
RSX-11 M/M-PLUS
Task Builder Manual

Order No. AA-H266A-TC

RSX-11 M Version 3.2
RSX-11M-PLUS Version 1.0

~order additional copies of this document, contact the Software Distribution
~ter, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation " maynard, massachusetts

First Printing, June 1979

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright @) 1979 by Digital Equipment Corporation

The postage-prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-lo MASS BUS
DEC DECtape OMNIBUS
PDP DIBOL OS/8
DEC US EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-11
DECCOMM DECSYSTEM-20 TMS-11
ASSIST-11 RTS-8 ITPS-10
VAX VMS SBI
DECnet IAS PDT
DATATRIEVE TRAX

7/80-14

CONTENTS

Page

PHEFACE xv

SUMMARY OF TECHNICAL CHANGES xi

CHAPTER 1

1.1
1.2
1.3
1. 4
1.5
1.6
1. 7
1.8

CHAPTER 2

2.1
2 .1.1
2 .1. 2
2.2
2.2.1
2.2.2
2.3
2.4

CHAPTER 3

3.1
3 .1.1
3 .1.2
3 .1. 3
3 .1. 4
3 .1. 5

3 .1. 6

3 .1. 7

3 .1. 8

3.2

3.3

3.4
3.4.1

3.4.2

3.5

INTRODUCTION AND COMMAND SPECIFICATIONS

TASK COMMAND LINE
MULTIPLE LINE INPUT
OPTIONS
MULTIPLE TASK SPECIFICATIONS
INDIRECT COMMl\ND FILES
COMMENTS IN LINES
FILE SPECIFICATIONS
SUMMARY OF SYNTAX RULES

TASK BUILDER FUNCTIONS

LINKING OBJECT MODULES
Allocating Program Sections
Resolving Global Symbols

ASSIGNING ADDRESSES
unmapped Systems
Mapped Systems

BUILDING SYSTEM DATA STRUCTURES
TASK RELOCATION ON MAPPED SYSTEMS

TYPICAL TASK BUILDER FACILITIES

1-1

1-2
1-3
1-3
1-4
1-5
1-7
1-8
1-9

2-1

2-1
2-2
2-7
2-8
2-8
2-10
2-14
2-15

3-1

SHARED REGIONS 3-1
The Symbol Definition File 3-3
Position-Independent Shared Regions 3-3
Absolute Shared Regions 3-6
Linking to a Shared Region 3-6
Example 1: Building and Linking to a Common
in MACR0-11 3-11
Example 2: Building and Linking to a Device
Common in MACR0-11 3-19
Example 3: Building and Linking to a
Resident Library in MACR0-11 3-23
Example 4: Building and Linking to a
Supervisor-Mode Library in MACR0-11
(RSX-llM-PLUS Only} 3-32

EXAMPLE 5: BUILDING A MULTIUSER TASK
(RSX-llM-PLUS ONLY} 3-44

EXAMPLE 6: BUILDING A TASK THAT CREATES A
DYNAMIC REGION 3-50
VIRTUAL PROGRAM SECTIONS 3-53

FORTRAN Run-Time Support for Virtual Program
Sections 3-56
Example 7: Building a Program that uses a
Virtual Program Section 3-59

EXAMPLE 8: PRIVILEGED TASKS 3-62

iii

CHAPTER 4

4.1
4 .1.1
4 .1. 2

4.2
4.2.1
4.2.2

4.2.3

4.2.4

4.3
4.4
4.4.1
4.4.2
4.4.3
4.4.4
4.4.5
4.4.6
4.5
4.5.1
4.5.2
4.6

4.7
4.8

CHAPTER 5

5.1
5 .1.1
5 .1. 2
5 .1. 3
5 .1. 4
5.2
5.2.1
5.2.2
5.3
5.4

CHAPTER 6

6.1
6 .1.1
6 .1. 2
6 .1. 3
6 .1. 4
6 .1. 5
6 .1. 6
6 .1. 7
6 .1. 8
6 .1. 9
6 .1.10
6.1.11
6 .1.12

CONTENTS

OVERLAY CAPABILITY

OVERLAY STRUCTURES
Disk-Resident Overlay Structures
Memory-Resident Overlay Structures (Not
Supported on RSX-118)

OVERLAY TREE
Loading Mechanism
Resolution of Global Symbols in a
Multisegment Task
Resolution of Global Symbols from the
Default Library
Allocation of Program Sections in a
Multisegment Task

OVERLAY DATA STRUCTURES AND RUN-TIME ROUTINES
OVERLAY DESCRIPTION LANGUAGE

.ROOT and .END Directives

.FCTR Directive
Exclamation Point Operator
.NAME Directive
.PSECT Directive
Indirect Command Files

MULTIPLE-TREE STRUCTURES
Defining a Multiple-Tree Structure
Multiple-Tree Example

OVERLAYING PROGRAMS WRITTEN IN A HIGH-LEVEL
LANGUAGE
EXAMPLE 9: BUILDING AN OVERLAY
SUMMARY OF THE OVERLAY DESCRIPTION LANGUAGE

OVERLAY LOADING METHODS

AUTO LOAD
Autoload Indicator
Path Loading
Autoload Vectors
Autoloadable Data Segments

MANUAL LOAD
MACR0-11 Manual Load Calling Sequence
FORTRAN Manual Load Calling Sequence

ERROR HANDLING
GLOBAL CROSS-REFERENCE OF AN OVERLAID TASK

SWITCHES AND OPTIONS

SWITCHES
/AC[:n] -- Ancillary Control Processor
/AL Allocate Checkpoint Space
/CC Concatenated Object Modules
/CM Compatibility Mode Overlay Structure
/CP Checkpointable
/CR Cross-Reference
/DA Debugging Aid
/DL Default Library
/EA Extended Arithmetic Element
/FP Floating Point
/FU Full Search
/HD Header

iv

Page

4-1

4-1
4-2

4-5
4-15
4-16

4-16

4-18

4-19
4-20
4-22
4-22
4-24
4-24
4-25
4-27
4-27
4-28
4-28
4-29

4-34
4-34
4-42

5-1

5-1
5-2
5-3
5-4
5-5
5-6
5-6
5-7
5-8
5-9

6-1

6-1
6-5
6-6
6-7
6-8
6-9
6-10
6-12
6-13
6-14
6-15
6-16
6-17

6 .1.13
6. 1. 14
6 .1.15
6 .1.16
6.1.17
6 .1.18
6 .1.19
6.1.20
6.1.21
6 .1. 22
6.1.23
6.1.24
6.1.25
6.1.26
6 .1. 27
6.1.28
6.1.29
6.1.30
6.2
6.2.l
6.2.2
6.2.3
6.2.4
6.2.5
6.2.6

6.2.7
6.2.8
6.2.9
6.2.10
6.2.11
6.2.12
6.2.13
6.2.14
6.2.15
6.2.16
6.2.17
6.2.18
6.2.19

6.2.20
6.2.21
6.2.22

6.2.23
6.2.24

6.2.25
6.2.26
6.2.27
6.2.28
6.2.29
6.2.30

CHAPTER 7

7.1
7.2

CONTENTS

/LB Library File
/MA Map Contents of File 0
/MM Memory Management
/MP Overlay Description
/MU Multiuser
/PI Position Independent
/PM Postmortem Dump
/PR[:n] -- Privileged
/RO Resident Overlay
/SE Send
/SH Short Map
/SL Slave
/SP Spool Map Output
/SQ Sequential
/SS Selective Search
/TR Traceable
/WI Wide Listing Format
/XT[:n] -- Exit on Diagnostic

OPTIONS
ABORT -- Abort the Task-Build
ABSPAT -- Absolute Patch
ACTFIL -- Number of Active Files
ASG -- Device Assignment
CMPRT -- Completion Routine
COMMON or LIBR -- System-Owned Resident
Common or System-Owned Resident Library
EXTSCT Program Section Extension
EXTTSK Extend Task Memory
FMTBUF Format Buffer Size
GBLDEF Global Symbol Definition
GBLPAT Global Relative Patch
GBLREF Global Symbol Reference
GBLXCL Exclude Global Symbols
LIBR -- System-Owned Library
MAXBUF -- Maximum Record Buffer Size
ODTV -- ODT SST Vector
PAR -- Partition
PRI -- Priority
RESCOM or RESLIB -- Resident Common or
Resident Library
RESLIB -- Resident Library
RESSUP -- Resident Supervisor-Mode Library
ROPAR -- Read-Only Partition -- RSX-llM-PLUS
Only
STACK -- Stack Size
SUPLIB -- Supervisor-Mode Library -
RSX-llM-PLUS Only
TASK -- Task Name
TSKV -- Task SST Vector
UIC -- User Identification Code
UNITS Logical Unit Usage
VSECT -- Virtual Program Section
WNDWS -- Number of Address Windows

HOST AND TARGET SYSTEMS

INTRODUCTION
EXAMPLE: TRANSFERRING A TASK FROM A HOST TO
A TARGET SYSTEM

v

Page

6-18
6-20
6-21
6-22
6-23
6-24
6-25
6-26
6-27
6-28
6-29
6-36
6-37
6-38
6-39
6-42
6-43
6-44
6-45
6-48
6-49
6-50
6-51
6-52

6-53
6-54
6-55
6-56
6-57
6-58
6-59
6-60
6-61
6-62
6-63
6-64
6-65

6-66
6-68
6-69

6-71
6-72

6-73
6-74
6-75
6-76
6-77
6-78
6-79

7-1

7-1

7-2

CHAPTER 8

8.1
8.2
8.2.1
8.2.2
8.2.3

APPENDIX A

A. l
A.1.1
A.l. 2
A.1.3
A.l. 4
A.l. 5
A.1.6
A.l. 7
A.1.8
A. l. 9
A. 2
A. 3
A.4
A. 4 .1
A. 4. 2
A.4.3
A.4.4
A. 4. 5
A. 4. 6

A.4.7
A. 4. 8
A.4.9
A.4.10
A. 4 .11

A.4.12

A.4.13

A.4.14
A.4.15
A.5
A. 6

APPENDIX B

B.l
B.2
B.3
B.3.1
B.3.2
B.4
B.4.1
B.4.2
B.4.3
B.4.4
B.4.5

CONTENTS

MEMORY DUMPS

POSTMORTEM DUMPS
SNAPSHOT DUMP

Format of the SNPBK$ Macro
Format of the SNAP$ Macro
Example of a Snapshot Dump

TASK BUILDER INPUT DATA FORMATS

DECLARE GLOBAL SYMBOL DIRECTORY RECORD
Module Name (Type O)
Control Section Name (Type 1)
Internal Symbol Name (Type 2)
Transfer Address (Type 3)
Global Symbol Name (Type 4)
Program Section N.ame (Type 5)
Program Version Identification (Type 6)
Mapped Array Declaration (Type 7)
Completion Routine Definition (Type 10)

END OF GLOBAL SYMBOL DIRECTORY RECORD
TEXT INFORMATION RECORD
RELOCATION DIRECTORY RECORD

Internal Relocation (Type l)
Global Relocation (Type 2)
Internal Displaced Relocation (Type 3)
Global Displaced Relocation (Type 4)
Global Additive Relocation (Type 5)
Global Additive Displaced Relocation
(Type 6)
Location Counter Definition (Type 7)
Location Counter Modification (Type 10)
Program Limits (Type 11)
Program Section Relocation (Type 12)
Program Section Displaced Relocation
(Type 14)
Program Section Additive Relocation
(Type 15)
Program Section Additive Displaced
Relocation (Type 16)
Complex Relocation (Type 17)
Resident Library Relocation (Type 20)

INTERNAL SYMBOL DIRECTORY RECORD
END OF MODULE RECORD

DETAILED TASK IMAGE FILE STRUCTURE

LABEL BLOCK GROUP
CHECKPOINT AREA
HEADER

Low-Memory Context
Logical Unit Table Entry

TASK IMAGE
Autoload Vectors
Segment Descriptor
Window Descriptor
Region Descriptor
Supervisor-Mode Vectors (RSX-llM-PLUS
Only)

vi

Page

8-1

8-1
8-5
8-6
8-7
8-8

A-1

A-2
A-4
A-5
A-5
A-6
A-6
A-7
A-10
A-10
A-11
A-11
A-11
A-12
A-14
A-15
A-15
A-16
A-16

A-17
A-18
A-18
A-18
A-19

A-19

A-20

A-21
A-22
A-23
A-24
A-24

B-1

B-1
B-7
B-7
B-8
B-12
B-12
B-14
B-14
B-16
B-16

B-17

APPENDIX

APPENDIX

APPENDIX

APPENDIX

INDEX

FIGURE

c

D

D.l

D.1.1
D.1.2
D.1.3
D.1.4
D.2
D.3

E

F

2-1
2-2
2-3
2-4
2-5
2-6
2-7

2-8
2-9
2-10
2-11
3-1

' 3-2
3-3

3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-17
3-18
3-19
3-20
3-21

3-22

CONTENTS

Page

RESERVED SYMBOLS C-1

IMPROVING TASK BUILDER PERFORMANCE D-1

EVALUATING AND IMPROVING TASK BUILDER
THROUGHPUT D-1

Overlay Latency D-2
Table Storage D-2
Input File Processing D-7
Summary D-7

MODIFYING COMMAND SWITCH DEFAULTS D-7
THE SLOW TASK BUILDER D-11

THE FAST TASK BUILDER E-1

ERROR MESSAGES F-1

Index-1

FIGURES

Relocatable Object Modules
Modules Linked for Mapped and Unmapped Systems
Allocation of Task Memory
Unmapped Memory
Layout for Unmapped System
Task Relocation in a Mapped System
Memory Management Unit's Division of Virtual
Address Space
Mapping for 4K Word and 6K Word Tasks
Disk Image
Memory Image
Window Block 0
Typical Resident Conunon
Typical Resident Library
Specifying APRs for a Position-Independent
Shared Region
Mapping for an Absolute Shared Region
Windows for Shared Region and Referencing Task
Common Area Source File in MACR0-11
Task Builder Map for MACCOM.TSK
Allocation Diagram for MACCOM.TSK
MACR0-11 Source Listing for MCOMl
MACR0-11 Source Listing for MCOM2
Assigning Symbolic References Within a Common
Task Builder Map for MCOMl.TSK
Assembly Listing for TTCOM
Task Builder Map for TTCOM
Assembly Listing for TEST
Memory Allocation Map for TEST
Source Listing for Resident Library LIB.MAC
Task Builder Map for LIB.TSK
Source Listing for MAIN.MAC
Task Builder Map for MAIN.TSK
Allocation of Virtual Address Space for
MAIN.TSK
Typical Mapping for Supervisor-Mode Library

vii

2-2
2-3
2-7
2-9
2-9
2-11

2-12
2-13
2-14
2-15
2-16
3-2
3-2

3-5
3-7
3-9
3-11
3-13
3-14
3-15
3-16
3-17
3-18
3-19
3-21
3-22
3-23
3-24
3-27
3-28
3-29

3-31
3-33

FIGURE 3-23
3-24
3-25
3-26
3-27
3-28

3-29
3-30
3-31
3-32
3-33
3-34
3-35
3-36
3-37
3-38
3-39
3-40
4-1
4-2
4-3
4-4
4-5
4-6

4-7

4-8
4-9

4-10
4-11
4-12
4-13
4-14

4-15
4-16

4-17

4-18
4-19

4-20
4-21

5-1
5-2
5-3
5-4
6-1
6-2
7-1
7-2

CONTENTS

FIGURES (Cont.)

