. =500
.WORD 'S5y ;Stores the values #, 5, and 8 in
;location 508, 502, and 524,
;respectively.

A statement with a blank operator field (one that contains a symbol
other than &a macro <call, an instruction mnemonic, a MACRO-11
directive, or a semicolon) 1is interpreted during assembly as an
implicit .WORD directive, as shown in the example below:

.=449
LABEL: 10¢,LABEL ;Stores the value 14@ in location 440
;and the value 440 in location 442.

NOTE

You should not wuse this technique to
generate .WORD directives because it may
not be included in future PDP-11
assemblers.

6.3.3 ASCII Conversion Characters

The single quote (') and the double quote (") characters are unary
operators that can appear in any MACRO-11 expression. Used in
MACRO-11 expressions, these characters cause a 16-bit expression value
to be generated.

When the single quote is used, MACRO-11 takes the next character in
the expression and converts it from its 7-bit ASCII value to a 16-bit
expression value. The high-order byte of the resulting expression
value 1is always zero (@). The 16-bit wvalue is then used as an
absolute term within the expression., For example, the statement:

MOV #'A,R0O

moves the following 16-bit expression value into register 0:

00000000J01000001

t—-Binary Value of ASCII A

Thus the expression 'A results in a value of 141(8).

The single quote (') <character must not be followed by a
carriage-return, null, RUBOUT, line-feed, or form-feed character; if
it is, an error code (A) is generated in the assembly listing.

GENERAL ASSEMBLER DIRECTIVES

When the double quote is used, MACRO-11 takes the next two characters
in the expression and converts them to a 16-bit binary expression
value from their 7-bit ASCII values. This 16-bit value is then used
as an absolute term within the expression. For example, the

statement:

MOV #"AB,R0

moves the following 16-bit expression value into register 7:

01000010})01000001

LBinary Value of ASCII A

Binary Value of ASCII B

Thus the expression "AB results in a value of $41141(8).

The double quote (") character, like the single quote (') <character,
must not be followed by a carriage-return, null, RUBOUT, line-feed, or
form-feed character; if it is, an error code (A) is generated in the
assembly listing.

The ASCII character set is listed in Appendix A.l.

ASCHi

6.3.4 LJ(ASCII Directive

Format:
.ASCII /string l1/.../string n/

where: string 1is a string of printable ASCII characters. The
vertical-tab, null, 1line-feed, RUBOUT, and all other
non-printable ASCII characters, except carriage-return
and form-feed, cause an error code (I) if used in an
.ASCII string. The carriage-return and form-feed
characters are flagged with an error code (A) because
these characters end the scan of the line, preventing
MACRO-11 from detecting the matching delimiter at the
end of the character string.

/ / represent delimiting characters. These delimiters may
be any paired printing characters, other than the
equal sign (=), the left angle bracket (<), or the
semicolon (;) (see Note at end of section), as long as
the delimiting character is not contained within the
text string itself. 1If the delimiting characters do
not match, or if an illegal delimiting character is
used, the .ASCII directive is flagged with an error
code (A) in the assembly listing.

GENERAL ASSEMBLER DIRECTIVES

The .ASCII directive translates character strings into their 7-bit

ASCII equivalents and stores them in the object module. A
non-printing character can be expressed only by enclosing its
equivalent octal value within angle brackets. Each set of angle

brackets so used represents a single character. For example, in the
following statement:

LASCII <15>/ABC/<A+2>/DEF/<5><4>

the expressions <15>, <A+2>, <5>, and <4> represent the values of
non-printing characters. Each bracketed -expression must reduce to
eight bits of absolute data or less.

Angle brackets can be embedded between delimiting characters in the
character string, but angle brackets so used do not take on their
usual significance as delimiters for non-printing characters. For
example, the statement:

.ASCII /ABC<expression>DEF/

contains a single ASCII character string, and performs no evaluation
of the embedded, bracketed expression. This use of the angle brackets
is shown in the third example of the .ASCII directive below:

.ASCII /HELLO/ ;Stores the binary representation
;0f the letters HELLO in five
;consecutive bytes.

.ASCII /ABC/<K15><12>/DEF/ ;Stores the binary representation
;of the characters A,B,C,carriage
;return,line feed,D,E,F in eight
;consecutive bytes.

.ASCII /A<K15>B/ ;Stores the binary representation
;of the characters A, <, 1, 5, >,
;and B in six consecutive bytes.

NOTE

The semicolon (;) and equal sign (=) can
be wused as delimiting characters in the
string, but care must be exercised in so
doing because of their significance as a
comment indicator and assignment
operator, respectively, as illustrated
in the examples below:

.ASCII ;ABC;/DEF/ ;Stores the binary
;representation of
;the characters
;A, B, ¢, D, E, and
;F in six
;consecutive bytes;
;not recommended
;practice.

GENERAL ASSEMBLER DIRECTIVES

.ASCII /ABC/;DEF; ;jStores the binary
;representations of
; the characters A,
;B, and C in three
;consecutive bytes;
;the characters D,
;E, F, and ; are
;treated as a
;comment.

.ASCI1 /ABC/=DEF= ;Stores the binary
;representation of
;the characters a,
:B, C, D, E, and
;F in six
;consecutive bytes;
;not recommended
;practice.

An equal sign is treated as an
assignment operator when it appears as
the first character in the ASCII string,
as illustrated by the following example:

.ASCII =DEF= ;The direct
’ ;assignment

; .ASCII=DEF is
;performed, and a
;syntax error (Q)
;1s generated upon
;encountering the
;second = sign,

6.3.5 JASCIZ Directive
Format:

.ASCIZ /string 1/.../string n/

where: string is a string of printable ASCII <characters.
vertical-tab, null, 1line-feed, RUBOUT,

.ASCIZ

The

and all other

non-printable ASCII characters, except carriage-return

and form-feed, cause an error code (I)

.ASCIZ string. The carriage-return

if used in an

form-feed

characters are flagged with an error code (A) because
they end the scan of the 1line, preventing MACRO-11

from detecting the matching delimiter.

GENERAL ASSEMBLER DIRECTIVES

/ / represent delimiting characters. These delimiters may
be any paired printing characters, other than the
equal sign (=), the left angle bracket (<), or the
semicolon (;) (see Note in Section 6.3.4), as long as
the delimiting character is not contained within the
text string itself. If the delimiting characters do
not match or if an 1illegal delimiting character 1is
used, the .ASCIZ directive is flagged with an error
code (A) in the assembly listing.

The .ASCIZ directive is similar to the .(ASCII directive described
above, except that a zero byte is automatically inserted as the final
character of the string. Thus, when a list or text string has been
created with an .ASCIZ directive, a search for the null character in
the last byte can effectively determine the end of the string, as
reflected by the coding below:

CR=15
LF=12
HELLO: .ASCIZ <CR><XLF>/MACRO-11 V@5.008/<CR>XLF> ;Introductory message
. EVEN
MOV #HELLO,R1 ;Get address of message.
MOV $LINBUF,R2 ;Get address of output buffer.
10$: MOVB (R1)+,(R2)+ ;Move a byte to output buffer.
BNE 12$;If not null, move another byte.

.RAD50

$.3.6 JRAD50 Directive

Format:
.RAD50 /string 1/.../string n/

where: string represents a series of characters to be packed. The
string must consist of the characters A through Z, ¢
through 9, dollar sign ($), period (.) and space ().
An illegal printing character causes an error flag (Q)
to be printed in the assembly listing.

If fewer than three characters are to be packed, the
string 1is packed left-justified within the word, and
trailing spaces are assumed.

GENERAL ASSEMBLER DIRECTIVES

As with the .ASCIT directive (described 1in Section
6.3.4), the vertical-tab, null, line-feed, RUBOUT, and
all other non-printing characters, except
carriage-return and form-feed, cause an error code (I)
if used in a .RAD50 string. The <carriage-return and
form-feed <characters result in an error code (A)
because these characters end the scan of the 1line,
preventing MACRO-11 from detecting the matching
delimiter.

/ / represent delimiting characters. These delimiters may
be any paired printing characters, other than the
equal sign (=), the left angle bracket (<), or the
semicolon (;) (see Note in Section 6.3.4), provided
that the delimiting character is not contained within
the text string itself. 1If the delimiting characters
do not match or if an illegal delimiting character is
used, the .RAD5@F directive is flagged with an error
code (A) in the assembly listing.

The .RADS5¢ directive allows the user to generate data in Radix-50
packed format. Radix-50 form allows three characters to be packed
into sixteen bits (one word); therefore, any 6-character symbol can
be stored in two consecutive words. Examples of .RADS5@ directives are
shown below:

.RADRG /ARC/ :Packs ABRC into one word,
.RADS@# /AB/ ; Packs AB (SPACE) into one word.
.RADS5@0 /ABCD/ ; Packs ABC into first word and
;D (SPACE) (SPACE) into second word.
.RAD580 /ABCDEF/ ;Packs ABC into first word, DEF into
;second word.
Each character is translated into its Radix-5f -eguivalent, as
indicated in the following table:
Character Radix-50 Octal Equivalent
(space) 4]
A-Z 1-32
$ 33
. 34
(undefined) 35
9-9 36-47

The Radix-50 equivalents for characters 1 through 3 (C1,C2,C3) are
combined as follows:

Radix-5¢ Value = ((C1*50)+C2)*50+C3
For example:
Radix-50 Value of ABC = ((1*50)+2)*50+3 = 3223(8)

Refer to Appendix A.2 for a table of Radix-508 equivalents.

GENERAL ASSEMBLER DIRECTIVES

Angle brackets (<>) must be used in the .RAD5@ directive whenever
special <codes are to be inserted in the text string, as shown in the
example below:

.RAD5G /AB/<35> ;Stores 3255 in one word.

CHR1=1
CHR2=2
CHR3=3

.

.RAD5SZ <CHR1><KCHR2>KCHR3> ;Equivalent to .RAD50 /ABC/.
6.3.7 Temporary Radix-5@ Control Operator
Format:
“"Rcce
where: ccc represents a maximum of three <characters to be

converted to a 16-bit Radix-50 value. If more than
three characters are specified, any following the
third character are ignored. 1If fewer than three are
specified, it is assumed that the trailing characters
are blanks.

The "R operator specifies that an argument is to be converted to
Radix-50 format. This allows up to three characters to be stored in
one word. The following example shows how the "R operator might be
used to pack a 3-character file type specifier (MAC) into a single
l6-bit word.

MOV #"RMAC,FILEXT ;Store RAD50 MAC as file extension

The number sign (#) is used to indicate immediate data (data to be
assembled directly into object code). "R specifies that the
characters MAC are to be converted to Radix-5@. This wvalue 1is then
stored in location FILEXT.

.PACKED

6.3.8 J.PACKED Directive

Format:
.PACKED decimal-string[,symbol]

where: decimal-string represents a decimal number from @ to
31(19) digits long. Each digit must be in
the range @ to 9. The number may have a
sign, but it 1is not required and is not
counted as a digit.

symbol is assigned a wvalue equivalent to the
' number of decimal digits in the string.

GENERAL ASSEMBLER DIRECTIVES

The .PACKED directive generates packed decimal data, 2 digits per
byte. Arithmetic and operational properties of packed decimals are

similar to those of numeric strings. Below 1is an example of the
.PACKED directive.

.PACKED -12,PACK ;s PACK gets value of 2

.PACKED +500 ;500 is packed

.PACKED @ ;@ 1s packed

.PACKED -@,SUM ;SUM gets value of 1

.PACKED 1234E6 ;Illegal packed decimal number

;E6 will be treated as a variable
;and given a value of 4

6.4 RADIX AND NUMERIC CONTROL FACILITIES
6.4.1 Radix Control and Unary Control Operators

Any numeric or expression value in a MACRO-11 source program is read
as an octal value by default. Occasionally, however, an alternate
radix would be useful. By using the MACRO-11 facilities described
below, a programmer may declare a radix to affect a term or an entire
program depending on his needs.

When two or more unary operators appear
together, modifying the same term, the
operators are applied to the term from
right to left.

6.4.1.1 ,RADIX Directive -RADiX
Format:

.RADIX n
where: n represents one of the three radices: 2, 8 and 19.

Any value other than null or one of the three
acceptable radices will cause an error code (A) in the
assembly listing. If the argument n is not specified,
the octal default radix is assumed. The argument (n)
is always read as a decimal value.

Numbers used in a MACRO-11 source program are initially considered to
be octal values; however, with the .RADIX directive you can declare
alternate radices applicable throughout the source program or within
specific portions of the program.

GENERAL ASSEMBLER DIRECTIVES

Any alternate radix declared in the source program through the (RADIX
directive remains in effect until altered by the occurrence of another
such directive, for example:

.RADIX 10 ;Begins a section of code having a
;decimal radix.

.RADIX ;Reverts to octal radix.

In general, macro definitions should not contain or rely on radix
settings established with the .RADIX directive. Rather, temporary
radix control operators should be used within a macro definition.
Where a ©possible radix conflict exists within a macro definition or
source program, it is recommended that the user specify numeric or
expression values using the temporary radix control operators
described below.

6.4.1.2 Temporary Radix Control Operators
Formats:

“D"number" ("number" is evaluated as a decimal number)
“0"number" ("number" is evaluated as an octal number)
“B"number" ("number" is evaluated as a binary number)

These three unary operators allow the user to establish an alternate
radix for a single term. An alternate is useful because after you
have specified a radix for a section of code or have decided to use
the default octal radix, you may discover a number of cases where an
alternate radix is more convenient or desirable (particularly within
macro definitions). Creating a mask word (used to check bit status),
for example, might best be accomplished through the use of a binary
radix.

Thus an alternate radix can be declared temporarily to meet a
localized requirement 1in the source program. The temporary radix
control operator may be used any time regardless of the radix 1in
effect or other radix declarations within the program. Because the
operator affects only the term immediately following 1it, it may be
used anywhere a numeric wvalue 1is legal. The term (or expression)
associated with the temporary radix control operator will be evaluated
during assembly as a 16-bit entity.

The expressions below are representative of the methods of specifying
temporary radix control operators:

“D123 Decimal Radix
0 47 Octal Radix
"B 090001101 Binary Radix
“0<A+13> Octal Radix

The up-arrow and the radix control operator may not be separated, but
the radix control operator and the following term or expression can be
separated by spaces or tabs for legibility or formatting purposes. A
multi-element term or expression that 1is to be interpreted in an
alternate radix should be enclosed within angle brackets, as shown 1in
the last of the four temporary radix control expressions above.

”~
GENERAL ASSEMBLER DIRECTIVES

The following example also illustrates the use of angle brackets to
delimit an expression that is to be interpreted in an alternate radix.
When using the temporary radix control operator only numeric values
are affected. Any symbols used with the operator will be evaluated
with respect to the radix in effect at their declaration.

.RADIX 10

A=10
.WORD “0<A+10>*1g

When the temporary radix expression in the .WORD directive above 1is
evaluated, it yields the following equivalent statement:

.WORD 189

MACRO-11 also allows a temporary radix change to decimal by specifying
a number, immediately followed by a decimal point (.), as shown below:

140. Equivalent to 144(8)
1376. Equivalent to 2540 (8)
128. Equivalent to 206 (8)

The above expression forms are equivalent in function to:

“D100
“D1376
“D128

6.4.2 Numeric Directives and Unary Control Operators

Two storage directives and two numeric control operators are available
to simplify the use of the floating-point hardware on the PDP-11.
These facilities allow floating-point data to be created 1in the
program, and numeric values to be complemented or treated as
floating-point numbers.

A floating-point number is represented by a string of decimal digits.
The string (which can be a single digit in length) may contain an
optional decimal point and may be followed by an optional exponent
indicator in the form of the letter E and a signed decimal integer
exponent. The number may not contain embedded blanks, tabs or angle
brackets and may not be an expression. Such a string will result in
one or more errors (A and/or Q) in the assembly listing.

The list of numeric representations below contains seven distinct,
valid representations of the same floating-point number:

3
3.
3.0
3.0EQ
3E@
.3E1
300E-2

As can be inferred, the list could be extended indefinitely (30¢gE-3,
.@#3E2, and so on). A leading plus sign is optional (3.6 is considered
to be +3.#). A leading minus sign complements the sign bit. No other
operators are allowed (for example, 3.0+N is illegal).

GENERAL ASSEMBLER DIRECTIVES

All floating-point numbers are evaluated as 64 bits in the following
format:

63 62 55 54]
S EEEEEEEE MMM.....MMM

Mantissa (55 bits)
Exponent (8 bits)
Sign (1 bit)

MACRO-11 returns a value of the appropriate size and precision via one
of the floating-point directives. The values returned may be
truncated or rounded (see Section 6.2.1).

Floating-point numbers are normally rounded. That 1is, when a
floating-point number exceeds the limits of the field in which it is
to be stored, the high-order bit of the unretained word is added to
the 1low-order bit of the retained word, as shown below. For example,
if the number is to be stored in a 2-word field, but more than 32 bits
are needed to express 1its exact value, the highest bit (32) of the
unretained field is added to the least significant bit (g) of the
retained field (see illustration below). The .ENABL FPT directive is
used to enable floating-point truncation; .DSABL FPT 1is used to
return to floating-point rounding (see Table 6-3).

Bit Bit Bit Bit
3 0 32 9
~o" N~
Retained Unretained

field field

All numeric operands associated with Floating Point Processor
instructions are automatically evaluated as single-word, decimal,
floating-point values unless a temporary radix control operator is
specified. For example, to add (floating) the octal constant 41040 to
the contents of floating accumulator zero, the following instruction
must be used:

ADDF $#7041040,F0
where: F@ is assumed to represent floating accumulator zero.

Floating-point numbers are described 1in greater detail in the
applicable PDP-11 Processor Handbook.

FLT2
.FLT4

6.4.2.1 Floating-Point Storage Directives

Formats:

LFLT2 argl,arg2,...
.FLT4 argl,arg2,...

T oTmm v e e gy o e

GENDRAL ASSEMBLER DIRECTIVES

where: argl,arg2,... represent one or more floating-point
numbers as described 1in Section 6.4.2.
Multiple arguments must be separated by
commas.

.FLT2 causes two words of storage to be generated for each argument,
while (FLT4 generates four words of storage for each argument. As in
the .WORD directive, the arguments are evaluated and the results are
stored in the object module.

6.4.2.2 Temporary Numeric Control Operators: “C and °"F - The °C
unary operator allows vyou to specify an argument that is to be
complemented as it 1is evaluated during assembly. The °“F unary
operator allows you to specify an argument that 1is a 1l-word
floating-point number.

As with the radix control operators described above, the numeric
control operator ("C) can be used anywhere in the source program that
an expression value is legal. Such a construction 1is evaluated by
MACRO-11 as a 1l6-bit binary value before being complemented. For
example, the following statement:

TAG4: .WORD “C151

causes the 1's complement of the value 151 (octal) to be stored as a
16-bit wvalue in the program. The resulting value expressed in octal
form is 177626(8).

Because the "C construction is a unary operator, the operator and 1its
argument are regarded as a term. Thus, more than one unary operator
may be applied to a single term. For example, the following
construction:

“Cc"D25
causes the decimal value 25 to be complemented during assembly. The
resulting binary value, when expressed in octal form, reduces to

177746 (octal).

The term created through the use of the temporary numeric control
operator can be wused alone or in combination with other expression
elements. For example, the following construction:

&

“C2+6
is equivalent in function to:
<"C2>+6

This expression is evaluated during assembly as a 1's complement of 2,
plus the absolute value of 6., When these terms are combined, the
resulting expression value generates a carry beyond the most
significant bit, leaving 000003 (8) as the reduced value.

As shown above, when the temporary numeric control operator and its
argument are coded as a term within an expression, angle brackets
should be used as delimiters to ensure precise evaluation and
readability.

GENERAL ASSEMBLER DIRECTIVES

~

F, as stated above, is a unary operator for numeric control which
allows vyou to specify an argument that is a l-word floating-point
number., For example, the following statement:

A: MOV $#"F3.7,R0

creates a l-word floating-point number at location A+2 containing the
value 3.7 formatted as shown below.

BIT 15 14 7 6 %}
S EEEEEEEE MMMMMMM
Sign (1 bit) Exponent (8 bits) Mantissa (7 bits)

The importance of ordering with respect to unary operators 1is shown
below.

"Fl.0 = 040200
“F-1.0 = 1402090
-"Fl.4 = 137600
-"F-1.9 = 037600

The value created by the “F unary operator and its argument 1is, 1like
“C and its argument, a term that «can be used by itself or in an
expression. For example:

“C"F6.2
is equivalent to:

“C<"F6.2>

Again, the use of angle brackets 1is advised. Expressions used as
terms or arguments of a unary operator must be explicitly grouped.

6.5 LOCATION COUNTER CONTROL DIRECTIVES

The directives used in controlling the value of the current location
counter and in reserving storage space in the object program are
described in the following sections.

Several MACRO-11 statements (listed below) may cause an odd number of
bytes to be allocated:

1. L.BYTE directive

2. .BLKB directive

3. .ASCII or .ASCIZ directive
4., .ODD directive

5. JPACKED directive

6. A direct assignment statement of the form .=.+expression,
which results in the assignment of an odd address value.

In cases that yield an odd address value, the next word-boundaried
instruction automatically forces the 1location counter to an even
value, but that instruction is flagged with an error code (B) in the
assembly listing.

6.5.1 .EVEN Directive 'EVEN

Format:
.EVEN

The .EVEN directive ensures that the current location counter contains
an even value by adding 1 if the current value is odd. If the current
location counter is already even, no action is taken. Any operands
following an .EVEN directive are flagged with an error code (Q) in the
assembly listing.

The .EVEN directive is used as follows:
.ASCIZ /This is a test/

. EVEN ;Ensures that the next statement will
;begin on a word boundary.

.WORD XYZ
6.5.2 .0DD Directive ‘()[)[)
Format:
.0DD

The .0DD directive ensures that the current location counter contains
an odd value by adding 1 if the current value is even. If the current
location counter is already odd, no action 1is taken. Any operands
following an .0ODD directive are also flagged with an error code (Q) in
the assembly listing.

.BLKB

6.5.3 .BLKB and .BLKW Directives 'BLKW

Formats:

.BLKB exp
-BLKW exp

GENERAL ASSEMBLER DIRECTIVES

where: exp represents the specified number of bytes or words to be
reserved in the object program. Any expression that is
defined at assembly time and that reduces to an
absolute wvalue 1is legal. TIf the expression specified
in either of these directives is not an absolute wvalue,
the statement is flagged with an error code (A) in the
assembly 1listing. Furthermore, 1if the expression
contains a forward reference (a reference to a symbol
that is not ©previously defined), MACRO-11 generates
incorrect object file code and may cause statements
following the .BLKB/.BLKW directive to be flagged with
phase (P) errors. These directives should not be used
without arguments. However, if no argument is present,
a default value of 1 is assumed.

The .BLKB directive reserves byte blocks in the object module; the
.BLKW directive reserves word blocks. Figure 6-6 illustrates the use
of the .BLKB and .BLKW directives.

‘12 ;+Illustrate use of .BLKB and .BLKW directives
2 000000 ” «PSECT IMPURE,D»GBLyRW

Z 000000 COUNT: BLKW 1 iCharacter counter

; 000002 MESSAG!: .BLKB 80, iMessage text buffer

lg 000122 CHRSAV! .BLKE $iSaved character

i:l.’ 000123 FLAG? +BLKR iFlag bute

if 000124 MSGPTR: JBLKW iMessage buffer rointer

Figure 6-6 Example of .BLKB and .BLKW Directives

The .BLKB directive in a source program has the same effect as the
following statement:

.=.+expression

which causes the value of the expression to be added to the «current
value of the 1location counter. The .BLKB directive, however, is
easier to interpret in the context of the source code in which it
appears and is therefore recommended.

6.5.4 L.JLIMIT Directive -LIMIT

Format:

.LIMIT
To know the upper and lower address boundaries of the image 1is often
desirable. When the .(LIMIT directive 1s specified in the source
program, MACRO-11 generates the following instruction:

.BLKW 2
causing two storage words to be reserved in the object module. Later,

at link time, the lowest address in the load image (the initial value

6-39

T -

ATIATT AT AN TTRe e v v
GENEDRAL ASSEMBLER DIRECTIVES

of SP) is inserted into the first reserved word, and the address of
the first free word following the image is inserted into the second
reserved word,

During linking, the size of the image is rounded upward to the nearest
2-word boundary.

.END

6.6 TERMINATING DIRECTIVE: .END DIRECTIVE

Format:
.END [exp]

where: exp represents an optional expression value which, 1if
present, indicates the program-entry point, which is
the transfer address where the program begins.

When MACRO-11 encounters a valid occurrence of the .END directive, it
terminates the current assembly pass. Any text beyond this point in
the current source file, or in additional source files 1identified 1in
the command line, will be ignored.

When creating an image consisting of several object modules, only one
object module may be terminated with an .END exp statement (where exp
is the starting address). BAll other object modules must be terminated
with an L.END statement (where .END has no argument); otherwise, an
error message will be issued at link time. If no starting address is
specified 1in any of the object modules, image execution will begin at
location 1 of the image and immediately fault because of an odd
addressing error.

The .END statement must not be used within a macro expansion or a
~AamATE T amcamhl oy WlAanl o IF 1+ ia an nanA i+ da Flamma’d wikh an
Lol Liviia C\DDCHIUJ.X MIULCR 4 L 4w 40 =29 UDT U 4 LD Lidyycwu Wi Ll Ui
error code (0) in the assembly listing. The .END statement may be
used, however, in an immediate <conditional statement (see Section

6.9.3).

If the source program input is not terminated with an .END directive,
an error code (E) results in the assembly listing.

6.7 PROGRAM SECTIONING DIRECTIVES

The MACRO-11 program sectioning directives are used to declare names
for program sections (p-sections) and to establish certain program
section attributes essential to linking.

6.7.1 J.PSECT Directive

Format:

.PSECT

where: name

arqgl,

GENERAL ASSEMBLER DIRECTIVES

.PSECT

name,argl,arg2,...argn

arg2,...

argn

represents the symbolic name of the program
section, as described in Table 6-4.

represents any legal separator (comma, tab and/or
space) .

represent one or more of the 1legal symbolic
arguments defined for use with the .PSECT
directive, as described in Table 6-4. The slash
separating each pair of symbolic arguments listed
in the table indicates that one or the other, but
not both, may be specified. Multiple arguments
must be separated by a legal separating character.
Any symbolic argument specified 1in the .PSECT
directive other than those 1listed in Table 6-4
will cause that statement to be flagged with an
error code (A) in the assembly listing.

Table 6-4

Symbolic Arguments of .PSECT Directive

Argument

Default Meaning

NAME

RO/RW

Blank

RW

Establishes the program section name, which is
specified as one to six Radix-5@ characters.
If this argument 1is omitted, a comma must
appear in place of the name parameter. The
Radix—-50 character set is listed in Appendix
A.2.

Defines which type of access is permitted to
the program section:

RO=Read-0Only Access
RW=Read/Write Access
NOTE

RSX-11M and RT-11 use only Read/Write
access.

(continued on next page)

Table 6-4 (Cont.)

Symbolic Arguments of .PSECT Directive

Argument

Default

Meaning

1/D

GBL/LCL

LCL

Defines the contents of the program section:

I=Instructions. If a p-section has the I
attribute and the program is overlaid, all
calls to the p-section are referenced
through a body of overlay code stored in the
root.

If a concatenated p-section has the I
attribute, <code 1is <concatenated on even
bytes.

D=Data. If a p-section has the D attribute,
all <calls to the p-section are referenced
directly.

If a concatenated p-section has the D
attribute, code is concatenated on the next
byte regardless of whether the byte 1is odd
or even.

Defines the scope of the program section, as
it will be interpreted at link time:

NOTE

The GBL/LCL arguments apply only in the
case of overlays; in building
single-segment nonoverlaid programs, the
GBL/LCL arguments have no meaning,
because the total memory allocation for
the program will go into the root
segment of the image.

LCL=Local. 1If an object module contains a
local program section, then the storage
allocation for that module will remain in
the segment containing the module. Many
modules can contribute (allocate memory) to
this same program section; the memory
allocation for each contributing module is
either concatenated or overlaid within the
segment, depending on the allocation
argument of the program section (see CON/OVR
below) .

(continued on next page)

GENERAL ASSEMBLER DIRECTIVES

Table 6-4 (Cont.)
Symbolic Arguments of .PSECT Directive

Argument Default Meaning

GBL=Global. 1If a global program section is
used 1in more than one segment of a program,
all references to the p-section are
collected across segment boundaries. The
program sections are then stored 1in the
segment {of those originally containing the
p-sections) that is nearest the root.

NOTE

RT-11 stores the collected p-sections in
the root.

ABS/REL REL Defines the relocatability attribute of the
program section:

ABS=Absolute (non-relocatable). The ABS
argument causes the linker or task builder
to treat the p-section as an absolute
module; therefore, no relocation is
required. The program section is assembled
and 1loaded, starting at absolute virtual
address 0.

The location of data in absolute program
sections must fall within the virtual memory
limits of the segment containing the program
section; otherwise, an error results at
link time. For example, the following code,
although valid during assembly, may generate
an error message (A) if wvirtual 1location
120006¢ is outside the segment's virtual
address space:

.PSECT ALPHA,ABS
.=.+100000
.WORD X

REL=Relocatable. The REL argument causes the
linker or task builder to treat the
p-section as & relocatable module and a
relocation bias 1is added to all location
references within the program section making
the references absolute.

(continued on next page)

Table 6-4 (Cont.)
Symbolic Arguments of .PSECT Directive

Argument Default Meaning

CON/OVR CON Defines the allocation requirements of the
program section:

CON=Concatenated. All references to one
program section are concatenated to
determine the total memory space needed for
the p-section.

OVR=0Overlaid. All references to one program
section are overlaid; the total memory
space needed equaling the largest,
individual p-section.

SAV/NOSAV NOSAV Determines where the linker allocates storage
for the program section:

SAV=Save. The 1linker 1is forced to always
allocate the program section to the root of
the image.

NOSAV=No Save. The linker allocates the
program section normally.

The only argument in the .PSECT directive that 1is position-dependent
is NAME. If it is omitted, a comma must be used in its place. For
example, the directive:

.PSECT ,GBL

shows a _PSECT directive with a blank name

argument. Default wvalues (see Table 6-4) are
unspecified arguments.

nmant and
mentc anc

u t G
ssumed for all oth

The .PSECT directive may be used without a name or arguments (see
Section 6.7.1.1).

