
RSX-11 M/M-PLUS
Executive Reference Manual
Order No. AA-L67.5A-TC

RSX-11 M Version 4.0

RSX-11 M-PLUS Version 2.0

digital equipment corporation · maynard, massachusetts

First Printing, May 1979
Revised, November 1981

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright @) 1979, 1981 by Digital Equipment Corporation
All Rights Reserved.

Printed in U.S.A.

The postage-paid READER'S COMMENTS form on the last
document requests the user's critical evaluation
preparing future documentation.

page of this
to assist us in

The following are trademarks of Digital Equipment Corporation:

DEC
DEC US
DIGITAL
PDP
UNIBUS
VAX
DECnet

DECsystem-10
DECSYSTEM-20
DECwriter
DIBOL
Edusystem
IAS
MASSBUS

PDT
RSTS
RSX
VMS
VT

ZK-2054-81

CONTENTS

Page

PREFACE ix

SUMMARY OF TECHNICAL CHANGES xi

CHAPTER 1

1.1
1. 2
1. 3
1. 4
1. 4.1
1.4.1.1
1.4.1.2
1.4.1.3
1. 4. 2
1. 4. 3
1. 4. 4
1.4.5
1. 5
1. 5.1
1.5.1.l
1.5.1.2
1.5.1.3
1.5.1.4
1. 5. 2
1. 5 .. 3
1. 5. 4
1.6
1. 6.1
1. 6. 2
1. 7
1. 8
1. 9

CHAPTER 2

2.1
2.2
2.3
2.3.1
2.3.2
2.3.3
"I ") A
.c. • ..) • "%

2.4

USING SYSTEM DIRECTIVES

INTRODUCTION • • • • • • • • •
DIRECTIVE PROCESSING •
ERROR RETURNS • • • •
USING THE DIRECTIVE MACROS •

Macro Name Conventions • •

. 1-1
• • 1-2

. • • • . 1-3
• 1-4

• • • 1-5
$ Form • • •
$C Form

. 1-5
. . • • • 1-6

$S Form
DIR$ Macro •
Optional Error Routine Address •
Symbolic Offsets •••
Examples of Macro Calls

FORTRAN SUBROUTINES • • • • • • • •
Subroutine Usage • •

Optional Arguments • • • • •
Task Names • • • • • • • • • •
Integer Arguments • • • • • • • •
GETADR Subroutine • • • • • • • •

The Subroutine Calls • • • • • •
Error Conditions •••
AST Service Routines • • • • •

TASK STATES • • • • • •

• 1-6
• • 1-6

• 1-7
• 1-7

1-8
. • . • . 1-9

• 1-9
• • • • 1-10
• • • • 1-10

1-11
• • • • • 1-11

1-11
1-16
1-16

Task State Transitions • • • • •••
1-17
1-18
1-20
1-20
1-20
1-21

Removing an Installed Task • • • •
THE GENERAL INFORMATION DIRECTIVE • • • • •
DIRECTIVE RESTRICTIONS FOR NONPRIVILEGED TASKS •
RSX-llM-PLUS • • • • • • • • • • • • • • • • • •

SIGNIFICANT EVENTS, SYSTEM TRAPS, AND STOP-BIT
SYNCHRONIZATION

• 2-1 SIGNIFICANT EVENTS • • • • •
EVENT FLAGS • • 2-2
SYSTEM TRAPS • • • • • • • •

Synchronous System Traps {SSTs)
SST Service Routines • • • • • • •
Asynchronous System Traps {ASTs) • • • •
AST Service Routines •

STOP-BIT SYNCHRONIZATION • • • • •

iii

• 2-4
• 2-4

• • 2-5
• 2-6
• 2-7
2-11

CHAPTER 3

3.1
3.1.1
3.1. 2
3 .1. 3
3e 1. 4
3.2
3.3
3.3.1
3.3.2
3.3.3
3.4
3.4.1
3.4.2
3.4.3
3.4.4
3.4.5
3.4.6
3.4.7
3.4.8
3.4.9
3.4.10
3.4.11
3.5
3.5.1
3.5.1.1
3.5.1.2
3.5.2
3.5.2.1
3.5.2.2
3.5.3
3.6

CHAPTER 4

4.1
4.2
4.2.1
4.2.2
4.3
4.4
4.4.1
4.4.2
4.4.2.1
4.4.2.2
4.4.2.3

CHAPTER 5

5.1
5.1.1
5.1. 2
5.1. 3
5.1.4
5.1. 5
5.1. 6

5.1.7
5.1. 8
5.1. 9

CONTENTS
Page

MEMORY MANAGEMENT DIRECTIVES

ADDRESSING CAPABILITIES OF AN RSX-llM TASK • • 3-1
Address Mapping • • • • • • • • • • 3-2
Virtual and Logical Address Space ••••••• 3-2
Supervisor-Mode Addressing • • • • • 3-2
Mapping Structure of I- and D-Space Tasks • 3-3

VIRTUAL ADDRESS WINDOWS • • • • • • • • • • • • • 3-3
REGIONS • • • • • • • • • • • 3-5

Shared Regions • • • • • • • • • • • • • • • 3-6
Attaching to Regions •••••••••••••• 3-6
Region Protection ••••••••••••• 3-9

DIRECTIVE SUMMARY • • • • • . • • • • • • • 3-9
Create Region Directive (CRRG$) 3-10
Attach Region Directive (ATRG$) • • • • 3-10
Detach Region Directive (DTRG$) • • • • • 3-10
Create Address Window Directive (CRAW$) 3-10
Eliminate Address Window Directive (ELAW$) 3-10
Map Address Window Directive (MAP$) 3-10
Unmap Address Window Directive (UMAP$) 3-10
Send By Reference Directive (SREF$) 3-10
Receive By Reference Directive (RREF$) 3-11
Get Mapping Context Directive (GMCX$) • • • • 3-11
Get Region Parameters Directive (GREG$) 3-11

USER DATA STRUCTURES • • • • • • • • • • • • • • 3-11
Region Definition Block (RDB) 3-12

Using Macros to Generate an RDB • • • • 3-13
Using FORTRAN to Generate an RDB 3-15

Window Definition Block (WDB) • • • • 3-15
Using Macros to Generate a WDB • • • 3-17
Using FORTRAN to Generate a WDB • • • • • • 3-19

Assigned Values or Settings 3-20
PRIVILEGED TASKS • • • • • • • • • • • 3-20

PARENT/OFFSPRING TASKING

PARENT/OFFSPRING TASKING SUPPORT OVERVIEW • • 4-1
DIRECTIVE SUMMARY • • • • • • • • • • • 4-1

Parent/Offspring Tasking Directives
Task Communication Directives •••••

• 4-1
4-2
4-3

• • 4-5
4-5

• • 4-5

CONNECTING AND PASSING STATUS • • • • •
SPAWNING SYSTEM TASKS • • • • • • • • •

Spawning a Command Line Interpreter
Spawning a Utility •••••••••

Spawning a Utility under RSX-llM ••
Spawning a Utility under RSX-llM-PLUS
Passing Command Lines to Utilities ••

DIRECTIVE DESCRIPTIONS

• • • 4-5
• • • • 4-6

• 4-6

DIRECTIVE CATEGORIES • • • • • • • •
Task Execution Control Directives

• • • • • 5-1
• • 5-1

Task Status Control Directives ••
Informational Directives •••••••
Event-Associated Directives
Trap-Associated Directives ••

• • • • • 5-2

I/0- and Intertask Communications-Related
Directives ••••••••••••••
Memory Management Directives ••••
Parent/Offspring Tasking Directives
RSX-llM-PLUS Directives •.••••.

iv

• • 5-2
• • 5-2

• • • • 5-3

• • • 5-3
5-3

• • • 5-4
• • 5-4

5 .1.10
5.2
5.3
5.3.1
5.3.2
5.3.3
5.3.4
5.3.5
5.3.6
5.3.7
5.3.8
5.3.9
5.3.10
5.3.ll
5.3.12
5.3.13
5.3.14
5.3.15
5.3.16
5.3.17

5.3.18
5.3.19
5.3.20
5.3.21
5.3.22
5.3.23
5.3.24
5.3.25
5.3.26
5.3.27
5.3.28
5.3.29
5.3.30
5.3.31
5.3.32
5.3.33
5.3.34
5.3.35
5.3.36
5.3.37
5.3.38
5.3.39
5.3.40
5.3.41
5.3.42
5.3.43
5.3.44
5.3.45
5.3.46
5.3.47
5.3.48
5.3.49
5.3.50
5.3.51
5 .. 3 .. 52
5.3.53
5.3.54
5.3.55
5.3.56
5.3.57
5.3.58
5.3.59

CONTENTS
Page

CLI Support Directives • • • • • • • • • • 5-5
DIRECTIVE CONVENTIONS • • • • • • • • • • • • 5-5
SYSTEM DIRECTIVE DESCRIPTIONS • • • 5-6

Abort Task • • • • • • • 5-8
Alter Priority • • • • • • 5-10
Assign LUN • • • • • • • • • • • • 5-12
AST Service Exit ($S form recommended) • • • • 5-14
Attach Region • • • • 5-16
Connect to Interrupt Vector 5-18
Clear Event Flag • • • • • • • • • • • 5-28
Cancel Mark Time Requests 5-29
Connect • • • • • • • • • • • • 5-31
Checkpoint Common Region • 5-34
Create Address Window 5-36
Create Group Global Event Flags • • • • 5-40
Create Region • • • • • • • • • • • • • 5-42
Create Virtual Terminal • • • • • • • 5-45
Cancel Time Based Initiation Requests • • 5-51
Declare Significant Event {$S Form Recommended) 5-52
Disable (or Inhibit) AST Recognition ($S Form
Recommended) • • • • • • • • • • • • • • • • • 5-53
Disable Checkpointing ($S Form Recommended) 5-55
Detach Region • • • • • • • • • • • • • • • • 5-56
Eliminate Address Window • • • • • • 5-58
Eliminate Group Global Event Flags • 5-60
Eliminate Virtual Terminal • 5-62
Emit Status • • • • • • • • • • • • 5-64
Enable AST Recognition ($S Form Recommended) • 5-65
Enable Checkpointing ($S Form Recommended) 5-66
Exit If • • • • • • • • • • • • • • • • • 5-67
Task Exit ($S Form Recommended) 5-69
Exit With Status • • • • • • • • • 5-71
Extend Task • • • • • • • • • • • • 5-73
Get Command for Command Interpreter 5-75
Get Command Interpreter Information • • • • • 5-79
Get LUN Information • • • • • • • 5-81
Get MCR Command Line • • • • • • 5-84
Get Mapping Context • • • • • • • • 5-86
Get Partition Parameters • • 5-89
Get Region Parameters 5-91
Get Sense Switches ($S Form Recommended) 5-93
Get Time Parameters 5-95
Get Task Parameters • • • • • • • • 5-97
Map Address Window • • • • • • • • • • • • • • 5-100
Mark Time • • • • • • • • • • • 5-103
Map Supervisor D-Space • 5-107
Move To/From User/Supervisor I/D-Space • • • • 5-110
Queue I/O Request • • • • • • • • • • • 5-112
Queue I/O Request and Wait • • •• 5-116
Receive Data Or Stop • • • • • • • • 5-118
Receive Data • • • • • ••••••• 5-120
Receive Data Or Exit • • •••• 5-122
Read All Event Flags • • • • • • • • 5-125
Read Event Flag • • • • • • • • • • • • • 5-126
Read Extended Event Flags • • • • • • • • • • 5-127
Remove Affinity ($8 Form Recommended) 5-128
Request and Pass Offspring Information • • 5-129
Request Task • • • • • • • • • • • • • • • • • 5-133
Receive By Reference • • • • • • 5-136
Resume Task • • • • • • • • • 5-139
Run Task • • • • • • • • • • • • • • • • • • • 5-140
Specify Command Arrival AST • • • • • • 5-145
Supervisor Call ($S Form Recommended) • 5-146

v

5.3.60
5.3.61
5.3.62
5.3.63

5.3.64
5.3.65
5.3.66
5.3.67
5.3.68
5.3.69
5.3.70
5.3.71
5.3.72
5.3.73

5.3.74
5.3.75
5.3.76
5.3.77
5.3.78
5.3.79
5.3.80
5.3.81
5.3.82
5.3.83

5.3.84
5.3.85
5.3.86
5.3.87
5.3.88
5.3.89
5.3.90
5.3.91

5.3.92
5.3.93

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

INDEX

CONTENTS

Set Command Line Interpreter • • • • •
Send Data • • • • • • • • • • • • •
Send, Request and Connect ••••••
Send Data Request and Pass Offspring Control

Page

• 5-148
5-150

• 5-152

Block • • • • • • •••• 5-155
Set Event Flag • • • • • • • • • 5-159
Specify Floating Point Processor Exception AST 5-160
Send Message • • • • • • • • • • • • • • • 5-162
Send Next Command • • • • • • • • • 5-165
Specify Parity Error AST • • • • • 5-167
Suspend ($S Form Recommended) • • • • • 5-169
Specify Power Recovery AST • • • • • • 5-170
Spawn • • • • • • • • • • • • • • 5-172
Specify Receive Data AST • • • • • • •• 5-182
Specify Requested Exit AST Directive - SREA$
or SREX$ • • • • • • • • • • • • •
Send by Reference • • • • •
Specify Receive-by-Reference AST •
Set Affinity ••••••••
Set System Time Directive ••.•
Stop For Logical OR Of Event Flags •
Stop ($S Form Recommended) •
Stop For Single Event Flag •
Specify SST Vector Table For Debugging Aid •
Specify SST Vector Table For Task
Unlock Group Global Event Flags ($S Form
Recommended) • • • • • ••••
Unmap Address Window • •
Unstop Task • • • • •
Variable Receive Data • • • •

• 5-184
• 5-188
• 5-191
• 5-193
• 5-195
• 5-198
• 5-200
• 5-201
• 5-202
• 5-204

• 5-206
• 5-207
• 5-209
• 5-210

Variable Receive Data Or Stop
Variable Receive Data Or Exit ••••
Variable Send Data ••••

• • 5-212
• 5-214

• • • • • 5-216
• 5-218 Variable Send, Request and Connect

Wait For Significant Event ($S Form
Recommended) •••••••.
Wait For Logical OR Of Event Flags •••
Wait For Single Event Flag •

5-221
• 5-223
• 5-225

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL

STANDARD ERROR CODES

DIRECTIVE IDENTIFICATION CODES

RSX-11 SYSGEN SELECTION OF EXECUTIVE DIRECTIVES

vi

FIGURE 1-1

TABLE

1-2
3-1
3-2
3-3
3-4
3-5

1-1

CONTENTS
Page

FIGURES

Directive Parameter Block (DPB) Pointer on the
Stack • • • • • • • • • • • • • • • • • 1-4
Directive Parameter Block {DPB) on the Stack • 1-4
Virtual Address Windows •• 3-5
Region Definition Block • • • • • • • • • • 3-7
Mapping Windows to Regions •••••••••• 3-8
Region Definition Block • • • • • • • • • 3-13
Window Definition Block • • • • 3-17

TABLES

FORTRAN Subroutines and Corresponding Macro Calls 1-12

vii

PREFACE

MANUAL OBJECTIVES

The RSX-llM/M-PLUS Executive Reference Manual describes the system
a1rec~1ves that allow experienced MACR0-11 and FORTRAN programmers to
use Executive services to control the execution and interaction of
tasks.

INTENDED AUDIENCE

The intended audience for this manual are software developers who are
experienced users of MACR0-11 or FORTRAN for user task generation.
Information contained in this manual is intended for reference only;
no attempt is made to describe the procedures involved in developing
user tasks beyond the detailed reference information normally required
for directive use. However, Chapters 1 through 4 do contain much
information that will aid in better understanding how directives can
be effectively used in the RSX-llM/M-PLUS multitasking environment.
Convenient quick-reference material is included in appendixes at the
end of the manual for use by the more advanced RSX-llM/M-PLUS
programmer.

STRUCTURE OF THIS DOCUMENT

A Summary Of Technical Changes provides the experienced RSX-llM
/RSX-llM-PLUS user with a quick summary of changes to system software
since the previous version of this manual. Comments are general and
serve only as a guide to areas of change.

Chapter 1 defines system directives and describes their use in both
MACR0-11 and FORTRAN programs.

Chapter 2 defines significant events, event flags, system traps, and
stop-bit synchronization, and describes their relationship to system
directives.

Chapter 3 introduces the concept of extended logical address space
within the framework of memory management directives.

Chapter 4 introduces
including associated
communications.

the concept of parent/offspring tasking,
directives, generated data structures, and task

Chapter 5 contains a short summary of all directives, arranged
according to their functional categories. The summary is followed by
detailed descriptions of each system directive arranged alphabetically
according to macro call.

ix

PREFACE

Appendix A contains directives arranged alphabetically according to
macro call. Abbreviated specifications include directive name,
FORTRAN call, macro call, and parameters only.

Appendix B lists the standard error codes returned by the RSX-llM or
RSX-llM-PLUS Executive.

Appendix C lists Directive Identification Codes for all directives in
the same octal values that they have in the Directive Parameter Block.
A description of how the values are obtained is included.

Appendix D lists all directives, the operating systems where the
individual directives are available (RSX-llS, RSX-llM, or
RSX-llM-PLUS), and the SYSGEN option required (if applicable) to
obtain that directive support.

ASSOCIATED DOCUMENTS

Manuals that are prerequisite sources of information for readers of
this manual are: the RSX-llM/M-PLUS Task Builder Manual and the
PDP-11 MACR0-11 Language Reference Manual, the IAS/RSX-11 FORTRAN IV
User's Guide, or the FORTRAN-77 User's Guide.

Other documents related to the contents of this manual are described
briefly in the appropriate documentation directory supplied with the
software kit.

CONVENTIONS USED IN THIS DOCUMENT

Whenever necessary, information that is applicable to a specific
operating system (RSX-llM or RSX-llM-PLUS) is clearly indicated. In
addition, for ease of reference, those portions of text that apply to
RSX-llM-PLUS only are indicated by background shading on the printed
page.

x

SUMMARY OF TECHNICAL CHANGES

This revision of the RSX-llM/M-PLUS Executive Reference Manual
contains changes and additions to document two operating
systems: RSX-llM V4.0 and RSX-llM-PLUS V2.0.

The following new directives have been added to both RSX-llM and
RSX-llM-PLUS:

Request and Pass Offspring Information
Send, Request and Pass Offspring Control Block
Set System Time
Unlock Group Global Event Flags

The following directives that were formerly specific to RSX-llM-PLUS
are now common to both operating systems:

Send, Request and Connect
Specify Requested Exit AST

There are also four new directives that support alternate Command Line
Interpreters. These CLI support directives are common to both
operating systems:

Get Command for Command Line Interpreter
Get Command Interpreter Information
Set Command Line Interpreter
Specify Command Arrival AST

The description of the Spawn directive now includes an example that
shows how to use parent/offspring tasking to provide AST service
routines in FORTRAN. Guidelines for coding FORTRAN AST service
routines are included in Chapter 1.

xi

CHAPTER 1

USING SYSTEM DIRECTIVES

This chapter describes the use of system directives and the ways in
which they are processed. Some of the Executive services described in
this manual are optional RSX-llS, RSX-llM, or RSX-llM-PLUS features
and may not be present in the system you are currently using. The
discussion of the system directives assumes that all possible features
are present in your system. See the appropriate system generation
manual for a list of optional features.

1.1 INTRODUCTION

When a task requests the Executive to perform an indicated operation,
this process is called a system directive. You use the directives to
control the execution and interaction of tasks. If you are a MACR0-11
programmer, you usually issue directives in the form of macros defined
in the system macro library. If you are a FORTRAN programmer, issue
system directives in the form of calls to subroutines contained in the
system object module library.

System directives enable tasks to:

• Obtain task and system information

• Measure time intervals

• Perform I/O functions

• Spawn other tasks

• Communicate and synchronize with other tasks

• Manipulate a task's logical and virtual address space

• Suspend and resume execution

• Exit

Directives are implemented by the EMT 377 instruction. EMT 0 through
EMT 376 (or 375 for unmapped tasks and mapped privileged tasks) are
considered to be non-RSX EMT synchronous system traps. They cause the
Executive to abort the task unless the task has specified that it
wants to receive control when such traps occur.

If you are a MACR0-11 programmer, use the system directive macros
supplied in the system macro library for directive calls, rather than
hand-coding calls to directives. Then you need only reassemble the
program to incorporate any changes in the directive specifications.

Sections 1.2, 1.3, and 1.6 are intended for all users. Section 1.4
specifically describes the use of macros, while Section 1.5 describes

1-1

USING SYSTEM DIRECTIVES

the use of FORTRAN subroutine calls. Programmers using other
supported languages should refer to the appropriate language reference
manual supplied by DIGITAL.

1.2 DIRECTIVE PROCESSING

Processing a system directive involves four steps:

1. The user task issues a directive with arguments that are only
used by the Executive. The directive code and parameters
that the task supplies to the system are known as the
Directive Parameter Block (DPB). The DPB can be either on
the user task's stack or in a user task's data section.

2. The Executive receives an EMT 377 generated by the directive
macro (or a DIR$ macro) or FORTRAN subroutine.

3. The Executive processes the directive.

4. The Executive returns directive status information to the
task's Directive Status Word (DSW).

Note that the Executive preserves all task registers when a task
issues a directive.

The user task issues an EMT 377 (generated by the directive) together
with the address of a DPB or a DPB itself, on the top of the issuing
task's stack. When the stack contains a DPB address, the Executive
removes the address after processing the directive, and the DPB itself
remains unchanged. When the stack contains the actual DPB rather than
a DPB address, the Executive removes the DPB from the stack after
processing the directive.

The first word of each DPB contains a Directive Identification Code
(DIC) byte, and a DPB size byte. The DIC indicates which directive is
to be performed; the size byte indicates the DPB length in words.
The DIC is in the low-order byte of the word, and the size is in the
high-order byte.

The DIC is always an odd-numbered value. This allows the Executive to
determine whether the word on the top of the stack (before EMT 377 was
issued) was the address of the DPB (even-numbered value) or the first
word of the DPB (odd-numbered value).

The Executive normally returns control to the instruction following
the EMT. Exceptions to this are directives that result in an exit
from the task that issued them and an Asynchronous System Trap (AST)
exit.

The Executive also clears or sets the Carry bit in the Processor
Status Word {PSW) to indicate acceptance or rejection, respectively,
of the directive. The DSW, addressed symbolically as $Dswl, is set to
indicate a more specific cause for acceptance or rejection of the
directive. The DSW usually has a value of +l for acceptance and a
range of negative values for rejection {exceptions are success return
codes for the directives CLEF$, SETF$, and GPRT$, among others).
RSX-llM/M-PLUS associate DSW values with symbols, using mnemonics that
report either successful completion or the cause of an error (see

1. The Task Builder resolves the address of $DSW. Users addressing
the DSW with a physical address are not guaranteed compatibility with
IAS and may experience incompatibilities with future RSX-llM releases.

1-2

USING SYSTEM DIRECTIVES

Section 1.3). (The Instrument Society of America (ISA) FORTRAN calls
CALL START and CALL WAIT are exceptions, since ISA requires positive
numeric error codes. See Sections 5.3.57 and 5.3.41 for details; the
specific return values are listed there with each directive.)

In the case of successful Exit directives, the Executive does not, of
course, return control to the task. If an Exit directive fails,
however, control is returned to the task with an error status in the
DSW.

On Exit, the Executive frees task resources as follows:

• Detaches all attached devices

• Flushes the AST queue and despecifies all specified ASTs

• Flushes the receive and receive-by-reference queues

• Flushes the clock queue for outstanding Mark Time requests for
the task

• Closes all open files (files open for write access are locked)

• Detaches all attached regions except in the case of a fixed
task, where no detaching occurs

• Runs down the task's I/O

• Deaccesses the group global event flags for the task's group

• Disconnects from interrupts

• Flushes all outstanding CLI command buffers for the task

• Breaks the connection with any offspring tasks

• Frees the task's memory if the task was not fixed

If the Executive rejects a directive,
any specified event flag. Thus, the
indiscriminately executes a Wait For
previously issued Mark Time directive
You should always ensure that a
successfully.

1.3 ERROR RETURNS

it usually does not clear or set
task may wait indefinitely if it
directive corresponding to a

that the Executive has rejected.
directive has been completed

As stated above, RSX-llM/M-PLUS associate the error codes with
mnemonics that report the cause of the error. In the text of the
manual, the mnemonics are used exclusively. The macro DRERR$, which
is expanded in Appendix B, provides a correspondence between each
mnemonic and its numeric value.

Appendix B also gives the meaning of each error code. In
each directive description in Chapter 5 contains
directive-related interpretations of the error codes.

1-3

addition,
specific,

USING SYSTEM DIRECTIVES

1.4 USING THE DIRECTIVE MACROS

If you are programming in MACR0-11, you must decide how to create the
DPB before you issue a directive. The DPB may either be created on
the stack at run time (see Section 1.4.1.3, which describes the $S
form, of directive) or created in a data section at assembly time (see
Sections 1.4.1.1 and 1.4.1.2, which describe the $ form and $C form,
respectively). If parameters vary and the code must be reentrant, the
DPB must be created on the stack.

Figures 1-1 and 1-2 illustrate the alternative directives and also
show the relationship between the stack pointer and the DPB.

MOV
EMT

SP----

ADDR,-(SP)
377

ADDRESS OF DPB

STACK
GROWTH

l

SIZE

DPB
ITEMS

I DIC

DPB

INCREASING
MEMORY
ADDRESSES

ZK-305-81

Figure 1-1 Directive Parameter Block (DPB) Pointer on the Stack

MOV XX,-(SP)
PUSH REQUIRED
DPB ITEMS ON THE
STACK IN
REVERSE ORDER

MOV
.BYTE
EMT

(PC)+,-(SP)
D!C,SIZE
377

SP----

DPB
ITEMS

SIZE I
STACK

GROWTH

l

DIC
INCREASING
MEMORY

I ADDRESSES

ZK-306-81

Figure 1-2 Directive Parameter Block (DPB) on the Stack

1-4

USING SYSTEM DIRECTIVES

1.4.1 Macro Name Conventions

When you are programming in MACR0-11, you use system directives by
including directive macro calls in your programs~ The macros for the
RSX-llM directives are contained in the System Macro Library
(LB: [l,l]RSXMAC.SML). The .MCALL assembler directive makes these
macros available to a program. The .MCALL arguments are the names of
all the macros used in the program. For example:

CALLING DIRECTIVES FROM THE SYSTEM MACRO LIBRARY
AND ISSUING THEM •

• MCALL MRKT$S,WTSE$S

Additional .MCALLs or code

MRKT$S
WTSE$S

#1,#1,#2,,ERR
#1

;MARK TIME FOR 1 SECOND
;WAIT FOR MARK TIME TO COMPLETE

Macro names consist of up to four letters, followed by a dollar sign
($) and, optionally, a C or an S. The optional letter or its absence
specifies which of three possible macro expansions the programmer
wants to use.

1.4.1.1 $ Form - The $ form is useful for a directive operation that
is to be issued several times from different locations in a
non-reentrant program segment. The $ form is most useful when the
directive is issued several times with varying parameters (one or more
but not all parameters change), or in a reentrant program section when
a directive is issued several times even though the DPB is not
modified. This form produces only the directive's DPB, and must be
issued from a data section of the program. The code for actually
executing a directive that is in the $ form is produced by a special
macro, DIR$ (discussed in Section 1.4.2).

Because execution of the directive is separate from the creation of
the directive's DPB:

1. A $ form of a given directive needs to be issued only once
(to produce its DPB).

2. A DIR$ macro associated with a given directive can be issued
several times without incurring the cost of generating a DPB
each time it is issued.

3. It is easy to access and change the directive's parameters by
labeling the start of the DPB and using the offsets defined
by the directive.

When a program issues the $ form of macro call, the parameters
required for DPB construction must be valid expressions for MACR0-11
data storage instructions (such as .bYTE, .WORD, and .RADSO). You can
alter individual parameters in the DPB. You might do this if you want
to use the directive many times with varying parameters.

1-5

USING SYSTEM DIRECTIVES

1.4.1.2 $C Form - Use the $C form when a directive is to be issued
only once. The $C form eliminates the need to push the DPB (created
at assembly time) onto the stack at run time. Other parts of the
program, however, cannot access the DPB because the DPB address is
unknown. (Note, in the $C form macro expansion of Section 1.4.5, that
the new value of the assembler's location counter redefines the DPB
address $$$ each time an additional $C directive is issued.)

The $C form generates a DPB in a separate p-sectionl called $DPB$$.
The DPB is first followed by a return to the user-specified p-section,
then by an instruction to push the DPB address onto the stack, and
finally by an EMT 377. To ensure that the program reenters the
correct p-section, you must specify the p-section name in the argument
list immediately following the DPB parameters. If the argument is not
specified, the program reenters the blank (unnamed) p-section.

This form also accepts an optional final argument that specifies the
address of a routine to be called (by a JSR instruction) if an error
occurs during the execution of the directive (see Section 1.4.2).

When a program issues the $C form of a macro call, the parameters
required for DPB construction must be valid expressions for MACR0-11
data storage instructions (such as .BYTE, .WORD, and .RAD50). (This
is not true for the p-section argument and the error routine argument,
which are not part of the DPB.)

1.4.1.3 $S Form - Program segments that need to be reentrant should
use the $S form. Only the $S form produces the DPB at run time. The
other two forms produce the DPB at assembly time.

In this form, the macro produces code to push a DPB onto the stack,
followed by an EMT 377. In this case, the parameters must be valid
source operands for MOV-type instructions. For a 2-word Radix-50 name
parameter, the argument must be the address of a 2-word block of
memory containing the name. Note that you should not use the Stack
Pointer (or any reference to the Stack Pointer) to address directive
parameters when the $S form is used.2 (In the example in Section
1.4.1, the error routine argument ERR is a target address for a JSR
instruction; see Section 1.4.3.)

Note that in the $S form of
processed from right to left.

the macro, the macro arguments are
Therefore, when using code of the form:

MACRO$S,,(R4)+, (R4)+

the result may be obscure.

1.4.2 DIR$ Macro

The DIR$ macro allows you to execute a directive with a DPB predefined
by the $ form of a directive macro. This macro pushes the DPB address
onto the stack and issues an EMT 377 instruction.

1. Refer to the PDP-11 MACR0-11 Language Reference Manual for a
description of p-sections (program sections).

2. Subroutine or macro calls can use the stack for
thereby destroying the positional relationship
parameters.

1-6

temporary storage,
between SP and the

USING SYSTEM DIRECTIVES

The DIR$ macro generates an RSX-llM Executive trap using a predefined
DPB:

adr

err

Macro Call: DIR$ adr,err

adr and err are optional

The address of the DPB. (The address, if specified, must be a
valid source address for a MOV instruction.) If this address is
not specified, the DPB or its address must be on the stack.

The address of the error return (see Section 1.4.3). If this
error return is not specified, an error simply sets the carry bit
in the Processor Status Word.

NOTE

DIR$ is not a $ form macro, and does not
behave as one. There are no variations
in the spelling of this macro.

1.4.3 Optional Error Routine Address

The $C and $S forms of macro calls and the DIR$ macro can accept an
optional final argument; note that the DIR$ macro is not an Executive
directive (DIR$C and DIR$S are not valid macro calls). The argument
must be a valid assembler destination operand that specifies the
address of a user error routine. For example, the DIR$ macro

DIR$ #DPB,ERROR

generates the following code:

MOV
EMT
BCC
JSR

#DPB,-(SP)
377
.+6
PC,ERROR

Since the $ form of a directive macro does not generate any executable
code, it does not accept an error address argument.

1.4.4 Symbolic Offsets

Most system directive macro calls generate local symbolic offsets
describing the format of the DPB. The symbols are unique to each
directive, and each is assigned an index value corresponding to the
offset of a given DPB element.

Because the offsets are defined symbolically, you can refer to or
modify DPB elements without knowing the offset values. Symbolic
offsets also eliminate the need to rewrite programs if a future
release of RSX-llM changes a DPB specification.

All $ and $C forms of macros that generate DBPs longer than one word
generate local offsets. All informational directives (see Section
6.1.3), including the $S form, generate local symbolic offsets for the
parameter block returned as well.

1-7

USING SYSTEM DIRECTIVES

If the program uses either the $ or $C form and has defined the symbol
$$$GLB (for example $$$GLB=O), the macro generates the symbolic
offsets as global symbols and does not generate the DPB itself. The
purpose of this facility is to enable the use of a DPB defined in a
different module. The symbol $$$GLB has no effect on the expansion of
$S macros.

When using symbolic offsets, you should use the $ form of directives.

1.4.5 Examples of Macro Calls

The examples below show the expansions of the different macro call
forms.

1. The $ form generates a DPB only, in the current p-section.

MRKT$ 1,5,2,MTRAP

generates the following code:

.BYTE

.WORD

.WORD

.WORD

.WORD

23.,5
1
5
2
MTRAP

"MARK-TIME" DIC & DPB SIZE
EVENT FLAG NUMBER
TIME INTERVAL MAGNITUDE
TIME INTERVAL UNIT (SECONDS)
AST ENTRY POINT

2. The $C form generates in p-section $DPB$$ a DPB, and in the
specified section the code to issue the directive.

MRKT$C 1,5,2,MTRAP,PROGl,ERR

generates the following code:

• PSECT
$$$=.
.BYTE
.WORD
.WORD
.WORD
.WORD
• PSECT
MOV
EMT
BCC
JSR

$DPB$$

23., 5
1
5
2
MTRAP
PROGl
#$$$, - (SP)
377
• +6
PC, ERR

DEFINE TEMPORARY SYMBOL
"MARK-TIME" DIC & DPB SIZE
EVENT FLAG NUMBER
TIME INTERVAL MAGNITUDE
TIME INTERVAL UNIT (SECONDS)
AST ENTRY POINT ADDRESS
RETURN TO THE ORIGINAL PSECT
PUSH DPB ADDRESS ON STACK
TRAP TO THE EXECUTIVE
BRANCH ON DIRECTIVE ACCEPTANCE
ELSE, CALL ERROR SERVICE ROUTINE

3. The $S form generates code to push the DPB onto the stack and
to issue the directive~

MRKT$S #l,#5,#2,R2,ERR

generates the following code:

MOV
MOV
MOV
MOV
MOV
.BYTE
EMT
BCC
JSR

R2,-(SP)
#2,-(SP)
#5,-(SP)
#1,-(SP)
(PC)+, - (SP)
23.,5
377
• +6
PC:ERR

PUSH AST ENTRY POINT
TIME INTERVAL UNIT (SECONDS)
TIME INTERVAL MAGNITUDE
EVENT FLAG NUMBER
AND "MARK-TIME" DIC & DPB SIZE
ON THE STACK
TRAP TO THE EXECUTIVE
BRANCH ON DIRECTIVE ACCEPTANCE
ELSE; CALL ERROR SERVICE ROUTINE

1-8

USING SYSTEM DIRECTIVES

4. The DIR$ macro issues a directive that has a predefined DPB.

DIR$ Rl,(R3) ; DPB ALREADY DEFINED. DPB ADDRESS IN Rl.

generates the following code:

Rl,-(SP)
377

PUSH DPB ADDRESS ON STACK
TRAP TO THE EXECUTIVE

MOV
EMT
BCC
JSR

• +4
PC, (R3)

BRANCH ON DIRECTIVE ACCEPTANCE
ELSE, CALL ERROR SERVICE ROUTINE

1.5 FORTRAN SUBROUTINES

RSX-llM/M-PLUS provide an extensive set of FORTRAN subroutines to
perform system directive operations.

The directive descriptions in Chapter 5 describe
subroutine calls, as well as the macro calls.

The FORTRAN subroutines fall into three basic groups:

the FORTRAN

• Subroutines based on the Instrument Society of America (ISA)
Standard ISA 62.1 These subroutines are included in the
subroutine descriptions associated with the macro calls (see
Chapter 5).

• Subroutines designed to use and control specific process
control interface devices supplied by DIGITAL and supported by
the RSX-llM/M-PLUS operating systems.

• Subroutines for performing RSX-llM/M-PLUS system directive
operations -- In general, one subroutine is available for each
directive. (Exceptions are the Mark Time and Run directives.
The description of Mark Time includes both CALL MARK and CALL
WAIT. The description of Run includes both CALL RUN and CALL
START.)

All the subroutines described in this manual can be called by
programs compiled by either the FORTRAN IV or FORTRAN
compiler.

FORTRAN
IV-PLUS

These subroutines can also be called from programs written in the
MACR0-11 assembly language by using PDP-11 FORTRAN calling sequence
conventions. These conventions are described in the IAS/RSX-11
FORTRAN IV User's Guide and in the FORTRAN IV-PLUS User's Guide.

1.5.1 Subroutine Usage

All the subroutines described in this manual are added to the RSX-llM
system object module library when either FORTRAN compiler is generated
for RSX-llM. You call these subroutines by including the appropriate
CALL statement in the FORTRAN program. When the program is linked to
form a task, the Task Builder first checks to see whether each
specified subroutine is user defined. If a subroutine is not user
defined, the Task Builder automatically searches for it in the system
object module librarye If the subroutine is found, it is included in
the linked task.

1-9

USING SYSTEM DIRECTIVES

1.5.1.1 Optional Arguments - Many of the subroutines described in
this manual have optional arguments. In the subroutine descriptions
associated with the directives, optional arguments are designated as
such by being enclosed in square brackets ([]). An argument of this
kind can be omitted if the comma that immediately follows it is
retained. If the argument (or string of optional arguments) is last,
it can simply be omitted, and no comma need end the argument list.
For example, the format of a call to SUB could be the following:

CALL SUB (AA,[BB],[CC],DD[,[EE][,FF]])

In that event, you may omit the arguments BB, CC, EE, and FF in one of
the following ways:

e CALL SUB (AA,,,DD,,)

e CALL SUB (AA,,,DD)

In some cases, a subroutine will use a default value for an
unspecified optional argument. Such default values are noted in each
subroutine description in Chapter 5.

1.5.1.2 Task Names - In FORTRAN subroutines, task names may be up to
six characters long. Characters permitted in a task name are the
letters A through Z, the numerals 0 through 9, and the special
characters dollar sign ($) and period (.). Task names are stored as
Radix-50 code, which permits up to three characters from the set above
to be encoded in one PDP-11 word. (Radix-50 is described in detail in
the IAS/RSX-11 FORTRAN IV User's Guide and the FORTRAN IV-PLUS User's
Guide.) - ---

FORTRAN subroutine calls require that a task name be defined as a
2-word variable or array that contains the task name as Radix-50 code.
This variable may be any of the following:

• REAL

e INTEGER*4

• An INTEGER*2 array of 2 elements

This variable may be defined at program compilation time by a DATA
statement, which gives the real variable an initial value (a Radix-50
constant) •

For example, if a task name CCMFl is to be used in a system directive
call, the task name could be defined and used as follows:

DATA CCMF1/5RCCMF1/

CALL REQUES (CCMFl)

A program may define task names during execution by using the IRAD50
subroutine or the RAD50 function as described in the IAS/RSX-11
FORTRAN IV User's Guide or the FORTRAN IV-PLUS User's Guide.

1-10

USING SYSTEM DIRECTIVES

1.5.1.3 Integer Arguments - All the subroutines described in this
manual assume that integer arguments are INTEGER*2 type arguments.
Both the FORTRAN IV and FORTRAN IV-PLUS systems normally treat an
integer variable as one PDP-11 storage word, provided that its value
is within the range -32768 to +32767. However, if you specify the /I4
option switch when compiling a program, ensure that all integer array
arguments used in these subroutines are explicitly specified as type
INTEGER*2.

1.5.1.4 GETADR Subroutine - Some subroutine calls include an argument
described as an integer array. The integer array contains some values
that are the addresses of other variables or arrays. Since the
FORTRAN language does not provide a means of assigning such an address
as a value, you must use the GETADR subroutine described below.

Calling Sequence:

CALL GETADR(ipm,[argl],[arg2], ••• [argn])

ipm
An array of dimension n.

argl, ••• argn
Arguments whose addresses are to be inserted in ipm. Arguments
are inserted in the order specified. If a null argument is
specified, then the corresponding entry in ipm is left unchanged.
When the argument is an array name, the address of the first
array element is inserted into ipm.

Example:

DIMENSION IBUF(80),IOSB(2),IPARAM(6)

CALL GETADR (IPARAM(l) ,IBUF(l))
IPARAM(2)=80
CALL QIO (IREAD,LUN,IEFLAG,IOSB,IPARAM,IDSW)

In this example, CALL GETADR enables you to specify a buffer address
in the CALL QIO directive (see Section 5.3.44).

1.5.2 The Subroutine Calls

Table 1-1 is a list of the FORTRAN subroutine calls (and corresponding
macro calls) associated with system directives (see Chapter 5 for
detailed descriptions) •

For some directives, notably Mark Time (CALL MARK), both the standard
FORTRAN-IV subroutine call and the ISA standard call are provided.
Other directives, however, are not available to FORTRAN tasks (for
example, Specify Floating Point Exception AST [SFPA$] and Specify SST
Vector Table For Task [SVTK$]).

1-11

USING SYSTEM DIRECTIVES

Table 1-1
FORTRAN Subroutines and Corresponding Macro Calls

Directive Macro Call FORTRAN Subroutine

Abort Task ABRT$ CALL ABORT

Alter Priority ALTP$ CALL ALT PR I

Assign LUN ALUN$ CALL ASNLUN

Attach Reg ion ATRG$ CALL ATRG

Cancel Time Based CRSQ$ CALL CANA LL
Initiation Requests

Cancel Mark CMKT$ CALL CANMT
Time Requests

Clear Event Flag CLEF$ CALL CLREF

Connect CNCT$ CALL CNCT

Create Address Window CRAW$ CALL CRAW

Create Group Global CRGF$ CALL CRGF
Event Flags

Create Reg ion CRRG$ CALL CRRG

Create Virtual 'I'e;r11,1fnal .i:C;RVT$ CALL. CRVT

Declare Significant Event DECL$S CALL DECLAR

Disable AST Recognition DSAR$S CALL DSASTR

Disable Checkpointing DSCP$S CALL DISC KP

Detach Region DTRG$ CALL DTRG

Eliminate Address Window ELAW$ CALL ELAW

Eliminate Group Global ELGF$ CALL ELGF
Event Flags

Eliminat~ Virtual Terminal ELVT$ CALL ELVT

Emit Status EMST$ CALL EMST

Enable AST Recognition ENAR$S CALL ENASTR

Enable Checkpointing ENCP$S CALL ENACKP

Exit If EXIF$ CALL EXITIF

Exit With Status EXST$ CALL EXST

Extend Task EXTK$ CALL EXTTSK

Get Command for GCCI$ CALL GTCMCI
Command Interpreter

(continued on next page)

1-12

USING SYSTEM DIRECTIVES

Table 1-1 (Cont.)
FORTRAN Subroutines and Corresponding Macro Calls

Directive

Get Command
Interpreter Information

Get LUN Information

Get Mapping Context

Get MCR Command Line

Get Partition Parameters

Get Region Parameters

Get Sense Switches

Get Task Parameters

Get Time Parameters

Inhibit AST Recognition

Map Address Window

Mark Time

Queue I/O Request

Queue I/O Request And Wait

Read All Event Flags

Receive By Reference

Receive Data

Receive Data Or Exit

Receive Data Or Stop

Request and Pass Offspring
Information

Macro Call

GCII$

GLUN$

GMCX$

GMCR$

GPRT$

GREG$

GSSW$S

GTSK$

GTIM$

IHAR$S

MAP$

MRKT$

QIO$

QIOW$

RDAF$

RDXF$

RREF$

RCVD$

RCVX$

RCST$

RPOI$

1-13

I

FORTRAN Subroutine

CALL GETCII

CALL GETLUN

CALL GMCX

CALL GETMCR

CALL GET PAR

CALL GETREG

CALL READSW
CALL SSWTCH

CALL GETTSK

CALL GETTIM

CALL INASTR

CALL MAP

CALL MARK
CALL WAIT (ISA Standard
call)

CALL QIO

CALL WTQIO

single, local, common,
or group-global event
flag can be read by a
FORTRAN task)

CALL RREF

CALL RECEIV

CALL RECOEX

CALL RCST

CALL RPOI

(continued on next page)

USING SYSTEM DIRECTIVES

Table 1-1 (Cont.)
FORTRAN Subroutines and Corresponding Macro Calls

Directive

Request

Resume

Run

Send By Reference

Send Data

Send Message

Send Next Command

Send, Request And Connect

Set Command Line Interpreter

Send Data Request and Pass OCB

Set Event Flag

Set System Time

Spawn

Specify Power Recovery AST

Specify Requested Exit AST

Stop

Stop For Logical OR Of
, Event Flags

Stop For Single Event .Flag

Suspend

Task Exit

Unlock Group Global Event
Flags

Unmap Address Window

Macro Call

RQST$

RSUM$

RUN$

SREF$

SDAT$

SMSG$

SNXC$

SDRC$

SCLI$

SDRP$

SETF$

STIM$

SPWN$

SFPA$

SREA$
SREX$

STOP$S

STLO$

STSE$

SPND$S

EXIT$S

ULGF$S

UMAP$

1-14

FORTRAN Subroutine

CALL REQUES

CALL RESUME

CALL RUN
CALL START (ISA
Standard
call)

CALL SREF

CALL SEND

CALL SMSG

CALL SNXC

CALL SDRC

CALL SCLI

CALL SDRP

CALL SETEF

CALL SETTIM

CALL SPAWN

EXTERNAL SUBNAM
CALL PWRUP (SUBNAM)

(to establish an AST)
CALL PWRUP

(to remove an AST)

CALL SREA
CALL SREX

CALL STOP

CALL STLOR

CALL STOPFR

CALL SUSPND

CALL EXIT

CALL ULGF

CALL UNMAP

,,...,..'t"'\.f-;,..,,,,,..__,:J -- --.., .. ~ ____ ,
\'-VUi..uucu vu HCA I,.. tJO~ c J

USING SYSTEM DIRECTIVES

Table 1-1 (Cont.)
FORTRAN Subroutines and Corresponding Macro Calls

Directive Macro Call FORTRAN Subroutine

Unstop USTP$ CALL USTP

Wait For Single Event Flag WTSE$ CALL WAITFR

Wait For Logical OR Of
Event Flags

WTLO$ CALL WFLOR

Wait For Significant Event WSIG$S CALL WFSNE

NOTE

The following directives are not
available as FORTRAN subroutines:

Directive

AST Service Exit

Connect To Interrupt Vector

Specify Command Arrival AST

Specify Floating Point
Exception AST

Macro Call

ASTX$S

CINT$

SCAA$

SFPA$

Specify Receive By Reference AST SRRA$

Specify Receive Data AST SRDA$

Specify SST Vector Table For SVDB$
Debugging Aid

Specify SST Vector Table SVTK$
For Tasks

1-15

USING SYSTEM DIRECTIVES

1.5.3 Error Conditions

Each subroutine call includes an optional argument that specifies the
integer to receive the Directive Status Word (ids). When you specify
this argument, the subroutine returns a value that indicates whether
the directive operation succeeded or failed. If the directive failed,
the value indicates the reason for the failure. The possible values
are the same as those returned to the Directive Status Word (DSW) in
MACR0-11 programs (see Appendix B), except for the two ISA calls, CALL
WAIT and CALL START. The ISA calls have positive numeric error codes
(see Sections 5.3.41 and 5.3.57).

In addition, two types of error are reported by means of the FORTRAN
Object Time System (OTS) diagnostic messages. Both of these errors
result in the termination of the task. The error conditions are:

e DIRECTIVE: MISSING ARGUMENT(S)
This message indicates that at least one necessary argument
was missing from a call to a system directive subroutine (OTS
error number 100).

e DIRECTIVE: INVALID EVENT FLAG NUMBER
This message indicates that an event flag number in a call to
STLOR (Stop for Logical OR of Event Flags), or WFLOR (Wait For
Logical OR Of Event Flags) was not in the range 1 to 96 (OTS
error number 101).

1.5.4 AST Service Routines

The following FORTRAN callable routines provide support for ASTs in
FORTRAN programs:

e CALL CNCT

e CALL CRVT

e CALL PWRUP

e CALL SDRC

e CALL SPAWN

e CALL SREA

e CALL SREX

Use great
following
state:

caution when coding an AST
types of FORTRAN operations

routine in FORTRAN. The
may not be performed at AST

e FORTRAN I/O of any kind (including ENCODE
statements and internal file I/O)

and DECODE

FORTRAN I/O is not reentrant, therefore the information in
the impure data area may be destroyed.

• Floating-point operations

The floating-point processor's context is not saved while
in AST state. Since the scientific subroutines use
floating-point operations, they may not be called at AST
state.

1-16

USING SYSTEM DIRECTIVES

• Traceback information in the generated code

Use of traceback corrupts the error recovery in the FORTRAN
run time library. Any FORTRAN modules that will be called
at AST state must be compiled without traceback. See the
FORTRAN IV or FORTRAN-77 User's Guide for more information.

• Virtual array operations

Use of virtual arrays at AST state remaps the current array
such that any operations at non-AST state will not be
executed correctly.

• Subprograms may not be shared between AST processing and
normal task processing.

• EXIT or STOP statements with files open

FORTRAN flushes the task's buffers, which could be in an
intermediate state. Therefore, data might be lost if any
output files are open when the EXIT or STOP is executed.

You can EXIT or STOP at AST state if no output files are
open.

Since the message put out by STOP uses a different
mechanism from the normal FORTRAN I/O routines, the act of
putting out this message does not corrupt impure data in
the run time system. Therefore, you can issue a STOP
statement at AST state unless there are output files open.

Note also the following:

• Any execution time error at AST state will corrupt the
program.

• Use extreme care if the FORTRAN task is overlayed. Both the
interface routine and the actual code of the FORTRAN AST
routine must be located in the root segment. Any routines
that are called at AST state must also be in the root segment.

1.6 TASK STATES

Many system directives cause a task to change from one state to
another. There are two basic task states in RSX-llM/M-PLUS: dormant
and active. The active state has three substates: ready-to-run,
blocked, and stopped.

The Executive recognizes the existence of a task only after it has
been successfully installed and has an entry in the System Task
Directory (STD). (Task installation is the process whereby a task is
made known to the system; see the RSX-llM/M-PLUS MCR Operations
Manual.) Once a task has been installed, it is eithe-r~dormant or
active. These states are defined as follows:

• Dormant -- Immediately following the processing of an Install
command by the Monitor Console Routine, a task is known to the
system, but is dormant. A dormant task has an entry in the
STD, but no request has been made to activate it.

1-17

USING SYSTEM DIRECTIVES

• Active -- A task is active from the time it is requested until
the time it exits. ~~questing a task means issuing the RQST$,
RUN$, SPWN$, SDRC$, VSRC$, RPO!$, or SDRP$ macro, or an MCR
Run command. An active task is eligible for scheduling,
whereas a dormant task is not.

The three substates of an active task are as follows:

a. Ready-to-run -- A ready-to-run task competes with other
tasks for CPU time on the basis of priority. The highest
priority ready-to-run task obtains CPU time and thus
becomes the current task.

b. Blocked -- A blocked task is unable to compete for CPU
time for synchronization reasons or because a needed
resource is not available. Task priority effectively
remains unchanged, allowing the task to compete for memory
space.

c. Stopped -- A stopped task is unable to compete for CPU
time because of pending I/O completion, event flag(s) not
set, or because the task stopped itself. When stopped, a
task's priority effectively drops to zero and the task can
be checkpointed by any other task, regardless of that
task's priority. If an AST occurs for the stopped task,
its normal task priority is restored only for the duration
of the AST routine execution; once the AST is completed,
task priority returns to zero.

1.6.1 Task State Transitions

Dormant to Active - The following commands or directives cause the
Executive to activate a dormant task:

• A RUN$ directive

• A RQST$ directive

• A SPWN$ directive

• A SDRC$ directive

• A RPOI$ directive

• A SDRP$ directive

• An MCR or DCL Run command

Ready-to-Run to Blocked The following events cause an active,
ready-to-run task to become blocked:

• A SPND$ directive

• An unsatisfied Wait For condition

• Checkpointing of a task out of memory by the Executive

1-18

USING SYSTEM DIRECTIVES

Ready-to-Run to Stopped The following events cause an active,
ready-to-run task to become stopped:

• ~ S':['OP$S directive is executed, or an RCST$, SDRP$, GCCI$, or
VRCS$ directive is issued when no data packet is available.

• An unsatisfied Stop For condition.

• An unsatisfied Wait For condition while the
outstanding buffered r;o.l

task has

Blocked to Ready-to-Run - The following events return a blocked task
to the ready-to-run state:

• A RSUM$ directive issued by another task

• An MCR Resume command or a DCL Continue command

• A Wait For condition is satisfied

• The Executive reads a checkpointed task into memory

Stopped to Ready-to-Run - The following events return a stopped task
to the ready-to-run state, depending upon how the task became stopped:

• A task stopped by the STOP$, RCST$, {g'.f;{HWP~,\~: di rec ti ve becomes
unstopped by USTP$ directive execution, or an MCR Unstop
command or DCL START command.

• A Wait For condition is satisified for a task with outstanding
buffered I/O.

• A task stopped for an event flag (or flags) becomes unstopped
when the specified event flag (or flags) becomes (or become)
set.

Active to Dormant - The following events cause an active task to
become dormant:

• An EXIT$S, EXIF$, RCVX$, ?qi~,'.'j,'.'.~~~~-;\- directive, or a RREF$ or
GCCI$ directive that speciflei th~ exit option

• An ABRT$ directive

• An MCR or DCL Abort command

• A Synchronous System Trap (SST) for which a task has not
specified a service routine

Blocked to Stopped - The following event causes a task that is blocked
due to an unsatisfied Wait For condition to become stopped:

• The task initiates buffered I/O at AST state and then exits
from AST state.

1. Only in systems that support the checkpointing of tasks during
buffered I/O. An I/O request can be buffered only when the task is
checkpointable and the region that I/O is being done to/from is
checkpointable.

1-19

USING SYSTEM DIRECTIVES

Stopped to Blocked - The following event causes a task that is stopped
due to an unsatisfied Wait For condition and outstanding buffered I/O
to return to a blocked state:

• Completion of all outstanding buffered I/O

1.6.2 Removing an Installed Task

You remove an installed task from the system by issuing the MCR or DCL
Remove command from a privileged terminal. Refer to the
RSX-llM/llM-PLUS MCR Operations Manual or the RSX-llM/M-PLUS Command
Language Reference Manual.

1.8 DIRECTIVE RESTRICTIONS FOR NONPRIVILEGED TASKS

Nonprivileged tasks cannot issue certain Executive directives, except
as listed below:

Directive

Abort Task

Alter Priority

Cancel Time Based
Initiation Requests

Macro Call

ABRT$

ALTP$

CSRQ$

1-20

Comments

In systems that support
multiuser protection, a
nonprivileged task can only
abort tasks with the same
TI: as the task issuing the
directive.

In systems that support
multiuser protection, a
nonprivileged task can only
alter its own priority to
values less than or equal to
the task's installed
priority.

Cannot be issued by a
nonprivileged task in
systems that support
multiuser protection except
for tasks with the same TI:
as the issuing task.

Directive

Connect To interrupt
Vector

Set Command Line
Interpreter

USING SYSTEM DIRECTIVES

Macro Call

CINT$

SCLI$

1-21

Comments

Cannot be issued by a
nonprivileged task in mapped
systems.

Cannot be issued by a
nonprivileged task under any
circumstances.

CHAPTER 2

SIGNIFICANT EVENTS, SYSTEM TRAPS, AND STOP-BIT SYNCHRONIZATION

This chapter introduces the concept of significant events and
describes the ways in which your code can make use of event flags,
synchronous and asynchronous system traps, and stop-bit
synchronization.

2.1 SIGNIFICANT EVENTS

A significant event is a change in system status that causes the
Executive to reevaluate the eligibility of all active tasks to run
(For some significant events, specifically those in which the current
task becomes ineligible to run, only those tasks of lower priority are
examined.) A significant event is usually caused (either directly or
indirectly) by a system directive issued from within a task.
Significant events include the following:

• An I/O completion

• A task exit

• The execution of a Send Data directive (see Section 5.3.61)

• The execution of a Send Data, Request and Pass OCB directive
(see Section 5.3.63)

• The execution of a Send, Request, and Connect directive (see
Section 5.3.62)

• The execution of a Send By Reference or a Receive By Reference
directive (see Sections 5.3.74 and 5.3.55)

• The execution of an Alter Priority directive (see Section
5.3.2)

• The removal of an entry from the clock queue (for instance,
resulting from the execution of a Mark Time directive or the
issuance of a rescheduling request)

• The execution of a Declare Significant Event directive (see
Section 5.3.16)

• The execution of the round-robin scheduling algorithm at the
end of a round-robin scheduling interval

• The execution of an Exit, an Exit With Status, or an Emit
Status directive

2-1

SIGNIFICANT EVENTS, SYSTEM TRAPS, AND STOP-BIT SYNCHRONIZATION

2.2 EVENT FLAGS

Event flags are a means by which tasks recognize specific events.
(Tasks also use Asynchronous System Traps (ASTs) to recognize specific
events. See Section 2.3.3.) In requesting a system operation (such as
an I/O transfer), a task may associate an event flag with the
completion of the operation. When the event occurs, the Executive
sets the specified flag. Several examples later in this section
describe how tasks can use event flags to coordinate task execution.

Ninety-six event flags are available to enable tasks to distinguish
one event from another. Each event flag has a corresponding unique
Event Flag Number (EFN) Numbers 1 through 32 form a group of flags
that are unique to each task and are set or cleared as a result of
that task's operation. Numbers 33 through 64 form a second group of
flags that are common to all tasks, hence their name "common flags~"
Common flags may be set or cleared as a result of any task's
operation. The last eight flags in each group, local flags (25-32)
and common flags (57-64), are reserved for use by the system. Numbers
65 through 96 form the third group of flags, known as "group-global
event flags." You can use these flags in any application where common
event flags can be used; however, only tasks running under UICs
containing the group code specified when the group-global event flags
were created can use them. Four directives (Create Group Global Event
Flags, Eliminate Group Global Event Flags, Unlock Group Global Event
Flags, and Read Extended Event Flags) provide the Executive support
for implementing group-global event flags.

Tasks can use the common or group global flags for intertask
communication or their own local event flags internally. They can
set, clear, and test event flags by using Set Event Flag (SETF$),
Clear Event Flag (CLEF$), and Read All Event Flags (ROAF$) directives.
(The Read All Event Flags directive will not return the group-global
event flags. When these flags are in use, read all event flags using
the Read Extended Event Flags (RDXF$) directive.)

Take great care when setting or clearing event flags, especially
common and group global flags. Erroneous or multiple setting and
clearing of event flags can result in obscure software faults. A
typical application program can be written without explicitly
accessing or modifying event flags, since many of the directives can
implicitly perform these functions. The Send Data (SDAT$), Mark Time
(MRKT$), and the I/O operations directives can all implicitly alter an
event flag.

Examples 1 and 2 below illustrate the use of common event flags
(33-64) to synchronize task execution. Examples 3 and 4 illustrate
the use of local flags (1-32).

Example 1

Task B clears common event flag 35 and then blocks itself by
issuing a Wait For directive that specifies common event flag 35.

Subsequently another task, Task A, specifies event flag 35 in a
Set Event Flag directive to inform Task B that it may proceed.
Task A then issues a Declare Significant Event directive to
ensure that the Executive will schedule Task B.

Example 2

In order to synchronize the transmission of data between Tasks A
and B, Task A specifies Task B and common event flag 42 in a Send
Data directive.

2-2

SIGNIFICANT EVENTS, SYSTEM TRAPS, AND STOP-BIT SYNCHRONIZATION

Task B has specified flag 42 in a Wait For directive. When Task
A's Send Data directive has caused the Executive to set flag 42
and to cause a significant event, Task B proceeds and issues a
Receive Data directive because its Wait For condition has been
satisfied.

Example 3

A task contains a Queue I/O Request directive and an associated
Wait For directive; both directives specify the same local event
flag. When the task queues its I/O request, the Executive clears
the local flag. If the requested I/O is incomplete when the task
issues the Wait For directive, the Executive blocks the task.

When the requested I/O has been completed, the Executive sets the
local flag and causes a significant event. The task then resumes
its execution at the instruction that follows the Wait For
directive. Using the local ·event flag in this manner ensures
that the task does not manipulate incoming data until the
transfer is complete.

Example 4

A task specifies the same local event flag in a Mark Time and an
associated Wait For directive. When the Mark Time directive is
issued, the Executive first clears the local flag and
subsequently sets it when the indicated time interval has
elapsed.

If the task issues the Wait For directive before the local flag
has been set, the Executive blocks the task, which resumes when
the flag is set at the end of the proper time interval. If the
flag has been set first, the directive is a no-op and the task is
not blocked.

Specifying an event flag does not mean that a Wait For directive must
be issued. Event flag testing can be performed at any time. The
purpose of a Wait For directive is to stop task execution until an
indicated event occurs. Hence, it is not necessary to issue a Wait
For directive immediately following a Queue I/O Request directive or a
Mark Time directive.

If a task issues a Wait For directive that specifies an event flag
that is already set, the blocking condition is immediately satisfied
and the Executive immediately returns control to the task.

Tasks can issue Stop For directives instead of Wait For directives.
When this is done, an event flag condition ·not satisfied will result
in the task's being stopped instead of being blocked until the event
flag(s) is set. A task that is blocked still competes for memory
resources at its running priority. A task that is stopped competes
for memory resources at priority O.

The simplest way to test a single event flag is to issue the directive
CLEF$ or SETF$. Both these directives can cause the following return
codes:

IS.CLR - Flag was previously clear

IS.SET - Flag was previously set

2-3

SIGNIFICANT EVENTS, SYSTEM TRAPS, AND STOP-BIT SYNCHRONIZATION

For example, if a set common event flag indicates the completion of an
operation, a task can issue the CLEF$ directive both to read the event
flag and simultaneously to reset it for the next operation. If the
event flag was previously clear (the current operation was
incomplete), the flag remains clear.

2.3 SYSTEM TRAPS

System traps are transfers of control (also called software
interrupts) that provide tasks with a means of monitoring and reacting
to events. The Executive initiates system traps when certain events
occur. The trap transfers control to the task associated with the
event and gives the task the opportunity to service the event by
entering a user-written routine.

