
PDP-11 MACR0-11
Language Reference Manual
AA-V027A-TC

March 1983

This document describes how to use the MACR0-11 relocatable as
sembler to develop PDP-11 assembly language programs. Although no
prior knowledge of MACR0-11 is required, the user should be familiar
with the PDP-11 pmcessor addressing modes and instruction set. This
manual presents detailed descriptions of MACR0-11 's features, includ
ing source and command string control of assembly and listing func
tions, directives for conditional assembly and program sectioning, and
user-defined and system macro libraries. The chapters on operating
procedures previously were found in two separate manuals (the
PDP-11 MACR0-11 Language Reference Manual and the /AS/RSX
MACR0-11 Reference Manual). This manual should be used with a
system-specific user's guide as well as a Linker or a Task Builder man
ual.

This manual supersedes previous editions, Order Numbers
AA-50758-TC, published 1980, AA-5075A-TC, published 1977, and
DEC-11-0IMRA-B-D, published 1976.

Operating System: VAX/VMS Version 3
RSTS/E Version 8
RSX-11 M Version 4
RSX-11 M-PLUS Version 2

Software: MACR0-11 Version 5

To order additional documents from within DIGITAL, contact the Software Distribution
Center, Northboro. Massachusetts 01532.

To order additional documents from outside DIGITAL, refer to the instructions at the back
of this document.

digital equipment corporation . maynard, massachusetts

First Printing, August 1977
Revised, January 1980

Updated, December 1981
Revised, March 1983

The information in this document is subject to change without notice and should not
be construed as a commitment by Digital Equipment Corporation. Digital Equipment
Corporation assumes no responsibility for any errors that may appear in this docu
ment.

The software described in this document is furnished under'a license and may be used
or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is
not supplied by DIGITAL or its affiliated companies.

©Digital Equipment Corporation 1977, 1980, 1981, 1983.
All Rights Reserved.

Printed in U.S.A.

A postage-paid READER'S COMMENTS form is included on the last page of this
document. Your comments will assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

~nmnomn™
DEC MASSBUS UNIBUS
DEC mate PDP VAX
DECsystem-10 P/OS VMS
DECSYSTEM-20 Professional VT
DEC US Rainbow Work Processor
DECwriter RSTS
DIBOL RSX

M19400

PREFACE

PART I

CHAPTER

CHAPTER

PART II

CHAPTER

CHAPTER

CHAPTER

CONTENTS

MACR0-11: ASSEMBLY AND FORMATTING

1

1.1
1.2

2

2.1
2.2
2. 2. 1
2.2.2
2.2.3
2.2.4
2.3

THE MACR0-11 ASSEMBLER

ASSEMBLY PASS 1
ASSEMBLY PASS 2

SOURCE PROGRAM FORMAT

PROGRAMMING STANDARDS AND CONVENTIONS
STATEMENT FORMAT

Label Field
Operator Field
Operand Field
Comment Field

FORMAT CONTROL

PROGRAMMING IN MACR0-11 ASSEMBLY LANGUAGE

3

3.1
3 .1.1
3 .1. 2
3 .1. 3
3.2
3.2.1
3.2.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

4

5

5.1
5.?.
5.3
5.4
5.5
5.6
5.7
5.8
5.9

SYMBOLS AND EXPRESSIONS

CHARACTER SET
Separating and Delimiting Characters
Illegal Characters
Unary and Binary Operators

MACR0-11 SYMBOLS
Permanent Symbols
User-Defined and Macro Symbols

DIRECT ASSIGNMENT STATEMENTS
REGISTER SYMBOLS
LOCAL SYMBOLS
CURRENT LOCATION COUNTER
NUMBERS
TERMS
EXPRESSIONS

RELOCATION AND LINKING

ADDRESSING MODES

REGISTER MODE
REGISTER DEFERRED MODE
AUTOINCREMENT MODE
AUTOINCREMENT DEFERRED MODE
AUTODECREMENT MODE
AUTODECREMENT DEFERRED MODE
INDEX MODE
INDEX DEFERRED MODE
IMMEDIATE MODE

iii

Page

ix

1-1

1-1
1-2

2-1

2-1
2-1
2-2
2-3
2-4
2-4
2-5

3-1

3-1
3-3
3-3
3-4
3-6
3-6
3-6
3-8
3-10
3-11
3-13
3-15
3-15
3-16

4-1

5-1

5-2
5-2
5-3
5-4
5-4
5-4
5-5
5-5
5-6

5 .10
5.11
5.12
5.13
5.14

ABSOLUTE MODE
RELATIVE MODE
RELATIVE DEFERRED MODE
BRANCH INSTRUCTION ADDRESSING
USING TRAP INSTRUCT!ONS

PART III MACR0-11 DIRECTIVES

CHAPTER

6.1
6. l. l
6 .1. 2
6. l. 3
6 .1. 4
6 .1. 5
fi.1.6
6.2
6.2.1
6.2.2

6.3
6.3.1
6.3.2
6.3.3
6.3.4
6.3.5
6. 3. ()
6.3.7
6.3.8
') • 4
6.4.1
5.4.1.1
6.4.1.2
6.4.2

6.4.2.1
6.4.2.2

5.5
11.5.1
6.5.2
fi.5.3
6.5.4
6.6
f, • 7
6.7.1
6.7.1.1
6.7.1.2
fi.7.1.3
6.7.2
6.7.3
11.7.4
6.8
6.8.1
6.8.2
e:;. 9
fJ.9.l
h. 9.?.
G.9.3
6 .10
5.10.1
fi.10.2

GENERAL ASSEMBLER DIRECTIVES

LISTING CONTROL DIRECTIVES
.LIST and .NLIST Directives
.TITLE Directive
.SBTTL Directive
. !DENT Di re ct i ve
.PAGE Directive/Page Ejection
.REM Directive/Begin Remark Lines

FUNCTION DIRECTIVES
.ENABL and .DSABL Directives
Cross-Reference Directives: .CROSS
and .NOCROSS

DATA STORAGE DIRECTIVES
.BYTE Directive
.WORD Directive
ASCII Conversion Characters
.ASCII Directive
.ASCIZ Directive
.RAD50 Directive
Temporary Radix-50 Control Operator
.PACKED Directive

RADIX AND NUMERIC CONTROL FACILITIES
Radix Control and Unary Control Operators
.RADIX Directive
Temporary Radix Control Operators
Numeric Directives and Unary Control
Operators
Floating-Point Storage Directives
Temporary Numeric Control Operators:
"'c and "'F

LOCATION COUNTER CONTROL DIRECTIVES
.EVEN Directive
.ODD Directive
.BLKB and .BLKW Directives
.LIMIT Directive

TERMINATING DIRECTIVE: .END DIRECTIVE
PROGRAM SECTIONING DIRECTIVES

.PSECT Directive
Creating Program Sections
Code or Data Sharing
Memory Allocation Considerations
.ASECT and .CSECT Directives
.SAVE Directive
.RESTORE Directive

SYMBOL CONTROL DIRECTIVES
.GLOBL Directive
.WEAK Directive

CONDITIONAL ASSEMBLY DIRECTIVES
Conditional Assembly Block Directives
Subconditional Assembly Block Directives
Immediate Conditional Assembly Directive

FILE CONTROL DIRECTIVES
.LIBRARY Directive
.INCLUDE Directive

iv

5-6
5-7
5-8
5-9
5-9

6-1

6-4
6-9
6-15
6-15
6-16
6-17
IS-18
6-18
6-19

6-22
o-23
6-23
'1-24
6-25
6-26
1)-28
n-29
'S-31
6-31
6-32
6-32
6-32
n-33

6-34
6-35

6-36
6-37
6-38
6-38
6-38
6-39
6-40
6-40
5-41
6-45
6-47
11-47
6-48
5-49
6-49
6-51
6-51
6-52
S-53
fi-53
6-56
6 -59
6-6~

6-6~
6-61

CHAPTER

PART IV

CHAPTER

CHAPTER

7

7.1
7 .1.1
7 .1. 2
7 .1. 3
7 .1. 4
7.2
7.3

7.3.1
7.3.2
7.3.3
7.3.4
7.3.5
7.3.6
7.3.7
7.4

7.4.1
7.4.2
7.4.3
7.5
7.6

7.6.1
7.6.2
7.7
7.8
7.9

MACRO DIRECTIVES

DEFINING MACROS
.MACRO Directive
.ENDM Directive
.MEXIT Directive
MACRO Definition Formatting

CALLING MACROS
ARGUMENTS IN MACRO DEFINITIONS AND MACRO
CALLS

Macro Nesting
Special Characters in Macro Arguments
Passing Numeric Arguments as Symbols
Number of Arguments in Macro Calls
Creating Local Symbols Automatically
Keyword Arguments
Concatenation of Macro Arguments

MACRO ATTRIBUTE DIRECTIVES: .NARG, .NCHR, AND
.NTYPE

.NARG Directive

.NCHR Directive

.NTYPE Directive
.ERROR AND .PRINT DIRECTIVES
INDEFINITE REPEAT BLOCK DIRECTIVES: .IRP AND
. IRPC

.IRP Directive

.IRPC Directive
REPEAT BLOCK DIRECTIVE: .REPT, .ENDR
MACRO LIBRARY DIRECTIVE: .MCALL
MACRO DELETION DIRECTIVE: .MDELETE

7-1

7-1
7-1
7-2
7-3
7-4
7-4

7-4
7-6
7-7
7-7
7-8
7-8
7-10
7-11

7-12
7-12
7-13
7-14
7-16

7-17
7-17
7-18
7-20
7-20
7-21

OPERATING PROCEDURES

8

8.1
8 .1.1

8.1.1.1
8.1.1.2
8.1.1.3

8.1.1.4

8 .1. 2
8 .1. 3
8 .1. 4
8 .1. 5
8.2
8.2.1
8.2.2
8.2.3
8.2.4
8.3
8.4
8.5

9

9.1
9 .1.1

IAS/RSX-llM/RSX-llM-PLUS OPERATING PROCEDURES 8-1

RSX-llM/RSX-llM-PLUS OPERATING PROCEDURES
Initiating MACR0-11 Under RSX-llM/
RSX-llM-PLUS
Method 1 - Direct MACR0-11 Call
Method 2 - Single Assembly
Method 3 - Install, Run Immediately, and
Remove On Exit
Method 4 - Using the Indirect Command
Processor
Default File Specifications
MCR Command String Format
DCL Operating Procedures
MACR0-11 Command String Examples

IAS MACR0-11 OPERATING PROCEDURES
Initiating MACR0-11 Under IAS
IAS Command String
IAS Indirect Command Files
IAS Command String Examples

CROSS-REFERENCE PROCESSOR (CREF)
IAS/RSX-llM/RSX-llM-PLUS FILE SPECIFICATION
MACR0-11 ERROR MESSAGES UNDER IAS/RSX-llM/
RSX-llM-PLUS

RSTS/RT-11 OPERATING PROCEDURES

MACR0-11 UNDER RSTS
RT-11 Through RSTS

v

8-1

8-2
8-2
8-2

8-2

8-3
8-3
8-4
8-8
8-13
8-14
8-14
8-14
8-16
8-16
8-17
8-19

8-20

9-1

9-1
9-1

9 .1. 2
9.2
9.3
9.4
9.5

9.5.1
9.5.2
9.5.3

APPENDIX A

A .1
A.2

APPENDIX B

B.l
B.2
B.3

APPENDIX C

C.l
C.2

APPENDIX D

APPENDIX E

E.l
E.2
E.3
E.3.1
E.3.1.1
E.3.1.2
E.3.1.3
E.3.2
E.3.3
E.3.3.1
E.3.3.2
E.3.3.3
E.3.3.4
E.3.3.5
E.4
E.4.1
E.4.2
E.4.3
E.4.4
E.4.4.1

E.4.4.2
E.4.4.3
E.4.4.4
E.5
E.5.1
E.5.2
E.5.3
E.5.4
E.6
E.6.1
E.6.2
E.7

RSX Through RSTS
INITIATING MACR0-11 UNDER RT-11
RT-11 COMMAND STRING
FILE SPECIFICATION OPTIONS
CROSS-REFERENCE (CREF) TABLE GENERATION
OPTION

Obtaining a Cross-Reference Table
Handling Cross-Reference Table Files
MACR0-11 Error Messages Under RT-11

MACR0-11 CHARACTER SETS

ASCII CHARACTER SET
RADIX-50 CHARACTER SET

MACR0-11 ASSEMBLY LANGUAGE AND ASSEMBLER
DIRECTIVES

SPECIAL CHARACTERS
SUMMARY OF ADDRESS MODE SYNTAX
ASSEMBLER DIRECTIVES

PERMANENT SYMBOL TABLE (PST)

OP CODES
MACR0-11 DIRECTIVES

ERROR MESSAGES

SAMPLE CODING STANDARD

LINE FORMAT
COMMENTS
NAMING STANDARDS

Registers
General Purpose Registers
Hardware Registers
nc:iuir-c:i Oonic:t-orc:
~-·~-- ---J~~--~~

Processor Priority
Symbols
Symbol Examples
Local Symbols
Global Symbols
Macro Names
General Symbols

PROGRAM MODULES
The Module Pref ace
The Module
Module Example
Modularity
Calling Conventions (Inter-Module/
Intra-Module)
Exiting
Success/Failure Indication
Module Checking Routines

CODE FORMAT
Program Flow
Common Exits
Code with Interrupts Inhibited
Code in System State

INSTRUCTION USAGE
Forbidden Instructions
Conditional Branches

PROGRAM SOURCE FILES

vi

9-1
9-2
9-2
9-Ll

9-5
9-5
9-7
9-7

A-1

A-1
A-4

B-1

B-1
B-1
B-3

C-1

C-1
C-6

D-1

E-1

E-1
E-1
E-2
E-2
E-2
E-2
E-2
E-2
E-3
E-3
E-4
E-4
E-4
E-4
E-5
E-5
E-5
E-7
E-8

E-9
E-9
E-9
E-9
E-10
E-10
E-11
E-12
E-12
E-13
E-13
E-14
E-14

E.8
E.8.1
E.8.2

APPENDIX F

F.l
F.2
F.3

APPENDIX G

G.l
G.2

APPENDIX H

APPENDIX I

I. l
I. 2

APPENDIX J

FIGURE

TABLE

J.l
J.2
J.3

3-1
3-2
6-1
6-2
6-3

6-4
6-5
6-6
6-7
7-1
7-2
7-3

7-4
8-1
G-1
G-2

3-1
3-2
3-3
3-4
3-5
5-1

PDP-11 VERSION NUMBER STANDARD
Displaying the Version Identifier
Use of the Version Number in the Program

ALLOCATING VIRTUAL MEMORY

GENERAL HINTS AND SPACE-SAVING GUIDELINES
MACRO DEFINITIONS AND EXPANSIONS
OPERATIONAL TECHNIQUES

WRITING POSITION-INDEPENDENT CODE

INTRODUCTION TO POSITION-INDEPENDENT CODE
EXAMPLES

SAMPLE ASSEMBLY AND CROSS-REFERENCE LISTING

OBSOLETE MACR0-11 DIRECTIVES, SYNTAX, AND
COMMAND LINE OPTIONS

OBSOLETE DIRECTIVES AND SYNTAX
OBSOLETE COMMAND LINE OPTION

RELEASE NOTES

CHANGES
CHANGES
CHANGES

ALL VERSIONS OF MACR0-11
MACR0-11/RSX VERSION ONLY
MACR0-11/RT VERSION ONLY

FIGURES

Assembly Listing Showing Local Symbol Block
Sample Assembly Results
Example of Line Printer Assembly Listing
Example of Teleprinter Assembly Listing
Listing Produced with Listing Control
Directives
Assembly Listing Table of Contents
Example of .ENABL and .DSABL Directives
Example of .BLKB and .BLKW Directives
Example of .SAVE and .RESTORE Directives
Example of .NARG Directive
Example of .NCHR Directive
Example of .NTYPE Directive in Macro
Definition
Example of .IRP and .IRPC Directives
Sample CREF Listing
Example of Position-Dependent Code
Example of Position-Independent Code

TABLES

Special Characters Used in MACR0-11
Legal Separating Characters
Legal Argument Delimiters
Legal Unary Operators
Legal Binary Operators
Addressing Modes

vii

E-14
E-15
E-15

F-1

F-1
F-2
F-3

G-1

G-1
G-2

H-1

I-1

I-1
I-1

J-1

J-1
J-3
J-3

3-12
3-13
6-5
F,-7

6-13
6-16
6-21
6-39
6-50
7-13
7-14

7-15
7-19
8-19
G-3
G-3

3-1
3-3
3-4
3-4
3-5
5-1

5-2
6-1
6-2

n-3

6-4
6-5
6-6

6-7
8-1
8-2
8-3
8-4
9-1
9-2
9-3
I-1

Symbols Used in Chapter 5
Directives in Chapter ry
Symbolic Arguments of Listing Control
Directives
Symbolic Arguments of Function Control
Directives
Symbolic Arguments of .PSECT Directive
Program Section Default Values
Legal Condition Tests for Conditional
Assembly Directives
Subconditional Assembly Block Directives
File Specification Default Values
MACR0-11 File Specification Switches
DCL Command Qualifiers
DCL Parameter Qualifiers
Default File Specification Values
File Specification Options
/C Option Arguments
Old and New Directives and Syntax

viii

5-2
6-1

6-10

6-19
6-41
6-48

6-54
6-57
8-4
8-6
8-8
8-13
9-3
9-4
9-6
I-1

PREFACE

0.1 MANUAL OBJECTIVES AND READER ASSUMPTIONS

This manual is intended to enable users to develop programs coded in
the MACR0-11 assembly language.

No prior knowledge of the MACR0-11 Relocatable Assembler is assumed,
but the reader should be familiar with the PDP-11 processors and
related terminology, as presented in the PDP-11 Processor Handbooks.
The reader is also encouraged to become familiar with the linking
process, as presented in the applicable system manual (see Section
0.3), because linking is necessary for the development of executable
programs.

If a terminal is available to the reader, he/she is advised to try
some of the examples in the manual or to write a few simple programs
that illustrate the concepts covered. Even experienced programmers
find that working with a simple program helps them to understand a
confusing feature of a new language.

The examples in this manual were done on an RT-11 system. MACR0-11
may also be used on IAS/RSX-llM, RSX-llM-PLUS and RSTS systems (see
Part IV for information about operating procedures).

It can be assumed that all references to RSX-llM also apply to
RSX-llM-PLUS with the exception of those in Chapter 8, which deals
with each system individually.

0.2 STRUCTURE OF THE DOCUMENT

This manual has four parts and eight appendices.

Part I introduces MACR0-11.

Chapter 1 lists the key features of MACR0-11.

Chapter 2 identifies the advantages of following programming
standards and conventions and describes the format used in coding
MACR0-11 source programs.

Part II presents general information essential to programming with the
MACR0-11 assembly language.

Chapter 3 lists the character
terms, and expressions that
instructions.

ix

set and describes
form the elements

the
of

symbols,
MACR0-11

Chapter 4 describes the output of MACR0-11 and presents concepts
essential to the proper relocation and linking of object modules.

Chapter 5 describes how data stored in memory can be accessed and
manipulated using the addressing modes recognized by the PDP-11
hardware.

Part III describes the MACR0-11 directives that control the processing
of source statements during assembly.

Chapter 6 discusses directives used for generalized MACR0-11
functions.

Chapter 7 discusses directives used in the definition and
expansion of macros.

Part IV presents the operating procedures for assembling MACR0-11
programs.

Chapter 8 covers the IAS, RSX-llM, and RSX-llM-PLUS systems.

Chapter 9 covers the RSTS/RT-11 systems.

Appendix A lists the ASCII and Radix-50 character sets used in
MACR0-11 programs.

Appendix B lisls the !:SI:Jec1a.L character::; recognized by MACR0-11,
summarizes the syntax of the various addressing modes used in PDP-11
processors, and briefly describes the MACR0-11 directives in
alphabetical order.

Appendix C lists alphabetically the permanent symbols that have been
defined for use with MACR0-11.

Appendix D lists alphabetically the error codes produced by MACR0-11
to identify various types of errors detected during the assembly
process.

Appendix E contains a coding standard that is recommended practice in
preparing MACR0-11 programs.

Appendix F discusses several
space for users of small
assembling MACR0-11 programs.

methods of conserving dynamic memory
systems who may experience difficulty in

Appendix G is a discussion of oosition-independent code <PTC).

Appendix H contains an assembly and cross-reference listing.

Appendix I contains obsolete MACR0-11 directives, syntax, and command
line options.

Appendix J describes the differences from the last release of
MACR0-11.

x

0.3 ASSOCIATED DOCUMENTS

For descriptions of documents associated with this manual, refer to
the applicable documentation directory listed below:

IAS Documentation Directory

RSX-llM-PLUS Information Directory and Index

RSX-llM/RSX-llS Information Directory and Index

Guide to RT-11 Documentation

RSTS/E Documentation Directory

0.4 DOCUMENT CONVENTIONS

The color red is used in command string examples to indicate user
type-in.

The symbols defined below are used throughout this manual.

Symbol

[]

UPPER-CASE
CHARACTERS

lower-case
characters

(n)

Definition

Brackets indicate that the enclosed
optional.

argument is

Ellipsis indicates optional continuation of an argument
list in the form of the last specified argument.

Upper-case characters indicate elements of the language
that must be used exactly as shown.

Lower-case characters indicate elements of the language
that are supplied by the programmer.

In some instances the symbol (n) is used following a
number to indicate the radix. For example, 100(8)
indicates that 100 is an octal value, while 100(10)
indicates a decimal value.

xi

CHAPTER 1

THE MACR0-11 ASSEMBLER

MACR0-11 provides the following features:

1. Source and command string control of assembly functions

2. Device and filename specifications for input and output files

3. Error listing on command output device

4. Alphabetized, formatted symbol table listing;
cross-reference listing of symbols

5. Relocatable object modules

6. Global symbols for linking object modules

7. Conditional assembly directives

8. Program sectioning directives

9. User-defined macros and macro libraries

10. Comprehensive system macro library

optional

11. Extensive source and command string control of listing
functions.

MACR0-11 assembles one or more ASCII source files containing MACR0-11
statements into a single relocatable binary object file. The output
of MACR0-11 consists of a binary object file and a file containing the
table of contents, the assembly listing, and the symbol table. An
optional cross-reference listing of symbols and macros is available.
A sample assembly listing is provided in Appendix H.

1.1 ASSEMBLY PASS 1

During pass 1, MACR0-11 locates and reads all required macros from
libraries, builds symbol tables and program section tables for the
program, and performs a rudimentary assembly of each source statement.

In the first step of assembly pass 1, MACR0-11 initializes all the
impure data. areas (areas containing both code and data) that will be
used internally for the assembly process. These areas include all
dynamic storage and buffer areas used as file storage regions.

1-1

THE MACR0-11 ASSEMBLER

MACR0-11 then calls a system subroutine which transfers a command line
into memory. This command line contains the specifications of all
files to be used during assembly. After scanning the command line for
proper syntax, MACR0-11 initializes the specified output files. These
files are opened to determine if valid output file specifications have
been passed in the command line. ·

MACR0-11 now initiates a routine which retrieves source lines from the
input file. If no input file is open, as is the case at the beginning
of assembly, MACR0-11 opens the next input file specified in the
command line and starts assembling the source statements. MACR0-11
first determines the length of the instructions, then assembles them
according to length as one word, two words, or three words.

At the end of assembly pass 1, MACR0-11 reopens the output files
described above. Such information as the object module name, the
program version number, and the global symbol directory (GSD) for each
program section are output to the object file to be used later in
linking the object modules. After writing out the GSD for a given
program section, MACR0-11 scans through the symbol tables to find all
the global symbols that are bound to that particular program section.
MACR0-11 then writes out GSD records to the object file for these
symbols. This process is done for each program section.

1.2 ASSEMBLY PASS 2

On pass 2 MACR0-11 writes the object records to the output file while
generac1ng both the assembly listing and the symbol table listing for
the program. A cross-reference listing may also be generated.

Basically, assembly pass 2 consists of the some steps performed in
assembly pass 1, except that all source statements containing
MACR0-11-detected errors are flagged with an error code as the
assembly listing file is created. The object file that is created as
the final consequence of pass 2 contains aii cne object records,
together with relocation records that hold the information necessary
for linking the object file.

The information in the object file, when passed to the Task Builder or
Linkeri enables the global symbols in the object modules to be
associated with absolute or virtual memory addresses, thereby forming
an executable body of code.

The user may wish to become familiar with the macro object file format
and description. This information is presented in the applicable
system manual (see Section 0.3 in the Preface).

1-2

CHAPTER 2

SOURCE PROGRAM FORMAT

2.1 PROGRAMMING STANDARDS AND CONVENTIONS

Programming standards and conventions allow code written by a person
(or group) to be easily understood by other people. These standards
also make the program easier to:

Plan
Comprehend
Test
Modify
Convert

The actual standard used must meet local user requirements. A sample
coding standard is provided in Appendix E. Used by DIGITAL and its
users, this coding example simplifies both communications and the
continuing task of software maintenance and improvement.

2.2 STATEMENT FORMAT

A source program is composed of assembly-language statements. Each
statement must be completed on one line. Although a line may contain
132 characters (a longer line causes an error (L) in the assembly
listing), a line of 80 characters is recommended because of
constraints imposed by listing format and terminal line size. ~Jank
~.~~es, although legal, have no s_ignificance in the source program.

A MACR0-11 statement may have as many as four fields. These fields
are identified by their order within the statement and/or by the
separating characters between the fields. The general format of a
MACR0-11 statement is:

[Label:] Operator Operand [;Comment(s)]

The label and comment fields are optional. The operator and operand
fields are interdependent; in other words! when both fields are
present in a source statement, each field is evaluated by MACR0-11 in
the context of the other.

A statement may contain an operator and no operand, but the reverse is
not true. A statement containing an operand with no operator is
illegal and is interpreted by ~ACR0-11 during assembly as an implicit
.WORD directive (see Section 11.3.2).

MACR0-11 interprets and processes source program statements one by
one. Each statement causes MACR0-11 either to perform a specified
assembly process or to generate one or more binary instructions or
data words.

2-1

SOURCE PROGRAM FORMAT

2.2.1 Label Field

A label is a user-defined symbol which is assigned the value of the
current location counter and entered into the user-defined symbol
table. The current location counter is used by MACR0-11 to assign
memory addresses to the source program statements as they are
encountered during the assembly process. Thus, a label is a means of
symbolically referring to a specific statement.

When a program section is absolute, the value of the current location
counter is absolute; its value references an absolute virtual memory
address (such as location 100). Similarly, when a program section is
relocatable, the value of the current location counter is relocatable;
a relocation bias calculated at link time is added to the apparent
value of the current location counter to establish its effective
absolute virtual address at execution time. (For a discussion of
program sections and their attributes, see Section 6.7.)

If present, a label must be the first field in a source statement and
must be terminated by a colon (:~~ For example, if the value of the
current location counter is absolute 100(8), the statement:

ABCD: MOV A,B

assigns the value 100(8) to the label ABCD. If the location counter
value were relocat~ble, the final value of ABCD would be 100(8)+K,
where K represents the relocation bias of the program section, as
calculated by the Task Builder or Linker at link time.

More than one label may appear within a single label field. Each
label so specified is assigned the same address value. For example,
if the value of the current location counter is 100(8), the multiple
labels in the following statement are each assigned the value 100(8):

ABC: $DD: A7.7: MOV A,B

Multiple labels may also appear on successive lines. For example, the
statements

ABC:
$DD:
A7.7: MOV A,B

likewise cause the same value to be assigned to all three labels.
This second method of assigning multiple labels is preferred because
positioning the fields consistently within the source program makes
the program easier to read (see Section 2.3).

A double colon (: :) defines the label as a global symbol. For
example, the statement

ABCD:: MOV A,B

establishes the label ABCD as a global symbol. The distinguishing
attribute of a global symbol is that it can be referenced from within
an object module other than the module in which the symbol is defined
(see Section 6.8) or by independently assembled object modules.
References to this label in other modules are resolved when the
modules are linked as a composite executable image.

2-2

SOURCE PROGRAM FORMAT

The legal characters for defining labels are:

A through z
0 through 9
• (Period)
$ (Dollar Sign)

NOTE

By convention, the dollar sign ($) and
period (.) are reserved for use in
defining DIGITAL system software
symbols. Therefore these characters
should not be used in defining labels in
MACR0-11 source programs.

A label may be any length; however, only the first six characters are
significant and, therefore, must be unique among all the labels in the
source program. An error code (M) is generated in the assembly
listing if the first six characters in two or more labels are the
same.

A symbol used as a label must not be redefined within the source
program. If the symbol is redefined, a label with a multiple
definition results, causing MACR0-11 to generate an error code (M) in
the assembly listing. Furthermore, any statement in the source
program which references a multi-defined label generates an error code
(D) in the assembly listing.

2.2.2 Operator Field

The operator field specifies the action to be performed. It may
consist of an instruction mnemonic (op code), an assembler directive,
or a macro call. Chapters 6 and 7 describe these three types of
operators.

When the operator is an instruction mnemonic, a machine instruction is
generated and MACR0-11 evaluates the addresses of the operands which
follow. When the operator is a directive MACR0-11 performs certain
control actions or processing operations during the assembly of the
source program. When the operator is a macro call, MACR0-11 inserts
the code generated by the macro expansion.

Leading and trailing spaces or tabs in the operator field have no
significance; such characters serve only to separate the operator
field from the preceding and following fields.

An operator is terminated by a space, tab! or any
character*, as in the following examples:

MOV A,B ;The space terminates the operator MOV.

MOV A,B ;The tab terminates the operator MOV.

non-RAD50

MOV@A,B ;The @ character terminates the operator MOV.

* Appendix A.2 contains a table of Radix-50 characters.

2-3

SOURCE PROGRAM FORMAT

Although the statements above are all
second statement is the recommended
MACR0-11 coding conventions.

2.2.3 Operand Field

equivalent in
form be ca use

function, the
it conforms to

When the operator is an instruction mnemonic (op code) , the operand
field contains program variables that are to be evaluated/manipulated
by the operator. The operand field may also supply arguments to
MACR0-11 directives and macro calls, as described in Chapters 6 and 7,
respectively.

Operands may be expressions or symbols, depending on the operator.
Multiple expressions used in the operand field of a MACR0-11 statement
must be separated by a comma; multiple symbols similarly used may be
delimited by any legal separator (a comma, tab, and/or space). An
operand should be preceded by an operator field; if it is not, the
statement is treated by MACR0-11 as an impli~it .WORD directive (~ee
Section 6.3.2).

When the operator field contains an op code, associated operands are
always expressions, as shown in the following statement:

MOV R0,A+2(Rl)

On the other hand, when the operator field contains a MACR0-11
directive or a macro call, associated operands are normally symbols,
as shown in the following statement:

.MACRO ALPHA SYM1,SYM2

Refer to the description of each MACR0-11 directive (Chapter 7) to
determine the type and number of operands required in issuing the
directive.

The operand field is terminated by a semicolon when the field is
followed by a comment. For example, in the following statement:

LABEL: MOV A,B ;Comment field

the tab between MOV and A terminates the operator field and defines
the beginning of the operand field; a comma separates the operands A
and B; and a semicolon terminates the operand field and defines the
beginning of the comment field. When no comment field follows, the
operand field is terminated by the end of the source line.

2.2.4 Comment Field

The comment field normally begins in column 33 and extends through the
end of the line. This field is optional and may contain any ASCII
characters except null, RUBOUT, carriage-return, line-feed,
vertical-tab or form-feed. All other characters appearing in the
comment field, even special characters reserved for use in MACR0-11,
are checked only for ASCII legality and then included in the assembly
listing ?S they appenr in the source text~

2-4

SOURCE PROGRAM FORMAT

All comment fields must begin with a semicolon (;). When lengthy
comments extend beyond the end of the source line {column 80}, the
comment may be resumed in a following line. Such a line must contain
a leading semicolon, and it is suggested that the body of the comment
be continued in the same columnar position in which the comment began.
A comment line can also be included as an entirely separate line
within the code body.

Comments do not affect assembly processing or program execution.
However, comments are necessary in source listings for later analysis,
debugging, or documentation purposes.

2.3 FORMAT CONTROL

Horizontal formatting of the source program is controlled by the space
and tab characters. These characters have no effect on the assembly
process unless they are embedded within a symbol, number, or ASCII
text string, or unless they are used as the operator field terminator.
Thus, the space and tab characters can be used to provide an orderly
and readable source program.

DIGITAL's standard source line format is shown below:

Label - begins in column 1

Operator - begins in column 9

Operands - begin in column 17

Comments - begin in column 33.

These formatting conventions are not mandatory; free-field coding is
permissible. However, note the increase readability after formatting
in the example below:

REGTST:BIT#MASK,VALUE;COMPARES BITS IN OPERANDS.

1 9 17 33 (columns)

REGTST: BIT #MASK,VALUE ;Compares bits in operands.

Page formatting and assembly listing considerations are discussed in
Chapter 6 in the context of MACR0-11 directives that may be specified
to accomplish desired formatting operations. Appendix E contains a
sample coding standard.

2-5

CHAPTER 3

SYMBOLS AND EXPRESSIONS

This chapter describes the components of MACR0-11 instructions: the
character set, the conventions observed in constructing symbols, and
the use of numbers, operators, terms and expressions.

3.1 CHARACTER SET

The following characters are legal in MACR0-11 source programs:

1. The letters A through z. Both upper- and lower-case letters
are acceptable, although, upon input, lower-case letters are
converted to upper-case (see Section 6.2.1, .ENABL LC).

2. The digits 0 through 9.

3. The characters {period) and $
characters are reserved for use
Corporation system program symbols.

{dollar sign) • These
as Digital Equipment

4. The special characters listed in Table 3-1.

Character

Table 3-1
Special Characters Used in MACR0-11

Designation

Colon

Double colon

Equal sign

Double equal
sign

Equal sign colon

3-1

Function

Label terminator.

Label terminator; defines the
label as a global label.

Direct assignment operator and
macro keyword indicator.

Direct assignment operator;
defines the symbol as a global
symbol.

Direct assignment operator;
macro keyword indicator;
causes error (M) in listing if
an attempt is made to change
the value of the symbol.

(continued on next page}

Character

==:

%

@

<

>

+

*

I

&

II

8YMBULS AND EXPRESSIONS

Table 3-1 (Cont.)
Special Characters Used in MACR0-11

Designation

Double equal
sign colon

Percent sign

Tab

Space

Number sign

At sign

Left parenthesis

Right parenthesis

Period

Comma

Semicolon

Left angle
bracket

Right angle
bracket

Plus sign

Minus sign

Asterisk

Slash

Ampersand

Exclamation point

Double quote

3-2

Function

Direct assignment operator;
defines the symbol as a global
s ym bo 1 ; ca uses e r r or (M) i n
listing if an attempt is made
to change the value of the
symbol.

Register term indicator.

Item or field terminator.

Item or field terminator.

Immediate expression
indicator.

Deferred addressing indicator.

Initial register indicator.

Terminal register indicator.

Current location counter.

Operand field separator.

Comment field indicator.

Initial argument or expression
indicator.

Terminal argument or
expression indicator.

Arithmetic addition operator
or autoincrement indicator.

Arithmetic subtraction
npPrrlrnr nr rl11tnni:>rri:>mi:>nt

indicator.

Arithmetic multiplication
operator.

Arithmetic division operator.

Logical AND operator.

Logical inclusive OR operator.

Double ASCII character
indicator.

(continued on next page)

SYMBOLS AND EXPRESSIONS

Table 3-1 (Cont.)
Special Characters Used in MACR0-11

Character Designation Function

\

Single quote

Up arrow or
circumflex

Backslash

Single ASCII character
indicator; or concatenation
indicator.

Universal unary operator or
argument indicator.

Macro call numeric argument
indicator.

3.1.1 Separating and Delimiting Characters

Legal separating characters and legal argument delimiters are defined
in Tables 3-2 and 3-3 respectively.

Table 3-2
Legal Separating Characters

Character Definition Usage

Space One or more spaces
and/or tabs

Comma

A space
between
between
within
Spaces
ignored

is a legal separator
instruction fields and

symbolic arguments
the operand field.
within expressions are
(see Section 3.9).

A comma is a legal separator
between symbolic arguments
within the operand field.
Multiple expressions used in
the operand field must be
separated by a comma.

3.1.2 Illegal Characters

A character is illegal for one of two reasons:

1. If a character is not an element of the recognized MACR0-11
character set, it is replaced in the listing by a question
mark, and an error code (I) is printed in the assembly
1 i sting. The exception to this is an embedded null which,
when detected, terminates the scan of the current line.

2. If a legal MACR0-11 character is used in a source statement
with illegal or questionable syntax, an error code {Q) is
printed in the assembly listing.

3-3

SYMBOLS AND EXPRESSIONS

Table 3-3
Legal Argument Delimiters

Character

< ••• >

x ••• x

Definition

Paired angle
brackets

Up-arrow (unary
operator) con-
struction, where
the up-arrow is
followed by an
argument that is
bracketed by any
paired printing
characters (x) •

3.1.3 Unary and Binary Operators

Usage

Paired angle brackets may be
used anywhere in a program to
enclose an expression for
treatment as a single term.
Paired angle brackets are also
used to enclose a macro
argument, particularly when
that argument contains
separating characters (see
Section 7. 3).

This construction is
equivalent in function to the
paired angle brackets
described above and is
generally used only where the
argument itself contains angle
brackets.

Legal MACR0-11 unary operators are described in Table 3-4. Unary
operators are used in connection with single terms (arguments or
operands) to indicate an action to be performed on that term during
assembly. Because a term preceded by a unary operator is considered
to contain that operator, a term so specified can be used alone or as
~...... - , _._ - - ~ - & - - - ... - - - - - : - -..... c ... c111c111... Vl. CUI CAJ::1Lc;::,;::,,1.v11.

Table 3-4
Legal Unary Operators

Unary
Operator Explanation Example

+ Plus sign +A

Minus sign -A

3-4

Effect

Produces the positive
value of A.

Produces the negative
(2's complement)
value of A.

(continued on next page)

SYMBOLS AND EXPRESSIONS

Unary

Tab 1 e 3 - 4 (Cont.)
Legal Unary Operators

Operator Explanation Example

Up-arrow, universal
unary operator.
(This usage is
described in
detail in
Section 6.4.)

"'C24

"'Dl27

"034

"'BlHHHHll

"RABC

Effect

Produces the
complement value
24(8).

int:erprets 127
decimal number.

l's
of

as a

Interprets 3.0 as a
1-word,
floating-po int
number.

Interprets 34 as an
octal number.

Interprets 11000111
as a binary number.

Evaluates ABC
Radix-50 form.

in

Unary operators can be used adjacent to each other or in constructions
involving multiple terms, as shown below:

-"'D50
"'c"'o12

(Equivalent to -<"D50>)
(Equivalent to "c<"Ol2>)

Legal MACR0-11 binary operators are described in Table 3-5. In
contrast to unary operators, binary operators specify actions to be
performed on multiple items or terms within an expression.

Table 3-5
Legal Binary Operators

Binary
Operator Explanation

+ Addition

Subtraction

* Multiplication

I Division

& Logical AND

Logical inclusive OR

3-5

Example

A+B

A-B

A*B (signed 16-bit
product returned)

A/B (signed 16-bit
quotient returned)

A&B

A!B

SYMBOLS AND EXPRESSIONS

All binary operators have equal priority. Terms enclosed by angle
brackets are evaluated first, and remaining operations are performed
from left to right, as shown in the examples below:

.WORD

.WORD
1+2*3
1+<2*3>

3.2 MACR0-11 SYMBOLS

; Equals 11 (8) .
;Equals 7 (8).

MACR0-11 maintains a symbol table for each of the three symbol types
that may be defined in a MACR0-11 source program: the Permanent
Symbol Table (PST), the User Symbol Table (UST), and the Macro Symbol
Table (MST). The PST contains all the permanent symbols defined
within (and thus automatically recognized by) MACR0-11 and is part of
the MACR0-11 image. The UST (for user-defined symbols) and MST (for
macro symbols) are constructed as the source program is assembled.

3.2.1 Permanent Symbols

Permanent symbols consist of the instruction mnemonics (see Appendix
C) and MACR0-11 directives (see Chapters 6 and 7 and Appendix B).
These symbols are a permanent part of the MACR0-11 image and need not
be defined betore being used in the operator field of a MACR0-11
source statement (see Section 2.2.2).

3.2.2 User-Defined and Macro Symbols

User-defined symbols are those symbols that are equated to a specific
value through a direct assignment statement (see Section 3.3), appear
as labels (see Section 2.2.1), or act as dummy arguments (see Section
7.1.1). These symbols are added to the User Symbol Table as they are
encountered during assembly.

Macro symbols are those symbols used as macro names (see Section 7.1).
They are added to the Macro Symbol Table as they are encountered
during assembly.

The following rules govern the creation of user-defined and macro
symbols:

1. Symbols can be composed of alphanumeric characters, dollar
signs ($), and periods (.) only (see Note below).

2. The first character of a symbol must not be a number (except
in the case of local symbols; see Section 3.5).

3. The first six characters of a symbol must be unique. A
symbol can be written with more than six legal characters,
but the seventh and subsequent characters are checked only
for ASCII legality and are not otherwise evaluated or
recognized by MACR0-11.

4. Spaces, tabs, and illegal characters must not be embedded
within a symbol. The legal MACR0-11 character set is defined
in Section 3.1.

3-6

SYMBOLS AND EXPRESSIONS

NOTE

The dollar sign ($) and period (.)
characters are reserved for use in
defining Digital Equipment Corporation
system software symbols. For example,
READ$ is a file-processing system macro.
The user is cautioned not to employ
these characters in constructing
user-defined symbols or macro symbols in
order to avoid possible conflicts with
existing or future Digital Equipment
Corporation system software symbols.

The value of a symbol depends upon its use in the program. A symbol
in the operator field may be any one of the three symbol types
described above; permanent, user-defined, or macro. To determine the
value of an operator-field symbol, MACR0-11 searches the symbol tables
in the following order:

1. Macro Symbol Table

2. Permanent Symbol Table

3. User-Defined Symbol Table

This search order allows permanent symbols to be used as macro
symbols. But the user must keep
search for symbols is performed
interpretation of the symbol's use.

in mind the sequence in
in order to avoid

\·Jh i ch the
incorrect

When a symbol appears in the operand field, the search order is:

1. User-Defined Symbol Table

2. Permanent Symbol Table

Depending on their use in the source program, user-defined symbols
have either a local (internal) attribute or a global (external)
attribute.

Normally, MACR0-11 treats all user-defined symbols as local, that is,
their definition is limited to the module in which they appear.
However, symbols can be explicitly declared to be global symbols
through one of three methods:

1. Use of the .GLOBL directive (see Section 6.8.1).

2. Use of the double colon (: :) in defining a label (see Section
2.2.1).

3. Use of the double equal sign {==) or double equal colon sign
(==:) in a direct assignment statement (see Section 3. 3) •

All symbols within a module that remain undefined at the end of
assembly are treated as default global references.

3-7

SYMBOLS AND EXPRESSIONS

NOTE

Undefined symbols at the end of assembly
are assigned a value of 0 and placed
into the user-defined symbol table as
undefined default global references. If
the .DSABL GBL directive is in effect,
however, (see Section 6.2.1) the
statement containing the undefined
symbol is flagged with an error code (U)
in the assembly listing.

Global symbols provide linkages between independently-assembled object
modules within the task image. A global symbol defined as a label,
for example, may serve as an entry-point address to another section of
code within the image. Such symbols are referenced from other source
modules in order to transfer control throughout execution. These
global symbols are resolved at link time, ensuring that the resulting
image is a logically coherent and complete body of code.

3.3 DIRECT ASSIGNMENT STATEMENTS

The general format for a direct assignment statement is:

symbol= expression

or

symbol==expression

where: expression - can have only one level of forward reference
(see 5. below).

- cannot contain an undefined global reference.

The colon format for a direct assignment statement is:

symbol=:expression

or

symbol==:expression

where: expression - can have only one level of forward reference
(see 5. below) •

- cannot contain an undefined global reference.

All the direct assignment statements above allow the user to equate a
symbol with a specific value. After the symbol has been defined it is
entered into the User-Defined Symbol Table. If the general format is
used (= or ==} the value of the symbol may be changed in subsequent
direct assignment statements. If, however, the colon format is used
(=: or ==:) any attempt to change the value of the symbol will
generate an error (M) in the assembly listing~

A direct assignment statement embodying either the double equal (==)
sign or the double equal colon {==:) sign, as shown above, defines the
symbol as global (see Section 6.8.1).

3-8

SYMBOLS AND EXPRESSIONS

The following examples illustrate the coding of direct assignment
statements.

Example 1:

A=l0 ;Direct assignment

B==30 ;Global assignment

A=l5 ;Legal reassignment

L=:5 ;Equal colon assignment

M==:A+2 ;Double equal colon assignment
;M becomes equal to 17

L=4 ;Illegal reassignment
;M error is generated

Example 2:

C:
D=.
E: MOV U ,ABLE

;The symbol Dis equated to., and
;the labels C and E are assigned a
;value that is equal to the location
;of the MOV instruction.