The .PSECT directive allows a user to create program sections (see
Section 6.7.1.1) and to share code and data among the sections he has
created (see Section 6.7.1.2). In declaring the program sections
(also called p-sections), you may declare the attributes of the
p-sections. This allows you to control memory allocation and at the
same time increases program modularity. (For a discussion of memory
allocation, refer to the applicable system manual - see Section #.3 in
the Preface.)

MACRO-11 provides for 256(10) program sections, as listed below:
1. One default absolute program section (. ABS.)

2. One default relocatable program section (. BLK.)?*

* In RT-11 this program section is unnamed.

6-44

GENERAL ASSEMBLER DIRECTIVES

3. Two-hundred-fifty-four named program sections.

For each program section specified or implied, MACRO-11 maintains the
following information:

1. Program section name
2. Contents of the current location counter
3. Maximum location counter value encountered

4, Program section attributes (described in Table 6-4 above).

6.7.1.1 Creating Program Sections - The first statement of a source
program 1is always an implied .PSECT directive; this causes MACRO-11
to begin assembling source statements at relocatable zero of the
unnamed program section.

The first occurrence of a .PSECT directive with a given name assumes
that the current 1location counter is set at relocatable zero. The
scope of this directive then extends until a directive declaring a
different program section is specified. Subsequent .PSECT directives
cause assembly to resume where the named section previously ended.
For example:

.PSECT ;Declares unnamed relocatable program
A: .WORD @ ;section assembled at relocatable
B: .WORD) ;addresses @ through 5.
C: .WORD o]

.PSECT ALPHA ;Declares relocatable program section
X: .WORD @ ;named ALPHA assembled at relocatable
Y: .WORD ? ;addresses 0 through 3.

.PSECT ;Returns to unnamed relocatable
D: .WORD 4] ;program section and continues assem-

;bly at relocatable address 6.

A given program section may be defined completely upon encountering
its first .PSECT directive. Thereafter, the section can be referenced
by specifying its name only, or by completely respecifying its
attributes. For example, a program section can be declared through
the directive:

.PSECT ALPHA,ABS,OVR

and later referenced through the equivalent directive:

.PSECT ALPHA

which requires no arguments. If arguments are specified, they must be
identical to the ones previously declared for the p-section. 1If the
arguments differ, the arguments of the first .PSECT will remain in
effect, and an error code (A) will be generated as a warning.

By maintaining separate location counters for each program section,
MACRO-11 allows you to write statements that are not physically
sequential but that can be loaded sequentially following assembly, as
shown in the following example.

.PSECT SEC1,REL,RO ;Start a relocatable program section

A: .WORD @ ;named SEC1 assembled at relocatable
B: .WORD 0@ ;addresses @ through 5.
C: .WORD @
ST: CLR A ;Assemble code at relocatable
CLR B ;addresses 6 through 21(8).
CLR C
.PSECT SECA,ABS ;Start an absolute program section
;named SECA. Assemble code at
.WORD .+2,A ;absolute addresses @ through 3.
.PSECT SEC1 ;Resume relocatable program section
INC A ;SEC1. Assemble code at relocatable
BR ST ;addresses 22 through 27(8).

All labels in an absolute program section are absolute; likewise, all
labels in a relocatable section are relocatable. The current location
counter symbol (.) is relocatable or absolute when referenced in a
relocatable or absolute program section, respectively.

Any labels appearing on a line containing a .PSECT (or .ASECT or
.CSECT) directive are assigned the wvalue of the current location
counter before the .PSECT (or other) directive takes effect. Thus, if
the first statement of a program is:

A: .PSECT ALT,REL

the label A is assigned to relocatable address =zero of the unnamed
program section.

Since it is not known during assembly where relocatable program
sections will be 1loaded, all references to relocatable program
sections are assembled as references relative to the base of the

rofaronrad cac+ian
rererencegd gsectichn.

In the following example, references to the symbols X and Y are
translated 1into references relative to the base of the relocatable
program section named SEN.

.PSECT ENT,ABS

.=.+1000
Az CLR X ;Assembled as CLR base of
;relocatable section + 14(8).
JMP Y ;Assembled as JMP base of

;relocatable section + 6(8).
.PSECT SEN,REL
MOV R#,R1

JMP A ;Assembled as JMP 1000.
Y: HALT
X: .WORD @

GENERAL ASSEMBLER DIRECTIVES

NOTE

In the preceding example, using a
constant in conjunction with the current
location counter symbol (.) in the form
.=1000 would result in an error, because
constants are always absolute and are
always associated with the program's
.ASECT (. ABS.). If the form .=1000
were used, a program section
incompatibility would be detected. See
Section 3.6 for a dicussion of the

current location counter.

Thus, MACRO-11 provides the linker or task builder with the necessary
information to resolve the linkages between various program sections.
Such information 1is not necessary, however, when referencing an
absolute program section, because all instructions in an absolute
program section are associated with an absolute virtual address.

6.7.1.2 Code or Data Sharing - Named relocatable ©program sections
with the arguments GBL and OVR operate in the same manner as FORTRAN
COMMON, that is, program sections of the same name with the arguments
GBL and OVR from different assemblies are all loaded at the same
location at link time. All other program sections (those with the
argument CON) are concatenated.

A single symbol could name both an internal symbol and a program
section. Considering FORTRAN again, using the same symbolic name is
necessary to accommodate the following statement:

COMMON /X/ A,B,C,X

where the symbol X represents the base of the program section and also
the fourth element of that section.

6.7.1.3 Memory Allocation Considerations - The assembler does not
generate an error when a module ends at an odd location. You can,
therefore, place odd length data at the end of a module. However,
when several modules contain object code contributions to the same
program section having the concatenate attribute (see Table 6-4;
CON/OVR), odd 1length modules (except the last) may cause succeeding
modules to be linked starting at odd 1locations, thereby making the
linked program unexecutable. To avoid this problem, separate code and
data from each other and place them in separately named program
sections (see Table 6-4; 1I/D). The linker or task builder can then
begin each program section on an even address. Refer to the
applicable system manual for further information on memory allocation
of tasks (see Section 9.3 in the Preface).

ASECT
CSECT

6.7.2 JASECT and .CSECT Directives

Formats:

+ASECT
.CSECT
.CSECT symbol

where: symbol represents one or more of the arguments in Table 6-4.
IAS and RSX-11M assembly-language programs use the .PSECT and .ASECT
directives exclusively, because the .PSECT directive provides all the
capabilities of the .CSECT directive defined for other PDP-11
assemblers. MACRO-11 will accept both .ASECT and .CSECT directives,
but assembles them as though they were .PSECT directives with the
default attributes listed in Table 6-5. Compatibility exists between
other MACRO-11 programs and the IAS/RSX-11M Task Builders, because the
Task Builders also treat the .ASECT and .CSECT directives like .PSECT
directives with the default values iisted in Table $-5.

Table 6-5
Program Section Default Values

Default value

Attribute

.ASECT .CSECT (named) .CSECT (unnamed)
Name . ABS. name . BLR.*
ACCESS RW RW RW
Type I I I
Scope GBL GBL LCL
Relocation ABS REL REL
Allocation OVR OVR CON

* In RT-11 this program section has no default name.

Note that the statement:

.CSECT JIM

is identical to the statement:

.PSECT JIM,GBL,OVR

because the

named program section.

.CSECT default values GBL and OVR

are assumed for

the

GENERAL ASSEMBLER DIRECTIVES

.SAVE

6.7.3 .SAVE Directive

Format:
.SAVE

.SAVE stores the current program section context on the top to the
program section context stack, while 1leaving the current program
section context in effect. 1If the stack is full when .SAVE is issued,
an error (A) occurs. The stack can handle 16 .SAVEs. The program
section context includes the values of the <current location counter
and the maximum value assigned to the location counter in the current
program section.

See Figure 6-7 for an example of .SAVE.

6.7.4 .RESTORE Directive . RESTORE

Format:

.RESTORE

The .RESTORE directive retrieves the program section from the top of
the program section context stack. If the stack 1is empty when
.RESTORE is issued, an error (A) occurs. When .RESTORE retrieves a
program section, it restores the current location counter to the value
it had when the program section was saved.

See Figure 6-7 for an example of .RESTORE.

95-9

+MAIN.

EXAMPLE OF

NONOCU D M-

N I N e VY
I OCVEONDIUNDBLUNRO

L

RN R
ON D O

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

000000
000004
000010
000014

000020

000022
000022
000022
000022

000022

016701
010167
066701
010167

000207

016701

000001

000000°
000002"
000004
000006

000006

MACRO V05.00 Mondaw 17-Jan—-83 08!152 Pade
+SAVE/ .RESTORE USAGE

+«SBTTL

+
Macro DS
Define local

- . e .

Examrle of SAVE/.RESTORE usade

imPure storade

iSave the current PSECT

iStore the data in the imrure FSECT
$Set aside the srace

iReenter the current FSECT

+MACRO DS NAME»SIZE
+SAVE
‘ «FSECT IMPUREsD,yGEL
NANE? +BLKW SIZE
+RESTORE
+ENDM
Pt
i SCANSY

Scan the hash table for valid entries

SCANSY: MOV
MOV
ADD
MoV

Rest of rout

.- e

RETURN

7 Local data

s SYMBAS
Ds CURSYM
s SYMSIZ
DS SYMTOP
+
S80RT

Ferform shel

SSORT! MOV

SYMBASsR1
R1,CURSYM
SYMSIZyR1
R1,SYMTOF

ine.as.

iGet base of table
iInitialize rointer to table
iFPoint rast the table

?Save end address

iTable is scanned» exit

ikase address of sumbol table
iCurrent sumbol rointer during scan
$Size of table» butes

iSet to end address of table

1 sort orn suymbol table rrior to listing

SYMTOFsR1

i Additional code +..

+END

Figure 6-7

Example of

iGet end of table

.SAVE and .RESTORE Directives

GENERAL ASSEMBLER DIRECTIVES

6.8 SYMBOL CONTROL DIRECTIVES

The symbol control directives are used to set the type of a given
symbol. '

.GLOBL

5.8.1 L.GLOBL Directive

Format:

.GLOBL syml,sym2,...symn

where: syml, represent legal symbolic names. When multiple
Sym2,... symbols are specified, they are separated by any
symn legal separator (comma, space, and/or tab).

A .GLOBL directive may also embody a 1label field and/or a comment
field.

The .GLOBL directive is provided to define (and thus provide 1linkage
to) symbols not otherwise defined as global symbols within a module.
In defining global symbols the directive .GLOBL A,B,C is similar to:

A==:expression ==expression A::
B==:expression or B==expression or B::
C==:expression C==expression C::

Because object modules are linked by global symbols, these symbols are
vital to a program. The following paragraph, describing the
processing of a program from assembly to 1linking, explains the
global's role.

In assembling a source program, MACRO-11 produces a relocatable object
module and a listing file containing the assembly listing and symbol
table. The linker or task builder joins separately .assembled object
modules 1into a single executable image. During 1linking, object
modules are relocated relative to the base of the module and linked by
global symbols. Because these symbols will be referenced by other
program modules, they must be singled out as global symbols in the
defining modules. As shown above, the .GLOBL directive, global
assignment operator, or global label operator will define a symbol as
global.

All internal symbols appearing within a given program must be defined
at the end of assembly pass 1 or they will be assumed to be default
global references. Refer to Section 6.2.1 for a description of
enabling/disabling of global references.

In the following example, A and B are entry-point symbols. The symbol
A has been explicitly defined as a global symbol by means of the
.GLOBL directive, and the symbol B has been explicitly defined as a
global label by means of the double colon (::). Since the symbol C is
not defined as a label within the current assembly, it is an external
(global) reference if .ENABL GBL is in effect.

Define a subroutine with 2 entry points which calls an
external subroutine

~e Ne we we

.PSECT ;Declare the unnamed program section.
.GLOBL A ;:Define A as a global symbol.
A: MOV @ (R5)+,RA ;Define entry point A.
Mov #X,R1
X: JSR pPC,C ;Call external subroutine C.
RTS R5 ;Exit.
B:: MOV (R5)+,R1 ;Define entry point B.
CLR R2
BR X

External symbols can appear in the operand field of an instruction or
MACRO-11 directive as a direct reference, as shown in the examples
below:

CLR EXT
.WORD EXT
CLR @EXT

External symbols may also appear as a term within an expression, as
shown below:

CLR EXT+A
-WORD EXT-2
CLR @EXT+A (R1)

An undefined external symbol cannot be used in the evaluation of
direct assignment statement or as an argument in a conditiona
assembly directive (see Sections 3.3, 6.9.1 and 6.9.3).

a
1

WEAK

6.8.2 .WEAK Directive

Format:

.WEAK syml,sym2,...symn

where: syml represents legal symbolic names. When multiple
sym2,... symbols are specified, they are separated by any
symn legal separator (comma, space, and/or tab).
Example:
.WEAK SUB1,SUB2

The .WEAK directive may also embody a label field and/or a comment
field.

GENERAL ASSEMBLER DIRECTIVES

The .WEAK directive is used to specify symbols that are either defined
externally in another module or defined globally in the current
module. This directive suppresses object 1library searches for
specified external symbols.

When the .WEAK directive specifies a symbol that 1is externally
defined, it 1is considered a global symbol. 1If the linker finds the
symbol's definition in another module, it uses that definition. If
the linker does not find an external definition, the symbol is given a
value of g. The linker does not search a 1library for the global
symbol, but if a module brought in from a library for another reason
contains the symbol's definition, the linker uses that definition.

If a symbol that is defined in the current module is specified by the
.WEAK directive, the symbol is considered globally defined. However,
if the current module is inserted in an object library, the symbol is
not inserted in the library's symbol table. Consequently, the module
is not found when the library is searched at link time to resolve the
symbol.

NOTE

The .WEAK directive is only supported by
the RT-11 V5.0 LIBRARIAN (LIBR) and
LINKER (LINK). Support is not yet
implemented in the RSX-11 taskbuilder
(TKB) or librarian (LBR).

6.9 CONDITIONAL ASSEMBLY DIRECTIVES

Conditional assembly directives allow you to include or exclude blocks
of source code during the assembly process, based on the evaluation of
stated condition tests within the body of the program.

AF
.ENDC

5.9.1 Conditional Assembly Block Directives

Format:
.IF cond,argument(s) ;Start conditional assembly block.
range ;Range of conditional assembly block.
. ENDC ;End of conditional assembly block.

where: cond

argument(s)

range

. ENDC

Y o o

MBLER DIRECTIVES

represents a specified condition that must be
met if the block 1is to be 1included in the
assembly. The conditions that may be tested by
the conditional assembly directives are defined
in Table 6-6.

represents any legal separator (comma, space,
and/or tab).

represent(s) the symbolic argument (s) or
expression(s) of the specified conditional test.
These arguments are thus a function of the
condition to be tested (see Table 6-6).

represents the body of code that 1is either
included in the assembly, or excluded, depending
upon whether the condition is met.

terminates the conditional assembly block. This
directive must be present to end the conditional
assembly block.

A condition test other than those listed 1in Table 6-6, an illegal
argument, or a null argument specified in an .IF directive causes that
line to be flagged with an error code (A) in the assembly listing.

Table 6-6

Legal Condition Tests for Conditional Assembly Directives

Conditions

Positive Complement Arguments Assemble Block If:

EQ NE Expression Expression 1is equal to 0
{or not egual to #).

GT LE Expression Expression is greater
than @ (or less than or
equal to @).

LT GE Expression Expression is less than ¢
(or greater than or equal
to 4).

DF NDF Symbolic Symbol is defined (or not

argument defined).

B NB Macro-type Argument is blank (or

argument non-blank) .

(continued on next page)

GENERAL ASSEMBLER DIRECTIVES

Table 6-6 (Cont.)

Legal Condition Tests for Conditional Assembly Directives

Conditions

Positive Complement Arguments Assemble Block If:
IDN DIF Two macro-type Arguments are identical
arguments (or different). The .(IF

IDN/.IF DIF

conditional

directives are not
alphabetically case
sensitive by default.
The user may enable these
directives to be case
sensitive by wusing the
.ENABL option (.ENABL

LCM) .

NOTE

A macro-type argument (which is a form
of symbolic argument), as shown below,
is enclosed within angle brackets or

denoted with an wup-arrow construction
(as described in Section 7.3).

<A,B,C>
“/124/
An example of a conditional assembly directive follows:

.IF EQ ALPHA+l ;Assemble block if ALPHA+1=0

. ENDC

The two operators & and ! have special meaning within

& Logical AND operator
! Logical inclusive OR operator
For example, the conditional assembly statement:

.IF DF SYMl1 & SYM2

.

. ENDC

results in the assembly of the conditional block if the
and SYM2 are both defined.

DF and NDF
conditions, in that they are allowed in grouping symbolic arguments.

symbols

SYM1

Nested conditional directives take the form:

Conditional Assembly Directive
Conditional Assembly Directive

. ENDC
. ENDC

For example, the following conditional directives:

.IF DF SYM1
.IF DF SYM2

. ENDC
. ENDC

can govern whether assembly is to occur. In the example above, if the
outermost condition 1is unsatisfied, no deeper level of evaluation of
nested conditional statements within the program occurs,.

Each conditional assembly block must be terminated with an .ENDC
directive. An .ENDC directive encountered outside a conditional.
assembly block is flagged with an error code (0) in the assembly
listing.

MACRO-11 permits a nesting depth of 16(1@) conditional assembly
levels. Any statement that attempts to exceed this nesting level
depth is flagged with an error code (0) in the assembly listing.

AFF
AFT
AFTF

6.9.2 Subconditional Assembly Block Directives

Formats:

.IFF
LIFT
.IFTF

Subconditional directives may be placed within conditional assembly
blocks to indicate:

1. The assembly of an alternate body of code when the‘ condition
of the block tests false.

2. The assembly of a non-contiguous body of code within the
conditional assembly block, depending upon the result of the
conditional test in entering the block.

3. The unconditional assembly of a body of code within a
conditional assembly block.

GENERAL ASSEMBLER DIRECTIVES

The subconditional directives are described in detail 1in Table 6-7.
If &a subconditional directive appears outside a conditional assembly
block, an error code (0) is generated in the assembly listing.

Table 6-7
9ubcond1t10nal Assembly Block Directives
Subconditional
Directive Function
.IFF If the condition tested upon entering the

conditional assembly block 1is false, the code
following this directive, and continuing up to the
next occurrence of a subconditional directive or to
the end of the conditional assembly block, is to be
included in the program.

LIFT If the condition tested upon entering the
conditional assembly block is true, the code
following this directive, and continuing up to the
next occurrence of a subconditional directive or to
the end of the conditional assembly block, is to be
included in the program.

.IFTF The code following this directive, and continuing up
to the next occurrence of a subconditional directive
or to the end of the conditional assembly block, is
to be included in the program, regardless of the
result of the condition tested wupon entering the
conditional assembly block.

The implied argument of a subconditional directive 1is the condition
test specified wupon entering the conditional assembly block, as
reflected by the initial directive in the conditional coding examples
below. (Conditional or subconditional directives 1n nested conditional
assembly blocks are not evaluated if the previous (or outer) condltlon

the block is not satisfied. Examples 3 and 4 below illustrate
fiested —directives that are not evaluated because of previous
unsatisfied conditional coding.

EXAMPLE 1: Assume that symbol SYM is defined.

.IF DF SYM :Tests TRUE, SYM is defined. Assemble
. ;the following code.

.IFF ;Tests FALSE. SYM is defined. Do not
. ;assemble the following code.

.IfT ;Tests TRUE. SYM is defined. Assem-
. ;ble the following code.

JIFTF ;Assemble following code uncondition-
. ;ally.

GENERAL ASSEMBLER DIRECTIVES

LIFT ;Tests TRUE. SYM is defined. Assem-
. ;ble remainder of conditional assem-
. ;bly block.
. ENDC
EXAMPLE 2: Assume that symbol X is defined and that symbol Y is not
defined.
.IF DF X ;Tests TRUE, symbol X is defined.
.IF DF Y ;Tests FALSE, symbol Y is not defined.
.IFP ;Tests TRUE, symbol Y is not defined,
. ;assemble the following code.
LIFT ;Tests FALSE, symbol Y is not defined.
. ;Do not assemble the following code.
. ENDC
. ENDC
EXAMPLE 3: Assume that symbol A is defined and that symbol B is not
defined.
.IF DF A ;Tests TRUE. A is defined.
;Assemble the following code.
MOV A,AR1
.IFF ;Tests FALSE. A is defined. Do not
;assemble the following code.
MOV R1,R@
.IF NDF B ;Nested conditional directive is not
. ;evaluated.
. ENDC
. ENDC
EXAMPLE 4: Assume that symbol X is not defined and that symbol Y is
defined.
.IF DF X ;Tests FALSE. Symbol X is not defined.
;Do not assemble the following code.
.IF DF Y ;Nested conditional directive is not
. ;evaluated.
.IFF ;Nested subconditional directive is
. ;hot evaluated.
LIFT ;Nested subconditional directive is
. ;hot evaluated.
. ENDC
. ENDC

GENERAL ASSEMBLER DIRECTIVES

AIF

6.9.3 Immediate Conditional Assembly Directive

Format:
LIIF cond,arg,statement

where: cond represents one of the legal condition tests defined
for conditional assembly blocks in Table 6-6.

’ represents any legal separator (comma, space,
and/or tab).

arg represents the argument associated with the
immediate conditional directive; an expression,
symbolic argument, or macro-type argument, as

described in Table 6-6.

’ represents the separator between the conditional
argument and the statement field. 1If the preceding
argument is an expression, then a comma must be
used; otherwise, a comma, space and/or tab may be
used.

statement represents the specified statement to be assembled
if the condition is satisfied.

An immediate conditional assembly directive provides a means for
writing a 1-line <conditional assembly block. The wuse of this
directive requires no terminating .ENDC statement and the condition to
be tested 1is completely expressed within the line containing the
directive.
For example, the immediate conditional statement:

LIIF DF FOO,BEQ ALPHA
generates the code

BEQ ALPHA
if the symbol FOO is defined within the source program.
As with the .IF directive, a condition test other than those listed in

Table 6-6, an 1illegal argument, or a null argument specified in an
.IIF directive results in an error code (A) in the assembly listing.

6.10 FILE CONTROL DIRECTIVES

The MACRO-11 file control directives are used to add file names to
macro library 1lists and to insert a source file into the source file
being currently used.

.LIBRARY

6.18.1 .LIBRARY Directive

Format:
.LIBRARY string

where: string represents a delimited string that 1is the file
specification of a macro library.

The .LIBRARY directive adds 2 file name to a macro library 1list that
is searched. A library 1list 1is searched whenever a .MCALL or an
undefined opcode 1is encountered within a MACRO-11 program. The
libraries that make up the list are searched in the reverse order in
which they were specified to the MACRO-11 assembler,

If any information was omitted {from the macro 1library argument,
default wvalues are assumed. The default file specification for
MACRO-11/RT-11 is DK:.MLB, and for other systems it is SY:.MLB.

The .LIBRARY directive is used as follows:
. LIBRARY /DBl: [SMITH]USERLIB/

. LIBRARY ?DK:SYSDEF.MLB?
. LIBRARY \CURRENT .MLB\

MACRO-11 searches all macro libraries if it finds an unknown symbol in
the opcode field and the auto-mcall option has been previcusly enabled
by .ENABL MCL.

NOTE

If you are using MACR0O-11 with an RT-11
operating system, you should be aware of
the following two restrictions. The
device driver for the specified device
that the .LIBRARY file resides on must
already be 1loaded, either explicitly
with the KMON LOAD command, or
implicitly by reference to the device on
the original MACRO-11 command line. The
second restriction 1is that there is a
limit on the number of L.LIBRARY files
that may be specified. The limit is
twelve minus the number of files
specified in the MACRO-11 command line.
Since there can be a maximum of eight
files on a MACRO-11/RT-11 command line,
there are at least four available slots
for .LIBRARY files.

GENERAL ASSEMBLER DIRECTIVES

.INCLUDE

6.10.2 JINCLUDE Directive

Format:
.INCLUDE string

where: string represents a delimited string that 1is the file
specification of a macro source file.

The .INCLUDE directive is used to insert a source file within the
source file currently being used. When this directive is encountered,
the current source file is stacked and the source file specified by
the directive 1is read into memory. When the end of the specified
source file is reached, the original source file is popped from the
stack and assembly resumes at the line following the directive. A
source file can also be inserted within a source file that has already
been specified by the ,INCLUDE directive. In this case the original
source file and the first source file specified by the .INCLUDE
directive are stacked and the second specified source file is read
into memory. When the end of the second source file is reached, the
first specified source file 1is popped from the stack and assembly
resumes at the line following the directive, and when the end of the
first specified source file is reached, the original source file is
popped from the stack and assembly of that file is started again at
the line following the .INCLUDE directive. The maximum nesting level
of source files specified by the .INCLUDE directive is five.

If any information is omitted from the source file argument, default
values are assumed. The default file specification for MACRO-11/RT-11
is DK:.MAC, and for other systems it is SY:.MAC.

The .INCLUDE directive is used as follows:

.INCLUDE /DR3:[1,2]MACROS/ ;File MACROS.MAC
.INCLUDE ?DK:SYSDEF?
.INCLUDE \CURRENT .MAC\

NOTE

If you are using MACRO-11 with an RT-11
operating system, the device driver for
the specified device that the ,INCLUDE
file resides on must already be loaded,
either explicitly with the KMON LOAD
command, or implicitly by reference to
the device on the original MACRO-11
command line.

CHAPTER 7

7.1 DEFINING MACROS

By using macros a programmer can use a single 1line to insert a
sequence of lines into a source program.

A macro definition is headed by a .MACRO directive (see Section 7.1.1)
foliowed by the source lines. The source lines may optionally contain
dummy arguments. If such arguments are used, each one 1is 1listed in
the .MACRO directive.

A macro call (see Section 7.3) is the statement used by the programmer
to call the macro into the source program. It consists of the macro
name followed by the real arguments needed to replace any dummy
arguments used in the macro.

Macro expansion is the insertion of the macro source 1lines 1into the
main program. Included 1in this insertion is the replacement of the
dummy arguments by the real arguments.

Macro directives provide the means to manipulate the macro expansions.
Only one directive 1is allowed per source line. Each directive may
have a blank operand field or one or more operands. Legal operands
differ with each directive. The macros and their associated
directives are detailed in this chapter.

.MACRO

7.1.1 .MACRO Directive

Format:
[label:] .MACRO name, dummy argument list
where: label represents an optional statement label.
name reéresents the user-assigned symbolic name of the
macro. This name may be any legal symbol and may

be used as a label elsewhere in the program.

' represents any legal separator (comma, space,
and/or tab).

MACRO DIRECTIVES

where: dummy represents a number of legal symbols (see Section
argument 3.2.2) that may appear anywhere in the body of the
list macro definition, even as a 1label. These dummy

symbols can be used elsewhere in the program with

no conflict of definition.
arguments specified 1in this

Multiple dummy

directive may be

separated by any legal separator. The detection
of a duplicate or an illegal symbol in a dummy
argument list terminates the scan and causes an

error code (A) to be generated.

A comment may follow the dummy argument list in a .MACRO directive, as

shown below:

.MACRO ABS A,B ;Defines macro ABS with two arguments.

The first statement of a macro definition must be a

NOTE

Although it is 1legal for a 1label
appear on a .MACRO directive,
practice is discouraged, especially

.MACRO directive.

to

this

in

the case of nested macro definitions,
because invalid labels or labels
constructed with the concatenation
character will cause the macro directive

to be ignored. This may result

in

improper termination of the macro

definition.

This NOTE also applies to .IRP, .IRPC,

and .REPT.

7.1.2 .ENDM Directive
Format:

.ENDM [name]

.ENDM

where: name represents an optional argument specifying the

name of the macro being
directive.

terminated by the

Example:
.ENDM ;Terminates the current
;macro definition.
. ENDM ABS ;:Terminates the current

;macro definition named ABS.

MACRO DIRECTIVES

If specified, the macro name in the .ENDM statement must match the
name specified in the corresponding .MACRO directive. Otherwise, the
statement is flagged with an error code (A) in the assembly 1listing.
In either case, the current macro definition 1is terminated.
Specifying the macro name in the .ENDM statement thus permits MACRO-11
to detect missing .(ENDM statements or improperly nested macro
definitions.

The .ENDM directive must not have a 1label. If a 1legal 1label is
attached, it will be ignored. 1If an illegal label is attached, the
directive will be ignored.

The .ENDM directive may be followed by a comment field, as shown
below:

.MACRO TYPMSG MESSGE ;Type a messadge.

JSR R5,TYPMSG
.WORD MESSGE
. ENDM ;End of TYPMSG macro.

The final statement of every macro definition must be an .ENDM
directive. The .ENDM directive is also used to terminate indefinite
repeat blocks (see Section 7.6) and may be used to terminate repeat
blocks (see Section 7.7).

.MEXIT

7.1.3 .MEXIT Directive

Format:
+MEXIT

The .MEXIT directive may be used to terminate a macro expansion before
the end of the macro is encountered. This directive is also legal
within repeat blocks (see Sections 7.6 and 7.7). It is most useful in
nested macros. The .MEXIT directive terminates the current macro as
though an .ENDM directive had been encountered. Using the .(MEXIT
directive bypasses the complexities of nested conditional directives
and alternate assembly paths, as shown in the following example:

.MACRO ALTR N,A,B

.IF EQ N ;Start conditional assembly block.
«MEXIT ;Terminate macro expansion.

. ENDC ;End conditional assembly block.

. ENDM ;:Normal end of macro.

In an assembly where the dummy symbol N is replaced by zero (see Table
6-6), the .MEXIT directive would assemble the conditional block and
terminate the macro expansion. When macros are nested, a .MEXIT
directive causes an exit to the next higher level of macro expansion.

7-3

A .MEXIT directive encountered outside a macro definition is flagged
with an error code (0) in the assembly listing.

7.1.4 MACRO Definition Formatting

A form-feed character used within a macro definition causes a page
eject during the assembly of the macro definition. A page eject,
however, is not performed when the macro is expanded.