Task Mapping while Running in Supervisor Mode
Source Listing for SUPLIB.MAC
Task Builder Map for SUPLIB.TSK
Source Listing for TSUP.MAC
Task Builder Map for TSUP.TSK
Allocation of Program Sections in a Multiuser
Task
Windows for a Multiuser Task
Source Listing for ROTASK.MAC
Task Builder Map for ROTASK.TSK
Source Listing for DYNAMIC.MAC
Task Builder Map for DYNAMIC.TSK
VSECT Option Usage
Source Listing for VSECT.FTN
Task Builder Map for VSECT.TSK
Mapping for /PR:4 and /PR:5
Source Code for PRIVEX
Task Builder Map for PRIVEX
Allocation of Virtual Address Space for PRIVEX
TKl Built as a Single-Segment Task
TKl Built as a Multisegment Task
TKl Built with Additional Overlay Defined
TK2 Built as a Single-Segment Task
TK2 Built as a Memory-Resident Overlay
Relationship Between Virtual Address Space
and Physical Memory -- Time 1 and Time 2
Relationship Between Virtual Address Space
and Physical Memory -- Time 3 and Time 4
Overlay Tree for TKl
Resolution of Global Symbols in a Multiseg
ment Task
Resolution of Program Sections for TKl
Typical Overlay Root Segment Structure
Tree and Virtual Address Space Diagram
Overlay Tree for Modified TKl
Virtual Address Space and Physical Memory
for Modified TKl
Overlay Co-Tree for Modified TKl
Virtual Address Space and Physical Memory
for TKl as a Co-Tree
Overlay Tree of Virtual Address Space for
OVR.TSK
Map File for OVR.TSK
Allocation of Virtual Address Space for
OVR.TSK
Map File for RESOVR.TSK
Allocation of Virtual Address Space for
RESOVR.TSK
Details of Segment C of TKl
Path-Loading Example
Autoload Vector Format
Sample Overlaid Cross-Reference Listing
Cross-Reference Listing for OVR.TSK
Memory Allocation File (Map) Example
Task Builder Map for LIB.TSK
Task Builder Map for MAIN.TSK

viii

Page

3-34
3-36
3-39
3-·40
3-43

3-44
3-45
3-46
3-49
3-51
3-53
3-55
3-60
3-61
3-63
3-64
3-68
3-69
4-3
4-4
4-6
4-8
4-9

4-11

4-13
4-16

4-18
4-20
4-21
4-23
4-29

4-31
4-32

4-33

4-36
4-37

4-38
4-40

4-41
5-2
5-4
5-4
5-10
6-11
6-30
7-3
7-4

FIGURE 8-1
8-2
8-3
8-4

8-5

A-1
A-2
A-3
A-4
A-5
A-6
A-7
A-8
A-9
A-10
A-11
A-12
A-13
A-14
A-15
A-16
A-17
A-18
A-19
A-20

A-21
A-22
A-23
A-24
A-25

A-26

A-27

A-28
A-29
A-30
A-31
B-1
B-2

B-3

B-4
B-5
B-6
B-7
B-8
B-9
B-10
B-11

CONTENTS

FIGURES (Cont.}

Sample Postmortem Dump (Truncated}
Snapshot Dump Control Block Format
Sample Program that Calls for Snapshot Dumps
Sample Snapshot Dump (in Word Octal and
Radix-SO}
Sample Snapshot Dump (in Byte Octal and
ASCII}
General Object Module Format
Global Symbol Directory Record Format
Module Name Entry Format
Control Section Name Entry Format
Internal Symbol Name Entry Format
Transfer Address Entry Format
Global Symbol Name Entry Format
Program Section Name Entry Format
Program Version Identification Entry Format
Mapped Array Declaration Entry Format
Completion Routine Entry Format
End of Global Symbol Directory Record Format
Text Information Record Format
Relocation Directory Record Format
Internal Relocation Entry Format
Global Relocation Entry Format
Internal Displaced Relocation Entry Format
Global Displaced Relocation Entry Format
Global Additive Relocation Entry Format
Global Additive Displaced Relocation Entry
Format
Location Counter Definition Entry Format
Location Counter Modification Entry Format
Program Limits Entry Format
Program Section Relocation Entry Format
Program Section Displaced Relocation Entry
Format
Program Section Additive Relocation Entry
Format
Program Section Additive Displaced Relocation
Entry Format
Complex Relocation Entry Format
Resident Library Relocation Entry Format
Internal Symbol Directory Record Format
End-of-Module Record Format
Task Image on Disk
Label Block 0 -- Task and Resident Library
Data
Label Blocks 1 and 2 -- Table of LUN
Assignments
Label Block 3 -- Segment Load List
Task Header, Fixed Part
Task Header, Variable Part
Vector Extension Area Format
Logical Unit Table Entry
Task-Resident Overlay Data Base
Autoload Vector Entry
Segment Descriptor

ix

Page

8-2
8-6
8-9

8-10

8-11
A-3
A-4
A-4
A-5
A-5
A-6
A-6
A-8
A-10
A-10
A-11
A-11
A-12
A-14
A-15
A-15
A-16
A-16
A-17

A-17
A-18
A-18
A-19
A-19

A-20

A-21

A-21
A-23
A-23
A-24
A-24
B-2

B-5

B-7
B-7
B-9
B-10
B-11
B-12
B-13
B-14
B-14

FIGURE

TABLE

B-12
B-13
B-14

2-1
2-2

2-3
2-4

6-1
6-2
6-3
A-1

A-2

A-3

B-1
B-2
D-1
D-2
D-3
D-4

CONTENTS

FIGURES (Cont.)

Window Descriptor
Region Descriptor
Supervisor-Mode Vector

TABLES

Program Section Attributes
Program Sections for Modules INl, IN2,
and IN3
Individual Program Section Allocations
Resolution of Global Symbols for INl, IN2,
and IN3
Task Builder Switches
Input Files for SEL.TSK
Task Builder Options
Symbol Declaration Flag Byte -- Bit
Assignments
Program Section Name Flag Byte -- Bit
Assignments
Relocation Directory Command Byte -- Bit
Assignments
Task and Resident Library Data
Resident Library/Common Name Block Data
Task File Switch Defaults
Map File Switch Defaults
Symbol Table File Switch Defaults
Input File Switch Defaults

x

Page

B-16
B-17
B-17

2-4

2-6
2-6

2-7
6-2
6-39
6-46

A-7

A-8

A-13
B-3
B-6
D-9
D-10
D-10
D-11

PREFACE

MANUAL OBJECTIVES

This manual describes the concepts
RSX-llM/M-PLUS Task Builder.

and capabilities of the

Working examples are used throughout this manual to introduce and
describe features of the Task Builder. Because RSX-llM systems
support a large number of programming languages, it is not practical
to illustrate the Task Builder features in all of the languages
supported. In~tead, most of the examples in the main text of this
manual are written in MACR0-11.

INTENDED AUDIENCE

Before reading this manual, you should be familiar with the
fundamental concepts of your operating system (RSX-llM or
RSX--llM-PLUS) and with the operating procedures described in the
RSX-llM/M-PLUS MCR Operations Manual. In addition, you should be
familiar with the programming concepts described in the RSX-llM/M-PLUS
Guide to Program Development.

STRUCTURE OF THIS DOCUMENT

This manual has eight chapters.
follows:

Their contents are summarized as

• Chapter l describes the Task Builder command sequences that
you use to interact with the Task Builder.

• Chapter 2 describes the basic Task Builder functions,
including the Task Builder's allocation of virtual address
space, the resolution of global symbols, and privileged tasks.

• Chapter 3 describes some typical Task Builder features
including tasks that access shared regions and device commons,
multiuser tasks, tasks that create dynamic regions, virtual
program sections and privileged tasks.

• Chapter 4 describes the Task Builder's overlay capability and
the language you must use to define an overlay structure.

• Chapter 5 describes the two methods available to you to load
overlay segments.

• Chapter 6 lists the Task Builder switches and options in two
sections. Both switches and options are listed in
alphabetical order in their respective sections, and are
printed on colored stock to help you find them quickly.

xi

• Chapter 7 describes the considarations for building a task on
one system to run on a system with a different hardware
configuration.

• Chapter 8 describes two memory
Snapshot.

dumps -- Postmortem

This manual also contains six appendixes.
summarized as follows:

Their contents

and

are

• Appendix A contains a detailed description of the Task Builder
input data structures.

• Appendix B contains a detailed description of the task image
file structure.

• Appendix C contains a list of the symbols and program section
names reserved for Task Builder use.

• Appendix D contains information on improving Task Builder
performance.

• Appendix E describes the fast Task Builder.

• Appendix F contains the Task Builder error messages.
are also printed on colored stock for quick reference.

A Task Builder glossary follows the appendixes.

ASSOCIATED DOCUMENTS

These

Other manuals closely allied with this document are described in the
documentation directory for your operating system. This directory
defines the intended audi~nce of each manual in the documentation set
and provides a brief synopsis of each manual's contents.

CONVENTLONS USED IN THIS DOCUMENT

In this manual, horizontal ellipses (•••) indicate that additional,
optional arguments in a statement format have been omitted. For
example:

input-spec, •••

This means that one or more input-spec items, separated by commas, can
be specified.

Vertical ellipses means that additional lines of code or lines in a
Task Builder map file are not pertinent to an example, have been
omitted. For example:

TKB>input-line

This means that one or more of the indicated TKB items have been
omitted.

xii

Finally, in the examples of Task Builder command sequences, the
portion of the command sequence that you type is printed in red. The
Task Builder's responses and prompts are printed in black.

xiii

SUMMARY OF TECHNICAL CHANGES

This manual documents RSX-llM-PLUS Task Builder enhancements. The
following RSX-llM-PLUS features have been added to the Task Builder.

The MU switch has been added to provide for the building of
tasks. Multiuser tasks allow more than one user to
read-only portions of a single task.

The following options have also been added:

multiuser
share the

• ROPAR (read-only partition) specifies the partition in which
the read-only portion of a multiuser task is to reside.

• GBLXCL (global exclusion) specifies the symbols that are to be
excluded from the symbol definition file of a resident
supervisor-mode library.

• RESSUP (user-owned resident supervisor-mode library) specifies
that the task expects to access a resident supervisor-mode
library.

• SUPLIB (system-owned resident
specifies that the task expects
resident supervisor-mode library.

supervisor-mode library)
to access a system-owned

• CMPRT (completion routine) identifies the completion routine
in a supervisor-mode library.

These new features are described in Chapter 6.
examples that illustrate them.

Chapter 3 contains

While you can specify these features in the Task Builder command
sequence on both RSX-llM V3.2 and RSX-llM-PLUS systems, the resulting
tasks can be installed and run only on RSX-llM-PLUS systems.

xv

CHAPTER 1

INTRODUCTION AND COMMAND SPECIFICATIONS

The basic steps in the development of a program are as follows:

1. You write one or more routines in an RSX-llM/M-PLUS supported
source language and enter each routine as an ASCII text file,
through an editor.

2. You submit each text file to the appropriate language
translator (an assembler or compiler), which converts it to a
relocatable object module.

3. You specify the object modules as input to the Task Builder,
which combines the object modules into a single task image
output file.

4. You install and run the task.

If you find errors in the task when you run it, you make corrections
to the text file, using the editor, and then repeat steps 2 through 4.

The Task Builder's main function is to convert relocatable object
modules (.OBJ files) into a single task image (.TSK file) that you can
install and run on a RSX-llM or RSX-llM~PLUS system. The task is the
fundamental executable unit in both systems.

If your program consists of a single object module, the use of the
Task Builder is appropriately simple. You specify as input only the
name of the file containing the object module produced from the
translation of the program, and specify as output the task image file.

Typically, however, programs consist of more than a single object
module. In this case, you name each of the object module files as
input. The Task Builder links the object modules, resolves references
between them, resolves references to the system library, and produces
a single task image ready to b~ irstalled and executed.

The Task Builder makes a set of assumptions (defaults) about the task
image based on typical usage and storage requirements. You can
override these assumptions by including switches and options in the
task-building terminal sequence. Thus, you can build a task that is
tailored to its own input/output and storage requirements.

The Task Builder also produces {upon request) a memory allocation
(map) file that contains information describing the allocation of
address space, the modules that make up the task image, and the value
of all global symbols. In addition, you can request that a list of
global symbols, accompanied by the name of each referencing module, be
appended to the file (global cross reference).

1-1

INTRODUCTION AND COMMAND SPECIFICATIONS

The following example shows a simple sequence for building a task:

>MAC PROG=PROG
>TKB PROG=PROG
>INS PROG
>RUN PROG

The first command (MAC) causes the MACR0-11 assembler to translate the
source code of the file FROG.MAC into a relocatable object module in
the file FROG.OBJ. The second command (TKB) causes the Task Builder
to process the file FROG.OBJ to produce the task image file PROG.TSK.
The third command (INS) causes the INSTALL processor to add the task
to the Executive's directory of executable tasks (System Task
Directory). The fourth command (RUN) causes the task to execute.

The example just given includes the command

>TKB PROG=PROG

This command illustrates the simplest use of the Task Builder. It
gives the name of a single file as output and the name of a single
file as input.

This chapter describes basic Task Builder command forms and sequences.

1.1 TASK COMMAND LINE

The task command line contains the output file specifications,
followed by the input file specification&; they are separated by an
equal sign (=). You can specify up to three output files and any
number of input files.

You must give the output files in a specific order: the first file
you name is the image (.TSK) file, the second is the memory allocation
(.MAP) file, and the third is the symbol definition (.STB) file. The
map file lists information about the size and location of components
within the task. The symbol definition file contains the global
symbol definitions in the task and their virtual or relocatable
addresses in a format suitable for reprocessing by the Task Builder.
You specify this file when you are building a resident library or
common. (Resident libraries and commons are described in Chapter 3.)
The Task Builder combines the input files to create a single task
image that can be installed and executed.

The task command line has the form:

task-image-file,map-file,symbol-definition-file=input-file, •••

You can omit any output file by replacing the file specification with
the delimiting comma that would normally follow it. The following
commands illustrate the ways the Task Builder interprets the output
file names.

Command Output Files

>TKB IMGl,IMGl,IMGl=INl The task image file is IMGl.TSK, the memory
allocation (map) file is IMGl.MAP, and the
symbol definition file is IMGl.STB.

>TKB IMGl=INl The task image file is IMGl.TSK.

>TKB ,IMGl=INl The map file is IMGl.MAP.

1-2

INTRODUCTION AND COMMAND SPECIFICATIONS

Command

> TK B I , I MG .l =IN 1

>TKB IMGl I I IMGl=INl

>TKB =INl

1.2 MULTIPLE LINE INPUT

Output Files

The symbol definition file is IMGl.STB.

The task image file is IMGl.TSK and the
symbol definition file is IMGl.STB.

This is a diagnostic run with no output
files.

Although
spec:ify
files, a
cons:ists
when you
1. 3) ·•

you can specify a maximum of three output files, you can
any number of input files. When you specify several input
more flexible format is sometimes necessary one that

of several lines. This multiline format is also necessary
want to include options in your command sequence (see Section

If you type TKB, the Monitor Console Routine (MCR) activates the Task
Builder. The Task Builder then prompts for input until it receives a
line consisting only of the terminating slash characters (//) For
example:

>TKB
TKB>IMGl,IMGl=INl
TKB> IN2, IN3
TKB>//

This sequence produces the same result as the single line command:

>TKB IMGl,IMGl=INl,IN2,IN3

Both command sequences produce the task image file IMGl.TSK and the
map file IMGl.MAP from the input files INl.OBJ, IN2.0BJ, and IN3.0BJ.

You must specify the output file specifications and the equal sign (=)
on the first command line. You can begin or continue input file
specifications on subsequent lines.

When you type the terminating slash characters (//),the Task Builder
stops accepting input, builds the task, and returns control to MCR.

1.3 OPTIONS

You use options to specify the characteristics of the task you are
building. To include options in a task, you must use the multiline
format. If you type a single slash (/) following the input file
specification, the Task Builder requests option information by
displaying ENTER OPTIONS: and prompting for input. For example:

>TKB
TKB>IMGl,IMGl=INl
TKB> IN2, IN3
TKB>/
ENTER OPTIONS:
TKB>PRI=lOO
TKB>COMMON=JRNAL:RO
TKB>//

1-3

INTRODUCTION AND COMMAND SPECIFICATIONS

In this sequence there are two options: PRI=lOO and COMMON=JRNAL:RO.
The two slashes end option input, initiate the task-build, and return
control to MCR upon completion.

NOTE

When you are building an overlaid task,
there are exceptions to the use of the
single slash (/). Overlaid tasks are
described in Chapter 4.

The RSX-llM/M-PLUS Task Builder provides numerous options. These are
described in Chapter 6. The general form of an option is a keyword
followed by an equal sign (=) and an argument list. The ar~uments in
the list are separated from one another by colons (:). In the example
above, the first option consists of the keyword PRI and a single
argument indicating that the task is to be assigned the priority 100.
The second option consists of the keyword COMMON and an argument list,
JRNAL:RO, indicating that the task accesses a resident common region
named JRNAL and that the access is read-only. You can specify more
than one option on a line, by using an exclamation point (1) to
separate the options. For example:

TKB>PRI=lOO!COMMON=JRNAL:RO

This command is equivalent to the two lines:

TKB>PRI=lOO
TKB>COMMON=JRNAL:RO

Some options accept more than one set of argument lists.
comma (,) to separate the argument lists. For example:

TKB>COMMON=JRNAL:RO,RFIL:RW

You use a

In this command, the first argument list indicates that the task has
requested read-only access to the resident common JRNAL. The second
argument list indicates that the task has requested read/write access
to the resident common RFIL.

The following three sequences are equivalent:

TKB>COMMON=JRNAL:RO,RFIL:RW

TKB>COMMON=JRNAL:RO!COMMON=RFIL:RW

TKB>COMMON=JRNAL:RO
TKB>COMMON=RFIL:RW

1.4 MULTIPLE TASK SPECIFICATIONS

If you intend to build more than one task, you can use the single
slash (/) following option input. This directs the Task Builder to
stop accepting input, build the task, and request information for the
next task-build.

1-4

INTRODUCTION AND COMMAND SPECIFICATIONS

For example:

>TKB
TKB> IMGl=INl
TKB> IN2, IN3
TKB>I
ENTER OPTIONS:
TKB>PRI=lOO
TKB>COMMON=JRNAL:RO
TKB>I
TKB>IMG2=SUB1
TKB>ll

The Task Builder accepts the output and input file specifications and
the option input; it then stops accepting input upon encountering the
single slash (I) during option input. The Task Builder builds
IMGl.TSK and then returns to accept more input for building IMG2.TSK.

1.5 INDIRECT COMMAND FILES

You can enter commands to the Task Builder directly from the keyboard,
or indirectly through the indirect command file facility. To use the
indirect command file facility, you prepare a file that contains ·the
Task Builder commands you want to be executed. Later, after you
invoke the Task Builder, you type an at sign (@) followed by the name
of the indirect command file.

For example, suppose you create a file called AFIL.CMD containing the
following:

I MG 1 , I MG 1 = IN 1
IN2,IN3
I
PRI=lOO
COMMON=JRNAL:RO
II

Later, you can type:

>TKB
TKB>@AFIL
TKB>

or simply
>TKB @AFIL

When the Task Builder encounters the at sign (@), it directs its
search for commands to the file named AFIL.CMD. The example above is
equivalent to the keyboard sequence:

>TKB
TKB>IMGl,IMGl=INl
TKB> IN2, IN3
TKB>I
ENTER OPTIONS:
TKB>PRI=lOO
TKB>COMMON=JRNAL:RO
TKB>ll

When the Task Builder encounters two terminating slash characters (II)
in the indirect command file, it terminates indirect command file
processing, builds the task, and exits to MCR.