The code in the second example above would not usually be used and is
shown only to illustrate the performance of MACR0-11 in such
situations. See Section 3.6 for a description of the period (.) as
the current location counter symbol.

The following conventions apply to the coding of direct assignment
statements:

1. An equal sign (=),double equal sign (==), equal colon sign
(=:) or double equal colon sign (==:) must separate the
symbol from the expression defining the symbol's value.
Spaces preceding and/or following the direct assignment
operators, although permissible, have no significance in the
resulting value.

2. The symbol being assigned in a direct assignment statement i~
placed in the label field.

3. Only one symbol can be defined in a single direct assignment
statement.

4. A direct assignment statement may be followed only by a
comment field.

5. Only one level of forward referencing
following example would cause an error
assembly listing on the line containing the
reference:

X=Y (Illegal forward reference)

Y=Z (Legal forward reference)

Z=l

3-9

is allowed. The
code (U) in the
illegal forward

SYMBOLS AND EXPRESSIONS

Although one level of forward referencing is allowed for local
symbols, no forward referencing is allowed for global symbols. In
other words, the expression being assigned to a global symbol can
contain only previously defined symbols. A forward reference in a
direct assignment statement defining a global symbol will cause an
error code (A) to be generated in the assembly listing.

3.4 REGISTER SYMBOLS

The eight general registers of the PDP-11 processor are numbered 0
through 7 and can be expressed in the source program in the following
manner:

%0
%1

%7

where % indicates a reference to a register rather than a location.
The digit specifying the register can be replaced by any legal,
absolute term that can be evaluated during the first assembly pass.

The register definitions listed below are the normal default values
and remain valid for all register references within the source
program.

R0=%0 ;Register 0 definition.
Rl=%1 ;Register 1 definition.
R2=%2 ;Register 2 definition.
R3=%3 ;Register 3 definition.
R4=%4 ;Register 4 definition.
R5=%5 ;Register 5 definition.
SP=%6 ;Stack pointer definition.
r.,,_o . ..,. ;Program_ ,...V" ,:i,...-1=;_;~.; __
r1.,,--o' '-VUJll...C.L UC'J....LJl.Ll....LVll•

Registers 6 and 7 are given special names because of their unique
system functions. The symbolic default names assigned to the
registers, as listed above, are the conventional names used in all
DIGITAL-supplied PDP-11 system programs. For this reason, you are
advised to follow these conventions.

A register symbol may be defined in a direct assignment statement
appearing in the program. The defining expression of a register
symbol must be a legal, absolute value between 0 and 7, inclusive, or
an error code (R) will appear in the assembly listing. Although you
can reassign the standard register symbols through the use of the
.DSABL REG directive (see Section 6.2.1), this practice is not
recommended. An attempt to redefine a default register symbol without
first specifying the .DSABL REG directive to override the normal
register definitions causes that assignment statement to be flagged
with an error code (R) in the assembly listing. All non-standard
register symbols must be defined before they are referenced in the
source program.

3-10

SYMBOLS AND EXPRESSIONS

The % character may be used with any legal term or expression to
specify a register. For example, the statement

CLR %3+1

is equivalent in function to the statement

CLR %4

and clears the contents of register 4.

In contrast, the statement

CLR 4

clears the contents of virtual memory location 4.

3.5 LOCAL SYMBOLS

Local symbols are specially formatted symbols used as labels within a
block of coding that has been delimited as a local symbol block.
Local symbols are of the form n$, where n is a decimal integer from 1
to 65535, inclusive. Examples of local symbols are:

1$
27$
59$

104$

A local symbol block is delimited in one of three ways:

1. The range of a local symbol block usually consists of those
statements between two normally-constructed symbolic labels
(see Figure 3-1). Note that a statement of the form:

ALPHA=EXPRESSION

is a direct assignment statement (see Section 3.3) but does
not create a label and thus does not delimit the range of a
local symbol block.

2. The range of a local symbol block is normally terminated upon
encountering a .PSECT, .CSECT, .ASECT, or .RESTORE directive
in the source program (see Figure 3-1).

3. The range of a local
MACR0-11 directives, as

symbol block
follows:

is delimited

Starting delimiter: .ENABL LSB (see Section 6.2.l)

3-11

through

GYMDCLG AND EXFREGGIONS

Ending delimiter:

one of the following:

Symbolic label (see Section
.PSECT (see Section 6.7.1)
.CSECT (see Section 6.7.2)
.ASECT (see Section 6.7.2)
.RESTORE (see Section 6.7.4)

,.,-~··

j
}::.--

encountered after a
Section 6.2.1).

:-·DSABL. LSB
·., __ _,,/

(see

Local symbols provide a convenient means of generating labels for
branch instructions and other such references within local symbol
blocks. Using local symbols reduces the possibility of symbols with
multiple definitions appearing within a user program. In addition,
the use of local symbols differentiates entry-point labels from local
labels, since local symbols cannot be referenced from outside their
respective local symbol blocks. Thus, local symbols of the same name
can appear in other local symbol blocks without conflict. Local
symbols do not appear in cross-reference listings and require less
symbol table space than other types of symbols. Their use is
recommended.

When defining local symbols, use the range from 1$ to 29999$ first.
Local symbols within the range 30000$ through 65535$, inclusive, can
be generated automatically as a feature of MACR0-11. Such local
symbols are useful in the expansion of macros during assembly (see
Section 7.3.5).

Be sure to avoid multiple definitions of local symbols within the same
local symbol block. For example, if the local symbol 10$ is defined
two or more times within the same local symbol block, each symbol
represents a different address value. Such a multi-defined symbol
causes an error code (P) to be generated in the ossembly listing.

For examples of local symbols and local symbol blocks as they appear
in a source program, see Figure 3-1.

;+ 1
2
3
4
5

; SiaPle illustration of local s~abolsi the second block is deliaited
; b~ the label XCrPAS.
;-

6 000000 0.12700
OOOOOOG

XCTPRG: HOV

7 000004
8 000006

9 000012
10
11

005020 1$:
020027
OOOOOOG
001374

CLR
CHP

BNE

12 000014 012700 XCTPAS: HOV
OOOOOOG

13 000020 005020 1$:
14 000022 020027

OOOOOOG
15 000026 001374
16 000030 000207

CLR
CMP

BNE
Rrs

IIHPURE, RO

CRO>t
RO, tIHPURT

IIHPPAS, RO

<RO>+
RO,tIMPPAr

1$

PC

f Point to iaPure area

;clear a word
;rest if at toP of area

;Iterate if not
iFall in to Perfora Pass initialization

;Point to Pass storase area

iClear the area
;rest if at toP of area

iiterate of not
;Return if so

Figure 3-1 Assembly Listing Showing Local Symbol Block

3-12

SYMBOLS AND EXPRESSIONS

3.6 CURRENT LOCATION COUNTER

The period (.) is the symbol for the current location counter. When
used in the operand field of an instruction, the period represents the
address of the first word of the instruction, as shown in the first
example below. When used in the operand field of a MACR0-11
directive, it represents the address of the current byte or word, as
shown in the second example below.

A: MOV if., R0 ;The period (.) refers to the address
;of the MOV instruction.

(The function of the n~~ber sign (#) is explained in Section 5.9.)

SAL=0
.WORD 177535,.+4,SAL ;The operand .+4 in the .WORD

;directive represents a value
;that is stored as the second
;of three words during
;assembly.

Assume that the current value of the location counter is 500. During
assembly, MACR0-11 reserves storage in response to the .WORD directive
(see Section 6.3.2), beginning with location 500. The operands
accompanying the .WORD directive determine the values so stored. The
value 177535 is thus stored in location 500. The value represented by
.+4 is stored in location 502; this value is derived as the current
value of the location counter (which is now 502), plus the absolute
value 4, thereby depositing the value 50n in location 502. Finally,
the value of SAL, previously equated to 0, is deposited in location
504.

Figure 3-2 illustrates the result of the example.

LOCATION CONTENTS

500 177535

502 506

504 0

Figure 3-2 Sample Assembly Results

At the beginning of each assembly pass, MACR0-11 resets the location
counter. Normally, consecutive memory locations are assigned to each
byte of object data generated. However, the value of the location
counter can be changed through a direct assignment statement of the
following form:

.=expression

The current
relocatable,
section.

location
depending

counter symbol (.)
on the attribute

3-13

is
of

either absolute or
the current program

SYMBOLS AND EXPRESSIONS

The attribute of the current location counter can be changed only
through the program sectioning directives (.PSECT, .ASECT, .CSECT and
.RESTORE), as described in Section 6.7. Therefore, assigning to the
counter an expression having an attribute different than that of the
current program section will generate an error code (A) in the
assembly listing.

Furthermore, an expression assigned to the counter may not contain a
forward reference (a reference to a symbol that is not previously
defined) • The user must also be sure that the expression assigned
will not force the counter into another program section, even if both
sections involved have the same relocatability. Either of these
conditions causes MACR0-11 to generate incorrect object file code, and
may cause statements following the error to be flagged with an error
code (P) in the assembly listing.

The following coding illustrates the use of the current location
counter:

.ASECT
.=500

FIRST: MOV

.=520

SECOND: MOV

• PSECT
.=.+20

THIRD: . WORD

.+10,COUNT

.,INDEX

;Set location counter to
; absolute 500 (octal).
;The label "FIRST" has the value
;500(octal).
; • + 1 0 e qua 1 s 5 10 (o ct a 1) • The
;contents of the location
;5i0(octal) will be deposited
;in the location "COUNT".
;The assembly location counter
;now has a value of
;absolute 520(octal).
;The label "SECOND" has the
;value 520(octal).
;The contents of location
; 520 (octal), that is, the binary
;code for the instruction
;itself, will be deposited in the
;location "INDEX" •

;Set location counter to
;relocatable 20 of the
;unnamed program section.
;The label "THIRD" has the
;value of relocatable 20.

Storage areas may be reserved in the program by advancing the location
counter. For example, if the current value of the location counter is
1000, each of the foll~wing statements:

.=.+40

or

.BLKB 40

or

.BLKW 20

reserves 40(8) bytes of storage space in the source program. The
.BLKB and .BLKW directives, however, are the preferred ways to reserve
storage space (see Section 6.5.3).

3-14

SYMBOLS AND EXPRESSIONS

3.7 NUMBERS

MACR0-11 assumes that all numbers in the source program are to be
interpreted in octal radix, unless otherwise specified. An exception
to this assumption is that operands associated with Floating Point
Processor instructions and Floating Point Data directives are treated
as decimal (see Section 6.4.2). This default radix can be altered
with the .RADIX directive (see Section 6.4.1.l). Also, individual
numbers can be designated as decimal, binary, or octal numbers through
temporary radix control operators (see Section 6.4.1.2).

For every statement in the source program that contains a digit that
is not in the current radix, an error code (N) is generated in the
assembly listing. However, MACR0-11 continues with the scan of the
statement and evaluates each such number encountered as a decimal
value.

Negative numbers must be preceded by a minus
translates such numbers into two's complement form.
may (but need not) be preceded by a plus sign.

sign; MACR0-11
Positive numbers

A number containing more than 16 significant bits (greater than
177777(8)), is truncated from the left and flagged with an error code
{T) in the assembly listing.

Numbers are always considered to be absolute values; therefore, they
are never relocatable.

Single-word floating-point numbers may be generated with the AF
operator (see Section 6.4.2.2) and are stored in the following format:

15 14 6

Sign
Bit

8-bit
Exponent

7-bit
Mantissa

Refer to the appropriate PDP-11 Processor Handbook for details of the
floating-point number format.

3.8 TERMS

A term is a component of an expression and may be one of the
following:

1. A number, as defined in Section 3.7, whose 16-bit value is
used.

2. A symbol, as defined in Section 3e2e Symbols are evaluated
as follows:

A. A period (.) specified in an expression causes the value
of the current location counter to be used.

B. A defined symbol is located in the User-Defined Symbol
Table (UST) and its value is used.

c. A permanent symbol's basic value is
substituted for the addressing modes.
all op codes and their values.)

3-15

used, with zero
(Appendix C lists

SYMBOLS AND EXPRESSIONS

D. An undefined symbol is assigned a value of zero and
inserted in the User-Defined Symbol Table as an undefined
default global reference. If the .DSABL GBL directive
(see Section 6.2.1) is in effect, the automatic global
reference default function of MACR0-11 is inhibited, and
the statement containing the undefined symbol is flagged
with an error code (U) in the assembly listing.

3. A single quote followed by a single ASCII character, or a
double quote followed by two ASCII characters. This type of
expression construction is explained in detail in Section
6.3.3.

4. An expression enclosed in angle brackets (<>). Any
expression so enclosed is evaluated and reduced to a single
term before the remainder of the expression in which it
appears is evaluated. Angle brackets, for example, may be
used to alter the left-to-right evaluation of expressions (as
in A*B+C versus A*<B+C>), or to apply a unary operator to an
entire expression (as in -<A+B>).*

5. A unary operator followed by a symbol or number.

3.9 EXPRESSIONS

Expressions are combinations of terms joined together by binary
operators (see Table 3-5). Expressions reduce to a 16-bit value. The
evaluation of an expression includes the determination of its
attributes. A resultant expression value may be any one of four types
(as described later in this section): relocatable, absolute,
external, or complex relocatable.

Expressions are evaluated from left to right with no operator
hierarchy rules, except that unary operators take precedence over
binary operators. A term preceded by a unary operator is considered
to contain that operator. t~erms are evaluated, where necessary,
before their use in expressions.) Multiple unary operators are valid
and are treated as follows:*

-+-A

is equivalent to:

-<+<-A>>

* The maximum depth of an expression is governed by the MACR0-11
assembler's expression stack space. If an expression exceeds the
assembler's maximum expression depth, the statement is marked with an
(E) error, and processing continues.

3-16

SYMBOLS AND EXPRESSIONS

A missing term, expression, or external symbol is interpreted as a
zero. A missing or illegal operator terminates the expression
analysis, causing error codes (A) and/or (Q), to be generated in the
assembly listing, depending on the context of the expression itself.
For example, the expression:

A + B 1 77777

is evaluated as

A + B

because the first non-blank character following the symbol B is not a
legal binary operator, an expression separator (a comma), or an
operand field terminator (a semicolon or the end of the source line).

NOTE

Spaces within exoressions can s~rve as
delimiters only~ between symbols. In
other words, the expressions

A + B

and

A+B

are the same, but the symbols

Bl7

and

B 17

are not (B 17 is not a single symbol).

At assembly time the value of an external (global) expression is equal
to the value of the absolute part of that expression. For example,
the expression EXTERN+A, where "EXTERN" is an external symbol, has a
value at assembly time that is equal to the value of the internal
(local) symbol A. This expression, however, when evaluated at link
time takes on the resolved value of the symbol EXTERN, plus the value
of symbol A.

Expressions, when evaluated by MACR0-11,
relocatable, absolute, external, or
following distinctions are important:

are one of four types:
complex relocatable. The

1. ~n expression is relocatable if its value is fixed relative
to the base address of the program section in which it
appears; it will have an offset value added at link time.
Terms that contain labels defined in relocatable program
sections will have a relocatable val~e; similarly, a period
(.) in a relocatable program section, representing the value
of the current location counter, will also have a relocatable
value.

3-17

SYMBOLS AND ~XPH~SS1UN8

2. An expression is absolute if its value is fixed. An
expression whose terms are numbers and ASCII conversion
characters will reduce to an absolute value. A relocatable
expression or term minus a relocatable term, where both
elements being evaluated belong to the same program section,
is an absolute expression. This is because every term in a
program section has the same relocation bias. When one term
is subtracted from another, the resulting bias is zero.
MACR0-11 can then treat the expression as absolute and reduce
it to a single term upon completion of the expression scan.
Terms that contain labels defined in an absolute section will
also have an absolute value.

3. An expression is external (or global) if it contains a single
global reference {plus or minus an absolute expression value)
that is not defined within the current program. Thus, an
external expression is only partially defined following
assembly and must be resolved at link time.

4. An expression is complex relocatable if any one of the
following conditions applies:

- It contains a global reference and a relocatable symbol.

- It contains more than one global reference.

- It contains relocatable terms belonging to
program sections.

different

- The value resulting from the expression has more than one
level of relocation. For example, if the relocatable
symbols TAGl and TAG2, associated with the same program
section, are specified in the expression TAGl+TAG2, two
levels of relocation will be introduced, since each symbol
is evaluated in terms of the relocation bias in effect for
the program section.

- An operation o~ner ~nan addition is specified on an
undefined global symbol.

- An operation other than addition, subtraction, negation, or
complementation is specified for a relocatable value.

The evaluation of relocatable, external, and complex relocatable
expressions is completed at link time. The maximum number of terms
that can be specified in a complex expression is limited by the
maximum size of the object record. The maximum number of terms is 20
{decimal).

3-18

CHAPTER 4

RELOCATION AND LINKING

The output of MACR0-11 is an object module that must be processed or
linked before it can be loaded and executed. Essentially, linking
fixes (makes absolute) the values of relocatable or external symbols
in the object module, thus transforming the object module, or several
object modules, into an executable image.

To allow the value of an expression to be fixed at link time, MACR0-11
outputs certain instructions in the object file, together with other
required parameters. For relocatable expressions in the object
module, the base of the associated relocatable program section is
added to the value of the relocatable expression provided by MACR0-11.
For external expression values, the value of the external term in the
expression (since the externol symbol must be defined in one of the
other object modules being linked together) is determined and then
added to the absolute portion of the external expression, as provided
by MACR0-11.

All instructions that require modification at link time are flagged in
the assembly listing, as illustrated in the example below. The
apostrophe (') following the octal expansion of the instruction
indicates that simple relocation is required; the letter G indicates
that the value of an external symbol must be added to the absolute
portion of an expression; and the letter C indicates that complex
relocation analysis at link time is required in order to fix the value
of the expression.

EXAMPLE:

00S06S CLR
000040'

00S06S CLR
000000G

RELOC (RS)

EXTERN (RS)

;Assuming that the value of the
;symbol "RELOC", 40, is relocatable
;the relocation bias
;will be added to this value.

;The value of the symbol "EXTERN" is
;assembled as zero and is
;resolved at link time.

4-1

005065 CLR
000006G

005065 CLR
000000C

RELOCATION AND LINKING

EXTERN+6(R5) ;The value of the symbol "EXTERN"
;is resolved at link time
;and added to
;the absolute portion (+6) of
;the expression.

-<EXTERN+RELOC>(R5) ;This expression is complex
;relocatable because it requires
;the negation of an expression
;that contains a global "EXTERN"
;reference and a relocatable term.

For a complete description of object records output by MACR0-11, refer
to the applicable system manual (see Section 0. 3 in the Preface) •

4-2

CHAPTER 5

ADDRESSING MODES

To understand how the address modes operate and how they assemble, the
action of the program counter must be understood. The key rule to
remember is:

"whenever the processor implicitly uses the program counter
(PC) to fetch a word from memory, the program counter is
automatically incremented by 2 after the fetch operation is
completed."

The PC always contains the address of the next word to be fetched.
This word will be either the address of the next instruction to be
executed, or the second or third word of the current instruction.

Table 5-1 lists the address modes, and Table 5-2 lists the symbols
used in this chapter to describe the address modes. Each mode of
address in the chapter is illustrated using either the single operand
instruction CLR or the double operand instruction MOV.

Table 5-1
Addressing Modes

Mode

Register mode*
Register deferred mode*
Autoincrement mode*
Autoincrement deferred mode*
Autodecrement mode*
Autodecrement deferred mode*
Index mode**
Index deferred mode**
Immediate mode**
Absolute mode**
Relative mode**
Relative deferred mode**
Branch

Form

R
@R or (ER)
(ER)+
@(ER)+
-(ER)
@-(ER)
E (ER)
@E(ER)
#E
@#E
E
@E
Address

* Does not increase the length of an instruction.

Section
Reference

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5 .11
5.12
5.13

** Adds one word to the instruction length for each occurrence of
operand of this form.

5-1

an

Symbol

E

R

ER

Format:

R

ADDRESSING MODES

Table 5-2
Symbols Used in Chapter 5

Explanation

Any expression, as defined in Chapter 3.

A register expression; in other words, any
expression containing a term preceded by a percent
sign (%) or a symbol previously equated to such a
term, as shown below:

R0=%0
Rl=R0+1
R2=1+%1

;General register 0.
;General register 1.
;General register 2.

This symbol may also represent any of the normal
default register definitions (see Section 3.4).

A register expression or an absolute expression in
the range 0 to 7, inclusive.

The register itself (R) contains the operand to be manipulated by the
instruction.

Example:

CLR R3 ;Clears register 3.

5.2 REGISTER DEFERRED MODE

Format:

@R or (ER)

The register (R) contains the address of the operand to be manipulated
by the instruction.

Examples:

CLR
CLR
CLR

@Rl
(Rl)
(%1)

;All these instructions clear
;the word at the address
;contained in register 1.

5-2

ADDRESSING MODES

5.3 AUTOINCREMENT MODE

Format:

(ER)+

The contents of the register (ER) are incremented immediately after
being used as the address of the operand (see Note below).

Examples:

CLR
CLR
CLR

MOV

MOV

(R0)+
(R4)+
(R2)+

;Each instruction clears
;the word at the address
;contained in the specified
;register and increments
;that register's contents
;by two.

NOTE

Certain special instruction/address mode
combinations, which are rarely or never
used, do not operate the same on all
PDP-11 processors, as described below.

In the autoincrement mode, both the JMP
and JSR instructions autoincrement the
register before its use on the PDP-11/40
but not on the PDP-11/45 or 11/10.

In double operand instructions having
the addressing form Rn,(Rn)+ or
Rn,-(Rn), where the source and
destination registers are the same, the
source operand is evaluated as the
auto incremented or autodecremented
value, but the destination register, at
the time it is used, still contains the
originally intended effective address.
In the following example, as executed on
the PDP-11/40, Register 0 originally
contains 100(8):

R0,(R0)+

R0,-(R0)

The use
avoided,
with the

;The quantity 102 is moved
;to location 100.

;The quantity 76 is moved
;to location 100.

of these forms should be
since they are not compatible
entire family of PDP-11

processors.

An error code (Z) is printed in the
assembly listing with each instruction
which is not compatible among all
members of the PDP-11 family.

5-3

ADDRESSING MODES

5.4 AUTOINCREMENT DEFERRED MODE

Format:

@(ER)+

The register (ER) contains a pointer to the address of the operand.
The contents of the register are incremented after being used as
pointer.

Example:

CLR @(R3)+

5.5 AUTODECREMENT MODE

Format:

-(ER)

;The contents of register 3 point
;to the address of a word to be
;cleared before the contents of the
;register are incremented by two.

The contents of the reqister (ER} are decremented before being used as
the address of the operand (see Note in Section 5.3).

Examples:

CLR

CLR
CLR

-(R0)

-(R3)
- (R2)

;Decrement the contents of the speci
; f ied register (0, 3, or 2) by two
;before 11sing its contents
;as the address of the word to be
;cleared.

5.6 AUTODECREMENT DEFERRED MODE

Format:

@-(ER)

The contents of the register (ER) are decremented before being used as
a pointer to the address of the operand.

Example:

CLR @- (R2) ;Decrement the contents of
;register 2 by two before
;using its contents as a pointer
;to the address of the word to be
;cleared.

5-4

ADDRESSING MODES

5.7 INDEX MODE

Format:

E(ERj

An expression (E), plus the contents of a register (ER), yields the
effective address of the operand. In other words, the value E is the
offset of the instruction, and the contents of register ER form the
base. (The value of the expression (E) is stored as the second or
third word of the instruction.)

Examples:

CLR

MOV

X+2(Rl)

R0,-2(R3)

;The effective address of the word
;to be cleared is X+2, plus the
;contents of register 1.
;The effective address of the
;destination location is -2, plus
;the contents of register 3.

5.8 INDEX DEFERRED MODE

Format:

@E(ER)

An expression (E), plus the contents of a register {ER), yields a
pointer to the address of the operand. As in index mode above, the
value E is the offset of the instruction, and the contents of register
ER form the base. (The value of the expression (E) is stored as the
second or third word of the instruction.)

Example:

CLR @114(R4) ;If register 4 contains 100, this
;value, plus the offset 114, yields
;the pointer 214. If location 214
;contains the address 2000, location
;2000 would be cleared.

NOTE

The expression @(ER) may be used, but it
will be assembled as if it were written
@0(ER), and a word will be used to store
the 0.

5-5

ADDRESSING MCDES

5.9 IMMEDIATE MODE

Format:

#E

Immediate mode allows the operand itself (E) to be stored as the
second or third word of the instruction. The number sign (#) is an
addressing mode indicator. Appearing in the operand field this
character specifies the immediate addressing mode, indicating to
MACR0-11 that the operand itself immediately follows the instruction
word. This mode is assembled as an autoincrement of the PC.

Examples:

MOV
MOV

#100, R0
#X, R0

The operation of this mode

;Move the value 100 into register 0.
;Move the value of symbol X into
; reg i st er 0 •

can be shown through the first example,
MOV #100, R0, which assembles as two words:

Location

Location

Location

The source operand
the instruction
processor fetches
that it points
source operand.

20: 0 1 2 7 0 0

22: 0 0 0 1 0 0

24: Next instruction

(the value 100) is assembled immediately following
word. Upon execution of the instruction, the

the first word (MOV) and increments the PC by 2 so
to the second word, location 22, which contains the

After the next fetch and increment cycle, the source operand (100) is
moved into register 0, leaving the PC pointing to location 24 (the
nov+- iP"\c+-Y"11,..+-;,......1"""11\
.1..1.'-.n.'- .&..1.1."-''-.LU'-'-_.,VlJ./ •

5.10 ABSOLUTE MODE

Format:

@#E

Absolute mode is the equivalent of immediate mode deferred. The
address expression @#E specifies an absolute address which is stored
as the second or third word of the instruction. In other words, the
value immediately following the instruction word is taken as the
absolute address of the operand. Absolute mode is assembled as an
autoincrement deferred of the PC.

Examples:

MOV

CLR

@#100, R0.

@#X

;Move the contents of absolute
;location 100 into register R0.
;Clear the contents of the location
;whose address is specified by
;the symbol X.

5-6

ADDRESSING MODES

The operation of this mode can be shown through the first example,
MOV @#100, R0, which assembles as two words:

Location 20: 0 1 3 7 0 0

Location 22: 0 0 0 1 0 0

Lo cat ion 24: Next instruction

The absolute address 100 is assembled immediately following the
instruction word. Upon execution of the instruction, the processor
fetches the first word (MOV) and increments the PC by 2 so that it
points to the second word, location 22, which contains the absolute
address of the source operand. After the next fetch and increment
cycle, the contents of absolute address 100 (the source operand) are
moved into register 0, leaving the PC pointing to location 24 (the
next instruction).

5.11 RELATIVE MODE

Format:

E

Relative mode is the normal mode for memory references within your
program. It is assembled as index mode, using the PC as the index
register. The offset for the address calculation is assembled as the
second or third word of the instruction. This value is added to the
contents of the PC to yield the address of the source operand.

Examples:

The
MOV

CLR
MOV

100
R0,Y

operation of
100,R3, which

Location

Location

Location

relative
assembles

20: 0 1

22: 0 0

24: NEXT

;Clear absolute location 100
;Move the contents of register 0
;to location Y

mode can be shown with the
as two words:

6 7 0 3

0. 0 5 4

INSTRUCTION

statement

The offset, the constant 54, is assembled immediately following the
instruction word. Upon execution of the instruction, the processor
fetches the first word (MOV) and increments the PC by 2 so that it
points to the second word, location 22, containing the value 54.
After the next fetch and increment cycle! the processor calculates the
effective address of the source operand by taking the contents of
location 22 (the offset) and adding it to the current value of the PC,
which now points to location 24 (the next instruction). Thus, the
source operand address is the result of the calculation
OFFSET+PC = 54+24 = 100(8), causing the contents of location 100 to be
moved into register 3.

5-7

ADDRESSING

The index mode statement:

MOV 100-.-4 (PC) ,R3

is equivalent to the relative mode statement:

MOV 100, R3

100-.-4 is the offset for the index mode statement. The current
location counter (.) holds the address of the first word of the
instruction (20, in this case) and the PC has to move down 4 bytes to
reach location 24 (the next instruction). So, the offset could be
written as 100-20-4 or 54(8).

Therefore, for the
PC(24(8)) yields
operand.

index mode,
the effective

the offset (54(8)) added to the
address (54 + 24 = 100 (8)) of the

Thus, both statements move the contents of location 100 into register
3.

NOTE

The addressing form @#E differs from
form E in that the second or third word
of the instruction contains the abso~u~e
address of the operand, rather than the
relative distance between the operand
and the PC (see Section 5.10). Thus,
the instruction CLR @#100 clears
absolute location 100, even if the
instruction is moved from the point at
which it was assembled. See the
description of the .ENABL AMA function
in Section ~.2.1, which causes all
relative mode addresses to be assembled
as absolute mode addresses.

5.12 RELATIVE DEFERRED MODE

Format:

@E

The relative deferred mode is similar in operation to the relative
mode above, except that the expression E is used as a pointer to the
address of the operand. In other words, the operand following the
instruction word is added to the contents of the PC to yield a pointer
to the address of the operand.

Example:

MOV @X, R0 ;Relative to the current value of
;the PC, move the contents of the
;location whose address is pointed
;to by location X into register 0.

5-8

ADDRESSING MODES

5.13 BRANCH INSTRUCTION ADDRESSING

The branch instructions are 1-word instructions. The high-order byte
contains the operator, and the low-order byte contains an 8-bit signed
offset (seven bits, plus sign), which specifies the branch address
relative to the current value of the PC. The hardware calculates the
branch address as follows:

1. Extends the sign of the offset through bits 8-15.

2. Multiplies the result by 2, creating a byte offset rather
than a word offset.

3. Adds the result to the current value of the PC to form the
effective branch address.

MACR0-11 performs the reverse operation to form the word offset from
the specified address.

Word offset= (E-PC)/2 truncated to eight bits.

When the offset ii added to the PC, the PC is moved to the next word
(PC=.+2). Hence the -2 in the following calculation.

Word offset= (E-.-2)/2 truncated to eight bits.

The following conditions generate an error code (A)
listing:

in the assembly

1. Branching from one program section to another

2. Branching to a location that is defined as an external
(global) symbol

3. Specifying a branch address that is out of range, meaning
that the branch offset is a value that does not lie within
the range -12 8 (10) to + 12 7 (10) .

5.14 USING TRAP INSTRUCTIONS

Since the EMT and TRAP instructions do not use the low-order byte of
the instruction word, information is transferred to the trap handlers
in the low-order byte. If the EMT or TRAP instruction is followed by
an expression, the value of the expression is stored in the low-order
byte of the word. Expressions greater than 377(8) are truncated to
eight bits, and an error code (T) is generated in the assembly
listing.

For more information on traps see the PDP-11 Processor Handbook and
the applicable system manual (see Section 0.3 in the Preface).

5-9

CHAPTER 6

GENERAL ASSEMBLER DIRECTIVES

A MACR0-11 directive is placed in the operator field of a source line.
Only one directive is allowed per source line. Each directive may
have a blank operand field or one or more operands. Legal operands
differ with each directive.

General assembler directives are
categories:

1. Listing control

2. Function control

3. Data storage

4. Radix and numeric control

5. Location counter control

6. Terminator

divided

7. Program sectioning and boundaries

8. Symbol control

9. Conditional assembly

10. File control

into the following

Each is described in its own section of this chapter (see Table 6-1
for an alphabetical listing of the directives and the associated
section reference) •

Directive

.ASCII

.ASCIZ

Table 6-1
Directives in Chapter Six

Function

Stores delimited string as a sequence
of the 8-bit ASCII code of their
characters.

Same as .ASCII except the string is
followed by a zero byte.

Section
Reference

n.3.4

6.3.5

(continued on next page)

6-1

Directive

.ASECT

• BLKB

• BLKW

.BYTE

• CROSS

• CSECT

.DSABL

• ENABL

• END

• ENDC

• EVEN

. FLT2

• FLT4

.GLOBL

. I DENT

.IF

.IFF

.IFT

.IFTF

• IIF

• INCLUDE.

. LIBRARY

GENERAL ASSEMBLER DIRECTIVES

Table 6-1 (Cont.)
Directives in Chapter Six

Function

Similar to .PSECT.

Allocates bytes of data storage •

Allocates words of data storage •

Stores successive bytes of data.

Enables cross reference •

Similar to .PSECT •

Disables
functions.

specified assembler

Enables specified assembler functions .

Indicates end of source input.

T_;:I.; __ .._ __ --..:.t -& ---...:J.;.&-.;-- 1 -----\....1
.J..llU.J..1...Cl~C.::> c;uu V.L 1...V!1U.J..~.J..V!1Cl..L Cl.::>.::>CillU..Lj

block .

Ensures that current value of the
location counter is even •

Generates 2 words of storage for each
floating-point number argument.

Generates 4 words of storage for each
floating-point number argument.

Defines listed symbols as global.

Provides additional means of labeling
an object module.

Assembles block if specified
tions are met.

condi-

Assembles block if condition tests
false.

Assembles block if condition tests
true.

Assembles block regardless of whether
condition tests true or false.

Permits writing a one line conditional
assembly block.

Includes another MACR0-11 source file .

Adds file to MACR0-11 library search
1 ist.

Section
Reference

6.7.2

6.5.3

6.5.3

6.3.1

6.2.2

6.7.2

fi.2.1

6.2.1

6.6

c (\ ,
u.::;. J_

n.5.1

6.4.2.1

6.4.2.1

6.8.1

6 .1. 4

6.9.1

6.9.2

6.9.2

6.9.2

6.9.3

6.10.2

() .10 .1

{continued on next page)

6-2

Directive

.LIMIT

.LIST

.NL I ST

.NOCROSS

.ODD

.PACKED

. PAGE

.PSECT

.RAD50

.RADIX

. REM

.RESTORE

.SAVE

.SBTTL

.TITLE

.WEAK

.WORD

GENERAL ASSEMBLER DIRECTIVES

Table Fi-1 (Cont.)
Directives in Chapter Six

Function

Allocates two words for storage. At
link time puts the lowest address of
the load image in the first of the
saved words and the address of the
first free word following the image
in the second.

Increments listing count or lists
certain types of code.

Decrements listing count or suppresses
certain types of code.

Disables cross reference.

Ensures that the current value of the
location counter is odd.

Generates packed decimal data, two
digits per byte.

Starts a new listing page .

Declares names for program sections
and establishes their attributes.

Generates
format.

data in Radix-50 packed

Changes radices throughout or
portions of the source program.

Delimits a section of comments •

in

Retrieves a previously .SAVEd program
section.

Places the current program section on
top of the program section context
stack.

Produces a
immediately
1 is ting and

table of contents
preceding the assembly
puts subheadings on each

Assigns a name to the
and puts headings on
the assembly listing.

object module
each page of

Defines listed symbols as WEAK.

Generates successive words of data in
the object module.

6-3

Section
Reference

6.5.4

6 .1.1

n. i.1

6.2.2

6.5.2

6.3.8

6.LS

6.7.1

6.3.6

6.4.1.1

6 .1. 6

6.7.4

6.7.3

6 .1. 3

6 .1. 2

6.8.2

6.3.2

GENERAL ASSEMBLER DIRECTIVES

6.1 LISTING CONTROL DIRECTIVES

Listing control directives control the content, format, and pagination
of all line printer {see Figure 6-1) and teleprinter (see Figure 6-2)
assembly listing output. On the first line of each page, MACR0-11
prints the following {from left to right):

1. Title of the object module, as established through the .TITLE
directive {see Section ~.1.2).

2. Assembler version identification.

3. Day of the week.

4. Date.

5. Time of day.

6. Page number.

The second line of each assembly listing page contains the subtitle
text specified in the last-encountered .SBTTL directive {see Section
6.1.3).

In the line printer format {Figure 6-1) binary extensions for
statements generatinq more than one word are listed horizontally.

In the teleprinter format (Figure 6-2) binary extensions for
statements generating more than one word are listed vertically. There
is no explicit truncation of output to 80 characters by the assembler.

6-4

1 ;+
2 GETSYM
3 ; Scan off a RAD50 S!:llflbol t L1~ave with scar1 Poir1ter set at r1ext non-blar1k
4 ; char Past end of S!:IRtbOl o s~abol buffer clear and z set if no S!:IRtbOl
5 ; seen; In this case scan Pointer is unaltered.
6 ;-
7
8 000126 010146 GETSYM::MOV Rlr-<SP> ;save work resister
9 000130 016767 001 0000G OOOOOOG MOV CHRPNTrSYMBEG ; Save scar1 Pointer in case of rescan

10 000136 012701 000004G HOV tSYMBOL+4rR1 ;Poir1t at er1d of S!:lltbOl buffer
11 000142 005041 CLR -<R1> ;Now clear it
12 000144 005041 CLR -<Rl> G1
13 000146 136527 000000' 000040 BITD CTTBL<RS)rtCT.ALP ;rest first char for alPhabetic tz:I

z
14 000154 001436 BEG 4$;Exit if not with z set tz:I

15 000156 116500 000262' u: MOVB CTTBL2 (RS), RO ;HaP to RADSO ~
16 000162 003431 BLE 3$;Exit if not t"t

17 000164 006300 ASL RO ;Hake word inde>~ ;J:il
18 000166 016011 000462' MOV RSOTB1 <RO>,< FU> ;Load the hi!=Jh char en
19 000172 GE TC HR ;Get another char en

tz:I

°' 20 000176 116500 000262' HOVI! CTTBL2 (RS), R() ;Handle it as above ~
I 21 000202 003421 BLE 3$ tXI

U1 t"t
22 000204 006300 ASL RO tz:I

23 000206 066011 000602' ADD R50TB2<RO>, ml> !:t:I

24 000212 GETCHR ;Now set low order char 0

25 000216 116500 0010262 I HOVB CTTBL2<R5>rR<> ;MaP and test it H
!:t:I

26 000222 003411 DLE 3$ tz:I

27 000224 060021 ADD RO,< Rl >+ ;Just add in the low char• advance Pointer
()

t-3
28 000226 2t: GETCHR ;Get followins char H

29 000232 020127 000004G CMP R1.tSYHBOLt4 He st if at er1d of s1:1mbol buffer <
tz:I

30 000236 001347 BNE u ;Go aSain if no en
31 000240 105765 000262' TSTB CTTBL2<R5> ff lush to end of S!:llftbOl if !:les
32 000244 003370 BGT 2$
33 000246 3$: SET ND ;Now scan to a non b 1 ar1'1, char
34 000252 012601 4$: MOV CSP>trR1 ;Restore work resister
35 000254 016700 OOiOOOOG HOV SYHBOLrRO ;set z if no s1:1mbol found
36 000260 000207 RETURN ; E:<i t
37

Figure 6-1 Example of Line Printer Assembly Listing

38 ;+

39 ; Table CTTBL2
40 ; Ir1de>: with 7 bit ASCII value to set corresF-ondin5l RAD50 value G:
41 ; If EQ 0 then space, if LT 0 then not RAD50; Other bits reserved. tr:
42 ;- 2

tr:
43

~· 44 • NLIST I1EX t"'
45 000262 200 200 200 CTTBL2: • BYTE 200,200,200.200,200.200.200.200

:'.!> 46 000272 200 200 200 .BYTE 200.200.200.200,200,200,200,200 u:
47 000302 200 200 200 .BYTE 200,200,200,200,200,200,200,200 u:
48 000312 200 200 200 • BYTIE 200,200,200,200,200.200,200,200 tr:

3:

°'
49 000322 000 200 200 , BYTE 000,200,200.200,033,200,200,200 $ tt:

t""
I 50 000332 200 200 200 .BYTIE 200,200,200.200,200.200,034,200 tr:;

°' 51 000342 036 037 040 .BYTE 036r037r040r041r042r043r044r045 ;01234567 ~
I::"'")
..i..,. 000352 046 047 200 • BYTIE 046r047r200r200,200r200,200,200 ;99 c
53 000362 200 001 002 .BYT:E 200,001,002~003,004,oos,006,007 ; ABCDEFG I-

~ 54 000372 010 011 012 .BYTE 010r011r012r013,014r015~016r017 ;HIJKLMNO tr::
55 000402 020 021 022 • BYTIE 020.021,022.023,024,025,026,027 ;pQRSTUVW r.
56 000412 030 031 032 • [1YTE: 030,031,032,200.200.200.200.200 ;xvz 1-3

H

57 000422 200 001 002 .BYTE 200,001.002,003,004,oos,006,007 ; abcdef 5' <
tr:1
00

Figure 6-1 (Cont.} Example of Line Printer Assembly Listing

2
3
4
5
6
7
8 000126 010146
9 000130 016767

OOOOOOG
OOOOOOG

10 000136 012701
000004G

11 000142 005041
12 000144 005041
13 000146 136527

000000'

"' 000040
I 14 000154 001436

-.I
15 000156 116500

000262'
16 000162 003431
17 000164 006300
18 000166 016011

000462'
19 000172
20 000176 116500

000262'
21 000202 003421
22 000204 006300
23 000206 066011

000602'

;+
GETSYM
Scan off a RAD50 s~mbol. Leave with scan Pointer set at next non-blank
char Past end of s~mbol. S~~bol buffer clear and Z set if no s~•bol
seen; In this case scan Pointer is unaltered.

; ·-

Gl::TSYM: : MDV
MDV

u:

MDV

CLR
CLR
I1ITB

BEG
MDVB

E:LE
ASL
MDV

GETCHf~

MOVB

BLE
ASL
ADD

Rl,-<SP>
CHRPNT,SYMBEG

tSYMBDLt4, R1

-CR1>
- (R1>

;save work resister
;save scan Pointer in case of rescan

;Point at end of s~mbol buffer

;Now clear it

CTTBL<RS>,tCT.ALP ;rest first char for alPhabetic

4$; E>:i t if not with z set
CTTBL2<R5> ,RO iMoP to RAD50

3$;[;dt if not
RO ;Make word index
R50H11 < r~o >, < r~1 > ;Load the hi sh char

;Get another char
CTHIL2 (RS) , RO ;Handle it as above

3$
RO
R50TB2<RO>, <R1 >

Figure 6-2 Example of Teleprinter Assembly Listing

24 000212 GETCHR ;Now set low ordur char
25 000216 116500 MOVD CTTBL2 < R5 >, f;:O ;MaP and test it

000262'
26 000222 003411 BLE 3$
27 000224 060021 ADD RO,<R1>t ;Just add in the low char, advance pointer ~

28 000226 2$: GETCHR ;Get followins char
t%)

z
29 000232 020127 CMF' R1,tSYMBOLt4 ;rest if at end Clf si:>mbol buffer t%)

000004G ~
30 000236 001347 BNE 1$;Go asain if no t'i

31 000240 105765 TSTB CTTBL2<R5> ;Fl•Jsh to end of S':llllbol if ':les >
000262' Cf.l

32 000244 003370 BGT 2$ Cf.l
t%)

33 000246 3$: SET NII ;Now scan to a nc1n bl ar1k char 3:

°' 34 000252 012601 4$: HOV <SP>+. Rl ;Restore work re:=li ste r
tp

I t'i
ex> 35 000254 016700 HOV SYMDOL,RO ;set z if no s':lmt•ol found t%)

OOOOOOG ~

36 000260 000207 RE TU rm ;Exit 0
H

37 ~
38 ;+ t%)

39 ; Table CTTBL2
(')

t-:3
40 ; I ride>: with 7 bit ASCII value to set co r resPor1dtr1S RAD50 value H

41 ; If EQ 0 then if LT 0 then not RADSO; Other bits reserved. < space, t%)

42 ;- Cf.l

43
44 .NLIST BEX

Figure 6-2 (Cont.) Example of Teleprinter Assembly Listing

GENERAL ASSEMBLER DIRECTIVES

6.1.1 .LIST and .NLIST Directives

j .LIST I
1.NLIST I

Formats:

.LIST

.LIST arg

. NLIST

.NLIST arg

where: arg represents one or more of the optional symbolic
arguments defined in Table 6-2.

As indicated above, the listing control directives may be used without
arguments, in which case the listing directives alter the listing
level count. The listing level count is initialized to zero. At each
occurrence of a .LIST directive, the listing level count is
incremented; at each occurrence of an .NLIST directive, the listing
level count is decremented. When the level count is negative, the
listing is suppressed (unless the line contains an error).
Conversely, when the level count is greater than zero, the listing is
generated regardless of the context of the line. Finally, when the
count is zero, the line is either listed or suppressed, depending on
the listing controls currently in effect for the program. The
following macro definition employs the .LIST and .NLIST directives to
selectively list portions of the macro body when the macro is
expanded:

.MACRO LTEST ;List test
A-this line should list ;Listing level count is 0 ..

