
RSX-11 M/M-PLUS 
1/0 Drivers 

Reference Manual 
Order No. AA-H269A-TC 

RSX-11M Version 3.2 
RSX-11M-PLUS Version 1.0 

r-:;::rder additional copies of this document, contact the Software Distribution 
L.:::er, Digital Equipment Corporation, Maynard, Massachusetts 01754 

digitcll equipment corporation · maynard, massachusetts 



First Printing, May 1979 

The information in this document is subject to change without notice 
and should not be construed as a commitment by Digital Equipment 
Corporation. Digital Equipment Corporation assumes no responsibility 
for any errors that may appear in this document. 

The software described in this document is furnished under a license 
and may only be used or copied in accordance with the terms of such 
license. 

No responsibility is assumed for the u.se or reliability of software on 
equipment that is not supplied by DIGITAL or its affiliated companies. 

Copyright @ 1979 by Digital Equipment Company 

The postage-prepaid READER'S COMMENTS form on the last page of this 
document requests the user's critical evaluation to assist us in pre
paring future documentation. 

The following are trademarks of Digital Equipment Corporation: 

DIGITAL DECsystem-lo MAS SB US 
DEC DECtape OMNIBUS 
PDP DIBOL OS/8 
DEC US EDUSYSTEM PHA 
UNIBUS FLIP CHIP RSTS 
COMPUTER LABS FOCAL RSX 
COMTEX INDAC TYPESET-8 
DDT LAB-8 TYPESET-11 
DECCOMM DECSYSTEM-20 TMS-11 
ASSIST-11 RTS-8 ITPS-10 
VAX VMS SBI 
DECnet IAS PDT 
DATATRIEVE TRAX 

7/80-14 



CONTENTS 

SUMMARY OF TECHNICAL CHANGES 

PREFACE 

CHAPTER 

CHAPTER 

1 

1.1 
1. 2 
1. 3 
1. 4 
1. 4 .1 
1. 4. 2 
1. 4. 3 
1. 5 
1. 5 .1 
1. 5. 2 
1. 5. 3 
1. 6 
1. 7 
1. 7 .1 
1. 7. 2 

1. 7. 3 
1. 7. 4 

1. 7. 5 
1.7.5.1 
1.7.5.2 
1. 7. 6 

1. 7. 7 
1. 7. 8 
1. 8 
1. 8 .1 
1. 8. 2 
1. 8. 3 
1. 8. 4 
1. 8. 5 
1. 8. 6 
1. 8. 7 
1. 9 
1.10 
1.10 .1 
1. 10. 2 
1.11 

2 

2.1 
2 .1.1 
2 .1. 2 

RSX-llM/M-PLUS INPUT/OUTPUT 

OVERVIEW OF RSX-llM I/O 
PHYSICAL, LOGICAL, AND VIRTUAL I/O 
RSX-llM DEVICES 
LOGICAL UNITS 

Logical Unit Number 
Logical Unit Table 
Changing LUN Assignments 

ISSUING AN I/O REQUEST 
QIO Macro Format 
Significant Events 
System Traps 

DIRECTIVE PARAMETER BLOCKS 
I/0-RELATED MACROS 

The QIO$ Macro: Issuing an I/O Request 
The QIOW$ Macro: Issuing an I/O Request 
and Waiting for an Event Flag 
The DIR$ Macro: Executing a Directive 
The .MCALL Directive: Retrieving System 
Macros 
The ALUN$ Macro: Assigning a LUN 
Physical Device Names 
Pseudo-Device Names 
The GLUN$ Macro: Retrieving LUN 
Information 
The ASTX$S Macro: Terminating AST Service 
The WTSE$ Macro: Waiting for an Event Flag 

STANDARD I/O FUNCTIONS 
IO.ATT: Attaching to an I/O Device 
IO.DET: Detaching from an I/O Device 
IO.KIL: Canceling I/O Requests 
IO.RLB: Reading a Logical Block 
IO.RVB: Reading a Virtual Block 
IO.WLB: Writing a Logical Block 
IO.WVB: Writing a Virtual Block 

I/O COMPLETION 
RETURN CODES 

Directive Conditions 
I/O Status Conditions 

POWERFAIL RECOVERY PROCEDURES FOR DISKS 
AND DECTAPE 

FULL-DUPLEX TERMINAL DRIVER 

INTRODUCTION 
ASR-33/35 Teletypes 
KSR-33/35 Teletypes 

iii 

Page 

xx iii 

xxv 

1-1 

1-1 
1-2 
1-2 
1-5 
1-5 
1-6 
1-6 
1-7 
1-8 
1-ll 
1-ll 
1-12 
1-13 
1-15 

1-15 
1-15 

1-15 
1-16 
1-17 
1-19 

1-20 
1-22 
1-23 
1-24 
1-24 
1-25 
1-25 
1-26 
1-26 
1-27 
1-27 
1-28 
1-·20 
1-29 
1-31 

1-35 

2-1 

2-1 
2-3 
2-3 



2 .1. 3 
2 .1. 4 
2 .1. 5 
2 .1. 6 
2 .1. 7 

2 .1. 8 
2 .1. 9 
2. 1. 10 
2.1.11 
2 .1.12 
2.1.13 
2. 1. 14 
2.2 
2.3 
2.3.1 
2.3.2 
2.3.2.1 
2.3.2.2 
2.3.2.3 
2.3.2.4 
2.3.2.5 
2.3.2.6 
2.3.2.7 
2.3.2.8 
2.3.2.9 
2.3.2.10 
2.3.2.11 
2.3.2.12 
2.3.2.13 
2.3.2.14 
2.3.2.15 
2.4 
2.5 
2.5.1 
2.5.2 
2.6 
2.6.1 
2.6.2 
2.6.3 
2.6.4 
2.6.4.1 
2.6.4.2 
2.6.4.3 
2.6.5 
2.7 
2.8 
2.9 
2.9.1 
2.9.2 
2.10 
2 .11 
2.12 
2.13 
2.14 
2.15 
2.16 

CONTEN~~S 

LA30 DECwriters 
LA36 DECwriter 
LA120 DECwriter 
LA180S DECprinter 
RT02 Alphanumeric Display Terminal and 
RT02-C Badge Reader/Alphanumeric Display 
Terminal 
VT05B Alphanumeric Display Terminal 
VT50 Alphanumeric Display Terminal 
VT50H Alphanumeric Display Terminal 
VT52 Alphanumeric Display Terminal 
VT5~ Graphics Display Terminal 
VT61 Alphanumeric Display Terminal 
VTlOO DECscope 

GET LUN INFORMATION MACRO 
QIO MACRO 

Subfunction Bi t:s 
Device-Specific QIO Functions 
IO.ATA 
IO.ATT!TF.ESQ 
IO.CCC 
SF.GMC 
IO.GTS 
IO.RAL 
IO.RNE 
IO.RPR 
IO.RPR!TF.BIN 
IO.RPR!TF.XOF 
IO.RST 
SF.SMC 
IO.RTT 
IO.WAL 
IO.WBT 

STATUS RETURNS 
CONTROL CHARACTERS AND SPECIAL KEYS 

Control Characters 
Special Keys 

ESCAPE SEQUENCES 
Definition 
Prerequisites 
Characteristics 
Escape Sequence Syntax Violations 
DEL or RUBOUT (177) 
Control Characters (0-037) 
Full Buffer 
Exceptions to Escape-Sequence Syntax 

VERTICAL FORMAT CONTROL 
AUTOMATIC CARRIAGE RETURN 
FEATURES AVAILABLE BY RSX-llM SYSGEN OPTION 

Private Buffer Pool Size 
Hard Receive Error Detection 

TASK BUFFERING OF RECEIVED CHARACTERS 
TYPEAHEAD BUFFERING 
FULL-DUPLEX OPERATION 
PRIVATE BUFFER POOL 
INTERMEDIATE INPUT AND OUTPUT BUFFERING 
TERMINAL-INDEPENDENT CURSOR CONTROL 
TERMINAL INTERFACES 

iv 

Page 

2-3 
2-3 
2-4 
2-4 

2-4 
2-4 
2-4 
2-4 
2-5 
2-5 
2-5 
2-5 
2-5 
2-6 
2-9 
2-9 
2-10 
2-11 
2-12 
2-12 
2-16 
2-17 
2-17 
2-17 
2-18 
2-18 
2-18 
2-19 
2-19 
2-19 
2-20 
2-20 
2-24 
2-25 
2-27 
2-28 
2-29 
2-29 
2-30 
2-30 
2-30 
2-30 
2-31 
2-31 
2-31 
2-31 
2-33 
2-33 
2-33 
2-34 
2-35 
2-36 
2-36 
2-36 
2-37 
2-37 

~ 
! 1 



CHll1.PTER 

'~ 

2.16.l 
2.16.2 
2.16.3 
2.16.4 
2.17 
2.17.1 
2.17.2 
2.17.3 
2.17.4 
2.17.5 
2.17.6 

3 

3.1 
3. l. l 
3. l. 2 
3. l. 3 
3. l. 4 
3 .1. 5 
3. l. 6 
3. l. 7 

3 .1. 8 
3 .1. 9 
3. 1. 10 
3.l.11 
3 .1.12 
3. l.13 
3. l.14 
3.2 
3.3 
3.3.1 
3.3.2 
3.3.2.1 
3.3.2.2 
3.3.2.3 
3.3.2.4 
3.3.2.5 
3.3.2.6 
3.3.2.7 
3.3.2.8 
3.3.2.9 
3.3.2.10 
3.3.2.11 
3.3.2.12 
3.3.2.13 
3.3.2.14 
3.4 
3.5 
3.5.1 
3.5.2 
3.6 
3.6.1 
3.6.2 
3.6.3 
3.6.4 

CONTENTS 

DHll Asynchronous Serial Line Multiplexer 
DJll Asynchronous Serial Line Multiplexer 
DLll Asynchronous Serial Line Interface 
DZll Asynchronous Serial Line Multiplexer 

PROGRAMMING HINTS 
ESCape Code Conversion 
RT02-C Control Function 
Use of IO.WVB Instead of IO.WLB 
Remote DLll-E, DHll, and DZll Lines 
Side Effects of Setting Characteristics 
Modem Support 

HALF-DUPLEX TERMINAL DRIVER 

INTRODUCTION 
ASR-33/35 Teletypes 
KSR-33/35 Teletypes 
LA30 DECwriters 
LA36 DECwriter 
LA120 DECwriter 
LA180S DECprinter 
RT02 Alphanumeric Display Terminal and 
RT02-C Badge Reader/Alphanumeric Display 
Terminal 
VT05B Alphanumeric Display Terminal 
VT50 Alphanumeric Display Terminal 
VT50H Alphanumeric Display Terminal 
VT52 Alphanumeric Display Terminal 
VT55 Graphics Display Terminal 
VT61 Alphanumeric Display Terminal 
VTlOO DECscope 

GET LUN INFORMATION MACRO 
QIO MACRO 

Subfunction Bits 
Details on Device-Specific QIO Functions 
IO.ATA 
IO.ATT!TF.ESQ 
IO.CCC 
SF.GMC 
IO.GTS 
IO.RAL 
IO.RNE 
IO.RPR 
IO.RPR!TF.BIN 
IO.RPR!TF.XOF 
IO.RST 
SF.SMC 
IO.WAL 
IO.WBT 

STATUS RETURNS 
CONTROL CHARACTERS AND SPECIAL KEYS 

Control Characters 
Special Keys 

ESCAPE SEQUENCES 
Definition 
Prerequisites 
Characteristics 
Escape Sequence Syntax Violations 

v 

Page 

2-37 
2-38 
2-38 
2-38 
2-38 
2-38 
2-38 
2-38 
2-39 
2-39 
2-39 

3-1 

3-1 
3-2 
3-2 
3-3 
3-3 
3-3 
3-3 

3-3 
3-3 
3-4 
3-4 
3-4 
3-4 
3-4 
3-4 
3-4 
3-5 
3-7 
3-8 
3-9 
3-9 
3-10 
3-10 
3-11 
3-12 
3-12 
3-13 
3-13 
3-13 
3-13 
3-14 
3-14 
3-14 
3-15 
3-19 
3-19 
3-21 
3-22 
3-22 
3-23 
3-23 
3-23 



3.6.4.1 
3.6.4.2 
3.6.4.3 
3.6.5 
3.7 
3.8 
3.8.1 
3.8.2 
3.8.3 
3.8.4 
3.9 
3.9.1 
3.9.2 
3.9.3 
3.9.4 
3.10 
3.10.l 
3.10.2 
3.10.3 
3.10.4 
3.10.5 
3.10.6 
3.10.7 
3.10.8 
3.10.9 
3.10.10 

3.10.11 
3.10.12 
3.10.13 

CHAPTER 4 

4.1 
4.2 
4.3 
4.3.1 
4.3.1.1 
4.3.1.2 
4.3.1.3 
4.3.1.4 
4.3.2 
4.4 

CHAPTER 5 

5.1 
5.1.1 
5.1. 2 
5.1. 3 
5.1. 4 
5.1. 5 
5.1. 6 
5.1. 7 
5 .1. 8 
5.1. 9 
5 .1. 10 
5.1.11 

CONTEN'TS 

DEL or RUBOUT (177 Octal) 
Control Characters (0-37 Octal) 
Full Buffer 
Exceptions to Escape-Sequence Syntax 

VERTICAL FORMAT CONTROL 
FEATURES AVAILABLE BY SYSGEN OPTION 

Automatic Carriage Return 
Variable-Length Buffering 
Task Buffering of Received Characters 
LA30-P Support 

TERMINAL INTERFACES 
DHll Asynchronous Serial Line Multiplexer 
DJll Asynchronous Serial Line Multiplexer 
DLll Asynchronous Serial Line Interface 
DZll Asynchronous Serial Line Multiplexer 

PROGRAMMING HINTS 
Terminal Line Truncation 
ESCape Code Conversion 
RT02-C Control Function 
Checkpointing During Terminal Input 
Time Required for IO.KIL 
Use of IO.WVB 
Remote DHll and DZll Lines 
High-Order Bit on Output 
Side Effects of Setting Characteristics 
Unsolicited-Input-Character AST's for 
Tasks Attaching Several Terminals 
Direct Cursor Control 
DLll Receiver Interrupt Enable 
Loadable Driver Restrictions 

VIRTUAL TERMINAL DRIVER 

INTRODUCTION 
GET LUN INFORMATION MACRO 
QIO MACRO 

Standard QIO Functions 
IO.ATT 
IO.DET 
IO.KIL 
IO.RLB, IO.RVB, IO.WLB, IO.WVB 
Device-Specific QIO Function (IO.STC) 

STATUS RETURNS 

DISK DRIVERS 

INTRODUCTION 
RFll/RSll Fixed-Head Disk 
RS03 Fixed-Head Disk 
RS04 Fixed-Head Disk 
RP11/RP02 or RP03 Pack Disks 
RM02/RM03 Pack Disk 
RP04, RP05, RP06 Pack Disks 
RK11/RK05 or RK05F Cartridge Disks 
RLll/RLOl or RL02 Cartridge Disk 
RK611/RK06 or RK07 Cartridge Disk 
RXlO/RXOl Flexible Disk 
RX211/RX02 Flexible Disk 

vi 

Page 

3-24 
3-24 
3-25 
3-25 
3-25 
3-26 
3-27 
3-27 
3-28 
3-28 
3-28 
3-28 
3-29 
3-29 
3-29 
3-29 
3-29 
3-29 
3-30 
3-30 
3-30 
3-30 
3-30 
3-31 
3-31 

3-32 
3-32 
3-32 
3-33 

4-1 

4-1 
4-1 
4-2 
4-3 
4-3 
4-3 
4-4 
4-4 
4-4 
4-5 

5-1 

5-1 
5-1 
5-1 
5-1 
5-1 
5-2 
5-3 
5-3 
5-3 
5-3 
5-3 
5-3 

·~. 

~ 
! 1 



"-"'' 

CHAPTER 

CHAPTER 

5.2 
5.3 
5.3.1 
5.3.2 
5 .. 4 
5.5 

6 

6 .. 1 
6 .. 2 
6 ,, 3 
6" 3 .1 
6 .. 3. 2 
6 .. 4 
6 .. 4 .1 
6" 4. 2 
6 .. 5 
6.5.1 
6 .. 5.2 
6 .. 5.3 

7 

7.1 
7 .1.1 
7 .. 1.2 
7.2 
7.3 
7 .. 3 .1 
7.3.2 
7.3.2.1 
7 .. 3.2.2 
7.3.2.3 
7.3.2.4 
7.4 

CHAPTER 8 

8.1 
8 .1.1 
8 .1. 2 
8 .1. 3 
8.2 
8.3 
8.3.1 
8.3.2 
8.3.2.1 
8.3.2.2 
8.3.2.3 
8.3.2.4 
8.3.2.5 
8.3.2.6 
8.4 
8.4.1 
8.4.2 

CONTENTS 

GET LUN INFORMATION MACRO 
QIO MACRO 

Standard QIO Functions 
Device-Specific QIO Functions 

STATUS RETURNS 
PROGRAMMING HINTS 

DECTAPE DRIVER 

INTRODUCTION 
GET LUN INFORMATION MACRO 
QIO MACRO 

Standard QIO Functions 
Device-Specific QIO Functions 

STATUS RETURNS 
DECtape Recovery Procedures 
Select Recovery 

PROGRAMMING HINTS 
DECtape Transfers 
Reverse Reading and Writing 
Speed Considerations When Reversing 
Direction 
Aborting a Task 

DECTAPE II DRIVER 

INTRODUCTION 
TU58 Hardware 
TU58 Driver 

GET LUN INFORMATION MACRO 
QIO MACRO 

Standard QIO Functions 
Device-Specific QIO Functions 
IO.WLC 
IO.RLC 
IO.BLS 
IO.DGN 

STATUS RETURNS 

MAGNETIC TAPE DRIVERS 

INTRODUCTION 
TE10/TU10/TS03 Magnetic Tape 
TE16/TU16/TU45/TU77 Magnetic Tape 
TS04 Magnetic Tape 

GET LUN INFORMATION MACRO 
QIO MACRO 

Standard QIO Functions 
Device-Specific QIO Functions 
IO.RLV 
IO.RWD 
IO.RWU 
IO.ERS 
IO.SEC 
IO.SMC 

STATUS RETURNS 
Se.lect Recovery 
Retry Procedures for Reads and Writes 

vii 

Page 

5-4 
5-5 
5-5 
5-6 
5-7 
5-10 

6-1 

6-1 
6-1 
6-2 
6-2 
6-3 
6-3 
6-6 
6-7 
6-7 
6-7 
6-7 

6-7 
6-8 

7-1 

7-1 
7-1 
7-1 
7-1 
7-2 
7-2 
7-3 
7-4 
7-4 
7-4 
7-4 
7-4 

8-1 

8-1 
8-1 
8-2 
8-2 
8-2 
8-3 
8-3 
8-4 
8-4 
8-4 
8-4 
8-5 
8-5 
8-8 
8-8 
8-12 
8-12 



8.4.3 
8.5 
8.5.1 
8.5.2 

8.5.3 
8.5.4 
8.5.5 

CHAPTER 9 

9.1 
9.2 
9.3 
9.3.1 
9.3.2 
9.4 
9.4.1 
9.5 
9.6 
9.6.1 
9.6.2 
9.6.3 
9.6.4 
9.6.5 
9.6.6 

CHAPTER 10 

10.l 
10. 1.1 
10. 1. 2 
10 .1. 3 
10 .1. 4 
10.2 
10.3 
10.4 
10.4.1 
10.5 
10.6 
10.6.1 
10.6.2 
10.6.3 

CHAPTER 11 

11.1 
11.2 
11. 3 
11. 3 .1 
11. 3. 2 
11. 4 
11. 4 .1 
11. 4. 2 
11. 4. 3 
11. 5 
11. 5 .1 
11. 6 

CONTENTS 

Powerf ail Recovery for Magnetic Tapes 
PROGRAMMING HINTS 

Block Size 
Importance of Resetting Tape 
Characteristics 
Aborting a Task 
Writing an Even-J?arity Zero-NRZI 
Density Selection 

CASSETTE DRIVER 

INTRODUCTION 
GET LUN INFORMATION MACRO 
QIO MACRO 

Standard QIO Functions 
Device-Specific QIO Functions 

STATUS RETURNS 
Cassette Recovery Procedures 

STRUCTURE OF CASSE1rTE TAPE 
PROGRAMMING HINTS 

Importance of Rewinding 
End-of-File and IO.SPF 
The Space Functions, IO.SPB and IO.SPF 
Verification of Write Operations 
Block Length 
Logical End-of-Tape 

LINE PRINTER DRIVER 

INTRODUCTION 
LPll Line Printer 
LSll Line Printer 
LVll Line Printer 
LA180 DECprinter 

GET LUN INFORMATION MACRO 
QIO MACRO 
STATUS RETURNS 

Ready Recovery 
VERTICAL FORMAT CONTROL 
PROGRAMMING HINTS 

RUBOUT Character 
Print Line Truncation 
Aborting a Task 

CARD READER DRIVER 

INTRODUCTION 
GET LUN INFORMATION MACRO 
QIO MACRO 

Standard QIO Functions 
Device-Specific QIO Function 

STATUS RETURNS 
Card Input Errors and Recovery 
Ready and Card Reader Check Recovery 
I/O Status Conditions 

FUNCTIONAL CAPABILITIES 
Control Characters 

CARD READER DATA F'ORMATS 

viii 

Page 

B-12 
8-13 
8-13 

8-13 
8-13 
B-13 
H-13 

9-1 

9-1 
9-1 
9-2 
9-2 
9-3 
9-3 
9-5 
9-6 
9-6 
9-7 
9-7 
9-7 
9-7 
9-7 
9-7 

10-1 

10-1 
10-1 
10-2 
10-2 
10-2 
10-2 
10-3 
10-3 
10-5 
10-5 
10-6 
10-6 
10-6 
10-6 

11-1 

11-1 
11-1 
11-2 
11-2 
11-2 
11-3 
11-3 
11-6 
11-6 
11-8 
11-8 
11-9 

~I 
i' 

~I 



CHAPTER 

CHAPTER 

11. 6 .1 
11. 6. 2 
11. 7 
11. 7. + 
11. 7. 2 

12 

12.1 
12 .1.1 
12 .1. 2 
12 .. 1. 3 
12 .1. 4 
12 .. 1. 5 
12 .1. 6 
12.1.7 
12 .. 2 
12.3 
12.3.1 
12.3.2 
12.3.2.1 
12 .. 3. 2. 2 
12 .. 3. 2. 3 
12.3.2.4 
12 .. 3. 2. 5 
12 .. 3. 2. 6 
12.4 
12 .. 5 
12 .. 5 .1 
12.5.2 
12 .. 5. 3 
12 .. 5. 4 
12 .. 5. 5 
12.5.6 
12 .. 5. 7 
12 .. 6 

13 

13 .. l 
13 .. 1.1 
13 .. 1.2 
13.1.3 
13 .. 2 
13 .. 3 

13 .. 3.1 
13 .. 3. 2 
13.3.2.1 
13 .. 3.2.2 
13 .. 3.2.3 
13 .. 4 
13. 5 
13.5.1 
13.5.2 
13.5.2.1 
13.5.2.2 
13.5.2.3 

CONTENTS 

Alphanumeric Format (026 and 0211) 
Binary Format 

PROGRAMMING HINTS 
Input Card Limitation 
Aborting a Task 

MESSAGE-ORIENTED COMMUNICATION DRIVERS 

INTRODUCTION 
DAll-B Parallel Interface 
DLll-E Asynchronous Line Interface 
DMCll Synchronous Line Interface 
DPll Synchronous Line Interface 
DQll Synchronous Line Interface 
DUll Synchronous Line Interface 
DUPll Synchronous Line Interface 

GET LUN INFORMATION MACRO 
QIO MACRO 

Standard QIO Functions 
Device-Specific QIO Functions 
IO.FOX 
IO.HDX 
IO.INL and IO.TRM 
IO.RNS 
IO.SYN 
IO.WNS 

STATUS RETURNS 
PROGRAMMING HINTS 

Transmission Validation 
Redundancy Checking 
Half-Duplex and Full-Duplex Considerations 
Low-Traffic Sync Character Considerations 
Vertical Parity Support 
Powerfail with DMCll 
Importance of IO.INL 

PROGRAMMING EXAMPLE 

PCLll PARALLEL COMMUNICATIONS LINK DRIVERS 

INTRODUCTION 
PCLll-B Hardware 
PCLll Transmitter Driver 
PCLll Receiver Driver 

GET LUN INFORMATION MACRO 
QIO MACRO -- PCLll TRANSMITTER DRIVER 
FUNCTIONS 

Standard QIO Functions 
Device-Specific QIO Functions 
IO.ATX 
IO.SEC 
IO.STC 

PCLll TRANSMITTER DRIVER STATUS RETURNS 
QIO MACRO -- PCLll RECEIVER DRIVER FUNCTIONS 

Standard QIO Functions 
Device-Specific QIO Functions 
IO.CRX 
IO.RTF 
IO.ATF 

ix 

Page 

11-9 
11-9 
11-9 
11-9 
11-9 

12-1 

12-1 
12-2 
12-2 
12-3 
12-3 
12-3 
12-3 
12-4 
12-4 
12-5 
12-5 
12-5 
12-6 
12-7 
12-7 
12-7 
12-7 
12-8 
12-8 
12-10 
12-10 
12-10 
12-11 
12-11 
12-11 
12-11 
12-12 
12-12 

13-1 

13-1 
13-1 
13-1 
13-1 
13-2 

13-3 
13-3 
13-3 
13-5 
13-5 
13-5 
13-6 
13-9 
13-9 
13-9 
13-10 
13-10 
13-10 



CONTEN'l~S 

13.5.2.4 IO.DRX 
13.6 PCLll RECEIVER DRIVER STATUS RETURNS 

CHAPTER 14 

14.1 
14 .1.1 
14 .1. 2 
14.2 
14.3 
14.3.1 
14.3.2 
14.4 
14.4.1 

14.4.2 
14.4.3 
14.4.4 

14.4.5 

14.4.6 
14.4.7 
14.5 
14.5.1 
14.6 
14.6.1 
14.7 
14.7.1 
14.7.2 
14.7.3 
14.7.4 

CHAPTER 15 

15.1 
15. 1. 1 
15 .1. 2 
15.1.2.1 
15.1.2.2 
15.2 
15.3 
15.3.1 
15.3.2 
15.3.2.1 

15.3.2.2 
15.3.2.3 

15.3.2.4 

15.3.2.5 

15.4 
15.4.1 
15.4.1.1 
15. 4 .1. 2 

ANALOG-TO-DIGITAL CONVERTER DRIVERS 

INTRODUCTION 
AFCll Analog-to--Digital Converter 
ADOl-D Analog-to-Digital Converter 

GET LUN INFORMATION MACRO 
QIO MACRO 

Standard QIO Function 
Device-Specific QIO Function 

FORTRAN INTERFACE 
Synchronous and Asynchronous Process 
Control I/O 
The isb Status Array 
FORTRAN Subroutine Summary 
AIRD/AIRDW: Performing Input of Analog 
Data in Random Sequence 
AISQ/AISQW: Reading Sequential Analog 
Input Channels 
ASADLN: Assigning a LUN to the ADOl-D 
ASAFLN: Assigning a LUN to the AFCll 

STATUS RETURNS 
FORTRAN Interface Values 

FUNCTIONAL CAPABILITIES 
Control and Data Buffers 

PROGRAMMING HINTS 
Use of A/D Gain Ranges 
Identical Chanrn~l Numbers on the AFCll 
AFCll Sampling Rate 
Restricting the Number of ADOl-D 
Conversions 

UNIVERSAL DIGITAL CONTROLLER DRIVER 

INTRODUCTION 
Creating the UDCll Driver 
Accessing UDCll Modules 
Driver Services 
Direct Access 

GET LUN INFORMATION MACRO 
QIO MACRO 

Standard QIO Function 
Device-Specific QIO Functions 
Contact Interrupt Digital Input (W733 
Modules) 
Timer (W734 I/O Counter Modules) 
Latching Digital Output (M685, M803, and 
M805 Modules) 
Analog-to-Digital Converter (ADUOl 
Module) 
ICSll Analog-to-Digital Converter 
(IAD-IA Module) 

DIRECT ACCESS 
Defining the UDCll Configuration 
Assembly Procedure for UDCOM.MAC 
Symbols Defined by UDCOM.MAC 

x 

Page 

13-11 
13-11 

14-1 

14-1 
14-1 
14-1 
14-2 
14-2 
14-2 
14-2 
14-3 

14-3 
14-3 
14-4 

14-5 

14-5 
14-6 
14-6 
14-6 
14-8 
14-9 
14-9 
14-9 
14-9 
14-9 
14-10 

14-10 

15-1 

15-1 
15-1 
15-2 
15-2 
15-3 
15-3 
15-3 
15~3 

15-3 

15-5 
15-7 

15-7 

15-7 

15-8 
15-8 
15-9 
15-9 
15-10 



CHAPTER 

15.4.2 

l!).4.3 

l!).4.3.1 
15.4.3.2 
l!).4.3.3 
l!). 5 
l!).5.1 

l!>.5.2 
l!).5.3 
l!i.5.4 

15.5.5 

15.5.6 
l!).5.7 
l!).5.8 
15.5.9 
l!i.5.10 
15.5.11 
15.5.12 

15.5.13 

l!i.5.14 
15.5.15 
1!5.5.16 

1!5.5.17 

1!5.5.18 

15.5.19 

l!).5.20 
1!5.5.21 
1!5. 6 
l!).6.1 
15.7 
l!).7.1 
1!5.7.2 

16 

16.1 
16. 1.1 
16. 1. 2 
16.2 
16.3 
16.3.1 
16.3.2 
16.3.2.1 
16.3.2.2 
16.3.2.3 
16.3.2.4 

CONTENTS 

Including UDCll Symbolic Definitions in the 
System Object Module Library 
Referencing the UDCll through a Global 
Common Block 
Creating a Global Common Block 
Making the Common Block Resident 
Linking a Task to the UDCll Common Block 

FORTRAN INTERFACE 
Synchronous and Asynchronous Process 
Control I/O 
The isb Status Array 
FORTRAN Subroutine Summary 
AIRD/AIRDW: Performing Input of Analog 
Data in Random Sequence 
AISQ/AISQW: Reading Sequential Analog 
Input Channels 
AO/AOW: Performing Analog Output 
ASUDLN: Assigning a LUN to the UDCll 
CTDI: Connecting to Contact Interrupts 
CTTI: Connecting to Timer Interrupts 
DFDI: Disconnecting from Contact Interrupts 
DFTI: Disconnecting from Timer Interrupts 
DI/DIW: Reading Several Contact Sense 
Fields 
DOL/DOLW: Latching or Unlatching Several 
Fields 
DOM/DOMW: Pulsing Several Fields 
RCIPT: Reading a Contact Interrupt Point 
RDCS: Reading Contact Interrupt Change-of
State Data from a Circular Buffer 
RDDI: Reading Contact Interrupt Data from 
a Circular Buff er 
RDTI: Reading Timer Interrupt Data from a 
Circular Buff er 
RDWD: Reading a Full Word of Contact 
Interrupt Data from the Circular Buffer 
RSTI: Reading a Timer Module 
SCTI: Initializing a Timer Module 

STATUS RETURNS 
FORTRAN Interface Values 

PROGRAMMING HINTS 
Numbering Conventions 
Processing Circular Buffer Entries 

LABORATORY PERIPHERAL SYSTEMS DRIVERS 

INTRODUCTION 
ARll Laboratory Peripheral System 
LPSll Laboratory Peripheral System 

GET LUN INFORMATION MACRO 
QIO MACRO 

Standard QIO Function 
Device-Specific QIO Functions (Immediate) 
IO.LED 
IO.REL 
IO.SDI 
IO.SDO 

xi 

Page 

15-11 

15-11 
15-11 
15-13 
15-13 
15-13 

15-14 
15-14 
15-15 

15-17 

15-17 
15-18 
15-18 
15-19 
15-19 
15-20 
15-20 

15-21 

15-21 
15-22 
15-22 

15-23 

15-24 

15-25 

15-25 
15-26 
15-26 
15-27 
15-29 
15-29 
15-29 
15-30 

16-1 

16-1 
16-2 
16-2 
16-2 
16-2 
16-2 
16-3 
16-3 
16-4 
16-4 
16-4 



16.3.3 

16.3.3.1 
16.3.3.2 
16.3.3.3 
16.3.3.4 
16.3.3.5 
16.3.4 
16.3.4.1 
16.4 
16.4.1 
16.4.2 
16.4.3 
16.4.4 
16.4.5 
16.4.6 
16.4.7 
16.4.8 

16.4.9 

16.4.10 

16.4.11 
16.4.12 
16.4.13 
16.4.14 
16.4.15 

16.4.16 

16.4.17 

16.4.18 
16.4.19 
16.4.20 
16.5 
16.5.1 
16.5.2 
16.5.3 
16.5.4 
16.6 
16.6.1 
16.6.2 
16.6.3 
16.6.4 

CHAPTER 17 

17.1 
17.2 
17.3 
17.4 
17.4.1 
17.4.2 
17.5 
17.5.1 

17.5.2 

CONTEN'.rS 

Device-Specific QIO Functions 
(Synchronous) 
IO.ADS 
IO.HIS 
IO.MDA 
IO.MDI 
IO.MOO 
Device-Specific QIO Function (IO.STP) 
IO.STP 

FORTRAN INTERFACE 
The isb Status Array 
Synchronous Subroutines 
FORTRAN Subroutine Summary 
ADC: Reading a Single A/D Channel 
ADJLPS: Adjusting Buffer Pointers 
ASLSLN: Assigning a LUN to LSO: 
ASARLN: Assigning a LUN to ARO: 
CVSWG: Converting a Switch Gain A/D Value 
to Floating-Point 
DRS: Initiating Synchronous Digital Input 
Sampling 
HIST: Ini tiatiwJ Histogram Sampling 
(LPSll only) 
!DIR: Reading Digital Input 
!DOR: Writing Digital Output 
IRDB: Reading Data from an Input Buffer 
LED: Displaying in LED Lights (LPSll only) 
LPSTP: Stopping an In-Progress Synchronous 
Function 
PUTD: Putting a Data Item into an Output 
Buffer 
RELAY: Latching an Output Relay 
(LPSll only) 
RTS: Initiating Synchronous A/D Sampling 
SDAC: Initiating Synchronous D/A Output 
SDO: Initiating Synchronous Digital Output 

STATUS RETURNS 
IE .RSU 
Second I/O Status Word 
IO.ADS and ADC Errors 
FORTRAN Interface Values 

PROGRAMMING HINTS 
The LPSll/ARll Clock and Sampling Rates 
Importance of the I/O Status Block 
Buffer Management 
Use of ADJLPS for Input and Output 

PAPER TAPE READER/PUNCH DRIVERS 

INTRODUCTION 
GET LUN INFORMATION MACRO 
QIO MACRO 
STATUS RETURNS 

Error Conditions 
Ready Recovery 

PROGRAMMING HINTS 
Special Action Resulting from Attach and 
D~tach 
Reading Past End-of-Tape 

xii 

Page 

16-4 
16-5 
16-6 
16-7 
16-7 
16-7 
16-8 
16-8 
16-8 
16-8 
16-9 
16-10 
16-11 
16-11 
16-12 
16-13 

16-13 

16-14 

16-15 
16-17 
16-17 
16-18 
16-18 

16-19 

16-19 

16-19 
16-20 
16-22 
16-23 
16-25 
16-27 
16-28 
16-29 
16-29 
16-30 
16-30 
16-31 
16-31 
16-32 

17-1 

17-1 
17-1 
17-2 
17-2 
17-4 
17-4 
17-5 

17-5 
17-5 

~I 



CHAPTER 18 

18.1 
18 .1.1 
18.1.1.1 
18 .1.1. 2 
18.1.1.3-
18 .1. 2 
18 .1. 3 
18 .1. 4 
18. 1. 5 
18.2 
18.3 
18.3.l 
18. 3. 1. 1 
18.3.1..2 
18.3.2 
18.3.3 
18.3.4 
18.3.5 
18.3.6 
18.3.6 . .l 
18.3.6.2 
18·.3.6.3 
18.3.6.4 
18.3.6.5 
18.3.6.6 
18.3.6.7 
18.3.7 
18.3.7.1 
18.3.7.2 
18.3.7.3 
18.3.7.4 
18.3.7.5 
18.3.7.6 
18.3.8 
18.3.9 
18.3.9.l 
18.3.9.2 
18.3.10 
18.3.10 .. 1 
18.3.10.2 
18.4 
18.4.1 

18.4.2 
18.4.3 
18.4.4 

18.4.5 
18.4.5.l 

18.4.5.2 

18.4.6 
18.4.7 

CONTENTS 

INDUSTRIAL CONTROL SUBSYSTEMS 

INTRODUCTION 
Hardware Configuration 
ICS/ICR Address Assignments 
DSS/DRS.Address Assignments 
Supported ICS/ICR I/O Modules 
Alternate ICSll Support 
Software Support 
UDCll Software Compatibility 
Module Addressing Conventions 

LUN INFORMATION 
ASSEMBLY LANGUAGE INTERFACE 

General Error Status Returns 
Directive Conditions 
I/O Conditions 
A/D Input - Read Multiple A/D Channels 
Analog Output 
Momentary Digital Output - Multi-Point 
Bistable Digital Output - Multi-Point 
Unsolicited Interrupt Processing 
Connect to Digital Interrupts 
Disconnect from Digital Interrupts 
Connect to Counter Module Interrupts 
Set Counter Initial Value 
Disconnect from Counter Interrupts 
Connect to Terminal Interrupts 
Disconnect from Terminal Input 
Activating a Task by Unsolicited Interrupts 
Link a Task to Digital Interrupts 
Link a Task to Counter Interrupts 
Link a Task to Terminal Interrupts 
Link a Task to Error Interrupts 
Read Activating Data 
Unlink a Task from Interrupts 
Terminal Output 
Maintenance Functions 
Disable Hardware Error Reporting 
Enable Hardware Error Reporting 
Special Functions 
I/O Rundown 
Kill I/O 

FORTRAN INTERFACE 
Synchronous and Asynchronous Process 
Control I/O 
Return Status Reporting 
Optional Arguments 
Assigning Default Logical and Physical 
Units for Input and Output - ASICLN/ASUDLN 
(ICS/ICR) and ASISLN (DSS/DRS) 
Analog Input 
AIRD/AIRDW: Analog Input - Specified 
Channel Sequence 
AISQ/AISQW: Analog Input - Sequential 

Page 

18-1 

18-1 
18-1 
18-1 
18-2 
18-3 
18-3 
18-4 
18-6 
18-7 
18-8 
18-8 
18-11 
18-12 
18-12 
18-13 
18-14 
18-15 
18-15 
18-16 
18-18 
18-19 
18-19 
18-20 
18-21 
18-21 
18-22 
18-22 
18-23 
18-24 
18-24 
18-25 
18-25 
18-27 
18-29 
18-29 
18-29 
18-30 
18-30 
18-30 
18-31 
18-31 . 

18-32 
18-33 
18-35 

18-35 
18-37 

18-37 

Channel Sequence 18-39 
AO/AOW: Analog Output - Multichannel 18-41 
DOL/DOLW: Digital Output - Bistable Multiple 
Fields 18-42 

xiii 



18.4.8 
18.4.8.1 

18.4.8.2 

18.4.9 

18.4.10 
18. 4 .11 

18. 4 .11.1 

18. 4 .11. 2 
18.4.11.3 

18. 4 .11. 4 

18. 4 .11. 5 

18. 4 .11. 6 
18.4.11.7 

18. 4.11. 8 

18. 4 .11. 9 

18. 4 .11.10 

18.4.11.11 
18.4.12 

18.4.12.1 
18.4.12.2 
18.4.12.3 
18.4.13 
18.4.13.1 

18.4.13.2 
18.5 
18.5.1 
18.5.2 
18.5.3 
18.5.4 
18.5.5 
18.6 
18.6.l 
18.6.2 
18.6.2.1 
18.6.2.2 
18.6.2.3 
18.7 
18.7.1 
18.7.2 
18.7.2.1 
18.7.2.2 
18.7.2.3 
18.7.2.4 
18.7.2.5 
18.7.2.6 
18.7.2.7 

CONTENTS 

Digital Input 
DI/DIW: Digital Input - Digital Sense 
Multiple Fields 
RCIPT: Digital Input - Digital Interrupt 
Single-Point 
DOM/DOMW: Digital Output Momentary -
Multiple Fields 
RTO/RTOW: Remote~ Terminal Output 
Unsolicited Interrupt Data - Continual 
Monitoring 
CTDI: Connect a Buffer for Receiving 
Digital Interrupt Data 
Reading Digital Interrupt Data 
DFDI: Disconnect a Buffer from Digital 
Interrupts 
CTTI: Connect a Buffer for Receiving 
Counter Data 
RDTI: Read Counter Data from the Circular 
Buffer 
Miscellaneous Counter Routines 
DFTI: Disconnect a Buffer from Counter 
Interrupts 
CTTY: Connect a Circular Buffer to Terminal 
Interrupts 
RDTY: Read a Character from the Terminal 
Buffer 
DFTY: Disconnect a Circular Buffer from 
Terminal Input 
Progranuning Example 
Unsolicited Interrupt Processing - Task 
Activation 
LNK: Link a Task to Interrupts 
RDACT: Read Activation Data 
UNLNK: Remove Interrupt Linkage. to a Task 
Maintenance Functions 
OFLIN: Place Selected Unit in Offline 
Status 
ONLIN: Return a Device to Online Status 

ERROR DETECTION AND RECOVERY 
Serial Line Errors 
Power-Fail at a Remote Site 
Power Recovery at the Processor 
Unit in Offline Status 
Error Data - !CSR and !CAR Registers 

DIRECT ACCESS 
Linking a Task to the ICS/ICR Conunon Block 
Accessing the I/O Page 
Mapping Table Format 
I/O Page Global Definitions 
Sample Subroutine 

CONVERSION OF EXISTING SOFTWARE 
Features 
Module Support 
IAD-IA A/D Converter and IMX-IA Multiplexer 
16-Bit Binary Counter 
Bistable Digital Output 
Momentary Digital Output 
Noninterrupting Digital Input 
Analog Output 
Interrupting Digital Input 

xiv 

Page 

18-44 

18-44 

18-45 

18-46 
18-47 

18-47 

18-48 
18-49 

18-52 

18-53 

18-54 
18-55 

18-56 

18-56 

18-57 

18-58 
18-58 

18-60 
18-60 
18-62 
18-64 
18-65 

18-65 
18-65 
18-66 
18-66 
18-67 
18-67 
18-67 
18-68 
18-69 
18-71 
18-71 
18-71 
18-72 
18-73 
18-75 
18-75 
18-75 
18-75 
18-76 
18-76 
18-76 
18-76 
18-77 
18-77 



""'-"' 
CHll~PTER 19 

CHP..PTER 2 0 

CHl\PTER 

CHA.PTER 

20.l 
20.1.1 
20.1.2 
20.2 
20.3 
20.4 
20.5 

21 

21.1 
21.1.1 
21.1. 2 
21.2 
21. 3 
21. 3 .1 
21.3.1.1 
21.3.1.2 
21.3.1.3 
21.3.1.4 
21.3.1.5 
21.3.1.6 

21.3.1.7 

21.3.1.8 

21.3.1.9 
21.3.1.10 
21.3.1.11 
21.3.1.12 
21.3.1.13 
21.3.1.14 
21.3.1.15 
21.3.1.16 
21.3.1.17 
21. 3 .1.18 
21.3.1.19 
21. 3. 2 
21.3.2.1 
21.3.2.2 
21.3.3 
21. 4 
21. 5 
21. 6 
21. 7 
21. 8 
21. 9 

22 

22.1 
22 .1.1 
22.1.1.1 

CONTENTS 

NULL DEVICE DRIVER 

GRAPHICS DISPLAY DRIVER 

INTRODUCTION 
VTll Graphics Display Subsystem 
VS60 Graphics Display Subsystem 

GET LUN INFORMATION MACRO 
QIO MACRO 
STATUS RETURNS 
PROGRAMMING HINTS 

LABORATORY PERIPHERAL ACCELERATOR DRIVER 

INTRODUCTION 
LPAll-K Dedicated Mode of Operation 
LPAll-K Multirequest Mode of Operation 

GET LUN INFORMATION MACRO 
THE PROGRAM INTERFACE 

FORTRAN Interface 
ADSWP: Initiate Synchronous A/D Sweep 
CLOCKA: Set Clock A Rate 
CLOCKB: Control Clock B 
CVADF: Convert A/D Input to Floating Point 
DASWP: Initiate Synchronous D/A Sweep 
DipWP: Initiate Synchronous Digital Input 

Page 

19-1 

20-1 

20-1 
20-1 
20-1 
20-1 
20-2 
20-2 
20-3 

21-1 

21-1 
21-1 
21-1 
21-1 
21-2 
21-2 
21-3 
21-6 
21-7 
21-8 
21-8 

Sweep 21-10 
DOSWP: Initiate Synchronous Digital Output 
Sweep 
FLT16: Convert Unsigned Integer to a Real 
Constant 
IBFSTS: Get Buffer Status 
IGTBUF: Return Buffer Number 
INXTBF: Set Next Buffer 
IWTBUF: Wait for Buffer 
LAMSKS: Set Masks Buffer 
RLSBUF: Release Data Buffer 
RMVBUF: Remove Buffer from Device Queue 
SETADC: Set Channel Information 
SETIBF: Set Array for Buffered Sweep 
STPSWP: Stop Sweep 
XRATE: Compute Clock Rate and Preset 
MACR0-11 Interface 
Accessing Callable LPAll-K Support Routines 
Device-Specific QIO Functions 
The I/O Status Block (IOSB) 

BUFFER MANAGEMENT 
LOADING THE LPA-11 MICROCODE 
UNLOADING THE DRIVER 
TIMEOUT OF THE LPAll-K 
22-BIT ADDRESSING SUPPORT 
SAMPLE PROGRAMS 

K-SERIES PERIPHERAL SUPPORT ROUTINES 

INTRODUCTION 
K-Series Laboratory Peripherals 
AAll-K D/A Converter 

xv 

21-12 

21-14 
21-14 
21-15 
21-16 
21-16 
21-17 
21-18 
21-19 
21-19 
21-20 
21-20 
21-21 
21-22 
21-22 
21-23 
21-25 
21-27 
21-28 
21-29 
21-29 
21-30 
21-32 

22-1 

22-1 
22-1 
22-1 



22.1.1.2 
22.1.1.3 
22.1.1.4 
22.1.1.5 
22.1.2 
22 .1. 3 
22.1.3.l 
22.1.3.2 
22.2 
22.2.1 
22.2.1.1 
22.2.1.2 
22.2.1.3 
22.2.1.4 
22.2.1.5 
22.2.1.6 
22.2.1.7 
22.2.1.8 
22.2.1.9 

22.2.1.10 

22.2.1.11 
22.2.1.12 

22.2.1.13 
22.2.1.14 
22.2.1.15 
22.2.1.16 
22.2.1.17 
22.2.1.18 
22.2.1.19 
22.2.1.20 
22.2.1.21 
22.2.1.22 
22.2.1.23 
22.2.1.24 
22.2.1.25 
22.2.1.26 
22.2.2 
22.2.2.1 

22.2.2.2 
22.2.3 
22.3 
22.4 
22.4.1 
22.4.2 

CHAPTER 23 

23.1 
23 .1.1 
23.1.2 
23.2 
23.3 
23.3.1 
23.3.1.l 

CONTENTS 

ADll-K A/D Converter 
AMll-K Multiple~ Gain Multiplexer 
DRll-K Digital I/O Interface 
KWll-K Dual Programmable Real-Time Clock 
Support Routine Features · 
Generation and Use of K-series Routines 
Generation of K-series Support Routines 
Program Use of K-series Routines 

THE PROGRAM INTERFACE 
FORTRAN Interface 
ADINP: Initiate Single Analog Input 
ADSWP: Initiab9 Synchronous A/D Sweep 
CLOCKA: Set Clock A Rate 
CLOCKB: Control Clock B 
CVADF: Convert A/D Input to Floating Point 
DASWP: Initiate Synchronous D/A Sweep 
DIGO: Digital Start Event 
DINP: Digital Input 
DISWP: Initiate Synchronous Digital Input 
Sweep 
DOSWP: Initiate Synchronous Digital Output 
Sweep 
DOUT: Digital Output 
FLT16: Convert Unsigned Integer to a Real 
Constant 
GTHIST: Gather Inter-event Time Data 
IBFSTS: Get Buffer Status 
ICLOKB: Read 16-bit Clock 
IGTBUF: Return Buffer Number 
INXTBF: Set Next Buffer 
IWTBUF: Wait for Buffer 
RCLOKB: Read 16-bit Clock 
RLSBUF: Release Data Buffer 
RMVBUF: Remove Buffer from Device Queue 
SCOPE: Control Scope 
SETADC: Set Channel Information 
SETIBF: Set Array for Buffered Sweep 
STPSWP: Stop Sweep 
XRATE: Compute Clock Rate and Preset 
MACR0-11 Interface 
Standard Subroutine Linkage and CALL Op 
Code 
Special-Purpose Macros 
The I/O Status Block (IOSB) 

BUFFER MANAGEMENT 
SAMPLE FORTRAN PROGRAMS 

Sample Program Using Event Flag 
Sample Program Using Completion Routine 

UNIBUS SWITCH DRIVER 

INTRODUCTION 
DT07 UNIBUS Switches 
UNIBUS Switch Driver 

GET LUN INFORMATION MACRO 
QIO MACRO 

Standard QIO Functions 
IO.ATT 

xvi 

Page 

22-2 
22-2 
22-2 
22-2 
22-2 
22-3 
22-3 
22-4 
22-5 
22-5 
22-6 
22-7 
22-9 
22-9 
22-11 
22-11 
22-12 
22-13 

22-13 

22-15 
22-16 

22-16 
22-17 
22-18 
22-18 
22-19 
22-19 
22-20 
22-20 
22-21 
22-21 
22-21 
22-22 
22-23 
22-23 
22-24 
22-25 

22-25 
22-25 
22-26 
22-26 
22...;.27 
22-27 
22-28 

23-1 

23-1 
23-1 
23-1 
23-2 
23-2 
23-2 
23-3 

~' 



___ ,. ----------·----~--

23 .. 3.1.2 
23.3.1.3 
23.3.2 
23.3.2.1 
23.3.2.2 
23.3.2.3 
23.3.2.4 
23.3.2.5 
23.4 
23.4.1 
23.4.2 
23.5 
23.6 

APPENDIX A 

A.1 
A. 2 
.A. 3 
.A. 4 
.A. 5 
A. 6 
A. 7 
.A. 8 
A.9 
.A.10 
A.11 
.A.12 
A.13 
A.14 
A.15 
A.15.1 
A.15.2 
A.16 
A.17 
A.18 
A.19 

APPENDIX B 

B.l 
B.1.1 
B. l. 2 
B.2 
B.2.1 
B.2.2 
B.3 
B.3.1 
B.3.2 
B.3.3 
B.3.4 
B.3.5 

B.3.6 
B.3.7 
B.3.8 
B.3.9 

B.3.10 

CONTENTS 

IO.DET 
IO.KIL 
Device-Specific QIO Functions 
IO.CON 
IO.DIS 
IO.DPT 
IO.SWI 
IO.CSR 

POWERFAIL RECOVERY 
System Powerfail Recovery 
UNIBUS Powerfail Recovery 

STATUS RETURNS 
FORTRAN USAGE 

SUMMARY OF I/O FUNCTIONS 

ANALOG-TO-DIGITAL CONVERTER DRIVERS 
CARD READER DRIVER 
CASSETTE DRIVER 
COMMUNICATION DRIVERS (MESSAGE-ORIENTED) 
DECTAPE_ DRIVER 
DECTAPE II DRIVER 
DISK DRIVER 
GRAPHICS DISPLAY DRIVER 
INDUSTRIAL CONTROL SUBSYSTEMS 
LABORATORY PERIPHERAL ACCELERATOR DRIVER 
LABORATORY PERIPHERAL SYSTEMS DRIVERS 
LINE PRINTER DRIVER 
MAGNETIC TAPE DRIVER 
PAPER TAPE READER/PUNCH DRIVERS 
PARALLEL COMMUNICATION LINK DRIVERS 

Transmitter Driver Functions 
Receiver Driver Functions 

TERMINAL DRIVER 
UNIBUS SWITCH DRIVER 
UNIVERSAL DIGITAL CONTROLLER DRIVER 
VIRTUAL TERMINAL DRIVER 

I/O FUNCTION AND STATUS CODES 

I/O STATUS CODES 
I/O Status Error Codes 
I/O Status Success Codes 

DIRECTIVES CODES 
Directive Error Codes 
Directive Success Codes 

I/O FUNCTION CODES 
Standard I/O Function Codes 
Specific A/D Converter I/O Function Codes 
Specific Card Reader I/O Function Codes 
Specific Cassette I/O Function Codes 
Specific Communication (Message-Oriented) 
I/O Function Codes 
Specific DECtape I/O Function Codes 
Specific DECtape II I/O Function Codes 
Specific Disk I/O Function Codes 
Specific Graphics Display I/O Function 
Codes 
Specific ICS/ICR, DSS/DR I/O Function 
Codes 

xvii 

Page 

23-3 
23-3 
23-4 
23-4 
23-5 
23-5 
23-6 
23-6 
23-6 
23-6 
23-6 
23-7 
23-8 

A-1 

A-1 
A-1 
A-1 
A-2 
A-2 
A-2 
A-3 
A-3 
A-4 
A-5 
A-5 
A-5 
A-6 
A-6 
A-6 
A-6 
A-7 
A-7 
A-8 
A-9 
A-9 

B-1 

B-1 
B-1 
B-3 
B-3 
B-4 
B-4 
B-4 
B-4 
B-4 
B-5 
B-5 

B-5 
B-6 
B-6 
B-6 

B-7 

B-7 



B. 3 .11 
B.3.12 
B. 3 .13 
B.3.14 

B.3.14.1 
B.3.14.2 
B.3.15 
B.3.16 
B.3.17 
B.3.18 

APPENDIX C 

INDEX 

FIGURE 

TABLE 

1-1 
1-2 
8-1 

8-2 

9-1 
18-1 
18-2 
19-1 

1-1 
l-2 
1-3 
2-1 
2-2 
2-3 

2-4 
2-5 

2-6 

2-7 

2-8 
2-9 
2-10 
2-11 
3-1 
3-2 
3-3 

3-4 

CONTENTS 

Specific LPAll-K I/O Function Codes 
Specific LPS I/O Function Codes 
Specific Magtape I/O Function Codes 
Specific Parallel Communications Link 
I/O Function Codes 
Transmitter Driver Functions 
Receiver Driver Functions 
Specific Terminal I/O Function Codes 
Specific UDC I/O Function Codes 
Specific UNIBUS Switch I/O Function Codes 
Specific Virtual Terminal I/O Function 
Codes 

RSX-llM PROGRAMMING EXAMPLE 

Page 

B-8 
B-9 
B-9 

B-10 
B-10 
B-10 
B-10 
B-11 
B-12 

B-12 

C-1 

Index-! 

FIGUHES 

Logical Unit Table 
QIO Directive Parameter Block 
Determination of Tape Characteristics for 
the TE10/TU10 
Determination of Tape Characteristics for 
the TE16/TU16/TU45/TU77 
Structure of Cassette Tape 
Mapping Table Format 
Mapping Table Entry Format 
Indirect TKB Command File TESTBLD.CMD 

TABL.ES 

Get LUN Information 
Directive Conditions 
I/O Status Conditions 
Supported Terminal Devices 
Standard Terminal Interfaces 
Standard and Device-Specific QIO Functions 
for Terminals 
Subfunction Bits 
Full-Duplex Terminal Driver-Terminal 
Characteristics for SF.GMC and SF.SMC 
Functions 
Bit TC.TTP (Terminal Type) Values Set by 
SF.SMC and Returned by SF.GMC 
Information Returned by Get Terminal 
Support (IO.GTS) QIO 
Terminal Status Returns 
Terminal Control Characters 
Special Terminal Keys 
Vertical Format Control Characteristics 
Supported Terminal Devices 
Standard Terminal Interfaces 
Standard and Device-Specific QIO Functions 
for Terminals 
Subfunction Bits 

xviii. 

1-6 
1-13 

8-7 

8-8 
9-6 
18-72 
18-73 
19-1 

1-20 
1-30 
1-32 
2-2 
2-3 

2-6 
2-10 

2-13 

2-15 

2-16 
2-21 
2-25 
2-27 
2-32 
3-1 
3-2 

3-6 
3-8 

41111'. 



TABLE 3-5 

3-6 

3-7 

3-8 
3-9 
3-10 
3-11 
4-1 

4-2 

4-3 

5-1 
5-2 
5-3 

5-4 
6-1 
6-2 
6-3 
7-1 
7-2 
7-3 
8-1 
8-2 
8-3 
8-4 
9-1 
9-2 
9-3 
10-1 
10·-2 
10·-3 
10·-4 
11·-1 
11·-2 

11·-3 
11·-4 
11·-5 
11·-6 
12·-l 
12·-2 

12·-3 

12-4 
13-1 
13·-2 

13·-3 
13·-4 
13-5 

CONTENTS 

TABLES (Cont.) 

Terminal Characteristics for SF.GMC and 
SF.SMC Requests 
Bit TC.TTP (Terminal Type): Values Set by 
SF.SMC and Returned by SF.GMC 
Information Returned by Get Terminal Support 
(IO.GTS) QIO 
Terminal Status Returns 
Terminal Control Characters 
Special Terminal Keys 
Vertical Format Control Characters 
Standard and Device-Specific QIO Functions 
for Virtual Terminals 
Virtual Terminal Status Returns for Off spring 
Task Requests 
Virtual Terminal Status Returns for Parent 
Task Requests 
Standard Disk Devices 
Standard QIO Functions for Disks 
Device-Specific Functions for the. RXOl, 
RX02, RLOl, and RL02 Disk Drivers 
Disk Status Returns 
Standard QIO Functions for DECtape 
Device-Specific Functions for DECtape 
DECtape Status Returns 
Standard QIO Functions for the TU58 
Device-Specific QIO Functions for the TU58 
TU58 Driver Status Returns 
Standard Magtape Devices 
Standard QIO Functions for Magtape 
Device-Specific QIO Functions for Magtape 
Magtape Status Returns 
Standard QIO Functions for Cassette 
Device-Specific QIO Functions for Cassette 
Cassette Status Returns 
Standard Line Printer Devices 
Standard QIO Functions for Line Printers 
Line Printer Status Returns 
Vertical Format Control Characters 
Standard QIO Functions for the Card Reader 
Device-Specific QIO Function for the Card 
Reader 
Card Reader Switches and Indicators 
Card Reader Status Returns 
Card Reader Control Characters 
Translation from DEC026 or DEC029 to ASCII 
Message-Oriented Communication Interfaces 
Standard QIO Functions for Communication 
Interfaces 
Device-Specific QIO Functions for 
Communication Interfaces 
Communication Status Returns 
Standard QIO Functions for PCLll Transmitters 
Device-Specific QIO Functions for PCLll 
Transmitters 
PCLll Transmitter Driver Status Returns 
Standard QIO Functions for PCLll Receivers 
Device-Specific QIO Functions for PCLll 
Receivers 

xix 

Page 

3-10 

3-11 

3-11 
3-16 
3-19 
3-21 
3-:26 

4-2 

4-6 

4-7 
5-2 
5-5 

5-6 
5-7 
6-2 
6-3 
6-4 
7-3 
7-3 
7-4 
8-1 
8-3 
8-4 
8-9 
9-2 
9-3 
9-3 
10-1 
10-3 
10-4 
10-5 
11-2 

11-3 
11-4 
11-7 
11-8 
11-10 
12-2 

12-5 

12-6 
12-8 
13-3 

13-4 
13-7 
13-9 

13-9 



TABLE 13-6 
14-1 
14-2 
14-3 

14-4 
14-5 
14-6 

14-7 
14-8 
15-1 
15-2 
15-3 
15-4 
15-5 
15-6 
15-7 
16-1 
16-2 

16-3 

16-4 

16-5 

16-6 
16-7 

16-8 
16-9 
16-10 
17-1 

17-2 
18-1 
18-2 
18-3 
18-4 
18-5 
18-6 
18-7 
18-8 
18-9 
20-1 

20-2 
21-1 
21-2 

21-3 
22-1 

22-2 

CONTENTS 

TABLES (Cont.) 

PCLll Receiver Driver Status Returns 
Standard Analog-to-Digital Converters 
Standard QIO Function for the A/D Converters 
Device-Specific QIO Function for the A/D 
Converters 
A/D Conversion Control Word 
Contents of First Word of isb 
FORTRAN Interface Subroutines for the AFCll 
and ADOl-D 
A/D Converter Status Returns 
FORTRAN Interface Values 
Standard QIO Function for the UDCll 
Device-Specific QIO Functions for the UDCll 
A/D Conversion Control Word 
Contents of First Word of isb 
FORTRAN Interface Subroutines for the UDCll 
UDCll Status Returns 
FORTRAN Interface Values 
Laboratory Peripheral Systems 
Standard QIO Function for Laboratory 
Peripheral Systems 
Device-Specific QIO Functions for the 
Laboratory Peripheral Systems (Immediate) 
Device-Specific QIO Functions for the 
Laboratory Peripheral Systems (Synchronous) 
Device-Specific QIO Function for the 
Laboratory Peripheral Systems (IO.STP) 
Contents of First Word of isb 
FORTRAN Interface Subroutines for Laboratory 
Peripheral Systems 
Laboratory Peripheral Systems Status Returns 
Returns to Second Word of I/O Status Block 
FORTRAN Interface Values 
Standard QIO Functions for the Paper Tape 
Reader/Punch 
Paper Tape Reader/Punch Status Returns 
ICS/ICR Address Assignments 
Sample ICS/ICR Configuration 
Sample DSS/DRS Configuration 
Summary of Industrial Control QIO Functions 
A/D Conversion Control Word 
FORTRAN Interface 
Return Status Summary 
!CSR Contents 
!CAR Contents 
Standard and Device-Specific QIO Functions 
for Graphics Displays 
Graphics Display Status Returns 
FORTRAN Subroutines for the LAPll-K 
Device-Specific QIO Functions for the 
LPAll-K 
Contents of First Word of IOSB 
FORTRAN Subroutines for K-series Laboratory 
Peripherals 
Scope Control Word Values 

xx 

Page 

13-11 
14-1 
14-2 

14-2 
14-3 
14-4 

14-4 
14-7 
14-8 
15-3 
15-4 
15-5 
15-15 
15-16 
15-27 
15-29 
16-1 

16-2 

16-3 

16-4 

16-8 
16-9 

16-10 
16-25 
16-28 
16-29 

17-2 
17-3 
18-2 
18-7 
18-8 
18-8 
18-14 
18-31 
18-34 
18-68 
18-69 

20-2 
20-3 
21-2 

21-24 
21-26 

22-5 
22-22 



TABLE 

~·· 

22-3 
23-1 
23-2 

23-3 

CONTENTS 

TABLES (Cont.) 

Contents of First Word of IOSB 
Standard QIO Functions for UNIBUS Switches 
Device-Specific QIO Functions for UNIBUS 
Switches 
UNIBUS Switch Driver Status Returns 

xxi 

Page 

22-26 
23-2 

23-4 
23-7 





SUMMARY OF TECHNICAL CHANGES 

This revision of the I/O Drivers Reference Manual contains changes and 
additions to document two operating systems: RSX-llM V3.2 and 
RSX·-llM-PLUS Vl .o. The following list contains a brief summary of 
technical changes for both operating systems: 

• A new full-duplex terminal driver ,is available for RSX-llM 
systems. During SYSGEN, the RSX-llM user can select either 
the half-duplex terminal driver (available in previous RSX-llM 
systems) or the full-duplex terminal driver. Only the 
full-duplex terminal driver is available in RSX-llM-PLUS 
systems. 

Terminal driver support has been added for the following 
terminal devices: 

VTlOO 
LA120 

• Disk driver support has been added for the following new disk 
devices: 

RHXX/RM02 
RL11/RL02 
RK6 ll/RK07 
RX211/RX02 

• DECtape II (TU58) driver support has been added •. 

• Magnetic tape driver support has been added for the TU77 and 
TS04. 

• LPAll-K driver support has been expanded to accommodate 
systems with 22-bit addressing. While this allows the driver 
to run on any system in which RSX-llM/M-PLUS is installed, 
user tasks previously written to run on earlier versions of 
RSX-llM may not run with the current LPAll-K driver without 
modification (see Section 21.7). 

• PCLll Parallel Communication Link transmitter and receiver 
driver support has been added for RSX-llM-PLUS systems. 
(PCLll driver support is not available in RSX-llM systems.) 

• UNIBUS switch (DT03/DT07) driver support is provided for 
RSX-llM-PLUS systems. (UNIBUS switch driver support is not 
available in RSX-llM systems.) 

• Virtual terminal driver support is provided for RSX-llM-PLUS 
systems. (Virtual terminals are not supported in RSX-llM 
systems.) 

xx iii 



NOTE 

The following devices are not supported 
in RSX-llM-PLUS systems: 

Synchronous and asynchronous line 
interfaces: 

DAll-B 
DLll-E (modem support is 

provided in the 
full-duplex terminal 
driver) 

DPll 
DQll 
DUll 

Analog-to-digital converters: 

AFCll 
ADOl-D 

UDCll universal digital controller 

Laboratory peripheral systems: 

ARll 
LPSll 

Industrial control subsystems: 

ICS/ICR 

DSS/DRS 

local and remote 
subsystems 
digital input and 
output subsystems 

Graphics subsystems: 

VTll 
VS60 

Terminal support is provided via 
the full-duplex terminal driver 
only; the half-duplex terminal 
driver is not supported 

xxiv 



PREFACE 

MANUAL OBJEC'l'IVES 

The purposE~ of this manual is to provide all information necessary to 
interface directly with the I/O device drivers supplied as part of the 
RSX-llM/M-PLUS system. 

INTENDED AUDIENCE 

This manual is intended for use by experienced RSX-llM/M-PLUS 
programmers who want to take advantage of the time and/or space 
savings which result from direct use of the I/O drivers. Readers are 
expected to be familiar with the information contained in the 
RSX-·llM/M-PLUS Executive Reference Manual, and to have some experience 
using the Task Builder and either MACR0-11 or FORTRAN programs and to 
be familiar with the manuals describing their use. 

STRUCTURE OF THE DOCUMENT 

Chapter 1 provides an overview of RSX-llM input/output operations. It 
is somewhat tutorial in its approach in introducing the reader to the 
use of logical unit numbers, directive parameter blocks, event flags, 
macro calls, etc. The discussions include the standard I/O functions 
common to a variety of devices, and summarizes standard error and 
status conditions relating to completion of I/O requests. 

Chapters 2 through 23 describe the use of all device drivers supported 
by RSX-llM and/or RSX-llM-PLUS; refer to the preceding Summary Of 
Technical Changes to determine which drivers are supported in your 
operating system. Descriptions by chapter are as follows: 

2 

3 

4 

5 

6 

Device Drivers 

Full-duplex terminal communications 
line interface 

Half-duplex terminal communications 
line interface 

Virtual terminal driver 

Disks 

DECtape 

xxv 



Chapter 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

Device Drivers 

DECtape II 

Magnetic tape 

Cassette 

Line printers 

Card reader 

Message-oriented 
line interfaces 

communications 

PCLll parallel communications link 
transmitter and receiver 

Analog-to-digital converters 

Universal digital controller 

Laboratory peripheral systems 

Paper tape reader/punch 

Industrial control subsystems 

The null device 

Graphics display terminals 

LPAll-K laboratory peripheral 
accelerator 

K-seri~s laboratory peripherals 

UNIBUS switch 

Each of these chapters is structured in similar fashion and focuses on 
the following basic elements: 

• Description of the device, including information on physical 
characteristics such as speed, capacity, access, and usage 

• Summary of standard functions supported by the devices and 
descriptions of device-specific functions 

• Discussion of special characters, carriage control codes, and 
functional characteristics, if relevant 

• Summary of error and status conditions returned on acceptance 
or rejection of I/O requests 

• Description of programming hints for users of the device under 
RSX-llM 

xxvi 

~. 

~. 



'-" 

Appendixes A through C provide quick reference material on I/O 
functions and status codes and an example of RSX-llM I/O operations. 
These include the following: 

~ppendix Contents 

A Summary of I/O functions 
by device 

B I/O function and status 
codes 

c Programming 

ASSOCIATED DOCUMENTS 

Other manuals closely allied to the purposes of this 
described briefly in the RSX-llM/RSX-llS Documentation 
the RSX-UM-PLUS Documentation Directory. Each 
Directory defines the intended readership of each 
RSX-llM/RSX-llS or RSX-llM-PLUS set and provides a brief 
each manual's contents. 

CONV:E:NTIONS USED IN THIS MANUAL 

example 

document are 
Directory and 
Documentation 
manual in the 

synopsis of 

There are a number of conventions and assumptions used in this manual 
to present syntax and program coding examples. These are described in 
the following list. 

1. Brackets ([]) 
parameters. 

in syntactic models enclose optional 

The following example illustrates this format: 

ASTX$S [err] 

2. Braces ( { } ) in syntactic models indicate that one of the 
items must be selected, as in the following: 

3. 

4 .. 

{
DOM } 

CALL <inm, icont, idata, [idx], [isb], [lun] > 
DOMW 

An ellipsis ( ••• ) in a syntactic model or coding example 
indicates that parameters have been omitted. As used in this 
manual, an ellipsis in a QIO macro call indicates omission of 
standard QIO parameters described in Section 1.5.1. This is 
illustrated below: 

QIO$C IO.RLV, ••• ,<stadd,size> 

Consecuti'IJe 
arguments. 

commas in a coding example indicate 
The following illustrates this usage: 

QIO$C IO.ATT,6,,,,ASTOl 

null 

5. Commas indicating null trailing optional arguments may be 
omitted, as in the following: 

QIO$C IO.KIL,9. 

xxvii 



6. Certain parameters are required but ignored by RSX-llM or 
RSX-llM-PLUS; this is necessary to maintain compatibility 
with RSX-llD. For example, in the following, the priority 
specification (fourth parameter) is ignored: 

QIO$C IO.WLB,8.,EV,,IOSB,ASTX,<IOBUF,NBUF> 

7. With the exception of MACR0-11 coding examples, all numbers 
in the text of this manual are assumed to be decimal; octal 
radix is explicitly declared as in the following: 

An illegal logical block number has been specified 
for DECtape. The number exceeds 577 (1101 octal). 

In MACR0-11 coding examples, all numbers are assumed to be 
octal; decimal radix is explicitly designated by following 
the number with a decimal point, as in the following example: 

QIO$C IO.RDB,14.,,,IOSB,,<IOBUF,80.> 

8. In FORTRAN subroutine models, parameters which begin with the 
letters i through n indicate integer variables, as in the 
following example: 

CALL DRS (ibuf,ilen,imode,irate,iefn,imask,isb, 
[nbuf], [istart], [istop]) 

In general, where both i and n prefixes are used in a call, 
the i form indicates the name of an array and the n form 
specifies the size of the array. 

All integer arrays and variables are assumed to occupy one 
storage word per variable (i.e., INTEGER*2) and all real 
arrays and variables are assumed to occupy two storage words 
per variable (i.e., REAL*4). 

xxviii 



CHAPTER 1 

RSX-llM/M-PLUS INPUT/OUTPUT 

1.1 OVERVIEW OF RSX-llM I/O 

The RSX-llM/M-PLUS Real-Time Executives support a wide variety of 
PDP-11 input and output devices, including disks, DECtapes, magnetic 
tapes, tape cassettes, line printers, card readers, and such 
laboratory and industrial devices as analog-to-digital converters, 
universal digital controllers, and laboratory peripheral systems. 
Drivers for these devices are supplied by Digital Equipment 
Corporation as part of the system software. This manual describes all 
of the device drivers supported by the system and the characteristics, 
functions, error conditions, and programming hints associated with 
each. Devices not described in this manual can be added to basic 
system configurations, but users must develop and maintain their own 
drivers for these devices. (See the RSX-llM Guide to Writing a~ I/O 
Driv~, including update No 1, or the RSX-llM-PLUS Guide to Writing an 
I/O Driver, depending upon the system you are using.) 

Input/output operations under RSX-llM are extremely flexible and are 
as device-- and function-independent as possible. Programs issue I/O 
requests to logical units which have been previously associated with 
particular physical device units. Each program or task is able to 
establish its own correspondence between physical device units and 
logical unit numbers (LUNs). I/O requests are queued as issued; they 
are subsequently processed according to the relative priority of the 
tasks which issued them. I/O requests (for appropriate devices) can 
be issued from tasks by means of either the File Control Services or 
Record Management Services, or can be interfaced directly to an I/O 
driver by means of the Queue I/O (QIO) system directive. 

All of the I/O services described in this manual are requested by the 
user in the form of QIO system directives. A function code included 
in the QIO directive indicates the particular input or output 
operation to be performed. I/O functions can be used to request such 
operations as: 

• attaching or detaching a physical device unit for a task's 
exclusive use 

• reading or writing a logical or virtual block of data 

• canceling a task's I/O requests 

A wide variety of device-specific input/output 
reading DECtape in reverse, rewinding cassette 
specified via QIO directives. 

1-1 

operations (e.g., 
tape) can also be 



RSX-llM/M-PLUS INPUT/OUTPUT 

1.2 PHYSICAL, LOGICAL, AND VIRTUAL I/O 

There are three possible modes in which an I/O transfer can take 
place. These are physical, logical, and virtual. 

Physical I/O concerns reading and writing data in the actual physical 
units accepted by the hardware {e.g., sectors on a disk). For most 
devices, physical I/O is identical to logical I/O. For example, the 
RK05 disk has sectors of 256 words, the same size as RSX-llM logical 
blocks for all disks. Thus, in this case, a logical block maps 
directly into a physical block. F'or other devices, the mapping is not 
one to one. The RFll disk, for example, is word-addressable; however 
no physical I/O may be done with the RFll. Data is always written in 
256-word logical blocks. Another example is the RXOl flexible disk. 
Data for the RXOl is recorded in physical sectors of 64 words each. 
Therefore, logical blocks for the RXOl are made up of four physical 
sectors. 

Logical I/O concerns reading and writing data in blocks that are 
convenient for the operating system. In most cases, logical blocks 
map directly into physical blocks. For block-structured devices 
{e.g., disks), logical blocks are numbered beginning at zero (0). For 
nonblock-structured devices {e.g., terminals), logical blocks are not 
addressable. 

Virtual I/O concerns reading and writing data to open files. In this 
case, the executive maps virtual blocks into logical blocks. For 
file-structured devices {disks or DECtapes) virtual blocks are the 
same size as logical blocks and are numbered starting from one (1) and 
are relative to the file rather than to the device. For 
nonf ile-structured devices, the mapping from virtual block to logical 
block is direct. 

1.3 RSX-llM DEVICES 

The devices listed below are supported by both RSX-llM and 
RSX-llM-PLUS, except as indicated. Drivers are supplied for each of 
these devices, and I/O operations for them are described in detail in 
subsequent chapters of this manual. 

1. A variety of terminals, including the following: 

e ASR/KSR-33 and ASR/KSR-35 Teletypesl 

• LA30 DECwriters {serial and parallel) 

• LA36 DECwriter II 

• LA120 DECwriter III 

• LA180S DECprinter 

• VTOSB Alphanumeric Display Terminal 

• VTSO Alphanumeric Display Terminal 

• VTSOH Alphanumeric Display Terminal 

• VT52 Alphanumeric Display Terminal 

1 Teletype is a registered trademark of the Teletype Corporation. 

1-2 



~· 

RSX-llM/M~PLUS INPUT/OUTPUT 

• VTSS Graphics Display Terminal 

• VT61 Alphanumeric Display Terminal 

• VTlOO Alphanumeric Display Terminal 

• RT02 Data Entry Terminal 

• RT02-C Badge Reader and Data Entry Terminal 

These terminals are supported on the following asynchronous 
line interfaces: 

• DJll Asynchronous Communication Line Interface Multiplexer 

• DHll and DHll-DMll-BB Asynchronous Communication Line 
Interface Multiplexer 

e DLll-A, DLll-B, DLll-C, DLll-D, DLll-E 
Asynchronous Communication Line Interfaces 

and DLll-W 

• DZll Asynchronous Communication Line Interface Multiplexer 

2. A variety of disks, including the following: 

e RFll/RSll Fixed-Head Disk 

• RS03 Fixed-Head Disk 

• RS04 Fixed-Head Disk 

• RP11/RP02 or RP03 Pack Disks 

• RM02, RM03 Pack Disk 

• RP04, RPOS, RP06 Pack Disks 

e RKll/RKOS or RKOSF Cartridge Disks 

e RLll/RLOl or RL02 Cartridge Disk 

• RK611/RK06 or RK07 Cartridge Disk 

• RXll/RXOl Flexible Disk 

• RX211/RX02 Flexible Disk 

3. TC11/TU56 DECtape 

4. TU58 DECtape II 

5. Three types of magnetic tape: 

e RHll or RH70/TM02 or TM03/TE16, TU16, TU45 or TU77 
Magnetic Tape Controller/Formatter/Drive 

• TMll/TElO, TUlO or TS03 Magnetic Tape Controller/Drive 

• TS11/TS04 Magnetic Tape Controller/Drive 

6e TAll Tape Cassette 

1-3 



RSX-llM/M-PLUS INPUT/OUTPUT 

7. A variety of line printers: 

• LPll Line Printers 

• LSll Line Printer 

• LVll Line Printer 

• LA180 Line Printer 

8. CRll Card Reader 

9. Synchronous and asynchronous line interfaces: 

• DAll-B Asynchronous Communication Line Interface (RSX-llM 
support only) 

• DLll-E Asynchronous Communication Line Interface (RSX-llM 
support only) 

• DMCll Synchronous Communication Line Interface 

• DPll Synchronous Communication Line Interface (RSX-llM 
support only) 

• DQll Synchronous Communication Line Interface (RSX-llM 
support only) 

• DUll Synchronous Communication Line Interface (RSX-:-llM 
support only) 

• DUPll Synchronous Communication Line Interface 

10. Two analog-to-digital converters: 

• AFCll Analog-to-Digital Converter (RSX-llM support only) 

• ADOl-D Analog-to-Digital Converter (RSX-llM support only) 

11. UDCll Universal Digital Controller (RSX-llM support only) 

12. Laboratory peripheral systems: 

• ARll Laboratory Peripheral System (RSX-llM support only) 

• LPSll Laboratory Peripherc1l System (RSX-llM support only) 

13. Paper tape devices: 

• PCll Paper Tape Reader/Punch 

• PRll Paper Tape Reader 

14. Industrial control subsystems: 

• ICS/ICR Local and Remote Subsystems (RSX-llM support only) 

• DSS/DRS Digital Input and Output Subsystems (RSX-llM 
support only) 

15. The "Null Device," a software construct that facilitates 
eliminating unwanted output 

1-4 



RSX-llM/M-PLUS INPUT/OUTPUT 

16. Two graphics subsystems: 

• VTll Graphics Display System (RSX-llM support only) 

• VS60 Graphics Display System (RSX-llM support only) 

17. Laboratory Peripheral Accelerator: 

e LPAll-K 

18. K-series laboratory peripherals: 

• AAll-K Digital-to-analog Converter and Display 

• ADll-K Analog-to-Digial Converter 

• AMll-K Multiple Gain Multiplexer 

• DRll-K Digital I/O Interface 

• KWll-K Programmable Real ~rime Clock 

19. PCLll Parallel Communications Link (RSX-llM-PLUS support 
only) 

20. UNIBUS switch: 

e DT07 (RSX-llM-PLUS support only) 

21. Virtual Terminals (RSX-llM-PLUS support only) 

1.4 LOGICAL UNITS 

This section describes the construction of the logical unit table and 
the use of logical unit numbers. 

1.4.1 Logic~! Unit Number 

A logical unit number or LUN is a number which is associated with a 
physical device unit during RSX-llM/M-PLUS I/O operations. For 
example, LUN 1 might be associated with one of the terminals in the 
system, LUNs 2, 3, 4, and 5 with DECtape drives, and LUNs 6, 7, and 8 
with disk units. The association is a dynamic one; each task running 
in the system can establish its own correspondence between LUNs and 
physical device units, and can change any LUN/physical-device-unit 
association at almost any time. The flexibility of this association 
contributes heavily to system device independence. 

A logical unit number is simply a short name used to represent a 
logical-unit/physical-device-unit association. Once the association 
has been made, the LUN provides a direct and efficient mapping to the 
physical device unit, and eliminates the necessity to search the 
device tables whenever the system encounters a reference to a physical 
device unit. 

The user should remember that, although a LUN/physical-device-unit 
association can be changed at any time, reassignment of a LUN at run 
timE~ causes pending I/O requests for the previous LUN assignment to be 
cancelled. It is the user's responsibility to verify that all 
outstanding I/O requests for a LUN have been serviced before that LUN 
is associated with another physical device unit. 

1-5 



RSX-llM/M-PLUS INPUT/OUTPUT 

1.4.2 Logical Unit Table 

There is 
system. 
header. 
logical 
option. 

one logical unit table {LUT) for each task running in a 
This table is a variable-length block contained in the task 

Each LUT contains sufficient 2-word entries for the number of 
units specified by the user at task build time by the "UNITS=" 

Each entry or slot contains a pointer to the physical device unit 
currently associated with that LUN. Whenever a user issues an I/O 
request, the system matches the appropriate physical device unit to 
the LUN specified in the call by indexing into the logical unit table 
by the number supplied as the LUN. Thus, if the call specifies 6 as 
the LUN, the system accesses the sixth 2-word entry in the LUT and 
associates the I/O request with the physical device unit to which the 
entry points. The number of LUN assignments valid for a task ranges 
from zero to 255, but cannot be greater than the number of LUNs 
specified at task build time. 

Figure 1-1 illustrates a typical logical unit table. 

1 Number of LUNs 

UCB 

LON 1 0 

UCB 

LON 2 
t--

0 

UCB 
1---

LON 3 0 

UCB 
1---

LON 4 0 

Figure 1-1 Logical Unit Table 

Word 1 of each active {assigned) 2-word entry in the logical unit 
table points to the unit control block {UCB) of the physical device 
unit with which the LUN is associated. This linkage may be 
indirect - that is, the user may force redirection of references from 
one unit to another unit via the MCR command, REDIRECT. Word 2 of 
each entry is reserved for mountable devices. 

1.4.3 Changing LUN Assignments 

Logical unit numbers have no significs1nce until they are associated 
with a physical device unit by means of one of the methods described 
below: 

1. At task build time, the user can specify an ASG keyword 
option, which associates a physical device unit with a 
logical unit number referenced in the task being built. 

2. The user or system operator can issue a REASSIGN command to 
MCR; this command reassigns a LUN to another physical 
device unit and thus changes the LUN-physical device unit 
correspondence. Note that this reassignment has no effect 
on the in-core image of a task. 

1-6 



RSX-llM/M-PLUS INPUT/OUTPUT 

3. At run time, a task can dynamically change a LUN assignment 
by issuing the Assign LUN system directive, which changes 
the association of a LUN with a physical device unit during 
task execution. 

1.5 ISSUING AN I/O REQUEST 

User tasks perform I/O in the RSX-llM/M-PLUS system by submitting 
requests for I/O service in the form of QIO or QIO And Wait system 
directives. See the RSX-llM/M-PLUS Executi~e Reference Manual for a 
complete description of system directives. 

In RSX-llM/M-PLUS, as in most multiprogramming systems, tasks do not 
normally access physical device units directly. Instead, they utilize 
input/output services provided by the Executive, since it can 
effectively multiplex the use of physical device units over many 
users. The Executive routes I/O requests to the appropriate device 
driver and queues them according to the priority of the requesting 
task. I/O operations proceed concurrently with other activities in an 
RSX-llM/M-PLUS system. 

Before a request is queued, it must pass a battery of acceptance tests 
administered by the Executive. If the request fails it is rejected; 
this rejection is signalled by the setting of the C-bit when the 
statement following the QIO is executed. It is good programming 
practice to check for directive rejection by following the QIO 
directive with a BCS instruction. 

After an I/O request has been queued, the system does not wait for the 
operation to complete. If at any time the user task which issued the 
QIO request cannot proceed until the I/O operation has completed, it 
should specify an event flag (see sections 1.5.l and 1.5.2) in the QIO 
request and should issue a Waitfor system directive which specifies 
the same event flag at the point where synchronization must occur. 
The task then waits for completion of I/O by waiting for the specified 
event flag to be set. 

The QIOW directive, QIO And Wait, is a more economical way to achieve 
this synchronization. QIOW automatically waits until I/O has 
completed before returning control to the task. Thus, the additional 
Waitfor directive is not necessary. 

Each QIO or QIOW directive must supply sufficient information to 
identify and queue the I/O request. The user may also want to include 
locations to receive error or status codes and to specify the address 
of an asynchronous system trap service routine. Certain types of I/O 
operations require the specification of device-dependent information 
as well. Typical QIO parameters are the following: 

• I/O function to be performed 

• Logical unit number associated with the physical device unit 
to be accessed 

• Optional event flag number for synchronizing I/O completion 
processing (required for QIOW) 

• Optional address of the I/O status block to which information 
indicating successful or unsuccessful completion is returned 

• Optional address of an asynchronous system trap service 
routine to be entered on completion of the I/O request 

1-7 



RSX-llM/M-PLUS INPUT/OUTPUT 

• Optional device- and function-dependent parameters specifying 
such items as the starting address of a data buffer, the size 
of the buffer, and a block number 

A set of system macros which facilitate the issuing of QIO directives 
is supplied with the RSX-llM/M-PLUS system. These macros, which 
reside in the System Macro Library (LB: [l,l]RSXMAC.SML), must be made 
available to the source program by means of the MACR0-11 Assembler 
directive .MCALL. The function of .MCALL is described in Section 
1.7.3. Several of the first six parameters in ~he QIO directive are 
optional, but space for these parameters must be reserved. 

During expansion of a QIO macro, a value of zero is defaulted for all 
null (omitted) parameters. Inclusion of the device- and 
function-dependent parameters depends on the physical device unit and 
function specified. If the user wanted to specify only an I/O 
function code, a LUN, and an address for an asynchronous system trap 
service routine, the following might be issued: 

QIO$C IO.ATT,6,,,,ASTOX 

where IO.ATT is the I/O function code for attach, 6 is the LUN, ASTOX 
is the AST address, and commas indicate null arguments for the event 
flag number, the request priority, and the address of the I/O status 
block. No additional device- or function-dependent parameters are 
required for an attach function. The C form of the QIO$ macro is used 
here and in most of the examples included in Chapter 1. Section 1.7 
describes the three legal forms of the macro. 

For convenience, any comma may be omitted if no parameters appear to 
the right of it. The command above could therefore be issued as 
follows, if the asynchronous system trap was not desired. 

QIO$C IO .ATT ,6 

All extra commas have been dropped. If, however, a parameter appears 
to the right of any place-holding comma, that comma must be retained. 

1.5.1 QIO Macro Format 

The arguments for a specific QIO macro call may be different for each 
I/O device accessed and for each I/O function requested. The general 
format of the call is~ however, common to all devices and is as 
fol lows: 

QI 0$ C f nc, 1 u n, [ e f n] , [ p ri ] , [is b] , [as t] [ , <p 1 , p2 , ••• , p6 > ] 

where brackets ([]) enclose optional or function-dependent parameters. 
If function-dependent parameters <pl, ••• ,p6> are required, these 
parameters must be enclosed within angle brackets (<>). The following 
paragraphs summarize the use of each QIO parameter. Section 1.7 
discusses different forms of the QIO$ macro itself. 

The fnc parameter is a symbolic name representing the I/O function to 
be performed. This name is of the form: 

IO.xxx 

where xxx identifies the particular I/O operation. For example, a QIO 
request to attach the physical device unit associated with a LUN 
specifies the function code: 

IO.ATT 

1-8 

~. 



RSX-llM/M-PLUS INPUT/OUTPUT 

A QIO request to cancel (or kill) all I/O requests for a specified LUN 
begins in the following way: 

QIO$C !OoKIL, ••• 

The fnc parameter specified in the QIO request is stored internally as 
a function code in the high-order byte and modifier bits in the 
low-order byte of a single word. The function code is in the range 
zero through 31 and is a binary value supplied by the system to match 
the symbolic name specified in the QIO request. The correspondence 
between global symbolic names and function codes is defined in the 
system object module library, which is automatically searched by the 
Task Builder. Local symbolic definitions may also be obtained via the 
FILIO$ and SPCIO$ macros which reside in the System Macro Library and 
are summarized in Appendix A. Several similar functions may have 
identical function codes, and may be distinguished only by their 
modifier bits. For example, the DECtape read logical forward and read 
logical reverse functions have the same function code. Only the 
modifier bits for these two operations are stored differently. 

The lun parameter represents the logical unit number (LUN) of the 
associated physical device unit to be accessed by the I/O request. 
The association between the physical device unit and the LUN is 
specific to the task which issues the I/O request, and the LUN 
refe~rence is usually device-independent. An attach request to the 
physical devic~ unit associated with LUN 14 begins in the following 
way: 

QIO$C IO.ATT,14., ••• 

Because each task has its own logical unit table (LUT) in which the 
physical device unit-LUN correspondences are established, the legality 
of a lun parameter is specific to the task which includes this 
parameter in a QIO request. In general, the LUN must be in the 
following range: 

0 < LUN < length of task's LUT (if nonzero) 

The number of: LUNs specified in the logical unit table of a particular 
task cannot exceed 255. 

The efn parameter is a number representing the event flag to be 
associated with the I/O operation. It may optionally be included in a 
QIO or QIO And Wait request. The specified event flag is cleared when 
the I/O request is queued and is set when the I/O operation has 
completed. If the task has issued the QIO And Wait directive, 
execution is automatically suspended until the I/O completes. If a 
QIO directive has been issued (with no Waitfor directive), then task 
execution proceeds in parallel with the I/O. When the.task continues 
to execute, it may test the event flag whenever it chooses by using 
the Read All Event Flags system directive (if group global event flags 
are not being used) or the Read Extended Flags system directive (for 
all event flags, including group-global event flags). If the user 
specifies an event flag number, this number must be in the range 1 
through 96. If an event flag specification is not desire~, efn can be 
omitted or can be supplied with a value of zero. Event flags 1 
through 32 are local {specific to the issuing task); event flags 33 
through 64 are global (shared by all tasks in the system). Event 
flags 65 through 96 are group-global event flags (shared by all tasks 
in the same user group). Flags 25 through 32 and 57 through 64 are 
reserved for use by system software. Within these bounds, the user 
can specify event flags as desired tci synchronize I/O completion and 
task execution. Section 1.5.2 provides a more detailed explanation of 
event flags and significant events. 

1-9 



RSX-llM/M-PLUS INPUT/OUTPUT 

The optional pri parameter is supplied only to make RSX-llM/M-PLUS QIO 
requests compatible with RSX-llD. An RSX-llM I/O request 
automatically assumes the priority of the requesting task. Thus, it 
is recommended that a value of zero (or a null) be used for this 
parameter. 

The optional isb parameter identifies the address of the I/O status 
block (I/O status double-word) associated with the I/O request. This 
block is a 2-word array in which a code representing the final status 
of the I/O request is returned on completion of the operation. 'This 
code is a binary value that corresponds to a symbolic name of the form 
IS.xxx (for successful returns) or IE.xxx (for error returns). The 
binary error code is returned to the low-order byte of the first word 
of the status block. It can be tested symbolically, by name. For 
example, the symbolic status IE.BAD is returned if a bad parameter is 
encountered. The following illustrates the examination of the I/O 
status block, !OST, to determine if a bad parameter has been detected. 

QIO$C 
BCS 
WTSE$C 

CMPB 
BNE 

IO.ATT,14.,2,,IOST 
DIRERR 
2 

#IS .sue ,IOST 
ERROR 

The correspondence between global symbolic names and I/O completion 
codes is defined in the system object module library, which is 
automatically searched by TKB. Local symbolic definitions, which are 
summarized in Appendix B, may also be obtained via the IOERR$ macro 
which resides in the System Macro Library. 

Certain device-dependent information is returned to the high-order 
byte of the first word of isb on completion of the I/O operation. If 
a read or write operation is successful, the second word is also 
significant. For example, in the case of a read function on a 
terminal, the number of bytes typed before a carriage return is 
returned in the second word of isb. If a magtape unit is the device 
and a write function is specified, this number represents the number 
of bytes actually transferred. The status block can be omitted from a 
QIO request if the user does not intend to test for successful 
completion of the request. 

The optional ast parameter specifies the address of a service routine 
to be entered when an asynchronous system trap occurs. Section 1.5.3 
discusses the use of asynchronous system traps, and Section 2.2.5 of 
the RSX-llM/M-PLUS Executive Reference Manual describes traps in 
detail. If the user wants to interrupt his task to execute special 
code on completion of an I/O request, an asynchronous system trap 
routine can be specified in the QIO request. When the specified I/O 
operation completes, control branches to this routine at the software 
priority of the requesting task. The asynchronous code beginning at 
address ast is then executed, much as an interrupt service routine 
would be. If the user does not want to perform asynchronous 
processing, the ast parameter can be omitted or a value of zero 
specified in the QIO macro call. 

The additional QIO parameters, <pl,p2, ••• ,p6>, are dependent on the 
particular function and device specified in the I/O request. Typical 
parameters may include I/O buffer address, I/O buffer length, etc. 
Between zero and six parameters can be included, depending on the 
particular I/O function. Rules for including these parameters and 
legal values are described in subsequent chapters of this manual. 

1-10 



RSX-llM/M-PLUS INPUT/OUTPUT 

1.5.2 Significant Events 

"Significant event" is a term used in real-time systems to indicate a 
change in system status. In RSX-llM/M-PLUS, a significant event is 
declared when an I/O operation completes. This signals the system 
that. a change in status has occurred and indicates that the Executive 
should revi~w the eligibility of all tasks in the system to determine 
which task should run next. The use of significant events helps 
cooperating tasks in a real-time system to communicate with each other 
and thus allows these tasks to control their own sequence of execution 
dync:1mi cally. 

Significant events are normally set by system directives, either 
directly or indirectly, by completion of a specified function. Event 
flags associated with tasks may be used to indicate which significant 
event has occurred. Of the 96 event flags available in 
RSX-llM/M-PLUS, the flags numbered l through 32 are local to an 
individual task and are set or reset only as a result of that task's 
operation. The event flags numbered 33 through 64 are common to all 
tasks. Flags 25 through 32 and 57 through 64 are reserved for system 
software use~ The event flags numbered 65 through 96 are group-global 
event flags which are common to all tasks running under the same user 
group. 

An E~xample of the use of significant events follows. A task issues a 
QIO directive with an efn parameter specified. A Waitfor directive 
follows the QIO and specifies as an argument the same event flag 
number. The event flag is cleared when the I/O request is queued by 
the ExecutivE~, and the task is blocked when it executes the Waitfor 
directive until the event flag is set and a significant event is 
declared at the completion of the I/O request. The task resumes when 
the appropriate event flag is set, and execution resumes at the 
instruction following the Waitfor directive. During the time that the 
task is blocked, tasks with priorities lower than that of the blocked 
task have a chance to run, thus increasing throughput in the system. 

1.5.3 System Traps 

System traps are used to interrupt task execution and to cause a 
transfer of control to another memory location for special processing. 
Traps are handled by the Executive and are relevant only to the task 
in which they occur. To use a system trap, a task must contain a trap 
service routine which is automatically entered when the trap occurs. 

There are two types of system traps - synchronous and asynchronous. 
Both are used to handle error or event conditions, but the two traps 
differ in their relation to the task which is running when they are 
detected. Synchronous traps signal error conditions within the 
executing task. If the same instruction sequence were repeated, the 
same synchronous trap would occur at the same place in the task. 
Asynchronous traps signal the completion of an external event such as 
an I/O operation. An asynchronous system trap (AST) usually occurs as 
the result of the initiation or completion of an external event rather 
than a program condition. 

The Executive queues ASTs in a first·-in-first-out queue for each task 
and monitors all asynchronous service routine operations. Because 
asynchronous traps may be the end result of I/a-related activity, they 
cannot be controlled directly by the task which receives them. 
However, the task may, under certain circumstances, block recognition 
of ASTs to prevent simultaneous access to a critical data region. 
When access to the critical data region has been completed, the queued 

1-11 



RSX-llM/M-PLUS INPUT/OUTPUT 

ASTs may again be honored. The DSAR$S (Disable AST Recognition) and 
ENAR$S (Enable AST Recognition) system directives provide the 
mechanism for accomplishing this. An example of an asynchronous trap 
condition is the completion of an I/O request. The timing of such an 
operation clearly cannot be predicted by the requesting task. If an 
AST service routine is not specified in an I/O request, a trap does 
not occur and normal task execution continues. 

Asynchronous system traps associated with I/O requests enable the 
requesting task to be "truly event-driven. The AST service routine 
contained in the initiating task is E!xecuted as soon as possible, 
consistent with the task's priority. The use of the AST routine to 
service I/O related events provides a response time which is 
considerably better than a polling mE!Chanism, and provides· for better 
overlap processing than the simple QIO and Waitfor sequence. 
Asynchronous system traps also provide an ideal mechanism for use in 
multiple buffering of I/O operations. 

All ASTs are inserted in a first-in-first-out queue on a per task 
basis as they occur (i.e., the event which they are to signal has 
expired). They are effected one at a time whenever the task does not 
have ASTs disabled and is not already in the process of executing an 
AST service routine. The process of effecting an AST involves storing 
certain information on the task's stack, including the task's Waitfor 
mask word and address, the Directive Status Word (DSW), the PS, the PC 
and any trap dependent parameters:. The task's general-purpose 
registers RO-RS are not saved and thus: it is the responsibility of the 
AST service routine to save and restore the registers it uses. After 
an AST is processed, the trap-dependent parameters (if any) must be 
removed from the task's stack and an AST Service Exit directive 
executed. The ASTX$S macro described in Section 1.7.6 of this manual 
is used to issue the AST Service Exit directive. On AST service exit, 
control is returned to another queued AST, to the executing task, or 
to another task which has been waiting to run. The RSX-llM/M-PLUS 
Executive Reference Manual describes in detail the purpose of AST 
service routines and all system directives used to handle them. 

1.6 DIRECTIVE PARAMETER BLOCKS 

A directive parameter block (DPB) is a fixed-length area of contiguous 
memory which contains the arguments specified in a system directive 
macro call. The DPB for a QIO directive has a length of 12 words. It 
is generated as the result of the expansion of a QIO macro call. The 
first byte of the DPB contains the directive identification code (DIC) 
- always 1 for QIO. The second byte contains the size of the DPB in 
words - always 12 for RSX-llM/M-PLUS. During assembly of a user task 
containing QIO requests, the MACR0-11 Assembler generates a DPB for 
each I/O request specified in a QIO macro call. At run time, the 
Executive uses the arguments stored in each DPB to create, for each 
request, an I/O packet in system dynamic storage. The packet is 
entered by priority into a queue of I/O requests for the specified 
physical device unit. This queue is created and maintained by the 
Executive and is ordered by the priority of the tasks which issued the 
requests. The I/O drivers examine their respective queues for the I/0 
request with the highest priority capable of being executed. This 
request is dequeued (removed from the queue) and the I/O operation is 
performed. The process is then repeated until the queue is emptied of 
all requests. 

1-12 

~. 
I .,;j 



RSX-llM/M-PLUS INPUT/OUTPUT 

After the I/O request has been completed, the Executive declares a 
significant event and may set an event flag, cause a branch to an 
asynchronous system trap service routine, and/or return the I/O 
status, depending on the arguments specified in the original QIO macro 
call. Figure 1-2 illustrates the layout of a sample DPB. 

1 

Word 0 size of DPB - 12 

1 f nc 

2 

3 priority - pri 

4 

5 

6 

11 

0 

1 

Byte 

-DIC for QIO 
directive 

modif1ers -r/o function 

lun 

efn 

isb 

ast 

device-

dependent 

parameters 

-logical unit number 

-event flag number 

- address of I/O 
status block 

-address of 
asynchronous trap 
service routine 

Figure 1-2 QIO Directive Parameter Block 

1.7 I/0-RELATED MACROS 

Several system macros are supplied with the RSX-llM/M-PLUS system to 
issue and return information about I/O requests. These macros reside 
in the System Macro Library and must be made available during assembly 
via the MACR0-11 assembler directive .MCALL. 

Also supplied are FORTRAN-callable subroutines that perform the same 
functions as the system macros. See the RSX-llM/M-PLUS Executive 
Reference Manual for details. 

There are three distinct forms of most of the system directive macros 
discussed in this section. The following list summarizes the forms of 
QIO$, but the characteristics of each form also apply to QIOW$, ALUN$, 
GLUN$, and other system directive macros described below. 

1-13 



RSX-llM/M-PLUS INPUT/OUTPUT 

1. QIO$ generates a directive parameter block for the I/O 
request at assembly time, but does not provide the 
instructions necessary to execute the request. This form of 
the request is actually executed using the DIR$ macro. It is 
useful if the DPB is to be used in several different places 
in the task and/or modified or referenced by the task at run 
time. 

2. QIO$S generates a directive parameter block for the I/O 
request on the stack, and also generates code to execute the 
request. This is a useful form for reentrant, sharable code 
since the DPB is generated dynamically at execution time. 

3. QIO$C generates a directive parameter block for the I/O 
request at assembly time, and also generates code to execute 
the request. The DPB is generated in a separate program 
section called $DPB$$. This approach incurs little system 
overhead and is useful when an I/O request is executed from 
only one place in the program. 

Parameters for both the QIO$ and QIO$C forms of the macro must be 
valid expressions to be used in assembler data-generating directives 
such as .WORD and .BYTE. Parameters for the QIO$S form must be valid 
source operand address expressions to be used in assembler 
instructions such as MOV and MOVB. The following example references 
the same parameters in the three distinct forms of the macro call. 

QIO$ 

QIO$C 

'QI0$S 

IO.RLB,6,2,,,ASTOl,<RDBUF,80.> 

IO.RLB,6,2,,,ASTOl,<RDBUF,80.> 

#IO.RLB,#6,#2,,,#ASTOl,<#RDBUF,#80e> 

Only the QIO$S form of the macro produces the DPB dynamically. 
other two forms generate the DPB at assembly time. 
characteristics and use of these different forms are described 
greater detail in the RSX-llM/M-PLUS Executive Reference Manual. 

The 
The 

in 

The following Executive directives and assembler macros are described 
in this section: 

1. QIO$, which is used to request an I/O operation and supply 
parameters for that request. 

2. QIOW$, which is equivalent to QIO$ followed by WTSE$. 

3. DIR$, which specifies the address of a directive parameter 
block as its argument, and generates code to execute the 
directive. 

4. .MCALL, which is used to make available from the System Macro 
Library all macros referenced during task assembly. 

5. ALUN$, which is used to associate a logical unit number with 
a physical device unit at run time. 

6. GLUN$, which requests that the information about a physical 
device unit associated with a specified LUN be returned to a 
user-specified buffer. 

7. ASTX$S, which is used to terminate execution 
asynchronous system trap (AST) service routine. 

of an 

8. WTSE$, which instructs the system to block exe~ution of the 
issuing task until a specified event flag is set. 

1-14 



RSX-llM/M-PLUS INPUT/OUTPUT 

1.7.1 The 010$ Macro: Issuing an I/O Request 

As described in Section 1.7, there are three distinct forms of the 
QIO$ macro. QIO$S generates a DPB for the I/O request on the stack, 
and also generates code to execute the request. QIO$C generates a DPB 
and code, but the DPB is generated in a separate program section. 
QIO$ generates only the DPB for the I/O request. This form of the 
macro call is used in conjunction with DIR$ (see Section 1.7.2) to 
execute an I/0 request. In the following example, the DIR$ macro 
actually generates the code to execute the QIO$ directive. It 
provides no QIO parameters of its own, but references the QIO 
dirE~ctive parameter block at address QIOREF by supplying this label as 
an argument. 

QIOHEF: Q IO$ IO.RLB,6,2,,,ASTOl,<BUFFER,80.> 
CREATE Q IO DPB 

. 
READl: DIR$ #QIOREF ISSUE I/O REQUEST 

READ2: DIR$ #QIOREF ISSUE I/O REQUEST 

1.7.2 The QIOW$ Macro: Issuing an I/O Request and 
Waiting for an Event Flag 

The QIOW$ macro is equivalent to a QIO$ followed by a WTSE$. It is 
more economical to issue a QIO And Wait request than to use the two 
separate macros. An event flag (efn parameter) must be specified with 
QIOW$. 

1.7.3 The DIR$ Macro: Executing a Directive 

The DIR$ (execute directive) macro has been implemented to allow a 
task to reference a previously defined directive parameter block. It 
is issued in the form: 

where: 

DIR$ [addr] [,err] 

addr is the address of a directive parameter block to be 
used in the directive. If addr is not included, the 
DPB itself or the address of the DPB is assumed to 
already be on the stack. This parameter must be a 
valid source operand for a MOV instruction generated by 
the DIR$ macro. 

err is an optional argument which specifies the address of 
an error routine to which control branches if the 
directive is rejected. The branch occurs via a JSR PC, 
err if the C-bit is set, indicating rejection of the 
QIO directive. 

1.7.4 The .MCALL Directive: Retrieving system Macros 

.MCALL is a MACR0-11 assembler directive which is used to retrieve 
macros from the System Macro Library (LB:[l,l]RSXMAC.SML) for use 
during assembly. It must be included in every user task which invokes 

1-15 



RSX-llM/M-PLUS INPUT/OUTPUT 

system macros. .MCALL is usually placed at the beginning of a user 
task source module and specifies, as arguments in the call, all system 
macros which must be made available from the library. 

The following example illustrates the use of this directive: 

.MCALL QIO$,QIO$S,DIR$,WTSE$S MAKE MACROS AVAILABLE 

ATTACH: QIO$S #IO.ATT,#6,,,IOSB,#AST02 ATTACH DEVICE 

QIOREF: QIO$ IO.RLB,6,,,IOSB,ASTOl, ••• CREATE ONLY QIO DPB 

READ!: DIR$ #QIOREF ,DIRERR ISSUE I/O REQUEST 

As many macro references as can fit on a line can be included in a 
single .MCALL directive. There is no limit to the number of .MCALL 
directives that can be specified. 

1.7.5 The ALUN$ Macro: Assigning a LUN 

The Assign LUN macro is used to associate a logical unit number with a 
physical device unit at run time. All three forms of the macro call 
may be used. Assign LUN does not request I/O for the physical device 
unit, nor does it attach the unit for exclusive use by the issuing 
task. It simply establishes a LUN-physical device unit relationship, 
so that when the task requests I/0 for that particular LUN, the 
associated physical device unit is referenced. The macro is issued 
from a MACR0-11 program in the following way: 

where: 

ALUN$ lun,dev,unt 

lun is the logical unit number to be associated with the 
specified physical device unit. 

dev is the device name of the physical device or a logical 
device name assigned to a physical device (see MCR ASN 
command). 

unt is the unit number of that device specified above. 

For example, to associate LUN 10 with terminal unit 2, the following 
macro call could be issued by the task: 

ALUN$C 10.,TT,2 

A unit number of 0 represents unit 0 for multi-unit devices such as 
disk, DECtape, or terminals; it indicates the single available unit 
for devices without multiple units, such as card readers and line 
printers. 

1-16 

·~. 



........., 

~· 

RSX-llM/M-PLUS INPUT/OUTPUT 

Logical devices are SYSGEN options that allow the user to assign 
logical names to physical devices by means of the MCR command ASN. 
See the RSX-llM/M-PLUS MCR Operations Manual for a full description. 

The example includE~d below illustrates the use of the three forms of 
the ALUN$ macro. 

DATA DEFINITIONS 

ASSIGN: ALUN$ 10. ,TT,2 GENERATE DPB 

EXECUTABLE SECTION 

DIR$ #ASSIGN 

ALUN$C 10.,TT,2 

ALUN$S #10.,#"TI,#0 

EXECUTE DIRECTIVE 

GENERATE DPB IN SEPARATE PROGRAM 
SECTION, THEN GENERATE CODE TO 
EXECUTE THE DIRECTIVE 

GENERATE DPB ON STACK, THEN 
EXECUTE DIRECTIVE 

1.7 .. 5.1 Physical Device Names - The following list contains physical 
device names, listed alphabetically, that may be included as dev 
parameters: 

Name 

AD 

AF 

AR 

BS 

CD 

CP 

CR 

CT 

DB 

DD 

Device 

ADOl-D Analog-to-Digital Converter (not supported in 
RSX-llM-PLUS systems) 

AFCll Analog-to-Digital Converter (not supported in 
RSX-llM-PLUS systems) 

ARll Laboratory Peripheral System (not supported in 
RSX-llM-PLUS systems) 

DT03/DT07 UNIBUS Switch (supported in RSX-llM-PLUS 
systems, only) 

CDll Card Reader 

Central Processor Unit (CPU) in a multiprocessor system 
(supported in RSX-llM-PLUS systems, only) 

CRll/CMll Card Reader 

TA11/TU60 Tape Cassette 

RP04, RP05, RP06 Pack Disk 

TU58 DECtape I I 

1-17 



Name 

DF 

DK 

DL 

DM 

DP 

DR 

DS 

DT 

DX 

DY 

GR 

IC 

IS 

LA 

LP 

LS 

MM 

MS 

MT 

NL 

pp 

PR 

RX 

TT 

TX 

UD 

XB 

RSX-llM/M-PLUS INPUT/OUTPUT 

Device 

RFll/RSll Fixed-Head Disk 

RK 11/RKOS Cartridge Disk 

RL11/RL01/RL02 Cartridge Disk 

RK6 ll/RK06 and RK7 11/R.KO 7 Cartridge Disk 

RP11/RP02/RP03 Pack Disk 

RM02/RM03 Pack Disk 

RS03 and RS04 Fixed-Head Disks 

TC11/TU56 DECtape 

RXll/RXOl Flexible Disk 

RX211/RX02 Flexible Disk 

VT11/VS60 Graphics Systems 
RSX-llM-PLUS systems) 

(not supported in 

ICS/ICR Industrial Control Local and Remote Subsystems 
(not supported in RSX-llM-PLUS systems) 

DSS/DRS Digital Input and Output Subsystems 
supported in RSX-llM-PLUS systems) 

LPAll-K Laboratory Peripheral Accelerator 

LA180/LP11/LS11/LV11 Line Printers 

(not 

LPSll Laboratory Peripheral System (not supported in 
RSX-llM-PLUS systems) 

TU16/TE16/TU45/TU77/TM02/TM03 Magnetic Tape 

TS11/TS04 Magnetic Tape 

TMll/TUlO/TUll or TSG3 Magnetic Tape 

The N ul 1 Device 

PCll Paper Tape Punch 

PCll or PRll Paper Tape Reader 

PCLll-A/PCLll-B Receiver 
RSX-llM-PLUS systems, only) 

Port 

Terminals (regardless 1:>f interface) 

PCLll-A/PCLll-B Transmitter 
RSX-llM-PLUS systems, only) 

Port 

(supported 

(supported 

in 

in 

UDCll Universal Digital Controller (not supported in 
RSX-llM-PLUS systems) 

DAll-B Parallel Unibus 
RSX-llM-PLUS systems) 

1-18 

Link (not supported in 

~. 



'-' 

........,. 

Name 

XL 

XM 

XP 

XQ 

XU 

xw 

YH 

YL 

YZ 

ZA-ZZ 

RSX-llM/M-PLUS INPUT/OUTPUT 

Device 

DLll-E Asynchronous Communication Line Interface (not 
supported in RSX-llM-PLUS systems) 

DMCll Synchronous Communication Line Interface 

DPll Synchronous Communication Line Interface (not 
supported in RSX-llM-PLUS systems) 

DQll Synchronous Communication Line Interface (not 
supported in RSX-llM-PLUS systems) 

DUll Synchronous Communication Line Interface (not 
supported in RSX-llM-PLUS systems) 

DUPll Synchronous Communication Line Interface 

DHll Asynchronous Communications Line Multiplexer 

DLll-A/DLll-B/DLll-C/DLll-D/DLll-E Asynchronous 
Communications Line Interface (DLll-B, DLll-E, DPll, 
DQll, and DUll are not supported in RSX-llM-PLUS 
systems) 

DZll Asynchronous Communications Line Multiplexer 

Reserved for customer use (not used by DIGITAL) 

1.7.5.2 Pseudo-Device Names - A pseudo-device is a 
which can normally be redirected by the operator to 
device unit at any time, without requiring changes in 
reference the pseudo-device. Dynamic redirection of a 
unit affects all tasks in the system; reassignment by 
MCR REASSIGN command affects only one task. 
pseudo-devices are supported, as indicated: 

logical device 
another physical 

programs which 
physical device 

means of the 
The following 

Code 

CL 

co 

LB 

NL 

NT 

RD 

SP 

SY 

Device 

Console listing, normally the line printer. 

Console output, normally the main operator's console. 

System library device, normally the device from which 
the system was bootstrapped. For example, LB: is the 
device which tasks such as TKB and MAC access for 
default library files. 

Null device. 

Network. 

Online reconfiguration pseudo device. 

Spooling scratch disk device. 

User default device. On non-multiuser systems, SY: is 
normally the disk from which the system was 
bootstrapped. On multiuser systems, SY: is normally 
the default login device. 

1-19 



Code 

TI 

VT 

RSX-llM/M-PLUS INPUT/OUTPUT 

Device 

Pseudo-input terminal; the terminal from which a task 
was requested. 

The pseudo-device TI cannot be redirected, since such 
redirection would have to be handled on a per-task 
rather than a system-wide basis (i.e., change the TI 
device for one task without affecting the TI 
assignments for other tasks). 

Virtual terminal. Used by some RSX-llM-PLUS offspring 
tasks as TI: for command and data I/O. (Support,ed in 
RSX-llM-PLUS systems, only). 

1.7.6 The GLUN$ Macro: Retrieving LUN Information 

The Get LUN Information macro requests that information about a 
LUN-physical device unit association be returned in a 6-word buffer 
specified by the issuing task. Upon successful completion of the 
directive processing, the buffer contains the information listed in 
Table 1-1, as appropriate for the specific device. All three forms of 
the macro call may be used. It is issued from a MACR0-11 program in 
the following way: 

where: 

GLUN$ lun, buf 

lun is the logical unit number associated with the physical 
device unit for which information is requested. 

buf is the 6-word buffer to which information is returned. 

For example, to request information on the disk unit associated with 
LUN 8, the following call is issued: 

GLUN$C 8. ,IOBUF 

Table 1-1 
Get LUN Information 

Numerical Offset Symbolic Offset 
Word Byte Bit Word Byte Bit Contents 

0 G.LUNA Name of device associated with 
LUN (ASCII bytes) 

1 0 G.LUNU Unit number of associated device 

1 G.LUFB Driver flag value. Returned .as 
200 octal if the driver is 
resident, or as 0 if a loadable 
driver is not in the system 

(continued on next page) 

1-20 



RSX-llM/M-PLUS INPUT/OUTPUT 

Table 1-1 (Cont.) 
Get LUN Information 

Numerical Offset Symbolic Offset 
Word Byte BT·.,-t-+-~W.,-o_r_d .......... .__---.--=s-y....,.t-e--.--__,B,,_..,..1 _t_--1 

2 G.Lucwl 

0 (U.CWl) 

1 

2 

3 

4 

5 

6 

7 

B 

9 

10 

11 

12 

13 

14 

15 

3 G.LUCW+02 

(U.CW2) 

First 
word: 

Contents 

device characteristics 

(DV.REC) Unit record-oriented device 
(e.g., card reader, line printer) 
(1 = yes) 

(DV.CCL) Cariage-control device (e.g., 
line printer, terminal) (1 = yes) 

(DV.TTY) Terminal device (1 = yes) 

fDV.DIR) Directory device (e.g., DECtape, 
disk) (1 = yes) 

(DV.SDI) Single directory device (e.g., 
ANSI-standard magtape) ( 1 = yes) 

'DV .SQD) Sequential device 
ANSI-standard magtape) 

Reserved 

(e.g.' 
(1 = yes) 

(DV.UMD) User-mode diagnostics supported 
(1 = yes) 

(DV.MBC) Massbus device (1 = yes) 

(DV.SWL) Unit software write-locked 
(1 = yes) 

(DV.ISP) Input spooled device (1 =yes) 

'DV.OSP) Output spooled device (1 = yes) 

(DV.PSE) Pseudo-device (1 =yes) 

(DV.COM) Device mountable as a 

(DV .Fll) 

communications channel for 
Digital network support (e.g., 
DPll, DUll) (1 =yes) 

Device mountable as 
device (e.g., disk 
'l = yes) 

a FILES-11 
or DECtape) 

tDV.MNT) Device mountable (logical OR of 
bits 13 and 14) (1 = yes) 

Second 
word: 

device characteristics 

(U2.xxx) Device-specific information 

(continued on next page) 

1-21 



Numerical Offset 
Word Byte Bit Word 

RSX-llM/M-PLUS INPUT/OUTPUT 

Table 1-1 (Cont.) 
Get LUN Information 

S_ymbol ic Off set 
Byte Bit Contents 

4 G.LUCW+04 Third device characteristics 
word: 

(U.CW3) (U3 .x:<x) Device-spec if ic information2 

5 G.LUCW+06 Fourth device characteristics 
word: 

(U.CW4) Default buffer size (e.g.' for 
disks, and line length for 
terminals). 

1 The following word and bit symbols shown in parenthesis are symbols 
used in defining and referencing corresponding items in the device 
Unit Control Block (UCB) 

2. For mass storage devices, such as disks, DECtape, and DECtape II, 
this is the maximum logical block number. For the proper use of the 
RX211/RX02 flexible disk, it is important to be able to test the 
fourth device characteristics word to determine media density mode~. 

The example included below illustrates the use of the three forms of 
the GLUN$ macro. 