There are two kinds of system traps:

• Synchronous System Traps (SSTs) -- SSTs detect events directly
associated with the execution of program instructions. They
are synchronous because they always recur at the same point in
the program when trap-causing instructions occur. For
example, an illegal instruction causes an SST.

• Asynchronous System Traps (ASTs) -- ASTs detect events that
occur asynchronously to the task's execution. That is, the
task has no direct control over the precise time that the
event -- and therefore the trap -- may occur. The completion
of an I/O transfer may cause an AST to occur, for example.

A task that uses the system trap facility issues system directives
that establish entry points for user-written service routines. Entry
points for SSTs are specified in a single table. AST entry points are
set by individual directives for each kind of AST. When a trap
condition occurs, the task automatically enters the appropriate
routine (if its entry point has been specified).

2.3.1 Synchronous System Traps (SSTs)

SSTs can detect the execution of:

• Illegal instructions

• Instructions with invalid addresses

• Trap instructions (TRAP, EMT, !OT, BPT)

• FIS floating-point exceptions (PDP-11/40 only)

The user can set up an SST vector table, containing one entry per SST
type. Each entry is the address of an SST routine that services a
particular type of SST (a routine that services illegal instructions,
for example). When an SST occurs, the Executive transfers control to
the routine for that type of SST. If a corresponding routine is not
specified in the table 1 the task is abortede The SST routine enables
the user to process the failure and then return to the interrupted
code. Note that if a debugging aid and the user's task both have an
SST vector enabled for a given condition, the debugging aid vector is
referenced first to determine the service routine address.

2-4

SIGNIFICANT EVENTS, SYSTEM TRAPS, AND STOP-BIT SYNCHRONIZATION

SST routines must always be reentrant if there is a possibility that
an SST can occur within the SST routine itself. Although the
Executive initiates SSTs, the execution of the related service
routines is indistinguishable from the task's normal execution. An
AST or another SST can therefore interrupt an SST routine.

2.3.2 SST Service Routines

The Executive initiates SST service routines by pushing the task's
Processor Status (PS), Program Counter (PC), and trap-specific
parameters onto the task's stack. After removing the trap-specific
parameters, the service routine returns control to the task by issuing
an RTI or RTT instruction. Note that the task's general purpose
registers RO-RS and SP are not saved. If the SST routine makes use of
them, it must save and restore them itself.

To the Executive, SST routine execution is indistinguishable from
normal task execution, so that all directive services are available to
an SST routine. An SST routine can remove the interrupted PS and PC
from the stack and transfer control anywhere in the task; the routine
does not have to return control to the point of interruption. Note
that any operations performed by the routine (such as the modification
of registers or the DSW, or the setting or clearing of event flags)
remain in effect when the routine eventually returns control to the
task.

A trap vector table within the task contains all the service routine
entry points. You can specify the SST vector table by means of the
Specify SST Vector Table For Task directive or the Specify SST Vector
For Debugging Aid directive. The trap vector table has the following
format:

Word Of fest

0 S.COAD

1 S.CSGF

2 S.CBPT

3 S.CIOT

4 S.CILI

5 S.CEMT

6 S.CTRP

7 S.CFLT

Associated
Vector

4

250

14

20

10

30

34

244

Trap

Odd or nonexistent memory error
(Also, on some PDP-11 processors -
for example, PDP 11/45 -- an illegal
instruction traps here rather than
through word 04).

Memory protect violation

T-bit trap or execution of a BPT
instruction

Execution of an IOT instruction

Execution of a reserved instruction

Execution of
instruction

a non-RSX

Execution of a TRAP instruction

EMT

Synchronous floating-point exception
(PDP-11/40 only)

2-5

SIGNIFICANT EVENTS, SYSTEM TRAPS, AND STOP-BIT SYNCHRONIZATION

A zero appearing in the table means that no entry point is specified.
An odd address in the table causes an SST to occur when another SST
tries to use that particular address as an entry point. If an SST
occurs and an associated entry point is not specified in the table,
the Executive aborts the task.

An even vector entry causes the SST routine to be executed in the same
mode (either user or supervisor) that the processor was in when the
SST vector was specified. An odd vector entry causes the SST routine
to be executed in the other mode. For example, if the processor was
in supervisor mode and the vector entry was odd, the SST routine is
executed in user mode.

Depending on the reason for the SST, the task's stack may also contain
additional information, as follows:

Memory protect violation (complete stack)

SP+lO
SP+06
SP+04
SP+02
SP+OO

PS
PC
Memory protect status register (SRQ)l
Virtual PC of the faulting instruction (SR2)1
Instruction backup register (SRl)l

TRAP instruction or EMT other than 377 (and 376 in the case of
unmapped tasks and mapped privileged tasks) (complete stack)

SP+04
SP+02
SP+OO

PS
PC
Instruction operand (low-order byte) multiplied by 2,
non-sign-extended

All items except the PS and PC must be removed from the stack before
the SST service routine exits.

2.3.3 Asynchronous System Traps (ASTs)

The primary purpose of an AST is to inform the task that a certain
event has occurred-for example, the completion of an I/O operation.
As soon as the task has serviced the event, it can return to the
interrupted code.

Some directives can specify both an event flag and an AST; with these
directives, ASTs can be used as an alternative to event flags or the
two can be used together. Therefore, you can specify the same AST
routine for several directives, each with a different event flag.
Thus, when the Executive passes control to the AST routine, the event
flag can determine the action required.

AST service routines must save and restore all registers used. If the
registers are not restored after an AST has occurred, the task's
subsequent execution may be unpredictable.

Although not able to distinguish execution of an SST routine from task
execution, the Executive is aware that a task is executing an AST
routine. An AST routine can be interrupted by an SST routine, but not
by another AST routine.

1. For details of SRO, SRI, and SR2, see the section on the memory
management unit in the appropriate PDP-11 processor handbook.

2-6

SIGNIFICANT EVENTS, SYSTEM TRAPS, AND STOP-BIT SYNCHRONIZATION

The following notes describe general characteristics and uses of ASTs:

• If an AST occurs while the related task is executing, the task
is interrupted so that the AST service routine can be
executed.

• If an AST occurs while another AST is being processed, the
Executive queues the latest AST (First-In-First-Out or FIFO).
The task then processes the next AST in the queue when the
current AST service is complete (unless AST recognition was
disabled by the AST service routine).

• If a task is suspended or stopped when an associated AST
occurs, the task remains suspended or stopped after the AST
routine has been executed, unless it is explicitly resumed or
unstopped either by the AST service routine itself, or by
another task (the MCR and DCL Resume or UNSTOP command, for
example).

• If an AST occurs while the related task is waiting (or
stopped) for an event flag to be set (a Wait For (Stop For)
directive), the task continues to wait after execution of the
AST service routine unless the event flag is set upon AST
exit.

• If an AST occurs for a checkpointed task, the Executive queues
the AST (FIFO), brings the task into memory, and then
activates the AST when the task returns to memory.

• The Executive allocates the necessary dynamic memory when an
AST is specified. Thus, no AST condition lacks dynamic memory
for data storage when it actually occurs. The AST re-uses the
storage allocated for I/O and Mark Time directives.
Therefore, no additional dynamic storage is required.

• Two directives, Disable AST Recognition and Enable AST
Recognition, allow a program to queue ASTs for subsequent
execution during critical sections of code. (A critical
section might be one that accesses data bases also accessed by
AST service routines, for example.) If ASTs occur while AST
recognition is disabled, they are queued (FIFO) and then
processed when AST recognition is enabled.

2.3.4 AST Service Routines

When an AST occurs, the Executive pushes the task's Wait For mask
word, the DSW, the PS, and the PC onto the task's stack. This
information saves the state of the task so that the AST service
routine has access to all the available Executive services. The
preserved Wait For mask word allows the AST routines to establish the
conditions necessary to unblock the waiting task. Depending on the
reason for the AST, the stack may also contain additional parameters.
Note that the task's general purpose registers RO-RS and SP are not
saved. If the routine makes use of them, it must save and restore
them itself.

On RSX-llM systems that support stop-bit synchronization or
checkpointing during buffered I/O and all RSX-llM-PLUS systems, the
Wait For mask word comes from the offset T.EFLM in the task's Task
Control Block CTCB). On svstems that do not suooort those features.
the Wait For mask word comes~from the offset H.EFLM in the task's
header. Its value and the event flag range to which it corresponds

2-7

SIGNIFICANT EVENTS, SYSTEM TRAPS, AND STOP-BIT SYNCHRONIZATION

depend on the last Wait For or Stop For directive issued by the task.
For example, if the last such directive issued was Wait For Single
Event Flag 42, the mask word has a value of 1000(8) and the event flag
range is from 33 to 48. Bit 0 of the mask word represents flag 33,
bit 1 represents flag 34, and so on.

The Wait For mask word is meaningless if the task has not issued any
type of Wait For or Stop For directive.

Your code should not attempt to modify the Wait For mask while in the
AST routine. For example, putting a zero in the Wait For mask results
in an unclearable Wait For state.

After processing an AST, the task must remove the trap-dependent
parameters from its stack; that is, everything from the top of the
stack down to, but not including, the task's Directive Status Word.
It must then issue an AST Service Exit directive with the stack set as
indicated in the description of that directive (see Section 5.3.4).
When the AST service routine exits, it returns control to one of two
places: another AST, or the original task.

There are 13 variations on the format of the task's stack, as follows:

• If a task needs to be notified when a Floating Point Processor
exception trap occurs, it issues a Specify Floating Point
Processor Exception AST directive. If the task specifies this
directive, an AST will occur when a Floating Point Processor
exception trap occurs. The stack will contain the following
values:

SP+l2
SP+lO
SP+06
SP+04
SP+02
SP+OO

Event flag mask word
PS of task prior to AST
PC of task prior to AST
Task's Directive Status Word
Floating exception code
Floating exception address

NOTE

Refer to the appropriate processor
handbook for a description of the FPU
exception code values.

• If the task needs to be notified of power failure recoveries,
it issues a Specify Power Recovery AST directive. An AST will
then occur when the power is restored if the task is not
checkpointed. The stack will contain the following values:

SP+06
SP+04
SP+02
SP+OO

Event flag mask word
PS of task prior to AST
PC of task prior to AST
Task's Directive Status Word

• If a task needs to be notified when it receives either a
message or a reference to a common area, it issues either a
Specify Receive Data AST or a Specify Receive By Reference AST
directive. An AST will occur when the message or common
reference is sent to the task. The stack will contain the
following values:

2-8

SIGNIFICANT EVENTS, SYSTEM TRAPS, AND STOP-BIT SYNCHRONIZATION

SP+06
SP+04
SP+02
SP+OO

Event flag mask word
PS of task prior to AST
PC of task prior to AST
Task's Directive Status Word

• When a task queues an I/O request and specifies an appropriate
AST service entry point, an AST will occur upon completion of
the I/O request. The task's stack will contain the following
values:

SP+lO
SP+06
SP+04
SP+02
SP+OO

Event flag mask word
PS of task prior to AST
PC of task prior to AST
Task's Directive Status Word
Address of I/O status block for I/O request (or
zero if none was specified)

• When a task issues a Mark Time directive and specifies an
appropriate AST service entry point, an AST will occur when
the indicated time interval has elapsed. The task's stack
will contain the following values:

SP+lO
SP+06
SP+.04
SP+02
SP+OO

Event flag mask word
PS of task prior to AST
PC of task prior to AST
Task's Directive Status Word
Event flag number (or zero
specified)

if none was

• An offspring task, connected by a Spawn, Connect, or Send,
Request And Connect directive, returns status to the connected
(parent) task(s) upon exiting by the Exit AST. The parent
task's stack contains the following values:

•

SP+lO
SP+06
SP+04
SP+02
SP+OO

Event flag mask word
PS of task prior to AST
PC of task prior to AST
Task's Directive Status Word
Address of exit status block

If a command arrives
routine is entered.

for a CLI, the
The stack contains:

Command

SP+lO
SP+06
SP+04
SP+02
SP+OO

Event flag mask word
PS of task prior to AST
PC of task prior to AST
Task's Directive Status Word
Command buffer address

Arrival AST

Jf1 .•..... a//p~f ~r1~/········t·~·~~.·····t~~·~h.~#•••······~i·~~~a~~!¥~.fl.t··~.~··t·.·.~~.·~J(l~~~l.·.. . dT •.... ···".1: ...•.•. ·er.·•. e .••.... c.·t .. •···· .. •.·.·a.t.······· ... ·s1.· .. · .•. '.vk· .. · /.e .•.....•. s.···.'.· .. ·.· . tti·~ .. ··: ... i~pµtr '<ip,.<l· .. ·'i o~~puj: ... f\9'1'•.f?~·~·~~.~·si .a·re entered:.· u
st<;lcK.·.·.· .. <:·orit,ct~ns ·.· ... ··t;qe·.···• f]q:llow:i.r\<.t .. •.·.·y..aclue::;··=:

·SP+l4
SP+l2
SP+lO
SP+06

'i·············i······· .. · ...•.•••• i .•.••••. i··············· .. ····.··.•···•... ·.·•······•·· .. ·· ... ·•. ·.·.····.·· .. · ····••··. Svent ;::t:1ag: .m,a;sk.· . word
PS of tqSk prior to AST
PC·• of]task.prior .. to·AST
Task's Directive Status Word

Third parameter word · {Vertical
Contr~1. ~ .. · yFc>.. of. the .o.ffspf lng·· r.eqµest
Byte c~\jntof .offspring .. · reque::;t
Virtual terminal unit number (low byte);
sub function code of .offspring request
byte)

2-9

I/O
(high

SIGNIFICANT EVENTS, SYSTEM TRAPS, AND STOP-BIT SYNCHRONIZATION

• If a task issues a Specify Parity Error
parity error AST service routine is entered.
contains the following values:

Event flag mask word
PS of task prior to AST
PC of task prior to AST
Task's Directive Status Word

Contents of memory parity CSRs
(hardware-dependent information)

• If a task becomes aborted via directive, DCL or MCR when the
Specify Requested Exit AST (SREA$) is in effect, the abort AST
is entered with the task's stack containing the following
values:

2-10

SIGNIFICANT EVENTS, SYSTEM TRAPS, AND STOP-BIT SYRCHRONIZATIOll

SP+06
SP+04
SP+02
SP+OO

Event flag mask word
PS of task prior to AST
PC of task prior to AST
Task's Directive Status Word

• If a task becomes aborted by directive, DCL, or MCR when the
Extended Specify Requested Exit AST (SREX$) is in effect, the
abort AST is entered. The task's stack contains the following
values:

SP+l2
SP+lO
SP+06
SP+04
SP+02
SP+OO

Event flag mask word
PS of task prior to AST
PC of task prior to AST
DSW of task prior to AST
Trap dependent parameter
Number of bytes to add to SP to clean the stack

• If a task issues a QIO IO.ATA function to the full-duplex
terminal driver, unsolicited terminal input will cause entry
into the AST service routine. Upon entry into the routine,
the task's stack containing the following values:

SP+lO
SP+06
SP+04
SP+02
SP+OO

Event flag mask word
PS of task prior to AST
PC of task prior to AST
Task's Directive Status Word
Unsolicited character in low byte; parameter 2
in the high byte

2.4 STOP-BIT SYNCHRONIZATION

Stop-bit synchronization allows tasks to be checkpointed during
terminal (buffered) I/O or while waiting for an event to occur (for
example, an event flag to become set or an Unstop directive to become
issued). You can control synchronization between tasks by the setting
of the task's Task Control Block (TCB) stop bit.

When the task's stop bit is set, the task is blocked from further
execution, its priority for memory allocation effectively drops to
zero, and it may be checkpointed by any other task in the system,
regardless of priority. If checkpointed, the task remains out of
memory until its stop bit is cleared, at which time the task becomes
unstopped, its normal priority for memory allocation becomes restored,
and it is considered for memory allocation based on the restored
priority.

If the stopped task receives an AST, it becomes unstopped until it
exits the AST routine. Memory allocation for the task during the AST
routine is based on the task's priority prior to the stopped state.
Note that a task cannot be stopped when an AST is in progress, but the
AST routine can issue either an Unstop or Set Event Flag directive to
reference the task. This causes it to remain unstopped after it
issues the AST Service Exit directive.

There are three ways in which a nonprivileged task can become stopped
and three corresponding ways to become unstopped. Only one method for
stopping a task can be applied at a time.

2-11

SIGNIFICANT EVENTS, SYSTEM TRAPS, AND STOP-BIT SYNCHRONIZATION

• A task is stopped whenever it is in a Wait For state and has
outstanding buffered I/O. A task is unstopped when the
buffered I/O is completed or when the Wait For condition is
satisfied.

• You can stop a task for event flag(s) by issuing the Stop For
Single Event Flag directive or the Stop For Logical OR Of
Event Flags directive. In this case, the task can only be
unstopped by setting the specified event flag(s).

• You can stop a task by issuing a Stop; the Receive Data Or
Stop directive, or the Get Command Command for Command
Interpreter directive. In this case, the task can only be
unstopped by issuing the Unstop directive or by the MCR or DCL
Unstop command.

You cannot stop a task when an AST is in progress (AST state). Any
directives that can cause a task to become stopped are illegal at the
AST state.

When a task is stopped for any reason at the task state, it can still
receive ASTs. If the task has been checkpointed, it becomes eligible
for entrance back into memory when an AST is queued for it. The task
retains its normal priority in memory while it is at the AST state or
has ASTs queued. Once it has exited the AST routine with no other
ASTs queued, the task is again stopped and effectively has zero
priority for memory allocation.

You can use six directives for stop-bit synchronization:

• Stop - This directive stops the issuing task and cannot be
issued at the AST state.

•

•

•

•

•

·: SY ··. '
Receive Data Or Stop ,Fln~t iVPJ:'i~b.l~<.iRe. ;ei .. ~;t:a ;()~.>:Stop - These
directives attempt to dequeue send data packets from the
specified task (or any task if none is specified). If there
is no such packet to be dequeued, the issuing task is stopped.
These directives cannot be issued at the AST state.

Stop For Logical OR Of Event Flags - This directive stops the
issuing task until the specified flags in the specified group
of local event flags become set. If any of the specified
event flags are already set, the task does not become stopped.
This directive cannot be issued at the AST state.

Stop For Single Event Flag - This directive stops the issuing
task until the indicated local event flag becomes set. If the
specified event flag is already set, the task does not become
stopped. This directive cannot be issued at the AST state.

Unstop - This directive unstops a task that has become stopped
by the Stop or Receive Data Or Stop directive.

Get Command for Command Interpreter - This directive stops a
CLI task when there is no command queued for it. The GC.CST
option must be specified to force the task to stop. See
Section 5.3.30. This directive cannot be issued at the AST
state.

2-12

CHAPTER 3

MEMORY MANAGEMENT DIRECTIVES

Within the framework of memory management directives, this chapter
discusses the concepts of extended logical address space, regions, and
virtual address windows.

3.1 ADDRESSING CAPABILITIES OF AN RSX-llM TASK

Without overlaying of tasks, an RSX-llM task cannot explicitly refer
to a location with an address greater than 177777 {32K words). The
16-bit word size of the PDP-11 imposes this restriction on a task's
addressing capability. Overlaying a task means that it must first be
divided into segments: a single root segment, which is always in
memory; and any number of overlay segments, which can be loaded into
memory as required. Unless an RSX-llM task uses the memory management
directives described in this chapter, the combined size of the task
segments concurrently in memory cannot exceed 32K words.

When resident task segments cannot exceed a total of 32K words, a task
requiring large amounts of data must access data that reside on disk.
Data are disk based not only because of limited memory space but also
because transmission of large amounts of data between tasks is only
practical by means of disk. An overlaid task, or a task that needs to
access or transfer large amounts of data, incurs a considerable amount
of transfer activity over and above that caused by the task's
function.

Task execution could obviously be faster if all or a greater portion
of the task were resident in memory at run time. RSX-llM includes a
group of memory management directives that provide the task with this
capability. The directives overcome the 32K-word addressing
restriction by allowing the task to dynamically change the physical
locations that are referred to by a given range of addresses. With
these directives, a task can increase its execution speed by reducing
its disk I/O requirements at the expense of increased physical memory
requirements.

~~i~i~~~~~~~~~~~ .. ~w~=~~i ~,•~~~
supervts()::r:' mode .th.~oµq11··the· ;use .. ·of•.... tsU,'pe.rvisor7·mo:d~ ..••.•. ·r~}:)~ar'Y ...•.... .J(:<>utines
and· ... · separat~. · useI'.~mode · +..: .. an:a .. ··p ... space •.. · superV'i:·sqr.;mo(j:~; 'lilj~(:l·ry
·routtrre.s ..•...•...... a.r~·.•·· ... ins·t:'I'l1c;t'~9·1'l:-ol)•ly < ·r;·?~ti~ne'.s< .. ·.t:'.ba·t ·.·· ·a·I''e·>map~.. . tnto
supervisor-mo,d~· I.-.sp~c~ (.. ·(UP>><~(): .. i32l<<<~()I'ds>. maxi.1num}. Us·er task
parameters, ,stac~r:and any location~ that may.be .. written. a.re ma.pped

. into su.pervisof:-~ode o..,.~pa,ce (UI) to. 32K words maximum) •. User tasks
th,at use >I- and. D~space may consiS;t ;ot" up ·to 321< words of instructions
and 32l{ w-orqs of data.

3-1

MEMORY MANAGEMENT DIRECTIVES

3.1.1 Address Mapping

In a mapped system, the user does not need to know where a task
resides in physical memory. Mapping, the process of associating task
addresses with available physical memory, is transparent to the user
and is accomplished by the KTll memory management hardware. (See the
appropriate PDP-11 processor handbook for a description of the KTll.)
When a task references a location (virtual address), the KTll
determines the physical address in memory. The memory management
directives use the KTll to perform address mapping at a level that is
visible to and controlled by the user.

3.1.2 Virtual and Logical Address Space

The three concepts defined below, physical address space, logical
address space, and virtual address space, provide a basis for
understanding the functions performed by the memory management
directives:

• Physical Address Space -- A task's physical address space is
the entire set of physical memory addresses.

• Logical Address Space -- A task's logical address space is the
total amount of physical memory to which the task has access
rights. This includes various areas called regions (see
Section 3.3). Each region occupies a contiguous block of
memory.

• Virtual Address Space -- A task's virtual address space
corresponds to the 32K-word address range imposed by the
PDP-ll's 16-bit word length. The task can divide its virtual
address space into segments called virtual address windows
(see Section 3.2).

If the capabilities supplied by the RSX-llM memory management
directives were not available, a task's virtual address space and
logical address space would directly correspond; a single virtual
address would always point to the same logical location. Both types
of address space would have a maximum size of 32K words. However, the
ability of the memory management directives to assign or map a range
of virtual addresses (a window) to different logical areas (regions)
enables the user to extend a task's logical address space beyond 32K
words.

3.1. 3 . :'Supervisor-Mode. ·~dqress·~ng

'RSX.;.llM,.;;PLU's> · su:pporfs.. POP,...U processors c~peibJ.e of operai;:ing .. Jn
supf!? ry ii13or •. < .nio~~······ ········-r~e .· superylsor·<.m()g~·fE) ·. one.:.:o f ••.• three p9ssib~e·····:~oO:es
'(us~r, kern~l~ :·a~d su:p~rvJ.sor)<Jn ~hich>tbose·.sys~~ms•·•can·· ()Pf?ra.~~}· ·In'
user Ii\ode, · ·eight ·.·. act.i:Ve · pcige ···· · registers (APRs;) a re available for

: addr~s.s: .ma:p~ing••<~f• .•• u~e.~: ... ··• ·.taslcs·. · .••.•.•••..•. N().t~ ~ha.t •.••...•. :C>'ryJ •. ~·•· · l-E)pa·pe · APRs: .. ·· .. are
emp;l.oyea .•. · .Jn ·t.ls,er. mode .. fo.r· qotn.:·i .. n·s.t:ruct.ions,.ci.r:ld.·. q.cit21.. · ·

Sup~; .• v:1.•·s·p·•r;,~~·a:~ .• ····::.·s\l;~f>(>.·~···~;····:d:<>~~1.~·~:.·········the··· .. · i·•n•st'ruc•t••i·()·n···••••••·.·:~pac•E?•· .. •'·•••a:va·•·1·1.••a:b·l. .• e••·••·· ... ·to,
···~asks• t;)eq~,~t1e; :.:· 16: ·.;A.~~s••· .• •.·• ··(8· ·••··. µ$e.1!°'.""ln.()d ~,····\I ...,p,pac~ •. ··; ~.n<t·. ·~ .. ::sµp,erv:~~.<:> l'.'"'."ln()d~·····.
: · r-ospage} ··ar~.;·~y~il'.~ble·•. f()r.·• address .. mapp~r9 .. • .. < .:!l:l7:.9o_n~~nt::1.·. <>f .. ·.use•~•..-ll'l()d~
p~sp(\lg~::·.········.~l?~s ·····:·.· •... (~'·-:s,gpce. ••'·I\~~~··.· p·r ..•. sY1:;>te1n·~···· e:n.~t· ..• ;9()>.•n<>t:·· ~l1PP<> r:ti.··•·.ilser.• ,da t•<t:
::spa9~h.:•••. e.l'.'e,•··:>c9:p~~:9 ; ..•. 1rit<>•··: .• sl1pe;rvi·s:o·!'..,.m · · •f!.·•·.••.· ... J)7:sP.:JSe>·· .J~l?~·s.· ... · .' .. · ... to ..•..•...•... ··. a.:+ low·«
·s;u.pe.1'.'i'1'.i.~pr--~qge.Tx'()utl11~s> t<>.•· • :<lC9~~s , <·· ~r....,1ll()9~ ·, ~at(l• '·: .·,(~e~er .~e; the· .

. ·.r~•P'f>r:<>P£;~,ft:e·>E>p!:>7p •.•... pr()~~ssp;::.N:!?'ld.b,c)():~··•~?.r': 1.~::'<:.G.pm,p~~·te.: : .. ·o~~qz:ipt·ion.,, of ..
·aao·rf!$S··i m.applrig ,,.·.~emo~y- :::nia11ci$ ~men ~··i;,,ah<3···: ~.11.e··'· va;-.;().us:, AI?~., r'.~9 ist:~ rsJ •··

3-2

MEMORY MANAGEMENT DIRECTIVES

3.2 VIRTUAL ADDRESS WINDOWS

In order to manipulate the mapping of virtual addresses to various
logical areas, you must first divide a task's 32K of virtual address
space into segments. These segments are called virtual address
windows. Each window encompasses a contiguous range of virtual
addresses, which must begin on a 4K-word boundary (that is, the first
address must be a mult!.~1~ of 4KJ .• > The 11umber of wt~c:l()\YS ?~~iI'l~c:l by ~
ta.s~ ..• c=.~.I'l. varr ~.rom il ··•to· .. ·7i{o.r< ~SX'"'":llM.t~~lc;; and t:~.Qit\.('·•J:·i{•.·:t:b;:•:n··2:3···• .. 1;o.r .

. ·.~~~;,..l;:J;t-t;,..~r..u~:·Wi·'.P x··<·F'~r a.~~.<~asks, window o is not avaf1abie ·t:o "the··
:.:.·. ~·.·vs ea.·· ··:·;···.·.;··a·.· ... b.)1~.~ .. •.0e·•·.'.r ... ·;·:·: .:t~:o.a• .. ••~. • ~.. i.ng ~h nT ..•. ,ah•</e·:.·:.·.· •. :. s i zae)~ •. ~·otAf:·.': .~e .. .'a~.nc ~h: ·().ww.' .s1··.'.n/:·d:., .:o.Q:w;;;,. ,ac)a·.,·.·.· .. an .. · •. ·. ·.'.htr·~'-;la· •n .. g,:.•)ae· ... '~\ef ... ':r\'.'o·\'. nm'J9ta ... d

Q "'Jo µ~~~'.··~···
minimum of ... 32 'wor'as'"to ·.a .. maximum of 32K words.

A task that includes directives to manipulate address windows
dynamically must have window blocks set up in its task header. The
Executive uses window blocks to identify and describe each currently
existing window. You specify the required number of additional window
blocks (the number used for windows created by the memory management
directives) to be set up by the Task Builder when linking the task
(see the RSX-llM/M-PLUS Task Builder Reference Manual) • The number of
blocks that you speci~should equal the maximum number of windows
that wiii exist at any one time when the task is running.

3-3

MEMORY MANAGEMENT DIRECTIVES

A window's identification is a number from 0 to 15. for either user
. •. . a· :.·s··· .. ·:''·.· .. ·s.···.·.·t·.·.·.··•:e··.·.·. m·.·····.·.s·.... ·.·•.··•·· .. t·.··· .. ·.·:h·· ·.:·.a···.···.: .. t .. :·.· .. : .. ··.•:.· .• '.·.···:··.·•s·.·.·.··u .. ·.·.• ... ·p·.· .• P· · .. 'o· .. · .. •·.· •. ·:r· .. · •. ·.·t· •.. ·••·. ·•····· · o.r.·.····•·· ./ ~.tiP~~'/,.J;~9·:r >.::• .. ~:t,t:t ... •o:~s .. ·•:. p:n . ;z. !;µp~.r.y1·so t~Jlipde ·

J.ibJ:"ar:~ es·:/ fQ:: .:'l:qi··.· .. g~:•· .epr.·.·.··.sY~tem.s.• .~~'l::tli·.·····•.tis~t" ··.· ... ·•fi:qa··<i.··· .. ·•.· .. ·.s.IJ~l'ij'lsp,r'···••.·:, .. :r·~·• .. ·:·•·.:.··.··.· .. al)d\•······:·.··p.;o.· ·
spa(:!e.) 1 which is an index to the window's corresponding window block.
The address window identified by 0 is the window that maps the task's
h.e.a?er ~n? r()()t segment •.... ··I"'T'·f:.~.~~~· ;~~;~. ..·.I'f·•~*1~Y~.7~....... ·~·:·~~:µ~.o~ ;~:··~~~·
·~~~·.:··:ta'.~~ ':sS¥•.·:· .. •~P(l~i··•.·:•~n..$·l::~'f P'(:.i<:>n.:··.~·~'FJ~~~·t;.;···.····\ ... ·... . :ap~:. ·;l.i·• m!';lPs· j •e:f: ;::l:.gsl\~··.s1::ij~a~~t'·:~· ·
.s~•a. 'Glna·.:r;;p(J,it.J<J~;t<il·:.:~~g .• 1:!n.:ti .. : The Task Builder automatically creates
window 0, which is mapped by the Executive and cannot be specified in
any directive.

Figure 3-1 shows the virtual address space of a task divided into four
address windows {windows O, 1, 2, and 3). The shaded areas indicate
portions of the address space that are not included in any window (9K
to 12K and 23K to 24K). Addresses that fall within the ranges
corresponding to the shaded areas cannot be used.

When a task uses memory management directives, the Executive views the
relationship between the task's virtual and logical address space in
terms of windows and regions. Unless a virtual address is part of an
existing address window, reference to that address will cause an
illegal address trap to occur. Similarly, a window can be mapped only
to an area that is all or part of an existing region within the task's
logical address space {see Section 3.3).

Once a task has defined the necessary windows and regions, it can
issue memory management directives to perform operations such as the
following:

• Map a window to all or part of a region.

• Unmap a window from one region in order to map it to another
region.

• Unmap a window from one part of a region in order to map it to
another part of the same region.

3-4

MEMORY MANAGEMENT DIRECTIVES

VIRTUAL
ADDRESS

SPACE

32K

WINDOW3 3 (SK) 2SK

.rrmrn rn m 24K

20K

WINDOW 2 2 (11 K)

16K

Ill_ 12K

SK

WINDOW 1 1 (SK)

4K

WINDOWO 0 (4K)

OK

D = virtual address
window

• = unused virtual
address space

ZK-307-81

Figure 3-1 Virtual Address Windows

3.3 REGIONS

A region is a portion of a physical memory to which a task has (or
potentially may have) access. The current window-to-region mapping
context determines that part of a task's logical address space that
the task can access at one time. A task's logical address space can
consist of various types of regions:

• Task region -- A contiguous block of memory in which the task
runs

• Static common region -- An area, such as a global common area,
defined by an operator at run time or at system generation
time

NOTE

On RSX-llM systems, static common
regions occupy· physical memory from the
time thev are created. On RSX~llM;..PLUS

f>Ys+t~ms,-.·. t.hey . are . C1Yr'tamica11ry · ioa.aea
whenever· needed. · ·

3-5

MEMORY MANAGEMENT DIRECTIVES

• Dynamic region -- A region created dynamically at run time by
issuing the memory management directives

Tasks refer to a region by means of a region ID returned to the task
by the Executive. A region ID from 0 to 23 refers to a task's static
attac!i~-~.nt. ion !:··~:::R,, ... ~ .. ~ .. ~~X~ •. ,.)'." .. ~.~.~1r.~:<: to ~ .. 17~~k.'.~ task reg i<?n •.

i~i ji ·.pii iM!.t11uii ;~~~~~~1 I. :1~p1:ntt:;ib~: :i~•e.(l: ilJ;lf!. ~~ur:a coa·e) : ~fftt fo'.lll · of
;!~~~!(.. .. All other region IDs are actually addresses of the

'attachment escriptor maintained by the Executive in the system
dynamic storage area.

Figure 3-2 shows a sample collection of regions that could make up a
task's logical address space at some given time. The header and root
segment are always part of the task region. Since a region occupies a
contiguous area of memory, each region is shown as a separate block.

Figure 3-3 illustrates a possible mapping relationship between the
windows and regions shown in Figures 3-1 and 3-2.

3.3.1 Shared Regions

Address mapping not only extends a task's logical address space beyond
32K words, it also allows the space to extend to regions that have not
been linked to the task at task-build time. One result is an
increased potential for task interaction by means of shared regions.
For example, a task can create a dynamic region to accommodate large
amounts of data. Any number of tasks can then access that data by
mapping to the region. Another result is the ability of tasks to use
a greater number of common routines. Thus, tasks can map to required
routines at run time, rather than linking to them at task-build time.

3.3.2 Attaching to Regions

Attaching is the process by which a region becomes part of a task's
logical address space. A task can map only a region that is part of
the task's logical address space. There are three ways to attach a
task to a region:

• All tasks are automatically attached to regions that are
linked to them at task-build time.

• A task can issue a directive to attach itself to a named
static common region or a named dynamic region.

• A task can request the Executive to attach another specified
task to any region within the logical address space of the
requesting task.

Attaching identifies a task as a user of a region and prevents the
system from deleting a region until all user tasks have been detached
from it. (It should be noted that fixed tasks do not automatically
become detached from regions upon exiting.)

3-6

MEMORY MANAGEMENT DIRECTIVES

LOGICAL
ADDRESS

SPACE

ZK-308-81

Figure 3-2 Region Definition Block

3-7

WINDOW3

WINDOW2

WINDOW1

WINDOW,Rf

MEMORY MANAGEMENT DIRECTIVES

VIRTUAL

ADDRESS
SPACE

32K

3 (BK) 2BK

mmmaHIIm 24K

20K

2 (11 K)

16K

ill
12K

BK

1 (5K)

------- 4K

)1{4K)

K

Legend:

D = virtual address
window

• = unused virtual
address space

= pointer to area
____,. mapped by a window

11 K

LOGICAL
ADDRESS

SPACE

~ = mapped areas of
~ logical address space

~ = unmapped portions of

~ logical address space

Figure 3-3 Mapping Windows to Regions

3-8

7K-309-81

MEMORY MANAGEMENT DIRECTIVES

NOTE

Each Send By Reference directive issued
by a sending task creates a new
attachment descriptor for the receiving
task. However, multiple Send By
Reference directives referencing the
same region require only one attachment
descriptor. After the receiving task
issues a series of Receive By Reference
directives and all pending data requests
have been received, the task should
detach the region in order to return the
attachment descriptors to the pool.

3.3.3 Region Protection

A task cannot indiscriminately attach to any region. Each region has
a protection mask to prevent unauthorized access. The mask indicates
the types of access (read, write, extend, delete) allowed for each
category of user (system, owner, group, world). The Executive checks
that the requesting task's User Identification Code (UIC) allows it to
make the attempted access. The attempt fails if the protection mask
denies that task the access it wants.

To determine when tasks may add to their logical address space by
attaching regions, the following points must be considered. (Note
that all considerations presume there is no protection violation.):

• Any task can attach to a named dynamic region, provided it
knows the name. In the case of an unnamed dynamic region, a
task can attach to the region only after receiving a Send By
Reference directive from the task that created the region.

to .· .. atte19li.· .. :.ari9:t..ll.~I'.::·.tas~.·t.9:·C1ttyi r~gJo·n.i; on. RSX~llM, the task
reg ion itse1 f may not be one of the regions invo1 ved • The
reference sent includes the access rights with which the
receiving task attaches to the region. The sending task can
only grant access rights that it has itself.

• Any task can map to a named static common region.

3e4 DIRECTIVE SUMMARY

This section briefly describes the function of each memory management
directive.

3-9

MEMORY MANAGEMENT DIRECTIVES

3.4.1 Create Region Directive (CRRG$)

The Create Region directive creates a dynamic region in a designated
system-controlled partition and optionally attaches the issuing task
to it (see Section 5.3.13).

3.4.2 Attach Region Directive (ATRG$)

The Attach Region directive attaches the issuing task to a static
common region or to a named dynamic region (see Section 5.3.5).

3.4.3 Detach Region Directive (DTRG$)

The Detach Region directive detaches the issuing task from a specified
region. Any of the task's address windows that are mapped to the
region are automatically unmapped (see Section 5.3.19).

3.4.4 Create Address Window Directive (CRAW$)

The Create Address Window directive creates an address window,
establishes its virtual address base and size, and optionally maps the
window. Any other windows that overlap with the range of addresses of
the new window are first unmapped and then eliminated (see Section
5.3.11).

3.4.5 Eliminate Address Window Directive (ELAW$)

The Eliminate Address Window directive eliminates an existing address
window, unmapping it first if necessary {see Section 5.3.20).

3.4.6 Map Address Window Directive (MAP$)

The Map Address Window directive maps an existing window to an
attached region. The mapping begins at a specified offset from the
start of the region and goes to a specified length. If the window is
already mapped elsewhere, the Executive unmaps it before carrying out
the map assignment described in the directive {see Section 5.3.40).

3.4.7 Unmap Address Window Directive (UMAP$)

The Unmap Address Window directive unmaps a specified window. After
the window has been unmapped, its virtual address range cannot be
referenced until the task issues another mapping directive {see
Section 5.3.85).

3.4.8 Send By Reference Directive (SREF$)

The Send By Reference directive inserts a packet containing a
reference to a region into the receive queue of a specified task. The
receiver task is automatically attached to the region referred to (see
Section 5.3.74).

3-10

MEMORY MANAGEMENT DIRECTIVES

3.4.9 Receive By Reference Directive (RREF$)

The Receive By Reference directive requests the Executive first to
select the next packet from the receive-by-reference queue of the
issuing task, and then to make the information in the packet available
to the task. Optionally the directive can map a window to the
referenced region or cause the task to exit if the queue does not
contain a receive-by-reference packet {see Section 5.3.55).

3.4.10 Get Mapping Context Directive (GMCX$)

The Get Mapping Context directive causes the Executive to return to
the issuing task a description of the current window-to-region mapping
assignments. The description is in a form that enables the user to
restore the mapping context through a series of Create Address Window
directives (see Section 5.3.34).

3.4.11 Get Region Parameters Directive (GREG$)

The Get Region Parameters directive causes the Executive to supply the
issuing task with information about either its task region (if no
region ID is given) or an explicitly specified region {see Section
5.3.36).

3.5 USER DATA STRUCTURES

Most memory management directives are individually capable of
performing a number of separate actions. For example, a single Create
Address Window directive can unmap and eliminate up to seven
conflicting address windows, create a new window, and map the new
window to a specified region. The complexity of the directives
requires a special means of communication between the user task and
the Executive. The communication is achieved through data structures
that:

• Allow the task to specify which directive options it wants the
Executive to perform

• Permit the Executive to provide the task with details about
the outcome of the requested actions

There are two types of user data structures that correspond to the two
key elements {regions and address windows} manipulated by the
directives. The structures are called:

• The Region Definition Block (ROB)

• The Window Definition Block (WDB)

Every memory management directive, except Get Region Parameters, uses
one of these structures as its communications area between the task
and the Executive. Each directive issued includes in the Directive
Parameter Block (DPB) a pointer to the appropriate definition block.
Symbolic address offset values are assigned by the task, pointing to
locations within an ROB or a WDB. The task can change the contents of
these locations to define or modify the directive operation. After
the Executive has carried out the specified operation, it assians
values to various locations within the biock to describe the actions
taken and to provide the task with information useful for subsequent
operations.

3-11

MEMORY MANAGEMENT DIRECTIVES

3.5.1 Region Definition Block (RDB)

Figure 3-4 illustrates the format of an RDB. In addition to the
symbolic offsets defined in the diagram, the region status word R.GSTS
contains defined bits that may be set or cleared by the Executive or
the task. (RSX-llM reserves undefined bits for future expansion.) The
bits and their definitions follow.

Bit

RS.CRR=lOOOOO

RS.UNM=40000

RS.MDL=200

RS.NDL=lOO

RS.ATT=40

RS.NEX=20

RS.DEL=lO

RS. EXT=4

RS.WRT=2

RS.RED=l

Definition

Region was successfully created.

At least one window was unmapped on a detach.

Mark region for deletion on last detach.
When a region is created by means of a CRRG$
directive it is normally marked for deletion
on last detach. However, if RS.NOL is set
when the CRRG$ directive is executed, the
region is not marked for deletion.
Subsequent execution of a DTRG$ directive
with RS.MDL set marks the region for
deletion.

Created region is not to be marked for
deletion on last detach.

Attach to created region.

Created region is not extendable.

Delete access desired on attach.

Extend access desired on attach.

Write access desired on attach.

Read access desired on attach.

These symbols are defined by the RDBDF$ macro, as described in section
3.5.1.1.

The three memory management directives that require a pointer to an
RDB are:

Create Region (CRRG$)
Attach Region (ATRG$)
Detach Region (DTRG$)

When a task issues one of these directives, the Executive clears the
four high-order bits in the region status word of the appropriate RDB.
After completing the directive operation, the Executive sets the
RS.CRR or RS.UNM bit to indicate to the task what actions were taken.
The Executive never modifies the other bits.

3-12

MEMORY MANAGEMENT DIRECTIVES

Array Symbolic Byte
Element Offset Block Format Offset

0

irdb (1) R.GID REGION ID

2

irdb (2) R.GSIZ SIZE OF REGION (32W BLOCKS)

4

irdb (3)

R.GNAM

irdb (4)

NAME OF REGION (RAD50) I 6

10

irdb (5)

R.GPAR REGION'S MAIN PARTITION NAME (RAD50) ~ 12

irdb (6)

14

irdb (7) R.GSTS REGION STATUS WORD

16

irdb (8) R.GPRO REGION PROTECTION WORD

ZK-310-81

Figure 3-4 Region Definition Block

3.5.1.l Using Macros to Generate an RDB - RSX-llM provides two
macros, RDBDF$ and RDBBK$, to generate and define an RDB. RDBDF$
defines the offsets and status word bits for a region definition
block; RDBBK$ then creates the actual region definition block. The
format of RDBDF$ is:

RDBDF$

Since RDBBK$ automatically invokes RDBDF$,
RDBBK$ in a module that creates an RDB.
RDBBK$ is:

RDBBK$ siz,nam,par,sts,pro

siz
The region size in 32-word blocks.

nam
The region name (RADSO).

par

you need only specify
The format of the call to

The name of the partition in which to create the region (RADSO).

3-13

MEMORY MANAGEMENT DIRECTIVES

sts
Bit definitions of the region status word.

pro
The reg ion's default protection word.

The sts argument sets specified bits in the status word R.GSTS. The
argument normally has the following format:

<bitl[! ••• !bitn]>

bit
A defined bit to be set.

The argument pro is an octal number. The 16-bit binary equivalent
specifies the region's default protection as follows:

Bits 15 12 11 8 7 4 3 0

WORLD GROUP OWNER SYSTEM

Each of the four categories above has four bits, with each bit
representing a type of access:

Bit 3 2 1 0

DELETE EXTEND I WRITE READ I
A bit value of 0 indicates that the specified type of access is to be
allowed; a bit value of 1 indicates that the specified type of access
is to be denied.

The macro call

RDBBK$

expands to:

.WORD
• WORD
.RADSO
.RADSO
.WORD
.WORD
.WORD

102.,ALPHA,GEN,<RS.NDL!RS.ATT!RS.WRT!RS.RED>,167000

0
102 •
/ALPHA/
/GEN/
0
RS.NDL!RS.ATT!RS.WRT!RS.RED
167000

If a Create Region directive pointed to the RDB defined by this
expanded macro call, the Executive would create a region 102 (decimal)
32-word blocks in length, named ALPHA, in a partition named GEN. The
defined bits specified in the sts argument tell the Executive:

• Not to mark the region for deletion on the last detach

• To attach region ALPHA to the task issuing the directive macro
call

• To grant read and write access to the attached task

The protection word specified as 167000 (octal) assigns a default
protection mask to the region. The octal number, which has a binary
equivalent of 1110 1110 0000 0000, grants access as follows:

System (1110)
Owner
Group
World

(liiOj
(0000)
(0000)

All access
All access
Read access only
Read access only

3-14

MEMORY MANAGEMENT DIRECTIVES

If the Create Region directive is successful, the Executive will first
return to the issuing task a region ID value in the location accessed
by symbolic offset R.GID, and then will set the defined bit RS.CRR in
the status word R.GSTS.

3.5.1.2 Using FORTRAN to Generate an RDB - When programming in
FORTRAN, you must create an 8-word, single-precision integer array as
the RDB to be supplied in the subroutine calls:

CALL ATRG
CALL CRRG
CALL DTRG

(Attach Region directive)
(Create Region directive)
(Detach Region directive)

(See the PDP-11 FORTRAN Language Reference Manual for information on
the creation of arrays.) An RDB array has the following format:

Word

irdb(l)

irdb(2)

irdb(3)
irdb(4)

irdb(S)
irdb(6)

irdb(7)

irdb(8)

Contents

Region ID

Size of the region in 32-word blocks

Region name (2 words in Radix-50 format)

Name of the partition that contains the region
(2 words in Radix-50 format)

Region status word (see the paragraph following
this list)

Region protection code

You can modify the region status word irdb(7) by setting or clearing
the appropriate bits. See the list in Section 3.5.1 that describes
the defined bits. The bit values are listed alongside the symbolic
offsets.

Note that Hollerith text strings can be converted to Radix-SO values
by calls to the FORTRAN library routine IRADSO (see the appropriate
FORTRAN User's Guide).

3.5.2 Window Definition Block (WDB)

Figure 3-5 illustrates the format of a WDB. The block consists of a
number of symbolic address offsets to specific WDB locations. One of
the locations is the window status word W.NSTS, which contains defined
bits that can be set or cleared by the Executive or the task.
(RSX-llM reserves all undefined bits for future expansion.) The bits
and their definitions follow.

Bit

WS.CRW=lOOOOO

WS.UNM=40000

WS.ELW=20000

Definition

Address window was successfully created.

At least one window was unmapped by a Create
Address Window, Map Address Window, or Unmap
Address Window directive.

At least one window was eliminated in a
Create Address Window or Eliminate Address
Window directive.

3-15

WS.RRF=lOOOO

WS.RES=2000

WS.64B=400

WS.MAP=200

WS.RCX=lOO

WS.DEL=lO

WS.EXT=4

WS.WRT=2

WS.RED=l

M!MORY MANAGEMENT DIRECTIVES

Reference was successfully received.

Map only if resident.

Defines the task's permitted alignment
boundaries 0 for 256-word (512-byte)
alignment, 1 for 32-word (64-byte) alignment.

Window is to be mapped in a Create Address
Window or Receive By Reference directive.

Exit if no references to receive.

Send with delete access.

Send with extend access.

Send with write access.
or

Map with write access.

Send with read access.

3-16

Array Symbolic
Element Offset

W.NID
iwdb (1) W.NAPR

iwdb (2) W.NBAS

iwdb (3) W.NSIZ

iwdb (4) W.NRID

iwdb (5) W.NOFF

iwdb (6) W.NLEN

iwdb (7) W.NSTS

iwdb (8) W.NSRB

MEMORY MANAGEMENT DIRECTIVES

Block Format

BASE APR WINDOW ID

VIRTUAL BASE ADDRESS (BYTES)

WINDOW SIZE (32W BLOCKS)

REGION ID

OFFSET IN REGION (32W BLOCKS)

LENGTH TO MAP (32W BLOCKS)

WINDOW STATUS WORD

SEND/RECEIVE BUFFER ADDRESS (BYTES)

Byte
Offset

0

2

4

6

10

12

14

16

ZK-311-81

Figure 3-5 Window Definition Block

These symbols are defined by the WDBDF$ macro, as described in Section
3.5.2.1.

The following directives require a pointer to a WDB:

Create Address Window (CRAW$)
Eliminate Address Window (ELAW$)
Map Address Window (MAP$)
Unmap Address Window (UMAP$)
Send By Reference (SREF$)
Receive By Reference (RREF$)

When a task issues one of these directives, the Executive clears
four high-order bits in the window status word of the appropriate
After completing the directive operation, the Executive can then
any of these bits to tell the task what actions were taken.
Executive never modifies the other bits.

the
WDB.
set
The

3.5.2.l using Macros to Generate a WDB - RSX-llM provides two macros,
WDBDF$ and WDBBK$, to generate and define a WDB. WDBDF$ defines the
offsets and status word bits for a window definition block; WDBBK$
then creates the actual window definition block. The format of WDBDF$
is:

WDBDF$

3-17

MEMORY MANAGEMENT DIRECTIVES

Since WDBBK$ automatically invokes WDBDF$,
WDBBK$ in a module that generates a WDB.
WDBBK$ is:

you need only specify
The format of the call to

apr

siz

rid

off

len

sts

srb

WDBBK$ apr,siz,rid,off,len,sts,srb

A number from 0 to 7 that specifies the window's base Active Page
Register {APR}. The APR determines the 4K boundary on which the
window is to begin. APR 0 corresponds to virtual address O, APR
1 to 4K, APR 2 to BK, and so on.

The size of the window in 32-word blocks.

A region ID.

The offset within the region to be mapped, in 32-word blocks.

The length within the region to be mapped, in 32-word blocks
{defaults to the value of siz above}.

The bit definitions of the window status word.

A send/receive buffer virtual address.

The argument sts sets specified bits in the status word W.NSTS. The
argument normally has the following format:

<bitl[! ••• !bitn]>

bit
A defined bit to be set.

The macro call

WDBBK$

expands to:

.BYTE
.WORD
• WORD
.WORD
• WORD
.WORD
.WORD
.WORD

5,76.,0,50.,,<WS.MAP!WS.WRT>

0,5
0
76 •
0
50 •
0
WS.MAP!WS.WRT
0

{Window ID returned in low-order byte}
{Base virtual address returned here)

If a Create Address Window directive pointed to the WDB defined by the
macro call expanded above, the Executive would:

• Create a window 76 (decimal) blocks long beginning at APR 5
(virtual address 20K or 120000 octal)

• Map the window with write access (<WS.MAP!WS.WRT>) to the
issuing task's task region (because the macro call specified 0
for the region ID)

3-18

• Start the
and map
(decimal]
whichever
argument)

MEMORY MANAGEMENT DIRECTIVES

map 50 (decimal) blocks from the base of the region,
an area either equal to the length of the window (76
blocks) or to the length remaining in the region,
is smaller (because the macro call defaulted the len

• Return values to the symbolic W.NID (the window's ID) and
W.NBAS (the window's virtual base address)

3.5.2.2 Using FORTRAN to Generate a WDB - You must create an 8-word,
single-precision integer array as the WDB to be supplied in the
subroutine calls:

CALL CRAW
CALL ELAW
CALL MAP
CALL UNMAP
CALL SREF
CALL RREF

(Create Address Window directive)
(Eliminate Address Window directive)
(Map Address Window directive)
(Unmap Address Window directive)
(Send By Reference directive)
{Receive By Reference directive)

{See the PDP-11 FORTRAN Language Reference Manual for information on
the creation of arrays.) A WDB array has the following format:

Word

iwdb{l)

i wdb (2)

i wdb (3)

iwdb(4)

iwdb(5)

i wdb (6)

iwdb(7)

iwdb(8)

Contents

Bits 0 to 7 contain the window ID; bits 8 to 15
contain the window's base APR.

Base virtual address of the window.

Size of the window in 32-word blocks.

Region ID.

Offset length within the region at which map
begins, in 32-word blocks.

Length mapped within the region in 32-word blocks.

Window status word (see the paragraph following
this list).

Address of send/receive buffer.

You can modify the window status word iwdb(7) by setting or clearing
the appropriate bits. See the list in Section 3.5.2 that describes
the defined bits. The bit values are listed alongside the symbolic
offsets.

Note that:

• The contents of bits 8 to 15 of iwdb{l) must normally be set
without destroying the value in bits 0 to 7 for any directive
other than Create Address Window.

• A call to GETADR (see Section 1.5.1.4) can be used to set up
the address of the send/receive buffer. For example:

CALL GE TA DR (IWDB, , , , , , , , IRCVB)

This call places the address of buffer IRCVB in array element
8. The remaining elements are unchanged. The subroutines
SREF and RREF also set up this value. If you use the SREF and
RREF routines, you do not need to use GETADR.

3-19

MEMORY MANAGEMENT DIRECTIVES

3.5.3 Assigned Values or Settings

The exact values or settings assigned to individual fields within the
RDB or the WDB vary according to each directive. Fields that are not
required as input can have any value when the directive is issued.
Chapter 5 describes which offsets and settings are relevant for each
memory management directive. The values assigned by the task are
called input parameters, whereas those assigned by the Executive are
called output parameters.

3.6 PRIVILEGED TASKS

When a privileged task maps to the Executive and the I/O page, the
system normally dedicates five or six APRs to this mapping. A
privileged task can issue memory management directives to remap any
number of these APRs to regions. Take great care when using the
directives in this way, because such remapping can cause obscure bugs
to occur. When a directive unmaps a window that formerly mapped the
Executive or the I/O page, the Executive restores the former mapping.

NOTE

Tasks should not remap APRO. If APRO is
remapped, information such as the DSW,
overlay structures, or language runtime
systems will become inaccessible.

3-20

CHAPTER 4

PARENT/OFFSPRING TASKING

4.1 PARENT/OFFSPRING TASKING SUPPORT OVERVIEW

Parent/offspring tasking has many real-time applications in
establishing and controlling complex interrelationships between parent
and offspring tasks. A parent task is one that starts or connects to
another task, called an offspring task. A major application for the
parent-offspring task relationship is batch processing. When running
tasks in this manner, you can set up task relationships and parameters
on line to control the processing of a batch job (or jobs) that run
off line.

Starting (or activating) offspring tasks is called "spawning."
Spawning also includes the ability to establish task communications;
a parent task can be notified when an offspring task exits and can
receive status information from the offspring task.

Status returned from an offspring task to a parent task indicates
successful completion of the offspring task or identifies specific
error conditions.

4.2 DIRECTIVE SUMMARY

This section summarizes the directives for parent/offspring tasking
and inter-task communication.

4.2.1 Parent/Offspring Tasking Directives

There are two classes of parent/offspring tasking directives:

• Spawning directives that create a connection between tasks

• Chaining directives that transfer a connection

Three directives can connect a parent task to an offspring task:

• Spawn - This directive requests activation of, and connects
to, a specific offspring task.

An offspring task spawned by a parent task has the following
three task functions that are not provided by the Request or
Run directive.

4-1

PARENT/OFFSPRING TASKING

1. A spawned offspring task can be a command line interpreter
(CL!) •

3. A spawned offspring
information or exit
parent task or tasks.

task can return current status
status information to a connected

Spawn directive options include:

1. Queuing a command line for the offspring task (which may
be a command line interpreter).

2.

3. For privileged or CLI tasks, designating any terminal as
the offspring TI:

• Connect - This directive establishes task communications for
synchronizing with the exit status or emit status issued by a
task that is already active.

• Send, Request, and Connect - This directive sends data to the
specified task, requests activation of the task if it is not
already active, and connects to the task.

There are also two directives that support task chaining:

• Request and Pass Offspring Information -- This directive
allows an offspring task to pass its parent connection to
another task thus making the new task the offspring of the
original parent. The RPO!$ directive offers all the options
of the Spawn directive.

• Send Data, Request and Pass Offspring Control Block -- This
directive sends a data packet for a specified task, passes its
parent connection to that task, and requests it if it is not
already active.

A parent task can connect to more than one offspring task using the
Spawn and Connect directives, as appropriate. In addition, the parent
task can use the directives in any combination to multiply connect to
offspring tasks.

An offspring task can be connected to multiple parent tasks. An
appropriate data structure, the Offspring Control Block, is produced
(in addition to those already present) each time a parent task
connects to the offspring task.

4.2.2 Task Communication Directives

Two directives in an offspring task return status to connected parent
tasks:

4-2

PARENT/OFFSPRING TASKING

• Exit With Status - This directive in an offspring task causes
the offspring task to exit, passing status words to all
connected parent tasks (one or more) that have been previously
connected by a Spawn, Connect, or Send, Request, and Connect
directive.

• Emit Status - This directive causes the offspring task to pass
status words to either the specified connected task or all
connected parent tasks if no task is explicitly specified.

When status is passed to tasks in this manner, the parent task(s) no
longer remains connected.

Standard offspring task status values that can be returned to parent
tasks are listed as follows:

EX$WAR 0 Warning - task succeeded, but
irregularities are possible

EX$SUC

EX$ERR

1 Success - results should be as expected

2 Error - results are unlikely to be as
expected

EX$SEV 4 Severe Error - one or more fatal errors
detected, or task aborted

These symbols are defined in DIRSYM.MAC. They become defined locally
when the EXST$ macro is invoked. However, the exit status may be any
16-bit value.

4.3 CONNECTING AND PASSING STATUS

Offspring task exit status can be returned to connected (parent)
task(s) by issuing the Exit With Status directive. Offspring tasks
can return status to one or more connected parent tasks at any time by
issuing the Emit Status Directive. Note that only connected
parent-offspring tasks can pass status.

The means by which a task connects to another
indistinguishable once the connect process is complete.
Task A can become connected to Task B in one of the four
below.

• Task A spawned Task B when Task B was inactive.

• Task A connected to Task B when Task B was active.

task are
For example,

ways shown

• Task A issued a Send, Request, And Connect to Task B when Task
B was either active or inactive.

• Task A either spawned or connected to Task c, which then
chained to Task B by means of either an RPO!$ directive or an
SDRP$ directive.

Regardless of the way in which Task A became connected to Task B, Task
B can pass status information back to Task A, set the event flag
specified by Task A, or cause the AST specified by Task A to occur in
any of the five ways shown below. Note that once offspring task
status is returned to one or more parent tasks, the parent tasks
become disconnected.

4-3

PARENT/OFFSPRING TASKING

• Task B issues a normal (successful) exit directive.
receives a status of EX$SUC.

Task A

• Task B is aborted. Task A receives a severe error status of
EX$SEV.

• Task B issues an Exit With Status directive, returning status
to Task A upon completion of Task B.

• Task B issues an Emit Status directive specifying Task A. If
Task A is multiply connected to Task B, the OCBs that contain
information about these multiple connections are stored in a
FIFO queue. The first OCB is used to determine which event
flag, AST address, and exit status block to use.

• Task B issues an Emit Status directive to all connected tasks
(no task name specified) •

When a task has previously specified another task in a Spawn, Connect,
or Send, Request, and Connect directive and then exits, and if status
has not yet been returned, the OCB representing this connect remains
queued. However, the OCB is marked to indicate that the parent task
has exited. When this OCB is subsequently dequeued due to an Emit
Status directive, or any type of exit, no action is taken since the
parent task has exited. This procedure is followed to help a
multiply-connected task to remain synchronized when parent tasks
unexpectedly exit.

Examples of using directives for intertask synchronization are
provided below (macro call form for directives are shown). Task A is
the parent task and Task B is the offspring task.

Task A

SPWN$

CNCT$

SDRC$

SDRC$,
USTP$

SDAT$,
USTP$

SPWN$

Task B

EXST$

EXST$

RCVX$,
EMST$

RCST$,
EMST$

RCST$

RPOI$
SDRP$

Action

Task A spawns Task B. Upon Task B completion,
Task B returns status to Task A.

Task A connects to active Task B. Upon Task B
completion, Task B returns status to Task A.

Task A sends data to Task B, requests Task B if it
is presently not active, and connects to Task B.
Task B receives the data, does some processing
based on the data, returns status to Task A
(possibly setting an event flag or declaring an
AST), and becomes disconnected from Task A.

Task A sends data to Task B, requests Task B if it
is presently not active, connects to Task B, and
unstops Task B. Task B becomes unstopped (if Task
B previously could not dequeue the data packet),
receives the data, does some processing based on
the data, and returns status to Task A (possibly
setting an event flag or declaring an AST).

Task A queues a data packet for Task B and unstops
Task B; Task B receives the data.

Task A spawns Task B. Task B chains to Task C by
issuing an RPOI$ or an SDRP$ directive. Task A is
now Task C's parent. Task A is no longer
connected to Task B.

4-4

PARENT/OFFSPRING TASKING

4.4 SPAWNING SYSTEM TASKS

One special use of the Spawn directive is to pass a command line to a
system task. You may use the Spawn directive to pass a command line
to a command line interpreter, or to an installed utility.

4.4.1 Spawning a Command Line Interpreter

Command line interpreters can be broken into three classes: MCR, the
CLI that is active from TI:, and all others.

• To pass a command line to MCR, use the task name MCR •••

• To pass a command line to the CLI that is currently active
from TI:, use the task name CLI •••• You can determine which
CLI is active from your TI: by issuing the GCII$ directive.

• To pass a command to a specific CLI other than MCR or the CLI
active from TI:, simply use that CLI's task name in your Spawn
directive. The task name of DCL is ••• DCL. Check with your
system manager for the task names of any user-written CLI's.

• On RSX-llM systems, you may pass a command to a specific CLI
only if the specified task name is not already active. If the
task name is already active, the Spawn directive will fail.

4.4.2 Spawning a Utility

Utilities are generally installed under task names of the form ••• tsk.
This convention allows the utilities to be invoked as MCR commands.
(See the RSX-llM/M-PLUS MCR Operations Manual.)

You can pass commands to a utility in one of two ways. You can spawn
the utility directly, using the task name ••• tsk. Or, you can spawn
MCR and pass it a command line that begins with three-character task
name.