Conversely, when the .PAGE directive is used in a macro definition, it

is ignored during the assembly of the macro definition, but a page
eject is performed when that macro is expanded.

7.2 CALLING MACROS

Format:
[label:] name real arguments
where: label represents an optional statement label.

name represents the name of the macro, as specified 1in
the .MACRO directive (see Section 7.1.1).

real represent symbolic arguments which replace the
arguments dummy arguments listed in the .MACRO directive.
When multiple arguments occur, they are separated
by any legal separator. Arguments to the macro
call are treated as character strings, their usage

is determined by the macro definition.

A macro definition must be established by means of the .MACRO
ective (see Section 7.1.1) before the macro can be called and
within the socurce program.

When a macro name is the same as a user label, the appearance of the
symbol in the operator field designates the symbol as a macro call;
the appearance of the symbol in the operand field designates it as a
label, as shown below:

ABS: MOV (RO) ,R1 ;ABS is defined as a label.
BR ABS ;ABS is considered to be a label.
ABS #4 ,ENT,LAR ;ABS is a macro call.

7.3 ARGUMENTS IN MACRO DEFINITIONS AND MACRO CALLS

Multiple arguments within a macro definition or macro call must be

separated by one of the 1legal seperating characters described in
Section 3.1.1.

MACRO DIRECTIVES

Macro definition arguments (dummy) and macro call arguments (real)
normally maintaein a strict positional relationship. That is, the
first real argument in a macro call corresponds with the first dummy
argument in a macro definition. Only the use of keyword arguments in
a macro call can override this correspondence (see Section 7.3.56).

For example, the following macro definition and its associated macro
call contain multiple arguments:

.MACRO REN A,B,C

REN ALPHA,BETA,<C1,C2>

Arguments which themselves contain separating characters must be
enclosed in paired angle brackets. For example, the macro call:

REN <MOV X,¥Y>,#44 ,WEV
causes the entire expression
MOV X,Y

to replace all occurrences of the symbol A in the macro definition.
Real arguments within a macro <call are considered to be character
strings and are treated as a single entity during the macro expansion.

The up-arrow (") construction allows angle brackets to be passed as
part of the argument. This construction, for example, could have been
used in the above macro call, as follows:

REN "/<MOV X,Y>/,#44,WEV

causing the entire character string <MOV X,Y> to be passed as an
argument,

Because of the use of the up-arrow (") shown above, care must be taken
when passing an argument beginning with a unary operator ("0, "D, B,
“R, "F ...). These arguments must be enclosed in angle brackets (as
shown below) or MACRO-11 will read the <character following the
up-arrow as a delimiter.

REN <"0 411> ,X,Y
The following macro call:

REN $#44 ,WEV"/MOV X,Y/
contains only two arguments (#44 and WEV"/MOV X,Y/), because the
up-arrow is a unary operator (see Section 3.1.3) and it is not

preceded by an argument separator.

As shown in the examples above, spaces can be used within bracketed
argument constructions to increase the legibility of such expressions.

7.3.1 Macro Nesting

Macro nesting occurs where the expansion of one macro includes a call
to another. The depth of nesting allowed depends upon the amount of
dynamic memory used by the source program being assembled.

To pass an argument containing legal argument delimiters to nested
macros, enclose the argument 1in the macro definition within angle
brackets, as shown in the coding sequence below. This extra set of
angle brackets for each 1level of nesting is required in the macro
definition, not in the macro call.

.MACRO LEVEL1 DUM1,DUM2
LEVEL2 <DUM1>
LEVEL2 <DUM2>

. ENDM

.MACRO LEVEL2 DUM3
DUM3

ADD 410,40

MOV RO, (R1)+

. ENDM

A call to the LEVEL1 macro, as shown below, for example:
LEVEL1 <MOV X,R@>,<MOV R2,RO>

causes the following macro expansion to occur:

MOV X,RO

ADD #10 ,RO

MOV RA, (R1)+

MOV R2,R@

ADD #10,R0

MOV RO, (R1)+
When macro definitions are nested, the 1inner definition c¢annot be
called wuntil the outer macro has been <called and expanded. For

example, in the following coding:

.MACRO LV1 A,B

.MACRO LV2 C

. ENDM
. ENDM

the LV2 macro cannot be called and expanded until the LVl macro has
been expanded. Likewise, any macro defined within the LV2 macro
definition cannot be called and expanded until LV2 has also been
expanded.

MACRO DIRECTIVES

7.3.2 Special Characters in Macro Arguments

If an argument does not contain spaces, tabs, semicolons, or commas it
may include special characters without enclosing them in a bracketed
construction. For example:

.MACRO PUSH ARG

MOV ARG,-(SP)
. ENDM
PUSH X+3{%2)

causes the following code to be generated:

MOV X+3(%2) ,-(SP)

7.3.3 Passing Numeric Arguments as Symbols

If the unary operator backslash (\) precedes an argument, the macro
treats that argument as a numeric value in the current program radix.
The ASCII characters representing this value are inserted in the macro
expansion, and their function 1is defined in the context of the
resulting code, as shown in the following example:

.MACRO 1INC A,B

CON A,\B ;B is treated as a number in current
B=B+1 ;program radix.
. ENDM
.MACRO CON A,B
A'B: .WORD 4 ;A'B is described in Section 7.3.7.
. ENDM
C=0 INC X,C

The above macro call (INC) would thus expand to:
X .WORD 4

In this expanded code, the label X@: results from the concatenation
of two real arguments. The single quote (') character in the label
A'B: concatenates the real arguments X and @ as they are passed
during the expansion of the macro. This type of argument construction
is described in more detail in Section 7.3.7.

A subsequent call to the same macro would generate the following code:
X1: .WORD 4

and so on, for later calls. The two macro definitions are necessary
because the symbol associated with dummy argument B (that is, C)
cannot be updated in the CON macro definition, because the character @
has replaced C 1in the argument string (INC X, C). In the CON macro
definition, the number passed is treated as a string argument. (Where
the wvalue of the real argument is @, only a single # character is
passed to the macro expansion.)

MACRO DIRECTIVES

Passing numeric values in this manner is useful in identifying source
listings. For example, versions of programs created through
conditional assemblies of a single source program can be identified
through such coding as that shown below. Assume, for example, that
the symbol ID in the macro call (IDT) has been equated elsewhere in
the source program to the value 6.

.MACRO IDT SYM ;Assume that the symbol ID takes
LIDENT /V@1l.'SYM/ ;on a unique 2-digit value.
. ENDM ;Where V@1 is the update
. ;version of the program.
IDT \ID

The above macro call would then expand to:
.IDENT /V01.6/

where 6 is the numeric value of the symbol ID.

7.3.4 Number of Arguments in Macro Calls

A macro can be defined with or without arguments. If more arguments
appear 1in the macro call than in the macro definition, an error code
(Q) is generated in the assembly listing. If fewer arguments appear
in the macro call than in the macro definition, missing arguments are
assumed to be null values. The conditional directives .,IF B and .IF
NB (see Table 6-6) can be used within the macro to detect missing
arguments. The number of arguments can also be determined using the
.NARG directive (Section 7.4.1).

7.3.5 Creating Local Symbols Automatically

A label is often required in an expanded macro. In the conventional
macro facilities thus far described, a 1label must be explicitly
specified as an argument with each macro call. The wuser must be
careful 1in 1issuing subsequent <calls to the same macro in order to
avoid duplicating labels. This concern can be eliminated through a
feature of MACRO-11 that <creates a unique symbol where a label is
required in an expanded macro.

As noted in Section 3.5, MACRO-11 can automatically create 1local
symbols of the form n$, where n is a decimal integer within the range
30009 through 65535, inclusive. Such local symbols are created by
MACRO-11 in numerical order, as shown below:

300003
30001$

65534$
65535$%

MACRO DIRECTIVES

This automatic generation is invoked on each call of a macro whose
definition contains a dummy argument preceded by the question mark (?)
character, as shown in the macro definition below:

.MACRO ALPHA, A,?B ;Contains dummy argument B preceded by
;question mark.
TST A
BEQ B
ADD #5,A
B:
. ENDM

A local symbol is created automatically by MACRO-11 only when a real
argument of the macro call 1is either null or missing, as shown in
Example 1 below. TIf the real argument is specified in the macro call,
however, MACRO-11 inhibits the generation of a local symbol and normal
argument replacement occurs, as shown in Example 2 below. (Examples 1
and 2 are both expansions of the Alpha macro defined above.)

EXAMPLE 1: Create a Local Symbol for the Missing Argument:

ALPHA R1 ;Second argument is missing.
TST R1

BEQ 30000S ;Local symbol is created.
ADD #5,R1

3000085

EXAMPLE 2: Do Not Create a Local Symbol:

ALPHA R2,XYZ ;Second argument XYZ is specified.
TST R2

BEQ XYZ ;Normal argument replacement occurs.
ADD #5,R2

XYZ:

Automatically created local symbols are restricted to the first 16(10)
arguments of a macro definition.

Automatically created local symbols resulting from the expansion of a
macro, as described above, do not establish a local symbol block in
their own right.

When a macro has several arguments earmarked for automatic 1local
symbol generation, substituting a specific label for one such argument
risks assembly errors because MACRO-11 constructs its argument
substitution 1list at the point of macro invocation. Therefore, the
appearance of a 1label, the .ENABL LSB directive, or the .PSECT
directive, 1in the macro expansion will <create a new local symbol
block. The new local symbol block could leave local symbol references
in the ©previous block and their symbol definitions in the new one,
causing error codes in the assembly listing. Furthermore, a later
macro expansion that creates 1local symbols in the new block may
duplicate one of the symbols in question, causing an additional error
code (P) in the assembly listing.

7.3.6 Keyword Arguments
Format:
name=string
where: name represents the dummy argument,
string represents the real symbolic argument.

The keyword argument may not contain embedded argument separators
unless delimited as described in Section 7.3.

Macros may be defined with, and/or <called with, keyword arguments.
When a keyword argument appears in the dummy argument list of a macro
definition, the specified string becomes the default real argument at
macro call. When a keyword argument appears in the real argument list
of a macro call, however, the specified string becomes the real
argument for the dummy argument that matches the specified name,
whether or not the dummy argument was defined with a keyword. If a
match fails, the entire argument specification is treated as the next
positional real argument.

A keyword argument may be specified anywhere in the dummy argument
list of a macro definition and is part of the positional ordering of
argument. A keyword argument may also be specified anywhere in the
real argument 1ist of a macro call but, in this case, does not aifect
the positional ordering of the arguments.

1 .LIST ME
2 ;
3 ; Define a macro having keywords in dummy argument
4 ; list
5 ;
6 .MACRO TEST CONTRL=1,BLOCK,ADDRES=TEMP
7 .WORD CONTRL
8 .WORD BLOCK
e .WORD ADDRES
10 . ENDM
11
12
13 :
14 ; Now invoke several times
15 :
16
17 000000 TEST A,B,C
000000 000A00G .WORD A
000002 000000G .WORD B
00004 0Q00ABOG .WORD C
18
19 0000066 TEST ADDRES=20,BLOCK=3@,CONTRL=40
po0006 Q00040 .WORD 49
000810 0NOGQ30 .WORD 30
p00012 000020 .WORD 20
20
21 900014 TEST BLOCK=5
000P014 000001 .WORD 1
00pd16 000GE5 .WORD 5
po0320 Q0G000G .WORD TEMP

MACRO DIRECTIVES

22
23 @ogp22 TEST CONTRL=5 ,ADDRES=VARIAB
po0G22 AOGOO5 .WORD 5
pooB24 Q000006 .WORD
pogo26 0OBBOGG .WORD VARIAB
24
25 0000330 TEST
2003306 000001 .WORD 1
300332 0AG0OAG .WORD
000E34 0OABGOG .WORD TEMP
26
27 2006036 TEST ADDRES=JACK!JILL
236036 GG0801 .WORD 1
eAeo4eg 0poaa0 .WORD
200042 000B008C .WORD JACKI!JILL
28
29
30 7oaeal . END

7.3.7 Concatenation of Macro Arguments

The apostrophe or single quote character (') operates as a legal
delimiting character 1in macro definitions. A single quote that
precedes and/or follows a dummy argument in a macro definition 1is
removed, and the substitution of the real argument occurs at that
point. For example, in the following statements:

.MACRO DEF a,B,C,

A'B: .ASCIZ /C/
.BYTE ''A,''B
. ENDM

when the macro DEF is called through the statement:
DEF X,Y¥,<MACRO-11>
it is expanded, as follows:

XY: .ASCIZ /MACRO-11/
.BYTE 'X,'Y

In expanding the first 1line, the scan for the first argument
terminates upon finding the first apostrophe (') character. Since A
is a dummy argument, the apostrophe (') is removed. The scan then
resumes with B; B is also noted as another dummy argument. The two
real arguments X and Y are then concatenated to form the 1label X¥:.
The third dummy argument is noted in the operand field of the .ASCIZ
directive, causing the real argument MACRO-11 to be substituted in
this field.

MACRO DIRECTIVES

When evaluating the arguments of the .BYTE directive during expansion
of the second 1line, the scan begins with the first apostrophe (')
character. Since it is neither preceded nor followed by a dummy
argument, this apostrophe remains in the macro expansion. The scan
then encounters the second apostrophe, which is followed by a dummy
argument and is therefore discarded. The scan of argument A is
terminated upon encountering the comma (,). The third apostrophe is
neither preceded nor followed by & dummy argument and again remains in
the macro expansion. The fourth (and last) apostrophe is followed by
another dummy argument and is likewise discarded. (Four apostrophe
(') characters were necessary in the macro definition to generate two
apostrophe (') characters in the macro expansion.)

7.4 MACRO ATTRIBUTE DIRECTIVES: .NARG, .NCHR, AND .NTYPE

MACRO-11 has three directives that allow the user to determine certain
attributes of macro arguments: .NARG, .NCHR, and .NTYPE. The use of
these directives permits selective modifications of a macro expansion,
depending on the nature of the arguments being passed. These
directives are described below.

.NARG

7.4.1 .NARG Directive

Format:
[label:] .NARG symbol
where: label represents an optional statement label.
symbol represents any legal symbol. This symbol 1is
equated to the number of non-keyword arguments in
the macro call currently being expanded. If a

symbol is not specified, the .NARG directive is
flagged with an error code (3) in the assembly
listing.

The .NARG directive is used to determine the number of non-keyword
arguments in the macro call currently being expanded. Hence, the
.NARG directive can appear only within a macro definition; if it
appears elsewhere, an error code (0) is generated in the assembly
listing.

An example of the .NARG directive is shown in Figure 7-1.

7.4.2 .NCHR Directive
Format:
[label:]
where: label
symbol represents
equated

MACRO DIRECTIVES

1
2
3
a4
5
6
7
8
9
10
11
12
13
14
15
14
17
18
19
20 000000
000000
21
22 000000
000001
000004
000000 000240
000002 000240
000004 000240
000006 000240
000010 000240
000012 000240
23
24 000001
Figure 7-1

+TITLE NARG

+ENABL
LLIST
+

+«MACRO NULL
+NARG
+IF EQ
JMEXIT
+IFF
+REPT
NOP
ENDM
+ENDC

+ENDM

NULL
+NARG
.IF EQ
JMEXIT
+IFF
+REPT
NOP
+ENDM
+ENIIC

NULL
+NARG
JIF EQ
JMEXIT
+IFF
+REPT
NOP
+ENDM
NOF
NOP
NOP
NOP
NOF
NOFP
+ENDC

+END

.NCHR symbol,<string>

represents an optional statement label.

error code (A)

represents

any legal
to the number
specified character string.
specified,

.LC

ME

Examrle of the NARG directive

NUM
SYM
SYM

NUM

SYM
SYM

SYM
SYM

-]

Example of ,NARG Directive

symbol.

.NCHR

characters

symbol is
in the
is not

the .NCHR directive is flagged with an

any 1legal

and/or tab).

in the assembly listing.

separator

(comma,

space,

<string>

MACRO DIRECTIVES

represents a string of printable characters. If
the character string contains a legal separator
(comma, space, and/or tab) the whole string must
be enclosed within angle brackets (<>) or
up-arrows (). If the delimiting characters do
not match or if the ending delimiter cannot be
detected because of a syntactical error in the
character string (thus prematurely terminating its
evaluation), the .NCHR directive is flagged with
an error code (A) in the assembly listing.

The .NCHR directive, which can appear anywhere in a MACRO-11 program,
is used to determine the number of characters in a specified character
string. This directive is useful in calculating the length of macro

arguments.

An example of the .NCHR directive is shown in Figure 7-2.

1 +TITLE NCHR

2

3 +ENABL LC

4 WLIST ME

5 it

3 i Illustrate the .NCHR directive
7 i-

8

9 «MACRO STRING MESSAG

10 + NCHR $#95HESSAD
11 +WORD $%%

12 +ASCII /MESSAG/
13 +EVEN

14 +ENDM

15

16 000000 MSG1¢ STRING <Hello>

000005
000000 00000%

«NCHR $$$,Hello
+WORD $3s

000002 110 JASCII /Hello/
000003 145
000004 154
000005 154
000006 157
EVEN
17
18 000001 <END
Figure 7-2 Example of .NCHR Directive

7.4.3 NTYPE Directive

Format:
[label:] .NTYPE symbol,aexp
where: label represents an optional statement label.
symbol represents any legal symbol. This symbol is
equated to the 6-bit addressing mode of the

.NTYPE

following expression (aexp). 1If a symbol 1is not
the .NTYPE directive is flagged with an

specified,
error code (A)

in the assembly listing.

MACRO DIRECTIVES

' represents any legal separator (comma, space,
and/or tab).

aexp represents any legal address expression, as used
with an opcode. 1If no argument is specified, an
error code (A) will appear in the assembly
listing.

The .NTYPE directive is used to determine the addressing mode of a
specified macro argument. Hence, the .NTYPE directive can appear only
within a macro definition; if it appears elsewhere, it 1is flagged
with an error code (0) in the assembly listing.

An example of the use of an .NTYPE directive in a macro definition is
shown in Figure 7-3.

1 «TITLE NTYPE
2
3 +ENABL LC
4 +LIST ME
S
& it
7 5 Illustrate the NTYPE directive
8 i-
9
10 +MACRD SAVE ARG
11 +NTYPE $$$,ARG
12 +IF EQ $%$870
12 MOV ARGs - (SP) iSave in redister mode
14 +IFF
15 MOV #ARG,»-(SP) iSave in non-redister mode
16 +ENDC
17 +ENDM
i8
1% 000000 SAVE R1
000001 +NTYFE $$$,R1
JIF EG $$3i70
000000 010146 MOV R1s-(SP) iSave in redister wmode
+ IFF
MOV #R1,-(SP) iSave in non-redgister mode
+ENDC
20
21 000002 SAVE TEMP
000067 +NTYFE $$$,TEMP
+IF EQ $%$%%70
MOV TEMPy - (SP) iSave in redister mode
+IFF
000002 012746 MOV $TEMP»~(5P) iSave in non-redister mode
0000067
+ENDC
22
23 000006 000000 TEMP! +WORD 0
24
25 000001 +END

Figure 7-3 Example of .NTYPE Directive in Macro Definition

For additional information concerning addressing modes, refer to
Chapter 5 and Appendix B.2.

.ERROR

7.5 .ERROR AND .PRINT DIRECTIVES

Format:
[label:] . ERROR [expr] ;text
where: label represents an optional statement label.

expr represents an optional expression whose value |is
output when the .ERROR directive is encountered
during assembly.

; denotes the beginning of the text string.

text represents the message associated with the .ERROR
directive.

The .ERROR directive is used to output messages to the 1listing file
during assembly pass 2. A common use of this directive is to alert
the user to a rejected or erroneous macro call or to the existence of
an 1illegal set ot <conditions in a conditional assembly. If the
listing file is not specified, the .ERROR messages are output to the
command output device.

Upon encountering an .ERROR directive anywhere in a source pProgram,
MACRO-11 outputs a single line containing:

1. An error code (P)

2. The sequence number of the .ERROR directive statement

1o}

Ll

o
3
[¢]

value cf the current location co
The value of the expression, if one is specified
5. The source line containing the .ERROR directive.
For example, the following directive:
.ERROR A ;Invalid macro argument

causes a line in the following form to be output to the listing file:

Seq. Loc. Exp.
No. No. Value Text
P 512 @05642 0Q@EA76 .ERROR A ;Invalid macro argument

MACRO DIRECTIVES

PRINT

The .PRINT directive is identical in function to the .ERROR directive,
except that it is not flagged with the error code (P).

7.6 INDEFINITE REPEAT BLOCK DIRECTIVES: .IRP AND .IRPC

An indefinite repeat block is similar to a macro definition with only
one dummy argument. At each expansion of the indefinite repeat range,
this dummy argument is replaced with successive elements of a real
argument list, Since the repeat directive and its associated range
are coded in-line within the source program, this type of macro
definition and expansion does not require calling the macro by name,
as required in the expansion of the conventional macros previously
described in this chapter.

An indefinite repeat block can appear either within or outside another
macro definition, indefinite repeat block, or repeat block. The rules
for specifying indefinite repeat block arguments are the same as for
specifying macro arguments (see Section 7.3).

7.6.1 JIRP Directive IRP

Format:

[label:] .IRP sym,<argument list>
(range of indefinite repeat block)

. ENDM

where: label represents an optional statement label.

NOTE

Although it is legal for a label to appear
on a .MACRO directive, this practice is
discouraged, especially in the <case of
nested macro definitions, because invalid
labels or 1labels constructed with the
concatenation character will cause the
macro directive to be ignored. This may
result in improper termination of the
macro definition.

This NOTE also applies to .IRPC and .REPT.

MACRO DIRECTIVES

sym represents a dummy argument that is replaced with
successive real arguments from within the angle
brackets. If no dummy argument is specified, the
.IRP directive 1is flagged with an error code (A)
in the assembly listing.

’ represents any legal separator (comma, space,
and/or tab).

<argument list> represents a 1list of real arguments enclosed
within angle brackets that is to be used in the
expansion of the indefinite repeat range. A real
argument may consist of one or more characters;
multiple arguments must be separated by any legal
separator (comma, space, and/or tab). If no real
arguments are specified, no action is taken.

range represents the block of code to be repeated once
for each occurrence of a real argument in the
list. The range may contain other macro
definitions, repeat ranges and/or the (MEXIT
directive (see Section 7.1.3).

. ENDM indicates the end of the indefinite repeat block

range.
The .IRP directive is used to replace a dummy argument with successive
real arguments specified in an argument string. This replacement

process occurs during the expansion of an 1indefinite repeat block
range.

An example of the use of the .IRP directive is shown in Figure 7-4.

ImnA
7.6.2 JIRPC Directive 'er\'

Format:

[label:] L.IRPC sym,<string>

(range of indefinite repeat block)

. ENDM
where: label represents an optional statement label (see Note
in Section 7.6.1).
sym represents a dummy argument that is replaced with

successive real arguments from within the angle
brackets. If no dummy argument is specified, the
.IRPC directive is flagged with an error code (A)
in the assembly listing.

MACRO DIRECTIVES

, represents any legal separator (comma, space,
and/or tab).

<string> represents a list of characters, enclosed within
angle brackets, to be used in the expansion of the
indefinite repeat range. Although the angle
brackets are required only when the string
contains separating characters, their use is
recommended for legibility.

range represents the block of code to be repeated once
for each occurrence of a character in the list.
The range may contain macro definitions, repeat
ranges and/or the (MEXIT directive (see Section
7.1.3).

. ENDM indicates the end of the indefinite repeat block
range.

The J.IRPC directive 1is available to permit single character
substitution, rather than argument substitution. On each iteration of
the indefinite repeat range, the dummy argument 1is replaced with
successive characters in the specified string.

An example of the use of the .IRPC directive is shown in Figure 7-4,

1 +TITLE IRPTST
2
3 +LIST ME
4 it
5 $ Illustrate the .IRP and .IRPC directives
6 3 by creating 3 rair of RADSO tables
7 §-
8
? 000000 REGS? + IRP REG»<FC+»SP+RS»R4sR3I+R2yR1,RO>
10 +RAD50 /REG/
11 +ENDR
000000 062170 »RADS0 /PC/
000002 074500 +RADSO /SP/
000004 072770 +RADS50 /RS/
000006 072720 +RADS0 /R4/
000010 072650 +RADS0 /R3/
000012 072600 +RADSO /R2/
000014 072530 +RADSO /R1/
000016 072460 +RADSO /RO/
12
13 000020 REGS2: IRPC NUM»<76543210>
14 +RADSO /R/NUM/
15 +ENDR
000020 073110 +RADSO /R7/
000022 073040 +RADSO /Ré&/
000024 072770 +RADSO /RS/
000026 072720 +RADSO /R4/
000030 072650 +RADS0 /R3/
000032 072600 +RADSO /R2/
000034 072530 +RADSO0 /R1/
000036 072440 +RADSO /RO/
16
17 000001 +END

Figure 7-4 Example of .IRP and .IRPC Directives

MACRO DIRECTIVES

7.7 REPEAT BLOCK DIRECTIVE: .REPT, .ENDR .
Format:
[label:] .REPT exp

(range of repeat block)

.

. ENDR

where: label

exp

range

. ENDM
or
. ENDR

represents an optional statement label (see Note
in Section 7.6.1).

represents any legal expression. This value
controls the number of times the block of code is
to be assembled within the program. When the
expression value 1is less than or equal to zero
(8), the repeat block is not assembled. If this
expression 1is not an absolute value, the .REPT
statement is flagged with an error code (A) in the
assembly listing.

represents the block of code to be repeated. The
repeat block may contain macro definitions,
indefinite’ repeat blocks, other repeat blocks
and/or the .MEXIT directive (s t 7.1.3).

eCtion

[t}
[}

]

indicates the end of the repeat block range.

The .REPT directive is used to duplicate a block of code, a certain
number of times, in line with other source code.

7.8 MACRO LIBRARY

DIRECTIVE: .MCALL

.MCALL

.MCALL argl,arg2,...argn

Format:

where: argl,
arg2,...
argn

represent the symbolic names of the macro
definitions required in the assembly of the source
program. The names must be separated by any legal
separator (comma, space, and/or tab).

MACRO DIRECTIVES

The .MCALL directive allows you to indicate in advance those system
and/or user-defined macro definitions that are not defined within the
source program but which are required to assemble the program. The
.MCALL directive must appear before the first occurrence of a call to
any externally defined macro:

e Auto-Mcall mode is disabled (the default)

or

e The name of the macro being called is one of MACRO's permanent
symbols or directives, such as SUB, .ERROR, or .PRINT.

The /ML switch (see Section 8.1.3) under RSX-11M and the /LIBRARY
qualifier (see Section 8.2.2) under IAS and RT-11, used with an input
file specification, indicate teo MACRO-11 that the file 1is a macro
library. Additional macro libraries to be searched may also be
specified in the MACRO-11 program itself, using the MACRO-11 .LIBRARY
directive. See Section 6.10.1 for a description of the .LIBRARY
directive. When a macro call is encountered in the source program,
MACRO-11 first searches the user macro library for the named macro
definitions, and, if necessary, continues the search with the system
macro library.

Any number of such user-supplied macro files may be designated. For
multiple 1library files, the search for the named macros begins with
the last such file specified. The files are searched in reverse order
until the required macro definitions are found, finishing, 1if
necessary, with a search of the system macro library.

If any named macro is not found upon completion of the search, the
.MCALL statement is flagged with an error code (U) in the assembly
listing. Furthermore, a statement elsewhere in the source program
that attempts to expand such an undefined macro is flagged with an
error code {(0) in the assembly listing.

The command strings to MACRO-11, through which file specifications are

supplied, are described in detail in the applicable system manual (see
Section 0.3 in the Preface).

7.9 MACRO DELETION DIRECTIVE: .MDELETE 'MDELETE

Format:

.MDELETE namel,name2,...,namen

where: namel, represent legal macro names. When multiple
nameZ,... names are specified, they are separated by
namen any legal separator (comma, space, and/or tab).

The .MDELETE directive deletes the definitions of the specified
macro(s), freeing wvirtual memory. If references are made to deleted
macros, the referencing line is flagged with an opcode (0) error.

An example of the ,MDELETE directive is shown below.

.MDELETE .EXIT,EXITSS

CHAPTER 8

IAS/RSX-11M/RSX-11M-PLUS OPERATING PROCEDURES

MACRO-11 assembles one or more ASCII source files containing MACRO-11
statements 1into a single relocatable binary object file. This binary
object file contains the table of contents 1listing, the assembly
listing, and the symbol table listing. An optional cross-reference
listing of symbols and macros is available. A sample assembly listing
is provided in Appendix H.

8.1 RSX-11M/RSX-11M-PLUS OPERATING PROCEDURES

On RSX-11M and RSX-11M-PLUS systems, two command languages are
available: the Monitor Console Routine (MCR) and the DIGITAL Command
Language (DCL). When you log onto the system, you are given either
MCR or DCL as the default command language. Your default command
language is contained in your account file,

By typing CTRL/C ("C) from the monitor prompt, you can see the
explicit prompt for the command language you are currently using.

~

> °C
MCR>

> “C
DCL>

You can switch from one command language to the other. To switch from
DCL to MCR, type the following command:

DCL> SET TERMINAL MCR
To switch from MCR to DCL, type the following command:

MCR> SET /DCL=TI:
In addition to switching from one command language to the other, you
can type a DCL command from a terminal set to MCR, and an MCR command
from a terminal set to DCL, as shown below:

MCR> DCL cmd-string

DCL> MCR cmd-string

TAS/RSX-11M/RQYX-11M-PIIIS OPRRATTNG PROCEDIRES

8.1.1 1Initiating MACRO-11 Under RSX-11M/RSX-11M-PLUS

The following sections describe those MACRO-11 operating procedures
that apply to both the Monitor Console Routine and the DIGITAL Command

Language. Any one of the four methods shown below may be employed to
initiate MACRO-11.

8.1.1.1 Method 1 - Direct MACRO-11 Call
MCR Format:

MCR>MAC
MAC>cmd-string

The Monitor Console Routine (MCR) accepts MAC as 1input, causing
MACRO-11 to be activated. Since a command string is not present with
the MCR line, MACRO-11 then solicits input with the prompting sequence
MAC> and waits for command string input. After the assembly of the
indicated files has been completed, MACRO-11 again solicits command
string input with the MAC> prompting sequence. This process will be
repeated until CTRL/Z ("Z) is entered.