DATA DEFINITIONS 

GETLUN: GLUN$ 6 ,DSKBUF 

EXECUTABLE SECTION 

DIR$ #GETLUN 

GLUN$C 6 ,DSKBUF 

GLUN$S #6,#DSKBUF 

GENERATE DPB 

EXECUTE DIRECTIVE 

GENERATE DPB IN SEPARATE PROGRAM 
SECTION, THEN GENERATE CODE TO 
EXECUTE THE DIRECTIVE 

GENERATE DPB ON STACK, THEN 
EXECUTE DIRECTIVE 

1.7.7 The ASTX$S Macro: Terminating AST Service 

The AST Service Exit macro is used to 
asynchronous system trap (AST) service 
macro are provided. However, the S-form 

1-22 

terminate execution of an 
routine. All forms of the 
is preferred because it 

~. 

....... 



RSX-llM/M-PLUS INPUT/OUTPUT 

requires less space and 
ASTX$C forms of the macro. 

executes at least as fast as the ASTX$ or 
The macro is issued in the following way: 

wheI'e: 

AS'l'X$S [err] 

err is an optional argument which specifies the address of 
an error routine to which control branches if the 
directive is rejected. 

On completion of the operation specified in this macro call, if 
another AST is queued and asynchronous system traps have not been 
disabled, then the next AST is immediately entered. Otherwise, the 
task's state before the AST was entered is restored (it is the AST 
service routine's responsibility to save and restore the registers it 
uses). 

1. 7 •. 8 The WTSE$ Macro: Wai ting for an Event Flag 

The Wait For Single Event Flag macro instructs the system to suspend 
execution of the· issuing task until the event flag specified in the 
macro call is set. This macro is extremely useful in synchronizing 
activity on completion of an I/O operation. All three forms of the 
macro call may be used. It is issued as follows: 

WTSE$ efn 

where: efn is the event flag number 

WTSE$ causes the task to be blocked from execution until the specified 
event flag is set. Frequently, an efn parameter is also included in a 
QIO~? macro call, and the event flag is set on completion of the I/O 
operation specified in that call. The following example illustrates 
tas~c blocking until the setting of the specified event flag occurs. 
This example also illustrates the use of the three forms of the macro 
call. 

Dl\TA DEFINITIONS 

wArr: 
IOSB: 

WTSE!? 
.BLKW 

5 
2 

EXECUTABLE SECTION 

ALUN$S 
QIO$C 
DIR$ 

# 14., #"MM 
IO.ATT,14.,5 
#WAIT 

GENERATE DPB 
I/O STATUS BLOCK 

ASSIGN LUN 14 TO MAGTAPE UNIT ZERO 
ATTACH DEVICE 
EXECUTE WAITFOR DIRECTIVE 

QIO$S #IO.RLB,#14.,#2,,#IOSB,,<#BUF,#80.> 
; READ RECORD, USE EFN2 

1-23 



RSX-llM/M-PLUS INPUT/OUTPUT 

WTSE$S #2 WAIT FOR READ TO COMPLETE 

QIO$C IO.WLB,14.,3,,IOSB,,<BUF,80.> 
; WRITE RECORD, USE EFN3 

WTSE$C 3 WAIT FOR WRITE TO COMPLETE 

. 
QIO$C IO.DET,14. DETACH DEVICE 

1~8 STANDARD I/O FUNCTIONS 

The number of input/output operations that can be specified by means 
of the QIO directive is large. A particular operation can be 
requested by including the appropriate! function code as the first 
parameter of a QIO macro call. Certain functions are standard. These 
functions are almost totally device-independent and can thus be 
requested for nearly every device described in this manual. Others 
are device-dependent and are specific to the operation of only one or 
two I/O devices. This section summarizes the function codes and 
characteristics of the following device-independent I/O operations: 

• attach to an I/O device 

• detach from an I/O device 

• cancel I/O requests 

• read a logical block 

• read a virtual block 

• write a logical block 

• write a virtual block 

For certain physical device units 
I/O function may be described 
operation is performed as a result 
I/O status code of rs.sue is 
specified in the QIO macro call. 

discussed in this manual, a standard 
as being a NOP. This means that no 
of specifying the function, and an 
returned in the I/O status block 

In the following descriptions and in formats shown in subsequent 
chapters, the five QIO directive parameters lun, efn, pri, isb, and 
ast are represented by the ellipsis ( ••• ) (see Section 1.5.1). 

1.8.l IO.ATT: Attaching to an I/O Device 

The function code IO.ATT is specified by a user task when that task 
requires exclusive use of an I/O device. This function code is 
included as the first parameter of a C1IO macro call in the following 
way: 

QIO$C IO.ATT, ••• 

1-24 

~I 



RSX-llM/M-PLUS INPUT/OUTPUT 

Successful completion of an IO.ATT request causes the specified 
physical device unit to be dedicated for exclusive use by the issuing 
task. This enables the task to process input or output in an unbroken 
stream and is especially useful on sequential, nonfile-oriented 
devices such as terminals, card readers, and line printers. An 
attached physical device unit remains under control of the issuing 
task until it is explicitly detached by that task. To detach the 
device the task can specify any LUN previously assigned to the 
attached device. 

While a physical device unit is attached, the I/O driver for that unit 
dequeues only I/O requests issued by the task that issued the attach. 
Thus, a request to attach a device unit already attached by another 
task will not be processed until the attachment is broken and no 
higher priority request exists for the unit. A LUN that is associated 
with an attached physical device unit may not be reassigned by means 
of an Assign LUN directive except when at least· one LUN is still 
assigned to the attached device. 

If the task which issued an attach function exits or is aborted before 
it issues a corresponding detach, the Executive automatically detaches 
the physical device unit. 

1.8.2 IO.DET: Detaching from an I/O Device 

The function code IO.DET is used to detach a physical device unit 
which has been previously attached by means of an IO.ATT request for 
exclusive use of the issuing task. This function code is included as 
the first parameter of a QIO macro call in the following way: 

QIO$C I 0 .D ET, ••• 

The LUN specifications of both IO.ATT and IO.DET must be the same, as 
in the following example, which also illustrates the use of "S" forms 
of several macro calls. 

LOOP: 

.MCALL 
ALUN$S 

QIO$S 

QIO$S 

. 
QIO$S 

AL UN$ S , Q IO$ S 
#14.,#"CR 

#IO.ATT,#14. 

#IO.RLB,#14., ••• 

# IO • D ET , # 14 • 

ASSOCIATE CARD READER WITH LUN 14 

ATTACH CARD READER 

READ CARD 

DETACH CARD READER 

1.8.3 IO.KIL: Canceling I/O Requests 

The function IO.KIL is issued by a task to cancel all of that task's 
I/O requests for a particular physical device unit. 

For I/O requests waiting for service - that is, in the I/O driver's 
queue a status code of IE.ABO is returned in the I/O status block. 
An event flag is set, if specified. But any asynchronous system trap 
(AST) service routine that may have been specified is not initiated. 

1-25 



RSX-llM/M-PLUS INPUT/OUTPUT 

For I/O requests being processed by an I/O driver other than the 
disk or DECtape drivers - the IE.ABO status code is returned. Other 
status information {byte count, etc.) is also returned in the I/O 
status block. An AST, if specified, is activated. 

For disk, DECtape, or DECtape II I/O requests being processed when an 
IO.KIL is issued, the IO.KIL acts as a NOP. The request is allowed to 
complete, except in the case in which a DECtape transfer is blocked by 
a select error. Because disk and DECtape operate· quickly, IO.KIL 
simply causes the return of rs.sue in the I/O status block. 

This function code is included as the first parameter of a QIO macro 
in the following way: 

QIO$C IO.KIL, ••• 

IO.KIL is useful in such special cases as canceling an I/O request on 
a physical device unit from which a response is overdue {e.g., a read 
on a paper-tape reader). 

1.8.4 IO.RLB: Reading a Logical Block 

The function code IO.RLB is specified by a task to read a block of 
data from the physical device unit specified in the macro call. This 
function code is included as the first parameter of a QIO macro in the 
following way: 

QIO$C IO.RLB, ••• ,<stadd,size,pn> 

where: stadd is the starting address of the data buffer. 

size is the data buffer size in bytes. 

pn represents one to four optional parameters, used to 
specify such additional information as block numbers 
for certain devices. 

1.8.5 IO.RVB: Reading a Virtual Block 

The function code IO.RVB is used to read a virtual block of data from 
the physical device unit specified in the macro call. A "virtual" 
block indicates a relative block position within a file and is 
identical to a "logical" block for such sequential, record-oriented 
devices as terminals and card readers. For these sequential, 
record-oriented devices, IO.RVB is converted to IO.RLB before being 
issued. 

NOTE 

Any subfunction bits specified in the 
IO.RVB request {see Sections 2.3.l and 
3.3.1) are stripped off in this 
conversion. 

1-26 

~. 
I: 
I 



RSX-llM/M-PLUS INPUT/OUTPUT 

It is recommended that all tasks use virtual rather than logical 
reads. However, if a virtual read is issued for a file-structured 
device (disk, DECtape, or DECtape II), the user must ensure that a 
filE~ is open on the specified physical device unit. This function 
codE~ is included as the first parameter of a QIO macro call in the 
following way: 

QIO$C IO.RVB, ••• ,<stadd,size,pn> 

where: stadd is the starting address of the data buffer. 

size is the data buffer size in bytes. 

pn represents one to four optional parameters, used to 
specify such additional information as block numbers 
for certain devices. 

1.8.6 IO.WLB: Writing a Logical Block 

The function code IO.WLB is specified by a task to write a block of 
data to the physical device unit specified in the macro call. This 
function code is included as the first parameter of a QIO macro call 
in the following way: 

QIO$C IO.WLB, ••• ,<stadd,size,pn> 

where: stadd is the starting address of the data buffer. 

1.8. 7 

size is the data buff er in bytes. 

pn represents one to four optional parameters, used to 
specify such additional information as block numbers or 
for.mat control characters for certain devices. 

IO.WVB: Writing a Virtual Block 

The function code IO.WVB is used to write a virtual block of data to a 
physical device unit. A "virtualH block indicates a block position 
relative to the start of a file. For sequential, record-oriented 
devices such as terminals and line printers, the function IO.WVB is 
converted to IO.WLB. 

NOTE 

Any subfunction bits specified in the 
IO.WVB request (see Sections 2.3.1 and 
3.3.1) are stripped off in this 
conversion. 

It is recommended that all tasks use virtual rather than logical 
writes. However, if a virtual write is issued for a file-structured 
device (disk, DECtape, or DECtape II), the user must ensure that a 
file is open on the specified physical device unit. This function 
code is included as the first parameter of a QIO macro call in the 
following way: 

QIO$C IO.WVB, ••• ,<stad9 1 size,pn> 

1-27 



RSX-llM/M-PLUS INPUT/OUTPUT 

where: stadd is the starting address of the data buffer. 

size is the data buffer size in bytes. 

pn represents one to four optional parameters, used to 
specify such additional information as block numbers or 
format control characters for certain devi~es. 

1.9 I/O COMPLETION 

When an I/O request has been completed, either successfully or 
unsuccessfully, one or more actions may be taken by the Executive. 
Selection of return conditions depends on the parameters included in 
the QIO macro call. There are three major returns: 

1. A significant event is declared on completion of an I/O 
operation. If an efn parameter was included in the I/O 
request, the corresponding event flag is set. 

2. If an isb parameter was specified in the QIO macro call, a 
code identifying the type of success or failure is returned 
in the low-order byte of the first word of the I/O status 
block at the location represented by isb. 

This status return code is of the form IS.xxx (success) or 
IE.xxx (error). For example, if the device accessed by the 
I/O request is not ready, a status code of IE.DNR is returned 
in isb. The section below (Return Codes) summarizes general 
codes returned by most of the drivers described in this 
manual. 

If the isb parameter was omitted, the requesting task cannot 
determine whether the I/O request was successfully completed. 
A carry clear return from the directive itself simply means 
that the directive was accepted and the I/O request was 
queued, not that the actual input/output operation was 
successfully performed. 

3. If an ast parameter was specified in the QIO macro call, a 
branch to the asynchronous system trap (AST) service routine 
which· begins at the location identified by ast occurs on 
completion of the I/O operation. See Section 1.5.3 for a 
detailed description of AST service routines. 

1.10 RETURN CODES 

There are two kinds of status conditions recognized and handled by 
RSX-llM/M-PLUS when they occur in I/O requests: 

• Directive conditions, which indicate the 
rejection of the QIO directive itself 

acceptance or 

• I/O status conditions, which indicate the success or failure 
of the I/O operation 

1-28 



RSX-llM/M-PLUS INPUT/OUTPUT 

Directive conditions relevant to I/O operations may indicate any of 
the followin9: 

• directive acceptance 

• invalid buffer specification 

• invalid efn parameter 

• invalid lun parameter 

• invalid DIC number or DPB size 

• unassigned LUN 

• insufficient memory 

A code indicating the acceptance or rejection of a directive is 
returned to the directive status word at symbolic location $DSW. This 
location can be tested to determine the type of directive condition. 

I/O conditions indicate the success or failure of the I/O operation 
specified in the QIO directive. I/O driver errors include such 
conditions as device not ready, privilege violation, file already 
open, or write-locked device. If an isb parameter is included in the 
QIO directive, identifying the address of a 2-word I/O status block, 
an I/O status code is returned in the low-order byte of the first word 
of this block on completion of the I/O operation. This code is a 
binary value which corresponds to a symbolic name of the form IS.xxx 
or IE.xxx. The low-order byte of the word can be tested symbolically, 
by name, to determine the type of status return. The correspondence 
between global symbolic names and directive and I/O completion status 
codes is defined in the system object module library. Local symbolic 
definitions may also be obtained via the DRERR$ and IOERR$ macros 
which reside in the System Macro Library and are summarized in 
Appendix B. 

Binary values of status codes always have the following meaning: 

Code Meaning 

Positive (greater than zero) Successful completion 

Zero Operation still pending 

Negative Unsuccessful completion 

A pending operation means that the I/O request is still in the queue 
of requests for the respective driver, or the driver has not yet 
completely serviced the request. 

1.10.1 Directive Conditions 

Table 1-2 summarizes the directive conditions which may be encountered 
in QIO directives. The acceptance condition is first, followed by 
error codes indicating various reasons for rejection, in alphabetical 
order. 

1-29 



Code 

rs.sue 

IE.ADP 

IE .IEF 

IE. I LU 

IE.SOP 

IE. ULN 

IE .UPN 

RSX-llM/M-PLUS INPUT/OUTPUT 

Table l·- 2 
Directive Conditions 

Reason 

Directive accepted 

The first six parameters of the QIO directive were 
valid, and sufficient dynamic memory was available 
to allocate an I/O packet. The directive is 
accepted~ 

Invalid address 

The I/O status block or the QIO DPB was outside of 
the issuing task's address space or was not aligned 
on a word boundary. 

Invalid event flag number 

The efn specification in a QIO directive was less 
than zero or greater than 96. 

Invalid logical unit number 

The lun specification in a QIO directive was 
invalid for the issuing task. For example, there 
were only five logical unit numbers associated with 
the task, and t~e value specified for lun was 
greater than five. 

Invalid DIC number or DPB size 

The directive identification code (DIC) or the size 
of the directive parameter block (DPB) was 
incorrect; the legal range for a DIC is from 1 
through 127, and all DIC values must be odd. Each 
individual directive requires a DPB of a certain 
size. If the size is not correct for the 
particular directive, this code is returned. The 
size of the QIO DPB is always 12 words. 

Unassigned LUN 

The logical unit number in the QIO directive was 
not associated with a physical device unit. The 
user may recover from this error by issuing a valid 
Assign LUN directive and then reissuing the 
rejected directive. 

Insufficient dynamic memory 

There was not enough dynamic memory to allocate an 
I/O packet for the I/O request. The user can try 
again later by blocking the task with a Waitfor 
Significant Event directive. Note that Waitfor 
Significant Event is the only effective way for the 
issuing task to block its execution, since other 
directives that could be used for this purpose 
themselves require dynamic memory for their 
execution (e.g., Mark Time). 

1-30 

~i 



RSX-llM/M-PLUS INPUT/OUTPUT 

1.10.2 I/O Status Conditions 

The following list summarizes status codes which may be returned in 
the I/O status block specified in the QIO directive on completion of 
the I/O request. The I/O status block is a 2-word block with the 
following format: 

• The low-order byte of the first word receives a status code of 
the form IS.xxx or IE.xxx on completion of the I/O operation. 

• The high-order byte of the first word is usually 
device-dependent; in cases where the user might find 
information in this byte helpful, this manual identifies that 
information. 

• The second word contains the number of bytes transferred or 
processed if the operation is successful and involves reading 
or writin9. 

If the isb parameter of the QIO directive is omitted, this information 
is not returned. 

The following illustrates a sample 2-word I/O status block on 
completion of a terminal read operation: 

1 0 Byte 

Word 0 ~mber -10 

1 of bytes read 

where -10 is the status code for IE.EOF (end of file). If this code 
is returned, it indicates that input was terminated by typing CTRL/Z, 
which is the end-of-file termination sequende on a terminal. 

To test for a particular error condition, the user generally compares 
the low-order byte of the first word of the I/O status block with a 
symbolic value as in the following: 

CMPB #IE.DNR,IOSB 

However, to test for certain types of successful completion of the I/O 
operation, the entire word value must be compared. For example, if a 
carriage return terminated a line of input from the terminal, a 
successful completion code of IS.CR is returned in the I/O status 
block. If an Escape (or Altmode) character was the terminator, a code 
of IS.ESC is returned. To check for these codes, the user should 
first test the low-order byte of the first word of the block for 
rs.sue and then test the full word for rs.cc, IS.CR, IS.ESC, or 
IS.ESQ. (Other success codes which must be read in this manner are 
listed in Appendix B, Section B.1.2.) 

Note that both of the following comparisons will test equal since the 
low-order byte in both cases is +l. 

CMP 

CMPB 

# IS • CR, I OSB 

#IS .sue ,IOSB 

1-31 



RSX-llM/M-PLUS INPUT/OUTPUT 

In the case of a successful completion where the carriage return is 
the terminal indicator (IS.CR), the folLowing illustrates the status 
block: 

1 0 Byte 

Word 0 15 l +l 

1 Number of bytes read 
(excluding the CR) 

where 15 is the octal code for carriage return and +l is the status 
code for successful completion. 

The codes described in Table 1-3 are general status codes which .apply 
to the majority of devices presented in subsequent chapters. Error 
codes specific to only one or two drivers are described only in 
relation to the devices for which they are returned. The list below 
describes successful and pending codes first, then error codes in 
alphabetical order. 

Code 

Is.sue 

IS .PND 

IE .ABO 

IE .ALN 

Table l·- 3 
I/O Status Conditions 

Reason 

Successful completion 

The I/O operation specified in the QIO directive 
was completed successfully. The second word of the 
I/O status block can be examined to determine the 
number of bytes processed, if the operation 
involved reading or writing. 

I/O request pending 

The I/O operation specified in the QIO directive 
has not yet been executed. The I/O status block is 
filled with zeros. 

Operation aborted 

The specified I/O operation was cancelled via 
IO.KIL while in progress or while still in the I/O 
queue. 

File already open 

The task attempted to open a file on the physical 
device unit associated with the specified LUN, but 
a file has already been opened by the issuing task 
on that LUN. 

(continued on next page) 

1-32 



Code 

IE.BAD 

IE.BBE 

IE:.BLK 

IE:.BYT 

IE~ .DAA 

H:.DNA 

RSX-llM/M-PLUS INPUT/OUTPUT 

Table 1-3 (Cont.) 
I/O Status Conditions 

Reason 

Bad parameter 

An illegal specification was supplied for one or 
more of the device-dependent QIO parameters (words 
6-11). For example, a bad channel number or gain 
code was specified in an analog-to-digital 
converter I/O operation. 

Bad block on device 

One or more bad blocks were found by executing the 
BAD utility. Data cannot be written on bad blocks. 

Illegal block number 

An illegal block number was 
file-structured physical device 
returned, for example, if block 
for an RK05 disk, on which 
extend from zero through 4799. 

Byte-aligned buffer specified. 

specified for a 
unit. This code is 
4800 is specified 
legal block numbers 

Byte alignment was specified for a buffer, but only 
word (or double-word) alignment is legal for the 
physical device unit. For example, a disk function 
requiring word alignment was requested, but the 
buffer was aligned on a byte boundary. 
Alternately, the length of a buffer was not an 
appropriate multiple of bytes. For example, all 
RP03 disk transfers must be an even multiple of 
four bytes. 

Device already attached 

The physical device unit specified in an IO.ATT 
function was already attached to the issuing task. 
This code indicates that the issuing task has 
already attached the desired physical device unit, 
not that the unit was attached by another task. 

Device not attached 

The physical device unit specified in an IO.DET 
function was not attached to the issuing task. 
This code has no bearing on the attachment status 
with respect to other tasks. 

(continued on next page) 

1-33 



Code 

IE.DNR 

IE.EOF 

IE.FHE 

IE. I FC 

IE .NLN 

IE.NOD 

IE .OFL 

RSX-llM/M-PLUS INPUT/OUTPUT 

Table 1-3 (Cont.) 
I/O Status Conditions 

Reason 

Device not ready 

The physical device unit specified in the QIO 
directive was not ready to perform the desired I/O 
operation. This code is often returned as the 
result of an interrupt timeout, that is, a 
"reasonable" amount of time has passed, and the 
physical device unit has not responded. 

End-of-file encountered 

An end-of-file mark, record, or control character 
was recognized on the input device. 

Fatal hardware error 

Controller is physically unable to reach the 
location where input/output is to be performed on 
the device. The operation cannot be completed. 

Illegal function 

A function code was specified in . an I/O request 
that was illeg~l for the specified physical device 
unit. This code is returned if the task attempts 
to execute an illegal function or if, for example, 
a read function is requested on an output-only 
device, such as the line printer. 

File not open 

The task attempted to close a file on the physical 
device unit associated with the specified LUN, but 
no file was currently open on that LUN. 

Insufficient buffer space 

Dynamic storage space has been depleted, and there 
was insufficient buffer space available to allocate 
a se~ondary control block. For example, if a task 
attempts to open a file, buffer space for the 
window and file control block must be supplied by 
the Executive. This code is returned when there is 
not enough space for such an operation. 

Device off-line 

The physical device unit associated with the LUN 
specified in the QIO directive was not on-line. 
When the system was booted, a device check 
indicated that this physical device unit was not in 
the configuration. 

(continued on next page) 

1-34 

~ I . 



Code 

IE.OVR 

IE.PR! 

IE .SPC 

IE:. VER 

IE:.WCK 

rn .WLK 

RSX-llM/M-PLUS INPUT/OUTPUT 

Table 1-3 (Cont.) 
I/O Status Conditions 

Reason 

Illegal read overlay request 

A read overlay was requested and the physical 
device unit specified in the QIO directive was not 
the physical device unit from which the task was 
installed. The read overlay function can only be 
executed on the physical device unit from which the 
task image containing the overlays was installed. 

Privilege violation 

The task which issued a request was not privileged 
to execute that request. For example, for the 
UDCll and LPSll, a checkpointable task attempted to 
connect to interrupts or to execute a synchronous 
sampling function. 

Illegal address space 

The buffer requested for a read or write request 
was partially or totally outside the address space 
of the issuing task. Alternately a byte count of 
zero was specified. 

Unrecoverable error 

After the system's standard number of retries have 
been attempted upon encountering an error, the 
operation still could not be completed. This code 
is returned in the case of parity, CRC, or similar 
errors. 

Write check error 

An error was detected during the check 
following a write operation. 

Write-locked device 

(read) 

The task attempted to write on a write-locked 
physical device unit. 

1.11 POWERFAIL RECOVERY PROCEDURES FOR DISKS AND DECTAPE 

PowE~rfail recovery recommendations for various devices are included in 
the following chapters, as appropriate, to assist the user in 
restoring device operation after a power failure. For disks and 
DECtape, it is recommended that power recovery ASTs be used. The AST 
service routine should provide a sufficient time delay, prior to 
returning for normal I/O operations, that will allow the disk to 
attain normal operating speed before actually attempting read and 
write operations. 

1-35 



RSX-llM/M-PLUS INPUT/OUTPUT 

If QIOs are being used for disk or DECtape I/O operations during 
powerfail recovery, an IE.DNR error status may be returned if the 
device is not up to operating speed when the request is issued. When 
this error is returned, it is recommended that the user task wait a 
sufficient time for the device to attain operating speed, and attempt 
the I/O operation again prior to reporting an error. For example, an 
RKOS disk may require approximately 1 minute to attain operating speed 
after a power failure. 

1-36 

~. 

~i 



·'-". 

CHAPTEH 2 

FULL-DUPLEX TERMINAL DRIVER 

2.1 INTRODUCTION 

Two terminal drivers are available as SYSGEN options for use in 
RSX- llM systems: 

1. A compact, half-duplex terminal driver for use with a wide 
variety of terminals, containing all basic features required 
for RSX-llM terminal support. (This terminal driver is not 
av~ilable on RSX-llM-PLUS systems.) This terminal driver is 
described in Chapter 3. 

2. A full-duplex terminal driver, as described in this chapter, 
containing all features of the half-duplex terminal driver, 
plus the following: 

• Full duplex operati~n 

• Type-ahead buffering 

• Eight-bit characters 

• Detection of hard receive errors 

• Increased byte transfer length (8128 bytes) 

• Additional terminal characteristics 

• Additional terminal types 

• Optional time-out on solicited and/or unsolicited input 

• Device-independent cursor control 

• Hedisplay of prompt buffer upon CTRL-R or CTRL-U 

• Automatic XOFF character generation upon completion of a 
read (except when in the full-duplex mode), if requested 

• Added hardware support 

NotE~ that either terminal driver can be selected during RSX-llM V3.2 
SYSGEN. RSX-llM-PLUS systems use the full-duplex terminal driver 
only. 

Throughout the remainder of this chapter, references made to MCR can 
gen4~rally be applied to other command line intepreters (for example, 
DCL). In addition, the prompt displayed on a terminal in response to 

2-1 



FULL-DUPLEX TERMINAL DRIVER 

invoking a command line interprett~r will be appropriate for the 
specific command line interpreter in use. For example, when MCR is 
invoked, the MCR prompt is displayed as follows: 

MCR> 

Terminal driver support is provided for a variety of terminal devices, 
as listed in Table 2-1. Subsequent sections describe each device in 
greater detail. 

Model Columns 

ASR-33/35 72 

KSR-33/35 72 

LA30-P 80 

LA30-S 80 

LA36 132 

LA120 132 

LA180S 132 

RT02 64 

RT02-C 64 

VT05B 72 

VT50 80 

VT50H 80 

VT52 80 

VT55 80 

VT61 80 

VTlOO 80-132 

Table 2-· l 
Supported Terminal Devices 

Lines/ CharactE~r Baud 
screenl set range 

64 110 

64 110 

64 300 

64 . 110-300 

64-96 110-300 

96 50-9600 

96 300-9600 

1 64 110-1200 

1 64 110-1200 

20 64 110-2400 

12 64 110-9600 

12 64 110-9600 

24 96 110-9600 

24 96 110-9600 

24 96 110-9600 

24 96 50-9600 

1 Applies only to video terminals. 

Upper & lower cc1se? 
Send Receive 

yes yes2 

yes yes 

yes 

yes 

yes yes 

yes yes 

yes yes 

yes yes 

2 Only for 96-character terminal. The terminal driver supports the 
terminal interfaces summarized in 1~able 2-2. These interfaces are 
described in greater detail in Section 2.9. Programming is 
identical for all interfaces. 

2-2 



Model 

DHll 

DHll-DMll-BB 

DJ'll 

DLl 1-A/B/C/D/E/W 

02:11 

FULL-DUPLEX TERMINAL DRIVER 

Table 2-2 
Standard Terminal Interfaces 

Type 

16-line multiplexer 1 

16-line multiplexer with modem control
2 

16-line multiplexer 

Single-line interfaces 3 

8-line multiplexer with modem control 2 

1 Direct memory access (OMA) is supported in the full-duplex 
terminal driver only. 

2 Full-duplex control only. 
l 031\-type modem. 

For example, in th~ USA, a Bell 

3 DLVll support with modem control is provided in the full-duplex 
terminal driver only. 

Terminal input lines can have a maximum length of 8128 (8K minus 64) 
bytes. Extra characters of an input line that exceed the maximum line 
length generally become an unsolicited input line. 

2.1.l ASR-33/35 Teletypes 4 

The ASR-33 and ASR-35 Teletypes are asynchronous, hard-copy terminals. 
No paper-tape reader or punch capability is supported. 

2.1.2 KSR-33/35 Teletypes 4 

The KSR-33 and KSR-35 Teletypes are asynchronous, hard-copy terminals. 

2.1.3 LA30 DECwriters 

The LA30 DECwriter is an asynchronous, hard-copy terminal that is 
capable of producing an original and one copy. The LA30-P is a 
parallel model and the LA30-S is a serial model. 

2.1.4 LA36 OECwriter 

The LA36 DECwriter is an asynchronous terminal that produces hard copy 
and operates in serial mode. It has an impact printer capable of 
generating multipart and special preprinted forms. The LA36 can 
receive and transmit both upper-case and lower-case characters. 

4 Teletype is a registered trademark of the Teletype Corporation. 

2-3 



FULL-DUPLEX TERMINAL DRIVER 

2.1.5 LA120 DECwriter 

The LA120 DECwriter is a hard-copy upper- and lower-case terminal, 
capable of printing multipart forms at speeds up to 180 
characters-per-second. Serial communications speed is selected from 
14 baud rates ranging from 50 to 9600 bps; split transmit and receive 
baud rates are supported by the terminal driveru Hardware features 
allow bidirectional printing for maximum printing speed, and 
user-selected features, including font size, line spacing, tabs, 
margins, and forms control. These functions can also be set-up by the 
system by issuing appropriate ANSI-standard escape sequences. 

2.1.6 LA180S DECprinter 

The LA180S DECprinter is a serial version of the LA180. It is a 
print-only device (it has no keyboard) that can generate multipart 
forms. The LA180S can print upper-case and lower-case letters. 

2.1.7 RT02 Alphanumeric Display Terminal and RT02-C Badge Reader/ 
Alphanumeric Display Terminal 

The RT02 is a compact, alphanumeric display terminal designed for 
applications in which source data is primarily numeric. A shift key 
permits the entry of 30 discrete characters, including upper-case 
alphabetic characters. The RT02 can, however, receive and display 
64 characters. 

The RT02-C model also contains a badge reader. This option provides a 
reliable method of identifying and controlling access to the PDP-11 or 
to a secure facility. Furthermore, data in a format corresponding to 
that of a badge (22-column fixed data) can be entered quickly. 

2.1.8 VTOSB Alphanumeric Display Terminal 

The VTOSB is an alphanumeric display terminal that consists of a CRT 
display and a self-contained keyboard. From a programming point of 
view, it is equivalent to other terminals, except that the VT05B 
offers direct cursor addressing. 

2.1.9 VTSO Alphanumeric Display Terminal 

The VTSO is an alphanumeric display terminal that consists of a CRT 
display and a keyboard. It is similar to the VT05B in operation, but 
does not offer direct cursor addressing. 

2.1.10 VTSOB Alphanumeric Display Terminal 

The VTSOH is an alphanumeric display terminal with CRT display, 
keyboard, and numeric pad. It offers direct cursor addressing. (The 
VTSOH's direct cursor addressing is not compatible with that of the 
VTOSB.) 

2-4 



.._...,. 

~ 

FULL.-DUPLEX TERMINAL DRIVER 

2.1.11 VT52 Alphanumeric Display Terminal 

The VT52 is an upper-and-lower-case alphanumeric terminal with numeric 
pad and direct cursor addressing. (The VT52's direct cursor 
addrE~ssing is compatible with that of the VTSOH, not with that of the 
VTOSB.) The VT52 6an be configured with a built-in thermal printer. 

2.1.12 VT55 Graphics Display Terminal 

The VT55 is similar to the VT52 in its operation as an alphanumeric 
terminal. The VTSS offers graphics display features that are not 
supported by RSX-llM, although the system allows a knowledgeable task 
to access the explicitly special features of the VT55. 

2.1.13 VT61 Alphanumeric Display Terminal 

The VT61 is an "intelligent" upper-and-lower-case alphanumeric 
terminal with an integral microprocessor. It offers two 128-member 
character sets and numerous built-in functions for editing and forms 
preparation as well as a block-transfer mode. (None of these special 
features is supported by RSX-llM.) 

2.1.14 VTlOO DECscope 

The VTlOO DECscope is an upper- and lower-case alphanumeric 
keyboard/video display terminal. It is capable of displaying 24 lines 
of 80 to 132 characters (each line). Serial communications speed is 
selected from baud rates ranging from 50 to 9600 bps. Hardware 
features allow user selection of display characteristics and functions 
including smooth scroll, reverse video, etc. These functions can also 
be set-up by the system by issuing appropriate ANSI-standard escape 
sequences. 

2.2 GET LUN INFORMATION MACRO 

Word 2 of the buffer filled by the Get LUN Information system 
directive (the first characteristics word) contains the following 
information for terminals. A setting of 1 indicates that the 
described characteristic is true for terminals. 

Bit Setting Meaning 

0 1 Record-oriented device 

1 1 Carriage-control device 

2 1 Terminal device 

3 0 File structured device 

4 0 Single-directory device 

2-5 



FULL-DUPLEX TERMINAL DRIVER 

Bit Setting 

5 0 

6 0 

7 0 

8 0 

9 0 

10 0 

11 0 

12 0 

13 0 

14 0 

15 0 

Words 3 and 4 of the buffer 
default buffer size (the 
screen). 

2.3 QIO MACRO 

Sequential device 

Reserved 

User-mode diagnostics supported 

Massbus device 

Unit software write-locked 

Input spooled device 

Output spooled device 

Pseudo d1~vi ce 

Device mountable as a communications 
channel 

Device mountable as a FILES-11 volume 

Device mountable 

are undefined. Word 5 indicates the 
width of the terminal carriage or display 

Table 2-3 lists the standard and devicE~-specific functions of the QIO 
macro that are valid for terminals. Some device-specific functions 
are options that may be selected during SYSGEN. 

Two device-specific functions, SF.SMC 
function names. These names are 
RSX-llD. 

and SF.GMC, have nonstandard 
retained for compatibility with 

Table 2-3 
Standard and Device-Specific QIO Functions for Terminals 

Format Function 

STANDARD FUNCTIONS: 

QIO$C IO.ATT, ••• Attach device. 

QIO$C I 0 .D ET, ••• Detach device. 

QIO$C IO.KIL, ••• Cancel I/O requests. 

(continued on next page) 

2-6 



FULL-DUPLEX TERMINAL DRIVER 

Table 2-3 (Cont.) 
Standard and Device-Specific QIO Functions for Terminals 

Format 

ST.7\NDARD FUNCTIONS: (Cont.) 

QIO$C IO.RLB, ••• f<stadd,size[,tmo]> 

QIO$C IO.RVB, ••• v<stadd,size[,tmo]> 

QIO$C IO.WLB, ••• ~<stadd,size,vfc> 

QIO$C IO.WVB, ••• ,<stadd,size,vfc> 

. DE:VICE-SPECIFIC FUNCTIONS: 

Function 

Read logical block 
(read typed input into 
buffer). 

Read virtual block 
(read typed input into 
buffer). 

Write logical block 
(print buffer 
contents). 

Write virtual block 
(print buffer 
contents) • 

1QIO$C IO .. ATA, ••• ,<ast, [parameter2] [,ast2]> Attach device, specify 
unsolicited-input
character AST. 

QIO$C IO.CCO, ••• ,<stadd,size,vfc> 

loro$c SFeGMC, ••• ,<stadd,size> 

loro$c IO.GTS, ••• ,<stadd,size> 

QIO$C IO.RAL, ••• ,<stadd,size[,tmo]> 

QIO$C IO.RNE, •• ~,<stadd,sJze[,tmo]> 

loro$c IO.RPR, ••• ,<stadd,size, 
[tmo],pradd,prsize,vfc> 

QIO$C IO.RST, ••• ,<stadd,size[,tmo]> 

QIO$C IO.RTT, ••• ,<stadd,size, 
[tmo], table> 

1QIO$C SF.SMC, ••• ,<stadd,size> 

1 SYSGEN options in RSX-llM. 

2-7 

Cancel CTRL/O (if in 
effect), then write 
logical block. 

Get multiple 
characteristics. 

Get terminal support. 

Read logical block, 
pass all bits. 

Read logical block, do 
not echo. 

Read logical block 
after prompt. 

Read logical block 
ended by special 
terminators. 

Read logical block 
ended by specified 
special terminator. 

Set multiple 
characteristics. 

(continued on next page) 



FULL-DUPLEX TERMINAL DRIVER 

Table 2-3 (Cont.) 
Standard and Device-Specific QIO Functions for Terminals 

Format Function 

DEVICE-SPEC! FIC FUNCTIONS: (Cont.) 

QIO$C IO.WAL, ••• ,<stadd,size,vfc> Write logical block, 
pass all bits. 

1QIO$C IO.WBT, ••• ,<stadd,size,vfc> Write logical block, 
break through any I/O 
conditions at 
terminal. 

where: ast is the entry point 
input-character AST. 

for an unsolicited-

parameter 2 is a number that can be used to identify this 
terminal as the input source upon entry to an 
unsolicited character AST routine. 

ast2 

pr add 

pr size 

size 

st add 

table 

tmo 

vf c 

is the entry point for an unsolicited CTRL/C AST. 

is the starting address of the byte buffer where 
the prompt is stored. 

is the size of the pradd prompt buffer in bytes. 
The specified size must be greater than zero and 
less than or equal to 8128. The buffer must be 
within the task's address space. 

is the size of the stadd data buffer in bytes. 
The specified size must be greater than zero and 
less than or equal to 8128. The buffer must be 
within the task"s address space. For SF.GMC, 
IO.GTS, and SF.SMC functions, size must be an 
even value. 

is the starting address of the data buffer. The 
address must be word-aligned for SF.GMC, IO.GTS, 
and SF.SMC; otherwise stadd ~ay be on a byte 
boundary. 

is the address of the 16-word special terminator 
table. 

is an optional timeout count in ten-second 
intervals for the full-duplex terminal driver. 
If zero is specified, no timeout can occur. 
Timeout is the maximum time allowed between two 
input characters before the read is aborted. 

is a character for vertical :Eormat control from 
Table 2-11 (see Section 2.7). 

l SYSGEN options in RSX-llM. 

2-8 

~. 



FULL-DUPLEX TERMINAL DRIVER 

2.3.1 Subfunction Bits 

Most device-specified functions supported by terminal driv,ers 
described in this section are selected using "subfunction bits". One 
or more functions can be selected by ORing their relative bits in a 
QIO function. Table 2-4 contains a listing of device-specific QIO 
functions and relative subfunction bits that can be issued. 

Each subfunction bit and subfunction selected when it is included in a 
QIO function is listed as follows: 

Symbolic 
NamL __ 

TF.AST 
TF.BIN 
TF.CCO 
TF.ESQ 
TF.NOT 

TF.RAL 
TF.RCU 
TF.RNE 
'rF .RST 
TF.TMO 
TF.WAL 
TF.WBT 
TF.XCC 

TF.XOF 

Subf unction 

unsolicited-input-character AST 
binary prompt 
cancel CTRL/O 
recognize escape sequences 
unsolicited input AST 
unsolicited characters are 
type-ahead buffer until they 
task 
read all bits 
restore cursor position 
read with no echo 
read with special terminators 
read with timeout 
write all bits 
break-through write 

notification; 
stored in the 

are read by the 

CTRL/C starts a command line interpreter 
command line (command line characters are not 
sent to the task) 
send XOFF 

Table 2-4 lists subfunction bits that can be ORed with QIO functions 
to invoke device-specific functions. Additional details for using 
subfunction bits are included in Section 2.3.2. 

If a task invokes a subfunction bit that is not supported on the 
system, the subfunction bit is ignored, but the QIO request is not 
rejected. For example, if break-through write (TF.WBT) is not 
selected, an IO.WBT or IO.WLB!TF.WBT function is interpreted as an 
IO.WLB functi.on. 

The following example is a QIO request using more than one subfunction 
bit: a nonechoed (TF.RNE) read, terminated by a special terminator 
character (TF.RST), followed by a prompt. 

QIO$C IO.RPR!TF.RNE!TF.RST, ••• ,<stadd,size,,pradd,prsize,vfc> 

2.3.2 Device-Specific QIO Functions 

Some~ device-specific functions described in this section are SYSGEN 
options. All except SF.GMC, IO.RPR, SF.SMC, IO.RTT, and IO.GTS can be 
issued by ORing a particular subfunction bit with another QIO 
function. These subfunction bits are specified in the following 
descriptions; subfunction bits are described in general in Section 
2.3.1. 

In addition to the device-specific QIO functions, this section also 
describes use of subfunction bits TF.ESQ, TF.BIN, and TF.XOF. 

2-9 



Function 
Equivalent 

FULL-DUPLEX TERMINAL DRIVER 

Table 2-·4 
Subfunction Bits 

Allowed Subfunction Bits 

Subfunctions 
TF.AST TF.BIN TF.CCO TF.ESQ TF.NOT TF.RAL TF.RCU TF.RNE TF.RST TF.TMO TF.WAL TF.WBT TF.XCC TF.XOF 

STANDARD FUNCTIONS 

10.ATT x x 
10.DET 

10.KIL 

10.RLB . x . x 
10.RVB ** .. ** .. 
10.WLB x x *** x 
10.WVB .. .. ** *" 

DEVICE-SPECIFIC FUNCTIONS 

10.ATA 10.A TT1TF.AST x x x 
10.C'CO 10.WLB!TF.CCO ... x 
SF.GMC 

10.GTS 

10.RAL 10.RLB!TF.RAL x . x 
10.RNE 10.RLB'TF.RNE . * x 
10.RPR x . x * x 
10.RST 10.RLB!TF.RST . x x 
10.RTT . x x 
SF.SMC 

JO.WAL 10.WLB'TF.WAL ... ... *** 
10.WBT 10.WLB!TF.WBT x x *** 

*Exercise great care when using Read All and Read with Special Terminators together. Obscure problems can result. 

**These subfunctions are allowed but are not effective. They are stripped off when the read or write virtual operation is converted to a read or write logical operation. 

***During a write-pass-all operation (JO.WAL or 10.WLB!TF.WAL) the terminal driver outputs characters without interpretation; it does not keep track of cursor position. 

x 

** 

x 
x 
x 
x 
x 

2.3.2.1 IO.ATA - IO.ATA is a variation of the Attach function. The 
use of this function is eased by the addition of TF.NOT and TF.XCC 
subfunction bits, described later in this section. IO.ATA specifies 
asynchronous system traps (ASTs) to process unsolicited input 
characters. When called as follows: 

QIO$C IO • A TA , ••• , < [as t] , [par a me t er 2] [ , as t 2 ] > 

NOTE 

A minimum of one AST parameter 
as t 2 ) i s r eq u i red • 

(ast or 

This function attaches the terminal and identifies "ast" and "ast2" as 
entry points for an unsolicited-input-character AST. Control passes 
to ast whenever an unsolicited character (other than CTRL/Q, CTRL/S, 
CTRL/X or CTRL/O) is input. If the ast2 parameter is specified, an 
unsolicited CTRL/C character will result in entering the AST specified 
in that parameter. If ast2 is not specified, an unsolicited CTRL/C 
will result in entering the AST specified in the ast parameter. 

Unless the TF.XCC subfunction is specified, CTRL/C is trapped by the 
task and does not reach MCR. Thus, any task that uses IO.ATA without 
the TF.XCC subfunction should recognize some input sequence as a 
request - to terminate; otherwise, MCR can not be invoked to abort the 
task in case of difficulty. 

2-10 



FULL-DUPLEX TERMINAL DRIVER 

Note that either ast2 or TF.XCC can be used, but not both in the same 
QIO request. If both are specified in the request, an IE.SPC error is 
returned. 

Upon entry to the AST routines, the unsolicited character 
parameter 2 are in the top word on the stack as shown below. 
word must be removed from the stack before exiting the AST. 

and 
That 

SP+lO 

SP+06 

SP+04 

SP+02 

SP+OO 

Event flag mask word 

PS of task pribr to AST 

PC of task prior to AST 

Task's directive status word 

Unsolicited character in low byte; parameter 2, in the 
high byte, is a user-specified value that can be used 
to identify individual terminals in a multiterminal 
environment 

The processing of unsolicited input ASTs is eased through the use of 
TF.NOT and TF.XCC subfunction bits. When TF.XCC is included in the 
IO.ATA function, all characters {except CTRL/C) are handled in the 
manner previously described. CTRL/C marks the beginning of a command 
line interpreter {CLI) line that will be processed by a CL! task {for 
example, MCR); none of the characters, including the CTRL/C, are sent 
to the task issuing the function. 

When unsolicited terminal input {except CTRL/C) is received by the 
full-duplex terminal driver and the TF.NOT subfunction is used, the 
resulting AST serves only as notification of unsolicited terminal 
input; the terminal driver does not pass the character to the task. 
Upon entry to the AST service routine, the high byte of the first word 
on the stack identifies the terminal causing the AST {parameter 2). 
After the AST has been effected, the AST becomes "disarmed" until a 
read request is issued by the task. If multiple characters are 
received before the read request is issued, they are stored in the 
type-ahead buffer. Once the read request is received, the contents of 
the type-ahead buffer, including the character causing the AST, is 
returned to the task; the AST is then "armed" again for new 
unsolicited input characters. Thus, the use of the TF.NOT subfunction 
allows a task to monitor more than one terminal for unsolicited input 
without the need to continuously read each terminal for possible 
unsolicited input. Note that the TF.NOT subfunction cannot be used 
with the CTRL/C AST; an unsolicited CTRL/C character flushes the 
typeahead buffer. 

See the RSX-llM/llM-PLUS Executive Reference Manual for further 
details on ASTs. 

IO.ATA is equivalent to IO.ATT ORed with the subfunction bit TF.AST. 

2.3.2.2 IO.ATTITF.ESQ - The task issuing this function attaches a 
terminal and notifies the driver that it recognizes escape sequences 
input from that terminal. Escape sequences are recognized only for 
solicited input. {See Section 2e6 for a discussion of escape 
sequences. ) 

If the terminal has not been declared capable of 
sequences, IO.ATTlTF.ESQ has no effect other 
terminal. No escape sequences are returned to the 

2-11 

generating escape 
than attaching the 
task because any 



FULL-DUPLEX TERMINAL DRIVER 

ESC sent by the terminal acts as a line terminator. The SF.SMC 
function or the MCR SET /ESCSEQ command are used to declare the 
terminal capable of generating escape sequences (see Table 2-5 and 
Section 2.3.2.12). 

2.3.2.3 IO.CCO - This write function directs the driver to write to 
the terminal regardless of a CTRL/O condition that may be in effect. 
If CTRL/O is in effect, it is cancelled before the write is done. 

IO.CCO is equivalent to IO.WLB!TF.CCO. 

2.3.2.4 SF.GMC - The Get Multiple Characteristics function returns 
terminal characteristics information, as follows~ 

QIO$C SF.GMC, ••• ,<stadd,size> 

where stadd is the starting address of a data buffer of length "size" 
bytes. Each word in the buff er has the form: 

.BYTE 

.BYTE 
characteristic-name 
0 

where characteristic-name is one of the bit names given in Table 2-5. 
The value returned in the high byte of each byte-pair is 1 if the 
characteristic is true for the terminal and 0 if it is not true. 

For the TC.TTP characteristic (terminal type), one of the values shown 
in Table 2-6 is returned in the high byte. 

Bit 
Name 

TC.ACR 

TC.BIN 

TC.CTS 

TC.DLU 

TC.ESQ 

TC.FDX 

TC.HFF 

Table 2-5 
Full-Duplex Terminal Driver-Terminal Characteristics 

for SF.GMC and SF.SMC Functions 

Octal Corresponding 
Value Meaning (if asserted) MCR Command 

24 Wrap-around mode SET /WRAP=TTnn: 

65 Binary input mode (read-pass-all) SET /RPA=TTnn: 
no characters are interpreted 
as control characters. 

72 Suspend output to terminal --
0 = resume 
1 = suspend 

41 Dial-up line SET /REMOTE=TTnn: 

35 Input escape sequence SET /ESCSEQ=TTnn: 
recognition 

64 Full-duplex mode SET /FDX=TTnn: 

17 Hardware form-feed capability SET /FORMFEED=TTnn: 
(If 0' form-feeds are simulated 
using TC.LPP.) 

(continued on next page) 

2-12 



..._,, 

~ 

FULL-DUPLEX TERMINAL DRIVER 

Table 2-5 (Cont.) 
Full-Duplex Terminal Driver-Terminal Characteristics 

. for SF.GMC and SF.SMC Functions 

Bit 
Name 

TC. HFL 

TC.HHT 

TC.HLD 1 

TC.ISL 

TC.LPP 

TC.NEC 

TC.PR! 

TC.RAT 

TC.RSP2 

TC.SCP 

TC.SLY 

TC .SMR 

TC.TBF 

TC .. TTP 

TC .. VFL 

Tc .. wro 3 

Tc .. xsp2 

TC. SBC 

Octal 
Value Meaning (if asserted) 

13 Number of fill characters to 

21 

44 

6 

2 

47 

51 

7 

3 

12 

50 

25 

71 

10 

14 

1 

4 

67 

insert after a carriage return (0-7=x) 
(Use a value of 7 for the LA30-S.) 

Horizontal tab capability (if O, 
horizontal tabs are simulated using 
spaces.) 

Hold screen mode 

Subline on interface (=0-15) (Read only) 

Page length (1-255.=x) 

Echo suppressed 

Terminal is privileged (Read only) 

Type-ahead buffer: 
0 - 1-character type-ahead 
1 - 36. character type-ahead 

Receiver speed (bits-per-second) 

Terminal is a scope (CRT) 

Terminal is a slave 
If set to 0 (SET /NOSLAVE=TTnn:), 
the terminal's type-ahead buffer 
is cleared 

Upper-case conversion disabled 

Type-ahead buffer count read, 
or flush 

Terminal type (=0-255.=x) 

Send 4 fill characters after 
line feed 

Page width (=1-255.=x) 

Transmitter speed (bits-per-second) 

Pass 8 bits on input, even 
if not binary input mode 
(TC.BIN) 

1 Effective for VT5x, VT61, and VTlOO, only. 

2
r

3 See next page. 

2-13 

Corresponding 
MCR Command 

SET /HFILL=TTnn:x 

SET /HHT=TTnn: 

SET /HOLD=TTnn: 

--
SET /LINES=TTnn:x 

SET /ECHO=TTnn: 

SET /PRIV=TTnn: 

SET /TYPEAHEAD=TTnn: 

SET /SPEED=TTnn:rcv:xmit 

SET /CRT=TTnn: 

SET /SLAVE=TTnn: 

SET /LOWER=TTnn: 

SET /X=TTnn: 
SET /TERM=TTnn:x 

SET /VFILL=TTnn: 

SET /BUF=TTnn:x 

SET /SPEED=TTnn:rcv:xmit 

SET /EBC=TTnn: 



FULL-DUPLEX TERMINAL DRIVER 

2 TC.RSP, TCXSP, and corresponding MCR SET /SPEED command values for 
terminal receiver and transmitter speeds are listed below: 

NOTE 

The MCR SET /SPEED command requires 
parameters for both receiver (rev) and 
transmitter (xmit) baud rates, as 
follows: 

SET /SPEED=TTnn:rcv:xmit 

TC.RSP or 
TC.XSP Actual baud rate (in bps) 
value and valid MCR SET /SPEED values 

s.o (disabled) 
S.50 50 (Baudot codes 

supported) 
S.75 75 
S.110 llO 
S.134 134 
s.150 150 
S.200 200 
s.3oo 300 
S.600 600 
S.1200 1200 
S.1800 1800 
s.2000 2000 
S.2400 2400 
S.3600 3600 
s.4800 4800 
s.1200 7200 
S.9600 9600 
S.EXTA (DHl 1 external speed A) 
S.EXTB (DHl 1 external speed B) 

NOTE 

Speed can be set only on DHll and 
controllers. DZll transmitter 
receiver speeds must be equal (no 
baud rates permitted). 

DZll 
and 

split 

are not 

3 Unsolicited input that fills the buffer before a terminator is 
received is likely inva1id. When this happens, the driver discards 
the input by simulating a CTRL/U and echoing ~U. 

The TC.TPP characteristic, when read by the terminal driver, sets 
implicit values for terminal characteristics TC.LPP, TC.WID, TC~HFF, 
TC,HHT, TC.VFL, and TC.SCP as shown in Table 2-6. These values can be 
changed (overridden) by subsequent Set Multiple Characteristics 
requests. In addition, TC.TPP is used by the terminal driver to 
determine cursor positioning commands, as appropriate. 

2-14 



.'-' 

'-' 

Octa1l 
Valuie 

0 
1 
2 
3 
4 
5 
6 
7 
10 
llL 
12 
13 
14 
1 !) 
16 

NOTE:S 

FULL-DUPLEX TERMINAL DRIVER 

Table 2-6 
Bit TC.TTP (Terminal Type) Values Set by SF.SMC 

and Returned by SF.GMC 

Implicit Characteristics 
Terminal 

Symbolic Type TC.LPP TC.WID TC.HFF TC.HHT TC.HFL TC.VFL 

T.UNKO 
T.AS33 
T.KS33 
T.AS35 
T.L30S 
T.L30P 
T.LA36 
T.VTOS 
T.VTSO 
T.VT52 
T.VT55 
T.VT61 
T.Ll80 
T.VlOO 
T.Ll 20 

Unknown 
ASR33 
KSR33 
ASR35 
LA30S 
LA30P 
LA36 
VTOS 
VTSO 
VT52 
VT55 
VT61 
LA180S 
VTJ.00 
LAJ.20 

66 
66 
66 
66 
66 
66 
20 
12 
24 
24 
24 
66 
24 
66 

72 1 
72 1 
72 1 
80 7 
80 
132 
72 1 1 
80 1 
80 1 
80 1 
80 1 
132 1 
80 1 
132 1 

TC.SCP 

1 
1 
1 
1 
1 

1 

• Octal values 0-177 are reserved by DIGITAL. Values 200-377 
are available for customer use to define non-DIGITAL 
terminals. 

• Implicit characteristics are shown as supported by the driver. 
Values not shown are not automatically set by the driver. An 
"unknown" terminal type has no implicit characteristics. 

The TC.CTS characteristic returns the present suspend 
(CTRL/S), resume (CTRL/Q), or suppress (CTRL/O) state set via 
the SF.SMC function. Values returned are as follows: 

Value 
Returnee! 

0 
1 
2 
3 

State 

Resume (CTRL/Q) 
Suspend (CTRL/S) 
Suppress (CTRL/O) 
Both suppress and suspend 

When a value of 0 is used with the SF.SMC function, the suspend state 
is cleared; a value of 1 selects the suspend state. 

The TC.TBF characteristic returns the number of unprocessed characters 
in the type-ahead buffer for the specified terminal. This allows 
tasks to determine if any characters were typed that did not require 
AST processing. In addition, the value returned can be used to read 
the exact number of characters typed, rather than a typical value of 
80. or 132. characters for the terminal. 

2-15 



FULL-DUPLEX TERMINAL DRIVER 

NOTES 

1. It is necessary that the task attach the 
terminal to receive characters from the 
type-ahead buffer. 

2. The capacity of the type-ahead buffer is 
36. characters, maximum. 

3 •. Using TC.TBF in an SF.SMC function will 
flush the type-ahead buffer. 

2.3.2.5 IO.GTS - This function is a Get Terminal Support request that 
returns information to a four-word buffer specifying which 
SYSGEN-option features are part of the terminal driver. Only two of 
these words are currently defined. Table 2-7 gives details for these 
words. The IO.GTS function is a SYSGEN option. If IO.GTS is issued 
on a system without IO.GTS support, IE.IFC is returned in the I/O 
status block. 

Bit 

Word 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

15 

Word 

0 
l 
2 
3 
4 
5 
6 

Table 2·-7 
Information Returned by Get Terminal Support (IO.GTS) QIO 

Octal 
Value Mnemonic 

0 of Buffer: 

l Fl .ACR 
2 lFl.BTW 
4 Fl.BUF 

10 lFl.UIA 
20 Fl.CCO 
40 lFl.ESQ 

100 Fl .HLD 
200 lFl .LWC 
400 Fl.RNE 

1000 lFl.RPR 
2000 Fl.RST 
4000 lF l .RUB 

10000 Fl.SYN 
20000 F 1. TRW 
40000 Fl.UTB 

100000 Fl.VBF 

l of Buffer: 

1 
2 
4 

10 
20 
40 

100 

1F2.SCH 
1F2.GCH 

F2 .DCH 
F2 .DKL 
F2.ALT 
F2.SFF 

1F2.CUP 

Meaning When Set to l 

Automatic CR/LF on long lines 
Break-through write 
Checkpointing during terminal input 
Unsolicited-input-character AST 
Cancel CTRL/O before writing 
Recognize escape sequences in solicited input 
Hold-screen mode 
Lower-to-upper-case conversion 
Read with no echo 
Read after prompting 
Read with special terminators 
CRT rubout 
CTRL/R terminal synchronization 
Read all and write all 
Input characters buffered in task's address 
space 

Variable-length terminal buffers 

Set characteristics QIO (SF.SMC) 
Get characteristics QIO (SF.GMC) 
Dump/restore characteristics 
Historical IAS/RSX-llD IO.KIL 
Altmode is echoed 
Formf eed can be simulated 
Cursor positioning 

1 SYSGEN options on RSX-llM systems 

2-16 

~ 
' \ 



FULL-DUPLEX TERMINAL DRIVER 

The various symbols used by the IO.GTS, SF.GMC, and SF.SMC functions 
are defined in a system module, TTSYM. These symbols include: Fl.xxx 
and F2.xxx (Table 2-7); T.xxxx (Table 2-6); TC.xxx (Table 2-5); and 
the SE.xxx error returns described in Table 2-8, Section 2.4. These 
symbols may be defined locally within a code module by using: 

.MCALL TTSYM$ 

TTSYM$ 

Symbols that are not defined locally are automatically defined by the 
Task Builder. 

Octal values shown for the symbols are subject to change. 
it is recommended that only the symbolic names be used. 

Therefore, 

2.3.2.6 IO.RAL - The Read All function causes the driver to pass all 
bits to the requesting task. The driver does not intercept control 
characters or mask out the "parity" (high-order) bit. For example, 
CTRL/C, CTRL/Q, CTRL/S, CTRL/O, and CTRL/Z are passed to the program 
and are not interpreted by the driver. 

NOTE 

IO.RAL echoes the characters that are 
read. The terminal driver in Version 2 
of RSX-llM did not echo a Read All. To 
read all bits without echoing, use 
IOoRAL!TF.RNE. 

IO.RAL is equivalent to IO.RLB ORed with the subfunction bit TF.RAL. 
The IO.RAL function can be terminated only by a full character count 
(input buffer full). 

2.3.2.7 IO.RNE - The IO.RNE function reads terminal input characters 
without echoing the characters back to the terminal for immediate 
display. This feature can be used when typing sensitive information 
(for example, a password or combination) or when reading a badge with 
the RT02-C terminal. 

(Note that the no-echo mode can also be selected via the SF.SMC 
function; see Table 2-5, bit TC.NEC.) 

CTRL/R is ignored while an IO.RNE is in progress. 

The IO.RNE function is equivalent to IO.RLB ORed with the subfunction 
bit TF.RNE. 

2.3.2.8 IO.RPR - The IO.RPR Read After Prompt functions as an IO.WLB 
(to write a prompt to the terminal) followed by IO.RLB. However, 
IO.RPR dif:fers from this combination of functions as follows: 

• System overhead is lower with the IO.RPR because only one QIO 
is processed. 

2-17 



• 

FULL-DUPLEX TERMINAL DRIVER 

When using the IO.RPR function, there is no "window" during 
which a response to the prompt may be ignored. Such a window 
occurs if IO.WAL/IO.RLB is used, because no read may be 
posted at the time the response is received. 

• If the issuing task is checkpointable, it can be checkpointed 
during both the prompt and the read requested by the IO.RPR. 

• A CTRL/O that may be in effect prior to issuing the IO.RPR is 
cancelled before the prompt is written. 

Subfunction bits may be ORed with IO.RPR to write the prompt as a 
Write All (TF.BIN) and to send XOFF after the read (TF.XOF). In 
addition, read subfunction bits TF.RAL, TF.RNE, and TF.RST can be used 
with IO.RPR. 

NOTE 

If an IO.RPR function is in progress 
when the driver receives a CTRL/R or 
CTRL/U, the prompt is redisplayed. 

2.3.2.9 IO.RPRITF.BIN - This function results in a read after a 
"binary" prompt; that is, a prompt is written by the driver with no 
character interpretation (as if it were issued as an IO.WAL). 

2.3.2.10 IO.RPR!TF.XOF - This function causes the driver to send an 
XOFF to the terminal after its prompt-and-read. The XOFF or CTRL/S 
may have the effect of inhibiting input from the terminal, if the 
terminal recognizes XOFF for this purpose. TF.XOF is ignored when 
full-duplex I/O is in use. 

2.3.2.11 IO.RST - This function is similar to an IO.RLB, except 
certain special characters terminate the read. These characters are 
in the ranges 0-037 and 175-177. The driver does not interpret the 
terminating character, with certain exceptions.I For example, a 
horizontal TAB (011) is not expanded, a RUBOUT (or DEL, 177) does not 
erase, and a CTRL/C does not produce an MCR prompt. 

Upon successful completion of an IO.RST request that was not 
terminated by filling the input buffer, the first word of the I/O 
status block contains the terminating character in the high byte and 
the rs.sue status code in the low byte. The second word contains the 
number of bytes contained in a buffer. The terminating character is 
n·ot put in the buffer. 

IO.RST is equivalent to IO.RLBlTF.RST. 

1 If upper-lower-case conversion is disabled, characters 175 and 176 
do not act as terminators. CTRL/O, CTRL/Q, and CTRL/S (017, 021, and 
023, respectively) are not special terminators. The driver interprets 
them as output control characters in a normal manner. 

2-18 



FULL-DUPLEX TERMINAL DRIVER 

2 .3 .·2 .12 SF.SMC - This function enables a task to set and reset the 
characteristics of a terminal. Set Multiple Characteristics is the 
inverse function of SF.GMC. Like SF.GMC, it is called in the 
following way: 

QIO$C SF.SMC, ••• ,<stadd,size> 

where stadd is the starting address of a buffer of length "size" 
bytes. Each word in the buffer has the form: 

.BYTE characteristic-name 
.BYTE value 

where "characteristic-name" is one of the symbolic bit names given in 
Table 2-5, and "value" is either 0 (to clear a given characteristic) 
or 1 (to set a characteristic). Table 2-5 notes the restrictions that 
apply to these characteristics. 

If the "characteristic-name" is TC.TTP (terminal type), "value" can 
have any of the values listed in Table 2-6. 

A nonprivileged task can only issue an SF.SMC request for its own 
terminal (TI:). A privileged task can issue SF.SMC to any ter~inal. 

Terminal output can be suspended or resumed (simulated CTRL/S and 
CTRL/Q, respectively) by specifying an appropriate value for TC.CTS. 
A value of 0 resumes output and a value of 1 suspends output. 

Specifying any value for TC.TBF flushes (clears) th~ type-ahead buffer 
(forces the type-ahead buffer count to 0). 

2.3e2.13 IO~RTT - This QIO function reads characters in a manner like 
the IO.RLB function, except a user-specified character terminates the 
read operation. The specified character's code can range from 0-377. 
It is user-designated by setting the appropriate bit in a 16-word 
table that corresponds to the desired character. Multiple characters 
can be specified by setting their corresponding bits. 

The 16-word table starts at the address specified by the table 
parameter. The first word contains bits that represent the first 16 
ASCII character codes (0-17); similarly, the second word contains 
bits that represent the next 16 character codes (20-37), and so-on, 
through the sixteenth word, bit 15, which represents character code 
377~ For example, to specify the % symbol (code 045) as a read 
terminator character, set bit 05 in the third word, since the third 
word of the table contains bits representin~ character codes 40-57. 

If the CTRL/S (023), CTRL/Q (021), and/or any characters whose codes 
are greater than 177 is/are desired as the terminator character(s), 
the terminal must be set to read-pass-all operation (TC.BIN=l), or 
read-pass a~bits (TC.SBC), as listed in Table 2-5. 

The optional timeout count parameter can be included, as desired. 

2.3.2.14 IO .. WAL - The Write All function causes the driver to pass 
all output from the buffer without interpretation. It does not 
int«~rcept control characters. Long lines are not wrapped around if 
input/output wrap-around has been selected. 

IO.WAL is equivalent to the IO.WLB!TF.WAL function. 

2-19 



FULL-DUPLEX TERMINAL DRIVER 

2.3.2.15 IO.WBT - IO.WBT function instructs the driver to write the 
buffer regardless of the I/O status of the receiving terminal. If an 
IO.WBT function is issued on a system that does not support IO.WB~', it 
is treated as an IO.WLB function. 

• If another write function is currently in progress, it 
finishes the current request and the IO.WBT is the next write 
issued. The effect of this is that IO.WBT functions can be 
stopped by a CTRL/S. Therefore, it may be desirable for tasks 
to timeout on IO.WBT operations. 

• If a read is currently posted, the IO.WBT proceeds, and an 
automatic CTRL/R is performed to redisplay any input that was 
received before the break-through write was effected (if the 
terminal is not in the full-duplex mode). 

• CTRL/O, if in effect, is cancelled. 

• An escape sequence that was interrupted is rubbed out. 

An IO.WBT function cannot break through another IO.WBT that is in 
progress. 

Break-through write may only be issued 
privileged MCR command BRO (broadcast) 

2.4 STATUS RETURNS 

by a privileged 
uses IO.WBT. 

task. The 

Table 2-8 lists error and status conditions that are returned by the 
terminal driver to the I/O status block. 

Most RSX-llM error and status codes returned are byte values. For 
example, the value for rs.sue is 1. However, IS.CC, IS.CR, IS.ESC, 
and IS.ESQ are word values. When any of these codes are returned, the 
low byte indicates successful completion, and the high byte shows what 
type of completion occurred. 

To test for one of these word-value return codes 1 first test the low 
byte of the first word of the I/O status block for the value rs.sue. 
Then, test the full word for IS.CC, IS.CR, IS.ESC, or IS.ESQ. (If the 
full word tests equal to IS.sue, then its high byte is zero, 
indicating byte-count termination of the read.) 

The "error" return IE.EOF may be considered a successful read since 
characters returned t~ the task's buffer can be terminated by a CTRL/Z 
character. 

The SE.xxx codes are returned by the SF.GMC and SF.SMC functions as 
described in Sections 2.3.2.4 and 2.3.2.12. When any of these codes 
are returned, the low byte in the first word in the I/O status block 
will contain IE.ABO. The second IOSB word contains an offset 
(starting from 0) to the byte in error in the QIO's stadd buffer. 

2-20 



Code 

IIE.EOF 

rs.sue 

IS.CC 

IS.CR 

IS.ESC 

IS.ESQ 

IS.PND 

IS .TMO 

FULL-DUPLEX TERMINAL DRIVER 

Table 2:-8 
Terminal Status Returns 

Reason 

Successful completion on a read with end-of-file 

The line of input read from the terminal was 
terminated with the end-of-file character CTRL/Z. 
The second word of the I/O status block contains the 
number of bytes read before CTRL/Z was seen. The 
input buffer contains those bytes. 

Successful completion 

The operation specified in the QIO directive was 
completed successfully. If the operation involved 
reading or writing, you can examine the second word 
of the I/O status block to determine the number of 
bytes processed. The input buffer contains those 
bytes. 

Successful completion on a read 

The line of 
terminated by 
the bytes read. 

input read 
a CTHL/C. 

from the terminal was 
The input buffer contains 

Successful completion on a read 

The line of input read from the terminal was 
terminated by a carriage return. The input buffer 
contains the bytes read. 

Successful completion on a read 

The line of input read from the terminal was 
terminated by an Altmode character. The input buffer 
contains the bytes read. 

Successful completion on a read 

The line of input read from the terminal was 
terminated by an escape sequence. The input buffer 
contains the bytes read and the escape sequence. 

I/O request pending 

The operation specified in the QIO directive has not 
yet been executed. The I/O status block is filled 
with zeros. 

Successful completion on a read 

The line of input read from the terminal was 
terminated by a time-out (TF.TMO was set and the 
specified time interval was exceeded). The input 
buffer contains the bytes read. 

(continued on next page) 

2-21 



Code 

IE.ABO 

IE.BAD 

IE.BCC 

IE.DAA 

IE .DAO 

IE .DNA 

FULL-DUPLEX TERMINAL DRIVER 

Table 2-8 (Cont.) 
Terminal Status Returns 

Reason 

Operation aborted 

The specified I/O operation was cancelled by IO.KIL 
while in progress or while in the I/O queue. The 
second word of the I/O status block indicates the 
number of bytes that were put in the buffer before 
the kill was effected. 

Bad parameter. 

The size of the buffer exceeds 8128 bytes. 

Framing error 

A framing error was hardware detected and returned by 
the controller. All characters up to (but not 
including) the erroneous character are in the buffer. 
This condition can result by pressing the BREAK key 
on some terminals, or by hardware problems. 

Device already attached. 

The physical device-unit specified in an IO.ATT 
function was already attached by the issuing task. 
This code indicates that the issuing task has already 
attached the desired physical device-unit, not that 
the unit was attached by another task. If the attach 
specified TF.AST or TF.ESQ, these subfunction bits 
have no effect. 

Data overrun error 

A data overrun error was hardware-detected and 
returned by the controller. All characters up to 
(but not including) the erroneous character are in 
the buffer. This error occurs when a hardware 
failure or incompatibility causes characters to be 
received by the controller faster than they can be 
processed (that is, an incorrect serial I/O baud rate 
or format exists). 

Device not attached 

The physical device-unit specified in an IO.OET 
function was not attached by the issuing task. This 
code has no bearing on the attachment status of other 
tasks. 

(continued on next page) 

2-22 

~i 

~. 



Code 

I.E.DNR 

IE .IES 

IE. I FC 

IE .NOD 

IE .OFL 

IE.PES 

FULL-DUPLEX TERMINAL DRIVER 

Table 2-8 (Cont.) 
Terminal Status Returns 

Reason 

Device not ready 

The physical device-unit specified in the QIO 
directive was not ready to perform the desired I/O 
operation. This code is returned to indicate one of 
the following conditions: 

• A timeout occurred on the physical 
device-unit (that is, an interrupt was lost). 

• an attempt was made to perform a function on 
a remote DHll or DZll line without carrier 
present. 

Invalid escape sequence 

An escape sequence was started but escape-sequence 
syntax was violated before the sequence was 
completed. (See Section 2.6.4.) The character 
causing the violation is the last character in the 
buffer. 

Illegal function 

A function code specified in an I/O request 
illegal for terminals; or, the function 
specified was a SYSGEN option not selected for 
system. 

Buffer allocation failure 

was 
code 
this 

System dynamic storage has been depleted resulting in 
insufficient space available to allocate an 
intermediate buffer for an input request or an AST 
block for an attach request. 

Device off-line 

The physical device-unit a~sociated with the LUN 
specified in the QIO directive was not online. When 
the system was booted, a device check indicated that 
this physical device-unit was not in the 
configuration. In RSX-llM-PLUS systems, the physical 
device-unit could have been configured offline. 

Partial escape sequence 

An escape sequence was started, but read-buffer space 
was exhausted before the sequence was completed. See 
Section 2.6.4.3. 

(continued on next page) 

2-:23 



Code 

IE.PR! 

IE.SPC 

IE.VER 

SE.NIH 

SE.FIX 

SE.VAL 

SE.NSC 

SE.SPD 

FULL-DUPLEX TERMINAL DRIVER 

Table 2-8 (Cont.) 
Terminal Status Returns 

Reason 

Privilege violation 

In a multiuser system, a nonprivileged task issued an 
IO.WBT, directed an SF.SMC to a terminal other than 
TI:, or it attempted to set its privilege bit. 

Illegal address space 

The buffer specified for a read or write request was 
partially or totally outside the address space of the 
issuing task, a byte count of zero was specified, or 
an odd or O AST address was specified. 

Character parity error 

A parity error was hardware-detected and returned by 
the controller. All characters up to (but not 
including) the erroneous character are in the buffer. 

A terminal characteristic other than those in Table 
2-5 was named in an SF.GMC or SF.SMC request, or a 
task attempted to assert TC.PR!. · 

An attempt was made to change a fixed characteristic 
in a SF.SMC sub£unction request (for example, an 
attempt was made to change the unit number). 

The new value specified in an SF.SMC request for the 
TC.TTP terminal characteristic was not one of those 
listed in Table 2-6. 

An attempt was made to change a non-settable 
characteristic. This error can occur when an attempt 
is made to make a local-only line a remote line when 
the controller does not support remote lines, or when 
no !emote line support was specified during SYSGEN. 

The new speed specified in an SF.SMC subfunction 
request was not valid for the controller associated 
with the specified terminal. 

2.5 CONTROL CHARACTERS AND SPECIAL KEYS 

This section describes the meanings of special terminal control 
characters and keys for RSX-llM. Note that the driver does not 
recognize control characters and special keys during a Read All 
request (IO.RAL) and recognizes only some of them during a Read with 
Special Terminators (IO.RST). 

2-24 



FULL-DUPLEX TERMINAL DRIVER 

2.5.1 Control Characters 

A control character is input from a terminal by holding the control 
key (CTRL) down while typing one other key. Three of the control 
characters described in Table 2-9, CTRL/R, CTRL/U, and CTRL/Z, are 
echoed on the terminal as ftR, ftu, and AZ respectively. 

Character 

C~rRL/C 

CTRL/I 

Table 2-9 
T~rminal Control Characters 

Meaning 

Typing CTRL/C causes unsolicited input on that 
terminal to be directed to a control line interpreter 
task, such as MCR. (Command line interpreters are 
invoked and display a prompt in a manner similar to 
MCR; therefore, for the purposes of this discussion, 
it is assumed that MCR is the command line 
interpreter in use, although the terminal driver will 
respond to other command line interpreters in a 
similar manner.) The "MCR>" prompt is echoed when the 
terminal driver is ready to accept an unsolicited MCR 
command line for input. When the unsolicited input 
is terminated, the command line is passed to MCR. 

If the last character typed on the terminal was a 
CTRL/S (suspend output), CTRL/C restarts suspended 
output and directs subsequent input to MCR. 

If the hold-screen mode SYSGEN option has been 
selected and the terminal is a VT5x or VT61 in 
hold-screen mode1 typing a CTRL/C removes the 
terminal from hold-screen mode. 

CTRL/C characters can also be directed to a task if 
the task has attached a terminal and has specified an 
unsolicited-input-character AST (see Section 
2.3.2.1). CTRL/C characters are also passed to a 
task if an IO.RAL or IO.RST function is effected. 

NOTE 

If the terminal driver receives a CTRL/C 
character during a read operation (except 
during a Read-Pass-All operation or a Read 
With Special Terminators operation), the read 
operation is terminated, the typeahead buffer 
is cleared and an IS.CC status code is 
returned to the task. 

CTRL/I or TAB characters initiate a horizontal tab, 
and the terminal spaces to the next tab stop. Tabs 
at every eighth character position are simulated by 
the terminal driver. 

(continued on next page) 

2-25 



Character 

CTRL/J 

CTRL/K 

CTRL/L 

CTRL/M 

CTRL/O 

CTRL/Q 

CTRL/S 

CTRL/R 

FULL-DUPLEX TERMINAL DRIVER 

Table 2-9 (Cont.) 
Terminal Control Characters 

Meaning 

CTRL/J is equivalent to a LINE FEED character. 

CTRL/K initiates a vertical tab, 
tabs to the next vertical tab 
terminal, 4 LINE FEEDs are output. 

and the 
stop. 

terminal 
For a CRT 

CTRL/L Ldtiates a formfeed. If the terminal has 
hardware formfeed support, the driver echos AL. 
Otherwise, the driver simulates the formfeed by 
outputting enough LINE FEED characters to advance the 
next character position to the top of the next page. 
If a CRT terminal is in use, 4 LINE FEEDs a·re output. 

CTRL/M is equivalent to a carriage RETURN character 
(see Section 2.5.2). 

CTRL/O suppresses terminal output. For attached 
terminals, CTRL/O remains in effect (output is 
suppressed) until one of the following occurs: 

• The terminal is detached 

• Another CTRL/O character is typed 

• An IO.CCO or IO.WBT function is issued 

• Input is entered 

For unattached terminals, CTRL/O suppresses output 
for only the current output buffer (typically one 
line). 

CTRL/Q resumes terminal output previously suspended 
by means of CTRL/S. 

CTRL/S suspends terminal output. (Output can be 
resumed by typing CTRL/Q or CTRL/C.) 

CTRL/R response is a terminal driver feature that can 
be selected during RSX-llM V3.2 SYSGEN. Typing 
CTRL/R results in a carriage return and line feed 
being echoed, followed by the incomplete 
(unprocessed) input line. Any tabs that were input 
are expanded and the effect of any rubouts is shown. 
On hardcopy terminals, CTRL/R allows verifying the 
effect of tabs and/or rubouts in an input line. 
CTRL/R is also useful for CRT terminals when the CRT 
rubout SYSGEN option has been selected (see Section 
2.8). For example, after rubbing out the left-most 
character on the second displayed line of a wrapped 
input line, the cursor does not move to the right of 
the first displayed line. In this case, CTRL/R 
brings the input line and the cursor back together 
again. 

(continued on next page) 

2-26 

~I 

~i 



Character 

CTRL/U 

CTRL/X 

CTRL/Z 

FULL-DUPLEX TERMINAL DRIVER 

Table 2-9 (Cont.) 
Terminal Control Characters 

Meaning 

Typing CTRL/U before typing a line terminator deletes 
previously typed characters back to the beginning of 
the line. The system echoes this character as AU 
followed by a carriage return and a line feed. 

This character clears the typeahead buffer. 

CTRL/Z indicates an end-of-file for the current 
terminal input. It signals MAC, PIP, TKB, and other 
system tasks, that terminal input is complete, 
allowing the task to exit. The system echoes this 
character as AZ followed by a carriage return and a 
line feed. 

2.5.2 Special Keys 

The ESCape, carriage RETURN, and RUBOUT keys have special significance 
for terminal input, as described in Table 2-10. A line can be 
terminated by an ESCape (or Altmode), carriage RETURN, or CTRL/Z 
characters, or by completely filling the input buffer (that is, by, 
exhausting the byte count before a line terminator is typed). The 
standard buffer size for a terminal can be determined for a task by 
issuing a Get LUN Information system directive and examining Word 5 of 
the buffer. An operator can obtain the same information via the MCR 
SET /BUF=TI: command. 

Key 

ESCape 

HETU RN 

Table 2-10 
Special Terminal Keys 

Meaning 

If escape sequences are not recognized, typing ESCape 
or Altmode signals the terminal driver that there is 
no further input on the current line. This line 
terminator allows further input on the same line, 
because the carriage or cursor is not returned to the 
first column position. 

If escape sequences are recognized, ESCape signals 
the beginning of an escape sequence. (See Section 
2. 6.) 

Typing RETURN terminates the current line and causes 
the carriage or cursor to return to the first column 
on the line. 

(continued on next page) 

2-27 



Key 

RUBOUT 

FULL-DUPLEX TERMINAL DRIVER 

Table 2-10 (Cont.) 
Special Terminal Keys 

Meaning 

Typjng RUBOUT deletes the last character typed on an 
input line. Only characters typed since the last 
line terminator may be deleted. Several characters 
can be deleted in sequence by typing successive 
RUBOUTs. 

For example, on a printing terminal, the first RUBOUT 
echoes a backslash (\) followed by the character ~hat 
has been deleted, even if the terminal is in the 
noecho mode. Subsequent RUBOUTs cause only the 
deleted character to be echoed. The next character 
typed that is not a RUBOUT causes another backslash 
to be printed, followed by the new character. The 
non-RUBOUT character will not be echoed if the 
terminal is in the noecho mode; however, a backslash 
is echoed in response to the first non-RUBOUT 
character. The following example illustrates rubbing 
out ABC and then typing CBA: 

ABC\CBA\CBA 

The second backslash is not displayed if a line 
terminator is typed after rubbing out the characters 
on a line, as in the following example: 

ABC\CBA 

At SYSGEN time, the "CRT rubout" feature can be 
selected. This feature applies to a terminal only 
after a SET MCR directive has been issued: 

SET /CRT=TI: 

If the CRT rubout feature was selected, RUBOUT causes 
the last typed character (if any) to be removed from 
the incomplete input line and a 
backspace-space-backspace sequence of characters for 
that terminal are echoed. If the last typed 
character was a tab, enough backspaces are issued to 
move the cursor to the character position before the 
tab was typed. If a long input line was split, or 
"wrapped," by the automatic-carriage-return option, 
and a RUBOUT erases the last character of a previous 
line, the cursor is not moved to the previous line. 
CTRL/R must be used to resynchronize the current 
display with the contents of the incomplete input 
line. 

2.6 ESCAPE SEQUENCES 

Escape sequences are strings of two or more characters beginning with 
an ESC (033) character. In RSX-llM systems, escape sequence support 
described in this section in a SYSGEN option. Some terminals generate 
an escape sequence when a special key is pressed (for example, the FCN 
key on the VT61). On any terminal, an escape sequence may be 

2-28 



FULL-DUPLEX TERMINAL DRIVER 

generated manually by typing ESCape followed by the appropriate 
characters. 

Escape sequences provide a way to pass input to a task without 
interpretation by the operating system. This could be done via a 
number of one-character Read All functions, but escape sequences allow 
them to be read with IO.RLB requests. 

2.6.1 Definition 

The format of an escape sequence as defined in American National 
Standard X 3.41-- 1974 and used in the VTlOO is: 

• ESC • • • F 

Where: 

1. ESC is the introducer control character (33(8)) that is named 
escape. 

2. ··~ are the intermediate bit combinations that may or may 
not be present. I characters are bit combination 40(8) to 
57(8) inclusive in both 7- and 8-bit environments. 

3. F is the final character. ·F characters are bit combinations 
60(8) to 176(8) inclusive in escape sequences in both 7- and 
8-bit environments. 

4. The occurrence of characters in the inclusive ranges 0(8) to 
37(8) is technically an error condition whose recovery is to 
execute immediately the function specified by the character 
and then continue with the escape sequence execution. The 
execeptions are: If the character ESC occurs, the current 
escape sequence is aborted, and a new one commences, 
beginning with the ESC just recieved. If the character CAN 
(30 (8)) or the character SUB (32 (8)) occurs, the current 
escape sequence is aborted, as is the case with any control 
character. 

There are five exceptions to this general 
exceptions are discussed in Section 2.6.5. 

2.6.2 Prerequisites 

definition; these 

Two prerequisites must be satisfied before escape sequences can be 
received by a task. 

First, the task must "ask" for them by issuing an IO.ATT function and 
invoking the subfunction bit TF.ESQ. 

Second, the terminal must be declared capable of generating escape 
sequences. This may be done with an MCR SET command: 

SET /ESCSEQ=TI: 

An alternative way to tell the driver that the terminal can generate 
escape sequences is by issuing the Set Multiple Characteristics 
request. (See Section 2.3.2.12). 

2-29 



FULL-DUPLEX TERMINAL DRIVER 

If either of these prerequisites is not satisfied, the ESC character 
is treated as a line terminator. 

If both prerequisites are satisfied, CTRL/SHIFT/O (037) may be used as 
an Altmode character.l This character does not act as an Altmode from 
a terminal that cannot generate escape sequences. 

2.6.3 Characteristics 

Escape sequences always act as line terminators. That is~ an input 
buffer may contain other characters that are not part of an escape 
sequence, but an escape sequence always comprises the last characters 
in the buffer. 

Escape sequences are not echoed. However, if a non-CRT rubout 
sequence is in progress, it is closed with a backslash when an escape 
sequence is begun. 

Escape sequences are not recognized in unsolicited input streams. 
Neither are they recognized in a Read with Special Terminators 
(subfunction bit TF.RST) nor in a Read All (subfunction bit TF.RAL). 

2.6.4 Escape Sequence Syntax Violations 

A violation of the syntax defined in Section 2.6.l causes the driver 
to abandon the escape sequence and to return an error (IE.IES). 

2.6.4.1 DEL or RUBOUT (177) - The character DEL or RUBOUT is not 
legal within an escape sequence. Typing it at any point within an 
escape sequence causes the entire sequence to be abandoned and deleted 
from the input buffer. Thus, use DEL or RUBOUT to abandon an escape 
sequence, if desired, once you have begun it. 

2.6.4.2 Control Characters (0-037) - The reception of any character 
in the range 0 to 037 (with four exceptions -- see footnote2) is a 
syntax violation that terminates the read with an error (IE.IES). 

1 An Altmode is a line terminator that does not cause the cursor to 
advance to a new line. On terminals that cannot generate escape 
sequences, the ESCape key acts as an Altmode. Characters 175 and 176 
also function as Altmodes if the terminal has not been declared 
lower-case (MCR command SET /LOWER). 

2 Four control characters are allowed: CTRL/Q, CTRL/S, CTRL/X, and 
CTRL/O. These characters are handled normally by the operating system 
even when an escape sequence is in progress. For example, entering: 

ESC CTRL/S A 

gives: 

IOSB ffi 
with the additional effect of turning off the output stream. 

2-30 



FULL-DUPLEX TERMINAL DRIVER 

2.6.4.3 Full Buffer - A syntax error results when an escape sequence 
is terminated by running out of read-buffer space, rather than by 
receipt of a final character. The error IE.PES is returned. For 
example, after a task is~ues an IO.RLB with a buffer length of 2, and 
you type: 

ESC l A 

the buffer contains "ESC l", and the 1/0 status block contains: 

IOSB 

The "A" is treated as unsolicited input. 

2.6.5 Exceptions to Escape-Sequence Syntax 

Five "final characters" that normally terminate an escape sequence are 
treated as special cases by the terminal driver for use with certain 
terminals: 

ESC ? ••• 
ESC 0 ••• 
ESC p ••• 
ESC y • •• 
ESC [ ... 

Refer to documentation supplied with the specific terminal(s) in use 
for correct use of escape sequences. 

2.7· VERTICAL FORMAT CONTROL 

Table 2-11 is a summary of all characters used for vertical format 
control on the terminal. Any one of these characters can be specified 
as the value of the vfc parameter in IO.WLB, IO.WVB, IO.WBT, IO.CCO, 
or IO.RPR functions. 

2.8 AUTOMATIC CARRIAGE RETURN 

Individual terminals can be set for wraparound, as desired, using the 
MCR SET commGI nd: 

>SET /WHAP=TTxx: 

Once wrap around has been selected, the column at which wrap around 
occurs can be selected using the MCR SET command: 

>SET /BUF=TI:n 
> 

The SET /BUF command can also be used without an argument to display 
the current buffer width for a terminal: 

>SET /BU F=TI: 
BUF=TI:00072. 
> 

2-31 



Octal 
Value 

040 

060 

061 

053 

044 

000 

FULL-DUPLEX TERMINAL DRIVER 

Table 2-11 
Vertical Format Control Characters 

Character Meaning 

blank SINGLE SPACE - Output 1 line feed, print the 
contents of the buffer, and output a carriage 
return. Normally, printing immediately follows 
the previously printed line. 

0 DOUBLE SPACE - Output 2 line feeds, print the 
contents of the buffer, and output a carriage 
return. Normally, the buffer contents are 
printed two lines below the previously printed 
line. 

1 

+ 

$ 

null 

PAGE EJECT - If the terminal supports FORM 
FEEDs, output a form feed, print the contents of 
the buffer, and output a carriage return. If 
the terminal does not support FORM FEEDs, the 
driver simulates the FORM FEED character by 
either outputting 4 line feeds to a crt 
terminal, or by outputting enough line feeds to 
advance the paper to the top of the next page on 
a printing terminal. 

OVERPRINT - Print the contents of the buffer and 
output a carriage return, normally overprinting 
the previous line~ 

PROMPTING OUTPUT - Output 1 line feed and 
print the contents of the buffer. This mode of 
output is intended for use with a terminal on 
which a prompting message is output, and input 
is then read on the same line. 

INTERNAL VERTICAL FORMAT - Print the buffer 
contents without addition of vertical format 
control characters. In this mode, more than one 
line of guaranteed contiguous output can be 
printed for each I/O request. 

All other vertical format control characters are interpreted as blanks 
( 04 0) • 

A task can determine the buffer width by issuing a Get LUN Information 
directive ~nd examining word 5 returned in the buffer. 

After the SET has been done, typing beyond the buffer width results in 
a carriage return and line feed being output before the next character 
is echoed. Although only one line only was input, it is displayed on 
two terminal lines. 

It is possible to lose track of where you are in the input buff er if 
wraparound is enabled for your terminal. For example, while deleting 
text on a wrapped line, the cursor will not back up to the previous 
line. In order to resynchronize the cursor with the contents of the 
incomplete input buffer, type CTRL/R (if this SYSGEN option has been 
selected). 

2-32 



FULL-DUPLEX TERMINAL DRIVER 

2.9 FEATURES AVAILABLE BY RSX-llM SYSGEN OPTION 

A number of terminal-driver features are available as RSX-llM SYSGEN 
options. {See the RSX-llM System Generation and Management Guide). 
Features previously discussed that are not repeated in this section 
include: 

• Some device-specific QIO functions (see Section 2.3.2) 

• Special keys: CTRL/R -- Write incomplete input buffer (see 
Section 2.5.1) 

CRT rubout {see Section 2.5.2) 

• Escape sequences {see Section 2.6) 

The only remaining features selected at SYSGEN time are 
terminal-independent cursor control {described in Section 2.15), 
private buffer ,pool size and hard receive error detection, described 
in the following sections. 

2.9.1 Private Buffer Pool Size 

The private buffer pool is contained within the full-duplex terminal 
driver. The size of the whole driver is established during SYSGEN by 
the VMR command to load the driver as follows: 

LOA 'l'T: /SI ZE==nnn 

The private buffer pool occupies all of the space from the top of the 
actual driver code up to nnn. The argument nnn is expressed in octal 
words, and the maximum value is 20000, corresponding to SK words. 
Depending on driver options selected, the code requires from 2.5 to 
3.5k words. Thus, the maximum buffer pool size is from 4.5k to 5.5k 
words. 

Alternatively, on a processor that has separate I- and D-space mapping 
registers, it is possible to allocate the private pool together with 
all driver data in a separate common block called TTCOM. This block 
can range up to 8k words, allowing the private buffer pool to be 
almost as large. When this is desired, answer Y to the following two 
SYSGEN questions: 

>* DO YOU WANT KERNEL DATA SPACE SUPPORT? [Y/N] : 
>* DO YOU WANT A SEPARATE TERMINAL BUFFER POOL? [Y/N]: 

2.9.2 Hard Receive Error Detection 

All terminal interfaces supported by the full-duplex terminal driver 
are capable of detecting and flagging hard receive errors. Hard 
receive errors include framing errors, enable character parity error, 
and data overrun error. 

NOTE 

The driver does not enable parity 
generation and checking on DHll and DZll 
interfaces. 

2-33 



FULL-DUPLEX TERMINAL DRIVER 

If the hard receive error detection SYSGEN option {T$$RED) 
selected, the driver handles hard receive errors as follows: 

is 

1. If a read request is being processed and the character can be 
processed immediately, the read request is terminated with 
one of the following error codes returned in the status 
block: 

Error 
Code 

IE .BCC 
IE.DAO 
IE.VER 

Hard Receive Error 

framing error 
data overrun 
character parity error 

2. If a command line is being input for a command line 
interpreter task and the character can be processed 
immediately, a CTRL/U is simulated, AU is echDed, and the 
input is terminated. No command line is sent to the task. 

3. If the character would normally cause an AST if no error was 
detected, the character is ignored and no AST occurs. 

4. If the character cannot be processed immediately, it is 
stored in the typeahead buffer. A flag is set for the line, 
indicating that the last character in the typeahead buffer 
has no error, disabling further storage in the typeahead 
buffer. When the character is retrieved from the buffer, the 
appropriate action previously described is taken and the flag 
is cleared. Any characters received in the meantime are 
discarded with a bell echoed for each character. 

If the T$$RED option is not selected, hard receive errors are ignored. 

2 .10 TASK BUFFERING OF RECEIVED CHARA.CTERS 

When task-buffering received characters, characters read from the 
terminal are sent directly to the task's buffer. Thus, there is no 
need to allocate a terminal driver buffer. 

Task buffering of received characters does not necessarily reduce 
system overhead. For example, in a mapped system each character must 
be mapped to the task's buffer. However, if terminal driver buffering 
was used, the mapping is only done once for all characters to be 
transferred. 

Task buffering is overridden during checkpointing. If a task is 
checkpointable, a driver buffer is allocated and the task is made 
eligible for checkpointing by any task, regardless of priority, while 
the read operation is in progress. {Checkpointing only occurs in this 
situation when there is another task that can be made active.) Since 
checkpointability is controlled by the task, the user retains control 
over this operation. 

2-34 

~. 

• 



FULL-DUPLEX TERMINAL DRIVER 

2.11 TYPEAHEAD BUFFERING 

Characters received by the terminal driver are either processed 
immediately or stored in the typeahead buffer. The typeahead buffer 
allows characters to be temporarily stored and retrieved FIFO. The 
typeahead buffer is used as follows: 

1. Store in buffer: 

2. 

3. 

An input character is stored in the typeahead buffer if one 
or more of the following conditions are true: 

• The driver is not ready to accept the character (fork 
process pending or in progress) 

• ~rhere is at least one character presently in the typeahead 
buffer 

• ~rhe character input requires echo and the output line to 
the terminal is presently busy outputting a character 

• No read request is in progress, no unsolicited input AST 
is specified, and the terminal is either attached or 
slaved. 

NOTE 

Depending on the terminal mode and the presence of 
a read function, read subf unctions and an 
unsolicited input AST, the CTRL-C, CTRL-0, CTRL-Q, 
CTRL-S, and CTRL-X characters may be processed 
immediately and not stored in the typeahead 
buffer. 

A character is not echoed when it is stored in the buffer. 
Echoing a character is deferred until it is retrieved from 
the buffer since the read mode (for example, 
read-without-echo) is not known by the driver until then. 

Retrieve from buffer: 

When the driver becomes ready to process input, or when a 
task issues a read request, an attempt is made to retrieve a 
character from the buffer. If this attempt is successful, 
the character is processed and echoed, if required. The 
driver then loops, retrieving and processing characters until 
either the buffer is empty, the driver becomes unable to 
process another character, or a read request is finished with 
the terminal attached or slaved. 

Flush the buffer: 

The buffer is flushed (cleared) when: 

1. CTRL--C is received 

2. CTRL--X is received 

3. the terminal becomes detached 

4. the terminal becomes non-slaved 

Exceptions: CTRL-C and CTRL-X do not flush the buffer if 
read-pass-all or read-with-special-terminators is in effect. 

2-3.5 



FULL-DUPLEX TERMINAL DRIVER 

If the buffer becomes full, each character that cannot be entered 
causes a BELL chBracter to be echoed to the terminal. 

If a character is input and echo is required, but the transmitter 
section is busy with an output request, the input character is held in 
the type-ahead buffer, until output (transmitter) completion occurs. 

2.12 FULL-DUPLEX OPERATION 

When a terminal line is in the full-duplex mode, the full-duplex 
driver attempts to simultaneously service one read request and one 
write request. The Attach, Detach and Set Multiple Characteristics 
functions are only performed with the line in an idle state (not 
executing a read or a write request). 

2.13 PRIVATE BUFFER POOL 

The driver has a private buffer pool for intermediate input and output 
buffers, typeahead buffers and UCB extensions. Whenever the driver 
needs dynamic memory, it first attempts to allocate a buffer in the 
private pool. If this fails, a second attempt is made in the system 
pool. If the allocation in the system pool fails during command line 
input, a CTRL/U is simulated and echoed. 

Command line interpreter task buffers are handled in a special way. 
When unsolicited input begins, a buffer is allocated, as previously 
described, for the command line (a string of characters, followed by 
an appropriate terminator character). When the input is completed, 
the contents of the buffer is sent directly to the command line 
interpreter task if the buffer was allocated ip the system pool. 
~owever, if the buffer was allocated in the driver's private pool, it 
must first be moved into a buffer in the system pool to provide access 
for the task. 

2.14 INTERMEDIATE INPUT AND OUTPUT BUFFERING 

Input buffering for checkpointable tasks with checkpointing enabled is 
provided in the private pool. As each buffer becomes full, a new 
buffer is automatically allocated and linked to the previous buffer. 
The Executive then transfers characters from these buffers to the task 
buffer and the terminal driver deallocates the buffers once the 
transfer has been completed. 

If the driver fails to allocate the first input buffer, the characters 
are transferred directly into the task buffer. If the first buffer is 
successfully allocated, but a subsequent buffer allocation fails, the 
input request terminates with the error code IE.NOD. In this case, 
the I/O status block contains the number of characters actually 
transferred to the task buffer. The task may then update the buffer 
pointer and byte count and reissue a 1:ead request to receive the rest 
of the data. The typeahead buffer ensures that no input data is lost. 

All terminal output is buffered. As many buffers as required are 
allocated by the terminal driver and linked to a list. If not enough 
buffers can be obtained for all output data, the transfer is done as a 
number of partial transfers, using available buffers for each partial 
transfer. This is transparent to the requesting task. If no buffers 
can be allocated, the request terminates with the error code IE.NOD. 

2-36 



FULL-DUPLEX TERMINAL DRIVER 

The unconditional output buffering serves three purposes. 

1. It reduces time spent at system state 

2. It enables long DMA transfers for DHll controllers 

3. It enables task checkpointing during the transfer to the 
terminal (if all output fits in one buffer list) 

2.15 TERMINAL-INDEPENDENT CURSOR CONTROL 

Terminal-independent cursor control capability is provided at SYSGEN 
time if the assembly parameter T$$CUP is defined. The terminal driver 
responds to task I/O requests for cursor positioning without the task 
requiring information about the type of terminal in use. I/O 
functions associated with cursor positioning are described as follows. 

Cursor position is specified in the vfc parameter of the IO.WLB or 
IO.RPR function. The parameter is interpreted simply as a vfc 
parameter if the high byte of the parameter is zero. However, if the 
parameter is used to define cursor position, the high byte must be 
nonzero, the low byte is interpreted as column number (x-coordinate) 
and the high byte is interpreted as line number (y-coordinate). Home 
position, the upper left corner of the display, is defined as 1,1. 
Depending upon terminal type, the driver outputs appropriate cursor 
positioning commands appropriate for the terminal in use that will 
move the cursor to the specified position. If the most significant 
bit of the line number is set, the driver clears the display before 
positioning the cursor. 

When defining cursor position in an IO.WLB function, the TF.RCU 
subfunction can be used to save the current cursor position. When 
included in this manner, IF.RCU causes the driver to first save the 
current cursor position, then position the cursor and output the 
specified buffer, and, finally, restore the cursor to the original 
(saved) position once the output transfer has been completed. 

2 .16 TERMINAL IN'l'ERFACES 

This section summarizes the characteristics of the four types of 
standard communication-line interfaces supported by RSX-llM. Refer to 
the Terminals and Communications Handbook for additional details. 

2.16.1 DHll Asynchronous Serial Line Multiplexer 

The DHll multiplexer interfaces up to 16 asynchronous serial 
communications lines for terminal use. The DHll supports programmable 
baud rates. Input and output baud rates may differ; the input rate 
may be set to 0 baud, thus effectively turning off the terminal. The 
DMll-BB option may be included to provide modem control for dial-in 
lines. These lines must be interfaced by means of a full duplex modem 
(for example, in the United States, a Bell 103A or equivalent modem). 

2-37 



FULL-DUPLEX TERMINAL DRIVER 

2.16.2 DJll Asynchronous Serial Line Multiplexer 

The DJll multiplexer interfaces as many as 16 asynchronous serial 
lines to the PDP-11 for local terminal communications. The DJll does 
not provide a dial-in capability. Baud rates are jumper-selectable. 

2.16.3 DLll Asynchronous Serial Line Interface 

The DLll supports a single asynchronous serial line and handles 
communication between the PDP-11 and a terminal. A number of standard 
baud rates are available to DLll users. 

2.16.4 DZll Asynchronous Serial Line Multiplexer 

The DZll multiplexer interfaces up to eight asynchronous serial 
communication lines for use with terminals. It supports programmable 
baud rates; however, transmit and receive baud rates must be the 
same. The DZll can control a full duplex modem in auto-answer mode. 

2.17 PROGRAMMING HINTS 

2.17.1 ESCape Code Conversion 

If escape sequences are recognized, the character code 037 will 
terminate input and a status code IS.ESC is returned. In addition, 
character codes will terminate input and return the LS.ESC status if 
upper to lower-case conversion is not enabled. 

2.17.2 RT02-C Control Function 

Because the screen of an RT02C Badge Reader and Data Entry Terminal 
holds only one line of information, special care must be taken when 
sending·a control character (for example, vertical tab) to the RT02-C. 
Use the IO.WAL (Write All) function for this purpose. 

It is recommended that read without echoing be used when reading a 
badge with the RT02-C. Use IO.RAL or IO.RNE functions followed by the 
IO.WAL function to echo the information for display. 

2.17.3 Use of IO.WVB Instead of IO.WLB 

The use IO.WVB instead of IO.WLB is recommended when writing to a 
terminal. If the write actually goes to a terminal, the Executive 
converts the IO.WVB to an IO.WLB request. However, if the LUN has 
been redirected to an inappropriate device (for example, a disk), the 
use of an IO.WVB function will be rejected because a file is not open 
on the LUN. This prevents privileged tasks from overwriting block 
zero of the disk. 

Note that any subfunction bits specified in the IO.WVB request (for 
example, TF.CCO, TF.WAL, or TF.WBT) are stripped when the IO.WVB is 
converted to an IO.WLB. 

2-38 



FULL-DUP~EX TERMINAL DRIVER 

2.17.4 Remote DLll-E, DHll, and DZll Lines 

All remote DHll lines in a system are answered at the same baud rate. 
All remote DZll lines are also answered at the same rate, which may 
differ from the DHll rate. These rates are specified at SYSGEN time. 

Before a remote line is answered, the driver clears certain terminal 
characteristics (see Table 2-5) that may have been set by an MCR SET 
command, or by an SF.SMC function. The characteristics cleared are: 
TC.SCP, TC.gSQ, TC.HLD, TC.SMR, TC.NEC, TC.FOX, TC.HFF, TC.HHT, 
TC.VFL, TC.HFL, and TC.TTP. (Clearing TC.TTP means that a terminal 
type of "unknown" will be returned in an SF.GMC request.) Buffer size 
is set to 72. 

A DZll remote line must be declared to be remote before the terminal 
driver will correctly handle the modem. 

2.17.5 Side Effects of Setting Characteristics 

Certain terminal characteristics that a task may set or that an 
operator may set using MCR commands may have undesirable side effects. 
In particular, these characteristics include the hold-screen mode and 
the lower/upper-case conversion . disable mode. Their effects are 
described as follows. 

TC.BLD -- Unexpected behavior can result from a terminal in the 
hold-screen mode if its reception rate is much greater than its 
transmission rateo (The DHll supports split baud rates.) When in the 
hold-screen mode, the terminal automatically sends a CTRL/S during 
reception of an output stream when the screen is nearly full. Output 
is resumed -- another screen-full -- when you type SHIFT/SCROLL (the 
terminal generates CTRL/Q). Thus, no output is lost as a result of 
scrolling off the screen before you can read it. However, if the 
terminal's transmission rate is far below its reception rate, some 
unread output may scroll out of sight before the CTRL/S can be 
transmitted. 

Note that some terminals and interfaces are hardware-buffered. This 
can cause obscure timing problems for tasks that attempt to invoke the 
hold-screen mode. 

TC.SMR -- If this characteristic is asserted (lower/upper-case 
conversion is disabled), octal characters 175 and 176 are interpreted 
as "right brace ( } ) " and "tilde (-.)" respectively. If TC.SMR is not 
asserted, these characters are interpreted as an Altmode (that is, 
they function as line terminators that do not advance the cursor to a 
new line). 

2.17.6 Modem Support 

The terminal driver provides terminal support for modem control. A 
communications line can be set to remote or local operation via the 
TC.DLU caracteristic bit. MCR supports this bit with the SET /REMOTE 
and SET /LOCAL commands. 

If a communication link is established when a line is set to local, 
the line is properly hung up. If 6arrier is lost, the driver waits 2 
seconds for carrier to return, otherwise, the line is hung up. If a 
ring interrupt occurs during this time, the line is immediately hung 
up. 

2-39 





CHAPTER 3 

HALF-DUPLEX TERMINAL DRIVER 

3.1 INTRODUCTION 

The half-duplex terminal driver provides support for a variety of 
terminal devices under RSX-llM. (This terminal driver is not 
supported on RSX-llM-PLUS systems.) The half-duplex terminal driver is 
generally used in RSX-llM systems where small driver size is 
essential, and the additional functional capability provided by the 
larger full-duplex terminal driver (described in Chapter 2) is not 
required. Table 3-1 summarizes the terminals supported, and 
subsequent sections describe these devices in greater detail. 

Model Columns 

ASH-33/35 72 

KSR-33/ 35 72 

LA30-P 80 

LA30-S 80 

LA36 80-132 

LA120 132 

LA180S 132 

RT02 64 

R'I'02-C 64 

V'I'O 58 7.2 

Table 3-1 
Supported Terminal Devices 

Lines/ Character Baud 
screenl set range 

64 110 

64 110 

64 300 

64 110-300 

64-96 110-300 

96 50-9600 

96 300-9600 

1 64 110-1200 

1 64 110-1200 

20 64 110-2400 

Upper & lower case? 
Send Receive 

yes yes2 

yes yes 

yes 

yes 

1 Applies only to video terminals. 

2 Only for 96-character terminal. The terminal driver supports the 
terminal interfaces summarized in Table 3-2. These interfaces are 
described in greater detail in Section 3.9. Programming is identical 
for all. 

(continued on next page) 

3-1 



Model Columns 

VT50 80 

VT50H 80 

VT52 80 

VT55 80 

VT61 80 

VTlOO 80-132 

HALF-DUPLEX TERMINAL DRIVER 

Table 3-1 (Cont.) 
Supported Terminal Devices 

Lines/ Character Baud 
screenl set range 

12 64 110-9600 

12 64 110-9600 

24 96 110-9600 

24 96 110-9600 

24 96 110-9600 

24 96 50-9600 

1 Applies only to video terminals. 

Table 3-2 
Standard Terminal Interfaces 

Model Type 

DHll 16-line multiplexer l 

DHl 1-DMll-BB 16-line multiplexer with 

DJll 16-line multiplexer 

DLll-A/B/C/D/W Single-line interfaces 

DZll 8-line multiplexer with 

1 Direct memory access (OMA) not supported. 

Upper & lower case? 

Send Receive 

yes yes 

yes yes 

yes yes 

yes yes 

modem control 2 

" 

modem control. 
2 

2 Full-duplex control only. For example, in the USA, a Bell 103A-type 
modem. 

Terminal input lines can have a maximum length of 255 bytes (the 
maximum is set in the system generation, or SYSGEN, dialog). The 
extra characters of an input line that exceeds the maximum length 
generally become an unsolicited input line. 

3.1.1 ASR-33/35 Teletypes 3 

The ASR-33 and ASR-35 Teletypes are asynchronous, hard-copy terminals. 
No paper-tape reader or punch capability is supported. 

3.1.2 KSR-33/35 Teletypes 3 

The KSR-33 and KSR-35 Teletypes are asynchronous, hard-copy terminals. 

3 Teletype is a registered trademark of the Teletype Corporation. 

3-2 



HALF-DUPLEX TERMINAL DRIVER 

3.1.3 LA30 DECwriters 

The LA30 DECwriter is an asynchronous,· hard-copy terminal that is 
capable of producing an original and one copy. The LA30-P is a 
parallel model and the LA30-S is a serial model. 

3.1.4 LA36 DECwriter 

The LA36 DECwriter is an asynchronous terminal that produces hard copy 
and operates in serial mode. It has an impact printer capable of 
generating multipart and special preprinted forms. The LA36 can 
receive and transmit both upper-case and lower-case characters. 

3.1.5 LA120 DECwriter 

The LA120 DECwriter is a hard-copy upper- and lower-case terminal, 
capable of printing multipart forms at speeds up to 180 
characters-per-second. Serial communications speed is selected from 
14 baud rates ranging from 50 to 9600 bps. Hardware features allow 
bidirectional printing for maximum printing speed, and user-selected 
features, including font size, line spacing, tabs, margins, and forms 
control. These functions can also be set-up by ~ser tasks that issue 
appropriate ANSI-standard escape sequences. 

3.1~6 LA180S DECprinter 

The LA180S DECprinter is a serial version of the LA180. It is a 
print-only device (it has no keyboard) that can generate multipart 
forms. The LA180S can print upper-case and lower-case letters. 

3 .1,, 7 RT0:2 l~lphanumeric Display Terminal and RT02-C Badge Reader/ 
Alphanumeric Display Terminal 

The RT02 is a compact, alphanumeric display terminal designed for 
applications in which source data is primarily numeric. A shift key 
permits the entry of 30 discrete characters, including upper-case 
alphabetic characters. The RT02 can, however, receive and display 
64 characters. 

The RT02-C model also contains a badge reader. This option provides a 
reliable method of identifying and controlling access to the PDP-11 or 
to a secure facility. Furthermore, data in a format corresponding to 
that of a badge (22-column fixed data) can be entered quickly. 

3.1.8 VT05B Alphanumeric Display Terminal 

The VT05B is an alphanumeric display terminal that consists of a CRT 
display and a self-contained keyboard. From a programming point of 
view, it is equivalent to other terminals, except that the VT05B 
offers direct cursor addressing. 

3-3 



HALF-DUPLEX TER~ITNAL DRIVER 

3.1.9 VTSO Alphanumeric Display Terminal 

The VTSO is an alphanumeric display terminal that consists of a CRT 
display and a keyboard. It is similar to the VTOSB in operation, but 
does not offer direct cursor addressing. 

3.1.10 VTSOH Alphanumeric Display Terminal 

The VTSOH is an alphanumeric display terminal with CRT display, 
keyboard, and numeric pad. It offers direct cursor addressing. (The 
VT50H's direct cursor addressing is not compatible with that of the 
VTOSB.) 

3~1.11 VT52 Alphanumeric Display Terminal 

The VT52 is an upper-and-lower-case alphanumeric terminal with numeric 
pad and direct cursor addressing. (The VT52's direct cursor 
addressing is compatible with that of the VTSOH, not with that of the 
VTOSB.) The VT52 can be configured with a built-in thermal printer. 

3.1.12 VTSS Graphics Display Terminal 

The VT55 is similar to the VT52 in its operation as an alphanumeric 
terminal. The VT55 offers graphics display features that are not 
supported by RSX-llM, although the system allows a knowledgeable task 
to access the explicitly special features of the VT55. 

3.1.13 VT61 Alphanumeric Display Terminal 

The VT61 is an "intelligent" upper-and-lower-case alphanumeric 
terminal with an integral microprocessor. It offers two 128-member 
character sets and numerous built-in functions for editing and forms 
preparation as well as a block-transfer mode. (None of these special 
features is supported by RSX-llM.) 

3.1.14 VTlOO DECscope 

The VTlOO DECscope is an upper- and lower-case alphanumeric 
keyboard/video display terminal. It is capable of displaying 24 lines 
of 80 characters (each line). Serial communications speed is selected 
from baud rates ranging from 50 to 9600 bps. Hardware features allow 
user selection of display characteristics and functions including 
smooth scroll, reverse video, etc. These functions can also be set-up 
by user tasks that issue appropriate ANSI-standard escape sequences. 

3.2 GET LUN INFORMATION MACRO 

Word 2 of the buffer filled by the Get LUN Information system 
directive (the first characteristics word) contains the following 
information for terminals. A setting of 1 indicates that the 
described characteristic is true for terminals. 

3-4 



Bit 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

J. 

l 

1 

0 

0 

() 

() 

() 

0 

0 

0 

0 

0 

0 

0 

0 

HALF-DUPLEX TERMINAL DRIVER 

Meaning 

Record-oriented device 

Carriage-control device 

Terminal device 

File structured device 

Single-directory device 

Sequential device 

Reserved 

User-mode diagnostics supported 

Massbus device 

Unit software write-locked 

Input spooled device 

Output spooled device 

Pseudo device 

Device mountable as a communications 
channel 

Device mountable as a FILES-11 volume 

Device mountable 

Words 3 and 4 are undefined. Word 5 indicates the default buffer size 
for the device: for terminals the width of the terminal carriage or 
display screen. 

3.3 OIO MACno 

Table 3-3 lists the standard and device-specific functions of the QIO 
macro that are valid for terminals. All device-specific functions are 
options that may be selected at system generation. 

Two device-specific functions, SF.SMC and SF.GMC, have nonstandard 
function names. These names are for compatibility with IAS. 

3-5 



HALF-DUPLEX TERMINAL DRIVER 

Table 3-·3 
Standard and Device-Specific QIO Functions for Terminals 

Format 

STANDARD FUNCTIONS: 

Q IO$C IO .ATT, ••• 

QIO$C IO.DET, ••• 

QIO$C IO.KIL, ••• 

QIO$C IO.RLB, ••• ,<stadd,~ize> 

QIO$C IO.RVB, ••• ,<stadd,size> 

Function 

Attach device. 

Detach device. 

Cancel I/O requests. 

Read logical block 
(read typed input into buffer). 

Read virtual block 
(read typed input into buffer). 

QIO$C IO.WLB, ••• ,<stadd,size,vfc> Write logical block 
(print buffer contents). 

QIO$C IO.WVB, ••• ,<stadd,size,vfc> Write virtual block 
(print buffer contents). 

DEVICE-SPECIFIC FUNCTIONS 
(ALL SYSGEN OPTIONS): 

QIO$C IO.ATA, ••• ,<ast> Attach device, specify unsolicited
input-character AST. 

QIO$C IO.CCO, ••• ,<stadd,size,vfc> Cancel CTRL/O (if in effect), then 
write logical block. 

QIO$C SF.GMC, ••• ,<stadd,size> 

QIO$C IO.GTS, ••• ,<stadd,size> 

QIO$C IO.RAL, ••• ,<stadd,size> 

QIO$C IO.RNE, ••• ,<stadd,size> 

QIO$C IO.RPR, ••• ,<stadd,size, 
[tmo],pradd,prsize,vfc> 

Get multiple characteristics. 

Get terminal support. 

Read logical block, pass all bits. 

Read logical block, do not echo. 

Read logical block after prompt. 

QIO$C IO.RST, ••• ,<stadd,size> Read logical block ended by special 
terminators. 

QIO$C SF.SMC, ••• ,<stadd,size> Set multiple characteristics. 

QIO$C IO.WAL, ••• ,<stadd,size> Write logical block, pass all bits. 

QIO$C IO.WBT, ••• ,<stadd,size,vfc> Write logical block, break through 
most I/O conditions at terminal. 

where: ast is the entry point for an unsolicited-input-character 
AST. 

pradd is the starting address of the byte buffer where the 
prompt is stored. The buffer must be within the task's 
address space. 

3-6 

~: 



"'-"' 

HALF-DUPLEX TERMINAL DRIVER 

prsize is the size of the pradd prompt buffer in bytes. If 

size 

st add 

tmo 

vf c 

the system supports variable length reads, the buffer 
size must be greater than zero and less than or equal 
to 255. If the system does not support variable length 
reads, the specified size must be greater than zero and 
less than or equal to 80. 

is the size of the stadd data buffer in bytes (must be 
greater than zero). If the function is a read and the 
system supports variable length reads, size must be 
less than or equal to 255. Otherwise, size must be 
less than or equal to 80. The buffer must be within 
the task's address space. For SF.GMC, IO.GTS, and 
SF.SMC, size must be an even number less than 4065 
(decimal). If the function is a write, size can be up 
to 32K bytes. 

is the 
address 
SF. SMC; 

starting address of the data buffer. The 
must be word-aligned for SF.GMC, IO.GTS, and 
otherwise stadd may be on a byte boundary. 

is an optional timeout count, included for !AS 
compatibility. If supplied, it is ignored. 

is a character for vertical format control from Table 
3-11 (see Section 3. 7) • 

3.3.1 Subfunction Bits 

Most of the device-specific functions supported by the terminal driver 
are implemented by way of "subfunction bits." That is, these functions 
can be invoked by ORing a named bit with some other function. Table 
3-4 shows the relationship of the 10 subfunction bits to the standard 
and device-specific functions. 

The 10 subfunction bits, and their octal values, are: 

TF. AS'I' 
TF. BIN 
TF.CCO 
TF.ESQ 
TF.RAL 
TF. RNE; 
TF .RS'l' 
TF.WAL 
TF. WB'l' 
TF.XOF 

unsolicited-input-character AST 
binary prompt 
cancel CTRL/O 
recognize escape sequences 
read a 11 bi ts 
read with no echo 
read with special terminators 
write all bits 
break-through write 
send XOFF 

10 
2 

40 
20 
10 
20 

1 
10 

100 
100 

The subfunction bits are defined in the system module TTSYM (discussed 
further in Section 3.3.2.5). The octal values of these entities are 
subject to change; therefore, we recommend that you always use the 
symbolic names. As Table 3-4 shows, 7 of the 10 subfunction bits can 
be ORed with standard QIO functions to invoke device-specific 
functions. The remaining three subfunction bits (TF.BIN, TF.ESQ, and 
TF.XOF) can be ORed with Attach and Read After Prompt QIO's to provide 
added features, as described in Section 3.3.2. 