1-5

INTRODUCTION AND COMMAND SPECIFICATIONS

When the Task Builder encounters a single slash (I) in an indirect
command file and the slash is the last character in the file, the Task
Builder directs its search for commands to the terminal. For example,
suppose the file AFIL.CMD in the last example is changed to read:

IMGl,IMGl=INl
IN2,IN3
I

Later, you can type:

>TKB
TKB>@AFIL

In this case, the Task Builder goes to the terminal and prompts:

ENTER OPTIONS:
TKB>

From this point, you input options to the Task Builder directly from
the keyboard. If you then conclude option input from the keyboard
with double slashes (II), the Task Builder suspends command
processing, as described above, and exits to MCR following the
task-build. If you conclude option input with a single slash Cl), the
Task Builder prompts for new command input following the task-build of
IMGl.TSK, as follows:

TKB>

Using the single slash Cl) following option input in indirect command
files is a convenient way to return control to your terminal between
successive task-builds. For example, suppose you create two indirect
command files. The first, AFIL.CMD, contains~

IMGl,IMGl=INl
IN2,IN3
I
PRI=lOO
COMMON=JRNAL
I

The second, AFILl.CMD, contains:

IMG2,IMG2=IN4
IN5,IN6
I
PRI=lOO
II

Then, the terminal sequence to build these two tasks is:

>TKB
TKB>@AFIL
TKB>@AFILl
>

NOTE

For interaction with a Task Builder
indirect command file as described
above, you must use the multiline format
when you specify the indirect command
file.

1-6

INTRODUCTION AND COMMAND SPECIFICATIONS

The Task Builder permits two levels of indirection in file references.
That is, the indirect command file referenced in a terminal sequence
can contain a reference to another indirect command file. For
example, if the file BFIL.CMD contains all the standard options that
are used by a particular group of users at an installation, you can
modify AFIL to include an indirect command file reference to BFIL.CMD
as a separate line in the option sequence.

The contents of AFIL.CMD would then be:

I MG 1 , I MG 1=IN1
IN2,IN3
I
PRI=lOO
COMMON=JRNAL:RO
@BFIL
II

To build these files, you type:

>TKB
TKB> @AFIL

Suppose the contents of BFIL.CMD are:

STACK=lOO
UNITS=5!ASG=DT1:5

The terminal equivalent of building these files is:

>TKB
TKB>IMGl ,IMGl=INl
TKB> IN2, IN3
TKB>I
ENTER OPTIONS:
TKB>PRI=lOO
TKB>COMMON=JRNAL:RO
TKB>STACK=lOO
TKB>UNITS=S!ASG=DTl:S
TKB>ll

The indirect command file reference must appear on a separate line.
For example, if you modify AFIL.CMD by adding the @BFIL reference on
the same line as the COMMON=JRNAL:RO option, the substitution would
not take place and the Task Builder would report an error.

1.6 COMMENTS IN LINES

You can include comments at any point in the command sequence, except
in lines that contain file specifications. You begin a comment with a
semicolon (;) and terminate it with a carriage return. All text
between these delimiters is a comment.

For example, in the indirect command file, AFIL.CMD, described in
Section 1.5, you can add comments to provide more information about
the purpose and the status of the task.

1-7

INTRODUCTION AND COMMAND SPECIFICATIONS

TASK 33A

DATA FROM GROUP E-46 WEEKLY
;
IMGl ,IMGl=

; PROCESSING ROUTINES

INl

; STATISTICAL TABLES

IN2
;
; ADDITIONAL CONTROLS

IN3
I
PRI=lOO
;
COMMON=JRNAL:RO ; RATE TABLES

; TASK STILL IN DEVELOPMENT
;
II

1.7 FILE SPECIFICATIONS

The Task Builder adheres to the standard RSX-llMIM-PLUS conventions
for file specifications. For any file, you can specify the device,
the User File Directory (UFO), the file name, the file type, the file
version number, and any number of switches.

The file specification has the form:

device: [group,member]filename.type;versionlswllsw2 ••• lswn

When you specify files by name only the Task Builder applies the
default switch settings for device, group, member, type, version. For
example:

>TKB
TKB>IMGl,IMGl=INl
TK B > IN 2 , I N 3
TKB>ll

If the current User Identification Code (UIC) of the terminal that the
Task Builder is running on is [200,200], the task image file
specification of the example is assumed to be:

SY0:[200,200]IMG1.TSK;l

That is, the Task Builder creates the task image file on the system
device (SYO:) under UFO [200,200]. The default type for a task image
file is .TSK and if the name IMGl.TSK is new, the version number is 1.
The default settings for all the task image switches also apply.
Switch defaults are described in detail in Chapter 6.

1-8

INTRODUCTION AND COMMAND SPECIFICATIONS

For 1example:

>TKB
TKB>[20,23]IMGl/CP/DA,IMGl/CR=INl
TK B > IN 2 ; 3 , IN 3
TKB>//

This sequence of commands instructs the Task Builder to create a task
imag·e file IMGl.TSK;l and a memory allocation (map) file MPl.MAP;l
(actually, it produces IMGl.TSK and IMGl.MAP with versions one higher
than the current versions) under UFD [20,23] on the device SY:. The
task image is checkpointable and contains the standard debugging aid
(ODT). The Task· Builder outputs the map to the line printer with a
global cross-reference listing appended to it. The Task Builder
builds the task from the latest versions of INl.OBJ, IN3.0BJ, and the
specific version of IN2.0BJ. The input files are all found on the
system device.

For some files, a device specification is sufficient. In the example
above, the map file is fully specified by the device LP:. The map
listing is produced on the line printer, but is not retained as a
file.

This example also used switches /CP, /CR, and /DA. The code, syntax,
and meaning for each switch are given in Chapter 6.

1.8 SUMMARY OF SY~TAX RULES

The syntax rules for issuing commands to the Task Builder are as
follows:

1. A task-build command can take any one of four forms. The
first form is a single line:

>TKB task-command-line

The second form has additional lines for input file names:

>TKB
TKB>task-command-line
TKB>input-line

TKB>terminating-symbol

The third form allows you to specify options:

>TKB
TKB>task-command-line
TKB>/
ENTER OPTIONS:
TKB>option-line

TKB>terminating-symbol

1-9

INTRODUCTION AND COMMAND SPECIFICATIONS

The fourth form has both input lines and option lines:

>TKB
TKB>task-command-line
TKB>input-line

TKB>I
ENTER OPTIONS:
TKB>option-line

TKB>terminating-symbol

The terminating symbol can be:

I if you intend to build more than one task

II if you want the Task Builder to return control to
MCR

2. A task command line has one of the three forms:

output-file-list=input-file, •••

=input-file, •••

@indirect-command-file

The third form is an indirect command file specification as
described in Section 1.5.

3. An ouput file list has one of the three forms:

task-image-file,map-file,symbol-definition-file

task-image-file,map-file

task-image-file

The task-image-file is the file specification for the task
image file; map-file is the file specification for the
memory allocation (map) file; and symbol-definition-file is
the file specification for the symbol definition file. Any
of the specfications can be omitted, so that, for example,
the following form is permitted:

task-image-file,,symbol~definition-file

4. An input line has one of two forms:

input-file, •••

@indirect-command-file

Both input-file
specifications.

and indirect-command-file

1-10

.are file

INTRODUCTION AND COMMAND SPECIFICATIONS

5. An option line has one of two forms:

option! •••

@indirect-command-file

The indirect-command-file is a file specification.

6. An option has the form:

keyword=argument-list,o••

The argument-list is:

arg: •••

The syntax for each option is given in Chapter 6.

7. A. file specification conforms to standard RSX-lM/M-PLUS
comventions. It has the form:

devi~e: [group,member]filename.type;version/swl/sw2 ••• /swn

device: The name of the physical device on which the volume
containing the desired file is mounted. The name
consists of two ASCII characters followed by an
optional 1- or 2-digit octal unit number and a
colon; for example, LP: or DTl:.

group The group number, in the range of 1 through 377(8).

member The member number, in the range 1 through 377(8).

filename The name of the desired file. The file name can
contain up to 9 alphanumeric characters.

type The 3-character file type idectification. Files
having the same name but a different function are
distinguished from one another by the file type;
for example, CALC.TSK and CALC.OBJ.

version The version number, in octal, of the file. Various
versions of the same file are distinguished from one
another by this number; for example, CALC.OBJ;l and
CALC.OBJ;2.

All components of a file specification are optional. The
combination of the group number and the member number is the
User File Directory (UFD) that contains the file name.

1-11

CHAPTER 2

TASK BUILDER FUNCTIONS

The process of building a task involves three distinct Task Builder
functions. First, the Task Builder is a linker. It collects and
links the relocatable object modules that you specify to it into a
single task image and resolves references to global symbols across the
module boundaries.

Second, the Task Builder assigns addresses to the task image. On
mapped systems, the Task Builder assigns addresses for a task
beginning at zero. The Executive then relocates the addresses at
runtime. On unmapped systems, the Task Builder assigns addresses for
a task beginning at the base address of the partition in which the
task is to run. The addresses of tasks that run on unmapped systems
are not relocated at runtime.

NOTE

Unless otherwise indicated, references
to tasks that run on mapped systems
assume that the tasks are nonprivileged
and residing within system-controlled
partitions.

Third, the Task Builder builds data structures into the task image
that are required by the INSTALL processor to install the task and by
the Executive to run it.

This chapter describes the three Task Builder functions in detail.

2.1 LINKING OBJECT MODULES

When the language translators convert symbolic source code within a
module to object code, they assign provisional 16-bit addresses to the
code~ A single assembly or compilation produces a single object
module. In their simplest form, each module begins at 0 and extends
upward to the highest address in the module. Three object modules
produced at separate times might have the address limits shown in
Figure 2-1.

2-1

TASK BUILDER FUNCTIONS

1000-r-ir-~~~--

750

500

MODULE #1 MODULE #3

MODULE #2

RELOCATABLEO-----~~~-- RELOCATABLEO ---~~~--RELOCATABLEO

Figure 2-1 Relocatable Object Modules

If these modules represent the separate modules of a single program,
the Task Builder links them together and modifies the provisional
addresses to one of the following:

• A single sequence of addresses beginning at 0 and extending
upward to the sum of all of the addresses of each module
(mapped system)

• A single sequence of addresses beginning at a base address
assigned at task build time and extending upward to the sum of
all the addresses of each module (unmapped system)

For example, Figure 2-2A shows the three modules linked for a mapped
system, and Figure 2-2B shows the modules linked for an unmapped
system.

2.1.1 Allocating Program Sections

The language translators process source code
links object modules within the context
program section is a block of code or data
elements:

• a name

• a set of attributes

• a length

2-2

and
of

that

the Task Builder
program sections. A
consists of three

TASK BUILDER FUNCTIONS

2250------

0

MODULE #3

MODULE #2

MODULE #1

MAPPED
SYSTEM

2-2A

3250

BASE 1000

MODULE #3

MODULE #2

MODULE #1

UNMAPPED
SYSTEM

2-28

Figure 2-2 Modules Linked for Mapped and Unmapped Systems

Program sections are important because they are the basic unit used by
the ~rask Builder to determine the placement of code and data in a task
imagi~. The language translators maintain a separate location counter
for each program section in a program. The name of each program
section, its attributes, and its length are conveyed to the Task
Builder through the object module.

You can create as many program sections within a module as you wish by
explicitly declaring them (with the COMMON statement in FORTRAN or the
.PSECT directive in MACR0-11, for example) or you can leave the
creation of program sections to the language translator. If you do
not explicitly create a program section in your source code, the
language translator you are working with will create a "blank" program
section within each module translated. This program section will
appear on your listings and maps as • BLK •• For more information on
explicitly declared program sections, see your language reference
manual.

2-3

TASK BUILDER FUNCTIONS

A program section's name is the name by which the language translator
and Task Builder reference it. When processing files, both the
language translator and the Task Builder create internal tables that
contain program section names, attributes and lengths.

Program section attributes define a program section's contents, its
placement in a task image, and, in some cases, the allowed mode of
access (read/write or read-only).

A program section's length determines how much address space the Task
Builder must reserve for it.

When a program consists of more than one module, it is not unusual for
program sections of the same name to exist in more than one of the
modules. Therefore, as the Task Builder scans the object modules, it
collects scattered occurrences of program sections of the same name
and combines them into a single area of your task image file. The
attributes listed in Table 2-1 control the way the Task Builder
collects and places each program section in the task image.

Attribute

access-code

type-code 1

scope-code

j

l

Table 2-1
Program Section Attributes

Value

RW

RO

D

I

GBL

LCL

Meaning

Read/write: data can be read from, and
written into, the program section

Read-only:
cannot be
section

data can be read from, but
written into, the program

Data: the program section contains data

Instruction: the program section
contains either instructions, or data and
instructions

Global: the program section name is
recognized across overlay segment
boundaries, the Task Builder allocates
storage for the program section from
references outside the defining overlay
segment.

Local: the program section name is
recognized only within the defining
overlay segment; the Task Builder
allocates storage for the program section
from references within the defining
overlay segment only

1 Do not confuse these codes with the I and D space hardware on
PDP-11 systemr.

(continued on next page)

2-4

TASK BUILDER FUNCTIONS

Table 2-1 (Cont.)
Program Section Attributes

Attribute Value Meaning

allocation-code CON Concatenate: all references to a given
program section name are concatenated;
the total allocation is the sum of the
individual allocations

OVR Overlay: all references to a given
program section name overlay each other;
the total allocation is the length of the
longes~ individual allocation

relocation-code REL Relocatable: the base address of the
program section is relocated relative to
the base address of the task

memory-code 2

ABS

HIGH

Absolute:
program
always 0

the base address of
section is not relocated;

the
it is

High: the program section is to be
loaded into high-speed memory

LOW Low: the program section is to be loaded
into low-speed memory

2 Not used by the Task Builder.

The type-code and scope-code are meaningful only when you define an
overlay structure for a task. These codes are described in later
chapters within the context of the descriptions of overlays. The Task
Builder does not use the memory-code.

The Task Builder uses a
allocation-code to determine
It divides address space into
places the program sections
access-code.

program section's access-code and
its placement and size in a task image.
read/write and read-only areas, and
in the appropriate area according to

The Task Builder uses a program section's allocation-code to determine
its starting address and length. If a program section's
allocation-code indicates that th~ Task Builder is to overlay it, the
Task Builder places each allocation to the program section from each
module at the same address within the task image. The Task Builder
determines the total size of the program section from the length of
the longest allocation to it.

If a program section's allocation-code indicates that the Task Builder
is to concatenate it, the Task Builder places the allocation from the
modules one after the other in the task image, and determines the
total allocation from the sum of the lengths of each allocation.

The Task Builder always allocates address space for a program section
beginning on a word boundary. If the program section has the D (data)
and CON (concatenate) attributes, the Task Builder appends to the last
byte of the previous allocation all storage contributed by subsequent
modules. It does this regardless of whether that byte is on a word or

2-5

TASK BUILDER FUNCTIONS

nonword boundary. For a program section with the I (instruction) and
CON attributes, however, the Task Builder allocates address space
contributed by subsequent modules beginning with the nearest following
word boundary.

For example, suppose three modules, INl, IN2, and IN3, are to be
task-built. Table 2-2 lists these modules with the program sections
each contains and their access codes and allocation codes.

Table 2-2
Program Sections for Modules INl, IN2, and IN3

Program
Section Access Allocation Size

File Name Name Code Code (octal)

INl B RW CON 100
A RW OVR 300
c RO CON 150

IN2 A RW OVR 250
B RW CON 120

IN3 c RO CON 50

In this example, the program section named B, with the attribute CON
(concatenate), occurs twice. Thus, the total allocation for B is the
sum of the lengths of each occurence; that is, 100 + 120 = 220. The
program section named A also occurs twice. However, it has the OVR
(overlay) attribute so its total allocation is the largest of the two
sizes, or 300. Table 2-3 lists the individual program section
allocations.

Table 2-3
Individual Program Section Allocations

Program Section Total
Name Allocation

B 220
A 300
c 220

-...J

The Task Builder then groups the program sections according to their
access codes, and alphabetizes each group as shown in Figure 2-3.

NOTE

The example shown in Figure 2-3
represents the Task Builder's default
allocation of program sections. For
information on altering this default,
see the description of the SQ switch in
Chapter 6.

2-6

TASK BUILDER FUNCTIONS

c (220) J READ-ONLY
ACCESS

B (220)

J READ/WRITE TASK MEMORY

A (300)
ACCESS

STACK

HEADER

Figure 2-3 Allocation of Task Memory

2.1.2 Resolving Global Symbols

The Task Builder resolves references to global symbols across module
boundaries and any references (explicit or implicit) to the system
library. When the language translators process a text file, they
assume that references to global symbols within the file are defined
in other, separately assembled or compiled modules. As the Task
Builder links the relocatable object modules, it creates an internal
table of the global symbols it encounters within each module. If,
after the Task Builder examines and links all the object modules,
references remain to symbols that have not been defined, the Task
Builder assumes that it will find the definition for the symbols
within the default system object module library (LB: [l,l]SYSLIB.OLB).
If undefined symbols still remain after SYSLIB is examined, the Task
Builder flags the symbols as undefined. If you have not specified an
output map in your Task Builder command sequen·ce, the Task Builder
reports the names of the undefined symbols to you on your terminal.
If you have specified an output map, the Task Builder outputs to your
terminal only the fact that the task contains undefined symbols. The
names of the symbols appear on your map listing.