.NLIST ;Listing level count is -1.
B-this line should not list

.NLIST ;Listing level count is -2.
C-this line should not list

. LIST ;Listing level count is -1.
D-this line should not list

• LIST ;Listing level count is 0 .
E-this line should list ;Listing level count is 0.
F-this line should list ;Listing level count is 0.
G-this line should list ;Listing level count is 0.

• ENDM

.LIST ME • r i c +- m.:arer,..._, OVT"\.:at""'t.C!', l"'\.l"'\ , '-' ~ '- ILi~" .L. 'V '-At"'UlJW.LVJ.l•

LTEST ;Call the macro
A-this line should list ;Listing level count is 0.
E-this line should list ;Listing level count is 0.
F-this line should list ;Listing level count is 0.
G-this line should list ;Listing level count is 0.

Note that the lines following line E will list because the listing
level count remains 0. If a .LIST directive is placed at the
beginning of a program, all macro expansions will be listed unless a
.NLIST directive is encountered.

6-9

GENERAL ASSEMBLER DIRECTIVES

An important purpose of the level count is to allow macro expansions
to be listed selectively and yet exit with the listing level count
restored to the value existing prior to the macro call.

When used with arguments, the listing directives do not alter the
listing level count. However, the .LIST and .NLIST directives can be
used to override current listing control, c.s shown in the example
below:

X=.

X--.

.MACRO XX

.LIST ;List next line.

.NLIST

. ENDM

. NLIST ME
xx

;Do not list remainder of macro
;expansion .

;Do not list macro expansions •

The symbolic arquments allowed for use with the listing directives are
described in Table n-2. These arguments can be used singly or in
combination with each other. If multiple arguments are specified in a
listing directive, each argument must be separated by a comma, tab, or
space. For any argument not specifically included in the control
statement, the associated default assumption (List or No list) is
applicable throughout the source program. The default assumptions for
the listing control directives also appear in Table ~-2.

Argument

SEQ*

Table 6-2
Symbolic Arguments of Listing Control Directives

Default

List

Function

Controls the listing of the sequential
numbers assigned to the source lines.
If this number field is suppressed
through an .NLIST SEQ directive,
MACR0-11 generates a tab, effectively
allocating blank space for the field.
Thus, the positional relationships of
the other fields in the listing remain
undisturbed. During the assembly
process, MACR0-11 examines each source
line for possible error conditions.
For any line in error, the error code
is printed preceding the number field.

* If the .NLIST arguments SEQ, LOC, BIN, and SRC are in effect at
the same time, that is, if all four significant fields in the
listing are to be suppressed, the printing of the resulting blank
line is inhibited.

(continued on next page)

6-10

Argument

LOC*

BIN*

BEX

SRC*

COM

MD

MC

GENERAL ASSEMBLER DIRECTIVES

Table 6-2 (Cont.)
Symbolic Arguments of Listing Control Directives

Default

List

List

List

List

List

List

List

Function

MACR0-11 does not assign line numbers
to files that have had such numbers
assigned by other programs (an editor
program, for instance).

Controls the listing of the current
location counter field. Normally,
this field is not suppressed.
However, if it is suppressed through
the .NLIST LOC directive, MACR0-11
does not generate a tab, nor does it
allocate space for the field, as is
the case with the SEQ field described
above. Thus, the suppression of the
current location counter (LOC) field

left-justifies all
fields (while preserving
relationships) to the

effectively
subsequent
positional
position
counter's

normally occupied by the
field.

Controls the listing of generated
binary code. If this field is
suppressed through an .NLIST BIN
directive, left-justification of the
source code field occurs in the same
manner described above for the LOC
field.

Controls the listing of binary
extensions (the locations and binary
contents beyond those that will fit on
the source statement line). This is a
subset of the BIN argument.

Controls the listing of source lines.

Controls the listing of comments.
This is a subset of the SRC argument.
The .NLIST COM directive reduces
listing time and space when comments
are not desired.

Controls the 1 is ting of macro
definitions and repeat range
expansions.

Controls the listing of macro calls
and repeat range expansions.

* If the .NLIST ~rguments SEO, LOC, BIN, and SRC are in effect at
the same time, that is, if ~11 four significnnt fields in the
listing ~re to be suppressed, the printing of the resulting blank
line is inhibited.

(continued on next page)

n-11

Argument

ME

MEB

CND

LD

TOC

SYM

TTM

GENERAL ASSEMBLER ~IRECT!VES

Table 6-2 (Cont.)
Symbolic Arguments of Listing Control Directives

Default

No list

No list

List

No list

List

List

No list

Function

Controls the listing
expansions.

Controls the listing
expansion binary code.
directive lists only
expansion statements
binary code. This is a
ME argument.

of macro

of macro
A .LIST MEB

those macro
that generate
subset of the

Controls the listing of unsatisfied
conditional coding and associated .IF
and .ENDC directives in the source
program. A .NLIST CND directive lists
only satisfied conditional coding.

Controls the listing of all listing
directives having no arguments, in
other words, the directives that alter """'k- i.;-~.; __ ,_.,._, __ ... _.&...

L-11C .LJ..::>L-J.l!'::j .LCVC.L l...VUlll.o

Controls the listing of the table of
contents during assembly pass 1 (see
Section 6.1.3 describing the .SBTTL
directive). This argument does not
affect the printing of the full
assembly listing during assembly pass
2.

Controls the listing of the symbol
table resulting from the assembly of
the source program.

Controls the listing output format.
The default is set to line printer
format. Figure 6-1 illustrates the
line printer output format. Figure
6-2 illustrates the teleprinter output
format.

Any argument specified in a .LIST/.NLIST directive other than those
listed in Table 6-2 causes the directive to be flagged with an error
code (A} in the assembly listing.

The listing control options can also be specified at assembly time
through switches included in the command string to MACR0-11 (see
Section 8.1.3 and/or the appropriate system manual}. The use of these
switches overrides all corresponding listing control (.LIST or .NLIST}
directives specified in the source program.

Figure 6-3 shows a listing, produced in line printer format,
reflecting the use of the .LIST and .NLIST directives in the source
program and the effects such directives have on the assembly listing
output.

6-12

LISTING CONTROL EXAMPLE MACR-0 V05.00 Saturday 08-Jan-83 9:~s Page 1

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

16
17

18
19

20
21

000000

000001 000002 000003
000004

000010

000010

000020

000020

000030

000030
000036

,. NLIST BIN
.worrn 1,2,3,4

000001 000002 000003

000001 000002 000003
000004

• TITLE LISTING CONTROL

.LIST ME

;+
; Listin.:l cor1trol test 1r1ac rcJ
; -

.MACRO LSTMAC ARG

.NLIST ARG

.WORD 1,2,3,4

.LIST ARG

.ENDM

LSTMAC LOC
• NLIST LOC
.WORD 1,2,3,4 Hh:is is

.LIST LDC

LSTMAC Ic IN

Hhi s is a test co1111111ent
.LIST BIN

LSTMAC I:EX
.NLIST BEX
.WORD 1,2,3,4
.LIST IcEX

LSTMAC SRC

EXAMPLE

;ust 11acro exPar1sions

Hhis is a test co111tent

;Location counter test

a test co1111ent

;Generat.ed binar1:1 test

;Binar1:1 extensions test

Hhis i 5> a test co11ment

;source lines test

Figure 6-3 Listing Produced with Listing Control Directives

G1
tzJ z
tzJ

~
t'1

)JI
tll
tll
tzJ
3:
t1'
t'1
tzJ
~

t:J
H
~
tzJ
()
8
H
<
tzJ
tll

.LIST sr~c

22
23 000040 LSTMAC COM ; Co11111ent lines test

• NLI ST COM
000040 000001 000002 000003 • WORD 1,2,3,4
000046 000004

• LIST COM
24
25 000050 LSTMAC <COM,BEX> ;comment lines and e:-:ter1ded binar~ test t;"l

• NLIST COM,BEX I.Tl
000050 000001 000002 000003 .woRr: 1,2,3,4 :z:

tTj
.LIST COM, I1EX •o

26 ;J::ll
1~

27 .LIST TTM ;En.3ble narrow listin~
28 ;pi

29 000060 LSTMAC SEQ ; Se•lUence r1u111be rs test
!fl
!fl

O"I .NLIST SEQ fTj
I :1:

1--' 000060 000001 • WORD 1,2,3,4 ;This is a test co111ment III
~

000062 000002 1:-4
IT.I

000064 000003 '.U
000066 000004 t:j

.LIST SEQ 1-1

30 :o
tTJ

31 000070 LSTMAC BEX ;Ecinar~ extensions test (")

• NLIST BEX :~

000070 000001 .WORD 1,2,3,4 ;This is a test comment •j

.LIST BEX t;j
!fl

32
33 000001 • END

Figure 6-3 (Cont.) Listing Produced with Listing Control Directives

GENERAL ASSEMBLER DIRECTIVES

6.1.2 .TITLE Directive

Format:

.TITLE string

where: string represents
characters.
characters.

I.TITLE I

an identifier of l or more Radix-50
Appendix A.2 contains a table of Radix-50

The .TITLE directive assigns a name to the object module. The name
assigned is the first six non-blank, Radix-50 characters following the
.TITLE directive. All spaces and/or tabs up to the first
non-space/non-tab character following the .TITLE directive are ignored
by MACR0-11 when evaluating the text string. Any characters beyond
the first six are checked for ASCII legality, but they are not used as
part of the object module name. For example, the directive:

.TITLE PROGRAM TO PERFORM DAILY ACCOUNTING

causes the assembled object module to be named PROGRA. This
6-character name bears no relationship to the filename of the object
module, as specified in the command string to MACR0-11. The name of
an object module (specified in the .TITLE directive) appears in the
load map produced at link time. This is also the module name which
the Librarian will recognize.

If the .TITLE directive is not specified, MACR0-11 assigns the default
name .MAIN. to the object module. If more than one .TITLE directive
is specified in the source program, the last .TITLE directive
encountered during assembly pass 1 establishes the name for the entire
object module.

If the .TITLE directive is specified without an object module name, or
if the first non-space/non-tab character in the object module name is
not Radix-50 character, the directive is flagged with an error code
(A) in the assembly listing.

6.1.3 .SBTTL Directive 1.senL I
Format:

.SBTTL string

where: string represents an identifier of 1 or more printable ASCII
characters.

6-15

The .SBTTL directive is used to produce a table of contents
immediately preceding the assembly listing and to print the text
following the .SBTTL directive on the second line of the header of
each page in the listing. The subheading in the text will be listed
until altered by a subsequent .SBTTL directive in the program. For
example, the directive:

.SBTTL Conditional assemblies

causes the text

Conditional assemblies

to be printed as the second line in the header of the assembly
listing.

During assembly pass 1, a table of contents containing the line
sequence number, the page number, and the text accompanying each
.SBTTL directive is printed for the assembly listing. The listing of
the table of contents is suppressed whenever an .NLIST TOC directive
is encountered in the source program (see Table 6-2). An example of a
table of contents listing is shown in Figure 6-4.

"TTE"T - RT-11 MULTI-TTY E"T SE "ACRO V05.00 Saturday 08-Jan-83 10:00
TABLE OF CONTENTS

50-
51-
52-
54-
55-

.MTOUT - Sinsle character output EMT

.MTRCTO - Reset CTRL/O EMT

.MTATCH - Attach to terainal EMT

.MTDTCH - Detach fro• a terainal EMT

.MTPRNT - Print aessase EMT

.MTSTAT - Return aulti-ter•inal s~stea status EMT
MTTIN - Sinsle character inPut
HTTGET - Get a charact~r fro- the rin~ buffer
TTRSET - Reset terainal status bits
MTTPUT - SinSle character outPut

56-
57-
58-
59-
60-
62-
63-

MTRSET - StoP and detach all ter•inals attached to a Job
ESCAPE SEQUENCE TEST SUBROUTINE

Figure 6-4 Assembly Listing Table of Contents

6.1.4 .!DENT Directive 1.IDENT I
Format:

• !DENT /string/

where: string represents a string of six or fewer Radix-50
characters which establish the program identification
or version number. This string is included in the
global symbol directory of the object module and is
printed in the link map and librarian listing.

6-16

GENERAL ASSEMBLER DIRECTIVES

I I represent delimiting characters. These delimiters may
be any paired printing characters, other than the
equal sign (=), the left angle bracket (<), or the
semicolon (;), as long as the delimiting character is
not contained within the text string itself (see Note
in Section 6.3.4). If the delimiting characters do
not match, or if an illegal delimiting character is
used, the .IDENT directive is flagged with an error
code (A) in the assembly listing.

In addition to the name assigned to .the object module with the .TITLE
directive (see Section 6.1.3), the .IDENT directive allows the user to
label the object module with the program version number.

An example of the .IDENT directive is shown below:

.IDENT /V01.00/

The character string is converted to Radix-50 representation
included in the global symbol directory of the object module.
character string aiso appears in the iink map produced at link
and the Librarian directory listings.

and
This
time

When more than one .IDENT directive is encountered in a given program,
the last such directive encountered establishes the character string
which forms part of the object module identification.

The RT-11 linker allows only one .IDENT string in a program. The
linker uses the first .IDENT directive encountered during the first
pass to estabiish the character string that will be identified with
all of the object modules.

The RSX-llM task builder allows an .IDENT string for each module in
the program. The TASK Builder uses the first .IDENT directive in each
moduie to establish the character string that will be identified with
that module. Like the RT-11 Linker, the RSX-llM Task Builder uses the
.IDENT directives encountered on the first pass.

5.1.5 .PAGE Directive/Page Ejection
I.PAGE I

Format:

.PAGE

The .PAGE directive is used within the source program to perform a
page eject at desired points in the listing. This directive takes no
arguments and causes a skip to the top of the next page when
encountered. It also causes the page number to be incremented and the
line sequence counter to be cleared. The .PAGE directive does not
appear in the listing.

When used within a macro definition, the .PAGE directive is ignored
during the assembly of the macro definition. Rather, the page eject
operation is performed as the macro itself is expanded. In this case,
the page number is also incremented.

6-17

GENERAL ASSEMBLER DIRECTIVES

Page ejection is accomplished in three other ways:

1. After reaching a count of 58 lines in the listing, MACR0-11
automatically performs a page eject to skip over page
perforations on line printer paper and to formulate
teleprinter output into pages. The page number is not
changed.

2. A page eject is performed when a form-feed character is
encountered. If the form-feed character appears within a
macro definition, a page eject occurs during the assembly of
the macro definition, but not during the expansion of the
macro itself. A page eject resulting from the use of the
form-feed character causes the page number to be incremented
and the line sequence counter to be cleared.

3. A page eject is performed when encountering a new source
file. In this case the page number is incremented and the
line sequence count is reset.

6.1.6 .REM Directive/Begin Remark Lines

Format:

.REM comment-character

where: comment-character represents a character
end of the comment
character reoccurs.

that
block

.REM

marks
when

the
the

The .REM directive allows a programmer to insert a block of comments
into a MACR0-11 source program without having to precede the comment
lines with rho ~Ammonr ~h~r~~rOY (o\ '-""•- __ a,•a"'-"'''- -_.._.. ___ \I I• The text
delimiting characters is treated as comments.
any number of lines. For example:

.TITLE Remark example

.REM &

between the specified
The comments may span

All the text that resides here is interpreted by MACR0-11
to be comment lines until another ampersand character is
found. Any character may be used in place of the ampersand.&
CLR PC
• END

6.2 FUNCTION DIRECTIVES

The following function directives are included in a source program to
invoke or inhibit certain MACR0-11 functions and operations incidental
to the assembly process itself.

'1-18

GENERAL ASSEMBLER DIRECTIVES

6.2.1 .ENABL and .DSABL Directives

j.ENABL I
I .DSABL I

Formats:

.ENABL arg

.DSABL arg

where: arg represents one or more of the optional symbolic
arguments defined in Table 6-3.

Specifying any argument in an .ENABL/.DSABL directive other than those
listed in Table 6-3 causes that directive to be flagged with an error
code (A) in the assembly listing.

Table 6-3
Symbolic Arguments of Function Control Directives

Argument Default

ABS Disable

AMA Disable

CDR Disable

CRF Enable

FPT Disable

LC Enable

Function

Enabling this function produces absolute
binary output in FILES-11 format. To
convert this output to Formatted Binary
format (as required by the Absolute
Loader), use the FLX utility.

Enabling this function causes all relative
addresses (address mode 67) to be assembled
as absolute addresses (address mode 37).
This function is useful during the
debugging phase of program development.

Enabling this function causes source
columns from 73 to the end of the line, to
be treated as a comment. The most common
use of this feature ·is to permit sequence
numbers in card columns 73-80.

Disabling this function inhibits
generation of cross-reference output.
function only has meaning

the
This

if
cross~reference output generation is
specified in the command string.

Enabling this function causes floating
point truncation; disabling this function
causes floating-point rounding.

Disabling this function causes MACR0-11 to
convert all ASCII input to upper-case
before processing it.

(continued on next page)

6-19

GENERAL ASSEMBLER DIRECTIVES

Table 6-3 (Cont.)
Symbolic Arguments of Function Control Directives

Argument Default

LCM Disable

LSB Disable

MCL Disable

PNC Enable

Function

This argument, if enabled, causes the
MACR0-11 conditional assembly directives
.IF IDN and .IF DIF to be alphabetically
case sensitive. By default, these
directives are not case sensitive.

This argument permits the enabling or
disabling of a local symbol block.
Although a local symbol block is normally
established by encountering a new symbolic
label, a .PSECT directive or a .RESTORE
directive in the source program, an .ENABL
LSB directive establishes a new local
symbol block which is not terminated until
(1) another .ENABL LSB is encountered, or
(2) another symbolic label, .PSECT
directive or .RESTORE directive is
encountered following a paired .DSABL LSB
directive.

The basic function of this directive with
regard to .PSECTS is limited to those
instances where it is desirable to leave a
program section temporarily to store data,
followed by a return to the original
program section. This temporary dismissal
of the current program section may also be
accomplished through the .SAVE and .RESTORE
directives (see Sections 6.7.3 and 6.7.4).

Attempts to define local symbols in an
alternate program section are flagged with
an error code (P) in the assembly listing.

An example of the .ENABL LSB and .DSABL LSB
directives, as typically used in a source
program, is shown in Figure 6-5.

This argument, if enabled, causes MACR0-11
to search all known macro libraries for a
macro definition that matches any undefined
symbols appearing in the opcode field of a
MACR0-11 statement. By default, this
option is disabled. If MACR0-11 finds an
unknown symbol in the opcode field, it
either declares a (U) undefined symbol
error, or declares the symbol an external
symbol, depending on the .ENABL/.DSABL
option setting of GBL (described below).

Disabling this function inhibits binary
output until an .ENABL PNC statement is
encountered within the same module.

(continued on next page)

6-20

GENERAL ASSEMBLER DIRECTIVES

Table 6-3 (Cont.)
Symbolic Arguments of Function Control Directives

Argument Default Function

REG Enable

GBL Enable

When specified, the .DSABL REG directive
inhibits the normal MACR0-11 default
register definitions; if not disabled, the
default definitions listed below remain in
effect.

R0=%0
Rl=%1
R2=%2
R3=%3
R4=%4
R5=%5
SP=%6
PC=%7

The .ENABL REG statement may be used as the
logical complement of the .DSABL REG
directive. The use of these directives,
however, is not recommended. For logical
consistency, use the normal default
register definitions listed above.

This argument, if disabled, causes MACR0-11
to mark all undefined references in
assembly pass 2 with a (U) error in the
assembly listing. The default for this
option is enabled, which causes MACR0-11 to
treat all undefined symbol references as
global, allowing the linker to resolve
them •

• ENABL/.DSABL MACRO VOS.00 Saturday_08-Jan~a3 1o:zs Pase 1

.TITLE .ENABL/,DSABL
2
3 ;+
4 ; ILLUSTRATE .ENABL/,DSABL LC
5 ;-
6
7 .ENABL LC 'STORE MACRO IN LOWER CASE
8
9 .MACRO TEXT $$$

10 .ASCII /This Ufa lower case strinsl/
11 .ENDH
12
13 .LIST HE
14 .NLIST BEX
15
16 000000 TEXT is ;Invoke a•cro in lower c•se

000000 124 150 151 .ASCII /Thi;; is a lower c•se strinsl/
17
18 .DSADL LC ;Now disable lower case
19
20 000033 TEXT WAS ;RE-INVOKE MACRO IN UPPER CASE

000033 124 110 111 .ASCII /THIS WAS A LOWER CASE STRING/
21
22 000001 .END

Figure 6-5 Example of .ENABL and .DSABL Directives

6-21

GENERAL ASSEMbL~H DlH~CT!VES

1.CROSS I
1.NOCROSS I

6.2.2 Cross-Reference Directives: .CROSS and .NOCROSS

Formats:

.CROSS

.CROSS syml,sym2, •.• symn

.NOCROSS

.NOCROSS syml,sym2, ••• symn

where: syml,
sym2, ••.
symn

represents legal symbolic names. When multiple
symbols are specified, they are separated by any
legal separator (comma, space, and/or tab).

The .CROSS and the .NOCROSS directives control which symbols are
included in the cross-reference listing produced by the MACR0-11
assembler. These directives have an effect only if the /C[R] or the
/CROSS qualifier was used in the command line to select the
cross-reference capability.

By defauit, the cross-reference listing includes
all the references to every user symbol in
cross-reference listing can be disabled for all
specified list of symbols.

the definition and
the module. The

symbols or for a

When the .NOCROSS directive is used without a symbol list, the
cross-reference listing of all the symbols in the module is disabled.
The cross-reference listing of all the symbols in the module is
reenabled when the .CROSS directive is used without a symbol list.
Any symbol definition or reference that appears after a .NOCROSS
directive that is used without a symbol list and before the next
.CROSS directive that is used without a symbol list, is exciuded from
the cross-reference listing.

The .NOCROSS directive, used with a symbol list, disables the
cross-reference listing for the listed symbols. When the .CROSS
directive is used with a symbol list, the cross-reference listing of
the listed symbols is reenabled.

In the following example, the definition of LABELl and the reference
to LOCI and LOC2 are not included in the cross-reference listing.

Example:

.NOCROSS
LABELI: MOV LOCl,LOC2

.CROSS

;Stop cross reference
;Copy data
;Reenable cross reference

In the next example, the definition of LABEL2 and the reference to
LOC2 are included in the cross reference, but the reference to LOCI is
not included.

Example:

LABEL2:
.NOCROSS
MOV
.CROSS

LOCl
LOC1,LOC2
LOCl

;Do not cross reference LOCl
;Copy data
;Reenable cross reference
;of LOCI.

6-22

GENERAL ASSEMBLER DIRECTIVES

The .CROSS directive, used without a symbol list, cannot be used to
reenable the cross-reference listing of a symbol specified in the
symbol list of a .NOCROSS directive. In addition, if the
cross-reference listing of all the symbols in a module is disabled,
the .CROSS directive used with a symbol list will have no effect until
the cross-reference listing is reenabled by the .CROSS directive used
without a symbol list.

The .CROSS directive, with no symbol list, is equivalent to the .ENABL
CRF directive, and the .NOCROSS directive, with no symbol list, is
equivalent to the .DSABL CRF directive.

6.3 DATA STORAGE DIRECTIVES

A wide range of data and data types can be generated with the
directives, ASCII conversion characters, and radix-control operators
described in the following sections.

6.3.1 .BYTE Directive 1.BYTE I
Format:

.BYTE

.BYTE

where: exp,
expl,

expn

exp ;Stores the binary value of the
;expression in the next byte.

expl,exp2,expn ;Stores the binary values of the list
;of expressions in successive bytes.

represent expressions that must be reduced to 8 bits
of data or less. Each expression will be read as a
16-bit word expression, the high-order byte to be
truncated. The high-order byte must be either all
zeros or a truncation (T) error results.
Multiple expressions must be separated by commas.

The .BYTE directive is used to generate successive bytes of binary
data in the object module.

Example:

SAM=5
• =410

.BYTE "D48,SAM ;The value 060 (octal equivalent of 48
;decimal} is stored in location 410.
·'l"h.::> u.::11110 Oll?lt; ic- c-+- ,.....:i ~ i~~-.i-~~
Ia - .., - _.,, ~ - J.' J.J _, .&. ~ ..::;i '- V .L II;;;;" U ~ I I .J.. V \,,Cl l.. i U J J

; 411.

The construction "D in the first operand of the .BYTE directive above
illustrates the use of a temporary radix-control operator. The
function of such special unary operators is described in Section
6.4.1.2.

6-23

GENERAL ASSEMBLER DIRECTIVES

At link time, it is likely that a relocatable expression will result
in a value having more than eight bits, in which case the task builder
or linker issues a truncation (T) error for the object module in
question. For exc.mple, the following statements create such a
possibility:

.BYTE
A:

.BYTE

23

A

;Stores octal 23 in next byte.

;Relocatable value A will probably
;cause truncation error.

If an expression following the .BYTE directive is null, it is
interpreted as a zero:

.=420
.BYTE ' ' , ;Zeros are stored in bytes 420, 421,

;422, and 423.

Note that in the above example, four bytes of storage result from the
.BYTE directive. The three commas in the operand field represent an
implicit declaration of four null values, each separated from the
other by a comma. Hence, four bytes, each containing a value of zero
(0), are reserved in the object module.

n.3.2 -WORD Directive

Formats:

.WORD

.WORD

where: exp,
expl,

expn

exp ;Stores the binary equivalent of the
;expression in the next word.

expl,exp2,expn ;Stores the binary equivalents of the
;list of expressions in successive
;words.

represent expressions that must reduce to 16 bits of
data or less. Multiple expressions must be separated
by commas.

The .WORD directive is used to generate successive words of data in
the object module.

Example:

SAL=0
.=500

.WORD 177535,.+4,SAL ;Stores the values 177535, 506, and
;0 in words 500, 502, and 504,
;respectively.

6-24

GENERAL ASSEMBLER DIRECTIVES

If an expression following the .WORD directive contains a null value,
it is interpreted as a zero, as shown in the following example:

.=500
.WORD c;.

f ...; I ;Stores the values 0, 5, and 0 in
;location 500, 502, and 504,
;respectively.

A statement with a blank operator field (one that contains a symbol
other than a macro call, an instruction mnemonic, a MACR0-11
directive, or a semicolon) is interpreted during assembly as an
implicit .WORD directive, as shown in the example below:

.=440
LABEL: 100,LABEL ;Stores the value 100 in location 440

;and the value 440 in location 442.

NOTE

You should not use this technique to
generate .WORD directives because it may
not be included in future PDP-11
assemblers.

6.3.3 ASCII Conversion Characters

The single quote (') and the double quote (") characters are unary
operators that can appear in any MACR0-11 expression. Used in
MACR0-11 expressions, these characters cause a 16-bit expression value
to be generated.

When the single quote is used, MACR0-11 takes the next character in
the expression and converts it from its 7-bit ASCII value to a 16-bit
expression value. The high-order byte of the resulting expression
value is always zero (0). The 16-bit value is then used as an
absolute term within the expression. For example, the statement:

MOV #'A,R0

moves the following 16-bit expression value into register 0:

00000000 01000001

Binary Value of ASCII A

Thus the expression 'A results in a value of 101(8).

The single quote (') character must not be followed by a
carriage-return, null, RUBOUT, line-feed, or form-feed character; if
it is, an error code (A) is generated in the assembly listing.

6-25

GENERAL ASSEMBLER DIRECTIVES

When the double quote is used, MACR0-11 takes the next two characters
in the expression and converts them to a 10-bit binary expression
value from their 7-bit ASCII values. This 16-bit value is then used
as an absolute term within the expression. For example, the
statement:

MOV #"AB,R0

moves the following l~-bit expression value into register 0:

01000010 01000001

t__Binary Value Of ASCII A

Binary Value of ASCII B

Thus the expression "AB results in a value of 041101(8).

The double quote (") character, like the single quote (') character,
must not be followed by a carriage-return, null, RUBOUT, line-feed, or
form-feed character; if it is, an error code (A) is generated in the
assembly listing.

The ASCII character set is listed in Appendix A.l.

6.3.4 .ASCII Directive j .Asc11 I
Format:

.ASCII /string l/ ••• /string n/

where: string is a string of printable ASCII characters. The
vertical-tab, null, line-feed, RUBOUT, and all other
non-printable ASCII characters, except carriage-return
and form-feed, cause an error code (I) if used in an
.ASCII string. The carriage-return and form-feed
characters are flagged with an error code (A) because
these characters end the scan of the line, preventing
MACR0-11 from detecting the matching delimiter at the
end of the character string.

I I represent delimiting characters. These delimiters may
be any paired printing characters, other than the
equal sign (=), the left angle bracket (<), or the
semicolon (;) (see Note at end of section), as long as
the delimiting character is not contained within the
text string itself. If the delimiting characters do
not match, or if an illegal delimiting character is
used, the .ASCII directive is flagged with an error
code (A) in the assembly listing.

6-26

GENERAL ASSEMBLER DIRECTIVES

The .ASCII directive translates character strings into their 7-bit
ASCII equivalents and stores them in the object module. A
non-printing character can be expressed only by enclosing its
equivalent octal value within angle brackets. Each set of angle
brackets so used represents a single character. For example, in the
following statement:

.ASCII <15>/ABC/<A+2>/DEF/<5><4>

the expressions <15>, <A+2>, <5>, and <4> represent the values of
expression must reduce to non-printing characters. Each bracketed

eight bits of absolute data or less.

Angle brackets can be embedded between delimiting characters in the
character string, but angle brackets so used do not take on their
usual significance as delimiters for non-printing characters. For
example, the statement:

.ASCII /ABC<expression>DEF/

contains a single ASCII character string, and performs no evaluation
of the embedded, bracketed expression. This use of the angle brackets
is shown in the third example of the .ASCII directive below:

.ASCII /HELLO/ ;Stores the binary representation
;of the letters HELLO in five
;consecutive bytes •

• ASCII /ABC/<15><12>/DEF/ ;Stores the binary representation
;of the characters A,B,C,carriage
;return,line feed,D,E,F in eight
;consecutive bytes.

.ASCII /A<l5>B/ ;Stores the binary representation
;of the characters A, <, 1, 5, >,
;and B in six consecutive bytes.

NOTE

The semicolon (;) and equal sign (=) can
be used as delimiting characters in the
string, but care must be exercised in so
doing because of their significance as a
comment indicator and assignment
operator, respectively, as illustrated
in the examples below:

.ASCII ;ABC;/DEF/ ;Stores the binary
;representation of
;the characters
;A, B, C, D, E, and
;F in six
;consecutive bytes;
;not recommended
;practice.

6-27

GENERAL ASSEMBLER DIRECTIVES

.ASCII /ABC/;DEF;

• ASCII /ABC/=DEF=

;Stores the binary
;representations of
;the characters A,
;B, and C in three
;consecutive bytes;
;the characters D,
;E, F, and ; are
;treated as a
;comment •

;Stores the binary
;representation of
;the characters A,
;B, C, D, E, and
;F in six
;consecutive bytes;
;not recommended
;practice.

An equal sign is treated as an
assignment operator when it appears as
the first character in the ASCII string,
as illustrated by the following example:

.ASCII =DEF= ;The direct
; assignment
•An.::>r~t-inn ·-i:-------··
; . ASCII=DEF is
;performed, and a
;syntax error (Q)
;is generated upon
;encountering the
;second = sign.

6.3.5 .ASCIZ Directive

Format:

.ASCIZ /string l/ .•. /string n/

, .ASCIZ I

where: string is a string of printable ASCII characters. The
vertical-tab, null, line-feed, RUBOUT, and all other
non-printable ASCII characters, except carriage-return
and form-feed, cause an error code (I) if used in an
.ASCIZ string. The carriage-return and form-feed
characters are flagged with an error code (A) because
they end the scan of the line, preventing MACR0-11
from detecting the matching delimiter.

6-28

I I

GENERAL ASSEMBLER DIRECTIVES

represent delimiting characters. These delimiters may
be any paired printing characters, other than the
equal sign (=), the left angle bracket (<), or the
semicolon (;) (see Note in Section 6.3.4), as long as
the delimiting character is not contained within the
text string itself. If the delimiting characters do
not match or if an illegal delimiting character is
used, the .ASCIZ directive is flagged with an error
code (A) in the assembly listing.

The .ASCIZ directive is similar to the .ASCII directive described
above, except that a zero byte is automatically inserted as the final
character of the string. Thus, when a list or text string has been
created with an .ASCIZ directive, a search for the null character in
the last byte can effectively determine the end of the string, as
reflected by the coding below:

CR=l5
LF=l2
HELLO: .ASCIZ <CR><LF>/MACR0-11 V05.00/<CR><LF> ;Introductory message

.EVEN

10$:

MOV
MOV
MOVB
BNE

#HELLO,Rl
#LINBUF, R2
(Rl)+, (R2)+
HJ$

;Get address of message.
;Get address of output buffer.
;Move a byte to output buffer.
;If not null, move another byte.

~.3.6 .RAD50 Directive 1.RADSO I
Format:

.RAD50 /string l/ •.. /string n/

where: string represents a series of characters to be packed. The
string must consist of the characters A through z, 0
through 9, dollar sign ($) , period (.) and space () •
An illegal printing character causes an error flag (Q)
to be printed in the assembly listing.

If fewer than three characters are to be packed, the
string is packed left-justified within the word, and
trailing spaces are assumed.

6-29

I I

GENERAL ASSEMBLER DIRECTIVES

As with the .ASCII directive (described in Section
6.3.4), the vertical-tab, null, line-feed, RUBOUT, and
all other non-printing characters, except
carriage-return and form-feed, cause an error code (I)
if used in a .RAD50 string. The carriage-return and
form-feed characters result in an error code (A)
because these characters end the scan of the line,
preventing MACR0-11 from detecting the matching
delimiter.

represent delimiting characters. These delimiters may
be any paired printing characters, other than the
equal sign {=}, the left angle bracket (<), or the
semicolon (;) (see Note in Section 6.3.4), provided
that the delimiting character is not contained within
the text string itself. If the delimiting characters
do not match or if an illegal delimiting character is
used, the .RAD50 directive is flagged with an error
code (A) in the assembly 1 isting.

The .RAD50 directive allows the user to generate data in Radix-50
packed format. Radix-50 form allows three characters to be packed
into sixteen bits (one word); therefore, any 6-character symbol can
be stored in two consecutive words. Examples of .RAD50 directives are
shown below:

.RAD50 /ABC/ ; PBC'kS ABC into one word=
• RAD50 /AB/ ;Packs AB (SPACE) into one word .
. RAD50 /ABCD/ ; Packs ABC into first word and

;D (SPACE) (SPACE) into second word.
• RAD50 /ABC DEF/ ; Packs ABC into first word, DEF into

;second word.

Each character is translated into its Radix=50 equivalent, as
indicated in the following table:

Character

(space)
A-Z
$

(undefined)
0-9

Radix-50 Octal Equivalent

0
1-32

33
34
35

36-47

The Radix-50 equivalents for characters 1 through 3 (Cl,C2,C3) are
combined as follows:

Radix-50 Value ((Cl*50)+C2)*50+C3

For example:

Radix-50 Value of ABC= ((1*50)+2)*50+3 = 3223(8)

Refer to Appendix A.2 for a table of Radix-50 equivalents.

6-30

GENERAL ASSEMBLER DIRECTIVES

Angle brackets (<>) must be used in the .RAD50 directive whenever
special codes are to be inserted in the text string, as shown in the
example below:

• RAD50 /AB/<35> ;Stores 3255 in one word •

CHRl=l
CHR2=2
CHR3=3

.RAD50 <CHRl><CHR2><CHR3> ;Equivalent to .RAD50 /ABC/.

6.3.7 Temporary Radix-50 Control Operator

Format:

"'Rccc

where: CCC represents a maximum of three
converted to a 16-bit Radix-50
three characters are specified,
third character are ignored. If
specified, it is assumed that the
are blanks.

characters to be
value. If more than

any following the
fewer than three are
trailing characters

The "'R operator specifies that an argument is to be converted to
Radix-50 format. This allows up to three characters to be stored in
one word. The following example shows how the "'R operator might be
used to pack a 3-character file type specifier (MAC) into a single
16- bi t WO rd •

MOV #"'RMAC,FILEXT ;Store RAD50 MAC as file extension

The number sign (#) is used to indicate immediate data (data to
specifies that

This value is

be
the

then
assembled directly into object code). "'R
characters MAC are to be converted to Radix-50.
stored in location FILEXT.

~.3.8 .PACKED Directive
I.PACKED!

Format:

.PACKED decimal-string[,symbol]

where: decimal-string

symbol

represents a decimal number from 0 to
31(10) digits long. Each digit must be in
the range 0 to 9. The number may have a
sign, but it is not required and is not
counted as a digit.

is assigned a value equivalent to the
number of decimal digits in the string.

6-31

GENERAL ASSEMBLER DIRECTIVES

The .PACKED directive generates packed decimal data, 2 digits per
byte. Arithmetic and operational properties of packed decimals are
similar to those of numeric strings. Below is an example of the
.PACKED directive.

.PACKED -12,PACK

.PACKED +500

.PACKED 0

.PACKED -0,SUM

.PACKED 1234E6

;PACK gets value of 2
;500 is packed
;0 is packed
;SUM gets value of 1
;Illegal packed decimal number
;E6 will be treated as a variable
;and given a value of 4

6.4 RADIX AND NUMERIC CONTROL FACILITIES

6.4.1 Radix Control and Unary Control Operators

Any numeric or expression value in a MACR0-11 source program
as an octal value by default. Occasionally, however, an
radix would be useful. By using the MACR0-11 facilities
below, a programmer may declare a radix to affect a term or
program depending on his needs.

is read
alternate
described
an entire

NOTE

When two or more unary operators appear
together, modifying the same term, the
operators are applied to the term from
right to left.

6.4.1.1 .RADIX Directive 1.RADiX I
Format:

.RADIX n

where: n represents one of the three radices: 2, 8 and 10.
Any value other than null or one of the three
acceptable radices will cause an error code (A) in the
assembly listing. If the argument n is not specified,
the octal default radix is assumed. The argument (n)
is always read as a decimal value.

Numbers used in a MACR0-11 source program are initially considered to
be octal values; however, with the .RADIX directive you can declare
alternate radices applicable throughout the source program or within
specific portions of the program.

'1-32

GENERAL ASSEMBLER DIRECTIVES

Any alternate radix declared in the source program through the .RADIX
directive remains in effect until altered by the occurrence of another
such directive, for example:

• RADIX 10

• RADIX

;Begins a section of code having a
;decimal radix.

;Reverts to octal radix •

In general, macro definitions should not contain or rely on radix
settings established with the .RADIX directive. Rather, temporary
radix control operators should be used within a macro definition.
Where a possible radix conflict exists within a macro definition or
source program, it is recommended that the user specify numeric or
expression values using the temporary radix control operators
described below.

6.4.1.2 Temporary Radix Control Operators

Formats:

"D"number" ("number" is evaluated as a decimal number)
"O"number" ("number" is evaluated as an octal number}
"B"number" ("number" is evaluated as a binary number}

These three unary operators allow the user to establish an alternate
radix for a single term. An alternate is useful because after you
have specified a radix for a section of code or have decided to use
the default octal radix, you may discover a number of cases where an
alternate radix is more convenient or desirable (particularly within
macro definitions). Creating a mask word (used to check bit status),
for example, might best be accomplished through the use of a binary
radix.

Thus an alternate radix can be declared temporarily to meet a
localized requirement in the source program. The temporary radix
control operator may be used any time regardless of the radix in
effect or other radix declarations within the program. Because the
operator affects only the term immediately following it, it may be
used anywhere a numeric value is legal. The term (or expression}
associated with the temporary radix control operator will be evaluated
during assembly as a 16-bit entity.

The expressions below are representative of the methods of specifying
temporary radix control operators:

"Dl23
"o 47
"B 00001101
"O<A+l3>

Decimal Radix
Octal Radix
Binary Radix
Octal Radix

The up-arrow and the radix control operator may not be separated, but
the radix control operator and the following term or expression can be
separated by spaces or tabs for legibility or formatting purposes. A
multi-element term or expression that is to be interpreted in an
alternate radix should be enclosed within angle brackets, as shown in
the last of the four temporary radix control expressions above.

6-33

GENERAL ASSEMBLER DIRECTIVES

The following example also illustrates the use of angle brackets to
delimit an expression that is to be interpreted in an alternate radix.
When using the temporary radix control operator only numeric values
are affected. Any symbols used with the operator will be evaluated
with respect to the radix in effect at their declaration •

• RADIX 10
A=l0

.WORD AO<A+l0>*10

When the temporary radix expression in the .WORD directive above is
evaluated, it yields the following equivalent statement:

.WORD 180

MACR0-11 also allows a temporary radix change to decimal by specifying
a number, immediately followed by a decimal point (.), as shown below:

100.
1376.

128.

Equivalent to 144(8)
Equivalent to 2540(8)
Equivalent to 200(8)

The above expression forms are equivalent in function to:

AD100
AD137n
.-.Dl28

6.4.2 Numeric Directives and Unary Control Operators

Two storage directives
to simplify the use
These facilities allow
program, and numeric
floating-point numbers.

and two numeric control operators are available
of the floating-point hardware on the PDP-11.
floating-point data to be created in the
values to be complemented or treated as

A floating-point number is represented by a string of decimal digits.
The string (which can be a single digit in length) may contain an
optional decimal point and may be followed by an optional exponent
indicator in the form of the letter E and a signed decimal integer
exponent. The number may not contain embedded blanks, tabs or angle
brackets and may not be an expression. Such a string will result in
one or more errors (A and/or Q) in the assembly listing.

The list of numeric representations below contains seven distinct,
valid representations of the same floating-point number:

3
3.
3.0
3.0E0
3E0
.3El
300E-2

As can be inferred, the list could be extended indefinitely (3000E-3,
.03E2, and so on). A leading plus sign is optional (3.0 is considered
to be +3.0). A leading minus sign complements the sign bit. No other
operators are allowed (for example, 3.0+N is illegal).

6-34

GENERAL ASSEMBLER DIRECTIVES

All floating-point numbers are evaluated as 64 bits in the following
format:

63 62 55

s EEEEEEEE

54 0

MMM ••••• MMM

Mantissa
Exponent
Sign

(55 bits)
(8 bi ts)
(1 bit)

MACR0-11 returns a value of the appropriate size and precision via one
of the floating-point directives. The values returned may be
truncated or rounded (see Section 6.2.1).

Floating-point numbers are normally rounded. That is, when a
floating-point number exceeds the limits of the field in which it is
to be stored, the high-order bit of the unretained word is added to
the low-order bit of the retained word, as shown below. For example,
if the number is to be stored in a 2-word field, but more than 32 bits
are needed to express its exact value, the highest bit (32) of the
unretained field is added to the least significant bit (0) of the
retained field (see illustration below). The .ENABL FPT directive is
used to enable floating-point truncation; .DSABL FPT is used to
return to floating-point rounding (see Table ~-3).

Bit Bit Bit Bit

~-3-2~~---..........,,...-~~~-~ ~-3_2~~---........,,..--~~~-~
Retained
field

Unretained
field

All numeric operands associated with Floating Point Processor
instructions are automatically evaluated as single-word, decimal,
floating-point values unless a temporary radix control operator is
specified. For example, to add (floating) the octal constant 41040 to
the contents of floating accumulator zero, the following instruction
must be used:

ADDF #"041040 ,F0

where: F0 is assumed to represent floating accumulator zero.

Floating-point numbers are described in greater detail in the
applicable PDP-11 Processor Handbook.

6.4.2.1 Floating-Point Storage Directives

Formats:

• FLT2
.FLT4

a rg 1 , a rg 2 , •••
argl,arg2, •••

6-35

I .FL 12 I
l.FLT4J

where: argl,arg2, .••

GENERAL ASSEMBLER DIRECTIVES

represent one or more
numbers as described in
Multiple arguments must be
commas .

floating-po int
Section 6.4.2.
separated by

• FLT2 causes two words of storage to be generated for each argument,
while .FLT4 generates four words of storage for each argument. As in
the .WORD directive, the arguments are evaluated and the results are
stored in the object module.

6.4.2.2 Temporary Numeric Control Operators: AC and
unary operator allows you to specify an argument
complemented as it is evaluated during assembly.
operator allows you to specify an argument that
floating-point number.

AF - The "c
that is to be

The "F unary
is a 1-word

As with the radix control operators described above, the numeric
control operator ("C) can be used anywhere in the source program that
an expression value is legal. Such a construction is evaluated by
MACR0-11 as a 16-bit binary value before being complemented. For
example, the following statement:

TAG4: .WORD "Cl51

causes the l;s complement of the value l~l (octal) to be stored as a
16-bit value in the program. The resulting value expressed in octal
form is 177626 (8) •

Because the "c construction is a unary operator, the operator and its
argument are regarded as a term. Thus, more than one unary operator
may be applied to a single term. For example, the following
construction:

"C"D25

causes the decimal
resulting binary
177746(octal).

value 25 to be complemented
value, when expressed in

during assembly. The
octal form, reduces to

The term created through the use of the temporary numeric control
operator can be used alone or in combination with other expression
elements. For example, the following construction:

"C2+6

is equivalent in function to:

<"C2>+6

This expression is evaluated during assembly as a l's complement of 2,
plus the absolute value of 6. When these terms are combined, the
resulting expression value generates a carry beyond the most
significant bit, leaving 000003(8) as the reduced value.