4. 4. 2~ 1 spaWl)i.ng a Utility under :RSX'.--l.11- -- .!:(yo.u attempt to. spawn
•.•• tsk dlr~ctly on an RSX--llM 9_ysi::ern, the : operatfor1 behaves as
follows: ·

• If that task is not yet active, the executive will activate
it, under the name ••• tsk.

• If the task •• ~tsk is already active, your Spawn directive
will fail, regardless of which terminal has activated that
task.

If you passMCR a command line beginning with "tsk", MCR will:

• Attempt to activate the task ••• tsk.

• If that tas.k name is already active, MCR will attempt to
activate the task under the name tskTnn, where nn is the unit
number of your TI:.

• If both ••• tsk and tskTnn are already active, MCR will report
failure to your task.

4-5

PARENT/OFFSPRING TASKING

Unless you· are ·certain that the utlli£y you' desire fa not yet active
in . the system, direct spawning of the. utility.· offers a great~r
likelihood of failure than requesting the utility through MCR.. · For
this reason, . it . is recommended that o.n RSX--llM systems you request
utilitie$.• through· MCR.

4.4.2.3 Passing Command Lines to Utilities - Even when you spawn a
utility directly, pass a command line that includes the entire command
as you would type it at the terminal or pass it to MCR. Include the
3-character task name followed by a space. This maintains
compatibility with the format used by MCR to pass commands to
utilities. (See the description of the GMCR$ directive in Chapter 5.)

4-6

CHAPTER 5

DIRECTIVE DESCRIPTIONS

Each directive description consists of an explanation of the
directive's function and use, the names of the corresponding macro and
FORTRAN calls, the associated parameters, and possible return values
of the Directive Status Word (DSW). The descriptions generally show
the$ form of the macro call (for instance, QIO$), although the $C and
$S forms are also available. Where the $S form of a macro requires
less space and performs as fast as a DIR$ (because of a small DPB), it
is recommended. For these macros, the expansion for the $S form is
shown, rather than that for the $ form.

In addition to the directive macros themselves, you can use the DIR$
macro to execute a directive if the directive has a predefined DPB.
See Sections 1.4.1.1 and 1.4.2 for further details.

5.1 DIRECTIVE CATEGORIES

For ease of reference, the directive descriptions are presented
alphabetically in Section 5.3 according to the directive macro calls.
This section, however, groups the directives by function. The
directives are grouped into the following ten categories:

• Task execution control directives

• Task status control directives

• Informational directives

• Event-associated directives

• Trap-associated directives

• I/0- and intertask communications-related directives

• Memory management directives

• Parent/offspring tasking directives

• Command line interpreter (CLI) support directives

5.1.1 Task Execution Control Directives

The task execution control directives deal principally with starting
and stopping tasks. Each of these directives (except Extend Task)
results in a change of the task's state (unless the task is already in
the state being requested). These directives are:

5-1

Macro

ABRT$
CSRQ$
EXIT$S
EXTK$
RQST$
RSUM$
RUN$
SPND$S

DIRECTIVE DESCRIPTIONS

Directive Name

Abort Task
Cancel Time Based Initiation Requests
Task Exit ($S form recommended)
Extend Task
Request Task
Resume Task
Run Task
Suspend ($S form recommended)

5.192 Task Status Control Directives

Two task status control directives alter the checkpointable attribute
of a task. A third directive changes the running priority of an
active task. These directives are:

Macro

ALTP$
DSCP$S
ENCP$S

Directive Name

Alter Priority
Disable Checkpointing ($S form recommended)
Enable Checkpointing ($S form recommended)

5.1.3 Informational Directives

Several directives provide the issuing task with system information
and parameters such as: the time of day, the task parameters, the
console switch settings, and partition or region parameters. These
directives are:

Macro

GPRT$
GREG$
GSSW$S
GTIM$
GTSK$

Directive Name

Get Partition Parameters
Get Region Parameters
Get Sense Switches ($S form recommended)
Get Time Parameters
Get Task Parameters

5.1.4 Event-Associated Directives

The event and event flag directives provide inter- and intratask
synchronization and signaling and the means to set the system time.
You must use these directives carefully since software faults
resulting from erroneous signaling and synchronization are often
obscure and difficult to isolate. The directives are:

Macro

CLEF$
CMKT$
CRGF$
DECL$S
ELGF$
EXIF$
MRKT$
RDAF$
RDXF$
SETF$
STIM$

Directive Name

Clear Event Flag
Cancel Mark Time Requests
Create Group Global Event Flags
Declare Significant Event ($S form recommended)
Eliminate Group Global Event Flags
Exit If
Mark Time
Read All Event Flags
Read Extended Event Flags
Set Event Flag
Set System Time

5-2

Macro

STLO$
STOP$S
STSE$
ULGF$S
USTP$
WSIG$S
WTLO$
WTSE$

DIRECTIVE DESCRIPTIONS

Directive Name

Stop For Logical 'OR' of Event Flags
Stop ($S form recommended)
Stop For Single Event Flag
Unlock Group Global Event Flags ($S form recommended)
Unstop
Wait For Significant Event ($S form recommended)
Wait For Logical OR Of Event Flags
Wait For Single Event Flag

5.1.5 Trap-Associated Directives

The trap-associated directives provide trap
transfer of control (software interrupts)
These directives are:

facilities that allow
to the executing tasks.

Macro

ASTX$S
DSAR$S
ENAR$S
IHAR$S
SCAA$
SFPA$
SPRA$
SRDA$
SREA$
SREX$
SRRA$
SVDB$
SVTK$

Directive Name

AST Service Exit ($S form recommended)
Disable AST Recognition ($S form recommended)
Enable AST Recognition ($S form recommended)
Inhibit AST Recognition ($S form recommended)
Specify Command Arrival AST
Specify Floating Point Processor Exception AST
Specify Power Recovery AST
Specify Receive Data AST
Specify Requested Exit AST
Specify Requested Exit AST (extended)
Specify Receive-By-Reference AST
Specify SST Vector Table For Debugging Aid
Specify SST Vector Table For Task

5.1.6 I/0- and Intertask Communications-Related Directives

The I/0- and intertask communications-related directives allow tasks
to access I/O devices at the driver interface level or interrupt
level, to communicate with other tasks in the system, and to retrieve
the MCR command line used to start the task. These directives are:

Macro

ALUN$
CINT$
GLUN$
GMCR$
QIO$
QIOW$
RCVD$
RCVX$
SDAT$
SMSG$

Directive Name

Assign LUN
Connect To Interrupt Vector
Get LUN Information
Get MCR Command Line
Queue I/O Request
Queue I/O Request And Wait
Receive Da'ta
Receive Data Or Exit
Send Data
Send Message

5.1.7 Memory Management Directives

The memory management directives allow a task to manipulate its
virtual and logical address space: and to set uo and control
dynamically the window-to-region mapping assignments. The directives
also provide the means by which tasks can share and pass references to
data and routines. These directives are:

5-3

Macro

ATRG$
CRAW$
CRRG$
DTRG$
ELAW$
GMCX$
MAP$
RREF$
SREF$
UMAP$

DIRECTIVE DESCRIPTIONS

Directive Name

Attach Region
Create Address Window
Create Region
Detach Region
Eliminate Address Window
Get Mapping Context
Map Address Window
Receive By Reference
Send By Reference
Unmap Address Window

5.1.8 Parent/Offspring Tasking Directives

Parent/offspring tasking directives permit tasks to start other tasks,
and to connect to other tasks in order to receive status information.
These directives are:

Macro

CNCT$
EMST$
EXST$
RPOI$
SDRC$
SDRP$
SPWN$

Connect
Emit Status

Directive Name

Exit With Status
Request and Pass Offspring Information
Send, Request And Connect
Send Data, Request and Pass OCB
Spawn

5.1.9 RSX-UM-PLUS Directives

In addition to the directives just listed, RSX-llM-PLUS includes
directives that support vfrtual tenninals, CPU/UNIBUS affinity,
supervlsor-,.mode library routines, variable-length send/receive data
buffers, and parity error AST routine support.; These directives are:

Macro

CPCR$
CRVT$

. ELVT.$
MSDS$
MVTS$····

.RpEF$.
RMJ\F$S

· :•scAL:$s · ·
PEA ..

NXC
~TAFf .. ·.·.···
VRCP$.···•

·:mR.S$.. ·
YftC:X$

·:vsRC$<
•.)V'S,.QJ\ $. ' '

Directive Name

Ch(i!ckpo~nt .• ·common.Reg ion
C.reate .· Virtual Terminal
Elimi ne:1~7. Vi rtucil Terminal
r.iap·· .•. sµper\1~90 r. ·p-$pac::e
Move · t?/from . I/D.-"Sp9ce .. ·
:Reaa·.· .. ···.si r191 e •. Ev~J).~· Fla<.{

· ... Remoye· •.. · ..•. ~;~Jl1it.:(···($Et fprin only)
St1pervtso·r.:Ca1.:t .. ·.·.J$S for·m· only} .
Specif}>'. ~~r;i~Y·~.f'fOJ. AST
s.epq •. Next• .Command .

>.set· i\~ffnity .. ·.· .. . · ·.
.v13-~i(3l)~7 Re~·~hie na:: ······ · .:·· . .'. · ·····: < • •·

Y~ .. ·.~·i~b~.·~ •. ··R~·o~ive o Qr•···•.st·~~.··.·i·.: ;···\/•·;\.::·:
>v.?:r;il:lb·J:~ .. · . ~~.~ ... ,l)e:fy·~· ~X:i~ :./·r >> X i · · .
Variable . ·~·.~·.··.· f R~;<lf.e:~~~·. and ~onne:ct ·.·

,:~·:~: .. :·.va:,t,:fa',b·.i:e: SeJl<f:. · .. ,Pa:t,~~.·.:.·:1;, - --··;·._;;~--=·:

5-4

DIRECTIVE DESCRIPTIONS

5.1.10 CL! Support Directives

The CLI support directives allow CLI tasks to get command lines,
request and pass offspring information, get command interpreter
information, and set a specified CLI for a terminal. These directives
are:

Macro

GCCI$
GCII$
SCLI$

Directive Name

Get Command for Command Interpreter
Get Command Interpreter Information
Set Command Line Interpreter

5.2 DIRECTIVE CONVENTIONS

The following are conventions for using system directives:

1. In MACR0-11 programs, unless a number is followed by a
decimal point (.), the system assumes the number to be octal.

In FORTRAN programs, use INTEGER*2 type unless the directive
description states otherwise.

5-5

DIRECTIVE DESCRIPTIONS

2. In MACR0-11 programs, task and partition names can be from
one to six characters long and should be represented as two
words in Radix-SO form.

In FORTRAN programs, specify task and partition names by a
variable of type REAL (single precision) that contains the
task or partition name in Radix-SO form. To establish
Radix-SO representation, either use the DATA statement at
compile time, or use the IRADSO subprogram or RADSO function
at run time.

3. Device names are two characters long and are represented by
one word of ASCII code.

4. Some directive descriptions state that a certain parameter
must be provided even though the system ignores it. Such
parameters are included to maintain compatibility between
RSX-llM, RSX-llM-PLUS, and IAS.

S. In the directive descriptions, square brackets ([]) enclose
optional parameters or arguments. To omit optional items,
either use an empty (null) field in the parameter list or
omit a trailing optional parameter.

6. Logical Unit Numbers (LUNs) can range from 1 to 2SS(l0).

7. Event flag numbers range from 1 to 96(10). Numbers from 1 to
32(10) denote local flags. Numbers from 33 to 64 denote
common flags. Numbers 6S to 96 denote group-global event
flags.

Note that the Executive preserves all task registers when a task
issues a directive.

S.3 SYSTEM DIRECTIVE DESCRIPTIONS

Each directive description includes most or all of the following
elements:

Name:

This describes the function of the directive.

FORTRAN Call:

This shows the FORTRAN subroutine call, and defines
parameter.

Macro Call:

each

This shows the macro call, defines each parameter, and gives the
defaults for optional parameters in parentheses following the
definition of the parameter. Since zero is supplied for most
defaulted parameters, only nonzero default values are shown.
Parameters ignored by RSX-llM/M-PLUS are required for
compatibility with IAS.

S-6

DIRECTIVE DESCRIPTIONS

Macro Expansion:

Most of the directive descriptions expand the $S form of the
macro. Where the $S form is recommended for a directive, the
expansion for that form is shown instead. Section 1.4.5
illustrates expansions for all three forms and for the DIR$
macro.

Definition Block Parameters:

Only the memory management directive descriptions include these
parameters. This section describes all the relevant input and
output parameters in the Region or Window Definition Block (see
Section 3.5).

Local Symbol Definitions:

Macro expansions usually generate local symbol definitions with
an assigned value equal to the byte offset from the start of the
DPB to the corresponding DPB element. This section lists these
symbols. The length in bytes of the element pointed to by the
symbol appears in parentheses following the symbol's description.
Thus:

A.BTTN Task name (4)

defines A.BTTN as pointing to a task name in the Abort Task DPB;
the task name has a length of four bytes.

DSW Return Code:

This section lists all valid return codes.

Notes:

The notes presented with some directive descriptions expand on
the function, use, and/or consequences of using the directives.
Always read the notes carefully.

5-7

DIRECTIVE DESCRIPTIONS

ABRT$

5.3.1 Abort Task

The ~..bort Task directive instructs the system to terminate the
execution of the indicated task. ABRT$ is intended for use as an
emergency or fault exit. ABRT$ displays a termination notification
based on the described condition, at one of the following terminals:

1. The terminal from which the aborted task was requested

2. The originating terminal of the task that requested the
aborted task

3. The operator's console (CO:) if the task was started
internally from another task by a Run directive, or by an MCR
or DCL Run command that specified one or more time parameters

On systems without multiuser protection, a task may abort any task,
including itself. When a task is aborted, its state changes from
active to dormant. Therefore, to reactivate an aborted task, a task
or an operator must request it.

In systems that support multiuser protection, a task must be
privileged to issue the Abort Task directive (unless it is aborting a
task with the same TI:).

FORTRAN Call:

CALL ABORT (tsk[,ids])

tsk = Name of the task to be aborted (RAD50)

ids = Directive status

Macro Call:

ABRT$ tsk

tsk Name of the task to be aborted (RAD50)

Macro Expansion:

ABRT$
.BYTE
.RAD50

ALPHA
83., 3
/ALPHA/

;ABRT$ MACRO DIC, DPB SIZE=3 WORDS
;TASK "ALPHA"

Local Symbol Definitions:

A.BTTN Task name (4)

DSW Return Codes:

rs. sue Successful completion

IE. INS Task not installed

IE.ACT Task not active

5-8

DIRECTIVE DESCRIPTIONS

IE.PR! Issuing task is not privileged (multiuser
protection systems only)

IE.ADP Part of the DPB is out of the issuing task's address
space

IE.SDP DIC or DPB size is invalid

Notes:

1. When a task is aborted, the Executive frees all the task's
resources. In particular, the Executive:

• Detaches all attached devices.

• Flushes the AST queue and despecifies all specified ASTs.

• Flushes the receive and receive-by-reference queue.

• Flushes the clock queue for outstanding Mark Time requests
for the task.

• Closes all open files (files open for write access are
locked).

• Detaches all attached regions except in the case of a
fixed task, where no detaching occurs.

• Runs down the task's I/O.

• Deaccesses the group global event flags for the task's
group.

• Disconnects from interrupts.

• Flushes all outstanding CLI command buffers for the task.

• Breaks the connection with any offspring tasks.

• Returns a severe error status (EX$SEV) to the parent task
when a connected task is aborted.

• Frees the task's memory if the aborted task was not fixed.

2. If the aborted task had a requested exit AST specified, the
task will receive that AST instead of being aborted. No
indication that this has occurred is returned to the task
that issued the abort request.

3. When the aborted task actually exits, the Executive declares
a significant event.

5-9

DIRECTIVE DESCRIPTIONS

ALTP$

5.3.2 Alter Priority

The Alter Priority directive instructs the system to change the
running priority of a specified active task to either a new priority
indicated in the directive call, or the task's default (installed)
priority if the call does not specify a new priority.

The specified task must be installed and active. The Executive resets
the task's priority to its installed priority when the task exits.

If the directive call omits a task name, the Executive defaults to the
issuing task.

The Executive reorders any outstanding I/O requests for
the I/O queue and reallocates the task's partition.
reallocation may cause the task to be checkpointed.

the task in
The partition

In systems that support multiuser protection, a non-privileged task
can issue ALTP$ only for itself, and only for a priority equal to or
lower than its installed priority. A privileged task can change the
priority of any task to any value less than 250.

FORTRAN Call:

CALL ALT PR I { [ts k] , [i pr i] [, i d s])

tsk Active task name

ipri A 1-word integer value equal to the new priority,
a number from 1 to 250 {decimal)

ids = Directive status

Macro Call:

ALTP$ [tsk] [,pri]

tsk Active task name
pri New priority, a number from 1 to 250 (decimal)

Macro Expansion:

ALTP$
.BYTE
.RAD50
.WORD

ALPHA, 75.
9.,4
/ALPHA/
75.

Local Symbol Definitions:

;ALTP$ MACRO DIC, DPB SIZE=4 WORDS
;TASK ALPHA
;NEW PRIORITY

A.LTTN Task name (4)

A.LTPR Priority (2)

5-10

DSW Return Codes:

rs.sue

IE. INS

IE.ACT

IE. PRI

IE. IPR

IE.ADP

IE. SDP

DIRECTIVE DESCRIPTIONS

Successful completion.

Task not installed.

Task not active.

Issuing task is not privileged (multiuser protection
systems only) •

Invalid priority.

Part of the DPB is out of the issuing task's address
space.

DIC or DPB $ize is invalid.

5-11

DIRECTIVE DESCRIPTIONS

ALUN$

5.3.3 Assign LUN

The Assign LUN directive instructs the system to assign a physical
device unit to a logical unit number (LUN). It does not indicate that
the task has attached itself to the device.

The actual physical device assigned to the logical unit is dependent
on the logical assignment table (see the Assign command in the
RSX-llM/M-PLUS MCR Operations Manual or the RSX-llM/M-PLUS Command
Language Reference Manual). The Executive first searches the logical
assignment table for a device name match. If it finds a match, the
Executive assigns the physical device unit associated with the
matching entry to the logical unit. Otherwise, the Executive searches
the physical device tables and assigns the actual physical device unit
named to the logical unit. In systems that support multiuser
protection, the Executive does not search the logical assignment table
if the task has been installed with the slave option (/SLV=YES).

When a task reassigns a LUN from one device to another, the Executive
cancels all I/O requests for the issuing task in the previous device
queue.

FORTRAN Call:

Macro

Macro

CALL ASNLUN (lun,dev,unt[,ids])

lun = Logical unit number

dev Device name (format: 1A2)

unt Device unit number

ids Directive status

Call:

ALUN$ lun,dev,unt

lun Logical

dev = Device

unt = Device

Expansion:

ALUN$
.BYTE
.WORD
.ASCII
.WORD

7,TT,O
7,4
7
/TT/
0

unit

name

unit

number

(two characters)

number

;ASSIGN LOGICAL UNIT NUMBER
;ALUN$ MACRO DIC, DPB SIZE=4 WORDS
;LOGICAL UNIT NUMBER 7
;DEVICE NAME IS TT (TERMINAL)
;DEVICE UNIT NUMBER=O

Local Symbol Definitions:

A.LULU Logical unit number (2)

A.LUNA Physical device name (2)

A.LUNU Physical device unit number (2)

5-12

DSW Return Codes:

rs.sue

IE.LNL

IE.IOU

IE.ILU

IE.ADP

IE.SDP

Notes:

DIRECTIVE DESCRIPTIONS

Successful completion.

LUN usage is interlocked (see Note 1 below).

Invalid device and/or unit.

Invalid logical unit number.

Part of the DPB is out of the issuing task's address
space.

DIC or DPB size is invalid.

1. A return code of IE.LNL indicates that the specified LUN
cannot be assigned as directed. Either the LUN is already
assigned to a device with a file open for that LUN, or the
LUN is currently assigned to a device attached to the task,
and the directive attempted to change the LUN assignment. If
a task has a LUN assigned to a device and the task has
attached the device, the LUN can be reassigned, provided that
the task has another LUN assigned to the same device.

5-13

DIRECTIVE DESCRIPTIONS

ASTX$

5.3.4 AST Service Exit ($S form recommended)

The AST Service Exit directive instructs the system to terminate
execution of an AST service routine.

If another AST is queued and ASTs are not disabled, then the Executive
immediately effects the next AST. Otherwise, the Executive restores
the task's pre-AST state. See Notes below.

FORTRAN Call:

Neither the FORTRAN language nor the ISA standard permits direct
linking to system trapping mechanisms; therefore, this directive
is not available to FORTRAN tasks.

Macro Call:

ASTX$S [err]

err = Error routine address

Macro Expansion:

ASTX$S
MOV
.BYTE
EMT
JSR

ERR
(PC) + I - (s p)
ll 5. , 1
377
PC, ERR

;PUSH DPB ONTO THE STACK
;ASTX$S MACRO DIC, DPB SIZE=l WORD
;TRAP TO THE EXECUTIVE
;CALL ROUTINE "ERR" IF DIRECTIVE
;UNSUCCESSFUL

Local Symbol Definitions:

None

DSW Return Codes:

IS. sue

IE.AST

IE.ADP

IE. SDP

Notes:

Successful completion.

Directive not issued from an AST service
routine.

Part of the DPB or stack is out of the issuing task's
address space.

DIC or DPB size is invalid.

1. A return to the AST service routine occurs if, and only if,
the directive is rejected. Therefore, no Branch on Carry
Clear instruction is generated if an error routine address is
given. (The return occurs only when the Carry bit is set.)

2. When an AST occurs, the Executive pushes, at minimum, the
following information onto the task's stack:

SP+06
SP+04
SP+02
SP+OO

Event flag mask word
PS of task prior to AST
PC of task prior to AST
DSW of task prior to AST

5-14

Example:

DIRECTIVE DESCRIPTIONS

The task stack must be in this state when the AST Service Exit
directive is executed.

In addition to the data parameters, the Executive pushes
supplemental information onto the task stack for certain ASTs.
For I/O completion, the stack contains the address of the I/O
status block; for Mark Time, the stack contains the Event
Flag Number; for a floating-point processor exception, the
stack contains the exception code and address.

These AST parameters must be removed from the task's stack
prior to issuing an AST exit directive. The following example
shows how to remove AST parameters when a task uses an AST
routine on I/O completion:

EXAMPLE PROGRAM

LOCAL DATA

IOSB: .BLKW
BUFFER: .BLKW

2
30.

START OF MAIN PROGRAM

START:

;I/O STATUS DOUBLEWORD
;I/O BUFFER

;PROCESS DATA

QIOW$C IO.WVB,2,l,,IOSB,ASTSER,<BUFFER,60.,40>

EXIT$S

AST SERVICE ROUTINE

ASTSER:

TST (SP)+
ASTX$S

;PROCESS & WAIT

;EXIT TO EXECUTIVE

;PROCESS AST

;REMOVE ADDRESS OF I/O STATUS BLOCK
;AST EXIT

3. The task can alter its return address by manipulating the
information on its stack prior to executing an AST exit
directive. For example, to return to task state at an
address other than the pre-AST address indicated on the
stack, the task can simply replace the PC word on the stack.
This procedure may be useful in those cases in which error
conditions are discovered in the AST routine; but you should
use extreme caution when doing this alteration since AST
service routine bugs are difficuit to isoiate.

4. Because this directive requires only a 1-word DPB, the $S
form of the macro is recommended. It reauires less space and
executes with the same speed as the DIR$~macro.

5-15

DIRECTIVE DESCRIPTIONS

ATRG$

5.3.5 Attach Region

The Attach Region directive attaches the issuing task to a static
common region or to a named dynamic region. (No other type of region
can be attached to the task by means of this directive.) The Executive
checks the desired access specified in the region status word against
the owner UIC and the protection word of the region. If there is no
protection violation, the Executive grants the desired access. If the
region is successfully attached to the task, the Executive returns a
16-bit region ID {in R.GID), which the task uses in subsequent mapping
directives.

You can also use the directive to determine the ID of a region already
attached to the task. In this case, the task specifies the name of
the attached region in R.GNAM and clears all four bits described below
in the region status word R.GSTS. When the Executive processes the
directive, it checks that the named region is attached. If the region
is attached to the issuing task, the Executive returns the region ID,
as well as the region size, for the task's first attachment to the
region. You may want to use the Attach Region directive in this way
to determine the region ID of a common block attached to the task at
task-build time.

FORTRAN Call:

CALL ATRG {irdb[,ids])

irdb = An 8-word integer array containing a Region Definition
Block (see Section 3.5.1.2)

ids Directive status

Macro Call:

ATRG$ rdb

rdb = Region Definition Block address

Macro Expansion:

ATRG$
.BYTE
.WORD

RDBADR
57.,2
RDBADR

;ATRG$ MACRO DIC, DPB SIZE=2 WORDS
;RDB ADDRESS

Region Definition Block Parameters:

Input parameters:

Array
Element

Offset

irdb(3) (4) R.GNAM

irdb{7) R.GSTS

Name of the region to be attached

Bit settings 1 in the region status word
(specifying desired access to the region):

1. If you are a FORTRAN programmer, refer to Section 3. 5.1 to
determine the bit values represented by the symbolic names described.

5-16

Output parameters

irdb(l)

irdb(2)

R.GID

R.GSIZ

DIRECTIVE DESCRIPTIONS

Bit Definition

RS.RED 1 if read access is desired

RS.WRT 1 if write access is desired

RS.EXT 1 if extend access is desired

RS.DEL 1 if delete access is desired

Clear all four bits to request the region
ID of the named region if it is already
attached to the issuing task.

ID assigned to the region

Size in 32-word blocks of the attached
region

Local Symbol Definition:

A.TRBA

DSW Return Codes:

rs. sue

IE. UPN

IE. PRI

IE.NVR

IE. PNS

IE.ADP

IE. SDP

Region definition block address (2)

Successful completion.

An attachment descriptor cannot be allocated.

Privilege violation.

Invalid region ID.

Specified region name does not exist.

Part of the DPB or RDB is out of the issuing task's
address space.

DIC or DPB size is invalid.

5-17

DIRECTIVE DESCRIPTIONS

CINT$

5.3.6 Connect to Interrupt Vector

The Connect to Interrupt Vector directive enables a task to process
hardware interrupts through a specified vector. The Interrupt Service
Routine (ISR) is included in the task's own space. In a mapped
system, the issuing task must be privileged.

The overhead entails the execution of about 10 instructions before
entry into the ISR, and 10 instructions after exit from the ISR. The
Executive provides a mechanism for transfer of control from the ISR to
task-level code, using either an AST or a local event flag.

After a task has connected to an interrupt vector, it can process
interrupts on three different levels: interrupt, fork, and task. The
task level may be subdivided into: AST level and non-AST level.

1. Interrupt Level

When an interrupt occurs, control is transferred, with the
Interrupt Transfer Block {ITB) that has been allocated by the
CINT$ directive, to the Executive subroutine $TNTSC. From
there control goes to the ISR specified in the directive.

The ISR processes the interrupt and either dismisses the
interrupt directly or enters fork level through a call to the
Executive routine $FORK2.

2. Fork Level

The fork-level routine executes at priority O, the lowest
processor priority, allowing interrupts and more
time-dependent tasks to be serviced promptly. If required,
the fork routine sets a local event flag for the task and/or
queues an AST to an AST routine specified in the directive.

3. Task Level

At task level, entered as the result of a local event flag or
an AST, the task does final interrupt processing and has
access to Executive directives.

Typically, the ISR does the minimal processing required for an
interrupt and stores information for the fork routine or task-level
routine in a ring buffer. The fork routine is entered after a number
of interrupts have occurred as deemed necessary by the ISR, and
further condenses the information. Finally, the fork routine wakes up
the task-level code for ultimate processing that requires access to
Executive directives. The fork level may, however, be a transient
stage from ISR to task-level code without doing any processing.

In a mapped system, a task must be built privileged in order to be
able to use the CINT$ directive. However, it is legal to use the
/PR:O switch to the Task Builder to have "unprivileged mapping," that
is, up to 32K words of virtual address space available. This
precludes use of the Executive subroutines from task-level code;
however, the ISR and fork-level routines are always mapped to the
Executive when they are executed. In any case, the Executive symbol
table file (RSXllM.STB) should be included as input to the Task
Builder.

5-18

DIRECTIVE DESCRIPTIONS

As will be described later, in a mapped system, special considerations
apply to the mapping of the ISR, fork routine, and enable/disable
routine as well as all task data buffers accessed by these routines.

FORTRAN Call:

Not supported

Macro Call:

CINT$

vec

base

vec,base,isr,edir,pri,ast

=

Interrupt vector address -- Must be in the range 60(8)
to highest vector specified during SYSGEN, inclusive,
and must be a multiple of 4.

Virtual base address for kernel APR
ISR, and enable/disable interrupt
address is automatically truncated
boundary. The "base" argument
unmapped system.

5 mapping of the
routines This
to a 32(10)-word

is ignored in an

isr = Virtual address of the ISR, or 0 to disconnect from
the interrupt vector

edir = Virtual address of the
routine

enable/disable interrupt

pri Initial priority at which the ISR is to
execute -- This is normally equal to the hard-wired
interrupt priority, and is expressed in the form n*40,
where n is a number in the range 0-7. This form puts
the value in bits 5-7 of pri. It is recommended that
the programmer make use of the symbols PR4, PR5, PR6,
and PR? for this purpose. These are implemented via
the macro HWDDF$ found in [l,l]EXEMC.MLB. Also, the
programmer should take care to specify the correct
value for this parameter. An incorrect initial
priority (for example, specifying PR4 for a device
that interrupts at PR5) may result in a system crash.

ast Virtual address of an AST routine to be entered after
the fork-level routine queues an AST

To disconnect from interrupts on a vector, the argument isr is set to
0 and the arguments base, edir, psw, and ast are ignored.

Macro Expansion:

CINT$
.BYTE
.WORD
.WORD
.WORD

.WORD

.BYTE

.WORD

420,BADR,TADR,EDADR,PR5,ASTADR
129.,7 ;CINT$ MACRO DIC, DPB SIZE= 7 WORDS
420 ;INTERRUPT VECTOR ADDRESS = 420
BADR ;VIRTUAL BASE ADDRESS FOR KERNAL APR
IADR ;VIRTUAL ADDRESS OF THE INTERRUPT

;SERVICE ROUTINE
EDADR ;VIRTUAL ADDRESS OF THE INTERRUPT

;ENABLE/DISABLE ROUTINE
PR5,0 ;INITIAL INTERRUPT SERVICE ROUTINE

;PRIORITY (LOW BYTE). (HIGH BYTE= 0.)
ASTADR ;VIRTUAL ADDRESS OF AST ROUTINE

5-19

DIRECTIVE DESCRIPTIONS

Local Symbol Definitions:

C.INVE

C.INBA

C.INIS

C.INDI

C.INPS

C.INAS

DSW Return Codes:

IE.UPN

IE.ITS

IE.PR!

IE.RSU

IE.ILV

IE.MAP

IE.ADP

IE.SOP

Notes:

Vector address (2)

Base address (2)

ISR address (2)

Enable/disable interrupt routine address (2)

Priority (1)

AST address (2)

An ITB could not be allocated (no pool space).

The function requested is "disconnect" and the task
is not the owner of the vector.

Issuing task is not privileged (not applicable in
unmapped system) •

The specified vector is already in use.

The specified vector is illegal (lower than 60 or
higher than highest vector specified during SYSGEN,
or not a multiple of 4).

ISR or enable/disable interrupt routine is not within
4K words from the value (base address & 177700).

Part of the DPB is out of the issuing task's address
space.

DIC or DPB size is invalid.

1. Checkpointable Tasks

The following points should be noted for checkpointable tasks
only:

When a task connects to an interrupt vector, checkpointing of
the task is automatically disabled.

When a task disconnects from a vector and is not connected to
any other vector, checkpointing of the task is automatically
enabled, regardless of its state before the first connect, or
any change in state while the task was connected.

2. Mapping Considerations

In an unmapped system, the argument "base" is
the arguments "isr," "edir," and "ast"
addresses.

ignored, and
are physical

In a mapped system, however; the argument "base," after
being truncated to a 32(10)-word boundary, is the start of a
4K-word area mapped in kernel APR 5. All code and data in

5-20

DIRECTIVE DESCRIPTIONS

the task that is used by the routines must fall within that
area, or a fatal error will occur, probably resulting in a
system crash.

Furthermore, the code and data must be either position
independent (refer to the PDP-11 MACR0-11 Language Reference
Manual for more information on position-independent code) or
coded in such a way that the code can execute in APR S
mapping. When the routines execute, the processor is in
kernel mode, and the virtual address space includes all of
the Executive, the pool, and the I/O page.

References within the task image must be PC-relative or use a
special offset defined below. References outside the task
image must be absolute.

The following solutions are possible:

a. Write the ISR, enable/disable interrupt routines, and
data in position-independent code.

b. Include the code and data in a common
task-build it with absolute addresses
(PAR=ISR:l20000:20000), and link the task to
partition.

partition,
in APR S

the common

c. Build the task privileged with APR S mapping and use the
constant 120000 as argument "base" in the CINT$
directive.

d. When accessing locations within the task image in
immediate or absolute addressing mode, use an offset of

<120000-<base & 177700>>

3. ISR

When the ISR is entered, RS points to the fork block in the
Interrupt Transfer Block (ITB), and R4 is saved and free to
be used. Registers RO through R3 must be saved and restored
if used. If one ISR services multiple vectors, the
interrupting vector can be identified by the vector address,
which is stored at offset X. VEC in the ITB. The following
example loads the vector address into R4:

MOV X.VEC-X.FORK(RS),R4

The ISR either dismisses the interrupt directly by an RTS PC
instruction, or calls $FORK2 if the fork routine is to be
entered. When calling $FORK2, RS must point to the fork
block in the ITB, and the stack must be in the same state as
it was upon entry to the ISR. Note that the call must use
absolute addressing: CALL @#$FORK2.

S-21

DIRECTIVE DESCRIPTIONS

4. Fork-Level Routine

The fork-level routine starts immediately after the call to
$FORK2. On entry, R4 and RS are the same as when $FORK2 was
called. All registers are free to be used. The first
instruction of the fork routine must be CLR @R3, which
declares the fork block free.

The fork-level routine should be entered if servicing the
interrupt takes more than SOO microseconds. It must be
entered if an AST is to be queued or an event flag is to be
set. (Fork level is discussed in greater detail in the
RSX-llM Guide to Writing an I/O Driver.)

An AST is queued by calling the subroutine $QASTC.

Input: RS pointer to fork block in the ITB

Output: if AST successfully queued -- Carry bit = 0

if AST was not specified by CINT$ -- Carry bit 1

Registers altered: RO, Rl, R2, and R3

An event flag is set by calling the subroutine $SETF.

Input: RO event flag number

RS Task Control Block (TCB) address of task for
which flag is to be set -- This is usually,
but not necessarily, the task that has
connected to the vector. This task's TCB
address is found at offset X.TCB in the ITB.

Output: specified event flag set

Registers altered: Rl and R2

Note that absolute addressing must be used when calling these
routines (and any other Executive subroutines) from fork
level:

CALL @#$QASTC

CALL @#$SETF

S. Enable/Disable Interrupt Routine

The purpose of the enable/disable interrupt routine, whose
address is included in the directive call, is to allow the
user to have a routine automatically called in the following
three cases:

a. When the directive is successfully executed to connect to
an interrupt vector (argument isr nonzero) -- The routine
is called immediately before return to the task.

b. When the directive is successfully executed to disconnect
from an interrupt vector (argument isr=O).

c. When the task is aborted or exits with interrupt vectors
still connected.

S-22

DIRECTIVE DESCRIPTIONS

In case a, the routine is called with the Carry bit cleared;
in cases b and c, with the Carry bit set. In all three
cases, Rl is a pointer to the Interrupt Transfer Block {ITB).
Registers RO, R2, and R3 are free to be used; other
registers must be returned unmodified. Return is
accomplished by means of an RTS PC instruction.

Typically, the routine dispatches to
depending on whether the Carry bit
routine sets interrupt enable and
necessary initialization; the other
and cleans up.

one of two routines,
is cleared or set. One
performs any other

clears interrupt enable

Note that the ITB contains the vector address, in the event
that common code is used for multiple vectors.

6. AST Routine

The fork routine may queue as AST for the task through a call
to the Executive routine $QASTC as described above. When the
AST routine is entered (at task level), the top word of the
stack contains the vector address and must be popped off the
stack before AST exit (ASTX$S).

7. ITB Structure

The following offsets are defined relative to the start of
the ITB:

X.LNK

X.JSR

X.PSW

X.ISR

X.FORK

X.REL

X.DSI

X.TCB

X.AST

X.VEC

X.VPC

X.LEN

Link word

Subroutine call to $INTSC

PSW for ISR (low-order byte)

ISR address (relocated)

Start of fork block

APR 5 relocation (only in mapped systems)

Address of enable/disable interrupt routine
(relocated)

TCB address of owning task

Start of AST block

Vector address

Saved PC from vector

Length in bytes of ITB

The symbols X.LNK through X.TCB are defined locally by the
macro ITBDF$, which is included in [l,l]EXEMC.MLB. All
symbols are defined globally by [l,l]EXELIB.OLB.

5-23

DIRECTIVE DESCRIPTIONS

The following programming example illustrates the use of the CINT$
directive:

;++

;--

.TITLE PUNTSK PUNCH ASCII TEXT ON PAPER TAPE PUNCH

THIS TASK WILL PUNCH AN ASCII STRING TO THE PAPER TAPE PUNCH
USING THE CINT$ DIRECTIVE.

IT MUST BE BUILT USING THE /PR:O TASK BUILDER SWITCH.
NOTE THAT THIS METHOD ALLOWS A TASK TO BE A FULL 32K
WORDS LONG. IF IT rs NECESSARY TO ACCESS THE I/O PAGE
IN OTHER THAN THE ENABLE/DISABLE ROUTINE OR THE ISR
THE TASK MUST BE LINKED TO A COMMON BLOCK COVERING
THE CORRECT PART OF THE I/O PAGE.

TASK BUILD COMMAND FILE:

PUNTSK/MM/PR:O/-FP,PUNTSK/-SP/MA=PUNTSK
[l,54]RSX11M.STB/SS
I
GBLDEF=$VECTR:74
GBLDEF=$DVCSR:l77554
UNITS=l
ASG=TI:l
PAR=GEN:0:40000

IT rs POSSIBLE TO HAVE THIS TASK TYPE ON THE CONSOLE TERMINAL
IF THERE rs NO PAPER TAPE PUNCH AVAILABLE. TO DO THIS THE
VECTOR FOR THE CONSOLE OUTPUT MUST APPEAR TO BE UNUSED. THIS
MAY BE DONE BY (ON A TERMINAL OTHER THAN THE CONSOLE!) OPENING
THE VECTOR LOCATION (64) AND REPLACING ITS CONTENTS WITH
THE VALUE OF '$NSO' AS OBTAINED FROM A MAP OF THE SYSTEM. BE
SURE TO REMEMBER THE OLD VALUE OR YOUR CONSOLE WILL BE DEAD
UNTIL YOU REBOOT THE SYSTEM. NOW TASK BUILD USING THE FOLLOWING
COMMAND FILE:

PUNTTY/MM/PR:O,/-FP,PUNTTY/-SP/MA=PUNTSK
[l,54]RSX11M.STB/SS
I
GBLDEF=$VECTR:64
GBLDEF=$DVCSR:l77564
UNITS=l
ASG=TI: 1
PAR=GEN:0:40000

NOTE THAT IN THE ABOVE TWO TKB COMMAND FILES THE FOLLOWING
CHANGES MUST BE MADE IN ORDER TO RUN ON AN UNMAPPED SYSTEM:

1) /MM SHOULD BE CHANGED TO /-MM
2) 'PAR=GEN:0:40000' SHOULD BE CHANGED TO

'PAR=GEN:40000:40000'

IN ADDITION, PLACE A SEMI-COLON IN FRONT OF THE SOURCE LINE
BELOW THAT DEFINE THE SYMBOL 1 M$$MGE'.

.MCALL CINT$, QIOW$, CLEF$S, WTSE$S, EXITS, DIR

LOCAL SYMBOLS

5-24

LBL:

NAM:

CINT:

LUN. TT
EFN.TT
EFN.WF
M$$MGE
;++

DIRECTIVE DESCRIPTIONS

1
1
2
0

;LUN FOR TERMINAL I/O
;EFN FOR TERMINAL I/O
;EFN TO WAIT FOR PUNCHING TO COMPLETE
;DEFINE THIS SYMBOL TO RUN ON MAPPED SYSTEM

MACRO TO GENERATE AN ASCII STRING AND A QIO TO OUTPUT
THE STRING TO THE TERMINAL.

MESSG NAM, STRING

WHERE:

NAM IS THE NAME OF THE GENERATED QIO DPB
STRING IS THE ASCII STRING TO OUTPUT

.MACRO MESSG NAM,STRING,?LBL
$CHR=O
.IRPC X,<STRING>
$CHR=$CHR+l
ENDR
.ENABL LSB
.ASCII /STRING/
.EVEN
QIOW$ IO.WVB,LUN.TT,EFN.TT,,,,<LBL,$CHR,40>
.DSABL LSB
.ENDM

MESSG -HELLO,<CONNECT TO INTERRUPT rEST>
MESSG CINWRK,<CONNECT TO INTERRUPT WORKS--CHECK THE PAPER TAPE PUNCH>

CINT$ $VECTR,$BASE,$PNISR,$PNEDI,PR4

;CONNECT TO INTERRUPT
VECTOR=$VECTR
BASE.FOR.MAPPING=$BASE
ISR=$PNISR
ENB.DSABL.RTN=$PNEDI
PRIO=PR4

DISCON:CINT$ $VECTR,O,O ;DISCONNECT FROM INTERRUPT
VECTOR=74

;++
ENTRY POINT TO THE PUNCH TASK. THE TASK WILL ANNOUNCE
ITSELF ON THE INITIATING TERMINAL, CONNECT TO THE
SPECIFIED VECTOR, OUTPUT THE ASCII STRING, AND THEN
OUTPUT A MESSAGE THAT IT WAS SUCCESSFUL. IF THE TASK
TERMINATES WITH AN I/O TRAP THE CONNECT-TO-INTERRUPT
DIRECTIVE FAILED, AND Rl WILL CONTAIN THE DSW RETURNED
IN ORDER TO DIAGNOSE THE ERROR.

$PUNTK:: DIR$
DIR$

#HELLO
iCINT

ANNOUNCE THAT WE ARE HERE
CONNECT TO THE PUNCH

BC$
WTSE$S
DIR$
DIR$
EXIT$S

ERRl
iEFN.WF
#DISCON
iCINWRK

THIS CAN BE EITHER THE TERMINAL
OR THE PAPER TAPE PUNCH.

IF CS THEN DIRECTIVE ERROR
WAIT FOR PUNCH TO FINISH
DISCONNECT FROM INTERRUPTS
TELL USER THAT CINT WORKS

5-25

$BASE;

ERRl:

;++

MOV
MOV
IOT

U,RO
$DSW,Rl

DIRECTIVE DESCRIPTIONS

ERROR i 1
GET THE DSW TO SHOW THE CINT ERROR RETURN
DUMP REGISTERS

;THIS IS THE BASE OF THE MAPPING USED
;BY THE EXECUTIVE WHEN MAPPING TO THE
;'DRIVER'. THIS MAPPING IS REQUIRED
;ONLY ON MAPPED SYSTEMS; UNMAPPED
;SYSTEMS DO NOT HAVE THIS PROBLEM.

FOLLOWING IS THE ASCII STRING PUNCHED BY THIS TASK •

PUNMSG:
• NLIST
.ASCIZ

.LIST

.EVEN

BEX
/ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789!@i$%A&*()_+-=/<15><12>
BEX

PUNPTR: .WORD
.WORD
.WORD
.WORD

0 ;POINTER INTO PUNMSG FOR ISR
;TCB ADDRESS OF TASK TSKTCB: 0

PUNCSR: $DVCSR
$DVCSR+2

;PAPER TAPE PUNCH CSR ADDRESS
;PAPER TAPE PUNCH BUFFER ADDRESS PUNBUF:

;++
ENABLE/DISABLE ROUTINE.

THIS ROUTINE IS CALLED BY THE EXEC ON EITHER A CONNECT OR DISCONNECT
FROM INTERRUPT VECTOR REQUEST, OR WHEN THE TASK EXITS WITH INTERRUPT
VECTORS STILL CONNECTED.

ENTRY CONDITIONS:

C-CLEAR
C-SET

$TKTCB

ACTION:

THIS IS A SUCCESSFUL CONNECT.
THIS IS A DISCONNECT.

THE TCB ADDRESS OF THE CURRENTLY EXECUTING TASK (MEM) •

IF THE C-BIT IS SET WE MERELY DISABLE THE PUNCH AND RETURN. IF
THE C-BIT IS CLEAR WE WILL ENABLE THE PUNCH TO INTERRUPT. THIS
WILL IMMEDIATELY CAUSE AN INTERRUPT AND THE INTERRUPT SERVICE
ROUTINE WILL OUTPUT CHARACTERS TO THE PUNCH (ONE PER
INTERRUPT) UNTIL A ZERO BYTE IS OUTPUT. THE ISR WILL THEN FORK
AND SET THE LOCAL EVENT FLAG 'EFN.WF'. THIS WILL THEN CAUSE THE
TASK PORTION OF THIS TASK TO CONTINUE EXECUTING AND EVENTUALLY
EXIT.

5-26

DIRECTIVE DESCRIPTIONS

$PNEDI::BCS
MOV

20$;IF CS THEN DISCONNECT
@i$TKTCB,TSKTCB ;COPY TASK TCB ADDRESS FOR LATER

;SO WE CAN SET EFN •

20$:

• IF DF M$$MGE ;MAPPED SYSTEM?

MOV iPUNMSG+l20000-<$BASE&l77700>,PUNPTR ;RELOCATE ADDRESS
;TO APR 5 MAPPING, AND SET UP
;BUE'FER POINTER

.IFF M$$MGE ;UNMAPPED SYSTEM?

MOV iPUNMSG,PUNPTR ;SET UP BUFFER POINTER

.ENDC

BIS ilOO,@PUNCSR ;ALLOW INTERRUPTS
RETURN

BIC
RETURN

.END

;WHEN WE ARE DONE PUNCHING

ilOO,@PUNCSR ;DISABLE INTERRUPTS

5-27

DIRECTIVE DESCRIPTIONS

CLEF$

5.3.7 Clear Event Flag

The Clear Event Flag directive instructs the system to report an
indicated event flag's polarity and then clear it.

FORTRAN Call:

CALL CLREF (efn[,ids])

efn Event flag number

ids Directive status

Macro Call:

CLEF$ efn

efn Event flag number

Macro Expansion:

CLEF$
.BYTE
• WORD

52.
31., 2
52 •

;CLEF$ MACRO DIC, DPB SIZE=2 WORDS
;EVENT FLAG NUMBER 52.

Local Symbol Definitions:

C.LEEF

DSW Return Codes:

IS. CLR

IS. SET

IE. IEF

IE.ADP

IE. SDP

Event flag number (2)

Successful completion; flag was already clear.

Successful completion; flag was set.

Invalid event flag number (EFN<l, or EFN>96, if group
global event flags exist for the task's group; or
EFN>64 if not).

Part of the DPB is out of the issuing task's address
space.

DIC or DPB size is invalid.

5-28

DIRECTIVE DESCRIPTIONS

CMKT$

5.3.8 Cancel Mark Time Requests

The Cancel Mark Time Requests directive instructs the system to cancel
a specific Mark Time Request or all Mark Time requests that have been
made by the issuing task.

FORTRAN Call:

CALL CANMT ([efn] [,ids])

efn Event flag number

ids Directive status

Macro Call:

CMKT$ [efn ,ast ,err]

err Error routine address

efn Event flag number

ast Mark time AST address

Macro Expansion:

CMKT$
.BYTE
.WORD
• WORD

52.,MRKAST,ERR ;NOTE: THERE ARE TWO IGNORED ARGUMENTS
27.,3 ;CMKT$ MACRO DIC, DPB SIZE=3 WORDS
52. ;EVENT FLAG NUMBER 52 •
MRKAST ;ADDRESS OF MARK TIME REQUEST AST ROUTINE

NOTE

The above example will cancel only the
Mark Time requests that were specified
with efn 52 or the AST address MRKAST.
If no ast or efn parameters are
specified, all Mark Time requests issued
by the task are cancelled, and the DPB
size will equal 1.

Local Symbol Definitions:

C.MKEF

C.MKAE

DSW Return Codes:

rs. sue

IE.ADP

IE. SDP

Event flag number (2)

Mark Time Request AST routine address (2)

Successful completion.

Part of the DPB is out of the issuing task's address
space.

DIC or DPB size is invalid.

5-29

DIRECTIVE DESCRIPTIONS

Notes:

1. If neither the efn nor ast parameters are specified, all Mark
Time Requests issued by the task are canceled. In addition,
the DPB size will be one word. (When either the efn and/or
ast parameters are specified, the DPB size will be three
words.)

2. If both efn and ast parameters are specified (and nonzero),
only Mark Time Requests issued by the task specifying either
that event flag or AST address are canceled.

3. If only one efn or ast parameter is specified (and nonzero) ,
only Mark Time Requests issued by the task specifying the
event flag or AST address are canceled.

4. If the specified event flag is a group global, then the use
count for the event flag's group is run down when a Mark Time
request is canceled.

5-30

DIRECTIVE DESCRIPTIONS

CNCT$

5.3.9 Connect

The Connect directive synchronizes the task issuing the directive with
the exit or emit status of another task (offspring) that is already
active. Execution of this directive queues an Offspring Control Block
(OCB) to the offspring task, and increments the issuing task's rundown
count (contained in the issuing task's Task Control Block). The
rundown count is maintained to indicate the combined total number of

~.C1 .. ~.·.~ .. ~ R~ .. ~~.~p~J.~ c.~pp ~.S·:~~? ..•.... ·~···~. · ?~ .. ~ .. ~.PF ip~·.· ·.·~ ... c:t .. ~ .. ~ .. ~ \~(ifl.~>\ti&~:Ht~:Q':'.t#·a·~~\;O/·\:n,~•·~~r.r< >.::(~·~ ·
':.V'i~;r:;t·~~·.;l..;;,::ot~·rm~n;~l~···:.::tJi.·~·::·:;;~.:ot:~~~.·o.:·fi~s.;..q·:i.g.a.'f.~4·~ The exit AST routine is
··caiied . when. the .. offsprlng'. e'x.its 'or .e.mi ts ''status with the address of
the associated exit status block on the stack. This directive should
not be issued to connect to Command Line Interpreter (CLI) tasks; it
is illegal to connect to a CLI task.

FORTRAN Call:

CALL CNCT (rtname, [iefn], [iast], [iesb], [iparm] [,ids])

rtname A single-precision, floating-point
containing the offspring task name in
format.

variable
Radix-50

iefn Event flag to be set when the offspring task exits
or emits status

iast Name of an AST routine to be called when the
offspring task exits or emits status

iesb

iparm

ids

Macro Call:

CNCT$

tname

efn

Name of an 8-word status block to be written when
the offspring task exits or emits status

Word 0 Offspring task exit status

Word 1 TKTN abort code

Word 2-7 Reserved

NOTE

The exit status block defaults to one word.
To use the 8-word exit status block, you
must specify the logical or of the symbol
SP.WX8 and the event flag number in the iefn
parameter above.

Name of a word to receive the status block address
when an AST occurs

Integer to receive the Directive Status Word

tname, [efn], [east], [esb]

Name (RAD50) of the offspring task to be connected

The event flag to be cleared on issuance and set
when the offspring task exits or emits status

5-31

east

esb

DIRECTIVE DESCRIPTIONS

Address of an AST routine to be called when the
offspring task exits or emits status

Address of an 8-word status block to be written when
the offspring task exits or emit status

word 0 Offspring task exit status

word 1 TKTN abort code

word 2-7 Reserved

NOTE

The exit status block defaults to one word.
To use the 8-word exit status block, you
must specify the logical or of the symbol
SP.WX8 and the event flag number in the efn
parameter above.

Macro Expansion:

CNCT$
.BYTE
• RAD50
.BYTE
.BYTE
.WORD
.WORD

ALPHA,l,CONAST,STBUF
143.,6 ;CNCT$ MACRO DIC, DPB SIZE=6 WORDS
ALPHA ;OFFSPRING TASK NAME
1 ;EVENT FLAG NO = 1
16. ;EXIT STATUS BLOCK CONSTANT
CONAST ;AST ROUTINE ADDRESS
STBUF ;EXIT STATUS BLOCK ADDRESS

Local Symbol Definitions:

C.NCTN ·Task name (4)

C.NCEF

C.NCEA

C.NCES

DSW Return Codes:

rs. sue

IE. UPN

IE.INS

IE.ACT

IE. IEF

IE.ADP

IE. SDP

Event flag (2)

AST routine address (2)

Exit status block address (2)

Successful completion.

Insufficient dynamic memory to allocate an offspring
control block.

The specified task was a command line interpreter.

The specified task was not active.

Invalid event flag number (EFN<O, or EFN>96 if group
global event flags exist for the task's group; or
EFN>64 if not).

Part of the DPB or exit status block is not in the
issuing task's address space.

DIC or DPB size is invalid.

5-32

DIRECTIVE DESCRIPTIONS

Notes:

1. If the specified event flag is a group global, the use count
for the event flag's group is incremented to prevent
premature elimination of the event flags. The use count is
run down when:

2.

• The connected task returns status

• The issuing task exits before status is returned

Do not change the virtual mapping of the exit status block
while the connection is in effect. Doing so may cause
obscure errors since the exit status block is always returned
to the virtual address specified regardless of the physical
address to which it is mapped.

5-33

DIRECTIVE DESCRIPTIONS

·< :.···· · < . · ······· ··· · /•·····. •·· >L : /··· .. ·•·. "\< :!_:'.:"_.:\:-.:/:"'.·::.(:::·.:/ '· ... ,. · ·, -... .-:;-... ·.-.· .. ·.:,' <· .. ,·... .·. : .. ·· ' '· . :, .'·:'':.. . · .. ·. ·:, . : ... , . . .· · · · : : ·.· : · . . _.···.:, .:· :··;

s;1:1& ~~~~1<~1tit hQl~h ~~~to~ ·· · /./ •··•·••• < > {/ i i • i i\·
1~i~ Jiik~fi$kiillsikJg;t~iiR~·<~~i~~ · ~/~;r~~;~ll~ [~~~0~1~~·i;s~~~a)~i1~i;
·c·o·mJri(>n.· .. · •. •~ F~9ipn·.tq•.• .. t:Je c~edkp<>1~1:~d· •• >T~is ..• a.irf?C:~iv.~ ... · ~~op~ a11.· ·t:tn~ ~asKs
·~~~.:t :~r~.11lapp~d •• · ~()<th~· <?911t11l()D- .r~<gi()n,••·wrJ:tes·· the.· .. cq1:rur1orr•·.·.~e9ioJ'J.··out··: .• ·to'

··•.t·be. di$Rand •. th.¢J1.··· .. ··urie;tt>Eis>tbe:··•:tasks., ·
'. .. _,··,:· ... :: :::= -

·'the 1~?91'@ ;-t,a~k ·must be<. pl"f01i~~ea: ;(~~;\61~
...... >

•'.The f§~uiri~.·· task must .be: a'ttached to t.ti~·.:specJff~d common region~·:·····

~loc.ke<;f•···· ...•. ·. A.nl' ta:k (including.• .. ·.·. th~ .•. ··is~ui119· tclsk) J.sals() •·blqcked .•.... tf. it
1llG{J?S· t;.o tht:•·. C()1ll¢on reg i()Jl while th~ checkpoJpt is ··.·try progz-e:s •. · .. ·. If" th~
tas~.· was bui~t•vdth the /CO~MON~ quallfJ~r, the t.ask wi11 be. block.ea
whencit.···· .. tssu~~·····.this directJve •.•.•.... ~f·.the>.task b~comes .. attached • .. bY mearys
<.lf:. •.... the. · .. /\t~.ach RegiondirectJve.; :Jt .. • .. isnot•. blocked .. ·unless· Jt·issue>s •a

·Map .·directive~

You ca11 use this directive tb preserve cJ:1anges made .·to a memory
r~sident common reglori~ When a region fscheckP:oint~d, i~is c<:>pled
tp it.s own image .· on the disk and not ·.to th~ checkpoint file~·
Therefore,· any µpdate to the memory resident copy of the common region
becomes permanent.

FORTRAN·Call:

CALL. CPCR(name (,ids]}

name = Name (in RADSO} of the common
checkpointed

ids = Directive Status

Macro Call:

CPCR$ name

region

name = Name of the common reg ion to be checkpointed

Macro Expansion:

CPCR.$
.BYTE
!RAD50

Local·· Symbol

C.PCR

NAME
205 .. , 3
/NAf1E/

5-34

to be

DIRECTIVE DESCRIPTIONS

5-35

DIRECTIVE DESCRIPTIONS

CRAW$

5.3.11 Create Address Window

The Create Address Window directive creates a new virtual address
window by allocating a window block from the header of the issuing
task and establishing its virtual address base and size. (Space for
the window block has to be reserved at task-build time by means of the
WNDWS keyword. See the RSX-llM/M-PLUS Task Builder Manual.) Execution
of this directive unmaps and then eliminates any existing windows that
overlap the specified range of virtual addresses. If the window is
successfully created, the Executive returns an 8-bit window ID to the
task.

The 8-bit window ID returned to the task is a number from 1 to 15 (l~
t.'.o {·',4·3 ,ort. a~x;fiM';.,.ptti.s. $ys.t\~~·~j.,\' which is an index to the window block
in the task's header. The window block describes the created address
window.

~indo,w .. •. ln : · s.u~e·rvlsor..,.1tlode .·r-~pap.e• .. ··•••··· .. Program ·pont:rpl· can•· sub~e9.l1ently
b.Ef :trat1st~r:r~fl.•·t:osupe.rylspr-:-It\p~e.,r-..apac.e upon·· iss·qing a · •.. · ... su.perv~sor
CalT .• d .. ir:e:ctilve' · ·

r.f : ws. ups ·i~f 'the. Windo't s.tatus word. is set, the Eie'Gµtfve 'preat:es the
window .. in u~e·r,,mo(]eD'"'"'spacer

If WS.MAP in the window status word is set, the Executive proceeds to
map the window according to the Window Definition Block input
parameters.

A task can specify any length for the mapping assignment that is less
than or equal to both the window size specified when the window was
created, and the length remaining between the specified offset within
the region and the end of the region.

If W.NLEN is set to O, the length defaults to either the window size
or the length remaining in the region, whichever is smaller. (Because
the Executive returns the actual length mapped as an output parameter,
the task must clear that offset before issuing the directive each time
it wants to default the length of the map.}

The values that can be assigned to W.NOFF depend on the setting of bit
WS.64B in the window status word (W.NSTS):

• If WS.64B = O, the offset specified in W.NOFF must represent a
multiple of 256 words (512 bytes}. Because the value of
W.NOFF is expressed in units of 32-word blocks, the value must
be a multiple of 8.

• If WS.64B = 1, the task can align on 32-word boundaries; the
programmer can therefore specify any offset within the region.

5-36

FORTRAN Call:

DIRECTIVE DESCRIPTIONS

NOTE

Applications dependent on 32-word or
64-byte alignment (WS.64B = 1) may not
be compatible with future RSX emulators.
To avoid future incompatibility,
programmers should write applications
adaptable to either alignment
requirement. The bit setting of WS.64B
could be a parameter chosen at assembly
time (by means of a prefix file) , at
task-build time (as input to the GBLDEF
option) , or at run time (by means of
command input) •

CALL CRAW (iwdb[,ids])

iwdb

ids

Macro Call:

CRAW$

wdb

wdb

An 8-word integer array containing a window definition
block (see Section 3.5.2.2)

Directive status

Window Definition Block address

Macro Expansion:

CRAW$
.. BYTE
.WORD

WDBADR
117.,2
WDBADR

;CRAW$ MACRO DIC, DPB SIZE=2 WORDS
;WDB ADDRESS

Window Definition Block Parameters:

Input parameters:

Array
Element

Off set

iwdb(l), W.NAPR
bits 8-15

i wdb (3) W.NSIZ

i wdb (4} W.NRID

i wdb (5) W.NOFF

Base APR of the address window to be
created.

Desired size, in 32-word blocks, of the
address window.

ID of the region to which the new window
is to be mapped, or 0 for task region (to
be specified only if WS.MAP=l).

Offset in 32-word blocks from the start
of the region at which the window is to
start mapping (to be specified only if
WS.MAP=l). Note that if WS.64B in the
window status word equals O, the value
specified must be a multiple of 8.

5-37

i wdb (6)

i wdb (7)

Output parameters

i wdb (1) ,
bits 0-7

i wdb (2)

i wd b (6)

i wdb (7)

W.NLEN

W.NSTS

W.NID

W.NBAS

W.NLEN

W.NSTS

DIRECTIVE DESCRIPTIONS

Length in 32-word blocks to be mapped, or
0 if the length is to default to either
the size of the window or the space
remaining in the region, whichever is
smaller (to be specified only if
WS.MAP=l).

Bit settingsl in the window status word:

Bit

WS.MAP

WS.WRT

WS.64B

Definition

1 if the new window is to be
mapped

1 if the mapping assignment
is to occur with write access

0 for 256-word (512-byte)
alignment; or 1 for 32-word
(64-byte) alignment

ID assigned to the window

Virtual address base of the new window

Length, in 32-word
mapped by the window

blocks, actually

Bit settingsl in the window status word:

Bit

WS.CRW

WS.UNM

WS.ELW

WS.RRF

WS.RES

Definition (if bit=l)

Address window was
successfully created.

At least one window was
unmapped.

At least one window was
eliminated.

Reference was successfully
received.

Do. not .bypass the cache {for
mult;iprocessor systems).

Map only if resident.

ct~~fe .. p·t.ta~l'lment .descripthr
only 1f.he~.~psary•.· {for.·send

.l}y .. g~~~r;~pqe q~p~ct.~•Y~·~.) • :

1. If you are a FORTRAN programmer, refer to Section 3.5.2 to
determine the bit values represented by the symbolic names described.