When creating the task image file, the Task Builder resolves global
references as shown in the following example. Table 2-4 lists the
three files INl, IN2, and IN3, showing the program sections within
each file, the global symbol definitions within each program section,
and the references to global symbols in each program section.

Table 2-4
Resolution of Global Symbols for INl, IN2, and IN3

File Program Section Global Global
Name Name Definition Reference

INl B Bl A
B2 LI

A Cl
xxx

c

IN2 A A B2
B Bl

IN3 c Bl

2-7

TASK BUILDER FUNCTIONS

In processing the first file, INl, the Task Builder finds definitions
for Bl and B2 and references to A, Ll, Cl, and XXX. Because no
definition exists for these references, the Task Builder defers the
resolution of these global symbols. In processing the next file, IN2,
the Task Builder finds a definition for A, which resolves the previous
reference, and a reference to B2, which can be immediately resolved.

When all the object files have been processed, the Task Builder has
three unresolved global references -- Cl, Ll, and XXX. Assume that a
search of the system library LB: [l,l]SYSLIB.OLB resolves Ll. and XXX
and the Task Builder includes the defining modules in the task's
image. Assume also that the Task Builder cannot resolve the global
symbol Cl. The Task Builder lists it as an undefined global symbol.

The relocatable global symbol Bl is defined twice. The Task Builder
lists it as a multiply-defined global symbol. The Task Builder uses
the first definition of a multiply-defined symbol.

Finally, an absolute global symbol (for example, symbol=lOO) can be
defined more than once without being listed as multiply defined as
long as each occurrence of the symbol has the same value.

2.2 ASSIGNING ADDRESSES

The primary addressing mechanism of the PDP-11 is the 16-bit computer
word. The maximum physical address space that the PDP-11 can
reference at any one time is a function of the length of this word.
The highest number that can be represented in 16 bits is 177777(8) or
65,535(10). Because the PDP-11 is a byte-addressable machine, the
16-bit word length allows it to address up to 65,535 bytes (32K words)
of physical address space at any one time. The amount of address
space that a machine can reference at any one time is called virtual
address space.

2.2.1 Unmapped Systems

In an unmapped system, the machine's virtual address space and its
physical address space coincide exactly, as shown in Figure 2-4.

In an unmapped system, the machine's address space is limited to 32K
words. All of the machine's physical memory and all of its device
registers are accessible to all tasks running on the system. The top
4K words of address space are reserved for the UNIBUS addresses that
correspond to the peripheral device registers (the I/O page), and a
segment of low memory is occupied by the Executive. Therefore, in an
unmapped system, the largest task size is 32K words minus the I/O page
and the size of the Executive. Figure 2-5 shows the memory layout for
an unmapped system.

Unmapped systems contain only user--controlled partitions. When the
Task Builder links the relocatable object modules of a task that is to
run on an unmapped system, it requires that you specify the partition
in which the task is to run, the partitions base address and length.
The Task Builder will set the base address of the task to the base
address of the partition. This means that the task's location in
physical memory is bound to the partition and does not change.
Because all of physical memory in an unmapped system is directly
addressable, and the task's location within memory does not change,
the addresses that the Task Builder assigns coincide exactly with the
physical addresses of the machine and, therefore, do not need to be
relocated at runtime.

2-8

TASK BUILDER FUNCTIONS

VIRTUAL PHYSICAL
32 K WORDS 32 K WORDS

VIRTUAL 0 PHYSICAL 0 ..__ ___ _

VIRTUAL PHYSICAL
ADDRESS SPACE MEMORY

Figure 2-4 Unmapped Memory

32 K WORDS

1/0 PAGE

• EXECUTIVE• .
0

Figure 2-5 Layout for Unmapped System

2-9

TASK BUILDER FUNCTIONS

2.2.2 Mapped Systems

In a mapped system, the relationship between virtual address space and
physical address space is different from that of an unmapped system.
The primary addressing mechanism for a mapped system is still the
16-bit word, and virtual address space is still 32K words. However, a
mapped system has a much greater physical memory capacity and,
therefore, physical memory and virtual address space do not coincid~.

To address all of physical memory in a mapped system, a machine must
have an effective word length of 18 or 22 bits, depending on the model
of the machine. When the Task Builder links the relocatable object
modules of a task that is to run on a mapped system, it assigns 16-bit
address to the task image. The memory management unit's function
(under control of the Executive) is to convert the task's 16-bit
addresses to effective 18- or 22-bit physical addresses. The
mechanical job of task relocation is performed by the Executive and
the memory management unit at task runtime. Figure 2-6 illustrates
the relationship between physical memory and virtual address space in
a mapped system.

The memory management unit divides a machine's 32K
address space into eight 4K word segments or pages.
registers associated with it:

words of virtual
Each page has two

• A 16-bit Page Description Register (PDR) which contains
control and access information about the page with which it is
associated

• A 16-bit Page Address Register (PAR) which is an address
relocation register

The PDRs and PARs are always used as a pair. Each pair is called an
Active Page Register (APR). Figure 2-7 shows how the memory
management unit divides the 32K words of virtual address space.

NOTES

1. A detailed description of the Memory
Management unit is beyond the scope of
this manual. For a complete description
of your machine's memory management
unit, refer to the Processor Handbook
for your machine.

2. Mapped machines have up to three
modes of operation: Kernel, Supervisor,
and User (11/34 machines do not have
supervisor mode). The information in
this chapter is relevant to User mode
only.

The Executive allocates only as many APRs as are necessary to map a
given task into physical memory. Therefore, a 4K word task requires
one APR; a 6K word task requires two. Figure 2-8 illustrates this
mapping.

2-10

TASK BUILDER FUNCTIONS

t
HIGHEST

PHYSICAL
ADDRESS

•
•
•

•
•
•

PARTITION -~-...._-_....,.__..
BOUNDARY

____ /
TASK

MEMORY

32K---·---~

TASK
MEMORY

MEMORY
MANAGEMENT

UNIT

HEADER v
·O - ...______.....

VIRTUAL ADDRESS
SPACE

FOR 32 K WORD
TASK

HEADER

TASK
MEMORY

HEADER

TASK
MEMORY

HEADER

TASK
MEMORY

PA RT IT I ON,.,..__H_E_A_D_E_R _ _.
BOUNDARY

• EXECUTIVE •
• ETC. •
• •

Q_I.___ _I
PHYSICAL
MEMORY

SYSTEM-CONTROLLED
PARTITION

Figore 2-6 Task Relocation in a Mapped System

2-11

VIRTUAL 160000

VIRTUAL 140000

VIRTUAL 120000

VIRTUAL 100000

VIRTUAL 60000

VIRTUAL 40000

VIRTUAL 20000

VIRTUAL 0

TASK BUILDER FUNCTIONS

PAGE 7

APR 7 -

PAGE 6

APR6 -

PAGE 5

APR 5 -

PAGE 4

APR4 -

PAGE 3

APR 3-

PAGE 2

APR 2 -

PAGE 1

APR 1 I
APR 0

PAGE 0

32K WORDS OF
VIRTUAL ADDRESS

SPACE

Figure 2-7 Memory Management Unit's Division of Virtual Address Space

2-12

TASK .BUILDER FUNCTIONS

160000 APn 7- APR 7-

140000 AP H 6 --,...

120000 APR 5- APR 5-

100000 APR 4 - APR4-

60000 APR 3- APR3-

40000 APR 2- APR 2-

20000 APR 1-

f
APR 1- TASK

TASK MEMORY

MEMORY 4 K WORDS

HEADER & STACK _l HEADER & STACK
VIRTUALO APRO- APRO-

TASK A (4 K WORDS) TASK B (6 K WORDS)

Figure 2-8 Mapping for 4K Word and 6K Word Tasks

2-13

TASK BUILDER FUNCTIONS

Finally, the layout of the virtual address space for a task that is to
run in a mapped system is different in most cases from that of a task
that is run in an unmapped system. Unless a task is privileged, the
I/O page and the Executive are not normally part of a task's virtual
address space and, unlike an unmapped system, a task is inhibited by
the system from accessing any portion of physical memory that it does
not specifically own. Because the I/O page and the Executive are not
part of a task's virtual addres~ space, a task can be a full 32K words
long on a mapped system.

2.3 BUILDING SYSTEM DATA STRUCTURES

It is the Task Builder's responsibility to build the data structures
required by other system programs, and to incorporate them into the
task image. The Executive (which is the system task responsible for
the allocation of system resources) must have access to the data for
all tasks on the system. It must know, for example, a task's size and
priority, and it must have information about the way each task expects
to use the system. It is the Task Builder's responsibility to
allocate space in the task image for the data structures required by
the Executive. The Task Builder initializes some of these structures,
while the INSTALL processor initializes others when you install the
task.

The disk image file created by the Task Builder contains the linked
task and all of the information required by the system programs to
install and run it. In its simplest form, the disk image file
consists of three physically contiguous parts:

• The label block group

• The task header

• The task memory image

Figure 2-9 illustrates the basic structure of this file.

0

0
: MEMORY :

HEADER

LABEL
BLOCK

Figure 2-9 Disk Image

2-14

TASK BUILDER FUNCTIONS.

NOTE

Non-runnable images such as resident
shared regions do not have a header.
Resident shared regions are described in
Chapter 3.

The label block group contains data produced by the Task Builder and
used by the INSTALL processor. It contains information about the task
such as the task's name, the partition in which it runs, its size,
priority, and the logical units assigned to it. When you install the
task, the INSTALL processor uses this information to cre(it.~ a Task
Control Block entry for the task in the System Task Directory (STD
file) and to initialize the task's header information.

The task's header contains information that the Executive uses when it
runs the task. The header also provides a storage area for saving the
task's essential data when the task is checkpointed. The Task Builder
creates and partially initializes the header; the INSTALL processor
initializes the rest of the header.

The task memory contains the linked modules of the program and
therefore the code and data. It also contains the task's stack. The
stack is an area of task memory that a task can use for temporary
storage and subroutine linkage. It can be referenced through general
register 6, the stack pointer (SP). The label block group, the task's
header and the task memory are described in detail in Appendix c.

The task's memory image is the part of your task that the system reads
into physical memory at runtime. The label block group is not
required in physical memory. Therefore, in its simplest form, the
task's memory image consists of only two parts: the task header and
task memory. Figure 2-10 shows the memory image.

TASK
MEMORY

HEADER

o--------
Figure 2-10 Memory Image

2.4 TASK RELOCATION ON MAPPED SYSTEMS

As mentioned earlier, tasks that run on mapped systems must be
relocated at runtime. When you build a task that is to run on a
mapped system, the Task Builder creates and places in the header of
the task one or more 9-word data structures called window blocks.
When you install a task the INSTALL processor initializes the window
block(s). Once initialized, a window block describes a range of
continuous virtual addresses called a window.

2-15

TASK BUILDER FUNCTIONS

A window can be as small as 32 words or as large as 32K words. When a
task consists of one continuous range of addresses (a single region
task) only one window block is required to describe the entire task
from the beginning of its header to the highest virtual address in the
task. When a task consists of two or more regions (such as a task
that references a shared region as described in Chapter 3), each
region must have at least one window block associated with it that
describes all or a portion of the region.

When the Executive maps a task into physical memory, it extracts the
information it requires to set up the APRs of the memory management
unit from the task's window block.

Regardless of the number of regions associated with a task, the region
that contains the task's header is always described by window O.
Furthermore, this region is referred to as the task region and is
identified as region O. Figure 2-11 illustrates window block O.

When you run your task, the Executive determines where in physical
memory the task is to reside. The Executive then loads the Page
Address Register portion of the APRs with a relocation constant that,
when combined with the addresses of the task, yields the 18- or 22-bit
physical address range of the task.

HIGHEST VIRTUAL
ADDRESS

WINDOW BLOCK
0

LOWEST VIRTUAL
ADDRESS

TASK
MEMORY

HEADER & STACK

Figure 2-11 Window Block 0

2-16

TASK REGION -

REGION 0

CHAPTER 3

TYPICAL TASK BUILDER FACILITIES

The Task Builder provides you with many facilities for tailoring your
tasks to meet your specific requirements. This chapter describes some
of these facilities and their applications.

This chapter contains eight working examples. The discussion of the
examples assume that you are familiar with the programming concepts
described in the RSX-llM/M-PLUS Guide to Program Development and with
the first two chapters of this manual.

3.1 SHARED REGIONS

A shared region is a block of data or code that resides in memory and
can be used by any number of tasks. Shared regions are useful because
they make more efficient use of physical memory:

• By providing a way in which two or more tasks can share their
data. This is called a resident common.

• By providing a way in which a single copy of commonly used
subroutines can be shared by several tasks. This is called a
resident library.

The term "resident" is used to denote a shared region that is built
and installed into the system separately from the task that links to
it.

Figure 3-1 shows a typical resident common. Task A stores some
results in resident common s, and Task B retrieves the data from the
common at a later time.

Figuire 3-2 sho.ws a typical resident library. In this case, common
reentrant subroutines are not included in each task image; instead, a
single copy is shared by all tasks.

3-1

TYPICAL TASK BUILDER FACILITIES

RESIDENT COMMON

s
PARTITION BOUNDARY __ .,._.,., ,.,..,.,.,..,..,...,..,..,..........,..,..,...,..,.,..,.,..,.,.,..__

•••

TASK A

PA RT 1 Tl ON BOUNDARY ----11-'-"·····.;..:..••••• ••• •••• i ·•••• •i i •i ·•··· ••••• Ii l ••••• •••i."'"'ti

EXECUTIVE

PHYSICAL MEMORY
TIME 1

RESIDENT COMMON

s

TASK B

EXECUTIVE

PHYSICAL MEMORY
TIME 2

Figure 3-1 Typical Resident Common

PARTITION BOUNDARY

ROUTINE R

TASK A

ROUTINE R

TASK B

PARTITION BOUNDARY --+----------1

EXECUTIVE

NONSHARED
PHYSICAL MEMORY

RESIDENT LIBRARY
CONTAINING

ROUTINE R

TASK A

TASK B

EXECUTIVE

SHARED
PHYSICAL MEMORY

Figure 3-2 Typical Resident Library

3-2

TYPICAL TASK BUILDER FACILITIES

When you build a shared region, you must specify in the Task Builder
command sequence an output image file name for it. But, because a
shared region is not an executable unit, it is not a task. It does
not require a header or a stack area. Therefore, when you build a
sharE~d region, you always attach the negated header switch (/-HD) to
the image file specification. This switch tells the Task Builder to
suppress the header within the image. To suppress the stack area, in
the Task Builder command sequence during option input, you specify
STACK=O. (Refer to Chapter 6 for a complete description of the HD
switch and the STACK option.)

In an RSX-llM system, a shared region must reside in its own
partition. Therefore, when you generate your system, you must
consider the physical memory requirements of any shared regions that
you expect to reside within your system. If you do not consider these
requirements at system generation time, later, when you build a shared
region, you will have to go back and create a common partition for the
region.

In an RSX-llM-PLUS system, shared regions do not have to reside within
partitions of their own; you can install a shared region in any
partition large enough to hold it. In fact, the partition for which
the shared region was built does not have to exist in the system at
the time the shared region is installed. If you attempt to install a
shared region in a partition that does not exist, the INSTALL
processor will install it in partition GEN and print the following
message on your terminal:

INS--PARTITION parname NOT IN SYSTEM DEFAULTING TO GEN

When you build a shared region, you must specify the partition in
which the region is to reside. You specify the partition name in the
Task Builder command sequence during option input. (Refer to Chapter
6 for a description of the PAR option.)

3.1.l The Symbol Definition File

When you build a shared region, you must specify a symbol definition
(.STB) file in the Task Builder command sequence. This file contains
linkage information about the region. Later, when you build a task
that links to the region, the Task Builder uses this .STB file to
resolve calls from within the referencing task to locations within the
region.

The contents of an .STB file for a shared region depend on whether the
shared region is position independent or absolute. The effects of
declaring a shared region position independent or absolute and the
resulting contents of the .STB file are described in the following
sections.

3.1.2 Position-Independent Shared Regions

A position-independent shared region can be placed anywhere in a
referencing task's virtual address space when the system on which the
task runs has memory management hardware.

For example, in Figure 3-3, two tasks refer to the shared region s
task A and task B. The shared region S is 4K words long and therefore
requi~es that much space in the virtual address space of both tasks.
Task A is 6K words long and requires two APRs (APR 0 and APR 1) to map

3-3

TYPICAL TASK BUILDER FACILITIES

its task region. The first APR available to map the shared region is
APR 2. Therefore, APR 2 can be specified when task A is built.

Task B is 16.SK words long. It requires five APRs to map its task
region. The first APR available to map the shared region S in task B
is APR 5. Therefore, APR 5 can be specified when task B is built.

If you do not.specify which APR the Task Builder is to use to map a
position-independent shared region, the Task Builder will
automatically select the highest set of APRs available in the
referencing task's virtual address space. In Figure 3-3, for example,
if APR 2 in task A and APR 5 in task B had not been selected at
task-build time, the Task Builder would have automatically selected
APR 7 in both cases.

Declaring a region to be position independent causes the Task Builder
to include in the .STB file for the region an entry for each program
section in the region. Each entry declares the program section's
name, attributes, and length. In addition, the Task Builder includes
in the .STB file every symbol in the shared region and its value
relative to the beginning of the region.

You specify that a shared region is position independent when you
build it by attaching the PI switch to the image file specification
for the region. (Refer to Chapter 6 for a description of the PI
switch.) You should declare a region position independent if:

• The region contains code that
regardless of its location in
referencing task.

will execute correctly
the address space of the

• The region contains data that is not address dependent.