DCL Format:

DCL> MACROI[/qua

lifier(s)
File(s)? filespec

fi s)]

[/qualifiers]...

DCL accepts MACRO as 1input. In addition, you may include the
qualifiers <contained 1in Table 8-3. Since no file specifications are
included in the DCL command line, MACRO-11 solicits 1input with the

File(s) prompt. You can then enter the name of one or more source
files plus any of the gualifiers listed in Table 8-4. When you press

RETURN, MACRO-11 performs the assembly.

8.1.1.2 Method 2 - Single Assembly
MCR Format:
MCR>MAC cmd-string
DCL Format:
DCL> MACRO cmd-string
In method 2, no prompting from MACRO-11 occurs, since the command

string input is included in the command line. MACR0O-11 then assembles
the source files in the command string and exits when finished.

8.1.1.3 Method 3 - Install, Run Immediately, and Remove On Exit

Format:

>RUN $MAC
MAC>cmd-string

IAS/RSX-11M/RSX-11M-PLUS OPERATING PROCEDURES

This method is used when the MACRO-11 assembler is not permanently
installed in the system. On RSX-11M, the system must be generated for
this type of call support. MAC is run from the system directory.
MACRO-11 solicits command string input. The command string must have
the MCR format even if run from a DCL terminal. When MACRO-11 exits,
it is automatically removed from the system.

If the system has the "flying install" feature, the RUN $ calling
format is not needed.

8.1.1.4 Method 4 - Using the Indirect Command Processor
MCR Formats:

MCR>MAC
MAC>@filespec

or
MCR>MAC @filespec
or

MAC>RUN SMAC[/UIC=[g,m]]
MAC>@filespec

These forms use the indirect comman processocr, which effectively
accomplishes the substitution of "@filespec" for the "cmd-string"
input employed in methods 1 through 3. In these formats, the indirect
command processor is passing commands to the assembler. The file
specified as "@filespec" contains MACRO-11 command strings. After
this file 1is opened, command lines are read from the file until the
end-of-file is detected. Three nested levels of indirect files are
permitted in MACRO-11.

MCR and DCL Format:
DCL> @filespec

These forms use the indirect command processor to pass commands to the
command language. This 1is the only form you can use with DCL. The
indirect command file "@filespec" must contain one of the command
lines to initiate MACRO-11 as listed in methods 1 through 3.

NOTE

MACRO-11 can be terminated by entering a
CTRL/Z ("Z) at any time a request for
input is present.

L Ol 11

command st ing

8.1.2 Default File Specifications

MACRO-11 accepts as input or creates as output up to six types of
files. When using the MACRO-11 assembler, you should keep in mind the
default device, directory, name, and types listed in Table 8-1. Table
8-1 lists the default values for each file specification.

IAS/RSX-11M/RSX-11M-PLUS OPERATING PROCEDURES

Table 8-1
File Specification Default Values

Default Values

File Device Directory Filename Type
Object Your default Current None .OBJ
File volume
Listing Device used Directory None .LST
File for object used in
file Object file

Source Your default Current; None .MAC
Files volume used for

source 1

or device of

last source

file speci-

fied
user Your default Current, if None .MLB
Macro volume macro file
Library is specified

first; if not,

directory of

last source

file
System Library [1,1] RSXMAC .SML
Macro device
Library
Indirect Your default Current None .CMD
Command volume
File

8.1.3 MCR Command String Format

In response to the MAC> prompting sequence printed by MACRO-11, type
the output and input file specifications in the form shown below:
MAC>object,listing=srcl,src2,...,srcn
where: object represents the binary object (output) file.
listing represents the assembly 1listing (output) £file
containing the table of contents, the assembly
listing, and the symbol table.
= separates output file specifications from input
file specifications.
srcl, represent the ASCII source (input) files
SIC2,44. containing the MACRO-11 source program or the
srcn user-supplied macro library files to be assembled.

IAS/RSX-11M/RSX-11M-PLUS OPERATING PROCEDURES

Only two output file specifications in the command string will be
recognized by MACRO-11; any more than two such files will be ignored.
No limit is set on the number of source input files. If the entire
command string is longer than 86 characters and less than or equal to
132 characters, a hyphen can be placed at the end of the first line as
a continuation character.

A null specification in either of the output file specification fields
signifies that the associated output file is not desired. A null
specification in the input file field, however, is an error condition,
resulting in the error message "MAC -- Illegal filename" on the
command output device (see Section 8.5). Note that the absence of
both the device name (dev:) and the name of the file (filename.type)
from a file specification is the equivalent of a null specification.

NOTE

When no listing file is specified, any
errors encountered in the source program
are printed on the terminal from which
MACRO-11 was initiated. When the /NL
switch is wused in the 1listing file
specification without an argument, the
errors and symbol table are output to
the file specified.

(o]
(V)
Q
o
H
Jae
'_l
D
1]
o}
D
Q
.
-
"™
0
3]
-+
O
3
Q
o}
3
+
V]
I
3

ins the following information:

filespec /switch:value ...
where: filespec is the standard file specification.

/switch represents an ASCII name identifying a switch
option. This switch option may be specified in
three forms, as shown below, depending on the
function desired:

/switch Invokes the specified switch
action.

/noswitch Negates the specified switch
action.

/-switch Also negates the specified

switch action.

In addition, the switch identifier may be
accompanied by any number of the following values:
ASCII character strings, octal numbers, or decimal
numbers. The default assumption for a numeric
value is octal. Decimal values must be followed
by a decimal point (.).
Any numeric value preceded by a number sign (#) is
regarded as an explicit octal declaration; this
option is provided for documentation purposes and
ready identification of octal values.

Also, any numeric value can be preceded by a plus
sign (+) or a minus (-) sign. The positive
specification is the default assumption. If an

IAS/RSX~11M/RSX-11M~PLUS OPERATING PROCEDURES

explicit octal declaration is specified (#), the
sign indicator, if 1included, must precede the
number sign.

All switch values must be preceded by a colon (:).

The switch specifications are interpreted in the
context of the program to which they apply. The
switch options applicable to MACRO-11 are
described in Table 8-2 below.

A syntax error detected in the command string causes MACRO-11 to
output the following error message to the command output device:

MAC -- Command syntax error
followed by a copy of the entire command string.

At assembly time, you may want to override certain MACRO-11 directives
appearing in the source program or to provide MACRO-11 with
information establishing how certain files are to be handled during
assembly. You can do so through one or more switches, which may be
selectively invoked as additional parameters in each file
specification. The available switches for use in MACRO-11 file
specifications under RSX-11M/RSX-11M-PLUS are listed in Table 8-2.

Table 8-2
MACRO-11 File Specification Switches

Switch Function
/LI:arg Listing control switches; these options accept
/NL:arg ASCII switch values (arg) which are equivalent

in function and name to and override the
arguments of the .LIST and .NLIST directives
specified in the source program (see Section
6.1.1). This switch overrides the arguments and

remains in effect for the entire assembly
process.
/EN:arg Function control switches; these options accept
/DS:arg ASCII switch values (arg) which are equivalent

in function and name to and override the
arguments of the .ENABL and .DSABL directives
specified in the source program (see Section
6.2.1). This switch overrides the arguments and
remains in effect for the entire assembly
process.

/ML (see Note) The /ML switch, which takes no accompanying
switch wvalues, 1indicates to MACRO-11 that an
input file is a macro library file. As noted in
Section 7.8, any macro that 1is defined
externally must be identified in the .MCALL
directive before it can be retrieved from a
macro library file and assembled with the user
program. In locating macro definitions,
MACRO-11 initiates a fixed search algorithm,

(continued on next page)

IAS/RSX-11M/RSX-11M-PLUS OPERATING PROCEDURES

Table 8-2 (Cont.)
MACRO-11 File Specification Switches

Switch Function
/ML (Cont.) beginning with the 1last user macro file
specified, continuing in reverse order with each
such file specified, and terminating, if

necessary, with a search of the system macro
library file. 1If a required macro definition is
not found upon completion of the search, an
error code (U) results in the assembly 1listing.
This means that a user macro library file must
be specified in the command line or by using the
MACRO-11 .LIBRARY directive (see Section 6.10.1)
prior to the source file(s) that wuse macros
defined in the library file.

MACRO-11 does not pre-scan the command line for
macro libraries; when a new source file is
needed, it parses the next input file
specification. If that file specification
contains the /ML switch, it is appended to the
front of the library file list. As a result, a
user macro library file must be specified in the
command line prior t the source files which

o]
reguir it in order to resolve macro
requir 1T, in gcraer e resc.ive macr

definitions.

/SP Spool listing output (default value).

/NOSP Do net spool output.

/CR:[arg] Produce a cross-reference listing (see Section
8.3).

Switches for the object file are 1limited to /EN and /DS; when
specified, they apply throughout the entire command string. Switch
options for the listing file are limited to /LI, /NL, /SP, /CR, and
/NOSP. Switches for input files are limited to /ML, /EN, and /DS;
the option /ML applies only to the file 1immediately preceding the
option so specified, whereas the /EN and /DS options, as noted above,
are also applicable to subsequent files in the command string.

Multiple occurrences of the same switch following a file specification
must be avoided, because the accompanying values of a subsequent like
switch specification override any previously-specified values. If two
such switch values are desired, they can be specified in the form
shown below:

/LI:SRC:MEB

IAS/RSX-11M/RSX-11M-PLUS OPERATING PROCEDURES

8.1.4 DCL Operating Procedures

RSX-11M/RSX-11M-PLUS indicates its readiness to accept a command by
prompting with the DCL prompt. 1In response to the prompt, enter the
command string in one of the formats shown below:

>MACRO[/qualifiers]

FILE? filespec[/qualifier[s]][,filespec[/qualifier[s]]...]

or

[DCL] >MACRO[/qualifiers] filespec|/qualifier([s]][,filespec{/qualifier(s]]...]

where: qualifiers

filespec

You use the comma (,)

affect either the entire command string
(command qualifiers) or the filespec
(parameter qualifiers). See Table 8-3 for a
description of the command qualifiers and
Table 8-4 for a description of the parameter
qualifiers.

is the standard file specification shown 1in
Section 8.4.

to separate file specifications. MACRO-11

concatenates all the files and then performs the assembly.

Table 8-3
DCL Command Qualifiers

Qualifier

Function

/[NO]JCROSS REFERENCE

/DSABLE:arg
/ENABLE:arg
/DSABLE: (arg,arg...)
/ENABLE: (arg,arg...)

Argument

ABSOLUTE

Suppresses or generates a
cross-reference 1listing (see Section
8.3). When the <cross-reference is
generated, a 1listing file 1is also
generated, whether or not the /LIST
qualifier 1s present 1in the command
string.

/NOCROSS_REFERENCE is the default.

Overrides the .DSABLE or .ENABLE
assembler directives 1in the source
program. When more than one argument
is entered, arguments must be enclosed
in parentheses and separated by
commas.

You can specify any of the following
arguments with the /DSABLE or /ENABLE
qualifier.

Enabling this function causes all
relative addresses (address mode
67) to be assembled as absolute
addresses (address mode 37).

(continued on next page)

IAS/RSX-11M/RSX-11M-PLUS OPERATING PROCEDURES

Table 8-3

{(Cont.)

DCL Command Qualifiers

Qualifier

ABSOLUTE (Cont.)

AUTO_MCALL

CARD FORMAT

CASE_MATCH

GLOBAL

By default, the ABSOLUTE argument
is disabled.

Enabling the AUTO MCALL argument
causes MACRO-11 ~to search all
known macro libraries for a macro
definition that matches any
undefined symbols appearing 1in
the opcode field of a MACRO-11
statement.

By default, this option is
disabled and if MACRO-11 finds an
unknown symbol in the opcode
field, it either declares a (U)
undefined symbol error, or
declares the symbol as an
external symbol, depending upon
the GLOBAL argument described
below.

Enabling this function produces
absolute binary output in
FILES-11 format.

By default, the BINARY argument
is disabled.

This function, when enabled,
treats columns 73 through the end
of the line as comments.

By default, the CARD FORMAT
argument is disabled.

Enabling the CASE MATCH argument
causes the MACRO-11 conditional
assembly directives .IF 1IDN/.IF
DIF to be alphabetically case
sensitive.

By default these directives are
not case sensitive.

Disablinag this

ion cance
isa2i1ng o]

i1 LausT

MACRO-11 to flag all undefined
symbol references with an error
code (U) on the assembly listing.

By default, the GLOBAL argument
is enabled and MACRO-11 treats
all symbols that are undefined at
the end of assembly pass 1 as
default global references.

(continued on next page)

IAS/RSX-11M/RSX-11M-PLUS OPERATING PROCEDURES

Table 8-3 (Cont.)
DCL Command Qualifiers

Qualifier

Function

LOCAL

LOWER CASE

REGISTER
DEFINITIONS

TRUNCATION

Enabling the LOCAL argument
causes the assembler to treat all
symbols as local symbols. When
enabled, all global symbols are
flagged with the U (undefined
symbol) error message.

By default, the LOCAL argument is
disabled.

Enabling this function causes
MACRO-11 to accept 1lower-case
ASCII input.

Disabling this function causes
MACRO-11 to convert Ilower-case
ASCII input to upper-case.

By default, the LOWER CASE
argument is enabled.

Disabling this function <causes
MACRO-11 to 1ignore the normal
register definitions.

By default, register definitions
are enabled.

When this function 1is enabled,
MACRO-11 performs floating-point
truncation.

When this function 1is disabled,
MACRO-11 performs floating-point
rounding.

The TRUNCATION argument is
disabled by default.

(continued on next page)

IAS/RSX-11M/RSX-11M-PLUS OPERATING PROCEDURES

Table 8-3 (Cont.)
DCL Command Qualifiers

Qualifier

Function

/INOJLIST[:filespec]

/[NO]OBJECT[:filespec]

/[NOISHOW:arg
/[NO]SHOW: (arg,arg...)

Argument

Specifies whether or not the assembler
should <create and print a 1listing
file. You can include /LIST as a
qualifier for either a command or a
file specification. 1f /LIST
qualifies the command, the listing
file is both entered in your directory
and printed on the line printer. 1If
you do not include a file
specification, the listing file has a
.LST file type and is named after the
last file named in the MACRO command.
The listing file cannot be a 1library
file. (The LINK command and all other
language commands use the name of the
first file named in the command as the
default file name.) If /LIST qualifies
a file specification, the file is
entered in your directory but is not
printed on the 1line printer. The
listing file is named after the file
it qualifies.

The default is /NOLIST.
/NOLIST is the default qualifier.

Indicates whether or not the assembler
should create an object module. 1If
you do not include a file
specification in the command line, the
assembler creates an object file with
the same file name as the source file
and an .0OBJ extension.

/OBJECT is the default qualifier.

Overrides the .LIST and .NLIST
assembler directives that may be
included 1in the source file. You can
use any of the following arguments
with the /SHOW qualifier.

Controls the 1listing of macro
expansion binary code.

Controls listing of macro calls
and repeat range expansions.

(continued on next page)

TAS/RSY-11M/RSX-11M-PLIIS OPERATING PROCEDIIRES

Table 8-3 (Cont.)
DCL Command Qualifiers

Qualifier Function

COMMENTS Controls listing of comments.

CONDITIONALS Controls listing of unsatisfied
conditional coding.

CONTENTS Controls listing of the table of
contents during assembly pass 1.

COUNTER Controls listing of the current
location counter field.

DEFINITIONS Controls listing of macro
definitions and repeat range

expansions.

EXPANSIONS Controls listing of macro
expansions.

EXTENSIONS Controls listing of binary
cxpansions,

LISTING DIRECTIVES Controls listing of listing
control directives without

arguments, that 1is, directives
that alter the 1listing level
counter,

OBJECT_ BINARY Controls listing of the generated
binary code.

SEQUENCE NUMBERS Controls listing of source 1line
sequence numbers.

SOURCE Controls listing of source lines.
SYMBOLS Controls listing of the symbol
table resulting from the
assembly.
/[NOJWIDE When set to WIDE, the 1listing is

printed in 132 column format. When
set to /NOWIDE, the listing is printed

in 8¢ column format. /NOWIDE is the
default qualifier.

IAS/RSX-11M/RSX-11M-PLUS OPERATING PROCEDURES

Table 8-4
DCL Parameter Qualifiers

Qualifier Function

/LIBRARY Specifies that an input file is a macro library file.

The assembler processes the files 1listed 1in the
command line in reverse order. Therefore, a library
file cannot be the last file in the command line.

8.1.5 MACRO-11 Command String Examples

1. The following command strings assemble the source file
FILNAM.MAC into a relocatable object module named FILNAM.OBJ.

MCR> MAC FILNAM=FILNAM

DCL> MACRO

FILE? FILNAM
DCL> MACRO FILNAM
2. The following command strings assemble the source file
FILNAM.MAC and produce an object £file with the name
TESTA.OBJ.
MCR> MAC TESTA=FILNAM
DCL> MACRO/OBJECT:TESTA FILNAM
3. The following command strings concatenate and assemble the
source files named FILNAM.MLB, TESTA.MAC, SPAN3.MAC, and
SHELL.MAC and create an object file named SHELL.OBJ.
MCR> MAC SHELL=FILNAM/ML,TESTA,SPAN3,SHELL
DCL> MACRO FILNAM/LIBRARY,TESTA,SPAN3,SHELL
4. The following command strings produce an object module and an
assembly 1listing. Any .LIST TTM or .LIST COM directives in
the source file are ignored. The listing produced by this

command has no comments included and is printed in wide
format.

MCR> MAC FILNAM,FILNAM/NL:TTM:COM=FILNAM

DCL> MACRO/LIST/NOSHOW:COMMENTS/WIDE FILNAM

TAS/RSX-11M/RSX-11M-PLUS OPRRATING PROCEDURES

8.2 IAS MACRO-11 OPERATING PROCEDURES

The following sections describe those MACRO-11 operating procedures
that apply exclusively to the IAS system.

8.2.1 1Initiating MACRO-11 Under IAS

The MACRO command, used under IAS, causes MACRO-11 to assemble one or
more ASCII source files containing MACRO-11 statements into a
relocatable binary object file. The assembler will also produce an
assembly listing, followed by a symbol table 1listing. A
cross-reference 1listing can also be produced by means of the
/CROSSREFERENCE qualifier (see 8.3, below).

You can input a MACRO-11 program either directly from the terminal
(interactive mode) or from a batch file (batch mode). For interactive
mode use the MACRO command which can be 1issued whenever the IAS
Program Development System (PDS) 1s at command level, a condition
signified by the appearance of the prompt:

PDS>

For batch mode use the $MACRO command.

When the assombly is completed, MACRC-11 terminates cperaticns and
returns control to PDS. (Refer to the IAS User's Guide for further
information about interactive and batch mode operations.)
8.2.2 IAS Command String
Formats:
Interactive Mode
input
PDS> MACRO qualifiers filespec /LIBRARY +...
or
PDS> MACRO qualifiers
input
FILES? filespec /LIBRARY +...
Batch Mode
input
$MACRO qualifiers filespec /LIBRARY +...
where:
input is the specification of an input file
filespec (see Section 8.4) that contains MACRO-11

source program code. When the program
consists of multiple files, a plus sign
(+) must be used to separate each file
specification from the next. The "wild
card" form of a file specification is
not allowed.

. IAS/RSX-11M/RSX-11M-PLUS OPERATING PROCEDURES

/LIBRARY

qualifiers

output
/OBJECT[:filespec]

/NOOBJECT

output
/LIST[:filespec]

/NOLIST

specifies that an input file is a macro
library file. Library files hold the
definitions of externally defined
macros. As noted in Section 7.8, an
externally defined macro must be
identified in an .MCALL directive before
it can be retrieved and assembled with
the user program. When MACRO-11
encounters an .MCALL directive, a search
begins for the definitions of the macros
listed.

The search order is important because a
macro might have two different
definitions in library files LIBl and
LIB2. For example, 1if you need the
definition in LIB1l, then you must place
LIBl after LIB2 in the command line
because MACRO-11 searches the last file
specified in the command 1line first,
then moves backwards through the files
given until all have been searched.

If a macro's definition is not found in
any of the files named by the user,
MACRO-11 automatically searches the
system macro library; 1if the definition
is still not found, an error code (U) is
generated in the assembly listing.

specifies one or more of the following:

produces an object file as
specified by filespec (see Section
8.4). The default is a file with
the same filename as the last named
source file and an .OBJ extension.
/OBJECT 1is always the default
condition.

does not produce an object file.

produces an assembly 1listing file
according to filespec (see Section
8.4). If filespec is not
specified, the listing is printed
on the 1line printer. The default
in interactive mode is /NOLIST and
in batch mode is /LIST.

does not produce a 1listing file.

The default in interactive mode is
/NOLIST and in batch mode is /LIST.

NOTE

When no listing file is specified, any
errors encountered in the source program
are displayed at the terminal from which
MACRO-11 was initiated.

/CROSSREFERENCE([:argl...arg4]

produces a cross-reference listing.
Argl through arg4 are described in
Section 8.3. This qualifier may be
abbreviated to /C.

A MACRO-11 command string can be specified using any one of the three
formats shown above for the interactive and batch modes. In
interactive mode, if the input file specification (filespec) does not
begin on the same line as the MACRO command and its qualifiers, PDS
prints the following prompting message:

FILES?
then waits for the user to specify the input file(s).

In batch mode, the $MACRO command and its arguments must appear on the
same line unless the PDS line continuation symbol (-) is used.

8.2.3 1IAS Indirect Command Files
Format:

gfllespec

where:
@ specifies that the name that follows is an
indirect file.
filespec is the file specification (see Section 8.4) of a
file that contains a command string. The default
extension for the file name is .CMD,
The indirect command file facility of PDS can be used with MACRC-11

command strings. This is accomplished by creating an ASCII file that
contains the desired command strings (or ©portions thereof) in the
forms shown in Section 8.2.2. When an indirect command file reference
is used in a MACRO-11 command string, the contents of the specified
file are taken as all or part of the command string.

An indirect command file reference must always be the rightmost entry
in the command (see Section 8.2.4 for examples).

8.2.4 1IAS Command String Examples

The following examples show typical PDS MACRO-11 command strings.

1. PDS> MACRO /NOLIST
FILES? A+BOOT.MAC;3

In this example, the source files A.MAC and BOOT.MAC;3 will

be assembled to produce an object file called BOOT.OBJ. No
listing will be produced.

8-16

IAS/RSX-11M/RSX-11M-PLUS OPERATING PROCEDURES
2. wheye the indirect command file TEST.CMD contains the command
string:
MACRO/OBJECT:MYFILE A+B
the command:
PDS>@TEST

causes MACRO-11 to assemble the two files A.MAC and B.MAC
into an object file called MYFILE.OBJ.

3. Where the indirect command file IND@2.CMD contains the
command string segment:

ATEST/LIBRARY+BTEST+SRT1.0421
the command:

PDS>MACRO/LIST:DK1:TST @INDg?2
causes MACRO-11 to assemble the files BTEST.MAC and SRT1.021
using the macro library file ATEST.MAC to produce an object
file named SRT1.0BJ. A listing file named TST.LST is placed

on disk unit 1.

4. SMACRO/LIST:DK@:MICR/NOOBJECT -
LIB1/LIBRARY+MICR.MAC; 302

In this example, the library file is assembled with the file

MICR.MAC;@02. The program listing file named MICR.LST is
placed on disk unit @.

8.3 CROSS-REFERENCE PROCESSOR (CREF)
The CREF processor is used to produce a 1listing that includes
cross-references to symbols that appear in the source program. The
cross—reference listing is appended to the assembly 1listing. Such
cross-references are helpful in debugging and in reading 1long
programs.
A cross-reference listing can include up to four sections:

1. User-defined symbols

2. Macro symbols

3. Register symbols

4, Permanent symbols

To generate a cross-reference listing, specify the /CR switch in the
MACRO-11 command string. Optional arguments can also be specified.
The form of the switch is:

SYM
/CR|: | MAC
REG
PST
SEC
ERR
where:
SYM specifies user-defined symbols (default)
MAC specifies macro symbols (default)
REG specifies register symbols
PST specifies permanent symbols
SEC specifies program sections
ERR specifies error lines (default)

If you wish to generate listings for user-defined and macro symbols
only, use /CR. No argument is necessary.

However, 1if an argument is specified, only that type of
cross~reference listing is generated. For example:

/CR:SYM

produces a cross-reference listing of user-defined symbols only. No
listing of macro symbols is generated. Thus, to produce all six types
of cross-reference listings, you must specify all six arguments (the
order in which they are specified is not significant). Use a colon to

Sarma v o e e e e Avamrl AL

Separate arguments. For example:
/CR:REG:SYM:MAC:PST:SEC:ERR

The CREF processor (CRF) is more fully described 1in the Utilities
Reference Manual supplied with your system.

Figure 8-1 illustrates a complete <cross-reference 1listing. In the
listing, references are made 1in the form page-line. To make the
listing more informative the CREF processor uses the following signs:

Sign Meaning

= somewhere in the source program the symbol listed 1is
defined by a direct assignment statement.

* destructive reference; at the line referenced by the

processor the value of the symbol 1is changed (its
previous contents destroyed).

at the line referenced by the processor the symbol
listed 1is defined by a direct assignment statement, a
colon sign (:) or a double colon sign (::).

IAS/RSX-11M/RSX-11M-PLUS OPERATING PROCEDURES

RSOUNP MACRO V05.00 Saturday 08-Jan-83 i11:47 Pase S-1
Cross reference table (CREF VY05.00)

RSOUNP Z2-16#
SYMBOL 2-17 2-25

RSOUNP MACRO V05.00 Saturdavy 08-Jan-B3 11:47 Pase R-1
Cross reference table (CREF VY05.00)

RO

R1
R2
R3
R4
SP

2-23% 2-32% 2-33% 2-43 2-45 2-48% 2-489%
2-50% 2-51% 2-52 .

2-18% 2-23

2-52+%

2-19% 2-21% 2-33

2-16 2=-17% 2-18 2-25 2-27%

2-16% 2-27

R3OUNF MACRO V05.00 Saturday 08-Jan-83 11:47 Pase C-1
Cross reference table (CREF V05.00)

Figure 8-1 Sample CREF Listing

8.4 IAS/RSX-11M/RSX-11M-PLUS FILE SPECIFICATION

Format:

dev:[g,m] name.ext;ver

where:

dev:

[g,m]

is the name of the device where the desired file
resides. A device name consists of two characters
followed by a 1- or 2-digit device unit number (octal)
and a colon (for example, DPl:, DK@:, DT3:). The
default device is specified in Table 8-1. The default
device under IAS is established initially by the system
manager for each user and can be changed through the
SET command.

is the User File Directory (UFD) code. This code
consists of a group number (octal), a comma (,) and an
owner (member) number (octal) all enclosed in brackets
({1). An example of a UFD code is: [200,30].

8-19

IAS/RSX-11M/RSX-11M-PLUS UPERATING PROCEDURES

The default UFD is equivalent to the User
Identification Code (UIC) given at log-in time. Under
IAS, the UFD can be changed through the SET DEFAULT

command.
name is the filename and consists of one through nine
alphanumeric characters. There is no default for a

filename.

.ext is a 1- to 3-alphanumeric character filename extension
or type that is preceded by a period (.). An extension
is normally used to identify the nature of the file.
Default values depend on the <context of the file
specification and are as follows:

.CMD = Indirect command (input) file
L.LST = A listing (print format) file
.MAC = MACRO-11 source module (input file)
.0OBJ = MACRO-11 object module (output file)
.CRF = Intermediate CREF input file.created by
MACRO-11.
;ver is an octal number between 1 and 77777 that is used to

differentiate between versions of the same file. This
number is prefixed by a semicolon (;).

For input files, the default wvalue 1is the highest
version number of the file that exists.

For output files, the default value 1is the highest
version number of the file that exists increased by 1.
If no version number exists, the value 1 is used.

This is the general form for a file specification in
IAS/RSX-11M/RSX-11M-PLUS systems. Detailed information is provided in
the applicable system user's guide or operating procedures manual (see
Section #.3 in the Preface).

8.5 MACRO-11 ERROR MESSAGES UNDER IAS/RSX-11M/RSX-11M-PLUS

MACRO-11 outputs an error message to the command output device when
one of the error conditions described below is detected. MACRO-11
prints below the error message the command line that caused the error.
If the error is a J.INCLUDE or a .LIBRARY directive file error,
MACRO-11 prints below the error message both the source line and the
command line that caused the error.

MAC -- Error message
MACRO-11 source line
MACRO-11 command line

These error messages reflect operational problems and should not be
confused with the -error codes (see Appendix D) produced by MACRO-11
during assembly.

IAS/RSX-11M/RSX-11M-PLUS OPERATING PROCEDURES

All the error messages listed below, with the exception of the

"MAC -- Command I/0 error" message, result in the termination of the
current assembly; MACRO-11 then attempts to restart by reading
another command 1line. In the case of a command I/0 error, however,

MACRO-11 exits, since it is unable to obtain additional command line
input. :

MAC -- Command file/open failure
Either the file from which MACRO-11 is reading a command could
not be opened initially or between assemblies; or the indirect
command file specified as "@filename" in the MACRO-11 command
line could not be opened. See "OPEN FAILURE ON INPUT FILE".

MAC -- Command I/0 error
An error was returned by the file system during MACRO-11's
attempt to read a command line. This is an unconditionally fatal
error, causing MACRO-11 to exit. No MACRO-11 restart is
attempted when this message appears.

MAC -- Command syntax error
An error was detected in the syntax of the MACRO-11 command line.

MAC -- Illegal filename
Neither the device name nor the filename was present in the input
file specification (the input file specification was null), or a
wild card convention (asterisk) was employed in an input or
output file specification.

Wildcard options (*) are not permitted in MACRO-11 file
specifications.

MAC -- Illegal switch
An illegal switch was specified for a file, an illegal value was
specified with a switch, or an invalid wuse of a switch was
detected by MACRO-11.

MAC -- .INCLUDE directive file error
The file specified in the .INCLUDE statement either does not
exist or is invalid, the device specified in the command line is
not available, or the .INCLUDE stacking depth exceeds five.

MAC -- Indirect command syntax error
The name of the indirect command file (@filename) specified in
the MACRO-11 command line is syntactically incorrect.