3-7 



HALF-DUPLEX TERMINAL DRIVER 

Of the 10 subfunction bits, 3 can be used with Read QIO functions, 3 
with Write functions, 2 with Attach functions, and 5 with Read After 
Prompt. The breakdown is: 

Read 
Write 
Attach 

TF.RAL, TF.RNE, TF.RST 
TF.CCO, TF.WAL, TF.WBT 
TF.AST, TF'.ESQ 

Read After Prompt TF.BIN, TF.XOF, TF.RAL, TF.RNE, TF.RST 

If a task invokes a subfunction bit that is not supported on the 
system, the subfunction bit is ignored, not rejected. For example, if 
Read with Special Terminators is not selected, either IO.RST or 
IO.RLB!TF.RST is interpreted as IO.RLB. 

The following example shows a QIO request 
subfunction bit: a nonechoed read, which 
special terminator, after a prompt. 

using more than one 
may be concluded by a 

QIO$C IO.RPR!TF.RNE!TF.RST, ••• ,<stadd,size,,pradd,prsize,vfc> 

Function Equivalent with 
subfunction bits TF.AST 

STANDARD FUNCTIONS: 

IO.ATT x 

IO.DET 

IO.KIL 

IO .RLB 

IO.RVB 

IO.WLB 

IO.WVB 

DEVICE-SPECIFIC FUNCTIONS: 

IO.ATA IO.ATT!TF.AST 

IO.cco IO.WLB!TF.CCO 

SF.GMC 

IO.GTS 

IO.RAL IO.RLB!TF.RAL 

IO.RNE IO.RLB!TF.RNE 

IO. RPR 

IO.RST IO.RLS!TF.RST 

SF.SMC 

IO.WAL IO.WLB!TF.WAL 

IO.WBT IO. WLB ! TF. WBT 

Table 3·-4 
Subfunction Bits 

Allowed Subfunction 

TF. BIN TF. CCO TF.ESQ TF.RAL 

x 

1 

2 

x 
2 

x 

1 

x 1 

1 

x 

x 

Bits 

TF.RNE TF.RST TF.WAL TF.WBT 

x 1 

2 2 

x x 
2 2 

x x 

x 1 

1 

x 1 

x 

x 

x 

1 Exercise great care when using Read All and Read with Special Terminators together. Obscure 
can result. 

2 These subfunction bits are allowed but are not effecti.ve. They are stripped off when the 
write virtual is converted to a read or write logical. 

3.3.2 Details on Device-Specific QIO Functions 

TF.XOF 

x 

problems 

read or 

All the device-specific functions described in this section are SYSGEN 
options. All except SF.GMC., IO.RPR, SF.SMC, and IO.GTS can be issued 
by ORing a particular subfunction bit with another QIO function. 
These subfunction bits are specified in the text; subfunction bits 
are described in general in Section 3.3.1. 

3-8 



'-"' 

"-"' 

HALF-DUPLEX TERMINAL DRIVER 

In addition to the 11 device-specific QIO functions, this section also 
gives details on the features provided by the 3 subfunction bits 
TF.ESQ, TF.BIN, and TF.XOF. 

3.3.2.1 IO.ATA - IO.ATA is a variation of the Attach directive. It 
specifies an asynchronous system trap (AST) to process an unsolicited 
input character. When called as follows: 

QIO$C 

this function attaches the terminal and identifies "ast" as the entry 
point for an unsolicited-input-character AST. Control passes to this 
address whenever any unsolicited character (other than CTRL/Q, CTRL/S, 
or CTRL/O) is input. Note that little checking is done on the 
specific AST address. A bad address is frequently detected only when 
the Executive tries to trans~er control to it and the task crashes. 

In particular, CTRL/C is trapped by the task and does not reach MCR. 
Thus, any task that uses IO.ATA should recognize some input sequence 
as a request to terminate, because MCR can not be invoked to abort the 
task in case of difficulty. 

Note that this mechanism is intended to get a single character into 
the system not a series of characters. Since the driver must 
become a fork process in order to declare an AST, a second character 
can arrive before the driver can queue an AST for the first character. 
The buffer for unsolicited input characters, however, is one byte 
long. Therefore, the terminal driver ignores the second character. 
This circumstance can occur because of fast input on a busy system or 
because output is in progress when the characters are received. The 
implications of this ace that neither type-ahead nor full-duplex 
operations can be simulated perfectly using unsolicited character 
ASTs. 

At entry, the unsolicited character is the low-order byte of the top 
word on the stack. Before exiting the AST, be sure to pop that word 
off the stack; otherwise the task will crash. In all other respects 
the AST environment is standard: 

SP+lO Event flag mask word 

SP+06 PS of task prior to AST 

SP+04 PC of task prior to AST 

SP+02 Task's directive status word 

SP+OO Unsolicited character in low byte 

See the RSX-llM/M-PLUS Executive Reference Manual for further details 
on ASTs. See Section 3.10.10 for hints on ASTs in a multiterminal 
environment. 

IO.ATA is equivalent to 10.ATT ORed with the subfunction bit TF.AST. 

3.3.2.2 IO.ATTITF.ESQ - The task issuing this directive attaches a 
terminal and notifies the driver that it recognizes escape sequences 
input from that terminal. Escape sequences are recognized only for 
solicited input. See Section 3.6 for a discussion of escape 
sequences. 

3-9 



HALF-DUPLEX TERMINAL DRIVER 

If the terminal has not been declared capable of generating escape 
sequences, IO.ATT!TF.ESQ has no effect beyond attaching the terminal. 
No escape sequences are returned to the task, because any ESC sent by 
the terminal acts as a line terminator. The SF.SMC QIO or the MCR SET 
/ESCSEQ command are used to declare the terminal capable of generating 
escape sequences (see Table 3-5 and Section 3.3.2.12). 

3.3.2.3 IO.CCO - This write function directs the driver to write to 
the terminal regardless of a CTRL/O condition that may be in effect. 
If CTRL/O is in effect, it is cancelled before the write is done. 

IO.Ceo is equivalent to IO.WLB!TF.CCO. 

3.3.2.4 SF.GMC - The Get Multiple Characteristics function returns 
information on terminal characteristics. Get Multiple Charac~erist~cs 
is used in the following way: 

QIO$C SF.GMC, ••• ,<stadd,size> .~. 

where stadd is the starting address of a data buffer of length "size" 
bytes. Each word in the buffer has the form: 

.BYTE characteristic-name 
• BYTE 0 

where characteristic-name is one of the eight bit names given in Table 
3-5. The QIO function returns a value in the high-order byte of each 
byte-pair: 1 if the characteristic is true for the terminal, 0 if not 
true. 

For the TC.TTP characteristic (terminal type), one of three values is 
returned in the high-order byte, as shown in Table 3-6. 

Table 3-5 
Terminal Characteristics for SF.GMC and SF.SMC Requests 

Bit 
Name 

Octal 
Value 

TC.ESQ 35 
TC.HLDl 44 
TC.NEC 47 
TC.PRI2 51 
TC.SCP 12 
TC.SLV 50 
TC.SMR 25 
TC.TTP 10 

TC.HFF 17 
TC.RSP3 3 
TC.XSP3 4 

Meaning 
(If Asserted) : Terminal ••• 

••• can generate escape sequences 
••• is in hold-screen mode 
••• is in no-echo mode 
••• is privileged 
••• is a scope (CRT) 
••• is slaved 
Upper-case conversion disabled 
Terminal type 

••• handle hardware form feeds 
Receiver speed 
Transmitter speed 

1 Effective for VT5x, VT61 only. 

Corresponding 
MCR Command 

SET /ESCSEQ=TI: 
SET /HOLD=TI: 
SET /NOECHO=TI: 
SET /PRIV=TTnn: 
SET /CRT=TI: 
SET /SLAVE=TTnn: 
SET /LOWER=TI: 
SET /LA30S=TI: 
SET /VT05B=TI: 
SET /HHF=TI: 
SET /SPEED=TI:rcv:xmit 
(as above) 

2 Cannot be changed by a task; must use MCR command. 

3 Recognized only by the SF.SMC function. 

3-10 



'-"" 

r-· 

HALF-DUPLEX TERMINAL DRIVER 

Table 3-6 
Bit TC.TTP (Terminal Type): Values Set by SF.SMC 

and Returned by SF.GMC 

Octal Value Symbolic Meaning 
t-· 

0 T.UNKO Terminal type is unknown 
4 T.L30S Terminal is an LA30 
7 T.VT05 Terminal is a VT05B 

3.3.2.5 IO.GTS - The Get Terminal Support QIO returns a four-word 
buffer of information specifying which SYSGEN-option features are part 
of the terminal driver. Of these four words, two are currently 
defined. Table 3-7 gives details on these two words. The ~O.GTS QIO 
is itself a SYSGEN option. If IO.GTS is issued on a m1n1mum system 
(one with no terminal-driver SYSGEN options), IE.IFC is returned in 
the I/O status block. 

Table 3-7 
Information Returned by Get Terminal Support (IO.GTS) QIO 

Bit Ee Mnemonic 

Word 0 of Bu :Efer: --

0 1 Fl.ACR 
1 2 Fl.BTW 
2 4 Flc.BUF 
3 10 Fl.UIA 
4 20 Fl.CCC 
5 40 Fl.ESQ 
6 100 Fl .. HLD 
7 200 Fl .. LWC 
8 400 Fl.RNE 
9 1000 Fl .. RPR 

10 2000 Fl.RST 
11 4000 Fl.RUB 
12 10000 F'l .SYN 
13 20000 Fl eTRW 
14 40000 Fl.UTB 

15 100000 Fl~VBF 

Word 1 .of Buffer: 

Meaning When Set to 1 

Automatic CR/LF on long lines 
Break-through write 
Checkpointing during terminal input 
Unsolicited-input-character AST 
Cancel CTRL/O before writing 
Recognize escape sequences in solicited input 
Hold-screen mode 
Lower-to-upper-case conversion 
Read with no echo 
Read after prompting 
Read with special terminators 
CRT rubout 
CTRL/R terminal synchronization 
Read all and write all 
Input characters buffered in task's address 
space 

variable-length terminal buffers 

0 Ll I F2.SCH Set characteristics QIO (SF.SMC) 
l 2 ~-G_c_H _____ G __ e_t __ c_h_a_r_a_c_t_e __ ·r __ is __ t_i_c_s __ o_I_o __ (_s_F_._G_M_c __ ) ____________ __ 

3-11 



HALF-DUPLEX TERMINAL DRIVER 

The various symbols used by the IO.GTS, SF.GMC, and SF.SMC QIO's are 
defined in a system module, TTSYM. These symbols include: Fl.xxx and 
F2.xxx (Table 3-7}; T.xxxx (Table 3-6}; TC.xxx (Table 3-5}; and the 
SE.xxx error returns described in Table 3-8, Section 3.4. These 
symbols may be defined locally within a code module by using: 

.MCALL TTSYM$ 

TTSYM$ 

If the symbols are not defined locally, they are automatically defined 
by the Task Builder. 

The octal values of these symbols are subject to change. 
we recommend that you always use the symbolic names. 

Therefore, 

3.3.2.6 IO.RAL - The Read All function causes the driver to pass all 
bits to the requesting task. The driver does not intercept control 
characters or mask out the "parity" (high-order} bit. This means, fot 
example, that CTRL/C, CTRL/Q, CTRL/S, CTRL/O, and CTRL/Z are passed to 
the program and are not interpreted by the driver. 

NOTE 

IO.RAL echoes the characters that are 
read. To read all bits without echoing, 
use IO.RAL!TF.RNE. 

IO.RAL is equivalent to IO.RLB ORed with the subfunction bit TF.RAL. 
The only way to terminate an IO.RAL function is by a character count 
(i.e., filling the input buffer}. 

3.3.2.7 IO.RNE - IO.RNE causes the driver to read a line from the 
terminal without echoing the characters that are input. This feature 
is useful when typing sensitive information, for example a password or 
combination. IO.RNE is also used to read a badge with the RT02-C. 

(Another way to suppress echoing of input is to set the terminal to 
no-echo mode via the SF.SMC QIO or the MCR SET /NOECHO command. See 
Table 3-5, bit TC.WEC.} 

CTRL/R, if selected as a SYSGEN option, is ignored while an IO.RNE is 
in progress. 

IO.RNE is equivalent to IO.RLB ORed with the subfunction bit TF.RNE. 

3-12 

~. 



HALF-DUPLEX TERMINAL DRIVER 

3.3.2.8 IO.RPR - ~rhe QIO function IO.RPR (Read After Prompt) has the 
same effect as IO.WLB (to write a prompt to the terminal) followed by 
IO.RLB. However, IO.RPR differs in four ways from this combination of 
QIO's. With IO.RPR: 

• System overhead is lower because only one QIO is processed. 

• There is no "window" during which a response to the prompt may 
be ignored. Such a window occurs if IO.WAL/IO.RLB is used, 
because no read may be posted at the time the response is 
received. 

• If the issuing task is checkpointable, 
during both the prompt and the read. 

it is checkpointed 

• A CTRL/O that may be in effect is cancelled before the prompt 
is written. 

The third user-specified argument to IO.RPR, tmo, is required for 
compatibility with IAS. If supplied, it is ignored. 

Subfunction bits may be ORed with IO.RPR to write the prompt as a 
Write All (TF.BIN) and to send XOFF after the read (TF.XOF). See the 
next two sections. In addition, the three Read subfunction bits 
(TF.RAL, TF.RNE, TF.RST) can be used with IO.RPR. 

3.3.2.9 IO.RPR!TF.BIN - This QIO function results in a read after a 
"binary" prompt, that is, a prompt that is written by the driver with 
no character interpretation (as if it were issued as an IO.WAL). 

3.3.2.10 IO.RPRlTF.XOF - This QIO function causes the driver to send 
an XOFF to the terminal after its prompt-and-read. The XOFF, or 
CTRL/S, may have the effect of inhibiting input from the terminal, if 
the terminal recognizes XOFF for this purpose. 

3.3.2.11 IO.RST - This QIO function acts like ·IO.RLB, except that 
certain special characters terminate the read. These characters are 
in the ranges 0-37 octal and 175-177 octal. The driver does not 
interpret the terminating character, with certain exceptions.! For 
example, a horizontal TAB (11 octal) is not expanded, a RUBOUT (or 
DEL, 177 octal) does not erase, and a CTRL/C does not get MCR's 
attention. 

1 If upper-lower-case conversion is disabled (see remarks in Section 
3.10.9), the character 175 octal echoes as right-brace and 176 octal 
as tilde, and these characters do not act as terminators. The three 
characters CTRL/O, CTRL/Q, and CTRL/S (17, 21, and 23 octal, 
respectively) are not special terminators. The driver interprets them 
as output effectors. 

3-13 



HALF-DUPLEX TERMINAL DRIVER 

Upon successful completion 
terminated by filling the 
like: 

of an IO.RST request that was not 
input buffer, the I/O status block looks 

IOSB 

Terminating 
character 

t 
# of bytes 

IS .SUC&377 

in buff er 

The terminating character is not in the buffer. 

IO.RST is equivalent to IO.RLB!TF.RST. 

3.3.2.12 SF.SMC - This QIO function allows a task to set and reset 
the characteristics of a terminal. Set Multiple Characteristics is 
the inverse of SF.GMC. Like SF.GMC, it is called in the following 
way: 

QIO$C SF.SMC, ••• ,<stadd,size> 

where stadd is the starting address of a buffer of length "size" 
bytes. Each word in the buffer has the form: 

.BYTE characteristic-name 

.BYTE value 

where "characteristic-name" is one of the symbolic bit names given in 
Table 3-5, and "value" is either 0 (to clear a given characteristic) 
or 1 (to set a characteristic). Table 3-5 notes the restrictions that 
apply to these characteristics. 

If "characteristic-name" is TC.TTP (terminal type), then "value" can 
have any of the values listed in Table 3-6. 

A nonprivileged task can only issue an SF.SMC request to affect its 
own terminal, TIO:. A privileged task can issue SF.SMC to any 
terminal. 

3.3.2.13 IO.WAL - The Write All function causes the driver to pass 
all output from the buffer without interpretation. It does not 
intercept control characters. Lines are neither wrapped around (if 
input/output wrap-around has been selected} nor truncated (if 
wrap-around is not selected}. 

IO.WAL is equivalent to IO.WLB!TF.WAL. 

3.3.2.14 IO.WBT - IO.WBT instructs the driver to write 
regardless of the I/O status of the receiving terminal. 
is issued on a system that does not support IO.WBT, it is 
an IO.WLB. 

3-14 

the buff er 
If an IO .. WBT 
treated as 



HALF-DUPLEX TERMINAL DRIVER 

• If another write is in progress, it finishes and the IO.WBT is 
the next write issued. The effect of this is that IO.WBTs can 
be stopped by a CTRL/S. Therefore, tasks may still want to 
timeout on IO.WBT. 

• If a read is posted, the IO.WBT proceeds anyway, and an 
automatic CTRL/R is performed to redisplay any input that was 
received before the break-through write. 

• CTRL/S and/or CTRL/O, if in effect, are cancelled. 

• Characters input during a break-through write are ignored. 

An IO.WBT cannot break through another IO.WBT that is in progress or 
if a prompt is being written by IO.RPR. In either case, the low-order 
byte of the first word of the I/O status block contains IE.RSU&377. 
The task receiving this error need only reissue the write. 

Break-through write may only be issued by a privileged task. However, 
the task does not have to be mapped to the Executive (Task Builder 
options /PR:4 or /PR:5). A task can use IO.WBT if it is built with 
the /PR:O switch specified. The privileged MCR command BRO 
(broadcast) uses IO.WBT. 

3.4 STATUS RETURNS 

Table 3-8 lists error and status conditions that are returned by the 
terminal driver. 

Upon successful completion of a read, the I/O status block contains 
data of this sort: 

1 0 Byte 

Word 0 ~---_.._+_1 ____ _ 

1 ~mber of bytes read 

whe1re: ret = 0 means read terminated by buffer full (byte 
count satisfied); 

ret 15 means IS.CR: read terminated by carriage return; 

ret 33 means IS.ESC: read terminated by an Altmode; 

ret 233 means IS.ESQ: read terminated by an escape 
sequence. 

+l is rs.sue: the return code for successful 
completion. 

Most RSX-llM return codes are byte values: for example, rs.sue = 1 is 
a byte value. By contrast, the three return codes IS.CR, IS.ESC, and 
IS.ESQ are word values. The low-order byte indicates successful 
completion, and the high-order byte is required to show what type of 
completion occurred. 

3-15 



HALF-DUPLEX TERMINAL DRIVER 

To test for one of these word-value return codes, first test the 
low-order byte of the first word of the IOSB for the value rs.sue. 
Then test the full word for IS.CR, IS.ESC, or IS.ESQ. (If the full 
word tests equal to rs.sue, then its high-order byte is zero, 
indicating byte-count termination of the read.) 

The "error" return IE.EOF may be considered to indicate a successful 
read, because characters can be returned to the task's buffer. 

The three errors in Table 3-8 with SE .. xxx codes are returned by the 
SF.GMC and SF.SMC QIO's. They are characterized by IE.AB0&377 in the 
low-order byte of the first IOSB word. The high-order byte contains 
the error code. The second IOSB word contains an offset (starting 
from O) to the byte in error in the QIO's stadd buffer. 

Code 

IE.EOF 

rs.sue 

IS.CR 

IS.ESC 

IS.ESQ 

IS .PND 

Table 3-·8 
Terminal Status Returns 

Reason 

Successful completion on a read with end-of-file 

The line of input read from the terminal was 
terminated with the end-of-file character CTRL/Z. 
The second word of the I/O status block contains 
the number of bytes read before CTRL/Z was seen. 
The input buffer contains those bytes. 

Successful completion 

The operation specified in the QIO directive was 
completed successfully. If the operation involved 
reading or writing, you can examine the second word 
of the I/O status block to determine the number of 
bytes processed. The input buffer contains those 
bytes. 

Successful completion on a read 

The line of input read from the terminal was 
terminated by a carriage return. The input buffer 
contains the bytes read. 

Successful completion on a read 

The line of input read from the terminal was 
terminated by an Altmode character. The input 
buffer contains the bytes read. 

Successful completion on a read 

The line of input read from the terminal was 
terminated by an escape sequence. The input buffer 

.contains the bytes read and the escape sequence. 

I/O request pending 

The operation specified in the QIO directive has 
not yet been executed. The I/O status block is 
filled with zeros. 

(continued on next page) 

3-16 



Code 

IE.ABO 

IE .BAD 

IE .DAA 

IE.DNA 

IE.DNR 

IE. !ES 

HALF-DUPLEX TERMINAL DRIVER 

Table 3-8 (Cont.) 
Terminal Status Returns 

Reason 

Operation aborted 

The specified I/O operation was cancelled by to.KIL 
while in progress or while in the I/O queue. The 
second word of the IOSB shows how many bytes were 
processed before the kill took effect. 

Bad parameter. 

The size of the prompt in a read-after-prompt QIO 
is too big (i.e., greater than 255 bytes on systems 
supporting variable-length buffers or greater than 
80 on systems that do not). 

Device already attached. 

The physical device-unit specified in an IO.ATT 
function was already attached by the issuing task. 
This code indicates that the issuing task has 
already attached the desired physical device-unit, 
not that the unit was attached by another task. If 
the attach specified TF.AST or TF.ESQ, these 
subfunction bits have no effect. 

Device not attached 

The physical device~unit specified in an IO.DET 
function was not attached by the issuing task. 
This code has no bearing on the attachment status 
of other tasks. 

Device not ready 

The physical device-unit specified in the QIO 
directive was not ready to perform the desired I/O 
operation. This code is returned to indicate one 
of the following conditions: 

• A timeout 
device-unit 
lost). 

occurred on 
(that is, an 

the physical 
interrupt was 

• An attempt was made to perform a function 
on a remote DHll or DZll line without 
carrier present. (The line is hung up.) 

Invalid escape sequence 

An escape sequence was started but escape-sequence 
syntax was violated before the sequence was 
completed. See Section 3.6.4. 

(continued on next page) 

3-17 



Code 

IE. I FC 

IE.NOD 

IE.OFL 

IE .PES 

IE.PR! 

IE.RSU 

IE.SPC 

SE.BIN 

SE.NIH 

SE.VAL 

HALF-DUPLEX TERMINAL DRIVER 

Table 3-8 (Cont.) 
Terminal Status Returns 

Reason 

Illegal function 

A function code specified in an I/O request was 
illegal for terminals; or, the function code 
specified was a SYSGEN option not selected for this 
system. 

Buffer allocation failure 

System dynamic storage has been depleted, and there 
was insufficient space available to allocate an 
intermediate buffer for an input request. 

Device off-line 

The physical device-unit associated with the LUN 
specified in the QIO directive was not online. 
When the system was booted, a device check 
indicated that this physical device-unit was not in 
the configuration. 

Partial escape sequence 

An escape sequence was started, but read-buffer 
space was exhausted before the sequence was 
completed. See Section 3.6.4.3. 

Privilege violation 

In a multiuser system, a nonprivileged task either 
issued an IO.WBT, or directed an SF.SMC to a 
terminal other than its own TIO:. 

Resource in use 

The prompt of an IO.RPR, or a break-through 
was in progress when an IO.WBT was issued. 
the IO.WBT later. 

Illegal address space 

write, 
Reissue 

The buffer specified for a read or write request 
was partially or totally outside the address space 
of the issuing task. Alternately, a byte count of 
zero was specified. 

The new value specified for a terminal 
characteristic in an SF.SMC request was not 0 or 1. 
(Characteristics other than TC.TTP -- see Table 
3-5.) 

A terminal characteristic other than those in Table 
3-5 was named in an SF.GMC or SF.SMC request; or, 
a task attempted to assert TC.FRI. 

The new value specified in an SF.SMC request for 
the TC.TTP terminal characteristic was not one of 
those listed in Table 3-6, or the baud rate (speed) 
specified is not valid. 

3-18 

~. 

~ 
! 



HALF-DUPLEX TERMINAL DRIVER 

3.5 CONTROL CHARACTERS AND SPECIAL KEYS 

This section describes the meanings of special terminal cont~ol 
characters and keys for RSX-llM. Note that the driver does not 
recognize control characters and special keys during a Read All 
request (IO.RAL) and recognizes only some of them during a Read with 
Special Terminators (IO.RST). 

3.Sol Control Characters 

A control character is input from a terminal by holding the control 
key (CTRL) down while typing one other key. Two of the control 
characters described in Table 3-9, CTRL/U and CTRL/Z, are echoed on 
the terminal as AU and AZ respectively. Other control characters are 
recognized by the terminal driver, but are not printing characters and 
therefore are not echoed. 

Character 

C~rRL/C 

CTRL/I 

CTRL/J 

CTRL/K 

Table 3-9 
Terminal Control Characters 

Meaning 

Typing CTRL/C repeatedly is the way to 
terminal's attention. Normally, typing 
causes unsolicited input on that terminal 
directed to the Monitor Control Routine 
"MCR>" echoes when the terminal is ready to 
unsolicited input. When the unsolicited 
completes, it is passed to MCR. 

get a 
CTRL/C 
to be 
(MCR) • 
accept 
input 

If the last item typed on the terminal was CTRL/S 
(suspend output), then CTRL/C restarts suspended 
output and directs subsequent input to MCR. 

If the hold-screen mode option has been selected at 
SYSGEN, and if the terminal is a VT5x or VT61 in 
hold-screen mode, then typing a string of CTRL/Cs 
eventually removes the terminal from hold-screen 
mode. 

Not all CTRL/C's act to get MCR's attention. 
CTRL/Cs are directed to a task if the task has 
attached a terminal and has specified an 
unsolicited-input-character AST. See the discussion 
on unsolicited-input-character ASTs, Section 
3.3.2.1. CTRL/C's also go to a task if an IO.RAL 
(Read All) or IO.RST (Read with Special 
Terminators) is posted. 

Typing CTRL/I or TAB initiates a horizontal tab, 
and the terminal spaces to the next tab stop. . Tabs 
at every eighth character position are simulated by 
the terminal drivero 

Typing CTRL/J is equivalent to typing the LINE FEED 
key on the terminale 

Typing CTRL/K initiates a vertical tab, and the 
terminal performs four line feeds. 

(continued on next page) 

3-19 



Character 

CTRL/L 

CTRL/M 

CTRL/O 

CTRL/Q 

CTRL/R 

CTR'L/S 

CTRL/U 

CTRL/Z 

HALF-DUPLEX TERMINAL DRIVER 

Table 3-9 (Cont.) 
Terminal Control Characters 

Meaning 

Typing CTRL/L initiates a form feed, and the 
terminal performs eight line feeds. Paging is not 
performed. 

Typing CTRL/M is equivalent to typing the carriage 
RETURN key on the terminal (see Section 3.5.2). 

Typing CTRL/O suppresses output being 
terminal by the current I/O request. 
terminals, CTRL/O remains in effect, 
continues to be suppressed until 
following occurs: 

• The terminal is detached 
• Input is entered 
• Another CTRL/O character is typed 

sent to a 
For attached 

and output 
any of the 

• An IO.CCO, IO.WBT, or IO.RPR is processed 

For unattached terminals, CTRL/O suppresses output 
for only the current output buffer (generally.one 
1 i ne) • 

(SYSGEN option.) Typing CTRL/Q resumes terminal 
output previously suspended by means of CTRL/S. 

(SYSGEN option.) Typing CTRL/R on a terminal 
results in the echo of CR/LF followed by the 
incomplete (unprocessed) input line. Any tabs that 
were input are expanded and the effect of any 
rubouts is shown. On hardcopy terminals, CTRL/R 
allows you to verify the effect of tabs and/or 
rubouts in an input line. CTRL/R is also useful 
for CRT terminals when the automatic-cariage-return 
and CRT rubout SYSGEN options have been selected 
(see Section 3.8). For example, after rubbing out 
the leftmost character on the second displayed line 
of a wrapped input line, you will find that the 
cursor does not move to the right of the first 
displayed line. In this case, CTRL/R brings the 
input line and the cursor back together again. 

(SYSGEN option.) Typing 
output to be suspended. 
typing CTRL/Q or CTRL/C. 

CTRL/S causes terminal 
Output is resumed by 

Typing CTRL/U before typing a line terminator 
causes previously typed characters to be deleted 
back to the beginning of the line. The system 
echoes this character as ~U followed by a carriage 
return and a line feed. This allows you to retype 
the line. 

Typing CTRL/Z indicates 
current terminal input. 
and other system tasks 
complete and the task 
echoes this character as 
return and a line feed. 

3-20 

an end-of-file for the 
It signals MAC, PIP, TKB, 
that terminal input is 
should exit. The system 

~z followed by a carriage 



·~· 

HALF-DUPLEX TERMINAL DRIVER 

3.5~2 Special Keys 

The ESCape, carriage RETURN, and RUBOUT keys have special significance 
for terminal input, as described in Table 3-10. A line can be 
terminated by an ESCape (or Altmode) character, by a carriage RETURN, 
by CTRL/Z, or by completely filling the input buffer (that is, by 
exhausting the byte count before a line terminator is typed). the 
standard buffer size for a terminal can be determined by issuing a GET 
LUN INFORMATION system directive and examining Word 5 of the 
information buffer. Another way is to type the MCR command "SET 
/BUF'=TI: II. 

ESCape 

RETURN 

RUBOUT 

Table 3-10 
Special Terminal Keys 

Meaning 

If escape sequences are not recognized, typing 
ESCape or Altmode signals the terminal driver that 
there is no further input on the current line. 
This line terminator allows further input on the 
same line, because the carriage or cursor is not 
returned to the first column position. 

If escape sequences are recognized, ESCape signals 
the beginning of an escape sequence. See Section 
3.6. 

Typing RETURN terminates 
causes the carriage or 
first column on the line. 

the current line and 
cursor to return to the 

Typing. RUBOUT deletes the last character typed on 
an input line. Only characters typed since the 
last line terminator may be deleted. Several 
characters can be deleted in sequence by typing 
successive RUBOUTs. 

The first RUBOUT echoes as a backslash (\), 
followed by the character that has been deleted. 
Subsequent RUBOUTs cause only the deleted character 
to be echoed. The next ch~racter typed that is not 
a RUBOUT causes another backslash, followed by the 
new character, to be echoed. The following example 
illustrates rubbing out ABC and then typing CBA: 

ABC\CBA\CBA 

The second backslash is not displayed if a 
terminator is typed after rubbing out 
characters on a line, as in the following: 

line 
the 

ABC\CBA 

(SYSGEN option.) At SYSGEN time you 
support a "CRT rubout" feature. 
applies to a terminal only after 
directive has been issued: 

SET /CRT='rI: 

may elect to 
This feature 

a SET MCR 

(continued on next page) 

3-21 



HALF-DUPLEX TERMINAL DRIVER 

Table 3-10 (Cont.) 
Special Terminal Keys 

(Note: see Section 3.3.2.12 for another way this 
SET can be accomplished, via the SF.SMC QIO 
function.) When a RUBOUT is struck, the last typed 
character (if any) is removed from the incomplete 
input line and backspace-space-backspac~ is echoed. 
If the last typed character was a tab,· enough 
backspaces are issued to move the cursor to the 
character position before the tab was typed. If a 
long input line was split, or "wrapped," by the 
automatic-carriage-return option, and a RUBOUT 
erases the last character of a previous line, the 
cursor is not moved to the previous line. CTRL/R 
must be used to resynchronize the display with the 
contents of th~ incomplete input line. 

3.6 ESCAPE SEQUENCES 

Escape sequences are strings of two or more characters beginning with 
33 octal. Some terminals generate an escape sequence when a special 
key is pressed (for example, the PFl key on the VTlOO). On any 
terminal, an escape sequence may be generated manually by typing 
ESCape and the appropriate following characters. 

Escape sequences provide a way to pass input to a task without 
interpretation by the operating system. This could be done with a 
number of one-character Read All's, but escape sequences allow a 
neater way to accomplish it (they can be read with ordinary IO.RLB's). 

Most DIGITAL software currently does not employ escape sequences. The 
specifics provided here are for the benefit of users who wish to take 
advantage of escape sequences in their own tasks. 

3.6.1 Definition 

An escape sequence is defined as follows: 

ESC [int] ••• [int] fin 

where: 

ESC is the result of pressing the ESCape key, a byte (character) of 
33 octal. 

int is an "intermediate character" in the range 40 to 57 octal. 
This range includes the character "space" and 15 punctuation 
marks. An escape sequence may contain any number of 
intermediate characters, or none. 

fin is a "final character" in the range 60 to 176 octal. This 
range includes upper- and lower-case letters, numbers, and 13 
punctuation marks. 

3-22 

~: 



HALF-DUPLEX TERMINAL DRIVER 

There are four exceptions to this general 
exceptions are discussed in Section 3.6.5. 

3.6.2 Prerequisites 

definition; these 

Two prerequisites must be satisfied before escape sequences can be 
received by a task. 

First, the task must "ask" for them by issuing an IO.ATT and invoking 
the subfunction bit TF.ESQ. 

Second, the terminal must be declared capable of generating escape 
sequences. This may be done with an MCR SET command: 

SET /ESCSEQ=TI: 

An alternative way to tell the driver that the terminal can generate 
escape sequences is by issuing the Set Multiple Characteristics QIO. 
See Section 3.3.2.13. 

If either of these prerequisites is not satisfied, the ESC character 
is treated as a line terminator. If both prerequisites are satisfied, 
then an additional feature results. CTRL/SHIFT/O (37 octal) may be 
used as an Altmode.l This character does not act as an Altmode from a 
terminal that cannot generate escape sequences. 

3.6.3 Characteristics 

Escape sequences always act as line terminators. That is, an input 
buffer may contain other characters that are not part of an escape 
sequence, but an escape sequence always comprises the last characters 
in the buffer. 

Escape sequences are not echoed. However, if a non-CRT rubout 
sequence is in progress, it is closed with a backslash when an escape 
sequence is begun. 

Escape sequences are not recognized in unsolicited input streams. 
Neither are they recognized in a Read with Special Terminators 
(subfunction bit TF.RST) nor in a Read All (subfunction bit TF.RAL). 

3.6.4 Escape Sequence Syntax Violations 

A violation of the syntax defined in Section 3.6.1 causes the driver 
to abandon the escape sequence and to return an error (IE.IES). 

1 An Altmode is a line terminator that does not cause the cursor to 
advance to a new line. On terminals that cannot generate escape 
sequences, the ESCape key acts as an Altmode. So do the characters 
175 and 176 octal, if the terminal has not been declared lower-case 
(MCR command SET /LOWER). If the terminal is lower-case, then these 
characters represent right-brace and tilde, respectively. 

3-23 



HALF-DUPLEX TERMINAL DRIVER 

3.6.4.1 DEL or RUBOUT (177 Octal) - The character DEL or RUBOUT is 
not legal within an escape sequence. Typing it at any point with:in an 
escape sequence causes the entire sequence to be abandoned and deleted 
from the input buffer. Thus, use DEL or RUBOUT to abandon an escape 
sequence, if desired, once you have begun it. For example, if you 
enter: 

AB ESC II DEL CR 

the buffer contains "AB" and the I/O status block looks like: 

IOSB 

3.6.4.2 Control Characters (0-37 Octal) - The reception of any 
character in the range 0 to 37 octal (with four exceptions -- see 
footnotel) is a syntax violation that terminates the read with an 
error (IE.IES). For example, enterinq: 

ESC 1 CTRL/SHIFT/O 

results in a buffer that contains these three characters and an I/O 
status block that looks like: 

IOSB 

1 Four control characters are allowed: CTRL/Q, CTRL/S, CTRL/C, and 
CTRL/O. These characters are handled normally by the operating system 
even when an escape sequence is in progress. For example, entering: 

ESC CTRL/S A 

gives: 

IOSB 

with the side effect of turning off the output stream. 

3-24 



~ 

HALF-DUPLEX TERMINAL DRIVER 

3.6.4.3 Full Buffer - A syntax error results when an escape sequence 
is terminated by running out of read-buffer space, rather than by 
receipt of a final character. The error IE.PES is returned. For 
example, after a task issues an IO.RLB QIO with a buffer length of 
two, and you type: 

ESC A 

the buffer contains "ESC 1", and the I/O status block contains: 

IOSB 

The "A" is treated as unsolicited input. 

3.6~5 Exceptions to Escape-Sequence Syntax 

Four "final characters" that normally would terminate an escape 
sequence are treated as special cases by the terminal driver. These 
special cases exist for historical compatibility reasons. Three of 
these characters are: (73 octal), ? (77 octal), and 0 (117 
octal). The syntax for escape sequences that contain these four 
characters as intermediates is: 

ESC [int] [int] fin 

ESC ? [:int] [int] fin 

ESC 0 [:int] [int] f inl 

where: int => 40-57 octal; 
fin => 60-176 octal; and 
f inl => 100-176 octal. 

The fourth exception to the general syntax given in section 3.6.1 
involves the "final character" Y (131 octal). Historically (for 
example, in the VT52), ESC Y has been used to signal the cursor 
position. It is followed by two numbers signifying column and row 
positions: 

ESC Y colpos rowpos 

where colpos and rowpos are both characters in the range 40-176 octal. 
They represent bias-40 numbers: colpos = 40 corresponds to column O, 
etc. 

3.7 VERTICAL FORMAT CONTROL 

Table 3-11 summarizes the meanings of all characters used for vertical 
format control on the terminal. Any one of these characters can be 
specified as the value of the vfc parameter in the functions IO.WLB, 
IO.WVB, IO.WBT, IO.CCO, or IO.RPR. 

3-25 



HALF-DUPLEX TERMINAL DRIVER 

Table 3-·ll 
Vertical Format Control Characters 

Octal 
Value Character Meaning 

40 blank 

60 0 

61 1 

53 + 

44 $ 

00 null 

SINGLE SPACE - Output a line feed, print the 
contents of the buffer, and output a carriage 
return. Normailly ,. printing immediately 
follows the previously printed line. 

feeds, print 
and output a 

the buffer 
below the 

DOUBLE SPACE - Output two line 
the contents of the buffer, 
carriage return. Normally, 
contents are printed two lines 
previously printed line. 

PAGE EJECT - Out.put eight 1 i ne feeds (or, if 
the terminal is an LA180S, output a form 
feed), print the contents of the buffer, and 
output a carriage return. 

OVERPRINT - Print the contents of the buffer 
and output a carriage return, normally 
overprinting the previous line. 

PROMPTING OUTPUT - Output a line feed and 
print the contents of the buffer. This mode 
of output is intended for use with a terminal 
on which a prompting message is output, and 
input is then read on the same line. 

INTERNAL VERTICAL FORMAT - Print the buffer 
contents without addition of vertical format 
control characters. In this mode, more than 
one line of guaranteed contiguous output can 
be printed for each I/O request. 

All other vertical format control characters are interpreted as blanks 
(octal 40). 

3.8 FEATURES AVAILABLE BY SYSGEN OPTION 

A number of terminal-driver features are available as 
time the RSX-llM system is generated (see the 
Generation and Management Guide or RSX-llS System 
Installation Guide, as appropriate). Some have 
previously in the text; these are: 

• All the device-specific QIO functions 

• Special keys CTRL/S Suspend output 

options at the 
RSX-llM System 
Generation and 
been mentioned 

CTRL/Q Resume suspended output 
CTRL/R Write incomplete input buffer 
CRT rubout 

• Escape sequences 

Other features that you may select at SYSGEN time are described in the 
following sections. 

3-26 



HALF-DUPLEX TERMINAL DRIVER 

3.8~1 Automatic Carriage Return 

By SYSGEN option, all terminals in a system may be set to "wrap 
around," on input and output, after a specified number of columns. If 
this option is selected, the number of characters per line is 
determined on a terminal-by-terminal basis. An MCR SET command is 
used to specify the wrap-around column, n: 

>SET /BUF=TI: n 
> 

(Note that n is an octal number by default. Type an explicit decimal 
point to enter a decimal number.) After SYSGEN and before this SET has 
been done for a given terminal, the default column width is 72 
(dee ima 1). 

The SET /BUF command used without an argument is an enquiry that 
returns the current buffer width for a terminal: 

>SET /BUF=TI: 
BUF=TIO: 0007 2. 
> 

A task can determine the buffer width by issuing a Get LUN Information 
directive and examining word 5. 

After the SET has been done, typing the n+lst character results in a 
CR/LF being output before the n+lst character is echoed (at the 
leftmost character position of the next line). There is still only 
one input line, but it is displayed on two lines on the terminal. 

Output also wraps around after column n. This is undesirable for some 
applications. To disable wraparound, set the buffer to some number 
greater than the terminal's column width. Output -- and input 
too -- beyond the column width will then overprint at the right 
margin. Wraparound is also disabled when executing the IO.WAL 
function (see Section 3.10.11), because the driver does not keep track 
of the cursor's position. 

It is possible to lose track of where you are in the input buffer if 
both the automatic carriage return and the CRT rubout features have 
been selected at SYSGEN. If, while rubbing out text on a wrapped 
line, you rub out the first character on that line, the cursor will 
not back up to the previous line. In order to resynchronize the 
cursor with the contents of the incomplete input buffer, type CTRL/R 
(if this option has been selected). 

It is also possible to cause wraparound to malfunction. This can 
occur when more than 255. characters are output without an 
intervening carriage return. This condition is possible because the 
driver maintains a byte location with the current cursor position; 
thus, counts greater than 255. are truncated, and the cursor count 
will be invalid until the next carriage return is received. 

3.8.2 Variable-Length Buffering 

If this user-transparent SYSGEN option is selected, up to 255 
(decimal) characters may be read from a terminal. The terminal driver 
allocates an Executive buffer the same size as the read request. 

3-27 



HALF-DUPLEX TERMINAL DRIVER 

If the variable-length option is not chosen, any number of characters 
may be read from a terminal, but a maximum of 80 are transferred to 
the task issuing the read request. An Executive buffer of 80 
characters is always allocated. 

Note that, whether variable-length buffering is selected or not, a 
maximum of 80 characters may be directed to MCR as unsolicited input. 

3.8.3 Task Buffering of Received Characters 

This user-transparent SYSGEN option causes characters read from the 
terminal to be sent directly to the reading task's buffer. With this 
option, no Executive buffer need be allocated, and the completed input 
line need not be transferred to the task's buffer. This option, 
however, does not necessarily reduce system overhead. In a mapped 
system, each character must be mapped to the task's buffer. If 
Executive buffering was used, the mapping is done once and then all 
the characters are transferred. 

Task buffering may be overridden by checkpointing. If a task is 
checkpointable, an Executive buffer is allocated in the normal way and 
the task is made eligible for checkpointing by any task, regardless of 
priority, while the read proceeds. (Checkpointing only occurs when 
there is another task that can be made active.) Since 
checkpointability is a dynamic quality controlled by the task, the 
user retains control over the resource tradeoff. 

3.8.4 LA30-P Support 

This option provides a 1-byte software buffer for terminal input from 
an LA30-P. Because LA30-P's communicate with RSX-llM by a 
single-buffered hardware interface, the echoing of an input character 
may block the reception of the next input character. This is because 
a character is normally discarded by the terminal driver if it is 
received before the echo of the previous character completes. The 
SYSGEN option for LA30-P support (transparent to the user) will buffer 
the second character in the software. 

This option should not be chosen at SYSGEN if there are no LA30-P's in 
the system. 

3.9 TERMINAL INTERFACES 

This section summarizes the characteristics of the four 
standard communication-line interfaces supported by RSX-llM. 
interfaces support parity, but RSX-llM does not. 

3.9.1 DHll Asynchronous Serial Line Multiplexer 

types of 
All four 

The DHll multiplexer interfaces up to 16 asynchronous serial 
communications lines for terminal use. The DHll supports programmable 
baud rates. Input and output baud rates may differ; the input rate 
may be set to 0 baud, thus effectively turning off the terminal. The 
DMll-BB option may be included to provide modem control for dialin 
lines. These lines must be interfaced by means of a full duplex modem 
(for example, in the United States, a Bell 103A or equivalent modem). 

3-28 

~· 



HALF-DUPLEX TERMINAL DRIVER 

The direct memory access (DMA) capability of the DHll is not supported 
by the RSX-llM terminal driver. 

3.9 .. 2 DJll Asynchronous Serial Line Multiplexer 

The DJll multiplexer interfaces as many as 16 asynchronous serial 
lines to the PDP-11 for local terminal communications. The DJll does 
not provide a dialin capability but supports jumper-selectable baud 
rates. 

3.9.3 DLll Asynchronous Serial Line Interface 

The DLll supports a single asynchronous serial line and handles 
communication between the PDP-11 and a terminal. A number of standard 
baud rates are available to DLll users. Four versions of the DLll 
interface are supported by RSX-llM for terminal use: DLll-A, DLll-B, 
DLll-C, and DLll-D. The DLll-E is supported by the full-duplex 
terminal driver described in Chapter 2 and by the message-oriented 
communication drivers described in Chapter 11. 

3.9.4 DZll Asynchronous Serial Line Multiplexer 

The DZll multiplexer interfaces up to eight asynchronous serial 
communication lines for use with terminals. It supports programmable 
baud rates; however, input and output speeds must be the same. The 
DZll can control a full duplex modem in auto-answer mode. 

3.10 PROGRAMMING HINTS 

This section contains information relevant to users of the terminal 
driver. 

3.10.l Terminal Line Truncation 

If automatic carriage return has not been selected at SYSGEN, and if 
the number of characters to be printed exceeds the line length of the 
physical device-unit, then the terminal driver discards the excess 
characters until it receives one that instructs it to return to 
horizontal position 1. You can determine when this will happen by 
examining word 5 of the information buffer returned by the Get LUN 
Information system directive, or by typing "SET /BUF=TI:". 

3.10.2 ESCape Code Conversion 

If escape sequences are not recognized, an ESCape or Altmode character 
code of 33, 175, or 176 is converted internally to 33 before it is 
returned to the user on input. 

3-29 



HALF-DUPLEX TERMINAL DRIVER 

3.10.3 RT02-C Control Function 

Because the screen of an RT02C Badge Reader and Data Entry Terminal 
holds only one line of information,. special care must be taken when 
sending a control character (for example, vertical tab) to the RT02-C. 
Use IO.WAL (Write All). 

It is advisable to read without echoing when reading a badge with the 
RT02-C. Use IO.RAL or IO.RNE, and then write the received 
information. 

3.10.4 Checkpointing During Terminal Input 

If checkpointing during terminal input was selected as a SYSGEN 
option, a checkpointable task is stopped (and therefore eligible to be 
checkpointed) when trying to read. Therefore, a stratagem such as 
issuing a read followed by a mark-time does not work. The intent 
might be to time-out the read if input is not received in a reasonable 
length of time. But the mark-time · is not issued until the read 
completes. 

You can circumvent this behavior by disabling checkpointing for the 
read. This is not a desirable solution because it forces a task to 
remain in memory during the entire read. This defeats the purpose of 
selecting the checkpoint-during-terminal-input option. 

3.10.5 Time Required for IO.KIL 

An IO.KIL request may take up to one second to succeed. This is 
because an internal mark-time mechanism is used to generate a software 
interrupt to get into a clean state. The I/O may reach a state in 
which the kill can complete within this time (for instance, if a 
hardware interrupt is received). If not, the request is killed after 
one second. 

3.10.6 Use of IO.WVB 

We recommend that you routinely use IO.WVB, instead of IO.WLB, when 
writing to a terminal. If the write actually goes to a terminal, the 
Executive converts your IO.WVB into IO.WLB. However, if the LUN has 
been redirected to some inappropriate device -- a disk, for 
example -- your use of an IO.WVB will be rejected because a file is 
not open on the LUN. This prevents privileged tasks from overwriting 
block zero of the disk (the boot block). 

Note that any subfunction bits specified in the IO.WVB request (for 
example, TF.CCO, TF.WAL, or TF.WBT) are stripped off when the QIO is 
converted to an IO.WLB. 

3.10.7 Remote DHll and DZll Lines 

All remote DHll lines in a system are answered at the same baud rate. 
All remote DZll lines are also answered at the same rate, which may 
differ from the DHll rate. These rates are specified at system 
generation. 

3-30 



.,_,,,. 

HALF-DUPLEX TERMINAL DRIVER 

Before a remote DHll or DZll line is answered, the driver clears 
certain of the terminal characteristics (see Table 3-5) that may have 
been set by an MCR SET command or by an SF.SMC QIO. ~he 
characteristics cleared are: TC.SCP, TC.ESQ, TC.HLD, TC.SMR, and 
TC.TTP. (Clearing TC.TTP means that a terminal type of "unknown" is 
returned to an SF.GMC request.) Also, buffer size is set to 73. 

A DZll remote line must be declared to be remote before the terminal 
driver will correctly handle the modern. This is done with the MCR 
command SET /REMOTE=TI:. 

NOTE: 

Because of the few modern signals that 
the DZll handles and the lack of 
interrupt support provided for those 
signals, the DZll may not adequately 
handle telephone exchange requirements 
in all countries • 

3.10.8 High-Order. Bit on Output 

Setting the high-order bit of an output byte causes it to be 
transmitted but not interpreted by the driver. 

3.10.9 Side Effects of Setting Characteristics 

Some of the characteristics that a task may set, or that you may set 
from a terminal, have side effects that should be noted. 

TC.HLD -- unexpected behavior can result f rorn a terminal in 
hold-screen mode if its reception rate is much greater than its 
transmission rate. (The DHll supports split baud rates.) In 
hold-screen mode the terminal sends a CTRL/S during reception of an 
output stream, when the screen is nearly full. Output is 
resumed -- another screen-full -- when you type SHIFT/SCROLL (the 
terminal generates CTRL/Q). Thus, no output is lost as a result of 
scrolling off the screen before you can read it. However, if the 
terminal's transmission rate is far below its reception rate, some 
unread output may scroll out of sight before the CTRL/S can be 
transmitted~ 

A related point to note is that some terminals and interfaces are 
hardware-buffered. This fact can cause obscure timing problems for 
tasks that try to implement hold-screen mode. 

TCoSMR -- If this characteristic is asserted (that is, if 
lower/upper-case conversion is disabled by, for example, SET 
/LOWER=TI:), the two characters 175 and 176 octal are interpreted as [ 
(right-brace) and (tilde), respectively. If TC.SMR is not asserted, 
these two characters act as Altrnodes. That is, they act as line 
terminators that do not advance the cursor to a new line. Altrnodes 
ar~e not echoed. 

3-31 



HALF-DUPLEX TERMINAL DRIVER 

3.10.10 Unsolicited-Input-Character AST's for Tasks Attaching 
Several Terminals 

For a task that attaches several terminals {for example, a reentrant 
language processor), the handling of unsolicited input requires 
special care. When the terminal driver passes an unsolicited input 
character to a task, it does not pass any information about which of 
several terminals generated the character. The task must ascertain 
this for itself. 

One solution is for the task to name uniquely the AST entry points for 
each attached terminal. Each separate AST then identifies its 
terminal before branching to a common routine that processes the 
unsolicited character. For example: 

ATTl: QIO$C IO.ATA, ••• ,<UICl> 
BR CONT 

ATT2: QIO$C IO.ATA, ••• ,<UIC2> 
BR CONT 

UICl: MOV #1,-(SP) 
BR UIC 

UIC2: MOV #2,-(SP) 
BR UIC 

UIC: MOV (SP)+,INDEX 

3.10.11 Direct Cursor Control 

The terminal driver generally examines the output stream in order to 
keep track of the cursor's horizontal position (so that output can be 
wrapped around or discarded). Therefore, tasks that want to use 
direct cursor control should use IO.Wl\Ls. This prevents the terminal 
driver from inserting CR/LFs {that the task considers spurious) into 
the output stream. FORTRAN WRITE statements become IO.WVBs, which are 
interpreted by the driver. To prevent this, a FORTRAN task can use 
the CALL QIO routine or can issue carriage returns at frequent 
intervals (to make the driver think thE~ cursor is always well to the 
left of the rightmost column and therefore no CR/LFs need be emitted 
to keep the cursor on the screen). 

3.10.12 DLll Receiver Interrupt Enable 

For hardware reasons, a DLll is susceptible to losing receiver 
interrupt enable in its Receiver Status Register. The disabling of 
the receiver interrupt bit causes the terminal to print output 
requests but not to respond to input {E~.g., the terminal does not echo 
input characters). The terminal driver has no mechanism for 
recognizing the disabling. Therefore, it cannot recover. The bit 
must be reset with an MCR OPEN command, or the console switch 
register, or a periodically rescheduled task. 

3-32 

~ 
. I 

~. 



HALF-DUPLEX TERMINAL DRIVER 

3.10.13 Loadable Driver Restrictions 

Checkpointing during terminal input, variable length terminal buffer 
support, and escape sequence support require the presence of 
conditionally assembled Executive support. If a loadable terminal 
driver supports one of these features and the Executive does not (or 
vice versa), the best that can happen is an undefined global when the 
terminal driver is built. At worst, the system is corrupted. 

3-33 





,..., 

..._.,., 

CHAPTEJR 4 

VIRTUAL TERMINAL DRIVER 

4.1 INTRODUCTION 

The virtual terminal driver supports offspring task use of virtual 
terminals :Ln RSX-UM-PLUS systems. Virtual terminals are not physical 
hardware devices; they are actually implemented in software through 
the use of data structures created by the RSX-llM-PLUS Executive. 
Virtual terminals are created by the Executive when requested by 
parent tasks via the Create Virtual Terminal directive. Virtual 
terminals are useful in batch processing and other processing 
environments to provide non-interactive terminal I/O support for 
offspring tasks, eliminating the need for operator intervention. 

Offspring task(s) "spawned" by or "connected" to the parent task that 
created the virtual terminal can perform terminal I/O operations with 
the virtual terminal in the same manner as with physical terminals. 
Virtual terminals differ from physical terminals in that they receive 
input from or output to a program (the parent task), rather than from 
a keyboard or to a display (or printer), respectively. 

4.2 GET LUN INFORMATION MACRO 

Word 2 of the buffer filled by the Get LUN Information system 
directive (the first characteristics word) contains the following 
information for virtual terminals. A setting of 1 indicates that the 
described characteristic is true for virtual terminals. 

Bit Settin9 Meanin9 

0 1 Record-oriented device 

1 1 Carriage-control device 

2 1 Terminal device 

3 0 File-structured device 

4 0 Single-directory device 

5 0 Sequential device 

6 0 Reserved 

7 0 User-mode diagnositcs supported 

8 0 Massbus device 

4-1 



VIRTUAL TERMINAL DRIVER 

Bit Setting Meani1~ 

9 0 Unit software write-locked 

10 0 Input spooled device 

11 0 Output spooled device 

12 0 Pseudo device 

13 0 Device mountable as a communications channel 

14 0 Device mountable as a FILES-11 volume 

15 0 Device mountable 

Words 3 and 4 are undefined. Word 5 specifies the maximum byte count 
(that is, maximum buffer size) to which offspring requests will be 
truncated; this value is specified by the parent task in the Create 
Virtual Terminal system directive as described in the RSX-llM/M-PLUS 
Executive Reference Manual. 

4.3 QIO MACRO 

Table 4-1 lists the standard and devicE~-specific functions of the QIO 
macro that are valid for virtual terminals. 

Table 4-1 
Standard and Device-Specific QIO Functions for Virtual Terminals 

Format 

STANDARD FUNCTIONS: 

QIO$C IO.ATT, ••• 

QIO$C IO.DET, ••• 

QIO$C IO.KIL, ••• 

QIO$C IO.RLB, ••• ,<stadd,size> 

QIO$C IO.RVB, ••• ,<stadd,size> 

'QIO$C IO.WLB, ••• ,<stadd,size,stat> 

QIO$C IO.WVB, ••• ,<stadd,size,stat> 

DEVICE-SPECIFIC FUNCTION: 

QIO$C IO.STC, ••• ,<cb,sw2,swl> 

4-2 

Function 

Attach device 

Detach device 

Cancel I/O request 

Read logical block 

Read virtual block 
(effects IO.RLB) 

Write logical block 

Write virtual block 
(effects IO.WLB) 

Set terminal characteristics 
(enable/disable intermediate 
I/O buffering, or return I/O 
completion status to 
offspring task) 



~· 

Where: 

size 

st add 

stat 

VIRTUAL TERMINAL DRIVER 

is the size of the data buffer in bytes (must be 
greater than zero). The buffer must be located within 
the addressing space of the parent or offspring task 
issuing the I/O request. 

is the starting address of the data buffer. 

is the I/O completion status code, specified by the 
parent task, that is issued by the virtual terminal 
driver in response to an offspring task's read request 
upon successful completion. 

cb defines characteristic bits to become set, selecting 
the following virtual terminal functions: 

swl 

cb Value Bits Set 

0 none 

1 0 

2 1 

Function 

Enable intermediate 
buffering in the 
Executive pool 

Return the specified 
virtual terminal I/O 
completion status to 
the requesting 
offspring task 

Disable intermediate 
buffering 

is the I/O completion code for I/O completion status. 

NOTE 

The sw2 and swl parameters are valid in 
the IO.STC function only when cb=l. 

4.3.1 Standard QIO Functions 

4.3.1.1 IO.ATT -- This I/O function can be issued by offspring task 
tasks to attach the virtual terminal. (It is illegal for parent tasks 
to issue IO.ATT). Attaching a virtual terminal prevents other 
offspring tasks from executing I/O operations with the virtual 
terminal. However, parent task I/O requests are always serviced when 
issued. 

4.3.1.2 IO.DET -- This I/O function can be issued by offspring tasks 
to detach the virtual terminal, making it available for use by other 
offspring tasks connected to the same parent task. (It is illegal for 
parent tasks to issue IO.DET.) 

4-3 

• 



VIRTUAL TERMINAL DRIVER 

4.3.1.3 IO.KIL -- Parent and offspring tasks can issue IO.KIL to 
can~el I/O requests. An offspring task issuing IO.KIL can result in 
IE.ABO being returned to the parent task. 

4.3.1.4 IO.RLB, IO.RVS, IO.WLB, IO.WVB -- These read and write 
functions execute , requested I/O operations with virtual terminals in 
the same manner as with terminals described in Chapter 2, except as 
follows: 

1. The virtual terminal driver ignores, but does not reject, 
offspring task IO.WLB and IO.WVB requests containing the vfc 
parameter used by terminal drivers described in Chapter 2. 

2. The virtual terminal driver returns I/O completion status to 
the offspring task in response to successful completion of the 
offspring task's IO.RLB or IO.RVB request; however, the 
actual I/O completion status values returned are specified for 
data transfers in the third parameter word of the parent 
task's IO.WLB or IO.WVB response, or in the second and third 
parameters of the parent task's IO.STC function response when 
no data transfer is desired. 

4.3.2 Device-Specific QIO Function (IO.STC) 

The IO.STC function can be issued by parent tasks to enable/disable 
offspring task I/O buffering in the Executive pool, or to force an 
appropriate I/O completion status for an offspring task read I/O 
request when no data transfer is desired. Both of these applications 
for the IO.STC function are described as follows. 

Parent tasks can use IO.STC to enable (or disable) intermediate 
buffering in the Executive pool. Intermediate buffering, when 
enabled, is performed on offspring task virtual terminal read and 
write requests when the offspring task: 

1. is checkpointable 

2. is not executing an AST routine 

3. ASTs are enabled 

4. is not already at the stopped state. 

Thus, offspring tasks can be stopped for virtual terminal I/O and 
checkpointed in a manner similar to that when physical terminals are 
used. Whenever the virtual terminal driver determines that 
intermediate buffering should not be used, offspring tasks that issue 
terminal requests become locked in memory until I/O completion; 
transfers occur directly between parent task and offspring task 
buffers without intermediate buffering in the Executive pool. 

In addition to the conditions that permit intermediate buffering (when 
specified), one additional condition can automatically disable 
intermediate parent task in the Create Virtual Terminal directive 
exceeds the maximum size specified at Sysgen time (512(10) maximum). 

The second application for IO.STC is to allow the virtual terminal 
driver to return an appropriate I/O completion status in response to 
an offspring task read request. I/O status returned in this manner 
allows successful completion of the offspring task's request when the 

4-4 



"--" 

VIRTUAL TERMINAL DRIVER 

parent task determines that no data transfer is desired; this 
condition can occur, for example, when no data is available for input 
to the offspring task via the virtual terminal driver. When used in 
this manner, the IO.STC function must include three parameters 
<cb,sw2,swl>, as follows: 

cb A value of 1 is specified to indicate that the I/O 
completion status return to the offspring task is 
desired. 

sw2 This parameter is the second word returned in the I/O 
completion status indicating the number of bytes read 
upon successful completion of an offspring task's read 
request. However, since no data transfer actually 
occurs, the value specified is O; the byte count of 0 
specified in this function is legal (and desired) 
whereas a byte count of 0 in write operations is 
illegal (and will result in an error being returned to 
the parent task). 

sw2 This parameter specifies the status code to be 
returned to the offspring task by the virtual terminal 
driver in the first word of the I/O completion status. 
This value is returned in the high byte and a value of 
+l is returned in the low byte of the status word. 
Typical values and the status that each represent are 
listed as follows: 

Code Value Completion Status Indicated 

IS oSUC + 1 Successful completion 

IS oCR 15 Read terminated by carriage 
return 

ISoESC 33 Read terminated by an Altmode 

IS .. ESQ 233 Read terminated by an escape 
sequence 

4.4 STATUS RETURNS 

The error and status conditions listed in Tables 4-2 and 4-3 are 
returned by the virtual terminal driver described in this chapter. 

4-5 



VIRTUAL TERMHIAL DRIVER 

Table 4-·2 
Virtual Terminal Status Returns for Offspring Task Requests 

Code 

rs.sue 

IE. I FC 

IE.ABO 

IE.UPN 

Reason 

Successful completion of an offspring task read 
request results in an I/O completion status specified 
in a parent task QIO parameter being returned. 
Typically, the status information returned simulates 
a subset of I/O returns normally produced by the 
terminal drivers described in Chapter 2. 

Successful completion 

The operation specified in the QIO directive was 
completed successfully. The second word of the I/0 
status block indicates the number of bytes 
transferred on a write operation. 

Invalid function code 

The offspring task attempted a read or a write 
function and the parent task did not specify an AST 
address in its response to the requested I/O 
function, or the offspring task issued an IO.STC or 
other invalid function. 

Request terminated 

The offspring task issued IO.KIL or the parent task 
eliminated the virtual terminal unit. 

Insufficient dynamic storage 

The driver could not allocate an AST block to notify 
the parent task of an offspring task request, or the 
driver could not allocate an intermediate buffer in 
the Executive pool. 

4-6 

~ 
! 

~I 



~· 

VIRTUAL TERMINAL DRIVER 

Table 4-3 
Virtual Terminal Status Returns for Parent Task Requests 

Code 

rs.sue 

IE: .EOF 

IE .BAD 

rn .DUN 

rn. IFC 

Reason 

Successful completion 

The operation specified in the QIO directive was 
completed successfully. The second word of the I/O 
status block indicates the number of bytes 
transferred on a read or write operation. 

End of file encountered 

The IO.STC function was completed successfully. 

Bad parameters 

The parent task specified a buffer size that exceeded 
the system maximum specified at Sysgen time. 

Device not attachable 

An IO.ATT or IO.DET function was issued by the parent 
task. 

Invalid function code 

A read, write,.or IO.STC function was issued without 
a pending offspring task request. This status can 
occur if the offspring task cancels a pending read or 
write request. This function code is also returned 
when IO.STC is issued to enable intermediate 
buffering on a virtual terminal unit whose buffer 
size, specified in the Create Virtual Terminal 
directive, exceeds the system maximum specified at 
Sysgen time. 

4-7 





CHAPTER 5 

DISK DRIVERS 

5.1 INTRODUCTION 

The RSX-llM disk drivers support the disks summarized in Table 5-1. 
Subsequent sections describe these devices in greater detail. 

All of the disks described in this chapter are accessed in essentially 
the same manner. Up to eight disks of each type (except RXOl, RX02, 
RLOl, and RL02) may be connected to their respective controllers. 
Disks and other file-structured media under RSX-llM are divided 
logically into a series of 256-word blocks. 

5.1.l RFll/RSll Fixed-Bead Disk 

The RFll controller/RSll fixed-head disk provides random-access bulk 
storage. It features fast track-switching time and a redundant set of 
timing tracks. The RFll/RSll is unique because the hardware can 
automatically perform a spiral read across disk platters. 

5.1.2 RS03 Fixed-Bead Disk 

The RS03 (RH11-RH70 controller/RS03 fixed-head disk) is a fixed-head 
disk which offers speed and efficiency. With 64 tracks per platter, 
and recording on one surface, .the RS03 has a capacity of 262,144 
words. 

5.lo3 RS04 Fixed-Bead Disk 

The RS04 (RH11-RH70 controller/RS04 fixed-head disk) is similar to the 
RS03 disk, and interfaces to the same controller; but provides twice 
the number of words per track by recording on both surfaces of the 
platter, and thus twice the capacity. 

5.1.4 RP11/RP02 or RP03 Pack Disks 

The RPll controller/RP02 or RP03 pack disk consists of 20 data 
surfaces and a moving read/write head. The RP03 has twice as many 
cylinders, and thus, double the capacity of the RP02. Only an even 
number of words can be transferred in a read/write operation. 

5-1 



Controller/ 
Drive RPM 

RFll/RSll 1800 

RHXX/RS03 3600 

RHXX/RS04 3600 

RP11E/RPR02 2400 

RP11C/RP03 2400 

RHXX/RM02 2400 

RHXX/RM03 3600 

RH11/RP04,RP05 3600 

RH70/RP06 3600 

RK11/RK05 1500 

RLll/RLOl 2400 

RLll/RLO 2 2400 

RK6 ll/RK06 2400 

RK6 ll/RK07 2400 

RXll/RXOl 360 

RX211/RX02 360 

1 THE RS03 has 64 words 
sector. 

2 The RLOl and RL02 each 

3 The RXOl has 64 words 
sector. 

DISK DRIVERS 

Table 5-1 
Standard Disk Devices 

Bytes/ 
Secs Trks Cy ls Drive 

-- 1 128 524,288 

641 1 64 524,288 

641 1 64 1,048,576 

10 20 200 20,480,000 

10 20 400 40,960,000 

32 5 823 67,420,160 

32 5 823 67,420,160 

22 19 411 87,960,576 

22 19 815 174,423,040 

12 2 200 2,457,600 

402 2 256 5,242,880 

402 2 512 10,485,760 

22 3 411 13,888,512 

22 3 815 27,810,800 

263 1 77 256,256 

263 1 77 512,512 
: 

per sector; the RS04 has 128 

have 128 words per sector. 

per sector; the RX02 has 128 

Decimal 
Blocks 

1024 

1024 

2048 

40,000 

80,000 

131,680 

131,680 

171,798 

340,670 

4800 

10,240 

20,480 

27,126 

53,790 

494 

988 

words per 

words per 

All of the disks described in this chapter are accessed in essentially 
the same manner. Up to eight disks of each type (except RXOl, RX02, 
RLOl, or RL02) may be connected to their respective controllers. 
Disks and other file-structured media under RSX-llM are divided 
logically into a series of 256-word blocks. 

5.1.5 RM02/RM03 Pack Disk 

The RM02/RM03 are MASSBUS disk drives and adapters that uses the 
existing MASSBUS controller. With a single-head per surface, they 
provide a 1.2 megabyte per second data transfer rate. The RM03 is 
used with the RH70 controller on PDP-11/70 systems. All other systems 
use the RM02 with the RHll controller. 

5-2 

·~ 
! ~ 



DISK DRIVERS 

5.1.6 RP04, RPOS, RP06 Pack Disks 

The RP04 or RP05 (RH11-RH70 controller/RP04 or RP05 pack disk) 
disks consist of 19 data surfaces and a moving read/write head. 
offer large storage capacity with rapid access time. The RP06 
disk has approximately twice the capacity of the RP04 or RP05. 

5.1.7 RKll/RKOS or RKOSF Cartridge Disks 

pack 
Both 
pack 

The RKll controller/RK05 DECpack cartridge disk is an economical 
storage system for medium-volume, random-access storage. The 
removable disk cartridge offers the flexibility of large off-line 
capacity with rapid transfers of files between on- and off-line units 
without necessitating copying operations. The RK05F has twice the 
storage capacity of the RK05 and has a fixed (non-removable) disk 
cartridge. 

5.1.8 RLll/RLOl or RL02 Cartridge Disk 

The RLOl is a low cost, single-head per surface disk with a burst data 
transfer rate of 512 kilobytes per second. The storage capacity of 
the RL02 is twice that of the RLOl. 

5.1 .. 9 RK611/RK06 or RK07 Cartridge Disk 

The RK611 controller/RK06 cartridge disk is a removable, 
random-access, bulk-storage system with three data surfaces. The 
storage capacity is 6,944,256 words per pack. The system, expandable 
to eight drives, is suitable for medium to large systems. 

The RK611 controller/RK07 cartridge disk is generally similar to the 
RK611/RK06, except storage capacity is increased to approximately 
13,905,400 words per pack. Both RK06 and RK07 disks can use the same 
RK611 controller; mixing RK06 and RK07 disks on the same controller 
is permitted .. 

5.1.10 RXlO/RXOl Flexible Disk 

The RXll controller/RXOl flexible disk is an economical storage system 
for low-volume, random-access storage. Data is stored in 26 64-word 
sectors per track; there are 77 tracks per disk. Data may be 
accessed by physical sector or logical block. If logical or virtual 
block I/O is selected, the driver reads four physical sectors. These 
sectors are interleaved to optimize data transfer. The next logical 
sector that falls on a new track is skewed by six sectors to allow for 
track to track switch time. Physical block I/O provides no 
interleaving or skewing and provides access to all 2002 sectors on the 
disk. Logical or virtual I/O starts on track one and provides access 
to 494 logical blocks. 

5.1.11 RX211/RX02 Flexible Disk 

The RX211 controller/RX02 
system for low-volume, 

flexible disk is an 
random-access storage. 

5-3 

economical storage 
It is capable of 



• 

DISK DRIVERS 

operating in either an industry-standard single density mode (as 
stated for the RXll/RXOl flexible disk), or a double density mode (not 
industry standard). In the single density mode, each drive can store 
data exactly as stated in Section 5.1.10. In the double density mode, 
data is stored in 26 128-word sectors per track; there are 77 tracks 
per disk. The RX211/RX02 operating in the single density mode can 
read disks written by an RXll/RXOl flexible disk system. In addition, 
disks written by the RX211/RX02 operating in the single density mode 
can be read by the RXll/RXOl flexible disk system. 

5.2 GET LUN INFORMATION MACRO 

Word 2 of the buffer filled by the ~et LUN Information system 
directive (the first characteristics word) contains the following 
information for disks. A bit setting of 1 indicates that the 
described characteristic is true for disks. 

Bit 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

Setting 

0 

0 

0 

1 

0 

0 

0 

x 

x 

0 

0 

0 

0 

0 

1 

1 

Meaning 

Record-oriented device 

Carriage-control device 

Terminal device 

File structured device 

Single-directory device 

Sequential device 

Reserved 

User-mode diagnostics supported (device 
dependent) 

Massbus device device dependent (can be set 
for Massbus devices using the RH70 controller) 

Unit software write-locked 

Input spooled device 

Output spooled device 

Pseudo device 

Device mountable as a communications 
channel 

Device mountable as a FILES-11 volume 

Device mountable 

Words 3 and 4 of the buffer contain thE~ maximum logical block number. 
Word 5 indicates the default buffer size, which is 512 bytes for all 
disks. 

5-4 

.$!" _______________________________ _ 



DISK DRIVERS 

5.3 QIO MACRO 

This section summarizes the standard, and 
functions for disk drivers. 

device-specific QIO 

5.3.1 Standard QIO Functions 

Table 5-2 lists the standard functions of the QIO macro that are valid 
for disks. 

Table 5-2 
Standard QIO Functions for Disks 

Format Function 

QIO$C IO .. ATT I ••• Attach device 1 

QIO$C I 0 .• D ET I ••• Detach device 

QIO$C IO.KIL, ••• Kill I/O 2 

QIO$C IO. RLB, ••• , <s tadd, s i zfe, , bJJkh, p~l<.J> Read logical block 

QIO$C IO.RVB, ••• ,<stadd,si~e,,blkh,blkl> Read virtual block 

QIO$C IO.WLB, ••• ,<stadd,si~e,~blkh,blkl> Write logical block 

QIO$C IO.WLC, ••• ,<stadd,size,,blkh,blkl> Write logical block 
followed by write 
check3 

QIO$C IO.WVB,~ •• ,<stadd,size,,blkh,blkl> Write virtual block 

1 In RSX-llM systems, only unmounted volumes may be attached; in 
RSX-llM-PLUS systems, only volumes mounted foreign may be attached. 
Any other attempt to attach a mounted volume will result in an IE.PR! 
status being returned in the I/O status doubleword. 

2 In-progress disk operations are allowed to complete when IO.KIL is 
received, because they take such a short time. I/O requests that are 
queued when IO.KIL is received are killed immediately. An IE.ABO 
status is returned in the I/O status doubleword. 

3 Not supported on RXOl or RX02 flexible disks. 

where: stadd is the starting address of the data buffer {must be on 
a word boundary). 

size is the data buffer size in bytes {must be even, greater 
than zero, and, for the RP02 and RP03, also a multiple 
of four bytes). 

blkh/blkl are block high and block low, combining 
double-precision number that indicates 
logical/virtual block address on the disk 
transfer starts; blkh represents the high 
of the address, and blkl the low 16 bits. 

5-5 

to form a 
the actual 
where the 
eight bits 



DISK DRIVERS 

IO.RVB and IO.WVB are associated with file operations (see the 
IAS/RSX-11 I/O Operations Reference Manual). For these functions to 
be executed, a file must be open on the specified LUN if the volume 
associated with the LUN is mounted. Otherwise, the virtual I/O 
request is converted to a logical I/O request using the specified 
block numbers. 

NOTE 

When writing a new file using QIOs, the 
task must explicitly issue .EXTND File 
Control System library routine calls as 
necessary to reserve enough blocks for 
the file, or the file must be initially 
created with enough blocks allocated for 
the file. In addition, the task must 
put an appropriate value in the FDB for 
the end-of-file block number (F.EFBK) 
before closing the file. (Refer to the 
.EXTND routine description in the 
IAS/RSX-11 I/O Operations Reference 
Manual.) 

Each disk driver supports the subfunction bit IQ.X: inhibit retry 
attempts for error recovery. The subfunction bit is used by ORing it 
into the desired QIO; for example: 

QIO$C IO.WLB!IQ.X, ••• ,<stadd,size,,blkh,blkl> 

The IQ.X subfunction permits user-specified retry algorithms for 
applications in which data reliability must be high. 

The overlapped seek drivers for RSX-llM-PLUS support subfunction bit 
IQ.Q: queue the request immediately without doing a seek (that is, 
use implied seeks). 

5.3.2 Device-Specific QIO Functions 

The device-specific functions of the QIO macro are valid for the RXOl 
only; they are shown in Table 5-3. 

Table 5-3 
Device-Specific Functions for the RXOl,. RX02, RLOl, and RL02 Disk Drivers 

Format ,Function 

QIO$C IO.RPB, ••• ,<stadd,size,,,pbn> Rea.d physical block 

QIO$C I 0. SEC, ••• Sense diskette characteristics 
(RX02 only) 

QIO$C IO.SMD, ••• ,<density,,> Set media density (RX02 only) 

QIO$C IO.WDD, ••• ,<stadd,size,,,pbn> Write physical block (with deleted 
data mark) (RXOl and RX02 only) 

QIO$C IO.WPB, ••• ,<stadd,size,,,pbn> Write physical block 

5-6 



wh.e1re: st add 

size 

DISK DRIVERS 

is the starting address of the data buffer (must be 
on a word boundary). 

is the data buffer size in bytes must be even and 
greater than zero). 

pbn is the physical block number where the transfer 
starts (no validation will occur). 

density is the media density as follows: 

0 single (RXOl-compatible) density 
2 double density 

5.4 STATUS RETURNS 

The error and status conditions listed in Table 5-4 are returned by 
the disk drivers described in this chapter. 

Code 

rs.sue 

IS .PND 

IS .RDD 

IE.ABO 

IE.ALN 

Table 5-4 
Disk Status Returns 

Reason 

Successful completion 

The operation specified in the QIO 
completed successfully. The second 
status block can be examined to 
number of bytes processed, if 
involved reading or writing. 

I/O request pending 

directive was 
word of the I/O 

determine the 
the operation 

The operation specified in the QIO directive has 
not yet been executed. The I/O status block is 
filled with zeros. 

Deleted data mark read 

A deleted record was encountered while executing an 
IO.RPB function. The second word of the I/O status 
block can be examined to determine the number of 
bytes processed (RXOl and RX02 only). 

Hequest aborted 

An I/O request was queued (not yet acted upon by 
the driver) when an IO.KIL was issued. 

File already open 

The task attempted to open a file on the physical 
device unit associated with specified LUN, but a 
file has already been opened by the issuing task on 
that LUN. 

(continued on next page) 

5-7 



Code 

IE.BLK 

IE. BBE 

IE.BYT 

IE.DNR 

IE.FHE 

IE. IFC 

IE .NLN 

IE .NOD 

DISK DRIVf:RS 

Table 5-4 (Cont.) 
Disk Status Returns 

Reason 

Illegal block number 

An illegal logical block number was specified. 
This code would be returned, for example, if block 
4800 were specified for an RK05 disk, on which 
legal block numbers extend from zero through 4799. 
IE.BLK would also be returned if an attempt was 
made to write on the last track of an RK06 disk. 
(See Section 5.5.) 

Bad block error 

The disk sector (block) being read was marked as a 
bad block in the header word. 

Byte-aligned buffer specified 

Byte alignment was specified for a buffer, but only 
word alignment is legal for disk. Alternatively, 
the length of a buffer is not an appropriate number 
of bytes. For example, all RP03 and RP02 disk 
transfers must be multiples of four bytes. 

Device not ready 

The physical device unit specified in the QIO 
directive was not ready to perform the desired I/O 
operation. 

Fatal hardware error 

The controller is physically unable to reach the 
location where input/output operation is to be 
performed. The operation cannot be completed. 

Illegal function 

A function code was specified in an I/O request 
that is illegal for disks. 

File not open 

The task attempted to close a file on the physical 
device unit associated with the specified LUN, but 
no file was currently open on that LUN. 

Insufficient buffer space 

Dynamic storage space has been depleted, and there 
was insufficient buffer space available to allocate 
a secondary control block. For example, if a task 
attempts to open a file, buffer space for the 
window and file control block must be supplied by 
the Executive. This code is returned when there is 
not enough space for this operation. 

(continued on next page) 

5-8 



IE: .OFL 

IE: .OVR 

II~ .PRI 

IE.SPC 

r:E:. VER 

IE .WCK 

IE.WLK 

DISK DRIVERS 

Table 5-4 (Cont.) 
Disk Status Returns 

Reason 

Device off-line 

The physical device unit associated with the LUN 
specified in the QIO directive was not on-line. 
When the system was booted, a device check 
indicated that this physical device unit was not in 
the configuration. 

Illegal read overlay request 

A read over~ay was requested, and the physical 
device unit specified in the QIO directive was not 
the physical device unit from which the task was 
installed. The read overlay function can only be 
executed on the physical device unit from which the 
task image containing the overlays was installed. 

Privilege violation 

The task which issued the request was not 
privileged to execute that request. For disk, this 
code is returned if a nonprivileged task attempts 
to read or write a mounted volume directly (i.e., 
using IO.RLB or IO.WLB). Also, this code is 
returned if any task attempts to attach a mounted 
volume. 

Illegal address space 

The buffer specified for a read or write request 
was partially or totally outside the address space 
of the issuing task. Alternately, a byte count of 
zero was specified. 

Unrecoverable error 

After the system's standard number of retries has 
been attempted upon encountering an error, the 
operation still could not be completed. For disk, 
unrecoverable errors are usually parity errors. 

Write check error 

An error was detected during the write check 
portion of an operation. 

Write-locked device 

The task attempted to write on a disk that was 
physically write-locked. 

When a disk I/O error condition is detected, an error is usually not 
returned immediately. Instead, RSX-llM attempts to recover from most 
errors by retrying the function as many as eight times. Unrecoverable 
errors are generally parity, timing, or other errors caused by a 
hardware malfunction. 

5-9 



DISK DRIVERS 

5.5 PROGRAMMING HINTS 

For the RK611 controller/RK06 or RK07 disk, the RLll controller/RLOl 
or RL02 disk, RM02 disk and RM03 disk, the driver write-protects the 
last track of the cartridge. This track contains the factory-recorded 
bad-sector file. 

5-10 

""· 



. ._,.. 

•'-". 

'-". 

"-" 

CHAPTEH 6 

DECTAPE DRIVER 

6.1 INTRODUCTION 

The RSX-llM DECtape driver supports the TCll-G dual DECtape controller 
with up to three additional dual DECtape transports. The TCll-G is a 
dual-unit, bidirectional, magnetic-tape transport system for auxiliary 
data storage. DECtape is formatted to store data at fixed positions 
on the tape, rather than at unknown or variable positions as on 
coventional magnetic tape. The system uses redundant recording of the 
mark, timing, and data tracks to increase reliability. Each reel 
contains 578 logical blocks. As with disk, each of these blocks can 
be accessed separately, and each contains 256 words. 

6.2 GET LUN INFORMATION MACRO 

Word 2 of the buffer filled by the Get 
directive (the first characterics word) 
information for DECtapes. A bit setting of 
described characteristic is true for DECtapes. 

LUN Information system 
contains the following 

1 indicates that the 

Bit §et tins Mean ins 

0 0 Record-oriented device 

1 0 Carriage-control device 

2 0 Terminal device 

3 1 File structured device 

4 0 Single-directory device 

5 0 Sequential device 

6 0 Reserved 

7 0 User-mode diagnostics supported 

8 0 Massbus device 

9 0 Unit software write-locked 

10 0 Input spooled device 

11 0 Output spooled device 

12 0 Pseudo device 

6-1 



DECTAPE DIUVER 

Bit sett ins Meaning 

13 0 Device mountable as a communications 
channel 

14 1 Device moun ta1bl e as a FILES-11 volume 

15 1 Device moun ta1bl e 

Words 3 and 4 of the buffer contain the maximum LBN. Word 5 indicates 
the default buffer size, 512 bytes, for DECtape. 

6 .. 3 QIO MACRO 

This section summarizes standard and device-specific QIO functions for 
the DECtape driver. 

6.3.1 Standard QIO Functions 

Table 6-1 lists the standard functions of the QIO macro that are valid 
for DECtape. 

Table 6-·l 
Standard QIO Functions for DECtape 

---
Format Function 

QIO$C IO.ATT, ••• Attach device 1 

QIO$C I 0 .DET, ••• Detach device 

QIO$C IO.KIL, ••• Kill I/O 2 

QIO$C IO.RLB, ••• ,<stadd,size,,,lbn> Read logical block (forward) 

QIO$C IO.RVB, ••• ,<stadd,size,,,lbn> Read virtual block (forward) 

QIO$C IO.WLB, ••• ,<stadd,size,,,lbn> Write logical block (forward) 

QIO$C IO.WVB, ••• ,<stadd,size,,,lbn> Write virtual block (forward) 

1 Only unmounted volumes may be attached. An a~tempt to attach a 
mounted volume will result in an IE.PR! status being returned in the 
I/O status doubleword. 

2 In-progress DECtape operations are allowed to complete when IO.KIL 
is received, unless the unit is not ready, because they take such a 
short time. I/O requests that are queued when IO.KIL is received are 
killed. An IE.ABO status is returned in the I/O status doubleword. 

6-2 

~ 
' I 



•.'-" 

DECTAPE DRIVER 

where: stadd is the starting address of the data buffer (must be on 
a word boundary). 

size is the data buffer size in bytes (must be even and 
greater than zero). 

lbn is the logical block number on the DECtape where the 
transfer starts (must be in the range 0-577). 

IO.RVB and IO.WVB are associated with file operations (see the 
IAS/nSX-11 I/O Operations Reference Manual). For these functions to 
be executed, a file must be open on the specified LUN if the volume 
associated with the LUN is mounted. Otherwise, the virtual I/O 
request is converted to a logical I/O request using the specified 
block numbers~ 

6.3.2 Device-Specific QIO Functions 

The device-specific functions of the QIO macro that are valid for 
DECtape are shown in Table 6-2. 

Format 

Table 6-2 
Device-Specific Functions for DECtape 

Function 

QIO$C IO.RLV, ••• ,<stadd,size,,,lbn> Read logical block (reverse) 

QIO$C IO.WLV, ••• ,<stadd,size,,,lbn> Write logical block (reverse) 

Where: stadd is the starting address of the data buffer (must be on 
a word boundary). 

size 

lbn 

is the data buffer size in bytes (must be even and 
greater than zero). 

is the logical block number on the DECtape where the 
transfer starts (must be in the range 0-577). 

6.4 STATUS RETURNS 

The error and status conditions listed in Table 6-3 are returned by 
the DECtape driver described in this chapter. 

6-3 



Code 

rs.sue 

IS.PND 

IE.ABO 

IE.ALN 

IE.BLK 

IE.BYT 

IE.DNR 

IE. IFC 

DECTAPE DIUVER 

Table 6-·3 
DECtape Status Returns 

Reason 

Successful completion 

The operation specified in the QIO 
completed successfully. The second 
status block can be examined to 
number of bytes processed, if 
involved reading or writing. 

I/O request pending 

directive was 
word of the I/O 

determine the 
the operation 

The operation specified in the QIO directive has 
not yet been executed. The I/O status block is 
filled with zeros. 

Request aborted 

An I/O request was queued (not yet acted upon by 
the driver) when an IO.KIL was issued. 

File already open 

The task attempted to open a file on the physical 
device unit associated with the specified LUN, but 
a file has already been opened by the issuing task 
on that LUN. 

Illegal block number. 

An illegal logical block number was specified for 
DECtape. The number exceeds 577 (1101 octal). 

Byte-aligned buffer specified. 

Byte alignment was specified for a buffer, but only 
word alignment is legal for DECtape. Alternately, 
the length of the buffer is not an even number of 
bytes. 

Device not ready 

The physical device unit specified in the QIO 
directive was not ready to perform the desired I/O 
operation. 

Illegal function 

A function code was specified in an I/O request 
that is illegal for DECtape. 

(continued on next page) 

6-4 

,._\ 
: 'I 



Code 

IE .. NLN 

IE .NOD 

IE.OFL 

IE .OVR 

IE .PRI 

IE:.SPC 

DECTAPE DRIVER 

Table 6-3 (Cont.) 
DECtape Status Returns 

Reason 

File not open 

The task attempted to close a file on the physical 
device unit associated with the specified LUN, but 
no file was currently open on that LUN. 

Insufficient buffer space 

Dynamic storage space has been depleted, and there 
was insufficient buffer space available to allocate 
a secondary control block. For example, if a task 
attempts to open a file, buffer space for the 
window and file control block must be supplied by 
the Executive. This code is returned when there is 
not enough space for this operation. 

Device off-line 

The physical device unit associated with the LUN 
specified in the QIO directive was not on-line. 
When the system was booted, a device check 
indicated that this physical device unit was not in 
the configuration. 

Illegal read overlay request 

A read overlay was requested and the physical 
device unit specified in the QIO directive was not 
the physical device unit from which the task was 
installed. The read overlay function can only be 
executed on the physical device unit from which the 
task image containing the overlays was installed. 

Privilege violation 

The task which issued the request was not 
privileged to execute that request. For DECtape, 
this code is returned when a nonprivileged task 
attempts to read or write a mounted volume directly 
(that is, IO.RLB, IO.RLV, IO.WLB, or IO.WLV). 
Also, this code is returned if any task attempts to 
attach a mounted volume. 

Illegal address space 

The buffer specified for a read or write request 
was partially or totally outside the address space 
of the issuing task. Alternately, a byte count of 
zero was specified. 

(continued on next page) 

6-5 



Code 

IE.VER 

IE.WLK 

DECTAPE DFtIVER 

Table 6-3 (Cont.) 
DECtape Status Returns 

Reason 

Unrecoverable error 

After the system's standard number of retries has 
been attempted upon encountering an error, the 
operation still could not be completed. For 
DECtape, this code is returned to indicate any of 
the following conditions. 

• A parity error was encountered. 

• The task attempted a forward multi-block 
transfer past block 577 (1101 octal). 

• The task attempted a backward 
transfer past block zero. 

Write-locked device 

multi-block 

The task attempted to write on a DECtape unit that 
was physically write-locked. 

6.4.1 , DECtape Recovery Procedures 

When a DECtape I/O error condition is detected, RSX-llM attempts to 
recover from the condition by retrying the function as many as five 
times. Unrecoverable errors are generally parity, mark track, or 
other errors caused by a faulty recording medium or a hardware 
malfunction. An unrecoverable error condition also occurs when a read 
or write operation is performed past the last block of the DECtape on 
a forward operation, or the first block of the DECtape on a reverse 
operation. 

In addition to the standard error conditions, an unrecoverable error 
is reported when the "rock count" exceeds eight. The rock count is 
the number of times the DECtape driver reverses the direction of the 
tape while looking for a block number. Assume that the block numbers 
on a portion of DECtape are 99, 96, and 101, where one bit was dropped 
from block number 100, making it 96. If an I/O request is received 
for block 100 and the tape is positioned at block 99, the driver 
starts searching forward for block 100. The first block to be 
encountered is 96 and because the driver is searching for block 100 in 
a forward direction and 96 is less than 100, the search continues 
forward. Block 101 is the next block, and because number 101 is 
greater than 100, the driver reverses the direction of the tape and 
starts to search backward. The next block number in this direction is 
96 and direction is reversed again, because 100 is greater than 96. 
To prevent the DECtape from being hung in this position, continually 
rocking between block numbers 96 and 100, a maximum rock count of 
eight has been established. 

6-6 



DECTAPE DRIVER 

6.4.2 Select Recovery 

If the DECtape unit is in an off-line condition when the I/O function 
is performed, the message shown below is output on the operator's 
console. 

*** DTn: -- SELECT ERROR 

where n is the unit number of the drive that is currently off-line. 
The user should respond by placing the unit to REMOTE. The driver 
retries the function, from the beginning, once every second. It 
displays the message once every 15 seconds until the appropriate 
DECtape unit is selected. A select error may also occur when there 
are two drives with the same unit number or when no drive has the 
appropriate unit number. 

6.5 PROGRAMMING HINTS 

This section 
considerat:ions 
this chapter., 

contains 
relevant 

6.5 .. l DECtape Transfers 

information on important programming 
to users of the DECtape driver described in 

If the transfer length on a write is less than 256 words, a partial 
block is transferred with zero fill for the rest of the physical 
block. If the transfer length on a read is less than 256 words, only 
the number of words specified is transferred. If the transfer length 
is greater than 256 words, more than one physical block is 
transferred. 

6.5.2 Reverse Reading and Writing 

The DECtape driver supports reverse reading and writing, because these 
functions speed up data transfers in some cases. A block should 
normally be read in the same direction in which it was written. If a 
block is read from a DECtape into memory in the opposite direction 
from that in which it was written, it is reversed in memory (e.g., 
word 255 becomes word O, and 254 becomes word 1). If this occurs, the 
user must then reverse the data within memory. 

6.5.3 Speed Considerations When Reversing Direction 

It is possible to reverse direction at any time while reading or 
writing DECtape. However, the user should understand that reversing 
direction substantially slows down the movement of the tape. Because 
DECtape must be moving at a certain minimum speed before reading or 
writing can be per.formed, a tape block cannot be accessed immediately 
after reversing direction. Two blocks must be bypassed before a read 
or write function can be executed, to give the tape unit time to build 
up to normal access speed. Furthermore, when a request is issued to 
read or write in a certain direction, the tape first begins to move in 
that direction, then starts detecting block numbers. The following 
examples illustrate these principles. 

6-7 



DECTAPE DRIVER 

If a DECtape is positioned at block number 12 and the driver receives 
a request to read block 10 forward, the tape starts to move forward, 
in the direction requested. When block number 14 is encountered, the 
driver reverses the direction of the tape, since 14 is greater than 
10. The search continues backward, and block numbers 11 and 10 are 
encountered. Because the direction must be reversed and the driver 
requires two blocks to build up sufficient speed for reading, block 
number 9 and 8 are also bypassed in the backward direction. Then the 
direction is reversed and the driver encounters blocks 8 and 9 forward 
before reaching block number 10 and executing the read request. 

6.5.4 Aborting a Task 

If a task is aborted while waiting for a unit to be selected, the 
DECtape driver recognizes this fact within one second. 

6-8 

·""· 

~\ 
' ! 

~. 



CHAPTER 7 

DECTAPE II DRIVER 

7.1 INTRODUCTION 

The DECTAPE II (TU58) driver supports TU58 system hardware, providing 
low cost, block replacable mass storage. 

7.1.1 TU58 Hardware 

Each TU58 DECTAPE II system consists of one or two TU58 cartridge 
drives, one tape drive controller, and one DLll-type serial line 
interface. Each TU58 drive functions as a random access, 
block-formatted mass storage device. Each tape cartridge is capable 
of storing 512(10) blocks of 512(10) bytes each. Access time is 10 
seconds, average. All I/O transfers (commands and data) are via the 
serial line interface at serial transmission rates of 9600 bps. All 
read and write check operations are performed by the controller 
hardware using a 16-bit checksum. The controller performs up to 8 
attempts to read a block, as necessary, before aborting the read 
operation and returning a hard error; however, whenever more than one 
read attempt is required for a successful read, the driver is notified 
in order to report a soft error message to the error logger. 

7.1.2 TUSS Driver 

The TU58 driver communicates with the TU58 hardware via a serial line 
interface (DLll); no other interface is required. All data and 
command transfers between the PDP-11 system and the TU58 are via 
programmed I/O and interrupt-driven routines; NPRs are not supported. 

7.2 GET LUN INFORMATION MACRO 

Word 2 of the buffer filled by the Get LUN Information system 
directive (the first characteristics word) contains the following 
information for the TU58. A bit setting of 1 indicates that the 
described characteristic is true for this device. 

7-1 



DECTAPE II .DRIVER 

Bit sett ins Meaning 

0 0 Record-oriented device 

1 0 Carr iage-contr,ol device 

2 0 Terminal devi c·e 

3 1 File-structured device 

4 0 Single-directory device 

5 0 Sequential device 

6 0 Reserved 

7 1 User-mode diagnostics supported 

8 0 Massbus device 

9 0 Unit software write-locked 

10 0 Input spooled device 

11 0 Output spooled device 

12 0 Pseudo device 

13 0 Device mountable as a communications channe~l 

14 1 Device mountable as a FILES-11 volume 

15 1 Device mountable 

Words 3 and 4 of the buffer are a double prec1s1on number specifying 
the total number of blocks on the device; this value is 512(10) 
blocks. Word 5 indicates the default buffer size, which is 512(10) 
bytes. 

7.3 QIO MACRO 

This section summarizes standard and de~vice-specific QIO functions for 
the TU58. 

7.3.1 Standard QIO Functions 

Table 7-1 lists the standard QIO system directive functions of the QIO 
macro that are valid for the TU58. 

7-2 



DECTAPE II DRIVER 

Table 7-1 
Standard QIO Functions for the TU58 

~"'orma t Function 

QIO$C IO. ATT, ••• Attach device 

QIO$C I 0 .D ET, ••• Detach device 

QIO$C IO.KIL, ••• Cancel I/O requestsl 

QIO$C IO.RLB, ••• ,<stadd,size,,,lbn> Read logical block 

QIO$C IO.WLB, ••• ,<stadd,size,,,lbn> Write logical block 

1 In-progress operations are allowed to complete when IO.KIL is 
received. I/O requests that are queued when IO.KIL is received 
are killed. 

where: stadd 

size 

is the starting address of the data buff er (must be 
on a word boundary) 

is the data buffer size in bytes (must be even and 
greater than zero) 

lbn is the logical block number on the cartridge tape 
where the data transfer starts (must be in the range 
of 0-777) 

7.3.2 Device-Specific QIO Functions 

The device-specific QIO system directive functions that are valid for 
the TU58 are shown in Table 7-2. 

QIO$C 

QIO$C 

QIO$C 

QIO$C 

where: 

Table 7-2 
Device-Specific QIO Functions for the TU58 

For.mat Function 

IO.WLC, ••• ,<stadd,size,,,lbn> Write logical block with 
check 

IO.RLC, ••• ,<stadd,size,,,lbn> Read logical block with 
check 

IO.BLS, ••• ,<lbn> Position tape 

IO.DGN, ••• Run internal diagnostics 

stadd 

size 

lbn 

is the starting address of the data buffer (must be 
on a word boundary) 

is the data baffer size in bytes (must be even and 
greater than zero) 

is the logical block number on the cartridge tape 
where the data transfer starts (must be in the range 
of 0-777) 

7-3 



DECTAPE II DRIVER 

Additional details for device-specific QIO functions are provi~ed in 
the following paragraphs. 

7.3.2.l IO.WLC - The IO.WLC function writes the specified data onto 
the tape cartridge. A checksum verification is then performed by 
reading the data just written; data is not returned to the task 
issuing the function. An appropriate status, based on the checksum 
verification, is returned to the issuing task. 

7.3.2.2 IO.RLC - The IO.RLC function reads the tape with an increased 
threshold in the TU58's data recovery circuit. This is done as a 
check to insure data read reliability. 

7.3.2.3 IO.BLS - The IO.BLS function is used for diagnostic purposes 
to position the tape to the specified logical block number. 

7.3.2.4 IO.DGN - The IO.DGN function is used for diagnostic purposes 
to execute the TU58's internal (firmware) diagnostics. Appropriate 
status information is returned to the issuing task via the I/O status 
block. 

7.4 STATUS RETURNS 

Table 7-3 lists the error and status conditions that are returned by 
the TU58 driver. 

Code 

rs. sue 

IE.DNR 

IE .IFC 

Table 7-3 
TU58 Driver Status Returns 

Reason 

Successful completion 

The operation specified in the QIO directive was 
completed successfully. The second word of the I/O 
status block can be examined to determine the number of 
bytes processed, if the operation involved reading or 
writing. 

Device not ready 

The physical device unit specified in the QIO directive 
was not ready to perform the desired I/O operation. 

Illegal function 

A function code was specified in an I/O request that is 
illegal for the TU58. 

(continued on next page) 

7-4 

~' 

~: 



Code 

IE. FHE 

IE .TMO 

IE:. VER 

IE:.WLK 

'--"'' 

DECTAPE II DRIVER 

Table 7-3 (Cont.) 
TU58 Driver Status Returns 

Reason 

Fatal hardware error 

Timeout error 

The TU58 failed to respond to a function within the 
normal time specified by the driver. 

Unrecoverable error 

After the system's standard number of retries (8) has 
been attempted upon encountering an error, the operation 
still could not be successfully completed. 

Cartridge write-locked 

The task attempted to write on a tape cartridge that is 
physically write-locked. 

7-5 



~. 
: ! 



CHAPTER 8 

MAGNETIC TAPE DRIVERS 

8.1 INTRODUCTION 

RSX-llM and RSX-llM-PLUS support a variety of magnetic tape devices. 
Table 8-1 summarizes these devices and subsequent sections describe 
them in greater detail. 

Channels 

Recording densi 
(frames/inch) 

Tape speed 
(inches/secon 

Maximum data 
Transfer rate 

(bytes/second 

Recording metho 

t.y 

d) 

) 

d 

Table 8-1 
Standard Magtape Devices 

TElO,TUlO TE16,TU16 TU45 

9 (TElO) 9 9 
7 or 9 (TUlO) 

For 7-channel: 800 or 1600 800 or 1600 
200, 556, or 
800 
For 9-channel: 
800 

45 45 75 

36,000 For 800 bpi: For 800 bpi: 
36,000 60,000 
For 1600 bpi: For 1600 bpi: 
72,000 120,000 

NRZI NRZI or NRZI or 
Phase Phase 
Encoding Encoding 

TU77 TS03 TS04 

9 9 9 

800 or 1600 800 1600 

125 15 45 

For 800 bpi: 12,000 72,000 
100,000 
For 1600 bpi: 
200,000 

NRZI or NRZI 
Phase Phase 
Encoding Encoding 

Programming for magtape is quite similar 
magnetic tape cassette (see Chapter 9). 
magtape can handle variable-length records 
select a parity mode. 

to programming for the 
Unlike cassette, however, 

and allows the user to 

8.1.1 TE10/TU10/TS03 Magnetic Tape 

The TE10/TU10/TS03 consists of a TMll controller with a TElO, TUlO or 
TS03 transport. It is a low-cost, high performance system for serial 
storage of large volumes of data and programs in an 
industry-compatible format. All recording is non-return-to-zero, 
inverted (NRZI). 

8-1 



MAGNETIC TAPE DRIVERS 

8.1.2 TE16/TU16/TU45/TU77 Magnetic Tape 

The TE16/TU16/TU45/TU77 consist of an RH11/RH70 controller, a TM02 or 
TM03 formatter, and a TE16/TU16/TU45/TU77 transport. They are quite 
similar to the TElO/TUlO but are Massbus devices, with a common 
controller, a specialized formatter, and a drive. Recording is either 
800 bpi NRZI or 1600 bpi phase-encoded (PE). 

8.1.3 TS04 Magnetic Tape 

The TS04 tape system consists of a TSll controller and a TS04 
integrated drive, controller, and formatter. The TS04 hardware is 
microprocessor-controlled for all operations, including I/O transfers, 
tape motion, (etc.), and comprehensive (internal) diagnostic test 
execution. Recording is 1600 bpi phase-encoded (PE). 

8.2 GET LUN INFORMATION MACRO 

Word 2 of the buffer filled by the Get· LUN Information system 
directive (the first characteristics word) contains the following 
information for magtapes. A bit setting of 1 indicates that the 
described characteristic is true for magtapes. 

Bit 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

Setting 

1 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

0 

or 

or 

1 

1 

Meaning 

Record-oriented device 

Carriage-control device 

Terminal device 

File structured device 

Single-directory device 

Sequential device 

Reserved 

User-mode diagnostics supported! 

Massbus device (set only for TE16, TU16, TU45 
or TU77 drives interfaced via an RH70 
controller)l 

Unit software write-locked 

Input spooled device 

Output spooled device 

Pseudo device 

Device mountable as a communications 
channel 

1 SYSGEN and device-dependent characteristic 

8-2 



Bit Setting 

14 0 or 1 

15 0 or 1 

MAGNETIC TAPE DRIVERS 

Meaning 

Device mountable as a FILES-11 volumel 

Device mountablel 

Words 3 and 4 of the buffer are undefined; 
default buffer size, for magtapes 512 bytes. 

word 5 indicates the 

8 • 3 QIO MACRO 

This section summarizes standard and device-specific QIO functions for 
the magtape drivers. 

8.3.l Standard QIO Functions 

Table 8-2 lists the standard functions of the QIO macro that are valid 
for magtape. 

Table 8-2 
Standard QIO Functions for Magtape 

Format 

Q IO$C IO .ATT, ••• 

QIO$C IO.DET, ••• 

QIO$C IO.KIL, ••• 

QIO$C IO.RLB, ••• ,<stadd,size> 

QIO$C IO.RVB, ••• ,<stadd,size> 

QIO$C IO.WLB, ••• ,<stadd,size> 

QIO$C IO.WVB, ••• ,<stadd,size> 

Function 

Attach device 

Detach device 

Cancel I/O requests 

Read logical block 
{read tape into buffer) 

Read virtual block 
{read tape into buffer) 

Write logical block 
{write buffer contents to tape) 

Write virtual block 
{write buffer contents to tape) 

where: stadd is the starting address of the data buffer {must be on 
a word boundary). 

size is the data buffer size in bytes. Size must be even, 
greater than zero, and, for a write, must be at least 
14 bytes. 

IO.KIL does not cancel an in progress request unless a select error 
has occurred. 

1 SYSGEN and device-dependent characteristic 

8-3 



MAGNETIC TAPJ~ DRIVERS 

8.3.2 Device-Specific QIO Functions 

Table 8-3 lists the device-specific functions of the QIO macro that 
are valid for magtape. Additional details on certain functions appear 
below. 

8.3.2.1 IO.RLV - A TE16, TU16, TS04, TU45, or TU77 in performing a 
read reverse, decrements its bus address register. The net effect is 
that data are not inverted in memory locations (as is the case for the 
DECtape driver). Thus, the data appear in the specified buffer in an 
identical fashion as with IO.RLB or IO.RVB. 

8.3.2.2 IO.RWD - Completion of IO.RWD means that the rewind has been 
initiated. Additional operations on that controller may then be 
queued. However, a request for the same unit will be queued by the 
driver until load point (BOT) is reached. 

8.3.2.3 IO.RWU - IO.RWU is normally used when operator intervention 
is required (e.g., to load a new tape). The operator must turn the 
unit back on-line manually before subsequent operations can proceed. 

Table 8-·3 
Device-Specific QIO Functions for Magtape 

Format 

QIO$C IO.EOF, ••• 

QIO$C IO.ERS, ••• 

Function 

Write end-of-file mark (tape mark) 

Erase ('I'El6, TU16, TU45, TU77, TS04 
only) 

QIO$C IO.RLV, ••• ,<stadd,size> Read logical block reverse (TE16, TU16, 
TU45, TS04, and TU77 only). 

QIO$C IO.RWD, ••• 

Q IO$C IO .RWU, ••• 

QIO$C IO.SEC, ••• 

QIO$C IO.SMO, ••• ,<cb> 

QIO$C IO.SPB, ••• ,<nbs> 

QIO$C IO.SPF, ••• ,<nes> 

QIO$C IO.STC, ••• ,<cb> 

Rewind unit 

Rewind and turn unit off-line 

Sense tape characteristics 

Mount tape and set tape characteristics 
(Unit must be READY, tape at LOAD POINT.) 

Space blocks 

Space files 

Set tape characteristics 

8-4 



where: 

MAGNETIC TAPE DRIVERS 

cb represents the characteristic bits to set. 

nbs is the number of blocks to space past (positive if 
forward, negative if reverse). 

nes is the number of EOF marks to space past (positive if 
forward, negative if reverse). 

size is the size of the stadd data buffer in bytes (must be 
an even number of bytes greater than zero). 

stadd is the starting address of the data buffer (may be on a 
byte boundary). 

8.3.2.4 IOeERS - The TE16, TU16, TU45, TU77, or 
3-inches of (write blank) tape. Effectively, 
extended interrecord gap. 

TS04 will erase 
this provides an 

8.3 .. 2.5 IO.SEC - This function returns the tape characteristics in 
the second I/O status word. The tape characteristic bits are defined 
a s f: o 11 ow s : 

Bit 

0 

1 

2 

3 

Meaning When Set 

For TUlO, 556 bpi 
density (seven-channel). 
For TE16, TU16, TU45, TU77, and 
TS04, reserved. 

For TUlO, 200 bpi 
density (seven-channel). 
For TE16, TU16, TU45, TU77, and 
TS04, reserved. 

For TUlO, core-dump 
mode (seven-channel, see below). 
For TE16, TU16, TS04, TU45 and 
Tu77, reserved. 

Even parity (default is odd). 
(Not selectable for the TS04.) 

4 Tape is past EOT. 

5 Last tape command encountered 
EOF (unless last command was 
backspace). 

6 

7 

Writing is prohibited. 

Writing with extended inter
record gap is prohibited 
(i.e., no recovery is attempted 
after write error). 

8-5 

Can Be Set by 
IO.SMO and IO.STC 

x 

x 

x 

x 

x 

x 



MAGNETIC TAPE: DRIVERS 

Bit Meaning When Set 

8 Select error on unit. 

9 Unit is rewinding. 

10 Tape is physically write-locked. 

11 For TElO, TUlO, and TS03, reserved. 
For TE16, TU16, TU45, TU77, and TS04, 
1600 bpi, density. 

12 For TUlO, drive is seven-channel. 
For TE16, TU16, TU45, TU77, and 
TS04, reserved. 

13 Tape is at load point (BOT). 

14 

15 

Tape is at end-of-volume (EOV). 

Tape is past EOV (reserved for driver; 
always 0 when read by user) . 

Can Be Set by 
IO.SMO and IO.STC 

x 

In core-dump mode (TUlO only, 800 bpi density, and seven-channel), 
each eight-bit byte is written on two tape frames, four bits per 
frame. In other modes on seven-channel tape, only six low-order bits 
per byte are written. 

For the TS04, 1600 bpi density is always selected (bit 11=1). Bit 11 
cannoi be modified by either the IO.SMO or IO.STC functions. For 
drives that use the TM03 controller, this bit can be either set or 
cleared; however, once the tape is moved from the load (beginning of 
tape) position (BOT) the device driver modifies this bit to reflect 
the actual density of the tape currently mounted. 

The effect of these settings is illustrated in Figure 8-1 for the TElO 
and TUlO and in Figure 8-2 for the TE16, TU16, TU45, and TU77. 

8-6 



SET EVEN 
PARITY 

SET 800 BPI, 
NINE-CHANNEL 

SET 556 BPI, 
SEVEN-CHANNEL 

yes 

yes 

yes 

MAGNETIC TAPE DRIVERS 

SET 800 BP~ 
SEVEN-CHANNE__:_j 

yes 

yes 

SET 800 BPI, 
SEVEN-CHANNEL, 
CORE-DUMP MODE 

SET 200 BPI, 
SEVEN-CHANNEL 

Figure 8-1 Determination of Tape Characteristics for the TElO/TUlO 

8-7 



MAGNETIC TAPE DRIVERS 

SET 1600 BPI ___ ye_s ___ -< 

No 

SET 800 BPj 

yes SET 
EVEN PARITY 

Figure 8-2 Determination of Tape Characteristics 
for the TE16/TU16/TU45/TU77 

8.3.2.6 IO.SMO - This function can be used as a combination of the 
sense (IO.SEC) and set (IO.STC) t.ape characteristics functions. 
Unlike IO.STC, however, the IO~SMO f.unction requires that the unit be 
READY and the tape be at load point (BOT). If either of these 
conditions is not met, the function returns an error status code of 
IE.FHE (refer to Table 8-4). 

The IO.SMO function should be used to set the characteristics of a 
newly loaded tape. If the IE.FHE error code is returned, the tape has 
not been loaded properly on the drive. 

8.4 STATUS RETURNS 

The error and status conditions listed in Table 8-4 are returned by 
the magtape drivers described in this chapter. 

8-8 



Code 

rs.sue 

IS .PND 

IE: .ABO 

IE:. BBE 

rn.BYT 

H:.DAA 

IE: .DAO 

MAGNETIC TAPE DRIVERS 

Table 8-4 
Magtape Status Returns 

Reason 

Successful completion 

The operation specified in the QIO directive was 
completed successfully. The second word of the I/O 
status block can be examined to determine 8 the 
number of bytes processed, if the operation 
involved reading or writing. This code is also 
returned if nbs equals zero in an IO.SPB function 
or if nes equals zero in an IO.SPF function. 

I/O request pending 

The operation specified in the QIO directive has 
not yet been completed. The I/O status block is 
filled with zeros. 

Operation aborted 

The specified I/O operation was cancelled via 
IO.KIL while in progress or while still in the I/O 
queue. 

Bad block 

A bad block was encountered while reading or 
writing and the error persists after nine retries. 
The number of bytes transferred is returned in the 
second word of the I/O status block. For TMll, 
IE.BBE may also indicate that a bad tape error 
(BTE) has been encountered while reading or 
spacing. 

Byte-aligned buffer specified 

Byte alignment was specified for a buffer, while 
only word alignment is legal for the QIO. 
Alternatively, the length of a buffer is not an 
even number of bytes. 

Device already attached 

The physical device unit specified in an IO.ATT 
function was already attached by the issuing task. 
This code indicates that the issuing task has 
already attached the desired physical device unit, 
not that the unit was attached by another task. 

Data overrun 

On a read, a record exceeded the stated buffer 
size. The final portion of the buffer is checked 
for parity, but is not read into memory. 

(continued on next page) 

8-9 



Code 

IE.DNA 

IE.DNR 

IE.EQF 

IE.EQT 

IE.EQV 

MAGNETIC T.APJ!: DRIVERS 

Table 8-4 (Cont.) 
Magtape Status Returns 

Rc~ason 

Device not attached 

The physical device unit specified in an IQ.DET 
function was not attached by the issuing task. 
This code has no bearing on the attachment status 
of other tasks. 

Device not ready 

The physical device unit specified in the QIO 
directive was not ready to perform the desired I/O 
operation. This code is returned to indicate one 
of the following conditions: 

• A timeout occurred on the physical device unit 
(that is, an interrupt was lost). 

• A vacuum failure occurred on the magtape drive. 

• While trying to read or space, the driver 
detected blank tape. 

• The LOAD switch on the physical drive was 
switched to the off position. 

• The unit failed internal diagnostic tests (TS04 
only) 

• A tape position or hardware error occurred for 
which no recovery procedure is possible. (Also 
occurs if bit 7 in u.cw2, or IQ.X, becomes set.) 

End-of-file encountered 

An end-of-file (tapemark) was encountered. 

End-of-tape encountered 

The end-of-tape (physical end-of-volume) was 
encountered while the tape was moving in the 
forward direction. A ten-foot length of tape is 
provided past EOT to be used for writing data and 
markers, such as volume trailer labels. The IE.EQT 
code will continue to be returned in the I/O status 
block until the EOT marker is passed in the reverse 
direction. EQT is not returned on a read 
operation. 

End-of-volume encountered 

On a forward space function, the logical 
end-of-volume was encountered. An end-of-volume is 
two consecutive end-of-file marks (EQF), or a 
beqinning-of-tape mark {BOT) ~followed by an EOF. 
The tape is normally left positioned between the 
two marks. 

(continued on next page) 

8-10 

_._, ___________________ _ 

~: 



"'-"' 

Code 

IE.FHE 

IE.IFC 

IE.GFL 

IE. SPC 

IE.VER 

IE.WLK 

MAGNETIC TAPE DRIVERS 

Table 8-4 (Cont.) 
Magtape Status Returns 

Reason 

Fatal hardware error 

Nonrecoverable hardware malfunction: e.g., magtape 
unit not READY and/or tape not at LOAD POINT when 
IO.SMO is issued. 

Illegal function 

An illegal function (or subfunction bit) was 
specified in a magtape I/O request. Refer also to 
Section 8.4.3. 

Device off-line 

The physical device unit associated with the LUN 
specified in the QIO directive was not on-line. 
When the system was booted, a device check 
indicated that this physical device unit was not in 
the configuration. 

Illegal address space 

The buffer specified for a read or write request 
was partially or totally outside the address space 
of the issuing task. For magtape, this code is 
also returned if a byte count of zero was specified 
or if the user attempted to write a block that was 
less than 14 bytes long. 

Unrecoverable error 

After the system's standard number of retries 
been attempted upon encountering an error, 
operation still could not be completed. 
magtape, this code is returned .in the case of 
or checksum errors or when a tape block could 
be read. 

Write-locked device 

has 
the 
For 
CRC 
not 

The task attempted to write on a magtape unit that 
was physically write-locked. Alternately, tape 
characteristic bit 6 was set by the software to 
write-lock the unit logically. 

After read and write functions, the second I/O status word contains 
the number of bytes actually processed by the function. After spacing 
functions, it contains the number of blocks or files spaced over. The 
EOF mark counts as one block. If an EOF mark is encountered by a read 
operation, the second I/O status word will contain an octal 2. 

8-11 



MAGNETIC TAPE DRIVERS 

8.4.1 Select Recovery 

If a request fails because the desired unit is off-line, no drive has 
the desired unit number, or has its power off, the following message 
is output on the operator's console: 

*** MTn: SELECT ERROR 

Where n is the unit number of the specified drive. The driver checks 
the unit for readiness and repeats the message every 15 seconds until 
the requesting task is aborted or the unit is made available. In the 
latter case, the driver then proceeds with the request. 

8.4.2 Retry Procedures for Reads and Writes 

If an error occurs during a read (e.g., vertical parity error), the 
recovery procedure depends on the type of magtape in use. A bad tape 
error on a TElO, TUlO, or TS03 results in an immediate return of the 
error code IE.VER. All other read errors for these devices and the 
TE16, TU16, TU45, and TU77 are retried by backspacing one record and 
then rereading the record in question. If the error persists after 
nine retries, IE.VER is returned. 

The TS04 attempts to recover from read errors by alternately reading 
reverse and forward (up to 16 attempts, maximum). During the next 8 
attempts, the driver precedes each read attempt by positioning the 
tape under the clean heads. If the error persists after 24 retries 
have been executed, IE.VER is returned. 

Write recovery is the same for all devices. When a write operation 
fails, the driver attempts to avoid the bad spot on the tape by means 
of an extended interrecord gap (IRG). This means that it backspaces, 
makes the IRG just before the record three inches longer, and then 
retries the write. If the error persists after nine retries, IE.VER 
is returned. The requesting task can use IO.STC to prohibit writing 
with an extended interrecord gap. In this case, the tape is 
backspaced and the write is retried. 

8.4.3 Powerfail Recovery for Magnetic Tapes 

If a power failure and/or loss of vacuum occurs on a magnetic tape 
drive, tape position is lost. (Note that an initial system boot 
simulates a recovery from a power failure.) Additionally, on auto-load 
drives, the tape will be positioned at BOT when the unit is turned 
online. 

To prevent accidental destruction of data currently on tape, the 
driver maintains a powerfail status indicator. When this indicator is 
set, the driver disallows any data transfer or tape motion commands 
until a rewind (IO.RWD), rewind unload (IO.RWU), or mount and set 
characteristics (IO.SMC) function is issued. These functions clear 
the powerfail indicator and allow all tape functions to be issued. It 
is also possible to issue the set and sense characteristics functions 
(IO.STC and IO.SEC) while the powerfail indicator is set. These 
functions, however, will not clear the bit. 

8-12 



MAGNETIC TAPE DRIVERS 

All functions other than those just described are considered illegal 
and cause the return of the IE.IFC (illegal function) error code to 
the requesting task. In situations where a tape is currently a 
mounted volume, the tape should be dismounted and then remounted 
before use~ In doing this, the rewind command will be issued, thereby 
clearing the powerfail indicator. 

8.5 PROGRAMMING HINTS 

This section 
considerations 
chapter. 

contains information on important programming 
relevant to users of magtape drivers described in this 

8.5.1 Block Size 

Each block must contain an even number of bytes, at least 14 for a 
write and at most 65,534. It is more reasonable, however, to work 
with a block size of approximately 2,048 bytes. 