• The region contains data that will be referenced by a FORTRAN
program (such data must reside in a named common).

Because the program section name is preserved
position-independent region, you should observe the
precautions when building and referring to the region:

in a
following

• No code or data in the region should be included in the blank
(. BLK.) program section.

• No code or data in a referencing task should appear in a
program section of the same name as a program section in the
shared region.

• The order in which memory is allocated to program ·sections
(alphabetic or sequential) must be the same for the shared
region and its referencing tasks. (Chapter 2 describes
alphabetic ordering of program sections. Refer to the
description of the SQ switch in Chapter 6 for an explanation
of sequential ordering of program sections.)

3-4

APR 7-·

APR 15-

APR !5-

APR 4-·

APR :3-

APR :2-

APR 1-

APR 0-

TYPICAL TASK BUILDER FACILITIES

t
4 K WORDS

~

SHARED
REGION

s

l
TASK A 6 K WORDS

..______,J

SHARED
REGION

s

APR 7-

APR 6-

APR 5-

APR 4-

APR 3-

APR 2-

APR 1-

APR 0-

SHARED
REGION

s

TASK B 16.5 K
WORDS

Fiqure 3-3 Specifying APRs for a Position-Independent Shared Region

3-5

TYPICAL TASK BUILDER FACILITIES

3.1.3 Absolute Shared Regions

When a shared region is absolute, the only program section name that
will appear in the .STB file for the region will be the absolute
program section name (.ABS.). The Task Builder includes in the .STB
file for the region each symbol in the region and its value. But,
because the Task Builder does not include the program section names of
an absolute shared region in its .STB file, all code or data in the
region must be referred to by global symbol name.

When a shared region is absolute, you select the virtual addresses for
it when you build it. Thus, an absolute shared region is fixed in the
virtual address space of all tasks that refer to it.

Figure 3-4 shows three tasks (task C, task D, and task E) and a single
absolute shared region, L. The absolute shared region L is 6K words
long and is built to occupy virtual addresses 120000(8) to 150000(8).
These addresses correspond to APR 5 and APR 6, respectively. Tasks C
and D can be linked to region L because at the time they are built APR
5 and APR 6 are unused in both tasks. However, task E is 23K words
long and even though it has 8K words of virtual address space
available to map the shared region, APR 5 (which corresponds to
virtual address 120000, the base address of the shared region) has
been allocated to the task region. If shared region L were position
independent, task E could be linked to it.

You specify that a shared region is absolute when you build it by
simply omitting the PI switch from the task image file. You establish
the virtual address for the region by specifying the base address of
the region as a parameter of the PAR option.

You should build a shared region absolute if:

• The region contains code that must appear in a specific
location in the address space of a referencing task.

• The region contains data that is address dependent.

• The region contains program sections of the same name as
program sections in referencing tasks.

Because the Task Builder does not place program section names in the
.STB file of an absolute shared region, the Task Builder places no
restrictions on the way the program sections are ordered in either the
absolute shared region or the tasks that reference it.

3.1.4 Linking to a Shared Region

When you build a task that links to a shared region, you must indicate
to the Task Builder the name of the shared region and the type of
access the task requires to it (read/write or read-only). In
addition, if the shared region is position independent, you can
specify which APR the Task Builder is to allocate for mapping the
region into the task's virtual address space. Four options are
available for this action:

• RESLIB (Resident Library)

• RESCOM (Resident Common)

• LIBR (System-Owned Resident Library)

• COMMON (System-Owned Resident Common)

3-6

APR 7-

APR fi-

APR fi-

APR 4-

APR ~I-·

APR 2'-

APR 1-

APR 0-·

ABSOLUTE
SHARED
HEGION

L

TASK C

TYPICAL TASK BUILDER FACILITIES

r
6 K WORDS

ABSOLUTE
SHARED
REGION

L

VIRTUAL I
120000 l_ ..__ ____ __,

APR 7-

APR 6-

APR 5-

APR 4-

APR 3-

APR 2-

APR 1-

APR 0-

ABSOLUTE
SHARED
REGION

L

TASK D

APR 7-

APR 6-

APR 5-

APR 4-

APR 3-

APR 2-

APR 1-

APR 0-

Figure 3-4 Mapping for an Absolute Shared Region

3-7

TASK E

TYPICAL TASK BUILDER FACILITIES

RESLIB and RESCOM accept a complete file specification as one of their
arguments. Thus, you can specify a device and UFD indicating to the
Task Builder the location of the region's image file and, by
implication, its symbol definition file. (Refer to Chapter 1 for more
information on file specifications and defaults.)

LIBR and COMMON accept a 1- to 6-character name. When you specify
either of these options, the shared region's image file and symbol
definition file must reside under UFD [1,1] on device LBO:.

The RESLIB and RESCOM options require that all users of the shared
region know the UFD under which the shared region's image file and
.STB file reside. The LIBR and COMMON options require only that the
users of· the shared region know the name of the shared region. When
you specify either LIBR or COMMON, by default, the Task Builder
expects to find the shared region's image and .STB files on device LB:
under UFD [1,1].

All four options accept two additional arguments:

• The type of access the task requires (RO or RW)

• The first APR that the Task Builder is to allocate for mapping
the region into the task's virtual address space. As stated
earlier, this argument is valid only when the shared region is
position independent.

When you specify any of these options, the Task Builder expects to
find a symbol definition file of the same name as the shared region,
but with an extension of .STB, on the same device and under the same
UFD as the shared region's image file.

The syntax of these options is given in Chapter 6.

When the Task Builder builds a task, it processes first any options
that appear in the Task Builder command sequence. When the Task
Builder processes one of the four options above, it locates the disk
image of the shared region named in the option. The disk image of a
shared region does not have a header, but it does have a label block
that contains the allocation information about the shared region (for
example, its base address, load size, the name of the partition for
which it was built). The Task Builder extracts this data from the
shared region's label block and places it in the LIBRARY REQUEST
section of the label block for the referencing task.

The .STB file associated with the shared region is an object module
file. The Task Builder processes it as an input file. If the shared
region is position independent, its .STB file contains program section
names, attributes and lengths. However, the program section names are
flagged within the file as "library" program sections and the Task
Builder does not add their allocations to the task image it is
building.

If the task links to only one shared region, and if neither the shared
region nor the task that links to it contain memory-resident overlays,
the Task Builder will allocate two window blocks in the header of the
task. (Overlays are described in Chapter 4.) When the task is
installed, the INSTALL processor will initialize these window blocks
as follows:

• Window block 0 will describe the range of virtual addresses
(the window) for the task region.

• Window block 1 will describe the window for the shared region.

3-8

TYPICAL TASK BUILDER FACILITIES

Figure 3-5 shows the window-to-region relationship of such a task.

HIGHEST VIRTUAL
ADDRESS

WINDOW BLOCK
1

WINDOW BLOCK
0

LOWEST VIRTUAL-----
ADDRESS

SHARED
REGION

TASK
MEMORY

HEADER AND STACK

Figure 3-5 Windows for Shared Region and Referencing Task

3-9

TYPICAL TASK BUILDER FACILITIES

A shared region need not be installed before a task that links to it
is built. The .STB file that you specify when you build the shared
region contains all the information required by the Task Builder to
resolve references from within a task to locations within the shared
region. The only requirement is that you install a shared region
before you install a task that links to it.

The number of shared regions to which a task can link is a function of
the number of window blocks required to map the task and the regions.
In an RSX-llM operating system, if a task is 4K words or less, and
each shared region to which the task links is 4K words or less, then a
nonprivileged task can access as many as seven shared regions.

In an RSX-llM-PLUS operating system, if a task is 4K words or less,
and each shared region to which the task links is 4K words or less, a
nonprivileged task can refer to as many as 15 shared regions: seven
in user-mode and eight in supervisor-mode. (Supervisor-mode libraries
are described in later sections of this chapter.)

Finally, the way the Task Builder processes tasks that link to shared
regions leads to an important Task Builder restriction on tasks that
link to position-independent shared regions. The Task Builder places
all program section names into its internal control section table.
This includes program section names from the .STB file of the .shared
region as well as the program section names from the other input
modules. When the Task Builder builds a task that links to a shared
region, if the task contains program sections of the same name as
program sections in the shared region, the Task Builder will attempt
to add the program section allocation in the task to the ~lready
existing allocation for the program section of the same name in the
shared region. This is not possible because the region's image has
already been built, is outside the address space of the task currently
being built and cannot be modified. Therefore, the program section
names within a task that links to a position-independent shared region
must normally be unique with respect to program section names within
the shared region.

Should this
referencing
initialize
attempting
task it is
message on

conflict occur and the program section within the
task contain data, when the Task Builder attempts to

the program section, it will recognize that it is
to store data in an image outside the address limits of the
building. The Task Builder will then print the following
the terminal:

TKB--*DIAG*-LOAD ADDR OUT OF RANGE IN MODULE module-name

One exception to the above restriction develops when all of the
following conditions exist:

• Both program
referencing
attributes

sections (in the shared region and in the
task) have the (D) data and the OVR (overlay)

• The program section in the task is equal to or shorter than
the program section in the shared region

• The program section in the task does not contain data.

When all of these conditions exist, there is nothing to be initialized
within the shared region. The Task Builder binds the base address of
the program section in the task to the base address of the program
section in the shared region. If the program section in the task
contains global symbols, the Task Builder will assign addresses to
them that reflect their location relative to the beginning of the

3-10

TYPICAL TASK BUILDER FACILITIES

program section. You can use this technique to establish symbolic
offsets into resident commons. Examples 1 and 2 in the following
sections illustrate how to establish these offsets.

3.1.5 Example 1: Building and Linking to a Common in MACR0-11

The text in this section and the figures associated with it illustrate
the~ development of a MACR0-11 position-independent resident common and
the development of two MACR0-11 tasks that share the common. The
steps in building a position-independent common can be summarized as
follows:

1. You create a source file that allocates the amount of space
required for the common. In MACR0-11, either of the
assembler directives, .BLKB or .BLKW, provide the means of
allocating this space.

2. You assemble the source file.

3. You build the assembled module specifying both a task image
file and a symbol definition file.

You specify the -HD (no header) switch and declare the common
to be position independent with the PI switch.

Under options you specify:

STACK=O
PAR=parname

The parname in this PAR option is the name of the partition
in which the common is to reside. (The HD and PI switches
and the STACK and PAR options are described in Chapter 6.)

If your system is an RSX-llM system, the common must reside
within a common partition of the same name as the common.

If your system is an RSX-llM-PLUS system, the common can
reside within any partition large enough to hold it.

4. You install the common.

Figure 3-6 below shows a MACR0-11 source file that, when assembled and
built, will create a positidn-independent resident common area named
MACCOM. The common area consists of two program sections named COMl
and COM2, respectively. Each program section is 512(10) words long •

• TITLE MACCOM

COMl - 512 WORDS
COM2 - 512 WORDS

.PSECT COMl,RW,D,GBL,REL,OVR

.BLKW 512 •
• PSECT COM2,RW,D,GBL,REL,OVR
.BLKW 512 •

• END

Figure 3-6 Common Area Source File in MACR0-11

3-11

TYPICAL TASK BUILDER FACILITIES

Once this common has been assembled, the Task Builder command sequence
shown below can be used to build it.

TKB>MACCOM/PI-HD,MACCOM/-SP,MACCOM=MACCOM
TKB>/
ENTER OPTIONS:
TKB>STACK=O
TKB>PAR=MACCOM:0:4000
TKB>//

This command sequence directs the Task Builder to build a
position-independent (/P~), headerless (/-HD), common image file named
MACCOM.TSK. It also specifies that the Task Builder is to create a
map file, MACCOM.MAP, and a symbol definition file, MACCOM.STB. The
Task Builder will create all three files, MACCOM.TSK, MACCOM.MAP, and
MACCOM.STB on device SY: under the UFD that corresponds to the
terminal UIC. Because /-SP is attached to the map file, the Task
Builder will not spool a map listing to the line printer.

Under options, STACK=O suppresses the stack area in the common's
image.

The PAR option specifies that the common area will reside within a
common partition of the same name as the common, MACCOM. As stated
above, on an RSX-llM system this is a requirement; on an RSX-llM-PLUS
system it is not. In addition, the parameters in the PAR option
specify a base of zero and a length of octal bytes for the common
(Refer to Chapter 6 for descriptions of the switches and options used
in this example.)

Figure 3-7 shows the map resulting from this command sequence.

The task attributes section of this map reflects the switches and
options of the command string. It indicates that the common resides
in a partition named MACCOM, that it was built under terminal UIC
[303,3], that it is headerless and position independent, and that it
requires one window block to map. The total length of the common is
1024(10) words and its address limits range from 0 to 3777(8). The
common image (that portion of the disk image file that eventually will
be read into memory) begins at file-relative disk block 3 ., • The
last block in the file is file-relative disk block 6 f.) and the common
image is four blocks long 8 .

The memory allocation synopsis details the Task Builder's allocation
for and the attributes of the program sections within the common. For
example, reading from left to right, the map indicates that the
program section COMl permits read/write access, that it contains data,
and that its scope is global. It also indicates that COMl is
relocatable and that all contributions to COMl are to be overlaid.
Because COMl has the overlay attribute, the total allocation for it
will be equal to the largest allocation request from the modules that
contribute to it. (For more information on program section
attributes, see Chapter 2.)

Continuing to the right, the first 6-digit number is COMl's base
address which is 0 () • The next two digits are its length (bytes) in
octal and decimal, respectively 0.

3-12

TYPICAL TASK BUILDER FACILITIES

The next line down lists the first object module that contributes to
COMl. In this case there is only one: the module MACCOM from the
file MACCOM.OBJ;2. The numbers on this line indicate the relative
base address of the contribution and the length of the contribution in
octail and dee imal 0 . If there had been more than one module input to
the Task Builder that contained a program section named COMl, the Task
Builder would have listed each module and its contribution in this
section.

Notice that there is a program section named • BLK. shown on the map
just above the field for COMl. This is the "blank" program section
that is automatically created by the language translators. The
attributes shown are the default attributes. The allocation for
s BLK. is zero because the program sections in MACCOM were explicitly
declared. If the program sections had not been explicitly declared,
all of the allocation for the common would have been within this
pro9ram section.

MACCOM.TSK;2 MEMORY ALLOCATION MAP TKB M36
7-FEB-79 13: 51

PARTITION NAME MACCOM
IDENTIFICATION
TASK UIC [303,3]
TASK ATTRIBUTES: -HD,PI
TOTAL ADDRESS WINDOWS: 1.
TASI< !MAGE SIZE : 10 24. WORDS
TASK ADDRESS LIMITS: 000000 003777
R-W DISK BLK LIMITS: 000003 000006 000004 00004.

*** ROOT SEGMENT: MAC~~~
R/W MEM LIMITS: 000000 003777 004000 02048.
DISK BLK LIMITS: 000002 000005 000004 00004.

MEMORY ALLOCATION SYNOPSIS:

PAGE 1

Task
Attributes
Section

SEC'TION TITLE !DENT FILE

• BLK.: (RW,I ,LCL.,REL,CON)
COMl :(RW,D,GBL,REL,OVR)

COM2 :(RW,D,GBL,REL,OVR)

*** TASK BUILDER STATISTICS:

000000
002000
002000
002000
002000

TOTAL
WORK
WORK
SIZE
SIZE

WORK FILE REFERENCES: 178.
FILE READS: O.
FILE WRITES: O.

OF CORE POOL: 8198. WORDS (32. PAGES)
OF WORK FILE: 768. WORDS (3~ PAGES)

ELAPSED TIME:00:00:06

MAC COM

MAC COM

Figure 3-7 Task Builder Map for MACCOM.TSK

3-13

01 MACCOM.OBJ;2

01 MACCOM.OBJ;2

TYPICAL TASK BUILDER FACILITIES

Figure 3-8 is a diagram that represents the disk image file for
MACCOM. The circled numbers in Figure 3-8 correspond to the circled
numbers in Figure 3-7.

•

RELATIVE
DISK BLOCK
NUMBERS

000006

• 000005

000004

000003

• 000002

000001

COM 2

COM 1

LABEL BLOCK

DISK IMAGE FILE

RELATIVE
LOAD
ADDRESSES

002000

•
000000

•
Figure 3-8 Allocation Diagram for MACCOM.TSK

002000 (BYTES)

•

Once you have built MACCOM, you can install it. If your system is an
RSX-llM system, the common will be loaded into memory when you install
it. It will remain there until you explicitly remove it with the MCR
command, REMOVE.

If your system is an RSX-llM-PLUS system, the common will not be
loaded until either one of the following occurs:

• A task that is linked to it is run.

• You explicitly fix the common in memory with the MCR command,
FIX.

Figures 3-9 and 3-10 show two programs MCOMl and MCOM2,
respectively. Both of these programs reference the common area MACCOM
created above. MCOMl in Figure 3-9 accesses the COMl portion of
MACCOM. It inserts into the first ten words of COMl the numbers 1
through 10 in ascending order. It then issues an Executive directive
request for the task MCOM2 and suspends itself.

3-14

TYPICAL TASK BUILDER FACILITIES

When MCOM2 runs, it sums the integers left in COMl by MCOMl and leaves
the result in the first word of COM2. It then issues a resume
directive for MCOMl and exits.

When MCOMl resumes, it retrieves the answer left in COM2 and calls the
system library routine $EDMSG (edit message) to format the answer for
output to device TI:.