MAC -- Indirect file depth exceeded
An attempt to exceed the maximum allowable number of nested
indirect command files has occurred. (Three levels of indirect
command files are permitted in MACRO-11.)

MAC -- Insufficient dynamic memory
There is not enough physical memory available for MACRO-11 to

page its symbol table. Reinstall MACRO-11 in a larger partition,
or see Appendix F.3.

MAC -- Invalid format in macro library
The library file has been corrupted, or it was not produced by
the Librarian Utility Program (LBR).

MAC -- I/0 error on input file
In reading a record from a source input file or macro 1library
file, the file system detected an error; for example, a line
containing more than 132(10) characters was encountered. This
message may also indicate that a device problem exists or that
either a source file or a macro library file has been corrupted
with incorrect data.

MAC -- I/0 error on macro library file
Same meaning as I/0 error on input file, except that the file 1is
a macro library file and not a source input file.

MAC -- I/0 error on output file
In writing a record to the object output file or the 1listing
output file, an error was detected by the file system. This
message may also indicate that a device problem exists or that
the device is full.

MAC -- I/0 error on work file
A read or write error occurred on the work file used to store the
symbol table. This error is most likely caused by a problem on

the device or by attempting to write to a device that is full.

MAC -- .LIBRARY directive file error
The file specified in the ,LIBRARY statement either does not
exist or 1is invalid, the file specification in the .LIBRARY
directive is for a non-random access device, Lhe device specified
in the command 1line is not available, or the .LIBRARY stacking
depth exceeds the maximum depth allowed.

MAC -- Open failure on input file
1. Specified device does not exist.
. The volume is not mounted.
. A problem exists with the device.
. Specified directory file does not exist.
. Specified file does not exist.
. User does not have access privilege to the file directory or

to the file itself,

N U W N

MAC -- Open failure on output file
1. Specified device does not exist.
2. The volume is not mounted.
3. A problem exists with the device.
4. Specified directory file does not exist.
5. User does not have access privilege to the file directory.
6. The volume is full or the device is write protected.
7. There is insufficient space for File Control Blocks.

MAC -- 64K storage limit exceeded

64K words of work file memory are available to MACRO-11. This
message indicates that the assembler has generated so many
symbols (about 13,0060 to 14,08¢) that it has run out of space.
Either the source program is too large to start with, or it
contains a condition that leads to excessive size, such as a
macro expansion that recursively calls 1itself without a
terminating condition.

CHAPTER 9

RSTS/RT-11 OPERATING PROCEDURES

9.1 MACRO-11 UNDER RSTS

The only way a MACRO-11 program can run on a RSTS system 1is through
either the RT-11 or RSX run-time systems.
9.1.1 RT-11 Through RSTS
There are two ways to run a MACRO program under the RT-11 run-time
system:

1. Use the RT-11 Emulator. This is done by typing: SW RTI11.

The terminal will respond with the RT-11 prompt (a dot

printed by the keyboard monitor). You can then use t
commands (see Section 9.2).

2. Type the command: RUN $MACRO.SAV. The terminal will
with an asterisk (*) prompt. You can then enter a
string of the form:

OBJFIL,LSTFIL=SRC...SRC6

where: OBJFIL 1is an object (output) file with the
extension .OBJ.

LSTFIL 1is a listing (output) file with the
extension .LST.

SRC... are source (input) files with the

SRC6 extension .MAC. Six input files are
in this command.

9.1.2 RSX Through RSTS

To run a MACRO program under the RSX run-time system, t
command: RUN SMAC.TSK. The terminal will respond with:

MAC>
In answer you enter a command string of the form:

OBJFIL,LSTFIL=SRC...SRCN

he RT-11

respond

command

default

default

default
allowed

ype the

e S

RS5T3/RT-11 OPERATING PROCEDURES

where: OBJFIL is an object (output) file with the default
extension .OBJ.
LSTFIL is a listing (output) file with the default
extension .LST.
SRC... are source (input) files with the default
SRCN extension .MAC.
NOTE

There are other commands that can be
used to call RT-11 and RSX but they are
site dependent and so are not mentioned
here.

9.2 INITIATING MACRO-11 UNDER RT-11

The following sections describe those MACRO-11 operating procedures
that apply only to the RT-11 system.

To call the MACRO-11 assembler from the system device, respond to the
system prompt (a dot printed by the keyboard monitor) by typing:

R MACRO

When the assembler responds with an asterisk (*), it 1is ready to
accept command string input.

9.3 RT-11 COMMAND STRING
Format:

[dev:obj,dev:list,dev:cref/s:arg]l=dev:srcl,src2,...,dev:srcn/s:arg

where

dev is any legal RT-11 device for output; any
file-structured device for input

obj is the file specification of the binary object file
that the assembly process produces; the device for
this file should not be TT or LP

list is the file specification of the assembly and symbol
listing that the assembly process produces

cref is the file specification of the CREF temporary
cross-reference file that the assembly process
produces. (Omission of dev:cref does not preclude a
cross-reference listing, however.)

/s:arg is a set of file specification options and arguments

(see Table 9-2).

RSTS/RT-11 OPERATING PROCEDURES

srcl, represent the ASCII source {input) files containing the
src2,... MACRO-11 source program or the user-supplied macro
srcn library files to be assembled. You can specify as many

as six source files.

The following command string calls for an assembly that uses one
source file plus the system MACRO library to produce an object file
BINF.OBJ and a 1listing. The 1listing goes directly to the 1line
printer.

*DK:BINK.OBJ,LP:=DK:SRC.MAC
All output file specifications are optional. The system does not
produce an output file unless the command string contains a

specification for that file.

The system determines the file type of an output file specification by

preceding source file

its position in the command string, as determined by the number of
commas in the string. For example, to omit the object file, you must
begin the command string with a comma. The following command produces
a listing, including cross-reference tables, but not binary object
files.
*,LP:/C=(source file specification)
Notice that you need not include a comma after the final output file
specification in the command string.
Table 9-1 lists the default values for each file specification.
Table 9-1
Default File Specification Values
Default Default Default
File Device File Name File Type
Object DK: Must specify .OBJ
Listing Same as for object Must specify .LST
file

Cref DK: Must specify . TMP

First source DK: Must specify .MAC

Additional source Same as for preceding Must specify .MAC

source file :

System MACROQ System device SY: SYSMAC .SML

Library

User MACRO DK: if first file, Must specify .MLB

Library otherwise same as for

RSTS/RT-11 OPERATING PROCEDURES

NOTE

Some assemblies need more symbol table
space than available memory can contain.
When this occurs the system
automatically creates a temporary work
file called WRK.TMP to provide extended
symbol table space.

The default device for WRK.TMP 1is DK.
To cause the system to assign a
different device, enter the following
command :

.ASSIGN dev: WF

where: dev is the file-structured
device that will hold
WRK. TMP.

9.4 FILE SPECIFICATION OPTIONS

At assembly time you may need to override <certain MACRO directives
appearing in the source programs. You may also need to direct
MACRO-11 on the handling of certain files during assembly. You can
satisfy these needs by using the switches described in Table 9-2.

Table 9-2
File Specification Options

Option Usage
/L:arg Listing control switches; these options accept ASCII
/N:arg switch values (arg) which are equivalent in function

and name to the arguments of the .LIST and .NLIST
directives specified in the source program (see
Section 6.1.1). This switch overrides the arguments
of the directives and remains in effect for the
entire assembly process.

/E:arg Function control switches; these options accept ASCII

/D:arg switch values (arg) which are equivalent in function
and name to the arguments of the .ENABL and .DSABL
directives specified 1in the source program (see
Section 6.2.1). This switch overrides the arguments
of the directives and remains in effect for the
entire assembly process.

(continued on next page)

RSTS/RT-11 OPERATING PROCEDURES

Table 9-2 (Cont.)
File Specification Options

Option Usage

/M Indicates input file is MACRO library file. When the
assembler encounters an . MCALL directive 1in the
source code, it searches macro libraries according to
their order of appearance in the command string.
When it locates a macro record whose name matches
that given in the .MCALL, it assembles the macro as
indicated by that definition. Thus, if two or more
macro libraries contain definitions of the same macro
name, the macro library that appears rightmost in the
command string takes precedence.

Consider the following command string:

* (output file specification)=ALIB/M,
BLIB/M,XIZ

Assume that each of the two macro libraries, ALIB.MLB
and BLIB.MLB, contain a macro called .BIG, but with
different definitions. Then, if source file XIZ
contains a macro call .MCALL .BIG, the system
includes the definition of .BIG in the program as it
appears in the macro library BLIB.

If the command string does not include the standard

system macro library SYSMAC.SML, the system
automatically includes it as the first source file in
the command string. Therefore, if macro 1library

ALIB.MLB contains a definition of a macro called .READ,
that definition of .READ overrides the standard .READ
macro definition in SYSMAC.SML.

/C:arg Controls contents of cross-reference listing.

The /M switch affects only the source file to which it 1s appended.
The other options affect the entire command string.

9.5 CROSS-REFERENCE (CREF) TABLE GENERATION OPTION

A cross-reference (CREF) table lists all or a subset of the symbols in
a source program, identifying the statements that define and use
symbols.

9.5.1 Obtaining a Cross-Reference Table

To obtain a CREF table you must include the /C:arg option in the
command string. Usually vyou include the /C:arg option with the
assembly listing file specification.

- S

If the command string does not include a cref file specification, the
system automatically generates a temporary file on device DK:. 1If you
need to have a device other than DK: contain the temporary cref file,
you must include the dev:cref field in the command string.

A complete CREF listing contains the following six sections:

1. A cross reference of program symbols--labels wused in the
program and symbols followed by an operator.

2. A cross reference of register symbols. These symbols are R@,
R1, R2, R3, R4, R5, SP, and PC.

3. A cross reference of MACRO symbols--those symbols defined by
.MACRO and .MCALL directives,

4., A cross reference of permanent symbols--all operation
mnemonics and assembler directives.

5. A cross reference of program sections--the names you specify
as operands of .CSECT or .PSECT directives.

6. A cross reference of errors--the system groups and lists all
flagged errors from the assembly by error type.

You <can include any or all of these six sections on the
cross-reference 1listing by specifying the appropriate arguments with
the /C option. These arguments are listed and described in Table 9-3.

Table 9-3
/C Option Arguments

Argument CREF Section

S User defined symbols
R Register symbols
M MACRO symbolic names
P Permanent symbols including instructions and directives
C Control and program sections
E Error code grouping
NOTE

Specifying /C with no arguments is
equivalent to specifying /C:S:M:E. That

special case excepted, you must
explicitly request each CREF section by
including its arguments. No

cross-reference file occurs 1if the /C
option is not specified, even 1if the
command string includes a CREF file
specification.

RSTS/RT-11 OPERATING PROCEDURES

9.5.2 Handling Cross-Reference Table Files

When you request a cross-reference listing by means of the /C option,
you cause the system to generate a temporary file, DK:CREF.TMP.

If device DK: 1is write-locked or if it contains insufficient free
space for the temporary file, you can allocate another device for the
file. To allocate another device, specify a third output file in the
command string; that is, include a dev:cref specification. (You must
still include the /C option to control the form and content of the
listing. The dev:cref specification is ignored if the /C option is
not also present in the command string.)

The system then uses the dev:cref file instead of DK:CREF.TMP and
deletes it automatically after producing the CREF listing.

The following command string causes the system to use RK2:TEMP.TMP as
the temporary CREF file.

* ,LP:,RK2:TEMP. TMP=SOURCE/C

Another way to assign an alternative device for the CREF.TMP file |is
to enter the following command prior to entering R MACRO:

.ASSIGN dev:CF

This method is preferred if you intend to do several assemblies, as it
relieves you from having to include the dev:cref specification in each
command string. If you enter the ASSIGN dev: CF command, and later
include a cref specification in a command string, the specification in
the command string prevails for that assembly only.

The system lists requested cross-reference tables following the MACRO
assembly listing. Each table begins on a new page.

The system prints symbols and also symbol values, control sections,
and error codes, if applicable, beginning at the left margin of the
page. References to each symbol are 1listed on the same line,
left-to-right across the page. The system lists references in the
form P-L; where P is the page in which the symbol, control section,
or error code appears, and L is the line number on the page.

A number sign (#) next to a reference indicates a symbol definition.
An asterisk (*) next to a reference 1indicates a destructive
reference--an operation that alters the contents of the addressed
location.

9.5.3 MACRO-11 Error Messages Under RT-11

MACRO-11 outputs an error message to the command output device when
one of the error conditions described below is detected. MACRO-11
prints below the error message the command line that caused the error.
If the werror is a .J.INCLUDE or a .LIBRARY directive file error,
MACRO-~11 prints below the error message both the source line and the
command line that caused the error.

?MACRO-s-Error message
MACRO-11 source line
MACRO-11 command line

The s in the error message represents the letter code that indicates
the severity level of the error.

These error messages reflect operational problems and should not be
confused with the error codes (see Appendix D) produced by MACRO-11
during assembly.

Error Message Meaning

?MACRO-F-Device full DEV:
The output volume does not have sufficient
room for an output file specified in the
command string.

?MACRO-F-File not found DEV:FILNAM.TYP
An input file in the command line does not
exist on the specified device.

?MACRO-F-.INCLUDE directive file error
The file specified in the .INCLUDE statement
either does not exist or 1is invalid, the
device specified in the command line 1is not
available, or the L(INCLUDE stacking depth
exceeds five.

?MACRO-F-Insufficient memory
MACRO does not have the winimum amount
memory (16K words) necessary to run.

o
+h

?MACRO-F-Invalid command
The command line contains a syntax error or
specifies more than six input files.

?MACRO-F-Invalid device
A device specified in the command 1line does
not exist on the system.

The library file has been corrupted or it was
not produced by the RT-11 librarian, LIBR.

?MACRO-F~-Invalid option: /x
The specified option was not recognized by
the program.

?MACRO-F-1/0 error on DEV:FILNAM.TYP
A hardware error occurred while attempting to
read from or write to the device on the
specified file.

?MACRO-F-1/0 error on work file
MACRO failed to open, read, or write to its
work file, WRK.TMP.

RSTS/RT-11 OPERATING PROCEDURES

?MACRO-F-.LIBRARY directive file error

The file specified in the .LIBRARY statement
either does not exist or is invalid, the file
specification in the .(LIBRARY directive is
for a non-random access device, the device
specified in the command line is not
available, or the .LIBRARY stacking depth
exceeds the maximum depth allowed.

?MACRO-F-Protected file already exists DEV:FILNAM.TYP
An attempt was made to create a file having
the same name as an existing protected file.

?MACRO-F-Storage limit exceeded (64K)
MACRO's Virtual Symbol Table can store
symbols and macros up to 64K in any
combination. Your program contains more than
64K worth of one or both of these elements.

?MACRO-W-I/0 error on CREF file: CREF aborted

MACRO ran out of device space while writing
the <cref file, or a hardware error has
occurred. The cref file is aborted but

assembly continues.

APPENDIX A

MACRO-11 CHARACTER SETS

A.l1 ASCII CHARACTER SET

Even 7-Bit

Parity Octal

Bit Code Character Remarks

2 200 NUL Null, tape feed, CONTROL/SHIFT/P.

1 G001 SOH Start of heading; also SOM, start
of message, CONTROL/A.

1 a2 STX Start of text; also EOA, end of
address, CONTROL/B.

%] 203 ETX End of text; also EOM, end of
message, CONTROL/C.

1 po4 EOT End of transmission (END); shuts
off TWX machines, CONTROL/D.

4] 205 ENQ Enquiry (ENQRY) ; also WRU,
CONTROL/E.

] o906 ACK Acknowledge; also RU, CONTROL/F.

1 ae7 BEL Rings the bell. CONTROL/G.

1 910 BS Backspace; also FEO, format
effector. backspaces some
machines, CONTROL/H.

] g1l HT Horizontal tab. CONTROL/I.

) g12 LF Line feed or Line space (new line);
advances paper to next 1line,
duplicated by CONTROL/J.

1 #13 VT Vertical tab (VTAB). CONTROL/K.

2 314 FF Form Feed to top of next page
(PAGE). CONTROL/L.

1 @15 CR Carriage return to beginning of
line; duplicated by CONTROL/M.

1 g16 {e} Shift out; changes ribbon color to
red., CONTROL/N.

] 217 SI Shift in; changes ribbon color to
black. CONTROL/O.

1 320 DLE Data link escape. CONTROL/P (DC#).

7] h21 DC1 Device control i; turns
transmitter (READER) on, CONTROL/Q
(X ON). @ 022 DC2 Device control
2; turns punch or auxiliary on.
CONTROL/R (TAPE, AUX ON).

1 323 DC3 Device control 3; turns
transmitter (READER) off, CONTROL/S
(X OFF).

) g24 DC4 Device control 4; turns punch or

auxiliary off. CONTROL/T (AUX
OFF) .

MACRO-11 CHARACTER SETS

Even
Parity
Bit

7-Bit
Octal
Code Character Remarks

(SRR N T SR - IS S RS VR RV SV SIS RS Bl S SRS R R R DR RS IS S R R R

B25 NAK Negative acknowledge; also ERR,
ERROR. CONTROL/U.

@26 SYN Synchronous file (SYNC) .
CONTROL/V.

w27 ETB End of transmission block; also
LEM, logical end of medium.
CONTROL/W.
230 CAN Cancel (CANCL). CONTROL/X.
g31 EM End of medium. CONTROL/Y.
@32 SUB Substitute. CONTROL/Z.
@33 ESC Escape. CONTROL/SHIFT/K.
334 FS File separator. CONTROL/SHIFT/L.
@35 GS Group separator. CONTROL/SHIFT/M.
336 RS Record separator. CONTROL/SHIFT/N.
@337 us Unit separator. CONTROL/SHIFT/O.
240 SP Space.
fal !
fa2
g43
ga4
aas
p46
#a7
A5
@51
#52
053
gs54
@55
@56
as57
a6e
g6l
262
@63
764
@65
766
#57
276
a71
372
@373
n74
@375
376
@77
100
181
142
103
104
195
106
147
119
111

Accent acute or apostrophe.

| 4 N~ = 30 Uy

e OO NN WNHRN .

HTOQO™W@DO QW P® IV I A~

MACRO-11 CHARACTER SETS

Even 7-Bit
Parity Octal
Bit Code Character Remarks

112
113
114
115
116
117
120
121
122
123
124
125
126
127
130
131
132
133
134
135
136
137 *%

149 Accent grave.
141
142
143
144
145
146
147
150
151
152
153
154
155
156
157
160
161
162
163
164
165
166
167
179
171
172
173
174

shift/k.
shift/1.
shift/m.
*

Y SN X ESCHNDOUOZIr NG

SR R N R R T R TR~ N S I S WS S I ey ST~ B ST SIS B R S RIS IS B S IS IS A L RS R
NN XEd N QUOS B HALISTUQHOD AN DY

176 This code generated by
(if present).
177 DEL Delete, Rubout.

=

175 This code generated by ALTMODE.

prefix

key

* %

Appears as # or " on some machines.

Appears as < on some machines.

MACRO-11 CHARACTER SETS

A.2 RADIX-5¢ CHARACTER SET

ASCII

Octal Radix-50
Character Equivalent Equivalent
Space 49 7]
A-Z 191-132 1-32
$ 44 33
. 56 34
Unused 35
@-9 60-71 36-47

The maximum Radix-56 value is, thus,
47*50**24+47*50+47=174777

The following table provides a convenient means of translating between
the ASCII character set and its Radix-50 equivalents. For example,

given the ASCII string X2B, the Radix-50 equivalent is (arithmetic is
performed in octal):

X=113000
2=002400
B=0000A2

X2B=115402
Single Char,

or Second Third

First Char. Character Character
Space 000000 Space 000000 Space 000000
A 003100 A 00050 A gne001
B 206200 B 2@8120 B 200002
C 911300 C 00170 C 000003
D 214400 D 000240 D 000004
E 317500 E AeB310 E oo00085
F 322600 F g03360 F gooage
G @25700 G 000430 G o0eaa07
H 931000 H 000500 H g00010
I 034100 I 233550 I 200011
J #37200 J 000620 J 000912
K 042300 K ge0670 K 000013
L 945400 L 000740 L goeela
M g50500 M AG1010 M 008315
N #53600 N gg1060 N aggal6
0 256700 0 761130 0 000017
P 262000 2 n31200 P 000020
Q 365100 0 901250 0 0000621
R 070200 R 9081320 R 000022
S 073309 S 601370 S 0000823
T 876400 T #n144¢ T 00600624
u 101509 u g@81519 8] Aeaa25

MACRO-11 CHARACTER SETS

Single Char.

or Second Third

First Char. Character Character

v 1046060 v 231560 v 303026
W 1067700 W gA1630 W 200027
X 113000 X ga1700 X 00039
Y 116100 Y ge1750 Y 200031
Z 121200 Z 002020 Z 200032
$ 124320 $ 002070 $ 7906033
. 1274089 . 002140 . 2009034
Unused 132500 Unused 6082219 Unused @00035
@ 135600 g 002260 a 900036
1 140700 1 #02330@ 1 geee37
2 144000 2 3024060 2 000040
3 147100 3 302450 3 200041
4 152200 4 002520 4 pe0B42
5 155300 5 282570 5 700043
6 160400 6 an2640 6 poopaa
7 163500 7 302710 7 gaa045
8 166600 8 Aa2760 8 pgoggde
9 171700 9 003030 9 800047

APPENDIX B

MACRO-11 ASSEMBLY LANGUAGE AND ASSEMBLER DIRECTIVES

B.1 SPECIAL CHARACTERS

Character

Function

oo

oe

space

~

PV AN .

\

(comma)

(apostrophe)

vertical tab

Label terminator

Register term indicator

Item terminator or field terminator

Item terminator or field terminator

Immediate expression indicator

Deferred addressing indicator

Initial register indicator

Terminal register indicator

Operand field separator

Comment field indicator

Arithmetic addition operator or auto
increment indicator

Arithmetic subtraction operatocr or auto
decrement indicator

Arithmetic multiplication operator

Arithmetic division operator

Logical AND operator

Logical OR operator

Double ASCII character indicator

Single ASCII character indicator or
concatenation indicator

Assembly location counter

Initial argument indicator

Terminal argument indicator

Universal unary operator or argument
indicator

Macro call numeric argument indicator

Source line terminator

B.2 SUMMARY

Symbols used

n

R

E

ER

is
is
is

is
is

OF ADDRESS MODE SYNTAX

in the table:

an integer, @ to 7, representing a register number

a register expression

an expression

either a register expression or an expression whose value
in the range # to 7.

MACRO-11 ASSEMBLY LANGUAGE AND ASSEMBLER DIRECTIVES

Address Address
Mode Mode

Format Name Number Meaning

R Register ?n Register R contains the
operand.

@R or Register 1n Register R contains the ad-

(ER) deferred dress of the operand.

(ER) + Autoincrement 2n The contents of the register
specified as (ER) are
incremented after beling used
as the address of the operand.

@ (ER)+ Autoincrement 3n The register specified as (ER)

Deferred contains the pointer to the
address of the operand; the
register (ER) 1is incremented
after use.

- (ER) Autodecrement 4n The contents of the register
specified as (ER) are
decremented before being used
as the address of the operand.

@- (ER) Autodecrement 5n The contents of the register

Deferred specified as (ER) are
decremented before being used
as the pointer to the address
of the operand.

E(ER) Tndex 6n The expression E, plus the
contents of the register
specified as (ER), form the
address of the operand.

@E (ER) Index Deferred 7n The expression E, plus the
contents of the register
specified as (ER), vyield a
pointer to the address of the
operand.

$E Immediate 27 The expression E is the
operand itself.

C#E Absolute 37 The expression E is the
address of the operand.

E Relative 67 The address of the operand E,
relative to the instruction,
follows the instruction.

@E Relative 77 The address of the operand is

Deferred pointed to by E whose address,

relative to the instruction,
follows the instruction.

MACRO-11 ASSEMBLY LANGUAGE AND ASSEMBLER DIRECTIVES

B.3 ASSEMBLER DIRECTIVES

The MACRO-11 assembler directives are summarized 1in the following
table, For a detailed description of each directive, the table
contains references to .the appropriate sections in the bedy of the
manual.

Section
Form Reference Operation
' 6.3.3 Followed by one ASCII character
7.3.7 a single guote (apostrophe)

generates a word which contains the
7-bit ASCII representation of the
character in the low-order byte and
zero in the high-order byte. This
character is also used as a
concatenation indicator in the
expansion of macro arguments.

" 6.3.3 Followed by two ASCII characters a
double quote generates a word which
contains the 7-bit ASCII
representation of the two
characters. The first character is
stored in the low-order byte; the
second character is stored 1in the
high=-order byte.

“Bn 6.4.1.2 A temporary radix control, causes
the wvalue n to be treated as a
binary number.

“Cexpr 6.4.2.2 A temporary numeric control, causes
the expression's value to be ones-
complemented.

“Dn 6.4.1.2 A temporary radix control, causes
the value n to be treated as a
decimal number.

“Fn 6.4.2.2 A temporary numeric control, causes
the value n to be treated as a
sixteen-bit floating-point number,

“0On 6.4.1.2 A temporary radix control, causes

the wvalue n to be treated as an
octal number.

“Rccce 6.3.7 Converts ccc to Radix-5¢ form.

.ASCII /string/ 6.3.4 Generates a block of data
containing the ASCII equivalent of
the character string (enclosed 1in
delimiting characters), one
character per byte.

MACRO-11 ASSEMBLY LANGUAGE AND ASSEMBLER DIRECTIVES

Form

Section
Reference

Operation

.ASCIZ /string/

.ASECT

.BLKB exp

.BLKW exp

.BYTE expl,exp2,..

.CROSS syml,sym2,...

.CSECT [name]

.DSABL arg

.ENABL arg

.END [exp]

. ENDC

.ENDM [name]

6.3.5

Generates a block of data
containing the ASCII equivalent of
the character string (enclosed in
delimiting characters), one
character per byte, with a zero
byte terminating the specified
string.

Begins or resumes the absolute
program section.

Reserves a block of storage space
whose length in bytes is determined
by the specified expression.

Reserves a block of storage space
whose length in words is determined
by the specified expression.

Generates successive bytes of data;
each byte contains the value of the
corresponding specified expression.

Enables the cross-reference listing
for the specified symbol list. If
a symbol 1list 1is not specified,
this directive reenables the
cross-reference 1listing for all
symbols in the program.

Begins or resumes named or unnamed
relocatable program section. This
directive is provided for
compatibility with other PDP-11
assemblers.

Disables the function specified by
the argument.

Enables (invokes) the function
specified by the argument.

Indicates the logical end of the
source program. The optional
argument specifies the transfer
address where program execution is
to begin.

Indicates the end of a conditional
assembly block.

Indicates the end of the current
repeat block, 1indefinite repeat
block, or macro definition. The
optional name, if wused, must be
identical to the name specified in
the macro definition.

MACRO-11 ASSEMBLY LANGUAGE AND ASSEMBLER DIRECTIVES

Form

Section

Reference

Operation

. ENDR

. ERROR exp;text

. EVEN

.FLT2 argl,arg2,...

.FLT4 argl,arg2,...

.GLOBL syml,sym2,...

.IDENT /string/

.IF cond,argl

. IFF

6.4.2.1

6.9.1

[e)}

N)

Indicates the end of the current
repeat Dblock. This directive is
provided for compatibility with
other PDP-11 assemblers.

A user-invoked error directive,
causes output to the listing file
or the command output device
containing the optional expression
and the statement containing the
directive.

Ensures that the current location
counter contains an even address by
adding 1 if it is odd.

Generates successive 2-word
floating-point equivalents for the
floating-point numbers specified as
arguments.

Generates successive 4-word
floating-point equivalents for the
floating-point numbers specified as
arguments.

Defines the symbol(s) specified as
global symbol(s).

Provides a means of 1labeling the
object module with the program
version number. The version number
is the Radix-5 string appearing
between the paired delimiting
characters.

Begins a conditional assembly block
of source code which is included in
the assembly only 1if the stated
condition 1is met with respect to
the argument(s) specified.

Appears only within a conditional
assembly block, indicating the
beginning of a section of code to
be assembled if the condition upon
entering the block tests false.

Appears only within a conditional
assembly block, indicating the
beginning of a section of code to
be assembled if the condition upon
entering the block tests true.

MACRO-11 ASSFMBLY LANGUAGE AND ASSEMBLER DIRECTIVES

Form

Section
Reference

Operation

LIFTF

.IIF cond,argqg,
statement

.INCLUDE string

.IRP sym,
<argl,arg2,...>

.IRPC sym,<string>

.LIBRARY string

.LIMIT

.LIST [arg]

.MACRO name,argl,
arg2,...

.MCALL argl,arg2,...

6.9.2

6.9.3

6.10.2

6.10.1

Appears only within a conditional
assembly block, indicating the
beginning of a section of <code to
be assembled unconditionally.

Acts as a 1l-line conditional
assembly block where the condition
is tested for the argument
specified. The statement is
assembled only if the condition
tests true.

Inserts a specified source file
within the source file currently
being used.

Indicates the beginning of an
indefinite repeat block in which
the symbol specified 1is replaced
with successive elements of the
real argument list enclosed within
angle brackets.

Indicates the beginning of an
indefinite repeat block in which
the specified symbol takes on the
value of successive characters,
optionally enclosed within angle
brackets.

Adds a specified file name to a
macro library list that is
searched.

Reserves two words into which the
Task Builder 1inserts the low and
high addresses of the task image.

Without an argument, the .LIST
directive increments the 1listing
level count by 1. With an
argument, this directive does not
alter the listing level count, but
formats the assembly listing
according to the argument
specified,

Indicates the start of a macro
definition having the specified
name and the following dummy
arguments.

Specifies the symbolic names of the
user or system macro definitions
required in the assembly of the
current user program, but which are
not defined within the program.

MACRO-11 ASSEMBLY LANGUAGE AND ASSEMBLER DIRECTIVES

Section
Form Reference Operation

.MDELETE namel,name2,...

-MEXIT

.NARG symbol

.NCHR symbol,<string>

.NLIST [arg]

.NOCROSS syml,sym2,...

.NTYPE symbol,aexp

. ODD

. PACKED

. PAGE

.PRINT exp;text

.PSECT name,attl,...
attn

7.9 Deletes the definitions of the
specified macro(s), freeing virtual
memory.

7.1.3 Causes an exit from the current
macro expansion or indefinite

repeat block.