5-38

DIRECTIVE DESCRIPTIONS

Bit

WS.64B

WS.MAP

WS.RCX

WS.DEL

WS. EXT

WS.WRT

WS.RED

Definition (if bit=l)

Define the task's permitted
alignment boundaries 0
for 256-word (512-byte)
alignment; or 1 for 32-word
(64-byte) alignment.

Window is to be mapped.

Exit if no references to
receive.

Send with delete access.

Send with extend access.

Send with write access or
with write access.

Send with read access.

map

Local Symbol Definitions:

C.RABA

DSW Return Codes:

rs. sue

IE. HWR

IE.PRI

IE. NVR

IE. ALG

IE.WOV

IE.ADP

IE. SDP

Window definition block address (2)

Successful completion.

Directive failed in mapping storage because region
has incurred a parity error.

Requested access denied at mapping stage.

Invalid region ID.

Task specified either an
size combination, or an
length combination in
WS.64B = 0 and the value
of 8.

invalid base APR and window
invalid region offset and
the mapping assignment; or
of W.NOFF is not a multiple

No window blocks available in task's header.

Part of the DPB or WDB is out of the issuing task's
address space.

DIC or DPB size is invalid.

5-39

DIRECTIVE DESCRIPTIONS

CRGF$

5.3.12 Create Group Global Event Flags

The Create Group Global Event Flags directive creates a Group Global
Event Flag Control Block (GFB) and links it into the GFB list. If a
GFB for the specified group is not present when the directive is
issued, the Executive creates the GFB data structure with all event
flags initialized to zero. If a GFB is present when the directive is
issued, the Executive uses the present GFB and the event flags are not
initialized. However, if the GFB is marked for delete (by a
previously issued Eliminate Group Global Event Flags directive), the
Executive clears the GS.DEL bit (see Section 5.3.20).

If the specified group code matches the group code of the issuing
task's protection UIC {H.CUIC+l), this directive increments the access
count for the event flags. This locks the event flags so they cannot
be eliminated by another task that is sharing them. The issuing task
can explicitly unlock the event flags with an Unlock Group Global
Event Flags directive or an Eliminate Group Global Event Flags
directive. The Executive automatically unlocks the event flags when
the task exits if necessary. Note that a task may not lock the event
flags more than once in succession. Any attempt to lock event flags
that are already locked will return the IE.RSU error code.

FORTRAN Call:

CALL CRGF ([group] [I ids])

group

ids

Macro Call:

Group number for the flags to be created. Only
privileged tasks can specify group numbers other than
the issuing task's group UIC. If not specified, the
task's protection UIC (H.CUIC+l) in the task's header
is used.

Integer to receive the Directive Status Word.

CRGF$ [group]

group Group number for the flags to be created. Only
privileged tasks can specify group numbers other than
the issuing task's group UIC. If not specified, the
task's protection UIC (H.CUIC+l) in the task's header
is used.

Macro Expansion:

CRGF$
.BYTE
.WORD

4
157. ,2
4

Local Symbol Definitions:

C.RGRP -- Group Number (2)

;CRGF$ MACRO DIC, DPB SIZE=2 WORDS
;GROUP 4 GLOBAL EVENT FLAGS

5-40

DIRECTIVE DESCRIPTIONS

DSW Return Codes:

Note:

rs.sue

IE.UPN

IE.PRI

IE.IUI

IE.RSU

IE.APD

IE.DIC

Successful completion.

Insufficient dynamic storage.

Privilege violation.

Invalid group.

Event flags already exist or are already locked.

Part of the DPB is out of the issuing task's address
space.

DIC or DPB size is invalid.

A privileged task may specify group numbers other than the group
UIC of the issuing task. However, the task can only lock the
event flags created for its own group. This directive does not
return an error if it does not lock the event flags.

5-41

DIRECTIVE DESCRIPTIONS

CRRG$

5.3.13 Create Region

The Create Region directive creates a dynamic region in a
system-controlled partition and optionally attaches it to the issuing
task.

If RS.ATT is set in the region status word, the Executive attempts to
attach the task to the newly created region. If no region name has
been specified, the user's program must set RS.ATT (see the
description of the Attach Region directive).

By default, the Executive automatically marks a dynamically created
region for deletion when the last task detaches from it. To override
this default condition, set RS.NOL in the region status word as an
input parameter. Be careful in considering to override the
delete-on-last-detach option. An error within a program can cause the
system to lock by leaving no free space in a system-controlled
partition.

If the region is not given a name, the Executive ignores the state of
RS.NOL. All unnamed regions are deleted when the last task detaches
from them.

Named regions in RSX-llM PLUS systems are put in the Common Block
Directo,ry HZ.BD). However, m$n:tory is not allqcated until the Executive
maps a task to .the region.

The Executive returns an error if there is not
accommodate the region in the specified partition.

FORTRAN Ca 11 :

CALL CRRG (irdb[,ids])

enough space to
See Notes below.

irdb An 8-word integer array containing a Region Definition
Block (see Section 3.5.1.2)

ids Directive status

Macro Call:

CRRG$ rdb

rdb Region Definition Block address

Macro Expansion:

CRRG$
.BYTE
.WORD

RDBADR
55.,2
RDBADR

;CRRG$ MACRO DIC, DPB SIZE
;ROB ADDRESS

Region Definition Block Parameters:

Input parameters:

Array
Element

Off set

2 WORDS

irdb{2) R.GSIZ Size, in 32-word blocks, of the region
to be created

5-42

i rd b (3) (4) R • GN AM

irdb(S) (6) R.GPAR

irdb(7) R.GSTS

irdb(8) R.GPRO

Output parameters

irdb(l) R.GID

irdb(2) R.GSIZ

irdb(7) R.GSTS

DIRECTIVE DESCRIPTIONS

Name of the region to be created, or 0
for no name

Name of the system-controlled partition
in which the region is to be allocated,
or 0 for the partition in which the task
is running

Bit settingsl in the region status word:

Bit

RS.CRR

RS.UNM

RS.MDL

RS.NOL

RS.ATT

RS.NEX

RS.RED

RS.WRT

RS.EXT

RS.DEL

Definition (if bit=l)

Region was successfully
created.

At least one window was
unmapped on a detach.

Mark region for deletion on
last detach.

The region should not be
deleted on last detach.

Created region should be
attached.

Created region is not
extendible.

Read access is desired on
attach.

Write access is desired on
attach.

Extend access is desired on
attach.

Delete access is desired on
attach.

Protection word for the region
(DEWR,DEWR,DEWR,DEWR)

ID assigned to the
(returned if RS.ATT=l)

created region

Size in 32-word blocks of the attached
region (returned if RS.ATT=l)

Bit settingsl in the region status word:

Bit

RS.CRR

Definition

1 if the region was
successfully created

1. If you are a FORTRAN programmer, refer to Section 3.5.l to define
the bit values represented by the symbolic names described.

5-43

DIRECTIVE DESCRIPTIONS

Local Symbol Definitions:

C.RRBA

DSW Return Codes:

rs. sue

IE. UPN

IE. PRI

IE. PNS

IE.ADP

IE. SDP

Notes:

Region Definition Block address (2)

Successful completion.

A Partition Control Block (PCB) or an attachment
descriptor could not be allocated, or the partition
was not large enough to accommodate the region, or
there is currently not enough continuous space in the
partition to accommodate the region.

Attach failed because desired access was not allowed.

Specified partition in which the region was to be
allocated does not exist; or no region name was
specified and RS.ATT = O.

Part of the DPB or RDB is out of issuing task's
address space.

DIC or RDB size is invalid.

1. The Executive does not return an error if the named region
already exists. In this case, the Executive clears the
RS.CRR bit in the status word R.GSTS. If RS.ATT has been
set, the Executive attempts to attach the already existing
named region to the issuing task.

2. The protection word (see R.GPRO above) has the same format as
that of the file system protection word. There are four
categories, and the access for each category is coded into
four bits. From low order to high order, the categories
follow this order: system, owner, group, world. The access
code bits within each category are arranged (from low order
to high order) as follows: read, write, extend, delete. A
bit that is set indicates that the corresponding access is
denied.

The issuing task's UIC is the created region's owner UIC.

In order to prevent the creation of common blocks that are
not easily deleted, the system and owner categories are
always forced to have delete access, regardless of the value
actually specified in the protection word.

5-44

DIRECTIVE DESCRIPTIONS

Parent tasks can service each offspring input or output request with a
corresponding output or input request to the correct virtual device
unit. For example, .where Macro-11 has been activated as an offspring
task of the Batch Processor with a TI: of VT3:

1. Macro-il issues an IO.RVB or IO.RLB to TI: for its first
. input line. The virtual terminal driver queues the read
request internally and effects an AST in the Batch Processor
at the virtual address "iast" with the unit number 3 and the
byte count from Macro-ll's I/O request on the stack.

5-45

3.··

DIRECTIVE DESCRIPTIONS

, tr1.)t·~~ A$T- t6'titfrie} ti1·~· ..• ·~~tcb····~t"o<!~$$()~··· ... · r~.triey€!s .•. •.·. ~.n.- ., ... i-frput
.Ii,11~:•···· ~or••·.· f.t~crp~~l·• .. <from· .. ~h~.·.··.~a tsJ1.:streain .••arHJ>,specifies · .. •.this
·~<inE!<in• a'-Qio.aitective' ~o--aLUN··.a~slgnedt:o: ·:V'f3:. -With··an
lO •. W'VB ,07 :r().\.'IL~ furiqtion., .. -a••·bytE7:count··of the lin~,·.·ana< the
•st.a;t !JS\ ;to .be' r:etu.rned .·.··(such-. a$-.IS .CR)·•.· · · ··

>.):;'-: . ..: -:. ... : .·· ::: .> '."·:>·> :-:;=,_-:_ ··< >':;;,:::>:·::.·.;.'." .. ',· ::.. ::.-· .. :~~· .·'..·.~::- ::-:> ... -" >:./. ... >:..: ·::.<:·<<> ·. > -·~./: .. _, ~ .··-.>-:.:-·

T9e··.·•••·.\1-i.• .. ~t··l1a1.·····•·••••feitnii.'na•1······•a1·••t•J~.t-··••r'.¢a(js••··.· .. •th-e•...• _.l 1ne··.· .•. : ... •.f·rom .. th·~· sa·tch
·J?r()C~f;.f;<:)X' ~ byffe~,< write~· .. · .. ~he··•·li11E! >to. -·ttificr.<>711 '.s •. bttf fer, and
tnen .• ••sl911al$ J/O conipletJqn •+pr b()t}:lI/(:)·request~··.•~·

'..<.· ..•. · ..•.•••.•. • < <>)i··>>•.· ·.•······ >.i , ... < > '<< >> sfmi~ar~y~, 't£/:r-1acro.--11.x1eE!a$.. to print:, an error mes~age,- ·.·.· .. ·tt
doE!s .. ·.· .s<>• wit;h a,n 19 .• .;• .. ¥1.~·.···<?.F··.·.··.··· rq.~¥1J'..J3 - to Tr:·. The .• •·•virtual
y~r:~ipa,1 -9ri.v~r: .•·.· .. qpE7P~;~·•······••·.·-t:pe••·•.•< ·~r:Jt:.·.··.•.·· .. ·. r;~tju~st:•.•• ..•.•. ·.·.f riter;f1~lly.···.··•··•.a,r1d

•··.•~.·~·~~p;t;s •... _an-(~9'.l' --r9.·.th-e .• a~:t:s-n-rt'•p.ce§s{).r•·.•·····at .•.. •··t:h-~:vtrtu~1:.-a.~are~s-__
·~•.Pa~t"-·•:.~~-t:}lt:l'l: --up1t:l'l-l1~l:>e;,, .•.• ~.f :t:pe pyte- .. q().l1l'l•t) ·and:, ··t.hE! VFC
fr9nt .. Ma,c'r;.o'""+l}•s' :r:to •··reqt;iest: ioJ1::>the ..• • .• stack••

,_.. ·.·,·;·· :. ::··:··.-

·5~ ·····.·~n-Jt:s?.()tit:·p~t Asi~ t6l1~iHe,- •tl'le .. Batch .•••...• • •. P~?c~ess-Ot •1sstie.s an
ro-.JlVJ? .. ···p r ·!? .. HLB······ t.d re~r i ey~ the line •.... by.·· .•• meaJ1~··o fr the y irti.l.a1
t~rinin~·~c]r~v~r. ··.··The Bptch· J?roc~~~9p··· 1ll~Y.· ... • .. • then< o.utpl1t; .. ·. t.his
line to itSilO<J file ••. ··. The>th•Jrd t¥Ordpn···.·the [\.~T: stack·.in the
~atch -outp~~ AST routJne .i$. ~he:.·.· vert:ic(il···.··<format .C:haracter,
-telling . Ba,tch · .. what type pf car.riag~ control is expected. for
the·•output Iine. Thiswo·rd would·· oe·ignorea •. ·.i-n·· t:he input· AS'r
routine.

The Virtual term'ifr~l a~iver does not intefpret: or modify transferred
bytes,. I/O .s\lbfunction codes, Of \rertical··.format chara<,:ters •. ·However,
this driver does cil1tomatically truncate offspring I/O requests to . the
maximum byte count specified in the "mlen" parameter, notifying
neither the parent nor offspring task. The actual number of bytes
transferred on each request is equal to the smaller of the byte counts
specified in the offspring and paren.t I/O requests. The total number
of bytes transferred is returned in the correspondingI/O status
blocks. Note that offspring tasks can receive "mlen" in the fourth
characteristics word when a Get LUN Information directive is issued.

Intermediate buffering in secondary pool, when enabled by the parent
task, is performed on offspring input and output requests when the
offspring task is checkpointable. Offspring tasks, therefore, may be
stopped and checkpointed. If the parent task is stopped and
checkpointed when the offspring task issues an I/O request, the
resulting AST brings the parent tas.k to an unstopped state from which
it may return to memory to service the I/O request. Upon exit from
the. AST routine, the parent task is again stopped. This mode of
operation allows the parent and offsprin9 tasks to . share the same
p}1ysical memory, even while the parent task services> the terminal I/O
requests for the . offspring task •. ·. Whenever, for any reason, the
virtu~J terminal dr~v.er determines that. is. should not ~se intermediate
buffering, offspring tasks are lock~d in memory when· 1;0 requests are
issued, and transfers occur d itectl y between pa rent and offspring
buffers••

. '

The Intermediate buffering of offs_pflng)/O requests can. normally be
enabled. ?nd disabled . by the pare;nt task. by the ·IO .. STC Junctiqp, as
described below. An excepti9n to t.hi:s exists • for virtual ... terrnlf:lals
created with a umlen•• parameter• g:reater than.a .system.;;;wide maximum
-specified at Sys9en tfn1e. · .. tsysgen 49e$ not allow.thfsfuaximun1. · .. to be

'greater th<ln .. 5124'.) ,If •• •a Create··vtrtual -Terminal .. directive is. specified
wit:h a u~len" parameter great.er.· than f,:he systeiri-wide .. maximum, the
parameter is accepted, but Jn.;~.-r-l1J~diate buffet:"ing for the created
yirtual _. t~rmin~l t,lnit is' autol1lat~·c.ally disabled. .· Fuxtheptrore .. ,
intermediate . buffE!ring . for that.unJ:t ·pannot be enabled by the'parent
tasJ< .. by th~ .. I()~S'f.C funct:i9n .. _

5-46

purpose.
requests;
the same
is clear,
flag:

DIRECTIVE DESCRIPTIONS

e If. bit 0 is clear and bit l is
offspring I/O is disabled.

• If bit 0 is clear and bit 1 is clear, buffering is enabled.

5-47

of

DIRECTIVE DESCRIPTIONS

:·.:ku.·.f fe:r'5.h·~• .. :•.·c:an~6i.t•.··· b.~··.·.··.•ena·b:·i:~h.·····•8n••· .• ·ia:··.:·.:v.•ir.1:ua·.l•.•·.:· .. ·.'t:e:rm1.n~I: .•. ·.·un•.•rt ... ttle·i:.t1?•~···•·.·.·.~·e·~.11
createcl .•. ·witp a;~1 ''111ien" pa.ra1neter. gre~ter thar1 t~e systerrt~Wide. maximum
·specJfied ·at sysgen time~ An attempt to· do both.· results In. an error
return .. of IE •.. IE'C.

:The only t?sk;s tn?t can :as$fgn . L.UNs to a. virtual. terminal J1I'l.tt ... Th~··/· .• ·.t:··~·s.·~:··· .. ·•.· .. ·•t~a·.·t··· .. ····.c=·.·r··:·~ted. ··thi·······Ji·r··.~.~~i·•·•i.·.~b.fmina.i.·······.· .. ·tn .. i.•t· .•. : .. ·.:
,. : .. ·. .· ... : . ,. :.· ... , . .<·. ·.·. '. , ... : ... :. · _., , ~: :.'.: .-= .. ··:,:- ·'_;'_;

.• 'I'h~1: it~sk's.6Jfspririg ·: ~ask(s.r, · kha.~~ .·,-It. is th~: .vfrtu.?ll
·.····· ·· ··.· ·t.erllllrialu~tt ... ·.) · •. : .:>.···>·

•~tt:achme:niti~f .··.·?····vi.r.t\1~1 ... t~t-~iKai··.••uniFihy(an ·o..ffspi1119·· ··ta$~ .. ·.· ·t>s~v~n~s
t:f1~·•d~q~eulng : ()f.· .··•~/CJ ... r eque~t~ ~P·•···:tt1ati.1?it: . frolt\ 6.~her ·ci.f·+$p;rJhg: ::ipa ~ks ;
paren~<I/O.·. re.qµe.sts:.a;re always ... ~~rvlc~d. ·

~ .. :;:·· : . .-··:: ... · .;· -..:.::-.= :: .': ; .. , ... ::.-. :.·.·-: :...::·:. '. : ·.:· :'.: . ."'':, . . ····.-.-: .. <:-: .. · :- ,·_. .. ,=··:.:= ··<. : .··::-_ · .. ·.= .::- .· ··:::·:::-::""_"._: .. ·.::

130.•th·· •. :•·~e1· .. rel1.'f:··.·····?nd·.·.······oifs.pr .• 1ric) .. ·.· .·t·~.•sks·.·.· .. ···c.at1.··.·.····.spec·1.·f:•y.····.• .• ·ith.~· · ±•Jo .. f · .. ~n~··.t:i··~~~ I•9.····GTS.;r
s~.GMC., an.a··s~~sMc .. · ... Iio\\feve'F·, ~F~GM.can,cl ·sF •. st~lQ :S\lPJ?or·#· bn1y··a· limited
·num~er .. of.··.· 'f:e.:r1ninal ·char.act:er.ist:ic.s; <.for .·.· vi;r.tual.·•·.·.· .. termi11.als···: Please
refex::t<>.·. the .. Rsx~llM/M-PLUST/O ·Privers ·R:eference Mariualfor: a list .of

. valid ch:aracter1st1.cs. -. -

Note .that the . I?Ci~ent •• tas.~ i.~ not
any: of the above di;rectives.

otifspring. ·· .. issues

When an .··offspring ta9k:issues ·~···. read-with-prolllp~· reque~t .. (ici.RPR) ,: i:he
virtual terminal driver separates the request into an 10.WLB request
and an IO.RLB request. The parent task cannot: issue an JO.RPR.

When a virtual terminal is iri half-duplex mode, the virtual terminal
driver .handles only ... one offspring request at a time. fpr example, .if
the offspring task issues a read request and then issues a write
request without waiting for the read to. be completed, the driver
queues the write request to be processed when.the read is completed.

The parent task may issue an SF. SMC function to set the virtual
terminal to full-duplex mode. In full-duplex mode, the write request
in the previous example would be processed even if the previous read
was not yet completed •. If the parent task is at AST state, it will
not receive notification of the I/O request.

Both parent and offspring tasks can issue
getermine the mode of the virtual terminal.

an SF .GMC request .to
Howey er, only the parent

task c<;tn change the mode (using SF.SMC).

FOR'I'RAN .. Ca 11:

=

([Hastl, [ioast] ,[iaast], f.imlen] ,iparm·, [ids])

AsT··address····af· .wh1ch input
tasks are·. serviced

AST address at. wbiph output; requests from : offs pr irig
tasks '.are serviced:

AST address a1: whicli .. tl1~ p(lfe.nt 'l:ask may''be .. not:Iffed
of ... thecoinpletipnpf Sl)CC~ssful offspring c:ittach .and
detach requests to. the··virtual.·. terminal.:unit

.NO'I'E .

O.f the
paramete,.['s should . . be

: otherwise, the virtual. t.erminal
···treated as the null device.

5-48

DIRECTIVE DESCRIPTIONS

5-49

DIRECTIVE DESCRIPTIONS

5-50

DIRECTIVE DESCRIPTIONS

CSRQ$

5.3.15 Cancel Time Based Initiation Requests

The Cancel Time Based Initiation Requests directive instructs the
system to cancel all time-synchronized initiation requests for a
specified task, regardless of the source of each request. These
requests result from a Run directive, or from any of the
time-synchronized variations of the MCR or DCL Run command.

In a multiuser protection system, a nonprivileged task can cancel
time-based initiation requests only for a task with the same TI:.

FORTRAN Call:

CALL CANALL (tsk [,ids])-

tsk Task name

ids = Directive status

Macro Call:

CSRQ$ tsk

tsk Scheduled (target) task name

Macro Expansion:

CSRQ$
.BYTE
.RAD50

ALPHA
25., 3
/ALPHA/

;CSRQ$ MACRO DIC, DPB SIZE=3 WORDS
;TASK "ALPHA"

Local Symbol Definitions:

C.SRTN Target task name (4)

DSW Return Codes:

Note:

rs. sue

IE. INS

IE. PRI

IE.ADP

IE. SDP

Successful completion.

Task is not installed.

The issuing task is not privileged and is attempting
to cancel requests made by another task.

Part of the DPB is out of the issuing task's address
space.

DIC or DPB size is invalid.

If you specify an error routine address when using the $C or $S
macro form, then you must include a null argument for RSX-llD
compatibility. For example:

CSRQ$S #TNAME,,ERR ;CANCEL REQUESTS FOR "ALPHA"

TNAME: .RAD50 /ALPHA/

5-51

DIRECTIVE DESCRIPTIONS

DECL$

5.3.16 Declare Significant Event ($S Form Recommended)

The Declare Significant Event directive instructs the system to
declare a significant event.

Declaration of a significant event causes the Executive to scan the
Active Task List from the beginning, searching for the highest
priority task that is ready to run. Use this directive with
discretion to avoid excessive scanning overhead.

FORTRAN Call:

CALL DECLAR ([,ids])

ids Directive status

Macro Call:

DECL$S [,err]

err Error routine address

Macro Expansion:

DECL$S
MOV
.BYTE
EMT
BCC
JSR

, ERR
(PC) +, - (SP)
35., 1
377
• +6
PC, ERR

;NOTE: THERE IS ONE IGNORED ARGUMENT
;PUSH DPB ONTO THE STACK
;DECL$S MACRO DIC, DPB SIZE=l WORD
;TRAP TO THE EXECUTIVE
;BRANCH IF DIRECTIVE SUCCESSFUL
;OTHERWISE, CALL ROUTINE "ERR"

Local Symbol Definitions:

None

DSW Return Codes:

Note:

IS. sue

IE.ADP

IE. SDP

Successful completion.

Part of the DPB is out of the issuing task's address
space.

DIC or DPB size is invalid.

The $S form of the macro is recommended because this directive
requires only a 1-word DPB.

5-52

DIRECTIVE DESCRIPTIONS

DSAR$
or

IHAR$S

5.3.17 Disable (or Inhibit) AST Recognition ($S Form Recommended)

The Disable {or Inhibit) AST Recognition directive instructs the
system to disable recognition of ASTs for the issuing task. The ASTs
are queued as they occur and are effected when the task reenables AST
recognition. There is an implied disable AST recognition directive
whenever an AST service routine is executing. When a task's execution
is started, AST recognition is enabled. See Notes belowo

FORTRAN Call:

CALL DSASTR [{ids)]
or

CALL INASTR [(ids)]

ids Directive status

Macro Call:

DSAR$S [err]

err Error routine address

Macro Expansion:

DSAR$S
MOV
.BYTE
EMT
BCC
JSR

ERR
{PC) + , - (S P)
99.,1
377
• +6
PC, ERR

;PUSH DPB ONTO THE STACK
;DSAR$S MACRO DIC, DPB SIZE=l WORD
;TRAP TO THE EXECUTIVE
;BRANCH IF DIRECTIVE SUCCESSFUL
;OTHERWISE, CALL ROUTINE "ERR"

Local Symbol Definitions:

None

DSW Return Codes:

rs.sue

IE. ITS

IE.ADP

IE.SOP

Successful completion.

AST recognition is already disabled.

Part of the DPB is out of the issuing task's address
space.

DIC or DPB size is invalid.

5-53

DIRECTIVE DESCRIPTIONS

Notes:

1. This directive disables only the recognition of ASTs; the
Executive still queues the ASTs. They are queued FIFO and
will occur in that order when the task reenables AST
recognition.

2. The FORTRAN calls, DSASTR (or INASTR) and ENASTR (see Section
5.3.24), exist solely to control the possible jump to the
PWRUP routine (power-up). FORTRAN is not designed to link to
a system's trapping mechanism. The PWRUP routine is strictly
controlled by the system, which both accepts the trap and
subsequently dismisses it. The FORTRAN program is notified
by a jump to PWRUP but must use DSASTR (or INASTR} and ENASTR
to ensure the integrity of FORTRAN data structures, most
importantly the stack, during power-up processing.

3. Because this directive requires only a 1-word DPB, the $S
form of the macro is recommended. It requires less space and
executes with the same speed as that of the DIR$ macro.

5-54

DIRECTIVE DESCRIPTIONS

DSCP$S

5.3.18 Disable Checkpointing ($S Form Recommended)

The Disable Checkpointing directive instructs the system to disable
the checkpointability of a task that has been installed as a
checkpointable task. Only the affected task can issue this directive.
A task cannot disable the ability of another task to be checkpointed.

FORTRAN Call:

CALL DISCKP [(ids)]

ids Directive status

Macro Call:

DSCP$S [err]

err Error routine address

Macro Expansion:

ERR
;PUSH DPB ONTO THE STACK

DSCP$S
MOV
.BYTE
EMT
BCC
JSR

(PC) + , - (S P)
95.,1
377

;DSCP$S MACRO DIC, DPB SIZE=l WORD
;TRAP TO THE EXECUTIVE

• +6
PC, ERR

;BRANCH IF DIRECTIVE SUCCESSFUL
;OTHERWISE, CALL ROUTINE II ERR"

Local Symbol Definitions:

None

DSW Return Codes:

rs.sue Successful completion.

IE. ITS Task checkpointing is already disabled.

IE. CKP Issuing task is not checkpointable.

IE.ADP Part of the DPB is out of the issuing task's address
space.

IE.SOP DIC or DPB size is invalid.

Notes:

1. When a checkpointable task's execution
checkpointing is enabled (that is, the
checkpo inted) •

is
task

started,
can be

2. Because this directive requires only a 1-word DPB, the $S
form of the macro is recommended. It requires less space and
executes with the same speed as that of the DIR$ macro.

5-55

DIRECTIVE DESCRIPTIONS

DTRG$

5.3.19 Detach Region

The Detach Region directive detaches the issuing task from a
specified, previously attached region. Any of the task's windows that
are currently mapped to the region are automatically unmapped.

If RS.MDL is set in the region status word when the directive is
issued, the task marks the region for deletion on the last detach. A
task must be attached with delete access to mark a region for
deletion.

FORTRAN Call:

CALL DTRG (irdb[,ids])

irdb An 8-word integer array containing a Region Definition
Block (see Section 3.5.1.2)

ids Directive status

Macro Call:

DTRG$ rdb

rdb Region Definition Block address

Macro Expansion:

DTRG$
.BYTE
.WORD

RDBADR
59.,2
RDBADR

;DTRG$ MACRO DIC, DPB SIZE=2 WORDS
; RDB ADDRESS

Region Definition Block Parameters:

Input parameters:

Array Off set
Element

irdb(l) R.GID

irdb(7) R.GSTS

ID of the region to be detached

Bit settingsl in the region status word:

Bit

RS.MDL

Definition

1 if the region should be marked
for deletion when the last task
detaches from it

1. If you are a FORTRAN programmer, refer to Section 3.5.1 to
determine the bit values represented by the symbolic names described.

5-56

DIRECTIVE DESCRIPTIONS

Output parameters:

irdb(7) R.GSTS Bit settings! in the region status word:

Bit Definition

RS.UNM 1 if any windows were unmapped

Local Symbol Definitions:

D.TRBA

DSW Return Codes:

rs.sue

IE. PR!

Region Definition Block address (2)

Successful completion.

The task, which is not attached with delete access,
has attempted to mark the region for deletion on the
M.st q~.tac~r?I" tl1~.·.· .. t~~k .•..... Pf!~ < qutstanqi.qg··•· J:/9 ... '.•(riqt•

···p~,9~.~~.~I.~.1y.·,...t:fr ,,F:g~.~\:·r;~g.~.gQ,.·p.n .. ;<'R§X~ll"1·: .. y·t~~sxgl':llYl •. ;,: ·

IE.NVR The task specified an invalid region ID or attempted
to detach region 0 (its own task reg ion) •

IE.ADP Part of the DPD or RDB is out of the issuing task's
address space.

IE. SDP DIC or DPB size is invalid.

1. If you are a FORTRAN programmer, refer to Section 3.5.1 to
determine the bit values represented by the symbolic names described.

5-57

DIRECTIVE DESCRIPTIONS

ELAW$

5.3.20 Eliminate Address Window

The Eliminate Address Window directive deletes
window, unmapping it first if necessary.
eliminated window's ID is invalid.

an existing address
Subsequent use of the

FORTRAN Call:

CALL ELAW {iwdb[,ids])

iwdb An 8-word integer array containing a Window Definition
Block {see Section 3.5.2.2)

ids Directive status

Macro Call:

ELAW$ wdb

wdb Window Definition Block address

Macro Expansion:

ELAW$
.BYTE
.WORD

WDBADR
119.,2
WDBADR

;ELAW$ MACRO DIC, DPB SIZE=2 WORDS
;WDB ADDRESS

Window Definition Block Parameters:

Input parameters:

Array
Element

iwdb(l)
bits 0-7

Output parameters

iwdb(7)

Off set

W.NID

W.NSTS

ID of the address window to be eliminated

Bit settingsl in the window status word:

Bit

WS.ELW

WS.UNM

Definition

1 if the address window was
successfully eliminated

l if the address window was
unmapped

1. If you are a FORTRAN programmer, refer to Section 3.5.2 to
determine the bit values represented by the symbolic names described.

5-58

DIRECTIVE DESCRIPTIONS

Local Symbol Definitions:

E.LABA

DSW Return Codes:

Is. sue

IE. NVW

IE.ADP

IE. SDP

Window Definition Block address (2)

Successful completion.

Invalid address window ID.

Part of the DPB or WDB is out of the issuing task's
address space.

DIC or DPB size is invalid.

5-59

DIRECTIVE DESCRIPTIONS

ELGF$

5.3.21 Eliminate Group Global Event Flags

The Eliminate Group Global Event Flags directive marks group-global
event flags for deletion. If no tasks in this group are using the
group-global event flags (the use count for this group maintained by
the Executive in G.CNT is 0), the Group Global Event Flags Control
Block (GFB) is immediately unlinked and deallocated. If tasks are
using flags in this group, the Executive marks the flags for deletion
(GS.DEL is set to 1) and the GFB is eliminated when no remaining tasks
are using the flags in this group; however, if a Create Group Global
Event Flags directive is issued before the flags are eliminated, the
Executive clears GS.DEL.

If the specified group code matches the group code of the issuing
task's protection UIC and the event flags are locked by this task (by
a previous Create Group Global Event Flags directive), this directive
unlocks the event flags by decrementing the access count. Note that a
task may not unlock the event flags more than once in succession. Any
attempt to unlock event flags that are already unlocked will return
the IE.RSU error code.

FORTRAN Call:

CALL ELGF ([group] [,ids])

group Group number of flags to be eliminated. Only
privileged tasks can specify group numbers other than
the issuing task's group UIC. If not specified, the
task's protection UIC (H.CUIC+l) in the task's header
is used.

ids = Integer to receive the Directive Status Word.

Macro Call:

ELGF$ [group]

group = Group number of flags to be eliminated. Only

Macro Expansion:

ELGF$
.BYTE
.WORD

privileged tasks can specify group numbers other than
the issuing task's group UIC. If not specified, the
task's protection UIC (H.CUIC+l) in the task's header
is used.

303
159.;2
303

;ELGF$ MACRO DIC, DPB SIZE=2 WORDS
;GROUP NUMBER 303 FLAGS

Local Symbol Definitions:

E.LGRP -- Group number (2)

5-60

DIRECTIVE DESCRIPTIONS

DSW Return Codes:

rs.sue

IE.PR!

IE. IUI

IE. IEF

IE.RSU

IE.ADP

Successful completion.

Privilege violation.

Invalid group (group>377 octal).

Group is not founde

Event flags are already marked for deletion.

Part of the DPB is out of the issuing task's address
space.

IE.DIC -- DIC or DPB size is invalid.

.......

5-61

DIRECTIVE DESCRIPTIONS

ids = Integer to receive the, Directive Status Word

Macro Call:

ELVT$ unum

unum = Unit number of the 'virtual terminal to be eliminated.

Macro Expansion:

The task must provide this parameter after the
virtual terminal is created (see Note).

5-62

DIRECTIVE DESCRIPTIONS

5-63

DIRECTIVE DESCRIPTIONS

EMST$

5.3.23 Emit Status

The Emit Status directive returns the specified 16-bit quantity to the
specified connected task. It possibly sets an event flag or declares
an AST if previously specified by the connected task in a Send,
Request And Connect, a Spawn, or a Connect directive. If the
specified task is multiply connected to the task issuing this
directive, the first (oldest) Offspring control Block (OCB) in the
queue is used to return status. If no task name is specified, this
action is taken for all tasks that are connected to the issuing task
at that time. In any case, whenever status is emitted to one or more
tasks, those tasks no longer remain connected to the task issuing the
Emit Status directive.

FORTRAN Call:

CALL EMST ([rtname],status[,ids])

rtname Name of a task connected to the issuing task to
which the status is to be emitted

status = A 16-bit quantity to be returned to the connected
task

ids

Macro Call:

EMST$

tname

status

Integer to receive the Directive Status Word

[tname],status

Name of a task connected to the issuing task to
which the status is to be emitted

16-bit quantity to be returned to the connected task

Macro Expansion:

EMST$
.BYTE
.RAD50
.WORD

ALPHA,STWD
147.,4
ALPHA
STWD

;EMST$ MACRO DIC, DPB SIZE=4 WORDS
;NAME OF CONNECTED TASK TO RECEIVE STATUS
;VALUE OF STATUS TO BE RETURNED

Local Symbol Definitions:

E.MSTN

E,,MSST

DSW Return Codes:

rs. sue

IE.ITS

IE.ADP

IE. SDP

Task name (4)

Status to be returned (2)

Successful completion.

The specified task is not connected to the issuing
task.

Part of the DPB is out of the issuing task's address
space.

DIC or DPB size is invalid.

5-64

DIRECTIVE DESCRIPTIONS

ENAR$S

5.3.24 Enable AST Recognition {$S Form Recommended)

The Enable AST Recognition directive instructs the
ASTs for the issuing task; that is, the directive
AST Recognition directive. ASTs that were queued
was disabled are effected at issuance. When a
started, AST recognition is enabled.

FORTRAN Call:

CALL ENASTR [(ids)]

ids Directive status

Macro Call:

ENAR$S [err]

err Error routine address

Macro Expansion:

ERR

system to recognize
nullifies a Disable

while recognition
task's execution is

ENAR$S
MOV
.BYTE
EMT
BCC
JSR

(PC) + , - (S P)
101., 1

;PUSH DPB ONTO THE STACK

377
• +6

;ENAR$S MACRO DIC, DPB SIZE=l WORD
;TRAP TO THE EXECUTIVE

PC, ERR
;BRANCH IF DIRECTIVE SUCCESSFUL
;OTHERWISE, CALL ROUTINE "ERR"

Local Symbol Definitions:

None

DSW Return Codes:

rs. sue

IE.ITS

IE.ADP

IE. SDP

Notes:

Successful completion.

AST recognition is not disabled.

Part of the DPB is out of the issuing task's address
space.

DIC or DPB size is invalid.

1. Because this directive requires only a 1-word DPB, the $S
form of the macro is recommended. It requires less space and
executes with the same speed as that of the DIR$ macro.

2. The FORTRAN calls DSASTR (or INASTR) (see Section 5.3.17) and
ENASTR exist solely to control the jump to the PWRUP routine
(power-up). FORTRAN is not designed to link to a system's
trapping mechanism. The PWRUP routine is strictly controlled
by the system. It is the system that both accepts the trap
and subsequently dismisses it. The FORTRAN program is
notified by a jump to PWRUP but must use DSASTR (or INASTR)
and ENASTR to ensure the integrity of FORTRAN data
structures, most importantly the stack, during power~up
processing.

5-65

DIRECTIVE DESCRIPTIONS

ENCP$S

5.3.25 Enable Checkpointing ($S Form Recommended)

The Enable Checkpointing directive instructs the system to make the
issuing task checkpointable after its checkpointability has been
disabled; that is, the directive nullifies a DSCP$S directive. This
directive cannot be used to enable checkpointing of a task that was
built noncheckpointable.

FORTRAN Call:

CALL ENACKP [(ids)]

ids Directive status

Macro Call:

ENCP$S [err]

err Error routine address

Macro Expansion:

ENCP$S
MOV
.BYTE
EMT
BCC
JSR

ERR
(PC)+, - (SP)
97.,1
377
• +6
PC, ERR

;PUSH DPB ONTO THE STACK
;ENCP$S MACRO DIC, DPB SIZE=l WORD
;TRAP TO THE EXECUTIVE
;BRANCH IF DIRECTIVE SUCCESSFUL
;OTHERWISE, CALL ROUTINE "ERR"

Local Symbol Definitions:

None

DSW Return Codes:

Note:

IS. sue

IE. ITS

IE.ADP

IE.SOP

Successful completion.

Checkpointing is not disabled or task is connected to
an interrupt vector.

Part of the DPB is out of the issuing task's address
space.

DIC or DPB size is invalid.

Because this directive requires only a 1-word DPB, the $S form of
the macro is recommended. It requires less space and executes
with the same speed as that of the DIR$ macro.

5-66

DIRECTIVE DESCRIPTIONS

EXIF$

5.3.26 Exit If

The Exit If directive instructs the system to terminate the execution
of the issuing task if, and only if, an indicated event flag is not
set. The Executive returns control to the issuing task if the
specified event flag is set. See Notes below.

FORTRAN Call:

CALL EXITIF (efn[,ids])

efn Event flag number

ids Directive status

Macro Call:

EXIF$ efn

efn Event flag number

Macro Expansion:

EXIF$
.BYTE
• WORD

52.
53.,2
52 •

;EXIF$ MACRO DIC, DPB SIZE=2 WORDS
;EVENT FLAG NUMBER 52.

Local Symbol Definitions:

E.XFEF

DSW Return Codes:

IS.SET

IE. IEF

IE.ADP

IE. SDP

Notes:

Event flag number (2)

Indicated EFN set; task did not exit.

Invalid event flag number (EFN<l, or EFN>96, if group
global event flags exist for the task's group; or
EFN>64 if not).

Part of the DPB is out of the issuing task's address
space.

DIC or DPB size is invalid.

1. The Exit If directive is useful in avoiding a possible race
condition that can occur between two tasks communicating by
means of the Send and Receive directives. The race condition
occurs when one task executes a Receive directive and finds
its receive queue empty; but before the task can exit, the
other task sends it a message. The message is lost because
the Executive flushed the receiver task's receive queue when
it decided to exit. This condition can be avoided if the
sending task specifies a common event flag in the Send
directive and the receiving task executes an Exit If
specifying the same common event flag. If the event flag is
set, the Exit If directive will return control to the issuing
task, signaling that something has been sent.

5-67

DIRECTIVE DESCRIPTIONS

2. A FORTRAN program that issues the Exit If call must first
close all files by issuing Close calls. See the IAS/RSX-11
FORTRAN IV or FORTRAN IV-PLUS User's Guide for instructions
on how ~o---ensure that such files are closed properly if the
task exits. To avoid the time overhead involved in the
closing and reopening of files, the task should first issue
the appropriate test or clear event flag directive. If the
directive status word indicates that the flag was not set,
then the task can close all files and issue the call to Exit
If.

3. On Exit, the Executive frees task resources. In particular,
the Executive:

• Detaches all attached devices

• Flushes the AST queue and despecifies all specified ASTs

• Flushes the receive and receive-by-reference queues

• Flushes the clock queue for any outstanding Mark Time
requests for the task

• Closes all open files (files open for write access are
locked)

• Detaches all attached regions, except in the case of a
fixed task

• Runs down the task's I/O

• Deaccesses the group global event flags for the task's
group

• Disconnects from interrupts

• Flushes all outstanding CLI command buffers for the task

• Breaks the connection with any offspring tasks

• Returns a success status (EX$SUC) to any parent tasks

• M.a.r~si.fo.r d.~.~If(Jbai:..f~~.·.·a.~t..v~ituai·· t:~rnd.#~1 ·1.lnit·s··•ifie task
l'.l~9. <::~~~fe<l·· .f~~~ 9e·~.~i9J.l.\?•: ~) ·

• Frees the task's memory if the exiting task was not fixed

4. If the task exits, the Executive declares a significant
event.

5-68

DIRECTIVE DESCRIPTIONS

EXIT$S

5.3.27 Task Exit ($S Form Recommended)

The Task Exit directive instructs the system to terminate the
execution of the issuing task.

FORTRAN Call:

See Note 5 below.

Macro Call:

EXIT$S [err]

err = Error routine address

Macro Expansion:

EXIT$S
MOV
.BYTE
EMT
JSR

ERR
(PC)+, - (SP)
51. '1
377
PC, ERR

Local Symbol Definitions:

None

DSW Return Codes:

;PUSH DPB ONTO THE STACK
;EXIT$S MACRO DIC, DPB SIZE=l WORD
;TRAP TO THE EXECUTIVE
;CALL ROUTINE "ERR"

IE.ADP Part of the DPB is out of the issuing task's address
space.

IE. SOP DIC or DPB size is invalid.

Notes:

1. A return to the task occurs if, and only if, the directive is
rejected. Therefore, no Branch on Carry Clear instruction is
generated if an error routine address is given, since the
return will only occur with carry set.

2. Exit causes a significant event to be declared.

3. On Exit, the Executive frees task resources. In particular,
the Executive:

• Detaches all attached devices

• Flushes the AST queue and despecifies all specified ASTs

• Flushes the receive and receive-by-reference queues

• Flushes the clock queue for any outstanding Mark Time
requests for the task

• Closes ail open files (files open for write access are
locked)

5-69

DIRECTIVE DESCRIPTIONS

• Detaches all attached regions, except in the case of a
fixed task, where no detaching occurs

• Runs down the task's I/O

• Deaccesses the group global event flags for the task's
group

• Disconnects from interrupts

• Flushes all outstanding CLI command buffers for the task

• Breaks the connection with any offspring tasks

• Returns a success code (EX$SUC) to any parent task

• Frees the task's memory if the exiting task was not fixed

4. Because this directive requires only a 1-word DPB, the $S
form of the macro is recommended. It requires less space and
executes with the same speed as that of the DIR$ macro.

5. You can terminate FORTRAN tasks with the STOP statement or
with CALL EXIT. CALL EXIT is a FORTRAN OTS routine that
closes open files and performs other cleanup before it issues
an EXIT$S directive (or an EXST$ directive in FORTRAN
IV-PLUS). FORTRAN tasks that terminate with the STOP
statement result in a message being displayed on the task's
TI:. This message includes task name (as it appears in the
Active Task List), the statement causing the task to stop,
and an optional character string specified in the STOP
statement. Tasks that terminate with CALL EXIT do not
display a termination message. For example, a FORTRAN task
containing the following statement:

20 STOP 'THIS FORTRAN TASK'

exits with the following message displayed on the tasks TI:
{TT37 in this example):

TT37 -- STOP THIS FORTRAN TASK

5-70

DIRECTIVE DESCRIPTIONS

EXST$

5.3.28 Exit With Status

The Exit With Status directive causes the issuing task to exit,
passing a 16-bit status back to all tasks connected (by the Spawn,
Connect, or Send, Request And Connect directive). If the issuing task
has no connected tasks, then the directive simply performs a Task
Exit. No format of the status word is enforced by the Executive;
format conventions are a function of the cooperation between parent
and offspring tasks. However, if an offspring task aborts ...•. ~?E .Ci.~X

~~.~ ~~n.' · .. ·.· ...• ~ .•.. ·.· .•. · .. ~ ~:~·.t.~s···.····.·.~·.•.f·.·•··.·•·•.·.~ .•• ~ .. ~s.·E·~····· ~.~i···.r.:~t.~ .• ~?~?·.··· t:~ ..•......• ~ .. ~ .. ~·.·.·······J?~.~t~•.•t···· .:~~.s k • ·X:w~i§:\;,,.v.~d;.9o~Y \(.t~;§·· .. ':;i.:~ .. 1::~·?;,·p~\~:.~.~~l::.:Fl'·~L·~.:>~.~~;;$~.\\l~{~J~./.·~:;;b.~~.·~:~/:; . .,1~.~ ·:;.F?:~;;·¢:~:' .. :·p~.~.~.~;$,~.~5,'.·.t.:. Fur the rm ore ,
if a task performs a normal exit with other tasks connected to it, a
status of EX$SUC (successful completion) is returned to all connected
tasks.

FORTRAN Call:

CALL EXST (istat)

is tat A 16-bit quantity to be returned to parent task

Macro Call:

EXST$ status

status A 16-bit quantity to be returned to parent task

Macro Expansion:

EXST$
.BYTE
.WORD

STWD
29.,2
STWD

;EXST$ MACRO DIC, DPB SIZE=2 WORDS
;VALUE OF STATUS TO BE RETURNED

Local Symbol Definitions:

E.XSTS Value of status to be returned (2)

DSW Return Codes:

No status is returned if the directive is successfully completed
since the directive causes the issuing task to exit.

IE.ADP

IE. SDP

Part of the DPB is out of the issuing task's address
space.

DIC or DPB size is invalid.

5-71

DIRECTIVE DESCRIPTIONS

Notes:

1. The executive does the following to free a task's resources
on Exit:

• Detaches all attached devices

• Flushes the AST queue and despecifies all specified ASTs

• Flushes the Receive and Receive-by-reference queues

• Flushes the clock queue for any outstanding Mark Time
requests for the task

• Closes all open files (files open for write access are
locked)

• Detaches all attached regions except in the case of a
fixed task

• Runs down the task's I/O

• Deaccesses the group global event flags for the task's
group

• Disconnects from interrupts

• Flushes all outstanding CLI command buffers for the task

• Breaks the connection with any offspring tasks

• Returns the specified exit status to any parent tasks

,(1~$.·f()'fc•.• ~~~ll:o6~t'
. ~n.~·.H,·~a~'%.'•.•n~~·l.·.,~·.l'J·~·<1:~~g

• Frees the task's memory if the exiting task was not fixed

2. If the task exits, the executive declares a significant
event.

5-72

DIRECTIVE DESCRIPTIONS

EXTK$

5.3.29 Extend Task

The Extend Task directive instructs the system to modify the size of
the issuing task by a positive or negative increment of 32-word
blocks. If the directive does not specify an increment value or
specifies an increment value of zero, the Executive makes the issuing
task's size equal to its installed size. The issuing task must be
running in a system-controlled partition and cannot have any
outstanding I/O when it issues the directive. The task must also be
checkpointable to increase its size; if necessary, the Executive
checkpoints the task, and then returns the task to memory with its
size modified as directed.

In a system that supports the memory management directives, the
Executive does not change any current mapping assignments if the task
has memory-resident overlays. However, if the task does not have
memory-resident overlays, the Executive attempts to modify, by the
specified number of 32-word blocks, the mapping of the task to its
task region.

If the issuing task is checkpointable but has no preallocated
checkpoint space available, a positive increment may require dynamic
memory and extra space in a checkpoint file sufficient to contain the
task.

There are several constraints on the size to which a task can extend
itself using the Extend directive:

• No task can extend itself beyond the maximum size set by the
MCR command SET /MAXEXT or DCL command SET EXTENSION LIMIT or
the size of the partition in which it is running& (See the
RSX-llM/M-PLUS MCR Oterations Manual or the RSX-llM/M-PLUS
Command Language Manua .)

• A task that does not have memory-resident overlays cannot
extend itself beyond 32K minus 32 words.

• A task that has preallocated checkpoint space in its task
image file cannot extend itself beyond its installed size.

• A task that has memory-resident overlays cannot reduce its
size below the highest window in the task partition.

FORTRAN Call:

CALL EXTTSK ([inc] [,ids])

inc A positive or negative number equal to the number of
32-word blocks by which the task size is to be extended
or reduced

ids = Directive status

5-73

DIRECTIVE DESCRIPTIONS

Macro Call:

EXTK$ [inc]

inc = A positive or negative number equal to the number of
32-word blocks by which the task size is to be· extended
or reduced

Macro Expansion:

EXTK$
.BYTE
.WORD

.WORD

40
89.,3
40

0

;EXTK$ MACRO DIC, DPB SIZE=3 WORDS
;EXTEND INCREMENT, 40(8) BLOCKS (lK
;WORDS)
; RESERVED WORD

Local Symbol Definitions:

E. XTIN

DSW Return Codes:

IS. sue

IE. UPN

IE.ITS

IE.ALG

, ""

~E~RSU

IE. !OP

IE.CKP

IE. NSW

IE.ADP

IE. SOP

Extend increment (2)

Successful completion.

Insufficient dynamic memory, or insufficient space in
a checkpoint file.

The issuing task is not running in
controlled partition.

a system

The issuing task attempted to reduce its size to less
than the size of its task header; or the task tried
to increase its size beyond 32K words or beyond the
maximum set by the MCR SET /MAXEXT command or the DCL
SET EXTENSION LIMIT command; or the task tried to
increase its- size to the extent that one virtual
address window would overlap another; or the task
has memory-resident overlays and it attempted to
reduce its size below the highest window mapped to
the task partition.

pa·~ti.pl9tj·~

I/O is in progress for this task 'e~~;l:.i#~·~J:l~

The issuing task is not checkpointable and specified
a positive integer.

Attempt to extend to larger than installed size (when
checkpoint space is allocated in the task).

Part of the DPB is out of the issuing task's address
space.

DIC or DPB size is invalid.

5-74

DIRECTIVE DESCRIPTIONS

GCCI$

5.3.30 Get Command for Command Interpreter

The Get Command for Command Interpreter directive instructs the system
to retrieve a command buffer for a Command Line Interpreter (CLI) task
and copy it to a buffer in the task's address space. Information
about the issuing terminal can also be returned to the CLI task.

Only CLI tasks can issue this directive.

FORTRAN Call:

CALL GTCMCI (icbf,icbfl,[iibuf], [iibfl], [iaddr], [incp] [,ids])

icbf Name of a byte array to receive the command

icbfl = Integer containing the size of the icbf array in bytes

iibuf = Name of an integer array to receive the optional
information buffer

iibfl = Name of an integer containing the length of the
optional information buffer. If you specify a length
shorter than the information buffer, as much
information as will fit in the length you specified is
returned.

iaddr = Name of an integer that contains the address in pool of
the command desired. This address was obtained by a
previous call to GTCMCI with GC.CND specified.

incp = Name of an integer containing a bit mask indicating the
action to take if there is no command queued:

Octal
Bit Value

GC.CCS 000

GC.CEX 001

GC.CST 002

GC.CND 200

Definition

Return with carry set (default).

Force CLI
returning.

Force CLI
returning.

to

to

exit instead

stop instead

of

of

Copy command into buffer but do not
dequeue it from the list.

You must specify these as decimal values in your
FORTRAN program.

ids = Integer to receive the Directive Status Word

Macro Call:

GCCI$ cbuf,cbfl,[ibuf] ,[ibfl],[addr] ,[ncp]

cbuf = Address of buffer to receive command string

5-75

DIRECTIVE DESCRIPTIONS

cbfl

ibuf Address of buffer to receive information on the issuing
terminal

ibfl Length of buffer to receive information

addr = Address of command.

ncp

This address is returned in G.CCCA of the information
buffer if GC.CND is specified in the ncp argument. If
this argument is nonzero then only the command with the
address specified by this argument is copied and/or
dequeued. Note that this address is only filled in if
the command is not dequeued.

Action to

Bit

GC.CCS

GC.CEX

GC.CST

GC.CND

take if no command buffer present:

Octal
Value Definition

000 Return with carry set (default).

001 Force CLI to exit instead
returning.

002 Force CLI to stop instead
returning.

200 Copy command into buff er but do
dequeue it from the list.

NOTE

GC.CND can be supplied with one of
the other options, for example,
GC.CND!GC.CEX.

of

of

not

Command Buffer Format:

G.CCDV

G.CCCT

G.CCUN

G.CCCL

G.CCFL

ASCII device name of issuing terminal (2)

Number of characters (1)

Octal unit number of issuing terminal (1)

Number of characters in command line (2)

Flags (1)

The values returned in the flag byte, G.CCFL, are:

Flag

GC.CNL =
GC.CTE =

Value

,
.J.

2

Definition

Null command line
Prompt from a task exit

5-76

G.CCTC

G.CCBF

DIRECTIVE DESCRIPTIONS

Terminator (1)

command text in ASCII :(sp>'_l:)yb(:! :::c)n: :,~_$x:...1114 - :~ys~:elnsi
}:!~i~:~,,f~~~~!HiI~~::Il'~~~It±;~!~~~~~:ll'.i~:t~l~1~~~;l

Information Buffer Format:

The format of the information buffer in the CL! address task
space is:

G.CCW2

G.CCPT

G.CCPU

GeCCCU

G.CCCA

u.cw2 of 'issuing terminal (2)

Name of parent task (if any) (4)

Address of offspring control block from parent (2)

Login UIC of issuing terminal (2)

Current UIC of issuing terminal (2)

Address of command, if not dequeued (2)

Macro expansion:

GCCI$
.BYTE
.BYTE
.BYTE
.WORD
.WORD
.WORD
.WORD
.WORD

CBUF,CBFL,IBUF,IBFL,ADDR,NCP
127.,7. ;DIC= 127., DPB SIZE=? WORDS
NCP ;ACTION TO TAKE IF NO COMMAND QUEUED
0
ADDR
CBUF
CBFL
IBUF
IBFL

;ADDRESS OF COMMAND
;COMMAND BUFFER ADDRESS
;COMMAND BUFFER LENGTH
;INFORMATION BUFFER ADDRESS
;INFORMATION BUFFER LENGTH

Local Symbol Definitions:

G.CCNC

G.CCAD

G.CCBA

G.CCBL

G.CCIA

G. CCIL

DSW Return Codes:

IE.AST

IE.PR!

IE.RSU

Action if no command queued (2)

Address of command to be returned (2)

Address of command buffer (2)

Length of task's command buffer (2)

Address of optional information buffer (2)

Length of optional information buffer (2)

The stop-on-no-command option was set
directive was issued from AST state.

Task is not a CLI.

and the

The issuing task has a group global context active
and next command to be received would have caused the
task's protection group to have changed.

5-77

IE.ITS

IS.CLR

IE.ADP

IE.SOP

Notes:

DIRECTIVE DESCRIPTIONS

No command was queued for the CLI and the directive
was issued with the return-with-carry-set option.

Returned with carry clear when the CLI was unstopped
due to command arrival, after having been stopped by
a GCII$ with the stop-on-no-command-option set.

DPB, send buffer or information buffer was outside
the task's address space, or the information buffer
was shorter than nine bytes.

DIC and DPB size is invalid.

1. The number of characters returned (G.CCCT) could be less than
the number of characters in the command (G.CCCL) if the
length of the command buffer in the task, as specified by
cbfl argument, is smaller than the actual command line. If
there is sufficient room, a carriage return is placed at the
end of the command line returned at G.CCBF in the command
buffer inside the task to ease parsing.

2. If a command is successfully returned, the protection and
default UICs for the issuing task are changed by this
directive to match the UICs of the originating terminal.
These UICs are returned in words G.CCPU and G.CCCU of the
optional information buffer.

5-78

DIRECTIVE DESCRIPTIONS

GCll$

S.3.31 Get Command Interpreter Information

The Get Command Interpreter Information directive instructs the system
to fill a buffer with information about a specified CLI or the CLI
associated with a given terminal. A task must be privileged in order
to issue this directive for any terminal other than its own TI:, or a
CLI to which its TI: is not set.

FORTRAN Call:

CALL GETCII (ibuf,ibfl,[icii],[idev],[iunitj [,ids])

ibuf Name of an integer array to receive the CLI
information

ibfl = Length in bytes of the integer array to receive the
CLI information

icli Name of a two-word array element containing the
Radix-SO name of the CLI

idev = Name of an integer containing the ASCII name of
terminal {default= TI:)

iunit

ids

MACRO Call:

Name of an integer containing the Octal unit number
of terminal

Directive status

GCII$ buf,bufl,[cli],[dev,unit]

buf Address of buffer to receive information

bufl Length of information buffer

cli = Name in Radix-SO of the CLI that information is
requested on

dev

unit

ASCII name of terminal whose CLI should be used
{default= TI:)

Octal unit number of terminal

Information Buffer Format:

G.CICL

G.CICS

Name of CLI

Bit settings in the CLI status word:

Bit

CP.NUL=
CP.MSG=
CP.LGO=

CP. DSB=

Value

1
2
4

10

Definition

Pass empty command lines to CLI.
CLI wants system messages.
CLI wants commands from logged-off
terminals.
CLI is disabled. {Note that MCR
does not check this bit.)

S-79

G.CITK

G.CIW2

G.CIPU

G.CICU

G.CIDP

DIRECTIVE DESCRIPTIONS

Bit

CP.PRV=

CP.SGL=

CP. NIO=

CP.RST=

CP.EXT=

Value Definition

20 User must be privileged to set
ter.minal to this CL!.

40 Don't handle continuations.
1\lways·.· set .•..•. Qn··.·•.R$~..,.ll:M ... sys:tems.

100 MCR ••• , HEL, BYE do no I/O to
terminal; HEL, BYE also do not
set CL!, and so forth.

200 Restricted access; only this CL!
task can set a terminal to this
CL!.

400 Pass task exit prompt requests to
CL!.

Name of task serving as CL!

Terminal's U.CW2

Terminal's protection UIC

Terminal's current UIC

CL! default prompt string (16-byte block. First byte
is length of string.)

Macro Expansion:

GCII$ buf ,bufl,cli,dev,unit

.BYTE

.WORD

.WORD
• RADSO
.ASCII
.WORD

DSW Returns:

IE.MAP

IE. INS

IE .. IDU

IE. PR!

IE.ADP

IE. SDP

Notes:

173,7
buf
bu fl
/cli/
/dev/
unit

;DIC to be supplied. DPB SIZE=S
;ADDRESS OF BUFFER
;LENGTH OF BUFFER
;RADSO NAME OF CL!
;ASCII NAME OF TERMINAL
;TERMINAL UNIT NUMBER

Both a terminal and a CL! were specified.

Specified CL! does not exist.

Specified device was not a terminal or does not
exist.

Nonprivileged task attempted to get information on a
CL! other than it's own.

Part of the DPB or buffer was out of the issuing
task's address space.

DIC or DPB size is invalid.

1. If the buffer is not long enough to contain all the
information, the data that does not fit will not be supplied.
No indication of this is returned to the issuing task. The
buffer is filled from left to right.

2. You may not specify both a CLI and a terminal. If tha cli
argument is present, the dev and unit arguments must be zero.

5-80

DIRECTIVE DESCRIPTIONS

GLUN$

5.3.32 Get LUN Information

The Get LUN Information directive instructs the system to fill a
6-word buffer with information about a physical device unit to which a
LUN is assigned. If requests to the physical device unit have been
redirected to another unit, the information returned will describe the
effective assignment.

FORTRAN Call:

CALL GETLUN (lun,dat[,ids])

lun Logical unit number

dat A 6-word integer array to receive LUN information

ids Directive status

Macro Call:

GLUN$ lun,buf

lun Logical unit number

buf Address of 6-word buffer that will receive the LUN
information

Buffer Format:

Word O

Word

Word 2

Name of assigned device

Unit number of assigned device and flags byte (flags
byte equals 200 if the device driver is resident or
0 if the driver is not loaded)

First device characteristics word:

Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

Record-oriented device
(DV. REC, l=yes) [FD. REC] 1

Carriage-control device
(DV.CCL,l=yes) [FD.CCL]

Terminal device (DV.TTY,l=yes) [FD.TTY]

Directory (file-structured)
device (DV. DIR, l=yes) [FD. DIR]

Single directory device
(DV. SDI, l=yes) [FD. SDI]

Sequential device (DV.SQD,l=yes) [FD.SQD]

Mass storage device (DV.MSD,l=yes)

User-mode diagnostics supported (DV.UMD,l=yes)

1. Bits with associated symbols have the symbols shown in square
brackets. These symbols can be defined for use by a task by means of
the FCSBT$ macro. See the IAS/RSX-11 I/O Operations Reference Manual.

5-81

Word 3

Word 4

Word 5

Bit 8

Bit 9

Bit 10

Bit 11

Bit 12

Bit 13

DIRECTIVE DESCRIPTIONS

Device supports extended 22-bit UNIBUS
controller (DV.EXT,l=yes)

Unit software write-locked (DV.SWL,l=yes)

Input spooled device {DV.ISP,l=yes)

Output spooled device (DV.OSP,l=yes)

Pseudo device (DV.PSE,l=yes)

Device mountable as a
channel (DV.COM,l=yes)

communications

Bit 14 -- Device mountable as a Files-11 device
(DV.Fll, l=yes)

Bit 15 Device mountable (DV.MNT,l=yes)

Second device characteristics word

Third device characteristics word (words 3 and 4 are
device driver specific)

Fourth device characteristics word (normally
buffer-size as specified in the MCR or DCL SET/BUFF
command)

Macro Expansion:

GLUN$
.BYTE
.WORD
.WORD

7,LUNBUF
5,3
7
LUNBUF

;GLUN$ MACRO DIC, DPB SIZE=3 WORDS
;LOGICAL UNIT NUMBER 7
;ADDRESS OF 6-WORD BUFFER

Local Symbol Definitions:

G.LULU Logical unit number (2)

G.LUBA Buffer address (2)

The following off sets are assigned relative to the start of the LUN
information buffer:

G.LUNA

G.LUNU

G. LUFB

G., LUCW

DSW Return Codes:

rs. sue

IE.ULN

IE. ILU

IE.ADP

IE;SDP

Device name (2)

Device unit number (1)

Flags byte (1)

Four device characteristics words (8)

Successful completion.