As shown above, when the temporary numeric control operator and its
argument are coded as a term within an expression, angle brackets
should be used as delimiters to ensure precise evaluation and
readability.

6-36

GENERAL ASSEMBLER DIRECTIVES

AF, as stated above, is a unary operator for numeric control which
allows you to specify an argument that is a 1-word floating-point
number. For example, the following statement:

A: MOV

creates a 1-word floating-point number at location A+2 containing the
value 3.7 formatted as shown below.

BIT 15 14 7 6 0

s EEEEEEEE MMMMMMM

Sign (1 bit) Exponent (8 bits) Mantissa (7 bits)

The importance of ordering with respect to unary operators is shown
below.

AFl.0
AF-1.0
-AFl.0
-AF-1.0

040200
140200
137600
037600

The value created by the AF unary operator and its 3rgument is, like
Ac and its argument, a term that can be used by itself or in an
expression. For example:

is equivalent to:

Again, the use of angle brackets is advised. Expressions used as
terms or arguments of a unary operator must be explicitly grouped.

6.5 LOCATION COUNTER CONTROL DIRECTIVES

The directives used in controlling the value of the current location
counter and in reserving storage space in the object program are
described in the following sections.

Several MACR0-11 statements (listed below) may cause an odd number of
bytes to be allocated:

1. .BYTE directive

2. .BLKB directive

3. .ASCII or .ASCIZ directive

4. .ODD directive

5. .PACKED directive

6. A direct assignment statement of the form .=.+expression,
which results in the assignment of an odd address value.

6-37

In cases that yield an odd address value, the next word-boundaried
instruction automatically forces the location counter to an even
value, but that instruction is flagged with an error code (B) in the
assembly listing.

6.5.1 .EVEN Directive I .EVEN I
Format:

.EVEN

The .EVEN directive ensures that the current location counter contains
an even value by adding 1 if the current value is odd. If the current
location counter is already even, no action is taken. Any operands
following an .EVEN directive are flagged with an error code {Q) in the
assembly listing.

The .EVEN directive is used as follows:

.ASCIZ /This is a test/

.EVEN ;Ensures that the next statement will
;uegin on a word boundary •

• WORD XYZ

6.5.2 .ODD Directive 1.0001
Format:

.ODD

The .ODD directive ensures that the current location counter contains
an odd value by adding 1 if the current value is even. If the current
location counter is already odd, no action is taken. Any operands
following an .ODD directive are also flagged with an error code {Q) in
the assembly listing.

6.5.3 .BLKB and .BLKW Directives

Formats:

.BLKB exp

.BLKW exp

6-38

l.BLKB)

f .BLKWI

where: exp

GENERAL ASSEMBLER DIRECTIVES

represents the specified number of bytes or words to be
reserved in the object program. Any expression that is
defined at assembly time and that reduces to an
absolute value is legal. If the expression specified
in either of these directives is not an absolute value,
the statement is flagged with an error code (A) in the
assembly listing. Furthermore, if the expression
contains a forward reference (a reference to a symbol
that is not previously defined), MACR0-11 generates
incorrect object file code and may cause statements
following the .BLKB/.BLKW directive to be flagged with
phase (P) errors. These directives should not be used
without arguments. However, if no argument is present,
a default value of 1 is assumed.

The .BLKB directive reserves byte blocks in the object module; the
.BLKW directive reserves word blocks. Figure 6-6 illustrates the use
of the .BLKB and .BLKW directives.

;+

2 ; Illustrate use of .BLKB and .BLKW directives
3 ;-
4 000000 .PSECT Il1PURErDrGBLrRW
5
6 000000 COUNT: .BLKW ;character counter
7
8 000002 11ESSAG: .BLKB so. ;Hessase text buffer
9

10 000122 CHRSAV: .BLKB ;saved character
11
12 000123 FLAG: .DLKB ;na~ bl:lte
13
14 000124 MSGPTR: .BLKW ;Hessase buffer Pointer

Figure 6-6 Example of .BLKB and .BLKW Directives

The .BLKB directive in a source program has the same effect as the
following statement:

.=.+expression

which causes the value of the expression to be added to the current
value of the location counter. The .BLKB directive, however, is
easier to interpret in the context of the source code in which it
appears and is therefore recommended.

6.5.4 .LIMIT Directive

Format:

.LIMIT

To know the upper and lower address boundaries of the image
desirable. When the .LIMIT directive is specified in
program, MACR0-11 generates the following instruction:

.BLKW 2

I.LIMIT I

is
the

often
source

causing two storage words to be reserved in the object module. Later,
at link time, the lowest address in the load image (the initial value

6-39

GENERAL ASSEMBLER DIRECTIVES

of SP) is inserted into the first reserved word, and the address of
the first free word following the image is inserted into the second
reserved word.

During linking, the size of the image is rounded upward to the nearest
2-word boundary.

6.6 TERMINATING DIRECTIVE: .END DIRECTIVE 1.END I
Format:

.END

where: exp

(exp]

represents an optional expression value which, if
present, indicates the program-entry point, which is
the transfer address where the program begins.

When MACR0-11 encounters a valid occurrence of the .END directive, it
terminates the current assembly pass. Any text beyond this point in
the current source file, or in additional source files identified in
the command line, will be ignored.

When creating an image consisting of several object modules, only one
object module may be terminated with an .END exp statement (where exp
is the starting address). All other object modules must be terminated
with an .END statement (where .END has no argument); otherwise, an
error message will be issued at link time. If no starting address is
specified in any of the object modules, image execution will begin at
location 1 of the image and immediately fault because of an odd
addressing error.

The .END statement must not be used within a macro expansion or a
---...:J.:.a....; ___ , -----i....1 ... \.....1--1..r- .;,t= .;,... .;,_. ,_._ ,.,...,-..~ .;~ .;,-. .f:1"!'1.,...,.,,-..~ T.T.:~k ~'t""IJ
~Vl!UJ.1.-J.Vl!Cl.1. Cl.::>.::>ClllU.1..Y U.1.V~"-i J..L J.1.- J.;;:) ;:,v u;:,cu, .I.I.- ..1..:J .1...1.U'::j':;IC\.A W..1.1...ll uu

error code (O) in the assembly listing. The .END statement may be
used, however, in an immediate conditional statement (see Section
6.9.3).

If the source program input is not terminated with an .END directive,
an error code (E) results in the assembly listing.

n.7 PROGRAM SECTIONING DIRECTIVES

The MACR0-11 program sectioning directives are used to declare names
for program sections (p-sections) and to establish certain program
section attributes essential to linking.

6-40

GENERAL ASSEMBLER DIRECTIVES

6.7.1 .PSECT Directive I .PSECT I
Format:

.PSECT name,argl,arg2, ..• argn

where: name represents the symbolic name of the
section, as described in Table 6-4.

program

argl,
arg2, .••
argn

represents any legal separator (comma, tab and/or
space) •

represent one or more of the legal symbolic
arguments defined for use with the .PSECT
directive, as described in Table 6-4. The slash
separating each pair of symbolic arguments listed
in the table indicates that one or the other, but
not both, may be specified. Multiple arguments
must be separated by a legal separating character.
Any symbolic argument specified in the .PSECT
directive other than those listed in Table 6-4
will cause that statement to be flagged with an
error code (A) in the assembly listing.

Table 6-4
Symbolic Arguments of .PSECT Directive

Argument Default Meaning

NAME

RO/RW

Blank Establishes the program section name, which is
specified as one to six Radix-50 characters.
If this argument is omitted, a comma must
appear in place of the name parameter. The
Radix-50 character set is listed in Appendix
A.2.

RW Defines which type of access is permitted to
the program section:

RO=Read-Only Access
RW=Read/Write Access

NOTE

RSX-llM and RT-11 use only Read/Write
access.

(continued on next page)

6-41

Argument

I/D

GBL/LCL

GENERAL ASSEMBLER DIRECTIVES

Table 6-4 (Cont.)
Symbolic Arguments of .PSECT Directive

Default Meaning

I Defines the contents of the program section:

LCL

!=Instructions.
attribute and
calls to the
through a body
root.

If a p-section has the I
the program is overlaid, all
p-section are referenced

of overlay code stored in the

If a concatenated
attribute, code is
bytes.

p-section has
concatenated

the I
on even

D=Data. If a p-section has the D attribute,
all calls to the p-section are referenced
directly.

If a concatenated p-section has the D
attribute, code is concatenated on the next
byte regardless of whether the byte is odd
or even.

Defines the scope of the program section, as
it will be interpreted at link time:

NOTE

The GBL/LCL arguments apply only in the
case of overlays; in building
single-segment nonoverlaid programs, the
GBL/LCL arguments have nu meaning,
because the total memory allocation for
the program will go into the root
segment of the image.

LCL=Local. If an object module contains a
local program section, then the storage
allocation for that module will remain in
the segment containing the module. Many
modules can contribute (allocate memory) to
this same program section; the memory
allocation for each contributing module is
either concatenated or overlaid within the
segment, depending on the allocation
argument of the program section (see CON/OVR
below) •

(continued on next page)

6-42

Argument

ABS/REL

GENERAL ASSEMBLER DIRECTIVES

Table 6-4 (Cont.)
Symbolic Arguments of .PSECT Directive

Default

REL

Meaning

GBL=Global. If a global program section is
used in more than one segment of a program,
all references to the p-section are
collected across segment boundaries. The
program sections are then stored in the
segment (of those originally containing the
p-sections) that is nearest the root.

NOTE

RT-11 stores the collected p-sections in
the root.

Defines the relocatability attribute of the
program section:

ABS=Absolute (non-relocatable). The ABS
argument causes the linker or task builder
to treat the p-section as an absolute
module; therefore, no relocation is
required. The program section is assembled
and loaded, starting at absolute virtual
address 0.

The location of data in absolute program
sections must fall within the virtual memory
limits of the segment containing the program
section; otherwise, an error results at
link time. For example, the following code,
although valid during assembly, may generate
an error message (A) if virtual location
100000 is outside the segment's virtual
address space:

.PSECT ALPHA,ABS
.=.+100000

.WORD X

REL=Relocatable. The REL argument causes the
linker or task builder to treat the
p-section as a relocatable module and a
relocation bias is added to all location
references within the program section making
the references absolute.

(continued on next page)

n-43

CENEI1AL ASSEMDLER DIRECTIVES

Table 6-4 (Cont.)
Symbolic Arguments of .PSECT Directive

Argument Default

CON/OVR CON

SAV/NOSAV NOSAV

Meaning

Defines the allocation requirements of the
program section:

CON=Concatenated. All references to one
program section are concatenated to
determine the total memory space needed for
the p-section.

OVR=Overlaid. All references to one program
section are overlaid; the total memory
space needed equaling the largest,
individual p-section.

Determines where the linker allocates storage
for the program section:

SAV=Save. The linker is forced to always
allocate the program section to the root of
the image.

NOSAV=No Save. The linker allocates the
program section normally.

The only argument in the .PSECT directive that is position-dependent
is NAME. If it is omitted, a comma must be used in its place. For
example, the directive:

• PSECT ,GBL

shows a .PSECT directive with a blank name argument and the GBL
argument. Default values {see Table 6-4) are assumed for all other
unspecified arguments.

The .PSECT directive may be used without a name or arguments (see
Section 6.7.1.1).

The .PSECT directive allows a user to create program sections (see
Section n.7.1.l) and to share code and data among the sections he has
created (see Section n.7.1.2). In declaring the program sections
(also called p-sections), you may declare the attributes of the
p-sections. This allows you to control memory allocation and at the
same time increases program modularity. (For a discussion of memory
allocation, refer to the applicable system manual - see Section 0.3 in
the Preface.)

MACR0-11 provides for 256(10) program sections, as listed below:

1. One default absolute program section {. ABS.)

2. One default relocatable program section (. BLK.)*

* In RT-11 this program section is unnamed.

6-44

GENERAL ASSEMBLER DIRECTIVES

3. Two-hundred-fifty-four named program sections.

For each program section specified or implied, MACR0-11 maintains the
following information:

1. Program section name

2. Contents of the current location counter

3. Maximum location counter value encountered

4. Program section attributes (described in Table 6-4 above).

6.7.1.1 Creating Program Sections - The first statement of a source
program is always an implied .PSECT directive; this causes MACR0-11
to begin assembling source statements at relocatable zero of the
unnamed program section.

The first occurrence of a .PSECT directive with a given name assumes
that the current location counter is set at relocatable zero. The
scope oI ~n1s a1rect1ve tnen extends unt11 a directive declaring a
different program section is specified. Subsequent .PSECT directives
cause assembly to resume where the named section previously ended.
For example:

A:
B:
C:

X:
Y:

D:

.PSECT

.WORD

.WORD

.WORD

.PSECT

.WORD

.WORD

.PSECT

.WORD

0
0
0
ALPHA
0
0

;Declares unnamed relocatable program
;section assembled at relocatable
;addresses 0 through 5.

;Declares relocatable program section
;named ALPHA assembled at relocatable
;addresses 0 through 3.
;Returns to unnamed relocatable
;program section and continues assem
; bly at relocatable address 6.

A given program section may be defined completely upon encountering
its first .PSECT directive. Thereafter, the section can be referenced
by specifying its name only, or by completely respecifying its
attributes. For example, a program section can be declared through
the directive:

.PSECT ALPHA,ABS,OVR

and later referenced through the equivalent directive:

.PSECT ALPHA

which requires no arguments. If arguments are specified, they must be
identical to the ones previously declared for the p-section. If the
arguments differ, the arguments of the first .PSECT- will remain in
effect, and an error code (A) will be generated as a warning.

6-45

GENERAL ASSEMBLER DIRECTIVES

By maintaining separate location counters for each program section,
MACR0-11 allows you to write statements that are not physically
sequential but that can be loaded sequentially following assembly, as
shown in the following example.

.PSECT SECl,REL,RO ;Start a relocatable program section
A: .WORD 0 ;named SE Cl assembled at relocatable
B: .WORD 0 ;addresses 0 through 5.
C: .WORD 0
ST: CLR A ;Assemble code at relocatable

CLR B ;addresses 6 through 21 (8) •
CLR c
.PSECT SECA,ABS ;Start an absolute program section

;named SECA. Assemble code at
.WORD .+2,A ;absolute addresses 0 through 3.
.PSECT SE Cl ;Resume relocatable program section
INC A ; SECl. Assemble code at relocatable
BR ST ;addresses 22 through 27 (8) •

All labels in an absolute program section are absolute; likewise, all
labels in a relocatable section are relocatable. The current location
counter symbol (.) is relocatable or absolute when referenced in a
relocatable or absolute program section, respectively.

Any labels appearing on a line containing a .PSECT (or .ASECT or
.CSECT) directive are assigned the value of the current location
counter before the .PSECT (or other) directive takes effect. Thus, if
the first statement of a program is:

A: • PSECT ALT, REL

the label A is assigned to relocatable address zero of the unnamed
program section.

Since it is not known during assembly where
sections will be loaded, all references to
sections are assembled as references relative to
referenced section.

relocatable
relocatable

the base

program
program
of the

In the following example, references to the symbols X and Y are
translated into references relative to the base of the relocatable
program section named SEN.

.PSECT ENT ,ABS
.=.+1000
A: CLR x ;Assembled as CLR base of

;relocatable section + 10(8).
JMP y ;Assembled as JMP base of

;relocatable section + 6 (8) •
. PSECT SEN,REL
MOV R0,Rl
JMP A ;Assembled as JMP 1000.

Y: HALT
X: .WORD 0

6-46

GENERAL ASSEMBLER DIRECTIVES

NOTE

In the preceding example, using a
constant in conjunction with the current
location counter symbol {.) in the form
.=1000 would result in an error, because
constants are always absolute and are
always associated with the program's
.ASECT (. ABS.). If the form .=1000
were used, a program section
incompatibility would be detected. See
Section 3.6 for a dicussion of the
current location counter.

Thus, MACR0-11 provides the linker or task builder with the necessary
information to resolve the linkages between various program sections.
Such information is not necessary, however, when referencing an
absolute program section, because all instructions in an absolute
program section are associated with an absolute virtual address.

6.7.1.2 Code or Data Sharing - Named relocatable program sections
with the arguments GBL and OVR operate in the same manner as FORTRAN
COMMON, that is, program sections of the same name with the arguments
GBL and OVR from different assemblies are all loaded at the same
location at link time. All other program sections (those with the
argument CON) are concatenated.

A single symbol could name both an internal symbol and a program
section. Considering FORTRAN again, using the same symbolic name is
necessary to accommodate the following statement:

COMMON /X/ A,B,C,X

where the symbol X represents the base of the program section and also
the fourth element of that section.

6.7.1.3 Memory Allocation Considerations - The assembler does not
generate an error when a module ends at an odd location. You can,
therefore, place odd length data at the end of a module. However,
when several modules contain object code contributions to the same
program section having the concatenate attribute (see Table 6-4;
CON/OVR), odd length modules (except the last) may cause succeeding
modules to be linked starting at odd locations, thereby making the
linked program unexecutable. To avoid this problem, separate code and
data from each other and place them in separately named program
sections (see Table 6-4; I/D). The linker or task builder can then
begin each program section on an even address. Refer to the
applicable system manual for further information on memory allocation
of tasks (see Section 0. 3 in the Preface) .

6-47

6.7.2 .ASECT and .CSECT Directives

Formats:

.ASECT

.CSECT

.CSECT symbol

1.ASEcrl
1.CSECTI

where: symbol represents one or more of the arguments in Table n-4.

IAS and RSX-llM assembly-language programs use the .PSECT and .ASECT
directives exclusively, because the .PSECT directive provides all the
capabilities of the .CSECT directive defined for other PDP-11
assemblers. MACR0-11 will accept both .ASECT and .CSECT directives,
but assembles them as though they were .PSECT directives with the
default attributes listed in Table 6-5. Compatibility exists between
other MACR0-11 p ograms and the IAS/RSX-llM Task Builders, because the
Task Builders a so treat the .ASECT and .CSECT directives like .PSECT
directives with he defauit vaiues iisted in Table 6-5.

Table 6-5
Program Section Default Values

Default Value
Attribute

.ASECT .CSECT (named) .CSECT (unnamed)

.,._, _ _..,,..._ 7\0C r"ti:)mO BLK. * l'<CllllC . C"1.UIJ • J..l'""'l.Ll""" .
ACCESS RW RW RW

Type I I I

Scope GBL GBL LCL

Relocation ABS REL REL

Allocation OVR OVR CON

* In RT-11 this program section has no default name.

Note that the statement:

.CSECT JIM

is identical to the statement:

.PSECT JIM,GBL,OVR

because the .CSECT default values GBL and OVR are assumed for the
named program section.

~-48

GENERAL ASSEMBLER DIRECTIVES

6.7.3 .SAVE Directive 1.sAVE I
Format:

.SAVE

.SAVE stores the current program section context on the top to the
program section context stack, while leaving the current program
section context in effect. If the stack is full when .SAVE is issued,
an error (A) occurs. The stack can handle 16 .SAVEs. The program
section context includes the values of the current location counter
and the maximum value assigned to the location counter in the current
program section.

See Figure 6-7 for an example of .SAVE.

6.7.4 .RESTORE Directive I.RESTORE!

Format~

.RESTORE

The .RESTORE directive retrieves the program section from the top of
the program section context stack. If the stack is empty when
.RESTORE is issued, an error (A) occurs. When .RESTORE retrieves a
program section, it restores the current location counter to the value
it had when the program section was saved.

See Figure 6-7 for an example of .RESTORE.

6-49

'" I
Vl
~

.11AIN. MACRO V05.00 Honda\:1 17·-·Jan-83 08:52 Pasf~ t
EXAHPLE OF .SAVEi.RESTORE USAGE

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

000000
000004
000010
000014

016701
010167
066701
010167

000020 000207

000022
000022
000022
000022

000000'
000002'
000004'
000006'

000022 016701 000006'

000001

.SBTTL Exa~Ple of .SAVEi.RESTORE usase

;+
; Hacro DS
; Define local imPure storase
;-

.HACRO DS

.SAVE
NAHErSIZE

NAHE:

;+
; SCANSY

.PSECT IHPURErDr6BL
.BLKW SIZE
.RESTORE
.ENDH

;save the current PSECT
;store the data in the i•Pure PSECT
;set aside the space
;Reenter the current PSECT

; Scan the hash table for valid entries
;-

SCANSY:

Rest

;+
; Local
;-

DS
DS
DS
DS

;+
; SSORT

HOV SYHBASrRl
HOV RlrCURSYH
ADD SYHSIZrR1
HOV RlrSYHTOP

of ro•Jtine.,,

RETURN

data

SYHBAS
CURSYH
SYMSIZ
SYHTOP

;Get base of table
;Initialize Pointer to table
;Point Past the table
;save end address

;Table is scannedr exit

;ease address of s~•bol table
;current s~~bol Pointer durins scan
;size of tabler b~tes
;set to end address of table

; Perfor~ shell sort on sY~bol table Prior to listins
;-

SSOF:T: HOV SYMTOPrRl ;Get end of table

Additional code •••

.END

Figure 6-7 Example of .SAVE and .RESTORE Directives

GENERAL ASSEMBLER DIRECTIVES

6.8 SYMBOL CONTROL DIRECTIVES

The symbol control directives are used to set the type of a given
symbol.

~.8.1 .GLOBL Directive
j .GLOBLI

Format:

.GLOBL syml,sym2, ..• symn

where: syml,
sym2, •.•
symn

represent legal symbolic names. When multiple
symbols are specified, they are separated by any
legal separator (comma, space, and/or tab).

A .GLOBL directive may also embody a label field and/or a comment
field.

The .GLOBL directive is provided to define (and thus provide linkage
to) symbols not otherwise defined as global symbols within a module.
In defining global symbols the directive .GLOBL A,B,C is similar to:

A==:expression
B==:expression
C==:expression

A==expression
or B==expression

C==expression

A·.
or B ••

C::

Because object modules are linked by global symbols, these symbols are
vital to a program. The following paragraph, describing the
processing of a program from assembly to linking, explains the
global's role.

In assembling a source program, MACR0-11 produces a relocatable object
module and a listing file containing the assembly listing and symbol
table. The linker or task builder joins separately assembled object
modules into a single executable image. During linking, object
modules are relocated relative to the base of the module and linked by
global symbols. Because these symbols will be referenced by other
program modules, they must be singled out as global symbols in the
defining modules. As shown above, the .GLOBL directive, global
assignment operator, or global label operator will define a symbol as
global.

All internal symbols appearing within a given program must be defined
at the end of assembly pass 1 or they will be assumed to be default
global references. Refer to Section 6.2.1 for a description of
enabling/disabling of global references.

6-51

GENERAL ASSEMBLER DIRECTlVEb

In the following example, A and B are entry-point symbols. The symbol
A has been explicitly defined as a global symbol by means of the
.GLOBL directive, and the symbol B has been explicitly defined as a
global label by means of the double colon (::). Since the symbol C is
not defined as a label within the current assembly, it is an external
(g 1oba1) r e fer enc e i f • ENA BL GB L i s i n e f f e ct.

A:

X:

Define a subroutine with 2 entry points which calls an
external subroutine

• PSECT
A
@(R5)+,R0
#X,Rl
PC,C

;Declare the unnamed program section .
;Define A as a global symbol •
;Define entry point A.

;Call external subroutine c.
; Exit.

B ••

• GLOBL
MOV
MOV
JSR
RTS
MOV
CLR

RS
(R5)+,Rl
R2

;Define entry point B.

BR x

External symbols can appear in the operand field of an instruction or
MACR0-11 directive as a direct reference, as shown in the examples
below:

CLR
.WORD
CLR

EXT
EXT
@EXT

External symbols may also appear as a term within an expression, as
shown below:

CLR
.WORD
CLR

EXT+A
EXT-2
@EXT+A(Rl)

An undefined external symbol cannot be used in the evaluation of a
direct assignment statement or as an argument in a conditional
assembly directive (see Sections 3.3, 6.9.1 and 6.9.3}.

6.8.2 .WEAK Directive I .WEAK I
Format:

.WEAK syml,sym2, ••• symn

where:

Example:

syml
sym2, •••
symn

.WEAK

represents legal symbolic names. When multiple
symbols are specified, they are separated by any
legal separator (comma, space, and/or tab).

SUB1,SUB2

The .WEAK directive may also embody a label field and/or a comment
field.

6-52

GENERAL ASSEMBLER DIRECTIVES

The .WEAK directive is used to specify symbols that are either defined
externally in another module or defined globally in the current
module. This directive suppresses object library searches for
specified external symbols.

When the .WEAK directive specifies a symbol that is externally
defined, it is considered a global symbol. If the linker finds the
symbol's definition in another module, it uses that definition. If
the linker does not find an external definition, the symbol is given a
value of 0. The linker does not search a library for the global
symbol, but if a module brought in from a library for another reason
contains the symbol's definition, the linker uses that definition.

If a symbol that is defined in the current module is specified by the
.WEAK directive, the symbol is considered globally defined. However,
if the current module is inserted in an object library, the symbol is
not inserted in the library's symbol table. Consequently, the module
is not found when the library is searched at link time to resolve the
symbol.

NOTE

The .WEAK directive is only supported by
the RT-11 V5.0 LIBRARIAN (LIBR) and
LINKER (LINK). Support is not yet
implemented in the RSX-11 taskbuilder
(T KB) o r 1 i bra r i an (LB R) •

6.9 CONDITIONAL ASSEMBLY DIRECTIVES

Conditional assembly directives allow you to include or exclude blocks
of source code during the assembly process, based on the evaluation of
stated condition tests within the body of the program.

6.9.1 Conditional Assembly Block Directives 1.ENDC I
Format:

.IF cond,argument(s) ;Start conditional assembly block.

range ;Range of conditional assembly block •

• ENDC ;End of conditional assembly block.

6-53

GENERAL ASSEMBLER DIRECTIVES

where: cond represents a specified condition that must be
met if the block is to be included in the
assembly. The conditions that may be tested by
the conditional assembly directives are defined
in Table 6-6.

represents any legal separator (comma, space,
and/or tab) •

argument(s) represent(s) the symbolic argument(s) or
expression(s) of the specified conditional test.
These arguments are thus a function of the
condition to be tested (see Table 6-6).

range represents the body of code that is either
included in the assembly, or excluded, depending
upon whether the condition is met •

• ENDC terminates the conditional assembly block. This
directive must be present to end the conditional
assembly block.

A condition test other than those listed in Table 6-6, an illegal
argument, or a null argument specified in an .IF directive causes that
line to be flagged with an error code (A) in the assembly listing.

Table 6-6
Legal Condition Tests for Conditional Assembly Directives

Conditions

Positive Complement Arguments

EQ NE Expression

GT LE Expression

LT GE Expression

DF NDF Symbolic

B NB

argument

Macro-type
argument

6-54

Assemble Block If:

Expression is equal to 0
(or not equal to 0).

Expression is greater
than 0 (or less than or
equal to 0).

Expression is less than 0
(or greater than or equal
to 0) •

Symbol is defined (or not
defined).

Argument is blank (or
non-blank) •

(continued on next page)

GENERAL ASSEMBLER DIRECTIVES

Table 6-6 (Cont.)
Legal Condition Tests for Conditional Assembly Directives

Conditions

Positive

IDN

Complement

DIF

Arguments

Two macro-type
arguments

NOTE

Assemble Block If:

Arguments are identical
(or different) • The • IF
IDN/.IF DIF conditional
directives are not
alphabetically case
sensitive by default.
The user may enable these
directives to be case
sensitive by using the
.ENABL option (.ENABL
LCM) •

A macro-type argument (which is a form
of symbolic argument), as shown below,
is enclosed within angle brackets or
denoted with an up-arrow construction
(as described in Section 793) 9

<A,B,C>
"/124/

An example of a conditional assembly directive follows:

.IF EQ ALPHA+l ;Assemble block if ALPHA+l=0

• ENDC

The two operators & and ! have special meaning within DF and NDF
conditions, in that they are allowed in grouping symbolic arguments.

& Logical AND operator

Logical inclusive OR operator

For example, the conditional assembly statement:

.IF DF SYMl & SYM2

• ENDC

results in the assembly of the conditional block if the symbols SYMl
and SYM2 are both defined.

6-55

GENERAL ASSEMBLER DIRECTIVES

Nested conditional directives take the form:

Conditional Assembly Directive
Conditional Assembly Directive

• ENDC
• ENDC

For example, the following conditional directives:

.IF DF

.IF DF

• ENDC
• ENDC

SYMl
SYM2

can govern whether assembly is to occur. In the example above, if the
outermost condition is unsatisfied, no deeper level of evaluation of
nested conditional statements within the program occurs.

Each conditional assembly block must be terminated with an .ENDC
directive. An .ENDC directive encountered outside a conditional
assembly block is flagged with an error code (0) in the assembly
listing.

MACR0-11 permits a nesting depth of 16(10) conditional assembly
levels. Any statement that attempts to exceed this nesting level
depth is flagged with an error code (O) in the assembly listing.

6.9.2 Subconditional Assembly Block Directives

Formats:

.!FF

.IFT

.IFTF

I. IFF I
Q!!J

1.1FTFI

Subconditional directives may be placed within conditional assembly
blocks to indicate:

1. The assembly of an alternate body of code when the condition
of the block tests false.

2. The assembly of a non-contiguous body of code within the
conditional assembly block, depending upon the result of the
conditional test in entering the block~

3. The unconditional assembly of a body of code within a
conditional assembly block.

6-56

GENERAL ASSEMBLER DIRECTIVES

The subconditional directives are described in detail in Table 6-7.
If a subconditional directive appears outside a conditional assembly
block, an error code (O) is generated in the assembly listing.

Table 6-7
Subconditional Assembly Block Directives

Subconditional
Directive

.IFF

.IFT

.IFTF

Function

If the condition tested upon entering the
conditional assembly block is false, the code
following this directive, and continuing up to the
next occurrence of a subconditional directive or to
the end of the conditional assembly block, is to be
included in the program.

If the condition tested upon entering the
conditional assembly block is true, the code
following this directive, and continuing up to the
next occurrence of a subconditional directive or to
the end of the conditional assembly block, is to be
included in the program.

The code following this directive, and continuing up
to the next occurrence of a subconditional directive
or to the end of the conditional assembly block, is
to be included in the program, regardless of the
result of the condition tested upon entering the
conditional assembly block.

The implied argument of a subconditional directive is the condition
test specified upon entering the conditional assembly block, as
reflected by the initial directive in the conditional coding examples
below • .C...onditional or subconditi~nal dir~ctive~ in nested conditigq~~
~ssembly bJ..Q..dsru:iL~ni::f~i.~].l.XIf?I~1I ·u -~~.~·--,:e;::~~i~u·~.- ·:ro.r __ o~t!:F) .:~.on9Jtiq_n_
in the block is_ not satisfied. Examples 3 and 4 below illustrate
nested dire'c'tfv'es· - 'that .. a.re n;t evaluated because of previous
unsatisfied conditional coding.

EXAMPLE 1: Assume that symbol SYM is defined.

• IF DF SYM

.IFF

.IFT

.IFTF

;Tests TRUE, SYM is defined. Assemble
;the following code.

;Tests FALSE. SYM is defined. Do not
;assemble the following code.

;Tests TRUE. SYM is defined. Assem
;ble the following code.

;Assemble following code uncondition
;ally.

6-57

.IFT

• ENDC

GENERAL ASSEMBLER DIRECTIVES

;Tests TRUE. SYM is defined. Assem
;ble remainder of conditional assem
;bly block .

EXAMPLE 2: Assume that symbol X is defined and that symbol Y is not
defined •

. IF DF X ;Tests TRUE, symbol X is defined .
• IF DF Y ;Tests FALSE, symbol Y is not defined •
• IFF ;Tests TRUE, symbol Y is not defined,

;assemble the following code.

• IFT

. ENDC

.ENDC

;Tests FALSE, symbol Y is not defined .
;Do not assemble the following code •

EXAMPLE 3: Assume that symbol A is defined and that symbol B is not
defined .

• IF DF A ;Tests TRUE. A is defined.
;Assemble the following code.

MOV A,ARl

.IFF

MOV Rl, R0

• IF NDF B

. ENDC

.ENDC

;Tests FALSE. A is defined. Do not
;assemble the following code.

;Nested conditional directive is not
;evaluated •

EXAMPLE 4: Assume that symbol X is not defined and that symbol Y is
defined.

• IF DF X

• IF DF Y

.IFF

.IFT

. ENDC

.ENDC

;Tests FALSE. Symbol X is not defined •
;Do not assemble the following code.
;Nested conditional directive is not
;evaluated.

;Nested subconditional directive is
;not evaluated.

;Nested subconditional directive is
;not evaluated •

6-58

GENERAL ASSEMBLER DIRECTIVES

6.9.3 Immediate Conditional Assembly Directive

Format:

• IIF cond,arg,statement

where: cond

arg

represents one of the legal condition tests defined
for conditional assembly blocks in Table 6-6.

represents any legal separator (comma,
and/or tab) •

space,

represents the argument associated with the
immediate conditional directive; an expression,
symbolic argument, or macro-type argument, as
described in Table 6-6.

represents the separator between the conditional
argument and the statement field. If the preceding
argument is an expression, then a comma must be
used; otherwise, a comma, space and/or tab may be
used.

statement represents the specified statement to be assembled
if the condition is satisfied.

An immediate conditional assembly directive provides a means for
writing a 1-line conditional assembly block. The use of this
directive requires no terminating .ENDC statement and the condition to
be tested is completely expressed within the line containing the
directive.

For example, the immediate conditional statement:

• IIF DF FOO,BEQ ALPHA

generates the code

BEQ ALPHA

if the symbol FOO is defined within the source program.

As with the .IF directive, a condition test other than those listed in
Table 6-6, an illegal argument, or a null argument specified in an
.IIF directive results in an error code (A) in the assembly listing.

'5-59

6.10 FILE CONTROL DIRECTIVES

The MACR0-11 file control directives are used to add file names to
macro library lists and to insert a source file into the source file
being currently used.

6.10.1 .LIBRARY Directive 1.LIBRARY I
Format:

.LIBRARY string

where: string represents a delimited string that is the file
specification of a macro library.

The .LIBRARY directive adds a file name to a macro library list that
is searched. A library list is searched whenever a .MCALL or an
undefined opcode is encountered within a MACR0-11 program. The
libraries that make up the list are searched in the reverse order in
which they were specified to the MACR0-11 assembler.

If any information was omitted from the macro library argument,
default values are assumed. The default file specification for
MACRO-ll/RT-11 is DK:.MLB, and for other systems it is SY:.MLB.

The .LIBRARY directive is used as follows:

• LIBRARY /DBl: [SMITH]USERLIB/
?DK:SYSDEF.MLB?
\CURRENT.MLB\

• LIBRARY
. LIBRARY

MACR0-11 searches all macro libraries if it finds an unknown symbol in
.1-1.-..- ----...::1- S:!-1...J --...::J .a-\...- ,,.a-- -""'11 -""'~;-r'\ h:.~ ha.or'\ 1""'\YOt7ir'\11c1,1 on.:::.h1or1
l...llt: UJ::-1\....VUC' .LJ.C'..LU ClllU l-llC: 0Ul-V-1LL\..o0.J....1. vp\....1.V.LJ .LJUio...l ·"•··"'-"""''' I:"'.&.. '-"'V ""-VV."'-J"""-I '"""""""".....,..1."-""

by . ENABL MCL.

NOTE

If you are using MACR0-11 with an RT-11
operating system, you should be aware of
the following two restrictions. The
device driver for the specified device
that the .LIBRARY file resides on must
already be loaded, either explicitly
with the KMON LOAD command, or
implicitly by reference to the device on
the original MACR0-11 command line. The
second restriction is that there is a
limit on the number of .LIBRARY files
that may be specified. The limit is
twelve minus the number of files
specified in the MACR0-11 command line.
Since there can be a maximum of eight
files on a MACR0-11/RT-ll command line,
there are at least four available slots
for .LIBRARY files.

6-60

GENERAL ASSEMBLER DIRECTIVES

6.10.2 .INCLUDE Directive l.1NCLUDEI
Format:

.INCLUDE string

where: string represents a delimited string that is the file
specification of a macro source file.

The .INCLUDE directive is used to insert a source file within the
source file currently being used. When this directive is encountered,
the current source file is stacked and the source file specified by
the directive is read into memory. When the end of the specified
source file is reached, the original source file is popped from the
stack and assembly resumes at the line following the directive. A
source file can also be inserted within a source file that has already
been specified by the .INCLUDE directive. In this case the original
source file and the first source file specified by the .INCLUDE
directive are stacked and the second specified source file is read
into memory. When the end of the second source file is reached, the
first specified source file is popped from the stack and assembly
resumes at the line following the directive, and when the end of the
first specified source file is reached, the original source file is
popped from the stack and assembly of that file is started again at
the line following the .INCLUDE directive. The maximum nesting level
of source files specified by the .INCLUDE directive is five.

If any information is omitted from the source file argument, default
values are assumed. The default file specification for MACRO-ll/RT-11
is DK:.MAC, and for other systems it is SY:.MAC.

The .INCLUDE directive is used as follows:

• INCLUDE
• INCLUDE
. INCLUDE

/DR3: [l,2]MACROS/
?DK:SYSDEF?
\CURRENT.MAC\

NOTE

; File MACROS. MAC

If you are using MACR0-11 with an RT-11
operating system, the device driver for
the specified device that the .INCLUDE
file resides on must already be loaded,
either explicitly with the KMON LOAD
command, or implicitly by reference to
the device on the origlnal MACR0-11
command line.

6-61

CHAPTER 7

MACRO DIRECTIVES

7.1 DEFINING MACROS

By using macros a programmer can use a single line to insert a
sequence of lines into a source program.

A macro definition is headed by a .MACRO directive (see Section 7.1.1)
followed by the source lines. The source lines may optionally contain
dummy arguments. If such arguments are used, each one is listed in
the .MACRO directive.

A macro call (see Section 7.3) is the statement used by the programmer
to call the macro into the source program. It consists of the macro
name followed by the real arguments needed to replace any dummy
arguments used in the macro.

Macro expansion is the insertion of the macro source lines into the
main program. Included in this insertion is the replacement of the
dummy arguments by the real arguments.

Macro directives provide the means to manipulate the macro expansions.
Only one directive is allowed per source line. Each directive may
have a blank operand field or one or more operands. Legal operands
differ with each directive. The macros and their associated
directives are detailed in this chapter.

7.1.1 .MACRO Directive
(.MACRO I

Format:

[label:]

where: label

name

.MACRO name, dummy argument list

represents an optional statement label.

represents the user-assigned symbolic name of the
macro. This name may be any legal symbol and may
be used as a label elsewhere in the program.

represents any legal separator (comma, space,
and/or tab) .

7-1

where: dummy
argument
list

MACRO DIRECTIVES

represents a number of legal symbols (see Section
3.2.2) that may appear anywhere in the body of the
macro definition, even as a label. These dummy
symbols can be used elsewhere in the program with
no conflict of definition. Multiple dummy
arguments specified in this directive may be
separated by any legal separator. The detection
of a duplicate or an illegal symbol in a dummy
argument list terminates the scan and causes an
error code (A) to be generated.

A comment may follow the dummy argument list in a .MACRO directive, as
shown below:

• MACRO ABS A,B ;Defines macro ABS with two arguments •

The first statement of a macro definition must be a .MACRO directive.

NOTE

Although it is legal for a label to
appear on a .MACRO directive, this
practice is discouraged, especially in
the case of nested macro definitions,
because invalid labels or labels
constructed with the concatenation
character will cause the macro directive
to be ignored. This may result in
improper termination of the macro
definition.

This NOTE also applies to .IRP, .IRPC,
and • REPT.

7.1.2 .ENDM Directive j.ENDMI
Format:

.ENDM

where: name

Example:

.ENDM

.ENDM

[name]

ABS

represents an optional
name of the macro
directive.

argument specifying
being terminated by

;Terminates the current
;macro definition.

;Terminates the current
;macro definition named ABS.

7-2

the
the

MACRO DIRECTIVES

If specified, the macro name in the oENDM statement must match the
name specified in the corresponding .MACRO directive. Otherwise, the
statement is flagged with an error code (A) in the assembly listing.
In either case, the current macro definition is terminated.
Specifying the macro name in the .ENDM statement thus permits MACR0-11
to detect missing .ENDM statements or improperly nested macro
definitions.

The .ENDM directive must not have
attached, it will be ignored.
directive will be ignored.

a label. If a legal label is
If an illegal label is attached, the

The .ENDM directive may be followed by a comment field, as shown
below:

.MACRO
JSR
.WORD
• ENDM

TYPMSG MESSGE
R5,TYPMSG
MESS GE

;Type a message.

;End of TYPMSG macro •

The final statement of every macro definition must be an .ENDM
directive. The .ENDM directive is also used to terminate indefinite
repeat blocks (see Section 7.6) and may be used to terminate repeat
blocks (see Section 7. 7) •

7.1.3 .MEXIT Directive j .MEXITI

Format:

.MEXIT

The .MEXIT directive may be used to terminate a macro expansion before
the end of the macro is encountered. This directive is also legal
within repeat blocks (see Sections 7.6 and 7.7). It is most useful in
nested macros. The .MEXIT directive terminates the current macro as
though an .ENDM directive had been encountered. Using the .MEXIT
directive bypasses the complexities of nested conditional directives
and alternate assembly paths, as shown in the following example:

.MACRO ALTR N,A,B

. IF EQ N

. MEXIT
• ENDC

. ENDM

;Start conditional assembly block •

;Terminate macro expansion •
;End conditional assembly block •

;Normal end of macro .

In an assembly where the dummy symbol N is replaced by zero (see Table
6-6), the .MEXIT directive would assemble the conditional block and
terminate the macro expansion. When macros are nested, a .MEXIT
directive causes an exit to the next higher level of macro expansion.

7-3

MACRO DIRECTIVES

A .MEXIT directive encountered outside a macro definition is flagged
with an error code (O) in the assembly listing.

7.1.4 MACRO Definition Formatting

A form-feed character used within a macro definition causes a page
eject during the assembly of the macro definition. A page eject,
however, is not performed when the macro is expanded.

Conversely, when the .PAGE directive is used in a macro definition, it
is ignored during the assembly of the macro definition, but a page
eject is performed when that macro is expanded.

7.2 CALLING MACROS

Format:

[label:] name

where: label

name

real
arguments

real arguments

represents an optional statement label.

represents the name of the macro, as specified in
the .MACHO directive (see Section 7.1.l).

represent symbolic arguments which replace the
dummy arguments listed in the .MACRO directive.
When multiple arguments occur, they are separated
by any legal separator. Arguments to the macro
call are treated as character strings, their usage
is determined by the macro definition.

A macro definition must
directive (see Section

be established by
7.1.1) before the

means of the .MACRO
macro can be called and

When a macro name is the same as a user label, the appearance of the
symbol in the operator field designates the symbol as a macro call;
the appearance of the symbol in the operand field designates it as a
label, as shown below:

ABS: MOV (R0) ,Rl ;ABS is defined as a label.

BR ABS ;ABS is considered to be a label.

ABS #4,ENT,LAR ;ABS is a macro call.

7.3 ARGUMENTS IN MACRO DEFINITIONS AND MACRO CALLS

Multiple arguments within a macro definition or macro call must be
separated by one of the legal separating characters described in
Section 3 .1.1.

7-4

MACRO DIRECTIVES

Macro definition arguments (dummy) and mocro call arguments (real)
normally maintain a strict positional relationship. That is, the
first real argument in a macro call corresponds with the first dummy
argument in a macro definition. Only the use of keyword arguments in
a macro call can override this correspondence (see Section 7.3.6).

For example, the following macro definition and its associated macro
call contain multiple arguments:

.MACRO REN A,B,C

REN ALPHA,BETA,<Cl,C2>

Arguments which themselves contain separating characters must be
enclosed in paired angle brackets. For example, the macro call:

REN <MOV X,Y>,#44,WEV

causes the entire expression

MOV X,Y

to replace all occurrences of the symbol A in the macro definition.
Real arguments within a macro call are considered to be character
strings and are treated as a single entity during the macro expansion.

The up-arrow (A) construction allows angle brackets to be passed as
part of the argument. This construction, for example, could have been
used in the above macro call, as follows:

REN A/<MOV X,Y>/,#44,WEV

causing the entire character string <MOV X,Y> to be passed as an
argument.

Because of the use of the up-arrow (A) shown above, care must be taken
when passing an argument beginning with a unary operator (AO, AD, AB,
AR, AF •••). These arguments must be enclosed in angle brackets (as
shown below) or MACR0-11 will read the character following the
up-arrow as a delimiter.

The following macro call:

REN #44,WEVA/MOV X,Y/

contains only two arguments (#44 and
up-arrow is a unary operator (see
preceded by an argument separator.