8.5.2 Importance of Resetting Tape Characteristics 

A task that uses magtape should always set the tape characteristics to 
the proper value before beginning I/O operations. The task cannot be 
certain in what state a previous task left these characteristics. It 
is also possible that an operator might have changed the magtape unit 
selection. If thH selection switch is changed, the new physical 
device unit may not correspond to the characteristics of the unit 
described by the respective unit control block. 

8.5.3 Aborting a Task 

If a task is aborted while waiting for a magtape unit to be selected, 
the magtape driver recognizes this fact within one second. 

8.5.4 Writing an Even-Parity Zero-NRZI 

If an even-parity zero were written normally, it would appear to the 
drive as blank tape. It is therefore converted to 20 (octal). If 
this conversion is undesirable, the user must ensure that no 
even-parity zeros are output on the tape. 

8.5.5 Density Selection 

The TM03 controller imposes the following density selection 
restriction: the user cannot mix recording densities on any volume 
associated with the controller. 

Density for write operations is selected when the tape is at the load 
(BOT) position. Density for read operations is hardware - selected 
during the first read (away from BOT); after the first read, the 
IOQSEC function can be used to determine (sense) tape density. 

8-13 





.'-" 

'-" 

CHAPTER 9 

CASSETTE DRIVER 

9.1 INTRODUCTION 

RSX-llM supports the TAll magnetic tape cassette (a TAll controller 
with a TU60 dual transport). Programming for cassette is quite 
similar to programming for magtape (see Chapter 8). The TAll system 
is a dual-drive, reel-to-reel unit designed to replace paper tape. 
Its two drives run nonsimultaneously, using Digital Proprietary 
Philips-type cassettes. 

The maximum capacity of a cassette, in bytes, is 92,000 (minus 300 per 
file gap and 46 per interrecord gap). It can transfer data at speeds 
of up to 562 bytes per second. Recording density ranges from 350 to 
700 bits ber inch, depending on tape postion. 

9.2 GET LUN INFORMATION MACRO 

Word 2 of the buffer filled by the Get LUN Information system 
directive (the first characteristics word) contains the following 
infc>rmation for cassettes. A bit setting of l indicates that the 
described characteristic is true for cassettes. 

Bit Setting Mean ins 

0 l Record-oriented device 

l 0 Carriage-control device 

2 0 Terminal device 

3 0 File structured device 

4 0 Single-directory device 

5 l Sequential device 

6 0 Reserved 

7 0 User-mode di.agnostics supported 

8 0 Massbus device 

9 0 Unit software write-locked 

10 0 Input spooled device 

11 0 Output spooled device 

9-1 



Bit Setting 

12 0 

13 0 

14 0 

15 0 

CASSETTE DRIVER 

Meaning 

Pseudo device 

Device mountable as a communications 
channel 

Device mountable as a FILES-11 volume 

Device mountable 

Words 3 and 4 of the buffer are undefined; word 5 indicates the 
default buffer size, for cassettes 128 bytes. 

9.3 QIO MACRO 

This section summa~izes standard and device-specific QIO functions for 
the cassette driver. 

9.3.1 Standard QIO Functions 

Table 9-1 lists the standard functions of the QIO macro that are valid 
for cassette. 

Table 9-1 
Standard QIO Functions for Cassette 

Format Function 

QIO$C IO.ATT, ••• Attach device 

QIO$C IO.DET, ••• Detach device 

QIO$C IO.KIL, ••• Cancel I/O requests 

QIO$C IO.RLB, ••• ,<stadd,size> Read logical block 
(read tape into buffer) 

QIO$C IO.RVB, ••• ,<stadd,size> Read virtual block 
(read tape into buffer) 

QIO$C IO.WLB, ••• ,<stadd,size> Write logical block 
(write buff er contents tC> 
tape) 

QIO$C IO.WVB, ••• ,<stadd,size> Write virtual block 
(write buffer contents tc> 
tape) 

where: stadd is the starting address of the data buffer (may be on a 
byte boundary). 

size is the data buffer size in bytes (must be greater than 
zero). 

IO.KIL does not affect in progress-requests. 

9-2 



-~ 

.._,.. 

CASSETTE DRIVER 

9.3.2 Device-Specific QIO Functions 

Table 9-2 lists the device-specific functions of the QIO macro that 
are valid for cassette. The section on programming hints below 
provides more detailed information about certain functions. 

9.4 STATUS RETURN$ 

The error and status conditions listed in Table 9-3 are returned by 
the cassette driver described in this chapter. 

where: 

Code 

rs.sue 

I:S.PND 

Table 9-2 
Device-Specific QIO Functions for Cassette 

Format Function 

QIO$C IO. EOF I ••• 

Q IO$ c IO • RWD I ••• 

Write end-of-file gap 

Rewind unit 

QIO$C IO.SPB, ••• ,<nbs> 

QIO$C IO.SPF, ••• ,<nes> 

Space blocks 

Sp.ace files 

nbs 

nes 

is the number of blocks to space past 
forward, negative if reverse) • 

is the number of EOF gaps to space past 
forward, negative if reverse). 

Table 9-3 
Cassette Status Returns 

Reason 

Successful completion 

(positive if 

(positive if 

The operation specified in the QIO directive was 
completed successfully. The second word of the I/O 
status block can be examined to determine the 
number of bytes processed, if the operation 
involved reading or writing, or the number of 
blocks or files spaced, if the operation involved 
spacing blocks or files. 

I/O request pending 

The operation specified in the QIO directive has 
not yet been executed. The I/O status block is 
filled with zeros. 

(continued on next page) 

9-3 



Code 

IE.ABO 

IE.DAA 

IE .DAO 

IE .DNA 

IE.DNR 

IE.EOF 

IE.EQT 

CASSETTE DRIVER 

Table 9-3 (Cont.) 
Cassette Status Returns 

Reason 

Operation aborted 

The specified I/O operation was cancelled via 
IO • K I L wh i 1 e st il 1 i n the I IO queue • 

Device already attached 

The physical device unit specified in an IO.ATT 
function was already attached by the issuing task. 
This code indicates that the issuing task has 
already attached the desired physical device unit, 
not that the unit was attached by another task. 

Data overrun 

The driver was not able to sustain the data rate 
required by the TAll controller. 

Device not attached 

The physical device unit specified by an IO.DET 
function was not attached by the issuing task. 
This code has no bearing on the attachment status 
of other tasks. 

Device not ready 

The physical device unit specified in the QIO 
directive was not ready to perform the desired I/O 
operation. This code is returned to indicate one 
of the following conditions: 

• The cassette has not been physically inserted. 

• The unit is off-line. 

• A timeout occurred on the physical device unit 
(that is, an interrupt was lost). 

End-of-file encountered 

An end-of-file gap was recognized on the cassette 
tape. This code is returned if an EOF gap is 
encountered during a read or if the cassette is 
physically removed during an I/O operation. 

End-of-tape encountered 

While reading or writing, clear trailer at 
end-of-tape (EQT) was encountered. Unlike magtape, 
writing beyond EOT is not permitted on cassettes. 
This condition is always sensed on a write beforE~ it 
would be sensed on a read of the same section of 
tape. If IE.EQT is returned during a write, the 
cassette head has encountered EQT before finishing 
the writing of the last block. It is recommended 
that the user rewrite the block on another cassette 
in its entirety. 

(continued on next page) 

9-4 

~· 
! 



Code 

IE.IFC 

IE.OFL 

IE.SPC 

IE.VER 

IE.WLK 

CASSETTE DRIVER 

Table 9-3 (Cont.) 
Cassette Status Returns 

Reason 

Illegal function 

A function code was specified in an I/O request 
that is illegal for cassette. 

Device off-line 

The physical device unit associated with the LUN 
specified in the QIO directive was not on-line. 
When the system was booted, a device check 
indicated that this physical device unit was not in 
the configuration. 

Illegal address space 

The buffer specified for a read or write request 
was partially or totally outside the address space 
of the issuing task. Alternately, a byte count of 
zero was specified on a transfer. 

Nonrecoverable error 

This code is returned when a block check error 
occurs (see Section 9.6.5). The cyclic redundancy 
check (CRC), a two-byte value located at the end of 
each block, is a checksum that is tested d~ring all 
read operations to ensure that data is read 
correctly. This is returned if a read request did 
not specify exactly the number of bytes of data in 
the record on tape. If a nonrecoverable error is 
returned, the user may attempt recovery by spacing 
backward one block and retrying the read operation. 

Write-locked device 

The task attempted to write on a cassette unit that 
was physically write-locked. This code may be 
returned after an IO.WLB, IO.WVB, or IO.EOF 
function. 

9.4.1 Cassette Recovery Procedures 

If an error occurs during a read or write operation, the operation 
should be retried several times. The recommended maximum number of 
retries is nine for a read and three for a write because each retry 
involves backspacing, which does not always position the tape in the 
same placeo More than three retries of a write operation may destroy 
previously written data. For example, to retry a write, it is best to 
space two blocks in reverse, then space one block forward. This 
insures the tape is in the proper position to rewrite the block that 
encountered the error. 

After read and write functions, the second I/O status word contains 
the number of bytes actually processed by the function. After spacing 
functions, it contains the number of blocks or files actually spaced. 

9-5 



CASSETTE DRIVER 

9.5 STRUCTURE OF CASSETTE TAPE 

Figure 9-1 illustrates a general structure for cassette tape. 
different structure can be employed if the user wishes. 

A 

Here the tape consists of blocks of data interspersed with sections of 
clear tape that serve as leader, trailer, jnterrecord gaps (IRGs), and 
end-of-file gaps. 

The logical end-of-tape in this case consists of a sentinel label 
record, rather than the conventional group of end-of-file gaps. Each 
file must contain at least one block. The size of each block depends 
upon the number of bytes the user specifies when writing the block. 

IRGs 
BOT EOT 

\------.......... ------' \...._-....----_J '---' 

Abbreviation 

CL 

BOT 

LPG 

LR 

REC 

EOF 

IRG 

SLR 

LEOT 

EQT 

CT 

FILE 1 FILE 2 LEOT 

150 FEET 

Figure 9-1 Structure of Cassette Tape 

Meaning 

Clear leader 

Physical beginning-of-tape 

Load point gap (blank tape written by driver 
before the first retrievable record) 

File label record 

Fixed-length record (data) 

End-of-file gap 

Interrecord gap 

Sentinel label record 

Logical end-of-tape 

Physical end-of-tape 

Clear trailer 

9.6 PROGRAMMING HINTS 

This sect ion 
considerations 
this chapter. 

contains 
relevant 

information on important programming 
to users of the cassette driver described in 

9-6 



CASSETTE DRIVER 

9.6.l Importance of Rewinding 

The first cassette operation performed on a tape 
rewind to ensure that the tape is positioned to 
it is positioned in clear tape there is no way to 
is in leader at the beginning-of-tape (BOT) 
end-of-tape (EOT). 

9.6.2 End-of-File and IO.SPF 

must always be . a 
a known place. When 
determine whether it 
or in trailer at the 

The hardware senses end-of-file (EOF) as a timeout. When IO.SPF is 
issued in the forward direction (nes is positive), the tape is 
positioned two-thirds of the way from the beginning of the final file 
gap. In effect, this is all the way through the file gap. When 
IO.SPF is issued in the reverse direction (nes is negative), the tape 
is positioned one-third of the way from the beginning of the final 
file gap (i.e., two thirds of the way from the beginning of the last 
file spaced). Therefore to correctly position the tape for a read or 
write after issuing IO.SPF in reverse, the user should issue IO.SPB 
forward for one block, followed by IOoSPB in reverse for one block. 

9.6.3 The Space Functions, IO.SPB and IO.SPF 

IO.SPB always stops in an IRG, IO.SPF in an EOF gaps. Neither space 
function actually takes effect until data 1s encountered. For 
example, suppose the tape is positioned in clear leader at BOT and the 
user requests that one block be spaced forward. The drive passes over 
the remaining leader until it reaches data, passes one block, and 
stops in the IRG. Similarly, if the same command is issued when the 
tape is at BOT on a blank tape or a tape containing only EOF gaps, the 
function does not terminate until EOT. 

9.6.4 Verification of Write Operations 

Certain errors, such as cyclic redundancy check, are detected on read 
but not write operations. Therefore, to ensure reliability of 
recording, it is recommended that the user perform a read as 
verification of every write operation. 

9.6.5 Block Length 

The user must specify the exact number of bytes per block when 
requesting read or write operations. An attempt to read a block with 
an incorrect byte count causes an unrecoverable error (see Section 
9.4) to occur. 

9.6fi6 Logical End-of-Tape 

The conventional method of signaling logical end-of-tape by multiple 
EOF gaps is inadequate for cassettes. This is because multiple EOF 
gaps are not distinguishable from each other. For example, two 
sequential EOF gaps would be read as three instead of two. Also 
spacing functions, since they are triggered by encountering data, can 
not recognize multiple EOF gaps. Consequently, the use of a sentinel 
or key record to signal logical end-of-tape is recommended. 

9-7 





CHAPTER 10 

LINE PRINTER DRIVER 

10.1 INTRODUCTION 

The RSX-llM line printer driver supports the line printers summarized 
in Table 10-1. Subsequent sections of this chapter describe these 
printers in greater detail. 

Table 10-1 
"'-" Standard Line Printer Devices 

~ 

~ 

Meiael Column Width Character Set Lines per Minute 

LPll-F 80 64 170-1110 

LPll-H 80 96 170-1110 

LPll-J 132 64 170-1110 

LPll-K 132 96 170-1110 

LPll-R 132 64 1110 

LPll-S 132 96 1110 

LPll-V 132 64 300 

Ll?ll-W 132 96 300 

LSll 132 62 60-200 

LVll 132 96 500 

Ll\180 132 96 150 

10.1.l LPll Line Printer 

The LPll is a high-speed line printer available in a variety of 
models. The entire LPll model line consists of impact printers, using 
one hammer per column and a revolving drum with upper-case and 
optional lower-case characters. The LPll-R and LPll-S are fully 
buffered models which operate at a standard speed of 1110 lines per 
minute. The other LPll models have 20-character print buffers. These 
printers are therefore able to print at full speed if the printed line 
is no longer than 20 characters. Lines which exceed this maximum are 
printed at a slower rate. Forms with up to six parts may be used for 
multiple copies. 

10-1 



LINE PRINTER DRIVER 

10.l.2 LSll Line Printer 

The LSll is a mediu~-speed line printer. It has a 20-character print 
buffer, and lines of 20 characters or less are printed at a rate of 
200 lines per minute. Longer lines are printed at a slower rate. 
RSX-llM does not support the LSll expanded character set feature. 

10.1.3 LVll Line Printer 

The LVll is a fully-buffered, electrostatic printer-plotter which 
operates at a standard rate of 500 lines per minute. RSX-llM supports 
only the LVll print capability, not the plotter mode. 

10.1.4 LA180 DECprinter 

The LA180 is a 180-character/sec, dot-matrix impact printer. 
accepts multipart forms and pages of various lengths and widths. 

10.2 GET LUN INFORMATION MACRO 

It 

Word 2 of the buffer filled by the Get LUN Information system 
directive (the first characteristics word) contains the following 
information for line printers. A bit setting of 1 indicates that the 
described characteristic is true for line printers. 

Bit Settin9 Meanin9 

0 l Record-oriented device 

1 1 Carriage-control device 

2 0 Terminal dev:lce 

3 0 File structured device 

4 0 Single-directory device 

5 0 Sequential dE~vice 

6 0 Reserved 

7 0 User-mode diagnostics supported 

8 0 Massbus device 

9 0 Unit softwan~ write-locked 

10 0 Input spooled device 

11 0 Output spoolE~d device 

12 0 Pseudo devicE~ 

13 0 Device mountable as a communications channel 

14 0 Device mountable as a FI LES-11 volume 

15 0 Device mountable 

10-2 



LINE PRINTER DRIVER 

Words 3 and 4 of the buffer are undefined; 
default size for the device, for line 
printer carriage {that is, 80 or 132). 

10.3 QIO MACRO 

word 5 indicates the 
printers the width of the 

Table 10-2 lists the standard functions of the QIO macro that are 
valid for line printers. 

Table 10-2 
Standard QIO Functions for Line Printers 

Format Function 

QIO$C IO.ATT, ••• Attach device 

QIO$C IO.DET, .... Detach device 

QIO$C IO.KIL, .... Cancel I/O requests 

QIO$C IO.WLB, •• ~,<stadd,size,vfc> Write logical block 
{print buff er contents) 

QIO$C IO.WVB, •• e,<stadd,size,vfc> Write virtual block 
{print buffer contents) 

where: stadd is the starting address of the data buffer {may be on a 
byte boundary). 

size is the data buffer size in bytes {must be greater than 
zero). 

vfc is a vertical format control character from Table 10-4. 

IO.KIL does not cancel an in progress request unless the line printer 
is in an offline condition because of a power failure or a paper jam 
or because it is out of paper. 

The line printer driver supports no device-specific functions. 

10.4 STATUS RETURNS 

Table 10-3 lists the error and status conditions that are returned by 
the line printer driver described in this chapter. 

10-3 



Code 

rs.sue 

IS.PND 

IE.ABO 

IE.DAA 

IE.DNA 

IE.IFC 

IE.OFL 

IE.SPC 

LINE PRINTER DRIVER 

Table 10-3 
Line Printer Status Returns 

Reason 

Successful completion 

The operation specified in the QIO directive was 
completed successfully. The second word of the 
I/O status block can be examined to determine the 
number of bytes processed, if the operation 
involved writing. 

I/O request pending 

The operation specified in the QIO directive has 
not yet been executed. The I/O status block is 
filled with zeros. 

Operation aborted 

The specified I/O operation was cancelled while in 
progress or while in the I/O queue. 

Device already attached 

The physical device unit specified in an IO.ATT 
function was already attached by the issuing task. 
This code indicates that the issuing task has 
already attached the desired physical device unit, 
not that the unit was attached by another task. 

Device not attached 

The physical device unit specified an IO.DET 
function was not attached by the issuing task. 
This code has no bearing on the attachment status 
of other tasks. 

Illegal function 

A function code was specified in an I/O request 
that is illegal for line printers. 

Device off-line 

The physical device unit associated with the LUN 
specified in the QIO directive was not on-line. 
When the system was booted, a device check 
indicated that this physical device unit was not 
in the configuration. 

Illegal address space 

The buffer specified for a write request was 
partially or totally outside the address space of 
the issuing task. Alternately, a byte count of 
zero was specified. 

10-4 



'-""' 

LINE PRINTER DRIVER 

10.4.1 Ready Recovery 

If any of thE! following conditions occur: 

• Paper jam 

• Printer out of paper 

• Pr:inter turned off-line 

• Power failure 

the driver determines that the line printer is off-line, and the 
following message is output on the operator's console: 

***LPn: -- NOT READY 

wheire n is the unit number of the line printer that is not ready. The 
driver retries the function which encountered the error condition from 
the beginning, once every second. It displays the message every m 
seconds (m is defined at SYSGEN to be a value less than 256. The 
default is 15) until the line printer is readied. If a power failure 
occurs while printing a line, the entire line is reprinted from the 
beginning when power is restored. 

10.5 VERTICAL FORMAT CONTROL 

Table 10~4 summarizes the meaning of all characters used for vertical 
format control on the line printer. Any one of these characters can 
be specified as the vfc parameter in an IO.WLB or IO.WVB function. 

Octal 
Value 

040 

060 

061 

Cl 53 

Table 10-4 
Vertical Format Control Characters 

Character 

blank 

zero 

one 

plus 

Meaning 

SINGLE SPACE: output a line feed, print the 
contents of the buffer, and output a carriage 
return. Normally, printing immediately 
follows the previously printed line. 

DOUBLE SPACE: output two line feeds, print 
the contents of the b~ffer, and output a 
carriage return. Normally, the buffer 
contents are printed two lines below the 
previously printed line. 

PAGE EJECT: output a form feed, print the 
contents of the buffer, and output a carriage 
return. Normally, the contents of the buffer 
are printed on the first line of the next 
page. 

OVERPRINT: print the contents of the buffer 
and perform a carriage return, normally 
overprinting the previous line. 

(continued on next page) 

10-5 



Octal 
Value 

044 

LINE PRINTER DRIVER 

Table 10-4 (Cont.) 
Vertical Format Control Characters 

Character Meaning 

dollar PROMPTING OUTPUT: output a 
sign then print the '::::ontents of the 

line feed and 
buffer. 

000 null INTERNAL VERTICAL FORMAT: the buffer 
contents are printed without addition ()f 
vertical format control characters. In th:ls 
mode, more than one line of guarantec~d 

contiguous output can be printed per I/O 
request. 

All other vertical format control characters are interpreted as blanks 
(octal 040)."' 

10.6 PROGRAMMING HINTS 

This section contains information on important programming 
considerations relevant to users of the line printer driver described 
in this chapter. 

10.6.1 RUBOUT Character 

The line printer driver discards the ASCII character code 177 during 
output, because a RUBOUT on the LSll printer causes a RUBOUT of the 
hardware print buffer. 

10.6.2 Print Line Truncation 

If the number of characters to be printed exceeds the width of the 
print carriage, the driver discards excess characters until it 
receives one that instructs it to empty the buffer and return to 
horizontal position 1. The user can determine that truncation will 
occur by issuing a Get LUN Information system directive and examining 
word 5 of the information buffer. This word contains the width of the 
print carriage in bytes~ 

10.6.3 Aborting a Task 

If a task is aborted while waiting for the line printer to be readied, 
the line printer driver recognizes this fact within one second. 

10-6 



'-"' 

'-""' 

CHAPTER 11 

CARD READER DRIVER 

11.1 INTRODUCTION 

The RSX-llM card reader driver supports the CRll card reader. This 
reader is a virtually jam-proof device which reads EIA standard 
80-column punched cards at the rate of 300 per minute. The hopper can 
hold 600 cards. This device uses a vacuum picker which provides 
extreme tolerance to damaged cards and makes card wear insignificant. 
Cards are riffled in the hopper to prevent sticking. The reader uses 
a strong vacuum to deliver the bottom card. It has a very short card 
track, so only one card is in motion at a time. 

11.2 GET LUN INFORMATION MACRO 

Word 2 of the buffer filled by the Get LUN Information system 
directive (the first characteristics word) contains the following 
information for card readers. A bit setting of 1 indicates that the 
described characteristic is true for card readers. 

Bit Settir!_9 Mean ins 

0 1 Record-oriented device 

1 0 Carriage-control device 

2 0 Terminal device 

3 0 File structured device 

4 0 Single-directory device 

5 0 Sequential device 

6 0 Reserved 

7 0 User-mode diagnostics supported 

8 0 Massbus device 

9 0 Unit software write-locked 

10 0 Input spooled device 

11 0 Output spooled device 

12 0 Pseudo device 

11-1 



CARD READER DRIVER 

Bit Setting Meaning 

13 0 Device mountable as a communications 
channel 

14 0 Device mountable as a FI LES-11 volume 

15 0 Device mountable 

Words 3 and 4 of the buffer are undefined; word 5 indicates the 
default buffer size, which is 80 bytes for the card reader. 

11.3 QIO MACRO 

This section summarizes standard and device-specific QIO functions for 
the card reader driver. 

11.3.1 Standard QIO Functions 

Table 11-1 lists the standard functions of the QIO macro that are 
valid for the card reader. 

Table 11-1 
Standard QIO Functions for the Card Reader 

Format Function 

QIO$C IO.ATT, ••• Attach device 

QIO$C IO.DET I ••• Detach device 

QIO$C IO.KIL, ••• Cancel I/O requests 

QIO$C IO.RLB, ••• ,<stadd,size> Read logical block 
(alphanumeric) 

QIO$C IO.RVB, ••• ,<stadd,size> Read virtual block 
(alphanumeric) 

where: stadd is the starting address of the data buffer (may be on 
a byte boundary). 

size is the data buffer size in bytes (must be greater than 
zero). 

IO.KIL does not cancel an in progress request unless the card reader 
is in an offline condition because of a pick, read, stack or hopper 
check, because of power failure, or because the RESET button has not 
been depressed. 

11.3.2 Device-Specific QIO Function 

The device-specific function of the QIO macro that is valid for the 
card reader is shown in Table 11-2. 

11-2 



CARD READER DRIVER 

Table 11-2 
Device-Specific QIO Function for the Card Reader 

[ Forma._t~----------------------~-~--~------F_u_n_c_t __ i_o_n ________ ~--~-1 
l QIO$C IO.RDB, ••• ,<stadd,size> Read logical block (binary) 

whe :re: stadd 

size 

is the starting address of the data buffer (may be on 
a byte boundary). 

is the data buffer size in bytes (must be greater than 
zero) • 

11.4 STATUS RETURNS 

There are a wide variety of error conditions and recovery procedures 
related to the use of the card reader. This section describes the 
three major ways in which the system reports error conditions. 

l. Lights and indicators on the card reader panel are turned on 
or off to indicate particular operational problems such as 
read, pick, stack or hopper checks. Switches are available 
to turn the reader power on and off and to allow the user to 
reset after correcting an error condition. 

2. A messagE~ is output on the operator's console if operational 
checks or power problems occur. 

3. An I/O completion code is returned in the low-order byte of 
the first word of the I/O status block specified in the QIO 
macro to indicate success or failure on completion of an I/O 
function. 

The following subsections describe each of these returns in detail. 

11.4.l Card Input Errors and Recovery 

The table included below describes all external lights and switches 
used to indicate to the operator that a hardware problem has occurred 
and must be corrected. There are two classes of hardware errors: 

• Those requiring the operator to ready the reader and try the 
operation again. 

• Those requiring the operator to remove the last card from the 
output stacker, to replace it in the input hopper, and to try 
the operation again. 

In the first case, the card reader was unable to read the current 
card. In the second, the card was read incorrectly and must be 
physically removed from the output stacker. The card reader driver 
automatically restarts a read operation within one second after the 
cards have been replaced in the input hopper. 

Table 11-3 summarizes the functions of lights and indicators on the 
front panel of the card reader. It discusses common operational 
errors which might be encountered while reading cards and recovery 
procedures associated with these error conditions. 



Indicator 

POWER 
switch 

READ 
CHECK 
indicator 

PICK 
CHECK 
indicator 

CARD READER DRIVER 

Table 11-3 
Card Reader Switches and Indicators 

Description 

pushbutton 
indicator 
switch 
(alternate 
action: 
pressed for 
both ON and 
OFF) 

white light 

Action 

Controls application 
of all power to the 
card reader. 

When indicator is 
off, depressing switch 
applies power to 
reader and causes 
associated indica-
tor to light. 

When indicator is 
lit, depressing 
switch removes all 
power from reader and 
causes indicator to 
go out. 

When lit, this light 
indicates that the 
card just read may be 
torn on the leading or 
trailing edges, or 
that the card may 
have punches in 
column positions 0 
or 81. 

Because READ CHECK 
indicates an error 
condition, whenever 
this indicator is 
lit, it causes the 
card reader to stop 
operation and extin
guishes the RESET 
indicator. 

white light When lit, this light 
indicates that the 
card reader failed to 
move a card into the 
read station after 
it received a READ 
COMMAND from the 
controller. 

Stops card reader 
operation and extin
guishes RESET 
indicator. 

Recovery 

Card may have been 
read incorrectly; 
restore power if 
possible by depress
ing the POWER 
switch; insert the 
card again as the 
first card in the 
input hopper, and 
press the RESET 
switch; in some 
cases, it may be 
necessary to 
restart the program. 

Card was read incor
rectly; duplicate if 
necessary, insert 
the card again as 
the first card in the 
input hopper and 
press the RESET 
switch. 

Card could not be 
read; press the 
RESET switch to try 
again or remove the 
cards from the input 
hopper, smooth the 
leading edges, re
place, and then 
press the RESET 
switch. 

(continued on next page) 

11-4 

"'· 



Indicator 

STACK 
CHECK 
indi.cator 

HOPPER 
CHECK 
ind:icator 

STOP 
switch 

RESET. 
switch 

CARD READER DRIVER 

Table 11-3 (Cont.) 
Card Reader Switches and Indicators 

Description 

white light 

white light 

momentary 
pushbutton/ 
indicator 
switch 
(red light) 

momentary 
pushbutton/ 
indicator 
switch 
(green 
light) 

Action 

When lit, this light 
indicates that the 
previous card was not 
properly seated in 
the output stacker 
and therefore may be 
badly mutilated. 

Stops card reader 
operation and ex
tinguishes RESET 
indicator. 

When lit, this light 
indicates that either 
the input hopper is 
empty or that the out
put stacker is full. 

When depressed, 
immediately lights 
and drops the READY 
line, thereby extin
guishing the RESET 
indicator. Card 
reader operation then 
stops as soon as the 
card currently in the 
read station has been 
read. 

This switch has no 
effect on the system 
power; it only stops 
the current operation. 

When depressed and 
released, clears all 
error flip-flops and 
initializes card 
reader logic. Associ
ated RESET indicator 
lights to indicate 
that the READY signal 
is applied to the con
troller. 

The RESET indicator 
goes out whenever the 
STOP switch is de
pressed or whenever 
an error indicator 
lights (READ CHECK, 
PICK CHECK, STACK 
CHECK, or HOPPER 
CHECK). 

11-5 

Recovery 

Card may have been 
read incorrectly and 
is not positioned 
properly in the out
put stacker; dupli
cate the card if it 
is damaged; insert 
the card again as 
the first card in 
the input hopper and 
press the RESET 
switch. 

Card may have been 
read incorrectly; 
empty the stacker or 
fill the hopper; in
sert the card again 
as the fist card in 
the input hopper and 
press the RESET 
switch. 



CARD READER DRIVER 

11.4.2 Ready and Card Reader Check Recovery 

If any of the following conditions occurs: 

e POWER failure 

• Reset switch not pressed (reader offline) 

• Timing error. (Two columns were read before the card reader 
driver input the first column from the card reader.) 

the driver determines that the card reader is not ready, and the 
following message is output on the operator's console: 

*** CRn: -- NOT READY 

When a timing error occurs, the operator can proceed with normal card 
reader operation by: 

If 

1. Placing the card reader offline by pressing the STOP switch, 

2. Removing the last card read and insert it where it will be 
the next card read, and 

3. Placing the card reader online by pressing the RESET switch. 

any of the following conditions occurs: 

• Pick error (PICK CHECK) 

• Read error (READ CHECK) 

• Output stacker error (STACK CHECK) 

• Input hopper out of cards (HOPPER CHECK) 

• Output stacker full (HOPPER CHECK) 

the driver determines that a card reader check has occurred, and the 
following message is output on the operator's console: 

*** CRn: -- READ FAILURE. CHECK HARDWARE STATUS 

where n is the unit number of the card reader that is not ready. The 
operator should correct the error and press RESET: the driver 
attempts the function from the beginning, once every second. It 
displays the message once every m seconds (m is defined at SYSGEN as a 
value less than 256. The default is 15) until the card reader is 
readied. In all cases except pick error, the last card read should be 
reinserted in the input hopper, as described in Section 11.4.1. 

11.4.3 I/O Status Conditions 

The error and status conditions listed in Table 11-4 are returned by 
the card reader driver described in this chaptera 

11-6 



Code 

rs.sue 

IS .PND 

rn .ABO 

rn .DAA 

Il~ .DNA 

rn .EOF 

IE:. IFC .,_.,,. 

LE .NOD 

CARD READER DRIVER 

Table 11-4 
Card Reader Status Returns 

Reason 

Successful completion 

The operation specified in the QIO directive was 
completed successfully. The second word of the 
I/O status block can be examined to determine the 
number of bytes processed, if the operation 
involved reading. 

I/O request pending 

The operation specified in the QIO directive has 
not yet been executed. The I/O status block is 
filled with zeros. 

Operation aborted 

The specified I/O operation was cancelled while in 
progress or while still in the I/O queue. 

Device already attached 

The physical device unit specified in an IO.ATT 
function was already attached by the issuing task. 

Device not attached 

The physical device unit specified in an IO.DET 
function was not attached by the issuing task. 
This code has no bearing on the attachment status 
of other tasks. 

End-of-file encountered 

An end-of-file control card was recognized. 

Illegal function 

A function code was specified in an I/O request 
that is illegal for card readers. 

Buffer allocation failure 

Dynamic storage space has been depleted, and there 
was insufficient buffer space available to 
allocate a card buffer (that is, cards are read 
into a driver buffer, translated, and then moved 
to the user buffer). 

(continued on next page) 

11-7 



Code 

IE .OFL 

IE.SPC 

CARD READER DRIVER 

Table 11-4 (Cont.) 
Card Reader Status Returns 

Reason 

Device off-line 

The physical device unit associated with the LUN 
specified in the QIO direct~ve was not on-line. 
When the system was booted, a device check 
indicated that this physical device unit was not 
in the configuration. 

Illegal address space 

The buffer specified for a read request was 
partially or totally outside the address space of 
the issuing task. Alternately, a byte count of 
zero was specified. 

11.5 FUNCTIONAL CAPABILITIES 

The card reader driver can perform the following functions: 

1. Read cards in DEC026 format and translate to ASCII. 

2. Read cards in DEC029 format and translate to ASCII. 

3. Read cards in binary format. 

If the QIO macro specifies the IO.RLB or IO.RVB function, the driver 
interpets all data as alphanumeric (026 or 029 format). As explained 
below, control characters indicate whether 026 or 029 is desired. If 
the QIO macro specifies IO.ROB, the driver interprets all data, 
including 026 and 029 control characters, as binary. 

11.5.1 Control Characters 

Table 11-5 lists the multipunched cards that the card reader driver 
recognizes as control characters. They are never transferred to the 
user's buffer or included in the count of transferred bytes in 
alphanumeric mode. In binary mode, the only control card recognized 
is binary EOF. 

Table 11-5 
Card Reader Control Characters 

Punches Columns Meaning 

12-11-0-1-6-7-8-9 1 End-of-file (alphanumeric) 

12-11-0-1-6-7-8-9 (all 8 punches in End-of-file (binary) 
the first 8 columns) 

12-2-4-8 1 026-coded cards follow 

12-0-2-4-6-8 l 029-coded cards follow 

11-8 

~ 

~' 



CARD READER DRIVER 

DEC026 is the default translation mode when the system is 
bootstrapped. This mode remains in effect until explicitly changed by 
a control card indicating that DEC029 cards will follow. After 
encountering a DEC029 control card, the driver translates all cards in 
DEC029 format unless another DEC026 control card is encountered. This 
card overrides the 029 mode specification and indicates that 
subsequent cards are to be translated in 026 format. Control 
characters are addressed to the card reader itself, and remain in 
effE~ct even when the reader is attached and subsequently detached. 

The default condition can easily be changed from DEC026 to DEC029 by 
reading an 029 control card, and then saving the system with the MCR 
SAV command. 

11.6 CARD READER DATA FORMATS 

The card reader reads data in either alphanumeric or binary format. 

11.6.1 Alphanumeric Format (026 and 0211) 

Table 11-6 summarizes the translation from DEC026 or DEC029 card codes 
to ASCII. 

11.6.2 Binary Format 

In RSX-llM binary format, the data are not packed, but are transferred 
exactly as read, one card column per word. Because each word has 16 
bits and each card column represents only 12, the data from the column 
are stored in the rightmost 12 bits of the word. The word's remaining 
four bits contain zeros. 

11. 7 PROGRAMMING HINTS 

This section contains information on important programming 
considerations relevant to users of the card reader driver described 
in this chapter. Section 11.4 contains information on operational 
error-recovery procedures which might be important from a programming 
point of view. 

11.7.l Input Card Limitation 

Only one card can be read with a single QIO macro call. A request to 
read more than 80 bytes or columns, the length of a single card, does 
not result in a multiple card transfer. Only 80 columns are 
processed. It is possible to read fewer than 80 columns of card input 
with a QIO read function. The user can specify that only the first 10 
columns, for example, of each card are to be read. 

11.7.2 Aborting a Task 

If a task which is waiting for the 
aborted, the card reader driver 
second. 

11-9 

card reader to 
recognizes this 

be readied is 
fact within one 



CARD READER DRIVER 

Table 11-6 
Translation from DEC026 or DEC029 to ASCII 

Non- Non-
Parity Parity 

Character ASCII DEC029 DEC026 Character ASCII DEC029 DEC026 

173 12 0 12 0 ' 054 0 8 3 0 8 3 
175 11 0 11 0 - 055 11 11 

SPACE 040 none none . 056 12 8 3 12 8 3 
! 041 12 8 7 12 8 7 I 057 0 l 0 l 
II 042 8 7 0 8 5 0 060 0 0 
# 043 8 3 0 8 6 1 061 1 l• 
$ 044 11 8 3 11 8 3 2 062 2 2 
% 045 0 8 4 0 8 7 3 063 3 3 
AND 046 12 11 8 7 4 064 4 4 
' 047 8 5 8 6 5 065 5 5 
( 050 12 8 5 0 8 4 6 066 6 6 
) 051 11 8 5 12 8 4 7 067 7 7 
* 052 11 8 4 11 8 4 8 070 8 8 
+ 053 12 8 6 12 9 071 9 9 
: 072 8 2 11 8 2 M 115 11 4 11 4 
i 073 11 8 6 0 8 2 N 116 11 5 11 5 
< 074 12 8 4 12 8 6 0 117 11 6 11 6 
= 075 8 6 8 3 p 120 11 7 11 7 
> 076 0 8 6 11 8 6 Q 121 11 8 11 8 
? 077 0 8 7 12 8 2 R 122 11 9 11 9 
@ 100 8 4 8 4 s 123 0 2 0 2 
A 101 12 1 12 1 T 124 0 3 0 3 
B 102 12 2 12 2 u 125 0 4 0 4 
c 103 12 3 12 3 v 126 0 5 0 5 ~ 

! 
D 104 12 4 12 4 w 127 0 6 0 6 
E 105 12 5 12 5 x 130 0 7 0 7 
F 106 12 6 12 6 y 131 0 8 0 8 

-G 107 12 7 12 7 z 132 0 9 0 9 
H 110 12 8 12 8 [ 133 12 8 2 11 8 5 
I 111 12 9 12 9 \ 134 o a· 2 8 7 
J 112 11 1 11 1 ] 135 11 8 2 12 8 5 
K 113 11 2 11 2 "" or t 136 11 8 7 8 5 
L 114 11 3 11 3 or - 137 0 8 5 8 2 -

11-10 

• 



---- --------

CHAPTER 12 

MESSAGE-ORIENTED COMMUNICATION DRIVERS 

12.l INTRODUCTION 

RSX-llM supports a variety of communication line interfaces 
synchronous and asynchronous, single-line and multiplexers, 
character-oriented and message-oriented. These are used for terminal 
communications, remote job entry, multicomputer interfaces, and 
laboratory and industrial control communications. Communications line 
interfaces can be roughly divided into two categories: 

• Terminal (character-oriented) communicati6ns devices 

• Multicomputer (message-oriented) communications devices 

Chapter 1, 2 and 3 describe the character-oriented asyncnronous 
communications line interfaces used primarily for terminal 
communications. The Terminals and Communications Handbook contains 
more detail on these devices. This chapter describes in some detail 
the RSX-llM message-oriented synchronous and asynchronous 
communication line interfaces. These are used most frequently in 
multicomputer communications. 

Character-oriented communications devices include the DHll, DJll, 
DLll-A, DLll-B/C/D, and DZll interfaces. These are asynchronous 
multiplexers and single-line interfaces used almost exclusively for 
terminal communications. Transfers on all of these interfaces are 
performed one character at a time. None of the interfaces in this 
category has a driver of its own (i.e., they are supported via the 
terminal driver), and none can be accessed directly as RSX-llM 
devices. 

Message-oriented communications line interfaces are used primarily to 
link: two separate but complementary computer systems. One system must 
serve as the transmitting device and the other as the receiving 
device. Devices in this category. include the synchronous and 
asynchronous single-line interfaces summarized in Table 12-1. 

The message-oriented communication line interfaces are used primarily 
to transfer large blocks of data. 

Whereas the character-oriented interfaces can only be accessed 
indirectly through the terminal driver, the DAll-B, DLll-E, DMCll, 
DPll, DQll, DUll, and DUPll allow I/O requests to be queued directly 
for them. These devices have driveFs of their own and can be accessed 
by means of the logical device names listed in Table 1-1. These names 
can be used in assigning LUNs via the Assign LUN system directive, at 
task build, or via the REASSIGN MCR command. The following 
subsections briefly discuss the message-oriented interfaces supported 
for RSX-llM. 

12-1 



MESSAGE-ORIENTED COMMUNICATION DRIVERS 

Table 12-1 
Message-Oriented Communication Interfaces 

Model Type Rate Duplex Data block Synch. 
(KBaud) Half/Full ~words) Character 

DAll-81 Parallel 500 x 32K no 

DLl l-E2 Serial, asynchronous 0.05-9.6 x x 32K programmable 

DMCll Serial, synchronous 19.2-1000 x x BK no 

DPlll Serial, synchronous 2-19.2 x x 32K programmable 

DQlll Serial, synchronous 2.4-1000 x x 32K programmable 

Du11l Serial, synchronous 0.05-9.6 x x 32K programmable 

DUPll Serial, synchronous 0.05-9.6 x x 32K programmable 

1 Support is not provided on RSX-llM-PLUS systems. 

2 DLll-E support is provided on RSX-llM-PLUS systems using the 
full-duplex terminal driver only. 

12.1.1 DAll-B Parallel Interface 

The DAll-B provides a bit-parallel, direct-memory-access interface 
between two PDP-11 computer systems. Data transfers are performed a 
w~rd at a time and are made directly between the memories of the two 
systems. The maximum transfer rate is 500,000 baud, and is adjustable 
by the user to match the system configuration requirements. Being a 
parallel device, the DAll-B does not utilize sync characters. The 
interface is half-duplex and transfers data in blocks of up to 32K 
words. 

The DAll-B requires two cooperating computers to effect a data 
transfer. In order to control the physical link between the 
computers, the device driver contains its own simple line protocol. 
This protocol requires one system to issue a receive QIO and the other 
to issue a transmit QIO before any data is actually transferred. 

12.1.2 DLll-E Asynchronous Line Interface 

The DLll-E is an asynchronoust serial-bit, single-line interface. It 
is a block-transfer device used for remote terminal and multicomputer 
communications. Baud rates are selectable~ between 50 and 9600, and 
full data-set control is supported.3 

3 Software support for data-set control consists of interlocking RTS 
and CTS for data transmission, and the setting of DTR (data terminal 
ready) to enable auto-answer modems to answer incoming calls. DTR is 
set when an IO.INL QIO (initialize) is issued. 

12-2 



MESSAGE-ORIENTED COMMUNICATION DRIVERS 

12.1.3 DMCll Synchronous Line Interface 

The DMCll provides a direct-memory-access interface between two PDP-11 
computer systems using the DDCMP line protocol, thus delivering high 
throughput and reliability while simplifying programming. The DMCll 
supports non-processor request (NPR) data transfers of up to SK words 
at rates of 1,000,000 baud for local operation (over coaxial cable) 
and 19,200 baud for remote operation (using modems). Both full- and 
half-duplex modes are supported. The DMCll also implements remote 
load detect, allowing it to reinitialize a halted computer system. 

12.1.4 DPll Synchronous Line Interface 

The DPll provides a program interrupt interface between a PDP-11 and a 
serial synchronous line. This interface facilitates the use of the 
PDP-11 in remote batch processing, remote data collection, and remote 
concentration applications. The modem control feature allows the DPll 
to be used in switched or dedicated configurations. 

On the DPll, baud rates are selectable between 2000 and 19,200. The 
programmer can select a specific sync character which is used to 
synchronize the transmitting and receiving systems. 

12.1.5 DQll Synchronous Line Interface 

The DQll provides a direct memory access interface between a PDP-11 
and a serial synchronous line. The direct memory access 
characteristic of the DQll allows the device to operate at speeds 
higher than those of program interrupt devices, and with a lower 
interrupt overhead. Modem control of the DQll allows the device to be 
used in switched or dedicated configurations. 

The DQll handles data rates from 2400 baud to 1,000,000 baud. The 
limiting rate is determined by the modem and data set interface level 
converters. 

The DQll sync character is programmable in the same manner as the DPll 
and the DUll. The maximum data block length transmitted is 65,536 
characters. 

12.1.6 DUll Synchronous Line Interface 

The DUll synchronous line interface is a single-line communications 
device which provides a program-controlled interface between the 
PDP-11 and a serial synchronous line. The PDP-11 can be interfaced 
with a high-speed line to perform remote batch processing, remote data 
collection, and remote concentration applications. Modem control is a 
standard feature of the DUll and allows the device to be used in 
switched or dedicated configurations. The DUll transmits data at a 
maximum rate of 9600 baud; this rate is limited by modem and data set 
interface level converters. 

The DUll can be programmed to accept any user-defined sync character. 
The use of the sync character is the same for the DUll and the DPll. 

12·-3 



MESSAGE-ORIENTED COMMUNICATION DRIVERS 

12.1.7 DUPll Synchronous Line Interface 

The DUPll is identical to the DUll, except that it incorporates 
hardware to perform cyclic redundancy checking. 

12.2 GET LUN INFORMATION MACRO 

Word 2 of the buffer filled by the Get LUN Information system 
directive (the first characteristics word) contains the following 
information for message-oriented communication interfaces. A bit 
setting of 1 indicates that the described characteristic is true for 
the interfaces described in this chapter. 

Bit Setting Meaning 

0 0 Record-oriented device 

1 0 Carriage-control device 

2 0 Terminal device 

3 0 File structured device 

4 0 Single-directory device 

5 0 Sequential device 

6 0 Reserved 

7 0 User-mode diagnostics supported 

8 0 Massbus device 

9 0 Unit software write-locked 

10 0 Input spooled device 

11 0 Output spooled device 

12 0 Pseudo device 

13 1 Device mountable as a communications channel 

14 0 Device mountable as a FILES-11 volume 

15 1 Device mountable 

Words 3 and 4 are undefined, and word 5 has a special meaning for the 
DLll-E, DQll, DPll, and the DUll interfaces. Byte 0 of word 5 
contains the number of sync characters to be transmitted before a 
synching message (for example, after line turn around in half-duplex 
operation), and byte 1 is used as a sync counter. 

12-4 

~ 
I 



MESSAGE-ORIENTED COMMUNICATION DRIVERS 

1 2 • 3 QIO MACRO 

This section summarizes the standard and device-specific functions of 
the QIO macro that are valid for the communication interfaces 
described in this chapter. 

12.3.1 Standard QIO Functions 

Table 12-2 lists the standard functions of the QIO macro that are 
valid for the communication devices. 

Table 12-2 
Standard QIO Functions for Communication Interfaces 

Format Function 

Q1I0$C IO.ATT, ••• Attach devicel 

QIO$C IO.DET, ••• 

CHO$C IO.KIL, ••• 

QIO$C IO.RLB, ••• ,<stadd,size> 

QIO$C IO.WLB, ••• ,<stadd,size> 

Detach device 

Cancel I/O requests 

Read logical block (stripping 
sync) 

Write logical block (preceded by 
syncs) 

1 Only unmounted channels may be attached. An attempt to attach a 
mounted channel will result in an IE.PR! status being returned in the 
I/O status doubleword. 

whE~re: stadd is the starting address of the data buffer (may be on a 
byte boundary). 

size is the data buffer size in bytes (must be greater than 
zero). 

12.3.2 Device-Specific QIO Functions 

The specific functions of the QIO macro that are valid for the 
communication line interfaces are shown in Table 12-3. 

12-5 



MESSAGE-ORIENTED COMMUNICATION DRIVERS 

Table 12-3 
Device-Specific QIO Functions for Communication Interfaces 

Format 

QIO$C IO.FOX 

QIO$C IO.HDX, ••• ,<stat,mode> 

QIO$C IO.INL, ••• 

QIO$C IO.RNS, ••• ,<stadd,size> 

QIO$C IO.SYN, ••• ,<syn> 

QIO$C IO.TRM, ••• 

Function 

Set device to full-duplex mode. 
Not applicable to DAll-B. 

Set device to half-duplex mode. 
Not applicable to DAll-B. 

Initialize device and set device 
characteristics 

Read logical block, 
stripping sync 
(transparent mode). Not 
to DQll. For DAll-B 
treated like IO.RLB. 

without 
characters 
applicable 
and DMCll, 

Specify sync character. Not 
applicable to DAll-B or DMCll. 

Terminate communication, 
disconnecting from physical 
channel. 

QIO$C IO.WNS, ••• ,<stadd,size> Write logical block without 

where: 

preceding sync characters 
(transparent mode). For DAll-B and 
DMCll, treated like IO.WLB. 

stadd is the starting address of the data buffer (may be on a 
byte boundary). 

size is the data buffer size in bytes (must be greater than 
zero). 

syn is the sync character, expressed as an octal value. 

stat is the station assignment (primary or secondary). 

mode is the transmission mode (normal or maintenance). 

The device-specific functions listed in Table 12-3 are described in 
greater detail below. 

12.3.2.1 IO.FDX - The IO.FOX QIO function is used to set the mode on 
a DLll-E, DPll, DQll, DUll, DUPll, or DMCll unit to full-duplex. The 
IO.FOX function code can be combined (ORed) with the IO.SYN function 
code, if desired, to set the operational characteristics of the 
physical device unit. 

12-6 

~. 



MESSAGE-ORIENTED COMMUNICATION DRIVERS 

12.3.2.2 IO.BOX - The IO.HDX QIO function is used to set· the mode on 
a DLll-E, DPll, DQll, DUll, DUPll, or DMCll unit to half-duplex. The 
IO.HDX function code can be combined (ORed together) with the IO.SYN 
function code, if desired, to set the operational characteristics of 
the physical device unit. 

Setting half-duplex on the DMCll also involves setting the station 
assignment {primary/secondary) and may include selecting maintenance 
mode (MOP) as opposed to normal mode. The station assignment is 
included in optional QIO parameter pl. A zero indicates primary 
station and a non-zero indicates secondary station. The DMCll works 
properly if both ends are primary stations or if there is one primary 
and one secondary station. It does not work if both ends are 
secondary stations. Optional QIO parameter p2 is used to select the 
mode. A zero selects normal mode and a non-zero selects MOP mode. A 
DMCll in MOP mode cannot communicate with a DMCll in normal. mode. 

12.3.2.3 IO.INL and IO.TRM - These two QIO functions have the same 
function code but different modifier bits. IO.INL is used to 
initialize a physical device unit for use as a communications link. 
It turns the device on-line, sets device characteristics, and ensures 
that the appropriate data terminal is ready. IO.TRM disconnects the 
device. If the device has a dial-up interface, it also hangs up the 
line. 

12.3.2.4 IO.RNS - The IO.RNS QIO function is used to read a logical 
block of data, without stripping the sync characters which may precede 
the data. A similar function is IO.RLB, which is non-transparent, in 
that it causes sync characters preceding the data message to be 
stripped. IO.RLB is used at the start of a segmented data request, in 
which the block might have the following layout: 

[SJ s H H ..__H_.._H _ _._l _c_s__,l.__c_s__._ _______ D_A_T_A ____ l _c_s__,I 
1 2 3 4 5 6 7 8 

where: S is a sync character 

H is a header character 

CS is a validity check character 

The programmer must strip sync characters from the beginning of a data 
block in this way. Stripping only at the beginning of a read allows a 
latE~r character which happens to have the same binary value as a sync 
character to be read without stripping. IO.RLB is used to read a 
logical block with leading sync characters stripped; IO.RNS is used 
to read the block without stripping leading sync characters. Since 
the DAll-B is a parallel device and there are no sync characters, it 
treats the latter as if it were IO.RLB. Generally, IO.RLB should be 
used. 

12.3.2.5 IO.SYN - This QIO function allows the programmer to specify 
the sync character to be recognized when an IO.RLB or IO.WLB function 
is performed. IO.SYN can be combined (ORed together) with IO.HDX or 
with IO.FOX to set the characteristics of the physical device unit. 

12-7 



MESSAGE-ORIENTED COMMUNICATION DRIVERS 

12.3.2.6 IO.WMS - This QIO function causes a logical block to be 
written with no preceding sync characters. To ensure that the two 
systems involved in a communication are synchronized, two or more sync 
characters are transmitted by one system and received by the e>ther 
before any other message can be sent. IO.WLB is used to write a block 
of data, preceded by sync characters; IO.WNS is used to perform a 
block transfer without sending sync characters first. Since the 
DAll-B is a parallel device and there are no sync characters, it 
treats the latter as if it were IO.WLB. Generally, IO.WLB should be 
used. 

12.4 STATUS RETURNS 

The error and status conditions listed in Table 12-4 are returned by 
the communication drivers described in this chapter. 

Code 

IS.sue 

IS.PND 

IE .BCC 

IE.CNR 

Table 12-4 
Communication Status Returns 

He a son 

Successful completion 

The operation specified in the QIO directive was 
completed successfully. The second word of the I/O 
status block can be examined to determine the number 
of bytes processed, if the operation involved reading 
or writing. 

I/O request pending 

The operation specified in the QIO directive has not 
yet been executed. The I/O status block is filled 
with zeros. 

Block check error 

When the Cyclic Redundancy Check (CRC) option is 
present on the DQll, a check character is appended to 
each message transmitted. The receiver of the 
messages recalculates the check character and 
compares it with the one transmitted. This error 
code is returned when the two check characters do not 
match, and represents a transmission error. 

Connection rejected 

(DMCll only.) The DMCll has detected that the device 
on the other end of the line has restarted itself. 
The user can recover by issuing IO.INL (initialize), 
and then reissuing the QIO in question. 

(continued on next page) 

12-8 



Code 

IE:.DAO 

IE .DNR 

IE. I FC 

IE .OFL 

IE.SPC 

MESSAGE-ORIENTED COMMUNICATION DRIVERS 

Table 12-4 (Cont.) 
Communication Status Returns 

Reason 

Data overrun 

Due to UNIBUS traffic or a modem problem, the DQll 
controller was unable to maintain the data rate 
required to prevent data loss (i.e., the receipt of 
another byte before processing of a previous byte was 
completed). 

Device not ready 

The physical device unit specified in the QIO 
directive was not ready to perform the desired I/O 
operation. This code is returned to indicate one of 
the following conditions: 

• The physical device unit could not be initialized 
(i.e., the circuit could not be completed). 

• The transmission of a character 
was not followed by an interrupt within the period 
of time selected as the device timeout period. 
This timeout occurs only when a transmission is in 
progress and the interrupt marking completion of a 
message does not occur. The appropriate response 
to this condition is to attempt to resynchronize 
the device by initializing and accepting the next 
request. A timeout does not occur on a read. If 
the rece1v1ng device is not ready, the transfer 
will not be initiated by the transmitting device. 
Once the transfer is initiated, however, it will 
complete either by satisfying the requested byte 
count or by timing out. 

Illegal function 

A function code was specified in an I/O request that 
is illegal for me~sage-oriented communication 
devices. 

Device' off-line 

The physical device unit associated with the 
specified in the QIO directive was not on-line. 
the system was booted, a device check indicated 
this physical device unit was not in 
configuration. 

Illegal address space 

LUN 
When 
that 
the 

The buffer specified for a read or write request was 
partially or totally outside the address space of the 
issuing task. Alternately, a byte count of zero was 
specified. 

(continued on next page) 

12-9 



Code 

IE.VER 

MESSAGE-ORIENTED COMMUMICATION DRIVERS 

Table 12-4 (Cont.) 
Communication Status Returns 

RE!ason 

Nonrecoverable error (D.lUl-B only) 

The data transfer terminated before all of the data 
has been transmitted. The error code is returned on 
transmit when both systems attempt to transmit at the 
same time. This condition is detected by the device 
protocol. The error co die is returned on receive when 
the transmit data count of the transmitting side does 
not equal the data count specified by the receive 
QIO. 

12.5 PROGRAMMING HINTS 

This section contains information on important programming 
considerations relevant to users of the message-oriented communication 
interfaces described in this chapter. 

12.5.1 Transmission Validation 

Because there is no way for the transmitting device to verify that the 
data block has successfully arrived at the receiving device unless the 
receiver responds, the transmitter assumes that any message which is 
clo~ked out on the line (without line or device outage) has been 
successfully transmitted. As soon as the receiver is able to satisfy 
a read request, it returns a successful status code (IS.SUC) in the 
I/O status block. Of course, only the task which receives the message 
can determine whether or not the message has actually been transmitted 
accurately. 

The receiving device should be ready to receive data (with a read 
request) at the time the transmission is sent. 

12.5.2 Redundancy Checking 

By the nature of message-oriented communications, only the task which 
receives a communication can determine whether or not the message was 
received successfully. The transmitter simply transfers data, without 
validation of any kind. It is therefore the responsibility of the 
communicating tasks which use the device to check the accuracy of the 
transmission. A simple validity check is a checksum-type longitudinal 
redundancy check. A better approach to validating data is the use of 
a cyclic redundancy check (CRC). A CRC can be computed in software or 
with a hardware device, such as the KG-11 communications arithmetic 
option. 

Both DQll and DUPll incorporate hardware to compute a CRC. 
CRC hardware requires an extra system unit. 

12-10 

,, ______ , __________________ _ 

The DQll 



MESSAGE-ORIENTED COMMUNICATION DRIVERS 

12.5.3 Half-Duplex and Full-Duplex Considerations 

Because there is a single I/O request queue, only one QIO request can 
be performed at a time. It is therefore not possible, through QIOs, 
for a device to send and receive data at the same time. Also, since 
timeouts are not set for receive functions, a receive QIO is 
terminated only by receiving a message from the remote system, or by 
issuing an IO.KIL QIO for the device. Therefore, if no message is 
transmitted by the remote system, a receive will not terminate, and no 
further I/O can be performed on that device until the receive is 
killed by issuing an IO.KIL QIO. 

Both half-duplex and full-duplex lines can be used with the DLll-E, 
DMClJL, DPll, DQll, DUll, and DUPll. The mode is settable by using 
IO.FOX for full-duplex and IO.HDX for half-duplex. In half-duplex 
mode, the modem signal RTS (Request To Send) is cleared after each 
"transmit message." In full-duplex, this signal is always left on. 
Using full-duplex mode eliminates modem delays in transmission, but 
requires full-duplex hardware and communication links. 

Only half-duplex mode is available with the DAll-B because of the 
nature of the hardware. 

The DMCll Driver maintains both transmits and receives separately in 
its own internal queues. Thus, it is a full-duplex driver. There is 
no limit on the number of outstanding I/O requests that can be active 
at any given time. The DMCll hardware, however, allows a maximum of 
only seven transmits and seven receives to be active at any time. The 
drivj~r gives the first seven transmits (or receives) directly to the 
DMCll and queues the eighth and subsequent transmits (or receives) 
internally until the DMCll acknowledges a successful I/O request. 
When running on an 11/70, the driver gives only two transmits (or 
receives) to the DMCll because each request requires a UNIBUS mapping 
register. The DMCll driver is assigned five UMRs: 1 for base 
table(s), 2 for active transmits, and 2 for active receives. 

12.5.4 Low-Traffic Sync Character Considerations 

If message traffic on a line is low, each message sent from a 
communications device should be preceded by a sync train. This 
enables the controller to resynchronize if a message is "broken" 
(i.e., part or all of it is lost in transmission). Correspondingly, 
every message received by a communications device under low-traffic 
conditions, when messages are not contiguous (back-to-back), should be 
read via an IO.RLB (read, strip sync) function. This requires that 
the first character in the data message itself not have the binary 
value of the sync character. 

12.5.5 Vertical Parity Support 

Vertical parity is not supported by the DAll-B, DLll-E, DPll, DQll, or 
DUll. Codes are assumed to be eight-bit only. 

12.5.6 Powerfail with DMCll 

The DMCll currently cannot recover after a power failure. This is 
because the RAM in its internal microprocessor is erased when power 
fails. Any I/O requests outstanding at the time of a power failure 

12-11 



MESSAGE-ORIENTED COMMUNICATION DRIVERS 

will return IE.ABO. These 
initializing the DMCll (IO.INL). 

requests must be reissued after 

12.5.7 Importance of IO.INL 

After the type of communication line has been determined, and after 
IO.SYN has specified the sync character, it is extremely important 
that IO.INL be issued before any transfers occur~ This ensures that 
appropriate parameters are initialized and that the interface is 
properly conditioned. Note that IO.INL provides the only means of 
setting device characteristics, such as sync character. For this 
reason, IO.INL should always be used immediately prior to the first 
transfer over a newly-activated link. 

Tasks sending messages to the DMCll should begin by terminating and 
reinitializing the device (IO.TRM,IO.INL) .I IO.INL must be issued 
after each IO.KIL (which effectively kills the DMCll), after 
powerfail, and upon receipt of any error code. 

12.6 PROGRAMMING EXAMPLE 

The following example illustrates the initialization, setting of 
device parameters, and transmission of a block of data on a 
message-oriented communication device • 

TXAST: 

• MCALL ALUN$S,QIO$S 

ALUN$S 
QIO$S 
QIO$S 
QIO$S 

CMPB 

BEQ 

#1,#"XP,#0 USE LUNl FOR DPll 
#IO.HDX!IO.SYN,#l,,,,,<#226> SET DEVICE PARAMETERS 
#IO.INL,#1 ; PUT DEVICE ON LINE 
#IO.WLB,#l,,,#TXSTS,#TXAST,<#TXBUF,#100>; SEND A BLOCK 

#IS.SUC&377,@(SP)+ 

10$ 

WAS DATA CLOCKED OUT 
SUCCESSFULLY? 
IF SO, SET UP FOR NEXT 
BLOCK 

1 Note that this will cause the error IE.CNR to be returned on any I/O 
outstanding on the other end of the line. 

12-12 



'~ 

CHAPTER 13 

PCLll PARALLEL COMMUNICATIONS LINK DRIVERS 

13.1 INTRODUCTION 

PCLll Parallel Communications Link hardware is supported on 
RSX-llM-PLUS systems via two drivers. One driver supports the 
transmitter function and the other driver supports the receiver 
function. The PCLll-B is a hardware interface that functions as a 
time division multiplexed (TDM) interface over which several PDP-11 
computers can transfer data to each other. Each PCLll-B consists of a 
transmitter, receiver, and master section. The transmitter section 
can transfer parallel 16-bit words along the TDM bus to a receiver 
sect.ion of a separate PCLll-B on a different PDP-11 computer's UNIBUS. 
One of the PCLll-B units attached to the TDM bus must have its master 
sect.ion enabled to effect the data transfer. 

13.1.1 PCLll-B Hardware 

Each PCLll-B transmitter and receiver section has a unique TDM bus 
address (hardware-configured). When a master section is enabled, it 
places a transmitter address on the TDM bus for a period of time, 
called a timeslice. During the timeslice, the addressed transmitter 
can address the desired receiver section and transmit one word; the 
transmitter waits for the receiver to acknowledge the word or an 
indication that the word was not accepted. If the word is not 
accepted, it will normally retransmit the word on the next available 
timeslice. Thus, a message up to 32k words long can be transmitted to 
a receiver one word at a time during the time which other similar TDM 
transactions are multiplexed for other PCLll-B devices. 

13.1.2 PCLll Transmitter Driver 

The PCLll transmitter driver provides two basic functions. First, it 
must receive data sent by the attached task and store it in a silo 
buffer in the PCLll hardware. Then, the driver passes proper receiver 
address and command information to the PCLll transmitter hardware to 
effect the actual transfer over the TDM bus. 

13.1.3 PCLll Receiver Driver 

The PCLll receiver driver also performs two basic functions. First, 
it must remove data from the receiver silo and send it to the 
connected task. In addition, the receiver driver must ackowledge a 
transmitter when a data transmission is requested by that transmitter. 
Subsequent requests by other transmitters on the TDM bus are ignored 

13-1 



PCLll PARALLEL COMMUNICATIONS LINK DRIVERS 

until all message transactions with the current transmitter are 
completed. 

13.2 GET LUN INFORMATION MACRO 

Word 2 of the buffer filled by the Get LUN Information system 
directive (the first characteristics word) contains the following 
information for the PCLll transmitter and receiver drivers. A setting 
of 1 indicates that the described characteristics is true for PCLll 
transmitter and receiver drivers. 

Bit Setting Meaning 

0 1 Record-or i e~nted device 

1 0 Carriage-control device 

2 0 Terminal de!Vi ce 

3 0 File-structured device 

4 0 S inqle-di re!ctory device 

5 1 Sequential device 

6 0 Reserved 

7 0 User-mode diagnostic supported 

8 0 Massbus device 

9 0 Unit softwc:1re write-locked 

10 0 Input spooled device 

11 0 Output spooled device 

12 0 Pseudo device 

, 3 0 Device mountable as a communications channel 

14 0 Device mountable as a FILES-11 volume 

15 0 Device mountable 

Word 3 contains device driv~r-specific information, as follows: 

Transmitter driver: 

The low byte of word 3 contains the number of transmit retries 
remaining after completing the current data transmit function if 
the current data transmit function attempt is not accepted by the 
addressed receiver. The high byte of word 3 is undefined. 

Receiver driver: 

The low b~te of word 3 contains the index of the current state of 
the receiver driver. These states are primarily used for 
diagnostic purposes and are defined as follows: 

13-2: 



0 

+2 

+4 

+6 

-2 

-4 

-6 

PCLll PARALLEL COMMUNICATIONS LINK DRIVERS 

Meaning 

No task is connected 

Task connected but not triggered 

Task triggered and waiting for IO.RTF or IO.ATF 
function 

Task triggered and timed out while waiting for 
IO.RTF or IO.ATF function 

IO.ATF function in progress 

Task connected, not triggered, and has an IO.ATF 
function in proqress 

An IO.RTF function is in proqress 

The high byte of word 3 is undefined. 

Word 4 is undefined. Word 5 is the default buffer size in bytes. For 
the PCLll, this value is 64 bytes. 

13. 3 QIO MACRO -- PCLll TRANSMITTER. DRIVER FUNCTIONS 

13.3.1 Standard QIO Functions 

Table 13-1 lists the standard functions of the QIO macro that are 
valid for the PCLll transmitter driver. 

Table 13-1 
Standard QIO Functions for PCLll Transmitters 

Format Function 

QIO$C I 0 .ATT, ••• Attach device 

QI0$C I 0 .DET, ••• Detach device 

QIOSC IO.KIL, ••• Cancel I/O request 

13.3.2 Device-Specific QIO Functions 

Table 13-2 lists the device-specific functions of the QIO macro that 
are valid for the PCLll transmitter driver. 

13-3 



PCLll PARALLEL COMMUNICA'rIONS LINK DRIVERS 

Table 13-.2 
Device-Specific QIO Functions for PCLll Transmitters 

Format Function 

QIO$C IO.ATX, ••• ,<stadd,size, 
flagwd,id,retries,retadd> Attempt message transmission 

QIO$C I 0. SEC, ••• , Sense master section status 

QIO$C IO.STC, ••• ,<stadd,size, 
[state], [mode],, retadd> Set master section characteristics 

Where: 

st add 

size 

f lagwd 

id 

retries 

retadd 

state 

is the starting address of a 
description and function is 
specific QIO function). 

data buff er 
dependent upon 

(its 
the 

is the data buffer size in bytes (its description and 
function is dependent upon the specific QIO function). 

is the value of the f lagword which is to precede the 
message being sent. The flags specify the desired 
receiver function as defined by the user's protocol. 

is the identifier of the CPU to which the message is 
to be sent. This identifier is the desired receiver's 
TDM bus address. It appears in the high byte of the 
first word of the master section I/O status block. 
The identifier number is an octal value contained in 
the high byte of the parameter word. For example, 
receiver number 1 is specified as 400, receiver number 
2 is specified as 1000, etc. 

is the number of retries that will be attempted, 
following the first attempt, that will be performed if 
the first attempt is unsuccessful, or upon detecting 
transmission errors or master down conditions, before 
returning error status to the calling task. 

is the starting address of a 7-word buffer into which 
the contents of the 6 transmitter registers and the 
transmitter master/maintenance register are moved 
prior to returning to the calling task. Information 
describing the contents of these registers can be 
obtained by referring to the hardware documentation 
supplied with the PCLll option. 

is the desired state setting for the transmitter, as 
follows: 

Parameter 
specified State 

SS.MAS TOM bus master 

SS.NEU Neutral (default state) 

13-4 



mode 

PCLll PARALLEL COMMUNICATIONS LINK DRIVERS 

is the desired mode setting for allocating transmitter 
timeslices on the TDM bus, as follows: 

Parameter 
entered 

MS .AUT 

MS .ADS 

Mode 

Auto addressing (default mode) 

Address silo 

13.3.2.1 IO.ATX - This I/O function requests an attempt to transmit a 
message to a specified CPU. The message to be transmitted is 
contained in a data buffer starting at the address specified in the 
stadd parameter. This address must be on a word boundary. The data 
buffer size specified in the size parameter must be an even, positive 
value. The flagword parameter contains user-defined information that 
the receiving task will use in determining whether to accept or reject 
the message. The id parameter is the receiver TDM bus address. The 
task uses this address to direct a message to a specific CPU. Other 
parameters are as previously described. 

13.3.2.2 IO.SEC - This I/O function is used to sense the master 
section status. Upon successful completion of this function, the I/O 
status block will contain a typical I/O status code (IS.SUC) return in 
the low byte of the first word, and current Transmitter 
Master/Maintenance Register (TMMR) contents in the second word, as 
fol lows: 

J Status Code 

Current TMMR Contents 

NOTE 

The optional isb parameter (see 
1.5.1) must be included in 
request. 

Section 
this QIO 

13.3.2.3 IO~STC - This I/O function sets the master section 
operational characteristics. IO.STC can only be issued by a 
privileged task. Correct use of the function depends upon the current 
(or specified) operating state of the master section and proper use of 
parameters. Each parameter is used as described in the following 
paragraphs. Refer to all parameters in the sequence shown for a 
correct interpretation of parameter usage. 

State -- The state parameter determines the overall function of this 
master section (and transmitter and receiver sections) in the PCLll 
communications link as it relates to the TDM bus. The neutral state 
(SS.NEU) places the master section in an inactive state where the unit 

13-5 



PCLll PARALLEL COMMUNICA.TIONS LINK DRIVERS 

will send and receive messages in a normal manner, but the master 
section cannot control transmitter timeslice allocation on the TOM 
bus. The master state (SS.MAS) designates this unit as TOM bus 
master, enabling control of transmitter unit timeslice allotments on 
the TOM bus; only one master section on the TOM bus can be designated 
TOM bus master. 

Mode -- The TOM bus master can allocate transmitter timeslices in one 
of two ways: auto address mode (MS.AUT) or address silo mode 
(MS.ADS). When operating in the auto address mode (MS.AUT), which is 
the default mode for the TOM bus master, equal timeslice allotments 
are qiven to each transmitter unit; transmitter unit addresses are 
sequentially put on the TOM bus in descending order, one address for 
each timeslice. When operating in the address silo mode, transmitter 
unit addresses are transmitted in a user-specified sequence, allowing 
up to 50% of the timeslices to be allocated to one transmitter unit, 
if desired. 

The actual sequence of transmitter timeslice allocations for the 
address silo mode is set up in the user's task data buffer referenced 
by the stadd parameter. Certain constraints must be observed when 
specifying this information, as follows: 

• Each entry in the buffer is a byte containing a transmitter 
unit address. 

• At least 20 entries, but not more than 50 entries must be 
specified. If less than 20 entries are specified, the driver 
will repeat the entire sequence, as specified, in order to 
attain the required minimum of 20 addresses. If more than 50 
addresses are specified, no change in timeslice allocation 
will be effected and an IE.VER error status will be returned 
to the task. 

• Identical transmitter addresses in either adjacent bytes or in 
first and last bytes should be avoided. When identical 
addresses appear in adjacent bytes in this manner, the driver 
inserts invalid "pad" transmitter addresses between identical 
addresses, effectively resulting in no-operation timeslices. 

• Transmitter addresses are decimal values ranging from 1 to 32 
(inclusive) which correspond to addresses implemented on the 
actual transmitter unit hardware. 

• The size parameter must correctly specify the number of 
address bytes contained in the buffer referenced by the stadd 
parameter. 

13.4 PCLll TRANSMITTER DRIVER STATUS RETURNS 

Table 13-3 lists PCLll transmitter driver return status codes and 
probable reasons. 

13-6 



Code 

Is .sue 

IS.TNC 

n:.BAD 

IE.DNR 

PCLll PARALLEL COMMUNICATIONS LINK DRIVERS 

Table 13-3 
PCLll Transmitter Driver Status Returns 

Reason 

Successful completion 

The QIO function was successfully completed. If 
an IO.ATX function was completed, the second 
status word contains the number of bytes 
transferred; the message was not truncated. If 
an IO.SEC function was completed, the second 
status word contains the current contents of the 
master section's TMMR. 

Successful transfer but message truncated 

The IO.ATX function was completed, but the message 
was truncated by the receiver (the receiver buffer 
is too small). The transmitter unit cannot 
determine how many words were actually received by 
the receiver unit; the second word of the I/0 
status block contains the length of the requested 
transfer, rather than the actual count of words 
successfully received in the receiver's buffer. 

Bad parameter specification 

A bad parameter specification was included in the 
IO.ATX function, or an invalid state parameter or 
TDM bus timeslice allocation addressinq mode was 
specified in.the IO.STC function. 

This error status is also returned when an IO.STC 
function, issued to a TDM bus master operating in 
the address silo mode, refers to a data buffer 
containing an illegal series of transmitter 
addresses. An illegal series of addresses occurs 
when the number of entries specified for the 
timeslice allocation, plus the required number of 
pad addresses, either exceeds 50 or is less than 
o. 

Device not ready 

This error status return occurs in response to an 
IO.ATX function when one of the following occurs: 

• Power failure in this CPU 

• Device timeout (no response from the addressed 
receiver) 

• Receiver was too slow in accepting or rejecting 
the transfer request 

• The master section is inoperative. This error 
status is returned only after the number of 
retries specified in the IO.ATX function have 
been attempted without success. 

~1 (continued on next paqe) 

13-7 



Code 

IE.VER 

IE.SPC 

IE .REJ 

IE .FLG 

IE.BBE 

IE.ABO 

IE .I FC 

PCLll PARALLEL COMMUNICA~rIONS LINK DRIVERS 

Table 13-3 (Cont.) 
PCLll Transmitter Driver Status Returns 

Reason 

Unrecoverable error 

The IO.STC function state setting could not be 
achieved because the task is not privileged or 
another device is TDM bus master. 

Illegal user buffer 

The buffer address specified in the IO.ATF 
function is outside of the issuing task's address 
space. 

Transfer rejected 

The data transfer request specified in the IO.ATX 
function was rejected by the addressed receiver, 
based on the source CPU identifier of the task 
issuing the request, and flagword. 

Event flag already specified 

An event flag was previously specified in an 
IO.STC function. 

Transmission error 

This error status is returned only after the 
number of retries specified in the IO.ATX function 
have been attempted without a successful 
transmission. (Cycle redundancy check errors or 
parity errors have been detected on each attempt.) 

Request terminated 

This status is returned when a pending I/O 
function has been aborted in response to an IO.KIL 
function being issued by the task. 

Illegal function 

A function code was specified in an I/O request 
that is illegal for PCLll transmitters. 

13-8 

·-----!------------------------------------------~--~--~-----------------------

~. 
1 



PCLll PARALLEL COMMUNICATIONS LINK DRIVERS 

13.5 QIO MACRO -- PCLll RECEIVER DRIVER FUNCTIONS 

13.5.1 Standard QIO Functions 

Table 13-4 lists the standard function of the QIO macro that is valid 
for the PCLll receiver driver. 

Table 13-4 
Standard QIO Functions for PCLll Receivers 

Cancel I/O request 

[ Format 

LQIO$C IO.KIL, ••• 

Function 

13.5.2 Device-Specific QIO Functions 

Table 13-5 lists the device-specific functions of the QIO macro that 
are valid for the PCLll receiver driver. 

where: 

Table 13-5 
Device-Specific QIO Functions for PCLll Receivers 

~ormat 

QIO$C IO.CRX, ••• ,<tef,bufadd> 

arose re.RTF, ••• 

QIO$C IO.ATF, ••• ,<stadd,size, 
retadd> 

QIO$C IO.DRX, ••• 

Function 

Connect for reception 

Reject transfer 

Accept transfer 

Disconnect from reception 

tef is the number of a "trigger" event flag which will be 
set whenever a flagword is received over the TDM bus. 

bufadd 

stadd 

size 

retadd 

is the address of a 2-word buffer containing the 
transmitter id, trigger status and the flagword. 

is the address 
message. This 
(even address). 

of a data buffer to receive the 
address must occur on a word boundary 

is the data buffer size in·bytes. The size specified 
must be an even, positive value. 

is the address of a 6-word buffer into which the 
contents of the 6 PCLll receiver hardware registers 
will be returned upon successful completion of the 
function. Information describing the contents of 
these registers can be obtained by referring to the 
hardware documentation supplied with the PCLll option. 

13-9 



PCLll PARALLEL COMMUNICA'rIONS LINK DRIVERS 

13.5.2.l IO.CRX - This I/O function connects the issuing task to the 
receiver, if the receiver is not currently connected to another task. 
When connected, this task is the only task capable of rece1v1nq 
messages via the receiver on this CPU. The trigger event flag (a 
local, common, or qroup-global event flag) informs the task when a 
message is pending. It is set when a flagword is received over the 
TDM bus. When this happens, a significant event is declared and the 
connected task is considered "triggered". The flagword is the first 
word transmitted by a transmitter when attempting to send a messaqE~ to 
the receiver unit. 

The bufadd parameter must be included in this I/O function to specify 
the address of a 2-word block, as follows: 

where: 

sts 

id 

flagwd 

id sts 
flagwd 

is the current trigger status. 

is the identification code of 
attempting to send the message. 

the transmitter 

is the flagword transmitted to the connected receiver. 

Based on the information contained in the flagword and the 
identification code of the transmitter unit, the task can accept or 
reject the transfer. (Two I/O functions are provided for this 
purpose -- see Sections 13.5.2.2 and 13.5.2.3.) The receiver must 
respond to the transmitter's request within approximately 1.5 seconds; 
otherwise, an IE.DNR error status is returned to the task attempting 
the transmission. 

13.5.2.2 IO.RTF - This function informs the transmitter device that 
the message is being rejected by the receiver. Any attempt to issue 
this I/O function when the trigger event flag is not set will be 
ignored, and an IE.NTR error status will be returned to the task. 

13.5.2.3 IO.ATF - This function informs the transmitter device that 
the message is being accepted. Parameters specify the data buffer 
into which the received data will be transferred, and the 6-word 
buffer that will receive the contents of the receiver section hardware 
registers upon successfully completing the function. 

Unlike the IO.RTF function, the IO.ATF function can be issued before 
the task is trigqered. When this is done, the IO.ATF function is 
queued for reception of any flagword. When the flagword is received, 
the receiver driver immediately executes the IO.ATF function; the 
connected task is not triggered and thE~ flagword is not made available 
to the task. This approach is useful when it is not necessary to 
examine flagwords or to accept messages based on the source. 

13-10 



PCLll PARALLEL COMMUNICATIONS LINK DRIVERS 

13.5.2.4 IO.DRX - This function is issued by a task to disconnect the 
receiver for use by other tasks. 

13.6 PCLll RECEIVER DRIVER STATUS RETURNS 

Table 13-6 lists PCLll receiver driver return status codes and 
probable reasons. 

Code 

rs.sue 

IS .TNC 

IE.BAD 

IE.DNR 

Table 13-6 
PCLll Receiver Driver Status Returns 

Reason 

Successful completion 

The I/O function or triggering of the task was 
successfully completed. When this status is 
returned upon completion of the IO.ATF function, 
the high order byte of the first word in the I/O 
status block contains the identification code of 
the transmitter device that sent the flagword. 
The second word of the I/O status block contains 
the number of bytes transferred over the TDM bus. 
When this status is returned as a result of an 
IO.CRX function, and the task being triggered, the 
I/O status block contains information that enables 
the task to accept or reject the message (see 
Section 13.5.2.1). 

Successful transfer but message truncated 

This I/O status is returned when the message is 
terminated because the receiver task message 
buffer specified in the IO.ATF function is too 
small to contain the message being received. The 
second word of the I/O status word contains the 
number of bytes successfully transferred. 

Bad parameter specification 

A bad parameter specification was included in the 
requested function. 

Device not ready 

This error status return occurs in response to an 
IO.RTF or IO.ATF function when one of the 
following occurs: 

• Power failure in this CPU 

• Device timeout (no response from addressed 
receiver) 

• Receiver was too slow in accepting or rejecting 
the transfer request 

• The master section is inoperative 

~ (continued on next page) 

13-11 



Code 

IE .SPC 

IE.DNA 

IE .DAO 

IE.DAA 

IE .NTR 

IE.BBE 

IE.ABO 

IE.FHE 

IE. IFC 

PCLll PARALLEL COMMUNICATIONS LINK DRIVERS 

Table 13-6 (Cont.) 
PCLll Receiver Driver Status Returns 

Reason 

Illegal user buffer· 

The buffer address specified in the IO.ATF 
function is outside of the issuing task's address 
space. 

Task not connected for reception 

The requested function can not be executed because 
the task is not connected to the receiver. 

Data overrun 

This I/O status code is returned when the task is 
triggered, but the previous transfer request has 
neither been accepted nor rejected. When the task 
issues an IO.RTF or IO.ATF function, it will apply 
to the new (most recent) flagword; the previous 
request is ignored. 

Device already connected for reception 

This I/O status code is returned in response to 
the IO.CRX function when the receiver is already 
connected to this task or any other task. No 
operation is performed. 

Task not triggered 

This I/O status code is returned when a task 
attempts to issue an IO.RTF function prior to the 
task being triggered. 

Transmission error 

This error status is returned when an IO.ATF 
function is in progress and a cycle redundancy 
check error or parity error has been detected. 

Request terminated 

This status is returned when a pending I/O 
function has been aborted in response to an IO.KIL 
function being issued by the task. 

Fatal hardware error 

The requested function cannot be executed because 
of a hardware failure. 

Illegal function 

A function code was specified in an I/O request 
that is illegal for PCLll transmitters. 

13-12 

-1\. 

~ 
' I 



,...,,. 

CHAPTER 14 

ANALOG-TO-DIGITAL CONVERTER DRIVERS 

14.l INTRODUCTION 

The AFCll and ADOl-D analog-to-digital (A/D) converters are used for 
the acquisition of industrial and laboratory analog data. (AFCll and 
ADOl-D driver support is not provided on RSX-llM-PLUS systems.) 
Although each has its own driver, programming for both is quite 
similar and both are multichannel, programmable gain devices. The 
ADOl-D should not be confused with the ADUOl, a UDC module, which is 
described in Chapter 15. Table 14-1 compares the AFCll and the ADOl-D 
briefly, and subsequent sections describe these devices in greater 
detail. 

Maximum samp 
per second) 

Number of bi 

Maximum numb 
that can be 

Table 14-1 
Standard Analog-to-Digital Converters 

AFCll 

ling rate (points 200 ( 20 per single) 
channel 

ts 13 or 14 

er of analog channels 1024 
multiplexed 

14.1.1 AFCll Analog-to-Digital Converter 

ADOl-D 

Approximately 
10,000 

10 or 11 

64 

The AFCll is a differential analog input subsystem for industrial 
data-acquisition and control systems. It multiplexes signals, selects 
gain, and performs a 13- or 14-bit analog-to-digital conversion under 
program control. With the use of appropriate signal-conditioning 
modules, the system can intermix and accept low-level, high-level, and 
current inputs,.with a high degree of noise immunity. 

14.1.2 ADOl-D Analog-to-Digital Converter 

Thei ADOl-D is an extremely fast analog data-acquisition system. It 
multiplexes signals, selects gain, and performs a 10- or 11-bit 
analog-to-digital conversion under program control. The ADOl-D is 
normally unipolar, but an optional sign-bit facilitates bipolar 
opE~rationo 

14-1 



ANALOG-TO-DIGITAL CCINVERTER DRIVERS 

14.2 GET LON INFORMATION MACRO 

If a GET LUN INFORMATION system directive is issued for a LUN 
associated with an analog-to-digital converter, word 2 (the first 
characteristics word) contains all zeros, words 3 and 4 are undefined, 
and word 5 is not significant, since there is no concept of a default 
buffer size for analoq-to-digital converters • 

. 14.3 QIO MACRO 

This section summarizes standard and device-specific QIO functions for 
analoq-to-digital converter drivers. 

14.3.l Standard QIO Function 

The standard function that is valid for analog-to-digital converters 
is shown in Table 14-2. 

Table 14-2 
Standard QIO Function for the A/D Converters 

Format Function 

QIO$C IO.KIL, ••• Cancel I/O requests 

Since all requests are processed within a small amount of time, no 
in-progress request is ever cancelled. This function simply cancels 
all queued requests. 

14.3.2 Device-Specific QIO Function 

The device-specific function of the QIO macro that is valid for 
analog-to-digital converters is shown in Table 14-3. 

Table 14-3 
Device-Specific QIO Function for the A/D Converters 

Format Function 

QIO$C IO.RBC, ••• ,<stadd,size,stcnta> Initiate multiple A/D 
conversions 

where: stadd is the starting address of the data buffer {must be on 
a word boundary). 

size is the control buffer size in bytes {must be even and 
qreater than zero); the data buffer is the same size. 

stcnta is the starting address of the control buffer {must be 
on a word boundary); each control buffer word must be 
constructed as shown in Table 14-4. 

14-2 



._.... 

ANALOG-TO-DIGITAL CONVERTER DRIVERS 

Table 14-4 
A/D Conversion Control Word 

Bits Meaning AFCll ADOl-D 

0-11 Channel number Range: 0-1023 Ranqe: 0-63 

12-15 Gain value for this Gain: Gain: 
sample, expressed as 
a bit pattern as 
follows 

15 14 13 12 -- ·- - -
0 0 0 0 1 1 
0 0 0 1 2 2 
0 0 1 0 illegal 4 
0 0 1 1 illegal 8 
0 1 0 0 10 i lleqal 
0 1 0 1 20 illegal 
0 1 1 0 i llega 1 illegal 
0 1 1 1 illegal illeqal 
1 0 0 0 50 illeqal 
1 0 0 1 100 illegal 
1 0 1 0 i llega 1 illegal 
1 0 1 1 illegal i llega 1 
1 1 0 0 200 illegal 
1 1 0 1 1000 illegal 
1 1 1 0 illegal illegal 
1 1 1 1 illegal i llega 1 

14 .. 4 FORTRAN INTERFACE 

A collect:ion of FORTRAN-callable subroutines provide FORTRAN programs 
access to the AFCll and the ADOl-D. These are described in this 
section. All are reentrant and may be placed in a resident library. 

14~4.l Synchronous and Asynchronous Process Control I/O 

The ISA standard provides for synchronous and asynchronous I/O. 
Synchronous I/O is indicated by appending a "W" to the name of the 
subroutine (e.g., AISQ/AISQW). The synchronous call suspends task 
execution until the I/O operation is complete. If the asynchronous 
form is used, execution continues and the calling program must 
periodically test the status word for completion. 

14.4.2 The isb Status Array 

The isb (I/O status block) parameter is a two-word integer array that 
contains the status of the FORTRAN call, in accordance with ISA 
convention. This array serves two purposes: 

1. It is the 2-word I/O status block to which the driver returns 
a status code on completion of an I/O operation. 

14-·3 



ANALOG-TO-DIGITAL CONVERTER DRIVERS 

2. The first word of isb receives a status code from the FORTRAN 
interface in ISA-compatible format, with the exception of ~he 
I/O pendinq condition, which is indicated by a status of 
zero. The ISA standard code for this condition is +2. 

The meaning of the contents of isb varies, dependinq on the FORTRAN 
call that has been executed, but Table 14-5 lists certain qeneral 
principles that apply. The section describing each subroutine 
provides further details. 

Table 14-5 
Contents of First Word of isb 

Contents Meaning 

T 

i sb ( 1) = 0 Operation pending.; I/O in progress 

isb(l) = 1 Successful completion 

i sb ( 1) = 3 Interface subroutine unable to generate 
QIO directive or number of samples is 
zero 

3 < i sb ( 1} < 300 QIO directive rejected and actual error 
code = -(isb(l} - 3) 

i sb ( 1) > 300 Driver rejected request and actual error 
code = -(isb(l) - 300) 

Unless otherwise specified, the value of isb(2) is the value returned 
by the driver to the second word of the I/O status block. 

FORTRAN interface subroutines depend on asynchronous system traps to 
set their status. Thus, if the trap mechanism is disabled, proper 
status cannot be set. 

14.4.3 FORTRAN Subroutine Summary 

Table 14-6 lis~s the FORTRAN interface subroutines supported for the 
AFCll and ADOl-D under RSX-llM. 

Table 14-6 
FORTRAN Interface Subroutines for the AFCll and ADOl-D 

Subroutine Function 

AIRD/AI ROW Perform input of analoq data in random 
sequence 

AISQ/AISQW Read a series of sequential analoq input 
channels 

ASADLN Assign a LUN to the ADOl-D 

ASAFLN Assign a LUN to the AFCll 

14-4 

• 



ANALOG-TO-DIGITAL CONVERTER DRIVERS 

'rhe following subsections briefly describe the function and format of 
each FORTRAN subroutine call. Note the use of ASADLN and ASAFLN to 
assign a default logical unit number. 

14.4.4 AIRD/AIRDW: Performing Input of Analog Data 
Sequence 

in Random 

The ISA standard AIRD/AIRDW FORTRAN subroutines input analog data in 
random sequence. These calls are issued as follows: 

where: 

CALL l AIRD l 
AIRDW 

(inm, icont, idata, [isb], [lun]) 

inm specifies the number of analoq input channels. 

icont is an integer array containing terminal connection 
data - channel number (riqht-justified in bits 0-11) 
and qain (bits 12-15), as shown in Table 14-4. 

idata is an integer array to receive the converted values. 

isb is a two-word integer array to which the subroutine 
status is returned 

lun is the logical unit number. 

The isb array has the standard meaning defined in Section 14.4.2. If 
inm = 0, then isb(l) = 3. The contents of idata are undefined if an 
erreir occurs. 

14.4.5 AISQ/AISQW: Reading Sequential Analoq Input Channels 

The ISA standard AISQ/AISQW FORTRAN subroutines read a series of 
sequential analog input channels. These calls are issued as follows: 

where: 

CALL f AISQ l 
~ AISQW f 

(inm, icont, idata, [isb], [lun]) 

inm specifies the number of analog input channels. 

icont: is an integer array containing terminal connection 
data - channel number (right-justified in bits 0-11) 
and qain (bits 12-15), as shown in Table 14-4. 

idata is an integer array to receive the converted values. 

isb is a 2-word integer array to which the subroutine 
status is returned. 

lun is the logical unit number. 

For sequential analog input, channel number is computed in steps of 
one, beginning with the value specified in the first element of icont. 
The channel number field is ignored in all other elements of the 
array. 

14-51 



ANALOG-TO-DIGITAL CONVERTER DRIVERS 

The.gain used for each conversion is taken from the respective element 
in icont. Thus, even though the channel number is ignored in all but 
the first element of icont, the qain must be specified for each 
conversion to be performed. 

The isb array has the standard meaning defined in Section 14.4.2. If 
inm = O, then isb(l) = 3. The contents of idata are undefined if an 
error occurs. 

14.4.6 ASADLN: Assigning a LUN to thie ADOl-D 

The ASADLN FORTRAN subroutine assigns the specified LUN to the ADOl-D 
and defines it as the default logical unit number to be used whenever 
a LUN specification is omitted from an AIRD(W)/AISQ(W) subroutine 
call. It is issued as follows: 

where: 

CALL ASADLN (lun, [isw], [iun]) 

lun is the logical unit number to be assigned to the ADOl-D 
and defined as the default unit. 

isw is an integer variable to which the result of the 
ASSIGN LUN system directive is returned. 

iun is the unit number to be assigned~ If unspecified, a 
value of 0 is assumed. 

Only the LUN specified in the last call to ASADLN or ASAFLN is defined 
as the default unit. 

14.4.7 ASAFLN: Assigning a LUN to the AFCll 

The ASAFLN FORTRAN subroutine assigns the specified LUN to the AFCll 
and defines it as the default logical unit number to be used whenever 
a LUN specification is omitted from an AIRD(W)/AISQ(W) subroutine 
call. It is issued as follows: 

where: 

CALL ASAFLN (lun, [isw], [iun]) 

lun is the logical unit number to be assigned to AFCll and 
defined as the default unit. 

isw is an inteqer variable to which the status from the 
ASSIGN LUN system directive is returned. 

iun is the unit number to be assigned~ If unspecified, a 
value of 0 is assumed. 

Only the LUN specified in the last call to ASAFLN or ASADLN is defined 
as the default unit. 

14.5 STATUS RETURNS 

The error and status conditions listed in Table 14-7 are returned· by 
the analoq-to-diqital converter drivers described in this chapter. 

14-6 



Code 

Is.sue 

IS .PND 

IE.AIBO 

IE. B.r..D 

IE .BYT 

IE.DNR 

IE.IFC 

ANALOG-TO-DIGITAL CONVERTER DRIVERS 

Table 14-7 
A/D Converter Status Returns 

Reason 

Successful completion 

The operation specified in the QIO directive was 
completed successfully. The second word of the I/0 
status block can be examined to determine the number of 
A/D conversions performed. 

I/O request pending 

The operation specified in the QIO directive has not 
yet been executed. The I/O status block is filled with 
zeros. 

Operation aborted 

The specified I/O operation was cancelled via IO.KIL 
while still in the I/O queue. 

Bad parameter 

An illegal specification was supplied for one or more 
of the device-dependent QIO parameters (words 6-11). 
For the analog-to-diqital converters, this code 
indicates that a bad channel number or qain code was 
specified in the control buffer. 

Byte-aligned buffer specified 

Byte alignment was specified for a data or control 
buffer, but only word alignment is leqal for 
analog-to-diqital converters. Alternately, the lenqth 
of the data and control buffer is not an even number of 
bytes. 

Device not ready 

The physical device unit specified in the QIO directive 
was not ready to perform the desired I/O operation. 
For the AFCll, this code is returned if an interrupt 
timeout occurred or the power failed. In the case of 
the ADOl-D, which is not operated in interrupt mode, 
this code indicates a software timeout occurred (i.e. 
a conversion did not complete within 30 microseconds). 

Illegal function 

A function code was specified in an I/O request that is 
illegal for analog-to-diqital converters. 

(continued on next paqe) 

14-7 



Code 

IE.OFL 

IE.SPC 

ANALOG-TO-DIGITAL CONVERTER DRIVERS 

Table 14-7 (Cont.) 
A/D Converter Status Returns 

Reason 

Device off-line 

The physical device unit associated with the LUN 
specified in the QIO directive was not on-line. When 
the system was booted, a device check indicated that 
this physical device unit was not in the configuration. 

Illegal address space 

The data or control buffer specified for a conversion 
request was partially or totally outside the address 
space of the issuing task. Alternately, a byte count 
of zero was specified. 

FORTRAN interface values for these subroutines are presented in 
Section 14.5.1. 

14.5.1 FORTRAN Interface Values 

The values listed in Table 14-8 are returned in FORTRAN subroutine 
calls. 

Table 14-8 
FORTRAN Interface Values 

Status Return FORTRAN Value 

Is.sue +01 
IS .PND +00 
IE .ABO +315 
IE .ADP +101 
IE .BAD +301 
IE.BYT +319 
IE .DAO +313 
IE .DNR +303 
IE. I EF +100 
IE. I FC +302 
IE.ILU +99 
IE .NOD +323 
IE.ONP +305 
IE .PRI +316 
IE.RSU +317 
IE .SDP +102 
IE.SPC +306 
IE. ULN +08 
IE .UPN +04 

14-8 

~I 



..__,,. 

ANALOG-TO-DIGITAL CONVERTER DRIVERS 

14.6 FUNCTIONAL CAPABILITIES 

The AFCll and ADOl-D operate only in multi-sample mode, because tbe 
user can simulate single-sample mode by simply specifyinq one sample. 
Multi-sample mode permits many channels to be sampled at approximately 
the same time without requirinq the user to queue multiple I/O 
requests. 

The maximum number of channels in the configuration is specified at 
system-qeneration time. This value is stored in the respective AFCll 
and ADOl-D unit control blocks. 

14.6.1 Control and Data Buffers 

The user must define two buffers of equal size, the control buffer and 
the data buffer. The former contains the control words needed to 
perform one A/D conversion per channel specified. Each control word 
indicates the channel to be sampled and the qain to be applied (see 
Table 14-4). 

The data buffer receives the results of the conversions. Each result 
is placed in the data buffer location that corresponds to the control 
word that specified it. 

14.7 PROGRAMMING HINTS 

This section contains information on important programminq 
cons:iderations relevant to users of the analog-to-diqital converter 
drivers described in this chapter. 

14.7.1 Use of A/D Gain Ranges 

Note that the A/D gain ranqes overlap. The key to successful use of 
the A/D converters is to change to a hiqher qain whenever a full-scale 
reading is imminent and to chanqe to a lower qain whenever the last 
A/D value recorded was less than half of full scale. This method 
maintains maximum resolution while avoidinq saturation. 

14.7.2 Identical Channel Numbers on the AFCll 

When requestinq samplinq of more than one channel, the user should not 
specify multiple samplinq of a sinqle channel without 10 or more 
interveninq samples on other char1nels. This ensures 50 milliseconds 
between samples on a sinqle channel. If samplinq occurs more often 
than this on a single channel, partial results are returned (see 
Section 14.7.3). 

14-9 



ANALOG..:TO-DIGITAL COIWERTER DRIVERS 

14.7.3 AFCll Sampling Rate 

Although the AFCll can sample a maximum of 200 points per second, a 
single channel can only be sampled at 20 points per second. Because 
the channel capacitor needs 50 milliseconds to recharqe after each 
conversion, more frequent samplinq may result in partial readinqs. If 
this occurs, the user will receive no :indication that information is 
being lost. To ensure that information is not lost on any one 
channel, the user should sample approximately ten other channels 
before returning to the first one. 

14. 7 .4 Restricting the Number of ADOl-·D Conversions 

The ADOl-D is an extremely fast device, providinq a 25-microsecond 
conversion rate, and is driven programmablv to minimize system 
overhead. However, an excessive number ot conversions in a single 
request essentially locks out the rest of the system because the 
driver does not return control to the system until it has finished all 
the specified conversions. No other task can run, although interrupts 
can still occur and are processed. 

14-10 

~I 

~i 



CHAPTER 15 

UNIVERSAL DIGITAL CONTROLLER DRIVER 

15.l INTRODUCTION 

The UDCll is a diqital input/output system for industrial and process 
control applications. It interrogates and/or drives up to 252 
directly addressable digital sense and/or control modules. The UDCll 
operates under program control as a hiqh-level diqital multiplexer, 
interrogatinq diqital inputs and drivinq diqital outputs. (UDCll 
driver support is not provided on RSX-llM-PLUS systems.) 

The UDC driver will support either the UDCll or ICSll subsystem. The 
ICSll (Industrial Control Subsystem) operates as an input/output 
device that is functionally similar to the UDCll. A maximum of 16 I/0 
modules can be placed in one ICSll subsystem. Up to 12 ICSlls can be 
interfaced to one computer system. The ICSll subsystem is also 
supported by the ICS/ICR-11 driver described in chapter 18. The 
reader should consult that chapter for a comparison of driver 
features. 

While performing analog-to-diqital conversions, the UDCll driver can 
handle other functions, such as contact or timer interrupts or 
latching output. These functions are performed immediately, without 
requiring any in progress analog-to-diqital conversions to first be 
completed. 

Unlike other RSX-llM I/O device drivers, the UDCll driver is neither a 
multicontroller nor a multiunit driver. 

15.1.~ Creating the UDCll Driver 

Each installation must assemble the driver source module with a prefix 
file that defines the particular hardware configuration. The prefix 
file is created during system qeneration accordinq to the user's 
response to questions relating to the UDCll. This file is named 
RSXMC.MAC and includes symbolic definitions of the UDCll 
configuration. These definitions encode the relative module number 
and the number of modules for each generic type specified in the 
system qeneration dialog. The encodinq has the followinq format: 

8 8 
[number of modules startinq module number 

15-1 



UNIVERSAL DIGITAL COl~TROLLER DRIVER 

One or more of the followinq symbols is qenerated: 

Symbol Module Type 

Ana.log input 
Ana.log output 

U$$ADM 
U$$AOM 
U$$CIM 
U$$CSM 
U$$LTM 
U$$SSM 
U$$TIM 

Contact interrupt 
Contact sense input 
Latching digital output 
Sinqle-shot diqital output 
Timer (I/O counter) 

Note that all modules of a qiven type must be installed toqether in 
sequential slots. 

15.1.2 Accessing UDCll Modules 

RSX-llM provides two methods of accessinq the UDCll: 

1. A QIO macro call issued to the driver 

2. Restricted direct access by any task to I/O paqe reqisters 
dedicated to the UDCll 

The first method, access throuqh the driver, is required to service 
interruptinq modules and to set and record the state of latchinq 
digital output modules. 

The second method, direct access, is a high-speed, low-overhead way to 
service noninterruptinq modules. The followinq functions may be 
performed in this manner: 

• Analoq output 

• Contact sense input 

• Sinqle-shot digital output 

• Read a contact interrupt module 

• Read a timer module 

15.1.2.1 Driver Services - The driver services the followinq types of 
modules: 

1. Contact interrupt 

2. Timer (I/O counter) 

3. Analog input 

4. Latchinq diqital output 

Contact and timer interrupts need not be serviced 
One task may be connected to contact interrupts, 
interrupts. A nonprivileged task can connect to 
these classes by providinq a circular buffer 
information and an event flaq to allow triggerinq 
a buffer entry is made. 

15-2 

by a sinqle task. 
and another to timer 
either or both of 
to receive interrupt 
of the task whenever 



UNIVERSAL DIGITAL CONTROLLER DRIVER 

15.1.2.2 Direct Access - A qlobal common block within th~ I/0 paqe 
provides restricted direct access to the UDCll device reqisters. In a 
mapped system, the lenqth of the block is set to prevent access to 
other device registers. In an unmapped system, the use of the common 
block is optional, unless ISA FORTRAN calls are used. The ISA 
routines refer symbolically to the UCDll reqisters, and thus require 
the use of qlobal common. Section 15.4 explains direct access more 
fully. 

15.2 GET LUN INFORMATION MACRO 

If a GET LUN INFORMATION system directive is issued for a LUN 
associated with the UDCll, word 2 (the first characteristics word) 
contains all zeros, words 3 and 4 are undefined, and word 5 is not 
significant, since there is no concept of a default buffer size for 
universal diqital controllers. 

15.3 QIO MACRO 

This section summarizes standard and device-specific QIO functions for 
the UDCll driver. In issuinq them, note the numberinq conventions 
described in 15.7.2. 

15.3.1 Standard QIO Function 

The standard function that is valid for the UDCll is shown in Table 
15-JL. 

Table 15-1 
Standard QIO Function for the UDCll 

Format Function 

I QIO$C IO.KIL, ••• Cancel I/O requests 

IO.KIL cancels all queued requests and disconnects all interrupt 
connections, but does not stop any I/O that is currently in proqress. 

15.3.2 Device-Specific QIO Functions 

Table 15-2 summarizes device-specific QIO functions that are supported 
for the UDC12. 

15-3 



UNIVERSAL DIGITAL CONTROLLER DRIVER 

Table 15-2 
Device-Specific QIO Functions for the UDCll 

Format Function 

QIO$C IO.CCI, ••• ,<stadd,sizb,tevf> Connect a buffer to contact 
interrupts 

QIO$C IO.CTI, ••• ,<stadd,sizb,tevf,arv> Connect a buffer to timer 
interrupts 

QIO$C IO.DC!,... Disconnect a buffer from 
contact interrupts 

QIO$C IO.DTI,... Disconnect a buffer from timer 
interrupts 

QIO$C IO.ITI, ••• ,<mn,ic> Initialize a timer 

QIO$C IO.MLO, ••• ,<opn,pp,dp> Open or close latching digital 
output points 

QIO$C IO.RBC, ••• ,<stadd,size,stcnta> Initiate multiple A/D 
conversions 

where: stadd is the startinq address of the data buffer (must be on 
a word boundary). 

sizb 

tevf 

is the data buffer size in bytes (must be even and 
larqe enouqh to include a 2-word buffer header plus one 
data entry; the buffer may cross a 4K boundary). 

is the triqqer event flaq number. 

arv is the startinq address of the table of initial/reset 
values (must be on a word boundary). 

mn is the module number. 

ic 

opn 

pp 

dp 

size 

is the initial count. 

is the first latchinq diqital output point number, 
which must be on a module boundary (evenly divisible by 
16) • 

is the 16-bit mask. 

is the data pattern. 

is the control buffer size in bytes (must be even and 
qreater than zero); the data buffer is the same size. 

stcnta is the startinq address of the control buffer (must be 
on a word boundary); each control buffer word must be 
constructed as shown in Table 15-3. 

The followinq sections describe the functions listed in Table 15-2. 

15-4 

~I 



UNIVERSAL DIGITAL CONTROLLER DRIVER 

Table 15-3 
A/D Conversion Control Word 

Bits Meaninq ADUOl 

0-11 Channel number Ranqe: 0-4095 

12-15 Gain value for this Gain: 
sample, expressed as 
a bit pattern as 
follows 

15 14 13 12 - - - -
0 0 0 0 1 
0 0 0 1 2 
0 0 1 0 i lleqa 1 
0 0 1 1 i lleqa 1 
0 1 0 0 10 
0 1 0 1 20 
0 1 1 0 illeqal 
0 1 1 1 i lleqa 1 
1 0 0 0 50 
1 0 0 1 100 
1 0 1 0 i lleqa 1 
1 0 1 1 i lleqa 1 
1 1 0 0 200 
1 1 0 1 1000 
1 1 1 0 i lleqa 1 
1 1 1 1 i lleqa 1 

15.3.2.1 Contact Interrupt Digital Input (W733 Modules) - Digital 
input and change of state information from contact interrupt modules 
is reported in a requester-provided circular buffer. The buffer 
consists of a 2-word header, followed by a data area in the following 
format: 

1 
2 
3 
4 

driver index 
user index 
entry 
entry . . . 

Whenever a chanqe of state occurs in one or more contact points an 
interrupt is qenerated. The UDCll driver qains control, determines 
whether the change of state is of interest (i.e., a contact closure 
and point closinq (PCL) is set on the module), and then optionally 
makes an entry in the data area of the buffer, updates the index words 
and sets the triqqer event flaq of the connected task. 

Each entry consists of five words in the followinq format: 

Word Contents 

0 Entry existence indicator 

1 Chanqe-of-state (COS) indicator 

2 Module data (current point values) 

15-5 



UNIVERSAL DIGITAL COJ~TROLLER DRIVER 

Word Contents 

3 Module number (interruptinq module) 

4 Generic code (interruptinq module) 

The driver enters data in the location currently indicated by the 
driver index. This pointer can be considered as a FORTRAN index into 
the buffer, i.e., the first location of the buffer is associated with 
the index 1. The beginninq of the data area is the location of the 
first entry (index 3). Entries are made in a circular fashion, 
starting at the beginninq of the data area, fillinq in order of 
increasinq memory address to the end of the data area, and then 
wrappinq around from the end to the beqinninq of the data area. 

It is expected that the connected task will maintain its own pointer 
(the user index) to the location in the buffer where it is next to 
retrieve contact interrupt data. When a task is triqqered by the 
driver, it should process data in the buffer startinq at the location 
indicated by its pointer and continuinq in a circular fashion until 
the two pointers are equal or a zero entry existence indicator is 
encountered. Equality of pointers means that the connected task has 
retrieved all the contact interrupt information that the driver has 
entered into the buffer. 

The entry existence indicator is set nonzero when a buffer entry is 
made. When a requester has removed or processed an entry, he must 
clear the existence indicator in order to free the buffer entry 
position. 

If data input occurs in a burst sufficient to overrun the buffer, data 
is discarded and a count of data overruns is incremented. The nonzero 
entry existence indicator also serves as an overrun indicator. A 
positive value (+l) indicates no overruns between entries; a negative 
value is the two's complement of the number of times data have been 
discarded between entries. 

The module number indicates a module on which a chanqe of state in the 
direction of interest has been recoqnized for one or more discrete 
points. The direction of the chanqe may be from 0 to 1 or 1 to O, 
dependinq on the PCL (point closinq) and POP (point openinq) module 
iumpers. The chanqe of state (COS) indicator specifies which point or 
~oints of the module have chanqed state. · 

The bit position of an on-bit in the 
low-order bits (3-0) of a point number 
the high order bits (15-4). The module 
value (polarity) of each point in 
interrupt. 

COS indicator provides the 
and the module number provides 
data indicates the loqical 

the module at the time of the 

Contact interrupt data can be reported to only one task. The 
functions IO.CCI and IO.DC! in Table 15-2 are provided to enable a 
task to connect and disconnect from contact interrupts. If the 
connection is successful, the second word of the I/O status block 
contains the number of words passed per int~rrupt in the low-order 
byte and the initial FORTRAN index to the beqinninq of the data area 
in the hiqh-order byte. 

NOTE 

The size of the data area must be a 
multiple of the entry size. 

15-6 



UNIVERSAL DIGITAL CONTROLLER DRIVER 

15.3.2.2 Timer (W734 1/0 Counter Modules) - A timer (I/O counter) 
module is a clock that is initialized (loaded), counts up or down, and 
then causes an interrupt. The UDCll driver treats such modules in a 
way similar to that in which it handles contact interrupts. The 
requester provides a circular buffer similar to that for contact 
interrupts. Each entry consists of four words in the followinq 
format: 

Word Contents 

0 Entry existence indicator 

1 Module data (current value) 

2 Module number (interruptinq module) 

3 Generic code (interruptinq module) 

The IO.CTI function in Table 15-2 enables a task to connect to timer 
interrupts. The table of initial/reset values is used to initially 
load the timers and to reload them on interrupt (overflow). The table 
contains one word for each timer module. The contents of the first 
word are used to load the first module, and so forth. If a timer has 
a nonzero value when it interrupts, it is not reloaded, so that 
self-clockinq modules and modules that interrupt on half count can 
continue countinq from the initial value. 

The IO.DTI function in Table 15-2 disconnects a task from timer 
interrupts, and the IO.ITI function provides the capability of 
initializinq a sinqle timer. Requests to initialize a counter are 
valid only if the issuinq task has connected a buffer for receivinq 
counter interrupts. 

NOTE 

The size of the data area must be a 
multiple of the entry size. 

15.3.2.3 Latching Digital Output (M685, M803, and M805 
Modules) - Each module has 16 latchinq diqital output points. The 
IO.MLO function in Table 15-2 opens or closes a set of up to 16 
points. Bit n of the mask and data pattern corresponds to the point 
opn + n. If a bit in the mask is set, the correspondinq point is 
opened or closed, dependinq on whether the correspondinq bit in the 
data pattern is clear or set. If a bit in the mask is clear, the 
correspondinq point remains unaltered. 

15.3.2.4 Analog-to-Digital Converter (ADUOl Module) - Each ADUOl 
module has eiqht analog input channels. The IO.RBC function in Table 
15-2 initiates A/D conversions on multiple ADUOl input channels. 
Restrictions on maximum samplinq rates are the same as defined for the 
AFCll in Chapter 14. 

The converted analoq value is returned as 12 bits, left-justified, in 
a 16-bit word with the low order 4 bits set to zero. 

15-7 



UNIVERSAL DIGITAL CONTROLLER DRIVER 

15.3.2.5 ICSll Analog-to-Diqital Cc1nverter (IAD-IA Module) - Each 
IAD~IA Module has eight analoq input channels. The channel capacity 
may be expanded to 120 by the addition of IMX-IA multiplexers. Each 
multiplexer adds 16 input channels to the converter. Restrictions on 
maximum samplinq rates are the same as defined for the AFCll in 
Chapter 14. The IAD-IA module preempts eiqht module slots reqardless 
of the number of IMX-IA multiplexers installed. 

For addressinq purposes, each converter occupies a block of 120 
channels. Thus, A/D converter 0 is addressed by referencinq channels 
0 throuqh 119; A/D converter 1 is addressed by referencinq channels 
120 throuqh 239 etc. When fewer th~n seven multiplexers are 
installed, not all addresses within the block are valid. 

The converted analoq value is returned as 12 bits, left iustified, in 
a 16-bit word with the low order 4 bits set to zero. 

15.4 DIRECT ACCESS 

Section 15.1.2 describes UDCll functions that may be performed by 
referencinq a module throuqh its physical address in the I/O paqe. 
Under RSX-llM such access is accomplished by one of the followinq 
methods: 

1. A privileqed task or any task runninq in an unmapped system 
has unrestricted access to the I/O paqe and may therefore 
access each module by absolute address. 

2. Usinq the Task Builder, a task may link to a qlobal common 
area whose physical address limits span a set of locations in 
the I/O page. This method applies to either a mapped or 
unmapped system. 

The latter method allows a task to be transported to any other system 
simply by relinkinq. Further, in a mapped system the memory 
management hardware will abort all references to device reqisters 
outside the physical address limits of the common block. 

The operations required to implement each method may be summarized as 
fol lows: 

1. Unrestricted access to the I/O paqe 

a. An object module is created which defines the UDCll 
configuration throuqh a list of absolute qlobal addresses 
and addressinq limits for each module type. 

b. The obiect module is included in the system library file. 

c. A task is created containinq the appropriate qlobal 
references. Such references are resolved when the task 
builder automatically searches the system library file. 

Steps a and b are executed once, durinq system qeneration {see RSX-llM 
System Generation and Management Guide). Step c is performed e~ach 
time a task is created that references the UDC12. 

2. Access to the I/O paqe throuqh a Global Common Block: 

a. An obiect module is created which defines the UDCll 
configuration throuqh a list of relocatable qlobal 
addresses and addressinq 1imits for each module type. 

15-8 

~ . "'\ 



UNIVERSAL DIGITAL CONTROLLER DRIVER 

b. The obiect module is linked, usinq the Task Builder, to 
create an image of the Global Common block on disk. 

c. The SET command is used to define a common block that 
resides on the I/O paqe. 

d. The INSTALL MCR command is used to make the Global Common 
Block resident in memory. 

ee A task is created containinq the appropriate qlobal 
references. Such r~ferences ·are resolved by directinq 
the Task Builder to link the Task to the common block. 

Steps a throuqh d are executed once, durinq system qeneration. Step e 
is performed each time a task is created that references the UDCll 
common block. The followinq paraqraphs describe each step in detail. 

15.4.1 Defininq the UDCll Confiquration 

The source module UDCOM.MAcl, when assembled with the proper pref ix 
file, provides qlobal definitions for the followinq parameters: 

• The starting address of each module type. 

• The hiqhest point number within a qiven module type. 

• The highest module number within a qiven module type. 

The last two parameters are absolute quantities that may be used to 
prevent a task from referencinq a module that is nonexistent or out of 
limjL ts. 

By means of conditional assembly the list of addresses may be created 
as absolute symbols defining locations in the I/O page or as symbols 
within a relocatable Proqram section to be used when buildinq and 
linkinq to the UDCll Global Common area. 

15.·~.l.l 
with the 
RSXMC .MAC. 

Assembly Procedure for 
RSX-llM configuration 

UDCOM.MAC - UDCOM.MAC 
parameters contained 

is 
in 

assembled 
the file 

To ,create relocatable module addresses either the parameter U$$DCM or 
M$$MGE must be defined. M$$MGE will be included in RSXMC.MAC if 
memory management was specified when the system was qenerated. If 
not, the user should edit the file to include the followinq 
definition: 

U$$DCM=O 

The file may then be assembled usinq the MCR command: 

>MAC UDCOM,UDLST=[ll,lO]RSXMC,UDCOM 

1 This module resides on the RK05 cartridqe of the RSX-llM RK 
distribution kit labeled EXECUTIVE SOURCE. For RP distribution kits, 
it resides on the RP imaqe. The file is located under UIC [11,10]. 

15-9 



UNIVERSAL DIGITAL CONTROLLER DRIVER 

This command invokes the MACR0-11 assembler which processes the input 
files RSXMC.MAC and UDCOM.MAC to create UDCOM.OBJ and UDLST.LST. 

To create absolute module addresses, both U$$DCM and M$$MGE must be 
undefined. Edit RSXMC.MAC, if necessary, to remove definitions and 
then invoke the MACR0-11 assembler with the followinq MCR command: 

>MAC UDCDF,UDLST=[ll,lO]RSXMC,UDCOM 

In this sequence the files UDCDF.OBJ and UDLST.LST are created from 
the specified source modules. UDCDF.OBJ contains the module addresses 
in absolute form. 

15.4.1.2 Symbols Defined by UDCOM •. MAC - This section lists the 
symbolic definitions created by UDCOM.MAC. 

The followinq symbols define the absolute or relocatable address of 
the first module of a qiven type: 

Symbol 

$.ADM 
$.AOM 
$.CIM 
$.CSM 
$.LTM 
$.SSM 
$.TIM 

Module Type 

Analoq input 
Analoq output 
Contact interrupt 
Contact sense input 
Latchinq digital output~ 
Sinqle-shot diqital output 
Timer (I/O counter) 

The addresses in relocatable form are defined in a proqram section 
named UDCOM havinq the attributes: 

REL - relocatable 
OVR - overlaid 
D - data 
GBL - qlobal scope 

Note that these attributes correspond to those attached to a named 
common block within a FORTRAN proqram. 

In either the absolute or relocatable case, 
referenced by the correspondinq symbolic 
module index. 

individual modules are 
address plus a relative 

The followinq symbols define the hiqhest diqital point within a module 
type: 

Symbol 

P$.CIM 
P$.CSM 
P$.LTM 
P$.SSM 

Module Type 

Contact interrupt 
Contact sense input 
Latchinq diqital output 
Sinqle-shot diqital output 

The highest point number is defined relative to the first point on the 
first module of a specific type. For example if two contact interrupt 
modules are installed, the symbol P$.CIM will have an octal value of 
37. 

The followinq symbols define the hiqhest module number within a qiven 
module type. 