Unassigned LUN.

Invalid logical unit number.

Part of the DPB or buffer is out of the issuing
task's address space.

DIC or DPB size is invalid=

5-82

DIRECTIVE DESCRIPTIONS

5-83

DIRECTIVE DESCRIPTIONS

GMCR$

5.3.33 Get MCR Command Line

The Get MCR Command Line directive instructs the system to transfer an
80-byte command line to the issuing task.

When a task is installed with a task name of " ••• tsk" or "tskTn",
where "tsk" consists of three alphanumeric characters and n is an
octal terminal number, the MCR dispatcher requests the task's
execution when a user issues the command

>tsk command-line

from terminal number n. A task invoked in this manner must execute a
call to Get MCR Command Line, which results in the entire "command
line" following the prompt being placed into an 80-byte command line
buffer. {The MCR dispatcher is described in the RSX-llM/M-PLUS MCR
Operations Manual.)

FORTRAN Call:

CALL GETMCR (buf[,ids])

buf = An 80-byte array to receive command line

ids = Directive status

Macro Call:

GMCR$

Macro Expansion:

GMCR$
.BYTE
• BLKW

127.,41.
40 •

;GMCR$ MACRO DIC, DPB SIZE=41. WORDS
;80. CHARACTER MCR COMMAND LINE BUFFER

Local Symbol Definitions:

G.MCRB

DSW Return Codes:

+n

IE.AST

IE. ADP

IE. SDP

MCR line buffer (80)

Successful completion; n is the number of data bytes
transferred (excluding the termination character).
The termination character is, however, in the buffer.

No MCR command line exists for the issuing task;
that is, the task was not requested by a command line
as follows:

>tsk command-string

or the task has already issued the Get MCR Command
Line directive.

Part of the DPB is out of the issuing task's address
space.

DIC or DPB size is invalid.

5-84

DIRECTIVE DESCRIPTIONS

Notes:

1. The GMCR$S form of the macro is not supplied, since the DPB
receives the actual command line.

2. The system processes all lines to:

• Convert tabs to a single space

• Convert multiple spaces to a single space

• Convert lowercase to uppercase

• Remove all trailing blanks

The terminator (<CR> or <ESC>) is the last character in the
line.

5-85

DIRECTIVE DESCRIPTIONS

GMCX$

5.3.34 Get Mapping Context

The Get Mapping Context directive causes the Executive to return a
description of the current window-to-region mapping assignments. The
returned description is in a form that enables the user to restore the
mapping context through a series of Create Address Window directives
(see Section 5.3.11). The macro argument specifies the address of a
vector that contains one Window Definition Block (WDB) for each window
block allocated in the task's header, plus a terminator word.

For each window block in the task's header, the Executive sets up a
WDB in the vector as follows:

1. If the window block is unused (that is, if it does not
correspond to an existing address window), the Executive does
not record any information about that block in a WDB.
Instead, the Executive uses the WDB to record information
about the first block encountered that corresponds to an
existing window. In this way, unused window blocks are
ignored in the mapping context description returned by the
Executive.

2. If a window block describes an existing unmapped address
window, the Executive fills in the offsets W.NID, W.NAPR,
W.NBAS, and W.NSIZ with information sufficient to re-create
the window. The window status word W.NSTS is cleared.

3. If a window block describes an existing mapped window, the
Executive fills in the offsets W.NAPR, W.NBAS, W.NSIZ,
W.NRID, W.NOFF, W.NLEN, and W.NSTS with information
sufficient to create and map the address window. WS.MAP is
set in the status word {W.NSTS) and, if the window is mapped
with write access, the bit WS.WRT is set as well.

Note that in no case does the Executive modify W.NSRB.

The terminator word, which follows the last WDB filled in, is a word
equal to the negative of the total number of window blocks in the
task's header. It is thereby possible to issue a TST or TSTB
instruction to detect the last WDB used in the vector. The
terminating word can also be used to determine the number of window
blocks built into the task's header.

When Create Address Window directives are used to restore the mapping
context, there is no guarantee that the same address window IDs will
be used. The user must therefore be careful to use the latest window
IDs returned from the Create Address Window directives.

FORTRAN Call:

CALL GMCX (imcx[,ids])

imcx = A~ integer array to receive the mapping context. The
size of the array is 8*n+l where n is the number of
window blocks in the task Is header. The maximum size
l.s 8*8+1=65> words on . RSX-lH .. f>systems. ·Tl)~!_ ma)t:1mum

"s~.:~~· .'~:$:>a·~~~:t;#f*~~-: :~n Rsx+11M+Pt:os :~·¥'.$~~~s·:~

ids Directive status.

5-86

DIRECTIVE DESCRIPTIONS

Macro Call:

GMCX$ wvec

wvec = The address of a vector of n Window Definition Blocks,
followed by a terminator word; n is the number of
window blocks in the task's header.

Macro Expansion:

GMCX$
.BYTE
.WORD

VECADR
113.,2
VECADR

;GMCX$ MACRO DIC, DPB SIZE=2 WORDS
;WDB VECTOR ADDRESS

Window Definition Block Parameters:

Input parameters:

None

Output parameters:

Array Off set
Element

iwdb(l) W.NID
bits 0-7

i wdb (1) W.NAPR
bits 8-15

iwdb(2) W.NBAS

i wdb (3) W.NSIZ

i wdb (4) W.NRID

iwdb(5) W.NOFF

i wdb (6) W.NLEN

i wdb (7) W.NSTS

ID of address window

Base APR of the window

Base virtual address of the window

Size, in 32-word blocks, of the window

ID of the mapped region, or no change if
the window is unmapped

Offset, in 32-word blocks, from the start
of the region at which mapping begins, or
no change if the window is unmapped

Length, in 32-word blocks, of the area
currently mapped within the region, or no
change if the window is unmapped

Bit settingsl in the window status word
(all 0 if the window is not mapped):

Bit

WS.MAP

WS.WRT

ws.sis

Definition

1 if the window is mapped

1 if the window is mapped
with write access

1 if the window is mapped in
supervisor-mode instruction
space

1. If you are a FORTRAN programmer, refer to Section 3.5.2 to
determine the bit values represented by the symbolic names described.

5-87

DIRECTIVE DESCRIPTIONS

Bit

WS.UDS

WS.NBP

WS.RCX

Definition

1 if the window is mapped in
user-mode data space

1 if the window was created
with cache bypass disabled
(on multiprocessor systems
only)

1 if cache bypass has been
enabled for the current
mapping of the window (on
multiprocessor systems only)

Note that the length mapped (W.NLEN) can be less than the size of
the window (W.NSIZ) if the area from W.NOFF to the end of the
partition is smaller than the window size.

Local Symbol Definitions:

G.MCVA

DSW Return Codes:

rs.sue

IE.ADP

IE. SDP

r>iie to t.he

Address of the vector (wvec) containing the window
definition blocks and terminator word (2)

Successful completion.

Address check of the DPB or the vector (wvec) failed.

DIC or DPB size is invalid.

•may n:~'ed' to".,
0 :lssue a dRAw$ · or

the ws. RCX .to· indicate cache--bypa.ss s·tat.e, .. ·· you
additibn:a"l!

1

:a11·t'p~~:.at:t9·n'• o'f• 't'lle· ttDB•·. be!f~·r·~'··~()U
MAP$:di.re •· , {O~ mul tlprocess<>P .~Ys.;t;.~1ll~,

<)niy.')

5-88

DIRECTIVE DESCRIPTIONS

GPRT$

5.3.35 Get Partition Parameters

The Get Partition Parameters directive instructs the system to fill an
indicated 3-word buffer with partition parameters. If a partition is
not specified, the partition of the issuing task is assumed.

FORTRAN Call:

CALL GETPAR ([prt] ,buf[,ids])

prt Partition name

buf A 3-word integer array to receive partition parameters

ids Directive status

Macro Call:

GPRT$ [prt] ,buf

prt Partition name

buf Address of a 3-word buffer

Buffer Format:

Word 0

Word 1

Word 2

Partition physical base address expressed as a
multiple of 32 words {partitions are always aligned
on 32-word boundaries). Therefore, a partition
starting at 40000(8) will have 400(8) returned in
this word.

Partition size expressed as a multiple of 32 words.

Partition flags word. This word is returned equal
to 0 to indicate a system-controlled partition, or
equal to 1 to indicate a user-controlled partition.

Macro Expansion:

GPRT$
.BYTE
• RAD50
.WORD

ALPHA, DATBUF
65.,4
/ALPHA/
DATBUF

;GPRT$ DIC, DPB SIZE=4 WORDS
;PARTITION "ALPHA"
;ADDRESS OF 3-WORD BUFFER

Local Symbol Definitions:

G. PRPN Partition name (4)

G. PRBA Buffer address (2)

5-89

DIRECTIVE DESCRIPTIONS

The following offsets are assigned relative to the start of the
partition parameters buffer:

G.PRPB

G.PRPS

G.PRFW

DSW Return Codes:

Partition physical base address expressed as an
absolute 32-word block number (2)

Partition size expressed as a multiple of 32-word
blocks (2)

Partition flags word (2)

Successful completion is indicated by a cleared Carry bit, and
the starting address of the partition is returned in the DSW. In
unmapped systems, the address is physical. In mapped systems,
the returned address is virtual and is always zero if it is not
the task partition. Unsuccessful completion is indicated by a
set Carry bit and one of the following codes in the DSW:

IE.INS

IE.ADP

IE.SOP

Notes:

Specified partition not in system.

Part of the DPB or buffer is out of the issuing
task's address space.

DIC or DPB size is invalid.

1. For Executives that support the memory management directives,
a variation of this directive exists called Get Region
Parameters (see Section 5.3.36). When the first word of the
2-word partition name is O, the Executive interprets the
second word of the partition name as a region ID. If the
2-word name is 0,0, it refers to the task region of the
issuing task.

2. Omission of the partition-name argument returns parameters
for the issuing task's unnamed subpartition, not for the
system-controlled partition.

5-90

DIRECTIVE DESCRIPTIONS

GREG$

5.3.36 Get Region Parameters

The Get Region Parameters directive instructs the Executive to fill an
indicated 3-word buffer with region parameters. If a region is not
specified, the task region of the issuing task is assumed.

This directive is a variation of the Get Partition Parameters
directive (see Section 5.3.35) for Executives that support the memory
management directives.

FORTRAN Call:

CALL GETREG ([rid] ,buf[,ids])

rid Region id

buf A 3-word integer array to receive region parameters

ids Directive status

Macro Call:

GREG$ [rid] ,buf

rid Region ID

buf Address of a 3-word buffer

Buffer Format:

Word 0

Word 1

Word 2

Region base address expressed as a multiple
words (regions are always aligned on
boundaries). Thus, a region starting at
will have 10(8) returned in this word.

of 32
32-word
1000(8)

Region size expressed as a multiple of 32 words.

Region flags word. This word is returned equal to 0
if the region resides in a system-controlled
partition, or equal to 1 if the region resides in a
user-controlled partition.

Macro Expansion:

GREG$
.BYTE
.WORD

.WORD

.WORD

RID, DATBUF
65.,4
0

RID
DATBUF

;GREG$ MACRO DIC, DPB SIZE=4 WORDS
;WORD THAT DISTINGUISHES GREG$
;FROM GPRT$
;REGION ID
;ADDRESS OF 3-WORD BUFFER

Local Symbol Definitions:

G. RGID Region ID (2)

G.RGBA Buffer address

5-91

DIRECTIVE DESCRIPTIONS

The following offsets are assigned relative to the start of the region
parameters buffer:

G.RGRB

G.RGRS

G.RGFW

DSW Return Codes:

Region base address expressed as an absolute 32-word
block number (2)

Region size expressed as a multiple of 32-word
blocks (2)

Region flags word (2)

Successful completion is indicated by carry clear, and the
starting address of the region is returned in the DSW. In
unmapped systems, the returned address is physical. In mapped
systems, the returned address is virtual and is always zero if it
is not the task region. Unsuccessful completion is indicated by
carry set and one of the following codes in the DSW:

IE.NVR

IE.ADP

IE.SOP

Invalid region ID.

Part of the DPB or buffer is out of the issuing
task's address space.

DIC or DPB size is invalid.

5-92

DIRECTIVE DESCRIPTIONS

GSSW$S

5.3.37 Get Sense Switches ($S Form Recommended)

The Get Sense Switches directive instructs the system to obtain the
contents of the console switch register and store it in the issuing
task's Directive Status word.

FORTRAN Call:

CALL READSW (isw)

isw Integer to receive the console switch settings

The following FORTRAN call allows a program to read the state of a
single switch:

CALL SSWTCH (ibt,ist)

ibt The switch to be tested (0 to 15)

ist Test results where:

1 switch on

2 switch off

Macro Call:

GSSW$S [err]

err Error routine address

Macro Expansion:

GSSW$S
MOV
.BYTE
EMT
BCC
JSR

ERR
(PC) + , - (S P)
125.,l
377
• +6
PC, ERR

;PUSH DPB ONTO THE STACK
;GSSW$S MACRO DIC, DPB SIZE=l WORD
;TRAP TO THE EXECUTIVE
;BRANCH IF DIRECTIVE SUCCESSFUL
;OTHERWISE, CALL ROUTINE II ERR"

Local Symbol Definitions:

None

DSW Return Codes:

Successful completion is indicated by carry clear, and the
contents of the console switch register are returned in the DSW.
Unsuccessful completion is indicated by carry set and one of the
following codes in the DSW:

IE.ADP

IE. SDP

Part of the DPB is out of the issuing task's
address space.

DIC or DPB size is invalid.

5-93

Note:

DIRECTIVE DESCRIPTIONS

1. Because this directive requires only a 1-word DPB, the $S
form of the macro is recommended. It requires less space and
executes with the same speed as that of the DIR$ macro.

5-94

DIRECTIVE DESCRIPTIONS

GTIM$

5.3.38 Get Time Parameters

The Get Time Parameters directive instructs the system to fill an
indicated 8-word buffer with the current time parameters. All time
parameters are delivered as binary numbers. The value ranges (in
decimal) are shown in the table below.

FORTRAN Call:

CALL GETTIM (ibfp[,ids])

ibfp = An 8-word integer array

Macro Call:

GTIM$ buf

buf Address of 8-word buffer

Buff er Format:

Word 0

Word 1

Word 2

Word 3

Word 4

Word 5

Word 6

Word 7

Year (since 1900)

Month (1-12)

Day (1-31)

Hour (0-23)

Minute (0-59)

Second (0-59)

Tick of second (depends on the frequency of the
clock)

Ticks per second (depends on the frequency of the
clock)

Macro Expansion:

GTIM$
.BYTE
.WORD

DATBUF
61. I 2
DATBUF

Local Symbol Definitions:

;GTIM$ DIC, DPB SIZE=2 WORDS
;ADDRESS OF 8.-WORD BUFFER

G.TIBA Buffer address (2)

5-95

DIRECTIVE DESCRIPTIONS

The following offsets are assigned relative to the start of the time
parameters buffer:

G.TIYR Year (2)

G.TIMO Month (2)

G. TIDA Day (2)

G. TIHR Hour (2)

G. TIMI Minute (2)

G. TISC Second {2)

G.TICT Clock Tick of Second (2)

G.TICP Clock Ticks per Second {2)

DSW Return Codes:

Note:

rs. sue

IE.ADP

IE.SOP

Successful completion.

Part of the DPB or buffer is out of the issuing
task's address space.

DIC or DPB size is invalid.

The format of the time buffer is compatible with that of the
buffers used with the Set System Time directive.

5-96

DIRECTIVE DESCRIPTIONS

GTSK$

5.3.39 Get Task Parameters

The Get Task Parameters directive instructs the system to fill an
indicated 16-word buffer with parameters relating to the issuing task.

FORTRAN Call:

CALL GETTSK (buf[,ids])

buf A 16-word integer array to receive the task parameters

ids Directive status

Macro Call:

GTSK$ buf

buf Address of a 16-word buffer

Buff er Format:

Word 0

Word 1

Word 2

Word 3

Word 4

Word 5

Word 6

Word 7

Word 10

Word 11

Word 12

Word 13

Issuing task's name in Radix-50 (first half}

Issuing task's name in Radix-50 (second half)

Partition name in Radix-50 (first half)

Partition name in Radix-50 (second half)

Undefined in RSX-llM/M-PLUS (this word exists for
RSX-llD compatibility)

Undefined in RSX-llM/M-PLUS (this word exists for
RSX-llD compatibility}

Run priority

User identification code (UIC} of issuing task (in a
multiuser protection system, the task's default
UIC)l

Number of logical I/O units (LUNs}

Undefined in RSX-llM/M-PLUS (this word exists for
RSX-llD compatibility}

Undefined in RSX-llM/M-PLUS (this word exists for
RSX-llD compatibility)

{Address of task SST vector tables)2

1. See note in RQST$ description (Section 5.3.54) on contents of words
07 and

, ..,
..I. I •

2. Words 13 and 14 will contain valid data if word 14 is not zero. If
word 14 is zero, the contents of word 13 are meaningless.

5-97

Word 14

Word 15

Word 16

Word 17

DIRECTIVE DESCRIPTIONS

(Size of task SST vector table in words)2

Size (in bytes) either of task's address window O in
mapped systems, or of task's partition in unmapped
system (equivalent to partition size)

System on which task is running:

0 for RSX-llD
1 for RSX-llM
2 for RSX-1 lS
3 for !AS
4 for RSTS
5 for VAX/VMS
6 for RSX-llM-PLUS
7 for RTll single Job Monitor

10 for RTll Foreground/Background
and Extended Memory Monitor

Protection UIC (in multiuser system, the log-in
UIC)l

Macro Expansion:

GTSK$
.BYTE
.WORD

DATBUF
63.,2
DATBUF

;GTSK$ DIC, DPB=2-WORDS
;ADDRESS OF 16-WORD BUFFER

Local Symbol Definitions

G.TSBA Buffer address (2)

The following offsets are assigned relative to the task parameter
buffer:

G.TSTN

G. TSPN

G.TSPR

G.TSGC

G. TSPC

G.TSNL

G.TSVA

G.TSVL

G.TSTS

G.TSSY

G.TSDU

Task name (4)

Partition name (4)

Priority (2)

UIC group code (1)

UIC member code (1)

Number of logical units (2)

Task's SST vector address (2)

Task's SST vector length in words (2)

Task size (2)

System on which task is running (2)

Protection UIC (2)

1. See note in RQST$ description (Section 5.3.54) on contents of words
07 and 17.

2. Words 13 and 14 will contain data if word 14 is not zero. If word
14 is zero, the contents of word 13 are meaningless.

5-98

DSW Return Codes:

rs.sue

IE.ADP

IE.SOP

DIRECTIVE DESCRIPTIONS

Successful completion.

Part of the DPB or buffer is out of the issuing
task's address space.

DIC or DPB is invalid.

5-99

DIRECTIVE DESCRIPTIONS

MAP$

5.3.40 Map Address Window

The Map Address Window directive maps an existing window to an
attached region. The mapping begins at a specified offset from the
start of the region. If the window is already mapped elsewhere, the
Executive unmaps it before carrying out the mapping assignment
described in the directive.

For the mapping asssignment, a task can specify any length that is
less than or equal to both:

• The window size specified when the window was created

• The length remaining between the specified offset within the
region and the end of the region

A task must be attached with write access to a region in order to map
to it with write access. To map to a region with read-only access,
the task must be attached with either read or write access.

If W.NLEN is set to O, the length defaults to either the window size
or the length remaining in the region, whichever is smaller. (Since
the Executive returns the actual length mapped as an output parameter,
the task must clear that parameter in the WDB before issuing the
directive each time it wants to default the length of the map.)

The values that can be assigned to W.NOFF depend on the setting of bit
WS.64B in the window status word (W.NSTS):

• If WS.64B = O, the offset specified in W.NOFF must represent a
multiple of 256 words (512 bytes). Because the value of
W.NOFF is expressed in units of 32-word blocks, the value must
be a multiple of 8.

• If WS.64B = 1, the task can align on 32-word boundaries; the
programmer can therefore specify any offset within the region.

FORTRAN Call:

NOTE

Applications dependent on 32-word or
64-byte alignment (WS.64B = 1) may not
be compatible with future
implementations of RSX emulators.
Therefore, programmers should write
applications adaptable to either
alignment requirement. The bit setting
of WS.64B could be a parameter chosen at
assembly time (by means of a prefix
file) , at task-build time (as input to
the GBLDEF option), or at run time (by
means of command input).

CALL MAP (iwdb[,ids])

iwdb

ids

An 8-word integer array containing a Window Definition
Block (see Section 3.5.2.2)

Directive status

5-100

DIRECTIVE DESCRIPTIONS

Macro Call:

MAP$ wdb

wdb Window Definition Block address

Macro Expansion:

MAP$
.BYTE
.WORD

WDBADR
121., 2
WDBADR

;MAP$ MACRO DIC, DPB SIZE=2 WORDS
;WDB ADDRESS

Window Definition Block Parameters:

Input parameters:

Array
Element

iwdb(l)
bits 0-7

i wdb (4)

i wdb (5)

i wdb (6)

i wdb (7)

Off set

W.NID

W.NRID

W.NOFF

W.NLEN

W.NSTS

Output parameters:

i wdb (6) W.NLEN

i wdb (7) W.NSTS

ID of the window to be mapped.

ID of the region to which the window is
to be mapped, or 0 if the task region is
to be mapped.

Offset, in 32-word blocks, within the
region at which mapping is to begin.
Note that if WS.64B in the window status
word equals O, the value specified must
be a multiple of 8.

Length, in 32-word blocks, within the
region to be mapped, or 0 if the length
is to default to either the size of the
window or the space remaining in the
region from the specified offset,
whichever is smaller.

Bit settings 1 in the window status word:

Bit

WS.WRT

WS.64B

Definition

1 if write access is desired

0 for 256-word (512-byte)
alignment, or 1 for 32-word
(64-byte) alignment

Length of the area within the region
actually mapped by the window

Bit settingsl in the window status word:

WS.UNM -- 1 if the window was unmapped
first

1. If you are a FORTRAN programmer, refer to Section 3.5.2 to
determine the bit values represented by the symbolic names described.

5-101

DIRECTIVE DESCRIPTIONS

Local Symbol Definitions:

M.APBA

DSW Return Codes:

rs. sue

IE. PRI

IE. NVR

IE. NVW

IE.ALG

IE.ADP

IE. SOP

Notes:

Window Definition Block address (2)

Successful completion.

Privilege violation.

Invalid region ID.

Invalid address window ID.

Task specified an invalid region offset and length
combination in the Window Definition Block
parameters; or WS.64B = 0 and the value of W.NOFF is
not a multiple of 8.

Part of the DPB or WDB is out of the issuing task's
address space.

DIC or DPB size is invalid.

1. When the Map Address Window directive ls issued, the.task may
be blocked until the region is loaded.

2.o Bit ws.RES in word W.NSTS of the Window Definition Block,
when set, specifies that the region should be mapped only if
the region is resident.

5-102

DIRECTIVE DESCRIPTIONS

MRKT$

5.3.41 Mark Time

The Mark Time directive instructs the system to declare a significant
event after an indicated time interval. The interval begins when the
task issues the directive; however, task execution continues during
the interval. If an event flag is specified, the flag is cleared when
the directive is issued, and set when the significant event occurs.
If an AST entry point address is specified, an AST (see Section 2.3.3)
occurs at the time of the significant event. When the AST occurs, the
task's PS, PC, directive status, Wait For mask words, and the event
flag number specified in the directive are pushed onto the issuing
task's stack. If neither an event flag number nor an AST service
entry point is specified, the significant event still occurs after the
indicated time interval. See Notes below.

FORTRAN Calls:

CALL MARK (efn,tmg,tnt[,ids])

efn Event flag number

tmg = Time interval magnitude (see Note 5)

tnt = Time interval unit (see Note 5)

ids Directive status

The ISA standard call for delaying a task for a specified time
interval is also provided:

CALL WAIT (tmg,tnt[,ids])

tmg Time interval magnitude (see Note 5 below)

tnt Time interval unit (see Note 5 below)

ids = Directive status

Macro Call:

MRKT$ [efn],tmg,tnt[,ast]

efn Event flag number

tmg Time interval magnitude (see last Note below)

tnt Time interval unit (see last Note below)

ast = AST entry point address

5-103

DIRECTIVE DESCRIPTIONS

Macro Expansion:

Local

MRKT$
.BYTE
• WORD
• WORD
.WORD
.WORD

Symbol

M.KTEF

M.KTMG

M.KTUN

M.KTAE

52.,30.,2,MRKAST
23.,5 ;MRKT$ MACRO DIC, DPB SIZE=5 WORDS
52. ;EVENT FLAG NUMBER 52 •
30. ;TIME MAGNITUDE=30 •
2 ; TIME UNIT=SECONDS
MRKAST ;ADDRESS OF MARK TIME AST ROUTINE

Definitions:

Event flag (2)

Time magnitude (2)

Time unit (2)

AST entry point address (2)

DSW Return Codes:

For CALL MARK and MRKT$:

rs. sue

IE. UPN

IE. ITI

IE. IEF

IE.ADP

IE.SDP

For CALL WAIT:

Successful completion.

Insufficient dynamic memory.

Invalid time parameter.

Invalid event flag number (EFN<O, or EFN>96 if
group global event flags exist for the task's
group; or EFN>64 if not).

Part of the DPB is out of the issuing task's
address space.

DIC or DPB size is invalid.

RSX-llM/M-PLUS provides the following positive error codes to be
returned for ISA calls:

1 Successful completion

2 Insufficient dynamic storage

3 Specified task not installed

94 Invalid time parameters

98 Invalid event flag number

99 Part of DPB out of task's range

100 DIC or DPB size invalid

5-104

DIRECTIVE DESCRIPTIONS

Notes:

1. Mark Time requires dynamic memory for the clock queue entry.

2. If an AST entry point address is specified, the AST service
routine is entered with the task's stack in the following
state:

SP+lO - Event flag mask wordl
SP+06 - PS of task prior to AST
SP+04 - PC of task prior to AST
SP+02 - DSW of task prior to AST
SP+OO - Event flag number or zero (if none was

specified in the Mark Time directive)

The event flag number must be removed from the task's stack
before an AST Service Exit directive (see Section 6.3.4) is
executed.

3. If the directive is rejected, the specified event flag is not
guaranteed to be cleared or set. Consequently, if the task
indiscriminately executes a Wait For directive and the Mark
Time directive is rejected, the task may wait indefinitely.
Care should always be taken to ensure that the directive was
successfully completed.

4. If a task issues a Mark Time directive that specifies a
common or group global event flag and then exits before the
indicated time has elapsed, the event flag is not set.

5. The Executive returns the code IE.ITI (or 94) in the
Directive Status Word if the directive specifies an invalid
time parameter. The time parameter consists of two
components: the time interval magnitude and the time
interval unit, represented by the arguments tmg and tnt,
respectively.

A legal magnitude value (tmg) is related
assigned to the time interval unit (tnt).
are encoded as follows:

For an ISA FORTRAN call (CALL WAIT):

to the value
The unit values

O Ticks. A tick occurs for each clock interrupt and
is dependent on the type of clock installed in the
system.

For a line frequency clock, the tick rate is either
50 or 60 per second, corresponding to the power-line
frequency.

For a programmable clock, a maximum of 1000 ticks
per second is available (the exact rate is
determined at system generation time) •

1. The event flag mask word preserves the Wait For conditions of a
task prior to AST entry. A task can, after an AST, return to a Wait
For state. Because these flags and the other stack data are in the
user task, they can be modified. Such modification is strongly
discouraged, however, since the task can easily fault on obscure
conditions. For example, clearing the mask word results in a
permanent Wait For State.

5-105

6.

DIRECTIVE DESCRIPTIONS

1 Milliseconds. The subroutine converts the specified
magnitude to the equivalent number of system clock
ticks. On systems with line frequency clocks,
millisecond Mark Time requests can only be
approximations.

For all other FORTRAN and macro calls:

1 Ticks. See definition of ticks above.

For both types of FORTRAN calls and all macro calls:

2 = Seconds

3 Minutes

4 Hours

The magnitude (tmg) is the number of units to be clocked.
The following list describes the magnitude values that are
valid for each type of unit. In no case can the value of tmg
exceed 24 hours. The list applies to both FORTRAN and macro
calls.

If tnt = O, 1, or 2, tmg can be any positive value with a
maximum of 15 bits.

If tnt 3, tmg can have a maximum value of 1440(10).

If tnt 4, tmg can have a maximum value of 24(10).

If the specified event flag is a group global, the use count
for the event flag's group is incremented to prevent
premature elimination of event flags. The use count is run
down when:

• The Mark Time event occurs.

• The Mark Time event is cancelled.

• The issuing task exits with the Mark Time event still on
the clock queue.

7. The minimum time interval is one tick. If you specify a time
interval of zero, it will be converted to one tick.

5-106

DIRECTIVE DESCRIPTIONS

5-107

is only
in the

DIRECTIVE DESCRIPTIONS

To······pr?>vfde ·for 'tl'1e .p<i91e ···Yl~.e.n·•······.~'.sllpe r.yis()r.'.:.,mpd.~ i J. ihr<Jp} .. ~:s. . q~in<J ..••. ·.··•··.·. us~d
by .· some· .•.... tas1<$.. ·as a· userc--1nPd~·.··· .. library,. t~is·difectiy~ cioe~n?t .c~ah<J~ ·
>t:he.:t:ask'~· lltCiPPing when it js·. issued 'fro1nuseFmoae.···.·.'floY1eY~rr<t:he·. :bsw
is still returned.

When . t:~e directive · is st.1cces~fuJ.£y .executed,
Jntc),~milt:i:.ori. ·~aQot1t: . : the •t:ask\~ .. current.· mappfpg· .. •. aJ'ld
·n~gatJve'mask va~ue. causes the.·dlr.ective .to· return
• ·t:hap ·s~an9·~ · t11.~···I1l?l'Pip9.

· .. · .. · .. •.· •• · .. .- •••••• '.··.· •• ·.•.· •.·•.·.·· •• ·. -~· •• ;· .::···;·.·: : ... ·:.:·· .•. ·.··.·· · ••• :. : .. ; .. ·.··.~ .. ··.·• •• ··.•.~.· ••• ·.·.· .. ··.··.··•.· •• ···.·.•··• .•....... ·.•· •• · .. •·.
·E'Ol(TR~~ Pall:·:

= A with one

the ·:DSW: < pr;gviqes:
rr1pge J3pec~.·f~ing .. ······•·.·(l·
information rather

supervisor.,_mode .D-spape . . If th~ bit· is set,
APR is mapped to supervisor-mode ... r-spac~. If the
is clear, the APR is mapped t9 user-mode D-space.
7 bits are specified in bits 8 through i4 of the
word.

Macro Expansion:

MSDS$ mask
.BYTE 201., 1 ;DIC=20L DPB SIZE= l WORD

DSW Return Codes:

IE.ADP

IE. SDP

Notes:

Part of the DPB is out of the issuing task's address
space.

DIC or DPB size is invalid.

1. When including data in a supervisor-mode library, the library
may. not overmap APR 0 with the supervisor-mode library. The
executive assumes it has access to the task's DSW regardless
of the mode from which a directive is issued. Data must
therefore be placed near the end of the library, or mapped
through a memory resident overlay to force its mapping into
some APR ~ther than o.

2. In the following example, ~ supervisor~mode library routine
changes its mapping in order to access an error message
(which is datcrJ. · ··· ·

5-108

DIRECTIVE DESCRIPTIONS

5-109

DIRECTIVE DESCRIPTIONS

MV.TUI
MV.TUD
MV.TSI
MV.TSD
MV.FUI
MV.FUD
MV.FSI
MV.FSD

I-space
user D-space
supervisor I-space

Move to supervisor D-space
Move from user I-space
Move from user D-space
Move from supervisor I-space
Move from supervisor D-space

addr = Address of the location in the task

buff = Buffer to receive the value fetched, for the move
from operations

val Value to be stored in the location, for the move to
operations

5-110

DIRECTIVE DESCRIPTIONS

5-111

DIRECTIVE DESCRIPTIONS

010$

5.3.44 Queue I/O Request

The Queue I/O Request directive instructs the system to place an I/O
request for an indicated physical device unit into a queue of
priority-ordered requests for that device unit. The physical device
unit is specified as a logical unit number (LUN) assigned to the
device.

The Executive declares a significant event when the I/O transfer
completes. If the directive call specifies an event flag, the
Executive clears the flag when the request is queued and sets the flag
when the significant event occurs.

The I/O status block is also cleared when the request is queued and is
set to the final I/O status when the I/O request is complete. If an
AST service routine entry point address is specified, the AST occurs
upon I/O completion, and the task's Wait For mask word, PS, PC, DSW,
and the address of the I/O status block are pushed onto the task's
stack.

The description below deals solely with the Executive directive; the
device-dependent information can be found in the RSX-llM/M-PLUS I/O
Drivers Reference Manual. See Notes below.

FORTRAN Call:

CALL QIO (fnc,lun, [efn], [pri], [isb], [prl] [,ids])

fnc I/O function codel

lun Logical unit number

efn Event flag number

pri Priority; ignored, but must be present

isb A 2-word integer array to receive final I/O status

prl A 6-word integer array containing device-dependent
parameters to be placed in parameter words 1 through 6
of the DPB. Fill in this array by using the GETADR
routine (see Section 1~5.1.4).

ids Directive status

Macro Call:

QIO$ fnc,lun, [efn], [pri], [isb], [ast], [prl]

fnc I/O function codel

lun Logical unit number

1. I/O function code definitions are included in the RSX-llM/M-PLUS
I/O Drivers Reference Manual.

5-112

DIRECTIVE DESCRIPTIONS

efn Event flag number

pri Priority; ignored, but must be present

isb Address of I/O status block

ast Address of entry point of AST service routine

prl Parameter list of the form <Pl, ••• P6>

Macro Expansion:

QIO$
.. BYTE
.WORD
.WORD
.BYTE
.WORD
.WORD
.WORD
• WORD
• WORD
• WORD
• WORD
.WORD

IO.RVB,7,52.,,IOSTAT,IOAST,<IOBUFR,512.>
1,12. ;QIO$ MACRO DIC, DPB SIZE=l2
IO.RVB ;FUNCTION=READ VIRTUAL BLOCK
7 ;LOGICAL UNIT NUMBER 7
52.,0 ;EFN 52., PRIORITY IGNORED
IOSTAT ;ADDRESS OF 2-WORD I/O STATUS BLOCK
IOAST ;ADDRESS OF I/O AST ROUTINE
IOBUFR ;ADDRESS OF DATA BUFFER
512. ;BYTE COUNT=512 •
0 ;ADDITIONAL PARAMETERS •••
0 ; ••• NOT USED IN •••
0 ; ••• THIS PARTICULAR •••
0 ; ••• INVOCATION OF QUEUE I/O

Local Symbol Definitions:

Q.IOFN

Q. IOLU

Q. IOEF

Q. IOPR

Q. IOSB

Q. IOAE

Q. IOPL

DSW Return Codes:

rs. sue

IE. UPN

IE.ULN

IE. HWR

IE.PR!

IE. !LU

IE. IEF

IE.ADP

IE.SOP

I/O function code (2)

Logical unit number (2)

Event flag number (1)

Priority (1)

Address of I/O status block (2)

Address of I/O done AST entry point (2)

Parameter list (6 words) (12)

Successful completion.

Insufficient dynamic memory.

Unassigned LUN.

Device driver not loaded.

Task other than despooler attempted a write logical
block operation.

Inv al id LUN.

Invalid event flag number (EFN<O, or EFN>96 if group
global event flags exist for the task's group; or
EFN>64 if not).

Part of the DPB or I/O status block is out of the
1ssu1ng task's address space.

DIC or DPB size is invalid.

5-113

DIRECTIVE DESCRIPTIONS

Notes:

1. If the directive call specifies an AST entry point address,
the task enters the AST service routine with its stack in the
following state:

SP+lO - Event flag mask word
SP+06 - PS of task prior to AST
SP+04 - PC of task prior to AST
SP+02 - DSW of task prior to AST

SP+OO - Address of I/O status block, or zero, if none
was specified in the QIO directive

The address of the I/O status
trap-dependent parameter, must be
stack before an AST Service Exit
5.3.4) is executed.

block, which is a
removed from the task's

directive (see Section

2. If the directive is rejected, the specified event flag is not
guaranteed to be cleared or set. Consequently, if the task
indiscriminately executes a Wait For or Stop For directive
and the QIO directive is rejected, the task may wait
indefinitely. Care should always be taken to ensure that the
directive was successfully completed.

3. Tasks i'<;>\~;:',i,~~i$~fi;~~rj;,~~tjJi'lJ1~~~!~d$,~,~~:i:;~~'~jIC cannot normally be
checkpointed with I/O outstanding for two reasons:

• If the QIO directive results in a data transfer, the data
transfers directly to or from the user-specified buffer.

• If an I/O status block address is specified, the directive
status is returned directly to the I/O status block.

The Executive waits until a task has no outstanding I/O
before initiating checkpointing in all cases except the one
described below.

In systems that support buffered I/O, drivers that buffer I/O
check for the following conditions for a task:

• That the task is checkpointable

• That checkpointing is enabled

If those two conditions are met, the driver and/or the
Executive buffers the I/O request internally and the task is
checkpointable with this outstanding I/O. If the task also
entered a Wait For state when the I/O was issued (see the
QIOW$ directive) or subsequently enters a Wait For state: the
task is stopped. Any competing task waiting to be loaded
into the partition can checkpoint the stopped task,
regardless of priority. If the stopped task is checkpointed,
the executive does not bring it back into memory until the
stopped state is terminated by completion of buffered I/O or
satisfaction of the Wait For condition.

Not all drivers buffer I/O requests. The terminal driver is
an example of one that does.

5-114

DIRECTIVE DESCRIPTIONS

4. A privileged task on RSX-llM
that is linked to a common (read-only) area can issue QIO
write requests to that area.

5. If the specified event flag is a group global, the use count
for the event flag's group is incremented to prevent
premature elimination of the event flags. The use count is
run down when:

• The I/O is completed.

• The I/O is killed by reassigning the specified LUN with
the ALUN$ directive.

• The I/O is killed by issuing the IO.KIL function for the
specified LUN.

• The task exits before I/O is completed.

5-115

DIRECTIVE DESCRIPTIONS

QIOW$

5.3.45 Queue I/O Request and Wait

The Queue I/O Request And Wait directive is identical to the Queue I/O
Request in all but one aspect. If the Wait variation of the directive
specifies an event flag, the Executive automatically effects a Wait
For Single Event Flag directive. If an event flag is not specified,
however, the Executive treats the directive as if it were a simple
Queue I/O Request.

The following description lists the FORTRAN and macro calls with the
associated parameters, as well as the macro expansion. Consult the
description of Queue I/O Request for a definition of the parameters,
the local symbol definitions, the DSW return codes, and explanatory
notes.

FORTRAN Call:

Macro

CALL WTQIO (fnc,lun, [efn], [pri], [isb], [prl] [,ids])

fnc I/O function codel

lun Logical unit number

efn Event flag number

pri Priority; ignored, but must be present

isb A 2-word integer array to receive final I/O status

prl A 6-word integer array containing device-dependent
parameters to be placed in parameter words 1 through 6
of the DPB

ids

Call:

QIOW$

fnc

lun

efn

pri

isb

ast

prl

Directive status

fnc,lun, [efn], [pri], [isb], [ast] [,prl]

I/O function codel

Logical unit number

Event flag number

Priority; ignored, but must be present

Address of I/O status block

Address of entry point of AST service routine

Parameter list of the form <Pl, ••• P6>

1. I/O function codes are defined in the RSX-llM/M-PLUS I/O Drivers
Reference Manual.

5-116

DIRECTIVE DESCRIPTIONS

Macro Expansion:

QIOW$
• BYTE
.WORD
.WORD
.BYTE
.WORD
.WORD
.WORD
• WORD
• WORD
• WORD
• WORD
.WORD

IO.RVB,7,52.,,IOSTAT,IOAST,<IOBUFR,512.>
3,12. ;QIO$ MACRO DIC, DPB SIZE=l2 •
IO.RVB ;FUNCTION=READ VIRTUAL BLOCK
7 ;LOGICAL UNIT NUMBER 7
52.,0 ;EFN 52., PRIORITY IGNORED
IOSTAT ;ADDRESS OF 2-WORD I/O STATUS BLOCK
IOAST ;ADDRESS OF I/O AST ROUTINE
IOBUFR ;ADDRESS OF DATA BUFFER
512. ;BYTE COUNT=512 •
0 ;ADDITIONAL PARAMETERS •••
0 ; ••• NOT USED IN •••
0 ; ••• THIS PARTICULAR •••
0 ; ••• INVOCATION OF QUEUE I/O

5-117

DIRECTIVE DESCRIPTIONS

RCST$

5.3.46 Receive Data Or Stop

The Receive Data Or Stop directive instructs the system to dequeue a
13-word data block for the issuing task; the data block was queued
for the task with a Send Data Directive or a Send, Request and Connect
directive.

A 2-word task name of the sender {in Radix-50 format) and the 13-word
data block are returned in an indicated 15-word buffer. The task name
is contained in the first two words of the buffer.

If no data has been sent, the issuing task is stopped. In this case,
the sender task is expected to issue an Unstop directive after sending
data. A success status code of rs.sue indicates that a packet has
been received. A success status code of IS.SET indicates that the
task was stopped and has been unstopped. The directive must then be
reissued to retrieve the packet.

When a slave task issues the Receive Data or Stop directive, it
assumes the UIC (if it has no outstanding group global context) and
TI: terminal of the task that sent the data.

FORTRAN Call:

CALL RCST ([rtname] ,ibuf[,ids])

rtname Sender task name (if not specified, data may be
received from any task.)

ibuf Address of 15-word buffer to receive the sender task
name and data

ids Integer to receive the directive status word

Macro Call:

RCST$

tname

buf

[tname],buf

Sender task name (If not specified, data may be
received from any task.)

Address of 15-word buffer to receive the sender task
name and data

Macro Expansion:

RCST$
.BYTE
.RAD50
.WORD

ALPHA, TSKBUF
139., 4
ALPHA
TSKBUF

Local Symbol Definitions:

R.CSTN Task name (4)

;RCST$ MACRO DIC, DPB SIZE=4 WORDS
;DATA SENDER TASK NAME
;BUFFER ADDRESS

R.CSBF Buffer address (2)

5-118

DSW Return Codes:

rs.sue

IS.SET

IE.RSU

IE.AST

IE.ADP

IE.SDP

DIRECTIVE DESCRIPTIONS

Successful completion.

No data was received and task was stopped (note that
the task must be Unstopped before it can see this
status) •

The issuing task is a slave task with a group global
context active, and the next packet received would
have changed the task's group number.

The issuing task is at AST state.

Part of the DPB is out of the issuing task's address
space.

DIC or DPB size is invalid.

5-119

DIRECTIVE DESCRIPTIONS

RCVD$

5.3.47 Receive Data

The Receive Data directive instructs the system to dequeue a 13-word
data block for the issuing task; the data block has been queued
(FIFO) for the task by a Send Data Directive.

A 2-word sender task name (in Radix-50 form) and the 13-word data
block are returned in an indicated 15-word buffer, with the task name
in the first two words.

When a slave task issues the Receive Data directive, it assumes the
UIC (if it has no outstanding group global event flag context) and TI:
terminal of the task that sent the data.

FORTRAN Call:

CALL RECEIV ([tsk] ,buf[,,ids])

tsk Sender task name (If not specified, data may be
received from any task.)

buf A 15-word integer array for received data

ids Directive status

Macro Call:

RCVD$

tsk

buf

[tsk],buf

Sender task name (If not specified, data may be
received from any task.)

Address of 15-word buffer

Macro Expansion:

RCVD$
.BYTE
.RAD50
.WORD

ALPHA, DATBUF
75., 4
/ALPHA/
DATBUF

;TASK NAME AND BUFFER ADDRESS
;RCVD$ MACRO DIC, DPB SIZE=4 WORDS
;SENDER TASK NAME
;ADDRESS OF 15.-WORD BUFFER

Local Symbol Definitions:

R.VDTN

R.VDBA

DSW Return Codes:

rs. sue

IE. ITS

IE. RSU

IE.ADP

IE. SDP

Sender task name (4)

Buffer address (2)

Successful completion.

No data currently queued.

The issuing task is a slave task with a group global
context active, and the next packet to be received
would have changed the task's group number.

Part of the DPB or buffer is out of the issuing
task's address space.

DIC or DPB size is invalid.

5-120

DIRECTIVE DESCRIPTIONS

Notes:

2. If the sending task specifies a common or group global event
flag in the Send Data directive, the receiving task may use
that event flag for synchronization. However, between the
time that the receiver issues this directive and the time the
receiver issues it's next instruction, the sender can send
data and set the event flag. If the next instruction is an
Exit directive, any data sent during this time will be lost
because the Executive flushes the task's receive list as part
of exit processing. Therefore, use the Exit If directive or
the Receive Data or Exit directive in order to avoid the race
condition.

5-121

DIRECTIVE DESCRIPTIONS

RCVX$

5.3.48 Receive Data Or Exit

The Receive Data Or Exit directive instructs the system to dequeue a
13-word data block for the issuing task; the data block has been
queued (FIFO) for the task by a Send Data directive.

A 2-word sender task name (in Radix-50 form) and the 13-word data
block are returned in an indicated 15-word buffer, with the task name
in the first two words.

If no data has been sent, a task exit occurs. To prevent the possible
loss of Send packets, the user should not rely on I/O rundown to take
care of any outstanding I/O or open files; the task should assume
this responsibility.

When a slave task issues the Receive Data Or Exit directive, it
assumes the UIC (if it has no outstanding group global event flag
context) and TI: terminal of the task that sent the data. See Notes
below.

FORTRAN Call:

CALL RECOEX ([tsk] ,buf[,,ids])

tsk Sender task name (If not specified, data may be
received from any task.)

buf = A 15-word integer array for received data

ids Directive status

Macro Call:

RCVX$

tsk

buf

[tsk] , buf

Sender task name (If not specified, data may be
received from any task.)

Address of 15-word buffer

Macro Expansion:

RCVX$
.BYTE
• RAD50
.WORD

ALPHA, DATBUF
77.,4
/ALPHA/
DATBUF

Local Symbol Definitions:

;TASK NAME AND BUFFER ADDRESS
;RCVX$ MACRO DIC, DPB SIZE=4 WORDS
;SENDER TASK NAME
;ADDRESS OF 15.-WORD BUFFER

R.VXTN Sender task name (4) R.VXBA Buffer address (2)

5-122

DIRECTIVE DESCRIPTIONS

DSW Return Codes:

rs.sue Successful completion.

IE.RSU The issuing task is a slave task with a group global
context active, and the next packet to be received
would have changed the task's group number.

IE.ADP Part of the DPB or buffer is out of the issuing
task's address space.

IE.SOP DIC or DPB size is invalid.

Notes:

1. A FORTRAN program that issues the RECOEX call must first
close all files by issuing CLOSE calls. See the IAS/RSX-11
FORTRAN IV or the FORTRAN IV-PLUS User's Guide for
instructions --Concerning how to ensure that such files are
closed properly if the task exits.

To avoid the time overhead involved in the closing and
reopening of files, the task should first issue the RECEIV
call. If the directive status indicates that no data were
received, then the task can close all files and issue the
call to RECOEX. The following example illustrates the same
overhead saving in MACRO:

RCVBUF: • BLKW

START: RCVX$C
CALL

PROC:

Process

RCVD$C
BCC
CALL

JMP

15 •

,RCVBUF
OPEN

packet

,RCVBUF
PROC
CLOSE

START

of data

Receive buffer

Attempt to receive message
Call user subroutine to open files.

Attempt to receive another message
If CC successful receive
Call user subroutine to close files
and prepare for possible task exit
Make one last attempt at receiving

2. If no data have been sent, that is, if no Send Data directive
has been issued, the task exits. Send packets may be lost if
a task exits with outstanding I/O or open files (see third
paragraph of this section) •

3. The Receive Data Or Exit directive is useful in avoiding a
possible race condition that can occur between two tasks
communicating by the Send and Receive directives. The race
condition occurs when one task executes a Receive directive
and finds its receive queue empty; but before the task can
exit, the other task sends it a message. The message is lost
because the Executive flushes the receiver task's receive
queue when it exits. This condition can be avoided by the
receiving task's executing a Receive Data Or Exit directive.
If the receive queue is found to be empty, a task exit occurs
before the other task can send any data; thus, no loss of
data can occur.

5-123

DIRECTIVE DESCRIPTIONS

4. On Exit, the Executive frees task resources. In particular,
the Executive:

• Detaches all attached devices

• Flushes the AST queue and despecifies all specified ASTs

• Flushes the receive and receive-by-reference queues

• Flushes the clock queue for outstanding Mark Time requests
for the task

• Closes all open files (files open for write access are
locked)

• Detaches all attached regions except in the case of a
fixed task, where no detaching occurs