WEVA/MOV
Section

x I Y/) ,
3.1.3)

because the
and it is not

As shown in the examples above, spaces can be used within bracketed
argument constructions to increase the legibility of such expressions.

7-5

7.3.1 Macro Nesting

Macro nesting occurs where the expansion of one macro includes a call
to another. The depth of nesting allowed depends upon the amount of
dynamic memory used by the source program being assembled.

To pass an argument containing legal argument delimiters to nested
macros, enclose the argument in the macro definition within angle
brackets, as shown in the coding sequence below. This extra set of
angle brackets for each level of nesting is required in the macro
definition, not in the macro call.

.MACRO LEVELl DUM1,DUM2
LEVEL2 <DUMl>
LEVEL2 <DUM2>
• ENDM

.MACRO LEVEL2 DUM3
DUM3
ADD #10,40
MOV R0, (Rl)+
• ENDM

A call to the LEVELl macro, as shown below, for example:

LEVELl <MOV X,R0>,<MOV R2,R0>

causes the following macro expansion to occur:

MOV X, R0
ADD #10 ,R0
MOV R0, (Rl) +
MOV R2,R0
ADD #10, R0
MOV R0,(Rl)+

When macro definitions are nested, the inner definition cannot be
,.. , , -...:J
'-Cl.1..1.CU the outer macro
example, in the following coding:

.MACRO LVl A,B

.MACRO LV2 C

.ENDM

.ENDM

been called and expanded. For

the LV2 macro cannot be called and expanded until the LVl macro has
been expanded. Likewise, any macro defined within the LV2 macro
definition cannot be called and expanded until LV2 has also been
expanded.

7-6

MACRO DIRECTIVES

7.3.2 Special Characters in Macro Arguments

If an argument does not contain spaces, tabs, semicolons, or commas it
may include special characters without enclosing them in a bracketed
construction. For example:

.MACRO
MOV
.ENDM

PUSH

PUSH ARG
ARG I - (SP)

X+3(%2)

causes the following code to be generated:

M ov x + 3 (% 2) I - (s p)

7.3.3 Passing Numeric Arguments as Symbols

If the unary operator backslash (\) precedes an argument, the macro
treats that argument as a numeric value in the current program radix.
The ASCII characters representing this value are inserted in the macro
expansion, and their function is defined in the context of the
resulting code, as shown in the following example:

.MACRO
CON

B=B+l
.ENDM
.MACRO

A'B: .WORD
• ENDM

C=0 INC

INC A,B
A,\B

CON A,B
4

x,c

;B is treated as a number in current
;program radix.

;A'B is described in Section 7.3.7.

The above macro call (INC) would thus expand to:

X0: .WORD 4

In this expanded code, the label X0: results from the concatenation
of two real arguments. The single quote (') character in the label
A1 B: concatenates the real arguments X and 0 as they are passed
during the expansion of the macro. This type of argument construction
is described in more detail in Section 7.3.7.

A subsequent call to the same macro would generate the following code:

Xl: .WORD 4

and so on, for later calls. The two macro definitions are necessary
because the symbol associated with dummy argument B (that is, C}
cannot be updated in the CON macro definition, because the character 0
has replaced C in the argument string (INC X, C) • In the CON macro
definition, the number passed is treated as a string argument. (Where
the value of the real argument is 0, only a single 0 character is
passed to the macro expansion.}

7-7

MACRO DIRECTIVES

Passing numeric values in this manner is useful in identifying source
listings. For example, versions of programs created through
conditional assemblies of a single source program can be identified
through such coding as that shown below. Assume, for example, that
the symbol ID in the macro call (IDT) has been equated elsewhere in
the source program to the value 6.

.MACRO

.IDENT

.ENDM

IDT SYM
/V01.'SYM/

IDT \ID

;Assume that the symbol ID takes
;on a unique 2-digit value.
;Where V01 is the update
;version of the program.

The above macro call would then expand to:

.IDENT /V01.6/

where 6 is the numeric value of the symbol ID.

7.3.4 Number of Arguments in Macro Calls

A macro can be defined with or without arguments. If more arguments
appear in the macro call than in the macro definition, an error code
{Q) is generated in the assembly listing. If fewer arguments appear
in the macro call than in the macro definition, missing arguments are
assumed to be null values. The conditional directives .IF B and .IF
NB (see Table 6-6) can be used within the macro to detect missing
arguments. The number of arguments can also be determined using the
.NARG directive (Section 7.4.1).

7.3.5 Creating Local Symbols Automatically

A label is often required in an expanded macro. In the conventional
macro facilities thus far described, a label must be explicitly
specified as an argument with each macro call. The user must be
careful in issuing subsequent calls to the same macro in order to
avoid duplicating labels. This concern can be eliminated through a
feature of MACR0-11 that creates a unique symbol where a label is
required in an expanded macro.

As noted in Section 3.5, MACR0-11 can automatically create local
symbols of the form n$, where n is a decimal integer within the range
30000 through 65535, inclusive. Such local symbols are created by
MACR0-11 in numerical order, as shown below:

30000$
30001$

65534$
65535$

7-8

MACRO DIRECTIVES

This automatic generation is invoked on each call of a macro whose
definition contains a dummy argument preceded by the question mark (?)
character, as shown in the macro definition below:

.MACRO ALPHA, A,?B

TST A
BEQ B
ADD #5,A

B:
. ENDM

;Contains dummy argument B preceded by
;question mark.

A local symbol is created automatically by MACR0-11 only when a real
argument of the macro call is either null or missing, as shown in
Example 1 below. If the real argument is specified in the macro call,
however, MACR0-11 inhibits the generation of a local symbol and normal
argument replacement occurs, as shown in Example 2 below. (Examples 1
and 2 are both expansions of the Alpha macro defined above.)

EXAMPLE

30000$:

EXAMPLE

XYZ:

1: Create a Local

ALPHA
TST
BEQ
ADD

2: Do

ALPHA
TST
BEQ
ADD

Rl
Rl
30000$
#5,Rl

Not Create

R2,XYZ
R2
XYZ
#5,R2

Symbol for the Missing Argument:

;Second argument is missing.

;Local symbol is created.

a Local Symbol:

;Second argument XYZ is specified.

;Normal argument replacement occurs.

Automatically created local symbols are restricted to the first 16(10)
arguments of a macro definition.

Automatically created local symbols resulting from the expansion of a
macro, as described above, do not establish a local symbol block in
their own right.

When a macro has several arguments earmarked for automatic local
symbol generation, substituting a specific label for one such argument
risks assembly errors because MACR0-11 constructs its argument
substitution list at the point of macro invocation. Therefore, the
appearance of a label, the .ENABL LSB directive, or the .PSECT
directive, in the macro expansion will create a new local symbol
block. The new local symbol block could leave local symbol references
in the previous block and their symbol definitions in the new one,
causing error codes in the assembly listing. Furthermore, a later
macro exoansion that creates local svmbols in the new block may
duplicate~ one of the symbols in question,

4

causing an additional error
code (P) in the assembly listing.

7-9

MACRO DIRECTIVES

7.3.6 Keyword Arguments

Format:

name=string

where: name represents the dummy argument,

string represents the real symbolic argument.

The keyword argument may not contain embedded argument separators
unless delimited as described in Section 7.3.

Macros may be defined with, and/or called with, keyword arguments.
When a keyword argument appears in the dummy argument list of a macro
definition, the specified string becomes the default real argument at
macro call. When a keyword argument appears in the real argument list
of a macro call, however, the specified string becomes the real
argument for the dummy argument that matches the specified name,
whether or not the dummy argument was defined with a keyword. If a
match fails, the entire argument specification is treated as the next
positional real argument.

A keyword argument may be specified anywhere in the dummy argument
list of a macro definition and is part of the positional ordering of
argument. A keyword argument may also be specified anywhere in the
real argument list of a macro ca11 out, in this case, does not affect
the positional ordering of the arguments.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17 000000

000000 000000G
000002 000000G
000004 000000G

18
19 000006

000006 000040
000010 000030
000012 000020

20
21 000014

000014 000001
000016 000005
000020 000000G

.LIST ME

Define a macro having keywords in dummy argument
list

.MACRO

.WORD

.WORD
t.rf"lon

• ftVJ.\..L.I

• ENDM

TEST CONTRL=l,BLOCK,ADDRES=TEMP
CONTRL
BLOCK
ADDRES

Now invoke several times

TEST
.WORD
.WORD
.WORD

TEST
.WORD
.WORD
.WORD

TEST
.WORD
.WORD
.WORD

A,B,C
A
B
c

ADDRES=20,BLOCK=30,CONTRL=40
40
30
20

BLOCK=5
1
5
TEMP

7-10

MACRO DIRECTIVES

22
23 000022 TEST CONTRL=5,ADDRES=VARIAB

000022 000005 .WORD 5
000024 000000 .WORD
000026 000000G .WORD VARI AB

24
25 000030 TEST

000030 000001 .WORD 1
000032 000000 .WORD
000034 000000G .WORD TEMP

26
27 000036 TEST ADDRES=JACK!JILL

000036 000001 .WORD 1
000040 000000 .WORD
000042 000000C .WORD JACK!JILL

28
29
30 000001 • END

7.3.7 Concatenation of Macro Arguments

The apostrophe or single quote character (') operates as a legal
delimiting character in macro definitions. A single quote that
precedes and/or follows a dummy argument in a macro definition is
removed, and the substitution of the real argument occurs at that
point. For example, in the following statements:

.MACRO DEF A,B,C,
A'B: .ASCIZ /C/

.BYTE I I A, I I B

.ENDM

when the macro DEF is called through the statement:

DEF X,Y,<MACR0-11>

it is expanded, as follows:

XY: .ASCIZ /MACR0-11/
.BYTE Ix, 'Y

In expanding the first line, the scan for the first argument
terminates upon finding the first apostrophe (') character. Since A
is a dummy argument, the apostrophe (') is removed. The scan then
resumes with B; B is also noted as another dummy argument. The two
real arguments X and Y are then concatenated to form the label XY:.
The third dummy argument is noted in the operand field of the .ASCIZ
directive, causing the real argument MACR0-11 to be substituted in
this field.

7-11

MACRO DIRECTIVES

When evaluating the arguments of the .BYTE directive during expansion
of the second line, the scan begins with the first apostrophe (')
character. Since it is neither preceded nor followed by a dummy
argument, this apostrophe remains in the macro expansion. The scan
then encounters the second apostrophe, which is followed by a dummy
argument and is therefore discarded. The scan of argument A is
terminated upon encountering the comma (,). The third apostrophe is
neither preceded nor followed by o dummy argument and again remains in
the macro expansion. The fourth (and last) apostrophe is followed by
another dummy argument and is likewise discarded. (Four apostrophe
(') characters were necessary in the macro definition to generate two
apostrophe (') characters in the macro expansion.)

7.4 MACRO ATTRIBUTE DIRECTIVES: .NARG, .NCHR, AND .NTYPE

MACR0-11 has three directives that allow the user to determine certain
attributes of macro arguments: .NARG, .NCHR, and .NTYPE. The use of
these directives permits selective modifications of a macro expansion,
depending on the nature of the arguments being passed. These
directives are described below.

7.4.1 .NARG Directive
1.NARG I

Format:

[label:]

where: label

symbol

.NARG symbol

represents an optional statement label.

represents any legal symbol. This symbol is
equated ~u the number of non-keyword arguments in
the macro call currently being expanded. If a
symbol is not specified, the .NARG directive is
flagged with an error code (A) in the assembly
listing.

The .NARG directive is used to determine the number of non-keyword
arguments in the macro call currently being expanded. Hence, the
.NARG directive can appear only within a macro definition; if it
appears elsewhere, an error code (O) is generated in the assembly
1 is ting.

An example of the .NARG directive is shown in Figure 7-1.

7-12

MACRO DIRECTIVES

1 • TITLE NARG
2
3 .ENABL LC
4 .LIST HE
5 ;+
6 ; Exa11Ple of the .NARG directive
7 ;-
a
9 .HACRO NULL NUH

10 .NARG SYH
11 ,IF EQ SYM
12 .MEX IT
13 .IFF
14 .REPT NUM
15 NOP
16 .END!'!
17 .ENDC
18 .ENDM
19
20 000000 NULL

000000 .NARG SYM
, IF EQ SYM
.MEX IT
.IFF
.REPT
NOP
.ENDH
.ENDC

21
22 000000 NULL 6

000001 .NARG SYH
.IF EQ SYH
.HEX IT
.IFF

000006 .REPT 6
NOP
.ENDH

000000 000240 NOP
000002 000240 NOP
000004 000240 NOP
000006 000240 NOP
000010 000240 NOP
000012 000240 NOP

.ENDC
23
24 000001 .END

Figure 7-1 Example of .NARG Directive

7.4.2 .NCHR Directive
j .NCHR I

Format:

[label:]

where: label

symbol

.NCHR symbol,<string>

represents an optional statement label.

represents any legal symbol. This symbol is
equated to the number of characters in the
specified character string. If a symbol is not
specified, the .NCHR directive is flagged with an
error code (A) in the assembly listing.

represents any legal separator
and/or tab) •

7-13

(comma, space,

MACRO DIRECTIVES

<string> represents a string of printable characters. If
the character string contains a legal separator
(comma, space, and/or tab) the whole string must
be enclosed within angle brackets (<>) or
up-arrows (A). If the delimiting characters do
not match or if the ending delimiter cannot be
detected because of a syntactical error in the
character string (thus prematurely terminating its
evaluation), the .NCHR directive is flagged with
an error code (A) in the assembly listing.

The .NCHR directive, which can appear anywhere in a MACR0-11 program,
is used to determine the number of characters in a specified character
string. This directive is useful in calculating the length of macro
arguments.

An example of the .NCHR directive is shown in Figure 7-2.

1 • TITLE NCHR
2
3 .ENABL LC
4 .LIST HE
5 ;+
6 ; Illustrate the .NCHR directive
7 ;-
8
9 .MACRO STRING HES SAG

10 .NCHR iii,iiESSAG
11 .WORD $$$
12 • ASCII /HESSAG/
13 .EVEN
14 .ENDM
15
16 000000 HSG1: STRING <Hello>

000005 .NCHR U$,Hello
000000 000005 .WORD $$$
000002 110 • ASCII /Hello/
000003 145
000004 154
000005 154
000006 157

,EVEN
17
18 000001 .END

Figure 7-2 Example of .NCHR Directive

7.4.3 .NTYPE Directive I .NTYPEI

Format:

[label:]

where: label

symbol

.NTYPE symbol,aexp

represents an optional statement label.

represents any legal symbol. This symbol is
equated to the n-bit addressing mode of the
following expression (.=:1exp). If a symbol is not
specified, the .NTYPE directive is flagged with an
error code (A) in the assembly listing.

7-14

a exp

MACRO DIRECTIVES

represents any legal separator
and/or tab) •

(comma, space,

represents any legal address expression, as used
with an opcode. If no argument is specified, an
error code (A) will appear in the assembly
1 ist ing.

The .NTYPE directive is used to determine the addressing mode of a
specified macro argument. Hence, the .NTYPE directive can appear only
within a macro definition; if it appears elsewhere, it is flagged
with an error code {O) in the assembly listing.

An example of the use of an .NTYPE directive in a macro definition is
shown in Figure 7-3.

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19 000000

000001

000000 010146

20
21 000002

000067

000002 012746
000006'

22
23 000006 000000
24
25 000001

;+

• TITLE NTYPE

.ENABL LC

.LIST HE

; Illustrate the .NTYPE directive
;-

.HACRO SAVE ARG
.NTYPE Ut,ARG

• IF Ell UU70
HOV ARGr-CSP> ;save in resister aode
.IFF
MOV tARGr-CSP> ;save in non-resister •ode

.ENDC

.ENDM

SAVE Rl
.NTYPE ttt,Rl

• IF EG UU70
MOV Rl•-<SP> ;save in resister •ode
.IFF
HOV tRl,-<SP> ;save in non-resister •ode

.ENDC

SAVE TEMP
.NTYPE SU.TEMP

.IF ED fU&70
MDV TEHP,-<SP> ;save in resister •ode
.IFF
MOV tTEMP,-CSP> ;save ir1 non-resister aode

.ENDC

TEMP: .WORD 0

.END

Figure 7-3 Example of .NTYPE Directive in Macro Definition

For additional information concerning addressing modes,
Chapter 5 and Appendix B.2.

7-15

ref er to

MACRO DIRECTIVES

7.5 .ERROR AND .PRINT DIRECTIVES ! .ERROR I
Format:

[1abe1:] .ERROR (expr] ;text

where: label represents an optional statement label.

ex pr

text

represents an optional expression whose value is
output when the .ERROR directive is encountered
during assembly.

denotes the beginning of the text string.

represents the message associated with the .ERROR
directive.

The .ERROR directive is used to output messages to the listing file
during assembly pass 2. A common use of this directive is to alert
the user to a rejected or erroneous macro call or to the existence of
an illegal set ot conditions in a conditional a~~embly. If the
listing file is not specified, the .ERROR messages are output to the
command output device.

Upon encountering an .ERROR directive anywhere in a source program,
MACR0-11 outputs a single line containing:

1. An error code (P)

2. The sequence number of the .ERROR directive statement

3. The value of the current location counter

4. The value of the expression, if one is specified

5. The source line containing the .ERROR directive.

For example, the following directive:

.ERROR A ;Invalid macro argument

causes a line in the following form to be output to the listing file:

p

Seq. Loe.
No. No.

Exp.
Value

s12 005642 00007n

Text

.ERROR A ;Invalid macro argument

7-16

MACRO DIRECTIVES

The .PRINT directive is identical in function to the .ERROR directive,
except that it is not flagged with the error code (P).

7.6 INDEFINITE REPEAT BLOCK DIRECTIVES: .IRP AND .IRPC

An indefinite repeat block is similar to a macro definition with only
one dummy argument. At each expansion of the indefinite repeat range,
this dummy argument is replaced with successive elements of a real
argument list. Since the repeat directive and its associated range
are coded in-line within the source program, this type of macro
definition and expansion does not require calling the macro by name,
as required in the expansion of the conventional macros previously
described in this chapter.

An indefinite repeat o~ock can appear either w1tn1n or outside another
macro definition, indefinite repeat block, or repeat block. The rules
for specifying indefinite repeat block arguments are the same as for
specifying macro arguments (see Section 7.3).

7.6.1 .!RP Directive

Format:

[label:] .IRP sym,<argument list>

(range of indefinite repeat block)

.ENDM

where: label represents an optional statement label.

NOTE

Although it is legal for a label to appear
on a .MACRO directive, this practice is
discouraged, especially in the case of
nested macro definitions, because invalid
labels or labels constructed with the
concatenation character will cause the
macro directive to be ignored. This may
result in improper termination of the
macro definition.

This NOTE also applies to .IRPC and .REPT.

7-17

sym

<argument list>

range

.ENDM

MACRO DIRECTIVES

represents a dummy argument that is replaced with
successive real arguments from within the angle
brackets. If no dummy argument is specified, the
.IRP directive is flagged with an error code (A)
in the assembly listing.

represents any legal separator (comma, space,
and/or tab) •

represents a list of real arguments enclosed
within angle brackets that is to be used in the
expansion of the indefinite repeat range. A real
argument may consist of one or more characters;
multiple arguments must be separated by any legal
separator (comma, space, and/or tab) • If no real
arguments are specified, no action is taken.

represents the block of code to be repeated once
for each occurrence of a real argument in the
list. The range may contain other macro
definitions, repeat ranges and/or the .MEXIT
directive (see Section 7 .1. 3).

indicates the end of the indefinite repeat block
range.

The .IRP directive is used to replace a dummy argument with success1ve
real arguments specified in an argument string. This replacement
process occurs during the expansion of an indefinite repeat block
range.

An example of the use of the .IRP directive is shown in Figure 7-4.

7.6.2 .IRPC Directive
I 'R"" I I·' .-"'I

Format:

[label:] • IRPC sym,<string>

(range of indefinite repeat block)

.ENDM

where: label

sym

represents an optional statement label
in Section 7.~.l).

(see Note

represents a dummy argument that is replaced with
successive real arguments from within the angle
brackets. If no dummy argument is specified, the
.IRPC directive is flaqqed with an error code (A)
in the assembly listing:-

7-18

MACRO DIRECTIVES

represents any legal separator (comma, space,
and/or tab) •

<string> represents a list of characters, enclosed within
angle brackets, to be used in the expansion of the
indefinite repeat range. Although the angle
brackets are required only when the string
contains separating characters, their use is
recommended for legibility.

range represents the block of code to be repeated once
for each occurrence of a character in the list.
The range may contain macro definitions, repeat
ranges and/or the .MEXIT directive (see Section
7.1.3).

.ENDM indicates the end of the indefinite repeat block
range.

The .IRPC directive is available to permit
substitution, rather than argument substitution.
the indefinite repeat range, the dummy argument
successive characters in the specified string.

single character
On each iteration of

is replaced with

An example of the use of the .IRPC directive is shown in Figure 7-4 •

2
3
4

6
7
B
9 000000

10
11

12

000000
000002
000004
000006
000010
000012
000014
000016

062170
074500
072770
072720
072650
072600
072530
072460

• TITLE IRPTST

• LIST HE
H
; Illustrate the .IRP and .IRPC directives
; b~ creatins a Pair of RADSO tables
;-

REGS: .IRP REG.<Pc,sP.RS.R4.R3.R2,Rt.RO>
.RADSO /REG/
.ENDR
.RADSO /PC/
.RADSO /SP/
.RADSO /RS/
.RADSO /R4/
.RADSO /R3/
.RADSO /R2/
.RADSO /R1/
.RADSO /RO/

13 000020 REGS2: .IRPC NUH,<76543210>
.RADSO /R'NUH/ 14

15

16
17

000020 073110
000022 073040
000024 072770
000026 072720
000030 072650
000032 072600
000034 072530
000036 072460

000001

.ENDR

.RADSO /R7/

.RAD50 /R6/

.RADSO /RS/

.RADSO /R4/

.RADSO /R3/

.RADSO /R2/

.RADSO /Rt/
,RADSO /RO/

.END

Figure 7-4 Example of .IRP and .IRPC Directives

7-19

MACRO DIRECTIVES

7.7 REPEAT BLOCK DIRECTIVE: .REPT, .ENDR

t .REPTI

l.l:NoRI
Format:

[label:] .REPT exp

where:

(range of repeat block)

.ENDR

label

exp

range

• ENDM
or

.ENDR

represents an optional statement label (see Note
in Section 7.o.l).

represents any legal expression. This value
controls the number of times the biock of code is
to be assembled within the program. When the
expression value is less than or equal to zero
(0), the repeat block is not assembled. If this
expression is not an absolute value, the .REPT
statement is flagged with an error code (A} in the
assembly listing.

represents the block of code to be repeated. The
repeat block may contain macro definitions,
indefinite·· repeat blocks, other repeat blocks
and/or the .MEXIT directive (see Section 7.1.3).

indicates the end of the repeat block range •

The .REPT directive is used to duplicate a block of code, a certain
number of times, in line with other source code.

7.8 MACRO LIBRARY DIRECTIVE: .MCALL I .MCALL I
Format:

where:

.MCALL argl,arg2, ••. argn

argl,
arg2, •••
argn

represent the symbolic names of the macro
definitions required in the assembly of the source
program. The names must be separated by any legal
separator (comma, space, and/or tab).

7-20

MACRO DIRECTIVES

The .MCALL directive allows you to indicate in advance those system
and/or user-defined macro definitions that are not defined within the
source program but which are required to assemble the program. The
.MCALL directive must appear before the first occurrence of a call to
any externally defined macro:

• Auto-Mcall mode is disabled (the default)

or

• The name of the macro being called is one of MACRO'S permanent
symbols or directives, such as SUB, .ERROR, or .PRINT.

The /ML switch (see Section 8.1.3) under RSX-llM and the /LIBRARY
qualifier (see Section 8.2.2) under IAS and RT-11, used with an input
file specification, indicate to MACR0-11 that the file is a macro
library. Additional macro libraries to be searched may also be
specified in the MACR0-11 program itself, using the MACR0-11 .LIBRARY
directive. See Section 6.10.1 for a description of the .LIBRARY
directive. When a macro call is encountered in the source program,
MACR0-11 first searches the user macro library for the named macro
definitions, and, if necessary, continues the search with the system
macro library.

Any number of such user-supplied macro files may be designated. For
multiple library files, the search for the named macros begins with
the last such file specified. The files are searched in reverse order
until the required macro definitions are found, finishing, if
necessary, with a search of the system macro library.

If any named macro is not found upon completion of the search, the
.MCALL statement is flagged with an error code {U) in the assembly
listing. Furthermore, a statement elsewhere in the source program
that attempts to expand such an undefined macro is flagged with an
error code (O) in the assembly listing.

The command strings to MACR0-11, through which file specifications are
supplied, are described in detail in the applicable system manual (see
Section 0.3 in the Preface).

7.9 MACRO DELETION DIRECTIVE: .MDELETE .MDELETE

Format:

.MDELETE namel,name2, .•. ,namen

where: namel,
name2, ...
namen

represent legal macro names. When multiple
names are specified, they are separated by
any legal separator (comma, space, and/or tab).

The .MDELETE directive deletes the definitions of the specified
macro(s), freeing virtual memory. If references are made to deleted
macros, the referencing line is flagged with an opcode (O) error.

An example of the .MDELETE directive is shown below •

.MDELETE . EXIT,EXIT$S

7-21

CHAPTER 8

IAS/RSX-llM/RSX-llM-PLUS OPERATING PROCEDURES

MACR0-11 assembles one or more ASCII source files containing MACR0-11
statements into a single relocatable binary object file. This binary
object file contains the table of contents listing, the assembly
listing, and the symbol table listing. An optional cross-reference
listing of symbols and macros is available. A sample assembly listing
is provided in Appendix H.

8.1 RSX-llM/RSX-llM-PLUS OPERATING PROCEDURES

On RSX-llM and RSX-llM-PLUS systems, two command languages are
available: the Monitor Console Routine (MCR) and the DIGITAL Command
Language (DCL). When you log onto the system, you are given either
MCR or DCL as the default command language. Your default command
language is contained in your account file.

By typing CTRL/C (AC) from the monitor prompt, you can see the
explicit prompt for the command language you are currently using.

> Ac
MCR>

You can switch from one command language to the other. To switch from
DCL to MCR, type the following command:

DCL> SET TERMINAL MCR

To switch from MCR to DCL, type the following command:

MCR> SET /DCL=TI:

In addition to switching from one command language to the other, you
can type a DCL command from a terminal set to MCR, and an MCR command
from a terminal set to DCL, as shown below:

MCR> DCL crnd-string

DCL> MCR crnd-string

8-1

T A~/R~X-11 M/R~X-11 M-PT.ll~ nPF.RA'l'TN~ PRnrRntTRR~

8.1.1 Initiating MACR0-11 Under RSX-llM/RSX-llM-PLUS

The following sections describe those MACR0-11 operating procedures
that apply to both the Monitor Console Routine and the DIGITAL Command
Language. Any one of the four methods shown below may be employed to
initiate MACR0-11.

8.1.1.1 Method 1 - Direct MACR0-11 Call

MCR Format:

MCR>MAC
MAC>cmd-string

The Monitor Console Routine (MCR) accepts MAC as input, causing
MACR0-11 to be activated. Since a command string is not present with
the MCR line, MACR0-11 then solicits input with the prompting sequence
MAC> and waits for command string input. After the assembly of the
indicated files has been completed, MACR0-11 again solicits command
string input with the MAC> prompting sequence. This process will be
repeated until CTRL/Z ("Z) is entered.

DCL Format:

nrr.'> MAr~n r /n11ril i fi Pr t ~\ l
---~ ···----·- L.I -.J.--·------ ,._I .I

File(s)? filespec[/qualifiers] •••

DCL accepts MACRO as input. In addition, you may include the
qualifiers contained in Table 8-3. Since no file specifications are
included in the DCL command line, MACR0-11 solicits input with the
File(s) prompt. You can then enter the name of one or more source
files plus any of the qualifiers listed in
RETURN, MACR0-11 performs the assembly.

8.1.1.2 Method 2 - Single Assembly

MCR Format:

MCR>MAC cmd-string

DCL Format:

DCL> MACRO cmd-string

ivhen you press

In method 2, no prompting from MACR0-11 occurs, since the command
string input is included in the command line. MACR0-11 then assembles
the source files in the command string and exits when finished.

8.1.1.3 Method 3 - Install, Run Immediately, and Remove On Exit

Format:

>RUN $MAC
MAC>cmd-string

8-2

IAS/RSX-llM/RSX-llM-PLUS OPERATING PROCEDURES

This method is used when the MACR0-11 assembler is not permanently
installed in the system. On RSX-llM, the system must be generated for
this type of call support. MAC is run from the system directory.
MACR0-11 solicits command string input. The command string must have
the MCR format even if run from a DCL terminal. When MACR0-11 exits,
it is automatically removed from the system.

If the system has the "flying install" feature, the RUN $ calling
format is not needed.

8.1.1.4 Method 4 - Using the Indirect Command Processor

MCR Formats:

MCR>MAC
MAC>@filespec

or

MCR>MAC @f ilespec

or

MAC>RUN $MAC[/UIC=[g,m]]
MAC>@f ilespec

These forms use the indirect command processor, which effectively
accomplishes the substitution of "@filespec" for the "cmd-string"
input employed in methods 1 through 3. In these formats, the indirect
command processor is passing commands to the assembler. The file
specified as "@f ilespec" contains MACR0-11 command strings. After
this file is opened, command lines are read from the file until the
end-of-file is detected. Three nested levels of indirect files are
permitted in MACR0-11.

MCR and DCL Format:

DCL> @f ilespec

These forms use the indirect command processor to pass commands to the
command language. This is the only form you can use with DCL. The
indirect command file "@f ilespec" must contain one of the command
lines to initiate MACR0-11 as listed in methods 1 through 3.

NOTE

MACR0-11 can be terminated by entering a
CTRL/Z (AZ) at any time a request for
rtnmm.:in~ Co+-r;nrt inn11+- ic:- ,.....,..,..oc-o""'+-
""""u1u1\.A1.1'-.A t..:J\....L.L11'j .Lllt''-''- .J..J f:'.l..~a:::n;;:;11\-e

8.1.2 Default File Specifications

MACR0-11 accepts as input or creates as output up to six types of
files. When using the MACR0-11 assembler, you should keep in mind the
default device, directory, name, and types listed in Table 8-1. Table
8-1 lists the default values for each file specification.

8-3

File

Object
File

Listing
File

Source
Files

user
Macro
Library

System
Mocro
Library

IAS/RSX-llM/RSX-llM-PLUS OPERATING PROCEDURES

Table 8-1
File Specification Default Values

Device

Your default
volume

Device used
for object
file

Your default
volume

Your default
volume

Library
device

Default Values
Directory

Current

Directory
used in
Object file

Current;
used for
source 1
or device of
last source
file speci
fied

Filename

None

None

None

Current, if None
macro file
is specified
first; if not,
directory of
last source
file

(1,1] RSXMAC

Type

.OBJ

.LST

.MAC

.MLB

.SML

Indirect
Command
File

Your default
volume

Current None .CMD

8.1.3 MCR Command String Format

In response to the MAC> prompting sequence printed by MACR0-11, type
the output and input file specifications in the form shown below:

MAC>object,listing=srcl,src2, ••• ,srcn

where: object

listing

srcl,
src2, •••
srcn

represents the binary object (output) file.

represents the assembly listing (output) file
containing the table of contents, the assembly
listing, and the symbol table.

separates output file specifications from input
file specifications.

represent the ASCII source (input) files
containing the MACR0-11 source program or the
user-supplied macro library files to be assembled.

8-4

IAS/RSX-llM/RSX-llM-PLUS OPERATING PROCEDURES

Only two output file specifications in the command string will be
recognized by MACR0-11; any more than two such files will be ignored.
No limit is set on the number of source input files. If the entire
command string is longer than 80 characters and less than or equal to
132 characters, a hyphen can be placed at the end of the first line as
a continuation character.

A null specification in either of the output file specification fields
signifies that the associated output file is not desired. A null
specification in the input file field, however, is an error condition,
resulting in the error message "MAC -- Illegal filename" on the
command output device (see Section 8.5). Note that the absence of
both the device name (dev:) and the name of the file (filename.type)
from a file specification is the equivalent of a null specification.

NOTE

When no listing file is specified, any
errors encountered in the source program
are printed on the terminal from which
MACR0-11 was initiated. When the /NL
switch is used in the listing file
specification without an argument, the
errors and symbol table are output to
the tile specified.

Each file specification contains the following information:

filespec /switch:value •••

where: filespec

/switch

is the standard file specification.

represents an ASCII name identifying a switch
option. This switch option may be specified in
three forms, as shown below, depending on the
function desired:

/switch

/noswitch

/-switch

Invokes the specified switch
action.
Negates the specified switch
action.
Also negates the specified
switch action.

In addition, the switch identifier may be
accompanied by any number of the following values:
ASCII character strings, octal numbers, or decimal
numbers. The default assumption for a numeric
value is octal. Decimal values must be followed
by a decimal po int (.) •

Any numeric value preceded by a number sign (i) is
regarded as an explicit octal declaration; this
option is provided for documentation purposes and
ready identification of octal values.

Also, any numeric value can be preceded by a plus
s i g n (+) or a minus (-) s i g n • The po s i t iv e
specification is the default assumption. If an

8-5

IAS/RSX-llM/RSX-llM-PLUS OPERATING PROCEDURES

explicit octal declaration is specified (#), the
sign indicator, if included, must precede the
number sign.

All switch values must be preceded by a colon (:).

The switch specifications are interpreted in the
context of the program to which they apply. The
switch options applicable to MACR0-11 are
described in Table 8-2 below.

A syntax error detected in the command string causes MACR0-11 to
output the following error message to the command output device:

MAC Command syntax error

followed by a copy of the entire command string.

At assembly time, you may want to override certain MACR0-11 directives
appearing in the source program or to provide MACR0-11 with
information establishing how certain files are to be handled during
assembly. You can do so through one or more switches, which may be
selectively invoked as additional parameters in each file
specification. The available switches for use in MACR0-11 file
specifications under RSX-llM/RSX-llM-PLUS are listed in Table 8-2.

Switch

/LI:arg
/NL:arg

/EN:arg
/DS:arg

/ML (see Note)

Table 8-2
MACR0-11 File Specification Switches

Function

Listing control switches; these options accept
ASCII switch values (arg) which are equivalent
in function and name to and override the
arguments of the .LIST and .NLIST directives
specified in the source program (see Section
6.1.1). This switch overrides the arguments and
remains in effect for the entire assembly
process.

Function control switches; these options accept
ASCII switch values (arg) which are equivalent
in function and name to and override the
arguments of the .ENABL and .DSABL directives
specified in the source program (see Section
6.2.1). This switch overrides the arguments and
remains in effect for the entire assembly
process.

The /ML switch, which takes no accompanying
switch values, indicates to MACR0-11 that an
input file is a macro library file. As noted in
Section 7.8, any macro that is defined
externally must be identified in the .MCALL
directive before it can be retrieved from a
macro library file and assembled with the user
program. In locating macro definitions,
MACR0-11 initiates a fixed search algorithm,

(continued on next page)

8-6

IAS/RSX-llM/RSX-llM-PLUS OPERATING PROCEDURES

Switch

/ML (Cont.)

/SP

/NOSP

/CR: [arg]

Table 8-2 (Cont.)
MACR0-11 File Specification Switches

Function

beginning with the last user macro file
specified, continuing in reverse order with each
such file specified, and terminating, if
necessary, with a search of the system macro
library file. If a required macro definition is
not found upon completion of the search, an
error code (U) results in the assembly listing.
This means that a user macro library file must
be specified in the command line or by using the
MACR0-11 .LIBRARY directive (see Section 6.10.1)
prior to the source file(s) that use macros
defined in the library file.

MACR0-11 does not pre-scan the command line for
macro libraries; when a new source file is
needed, it parses the next input file
specification. If that file specification
contains the /ML switch, it is appended to the
front of the library file list. As a result, a
user macro library file must be specified in the
command line prior to the source files which
require it,
definitions.

in order to resolve

Spool listing output (default value).

Do not spool output.

macro

Produce a cross-reference listing (see Section
8. 3) •

Switches for the object file are limited to /EN and /DS; when
specified, they apply throughout the entire command string. Switch
options for the listing file are limited to /LI, /NL, /SP, /CR, and
/NOSP. Switches for input files are limited to /ML, /EN, and /DS;
the option /ML applies only to the file immediately preceding the
option so specified, whereas the /EN and /DS options, as noted above,
are also applicable to subsequent files in the command string.

Multiple occurrences of the same switch following a file specification
must be avoided, because the accompanying values of a subsequent like
switch specification override any previously-specified values. If two
such switch values are desired, they can be specified in the form
shown below:

/LI:SRC:MEB

8-7

IAS/RSX-llM/RSX-llM-PLUS OPERATING PROCEDURES

8.1.4 DCL Operating Procedures

RSX-llM/RSX-llM-PLUS indicates its readiness to accept a command by
prompting with the DCL prompt. In response to the prompt, enter the
command string in one of the formats shown below:

>MACRO[/qualifiers]
FILE? filespec(/qualifier(s]] (,filespec(/qualifier(s]] •••]

or

[rx:L]>MACRO[/qualifiers] filespec[/qualifier[s]] [,filespec[/qualifier[s]]~ ••]

where: qualifiers affect either the entire command string
(command qualifiers) or the filespec
(parameter qualifiers). See Table 8-3 for a
description of the command qualifiers and
Table 8-4 for a description of the parameter
qualifiers.

f ilespec is the standard file specification shown in
Section 8.4.

You use the comma (,) to separate file specifications.
concatenates all the files and then performs the assembly.

MACR0-11

Qualifier

/[NO]CROSS REFERENCE

/DSABLE:arg
/ENABLE:arg
/DSABLE:(arg,arg •••)
/ENABLE:(arg,arg •••)

Argument

ABSOLUTE

Table 8-3
DCL Command Qualifiers

Function

Suppresses or generates a
cross-reference listing (see Section
8.3). When the cross-reference is
generated, a listing file is also
generated, whether or not the /LIST
qualifier is present in the command
string.

/NOCROSS_REFERENCE is the default.

Overrides the .DSABLE or .ENABLE
assembler directives in the source
program. When more than one argument
is entered, arguments must be enclosed
in parentheses and separated by
commas.

You can specify any of the following
arguments with the /DSABLE or /ENABLE
qualifier.

Enabling this function causes all
relative addresses {address mode
67) to be assembled as absolute
addresses (address mode 37).

(continued on next page)

8-8

IAS/RSX-llM/RSX-llM-PLUS OPERATING PROCEDURES

Qualifier

Table 8-3 (Cont.)
DCL Command Qualifiers

Function

ABSOLUTE (Cont.) By default, the ABSOLUTE argument
is disabled.

AUTO MCALL

BINARY

CARD FORMAT

CASE MATCH

GLOBAL

Enabling the AUTO MCALL argument
causes MACR0-11 -to search all
known macro libraries for a macro
definition that matches any
undefined symbols appearing in
the opcode field of a MACR0-11
statement.

By default, this option is
disabled and if MACR0-11 finds an
unknown symbol in the opcode
field, it either declares a (U)
undefined symbol error, or
declares the symbol as an
external symbol, depending upon
the GLOBAL argument described
below.

Enabling this function produces
absolute binary output in
FILES-11 format.

By default, the BINARY argument
is disabled.

This function, when enabled,
treats columns 73 through the end
of the line as comments.

By default, the CARD FORMAT
argument is disabled.

Enabling the CASE MATCH argument
causes the MACR0-11 conditional
assembly directives .IF IDN/.IF
DIF to be alphabetically case
sensitive.

By default these directives are
not case sensitive.

Disabling this function causes
MACR0-11 to flag all undefined
symbol references with an error
code (U) on the assembly listing.

By default, the GLOBAL argument
is enabled and MACR0-11 treats
all symbols that are undefined at
the end of assembly pass 1 as
default global references.

(continued on next page)

8-9

IAS/RSX-llM/RSX-llM-PLUS OPERATING PROCEDURES

Qualifier

LOCAL

LOWER CASE

REGISTER
DEFINITIONS

TRUNCATION

Table 8-3 (Cont.)
DCL Command Qualifiers

Function

Enabling the LOCAL argument
causes the assembler to treat all
symbols as local symbols. When
enabled, all global symbols are
flagged with the U (undefined
symbol) error message.

By default, the LOCAL argument is
disabled.

Enabling this
MACR0-11 to
ASCII input.

function causes
accept lower-case

Disabling this function causes
MACR0-11 to convert lower-case
ASCII input to upper-case.

By default, the
argument is enabled.

LOWER CASE

Disabling this function causes
MACR0-11 to ignore the normal
register definitions.

By default, register definitions
are enabled.

When this function is enabled,
MACR0-11 performs floating-point
truncation.

When this function is disabled,
MACR0-11 performs floating-point
rounding.

The TRUNCATION argument is
disabled by default.

(continued on next page)

8-10

IAS/RSX-llM/RSX-llM-PLUS OPERATING PROCEDURES

Qualifier

/[NO]LIST[:filespec]

/[NO]OBJECT[:filespec]

/[NO]SHOW:arg
/[NO]SHOW: (arg,arg .•.)

Argument

BINARY

CALLS

Table 8-3 (Cont.)
DCL Command Qualifiers

Function

Specifies whether or not the assembler
should create and print a listing
file. You can include /LIST as a
qualifier for either a command or a
file specification. If /LIST
qualifies the command, the listing
file is both entered in your directory
and printed on the line printer. If
you do not include a file
specification, the listing file has a
.LST file type and is named after the
last file named in the MACRO command.
The listing file cannot be a library
file. (The LINK command and all other
language commands use the name of the
~~-~~ ~~l- ----~ ~- ~h- ~-----~ -~ ~h-L .1 l.;:, l- L .1..1 t:: Ualllt::U .11! l-l!t:: ~VllllllOlJU a;:, l-llt::

default file name.) If /LIST qualifies
a file specification, the file is
entered in your directory but is not
printed on the line printer. The
listing file is named after the file
it qualifies.

The default is /NOLIST.

/NOLIST is the default qualifier.

Indicates whether or not the assembler
should create an object module. If
you do not include a file
specification in the command line, the
assembler creates an object file with
the same file name as the source file
and an .OBJ extension.

/OBJECT is the default qualifier.

Overrides the .LIST and
assembler directives that
included in the source file.
use any of the following
with the /SHOW qualifier.

.NLIST
may be

You can
arguments

Controls the listing of macro
expansion binary code.

Controls listing of macro calls
and repeat range expansions.

(continued on next page)

8-11

Table 8-3 {Cont.)
DCL Command Qualifiers

Qualifier

COMMENTS

CONDITIONALS

CONTENTS

COUNTER

DEFINITIONS

EXPANSIONS

EXTENSIONS

LISTING DIRECTIVES

OBJECT BINARY

SEQUENCE NUMBERS

SOURCE

SYMBOLS

I [NO]WIDE

Function

Controls listing of comments.

Controls listing of unsatisfied
conditional coding.

Controls listing of the table of
contents during assembly pass 1.

Controls listing of the current
location counter field.

Controls listing of macro
definitions and repeat range
expansions.

Controls listing of macro
expansions.

Controls listing of binary
""""'f"""\~r\~, """'t""" '- .n. .t;'Vll.J.._, ..£.VJ.It.,.) e

Controls listing of listing
control directives without
arguments, that is, directives
that alter the listing level
counter.

Controls listing of the generated
binary code.

Controls listing of source line
sequence numbers.

Controls listing of source lines.

Controls listing of the symbol
table resulting from the
assembly.

When set to WIDE, the listing is
printed in 132 column format. When
set to /NOWIDE, the listing is printed
in 80 column format. /NOWIDE is the
default qualifier.

8-12

Qualifier

/LIBRARY

IAS/RSX-llM/RSX-llM-PLUS OPERATING PROCEDURES

Table 8-4
DCL Parameter Qualifiers

Function

Specifies that an input file is a macro library file.

The assembler processes the files listed in the
command line in reverse order. Therefore, a library
file cannot be the last file in the command line.

8.1.5 MACR0-11 Command String Examples

1. The following command strings assemble the source file
FILNAM.MAC into a relocatable object module named FILNAM.OBJ.

MCR> MAC FILNAM=FILNAM

DCL> M/1.CRO
FILE? FILNAM

DCL> MACRO FILNAM

2. The following command strings assemble the source file
FILNAM.MAC and produce an object file with the name
TESTA.OBJ.

MCR> MAC TESTA=FILNAM

DCL> MACRO/OBJECT:TESTA FILNAM

3. The following command strings concatenate and assemble the
source files named FILNAM.MLB, TESTA.MAC, SPAN3.MAC, and
SHELL.MAC and create an object file named SHELL.OBJ.