15-10 

~! 

"""'· 



UNIVERSAL DIGITAL CONTROLLER DRIVER 

Symbo:~ 

M$.ADM 
M$ .AOM 
M$.CIM 
M$.CSM 
M$.LTM 
M$.SSM 
M$.TIM 

Module Type 

Analoq input 
Analoq output 
Contact interrupt 
Contact sense input 
Latchinq digital output 
Sinqle-shot diqital output 
Timer (I/O counter) 

The hiqhest module number is defined relative to the first module of a 
qive!n type. Thus, based on the previous example, M$.CIM will have a 
value of 1. 

15.4.2 Including UDCll Symbolic Definitions in the System Object 
Module Library 

As described in 15.4, a task having unrestricted access to the I/O 
paqe! may reference a UDCll module by absolute address. The obiect 
module UDCDF contains symbolic definitions of absolute module 
addresses and may be included in the System Obiect Module Library: 

SY: [l,l]SYSLIB.OLB 

The Task Builder automatically searches this file to resolve any 
undefined qlobals remaininq after all input files have been processed. 

The followinq example illustrates the procedure for includinq the file 
UDCDF.OBJ in the library. 

>SET /UIC=[l,l] 
>LBR SYSLIB/IN=[200,200]UDCDF 

The SET MCR command is issued to establish the current UIC as [1,1]. 
Next, the RSXllM Librarian is invoked and instructed, through the use 
of the /IN switch to include the obiect module UDCDF.OBJ in the file 
SYSLIB .OLB. 

15.4.3 Referencing the UDCll through a Global Common Block 

The follow:inq sections define the procedure for creatinq a Global 
Common block in the I/O PAGE, makinq the block resident in memory, and 
creatinq a task which references UDCll modules within the block. 
Examples are qiven for both mapped and unmapped systems. 

15. 4. 3 .1 Cn~ating a Global Common Block - The fol low inq sequence 
illustrates the use of the obiect file UDCOM.OBJ to create a disk 
imaqe of the qlobal common area in a mapped system. 

>SET /UIC=[l,l] 
>TKB 
TKB>UDCOM/MM,LP:,SY:UDCOM/PI/-HD=[200,200]UDCOM 
'rKB>/ 
EWrER OPTIONS: 
TKB>PAR=UDCOM:O:lOOO 
TKB>STACK=O 
'rKB>/ 

15-11 



UNIVERSAL DIGITAL CONTROLLER DRIVER 

In the above example, a current UIC of (1,1] is established and the 
Task Builder is initiated. The initial input line to the Task Builder 
specifies the followinq files: 

• A core image output file to be named UDCOM.TSK 

• A memory map output to the line printer 

• A svmbol table file to be named UDCOM.STB 

All files reside on SY: under UIC 
UDCOM.OBJ containing the UDCll 
values, constitutes the input. 

(1,1]. 
address 

The sinqle input file, 
definitions as relocatable 

The switches specified for the output files convey the followinq 
information to the Task Builder: 

/MM 

/PI 

/-HD 

indicates that the core imaqe of the common block will 
reside on a system with Memory Manaqement. 

indicates that the core image is position independent; 
that is the virtual address of the common block may 
appear on any 4K boundary within a task's address 
space. 

indicates that the core imaqe will not contain a 
header. A header is only required for a core imaqe 
file that is to be installed and executed as a task. 

The names of the partition, task file, and symbol-table files must 
aqree. 

The STACK option must be used to eliminate the stack space. 

The followinq sequence illustrates the correspondinq procedure for 
unmapped system: 

an 

>SET /UIC=[l,l] 
>TKB 
TKB>UDCOM/-MM,LP:,SY:UDCOM/PI/-HD=[200,200]UDCOM 
TKB>/ 
ENTER OPTIONS: 
TKB>STACK=O 
TKB>PAR=UDCOM:l71000:1000 
TKB>/ 

Aqain the task builder is requested to produce a core imaqe and symbol 
table file under the UIC (1,1] and a map file on the line printer from 
the input file UDCOM.OBJ. The output file switches convey the 
following information: 

/-MM 

/PI 

/-HD 

indicates that the core imaqe of the common block will 
reside on an unmapped system. 

Indicates that the core imaqe is position independent. 
In an unmapped system the core imaqe is fixed in the 
same address space for all tasks; however, the qlobal 
symbols defined in the symbol table file retain the 
relocatable attribute. 

indicates that a core image without a header is to be 
created. 

15-12 

~ i. 

~. 



UNIVERSAL DIGITAL CONTROLLER DRIVER 

The PAR option specifies the base and length of the common area 
coincide with the standard UDCll addresses in the I/O page. 
references to the common block by tasks will be resolved within 
region. 

to 
All 

this 

15.4.3.2 
creates 
system: 

Making the Common Block Resident - The following SET command 
a UDCll common block residing in the I/O page for a mapped 

>SET /MAIN=UDCOM:7710:10:DEV 

The corresponding command in an unmapped system is: 

>SET /MAIN= U DCO M : 1 7 1 0 : 1 0 : DEV 

The preceding sequence specifies the allocation of a common block in 
the I/O page whose physical address limits correspond to the UDCll 
standard locations~ Note that the address bounds and length are 
defined in units of 32 words. 

The command 

> IN s [ 1 I l ] u DCO M 

declares the common block resident in the system. 

15.4.3.3 Linking a Task to the UDCll Common Block - A task may access 
UDCll modules by linking to the common block as follows: 

TKB>TASK,LP:=TASK.OBJ 
'!'KB>/ 
ENTER OPTIONS: 
TKB> COMMON=UDCOM:RW 
TKB>/ 

The above sequence is valid for either a mapped or unmapped system. 
In both cases the Task Builder will link the task to the common block 
by resolving references to the Global symbol definitions contained in 
UDCOM.STB. If memory management is present, the Executive will map 
the appropriate physical locations into the task's virtual addressing 
space when the task is made active. 

15.5 FORTRAN INTERFACE 

A collection of FORTRAN-callable subroutines provide FORTRAN programs 
access to the UDC12. These are described in this section. All are 
reentrant and may be placed in a resident library. 

Instead of using the FORTRAN-callable subroutines described in this 
section, a FORTRAN program may use the global common feature described 
in Section 15.4 to reference UDCll modules directly in the I/O page, 
as shown in the following example: 

15-13 



c 
c 
c 

c 
c 
c 

UNIVERSAL DIGITAL COHTROLLER DRIVER 

UDCll GLOBAL COMMON 

COMMON /UDCOM/ ICSM(lO),IAO(lO) 

READ CONTACT SENSE MODULE l DIRECTLY 

ICS=ICSM(l) 

Note that the position of each module type must correspond to the 
sequence in which storage is allocated in the common statements. 

15.5.l Synchronous and Asynchronous Process Control I/O 

The ISA standard provides for synchronous and asynchronous p~ocess 
I/O. Synchronous I/O is indicated by appending a "W" to the name of 
the subroutine (e.g., AO/AOW). But due to the fact that nearly all 
UDCll I/O operations are performed immediately, in most cases the "W" 
form of the call is retained only for compatibility and has no meaning 
under RSX-llM. In the case of A/D input, however, the "W" form is 
significant: the synchronous call suspends task execution until input 
is complete. If the asynchronous form is used, execution continues 
and the calling program must periodically test the status word for 
completion. 

15.5.2 The isb Status Array 

The isb (I/O status block) parameter is a 2-word integer array that 
contains the status of the FORTRAN call, in accordance with ISA 
(Instrument Society of America) convention. This array serves two 
purposes: 

1. 

2. 

It is the 2-word I/O status block 
returns an I/O status code on 
operation. 

The first word of isb receives a 

to which the driver 
completion of an I/O 

status code from the 
FORTRAN interface in ISA-compatible format, with the 
exception of the I/O pending condition, which is 
indicated by a status of zero. The ISA standard code for 
this condition is +2. 

The meaning of the contents of isb varies, depending on the FORTRAN 
call that has been executed, but Table 15-4 lists certain general 
principles that apply. The section describing each subroutine gives 
more details. 

In some cases, the values or states of points being read, pulsed, or 
latched are returned to isb word 2. 

FORTRAN interface subroutines for analog input depend on asynchronous 
system traps to set their status. Thus, if the trap mechanism is 
disabled, proper status cannot be set. 

15-14 

~\ 
'J 



UNIVERSAL DIGITAL CONTROLLER DRIVER 

Table 15-4 
Contents of First Word of isb 

isb(l) 0 

isb(l) 1 

i sb ( 1) 3 

3 < isb(l) < 300 

isb{l) > 300 

Meaning 

Operation pending; I/O in progress 

Successful completi~n 

Interface subroutine unable to 
generate QIO directive or number of 
points requested is zero 

QIO directive rejected and actual 
error code = -(isb(l) - 3) 

Driver rejected request and actual 
error code= -(isb(l) - 300) 

For direct access calls (indicated in Table 15-5 below), errors are 
detected and returned by the FORTRAN interface subroutine itself, 
rather than by the driver. Although the use of a two-word status 
block is therefore unnecessary, these errors are returned in standard 
format to retain compatibility with functions called through QIO 
directives and handled by other drivers. Errors of this type that may 
be returned are: 

isb{l) 3 

i sb ( 1) +321 

15.5.3 FORTRAN Subroutine Summary 

Number of points requested is 
zero 

Invalid UDCll module 

Table 15-5 lists the FORTRAN interface subroutines supported for the 
UDCll under RSX-llM. (D) indicates a direct access call and the 
optional logical unit number for such a call may be specified to 
retain compatibility with RSX-llD, but this specification is ignored 
by RSX-llM. 

The following subsections briefly describe the function and format of 
each FORTRAN subroutine call. Note· the use of ASUDLN to specify a 
default logical unit number. Also consider the numbering conventions 
described in 15.7.2. 

The following FORTRAN functions do not perform I/O directly, but 
facilitate conversions between BCD and binary. 

Convert four BCD digits to a binary number: 

!BIN = KBCD2B{IBCD) 

Convert a binary number to four BCD digits: 

!BCD = KB2BCD{IBIN) 

15-15 



UNIVERSAL DIGITAL CONTROLLER DRIVER 

Table 15-5 
FORTRAN Interface Subroutines for the UDCll 

Subroutine Function 

AIRD/AIRDW 

AISQ/AISQW 

AO/AOW 

ASUDLN 

CTDI 

CTTI 

DFDI 

DFTI 

DI/DIW 

DOL/DOLW 

DOM/DO MW 

RCIPT 

RDCS 

RDDI 

RDTI 

RDWD 

RSTI 

SCTI 

Perform input of analog data in random 
sequence 

Read a series of sequential analog input 
channels 

Perform analog output on several channels 
{ D) 

Assign a LUN to the UDCll 

Connect a circular buffer 
contact interrupt data 

to receive 

Connect a circular buffer to receive timer 
interrupt data 

Disconnect a buffer from contact interrupts 

Disconnect a buffer from timer interrupts 

Read several 16-point contact sense fields 
{D) 

Latch or unlatch several 16-point fields 

Pulse several 16-point fields {D) 

Read the state of 
interrupt point {D) 

a single contact 

Read the contents of a contact interrupt 
circular buffer, returning data on only 
those points that have changed state. 

Read the contents of a contact interrupt 
circular buffer, one point for each call 

Read the contents of a timer interrupt 
circular buffer, one entry for each call 

Read the contents of 
circular buffer, 
module data 
information. 

a contact interrupt 
returning 16 bits of 
and change-of-state 

Read a single timer module (D) 

Set a timer module to an initial value 

15-16 



UNIVERSAL DIGITAL CONTROLLER DRIVER 

15.5.4 AIRD/AIRDW:: Performing Input of Analog Data in Random 
Sequence 

The ISA standard AIRD/AIRDW FORTRAN subroutines input analog data in 
random sequence. These calls are issued as follows: 

CALL 
{

AIRD l (inm, icont, idata, [isb], lun) 
AIRDW ~ 

where: inm specifies the number of analog input channels. 

icont is an integer array containing terminal connection 
data - channel number (right-justified in bits 0-11) 
and gain (bits 12-15), as shown in Table 15-3. 

idata is an integer array to receive the converted values. 

isb is a two-word integer array to which the subroutine 
status is returned. 

lun is the logical unit number. 

NOTE 

lun is a required parameter. 

The isb array has the standard meaning defined in Section 15.5.2. If 
inm O, then isb(l) = 3. The contents of idata are undefined if an 
error occurs. 

15.5.5 AISQ/AISQW: Reading Sequential Analog Input Channels 

The ISA standard AISQ/AISQW FORTRAN subroutines read a series of 
sequential analog input channels. These calls are issued as follows: 

CALL JAISQ l (inm,icont,idata, [isb],lun) 
lAISQW~ 

where: inm specifies the number of analog input channels. 

icont is an integer array containing terminal connect~on 
data - channel number (right-justified in bits 0-11) 
and gain (bits 12-15), as shown in Table 15-3. 

idata is an integer array to receive the converted values. 

isb is a two-word integer array to which the subroutine 
status is returned. 

lun is the logical unit number. 

NOTE 

lun is a required parameter. 

15-17 



UNIVERSAL DIGITAL CONTROLLER DRIVER 

For sequential analog input, channel number is computed in steps of 
one, beginning with the value specified in the first element of icont. 
The channel number field is ignored in all other elements of the 
array. 

The gain used for each conversion is taken from the respective element 
in icont. Thus, even though the channel number is ignored in all but 
the first element of icont, the gain must be specified for each 
conversion to be performed. 

The isb array has the standard meaning defined in Section 15.5.2. If 
inm O, then isb{l) = 3. The contents of idata are undefined if an 
error occurs. 

15.5.6 AO/AOW: Performing Analog Output 

The ISA standard AO/AOW FORTRAN subroutines initiate analog output on 
sevaral channels. These calls are issued as follows: 

CALL { i nm, icon t, id at a , [ i s b] , [ 1 u n] ) 

where: inm specifies the number of analog output channels. 

icont is an integer array containing the channel numbers. 

idata is an integer array containing the output voltage 
settings, in the range 0-1023. 

isb is a two-word integer array to which the subroutine 
status is returned. 

lun is the Logical unit number {ignored if present). 

The isb array has the standard meaning defined in Section 15.5.2. 

15. 5. 7 ASUDLN: Assigning a LUN to th•! UDCll 

The ASUDLN FORTRAN subroutine assigns the specified LUN to the 
specified unit and defines it as the default logical unit number to be 
used whenever a LUN specification is omitted from a UDCll subroutine 
call. It is issued as follows: 

where: 

CALL ASUDLN {lun, [isw], [iun]) 

lun is the logical unit number to be assigned to the 
specified unit, and defined as the default. 

isw is an integer variable to which the result of the 
ASSIGN LUN system directive is returned. 

iun is an integer defining the UDCll unit number. 
number is specified, 0 is assumed. 

15-18 

If no 

....... 



UNIVERSAL DIGITAL CONTROLLER DRIVER 

15.5.8 CTDI: Connecting to Contact Interrupts 

The CTDI FORTRAN subroutine connects a task to contact interrupts and 
specifies a circular buffer to receive contact interrupt data. The 
length of this buffer can be computed by considering the following: 

• Rate at which contact module interrupts occur 

• Number of modules that can interrupt simultaneously 

• Rate at which the circular buffer is emptied 

The UDCll driver 
interrupt and the 
additional storage. 
computed as follows: 

generates a five-word entry for each contact 
interface subroutine itself requires 10 words of 
Thus the isz parameter, described below, can be 

isz = (10 + 5 * n) 

where n is the number of entries in the buffer and isz is expressed in 
words. 

The call is issued as follows: 

wheire: 

CALL CTDI (ibuf,isz,iev, [isb], [lun]) 

ibuf is an integer array that is to receive 
interrupt data. 

contact 

isz is the length of the array in words, with a minimum 
size of 15. 

iev is the trigger event flag number. The specified event 
flag is set whenever the driver inserts an entry in the 
data buffer. 

isb is a 2-word integer array to which the subroutine 
status is returned. 

lun is the logical unit number. 

The isb array has the standard meaning defined in Section 15.5.2. 

15.5.9 CTTI: Connecting to Timer Interrupts 

The CTTI FORTRAN subroutine connects a task to timer interrupts and 
specifies a circular buffer to receive timer intoerrupt data.· The 
length of this buffer can be computed by considering the following: 

• Rate at which timer module interrupts occur 

• Number of modules that can interrupt simultaneously 

• Rate at which the circular buffer is emptied 

The UDCll driver generates a four-word entry for each timer interrupt 
and the interface subroutine itself requires 8 words of additional 
storage. Thus the isz parameter, described below, can be computed as 
fol lows: 

isz (8 + 4 * n) 

where n is the number of entries in the buffer and isz is expressed in 
words. 

15-19 



UNIVERSAL DIGITAL CO~ITROLLER DRIVER 

When a timer module interrupt occurs, the driver resets the count to 
an initial value, normally that specified in iv. The initial value 
for a specific module can be modified by calling the SCTI subroutine 
(see Section 15.5.19). 

The call is issued as follows: 

CALL CTTI (ibuf,isz,iev,iv, [isb], [lun]) 

where: ibuf is an integer array that is to receive timer interrupt 
data. 

isz is the length of the array in words, with a minimum 
size of 12. 

iev is a trigger event flag number. The specified event 
flag is set whenever the driver inserts an entry in the 
data buffer. 

iv is an integer array which contains the initial timer 
module values, with one entry for each timer module, 
where entry n corresponds to timer module number n-1. 

isb is a 2-word integer array to which the subroutine 
status is returned. 

lun is the logical unit number. 

The isb array has the standard meaning defined in Section 15.5.2. 

15.5.10 DFDI: Disconnecting from Contact Interrupts 

The OFOI 
interrupts. 

FORTRAN subroutine disconnects 
It is issued as follows: 

CALL OFOI ( [isb], [lun]) 

a task from contact 

where: isb is a 2-word integer array to which the subroutine 
status is returned. 

lun is the logical unit number. 

The isb array has the standard meaning defined in Section 15.5.2. 

15.5.11 DFTI: Disconnecting from Timer Interrupts 

The OFT! FORTRAN subroutine disconnects a task from timer interrupts. 
It is issued as follows: 

CALL OFT! ( [isb], [lun]) 

where: isb is a 2-word integer array to which the subroutine 
status is returned. 

lun is the logical unit number. 

The isb array has the standard meaning defined in Section 15.5.2. 

15-20 



UNIVERSAL DIGITAL CONTROLLER DRIVER 

15.5.12 DI/DIW: Reading Several Contact Sense Fields 

The ISA standard DI/DIW FORTRAN subroutines read several 16-point 
contact sense fields. These calls are issued as follows: 

CALL (inm, icont, idata, isb, [lun]) 

where: inm specifies the number of fields to be read. 

icont is an integer array containing the initial point number 
of each field to be read. 

idata is an integer array that is to receive the input data, 
16 bits of contact data for each field read. 

isb is a 2-word integer array to which the subroutine 
status is returned. 

lun is the logical unit number (ignored if present). 

The isb array has the standard meaning defined in Section 15.5.2. 

15.S.13 DOL/DOLW: Latching or Unlatching Several Fields 

The ISA standard DOL/DOLW FORTRAN subroutines latch or unlatch one or 
more 16-point fields. These calls are issued as follows: 

CALL 

where: inm 

} DOL i 
( DOLW) 

(inm, icont, idata, imsk, [isb], [lun]) 

specifies the number of fields to be latched or 
unlatched. 

icont is an integer array containing the initial point number 
of each 16-point field. 

idata is an integer array which specifies the points to be 
latched or unlatched; bit n of idata corresponds to 
point number icont + n; if the corresponding bit in 
imsk is set, the bit is changed; a bit value of 1 
indicates latching, and 0 unlatching; each entry in 
the array specifies a string of 16 points. 

imsk is an integer array in which bits are set to indicate 
points whose states are to be changed in the 
corresponding idata bits; each entry in the array 
specifies a 16-bit mask word. 

isb is a 2-word integer array to which the subroutine 
status is returned. 

lun is the logical unit number. 

The isb array has the standard meaning defined in Section 15.5.2. 

15-21 



UNIVERSAL DIGITAL co:NTROLLER DRIVER 

15.5.14 DOM/DOMW: Pulsing Several Fields 

The ISA standard DOM/DOMW FORTRAN subroutines pulse several 16-bit 
fields (one-shot digital output points). These calls are issued as 
follows: 

CALL 
} DOM l 
( DOMW f 

(inm, icont, idata, [idx], [isb], [lun]) 

where: inm specifies the number of fields to be pulsed. 

icont is an integer array containing the initial point number 
of each 16-point field. 

idata is an integer array which specifies the points to be 
pulsed; bit n of idata corresponds to point number 
icont + n. 

idx is a dummy argument retained for compatibility with 
existing Instrument Society of America standard FORTRAN 
process control calls. 

isb is a 2-word integer array to which the subroutine 
status is returned. 

lun is the logical unit number (ignored if present). 

The isb array has the standard meaning defined in Section 15.5.2. 

15.5.15 RCIPT: Reading a Contact Interrupt Point 

The RCIPT FORTRAN subroutine .ceads thE~ state of a single contact 
interrupt point. It is issued as follows: 

where: 

CALL RCIPT (ipt, isb, [lun]) 

ipt 

isb 

is the number of the point to be read; points are 
numbered sequentially from O, the first point on the 
first contact interrupt module. 

is a 2-word integer array to which the subroutine 
status is returned. 

lun is the logical unit number (ignored if present). 

The isb array has the same basic meaning defined in Section 
However, isb word 2 is set to one of the following 
representing the state of the point: 

15.5.2. 
values, 

Setting 

• FALSE. ( 0) 

.TRUE. (-1) 

15-22 

Meaning 

Point is open 

Point is closed 

~. 
' ~I 



15.5.16 

UNIVERSAL DIGITAL CONTROLLER D.RIVER 

NOTE 

To increase throughputp the subroutines 
RDCS, RDDI, RDTI, and RDWD described in 
the following four sections do not issue 
the clear Event Flag directive until a 
buffer-empty condition is detected. The 
calling task, therefore, must avoid 
issuing a Wait-For directive until a 
buffer-empty is reported. 

RDCS: Reading Contact Interrupt Change-of-State Data from a 
Circular Buffer 

The RDCS FORTRAN subroutine reads contact interrupt data from a 
circular buffer that was specified in a CTDI call (see Section 
15.5.8). It does no actual input or output, but rather performs a 
point-by-point scan of an interrupt entry in the buffer, returning the 
state of each point that has changed state, as a logical value. The 
trigger event flag which was specified in the CTDI call is cleared 
when the "buffer empty" condition is detected. 

On the initial call to RDCS, the module number, module data, and 
change-of-state word of the next interrupt entry are read from the 
circular buffer and stored for subsequent reference. The subroutine 
then searches the entry change-of-state word until a nonzero point is 
encountered. The point number is computed and returned to the caller 
along with the state of the point. Scanning for points that have 
changed state resumes on the next call; all other points are 
bypassed. The next entry is automatically read when the caller has 
recE~ived all change-of-state information from the current entry. If a 
valid entry is not found, ipt is set negative and ict (if sp~cified) 
is E~ither assigned a value of zero or an overrun count maintained by 
the UDCll driver. If ict is zero, no further entries remain. A 
nonzero value indicates that the driver received more data than could 
be stored in the buffer, and ict represents the number of entries that 
wen~ discardE~d. 

The RDCS call is issued as follows: 

whe1re: 

CALL RDCS ( i pt, i va 1, [ i ct] ) 

ipt is a variable to which the digital input point number 
is returned; it may be set as follows: 

11 ipt < 0 if no valid entry is found (i.e., no 
interrupt data currently in buffer, or overrun 
detected). One of the following values is 
returned to indicate the condition detected: 

-1 Buffer empty 
-2 Overrun detected 

• ipt => 0 if the value indicated is a point number 
that has changed state; the state is returned to 
ival. 

15-23 



UNIVERSAL DIGITAL CONTROLLER DRIVER 

ival is a variable to which the state of the point is 
returned; it may be set as follows: 

• .FALSE. (0) if the point is open 

• .TRUE. (-1) if the point is closed 

ict is an integer variable for receiving the overrun count. 
A nonzero positive count indicates that the driver was 
unable to store the number of interrupts indicated. 

15.5.17 RDDI: Reading Contact Interrupt Data from a Circular Buffer 

The RODI FORTRAN subroutine reads contact interrupt data from a 
circular buffer that was specified in a CTDI call (see Section 
15.5.8). It does no actual input or output, but rather performs a 
point-by-point scan of an interrupt entry in the buffer, returning the 
state of each point as a logical value. The trigger event flag which 
was specified in the CTDI call is also cleared. 

On the initial call to RODI the module number and data of the next 
interrupt entry are read from the circular buffer and stored for 
subsequent reference. The subroutine then sets the current data bit 
number n to zero, examines the state of data bit n, and converts bit n 
to a point number via the following formula: 

ipt = module number * 16 + n 

On each subsequent call, n is incremented by one and then data bit n 
is examined in the stored module data. When n reaches 16, it is reset 
to zero and an attempt is made to read the next interrupt entry :Erom 
the circular buffer. If a valid entry is not found, ipt is set 
negative and ict (if specified) is either assigned a value of zero or 
an overrun count maintained by the UDCll driver. If ict is zero, no 
further entries remain. A nonzero value indicates that the driver 
received more data than could be stored in the buffer, and ict 
represents the number of entries that were discarded. 

The RODI call is issued as follows: 

where: 

CALL RODI (ipt, ival, [ict]) 

ipt is a variable to which the digital input point number 
is returned; it may be set as follows: 

• ipt < 0 if no valid entry is found 
interrupt data currently in buffer, 
empty). One of the following values is 
to indicate the condition detected: 

-l=Buffer empty 
-2=0verrun detected 

(i.e. , no 
or buff er 

returned 

• ipt => 0 if the value indicated is a point number; 
the state is returned to ival 

15-24 



UNIVERSAL DIGITAL CONTROLLER DRIVER 

ival is a variable to which the state of the point is 
returned; it may be set as follows: 

• • FALSE~ (0) if the point is open 

• .TRUE. (-1) if the point is closed 

ict is a variable to which the overrun count may be 
returned; a nonzero positive count indicates that the 
driver was unable to store the number of entries 
indicated. 

15.5.18 RDTI: Reading Timer Interrupt Data from a Circular Buffer 

The RDTI FORTRAN subroutine reads timer interrupt data from a circular 
buffer that was specified in a CTTI call (see Section 15.5.9). It 
does no actual input or output, but rather performs a scan of each 
entry in the buffer, returning the timer value for each call. The 
trigger event flag which was specified in the CTTI call is also 
cleared. 

When a timer module interrupt occurs, the UDCll driver resets the 
count to an initial value, usually that specified in the iv array on 
the CTTI call. The initial value can be modified for a specific 
module by calling the subroutine SCTI (see Section 15.5.19). 

The RDTI call is issued as follows: 

where: 

CALL RDTI ( imod, i tm, [ i vrn]) 

imod is a variable to which the module number is returned; 
it may be set as follows: 

• imod < 0 if no valid entry is found 
interrupt data currently in buffer, 
empty). One of the following values is 
to indicate the condition detected: 

-l=Buf fer empty 
-2=0verrun detected 

(i.e. , no 
or buffer 

returned 

• imod > 0 if the 
module number; 
returned in itm 

entry is valid, indicating a 
the value of the timer module is 

itm is a variable to which the timer value is returned. 

ivrn is a variable to which the overrun count may be 
returned; a nonzero positive count indicates that the 
driver was unable to store the number of values 
indicated. 

15.5.19 RDWD: Reading a Full Word of Contact Interrupt Data from the 
Circular Buffer 

The RDWD FORTRAN subroutine reads a full word of contact interrupt and 
change-of-state data from the circular buffer that was specified in a 
CTDI call (see Section 15.5.8). It does no actual input or output, 
but rather performs a scan of each entry, returning the state of a 
module and optionally, the change-of-state data for each call. The 
trigger event flag specified in the call to CTDI is cleared. 

15-25 



UNIVERSAL DIGITAL CONTROLLER DRIVER 

The call to RDWD is issued as follows: 

CALL RDWD ( i mod, is t, [ i vr n] , [ i cos] ) 

where: imod is a variable to which the module number is returned; 
it may be set as follows: 

ist 

ivrn 

icos 

• imod < 0 if no valid entry is found (i.e., no 
interrupt data currently in buffer or overrun 
detected). One of the following values is 
returned to indicate the condition detected: 

-l=Buf fer empty 
-2=0verrun detected 

is a variable to which the module data is returned. 

is a variable to which the overrun count may be 
returned; a nonzero, positive count indicates that the 
driver was unable to store the number of entries 
indicated. 

is a variable to which the change-of-state data is 
returned. One bit is set for each point that has 
changed state in the direction indicated by the "point 
open" (POP) or "point closed" (PCL) jumpers on the 
module. 

15.5.20 RSTI: Reading a Timer Module 

The RSTI FORTRAN subroutine reads a single timer module. It is issued 
as follows: 

where: 

CALL RSTI ( imod, isb, [lun]) 

imod is the module number of the timer to be read. 

isb is a 2-word integer array to which the subroutine 
status is returned. 

lun is the logical unit number (ignored if present). 

The isb array has the standard meaning defined in Section 15.5.2. 

15.5.21 SCTI: Initializing a Timer Module 

The SCTI FORTRAN subroutine sets a timer module to an initial value. 
It is issued as follows: 

CALL SCTI (imod, ival, [isb], [lun]) 

where: imod is the module number of the timer to be set. 

ival is the initial timer value. 

isb is a 2-word integer array to which the subroutine 
status is returne.d. 

lun is the logical unit number. 

15-26 

~ 

i' 



UNIVERSAL DIGITAL CONTROLLER DRIVER 

The isb array has the standard meaning defined in Section 15.5.2. 

Calls to initialize a counter are valid only if the issuing task has 
connected a buffer for receiving counter interrupts via a call to 
CTTI. 

15.6 STATUS RETURNS 

Table 15-6 lists the error and status conditions that are returned by 
the UDCll driver described in this chapter: 

Code 

Is .sue 

IS .PND 

IE.ABO 

IE.BAD 

IE.BYT 

IE.CON 

Table 15-6 
UDCll Status Returns 

Reason 

Sucessful completion 

The operation specified in the QIO directive was 
completed successfully. The second word of the I/O 
status block can be examined to determine the number of 
samples completed or converted. 

I/O request pending 

The operation specified in the QIO directive has not 
yet been executed. The I/O status block is filled with 
zeros. 

Operation aborted 

The specified I/O operation was cancelled via IO.KIL 
while still in the I/O queue. 

Bad parameter 

An illegal specification was supplied for one or more 
of the device-dependent QIO parameters (words 6-11). 
For the UDCll, this code indicates an illegal channel 
number or gain code for the ADUOl. 

Byte-aligned buffer specified 

Byte alignment was specified for a buffer but only word 
alignment is legal for the UDC12. Alternately, the 
length of a buffer was not an even number of bytes. 

Connect error 

The task attempted to connect to contact or timer 
interrupts, but the interrupt was already connected to 
another task. Only one task can be connected to a 
timer or contact interrupt. Alternately a task which 
was not connected attempted to disconnect from contact 
or timer interrupts. 

(continued on next page) 

15-27 



Code 

IE.DNR 

IE .I EF 

IE. I FC 

IE .MOD 

IE .OFL 

IE.PR! 

IE.SPC 

UNIVERSAL DIGITAL co:NTROLLER DRIVER 

Table 15-6 (Cont.) 
UDCll Status Returns 

Reason 

Device not ready 

The physical device unit specified in the QIO directive 
was not ready to perform the desired I/O operation. 
For the ADUOl, this code is returned if an interrupt 
timeout occurred or the power failed. 

Invalid event flag number 

An invalid trigger event flag number was specified in a 
connect function. 

Illegal function 

A function code was included in an I/O request that is 
illegal for the UDCll, or a request to initialize a 
counter (IO.IT!) was issued by a task that was not 
connected to receive counter interrupts. The function 
may also refer to a UDCll feature which was not 
specified at system generation. 

Invalid UDCll module 

On latching output, the user specified a starting point 
number which was not legal (defined at system 
generation) or was not evenly divisible by 16. 

Device off-line 

The physical device unit associated with the LUN 
specified in the QIO directive was not on-line. When 
the system was booted, a device check indicated that 
this physical device unit was not in the configuration. 

Privilege violation 

The task which issued the request was not privileged to 
execute that request. For the UDCll, this code 
indicates that a checkpointable task attempted to 
connect to timer or contact interrupts. 

Illegal address space 

The specified control, data, or interrupt buffer was 
partially or totally outside the address space of the 
issuing task. Alternately, the interrupt buffer was 
too small for a single data entry (6 words for timer 
interrupts and 7 words for contact interrupts) or a 
byte count of zero was specified. 

FORTRAN interface values for these status returns are presented in 
Section 15.6.1. 

15-28 



.• ......, 

UNIVERSAL DIGITAL CONTROLLER DRIVER 

15.6.l FORTRAN Interface Values 

The values listed in Table 15-7 are returned in FORTRAN subroutine 
calls. 

Status Return 

rs.sue 
IS .PND 
IE .ABO 
IE .ADP 
IE.BAD 
IE.BYT 
IE .DAO 
IE.DNH 
IE. I EF 
IE. I FC 
IE.ILU 
IE .MOD 
IE .ONP 
IE.PR! 
IE.RSU 
IE.SDP 
IE .SPC 
IE. ULN 
IE. UPN 

15 • 7 PROGRAMMING HINTS 

Table 15-7 
FORTRAN Interface Values 

FORTRAN Value 

+01 
+00 

+315 
+101 
+301 
+319 
+313 
+303 
+100 
+302 

+99 
+321 
+305 
+316 
+317 
+102 
+306 

+08 
+04 

This section contains information on important programming 
considerations relevant to users of the UDCll driver described in this 
chapter. 

15.7.1 Numbering Conventions 

Numbering is relative~ Module numbers start at O, beginning with the 
first module of a given type. 

Channel numbers also start at O, with channel 0 as the first channel 
on the first module of a given type. For the ADUOl, channel 8 is the 
first channel on the second analog output module. 

Each IAD-IA module installed in an ICSll subsystem occupies 120 
channels (regardless of the number of multiplexers installed). In 
this case, channel 120 is the first channel on the second IAD-IA A/D 
converter. 

Point numbers start at O, with point O as the first point on the first 
module of a given type. For instance, point 20 (octal) is the first 
point of the second contact sense module (i.e., relative module number 
1) • 

15-29 



UNIVERSAL DIGITAL CON~ROLLER DRIVER 

15.7.2 Proc•ssing Circular Buffer Entries 

Circular buffer entries should be processed in the following sequence. 

1. Execute a WAITFOR system directive using the trigger 
event flag specified in the subroutine called to connect 
the circular buffer (CTTI or CTDI). 

2. Repeatedly call the appropriate subroutine to read the 
circular buffer until all entries have been obtained, and 
ipt indicates that the buffer is empty (-1). 

3. Perform any other processing and return to step 1. 

15-30 



CHAPTER 16 

LABORATORY PERIPHERAL SYSTEMS DRIVERS 

16.1 INTRODUCTION 

The LPSll and ARll Laboratory Peripheral Systems are modular, 
real-time subsystems used for the acquisition and/or output of 
laboratory analog data. (Laboratory Peripheral Systems drivers are 
not supported on RSX-llM-PLUS systems.) Table 16-1 compares the LPSll 
with the ARll. 

Table 16-1 
Laboratory Peripheral Systems 

Analog-to-Digital Conversion 
(with sample and hold 
circuitry) 

LPSll 

12 bits of precision 
16-channel multiplexer 
with gain ranging 

Maximum of 64 channels 
without gain ranging 

Programmable Real-Time Clock Yes 

Digital-to-Analog Output 12 bits of precision 
10 channels (includ
ing display) 

ARll 

10 bits of precision 
16-channel multiplexer 
without gain ranging 

Yes 

10 bits of precision 
2 channels (including 
display) 

Display Control 4096 by 4096 dot matrix 1024 by 1024 dot matrix 

Digital I/O Option 16 digital points 
and programmable 
relays 

16 digital points 
(available with 
DRll-K opt ion) 

..__ ________________________ , ____________ _.__ _____________ ___. 

At system generation, the user can specify the following: 

• Number of A/D channels 

• Presence or absence of the gain 
(LPSll only) and the polarity 
bi-polar). 

ranging option (LPSAM-SG) 
of each channel (uni- or 

• Presence or absence of the external D/A option (LPSVC and 
LPSDA), and if present, the number of D/A channels. 

• Clock preset value 

16-1 



LABORATORY PERIPBERA.L SYSTEMS DRIVERS 

16.1.1 ARll Laboratory Peripheral System 

The ARll is a 1-module, real-time analog subsystem that interfaces to 
the PDP-11 family of computers via a "hex" small peripheral controller 
slot. The system is a subset of the LPSll, and as such, enjoys the 
same degree of flexibility. The ARll includes a 16-channel, 10-bit 
A/D converter with sample-and-hold, a programmable real-time clock 
with one external input, and a display control with two 10-bit D/A 
converters. 

16.1.2 LPSll Laboratory Peripheral System 

The LPSll is a high-performance, modular, real-time subsystem with the 
flexibility of serving a variety of applications, including biomedical 
research, analytical instrumentation, data collection and reduction, 
monitoring, data logging, industrial testing, engineering, and 
technical education. The basic subsystem, built in a compact size and 
designed for easy interface with external instrumentation, includes a 
13-bit A/D converter, a programmable real-time clock, with two Schmitt 
triggers, a display controller with two 12-bit D/A converters, and a 
16-bit digital I/O option. Up to nine different option types may be 
added to the basic package. 

16.2 GET LUN INFORMATION MACRO 

If a GET LUN INFORMATION system directive is issued for a LUN 
associated with a Laboratory Peripheral System, word 2 (the first 
characteristics word) contains all zeros, words 3 and 4 are undefined, 
and word 5 contains a 16-bit buffer preset value that controls the 
rate of the real-time clock interrupts, as explained in Section 
16.6.1. 

16.3 OIO MACRO 

This section summarizes standard and device-specific QIO functions for 
the Laboratory Peripheral System drivers. 

16.3.1 Standard QIO Function 

Table 16-2 lists the standard function of the QIO macro that is valid 
for the Laboratory Peripheral Systems. 

QIO$C 

Table 16-2 
Standard QIO Function for 

Laboratory Peripheral Systems 

Format Function 

IO.KIL, ••• Cancel I/O requests 

IO.KIL cancels all queued and in-progress I/O requests. 

16-2 



"-'' 

LABORATORY PERIPHERAL SYSTEMS DRIVERS 

16.3.2 Device-Specific QIO Functions (Immediate) 

Except for IO.STP (see Section 16.3.4), all device-specific functions 
of the QIO macro that are valid for the Laboratory Peripheral Systems 
are either immediate or synchronous. Each immediate function performs 
a complete operation, whereas each synchronous function simply 
initiates an operation synchronized to the real-time clock. Table 
16-3 lists the immediate functions. 

Table 16-3 
Device-Specific QIO Functions for the 

Laboratory Peripheral Systems (Immediate) 

Format Function 

QIO$C IO.LED, ••• ,<int,num> Display number in LED lights 
(LPSll only) 

QIO$C IO.REL, ••• ,<rel,pol> Latch output relay (LPSll only) 

QIO$C IO.SDI, ••• ,<mask> Read digital input register 

QIO$C IO.SDO, ••• ,<mask,data> Write digital output register 

whe!re: int 

num 

rel 

pol 

mask 

data 

is the 16-bit signed binary integer to display. 

is the LED digit number where the decimal point is 
to be placed. 

is the relay number (zero or one). 

is the polarity (zero for open, nonzero for 
closed). 

is the mask word. 

is the data word. 

The! following subsections describe the functions listed above. 

16.3.2.1 IO.LED - This LPSll-only function displays a 16-bit signed 
binary integer in the light-emitting diode (LED) lights. The number 
is displayed with a leading blank (positive number) or minus sign 
(negative number) followed by five nonzero-suppressed decimal digits 
that represent the magnitude of the number. LED digits are numbered 
from right to left, starting at 1. 

The number may be displayed with or without a decimal point. If the 
parameter num is a number from 1 to 5, then the corresponding LED 
digit is displayed with a decimal point to the right of the digit. If 
the LED digit number is not a number from 1 to 5, then no decimal 
point is displayed. 

16-3 



LABORATORY PERIPHERAL SYSTEMS DRIVERS 

16.3.2.2 IO.REL - This LPSll-only function opens or closes the 
programmable relays in the digital I/O status register. Approximately 
300 milliseconds are required to open or close a relay. The driver 
imposes no delays when executing this function. Thus it is the 
responsibility of the user to insure that adequate time has elapsed 
between the opening and closing of a relay. 

16.3.2.3 IO.SDI - This function reads data qualified by a mask word 
from the digital input register. The mask word contains a 1 in each 
bit position from which data is to be read. All other bits are 
zero-filled and the resulting value is returned in the second I/O 
status word. 

The operation performed is: 

RETURN VALUE=MASK.AND.INPUT REGISTER 

16.3.2.4 IO.SDO - This function writes data qualified by a mask word 
into the digital output register. The mask word contains a 1 in each 
bit position that is to be written. The data word specifies the d~ta 
to be written in corresponding bit positions. 

The operation performed is: 

NEW REGISTER=<MASK.AND.DATA>.OR.<<.NOT.MASK>.AND.OLD REGISTER> 

16.3.3 Device-Specific QIO Functions (Synchronous) 

Table 16-4 lists the synchronous, device-specific functions of the QIO 
macro that are valid for the Laboratory Peripheral Systems. 

QIO$C 

QIO$C 

QIO$C 

QIO$C 

QIO$C 

Table 16-·4 
Device-Specific QIO Functions for the 

Laboratory Peripheral Systems (Synchronous) 

Format Function 

IO.ADS, ••• ,<stadd,size,pnt, Initiate A/D sampling 
ticks,bufs,chna> 

IO.HIS, ••• ,<stadd,size,pnt, Initiate histogram sampling 
ticks,bufs> (LPSll only) 

IO.MDA, ••• ,<stadd,size,pnt, Initiate D/A output 
ticks, bufs, chnd> 

IO.MDI, ••• ,<stadd,size,pnt, Initiate digital input 
ticks,bufs,mask> sampling 

IO.MDO, ••• ,<stadd,size,pnt, Initiate digital output 
ticks, bufs, mask> 

16-4 

~ 
' I ~ 

I 

~! 



-~ 

where: st add 

size 

pnt 

ticks 

buf s 

chna 

chnd 

mask 

LABORATORY PERIPHERAL SYSTEMS DRIVERS 

is the starting address of the data buffer 
(must be on a word boundary). 

is the data buffer size in 
greater than zero and a 
bytes). 

bytes (must be 
multiple of four 

is the digital ·point numbers (byte 
0 - starting input/output point number; byte 
1 - input point number to stop the function). 

is the number of 
between samples 
appropriate. 

real-time 
or data 

clock ticks 
transfers, as 

is the number of data buffers to transfer. 

is the analog-to-digital conversion 
specification. Byte 0 contains the starting 
channel number. For LPSll this must be in 
the range of 0-63; for ARll the range is 
0-15. If the LPSll gain ranging option is 
present, the channel number must be in the 
range of 0-15, and bits 4 and 5 specify the 
gain code. 

Byte 1 contains the number of consecutive 
analog-to-digital channels to sample. For 
LPSll this must be in the range of 1-64; for 
ARll or the LPSll with gain ranging, the 
range is 1-16. 

is the digital-to-analog output channel 
specification. Byte 0 contains the starting 
channel number. For LPSll this must be in 
the range of 0-9; for the ARll the range is 
0-1. 

Byte 1 contains the number of consecutive 
channels to be output. For LPSll this must 
be in the range of 1-10; for ARll the range 
is 1-2. ' 

is the mask word. 

The following subsections describe the functions listed above. 

16.3.3.1 IO.ADS - This function reads one or more A/D channels at 
precisely timed intervals, with or without auto gain-ranging. If two 
or more channels are specified, all are sampled at approximately the 
same time, once per interval. 

Sampling may be started when the request is dequeued or when a 
specified digital input point is set. A digital output point may 
optionally be set when sampling is started. Sampling may be 
terminated by a program request (IO.STP or IO.KIL), by the cl~aring of 
a digital input point, or by the collection of a specified number of 
bu ff e rs of data • 

All input is double-buffered with respect to the user task. Each time 
a half buffer of data has been collected, the user task is notified 
(via the setting of an event flag) that data is available to be 

16-5 



LABORATORY PERIPHERAL SYSTEMS DRIVERS 

processed while the driver fills the other half of the buffer. If the 
user task does not respond quickly enough, a data overrun may result. 
This occurs if the driver attempts to put another data item in the 
user buffer when no space is available. 

The subfunction modifier bits are identical to those described in 
Section 16.3.3.2. In addition, setting bit 3 to a 1 means LPSll auto 
gain-ranging is requested. Bit 3 is ignored for the ARll. If bits 7 
and 6 are both set to 1, the digital input point and digital output 
point number are assumed to be the same. 

If LPSll auto gain-ranging is used, the LPSAM-SG hardware option must 
be present and specified at system generation. The auto gain-ranging 
algorithm causes a channel to be sampled at the highest gain at which 
saturation does not occur. If the gain-ranging option is present and 
auto gain-ranging is not specified in bit 3 of the subfunction code, 
then bits 4 and 5 of the starting channel number specify the gain at 
which samples are to be converted. Gain codes are as follows: 

Code Gain 

00 1 
01 4 
10 16 
11 64 

Data words written into the user buffer contain the converted value in 
bits 0-11 and the gain code, as shown below, in bits 12-15: 

Code Gain 

0000 1 
0001 4 
0010 16 
0011 64 

If the LPSAM-SG option is present, then each channel must have been 
defined as uni- or bi-polar at system generation. In addition, if 
bandwidth filtering is enabled (and so indicated at SYSGEN time), a 
software delay is imposed by the driver when the multiplexer channel 
is changed. This delay must have been specified at SYSGEN. See the 
LPSll Laboratory Peripheral System User's Guide. 

The ARll always returns data which is equivalent to an LPSll gain of 
1. Channel polarity must always be specified for the ARll at system 
generation since this operation is software selectable at the time 
sampling is initiated. 

16.3.3.2 IO.BIS - This LPSll-only function measures the elapsed time 
between a series of events by means of Schmitt trigger one. Each time 
a sample is to be taken, a counter is incremented and Schmitt trigger 
one is tested. If it has fired, then the counter is written into the 
user buffer and reset to zero. Thus the data item returned to the 
user is the number of sample intervals between Schmitt trigger 
firings. 

If the counter overflows before Schmitt trigger one fires, then a zero 
value is written into the user buffer. Sampling may be started and 
stopped as described in Section 16~3.3.l. All input is 
double-buffered with respect to the user task. 

16-6 

~I 

.~, 
I 



LABORATORY PERIPHERAL SYSTEMS DRIVERS 

The subfunction modifier bits appear below. A setting of 1 indicates 
the action listed in the right-hand column. 

Bit 

0-3 

4 

5 

6 

7 

Meaning 

Unused 

Stop on number of buffers 

Stop on digital input point clear 

Set digital output point at start of operation 

Start on digital input point set 
specification means start immediately) 

(a zero 

16.3.3.3 :co.,MDA - This function writes data into one or more external 
D/A ~onverters at precisely timed intervals. If two or more channels 
are specified, all are written at approximately the same time, once 
per interval. Output may be started or stopped as described in 
Section 16.3~3.l. All output is double-buffered with respect to the 
user. task. 

D/A converters 0 and 1 correspond to the X and Y registers of the 
display control. Note that there are no specific driver functions to 
set the display status register. This is reserved for the user. D/A 
converters 2 through 9 correspond to the LPSll, LPSDA external D/A 
option. 

The subfunction modifier bits are identical to those described in 
Section 16.3.3.2. 

16.3.3.4 IOgMDI - This function provides the capability to read data 
qualified by a mask word from the digital input register at precisely 
timed intervals. Sampling may be started and stopped as described in 
Section 16.3.3.1. All input is double-buffered with respect to the 
user task. 

The mask word contains a 1 in each bit position from which data is to 
be read. All other bits are zero. 

The subfunction modifier bits are identical to those described in 
Section 16.3.3.2. 

16.3.3.5 IO.MOO - This function writes data qualified by a mask word 
into the digital output register at precisely timed intervals. Output 
may be started and stopped as described in Section 16.3.3.1. All 
output is double-buffered with respect to the user task. 

The subfunction modifier bits are identical to those described in 
Section 16.3.3.2. 

16-7 



LABORATORY PERIPHERAL SYSTEMS DRIVERS 

16.3.4 Device-Specific QIO Function (IO.STP) 

Table 16-5 lists the device-specific function of the QIO macro, which 
is valid for the Laboratory Peripheral Systems. 

Table 16-·5 
Device-Specific QIO Function for the 

Laboratory Peripheral Systems (IO~STP) 

Format Function 

QIO$C IO.STP, ••• ,<stadd> Stop in-progress requestj 
where: st add is the buffer address of the function to stop 

(must be the same as the address specified in 
the initiating request). 

16a3.4~1 IO.STP - IO.STP stops a single in-progress synchronous 
request. It is unlike IO.KIL in that it only cancels the specified 
request, whereas IO.KIL cancels all requests. 

16a4 FORTRAN INTERFACE 

A collection of FORTRAN-callable subroutines provide FORTRAN programs 
access to the Laboratory Peripheral Systems. These routines are 
described in this section. 

Some of these routines may be called from FORTRAN as either 
subroutines or functions. All are reentrant and may be placed in a 
resident library. 

16.4.l The isb Status Array 

The isb (I/O status block) parameter is a 2-word integer array that 
contains the status of the FORTRAN call, in accordance with ISA 
convention. This array serves two purposes: 

1. It is the 2-word I/O status block to which the driver returns 
an I/O status code on completion of an I/O operation. 

2. The first word of the isb receives a status code from the 
FORTRAN interface in ISl\,-compatible format, with the 
exception of the I/O pending condition, which is indicated by 
a status of zero. The ISA standard code for this condition 
is +2. 

The meaning of its contents varies, depending on the FORTRAN call that 
has been executed, but Table 16-6 lists certain general principles 
that apply. The sections describing individual subroutines provide 
more details. 

16-8 



LABORATORY PERIPHERAL SYSTEMS DRIVERS 

Contents 

i sb ( 1) 

isb(l) 

isb(l) 

0 

1 

3 

3 <= isb(l) < 

isb(l) > 300 

300 

Table 16-6 
Contents of First Word of isb 

Meaning 

Operation pending; I/O in progress 

Successful completion 

Interface subroutine unable to generate QIO 
directive, or illegal time or buffer value 

QIO 
code 

directive rejected 
-(isb(l) - 3) 

and actual error 

Driver rejected request and actual error 
code = -(isb(l) - 300) 

FORTRAN interface routines depend on asynchronous system traps to set 
their status. Thus, if the trap mechanism is disabled, proper status 
cannot be set. 

16.4.2 Synchronous Subroutines 

RTS, DRS, HIST (LPSll only), SDO, and SDAC are FORTRAN subroutines 
that initiate synchronous functions. When they are used, the 
appropriate laboratory peripheral system driver and the FORTRAN 
program communicate by means of a caller-specified data buffer of the 
following format: 

Buffer Header Current Buffer Pointer 

Address of Second I/O Status Word 

Address of End of Buffer + l 

Address of Start of Data 

Start of Data 

Half Buffer 

End of Buffer 

The buffer header is initialized when the synchronous function 
initiation routine is called. The length of the buffer must be even 
and greater than or equal to six. An even length is required so that 
the buffer is exactly divisible into half buffers. 

The drivers perform double buffering within the half buffers. Each 
time a driver fills or empties a half buffer, it sets a user-specified 
event flag to notify the user task that more data is available or 
needed. The user task responds by putting more data into the buffer 
or by removing the data now available. 

If the user task does not respond quickly enough, a data overrun may 
result. This occurs if the driver attempts to put another data item 
in the user buffer when no space is available (i.e., the buffer is 
full of data) or if the driver attempts to obtain the next data item 

16-9 



LABORATORY PERIPHERAL SYSTEMS DRIVERS 

from the user buffer when none is available (i.e., the buffer is 
empty). 

All synchronous functions may be initiated immediately or when a 
specified digital input point is set (i.e., a start button is pushed). 

They may be terminated by any combination of a program request, the 
processing of the required number of full buffers of data, or the 
clearing of a specified digital input point (i.e., a stop button is 
pushed). A digital output point may also optionally be set at the 
start of a synchronous function. This could be used, for example, as 
a signal to start a test instrument. 

16.4.3 FORTRAN Subroutine Summary 

Table 16-7 lists the FORTRAN interface subroutines supported for the 
Laboratory Peripheral Systems under RSX-llM. S and F indicate whether 
they can be called as subroutines or functions. 

Table 16-7 
FORTRAN Interface Subroutines for Laboratory Peripheral Systems 

Subroutine 

ADC 

ADJLPS 

ASARLN 

ASLSLN 

CVSWG 

DRS 

HIST 

!DIR 

!DOR 

IRDB 

LED 

LPSTP 

PUTD 

RELAY 

RTS 

SDAC 

SDO 

Function 

Read a single A/D channel (F,S) 

Adjust bu ff e r poi n t e rs ( S ) 

Assign a LUN to ARO: 

Assign a LUN to LSO: 

(S) 

(S) 

Convert a switch gain A/D value to floating-point (F) 

Initiate synchronous digital input sampling (S) 

Initiate histogram sampling (S) (LPSll only) 

Read digital input (F,S) 

Write digital output (F,S) 

Read data from a synchronous function input buffer 
(F,S) 

Display number in LED lights (S) (LPSll only) 

Stop an in-progress synchronous function (S) 

Put data into a synchronous function output buffer (S) 

Latch an output relay (S) (LPSll only) 

Initiate synchronous A/D sampling (S) 

Initiate synchronous D/A output (S) 

Initiate synchronous digital output (S) 

16-10 

.,_, 
I' 



LABORATORY PERIPHERAL SYSTEMS DRIVERS 

The following subsections briefly describe the function and format of 
each FORTRAN subroutine call. 

16.4~4 ADC: Reading a Single A/D Channel 

The J\DC FORTRAN subroutine or function reads a single converted value 
from an A/D channel. If the gain-ranging option· is present in the 
LPSll hardware, the channel may be converted at a specific gain or the 
driver can select the best gain (the gain providing the most 
significance). The converted value is returned as a normalized 
floating-point number. The call is issued as follows: 

when~: 

CALL ADC (ichan, [var], [igain], [isb]) 

ichan 

var 

igain 

isb 

specifies the A/D channel to be converted. 

is a floating-point variable that receives 
the converted value in floating-point format. 

specifies the gain at which the specified A/D 
channel is to be converted. The default is 
1. I f spec i f i e d , . i g a in may have the 
following values: 

0 

1 

2 

3 

4 

Gain 

Auto gain-ranging 
gain that 
significance) 

(driver 
provides 

1 

4 

16 

64 

selects 
most 

A gain of 1 is always used by the ARll 
driver. 

is a 2-word integer array to which the 
subroutine status is returned. 

The isb array has the standard meaning described in Section 16.4.1. 

When the function form of the call is used, the value of the function 
is the same as that returned in var. If this value is negative, an 
error has occurred during the A/D conversion (see Section 16.5.3). 
Otherwise, this value is a floating-point number calculated from the 
following formula: 

var = (64 * converted value) I conversion gain 

16.4.5 ADJLPS: Adjusting Buffer Pointers 

The ADJLPS FORTRAN subroutine adjusts buffer pointers for a buffer 
that a laboratory peripheral system driver is either synchronously 
filling or emptying. It is usually called when indexing is being used 
for direct access to the data in a buffer. 

16-11 



LABORATORY PERIPHERAL. SYSTEMS DRIVERS 

When data in a buffer is to be processed only once, the IRDB and PUTD 
routines may be used. In some cases, however, it is useful to leave 
data in the buffer until processing is complete. The user program may 
process the data directly, then call ADJLPS to free half the buffer. 
Use of the routine for synchronous output functions is quite similar. 
When a half buff er of data is ready for output, ADJLPS is called to 
make the half buffer available. 

When ADJLPS is used for either input or output, care must be taken to 
insure that the program stays in sync with the driver. If the program 
loses its position with respect to the driver, the function must be 
stopped and restarted. An attempt to over-adjust will cause a 3 to be 
returned in isb(l) and no adjustment to take place. 

The call is issued as follows: 

where: 

CALL ADJ LPS ( i buf, iadj, [i sb]) 

ibuf 

iadj 

isb 

is an integer 
specified in 
function. 

array which was previously 
a synchronous input or output 

specifies the adjustment to be applied to the 
buffer pointers. For an input function this 
specifies the number of data values that have 
been removed from the data buffer. For an 
output function this specifies the number of 
data values that have been put into the data 
buffer. 

is a 2-word integer array to which the 
subroutine status is returned. 

The isb array has the standard meaning described in Section 16.4.1. 

16. 4. 6 ASLSLN: Assigning a LUN to LSI): 

The ASLSLN FORTRAN subroutine assigns a logical unit number (LUN) to 
the LPSll. It must be called prior to executing any other Laboratory 
Peripheral Systems FORTRAN function or subroutine. Subsequent calls 
to other interface routines then implicitly reference the LPSll via 
the LUN assigned. 

The call is issued as follows: 

CALL ASLSLN (lun, [isb], [iun]) 

where: lun is the number of the LUN to be assigned to 
LSO: 

isb is a 2-word integer array to which the 
subroutine status is returned. 

iun is the unit number of the device to be 
assigned (defaults to 0 if not specified). 

The isb array has the standard meaning described in Section 16.4.1. 

16-12 



LABORATORY PERIPHERAL SYSTEMS DRIVERS 

16.4.7 ASARLN: Assigning a LUN to ARO: 

The ASARLN FORTRAN subroutine assigns a logical unit number (LUN) to 
the ARll. It must be called prior to executing any other laboratory 
perjlpheral system FORTRAN function or subroutine. Subsequent calls to 
othe~r interface routines then implicitly reference the ARll via the 
LUN assigned .. 

The call is issued as follows: 

CALL ASARLN (lun, [isb], [iun]) 

where: lun is the number of the LUN to be assigned to 
ARO: 

isb is a 2-word integer array to which the 
subroutine status is returned. 

iun is the unit number of the device to be 
assigned (defaults to 0 if not specified). 

The isb array has the standard meaning described in Section 16.4.1. 

16 .~l .8 CVSWG: Converting a Switch Gain A/D Value to Floating-Point 

The CVSWG lrORTRAN subroutine converts an A/D value from a synchronous 
A/D sampling function to a floating-point number. Each data item 
returned by a laboratory peripheral system driver consists of a gain 
code and converted value packed in a single word (see Section 
16.3.3.1). This form is not readily usable by FORTRAN, but is much 
more! efficient than converting each value to floating-point in the 
driver. This routine unpacks the gain code and value, then converts 
the result to a floating-point number. It may be conveniently used in 
conjunction with the IRDB routine (see Section 16.4.13). 

The call is issued as follows: 

CVSWG ( i va 1) 

whe t·e: ival is the value to be converted to floating 
point. Its format must be that returned by a 
synchronous A/D sampling function. The 
conversion is performed according to the 
following formula: 

var = (64 * converted value)/conversion gain 

For the various gain codes, 

var = x * converted value 

as shown below: 

Gain ~ 

1 64 

4 16 

16 4 

64 1 

16-13 



LABORATORY PERIPHERAL SYSTEMS DRIVERS 

16.4.9 DRS: Initiating Synchronous Digital Input Sampling 

The DRS FORTRAN subroutine reads data qualified by a mask word from 
the digital input register at precisely timed intervals. Sampling may 
be started or stopped as for RTS (see Section 16.4.18) and all input 
is double-buffered with respect to the user task. Data may be 
sequentially retrieved from the data buffer via the IRDB routine {see 
Section 16.4.12), or the ADJLPS routine (see ~ection 16.4.5) may be 
used in conjunction with direct access to the input data. The call is 
issued as follows: 

where: 

CALL DRS (ibuf, ilen, imode, :irate, iefn, imask, isb, [nbuf], 
[istart], [istop]) 

ibuf 

ilen 

imode 

is an integer array that is to receive the 
input data values. 

specifies the length of ibuf (must be even 
and greater than or equal to six). 

specifies the start, stop, and sampling mode. 
Its value is encoded by adding together the 
appropriate function selection values shown 
below. 

Function 
Selection 

Value 

128 

64 

32 

16 

Meaning 

Start on digital input point 
set 

Set digital output point at 
start 

Stop on digital input point 
clear 

Stop on number of buffers 

Thus a value of 192 for imode specifies: 

• The sampling is to be started when a specified digital input 
point is set. 

• A digital output point is to be set when sampling is started. 

• Sampling will be stopped via a program request. 

irate is a 2-word integer array that specifies the 
time interval between digital input samples. 
The first word specifies the interval units 
as follows: 

irate(l) 

1 

2 

3 

4 

Unit 

Real-time clock ticks 

Mi 11 i seconds 

Seconds 

Minutes 

The second word specifies the interval 
magnitude as a 16-bit unsigned integer. 

16-14 

~ 
i' 

"""'· I,_,. 

Allh, 
i -1 



iefn 

imask 

isb 

nbuf 

LABORATORY PERIPHERAL SYSTEMS DRIVERS 

specifies the number of the event flag that 
is to be set each time a half buffer of data 
has been collected. 

specifies the digital input points to be 
read. 

is a 2-word integer array to which the 
subroutine status is returned. 

specifies the number of buffers of data to be 
collected. It is needed only if a function 
selection value of 16 has been added into 
imode. 

is tart specifies the digital input pointer number to 
be used to trigger sampling and/or the 
digital output point number to be set when 
sampling is started. It is needed only if a 
function selection value of 128 or 64 has 
been added into imode. 

is top specifies the digital input point number to 
be used to stop sampling. It is needed only 
if a function selection value of 32 has been 
added into imode. 

When sampling is in progress, the first word of the isb array is zero 
and the second word contains the number of data values currently in 
the buffero 

16.4.10 HIST: Initiating Histogram Sampling (LPSll only) 

The HIST FORTRAN subroutine measures the elapsed time between a series 
of events via Schmitt trigger one. 

Each time a sample is to be taken, a counter is incremented and 
Schmitt trigger one is tested. If it has fired, then the counter is 
written into the user buffer and the counter is reset to zero. Thus 
the data returned to the user is the number of sample intervals 
between Schmitt trigger firings. If the counter overflows before 
Schmitt trigger one fires, a zero value is written into the user 
buffer. Sampling may be started and stopped as for RTS (see Section 
16.4.18) and all input is double-buffered with respect to the user 
task. The call is issued as follows: 

where: 

CALL HIST (ibuf, ilen, imode, irate, iefn, isb, [nbuf], 
[istart], [istop]) 

:ibuf 

:ilen 

is an integer array that is to receive the 
input data values. 

specifies the length of ibuf (must be even 
and greater than or equal to six). 

16-15 



LABORATORY PERIPHERAL SYSTEMS DRIVERS 

imode 

irate 

iefn 

isb 

nbuf 

istart 

is top 

specifies the start, stop and sampling mode. 
Its value is encoded by adding the 
appropriate function selection values shown 
below: 

Function 
Selection 

Value 

128 

64 

32 

16 

Meaning 

Start of digital input point 
set 

Set digital output point at 
start 

Stop on digital input point 
clear 

Stop on number of buffers 

is a 2-word integer array that specifies the 
time interval between samples. The first 
word specifies the interval units as follows: 

irate(l) Unit 

1 Real-time clock ticks 

2 Mi 11 i seconds 

3 Seconds 

4 Minutes 

The second word specifies the interval 
magnitude as a 16-bit signed integer. 

specifies the number of the event flag that 
is to be set each time a half buffer of data 
has been collected. 

is a 2-word integer array to which the 
subroutine status is returned. 

specifies the number of buffers of data to be 
collected. It is needed only if a function 
selection value of 16 has been added into 
imode. 

specifies the digital input point number 
be used to trigger sampling and/or 
digital output point number to be set 
sampling is started. It is needed only 
function selection value of 128 or 64 
been added into imode. 

to 
the 

when 
if a 
has 

specifies the digital input point number to 
be used to stop sampling. It is needed only 
if a function selection value of 32 has been 
added into imode. 

16-16 

~. 



LABORATORY PERIPHERAL SYSTEMS DRIVERS 

The isb array has the standard meaning described in Section 16.4.1. 

When sampling is in progress, the first word of the isb array is zero 
and the second word contains the number of data values currently in 
the buffer. 

16.4.11 IDIR: Reading Digital Input 

The IDIR FORTRAN subroutine or function reads the digital input 
reglster as an unsigned binary integer or as four binary-coded decimal 
(BCD) digitse In the latter case, the BCD digits are converted to a 
binary integer before the value is returned to the caller. The call 
is issued as follows: 

where: 

CALL !DIR (imode, [ival], [isb]) 

imode 

:ival 

:isb 

specifies ~he mode in which the digital input 
register is to be read. If imode equals 
zero, then the digital input register is read 
as four BCD digits and converted to a binary 
integer. Otherwise it is read as a 16-bit 
unsigned binary integer. 

is a variable that receives the value read. 

is a 2-word integer array to which the 
subroutine status is returned. 

The isb array has the standard meaning described in Section 16.4.1. 

When the function form of the call is used, the value of the function 
is the same as that returned in ival. 

16.4.12 IDOR: Writing Digital Output 

The IDOR FOWrRAN subroutine or function clears or sets ·bits in the 
digital output register. The caller provides a mask word and output 
mode. Bits :in the digital output registers corresponding to the bits 
specified in the mask word are either set or cleared according to the 
specified mode. The call is issued as follows: 

where: 

CALL IDOR (imode, imask, [newval], [isb]) 

:imode 

:imask 

newval 

isb 

specifies whether the bits specified by imask 
are to be cleared or set in the digital 
output register. If imode equals zero, then 
the bits are to be cleared. Otherwise they 
are to be set. 

specifies the bits to be cleared or set in 
the digital output register. It may be 
conveniently specified as an octal constant. 

is a variable that receives 
(actual) value written into 
output register. 

the updated 
the digital 

is a 2-word integer array to which the 
subroutine status is returned. 

16-17 



LABORATORY PERIPHERAL SYSTEMS DRIVERS 

The isb array has the standard meaning described in Section 16.4.l. 

When the function form of the call is used, the value of the function 
is the same as that returned in newval. 

16.4.13 IRDB: Reading Data from an Input Buffer 

The IRDB FORTRAN subroutine or function retrieves data sequentially 
from a buffer that a laboratory peripheral system driver is 
synchronously filling. If no data is available when the call is 
executed, the contents of the next location in the data buffer are 
returned without updating the buffer pointers. The call is issued as 
follows: 

where: 

CALL IRDB (ibuf I [ival]) 

ibuf 

ival 

is an integer array which was previously 
specified in a synchronous input sampling 
request (i.e.,, DRS, HIST, or RTS). 

is a variable that receives the next value in 
the data buffl:~r. 

When the function form of the call is used, the value of the function 
is the same as that returned in ival. 

16.4.14 LED: Displaying in LED Lights (LPSll only} 

The LED FORTRAN subroutine displays a 16-bit signed binary integer in 
the LED lights. The number is displayed with a leading blank 
(positive number) or. minus (negative number), followed by five 
non-zero suppressed decimal digits that represent the magnitude of the 
number. LED digits are numbered right to left starting at 1 and 
continuing to 5. The number may be displayed with or without a 
decimal point. The call is issued as follows: 

where: 

CALL LED (ival, [idec] I [isb]) 

ival 

idec 

isb 

is the variable whose value is 
displayed. 

specifies the position of the decimal 
A value of l to 5 specifies that a 
point is to be displayed. All other 
specify that no decimal point is 
displayed. 

to be 

point. 
dec:imal 

values 
to be 

is a 2-word integer array to which the 
subroutine status is returned. 

16-18 



LABORATORY PERIPHERAL SYSTEMS DRIVERS 

The isb array has the standard meaning described in Section 16.4.l. 

For example, the following call 

CALL LED (-55,2) 

would cause -0005.5 to be displayed in the LED lights. 

16.4.15 LPSTP: Stopping an In-Progress Synchronous Function 

The LPSTP FORTRAN subroutine selectively stops a single synchronous 
request. The call is issued as follows: 

CALL LPSTP (ibuf) 

where: ibuf is an integer array that specifies a 
that was previously specified 
synchronous initiation request. 

buffer 
in a 

16.4.16 PUTD: Putting a Data Item into an Output Buffer 

The PUTD FOR'l'RAN subroutine puts data sequentially into a buffer that 
a laboratory peripheral system driver is synchronously emptying. If 
no free space is available, no operation is performed. The call is 
issued as follows: 

where: 

CALL PUTD (ibuf,ival) 

lbuf 

lval 

is an integer 
specified in 
(SDO or SDAC). 

array which 
a synchronous 

was previously 
output request 

is a variable whose value is to be placed in 
the next free location in the data buffer. 

16.4.17 RELAY: Latching an Output Relay (LPSll only) 

The RELAY FORTRAN subroutine opens or closes the LPSll relays. 
call is issued as follows: 

The 

where: 

CALL RELAY (irel, istate, [isb]) 

irel 

istate 

isb 

specifies which relay is 
closed (zero for relay 
two). 

to be opened or 
one, one for relay 

specifies whether the relay is to be opened 
or closed. If istate equals zero, the relay 
is to be opened. Otherwise it is to be 
closed. 

is a 2-word integer array to which the 
subroutine status is returned. 

The isb array has the standard meaning described in Section 16.4.1. 

16-19 



LABORATORY PERIPHERAL SYSTEMS DRIVERS 

16.4.18 RTS: Initiating Synchronous A/D Sampling 

The RTS FORTRAN subroutine reads one or more A/D channels at precisely 
timed intervals, with or without auto gain-ranging. The auto 
gain-ranging algorithm (LPSll only) causes the channels to be sampled 
at the highest gain at which saturation does not occur. 

Sampling may be started when the interface subroutine is called or 
when a specified digital input point is set. A digital output point 
may optionally be set when sampling is started. Sampling may be 
terminated by a program request (stop-in-progress request or kill 
I/O), the clearing of a digital input point, or the collection of a 
specified number of buffers of data. 

All input is double-buffered with respect to the user task. Each time 
a half buffer of data has been collected, the user task is notified 
(via the setting of an event flag) that data is available to be 
processed while the driver fills the other half of the buffer. Data 
may be sequentially retrieved from the data buffer via the IRDB 
routine (see Section 16.4.12, or the ADJLPS routine (see Section 
16.4.5) may be used in conjunction with direct access t6 the input 
data. The call is issued as follows: 

where: 

CALL RTS (ibuf,ilen,imode,irate,iefn,ichan,nchan,isb, 
[nbuf], [istart], [istop]) 

ibuf 

ilen 

imode 

is an integer array that is to receive the 
converted data values. 

specifies the length of ibuf (must be even 
and greater than or equal to six). 

specifies the start, stop, and sampling mode. 
Its value is encoded by adding together the 
appropriate function selection values as 
shown below: 

Function 
Selection 

Value 

128 

64 

32 

16 

8 

16-20 

Meaning 

Start on digital input point 
set 

Set digital output point at 
start 

Stop on digital input point 
clear 

Stop on number of buffers 

Auto gain-ranging (LPSll only) 

--., 
I ~! 



LABORATORY PERIPHERAL SYSTEMS DRIVERS 

irate 

i.efn 

i.chan 

nchan 

isb 

nbuf 

istart 

is top 

is a 2-word integer array that specifies the 
time interval between A/D samples. The first 
word specifies the interval unit as follows: 

irate (1) Unit 

1 Real-time clock ticks 

2 Milliseconds 

3 Seconds 

4 Minutes 

The second word specifies the interval 
magnitude as a 16-bit unsigned integer. 

specifies the number of the event flag that 
is to be set each time a half buffer of data 
has been collected. 

specifies the starting A/D channel of the 
block of channels to be sampled synchronously 
(must be between 0 and 63 for LPSll and 
between 0 and 15 for ARll). 

specifies the number of A/D channels to be 
sampled (must be between 1 and 64 for LPSll 
and between 1 and 16 for ARll). 

is a 2-word integer array to which the 
subroutine status is returned. 

specifies the number of buffers of data that 
are to be collected. It is needed only if a 
function selection value of 16 has been added 
into imode. 

specifies the digital input point number 
be used to trigger sampling and/or 
digital output point number to be set 
sampling is started. It is needed only 
function selection value of 128 or 64 
been added into imode. 

to 
the 

when 
if a 

has 

specifies the digital input point number to 
be used to stop sampling. It is needed only 
if a function selection value of 32 has been 
added into imode. 

The values listed for ichan and nchan above, are the maximum allowable 
for each of the devices. In practice, they are constrained by the 
number of channels available as specified during SYSGEN. 

The isb parameter has the standard meaning described in Section 
16.Ll. 

When sampling is in progress, the first word of the isb array is zero 
and the second word contains the number of data values currently in 
the buffer. 

16-21 
• 



LABORATORY PERIPHERAL SYSTEMS DRIVERS 

16~4.19 SDAC: Initiating Synchronous D/A Output 

The SDAC FORTRAN subroutine writes datct into one or more external D/A 
converters at precisely timed intervals. Output may be started and 
stopped as for RTS (see Section 16.4.18) and all input is 
double-buffered with respect to the user task. One full buffer of 
data must be available when synchronous output is initiated. 

After SDAC has initiated output and the specified event flag has been 
set to notify the task that free buffer space is available, the PUTD 
routine (see Section 16.4.16) may be used to put data values 
sequentially into the output data buffer. The ADJLPS routine (see 
Section 16.4.5) may be used in conjunction with direct access to the 
output data buffer. The SDAC call is issued as follows: 

where: 

CALL SDAC (ibuf,ilen,imode,irate,iefn,ichan,nchan,isb, 
[nbuf], [istart:], [istop]) 

ibuf 

ilen 

imode 

irate 

iefn 

is an integer array that contains the output 
data values. 

specifies the length of ibuf (must be even 
and greater than or equal to six). 

specifies the start, stop and sampling mode. 
Its value is encoded by adding together the 
appropriate function selection values as 
shown below: 

Function 
Selection 

Values 

128 

64 

32 

16 

Meaning 

Start on digital input point 
set 

Set digital output point at 
start 

Stop on digital input point 
clear 

Stop on number of buffers 

is a 2-word integer array that specifies the 
time interval between D/A outputs. The first 
word specifies the interval units as follows: 

irate(!) Unit 

1 Real-time clock ticks 

2 Milli seconds 

3 Seconds 

4 Minutes 

The second word specifies the interval 
magnitude as a 16-bit unsigned integer. 

specifies the number of the event flag that 
is to be set each time a half buffer of data 
has been output. 

16-22 



LABORATORY PERIPHERAL SYSTEMS DRIVERS 

ichan 

nchan 

isb 

nbuf 

istart 

is top 

specifies the starting D/A channel of 
block of channels to be written 
synchronously (must be between 0 and 9 
LPSll and be 0 or 1 for ARll). 

the 
into 
for 

specifies the number of D/A channels to be 
written into (must be between 1 and 10 for 
LPSll and be l or 2 for ARll). 

is a 2-word integer array to which the 
subroutine status is returned. 

specifies the number of buffers of data to be 
output. It is needed only if a function 
selection value of 16 has been added into 
imode. 

specifies the digital input point number 
be used to trigger sampling and/or 
digital output point number to be set 
sampling is started. It is needed only 
function selection value of 128 or 64 
been added into imode. 

to 
the 

when 
if a 
has 

specifies the digital input point number to 
be used to stop sampling. It is needed only 
if a function selection value of 32 has been 
added into imode. 

The isb array has the standard meaning described in Section 16.4.1. 

When sampling is in progress, the first word of the isb array is zero 
and the second word contains the number of free positions in the 
buffer. 

16.~l.20 SDO: Initiating Synchronous Digital Output 

The SDO FORTRAN subroutine writes data qualified by a mask 
the digital output register at precisely timed intervals. 
may be started and stopped as for RTS (see Section 16.4.18) 
input is double-buffered with respect to the user task. 
buffer of data must be available when output is initiated. 

word into 
Sampling 
and all 
One full 

After SDO has initiated output and the specified event flag has been 
set to notify the task that free buffer space is available, the PUTD 
routine (see Section 16.4.16) may be used to put data values 
sequentially into the output data buffer. The ADJLPS routine (see 
Section 16.4.5) may be used in conjunction with direct access to the 
output data buffer. The SDO call is issued as follows: 

whe ire: 

CALL SDO (ibuf, ilen, imode, irate, iefn, imask, isb, [nbuf], 
[istart], [istop]) 

ibuf 

ilen 

is an integer array that contains the digital 
output values. 

specifies the length of ibuf (must be even 
and greater than or equal to six). 

16-23 



LABORATORY PERIPHERAL SYSTEMS DRIVERS 

imode 

irate 

iefn 

imask 

isb 

nbuf 

istart 

is top 

specifies the start, stop, and sampling mode. 
Its value is encoded by adding together the 
appropriate function selection values as 
shown below: 

Function 
Selection 

Value 

128 

64 

32 

16 

Meaning 

Start on digital input point 
set 

Set digital output point at 
start 

Stop on digital input point 
clear 

Stop on number of buffers 

is a 2-word integer array that specifies the 
time interval between digital outputs. The 
first word specifies the interval units ~s 
follows: 

irate(l) Unit 

1 Real-time clock ticks 

2 Milliseconds 

3 Seconds 

4 Minutes 

The second word specifies the interval 
magnitude as a 16-bit unsigned integer. 

specifies the number of the event flag that 
is to be set each time a half buffer of data 
has been output. 

specifies the digital output points that are 
to be written. It may be conveniently 
specified as an octal constant. 

is a 2-word integer array to which the 
subroutine status is returned. 
specifies the number of buffers of data to be 
output. It is needed only if a·function 
selection value of 16 has been added into 
imode. 

specifies the digital input point number 
be used to trigger sampling and/or 
digital output point number to be set 
sampling is started. It is needed only 
function selection value of 128 or 64 
been added into imode. 

to 
the 

when 
if a 
has 

specifies the digital input point number to 
be used to stop sampling. It is needed if a 
function selection value of 32 has been added 
into imode. 

16-24 

~. 
i I 



l.ABORATORY PERIPHERAL SYSTEMS DRIVERS 

The isb parameter has the standard meaning described in Section 
16.4..1. 

When sampling is in progress, the first word of the isb array is zero 
and the second word contains the number of free positions in the 
buff er. 

16.5 STATUS RETURNS 

The error and status conditions listed in Table 16-8 are returned by 
the Laboratory Peripheral System drivers described in this chapter. 

Code 

IS.sue 

IS .PND 

IE.ABO 

IE .BAD 

IE .BYT 

IE.DAO 

Table 16-8 
Laboratory Peripheral Systems Status Returns 

Reason 

Successful completion 

The operation specified in the QIO directive was 
completed successfully. The second word of the 
I/O status block can be examined to determine the 
number of data values processed. 

I/O request pending 

The operation specified in the QIO directive has 
not yet been completed. 

Operation aborted 

The specified I/O operation was cancelled (via 
IO.KIL or IO.STP) while in progress. 

Bad parameter 

An illegal specification was supplied for one or 
more of the device-dependent QIO parameters (words 
6-11). The second I/O status word is filled with 
zeros. 

Byte-aligned buffer specified 

Byte alignment was specified for a data buffer but 
only word alignment is legal for Laboratory 
Peripheral Systemsa Alternately, the length of a 
buffer is not an even number of bytes. 

Data overrun 

For Laboratory Peripheral Systems, the driver 
attempted to get a value from the user buffer when 
none was available or attempted to put a value in 
the user buffer when no space was available. 

(continued on next page) 

16-25 



Code 

IE.DNR 

IE. IEF 

IE. I FC 

IE.NOD 

IE .OFL 

IE.GNP 

IE.PR! 

LABORATORY PERIPHERAL SYSTEMS DRIVERS 

Table 16-8 (Cont.) 
Laboratory Peripheral Systems Status Returns 

Reason 

Device not ready 

The physical device unit specified in the QIO 
directive was not ready to perform the desired I/O 
operation. For Laboratory Peripheral Systems, 
this code is returned if a device time-out occurs 
while a function is in progress. The second I/O 
status word contains the number of free positions 
in the buffer, as appropriate. 

Invalid event flag number 

An invalid event flag number was specified in a 
synchronous function. 

Illegal function 

A function code was included in an I/O request 
that is illegal for the LPSll or ARll. 

Insufficient buffer space 

Dynamic storage space has been depleted, and there 
is insufficient buffer space available to allocate 
a secondary control block for a synchronous 
function. 

Device off-line 

The physical device unit associated with the LUN 
specified in the QIO directive was not on-line. 
When the system was booted, a device check 
indicated that this physical device unit was not 
in the configuration. 

Option not present 

An option dependent function or subfunction was 
requested, and the required feature was not 
specified at system generation. For example the 
gain-ranging option or D/A option is not present. 
The second I/O status word contains zero. 

Privilege violation 

The task which issued the request was not 
privileged to execute that request. For 
Laboratory Peripheral Systems, a checkpointable 
task attempted to execute a synchronous sampling 
function. 

(continued on next page) 

16-26 



c~ 

Code 

IE.RSU 

IE.SPC 

LABORATORY PERIPHERAL SYSTEMS DRIVERS 

Table 16-8 (Cont.) 
Laboratory Peripheral Systems Status Returns 

Reason 

Resource in use 

A resource needed by the function requested in the 
QIO directive was being used (see Section 16.5.1). 

Illegal address space 

The buffer specified for a read or write request 
was partially or totally outside the address space 
of the issuing task. Alternately a byte count of 
zero was specified. The second I/O status word 
contains zero. 

FOR'rRAN interface values for these status returns are presented in 
Sect.ion 16.5.4. 

16.5.1 IE.RSU 

IE.RSU is returned if a function requests a resource that is currently 
being used. The requesting task may repeat the request at a later 
time or take any alternative action required. 

Because certain functions do not need such resources, they never cause 
this code to be returned. Other functions return this code under the 
following conditions: 

Function When IE .RSU Is Returned -----
IO.SDO One or more specified digital output bits are in use 

IO.ADS Digital output point (if specified) is in use 

IO.HIS Digital output point I[ if specified) is in use 

IO.MDA Digital output point (if specified) is in use 

IO.MDI Digital output point (if specified) or digital input 
points to be sampled are in use 

IO.MOO Digital output point (if specified) or output bits to 
be written are in use 

The following components of the Laboratory Peripheral Systems are each 
considered a single resource: 

Resource 

The A/D Converter 
and clock 

Each bit in the 
digital output 
register 

When Sharable 

Always sharable. 

Never sharable. 

16-27 



LABORATORY PERIPHERAL SYSTEMS DRIVERS 

Resource 

Each bit in the 
digital input 
register 

When Sharable 

Always sharable when used by IO.SDI 
or for start/stop conditions (specified 
in subfunction modifier bits), even when 
in use by another function; when 
specified by a synchronous digital input 
function, not sharable with another such 
function. 

Each resource is allocated on a first-come-first-served basis (i.e., 
when a conflict arises, the most recent request is rejected with a 
status of IE.RSV). 

16.5.2 Second I/O Status Word 

On successful completion of a function specified in a QIO macro call, 
the rs.sue code is returned to the first word of the I/O status block. 

Table 16-9 lists the contents of the second word of the status block, 
on successful completion for each function. 

Table 16-·9 
Returns to Second Word of I/O Status Block 

Successful 
Function Contents of Second Word 

IO.KIL Number of data values before I/O was canceled 

IO .LED Zero 

IO .REL Zero 

IO.SDI Masked value read from digital input register 

I O.SDO Updated value written into digital output register 

IO.ADS Number of data values remaining in buff er 

IO.HIS Number of data values remaining in buff er 

IO.MCA Number of free posttions in buffer 

IO.MDI Number of data values remaining in buff er 

IO.MOO Number of free positions in buff er 

IO.STP Zero 

16-28 



LABORATORY PERIPHERAL SYSTEMS DRIVERS 

When IE.BAD is returned, the second I/O status word contains zero. 
Laboratory Peripheral Systems drivers return the IE.BAD code under the 
following conditions: 

Function When IE.BAD is Returned 

IO.REL Relay number not 0 or 1 

IO.ADS 
IO.MDA 

No I/O status block, illegal digital I/O point 
number, or illegal channel number 

IO.HIS 
IO.MDI 
IO.MOO 

16 .5 .3 

No I/O status block or illegal 
digital I/O point number 

IO~ADS and ADC Errors 

While IO.ADS or the ADC FORTRAN subroutine is converting a 
error conditions may arise. Both of these conditions are 
the user by placing illegal values in the data buffer. A 
octal) is placed in the buffer if an A/D conversion does 
within 30 microseconds. A -2 (177776 octal) is placed in 
if an error occurs during an A/D conversion (LPSll only). 

16.5.4 FORTRAN Interface Values 

sample, two 
reported to 
-1 (177777 

not complete 
the buffer 

The values listed in Table 16-10 are returned in FORTRAN subroutine 
calls. 

Status Return 

rs.sue 
IS.PND 
IE.ABO 
IE .ADP 
IE .ALN 
IE .BAD 
IE .BYT 
IE.DAO 
IE.DNR 
IE. I EF 
IE. I FC 
IE. I LU 
IE.NOD 
IE .OFL 
IE .ONP 
IE .PR! 
IE .RSU 
IE .SDP 
IE .SPC 
IE. ULN 
IE.UPN 

Table 16-10 
FORTRAN Interface Values 

16-29 

FORTRAN Value 

+01 
+00 

+315 
+101 
+334 
+301 
+319 
+313 
+303 
+100 
+302 

+99 
+323 
+365 
+305 
+316 
+317 
+102 
+306 

+08 
+04 



LABORATORY PERIPHERAL SYSTEMS DRIVERS 

16.6 PROGRAMMING HINTS 

This section contains information on important pr9gramming 
considerations relevant to users of the Laboratory Peripheral Systems 
drivers described in this chapter. 

16.6.l The LPSll/ARll Clock and Sampling Rates 

The basic real-time clock frequency (count rate) for all synchronous 
functions is always lOKHz. Device characteristics word 4 contains a 
16-bit buffer preset value, set dynamically or at system generation, 
that controls the rate of "ticks" (i.e., the rate at which the clock 
interrupts). The quotient that results when this value is divided 
into lOKHz is the rate of "ticks". For example, if this value is 2, 
the "tick" rate is 5KHz. The user may use a Get LUN Information 
system directive to examine the value and a SET /BUF MCR function to 
modify it while the system is running. 

The ticks parameter in a synchronous function specifies the number of 
"ticks" between samples or data transfers. The value of ticks is a 
16-bit number. Thus 65,536 discrete sampling frequencies are possible 
for each of 65,536 different "tick" rates. This provides a maximum 
single-channel sample rate of l sample every 100 microseconds 
(possible in hardware but impractical in software) and a minimum of l 
sample every 429,495 seconds. A single-channel rate greater than 2KHz 
is possible, but not recommended. 

The figures below represent initial timing tests run under RSX-llM. 
It should be noted that no computation was performed on the data other 
than continuously removing it from or inserting it into the data 
buffer. 

The following data is for the LPSll on a PDP-11/40 with memory 
management, with no gain-ranging option, and with digital I/O option. 

Analog rates: 

l request for l channel at 2.5KHz 

l request for 2 channels at 2.0KHz (aggregate 4KHz) 

2 requests for l channel at 2.0KHz (aggregate 4KHz) 

Digital rates: 

l request for 2 channels at 2.5KHz (aggregate 5KHz) 

The following data is for the ARll on a PDP-11/40 with no memory 
management, no digital I/O option, and no uni-polar sampling. 

Analog rates: 

l request for l channel at 3.3KHz 

l request for 2 channels at 2.5KHz (aggregate 5.0KHz) 

2 requests for l channel at 2.5KHz (aggregate 5.0KHz) 

Digital rate: 

2 requests for 2 channels at 3.3KHz (aggregate 6.6KHz) 

16-30 



'~ 

LABORATORY PERIPHERAL SYSTEMS DRIVERS 

16.6.2 Importance of the I/O Status Block 

An I/O status block must be specified with every synchronous function. 
If the first I/O status word is nonzero, the request has been 
terminated and the value indicates the reason for termination. 
Otherwise, the request is in progress, and the second I/O status word 
contains the number of data values remaining in the buffer {or the 
number of free positions in the ·buffer for IO.MDA and IO.MOO). 

16.6.3 Buffer Management 

The buffer unload protocol for synchronous input functions is 
described below. The user constructs a five-word block that contains 
the following: 

IOSB: .BLKW 2 I/O STATUS DOUBLE-WORD 
CURPT: .WORD BUFFER ADDRESS OF BUFFER 
LSTPT: .WORD BUFFER+n ADDRESS OF END OF BUFFER 
FSTPT: .WORD BUFFER ADDRESS OF BUFFER 

Two of these words are required by the driver {I/O status block) and 
the remaining three by the user to unload data values from the buffer. 

The user then issues the I/O request with the appropriate parameters 
and the address of the above block as the I/O status block. The QIO 
directive zeros both I/O status words to initialize them. 

If the driver accepts the request, it sets up a write pointer to 
first word in the user buffer. Thus the user has a buffer 
pointer and the driver has a buffer write pointer. The user and 
driver share the second I/O status word, which is the number of 
words in the buffer that contain data. 

the 
read 
the 

data 

Each time the driver attempts to put a sample value into the buffer, 
it increments the second I/O status word and compares the result with 
the size of the buffer. If the result is greater, butfer overrun has 
occurred and the request is terminated. Otherwise the value is stored 
in the buffer at the address specified by the driver's write pointer 
and the write pointer is updated. 

If the value stored in the user buffer fills half of the buffer, the 
event flag specified in the I/O request is set in order to notify the 
user that a half buffer of data is available to be processed. Each 
time the user task is awakened, it should execute the following code: 

5$: 
10$: 

20$: 

30$: 

4 0$: 

CLE.F$ S # EFN 
TST IOSB+2 
BEQ 30$ 
MOV @CURPT,RO 
DEC IOSB+2 
ADD #2,CURPT 
CMP CURPT,LSTPT 
BLOS 20$ 
MOV FSTPT,CURPT 
Process data value 

;CLEAR EFN 
;ANY DATA IN BUFFER? 
;IF EQ NO 
;GET NEXT VALUE FROM BUFFER 
;REDUCE NUMBER OF ENTRIES 
;UPDATE BUFFER READ POINTER 
;END OF BUFFER? 
;IF LOS NO 
;RESET BUFFER READ POINTER 

BR 10$ ; TRY AGAIN 
TSTB IOSB ;REQUEST TERMINATED? 
BNE 40$ ;IF NE YES 
WTSE$S #EFN ;WAIT FOR EFN 
BR 5$ ; 
Determine reason for termination 

16-31 



LABORATORY PERIPHERAL SYSTEMS DRIVERS 

For IO.MDA and IO.MOO, this protocol differs slightly. The user task 
maintains a write pointer and the driver a read pointer. The entire 
buffer must be full when the request is executed. 

16.6.4 Use of ADJLPS for Input and Output 

The following FORTRAN example illustrates the proper protocol for 
using ADJLPS for synchronous input and output. 

Synchronous input: 

DIMENSION IBF(l004),IERR(2),INTVL(2) 
c 
C INITIATE SYNCHRONOUS A/D SAMPLING, 
c 

c 

INTVL(l)=2 
INTVL(2)=5 
CALL RTS(IBF,1004,160,INTVL,IEFN,6,6,IERR,50,l6,l5) 

C INITIALIZE HALF BUFFER INDEX 
c 

INDX=4 
c 
C WAIT FOR HALF BUFFER OF DATA 
c 

10 CALL WAITFR(IEFN) 
c 
C CLEAR EVENT FLAG 
c 

15 CALL CLREF(IEFN) 
c 
C PROCESS HALF BUFFER OF DATA 
c 

c 

SUM=O 
DO 20 I=l,500 
SUM=SUM+CVSWG(IBF(I+INDX)) 

20 CONTINUE 
AVERG=SUM/500 

C FREE HALF BUFFER FOR MORE DATA 
c 

CALL ADJLPS(IBF,500) 
c 
C ADJUST BUFFER INDEX 
c 

INDX= INDX+ 500 
IF ( INDX .GE .1004) INDX=4 

c 
C CHECK IF ANOTHER HALF BUFFER OF DATA IS AVAILABLE 
c 

IF(IERR(2).GE.500 GO TO 15 
IF(IERR(l).NE.O) GO TO end of sampling 
GO TO 10 

16-32' 



LABORATORY PERIPHERAi. SYSTEMS DRIVERS 

Synchronous output: 

DIMENSION IBF(l004),IERR(2),INTVL(2) 
c 
C FIRST BUFFER OF DATA MUST BE AVAILABLE AT START 
c 
C THIS EXAMPLE ASSUMES FIRST BUFFER IS FULL AT START 
c 
C START SYNCHRONOUS DIGITAL OUTPUT FUNCTION 
c 

c 

INTVL ( 1) =2 
INTVL(2)=5 
CALL SDO(IBF,1004,160,INTVL,IEFN,MASK,IERR,50,16,15) 

C INITIALIZE HALF BUFFER INDEX 
c 

INDX=4 
c 
C WAITFOR ROOM IN BUFFER 
c 

10 CALL WAITFR(IEFN) 
c 
C CLEAR EVENT FLAG 
c 

15 CALL CLREF(IEFN) 
c 
C CALCULATE VALUES TO PUT IN BUFFER 
c 

c 

X=(Y+2)*Z 
DO 20 I=l,500 
IBF(I+INDX)=X**5/A 

20 CONTINUE 

C SIGNIFY ANOTHER HALF BUFFER IS FULL 
c 

CALL ADJLPS(IBF,500) 
c 
C ADJUST BUFFER INDEX 
c 

INDX= INDX+500 
IF ( IN DX • GE • 1 0 0 4 ) IN DX= 4 

c 
C CHECK IF ANOTHER HALF BUFFER IS EMPTY 
c 

IF(IERR(2).GE.500) GO TO 15 
IF(IERR(l).NE.O) GO TO end of sampling 
GO TO 10 

NOTE: 

In both the examples above, care is 
taken to ensure that the program stay 
"in sync" with the driver. If the 
program "loses" its position with 
respect to the driver the function must 
be stopped and restarted since this is 
the only way to recover. Caution should 
be exercised to ensure that the program 
sequence above be used to avoid a 
possible loss of data~ 

16-33 





'-""' 

~ 

~ 

CHAPTER 17 

PAPER TAPE READER/PUNCH DRIVERS 

17.l INTRODUCTION 

The RSX-llM/M-PLUS paper tape reader/punch drivers support the PCll 
paper tape reader/punch and the PRll paper tape reader. The PCll is a 
high-speed reader/punch capable of reading eight-hole, unoiled, 
perforated paper tape at 300 characters per second, and punching tape 
at 50 characters per second. The PRll has the same characteristics as 
the paper tape r~ader portion of the PCll. All transfers are image 
mode only, with no interpretation of data. 

17.2 GET LUN INFORMATION MACRO 

Word 2 of the buffer filled by the GET LUN INFORMATION system 
directive (the first characteristics word) contains the following 
information for paper tape devices. A bit setting of l indicates that 
the described characteristic is true for these devices. 

Bit §etting Meaning 

0 l Record-oriented device 

l 0 Carriage-control device 

2 0 Terminal device 

3 0 File structured device 

4 0 Single-directory device 

5 0 Sequential device 

6 0 Reserved 

7 0 User-mode diagnostics supI?orted 

8 0 MAS SB US device 

9 0 Unit software write-locked 

10 0 Input spooled device 

11 0 Output spooled device 

17-1 



PAPER TAPE READER/PUNCH DRIVERS 

Bit Setting Meaning 

12 0 Pseudo device 

13 0 Device mountable as a communications channel 

14 0 Device mountable as a FILES-11 volume 

15 0 Device mountable 

Words 3 and 4 of the buffer are undefined; word 5 indicates the 
default buffer size, which is 64 bytes for paper tape devices. 

17.3 QIO MACRO 

Table 17-1 lists the standard functions of the QIO macro that are 
valid for the paper tape reader/punch. 

Table 17-1 
Standard QIO Functions for the Paper Tape Reader/Punch 

Format Function 

QIO$C I 0. ATT, ••• Attach device 
QIO$C I 0. DET, ••• Detach device 
QIO$C IO.KIL, ••• Cance·l I/O requests 
QIO$C IO.RLB, ••• ,<stadd,size> Read logical block (reader only) 
QIO$C IO.RVB, ••• ,<stadd,size> Read virtual block (reader only) 
QIO$C IO.WLB, ••• ,<stadd,size> Write logical block (punch only) 
QIO$C IO.WVB, ••• ,<stadd,size> Write· virtual block {punch only) 

where: stadd is the starting address of the data buffer (may be 
on a byte boundary) 

size is the data buffer size in bytes (must be greater 
than zero) 

IO.KIL never cancels an in-progress read request~ In-progress write 
requests are cancelled only when the punch driver is waiting for the 
punch to become ready at the start of a transfer~ 

The paper tape drivers support no device-specific functions. 

l~.4 STATUS RETURNS 

Table 17-2 lists error and status conditions that are returned by the 
paper tape reader/punch drivers. 

17-2 

~I 

~. 



Code 

rs.sue 

IS.PND 

rn .ABO 

r:E: .DAA 

IE.DNA 

IE.DNR 

·~· 

IE.EOF 

PAPER TAPE READER/PUNCH DRIVERS 

Table 17-2 
Paper Tape Reader/Punch Status Returns 

Reason 

Successful completion. 

The operation specified in the QIO directive was 
completed successfully. The second word of the I/O 
status block can be examined to determine the number 
of bytes processed, if the operation involved reading 
or writing. 

I/O request pending. 

The operation specified in the QIO directive has not 
yet been executed. The I/O status block is filled 
with zeros. 

Operation aborted. 

The I/O request was cancelled while in progress or 
while still in the I/O queue. 

Device already attached. 

The physical device unit specified in an IO.ATT 
function was already attached by the issuing task. 
This code indicates that the issuing task has already 
attached the desired physical device unit, not that 
the unit was attached by another task. 

Device not attached. 

The physical device unit specified in an IO.DET 
function was not attached by the issuing task. This 
code has no bearing on the attachment status of other 
tasks. 

Device not ready. 

The reader and punch drivers return this code when a 
time-out occurs. The reader driver also returns this 
code when an error ~ondition (s~e Section 17.4.1) is 
encountered before the initiation of the first 
transfer after an ATTACH command has been issued. 

End-of-file encountered. 

The reader driver encountered an error condition (see 
Section 17.4.1) at a time other than the initiation 
of the first read after a valid ATTACH command. The 
second word of the I/O status buffer contains a count 
of bytes successfully read before the error condition 
was encountered. 

(continued on next page) 

17-3 



Code 

IE. I FC 

IE .OFL 

IE .SPC 

IE.VER 

PAPER TAPE READER/lPUNCH DRIVERS 

Table 17-2 (Cont.) 
Paper Tape Reader/Punch Status Returns 

Reason 

Illegal function. 

An illegal function code was specified in an I/O 
request that is not legal for the respective paper 
tape drivers. 

Device off-line. 

The physical device unit associated with the 
specified in the QIO directive was not on-line. 
the system was booted, a device check indicated 
this physical device unit was not in 
configuration. 

Illegal address space. 

LIJN 
When 
that 
the 

The buffer specified for a read or write request was 
partially or totally outside the address space of the 
issuing task. Alternatively, a byte count of zero 
was specified. 

Unrecoverable hardware error (punch only). 

The punch driver encountered an error condition (see 
Section 17.4.1) at a time other than the initiation 
of a transfer. Section 17.4.2 describes the action 
of the punch driver when an error condition is 
encountered upon the initiation of a transfer. 

17.4.1 Error Conditions 

There are four error conditions that are indistinguishable to the 
paper tape drivers. These conditions are: 

1. No tape 

2. Reader off-line 

3. Power low 

4. Hardware malfunction 

17.4.2 Ready Recovery 

When the punch driver encounters an error condition upon the 
initiation of a transfer, the following message is displayed: 

*** PPn: -- NOT READY 

where n is the unit number of the paper tape punch that is not ready. 
This message is repeated every 15 seconds until the error condition is 
corrected, or until the I/O request is cancelled. When the error 
condition has been corrected, the transfer will begin within one 
second. 

17-4 

~. 

~: 



PAPER TAPE READER./PUNCH DRIVERS 

17.S PROGRAMMING HINTS 

This section contains 
considerations relevant 
in this chapter. 

information on important programming 
to users of the paper tape drivers described 

17.S.l Special Action Resulting from Attach and Detach 

When an Attach or Detach is issued to the punch, the punch driver 
initiates a transfer of 170 (decimal) nulls·. Upon the first read 
after an attach to the reader, all nulls preceding the first non-null 
character on the tape are read and discarded by the reader driver. 

17.5.2 Reading Past End-of-Tape 

When the reader driver reads past the physical end-of-tape, it 
normally generates at least two incorrect data bytes. These bytes are 
included in the byte count returned by the driver. User software that 
does not prevent reads past the physical end-of-tape should discard at 
least the last six characters in the buffer when IE.EOF is returned by 
the driver. 

17-5 



~. 



CHAPTER 18 

INDUSTRIAL CONTROL SUBSYSTEMS 

18.l INTRODUCTION 

This chapter describes RSX-llM drivers for two process I/O subsystems: 
the ICS/ICRll and the DSS/DRSll. (I/O subsystems driver support is 
not Provided in RSX-llM-PLUS systems.) 

ICSll and rCRll are local, and remote process r/O subsystems 
respectively. They operate under program control as devices capable 
of interrogating digital and analog input, and driving digital and 
analog output. 

DSSll and DRSll are digital input and output subsystems, respectively. 
Under program control they drive digital output and interrogate 
digital input. 

18.1.l Hardware Configuration 

A single res or rcR controller can handle up to 16 r/O modules in any 
configuration; a module contains 16 bits of input or output data, 
providing a total of 256 digital points. Up to 12 rCR or ICS units 
are supported. The ICS/ICR driver is tailored to the user's needs, 
interactively, through the SYSGEN (System Generation program) 
dialogue. The driver is capable of handling any combination of rcR or 
res controllers installed on a single system. 

The DSSll provides 49 optically isolated inputs, including 48 
nonbuffered sense-data inputs and one interrupt input. The DRSll 
provides 48 open-collector buffered outputs plus one interrupt input. 
The DSS/DRS driver is shaped to the user's system configuration in the 
SYSGEN dialog. The driver supports up to 16 DSSll and/or DRSll 
modules. 

18.1.1.l ICS/ICR Address Assignments - Each ICRllA Unibus interface 
or rcs11 file box must be configured at SYSGEN time for individually 
addressable interrupt vectors, Control and Status Registers (!CSR), 
and module Address Registers (!CAR) as shown in Table 18-1. 

18-1 



INDUSTRIAL CONTROL SUBSYSTEMS 

Table 18-1 
ICS/ICR Address Assignments 

ICS/ICR UNIT NO. MODULE ADDRESSES ICSR/ICAR ADDR. INTERRUPT VECT. 

0 

1 

2 

3 

4 

5 

6 

7 

10 

11 

12 

13 

171000-171036 171770-171776 

171040-171076 171760-171766 

171100-171136 171750-171756 

171140-171176 171740-171746 

171200-171236 171730-171736 

1 7 12 4 0-1 7 12 76 171720-171726 

171300-171336 171710-171716 

171340-171376 171700-171706 

171400-171436 171670-171676 

171440-171476 171660-171666 

171500-171536 171650-171656 

1 71540-171576 171640-171646 

NOTES 

nnnnn6 = Control and Status Register 
nnnnn4 = Address Register 

Additional controllers are 
vector addresses above 300. 

assigned 

234-236 

XXX-XXX+2 

XXX+4-XXX+6 

XXX+l0-XXX+l2 

XXX+l4-XXX+l6 

xxx+20-xxx+22 

xxx+24-xxx+26 

xxx+30-xxx+32 

xxx+34-xxx+36 

xxx+40-xxx+42 

xxx+44-xxx+46 

xxx+50-xxx+52 

18.1.1.2 DSS/DRS Address Assignments - Unlike the ICS/ICR subsystem, 
DSS/DRS devices are not restricted to specified bus addresses. The 
following constraints apply, however: 

1. All DSSll modules must occupy a contiguous set of bus 
addresses. 

2. All DRSll modules must occupy a contiguous set of bus 
addresses. 

3. The total number of DSSll and DRSll modules may not exceed 
16. 

4. If both module types are installed in 
must occupy the lower set of bus 
addresses. 

5. Bus request priority is BR4. 

18-2 

a system, the DRSll 
and interrupt-vector 



INDUSTRIAL CONTROL SUBSYSTEMS 

18.l.l.3 Supported ICS/ICR I/O Modules - The following modules, all 
optional, are supported by the ICS/ICR driver. 

D/A Converters 

IDA-OA - 4-channel digital-to-analog converter. 

A/D Converters 

IAD-IA - 8-channel wide-range differential analog-to-digital 
converter. 

IMX-IA - 16-channel flying capacitor relay multiplexer. 

Counters 

IDC-IC - 16-bit binary counter. 

Bistable Digital Outputs 

IDC-OA -· 
IAC-OA -· 
I RL-OA -· 
IRL-OB -· 

D/C flip-flop driver. 
A/C flip-flop driver. 
Bistable relay output. 
Flip-flop relay output. 

Momentary Digital Output 

IDC-OB - D/C momentary driver. 
IAC-OB ·· A/C momentary driver. 

Digital Inputs {Noninterrupting)l 

IDC-IA ·
IDC-ID ·
IAC-IA ·-

D/C voltage sense input. 
D/C voltage input module. 
A/C voltage input module. 

Digital Inputs {Interrupting) 

IDC-IB - D/C voltage interrupt input. 
IAC-IB ·- A/C voltage interrupt input. 

Terminal Input/Output 

110 CPS Remote Terminal Interface to ICRll. 

18.1.2 Alternate ICSll Support 

The ICSll Industrial Control Subsystem is supported 
UDCll or ICS/ICRll device driver. If the system 
ICRll controller, and if a driver of minimum size is 
UDCll support should be considered. The hardware 
such support are as follows: 

either by the 
does not have an 

required, then 
requirements for 

l. Each file box must be assigned to the same interrupt vector 
address {normally 2 34) • 

1 Note that noninterrupting input modules are accessed directly by a 
task. Hence, while FORTRAN interface routines are available, no 
support for such modules is included in the driver. 

18-3 



INDUSTRIAL CONTROL SUBSYSTEMS 

2. The control and status register within each file box must 
appear at the same address within the I/O page (normally 
171776). 

If support of the IAD-IA A/D converter is required, the following 
module addressing and installation conventions are imposed: 

1. Each IAD-IA converter and associated IMX-IA relay 
multiplexers are assigned a fixed block of 120 logical 
channel numbers. No more than 32 IAD-IA converters may be 
installed in a single system. Based on this convention, A/D 
converter 0 occupies channels 0-119, A/D converter 1 occupies 
120-239, etc. 

2. Regardless of the actual 
installed, each converter 
contiguous module slots. 

number of 
preempts 

IMX-IA multiplexers 
a block of eight 

3. The slots reserved for all A/D converters and multiplexers 
must occupy a block of contiguous module slots. 

If necessary, the vector and address changes can be made by Field 
Service personnel. Assuming the hardware configuration is correct, 
the user can implement the desired UDCll software support by answering 
in the affirmative all SYSGEN questions relating to the UDCll. 

If the additional ICS/ICR-11 driver features are required (at a 
commensurate increase in the memory requirements), then each ICSll 
file box must be configured for individually addressable interrupt 
vectors and control status registers. This change can be performed by 
Field Service personnel. The necessary software support is 
incorporated by answering in the affirmative all SYSGEN questions 
'relating to the ICS/ICRll. 

The additional ICSll capabilities provided by the ICS/ICRll driver may 
be summarized as follows: 

1. Multi-controller, parallel operation. 

2. Increased A/D conversion throughput. 

3. Activation of tasks directly from digital interrupts or 
counters. 

4. No requirement to install modules of the same type in 
contiguous slots. 

Section 18.7 summarizes the software differences between the UDC and 
ICS/ICR drivers in detail. 

18.1.3 Software Support 

Both ICS/ICR and DSS/DRS operations are divided into two categories: 

1. Functions performed directly by any task. 

2. Functions requiring driver services. 

18-4 

~\ 



INDUSTRIAL CONTROL SUBSYSTEMS 

Direct functions are accomplished through memory references to the 
ICS/ICR or DSS/DRS registers on the I/O page. In a protected system 
any task may gain restricted access to the device registers by linking 
to a global common block that resides within the appropriate physical 
memory limits. Direct functions consist of: 

1. Reading counter modules 

2. Reading any digital input module (DSS) 

NOTE 

All functions listed in this 
apply to ICS/ICR modules. 
also apply to the DSS 
subsystems are so marked. 

subsection 
Those which 

and/or DRS 

Driver requests are divided into the following categories: 

1. Noninterrupting output functions 

a.. Bistable (flip-flop) digital output (DRS) 

b. Analog output 

c. Momentary (single-shot) digital output 

2. Requests for interrupting functions 

a. Analog input 

b. Remote terminal output 

3. Requests for unsolicited interrupts 

a. Digital interrupts (DSS/DRS) 

b. Counter interrupts 

c. Remote terminal input 

d. Remote unit or serial line errors 

With the exception of A/D input and remote terminal output, all 
functions are complete upon return to the user's task. 

Under RSX-llM, noninterrupting output functions are immediately 
submitted to the controller through a circular buffer that is filled 
at driver level and emptied at interrupt level. A QIO is considered 
successfully completed when the request is inserted in the circular 
buffer. 

The following operations are in this category: 

1. Bistable digital outputs 

2. Analog outputs 

3. Momentary digital outputs 

18-5 



INDUSTRIAL CONTROL SUBSYSTEMS 

Interrupting functions are those operations that generate an interrupt 
within some fixed time after initiation. The driver allows a list of 
multiple transactions to be specified in a single QIO. Each 
transaction is initiated in sequence without waiting for the preceding 
interrupt, until either the list is exhausted or all modules of the 
specified type are active. The following operations are in this 
category: 

1. A/D inputs 

2. Remote terminal output 

Unsolicited interrupts may require no initiation by the processor and 
occur at indeterminate intervals. The following functions are in this 
category: 

1. Interrupting digital inputs (DSS/DRS) 

2. Counter modules 

3. Remote terminal input 

4. Error interrupts 

All unsolicited interrupt data, except for errors, may be placed in a 
task-provided circular buffer. On interrupt, an event flag specified 
by the task is set. Such data for each module type is supplied to 
only one task per controller. In addition, the driver will activate 
selected tasks on the occurrence of digital or terminal input 
interrupts. 

Error interrupts are described later in this chapter. 

Terminal support is restricted to passing terminal data between the 
device and a task. The only special chara~ter is Control-C (003), 
which may cause a user-specified task to be made active. There is no 
other special processing for terminal I/O except that the parity bit 
is removed. This is similar to the terminal driver funciion of 
IO.RAL. 

1. MCR is not ~nvoked. 

2. Characters are not echoed. 

3. Carriage control is not performed. 

4. TABs, RUBOUTs, etc. are not recognized. 

5. Line terminators are not recognized. 

6. Fill characters are not generated. 

18.1.4 UDCll Software Compatibility 

Many of the MACRO and FORTRAN interfaces described in the following 
paragraphs are fully compatible with existing UDCll applications 
software; however, the user should consult Section 18.7 for a summary 
of differences that do exist between UDC and ICS/ICR software. 

18-6 



INDUSTRIAL CONTROL SUBSYSTEMS 

18.1.5 Module Addressing Conventions 

Table 18-2 illustrates the relationship between physical slot numbers, 
bus addresses and relative addresses for a given ICS/ICR 
configuration. It is referred to in the following discussion. 

Each A/D converter is assigned a block of 120 channels. The number of 
channels in use within the block depends on the number of multiplexers 
installed. Specifically, each A/D converter has eight channels, and 
each associated multiplexer has 16. 

As noted, a block of 120 relative addresses is reserved for each A/D 
converter. The converter and multiplexer in slots 10 and 11 contain 
channels 0 through 23. The converter in slot 17 contains channels 120 
through 127. An attempt to access a nonexistent channel (e.g., 
channel 30 or channel 129) will be rejected by the driver. 

The user should observe that the bistable drivers in slots 13 and 15 
contain relative point numbers 0 through 15, and 16 through 29 
although the modules are not physically adjacent. In general, the 
relationship between slot number, module type, bus address, and 
relative address is as fol~ows: 

1. A set of contiguous relative addresses is defined for each 
module of a given type that is installed. Each relative 
address, when qualified by type, uniquely identifies a 
digital point or channel. 

2. A set of slot numbers and bus addresses, possibly not 
contiguous, is occupied by all modules of a given type. Such 
addresses may be assigned solely on the basis of hardware and 
installation considerations. Increasing relative addresses 
correspond to increasing bus addresses. 

Table 18-2 
Sample ICS/ICR Configuration 

Unit: 0 

Slo1 t Number Type 

9. D/A Converter 
10. A/D Converter 
11. A/D Multiplexer 
12. Counter 
13. Flip-Flop driver 
14. D/A Converter 
15. Flip-Flop driver 
16. Counter 
17. A/D Converter 

Table 18-3 is an example of the 
interrupt points, and point 
con:Eiguration. 

Bus Address 

171000 
171002 
------
171006 
171010 
171012 
171014 
171016 
171020 

relationship 
numbers for 

Relative Addresses 

0-3. 
0-119. 
-----
0 
0-15. 
4-7. 
16 .-31. 
1. 
120.-239. 

among bus 
a sample 

addresses, 
DSSll/DRSll 

All addressing is by point number. Except for the interrupts, all 
points are numbered sequentially by type (DSS or DRS), starting with 
the first point on the lowest address assigned to a given module type. 
Interrupt points are defined by means of a 16-bit mask word. Each bit 
in the mask defines an interrupting module; high-order bits 
correspond to increasing bus addresses. 

18-7 



INDUSTRIAL CONTROL SUBSYSTEMS 

Table 18-3 
Sample DSS/DRS Configuration 

Bus Addresses Module Type Points Interrupt 

160030-160036 DRSll 0-47. 0 
160040-160046 DRSll 48.-95. l 

170010-170016 DSSll 0-47. 2 
170020-170026 DSSll 48.-95. 3 

18.2 LUN INFORMATION 

A request for logical unit information returns the 
device-dependent data in words 2 through 5 of the buffer: 

WD 02 0 

WD 03 undefined 

WD 04 undefined 

WD 05 0 

18.3 ASSEMBLY LANGUAGE INTERFACE 

Point 

following 

Table 18-4 summarizes standard and device-specific QIO functions 
supported by the ICS/ICR driver. Only the five functions indicated by 
a footnote are supported by the DSS/DRS driver. 

Table 18·-4 
Summary of Industrial Control QIO Functions 

Format Function 

QIO$C I-0.CCI, ••• ,<stadd,sizb,tevf> Connect a buffer to 
digital interrupts 

QIO$C IO.CTI, ••• ,<stadd,sizb,tevf, Connect a buffer to 
arv> counter interrupts 

QIO$C IO.CTY, ••• ,<stadd,sizb,tevf> Connect a buff er to 
terminal interrupts 

QIO$C IO.DC!, ••• Disconnect a buffer from 
digital interrupts 

QIO$C IO.DTI, ••• Disconnect a buffer from 
counter interrupts 

QIO$C I 0. DTY, ••• Disconnect a buffer from 
terminal interrupts 

(continued on next page) 

18-8 

~. 
'I 



INDUSTRIAL CONTROL SUBSYSTEMS 

Table 18-4 (Cont.) 
Summary of Industrial Control QIO Functions 

Format 

QIO$C IO.FLN, ••• 

QIO$C IO.ITI, ••• ,<mn,ic> 

1QIO$C IO.LDI, ••• ,<tname, [,tevf], 
pn,csm> 

QIO$C IO.LKE, ••• ,<tname, [,tevf]> 

QIO$C IO .. LTI, ••• ,<tname, [,tevf] 
cn[,arv]> 

QIO$C IO .. L'l'Y, ••• ,<tname, [, tevf] > 

1QIO$C IO .. MLO, ••• ,<opn,pp,dp> 

QIO$C IO.MSO, ••• ,<opn,dp> 

1QIO$C IO.NLK, ••• ,<tname> 

QIO$C IO.ONL, ••• 

1QIO$C IO.RAD, ••• ,<stadd> 

QIO$C IO.RBC, ••• ,<stadd,size, 
stcnta> 

QIO$C IO.SAO, ••• ,<chn,vout> 

1QIO$C IO.UDI, ••• ,<tname> 

QIO$C IO.UER, ••• ,<tname> 

QIO$C IO.UTI, ••• ,<tname> 

QIO$C IO.UTY, ••• ,<tname> 

QIO$C IO.WLB, ••• ,<stadd,sizb> 

Function 

Set controller off line 

Initialize a counter 

Link task to digital 
interrupts 

Link task to error 
interrupts 

Link task to counter 
interrupts 

Link task to remote 
terminal interrupts 

Open or close bistable 
digital output points 

Pulse momentary digital 
output points 

Unlink a task from all 
interrupts 

Place ICS/ICR controller 
online 

Read activating data 

Initiate multiple A/D 
conversions 

Perform analog output 

Unlink a task from 
digital interrupts 

Unlink a task from error 
interrupts 

Unlink a task from 
counter interrupts 

Unlink a task from 
terminal interrupts. 