7.4.1 Appearing only within a macr
definition, equates the specified
symbol to the number of arguments
in the macro call currently being
expanded.

7.4.2 Appearing anywhere in a source
program, equates the symbol
specified to the number of

characters in the specified string.

5.1.1 Without an argument, decrements the
listing 1level count by 1. With an
argument, this directive suppresses
that portion of the listing
specified by the argument.

6.2.2 Disables the cross-reference
listing for the listed symbols. 1If
a symbol 1list 1is not specified,
this directive disables the
cross-reference 1listing for all
symbols in the program.

7.4.3 Appearing only within a macro
definition, equates the symbol to
the 6-bit addressing mode of the
specified address expression.

6.5.2 Ensures that the current location
counter contains an odd address by
adding 1 if it is even.

5.3.8 Causes a decimal number of 31(14)
digits or 1less to be ©packed 2
digits per byte.

6.1.5 Causes the assembly listing to skip
to the top of the next page and to
increment the page count.

7.5 User-invoked message directive;
causes output to the listing file
or the command output device
containing the optional expression
and the statement containing the
directive.

6.7.1 Begins or resumes a named or
unnamed program section having the
specified attributes.

B-7

MACDO-11 ACCEMRIV TANCHACF AND AQGEM

sadican - e s

LER DIRECTTIVES

Form

Section
Reference

Operation

.RADIX n

.RADS@ /string/

.REM comment-character

.REPT exp

.RESTORE

. SAVE

.SBTTL string

.TITLE string

.WEAK syml,sym2,...

.WORD expl,exp2,..

6.4.1.1

Alters the current program radix to
n, where n is 2, 8, or 14.

Generates a block of data
containing the Radix-50 equivalent
of the character string enclosed
within delimiting characters.

Allows a programmer to insert a
block of comments into a MACRO-11
source program without having to
precede the comment lines with the
comment character (;).

Begins a repeat block; causes the
section of code up to the next
.ENDM or .ENDR directive to be
repeated the number of times
specified as exp.

Retrieves a previously . SAVEd
program section from the top of the
program secticon context stack
leaving the current program section

in effect.

Stores the current program section
on the top of the program section
context stack leaving the current
program sectlion in effectl.

Causes the specified string to be
printed as part of the assembly
listing page header. The string
component of each .SBTTL directive
is collected into a table of
contents at the beginning of the
assembly listing.

Assigns the first six Radix-5¢
characters in the string as an
object module name and causes the
string to appear on each page of
the assembly listing.

Specifies symbols that are either
defined externally in another
module or are defined globally in
the current module.

Generates successive words of data;
each word contains the value of the
corresponding specified expression.

APPENDIX C

PERMANENT SYMBOL TABLE ({PST)

The mnemonics for the PDP-11 operation (op) codes and MACRO-11
assembler directives are stored in the Permanent Symbol Table (PST).
The PST contains the symbols that are automatically recognized by
MACRO-11.

For a detailed description of the op codes, see the PDP-11 Processor
Handbook.

C.1 OP CODES

Instruction Octal
Mnemonic Value Operation
ADC BB5500 Add Carry
ADCB 195500 Add Carry (Byte)
ADD g6peag Add Source To Destination
ASH B372000 Shift Arithmetically
ASHC A73000 Arithmetic shift Combined
ASL 336300 Arithmetic Shift Left
ASLB 106300 Arithmetic Shift Left (Byte)
ASR 306200 Arithmetic Shift Right
ASRB 186209 Arithmetic Shift Right (Byte)
BCC 103000 Branch If Carry Is Clear
BCS 193400 Branch If Carry Is Set
BEQ 301400 Branch If Equal
BGE pa2000 Branch If Greater Than Or Equal
BGT 203000 Branch If Greater Than
BHI 101000 Branch If Higher
BHIS 10630060 Branch If Higher Or Same
BIC dAGBBA Bit Clear
BICB 140000 Bit Clear (Byte)
BIS 50000 Bit Set
BISB 150000 Bit Set (Byte)
BIT 30000 Bit Test
BITB 130000 Bit Test (Byte)
BLE 233400 Branch If Less Than Or Equal
BLO 183490 Branch If Lower
BLOS 121480 Branch If Lower Or Same
BLT 202400 Branch If Less Than
BMI 100400 Branch If Minus
BNE 021000 Branch If Not Equal
BPL 100000 Branch If Plus
BPT peeng3 Breakpoint Trap
BR paeapa Branch Unconditional

Instruction Octal
Mnemonic Value Operation
BVC 102000 Branch If Overflow Is Clear
BVS 102400 Branch If Overflow Is Set
CALL 04700 Jump To Subroutine (JSR PC,xXX)
CALLR 400100 Jump (IJMP addr)
ccc peg257 Clear All Condition Codes
CLC 200241 Clear C Condition Code Bit
CLN ?008250 Clear N Condition Code Bit
CLR 205000 Clear Destination
CLRB 105000 Clear Destination (Byte)
CLV 000242 Clear V Condition Code Bit
CLZ Aeg244 Clear Z Condition Code Bit
CMP 320000 Compare Source To
Destination
CMPB 120009 Compare Source To
Destination (Byte)
COM ¢a5100 Complement Destination
COMB 105100 Complement Destination
(Byte)
DEC AB5300 Decrement Destination
DECB 185300 Decrement Destination
(Byte)
DIV #71000 Divide
EMT 104000 Emulator Trap
FADD 275000 Floating Add
FDIV #75030 Floating Divide
FMUL 375020 Floating Multiply
FSUB #75810 Floating Subtract
HALT 0opo0s Halt
INC @05200 Increment Destination
INCB 195200 Increment Destination
(Byte)
I0T o0e0aa Input/Output Trap
JMP pao100 Jump
JSR po4o00 Jump To Subroutine
MARK ar6a0a Mark
MED6X p76600 PDP-11/68 Maintenance
MED74C 376601 PDP-11/74 CIS Maintenance
MFPI 06500 Move From Previous
Instruction Space
MFPS 106700 Move from PS
(LsI-11, LSI-11/23, LSI-11/2)
MFPT ao0007 Move From Processor Type
MOV 310000 Move Source To Destination
MOVB 110000 Move Source To Destination
(Byte)
MTPI 06600 Move To Previous
Instruction Space
MTPS 106400 Move to PS
(LSI-11, LSI-11/23, LSI-11/2)
MUL B7000¢ Multiply
NEG P85400 Negate Destination
NEGB 105400 Negate Destination (Byte)
NOP Apa240 No Operation
RESET ARaAGas Reset External Bus
RETURN aaa2a7 Return From Subroutine (RTS PC)
ROL 206100 Rotate Left
ROLB 146100 Rotate Left (Byte)
ROR pa6000 Rotate Right
RORB 106000 Rotate Right (Byte)

Cc-2

PERMANENT SYMBOL TABLE (PST)

Instruction Octal
Mnemonic Value Operation
RTI 200902 Return From Interrupt
(Permits a trace
trap)
RTS 800200 Return From Subroutine
RTT po0006 Return From Interrupt
(inhibits trace trap)
SBC AA5600 Subtract Carry
SBCB 195600 Subtract Carry (Byte)
sCC aag277 Set All Condition Code Bits
SEC 000261 Set C Condition Code Bit
SEN pea270 Set N Condition Code Bit
SEV 203262 Set V Condition Code Bit
SEZ 00264 Set Z Condition Code Bit
SOB 877000 Subtract One And Branch
SUB 163000 Subtract Source From
Destination
SWAB a30300 Swap Bytes
SXT 306700 Sign Extend
TRAP 164400 Trap
TST ae5700 Test Destination
TSTB 185700 Test Destination (Byte)
TSTSET 207200 Test Destination And Set Low Bit
WAIT Agaee1 Wait For Interrupt
WRTLCK 307300 Read/Lock Destination. Write/Unlock
RO Into Destination
XFC 3767a0 Extended Function Code
XOR 74000 Exclusive OR

COMMERCIAL INSTRUCTION SET (CIS) OP CODES

Every operation listed in the CIS table has two instruction mnemonics.
The suffix "I", attached to every second mnemonic, indicates that the
addresses are inline. The inline instructions require two arguments;
the other instructions (excepting L2DN and L3DN) require no arguments.

Instruction Octal
Mnemonic Value Operation
ADDN #376050 Add Numeric
ADDNI 376150 Add Numeric
ADDP 3760670 add Packed
ADDPI 376170 Add Packed
ASHN g760356 Arithmetic Sshift Numeric
ASHNI 376156 Arithmetic Shift Numeric
ASHP 2760376 Arithmetic Shift Packed
ASHPI 276176 Arithmetic Shift Packed
CMPC p76044 Compare Character String
CMPCI P76144 Compare Character String
CMPN A376052 Compare Numeric
CMPNI 376152 Compare Numeric
CMPP B76072 Compare Packed
CMPPI 376172 Compare Packed
CVTLN p76057 Convert Long To Numeric
CVTLNI #76157 Convert Long To Numeric
CVTLP p76077 Convert Long To Packed

Instruction Octal
Mnemonic Value Operation
CVTLPI 876177 Convert Long To Packed
CVTNP 376055 Convert Numeric To Packed
CVTNPI #76155 Convert Numeric To Packed
CVTPN @76054 Convert Packed To Numeric
CVTPNI p76154 Convert packed To Numeric
DIVP 376075 Divide Decimal
DIVPI 876175 Divide Decimal
LoCC 076040 Locate Character
LOCCI 276140 Locate Character
L2DN¥* #7602N Load 2 Descriptors @(RN)+
L3DN* B37606N Load 3 Descriptors @(RN)+
MATC #76045 Match Character
MATCI 376145 Match Character
MOVC 376030 Move Character
MOVC1I 7376130 Move Character
MOVRC 76031 Move Reverse Justified Character
MOVRCI #76131 Move Reverse Justified Character
MOVTC 3760332 Move Translated Character
MOVTCI 376132 Move Translated Character
MULP g76074 Multiply Decimal
MULPI g76174 Multiply Decimal
SCANC 376342 Scan Character
SCANCI 076142 Scan Character
SKPC a76041 Skip Character
SKPCI 976141 Skip Character
SPANC #76043 Span Character
SPANCI #76143 Span Character
SUBN A76051 Subtract Numeric
SUBNI 376151 Subtract Numeric
SUBP 76071 Subtract Packed
SUBPI 76171 Subtract Packed

* where N=@...7

FLOATING POINT PROCESSOR OP CODES

Instruction Octal
Mnemonic Value Operation
ABSD 170600 Make Absolute Double
ABSF 170600 Make Absolute Floating
ADDD 172000 Add Double
ADDF 172000 Add Floating
CFCC 170000 Copy Floating Condition
Codes
CLRD 170400 Clear Double
CLRF 170400 Clear Floating
CMPD 173400 Compare Double
CMPF 173400 Compare Floating
DIVD 174400 Divide Double
DIVF 174400 Divide Floating
LDCDF 177400 Load And Convert From
Double To Floating
LDCFD 177489 Load And Convert From
Floating To Double
LDCID 177000 Load And Convert Integer To
Double

PERMANENT SYMBOL TABLE (PST)

Instruction Octal
Mnemonic Value Operation

LDCIF 177000 Load And Convert Integer To
Floating

LDCLD 177608 Load And Convert Long
Integer To Double

LDCLF 177000 Load And Convert Long
Integer To Floating

LDD 172409 Load Double

LDEXP 176400 Load Exponent

LDF 172400 Load Floating

LDFPS 170100 Load FPPs Program Status

MFPD 196500 Move From Previous Data
Space

MODD 171400 Multiply And Integerigze
Double

MODF 171400 Multiply And Integerize
Floating

MTPD 106600 Move To Previous Data Space

MULD 171000 Multiply Double

MULF 171000 Multiply Floating

NEGD 170700 Negate Double

NEGF 170700 Negate Floating

SETD 170811 Set Double Mode

SETF 170001 Set Floating Mode

SETI 170002 Set Integer Mode

SETL 172812 Set Long Integer Mode

SPL 303230 Set Priority Level

STAQ 170005 Diagnostic Floating Point

STBO 178006 Diagnostic Floating Point

STCDF 176000 Store And Convert From
Double To Floating

STCDI 175400 Store And Convert From
Double To Integer

STCDL 175400 Store And Convert From
Double To Long Integer

STCFD 176000 Store And Convert From
Floating To Double

STCFI 175400 Store And Convert From
Floating To Integer

STCFL 175400 Store And Convert From
Floating To Long Integer

STD 174000 Store Double

STEXP 175000 Store Exponent

STF 174000 Store Floating

STFPS 170200 Store FPPs Program Status

STST 170300 Store FPPs Status

SUBD 173000 Subtract Double

SUBF 173000 Subtract Floating

TSTD 1708509 Test Double

TSTF 178500 Test Floating

PERMANENT SYMBOL TABLE (PS5T)

C.2 MACRO-11 DIRECTIVES

The MACRO-11 directives that follow are described in greater detail in

Appendix B.

Directive

Function

.ASCII
.ASCIZ

.ASECT
.BLKB
.BLKW
.BYTE
.CROSS
.CSECT
.DSABL
. ENABL
. END
. ENDC
. ENDM
. ENDR
. ERROR

. EVEN
.FLT2

.FLT4

.GLOBL
. IDENT

.IF
.IFF

LIFT

.IFTF

LIIF

. INCLUDE

.IRP

. IRPC

.LIBRARY

Translates character string to ASCII equivalents.
Translates character string to ASCII equivalents;
inserts zero byte as last character.

Begins absolute program section (provided for
compatibility with other PDP-11 assemblers).
Reserves byte block in accordance with wvalue of
specified argument.

Reserves word block in accordance with value of
specified argument.

Generates successive byte data in accordance with
specified arguments.

Enables <cross-reference 1listing for specified
symbols; enables cross-reference for all symbols.
Begins relocatable program section (provided for
compatibility with other PDP-11 assemblers).
Disables specified function.

Enables specified function.

Defines logical end of source program.

Detines end of conditional assembly block.

Defines end of macro definition, repeat block, or
indefinite repeat block.

Defines end of current repeat block (provided for
compatibility with other PDP-11 assemblers).
Outputs diagnostic message to 1listing file or
command output device.

Word-aligns the current location counter.

Causes two words of storage to be generated for
each floating-point argument.

Causes four words of storage to be generated for
each floating-point argument.

Declares global attribute for specified symbol(s).
Labels object module with specified program
version number.

Begins conditional assembly block.

Begins subconditional assembly block (if
conditional assembly block test is false).

Begins subconditional assembly block (if
conditional assembly block test is true).

Begins subconditional assembly block (whether

conditional assembly block test is true or false).
Assembles immediate conditional assembly statement
(if specified condition is satisfied).

Inserts specified source file within source file
currently being used.

Begins indefinite repeat block; replaces
specified symbol with specified successive real
arguments,

Begins indefinite repeat block; replaces
specified symbol with value of successive
characters in specified string.

Adds a specified file name to a macro library list
that is searched.

PERMANENT SYMBOL TABLE (PST)

Directive

Function

.LIMIT

.LIST

.MCALL

.MDELETE
.MEXIT

.NARG
.NCHR
.NLIST

.NOCROSS

.NTYPE
.0ODD

. PACKED
. PAGE
«PRINT
.PSECT

.RADIX
.RAD50

.REM

.REPT

.RESTORE

. SAVE

.SBTTL

. TITLE

.WEAK

.WORD

Reserves two words of storage for high and low
addresses of task image.
Controls 1listing level count and format of

assembly 1listing. .MACRO denotes start of macro
definition.

Identifies required macro definition(s) for
assembly.

Deletes the definitions of the specified macro(s).
Exit from current macro definition or indefinite
repeat block.

Equates specified symbol to the number of
non-keyword arguments in the macro expansion.
Equates specified symbol to the number of
characters in the specified character string.
Controls 1listing level count and suppresses
specified portions of the assembly listing.
Disables <cross-reference 1listing for specified
symbols; disables cross-reference listing for all
symbols.

Equates specified symbols to the addressing mode
of the specified argument.

Byte-aligns the current location counter.
Generates packed decimal data, 2 digits per byte.
Advances form to top of next page.

Prints specified message on command output device.
Begins specified program section having specified
attributes.

Changes current program radix to specified radix.
Generates data block having Radix-58 equivalents
of specified character string.

Inserts a block of comments into a MACRO-11 source
program without having to precede comments lines
with the comment character (;).

Begins repeat block and replicates it according to
the value of the specified expression.

Stores the current program section context on the
top of the program section context stack.
Retrieves the program section from the top of the
program section context stack.

Prints specified subtitle text as the second 1line
of the assembly listing page header.

Prints specified title text as object module name
in the first 1line of the assembly listing page
header.

Specifies symbols that are either defined
externally in another module or are defined
globally in the current module.

Generates successive word data in accordance with
specified arguments.

APPENDIX D

ERROR MESSAGES

An error code is printed as the first <character in a source 1line
containing an error. This error code identifies the error condition
detected during the processing of the line. Example:

Q 26 000236 010162 MOV R1,R2,A

The extraneous argument A in the MOV instruction above causes the line
to be flagged with a Q (syntax) error.

Error Code Meaning

A Assembly error. Because many different conditions
produce this error message, the directives which
may yield a general assembly error have been
categorized below to reflect these error
conditions:

CATEGORY 1: ILLEGAL ARGUMENT SPECIFIED.

.RADIX -- A value other than 2, 8, or 18 is
specified as a new radix.

.LIST/.NLIST -- Other than a legally defined
argument (see Table 6-2) is specified with the
directive.

.ENABL/.DSABL -- Other than a 1legally defined
argument (see Table 6-3) is specified with the
directive, or the attribute arguments of a
previously declared program section.

.PSECT -- Other than a legally defined argument
(see Table 6-4) is specified with the
directive, or the attribute arguments of a
previously declared program section change (see
Section 6.7.1.1).

.IF/.IIF -- Other than a legally defined
conditional test (see Table 6-6) or an illegal
argument expression value is specified with the
directive.

.MACRO -- An illegal or duplicate symbol found
in dummy argument list. .

Error Code Meaning
A (cont.) .TITLE -- Program name is not specified in the
directive, or first non-blank character

following the directive 1is a non-Radix-50
character.

.IRP/.IRPC -- No dummy argument is specified in
the directive.

.NARG/ .NCHAR/ .NTYPE -- No symbol 1is specified
in the directive.

JIF/.IIF -- No conditional argument is
specified in the directive.

CATEGORY 3: UNMATCHED DELIMITER/ILLEGAL ARGUMENT
CONSTRUCTION.

.ASCII/.ASCIZ/.RAD5@/.IDENT -- Character string
or argument string delimiters do not match, or
an illegal character is used as a delimiter, or
an illegal argument construction is used in the
directive.

.NCHAR -- Character string delimiters do not
match, or an 1illegal <character is used as a
delimiter in the directive.

CATEGORY 4: GENERAL ADDRESSING ERRORS.

This type of error results from one of several
possible conditions:

1. Permissible range of a branch instruction
(from -128(10) to +127(10) words) has been
exceeded.

2. A statement makes invalid use of the
current location counter. For example, a
" .=expression" statement attempts to force
the current location counter to cross
program section (.PSECT) boundaries.

3. A statement contains an invalid address
expression:

In cases where an absolute address
expression is required, specifying a global
symbol, a relocatable value, or a complex
relocatable value (see Section 3.9) results
in an invalid address expression.

If an undefined symbol is made a default
global reference by the .ENABL GBL
directive (see Section 6.2.1) during passl,
any attempt to redefine the symbol during
pass 2 will result in an 1invalid address
expression.

ERROR MESSAGES

Error Code

Meaning

A

(cont.)

In cases where a relocatable address
expression is required, either a
relocatable or absolute value is
permissible, but a global symbol or =&
complex relocatable value in the statement
results in an invalid address expression.

For example:

.BLKB/.BLKW/.REPT -- Other than an absolute
value or an expression which reduces to an
absolute value has been specified with the
directive.

4, Multiple expressions are not separated by a
comma. This condition causes the next
symbol to be evaluated as part of the
current expression.

5. .SAVE -- The stack is full when the .SAVE
directive is issued.

6. .RESTORE -- The stack 1is empty when the
.RESTORE directive is issued.

CATEGORY 5: ILLEGAL FORWARD REFERENCE.

This type of error results from either of two
possible conditions:

1. A global assignment statement
(symbol==expression or symbol==:expres-
sion) contains a forward reference to
another symbol.

2. An expression defining the value of the
current location counter contains a forward
reference.

Bounding error. Instructions or word data are
being assembled at an odd address. The location
counter is incremented by 1.

Doubly-defined symbol referenced. Reference was
made to a symbol which is defined more than once.

End directive not found. When the end-of-file is
reached during source input and the .END directive
has not yet been encountered, MACRO-11 generates
this error code, ends assembly pass 1, and
proceeds with assembly pass 2. Also caused by
assembler-stack overflow. In this case MACRO-11
will place a question mark (?) into the 1line at

the point where the overflow occurred.

ERROR MESSAGES

Error Code

Meaning

Illegal character detected. Illegal characters
which are also non-printable are replaced by a
question mark (?) on the listing. The character
is then ignored.

Input line is greater than 132(19) characters in
length. Currently, this error condition is caused
only during macro expansion when Jlonger real
arguments, replacing the dummy arguments, cause a
line to exceed 132(14) characters.

Multiple definition of a 1label. A label was
encountered which was equivalent (in the first six
characters) to a label previously encountered.

A number contains a digit that 1is not 1in the
current program radix. The number is evaluated as
a decimal value.

Opcode error. Directive out of context.
Permissible nesting 1level depth for conditional
assemblies has been exceeded. Attempt to expand 2
macro which was unidentified after .MCALL search.

Phase error. A label's definition of value varies
from one assembly Ppass to another or a multiple
definition of a local symbol has occurred within a
local symbol block. Also, when in a local symbol
block defined by the .ENABL LSB directive, an
attempt has occurred to define a local symbol in a
program section other than that which was in
effect when the block was entered. An error code
P also appears 1if an . ERROR directive is
assembled.

Questionable syntax. Arguments are missing, too
many arguments are specified, or the instruction
scan was not completed.

Register-type error. An invalid use of or
reference to a register has been made, or an
attempt has been made to redefine a standard
register symbol "without first issuing the .DSABL
REG directive.

Truncation error. A number generated more than 16
bits in a word, or an expression generated more
than 8 significant bits during the use of the
.BYTE directive or trap (EMT or TRAP) instruction.

ERROR MESSAGES

Error Code

Meaning

Undefined symbol. An undefined symbol was
encountered during the evaluation of an
expression; such an undefined symbol is assigned
a value of zero. Other possible conditions which
result in this error code 1include unsatisfied
macro names in the list of .MCALL arguments and a
direct assigment (symbol=expression or
symbol=:expression) statement which contains a
forward reference to a symbol whose definition
dlso contains a forward reference; also, a local
symbol may have been referenced that does not
exist in the current local symbol block.

Instruction error. The instruction so flagged Iis
not compatible among all members of the PDP-11
family. See Section 5.3 for details.

APPENDIX E

SAMPLE CODING STANDARD

Local user regquirements must be met in a coding standard, but
following this model as closely as possible helps you and DIGITAL by
simplifying communication and software maintenance. Remember that
this is a sample and may not entirely apply to your system.

E.1 LINE FORMAT

Source lines are from one to eighty characters 1in 1length with the
following format:

1. Label Field - if present, begins in column 1. This field
should be coded in uppercase only.

2. Operation field - begins in column 9 (tab stop 1). This
field should be coded in uppercase only.

3. Operand field - begins in column 17 (tab stop 2). This field
should be coded in uppercase only.

4., Comment field - begins in column 33 (tab stop 4). If the
operand field extends beyond column 33 (tab stop 4) leave a
space and start the comment. This field should be coded in
uppercase and lowercase to increase readability.

E.2 COMMENTS

To make the program easier to understand, comments should be used to
explain the 1logic behind the instructions. In general this will
consist of a comment per line of code. However, 1if a particularly
difficult or obscure section of code is used, precede that section
with a longer explanation.

Comments that are too long for the comment field may be continued on
the following 1line. Begin the new line with a semicolon, space over
to the column the comment began in and continue writing. All comments

should be written in uppercase and lowercase to increase readability.

o et e b X Tl

SAMPLE CODING STANDARD

If a lengthy text is needed for an explanation, begin the comment with
a 1line <containing only the characters ;+ and end it with a line
containing only the characters ;-. The lines between these delimiters
should each begin with a semicolon and a space. For example:

+

The invert routine accepts

a list of random numbers and
applies the Kolmogorov Algorithm
to alphabetize them.

e me we e W “e

E.3 NAMING STANDARDS
E.3.1 Registers

E.3.1.1 General Purpose Registers - Use the default name:

RO=%0 ;REG 0

R1=%1 ;REG 1

R2=%2 ;REG 2

R3=%3 ;REG 3

R4=%4 ;REG 4

R5=%5 ;REG 5

SP=%6 ;Stack pointer (REG 6)
PC=%7 ;Program counter (REG 7)

NOTE

These register names are defined within
the assembler; other standard symbols
must be put in a file and 1linked with
the program.

E.3.1.2 Hardware Registers - Use the hardware definition. For
example, PS (Program Status Register) and SWR (Switch Register).

E.3.1.3 Device Registers - Use the hardware notation. For example,
the control status register for the RK disk is RKCS.

E.3.2 Processor Priority

Testing or altering the processor priority is done using the symbols

PR#, PRl, PR2,PR7

which are equated to their corresponding priority bit pattern.

SAMPLE CODING STANDARD

E.3.3 Symbols*

The following chart diagrams the syntax of the 5 major types of symbol
names:

symbol pos-1 pos-2 pos-3 pos-4 pos-5 pos-6 length

non-global letter a-num/ a-num/ a-num/ a-num/ a-num/ >=1
symbol null null null null null

global S$/. a-num a-num/ a-num/ a-num/ a-num/ >=1
symbol kol null null null null null

global letter $/. a-num a-num/ a-num/ a-num/ >=3
offset *kx null null null

global bit letter a-num $§/. a-num/ a-num/ a-num/ >=4
pattern * k% null null

local number §$ >=2
symbol **x

where: a-num is an alphanumeric character.

E.3.3.1 Symbol Examples
Non-Global Symbols (
AlB
ZXCJ1
INSRT
Global Address Symbols
$JTIM
.VECTR
$SEC
Global Absolute Offset Symbols
ASJIM
ASXT

A.ENT

* Symbols that are branch targets are also called labels, but we will
always use the term "symbol".

** Number is in the range @<number<65535,

*** The use of $ or . for global names is reserved for DEC-supplied
software.

Global Bit Pattern Symbols
AlS20
B3.6
JI.M
Local Symbols
37%
2718
6%

E.3.3.2 Local Symbols - Target symbols for branches that exist solely
for positional reference will use local symbols of the form

<num>$:

Local symbols are formatted such that the numbers proceed sequentially
down the page and from page to page.

E.3.3.3 Global Symbols - Use of global symbols is restricted, within
reason, to those cases where reference to the code occurs external to
the code.

A program never contains a .GLOBL statement without showing cause.

E.3.3.4 Macro Names - In a macro name the last two characters (last
character possibly being nullj have special significance; the next to
last character is a $, the last character specifies the mode of the
macro.

For example, in the three macro forms in-line, stack, and p-section,
the 1in-line form has no suffix, the stack has an <S> suffix, and the
p-section a <C>. Thus the Queue I/0 macro can be written as any of

QI0$

QIO0SS

QIO0SC

depending on the form required. These are not reserved letters.

E.3.3.5 General Symbols - Make frequently used bit patterns such as
carriage return (CR) and line feed (LF) conventional symbols as they
are needed,

SAMPLE CODING STANDARD

E.4 PROGRAM MODULES

There are no limits on program size. However, since the wvirtual
memory capacity of a computer is finite keep programs as compact as
possible by:

1. creating them for a single function

2. writing them 1in accordance with the memory allocation
guidelines in Appendix F.

Code areas are different than data areas. Code is read-only but data
can be read-only or read-write; read-only data should be segregated
from read-write data. Both areas, code and data, should have
explanatory comments.

E.4.1 The Module Preface

Put each program module in a separate file. For easy reference the
file name should be similar to the name of the module. The file type
is of the form 'NNN' where 'NNN' is the edit or the version number
(see Section E.8). The availability of File Control Services and File
Control Primitives will greatly simplify version number maintenance.

E.4.2 The Module

Below is a list of the information that is included in the example
MACRO-11 module (see Section E.4.3).

The information is formatted as follows:

1. The first six items appear on the same page and do not have
explicit headings.

2. A .NLIST statement, followed by any .ENABL/.DSABL or
.NLIST/.LIST options that are relevant to the assembly of
this module, followed by a matching .LIST statement. The
.NLIST statement has a comment appended to it specifying the
module edit level.

3. A .TITLE statement that specifies the name of the module. 1If
a module contains more than one routine, .SBTTL statements
are used.

4, Several .SBTTL statements giving the name, general function,
and version number of the module. The .SBTTL directive
inserts this information in the table of contents for quick
reference.

5. An .IDENT statement that specifies the version number of the
module (see Section E.8).

6. A copyright statement, and a disclaimer, followed by a form
feed. Note that the copyright, even though a comment, should
be all uppercase. This insures that the copyright will be
presented <correctly, even on a terminal that only has
uppercase.

19.

11.

12.

13.

14.

15.

16.

17.

18.

19.

The name of the facility, that the module is a part of.

The name of the author.

The date of module creation.

A one or two line abstract of the function(s) of the module.

A description of all external references made by the module,
one per line, in alphabetical order.

A chronological edit trail of modifications to the module
that includes the following:

Edit number

Editor's identification

Edit date

Description of the modification made

NOTE

Items 6 through 12 should appear on the
same page.

Any reterences to external iles, wusing the .(LIBRARY and

.INCLUDE directives.,
.MCALL's to any externally defined macros.

A list of the definitions of all equated symbols used in the
module. These definitions should appear one per line and in
alphabetical order.

All 1local macro definitions, preferably 1in alphabetical
order.

All local data. The comments in this section should include:

e Description of each element (type, size, and so forth)

e Organization (functional, alphabetical, adjacent, and so
forth)

e Adjacency requirements (if any)

A form feed, followed by an .SBTTL statement describing the
routine that follows.