• Runs down the task's I/O

• Deaccesses the group global event flags for the task's
group

• Disconnects from interrupts

• Flushes all outstanding CLI command buffers for the task

• Returns a success status (EX$SUC) to any parent tasks

: .Rs·x,771.1.M-.1ai:urax1
··.

~~~~.lj:) .. i·~~!~-~(il,i;~;: ;" 

• Breaks the connection with any offspring tasks 

• Frees the task's memory if the exiting task was not fixed 

5. If the task exits, the Executive declares a significant 
event. 

6. ; In Rsx~l.lM .... PL;tJS system;s · t.hat supt¥>ft .\Tari.able serid. and 
re(Zrlve. ·.·. qi~e~t.ives (sejcondary··· P()Ol.;s.\lpport. SYSGEN optlo!lJ; 
the; <Recelve.D:q:t.a Or Exi~ d ctive l.s treate<i .. as .·a ·.·•.··· .. ·.·.·.1 ... •.· .. · .. :37.~o·r·d···· 

.Y:'Cl.t:.'·~·Cll?.l~.Re<::e~YEf.l)~t~· Q;f)~ c:l·jr;.a.qtJ;V°e•·.·.·(se.-~··•· .. $.ec1:ir<:>n' ,~ ... l .... ?9>. 

5-124 



DIRECTIVE DESCRIPTIONS 

ROAF$ 

5.3.49 Read All Event Flags 

The Read All Event Flags directive inscructs the system to read all 64 
event flags for the issuing task and record their polarity in a 64-bit 
(4-word) buffer. 

FORTRAN Call: 

NOTE 

This directive 
group-global event 
65 - 96). 

does 
flags 

not return 
(event flags 

A FORTRAN task can read only one event flag. The call is: 

CALL READEF (efn[,ids]) 

efn Event flag number 

ids Directive status 

The Executive returns the status codes IS.SET (+02) and IS.CLR 
(00) for FORTRAN calls in order to report event flag polarity. 

Macro Call: 

ROAF$ buf 

Buff er Format: 

Word 0 Task Local Flags 1-16 

Word 1 Task Local Flags 17-32 

Word 2 Task Common Flags 33-48 

Word 3 Task Common Flags 49-64 

Macro Expansion: 

ROAF$ 
.BYTE 
.WORD 

FLGBUF 
39.,2 
FLGBUF 

;RDAF$ MACRO DIC, DPB SIZE=2 WORDS 
;ADDRESS OF 4-WORD BUFFER 

Local Symbol Definitions: 

R.DABA 

DSW Return Codes: 

rs. sue 

IE.ADP 

IE.SOP 

Buffer address (2) 

Successful completion. 

Part of the DPB or buffer is out of the issuing 
task's address space. 

DIC or DPB size is invalid. 

5-125 



DIRECTIVE DESCRIPTIONS 

The following symbol 
equal to the byte 
element: 

R .. DEEF 

DSW Return Codes: 

5-126 



DIRECTIVE DESCRIPTIONS 

RDXF$ 

5.3.51 Read Extended Event Flags 

The Read Extended Event Flags directive instructs the system to read 
all local, common, and group-global event flags for the issuing task 
and record their polarity in a 96-bit (6-word) buffer~ 

FORTRAN Call: 

A FORTRAN task can read only one event flag. The call is: 

CALL READEF (efn[,ids]) 

efn Event flag number 

ids Directive status 

The Executive returns the status codes IS.SET (+02) and IS.CLR 
{00) for FORTRAN calls to report event flag polarity. 

Macro Call: 

RDXF$ buf 

Buffer Format: 

Word 0 Task Local Flags 1-16 

Word 1 Task Local Flags 17-32 

Word 2 Task Common Flags 33-48 

Word 3 Task Common Flags 49-64 

Word 4 Task Group-Global Flags 65-80 

Word 5 Task Group-Global Flags 81-96 

Macro Expansion: 

RDXF$ 
.BYTE 
.WORD 

FLGBUF 
39.,3 
FLGBUF 

;RDXF$ MACRO DIC, DPB SIZE=3 WORDS 
;ADDRESS OF 6-WORD BUFFER 

Local Symbol Definitions: 

R.DABA 

DSW Return Codes: 

rs. sue 

IS. CLR 

IE.ADP 

IE. SDP 

Buffer address (2) 

Successful completion. 

Group-global event flags do not exist. Words 4 and 5 
of the buffer contain O. 

Part of the DPB or buffer is out of the issuing 
task's address space. 

DIC or DPB size is invalid. 

5-127 



DIRECTIVE DESCRIPTIONS 

5-128 



DIRECTIVE DESCRIPTIONS 

RP01$ 

5.3.53 Request and Pass Offspring Information 

This directive instructs the system to request the specified task, and 
to chain to it by passing any or all of the parent connections from 
the issuing task to the requested task. Optionally, the directive can 
pass a command line to the requested task. Only a privileged or CLI 
task may specify the UIC and TI: of the requested task. 

FORTRAN Call: 

CALL RPOI (tname,[iugc] ,[iumc] ,[iparen] ,[ibuf] ,[ibfl] ,[isc], 
[idnam], [iunit], [itask], [ocbad] [,ids]) 

tname 

iugc 

iumc 

iparen 

Name of an 
RAD50) of 
chained to. 

array containing the actual name (in 
the task to be requested and optionally 

Name of an integer containing the group code number 
for the UIC of the requested target chain task. 

Name of the integer containing the member code number 
for the UIC of the requested target chain task. 

Name of an array (or I*4 integer) containing the 
RAD50 name of the parent task. This is returned in 
the information buffer of the GTCMCI subroutine. 

ibuf Name of an array that contains the command line text 
for the chained task. 

ibfl = Name of an integer that contains the number of bytes 
in the command in the ibuf array. 

isc Flag byte controlling the actions of this directive 
request when executed. The bit definitions of this 
byte (only the low order byte of the integer 
specified in the call is ever used) are as follows: 

RP.OEX = 128. 

RP. OAL 1 

RP.ONX 2 

Force this task to exit on 
successful execution of the RPOI 
directive. 
Pass all of this task's 
connections to the requested 
task. {The default is none.) 

NOTE 

You cannot pass all 
connections if the target 
task is a CLI task. 

Pass the first connection 
in the queue if there is one. 

5-129 



idnam 

i unit 

itask 

ocbad 

DIRECTIVE DESCRIPTIONS 

Name of an integer containing the ASCII device name 
of the requested task's TI: 

Name of an integer containing the unit number of the 
requested tasks TI: device. 

Name of an array which contains the RAD50 name the 
requested .... task is .. to rl]n .uJ'ld.e~ •... · f.)h.J~S~prif.iisystems; 

.tf1f·§ argl1riterit···~s ·val/id<.on,;ly Lf ·th(i! <is.s.(l.i.n9.ta9k··.t§ · a 
CLI tas!{~ . 

Name of an integer containing the pool address of the 
parent OCB. This value may only be obtained in the 
information buffer of the GTCMCI subroutine, which 
only a CLI can issue, so therefore, only a CL! can 
specify this argument. 

ids Name of an integer to receive the directive status 
word 

Macro Call: 

RPO!$ tname,,, [ugc], [umc], [parent], [bufadr], [buflen], [sc], [dnam], 
[unit], [task], [ocbad] 

tname 

ugc 

umc 

parent 

bufadr 

buflen 

SC 

Name of task to be chained to 

Group code for UIC of the requested task 

Member code for UIC of the requested task 

Name of issuing task's parent task whose connection 
is to be passed. If not specified, all connections 
are passed. 

Address of buffer to be given to the requested task 

Length of buffer to be given to requested task 

Flags byte: 
RP.DEX (200) Force issuing task to exit 
RP.OAL -- (1) Pass all connections (Default is 

none.) 

NOTE 

You cannot pass all 
connections if the target 
task is a CLI task. 

RP.ONX -- (2) Pass the first connection in the 
queue, if there is one. 

5-130 



DIRECTIVE DESCRIPTIONS 

dnam ASCII device name for TI: 

unit Unit number of task TI: 

task RADS.a. ncill\.~ tticit ~h~ r:-equested task is to run under. 
()ti. ..•..• Jlp~-.1i~: •: · 9y!;:t~.m$ , •. ,th.~·•$······.P~r(lrne~er is·. only·.···veilid·•.· if 

. the••.· ... issl]ing <ta.$,1<·····~:$•.···a: .. ·.G~l·. ~asK;; 

ocbad Address of OCB to pass {CLis only) 

Local Symbol Definitions: 

R~POTK RADSO name of task to be chained to ( 2) 

R. POUM UIC member code ( 1) 

R. POUG UIC group code 

R.POPT Name of parent whose OCB should be passed ( 4) 

R.POOA Address of OCB to pass ( CLis only) (2) 

R.POBF Address of command buffer ( 2) 

R. POBL Length of command ( 2) 

R. POUN Unit number of task TI: ( 1) 

R.POSC Flags byte ( 1) 

R.PODV ASCII device name for TI: ( 2) 

R. POTN RADSO name of task to be started (4) 

Macro Ex pans ion: 

RPOI$ 
.BYTE 
.RADSO 
.BLKW 
.BYTE 
.BYTE 
• RADSO 
.WORD 
.WORD 
.WORD 
.ASCII 
.BYTE 
.BYTE 

tname,,,ugc,umc,ptsk,buf,buflen,sc,dev,unit,task,ocbad 
11,16 ;DIC 11 DPB SIZE= 16. words 
/tname/ ;NAME OF TASK TO CHAIN TO 
3 ;RESERVED 
umc ;UIC MEMBER CODE 
ugc ;UIC GROUP CODE 
ptsk :NAME OF TASK WHOSE OCB SHOULD BE PASSED 
ocbad ;ADDRESS OF OCB 
buf ;ADDRESS OF BUFFER TO SEND 
buflen ;LENGTH OF BUFFER 
/dev/ ;ASCII NAME OF TI: OF REQUESTED TASK 
unit ;UNIT NUMBER OF TI: DEVICE 
sc ;PASS BUFFER AS SEND PACKET OR COMMAND 

;CODE 

5-131 



DSW Return Codes: 

IE.VPN 

IE.ACT 

IE.ITS 

IE.NVR 

IE.ALG 

IE.PNS 

IE.ADP 

IE.SDP 

DIRECTIVE DESCRIPTIONS 

Insufficient dynamic memory to allocate an offspring 
control block, command line buffer, task control 
block, or partition control block. 

The specified task was not installed, or it was a CLI 
but no command line was specified. 

The specified task was already active and it was not 
a command line interpreter. 

A task that is not a CLI specified a CLI only 
parameter or specified passing all connections to a 
CLI. 

There is no offspring control block 
specified parent task. 

from the 

A CLI specified a parent name and an offspring 
control block address that did not describe the same 
connection, or either a parent name or an offspring 
control block address was specified and the pass all 
connections flag or the pass next connection flag was 
set. 

The task control block cannot be created in the same 
partition as its prototype. 

Part of the DPB, exit status bl9ck, or command line 
is out of the issuing task's address space. 

DIC or DPB size is invalid. 

5-132 



DIRECTIVE DESCRIPTIONS 

RQST$ 

5.3.54 Request Task 

The Request Task directive instructs the system to activate a task. 
The task is activated and subsequently runs contingent upon priority 
and memory availability. The Request Task directive is the basic 
mechanism used by running tasks to initiate other installed {dormant) 
tasks. The Request Task directive is a frequently used subset of the 
Run directive. See Notes below. 

FORTRAN Call: 

CALL REQUES {tsk, [opt] [,ids]) 

tsk Task name 

opt A 4-word integer array 

opt{l) = Partition name first half; ignored, 
must be present 

opt { 2) Partition name second half; ignored, 
must be present 

opt{3) Priority; ignored, but must be present 

opt{4) = User Identification Code 

ids = Directive status 

Macro Call: 

RQST$ tsk, [prt], [pri] [,ugc,umc] 

tsk = Task name 

prt Partition name; ignored, but must be present 

pri Priority; ignored, but must be present 

ugc UIC group code 

umc UIC member code 

Macro Expansion: 

RQST$ 
.BYTE 
.RAD50 
.WORD 
.WORD 
.BYTE 

ALPHA,,,20,10 
11., 7 
/ALPHA/ 
0,0 
0 
10,20 

;RQST$ MACRO DIC, DPB SIZE=? WORDS 
;TASK "ALPHA" 
;PARTITION IGNORED 
;PRIORITY IGNORED 
;UIC UNDER WHICH TO RUN TASK 

5-133 

but 

but 



DIRECTIVE DESCRIPTIONS 

Local Symbol Definitions: 

R.QSTN 

R. QSPN 

R. QSPR 

R.QSGC 

R. QSPC 

DSW Return Codes: 

IS. sue 

IE. UPN 

IE. INS 

IE.ACT 

IE.ADP 

IE.SOP 

Task name ( 4) 

Partition name ( 4) 

Priority (2) 

UIC group ( 1) 

UIC member ( 1) 

Successful completion. 

Insufficient dynamic memory. 

Task is not installed. 

Task is already active. 

Part of the DPB is out of the issuing task's address 
space. 

DIC or DPB size is invalid. 

Notes: 

1. The requested task must be installed in the system. 

2. If the partition in which a requested task is to run is 
already occupied, the Executive places the task in a queue of 
tasks waiting for that partition. The requested task then 
runs, depending on priority, and resource availability, when 
the partition is free. Another possibility is that 
checkpointing may occur. If the current occupant(s) of the 
partition is checkpointable, has checkpointing enabled, and 
is of lower priority than the requested task, it is written 
to disk when its current outstanding I/O completes; the 
requested task is then read into the partition. 

3. Successful completion means that the task has been declared 
active, not that the task is actually running. 

4. The requested task acquires the same TI: terminal assignment 
as that of the requesting task. 

5. The requested task always runs at the priority specified in 
its task header. 

6. A task that executes in a system-controlled partition 
requires dynamic memory for the partition control block used 
to describe its memory requirements. 

5-134 



DIRECTIVE DESCRIPTIONS 

7. In a system that does not support multiuser protection, a 
task can be requested under any UIC, regardless of the UIC of 
the requesting task. If no UIC is specified in the request, 
the system uses the UIC from the task's header, which was 
specified at task-build time. 

8. In a system that supports multiuser protection, 
task has two UICs: a protection UIC and a 
These are both returned when a task issues 
Parameters directive (GTSK$). The UICs are 
following ways: 

each active 
default UIC. 
a Get Task 

used in the 

• The protection UIC determines the task's access rights for 
opening files and attaching to regions. When a task 
attempts to open a file, the system compares the task's 
protection UIC against the protection mask of the 
specified UFD; the comparison determines whether the task 
is to be considered for system, owner, group, or world 
access a 

• The default UIC is used by the File Control Subroutines 
(FCS) to determine the default UFD when a file-open 
operation does not specify a UIC. (The default UIC has no 
significance when a task attaches to a region.) 

In a multiuser protection system, each terminal also has a 
protection UIC and a default UIC. If a terminal is 
nonprivileged, the protection UIC is the log-on UIC, and the 
default UIC is the UIC specified in the last SET /UIC command 
issued. If no SET /UIC command has been issued, the default 
UIC is equal to the log-on UIC. If the terminal is 
privileged, both the protection and the default UICs are 
equal either to the UIC specified in the last SET /UIC 
command or to the log-on UIC if a SET /UIC command has not 
been issued. 

The system establishes a task's UICs when the task is 
activated. In general, when the MCR Dispatcher or the MCR 
Run command activates a task, the task assumes the protection 
and default UICs of the issuing terminal. However, if the 
user specifies the /UIC keyword to the MCR or DCL Install or 
Run command, the specified UIC becomes the default UIC for 
the activated task; and if the issuing terminal is 
privileged, the specified UIC becomes the activated task's 
protection UIC as well. 

The system establishes UICs in the same manner when one task 
issues a Request directive to activate another task. The 
protection and default UICs of the issuing task generally 
become the corresponding UICs of the requested task. 
However, if a nonprivileged task specifies a UIC in a Request 
directive, the specified UIC becomes only the default UIC for 
the requested task. lf a privileged task specifies a UIC in 
a Request directive, the specified UIC becomes both the 
protection and default UIC for the requested task. 

5-135 



DIRECTIVE DESCRIPTIONS 

RREF$ 

5.3.55 Receive By Reference 

The Receive By Reference directive requests the Executive to dequeue 
the next packet in the receive-by-reference queue of the issuing 
(receiver) task. Optionally, the task will exit if there are no 
packets in the queue. The directive may also specify that the 
Executive proceed to map the region referred to. 

If successful, the directive declares a significant event. 

Each reference in the task's receive-by-reference queue represents a 
separate attachment to a region. If a task has multiple references to 
a given region, it is attached to that region the corresponding number 
of times. Because region attachment requires system dynamic memory, 
the receiver task should detach from any region that it was already 
attached to in order to prevent depletion of the memory pool. That 
is, the task needs to be attached to a given region only once. 

If the Executive does not find a packet in the queue, and the task has 
set WS.RCX in the window status word (W.NSTS), the task exits. If 
WS.RCX is not set, the Executive returns the DSW code IE.ITS. 

If the Executive finds a packet, it writes the information provided to 
the corresponding words in the Window Definition Block. This 
information provides sufficient information to map the reference, 
according to the sender task's specifications, with a previously 
created address window. 

If the address of a 10-word receive buffer has been specified (W.NSRB 
in the Window Definition Block), then the sender task name and the 
eight additional words passed by the sender task (if any) are placed 
in the specified buffer. If the sender task did not pass on any 
additional information, the Executive writes in the sender task name 
and eight words of zero. 

If the WS.MAP bit in the window status word has been set to 1, the 
Executive transfers control to the Map Address Window directive (see 
Section 6.3.40) to attempt to map the reference. 

When a task that has unreceived packets in its receive-by-reference 
queue exits or is removed, the Executive removes the packets from the 
queue and deallocates them. Any related flags are not set~ 

FORTRAN Call: 

CALL RREF (iwdb, [isrb] [,ids]} 

iwdb An 8-word integer array containing a Window Definition 
Block (see Section 3.5.2.2} 

isrb A 10-word integer array to be used 
buffer. If the call omits this 
contents of iwdb(B) are unchanged. 

ids = Directive status 

Macro Call: 

RREF$ wdb 

wdb Window Definition Block address 

5-136 

as the receive 
parameter, the 



Macro Expansion: 

RREF$ 
.BYTE 
.WORD 

WDBADR 
81., 2 
WDBADR 

DIRECTIVE DESCRIPTIONS 

;RREF$ MACRO DIC, DPB SIZE=2 WORDS 
;WDB ADDRESS 

Window Definition Block Parameters: 

Input parameters: 

Array 
Element 

iwdb(l) 

Off set 

bits 0-7 W.NID 

iwdb {7) W.NSTS 

i wdb ( 8) W.NSRB 

Output parameters: 

i wbd ( 4) W.NRID 

iwdb ( 5) W.NOFF 

iwdb(6) W.NLEN 

i wdb ( 7) W.NSTS 

ID of an existing window if region is to be 
mapped 

Bit settingsl in the window status word: 

Bit 

WS.MAP 

WS.RCX 

Definition 

1 if received reference is tG 
be mapped 

1 if task exit desired when no 
packet is found in the queue 

Optional address of a 10-word buffer, to 
contain the sender task name and additional 
information 

Region ID (po i"nter to attachment 
description) 

Offset word specified by sender task 

Length word specified by sender task 

Bit settingsl in the window status word: 

Bit Definition 

WS.RED 1 if attached with read access 

WS.WRT 1 if attached with write access 

WS.EXT 1 if attached with extend 
access 

WS.DEL 1 if attached with delete 
access 

WS.RRF 1 if receive was successful 

The Executive clears the remaining bits. 

1. If you are a FORTRAN programmer, refer to Section 3.5.2 to 
determine the bit values represented by the symbolic names described. 

5-137 



DIRECTIVE DESCRIPTIONS 

Local Symbol Definitions: 

R.REBA 

DSW Return Codes: 

IS. sue 

IE.ITS 

IE.ADP 

IE. SDP 

Window definition block address (2) 

Successful completion~ 

No packet found in the receive-by-reference queue. 

Address check of the DPB, WDB, or the receive buffer 
(W.NSRB) failed. 

DIC or DPB size is invalid. 

5-138 



DIRECTIVE DESCRIPTIONS 

RSUM$ 

5.3.56 Resume Task 

The Resume Task directive instructs the system to resume the execution 
of a task that has issued a Suspend directive. 

FORTRAN Call: 

CALL RESUME (tsk[,ids]) 

tsk Task name 

ids Directive status 

Macro Call: 

RSUM$ tsk 

tsk = Task name 

Macro Expansion: 

RSUM$ 
.BYTE 
.RAD50 

ALPHA 
47.,3 
/ALPHA/ 

Local Symbol Definitions: 

;RSUM$ MACRO DIC, DPB SIZE=3 WORDS 
;TASK "ALPHA" 

R.SUTN Task name (4) 

DSW Return Codes: 

IS. sue Successful completion. 

IE. INS Task is not installed. 

IE.ACT Task is not active. 

IE. ITS Task is not suspended. 

IE.ADP Part of the DPB is out of the issuing task's address 
space. 

IE.SOP DIC or DPB size is invalid. 

5-139 



DIRECTIVE DESCRIPTIONS 

RUN$ 

5.3.57 Run Task 

The Run Task directive causes a task to be requested at a specified 
future time, and optionally to be requested periodically. The 
schedule time is specified in terms of delta time from issuance. If 
the smg, rmg, and rnt parameters are omitted, Run is the same as 
Request except that: 

1. Run causes the task to become active one clock tick after the 
directive is issued. 

2. The system always sets the TI: 
task, to CO:. 

device for the requested 

See Notes below. 

FORTRAN Ca 11 : 

CALL RUN (tsk, [opt] , [ smg] , snt, [ rmg] , [ rnt] [,ids] ) 

tsk Task name 

opt A 4-word integer array 

opt ( 1) Partition name first half; 
must be present 

ignored, but 

opt ( 2) Partition name second 
but must be present 

half; ignored, 

opt(3) = Priority; ignored, but must be present 

opt ( 4) User Identification Code 

smg Schedule delta magnitude 

snt Schedule delta unit (either 1, 2, 3, or 4) 

rmg Reschedule interval magnitude 

rnt = Reschedule interval unit 

ids Directive status 

The ISA standard call for initiating a task is also provided: 

CALL START(tsk,smg,snt[,ids]) 

tsk Task name 

smg Schedule delta magnitude 

snt Schedule delta unit (either 0, 1, 2, 3, or 4) 

ids Directive status 

5-140 



DIRECTIVE DESCRIPTIONS 

Macro Call: 

RUN$ tsk, [prt], [pri], [ugc], [umc], [smg] ,snt [ ,rmg ,rnt] 

tsk Task name 

prt Partition name; ignored, but must be present 

pri Priority; ignored, but must be present 

ugc UIC group code 

umc UIC member code 

smg Schedule delta magnitude 

snt Schedule delta unit (either 1, 2, 3, or 4) 

rmg Reschedule interval magnitude 

rnt Reschedule interval unit 

Macro Expansion: 

RUN$ 
BYTE 
.RADSO 
.WORD 
.WORD 
.BYTE 
.WORD 
.WORD 
• WORD 
.WORD 

ALPHA,,,20,10,20.,3,10.,3 
17.,11. ;RUN$ MACRO DIC, DPB SIZE=ll. WORDS 
/ALPHA/ ;TASK "ALPHA" 
0,0 ;PARTITION IGNORED 
0 ;PRIORITY IGNORED 
10,20 ;UIC TO RUN TASK UNDER 
20. ;SCHEDULE MAGNITUDE=20 
3 ;SCH. DELTA TIME UNIT=MINUTE (=3) 
10. ;RESCH. INTERVAL MAGNITUDE=lO • 
3 ;RESCH. INTERVAL UNIT=MINUTE (=3) 

Local Symbol Definitions: 

R.UNTN Task name (4) 

R. UNPN Partition name (4) 

R. UNPR Priority (2) 

R.UNGC UIC group code ( 1) 

R. UNPC UIC member code ( 1) 

R.UNSM Schedule magnitude ( 2) 

R.UNSU Schedule unit ( 2) 

R.UNRM Reschedule magnitude ( 2) 

R.UNRU Reschedule unit (2) 

5-141 



DIRECTIVE DESCRIPTIONS 

DSW Return Codes: 

For CALL RUN and RUN$: 

rs.sue 

IE.UPN 

IE.ACT 

IE.INS 

IE.PR! 

IE.IT! 

IE.ADP 

IE.SDP 

Successful completion. 

Insufficient dynamic memory~ 

Multiuser task name specified. 

Task is not installed. 

Nonprivileged task specified a UIC other than its 
o~. 

Invalid time parameter. 

Part of the DPB is out of the issuing task's 
address space. 

DIC or DPB size is invalid. 

For CALL START: 

Notes: 

RSX-llM/M-PLUS provides the following positive error codes to 
be returned for ISA calls: 

2 Insufficient dynamic storage. 

3 Specified task not installed. 

94 Invalid time parameter. 

98 Invalid event flag number. 

99 Part of DPB is out of task's address space. 

100 DIC or DPB size is invalid. 

1. In a multiuser protection system, a nonprivileged task cannot 
specify a UIC that is not equal to its own protection UIC. 
(See Note 8, Section 5.3.54, for a definition of the 
protection UIC.) A privileged task can specify any UIC. 

2. In a system that does not support multiuser protection, a 
task may be run under any UIC, regardless of the UIC of the 
requesting task. If no UIC is specified in the request, the 
Executive uses the default UIC from the requested task's 
header. The priority is always that specified in the 
requested task's Task Control Block. 

5-142 



DIRECTIVE DESCRIPTIONS 

3. The target task must be installed in the system. 

4. If there is not enough room in the partition in which a 
requested task is to run, the Executive places the task in a 
queue of tasks waiting for that partition. The requested 
task will then run, depending on priority and resource 
availability, when the partition is free. Another 
possibility is that checkpointing will occur. If the current 
occupant(s) of the partition is checkpointable, has 
checkpointing enabled, is of lower priority than the 
requested task, or is stopped for terminal input, it will be 
written to disk when its current outstanding I/O completes. 
The requested task will then be read into the partition. 

5. Successful completion means the task has been made active; 
it does not mean that the task is actually running. 

6. Time Intervals 

The Executive returns the code IE.IT! 
directive specifies an invalid time 
parameter consists of two components: 
magnitude, and the time interval unit. 

in the DSW 
parameter. 
the time 

if the 
A time 

interval 

A legal magnitude value (smg or rmg) is related to the value 
assigned to the time interval unit snt or rnt. The unit 
values are encoded as follows: 

For an ISA FORTRAN call (CALL START): 

0 = Ticks -- A tick occurs for each clock interrupt and 
is dependent on the type of clock installed in the 
system. 

1 

For a line frequency clock, the tick rate is either 
50 or 60 per second, corresponding to the power-line 
frequency. 

For a programmable clock, a maximum of 1000 ticks 
per second is available (the exact rate is 
determined during system generation). 

Milliseconds The 
specified magnitude to 
system clock ticks. 

subroutine converts the 
the equivalent number of 

For all other FORTRAN and all macro calls: 

1 Ticks See definition of ticks above. 

For both types of FORTRAN calls and all macro calls: 

2 Seconds 

3 Minutes 

4 Hours 

5-143 



DIRECTIVE DESCRIPTIONS 

The magnitude is the number of units to be clocked. The 
following list describes the magnitude values that are valid 
for each type of unit. In no case can the magnitude exceed 
24 hours. The list applies to both FORTRAN and macro calls. 

If unit = o, 1, or 2, the magnitude can be any positive 
value with a maximum of 15 bits. 

If unit = 3, the magnitude can have a maximum value of 
1440 (10). 

If unit 4, the magnitude can have a maximum value of 
24(10). 

7. The schedule delta time is the difference in time from the 
issuance of the RUN$ directive to the time the task is to be 
run. This time may be specified in the range from one clock 
tick to 24 hours. 

8. The reschedule interval is the difference in time from task 
initiation to the time the task is to be reinitiated. If 
this time interval elapses and the task is still active, no 
reinitiation request will be issued. However, a new 
reschedule interval will be started. The Executive will 
continually try to start a task, wait for the specified time 
interval, and then restart the task. This process continues 
until a CSRQ$ (Cancel Time Based Initiation Requests) 
directive or an MCR or DCL Cancel command is issued. 

9. Run requires dynamic memory for the clock queue entry used to 
start the task after the specified delta time. If the task 
is to run in a system-controlled partition, further dynamic 
memory is required for the task's dynamically allocated 
partition control block (PCB). 

10. If optional rescheduling is not desired, then the macro call 
should omit the arguments rmg and rnt. 

5-144 



DIRECTIVE DESCRIPTIONS 

SCAA$ 

5.3.58 Specify Command Arrival AST 

This.directive instructs the system to enable or disable command 
arrival ASTs for the issuing CLI task. If command arrival ASTs are 
enabled, the executive transfers control to a specified address when 
commands have been queued to the CLI. 

Only CLI tasks can use this AST. 

The format of the stack when the AST routine is entered is as follows: 

SP+lO - zero since no event flags are involved 
SP+06 - PS of task prior to AST 
SP+04 - PC of task prior to AST 
SP+02 - DSW of task prior to AST 
SP+OO - address of command buffer just queued 

The AST routine must remove the command buffer address from the stack 
before issuing an ASTX$ directive. 

The command buffer address may be used when issuing a GCCI$ directive. 

FORTRAN Call: 

Not supported. 

Macro Call: 

SCAA$ [ast] 

ast = AST service routine entry point. Omitting this 
parameter disables command arrival ASTs for the 
issuing task until the directive is respecified. 

Macro Expansion: 

SCAA$ 
.BYTE 
.WORD 

ast 
173.,2 
ast 

;DIC = 173 , DPB SIZE= 2 WORDS 
;ADDRESS OF AST ROUTINE 

Local Symbol Definitions: 

S.CAAE 

DSW Return Codes: 

IE. ITS 

IE.AST 

IE. PRV 

IE.UPN 

IE.ADP 

IE. SDP 

Address of AST routine 

ASTs are already not desired. 

Directive issued from AST state. 

Issuing task is not a CLI. 

Insufficient dynamic memory. 

Part of the DPB was out of the issuing task's address 
space. 

DIC or DPB size is invalid. 

5-145 



saddr 

caddr 

= 
= 

DIRECTIVE DESCRIPTIONS 

the routine 

the compleiion routine for return to the 

5-146 



DIRECTIVE DESCRIPTIONS 

5-147 



DIRECTIVE DESCRIPTION.S 

SCLI$ 

5.3.60 Set Command Line Interpreter 

The Set Command Line Interpreter directive instructs the system to set 
up the specified CLI as the CLI for the indicated terminal. The 
issuing task must be privileged or a CLI. 

If the restricted access flag (CP.RST} in the CL! status word is set, 
the issuing CL! task is the only CLI task that can set a terminal to 
that CLI. 

FORTRAN Call: 

CALL SETCLI ( icl i, idev, i unit [,ids]) 

icli Name of a two-word array element containing the name 
of the CLI the terminal is to be set to 

idev Name of an integer containing the ASCII name of the 
terminal to be set (default= TI:) 

iunit Name of an integer containing the unit number of 
terminal 

ids Directive status 

Macro Call: 

SCLI$ cli,[dev] ,[unit] 

cli Name of the CL! the terminal is to be set to 

dev ASCII name of the terminal to be set (default TI:) 

unit Unit number of terminal 

Local Symbol Definitions: 

S. CIDV ASCII name of the terminal whose CLI is to be set 

S. CIUN 

S.CICN 

Octal unit number of terminal 

RAD50 name of the CL! that the terminal is to be set 
to 

Macro Expansion: 

SCLI$ 
.BYTE 
.RAD50 
.ASCII 
.WORD 

cli,dev,unit 
173.,5 
/cli/ 
/dev/ 
unit 

;DIC 173. DPB SIZE = 5 WORDS 
;CL! NAME 
;ASCII NAME OF TERMINAL TO BE SET 
;UNIT NUMBER 

5-148 



DSW Returns: 

IE. PRI 

IE. IOU 

IE. INS 

IE. UPN 

IE.ADP 

IE. SOP 

DIRECTIVE DESCRIPTIONS 

Task not privileged or not a CLI. If CP.RST was set, 
task was not the CLI itself. 

Device not a terminal or does not exist. 

Specified CLI does not exist. 

Insufficient dynamic memory. 

Part of the DPB was out of the issuing task's address 
space. 

DIC or DPB length is invalid. 

5-149 



DIRECTIVE DESCRIPTIONS 

SDAT$ 

5.3.61 Send Data 

The Send Data directive instructs the system to declare a significant 
event and to queue (FIFO) a 13-word block of data for a task to 
receive. 

FORTRAN Call: 

NOTE 

When a local event flag is specified, 
the indicated event flag is set for the 
sending task; a significant event is 
always declared. 

CALL SEND (tsk,buf, [efn] [,ids]) 

tsk Task name 

buf 13-word integer array of data to be sent 

efn Event flag number 

ids Directive status 

Macro Call: 

SDAT$ tsk ,buf [ ,efn] 

tsk Task name 

buf Address of 13-word data buffer 

efn = Event flag number 

Macro Expansion: 

SDAT$ 
.BYTE 
e RAD50 
.WORD 
.WORD 

ALPHA, DATB UF, 52. 
71.,5 ;SDAT$ MACRO DIC, DPB SIZE=S WORDS 
/ALPHA/ ;RECEIVER TASK NAME 
DATBUF ;ADDRESS OF 13.-WORD BUFFER 
52. ;EVENT FLAG NUMBER 52. 

Local Symbol Definitions: 

S. DATN Task name (4) 

S.DABA Buffer address (2) 

S.DAEF Event flag number (2) 

5-150 



DSW Return Codes: 

rs.sue 

IE.INS 

IE.UPN 

IE~IEF 

IE.ADP 

IE.SOP 

Notes: 

DIRECTIVE DESCRIPTIONS 

Successful completion. 

Receiver task is not installed. 

!sufficient dynamic memory. 

Invalid event flag number (EFN<O, or EFN>96 if group 
global event flags exist for the task's group; or 
EFN>64 if not). 

Part of the DPB or data block is out of the issuing 
task's address space. 

DIC or DPB size is invalid. 

1. Send Data requires dynamic memory. 

2. If the directive specifies a local event elag, the flag is 
local to the sender (issuing) task. RSX-llM does not allow 
one task to set or clear a flag that is local to another 
task. 

Normally, the event flag is used to trigger the receiver task 
into some action. For this purpose, the event flag must be 
common (33 through 64) or group global (65 through 96) rather 
than local. (Refer to the descriptions of the Receive Data 
directive and the Exit IF directive.) 

5-151 



DIRECTIVE DESCRIPTIONS 

SDRC$ 

5.3.62 Send, Request and Connect 

The Send, Request And Connect directive performs a Send Data to the 
specified task, Requests the task if it is not already active, and 
then Connects to the task. The receiver task normally returns status 
by an Emit Status or Exit With Status directive. 

FORTRAN Call: 

CALL SDRC (rtname, ibuf,[iefn],[iast],[iesb] ,[iparm] [,ids]) 

rtname Target task name of the offspring task to be 
connected 

ibuf Name of 13-word send buffer 

iefn Event flag to be set when the offspring task exits 
or emits status 

iast = Name of an AST routine to be called when the 
offspring task exits or emits status 

iesb Name of an 8-word status block to be written when 
the offspring task exits or emits status 

iparm 

ids 

Macro Call: 

SDRC$ 

tname 

Word 0 Offspring task exit status 

Word 1 TKTN abort code 

Word 2-7 Reserved 

NOTE 

The exit status block defaults to 1 one 
word. To use the 8-word exit status block, 
you must specify the logical or of the 
symbol SP.WXB and the event flag number in 
the iefn parameter above. 

Name of a word to receive the status block address 
when an AST occurs 

Integer to receive the Directive Status Word 

tname,buf,[efn] ,[east] ,[esb] 

Target task name of the offspring task to be 
connected 

buf = Address of 13-word send buffer 

efn = The event flag to be cleared on issuance and set 

east 

when the offspring task exits or emits status 

= Address of an AST routine to be called when the 
offspring task exits or emits status 

5-152 



DIRECTIVE DESCRIPTIONS 

esb = Address of an 8-word status block to be written when 
the offspring task exits or emits status 

Word O Offspring task exit status 

Word 1 TKTN abort code 

Word 2-7 Reserved 

NOTE 

The exit status block defaults to 1 one 
word. To use the 8-word exit status block, 
you must specify the logical or of the 
symbol SP.WXB and the event flag number in 
the efn parameter above. 

Macro Expansion: 

SDRC$ 
.BYTE 
.RAD50 
.WORD 
.BYTE 
.BYTE 
.WORD 
.WORD 

ALPHA,BUFFR,2,SDRCTR,STBLK 
141.,7 ;SDRC$ MACRO DIC, DPB SIZE=7 WORDS 
ALPHA ;TARGET TASK NAME 
BUFFR ;SEND BUFFER ADDRESS 
2 ;EVENT FLAG NUMBER = 2 
16. ;EXIT STATUS BLOCK CONSTANT 
SDRCTR ;ADDRESS OF AST ROUTINE 
STBLK ;ADDRESS OF STATUS BLOCK 

Local Symbol Definitions: 

S.DRTN 

S.DRBF 

S.DREF 

S.DREA 

S.DRES 

DSW Return Codes: 

rs. sue 

IE. UPN 

IE. INS 

IE. IEF 

IE.ADP 

IE. SDP 

Task name ( 4) 

Buffer address (2) 

Event flag ( 2) 

AST routine address ( 2) 

Status block address (2) 

Successful completion. 

Insufficient dynamic memory to allocate a send 
packet, Offspring Control Block, ~~~~:~~~ 
or Partition Control Block. 

The specified task is an ACP or has the no-send 
attribute. 

An invalid event flag number was specified (EFN < 0 
or EFN > 96 if group global event flags exist for the 
task. EFN > 64 if not.). 

Part of the DPB or exit status block is not in the 
issuing task's address space. 

DIC or DPB size is invalid. 

5-153 



DIRECTIVE DESCRIPTIONS 

Notes: 

1. If the specified event flag is group global, the use count 
for the event flag's group is incremented to prevent 
premature elimination of the event flags. The use count is 
run down when: 

• Status is returned from the connected task. 

• The issuing task exits before status is returned. 

2. The virtual mapping of the exit status block should not be 
changed while the connection is in effect. Doing so may 
result in obscure errors. 

3. If the directive is rejected, the state of the specified 
event flag is indeterminate. 

5-154 



DIRECTIVE DESCRIPTIONS 

SDRP$ 

5.3.63 Send Data Request and Pass Offspring Control Block 

This directive instructs the system to send a send data packet for the 
specified task, chain to the requested task, and request it if it is 
not already active. 

FORTRAN Call: 

CALV SDRP(task,ibuf,[ibfl],[iefn] ,[iflag] ,[iparen] ,[iocbad] 
[,ids]) 

task = Name of an array (REAL,INTEGER,!*4) that contains the 
RAD50 name of the target task 

ibuf = Name of an integer array containing the data to be 
sent 

ibfl Name of an integer containing the number 
(integers) in the array to be 
S!jS~ell;~i;J· .• •t-~lS: 
d.ef·al;llted•• · 

':1;':p!~1.:::~:?J!·'..•:~ij~i1':j" 
this argument is not spec 
13 • i s assumed • 

iefn = Name of an integer containing the number of the event 
flag that is to be set when this directive is 
executed successfully. 

iflag = Name of an integer containing the flag 
controlling the execution of this directive. 
are defined as follows: 

bits 
They 

i paren 

SD.REX = 128. 

SD.RAL = 1 

SD.RNX = 2 

Force this task to exit upon 
successful execution of 
this directive 
Pass all connections to the 
requested task (default is pass 
none). If you specify this 
flag, do not specify the parent 
task name. 

NOTE 

The target task may not be 
a CL! task. 

Pass the first connection 
in the queue, if there is one, 
to the requested task. If 
you specify this flag, do not 
specify the parent task name. 

Name of an array containing the RAD50 name of the 
parent task whose connection should be passed to the 
target task. The name of the parent task was 
returned in the information buffer of the GTCMCI 
subroutine. 

5-155 



DIRECTIVE DESCRIPTIONS 

iocbad = Name of an integer containing the pool address of the 
OCB to pass. This value was returned in the 
information buffer of the GTCMCI subroutine. Only 
CLI tasks may specify this parameter. 

ids Name of an integer to receive the contents of the 
Directive Status Word. 

Macro Call: 

SDRP$ task,bufadr,[buflen] ,[efn] ,[flag] ,[parent] ,[ocbad] 

task Name of task to be chained to 

bufadr Address of buffer to be given to the requested task 

buflen = Length of buffer to be given to requested task 

efn Event flag 

flag Flags byte 
directive. 

controlling the execution of this 
The flag bits are defined as follows: 

SD.REX = 128. Force this 
successful 
directive. 

task to exit 
completion of 

upon 
this 

SD.RAL 1 

SD.RNX 2 

Pass all connections to the 
requested task (default is pass 
none). If you specify this flag, 
do not specify the parent task 
name. 

NOTE 

The target task may not be 
a CL! task. 

Pass the first connection in the 
queue, if there is one, to the 
requested task. If you specify 
this flag, do not specify the 
parent task name. 

parent = Name of issuing task's parent task whose connection 
is to be passed. If not specified, all connections 
or no connections are passed depending on the flag 
byte. 

ocbad Address of OCB to pass (CLI tasks only) 

Macro Expansion: 

SDRP$ task,bufadr,[buflen] ,[efn] ,[flag] ,[parent] ,[ocbad] 

• BYTE 
.RAD50 
.WORD 
.BYTE 
.WORD 

141.,9 • 
/task/ 
BUFADR 
EFN,FLAG 
BUFLEN 

.RAD50 /PARENT/ 

.WORD OCBAD 

;DIC = 141, DPB LENGTH =9 WORDS 
;TASK NAME IN RADIX-50 
;BUFFER ADDRESS 
;EVENT FLAG, FLAGS BYTE 
;BUFFER LENGTH 
;PARENT TASK NAME 
;ADDRESS OF OCB 

5-156 



DIRECTIVE DESCRIPTIONS 

Local Symbol Definitions: 

S.DRTK 

S.DRAD 

S.DREF 

S.DRFL 

SD .. REX 

SD.RAL 

RAD50 name of task to be chained to 

Send data buffer address 

Event flag 

Flags byte: 

(200) Force task to exit (task issuing 
directive) 

(1) Pass all connections to the 
requested task (default is pass 
none). If you specify this 
flag, do not specify the parent task 
name. 

SD.RNX -- (2) Pass the first connection in the 
queue, if there is one, to the 
requested task. If you specify 
this flag, do not specify the 
parent task name. 

S. DRBL Leng th .~ .. ~ ......... ~ .. ~ nd 
· ~~...;l•lM.t> htj~/ 

S.DRPT Name of parent whose OCB should be passed 

S.DROA Address of OCB to pass (CLis only) 

DSW Return Codes: 

IE. ITS 

IE. NVR 

IE. ALG 

IE. IBS 

IE. UPN 

IE. INS 

IE. IEF 

IE.ADP 

IE. SOP 

A task that 
parameter, 
CLI. 

is not a CLI specified a CLI only 
or attempted to pass all connections to a 

No offspring control block from specified parent. 

A CLI specified a parent name and an offspring 
control block address that did not describe the same 
connection, or either a parent name or an OCB address 
was specified and the pass all connections flag was 
set. 

Length of send packet is illegal. pn.:'RS~;..:ll,~·!;?y~teiri~r 
tJ:'l,eL .. : $e,na. ;P~.9k;et ·mu;s.~ · be•.:.1.3. · .t>yt;:·e~ · .1ori9~ ... :· 

•·.R.·p:){·-.••t: .• ±~ .. 71:>~~.s.· .. +.·.·.• s. ;·y~:t·····•·~ifl:$ :t:11:1~.·· ·$:~'P:<:i··P~.o.1<:¢..t., •-iri~:y; ·· :l)e>7 .. !µp/ · 
:;.~··~ij;~:<;i;.::.·~:y't,~$;::·:1:~.~9;:;; ... · ''''"'"" ,, .... ' 

Insufficient dynamic memory to allocate a send 
packet, offspring control block, task control block, 
or partition control block. 

The specified task is an ACP or has the no-send 
attribute. 

An invalid event flag number was specified (EFN<O or 
EFN >96 if group global event flags exist. EFN >64 
if not). 

Part of the DPB or exit status block is out of the 
issuing task's address space. 

DIC or DPB size is invalid. 

5-157 



DIRECTIVE DESCRIPTIONS 

Notes: 

1. If the directive is rejected, the state of the specified 
event flag is indeterminate. 

2. If the specified event flag is group global, the use count 
for the event flag's group is incremented to prevent 
premature elimination of the event flags. The use count is 
run down when: 

• Status is returned from the connected tasks 

• The issuing task exits before status is returned. 

5-158 



DIRECTIVE DESCRIPTIONS 

SETF$ 

5.3.64 Set Event Flag 

The Set Event Flag directive instructs the system to set an indicated 
event flag, reporting the flag's polarity before setting. 

FORTRAN Call: 

CALL SETEF (efn[,ids]) 

efn Event flag number 

ids Directive status 

Macro Call: 

SETF$ efn 

efn = Event flag number 

Macro Expansion: 

SETF$ 
.BYTE 
• WORD 

52. 
33.,2 
52 • 

;SETF$ MACRO DIC, DPB SIZE=2 WORDS 
;EVENT FLAG NUMBER 52. 

Local Symbol Definitions: 

S.ETEF Event flag number (2) 

DSW Return Codes: 

Note: 

IS.CLR 

IS. SET 

IE. IEF 

IE.ADP 

IE. SDP 

Flag was clear. 

Flag was already set. 

Invalid event flag number (EFN<l, or EFN>96 if group 
global event flags exist for the task's group; or 
EFN>64 if not). 

Part of the DPB is out of the issuing task's address 
space. 

DIC or DPB size is invalid. 

Set Event Flag does not declare a significant event; 
sets the specified flag. 

it merely 

5-159 



DIRECTIVE DESCRIPTIONS 

SFPA$ 

5.3.65 Specify Floating Point Processor Exception AST 

The Specify Floating Point Processor Exception AST directive instructs 
the system to record one of the two following cases: 

• Floating Point Processor exception ASTs for the issuing task 
are desired, and the Executive is to transfer control to a 
specified address when such an AST occurs for the task. 

• Floating Point Processor exception ASTs for the issuing task 
are no longer desired. 

When an AST service routine entry point address is specified, future 
Floating Point Processor exception ASTs will occur for the issuing 
task, and control will be transferred to the indicated location at the 
time of the AST's occurrence. When an AST service entry point address 
is not specified, future Floating Point Processor exception ASTs will 
not occur until the task issues a directive that specifies an AST 
entry point. See Notes below. 

FORTRAN Call: 

Not supported 

Macro Call: 

SFPA$ [ast] 

ast AST service routine entry point address 

Macro Expansion: 

SFPA$ 
.BYTE 
.WORD 

FLTAST 
lll. I 2 
FLTAST 

;SFPA$ MACRO DIC, DPB SIZE=2 WORDS 
;ADDRESS OF FLOATING POINT AST 

Local Symbol Definitions: 

S. FPAE 

DSW Return Codes: 

rs. sue 

IE. UPN 

IE. ITS 

IE. AST 

IE.ADP 

IE.SOP 

AST entry address (2) 

Successful completion. 

Insufficient dynamic memory. 

AST entrv Point address is already unspecified or 
task was built without floating-point support (FP 
switch not specified in Task Builder .TSK file 
specification). 

Directive was issued from an AST service routine, or 
ASTs are disabled. 

Part of the DPB is out of the issuing task's address 
space. 

DIC or DPB size is invalid. 

5-160 



DIRECTIVE DESCRIPTIONS 

Notes: 

1. A Specify Floating Point Processor Exception AST requires 
dynamic memory. 

2. The Executive queues Floating Point Processor exception ASTs 
when a Floating Point Processor exception trap occurs for the 
task. No future ASTs of this kind will be queued for the 
task until the first one queued has actually been effected. 

3. The Floating Point Processor exception AST service routine is 
entered with the task stack in the following state: 

SP+l2 - Event flag mask word 
SP+lO - PS of task prior to AST 
SP+06 - PC of task prior to AST 
SP+04 - DSW of task prior to AST 
SP+02 - Floating exception code 
SP+OO - Floating exception address 

The task must remove the floating exception code and address 
from the task's stack before an AST Service Exit (see Section 
5.3.4} directive is executed. 

4. This directive cannot be issued either from an AST service 
routine or when ASTs are disabled. 

5. This directive applies only to the Floating Point Processor. 

5-161 



DIRECTIVE DESCRIPTIONS 

SMSG$ 

5.3.66 Send Message 

The Send Message directive instructs the system to create and send a 
formatted data packet to a system-defined target task. The only valid 
target for the Send Message directive is Error Logger, and the Error 
Logging formatted data packet is an Error Log packet. The task that 
issues the SMSG$ directive must be privileged. The valid system 
defined target and identifier are: 

TARGET 
IDENTIFIER 

CODE 

Error Logging SM.SER 

FORTRAN Call: 

CALL SMSG (itgt,ibuf ,ibufl,iprm,iprml,ids) 

itgt The name of the integer containing the target object 
(currently only SM.SER is defined) 

ibuf 

ibufl 

iprm 

iprml 

The name of an integer array containing the data to 
be inserted into the formatted data packet. 

The name of an integer containing the length of the 
ibuf array. 

The name of an integer 
additional parameters. 

array containing any 

The name of an integer containing the number of 
parameters in the iprm array. 

ids The name of an optional integer to receive the 
directive status. 

MACRO Call: 

SMSG$ tgt,buf,len,<pri, ••• ,prn> 

tgt Target identifier 

buf Address of optional data buffer 

len Length in bytes of optional data buffer 

Target-specific parameter list: 

Parameter list for Error Logging 

SMSG$ SM.SER,buf ,len,<typ,sub,lun,msk> 

typ Error Log packet type code 

sub Error Log packet subtype code 

lun Logical unit number of device 

msk Control mask word 

5-162 



DIRECTIVE DESCRIPTIONS 

The directive creates an Error Log packet of the specified type and 
subtype codes. If you specify a LUN, the directive also records 
information about the device to which the LUN refers. The control 
mask word sets flags to zero I/O and error counts on the device 
specified, as shown below: 

Control mask word flag: 

SM.ZER Zeroes device I/O and error counts for device 
specified by LUN 

The directive also creates the following subpackets and places them in 
the Error Log packet in the order listed below: 

1. Header Subpacket - The header subpacket 1 which contains the 
type and subtype codes, the time stamp, and system 
identification, is always recorded. 

2a Task Subpacket - The task subpacket, which identifies the 
task that issued the directive, is always recorded. 

3. Device Subpacket - The device subpacket, which identifies the 
device, is recorded if the directive specifies a LUN 
argument. 

4. Data Subpacket - The data subpacket is recorded if the 
directive specifies an address and length of an optional data 
buffer. 

Macro Expansion (with Error Logging target) 

SMSG$ 
• BYTE 
.WORD 
.WORD 
.WORD 
.WORD 
.WORD 
.WORD 
.WORD 

SM.ERR 
DIC,8 • 
SM.ERR 
DATBUF 
DATLEN 
PRl 
PR2 
PR3 
PR4 

DATBUF,DATLEN,<PR1,PR2,PR3,PR4> 
;SMSG$ MACRO DIC, DPB SIZE=8 WORDS 
;TARGET IDENTIFIER - ERROR LOGGING 
;DATA BUFFER ADDRESS 
;DATA BUFFER LENGTH 
;PARAMETER 1 
;PARAMETER 2 
;PARAMETER 3 
;PARAMETER 4 

Local Symbol Definitions: 

S.MTGT Target identifier (2) 

S.MDBA Buffer address (2) 

S.MDBL Buffer length (2) 

S.MPRL Parameter list 

S.MERR Error Log Target Identifier 

DSW Return Codes: 

rs.sue Successful completion. 

IE.ILU Invalid LUN (Error Log target only). 

IE.SDP DIC or DPB size is invalid. 

5-163 



IE.ULN 

IE.UPN 

IE.INS 

IE.ITS 

IE.ADP 

DIRECTIVE DESCRIPTIONS 

Unassigned LUN (Error Log target only) • 

Insufficient dynamic memory. 

Target task is not installed. 

Invalid target identifier or invalid control mask. 

Part of the DPB or data buffer is out of the issuing 
task's address space. 

5-164 



DIRECTIVE DESCRIPTIONS 

5-165 



DIRECTIVE DESCRIPTIONS 

5-166 



DIRECTIVE DESCRIPTIONS 

5-167 



DIRECTIVE DESCRIPTIONS 

5-168 



DIRECTIVE DESCRIPTIONS 

SPND$S 

5.3.69 Suspend ($S Form Recommended) 

The Suspend directive instructs the system to suspend the execution of 
the issuing task. A task can suspend only itself, not another task. 
The task can be restarted either by a Resume directive, or by an MCR 
or DCL Resume command. 

FORTRAN Call: 

CALL SUSPND [(ids)] 

ids = Directive status 

Macro Call: 

SPND$S [err] 

err = Error routine address 

Macro Expansion: 

SPND$S 
MOV 
.BYTE 
EMT 
BCC 
JSR 

ERR 
(PC)+, - (SP} 
45.,1 
377 
• +6 
PC,ERR 

;PUSH DPB ONTO THE STACK 
;SPND$S MACRO DIC, DPB SIZE=l WORD 
;TRAP TO THE EXECUTIVE 
;BRANCH IF DIRECTIVE SUCCESSFUL 
;OTHERWISE, CALL ROUTINE "ERR" 

Local Symbol Definitions: 

None 

DSW Return Codes: 

IS.SPD 

IE.ADP 

IE. SDP 

Notes: 

Successful completion (task was suspended). 

Part of the DPB is out of the issuing task's address 
space. 

DIC or DPB size is invalid. 

1. A suspended task retains control of the system resources 
allocated to it. The Executive makes no attempt to free 
these resources until a task exits. 

2. A suspended task is eligible for checkpointing unless it is 
fixed or declared to be noncheckpointable. 

3. Because this directive requires only a 1-word DPB, the $S 
form of the macro is recommended. It requires less space and 
executes with the same speed as that of the DIR$ macro. 

5-169 



DIRECTIVE DESCRIPTIONS 

SPRA$ 

5.3.70 Specify Power Recovery AST 

The Specify Power Recovery AST directive instructs the system to 
record one of the two following cases: 

1. Power recovery ASTs for the issuing task are desired, and 
control is to be transferred when a powerfail recovery AST 
occurs. 

2. Power recovery ASTs for the issuing task are no longer 
desired. 

When an AST service routine entry point address is specified, future 
power recovery ASTs will occur for the issuing task, and control will 
be transferred to the indicated location at the time of the AST's 
occurrence. When an AST service entry point address is not specified, 
future power recovery ASTs will not occur until an AST entry point is 
again specified. See Notes below. 

FORTRAN Call: 

To establish an AST: 

EXTERNAL sub 
CALL PWRUP (sub) 

sub Name of a subroutine to be executed upon 
recovery. The PWRUP subroutine will effect a 

CALL sub (no arguments) • 

power 

The subroutine is called as a result of a power 
recovery AST, and therefore may be controlled at 
critical points by using DSASTR and ENASTR subroutine 
calls. 

To remove an AST: 

CALL PWRUP 

Macro Call: 

SPRA$ [ast] 

ast AST service routine entry point address 

Macro Expansion: 

SPRA$ 
.BYTE 
.WORD 

PW RAST 
109., 2 
PW RAST 

Local Symbol Definitions: 

;SPRA$ MACRO DIC, DPB SIZE=2 WORDS 
;ADDRESS OF POWER RECOVERY AST 

S.PRAE AST entry address (2) 

5-170 



DIRECTIVE DESCRIPTIONS 

DSW Return Codes: 

rs.sue Successful completion. 

IE.UPN Insufficient dynamic memory. 

IE.ITS AST entry point address is already unspecified. 

IE.AST Directive was issued from an AST service routine, or, 
ASTs are disabled. 

IE.ADP Part of the DPB is out of the issuing task's address 
space. 

IE.SDP DIC or DPB size is invalid~ 

Notes: 

1. Specify Power Recovery AST requires dynamic memory. 

2. The Executive queues power recovery ASTs when the power-up 
interrupt occurs following a power failure. No future 
powerfail ASTs will be queued for the task until the first 
one queued has been effected. 

3. The task enters the powerfail AST service routine with the 
task stack in the following state: 

SP+06 - Event flag mask word 
SP+04 - PS of task prior to AST 
SP+02 - PC of task prior to AST 
SP+OO - DSW of task prior to AST 

No trap-dependent parameters accompany a power recovery AST; 
therefore, the AST Service Exit directive (see Section 5.3.4) 
can be executed with the stack in the same state as when the 
AST was entered. 

4. This directive cannot be issued either from an AST service 
routine or when ASTs are disabled. 

5. Refer to Chapter 1 for a list of the restrictions on 
operations that may be performed in a FORTRAN AST routine. 

5-171 



DIRECTIVE DESCRIPTIONS 

SPWN$ 

5 • 3 • 71 spawn 

The Spawn directive requests a specified task for execution, 
ionally queuing a command linel and establishing the task's TI: as 

.~!··-~~~i~N ~. · a physical terminal. 

When this directive is issued, an Offspring Control Block (OCB) is 
queued to the offspring TCB and a rundown count is incremented in the 
parent task's TCB. The rundown count is used to inform the Executive 
~~~.~,.~~.; .. ~ .. ~sk is .. w~i parent task and has one or more offspring tasks ·.~I~? 
:l~:~~!~M~j;t:e:~~i r:~:§i}!; cleanup is necessary if a parent task exits with
a·ctive· 'of spring tasks. The rundown count is decremented when the
spawned task exits. The OCB contains the TCB address as well as
sufficient information to effect all of the specified exit events when
the offspring task exits.

If a command line is specified, it is buffered in the Executive pool
and queued for the offspring task for subsequent retrieval by the
offspring task with the Get MCR Command Line directive. Maximum
command 1 ine 1 th :Ch:a)r'ao•ter::s·' <>n' iij,$Jx;...µ.·1:J;ff>sy~if;~lt\·~· ;~~~~~'. . .1~,~~:·?

If an AST address is specified, an exit AST routine is effected when
the spawned task exits with the address of the task's exit status
block on the stack. The AST routine must remove this word from the
stack before issuing the AST Service Exit directive.

Special action is taken if the task being spawned is a Command Line
Interpreter (CLI), such as MCR or DCL. In this case, a command line
must be specified, and both the OCB and the command line are queued
for the interpreter task. MCR and DCL either handle commands directly
or dispatch them to another task. In the case of direct execution of
the command, the OCB may be used to immediately effect the proper exit
conditions and return exit status by an Executive routine. If MCR or
DCL dispatch another task, they simply move the OCB from their own OCB
queue directly to the OCB queue of the dispatched task. They also
queue the command line for the dispatched task as usual. At this
point, the situation is exactly the same as if the SPWN$ directive had
specified the dispatched task directly. No exit conditions occur
until the dispatched task exits.

FORTRAN Call:

CALL SPAWN (rtname,[iugc] ,[iumc],[iefn],[iast] ,[iesb] ,[iparm],
[icmlin], [icmlen], [iunit], [dnam] [,ids])

rtname

iugc

iumc

Name (RADSO) of the offspring task to be spawned.

Group code number for the UIC of the offspring task.

Member code number for the UIC of the offspring
task.

iefn = Event flag to be set when the offspring task exits
or emits status.

1. Command line processing is not available for RSX-llS tasks.

5-172

DIRECTIVE DESCRIPTIONS

iast Name of an AST routine to be called when the
offspring task exits or emits status.

iesb Name of an 8-word status block to be written when
the offspring task exits or emits status.

iparm =

icmlin =

icmlen

iunit =

dnam

Word 0 Offspring task exit status

Word 1 TKTN abort code

Word 2-7 Reserved

NOTE

The exit status block defaults to one word.
To use the 8-word exit status block, you
must specify the logical or of the symbol
SPaWX8 and the event flag number in the iefn
parameter above.

Name of a word to receive the status block address
when the AST occurs.

Name of a command line to be queued for the
offspring task.

Length of the command line (79. characters
maximum) •

Unit number of terminal to be used as the TI: for
:~};:;;-. --:;~:
m:et:e: :tL

.~tt\.~:~:~:iiI::.·'~~- ;~.~:.:;m:ij;~fl·I#!b~·:: .t::$$'µ:~•ng:'
a value of 0 is specified, the TI: of the

issuing task is propagated. A task must be
privileged or must be a CLI task in order to specify
a TI: other than the parent task's TI:.

Device

ids = Integer to receive the directive status word.

Macro Call:

SPWN$ tname,,,[ugc] ,[umc],[efn] ,[east],[esb] ,[cmdlin],[cmdlen],
[unum], [dnam]

tname Name (RAD50) of the offspring task to be spawned.

ugc Group code number for the UIC of the offspring task.

umc

efn

east

Member code number for the UIC of the offspring
task.

The event flag to be cleared on issuance and set
when the offspring task exits or emits status.

Address of an AST routine to be called when the
offspring task exits or emits status.

5-173

esb

cmdlin

DIRECTIVE DESCRIPTIONS

Address of an 8-word status block to be written when
the offspring task exits or emits status.

Word 0 Offspring task exit status

Word 1 TKTN abort code

Word 2-7 Reserved

NOTE

The exit status block defaults to one
word. To use the 8-word exit status
block, you must specify the logical or
of the symbol SP.WX8 and the event flag
number in the efn parameter above.

Address of a command line to be queued for the
offspring task.

cmdlen = Length of the command line (maximum length is 79.).

unum

dnam

Unit number of terminal to be used as the TI: for
the offspring task. :iro!rial;J<.foal:n pat·P:m:~'ter'
rs .n i.r.~·!J~,~,i.~i.~~l~t· :t;\h\;:,, !lll.·.~·s··· t'' !l~, · ithe unit

!num · '1()t:: ·~:· 'q'i;~;t:J~~1;x:1 !elait'.e y the issuing
i:tas if a value. of o is specified, the TI:· of the
issuing task is propagated. A task must be
privileged or must be a CLI task in order to specify
a TI: other than the parent task's TI:.

Device name mnemonic. 'I
.:tex:lltQ.~1:;,r:91;;,µ~m:•~·····.···•i'-;t·~i'"',

Macro Expansion:

SPWN$
.BYTE
.RADSO
.BLKW
.BYTE
.BYTE
.BYTE
.WORD
.WORD
.WORD
• WORD

ALPHA,,,3,7,l,ASTRUT,STBLK,CMDLIN,72.,2
11.,13. ;SPWN$ MACRO DIC, DPB SIZE=l3 WORDS
ALPHA ;NAME OF TASK TO BE SPAWNED
3 ;RESERVED
7,3 ;UMC = 7 UGC = 3
1 ;EVENT FLAG NUMBER = 1
16. ;EXIT STATUS BLOCK CONSTANT
ASTRUT ;AST ROUTINE ADDRESS
STBLK ;EXIT STATUS BLOCK ADDRESS
CMDLIN ;ADDRESS OF COMMAND LINE
72. COMMAND LINE LENGTH = 72 •

NOTE

·::. 'j~~~)~i(; I'

one addi tionaf · parameter (device name)
can be added for a hardware terminal
name. For ex ample, TT 2 !"(~g fq T ···~)
would have the same macro expansion
shown above, plus the following:

.ASCII /TT/ ;ASCII DEVICE NAME

The DPB size will then be 14 words.

5-174

DIRECTIVE DESCRIPTIONS

Local Symbol Definitions:

S. PWTN

S. PWXX

S. PWUM

S. PWUG

S. PWEF

S. PWEA

S. PWES

S. PWCA

S. PWCL

S. PWVT

S. PWDN

DSW Return Codes:

rs. sue

IE. UPN

IE. INS

IE.ACT

IE. PRI

Task name (4)

Reserved (6)

User member code (1)

User group code {l)

Event flag number {2)

Exit AST routine address (2)

Exit status block address (2)

Command line address (2)

Command line length (2)

Terminal unit number (2)

Device name (2)

Successful completion.

Insufficient dynamic memory to allocate an offspring
control block, command line buffer, task control
block, or partition control block.

The specified task was not installed, or it was a
command line interpreter but no command line was
specified.

The specified task was already active and it was not
a command line interpreter.

Nonprivileged task attempted to specify an offspring
task's TI: to be different from its own.

5-175

DIRECTIVE DESCRIPTIONS

DSW Return Codes:

IE.IOU The terminal unit does not exist,
_,

speci is not a terminal.

IE.IEF Invalid event flag number (EFN<O, or EFN>96 if group
global event flags exist for the task's group; or
EFN>64 if not).

IE.ADP Part of the DPB, exit status block, or command line
is out of the issuing task's address space.

IE.SOP DIC or DPB size is invalid.

Notes:

1. If the UIC is defaulted and the offspring task is not a
Command Line Interpreter (CLI), that task is requested to run
under the UIC of the parent task. If the UIC is defaulted,
the offspring task is a CLI, and the CLI passes the specified
command line to a dispatched task, the dispatched task will
run under the UIC of its TI: terminal. See the notes for
the Request Task (RQST$) directive for more information about
task UICs.

2. If the specified event flag is group global, then the use
count for the event flag's group is incremented to prevent
premature elimination of event flags. The use count is run
down when:

• Status is returned from the spawned task.

• The issuing task exits before status is returned.

3. The virtual mapping of the exit status block should not be
changed while the connection is in effect. Doing so may
cause obscure errors.

4. The types of operations that
perform are extremely limited.
a list of restrictions.

a FORTRAN AST routine may
Please refer to Chapter 1 for

The following program illustrates the use of the FORTRAN callable
SPAWN routine and the mechanism for handling ASTs from a FORTRAN
program:

P R 0 G R A M S P W A S T
c
C This program illustrates the use of the FORTRAN callable
C SPAWN routine and the use of a FORTRAN subprogram at AST state.
C This example keeps "ITMAX" tasks active at any point in time
C without having several copies of each utility installed under
C different names. The input file consists of single line commands
C of up to 45 characters in length which invoke tasks in the system
C library UIC. The first three characters of the input command line
Care the name of the task to be invoked(ie: MAC). The output file
C consists of a log file containing the command lines and the exit status
C of the program invoked.
c

5-176

DIRECTIVE DESCRIPTIONS

C The above is accomplished as follows:
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

A command is read from the input file "CMDFIL.CMD" which has the
form "NAM COMMAND 0

, where NAM is the name of the task and COMMAND is the
command to be passed to this task. This input command line is transformed
into an MCR "RUN° command line such as

•RUN $MAC/TASK=TSK#/EST=NO/CMD="COMAND•.
where i is a number assigned by this task so that the target task name
is both known and unique. The MCR dispatcher (MCR •••) is spawned with this
transformed command line, which in turn causes the MCR ••• task to dispatch
a copy of ••• MCR under the name MCRTnn to execute this command. When
this copy of ••• MCR exits, an exit AST is serviced by this task which
issues a "CONNECT" to the target task "TSKf 0

• This method introduces a timing
window such that the target task could exit before the CONNECT is made. In
this case, an error message is written to the log file indicating that
exit status could not be returned due to a connect failure.

This non-privileged FORTRAN IV-PLUS program is compiled and
built as follows:

C MCR>F4P SPWAST,SPWAST/-SP=SPWAST
C MCR>TKB SPWAST/FP,SPWAST=SPWAST,LB:[l,l]F4POTS/LB
c
c
C Define data structures
c
c
c
c
c
c
c

c

c

c

The following variables are kept on a per active 0 invoked task 0 basis
For lack of a better name, each respective entry is called task
inforamation block.

IESTAT(8,XXX) IEXSAD(XXX) ISTAT(XXX) ICMDLN(45,XXX)

PARAMETER ITMAX=3

COMMON /KOM1/IESTAT(8,ITMAX),IEXSAD(ITMAX),ISTAT(ITMAX),IPARM,RTNAME(2)
COMMON /KOM2/THISTK(l6)
COMMON /COMMAN/ICMDLN(45,ITMAX)

INTEGER IE STAT
INTEGER IE XS AD
INTEGER IS TAT

INTEGER I PARM
INTEGER RTNAME

INTEGER THISTK

!exit status array for each task
!array containing the address of each task's iestat
!array containing the status (active vs free) of
each task information block.

!contains address of IESTAT at AST state
!contains the RAD50 name of the target task to be
!connected to at AST state

BYTE ICMDLN !saved input command line per task

C Local input buffer variables
c

DIMENSION INPCOM(3)
DIMENSION INPBUF(45)
EQUIVALENCE (INPBUF(l),INPCOM(l))

BYTE INPBUF
BYTE INPCOM

! INPUT BUFFER
!COMPONENT NAME FIELD OF INPBUF

5-177

DIRECTIVE DESCRIPTIONS

c
C Local variables for SPAWN call
c

c

EXTERNAL EXTAST

DIMENSION CMDLI~(79)

BYTE CMDLIN
INTEGER*4 DSPNAM

!define the name of the AST routine externally

!maximum command line passed to is 79. bytes

!actual command line passed to MCR •••
!variable containing RAD50 task name of MCR •••

DATA DSPNAM/6RMCR ••• /!fill in name of ••• MCR at compile time

C Local control variables
c

c

INTEGER ITCNT
LOGICAL EOF

!count of number of free task information blocks
!flag indicating EOF detected on command input file

C Misc. local variables
c

INTEGER IDSW !integer to contain directive status
c
C Open files
c

OPEN (UNIT=l,TYPE='OLD',READONLY,NAME='CMDFIL.CMD')
OPEN (UNIT=2,TYPE='NEW' ,CARRIAGECONTROL='FORTRAN',NAME='CMDFIL.LOG')

c
C Initialize Variables
c

ITCNT=ITMAX+l
EOF=.FALSE.

!set current count of available task info blocks
! reset EOF flag

CALL IRAD50(3,'TSK',RTNAME(l)) !setup first half of target task name
CALL GETTSK(THISTK(l)) !determine this task's name so that

C STOPing and UNSTOPing may be done
c
C Initialize the IEXSAD array such that each entry contains the address
C of the exit status block which has the corresponding index. This is
C necessary so that the correct exit status block may be determined at AST
C state.
c

DO 5 I=l,ITMAX
CALL GETADR(IEXSAD(I),IESTAT(l,I))

5 CONTINUE

c
C Read a command line from the input file and initialize a free task info
C block.
c

10 READ (l,900,END=30)I,INPBUF !read input command line
ITCNT=ITCNT-1 !one less free block
DO 20 K=l,ITMAX !search for the free block
IF (ISTAT(K) .NE. 0) GOTO 20 !IF NE, block is in use
ISTAT(K)=l !ELSE found one, mark it in use
DO 15 J=l,I !save command line for output later
ICMDLN(J,K)=INPBUF(J)

15 CONTINUE
DO 16 J=I+l,45 !pad saved command line with spaces
ICMDLN(J,K)="40

16 CONTINUE
GOTO 40 !exit search loop

20 CONTINUE
30 EOF=.TRUE. set EOF flag

GOTO 55 continue to log exit status of what's currently
C active

5-178

DIRECTIVE DESCRIPTIONS

c
C Construct the actual command line specified in the SPAWN call
c
c
c

Write saved command line to TI: so that any MCR "RUN" error messages
have context.

40 WRITE(5,710) (ICMDLN(J,K) ,J=l,45)
710 FORMAT(lX,45Al)

ENCODE(I+35,800,CMDLIN)INPCOM,K,(INPBUF(J),J=l,I)
8 00 FORMAT (I RUN $', 3Al, I /TASK=TSK I, Il, I /EST=NO/CMD="' , 45Al)

CMDLIN(I+32)="42 !add terminating quote
CMDLIN(I+33)="15 !and terminator.

c
C Spawn MCR ••• with the command line such as~
c
C "RUN $MAC/TASK=TSK1/EST=NO/CMD="MAC TESTl=TESTl""
c
C At this point the second half of the RAD50 target task name is calculated
C so that the first exit AST may issue a connect after ••• MCR exits.

RTNAME(2)=40*40*(30+K) !calculate second half of RAD50 taskname

C Spawn the MCR dispatcher with the constructed command line. The dispatcher
C will then spawn a copy of ••• MCR which will in turn process the "RUN" command.

45 CALL SPAWN(DSPNAM,,,l,EXTAST,IESTAT(l,K),IPARM,CMDLIN,I+33,0,,IDSW)

C An error could be received from the SPAWN call. This could be due to a
C variety of reasons, such as the task file specified was not found or there
C was insufficient system resources at the time the executive directive
C was issued. Only the IE.RSU errors will be recovered by waiting for
C a significant event and reissuing the call to SPAWN.

IF(IDSW+l) 50,52,54
c
C Spawn error
c
50 IESTAT(l,K)=5

c

IESTAT (2, K) =IDSW
ISTAT(K)=3
GOTO 60

!check directive status returned

!if mi, uncorrectable error mark status
!save directive status returned for log

·!indicate status present
!go write error to log file and cleanup

C Spawn error due to insufficient resources
c
52

c

CALL WFSNE
GOTO 45

!wait for significant event
! reissue SPAWN

C Spawn successful, wait till ••• MCR exits and first AST has been serviced.
c
54 CALL WAITFR(l) !wait for ••• MCR to exit
c
C Do not STOP if connect failed, just process task info block and continue ••
c

c
c

IF(IESTAT(l,K) .EQ. 6) GOTO 60 !exit status code of 6 indicates
connect failure ••

C At this point a check is made to determine whether this task has
C completed its quest. If there is no more input and all task information
C blocks are free, then exit processing will be performed.
c

5-179

DIRECTIVE DESCRIPTIONS

55 IF(EOF .AND. (ITCNT .EQ. ITMAX+l)) GOTO 500
c
C Next, if all the task information blocks are being used, or if there
C is no more input to process, this task is stopped so as to lower its
C priority effectively to zero. This task will once again wake up when
C the connect AST unstops this task.
c

IF(ITCNT .EQ. 1 .OR. (EOF)) CALL STOP
c
C Scan all the task information blocks to process task information blocks
C which are now waiting for cleanup and log file processing.
c

60 DO 70 K=l,ITMAX !search task information blocks for
C the task(s) which exited

IF (ISTAT(K) .NE. 3) GOTO 70 !if eq, then offspring task connect AST
C has not occurred for this task

WRITE (2,901) (ICMDLN(J,K),J=l,45) !write cmdlin to log file
GOTO (62,63,64,61,65,66,67),(IESTAT(l,K) .AND. "377)+1 !decode exit status

61 WRITE (2,902) (IESTAT(l,K) .AND. "377) !unknown exit status
GOTO 68

62 WRITE (2,903) !EX$WAR -- warning
C !or none returned

63

64

65

66

67
68

70

GOTO 68
WRITE (2,904)
GOTO 68
WRITE (2,905)
GOTO 68
WRITE (2,906)
GOTO 68
WRITE (2,907)IESTAT(2,K)
GOTO 68
WRITE (2,908)IESTAT(2,K)
ISTAT(K)=O
IESTAT(l,K)=O
ITCNT=ITCNT+l
CONTINUE
GOTO 10

900 FORMAT(Q,45Al)
901 FORMAT('$',45Al)
902 FORMAT('+','Unknown exit status =',I3)
903 FORMAT('+','<< Warning')
904 FORMAT('+','<< Success')
905 FORMAT('+','<< Error')
906 FORMAT('+','<< Severe error')
907 FORMAT('+','<< Spawn error, DSW =',I3)
908 FORMAT('+','<< Connect error, DSW =',I3)

c
C Exit cleanly by closing all files
c

!EX$SUC success

!EX$ERR error

!EX$SEV severe error

!internal -- SPAWN failure

internal -- CONNECT failure
free up task info block
initialize exit status
adjust free task info block ct

500 CLOSE (UNIT=l)
CLOSE (UNIT=2)
CALL EXIT

close input file on LUN 1
close output file on LUN 2
exit

END

5-180

c

c

c

DIRECTIVE DESCRIPTIONS

S U B R 0 U T I N E E X T A S T

PARAMETER ITMAX=3
COMMON /KOMl/IESTAT(B,ITMAX),IEXSAD(ITMAX),ISTAT(ITMAX),IPARM,RTNAME(2)
COMMON /KOM2/THISTK(l6)

INTEGER IESTAT
INTEGER IEXSAD
INTEGER ISTAT

INTEGER I PARM
INTEGER RTNAME

INTEGER THISTK

EXTERNAL TSKEXT

!exit status array for each task
!array containing the address of each task's IESTAT
!array containing the status (active vs free) of
each task information block.