Transmit data to the !CR 
remote terminal 

1 These functions are supported by the DSS/DRS driver. 

18-9 



Where: 

arv 

chn 

en 

csm 

dp 

ic 

mn 

opn 

pn 

pp 

sizb 

size 

stadd 

staddb 

st en ta 

tevf 

tname 

vout 

INDUSTRIAL CONTROL SUBSYSTEMS 

is the starting address of a buffer containing initial 
or reset counter values. The buffer must be aligned on 
a word boundary. 

is the D/A channel number 

is the counter number 

is the change-of-state mask 

is the binary data pattern 

is the initial count 

is the module number 

is the first bistable (latching) digital output point 
number. This value must be on a module boundary 
(evenly divisible by 16) 

is the point number (must be assigned on a module 
boundary) 

is a 16-bit mask 

is the data buffer size in bytes. For a circular 
buffer connected to unsolicited interrupts, this value 
must be even and large enough to include one entry plus 
the 2-word header 

is the data and control buffer size in bytes. This 
value must be an even number that is greater than zero. 

is the starting address of the data buffer (must be on 
a word boundary) 

is the starting address of the terminal output buffer. 
May be aligned on a byte boundary 

is the starting address of the control buffer (must be 
on a word boundary); each control buffer word must be 
constructed as described in Table 18-5 (Section 18.3.2) 

is an event flag number in the range 0 to 96, (if the 
group-global event flag SYSGEN option was selected), or 
0 to 64 if group-global event flags are not supported 

is a task name composed of l to 6 alphanumeric 
characters in a 2-word RADIX-SO format. Two arguments, 
each containing three characters, are required for this 
parameter. For example, the task name ICNAME is 
specified as: 

If the task name is less than 4 characters, a null 
argument must be specified as follows for task ABC: 

< ""RABC,, ••• > 

is a binary number between 0 and 1023. that is to be 
converted to an analog output 

18-10 

~ 
' J 



.._.,.,. 

INDUSTRIAL CONTROL SUBSYSTEMS 

The following sections contain a detailed description of each 
function. In the discussion of QIO request parameters, the following 
conventions apply. 

All numbering is relative. 

Module numbers start at O beginning with the first module of a given 
typE~. Increasing module numbers correspond to increasing physical bus 
addresses. 

Channel numbers start at O, with channel O as the first channel on the 
first module of a given type. 

Point numbers start at O with point 0 as the first point on the first 
m6dule of a given type. Points within a module are numbered "from 
right to left" in increasing order. 

It should be remembered that there is no requirement for ICS/ICR 
modules of a given type to occupy contiguous slots; thus, for 
example, digital points 15(10) and 16(10) need not reside on 
physically adjacent modules. This restriction does apply to DSS/DRS 
modules, however. 

It is assumed that the number of points or channels per module is a 
constant for each generic type. Specifically the following weights 
apply: 

1. Each ICS/ICR Digital I/O Module contains 16 points. 

2. Each DSS/DRS Digital I/O Module contains 48 points. 

3. Each Counter Module contains 1 channel. 

4. Each D/A Module contains 4 channels. 

5. Each A/D Converter contains 120 channels. 

As stated above, an A/D converter is assigned a block of 120 channels. 
The number of channels in use within the block depends on the number 
of multiplexers installed. The driver will reject an attempt to 
address a nonexistent channel. 

18.3.1 General Error Status Returns 

The system recognizes and handles two kinds of status conditions when 
they occur in I/O requests: 

• Directive conditions, which indicate the acceptance 
rejection of the QIO directive itself 

or 

• I/O status conditions, which indicate the success or failure 
of the I/O operation 

Table 18-7 lists numerical values of returns for both assembly 
language and FORTRAN interfaces. 

The following directive and I/O status returns apply uniformly to all 
requests. 

18-11 



INDUSTRIAL CONTROJ~ SUBSYSTEMS 

18.3.1.l Directive Conditions 

rs.sue - Directive accepted. The first six parameters of the QIO 
directive were valid, and sufficient dynamic memory was 
available to allocate an I/O packet. The directive is 
accepted. 

IE.ADP - Invalid address. The I/O status block or 
outside of the issuing task's address 
aligned on a word boundary. 

IE.IEF - Invalid event flag number. 

the QIO DPB was 
space or was not 

IE.ILU - Invalid logical unit number. The lun specification in a QIO 
directive was invalid for the issuing task. For example, 
there were only five logical unit numbers associated with the 
task, and the value specified for lun was greater than five. 

IE.NOD - Insufficient dynamic memory. There was not enough dynamic 
memory to allocate an I/O packet for the I/O request. The 
user can try again later by blocking the task with a WAITFOR 
SIGNIFICANT EVENT directive.. Note that WAITFOR SIGNIFICANT 
EVENT is the only effective way for the issuing task to block 
its execution, since other directives that could be used for 
this purpose themselves require dynamic memory for their 
execution (e.g., MARK TIME). 

IE.SOP - Invalid DIC number or DPB size. The directive identification 
code (DIC) or the size of the directive parameter block (DPB) 
was incorrect; the legal ran9e for a DIC is from 1 through 
127, and all DIC values must be odd. Each individual 
directive requires a DPB of a certain size. If the size is 
not correct for the particular directive, this code is 
returned. 

IE.ULN - Unassigned LUN. The logical unit number in the QIO directive 
was not associated with a physical device unit. The user may 
recover from this error by issuing a valid Assign LUN 
directive and then reissuing the rejected directive. 

18~3.l.2 I/O Conditions 

IE.ABO - Operation aborted. The specified operation was cancelled via 
IO.KIL or the request timed out while the unit was offline. 

IE~OFL - Controller offline. The physi.cal device unit associated with 
the LUN specified in the QIO directive was not online. An 
ICS/ICR controller may be offline because a device check 
during bootstrap load has indicated that the controller is 
not in the configuration. 

IE.DNR - Controller not ready. A nonrecoverable controller error has 
been detected. 

IE.IFC - Illegal function. A function code was included in an I/O 
request that is illegal for the ICS/ICR. The function may 
also refer to an ICS/ICR module type or function that was not 
specified during system generation. 

18-12 



INDUSTRIAL CONTROL SUBSYSTEMS 

18.3.2 A/D Input - Read Multiple A/D Channels 

This function provides the capability of reading several A/D channels 
at any permissible gain. The driver is capable of initiating parallel 
transfers when more than one A/D converter is installed in a file box; 
however, only one interrupt module request (remote terminal or A/D) 
may be in progress at a given time. 

QIO DPB format: 

QIO$C IO.RBC, ••• ,<stadd,size,stcnta> 

where: 

st add 

size 

stcnta 

Return Status: 

the starting address of the data buffer (must be on a 
word boundary). 

the data buffer size in bytes (must be even and greater 
than zero); the control buffer is the same size. 

the starting address of the control buffer (~ust be on 
a word boundary); each control buffer word must be 
constructed as shown in Table 18-5. 

Is.sue - Function successfully completed. 

IE.BAD - Illegal channel or gain code specified. 

IE.BYT - Data buffer is byte aligned. Alternatively, the length 
of the buffer is not an even number of bytes. 

IE.DNR - Device not ready. 
occurred. 

A/D converter interrupt timeout 

Note that the second I/O Status word contains a count of the 
number of conversions successfully completed. 

One control word is paired with each data word. That is, the data 
appearing in a data array element is obtained using the gain and 
channel number specified in the corresponding element of the control 
array. Control words specify the gain and channel in the format shown 
in Table 18-5. 

Upon receipt and validation of the parameters within the I/O packet, 
the driver will initiate the following sampling procedure: 

1. The control word is fetched and tested for validity (i.e., 
for legal gain and channel). If an error is encountered or 
no further control words remain, processing is terminated as 
described in Step 4. 

2. Assuming the A/D converter board is idle, the driver starts 
the conversion, sets this resource busy and returns to Step 
1. If the converter is busy the driver returns control to 
the system after saving the data required to initiate the 
conversion when the channel becomes idle. 

3. On the occurrence of an A/D interrupt, the interrupt service 
routine initiates the appropriate processing at the non
interrupt level that will either set the channel idle or 
initiate a previous request stored during Step 2. The 
occurrence of the latter results in processing of additional 
control words as described in Step l. 

18-13 



INDUSTRIAL CONTROi~ SUBSYSTEMS 

Table 18--5 
A/D Conversion Control Word 

Bits Meaning 

0-11 Channel Number range: 0-1919 

12-15 Gain value for Gain 
this sample .. The 
binary valuE~ is 
as follows: 

15 14 13 12 

0 0 0 0 1 
0 0 0 1 2 
0 0 1 0 illegal 
0 0 1 1 illega 1 
0 1 0 0 10 
0 1 0 1 20 
0 1 1 0 illegal 
0 1 1 1 illegal 
1 0 0 0 50 
1 0 0 1 100 
1 0 1 0 i llega 1 
1 0 1 1 illegal 
1 1 0 0 200 
1 1 0 1 1000 
1 1 1 0 illegal 
1 1 1 1 illegal 

4. The converted value is returned as 12 bits, left-justified, 
in a 16-bit word, with the low order 4 bits set to zero. 

5. A/D requests are terminated under any of the following 
conditions: 

a. All control words have been processed. 

b. A hardware error has occurred. 

c. An error in a control word has been detected. 

Regardless of the cause, the driver cannot complete request processing 
until all pending A/D transfers have gone to completion. 

Because of overlapped processing, multiple errors can occur (e.g., a 
hardware error and an erroneous control word). The driver will return 
the status associated with the earliest transaction that caused an 
error condition. Thus, at the user interface, the driver will appear 
to execute all conversions sequentially. 

18.3.3 Analog Output 

This function provides the capability of setting a single analog 
output channel to a specified voltage. 

Q I 0 DP B for ma t : 

QIO$C IO.SAO, ••• ,<chn,vout> 

18-14 

~i 



INDUSTRIAL CONTROL SUBSYSTEMS 

where: 

chn = the output channel number 

vout = the output voltage representation 

Output voltage varies linearly with the binary input to the channel, 
where 0 to plus ten volts {+lOv.) is represented by integers from 0 to 
1023. 

Return Status: 

rs.sue - Function submitted for output to controller. 

IE.MOD - Nonexistent D/A channel was specified. 

The second I/O status word is zero. 

18.3.4 Momentary Digital Output - Multi-Point 

This function provides the capability of pulsing a field of up to 16 
momentary {single-shot) digital output points. Fields must be aligned 
on module boundaries. 

QIO DPB format: 

QIO$C IO.MSO, ••• ,<opn,dp> 

where: 

opn = the starting digital output point number. Point number 

dp 

Return Status: 

must be aligned on a module boundary {i.e., must be a 
multiple of 16). 

the 16-bit mask. One point is pulsed corresponding to 
each bit set in the mask word. 

rs.sue -- Function submitted for output to the controller. 

IE.MOD - Invalid starting point number specified. Point is 
nonexistent or not aligned on a module boundary. 

18.3.5 Bistable Digital Output - Multi-Point 

This function provides the capability of setting or resetting a field 
of up to 16 bistable digital output points. Fields must be aligned on 
a module boundary. 

QIO DPB format: 

QIO$C IO.MLO, ••• ,<opn,pp,dp> 

where: 

opn the starting digital output point number. Point number 
must be aligned on a module boundary {i.e., must be a 
multiple of 16). 

18-15 



INDUSTRIAL CONTROL SUBSYSTEMS 

pp 

dp 

the 16-bit mask. 

= the data pattern. 

A bit is set in the mask word for each point that may change state. 
The state of points corresponding to reset mask bits is unaltered. 
When the mask bit is set, the output will be "closed" if the data bit 
is set and "open" if the data bit is clear. 

Return Status: 

rs.sue - Function submitted for output to the controller. 

IE.MOD - Invalid starting point number specified. Point does not 
exist or is not aligned on a module boundary. 

18.3.6 Unsolicited Interrupt Processing 

Unsolicited interrupts consist of the following: 

1. Digital interrupts 

2. Counter interrupts 

3. Remote terminal input 

4. Hardware Errors 

Based on the type of interrupt, the driver may dispose of the 
interrupt data in one or more of the following ways: 

1. The data may be furnished to a task that has issued a request 
to monitor such information continually. This alternative is 
nbt available in the DSS/DRS driver. 

2. A task may be activated by a specific input. That is, a 
dormant task can be requested to run, or an event flag may be 
set if the task is currently active. 

The driver will allow continual monito1:ing for digital, counter, and 
terminal inputs with the provision that, for each controller, only one 
task per module type may receive such inputs. 

Task activation is permitted for digital, terminal, and error 
interrupts. The processing related to hardware errors is discussed in 
Section 18.5. Activation of tasks by digital, counter, and terminal 
inputs is covered in Section 18.3.7. 

The driver functions described in the following paragraphs allow a 
task to continually receive interrupt data. To monitor such data a 
task must provide: 

1. A buffer that is filled by the driver and emptied by the task 
in circular fashion. 

2. An event flag that will be set upon the occurrence of each 
interrupt. 

The driver will connect a single task per controller to receive 
interrupts from a specific module type~ 

18-16 

~ 
': 



~ 

INDUS~RIAL CONTROL SUBSYSTEMS 

The buffer to be connected has the format shown below: 

FORTRAN 
Index Contents 

1 driver index 

2 user index 

3 word 0 of entry 

4 word l of entry 

The buffer consists of a two-word header containing the driver and 
user index, as shown, followed by a data area that is subdivided into 
fixed length entries. Each entry consists of a word containing the 
entry existence indicator followed by one or more words of 
device-dependent data. Such information usually consists of module 
data, relative module number, and a code identifying a module type. 
On the occurrence of an interrupt, the driver enters data in the 
location currently indicated by the driver index. This index can be 
considered as a FORTRAN index into the buffer. That is, the first 
location in the buffer is associated with the index 1. The beginning 
of the data area is associated with the first entry, index 3. Entries 
are made in a circular fashion starting at the beginning of the data 
area, filling in order of increasing memory add~ess, and wrapping 
around to the beginning of the data area when there is insufficient 
space for an entry at the end. Note that the size of the data area 
must be an integer multiple of the entry size. 

It is expected that the connected task will maintain the user index, 
ensuring that it indicate where, in the buffer, the task is to process 
interrupt data next. 

When the task is activated by the driver, it should process data in 
the buffer starting at the location indicated by its pointer, and 
continuing in circular fashion until an existence indicator is 
encountered that is zero. 

The existence indicator is set to +l when a buffer entry is made. 
Except to record a hardware error, the contents of an entry are not 
altered by the driver if the indicator is nonzero. Hence, when a 
requester has removed or processed the entry, he must clear the 
existence indicator in order to free the buffer entry position. If 
the driver detects a nonzero indicator, i.e., data input has occurred 
in a burst sufficient to overrun the buffer, the data is discarded and 
a count of data overruns is incremented. The count is maintained in 
the entry existence indicator which, as noted above, is set to +l to 
indicate no overruns between entries, +2 to indicate a hardware error 
entry, or a negative value recording the two's complement of the 
number of times data has been discarded between entries. The overrun 
count will never be allowed to wrap around to a positive value. 

18-17 



INDUSTRIAL CONTROL SUBSYSTEMS 

In the event of a nonrecoverable controller error (remote unit 
power-fail or hard data error) all connected tasks are activated with 
the following entry in the circular buffer: 

WO 00 

WO nn 
WO nn+l 
WO nn+2 

Hardware error indicator (+2) 

Contents of !CSR register 
Physical unit number 
Generic code indicator 
set to 177770 (8) 

nn = offset to module data word. 

This entry is always placed in the buffer regardless of overflow 
status. 

The error flags are obtained from the controller !CSR word at the time 
the error was detected (see Table 18-7). 

18.3.6.l Connect to Digital Interrupts - This function allows a 
single task to receive digital interrupt data. 

QIO OPB format: 

QIO IO.CCI, ••• ,<stadd,sizb,tevf> 

where: 

st add starting address of buffer to be connected (must be 
word aligned) 

sizb 

tevf 

Return Status: 

length of buffer in bytes (must be even). 
buffer length is 14 bytes 

trigger event flag number 

Minimum 

rs.sue - Function successfully completed. Second I/O status word 
contains the number of words passed per interrupt in the 
low byte, and the initial FORTRAN index in the high 
byte. 

IE.BYT - Buffer address is byte aligned or length is an odd 
number of bytes. 

IE.CON - Interrupt already connected to another task. 

IE.IEF - Invalid event flag number. 

IE.PR! - Task checkpointable and not fixed in memory. 

IK.SPC - Interrupt circular buffer was not wholly within the 
address space of the task. Alternatively, the buffer 
was too small for a single data entry (7 words minimum). 

18-18 



~ 

INDUSTRIAL CONTROL SUBSYSTEMS 

Entry Format: 

WD 00 - Existence Indicator 
WD 01 - Change of state indicator 
WD 02 - Module data 
WD 03 - Relative module number 
WD 04 - Generic Code l, 2 or 3, indicating a digital interrupt 

The contents of the existence indicator 
previously. 

have been described 

The change-of-state indicator records those bits for which a change of 
state in the direction of interest has been detected. The direction 
of the change may be from 0 to l (point closed (PCL}) or l to 0 (point 
open (POP)) depending upon the PCL or POP jumper connections on the 
digital interrupt module. The driver will assume that at least one of 
these signals is always asserted. 

The relative module number indicates the module on which the change of 
state was recognized. 

The module data word records data received at the time the interrupt 
was serviced. 

The generic code identifies the type of module that caused the 
interrupt. A digital interrupting module may have the value l, 2 or 3 
as selected by user-installed jumpers on the module. 

18.3.6.2 Disconnect from Digital Interrupts - This function allows a 
task to terminate the processing of digital interrupt data. 

QIO DPB format: 

QIO$C IO.DC!, ••• 

Return Status: 

rs.sue - Function successfully completed. Second I/O status word is 
zero. 

IE.CON - Task was not connected. Second I/O status word is zero. 

18.3.6.3 Connect to Counter Module Interrupts - This function allows 
a single task to receive counter interrupt data. 

QIO DPB formc:tt: 

QIO$C IO.CTI, ••• ,<stadd,sizb,tevf,arv> 

whe ire: 

st add starting address of circular buff er (must be word 
aligned) 

sizb length of buff er in bytes (must be even). Minimum 
buffer length is 12 bytes. 

tevf trigger event flag number 

arv = starting address of table of initial counter values 
(must be word aligned) 

18-19 



INDUSTRIAL CONTROL SUBSYSTEMS 

Word 03 defines an array of initial counter values. One entry is 
required for each counter installed in a physical unit. Entries are 
paired with modules in logically ascending sequence. The counter is 
set to the initial value upon receipt of the connect function and 
whenever an overflow interrupt occurs (i.e., when the count reaches 
zero). 

Return Status: 

rs.sue - Function successfully completed. The second I/O status 
word contains the number of words passed per interrupt 
in the low byte, and the initial FORTRAN index in the 
high byte. 

IE.BYT - Buffer address is byte aligned or length is an odd 
number of bytes. 

IE.CON - Interrupt already connected to another task. 

IE.IEF - Invalid event flag number. 

IE.PR! - Task checkpointable and not fixed in memory. 

IE.SPC - Interrupt circular buffer or table of initial values was 
not wholely within the address space of the task. 
Alternately, the buffer was too small for a single data 
entry (6 words minimum). 

Entry Format: 

WD 00 - Existence indicator 

WD 01 - Module data 

WD 02 - Relative module number 

WD 03 - Generic code (4, 5 or 6) 

18.3.6.4 Set Counter Initial Value - This function allows a counter 
initial value to be established. A task need not be connected to 
counter interrupts to perform this function. 

QIO DPB format: 

QIO$C IO.ITI, ••• ,<mn,ic> 

where: 

mn relative module number 

ic new initial count 

Return Status: 

rs.sue - New value submitted for output to the controller. The 
second word of I/O status is set to zero. 

IE.MOD - Nonexistent module number specified. 

Upon receipt of the request, the new initial value is immediately 
queued for output to the controller. The counter will be 
reinitialized with this value on overflow if a task is connected to 
counter interrupts. 

18-20 

AL. 



INDUSTRIAL CONTROL SUBSYSTEMS 

18.3~6.5 Disconnect from Counter Interrupts - This function allows a 
task to terminate counter interrupt processing. 

QIO DPB format: 

QIO$C IO.OT!, ••• 

Retu1rn Status: 

rs.sue - Function successfully completed. 
status is set to zero. 

The second word of I/O 

IE.CON - Task was not connected to timer interrupts. 

After disconnect is complete, counters will not be reset to the 
initial value at the time of the interrupt. 

18.3.6.6 Connect to Terminal Interrupts - This function allows a task 
to receive terminal inputs from the selected ICRll controller. 

QIO DPB format: 

QIO$C IO.CTY,~ •• ,<stadd,sizb,tevf> 

where: 

st add 

,s izb 

tevf 

Return Status: 

address of circular buffer (must be word aligned) 

length of buffer (must be even). Minimum buffer length 
is 12 bytes. 

trigger event flag number 

rs.sue - Function successfully completed. The second I/O status 
word contains the number of words passed per interrupt 
in the low byte, and the initial FORTRAN index in the 
high byte. 

IE.BYT - Buffer is byte aligned or length is an odd number of 
bytes 

IE.CON - Interrupt already connected to another task. 

IE.IEF - Invalid event flag number. 

IE.MOD - Nonexistent device. Controller is ICSll. 

IE.SPC - Interrupt circular buffer was not wholly within the 
address space of the task. Alternatively, the buffer 
was too small for a single entry (6 words minimum). 

Entry Format: 

WD 00 - Existence indicator 

WD 01 - High byte = O, low byte = terminal input character 

WD 02 - Relative module number (normally 0) 

WD 03 - Generic code indicator (normally 0) 

18-21 



INDUSTRIAL CONTROL SUBSYSTEMS 

Note that words 2 and 3 are nonzero only when the entry was made as 
the result of a nonrecoverable controller error. 

All remote terminal data is conveyed to the requesting task as input, 
but with the parity bit removed. 

NOTE 

Remote terminal input is not echoed by 
the driver. 

18.3.6.7 Disconnect from Terminal Input - This function allows a task 
to discontinue the processing of terminal input. 

QIO DPB format: 

QIO$C IO.DTY, ••• 

Return Status: ~ 

IS.sue - Function successfully completed. The second word of I/O 
status is set to zero. 

IE.CON - Task was not connected to remote terminal interrupts. 

18.3.7 Activating a Task by Unsolicited Interrupts 

The functions described in the following paragraphs provide the 
capability of: 

1. Activating a task in response to unsolicited interrupts. 

2. Interrogating the driver to determine the 
activation. 

3. Removing a task from the activation list. 

reason for 

The QIO DPB parameters specify the task name, an optional trigger 
event flag to be set if the task is active, and device-dependent 
parameters that identify the interrupt source. A task is linked to 
interrupts (i.e., made eligible for activation) provided that: 

1. the resource exists, 

2. the task is installed, and 

3. no other task is linked to the resource. 

If another task is linked to the resource, the driver will reject the 
request with a status of resource-in-use (IE.RSU). A resource is 
defined as a single interrupt point, remote terminal (Control-C input 
only), or counter module. 

On the occurrence of the appropriate interrupt, the task is made 
active if dormant; otherwise, a trigger event flag, if specified, is 
set. The task may interrogate the driver to determine the conditions 
that caused activation, and to signify interrupt recognition. The 
function of the event flag is to allow such a task to recognize an 
event that has occurred while the task was active. Recognition is 

18-22 



INDUSTRIAL CONTROL SUBSYSTEMS 

ensured prior to the completion of task execution by issuing the Exit 
If system directive followed by the Clear Event Flag directive. 

The linkage between a task and a specific interrupt is removed by 
issuing the appropriate unlink request via the QIO directive. 

Only one task may be associated with each interrupt source (i.e., one 
task per digital interrupt point, terminal input, or counter module. 

NOTE 

The MCR command REMOVE automatically 
unlinks a task from all interrupts. 

18.3.7.1 I.ink a Task to Digital Interrupts - The following function 
allows a task to be activated on the occurrence of digital interrupts. 

QIO DPB format: 

QIO$C IO.LOI, ••• , <tname, [, tevf], pn, csm> 

where: 

tname 

tevf 

pn 

csm 

a 1- to 6-character alphanumeric task name in 2-word, 
Radix-SO format 

trigger event flag (O=none) 

point number (must be aligned on a module boundary) 

change-of-state mask 

The change-of-state mask indicates those bits for which a change of 
state in the direction specified by the PCL and POP jumpers causes the 
task to be activated. Only one task may be linked to a given 
intE~rrupt point. A zero change of state mask is not permitted. 

Return Status: 

rs .sue 

IE.BAD 

IE.IEF 

IE .MOD 

IE .NOD 

IE .NST 

IE.RSU 

Function successfully completed. The second word of 
I/O status is set to zero. 

Change-of-state mask set to zero. 

Invalid event flag number. 

Nonexistent module or point not aligned on a module 
boundary. 

Insufficient dynamic memory to allocate secondary 
control block. 

Task "tname" is not installed. 

One or more of the specified points is in use by other 
tasks. 

18-23 



18.3.7.2 
task to 
module. 

INDUSTRIAL CONTROL SUBSYSTEMS 

Link a Task to Counter Interrupts - This function allows a 
be activated by means of an interrupt from a single counter 

QIO DPB format: 

QIO$C IO.LTI, ••• ,<tname, [,tevf],cn[,ic]> 

where: 

tname 

tevf 

en 

ic 

a 1- to 6-character alphanumeric task name in 2-word 
Radix-SO format. 

trigger event flag (O=none) 

relative module number 

= counter value (optional) 

The counter value if nonzero, is used to reinitialize the module in a 
manner similar to that described for the Set Counter function in 
Section 18.3.6.4. Initialization may be bypassed by setting this 
parameter to zero. 

Return Status: 

Is.sue 

IE. IEF 

IE.MOD 

IE .NOD 

IE.RSU 

Function successfully completed. The second word of 
I/O status is set to zero. 

Invalid event flag number. 

Nonexistent module specified. 

Insufficient dynamic memory to allocate a secondary 
control block. 

Counter is linked to another task. 

18.3.7.3 Link a Task to Terminal Interrupts - This function allows a 
task to be activated by means of an interrupt from a remote terminal. 
The task will be activated only in response to the Control-C character 
(octal 003). 

QIO DPB format: 

QIO$C IO.LTY, ••• ,<tname, [,tevf]> 

where: 

tname 

tevf 

a 1- to 6-character alphanumeric task name in 2-word, 
Radix-SO format. 

trigger event flag (O=none). 

Return Status: 

Is.sue 

IE. I EF 

IE .MOD 

- Function successfully completed. The second word of 
I/O status is zero. 

- Invalid event flag number. 

- Nonexistent module (unit is ICSll controller). 

18-24 



IE.NOD 

IE .NST 

IE .RSU 

INDUSTRIAL CONTROL SUBSYSTEMS 

- insufficient dynamic storage to allocate secondary 
control block. 

- Task "tname" is not installed. 

- Remote terminal is linked to another task. 

18.3.7.4 Link a Task to Error Interrupts -
single task to be activated whenever a 
nonrecoverable serial line error is detected 
units in a system. Only one task within 
error interrupts. Once linked, the selected 
reports from any !CR controller. 

This function allows a 
remote unit power-fail or 

on any or all remote 
a system may be linked to 
task may receive error 

QIO DPB format: 

QIO$C IO.LKE, ..•• ,<tname, [,tevf]> 

where: 

tname 

tevf 

a 1- to 6-character alphanumeric task name in 2-word 
Rad:ix-50 format. 

trigger event flag (0 none) 

Return Stat.us: 

rs .sue 

IE.IEF 

IE.IFC 

IE .NOD 

IE .NS'l~ 

IE .RSU 

Function successfully completed. The second word of 
I/O status is zero. 

Invalid event flag number. 

No ICRll subsystems are installed. 

Insufficient dynamic storage to allocate secondary 
control block. 

Task "tname" is not installed. 

Another task is linked to error interrupts. 

18.3.7.5 Read Activating Data - This function allows a task to 
determine the conditions that caused it to be activated. 

QIO DPB format: 

QIO$C IO.RAD, ••• ,<stadd> 

where: 

st add address of 6-word buffer to receive activation data 
(must be word aligned). 

The buffer receives data in the following format: 

WD 00 - Activation indicator 

WD 01 - Physical unit number 

WD 02 - Generic Code 

18-25 



INDUSTRIAL CONTROJL. SUBSYSTEMS 

WD 03 - Relative module number 

WD 04 - Hardware dependent data 

WD 05 - Hardware dependent data 

The activation indicator is similar in function to the existence 
indicator used when reading circular buffer entries. The indicator is 
set to +l on the occurrence of an interrupt to which the requesting 
task is linked, and the appropriate data is stored. The indicator is 
cleared when the data is solicited by the task. If an interrupt 
linked to the task occurs and the parameter is nonzero then the 
previously stored data is not modified and the driver sets this 
element with the two's complement of the number of linked interrupts 
not recorded. 

The physical unit number specifies the controller that received the 
interrupt. 

The generic code is identical to that :specified for circular buffer 
entries, namely: 

0 - Terminal (Control-C) 

1,2,3 - Digital interrupt 

4,5,6 - Counter interrupt 

177770 - Fatal controller error 

Hardware-dependent data is associated with generic code and will 
consist of the following: 

Terminal: 

WD 04 Terminal buffer contents (low byte) 

WD 05 undefined 

Digital Interrupts: 

WD 04 Module data 

WD 05 Change-of-state indicator 

Counter: 

WD 04 Module data 

WD 05 undefined 

Fatal Controller Error: 

WD04 

woos 

Return Status: 

Contents of !CSR register (see Table 18-7) 

Contents of !CAR register (see Table 18-8) 

rs.sue - Function successfully completed. The second word of I/O 
status is zero. 

IE.BYT - Buffer address is aligned on an odd byte boundary. 

18-26 



INDUSTRIAL CONTROL SUBSYSTEMS 

IE.NLK - Task "tname" was not linked to interrupts. 

IE.SPC - Buffer not totally within the task's address space. 

18.3.7.6 Unlink a Task from Interrupts - The functions described in 
the following paragraphs provide the capability of: 

1. Unlinking a task from all interrupts on a controller, 

2. Selectively unlinking a task from interrupts by module type. 

a. Unlink a Task from All Interrupts 

This function unlinks a task from all interrupts on a given controller 
and from error interrupts. 

QIO DPB format: 

QIO$C IO.NLK,o •• ,<tname> 

where: 

tname 

Return Status: 

1- to 6-character alphanumeric task name in 2-word 
Radix-50 format. 

rs.sue - Function successfully completed. The second word of 
I/O status is zero. 

IE.NLK - Task "tname" was not linked to interrupts. 

b. Unlink a Task from all Digital Interrupts 

This function provides the capability of unlinking a task from all 
digital interrupt points on a controller. 

QIO DPB format: 

QIO$C IO.UDI, ••• ,<tname> 

where: 

tname 

Return Status: 

a 1- to 6-character alphanumeric task name in 2-word 
Radix-50 format. 

rs.sue -· Function successfully completed. The second word of 
I/O status is zero. 

IE.NLK - Task "tname" was not linked to the specified class of 
interrupt. 

IE.NST - Task not installed. 

IE.MOD - Nonexistent module type specified. 

c. Unlink a Task from Counter Interrupts 

This function provides the capability of unlink i/ng a task from all 
counter module interrupts. 

18-27 



INDUSTRIAL CONTROL SUBSYSTEMS 

QIO DPB format: 

QIO$e IO.UTI, ••• ,<tname> 

where: 

tname a 1- to 6-character alphanumeric task· name in 2-word 
Radix-50 format. 

Return Status: 

IS.sue - Function successfully completed. The second word of 
I/O status is zero. 

IE.NLK - Task "tname" was not 
interrupts. 

IE.NST - Task not installed. 

linked 

IE.MOD - Nonexistent module type specified. 

d. Unlink a Task from Terminal Interrupts 

to the specified 

This function provides the capability of unlinking a task from 
terminal interrupts. 

QIO DPB format: 

QIO$e IO.UTY, ••• ,<tname> 

where: 

tname a 1- to 6-character alphanumeric task name in 2-word 
Radix-50 format. 

Return Status: 

Is.sue - Function successfully completed. The second word of 
I/O status is zero. 

IE.NLK - Task "tname" was not 
interrupts. 

IE.NST - Task not installed. 

linked to the specified 

IE.MOD - Nonexistent module specified (i.e., device is an ICSll 
controller). 

e. Unlink a Task from Error Interrupts 

This function provides the capability of unlinking a task from all 
error interrupts. 

QIO DPB format: 

QIO$e IO.UER, ••• ,<tname> 

where: 

tname 1- to 6-character alphanumeric task name in 2-word 
Radix-50 format. 

18-28 



'-".· 

INDUSTRIAL CONTROL SUBSYSTEMS 

Return Status: 

rs.sue - Function successfully completed. The second word of 
I/O status is zero. 

IE.IFC - No ICRll controllers exist in the system. 

IE.NLK - Task "tname" was not linked to error interrupts. 

IE.NST - Task not installed. 

18.3.8 Terminal Output 

This function allows a task to perform output to the terminal device. 
Characters are output exactly as they appear in the buffer. The 
carriage control parameter is not recognized. It should be noted that 
only one interrupt module request per controller (terminal or A/D) may 
be in progress at a given time. Thus, the driver will not initiate an 
A/D operation on a given controller, until any terminal output in 
progress for that controller has been completed. 

QIO DPB format: 

QIO$C IO.WLB, ••• ,<staddb,sizb> 

where: 

staddb 

sizb 

Return Status: 

IS .sue 

IE .MOD 

Buffer address (may be odd) 

Byte count (may be odd) 

Function successfully completed. Second word of I/O 
status contains the number of bytes output. 

Nonexistent hardware function. Request was issued for 
an ICSll controller. 

18.3.9 Maintenance Functions 

The functions described below allow a privileged task to enable and 
disable error reporting while troubleshooting or maintenance on a 
remote unit is in progress. 

18.3.9.1 Disable Hardware Error Reporting - This function allows a 
privileged task to disable error reporting and error interrupts, and 
restrict access to the controller while remote unit troubleshooting or 
module calibration is in progress (see Section 18.5.1). Upon receipt 
and validation of the request, error interrupts are disabled and 
subsequent controller timeouts are ignored. The occurrence of device 
timeout while A/D conversion or remote terminal input is in progress 
results in termination of the request with the error code IE.ABO. 

18-29 



INDUSTRIAL CONTROJI:. SUBSYSTEMS 

When error reporting is disabled in this manner, access to the 
controller for input or output to I/O modules is restricted to 
privileged tasks. All other requests not requiring the transmission 
of data to or from the device, are permitted for all tasks. Such 
requests are as follows: 

a. Disconnect from digital, counter, 
interrupts 

b. Unlink from interrupts 

c. Read activating data 

or remote 

d. Link to digital, remote terminal, or error interrupts 

terminal 

e. Connect a buffer to digital or remote terminal interrupts 

All other requests not issued by a privileged task are rejected with 
the error code IE.DNR. 

QIO DPB format: 

QIO$C IO.FLN, ••• 

Return Status: 

rs.sue Function successfully completed. 

IE.FLN Unit already offline. 

IE.FRI Task not privileged. 

18.3.9.2 Enable Hardware Error Repor1:ing - This function allows a 
privileged task to enable error reporting and device error interrupts. 
Upon receipt and validation of the function, all device error 
interrupts are enabled and the unit is marked online. These actions 
are performed regardless of the current state of the unit. 

QIO DPB format: 

QIO$C IO.ONL, ••• 

Return Status: 

rs.sue Function successfully completed. 

IE .PRI Task not privileged. 

18.3.10 Special Functions 

18.3.10.1 I/O Rundown - An I/O rundown request from the Executive 
will automatically cause the task to be disconnected from all 
interrupts. The rundown operation is not finished until any A/D input 
in progress for the task has been completed. 

18-30 

~ 
I\ 



INDUSTRIAL CONTROL SUBSYSTEMS 

18.3.10.2 Kill I/O - The kill I/O function allows a task to initiate 
I/O rundown processing for itself on any device. Request processing 
is identical to that described for I/O rundown. 

QIO DPB format: 

QIO$C IO.KIL, ••• 

Return Status: 

rs.sue - Function successfully completed. 

18.4 FORTRAN INTERFACE 

Table 18-6 lists the FORTRAN interface subroutines supported for the 
ICS/ICR subsystem. (D) indicates a direct access call. The six 
subroutines supported by the DSS/DRS driver are indicated by a 
footnote. 

Unless specifically noted, all subroutines 
necessarily position-independent) and may 
resident library. 

are reentrant (but not 
be placed in an absolute 

Subroutine 

AIRD/AIRDW 

AISQ/AISQW 

AO/AOW 

ASICLN/ 
ASUDLN 

1.7\SISLN 

CTDI 

CTTI 

CTTY 

DFDI 

Table 18-6 
FORTRAN Interface 

Function 

Input analog data from multiple channels in random 
sequence. 

Read a series of sequential analog input channels 
at random gain. 

Perform analog output on several channels. 

Assign a LUN to an ICS/ICR controller. 

Assign a LUN to a DSS/DRS controller. 

Connect a circular buffer to receive digital 
interrupt data. 

Connect a circular buffer to receive counter 
:interrupt data. 

Connect a circular buffer to receive ICRll remote 
terminal data. 

Disconnect a buffer from digital interrupts. 

1 These subroutines are supported by the DSS/DRS driver. 

(continued on next page) 

18-31 



Subroutine 

DFTI 

DFTY 

loI/DIW 

looL/DOLW 

DOM/DO MW 

OFLIN 

ON LIN 

RCIPT 

lRDACT 

RODI 

RDTI 

RDCS 

RDWD 

RSTI 

RTO/RTOW 

luNLNK 

INDUSTRIAL CONTROL SUBSYSTEMS 

Table 18-6 (Cont.) 
FORTRAN Interface 

Function 

Disconnect a buffer from counter interrupts. 

Disconnect a 
interrupts. 

buff er from remote terminal 

Read several 16-point digital sense fields (D). 

Latch or unlatch several 16-point bistable output 
fields. 

Pulse multiple 16-point momentary digital output 
fields. 

Link a task to unsolicited interrupts. 

Suppress error reporting. Place unit in not ready 
status. 

Enable error reporting. 
status. 

Return unit to ready 

Read a single digital interrupt point {D). 

Read interrupt activation data. 

Read the digital interrupt circular buffer. 

Read the counter interrupt circular buffer. 

Read digital interrupt circular buffer. 
Return data on only those points for which a 
change of state has been recognized. 

Read digital interrupt circular 
Return a full data word. 

Read a single counter module {D). 

buffer. 

Perform output to a remote ICRll terminal. 

Unlink a task from unsolicited interrupts. 

1 These subroutines are supported by the DSS/DRS driver. 

18.4.1 Synchronous and Asynchronous Process Control 1/0 

The Instrument Society of America {ISA) standard provides for 
synchronous and asynchronous I/O. Synchronous I/O is indicated by 
appending a W to the name of the subroutine {e.g., AO/AOW). Except 
for analog input and terminal output, all QIOs issued by the process 
control subroutines are serviced immediately by the driver and are 
complete upon return to the issuing task. In such cases there is no 
functional difference between the synchronous and asynchronous forms; 
however, both forms of the name are recognized. In the case of A/D 

18-32 

~ 
I 



INDUSTRIAL CONTROL SUBSYSTEMS 

input and terminal output, the subroutines are functionally distinct. 
If the asynchronous form is used, execution continues and the calling 
program must periodically test the status word for completion. 

18.4.2 Return Status Reporting 

The I/O status parameter is a 2-word integer array. The first element 
of the array receives the status of the FORTRAN call in accordance 
with ISA convention. 

This array serves two purposes: 

1. It is the 2-word I/O status block to which the driver returns 
an I/O status code on completion of an I/O request. 

2. The first word of the status block receives a status code 
from the FORTRAN interface subroutine in ISA-compatible 
format, with the exception of the I/O pending condition, 
which is indicated by a status of zero. The ISA standard 
code for this condition is +2. 

For asynchronous analog input and terminal output, status is set by 
means of an asynchronous trap, therefore the trap mechanism must be 
enabled while these functions are in progress. 

For compatibility, the two-word status block 
status returned by the direct access calls. 
may be returned are: 

is also required for 
Errors of this type that 

Word 1 3 Number of points requested is zero. 

Word 1 +321 Invalid ICS/ICR module. 

The status code must be interpreted in the context of the function 
requested; however, the following general conditions will apply: 

Contents of Status Word 1 

0 

+l 

+3 

3<Word l< 300. 

Word 1 > 300 

Meaning 

Operation pending, I/O in progress 

Successful completion 

Error in a calling argument has been 
detected by the interface subroutine 

QIO directive rejected. 
code = -(WORD 1 - 3) 

Actual error 

Request rejected by driver. 
error code = -(WORD 1 - 300) 

Actual 

Table 18-7 lists all possible status values: the FORTRAN value, 
assembly language mnemonic, actual value, and related definition. 

18-33 



INDUSTRIAL CONTROL SUBSYSTEMS 

FORTRAN 
Interface 
Value 

+O 

+l 

+3 

+4 

+8 

-6 

+99 

+100 

+101 

+102 

+301 

+302 

+303 

+306 

+315 

+316 

+317 

+319 

+321 

+322 

+323 

+379 

+380 

+381 

+397 

Assembly 
Language 
Value 

+O 

+l 

none 

-1 

-5 

-6 

-96 

-97 

-98 

-99 

-1 

-2 

-3 

-6 

-15 

-16 

-17 

-19 

-21 

-22 

-23 

-79 

-80 

-81 

-97 

·~-------~-----------------~~~~~~· 

Table 18·-7 
Return Status Summary 

Assembly 
Language 
Mnemonic 

IS .PND 

rs.sue 

none 

IE .UPN 

IE.ULN 

IE.LNL 

IE. !LU 

IE.IEF 

IE.ADP 

IE.SOP 

Definition 

Operation pending. 

Successful completion. 

Error detected in FORTRAN calling 
sequence. 

Insufficient dynamic storage to 
allocate I/O packet. 

Unassigned LUN. 

LUN usage interlocked. 

Invalid LUN. 

Invalid event flag number. 

Part of DPB out 
addressing space. 

of 

Invalid DIC or DPB size. 

user's 

IE.BAD Bad parameters. ~ 

IE. I FC 

IE .DNR 

IE.SPC 

IE.ABO 

IE. PR! 

IE .RSU 

IE .BYT 

IE .MOD 

IE.CON 

IE .NOD 

IE .NLK 

IE.FLN 

IE.NST 

IE.IEF 

Invalid I/O function code. 

Device not ready. 

Illegal buffer. 

R13quest aborted. 

Privilege violation. 

Rc3sou rce in use. 

Buffer address or length is odd. 

Illegal module number. 

Another task already connected to 
interrupts. 

Insufficient dynamic memory to 
allocate secondary control block. 

Task not linked to interrupts. 

ICRll already offline. 

Task is not installed. 

Invalid event flag number. 

18-34 

~\ 
. ! 



INDUSTRIAL CONTROL SUBSYSTEMS 

18.4.3 Optional Arguments 

The calling sequences discussed in subsequent sections frequently 
contain optional arguments. These arguments are enclosed in square 
brackets within the calling sequence description. A statement 
containing such arguments may be written with these parameters deleted 
by truncating the argument list if the optional parameters are at the 
end of the calling sequence, or replacing them with commas if they are 
embedded elsewhere in the list. Consider the routine XYZ below having 
two optional arguments. 

CALL XYZ (ibuf [, ilen] [, ival]) 

If the argument ival is to be omitted, the calling sequence would be: 

CALL XYZ(IBUF,ILEN) 

When an optional argument in the middle of the list is to be omitted 
it is replaced with a comma. Consider the routine XYZ, above. The 
following statement is used to omit the parameter ilen: 

CALL XYZ(IBUF,,IVAL) 

NOTE 

In some subroutines, lun - the logical 
unit number is indicated to be an 
optional argument: It is optional only 
if one of the Assign LUN subroutines has 
been called (ASICLN, ASUDLN, ASISLN). 
Otherwise the lun argument is mandatory. 

18.4.4 Assigning Default Logical and Physical Units for Input and 
Output - ASICLN/ASUDLN (ICS/ICR) and ASISLN (DSS/DRS) 

The following subroutines must be called to assign and record a 
default LUN and physical unit if either parameter is to be unspecified 
in :subsequent FORTRAN calls for which these parameters are optional. 

Calling Sequence: 

CALL ASICLN( [lun] [,idsw] [,iunt]) 
CALL ASUDLN( [lun] [,idsw] [,iunt]) 
CALL ASISLN(lun[,idsw] [,iunt]) 

Before a task can issue the call to ASUDLN, the ASN command must be 
issued through MCR to assign logical device UDnn to the appropriate 
physical ICS/ICR unit. 

Argument Description: 

lun 

idsw 

iunt 

An integer variable whose value is the number of the 
LUN to be assigned to the physical unit specified by 
iunt or unit O. If unspecified, no LUN is assigned. 
The lun argument is mandatory for ASISLN (used for 
DRSll only). 

An optional integer variable to receive the result of 
the assign lun directive. 

An optional integer variable that specifies the unit 
number to be assigned. Assumed to be zero if omitted. 

18-35 



INDUSTRIAL CONTROi(, SUBSYSTEMS 

Return Status: 

The following values are returned t6 idsw: 

+l 

-5 

-96 

Assignment or function successfully completed. 

LUN usage is interlocked because LUN is assigned 
to a device that is attached to another device or 
a file is currently open on the LUN 

Invalid LUN 

The call to ASUDLN assigns a LUN to logical device UD: and is 
provided for compatibility with existing UDCll software. The call to 
ASICLN assigns a LUN to device IC:. The call to ASISLN assigns a LUN 
to device IS:. 

Upon successful issuance of the Assign LUN directive, the subroutine 
executes a Get LUN Information directive to obtain the actual unit 
numbers to be saved. It is therefore possible to alter the default 
physical unit referenced in a direct access call, by means of the ASN 
MCR function, provided that such logical assignments are done before 
the task is made active. 

Examples: 

1. Assign LUN 5 to ICR unit 3. 

CALL ASICLN (5,IERR,3) 
IF(IERR) 20,10,10 

10 --------------

2. Assign LUN 1 to logical device UD:, unit 0 

a. The following MCR command is issued to create logical 
device UDO:, and assign all references to physical device 
!Cl:. 

>ASN !Cl: UD: 

b. The FORTRAN call 

CALL ASUDLN (1) 

assigns logical device UDO: to LUN 1. Because of the 
previous ASN command the Executive will assign this LUN 
to physical device ICl: and return a value of one (1) 
for the unit number in response to the GET LUN 
Information directive. This value will be stored and 
later referenced whenevE~r t'he physical unit number is 
unspecified in any of the FORTRAN calls that reference 
the I/O page directly. 

3. Assign LUN 6 to logical device IS:, unit 2. 

CALL ASISLN(6,,2) 

18-36 



INDUSTRIAL CONTROL SUBSYSTEMS 

18.4ti5 Analog Input 

The following routines provide the capability of performing A/D input: 

AIRD/AIRDW - ISA Standard call to read multiple channels in random 
order. This call requires one or more control variables 
containing A/D channel and gain in the format shown in 
Tabl~ 18-5 (Section 18.3.2). 

AISQ/AISQW - ISA Standard call to read 
sequential order. 

multiple channels in 

18.4.5.1 AIRD/AIRDW: Analog Input - Specified Channel Sequence - The 
ISA standard call provides the capability of reading multiple A/D 
channels in a specified sequence. 

CALL AIRD(inm,icont,idata[,isb],lun) 
or 

CALL AIRDW(inm,icont, ••• etc.) 

Argument Descriptions: 

inm 

icont 

idat 

isb 

+l 

+3 

+4 

+8 

+99 

+301 

+303 

+306 

+319 

Integer variable specifying the number of channels to 
be read. 

An integer array of size inm containing control data in 
the format shown in Table 18-5 (Section 18.3.2). 

An integer array of dimension inm to receive the 
converted values. Each element in the array is paired 
with a control element in icont that defines the 
channel and gain. 

An optional 2-word integer array to receive the results 
of the call as follows: 

Conversion successfully completed. The second 
word contains the number of channels converted. 

Number of channels requested was zero. 

Insufficient dynamic storage to allocate 
packet. 

LUN was not assigned. 

Invalid LUN. 

I/O 

At least one invalid control word was specified. 
The second I/O status word contains the number of 
channels successfully converted. 

Device not ready. Interrupt response was not 
received from an A/D channel within one second 
after initiation. The second word of I/O status 
contains the number of channels successfully 
converted. 

Control or data buffer not wholly within the 
user's addressing space. 

Control or data buffer is byte aligned. 

18-37 



lun 

Example: 

INDUSTRIAL CONTROL SUBSYSTEMS 

An integer variable specifying the ICS/ICR logical unit 
number. This parameter is required. 

The following example illustrates how A/D throughput can be increased 
when several IAD-IA A/D Converters are in a system. This is 
accomplished by means of interleaved samples that initiate parallel 
conversions on each module. Samples are to be obtained from 12 
channels on three IAD-IA A/D converter modules at a gain of 1. 

c 
C PROGRAM TO SAMPLE 12 A/D CHANNELS 
C IN RANDOM SEQUENCE FOR MAXIMUM 
C THRUPUT. 
c 
C CHANNELS TO BE SAMPLED: 
c 
c 0 
C l -A/D MODULE 0 
c 2 
c 3 
c 120 
C 121 -A/D MODULE l 
c 122 
c 123 
c 240 
C 241 -A/D MODULE 2 
c 242 
c 243 
c 
C INTERLEAVED SEQUENCE FOR MAXIMUM 
C THRUPUT. 
c 
c 0 
c 120 
c 240 
c l 
c 121 
c 241 
c 2 
c 122 
c 242 
c 3 
c 123 
c 243 
c 
C THE FORTRAN CONVENTION FOR ARRAY 
C STORAGE CAN BE USED TO REPRESENT 
C THE ABOVE SEQUENCE IN AN N X I INTEGER 
C CONTROL ARRAY. WHERE: 
c 
C N = NUMBER OF MODULES TO BE SAMPLED 
C I = NUMBER OF SAMPLES PER/MODULE 
c 
C ALLOCATE STORAGE FOR CONTROL ARRAY 
c 

DIMENSION !CONT (3,4) 
c 
c INITIALIZE CONTROL ARRAY FOR IAD-IA MODULE 0 
c 

DATA ICONT(l,l),ICONT(l,2),ICONT(l,3),ICONT(l,4)/0,l,2,3/ 
c 
c INITIALIZE CONTROL ARRAY FOR IAD-IA MODULE l 

18-38 

~' 



"-"' 

INDUSTRIAL CONTROL SUBSYSTEMS 

c 
DATA ICONT(2,l),ICONT(2,2),ICONT(2,3),ICONT(2,4)/120,121,122,123/ 

c 
c INITIALIZE CONTROL ARRAY FOR IAD-IA MODULE 2 
c 

DATA ICONT(3,l),ICONT(3,2),ICONT(3,3),ICONT(3,4)/240,241,242,243/ 
c 
C ALLOCATE STORAGE FOR DATA ARRAY 
C IN SIMILAR FASHION TO FACILITATE 
C CHANNEL REFERENCES 
c 

DIMENSION !DATA (3,4) 
c 
C BEGIN EXECUTABLE STATEMENTS 
c 

c 
C INITIATE A/D SYNCHRONOUS CONVERSION ON LUN 3 
c 

CALL AIRDW(l2,ICONT,IDATA,,3) 

18.4.5.2 AISQ/AISQW: Analog Input - Sequential Channel Sequence - The 
ISA standard call described below provides the capability of sampling 
multiple A/D channels in sequential order. Channels are sampled in 
increments of one, beginning with the channel specified in icont(l). 

CALL AISQ ( inm, icont, idata [, isb], lun) 
or 

CALL AISQW(inm,icont ••• etc.) 

Argument Descriptions: 

inm 

icont 

idat 

isb 

+l 

+3 

+4 

Integer variable specifying the number of elements to 
be read. 

An integer array of size inm containing initial channel 
in the first element only, and gain in the format shown 
in Table 18-5 in the remaining elements. 

An integer array of size inm to receive the converted 
values. Each element is paired with the corresponding 
control element in icont that defines the gain 
parameter. 

Channels are sampled sequentially starting with the 
first channel specified in element 1 of icont. 

An optional 2-word integer array to receive the results 
of the call as follows: 

Conversion successfully completed. The second 
word contains the number of channels converted. 

Number of channels requested was zero 

Insufficient dynamic storage to allocate 
packet 

18-39 

I/O 



+8 

+99 

+301 

+303 

+306 

+319 

lun 

INDUSTRIAL CONTROL SUBSYSTEMS 

LUN was not assigned 

Invalid LUN 

At least one invalid control word was specified. 
The second I/O status word contains the number of 
channels successfully converted. 

Device not ready. Interrupt response was not 
received from an A/D channel within one second 
after initiation. The second word of I/O status 
contains the number of channels successfully 
converted. 

Control or data buffer not wholly within the 
user's addressing space 

Control or data buffer is byte aligned 

An integer variable containing the logical unit number. 
This parameter is required. 

Example: 

The following example illustrates the procedure for sequential 
sampling. Five channels are converted at gains of 1, 2, 20, 50, and 
1000, starting at channel 3. 

c 
C ALLOCATE SPACE FOR STATUS ARRAY 
c 

DIMENSION ISB (2) 
c 
C ALLOCATE SPACE FOR CONTROL ARRAY 
C AND ESTABLISH INITIAL VALUES 
c 

DIMENSION ICONT(S) 
DATA ICONT(l),ICONT(2),ICONT(3)/0000003,0010000,0050000/ 
DATA ICONT(4),ICONT(5)/0l00000,0l50000/ 

c 
C ALLOCATE SPACE FOR DATA ARRAY 
c 

DIMENSION !DAT (5) 

c 
C INITIATE SEQUENTIAL, ASYNCHRONOUS CONVERSION 
C VIA LUN 1 
c 

CALL AISQ(S,ICONT,IDAT,ISB,l) 
10 IF(ISB(l).NE.O) GO TO 20 

(continue processing) 

c 
C TEST CONVERSION STATUS 
c 

GO TO 10 

18-40 

~. 

~! 



INDUSTRIAL CONTROL SUBSYSTEMS 

20 (test for errors or process converted data) 

END 

18 .4 ,.6 AO/AO•f: Analog Output - Multichannel 

This ISA standard routine is called to output voltage from multiple 
D/A channels. 

Calling Sequence: 

CALL AO(inm,icnt,idat[,isb] [,lun]) 

or 

CALL AOW(inm,icnt ••• etc.) 

Argument Descriptions: 

inm 

icnt 

idat 

isb 

+l 

+3 

+4 

+8 

+99 

+303 

+321 

lun 

Integer variable containing the number of channels to 
be output. 

Integer array containing the channel numbers to receive 
output. 

Integer array containing the output voltage setting as 
a value between O and 1023 where: 

0 = 0 volts de and 

1023 = +9.99 volts (full scale). 

Optional 2-word integer array to receive status. 
of the following values is returned in isb(l). 
second element is always zero. 

Function successfully completed. 

Zero channels requested. 

One 
The 

Insufficient dynamic storage to allocate an I/O 
packet. 

LUN was not assigned. 

Invalid LUN. 

Controller not ready. 

Nonexistent channel spec~fied. 

Integer variable containing the logical unit number. 

18-41 



INDUSTRIAL CONTROL SUBSYSTEMS 

Example: 

Output the variable voltages contained in IV(l) and IV(2) to D/A 
channels 2 and 3 respectively. 

c 
C ALLOCATE DATA ARRAY 
c 

DIME NS ION IV ( 2) 
c 
C ALLOCATE CONTROL ARRAY 
c 

DIMENSION ICNT(2) 
c 
C ALLOCATE STATUS ARRAY 
c 

DIMENSION !SB ( 2) 
c 
C INITIALIZE CONTROL ARRAY 
c 

DATA ICNT(l),ICNT(2)/2,3/ 

c 
C PERFORM A/D OUTPUT VIA LUN 3 
c 

CALL AOW(2,ICNT,IV,ISB,3) 
IF (ISB(l).GE.3) go to error processor 

18.4.7 DOL/DOLW: Digital Output - Bistable Multiple Fields 

The following ISA standard call provides the capability of latching or 
unlatching multiple 16-point bistable digital output fields. 

Calling Sequence 

CALL DOL(inm, icnt, idat, imsk [, isb] [, lun]) 
or 

CALL DOLW(inm,icnt ••• etc.) 

Argument Descriptions: 

inm 

icnt 

idat 

Integer variable specifying the number of fie1ds to be 
latched or unlatched. 

Integer array containing the initial point within each 
field. 

Integer array containing binary data that defines 
points within the field to be latched or unlatched. 
The state of each bit is interpreted as follows: 

1 latch point. 

0 unlatch point. 

18-42 

·~1 



,...,,. 

imsk 

isb 

+l 

+3 

+4 

+8 

+99 

+303 

+321 

lun 

INDUSTRIAL CONTROL SUBSYSTEMS 

Integer array containing binary data that defines 
points within the field for which a change of state is 
permitted. 

A bit set to 1 defines a point that may assume the 
state defined by the corresponding bit in idat. A 0 
bit specifies a point for which no change of state is 
permitted. 

Optional 2-word integer array to receive the results of 
the call. Status is returned in isb(l) as shown below. 
isb(2) is always zero. 

Function successfully completed. 

Zero points specified. 

Insufficient dynamic storage to allocate an I/O 
packet. 

LUN not assigned. 

Invalid LUN. 

Controller not ready. 

Nonexistent point number specified. One or more 
points within the field do not exist. 

Integer specifying the Logical Unit Number. 

Example: 

Reset points 0,1,20 and 21 

DIMENSION ICNT(2),IDAT(2),IMSK(2) 
c 
C INITIALIZE THE CONTROL ARRAY 
c 

DATA ICNT(l),ICNT(2)/0,20/ 
c 
C INITIALIZE MASK ARRAY TO EFFECT A 
C CHANGE-OF-STATE ONLY ON THE SPECIFIED 
C POINTS. 
c 

DATA IMSK(l),IMSK(2)/0000003,0000003/ 

c 
C RESET THE SPECIFIED POINTS. !CR IS ASSIGNED 
C TO LUN 3. 
c 

CALL DOLW(2,ICNT,IDAT,IMSK,,3) 

18-43 



INDUSTRIAL CONTROL SUBSYSTEMS 

18.4.8 Digital Input 

Both of the following subroutines perform their functions through 
direct access to the ICS/ICR hardware registers. Therefore, the 
physical unit number replaces LUN in the calling sequences described 
below. Note that any need for conversion of BCD encoded digital input 
into binary, can be accomplished through the FORTRAN function 

IBIN=KBCD2B (!BCD). 

Binary data can be converted to BCD through the FORTRAN function 

IBCD=KB2BCD (!BIN). 

The maximum input value for conversion is 9999. 

NOTE 

When the physical unit number is 
explicitly included in the calling 
sequence, it cannot be reassigned by the 
MCR command ASN .. 

18.4.8.1 DI/DIW: Digital Input - Digital Sense Multiple Fields - This 
ISA standard subroutine provides the capability of reading multiple 
16-point digital sense fields. 

Calling Sequence: 

CALL DI(inm,icnt,idat[,isb] [,iun]) 
or 

CALL DIW(inm,icnt ••• etc.) 

Argument Descriptions: 

inm 

icnt 

idat 

Integer variable specifying the number of fields to be 
read. 

Integer array containing the initial point number of 
each field. 

Integer array to receive the input data 

isb Optional, 2-word integer array to receive the results 
of the call. The status is returned in isb (1) as 
fol lows: 

iun 

+l Function succesfully completed. 

+3 Zero points requested. 

+321 - Nonexistent point requested. One or more points within 
the 16-bit field does not exist. 

Optional integer variable specifying the physical unit 
number. 

18-44 

~. 



INDUSTRIAL CONTROL SUBSYSTEMS 

Example: 

Read two contact sense fields starting at points 3 and 27 on physical 
unit IC2:. 

DIMENSION ICNT(2), IDAT(2),ISB(2) 
DATA ICNT(l),ICNT(2)/3,27/ 

CALL DI (2,ICNT,IDAT,ISB,2) 
IF (ISB(l).GE.3) go to error procedure 

18.4.8.2 RCIPT: Digital Input - Digital Interrupt Single-Point - The 
following subroutine returns the state of a single digital interrupt 
point as a logical value. 

Calling Sequence: 

CALL RCIPT (ipt,isb[,iun]) 

Argument Descriptions: 

ipt 

isb 

iun 

+l 

Integer variable defining the point to be read. 

2-word integer array to receive status and data as 
follows. Status is returned to isb(l). 

Function successfully completed. Data is returned to 
isb(2) as a logical value, where: 

• TRUE. (-1) Point closed • 

• FALSE. ( 0) Point open • 

+321 - Nonexistent point specified. 

Optional integer variable defining the physical unit 
number. 

Example: 

Read the state of contact interrupt point 3 on unit O. 

DIMENSION !SB (2) 

CALL RCIPT (3,ISB,O) 
IF (ISB(2).EQ •• FALSE.) go to point open routine. 

18-45 



INDUSTRIAL CONTROL SUBSYSTEMS 

18.4.9 DOM/DOMW: Digital Output Momentary - Multiple Fields 

This ISA standard call allows multiple 16-bit fields to be pulsed. 

Calling Sequence: 

CALL DOM (inm, icnt, idat [, idx] [, isb] [, lun]) 
or 

CALL DOMW (inm,icnt ••• etc.) 

Argument Descriptions: 

inm 

icnt 

idat 

idx 

isb 

lun 

+l 

Integer variable specifying the number of fields to be 
pulsed. 

Integer array containing the initial point in each 
field. 

Integer array defining the points to be pulsed. A bit 
is set corresponding to each point that is to be 
triggered. 

Optional dummy inteqer variable retained for 
compatibility with the standard form of the call. 

Optional 2-word integer array to receive the results of 
the ca 11 a s f o 11 ow s i n :l s b ( l ) , i s b ( 2 ) i s s e t to z e r <> • 

Function successfully completed. 

+3 Number of fields to be output is zero. 

+4 Insufficient dynamic storage to allocate on I/O packet. 

+8 LUN not assigned. 

+99 Invalid LUN. 

+303 - Controller not ready 

+321 - Nonexistent point specified. One or more points within 
a field do not exist. 

Integer variable defining the logical unit number. 

Example: 

Pulse momentary digital output fields defined by points 20, 37 and 0 
on LUN 1. 

DIMENSION ICONT(3),IDAT(3) 

DATA ICONT(l) ,ICONT(2) ,ICONT(3)/20,37 ,O/ 

CALL DOM(3,ICONT,IDAT,,l) 

18-46 



INDUSTRIAL CONTROL SUBSYSTEMS 

18.4.10 RTO/RTOW: Remote Terminal Output 

The following function provides the capability 
character string to a remote ICRll terminal. 
asynchronous forms are supported. 

of transmitting a 
Both synchronous and 

CALL RTO (ibc, idat [, isb] [, lun]) 
or 

CALL RTOW (ibc,idat •••• etc.) 

Argument Descriptions: 

ibc 

idat 

isb 

lun 

0 

Integer variable specifying the number of bytes to 
output. 

Byte array (LOGICAL * 1) containing the character 
string to be output. 

Optional, 2-word integer array to receive the results 
of the call in isb(l) as follows. isb(2) is set to the 
number of bytes actually transferred to the device. 

Operation pending. 

+l Function successfully completed. 

+3 Zero bytes to be transmitted. 

+4 Insufficient dynamic storage to allocate I/O packet. 

+8 Unassigned LUN. 

+99 Invalid LUN. 

+303 - Device not ready. Terminal failed to respond within 1 
second after character was transmitted. 

+306 - Part or all of buffer is out of the issuing task's 
addressing space. 

+321 - Nonexistent module. Device is ICSll. 

Integer variable defining the logical unit number. 

Example: 

Output a character string to a remote terminal via the ICR unit 
assigned to LUN 3. 

CALL RTOW(32,'APPLY +5 VOLTS TO A/D CHANNEL 10',,3) 

18.4.11 Unsolicited Interrupt Data - Continual Monitoring 

Subroutines are provided, that permit a FORTRAN program to continually 
monitor unsolicited interrupt data supplied to a user circular buffer 
as described in Section 18.3.6. Such routines allow the program to 
connect a buffer for input, disconnect the buffer upon completion and 
read and return the buffer contents in a format suitable for FORTRAN 
processing. The calls summarized below perform these functions for 
interrupting digital input modules, counters, and remote terminal 
inputs: 

18-47 



INDUSTRIAL CONTROL SUBSYSTEMS 

Interrupting Digital Inputs 

CTDI 

RODI 

RDCS 

RDWD 

DFDI 

Counter Modules 

CTTI 

RDTI 

DFTI 

Connect a buffer to receive digital interrupts. 

Read the state of a single interrupting point. 

Read the state of a single interrupting point for which 
a change of state has been detected. 

Read 16 bits of interrupt data from the circular 
buffer. 

Disconnect a buffer from digital interrupts. 

Connect a buffer to receive counter interrupts. 

Read the counter circular buffer. 

Disconnect a buffer from counter interrupts 

Remote Terminal Input 

CTTY Connect a buffer to receive remote terminal inputs. 

RDTY Read remote terminal data from the circular buffer. 

DFTY Disconnect a buffer from remote terminal interrupts. 

18.4.11.l CTDI: Connect a Buffer for Receiving Digital Interrupt 
Data - The following routine allows a task to provide a circular 
buffer that will receive digital interrupt data, and define an event 
tlag that will be set upon the occurrence of each interrupt. 

Calling Sequence: 

CALL CTDI ( ibuf, isz, iev [, isb] [, lun]) 

Argument Descriptions: 

ibuf 

isz 

iev 

isb 

+l 

+4 

An integer array making up the circular buffer that is 
to receive interrupt data. 

Integer variable specifying the length of the circular 
buffer in words. 

Integer variable specifying the event flag that is to 
be set whenever the driver receives an interrupt from a 
digital input module. 

Optional, 2-word integer array to receive the results 
of the call. The status values specified below are 
returned to isb(l). 

- Function successfully completed. isb(2} receives the 
number of words passed per interrupt in the low byte. 

- Insufficient dynamic storage to allocate an I/O 
packet. 

18-48 

~. 

~i 

~i 



lun 

INDUSTRIAL CONTROL SUBSYSTEMS 

+8 - Unassigned LUN. 

+99 

+306 

+316 

+319 

+322 

+397 

- Invalid LUN. 

- Part of buffer is out of the user's address space or 
buffer is too small to accommodate a single entry. 

- Privilege violation - task is checkpointable and not 
fixed in memory. 

- Buffer address or length is an odd number of bytes. 

- Another task is already connected to interrupts. 

- Invalid event flag specified 

Integer variable specifying the logical unit number. 

The space allocated for the circular buffer must be large enough to 
accommodate at least one 5-word entry plus an additional 10 words of 
storage that are required by the subroutines that read circular buffer 
contents. Thus the buffer allocation specified by the integer 
variable isz may be computed as 

isz {10 + 5 * n) 

where n is the number of entries to be contained in the buffer and isz 
is expressed in words. 

18.4.11.2 Reading Digital Interrupt Data - Each of the following 
routines reads data that has been stored in the circular buffer and 
performs the following common processing: 

1. Detects, and optionally reports, the occurrence of an error 
entry that has been placed in the buffer by the driver 
because of a nonrecoverable device fault {e.g., fatal serial 
line error or remote power-fail). 

2. Clears the trigger event flag when no further entries remain 
to be processed. 

3. Clears and optionally reports any overrun conditions. 

Only one of the following three routines can be invoked by a single 
taslk. 

a. RODI: Read Digital Interrupt Data from a Circular Buffer 

The RDDI FORTRAN subroutine reads contact interrupt data from a 
circular buffer that was specified in a CTDI call {see 18.4.11.1). It 
does no actual input or output, but rather performs a point-by-point 
scan of an interrupt entry in the buffer, returning the state of each 
point as a logical value. 

On the initial call to RDDI, the module number and data of the next 
interrupt entry are read from the circular buffer and stored for 
subsequent reference. The subroutine then sets the current data bit 
number n to zero, examines the state of data bit n, and converts bit n 
to a point number via the following formula: 

ipt = module number * 16 + n 

18-49 



INDUSTRIAL CONTROL SUBSYSTEMS 

On each subsequent call, n is incremented by one and then data-bit n 
is examined in the stored module data. When n reaches 16, it is reset 
to zero and an attempt is made to read the next interrupt entry from 
the circular buffer. If a valid entry is not found, ipt is set 
negative and ict (if specified) is either assigned a value of zero or 
an overrun count that is maintained by the ICS/ICR driver. If ict is 
zero, no further entries remain. A nonzero value indicates that the 
driver received more data than could be stored in the buffer, and ict 
represents the number of entries that were discarded. 

The variable ict, receives the control register contents that are set 
by the driver as described in Section 18.3.6 whenever a nonrecoverable 
controller error occurs. 

Calling Sequence: 

CALL RDDI (ipt,ival[,ict]) 

Argument Descriptions: 

ipt 

ival 

ict 

is a variable to which the digital input point number 
is returned. It may be set as follows: 

1. ipt < 0 if no valid entry is found 

The specific value of ipt reflects the error that was 
detected as follows: 

-1 - no data (i.e., no 
currently in buffer) 

-2 - overrun 
-3 - hardware error 

interrupt data 

2. ipt => 0 if the value indicated is a point number; 
the state is returned to ival. 

is a variable to which the state of the point is 
returned; it may be set as follows: 

1 •• FALSE. (0) if the point is open 

2. .TRUE. (-1) if the point is closed 

Optional integer variable to receive the overrun count. 
or the contents of the CSR register on the occurrence 
of a fatal controller error. Otherwise set to zero~ 

NOTE 

reading the circular buffer A task 
should 
until a 
reported. 
example of 
entries. 

not issue a Wait-For directive 
buffer-empty condition is 
See Section 18.4.11.11 for an 
how to read circular-buffer 

b. RDCS: Read Digital Interrupt Points That Have Changed State 

The RDCS FORTRAN subroutine returns data in the format of subroutine 
RODI as described above except that only points that have changed 
state are processed, resulting in significantly improved throughput 
and reduced processing overhead for the calling task. 

18-50 



''-" 

INDUSTRIAL CONTROL SUBSYSTEMS 

Processing specific to the routine is as follows: 

On the initial call, the module number, module data and change of 
state information are read from the circular buffer and stored for 
later reference. The subroutine then sets the current data bit number 
n to zero and begins scanning the change-of-state word until a nonzero 
bit is found. The point number and current state are then reported as 
previously described. If no change of state is found or when no 
further bits remain to be processed, the next entry is fetched as 
described above. 

The processing of E~rror conditions is identical to subroutine RODI. 

Calling Sequence: 

CALL RDCS (ipt,ival[,ict]) 

Argument Descriptions: 

ipt 

ival 

ict 

Integer variable to receive the digital input point 
number. It may be set as follows: 

1. ipt < 0 if no valid entry is found (i.e., overrun, 
error or no data in buffer). The specific value of 
ipt reflects the error that was detected as 
follows: 

-1 - no data 
-2 - overrun 
-3 - hardware error 

2. ipt => O if the value indicated is a point number, 
the state is returned to ival. 

Integer variable to receive the state of the point as a 
logical value where: 

1. .FALSE. (0) =point open 

2. .TRUE. (-1) point closed 

Optional integer variable. A nonzero value indicates 
that the variable has been set with an overrun count 
returned by the driver, or with the contents of the CSR 
register on the occurrence of a fatal controller error. 
Otherwise set to zero. 

NOTE 

A task reading the circular buffer 
should not issue a Wait-For directive 
until a buffer-empty condition is 
reported. See Section 18.4.11.11 for an 
example of how to read circular-buffer 
entries. 

c. RDWD: Read a Full Word of Digital Interrupt Data 

The following subroutine is called to return a full word of digital 
interrupt data from the circular buffer, and optionally change of 
state information. A new entry is read for each call; hence, 
throughput is high when processing is contingent upon several possible 
conditions within a module. 

18-51 



INDUSTRIAL CONTROL SUBSYSTEMS 

Calling Sequence: 

CALL RDWD (imod,ival[,ict][,icos]) 

Argument Descriptions: 

imod 

ival 

ict 

icos 

an integer variable to receive the module number or 
status as follows: 

1. imod < O if no data is present or an overrun 
condition or error was detected 

The specific value of ipt reflects the error 
that was detected as follows: 

-1 - no data 
-2 - overrun 
-3 - hardware error 

2. imod => 0 Module number. Interrupt data is in 
ival 

Integer variable to receive the digital interrupt data. 

Optional integer variable. A nonzero value indicates 
that the variable has been set with an overrun count 
returned by the driver, or with the contents of the CSR 
register on the occurrence of a fatal error. Otherwise 
set to zero. 

Optional integer variable to receive change-of-state 
information. Bits set to a 1 correspond to points for 
which a change of state has been recorded. 

NOTE 

A task reading the circular buffer 
should not issue a Wait-For directive 
until a buffer-empty condition is 
reported. See Section 18.4.11.11 for an 
example of how to read circular-buffer 
entries. 

18.4.11.3 DFDI: Disconnect a Buffer from Digital Interrupts - The 
following routine is called to disconnect a task's circular buffer 
from digital interrupts. 

Calling Sequence: 

CALL DFD I ( [ i s b] [ , 1 u n] ) 

Argument Descriptions: 

isb 

+l 

+4 

+8 

Optional 2-word integer array to receive the results of 
the call as follows. isb(2) is always zero. 

Function successfully completed. 

Insufficient dynamic storage to allocate I/O packet~ 

Unassigned LUN. 

18-52 



INDUSTRIAL CONTR01L SUBSYSTEMS 

+99 Invalid LUN. 

+322 - Task not connected to interrupts. 

lun Integer variable containing logical unit number. 

18.4.11.4 CTTI: Connect a Buffer for Receiving Counter Data - The 
following subroutine may be called to connect a circular buffer that 
is to receive counter data and to define an event flag that is to be 
set upon occurrence of each interrupt. 

Calling Sequence: 

CALL CTTI (ibuf,isz,iev,iv[,isb] l[,lun]) 

Argument Descriptions: 

ibuf 

isz 

iev 

iv 

isb 

+l 

+4 

+8 

An integer array making up the circular buffer that is 
to receive interrupt data. 

Integer variable specifying the length of the circular 
buffer in words. 

Integer variable defining an event flag that is to be 
set whenever the driver receives an interrupt from a 
counter module. 

Integer array of initial counter values. One element 
is required for each counter in the physical unit. The 
value is used to initialize and reset the counter when 
a value of zero is reached. This parameter may be 
reset for a specific module through a call to SCTI. 

Optional 2-word integer array to receive the results of 
the call. The status values specified below are 
returned to isb(l). 

Function successfully completed. isb(2) receives the 
number of words passed per.interrupt in the low byte. 

Insufficient dynamic storage to allocate an I/O packet. 

Unassigned LUN. 

+99 Invalid LUN. 

+303 - Controller not ready. 

+306 - Part of buffer is out of the user's address space or 
buffer is too small to accommodate a single entry. 

+316 -· Privilege violation - task is checkpointable and not 
fixed in memory. 

+319 -· Buffer address or length is an odd number of bytes. 

+322 - Another task is already connected to interrupts. 

+397 - Invalid event flag specified. 

lun Integer variable specifying the logical unit number. 

18-53 



INDUSTRIAL CONTROL SUBSYSTEMS 

The space allocated for the circular buffer must be large enough to 
accommodate at least one 4-word entry plus an additional 8 words of 
storage required by the subroutine that reads buffer contents (RDTI). 
The buffer allocation specified by the variable isz may be computed as 

isz = (8 + 4 * n) 

where n is the number of entries to be contained in the buffer. 

NOTE 

reading the circular buffer A task 
should 
until a 
reported. 
example of 
entries. 

not issue a Wait-For directive 
buffer-empty condition is 
See Section 18.4.11.11 for an 
how to read circular-buffer 

18.4.11.5 RDTI: Read Counter Data from the Circular 
following call returns counter interrupt data from 
buffer. A new entry is read on each call. 

Buffer - The 
the circular 

Calling Sequence: 

CALL RDTI ( imod, i val [, ict]) 

Argument Descriptions: 

imod 

ival 

ict 

Integer variable to receive module number and status as 
follows: 

1. imod < 0 No data in buffer, data overrun or 
error condition detected The specific value of 
ipt reflects the error that was detected as 
follows: 

-1 - no data 
-2 - overrun 
-3 - hardware error 

2. imod => 0 Module number of counter. Interrupt 
data is in ival. 

Integer variable to receive the counter data 
interrupt. 

at 

Optional integer variable to receive the overrun count, 
or the ICSR contents returned by the driver on the 
occurrence of a fatal hardware error. Otherwise, set 
to zero. 

NOTE 

reading the circular buffer A task 
should 
until a 
reported. 
example of 
entries. 

not issue a Wait-For directive 
buffer-empty condition is 
See Section 18.4.11.11 for an 
how to read circular-buffer 

18-54 

~. 
! 



INDUSTRIAL CONTROL SUBSYSTEMS 

18.4.11.6 Miscellaneous Counter Routines 

a. RSTI: Read a Counter Module 

The following routine directly accesses a counter register to return 
its current value. 

Calling Sequence: 

CALL RSTI (imod,isb[,iun]) 

Argument Descriptions: 

imod 

isb 

iun 

An integer variable containing the number of the 
counter to be read. 

A two-word integer array to receive status and data as 
follows. Status is returned to isb(l). 

+l Function successfully completed. Data is returned to 
isb(2). 

+321 Nonexistent module specified. 

Optional integer variable specifying 
physical unit number. 

the ICS/ICR 

b. SCTI: Reset a Counter Initial Value 

The following rqutine may be called by any task to revise the initial 
value that is used to activate a counter. 

Calling Sequence: 

CALL SCTI (imod, ival [, isb] [, lun] Ji 

Argument Descriptions: 

imod 

ival 

isb 

Integer variable specifying the relative module number 
of the counter to be reset. 

Integer value specifying the new initial value. 

Optional 2-word integer array to receive status as 
follows. isb{2) is always zero. 

+l Function successfully completed. 

+4 Insufficient dynamic storage to allocate an I/O packet. 

+8 Unassigned LUN. 

+99 Invalid LUN. 

+303 - Controller not ready. 

+321 - Nonexistent module specified. 

lun Integer specifying the logical unit number. 

18-55 



INDUSTRIAL CONTROL SUBSYSTEMS 

18.4.11.7 DFTI: Disconnect a Buffer 
following subroutine is called to 
buffer from interrupts. 

from Counter Interrupts - The 
disconnect the task's circular 

Calling Sequence: 

CALL OFT I ( [ i s b ] [ , 1 u n ] ) 

Argument Descriptions: 

isb 

lun 

Optional 2-word integer array to receive status as 
follows. isb(2) is always zero. 

+l Function successfully completed. 

+4 Insufficient dynamic storage to allocate an I/O packet. 

+8 Unassigned LUN. 

+99 Invalid LUN. 

+322 - Task was not connected to interrupts. 

Integer variable specifying the Logical Unit Number. 

18.4.11.8 CTTY: Connect a Circular Buffer to Terminal Interrupts - The 
following routine allows a task to provide a circular buffer to 
receive remote terminal input data, and to define an event flag that 
is set on the occurrence of each interrupt. 

Calling Sequence: 

CALL CTTY (ibuf, isz, iev [, isb] [, lun]) 

Argument Descriptions: 

The following arguments are identical in form and function to those 
described for subroutine CTDI (Section 18.4.11.1). 

ibuf 

isz 

iev 

An integer array making up the circular buffer, that 
receives interrupt data. 

Length of the circular buffer in words. 

Event flag to be set on each terminal interrupt. 

Buffer size is computed as 

isz = (8 + 4 * n) 

where n is the number of entries that can be stored in the buffer. 

isb 

+l 

+4 

+8 

Optional 2-word integer array to receive the results of 
the call. The status values specified below are 
returned to isb(l). 

Function successfully completed. isb(2) receives the 
number of words passed per interrupt in the low byte. 

Insufficient dynamic storage to allocate an I/O packet. 

Unassigned LUN. 

18-56 



INDUSTRIAL CONTROL SUBSYSTEMS 

+99 Invalid LUN. 

+306 Part of buffer is out of the user's address space or 
buffer is too small to accommodate a single entry. 

+316 - Privilege violation - task is checkpointable and not 
fixed in memory. 

+319 - Buffer address not on a word boundary or length is an 
odd number of bytes. 

+321 - Nonexistent module specified. Unit is ICSll. 

+322 - Another task is already connected to interrupt. 

+397 - Invalid event flag specified. 

lun Logical unit number. 

18.4.11.9 RDTY: Read a Character from the Terminal Buffer - This 
subroutine retrieves a single character from the terminal circular 
buffer on each call. 

Calling Sequence: 

CALL RDTY (ind, ichr [, ivr]) 

Argument Descriptions: 

ind 

ichr 

ivr 

An integer variable to receive status as follows: 

1. =O character retrieved from buffer is in ichr 

2. <O no data in buffer, overrun, or hardware 
error 

The specific value of ind reflects the error that 
was detected as follows: 

-1 - no data 
-2 - overrun 
-3 - hardware error 

Logical * 1 or integer variable to receive the terminal 
data. If an integer is specified only the low byte 
wi 11 be set. 

Optional integer variable to receive the overrun count, 
or the ICSR contents on the occurrence of a fatal 
hardware error. Otherwise set to zero. 

NOTE 

A task reading the circular buffer 
should not issue a Wait-For directive 
until a buffer-empty condition is 
reported. See Section 18.4.11.11 for an 
example of how to read circular-buffer 
entries. 

18-57 



INDUSTRIAL CONTROL SUBSYSTEMS 

18.4.11.10 DFTY: Disconnect a Circular 
Input - The following routine disconnects 
from terminal inputs. 

Calling Sequence: 

CALL DFTY { [isb] [, lun]) 

Argument Descriptions: 

Buffer from Terminal 
a task's circular buffer 

isb Optional, 2-word integer array to receive status in 
isb{l) as follows. isb{2) is always set to zero. 

+l Function successfully completed. 

+4 Insufficient dynamic storage to allocate an I/O packet. 

+8 Unassigned LUN. 

+99 Invalid LUN. 

+322 - Task was not connected to interrupts. 

lun An integer specifying the logical unit number. 

18.4.11.11 Programming Example - The £allowing are excerpts from a 
FORTRAN program that is to monitor· a remote terminal for input and 
echo the received characters when a ca1rriage return is detected. 

c 
c 
c 

c 

SPECIFY BYTE FORMAT FOR TERMINAL DATA 

LOGICAL*! TCHR 

C ALLOCATE STORAGE FOR THE TERMINAL 
C BUFFER 
c 

DIMENSION IBUF{32) 
c 
c 
c 
c 
c 

ALLOCATE STORAGE FOR THE PACKED 
INPUT DATA SO THAT IT IS ALIGNED 
ON A WORD BOUNDARY 

c 

DIMENSION ICHR{40) 
DIMENSION TCHR(80) 
EQUIVALENCE (TCHR,ICHR) 

C ALLOCATE STORAGE FOR A 
C 2-WORD STATUS BLOCK 
c 

DIMENSION ISB ( 2) 
c 
C INITIALIZE ICRll LOGICAL UNIT(7) AND 
C TRIGGER EVENT FLAG NUMBER(2) 
c 

DATA IEV, LUN/2, 7/ 

c 

18-58 



c 
c 
c 

c 

INDUSTRIAL CONTROL SUBSYSTEMS 

CONNECT THE TASK TO TERMINAL 
INPUTS. IF CONNECT FAILS--STOP l 

CALL CTTY (IBUF,32,IEV,ISB,LUN) 
IF (!SB ( l) • GE. 3) STOP l 

C 10--POLL THE CIRCULAR BUFFER 
C FOR DATA. ECHO THE LINE WHEN 
C 80 CHARACTERS ARE RECEIVED 
C OR A CARRIAGE RETURN IS 
C DETECTED. 
c 

DO 70 I = 1,80 10 
c 
c 
c 
20 
c 
c 
c 
c 
30 
c 
c 
c 

20--WAIT FOR TRIGGER EVENT FLAG 

CALL WAITFR (!EV) 

30--PACK THE CIRCULAR BUFFER DATA 
INTO THE BYTE ARRAY 

c 

CALL RDTY (ISB,TCHR(I), IVR) 

DISPATCH ON ERROR CONDITION 

GO TO (20,50,40)-ISB 
GO TO 60 

C 40--REPORT HARDWARE FAULT 
c 
40 CALL ALARM (IVR) 

GO TO 30 
c 
C 50--REPORT OVERRUN CONDITION 
c 
50 CALL LOST (IVR) 

GO TO 30 
c 
c 
c 
c 
c 
60 

60--CHECK FOR CARRIAGE RETURN, 
EXIT TO ECHO ROUTINE IF 
PRESENT 

IF (TCHR(I).EQ."15) GO TO 80 

70 CONTINUE 
c 
C 80--FALL THROUGH TO ECHO A LINE 
c 

CALL RTOW (I,TCHR,,LUN) 
c 
C DISCONNECT TERMINAL BUFFER, EXIT 
c 

CALL DFTY (, LUN) 
CALL EXIT 
END 

18-59 



INDUSTRIAL CONTROL SUBSYSTEMS 

The procedure for reading the buffer in the example above may be 
summarized as follows: 

1. Wait for the trigger event flag specified in the call to 
connect the buffer. 

2. Upon regaining control, call the appropriate routine to read 
the buffer until one of the following terminal conditions is 
detected: 

a. All data has been read, 

b. An overrun count is detected, 

c. A fatal error is encountered. 

3. On the occurrence of 2a or 2b, perform any appropriate 
processing; then return to scan for additional data. 

4. If a hardware error is detected, use the !CSR register 
contents for further fault analysis and warning as 
appropriate. In the event of such an error, the event flag 
wi 11 not be set by the driver again unless norma 1 service is 
resumed. 

5. A calling task should not execute the Wait-For directive 
until a buffer-empty condition is detected. This is because 
the user's buffer pointer is advanced after detecting and 
clearing an overrun condition, and the trigger-event flag is 
cleared only when a buffer-empty condition is detected. 

18.4.12 Unsolicited Interrupt Processing - Task Activation 

The following routines provide the capability of linking a task to an 
interrupt, soliciting information from the driver concerning how the 
task was activated, and unlinking a task from ail interrupts. 

18.4.12.1 LNK: Link a Task to Interrupts - This subroutine 
any installed task to be activated on the occurrence 
unsolicited interrupt. 

Calling Sequence: 

CALL LNK (tnam, iprm [, isb] [; lun]) 

Argument Descriptions: 

allows 
of any 

tnam Real variable containing task name in RADIX-SO format. 

iprm 5-word integer array containing the following data: 

iprm ( 1) Interrupt class. May be one of the following: 

0 - Digital interrupts 

1 - Counters 

2 - Remote terminal (Control-C only) 

3 - Error interrupts. 

18-60 



iprm(2) 

iprm ( 3) 

INDUSTRIAL CONTROL SUBSYSTEMS 

Reserved 

Optional event flag set if task to be activated is not 
dormant when the interrupt occurs. 

iprm(4) Hardware-dependent parameters as follows: 
iprm ( 5) 

Interrupt Class Parameter Contents 

Digital 

Counter 

Remote Terminal 

Error 

isb 

lun 

Example: 

i prm ( 4) Point number 
i prm ( 5) Change-of-state mask 

iprm ( 4) Module number 
i prm ( 5) Counter initial value 

iprm(4) not used 
iprm(S) not used 

iprm ( 4) not used 
iprm(S) not used 

Optional 2-word integer array 
status in isb(l) as follows. 
always set to zero. 

+l - Function successfully completed. 

to receive 
isb(2) is 

+3 - Unrecognized interrupt class specified. 

+4 - Insufficient dynamic storage to allocate I/O 
packet. 

+8 - Unassigned LUN. 

+99 - Invalid LUN. 

+301 - Task tnam not installed. 

+303 - Controller not ready. 

+317 - Resource in use. Other task already linked to 
interrupt. 

+323 Insufficient dynamic memory to 
secondary control block. 

+380 - Task tnam not installed. 

+397 - Invalid event flag number specified. 

allocate 

Optional integer specifying the logical unit number. 

Link task ALARM to report fatal hardware errors arising from a 
malfunction on any ICRll physical unit. 

18-61 



INDUSTRIAL CONTROL SUBSYSTEMS 

DIMENSION 
c 

IPRM ( 5) 

c 
c 
c 
c 
c 

INITIALIZE PARAMETER ARRAY WITH: 
1. INTERRUPT CLASS 
2. RESERVED ELEMENT CLEARED 
3. GLOBAL EVENT FLAG 

DATA IPRM(l), IPRM(2), IPRM(3)/3,0,64/ 

DATA ALARM/6RALARM / 

CALL LNK (ALARM,IPRM,,7) 

18.4.12.2 
task to 
active. 

RDACT: Read Activation Datc:1 - The following call allows a 
determine the interrupt conditions that caused it to become 

Calling Sequence: 

CALL RDACT (iprm[,isb] [,lun]) 

Argument Descriptions: 

iprm 

iprm(l) 

iprm ( 2) 

iprm(3) 

iprm(4) 

iprm(5) 
iprm (6) 

6-word integer array to receive activation data in the 
following format. 

Activation indicator (see Section 18.3.7.5). 

Physical unit number of !CR. 

Generic code. Set to one of the following values. 

0 - Remote terminal 

1,2,3 - Digital interrupt 

4,5,6 - Counter interrupt 

177770 - Fatal hardware error 

Relative module number. 

Hardware-dependent data. 

The following data is returned based upon the type of interrupt 
module. 

18-62 

·~ 
! ; 



~ 

INDUSTRIAL CONTROL SUBSYSTEMS 

Generic 
Module Type Code Parameter Contents 

Remote Terminal 0 iprm(5) 
iprm(6) 

terminal input character 
undefined 

Digital Interrupt 1,2,3 iprm ( 5) 
iprm(6) 

module data 
change-of-state data 

Counter 4,5,6 i prm ( 5) value of the counter at 
interrupt 

Error 

isb 

lun 

iprm(6) 

177 77 0 i p rm ( 5) 
iprm(6) 

undefined 

contents of ICSR 
contents of ICAR. 

Optional 2-word integer array to receive status in 
isb(l) as follows. isb(2) is set to zero. 

+l Function successfully completed. 

+4 Insufficient dynamic storage to allocate I/O packet. 

+8 Unassigned LUN. 

+99 Invalid LUN. 

+306 - iprm array not fully within the task's addressing 
space. 

+319 - Address of iprm is odd. 

+379 - Task not linked to ICS/ICR interrupts. 

Integer variable specifying the logical unit number. 

Example: 

The following is an excerpt from a program that reads activating data 
into array IACT and conditionally exits if the event flag (IEFN) 
specified in a previous link request, issued by another task, is not 
set. 

c 
c 
c 

ALLOCATE SPACE FOR DATA ARRAY 

DIMENSION IACT(6) 

10 CALL RDACT (IACT,,7) 

c 
c CLOSE ALL FILES 
c 

CALL CLOSE(l) 
CALL CLOSE ( 2) 

c 
c EXIT IF TRIGGER EVENT FLAG IS NOT SET 
c ELSE CLEAR EVENT FLAG AND RESTART. 
c 

CALL EXIT IF ( IEFN) 
c 

18-63 



c 
c 
c 

INDUSTRIAL CONTROL SUBSYSTEMS 

FLAG WAS SET. CLEAR IT AND 
CONTINUE. 

CALL CLREF (IEFN) 
GO TO l 0 
STOP 
END 

The foregoing example illustrates the following considerations when a 
task is made active by ICS/ICR interrupts: 

1. To avoid race conditions, the Exit-If directive should be 
used to test the state of the event flag and conditionally 
exit. Issuing a Test Event Flag directive followed by an 
Exit would cause a flag set condition occurring after the 
test to go unrecognized. 

2. Use of the Exit-If directive bypasses the closure of all 
files that is normally done automatically by the FORTRAN 
object time system when the program executes a STOP or CALL 
EXIT statement. Thus, to exit cleanly, the program must 
explicitly close all files before invoking the directive. 

18.4.12.3 UNLNK: Remove Interrupt Linkage to a Task - The following 
call removes all linkage between a task and ICS/ICR interrupts. 

Calling Sequence: 

CALL UNLNK (tnam, iprm [, isb] [, lun]) 

Argument Descriptions: 

tnam 

iprm 

isb 

lun 

Real variable containing task name in Radix-50 format. 

Integer variable containing the interrupt class. 
be one of the following~ 

0 - Digital interrupts 

l - Counters 

2 - Remote terminal 

3 - Error interrupts 

4 - All interrupts. 

May 

Optional, 2-word integer array to receive the results 
of the call in isb(l) as follows. isb(2) is set to 
zero. 

+l Function successfully completed. 

+4 Insufficient dynamic storage to allocate an I/O packet. 

+8 Unassigned LUN. 

+99 Invalid LUN. 

+379 - Task not linked to ICS/ICR interrupts. 

+380 - Task not installed. 

Integer variable specifying the logical unit number. 

18-64 

:~ 

""""' I; 



INDUSTRIAL CONTROL SUBSYSTEMS 

Example: 

Remove the linkage between task ALARM and all ICS/ICR interrupts. 

DATA ALARM/6RALARM / 

CALL UNLNK (ALARM,,,7) 

18.4.13 Maintenance Functions 

The following functions cause the ICS/ICR driver to suppress or enable 
hardware error reporting while online maintenance and troubleshooting 
is in progress as described in Section 18.3.9. 

OFLIN - Place selected unit offline. 

ON LIN - Return selected unit to online status. 

These calls may be issued only by a privileged task. 

18.4.13.1 OFLIN: Place Selected Unit in Offline 
following call is executed to set a controller offline: 

Status - The 

CALL OFLIN ( [isb] [, lun]) 

Argument Descriptions: 

isb 

lun 

+l 

Optional 2-word integer array to receive the results of 
the call in isb(l) as follows. isb(2) is always zero. 

Function successfully completed. 

+4 Insufficient dynamic storage to allocate an I/O packet. 

+8 LUN not assigned. 

+99 Invalid LUN. 

+316 - Issuing task not privileged. 

+380 Device already offline. 

integer variable specifying the ICS/ICR logical unit 
number. 

18.4.13.2 ONLIN: Return a Device to Online Status - The following 
call will return the selected unit to online status. 

CALL ONLIN ( [i sb] [, lun]) 

Argument Descriptions: 

isb 

+l 

+4 

Optional 2-word integer array to receive the results of 
the call in isb(l) as follows. isb(2) is always zero. 

Function successfully completed. 

Insufficient dynamic storage to allocate an I/O packet. 

18-65 



INDUSTRIAL CONTROL SUBSYSTEMS 

+8 LUN not assigned. 

+99 Invalid LUN. 

+316 - Issuing task not privileged. 

lun Integer variable specifying the logical unit number~ 

18.5 ERROR DETECTION AND RECOVERY 

Error Detection and recovery procedures encompass the following 
contingencies. 

1. Nonrecoverable serial line errors 

2. Power-fail at the remote station 

3. Power recovery at the processor 

4. No response from an interrupting module 

The first two conditions are dealt with in a manner similar to other 
types of unsolicited interrupts. Specifically, such occurrences may 
cause a task to be activated, and are reported to all tasks that are 
connected to digital, counter or terminal input. The following 
paragraphs discuss specific driver activity relating to each error 
condition. 

18~5.l Serial Line Errors 

The driver detects nonrecoverable serial line errors. A 
nonrecoverable error condition is defined as the occurrence of a 
predetermined number of error interrupts in an interval of 1 second or 
no response from the controller upon initiation of an output data 
transfer via the serial line. The occurrence of such a condition 
causes the driver to perform as follows: 

1. Place the controller in a "not ready" status 

2. Disable further error interrupts 

3. Report the condition to the task that is linked to errors, 
and to any tasks connected to receive unsolicited interrupt 
data from the faulty unit. Subsequent QIO requests that 
transfer data to or from the unit are rejected with a status 
of IE.DNR. 

Requests for interrupting modules that are pending (A/D converters and 
terminal output) are allowed to time out with the error code IE~DNR. 
The serial line error rate required to consider the link inoperative 
may be specified by the user at the time of system generation. 

After reporting the error as described above, the driver will 
automatically remove the "not ready" status when the error condition 
is not detected at the end of any 1-second interval. If requested 
during system generation, the state of the following remote modules 
will be restored as described. 

18-66 

~ 
: \ 



INDUSTRIAL CONTROL SUBSYSTEMS 

1. Bistable outputs - set to last recorded state 

2. Counters - reinitialized to last initial value 

3. Analog outputs - restored to last output value. 

18.5~2 Power-Fail at a Remote Site 

The detection of AC-low from the remote site will immediately trigger 
the processing described in Section 18.5.1. The absence of AC-low 
will automatically return the unit to the "ready" status. 

If specified, the state of the following remote modules will then be 
restored as described: 

1. Bistable outputs - set to last recorded state 

2. Counters - reinitialized to last initial value 

3. Analog outputs - restored to last output value. 

18.5.3 Power Recovery at the Processor 

Power recovery by the processor will initiate the activity described 
in Section 18.5.2 for both local and remote file boxes. However, 
power recovery processing at the processor will not be reported to a 
task that is linked to error interrupts or connected to receive 
unsolicited interrupt data. 

18.5.4 Unit in Offline Status 

A unit that is offline (see Section 18.3.9.1) is considered to be 
under manual control for purposes of diagnosis and maintenance. Under 
these conditions, error reporting as described in Section 18.5.1 is 
unnecessary and frequently undesirable since fault indications are 
generally a by-product of these/activities (i.e., a remote unit is 
shut down to install an I/O module) not the result of a genuine 
controller fault. 

Furthermore, to permit the operation of diagnostic software, it is 
advisable to attempt to service all QIO requests regardless of the 
controller status. Consequently, under these circumstances, error 
reporting and detection are modified as follows when the controller is 
offline: 

1. Access to the controller with the intention of transmitting 
data to or from the device is restricted to privileged tasks. 

2. The task linked to error interrupts and any tasks receiving 
interrupt data are not notified of remote power-fail or fatal 
serial line errors. 

3. All device error interrupts become disabled. 

4. An attempt is made to service all QIO requests if issued by a 
privileged task. If such requests time out (i.e., A/D 
converter or remote terminal output), they are terminated 
with the error code IE.ABO rather than with IE.DNR. No 
hardware errors are reported for I/O requests that are 
normally completed immediately (e.g., bistable digital 
output). 

18-67 



INDUSTRIAL CONTROL SUBSYSTEMS 

18.5.5 Error Data - !CSR and ICAR Registers 

Whenever a reportable error occurs, the driver returns the contents of 
the appropriate control and status register (!CSR) and, in some cases, 
the contents of the address register (!CAR) to assist in fault 
diagnosis. Tables 18-8 and 18-9 describe the contents of these 
registers. 

Bit Name 

15 OUTPUT BU SY 

14 MAINT 

13 NOT USED 

12 ERROR 

11 MAINT 

10 PWR FAIL 

9 TBMT INT EN 

8 MAINT 

7 MOD INT 

6 RESET 

5 TTY ENABLE 

4 PWR FA! L INT 
ENABLE 

3 BMT INT ENABLE 

2 MOD INT ENABLE 

1 ERROR INT ENABLE 

0 RIF 

Table 18-8 
!CSR Contents 

Read/ 
Write 

Description 

R Indicates output buffer cannot accept 
new data. 

R/W Maintenance. 

R 

R 

Always set to 1. 

Indicates occurrence 
serial line error. 
read. 

R/W Maintenance. 

of communication 
Reset when !CAR is 

R Remote Power Supply AC LO indicator. 

R/W Enables bit 15 of !CAR to interrupt. 

R/W Maintenance. 

R 

w 

Indicates I/O Module requires interrupt 
servicing. 

Resets all I/O modules. Always read as 
o. 

R/W Activates TTY mode, disables I/O mode. 

R/W Enables bit 10 to interrupt. 

R/W Enables complement 
interrupt. 

of 

R/W Enables 13 it 7 to interrupt. 

R/W Enables Bit 12 to interrupt. 

bit 1.5 to 

R/W Resets the interrupting module's flag 
when set and the module is addressed. 
This clearing action also resets the RIF 
bit. 

18-68 



~· 

Bit 

15 

14 

13 

12 

11-0:S 

07-00 

INDUSTRIAL CONTROL SUBSYSTEMS 

Name 

TBMT 

PCL 

POP 

DA 

Generic Code 

Module Address 

Table 18-9 
ICAR Contents 

Description 

Indicates TTY output buffer can accept 
new data. 

Pulse closed. 
jumper on a 
This jumper 
closures are 
user. 

This bit is set by a 
digital interrupt module. 

is removed if contact 
not of interest to the 

Pulse Opened. This bit is set by a 
jumper on a digital interrupt module. 
This jumper is removed if contacts 
opening are not of interest to the user. 

Indicates terminal 
received. Cleared 
characte!r. 

character has been 
by reading terminal 

A 4-Bit binary code that identifies 
the type of module requesting 
interrupt. 

the 
the 

8-Bit address of the module requesting 
the interrupt. 

18.6 DIRECT ACCESS 

Section 18.1.3 notes those ICS/ICRll functions that may be performed 
by referencing a module through its physical address in the I/O page. 
Under RSX-llM such access is accomplished by one of the following 
methods: 

1. A privileged task or any task running in an unmapped system 
has unrestricted access to the I/O page and may therefore 
access each module by absolute address. 

2. Using the Task Builder, a task may link to a global common 
area whose physical address limits span a set of locations in 
the I/O page. This method applies to either a mapped or 
unmapped system. 

The latter method allows a task to be transported to any other 
simply by relinking. Moreover, in a mapped system the 
management hardware aborts all references to device registers 
the physical address limits of the common block. 

system 
memory 

outside 

Because the software allows arbitrary module placement, direct 
reference, in either case, must be accomplished by translating a 
relative module number to a physical or virtual register address 
within the I/O page. This translation or mapping is performed by 
means of a table (ICTAB.MAC) that is created during system generation, 
and inserted in the system object module library. 

18-69 



INDUSTRIAL CONTROL SUBSYSTEMS 

The operations required to implement each method may be summarized as 
follows: 

l. Unrestricted access to the I/O page 

a. Based upon the user's response to the ICS/ICR SYSGEN 
queries, the MACRO source file ICTAB.MAC is automatically 
created under UIC [11,10] on the source disk. This file 
contains tables that describe the physical location of 
each counter, digital interrupt, and digital sense module 
in the target system. 

b. ICTAB.MAC is assembled for eventual inclusion in the 
system object module library. 

c. The MACRO source file !COM.MAC, under UIC [11,10] on the 
source disk, is assembled to generate global definitions 
for the first ICS/ICR address on the I/O page and the 
number of ICS/ICR controllers in the target system. The 
resulting object file is incorporated in the system 
library file. 

d. A task is built containing the appropriate global 
references. Such references are resolved when the Task 
Builder automatically searches the system library. 

Steps a, b, and c are executed once. Step d is performed each time a 
task that references the ICS/ICRll is created. 

NOTE 

ICS/ICR inputs are not valid until 3ms 
after power recovery at the processor. 
Tasks that are referencing inputs 
directly may establish a power recovery 
AST entry point that suspends task 
execution for the necessary time 
interval. 

2. Access to the I/O page through a Global Common Block: 

a. Steps la and lb are performed. 

b. File !COM.MAC under UIC 1[11,10] is assembled to define 
the first ICS/ICR module address as a relocatable value, 
the number of I/O page locations required, and the number 
of controllers present on the target system. 

c. File !COM.OBJ, created in step b, is linked using the 
Task Builder to create an image of the Device Common 
Block on Disk. 

d. The SET and INSTALL MCR or VMR commands are used to 
allocate space for the common block and declare the block 
resident in the target system. 

e. A task is created containing the appropriate global 
references to the common block and mapping table. Common 
block references are resolved by directing the Task 
Builder to link the Task to the device common block 
(!COM). The mapping table reference is resolved from the 
system library module ICTAB. 

18-70 

~ . ! 

~··: 
! 



INDUSTRIAL CONTROL SUBSYSTEMS 

The detailed procedure for creating the necessary object files and 
device common block is performed automatically as part of the system 
generation process, and is described fully in the RSX-llM System 
Generation and Management Guide. Therefore, the discussion in the 
following paragraphs is limited to procedures for linking to the 
device common block, and using the file ICTAB.MAC to determine module 
addresses within the I/O page. 

18.6.l Linking a Task to the ICS/ICR Common Block 

Once the device common block has been created, a task may access 
ICS/ICR modules by linking to the common block. This can be done by 
using the Task Builder commands shown in the following example. 

TKB>TASK,LP:=TASK.OBJ 
'l'KB> I 
ENTER OP'rIONS: 
TKB> COMMON=ICOM:RO 
TKB>/ 

The illustration is valid for either a mapped or unmapped system. In 
both cases the Task Builder links the task to the common block by 
relocating the global symbol definitions contained in the common block 
symbol table file ICOM.STB located under UIC [l,l]. If memory 
management is present, the Executive will map the appropriate physical 
locations into the task's virtual addressing space when the task is 
made active. 

18.6.2 Accessing the I/O Page 

After the task has been linked to the I/O page, either directly or 
through reference to the device common block, access to specific 
ICS/ICR counter, or digital input modules during task execution is a 
three-step process: 

1. The task generates a request for module data by specifying 
module type, relative module number and physical unit number. 

2. The data contained in module ICTAB is accessed to translate 
the arguments of step l to a physic?l offset from the ICS/ICR 
base address on the I/O page. 

3. The ICS/ICR base address, defined in the common block or 
system library module that was created from file !COM.MAC, is 
added to the offset to compute a physical or virtual address 
and the module data is read. 

The next few paragraphs describe the format of the system library 
module ICTAB, and common block module !COM in detail. A sample MACRO 
subroutine that references these modules is then presented. 

18.6.2.l Mapping Table Format - The mapping table created by SYSGEN 
(file ICTAB.MAC) is used to translate module type, relative module 
number, and physical unit number for counter, digital interrupt, and 
digital sense modules, to the physical or virtual address of the 
module on the I/O page. This module must be assembled and inserted in 
the system object module library before the standard FORTRAN callable 
routines can be used to read digital input and counter modules. The 

18-71 



INDUSTRIAL CONTROL SUBSYSTEMS 

table contains one set of entries for each physical unit. The entry 
sets are arranged in order of ascending unit number (Figure 18-1). 
Entries within each unit are arranged in sequence by module type as 
shown in this figure. 

INCREASING 
MEMORY 
ADDRESSES 

DIGITAL SENSE 

DIGITAL INTERRUPT 

COUNTER MODULES 

.. 

.. 

.. 

DIGITAL SENSE 

DIGITAL INTERRUPT 

COUNTER MODULES 

Figure 18-1 Mapping Table Format 

UNIT ~ 
MAPPING TABLE 

UNIT n 
MAPPING TABLE 

The structure of each entry is depicted in Figure 18-2. Entries are 
18 bytes long. Byte 0 contains the highest number of modules of a 
given type that can be referenced for the controller. Bytes 2 through 
17, when indexed by relative module numbers, yield a value between 0 
and 255 representing the physical location of the module within the 
set of external page addresses allocated to the ICS/ICRll. 

The follow~ng global symbols are defined by this module: 

.ICTAB Location of mapping tables 

I.CTBL Length in bytes of one set of entries 

18.6.2.2 1/0 Page Global Definitions - As previously mentioned, 
module !COM contains symbolic definitions for I/O page references that 
are resolved either through unrestricted access or by means of a 
device common block that is resident on the I/O page. The procedures 
for implementing either method are carried out during system 
generation. Upon completion, the following global symbols are defined 
and later referenced by the FORTRAN callable subroutines: 

.ICMD = 

I$$Cll 

First ICS/ICR virtual or physical address within 
the I/O page. 

Number of ICS/ICR controllers 

18-72 



INDUSTRIAL CONTROL SUBSYSTEMS 

If the global common block was built, 
contained in the symbol table file 
Builder; otherwise, they are included in 
1i bra1ry .1 

INCREASING 
MEMORY 
ADDRESSES 

RESERVED 

PHYSICAL MODULE 

II II 

II II 

II II 

II II 

II II 

II II 

II II 

NO. 

the 
that 

the 

MAX. 

definitions above are 
was created by the Task 

system object module 

MODULE NO. 

BYTE 

~ 

PHYSICAL MODULE NO. 2 

II II 4 

II II 6 

II II 8 

II II l~ 

II II 12 

II II 14 

II II 16 

Figure 18-2 Mapping Table Entry Format 

18.6.2.3 Sample Subroutine - The following subroutine, residing in 
the system library, utilizes the modules previously described, to read 
ICS/ICR module data. 

1 The definitions are included in module ICOM in the system library or 
in the STB file ICOM.STB under UIC[l,l] on the system disk. The STB 
file is automatically referenced by the Task Builder in response to 
the use of the LIBR keyword. 

18-7.3 



INDUSTRIAL CONTROL SUBSYSTEMS 

READ ICS/ICR-11 DIRECT ACCESS INPUTS 

LOCAL DATA 

ADDRESS OF I CS/ICR-11 MAPPING TABLES 

• ENABL LSB 
N=O 
ICMAP: 

• REPT 12 • 

.WORD .ICTAB+<I.CTBL*N> 
N=N+l 

;+ 

;-

.ENDR 

**-.RDIC-READ ICS/ICR-11 DIRECT ACCESS INPUTS 

THIS SUBROUTINE IS CALLED TO TRANSLJl,TE RELATIVE MODULE NUMBER 
TO PHYSICAL EXTERNAL PAGE ADDRESS AND READ THE MODULE DATA. 

INPUTS: 

RO RELATIVE MODULE NUMBER 
Rl = MODULE CODE 

WHERE: 
0 
1 
2 

CONTACT SE:NSE 
CONTACT INTERRUPTS 
COUNTERS 

STACK SETUP IS AS FOLLOWS: 

OUTPUTS: 

C/CLEAR 

C/SET: 

(SP)+OO RETURN TO CALLER 
(SP)+02 I/O STATUS BLOCK ADDRESS (NOT REFERENCED). 
(SP)+04 PHYSICAL UNIT NUMBER 

RO MODULE DATA 

NONEXISTENT PHYSICAL UNIT NUMBER OR MODULE SPECIFIED 

.RDIC: : 
MOV 
CMP 
BLO 
ASL 

MOV 

ASL 
ADD 

ASL 
ASL 
ASL 

4(SP),R2 
#I$$Cll-l ,R2 
10$ 
R2 

ICMAP(R2),R2 

Rl 
Rl ,R2 

Rl 
Rl 
Rl 

GET PHYSICAL UNIT NUMBER 
LEGAL UNIT NUMBER? 
IF LO NO 
CONVERT PHYSICAL UNIT NUMBER TO WORD 
OFFSET 
GET ADDRESS OF MAPPING TABLE 
ENTRIES FOR THIS UNIT 
CONVERT CODE TO WORD OFFSET 
MULTIPLY OFFSET BY 9 AND ADD 
TO TABLE ADDRESS 

18-74 

~. 



10$: 

ADD 
TSTB 
SEC 
BEQ 
INCB 
CMPB 
BLO 
INC 
ADD 
CLH 
BISB 
ASL 
MOV 

RETURN 

.END 

INDUSTRIAL CONTROL SUBSYSTEMS 

Rl ,R2 
(R2) 

10$ 
RO 
(R2) +,RO 
10$ 
R2 
RO ,R2 
RO 
(R2),RO 

RO 
.ICMD(RO),RO 

COMPUTE OFFSET TO TABLE 
MODULE EXIST? 
ASSUME NO 
IF EQ NO 
CONVERT TO NUMBER OF MODULES 
LEGAL MODULE NUMBER? 
IF LO NO 
POINT TO TABLE ENTRIES 
OFFSET TO MODULE NUMBER 
SET FOR MOVB WITHOUT SIGN EXTEND 
GET INDEX TO MODULE 
CONVERT TO WORD OFFSET 
GET MODULE DATA 

18.7 CONVERSION OF EXISTING SOFTWARE 

The following paragraphs are intended as guidance in converting 
existing UDC or !CS software to run under the ICS/ICR-11 driver and 
asse>ciated FORTRAN support routines. The differences described here 
are restricted to module support and features that would affect 
existing software. New features, unsupported in previous systems, are 

' not discussed. 

18.7.l Features 

Principal features affecting existing software are: 

l. Support for the ICS/ICRll as a multi-unit, multi-controller 
device. 

2. Removal of software restrictions on the 
functionally similar modules. 

placement of 

Multi-unit support affects any software that addresses modules outside 
the range of a single file box. In general, such software must be 
modified at the source level. 

Unr~~stricted module placement affects MACR0-11 programs that directly 
access digital input and counter modules. Such programs may utilize 
the library routine described in Section 18.3 to read data from these 
modules. 

18.7.2 Module Support 

18. 7. 2 .1 :IAD-IA A/D Converter and IMX-IA Multiplexer 

MACRO Interface: Identical to UDCll driver 
FOR~rRAN Interface: Same as UDCll 

18-75 



INDUSTRIAL CONTROJI:. SUBSYSTEMS 

Functional Differences: 

The ICS/ICR driver can initiate parall1~l conversions on each !AD-IA in 
a file box that is referenced by a single QIO request. The UDCll 
driver performs all conversions serially. 

The ICS/ICR driver supports any permissible configuration of !AD-IA 
A/D converters and IMX-IA multiplexers. The UDCll driver requires 
that eight module slots be reserved for each !AD-IA in the system 
regardless of the actual number of multiplexers installed. 

18.7.2.2 16-Bit Binary Counter 

MACRO Interface: Identical to UDCll driver 

FORTRAN Interface: Same as UDCll; however, if the counter is read 
through a call to RDTI then the task must be relinked to incorporate 
the revised FORTRAN Interface routine. 

Functional differences: 

The ICS/TCR driver permits any task to reset an initial counter value 
(via FORTRAN call SCTI or through the IO.IT! QIO function). The UDCll 
driver restricts this operation to a task that has connected to 
counter interrupts. 

18.7.2.3 Bistable Digital Output 

MACRO Interface: Identical to UDCll 
FORTRAN Interface: Identical to UDCll 

Functional Differences: None 

18.7.2.4 Momentary Digital Output 

MACRO Interface: 

User interface is via the QIO IO.MSC issued to the ICS/ICR-11 driver. 
The UDCll driver does not support this function since the module may 
be accessed directly through the UDC device common block. 

FORTRAN Interface: 

Identical to UDCll; however, existing FORTRAN tasks must be relinked 
to include ICS/ICRll FORTRAN interface routines. 

Functional Differences: 

Momentary output operations are now processed by the ICS/ICR driver, 
rather than through direct access to the I/O page. 

18.7.2.5 Noninterrupting Digital Input 

MACRO Interface: 

MACRO Interface is by means of the ICS/ICRll device common block and 
mapping table described in Section 18.6. 

18-76 

~· 



INDUSTRIAL CONTROL SUBSYSTEMS 

FOR'l'RAN Interface: Identical to UDCll; however, existing tasks must 
be relinked to include revised ICS/ICRll FORTRAN interface routines. 

Functional Differences: None 

18.7.2.6 Analog Output 

MACHO Interface: 

User interface is via the QIO IO.SAO issued to the ICS/ICR driver. 
The UDCll driver does not support this function since the module may 
be accessed directly through the UDC device common block. 

FOR'.rRAN Interface: 

Identical to UDCll; however, existing FORTRAN tasks must be relinked 
to include ICS/ICRll FORTRAN interface subroutines. 

Functional Differences: 

Analog output operations are now processed by the ICS/ICR driver 
rather than through direct access to the I/O page. 

18.7.2.7 Interrupting Digital Input 

MACRO Interface: Identical to UDCll driver 

FOR'TRAN Interface: 

Identical to UDCll driver; however, if digital inputs are read 
through the call to RCIPT then the task must be relinked to 
incorporate the revised ICS/ICRll FORTRAN interface routines. 

Functional Differences: None. 

18-77 



~I 



......,. 

~ 

"-'' 

CHAPTER 19 

NULL DEVICE DRIVER 

RSX-llM provides a driver for a software construct 
device." The mnemonic for the null device is NL:. 
are as follows: 

called the "null 
Its characteristics 

• A read from NL: returns an end-of-file error (IE.EOF). 

• A write to NL: immediately returns success (IS.SUC) • 

The null device functions as a "black hole" to which you can direct 
output, and from which it will never return. It is particularly 
useful when used in conjunction with an indirect command file and MCR 
ASN commands, as in the example below. 

Figure 19-1 shows the contents of a Task Builder command file called 
TESTBLD.CMD. Symbolic device names are used for the output file, map 
file, and input file. These names may be reassigned at task-build 
time. In particular, in the example below, the map file is assigned 
to the null device and thus is thrown away. 

>ASN 

>ASN 

>ASN 

>TKB 

SY:=OU: 

NL:=MP: 

DKl:=IN: 

@T.ESTBLD 

OU:TEST,MP:TEST=IN:[200,220]TEST 
I 
ASG=TI:2 
II 

Figure 19-1 Indirect TKB Command File TESTBLD.CMD. 

19-1 





CHAPTEH 20 

GRAPHICS DISPLAY DRIVER 

20.l INTRODUCTION 

RSX-llM provides support for two graphics display peripherals, the 
VTll and the VS60. Graphics display drivers are not supported in 
RSX-llM-PLUS systems. Each consists of a CRT display, light pen, and 
display-processing unit (DPU}. Either may be purchased separately or 
as part of a complete system. For example, the GT46 is a "starter 
system" consisting of a VTll and a PDP-llT/34 with 32K words of memory 
and disk storage. 

2 0 ., l .1 VTll. Graphics Display Subsystem 

The VTll is a low-cost, line-drawing graphics display subsystem. It 
steals cycles asynchronously from the CPU whose UNIBUS it shares. Its 
DPU instruction set supports the following features: 

• Helative and absolute vectors -- solid, long dash, short 
dash, or dotted 

• Point plotting 

• Character generation 

• Blinking display 

• Eight levels of intensity 

• Light-pen interaction • 

20.l.2 VS60 Graphics Display Subsystem 

The VS60 supports all these features at a higher rate of performance 
than the VTll. In addition, the VS60 supports hardware subroutining, 
scaling, and windowing. A second CRT may be added to the VS60. 