A routine header, giving the following information:

Routine name

Description

Inputs

Calling sequence

Outputs

Side effects, register usage, and so forth

NOTE

Items 18 and 19 are repeated for every
routine within the module.

SAMPLE CODING STANDARD

E.4.3 Module Example

.NLIST
.ENABL GBL
.LIST MEB

.LIST

.TITLE MACINI - Once-only code for the MACRO-11 assembler
.SBTTL MACINI - Once-only code for the MACRO-11 assembler
. SBTTL

.SBTTL .IDENT /Y05.081/

. SBTTL

.IDENT /Y05.081/

;**

. %
7

.
*

COPYRIGHT (c¢) 1982, 1983
BY DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASS.
ALL RIGHTS RESERVED.

THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED
ONLY 1IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE
INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER
COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY
OTHER PERSON. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY
TRANSFERRED.

THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE
AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT
CORPORATION.

DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS
SOFTWARE ON EQUIPMENT THAT IS NOT SUPPLIED BY DIGITAL.

We We N We Me Ve Ne Na Ne me Ne e we NO We Ne o N
O % N % Ok ¥ ¥ F % F * % ¥ % F XF
ok % % % % % o ¥ ok ¥ H H % % ¥ ¥ F *

;**
<FF>

s ++

; Facility: MACRO-11 The PDP-11 macro assembler for RT/RSX/VMS and RSTS/E

; Author: Joe Worrall

H

: Created: 21-Aug-82

; Abstract: MACINI contains code only executed once per task invocation.

; Externals Description

; .

H SLIBID File-ID of the system library account (LB:[1,1])

; SPOSID File-ID of the P/0S library account (LB:[1,5])

; SSTABF Workfile statistics buffer

H

: Edit Who Date Description of modification

; _——— _—— ———— e

; gol Jrw 25-Aug-82 Handle P/0S .PARSE module.

; 092 Jrw @5-Sep-82 Allow recursive FINITS's.

: 303 Jrw 10-Nov-82 Setup statistics buffer.

<FF>

; External file references
.LIBRARY /MACLIB/ ;Add MACLIB.MLB to macro library list
. INCLUDE /MACPRE/ ;Include MACPRE.MAC in assembly

External library ".MCALL's" for this module

~s we we

.MCALL FINITS

Equated symbols

~. we we

... Equated symbols ...

Local macros

~e wo we

... Local macros ...

Local data

~ e o

... Local data ...
<FF>
.SBTTL $INIT - Handle once only code for MACRO-11 assembler

+

SINIT

This routine is a collection of all the code, only executed
once in any one run of the MACRO-11 task. 1It's collected
here because:

o It's logical to keep it in one place
o It keeps the code out of the root, keeping
the assembler SMALL.
INPUTS: n/a
CALL: CALL $INIT
OUTPUTS:

Record management, statistics, and FCS buffers
are setup. If the system contains EIS support,
the DIV and MUL routine vectors are setup to
point to the hardware instructions.

EFFECTS: RA - R5 Destroyed!

EYIE PRE TSR THE PR PR VR TRETHE THE TR YRR THE TR TIE P PR TRE TRE CRR TR T

... Begin module code ...

E.4.4 Modularity

No other characteristic has more impact on the wultimate engineering
success of a system than does modularity. Adherence to a set of call
and return conventions helps achieve this modularity.

SAMPLE CODING STANDARD

E.4.4.1 Calling Conventions (Inter-Module/Intra-Module)

Transfer of Control

Macros exist for call and return. The actual transfer is via a
JSR PC instruction. For register save routines, a JSR RN,SAVE is
permitted.

The CALL macro is:

CALL subr-name

Register Conventions

On entry, a subroutine minimally saves all registers it intends
to alter except result registers, On exit it restores these
registers. (The preservation of the register state 1is assumed
across calls.)

Argument Passing

Any registers may be used, but their use should follow a coherent
pattern. For example, if passing three arguments, use R#, Rl and
R2 rather than R@, R2, R5. Saving and restoring occurs 1in one
place.

E.4.4.2 Exiting - All subroutine exits occur through a single RETURN
macro.

E.4.4.3 Success/Failure Indication - The C bit is used to return the
success/failure indicator, where success equals @, and failure equals
1. The argument registers can be used to return values or additional
success/failure data.

E.4.4.4 Module Checking Routines - Modules are responsible for
verifying the wvalidity of arguments passed to them. The design of a
module's calling sequence should aim at minimizing the validity checks
by minimizing invalid combinations. Programmers may add test code to
perform additional checks during checkout. All code should aim at
discovering an error as close (in terms of instruction executions) to
its occurrence as possible.

E.5 CODE FORMAT

E.5.1 Program Flow

Programs are organized on the listing so that they flow down the page,
even at the cost of an extra branch or jump.
and jump instructions should be followed by a blank line.

All unconditional branch
This causes

these 1instructions to stand out in the source code,

to be traced more easily.

For example:

BBB

PROCESS

AAA

appears on the listing as:

TST

BNE BBB
AAA: cees ceee

BR CMN
BBB: seese cooe
CMN: ceee esee

COMMON

o

-10

allowing the code

SAMPLE CODING STANDARD

rather than:

TST
BNE BBB

AAA: csen coee
cese ceoe
CMN: csee [P
ceee cene
coes ceee
ceee coee
BBB: ceee coee

BR CMN

E.5.2 Common Exits

A common exit appears as the last code sequence on the listing. Thus
the flow chart:

EXIT -

appears on the listing as:

PR1: cene ceee

CECIE Y LECRC Y

BR EXIT

PR2: cs e csae

LRI Y e 0 e

BR EXIT

PR3: eo e cene

BR EXIT

PR4: ceee ceen

LECEE Y LECRE Y

EXIT:

and not as:

PR1: ceae cees
EXIT: cs e cens
PR2: caee cene
BR EXIT
PR3: ceee ceee
BR EXIT
PR4: ceene cs e
BR EXIT

E.5.3 Code with Interrupts Inhibited

Code that is executed with interrupts inhibited, is flagged by a three
semicolon (;;;) comment delimiter. For example:

. .ERTZ: ;Enable by returning
;:by system subroutines,
BIS #PR7,PS ;7 inhibit interrupts
BIT #PR7,2(SP) ii; C
BEQ 193 iii O
RTT Pi m
Pi m
19$: cenn oo iii e
s e coee iii n
iii t
ceee ceses iii S

E.5.4 Code in System State

RSX-11M executive subroutines and other privileged code that is
executed 1in system state is flagged by a two semicolon (;;) comment
delimiter. For example:

Switch to system state, ...

~. we e

and exit.

EXIT:

SAMPLE CODING STANDARD

CALL $SWSTK, EXIT ; Inhibit context switching
;; Return in system state
oo i
[i
RETURN o back to user state (EXIT)

n 0

er state code

E.6 INSTRUCTION USAGE

E.6.1

1.

Forbidden Instructions

The use of instructions or index words as literals of the
previous instruction. For example:

MOV @pC ,REGISTER
BIC SRC,DST

uses the bit clear instruction as a literal. This may seem
to be a very "neat" way to save a word but what about
maintaining a program using this trick? To compound the
problem, it will not execute properly if I/D space is enabled
on the 11/45. 1In this case @PC is a D bank reference.

The use of the MOV instruction instead of a JMP instructien
to transfer program control to another 1location. For
example:

MOV #ALPHA,PC

transfers control to location ALPHA. Besides taking 1longer
to execute (2.3 microseconds for MOV vs. 1.2 for JMP) the
use of MOV instead of JMP makes it nearly impossible to pick
up someone else's program and tell where transfers of control
take place. What if one would like to get a jump trace of
the execution of a program (a move trace is unheard of)? As
a more general issue, other operations such as ADD and SUB
from PC should be discouraged.

The seemingly "neat" use of all single word instructions
where one double-word instruction could be used and would
execute faster and would not consume additional memory.
Consider the following instruction sequence:

CMP -(R1) ,-(R1)

CMP -(R1

) »= (R1)

The intent of this instruction sequence is to subtract 8 from
register Rl (not to set <condition codes). This can be
accomplished 1in approximately 1/3 the time via a SUB
instruction (9.4 vs. 3.8 microseconds) at no additional cost
in memory space.

Self-relative address arithmetic (.+n) is absolutely
forbidden in branch instructions; its use in other contexts
must be avoided if at all possible and practical.

SAMPLE CUDING STANDARD

E.6.2 Conditional Branches

When wusing the PDP-11 conditional branch instructions, it is
imperative that the correct choice be made between the signed and the
unsigned branches.

SIGNED UNSIGNED
BGE BHIS (BCC)
BLT BLO

BGT BHI

BLE BLOS (BCS)

A common pitfall is to use a signed branch (for example, BGT) when
comparing two memory addresses. This works until the two addresses
have opposite signs; that 1is, one of them goes across the 16K
(100000 (8)) bound. This type of coding error usually results from
re-linking the program at different addresses and/or changing the size
of the program.

E.7 PROGRAM SOURCE FILES

Source creation and maintenance is done in base levels. A base leve!l
is the point at which the program source files have been frozen. From
the freeze point to the next base level, corrections are not made
directly to the base level itself, rather a file of corrections is
accumulated for each file in the base level. Whenever an updated
source file 1is desired, the correction file is applied to the base
file.

14
The accumulation of corrections proceeds until a logical breaking
point has occurred (a milestone or significant implementation point
has been reached). At this time all accumulated corrections are
applied to the ©previous base 1level to create a new base level and
correction files are started for the new base level.

E.8 PDP-11 VERSION NUMBER STANDARD

The PDP-11 Version Number Standard applies to all modules, parameter
files, complete programs, and libraries which are written as part of
the PDP-11 Software Development effort. It is used to provide unique
identification of all released, pre-released, and in-house software,.

The version number is 1limited 1in that only six <characters of
identification are used. Future implementations of the Macro
Assembler, linker, and librarian should provide for at least nine
characters, and possibly twelve. It is expected that this standard
will be improved as the need arises.

Version Identifier Format:
<version> <edit> <patch>

where: <version> consists of two decimal digits which
represent the release number of a program.
The version number starts at @86 and is
incremented to reflect the number of major
changes in the program.

SAMPLE CODING STANDARD

<edit> consists of two decimal digits which
represent the number of alterations made to
the source program. The edit number begins
at @1 (is null if there are no edits) and is
incremented with each alteration.

<patch> is a letter

between B and Z which represents
the number

of alterations made to the binary
form of the program. The patch number begins
at B (is null if there are no patches) and
changes alphabetically with each patch.

These fields are interrelated. When <version> 1is changed, then

<patch> and <edit> must be reset to nulls. It is intended that when

<edit> is incremented, then <patch> will be re-set to null, because

the various bugs have been fixed.

E.8.1 Displaying the Version Identifier

The visible output of the version identifier should appear as:

Program

Name <key-letter> <version> <edit> <patch>,

where the following Key Letters have been identified:

X in-house experimental version

Y field test, pre-release, or in-house release version

v released or frozen version
'X' corresponds roughly to individual support, 'Y' to group support,
and 'V' to company support.
The dot (.) which separates <version> from <edit> is not used if both
<edit> and <patch> are null. When a version identifier is displayed

as part of program identification, then the format is:

Program

Name <space><key-letter><version> . <edit><patch>

Examples:

PIP V05.00
LINK V@8.80
MACRO V05.00

E.8.2 Use of the Version Number in the Program

All sources
In programs
module must
or library
constituent
the first

SIN routine,

must contain the version number in an .IDENT directive.
(or libraries) which consist of more than one module, each

have a version number. The version number of the program
is not necessarily related to the version numbers of the

modules; it is perfectly reasonable, for example, that

version of a new FORTRAN library, V@@, contain an existing
say V@a5.01.

Parameter files are also required to contain the version number in an

.IDENT directive. Because the assembler records the last .IDENT seen,
parameter files must precede the program.

Entities which consist of a collection of modules or programs (for
example, the FORTRAN Library) have an identification module in the

first position. An identification module exists solely to provide
identification. For example:

;0TS identification
.TITLE FTNLIB
.IDENT /V02.008/

. END

is an identification module.

APPENDIX F

ALLOCATING VIRTUAL MEMORY

This appendix is intended for the MACRO-11 user who wants to avoid the
problem of thrashing, by optimizing the allocation of virtual memory.
Users of smaller systems should become thoroughly familiar with the
conventions discussed herein. This appendix discusses the following
topics:
1. General hints and space-saving guidelines

2. Macro definitions and expansions

3. Operational techniques.
The user is assumed to have pursued a policy of modular programming,
as advised in Appendix E. Modular programming results in bodies of
code that are small, distinct and highly functional. Using such code,

which presents many advantages, one can usually avoid the problem of
insufficient dynamic memory during assembly.

F.1 GENERAL HINTS AND SPACE-SAVING GUIDELINES
Work-file memory is shared by a number of MACRO-11's tables, each of
which 1is allocated space on demand (64K words of dynamically pageable
storage are available to the assembler). The tables and their
corresponding entry sizes are as follows:

1. User-defined symbols - five words.

2. Local symbols - three words.

3. Program sections - six words.

4. Macro names - five words.

5. Macro text - nine words.

6. Source files - six words.

In addition, several scratch pad tables are used during the assembly
process, as follows:

1. Expression analysis - five words.

2. Object code generation - five words.

ALLOCATING VIRTUAL MEMORY

3. Macro argument processing - three words.
4, (MCALL argument processing - five words.

The above information can serve as a guide for estimating dynamic
storage requirements and for determining ways to reduce such
requirements.

For example, the use of local symbols whenever ©possible 1is highly
encouraged, since their internal representation requires 25 percent
less dynamic storage than that required for regular user-defined
symbols. The usage of 1local symbols can often be maximized by
extending the scope of 1local symbol blocks through the LENABL
LSB/.DSABL LSB MACRO-11 directives see Sections 3.5 and 6.2.1).

Since MACRO-11 does not support a purge function, once a symbol Iis
defined, it permanently occupies its dynamic memory allocation.
Numerous instances occur during conditional assemblies and repeat
loops when a temporarily assigned symbol is used as a count or offset
indicator. 1If possible, the symbols so used should be re-used.

In keeping with the same principle, special treatment should be given
to the definition of commonly used symbols. Instead of simply
appending a prefix file which defines all possibly used symbols for
each assembly, wusers are encouraged to group symbols into logical
classes. Each class can then become a shortened prefix file or a
macro in a library (see Section F.2 below). 1In either case, selective
definition of symbolic assignments is achieved, resulting 1in fewer
defined (but unreferenced) symbols.

An example of this idea is seen in the definition of IAS/RSX-11M
standard symbols. The RSX system macro library, for example, supplies
several macros used to define distinct classes of symbols. These
groupings and associated macro names are as follows:

DRERRS - Directive return status codes
FILIOS - File-related I/O function codes
IOERRS - I/0 return status codes

SPCIOS - Special 1/0 function codes

F.2 MACRO DEFINITIONS AND EXPANSIONS

Dynamic storage is used most heavily for the storage of macro text.
Upon macro definition or the 1issuance of an .MCALL directive, the
entire macro body is stored, including all comments appearing in the
macro definition. For this reason, comments should not be included as
part of the macro text. A 1librarian function switch (/SZ) is
available to compress macro source text by removing all trailing
blanks and tabs, blank lines, and comments. The system macro 1library
(RSXMAC.SML) has already been compressed. User-supplied macro
libraries (.MLB) and macro definition prefix files should also be
compressed. For additional 1information regarding these two utility
tasks, consult the applicable RSX-11M or RSX-11M-PLUS Utilities Manual
{see Section 9.3 in the Preface).

ALLOCATING VIRTUAL MEMORY

It often seems practical to include a file of commonly used macro
definitions in each assembly. This practice, however, may produce the
undesirable allocation of valuable dynamic storage for unnecessary
macros. This waste of memory can be avoided by making the file of
macro definitions a user-supplied macro library file (see Table 8-1).
This means that the names of desired macros must be listed as
arguments in the .MCALL directive (see Section 7.8), or the automatic
MACRO call, .ENABL MCL, must be enabled (see Section 6.2.1).

Certain types of macros can be redefined to null after they have been

invoked. This practice not only frees storage space, it also
eliminates the overhead and the dynamic memory wasted by calling a
useless macro. The ©practice of redefining macros to null applies
mainly to those that define symbolic assignments, as shown 1in the
example Dbelow. The redefinition process may be accomplished as
follows:

.MACRO DEFIN

SYM1 = VALl ;Define symbolic assignments,
SYM2 = VAL2
OFF1 = SYMBOL ;Define symbolic offsets.
OFF2 = OFF1+S1Z1
OFF3 = OFF2+4S1IZ2
OFFN = OFFM+SIZM

.MACRO DEFIN ;Macro null redefinition.

. ENDM

. ENDM DEFIN

Macros exhibiting this redefinition property should be defined (or
read via the .MCALL directive) and invoked before all other macro
definition and/or .MCALL processing, a practice that ensures more
efficient use of dynamic memory.

F.3 OPERATIONAL TECHNIQUES

When, despite adhering to the guidelines discussed above, performance
still falls below expectations, several additional measures may be
taken to increase dynamic memory.

ALLOCATING VIRTUAL MEMORY

The first measure involves shifting the burden of symbol definition
from MACRO-11 to the 1linker or task builder. 1In most cases, the
definition of system I/0 and File Control Services (FCS) symbols (and
user-defined symbols of the same nature) is not necessary during the
assembly process, since such symbols are defaulted to global
references (Appendix D.1l, category 4 of error code A). The linker or
task builder attempts to resolve all global references from
user-specified default 1libraries and/or the system object library
(SYSLIB). Furthermore, by applying the selective search option for
object modules consisting only of global symbol definitions, the
actual additional burden to the linker is minimal.

The second way is to produce only one output file (either object or
listing), as opposed to two. The additional memory required to
support the second output file is allocated from available dynamic
memory at the start of each assembly.

APPENDIX G

WRITING POSITION-INDEPENDENT CODE

G.1 INTRODUCTION TO POSITION~-INDEPENDENT CODE

The output of a MACRO-11 assembly is a relocatable cbject module. The
Task Builder or Linker binds one or more modules together to create an
executable task image. Once created, if the program is to run it must
be 1loaded at the virtual address specified at link time. This is
because the Task Builder or Linker has to modify some instructions to
reflect the memory locations in which the program is to run. Such a
body of code 1is <considered position-dependent (dependent on the
virtual addresses to which it is bound).

All PDP-11 processors offer addressing mocdes that make it possible to
write code that does not depend on the virtual addresses to which it
is bound. Such code is termed position-independent and to run can be
loaded at any virtual address. Position-independent code can improve
system efficiency, both in wuse of wvirtual address space and in
conservation of physical memory.

In multiprogramming systems like IAS, RSX-11M and RSX-11M-PLUS, it is
important that many tasks be able to share a single physical copy of
common code, for example, a library routine. To make the optimum use
of a task's virtual address space, shared code should be
position-independent. Position-dependent code can also be shared, but
it must appear in the same virtual locations in every task using it,
This restricts the placement of such code by the Task Builder or
Linker and can result in the loss of virtual addressing space.

The construction of position-independent code is closely linked to the
proper usage of PDP-11 addressing modes. The remainder of this
Appendix assumes you are familiar with the addressing modes described
in Chapter 5.

All addressing modes 1involving only register references are
position-independent. These modes are as follows:

R register mode
(R) register deferred mode
(R)+ autoincrement mode
@(R)+ autoincrement deferred mode
-(R) autodecrement mode
@-(R) autodecrement deferred mode
When using these addressing modes, you are guaranteed

position-independence, provided the contents of the registers have
been supplied such that they are not dependent upon a particular
virtual memory location.

WRITING POSITION-INDEPENDENT CODE

The relative addressing modes are position-independent when a
relocatable address is referenced from a relocatable instruction.
These modes are as follows:

A relative mode
@A relative deferred mode

Relative modes are not position-independent when an absolute address
(that is a non-relocatable address) is referenced from a relocatable
instruction. 1In this case, absolute addressing (@#A) may be used to
make the reference position-independent.

Index modes can be either position-independent or position-dependent,
according to their use in the program. These modes are as follows:

X (R) index mode
@x (R) index deferred mode

If the base, X, is an absolute value (for example, a control block
offset), the reference is position-independent. For example:

MOV 2(sp) ,R@ ;Position-independent
N=4
MOV N(SP) ,Ra ;Position-independent
If, however, X 1is a relocatable address, the reference is

position-dependent. For example:
CLR ADDR (R1) ;Position-dependent

Immediate mode can be either position-independent or not, according to
its usage. Immediate mode references are formatted as follows:

#N immediate mode

When an absolute expression defines the wvalue of N, the <code Iis
position~-independent. When a relocatable expression defines N, the
code is position-dependent. That is, immediate mode references are
position-independent only when N is an absolute value.

Absolute mode addressing is position-independent only in those cases
where an absolute virtual location is being referenced. Absolute mode
addressing references are formatted as follows:

Q#a absolute mode

An example of a position-independent absolute reference is a reference
to the directive status word ($SDSW) from a relocatable instruction.
For example:

MOV @#$SDSW,R@ ;Retrieve directive status

G.2 EXAMPLES

The RSX-11M library routine, PWRUP, is a FORTRAN callable subroutine
that establishes or removes a user power failure Asynchronous System
Trap (AST) entry point address. Imbedded within the routine 1is the
AST entry point that saves all registers, effects a call to the
user-specified entry point, restores all registers on return, and
executes an AST exit directive. The following examples are excerpts

G-2

WRITING POSITION-INDEPENDENT CODE

from this routine.
illustrate
G-2,

+

.- e e

PWRUP:! CLR ~{(SP)

N

MOV $0TSVsR4
MOV (SP)+,R2
BNE 108
CLR -(SP)
BR 20%
108 MoV R2+F.FPF(R4)
MoV $BAY - (SP)
20¢:

i Continue Processing,..

+
AST service routine

- e

BA: MOV ROs-(SP)

i Rest of routine follows...

Figure G-1 Example

+

- e

PWRUP:: CLR -(SP)

The first example,
position-dependent references.
is the position-independent version.

Figure G-1 has been modified to
The second example, Figure

Position derendent code examrle

jASsSume success

i Perform further initislizastion...

iPoint R4 at obJect time swstem save area
the above reference to $0TEV is positison-
derendent

iRetrieve AST entrwy soint address

iBranch if one was srecified

iIf noner srecifw no rower fail routine
$Burass AST setur

iSet the AST entry roint

iPush our AST service address

3 the above reference to BA is rposition-
i derendent

’
.
s

iPreserve RO

of Position-Dependent Code

Position inderendent code examele

jAssume success

Perform necessary initialization...

MOV @$#$0TSV,R4
MoV (SP)+,R2
BNE 10¢
CLR ~-(SP)
BR 20¢
10¢: MOV R2:F.PF(R4)
MoV FCs—(SP)
ADD #BA-.,(SP)
20%:

§
AST service routine
H

MOV RO»-(SP)

Rest of routine follows...

Figure G-2 Example

iFoint R4 a8t obJect time sustems save areas

i the above reference to $0TSV is rosition-
inderendent

sRetrieve AST entry roint address

iBranch if one was srecified

iIf nonesr srecifs no rower fail routine
iByrass AST setur

3Set the AST entrs roint

iPush our PC to relocaste our AST service addr
iRelocate our AST service address now

the above reference to BA is rosition-

H
i inderendenti this costs one word to relocate

iPreserve RO

of Position-Independent Code

WRITING POSITION-INDEPENDENT CODE

The position-dependent version of the subroutine contains a relative
reference to an absolute symbol ($OTSV) and a literal reference to a
relocatable symbol (BA). Both references are bound by the Task
Builder to fixed memory locations. Therefore, the routine will not
execute properly as part of a resident 1library 1if 1its 1location in
virtual memory is not the same as the location specified at link time.

In the position-independent version, the reference to $OTSV has been
changed to an absolute reference. 1In addition, the necessary code has
been added to compute the virtual location of BA based upon the value
of the program counter. 1In this case, the value is obtained by adding
the value of the program counter to the fixed displacement between the
current location and the specified symbol. Thus, execution of the
modified routine is not affected by its 1location 1in the 1image's
virtual address space.

The MACRO-11 Assembler provides a way of checking whether the code is
position-independent. In an assembly listing, MACRO-11 inserts a '
character following the contents of any word which requires the Task
Builder or Linker to perform a relocation operation and, therefore,
may not be position independent code. The cases which cause an
apostrophe to be inserted in the assembly listing are as follows:

1. Absolute mode references when the reference 1is relocatable.
References are not flagged when they are absolute. For
example:

MOV @#ADDR,R1 ;Pic only if ADDR is absolute.

2. 1Index and index deferred mode references when the offset is
relocatable. For example:

Mov ADDR(R1) ;R5 :Non-pic if ADDR is relocatable.
MOV @ADDR (R1) ,R5 ;:Non-pic if ADDR is relocatable.

3. Relative and relative deferred mode references when the
address specified 1is relocatable with respect to another
program section. For example:

MOV ADDR1,R1 ;Non-pic when ADDR1 is absolute.
MOV @ADDR1,R1

4, Immediate mode references to relocatable addresses.
MOV #ADDR,R1 ;Non-pic when ADDR is relocatable.

In one case, MACRO-11 does not flag a potential position-dependent
reference. This occurs where a relative reference is made to an
absolute virtual location from a relocatable instruction (see the MOV
$0TSV,R4 instruction in Figure G-1).

References requiring more than simple relocation at 1link time are
indicated in the assembly 1listing. Simple global references are
flagged with the letter G. Statements which contain multiple global
references or require complex relocation, are flagged with the letter
C (see Section 3.9 and Chapter 4). It is difficult to positively
state whether or not a C-flagged statement is position-independent.
However, in general, position dependence can be decided by applying
the guidelines discussed earlier in this Appendix to the resulting
address value produced at link time.

APPENDIX H

SAMPLE ASSEMBLY AND CROSS REFERENCE LISTING

>RSOUNP MACRO V05.00 Saturday 08-Jan-B83 11147
TARLE OF CONTENTS

2~ 1 RALDSO unrack routine

RSOUNP MACRO V05.00 Saturday 08-Jan-83 11147 Pase 1

1 +TITLE RSOUNF

2 +IDENT 702/

3

4 i

S i COPYRIGHT (c) 1979 BY

6 4 DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASS.

7 i

8 3 THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COFIED

9 3 ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE
10 # INCLUSION OF THE ABOVE COFYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER
11 3 COFIES THEREOF MAY NOT RE FROVIDED OR OTHERWISE MADE AVAILABLE TO ANY
12 7 OTHER FERSON. NO TITLE TO AND OWNERSHIF OF THE SOFTWARE IS HERERY
13 3 TRANSFERRED.
14 §
15 # THE INFORMATION IN THIS SOFTWARE IS SURJECT TO CHANGE WITHOUT NOTICE
16 3 AND SHOULDY NOT RE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIFMENT
17 # CORFORATION,
18 H
19 # DIGITAL ASSUMES NO RESFONSIRILITY FOR THE USE OR RELIARILITY OF 1ITS
20 7 SOFTWARE ON EGUIFMENT WHICH IS NOT SUPFLIED BY DIGITAL.
21 i
22 §# UFDATE HISTORY:
23 H
24 i DoN. CUTLER 10-FEE-73

1

SAMPLE ASSEMBLY AND CROSS REFERENCE LISTING

RSOUNP MACRO V05,00 Saturdar OB-Jan-83 11:47 Page 2
RADNSO0 UNFACK ROUTINE

§OON O Ry

el
NS RO

i8
19

26
27
28
29
30
31
3z
3z
34
35
34
37
38
39
40
a1
42
43
44

45

46
47
48

000000

000000
000002

000006
000010

000014
000020

000024

000036

000042
000044
000044

000050
000052

000054
000056
0000460

000064
000064
000070

-+

RO,

W ar s Wk e W s er ws e

0104446 RSOUNFIIMOV

012704
0000006
012401 1%
012703
003100
004767
000030
012703
000050
004767
000020
Uioidd
004767
000014
020427
0000046
001361
012604
000207

RADS0 UNFPACK ROUTIRE

(L]
-

RSOUNP
Unrack 8 & char RADS0 sumbol to ASCII

Ris

sSBTTL RADS0 unrack routine

+FSECT FPUREI,I

R4y-(SF)
MOV #SYMBOL R4
MoV (R4)+»R1
MOV $50%x50»R3
CALL 10¢
MOV #50yR3
CALL 104
Moy Ri:-RO
CALL 11
CHF R4, #SYMEOL+4
BNE is
MOV (SF)+sR4

RETURN

RANS0 word

and convert

Ernter with R2 -> Outrut ASCII string
SYMBOL» SYMBOL+2 = RADS0 sumbol to unrack
Return with R2 -» Past outrut string

R3 Destroved

iSave R4
iPoint at RADSO sumbol buffer

iGet next RADS0 word
iSet divisor for high character

iUnrack and store the character
iNow set divisor for middle character
sUnerack 2nd store the character

sCory remaining character
iTranslate and store it

#iTest if last word done
iBranch if no
iRestore R4

iReturn to caller

char to ASCII

005000 10s: CLR RO
071003 DIV R3:RO
i Translate RADSO character code to ASCII
P o= space
i 1-32 = A-Z
i 33 = $
P 24 = .
i 35 = unused code
i 36-47 = 0-9
005700 11%: 18T RO iTest if srace
001412 BEG 23% iBranch if so
020027 CHP RO, 233 iTest if middle
000033]
002405 BLT 22% iBranch if alrhsbetic
001402 BEQ 21¢ iBranch if qollar sign
0462700 ADD $22-11+R0 iDot or digits 0-9
000011
RSOUNP MACRO Y05.00 Saturdar 08-Jan-83 11147 Pase 2-1
49 000074 062700 218 ADD #11-100+RO slollar
177711)
50 000100 062700 22¢3 ADD #100-40+RO jAlrhabetic
000040
000104 062700 23%: ADD $#40,R0O iSrace
000040 .
000110 110022 MOVE ROy (R2)+ sStore ASCII char in buffer
000112 000207 RETURN
000001 JEND

aaa U

N b

SAMPLE ASSEMBLY AND CROSS REFERENCE

REQUNP MACRO V05.00 Saturdar 08-Jan-83 11.47 Pase 2-2
Symbol Table

RSOUNP Q000OORG 002 SYMBOL= ####%# GX

. ABS. 000000 000
000000 001
PUREI 000114 002

Errors detected: O
*##% Assembler statistics

Work file reads: O

Work file writes: O

Size of work filel 7936 Words (1 Pases)
Size of core pool: 16158 Words (72 Pases)
OreTatina srystem. RT-11

Elapsed time: 00:00:04.34

DK :RSOUNP, DK ZRSOUNP/C=DK I SUM

RSOUNP MACRO V05.00 Saturday 08-Jan-83 11:47 Pase S5-1
Cross reference table (CREF V05.00)

RSOUNP 2-16#
SYMBOL 2-17 2-25

RSOUNP MACRO VY05.00 Saturday 08-Jan-83 11:47 Pase R-1
Cross reference table (CREF Y05.00)

RO 2-23+% 2-32% 2-33% 2-43 2-45 2-48% 2-49%
Z2-30% 2-51# 2-52

R1 2-18% 2-23

R2 2-52%

R3 2-19+ 2-21% 2~33

R4 2-16 2-17% 2-18 2-25 2-27%

SP 2-16% 2-27

RSOUNP MACRO V05.00 Saturday 08-Jan-B3 11:47 Pase C-1
Cross reference table (CREF V05.00)

H-3

LISTING

APPENDIX I

OBSOLETE MACRO-11 DIRECTIVES, SYNTAX, AND COMMAND LINE OPTIONS

I.1 OBSOLETE DIRECTIVES AND SYNTAX

The following directives and syntax, although supported in this
release of the assembler, will NOT be supported in future assembler
releases. The following table shows the old directives and syntax,
and the new syntax to use. All MACRO-11 code that contains the old
directives and syntax should be updated to use the new syntax.