MCR> MAC SHELL=FILNAM/ML,TESTA,SPAN3,SHELL

DCL> MACRO FILNAM/LIBRARY,TESTA,SPAN3,SHELL

4. The following command strings produce an object module and an
assembly listing. Any .LIST TTM or .LIST COM directives in
the source file are ignored. The listing produced by this
command has no comments included and is printed in wide
format.

MCR> MAC FILNAM,FILNAM/NL:TTM:COM=FILNAM

DCL> MACRO/LIST/NOSHOW:COMMENTS/WIDE FILNAM

8-13

TAS/RSX-llM/RSX-llM-PI.US OPF.'RA'J'TNG PROCF.DURES

8.2 IAS MACR0-11 OPERATING PROCEDURES

The following sections describe those MACR0-11 operating procedures
that apply exclusively to the IAS system.

8.2.1 Initiating MACR0-11 Under IAS

The MACRO command, used under !AS, causes MACR0-11 to assemble one or
more ASCII source files containing MACR0-11 statements into a
relocatable binary object file. The assembler will also produce an
assembly listing, followed by a symbol table listing. A
cross-reference listing can also be produced by means of the
/CROSSREFERENCE qualifier (see 8.3, below).

You can input a MACR0-11 program either directly from the terminal
(interactive mode) or from a batch file (batch mode). For interactive
mode use the MACRO command which can be issued whenever the IAS
Program Development System (PDS) is at command level, a condition
signified by the appearance of the prompt:

PDS>

For batch mode use the $MACRO command.

When the assembly is completed, MhCR0-11 terminates operations and
returns control to PDS. (Refer to the !AS User's Guide for further
information about interactive and batch mocre-operatio~

8.2.2 IAS Command String

Formats:

Interactive Mode

input
PDS> MACRO qualifiers filespec /LIBRARY+ •..

or

PDS> MACRO qualifiers

input
FILES? filespec /LIBRARY+ •••

Batch Mode

$MACRO qualifiers

where:

input
f ilespec

input
filespec /LIBRARY+ ...

is the specification of an input file
(see Section 8.4) that contains MACR0-11
source program code. When the program
consists of multiple files, a plus sign
(+) must be used to separate each file
specification from the next. The "wild
card" form of a file specification is
not allowed.

8-14

_ IAS/RSX-llM/RSX-llM-PLUS OPERATING PROCEDURES

/LIBRARY

qualifiers

output
/OBJECT[:filespec]

/NOOBJECT

output
/LIST [: f ilespec]

/NOLI ST

specifies that an input file is a macro
library file. Library files hold the
definitions of externally defined
macros. As noted in Section 7.8, an
externally defined macro must be
identified in an .MCALL directive before
it can be retrieved and assembled with
the user program. When MACR0-11
encounters an .MCALL directive, a search
begins for the definitions of the macros
listed.

The search order is important because a
macro might have two different
definitions in library files LIBl and
LIB2. For example, if you need the
definition in LIBl, then you must place
LIBl after LIB2 in the command line
because MACR0-11 searches the last file
specified in the command line first,
then moves backwards through the files
given until all have been searched.

If a macro's definition is not found in
any of the files named by the user,
MACR0-11 automatically searches the
system macro library; if the definition
is still not found, an error code (U) is
generated in the assembly listing.

specifies one or more of the following:

produces an object file as
specified by filespec (see Section
8 • 4) • The def au 1 t i s a f i 1 e with
the same filename as the last named
source file and an .OBJ extension.
/OBJECT is always the default
condition.

does not produce an object file.

produces an assembly listing file
according to filespec (see Section
8.4). If filespec is not
specified, the listing is printed
on the line printer. The default
in interactive mode is /NOLIST and
in batch mode is /LIST.

does not produce a listing file.
The default in interactive mode is
/NOLIST and in batch mode is /LIST.

NOTE

When no listing file is specified, any
errors encountered in t~e source program
are displayed at the terminal from which
MACR0-11 was initiated.

8-15

IAS/RSX-llM/RSX-llM-PLUS

/CROSSREFERENCE[:argl ••. arg4]

produces a cross-reference listing.
Argl through arg4 are described in
Section 8.3. This qualifier may be
abbreviated to /C.

A MACR0-11 command string can be specified using any one of the three
formats shown above for the interactive and batch modes. In
interactive mode, if the input file specification (filespec) does not
begin on the same line as the MACRO command and its qualifiers, PDS
prints the following prompting message:

FILES?

then waits for the user to specify the input file(s).

In batch mode, the $MACRO command and its arguments must appear on the
same line unless the PDS line continuation symbol (-) is used.

8.2.3 !AS Indirect Command Files

Format:

@f llespec;

where:

@ specifies that the name that follows is
indirect file.

an

f ilespec is the file specification (see Section 8.4) of a
file that contains a command string. The default
extension for the file name is .CMD.

The indirect command file facility of PDS can be used with MACR0-11
command strings. This is accomplished by creating an ASCII file that
contains the desired command strings (or portions thereof) in the
forms shown in Section 8.2.2. When an indirect command file reference
is used in a MACR0-11 command string, the contents of the specified
file are taken as all or part of the command string.

An indirect command file reference must always be the rightmost entry
in the command (see Section 8.2.4 for examples).

8.2.4 !AS Command String Examples

The following examples show typical PDS MACR0-11 command strings.

1. PDS> MACRO /NOLIST
FILES? A+BOOT.MAC;3

In this example, the source files A.MAC and BOOT.MAC;3 will
be assembled to produce an object file called BOOT.OBJ. No
listing will be produced.

8-16

IAS/RSX-llM/RSX-llM-PLUS OPERATING PROCEDURES

2. Where the indirect command file TEST.CMD contains the command
string:

MACRO/OBJECT:MYFILE A+B

the command:

PDS>@TEST

causes MACR0-11 to assemble the two files A.MAC and B.MAC
into an object file called MYFILE.OBJ.

3. Where the indirect command file IND02.CMD contains the
command string segment:

ATEST/LIBRARY+BTEST+SRTl.021

the command:

PDS>MACRO/LIST:DKl:TST @IND02

causes MACR0-11 to assemble the files BTEST.MAC and SRTl.021
using the macro library file ATEST.MAC to produce an object
file named SRTl.OBJ. A listing file named TST.LST is placed
on disk unit 1.

4. $MACRO/LIST:DK0:MICR/NOOBJECT
LIB1/LIBRARY+MICR.MAC;002

In this example, the library file is assembled with the file
MICR.MAC;002. The program listing file named MICR.LST is
placed on disk unit 0.

8.3 CROSS-REFERENCE PROCESSOR {CREF)

The CREF processor is used to produce a listing that includes
cross-references to symbols that appear in the source program. The
cross-reference listing is appended to the assembly listing. Such
cross-references are helpful in debugging and in reading long
programs.

A cross-reference listing can include up to four sections:

1. User-defined symbols

2. Macro symbols

3. Register symbols

4. Permanent symbols

8-17

IAS/RSX-llM/RSX-llM-FLUS OPERATING PROCEDURES

To generate a cross-reference listing, specify the /CR switch in the
MACR0-11 command string. Optional arguments can also be specified.
The form of the switch is:

/CR

{

SYM} : MAC
REG
PST
SEC
ERR

where:

SYM specifies user-defined symbols (default)

MAC specifies macro symbols (default)

REG specifies register symbols

PST specifies permanent symbols

SEC specifies program sections

ERR specifies error lines (default)

If you wish to generate listings for user-defined and macro symbols
only, use /CR. No argument is necessary.

However, if an argument is specified, only
cross-reference listing is generated. For example:

that type of

/CR :SYM

produces a cross-reference listing of user-defined symbols only. No
listing of macro symbols is generated. Thus, to produce all six types
of cross-reference listings, you must specify all six arguments (the
order in which they are specified is not significant). Use a colon to
separate arguments. For example:

/CR:REG:SYM:MAC:PST:SEC:ERR

The CREF processor (CRF) is more fully described in the Utilities
Reference Manual supplied with your system.

Figure 8-1 illustrates a complete cross-reference listing. In the
listing, references are made in the form page-line. To make the
listing more informative the CREF processor uses the following signs:

*

Meaning

somewhere in the source program the symbol listed is
defined by a direct assignment statement.

destructive reference; at the line referenced by the
processor the value of the symbol is changed (its
previous contents destroyed).

at the line referenced by the processor the symbol
listed is defined by a direct assignment statement, a
colon sign (:) or a double colon sign (: :) .

8-18

IAS/RSX-llM/RSX-llM-PLUS OPERATING PROCEDURES

R50UNP MACRO V05.00 Saturday 08-Jan-83 11:47 Pase S-1
Cross reference table <CREF VOS.OO>

RSOUNP
SYMBOL

2-16#
2-17 2-25

RSOUNP MACRO V05.00 Saturday 08-Jan-83 11:47 Pase R-1
Cross reference table <CREF V05.00)

RO 2-23* 2-32* 2-33* 2-43 2-45 2-48*
2-50* 2-51* 2-52

R1 2-18* 2-23
R2 2-52*
R3 2-19* 2-21* 2-33
R4 2-16 2-17* 2-18 2-25 2-27*
SP 2-16* 2-27

RSOUNP MACRO V05.00 Saturday 08-Jan-83 11:47 Pase C-1
Cross reference table <CREF V05.00>

0-0
• ABS. 0-0
PURE I 2-14

Figure 8-1 Sample CREF Listing

2-49*

8.4 IAS/RSX-llM/RSX-llM-PLUS FILE SPECIFICATION

Format:

dev: [g,m]name.ext;ver

where:

dev:

[g ,m]

is the name of the device where the desired file
resides. A device name consists of two characters
followed by a 1- or 2-digit device unit number (octal)
and a colon (for example, DPl:, DK0:, DT3:). The
default device is specified in Table 8-1. The default
device under IAS is established initially by the system
manager for each user and can be changed through the
SET command.

is the User File Directory (UFD) code. This code
consists of a group number (octal), a comma (,) and an
owner (member) number (octal) all enclosed in brackets
([]). An example of a UFD code is: [200,30].

8-19

name

.ext

;ver

IAS/RSX-llM/kSX-llM-PLU~ UPEHATlNG PROCEDURES

The default UFD is equivalent to the User
Identification Code (UIC) given at log-in time. Under
IAS, the UFD can be changed through the SET DEFAULT
command.

is the filename and consists of
alphanumeric characters. There
filename.

one through nine
is no default for a

is a 1- to 3-alphanumeric character filename extension
or type that is preceded by a period (.). An extension
is normally used to identify the nature of the file.
Default values depend on the context of the file
specification and are as follows:

.CMD

.LST

.MAC

.OBJ

.CRF

Indirect command (input) file
A listing (print format} file
MACR0-11 source module (input file)
MACR0-11 object module (output file}
Intermediate CREF input file.created by
MACR0-11.

is an octal number between 1 and 77777 that is used to
differentiate between versions of the same file. This
number is prefixed by a semicolon (;}.

For input files, the default value is the highest
version number of the file that exists.

For output files, the default value is the highest
version number of the file that exists increased by 1.
If no version number exists, the value 1 is used.

This is the general form for a file specification in
IAS/RSX-llM/RSX-llM-PLUS systems. Detailed information is provided in
the applicable system user's guide or operating procedures manual (see
Section 0.3 in the Preface}.

8.5 MACR0-11 ERROR MESSAGES UNDER IAS/RSX-llM/RSX-llM-PLUS

MACR0-11 outputs an error message to the command output device when
one of the error conditions described below is detected. MACR0-11
prints below the error message the command line that caused the error.
If the error is a .INCLUDE or a .LIBRARY directive file error,
MACR0-11 prints below the error message both the source line and the
command line that caused the error.

MAC -- Error message
MACR0-11 source line
MACR0-11 command line

These error messages reflect operational problems and should not be
confused with the error codes (see Appendix D} produced by MACR0-11
during assembly.

8-20

IAS/RSX-llM/RSX-llM-PLUS OPERATING PROCEDURES

All the error messages listed below, with the exception of the
"MAC Command I/O error" message, result in the termination of the
current assembly; MACR0-11 then attempts to restart by reading
another command line. In the case of a command I/O error, however,
MACR0-11 exits, since it is unable to obtain additional command line
input.

MAC Command file/open failure
Either the file from which MACR0-11 is reading a command could
not be opened initially or between assemblies; or the indirect
command file specified as "@filename" in the MACR0-11 command
line could not be opened. See "OPEN FAILURE ON INPUT FILE".

MAC -- Command I/O error
An error was returned by the file system during MACRO-ll's
attempt to read a command line. This is an unconditionally fatal
error, causing MACR0-11 to exit. No MACR0-11 restart is
attempted when this message appears.

MAC -- Command syntax error
An error was detected in the syntax of the MACR0-11 command line.

MAC -- Illegal filename
Neither the device name nor the filename was present in the input
file specification (the input file specification was null), or a
wild card convention (asterisk) was employed in an input or
output file specification.

Wildcard options (*) are not permitted in
specifications.

MAC -- Illegal switch

MACR0-11 file

An illegal switch was specified for a file, an illegal value was
specified with a switch, or an invalid use of a switch was
detected by MACR0-11.

MAC -- .INCLUDE directive file error
The file specified in the .INCLUDE statement either does not
exist or is invalid, the device specified in the command line is
not available, or the .INCLUDE stacking depth exceeds five.

MAC -- Indirect command syntax error
The name of the indirect command file (@filename) specified in
the MACR0-11 command line is syntactically incorrect.

MAC -- Indirect file depth exceeded
An attempt to exceed the maximum allowable number of nested
indirect command files has occurred. (Three levels of indirect
command files are permitted in MACR0-11.)

MAC -- Insufficient dynamic memory
There is not enough physical memory available for MACR0-11 to
page its symbol table. Reinstall MACR0-11 in a larger partition,
or see Appendix F.3.

MAC -- Invalid format in macro library
The library file has been corrupted, or it was not produced by
the Librarian Utility Program (LBR).

8-21

I~S/RSX llM/RSX llM PLUS

MAC -- I/O error on input file
In reading a record from a source input file or macro library
file, the file system detected an error; for example, a line
containing more than 132(10) characters was encountered. This
message may also indicate that a device problem exists or that
either a source file or a macro library file has been corrupted
with incorrect data.

MAC -- I/O error on macro library file

MAC

Same meaning as I/O error on input file, except that the file is
a macro library file and not a source input file.

I/O error on output file
In writing a record to the object output file or the listing
output file, an error was detected by the file system. This
message may also indicate that a device problem exists or that
the device is full.

MAC -- I/O error on work file
A read or write error occurred on the work file used to store the
symbol table. This error is most likely caused by a problem on
the device or by attempting to write to a device that is full.

MAC -- .LIBRARY directive file error
The file specified in the .LIBRARY statement either does not
exist or is invalid, the file specification in the .LIBRARY
directive is for a non-random access devie:e, U1t! uev.i<..:e ::;pe<..:ified
in the command line is not available, or the .LIBRARY stacking
depth exceeds the maximum depth allowed.

MAC -- Open failure on input file
1. Specified device does not exist.
2. The volume is not mounted.
3. A problem exists with the device.
4. Specified directory file does not exist.
5. Specified file does not exist.
~. User does not have access privilege to the file directory or

to the file itself.

MAC Open failure on output file
1. Specified device does not exist.
2. The volume is not mounted.
3. A problem exists with the device.
4. Specified directory file does not exist.
5. User does not have access privilege to the file directory.
6. The volume is full or the device is write protected.
7. There is insufficient space for File Control Blocks.

MAC -- 64K storage limit exceeded
64K words of work file memory are available to MACR0-11. This
message indicates that the assembler has generated so many
symbols (about 13,000 to 14,000) that it has run out of space.
Either the source program is too large to start with, or it
contains a condition that leads to excessive size, such as a
macro expansion that recursively calls itself without a
terminating condition.

8-22

CHAPTER 9

RSTS/RT-11 OPERATING PROCEDURES

9.1 MACR0-11 UNDER RSTS

The only way a MACR0-11 program can run on a RSTS system is through
either the RT-11 or RSX run-time systems.

9.1.1 RT-11 Through RSTS

There are two ways to run a MACRO program under the RT-11 run-time
system:

1. Use the RT-11 Emulator. This is done by typing: SW RTll.

2.

The terminal will respond with the RT-11 prompt (a dot
printed by the keyboard monitor). You can then use the RT-11
commands (see Section 9.2).

Type the command:
with an asterisk
string of the form:

RUN $MACRO.SAV. The terminal will respond
(*) prompt. You can then enter a command

OBJFIL,LSTFIL=SRC ••. SRC6

where: OBJFIL is an object (output) file with the default
extension .OBJ.

LSTFIL is a listing (output) file with the default
extension .LST.

SRC •••
SRC6

are source (input) files with the default
extension .MAC. Six input files are allowed
in this command.

9.1.2 RSX Through RSTS

To run a MACRO program
command: RUN $MAC.TSK.

MAC>

under the RSX run-time system,
The terminal will respond with:

In answer you enter a command string of the form:

OBJFIL,LSTFIL=SRC ••• SRCN

9-1

type the

where: OBJFIL

LSTFIL

SRC •••
SRCN

RSTS/RT-11 OPERATING PROCEDURES

is an object (output) file with the default
extension .OBJ.

is a listing (output) file with the default
extension .LST.

are source (input) files with the default
extension .MAC.

NOTE

There are other commands that can be
used to call RT-11 and RSX but they are
site dependent and so are not mentioned
here.

9.2 INITIATING MACR0-11 UNDER RT-11

The following sections describe those MACR0-11 operating procedures
that apply only to the RT-11 system.

To call the MACR0-11 assembler from the system device, respond to the
system prompt (a dot printed by the keyboard monitor) by typing:

R MACRO

When the assembler responds with an asterisk (*), it is ready to
accept command string input.

9.3 RT-11 COMMAND STRING

Format:

[dev:obj,dev:list,dev:cref/s:arg]=dev:srcl,src2, ••• ,dev:srcn/s:arg

where

dev

obj

list

cref

/s:arg

is any legal RT-11 device
file-structured device for input

for output; any

is the file specification of the binary object file
that the assembly process produces; the device for
this file should not be TT or LP

is the file specification of the assembly and symbol
listing that the assembly process produces

is the file specification of the
cross-reference file that the
produces. (Omission of dev:cref does
cross-reference listing, however.)

CREF temporary
assembly process

not preclude a

is a set of file specification options and arguments
(see Table 9-2).

9-2

RSTS/RT-11 OPERATING PROCEDURES

srcl,
src2, ...
srcn

represent the ASCII source {input) files containing the
MACR0-11 source program or the user-supplied macro
library files to be assembled. You can specify as many
as six source files.

The following command string calls for an assembly that uses one
source file plus the system MACRO library to produce an object file
BINF.OBJ and a listing. The listing goes directly to the line
printer.

*DK:BINK.OBJ,LP:=DK:SRC.MAC

All output file specifications are
produce an output file unless
specification for that file.

optional. The system does not
the command string contains a

The system determines the file type of an output file specification by
its position in the command string, as determined by the number of
commas in the string. For example, to omit the object file, you must
begin the command string with a comma. The following command produces
a listing, including cross-reference tables, but not binary object
files.

*,LP:/C=(source file specification)

Notice that you need not include a comma after the final output file
specification in the command string.

Table 9-1 lists the default values for each file specification.

Table 9-1
Default File Specification Values

File
Default

Device

Object DK:

Listing Same as for object
file

Cref DK:

First source DK:

Additional source Same as for preceding
source file

System MACRO
Library

User MACRO
Library

System device SY:

DK: if first file,
otherwise same as for
preceding source file

9-3

Default
File Name

Must specify

Must specify

Must specify

Must specify

Must specify

SYSMAC

Must specify

Default
File Type

• OBJ

.LST

.TMP

.MAC

.MAC

.SML

.MLB

RSTS/RT-11 OPERATING PROCEDURES

NOTE

Some assemblies need more symbol table
space than available memory can contain.
When this occurs the system
automatically creates a temporary work
file called WRK.TMP to provide extended
symbol table space.

The default device for WRK.TMP
To cause the system to
different device, enter the
command:

.ASSIGN dev: WF

is DK.
assign a
following

where: dev is the
device
WRK.TMP.

file-structured
that will hold

9.4 FILE SPECIFICATION OPTIONS

At assembly time you may need to override certain MACRO directives
aooearina in the source oroarams. You may also need to direct
MACRO-llJon the handling of certain files during assembly. You can
satisfy these needs by using the switches described in Table 9-2.

Option

/L:arg
/N:arg

/E:arg
/D:arg

Table 9-2
File Specification Options

Usage

Listing control switches; these options accept ASCII
switch values (arg) which are equivalent in function
and name to the arguments of the .LIST and .NLIST
directives specified in the source program (see
Section 6.1.1). This switch overrides the arguments
of the directives and remains in effect for the
entire assembly process.

Function control switches; these options accept ASCII
switch values (arg) which are equivalent in function
and name to the arguments of the .ENABL and .DSABL
directives specified in the source program (see
Section 6.2.1). This switch overrides the arguments
of the directives and remains in effect for the
entire assembly process.

(continued on next page)

9-4

Option

/M

/C:arg

RSTS/RT-11 OPERATING PROCEDURES

Table 9-2 (Cont.)
File Specification Options

Usage

Indicates input file is MACRO library file. When the
assembler encounters an .MCALL directive in the
source code, it searches macro libraries according to
their order of appearance in the command string.
When it locates a macro record whose name matches
that given in the .MCALL, it assembles the macro as
indicated by that definition. Thus, if two or more
macro libraries contain definitions of the same macro
name, the macro library that appears rightmost in the
command string takes precedence.

Consider the following command string:

*(output file specification)=ALIB/M,
BLIB/M,XIZ

Assume that each of the two macro libraries, ALIB.MLB
and BLIB.MLB, contain a macro called .BIG, but with
different definitions. Then, if source file XIZ
contains a macro call .MCALL .BIG, the system
includes the definition of .BIG in the program as it
appears in the macro library BLIB.

If the command string does not include the standard
system macro library SYSMAC.SML, the system
automatically includes it as the first source file in
the command string. Therefore, if macro library
ALIB.MLB contains a definition of a macro called .READ,
that definition of .READ overrides the standard .READ
macro definition in SYSMAC.SML.

Controls contents of cross-reference listing.

The /M switch affects only the source file to which it is appended.
The other options affect the entire command string.

9.5 CROSS-REFERENCE (CREF) TABLE GENERATION OPTION

A cross-reference (CREF) table lists all or a subset of the symbols in
a source program, identifying the statements that define and use
symbols.

9.5.1 Obtaining a Cross-Reference Table

To obtain a CREF table you must include
command string. Usually you include
assembly listing file specification.

9-5

the /C:arg
the /C:arg

option in the
option with the

RSTS/RT-11 OPERA.TING

If the command string does not include a cref file specification, the
system automatically generates a temporary file on device DK:. If you
need to have a device other than DK: contain the temporary cref file,
you must include the dev:cref field in the command string.

A complete CREF listing contains the following six sections:

1. A cross reference of program symbols--labels used in the
program ~nd symbols followed by an operator.

2. A cross reference of register symbols. These symbols are R0,
Rl, R2, R3, R4, R5, SP, and PC.

3. A cross reference of MACRO symbols--those symbols defined by
.MACRO and .MCALL directives.

4. A cross reference of permanent symbols--all
mnemonics and assembler directives.

operation

5. A cross reference of program sections--the names you specify
as operands of .CSECT or .PSECT directives.

6. A cross reference of errors--the system groups and lists all
flagged errors from the assembly by error type.

You can include any or all of these six sections on the
cross-reference listing by specifying the appropriate arguments with
the /C option. These arguments are listed and described in Table 9-3.

Argument

R

M

p

c

E

Table 9-3
/C Option Arguments

CREF Section

User defined symbols

Register symbols

MACRO symbolic names

Permanent symbols including instructions and directives

Control and program sections

Error code grouping

NOTE

Specifying /C with no arguments is
equivalent to specifying /C:S:M:E. That
special case excepted, you must
explicitly request each CREF section by
including its arguments. No
cross-reference file occurs if the /C
option is not specified, even if the
command string includes a CREF file
specification.

9-6

RSTS/RT-11 OPERATING PROCEDURES

9.5.2 Handling Cross-Reference Table Files

When you request a cross-reference listing by means of the /C option,
you cause the system to generate a temporary file, DK:CREF.TMP.

If device DK: is write-locked or if it contains insufficient free
space for the temporary file, you can allocate another device for the
file. To allocate another device, specify a third output file in the
command string; that is, include a dev:cref specification. (You must
still include the /C option to control the form and content of the
listing. The dev:cref specification is ignored if the /C option is
not also present in the command string.)

The system then uses the dev:cref file instead of DK:CREF.TMP and
deletes it automatically after producing the CREF listing.

The following command string causes the system to use RK2:TEMP.TMP as
the temporary CREF file.

*,LP:,RK2:TEMP.TMP=SOURCE/C

Another way to assign an alternative device for the CREF.TMP file is
to enter the following command prior to entering R MACRO:

.ASSIGN dev:CF

This method is preferred if you intend to do several assemblies, as it
relieves you from having to include the dev:cref specification in each
command strinq. If you enter the ASSIGN dev: CF command! and later
include a cref specification in a command string, the specification in
the command string prevails for that assembly only.

The system lists requested cross-reference tables following the MACRO
assembly listing. Each table begins on a new page.

The system prints symbols and also symbol values, control sections,
and error codes, if applicable, beginning at the left margin of the
page. References to each symbol are listed on the same line,
left-to-right across the page. The system lists references in the
form P-L; where P is the page in which the symbol, control section,
or error code appears, and L is the line number on the page.

A number sign (#) next to a reference indicates a symbol definition.
An asterisk (*) next to a reference indicates a destructive
reference--an operation that alters the contents of the addressed
location.

9.5.3 MACR0-11 Error Messages Under RT-11

MACR0-11 outputs an error message to the command output device when
one of the error conditions described below is detected. MACR0-11
prints below the error message the command line that caused the error.
If the error is a .INCLUDE or a .LIBRARY directive file error,
MACR0-11 prints below the error message both the source line and the
command line that caused the error.

?MACRO-s-Error message
MACR0-11 source line
MACR0-11 command line

9-7

RSTS/RT-ll OPERATING PROCEDURES

The s in the error message represents the letter code that indicates
the severity level of the error.

These error messages reflect operational problems and should not be
confused with the error codes (see Appendix D) produced by MACR0-11
during assembly.

Error Message

?MACRO-F-Device full DEV:

Meaning

The output volume does not
room for an output file
command string.

have sufficient
specified in the

?MACRO-F-File not found DEV:FILNAM.TYP
An input file in the command line does not
exist on the specified device.

?MACRO-F-.INCLUDE directive file error
The file specified in the .INCLUDE statement
either does not exist or is invalid, the
device specified in the command line is not
available, or the .INCLUDE stacking depth
exceeds five.

?MACRO-F-Insuff icient memory
MACRO does not: nave Lne Hl.l.IIJ.ILIUHl aff1uunt
memory {l~K words) necessary to run.

- ~
Ul..

?MACRO-F-Invalid command

?MACRO-F-Invalid device

?MACRO-F-Invalid macro

The command line contains a syntax error or
specifies more than six input files.

A device specified in the command line does
not exist on the system.

, !'----··
.J.J.ULCILY

The library file has been corrupted or it was
not produced by the RT-11 librarian, LIBR.

?MACRO-F-Invalid option: /x
The specified option was not recognized by
the program.

?MACRO-F-I/O error on DEV:FILNAM.TYP
A hardware error occurred while attempting to
read from or write to the device on the
specified file.

?MACRO-F-I/O error on work file
MACRO failed to open, read, or write to its
work file, WRK.TMP.

9-8

RSTS/RT-11 OPERATING PROCEDURES

?MACRO-F-.LIBRARY directive file error
The file specified in the .LIBRARY statement
either does not exist or is invalid, the file
specification in the .LIBRARY directive is
for a non-random access device, the device
specified in the command line is not
available, or the .LIBRARY stacking depth
exceeds the maximum depth allowed.

?MACRO-F-Protected file already exists DEV:FILNAM.TYP
An attempt was made to create a file having
the same name as an existing protected file.

?MACRO-F-Storage limit exceeded (64K)
MACRO's Virtual Symbol Table can store
symbols and macros up to 64K in any
combination. Your program contains more than
64K worth of one or both of these elements.

?MACRO-W-I/O error on CREF file: CREF aborted
MACRO ran out of device space while writing
the cref file, or a hardware error has
occurred. The cref file is aborted but
assembly continues.

9-9

APPENDIX A

MACR0-11 CHARACTER SETS

A.I ASCII CHARACTER SET

Even
Parity
Bit

0
1

1

l

0
1
1

0
0

1
0

1

1

1
0

1

7-Bit
Octal
Code

000
001

002

003

004

005

006
007
010

011
012

013
014

015

016

eJ 1 7

020
021

023

024

Character Remarks

NUL Null, tape feed, CONTROL/SHIFT/P.
SOH Start of heading; also SOM, start

of message, CONTROL/A.
STX Start of text; also EOA, end of

address, CONTROL/B.
ETX End of text; also EOM, end of

message, CONTROL/C.
EOT End of transmission (END); shuts

off TWX machines, CONTROL/D.
ENQ Enquiry (ENQRY); also WRU,

CONTROL/E.
ACK Acknowledge; also RU, CONTROL/F.
BEL Rings the bell. CONTROL/G.
BS Backspace; also FEO, format

effector. backspaces some
machines, CONTROL/H.

HT Horizontal tab. CONTROL/I.
LF Line feed or Line space (new line);

advances paper to next line,
duplicated by CONTROL/J.

VT Vertical tab (VTAB). CONTROL/K.
FF Form Feed to top of next page

(PAGE}. CONTROL/L.
CR Carriage return to beginning of

line; duplicated by CONTROL/M.
SO Shift out; changes ribbon color to

red. CONTROL/N.
SI Shift in; changes ribbon color to

black. CONTROL/a.
DLE Data link escape. CONTROL/P (DC0).
DCl Device control l; turns

transmitter (READER} on, CONTROL/Q
(X ON). 0 022 DC2 Device control
2; turns punch or auxiliary on.
CONTROL/R (TAPE, AUX ON).

DC3 Device control 3; turns
transmitter (READER) off, CONTROL/S
(X OFF) •

DC4 Device control 4; turns punch or
auxiliary off. CONTROL/T (AUX
OFF} .

A-1

Even
Parity
Bit

1

1

0
1
1
0
1
0
0
1
1
0
0
1
0
l
1
0
0
1
1
0 ,
.L

0
0
1
0
1
1
0
1
0
0
1
1
0
0
1
0
1
1
0
1
0
0
1
0
1
l
0
0
0

7-Bit
Octal
Code

025

026

027

030
031
032
033
034
035
036
037
040
041
042
043
0 L\ 4
045
046
047
050
051
052
053
054
055
056
057
060
061
0e;2
063
064
065
066
067
070
071
072
073
074
075
076
077
100
101
102
103
104
105
106
107
110
111

MACR0-11 CHARACTER SETS

Character

NAK

SYN

ETB

CAN
EM
SUB
ESC
FS
GS
RS
us
SP

II

* $
%
&

(
)

*
+

I
0
1
2
3
4
5
6
7
8
9

<

>
?
@

A
B
c
D
E
F
G
H
I

Remarks

Negative acknowledge;
ERROR. CONTROL/U.

also ERR,

Synchronous
CONTROL/V.

file (SYNC) •

End of transmission block; also
LEM, logical end of medium.
CONTROL/W.
Cancel (CANCL). CONTROL/X.
End of medium. CONTROL/Y.
Substitute. CONTROL/Z.
Escape. CONTROL/SHIFT/K.
File separator. CONTROL/SHIFT/L.
Group separator. CONTROL/SHIFT/M.
Record separator. CONTROL/SHIFT/N.
Unit separator. CONTROL/SHIFT/O.
Space.

Accent acute or apostrophe.

A-2

MACR0-11 CHARACTER SETS

Even 7-Bit
Parity Octal
Bit Code Character Remarks

l 112 J
0 113 K
1 114 L
0 115 M
0 116 N
1 117 0
0 120 p
1 121 Q

1 122 R
0 123 s
1 124 T
0 125 u
0 126 v
1 127 w
1 130 x
0 131 y

0 132 z
l , ') ') r sh f=+- It.

.J. .J .J l '-/ r... •

0 134 \ sh ft/l.
1 135] sh ft/m.
1 136 *
0 137 **
0 140 Accent grave.
1 141 a
l 142 b
0 143 c
1 144 d
0 145 e
0 146 f
l 147 g
1 150 h
0 151 i
0 152 j
1 153 k
0 154 1
1 155 m
1 156 n
0 157 0

1 160 p
0 161 q
0 162 r
1 163 s
0 164 t
1 165 u
1 166 v
0 167 w
0 170 x
l 171 y
1 172 z
0 173
1 174
0 175 This code generated by ALTMODE.
0 176 This code generated by pref ix key

(if present) •
1 177 DEL Delete, Rubout.

* Appears as :ff: or on some machines.

** Appears as < on some machines.

A-3

MACR0-11 CHARACTER SETS

A.2 RADIX-50 CHARACTER SET

Character

Space

A-Z

$

Unused

0-9

ASCII
Octal

Equivalent

40

101-132

44

56

60-71

The maximum Radix-50 value is, thus,

47*50**2+47*50+47=174777

Radix-50
Equivalent

1-32

33

34

35

36-47

The following table provides a convenient means of translating between
the ASCII character set and its Radix-50 equivalents. For example,
given the ASCII string X2B, the Radix-50 equivalent is (arithmetic is
p~rformed in o~tal) ~

X=ll3000
2=002400
8=000002

X2B=ll5402

c::; nnl o f"l-. ::a,.. --••"::J-- V•.a."'""'.&.. e

or Second Third
First Char. Character Character

Space 000000 Space 000000 Space 000000
A 003100 A 000050 A 000001
B 006200 B 000120 B 000002
c 011300 c 000170 c 000003
D 014400 D 000240 D 000004
E 017500 E 000310 E 000005
F 022600 F 000360 F 000006
G 025700 G 000430 G 000007
H 031000 H 000500 H 000010
I 034100 I 000550 I 000011
J 037200 J 000620 J 000012
K 042300 K 000670 K 000013
L 045400 L 000740 L 000014
M 050500 M 001010 M 000015
N 053600 N 001060 N 000016
0 056700 0 001130 0 000017
p 062000 p 001200 p 000020
Q 065100 Q 001250 Q 000021
R 070200 R 001320 R 000022
s 073300 s 001370 s 000023
T 076400 T 001440 T 000024
u 101500 u 001510 u 000025

A-4

MACR0-11 CHARACTER SETS

Single Char.
or Second Third

First Char. Character Character

v 104600 v 001560 v 000026
w 107700 w 001630 w 000027
x 113000 x 001700 x 000030
y 116100 y 001750 y 000031
z 121200 z 002020 z 000032
$ 124300 $ 002070 $ 000033

127400 002140 000034
Unused 132500 Unused 002210 Unused 000035
0 135600 0 002260 0 000036
1 140700 1 002330 1 000037
2 144000 2 002400 2 000040
3 147100 3 002450 3 000041
4 152200 4 002520 4 000042
5 155300 5 002570 5 000043
6 160400 6 002640 6 000044
7 163500 7 002710 7 000045
8 166600 8 002760 8 000046
9 171700 9 003030 9 000047

A-5

APPENDIX B

MACR0-11 ASSEMBLY LANGUAGE AND ASSEMBLER DIRECTIVES

B.l SPECIAL CHARACTERS

Character

%
tab
space

@
(

, (comma)

+

*
I
&

"

<
>

\

(apostrophe)

vertical tab

Function

Label terminator
Direct assignment operator
Register term indicator
Item terminator or field terminator
Item terminator or field terminator
Immediate expression indicator
Deferred addressing indicator
Initial register indicator
Terminal register indicator
Operand field separator
Comment field indicator
Arithmetic addition operator or auto

increment indicator
Arithmetic subtraction operator or auto

decrement indicator
Arithmetic multiplication operator
Arithmetic division operator
Logical AND operator
Logical OR operator
Double ASCII character indicator
Single ASCII character indicator or

concatenation indicator
Assembly location counter
Initial argument indicator
Terminal argument indicator
Universal unary operator or argument

indicator
Macro call numeric argument indicator
Source line terminator

B.2 SUMMARY OF ADDRESS MODE SYNTAX

Symbols used in the table:

n is an integer, 0 to 7, representing a register number

R is a register expression

E is an expression

ER is either a register expression or an expression whose value
is in the range 0 to 7.

B-1

Format

R

@R or
(ER)

(ER)+

@(ER)+

-(ER)

@-(ER)

E (E'R)

@E(ER)

#E

@#E

E

@E

MACR0-11 ASSEMBLY LANGUAGE AND ASSEMBLER DIRECTIVES

Address
Mode
Name

Register

Register
def erred

Auto increment

Au to increment
Deferred

Autodecrement

Autodecrement
Deferred

Index

Index Deferred

Immediate

Absolute

Relative

Relative
Deferred

Address
Mode
Number

0n

ln

2n

3n

4n

Sn

fin

7n

27

37

67

77

B-2

Register
operand.

Meaning

R contains the

Register R contains the ad
dress of the operand.

The contents of the register
specified as (ER) are
incremented after being used
as the address of the operand.

The register specified as (ER)
contains the pointer to the
address of the operand; the
register (ER) is incremented
after use.

The contents of the register
specified as (ER) are
decremented before being used
as the address of the operand.

The contents of the register
specified as (ER) are
decremented before being used
as the pointer to the address
of the operand.

The expression E, plus the
contents of the register
specified as (ER), form the
address of the operand.

The expression E, plus the
contents of the register
specified as (ER), yield a
pointer to the address of the
operand.

The expression
operand itself.

E is

The expression E is
address of the operand.

the

the

The address of the operand E,
relative to the instruction,
follows the instruction.

The address of the operand is
pointed to by E whose address,
relative to the instruction,
follows the instruction.

MACR0-11 ASSEMBLY LANGUAGE AND ASSEMBLER DIRECTIVES

B.3 ASSEMBLER DIRECTIVES

The MACR0-11 assembler directives are summarized in the following
table. For a detailed description of each directive, the table
contains references to .the appropriate sections in the body of the
manual.

Form

II

"Bn

"cexpr

"on

"Fn

"on

"Rccc

.ASCII /string/

qection
Reference

5.3.3
7.3.7

6.3.3

6.4.1.2

6.4.2.2

6.4.1.2

6.4.2.2

6.4.1.2

6.3.7

6.3.4

Operation

Followed by one ASCII character
a single quote (apostrophe)
generates a word which contains the
7-bit ASCII representation of the
character in the low-order byte and
zero in the high-order byte. This
character is also used as a
concatenation indicator in the
expansion of macro arguments.

Followed by two ASCII characters a
double quote generates a word which
contains the 7-bit ASCII
representation of the two
characters. The first character is
stored in the low-order byte; the
second character is stored in the
high==order byte.

A temporary radix
the value n to
binary number.

control, causes
be treated as a

A temporary numeric control, causes
the expression's value to be ones
complemented.

A temporary radix
the value n to
decimal number.

control, causes
be treated as a

A temporary numeric control, causes
the value n to be treated as a
sixteen-bit floating-point number.

A temporary radix
the value n to
octal number.

control, causes
be treated as an

Converts ccc to Radix-50 form.

Generates a block of data
containing the ASCII equivalent of
the character string (enclosed in
delimiting characters), one
character per byte.

B-3

MACR0-11 ASSEMBLY LANGUAGE AND ASSEMBLER DIRECTIVES

Form

• AS C IZ Is tr i ng I

.ASECT

• BLKB exp

.BLKW exp

.BYTE expl,exp2, ..

.CROSS syml,sym2, ...

. CSE CT [name]

• DSABL a rg

• ENABL a rg

• END [exp]

• ENDC

• ENDM [name]

Section
Reference

6.3.5

6.7.2

6.5.3

6.5.3

6.3.1

6.2.2

5.7.2

6.2.1

6.2.1

6.6

6.9.1

7 .1. 2

Operation

Generates a block of data
containing the ASCII equivalent of
the character string (enclosed in
d el im it i ng characters) , one
character per byte, with a zero
byte terminating the specified
string.

Begins or resumes the
program section.

absolute

Reserves a block of storage space
whose length in bytes is determined
by the specified expression.

Reserves a block of storage space
whose length in words is determined
by the specified expression.

Generates successive bytes of data;
each byte contains the value of the
corresponding specified expression.

Enables the cross-reference listing
for the specified symbol list. If
a symbol list is not specified,
this directive reenables the
cross-reference listing for all
symbols in the program.

Begins or resumes named or unnamed
relocatable program section. This
directive is provided for
compatibility with other PDP-11
assemblers.

Disables the function specified by
the argument.

Enables (invokes) the function
specified by the argument.

Indicates the logical end of the
source program. The optional
argument specifies the transfer
address where program execution is
to begin.

Indicates the end of a conditional
assembly block.

Indicates the end of the current
repeat block, indefinite repeat
block, or macro definition. The
optional name, if used, must be
identical to the name specified in
the macro definition.

B-4

MACR0-11 ASSEMBLY LANGUAGE AND ASSEMBLER DIRECTIVES

Form

,ENDR

.ERROR exp;text

.EVEN

.FLT2 argl,arg2, •.•

.FLT4 argl,arg2, •••

.GLOBL syml,syrn2, ••.

.!DENT /string/

.IF cond,argl

.IFF

.IFT

Section
Reference

7.7

7.5

6.5.1

6.4.2.l

6.4.2.1

6.8.1

6. l. 4

6.9.1

6.9.2

6.9.2

Operation

Indicates the end of the current
repeat block. This directive is
provided for compatibility with
other PDP-11 assemblers.

A user-invoked error directive,
causes output to the listing file
or the command output device
containing the optional expression
and the statement containing the
directive.

Ensures that the current location
counter contains an even address by
adding 1 if it is odd.

Generates successive 2-word
floating-point equivalents for the

numbers specified as
arguments.

Generates successive 4-word
floating-point equivalents for the
floating-point numbers specified as
arguments.

Defines the symbol(s) specified as
global symbol(s).

Provides a means of labeling the
object module with the program
version number. The version number
is the Radix-50 string appearing
between the paired delimiting
characters.

Begins a conditional assembly block
of source code which is included in
the assembly only if the stated
condition is met with respect to
the argument(s) specified.

Appears only within a conditional
assembly block, indicating the
beginning of a section of code to
be assembled if the cond~tion upon
entering the block tests false.

Appears only within a conditional
assembly block, indicating the
beginning of a section of code to
be assembled if the condition upon
entering the block tests true.

B-5

MACR0-11 ASSF.MBl.Y LANGUAGE ANO ASSEMBLER DIRECTIVES

Form

.IFTF

.IIF cond,arg,
statement

• INCLUDE string

• IRP sym,
<argl,arg2, ••• >

.IRPC sym,<string>

.LIBRARY string

.LIMIT

.LIST [arg]

.MACRO name,argl,
arg2, ••.

.MCALL argl,arg2, •.•

Section
Reference

6.9.2

6.9.3

6.10.2

7.6.1

7.6.2

6.rn.1

6.5.4

6 .1.1

7 .1.1

7.8

Operation

Appears only within a conditional
assembly block, indicating the
beginning of a section of code to
be assembled unconditionally.

Acts as a 1-line conditional
assembly block where the condition
is tested for the argument
specified. The statement is
assembled only if the condition
tests true.

Inserts a
within the
being used.

specified source file
source file currently

Indicates the beginning of an
indefinite repeat block in which
the symbol specified is replaced
with successive elements of the
real argument list enclosed within
angle brackets.

Indicates the beginning of an
indefinite repeat block in which
the specified symbol takes on the
value of successive characters,
optionally enclosed within angle
brackets.

Adds a specified
macro library
searched.

file name to a
list that is

Reserves two words into which the
Task Builder inserts the low and
high addresses of the task image.

Without an argument, the .LIST
directive increments the listing
level count by 1. With an
argument, this directive does not
alter the listing level count, but
formats the assembly listing
according to the argument
specified.

Indicates
definition
name and
arguments.

the start of a macro
having the specified

the following dummy

Specifies the symbolic names of the
user or system macro definitions
required in the assembly of the
current user program, but which are
not defined within the program.

B-6

MACR0-11 ASSEMBLY LANGUAGE AND ASSEMBLER DIRECTIVES

Form
Section
Reference

.MDELETE namel,name2, ••. 7.9

.MEXIT

.NARG symbol

.NCHR symbol,<string>

.NLIST [arg]

.NOCROSS syml,sym2, •••

• NTYPE symbol,aexp

.ODD

.PACKED

.PAGE

.PRINT exp;text

.PSECT name,attl, .•.
attn

7 .1. 3

7.4.2

6 .1.1

6.2.2

7.4.3

6.5.2

6.3.8

f) .1. 5

7.5

n.7.1

Operation

Deletes ~ne definitions of the
specified macro(s), freeing virtual
memory.

Causes an exit from
macro expansion or
repeat block.

the current
indefinite

Appearing only within a macro
definition, equates the specified
symbol to the number of arguments
in the macro call currently being
expanded.