All of the Executive directives for both programs (RQST$C, SPND$S,
QIOW$S, RSUM$C, and EXIT$S) are documented in the RSX-llM-PLUS
Executive Reference Manual. The system library routine $EDMSG is
documented in the IAS/RSX-11 System Library Routines Reference Manual •

• TITLE MCOMl
.IDENT /01/

.MCALL EXIT$S,SPND$S,RQST$C,QIOW$S

OUT: .BLKW 100. ; SCRATCH AREA
FORMAT: .ASCIZ /THE RESULT IS %D./
MES: .ASCII /ERROR FROM REQUEST/

LEN = • - MES
• l~VEN

PSECT - COMl IS USED TO ACCESS THE FIRST 512. WORDS OF THE
COMMON •

• PSECT COMl,GBL,OVR,D
INT: .BLKW 10.

PSECT - COM2 IS USED TO ACCESS THE SECOND 512. WORDS OF THE
COMMON. IT WILL CONTAIN THE RESULT

.PSECT COM2,GBL,OVR,D
ANS: • BLKW 1

START:

10:~:

ERRl:

.PSECT

MOV
MOV
MOV

MOV
INC
DEC
BNE
RQST$C
BCS
SPND$S
MOV
MOV
MOV
CALL
QIOW$S
EXIT$S

#10. ,RO
#1,Rl
#INT,R3

Rl, (R3) +
Rl
RO
10$
MCOM2
ERRl

NUMBER OF INTEGERS TO SUM
START WITH A 1
PLACE VALUES IN lST 10 WORDS
OF COMMON
INITIALIZE COMMON
NEXT INTEGER
ONE LESS TIME
TO INITIALIZE
REQUEST THE SECOND TASK
REQUEST FAILED
WAIT FOR MCOM2 TO SUM THE INTEGERS

#OUT,RO ADDRESS OF SCRATCH AREA
#FORMAT,Rl FORMAT SPECIFICATION
#ANS,R2 ARGUMENT TO CONVERT
$EDMSG ; DO CONVERSION
#IO.WVB,#5,#l,,,,<#OUT,Rl,#40>

QIOW$S #IO.WVB,#5,#l,,,,<#MES,#LEN,#40>
EXIT$S
.END START

Figure 3-9 MACR0-11 Source Listing for MCOMl

3-15

TYPICAL TASK BUILDER FACILITIES

.TITLE MCOM2
• !DENT /01/

.MCALL EXIT$S,QIOW$S,RSUM$C

MES: .ASCII /ERROR FROM RESUME/
LEN = • - MES
.EVEN

PSECT - COMl IS USED TO ACCESS THE FIRST 10. WORDS OF THE
COMMON.

~PSECT COMl,GBL,OVR,D
INT: .BLKW 10.

PSECT - COM2 rs USED TO ACCESS THE SECOND 10. WORDS OF THE
COMMON. IT WILL CONTAIN THE RESULT

.PSECT COM2,GBL,OVR,D
ANS: • BLKW 1

START:

10$:

ERR:

.PSECT

MOV
MOV

CLR
ADD
DEC
BNE

#10.,RO
#INT,R3

ANS
{R3)+,ANS
RO
10$

RSUM$C MCOMl
BCS ERR
EXIT$S

NUMBER OF INTEGERS TO SUM
PLACE VALUES IN lST 10 WORDS
OF COMMMON
INITIALIZE ANSWER
ADD IN VALUES
ONE LESS VALUE
TO SUM

RESUME MCOMl
RESUME FAILED

QIOW$S #IO.WVB,#5,#1,,,,<#MES,#LEN,#40>
EXIT$S
.END START

Figure 3-10 MACR0-11 Source Listing for MCOM2

Note that both tasks MCOMl and MCOM2 contain .PSECT declarations that
establish program section names that are the same as program section
names within the position-independent common to which the task is
linked {MACCOM). As stated earlier, in most circumstances this would
be illegal. In this application, however, the .PSECT directives have
been placed into the tasks to establish symbolic offsets in the
resident common. When either task is built, the Task Builder will
assign to the symbol INT: the base address of program section COMl,
and to the symbol ANS: the base address of program section COM2.
Figure 3-11 illustrates this assignment.

3-16

TYPICAL TASK BUILDER FACILITIES

INT:_c __________ _ ----

Figure 3-11 Assigning Symbolic References Within a Common

Once you have assembled MCOMl and MCOM2, you can build them with the
following Task Builder command sequences:

>TKB
TKB>MCOMl,MCOMl/-SP=MCOMl
TKB>/
ENTER OPTIONS:
TKB>RESCOM=MACCOM/RW
'TKB>/ I

>TKB
TKB>MCOM2,MCOM2/-SP=MCOM2
TKB>/
ENTER OPTIONS:
TKB>RESCOM=MACCOM/RW
TKB>//

Under options in both of these command sequences, the RESCOM option
tells the Task Builder that these programs intend to reference a
common data area named MACCOM and that the tasks require read/write
acceiss to it.

Because the RESCOM option is used, the Task Builder expects to find
the image file and the symbol definition file for the common on device
SY: under the UFD that corresponds to the terminal UIC. In addition,
because the optional APR specification was omitted from the RESCOM
option, the Task Builder a~locates virtual address space for the
common starting with APR7 in both tasks {the highest APR available in
both tasks).

The Task Builder map for MCOMl is shown in Figure 3-12. The map for
MCOM2 is not essentially different from that of MCOMl and is therefore
not included here.

3-17

TYPICAL TASK BUILDER FACILITIES

MCOM1.TSK;23 MEMORY ALLOCATION MAP TKB M36
7-FEB-79 14:32

PARTITION NAME GEN
IDENTIFICATION 01
TASK UIC [303,3]
STACK LIMITS: 000212 001211 001000 00512.
PRG XFR ADDRESS: 001566
TOTAL ADDRESS WINDOWS: 2.
TASK IMAGE SIZE 1120. WORDS
TASK ADDRESS LIMITS: 000000 004273

PAGE l

Task
Attributes
Section

R-W DISK BLK LIMITS: 000002 000006 000005 00005.

*** ROOT SEGMENT: MCOMl

R/W MEM LIMITS: 000000 004273 004274 02236.
DISK BLK LIMITS: 000002 000006 000005 00005.

MEMORY ALLOCATION SYNOPSIS:

SECTION
-------. BLK.: (RW,I ,LCL,REL,CON) 001212 002630

001212 000574
CO Ml : (RW,D,GBL,REL,OVR) 160000 002000

160000 000024
COM2 : (RW,D,GBL,REL,OVR) 162000 002000

162000 000002
LNC$D : (RW,D,GBL,REL,CON) 004042 000002
$DPB$$: (RW,I,LCL,REL,CON) 004044 000016

004044 000016
$$RESL: (RW,I,LCL,REL,CON) 004062 000024
$$RESM: (RW,I,LCL,REL,CON) 004106 000166

*** TASK BUILDER STATISTICS:

TOTAL WORK FILE REFERENCES: 2125.
WORK FILE READS: O.
WORK FILE WRITES: O.

01432.
00380.
01024.
00020.
01024.
00002.
00002.
00014.
00014 ..
00020.
00ll8.

SIZE OF CORE POOL: 8198. WORDS (32. PAGES)
SIZE OF WORK FILE: 1024. WORDS (4. PAGES)

ELAPSED TIME:00:00:06

TITLE !DENT FILE

MCOMl 01 MCOM1.0BJ;2

MCOMl 01 MCOM1.0BJ;2

MCOMl 01 MCOM1.0BJ;2

MCOMl 01 MCOM1.0BJ;2

Figure 3-12 Task Builder Map for MCOMl.TSK

Note that the Task Builder has placed two window blocks in MCOMl's
header. When MCOMl is installed, the INSTALL processor will
initialize these window blocks as follows:

• Window block 0 will describe the range of virtual addresses
(the window) for MCOMl's task region.

• Window block 1 will describe the window for the shared region
MACCOM.

3-18

TYPICAL TASK BUILDER FACILITIES

3.1.6 Example 2: Building and Linking to a Device Common in MACR0-11

A device common is a special type of common that occupies physical
addresses on the I/O page. When mapped into the virtual address space
of a task, a device common permits the task to manipulate peripheral
device registers directly.

NOTE

Because any access to the I/O
_ potentially hazardous to the

system, you must exercise
caution when working with
commons.

page is
running
extreme
device

The remaining text in this section and the figures associated with it
illustrate the development and use of a device common. Figure 3-13
shows an assembly listing for a position-independent device common
named TTCOM. When installed, TTCOM will map the control and data
registers of the console terminal. Its physical base address will be
777500.

RCSR::
RBU.F'::
XCSR::
XBU.F'::

.TITLE TTCOM

.PSECT TTCOM

.=.+60

.BLKW l

.BLKW l

.BLKW l

.BLKW l

.END

Figure 3-13 Assembly Listing for TTCOM

The PDP-11 Peripherals Handbook defines the control and data register
addresses for the console terminal. In Figure 3-13, the register
addresses and the symbol names that correspond to them are as follows:

Register Address Symbol

Keyboard Status 777560 RCSR
Keyboard Data 777562 RBUF
Printer Status 777564 XCSR
Printer Data 777566 XBUF

The double colon (::) following each symbol in Figure 3-13 establishes
the symbol as global. The first symbol, RCSR, is offset from the
beginning of TTCOM by 60(8) bytes. Each symbol thereafter is one word
removed from the symbol that precedes it. Thus, when TTCOM is
installed at 777500, each symbol will be located at its proper
address.

Once you have assembled TTCOM, you can build it using the following
Task Builder command sequence:

> TKB
TKB> LB: [l,l]TTCOM/-HD/PI,LB: [l,l]TTCOM/-WI,LB: [l,l]TTCOM=TTCOM
TKB> /
ENTER OPTIONS:
TKB> STACK=O
TKB> PAR=TTCOM:O:lOO
TKB> //

3-19

TYPICAL TASK BUILDER FACILITIES

This command sequence directs the Task Builder to create a common
image named TTCOM.TSK and a symbol d~finition file named TTCOM.STB.
The Task Builder will place both files on device LB: under UFO [1,1].
The command sequence also specifies that the Task Builder is to spool
a map listing to the line printer. The -WI switch specifies an 80
column line printer listing format.

NOTE

For the command sequence above to work
in a multiuser protection system, it
must be input from a privileged
terminal.

Under options, STACK=O suppresses the stack area in the common's image
file.

The PAR option specifies that the device common will reside within a
partition of the same name as the common. As with the data common in
Example 1 (Section 3.1.5), this is a requirement of the RSX-llM
system; in an RSX-llM-PLUS system it is not. The PAR option also
specifies that the base of the common is 0 and that it is 100(8) bytes
long.

The Task Builder map for TTCOM that results from the command sequence
above is shown in Figure 3-14. The task attributes section of this
map indicates that the common is position independent and that no
header is associated with it. The common's image and symbol
definition file reside on device LB: under UFO [1,1].

The map in Figure 3-14 shows the global symbols defined in the common
with their relative offsets into the common region. You establish the
virtual base address for the common and the virtual addresses for the
symbols within it when you build the tasks that link to the common.

You establish the physical addresses for the common with the MCR
command, SET. The keyword that you use with the SET command depends
on which system you are running. If your system is an RSX-llM system,
use the command:

>SET /MAIN=TTCOM:7775:1~

If your system is an RSX-llM-PLUS system, use the command:

>SET /PAR=TTCOM:7775:l:DEV

Both sequences create a main partition named TTCOM that begins at
physical address 777500. The partition is one 64-byte block long,
(100(8) bytes). The arguments COM and DEV identify the partition
type. With the common built ~nd the partition for it created, you can
install TTCOM.

You can establish the partition for a device common at any time in
both the RSX-llM and the RSX-llM-PLUS systems. Partitions created to
accommodate a device common are not a system generation consideration
because they represent areas of physical address space above memory
and therefore cannot conflict with memory partitions.

3-20

TTCOM.TSK;l

TYPICAL TASK BUILDER FACILITIES

MEMORY ALLOCATION MAP TKB
9-NOV-78. 14:25

PARTITION NAME : TTCOM
IDENTIFICATION :
TASK UIC (1,1]
TASK ATTRIBUTES: -HD,PI
TOTAL ADDRESS WINDOWS: 1.
TASK IMAGE SIZE 32. WORDS
TASK ADDRESS LIMITS: 000000 000067
R-W DISK BLK LIMITS: 000003 000003 000001 00001.

*** ROOT SEGMENT: TTCOM

R/W MEM LIMITS: 000000 000067 000070 00056.
DISK BLK LIMITS: 000002 000002 000001 00001.

MEMORY ALLOCATION SYNOPSIS:

PAGE 1

TASK
ATTRIBUTES
SECTION

SECTION TITLE !DENT FILE

• BLK.: (RW,I,LCL,REL,CON) 000000 000000 00000.
TTCOM : (RW,I,LCL,REL,CON) 000000 000070 00056.

000000 000070 00056. TTCOM 01

GLOBAL SYMBOLS:

TTCOM.OBJ;l

RBUF 000062-R RCSR 000060-R XBUF 000066-R XCSR 000064-R

*** TASK BUILDER STATISTICS:

TOTAL WORK FILE REFERENCES: 220.
WORK FILE READS: O.
WORK FILE WRITES: O.
SIZE OF CORE POOL: 2062. WORDS (8. PAGES)
SIZE OF WORK FILE: 768. WORDS (3. PAGES)

ELAPSED TIME:00:00:02

Figure 3-14 Task Builder Map for TTCOM

Figure 3-15 shows an assembly listing for a demonstration program
named TEST. When built and installed, TEST will print the letters A
through z on the console terminal by directly accessing the console
terminal status and data registers. It will access the status and
data registers through the device common TTCOM.

3-21

TYPICAL TASK BUILDER FACILITIES

.TITLE TEST
• !DENT /01/
.MCALL EXIT$S

START: MOV
CALL
MOV
CALL
MOV
MOV

OUTPUT: CALL
DEC
BNE
MOV
CALL
MOV
CALL
EXIT$S

OUTBYT: TSTB
BPL
MOV
INC
RETURN
.END

#15,RO
OUTBYT
#12,RO
OUTBYT
#101,RO
#26.,Rl
OUTBYT
Rl
OUTPUT
#15 ,RO
OUTBYT
#12 ,RO
OUTBYT

XCSR
OUTBYT
RO,XBUF
RO

START

START WITH A CARRIAGE RETURN
PRINT IT
THEN A LINE FEED
PRINT IT
FIRST LETTER IS AN "A"
NUMBER OF LETTERS TO PRINT
PRINT CURRENT LETTER
ONE LESS TIME

; AGAIN
ANOTHER CARRIAGE RETURN

ANOTHER LINE FEED

OUTPUT BUFFER READY?
IF NOT WAIT
MOVE CHARACTER TO OUTPUT BUFFER
INITIALIZE NEXT LETTER

Figure 3-15 Assembly Listing for TEST

Once you have assembled TEST, you can build it with the following Task
Builder command sequence:

>TKB
TKB>TEST,TEST/-WI/MA=TEST
TKB>/
ENTER OPTIONS:
TKB>COMMON=TTCOM:RW:l
TKB>//

Under options, the COMMON option in this command sequence tells the
Task Builder that TEST intends to access the device common TTCOM and,
that TEST will have read/write access to it. It also directs the Task
Builder to reserve APR 1 for mapping the common into TEST's virtual
address space.

The Task Builder map that results from the command sequence above is
shown in Figure 3-16.

This map contains a global symbols section. The Task Builder included
it because the MA switch was applied to the memory allocation file at
task-build time. Note that the global symbols in this section, which
were defined in TTCOM, now have virtual addresses assigned to them.
The addresses assigned by the Task Builder are the result of the APR 1
specification in the COMMON= keyword during the task build.

It is important to remember that programs like TEST, which access the
I/O page, take complete control of the registers they reference.
Therefore, coding errors in such programs can disable the devices they
reference and can even make it impossible for the device drivers to
regain control of the device. If this happens, you must reboot the
system.

3-22

TYPICAL TASK BUILDER FACILITIES

TES'I'. TSK; 2 MEMORY ALLOCATION MAP TKB
9-NOV-78 14:35

PARTITION NAME : GEN
IDENTIFICATION : 01
TASK UIC [301,356]
STACK LIMITS: 000212 001211 001000 00512.
PRG XFR ADDRESS: 001212
TOTAL ADDRESS WINDOWS: 2.
TASK IMAGE SIZE 384. WORDS
TASK ADDRESS LIMITS: 000000 001317
R-W DISK BLK LIMITS: 000002 000003 000002 00002.

*** ROOT SEGMEN~: TEST

R/W MEM LIMITS: 000000 001317 001320 00720.
DISK BLK LIMITS: 000002 000003 000002 00002.

MEMORY ALLOCATION SYNOPSIS:

PAGE 1

Task
Attributes
Section

SEC~f!ON TITLE !DENT FILE

• BLK.: (RW,I,LCL,REL,CON) 001212 000104 00068.
001212 000104 00068 •• MAIN. 01

TTCOM : (RW,I,LCL,REL,CON) 020000 000070 00056.
020000 000070 00056. TTCOM 01

GLOBAL SYMBOLS:

RBUJP 020062-R RCSR 020060-R

*** TASK BUILDER STATISTICS:

TOTAL WORK FILE REFERENCES: 220.
WORK FILE READS: O.
WORK FILE WRITES: O.

XBUF 020066-R

SIZE OF CORE POOL: 2062. WORDS (8. PAGES)
SIZE OF WORK FILE: 768. WORDS (3. PAGES)

ELAPSED TIME:00:00:04

XCSR

Figure 3-16 Memory Allocation Map for TEST

TEST.OBJ;l

TTCOM.STB;l

020064-R

3.1.7 Example 3: Building and Linking to a Resident Library in MACR0-11

Resident libraries consist of subroutines that are shared by two or
more tasks. When such tasks reside in physical memory simultaneously,
resident libraries provide a considerable memory savings because the
subroutines within the library appear in memory only once.