Table I-1
01d and New Directives and Syntax

Syntax noc longer supported New syntax to use
. EOT None

.IFZ xxXX or .IFEQ xXxXx .IF EQ,x%xX
.IF Z,XXX .IF EQ,xxXx
.IFNZ xxx or .IFNE xxx .IF NE,XXxx
.IF NZ,xxx .IF NE,xXX
.IFL xxx or .IFLT xxX .IF LT,XXX
.IF L,xxx LIF LT,xxX
.IFG xxXxX or .IFGT xxx .IF GT,xxx
.IF G,XxX .IF GT,xXxxx
.IFLE xxXx .IF LE,xxX
. IFDF Xxx .IF DF,xxX
. IFNDF xXX .IF NDF ,xxx

I.2 OBSOLETE COMMAND LINE OPTION

The MACRO-11 command line option /P[ASS}:n is no longer supported by
DIGITAL. This switch was originally created to speed up assemblies in
some cases by only scanning a given file with one pass of the
assembler.

It has been found that the /P[{ASS]:n switch has many side effects, and
has caused more problems than can be documented reasonably.

Although the syntax of the /P[ASS]:n switch is still allowed to appear
on a MACRO-11 command line, no SPRs will be accepted relating to the
switch. All documentation for the /P[ASS]:n switch has been removed.

Any assembly command files containing the /P[ASS]:n switch should be
updated by removing this switch.

APPENDIX J

RELEASE NOTES

This appendix explains the changes that have been made to MACRO-11
since the last version release. The new features mentioned are fully
documented in chapters one through nine of this manual.

(<]
.
—

CHANGES -- ALL VERSIONS OF MACRO-11

1. The opcode, CALLR addr (Call-Return), has been added to the
permanent symbol table (PST). This opcode is equivalent to
the JMP addr opcode. The CALLR addr opcode was added to
complement the CALL addr opcode -- which is equivalent to the
JSR PC,addr opcode.

2. The previous version of MACRO-11 used a range of 64$ to 127$
for automatic 1local symbol generation. MACRO-11l now uses a
range of 30000$ to 65535$ when generating local symbols.

3. Most assembler generated listing text is now in
upper/lowercase. This change was made to increase the
readability of MACRO-11 code. Lines of code that include the
.SBTTL or the .TITLE directive are not converted to
uppercase.

4. Lines of code that include the .SBTTL directive are listed in
the table of contents of an assembly listing, even if a
.NLIST statement is in effect at the time the .SBTTL lines
are encountered. You may specify the .NLIST directive with
the TOC argument to prevent the table of contents from being
printed.

5. The symbol table is printed at the end of an assembly, even
if the .NLIST directive is in effect. You may specify the
.NLIST directive with the SYM argument to prevent the symbol
table from being printed.

6. All page headers include the day of the week.

1@.

11.

12.

The assembler statistics information that appears at the end
of the assembly listing file has been updated to include the
following additional information:

e Total number of virtual work file reads

e Total number of virtual work file writes

e Maximum amount of virtual memory used (in words and pages)
® Size of physical memory freespace (in words and pages)

® Operating system and environment that the assembler is
running under

e Total elapsed assembly time
e MACRO-11 command line

The PSECT synopsis that is printed in the listing file, after
the symbol table, includes the psect attributes.

The maximum number of relocatable terms 1in a complex
expression has been changed. The maximum size of an .OBJ
record that MACRO-11 can produce was increased from 42, bytes
to 128. bytes.

Do not compare .0OBJ files that have been created by different
versions of MACRO-11 when verifying whether vyour code
generation is correct. Changes that have been made for this
version of MACRO-11 (mentioned above) will invalidate a
direct comparison of assembler .OBJ output. Verify code
generation by linking or taskbuilding the .0BJ files involved
and then comparing the .SAV or the .TSK image files.

NOTE

Because the .0BJ files produced by this new version
of MACRO-11 are different, users of the PAT (object
file patch utility) are warned that checksums must be
recomputed on any object patches assembled with this
new version of MACRO-11.

The default for the LC argument has been changed from .DSABL
LC to .ENABL LC.

The following .ENABL/.DSABL options have been added:

1. L.ENABL LCM/.DSABL LCM
2. J.ENABL MCL/.DSABL MCL

The following directives have been added to MACRO-11. These
new directives are documented in this manual.

.CROSS

. INCLUDE
-.LIBRARY
.MDELETE
.NOCROSS
.REM
«WEAK

o e 9 e e

NSO W N

J.2

RELEASE NOTES

CHANGES -- MACRO-11/RSX VERSION ONLY

1.

The cross-reference options SEC and ERR have been added.

NOTE

The RSX-11 CREF program (CRF) has been updated to
include support for these two new macro
cross-reference options. Only the new RSX-11 CRF
version (v2) distributed with RSX-11M V4.1 and
RSX-11M-PLUS V2.1 should be used with this version of
MACRO-11.

The default for the command 1line option /[-]SP has been
modified from /SP to /-SP. The new default may be modified
by the system manager using the TKB GBLPAT option described
in the MACRO-11/RSX task build command file.

CHANGES -- MACRO-11/RT-11 VERSION ONLY

1.

The message:
Errors detected: 0

has been removed. MACRO-11 prints this message on the
terminal only 1if errors have been detected in the module
being assembled.

If the first character in a MACRO-11/RT-11 command line is a
semicolon (;), the 1line 1is treated as a comment and is
ignored. This change was made to maintain compatibility with
the RSX-11 version of MACRO-11.

RSX-11 style command line switches may be used in addition to
the one-character switches:

/M may be represented as /M[LIB]
/E may be represented as /E[NABL]
/D may be represented as /D[SABL]
/P may be represented as /P[ASS]
/L may be represented as /JLIIST]
/N may be represented as /N{LIST]

The default file extension for macro libraries has been
changed to .MLB, to conform with RSX-11l. The RT~11 V5 LIBR
program defaults its macro 1library output to the .MLB
extension also.

RELEASE NOTES

Prior to this release of MACRO-11, if you specified more than
one . MLB file on a command 1line, and each file had a
definition of the same macro, the first macro library
specified would be used for the macro definition if called in
the source program. This has been modified to work like the
RSX-11 macro assembler. The RT-11 macro assembler now scans
.MLB files from the 1last file specified (either in the
MACRO-11 <command line or by using the .LIBRARY directive) to
the first file specified. The assembler then scans the
system default macro library, SY:SYSMAC.SML.

The default for the GBL argument has been changed from .DSABL
GBL to .ENABL GBL.

INDEX

A error, 3-10, 3-13, 5-16, 6-15,
6-25, 6-26, 6-28, 6-29, 6-32,
6-33, 6-38, 6-40, 6-42, 6-44,
6-47, 6-56, 7-2, 7-12 to 7-14,
7-16, 7-17, 7-20

Absolute address, D-2

Absolute binary output, 6-19

Absolute expression, 3-17

Absolute mode, 5-1, 5-7,

B-2, G-2, G-4

Absolute module, 6-42

Absolute program section, 6-42 to
6-45, B-4. See also .ASECT
directive

ADD instruction, E-12, G-3, H-2

Addition operator, 3-2, 3-5, B-1
Address boundaries, 6-39
Addressing modes, 5-1
Apostrophe, G-4
ASCII

character set, A-1

conversion characters, 6-23 to

6-26

.ASCII directive, 6-1, 6-21, 6-26
to 6-28, 6-36, B-3

.ASCIZ directive, 6-1, 6-28,
6-36, B-4

LASECT directive, 3-11, 3-13,
3-14, 6-2, 6-44 to 6-47, B-4

Assembler directives. See Permanent
symbol table
version number,
Assembly
error.
listing
pass 1,
6-16,

6-4

See A error
symbols, 4-1
1-1, 1-2, 6-12,
6-49, 8-10,

6-15,
8-12,

D-3
Assignment operator. See Direct
assignment operator
Assignment statement. See Direct
assignment statement

Autodecrement deferred mode, 5-1,
5-5, B-2, G-1

Autodecrement indicator, 3-2

Autodecrement mode, 5-1, 5-4,
B-1, B-2, G-1

Autoincrement deferred mode, 5-1,
5-4, B-2, G-1

Autoincrement indicator, 3-2
Autoincrement mode, 5-1, 5-3,
B-2, G-1

E-14
instruction,
instruction,
instruction,
instruction,
BGT instruction,
BHI instruction,
BHIS instruction,
BIC instruction,
Binary operator,
Blank line, 2-1
BLE instruction, E-14
.BLKB directive, 3-14,
to 6-38, B-4, D-3
.BLKW directive, 3-14,
6-38, 6-48, B-4,
BLO instruction, E-13
BLOS instruction, E-13
BLT instruction, E-13, H-2
BNE instruction, E-106, G-3,
BR instruction, E-10, E-11,
Branch instruction
addressing, 5-9,
use of, E-13
.BYTE directive, 6-2, 6-23,
B-4, D-4

Base level,
BCC
BCS
BEQ
BGE

E-13
E-14
H-2

E-13
E-14
E-14

E-13

E-13
3-4,

3-5, 3-16

6-2, 6-36

6-2,
D-3

6-36,

CP:L‘-
w N

D-2

6-36,

C bit, E-9
CALL instruction, H-2
Calling convention, E-8
Character set
ASCII, A-1 to A-3
legal, 3-1 to 3-3
Radix-5¢, A-5, A-6
CLR instruction, G-3, G-3, H-2
CMP instruction, E-13, H-2
Coding standard, E-1
Comment, E-1, E-5
delimiter, 3-2, B-1, E-12
field, 2-1, 2-4, 2-5, E-1
Commercial instruction set, C-3
Common exit, E-11
Complex relocatable expression,
3-18
Complex relocation, 4-1, G-4

Index-1

Concatenation indicator, 3-3,
B-1, B-3

Conditional assembly, 6-51 to
6-56, 7-8, 7-16, D-4

immediate, 6-56

Conditional assembly block, 7-3,
B-4, B-5

Conditional assembly directive,
6-49

Copyright statement, E-5

.CROSS directive, 6-2, 6-22,
B-4, C-5

Cross-reference listing, 3-12,
6-19, 8-8, 8-9, 8-14, 8-16 to
8-18, 9-2, 9-3, 9-5 to 9-7

.CSECT directive, 3-11, 3-13,
6-2, 6-44 to 6-47, 9-6, B-4

Current location counter, 2-2,
3-2, 3-12 to 3-14, 3-17, 5-8,
6-11, 6-36 to 6-38, 6-43 to
6-44, B-5, B-7, D-2, D-3

D error, 2-3
Data
sharing, 6-45
storage, 6-2
storage directives, 6-23
Default radix, 3-14
Default register definitions,
3-1¢, 6-21
Deferred addressing indicator,
3-2, B-1
Delimiting characters, 3-3, 6-17,
6-29, B-3 to B-5, B-8
Device register, E-2
Direct assignment
operator, 3-1, 3-2, 3-9,
statement, 3-6 to 3-9, 3-
6-37
Directives. See Permanent
symbol table
DIV instruction, H-2
Division operator, 3-2, 3-5, B-1
Double ASCII character indicator,
3-2, B-1
.DSABL directive, 6-2, 6-19 to
6-21, 8-6, 8-8, 9-4, B-4,
D-1
Dummy argument, 7-2, 7-11, 7-17

E error, 6-40

EMT instruction, 5-9, D-4

.ENABL directive, 6-2, 6-19 to
6-21, 8-6, 8-8, 9-4, B-4,
D-1, D-2, D-4, F-2

.END directive, 6-2, 6-48, B-4,
D-3, H-2

.ENDC directive, 6-2, 6-12, 6-53
to 6-56, 6-59, 7-3, B-4

.ENDM directive, 6-13, 6-21, 7-2,
7-3, 7-6 to 7-8, 7-19, 7-11,
7-17 to 7-19, B-4, B-8, F-3

.ENDR directive, 7-19, 7-20, B-5,
B-8

Entry point symbol, 6-52

.ERROR directive, 7-16, B-5, D-4

Error messages, D-1 to D-5

.EVEN directive, 6-2, 6-29, 6-38,
B-5

Expression, evaluation of, 3-16

Expression indicator, immediate,
3-2, B-1

External expression, 3-17

External symbol, 6-52. See also
Global symbol

Field terminator, 3-2, B-1

FILES-11, 6-19

Floating-point directives, B-5.
See also .FLT2 directive

Floating-point indicator, B-3

Floating-point processor, 3-14,
6-34, 6-35, C-4

Floating-point rounding, 6-19,
6-32

Floating-point truncation, 6-19,
6-35 /

.FLT2 directive, 6-2, 6-35, B-5

.FLT4 directive, 6-2, 6-35, B-5

FLX, 6-19

Forbidden instructions, E-13

Format control, 2-5

Formatted binary, 6-19

FORTRAN, 6-47, E-15, G-2

Forward reference, 3-8, 3-9,
3-1¢, 3-13, D-4

illegal, D-3

Function control switches. See
Switches, function control

Function directive, 6-18

Global expression evaluation,
3-17

Global label, 6-51

Global reference, 6-21, 6-51,
F-4, G-4

Global symbol, 1-2, 3-7, B-5,
D-2, D-3, E-4

Global symbol definition, 2-2,
3-1, 3-2, 3-8, 6-51. See
also .GLOBL directive

Global symbol directory, 1-2

.GLOBL directive, 3-7, 6-2, 6-51,
B-5, E-4

Hardware register, E-2

I error, 6-28, 6-30

IAS, 6-48, 7-21, 8-14 to 8-17,
8-19 to 8-22, G-1

.IDENT directive, 6-2, 6-16, B-5,
D-2, E-5, E-7, E-15, H-1

Index-2

INDEX

.IF directive, 6-2, 6-12, 6-53 to
6-59, 7-3, 7-8, B-5, D-1, D-2

.IFF directive, 6-2, 6~56 to
6-58, B-5

LIFT directive, 6-2, 6-56 to
6-58, B-5

.IFTF directive, 6-2, 6-56, 6-57,
B-6

.IIF directive, 6-2, 6-59, B-6,
D-1, D-2

Illegal characters, 3-3, D-2, D-3

Illegal forward reference, D-3

Immediate conditional assembly,
6-59

Immediate expression indicator,
3-2, B-1

Immediate mode, 5-1, 5-6, B-2,
G-2, G-4

Implicit .WORD directive, 2-1,
2-4, 6-25

.INCLUDE directive, 6-2, 6-61,
9-8, B-6, C-6

Indefinite repeat block. See
Repeat block, indefinite

Index deferred mode, 5-1, 5-5,
B-2, G-2, G-4

Index mode, 5-1, 5-5, 5-7, B-2,

G-2, G-4
Initial argument indicator, 3-2,
B-1

Initial expression indicator, 3-2
Initial register indicator, 3-2,
B-1
Instruction set
commercial, C-3
PDP-11, C-1
Interrupts, E-12
.IRP directive, 7-2, 7-17 to
7-19, B-6, D-2
.IRPC directive, 72, 7-17 to
7-19, B-6, D-2
Item terminator, 3-2, B-1

JMP instruction, 5-3, E-13
JSR instruction, 5-3, E-9

L error, 2-1

Label
field, 2-1 to 2-3, E-1
multiple definition, 2-3
terminator, 3-1, B-1
.LIBRARY directive, 6-2, 6-60,
9-9, B-6, C-6
.LIMIT directive, 6-3, 6-39, B-6
Line format, E-1
Line printer listing format, 6-5,
6-6, 6-12. See also Listing
control
Linker, 1-2, 2-2, 6-17, 6-43,
6-47, 6-51, F-4, G-1, G-4
Linking, 4-1, 6-48

LLIST directive, 6-3, 6-9 to
6-14, 6-21, 8-6, 8-11,
8-13, 9-4, B-6, D-1

Listing control, 6-4 to 6-14.
See also .LIST directive,
.NLIST directive

Listing control switches. See
Switches, listing control

Listing level count, 6-9, 6-10,
6-12, B-6, B-7

Local symbol, 3-11, 3-12, 7-8,
7-9, D-4, E-4, F-2

Local symbol block, 3-11, 3-12,
6-20, D-4, F-2

Location counter. See Current
location counter

Location counter control, 6-34 to
6-36

Logical AND operator, 3-2, 3-5,
6-55, B-1

Logical inclusive OR operator,
3-2, 3-5, 6-55

Logical OR operator, B-1

M error, 2-3, 3-1, 3-2, 3-8
Macro
argument, 7-7, 7-14, 7-15
argument concatenation, 7
attribute directive, 7-12
definition, 6-33, 7-1 to 7-13,
7-15, 7-17, 7-18, 7-28, B-4,
B-6, B-7, E-6, F-2
directive, 7-1, 7-2, 7-4. See
also .MACRO directive
expansion, 7-1, 7-3, 7-5 to
7-7, 7-9, 7-11, 7-17, B-7,
D-4, F-2
expansion listing, 6-9, 6-12
keyword argument, 7-4, 7-10
keyword indicator, 3-1
name, 7-1, 7-2, 7-4, D-4, E-
nesting, 7-2, 7-3, 7-6, 7-17
numeric argument, 7-7
redefinition, F-3
symbol, 3-6
Macro call, 7-1, 7-4 to 7-11,
7-12, 7-28, B-1l, B-6. See
also .MCALL directive
Macro call argument, 7-4
Macro call numeric argument, 3-3
.MACRO directive, 6-13, 6-21, 7-1
to 7-9, 7-1¢, 7-11, 9-6, B-6,
D-1, F-3
Macro library directive. See
.MCALL directive
Macro symbol table, 3-6, 3-7
MACRO-11 character set. See
Character set, legal
.MCALL directive, 7-20, 8-6,
8-15, 9-5 to 9-6, B-6,
D-4, F-1 to F-3
.MDELETE directive, 7-21, B-7, C-7

4

Index-3

Memory
allocation, 6-42, 6-47, F-1,
F-2
conservation, F-1
.MEXIT directive, 7-3, 7-18 to
7-20, B-7
Modularity, 6-44, E-8, F-1
Module checking routine, E-9
Module preface, E-5
Monitor console routine, 8-1, 8-2
MOV instruction, 3-13, 3-14,
6-37, 6-58, D-1, E-13, G-2 to
G-4, H-2
MOVB instruction, H-2
Multiple definition. See M error
Multiple expression, 2-4
Multiple label, 2-2
Multiple symbol, 2-4
Multiplication operator, 3-2,
3-5, B-1

N error, 3-15

Naming standard, E-2

.NARG directive, 7-8, 7-12, 7-13,
B-7, D-2

.NCHR directive, 7-12, 7-13, B-7,
D-2

Nested conditional directive,
6-55, 6-58, 7-3

.NLIST directive, 6-3, 6-
6-14, 6-16, €-21, 8-6
8-13, 9-4, B-7, D-1

.NOCROSS directive, 6-3, 6-22,
B-7, C-6

.NTYPE directive, 7-12, 7-14,
B-7, D-2

Number of arguments. See .NARG
directive

Numeric argument indicator, B-1

Numeric control

operator, 6-33
temporary, 6-36, B-3
Numeric directive, 6-34

9

V

to
8-11,

O error, 6-40, 6-56, 6-57, 7-4,
7-12, 7-15, 7-21

Object module name, 1-2

.0DD directive, 6-3, 6-37, 6-38,
B-7

Operand field, 2-1, 2-4, E-1

Operand field separator, 3-2, B-1

Operation field, E-1

Operator field, 2-1, 2-3, 2-4

Overlay, 6-42, 6-44

P error, 6-20, 7-16

.PACKED directive, 6-3, 6-31,
6-37, B-7, C-7

.PAGE directive, 6-3, 6-17, 7-4,
B-7

Page
header, 6-4
number, 6-17

Patch, E-15

Permanent symbol table, C-1 to
c-3, 3-6, 3-7

Position-independent code, G-1 to
G-4

.PRINT directive, 7-17, B-7

Processor priority, E-2

Program counter, 5-1, E-2, G-4

Program counter definition, 3-14

Program development system, 8-14

Program module, E-5

Program section directive. See
.PSECT directive

Program section name, 6-41

Program section table, 1-1

Program version number. See
Version identifier, program

Programming standard, E-1

.PSECT directive, 3-12, 3-14,
6-2, 6-3, 6-20, 6-41 to
6-48, 7-9, 9-6, B-7, D-1,
D-2, H-2

Q error, 6-29, 6-34, 6-38

R error, 3-10
.RADSA directive, 6-3, 6-29,
B-8, H-2
Radix control, 3-15, 6-32, 6-34,
B-8
temporary, 6-31, 6-33, B-3
.RADIX directive, 3-15, 6-3,
6-32, B-8, D-1
Radix-506, 3-5, 6-3¢, 6-41, B-3,
B-5, B-8 .
character set, A-4
temporary operator, 6-31
Read-only access, 6-41
Read/write access, 6-41
Register
conventions, E-9
definitions, default, 3-1@,
6-21
expression, 5-2, B-1
symbol, 3-1¢, D-4
term indicator, 3-2, B-1
Register deferred mode, 5-1, 5-2,
B-2, G-1
Register mode, 5-1, 5-2, B-2, G-1
Relative deferred mode, 5-1, 5-8,
B-2, G-2, G-4
Relative mode, 5-1, 5-7, 5-8,
B-2, G-2, G-4
Relocatable expression, 3-17
Relocatable module, 6-43
Relocatable program section, 6-44
to 6-47, B-4
Relocation, 4-1, 6-43

Index-4

INDEX

Relocation bias, 2-2, 3-17, 3-18,
4-1, 6-43
.REM directive, 6-3, 6-18, B-8,
c-7
Repeat block
directive. See .REPT directive
indefinite, 7-3, 7-17 to 7-20,

B-4, B-6

.REPT directive, 7-2, 7-17, 7-280,
B-8, D-3

Reserved symbols, 2-3, 3-1, 3-7

.RESTORE directive, 3-11, 3-14,
6-3, 6-20, 6-49, B-8, C-7,

D-3

.RETURN directive, H-2

RSTS, 9-1 to 9-9

RSX run-time system, 9-1, 9-2

RSX-11M, 6-17, 6-41, 6-48, 7-21,
8-1 to 8-13, 8-19 to 8-22,
E-12, F-3, G-1

RSX-11M-PLUS, 8-1 to 8-13, 8-19
to 8-22, G-1

RT-11, 6-17, 6-41, 6-43, 7-21,
9-1 to 9-9

RT-11 run-time system, 9-1

.SAVE directive, 6-3, 6-20, 6-49,
6-50, B-8, C-7, D-3
.SBTTL directive, 6-3, 6-4, 6-15,
B-8, H-2
Separating characters, 3-3
Sequence number, 6-19
Single ASCII character indicator,
3-3, B-1, B-3
Source line format, 2-5
Source line terminator, B-1
Special characters, 3-1 to 3-3,
7-7
Stack pointer, E-2
definition, 3-12
Statement format, 2-1
SUB instruction, E-13
Subconditional assembly, 6-56 to
6-59 ’
Subtraction operator, 3-2, 3-5,
B-1
Success/failure indicator, E-9
Switches
file specification, 8-6
function control, 8-6, 9-4
listing control, 8-6, 8-7,
9-4
Symbol name syntax, E-3
Symbol table, 1-1, 1-2, F-1
Symbolic argument, 6-41
SYSLIB, F-4
System macro library, 1-1, 7-240,
8-4, 8-14, 9-3, 9-5. See
also .MCALL directive

T error, 3-15, 6-24

Table of contents, 6-12, 6-16,
B-8

Task builder. See Linker

Teleprinter listing format, 6-7,
6-13. See also Listing
control

Temporary numeric control. See
Numeric control, temporary

Temporary radix control. See
Radix control, temporary

Temporary Radix-50 operator, 6-31

Term, definition of, 3-15

Terminal argument indicator, 3-2,
B-1

Terminal expression indicator,
. 3-2

Terminal register indicator, 3-2,
B-1

Terminating directive. See .END
directive

Thrashing, F-1

.TITLE directive, 6-3, 6-4, 6-13,
6-15, 6-21, B-8, D-2, E-5,
E-7, E-16, H-1

TRAP instruction, 5-9, D-4

TST instruction, E-16, E-11, H-2

U error, 3-8, 3-9, 3-15, 6-21,
7-21, 8-7, 8-9, 8-15
Unary operator, 3-4, 3-16, 7-5,
7-7
control, 6-32, 6-34
universal, 3-3, 3-5, B-1
Unconditional assembly, 6-56
Undefined symbol, 3-8, 6-21, D-2,
D-4. See also U error
Universal unary operator. See
Unary operator, universal
Upper-case ASCII, 6-19
User-defined symbol, 3-6 to 3-8
User-defined symbol table, 2-2,
3-6 to 3-8, 3-15

Version identifier
assembler, 6-4
file, 8-20
program, 6-17, B-5
standard, E-14 to Ei6. See also
.IDENT directive

.WEAK directive, 6-3, 6-52, B-8,
c-7

.WORD directive, 3-13, 3-14, 6-3,
6-24, 6-34, 6-36, B-8. See
also Implicit .WORD directive

Z error, 5-3

Index-5

HOW TO ORDER
ADDITIONAL DOCUMENTATION

From

Call

Write

Chicago

312-640-5612
8:15 AM. 10 5:00 PM. CT

Digital Equipment Corporation
Accessories & Supplies Center
1050 East Remington Road
Schaumburg, IL 60195

San Francisco

Alaska, Hawaii

or

408-734-4915

8:15am 10 5:00pP M. PT
603—-884—6660
8:30 AM. t0 6:00 PM.ET

408-734-4915
8:15 AM. to 5:00 PM. PT

Digital Equipment Corporation
ccessories & Supplies Center

632 Caribbean Drive

Sunnyvale, CA 94086

New Hampshire

Rest of US.A,,
Puerto Rico*

603-884-6660
8:30 AM. 10 6:00 PM. ET

1-800-258-1710
8:30 am. t0 6:00 PM. ET

Digital Equipment Corporation
Accessories & Supplies Center
P.O. Box CS2008

Nashua, NH 03061

*Prepaid orders from Puerto Rico must be placed with the local DIGITAL subsidiary (call 809—754—-7575)

Canada

British Columbia 1-800-267-6146 Digital Equipment of Canada Ltd

8:00 AM. to 5:00 Pm. ET 940 Belfast Road
Ottawa, Ontario K1G 4C2

Ottawa—Hull 613-234-7726 Attn: A&SG Business Manager
8:00 am.to 5:00 PM. ET

Elsewhere 112-800-267-6146
8:00 Am. to 5:00 PM. ET

Elsewhere Digital Equipment Corporation

A&SG Business Manager*

*c/o DIGITAL's local subsidiary or approved distributor

PDP-11 MACRO-11
Language Reference

Manual
AA-V027A-TC

READER’S COMMENTS

NOTE: This form is for document comments only. DIGITAL will use comments submitted on this form at the
company’s discretion. If you require a written reply and are eligible to receive one under Software
Performance Report (SPR) service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well organized? Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

— Assembly language programmer

— Higher-level language programmer

— Occasional programmer (experienced)

— User with little programming experience
— Student programmer
— Other (please specify)

Name Date

Organization Telephone

Street

City State Zip Code

or Country

Do Not Tear — Fold Here and Tape

dlilgliltiall

Do Not Tear — Fold Here

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

SSG/ML PUBLICATIONS, MLO5-5/E45
DIGITAL EQUIPMENT CORPORATION
146 MAIN STREET

AAAVAIAPY™N AS
ViMA TIVMANW, l'IA 01754

No Postage
Necessary
if Mailed in the
United States

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	2-05
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	4-01
	4-02
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	6-34
	6-35
	6-36
	6-37
	6-38
	6-39
	6-40
	6-41
	6-42
	6-43
	6-44
	6-45
	6-46
	6-47
	6-48
	6-49
	6-50
	6-51
	6-52
	6-53
	6-54
	6-55
	6-56
	6-57
	6-58
	6-59
	6-60
	6-61
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	8-21
	8-22
	9-01
	9-02
	9-03
	9-04
	9-05
	9-06
	9-07
	9-08
	9-09
	A-01
	A-02
	A-03
	A-04
	A-05
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	D-01
	D-02
	D-03
	D-04
	D-05
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	E-11
	E-12
	E-13
	E-14
	E-15
	E-16
	F-01
	F-02
	F-03
	F-04
	G-01
	G-02
	G-03
	G-04
	H-01
	H-02
	H-03
	I-01
	J-01
	J-02
	J-03
	J-04
	index-01
	index-02
	index-03
	index-04
	index-05
	index-06
	replyA
	replyB