Appearing anywhere in a source
program, equates the symbol
specified to the number of
characters in the specified string.

Without an argument, decrements the
listing level count by 1. With an
argument, this directive suppresses
that portion of the listing
specified by the argument.

Disables the cross-reference
listing for the listed symbols. If
a symbol list is not specified,
this directive disables the
cross-reference listing for all
symbols in the program •

Appearing only within a macro
definition, equates the symbol to
the 6-bit addressing mode of the
specified address expression.

Ensures that the current location
counter contains an odd address by
adding 1 if it is even.

Causes a decimal number
digits or less to be
digits per byte.

of 31 (10)
packed 2

Causes the assembly listing to skip
to the top of the next page and to
increment the page count.

User-invoked message directive;
causes output to the listing file
or the command output device
containing the optional expression
and the statement containing the
directive.

Begins or resumes a named or
unnamed program section having the
specified attributes.

8-7

Section
Form Reference

.RADIX n 6.4.1.1

. RAD50 /string/ 6.3.6

.REM comment-character 6.1.6

.REPT exp 7.7

.RESTORE 6.7.4

.SAVE 6.7.3

.SBTTL string 6.1.3

.TITLE string ~.1.2

.WEAK syml,sym2, •.. ().8.2

.WORD expl,exp2, •• 6.3.2

Operation

Alters the current program radix to
n, where n is 2, 8, or 10 •

Generates a block of data
containing the Radix-50 equivalent
of the character string enclosed
within delimiting characters.

Allows a programmer to insert a
block of comments into a MACR0-11
source program without having to
precede the comment lines with the
comment character (;).

Begins a repeat block; causes the
section of code up to the next
.ENDM or .ENDR directive to be
repeated the number of times
specified as exp.

Retrieves a previously .SAVEd
program section from the top of the
program section context stack
leaving the current program section
in effect.

Stores the current program section
on the top of the program section
context stack leaving the current
program section in eifecL.

Causes the specified string to be
printed as part of the assembly
1 istina oaae header. The strino
compon~nt Jof each .SBTTL directive
is collected into a table of
contents at the beginning of the
assembly listing.

Assigns the first six Radix-50
characters in the string as an
object module name and causes the
string to appear on each page of
the assembly listing.

Specifies symbols that
defined externally
module or are defined
the current module.

are either
in another
globally in

Generates successive words of data;
each word contains the value of the
corresponding specified expression.

B-8

APPENDIX C

PERMANENT SYMBOL TABLE (PST)

The mnemonics for the PDP-11 operation (op) codes and MACR0-11
assembler directives are stored in the Permanent Symbol Table (PST).
The PST contains the symbols that are automatically recognized by
MACR0-11.

For a detailed description of the op codes, see the PDP-11 Processor
Handbook.

C.l OP CODES

Instruction Octal
Mnemonic Value Operation

ADC 005500 Add Carry
ADCB 105500 Add Carry (Byte)
ADD 060000 Add Source To Destination
ASH 072000 Shift Arithmetically
ASHC 073000 Arithmetic Shift Combined
ASL 006300 Arithmetic Shift Left
ASLB 106300 Arithmetic Shift Left (Byte)
ASR 006200 Arithmetic Shift Right
ASRB 106200 Arithmetic Shift Right (Byte)
BCC 103000 Branch If Carry Is Clear
BCS 103400 Branch If Carry Is Set
BEQ 001400 Branch If Equal
BGE 002000 Branch If Greater Than Or Equal
BGT 003000 Branch If Greater Than
BHI 101000 Branch If Higher
BHIS 103000 Branch If Higher Or Same
BIC 040000 Bit Clear
BICB 140000 Bit Clear (Byte)
BIS 050000 Bit Set
BISB 150000 Bit Set (Byte)
BIT 030000 Bit Test
BITB 130000 Bit Test (Byte)
BLE 003400 Branch If Less Than Or Equal
BLO 103400 Branch If Lower
BLOS 101400 Branch If Lower Or Same
BLT 002400 Branch If Less Than
BMI 100400 Branch If Minus
BNE 001000 Branch If Not Equal
BPL 100000 Branch If Plus
BPT 000003 Breakpoint Trap
BR 000400 Branch Unconditional

C-1

Instruction
Mnemonic

BVC
BVS
CALL
CALLR
CCC
CLC
CLN
CLR
CLRB
CLV
CLZ
CMP

CMPB

COM
COMB

DEC
DECB

DIV
EMT
FADD
FDIV
FMUL
FSUB
HALT
INC
INCB

IOT
JMP
JSR
MARK
MED6X
MED74C
MFPI

MFPS

MFPT
MOV
MOVB

MTPI

MTPS

MUL
NEG
NEGB
NOP
RESET
RETURN
ROL
ROLB
ROR
RORB

PERMANENT SYMBOL TABLE (PST)

Octal
Value

102000
102400
004700
000100
000257
000241
000250
005000
105000
000242
000244
020000

120000

005100
105100

005300
105300

071000
104000
075000
075030
075020
075010
000000
005200
105200

000004
000100
004000
006400
076600
076601
006500

106700

000007
010000
110000

000600

106400

070000
005400
105400
000240
000005
000207
006100
106100
006000
106000

Operation

Branch If Overflow Is Clear
Branch If Overflow Is Set
Jump To Subroutine (JSR PC,xxx)
Jump (JMP add r)
Clear All Condition Codes
Clear C Condition Code Bit
Clear N Condition Code Bit
Clear Destination
Clear Destination (Byte)
Clear V Condition Code Bit
Clear Z Condition Code Bit
Compare Source To

Destination
Compare Source To

Destination (Byte)
Complement Destination
Complement Destination

(Byte)
Decrement Destination
Decrement Destination

(Byte)
Divide
Emulator Trap
Floating Add
Floating Divide
Floating Multiply
Floating Subtract
Halt
Increment Destination
Increment Destination

(Byte)
Input/Output Trap
Jump
Jump To Subroutine
Mark
PDP-11/60 Maintenance
PDP-11/74 CIS Maintenance
Move From Previous

Instruction Space
Move from PS
(LSI-11, LSI-11/23, LSI-11/2)
Move From Processor Type
Move Source To Destination
Move Source To Destination

(Byte)
Move To Previous

Instruction Space
Move to PS
(LSI-11, LSI-11/23, LSI-11/2)
Multiply
Negate Destination
Negate Destination (Byte)
No Operation
Reset External Bus
Return From Subroutine (RTS PC)
Rotate Left
Rotate Left (Byte)
Rotate Right
Rotate Right (Byte)

C-2

Instruction
Mnemonic

RTI

RTS
RTT

SBC
SBCB
sec
SEC
SEN
SEV
SEZ
SOB
SUB

SWAB
SXT
TRAP
TST
TSTB
TSTSET
WAIT
WRTLCK

XFC
XOR

PERMANENT SYMBOL TABLE (PST)

Octal
Value

000002

000200
000006

005600
105600
000277
000261
000270
000262
000264
077000
160000

000300
006700
i04400
005700
105700
007200
000001
007300

076700
074000

Operation

Return From Interrupt
(Permits a trace
trap)

Return From Subroutine
Return From Interrupt

(inhibits trace trap)
Subtract Carry
Subtract Carry (Byte)
Set All Condition Code Bits
Set C Condition Code Bit
Set N Condition Code Bit
Set V Condition Code Bit
Set Z Condition Code Bit
Subtract One And Branch
Subtract Source From

Destination
Swap Bytes
Sign Extend
Trap
Test Destination
Test Destination (Byte)
Test Destination And Set Low Bit
Wait For Interrupt
Read/Lock Destination. Write/Unlock

R0 Into Destination
Extended Function Code
Exclusive OR

COMMERCIAL INSTRUCTION SET (CIS) OP CODES

Every operation listed in the CIS table has two instruction mnemonics.
The suffix "I", attached to every second mnemonic, indicates that the
addresses are inline. The inline instructions require two arguments;
the other instructions (excepting L2DN and L3DN) require no arguments.

Instruction Octal
Mnemonic Value Operation

ADDN 076050 Add Numeric
ADDNI 076150 Add Numeric
ADDP 076070 Md Packed
ADDPI 076170 Add Packed
ASHN 076056 Arithmetic Shift Numeric
AS HNI 076156 Arithmetic Shift Numeric
ASHP 010010 Arithmetic Shift Packed
.Z\SHPI 07617n Arithmetic Cl-.; .f:+. n-,....1 ... -...:i

.. JlJ .L .1. l- .LGl~l'-CU

CMPC 076044 Compare Character String
CMPC I 076144 Compare Character String
CMPN 07'5052 Compare Numeric
CMPNI 076152 Compare Numeric
CMPP 076072 Compare Packed
CMPPI 076172 Compare Packed
CVTLN 076057 Convert Long To Numeric
CVTLNI 076157 Convert Long To Numeric
CVTLP 076077 Convert Long To Packed

C-3

Instruction
Mnemonic

CVTLPI
CVTNP
CVTNPI
CVTPN
CVTPNI
DIVP
DI VP I
LOCC
LOCCI
L2DN*
L3DN*
MATC
MATCI
MOVC
MOVCI
MOVRC
MOVRCI
MOVTC
MOVTCI
MULP
MULPI
SCANC
SCANCI
SKPC
SKPCI
SPANC
SPANCI
SUBN
SUB NI
SUBP
SUB PI

* where N=0 .•. 7

PERMANENT SYMBOL TABLE {PST)

Octal
Value

076177
076055
076155
076054
076154
076075
076175
076040
076140
07602N
07606N
076045
076145
076030
076130
076031
076131
076032
076132
076074
076174
076042
076142
076041
076141
076043
076143
076051
076151
076071
076171

Operation

Convert Long To Packed
Convert Numeric To Packed
Convert Numeric To Packed
Convert Packed To Numeric
Convert packed To Numeric
Divide Decimal
Divide Decimal
Locate Character
Locate Character
Load 2 Descriptors @(RN)+
Load 3 Descriptors @(RN)+
Match Character
Match Character
Move Character
Move Character
Move Reverse Justified Character
Move Reverse Justified Character
Move Translated Character
Move Translated Character
Multiply Decimal
Multiply Decimal
Scan Character
scan Character
Skip Character
Skip Character
Span Character
Span Character
Subtract Numeric
Subtract Numeric
Subtract Packed
Subtract Packed

FLOATING POINT PROCESSOR OP CODES

Instruction
Mnemonic

ABSD
ABSF
ADDD
ADDF
CFCC

CLRD
CLRF
CMPD
CMPF
DIVD
DIVF
LDCDF

LDC FD

LDC ID

Octal
Value

170600
170600
172000
172000
170000

170400
170400
173400
173400
174400
174400
177400

177400

1 77000

Operation

Make Absolute Double
Make Absolute Floating
Add Double
Add Floating
Copy Floating Condition

Codes
Clear Double
Clear Floating
Compare Double
Compare Floating
Divide Double
Divide Floating
Load And Convert From

Double To Floating
Load And Convert From

Floating To Double
Load And Convert Integer To

Double

C-4

Instruction
Mnemonic

LDC IF

LDCLD

LDCLF

LDD
LDEXP
LDF
LDFPS
MFPD

MODD

MODF

MTPD
MULD
MULF
NEGD
NEGF
SETD
SETF
SETI
SETL
SPL
STA0
STB0
STCDF

STCDI

S'T'CDL

STCFD

STCFI

STCFL

STD
STEXP
STF
ST FPS
STST
SUBD
SUBF
TSTD
TSTF

PERMANENT SYMBOL TABLE (PST)

Octal
Value

177000

1 77000

177000

172400
176400
172400
170100
106500

171400

1 71400

106600
171000
171000
170700
170700
170011
170001
170002
170012
000230
170005
170006
176000

175400

175400

176000

175400

175400

174000
175000
174000
170200
170300
173000
173000
170500
170500

Operation

Load And Convert Integer To
Floating

Load And Convert Long
Integer To Double

Load And Convert Long
Integer To Floating

Load Double
Load Exponent
Load Floating
Load FPPs Program Status
Move From Previous Data

Space
Multiply And Integerize

Double
Multiply And Integerize

Floating
Move To Previous Data Space
Multiply Double
Multiply Floating
Negate Double
Negate Floating
Set Double Mode
Set Floating Mode
Set Integer Mode
Set Long Integer Mode
Set Priority Level
Diagnostic Floating Point
Diagnostic Floating Point
Store And Convert From

Double To Floating
Store And Convert From

Double To Integer
Store And Convert From

Double To Long Integer
Store And Convert From

Floating To Double
Store And Convert From

Floating To Integer
Store And Convert From

Floating To Long Integer
Store Double
Store Exponent
Store Floating
Store FPPs Program Status
Store FPPs Status
Subtract Double
Subtract Floating
Test Double
Test Floating

C-5

PERMANENT SYMBOL TABLE {PST)

C.2 MACR0-11 DIRECTIVES

The MACR0-11 directives that follow are described in greater detail in
Appendix B.

Directive

• ASCII
.ASCIZ

.ASECT

.BLKB

.BLKW

.BYTE

.CROSS

.CSECT

• DSABL
• ENABL
• rnD
• ENDC
.ENDM

.ENDR

.ERROR

• EVEN
.FLT2

.FLT4

• GLOBL
.!DENT

• IF
.!FF

.!FT

.IFTF

.IIF

.INCLUDE

.IRP

.IRPC

.LIBRARY

Function

Translates character string to ASCII equivalents •
Translates character string to ASCII equivalents;
inserts zero byte as last character.
Begins absolute program section (provided for
compatibility with other PDP-11 assemblers).
Reserves byte block in accordance with value of
specified argument.
Reserves word block in accordance with value of
specified argument.
Generates successive byte data in accordance with
specified arguments.
Enables cross-reference listing for specified
symbols; enables cross-reference for all symbols.
Begins relocatable program section (provided for
compatibility with other PDP-11 assemblers).
Disables specified function •
Enables specified function •
Defines logical end of source program •
Defines end of conditional assembly block •
Defines end of macro definition, repeat block, or
indefinite repeat block.
Defines end of current repeat block (provided for
compatibility with other PDP-11 assemblers).
Outputs diagnostic message to listing file or
command output device.
Word-aligns the current location counter •
Causes two words of storage to be generated for
each floating-point argument.
Causes four words of storage to be generated for
each floating-point argument.
Declares global attribute for specified symbol(s) •
Labels object module with specified program
version number.
Begins conditional assembly block .
Begins subconditional assembly block (if
conditional assembly block test is false).
Begins subconditional assembly block (if
conditional assembly block test is true).
Begins subconditional assembly block (whether
conditional assembly block test is true or false).
Assembles immediate conditional assembly statement
(if specified condition is satisfied).
Inserts specified source file within source file
currently being used.
Begins indefinite repeat block; replaces
specified symbol with specified successive real
arguments.
Begins indefinite repeat block; replaces
specified symbol with value of successive
characters in specified string.
Adds a specified file name to a macro library list
that is searched.

C-6

Directive

.LIMIT

.LIST

.MCALL

. MDELETE

.MEXIT

.NARG

.NCHR

.NLIST

.NOCROSS

.NTYPE

• ODD
• PACKED
. PAGE
• PRINT
.PSECT

. RADIX

.RAD50

.REM

.REPT

.RESTORE

.SAVE

.SBTTL

.TITLE

.WEAK

.WORD

PERMANENT SYMBOL TABLE (PST)

Function

Reserves two words of storage for high and low
addresses of task image.
Controls listing level count and format of
assembly listing. .MACRO denotes start of macro
definition.
Identifies required macro definition(s) for
assembly.
Deletes the definitions of the specified macro(s) •
Exit from current macro definition or indefinite
repeat block.
Equates specified symbol to the number of
non-keyword arguments in the macro expansion.
Equates specified symbol to the number of
characters in the specified character string.
Controls listing level count and suppresses
specified portions of the assembly listing.
Disables cross-reference listing for specified
symbols; disables cross-reference listing for all
symbols.
Equates specified symbols to the addressing mode
of the specified argument.
Byte-aligns the current location counter •
Generates packed decimal data, 2 digits per byte .
Advances form to top of next page •
Prints specified message on command output device •
Begins specified program section having specified
attributes.
Changes current program radix to specified radix •
Generates data block having Radix-50 equivalents
of specified character string.
Inserts a block of comments into a MACR0-11 source
program without having to precede comments lines
with the comment character (;).
Begins repeat block and replicates it according to
the value of the specified expression.
Stores the current program section context on the
top of the program section context stack.
Retrieves the program section from the top of the
program section context stack.
Prints specified subtitle text as the second line
of the assembly listing page header.
Prints specified title text as object module name
in the first line of the assembly listing page
header.
Specifies symbols that are either defined
externally in another module or are defined
globally in the current module.
Generates successive word data in accordance with
specified arguments.

C-7

APPENDIX D

ERROR MESSAGES

An error code is printed as the first character in a source line
containing an error. This error code identifies the error condition
detected during the processing of the line. Example:

Q 26 000236 010102 MOV Rl,R2,A

The extraneous argument A in the MOV instruction above causes the line
to be flagged with a Q (syntax) error.

Error Code

A

Meaning

Assembly error. Because many different conditions
produce this error message, the directives which
may yield a general assembly error have been
categorized below to reflect these error
conditions:

CATEGORY 1: ILLEGAL ARGUMENT SPECIFIED •

• RADIX -- A value other than 2, 8, or 10 is
specified as a new radix •

• LIST/.NLIST -- Other than a legally defined
argument (see Table 6-2) is specified with the
directive •

• ENABL/.DSABL -- Other than a legally defined
argument (see Table n-3) is specified with the
directive, or the attribute arguments of a
previously declared program section •

• PSECT -- Other than a legally defined argument
(see Table 6-4) is specified with the
directive, or the attribute arguments of a
previously declared program section change (see
Section 6.7.1.1) •

• IF/.IIF -- Other than a legally defined
conditional test (see Table 6-6) or an illegal
argument expression value is specified with the
directive •

• MACRO -- An illegal or duplicate symbol found
in dummy argument list.

D-1

Error Code

A (cont.)

ERROR MESSAGES

Meaning

.TITLE -- Program name is not specified in the
directive, or first non-blank character
following the directive is a non-Radix-50
character .

. IRP/.IRPC -- No dummy argument is specified in
the directive .

. NARG/.NCHAR/.NTYPE -- No symbol is specified
in the directive.

.IF/.IIF -- No conditional argument is
specified in the directive.

CATEGORY 3: UNMATCHED DELIMITER/ILLEGAL ARGUMENT
CONSTRUCTION •

. ASCII/.ASCIZ/.RAD50/.IDENT -- Character string
or argument string delimiters do not match, or
an illegal character is used as a delimiter, or
an illegal argument construction is used in the
directive •

• NCHAR -- character string ae11m1L.ers do nuL
match, or an illegal character is used as a
delimiter in the directive.

CATEGORY 4: GENERAL ADDRESSING ERRORS.

This type of error results from one of several
possible conditions:

1. Permissible range of a branch instruction
(from -128(10) to +127(10) words) has been
exceeded.

2. A statement makes invalid use of the
current location counter. For example, a
".=expression" statement attempts to force
the current location counter to cross
program section (.PSECT) boundaries.

3. A statement contains an invalid address
expression:

In cases where an absolute
expression is required, specifying
symbol, a relocatable value, or a
relocatable value (see Section 3.9)
in an invalid address expression.

address
a global

complex
results

If an undefined symbol is made a default
global reference by the .ENABL GBL
directive (see Section 6.2.1) during passl,
any attempt to redefine the symbol during
pass 2 will result in an invalid address
expression.

D-2

Error Code

A (cont.)

B

D

E

ERROR MESSAGES

Meaning

In cases where a relocatable address
expression is required, either a
relocatable or absolute value is
permissible, but a global symbol or a
complex relocatable value in the statement
results in an invalid address expression.

For example:

.BLKB/.BLKW/.REPT -- Other than an absolute
value or an expression which reduces to an
absolute value has been specified with the
directive.

4. Multiple expressions are not separated by a
comma. This condition causes the next
symbol to be evaluated as part of the
current expression.

5. .SAVE -- The stack is full when the .SAVE
directive is issued.

6. .RESTORE -- The stack is empty when the
.RESTORE directive is issued.

CATEGORY 5: ILLEGAL FORWARD REFERENCE.

This type of error results from either of two
possible conditions:

1. A global assignment statement
(symbol==expression or symbol==:expres
sion} contains a forward reference to
another symbol.

2. An expression defining the value of the
current location counter contains a forward
reference.

Bounding error. Instructions or word data are
being assembled at an odd address. The location
counter is incremented by 1.

Doubly-defined symbol referenced. Reference was
made to a symbol which is defined more than once.

End directive not found. When the end-of-file is
reached during source input and the .END directive
has not yet been encountered, MACR0-11 generates
this error code, ends assembly p~ss 1, and
proceeds with assembly pass 2. Also caused by
assembler-stack overflow. In this case MACR0-11
will place a question mark (?} into the line at
the point where the overflow occurred.

D-3

Error Code

I

L

M

N

0

p

Q

R

T

ERROR MESSAGES

Meaning

Illegal character detected. Illegal characters
which are also non-printable are replaced by a
question mark (?) on the listing. The character
is then ignored.

Input line is greater than 132(10) characters in
length. Currently, this error condition is caused
only during macro expansion when longer real
arguments, replacing the dummy arguments, cause a
line to exceed 132(10) characters.

Multiple definition of a label. A label was
encountered which was equivalent (in the first six
characters) to a label previously encountered.

A number contains a digit that is not in the
current program radix. The number is evaluated as
a decimal value.

Opcode error. Directive out of context.
Permissible nesting level depth for conditional
assemblies has been exceeded. Attempt to expand a
macro which was unidentified after .MCALL search.

Phase error. A label's definition of value varies
from one assembly pass to another or a multiple
definition of a local symbol has occurred within a
local symbol block. Also, when in a local symbol
block defined by the .ENABL LSB directive, an
attempt has occurred to define a local symbol in a
program section other than that which was in
effect when the block was entered. An error code
P also appears if an .ERROR directive is
assembled.

Questionable syntax. Arguments are missing, too
many arguments are specified, or the instruction
scan was not completed.

Register-type error. An invalid use of or
reference to a register has been made, or an
attempt has been made to redefine a standard
register symbol without first issuing the .DSABL
REG directive.

Truncation error. A number generated more than 16
bits in a word, or an expression generated more
than 8 significant bits during the use of the
.BYTE directive or trap (EMT or TRAP) instruction.

D-4

Error Code

u

z

ERROR MESSAGES

Meaning

Undefined symbol. An undefined symbol was
encountered during the evaluation of an
expression; such an undefined symbol is assigned
a value of zero. Other possible conditions which
result in this error code include unsatisfied
macro names in the list of .MCALL arguments and a
direct assigment (symbol=expression or
symbol=:expression) statement which contains a
forward reference to a symbol whose definition
also contains a forward reference; also, a local
symbol may have been referenced that does not
exist in the current local symbol block.

Instruction error. The instruction so flagged is
not compatible among all members of the PDP-11
family. See Section 5.3 for details.

D-5

APPENDIX E

SAMPLE CODING STANDARD

Local user requirements must be met in a coding standard, but
following this model as closely as possible helps you and DIGITAL by
simplifying communication and software maintenance. Remember that
this is a sample and may not entirely apply to your system.

E.l LINE FORMAT

Source lines are from one to eighty characters in length with the
following format:

1. Label Field - if present, begins in column 1. This field
should be coded in uppercase only.

2. Operation field - begins in column 9 (tab stop 1) • This
field should be coded in uppercase only.

3. Operand field - begins in column 17 (tab stop 2). This field
should be coded in uppercase only.

4. Comment field - begins in column 33 (tab stop 4). If the
operand field extends beyond column 33 (tab stop 4) leave a
space and start the comment. This field should be coded in
uppercase and lowercase to increase readability.

E.2 COMMENTS

To make the program easier to understand, comments should be used to
explain the logic behind the instructions. In general this will
consist of a comment per line of code. However, if a particularly
difficult or obscure section of code is used, precede that section
with a longer explanation.

Comments that are too long for the comment field may be continued on
the following line. Begin the new line with a semicolon, space over
to the column the comment began in and continue writing. All comments
should be written in uppercase and lowercase to increase readability.

E-1

SAMPLE CODING STANDARD

If a lengthy text is needed for an explanation, begin the comment with
a line containing only the characters ;+ and end it with a line
containing only the characters ;-. The lines between these delimiters
should each begin with a semicolon and a space. For example:

;+

;-

The invert routine accepts
a list of random numbers and
applies the Kolmogorov Algorithm
to alphabetize them.

E.3 NAMING STANDARDS

E.3.1 Registers

E.3.1.1 General Purpose Registers - Use the default name:

;REG 0
;REG 1
;REG 2
;REG 3
;REG 4
;REG 5

R0=%0
Rl=%1
R2=%2
R3=%3
R4=%4
R5=%5
SP=%6
PC=%7

;Stack pointer (K~u bJ
;Program counter (REG 7)

NOTE

These register names are defined within
the assembler; other standard symbols
must be put in a file and linked with
the program.

E.3.1.2 Hardware Registers - Use the hardware definition. For
example, PS (Program Status Register) and SWR (Switch Register).

E.3.1.3 Device Registers - Use the hardware notation.
the control status register for the RK disk is RKCS.

E.3.2 Processor Priority

For example,

Testing or altering the processor priority is done using the symbols

PR0, PRl, PR2, ••...• PR7

which are equated to their corresponding priority bit pattern.

E-2

SAMPLE CODING STANDARD

E.3.3 Symbols*

The following chart diagrams the syntax of the 5 major types of symbol
names:

symbol pos-1 pos-2 pos-3 pos-4 pos-5 pos-6 length

non-global letter a-num/ a-num/ a-num/ a-num/ a-num/ >=l
symbol null null null null null

global $/. a-num a-num/ a-num/ a-num/ a-num/ >=l
symbol *** null null null null null

global letter $/. a-num a-num/ a-num/ a-num/ >=3
offset *** null null null

global bit letter a-num $/. a-num/ a-num/ a-num/ >=4
pattern *** null null

local number $ >=2
symbol **

where: a-num is an alphanumeric character.

E.3.3.1 Symbol Examples

Non-Global Symbols

AlB

ZXCJl

INS RT

Global Address Symbols

$JIM

.VECTR

$SEC

Global Absolute Offset Symbols

A$JIM

A$XT

A. ENT

* Symbols that are branch targets are also called labels, but we will
always use the term "symbol".

** Number is in the range 0<number<~5535.

*** The use of $ or • for global names is reserved for DEC-supplied
software.

E-3

SAMPLE CODING STANDARD

Global Bit Pattern Symbols

Al$20

B3.6

JI.M

Local Symbols

37$

271$

6$

E.3.3.2 Local Symbols - Target symbols for branches that exist solely
for positional reference will use local symbols of the form

<num>$:

Local symbols are formatted such that the numbers proceed sequentially
down the page and from page to page.

E.3.3.3 Global Symbols - Use of global symbols is restricted, within
reason, to those cases where reference to the code occurs external to
the code.

A program never contains a .GLOBL statement without showing cause.

E.3.3.4 Macro Names - In a macro name the last two characters (last
character possibly being null) have special significance; the next to
last character is a$, the last character specifies the mode of the
macro.

For example, in the three macro forms in-line, stack, and p-section,
the in-line form has no suffix, the stack has an <S> suffix, and the
p-section a <C>. Thus the Queue I/O macro can be written as any of

QIO$

QIO$S

QIO$C

depending on the form required. These are not reserved letters.

E.3.3.5 General Symbols - Make frequently used bit patterns such as
carriage return (CR) and line feed (LF) conventional symbols as they
are needed.

E-4

SAMPLE CODING STANDARD

E.4 PROGRAM MODULES

There are no limits on
memory capacity of
possible by:

program size. However, since the virtual
a computer is finite keep programs as compact as

1. creating them for a single function

2. writing them in accordance with the memory
guidelines in Appendix F.

allocation

Code areas are different than data areas. Code is read-only but data
can be read-only or read-write; read-only data should be segregated
from read-write data. Both areas, code and data, should have
explanatory comments.

E.4.1 The Module Preface

Put each program module in a separate file. For easy reference the
file name should be similar to the name of the module. The file type
is of the form 'NNN' where 'NNN' is the edit or the version number
(see Section E.8). The availability of File Control Services and File
Control Primitives will greatly simplify version number maintenance.

E.4.2 The Module

Below is a list of the information that is included in the example
MACR0-11 module (see Section E.4.3).

The information is formatted as follows:

1. The first six items appear on the same page and do not have
explicit headings.

2. A .NLIST statement,
.NLIST/.LIST options
this module, followed
.NLIST statement has
module edit level.

followed by any .ENABL/.DSABL or
that are relevant to the assembly of

by a matching .LIST statement. The
a comment appended to it specifying the

3. A .TITLE statement that specifies the name of the module. If
a module contains more than one routine, .SBTTL statements
are used.

4. Several .SBTTL statements giving the name, general function,
and version number of the module. The .SBTTL directive
inserts this information in the table of contents for quick
reference.

5. An .IDENT statement that specifies the version number of the
module (see Section E.8).

6. A copyright statement, and a disclaimer, followed by a form
feed. Note that the copyright, even though a comment, should
be all uppercase. This insures that the copyright will be
presented correctly, even on a terminal that only has
uppercase.

E-5

3AMPI..E

7. The name of the facility, that the module is a part of.

8. The name of the author.

9. The date of module creation.

10. A one or two line abstract of the function(s) of the module.

11. A description of all external references made by the module,
one per line, in alphabetical order.

12. A chronological edit trail of modifications to the module
that includes the following:

• Edit number
• Editor's identification
• Edit date
• Description of the modification made

NOTE

Items 6 through 12 should appear on the
same page.

13. Any references to external files, using the .LIBRARY and
.INCLUDE directives.

14. .MCALL's to any externally defined macros.

15. A list of the definitions of all equated symbols used in the
module. These definitions should appear one per line and in
alphabetical order.

16. All local macro definitions, preferably in alphabetical
order.

17. All local data. The comments in this section should include:

• Description of each element (type, size, and so forth)
• Organization (functional, alphabetical, adjacent, and so

forth)
• Adjacency requirements (if any)

18. A form feed, followed by an .SBTTL statement describing the
routine that follows.

19. A routine header, giving the following information:

• Routine name
• Description
• Inputs
• Calling sequence
• Outputs
• Side effects, register usage, and so forth

NOTE

Items 18 and 19 are repeated for every
routine within the module.

E-6

SAMPLE CODING STANDARD

E.4.3 Module Example

.NL I ST

.ENABL GBL

.LIST MEB

.LIST
• TITLE MAC INI
• SBTTL MAC INI
.SBTTL
.SBTTL
.SBTTL
.IDENT /Y05.01/

- Once-only code for the MACR0-11 assembler
- Once-only code for the MACR0-11 assembler

.IDENT /Y05.01/

·** ,
. * ,
. * ,
. * ,
. * ,
. * ,
. * ,
. * ,
. * ,
. * ,
. * ,
. * ,
. * ,
. * ,
. * ,
. * ,
. * ,
. * ,
. * I

. * I

*
COPYRIGHT (c) 1982, 1983 *

BY DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASS. *
ALL RIGHTS RESERVED. *

*
THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED *
ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE *
INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER *
COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY *
OTHER PERSON. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY *
TRANSFERRED. *

THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE
AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT
CORPORATION.

DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS
SOFTWARE ON EQUIPMENT THAT IS NOT SUPPLIED BY DIGITAL.

*
*
*
*
*
*
*
*

·** ,
<FF>
;++

Facility:

Author:

Created:

Abstract:

;--
<FF>

Externals

$LIB ID
$POSID
$STABF

Edit

001
002
003

MACR0-11 The PDP-11 macro assembler for RT/RSX/VMS and RSTS/E

Joe Worrall

21-Aug-82

MACINI contains code only executed once per task invocation.

Description

File-ID of the system library account (LB: [1,1])
File-ID of the P/OS library account (LB: [1,5])
Workfile statistics buffer

Who

Jrw
Jrw
Jrw

Date

25-Aug-82
05-Sep-82
10-Nov-82

Description of modification

Handle P/OS .PARSE module.
Allow recursive FINIT$'s.
Setup statistics buffer.

External file references

• LIBRARY
• INCLUDE

/MAC LIB/
/MAC PRE/

;Add MACLIB.MLB to macro library list
;Include MACPRE.MAC in assembly

E-7

External library ".MCALL's" for this module

.MCALL FINIT$

Equated symbols

••• Equated symbols •••

Local macros

••• Local macros •••

Local data

••• Local data
<FF>
.SBTTL $!NIT - Handle once only code for MACR0-11 assembler

;+
$!NIT

;-

This routine is a collection of all the code, only executed
once in any one run of the MACR0-11 task. It's collected
here because:

0

0

It's logical to keep it in one place
It keeps the code out of the root, keeping
the assembler SMALL.

INPUTS: n/a

CALL: CALL $!NIT

OUTPUTS:

Record management, statistics, and FCS buffers
are setup. If the system contains EIS support,
the DIV and MUL routine vectors are setup to
point to the hardware instructions.

EFFECTS: R0 - RS Destroyed!

••• Begin module code •••

E.4.4 Modularity

No other characteristic has more impact on the ultimate engineering
success of a system than does modularity. Adherence to a set of call
and return conventions helps achieve this modularity.

E-8

SAMPLE CODING STANDARD

E.4.4.1 Calling Conventions (Inter-Module/Intra-Module)

Transfer of Control

Macros exist for call
JSR PC instruction.
permitted.

and return. The actual transfer is via a
For register save routines, a JSR RN,SAVE is

The CALL macro is:

CALL subr-name

The RETURN macro is:

RETURN

Register Conventions

On entry, a subroutine minimally saves all registers it intends
to alter except result registers. On exit it restores these
registers. (The preservation of the register state is assumed
across calls.)

Argument Passing

Any registers may be used, but their use should follow a coherent
pattern. For example, if passing three arguments, use R0, Rl and
R2 rather than R0, R2, RS. Saving and restoring occurs in one
place.

E.4.4.2 Exiting - All subroutine exits occur through a single RETURN
macro.

E.4.4.3 Success/Failure Indication - The C bit is used to return the
success/failure indicator, where success equals 0, and failure equals
1. The argument registers can be used to return values or additional
success/failure data.

E.4.4.4 Module Checking Routines - Modules are responsible for
verifying the validity of arguments passed to them. The design of a
module's calling sequence should aim at minimizing the validity checks
by minimizing invalid combinations. Programmers may add test code to
perform additional checks during checkout. All code should aim at
discovering an error as close (in terms of instruction executions) to
its occurrence as possible.

E-9

SA~PL! CODING STANDARD

E.5 CODE FORMAT

E.5.1 Program Flow

Programs are organized on the listing so that they flow down the page,
even at the cost of an extra branch or jump. All unconditional branch
and jump instructions should be followed by a blank line. This causes
these instructions to stand out in the source code, allowing the code
to be traced more easily.

For example:

PROCESS

BBB AAA

COMMON

appears on the listing as:

TST
BNE BBB

AAA:

BR CMN

BBB:

CMN:

E-10

SAMPLE CODING STANDARD

rather than:

TST
BNE BBB

AAA:

CMN:

BBB:

BR CMN

E.5.2 Common Exits

A common exit appears as the last code sequence on the listing.
the flow chart:

11
2 I I 3 I I 4

EXIT

appears on the 1 isting as:

PRl:

BR EXIT

PR2:

BR EXIT

PR3:

BR EXIT

PR4:

E-11

Thus

S~MPLE CODING ST~ND~RD

EXIT:

and not as:

PRl:

EXIT:

PR2:

BR EXIT

PR3:

BR EXIT

PR4:

BR EXIT

E.5.3 Code with Interrupts Inhibited

Code that is executed with interrupts inhibited, is flagged by a three
semicolon (;;;) comment delimiter. For example:

•• ERTZ:

HJ$:

BIS
BIT
BEQ
RTT

#PR7,PS
#PR7,2(SP)
HJ$

E.5.4 Code in System State

;Enable by returning
;by system subroutines,

;;; inhibit
; ; ; c
; ; ; 0

; ; ; m
; ; ; m
; ; ;
; ; i
; ; ;
; ; ;

e
n

t
s

RSX-llM executive subroutines and other privileged code that is
executed in system state is flagged by a two semicolon (;;) comment
delimiter. For example:

Switch to system state, •••

and exit.

E-12

CALL

RETURN
EXIT:

SAMPLE CODING STANDARD

$SWSTK,EXIT ; Inhibit context switching
;; Return in system state
; ;
; ;

;; Go back to user state (EXIT)
; User state code

E.6 INSTRUCTION USAGE

E.6.1 Forbidden Instructions

1. The use of instructions or index words as literals of the
previous instruction. For example:

2.

MOV @PC,REGISTER

BIC SRC,DST

uses the bit clear instruction as a literal. This may seem
to be a very "neat" way to save a word but what about
maintaining a program using this trick? To compound the
problem, it will not execute properly if I/D space is enabled
on the 11/45. In this case @PC is a D bank reference.

The use of the MOV instruction instead of a
to transfer program control to another
example:

MOV #ALPHA,PC

JMP instruction
location. For

transfers control to location ALPHA. Besides taking longer
to execute (2.3 microseconds for MOV vs. 1.2 for JMP) the
use of MOV instead of JMP makes it nearly impossible to pick
up someone else's program and tell where transfers of control
take place. What if one would like to get a jump trace of
the execution of a program (a move trace is unheard of)? As
a more general issue, other operations such as ADD and SUB
from PC should be discouraged.

3. The seemingly "neat" use of all single word instructions
where one double-word instruction could be used and would
execute faster and would not consume additional memory.
Consider the following instruction sequence:

CMP - (Rl) , - (Rl)

CMP - (Rl) , - (Rl)

The intent of this instruction sequence is to subtract 8 from
register Rl (not to set condition codes). This can be
accomplished in approximately 1/3 the time via a SUB
instruction (9.4 vs. 3.8 microseconds) at no additional cost
in memory space.

4. Self-relative address arithmetic (.+n) is absolutely
forbidden in branch instructions; its use in other contexts
must be avoided if at all possible and practical.

E-13

bAM~L~ CUUlNG STANDARD

E.n.2 Conditional Branches

When using the PDP-11 conditional branch instructions, it is
imperative that the correct choice be made between the signed and the
unsigned branches.

SIGNED

BGE
BLT
BGT
BLE

UNSIGNED

BHIS (BCC)
BLO
BHI
BLOS (BCS)

A common pitfall is to use a signed branch (for example, BGT) when
comparing two memory addresses. This works until the two addresses
have opposite signs; that is, one of them goes across the 16K
{100000 (8)) bound. This type of coding error usually results from
re-linking the program at different addresses and/or changing the size
of the program.

E.7 PROGRAM SOURCE FILES

Source creation and maintenance is done in base levels. A base level
is the point at which the program source files have been frozen. From
the freeze point to the next base level, corrections are not made
directly to the base level itself, rather a file of corrections is
accumulated for each file in the base level. Whenever an updated
source file is desired, the correction file is applied to the base
file. ,
The accumulation of corrections proceeds until a logical breaking
point has occurred (a milestone or significant implementation point
has been reached). At this time all accumulated corrections are
applied to the previous base level to create a new base level and
correction files are started for the new base level.

E.8 PDP-11 VERSION NUMBER STANDARD

The PDP-11 Version Number Standard applies to all modules, parameter
files, complete programs, and libraries which are written as part of
the PDP-11 Software Development effort. It is used to provide unique
identification of all released, pre-released, and in-house software.

The version number is limited in that only six characters of
identification are used. Future implementations of the Macro
Assembler, linker, and librarian should provide for at least nine
characters, and possibly twelve. It is expected that this standard
will be improved as the need arises.

Version Identifier Format:

<version> <edit> <patch>

where: <version> consists of two decimal digits which
represent the release number of a program.
The version number starts at 00 and is
incremented to reflect the number of major
changes in the program.

E-14

<edit>

SAMPLE CODING STANDARD

consists of two decimal digits
represent the number of alterations
the source program. The edit number
at 01 (is null if there are no edits)
incremented with each alteration.

which
made to

begins
and is

<patch> is a letter between B and z which represents
the number of alterations made to the binary
form of the program. The patch number begins
at B (is null if there are no patches) and
changes alphabetically with each patch.

These fields are interrelated. When <version> is changed, then
<patch> and <edit> must be reset to nulls. It is intended that when
<edit> is incremented, then <patch> will be re-set to null, because
the various bugs have been fixed.

E.8.1 Displaying the Version Identifier

The visible output of the version identifier should appear as:

Program
Name <key-letter> <version> . <edit> <patch>,

where the following Key Letters have been identified:

x in-house experimental version

y field test, pre-release, or in-house release version

v released or frozen version

'X' corresponds roughly to individual support, 'Y' to group support,
and 'V' to company support.

The dot (.) which separates <version> from <edit> is not used if both
<edit> and <patch> are null. When a version identifier is displayed
as part of program identification, then the format is:

Program
Name <space><key-letter><version> • <edit><patch>

Examples:

PIP V05.00
LINK V08.00
MACRO V05.00

E.8.2 Use of the Version Number in the Program

All sources must contain the version number in an .IDENT directive.
In programs (or libraries) which consist of more than one module, each
module must have a version number. The version number of the program
or library is not necessarily related to the version numbers of the
constituent modules; it is perfectly reasonable, for example, that
the first version of a new FORTRAN library, V00, contain an existing
SIN routine, say V05.01.

E-15

SAMPLE CODING STANDARD

Parameter files are also required to contain the version number in an
.IDENT directive. Because the assembler records the last .IDENT seen,
parameter files must precede the program.

Entities which consist of a collection of modules or programs (for
example, the FORTRAN Library) have an identification module in the
first position. An identification module exists solely to provide
identification. For example:

;OTS identification
.TITLE FTNLIB
.IDENT /V02.00/
.END

is an identification module.

E-16

APPENDIX F

ALLOCATING VIRTUAL MEMORY

This appendix is intended for the MACR0-11 user who wants to avoid the
problem of thrashing, by optimizing the allocation of virtual memory.
Users of smaller systems should become thoroughly familiar with the
conventions discussed herein. This appendix discusses the following
topics:

1. General hints and space-saving guidelines

2. Macro definitions and expansions

3. Operational techniques.

The user is assumed to have pursued a policy of modular programming,
as advised in Appendix E. Modular programming results in bodies of
code that are small, distinct and highly functional. Using such code,
which presents many advantages, one can usually avoid the problem of
insufficient dynamic memory during assembly.

F.l GENERAL HINTS AND SPACE-SAVING GUIDELINES

Work-file memory is shared by a number of MACRO-ll's tables, each of
which is allocated space on demand (64K words of dynamically pageable
storage are available to the assembler). The tables and their
corresponding entry sizes are as follows:

1. User-defined symbols - five words.

2. Local symbols - three words.

3. Program sections - six words.

4. Macro names - five words.

5. Macro text - nine words.

6. Source files - six words.

In addition, several scratch pad tables are used during the assembly
process, as follows:

1. Expression analysis - five words.

2. Object code generation - five words.

F-1

ALLOCATING VIRTUAL MEMORY

3. Macro argument processing - three words.

4. .MCALL argument processing - five words.

The above information can serve as
storage requirements and for
requirements.

a guide for estimating dynamic
determining ways to reduce such

For example, the use of local symbols whenever possible is highly
encouraged, since their internal representation requires 25 percent
less dynamic storage than that required for regular user-defined
symbols. The usage of local symbols can often be maximized by
extending the scope of local symbol blocks through the .ENABL
LSB/.DSABL LSB MACR0-11 directives see Sections 3.5 and 6.2.1).

Since MACR0-11 does not support a purge function, once a symbol is
defined, it permanently occupies its dynamic memory allocation.
Numerous instances occur during conditional assemblies and repeat
loops when a temporarily assigned symbol is used as a count or offset
indicator. If possible, the symbols so used should be re-used.

In keeping with the same principle, special treatment should be given
to the definition of commonly used symbols. Instead of simply
appending a prefix file which defines all possibly used symbols for
each assembly, users are encouraged to group symbols into logical
classes. Each class can then become a shortened prefix file or a
macro in a library (see Section F.2 below). In either case, selective
definition of symbolic assignments is achieved, resulting in fewer
defined (but unreferenced) symbols.

An example of this idea is seen in the definition of IAS/RSX-llM
standard symbols. The RSX system macro library, for example, supplies
several macros used to define distinct classes of symbols. These
groupings and associated macro names are as follows:

DRERR$ - Directive return status codes

FILIO$ - File-related I/O function codes

IOERR$ - I/O return status codes

SPCIO$ - Special I/O function codes

F.2 MACRO DEFINITIONS AND EXPANSIONS

Dynamic storage is used most heavily for the storage of macro text.
Upon macro definition or the issuance of an .MCALL directive, the
entire macro body is stored, including all comments appearing in the
macro definition. For this reason, comments should not be included as
part of the macro text. A librarian function switch (/SZ) is
available to compress macro source text by removing all trailing
blanks and tabs, blank lines, and comments. The system macro library
(RSXMAC.SML) has already been compressed. User-supplied macro
libraries (.MLB) and macro definition prefix files should also be
compressed. For additional information regarding these two utility
tasks, consult the applicable RSX-llM or RSX-llM-PLUS Utilities Manual
(see Section 0.3 in the Preface).