20.2 GET LUN INFORMATION MACRO 

Word 2 of the buffer filled by the GET LUN INFORMATION system 
directive (the first characteristics word} contains zeros in all bits 
for graphics display devices. Words 3, 4, and 5 are undefined. 

20-1 



GRAPHICS DISPl~AY DRIVER 

2 0 • 3 QIO MACRO 

Table 20-1 lists the standard and device-specific functions of the QIO 
macro that are valid for graphics display devices. 

The standard QIO functions IO.ATT and IO.DET have little use in the 
graphics display driver, because the specific functions IO.CON and 
IO.DIS are available. 

Table 20-1 
Standard and Device-Specific QIO Functions for Graphics Displays 

I Format Function 

STANDARD FUNCTIONS: 

QIO$C IO.ATT, ••• Attach device 

QIO$C I 0. DET I • •• Detach device 

QIO$C IO.KIL, ••• Cancel I/O requests 

DEVICE-SPECIFIC FUNCTIONS: 

QIO$C IO.CON, ••• ,<stadd,size Connect to graphics 
[,lpef] [,lpast]> device, start DPU 

QIO$C I 0. CNT, ••• Continue (restart DPU) 

QIO$C IO.DIS, ••• Disconnect from graphics 
device, halt DPU 

QIO$C IO.STP, ••• Stop (halt DPU) 

Where: stadd is the starting address of a display file (must be 

size 

lpef 

lpast 

word-aligned). The display file must be within the 
lowest 28K of physical memory for the VTll. 

is the size of the display buffer in bytes. 

is the optional number of an event flag to be set upon 
light-pen hit; in the range 1-64 (dee ima l). 

is the optional address of an asynchronous system trap 
(AST) entry point to be used upon light-pen hit. 

20.4 STATUS RETURNS 

Table 20-2 lists error and status conditions that are returned by the 
graphics display driver in the first word of the I/O status block. 
The second I/O status word always contains zero. 

20-2 

~~ 



Code 

Is .sue 

IE: .ABO 

IE: .CNR 

IE:.DNA 

I 8. I EF 

I g. I FC 

rn.SPC 

GRAPHICS DISPLAY DRIVER 

Table 20-2 
Graphics Display Status Returns 

Reason 

Successful completion 

The operation specified in the QIO directive was 
completed successfully. 

Operation aborted 

The I/O operation was cancelled by IO.KIL while in 
progress or in the I/O queue. 

Connection rejected 

The graphics device specified in an IO.CON function was 
already connected to another task. 

Device not attached 

The graphics device specified in an IO.DET function was 
not attached to the issuing task. 

Illegal event flag 

An event flag number specified in an IO.CON function 
(lpef argument) was not in the range 1-64 decimal. 

Illegal function code 

A function code was specified in an I/O request that is 
illegal for graphics display devices. 

Illegal address space 

The display buffer specified in an IO.CON function 
(stadd argument) was not word-aligned, or (for VTll 
only) was not completely within the lowest 28K of 
memory. 

2 0 • !5 PROGRAMMING HINTS 

The graphics display driver does not determine what appears on the 
screen of the VTll or VS60. The key to what is drawn is the 
collection of DPU instructions in the display buffer. 

Under normal circumstances, the display buffer is generated by calls 
to a set of FORTRAN graphics subroutines. These subroutines provide a 
more convenient access to the graphics features of the hardware than 
do the raw DPU instructions. The subroutines are described in the 
DECgraphic-11 FORTRAN Reference Manual, order number DEC-11-GFRMA-A-D. 

Aborting a VTll task may cause an RSX-llM system to hang up 
indefinitely, requ1r1ng a bootstrap. The VTll DPU has no Halt 
instruction, but the I/O driver must halt the DPU before it can return 
a success status in response to an IO.KIL request. (IO.KIL is 
automatically generated when a task is aborted.) This hang situation 
can not arise with a VS60. 

20-3 





CHAPTER 21 

LABORATORY PERIPHERAL ACCELERATOR DRIVER 

21.l INTRODUCTION 

The Laboratory Peripheral Accelerator (LPAll-K) is an intelligent, 
direct memory access (DMA) controller for DIGITAL's laboratory data 
acquisition I/O devices. It is a fast, flexible, and easy to use 
microprocessor subsystem that allows analog data acquisition rates up 
to 150,000 samples per second. The LPAll-K is designed for 
applications requiring concurrent data acquisition and data reduction 
at high rates. 

The LPAll-K is supported through a device driver and a set of 
program-callable routines. The device driver supports multiple 
controllers and can be configured as resident or loadable. The 
program-callable support routines are linked with the user's task at 
task build time. These routines are highly modular. Therefore, a 
particular task contains only that code necessary for the facilities 
actually used. 

The LPAll-K 
multi request. 

operates in two distinct modes -- dedicated 
The subsections that follow summarize each mode. 

21.1.1 LPAll-K Dedicated Mode of Operation 

and 

In dedicated mode, 
a time and only 
analog converters 
initiated by an 
supplied signal. 

only one user (i.e., one request) can be active at 
analog I/O data transfers are supported. Up to two 
can be controlled simultaneously. Sampling is 
overflow of the real-time clock or by an externally 

21.1.2 LPAll-K Multirequest Mode of Operation 

In multirequest mode, sampling from all device types is supported. Up 
to eight users can be simultaneously active. The sampling rate for 
each user is a multiple of the common real-time clock rate. 
Independent rates can be maintained for each user. Both the sampling 
rate and the device type are specified as part of each data transfer 
request. 

21.2 GET I.UN INFORMATION MACRO 

If a Get LUN Information system directive is issued for a LUN 
associated with an LPAll-K, word 2 (the first characteristics word) 
contains all zeros, words 3 and 4 are undefined, and word 5 contains ~ 

21-1 



LABORATORY PERIPHERAL J!~CCELERATOR DRIVER 

16-bit buffer preset value that controls the rate of the real-time 
clock interrupts. 

21.3 THE PROGRAM INTERFACE 

A collection of program-callable subroutines provides access to the 
LPAll-K. The formats of these calls are fully documented here for 
FORTRAN programs. MACR0-11 programmers access these same subroutines 
either through the standard subroutine linkage or through the use of 
two special-purpose macros. Optionally, MACR0-11 users can control an 
LPAll-K directly through the use of device-specific QIO functions. 
Both FORTRAN and MACRO programs must contain at least one I/O Status 
Block (IOSB) for retrieval of status information. The following 
subsections, therefore, describe: 

• The FORTRAN interface 
• The MACR0-11 interface 
• The I/O status block 

NOTE 

The subroutines documented in this 
chapter represent the high-level 
interface to the LPAll-K. Use of these 
subroutines requires an understanding of 
hardware capabilities, configuration 
dstails, and hardware status codes as 
described in the LPAll-K Laboratory 
Peripheral Accelerator User's Guide. 

21.3.1 FORTRAN Interface 

Table 21-1 lists the FORTRAN interfacE~ subroutines for accessing the 
LPAll-K. 

Table 21-1 
FORTRAN Subroutines for the LPAll-K 

Subroutine Function 

ADS WP Initiate synchronous A/D sweep 

CLOCK A Set Clock A rate 

CLOCKB Control Clock B 

CVADF Convert A/D input to floating point 

DAS WP Initiate synchronous D/A sweep 

DIS WP Initiate synchronous digital input sweep 

DOS WP Initiate synchronous digital output sweep 

(continued on next page) 

21-2 



-~ 

LABORATORY PERIPHERAL ACCELERATOR DRIVER 

Table 21-1 {Cont.) 
FORTRAN Subroutines for the LPAll-K 

Subroutine Function 

FLT16 Convert unsigned integer to a real constant 

IBFSTS Get buffer status 

IGTBUF Return buffer number 

INXTBF Set next buffer 

IWTBUF Wait for buffer 

LAMS KS Set masks buffer 

RLSBUF Release data buffer 

RMVBUF Remove buffer from device queue 

SETADC Set channel information 

SETIBF Set arra~ for buffered sweep 

STPSWP Stop sweep 

XRATE Compute clock rate and preset 

The calling sequences of the routines listed in Table 21-1 are 
compatible with the K-series support routines, described in Chapter 
22, except as noted. The following subsections briefly describe the 
func:tion and format of each FORTRAN subroutine call. 

21.3.1.l ADSWP: Initiate Synchronous A/D Sweep - The ADSWP routine 
initiates a synchronous A/D input sweep through an LPS-11 or an ADll-K 
{and, if present, the AMll-K). 

If differential input is desired for the ADll-K/AMll-K, 
increment must be set to ~ by calling the SETADC routine. 
channel increment is l {single-ended input). 

the channel 
The default 

The ADSWP call is as follows: 

where 

CALL ADSWP {ibuf, lbuf, [nbuf], [mode], [idwell], [ietn], [ldelay], 
[ichn], [nchn], [ind]) 

ibuf 

lbuf 

is a 40-word array initialized by the SETIBF routine. 
The first two words of the array are the I/O status 
block (IOSB). 

is the size in words of each data buffer. All data 
buffers must be equal in size and lbuf must be greater 
than O. In dedicated mode, lbuf must be at least 257 
words. 

21-3 



nbuf 

mode 

LABORATORY PERIPHERAL l\1CCELERATOR DRIVER 

is the number of buffers to be filled. If nbuf is 
omitted or set equal to O, indefinite sampling occurs. 
The STPSWP routine terminates indefinite sampling. 

specifies sampling options. The default is 0. The mode 
bit values listed below that are preceded by a plus sign 
(+) are independent and can be ADDed or ORed together 
(assuming that the sampling options are applicable to 
the mode of operation). Those values not preceded by a 
plus sign are mutually exclusive and only one such value 
can be used at a time. All bit values not listed below 
are reserved. 

The following values can be specified: 

0 

+32 

+64 

+512 

Absolute channel addressing (default). 
allows the user to directly access 
channels of an A/D converter. 

This mode 
all 64 

Dual A/D conversion serial/parallel. This option 
applies to dedicated mode only. It is ignored in 
multirequest mode. 

Multirequest mode. If this value is 
specified, the request is for dedicated mode. 
the request mode does not match the mode of 
hardware (that is, different microcode in 
master microprocessor), the LPAll-K rejects 
request with an appropriate error code. 

not 
If 

the 
the 
the 

External trigger (STl). This mode is used when a 
user-supplied external sweep trigger is desired. 
The external trigger is supplied via a jumper 
connecting the ADll-K External Start input to the 
KWll-K Schmitt Trigger 1 output. This external 
trigger connection can only be used in Dedicated 
Mode. If mode 512 is selected, the user task 
must specify a Clock A rate of -1 for proper A/D 
sampling. This is non-clock driven sampling. 

+1024 Time stamp with Clock B (Multirequest mode only). 

+2048 Event marking (Multirequest mode only). LAMSKS 
must be called to specify an event mark channel 
and event mark mask. 

+4096 Start method. If set, digital input start. If 
clear, immediate start. LAMSKS must be called to 
specify a digital start channel and digital start 
mask. (Multirequest mode only). 

+8192 Dual A/D converter (Dedicated mode only). 

+16384 Data overrun NON-FATAL/FATAL. If selected, data 
overrun is considered non-fatal. The LPAll-K 
automatically defaults to fill buffer 0. (See 
Section 21.4 for a discussion of buffer 
management.) 

21-4 



idwell 

iefn 

ldelay 

ichn 

nchn 

LABORATORY PERIPHERAL ACCELERATOR DRIVER 

is the number of clock overflows (pulses) between data 
sample sequences. As an example, if idwell is 20 and 
nchn is 3, the following occurs: after 20 pulses, one 
channel is sampled on each of the next three pulses. 
Then, no sampling takes place for the next 20 pulses. 
In multirequest mode, this facility permits different 
sample rates for the same hardware clock rate and 
preset. In dedicated mode, the clock hardware rate 
controls sampling and this idwell argument is ignored. 

If compatibility with K-series support routines is 
desired, the user task must first establish the clock 
preset by calling the CLOCKA routine. The default 
idwell value of l is used in the sweep start command. 
For the K-series, this procedure sets the rate as 
desiired. 

NOTE 

This parameter is called iprset in the 
K-series support routines described in 
Chapter 22. Its function is different 
from the idwell parameter described 
here. 

is the event flag (1 to 28, 30 to 96), the name of a 
completion routine, or O. If 0 or defaulted, event flag 
30 will be used for internal synchronization. If iefn 
is an event flag, the selected event flag is set as each 
buffer is filled. Note that event flag 29 is reserved 
for use by the LPAll-K support routines for internal 
synchronization. If iefn is greater than 96, it is 
considered to be a completion routine that will be 
called with a JSR PC. Such routines must return with an 
RTS PC (or a FORTRAN RETURN statement). Further, 
FORTRAN completion routines must not do any I/O through 
the FORTRAN runtime system, since this may cause 
unpredictable results or fatal task errors. 

If multiple sweeps are initiated, the user should 
specify different event flags. Adherence to this 
limitation cannot be enforced by the software. 

is the delay from the start event (DRll-K) until the 
first sample in IRATE units. This feature is supported 
in multirequest mode only. Default or 0 indicates no 
delay. 

is the number of the first channel to be sampled. The 
default of 0 applies only if ichn was not established in 
a prior call to the SETADC routine. 

is the number of channels to sample. The default is 1. 
nchn may be set up with the SETADC routine. The number 
of channels specified are sampled at a rate of l per 
clock interrupt. If nchn equals 1, the single channel 
bit is set in the mode word of the start RDA. 

21-5 



LABORATORY PERIPHERAL 1~CCELERATOR DRIVER 

ind receives a success or failure code as follows: 

1 indicates that 
initialized. 

the sweep was successfully 

0 indicates an illegal argument list, or SETIBF was not 
called prior to this call. 

-1 indicates a QIO directive failure. The directive 
error code is placed in IOSB(l) in IBUF. 

NOTE 

The ind parameter is not supported by 
the K-series support routines. If 
compatibility with K-series support 
routines is desired, this parameter must 
be ignored. 

21.3.1.2 CLOCKA: Set Clock A Rate - The CLOCKA routine sets the rate 
for Clock A. This routine is called as follows: 

where 

CALL CLOCKA (irate, iprset, [ind], [lun]) 

irate 

iprset 

ind 

is the clock rate. 
specified: 

One of the following must be 

-1 Direct-coupled Schmitt Trigger 1 (used only for A/D 
sweeps in Dedicated Mode +512. -- Not supported by 
K-series support routines) 

0 Clock B overflow or no rate 
1 1 MHz 
2 100 KHz 
3 10 KHz 
4 1 KHz 
5 100 Hz 
6 Schmitt Trigger 1 
7 Line frequency 

is the 2's complement value for clock preset. The clock 
rate divided by the negative clock preset value yields 
the clock overflow rate. For example, to obtain a clock 
overflow rate of 10 Khz with a clock rate of lMhz, 
iprset = -100. (minus 100 decimal). The XRATE routine 
can be used to calculate a clock preset value. 

receives a success or failure code as follows: 

O indicates an illegal argument list or I/O error. 
Possible causes are: microcode not loaded; driver 
not loaded; device offline or not in system. 

1 indicates Clock A set to start when sweep requested. 

lun is the logical unit number. The default is 7. 

21-6 



LABORATORY PERIPHERAL ACCELERATOR DRIVER 

21.3.1.3 CLOCKB: Control Clock B - The CLOCKB routine gives the user 
control over the KWll-K Clock B. 

The CLOCKB call is as follows: 

where 

CALL CLOCKB ([irate], iprset,mode, [ind], [lun]) 

irate 

iprset 

mode 

is the clock rate. When irate is nonzero, the clock is 
set running at the selected rate after the preset value 
specified by iprset is loaded. A zero irate stops the 
clock. When irate is 0 or default, the iprset and mode 
parameters are ignored. 

The following values are acceptable for irate: 

0 Stop Clock B 
1 lMHz 
2 100 KHz 
3 10 KHz 
4 1 KHz 
5 100 Hz 
6 Schmitt Trigger 3 
7 Line frequency 

is the count by which to divide clock rate to yield 
overflow rate. Overflow events can be used to drive 
clock A. The preset parameter must be specified as 0 or 
as a negative number in the range -1 to -255. The value 
in iprset can be established by use of the XRATE 
routine. 

specifies options. The mode bit values listed below 
that are preceded by a plus sign (+) are independent and 
can be ADDed or ORed together. Those values not 
preceded by a plus sign are mutually exclusive and only 
one such value can be used at a time. All bit values 
not listed below are reserved. 

1 indicates Clock B operates in non-interrupt mode. 
The 16-bit clock is not incremented or altered. This 
allows a greater than lOKHz pulse to be sent to Clock 
A. 

+2 indicates the feed B to A bit will be set in the 
Clock B status register. 

ind receives a success or failure code as follows: 

O indicates an illegal argument list or I/O error. 
Possible causes are: microcode not loaded; driver 
not loaded; device offline or not in system. 

l indicates Clock B started. 

lun is the logical unit number (LUN). The default LUN is 7. 

21-7 



LABORATORY PERIPHERAL ACCELERATOR DRIVER 

21.3.1.4 CVADF: Convert A/D Input to Floating Point - The CVADF 
routine converts an A/D input value to a floating point number. The 
routine can be invoked as a subroutine or a function as follows: 

or 

where 

CALL CVADF (ival,val) 

val CVADF(ival) 

ival is a value obtained from A/D input. 
zero. Bits 0-11 represent the value. 

Bits 12-15 are 

val (REAL*4) receives the converted value. The converted 
value is calculated with a gain equal to one. 

21.3.1.5 DASWP: Initiate Synchronous D/A Sweep - The DASWP routine 
initiates synchronous D/A output to an AAll-K. 

The DASWP call is as follows: 

where 

CALL DASWP (ibuf,lbuf, [nbuf], [mode], [idwell], [iefn] ,ldelay, 
[ichn], [nchn], [ind]) 

ibuf 

lbuf 

nbuf 

mode 

is a 40-word array initialized by the SETIBF routine. 
The first two words of the array are the I/O status 
block (IOSB). 

is the size in words of each data buffer. All data 
buffers must be equal in size and lbuf must be greater 
than O. In dedicated mode, lbuf must be at least 257 
words. 

is the number of buffers to be filled. If nbuf is 
omitted or set equal to O, indefinite sampling occurs. 
The STPSWP routine terminates indefinite sampling. 

specifies the start criteria. Except where noted, the 
plus sign (+) preceding mode bit values listed below 
indicates that they are independent and can be ADDed or 
ORed together. All bit values not listed beLow are 
reserved. 

The following values can be specified: 

0 indicates immediate start. This is the default. 

+64 Multirequest mode. If this value is not 
specified, the request is for dedicated mode. If 
the request mode does not match the mode of the 
hardware (i.e., different microcode in master 
microprocessor), the LPAll-K rejects the request 
with an appropriate error code. 

+4096 Start method. If set, digital input start. If 
clear, immediate start. LAMSKS must be called to 
specify a digital start channel and a digital 
start mask. (Multirequest mode only). 

21-8 



i dwell 

'-'' 

iefn 

ldelay 

ichn 

nchn 

LABORATORY PERIPHERAL ACCELERATOR DRIVER 

+16384 Data overrun NON-FATAL/FATAL. If selected, data 
overrun is considered non-fatal. The LPAll-K 
automatically fills buffer O. (See Section 21.4 
for a discussion of buffer management.) 

is the number of clock overflows (pulses) between data 
sample sequences. For example, if idwell is 20 and nchn 
is 3, the following occurs: after 20 pulses, one 
channel is sampled on each of the next three pulses. 
Then, no sampling takes place for the next 20 pulses. 
In multirequest mode, this facility permits different 
sample rates for the same hardware clock rate and 
preset. In dedicated mode, the clock hardware rate 
controls sampling and idwell in the sweep start command 
is ignored. 

If compatibility with K-series support routines is 
desired, the user task must first establish the clock 
preset by calling the CLOCKA routine. The default value 
(1) for the idwell parameter in the sweep start command 
must be used. For the K-series, this procedure sets the 
rate as desired. For the LPAll-K this procedure results 
in idwell in the sweep call defaulting to 1, thus 
yielding the same clock rate. · 

NOTE 

This parameter is called iprset in the 
K-series support routines described in 
Chapter 22. Its function is different 
from the idwell parameter described 
here. 

is an event flag number (1 to 28, 30 to 96), or the name 
of a completion routine, or O. If 0 or default, event 
flag 30 is used for internal synchronization. If iefn 
is an event flag, the selected event flag is set as each 
buffer is filled. Note that event flag 29 is reserved 
for use by the LPAll-K support routines for internal 
synchronization. If iefn is greater than 96, it is 
considered to be a completion routine that will be 
called with a JSR PC. Such routines must return with an 
RTS PC instruction (or a FORTRAN RETURN statement). 
Further, FORTRAN completion routines must not perform 
I/O through the FORTRAN runtime system since this may 
cause unpredictable results or fatal task errors. 

If multiple sweeps are initiated, the user task should 
specify different event flags. This limitation cannot 
be enforced by the LPAll driver. 

is the delay from start event (DRll-K) until the first 
sample in irate units. A minimum delay of 150 
microseconds is required (not verified by the LPAll 
driver). This feature is supported in multirequest mode 
only. 

is the first channel number. Default is channel number 
o. 

is the number of channels. Default is 1 channel. 

21-9 



LABORATORY PERIPHERAL ACCELERATOR DRIVER 

ind receives a success or failure code as follows: 

1 indicates that 
initialized. 

the sweep was successfully 

0 indicates an illegal argument list, or SETIBF was not 
called prior to this call. 

-1 indicates a QIO directive failure. The directive 
error code is placed in IOSB{l) in IBUF. 

NOTE 

The ind parameter is not supported by 
the K-series support routines. If 
compatibility with K-series routines is 
desired, this parameter must be ignored. 

21.3.1.6 DISWP: Initiate Synchronous Digital Input Sweep - The DISWP 
routine initiates a synchronous digital input sweep through a DRll-K. 
It can be called in multirequest mode only. 

The DISWP call is as follows: 

where 

CALL DISWP {ibuf, lbuf, [nbuf], [mod1e], [idwell], [iefn], [ldelay], 
[iunit], [nchn], [ind]) 

ibuf 

lbuf 

nbuf 

mode 

is a 40-word array initialized by the SETIBF routine. 
The first two words of the array are the I/O status 
block { IOSB). 

is the size in words of each data buffer. All data 
buffers must be equal in size and lbuf must be greater 
than 5. 

is the number of buffers to be filled. If nbuf is 0 or 
defaulted, indefinite sampling occurs. The STPSWP 
routine is used to terminate indefinite sampling. 

specifies the sampling options. The default is O. The 
plus signs {+) preceding the mode bit values listed 
below indicate that they are independent and can be 
ADDed or ORed together. All bit values not listed below 
are reserved. 

The following values can be specified: 

0 Immediate start. This is the default mode. 

+512 External trigger. The input sampling will be 
triggered by interrupts generated by the DRll-K's 
external control lines or its input bits if they 
are interrupt enabled. 

+1024 Time stamped sampling with Clock B. The double 
word consists of one data word followed by the 
value of the 16-bit clock at the time of the 
sample. IOSB{2) contains the number of 2-word 
samples in the buffer. 

21-10 

·~. 
I 



idwell 

ief n 

ldelay 

LABORATORY PERIPHERAL ACCELERATOR DRIVER 

+2048 Event marking. LAMSKS must be called to specify 
an event mark word and an event mark mask. 

+4096 Start method. If specified, digital input start. 
If clear, immediate start. LAMSKS must be called 
to specify a digital start channel and a digital 
start mask. The digital start channel need not 
differ from the ilnput channel (iunit). 

+16384 Data overrun NON-FATAL/FATAL. If selected, data 
overrun is considered non-fatal. The LPAll-K 
automatically fills buffer O. (See Section 21.4 
for a discussion of buffer management.) 

is the number of clock overflows (pulses) between data 
sample sequences. As an example, if idwell is 20 and 
nchn is 3, the following occurs: after 20 pulses, one 
channel is sampled on each of the next three pulses. 
Then, no sampling takes place for the next 20 pulses. 
In multirequest mode, this facility permits different 
sample rates for the same hardware clock rate and 
preset. 

If compatibility with K-series support routines is 
desired, the user task must first establish the clock 
preset by calling the CLOCKA routine. The default value 
(1) for the idwell parameter in the sweep start command 
must be used. For the K-series, this procedure sets the 
rate as desired. For the LPAll-K, this procedure 
results in idwell in the sweep call defaulting to 1, 
thus yielding the same clock rate. 

NOTE 

This parameter is called iprset in the 
K-series support routines described in 
Chapter 22. Its ·function is different 
from the idwell parameter described 
here. 

is an event flag number (1 to 28, 30 to 96), or the name 
of a completion routine, or O. If default or a value of 
0 is specified for iefn, event flag 30 is used for 
internal synchronization. If iefn is a valid event 
flag, the selected event flag is set as each buffer is 
filled. Note that event flag 29 is reserved for use by 
the LPAll-K support routines for internal 
synchronization. If iefn is greater than 96, it is 
considered to be a completion routine that will be 
called with a JSR PC. Such routines must return with an 
RTS PC instruction (or a FORTRAN RETURN statement). 
Further, FORTRAN completion routines must not perform 
I/O through the FORTRAN runtime system since this may 
cause unpredictable results or fatal task errors. 

If multiple sweeps are initiated, the user task should 
specify different event flags. This limitation cannot 
be emforced by the LPAll driver. 

is the delay from start event (DRll-K) until the first 
sample in irate units. Default or 0 indicates no delay. 

21-11 



iunit 

nchn 

LABORATORY PERIPHERAL ACCELERATOR DRIVER 

is the DRll-K unit number. Default is unit number O. 
Values 0-4 are valid. 

is the number of channels. The LPAll-K treats each 
DRll-K in its configuration as one channel. Default is 
1 channel. 

ind receives a success or failure code as follows: 

1 indicates that 
initialized. 

the sweep was successfully 

0 indicates an illegal argument list, or SETIBF was not 
called prior to this call. 

-1 indicates a QIO directive failure. The directive 
error code is placed in IOSB(l) in IBUF. 

The nchn and 
supported by 
routines. If 

NOTE 

ind parameters are not 
the K-series support 

compatibility with 
routines is desired, 

parameters must be 
K-series support 
these last two 
ignored. 

21.3 .1. 7 DOSWP: Initiate Synchronous Digital Output Sweep - The 
DOSWP routine initiates a synchronous digital output sweep through, a 
DRll-K. It can be called in multirequest mode only. 

The DOSWP call is as follows: 

where 

CALL DOSWP (ibuf, lbuf, [nbuf], [mod,~], [idwell], [iefn], ldelay, 
[iunit], [nchn], [:ind]) 

ibuf 

lbuf 

nbuf 

mode 

is a 40-word array initialized by the SETIBF routine. 
The first two words of the array are the I/O status 
block (IOSB). 

is the size in words of each data buffer. All data 
buffers must be equal :in size and lbuf must be greater 
than 5. 

is the number of buffers to be filled. If nbuf is 0 or 
default, indefinite sampling occurs. The STPSWP routine 
is used to terminate indefinite sampling. 

specifies the start criteria. 

The following values can be specified in the high-order 
byte of mode: 

0 Immediate start. This is the default mode. 

+512 External trigger. The output sampling will be 
triggered by interrupts generated by the DRll-K's 
external control lines or its input bits if they 
are interrupt enabled. 

21-12 



idwell 

iefn 

ldelay 

LABORATORY PERIPHERAL ACCELERATOR DRIVER 

+4096 Start method. If set, digital input start. If 
clear, immediate start. LAMSKS must be called to 
specify a digital start channel and a digital 
start mask. The digital start channel need not 
differ from the output channel (iunit}. 

+16384 Data overrun NON-FATAL/FATAL. If selected, data 
overrun is considered non-fatal The LPAll-K 
automatically fills buffer O. (See Section 21.4 
for a discussion of buffer management.} 

is the number of clock overflows (pulses} between data 
sample sequences. For example, if idwell is 20 and nchn 
is 3, the following occurs: after 20 pulses, one 
channel is sampled on each of the next three pulses. 
Then, no sampling takes place for the next 20 pulses. 
In multirequest mode, this facility permits different 
sample rates for the same hardware clock rate and 
preset. 

If compatibility with K-series support routines is 
desired, the user task must first establish the clock 
preset by calling the CLOCKA routine. The default value 
(1) for the idwell parameter in the sweep start command 
must be used. For the K-series, this procedure sets the 
rate as desired. For the LPAll-K, this procedure 
results in idwell in the sweep call defaulting to 1, 
thus yielding the same clock rate. 

NOTE 

This parameter is called iprset in the 
K-series support routines described in 
Chapter 22. Its function is different 
from the idwell parameter described 
here. 

is an event flag number (1 to 28, 30 to 96}, or the name 
of a completion routine, or O. If default or a value of 
0 is specified for iefn, event flag 30 is used for 
internal synchronization. If iefn is a valid event 
flag, the selected event flag is set as each buffer is 
filled. Note that event flag 29 is reserved for use by 
the LPAll-K support routines for internal 
synchronization. If iefn is greater than 96, it is 
considered to be a completion routine that will be 
called with a JSR PC. Such routines must return with an 
RTS PC instruction (or a FORTRAN RETURN statement}. 
Further, FORTRAN completion routines must not perform 
I/O through the FORTRAN runtime system since this may 
cause unpredictable results or fatal task errors. 

If multiple sweeps are initiated, the user task should 
specify different event flags. This limitation cannot 
be enforced by the LPAll driver. 

is the delay from start event (DRll-K} until the first 
sample in irate units. A minimum delay of 150 
microseconds is required (not verified by the LPAll 
driver}. 

21-13 



iunit 

nchn 

LABORATORY PERIPHERAL ACCELERATOR DRIVER 

is the DRll-K unit number. Default is unit number O. 
Values 0-4 are valid. 

is the number of channels. The LPAll-K treats each 
DRll-K in its configuration as one channel. Default is 
1 channel. 

ind receives a success or failure code as follows: 

1 indicates that the sweep was successfully initialted. 

0 indicates an illegal argument list, or SETIBF was not 
called prior to this call. 

-1 indicates a QIO directive failure. The directive 
error code is placed in IOSB(l) in IBUF. 

The nchn and 
supported by 
routines. If 

NOTE 

ind parameters are not 
the K-series support 

compatibility with 
routines is desired, 

parameters must be 
K-series support 
these last two 
ignored. 

21.3.1.8 FLT16: Convert Unsigned Integer to a Real Constant - The 
FLT16 routine converts an unsigned 16-bit integer to a real constant 
(REAL*4). It can be invoked as a subroutine or a function as follows: 

CALL FLT16 (ival,val) 

or 

val=FLT16(ival[,val]) 

where 

ival is an unsigned 16-bit integer. 

val is the converted (REAL*4) value. 

21.3.1.9 IBFSTS: Get Buffer Status - The IBFSTS routine returns 
information on buffers being used in a sweep. 

The IBFSTS call is as follows: 

where 

CALL IBFSTS (ibuf,istat) 

ibuf 

is tat 

is the 40-word array specified in the call 
initiated a sweep. 

that 

is an array with as many elements as there are buffers 
involved in the sweep. The maximum is 8. IBFSTS fills 
each element in the array with the status of the 
corresponding buffer. The possible status codes are as 
follows: 

21-14 



·~· 

LABORATORY PERIPHERAL ACCELERATOR DRIVER 

+2 indicates that the buffer is in the device queue. 

+1 

That is, RLSBUF has been called for this buffer. 

indicates that the buffer is in the user task 
queue. That is, it is full of data (for input 
sweeps) or is available to be filled (for output 
sweeps). 

0 indicates that the status of the buffer is 
unknown. That is, it is not the current buffer 
nor is it in either the device or the user queue. 

-1 indicates that the buffer is currently in use. 

21.3.1.10 IGTBUF: Return Buffer Number - The IGTBUF routine returns 
the number of the next buffer to use. This routine should be called 
by user task completion routines to determine which is the next buffer 
to access. It should not be used if an event flag was specified in 
the sweep-initiating call; if an event flag was specified, use the 
IWTBUF routine. 

IGTBUF can be invoked as a subroutine or a function as follows: 

or 

where 

CALL IGTBUF (ibuf,ibufno) 

ibufno=IGTBUF(ibuf [,ibufno]) 

ibuf 

ibufno 

is the 40-word array specified in the call that 
initiated a sweep. 

receives the number of the next buffer to access. If 
there is no buffer in the queue, ibufno contains -1. 

On the return from a call to IGTBUF, the following are the possible 
combinations of ibufno and IOSB contents: 

ibufno IOSB (1) ----
n 400 

(octal) 

n l 

-1 0 

-1 1 

IOSB (2) 

(word count) 

(word count) 

0 

0 

21-15 

Explanation 

Normal buffer complete. 
Sweep still active. 

Buffer complete. Sweep 
terminated. There may be 
additional buffers in the 
queue filled and ready for 
processing. 

No buffers in queue. 
Request still active. 

No buffers in 
Sweep terminated. 

queue. 



ibufno 

-1 

LABORATORY PERIPHERAL ACCELERATOR DRIVER 

I OSB ( 1) 

RSX-llM 
error code 
(decima 1) 

IOSB ( 2) 

LPAll-K 
error code 
(octal) 

Explanation 

No buffers in queue. 
Sweep terminated due to 
error condition. (Refer 
to Section 21.3.3 for 
error code summary.) Note 
that the error is not 
returned until there are 
no more buffers in the 
user queue. 

21.3.1.11 INXTBF: Set Next Buffer - The INXTBF routine alters the 
normal buffer selection algorithm. It allows the user task to specify 
the number of the next buffer to be filled or emptied. 

INXTBF can be invoked as a subroutine or a function as follows: 

CALL INXTBF (ibuf,ibufno[,ind]) 

or 

where 

ind=INXTBF(ibuf,ibufno[,ind]) 

ibuf 

ibufno 

is the 40-word array specified in the call 
initiated a sweep. 

that 

is the number of the next buffer the user wants filled 
or emptied. The buffer must already be in the device 
queue. 

ind receives an indication of the result of the operation: 

0 indicates that the specified buffer was not in the 
device queue. 

1 indicates that the next buffer was successfully set. 

21.3.1.12 IWTBUF: Wait for Buffer - 'rhe IWTBUF routine allows a user 
task to wait for the next buffer to fill or empty. It should be used 
in conjunction with the specification of an event flag in the 
sweep-initiating call. This routine should not be used if a 
completion routine was specified in the call to initiate a sweep; 
when event flags are specified, use the IGTBUF routine. 

IWTBUF can be invoked as a subroutine or a function as follows: 

or 

where 

CALL IWTBUF (ibuf, [iefn], ibufno) 

ibufno=IWTBUF (ibuf, [iefn], [ibufno]) 

ibuf is the 40-word array specified in the call 
initiated a sweep. 

21-16 

that 

""'· 

~ 
' l 



'-"' 

'-"i 

ief n 

ibufno 

LABORATORY PERIPHERAL ACCELERATOR DRIVER 

is the event flag on which the task will wait. This 
should be the same event flag as that specified in the 
sweep-initiating call. If iefn equals 0 or default, 
event flag 30 is used. 

receives the number of the next buffer to be filled or 
emptied by the user task. 

On the return from a call to IWTBUF, the following are the possible 
combinations of ibufno and IOSB contents: 

ibufno 

n 

n 

-1 

-1 

I OSB ( 1) 

400 
(octal) 

1 

1 

RSX-llM 
error code 
(dee ima 1) 

IOSB(2) 

(word count) 

(word count) 

0 

LPAll-K 
error co die 
(octal) 

Explanation 

Normal buffer complete. 
Sweep still active. 

Buffer complete. Sweep 
terminated. There may be 
additional buffers in the 
queue filled and ready for 
processing. 

No buffers in 
Sweep terminated. 

queue. 

No buffers in queue. 
Sweep terminated due to 
to error condition. 
(Refer to Section 21.3.3 
for error code summary.) 
Note that the error is not 
returned until there are 
no more buffers in the 
user queue. 

21.3.1.13 LAMSKS: Set Masks Buffer - The LAMSKS routine initializes 
a user buffer containing a LUN, a digital start mask and event mark 
mask, and channel numbers for the two masks. The routine then assigns 
the LUN. Each DRll-K is considered to be one channel. Each channel 
has both input and output capabilities. 

LAMSKS must be called if digital input starting or event marking is to 
be utilized, or if a LUN other than the default LUN 7 will be assigned 
to LAO. LAMSKS must also be called if multiple LPAll-Ks are being 
used. If LAMSKS is to be called it must be called prior to calling 
SETIBF. Unlike SETIBF, LAMSKS does not have to be called before each 
sweep initiation unless one or more parameters are to be changed. 

The LAMSKS call is as follows: 

where 

CALL LAMSKS (lamskb, [lun], [iunit], [idsc], [iemc], [idsw], 
[ i emw] , [ind] ) 

lams kb 

lun 

iunit 

is a 4-word array. 

is a logical unit number. Default LUN is 7. 

is the physical unit number of the LPAll-K. 
physical unit number is LAO. 

21-17 

Default 



idsc 

iemc 

idsw 

iemw 

LABORATORY PERIPHERAL .A.CCELERATOR DRIVER 

is the digital start word channel~ Default is channel 
0. 

is the event mark word channel. Default is channel 0. 

is the digital start word mask. Default is 0 (disable 
digital input starting). 

is the event mark word mask. Default is 0 (disable 
event marking). 

ind receives a success or failure code as follows: 

1 indicates successful initia1ization. 

0 indicates an illegal argument list. 

-n indicates a LUN assignment failure. 
directive error code. 

NOTE 

n is the 

If compatibility with K-series support 
routines is desired, ignore this 
parameter. 

For a discussion of event marking and digital starting, see the 
LPAll-K Laroratory Peripheral Accelerator User's Guide. 

21.3.1.14 RLSBUF: Release Data Buffer - The RLSBUF routine declares 
one or more buffers free for use by the interrupt service routine. 

The RLSBUF routine must be called to release buffer(s) to the device 
queue before the sweep is initiated. The device queue must always 
contain at least one buffer to maintain continuous sampling. 
Otherwise, buffer overrun occurs (see Section 21.4 for a discussion of 
buffer management). Note that RLSBUF does not verify whether or not 
the specified buffers are already in a queue. 

The RLSBUF call is as follows: 

where 

CALL RL SB U F ( i bu f , [ i nd ] , n 0 [ , n 1 ••• , n 7] ) 

i buf 

ind 

nO,nl,etc. 

is the 40-word array specified in the call that 
initiated a sweep. 

receives a success or failure code as follows: 

0 indicates illegal buffer number specified, 
illegal number of . buffers specified, or a 
double buffer overrun has been detected. 

1 indicates bufferfs) successfully released. 

are the 
released. 

numbers (0-7) of the buffers to be 
A maximum of eight can be specified. 

21-18 



LABORATORY PERIPHERAL ACCELERATOR DRIVER 

21.3.1.15 RMVBUF: Remove Buffer from Device Queue - The RMVBUF 
routine removes a buffer from the device queue. 

The HMVBUF call is as follows: 

where 

CALL RMVBUF (ibuf,n[,ind]) 

ibu.f is the 40-word array specified in the call 
initiated a sweep. 

that 

n is the number of the buffer to remove. 

ind receives a success or failure code as follows: 

0 indicates that the specified buffer was not in the 
device queue. 

1 indicates that the specified buffer was removed from 
the queue. 

21.3.1.16 SETADC: Set Channel Information - The SETADC routine 
establishes channel start and increment information for all sweeps. 
The SETIBF routine must be called to initialize the 40-word array 
(ibuf) before SETADC is called. 

If, in the call to SETADC, nchn is 1 or inc is O, the single channel 
bit will be set in the mode word of the start RDA when the sweep start 
routine is called. 

SETADC can be invoked as a subroutine or a function as follows: 

where 

CALL SETADC (ibuf, [iflag], [ichn], [nchn], [inc], [ind]) 

or 

ind = ISTADC (ibuf, [i flag], [ichn], [nchn], [inc], [ind]) 

i buf 

iflag 

ichn 

nchn 

is a 40-word array initialized by the SETIBF routine. 

is ignored. It is included for compatibility with 
K-series support routines. 

is the first channel number. Default is O. If inc 
equals 0 (or default), ichn is the address of a random 
channel list. A random channel list is an array of n 
elements, where each element is a channel number. The 
final element must have bit 15 set to indicate the end 
of the list. 

is the number of samples to be taken per sequence. 
Default is 1 sample. 

inc is the channel increment. Default is 1. The user 
should specify an increment of 2 for differential A/D 
input. If inc equals O, ichn is an array of random 
channels to receive input. 

21-19 



ind 

LABORATORY PERIPHERAL ACCELERATOR DRIVER 

receives a success or failure code as follows: 

0 indicates an illegal channel number or SETIBF was 
not called prior to the SETADC call. 

1 indicates successful recording of channel 
information for the sweep call. 

21.3.1.17 SETIBF: Set Array for Buffered Sweep - The SETIBF routine 
initializes an array required by buffered sweep routines. 

The SETIBF call is as follows: 

where 

CALL SETIBF (ibuf, [ind], [lamskb],buf0[,bufl ••• buf7]) 

i buf 

ind 

lams kb 

bu fO, etc. 

is a 40-word array. 

receives a success or failure code as follows: 

0 indicates a parameter or buffer error. 

1 indicates the 
initialized. 

array was successfully 

is the name of a 4-word array. This array allows 
the use of multiple LPAll-Ks within the same 
program, since the LUN is specified in the first 
word of the array. Refer to the description of 
the LAMSKS routine. 

If compatibility with K-series software is 
desired, the defirnlt (LUN 7) lamskb parameter 
should be used, and LUN 7 will be assigned to LAO: 
in the task build command file for the user task. 

is the name of a buffer. A maximum of eight 
buffers can be specified. Any buffer names in 
excess of eight are ignored. At least two buffers 
must be specified to maintain continuous sampling. 

Each buffer specified in the call to SETIBF is assigned a number 
ranging from 0 to 7. 

The assignment of these numbers is based on the order in which buffer 
names appear in the argument list. The first buffer whose name 
appears in the list is assigned number O, the second is assigned 
number 1, and so forth. In all subsequent calls to other routines 
involving the set of buffers specified in a call to SETIBF, these 
numbers, rather than names, are used to refer to particular buffers. 

21.3.1.18 STPSWP: Stop Sweep - The STPSWP routine stops a sweep that 
is in progress. 

The STPSWP call is as follows: 

CALL STPSWP (ibuf [, iwhen], [ind]) 

21-20 

·~1 



"~ 

where 

ibuf 

iwhen 

ind 

LABORATORY PERIPHERAL ACCELERATOR DRIVER 

is the 40-word array specified in the call 
initiated a sweep. 

that 

specifies when to stop the sweep: 

0 stops the sweep immediately aborting the sweep. 
This is the default stop method. The sweep will be 
stopped asynchronously by the LPAll-K hardware. 
When IOSB(l) equals 1, the sweep has been stopped. 
Call IWTBUF continously after calling STPSWP until 
the sweep has actually been stopped. When stopping 
(aborting) a sweep in this manner the data contents 
of the current data buffer cannot be guaranteed. 

+n (any positive value) stops the sweep at the end of 
the current buffer. This is considered to be the 
normal means for stopping a sweep. 

-n (any negative value) is reserved. (Do not use.) 

receives a success or failure code as follows: 

1 indicates that the sweep will be stopped (at the time 
indicated by iwhen). 

0 indicates an illegal argument list. 

-n is a directive error code indicating that the stop 
sweep QIO failed. 

21.3.1.19 XRATE: Compute Clock Rate and Preset - The· XRATE routine 
allows the user task to compute a clock rate and preset. The clock 
rate divided by the clock preset yields the desired dwell 
(inter-sample interval). 

NOTE 

The XRATE routine can be used only on 
systems that have a FORTRAN or 
BASIC-PLUS-2 compiler. This module is 
not included with the other LPAll-K 
support routines in object module 
format. Rather, it is included in 
source code format with the K-series 
source modules in [45,10] on the system 
disk. 

XRATE can be invoked as a subroutine or a function as follows: 

CALL XRATE (dwell,irate,iprset,iflag) 

or 

adwell ; XRATE(dwell,irate,iprset,iflag) 

21-21 



where 

dwell 

irate 

iprset 

iflag 

adwell 

LABORATORY PERIPHERAL AC:CELERATOR DRIVER 

is the inter-sample time desired by the user. The 
time is expressed in decimal seconds (REAL*4). 

receives the computed clock rate as a value from 1 
to 5. 

receives the clock preset. 

specifies whether the computation is intended for 
Clock A or Clock B~ 

0 indicates the computation is for Clock A. 

nonzero indicates the computation is for Clock B. 

is the actual dwell rate for the clock based on 
the irate and iprset parameters. 

21.3.2 MACR0-11 Interface 

The MACR0-11 interface to the LPAll-K <:onsists of either the callable 
routines described in Section 21.3.1 or a set of device-specific QIO 
functions. 

21.3.2.l Accessing Callable LPAll-K Support Routines - MACR0-11 
programmers access the LPAll-K support routines through either of two 
techniques: 

l. The standard subroutine linkage mechanism and the CALL op 
code. 

2. Special-purpose macros that gcrnerate an argument list and 
invoke a subroutine. 

These techniques are described in the following subsections. 

21.3.2.l.l Standard Subroutine Linkage and CALL Op Code - LPAll-K 
routines can be accessed through use of the standard subroutine 
linkage mechanism and the CALL op code. The format of this procedure 
is: 

arglist: 

.PSECT 
MOV 
CALL 

code 
#arglist,R5 
lsubr 

.PSECT data 

.BYTE narg,O 

.WORD addrl 

.WORD addrn 

;ARGUMENT ADDRESS TO RS 
;CALL LPAll-K ROUTINE 

;NUMBER OF ARGUMENTS 
;FIRST ARGUMENT ADDRESS 

;LAST ARGUMENT ADDRESS 

In this sample, the two PSECT directives are shown only to indicate 
the noncontiguity of the code and data portions of the linkage 
mechanism. Within the argument list, any argument that is to be 
defaulted must be represented by a -1 address (i.e., 177777(8)). 

21-22 



·"--'. 

LABORATORY PERIPHERAL ACCELERATOR DRIVER 

21.3.2.1.2 Special-Purpose Macros - To facilitate the calling of 
LPAll-K support routines from a MACR0-11 program, two macros are 
provided in file [45,10] LABMAC.MAC. 'rhese macros are: 

1. !NITS 

2. CALLS 

!NITS is an initialization macro. It must be invoked at the beginning 
of the MACR0-11 source module. 

CALLS invokes an LPAll-K support routine. The format of this macro 
call is as follows: 

CALLS lsubr,<argl, ••• ,argn> 

where 

lsubr 

argl,etc. 

is the name of an LPAll-K support routine. 

are arguments to be formatted into an argument list 
and passed to the routine. Each argument can be 
either a symbolic name or a constant (interpreted as 
a positive decimal number) or can be defaulted. 

An example showing the use of these macros is as follows: 

!BUE': 
ISTJ!~T: 

STAHT: 

.TITLE 

.IDENT 

.BLKW 

.BLKW 
IN ITS 

EXAMPLE 
/01.00/ 
40. 
5 

INITIALIZATION 

FIND STATUS OF 5 SWEEP BUFFERS 
BEING USED IN CURRENT SWEEP 

CALLS IBFSTS(IBUF,ISTAT) 

.END START 

21.3.2.2 Device-Specific QIO Functions - Table 21-2 lists the 
device-specific functions of the QIO system directive macro that are 
available for the LPAll-K. Programmers using these functions are 
entirely responsible for buffer management (refer to Section 21.4) as 
well as all other interfaces (for example, the request descriptor 
array). Little (if ·any) performance improvement over the use of 
FOR'rRAN support routines can be expected by using QIOs. Therefore, it 
is recommended that routines described in Section 21.3.1 be used. 

21-23 



LABORATORY PERIPHERAL ACCELERATOR DRIVER 

Table 21-·2 
Device-Specific QIO Functions for the LPAll-K 

QIO Function Purpose 

IO.CLK Start clock 

IO.IN! Initialize LPAll-K 

IO.LOO Load microcode 

IO.STA Start data transfer 

IO.STP Stop request 

The MACR0-11 programmer must set up the appropriate Request Descriptor 
Array (RDA) before the corresponding QIO request is issued. In the 
case of the IO.STA function (start data transfer), the RDA is set up 
with buffer virtual addresses. The LPAll-K driver address checks and 
relocates these buffers, changing them from single word to double word 
addresses. The RDA is fully described in the source code of the 
driver. 

21.3.2.2.1 IO.CLK - The IO.CLK function writes an image into the 
LPAll-K real-time clock control register and issues a clock start 
command. The format of the QIO request is: 

where 

QIO$C IO.CLK, ••• ,<mode,ckcsr,preset> 

mode 

ckcsr 

preset 

is the mode. 

is the image to be written into the clock control 
register. To achieve the function of clock rate -1 
(see Section 21.3.1.2), for Clock A only set a clock 
rate of 0 and set the Schmitt Trigger 1 Interrupt 
Enable bit in the Clock A Status Register. 

is the clock preset. 

21.3.2.2.2 IO.IN! - The IO.IN! function initializes the LPAll-K. The 
task issuing the QIO request must be privileged. The format of the 
request is as follows: 

where 

QIO$C IO.INI, ••• ,<irbuf,278.> 

irbuf is a buffer containing an LPAll-K initialize RDA. 
buffer size must be at least 278. bytes. 

The 

21.3.2.2.3 IO.LOD - The IO.LOO function loads a buffer of LPAll-K 
microcode. The issuing task must be privileged. The function 
verifies that there are no active users for the LPAll-K and resets the 

21-24 



·---· ·-----------------~--

LABORATORY PERIPHERAL ACCELERATOR DRIVER 

hardware. It then loads and verifies the microcode, starts the 
LPAll-K and enables interrupts. The function returns to the issuing 
task when the Ready Interrupt is posted. 

The format of the QIO request for the IO.LOO function is as follows: 

where 

QIO$C IO.LOD, ••• ,<mbuf,2048.> 

mbuf is a buffer containing microcode to be loaded. 
buffer size must be 2048. bytes. 

The 

21.3.2.2.4 IO.STA - The 
transfer start command. 

IO.STA function issues an 
The format of the QIO request 

LPAll-K 
is: 

data 

where 

QIO$C IO.STA, ••• ,<bufptr,40.> 

bufptr is a pointer to a buffer containing an 
start RDA. The buffer size must 
bytes. 

LPAll-K sample 
be at least 40. 

The subfunction codes defined for the IO.STA function are: 

Bit 0 = 0 

Bit 0 1 

indicates that an AST is to be generated for every 
buffer (if an AST is specified). 

indicates that an AST is to be generated only for 
exception conditions. 

21.3.2.2.5 IO.STP - The IO.STP function stops a data transfer 
request. The issuing task must be the same task that initiated the 
data transfer. The format of the QIO request is as follows: 

where 

QIO$C IO.STP, ••• ,<userid> 

user id is the index number associated with the user whose 
request is to be stopped. 

21.3.3 The I/O Status Block (IOSB) 

Each active sweep must have its own I/O status block. The I/O status 
block (IOSB) is a 2-word array allocated in the user program. It is 
used to receive the status of a call to an LPAll-K support routine. 
When a data sweep routine is called, the IOSB is always the first two 
words of the 40-word array specified as the first argument of the 
call. The first word of the IOSB contains the status code. The 
second word contains the buffer size in words. 

21-25 



LABORATORY PERIPHERAL ACCELERATOR DRIVER 

NOTE 

The 2-word IOSB is not directly used by 
the LPAll-K driver. Instead, the driver 
uses a 4-word IOSB for internal 
communications with support routines; 
this 4-word IOSB is completely 
transparent to FORTRAN support routine 
users. However, when issuing QIOs, it 
is the 4-word IOSB that must be 
referenced. 

The first two words of the 4-word IOSB 
function as a 2-word overall IOSB for 
returning QIO completion status. The 
driver returns status such as sweep 
done, system errorsr and LPAll-K 
hardware errors via this 2-word portion 
of the I OSB. 

The remaining two words function as an 
intermediate IOSB for passing status 
information during the data sweeps. 
MACR0-11 programs using QIO calls always 
receive the correct 2-word portion of 
the IOSB in the AST generated by the 
LPAll-K driver. 

The codes that can appear in the first word of an I/O status block are 
in ISA-compatible format (with the exception of the I/O pending 
condition). Table 21-3 lists all return codes. 

IOSB ( 1) 

FORTRAN MACRO 

0 

l 

301 

302 

303 

304 

305 

306 

309 

IO.PND 

rs.sue 

IE.BAD 

IE. I FC 

IE.DNR 

IE.VER 

IE.ULN 

IE.SPC 

IE .DUN 

Table 21-· 3 
Contents of First Word of IOSB 

Meaning 

Operation pending; I/O in progress 

Successful completion 

Invalid arguments 

Invalid function code 

Device not ready (See Section 21.7) 

Unrecoverable hardware error caused by powerfail 

LUN not assigned to LPAll-K 

Illegal buffer specification 

Insufficient UMRs available for request 

(continued on next page) 

21-26 

~! 



LABORATORY PERIPHERAL ACCELERATOR DRIVER 

I OSB ( 1) 

FORTRAN MACRO 

3131 IE .DAO 

3151 IE.ABO 

316 IE.PR! 

3171 IE .RSU 

320 IE.BLK 

323 IE.NOD 

3591 IE. FHE 

366 IE .BCC 

397 IE .I EF 

Table 21-3 (Cont.) 
Contents of First Word of IOSB 

Meaning 

Data overrun 

Request terminated; LPAll-K 
IOSB ( 2) 

Privilege violation 

Resource in use (load microcode 

Execut:ive blocked driver waiting 

System dynamic memory exhausted 

Fatal hardware error on device 

LPAll-K load microcode error 

Invalid Event Flag specified 

status code 

only) 

for UMRs 

in 

1 IOSB(2) contains an LPAll-K status code. Refer to the LPAll-K 
User's Manual for explanation of status code. 

21 • 4 BUFFER MANAGJgMENT 

The management of buffers for data transfers by LPAll-K support 
routines involves the use of two FIFO (First-In, First-Out) queues: 

1. The device queue (DVQ) 

2. The user queue (USQ). 

The device queue (DVQ) contains the numbers of all buffers that the 
user task has released to the support routines in a call to RLSBUF. 
The buffers represented by these numbers are ready to be filled with 
data (input sweeps) or to be emptied of data (output sweeps). Any 
buffer specified in a call to INXTBF must already be in DVQ. 

The user queue (USQ) contains the numbers of buffers available to the 
user tasko For output sweeps, this queue contains the numbers of 
buffers that have already been emptied by the driver. For input 
sweeps, the buffers represented by USQ are those which are filled with 
data. In both instances, the user task determines the next buffer to 
use (that is, it extracts the first element of USQ) by calling IGTBUF 
or IWTBUF. 

Both the DVQ and USQ are initialized to -1, indicating no buffers, 
when the user task calls the SETIBF routine. The user task must call 
RLSBUF before initiating any sweep, since at least one buffer must be 
present in DVQ for the first input or output to occur. 

For input sweeps, it is recommended that the user task call RLSBUF, 
specifying the numbers associated with all the buffers to be used in 
the sweep. 

21-27 



LABORATORY PERIPHERAL J~CCELERATOR DRIVER 

For output sweeps, the user task can specify two buffers (for 
continuous sweeps) in the call to RLSBUF. The first action then taken 
either in a completion routine or aftE~r a call to IWTBUF is to release 
the next buffer. However, note that this approach does not represent 
true multiple buffering since data overrun occurs if the second buffer 
is not released in time. 

If a buffer overrun occurs, the LPAll-K normally aborts the affected 
sweep and returns an appropriate error code. However, the option of 
having buffer overruns treated as non-fatal error conditions can be 
selected by specifying the appropriate mode argument in any of the 
sweep calls. Then, when a buffer overrun occurs, the LPAll-K 
automatically defaults to buffer 0 for its next data buffer. In this 
case, the following special considerations regarding buffer management 
must be observed. 

Call RLSBUF before calling any of the sweep control calls. However, 
if buffer overruns are to be treated as non-fatal conditions, the task 
should not specify buffer zero in the initial call to RLSBUF. (It is 
assumed at the outset that buffer zero is available for use in this 
manner and, therefore, should not be released.) 

Once a buffer overrun has occurred, buffer 0 is used by the LPAll-K 
and placed on the user queue just like any other data buffer. At this 
point, buffer 0 is no longer available for buffer overruns. The task 
then removes buffer 0 from the use·r queue via IWTBUF or IGTBUF for 
possible processing. It is the task responsibility to release buffer 
0 for future buffer overruns by specifying buffer 0 in a call to 
RLSBUF. Note that the task cannot determine that buffer overrun 
occurred until it receives buffer 0 from IWTBUF or IGTBUF. 

The LPAll-K always uses buffer 0 following a buffer overrun if that 
condition was specified as non-fatal. Thus, when a second buffer 
overrun occurs before buffer 0 has been processed and made available 
for that purpose, a condition called "double buffer overrun" occurs. 
In this case, buffer 0 is not put on the user queue since the actual 
contents of buffer O cannot be determined at this time, and buffer 0 
may actually still be on that queue. The double buffer overrun 
condition is detected when the task attempts to make buffer 0 
available for future buffer overruns via the call to RLSBUF. Note 
that this is the first time that the task is notified of the 
condition. If a double buffer overrun condition is detected during 
the call to RLSBUF, the task must be notified of the condition 
indicating that the previous processing of buffer 0 contents may have 
been of no value (the LPAll-K probably changed the buffer's contents 
while it was being processed). 

21.5 LOADING THE LPA-11 MICROCODE 

LAINIT is a privileged task that is used to load all versions of 
LPAll-K microcode. When called, LAINIT issues an IO.LOO function in a 
QIO request, followed by IO.IN! and IO.CLK function requests. The 
IO.CLK function starts the clock with a default clock rate of l MHz. 

During SYSGEN Phase 1, a command file is generated with LPAll-K 
support selected through operator response to SYSGEN questions. 
During SYSGEN Phase 2, the command file builds LAINIT using additional 
information obtained through operator response to SYSGEN questions. 
This information further defines the LPAll-Ks system environment and 
characteristics for the specific user application. 

21-28 

AllJ\, 

~ 
! -

""· 'I 



LABORATORY PERIPHERAL ACCELERATOR DRIVER 

Separate tasks are built during SYSGEN that invoke LAINIT to load 
appropriate LPAll-K microcode. These tasks are named LAINn, where n 
corresponds to unit number {starting with unit number 0) for each 
LPAll-K unit in the system. Thus, LAINIT is never directly invoked by 
the user. 

SYSGEN automatically generates command lines in INSTALL.CMD that will 
install LAINIT and LAINO; LAINl and subsequent LPAll-K unit-numbered 
tasks are not automatically included in the command file. Thus, the 
user must install these tasks {if they are required) via VMR or MCR. 

Once LAINIT and LAINn tasks have been installed, a particular version 
of LPAll-K microcode for a specific unit can be loaded by running the 
corresponding LAINn task. For example, 

>RUN LAIN2 

executes LAIN2, loading microcode for LPAll-K unit 2. 

When a power:fail recovery occurs, the LPAll-K driver terminates all 
outstanding activity and requests execution of initiating task{s) 
{LAINn) for each unit. This automatically provides powerfail recovery 
for the LPAll-K microprocessor, provided the LAINIT and LAINn tasks 
are installed. Note that when the RSX-llM system is either 
bootstrapped or the LPAll-K driver is loaded, a simulated powerfail 
{resulting in driv~r powerfail recovery) occurs, loading microcode for 
each LPAll-K unit. In addition, when the LPAll-K is brought on-line 
on an RSX-llM-PLUS system, a simulated powerfail occurs. 

If the request for the initiating.Ytask {LAINn) fails or the loader 
fails to load the driver, the LPAll-K unit does not become 
initialized. Any further attempt to use the LPAll-K will fail with 
the device not ready {IE.DNR) code returned to the requesting task. 

All versions of LAINn set the real-time clock frequency to lMHz by 
default. The UCB device characteristics word 4 {U.CW4) contains a 
16-bit buffer preset value that controls the rate of ticks (that is, 
the rate at which the clock interrupts). This value can be set 
dynamically or during SYSGEN. The quotient resulting when this value 
is divided into 1 MHz is the rate of ticks. For example, if U.CW4 
contains 2, the tick rate is 500kHZ. The user can issue a Get LUN 
Information system directive to examine the preset value and the MCR 
SET /BUF command can be used to modify it while the system is running. 
This modification will take effect the next time the LPAll-K is 
reloaded with micro-code via LAINx. 

21.6 UNLOADING THE DRIVER 

In order to attain maximum LPAll-K performance, the LPAll-K driver is 
designed to appear not busy to the RSX-llM/M-PLUS Executive. As a 
result, the potential problem exists that any privileged user can 
unload the driver while the LPAll-K is servicing other users. 
Therefore, the user must first determine that the LPAll-K is not being 
used prior to unloading the driver. 

21.7 TIMEOUT OF THE LPAll-K 

The error code IO.DNR 
processing a user request. 
spE!C i al meaning. 

means that the LPAll-K timed out while 
In dedicated mode, this condition can have 

21-29 



LABORATORY PERIPHERAL ACCELERATOR DRIVER 

The LPAll-K driver (LADRV) disables the timeout countdown following 
LPAll-K acknowledgement of the user task request. In all cases in 
multi-request mode, and in most cases in dedicated mode, this 
acknowledgement is received .almost immediately after the user task 
request is passed to the LPAll-K. The only case when this is not true 
is when the user task requests that a data sweep be started while in 
dedicated mode. In this case, the LPAll-K waits to transfer the first 
256 words of data before acknowledging the sweep request. 

If a task is sampling at extremely slow data rates in dedicated mode, 
the time to transfer that first 256 words may exceed the timeout count 
for the device. This can be avoided by using the multi-request mode. 

If a task must use dedicated mode for high sampling rates, and the 
start of the sweep will be delayed for an extended period of time, the 
timeout count for the LPAll-K must be disabled. (Refer to the note in 
LADRV describing this timeout probl1~m and showing where the timeout 
can be safely disabled for sweep calls.) 

NOTE 

This procedure will disable the 
detection of real timeouts for sweep 
calls in dedicated mode~ 

21.8 22-BIT ADDRESSING SUPPORT 

The LPAll-K driver supports 22-bit addressing on systems having that 
capability. When the system employs 22-bit addressing, certain 
restrictions are imposed. As a result,, tasks written for use with 
earlier LPAll-K driver versions may not run without user task 
modifications. These restrictions are discussed in the remainder of 
this section. 

When the LPAll-K driver is executed on 22-bit systems, a certain 
contiguity of user task data structures ~ust be established. The task 
data transfer buffers and the IBUF array must be contiguous. In 
addition the task random channel list (if present) and the last data 
transfer buffer must be contiguous. Thus, the correct sequence for 
user task data is the IBUF array, followed by the task data transfer 
btiffers, followed by the task random channel list. Failure to 
structure the user task data in this manner can result in illegal 
buffer specification errors (IE.SPC) being returned or possible 
corruption of task address space by data sweeps. 

Since the LPAll-K user task can potentially request more buffer space 
than there is UMR mapping space, a limit on the total number of UMRs 
that can be used by the LPAll-K driver at any time must be specified. 
This limit is specified during SYSGEN part 1, along with the interrupt 
vector and CSR address for the LPAll-K. 

If a task UMR requirements will cause the total number of UMRs 
currently in use by the LPAll-K to exceed the SYSGEN-specified limit, 
the task will receive an Insufficient: UMRs Available For Request 
(IE.DUN) error code in IOSB(l) of the IBUF array. 

21-30 



LABORATORY PERIPHERAL ACCELERATOR DRIVER 

This condition can be avoided by setting the UMR limit to the expected 
minimum number required for smooth LPAll-K operation for all expected 
users. Since each UMR maps 8K bytes, each user's requirements can be 
calculated as follows: 

• Each IBUF array requires 7 6. bytes of UMR mapping 

• Add this result to the byte length of all the contiguous 
transfer buffers to be used in the sweep 

• Add this result to the byte length of the random channel list 
(if it exists) 

• The number of UMRs the user task needs is the total byte count 
divided by 8192 (SK) and rounded up to the next 8K (if not an 
exact multiple of 8192). 

Because there are only 31 UMRs available for the entire system, it is 
not desirable to allow the LPAll-K driver (through the 
SYSGEN-specified limit) to have access to all or nearly all UMRs at 
any given time. Since other device drivers may also require UMR 
mapping, the total allocation of UMRs by LADRV can slowly choke a 
system, and for that reason allocation of UMRs must be carefully 
considered. 

The UMR allocation limit for the LPAll-K can be changed by directly 
modifying the value in the LPAll-K's UCB word U.LAUB; it is not 
necessary to do another ~YSGEN. Use the OPEN command to access and 
change the limit to the new value. Possible values can range from 
0-31. Then, make the required change, UNLOAD, and then LOAD the 
LPAll-K driver. If the LPAll-K driver is resident, the value in 
U.LAUB+2 must also be changed to the new value. 

NOTE 

Be sure the LPAll-K is idle before 
attempting to access the UCB. 

It is possible for a condition to exist where there may not be enough 
UMRs available for the Executive to allocate to the driver at the time 
the request is made, even if the number of UMRs necessary to map the 
user task's request are within the SYSGEN-defined limit. When this 
happens, the Executive blocks the driver until its UMR request can be 
granted. Since this condition can introduce sweep timing errors, the 
current sweep is unconditionally aborted and an appropriate error code 
(IE.BLK) is returned to the task in IOSB(l). 

21-31 



LABORATORY PERIPHERAL A.CCELERATOR DRIVER 

21.9 SAMPLE PROGRAMS 

c 
c 

LPAll-K SAMPLE PROGRAM 

C SAMPLE SHOWS THE BASIC FLOW FOR PROGRAMMING THE LPAll-K IN A HIGHER 
C LEVEL LANGUAGE. IT IS EXPECTED THE USER WILL TEST IOSB RETURNS AND 
C ERROR INDICATORS (IND) AS NECESSARY. SYNCHRONOUS PROGRAM TERMINATION 
C IS SUGGESTED. NOTE: THIS SAMPLE PROGRAM WILL NOT EXECUTE CORRECTLY IN 
C 22-BIT MODE 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

2 

c 
5 

D/A DEDICATED MODE WITH CONTINUOUS SAMPLING 

PROGRAM RUNS 3 LOOPS (BASED ON NCNT). ON FIRST LOOP, 
STOPS SYNCHRONOUSLY AT END OF PRESENT BUFFER WHICH HAPPENS 
TO BE BUFFER #3 BEING FILLED FOR THE 2ND TIME. 
THE 2ND LOOP TERMINATES ASYNCHRONOUSLY (IWHEN=O). 
THE 3RD LOOP TERMINATES ASYNCHRONOUSLY ALSO. 

DIMENSION IBUF(40),IOSB(2),NB(l024,8) 
EQUIVALENCE (IBUF(l),IOSB(l)) 
EQUIVALENCE ( N 0 , NB ( 1 , 1 ) ) , ( N 1 , NB ( 1 , 2 ) ) , ( N 2 , NB ( 1 , 3 ) ) , ( N 3 , NB ( 1 , 4 ) ) 
E Q U IV ALEN CE ( N 4 , N B ( 1 , 5 ) ) , ( N 5 , NB ( 1 , 6 ) ) , ( N 6 , N B ( 1 , 7 ) ) , ( N 7 , N B ( 1 , 8 ) ) 
CALL CLOCKA (4,-1) 
IWHEN=l 
NCNT=O 
ICNT=l 
CALL SETIBF(IBUF,IND,,NO,Nl,N2,N3) 

C INITIALIZE BUFFERS TO ALL -2'S 
c 

10 

20 

40 

300 

DO 10 J=l,8 
DO 10 K=l,1024 
NB (K ,J) =-2 
CALL RLSBUF(IBUF,IND,1,2,3) 
CALL DASWP(IBUF,1024,,,,20) 
CALL IWTBUF(IBUF,20,IBUFNO) 
CALL RLSBUF (IBUF,IND,IBUFNO) 
WR I TE ( 1 , 3 0 0 ) I BU FN 0 , I 0 SB ( 1 ) , I 0 SB ( 2 ) , I CN T 
IF (NCNT.EQ.3) GOTO 40 
IF (ICNT.EQ.6) GOTO 2 
I CNT= ICNT+ 1 
IF (ICNT.NE.4) GOTO 20 
CALL STPSWP (IBUF,IBUFNO) 
IWHEN=O 
NCNT=NCNT+l 
GOTO 20 
CALL IGTBUF(IBUF,IBUFNO) 
WRITE (1,300) IBUFNO,IOSB (1) ,IOSB (2) ,ICNT 
FORMAT (3X,Il0,208,Il0) 
STOP 
END 

The following sample program will test the digital I/O interface of 
the LPAll-K. It will execute correctly in 22-bit mode. 

c 
C PROGRAM TO TEST DIGITAL INPUT AND OUTPUT FOR LPAll-K 
C DIGITAL EQUIPMENT CORPORATION 
c 
C THIS PROGRAM IS DESIGNED TO OUTPUT A DATA BUFFER TO THE LPAll-K 
C DIGITAL I/O INTERFACE AND AT THE SAME INSTANT FOR EACH SAMPLE 
C WORD READ THE RESULTS BACK. THE DATA BUFFERS ARE COMPARED TO 
C MAKE SURE THE TRANSFER IS COMPLETED SUCCESSFULLY. 

21-32 



c 
c 
c 
c 
c 
c 
c 

LABORATORY PERIPHERAL ACCELERATOR DRIVER 

****** NOTE! ****** 
THIS PROGRAM WILL WORK IF AND ONLY IF THE DIGITAL I/O MODULE 
UNIT SPECIFIED HAS THE MAINTENANCE JUMPER "WRAP-AROUND" CABLE 
INSTALLED ! ! ! ! 

C RESERVE STORAGE F'OR LPAll-K ROUTINES 
c 
c 
c 
c 
c 

THIS PROGRAM WILL WORK IN 22-BIT MODE 

DATA BUFFERS 

INTEGER*2 IBUFI(40),INBUF(300,4) 
INTEGER*2 COMMI(l240) 
EQUIVALENCE(IBUFI(l),COMMI(l)) 
EQUIVALENCE(INBUF(l,l),COMMI(41)) 

INTEGER*2 IBUF0(40),0UTBUF(300,4) 
INTEGER*2 COMMO(l240) 
EQUIVALENCE(IBUFO(l),COMMO(l)) 
EQUIVALENCE(OUTBUF(l,l),COMM0(41)) 

C RESERVE STORAGE AND EQUIVALENCE FOR RSX I/O STATUS BLOCKS 
LOGICAL*! INIOS(4),0UTIOS(4) 
EQUIVALENCE ( IBUFO ( 1) ,OUTIOS ( .1)), ( IBUFI ( 1), INIOS ( 1)) 

c 
C SET BUFFER SIZE TO USE FOR THIS REQUEST - MAXIMUM QF 300 WITHOUT 
C CHANGING THE DIMENSION STATEMENTS. MUST BE EVEN! 

ISIZE=300 
c 
C INITIALIZE THE PASS COUNTER FOR THE LOOP 

IPASS=l 
c 
C SET LPAll-K LOGICAL UNIT NUMBER AND ASSIGN IT TO LAO: 

c 

ILUN=7 
CALL ASSIGN(ILUN,'LA:',O,ISTAT) 
IF(ISTAT .LT. O)GO TO 100 

C INITIALIZE THE OUTPUT DATA BUFFER 
DO 2 J=l,4 
DO 2 I=l,ISIZE,2 
OUTBUF(I,J)="l25252 
OUTBUF(I+l,J)="052525 

2 CONTINUE 
c 
C STOP LPAll-K REAL TIME CLOCK "A" THIS WILL MAKE SURE THAT 
C NOTHING HAPPENS WHEN WE INITIALIZE THE TWO SWEEPS. 
5 CALL CLOCKA(O,O,ISTAT,ILUN) 

IF(ISTAT .NE. l)GO TO 110 
c 
C INITIALIZE THE INPUT DATA BUFFER. ASSUME THE LPAll-K DIGITAL 
C I/O INTERFACE IS CONFIGURED IN THE DATA LATCH MODE (AS OPPOSED 
C TO SENSE). THUS THE OUTPUT DATA BUFFER MUST CONTAIN A BIT CHANGE 
C FOR EVERY BIT POSITION IN SUCCEEDING DATA WORDS. 

DO 10 J=l ,4 
DO 1 0 I= 1 , I SIZE 
INBUF(I,J)=O 

10 CONTINUE 
c 
C INITIALIZE DIGITAL OUTPUT SWEEP. THIS MUST BE DONE BEFORE !NIT 
C OF DIGITAL INPUT SWEEP! THE LPAll-K PROCESSES THE TRANSFER OF 
C DATA IN THE ORDER OF THE SPECIFICATION OF THE SWEEPS. THUS WE 
C W.Z~NT TO OUTPUT BEFORE WE INPUT. 

21-33 



LABORATORY PERIPHERAL J\CCELERATOR DRIVER 

CALL SETIBF{IBUFO,ISTAT,,OUTBUF{l,l),OUTBUF(l,2),0UTBUF{l,3), 
1 OUTBU F { 1, 4) ) 
IF{ISTAT .NE. l)GO TO 120 

c 
C RELEASE BUFFER FOR OUTPUT SWEEP 
CALL FOUR BUFFERS -- INDEXES 0,1,2,3 ARE RELEASED 

CALL RLSBUF{IBUFO~ISTAT,0,1,2,3) 
IF{ISTAT .NE. l)GO TO 130 

c 
C "START" DIGITAL OUTPUT SWEEP. REMEMBER NOTHING WILL HAPPEN UNTIL 
C WE START THE REAL TIME CLOCK. THE LPAll-K WILL PROCESS THE REQUEST 
C AND BE ALREADY TO TRANSFER DATA WHEN WE RESUME THE CLOCK. 
C EVENT FLAG 14 IS SPECIFIED. A DIFFEHENT EVENT FLAG MUST BE 
C SPECIFIED FOR THE DIGITAL INPUT SWEgp SO THE FORTRAN PROGRAM 
C CAN SYNCHRONIZE WITH TWO INDEPENDEWr, ASYNCHRONOUS PROCESSES. 

c 
c 

CALL DOSWP{IBUFO,ISIZE,4,0,l,l4,30,0) 

C NOW INITIALIZE FOR DIGITAL INPUT SWEEP. THE SAMPLING PARAMETERS 
C MUST BE THE SAME FOR BOTH THE INPUT AND OUTPUT SWEEP. WE WANT 
C TO WRITE AND READ THE SAME DATA WORD AT THE SAME TIME. 

c 

CALL SETIBF{IBUFI,ISTAT,,INBUF{l,l),INBUF{l,2),INBUF{l,3), 
1 INBUF{l,4)) 
IF{ISTAT .NE. l)GO TO 140 

C RELEASE THE INPUT BUFFERS 

c 

CALL RLSBUF{IBUFI,ISTAT,0,1,2,3) 
IF{ISTAT .NE. l)GO TO 150 

C "START DIGITAL OUTPUT SWEEP. AGAIN, NOTHING WI LL HAPPEN UNTIL 
C WE RESUME THE LPAll-K REAL TIME CLOCK. 
C EVENT FLAG 15 IS SPECIFIED TO SEPARJ\TE THE INPUT AND OUTPUT SWEE:PS. 

CALL DISWP{IBUFI,ISIZE,4,0,l,l5,30,0) 
c 
C NOW FOR THE BIG EVENT! WE START THE CLOCK AND SEE WHAT HAPPENS. 

c 
c 

CALL CLOCKA{l,-150,ISTAT,ILUN) 
IF{ISTAT .NE. l)GO TO 150 

C THE LPAll-K SHOULD NOW BEGIN TO TRANSFER DATA 
C FIRST WE WAIT FOR THE DIGITAL OUTPU1~ SWEEP TO FINISH. IT WAS 
C STARTED FIRST AND SHOULD FINISH FIRST. WE VERIFY THAT IT 
C FINISHES CORRECTLY OR CHECK FOR ERRORS. 
15 CALL IWTBUF{IBUF0,14,IBUFNO) 
c 
C IF BUFFER NUMBER IS -1, THEN ERROR 
C IF BUFFER NUMBER IS 0,1, OR 2, THEN CONTINUE 
C IF BUFFER NUMBER IS 3, THEN FINISHED 

IF{IBUFNO .LT. 0) GO TO 160 
c 
C NOW WAIT FOR THE DIGITAL INPUT SWEEP TO FINISH. THE SAME ERROR 
C CONDITIONS APPLY. 

c 

CALL IWTBUF{IBUFI,15,IBUFNO) 
IF{IBUFNO .LT. O)GO TO 170 
IF{IBUFNO .LE. 2)GO TO 15 

C THE FACT THAT WE HAVE GOTTEN HERE S/~YS THE LPAll-K HAS DONE ITS 
C THING. 
C CHECK THE INPUT DATA BUFFERS AGAINS'I' THE OUTPUT DATA BUFFERS 

DO 20 J=l,4 
DO 20 I=l,ISIZE 
IF{INBUF{I,J) .NE. OUTBUF{I,J))GO TO 180 

20 CONTINUE 
c 

21-34: 



LABORATORY PERIPHERAL ACCELERATOR DRIVER 

C SUCCESSFUL COMPLETION, LET EVERYONE KNOW. THEN GO BACK AND DO IT 
C AGAIN. 

WRITE(5,1000)IPASS 
~ 1000 FORMAT(' REQUEST COMPLETE!',2X,I6) 

I PASS== I PASS+ 1 
GO TO 5 

c 
C REPORT ANY ERRORS THAT HAVE BEEN UNCOVERED IN THE EXAMPLE. 
c 
100 
1010 

110 
1020 

120 
1030 

130 
1040 

140 
1050 

150 
1060 

160 
1070 
c 

WRITE(5,1010)ISTAT 
FORMAT(//,' ERROR ASSIGNING LUN TO LPAll-K 
CALL EXIT 
WRITE(5,1020)ISTAT 
FORMAT(//,' ERROR STOPPING LPAll-K CLOCKA 
CALL EXIT 
WRITE(5,1030)ISTAT 
FORMAT(//,' ~RROR FROM SETIBF - OUTPUT BUFFER 
CALL EXIT 
WRITE(5,1040)ISTAT 
FORMAT(//,' ERROR FROM RLSBUF - OUTPUT BUFFER 
CALL EXIT 
WRITE(5,1050)ISTAT 
FORMAT(//,' ERROR FROM SETIBF - INPUT BUFFER 
CALL :EXIT 
WRITE(5,1060)ISTAT 
FORMAT(//,' ERROR FROM RLSBUF - INPUT BUFFER 
CALL EXIT 
WRITE(5,1070) IBUFNO, (OUTIOS(I) ,I=l,4) 
FORMAT(//,~ ERROR FROM DOSWP ',I2,4(3X,04)) 

I 'I 6) 

I 'I 6) 

I 'I 6) 

I 'I 6) 

I 'I 6) 

I 'I 6) 

C *** WARNING *** DISWP MIGHT STILL BE ACTIVE WHEN YOU EXIT 
c 

170 
1080 
c 

CALL EXIT 
WRITE ( 5 , 1 0 8 0 ) IBU FN 0 , ( IN IOS ( I ) ,, I = l , 4 ) 
FORMAT(//," ERROR FROM DISWP ',I2,4(3X,04)) 

C *** WARNING *** DOSWP MIGHT STILL BE ACTIVE WHEN YOU EXIT 
c 

CALL EXIT 
180 WRITE(5,1090)I,J,OUTBUF(I,J),INBUF(I,J) 
1090 FORMAT(//, I *DATA :ERROR* - WORD# ',I4,2X,I4,4X,06,2X,06) 

CALL EXIT 
END 

21-35 





'--'' 

CHAPTER 22 

K-SERIES PERIPHERAL SUPPORT ROUTINES 

22.l INTRODUCTION 

K-series laboratory peripheral modules are supported through a set of 
program-callable routines that are linked with the user's task at task 
build time. These routines are highly modular. Therefore, a 
particular task contains only that code necessary for the facilities 
actually used. Additionally, the support routines perform input and 
output operations through the Connect to Interrupt Vector (CINT$) 
Executive directive. This directive allows the user's task to bypass 
normal QIO processing and perform I/O almost completely independent of 
the Executive. 

The following subsections briefly describe the K-series laboratory 
peripherals, the features provided by the K-series support routines, 
and the generation and use of these routines. 

22.l.l K-Series Laboratory Peripherals 

The K-series peripheral support routines provide single-user, 
task-level support for the following laboratory peripheral modules: 

e AAl 1--K 
• ADll--K 
e AMl 1--K 
e DR.11--K 
• KWll-K 

D/A converter 
A/D converter 
multiple gain multiplexer 
digital I/O interface 
dual programmable real-time clock 

The maximum supported hardware configuration consists of one KWll-K 
and sixteen of each of the AAll-K, ADll-K (with optional AMll-K), and 
DRll-K modules. The minimum configuration, if synchronous sweeps are 
desired, would be one KWll-K and any one of the three other modules. 
A single DRll-K supports non-clocked, interrupt-driven I/O sweeps or 
single digital input or output. A single ADll-K supports single word 
A/D input and non-clocked overflow-driven sampling (provided that the 
A/D conversion is started with the EXT start input on the ADll-K). An 
AAll-K supports burst mode output and scope control. 

22.1.1.1 AAll-K D/A Converter - The AAll-K includes four 12-bit 
digital-to-analog converters (DACs) and an associated display control. 
The display control permits the user to display data in the form of a 
4096 x 4096 dot array. Under program control, a dot may be produced 
at any point in this array, and a series of these dots may be 
programmed sequentially to produce graphical output. The display 
control may output to chart or X/Y recorder or CRT display unit. 

22-1 



K-SERIES PERIPHERAL :SUPPORT ROUTINES 

22.1.1.2 ADll-K A/D Converter - The ADll-K is a 12-bit successive 
approximation converter that enables the user to sample analog data at 
specified rates and to store the equivalent digital value for 
subsequent processing. The basic subsystem consists of an input 
multiplexer (switch-selectable between 16-channel single-ended or 
8-channel differential), sample-and-hold circuitry, and a 12-bit A/D 
converter. By changing jumpers, the analog inputs can be made bipolar 
or unipolar. 

22.1.1.3 AMll-K Multiple Gain Multiplexer - The AMll-K is a 
multiplexer expander that supplements the 16-channel single-ended 
(eight differential) analog input multiplexer in the ADll-K. The 
expansion is done in three independent groups on the AMll-K. Each 
group can be set to sixteen single-ended or pseudo-differential or 
eight differential input channels; each group can have a gain of 1, 
4, 16, or 64 assigned to it by a switch in the amplifier. 

22.1.1.4 DRll-K Digital I/O Interface - The DRll-K is a general 
purpose digital input/output interface capable of the parallel 
transfer of up to sixteen bits of data, under program control, between 
a PDP-11 UNIBUS computer and an external device (or another DRll-K). 

22.1.1.5 KWll-K Dual Programmable Real-Time Clock - The KWll-K 
dual programmable real-time clock option used in PDP-11 
computers. Features include: 

Clock A 

• 16-bit counter 
• 16-bit programmable Preset/Buffer register 
• Four modes of operation 
• Two external inputs (Schmitt triggers) 
• Eight clock rates, program selectable 
• Five clock frequencies, crystal controlled for accuracy 
• Processor actions synchronized to external events 

Clock B 

• 8-bit counter 
• 8-bit programmable preset register 
• Repeated interval mode of operation 
• One external input (Schmitt trigger) 
• Seven clock rates, program selectable 
• Five clock frequencies, crystal controlled for accuracy 

22.1.2 Support Routine Features 

is a 
UNIBUS 

The RSX-llM program-callable K-series support routines provide the 
following features: 

• Clock overflow or trigger-driven A/D sweep 
• Clock overflow or interrupt-driven digital input sweep 
• Clock overflow or interrupt-driven digital output sweep 
• Clock overflow or burst mode D/A sweep 
• Single digital input 
• Single digital output 

22-2 

~! 



1<:-SERIES PERIPHERAL SUPPORT ROUTINES 

• Single A/D input 
• Scope control 
• Histogram sampling 
• Schmitt Trigger simulation 
• Clock control 
• 16-bit software clock 
• A/D input to real number conversion 
• Buff er control 

Immediate digital input or output 
Multiple clock-driven sweeps can be 
was selected during the K-series 
22.1.3.1). Such sweeps, however, 
restrictions: 

can be performed at any time. 
initiated if this optional feature 
generation dialog (see Section 
are subject to the following 

1. Regardless of the number of controllers present, there can be 
only one active A/D sweep at any point in time. The same 
restriction holds true for D/A sweeps. It is possible, 
however, to perform digital input and digital output sweeps 
simultaneously, using the same DRll-K, so long as this 
feature is selected during the generation dialog. 

2. There can be no conflict in clock rates among the sweeps. 

3. Only the first sweep can use the delay from start event. 

4. The inter.-event time data gathering routine cannot run in 
parallel with any other clock-driven sweeps. 

22.1.3 Generation and Use of K-series Routines 

To use K-series support routines, the user must do the following three 
things during SYSGEN: 

• Reserve necessary vector space. 
• Specify that the CINT$ Executive directive is to be included 

in the system. 
• Specify that AST support is required. 

At a point in time subsequent to SYSGEN, the user follows particular 
procedures for the: 

1. Generation of K-series support routines. 

2. Program use of K-series routines. 

These two procedures are detailed in the following subsections. 

22.1.3.l Generation of K-series Support Routines - An indirect 
command file, similar to those used for SYSGEN itself, is used to 
generate the K-series support routine library and other necessary 
facilities. This command file is invoked by typing the following: 

>@[200,200]SGNKLAB 

The dialog initiated by this command determines the device 
configuration of the subsystem, the maximum number of buffers that 
will be used on a per sweep basis, and the inclusion or omission of 
optional features such as multiple clock-driven sweeps and duplex 
digital I/O sweeps. 

22-3 



K-SERIES PERIPHERAL SUPPORT ROUTINES 

After this information has been obtained, the command file creates the 
following: 

1. A prefix file, (45,lO]KPRE.MAC for use during assembly of 
K-series support routines. 

2. A data base file, (45,10] KIODT.MAC, containing control blocks 
needed to support the devices. 

3. A common block file, 
to access the IIO 
systems. 

(45,lO]KCOM.MAC, that allows user tasks 
page. This file is used only on mapped 

4. On mapped systems only, two indirect command files: 

[45,24]KCOMBLD.CMD which is a TKB build file for the 
common block, and 

- [l,54]INSKCOM.CMD that is used to install the common 
block. 

At the user's option, the K-series routines themselves can then be 
assembled and an object library created. The user can specify the 
name of this library or accept the following default file 
specification: 

LB:[l,l]KLABLIB.OLB 

22.1.3.2 Program Use of K-series Routines - The steps required for 
routine program use of K-series support routines are as follows: 

1. Compile or assemble the program. If the task will be 
overlaid, it is required that both the buffers used by the 
K-series support routines and the support routines themselves 
reside in the root section of the overlay structure. 

2. Invoke TKB: 

a. On mapped systems only, use the IPR:O switch to indicate 
that the task is privileged. 

b. Include the following indirect 
responses to the TKB prompt: 

TKB>@[l,5x]LNK2KLAB 

command among the 

where x is 0 for unmapped systems and 4 for mapped 
systems. 

c. On mapped systems only, enter the following indirect 
command in response to the prompt for options: 

ENTER OPTIONS 
@[l,54]LNK2KCOM 

II 

3. On mapped systems only, enter the following indirect command 
from a privileged terminal before executing the program: 

>@ (1,54] INSKCOM 

22-4 

~\ 
; 



K·-SERIES PERIPHERAL SUPPORT ROUTINES 

The following is a complete example of the steps previously described: 

>F4P KTEST,KTEST/-SP=KTEST 
>TKB 
TKB>KTEST/PR:O,KTEST/-SP=KTEST, [l,l]F4POTS/LB 
TKB>@[l,54]LNK2KLAB 
TKB>/ 
ENTER OPTIONS 
TKB>@[l 1 54]LNK2KCOM 

TBK>// 

22.2 THE PROGRAM INTERFACE 

A collection of program-callable subroutines provides access to the 
K-series laboratory peripherals. The formats of these calls are fully 
documented here for FORTRAN programs. MACR0-11 programmers access 
these same subroutines either through the standard subroutine linkage 
or through the use of two special-purpose macros. Both techniques are 
described in Section 22.2.2. Both FORTRAN and MACRO programs must 
contain at least one I/O Status Block (IOSB), described in Section 
22.2.3, for retrieval of status information. 

22.2.l FORTRAN Interface 

Table 22-1 lists the FORTRAN interface subroutines for accessing 
K-series laboratory peripherals. 

Table 22-1 
FORTRAN Subroutines for K-series Laboratory Peripherals 

Subroutine Function 

ADINP Initiate single analog input 

ADSWP Initiate synchronous A/D sweep 

CLOCKA Set Clock A rate 

CLOCKB Control Clock B 

CVADF Convert A/D input to floating point 

DAS WP Initiate synchronous D/A sweep 

DIGO Digital start event 

DINP Digital input 

DISWP Initiate synchronous digital input sweep 

DOS WP Initiate synchronous digital output sweep 

(continued on next page) 

22-5 



K-SERIES PERIPHERAL SUPPORT ROUTINES 

Table 22-1 (Cont.) 
FORTRAN Subroutines for K-series Laboratory Peripherals 

Subroutine Function 

DOUT Digital output 

FLT16 Convert unsigned integer to a real constant 

GTHIST Gather inter-event time data 

IBFSTS Get buffer status 

ICLOKB Read 16-bit clock 

IGTBUF Return buffer number 

INXTBF Set next buffer 

IWTBUF Wait for buffer 

RCLOKB Read 16-bit clock 

RLSBUF Release data buffer 

RMVBUF Remove buffer from device queue 

SCOPE Control scdpe 

SETADC Set channel information 

SETIBF Set array for buffered sweep 

STPSWP Stop sweep 

XRATE Compute clock rate and preset 

The calling sequences of the routine~s listed in Table 22-1 are 
compatible with the routines for the LPA-11, described in Chapter 21. 
The following subsections briefly describe the function and format of 
each FORTRAN subroutine call. 

22.2.1.1 ADINP: Initiate Single Analog Input - The ADINP routine 
obtains a single word as input from the A/D converter. 

ADINP can be invoked as a subroutine or a function as follows: 

or 

where 

CALL AD IN P ( [ i flag ] , [ ic ha n ] , iv a 1 ) 

ival=IADINP ( [iflag], [ichan], [ival]) 

iflag specifies the gain options: 

0 Absolute channel addressing (default). This is the 
only mode supported on the ADVll (Q-bus). 

22-6 



ichan 

K-SERIES PERIPHERAL SUPPORT ROUTINES 

l Sample at a gain of 1. In modes 1, 2, 3, 4, and 5 each 
ADll-K/AMll-K is treated as 16 channels with channels 
17-63 strapped to gains 4, 16, and 64. The 48 
multiplexer channels are selected by the software 
according to the gain specification. Mode values 1, 2, 
3, 4, and 5 are not supported on the ADVll (Q-bus 
version). 

2 Sample at a gain of 4. 

3 Sample at a gain of 16. 

4 Sample at a gain of 64. 

1-
.) Perform auto gain ranging. 

selects the channel to be sampled. The default is o. 

ival receives the sample. The gain bits will be inserted if 
iflag is nonzero. 

22.2.1.2 ADSWP: Initiate Synchronous A/D Sweep - The ADSWP routine 
initiates a synchronous A/D input sweep through an ADll-K (and, if 
present, the AMll-K). The analog input word placed in the user buffer 
consists of the 12 bits read from the A/D converter and (except when 
the mode parameter equals 0) the 2 gain bits read from the A/D status 
register. A value of 177776(8) is returned for A/D timeout. A value 
of 177777(8) is returned on an A/D conversion error. Such errors are 
typically caused by conversions occurring too fast. 

If differential input is desired, the channel increment must be set to 
2 by calling the SETADC routine. The default channel increment is 1 
(single-ended input). 

NOTE 

This routine will expect to have the STl 
OUT from the KWll-K or similar trigger 
jumpered to EXT START on the ADll-K if 
mode 512 is desired. This also requires 
the A EVENT OUT from the KWll-K clock 
trigger jumpered to the KW overflow on 
the ADll-K if clock driven sweeps are 
desired. 

The format of the ADSWP call is as follows: 

where 

CALL ADSWP (ibuf, lbuf, [nbuf], [mode], [iprset], [iefn], [ldelay], 
[ichn], [nchn]) 

ibuf 

lbuf 

is a 40-word array initialized by the SETIBF routine. 
The first two words of the array are the I/O status 
block (IOSB). 

is the size in words of each data buffer. All data 
buffers must be equal in size and lbuf must be greater 
than O. 

22-7 



nbuf 

mode 

iprset 

iefn 

K-SERIES PERIPHERAL SUPPORT ROUTINES 

is the number of buffers to be filled. If nbuf is 
omitted or set equal to O, indefinite sampling occurs. 
The STPSWP routine terminates indefinite sampling. 

specifies sampling options. The default is O. The mode 
bit values listed below that are preceded by a plus sign 
(+) are independent and can be ADDed or ORed together. 
Those values not preceded by a plus sign are mutually 
exclusive and only one such value can be used at a time. 
All bit values not listed below are reserved. 

The following values can be specified: 

0 Absolute channel addressing (default). This mode 
allows the user to directly access all 63 channels 
of an ADll-K/AMll-K combination. This is the only 
mode'that is LPA-11 compatible. 

1 Sample with a gain of 1. In modes 1, 2, 3, 4, and 
5 each ADll-K/AMll-K is treated as 16 channels 
with channels 17-63 strapped to gains 4, 16, and 
64. The 48 multiplexer channels are selected by 
the software according to the gain specification. 
Mode values 1, 2, 3, 4, and 5 are not supported on 
the ADVll (Q-bus version). 

2 Gain of 4. See also mode value 1. 

3 Gain of 16. See also mode value 1. 

4 Gain of 64. See also mode value 1. 

5 Driver will perform auto-gain ranging to return 
the result with the most significance. Note that 
use of auto-gain ranging may require dual sampling 
and will impact performance. See also mode value 
1. 

7 Use user-supplied interrupt routine. The routine 
must be named .ADINU and must follow the interrupt 
service routine coding conventions used in this 
subsystem. Refer to the source module KADINS.MAC 
for an example of an A/D interrupt routine. 

+256 External start (STl). 

+512 Non-clock overflow sampling triggered by STl. 

is the clock preset. The clock rate divided by the 
clock preset value yields the clock overflow rate. The 
XRATE subroutine can be used to calculate a clock preset 
value. If the iprset argument is omitted from the ADSWP 
call, the user must specify a mode value of +512. 
Otherwise, an error status code of 301 (invalid 
arguments) is returned into the IOSB. 

is the event flag (1-96), a completion routine, or O. 
If O or defaulted, event flag 30 will be utilized for 
internal synchronization. If iefn is an event flag 
(1-96), the selected event flag is set as each buffer is 
filled. If iefn is greater than 96, it is considered to 
be a completion routine that will be called with a JSR 
PC. Such routines must return with an RTS PC (or a 
FORTRAN RETURN statement). Further, FORTRAN completion 

22-8 

\' 

~! 



ldelay 

ichn 

nchn 

JK-SERIES PERIPHERAL SUPPORT ROUTINES 

routines must not do any I/O through the FORTRAN runtime 
system, since this may cause unpredictable results or 
fatal task errors. 

If multiple sweeps are initiated, the user should 
specify different event flags. Adherence to this 
limitation cannot be enforced by the software. 

is the delay from the start event (STl) until the first 
sample in IRATE units. Default or 0 indicates no delay. 

is the number of the first channel to be sampled. The 
default of 0 applies only if ichn was not established in 
a prior call to the SETADC routine. 

is the number of channels to sample. The default is 1. 
nchn may be set up with the SETADC routine. All nchn 
channels will be sampled on one clock interrupt. 

22~2.l.3 CLOCKA: Set Clock A Rate - The CLOCKA routine sets the rate 
for Clock A. The format of the call to this routine is as follows: 

whE~re 

CALL CLOCKA (irate, iprset, [ind], [lun]) 

irate 

iprset 

ind 

lun 

is the clock rate. 
specified: 

One of the following must be 

0 Clock B overflow (not on Q-bus version) or no rate 
l l MHz 
2 100 KHz 
3 l 0 KHz 
4 l KHz 
5 100 Hz 
6 Schmitt Trigger l 
7 Line frequency 

is the clock preset. The clock rate divided by the 
clock preset value yields the clock overflow rate. The 
XRATE routine can be used to calculate a clock preset 
value. 

receives a success or failure code as follows: 

0 indicates illegal arguments. 

l indicates Clock A set to start when sweep requested. 

is the logical unit number. Present for 
compatibility. Ignored by K-series software. 

LPA-11 

22.2.l.4 CLOCKS: Control Clock B - The CLOCKB routine gives the user 
control over the KWll-K Clock B, which is used to maintain a 16-bit 
software clock. This feature is not available on Q-bus versions. The 
16-bit clock is incremented once per Clock B interrupt. The maximum 
value of the clock is 65535. 

22-9 



K-SERIES PERIPHERAL SUPPORT ROUTINES 

The format of the call to CLOCKB is as follows: 

where 

CALL CLOCKB ([irate], [iprset], [mode], [ind], [lun]) 

irate 

iprset 

mode 

is the clock rate. When irate is nonzero, the clock is 
set running at the selected rate after the preset value 
specified by iprset is loaded. The 16-bit software 
clock is not altered by starting the clock. The initial 
value of the 16-bit clock is zero when the program is 
loaded. 

When irate is zero, clock B is stopped but the 16-bit 
software clock is unaltered. 

When irate is defaulted, the 16-bit software clock is 
zeroed but clock B continues to run. 

The following are the acceptable values for irate: 

0 Stop C 1 ock B 
1 lMHz 
2 100 KHz 
3 10 KHz 
4 1 I<Hz 
5 100 Hz 
6 Schmitt Trigger 3 
7 Line frequency 

is the count by which to divide clock rate to yield 
overflow rate. Overflow events can be used to maintain 
the 16-bit software clock and/or drive clock A. The 
default value is 1. The maximum practical overflow rate 
in interrupt mode is 10 KHz. The range of iprset is 
1-255. The val~e in iprset can be estab1ished by use of 
the XRATE routine. 

specifies options. 
specified: 

Either of the following can be 

0 indicates normal operations. This is the default. 
The 16-bit software clock is updated on Clock B 
overflow. The overflow rate should not exceed lOKHz. 
The software does not check the overflow rate. 

1 indicates Clock B operates in non-interrupt mode. 
The 16-bit clock is not incremented or altered. This 
allows a greater than lOKHz pulse to be sent to clock 
A. 

ind receives a success or failure code as follows: 

lun 

0 indicates a failure to start Clock B 

1 indicates Clock B started 

is the logical unit number. 
the K-series routines. 
compatibility. 

22-10 

This argument is ignored by 
It is present for LPA-11 

~' : , 

·""'· 



K-SERIES PERIPHERAL SUPPORT ROUTINES 

22.2.1.s CVADF: Convert A/D Input to Floating Point - The CVADF 
routine converts an A/D input value to a floating point number. The 
routine can be invoked as a subroutine or a function as follows: 

or 

where 

CALL CVADF (ival,val) 

val CVADF(ival) 

ival is a value obtained from A/D input. Bits 12-15 are the 
gain~ Bits 0-11 represent the value. 

val (REAL*4) receives the converted value. 

22.2.l.6 DASWP: Initiate Synchronous D/A Sweep - The DASWP routine 
initiates synchronous D/A output to an AAll-K. 

The format of the DASWP call is as follows: 

where 

CALL DASWP (ibuf, lbuf, [nbuf], [mode], [iprset], [iefn], [ldelay], 
[ i chn] , [nchn] ) 

i buf 

lbuf 

nbuf 

mode 

is a 40-word array initialized by the SETIBF routine. 
The first two words of the array are the I/O status 
block (IOSB). 

is the size in words of each data buffer. All data 
buffers must be equal in size and lbuf must be greater 
than O. 

is the number of buffers to be filled. If nbuf is 
omitted or set equal to O, indefinite sampling occurs. 
The STPSWP routine terminates indefinite sampling. 

specifies the start criteria. Except where noted, the 
plus sign (+) preceding mode bit values listed below 
indicates that they are independent and can be ADDed or 
ORed together. All bit values not listed below are 
reserved. 

The following values can be specified: 

0 indicates immediate start. This is the default. 

1 indicates that a group of data words, whose number 
is specified by nchn, is preceded by a scope 
control word (refer to Section 22.2.1.22 for a 
description of scope control words). This bit 
setting is ignored if +512 is also specified. 
This feature is not included in the Q-bus (AAVll) 
version. 

The buffer size specified by lbuf must be a 
multiple of nchn+l words. The DASWP routine, 
however, does not enforce this restriction. 

22-11 



iprset 

iefn 

ldelay 

ichn 

nchn 

2 

K-SERIES PERIPHERAL SUPPORT ROUTINES 

sets the intensify 
(nchn must be 2) 
is supported on 
assumes that bit 
connected to the 
oscilloscope. 

bit after each pair of channels 
have been output. This feature 
the Q-bus version only. It 

0 of DAC3 on the AAVll is 
intensify input on the 

+256 indicates external start (STl). 

+512 indicates nonclock-overf low non-interrupt driven 
output (burst mode). This value cannot be 
specified with either external start (+256) or a 
nonzero ldelay value. A completion routine must 
be specified if nbuf is greater than the number of 
buffers supplied or if continuous burst output is 
desired. If nbuf equals -1, burst mode must be 
stopped by calling STPSWP from the completion 
routine. 

is the clock preset. The clock rate divided by the 
clock preset value yields the clock overflow rate. The 
XRATE subroutine can be used to calculate a clock preset 
value. 

If the iprset argument is omitted, the user must specify 
a mode value of +512. Otherwise, an error status code 
of 301 (invalid arguments) is returned into the IOSB~ 

is an event flag number (from l to 96), or a completion 
routine, or O. If 0 or defaulted, event flag 30 is used 
for internal synchronization. If iefn is an event flag 
from l to 96, the selected event flag is set as each 
buffer is filled. If iefn is greater than 96, it is 
considered a completion routine that will be called with 
a JSR PC. Such routines must return with an RTS PC 
instruction (or a FORTHAN RETURN statement). Further, 
FORTRAN completion routines must not perform I/O through 
the FORTRAN runtime system since this may cause 
unpredictable results or fatal task errors. 

If multiple sweeps are initiated, the user should 
specify different event flags. This limitation cannot 
be enforced by the software. 

is the delay from start 
sample in irate units. 

event (STl) until the f:irst 
Default or 0 indicates no delay. 

is the first channel number. The default is O. 

is the number of channels. The default is 1. When nchn 
equals 2 and mode does not contain +l, the size of data 
buffers specified in lbuf must be an even number. The 
software does not check this requirement. 

22.2.1.7 DIGO: Digital Start Event - The DIGO routine allows the 
user to specify the digital input bits that, when set, will cause the 
simulation of an external start event and the start of a pending 
sweep. 

The format of the call to DIGO is: 

CALL DIGO ( [i unit], [mask], [kount]) 

22-12 

~. 
! : 



where 

iunit 

mask 

kount 

K-SERIES PERIPHERAL SUPPORT ROUTINES 

is the DRll-K unit number. The default is 0. 

is a logical mask that 
If zero, a pending 
immediately cancelled. 
immediately simulated 
16-bit software clock 
specified. 

specifies one or more start bits. 
digital start event request is 
If defaulted, an STl event is 
and the current value of the 

is returned in kount, if 

receives the current value of the 16-bit software clock 
when the defaulting of mask causes the simulation of an 
STl event. 

22.2.1.8 DINP: Digital Input - The DINP routine inputs a single 
16-bit word from a DRll-K. Bits read as a 1 can be masked with a 1 
causing the clearing of the bit in the DRll-K input buffer. 

During the K-series routines generation dialog, it is possible to 
select one of two versions of the DINP routine: 

1. A slow version containing all functions described below. 

2. A fast version that omits the functions provided by the mask, 
iosb, and input arguments. 

The fast version of DINP can be invoked as a function (IDINP) only. 
The slow version of DINP can be invoked as a subroutine or a function. 
The formats of the invocations are as follows: 

or 

when:~ 

CALL DINP ( [iunit], [mask], iosb, input) 

ind=IDINI? (iunit, [mask], iosb, [input]) 

iunit 

mask 

iosb 

input 

is the DRll-K unit number. This argument is required 
for the fast version of DINP. For the slow version, the 
default is 0 e 

is the bit mask used to specify which input bits will be 
cleared in the digital input register. The default is 
177777(8) indicating all bits.will be cleared. 

is a 2-word I/O status block array (see Section 22.2.3). 

receives the data input from the DRll-K. 

ind receives the data input from the DRll-K if DINP is 
invoked as a function. 

22.2.1.9 DISWP: Initiate Synchronous Digital Input sweep - The DISWP 
routine initiates a synchronous digital input sweep through a DRll-K. 

22-13 



K-SERIES PERIPHERAL SUPPORT ROUTINES 

The format of the call to DISWP is: 

where 

CALL DISWP (ibuf,lbuf, [nbuf], [mode], [iprset], [iefn], [ldelay], 
[iunit]) 

i buf 

lbuf 

nbuf 

mode 

iprset 

iefn 

is a 40-word array initialized by the SETIBF routine. 
The first two words of the array are the I/O status 
block ('IOSB) • 

is the size in words of each data buffer. All data 
buffers must be equal in size and lbuf must be greater 
than O. 

is the number of buffers to be filled. If nbuf is 0 or 
defaulted, indefinite sampling occurs. The STPSWP 
routine is used to terminate indefinite sampling. 

specifies the sampling options. The default is O. The 
plus signs (+) preceding the mode bit values listed 
below indicate that they are independent and can be 
ADDed or ORed together. 

The following values can be specified: 

0 Single-word sample, immediate start. This is the 
default mode. 

+256 External start (STl). 

+512 Non-clock overflow interrupt driven 
External start and delay are illegal. 

input. 

+1024 Time stamped sampling. The double word consists 
of one data word followed by the value of the 
16-bit software clock at the time of the sample. 
This option is not available if the KWll-K clock 
is not being used (e.g., on the Q-bus). 

is the clock preset. The clock rate divided by the 
clock preset value yields the clock overflow rate. The 
XRATE subroutine can be used to calculate a clock preset 
value. 

If the iprset argument is omitted, the user must specify 
a mode value of +512. Otherwise, an error status code 
of 301 (invalid arguments) is returned into the IOSB. 

is an event flag number (from 1 to 96), or a completion 
routine, or O. If 0 or defaulted, event flag 30 is used 
for internal synchronization. If iefn is an event flag 
from 1 to 96, the selected event flag is set as each 
buffer is filled. If iefn is greater than 96, it is 
considered a completion routine that will be called with 
a JSR PC. Such routines must return with an RTS PC 
instruction (or a FOR'fRAN RETURN statement). Further, 
FORTRAN completion routines must not perform I/O through 
the FORTRAN runtime system since this may cause 
unpredictable results or fatal task errors. 

If multiple sweeps are initiated, the user shold specify 
different event flags. This limitation cannot be 
enforced by the software. 

22-H 

~. 



ldelay 

iunit 

K-SERIES PERIPHERAL SUPPORT ROUTINES 

is the delay from start 
sample in irate units. 

event (STl) until the first 
Default or 0 indicates no delay. 

is the DRll-K unit number. The default is 0. 

22.2.1.10 DOSWP: Initiate Synchronous Digital Output Sweep - The 
DOSWP routine initiates a synchronous digital output sweep through a 
DRll-K. 

The format of the call to DOSWP is as follows: 

where 

CALL DOSWP (ibuf, lbuf, [nbuf], [mode], [iprset], [iefn], [ldelay], 
[iunit]) 

i buf 

lbuf 

nbuf 

mode 

iprset 

iefn 

is a 40-word array initialized by the SETIBF routine. 
The first two words of the array are the I/O status 
block ( IOSB) • 

is the size in words of each data buffer. All data 
buffers must be equal in size and lbuf must be greater 
than O. 

is the number of buffers to be filled. If nbuf is 0 or 
defaulted, indefinite sampling occurs. The STPSWP 
routine is used to terminate indefinite sampling. 

specifies the start criteria. The default is O. 

The following values can be specified in the high-order 
byte of mode: 

0 Immediate start. This is the default. 

+256 External event start (STl). 

+512 Non-clock overflow, interrupt driven 
External start and delay are illegal. 

output. 

is the clock preset. The clock rate divided by the 
clock preset value yields the clock overflow rate. The 
XRATE subroutine can be used to calculate a clock preset 
value. 

If the iprset argument is omitted, the user must specify 
a mode value of +512. Otherwise, an error status code 
of 301 (invalid arguments) is returned irrto the IOSB. 

is an event flag number (from 1 to 96), or a completion 
routine, or O. If 0 or defaulted, event flag 30 is used 
for internal synchronization. If iefn is an event flag 
from 1 to 96, the selected event flag is set as each 
buffer is filled. If iefn is greater than 96, it is 
considered a completion routine that will be called with 
a JSR PC. Such routines must return with an RTS PC 
instruction (or a FORTRAN RETURN statement). Further, 
FORTRAN completion routines must not perform I/O through 
the FORTRAN runtime system since this may cause 
unpredictable results or fatal task errors. 

22-15 



ldelay 

iunit 

K-SERIES PERIPHERAL SUPPORT ROUTINES 

If multiple sweeps are initiated, the user should 
specify different event flags. This limitation cannot 
be enforced by the software. 

is the delay from start 
sample in irate units. 

event (STl) until the first 
Default or 0 indicates no delay. 

is the DRll-K unit number. The default is O. 

22.2.1.11 DOUT: Digital Output - The! DOUT routine outputs a single 
16-bit word to a DRll-K. Only those bits in the output word specified 
by corresponding ones in a mask field are altered. 

During the K-series routines generation dialog, it is possible to 
select one of two versions of the DOUT routine: 

1. A slow version containing all functions described below. 

2. A fast version that omits the functions provided by the mask 
and iosb arguments. 

The slow version of DOUT can be invoked as a subroutine or a function. 
The fast version of DOUT can be invoked as a subroutine only. The 
formats of the invocations are as follows: 

or 

where 

CALL DOUT ( [iunit], [mask], iosb, idata) 

iout=IDOUT( [iunit], [mask], iosb, idata) 

iunit 

mask 

iosb 

idata 

is the DRll-K unit number. The default is O. 

is used to 
default is 

select which bits can be altered. 
177777(8), indicating all bits. 

is a 2-word I/O status block (see Section 22.2.3). 

The 

is the 16-bit output value for the DRll-K. A one sets a 
corresponding bit. A zero clears the corresponding bit. 

iout receives a copy of the DRll-K output register after it 
has been altered. 

22.2.1.12 FLT16: Convert Unsigned Integer to a Real Constant - The 
FLT16 routine converts an unsigned 16-bit integer to a real constant 
(REAL*4). It can be invoked as a subroutine or a function as follows: 

CALL FLT16 (ival,val) 

or 

val=FLT16(ival[,val]) 

22-16 



K-SERIES PERIPHERAL SUPPORT ROUTINES 

when~ 

ival is an unsigned 16-bit integer. 

val is the converted (REAL*4) value. 

22.2.1.13 GTHIST: Gather Inter-event Time Data - The GTHIST routine 
initiates sampling to measure the elapsed time between events. The 
value of the Clock A buffer/preset register at the time of ST2 firing 
is stored in a user-provided buffer. 

GTHIST is an optional facility that must be explicitly selected during 
the K-series generation dialog prior to its use in any program. The 
format of the call to GTHIST is as follows: 

where 

CALL GTHIST (ibuf, lbuf, [nbuf], [mode], [iprset], [iefn], [kount]) 

i buf 

lbuf 

nbuf 

mode 

iprset 

iefn 

kount 

is a 40-word array initialized by the SETIBF routine. 
The first two words of the array are the I/O status 
block (IOSB). 

is the size in words of each data buffer. All data 
buffers must be equal in size and lbuf must be greater 
than O. 

is the number of buffers to be filled. If nbuf is 0 or 
defaulted, indefinite sampling occurs. The STPSWP 
routine is used to terminate indefinite sampling. 

specifies sampling options as follows: 

0 indicates external event timing without Zero Base. 
This is the default. 

1 indicates external event timing with Zero Base. This 
is the only mode supported for the KWVll. 

is a null argument. It is 
compatibility with other 
sequences. 

present 
sweep 

only to 
routine 

maintain 
calling 

is an event flag number (from 1 to 96), or a completion 
routine, or O. If 0 or defaulted, event flag 30 is used 
for internal synchronization. If iefn is an event flag 
from 1 to 96, the selected event N,ag is set as each 
buffer is filled. If iefn is greater than 96, it is 
considered a completion routine that will be called with 
a JSR PC. Such routines must return with an RTS PC 
instruction (or a FORTRAN RETURN statement). Further, 
FORTRAN completion routines must not perform I/O through 
the FORTRAN runtime system since this may cause 
unpredictable results or fatal task errors. 

If multiple sweeps are initiated, the user should 
specify different event flags. This limitation cannot 
be enforced by the software. 

is a counter used by GTHIST, as described below. 

22-17 



K-SERIES PERIPHERAL SUPPORT ROUTINES 

To take Post-Stimulus Time data, set mode to O. STl signals the 
occurrence of a stimulus and starts the clock (i.e., no data is taken 
until the first ST! occurs). Each response is signalled by ST2, and 
the buffer/preset register contents are placed in the user buffer. 
Each ST! resets the counter register to zero, and increments kount by 
1. Thus, kount keeps track of the number of stimuli (ST! events). 
Clock overflow stops the clock. The clock waits for the next STl 
event before restarting. The maximum stimulus-response interval is a 
function of the clock rate. 

To obtain Inter-Stimulus-Interval data, set mode to 1. The time 
between successive events, as signalled by ST2, is recorded. The 
maximum inter-event time is a function of the clock rate. When clock 
overflow occurs, the value returned on the next ST2 firing is 
177777(8) and KOUNT is incremented. Thus, kount represents the number 
of times the maximum inter-event time was exceeded. In general, the 
user should ignore values of 177777(8). 

22.2.1.14 IBFSTS: Get Buffer Status - The IBFSTS routine returns 
information on buffers being used in a sweep. 

The format of the call to IBFSTS is as follows: 

where 

CALL IBFSTS (ibuf,istat) 

ibuf 

is tat 

is the 40-word array specified in the call 
initiated a sweep. 

that 

is an array with as many elements as there are buffers 
involved in the sweep. The maximum is 8. IBFSTS fills 
each element in the array with the status of the 
corresponding buffer. The possible status codes are as 
fol lows: 

+2 indicates that the buffer is in the device queue. 
That is, it is waiting to be filled or emptied. 

+l indicates that the buffer is in the user queue. 
That is, it is full of data (for input sweeps) or 
is waiting to be filled (for output sweeps). 

0 indicates that the status of the buffer is 
unknown. That is, it is not the current buff er 
nor is it in either the device or the user queue. 

-1 indicates that a service routine is currently 
using the buffer. 

22.2.1.15 ICLOKB: Read 16-bit Clock - The ICLOKB function returns 
the contents of the 16-bit software clock as an integer value to the 
user. 

The format of the ICLOKB function call is as follows: 

itim=ICLOKB (0) 

22-18 

~. 



where 

itim 

K-SERIES PERIPHERAL SUPPORT ROUTINES 

receives the curent value of the 16-bit software clock 
as an unsigned integer. 

NOTE 

MACR0-11 programmers need not establish 
an argument block for the ICLOKB 
function. The current value of the 
software clock is returned in RO. 

22.2.1.16 IGTBUF: Return Buffer Number - The IGTBUF routine returns 
the number of the next buffer to use. This routine should be called 
by user completion routines to determine the next buffer to access. 
It should not be used if an event flag was specified in the 
swee~p-initiating call. Rather, the IWTBUF routine should be used with 
event flags. 

IGTBUF can be invoked as a subroutine or a function. The formats of 
the invocations are: 

or 

where 

CALL IGTBUF (ibuf,ibufno) 

ibufno=IGTBUF(ibuf [,ibufno]) 

ibuf 

ibufno 

is the 40-word array specified in the call 
initiated a sweep. 

that 

receives the number of the next buffer to access. If 
there is no buffer in the queue, ibufno contains -1. 

22.2.1.17 INXTBF: Set Next Buffer - The INXTBF routine alters the 
normal buffer selection algorithm. It allows the user to specify the 
number of the next buffer to be filled or emptied. 

INXTBF can be invoked as a subroutine or a function. The formats of 
the invocations are: 

or 

where 

CALL INXTBF (ibuf,ibufno[,ind]) 

ind=INXTBF(ibuf,ibufno[,ind]) 

ibuf 

ibufno 

is the 40-word array specified in the call 
initiated a sweep. 

that 

is the number of the next buffer the user wants filled 
or emptied. The buffer must already be in the device 
queue. 

22-19 



K-SERIES PERIPHERAL SUPPORT ROUTINES 

ind receives an indication of the result of the operation: 

0 indicates that the specified buffer was already 
active or was not in the device queue. 

1 indicates that the next buffer was successfully set. 

22.2.1.18 IWTBUF: Wait for Buffer - 'rhe IWTBUF routine allows a user 
task to wait for the next buffer to fill or empty. It should be used 
in conjunction with the specification of an event flag in the 
sweep-initiating call. This routine should not be used if a 
completion routine was specified in the call to initiate a sweep. 
Rather, the IGTBUF routine should be used with completion routineso 

IWTBUF can be invoked as a subroutine or a function. The formats of 
the invocations are as follows: 

or 

where 

CALL IWTBUF (ibuf, [iefn], ibufno) 

ibufno=IWTBUF (ibuf, [iefn], [ibufno]) 

i buf 

iefn 

ibufno 

is the 40-word array specified in the call 
initiated a sweep. 

that 

is the event flag on which the task will wait. This 
should be the same event flag as that specified in the 
sweep-initiating call. If iefn equals 0 or is 
defaulted, event flag 30 is used. 

receives the number of the next buffer to be filled or 
emptied by the user's task. 