The text in this section and the figures associated with it illustrate
the development and use of a resident library, called LIB.

3-23

TYPICAL TASK BUILDER FACILITIES

Figure 3-17 shows five FORTRAN callable subroutines:

• An integer addition routine, AADD

• An integer subtraction routine, SUBB

• An integer multiplication routine, MULL

• An integer division routine, DIVV

• A register save and restore coroutine, SAVAL

These subroutines are contained in a single source file, LIB.MAC.
When assembled and built, they will constitute an example of a
resident library. FORTRAN callable routines were used in this example
so that the library can be accessed by either FORTRAN or MACR0-11
programs •

• TITLE LIB
• !DENT /01/

.PSECT AADD,RO,I,GBL,REL,CON

;** FORTRAN CALLABLE SUBROUTINE TO ADD TWO INTEGERS

AADD:: CALL
MOV
MOV
ADD
MOV
RETURN

$SAVAL
@2(R5),RO
@4(R5),Rl
RO,Rl
Rl,@6(R5)

SAVE RO-.RS
FIRST OPERAND
SECOND OPERAND
SUM THEM
STORE RESULT
RESTORE REGISTERS AND RETURN

.PSECT SUBB,RO,I,GBL,REL,CON

;** FORTRAN CALLABLE SUBROUTINE TO SUBTRACT TWO INTEGERS

SUBB: : CALL
MOV
MOV
SUB
MOV
RETURN

$SAVAL
@2(R5),RO
@4(R5),Rl
Rl,RO
R0,@6(R5)

SAVE RO-RS
FIRST OPERAND
SECOND OPERAND
SUBTRACT SECOND FROM FIRST
STORE RESULT
RESTORE REGISTERS AND RETURN

.PSECT MULL,RO,I,GBL,REL,CON

Figure 3-17 Source Listing for Resident Library LIB.MAC

3-24

TYPICAL TASK BUILDER FACILITIES

;** FORTRAN CALLABLE SUBROUTINE TO MULTIPLY TWO INTEGERS

MULL:: CALL
MOV
MOV
MUL
MOV
RETURN

$SAVAL
@2(RS),RO
@4(RS),Rl
RO,Rl
Rl,@6(RS)

SAVE RO-RS
FIRST OPERAND
SECOND OPERAND
MULTIPLY
STORE RESULT
RESTORE REGISTERS AND RETURN

.PSECT DIVV,RO,I,GBL,REL,CON

;** FORTRAN CALLABLE SUBROUTINE TO DIVIDE TWO INTEGERS

DIVV:: CA.LL
MOV
MOV
CLR
DIV
MOV
RETURN

$SAVAL
@2(RS),R3
@4(RS),Rl
R2
Rl,R2
R2,@6(RS)

SAVE REGS RO-RS
FIRST OPERAND
SECOND OPERAND
LOW ORDER 16 BITS
DIVIDE
STORE RESULT
RESTORE REGISTERS AND RETURN

.PSECT SAVAL,RO,I,GBL,REL,CON

;**ROUTINE TO SAVE REGISTERS

$SAVAL::
MOV
MOV
MOV
MOV
MOV
MOV
MOV
CALL
MOV
MOV
MOV
MOV
MOV
MOV
RETURN
.END

R4,-(SP}
R3,-(SP}
R2,-(SP)
Rl,-(SP}
RO,-(SP)
12 (SP),- (SP)
RS,14(SP)
@(SP)+
(SP)+,RO
(SP}+,Rl
(SP)+,R2
(SP)+,R3
(SP}+,R4
(SP)+,RS

;SAVE R4
;SAVE R3
;SAVE R2
;SAVE Rl
;SAVE RO
;COPY RETURN
;SAVE RS
;CALL THE CALLER
;RESTORE RO
;RESTORE Rl
;RESTORE R2
;RESTORE R3
;RESTORE R4
;RESTORE RS

Figure 3-17 (Cont.) Source Listing for Resident Library LIB.MAC

3-2S

TYPICAL TASK BUILDER FACILITIES

Once you have assembled LIB, you can build it with the following Task
Builder command sequence:

TKB>.LIB/PI/-HD,LIB/-WI,LIB=LIB
TKB>/
ENTER OPTIONS:
TKB>STACK=O
TKB>PAR=LIB:0:200
TKB>//

This command sequence instructs the Task Builder to build a
position~independent (/PI), headerless (/-HD) library image named
LIB.TSK. It instructs the Task Builder to create a map file LIB.MAP
and to output an 80 column listing (/-WI) to the line printer. It
also sp~cifies that the Task Builder is to create a symbol definition
file, LIB.STB. The Task Builder will create all three files, LIB.TSK,
LIB.MAP, LIB.STB on device SY: under the UFO that corresponds to. the
terminal UIC.

Under options, STACK=O suppresses the stack area within the resident
library's image.

The PAR option tells the Task Builder that the resident library will
reside within a partition of the same name as the library. As with
all shared regions, this is a requirement in an RSX-llM system; in an
RSX-llM-PLUS system it is not. In addition, the PAR option specifies
that the base of the library is 0 and that it is 200(8) bytes long.
(For more information on the switches and options used in this
example, refer to Chapter 6.)

Figure 3-18 shows the Task Builder map that results from the command
sequence above.

Note in the global symbols section of the map in Figure 3-18 that the
Task Builder has assigned offsets to the symbols for each library
function. When the task that links to this library is built, the Task
Builder will assign virtual addresses to these symbols.

The program MAIN in Figure 3-19 exercises the routines in the resident
library LIB.TSK. When you assemble and build it, MAIN will call upon
the library routines to add, subtract, multiply, and divide the
integers contained in the labels OPl and OP2 within the program. MAIN
will print the results of each operation to device TI:.

3-26

TYPICAL TASK BUILDER FACILITIES

LIB .. TSK; 12 MEMORY ALLOCATION MAP TKB M36
7-FEB-79 14:47

PARTITION NAME : LIB
IDENTIFICATION : 01
TASK UIC [303,3]
TASK ATTRIBUTES: -HD,PI
TOTAL ADDRESS WINDOWS: 1.
TASK IMAGE SIZE 64. WORDS
TASK ADDRESS LIMITS: 000000 000163
R-W DISK BLK LIMITS: 000003 000002 000000 00000.

*** ROOT SEGMENT: LIB

.
R/W MEM LIMITS: 000000 000163 000164 00116.
DISK BLK LIMITS: 000002 000002 000001 00001.

MEMORY ALLOCATION SYNOPSIS:

PAGE 1

TASK
ATTRIBUTES
SECTION

SECUON TITLE !DENT FILE
---·----. BLK.: (RW,I ,LCL,REL,CON) 000000 000000 00000 •
AADD : (RO,I,GBL,REL,CON) 000000 000024 00020.

000000 000024 00020. LIB
DIVV : (RO,I,GBL,REL,CON) 000024 000026 00022.

000024 000026 00022. LIB
MULL : (RO,I,GBL,REL,CON) 000052 000024 00020.

000052 000024 00020. LIB
SAVJ\L : (RO,I,GBL,REL,CON) 000076 000042 00034.

000076 000042 00034. LIB
SUBB : (RO,I ,GBL,REL,CON) 000140 000024 00020.

000140 000024 00020. LIB

GLOBAL SYMBOLS:

AADD
DIVV

000000-R MULL 000052-R SUBB
000024-R $SAVAL 000076-R

000140-R

*** TASK BUILDER STATISTICS:

TOTAL WORK FILE REFERENCES: 376.
WORK FILE READS: O.
WORK FILE WRITES: O.
SIZE O.F CORE POOL: 8198. WORDS (32. PAGES)
SIZE OF WORK FILE: 768. WORDS (3. PAGES)

ELAPSED TIME:00:00:04

01 LIB.OBJ;2

01 LIB.OBJ;2

01 LIB .OBJ; 2

01 LIB.OBJ;2

01 LIB.OBJ;2

Figure 3-18 Task Builder Map for LIB.TSK

3-27

;+

.TITLE MAIN
• !DENT /01/

TYPICAL TASK BUILDER FACILITIES

;**MAIN - CALLING ROUTINE TO EXERCISE THE ARITHMETIC ROUTINES
FOUND IN THE RESIDENT LIBRARY, LIB.TSK.

; - .

OPl:
OP2:
ANS:

OUT:
FORMAT:

START:

;+

.MCALL

.WORD

.WORD

.BLKW

.BLKW

.ASCIZ

.EVEN

.ENABL

MOV
MOV
MOV
MOV
MOV
CALL
CALL
MOV
CALL
CALL
MOV
CALL
CALL
MOV
CALL
CALL
EXIT$S

QIOW$S,EXIT$S

1
1
1

100.
/THE ANSWER

LSB

#ANS,-(SP}
#0P2,-(SP}
#OPl,-(SP}
#3,-(SP}
SP,RS
AADD
PRINT
SP,R5
SUBB
PRINT
SP,R5
MULL
PRINT
SP,R5
DIVV
PRINT

%D./

OPERAND 1
OPERAND 2
RESULT

FORMAT MESSAGE

TO CONTAIN RESULT
OPERAND 2
OPERAND 1
PASSING 3 ARGUMENTS
ADDRESS OF ARGUMENT BLOCK
ADD TWO OPERANDS
PRINT RESULTS
ADDRESS OF ARGUMENT BLOCK
SUBTRACT SUBROUTINE
PRINT RESULTS
ADDRESS OF ARGUMENT BLOCK
MULTIPLY SUBROUTINE
PRINT RESULTS
ADDRESS OF ARGUMENT BLOCK
DIVIDE SUBROUTINE
PRINT RESULTS

;** PRINT - PRINT RESULT OF OPERATION.
;-

PRINT: MOV
MOV
MOV
CALL
QIOW$S
RETURN
.END

#OUT,RO ADDRESS OF SCRATCH AREA
#FORMAT,Rl FORMAT SPECIFICATION
#ANS,R2 ARGUMENT TO CONVERT
$EDMSG ; FORMAT MESSAGE
#IO.WVB,#5,#1,,,,<#0UT,Rl,#40>

; RETURN FROM SUBROUTINE
START

Figure 3-19 Source Listing for MAIN.MAC

3-28

TYPICAL TASK BUILDER FACILITIES

Once you have assembled MAIN, you can use the following Task Builder
command sequence to build it:

TKB>MAIN,MAIN/MA/-WI/-SP=MAIN
TKB>/
ENTER OPTIONS:
TKB>RESLIB=LIB/R0:3
TKB>//

This command sequence instructs the Task Builder to build a task file
named MAIN.TSK on device SY: under the UFO that corresponds to the
terminal UIC. It also specifies that the Task Builder is to create a
map file MAIN.MAP~ The MA switch requests an extended map format. In
this example, /MA was applied to the device specification so that the
Task Builder would include in the map for the task the symbols within
the library LIB. The negated form of the wide listing switch (/-WI)
was appended to the map specification to obtain an 80-column map
format. In this example, the Task Builder will not output a map
listing to the line printer

Under options, the RESLIB option specifies that the task MAIN is to
access the library LIB and that it requires read-only access to LIB.
The Task Builder will use APR3 to map the library.

The Task Builder map that results from this command sequence is shown
in Figure 3-20.

MAIN.TSK;l5 MEMORY ALLOCATION MAP TKB M36
30-APR-79 10:33

PARTITION NAME GEN
IDENTIFICATION 01
TASK UIC [303,3]
STACK LIMITS: 000212 001211 001000 00512.
PRG XFR ADDRESS: 001552
TOTAL ADDRESS WINDOWS: 2.
TASK IMAGE SIZE 1120. WORDS
TASK ADDRESS LIMITS: 000000 004213
R-W DISK BLK LIMITS: 000002 000006 000005 00005.

*** ROOT SEGMENT: MAIN

R/W MEM LIMITS: 000000 004213 004214 02188.
DISK BLK LIMITS: 000002 000006 000005 00005.

PAGE 1

TASK
ATTRIBUTES
SECTION

Figure 3-20 Task Builder Map for MAIN.TSK

3-29

TYPICAL TASK BUILDER FACILITIES

MEMORY ALLOCATION SYNOPSIS:

SECTION
-------. BLK.: (RW,I ,LCL,REL,CON) 001212

001212
001742
002760
003176
003324
003420
003530

AADD : (RO,I,GBL,REL,CON) 060000
060000

DIVV : (RO,I ,GBL,REL,CON) 060024
060024

LNC$D : (RW,D,GBL,REL,CON) 003776
003776

MULL : (RO,I,GBL,REL,CON) 060052
060052

SAVAL : (RO,I,GBL,REL,CON) 060076
060076

SUBB : (RO,! ,GBL,REL,CON) 060140
060140

$$RESL: (RW,I,LCL,REL,CON) 004000
004000

$$RESM: (RW,I,LCL,REL,CON) 004024

GLOBAL SYMBOLS:

AADD 060000-R
DIVV 060024-R
IO.WVB 011000
MULL 060052-R

MAIN. TSK; 15
MAIN

$COTB
$C5TA
$DAT

003332-R
003420-R
003574-R

004024
004112

SAVAL 060076-R
SUBB 060140-R
$CBDAT 002760-R
$CBDMG 002766-R

MEMORY ALLOCATION
30-APR-79

$DDIV
$DIV
$DMUL

004150-R
004054-R
004112-R

*** TASK BUILDER STATISTICS:

TITLE IDE NT FILE

002564 01396.
000530 00344. MAIN 01 MAIN.OBJ;l
001016 00526. EDTMG 12 SYSLIB.OLB;40
000216 00142. CBTA 04.3 SYSLIB .OLB; 40
000126 00086. CDDMG 00 SYSLIB.OLB;40
000074 00060. CATB 03 SYSLIB.OLB;40
000110 00072. C5TA 02 SYSLIB.OLB;40
000246 00166. EDDAT 02 SYSLIB.OLB;40
000024 00020.
000024 00020. LIB 01 LIB.STB;l3
000026 00022.
000026 00022. LIB 01 LIB.STB;l3
000002 00002.
000002 00002. EDTMG 12 SYSLIB.OLB;40
000024 00020.
000024 00020. LIB 01 LIB.STB;l3
000042 00034.
000042 00034. LIB 01 LIB.STB;l3
000024 00020.
000024 00020. LIB 01 LIB.STB;l3
000024 00020.
000024 00020. SAVRG 03 SYSLIB.OLB;40
000166 00118.
000066 00054. ARI TH 03.02 SYSLIB .OLB; 40
000100 00064. DARI TH 0005 SYSLIB.OLB;40

$CBDSG 002774-R $CBTMG 003016-R
$CBOMG 003002-R $CBVER 003002-R
$CBOSG 003010-R $CDDMG 003176-R
$CBTA 003040-R $CDTB 003324-R

MAP TKB M36 PAGE 2
10:33

$EDMSG 002036-R
$LNCNT 003776-R
$MUL 004024-R

$SAVRG 004000-R
$TIM 003652-R

TOTAL WORK FILE REFERENCES: 2518.
WORK FILE READS: 0.
WORK FILE WRITES: 0.
SIZE OF CORE POOL: 8200. WORDS (32. PAGES)
SIZE OF WORK FILE: 1024. WORDS (4. PAGES)

ELAPSED TIME:OO:OO:l9

Figure 3-20 (Cont.) Task Builder Map for MAIN.TSK

3-30

TYPICAL TASK BUILDER FACILITIES

This map contains a global symbols section. Note that the symbols
within the library now have virtual addresses assigned to them and
that these addresses begin at 60000(8) -- the virtual base address of
APR 3. The Task Builder's allocation of virtual address space for
MAIN.TSK is represented diagrammatically in Figure 3-21.

APR 7-

APR 6-

APR 5-

APR4-

VI R:TUAL 60000 APR 3-

APR 2-

APR 1-

VIRTUAL 0 APR CY-

""""""_ L_i_s_. T_s_,.K.,.,.,..., } WINDOW 1 REGION 1

\ ii!!li
~-M-A-IN_._T_s_K __ }wlNDOW 0 REGION 0

Figure 3-21 Allocation of Virtual Address Space for MAIN.TSK

The library LIB is position independent and can therefore be mapped
anywhere in the referencing task's virtual address space. APR 3 was
used in this example to contrast this mapping arrangement with the
mapping of MACCOM in the virtual address space of task MCOMl in
Example 1 (Section 3.1.5). If the optional APR parameter in the
RESLIB option above had been left blank, the Task Builder would have
allocated the highest available APR to map the library.

As described in earlier sections of this chapter, program section
names within position-independent shared regions must normally be
unique with respect to program section names within tasks that
reference them. When a shared_ region is a position-independent
resident common and you explicitly declare the program section names
within it, avoiding program section name conflicts is an easy matter.
However, when a shared region is a position-independent resident
library that contains calls to routines within an object module
library (SYSLIB, for example), conflicts may develop that are not
apparent to you. The problem arises when the position-independent
resident library and one or more tasks that link to it contain calls
to separate routines residing within the same program section of an
object module library.

When the Task Builder resolves a call from within a module it is
processing to a routine within an object module library, it places the
routine from the library into the image it is building. It also
enters into its internal table the name of the program section in the

3-31

TYPICAL TASK BUILDER FACILITIES

object module library within which the routine resides. If a
position-independent resident library contains a call to a routine
within a given program section of SYSLIB, for example, and then
subsequently a task that links to the resident library contains a call
to a different routine within the same program section of SYSLIB, both
the resident library and the referencing task will contain the program
section name. When you build the referencing task, the library's .STB
file will contain the program section name and a program section
conflict will develop. (Refer to Section 3.1.4 for additional
information on the sequence in which the Task Builder processes tasks
and the potential program section name conflicts that can result.)