F-2

ALLOCATING VIRTUAL MEMORY

It often seems practical to include a file of commonly used macro
definitions in each assembly. This practice, however, may produce the
undesirable allocation of valuable dynamic storage for unnecessary
macros. This waste of memory can be avoided by making the file of
macro definitions a user-supplied macro library file (see Table 8-1).
This means that the names of desired macros must be listed as
arguments in the .MCALL directive (see Section 7.8), or the automatic
MACRO call, .ENABL MCL, must be enabled (see Section 6.2.1).

Certain types of macros can be redefined to null after they have been
invoked. This practice not only frees storage space, it also
eliminates the overhead and the dynamic memory wasted by calling a
useless macro. The practice of redefining macros to null applies
mainly to those that define symbolic assignments, as shown in the
example below. The redefinition process may be accomplished as
follows:

SYMl
SYM2

OFFl
OFF2
OFF3

OFFN

.MACRO DEFIN
VALl
VAL2

SYMBOL
OFFl+SIZl
OFF2+SIZ2

OFFM+SIZM

• MACRO DEFIN
.ENDM

.ENDM DEF IN

;Define symbolic assignments.

;Define symbolic offsets.

;Macro null redefinition •

Macros exhibiting this redefinition property should be defined (or
read via the .MCALL directive) and invoked before all other macro
definition and/or .MCALL processing, a practice that ensures more
efficient use of dynamic memory.

F.3 OPERATIONAL TECHNIQUES

When, despite adhering to the guidelines discussed above, performance
still falls below expectations, several additional measures may be
taken to increase dynamic memory.

F-3

ALLOCATING VIRTUAL MEMORY

The first measure involves shifting the burden of symbol definition
from MACR0-11 to the linker or task builder. In most cases, the
definition of system I/O and File Control Services (FCS) symbols (and
user-defined symbols of the same nature) is not necessary during the
assembly process, since such symbols are defaulted to global
references (Appendix D.l, category 4 of error code A). The linker or
task builder attempts to resolve all global references from
user-specified default libraries and/or the system object library
(SYSLIB). Furthermore, by applying the selective search option for
object modules consisting only of global symbol definitions, the
actual additional burden to the linker is minimal.

The second way is to produce only one output file
listing), as opposed to two. The additional
support the second output file is allocated from
memory at the start of each assembly.

F-4

(either object or
memory required to
available dynamic

APPENDIX G

WRITING POSITION-INDEPENDENT CODE

G.l INTRODUCTION TO POSITION-INDEPENDENT CODE

The output of a MACR0-11 assembly is a relocatable ob ect module. The
Task Builder or Linker binds one or more modules toge her to create an
executable task image. Once created, if the program s to run it must
be loaded at the virtual address specified at link time. This is
because the Task Builder or Linker has to modify some instructions to
reflect the memory locations in which the program is to run. Such a
body of code is considered position-dependent (dependent on the
virtual addresses to which it is bound).

All PDP-11 processors offer addressing modes ~hat make it possible to
write code that does not depend on the virtual addresses to which it
is bound. Such code is termed position-independent and to run can be
loaded at any virtual address. Position-independent code can improve
system efficiency, both in use of virtual address space and in
conservation of physical memory.

In multiprogramming systems like IAS, RSX-llM and RSX-llM-PLUS, it is
important that many tasks be able to share a single physical copy of
common code, for example, a library routine. To make the optimum use
of a task's virtual address space, shared code should be
position-independent. Position-dependent code can also be shared, but
it must appear in the 'same virtual locations in every task using it.
This restricts the placement of such code by the Task Builder or
Linker and can result in the loss of virtual addressing space.

The construction of position-independent code is closely linked to the
proper usage of PDP-11 addressing modes. The remainder of this
Appendix assumes you are familiar with the addressing modes described
in Chapter 5.

All addressing modes
position-independent.

involving only register
These modes are as follows:

R
(R)
(R)+

@(R)+
-(R)

@-(R)

register mode
register deferred mode
autoincrement mode
autoincrement deferred mode
autodecrement mode
autodecrement deferred mode

references are

When using these addressing
position-independence, provided
been supplied such that they are
virtual memory location.

modes, you are guaranteed
the contents of the registers have
not dependent upon a particular

G-1

WRITING POSITION-INDEPENDENT CODE

The relative addressing modes are
relocatable address is referenced
These modes are as follows:

position-independent when a
from a relocatable instruction.

A
@A

relative mode
relative deferred mode

Relative modes are not position-independent when an absolute address
(that is a non-relocatable address) is referenced from a relocatable
instruction. In this case, absolute addressing (@#A) may be used to
make the reference position-independent.

Index modes can be either position-independent or position-dependent,
according to their use in the program. These modes are as follows:

X(R)
@X(R)

index mode
index deferred mode

If the base, X, is an absolute value (for example, a control block
offset), the reference is position-independent. For example:

MOV 2 (SP) ,R0 ;Position-independent
N=4

MOV N(SP) ,R0 ;Position-independent

If, however, X is
position-dependent.

<3 rP.locntable
For example:

address~ the

CLR ADDR (Rl) ;Position-dependent

reference is

Immediate mode can be either position-independent or not, according to
its usage. Immediate mode references are formatted as follows:

#N immediate mode

When an absolute expression defines the value of N, the code is
position-independent. When a relocatable expression defines N, the
code is position-dependent. That is, immediate mode references are
position-independent only when N is an absolute value.

Absolute mode addressing is position-independent only in
where an absolute virtual location is being referenced.
addressing references are formatted as follows:

@#A absolute mode

those cases
Absolute mode

An example of a position-independent absolute reference is a reference
to the directive status word {$DSW) from a relocatable instruction.
For example:

MOV @#$DSW,R0 ;Retrieve directive status

G.2 EXAMPLES

The RSX-llM library routine, PWRUP, is a FORTRAN callable subroutine
that establishes or removes a user power failure Asynchronous System
Trap (AST) entry point address. Imbedded within the routine is the
AST entry point that saves all registers, effects a call to the
user-specified entry point, restores all registers on return, and
executes an AST exit directive. The following examples are excerpts

G-2

WRITING POSITION-INDEPENDENT CODE

from this routine. The first example, Figure G-1 has been modified to
illustrate position-dependent references. The second example, Figure
G-2, is the position-independent version.

;+

; Position dependent code exaaPle
;-

PWRUP:: CLR -<SP>

Perfora further initialization •••

MOV $0TSVrR4

HOV CSP>+ rR2
BNE 10$
CLR -<SP>
BR 20$

10s: MOV R2rF.PFCR4>
MOV tBAr-CSP>

20$:

; Continue Processins,.,

;+
; AST service routine
;-

MOV ROr-CSP>

; Rest of routine follows.,.

;Point R4 at obJect tiae svstea save area
; the ebove reference to $0TSV i§ ~osition
; dePer1dent
;Retrieve AST entrv Point address
;Branch if one was sPecified
;rf noner specifv no Power fail routine
;BvPass AST setuP
;set the AST entrv Point
;Push our AST service address
; the above reference to BA is Position
; dePendent

;Preserve RO

Figure G-1 Example of Position-Dependent Code

;+
; Position indePendent code exaaPle
;-

PWRUP:: CLR -CSP> ;Assuae success

Perfora necessarv initialization •••

MOV @HOTSVrR4

HOV CSP>+,R2
BNE 10$
CLR -<SP>
BR 20$

10$i HOV R21F.PF<R4>
HOV pc,-csP>
ADD tBA-.,<SP>

20s:

;+
; AST service routine
;-

BA: MOV ROr-CSP>

; Rest of routine follows •••

;Point R4 at obJect tiae svstea save area
; the above reference to SOTSV is Position
; independent
;Retrieve AST entry Point address
;Branch if one was specified
;If none, sPecifY no Power fail routine
;BvPass AST setuP
;set the AST entry Point
;Push our PC to relocate our AST service addr
;Relocate our AST service address now
; the above reference to BA is Position-
; independent; this costs one word to relocate

;Preserve RO

Figure G-2 Example of Position-Independent Code

G-3

WRITING POSITION-INDEPENDENT CODE

The position-dependent version of the subroutine contains a relative
reference to an absolute symbol ($0TSV) and a literal reference to a
relocatable symbol (BA). Both references are bound by the Task
Builder to fixed memory locations. Therefore, the routine will not
execute properly as part of a resident library if its location in
virtual memory is not the same as the location specified at link time.

In the position-independent version, the reference to $0TSV has been
changed to an absolute reference. In addition, the necessary code has
been added to compute the virtual location of BA based upon the value
of the program counter. In this case, the value is obtained by adding
the value of the program counter to the fixed displacement between the
current location and the specified symbol. Thus, execution of the
modified routine is not affected by its location in the image's
virtual address space.

The MACR0-11 Assembler provides a way of checking whether the code is
position-independent. In an assembly listing, MACR0-11 inserts a '
character following the contents of any word which requires the Task
Builder or Linker to perform a relocation operation and, therefore,
may not be position independent code. The cases which cause an
apostrophe to be inserted in the assembly listing are as follows:

1. Absolute mode references when the reference is relocatable.
References are not flagged when they are absolute. For
example:

MOV @#ADDR,Rl ;Pie only if ADDR is absolute.

2. Index and index deferred mode references when the offset is
relocatable. For example:

MOV
MOV

ADDR(Rl) ,R5
@ADDR(Rl) ,R5

;Non-pie if ADDR is relocatable.
;Non-pie if ADDR is relocatable.

3. Relative and relative deferred mode references when the
address specified is relocatable with respect to another
program section. For example:

MOV
MOV

ADDRl,Rl
@ADDRl,Rl

;Non-pie when ADDRl is absolute.

4. Immediate mode references to relocatable addresses.

MOV #ADDR,Rl ;Non-pie when ADDR is relocatable.

In one case, MACR0-11 does not flag a potential position-dependent
reference. This occurs where a relative reference is made to an
absolute virtual location from a relocatable instruction (see the MOV
$OTSV,R4 instruction in Figure G-1).

References requiring more than simple relocation at link time are
indicated in the assembly listing. Simple global references are
flagged with the letter G. Statements which contain multiple global
references or require complex relocation, are flagged with the letter
C (see Section 3.9 and Chapter 4). It is difficult to positively
state whether or not a C-flagged statement is position-independente
However, in general, position dependence can be decided by applying
the guidelines discussed earlier in this Appendix to the resulting
address value produced at link time.

G-4

APPENDIX H

SAMPLE ASSEMBLY AND CROSS REFERENCE LISTING

>R50UNP MACRO V05.00 Saturday 08-Jan-83 11:47
TABLE OF CONTENTS

2- RADSO unpack routine

RSOUNP MACRO V05.00 Saturday 08-Jan-83 11:47 Pase

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
l7
18
19
20
21
22
23
24
25

.TITLE RSOUNP

.IDENT /02/

COPYRIGHT (c) 1979 BY
DIGITAL EQUIPMENT CORPORATION, MAYNARD• MASS.

THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED
ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE
INCLUSION OF THE ABOVE COPYRIGHT NOTICE, THIS SOFTWARE OR ANY OTHER
COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY
OTHER PERSON. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY
TRANSFERRED,

THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE
AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT
CORF'ORATION,

DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS
SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DIGITAL.

UF'DATE HISTORY:

D.N. CUTLER 10-FEB-73

H-1

SAMPLE ASSEMBLY AND CROSS REFERENCE LISTING

R50UNP MACRO V05.00 Saturday 08-Jan-83 11:47 Pase 2
RAD50 UNPACK ROUTINE

2
3
4
5
6
7
8
9'

10
11
12
13
14 000000
15
16 000000 010446
17 000002 012704

OOOOOOG
18 000006 012401
19 000010 012703

003100
20 000014 004767

000030

;+
R50UNP

.SBTTL RAD50 unpack routine

UnPack a 6 char RAD50 SY•bol to ASCII

;-

Enter with R2 -> Output ASCII strins
SYHBOLr SYHBOL+2 = RAD50 sY•bol to unpack

Return with R2 -> Past output strins
ROr Rlr R3 Destroyed

.PSECT PUREirI

R50UNP::HOV R4r-CSP> ;save R4
HOV tSYHBOLrR4 ;Point at RAD50

u: HOV CR4>trR1 ;Get next RAD50
HOV t50*50rR3 ;set divisor for

SY•bol

word
hi Sh

CALL 10$;UnPacl'-. and store the

buffer

character

character

21 000020 012703 HOV t50rR3 ;Now set divisor for 111iddle character

22 000024

:.d 0000:50
24 000032

25 000036

26 000042
27 000044
28 000046
29
30
31

000050
004767
000020
OiO:i.00
004767
000016
020427
0000048
001361
012604
000207

32 000050 005000
33 000052 071003
34
35
36
37
38
39
40
41
42
43 000054
44 000056
45 000060

46 000064
47 000066
48 000070

005700
001412
020027
000033
002405
001402
062700
000011

CALL 10$;UnPack and store the character

MC'.' P!~RO ;Copy re•aininS character
CALL 11$;Translate and store it

CMP R4rtSYHBOL+4 He st if last word done

BNE 1$;Branch if no
HOV CSf'>trR4 ;Restore R4
RETURN ;Return to caller

Divid~ RAD~O word and convert char to ASCII

10$! CLR
DIV

RO
R3rRO

Translate RAD50 character code to ASCII
0 =
1-32
33
34 =
35 =
36-47

1u:

SP ace
A-Z
$

•Jn used
= 0-9

TST
BEG
CHP

BLT
BEQ
ADD

code

RO
23$
ROrt33

22$
21$
t22-11rRO

Hest if sF-ace
;Branch if so
Hest if •iddle

;Branch if alF-habetic
;Branch if dollar sisn
;Dot or disits 0-9

R50UNP MACRO V05.00 Saturday 08-Jan-83 11:47 Pase 2-1
RAD50 UNPACK ROUT WE

49 000074 062700 2u: ADD t11-100rRO ;Dollar
177711

50 000100 062700 22$: ADI• tl00-40' RO ;AlPhabetic
000040

51 000104 062700 23$: ADD t40rRO ;Space
000040

52 000110 110022 HOVB RO, CR2 >+ ;store ASCII char in buffer

53 000112 000207 RETURN
54
55 000001 .END

H-2

SAMPLE ASSEMBLY AND CROSS REFERENCE LISTING

RSOUNP MACRO V05.00 Saturday 08-Jan-83
SYMbol Table

RSOUNP OOOOOORG 002

ABS. 000000 000
000000 001

PURE I 000114 002
Errors detected: 0

*** AsseMbler statistics

Work File reads: 0
Work File writes: 0

SYMBOL= ****** GX

Size oF work File: 7936 Words < 1 Pases)
Size oF core Pool: 16158 Words (72 Pases)
Qperatins sYsteM: RT-11
ElaPsed tiMe: 00:00:04.34
DK:RSOUNP,DK:R50UNP/C=DK:SUM

Pase 2-2

RSOUNP MACRO VOS.00 Saturday 08-Jan-83 11:47 Pase S-1
Cross reference table <CREF V05.00>

RS OU NP
SYMBOL

2-16#
2-17 2-25

RSOUNP MACRO V05.00 Saturday 08-Jan-83
Cross reference table <CREF V05.00l

RO 2-23* 2-32* 2-33* Z-43
2-50* Z-51* 2-52

Rl 2-18* 2-23
R2 2-52*
R3 2-19* 2-21* 2-33
R4 2-16 2-17* 2-18 2-25
SP 2-16* 2-27

11 :47 Pase R-1

2-45 2-48*

2-27*

RSOUNP MACRO VOS.00 Saturday 08-Jan-83 11:47 Pase C-1
Cross reference table CCREF VOS.OOl

0-0
• ABS. 0-0
PURE I 2-14

H-3

2-49*

APPENDIX I

OBSOLETE M..~CR0-11 DIRECTIVES, SYNTAX, AND COMMAND LINE OPTIONS

I.l OBSOLETE DIRECTIVES AND SYNTAX

The following directives and syntax, although supported in this
release of the assembler, will NOT be supported in future assembler
releases. The following table shows the old directives and syntax,
and the new syntax to use. All MACR0-11 code that contains the old
directives and syntax should be updated to use the new syntax.

Table I-1
Old and New Directives and Syntax

Syntax no longer supported

• EOT
.IFZ xxx or .IFEQ xxx
.IF Z,xxx
.IFNZ xxx or .IFNE xxx
.IF NZ,xxx
.IFL xxx or .IFLT xxx
.IF L,xxx
.IFG xxx or .IFGT xxx
.IF G,xxx
.IFLE xxx
.IFDF xxx
.IFNDF xxx

I.2 OBSOLETE COMMAND LINE OPTION

New syntax to use

None
.IF EQ,xxx
.IF EQ,xxx
.IF NE,xxx
.IF NE,xxx
.IF LT,xxx
.IF LT,xxx
.IF GT,xxx
.IF GT,xxx
.IF LE,xxx
.IF DF,xxx
.IF NDF,xxx

The MACR0-11 command line option /P[ASS] :n is no longer supported by
DIGITAL. This switch was originally created to speed up assemblies in
some cases by only scanning a given file with one pass of the
assembler.

It has been found that the /P[ASS] :n switch has many side effects, and
has caused more problems than can be documented reasonably.

Although the syntax of the /P[ASS] :n switch is still allowed to appear
on a MACR0-11 command line, no SPRs will be accepted relating to the
switch. All documentation for the /P[ASS] :n switch has been removed.

Any assembly command files containing the /P[ASS] :n switch should be
updated by removing this switch.

I-1

APPENDIX J

RELEASE NOTES

This appendix explains the changes that have been made to MACR0-11
since the last version release. The new features mentioned are fully
documented in chapters one through nine of this manual.

J.l CHANGES -- ALL VERSIONS OF MACR0-11

1. The opcode, CALLR addr (Call-Return), has been added to the
permanent symbol table (PST). This opcode is equivalent to
the JMP addr opcode. The CALLR addr opcode was added to
complement the CALL addr opcode -- which is equivalent to the
JSR PC,addr opcode.

2. The previous version of MACR0-11 used a range of 64$ to 127$
for automatic local symbol generation. MACR0-11 now uses a
range of 30000$ to 65535$ when generating local symbols.

3. Most assembler generated listing text is now in
upper/lowercase. This change was made to increase the
readability of MACR0-11 code. Lines of code that include the
.SBTTL or the .TITLE directive are not converted to
uppercase.

4. Lines of code that include the .SBTTL directive are listed in
the table of contents of an assembly listing, even if a
.NLIST statement is in effect at the time the .SBTTL lines
are encountered. You may specify the .NLIST directive with
the TOC argument to prevent the table of contents from being
printed.

5. The symbol table is printed at the end of an assembly, even
if the .NLIST directive is in effect. You may specify the
.NLIST directive with the SYM argument to prevent the symbol
table from being printed.

6. All page headers include the day of the week.

J-1

7. The assembler statistics information that appears at the end
of the assembly listing file has been updated to include the
following additional information:

• Total number of virtual work file reads

• Total number of virtual work file writes

• Maximum amount of virtual memory used (in words and pages)

• Size of physical memory freespace (in words and pages)

• Operating system and environment that the assembler is
running under

• Total elapsed assembly time

• MACR0-11 command line

8. The PSECT synopsis that is printed in the listing file, after
the symbol table, includes the psect attributes.

9. The maximum number of relocatable terms in a complex
expression has been changed. The maximum size of an .OBJ
record that MACR0-11 can produce was increased from 42. bytes
to 128. bytes.

Do not compare .OBJ files that have been created by different
versions of MACR0-11 when verifying whether your code
generation is correct. Changes that have been made for this
version of MACR0-11 (mentioned above) will invalidate a
direct comparison of assembler .OBJ output. Verify code
generation by linking or taskbuilding the .OBJ files involved
and then comparing the .SAV or the .TSK image files.

NOTE

Because the .OBJ files produced by this new version
of MACR0-11 are different, users of the PAT (object
file patch utility) are warned that checksums must be
recomputed on any object patches assembled with this
new version of MACR0-11.

10. The default for the LC argument has been changed from .DSABL
LC to • ENABL LC.

11. The following .ENABL/.DSABL options have been added:

1. .ENABL LCM/.DSABL LCM
2. .ENABL MCL/.DSABL MCL

12. The following directives have been added to MACR0-11.
new directives are documented in this manual.

1. • CROSS
2. • INCLUDE
3 ~ • LIBRARY
4. .MDELETE
5. • NOCROSS
n. . REM
7. • WEAK

J-2

These

RELEASE NOTES

J.2 CHANGES -- MACR0-11/RSX VERSION ONLY

1. The cross-reference options SEC and ERR have been added.

NOTE

The RSX-11 CREF program (CRF) has been updated to
include support for these two new macro
cross-reference options. Only the new RSX-11 CRF
version (V2) distributed with RSX-llM V4.l and
RSX-llM-PLUS V2.l should be used with this version of
MACR0-11.

2. The default for the command line option /[-]SP has been
modified from /SP to /-SP. The new default may be modified
by the system manager using the TKB GBLPAT option described
in the MACR0-11/RSX task build command file.

J.3 CHANGES -- MACR0-11/RT-ll VERSION ONLY

1. The message:

Errors detected: 0

has been removed.
terminal only if
being assembled.

MACR0-11 prints this message on the
errors have been detected in the module

2. If the first character in a MACRO-ll/RT-11 command line is a
semicolon (;), the line is treated as a comment and is
ignored. This change was made to maintain compatibility with
the RSX-11 version of MACR0-11.

3. RSX-11 sty~e command line switches may be used in addition to
the one-character switches:

/M may be represented as /M [LIB]
/E may be represented as /E [NABL]
/D may be represented as /D [SABL]
/P may be represented as /P[ASS]
/L may be represented as /L[IST]
/N may be represented as /N [LIST]

4. The default file extension for macro libraries has been
changed to .MLB, to conform with RSX-11. The RT-11 VS LIBR
program defaults its macro library output to the .MLB
extension also.

J-3

HELEASE NOTES

5. Prior to this release of MACR0-11, if you specified more than
one .MLB file on a command line, and each file had a
definition of the same macro, the first macro library
specified would be used for the macro definition if called in
the source program. This has been modified to work like the
RSX-11 macro assembler. The RT-11 macro assembler now scans
.MLB files from the last file specified (either in the
MACR0-11 command line or by using the .LIBRARY directive) to
the first file specified. The assembler then scans the
system default macro library, SY:SYSMAC.SML.

6. The default for the GBL argument has been changed from .DSABL
GBL to .ENABL GBL.

J-4

INDEX

A error, 3-10, 3-13, 5-10, 6-15,
6-25, 6-26, 6-28, 6-29, 6-32,
6-33, 6-38, 6-40, 6-42. 6-44,
6-47, 6-56, 7-2, 7-12 to 7-14,
7-16' 7-1 7' 7-20

Absolute address, D-2
Absolute binary output, 6-19
Absolute expression, 3-17
Absolute mode, 5-1, 5-7,

B-2, G-2, G-4
Absolute module, 6-42
Absolute program section, 6-42 to

6-45, B-4. See also .ASECT
directive

ADD instruction, E-12, G-3: H-2
Addition operator, 3-2, 3-5, B-1
Address boundaries, 6-39
Addressing modes, 5-1
Apostrophe, G-4
ASCII

character set, A-1
conversion characters, 6-23 to

6-26
.ASCII directive, 6-1, 6-21, 6-26

to 6-28, 6-36, B-3
.ASCIZ directive, 6-1, 6-28,

6-36, B-4
.ASECT directive, 3-11, 3-13,

3-14, 6-2, 6-44 to 6-47, B-4
Assembler directives. See Permanent

symbol table
version number, 6-4

Assembly
error.
listing
pass 1,

6-16,
D-3

See A error
symbols, 4-1
1-1, 1-2, 6-12, 6-15,
6-49, 8-10, 8-12,

pass 2, 1-2, 6-12, 6-21, 7-15,
D-3

Assignment operator. See Direct
assignment operator

Assignment statement. See Direct
assignment statement

Autodecrement deferred mode, 5-1,
5-5, B-2, G-1

Autodecrement indicator, 3-2
Autodecrement mode, 5-1, 5-4,

B-1, B-2, G-1
Autoincrement deferred mode, 5-1,

5-4, B-2, G-1

Autoincrement indicator, 3-2
Autoincrement mode, 5-1, 5-3,

B-2, G-1

Base level, E-14
BCC instruction, E-13
BCS instruction, E-14
BEQ instruction, H-2
BGE instruction, E-13
BGT instruction, E-14
BHI instruction, E-14
BHIS instruction, E-13
BIC instruction, E-13
Binary operator, 3-4, 3-5, 3-16
Blank line, 2-1
BLE instruction, E-14
.BLKB directive, 3-14, 6-2, 6-36

to 6-38, B-4, D-3
.BLKW directive, 3-14, 6-2, 6-36,

6-38, 6-48, B-4, D-3
BLO instruction, E-13
BLOS instruction, E-13
BLT instruction, E-13, H-2
BNE instruction, E-10, G-3, H-2
BR instruction, E-10, E-11, G-3
Branch instruction

addressing, 5-9, D-2
use of, E-13

.BYTE directive, 6-2, 6-23, 6-36,
B-4, D-4

C bit, E-9
CALL instruction, H-2
Calling convention, E-8
Character set

ASCII, A-1 to A-3
legal, 3-1 to 3-3
Radix-50, A-5, A-6

CLR instruction, G-3, G-3, H-2
CMP instruction, E-13, H-2
Coding standard, E-1
Comment, E-1, E-5

delimiter, 3-2, B-1, E-12
field, 2-1, 2-4, 2-5, E-1

Commercial instruction set, C-3
Common exit, E-11
Complex relocatable expression,

3-18
Complex relocation, 4-1, G-4

Index-!

Concatenation indicator, 3-3,
B-1, B-3

Conditional assembly, 6-51 to
6-56, 7-8, 7-16, D-4

immediate, 6-56
Conditional assembly block, 7-3,

B-4, B-5
Conditional assembly directive,

6-49
Copyright statement, E-5
.CROSS directive, 6-2, 6-22,

B-4, C-5
Cross-reference listing, 3-12,

6-19, 8-8, 8-9, 8-14, 8-16 to
8-18, 9-2, 9-3, 9-5 to 9-7

.CSECT directive, 3-11, 3-13,
6-2, 6-44 to 6-47, 9-6, B-4

Current location counter, 2-2,
3-2, 3-12 to 3-14, 3-17, 5-8,
6-11, 6-36 to 6-38, 6-43 to
6-44, B-5, B-7, D-2, D-3

D error, 2-3
Data

sharing, 6-45
storage, 6-2
storage directives, 6-23

Default radix, 3-14
Default register definitions,

3-10, 6-21
Deferred addressing indicator,

3-2, B-1
Delimiting characters, 3-3, 6-17,

6-29, B-3 to B-5, B-8
Device register, E-2
Direct assignment

operator, 3-1, 3-2, 3-9, B-1
statement, 3-6 to 3-9, 3-13,

6-37
Directives. See Permanent

symbol table
DIV instruction, H-2
Division operator, 3-2, 3-5, B-1
Double ASCII character indicator,

3-2, B-1
.DSABL directive, 6-2, 6-19 to

6-21, 8-6, 8-8, 9-4, B-4,
D-1

Dummy argument, 7-2, 7-11, 7-17

E error, 6-40
EMT instruction, 5-9, D-4
.ENABL directive, 6-2, 6-19 to

6-21, 8-6, 8-8, 9-4, B-4,
D-1, D-2, D-4, F-2

.END directive, 6-2, 6-40, B-4,
D-3, H-2

.ENDC directive, 6-2, 6-12, 6-53
to 6-56, 6-59, 7-3, B-4

.ENDM directive, 6-13, 6-21, 7-2,
7-3, 7-6 to 7-8, 7-10, 7-11,
7-17 to 7-19, B-4, s~8, F-3

.ENDR directive, 7-19, 7-20, B-5,
B-8

Entry point symbol, 6-52
.ERROR directive, 7-16, B-5, D-4
Error messages, D-1 to D-5
.EVEN directive, 6-2, 6-29, 6-38,

B-5
Expression, evaluation of, 3-16
Expression indicator, immediate,

3-2, B-1
External expression, 3-17
External symbol, 6-52. See also

Global symbol

Field terminator, 3-2, B-1
FILES-11, 6-19
Floating-point directives, B-5.

See also .FLT2 directive
Floating-point indicator, B-3
Floating-point processor, 3-14,

6-34, 6-35, C-4
Floating-point rounding, 6-19,

6-32
Floating-point truncation, 6-19,

6-35 /
.FLT2 directive, 6_;2, 6-35, B-5
.FLT4 directive, 6-2, 6-35, B-5
FLX, 6-19
Forbidden instructions, E-13
Format control, 2-5
Formatted binarv, 6-19
FORTRAN, 6-47, E-15, G-2
Forward reference, 3-8, 3-9,

3 -10 , 3 -1 3 , D- 4
i 11ega1 , D-3

Function control switches. See
Switches, function control

Function directive, 6-18

Global expression evaluation,
3-17

Global label, 6-51
Global reference, 6-21, 6-51,

F-4, G-4
Global symbol, 1-2, 3-7, B-5,

D-2, D-3, E-4
Global symbol definition, 2-2,

3-1, 3-2, 3-8, 6-51. See
also .GLOBL directive

Global symbol directory, 1-2
.GLOBL directive, 3-7, 6-2, 6-51,

B-5, E-4

Hardware register, E-2

I error, 6-28; 6-30
IAS, 6-48, 7-21, 8-14 to 8-17,

8-19 to 8-22, G-1
.IDENT directive, 6-2, 6-16, B-5,

D-2, E-5, E-7, E-15, H-1

Index-2

INDEX

.IF directive, 6-2, 6-12, 6-53 to
6-59, 7-3, 7-8, B-5, D-1, D-2

.IFF directive, 6-2, 6-56 to
6-58, B-5

• IFT directive, 6-2, 6-56 to
6-58, B-5

.IFTF directive, 6-2, 6-56, 6-57,
B-6

.IIF directive, 6-2, 6-59, B-6,
D-1, D-2

Illegal characters, 3-3, D-2, D-3
Illegal forward reference, D-3
Immediate conditional assembly,

6-59
Immediate expression indicator,

3-2, B-1
Immediate mode, 5-1, 5-6, B-2,

G-2, G-4
Implicit eWORD directive, 2-1,

2-4, 6-25
.INCLUDE directive, 6-2, 6-61,

9-8, B-6, C-6
Indefinite repeat block. See

Repeat block, indefinite
Index deferred mode, 5-1, 5-5,

B-2, G-2, G-4
Index mode, 5-1, 5-5, 5-7, B-2,

G-2, G-4
Initial argument indicator, 3-2,

B-1
Initial expression indicator, 3-2
Initial register indicator, 3-2,

B-1
Instruction set

commercial, C-3
PDP-11, C-1

Interrupts, E-12
.IRP directive, 7-2, 7-17 to

7-19, B-6, D-2
.IRPC directive, 7:2, 7-17 to

7-19, B-6, D-2
Item terminator, 3-2, B-1

JMP instruction, 5-3, E-13
JSR in~truction, 5-3, E-9

L error, 2-1
Label

field, 2-1 to 2-3, E-1
multiple definition, 2-3
terminator, 3-1, B-1

.LIBRARY directive, 6-2, 6-60,
9-9, B-6, C-6

.LIMIT directive, 6-3, 6-39, B-6
Line format, E-1
Line printer listing format, 6-5,

6-6, 6-12. See also Listing
control

Linker, 1-2, 2-2, 6-17, 6-43,
6-47, 6-51, F-4, G-1, G-4

Linking, 4-1, 6-40

.LIST directive, 6-3, 6-9 to
6-14, 6-21, 8-6, 8-11,
8-13, 9-4, B-6, D-1

Listing control, 6-4 to 6-14 •
See also .LIST directive,
.NLIST directive

Listing control switches. See
Switches, listing control

Listing level count, 6-9, 6-10,
6-12, B-6, B-7

Local symbol, 3-11, 3-12, 7-8,
7-9, D-4, E-4, F-2

Local symbol block, 3-11, 3-12,
6-20 I D-4, F-2

Location counter. See Current
location counter

Location counter control, 6-34 to
6-36

Logical AND operator, 3-2, 3-5,
6-55, B-1

Loqical inclusive OR operator,
- 3-2, 3-5, 6-55

Logical OR operator, B-1

M error, 2-3, 3-1, 3-2, 3-8
Macro

argument, 7-7, 7-14, 7-15, B-3
argument concatenation, 7-11
attribute directive, 7-12
definition, 6-33, 7-1 to 7-13,

7-15, 7-17, 7-18, 7-20, B-4,
B-6, B-7, E-6, F-2

directive, 7-1, 7-2, 7-4. See
also .MACRO directive

expansion, 7-1, 7-3, 7-5 to
7-7, 7-9, 7-11, 7-17, B-7,
D-4, F-2

expansion listing, 6-9, 6-12
keyword argument, 7-4, 7-10
keyword indicator, 3-1
name, 7-1, 7-2, 7-4, D-4, E-4
nesting, 7-2, 7-3, 7-6, 7-17
numeric argument, 7-7
redefinition, F-3
symbol, 3-6

Macro call, 7-1, 7-4 to 7-11,
7-12, 7-20, B-1, B-6. See
also .MCALL directive

Macro call argument, 7-4
Macro call numeric argument, 3-3
.MACRO directive, 6-13, 6-21, 7-1

to 7-9, 7-10, 7-11, 9-6, B-6,
D-1, F-3

Macro library directive. See
.MCALL directive

Macro symbol table, 3-6, 3-7
MACR0-11 character set. See

Character set, legal
.MCALL directive, 7-20, 8-6,

8-15, 9-5 to 9-6, B-6,
D-4, F-1 to F-3

.MDELETE directive, 7-21, B-7, C-7

Index-3

I Nu EX

Memory
allocation, 6-42, 6-47, F-1,

F-2
conservation, F-1

.MEXIT directive, 7-3, 7-18 to
7-20, B-7

Modularity, 6-44, E-8, F-1
Module checking routine, E-9
Module preface, E-5
Monitor console routine, 8-1, 8-2
MOV instruction, 3-13, 3-14,

6-37, 6-58, D-1, E-13, G-2 to
G-4, H-2

MOVB instruction, H-2
Multiple definition. See M error
Multiple expression, 2-4
Multiple label, 2-2
Multiple symbol, 2-4
Multiplication operator, 3-2,

3-5, B-1

N error, 3-15
Naming standard, E-2
.NARG directive~ 7-8, 7-12, 7-1~,

B-7, D-2
.NCHR directive, 7-12, 7-13, B-7,

D-2
Nested conditional directive,

6-55, 6-58, 7-3
.NLIST directive, 6-3, 6-9 to

6-14, 6-16, 6-21; 8-6; 8-11;
8-13, 9-4, B-7, D-1

.NOCROSS directive, 6-3, 6-22,
B-7, C-6

.NTYPE directive, 7-12, 7-14,
B-7, D-2

Number of arguments. See .NARG
directive

Numeric argument indicator, B-1
Numeric control

operator, 6-33
temporary, 6-36, B-3

Numeric directive, 6-34

O error, 6-40, 6-56, 6-57, 7-4,
7-12, 7-15, 7-21

Object module name, 1-2
.ODD directive, 6-3, 6-37, 6-38,

B-7
Operand field, 2-1, 2-4, E-1
Operand field separator, 3-2, B-1
Operation field, E-1
Operator field, 2-1, 2-3, 2-4
Overlay, 6-42, 6-44

P error, 6-20, 7-16
.PACKED directive, 6-3, 6-31,

6-37, B-7, C-7
.PAGE directive, 6-3, 6-17, 7-4,

B-7

Page
header, 6-4
number, 6-17

Patch, E-15
Permanent symbol table, C-1 to

C-3, 3-6, 3-7
Position-independent code, G-1 to

G-4
.PRINT directive, 7-17, B-7
Processor priority, E-2
Program counter, 5-1, E-2, G-4
Program counter definition, 3-10
Program development system, 8-14
Program module, E-5
Program section directive. See

.PSECT directive
Program section name, 6-41
Program section table, 1-1
Program version number. See

Version identifier, program
Programming standard, E-1
.PSECT directive, 3-12, 3-14,

6-2, 6-3, 6-20, 6-41 to
6-48, 7-9, 9-6, B-7, D-1,
D-2, H-2

Q error, 6-29, 6-34, 6-38

R error, 3-10
,RAD50 directive: fi-3, 6-29,

B-8, H-2
Radix control, 3-15, 6-32, 6-34,

B-8
temporary, 6-31, 6-33, B-3

.RADIX directive, 3-15, 6-3,
6-32, B-8, D-1

Radix-50, 3-5, 6-30, 6-41, B-3,
B-5, B-8 .

character set, A-4
temporary operator, 6-31

Read-only access, 6-41
Read/write access, 6-41
Register

conventions, E-9
definitions, default, 3-10,

6-21
expression, 5-2, B-1
symbol, 3-10, D-4
term indicator, 3-2, B-1

Register deferred mode, 5-1, 5-2,
B-2, G-1

Register mode, 5-1, 5-2, B-2, G-1
Relative deferred mode, 5-1, 5-8,

B-2, G-2, G-4
Relative mode, 5-1, 5-7, 5-8,

B-2, G-2, G-4
Relocatable expression, 3-17
Relocatable module, 6-43
Relocatable program section, 6-44

to 6-47, B-4
Relocation, 4-1, 6-43

Index-4

INDEX

Relocation bias, 2-2, 3-17, 3-18,
4-1, 6-43

.REM directive, 6-3, 6-18, B-8,
C-7

Repeat block
directive. See .REPT directive
indefinite, 7-3, 7-17 to 7-20,

B-4, B-6
.REPT directive, 7-2, 7-17, 7-20,

B-8, D-3
Reserved symbols, 2-3, 3-1, 3-7
.RESTORE directive, 3-11, 3-14,

6-3, 6-20, 6-49, B-8, C-7,
D-3

.RETURN directive, H-2
RSTS, 9-1 to 9-9
RSX run-time system, 9-1, 9-2
RSX-llM, 6-17, 6-41, 6-48, 7-21,

8-1 to 8-13, 8-19 to 8-22,
E-12, F-3, G-1

RSX-llM-PLUS, 8-1 to 8-13, 8-19
to 8-22, G-1

RT-11, 6-17, 6-41, 6-43, 7-21,
9-1 to 9-9

RT-11 run-time system, 9-1

.SAVE directive, 6-3, 6-20, 6-49,
6-50, B-8, C-7, D-3

.SBTTL directive, 6-3, 6-4, 6-15,
B-8, H-2

Separating characters, 3-3
Sequence number, 6-19
Single ASCII character indicator,

3-3, B-1, B-3
Source line format, 2-5
Source line terminator, B-1
Special characters, 3-1 to 3-3,

7-7
Stack pointer, E-2

definition, 3-10
Statement format, 2-1
SUB instruction, E-13
Subconditional assembly, 6-56 to

6-59
Subtraction operator, 3-2, 3-5,

B-1
Success/failure indicator, E-9
Switches

file specification, 8-6
function control, 8-6, 9-4
listing control, 8-6, 8-7,

9-4
Symbol name syntax, E-3
Symbol table, 1-1, 1-2, F-1
Symbolic argument, 6-41
SYSLIB, F-4
System macro library, 1-1, 7-20,

8-4, 8-14, 9-3, 9-5. See
also .MCALL directive

T error, 3-15, 6-24
Table of contents, 6-12, 6-16,

B-8
Task builder. See Linker
Teleprinter listing format, 6-7,

6-13. See also Listing
control

Temporary numeric control. See
Numeric control, temporary

Temporary radix control. See
Radix control, temporary

Temporary Radix-50 operator, 6-31
Term, definition of, 3-15
Terminal argument indicator, 3-2,

B-1
Terminal expression indicator,

3-2
Terminal register indicator, 3-2,

B-1
Terminating directive. See .END

directive
Thrashing, F-1
.TITLE directive, 6-3, 6-4, 6-13,

6-15, 6-21, B-8, D-2, E-5,
E-7, E-16, H-1

TRAP instruction, 5-9, D-4
TST instruction, E-10, E-11, H-2

U error, 3-8, 3-9, 3-15, 6-21,
7-21, 8-7, 8-9, 8-15

Unary operator, 3-4, 3-16, 7-5,
7-7

control, 6-32, 6-34
universal, 3-3, 3-5, B-1

Unconditional assembly, 6-56
Undefined symbol, 3-8, 6-21, D-2,

D-4. See also U error
Universal unary operator. See

Unary operator, universal
Upper-case ASCII, 6-19
User-defined symbol, 3-6 to 3-8
User-defined symbol table, 2-2,

3-6 to 3-8, 3-15

Version identifier
assembler, 6-4
file, 8-20
program, 6-17, B-5
standard, c-~q to ~io. See also

.!DENT directive

.WEAK directive, 6-3, 6-52, B-8,
C-7

.WORD directive, 3-13, 3-14, 6-3,
6-24, 6-34, 6-36, B-8. See
also Implicit .WORD directive

Z error, 5-3

Index-5

From

Chicago

San Francisco

Alaska, Hawaii

New Hampshire

Rest of U.S.A.,
Puerto Rico*

HOW TO ORDER
ADDITIONAL DOCUMENTATION

Call

312-640-5612
8:15 A.M. to 5:00 P.M. CT

408-734-4915
8:15 A.M. to 5:00 P.M. PT

603-884-6660
8:30 A.M. to 6:00 P.M. ET

or 408-734-4915
8:15 A.M. to 5:00 P.M. PT

603-884-6660
8:30 A.M. to 6:00 P.M. ET

1-800-258-1710
8:30 A.M. to 6:00 P.M. ET

Write

Digital Equipment Corporation
Accessories & Supplies Center
1050 East Remington Road
Schaumburg, IL 60195

Digital Equipment Corporation
Accessories & Supplies Center
632 Caribbean Drive
Sunnyvale, CA 94086

Digital Equipment Corporation
Accessories & Supplies Center
P.O. Box CS2008
Nashua, NH 03061

*Prepaid orders from Puerto Rico must be placed with the local DIGITAL subsidiary (call 80~754-7575)

Canada
British Columbia

Ottawa-Hull

Elsewhere

Elsewhere

1-800-267-6146
8:00 A.M. to 5:00 P.M. ET

613-234-7726
8:00 A.M. to 5:00 P.M. ET

112-800-267-6146
8:00 A.M. to 5:00 P.M. ET

Digital Equipment of Canada Ltd
940 Belfast Road
Ottawa, Ontario K1G 4C2
Attn: A&SG Business Manager

Digital Equipment Corporation
A&SG Business Manager*

*clo DIGITAL's local subsidiary or approved distributor

READER'S COMMENTS

PDP-11 MACR0-11
Language Reference

Manual
AA-V027A-TC

NOTE: This form is for document comments only. DIGITAL will use comments submitted on this form at the
company's discretion. If you require a written reply and are eligible to receive one under Software
Performance Report (SPR) service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well organized? Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

Assembly language programmer
Higher-level language programmer
Occasional programmer (experienced)
User with little programming experience
Student programmer
Other (please specify)-----------------------------

Organization--------------------Telephone ---------------

Street---~

CitY----------------------- State ------Zip Code ______ _
or Country

Do Not Tear - Fold Here and Tape - - - - - - - - - - - - -

Do Not Tear - Fold Here

11111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT N0.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

SSG/ML PUBLICATIONS, ML05-5/E45
DIGITAL EQUIPMENT CORPORATION
146 MAIN STREET
••Av ... aion ••A ft"41'7CA
ml"\ I l'tl"t.nlJ, IYlr'l v I I -.l"T

No Postage
Necessary

if Mai led in the
United States

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	2-05
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	4-01
	4-02
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	6-34
	6-35
	6-36
	6-37
	6-38
	6-39
	6-40
	6-41
	6-42
	6-43
	6-44
	6-45
	6-46
	6-47
	6-48
	6-49
	6-50
	6-51
	6-52
	6-53
	6-54
	6-55
	6-56
	6-57
	6-58
	6-59
	6-60
	6-61
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	8-21
	8-22
	9-01
	9-02
	9-03
	9-04
	9-05
	9-06
	9-07
	9-08
	9-09
	A-01
	A-02
	A-03
	A-04
	A-05
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	D-01
	D-02
	D-03
	D-04
	D-05
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	E-11
	E-12
	E-13
	E-14
	E-15
	E-16
	F-01
	F-02
	F-03
	F-04
	G-01
	G-02
	G-03
	G-04
	H-01
	H-02
	H-03
	I-01
	J-01
	J-02
	J-03
	J-04
	index-01
	index-02
	index-03
	index-04
	index-05
	index-06
	replyA
	replyB