22.2.1.19 RCLOKB: 
the user's task 
constant. 

Read 16-bit Clock - The RCLOKB routine returns to 
the contents of the 16-bit software clock as a real 

RCLOKB can be invoked as a subroutine or a function as follows: 

or 

where 

CALL RCLOKB (rlast,time) 

time=RCLOKB(rlast,time) 

time 

rlast 

receives the current value of the 16-bit software clock 
as a real constant (REAL*4). 

is a value (REAL*4) to be subtracted from the current 
16-bit software clock before it is returned into the 
time field. 

22-20 

.~ 
! 

"""'' 



~ 

K-SERIES PERIPHERAL SUPPORT ROUTINES 

22.2.1.20 RLSBUF: Release Data Buffer - The RLSBUF routine declares 
one or more buffers free for use by the interrupt service routine. 

The RLSBUF routine must be called to release buffer(s) to the device 
queue before the sweep is initiated. The device queue must always 
contain at least one buffer to maintain continuous sampling. 
Otherwise, buffer overrun occurs (see Section 22.3 for a discussion of 
buffer management)~ Note that RLSBUF does not verify whether or not 
the specified buffers are already in a queue. 

The format of the call to RLSBUF is as follows: 

CALL RLSBUF (ibuf, ind,nO[,nl. •• ,n7]) 

where 

i buf is the 40-word array specified in the call that 
initiated a sweep. 

ind receives a success or failure code as follows: 

0 indicates illegal buffer number specified. 

1 indicates buffer (s) successfully released. 

nO,nl,,etc. are the numbers of buffers to be released. A 
maximum of eight can be specified. 

22.2.1.21 RMVBUF: Remove Buffer from Device Queue - The RMVBUF 
routine removes a buffer from the device queue. 

The format of the call to RMVBUF is as follows: 

where 

CALL RMVBUF (ibuf,n[,ind]) 

ibuf 

n 

ind 

is the 40-word array specified in the call 
initiated a sweep. 

is the number of the buffer to remove. 

receives a success or failure code as follows: 

that 

0 indicates that the specified buffer was not in the 
device queue. 

1 indicates that the specified buffer was removed from 
the queue. 

22.2.1.22 SCOPE: Control Scope - The SCOPE routine allows the user 
to control the status register of an AAll-K. 

The format of the call to SCOPE is as follows: 

CALL SCOPE (iunit,icntrl,iosb) 

where 

iunit is the AAll-K unit number. 

22-21 



icntrl 

iosb 

K-SERIES PERIPHERAL SILJPPORT ROUTINES 

is a combination of bit values as shown in Table 22-2. 
Any bits not listed in this table are cleared before 
output to the AAll-K status register 

is a 2-word I/O status block (see Section 22.2.3). 

Table 22-2 
Scope Control Word Values 

Decimal Value Octal Value Function 

4096 10000 Erase storage CRT 

2048 4000 Set write-through mode 

l 024 2000 Set store mode 

512 1000 A digital signal available 
in the AAll-K. 

12 14 Intensify on x or Y 

8 10 Intensify on y 

4 4 Intensify on x 

2 2 Fast intensify enable 

l 1 Intensify pulse 

The values in Table 22-2 are also used to create scope control words 
for calls to the DASWP routine with a mode value of 1. 

22.2.1.23 SETADC: Set Channel Infc>rmation - The SETADC routine 
establishes channel start and increment information for an A/D sweep. 

SETADC can be invoked as a subroutine <)r a function as follows: 

where 

CALL SETADC (ibuf, [iflag], [ichn], [nchn], [inc], [ind]) 

or 

ind = ISTADC (ibuf, [if lag], [ichn], [nchn], [inc], [ind]) 

i buf 

iflag 

ichn 

nchn 

is a 40-word array initialized by the SETIBF routine. 

equals zero if the user wants absolute addressing and 
nonzero for programmable gain addressing. The default 
is zero. 

is the first channel number. The default is zero. 

is the number of samples to be taken per interrupt. 
The default is 1. 

22-22 

~I 



inc 

ind 

K-SERIES PERIPHERAL SUPPORT ROUTINES 

is the channel increment. The default is 1. The user 
should specify an increment of 2 for differential A/D 
input. 

receives a success or failure code as follows: 

0 indicates an illegal channel number. 

1 indicates successful recording of channel 
information for an A/D sweep. 

22.2.1.24 SETIBF: Set Array for Buffered Sweep - The SETIBF routine 
initializes an array required by buffered sweep routines. 

The format of the call to SETIBF is as follows: 

where 

CALL SE~rIBF (ibuf, [ind], [lamskb],buf0[,bufl ••• buf7]) 

ibuf 

ind 

lams kb 

bufO, etc. 

is a 40-word array. 

receives a success or failure code as follows: 

0 indicates an illegal number of 
specified. SETIBF initializes 
according to the maximum number 
allowed. This maximum number 
specified by the user during 
generation di a.log. 

1 indicates the 
initialized. 

array was 

buffers was 
the array 

of buffers 
of buffers is 
the K-series 

successfully 

is present for compatibility with LPA-11 routines. 
It is ignored by K-series software. 

is the name of a buffer. A maximum of eight 
buffers can be specified. Any buffer names in 
excess of eight are ignored. At least two buffers 
must be specified to maintain continuous sampling. 

Each buffer specified in the call to SETIBF is assigned a number from 
0 tc::> 7. 

The assignment of these numbers is based on the order in which buffer 
names appear in the argument list. The first buffer whose name 
appears in the list is assigned number O, the second is assigned 
number 1, and so forth. In all subsequent calls to other K-series 
routines involving the set of buffers specified in a call to SETIBF, 
these numbers, rather than names, are used to refer to particular 
bu f :Eers. 

22.2.1.25 s~rPSWP: Stop Sweep - The STPSWP routine allows the user to 
stop a sweep that is in progress. 

The format of the call to STPSWP is as follows: 

CALL STPSWP (ibuf [, iwhen], [ind]) 

22-23 



where 

ibuf 

iwhen 

K-SERIES PERIPHERAL SUPPORT ROUTINES 

is the 40-word array specified in the call 
initiated a sweep. 

specifies when to stop the sweep: 

that 

0 indicates at the next sample. This is the default. 

+n (any positive value) indicates at the end of the 
current buffer. 

-n (any negative value) is reserved. 

ind receives a success or failure code as follows: 

O indicates that the sweep was not active or no sweep 
could be found that was associated with the specified 
ibuf. 

1 indicates that the sweep will be stopped (at the time 
indicated by iwhen). 

22.2.1.26 XRATE: Compute Clock Rate a1nd Preset - The XRATE routine 
computes an appropriate clock rate and preset that will achieve a 
desired dwell (inter-sample interval). 

NOTE 

The XRATE routine can be used only on 
systems that have a FORTRAN or 
BASIC-PLUS-2 compiler. 

XRATE can be invoked as a subroutine or a function as follows: 

where 

CALL XRATE (dwell,irate,iprset,iflag) 

or 

adwell 

dwell 

irate 

iprset 

iflag 

adwell 

XRATE(dwell,irate,iprset,iflag) 

is the inter-sample time desired by the user. The time 
is expressed in decimal seconds (REAL*4). 

receives the computed clock rate as a value from 1 to 5. 

receives the clock preset. 

specifies whether the computation is intended for Clock 
A or Clock B: 

0 indicates the computation is for Clock A. 

nonzero indicates the computation is for Cl-0ck B. 

is the actual dwell rate for the clock based on the 
irate and iprset parameters. 

22-24 

~. 



K-SERIES PERIPHERAL SUPPORT ROUTINES 

22.2.2 MACR0-11 Interface 

MACR0-11 programmers access the K-series support routines described in 
Section 22.2.1 through either of two techniques: 

1. The standard subroutine linkage mechanism and the CALL op 
code. 

2. Special-purpose macros that generate an argument list and 
invoke a subroutine. 

These techniques are described in the following subsections. 

22.2.2.1 Standard Subroutine Linkage and CALL Op Code - K-series 
routines can be accessed through use of the standard subroutine 
linkage mechanism and the CALL op code. The format of this procedure 
is: 

arglist: 

.PSECT 
MOV 
CALL 
.PSECT 
.BYTE 
.WORD 

.WORD 

code 
#arglist,RS 
ksubr 
data 
narg,O 
addrl 

addrn 

;ARGUMENT ADDRESS TO RS 
;CALL K-SERIES ROUTINE 

;NUMBER OF ARGUMENTS 
;FIRST ARGUMENT ADDRESS 

;LAST ARGUMENT ADDRESS 

In this sample, the two PSECT directives are shown only to indicate 
the noncontiguity of the code and data portions of the linkage 
mechanism. Within the argument list, any argument that is to be 
defaulted must be represented by a -1 (i.e., 177777(8)). 

22.:~.2.2 Special-Purpose Macros - To facilitate the calling of 
K-sE~ries support routines from a MACR0-11 program, two macros are 
provided in file [45,lO]LABMAC.MAC. These macros are: 

1. INrrs 

2. CALLS 

!NITS is an initialization macro. It should be invoked at the 
beginning of the MACR0-11 source module. 

CALLS invokes a K-series support routine. The format of this macro 
call is as follows: 

where 

CALLS ksubr,<argl, ••• ,argn> 

ksubr 

argl,etc. 

is the name of a K-series support routine. 

are arguments to be formatted into a~ argument list 
and passed to the routine. Each argument can be 
either a symbolic name or a constant (interpreted as 
a positive decimal number) or can be defaulted. 

22-25 



K-SERIES PERIPHERAL SllJPPORT ROUTINES 

22.2.3 The I/O Status Block (IOSB) 

Each active sweep must have its own I/O status block. The I/O status 
block (IOSB) is a 2-word array allocated in the user's program. It is 
used to receive the status of a call to a K-series support routine. 
When a data sweep routine is called, the IOSB is always the first two 
words of the 40-word array specified as the first argument of the 
call. The first word of the IOSB contains the status code. The 
second word contains the buffer size in words. 

The codes that can appear in the first word of an I/O status block are 
in ISA-compatible format (with the exception of the I/O pending 
condition). Table 22-3 lists all return codes. 

Table 22·-3 
Contents of First Word of IOSB 

IOSB word 1 Meaning 

0 Operation pending; I/O in progress 

1 Successful completion 

301 Invalid argumemts 

'305 Hardware or software option not present 

306 Il lega 1 buff er specification 

313 Data over run 

315 Request terminated 

317 Resource in use 

397 Invalid event flag 

22.3 BUFFER MANAGEMENT 

The management of buffers for data sweeps by K-series support routines 
involves the use of two FIFO (First-In, First-Out) queues: 

1. The device queue (DVQ) 

2. The user queue (USQ). 

The device queue (DVQ) contains the numbers of all buffers that the 
user has released to the support routines in a call to RLSBUF. The 
buffers represented by these numbers are ready to be filled with data 
(input sweeps) or to be emptied of data (output sweeps). Any buffer 
specified in a call to INXTBF must already be in DVQ. 

The user queue (USQ) contains the numbers of buffers available to the 
user. For output sweeps, this queue contains the numbers of buffers 
that have already been emptied by the driver. For input sweeps, the 
buffers represented by USQ are those which are filled with data. In 
both instances, the user's task determines the next buffer to use 
(that is, extracts the first element of USQ) by calling IGTBUF or 
IWTBUF. 

22-26 

~ ! . 

~I 



~ 

K-SERIES PERIPHERAL SUPPORT ROUTINES 

Both the DVQ and USQ are initialized to -1, indicating no buffers, 
when the user's task calls the SETIBF routine. The task must call 
RLSBUF before initiating any sweep, since at least one buffer must be 
present in DVQ for the first input or output to occur. 

For input sweeps, the best strategy is to call RLSBUF, specifying the 
numbers associated with all the buffers to be used in the sweep. 

For output sweeps, one approach is to specify two buffers (for 
continuous sweeps) in the call to RLSBUF. The first action then taken 
eithier in a completion routine or after a call to IWTBUF would be to 
release the next buffer. Note, however, that this approach does not 
represent true multiple buffering, since data overrun occurs if the 
second buffer is not released in time. 

22.4 SAMPLE FORTRAN PROGRAMS 

Two sample FORTRAN programs showing the use of K-series support 
routines are presented in this section. The first program uses event 
flags for internal synchronization. The second program demonstrates 
the use of user-supplied completion routine for synchronization. 

22.4.1 Sample Program Using Event Flag 

c 
c 
c 

c 
c 
c 

c 
c 
c 
c 

c 
c 
c 
c 

c 
c 
c 
c 

c 
c 

IMPLICIT INTEGER (A-Z) 

DIMENSION BUF(l024,8), IBUF (40), IOSB(2) 
EQUIVALENCE (IBUF(l),IOSB(l)) 

INITIALIZE THE IBUF ARRAY FOR THE A/D SWEEP 

CALL SETIBF (IBUF,IND, , BUF (1,1), BUF (1,2), BUF (1,3), 
* BU F ( 1, ·4) , BU F ( 1, 5) , BU F ( 1, 6) , BU F ( 1, 7) , BU F ( 1, 8) ) 

WRITE ( 1 , 9 0 0 ) 
READ (1, 910) IRATE, IPRSET 

SET THE CLOCK RATE AND PRESET FOR THE SWEEP 

CALL CLOCKA (IRATE, IPRSET,IND) 

THIS IS INPUT, SO RELEASE ALL BUFFERS TO SERVICE 
ROUTINE 

CALL RLSBUF (IBUF,IND, 0,1,2,3,4,5,6,7) 

START THE SWEEP. USE 1024 WORD BUFFERS, SAMPLE 
FOREVER, EXTERNAL START, EVENT FLAG 30, 1 CHANNEL (0). 

CALL ADSWP (IBUF, 1024, -1, 256, IPRSET, 
* 30, O, O, 1) 

HERE WE COULD CHECK THE I/O STATUS BLOCK TO ENSURE 
THAT THE SWEEP IS ACTUALLY RUNNING. 

IBl~CNT=O 

THIS IS THE TOP OF THE DATA PROCESSING LOOP. WE 

22-27 



c 
c 
c 

10 
c 
c 
c 
c 
c 

c 
c 
c 

900 
910 
920 
930 

K-SERIES PERIPHERAL SUPPORT ROUTINES 

WAIT FOR A BUFFER TO BE COMPLETED, AND THEN DUMP 
THE FIRST 100 WORDS OF THE BUFFER TO LUN 1. 

IBUFNO = IWTBUF(IBUF, 30)+1 

IWTBUF WILL RETURN A POSITIVE BUFFER NUMBER 
AS LONG AS THERE IS A BUFFER OF DATA AVAILABLE. 
IF IND IS -1, WE PROBABLY HAD DATA OVERRUN, SO STOP. 

IF (IBUFNO .EQ. 0) STOP 
IBFCNT= IBFCNT+ 1 
WRITE (1,920) IBFCNT 
WRITE ( 1 , 9 3 0 ) (BU F ( I , IB U FN 0) , I = 1 , 1 0 0 ) 

RELEASE BUFFER FOR SERVICE ROUTINE TO REFILL 

CALL RLSBUF(IBUF,IND,IBUFN0-1) 
GOTO 10 
FORMAT (' ENTER IRATE, IPRSET: ', $) 
FORMAT (I, O) 
FORMAT (' DUMP OF BUFFER NUMBER ',IS,/) 
FORMAT (lX,1007) 
END 

22.4.2 Sample Program Using Completion Routine 

c 
c 
c 

c 
c 
c 

c 
c 
c 
c 

c 
c 
c 
c 

c 
c 
c 
c 

IMPLICIT INTEGER (A-Z) 
EXTERNAL AST 

D !MENS ION BU F ( 10 2 4 , 8 ) , I BU F ( 4 0 ) , I OS B ( 2) 
COMMON /KDATA/ BUF, IBUF, IBFCNT 
EQUIVALENCE (IBUF(l),IOSB(l)) 

INITIALIZE THE IBUF ARRAY FOR THE A/D SWEEP 

CALL SETIBF (IBUF,IND, , BUF(l,l), BUF(l,2), BUF(l,3), 
* BU F ( 1 , 4) , BU F ( 1, 5) , BU F ( 1, 6) , BU F ( 1, 7) , BU F ( 1, 8) ) 

WRITE ( 1, 900) 
READ (1, 910) IRATE, IPRSET 

SET THE CLOCK RATE AND PRESET FOR THE SWEEP 

CALL CLOCKA (IRATE, IPRSET,IND) 

THIS IS INPUT, SO RELEASE ALL BUFFERS TO SERVICE 
ROUTINE 

CALL RLSBUF (IBUF,IND, O, 1, 2, 3, 4, 5, 6, 7) 

START THE SWEEP. USE 1024 WORD BUFFERS, SAMPLE 
FOREVER, EXTERNAL START, EVENT FLAG 30, 1 CHANNEL (0). 

IBFCNT = 0 
CALL ADSWP (IBUF, 1024, -1, 256, IPRSET 
* AST, 0, 0, 1) 

HERE WE COULD CHECK THE I/O STATUS BLOCK TO ENSURE 
THAT THE SWEEP IS ACTUALLY RUNNING. 

22-28 



"-"' 

10 
c 
c 
c 
c 

900 
910 

c 
c 
c 
c 
c 
c 
c 
c 

20 
c 
c 
c 
c 
c 
c 

K-SERIES PERIPHERAL SUPPORT ROUTINES 

C.ALL WAI TFR ( 23) 

STOP 

WHEN EVENT FLAG 23 IS SET THE SWEEP IS COMPLETED. 
WE MAY EXIT NOW. 

FORMAT (' ENTER IRATE, IPRSET:', $) 
FORMAT (I, O) 
END 
SUBROUTINE AST 

THIS SUBROUTINE IS CALLED AT AST LEVEL WHENEVER 
A BUFFER IS COMPLETED. THIS ROUTINE PROCESSES 
THE CONTENTS OF THE BUFFER AND THEN RELEASES 
IT !i'OR THE SERVICE ROUTINE. IF THE SWEEP IS TO 
TERMINATE (IOSB NON-ZERO) THEN EVENT FLAG 23. IS 
SET TO INDICATE TO THE MAINLINE CODE THAT WE ARE 
DONE. 

IMPLICIT INTEGER (A-Z) 
DIMENSION BUF(l024,8), IBUF(40), IOSB(2) 
COMMON /KDATA/ BUF, IBUF, IBFCNT 
EQUIVALENCE (IBUF(l),IOSB(l)) 

IBUFNO = IGTBUF (IBUF) +l 

IF (IBUFN0-1) .GE. 0 GOTO 20 
IF (IOSB(l) .EQ. 0) PAUSE 'INCONSISTENT STATE' 
CALL SETEF ( 23) 
RETURN 

IBFCNT = IBFCNT + 1 

HERE WE WOULD PROCESS THE DATA 

RELEASE BUFFER FOR SERVICE ROUTINE 

CALL RLSBUF (IBUF, IND, IBUFN0-1) 
RETURN 

END 

22-29 



-~\ 



CHAPTER 23 

UNIBUS SWITCH DRIVER 

23.l INTRODUCTION 

The UNIBUS switch driver supports DT07 UNIBUS switch hardware on 
RSX-·llM-PLUS systems. UNIBUS switches are electronic devices that 
allow peripherals to be switched from one CPU to another, enabling 
CPUs to share peripheral devices. UNIBUS switches also facilitate 
on-line system back-up and allow dynamic reconfiguration of systems in 
which high availability of certain peripherals is required. 

23.J..l DT07 UNIBUS Switches 

DT07 UNIBUS switches can provide two, three, or four ports for 
connecting an external UNIBUS run to one of two, three, or four CPUs. 

Any CPU can request connection to a UNIBUS run and receive the 
connection immediately if the requested UNIBUS run is in the neutral 
state (it is not connected to another CPU's UNIBUS). If the request 
is received when the UNIBUS run is connected to another CPU, an 
intE!rrupt is generated, informing the connected CPU of the pending 
request, and a watchdog timer is started. The connected CPU normally 
acknowledges the request, indicating the UNIBUS is still in use. In 
this case, the UNIBUS remains connected to the CPU. However, if the 
CPU does not respond to the interrupt within the time limit imposed by 
the DT07's watchdog timer, the UNIBUS is switched to the requesting 
CPU~ Thus, a CPU that is not operating remains connected to the 
UNIBUS only until another CPU requests the UNIBUS. 

Each DT07 UNIBUS switch port functions as an isolation circuit. 
its power is off, it does not affect any CPU operation. 

23.J..2 UNIBUS Switch Driver 

When 

The UNIBUS switch driver permits the UNIBUS switch to be used in one 
of two ways: 

1. A CPU retains the UNIBUS until the task issuing the 
directives that connected the UNIBUS to this CPU exits. This 
is normally accomplished when the task attaches the UNIBUS 
switch (IO.ATT function) and issues the connect function 
(IOeCON). When the task exits (for any reason), the system 
detaches the UNIBUS switch (IO.DET) and performs an implicit 
disconnect function (IO.DIS), releasing the UNIBUS switch for 
use by any other task. 

23-1 



UNIBUS SWITCH DRIVER 

The task that attaches the UNIBUS switch can be considered 
the manager of the UN1BUS switch until the task exits. The 
task can receive ASTs for certain conditions involving UNIBUS 
switching (see Section 23.3.1.1). 

2. A CPU retains the UNIBUS until a task is executed that 
explicitly disconnects the UNIBUS. This is normally 
accomplished when a task issues the IO.CON function and no 
previous IO.ATT was issued. Once the UNIBUS is connected, 
the task exits. The UNIBUS then remains connected until 
either th~ CPU fails to respond to other CPU requests for the 
UNIBUS, or a task is executed that explicitly disconnects the 
UNIBUS. Note that when operating in this manner, no active 
task is required in orde~ to retain the UNIBUS. 

23.2 GET LUN INFORMATION MACRO 

Word 2 of the buffer filled by the Get LUN Information system 
directive (the first characteristics word) contains all zeros. Words 
3, 4 and 5 are undefined. 

23.3 QIO MACRO 

This section summarizes standard and dE~vice-specific QIO functions for 
UNIBUS switches. 

23.3.1 Standard QIO Functions 

Table 23-1 lists the standard functions of the QIO macro that are 
valid for UNIBUS switches. 

where: 

ast 

Table 23--1 
Standard QIO Functions for UNIBUS Switches 

Format Function 

QIO$C I 0 • A TT , ••• , < [a st ] > Attach device 

QIO$C I 0. DET, ••• Detach device 

QIO$C IO.KIL, ••• Cancel I/O requests. 

is the address of an optional AST routine which will be 
entered if certain conditions are detected (see Section 
23.3.1.1) 

IO.ATT does not connect the UNIBUS switch (see device-specific 
function IO.CON). 

IO.DET detaches the UNIBUS switch from the task. If the UNIBUS switch 
was previously attached by the IO.CON function, an implied disconnect 
(IO.DIS) function is performed. 

23-2 

~ 
I 

~\ 
i 



UNIBUS SWITCH DRIVER 

The only I/O requests that can be affected by the IO.KIL function are 
IO.CON and IO.DPT. When IO.KIL is issued during an IO.CON function, 
further retries are cancelled. When IO.KIL is issued during an IO.DPT 
function, the timeout count is changed, forcing timeout (IE.TMO) to 
occur. 

23.3.1.l IO.ATT - The IO.ATT QIO function attaches the UNIBUS switch 
to the task issuing the QIO directive. An optional AST address 
parameter can be specified. However, if it is specified, it must 
remc1in valid while the UNIBUS switch remains attached to the task. 

The AST service routine for the UNIBUS switch is entered when one of 
the following conditions occur: 

• The UNIBUS switch has become connected to another CPU because: 

1. The operator manually switched the UNIBUS to another 
CPU, or 

2. This CPU failed to respond to another CPUs request 
for the UNIBUS within the specified time (the CPU 
must acknowledge the request by servicing an 
interrupt, as described in Section 23.1.1). 

UNIBUS switch condition code 1 is passed to the AST routine 
via the stack indicating the cause of the AST. 

• The UNIBUS switch has disconnected from the CPU because: 

1. A power failure occurred in this CPU (system power 
failure) and the UNIBUS switch driver was unable to 
reconnect the bus, or 

2. A power failure occurred on the connected UNIBUS 
causing the driver to automatically disconnect the 
UNIBUS 

UNIBUS switch condition code 2 (for a system power failure) or 
condition code 3 (for a UNIBUS power failure) is passed to the 
AST routine via the stack indicating the cause of the AST. 

23.3.1.2 IO.DET - The IO.DET function detaches the issuing task from 
the UNIBUS switch, and in addition, performs an implied disconnect for 
the issuing task if that task had connected the UNIBUS switch. A 
detach function is generated by the Executive on behalf of an attached 
task if that task exits (normally or abnormally) without explicitly 
detaching the devic~. For a switched UNIBUS, this causes it to be 
disconnected if an attached, connected task faults in such a way as to 
cause it to exit. 

23.3.1.3 IO.KIL-· The IO.KIL function will cancel any outstanding 
IO.CON function that has a non-zero retry count and any outstanding 
IO.DPT function that has not yet timed out. Other QIO functions in 
progress are not affected by IO.KIL, and are automatically completed. 

23-3 



UNIBUS SWITCH! DRIVER 

23.3.2 Device-Specific QIO Functions 

The device-specific functions of the QIO macro that are valid ~or 
UNIBUS switches are shown in Table 23-·2. 

QIO$C 

QIO$C 

QIO$C 

QIO$C 

QIO$C 

where: 

rent 

cpu 

port 

tout 

Table 23-2 
Device-Specific QIO Functions for UNIBUS Switches 

Format Function 

IO.CON, ••• ,<[rcnt], [cpu]> Connect UNIBUS switch 

IO.DIS, ••• ,<[tout], [port]> Disconnect UNIBUS switch to 
specified CPU port 

IO.DPT, ••• ,< [tout], [port]> Disconnect UNIBUS switch to 
specified CPU port 

I 0 • S WI , ••• , < c p u > Switch the UNIBUS from 
current CPU to specified CPU 

IO.CSR, ••• Read UNIBUS switch CSR 

is the number of additional times the connect will be 
attempted if the IO.CON fails to complete 

is the ASCII letter designating the CPU to receive the 
UNIBUS switch 

is the port number, ranging from 0 through 3, of the 
target CPU that must request the bus prior to the CPU 
that is currently connected to the UNIBUS actually 
completing the disconnect. The port number corresponds 
to the four MANUAL CONNECT switch positions (PORT 0 
through PORT 3) marked on the DT07 control panel. 

is the maximum time (in seconds) allowed (253. maximum) 
for the function to be completed before an error 
condition is reported 

Parameter details are included in the following sections. 

23.3.2.l IO.CON - The IO.CON (connect) function requests connection 
of a UNIBUS presently not connected to a specified CPU. It can be 
issued by either a task previously attached via the IO.ATT function or 
by a task that is not attached. The IO.CON .function has four optional 
parameters. The use of each parameter· is described as follows. 

Retry Count -- The retry count specifies the number of additional 
times the connect function will be attempted if the IO.CON fails to 
complete within the timeout period of the UNIBUS switch. Retry count 
parameters used in this manner are always nonzero positive values. 
The IO.CON function is not completed until either the retry count 
expires or the UNIBUS switch is successfully connected. Thus, the 
issuing task havirig a non-zero retry count wil not be checkpointed 
until the IO.CON function is completed. 

23-4 

~. 

~ i - ~· 



UNIBUS SWITC'H DRIVER 

When a retry count of zero is specified, the connect function attempts 
to connect the UNIBUS switch once (no retries) and immediately reports 
the directive status to the issuing task. 

When a retry count of 177777 (-1) is specified, the connect function 
continues to retry the connection until a successful connection is 
made or an IO.KIL function is issued. 

CPU -- The CPU parameter can only be used with closely coupled! 
multiprocessor systems to specify the CPU to which the UNIBUS switch 
should be connected. This function is used only when the UNIBUS 
switch is presently not connected (the IO.SWI function should be used 
to disconnect the UNIBUS switch from a connected CPU and connect it to 
a specified CPU). The CPU is specified by a single ASCII letter (A, 
B, c, or D). 

23.3.2.2 IO.DIS - The IO.DIS function is used to disconnect the 
switched UNIBUS from the currently connected CPU. 

It is the responsibility of the task 
issuing the IO.DIS or IO.DPT function to 
determine that all devices on the 
switched UNIBUS are inactive when the 
function is issued. The UNIBUS switch 
driver does not check for active devices 
on the UNIBUS before completing either 
the IO.DIS or IO.DPT function. 

23.3.2.3 IO.DPT - The IO.DPT function is used in a loosely coupled2 
multiprocessor system to allow the UNIBUS to be connected to another 
CPU on a specified port if the CPU requests connection within a 
specified time interval. (Refer to the note at the end of Section 
23.3.2.2.) 

Timeout -- The timeout parameter specifies the maximum time allowed 
for the function to complete before an error is reported. Timeout 
specifications are positive, nonzero values ranging from 1 to 254 
seconds. The default timeout value is 2 seconds. If the CPU 
parameter is included in the IO.DIS function, the driver waits for the 
specified CPU to request the UNIBUS up to the specified timeout value. 
If the CPU does not request the UNIBUS during this time, the UNIBUS 
remains connected and the IE.TMO status is returned to the issuing 
task. 

If a timeout value of 0 is specified, the IO.DIS function will not 
complete until either the successful disconnect occurs, or an IO.KIL 
function is issued. 

1 A closely coupled system is one in which all memory resources are 
shared by more than one CPU. 

2 A loosely coupled system is one in which memory resources are not 
shared by more than one CPU. 

23-!5 



UNIBUS SWITClll DRIVER 

Port -- The port parameter can only be used with loosely coupled 
multiprocessor systems to specify the port through which the UNIBUS 
switch should be connected to a CPU. The port is specified by a 
number ranging from 0 through 3. 

23.3.2.4 IO.SWI - The IO.SW! function disconnects the UNIBUS switch 
from the currently connected CPU and connects it to the specified CPU 
in a closely coupled system. The CPU parameter is required. 

IO.SW! is executed without the possibility of a third CPU taking 
control of the UNIBUS during the switching process. 

The CPU parameter is used in closely coupled multiprocessor systems to 
specify the CPU to which the UNIBUS switch should be connected. The 
CPU is specified by a single ASCII letter (A, B, C, or D). 

23.3.2.5 IO.CSR - The IO.CSR function reads maintenance information 
contained in the device CSR and returns it in the second word of the 
I/O status block. Information returned is valid only if the UNIBUS 
switch is connected. The use of this function should be limited to 
diagnostic applications. 

23.4 POWERFAIL RECOVERY 

23.4.1 System Powerfail Recovery 

During powerfail recovery, the driver attempts to restore the state of 
the system prior to the actual power failure. If the UNIBUS switch is 
found to be disconnected during powerfail recovery, the driver 
attempts to reconnect the switched UNIBUS. If the first attempt to 
reconnect the UNIBUS is not successful, an entry is made in the error 
log and the attached task is notified of the UNIBUS switch state via 
the AST specified in the IO.ATT function (if previously issued). 

If an IO.CON function was in progress when the power failure occurred 
and a retry count was pending, the UNIBUS switch driver attempts to 
successfully 9~nnect the UNIBUS switch until the retry count expires. 

If an IO.DIS or IO.DPT function was in progress when the power failure 
occurred, the UNIBUS switch driver attempts to complete the operation. 

23.4.2 UNIBUS Powerfail Recovery 

If an interrupt is received from the UNIBUS switch indicating a power 
failure has occurred on the switched UNIBUS, the driver issues an 
immediate disconnect (IO.DIS). The attached task (if any) is notified 
via the AST. Note that the system may be corrupted if some of the I/O 
devices on the switched UNIBUS were active when the power failure 
occurred, since the drivers for those I/O devices may attempt to 
access the device registers after the switched UNIBUS (and I/O 
devices) has become disconnected. 

23-6 

~ 
: -~ 



UNIBUS SWITCH DRIVER 

2 3 • ~> STATUS RETURNS 

Table 23-3 lists the error and status conditions that are returned by 
the UNIBUS switch driver. 

Code 

rs.sue 

IS .PND 

LE .ABO 

LE.BAD 

IE .CNR 

IE .DAA 

IE.DNA 

IE. I FC 

Table 23-3 
UNIBUS Switch Driver Status Returns 

Reason 

Successful completion 

The operation specified in the QIO directive was 
completed successfully 

I/O request pending 

The operation specified in the QIO directive has not 
yet been executed. The I/O status block is filled 
with zeros 

Request aborted 

An I/O request was queued (not yet acted upon by the 
driver) when an IO.KIL was issued 

Bad parameters 

The parameters specified in the QIO macro where in 
error 

Connect rejected 

The connect function did not successfully connect the 
switched UNIBUS to the specified CPU, and the retry 
count, if specified, has expired 

Device already attached 

The device specified in an IO.ATT funcion was already 
attached by the issuing task. This code indicates 
that the issuing task has already attached the 
desired physical device unit, not that the unit was 
attached by another task 

Device not attached 

The physical device unit specified in an IO.DET 
function was not attached by the issuing task. This 
code has no bearing on the attachment status of other 
tasks 

Illegal function 

A function code was specified in an I/O request that 
is illegal for the UNIBUS switch driver 

(continued on next page) 

23-7 



UNIBUS SWITCH DRIVER 

Table 23-3 (Cont.) 
UNIBUS Switch Driver Status Returns 

Code Reason 

IE .NOD Insufficient buffer space 

Dynamic storage space has been depleted, resulting in 
insufficient buffer space available to allocate 
either the I/O packet <:>r the device list buffer 

IE .OFL Device off-line 

The physical device unit associated with the LUN 
specified in the QIO directive (the UNIBUS switch) 
was not online, or the CPU specified in the IO.CON or 
IO.SW! was not online 

IE .SPC Illegal address space 

The buffer specified in the IO.CON function was 
partially or totally outside the address space of the 
issuing task 

IE .TMO Time out error 

The timeout count expired during an IO.DPT operation 
before the target CPU requested the UNIBUS. This 
error code is also returned when the DT03/D'l.'07 
hardware fails to n~spond to a request due te> a 
hardware failure 

23.6 FORTRAN USAGE 

All of the QIO functions described for the UNIBUS switch driver can be 
used in FORTRAN tasks, except AST support is not provided (IO.ATT 
function with an AST address specified). A macro subroutine can be 
written for the FORTRAN task to call that specifies the AST address. 

23-8 



APPENDIX A 

SUMMARY OF I/O FUNCTIONS 

This appendix summarizes legal I/O functions for all device drivers 
described in this manual. Both devices and functions are listed 
alphabetically. The meanings of the five parameters represented by 
the ellipsis ( ••• ) are described in Section 1.5.1. The meanings of 
the function-specific parameters shown below are discussed in the 
appropriate driver chapters. The user may reference these functions 
symbolically by invoking the system macros FILIO$ (standard I/O 
functions) and SPCIO$ (special I/O functions), or by allowing them to 
be defined at task build time from the system object library. 

A. 1 ANALOG-~rO-DIGITAL CONVERTER DRIVERS 

IO.KIL, ••• Cancel I/O requests 

IO.RBC, ••• ,<stadd,size,stcnta> Initiate an A/D conversion 

A.2 CARD READER DRIVER 

IO .l\.TT, ••• Attach device 

I 0. DET, ••• Detach device 

IO.KIL, ••• Cancel I/O requests 

IO.RDB, ••• ,<stadd,size> Read logical block (binary) 

IO.RLB, ••• ,<stadd,size> Read logical block (alphanumeric) 

IO.RVB, ••• ,<stadd,size> Read virtual block (alphanumeric) 

A.3 CASSETTE DRIVER 

IO •. ~TT, ••• Attach device 

I 0. DET, ••• Detach device 

IO.E:OF, ••• Write end-of-file gap 

IO.KIL, ••• Cancel I/O requests 

IO.RLB, ••• ,<staddusize> Read logical block 

IO.RVB, ••• ,<stadd,size> Read virtual block 

A-1 



SUMMARY OF I/O JmNCTIONS 

I 0 .RWD, ••• Rewind tape 

IO.SPB, ••• ,<nbs> Space blocks 

IO.SPF, ••• ,<nes> Space files 

IO.WLB, ••• ,<stadd,size> Write 109ical block 

IO.WVB, ••• ,<stadd,size> Write virtual block 

A.4 COMMUNICATION DRIVERS (MESSAGE-ORIENTED) 

I 0 .ATT, ••• 

I 0 .DET, ••• 

I 0. FDX, ••• 

I 0 .HDX, ••• 

IO.INL, ••• 

IO.KIL, ••• 

IO.RLB, ••• ,<stadd,size> 

IO.RNS, ••• ,<stadd,size> 

IO.SYN, ••• ,<syn> 

IO.TRM, ••• 

IO.WLB, ••• ,<stadd,size> 

IO.WNS, ••• ,<stadd,s1ze> 

A.5 DECTAPE DRIVER 

IO.RLB, ••• ,<stadd,size,,,lbn> 

IO.RLV, ••• ,<stadd,size,,,lbn> 

IO.RVB, ••• ,<stadd,size,,,lbn> 

IO.WLB, ••• ,<stadd,size,,,lbn> 

IO.WLV, ••• ,<stadd,size,,,lbn> 

IO.WVB, ••• ,<stadd,size,,,lbn> 

A.6 DECTAPE II DRIVER 

I 0 .ATT ••• 

I 0. DET, ••• 

Attach dE~vi ce 

Detach dE~vi ce 

Set device to full duplex mode 

Set device to half-duplex mode 

Initialize device and set device 
characteristics 

Cancel I/O requests 

Read logical block, stripping 
sync characters 

Read logical block, transparent mode 

Specify sync character 

Terminate communication, disconnecting 
from physical channel 

Write logical block with sync leader 

Write logical block, no sync leader 

Read logical block (forward) 

Read logical block (reverse) 

Read virtual block (forward) 

Write logical block (forward) 

Write logical block (reverse) 

Write virtual block (forward) 

Attach device 

Detach device 

A-2 

~ 



SUMMARY OF I/O FUNCTIONS 

IO.KIL, ••• Cancel I/O requests 

IO.RLB, ••• ,<stadd,size,,,lbn> Read logical block 

IO.WLB, ••• ,<stadd,size,,,lbn> Write logical block 

I 0 • WL C , ••• , < s tad d , s i z e , , , 1 b n > Write logical block with check 

IO.RLC, ••• ,<stadd,size,,,lbn> Read logical block with check 

IO.BLS, ••• ,<lbn> Position tape 

I 0. DGN, ••• Run internal diagnostics 

A.7 DISK DRIVER 

IO.RLB, ••• ,<stadd,size,,blkh,blkl> Read logical block 

Read physical block IO.RPB, ••• ,<stadd,size,,,pbn> 

IO.RVB, ••• ,<stadd,size,,blkh,blkl> 

IO.SEC, ••• ,<stadd,size,pbn> 

IO.SMD, ••• ,<density,,> 

IO.WDD, ••• ,<stadd,size,,,pbn> 

IO.WLB, ••• ,<stadd,size,,blkh,blkl> 

IO.WLC, ••• ,<stadd,size,,blkh,blkl> 

IO.WPB, ••• , <stadd, size,, ,pbn> 

IO.WVB, ••• ,<stadd,size,,blkh,blkl> 

A.8 GRAPHICS DISPLAY DRIVER 

·I 0. Jl~TT, ••• 

IO.CON, ••• ,<stadd,size,lpef,lpast> 

I 0. CNT, ••• 

I 0. DET, ••• 

IO.DIS, ••• 

IO.KIL, ••• 

IO.STP, ••• 

Read virtual block 

Sense characteristics (RX02) only 

Set media density (RX02 only) 

Write physical block (with 
deleted data mark) 

Write logical block 

Write logical block followed 
by write check 

Write physical block 

Write virtual block 

Attach device 

Connect to graphics device 

A-3 

Continue (restart display-
processing unit) 

Detach device 

Disconnect from graphics device 

Cancel I/O requests 

Stop 
unit) 

(halt display-processing 



SUMMARY OF I/O FUNCTIONS 

A.9 INDUSTRIAL CONTROL SUBSYSTEMS 

All I/O functions listed below apply to the ICS/ICR subsystem. ~he 
five functions supported by the DSS/DRSll subsystem driver are marked 
by (D) • 

IO.CCI, ••• ,<stadd,sizb,tevf> 

IO.CTI, ••• ,<stadd,sizb,tevf,arv> 

IO.CTY, ••• ,<stadd,sizb,tevf> 

I 0. DCI , ••• 

IO.OT!, ••• 

I 0. DTY, ••• 

I 0. FLN, ••• 

IO.ITI, ••• ,<mn,ic> 

IO.LDI, ••• ,<tname, [,tevf],pn,csm> 

IO.LKE, ••• ,<tname, [,tevf]> 

Connect a buffer to digital 
interrupts 

Connect a buffer to counter 
interrupts 

Connect a buffer to terminal 
interrupts 

Disconnect a buffer from digital 
interrupts 

Disconnect a buffer from counter 
interrupts 

Disconnect a buffer from terminal 
interrupts 

Set controller of fline 

Initialize a counter 

Link task to digital interrupts 
(D) 

Link task to error interrupts 

IO.LTI, ••• ,<tname, [,tevf],cn[,arv]> Link task to counter interrupts 

IO.LTY, ••• ,<tname, [,tevf]> 

IO.MLO, ••• ,<opn,pp,dp> 

IO.MSO, ••• ,<opn,dp> 

IO.NLK, ••• ,<tname> 

IO.NLN, ••• 

IO.RAD, ••• ,<stadd> 

IO.RBC, ••• ,<stadd,size,stcnta> 

IO.SAO, ••• ,<chn,vout> 

IO.UDI, ••• ,<tname> 

IO.UER, ••• ,<tname> 

IO.UTI, ••• ,<tname> 

A-4 

Link 'task to remote 
interrupts 

terminal 

Open or close bistable digital 
output points (D) 

Pulse single-shot digital output 
points 

Unlink a task from all interrupts 
(D) 

Place !CR controller online 

Read activating data (D) 

Initiate multiple A/D conversions 

Perform analog output 

Unlink a 
interrupts 

Unlink a 
interrupts 

task 
(D) 

task 

Unlink a tas·k 
interrupts 

from 

from 

from 

digital 

error 

counter 

~I 



IO.UTY, ••• ,<tname> 

SUMMARY OF I/O FUNCTIONS 

Unlink a task 
interrupts 

from terminal 

IO.WLB, ••• ,<staddb,sizb> Transmit data to the !CR remote 
terminal 

A .1 Ct LABORATORY P.ERIPHERAL ACCELERATOR DRIVER 

IO.CLK, ••• ,<mode,ckcsr,preset> 

IO.INI, ••• ,<irbuf,278.> 

IO.LOD, ••• ,<mbuf,2048.> 

IO.STA, ••• ,<bufptr,40.> 

IO.STP, ••• ,<userid> 

A.11 LABORATORY PERIPHERAL SYSTEMS DRIVERS 

IO.ADS, ••• ,<stadd,size,pnt, Perform A/D sampling 
ticks,bufs,chna> 

IO.HIS, ••• ,<stadd,size,pnt, Perform histogram sampling 
ticks, bufs> 

IO.KIL,... Cancel I/O requests 

IO.LED, ••• ,<int,num> Display number in LED lights 

IO.MDA, ••• ,<stadd,size,pnt, Perform D/A output 
ticks,bufs,chnd> 

IO.MDI, ••• ,<stadd,size,pnt, Perform digital input sampling 
ticks,bufs,mask> 

IO.MDO, ••• ,<stadd,size,pnt, Perform digital output 
ticks, bufs, mask> 

IO.REL, ••• ,<rel,pol> Latch output relay 

IO.SDI, ••• ,<mask> Read digital input register 

IO.SDO, ••• ,<mask,data> Write digital output register 

IO.STP, ••• ,<stadd> Stop in-progress request 

A.12 LINE PRINTER DRIVER 

IO. ATT, ••• Attach device 

I 0. DET, ••• Detach device 

IO.KIL, ••• Cancel I/O requests 

IO.WLB, ••• ,<stadd,size,vfc> Write logical block 

IO.WVB, ••• ,<stadd,size,vfc> Write virtual block 

A-5 



SUMMARY OF I/O FUNCTIONS 

A.13 MAGNETIC TAPE DRIVER 

IO.ATT, ••• Attach device 

I 0. DET, ••• Detach device 

IO.EOF, ••• Write end-of-file (tape mark) 

IO.KIL, ••• Cancel I/O requests 

IO.RLB, ••• ,<stadd,size> Read logical block 

IO.RLV, ••• ,<stadd,size> Read logical block reverse 

IO.RVB, ••• ,<stadd,size> Read virtual block 

I 0 .RWD, ••• Rewind tape 

I 0 .RWU, ••• Rewind and turn unit off-line 

I 0. SEC, ••• Read tape characteristics 

I 0 • S MO , • • • , < c b > Mount tape and set tape characteristics 

IO.SPB, ••• ,<nbs> Space bl1::>cks 

IO.SPF, ••• ,<nes> Space files 

IO.STC, ••• ,<cb> Set tape characteristics 

IO.WLB, ••• ,<stadd,size> Write logical block 

IO.WVB, ••• ,<stadd,size> Write virtual block 

A.14 PAPER TAPE READER/PUNCH DRIVERS 

IO.ATT, ••• Attach dE~vi ce 

I 0. DET, ••• Detach dE~vi ce 

IO.KIL, ••• Cancel I/O Requests 

IO.RLB, ••• ,<stadd,size> Read logical block (reader only) 

IO.RVB, ••• ,<stadd,size> Read virtual block (reader only) 

IO.WLB, ••• ,<stadd,size> Write logical block (punch only) 

IO.WVB, ••• ,<stadd,size> Write virtual block (punch only) 

A.15 PARALLEL COMMUNICATION LINK DRIVERS 

A.15.1 Transmitter Driver Functions 

IO.ATX, ••• ,<stadd,size,flagwd, Attempt message transmission 
id,retries,retadd> 

A-6 

~I 



''--', 

SUMMARY OF I/O FUNCTIONS 

I O • S 'TC , ••• , < s tad d , s i z e , [ s tat e ] Set ma st e r sect ion ch a r act er i st i cs 
[mode J , , retadd > 

IO.SEC, ••• , Sense master section status 

A.15.2 Receiver Driver Functions 

IO.CRX, ••• ,<tef> Correct for reception 

IO.ATF, ••• ,<stadd,size,retadd> Accept transfer 

IO.RTF,... Reject transfer 

IO.DRX,... Disconnect from reception 

A.16 TERMINAL DRIVER 

IO.ATA, ••• ,<ast[,parameter2] 
[,ast2]> 

IO.A.TT, ••• 

IO.CCO, ••• ,<stadd,size,vfc> 

I 0. DET, ••• 

SF.GMC, ••• ,<stadd,size> 

IO.GTS, ••• ,<stadd,size> 

IO.KIL, ••• 

Attach device, specify unsolicited
character AST:l 

Attach device 

Write logical block, cancel CTRL/O 

Detach device 

Get multiple characteristics 

Get terminal support 

Cancel I/O requests 

IO.RAL, ••• ,<stadd,size[,tmo]> Read logical block and pass all bitsl 

IO.RLB, ••• ,<stadd,size[,tmo]> Read logical blockl 

IO.RNE, ••• ,<stadd,size[,tmo]> Read logical block and do not echol 

IO.RPR, ••• /1 <stadd, size, [tmo], Read after promptl 
pradd,prsize,vfc> 

IO.RST, ••• ,<stadd,size[,tmo]> Read with special terminators 

IO.RTT, ••• ,<stadd,size, [tmo], Read logical block ended by specified 
table> special terminator2 

IO.RVB, ••• ,<stadd,size[,tmo]> Read virtual blockl 

SF.SMC, ••• ,<stadd,size> Set multiple characteristics 

IO.WAL, ••• ,<stadd,size,vfc> Write logical block and pass all bits 

1 "ast2", "parameter2", and "tmo" parameters are available for 
full-duplex driver functions only 

2 Function is available for full duplex driver only 

A-7 



SUMMARY OF I/O FUNCTIONS 

IO.WBT, ••• ,<stadd,size,vfc> Write logical block and break through 
any ongoing I/O 

IO.WLB, ••• ,<stadd,size,vfc> Write logical block 

Write virtual block IO.WVB, ••• ,<stadd,size,vfc> 

Subfunction bits for terminal-driver functions: 

TF.AST 

TF.BIN 

TF.CCO 

TF.ESQ 

TF.NOT 

TF.RAL 

TF.RCU 

TF.RNE 

TF.RST 

TF.TMO 

TF.WAL 

TF.WBT 

TF.XCC 

Unsolicited-input-character AST 

Binary prompt 

Cancel CTRL/O 

Recognize escape sequences 

Unsolicited input AST notification! 

Read, pass all bits 

Restore cursor position! 

Read with no echo 

Read with special terminators 

Read with timeout! 

Write, pass all bits 

Break-through write 

CTRL/C starts a command line interpreter! 

TF.XOF Send XOFF 

A.17 UNIBUS SWITCH DRIVER 

IO.ATT, ••• ,<[ast]> 

I 0 .DET I • •• 

IO.KIL, ••• 

I O • CON , ••• , < [ r c n t ] , [ c p u J > 

QIO$C IO.DIS, ••• , 

IO.DPT, ••• ,<[tout], [port]> 

IO.SWI, ••• ,<cpu> 

IO.CSR, ••• 

1 Full duplex driver only 

Attach device 

Detach device 

Cancel I/O requests 

Connect UNIBUS switch 

Disconnect UNIBUS switch 

Disconnect UNIBUS switch and connect 
to specified CPU port 

Switch UNIBUS from current CPU to 
specified CPU 

Read UNIBUS switch CSR 

A-8 

~\ 

~. 
! 



"-"'' 

'-"'' 

SUMMARY OF I/O FUNCTIONS 

A.18 UNIVERSAL DIGITAL CONTROLLER DRIVER 

IO.CCI, ••• ,<stadd,sizb,tevf> Connect a buffer to contact 
interrupts 

IO.CTI, ••• ,<stadd,sizb,tevf,arv> Connect a buffer to timer 
interrupts 

IO.DCI, ••• 

IO.D'rI, ••• 

IO.ITI, ••• ,<mn,ic> 

IO.KIL, ••• 

IO.MLO, ••• ,<opn,pp,dp> 

Disconnect a buffer from contact 
interrupt 

Disconnect a buffer from timer 
interrupts 

Initialize a timer 

Cancel I/O requests 

Open or close latching digital 
output points 

IO.RBC, ••• ,<stadd,size,stcnta> Initiate multiple A/D conversions 

A.19 VIRTUAL TERMINAL DRIVER 

IO .A'rT, ••• 

I 0. D ET, ••• 

IO.KIL, ••• 

IO.RLB, ••• ,<stadd,size> 

IO.RVB, ••• ,<stadd,size> 

IO.WLB, ••• ,<stadd,size,stat> 

IO.WVB, ••• ,<stadd,size,stat> 

IO.STC, ••• ,<cb,sw2vswl> 

Attach device 

Detach device 

Cancel I/O request 

Read logical block 

Read virtual block 

Write logical block 

Write virtual block 

Set terminal characteristics (enable/ 
disable intermediate buffering, or 

·return I/O completion status) 

A-9 



~. 



'-"'. 

........,.,. 

APPENDIX B 

I/O FUNCTION AND STATUS CODES 

This appendix lists the numeric codes for all I/O functions, directive 
status returns, and I/O completion status returns. Lists are 
organized in the following sequence: 

• I/O completion status codes 

• Directive status codes 

• Device-independent I/O function codes 

• Device-dependent I/O function codes 

Device-dependent function codes are listed by device. 
and codes are organized in alphabetical order. 

Both devices 

For each code, the symbolic name is listed in form IO.xxx, IE.xxx, or 
IS.xxx. A brief description of the error or function is also 
included. Both decimal and octal values are provided for all codes. 

B.l I/O STATUS CODES 

This section lists error and success codes which can be returned in 
the I/O status block on completion of an I/O function. The codes 
below may be refenrnced symbolically by invoking the system macro 
IOERR$. 

B .1.1 I/O Status Error 

Name Decimal ----
IE: .ABO -15 

IE.ALN -34 

IE.BAD -01 

I.E.BBE -56 

rn.BCC -66 

IE.BLK -20 

IE.BYT -19 

Codes 

Octal 

177761 

177736 

177777 

l 77710 

177676 

177754 

177755 

B-1 

Meaning 

Operation aborted 

File already open 

Bad parameter 

Bad block 

Block check error or framing 
error 

Illegal block number 

Byte-ligned buffer specified 



I/0 FUNCTION AND STATUS CODES 

Name Decimal 

IE.CNR -73 

IE.CON -22 

IE.DAA -08 

IE .DAO -13 

IE.DNA -07 

IE .DNR -03 

IE.DUN -09 

IE.EOF -10 

IE.EQT -62 

IE.EOV -11 

IE.FHE -59 

IE.FLG -89 

IE.FLN -81 

IE.IEF -97 

IE.IES -82 

IE .IFC -2 

IE .MOD -21 

IE .NLK -79 

IE.NLN -37 

IE .NOD -23 

IE.NST -80 

IE.NTR -87 

IE .OFL -65 

IE.ONP -05 

IE.OVR -18 

IE.PES -83 

IE.PR! -16 

IE.REJ -88 

Octal 

177667 

177752 

177770 

177763 

177771 

177775 

177767 

177766 

177702 

177765 

177705 

177647 

177657 

177637 

177656 

177776 

177753 

177661 

177733 

177751 

177660 

177651 

177677 

177773 

177756 

177655 

177760 

177650 

B-2 

Meaning 

Connection rejected 

UDC connect error 

Device already attached 

Data overrun 

Device not attached 

Device not ready 

Device not attachable 

End-of-file encountered 

End-of-tape encountered 

End-of-volume encountered 

Fatal hardware error 

Event flag already specified 

ICS/ICR controller already 
off line 

Invalid event flag 

Invalid escape sequence 

I llega 1 function 

Invalid UDC or ICS/ICR module 

Task not linked to specified 
ICS/ICR interrupts 

File not open 

No dynamic memory available 
to allocate a secondary 
control block 

Task specified in ICS/ICR 
Link or Unlink request is not 
installed 

Task not triggered 

Device off-line 

Illegal subfunction 

Illegal read overlay request 

Partial escape sequence 

Privilege violation 

Transfer rejected 



'--

·~ 

~ 

"-' 

I/O FUNCTION AND STATUS CODES 

Name Decimal Octal Meaning ----
IE .NOD -23 177751 No dynamic memory available 

IE.RSU ~17 177757 Nonsharable resource in use 

IE .SPC -06 177772 I llega 1 address space 

IE. 'l'MO -74 177666 Timeout error 

IJLVER -04 177774 Unrecoverable error 

IE .WCK -86 177652 Write check error 

IE .WLK -12 177764 Write-locked device 

B .1..2 I/O Status Success Codes 

Decimal Octal 
Name _B:ttes Word Meanin~ 

IS .CR Byte 0: 1 006401 Successful completion with 
Byte 1: 15 carriage return 

IS.CC Byte 0: 1 001401 Successful completion on 
Byte 1: 3 read terminated by CTRL/C 

IS .IO:SC Byte 0: 1 015401 Successful completion 
Byte 1: 33 with ESCape 

IS .ESQ Byte 0: 1 115401 Successful completion with 
Byte 1. 233 an escape sequence 

IS .PND +00 000000 I/O request pending 

IS .RDD +02 000002 Deleted data mark read 

rs.sue +01 000001 Successful completion 

IS .TMO +02 000002 Successful completion on 
read terminated by timeout 

IS.TNC +02 000002 Successful transfer but 
message truncated (receiver 
buffer too sma 11) 

B.2 DIRECTIVES CODES 

This section lists error and success codes which can 
the directive status word at symbolic location 
directive is issued. 

be returned in 
$DSW when a QIO 

B-3 



I/O FUNCTION AND STATUS CODES 

B.2.1 Directive Error Codes 

Name Decimal Octal Meanin9 

IE.ADP -98 177636 Invalid address 

IE .IEF -97 177637 Invalid event flag number 

IE. I LU -96 177640 Invalid logical unit number 

IE.SOP -99 177635 Invalid DIC number or DPB size 

IE .ULN -05 177773 Unassigned LUN 

IE.UPN -01 177777 Insufficient dynamic storage 

B.2.2 Directive Success Codes 

Name Dec ima 1 Octal Meaning 

Is .sue +01 000001 Directive accepted 

B.3 I/O FUNCTION CODES 

This section lists octal codes for all standard and device-dependent 
I/O functions. 

B.3.1 Standard I/O Function Codes 

Symbolic Code Subcode 
Name Word Eg:uivalent (High Byte) (Low B}:::te) Meaning 

IO.ATT 001400 3 0 Attach device 

IO.DET 002000 4 0 Detach device 

I 0. KIL 000012 0 12 Cancel I/O requests 

IO.RLB 001000 2 0 Read logical block 

IO.RVB 010400 21 0 Read virtual block 

IO.WLB 000400 1 0 Write logical block 

IO.WVB 011000 22 0 Write virtual block 

B.3.2 Specific A/D Converter I/O Function Codes 

. Symbolic Code Subcode 
Name Word Equivalent (High Byte) (Low Byte) Meaning 

IO.RBC 003000 6 0 

B-4 

Initiate an A/D 
conversion 

~ 

~~ 

~l'if1 
' . ' 



"-" 

"--"! 

~ 

I/O FUNCTION AND STATUS CODES 

B.3.3 Specific Card Reader I/O Function Codes 

Symbolic Code Subcode 
Name Word Equivalent (High Byte) (Low Byte) Meaning 

IO.RDB 001200 2 200 

B.3.4 Specif i<: Cassette I/O Function Codes 

Symbolic Code Subcode 
Name Word Equivalent (High Byte) (Low Byte) ----

IO.EOF 003000 6 0 

IO.RWD 002400 5 0 

IO.Sl?B 002420 5 20 

IO.SPF 002440 5 40 

B. 3. 5 Specific Communication (Message-Oriented) 

Symbolic Code Subcode 
Name Word ---- Equivalent (High Byte) (Low Byte) 

IO.FDX 003020 6 20 

IO.HDX 003010 6 10 

I 0. I NL 002400 5 0 

IO.RNS 001020 2 20 

IO.SYN 003040 6 40 

I 0. 'I'RM 002410 5 10 

IO.WNS 000420 1 20 

B-5 

Read logical block 
(binary) 

Meaning 

Write end-of-file 
gap 

Rewind tape 

Space blocks 

Space files 

I/O Function Codes 

Meaning 

Set device to 
full-duplex mode 

Set device to 
half-duplex mode 

Initialize device 
and set device 
characteristics 

Read logical block, 
transparent mode 

Specify sync 
character 

Terminate 
communication, 
disconnecting from 
physical channel 

Write logical block 
with no sync leader 



I/O FUNCTION AND STATUS CODES 

B.3.6 Specific DECtape I/O Function Codes 

Symbolic Code Subcode 
Name Word Equivalent (High Byte) (Low Byte) Meaning 

IO.RLV 001100 2 100 

IO.WLV 000500 1 100 

B.3.7 Specific DECtape II I/O Function Codes 

Symbolic Code Subcode 
Name Word Equivalent (Hi~h B~te) (Low B~te) 

IO. WLC 420 1 20 

IO.RLC 1020 2 20 

IO. BLS 4010 10 10 

IO.DGN 4150 10 150 

B.3.8 Specific Disk I/O Function Codes 

Symbolic Code Subcode 
Name Word Equivalent (High Byte) (Low Byte) 

IO.RPS 001040 2 40 

IO.SEC 002520 5 120 

IO.SMD 002500 5 100 

IO.WDD 001140 1 140 

IO.WLC 001020 1 20 

IO.WPS 000440 1 40 

B-6 

Read logical block 
(reverse) 

Write logical block 
(reverse) 

Meanin~ 

Write logical block 
with check 

Read logical block 
with check 

Position tape 

Run internal 
diagnostics 

Mean ins 

Read physical block 
(RXOl, RLOl, RL02 
only) 

Sense 
characteristics 
(RX02 only) 

Set media density 
(RX02 only) 

Write physical block 
with deleted data 
mark (RX02 only) 

Write logical block 
followed by write 
check (all except 
RXOl, RX02) 

Write physical block 
(RXOl, RX02, RLOl, 
RL02 only) 

·~ 

·~ 

~ 



I/O FUNCTION AND STATUS CODES 

B.3.9 Specific Graphics Display I/O Function Codes 

"--"' 
Symbolic Code Subcode 

Name Word Equivalent (High Byte) (Low Byte) Meaning ----
IO.CON 015400 33 00 Connect to graphics 

device 

IO.CNT 017000 36 00 Continue DPU 

IO.DIS 016000 34 00 Disconnect from 
graphics device 

IO.STP 016400 35 00 Stop DPU 

B.3.10 Specific ICS/ICR, DSS/DR I/O Function Codes 

Symbolic Code Subcode 
Na.me Word Equivalent (High Byte) (Low Byte) Meaning -----

"-"' IO.CCI 014000 30 0 Connect a buffer to 
digital interrupt 
input 

IO.CTI 015400 33 0 Connect a counter 

IO.C:TY 003400 7 0 Connect a remote 
terminal 

IO.DC! 014400 31 0 Disconnect a buffer 
from digital 

'-'1 interrupt input 

IO.DTI 016000 34 0 Disconnect a buffer 
from counter input 

IO.DTY 006400 15 0 Disconnect a buffer 
from terminal input 

IO. PLN 012400 25 0 Place selected unit 
offline 

"-"' IO.JCT! 017000 36 0 Initialize a counter 

IO.LDI 007000 16 0 Link a task to 
digital interrupts 

IO.LKE 012000 24 0 Link a task to error 
interrupts 

IO.LT! 007400 17 0 Link a task to 
counter interrupts 

IO.LTY 010000 20 0 Link a task to 
terminal interrupts 

IO.MLO 006000 14 0 Open or close 
bistable digital 
output points 

-~ 

B-7 



I/O FUNCTION AND STATUS CODES 

Symbolic Code Subcode 
Name Word Equivalent (High Byte) (Low Byte) Meaning 

~ 
I O.MSO 005000 12 0 Pulse single-shot 

digital output 
points 

I 0 .NLK 011400 23 0 Unlink a task from 
all unsolicited 
interrupts 

IO.ONL 017400 37 0 Place selected unit 
online 

IO.RAD 010400 21 0 Read task activation 
data 

I O.RBC 003000 6 0 Initiate multiple 
A/D conversions 

IO.SAO 004000 10 0 Perform analog 
output to specified '""""' channel 

IO.UDI 011410 23 10 Unlink a task from 
digital interrupts 

IO.UER 011440 23 40 Unlink a task from 
error interrupts 

IO.UT! 011420 23 20 Unlink a task from 
counter interrupts 

~ 
IO.UTY 011430 23 30 Unlink a task from 

terminal interrupts 

IO.WLB 000400 1 0 Output to remote 
terminal 

B.3.11 Specific LPAll-K I/O Function C:odes 

Symbolic Code Subcode ~ 
Name Word Equivalent (High Byte) (Low Byte) Meaning 

IO.CLK 015000 32 0 Start clock 

IO.IN! 014400 31 0 Initialize LPAll-K 

IO.LOO 014000 30 0 Load microcode 

IO.STA 015400 33 1 Start transfer 

IO.STP 016400 35 0 Stop request 

B-8 



I/O FUNCTION AND STATUS CODES 

B.3.12 Specific LPS I/O Function Codes 

Symbolic Code Subcode 
Name ---- Word Equivalent (High Byte) (Low Byte) Meaning 

IO.ADS 014000 30 0 Initialize A/D 
sampling 

IO.HIS 015000 32 0 Initialize histogram 
sampling 

IO.LED 012000 24 0 Display number in 
LED lights 

IO.MDA 016000 34 0 Initialize D/A 
output 

IO.MDI 014400 31 0 Initialize digital 
input sampling 

IO.MOO 015400 33 0 Initialize digital 
output 

~· 
IO.REL 013400 27 0 Latch output relay 

IO.SDI 013000 26 0 Read digital input 
register 

IO.S:DO 012400 25 0 Write digital output 
register 

IO.STP 016400 35 0 Stop in-progress 
request 

'-"' 
B.3~13 Specific Magtape I/O Function Codes 

Symbolic Code Subcode 
Name ----- Word Equivalent (High Byte) (Low Byte) Meaning 

IO.EWF 003000 6 0 Write end-of-file 
gap 

~· IO.HLV 001100 2 100 Read logical block 
(reverse) 

IO.HWD 002400 5 0 Rewind tape 

IO.HWU 002540 5 140 Rewind and unload 

IO.SEC 002520 5 120 Sense 
characteristics 

IO.SMO 002560 5 160 Mount and set 
characteristics 

IO.SPB 002420 5 20 Space blocks 

IO.SPF 00 2440 5 40 Space files 

IO.:STC 002500 5 100 Set characteristics 

"-"' 

B-9 



I/O FUNCTION AND STATUS CODES 

B .. 3.14 Specific Parallel Communications Link I/O Function Codes 

B .. 3.14.1 Transmitter Driver Functions 

Symbolic Code Subcode 
Name Word Equivalent (Hi~h Byte) (Low Blte) Mean ins 

IO.ATX 000400 l 0 Attempt message 
transmission 

I O.STC 002500 5 100 Set master section 
characteristics 

IO.SEC 002520 5 120 Sense master section 
status 

B.3.14.2 Receiver Driver Functions 

Symbolic Code Subcode 
~ 

Name Word Equivalent (High Byte) (Low Byte) Meaning 

IO.CRX 014400 31 0 Conneect for 
reception 

IO.ATF 001000 2 0 Accept transfer 

IO.RTF 015400 33 0 Reject transfer 

IO.DRX 001500 32 0 Disconnect from '~ 
reception 

B.3.15 Specific Terminal I/O Function Codes 

Symbolic Code Subcode 
Name Word Eguivalent (Hi~h B~te) (Low B~te) Meaning 

IO.ATA 001410 3 10 Attach device, 
~~ specify 

! 

unsolicited-input-cha 
racter AST 

ro.cco 000440 1 40 Write logical block 
and cancel CTRL/O 

SF' .GMC 002560 5 160 Get multiple 
characteristics 

IO.GTS 002400 5 00 Get terminal support 

I 0 .RAL 001010 2 10 Read logical block 
and pass all bits 

IO.RNE 001020 2 20 Read with no echo 

IO.RPR 004400 11 00 Read after prompt 

IO.RST 001001 2 l Read with special ~. terminators 

B-10 



"-' 

~· 

I/O 

Symbolic 
Name Word Equivalent -----

IO.HTT 005001 

SF. SMC 002440 

IO.WAL 000410 

I 0. \liBT 000500 

Subfunction Bits: 

With IO.RLB, IO.RPR: 

TF.RST 
TF.BIN 
TF.RAL 
TF.RNE 
TF.XOF 

With IO.WLB: 

TF.WAL 
TF.CCO 
TF.WBT 

With IO.ATT: 

TF.AST 
TF.ESQ 

FUNCTION AND 

Code 
(High Byte) 

12 

5 

1 

1 

1 
2 

10 
20 

100 

10 
40 

100 

10 
20 

STATUS CODES 

Subcode 
(Low Byte) 

l 

40 

10 

100 

B.3.16 Specific Ul>C I/O Function Codes 

Symbolic 
Name 

IO.CCI 

IO.CTI 

IO.DC! 

Code Subcode 
Word Equivalent (High Byte) (Low Byte) 

014000 

015400 

014400 

30 

33 

31 

0 

0 

0 

B-11 

Meaning 

Read logical block 
ended by specified 
special terminator 
(Full-duplex driver 
only) 

Set multiple 
characteristics 

Write logical block 
and pass all bits 

Write logical block 
and break through 
ongoing I/O 

Meaning 

Connect a buffer to 
contact interrupt 
digital input 

Connect a timer 

Disconnect a buff er 
from contact 
interrupt digital 
input 



I/O FUNCTION AND STATUS CODES 

Symbolic Code Subcode 
Name Word Equivalent (High Byte} (Low Byte} Meaning 

IO.DTI 

IO.IT! 

IO.MLO 

IO.RBC 

B.3.17 

Symbolic 
Name 

IO.CON 

I 0. DIS 

IO.DPT 

I O.SWI 

IO.CSR 

016000 

017000 

006000 

003000 

34 

36 

14 

6 

0 

0 

0 

0 

Specific UNIBUS Switch I/O Function Codes 

Code Subcode 
Word Equivalent (High Byte} (Low Byte} 

15400 33 0 

16000 34 0 

16010 34 10 

16400 35 0 

15000 32 0 

Disconnect a timer 

Initialize a timer 

Open or close 
latching digital 
output points 

Initiate multiple 
A/D conversions 

Meaning 

Connect UNIBUS 
switch 

Disconnect UNIBUS 
switch 

Disconnect UNIBUS 
switch and connect 
to specified CPU 
port 

Switch UNIBUS from 
current CPU to 
specified CPU 

Read UNIBUS switch 
CSR 

B~3.18 Specific Virtual Terminal I/O Function Codes 

Symbolic Code Subcode 
Name Word Equivalent (High Byte} (Low Byte} Meaning 

I O.STC 002500 5 100 

B-12 

set t er m-i n a 1 
characteristics 

~ 

~ 

~: 



MESSAGE TRANSFER 

APPENDIX C 

RSX-llM PROGRAMMING EXAMPLE 

.TITLE MESSAGE TRANSFER 

.IDENT 1011 

COPYRIGHT 1974, DIGITAL EQUIPMENT CORP., MAYNARD, MASS. 

THIS SOFT~ARE IS FU~NJSHED TO PURCHASER UNDER A LICENSE FOR USE 
ON A SINGLE COMPUTER SYSTEM AND CAN BE COPIED C~ITtl INCLUSION 
OF DEC'S COPYRIGHT NOTICE) ONLY FOR USE IN SUCH SYSTEM, EXCE 0 T 
AS MAY OTHERWISE BE PROVIDED IN WRITING BY DEC. 

THE INFORMATION IN THIS DOCUMENT IS SUBJECT TO CHANGE ~lTHOUT 
NOTICE AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL 
E~UIPMENT CORDORATIDN. 

DEC ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY 
OF ITS SOFT~ARE ON EQUI?MENT ~HICH IS NOT SJPPLifD BY DEC. 

VERSION 01 

S•SEP•71J 

DEMONST~ATION OF USE OF RSX•11M I/O 

MACRO LIBRARY CALLS 

.MCALL ALUNSS,QIOSS,WTSE$S,~SIGSS 

LOCALLY DEFINED MACROS 

.MACRO CALL SUBR sDEFINITION FOR SUBROUTINE CALLS 
JSR ?C,S.JBR 
.ENDM 

.MACRO RETURN rSUBROUTINE RETURN MACRO 
RTS PC 
.ENDM 

LOCAL DA.U 

C-1 



tH 
<18 
q9 
50 000000 000000 
51 000002 00001:j0 
52 
53 
54 
55 
Sb 
57 000004 000000 

~ESSAGE TRANSFER 

58 000006 
59 
b0 
bl 
62 
bl 
&'6 000010 
65 000132 
66 
67 
b6 
69 
7111 
71 
72 
73 000254 
74 000274 
75 
76 
77 
78 000314 
79 000366 
80 000370 
81 000374 
82 
83 000376 
84 0004UI 

85 000416 
8b 000420 

87 
88 000424 

89 
90 
91 
92 000430 
93 00051112 
94 000504 
95 ,000510 
96 
97 
98 
99 

100 
101 000512 

103003 

000747 

126727 
177364 
000001116 
001402 
0001&7 
000440 

016701 
177352 

103003 

000747 

102 000564 103003 
133 001115&6 
104 00111572 000747 
us 
11216 
137 
ue 
139 
110 

RSX-llM PROGRAMMING EXAMPLE 

J READ•REl.ATED STORAGE 

RDS TS I .wo~o 0 
• otlORD 0 

i'IUTE•REl.ATEO STORAGE 

i'l~STS I .WOQO 0 

·"ORD 0 

BUFFE~ STORAGE 

BUF11 
BUF21 

J+ 

.BLl<B 82 11 

.BLKB 82 11 

sREAO STATUS BLOCK 

JWRITE STATUS BLOCK 

JBUF'FER 1 
JBUFFER 2 

s **•SXFER•DEMONSTRATE LISE Of RSX•llM I/0 BY OUTPUTTING RECORDS 
1 FROM TII CUSER'S TE~M!NAL) TO LINE PRINTER. REQUESTS ARE DOUBLE 
t BUFFERED TO DEMONSTRATE HOW OPERATIONS MAY BE OVERLAPPED, 
I• 

SXFERll Al.UNSS Ui*"TI,#0 JI.UN 1 IS TII DEVICE 
ALUNSS #21'-"LP JI.UN 2 IS LP01 

' I READ A LINE FROM IN~UT DEVICE, I.UN 

' 1011 QIOSS #I011RLB1#1,*111*RDSTS,,<#BUF'l1#80,> 
BCC 2111S JIF' DISPATCHED OK, CONTINUE 
CALL STCHK SCHECK STATUS 
BR us slF RECOVERABLE ERROR, TRY AGUN 

20Sa WTSESS #1 JWAIT UNTIL 1 COMPLETE 
CMPB ROSTs, us.sue sREAD SUCCESSFUL? 

BEGI 305 sCONTINUE IF' SUCCESSfUL 
JMP 1001 sTERMINATE IF NOT SUCCESSFUL 

3011 MOV RDSTS+2,Rl sGET ACTUAL BYTE COUNT IN R1 

' J BEGIN TO F'ILL SECOND BUfFEA 

' 40S1 QIOSS #IO,RLB,#1,*2,,*RDSTS,,<#BUFZ,#80,> 
sec 50S sCONTINUE IF DISPATCH OK 
CAL.I. STCHK •CHECK STATUS 
B" 405 JTRY AGAIN 

START BJFFER 1 OUT 

50S1 GIIOSS 
BCC 
CAL.L. 
BR 

#IO.~LB,#2,•1,,#"RSTS,,<#BJF'l,R11#40> 
601 sCONTINUE IF NO DISPATCH ERROR 
STCHK SCHECK STATUS 
505 JT~Y AGAIN 

T~IS IS A SYNCHRONIZATION POINT, BOTH fUNCTIONS MJST CO~PL.ETE 
BEFORE ANYTHING ELSE BEGINS, 

C-2 

~. 

~. 
j' 



RSX-llM PROGRAMMING EXAMPLE 

MESSAGE TIUNSFER MACRO M0710 10•0CT•74 10119 PAGE 1•2 

111 01110574 bl1IS1 WTSESS #2 SWAIT FOR 2 TO FILL 
rSUCCESSfUL? 112 000606 126727 

177166 
000000G 

113 000614 001123 
114 000616 016702 

177160 
115 000622 
116 000634 

117 000642 
tl 8 
119 
12!0 
12! 1 000644 
12!2 00071 b 
12!3 000720 
12!4 000724 
12!5 
12!6 000726 
12!7 001000 
12!8 001002 
12!9 001006 
13;0 
Bl 
D2 
B3 
Btf 
BS 001010 
1316 001022 

1H 001030 
B8 001032 

1319 01111036 

:l 26727 
177144 
rit111000111G 
00111111 

103003 

000747 

1121311103 

ra121074 7 

126727 
17&752 
000000G 
001015 
016701 
176744 

14111 001050 126727 
17673111 
00000111G 

141 00111156 001002 
142 00111160 00111167 

177344 
1 ~13 
1 ~14 
1 ~15 
U6 
U7 
1qe 001064 000004 
1 ~19 
15i0 
Ul 
15i2 
U3 
1 s;q 
1 SiS 
1 Sib 

CMPB RDSTS,#IS.SUC 

BNE 100$ 
MOV RDSTSt2,R2 

WTSESS #1 
C~PB WRSTS,#IS.SUC 

B~E 1005 

J If NOT, CUSH 
JGET COUNT FOR BUFFER 2 

JWAIT FOR 1 TO EMPTY 
JSUCCESSfUL? 

JIF NOT, CRAS~t 

FILL BUFFER 1, EMPTY BUFFER 2 

' 70SI 

80Sa 

QIO!IS 
BCC 
CALL 
B~ 

QIOIS 
BCC 
CALL 
B~ 

#IO.RLB,#1,#1,,#RDSTS,,<#BUF1,#80.> 
80S JIF OK, CONTINUE 
STCHK J CHECK STATUS 
70S JTRY AGAIN 

#IO.wLB,•2,*2,,#WRSTS,,<#BUF2,R2,#4~> 
905 JCONTINUE IF SUCCESSFUL 
STCHK JCHECK ST~TUS IF NOT SUCCESSFUL 
81115 J RETURN 

THIS IS ALSO A SYNCHRONIZATION POINT 

90$1 WTSESS #1 
CMPB ROSTS,•Is.suc 

BNE 
MOV 

100! 
RDSTSt2,R1 

WTSESS #2 
CMPB ~RSTs,•rs.suc 

BNE 100$ 
JMP 40S 

JWAIT fOR 1 TO FILL 
JSUCCESSfUL? 

sif NOT, CRASH 
sGET ACTUAL BYTE COJNT IN Rt 

JWAIT FOR BUFFER 2 TO EMPTY 
sSUCCESSfUL? 

JTERMINATE IF NOT 
1BACK INTO LOOP 

DON'T ATTEMPT TO RECOVER ERRORS 

100$1 IOT r CRASH TASK 

r+ 
J **• STCHK • ATTEMPT TO RECOVE~ DIRECTIVE DISPATCH ERROR ONLY IF 
s IT INVOLVtS DYNAMIC MEMORY ALLOCATION • OTHERWISE TERMINATE. 

INPUTS& 

CSP)=~ETURN ADDRESS 

C-3 



MESSAGE TRANSFER 

157 
158 
159 
1&0 
1&1 
1&2 
1&3 0010bb 12&727 

000000G 
000000G 

1&4 001074 001004 
us ld01076 
166 0011']4 
1&7 
168 001106 000004 
16q 
l 7(d 000254' 

MESSAGE TRANSFER 
SYMBOL TABLE 

BJF1 
BJf 2 
IE~JPN: 
IO.~LB= 

000010R 
000132R 
**"*** GX 
*****• GX 

~ A BS. 000000 
001110 

E~RORS nETECTEDI 

000 
0~1 

0 

F~EE COqf 1 3586. wORDS 
.~SG/LltTTM:MSG.001 

RSX-llM PROGRAMMING EXAMPLE 

MACRO M0!7Ul 10•0CT1174 Uh lq PAGE 1•3 

OUTPUTS I 

NONE 
•• 
STC'"IKI CMPB SDSW, UE.UPN I BUFFER ALLOCATION 

BNE 10$ 
wSIGSS 
RETURN 

10St IOT 

.END SXFER 

IO.~LB= ****** GX 
IS.SUC• ****** GX 
~nsrs 0210000R 
STCHK 0010bbR 

C-4 

Jlf NOT TERMINATE 
JAWAIT SIGNIFICANT 
JTRY AGAIN 

rCRASH TASK 

~RSTS 000004R 
SDSW • ****** GX 
SXFER 0"0254RG 
SUARG• 000002 

"""' 
FAIL.URE? 

EVENT 



A 
AAll-K D/A Converter, 22-1 
Aborting a ta.sk, 6-8, 8-13, 

10-6, 11-9 
Activating a task by 

unsolicited interrupts, 
18-22, 18-60 

A/D conversion control word, 
18-13 

A/D converters, 
ADOl-D, 14-1 
ADUOl modules, 15-7 
AF'Cll, 14-1 
functional capabilities, 

14-9 
I.AD-IA module, 15-8 

A/D functional capabilities, 
14-9 

A/D gain ranges, 14-9 
A/D programmi.ng hints, 14-9 
A/D sampling, synchronous, 

16-20 
A/D switch-gain value, 16-13 
ADOl-D Analog-to-Digital 

Converter, 14-1 
ADOl-D conversions, restricting 

the number of, 14-10 
ADll-K A/D Converter, 22-2 
ADJLPS, USE~ f:or input and 

output, 16-32 
Address assignments, for 

ICS/ICR and DSS/DRS, 
18-2 

Addressing conventions, 
ICS/ICP and DSS/DRS 
modules, 18-7 

AFCll Analog-to-Digital 
Converter, 14-1 

identical channel numbers, 
14-9 

sampling rate, 14-9 
Alphanumeric format (card 

reader) , 11-9 
ALUN$, 1-16 
AMll-K Multiple Gain Multi

plexer, 22-2 
Analog data input, random 

sequenceu 
A/D, 14-5 
ICS, 18-12, 18-37 
UDC, 15-17 

Analog input channels, 
reading sequential, 14-5, 
15-17, 18-39 

Analog output, 
ICS, 18-14, 18-41, 18-77 
UDC, 15-17 

INDEX 

Analog-to-digital converters, 
14-1, 15-7 

ARll Laboratory Peripheral 
System, 16-2 

ASADLN, 14-6 
ASAFLN, 14-6 
ASR 33/35 Teletypes, 2-3, 3-2 
Assembly language interface, 

ICS/ICR and DSS/DRS, 18-8 
Assembly procedure for 

UDCOM.MAC, 15-9 
Assigning a LUN, 

to ADOl-D, 14-6 
to AFCll, 14-6 
to ARll, 16-13 
to DSS/DRS, 18-35 
to ICS/ICR, 18-35 
to LPSll, 16-12 
to UDCll, 15-18 

AST, 1-11, 2-9, 2-10, 2-35, 3-32 
AST service terminating, 

1-22 
AST's and tasks attaching 

several terminals, 2-11, 3-32 
ASTX$S, 1-23 
Asynchronous line interface 

(DAll-B, DLll-E), 12-2 
Asynchronous process-control 

I/O, 14-3, 15-14, 18-32 
Asynchronous system trap 

(AST), 1-11, 2-10, 2-35, 3-32 
Attaching to an I/O device, 

1-24 

B 
Bad-sector file, RK06, 3-8 
Binary format (card reader) , 

11-9 
Bistable digital output, 18-15 
Block length, cassette, 9-7 
Break-through write (terminal), 

2-20, 3-14 
Buffer, circular, 

Index-! 

processing entries, UDCll, 
15-30 

read counter (timer) inter
rupt, 
ICS, 18-54 
UDC, 15-24 

read counter (timer} module, 
ICS, 18-55 
UDC, 15-26 

read digital (contact) interrupt, 
ICS, 18-49, 18-51 
UDC, 15-24, 15-25 



Buffer management, 16-31, 21-27, 
22-26 

Buffer pointers, adjusting, 
16-11 

Buffer, reading data from an 
input, 16-18 

Buffers, control and data, 
14-9 

c 
CALLS, 21-22, 22-25 
Cancelling I/O requests, 1-25 
Card input errors, 11-3 
Card limitation, input, 11-10 
Card reader, 11-1 

check recovery, 11-6 
data formats, 11-9 
switches and indicators, 

11-4 
Card reader driver, 

control characters, 11-8 
programming hints, 11-9 

Cassette, 
driver programming hints, 

9-6 
recovery procedures, 9-5 
tape structure, 9-6 

Change-of-state data, reading, 
15-23 

Changing LUN assignments, 1-6 
Channel numbers on the AFCll, 

identical, 14-9 
Channel, reading a single A/D, 

16-11 
Channels, reading sequential 

analog input, 14-5, 15-17, 
18-39 

Checkpointing during terminal 
input, 2-34, 2-36, 3-30 

Circular buffer, 
processing entries, UDCll, 

15-30 
read counter (timer) inter

rupt, 
ICS, 18-54 
UDC, 15-25 

read counter (timer) module, 
ICS, 18-55 
UDC, 15-26 

read digital (contact) 
interrupt, 
ICS, 18-49, 18-51 
UDC, 15-24, 15-25 

Clock, LPSll/ARll, 16-30 
Closely coupled multiprocessor, 

23-5 
Codes, directive, B-3 
Codes, I/O function, B-3 
Codes, return, 1-28 

INDEX 

Codes, specific communication 
I/O function, B-4 

Common block, 15-11, 15-12, 
15-13, 18-71 

Communications drivers, 
programming example, 12-12 
programming hints, 12-10 

Communication interfaces, 
character-oriented, 2-3, 2-37, 

3-2, 3-28 
message-oriented, 12-1 

Communication I/O function 
codes, specific, B-4 

Communications Link, 
Parallel, 13-1 

Compatibility, ICS/ICR and 
UDC, 18-6 

Completion, I/O, 1-26 
Connect to contact interrupts, 

15-19 
Connect to counter interrupts, 

18-19, 18-52 
Connect to digital interrupts, 

18-18, 18-48 
Connect to terminal inter

rupts, 18-21, 18-56 
Connect to timer interrupts, 

15-19 
Contact interrupt data, 

reading, 15-22, 15-23, 
15-25 

Contact interrupt digital 
input, 15-5 

Contact interrupts, connect 
to, 

ICS, 18-48 
UDC, 15-19 

Contact interrupts, disconnect 
from, 

ICS, 18-52 
UDC, 15-20 

Control characters, 
card reader, 11-8 
terminal, 2-25, 2-27 

Control and data buffers, 14-9 
Control word, A/D conversion, 

18-13 
Converters, analog-to-digital, 

ADOl, 14-1 
ADUOl modules, 15-7 
AFCll, 14-1 
functional capabilities, 

14-9 
IAD-IA module, 15-8 

Counter interrupts, 
connect to, 18-18, 18-48 
disconnect from, 18-20, 18-52 
linking a task to, 18-23 

Counter routines, miscellaneous, 
18-54 

Index-2 

~· 



·'--". 

Counter, set initial value, 
18-20, 18-55 

CRll Card Reader, 11-1 
switches and indicators, 

11-4 
CRC, 12-10 
Cursor control, direct, 2-37, 

3-32 
Cyclic redundancy check (CRC), 

12-10 

D 
D/A output, synchronous, 16-22 
DAll-B Asynchronous Communi

cation Line Interface, 
12-2 

Data formats, card reader, 
11-9 

DECprinters, 2-3, 3-3, 10-2 
DECtape, 

recovery procedures, 6-6 
reverse reading and 

writing, 6-7 
select recovery, 6-7 
speed considerations, 6-7 
transfers, 6-7 

DECtape driver, 6-1 
programming hints, 6-7 

DECwriters, 2-3, 3-3, 3-28 
Def a.ult logical and physical 

units, assigning, 18-35 
Detaching from an I/O device, 

1-25 

INDEX 

Device mnemonics, 1-17 
Device-specific QIO functions, 

2-9, 3-8, 4-4, 5-6, 6-3, 7-3, 
8-4, 9-3, 11-2, 12-5, 13-3, 
13-9, 14-2, 15-3, 16-2, 18-8, 
20-2, 21-23, 23-4 

Device-specific QIO functions 
(synchronous) , 16-4 

Devices, RSX-llM, 1-2 
DHll Asynchronous Communication 

Line Multiplexer, 2-3, 2-39, 
3-2, 3-30 

Diagnostics, 7-4 
Digital controller, universal, 

15-1 
Digital input, 

res, 18-44, 18-76 
UDC, 15-20 

Digital interrupts, 
connect to, 18-18, 18-14 
disconnect from, 18-19, 

18-52 
linking a task to, 18-23 

Digital ou.tput, 
bi.stable (latching), 

ICS, 18-42, 18-76 

Digital output (Cont.) 
UDC, 15-20 

momentary (single-shot), 
res, 18-46, 18-76 
UDC, 15-21 

synchronous, 16-23 
Digital sense, 18-44 
DIR$, 1-15 
Direct access, 15-3, 15-8, 

18-69 
Direct cursor control, 2-37, 3-32 
Directive codes, B-3 
Directive conditions, 1-29 
Directive, .MCALL, 1-15 
Directive parameter block 

(DPB) I 1-12 
Directive return codes, 1-28 
Disconnect from contact 

interrupts, 15-20 
Disconnect from counter 

interrupts, 18-21, 18-55 
Disconnect from digital 

interrupts, 18-19, 18-52 
Disconnect from terminal 

interrupts, 18-22, 18-58 
Disconnect from timer 

interrupts, 15-20 
Disk, 

RFll/RSll Fixed-Head Disk, 
5-1 

RK11/RK05 Cartridge Disk, 
5-3 

RK611/RK06 Cartridge Disk, 
5-3 

RP04, RP05, RP06 Pack 
Disks, 5-3 

RPll/RP02 Pack Disk, 5-1 
RS03 Fixed-Head Disk, 5-1 
RS04 Fixed-Head Disk, 5-1 
RXlO/RXOl Flexible Disk, 5-3 

DJll Asynchronous Communication 
Line Interface Multiplexer, 
2-3, 2-39, 3-2, 3-30 

DLll Asynchronous Communication 
Line Interface, 2-3, 
2-39 I 3-2 I 3-30 

DLll-E Asynchronous Communication 
Line Interface, 12-2 

DMCll Synchronous Communication 
Line Interface, 12-3 

DMCll, powerfail with, 12-11 
DPll Synchronous Communication 

Line Interface, 12-3 
DPB, 1-12 
DQll Synchronous Communication 

Line Interface, 12-3 
DRll-K Digital I/O Interface, 

22-1 
DUll Synchronous Communication 

Line Interface, 12-3 

Index-3 



DUPll Synchronous Communication 
Line Interface, 12-4 

DSSll/DRSll Digital Input and 
Output Subsystems, 18-1 

DSS/DRS address assignments, 
18-2 

DT07 UNIBUS switch, 23-1 
DZll Asynchronous Communication 

Line Interface Multiplexer, 
2-3, 2-39, 3-2, 3-30 

E 
End-of-file and IO.SPF, 9-7 
End-of-tape, logical (cassette), 

9-6 
Error codes, directive, B-3 
Error codes, I/O status, B-1 
Error data, ICSR and ICAR 

registers, 18-68 
Error detection and recovery, 

18-66 
Error interrupts, linking a 

task to, 18-25 
Error reporting, 

disable hardware, 18-29 
enable hardware, 18-30 

Errors, IO.ADS and ADC, 16-29 
Errors, card input, 11-3 
Errors, serial line, 18-66 
ESCape code conversion, 3-29 
Escape sequences, terminal, 

characteristics, 2-28, 3-23 
definition, 2-29, 3-22 
prerequisites for using, 

2-29, 3-23 
special cases, 2-31, 3-25 
syntax, 2-29, 3-22 

Even-parity zero, writing an 
(magtape), 8-13 

Event flag, waiting for an, 
1-23 

Event, significant, 1-10 
Executing a directive, 1-15 
Executive directive macros, 

ALUN$, 1-16 
ASTX$S, 1-22 
DIR$, 1-15 
GLUN$, 1-20 
QIO$, 1-1, 1-8, 1-15 
QIOW$, 1-15 
WTSE$, 1-23 

F 
Format control, vertical, 

2-31, 3-25, 10-5 
Formats, card-reader data, 

11-9 

INDEX 

FORTRAN interface, 14-3, 15-·13, 
16-8, 18-31, 21-2, 22-5 

FORTRAN interface values, 
14-8, 15-29, 16-29 

FORTRAN subroutine summary, 
14-4, 15-15, 16-10, 18-31 

Full-duplex considerations, 
2-36 I 12-11 

Functional capabilities, AFCll 
and ADOl-D, 14-9 

Functions, summary of I/O, A-1 

G 
Gain ranges, A/D, 14-9 
Gain value, A/D switch, 16-13 
Get LUN information macro, 

1-20, 2-5, 3-4, 4-1, 5-4, 6-1, 
7-1, 8-2, 9-1, 10-2, 11-1, 
12-4, 13-2, 14-2, 15-3, 16-2, 
17-1, 18-8, 20-1, 21-1, 23-2 

Global common block, 
creating, 15-11 
linking a task to, 15-13 
making resident, 15-13 
referencing UDCll via, 

15-11 
GLUN$, 1-20 
Graphics subsystems, 

VS60, 20-1 
VTll, 20-1 

H 
Half-duplex considerations, 

12-11 
Histogram sampling, 16-15 

ICAR contents, 18-68 
ICSll/ICRll Local and Remote 

Process Control Subsys
tems, 18-1 

ICSll support, alternate, 
18-3 

ICS/ICR address assignments, 
18-2 

ICS/ICR compatibility with 
UDCll, 18-6 

ICS/ICR I/O modules, supported, 
18-3 

ICSR contents, 18-68 
Industrial Control Systems 

FORTRAN interface sub
routines, 18-31 

AIRD/AIRDW, 18-37 
AISQ/AISQW, 18-39 
AO/AOW, 18-41 

Index-·4 

~. 



Industrial Control Systems 
FORTRAN interface sub
routines (Cont.) 

ASICLN/ASUDLN, 18-35 
.A.SISLN I 18-35 
CTDI, 18-48 
CTTI, 18-53 
CTTY, 18-56 
DFDI, 18-52 
DFTI, 18-56 
DFTY, 18-56 
DI/DIW, 18-44 
DOL/DOLW, 18-42 
DOM/DOMW, 18-46 
LiNK, 18-60 
OFLIN, 18-65 
ONLIN, 18-65 
RCIPT, 18-45 
RDACT, 18-62 
Imes, 18-51 
RODI, 18-49 
RDTI, 18-54 
RDTY, 18-57 
RDWD, 18-51 
RSTI, 18-55 
RTO/RTOW, 18-47 
SCTI, 18-55 
UNLNK, 18-64 

Initializing a timer module, 
15-26 

!NITS, 21-19, 22-25 
Input of analog data, 14-5, 

15-17, 18-13, 18-37 
Input buffer, reading data 

from an, 16-18 
Input card limitation, 11-9 
Input, contact interrupt 

digital, 15-5 
Input errors, card, 11-3 
Input, reading digital, 16-17 
Input, use of ADJLPS for, 

16-32 
Interrupt processing, unsolic

ited, 18-16, 18-22, 18-47, 
18-59 

Interrupts, 
connect to contact, 15-19 
connect to counter, 18-19, 

18-53 
connect to digital, 18-18, 

18-48 
connect to terminal, 18-21, 

18-56 
connect to timer, 15-19 
disconnect from contact, 

15-20 
disconnect from counter, 

18-21, 18-56 

INDEX 

Interrupts (Cont.) 
disconnect from digital, 

18-19, 18-52 
disconnect from terminal, 

18-22, 18-58 
disconnect from timer, 

15-20 
UNIBUS switch, 23-1 
unlink a task from, 18-26, 

18-63 
I/O completion, 1-28 
I/O functions, standard, 

1-24, B-4 
I/O functions, summary of, 

A-1 
I/O page, accessing the, 

18-71 
I/O page global definitions, 

18-72 
I/O, physical, logical, and 

virtual, 1-2 
I/0-related macros, 1-13 
I/O request, issuing an, 1-6 
I/O requests, cancelling, 

1-25 
I/O rundown, 18-30 
I/O status block, 1-9, 16-31, 

21-25, 22-25 
I/O status codes, B-1 
I/O status condition, 1-31, 

11-6 
I/O status return codes, 

1-31 
I/O, synchronous and asyn

chronous process-control, 
14-3, 15-14, 18-32 

IO.ADS, 16-5,16-29 
IO.ATA, 2-10, 3-9 
IO.ATT, 1-24, 2-11, 3-9 
IO.CCI, 15-4, 14-18 
IO.CCC, 2-12, 3-10 
IO.CNT, 20-2 
IO.CON, 20-2 
IO.CTI, 14-19, 15-4 
IO.CTY, 18-21 
IO.DC!, 14-19, 15-4 
IO.DET, 1-25 
IO.DIS, 20-2 
IO.OT!, 15-4, 18-21 
IO.DTY, 18-22 
IO.EOF, 8-4, 9-3 
IO.FOX, 12-6, 12-11 
IO.FLN, 18-30 
IO.GTS, 2-16, 3-11 
IO.HDX, 12-6, 12-11 
IO.HIS, 16-6 
IO.INL, 12-6, 12-12 
IO.IT!, 15-4, 18-20 

Index-5 



IO.KIL, 1-25, 2-28, 18-31 
IO.LOI, 18-23 
IO.LED, 16-3 
IO.LKE, 18-25 
IO.LT!, 18-24 
IO.LTY, 18-24 
IO.MDA, 16-7 
IO.MDI, 16-7 
IO.MOO, 16-7 
IO.MLO, 15-4, 14-15 
IO.MSC, 18-15 
IO.NLK, 18-27 
IO.NLN, 18-30 
IO.ONL, 
IO.RAD, 18-25 
IO.RAL, 2-17, 3-12 
IO.RBC, 14-2, 15-4, 18-13 
IO.ROB, 11-3 
IO.REL, 16-4 
IO.RLB, 1-26, 12-11 
IO.RLV, 5-4, 16-3 
IO.RNE, 2-17, 3-12 
IO.RNS, 12-7 
IO.RPB, 5-6 
IO.RPR, 2-17, 3-13 
IO.RST, 2-18, 3-13 
IO.RTT, 2-19 
IO.RVB, 1-26 
IO.RWD, 18-4, 9-3 
IO. RWU I 8-4 
IO.SAO, 18-14 
IO.SDI, 16-4 
IO.SOC, 16-4 
IO.SEC, 8-4 
IO.SMC, 8-4 
IO.SPB, 6-3, 6-7, 8-4 
IO.SPF, 6-3, 6-7, 8-4 
IO.STC, 8-4 
IO.STP, 16-2, 16-8 
IO.SYN, 12-7 
IO.TRM, 12-7 
IO.UDI, 18-27 
IO.UER, 18-28 
IO.UT!, 18-28 
IO.UTY, 18-28 
IO.WAL, 2-19, 3-14 
IO.WBT, 2-20, 3-14 
IO.WOO, 5-6 
IO.WLB, 1-27, 18-29 
IO.WLV, 6-3 
IO.WNS, 12-8 
IO.WPB, 5-6 
IO.WVB, 1-27, 2-38, 3-30 
Isb status array, 14-3, 15-14, 

16-8 
Issuing an I/O request, 1-7 

and waiting for an event 
flag, 1-15 

INDEX 

Index-6 

K 
K-Series Laboratory Periph

erals, 22-1 
K-Series support routines, 

22-2, 22-5 
Keys, special, 2-27, 3-21 
KSR-33/35 Teletypes, 2-3, 3-2 
KW-llK clock, 22-1 

L 
:LA30-P DECwriter, 2-3, 3-3, 3-28 
:LA30-S DECwriter, 2-3, 3-3 
:LA36 DECwriter, 2-3, 3-3 
:LA120 DECwriter, 2-4, 3-3 
:LA180 DECprinter, 10-2 . 
:LA180S DECprinter, 2-4, 3-3 
:Laboratory Peripheral 

Accelerator, 21-1 
:Laboratory Peripheral Systems, 

FORTRAN interface subrou·
tines, 

ADC, 16-11 
ADJLPS, 16-11, 16-32 
ASARLN, 16-13 
ASLSLN, 16-12 
CVSWG, 16-13 
DRS, 16-14 
HIST, 16-15 
!DIR, 16-17 
!DOR, 16-17 
IRDB, 16-18 
LED, 16-18 
LPSTP, 16-19 
PUTD, 16-19 
RELAY, 16-19 
RTS, 16-20 
SDAC, 16-22 
soo, 16-23 

Latching (bistable) digital 
output, 

ICS, 18-42 
UDC, 15-7, 15-21 

Latching an output relay, 
16-19 

Latching several fields, 16-20 
LED lights, displaying in, 

16-18 
Library, system object module, 

15-11 
Line printer, 

LA180, 10-2 
LPll, 10-1 
LSll, 10-2 
LVll, 10-2 

Line truncation, terminal, 
3-29 



Line printer driver, 
programming hints, 10-6 
vertical format control, 

10-5 
Linking a task to: 

counter interrupts, 18-24 
digital interrupts, 18-23 
error interrupts, 18-25 
ICS/ICR common block, 18-70 
interrupts, 18-60 
terminal interrupts, 18-24 
UDCll common block, 15-13 

Logical block, 
reading, 1-26 
writing, 1-27 

Logical unit numbe:r (LUN), 
1-5 

Logical unit table (LUT), 
1-6 

Loosely coupled multiprocessor, 
23-5 

Low-traffic sync character, 
12-11 

LPll Line Printer, 10-1 
LPAll-K, 21-1 
LPS status returns, 16-25 
LPSll Laboratory Peripheral 

System, 16-2 
LSll Line Printer, 10-2 
LVll Line Printer, 10-2 
LUN, 1-5 
LUN, assigning a, 

to ADOl-D, 14-6 
to AFCll, 14-6 
to ARll, 16-13 
to DSS/DRS, 18-35 
to ICS/ICR, 18-35 
to LPSll, 16-12 
to UDCll, 15-18 

LUN assignments, changing, 
1-6 

Macro, 
AI.UN$, 1-·16 
ASTX$S, 1-23 
GI.UN$, 1-20 

M 

QIO$, 1-1, 1-8, 1-15 
QIOW$, 1-·15 
W'I1SE$, 1--23 

Magnetic tape, 
programming hints, 8-13 
TE10/TU10/TS03, 8-1 
TE16/TU16/TU45, 8-2 

Maintenance functions, 7-4, 
18-29, 18-65, 23-6 

Mapping table format, 18-71, 
18-72 

INDEX 

.MCALL directive, 1-15 
Message-oriented communica

tion drivers, 
programming example, 12-12 
programming hints, 12-10 

Message-oriented communica-
tion interfaces, 

DAll-B, 12-2 
DLll-E, 12-2 
DMCll, 12-3 
DPll, 12-3 
DQll, 12-3 
DUll, 12-3 
DUPll, 12-4 

Mnemonics, device, 1-17 
Module addressing conventions, 

ICS/ICR and DSS/DRS, 18-6 
Modules, supported I/O, 18-3 
Momentary digital output, 

ICS, 18-46 
UDC, 15-21 

Multiplexer, 
DHll Asynchronous Serial 

Line, 2-39, 3-30 
DJll Asynchronous Serial 

Line, 2-39, 3-30 
DZll Asynchronous Serial 

Line, 2-39, 3-30 

N 
Number, Logical unit (LUN), 

1-5 
Number of ADOl-D conversions, 

restricting the, 14-10 
Numbering conventions, UDC, 

15-29 

0 
Object module library, system, 

15-11 
Offline status, place unit in, 

18-65 
Online status, return unit to, 

18-65 
Output buffer, 16-19 
Output, latching (bistable) 

digital, 15-7, 15-21, 
18-42 

Output relay, latching an, 
16-19 

Output, synchronous D/A, 16-22 
Output, synchronous digital, 

16-23 
Output, use of ADJLPS for, 

16-32 
Output, writing digital, 

16-17 

Index-7 



INDEX 

p 
Paper tape reader/punch, 17-1 
Parallel Communications Link, 13-1 

address silo mode, 13-6 
auto address mode, 13-6 
CPU identifier, 13-4 
flagword, 13-4 
identifier, 13-4 
master maintenance register, 

13-5 
master section, 13-1 
message truncated, 13-11 
mode, 13-6 
pad addresses, 13-6 
power failure, 13-11 
receiver, 13-1 
retries, 13-4 
set operational characteristics, 

13-5 
state parameter, 13-5 
task triggered, 13-3 
TDM, 13-1 
time division multiplexed, 13-1 
timeout, 13-11 
timeslice allocation, 13-6 
TMMR, 13-5 
transmitter, 13-1 
trigger event flag, 13-9 
trigger status, 13-10 
UNIBUS interface, 13-1 

Parameter block, directive 
(DPB) , 1-12 

Parity support, vertical, 
12-11 

PCll Paper Tape Reader/Punch, 
17-1 

PCLll, 13-1 
Physical device names, 1-17 
Powerfail at remote site, 

18-67 
Powerf ail recovery procedures 

for disks and DECtape, 1-35 
UNIBUS switch, 23-6 

Powerfail with DMCll, 12-11 
Power recovery, processor, 

18-67 
PRll Paper Tape Reader, 17-1 
Printer, line, 

LA180, 10-2 
LPll, 10-1 
LSll, 10-2 
LVll, 10-2 

Process-control I/O, syn
chronous and asynchro
nous, 14-3, 15-14, 18-32 

Programming examples, 12-12, 
18-58, 21-24, 22-27, C-1 

I·ndex-8 

Programming hints, drivers, 
analog-to-digital con-

verter, 14-9 
card reader, 11-9 
cassette, 9-6 
DECtape, 6-7 
disk, 5-10 
graphics display, 20-3 
laboratory peripheral 

systems, 16-30 
line printer, 10-6 
magnetic tape, 8-13 
message-oriented communica-

tions, 12-10 
paper tape, 17-5 
terminal, 2-38, 3-29 
universal digital controller, 

15-29 
Prompting read (terminal), 

2-18, 3-13 
Pseudo-device names, 1-19 
Pulsing several fields, 15-22 

Q 
QIO$, 1-15 
QIO functions, device-specific, 

2-9, 3-8, 4-4, 5-6, 6-3, 
7-3, 8-4, 9-3, 11-2, 12-5, 
13-3, 13-9, 14-2, 15-3, 
16-3, 16-4, 18-8, 20-2, 
21-24, 23-4 

QIO functions, standard, 1-24 
QIO functions, summary of, 

ICS/ICR and DSS/DRS, 18-8 
QIO macro, 

format, 1-8 
parameters, 

ast, 1-10 
efn, 1-9 
fnc, 1-8 
isb, 1-9 
lun, 1-9 
pri, 1-9 
user, 1-10 

QIOW$, 1-15 

R 
Rate, AFCll sampling, 14-10 
Rates, clock and sampling, 

16-30 
Read activating data, 18-25, 

18-62 
Read A/D channels, 18-13 
Read contact interrupt data, 

15-22, 15-23, 15-25 



Read a contact interrupt 
point, 15-22 

Read counter data, 18-54 
Read data from input buffer, 

16-18 
Read digital input, 16-17 
Read digital interrupt 

data, 18-49 
Read logical block, 1-24 
Read sequential analog 

input channels, 14-5, 
15-17, 18-39 

Read several contact sense 
fields, 15-21 

Read a single A/D channel, 
16-11 

Read a timer module, 15-26 
Read from terminal buffer, 

18-57 
Read timer interrupt data, 

15-25 
Read virtual block, 1-26 
Ready recovery, 10-5, 11-6 
Recovery procedures, 

card input errors, 11-3 
cassette, 9-5 
DECtape, 1-35, 6-6 
disks, 1-3 5 
powerfail, 1-35, 23-6 
ready, 10-5, 11-6 
select, 6-6, 8-12 

Redundancy checking, 12-10 
Relay, latching an output, 

15-19 
Remote DHll and DZll lines, 

2-39, 3-·30 
Remote site, powerfail at, 

18-67 
Resetting tape character

istics, 8-13 
Restricting the number of 

ADOl-D conversions, 14-10 
Retrieving LUN information, 1-20 
Retrieving system macros, 1-15 
Retry procedures, magtape, 8-12 
Return codes, 1-28 

directive conditions, 1-29 
I/O status conditions, 1-31 

Returns, status, B-1 
Reverse reading and writing 

(DECtapE~) , 6-7 
Rewinding, importance of 

(cassette) , 9-7 
RF11/RS11 Fixed-Head Disk, 

5-1 
RH11/RH70 Magnetic Tape 

Controller, 8-2 
RK11/RK05 Cartridge Disk, 

5-3 

INDEX 

RK611/RK06 Cartridge Disk, 
5-3 

RP04, RP05, RP06 Pack Disks, 
5-3 

RP11/RP02 Pack Disk, 5-1 
RS03, RS04 Fixed-Head Disks, 

5-1 
RSX-llM devices, 1-2 
RSX-llM I/O, overview of, 

1-1 
RT02, RT02-C Badge Reader 

and Data Entry Terminal, 
2-4, 2-38, 3-3, 3-30 

RT02-C control function, 2-38, 
3-30 

RUBOUT character, 2-28, 10-6 
RXll/RXOl Flexible Disk, 5-3 

s 
Sampling, A/D synchronous, 

16-20 
Sampling, histogram, 16-15 
Sampling rate, AFCll, 14-9 
Sampling rates, and LPSll/ARll 

clock, 16-30 
Sampling, synchronous digital 

input, 16-14 
Schmitt trigger, 16-6 
Select recovery, 6-7, 8-12 
Serial line errors, 18-66 
Setting terminal character-

istics, side effects, 
2-39, 3-31 

Significant events, 1-10 
Space functions (IO.SPB, 

IO.SPF), 9-7 
Special keys, terminal, 2-27, 

3-21 
Special terminating characters, 

read with, 2-18, 2-19, 3-13 
Speed considerations, DECtape, 

6-7 
Standard QIO functions, 1-22, 

B-4 
IO.ATT, 1-24 
IO.DET, 1-25 
IO.KIL, 1-25 
IO.RLB, 1-26 
IO.RVB, 1-26 
IO.WLB, 1-27 
IO.WVB, 1-27 

Status array, isb, 14-3, 15-14, 
16-8 

Status codes, I/O function and, 
B-1 

Status error codes, I/O, B-1 
Status success codes, I/O, B-3 
Structure of cassette tape, 9-6 

Index-9 



Success codes, directive, B-3 
Success codes, I/O status, 

B-3 
Subfunction bits, terminal 

driver, 2-9, 3-7 
Summary of I/O functions, A-1 
Switch gain, A/D value, 16-13 
Symbols defined by UDCOM.MAC, 

15-10 
Sync character, low-traffic, 

12-11 
Synchronous A/D sampling, 

16-20 
Synchronous D/A output, 16-22 
Synchronous device-specific 

QIO functions, 16-4 
Synchronous digital input 

sampling, 16-14 
Synchronous digital output, 

16-23 
Synchronous function, 

in-progress, 16-19 
Synchronous line interfaces, 

12-2 
Synchronous process-control 

I/O, 14-3, 15-14, 18-32 
Synchronous subroutines, 16-9 
Synchronous system trap {SST), 

1-11 
System macros, retrieving, 

1-15 
System object module library, 

15-11 
System traps, 

AST's, 1-11, 2-9, 2-10, 
2-35, 3-32 

SST's, 1-11 

T 
Tape, 

TE10/TU10/TS03 magnetic, 
8-1 

TE16/TU16/TU45 magnetic, 
8-2 

Tape cartridge, 7-1 
Tape characteristics, deter

mining, 
TElO/TUlO, 8-7 
TE16/TU16/TU45, 8-8 

Tape characteristics, reset
ting, 8-13 

Tape, structure of cassette, 
9-6 

Tasks attaching several 
terminals, AST's and, 2-30 

Teletypes, 2-3, 3-2 
Terminal, 

LA30-P, 2-3, 3-3, 3-28 

INDEX: 

Index-10 

Terminal (Cont.) 
LA30-S, 2-3, 3-3 
LA36, 2-3, 3-3 
LA120, 2-4, 3-3 
LA180S, 2-4, 3-3 
RT02, RT02-C, 2-4, 3-3 
Teletype, 2-3, 3-2 
VT05B, 2-4, 3-3 
VT50, VT50H, 2-4, 3-4 
VT52, 2-5, 3-4 
VT55, 2-5, 3-4 
VT61, 2-5, 3-4 
VTlOO, 2-5, 3-4 

Terminal characteristics, 
get (SF.GMC), 2-12, 3-10 
set (SF.SMC), 2-19, 3-14 
side effects of setting, 

3-31 
Terminal driver, 2-1, 3-1 

break-through write, 2-20, 
3-14 

control characters, 2-25i 2-27, 
3-19 

direct cursor control, 
2-37, 3-32 

escape sequences, 2-28, 3-22 
full duplex, 3-1 
loadable driver restric-

tions, 3-33 
programming hints, 2-38, 3-29 
prompting read, 2-18, 3-13 
special keys, 2-27, 3-21 
special terminating charac-

ters, 2-18, 2-19, 3-13 
subfunction bits, 2-9, 3-7 
terminal characteristics, 

2-12, 2-19, 3-10, 3-14 
terminal support, 2-16, 3-11 
terminal type, 2-15, 3-10 
vertical format control, 

2-31, 3-25 
virtual, 4-1 

Terminal independent cursor 
control, 2-37 

Terminal input, checkpointing 
during, 2-34, 2-36, 3-30 

Terminal interfaces, 2-3, 2-39, 
3-2, 3-30 

Terminal interrupts, 
connect to, 18-21, 18-56 
disconnect from, 18-22, 

18-58 
linking a task to, 18-24 

Terminal line truncation, 3-29 
Terminal support (IO.GTS), 

2-16, 3-11 
Terminal type, 2-15, 3-10 
Terminating AST service, 1-22 
Timer, 15-7 



Timer (counter) module, 
initializing, UDC, 15-26 
reading, 

res, 18·-55 
UDC, 15·-25 
watchdog, 23-1 

Timer interrupts, 
connect to, 15-19 
disconnect from, 15-20 
reading data, 15-25 

TMll Magnetic Tape Controller, 
8-1 

Transfers, DECtape, 6-7 
Transmission validation, 

12-10 
Trc:tps, system, 

AST's, 1-11, 2-9, 2-10, 2-35, 
3-32 

SST's, 1-11 
Truncation, 

print line, 10-6 
terminal line, 3-29 

TTSYM, 3-12 
TU518, 7-1 

u 
UDCll Universal Digital Con

troller, 15-1 
common block, 15-13 
defining configuration, 

15-9 
direct access, 15-3, 15-8 
numbering conventions, 

15-29 
referencing via global 

common, 15-11 
source module (UDCOM.MAC) , 

15-9 
symbolic definitions 

(UDCDF.OBJ), 15-11 
UDCll driver, 

accessing, 15-2 
creating, 15-1 
programming hints, 15-29 
services, 15-2 

UDCll FOR'l'RAN interface sub-
routines, 

AIRD/AIRDW, 15-17 
AISQ/AISQW, 15-17 
AO/AOW, 15-18 
ASUDLN, 15-18 
CTDI, 15-19 
CTTI, 15-19 
D.FDI, 15-20 
D:FTI, 15-20 
DI/DIW, 15-21 
DOL/DOLW, 15-21 
DOM/DOMW, 15-22 

INDEX 

UDCll FORTRAN interface 
subroutines (Cont.) 

RCIPT, 15-22 
RDCS, 15-23 
RODI, 15-24 
RDTI, 15-25 
RDWD, 15-25 
RSTI, 15-26 
SCTI, 15-26 

UDCDF.OBJ (UDCll symbolic 
definitions), 15-11 

UDCOM.MAC (UDCll source 
module), 15-9 

assembly procedure, 15-9 
symbols defined by, 15-10 

UNIBUS, 13-1, 23-1 
UNIBUS switch driver, 23-1, 

closely coupled multiprocessor, 
23-5 

connect UNIBUS switch, 23-4 
CPU parameter, 23-6 
CSR, 23-6 
disconnect UNIBUS switch, 23-5 
interrupt, 23-1, 23-6 
loosely coupled multiprocessor, 

23-5 
port parameter, 23-6 
power failure, 23-3 
powerfail recovery, 23-6 
timeout, 23-5 
UNIBUS run, 23-1 
watchdog timer, 23-1 

Universal digital controller, 
15-1 

Unlatching several fields, 
15-21 

Unlink a task from interrupts, 
18-27, 18-64 

v 
Verifying writes (cassette), 

9-7 
Vertical format control, 2-31, 

3-25, 10-5 
Vertical parity support, 12-11 
Virtual block, 

reading, 1-26 
writing, 1-27 

Virtual terminal, 4-1, 
characteristic bits, 4-3 
completion status code, 4-3, 

4-9 
set terminal characteristics, 

4-4 
VT05B Alphanumeric Display 

Terminal, 2-3, 3-
VT50, VT50H Alphanumeric 

Display Terminals, 2-4, 3-4 

Index-11 



VT52 Alphanumeric Display 
Terminal, 2-5, 3-4 

VT55 Graphics Display 
Terminal, 2-5, 3-4 

VT61 Alphanumeric Display 
Terminal, 2-5, 3-4 

w 
Waiting for event flag, 1-15 

INDEX 

Writes, retry procedures 
(magtape) , 8-12 

Writes, verifying (cassette), 
9-7 

Writing a logical block, 
1-27 

Writing a virtual block, 1-27 
Writing an even-parity zero 

(magtape), 8-13 
WTSE$, 1-23 

Index-12 



. 
Q) 

·= 

m c 
0 

0 

READER'S COMMENTS 

RSX-llM/M-PLUS 
I/O Drivers 
Reference Manual 
AA-H269A-TC 

NOTE: This form is for document comments only. DIGITAL will 
use comments submitted on this form at the company's 
discretion. If you require a written reply and are 
eligible to receive one under Software Performance 
Report (SPR) service, submit your comments on an SPR 
form. 

Did you find this manual understandable, usable, and well-organized? 
Please make suggestions for improvement • 

Did you find errors in this manual? If so, specify the error and the 
page number. 

Please indicate the type of reader that you most nearly represent. 

[] Assembly language programmer 

[] Higher-level language programmer 

[] Occasional programmer (experienced) 

[] User with little programming experience 

[] Student programmer 

[] Other (please specify>~~~~~~~~~~~~~~~~~~ 

Street 

Ci tY.----·---·------- State·------- Zip Code ______ _ 
or 

Country 



- - Do Not Tear - Fold Here and Tape 

I 111 

BUSINESS BEPL Y MAIL 
FIRST CLASS PERMIT N0.33 MAYNARD MASS. 

POSTAGE WILL BE PAID BY ADDRESSEE 

RT/C SOFTWARE PUBLICATIONS TW/A14 

DIGITAL EQUIPMENT CORPORATION 

1925 ANDOVER STREET 

TEWKSBURY, MASSACHUSETTS 01876 

No Postage 
Necessary 

if Mai led in the 
United States 

I 
I 
-~ 

- - - - Do Not Tear - Fold Here - - - - - - - - - - - - - - - - - - - - - -

~' 1 