!contains address of IESTAT at AST state
!contains the RADSO name of the target task to be
!connected to at AST state

C Using IPARM, which contains the address of the exit status block array,
C find the task information block, by comparing this with the address of each
C exit status block array.(contained in IEXSAD)
c

DO 10 I=l,ITMAX
IF (IEXSAD(I) .EQ. IPARM) GOTO 20 !found the task info block

10 CONTINUE
GOTO 30

20 I STAT (I) =2 ! indicate ••• MCR has exited
c
C Try to connect to the target task
c

CALL CNCT(RTNAME(l),2,TSKEXT,IESTAT(l,I),IPARM,IDSW)
IF(IDSW .EQ. 1) GOTO 30 !IF EQ, then successful connect
IESTAT(l,I)=6 !else pass connect failed status
IESTAT(2,I)=IDSW
ISTAT (I) =3 !mark task info block as done.

30 RETURN !return from AST state (returns to internal AST handler)

END

S U B R 0 U T I N E T S K E X T

PARAMETER ITMAX=3
COMMON /KOM1/IESTAT(8,ITMAX),IEXSAD(ITMAX),ISTAT(ITMAX),IPARM,RTNAME(2)
COMMON /KOM2/THISTK(l6)
INTEGER IESTAT !exit status array for each task
INTEGER IEXSAD !array containing the address of each task's IESTAT
INTEGER ISTAT !array containing the status (active vs free) of

C each task information block.
INTEGER IPARM !contains address of IESTAT at AST state
INTEGER RTNAME !contains the RADSO name of the target task to be

C !connected to at AST state
INTEGER THISTK !This task's name (so that an UNSTOP may be performed)

c
C Find exit status block
c

DO 10 I=l,ITMAX
IF (IEXSAD(I) .EQ. IPARM) GOTO 20 !found the task info block

10 CONTINUE
GOTO 30

20 ISTAT(I)=3 !indicate AST has been serviced
CALL USTP(THISTK) !UNSTOP this task

30 RETURN !return from AST state (returns to internal AST handler)

END

5-181

DIRECTIVE DESCRIPTIONS

SRDA$

5.3.72 Specify Receive Data AST

The Specify Receive Data AST directive instructs the system to record
one of the following two cases:

• Receive data ASTs for the issuing task are desired, and the
Executive transfers control to a specified address when data
has been placed in the task's receive queue

• Receive data ASTs for the issuing task are no longer desired.

When the directive specifies an AST service routine entry point,
receive data ASTs for the task will subsequently occur whenever data
has been placed in the task's receive queue; the Executive will
transfer control to the specified address.

When the directive omits an entry point address, the Executive
disables receive data ASTs for the issuing task. Receive data ASTs
will not occur until the task issues another Specify Receive Data AST
directive that specifies an entry point address. See Notes below.

FORTRAN Call:

Neither the FORTRAN language nor the ISA standard permits direct
linking to system trapping mechanisms; therefore, this directive
is not available to FORTRAN tasks.

Macro Call:

SRDA$ [ast]

ast = AST service routine entry point address

Macro Expansion:

SRDA$
.BYTE
.WORD

RECAST
107.,2
RECAST

;SRDA$ MACRO DIC, DPB SIZE=2 WORDS
;ADDRESS OF RECEIVE AST

Local Symbol Definitions:

S.RDAE

DSW Return Codes:

rs.sue

IE.UPN

IE.ITS

IE.AST

IE.ADP

IE.SDP

AST entry address (2)

Successful completion.

Insufficient dynamic memory.

AST entry point address is already unspecified.

Directive was issued from an AST service routine, or
ASTs are disabled.

Part of the DPB is out of the issuing task's address
space.

DIC or DPB size is invalid.

5-182

DIRECTIVE DESCRIPTIONS

Notes:

1. A Specify Receive Data AST requires dynamic memory.

2. The Executive queues receive data ASTs when a message is sent
to the task. No future receive data ASTs will be queued for
the task until the first one queued has been effected.

3. The task enters the recieve data AST service routine with the
task stack in the following state:

SP+06 - Event flag mask word
SP+04 - PS of task prior to AST
SP+02 - PC of task prior to AST
SP+OO - DSW of task prior to AST

No trap-dependent parameters accompany a receive data AST;
therefore, the AST Service Exit directive (see Section 5.3.4)
must be executed with the stack in the same state as when the
AST was effected.

4. This directive cannot be issued either from an AST service
routine or when ASTs are disabled.

5-183

SREA$
SREX$

DIRECTIVE DESCRIPTIONS

5.3.73 Specify Requested Exit AST Directive - SREA$ or SREX$

The Specify Requested Exit AST directive allows the task issuing the
directive to specify the AST service routine to be entered if an
attempt is made to abort the task by a directive or MCR or DCL ABO
command. This allows a task to enter a routine for clean-up instead
of abruptly aborting.

If an AST address is not specified, any previously specified exit AST
is canceled.

Privileged tasks enter the specified AST routine each time an abort is
issued. However, subsequent exit ASTs will not be queued until the
fitst exit AST has occurred.

Nonprivileged tasks enter the specified AST routine only once.
Subsequent attempts to abort the task will actually abort the task.

SREX$ is the preferred form of this directive.
explained in Notes 1 and 2 below.

The differences are

FORTRAN Call:

CALL SREA(ast[,ids])

ast Name of the externally declared AST subroutine

ids = Name of an optional integer to receive the Directive
Status Word

CALL SREX (ast, i pbl k, i pblkl, [dummy] [,ids])

ast Name of the externally declared AST subroutine

ipblk = Name of an integer array
trap-dependent parameters

to receive the

ipblkl Number of parameters to be returned into the ipblk
array.

dummy Reserved for future use

ids Name of an optional integer to receive the Directive
Status Word

Macro Call:

SREA$

SREX$

[ast]

[ast] [,dummy]

ast = AST service routine entry point address
dummy = Reserved for future expansion

5-184

DIRECTIVE DESCRIPTIONS

Macro Expansion:

SREA$
.• BYTE

.WORD

SREX$
.BYTE
.WORD
.WORD

REQAST
167.,2
REQAST

REQAST
167.,3
REQAST
0

The DPB length
directive is
form of the
words.

;SREA$ MACRO DIC, DPB SIZE=2 WORDS
;EXIT AST ROUTINE ADDRESS

;SREX$ MACRO DIC, DPB SIZE=3 WORDS
;EXIT AST ROUTINE ADDRESS
;RESERVED FOR FUTURE EXPANSION

NOTE

for the SREA$ form of the
two words. For the SREX$
directive, it is three

Local Symbol Definitions:

S.REAE

DSW Return Codes:

rs. sue

IE.UPN

IE. AST

IE. ITS

IE.ADP

IE. SDP

Exit AST routine address (2)

Successful completion.

Insufficient dynamic storage.

Directive was issued from an AST service routine, or
ASTs are disabled.

ASTs already not desired, or nonprivileged task
attempted to respecify or cancel the AST after one
had already occurred.

Part of the DPB is out of the issuing task's address
space.

DIC or DPB size is invalid.

5-185

DIRECTIVE DESCRIPTIONS

Notes:

1. The SREX$ form of the directive is recommended for tasks that
wish to handle all privileged and nonprivileged abort
attempts that do not violate multiuser protection checks.
The issuing task can use the information returned on the
stack for this version of the directive to decide how to
handle the abort attempt.

After specifying a requested exit AST using the SREX$ form of
the directive, the issuing task will enter the AST service
routine if any attempt is made to abort the task. On systems
with multiuser protection, nonprivileged abort attempts must
originate from the same TI: as that of the issuing task.

When the AST service routine is entered and the AST has been
specified using the SREX$ version of the directive, the
task's stack is in the following state:

SP+l2 - Event flag mask word
SP+lO - PS of task prior to AST
SP+06 - PC of task prior to AST
SP+04 - DSW of task prior to AST
SP+02 - Trap-dependent parameter
SP+OO - Number of bytes to add to SP to clean stack (4)

The trap-dependent parameter is formatted as follows:

Bit 0 0 if the abort attempt was privileged
1 if the abort attempt was nonprivileged

Bit 1 0 if the ABRT$ directive was issued
1 if the MCR or DCL abort command was used

Bits 2-15 are reserved for future use

Tpe task must remove the trap-dependent parameters from the
stack before an AST Service Exit directive is executed. The
recommended method is to add the value stored in SP+OO to SP.
This is also the only recommended way to access the
non-trap-dependent parameters on the stack.

2. The SREA$ form of the directive is recommended for privileged
tasks that do not wish abort attempts from a nonprivileged
user's MCR or DCL abort command to be allowed, and do not
otherwise care about the nature of the abort attempt. It is
also recommended for any nonprivileged tasks that simply do
not care about the nature of the abort attempt.

After specifying a requested exit AST using the SREA$ form of
the directive, privileged tasks will enter the AST service
routine if any of the following abort attempts is made:

• Any privileged ABRT$ directive or privileged MCR or DCL
abort command

• Any nonprivileged ABRT$ directive on systems without
multiuser protection

• Any nonprivileged ABRT$ directive from the same TI: on
systems with multiuser protection

5-186

DIRECTIVE DESCRIPTIONS

Nonprivileged tasks will enter the AST service routine for
all of the abort attempts listed above, plus the following:

• Any nonprivileged MCR or DCL abort command on systems
without multiuser protection

• Any nonprivileged MCR or DCL abort command from the same
TI: on systems with multiuser protection

When the AST service routine is entered, the task's stack is
in the following state:

SP+06 - Event flag mask word
SP+04 - PS of task prior to AST
SP+02 - PC of task prior to AST
SP+OO - DSW of task prior to AST

No trap-dependent parameters accompany an AST specified by
SREA$; therefore, the AST Service Exit directive can be
executed with the stack in the same state as when the AST was
entered.

3. The event flag mask word at the bottom of the stack preserves
the Wait For conditions of a task prior to AST entry. A task
can, after an AST, return to a Wait For state. Because these
flags and other stack data are in the user task, they can be
modified. However, modifying the stack data may cause
unpredictable results. Therefore, such modification is not
recommended.

4.

5.

If an SREX$ requested exit AST is not specified for
it is impossible to abort a privileged task
nonprivileged terminal using either MCR or DCL on
with multiuser protection.

The two forms of this directive should not be mixed

a task,
from a
systems

in the
same code, since the stack format and the trap-dependent
parameters differ. Any mismatch between the form of the
directive and the AST routine will have unpredictable
results.

6. Please see Chapter 1 for a list of restrictions on operations
that can be performed in a FORTRAN AST routine.

5-187

DIRECTIVE DESCRIPTIONS

SREF$

5.3.74 Send by Reference

The Send By Reference directive inserts a packet containing a
reference to a region into the receive-by-reference queue of a
specified (receiver) task. The Executive automatically attaches the
receiver task for each Send By Reference directive issued by the task
to the specified region (the region identified in W.NRID of the Window
Definition Block). The attachmerit .ocp~rs ~yen iLtl"l~ .rec:edyer:- .ta.sk .i~
al~~~dy a.t~C:l?l"l~d . t() .. tl"l~ regl().1!, ~ri.;·e·s$ b•it•l11l'S~~A<'lt:: i.n·< W'•·.~S~S:c of thei

:w1nd(>'w Pef:fnitioh. ··B.l:ock is·· set• The successful execution of this
directive causes a significant event to occur.

The send packet contains:

• A pointer to the created attachment descriptor, which becomes
the region ID to be used by the receiver task

• The offset and length words specified in W.NOFF and W.NLEN of
the Window Definition Block (which the Executive passes
without checking)

• The receiver task's permitted access to the region, contained
in the window status word W.NSTS

• The sender task name

• Optionally, the address of an 8-word buffer that contains
additional information (If the packet does not include a
buffer address, the Executive sends 8 words of 0.)

The receiver task automatically has access to the entire region as
specified in W.NSTS. The sender task must be attached to the region
with at least the same types of access. By setting all the bits in
W.NSTS to O, the receiver task can default the permitted access to
that of the sender task.

If the directive specifies an event flag, the Executive sets the flag
in the sender task when the receiver task acknowledges the
reference -- by issuing the Receive By Reference directive (see
Section 5.3.55). When the sender task exits, the system searches for
any unreceived references that specify event flags, and prevents any
invalid attempts to set the flags. The references themselves remain
in the receiver task's receive-by-reference queues.

FORTRAN Call:

CALL SREF (tsk,(efn],iwdb,[isrb][,ids])

tsk

efn

iwdb

isrb

ids

A single-precision, floating-point variable containing
the name of the receiving task in Radix-50 format

Event flag number

An 8-word integer array containing a Window Definition
Block (see Section 3.5.2.2)

An 8-word integer array containing additional
information (If specified, the address of isrb is
placed in iwdb(8). If isrb is omitted, the contents
of iwdb(8) remain unchanged.j

Directive status

5-188

DIRECTIVE DESCRIPTIONS

Macro Call:

SREF$ task,wdb[,efn]

task Name of the receiver task

wdb Window Definition Block address

efn Event flag number

Macro Expansion:

ALPHA, WDBADR, 4 8. SREF$
.BYTE
.RAD50
.WORD
.WORD

69.,5 ;SREF$ MACRO DIC, DPB SIZE=5 WORDS
/ALPHA/ ;RECEIVER TASK NAME
48. ;EVENT FLAG NUMBER
WDBADR ;WDB ADDRESS

Window Definition Block Parameters:

Input parameters:

Array
Element

Off set

i wd b (4) W. NR ID

i wdb (5) W. NOFF

iwdb(6) W.NLEN

i wdb (7) W. NSTS

iwdb(8) W.NSRB

Output parameters

None

Local Symbol Definitions:

ID of the region to be sent by reference

Offset word, passed without checking

Length word, passed without checking

Bit settings1 in window status word (the
receiver task's permitted access):

Bit Definition

WS.RED 1 if read access is permitted

WS.WRT 1 if write access is permitted

WS. EXT 1 if extend access is permitted

WS.DEL 1 if delete access is permitted

Optional address of an 8-word buffer
containing additional information

S.RETN Receiver task name (4)

S.REBA Window Definition Block base address (2)

S.REEF Event flag number (2)

1. If you are a FORTRAN programmer, refer to Section 3.5.2 to
determine the bit values represented by the symbolic names described.

5-189

DSW Return Codes:

rs. sue

IE. UPN

IE. INS

IE. PRI

IE. NVR

IE.IEF

IE. ADP

IE. SDP

Notes:

DIRECTIVE DESCRIPTIONS

Successful completion.

A send packet or an attachment descriptor could not
be allocated.

The sender task attempted to send a reference to an
Ancillary Control Processor (ACP) task, or task not
installed.

Specified access not allowed to sender task itself.

Invalid region ID.

Invalid event flag number (EFN<O, or EFN>96 if group
global event flags exist for the task; or EFN>64 if
not) •

The address check of the DPB, the WDB, or the send
buffer failed.

DIC or DPB size is invalid.

1. For the user's convenience, the ordering of the SREF$ macro
arguments does not directly correspond to the format of the
DPB. The arguments have been arranged so that the optional
argument (efn) is at the end of the macro call. This
arrangement is also compatible with the SDAT$ macro.

2. Because region attachment requires system dynamic memory, the
receiver task should detach from any region to which it was
already attached, in order to prevent depletion of the memory
pool. That is, the task needs to be attached to a given
region only once.

3. If the specified event flag is group global, then the use
count for the event flag's group is incremented to prevent
premature elimination of the event flags. The use count is
run down when:

• The packet is received.

• The issuing task exits before the packet is received.

5-190

DIRECTIVE DESCRIPTIONS

SRRA$

5.3.75 Specify Receive-by-Reference AST

The Specify Receive-By-Reference AST directive instructs the system to
record one of the following two cases:

• Receive-by-reference ASTs for the issuing task are desired,
and the Executive transfers control to a specified address
when such an AST occurs.

• Receive-by-reference ASTs for the issuing task are no longer
desired.

When the directive specifies an AST service routine entry point,
receive-by-reference ASTs for the task will occur. The Executive will
transfer control to the specified address.

When the directive omits an entry point address, the Executive stops
the occurrence of receive-by-reference ASTs for the issuing task.
Receive-by-reference ASTs will not occur until the task issues another
Specify Receive-By-Reference AST directive that specifies an entry
point address. See Notes below.

FORTRAN Call:

Neither the FORTRAN language nor the ISA standard permits direct
linking to system trapping mechanisms; therefore, this directive
is not available to FORTRAN tasks.

Macro Call:

SRRA$ [ast]

ast AST service routine entry point address (0)

Macro Expansion:

SRRA$
.BYTE
.WORD

RECAST
21.,2
RECAST

;SRRA$ MACRO DIC, DPB SIZE=2 WORDS
;ADDRESS OF RECEIVE AST

Local Symbol Definitions:

S.RRAE

DSW Return Codes:

rs.sue

IE.VPN

IE.ITS

IE.AST

IE.ADP

IE.SDP

AST entry address (2)

Successful completion.

Insufficient dynamic memory.

AST entry point address is already unspecified.

Directive was issued from an AST service routine, or
ASTs are disabled.

Part of the DPB is out of the issuing task's address
space.

DIC or DPB invalid.

5-191

DIRECTIVE DESCRIPTIONS

Notes:

1. Specify Receive-By-Reference AST requires dynamic memory.

2. The Executive queues receive-by-reference ASTs when a message
is sent to the task. Future receive-by-reference ASTs will
not be queued for the task until the first one queued has
been effected.

3. The task enters the receive-by-reference AST service routine
with the task stack in the following state:

SP+06 - Event flag mask word
SP+04 - PS of task prior to AST
SP+02 - PC of task prior to AST
SP+OO - DSW of task prior to AST

No trap-dependent parameters accompany a receive-by-reference
AST; therefore, the AST Service Exit directive (see Section
5.3.4) must be executed with the stack in the same state as
when the AST was effected.

4. This directive cannot be issued either from an AST service
routine or when ASTs are disabled.

5-192

DIRECTIVE DESCRIPTIONS

5-193

STAF$
.BYTE
.. WORD

CPB ! UBF ! UBJ
161. I 2
242

DIRECTIVE DESCRIPTIONS

;STAF$ MACRO DIC, DPB SIZE=2 WORDS
; AFFINITY MASK WORD ('OR' OF PARAMETERS)

Local Symbol Definitions:

S.AFAF Affinity mask word (2)

DSW Return Codes:

IS.SUC ~- Successful completion.

IE.ITS Task installed with affinity

5-194

DIRECTIVE DESCRIPTIONS

STIM$

5.3.77 Set System Time Directive

The Set System Time directive instructs the system to set the sys~em's
internal time to the specified time parameters. Optionally, the Set
System Time directive returns the system's current internal time to
the issuing task before setting it to the specified values.

All time parameters must be specified as binary numbers.

A task must be privileged to issue this directive.

When this directive changes the system time by a specified amount, it
also effectively changes the time of anything resident on the clock
queue by the same amount. Thus, the time synchronization of events is
maintained.

FORTRAN Call:

CALL SETTIM (ibufn[,ibufp[,ids]])

ibufn An 8-word integer array -- new time specification
buffer

ibufp = An 8-word integer array -- previous time buffer

ids = Directive status

Macro Call:

STIM$ bufn,[bufp]

buf n

buf p

Buffer Format:

Word 0

Word 1

Word 2

Word 3

Word 4

Word 5

Word 6

Word 7

Address of 8-word new time specification buffer

Address of 8-word buffer to receive the
previous system time parameters

Year (since 1900).

Month (1-12).

Day (1-n, where n is the highest day possible for the
given month and year).

Hour (0-23).

Minute (0-59).

Second (0-59).

Tick of second (0-n, where n is the frequency of the
system clock minus one) • If the next parameter
(ticks per second) is defaulted, this parameter is
ignored.

Ticks per second (must be defaulted or must match the
frequency of the system clock). This parameter is
used to verify the intended granularity of the "tick
of second" parameter.

5-195

DIRECTIVE DESCRIPTIONS

NOTE

If any of the specified new time
parameters are defaulted (equal to -1),
the corresponding previous system time
parameters will remain unchanged and
will be substituted for the defaulted
parameters during argument validation.

Macro Expansion:

STIM$
.BYTE
.WORD
.WORD

NEWTIM,OLDTIM
61., 3
NEWT IM
OLDTIM

;STIM$ DIC, DPB SIZE=3 WORDS
;ADDRESS OF 8.-WORD INPUT BUFFER
;ADDRESS OF 8.-WORD OUTPUT BUFFER

Local Symbol Definitions:

S. TIBA Input buffer address (2)

S. TIBO Output buffer address (2)

The following offsets are assigned relative to the start of each time
parameters buffer:

S.TIYR

S.TIMO

S.TIDA

S.TIHR

S.TIMI

S.TICS

S.TICT

S. TICP

DSW Return codes:

rs. sue

IE. PRI

IE. !TI

IE.ADP

IE. SDP

Year {2)

Month (2)

Day (2)

Hour (2)

Minute (2)

Second (2)

Clock tick of second (2)

Clock ticks per second (2)

Successful completion.

The issuing task is not privileged.

One of the specified time parameters is out of range,
or both the tick-of-second parameter and the
ticks-per-second parameter were specified and the
ticks-per-second parameter does not match the
system's clock frequency. The system time at the
moment the directive is issued (returned in the
second buffer) can be useful in determining the cause
of the fault if any of the specified time parameters
were defaulted.

Part of the DPB or one of the buffers is out of the
issuing task's address space.

DIC or DPB size is invalid.

5-196

DIRECTIVE DESCRIPTIONS

Notes:

1. Execution of this directive generates an Error Log packet and
sends it to the Error Logging subsystem.

3. The highest clock frequency supported by the operating system
is 1000 hz for a programmable clock. Note that as the clock
frequency approaches this value, the maximum resolution for
this directive becomes more time critical. The accuracy of
this directive depends upon the elapsed time between the
moment that a new system time is specified and the time that
the directive actually traps to the Executive.

4. The buffers used in this directive are compatible with those
of the Get Time Parameters (GTIM$) directive.

5. The second buffer (previous time) is only filled in if the
directive was successfully executed or if it was rejected
with an error code of IE.IT!.

5-197

DIRECTIVE DESCRIPTIONS

STLO$

5.3.78 Stop For Logical OR Of Event Flags

The Stop For Logical OR Of Event Flags directive instructs the system
to stop the issuing task until the Executive sets one or more of the
indicated event flags from one of the following groups:

GR 0 Local flags 1-16

GR 1 Local flags 17-32

GR 2 Common flags 33-48

GR 3 Common flags 49-64

GR 4 Group global flags 65-80

GR 5 Group global flags 81-96

The task does not stop itself if any of the
already set when the task issues the directive.
be issued at AST state.

indicated flags are
This directive cannot

A task that is stopped for one or more event flags can only
unstopped by setting the specified event flag; it cannot
unstopped with the Unstop directive or the MCR Unstop or DCL
command.

FORTRAN Call:

CALL STLOR (iefl, ief2, ief 3, ... ief(n))

iefl ief (n) List of event flag numbers

Macro Call:

STLO$ grp, msk

grp Desired group of event flags

msk A 16-bit mask word

Macro Expansion:

1,47
137.,3
1

;STLO$ MACRO DIC, DPB SIZE=3 WORDS
;GROUP 1 FLAGS {FLAGS 17-32)

become
become

START

STLO$
.BYTE
.WORD
.WORD 47 ;MASK WORD= 47 (FLAGS 17, 18, 19, 22)

Local Symbol Definitions:

S.TLGR Group flags (2)

S. TLMS Mask word (2)

5-198

DSW Return Codes:

rs.sue

IE.AST

IE.IEF

IE.ADP

IE.SDP

Notes:

DIRECTIVE DESCRIPTIONS

Successful completion.

The issuing task is at AST state.

An event flag group other than 0 thru 5
specified, or the event flag mask word is zero.

was

Part of the DPB is out of the issuing task's address
space.

DIC or DPB size is invalid.

1. There is a one-to-one correspondence between bits in the mask
word and the event.flags in the specified group. That is, if
group l were specified (as in the above macro expansion
example), bit 0 in the mask word would correspond to event
flag 17, bit 1 to event flag 18, and so forth.

2. The Executive does not arbitrarily clear event flags when
Stop For Logical OR Of Event Flags conditions are met. Some
directives (Queue I/O Request, for example) implicitly clear
a flag; otherwise, they must be explicitly cleared by a
Clear Event Flag directive.

3. The argumer1t list specified in the FORTRAN call must contain
only event flag numbers that lie within one event flag group.
If event flag numbers are specified that lie in more than one
group, or if an invalid event flag number is specified, a
fatal FORTRAN error is generated.

4. Tasks stopped for event flag conditions cannot be unstopped
by issuing the Unstop directive; tasks stopped in this
manner can only be unstopped by meeting event flag
conditions.

5. The .9!.E operand must always be of the form n regardless of
the macro form used. In all other macro calls, numeric or
address values for---SS-form macros have the form:

For STLO$S this form of the grp argument would be:

n

6. If the specified event flag group is group global, the
group's use count is incremented to prevent premature
elimination of the event flags. The use count is run down
when:

• The Stop For condition is satisfied.

• The issuing task exits before the Stop For condition is
satisfied.

5-199

DIRECTIVE DESCRIPTIONS

STOP$S

5.3.79 Stop ($S Form Recommended)

The Stop directive stops the issuing task.
issued at AST state. A task stopped
unstopped by: another task that issues an
to this task; this task issuing an Unstop
the MCR Unstop or DCL START command.

This directive cannot be
in this manner can only be

Unstop directive directed
directive at AST state; or

FORTRAN Ca 11 :

CALL STOP ([ids])

ids Integer to receive the directive status word

Macro Call:

STOP$S

Macro Expansion:

STOP$S
MOV
.BYTE
EMT

(PC)+, -(SP)
131., 1
377

Local Symbol Definitions:

None

DSW Return Codes:

IS. SET Successful

IE.AST The issuing

IE. ADP Pa rt of the
space.

IE. SDP DIC or DPB

;PUSH DPB ONTO THE STACK
;STOP$ MACRO DIC, DPB SIZE=l WORD
;TRAP TO THE EXECUTIVE

com pl et ion.

task is at AST state.

DPB is out of the issuing task's

size is invalid.

5-200

address

DIRECTIVE DESCRIPTIONS

STSE$

5.3.80 Stop For Single Event Flag

The Stop For Single Event Flag directive instructs the system to stop
the issuing task until the specified event flag is set. If the flag
is set at issuance, the task is not stopped. This directive can not
be issued at the AST state.

A task that is stopped for one or more event
unstopped by setting the specified event
unstopped by the Unstop directive or the MCR
command.

flags can only become
flag; it cannot become

Unstop or DCL START

FORTRAN Call:

CALL STOPFR (iefn[,ids])

iefn Event flag number

ids Integer to receive directive status word

Macro Call:

STSE$ efn

efn Event flag number

Macro Expansion:

STSE$
.BYTE
.WORD

7
135.,2
7

;STSE$ MACRO DIC, DPB SIZE=2 WORDS
;LOCAL EVENT FLAG NUMBER = 7

Local Symbol Definitions:

S.TSEF Event flag number (2)

DSW Return Codes:

Note:

rs.sue

IE.AST

IE.IEF

IE.ADP

IE.SOP

Successful completion.

The issuing task is at AST state.

Invalid event flag number (EFN<l, or EFN>96 if group
global event flags exist for the task's group; or
EFN>64 if not).

Part of the DPB is out of the issuing task's address
space.

DIC or DPB size is invalid.

If the specified event flag is group global, the use count for
the event flag's group is incremented to prevent premature
elimination of event flags. The use count is run down when:

• The Stop For condition is satisfied.

• The issuing task exits before the Stop For condition is
satisfied.

5-201

DIRECTIVE DESCRIPTIONS

SVOB$

5.3.81 Specify SST Vector Table For Debugging Aid

The Specify SST Vector Table For Debugging Aid directive instructs the
system to record the address of a table of SST service routine entry
points for use by an intratask debugging aid (ODT, for example).

To deassign the vector table, omit the parameters adr and len from the
macro call.

Whenever an SST service routine entry is specified in both the table
used by the task and the table used by a debugging aid, the trap
occurs for the debugging aid, not for the task.

FORTRAN Call:

Neither the FORTRAN language nor the ISA standard permits direct
linking to system trapping mechanisms; therefore, this directive
is not available to FORTRAN tasks.

Macro Call:

SVOB$ [adr] [,len]

adr Address of SST vector table

len Length of (that is, number of entries in) the table in
words

The vector table has the following format:

Word O Odd address of nonexistent memory error

Word 1 Memory protect violation

Word 2 T-bit trap or execution of a BPT instruction

Word 3 Execution of an IOT instruction

Word 4 Execution of a reserved instruction

Word 5 Execution of a non-RSX EMT instruction

Word 6 Execution of a TRAP instruction

Word 7 PDP-11/40 floating-point exception

A O entry in the table indicates that the task does not want to
process the corresponding SST.

Macro Expansion:

SVOB$
.BYTE
.WORD
.WORD

SSTTBL, 4
103.,3
SSTTBL
4

;SVOB$ MACRO DIC, DPB S!ZE=3 WORDS
;ADDRESS OF SST TABLE
;SST TABLE LENGTH=4 WORDS

5-202

DIRECTIVE DESCRIPTIONS

Local Symbol Definitions:

S.VDTA

S.VDTL

DSW Return Codes:

rs. sue

IE.ADP

IE. SDP

Table address (2)

Table length (2}

Successful completion.

Part of the DPB or table is out of the issuing task's
address space.

DIC or DPB size is invalid.

5-203

DIRECTIVE DESCRIPTIONS

SVTK$

5.3.82 Specify SST Vector Table For Task

The Specify SST Vector Table For Task directive instructs the system
to record the address of a table of SST service routine entry points
for use by the issuing task.

To deassign the vector table, omit the parameters adr and len from the
macro call.

Whenever an SST service routine entry is specified in both the table
used by the task and the table used by a debugging aid, the trap
occurs for the debugging aid, not for the task.

FORTRAN Call:

Neither the FORTRAN language nor the ISA standard permits direct
linking to system trapping mechanism; therefore, this directive
is not available to FORTRAN tasks.

Macro Call:

SVTK$ [adr] [,len]

adr Address of SST vector table

len Length of (that is, number of entries in) the table in
words

The vector table has the following format:

Word 0 Odd address of nonexistent memory error

Word 1 Memory protect violation

Word 2 T-bit trap or execution of a BPT instruction

Word 3 Execution of an IOT instruction

Word 4 Execution of a reserved instruction

Word 5 Execution of a non-RSX EMT instruction

Word 6 Execution of a TRAP instruction

Word 7 PDP-11/40 floating-point exception

A 0 entry in the table indicates that the task does not want to
process the corresponding SST.

Macro Expansion:

SVTK$
.BYTE
.WORD
.WORD

SSTTBL~4
105.,3
SSTTBL
4

;SVTK$ MACRO DIC, DPB SIZE=3 WORDS
;ADDRESS OF SST TABLE
;SET TABLE LENGTH=4 WORDS

5-204

DIRECTIVE DESCRIPTIONS

Local Symbol Definitions:

S. VTTA

S.VTTL

DSW Return Codes:

rs. sue

IE.ADP

IE. SDP

Table address {2)

Table length (2)

Successful completion.

Part of the DPB or table is out of the issuing task's
address space.

DIC or DPB size is invalid.

5-205

DIRECTIVE DESCRIPTIONS

ULGF$

5.3.83 Unlock Group Global Event Flags ($S Form Recommended)

The Unlock Group Global Event Flags directive instructs the Executive
to decrement the use count of the group global event flags for the
issuing task's protection group UIC (H.CUIC+l)~ This unlocks flags
that were locked by the Create Group Global Event Flags directive.

A task may only unlock the event flags once before locking them again.

The group global event flags are eliminated if the following two
conditions are satisfied:

• The use count in the group global event flag control block
(GFB) is zero after this directive is issued ..

• The GFB is marked for deletion.

FORTRAN Ca 11 :

CALL ULGF ([ids])

ids Directive status

Macro Call:

ULGF$S [err]

err Error routine address

Macro Expansion:

ULGF$S
MOV
.BYTE
EMT
BCC
JSR

ERR
(PC) +, - (SP)
159.,1
377
.+6
PC, ERR

Local Symbol Definitions:

None.

DSW Return Codes:

rs. sue Successful

IE. RSU Event flags

IE.ADP Part of the
space.

IE. SDP DIC or DPB

;PUSH DPB ONTO THE STACK
;DIC=l59., DPB SIZE= 1 WORD
;TRAP TO THE EXECUTIVE
;BRANCH IF DIRECTIVE SUCCESSFUL
;OTHERWISE, CALL ROUTINE "ERR"

completion.

already unlocked from the issuing task.

DPB is out of the issuing task's address

size is invalid.

5-206

DIRECTIVE DESCRIPTIONS

UMAP$

5.3.84 Unmap Address Window

The Unmap Address Window directive unmaps a specified window. After
the window has been unmapped, references to the corresponding virtual
addresses are invalid and cause a processor trap to occur.

FORTRAN Ca 11 :

CALL UNMAP (i wdb [,ids])

iwdb An 8-word integer array containing a Window Definition
Block (see Section 3.5.2.2}

ids Directive status

Macro Call:

UMAP$ wdb

wdb Window Definition Block address

Macro Expansion:

UMAP$
.BYTE
.WORD

WDBADR
123.,2
WDBADR

;UMAP$ MACRO DIC, DPB SIZE=2 WORDS
;WDB ADDRESS

Window Definition Block Parameters:

Input parameters:

Array
Element

Off set

iwdb(l} W.NID
bits 0-7

Output parameters

ID of the window to be unmapped

i wdb (7} W.NSTS Bit settings 1 in the window status word:

Bit Definition

WS.UNM 1 if the window was
successfully unmapped

Local Symbol Definitions:

U.MABA Window Definition Block address (2)

1. If you are a FORTRAN programmer, refer to Section 3.5.2 to
determine the bit values represented by the symbolic names described.

5-207

DSW Return Codes:

rs. sue

IE. ITS

IE.NVW

IE.ADP

IE. SDP

DIRECTIVE DESCRIPTIONS

Successful completion.

The specified address window is not mapped.

Invalid address window ID.

DPB or WDB out of range.

DIC or DPB size is invalid.

5-208

DIRECTIVE DESCRIPTIONS

USTP$

5.3.85 Unstop Task

The Unstop Task directive unstops the specified task that has stopped
itself by either the Stop or the Receive Data Or Stop directive. It
does not unstop tasks stopped for event flag(s) or tasks stopped for
buffered I/O. If the Unstop directive is issued to a task previously
stopped by means of the Stop or Receive Or Stop directive while at
task state, and the task is presently at AST state, the task only
becomes unstopped when it returns to task state.

It is considered the responsibility of the unstopped task to determine
if it has been validly unstopped.

The Unstop directive does not cause a significant event.

FORTRAN Call:

CALL USTP (rtname[,ids])

rtname Name of task to be unstopped

ids Integer to receive directive status information

Macro Call:

USTP$ tname

tname Name of task to be unstopped

Macro Expansion:

USTP$
.BYTE
.RAD50

ALPHA
133.,3
/ALPHA/

;USTP$ MACRO DIC, DPB SIZE=3 WORDS
;NAME OF TASK TO BE UNSTOPPED

Local Symbol Definitions:

U.STTN

DSW Return Codes:

rs.sue

IE.INS

IE.ACT

IE.ITS

IE.ADP

IE.SDP

Task name (4)

Successful completion.

The specified task is not installed in the system.

The specified task is not active.

The specified task is not stopped, or it is stopped
for event flag(s) or buffered I/O.

Part of the DPB is out of the issuing task's address
space.

DIC or DPB size is invalid.

5-209

DIRECTIVE DESCRIPTIONS

,· .. ·. ·:··,: .. ·'

····~.s;·.86 variab1e R~d~iV<l.··.I>at~ .. •if < i i/;i•••<•••···
.. 'flt~ ~arr~bl g ~ecei"~. l)~~~ dii~cft-,.l .itlstructi (theri 1is~.;m tb i d<l<Jti<lll<;·····. a· .

•.. Yiiriable.,..~~pgth ...•.. da.t:.a· .. · .blpp·~ ..• f9·r.·. t:h~.lssLiJ.1'19 ..• •t:Fs*;·····. tJ1e::.d~t.~·<blo9ik ... h~·~.···
·been .. · ·qQeued (jf lFQ)/ f:o r .. the. ·1:,a§k. by · a .. ;Variable · :$end > •. J)at~.•·i· . qirective ~· ·
.\VllE!cl'l .a: ~en~er ·tasJ< is :SPeGifiea, 9nJ.y :P:e\ta s:er1t by the s:peqiftec1 task.
is·receivea·... ..·.·. ·.· · ::>· •. ·•....•.... >. > · \;. •.•. < > :
:·>_=.: .. ; . <; ... :" . :.=:·· "·i···< :'"':·:·' ... ;·.-_::,:.::. . ., , ;::~:.:-·.====-:·.· ·,\ .·;<; ':.·~ ,_:·... ,

)~qlf:¢r .si•;#.e: c~A ~ b~·· ·2.S6;~ >>. wC>.f"~i . n\'a~iiirt·u~·. < •:rt ·no ::bt1ti~r ·•sX·~~··;. rs
··s.p.ec.~ ... f.i~.·~·,.:··• th<?···.·······.:·~·\.ir•~~ .. r: ii···~:iz:~··•••i .. s.•i•.fp.ij.:· .. ·: .. ·~~f(fsi.•~ ·········•····iI~.··.•;a.·•.·.···6:i;t·£~r.·.····.·~·1·i~··• .. ·.·9r-.ea:i:·e·~···
than.:·· 2:s6~ is .• ·• specified1an•·IE·~. IB S; •.•• e rrot•.· .•.. i·s.> returned•· ·

, '... . . ; .. '., . . : : . : : .. ~. : . : '" . . . : .. : . : ... ~ : : . . : ;, . : . : . :.- . : , : : · .. ., : : : . :;· . ; . . ; : ~ . : : ·.: ·.: : . . : .. , . . . : : : '; . . ; : . . . '

· re:turned · .. in th.(3;· sp~c~f:i~·c1 b{1ffe.~, \Vith·t:h~~·ta·~ki·na~e·.· .. in·.:.tbe.·fi.rGb .two·~.·
words• F():r·.· this· .•. r:eason,: · t~J:t.sto}'(l9e<yoµ .. all;ocat.Et · wLt.:hil'l·.· ... · .ttie •.. buffer
.should . b.e two worcls <Jreater .than the size. <:if the dat;:a po·rtion of the
inessage· ·specifieq in the.··. d.irecHve. · · ·
. ' .'::_·, .. ··· ·:-::.·,·.· .. ··· ... ·.·· ... · .. ·;· . : · ... · · .. '

. Varlabl~~Tengt~ data blocks :are.· transferred ·.from.···~he sending
t.he· receivi~g •task by .means <of•.·bu.:f:fer:~.in .·th~ seco~dary ·'f)ool

FORTRAN Call:

CALL VRCD Ct task] ;bufadr, [bufleri] [;ldSJ)

task = Sender task .name

to

buf. Address of buffer to receive the sender task name and
data

buflen = L~ngth of buffer

ids = Integerto receive the directive status word.

If the directive was successful, it returns the number of words
transferred into the user buffer. If the directive execution
encountered an error, It returns the error code in the ids
parameter.

Any error return ·of the form IE.XXX is a negative word value. If
the. status is positive, the . value of the .status word is the
J1Umber of words transferredinclud ing the taskname. For:example;
if you specify a buffer size. of 13 in the VRCD$ call1 the value
returned in the direc'tive statu.s word is 15 (13 words of data
plus the two words, nee<)ed ·to return the taskname).

size in

5-210

DIRECTIVE DESCRIPTIONS

5-211

DIRECTIVE DESCRIPTIONS

·s. 3.87 Variable< Recelye :bata·(lr ·stop

•. Ahe Vad~bl e ReceJ\le. Pata ··or StO£> atre<!t1J.e .. instructs.. the
d<le99.eue · <l ·yariablE!-l~ngth da~ablo9k fo.r :t:hE! .~ssµi11<f .. ta~k;
}:)1opk\has>beeni .. qµe11ed< (FIFO).·.·.· for·.· tbe<task ·.by ·a ..• · vc:iri9ble• s~nd, D~t~

.. cliri;;ctiy.E!·.... u ... tber~<·· .. i.§ .. ·no >s.u<:h.·.paq·ket.to.be. dequeµl$q•, .. th~··.· .• issuipg ..
~qSk is.··stopped• In> this pase1 ~n()~hE!.r .·.~ap~ <ttie s~ndE!r >t<isk) .. if;
expepted·.· ... t() •.... issµe · aI) ...• unstopdirect:ive. <l~t~r sel'ldlngtl:le.data~ .. ·.When
stoRJ?ed. Jn. this man:.ne·r, · .. the di rectiye .··• .. status .. · returnE!d is ... · IS;. 9Wrr
iJ1<lica~ing · .. tha~ > ,t;~e tzssk 'Was ... st()PPE!d: .. > aJ1p >that .. n() (iata:·. hcts been
rf!<Jeiv.ed; ·. hoY?eyer1 ..• ·~in.c:.e ttie t9$k ~.µ$tl}e .• ·,1.1l}st:opp~ci 111 .. orq~r ..••. t:<:> se;e
.th.isi .·.·sta t:;us, .. · .. · the.·.· .•. tasl<.·.·.·· can now. ·J::t:is.su~··· the. Vt;jriable: Receive Data·.• Qr
s'top>directi.ve to agtua1ly re~eive t.he data.packet. . ' ' '

When a sender task :ts. specified, only data sent by the
is received·.

Buffer size can be 256.. words If no buffer
specified, t:be . }:)uff~r size is 13. V/()rds. If a buffer she greater
than 256. is specified,· an IE.TBS error is returned.;.

A 2;,.;wor<l sender task name (in Rad ix_;SO form) and the data olock are
returned in the specified buffer, with the task name in the first 2
words. For this reason, the storage you allocate within the buffer
should be two words greater than the size of the data portion of the
message sp·ecified in the directive.

Variable-length data blocks are transferred from the sending task to
the receiving task by means of buffers in the secondary pool.

FORTRAN Call:

CALL VRCS ([task] ,bufadr, [buflenJf ,ids])

task

buf

buflen

ids

;:: Sender task name

;:: Address of buffer to receive the sender J:ask name .and
data

Length of· buffer

Iritegerto····receive the.· direbtive ... st.~itus word
'.·:·· .··=····=: . ,._ .. _:: ,

If<the direct,ive was' SUCCe$Sfy1, ft rett1rns the number of words
transferred into the user buffer. u· the directive execution:
encountered an error, it returns the error code in the. ids
parameter.

Ar)y·.·errof retur,Il of the .. formi .IE~XXX .if; a ne~l~t~ve •. ,..,opLv~lu~) If
the .• st:atus ••. ·.•.·.rs· pos~tive1· · :the .•..•.... vaJ.ue·.·.·()f·t:h.e sta.tus:·\V()~d:Js the
r1Um~er· .. · of.•· VIO.rds.· .. : .. t;ran~fer:r~d ,11'.lfludil}g· t~~i t<lskJ1(;l~e ~ .. ····· Jr()r ... · ex9~p1··~,

•... i.f· ... ·, yo~.>· ~pecify .. ·a ~t:l~fe:r st;z:'e; o~f }3 1~ tbe: 'VRCS$,. Ccl~l, the' value
··r~tu:r!'led: Jn ... t~e d~rec.tive ...• ?~a'f:.ps. wopd Js .. 1s. {13 word•s of data

······plus. t~e .·twq.·•.·w<:>·rosine~<led•to • l;'e't;,t.trn>th.e>J:asknamet~

5-212

DIRECTIVE DESCRIPTIONS

5-213

DIRECTIVE DESCRIPTIONS

Hii}<< .. <>><· .

. ·.s •.. s.dsa ... ·i~ari.ab.l~iRe~·~•iv~·· .. ·.oa~···~· gf.·· Exit· ... ·.·.· ... ···· .. · ··. ·.·:.· •··•.·•·•··· ...••.•...•..•..•.••...••. ••········.·.· .·
·••iTI1e•... va.·f i·•~bl·~····· ····R~c·e:i~e:·••·n1ia.· .. ··.···Or.··········E~ ... •l~··· ··· a .. i •. 'f~.·c·t:·iv·e·.•· .. in .• s.truc··~ s .. •.···· the s·y~.t.em·.•· . ·.·. to
~equeuE! ..•.•. ~a· ya.r-tapl~--le~gth .qata t>I·()ck· ~o.r·.·the. Js$uing· .. t:a$k; .. ·the:d<:lta .

. ·b~oc.k.·hasb'.¢en 9l1eued .. ··· <rIF.O) fop t:l1e ta~J<·. by··•·.·.·. 9 .Variab~e ·s~l)d .•. Data
dir~c.tive •. ::~er1 .. ·a. ·s~nder · .. t:ask.·fs spe.clf,ied, cmly data .. sent: ·by ttie:
specified.·.· task. is•·r:ec.eived.- ···· · · ··· ... · ...

. ' ... · .·, .. · .. , .. , . : ·:_.··_.,':=!.'·.·.,, . * i~or~ l>~nd.,r t_~.~l<ill~m~ tih. ~<l~fic:~o .. · ibi~> . ~r<<l th~ data .. bidck .. ;>r.,
. r•eturned ·. }1). th~ · .. specifie~. 'bufr.~r,.wit:~· th~ :·~a-~k name. in the'fits;t .·2,
wod:ls • ·. J?9·rt:9i'~······r~a:EjoJ1, ... ·.t9e·.·.St:ot'a~j'e. yo~ ·~~~.OC<ite witf}in th~ ... · .. ·: .bµ:Efer.
sl}oulcf··· ·be··· 'tw,o·· .. ·.wpird.$... ·.·9re'at~r· than t:h~~. sJze:. of·.·.the a:<=i~a''P<>'rtl~n· .of·. th~.
111essag e ?Peci~J ~<l in . t:he .··cl ir ec:tive·. ·

; :····.• .. >>·•>> ... · .. -.·:••' i' i<u:<••········.·· ... ··· :< • : •••. ••
I~···. no .·data.·ha$.····b.ee.n ... sent:, .a ... · ta,~ke:}{·~t. ... oc~urs .•
loss· ... of sen<ld~ta p<:ickets, ... the· user should
tgke care o.f any out~t:.and.ing I/0 or
assume this responsibility~ ·

pr;~vetJt .. the.· ~sslt>li:r;
on .. I/O xun,down to
.the. task shoulP,

Buffet size can be 256~ words·; maximurth is
Specified, the buffer size. is 13. words. a buffer size greater
than 256. is. specified, an ·IE.•IBS error is returned.

Variable-length data blocks are transferred from the >sending task to
the receiving task by means of buffer~ in the secondary pool~

FORTRAN .Call:

CALL VRCX ([task] ,bufadr, [buflen] [,ids])

task

buf

= Sender task name

= Address of buffer to receive the sender task name and
data

buflen = Length of buffer

ids Integer to receive the directive status word

If the directive was successful, it returns the number of words
transferred into the user buffer. If the directive execution
encountered an error, it returns the . erro?," code in the ids
parameter.

of the form TE.XXX is a negcitiye word value. If
1S po Si tive, . the. value . of the Stat;uS Word is the

numbe;- of \'1ord$ transferr:ec:l including the tasknG\me., For example,
if . you specify. a .·J:>uffer .size of .. 13. in t})e· VRCX$. call,. ·
returned in the directive status word is 1,5 <·p.3· words
plus the two W<nds needea··to teturn.t})e t(:lsk,name).;..

Macro cail~

Sender

Buffer

-· Buffer

5-214

DIRECTIVE DESCRIPTIONS

5-215

DIRECTIVE DESCRIPTIONS

efn = Event flag number

ids Integer to receive the directive status word

Macro Call:

VSDA$

task =

5-216

DIRECTIVE DESCRIPTIONS

5-217

iast

DIRECTIVE DESCRIPTIONS

= Name of an AST routine to
offsprin~ task exits or emits

when the

iesb = Name of an 8-word status block to be written when
the offspring task exits or emits status

Word 0 Offspring task exit status

Word 1 TKTN abort code

2-7 Reserved

NOTE

5-218

DIRECTIVE DESCRIPTIONS

5-219

DIRECTIVE DESCRIPTIONS

5-220

DIRECTIVE DESCRIPTIONS

WSIG$S

5.3.91 Wait For Significant Event ($S Form Recommended)

The Wait For Significant Event directive is used to suspend the
execution of the issuing task until the next significant event occurs.
It is an especially effective way to block a task that cannot continue
because of a lack of dynamic memory, since significant events
occurring throughout the system often result in the release of dynamic
memory. The execution of a Wait For Significant Event directive does
not itself constitute a significant event.

FORTRAN Call:

CALL WFSNE

Macro Call:

WSIG$S [err]

err Error routine address

Macro Expansion:

WSIG$S
MOV
.BYTE
EMT
BCC
JSR

ERR
(PC) + , - (S P)
49.,1
377
• +6
PC, ERR

;PUSH DPB ONTO THE STACK
;WSIG$S MACRO DIC, DPB SIZE=l WORD
;TRAP TO THE EXECUTIVE
;BRANCH IF DIRECTIVE SUCCESSFUL
;OTHERWISE, CALL ROUTINE n ERR"

Local Symbol Definitions:

None

DSW Return Codes:

IS. sue

IE.ADP

IE. SDP

Notes:

Successful completion.

Part of the DPB is out of the issuing task's address
space.

DIC or DPB size is invalid.

1. If a directive is rejected for lack of dynamic memory, this
directive is the only technique available for blocking task
execution until dynamic m€mory may again be available.

2. The wait state induced by this directive is satisfied by the
first significant event to occur after the directive has been
issued. The significant event that occurs may or may not be
related to the issuing task.

3. Because this directive requires only a 1-word DPB, the $8
form of the macro is recommended= It requires less space and
executes with the same speed as that of the DIR$ macro.

5-221

DIRECTIVE DESCRIPTIONS

4. Significant events include the following:

• I/O completion

• Task exit

• Execution of a Send Data directive

• Execution of a Send Data, Request and Pass OCB directive

• Execution of a Send, Request and Connect directive

• Execution of a Send By Reference directive or a Receive by
Reference directive

• Execution of an Alter Priority directive

• Removal of an entry from the clock queue (for instance,
resulting from the execution of a Mark Time directive or
the issuance of a rescheduling request)

• Execution of a Declare Significant Event directive

• Execution of the round-robin scheduling algorithm at the
end of a round-robin scheduling interval

• Execution of an Exit, an Exit with Status, or Emit Status
directive

5-222

DIRECTIVE DESCRIPTIONS

WTLO$

5.3.92 Wait For Logical OR Of Event Flags

The Wait For Logical OR Of Event Flags directive instructs the system
to block the execution of the issuing task until the Executive sets
the indicated event flags from one of the following groups:

GR 0 Flags 1-16

GR 1 Flags 17-32

GR 2 Flags 33-48

GR 3 Flags 49-64

GR 4 Flags 65-80

GR 5 Flags 81-96

The task does not block itself if any of the
already set when the task issues the directive.

indicated flags are
See Notes below.

FORTRAN Call:

CALL WFLOR (efnl,efn2, ••• efnn)

efn List of event flag numbers taken as the set of flags to
be specified in the directive

Macro Call:

WTLO$ grp,msk

grp Desired group of event flags

msk A 16-bit flag mask word

Macro Expansion:

WTLO$
.BYTE
.WORD
.WORD

2,160003
43.,3
2
160003

;WTLO$ MACRO DIC, DPB SIZE=3 WORDS
;FLAGS SET NUMBER 2 (FLAGS 33:48.)
;EVENT FLAGS 33,34,46,47 AND 48.

Local Symbol Definitions:

None

DSW Return Codes:

rs. sue

IE. IEF

Successful completion.

No event flag specified in the
group indicator other than O, 1,

mask word or
2, 3, 4, or 5.

flag

IE.ADP Part of the DPB is out of the issuing task's address
space.

IE. SDP DIC or DPB size is invalid.

5-223

DIRECTIVE DESCRIPTIONS

Notes:

1. There is a one-to-one correspondence between bits in the mask
word and the event flags in the specified group. That is, if
group l were specified, then bit 0 in the mask word would
correspond to event flag 17, bit 1 to event flag 18, and so
forth.

2. The Executive does not arbitrarily clear event flags when
Wait For conditions are met. Some directives (Queue I/O
Request, for example) implicitly clear a flag; otherwise,
they must be explicitly cleared by a Clear Event Flag
directive.

3. The grp operand must always be of the form n regardless of
the macro form used. In all other macro calls, numeric or
address values for $S form macros have the form:

#n

For WTLO$S this form of the grp argument would be:

n

4. The argument list specified in the FORTRAN call must contain
only event flag numbers that lie within one event flag group.
If event flag numbers are specified that lie in more than one
group, or if an invalid event flag number is specified, a
fatal FORTRAN error is generated.

5. If the issuing task has outstanding buffered I/O when it
enters the Wait For state, it will be stopped. When the task
is in a stopped state, it can be checkpointed by any other
task regardless of priority. The task is unstopped when:

• The outstanding buffered I/O completes.

• The Wait For condition is satisfied.

6. If the specified group of event flags is group global, the
group's use count is incremented to prevent premature
elimination of the event flags. The use count is run down
when:

• The Wait For condition is satisfied.

• The issuing task exits before the Wait For condition is
satisfied.

5-224

DIRECTIVE DESCRIPTIONS

WTSE$

5.3.93 Wait For Single Event Flag

The Wait For Single Event Flag directive instructs the system to block
the execution of the issuing task until the indicated event flag is
set. If the flag is set at issuance, task execution is not blocked.

FORTRAN Call:

CALL WAITFR (efn[,ids])

efn Event flag number

ids Directive status

Macro Call:

WTSE$ efn

efn Event flag number

Macro Expansion:

WTSE$
.BYTE
.WORD

52.
41.,2
52.

;WTSE$ MACRO DIC, DPB SIZE=2 WORDS
;EVENT FLAG NUMBER 52.

Local Symbol Definitions!

W.TSEF

DSW Return Codes:

rs.sue

IE.IEF

IE.ADP

IE.SOP

Notes:

Event flag number (2)

Successful completion.

Invalid event flag number (EFN<l, or EFN>96 if group
global event flags exist for the task's group; or
EFN>64 if not).

Part of the DPB is out of the issuing task's address
space.

DIC or DPB size is invalid.

1. If the issuing task has outstanding buffered I/O when it
enters the Wait For state, it will be stopped. When the task
is in a stopped state, it can be checkpointed by any other
task regardless of priority. The task is unstopped when:

• The outstanding buffered I/O completes.

• The Wait For condition is satisfied.

2. If the specified event flag is group global, the group's use
count is incremented to prevent premature elimination of
event flags. The use count is run down when:

• The Wait For condition is satisfied.

• The issuing task exits before the Wait For condition is
satisfied.

5-225

APPENDIX A

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL

Abort Task ABRT$

FORTRAN Call:

CALL ABORT (tsk[,ids])

tsk = Task name to be aborted (RAD50)

ids Directive status

Macro Call:

ABRT$ tsk

tsk Task name to be aborted (RAD50)

Alter Priority ALTP$

FORTRAN Call:

CALL ALTPRI ([tsk], [ipri] [,ids])

tsk Active task name

ipri A 1-word integer value equal to the new priority, from
1 to 250 (decimal)

ids Directive status

Macro Call:

ALTP$ [tsk] [,pri]

tsk Active task name

pri New priority, from 1 to 250 (decimal)

A-1

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL

Assign LUN ALUN$

FORTRAN Call:

CALL ASNLUN (lun,dev,unt[,ids])

lun Logical unit number

dev Device name (format: 1A2)

unt Device unit number

ids Directive status

Macro Call:

ALUN$ lun,dev,unt

lun Logical unit number

dev Device name (two characters)

unt Device unit number

AST Service Exit ($S form recommended) ASTX$S

FORTRAN Call:

Neither the FORTRAN language nor the ISA standard permits direct
linking to system-trapping mechanisms; therefore, this directive
is not available to FORTRAN tasks.

Macro Call:

ASTX$S [err]

err Error routine address

Attach Region ATRG$

FORTRAN Call:

CALL ATRG (irdb[,ids])

irdb = An 8-word integer array containing a Region Definition
Block (see Section 3.5.1.2)

ids Directive status

Macro Call:

ATRG$ rdb

rdb Region Definition Block address

Connect To Interrupt Vector CINT$

FORTRAN Call:

Not supported

A-2

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL

Macro Call:

CINT$ vec,base,isr,edir,pri,ast

vec Interrupt vector address -- Must be in the range 60(8)
to highest vector specified during SYSGEN, inclusive,
and must be a multiple of 4

base Virtual base address for kernel APR 5 mapping of the
ISR, and enable/disable interrupt routines

isr Virtual address of the ISR, or 0 to disconnect from the
interrupt vector

edir Virtual address of the enable/disable interrupt routine

pri Initial priority at which the ISR is to execute

ast Virtual address of an AST routine to be entered after
the fork-level routine queues an AST

Clear Event Flag CLEF$

FORTRAN Call:

CALL CLREF (efn[,ids])

efn Event flag number

ids Directive status

Macro Call:

CLEF$ efn

efn Event flag number

Cancel Mark Time Requests CMKT$

FORTRAN Call:

CALL CANMT ([efn] [,ids])

efn Event flag number

ids Directive status

Macro Call:

CMKT$ [efn ,a st, err]

efn Event flag number

ast Mark time AST address

err Error routine address

A-3

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL

Connect CNCT$

FORTRAN Call:

CALL CNCT (rtname, [iefn], [iast], [iesb], [iparm] [,ids])

rtname

iefn

iast

iesb

iparm

ids

Macro Call:

Name (RAD50) of the offspring task to be connected

Event flag to be set when the offspring task exits
or emits status

Name of an AST routine to be called when the
offspring task exits or emits status

Name of an 8-word status block to be written when
the offspring task exits or emits status

Word 0 Offspring task exit status

Word 1-7 Reserved

Name of a word to receive the status block address
when an AST occurs

Integer to receive the Directive Status Word

CNCT$ tname, [efn], [east], [esb]

tname Name (RADSO) of the offspring task to be connected

efn

east

esb

The event flag to be cleared on issuance and set
when the offspring task exits or emits status

Address of an AST routine to be called when the
offspring task exits or emits status

Address of an 8-word status block to be written when
the offspring task exits or emits status

Word 0 Offspring task exit status

Word 1-7 Reserved

A-4

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL

Create Address Window CRAW$

FORTRAN Call:

CALL CRAW (iwdb[,ids])

iwdb = An 8-word integer array containing a Window Definition
Block (see Section 3.5.2.2}

ids Directive status

Macro Call:

CRAW$ wdb

wdb Window Definition Block address

Create Group Global Event Flags CRGF$

FORTRAN Call:

CALL CRGF ([group] [,ids]}

group = Group number for the flags to be created - If not
specified, the task's protection UIC (H.CUIC+l} in
the task's header is used

ids Integer to receive the Directive Status Word

Macro Call:

CRGF$ [group]

group Group number for the flags to be created - If not
specified, the task's protection UIC (H.CUIC+l) in
the task's header is used

Create Region CRRG$

FORTRAN Call:

CALL CRRG (irdb[,ids]}

irdb = An 8-word integer array containing a Region Definition
Block (see Section 3.5.1.2)

ids Directive status

Macro Call:

CRRG$ rdb

rdb Region Definition Block address

A-5

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL

Cancel Time Based Initiation Requests

FORTRAN Call:

CALL CANALL (tsk[,ids])

tsk = Task name

ids Directive status

Macro Call:

CSRQ$ tsk

tsk Task name

A-6

CSRQ$

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL

Declare Significant Event ($S form recommended) DECL$S

FORTRAN Call:

CALL DECLAR ([,ids])

ids Directive status

Macro Call:

DECL$S [,err]

err = Error routine address

Disable AST Recognition ($5 form recommended) DSAR$S

FORTRAN Call:

CALL DSASTR [(ids)]

ids = Directive status

Macro Call:

DSAR$S [err]

err Error routine address

Disable Checkpointing ($S form recommended) DSCP$S

FORTRAN Call:

CALL DISCKP [(ids)]

ids = Directive status

Macro Call:

DSCP$S [err]

err Error routine address

Detach Region DTRG$

FORTRAN Call:

CALL DTRG (irdb[,ids])

irdb = An 8-word integer array containing a Region Definition
Block (see Section 3.5.1.2)

ids Directive status

Macro Call:

DTRG$ rdb

rdb = Region Definition Block address

A-7

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL

Eliminate Address Window

FORTRAN Call:

CALL E LAW { i wd b [, ids])

iwdbi

ids

Macro Call:

ELAW$

wdb

wdb

An 8-word integer array containing
Definition Block {see Section 3.5.2.2)

Directive status

Window Definition Block address

Eliminate Group Global Event Flags

FORTRAN Call:

CALL ELGF ([group] [,ids])

group Group number of flags to be eliminated

a

ids Integer to receive the Directive Status Word

Macro Call:

ELGF$ [group]

group Group number of flags to be eliminated

El.iminate Virtqal .Terminal

FORTRAN Call:

Emit Status

FORTRAN Call:

CALL EMST ([rtname] ,istat[,ids])

ELAW$

Window

ELGF$

EMST$

rtname = Name of task connected to issuing task to which the
status is to be emitted

is tat

ids

= A 16-bit quantity to be returned to the connected
task

Integer to receive the Directive Status Word

A-8

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL

Macro Call:

EMST$ [tname] ,status

tname Name of a task connected to the issuing task to
which the status is to be emitted

status A 16-bit quantity to be returned to the connected
task

Enable AST Recognition ($S form recommended) ENAR$S

FORTRAN Call:

CALL ENASTR [(ids)]

ids Directive status

Macro Call:

ENAR$S [err]

err Error routine address

Enable Checkpointing ($S form recommended) ENCP$S

FORTRAN Call:

CALL ENACKP [(ids)]

ids = Directive status

Macro Call:

ENCP$S [err]

err = Error routine address

Exit If EXIF$

FORTRAN Ca 11:

CALL EXITIF (efn[,ids])

efn Event flag number

ids = Directive status

Macro Call:

EXIF$ efn

efn Event flag number

A-9

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL

Task Exit ($S form recommended) EXIT$S

FORTRAN Call:

Fortran tasks that terminate with the STOP statement result in a
message that includes task name, a statement causing the task to
stop, and an optional character string specified in the STOP
statement. CALL EXIT terminates with the message STOP THIS
FORTRAN TASK.

Macro Call:

EXIT$S [err]

err Error routine address

Exit With Status EXST$

FORTRAN Ca 11 :

CALL EXST (istat)

is tat A 16-bit quantity to be returned to parent task

Macro Call:

EXST$ status

status A 16-bit quantity to be returned to parent task

Extend Task EXTK$

FORTRAN Call:

CALL EXTTSK ([inc] [,ids])

inc A positive or negative number equal to the number of
32-word blocks by which the task size is to be extended
or reduced {If omitted, task size defaults to installed
task size.)

ids Directive status

Macro Call:

EXTK$

inc

[inc]

A positive or negative number equal to the number of
32-word blocks by which the task is to be extended or
reduced (If omitted, task size defaults to installed
task size.)

Get Command for Command Interpreter GCCI$

Fortran Call:

CALL GTCMCI (icbf, icbfl, [i ibuf] , [i ibfl] , [iaddr] , [incp] [,ids])

icbf = Name of a byte to receive the command

A-10

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL

icbfl

iibuf

iaddr

Integer containing the size of the icbf array in bytes

Name of an integer containing the length of the
optional information buffer

Name of an integer that contains the address in pool of
the command desired {This address was obtained by a
previous call to GTCMCI with GC.CND specified.)

incp Name of an integer containing a value indicating the
action to take if there is no command queued

ids Integer to receive the directive status word

Macro Call:

GCCI$ cbuf,cbfl,[ibuf] ,[ibfl] ,[addr] ,[ncp]

cbuf Address of buffer to receive command string

cbfl Length of buffer. Maximum buffer size is

ibuf Address of buffer to receive information on the issuing
terminal

ibfl = Length of buffer to receive information

addr Address of command

ncp Action to take if no command buffer is present

GC.CCS {000) Return with carry set {default)

GC.CEX {001) Force CLI to exit instead of
returning

GC.CST (002) Force CL! to stop instead of
returning

GC.CND {200) -- Copy command into buffer but do not
dequeue it from the list

Get Command Interpreter Information GCII$

FORTRAN Call:

CALL GETCII {ibuf ,ibfl, [icli], [idev], [iunit] [,ids]

ibuf Name of an integer array to receive the CLI information

ibfl Length in bytes of the integer array to receive the CLI
information

icli Name of a 2-word array element containing the RADSO
name of the CLI

idev Name of an integer containing the ASCII name of
terminal (default= TI:)

iuni t Name of an integer containing the octal unit number of
terminal

ids Directive status

A-11

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL

Macro Call:

GCII$ buf,bufl,cli,[dev] ,[unit]

buf Address of buffer to receive information

bufl Length of information buffer

cli Name in RADSO of the CLI that information is requested
on

dev ASCII name of terminal whose CL! should be used

unit Octal unit number of terminal

Get LUN Information GLUN$

FORTRAN Call:

CALL GETLUN {lun,dat[,ids])

lun = Logical unit number

dat = A 6-word integer array to receive LUN information

ids Directive status

Macro Call:

GLUN$ 1 un ,buf

lun Logical unit number

buf = Address of 6-word buffer that will receive the LUN
information

Get MCR Command Line GMCR$

FORTRAN Call:

CALL GETMCR {buf[,ids])

buf = An 80-byte array to receive command line

ids = Directive status

Macro Call:

GMCR$

A-12

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL

Get Mapping Context GMCX$

FORTRAN Call:

CALL GMCX (imcx[,ids])

imcx = An integer array to receive the mapping context. The
size of the array is 8*n+l, where n is the number of
window blocks in th.e ~ask' s heade~ ~t'~;.~axiil\~.Il\.si:~:~ .. i,~
8*8:+1==65 .. on RSX".'."'llM .systems. ·Wll:~:;·:.111 . um:::':s4,:z:~::;~$:\:
:.~'~.~;.~;++.¥':l::~:~··:;9p::: ~B'~'+?l~~~ft1ff£~'.~~~::,;;~y~rB:~~~:~'.t· : · ·· · · ·. · ··· · ·· · ·

ids Directive status

Macro Call:

GMCX$ wvec

wvec The address of a vector of n Window Definition Blocks;
n is the number of window blocks in the task's header.

Get Partition Parameters GPRT$

FORTRAN Call:

CALL GETPAR ([prt],buf[,ids])

prt Partition name

buf A 3-word integer array to receive partition parameters

ids Directive status

Macro Call:

GPRT$ [prt] ,buf

prt = Partition name

buf Address of 3-word buffer

Get Region Parameters GREG$

FORTRAN Call:

CALL GETREG ([rid],buf[,ids])

rid Region id

buf A 3-word integer array to receive region parameters

ids Directive status

Macro Call:

GREG$ [rid] ,buf

rid Region ID

buf Address of 3-word buffer

A-13

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL

Get Sense Switches ($S form recommended) GSSW$S

FORTRAN Ca 11 :

CALL READSW (isw)

isw = Integer to receive the console switch settings

The following FORTRAN call allows a program to read the state of a
single switch:

CALL SWITCH (ibt,ist)

ibt The switch to be tested (0 to 15)

ist Test results where:

1 switch on

2 switch off

Macro Call:

GSSW$S [err]

err = Error routine address

Get Time Parameters GTIM$

FORTRAN Ca 11 :

CALL GETTIM (ibfl[,ids])

ibfl An 8-word integer array

ids = Directive status

Macro Call:

GTIM$ buf

buf Address of 8-word buffer

Get Task Parameters GTSK$

FORTRAN Call:

CALL GETTSK (buf(,ids])

buf = A 16-word integer array to receive the task parameters

ids Directive status

Macro Call:

GTSK$ buf

buf Address of 16-word buffer

A-14

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL

Inhibit AST Recognition ($S form recommended) IBAR$S

FORTRAN Call:

CALL INASTR [(ids)]

ids Directive status

Macro Call:

IHAR$S [err]

err Error routine address

Map Address Window MAP$

FORTRAN Call:

CALL MAP (iwdb[,ids])

iwdb = An 8-word integer array containing a Window Definition
Block (see Section 3.5.2.2)

ids Directive status

Macro Call:

MAP$ wdb

wdb = Window Definition Block address

Mark Time MRK'1'$

FORTRAN Ca 11 :

CALL MARK (efn,tmg,tnt[,ids])

efn Event flag number

tmg Time interval magnitude

tnt = Time interval unit

ids = Directive status

The ISA standard call for delaying a task for a specified time
interval is also included:

CALL WAIT (tmg,tnt,ids)

tmg Time interval magnitude

tnt Time interval unit

ids Directive status

A-15

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL

Macro Call:

MRKT$ [efn] ,tmg ,tnt[,ast]

efn Event flag number

tmg Time interval magnitude

tnt Time interval unit

ast AST entry point address

Move to/from User/Supervisor I/D..;.Space

FORTRAN Call:

Not supported.

Macro Call:

MVTS$ action,addr ,val
buff

action = One of the. following:

aaa·r

buf

MV.TUI
MV.TUD
MV.TSI
MV.TSD
M.V.FUI

. MV. FUD
MV.FSI
MV.FSD·

Move
Move

-- Move
Move
Move
Move
Move
Move

to user I-space
to user D...;.space
to supervi~ox I-space
to.sut>ervfsorp•space
f,rom user I-space
from 'l1ser p-space ... · ..
from st1pervisor J,:-s·pace
frOm supervisor D"'."space

= ·~dar·.ess ~f·the Joc~tion· irf.t.ne ··task:

14V'l'S$

= :Bttff7r t() r~c~~ve .the' value< fe.tcbed ~ for:

~r()JP•·.()t>er(lt;i.0~1~ .•••... ·• .. ·:·.•.•······ •\••·•·•i•··,/\ ...•••.. ?/· ..•.•••.•.•..•..•. · ·.· ... ··•····.·•.·.··
= Vall.le<to: be·. stored• 'lri t.hEl lOc_at:l()n~ f()tt.h~<move to

· ..•. · •..•.• o~~i.a•t.•i.·o.ns

A-16

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL

Queue I/O Request QIO$

FORTRAN Call:

Macro

CALL Q IO (fn c , 1 un , [e f n] , [pr i] , [i s b] , [pr 1] [, i d s])

fuc I/O function code

lun Logical unit number

efn Event flag number

pri Priority; ignored, but must be present

isb A 2-word integer array to receive final I/O status

prl A 6-word integer array containing device-dependent
parameters to be placed in parameter words 1 through 6
of the Directive Parameter Block (DPB). Fill in this
array by using the GETADR routine (see Section
1.5.1.4).

ids Directive status

Call:

QIO$ fnc,lun, [efn], [pri], [isb], [ast], [prl]

fnc I/O function code

lun Logical unit number

efn Event flag number

pri Priority; ignored, but must be present

isb Address of I/O status block

ast Address of AST service routine entry point

prl Parameter list of the form <pl, ••• p6>

Queue I/O Request And Wait QIOW$

FORTRAN Call:

CALL WTQIO (fnc,lun, [efn], [pri], [isb], [prl] [,ids])

fnc I/O function code

lun Logical unit number

efn Event flag number

pri Priority; ignored, but must be present

isb = A 2-word integer array to receive final I/O status

prl A 6-word integer array containing device dependent
parameters to be placed in parameter words 1 through 6
of the DPB

ids Directive status

A-17

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL

Macro Call:

QIOW$ fnc,lun, [efn], [pri], [isb], [ast] [,prl]

fnc I/O function code

lun = Logical unit number

efn = Event flag number

pri Priority; ignored, but must be present

isb Address of I/O status block

ast = Address of AST service routine entry point

prl Parameter list of the form <pl, ••• p6>

Receive Data Or Stop RCST$

FORTRAN Call:

CALL RCST ([rtname] ,ibuf[,ids])

rtname Sender task name (If not specified, data may be
received from any task.)

ibuf = Address of 15-word buffer to receive the sender task

ids

Macro Call:

RCST$

tname

buf

Receive Data

FORTRAN Call:

name and data

Integer to receive the Directive Status Word

[tname],buf

Sender Task name (If not specified, data may be
received from any task.)

Address of a 15-word buffer to receive the sender
task name and data

RCVD$

CALL RECEIV ([tsk] ,buf[,,ids])

tsk = Sender task name IT~ not specified, data may be \ J..

received from any task.)

buf A 15-word integer array for received data

ids Directive status

Macro Call:

RCVD$ [tsk],buf

tsk Sender task name (If not specified, data may be
received from any task.)

buf Address of 15-word buffer

A-18

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL

Receive Data Or Exit RCVX$

FORTRAN Call:

CALL RECOEX ([tsk],buf[,,ids])

tsk = Sender task name (If not specified, data may be
received from any task.)

buf = A 15-word integer array for received data

ids Directive status

Macro Call:

RCVX$ [tsk],buf

tsk Sender task name (If not specified, data may be
received from any task.)

buf Address of 15-word buffer

Read All Event Flags

FORTRAN Call:

ROAF$

A FORTRAN task can only read a single event flag. The call is:

CALL READEF (efn[,ids])

efn Event flag number (1-64.)

ids Directive status

Macro Call:

ROAF$ buf

buf Address of 4-word buffer

A-19

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL

Read Extended Event Flags RDXP$

FORTRAN Ca 11 :

A FORTRAN task can read only a single event flag. The call is:

CALL READEF (efn[,ids])

efn Event flag number (1-96.)

ids Directive status

Macro Call:

RDXF$ buf

buf Address of 6-word buffer

Request and Pass Offspring Information RPOI$

FORTRAN Call:

CALL RPOI (tname, [iugc], [iumc], [iparen], [ibuf], [ibfl], (isc],
[itask], [ocbad] [,ids])

tname An array containing the actual name of the task to be
requested and optionally chained to

iugc = Integer containing the group code number for the UIC

iumc

i paren

of the requested target chain task

Integer containing the member code number for the UIC
of the requested target chain task

Array (or I*4 integer) containing the RADSO name of
the parent task (This is returned in the information
buffer of the GTCMCI subroutine.)

ibuf Array that contains the command line text for the
chained task.

A-20

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL

isc = Flag byte controlling the actions of this directive

idnam

i unit

itask

ocbad

ids

Macro Call:

RPO!$

request when executed. The bit definitions of this
byte are as follows:

RP.OEX = 128. Force this task to
successful execution of
directive.

exit on
the RPO!

RP.OAL 1 Pass all of this task's OCBs to the
requested task. (Default is none.)

Integer containing the ASCII device name of the
requested tasks TI:

Integer containing the unit number of the requested
tasks TI: device

Array which contains the RAD50 name the requested
task is to run under. (Valid only for CLis.)

Integer containing the internal pool address of the
parent OCB (Only a CLI can specify this argument
because the value can only be obtained in the
information buffer of the GTCMCI subroutine.)

= Integer to receive the directive status word

tname,,,, [ugc], [umc], [parent], [bufadr], [buflen], [sc], [dnam],
[unit] , [tas] k, [ocba] d

tname Name of task to be chained to

ugc Group code for UIC of the requested task

umc Member code for UIC of the requested task

parent Name of issuing task's parent task whose OCB is to be
passed. If not specified, all OCB's are passed.

bufadr Address of buffer to be given to the requested task

buflen = Length of buffer to be given to requested task

sc Flags byte:

dnam

unit

task

ocbad

RP.OEX
RP. OAL

(200)
(1)

Force issuing task to exit
Pass all OCBs

ASCII device name for TI:

Unit number of task TI:

RAD50 name of task to be started

Address of OCB to pass (CLis only)

A-21

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL

Request Task RQST$

FORTRAN Call:

CALL REQUES {tsk, [opt] [,ids])

tsk Task name

opt A 4-word integer array:

opt { 1) Partition name first half; ignored, but
must be present

opt{2) Partition name second half; ignored, but
must be present

opt { 3)

opt { 4)

Priority; ignored, but must be present

User Identification Code

ids = Directive status

Macro Call:

RQST$ tsk, [prt], [pri] [,ugc,umc]

tsk = Task name

prt Partition name; ignored, but must be present

pri = Priority; ignored, but must be present

ugc UIC group code

umc UIC member code

Receive By Reference RREF$

FORTRAN Call:

CALL RREF { iwdb, [isrb] [I ids])

iwdb = An 8-word integer array containing a Window Definition
Block {see Section 3.5.2.2)

isrb A 10-word integer array to be used as the receive
buffer

ids Directive status

Macro Call:

RREF$ wdb

wdb Window Definition Block

A-22

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL

Resume Task RSUll$

FORTRAN Call:

CALL RESUME (tsk[,ids])

tsk Task name

ids Directive status

Macro Call:

RSUM$ tsk

tsk Task name

Run Task RUN$

FORTRAN Call:

CALL RUN (tsk, [opt] , [smg] , snt, [rmg] , [mt] [,ids])

tsk Task name

opt A 4-word integer array:

opt (1) Partition name first half; ignored, but
must be present

opt (2} Partition name second half; ignored, but
must be present

opt (3) Priority; ignored, but must be present

opt (4} User Identification Code

smg Schedule delta magnitude

snt Schedule delta unit

rmg Reschedule interval magnitude

rnt Reschedule interval unit

ids Directive status

The ISA standard call for initiating a task is also included:

CALL START (tsk,smg,snt[,ids]}

tsk Task name

smg Schedule delta magnitude

snt Schedule delta unit

ids Directive status

A-23

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL

Macro Call:

RUN$ tsk, [prt], [pri], [ugc], [umc], [smg] ,snt [,rmg ,rnt]

tsk = Task name

prt Partition name; ignored, but must be present

pri Priority; ignored, but must be present

ugc UIC group code

umc = UIC member code

smg Schedule delta magnitude

snt Schedule delta unit

rmg Reschedule interval magnitude

rnt Reschedule interval unit

Set Command Line Interpreter SCLI$

FORTRAN Call:

CALL SETCLI (icl i, idev, i unit [,ids])

icli A two word array element containing the name of the CLI
to which the terminal is to be set

idev

iunit

ids

Macro Call:

Integer containing the ASCII name of the terminal to be
set (default= TI:)

Integer containing the unit number of terminal

Directive status

SC LI $ c 1 i , [de v] , [un i t]

cli Name of the CLI to which the terminal is to be set

dev ASCII name of the terminal to be set (default= TI:)

unit Unit number of terminal

A-24

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL

Send Data SDAT$

FORTRAN Call:

CALL SEND (tsk ,buf, [efn] [,ids])

tsk Task name

buf A 13-word integer array of data to be sent

efn Event flag number

ids Directive status

Macro Call:

SDAT$ tsk,buf[,efn]

tsk Task name

buf Address of 13-word data buffer

efn Event flag number

Send, Request And Connect SDRC$

FORTRAN Call:

CALL SDRC {rtname,ibuf, [iefn], [iast], [iesb], [iparm] [,ids])

rtname Target task name of the offspring task to be
connected

ibuf Name of 13-word send buffer

iefn

iast

iesb

iparm

ids

Macro Call:

SDRC$

tname

Event flag to be set when the offspring task exits
or emits status

Name of an AST routine to be called when the
offspring task exits or emits status

Name of an 8-word status block to be written when
the offspring task exits or emits status

Word 0 Offspring task exit status

Word 1-7 Reserved

Name of a word to receive the status block address
when an AST occurs

Integer to receive the Directive Status Word

tname,buf,[efn] ,[east] ,[esb]

Target task name of the offspring task to
connected

be

buf Address of a 13-word send buffer

A-25

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL

efn The event flag to be cleared on issuance and when the
offspring task exits or emit status

east Address of an AST routine to be called when the
offspring task exits or emits status

esb Address of a 8-word status block to be written when
the offspring task exits or emits status

Word 0 Offspring task exit status

Word 1-7 Reserved

Send Data Request and Pass Offspring Control Block SDRP$

FORTRAN Call:

CALL SDRP (task,ibuf, [ibfl], [iefn], [iflag], [iparen],
[iocbad] [,ids])

task

ibuf

ibfl

iefn

iflag

iparen

iocbad

Name of an array (REAL, INTEGER, I*4) that contains
the RAD50 name of target task

Integer array containing data to be sent

Integer containing number of words (integers) in the
array to be sent (On RSX-llM systems, this argument
must be 13., and on RSX-llM-PLUS systems, this
argument may be in the range of 1 to 255.) (Default =
13.)

Integer containing the number of the event flag to be
set when this directive is executed successfully

Integer containing flags bits controlling the
execution. They are defined as follows:

SD.REX = 128. Force this task to exit
upon successful execution

SD.RAL = 1 Pass all OCBs

Name of array containing the RAD50 name of the parent
task whose OCB should be passed to the target task

Name of an integer containing internal pool address of
the OCB to pa SS

ids Integer to receive the contents of the Directive
Status Word

Macro Call:

SDRP$ task,bufadr, [buflen], [efn], [flag], [parent], [ocbad]

task Name of task to be chained to

bufadr Address of buffer to be given to the requested task

buflen Length of buffer to be given to requested task

A-26

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL

efn Event flag

flag Flags byte (Force exit, pass all OCB's)

parent Name of issuing task's parent task whose OCB is to be
passed

ocbad Address of OCB to pass (CLI's only)

Set Event Flag SETF$

FORTRAN Call:

CALL SETEF (efn[,ids])

efn Event flag number

ids Directive status

Macro Call:

SETF$ efn

efn Event flag number

Specify Floating Point Exception AST SEPA$

FORTRAN Call:

Not supported

Macro Call:

SFPA$ [ast]

ast AST service routine entry point address

Send Message SMSG$

FORTRAN Call:

CALL SMSG (itgt,ibuf,ibufl,iprm,iprml,ids)

itgt Integer containing the target object

ibuf Integer array containing the data to be inserted into
the formatted data packet

ibufl

iprm

iprml

ids

Integer containing length of the ibuf array

Integer array containing any additional parameters

Integer containing the number of parameters in the iprm
array

Optional integer to receive the directive status

A-27

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL

Macro Call:

SMSG$ tgt,buf,len,<pri, ••• ,prn>

tgt

buf

len

Target identifier

Address of optional data buffer

pri, ••• ,prn

Length in bytes of optional data buffer

Target-specific parameter list:

Parameter list for Error Logging

SMSG$ SM.SER,buf ,len,typ,sub,lun,mask>

typ Error Log packet code

sub Error Log packet subtype code

lun Logical unit number of device

msk Control mask word

A-28

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL

Suspend ($5 form recommended)

FORTRAN Call:

CALL SUSPND [(ids)J

ids = Directive status

Macro Call:

SPND$S [err]

err Error routine address

Specify Power Recovery AST

FORTRAN Call:

EXTERNAL sub

CALL PWRUP (sub)

sub Name of a
recovery.
following:

subroutine
The PWRUP

to be executed
subroutine will

CALL sub (no arguments)

SPllD$S

SPRA$

upon power
effect the

The subroutine is called as a result of a power
recovery AST, and therefore the subroutine can be
controlled at critical points by using the DSASTR (or
INASTR) and ENASTR subroutine calls.

To Remove an AST:

CALL PWRUP

Macro Call:

SPRA$ [ast]

ast AST service routine entry point address

Spawn SPifN$

FORTRAN Call:

CALL SPAWN (rtname,[iugc],[iumc] ,[iefn] ,[iast] ,[iesb] ,[iparm],
[icmlin], [icmlen], [iunit], [dnam] [,ids])

rtname Name (RADSO) of the offspring task to be spawned

iugc Group code number for the UIC of the offspring task

iumc Member code number for the UIC of the offspring task

iefn Event flag to be set when the offspring task exits
or emits status

iast Name of an AST routine to be called when the
offspring task exits or emits status

A-29

Macro

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL

iesb Name of an 8-word status block to be written when
the offspring task exits or emits status

iparm

icmlin

icmlen

iunit

dnam

ids

Call:

SPWN$

tname

ugc

umc

efn

east

esb

cmdlin

cmdlen

unum

Word 0 Offspring task exit status

Word 1-7 Reserved

Name of a word to receive the status block address
when the AST occurs

Name of a command line to be queued for the
offspring task

Length of the command line (79. characters maximum)

Unit number of terminal to be used as th~ TI: fo~

oJf ~prip~ ~(3~k (/~·$:.~'.'¥'. ' '·pt>~idpal .. ilrtam P<=tiram e.l; .·
9p~·p.~~~~9'.\f' ;Pili · ~ci .. > .. · .·~~.~:.lt'ltt~f::''i. tie· the.. ··t::
Qif .. ·~··.··.· ... ;\t•irtual ;rn:t.i:n~1L c.;reate·d · by the is~h1rig

if a value of 0 is specified, the TI: of the
issuing task is propagated.)

Device name mnemonic (If not specified, the virtual
terminal is used as TI:.)

Integer to receive the Directive Status Word

tname,,, [ugc], [umc], [efn], [east], [esb], [cmdlin], [cmdlen]
, [un um] , [dnam]

Name (RADSO) of the offspring task to be spawned

Group code number for the UIC of the offspring task

Member code number for the UIC of the offspring task

The event flag to be cleared on issuance and set
when the offspring task exits or emits status

Address of an AST routine to be called when the
offspring task exits or emits status

Address of an 8-word status block to be written when
the offspring task exits or emits status

Word 0 Offspring task exit status

Word 1-7 Reserved

Address of a command line to be queued for the
offspring task

Length of the command line (maximum length is 79.)

Unit number of termin9,l. to be used a$ the .r.r.: :·. J9.F·
.t}1e .· offspr}~9 ... < .. tas.K> .. 1If t:he :o.ptJ9#~·i-. dn~m J?<Itoaine·t~.~ ..
is:· ~·op-- spt~:~i·t~~~:~·:. tg~f> ·~<Jr~~7~r~ i1n0st· b:e ·the· •urfit

.:number .ofL.cL.virtu:al t:ermin.al. .. created .by the i.sslifng<i
·t:~.~k:-;' if a value of 0 is specified, the TI: of the
issuing task is propagated.)

A-30

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL

dnam Device name mnemonic (If not specified, the
terminal is used as TI:.)

NOTE

1. If neither unum nor dnam is specified,
the TI: of the issuing task is
propagated.

Specify Receive Data AST

FORTRAN Ca 11 :

Not supported

Macro Call:

SRDA$ [ast]

ast AST service routine entry point address

Specify Requested Exit AST

FORTRAN Call:

CALL SREA (ast[,ids])

ast Name of the externally declared AST subroutine

SRDA$

SREA$
SREX$

ids Name of an optional integer to receive the Directive
Status Word

CALL SREX (ast,ipblk,ipblkl, [dummy] [,ids])

ast Name of the externally declared AST subroutine

ipblk Name of an integer array to receive the trap-dependent
parameters

ipblkl = Number of parameters to be returned into the ipblk
array

dummy Reserved for future use

ids Name of an optional integer to receive the Directive
Status Word

Macro Call:

SREA$ [ast]

SREX$ [ast] [,dummy]

ast AST service routine entry point address

dummy Reserved for future expansion

A-31

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL

Send By Reference SREF$

FORTRAN Call :

CALL SREF {tsk, [efn] ,iwdb, [isrb] [,ids])

tsk Receiver task name

efn Event flag number

iwdb An 8-word integer array containing a Window Definition
Block {see Section 3.5.2.2)

isrb An 8-word
information

integer

ids Directive status

Macro Call:

SREF$ task,wdb[,efn]

task Receiver task name

array

wdb Window Definition Block address

efn Event flag number

Specify Receive-By-Reference AST

FORTRAN Call:

Not supported

Macro Call:

SRRA$ [ast]

containing

ast AST service routine entry point address

A-32

additional

SRRA$

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL

Set System Time Directive STiil$

FORTRAN Call:

CALL SETT IM (ibufn [, i bufp] [,ids])

ibufn An 8-word integer array, new time specification buffer

ibufp An 8-word integer array, previous time buffer

ids = Directive status

Macro Call:

STIM$ bufn, [buf p]

buf n Address of 8-word new time specification buffer

buf p Address of 8-word buffer to receive the previous system
time parameters

Stop For Logical OR Of Event Flags STLO$

FORTRAN Call:

CALL STLOR (iefl,ief2,ief3, ief(n))

iefl ief (n) List of event flag numbers

Macro Call:

STLO$ grp, msk

grp Desired group of event flags

msk A 16-bit mask word

Stop ($S form recommended) STOP$S

FORTRAN Call:

CALL STOP ([ids])

ids Integer to receive the Directive Status Word

Macro Call:

STOP$S

Stop For Single Event Flag STSE$

FORTRAN Call:

CALL STOPFR (iefn[,ids])

iefn Event flag number

ids Integer to receive Directive Status Word

A-33

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL

Macro Call:

STSE$ efn

efn Event flag number

Specify SST Vector Table For Debugging Aid SVDB$

FORTRAN Call:

Not supported

Macro Call:

SVOB$ [adr] [,len]

adr Address of SST vector table

len Length of (that is, number of entries in) table in
words

Specify SST Vector Table For Task SVTK$

FORTRAN Call:

Not supported

Macro Call:

SVTK$ [adr] [,len]

adr Address of SST vector table

len Length of {that is, number of entries in) table in
words

Unlock Group Global Event Flags ($S form recommended) ULGF$S

FORTRAN Call:

CALL ULGF ([ids])

ids = Directive status

Macro Call:

ULGF$S [,err]

err = Error routine address

Unmap Address Window UNMAP$

FORTRAN Ca 11 :

CALL UNMAP (iwdb[,ids])

iwdb = An 8-word integer array containing a Window Definition
Block (see Section 3.5.2.2)

. ids Directive status

A-34

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL

Macro Call:

UMAP$ wdb

wdb Window Definition Block address

Unstop TASK USTP$

FORTRAN Call:

CALL USTP (rtname[,ids])

rtname

ids

Name of task to be unstopped

Integer to receive directive status information

Macro Call:

USTP$ tname

tname Name of task to be unstopped

A-35

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL

A-36

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL

A-37

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL

Wait For Significant Event ($S form recommended) WSIG$S

FORTRAN Ca 11 :

CALL WFSNE

Macro Call:

WSIG$S [err]

err Error routine address

Wait For Logical OR Of Event Flags WTLO$

FORTRAN Call:

CALL WFLOR (efnl,efn2, ••• efnn)

efn List of event flag numbers taken as the set of flags to
be specified in the directive

Macro Call:

WTLO$ grp,msk

grp Desired group of event flags

msk A 16-bit octal mask word

Wait For Single Event Flag WTSF$

FORTRAN Call:

CALL WAITFR (efn[,ids])

efn Event flag number

ids Directive status

Macro Call:

WTSE$ efn

efn Event flag number

A-38

APPENDIX B

STANDARD ERROR CODES

The symbols listed below are associated with the directive status
codes returned by the RSX-llM/M-PLUS Executive. They are determined
{by default) at task-build time. To include these in a MACR0-11
program, use the following two lines of code:

.MCALL DRERR$
DRERR$

STANDARD ERROR CODES RETURNED BY DIRECTIVES IN THE DIRECTIVE STATUS
WORD

IS. CLR +00
rs. sue +01
IS.SET +02

IE.UPN -01.
IE. INS -02.
IE.UNS -04.
IE.ULN -05.
IE. HWR -06.
IE.ACT -07.
IE.ITS -08.
IE. FIX -09.
IE.CKP -10.
IE. TCH -11.
IE. RBS -15.
IE.PRI -16.
IE. RSU -17.
IE. NSW -18.
IE. ILV -19.

IE.AST -80.
IE .MAP -81.

EVENT FLAG WAS CLEAR
OPERATION COMPLETE, SUCCESS
EVENT FLAG WAS SET

INSUFFICIENT DYNAMIC STORAGE
SPECIFIED TASK NOT INSTALLED
INSUFFICIENT DYNAMIC STORAGE FOR SEND
UNASSIGNED LUN
DEVICE DRIVER NOT RESIDENT
TASK NOT ACTIVE
DIRECTIVE INCONSISTENT WITH TASK STATE
TASK ALREADY FIXED/UNFIXED
ISSUING TASK NOT CHECKPOINTABLE
TASK IS CHECKPOINTABLE
RECEIVE BUFFER TOO SMALL
PRIVILEGE VIOLATION
SPECIFIED VECTOR ALREADY IN USE
NO SWAP SPACE AVAILABLE
SPECIFIED VECTOR ILLEGAL

DIRECTIVE ISSUED/NOT ISSUED FROM AST
ISR OR ENABLE/DISABLE INTERRUPT ROUTINE
NOT WITHIN 4K WORDS FROM VALUE OF
BASE ADDRESS & 177700

B-1

IE. IOP
IE .ALG
IE.WOV
IE.NVR
IE.NVW
IE.ITP
IE. IBS
IE.LNL
IE. IUI
IE. IDU
IE. ITI
IE. PNS
IE. IPR
IE.ILU
IE. IEF
IE.ADP
IE. SDP

-83.
-84.
-85.
-86.
-87.
-88.
-89 ..
-90.
-91.
-92.
-93.
-94.
-95.
-96.
-97.
-98.
-99.

STANDARD ERROR CODES

WINDOW HAS I/O IN PROGRESS
ALIGNMENT ERROR
ADDRESS WINDOW ALLOCATION OVERFLOW
INVALID REGION ID
INVALID ADDRESS WINDOW ID
INVALID TI PARAMETER
INVALID SEND BUFFER SIZE (>255.)
LUN LOCKED IN USE
INVALID UIC
INVALID DEVICE OR UNIT
INVALID TIME PARAMETERS
PARTITION/REGION NOT IN SYSTEM
INVALID PRIORITY (>250.)
INVALID LUN
INVALID EVENT FLAG NUMBER
PART OF DPB OUT OF USER'S SPACE
DIC OR DPB SIZE INVALID

B-2

APPENDIX C

DIRECTIVE IDENTIFICATION CODES

Directive Identification Codes (DICs) are used to identify each
directive. The DIC appears in the low byte of the first {or only)
word in the Directive Param€ter Block {DPB). The DPB length {in
words) appears in the high byte of the first DPB word. Thus, both
bytes make up the word format shown below:

First Word
In DPB

DPB Length

(High byte)

DIC

(Low byte)

ZK-312-81

The remainder of this appendix contains a listing of directives
arranged in numerical sequence, according to the octal value for the
first DPB word. In addition, the DIC and DPB lengths are included as
decimal values as they appear in Chapter 5.

This list can be used as a software debugging aid to quickly identify
directives based on the octal value of the first word in a DPB. An
example for the SDAT$ directive is provided below, illustrating the
manner in which the octal value is obtained:

First Word
5(10) 71(10) In DPB

Octal Byte ~ ~
Values 5(8) 107(8)

Binary Word i ~
Value 101 01 000 111

Octal Word
2507 (=SDAT$) Value

ZK-313-81

C-1

DIRECTIVE IDENTIFICATION CODES

Octal Value For Directive Decimal Values For
DPB First Word (Macro Call) DIC DPB Length

433 CMKT$ 2 7. 1.
443 DECL$S 35. 1.
455 SPND$S 45. 1.
461 WSIG$S 49. 1.
463 EXIT$S 51. 1.
537 DSCP$S 95. 1.
541 ENCP$S 97. 1.
543 DSAR$S or IHAR$S 99. 1.
545 ENAR$S 101. 1.
563 ASTX$S ll5. 1.
575 GSSW$S 125. 1.
603 STOP$S 131. 1.

u G s

1025 SRRA$ 21.
1035 EXST$ 29. 2.
1037 CLEF$ 31. 2.
1041 SETF$ 3 3. 2.
1047 RDAF$ 39. 2.
1051 WTSE$ 41. 2.
1065 EXIF$ 53. 2.
1067 CRRG$ 55. 2.
1071 ATRG$ 57. 2.
1073 DTRG$ 59. 2.
1075 GTIM$ 61. 2.
1077 GTSK$ 63. 2.
ll21 RREF$ 81. 2.
1153 SRDA$ 107. 2.
1155 SPRA$ 109. 2.
1157 SFPA$ lll. 2.
1161 GMCX$ 113. 2.
1165 CRAW$ 117. 2.
1171 MAP$ 121. 2.
1173 UMAP$ 123. 2.
1207 STSE$ 135. 2.
1'.22:1 EiVT$.· 151:. ·2~
1235 CRGF$ 157. 2.
1237 ELGF$ 159. 2.
.lf:~~ SifAF;$ i.61~ 2:~:

12145 SPEA$ jJ65~ :2.
1247 SREA$ 167. 2.
1405 GLUN$ 5. 3.
1431 CSRQ$ 25. 3.
1433 CMKT$ 27. 3.
1447 RDXF$ 39. 3.
1453 WTLO$ 43. 3.
1457 RSUM$ 4 7. 3.
1475 STIM$ 61. 3.
1523 ABRT$ 83. 3.
1531 EXTK$ 89. 3.
1547 SVDB$ 103. 3.
1551 SVTK$ 105. 3.
1605 USTP$ 133. 3.

C-2

DIRECTIVE IDENTIFICATION CODES

Octal Value For Directive Decimal Values For
DPB First Word (Macro Call) DIC DPB Length

1611 STLO$ 137. 3.

1647 SREX$ 167. 3.
2007 ALUN$ 7. 4.
2011 ALTP$ 9. 4.
2101 GPRT$ or GREG$ 65. 4.
2113 RCVD$ 75. 4.
2115 RCVX$ 77. 4.
2213 RCST$ 139. 4.
2223 EMST$ 147. 4.
2427 MRKT$ 23. 5.
2505 SREF$ 69. 5.
2507 SDAT$ 71. s.

3413 RQST$ 11. 7.
3601 CINT$ 129. 7.
3615 SDRC$ 141. 7.

11.
QIO$ 12.
QIOW$ 12.
SPWN$ 13.
SPWN$ 14.
GMCR$ 41.

C-3

APPENDIX D

RSX-11 SYSGEN SELECTION OF EXECUTIVE DIRECTIVES

The following list contains all Executive directive macro calls
described in this manual and means of selection at SYSGEN time. Those
directives not available for specific RSX-11 systems are noted as N/A.
Directives that are SYSGEN options are noted as o. The number in
parentheses after the O refers to the SYSGEN options at the end of the
list. Directives that are standard (not SYSGEN options) are indicated
by an asterisk (*).

Directive
Macro
Call

ABRT$
ALTP$
ALUN$
ASTX$S
ATRG$
CINT$
CLEF$
CMKT$

CRGF$

DECL$S
DSAR$S or IHAR$S
DSCP$S
DTRG$
ELAW$

ENAR$S
ENCP$S
EXIF$
EXIT$S
EXST$
EXTK$
GCCI$
GCII$
GLUN$
GMCR$
GMCX$
GPRT$
GREG$
GSSW$S
GTIM$

RSX-llS

*
0 (1)

*
0 (2)
0 (3)
0 (1)

*
*

*
*
0 (2)
N/A
0 (3)
0 (3)
0

0 (2)
N/A

*
*
0 (4)
0 (1)
N/A
N/A

*
N/A
0 (3)
I"\ I 1 \
v \ .L J

0 (3)
0 (1)

*

D-1

System Type

RSX-llM

*
0 (1)

*
0 (2)
0 (3)
0 (1)

*
*

*
*
0 (2)
0 (7)
0 (3)
0 (3)

0 (2)
0 (7)

*
*
0 (4)
0 (1)
0 (15)
0 (15)

*
*
0 (3)
I"\ I 1 \
v \.LI

0 (3)
0 (1)

*

RSX-HM-PLUS

*
*
*
*
*
*
*
*
*

*
*
*

*
*
*
*
*

*
*
*
*
*
*
0 (15)
0 (15)

*
*
*
*
*
*
*

Directive
Macro
Call

GTSK$
MAP$
MRKT$

QIOW$
RCST$
RCVD$
RCVX$

RQST$
RREF$
RSUM$
RUN$
SCAA$
SC1\L$S'
SCLI$
SDAT$
SDRC$
SDRP$
SETF$
SFPA$
SMSG$
SNXC$
SPEA$:
SPND$S
SPRA$
SPWN$
SRDA$
SREA$
SREF$
SREX$
SRRA$
SRRC$
STAF$
STIM$
STLO$
STOP$S
STSE$
SVDB$
SVTK$
ULGF$S
UMAP$

WTLO$
WTSE$

RSX-11 SYSGEN SELECTION OF EXECUTIVE DIRECTIVES

RSX-llS

0 (1)
0 (3)

*

*
0 (13,14)
0 (14)
0 (14)

*
0 (1, 3)

*
*
N/A
't!f/~:
N/A
0 (14)
0 (4,14)
N/A

*
0 (2, 10)
N/A
N/A
N/A
*
0 (2, 11)
0 (4)
0 (2, 14)
0 (1, 2)
0 (1, 3)
0 (1, 2)
0 (1, 2,
N/A
N/A.
0
0
0
0

*
*

*
*

(
(13)
(13)
(13)

D-2

3)

System Type

RSX-llM

0 (1)
0 (3)

*

*
0 (13, 14)
0 (14)
0 (14)

*
0 (1, 3)

*
*

0 (14)
0 (4,14)
0 (14,15)

*
0 (2, 10)
0 (12)
N/A
N/A;

*
0 (2, 11)
0 (4)
0 (2, 14)
0 (1, 2)
0 (1, 3)
0 (1, 2)
0 (1, 2,
N/A
N/!
0
0
0
0

*
*
0
0

*
*

(1
(13}
(13)
(13)

3)

RSX-1111-PLUS

*
*
*

*
*
*
*

*
*
*
*
0

.. ·. iQ

0

*
*
*
*
0

*
*
*
*
*
*
*
*
*
*
*
*
0

*
*
*
*
*
*
*
*

*
*

(15)
H~J
(15)

(10)

(SJ

RSX-11 SYSGEN SELECTION OF EXECUTIVE DIRECTIVES

SYSGEN Options:

1. Specific Executive directive support

2. AST support

3. Memory management directives

4. Parent/offspring tasking support

5. Group-global event flag support

7. Checkpointing support

10. Floating Point Processor support

11. Powerfail recovery support

12. Error Logging support

13. Stop bit synchronization support

14. Send/receive support

15. Alternate CLI support

.·1-.6.~ ·····•P;$~~A~·····~µl?~~lt

D-3

Abort Task, 5-8
ABRT$, 5-8
Address mapping, 3-2
Address space,

logical, 3-2, 3-4
physical, 3-2
virtual, 3-2, 3-4

Address window,
virtual, 3-3

Addressing,
PDP-11, 3-1

Affinity, 5-128
removing, 5-128
setting, 5-193

Alter Priority, 5-10
ALTP$, 5-10
ALUN$, 5-12
Assign LUN, 5-12
AST,

command arrival, 5-145
definition, 2-4
exit, 5-184
floating point processor

exception, 5-160

INDEX

general characteristics, 2-7
parity error, 5-167
power recovery, 5-170
purpose, 2-6
receive data, 5-182
receive-by-reference, 5-191
service routine, 2-7
task's stack format,

2-8 to 2-11
trap-dependent parameters,

2-8
AST recognition, 5-53 to 5-54
AST routine,

FORTRAN callable, 1-16
AST Service Exit, 5-14
ASTX$S, 5-14
Asynchronous System Trap

(AST) , 2-4
ATRG$, 5-16
Attach Region, 5-16
Attachment descriptor, 3-9

Batch processingr 4-1
Buffer format,

for GTIM$ directive, 5-95
for GTSK$ directive, 5-97

$C macro form, 1-6
CALL ABORT, 5-8
CALL ALTPRI, 5-10
CALL ASNLUN, 5-12
CALL ATRG, 5-16
CALL CANALL, 5-51
CALL CANMT, 5-29
CALL CLREF, 5-28
CALL CNCT, 5-31
CALL CPCR, 5-34
CALL CRAW, 5-37
CALL CRGF, 5-40
CALL CRRG, 5-42
CALL CRVT, 5-48
CALL DECLAR, 5-52
CALL DISCKP, 5-55
CALL DSASTR, 5-53
CALL DTRG, 5-56
CALL ELAW, 5-58
CALL ELGF, 5-60
CALL ELVT, 5-62
CALL EMST, 5-64
CALL ENACKP, 5-66
CALL ENASTR, 5-65
CALL EXIT, 5-70
CALL EXITIF, 5-67
CALL EXST, 5-71
CALL EXTTSK, 5-73
CALL GETCII, 5-79
CALL GETLUN, 5-81
CALL GETMCR, 5-84
CALL GETPAR, 5-89
CALL GETREG, 5-91
CALL GETTIM, 5-95
CALL GETTSK, 5-97
CALL GMCX, 5-86
CALL GTCMCI, 5-75
CALL INASTR, 5-53
CALL MAP, 5-100
CALL MARK, 5-103
CALL PWRUP, 5-170
CALL QIO, 5-112
CALL RCST, 5-118
CALL READEF, 5-125, 5-127
CALL RECEIV, 5-120
CALL RECOEX, 5-122
CALL RESUME, 5-139
CALL RMAF, 5-128
CALL RPO!, 5-129
CALL RREF, 5-136
CALL RUN, 5-140
CALL SDRC, 5-152

Index-1

CALL SDRP, 5-155
CALL SEND, 5-150
CALL SETCLI, 5-148
CALL SETEF, 5-159
CALL SETTIM, 5-195
CALL SMSG, 5-162
CALL SNXC, 5-165
CALL SPAWN, 5-172
CALL SREA, 5-184
CALL SREF, 5-188
CALL SREX, 5-184
CALL STAF, 5-194
CALL STLOR, 5-198
CALL STOP, 5-200
CALL STOPFR, 5-201
CALL SUSPND, 5-169
CALL ULGF, 5-206
CALL UNMAP, 5-207
CALL USTP, 5-209
CALL VRCD, 5-210
CALL VRCS, 5-212
CALL VRCX, 5-214
CALL VSDA, 5-216
CALL VSRC, 5-218
CALL WAIT, 5-103
CALL WAITFR, 5-225
CALL WFSNE, 5-221
CALL WTQIO, 5-116
Cancel Mark Time Requests,

5-29
Cancel Time Based Initiation

Requests, 5-51

INDEX

Chaining, 4-1, 5-129, 5-155
Checkpoint Common Region, 5-34
Checkpointing during buffered

I/O, 2-11
CINT$, 5-18 to 5-19
Clear Event Flag, 5-28
CLEF$, 5-28
CMKT$, 5-29
CNCT$, 5-31
Command buffer format, 5-76
Common block attached,

determining region ID of,
5-16

Common Block Directory {CBD),
5-42

Common event flag,
reading, 5-127

Common region,
force checkpointing, 5-34

Connect, 5-31
Connect to Interrupt Vector,

5-18
Connecting and passing status,

4-3
Console switch register, 5-93
Convention,

for using system directives,

Index-2

Convention (Cont.)
5-5

macro name, 1-5
CPCR$, 5-34
CPU/UNIBUS affinity, 5-128,

5-193
CRAW$, 5-36 to 5-39
Create Address Window, 5-36
Create Group Global Event

Flags, 5-40 ·
Create Region, 5-42
Create Virtual Terminal, 5-45
CRGF$, 5-40
CRRG$, 5-42
CRVT$, 5-45
CSRQ$, 5-51

Data,
including in supervisor-mode

library, 5-107
Data space, 5-107

mapping user, 5-107
supervisor, 5-107

Data structure,
user, 3-11

Declare Significant Event,
5-52

DECL$S, 5-52
Delaying a task,

ISA standard call for, 5-103
Detach Region, 5-56
DIC, 1-2
DIR$ macro, 1-5 to 1-7
Directive,

macros, 1-4
processing, 1-2
rejection, 1-3

Directive Identification Code
{DIC) , 1-2

Directive Parameter Block
{DPB) , 1-2

Directive Status Word (DSW),
1-2

DIRSYM.MAC, 4-3
Disable AST Recognition, 5-53
Disable Checkpointing, 5-55
DPB, 1-2

on stack, 1-4, 1-6
pointer on stack, 1-4
predefined, 1-6 to 1-7

$DPB$$, 1-6
DRGIN.MAC, 1-20
DSAR$S, 5-53
DSCP$S, 5-55
D-space, 3-1 to 3-2

mapping, 3-3 to 3-4
DSW, 1-2

$DSW, 1-2
DTRG$, 5-56
Dynamic region, 5-42

ELAW$, 5-58
ELGF$, 5-60

INDEX

Eliminate Address Window, 5-58
Eliminate Group Global Event

Flags, 5-60
Eliminate Virtual Terminal,

5-62
ELVT$, 5-62

·Emit Status,. 5-64
EMST$, 5-64
EMT 377 instruction, 1-1
Enable AST Recognition, 5-65
Enable Checkpointing, 5-66
ENAR$S, 5-65
ENCP$S, 5-66.
Error logging, 5-162
Error return, 1-3
Error routine argument, 1-7
Event,

flag, 2-2
significant, 2-1, 5-52

Event flag, 2-2
common, 2-2
group global, 2-2
group-global, 5-60, 5-206
implicitly altering, 2-2
locking, 5-40
mask word, 5-105
polarity, 5-28
reporting polarity,

5-125 to 5-127
setting, 5-159
stopping for, 5-198, 5-201
testing, 2-3
unlocking, 5-60, 5-206
wait for, 5-223

Executive-level dispatching,
5-5

EXIF$, 5-67
Exit,

task resources freed, 1-3
Exit If, 5-67
Exit With Status, 5-71
EXIT$S, 5-69
EXST$, 5-71
Extend Task, 5-73
EXTK$j 5-73

Flag,
event, 2-2

Fork Level, 5-18

FORTRAN, 1-9
AST service routine, 1-16
directives not available,

1-15
operations forbidden at AST

state, 1-16 to 1-17
specifying task names, 1-10

FORTRAN subroutine,
1-9 to 1-10

assigning address arguments,
1-11

corresponding macro call,
1-12 to 1-15

directives not available as,
1-15

error condition, 1-16
integer arguments, 1-11
list, 1-11 to 1-15
optional arguments, 1-10

GCCI$, 5-75
GCII$, 5-79
General Information Directive,

1-20
Get Command for Command

Interpreter, 5-75
Get Command Interpreter

Information, 5-79
Get LUN Information, 5-81
Get Mapping Context, 5-86
Get MCR Command Line, 5-84
Get Partition Parameters, 5-89
Get Region Parameters, 5-91
Get Sense Switches, 5-93
Get Task Parameters, 5-97
Get Time Parameters, 5-95
GETADR, 1-11
$$$GLB, 1-8
GLUN$, 5-81
GMCR$, 5-84
GMCX$, 5-86
GPRT$, 5-89
GREG$, 5-91
Group Global Event Flag

Control Block (GFB), 5-40,
5-60

Group-global event flag, 5-60
reading, 5-127

GSSW$S, 5-93
GTIM$, 5-95
GTSK$, 5-97

IHAR$S, ~-~.:S
Information buffer format,

5-79

Index-3

Inhibit AST Recognition, 5-53
Installed task,

removing, 1-20
Instruction space, 5-107
Interrupt Level, 5-18
Interrupt Service Routine

{ISR), 5-18

INDEX

Interrupt Transfer Block, 5-18
Inter-task communication, 4-1
ISA Standard, 1-9
I-space, 3-1 to 3-2

accessing single word of,
5-110

mapping, 3-3 to 3-4

Logical address space, 3-2

Macro,
$C form, 1-6
$C form example, 1-8
DIR$, 1-5, 1-7
example calls, 1-8
$ form, 1-5
$ form example, 1-8
$S form, 1-6
$S form example, 1-8

Macro DIR$, 1-6
Macro name convention, 1-5
MAP$, 5-101
Map Address Window, 5-100
Map Supervisor D-Space, 5-107
Mapped system, 3-2
Mapping,

APRO, 3-20
I/O page, 3-20
privileged tasks, 3-20

Mapping context, 5-86
Mark Time, 5-103
MCR dispatching algorithm, 5-5
Memory management, 3-1 to 3-2,

3-4, 3-12
directives, 3-9 to 3-11

Memory resident common region,
preserving changes to, 5-34

Move To/From User/Supervisor
I/D-Space, 5-110

MRKT$, 5-103
MSDS$, 5-107
MVTS$, 5-110

Nonprivileged task,
directive restrictions,

1-20 to 1-21

ODT, 5-202
Offset,

symbolic, 1-7
Offspring Control Block {OCB),

5-31, 5-172
Offspring task,

status values, 4-3

Parent connection,
creating, 4-1
transferring, 4-1

Parent/offspring tasking, 4-1
Physical address space, 3-2
Physical memory, 3-5
Processor Status Word {PSW) ,

1-2
PSW, 1-2
PWRUP routine, 5-54

QIO$, 5-112
QIOW$, 5-116
Queue I/O Request, 5-112
Queue I/O Request And Wait,

5-116

RCST$, 5-118
RCVD$, 5-120
RCVX$, 5-122
RDAF$, 5-125
RDB, 3-12 to 3-13

assigned setting, 3-20
generating, 3-13 to 3-14
generating in FORTRAN, 3-15
macros, 3-13 to 3-14

RDBBK$, 3-13
macro call, 3-14
macro expansion, 3-14

RDBDF$, 3-13
RDEF$, 5-126
RDXF$, 5-127
Read All Event Flags, 5-125
Read Event Flag, 5-126
Read Extended Event Flags,

5-127
Receive By Reference, 5-136
Receive Data, 5-120
Receive Data Or Exit, 5-122
Receive Data Or Stop, 5-118
Redirecting a spooled device,

5-83
Region, 3-5

attaching to, 3-6
definition block, 3-7,

Index-4

Region (Cont.)
3-12 to 3-13

dynamic, 3-6, 5-42
ID, 3-6
mapping windows, 3-8
protection, 3-9
shareable, 3-6
shared, 3-6
static common, 3-5
task, 3-5

Region Definition Block,
5-16 to 5-17, 5-42,
5-56 to 5-57

INDEX

Region Definition Block (RDB),
3-12

Region ID,
determining, 5-16

region status word, 5-42, 5-56
Remove Affinity, 5-128
Request and Pass Offspring

Information, 5-129
Request Task, 5-133
Resume Task, 5-139
RMAF$, 5-128
RPOI$, 5-129
RQST$, 5-133
RREF$, 5-136
RSUM$, 5-139
RSX-llM-PLUS,

features, 1-21
RSXMAC.SML, 1-5
RUN$, 5-140
Run Task, 5-140
Rundown count, 5-31, 5-62

$S macro form, 1-6
SCAA$, 5-145
SCAL$S, 5-146
SCLI$, 5-148
SDAT$, 5-150
SDRC$, 5-152
SDRP$, 5-155
Send By Reference, 5-188
Send Data, 5-150
Send Data Request and Pass

Offspring Control Block,
5-155

Send Message, 5-162
Send Next Command, 5-165
Send, Request And Connect,

5-152
Service routine,

SST, 2-5
Set Affinity, 5-193
Set Command Line Interpreter,

5-148
Set Event Flag, 5-159

Index-5

Set System Time, 5-195
SETF$, 5-159
SFPA$, 5-160
Significant event, 2-1, 5-52

list of, 2-1, 5-222
SMSG$, 5-162
SNXC$, 5-165
Spawn, 5-172
Spawning, 4-1
Spawning a CLI, 4-5
Spawning a utility, 4-5
Spawning system tasks, 4-5
SPEA$, 5-167
Specify Command Arrival AST,

5-145
Specify Floating Point

Processor Exception AST,
5-160

Specify Parity Error AST,
5-167

Specify Power Recovery AST,
5-170

Specify Receive Data AST,
5-182

Specify Receive-By-Reference
AST, 5-191

Specify Requested Exit AST,
5-184

Specify SST Vector Table For
Debugging Aid, 5-202

Specify SST Vector Table For
Task, 5-204

SPND$S, 5-169
Spooled device,

redirecting, 5-83
SPRA$, 5-170
SPWN$, 5-1 72
SRDA$, 5-182
SREA$, 5-184
SREF$, 5-188
SREX$, 5-184
SRRA$, 5-191
SST I 2-5

definition, 2-4
service routine, 2-5
specifying vector table,

5-204
task's stack content, 2-6
trap vector table format,

2-5
STAF$, 5-193
Static common region, 5-16
Status,

emitting, 5-64
STIM$, 5-195
STLO$, 5-198
Stop, 5-200
Stop For Logical OR Of Event

Flags, 5-198

Stop For Single Event Flag,
5-201

STOP statement, 5-70

INDEX

Stop-bit synchronization, 2-7,
2-11

directives, 2-12
STOP$S, 5-200
STSE$, 5-201
Subroutine,

FORTRAN, 1-9
optional arguments, 1-10
usage, 1-9

Supervisor Call, 5-146
Supervisor mode, 3-1 to 3-2
Supervisor-mode D-space, 5-107
Supervisor-mode I-space, 5-36,

5-107
Supervisor-mode library,

5-107, 5-146
Suspend, 5-169
SVOB$, 5-202
SVTK$, 5-204
Symbolic offset, 1-7
Synchronous System Trap (SST),

2-4
System,

mapped, 3-2
System Macro Library, 1-5

Task,
extend, 5-73
installed, 1-20

Task builder, 3-3
Task Exit, 5-69
Task Level, 5-18
Task name,

in FORTRAN subroutine, 1-10
Task parameter buffer format,

5-97
Task state, 1-17

active, 1-18
active blocked, 1-18
active ready-to-run, 1-18
active stopped, 1-18
transition, 1-18

Task state transition,
active to dormant, 1-19
blocked to ready-to-run,

1-19
blocked to stopped, 1-19
dormant to active, 1-18
ready-to-run to blocked,

1-18
ready-to-run to stopped,

1-19
stopped to blocked, 1-20
stopped to reacy-to-run,

Task state transition
(Cont.)

1-19
Task termination notification,

5-8
Time buffer format, 5-95
Time-synchronized initiation

requests, 5-51
Trap,

AST, 2-4
SST, 2-4
system, 2-4

Trap-dependent parameter, 2-8

ULGF$S, 5-206
UMAP$, 5-207
Unlock Group Global Event

Flags, 5-206
Unmap Address Window, 5-207
Unstop Task, 5-209
User-mode D-space, 5-36, 5-107
USTP$, 5-209

Variable Receive Data, 5-210
Variable Receive Data Or Exit,

5-214
Variable Receive Data Or Stop,

5-212
Variable Send Data, 5-216
Variable Send, Request and

Connect, 5-218
Virtual address space, 3-2
Virtual address window, 3-3

creating, 5-36
figure, 3-5

Virtual terminal, 5-62 to 5-63
creating, 5-45

VRCD$, 5-210
VRCS$, 5-212
VRCX$, 5-214
VSDA$, 5-216
VSRC$, 5-218

Wait For Logical OR Of Event
Flags, 5-223

Wait For Single Event Flag,
5-225

WDB, 3-15, 3-17, 3-19
assigned setting, 3-20
format, 3-15 to 3-16
generating, 3-17 to 3-18
generating in FORTRAN, 3-19

Index-6

WDBBK$, 3-18
macro call, 3-18
macro expansion, 3-18

WDBDF$, 3-18
Window,

definition block, 3-15
identification number, 3-4
virtual address, 3-3 to 3-4

Window block, 5-36
Window Definition Block,

5-36 to 5-37, 5-39,

INDEX

5-58 to 5-59, 5-87, 5-101
Window definition block, 5-38,

5-189

Window Definition Block (WDB),
3-15

Window ID, 5-36
Window status word, 5-36,

5-101
W.NLEN, 5-36
W.NOFF, 5-36
WSIG$S, 5-221
WS.MAP, 5-36
WS. SIS, 5-36
WS.UDS, 5-36
WTLO$, 5-223
WTSE$, 5-225

Index-7

READER'S COMMENTS

RSX-llM/M-PLUS
Executive

Reference Manual
Order No. AA-L675A-TC

NOTE: This form is for document comments only. DIGITAL will use comments submitted on this form at the
company's discretion. If you require a written reply and are eligible to receive one under Software
Performance Report (SPR) service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well-organized? Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

D Assembly language programmer
D Higher-level language programmer
D Occasional programmer (experienced)
D User with little programming experience
D Student programmer
D Other (please specify)

Organization

Street

State ______ Zip Code _____ _

or Country

- - Do Not Tear- Fold Here and Tape

11 I

BUSINESS REPL V MAIL
FIRST CLASS PERMIT N0.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

BSSG PUBLICATIONS ZK1-3/J35
DIGITAL EQUIPMENT CORPORATION
110 SPIT BROOK ROAD
NASHUA, NEW HAMPSHIRE 03061

_,
_ ____, ~

No Postage I
Necessary

if Mailed in the
United States

I

I

~

- - - - Do Not Tear - Fold Here -

~
I

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	5-001
	5-002
	5-003
	5-004
	5-005
	5-006
	5-007
	5-008
	5-009
	5-010
	5-011
	5-012
	5-013
	5-014
	5-015
	5-016
	5-017
	5-018
	5-019
	5-020
	5-021
	5-022
	5-023
	5-024
	5-025
	5-026
	5-027
	5-028
	5-029
	5-030
	5-031
	5-032
	5-033
	5-034
	5-035
	5-036
	5-037
	5-038
	5-039
	5-040
	5-041
	5-042
	5-043
	5-044
	5-045
	5-046
	5-047
	5-048
	5-049
	5-050
	5-051
	5-052
	5-053
	5-054
	5-055
	5-056
	5-057
	5-058
	5-059
	5-060
	5-061
	5-062
	5-063
	5-064
	5-065
	5-066
	5-067
	5-068
	5-069
	5-070
	5-071
	5-072
	5-073
	5-074
	5-075
	5-076
	5-077
	5-078
	5-079
	5-080
	5-081
	5-082
	5-083
	5-084
	5-085
	5-086
	5-087
	5-088
	5-089
	5-090
	5-091
	5-092
	5-093
	5-094
	5-095
	5-096
	5-097
	5-098
	5-099
	5-100
	5-101
	5-102
	5-103
	5-104
	5-105
	5-106
	5-107
	5-108
	5-109
	5-110
	5-111
	5-112
	5-113
	5-114
	5-115
	5-116
	5-117
	5-118
	5-119
	5-120
	5-121
	5-122
	5-123
	5-124
	5-125
	5-126
	5-127
	5-128
	5-129
	5-130
	5-131
	5-132
	5-133
	5-134
	5-135
	5-136
	5-137
	5-138
	5-139
	5-140
	5-141
	5-142
	5-143
	5-144
	5-145
	5-146
	5-147
	5-148
	5-149
	5-150
	5-151
	5-152
	5-153
	5-154
	5-155
	5-156
	5-157
	5-158
	5-159
	5-160
	5-161
	5-162
	5-163
	5-164
	5-165
	5-166
	5-167
	5-168
	5-169
	5-170
	5-171
	5-172
	5-173
	5-174
	5-175
	5-176
	5-177
	5-178
	5-179
	5-180
	5-181
	5-182
	5-183
	5-184
	5-185
	5-186
	5-187
	5-188
	5-189
	5-190
	5-191
	5-192
	5-193
	5-194
	5-195
	5-196
	5-197
	5-198
	5-199
	5-200
	5-201
	5-202
	5-203
	5-204
	5-205
	5-206
	5-207
	5-208
	5-209
	5-210
	5-211
	5-212
	5-213
	5-214
	5-215
	5-216
	5-217
	5-218
	5-219
	5-220
	5-221
	5-222
	5-223
	5-224
	5-225
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	A-24
	A-25
	A-26
	A-27
	A-28
	A-29
	A-30
	A-31
	A-32
	A-33
	A-34
	A-35
	A-36
	A-37
	A-38
	B-01
	B-02
	C-01
	C-02
	C-03
	D-01
	D-02
	D-03
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	replyA
	replyB