This situation and one possible solution to it can be illustrated with
Example 3. When this example was first created, only the arithmetic
routines were included in the source file of the resident library
(LIB.MAC in Figure 3-17). The system library coroutine ($SAVAL) was
resolved from SYSLIB. Because the first instruction of each
arithmetic routine called $SAVAL, the Task Builder included a copy of
it in the resident library's image at task-build time. This turned
out to be unsatisfactory because of a call to the SYSLIB routine
$EDMSG (edit message) within the program MAIN that links to the
resident library. Both routines ($SAVAL and $EDMSG) reside within the
unnamed or blank program section (. BLK.) within SYSLIB. Therefore,
a program section name conflict developed when MAIN was built.

To circumvent this problem, the source code for $SAVAL was included
into the source file for the resident library under the explicitly
declared program section name, SAVAL.

Another solution would have been to build the resident library
absolute. In this case, the Task Builder would not have included
program section names from the resident library into the symbol
definition file for the library when the library was built.

It is important to note that the above program section name conflict
develops only when two different routines residing within the same
program section of an object module library are involved. It presents
no problem when a resident library and a task that links to it contain
a call to the same routine in an object module library. In that case,
the Task Builder copies the routine and the program section name in
which it resides into the resident library when the library is built.
Then, when the task that calls the same routine is built, the Task
Builder will resolve the reference to the routine in the resident
library instead of in the object module library.

3.1.8 Example 4: Building and Linking to a Supervisor-Mode Library in
MACR0-11 (RSX-llM-PLUS Only)

Supervisor-mode libraries are a special type of resident library that
provide you with the means to effectively double the address space of
your task and thereby extend the physical memory to which your task
has access. Supervisor-mode libraries are particularly useful when
used to accommodate large run-time systems.

Supervisor-mode libraries are mapped with the instruction space APRs
of the processor's supervisor mode (Supervisor APR 0 through
Supervisor APR 7). Once you have linked your task to a
supervisor-mode library, a call from within your task to a global
symbol within the library automatically causes a context switch from
user mode to supervisor mode. Control of the processor is then
assumed by the called library routine. When the library routine
executes a return, control of the processor is transferred to a

3-32

TYPICAL TASK BUILDER FACILITIES

completion routine within the library. It is the completion routine's
responsibility to perform the return context switch from supervisor
mode to user mode. (Completion routines are described later in this
section.)

When you build a task that links to a supervisor-mode library, the
Task Builder replaces each call from the task to a routine within the
library with a 4-word vector. This vector contains a transfer of
control instruction to a routine ($SUPL) that switches the processor
from user mode to supervisor mode. It also contains the address of
the completion routine and the address of the entry point of the
called library routine. (Refer to Figure B-14 in Appendix B.)

Figure 3-22 shows a typical mapping arrangement for a 14K word
supervisor-mode library and a 24K word task that refers to it.

APR 7

APR fi

APR !5

APR 4

APR :3

APR 2

APR 1

SUPERVISOR MODE
(INSTRUCTION SPACE)

:::::::::::::::.Y.:~.Y.:$.:~:.9..::::::::::::::

SUPERVISOR
MODE

LIBRARY

APR 7-

USER MODE
(INSTRUCTION SPACE)

APR6-

APR 5-

APR4-

APR3 -

APR 2-

APR 1 -

REFERENCING
TASK

HEADER & STACK

Figure 3-22 Typical Mapping for Supervisor-Mode Library

When the processor context switches from user mode to supervisor mode,
the system copies the user-mode instruction APRs (which map the task
image) into the supervisor-mode data space APRs. Therefore, when the
processor is running in supervisor mode under control of a library
routine, any data within the task image is available to the routine.
For example, library routines that require parameters or pointers to
parameters in registers or through low core impure area pointers can
obtain the parameters transparently. Figure 3-23 shows a typical
mapping arrangement when a supervisor-mode routine is in control of
the processor.

3-33

APR 7-

TYPICAL TASK BUILDER FACILITIES

SUPERVISOR MODE
(INSTRUCTION SPACE)

UNUSED

APR 7-

USER MODE
(INSTRUCTION SPACE)

APR6-
SUPERVISOR

MODE
LIBRARY

I
I
I
I
I

APR 6-
1
, !~!!'~illli;Ill~f

APR 5-

APR4-

APR3-

APR 2-

APR 1-

APRO-

APR7-

APR6-

APR5-

APR4-

APR3-

APR 2-

APR 1-

SUPERVISOR MODE
(DATA SPACE)

I
I

APR 5/-

I
APR4-

/ I APR 3-

· J I APR2-

APR 1-

APRO-

v
/I

1
1

I I
II I I

I I I
~~..-.-.-. I I

;,/
COPY

OF
REFERENCING

TASK

;I
I I

I I
I I

HEADER & STACK I I
APRO-

REFERENCING
TASK

HEADER & STACK

Figure 3-23 Task Mapping while Running in Supervisor Mode

3-34

TYPICAL TASK BUILDER FACILITIES

Building a supervisor-mode library is essentially the same as building
a conventional resident library. When you build a supervisor-mode
library, you suppress the header by attaching /-HD to the task image
file~. During option input, you suppress the stack area by specifying
STACK=O. You specify the partition in which the library is to reside
and,, optionally, the base address and length of the library with the
PAR option~

You indicate to the Task Builder that you are building a
supervisor-mode library with the CMPRT option. The argument for this
option identifies the entry symbol of the completion routine. When
the Task Builder processes this option, it places the completion
routine entry point in the library's .STB file. {Refer to Chapter 6
for mo~e information on the CMPRT option).

The following restrictions are placed on the
supervisor-mode library.

contents of a

1. Only subroutines using JSR PC, X should be used within the
library.

2~ The library must not contain subroutines that use the stack
to pass parameters if tasks referring to the library call the
same routines.

3. The library must not contain data of any kind. This
includes: user data, buffers, I/O status blocks, and
directive parameter blocks {the $S directive form can be used
because the directive parameter block for this form of
directive is pushed onto the stack at run time).

When you build a supervisor-mode library, you must include within it a
completion routine that performs the following:

1. Transfers any condition code bits that are relevant to your
user-mode task from the Processor Status Word {PSW) to the
Processor Status Word on the stack. All condition code bits
in the stacked PSW are set to 0 during the context switch
from user to supervisor-mode.

2. Writes an appropriate value into the user stack pointer,
because the user stack will not be context switched.

3. Executes an ·RTI instruction.

Following is an example of a completion routine from the system
library, LB: [l,l]SYSLIB.OLB which returns the carry bit:

$COMPL:: ADC
MOV
ADD
MTPI
RT!

2{SP)
#6,-(SP)
SP,{SP)
SP

;TRANSFER CARRY BIT
;CALCULATE USER SP VALUE

;CHANGE USER STACK POINTER VALUE
;RETURN TO CALLER

The system library contains two other completion routines:

e $CMPAL
e $CMPRV

which returns status bits NZVC
which sets up PS for privileged tasks

Figure 3-24 shows a module containing three routines: a sort routine
{SORT::), a search routine {SEARCH::), and a completion routine
{$COMPL::). When assembled and built, these routines will constitute
an example of a supervisor-mode library.

3-35

.TITLE
• !DENT

SORT::
CALL
TST
MOV
MOV
MOV
MOV
DEC

10$:
MOV
MOV

20$:
TST
CMP
BLE
MOV
MOV
MOV

30$:
DEC
BNE
DEC
BEQ
TST
BR

40$:
RETURN

SEARCH::
CALL
CMP
BNE
MOV
MOV
MOV
MOV
MOV
MOV

10$:
CMP
BEQ
BM!
DEC
BNE

20$:
MOV
RETURN

30$:
SUB
INC
MOV
RETURN

TYPICAL TASK BUILDER FACILITIES

SUPLIB
/01/

$SAVAL
(R5)+
(R5)+,RO
(R5)+,R4
(R4) ,R4
RO,R5
R4

R5,RO
R4,R3

(RO)+
(R5), (RO)
30$
(R5),R2
(RO), (R5)
R2,(RO)

R3
20$
R4
40$
(R5)+
10$

$SAVAL
#4, (R5)+
20$
(R5)+,RO
(R5)+,Rl
(R5)+,R2
(R2) ,R2
(R5),R5
R2,R3

(RO),(Rl)+
30$
20$
R2
10$

#-1, (R5)

R2,R3
R3
R3,(R5)

SAVE ALL REGISTERS
SKIP OVER NUMBER OF ARGUMENTS
GET ADDRESS OF LIST
GET ADDRESS OF LENGTH OF LIST
GET LENGTH OF LIST

COPY
COPY LENGTH OF LIST

MOVE POINTER TO NEXT ITEM
COMPARE ITEMS
IF LE IN CORRECT ORDER
SWAP ITEMS

DECREMENT LOOP COUNT
IF NE LOOP
DECREMENT
IF EQ SORT COMPLETED
GET POINTER TO NEXT ITEM TO BE COMPARED

SAVE ALL THE REGISTERS
FOUR ARGUMENTS?
IF NE NO
GET ADDRESS OF NUMBER TO LOCATE
ADDRESS OF LIST SEARCHING
GET ADDRESS OF LENGTH OF LIST
GET LENGTH OF LIST
ADDRESS OF RETURNED VALUE
COPY LENGTH

IS THIS THE NUMBER?
IF EQ YES
IF MI NUMBER NOT THERE
DECREMENT LOOP COUNT
IF NE NOT AT END OF LIST

END OF LIST PASS BACK ERROR

NUMBER FOUND - GET INDEX INTO LIST

RETURN INDEX

Figure 3-24 Source Listing for SUPLIB.MAC

3-36

TYPICAL TASK BUILDER FACILITIES

$COMPL::
ADC
M~

ADD
MTPI
RTI

.END

2(SP)
#6,-(SP)
SP,(SP)
SP

COMPLETION ROUTINE

RETURN TO USER MODE

Figure 3-24 (Cont.) Source Listing for SUPLIB.MAC

Once you have assembled SUPLIB, you can build it with the following
Task Builder command string:

TKB>SUPLIB/-HD,SUPLIB/MA/-SP,SUPLIB=SUPLIB
TKB>/
ENTER OPTIONS:
TKB>STACK=O
TKB>CMPRT=$COMPL
TKB>PAR~SUPLIB:l60000:2000
TKB>GBLXCL=$SAVAL
TKB>//

This command sequence directs the Task Builder to create a headerless
image file (/-HD) named SUPLIB.TSK and to create an extended map file
(/MA) named SUPLIB.MAP. Because /-SP is appended to the map file, the
Task Builder will not output it to the line printer. It also
specifies that the Task Builder is to create a .STB file named
SUPLIB.STB.

Under options, STACK=O suppresses the stack area in SUPLIB's task
image. The CMPRT option identifies the global symbol of the
completion routine within SUPLIB. The Task Builder will place this
global symbol in a special entry in the library's .STB file. The PAR
option specifies to the Task Builder that SUPLIB will reside within a
partition of the same name as the library. This is not a requirement.
The PAR option also specifies to the Task Builder that SUPLIB will
have a base address of 160000, and that it will be 2000(8) bytes long.

The GBLXCL option directs the Task Builder to exclude from SUPLIB's
.STB file the global symbol $SAVAL. $SAVAL is a system library
coroutine that saves the contents of all general registers. It uses
the stack to pass parameters. When SUPLIB is built, the Task Builder
will resolve the reference to $SAVAL by including the $SAVAL routine
into SUPLIB's image file. Since it is known that the task TSUP
(described below) will be linked to SUPLIB at a later time, and that
TSUP also contains a call to $SAVAL, the symbol $SAVAL must be
excluded from SUPLIB's .STB file .o prevent the Task Builder from
resolving the call in TSUP to the $SAVAL routine in SUPLIB. The net
result of excluding the symbol from SUPLIB's .STB file is that the
Task Builder will include separate copies of $SAVAL in SUPLIB and in
the task that links to it TSUP. (For more information on the switches
and options used in this example, refer to Chapter 6.)

Suppose the symbol $SAVAL were not excluded from SUPLIB's .STB file.
When the Task Builder built TSUP, instead of resolving the reference
to SYSLIB, it would resolve the reference to the routine existing
within SUPLIB. When TSUP ran, t~e call to $SAVAL within it would
cause a context switch from user mode to supervisor mode. $SAVAL
would execute but, because it is a coroutine, it would attempt a
direct call back to TSUP (which resides in user mode) instead of
returning to user mode through a completion routine.

3-37

TYPICAL TASK BUILDER FACILITIES

This illegal return call would fail and cause the system to trap.

Note also, that SUPLIB is built absolute. That is, the PI
(position-independent) switch is not attached to the library image
file. As written, SUPLIB must be absolute to prevent a program
section name conflict between SUPLIB and the task that links to it,
TSUP. Even though the symbol $SAVAL was excluded from SUPLIB's .STB
file, the program section in which $SAVAL resides in SYSLIB was not.
When the Task Builder resolves the reference to $SAVAL in TSUP, it
will place the routine into TSUP's image file and the program section
name in which it resides will be placed into the Task Builder's
internal section table. If, when TSUP is built, the program section
name were allowed to remain in the .STB file, a conflict would
develop. (Refer to Section 3.1.4 for additional information.)

The map that results from the above command sequence is shown in
Figure 3-25. Note that the virtual addresses for the symbols SEARCH,
SORT, $COMPL, and the entry point for the system library coroutine
$SAVAL have already been established. The Task Builder establishes
the virtual addresses for these symbols when it builds SUPLIB because
SUPLIB is absolute. If SUPLIB were built position independent, the
Task Builder would defer the assignment of virtual addresses for these
symbols until the tasks that link to the library are built.

The program TSUP in Figure 3-26 uses the sort and search routines in
the example in Figure 3-24. When you link TSUP to SUPLIB, install and
run it, TSUP will prompt for a number by printing ARRAY= on your
terminal. When you type a number, TSUP will place the number you have
typed into ah array and prompt you again in the same manner. It will
continue to prompt you until it has prompted you 10 times or until you
type a O, whichever comes first. After you have input 10 numbers or
typed a O, TSUP will use the sort routine in SUPLIB to sort the
numbers in ascending order. It will then print them on your console
terminal. Once it has printed the numbers, it will prompt for a
number with the following message:

NUMBER TO SEARCH FOR?

When you respond by typing a number, TSUP will use the search routine
in SUPLIB to search the array for the number. If the number is in the
array, TSUP will print it on your terminal. If the number is not in
the array, TSUP will report that fact.

TSUP uses three system library routines: $SAVAL (save all registers
coroutine), $EDMSG (edit message routine), and $CDTB (decimal to
binary conversion routine). These routines are described in the
IAS/RSX-11 System Library Routines Reference Manual. The Executive
directives used by TSUP (QIOW$, DIR$, and QIOW$S) are described in the
RSX-llM/M-PLUS Executive Reference Manual.

3-38

TYPICAL TASK BUILDER FACILITIES

SUPLIB.TSK;l7 MEMORY ALLOCATION MAP TKB M35
29-DEC-78 09:18

PARTITION NAME : SUPLIB
IDENTIFICATION : 01
TASK UIC [301,356]
TASK ATTRIBUTES: -HD
TOTAL ADDRESS WINDOWS: 1.
TASK IMAGE SIZE 96. WORDS
TASK ADDRESS LIMITS: 160000 160213
R-W DISK BLK LIMITS: 000003 000002 000000 00000.

*** ROOT SEGMENT: SUPLIB

R/W MEM LIMITS: 160000 160213 000214 00140.
DISK BLK LIMITS: 000002 000002 000001 00001.

MEMORY ALLOCATION SYNOPSIS:

PAGE 1

TASK
ATTRIBUTES
SECTION

SECTION TITLE !DENT FILE

• BLK.: (RW,I,LCL 1 REL,CON) 160000 000214 00140.

GLOBAL SYMBOLS:

160000 000152 00106. SUPLIB 01
160152 000042 00034. SAVAL 00

SUPLIB.OBJ;l
SYSLIB .OLB; 6

SEARCH 160056-R SORT 160000-R $COMPL 160134-R $SAVAL 160152-R

*** TASK BUILDER STATISTICS:

TOTAL WORK FILE REFERENCES: 229.
WORK FILE READS: O.
WORK FILE WRITES: O.
SIZE OF' CORE POOL: 2076. WORDS (8. PAGES)
SIZE OF' WORK FILE: 768. WORDS (3. PAGES)

ELAPSED TIME:OO:OO:OS

Figure 3-25 Task Builder Map for SUPLIB.TSK

3-39

.TITLE

.IDENT

.MCALL

WRITE: QIOW$
READ IN : Q IOW$

IARRAY: • BLKW
LEN: .BLKW
IART: .BLKW
INDEX: .BLKW
OUT: • BLKW
ARGBLK:
EDBUF: • BLKW

FMTl: .ASCIZ
FMT2: .ASCIZ
FMT3: .ASCIZ
FMT4: .ASCIZ
FMTS: .ASCIZ

.EVEN
START:

MOV
MOV

S$:
CLR
DEC
BNE
MOV
MOV

10$:
MOV

MOV
INC
CALL
CALL
MOV
BEQ
INC
CMP
BNE

20$:
MOV
MOV
MOV
MOV
MOV
MOV
CALL
CLR
MOV

TYPICAL TASK BUILDER FACILITIES

TSUP
/01/

QIOW$,DIR$,QIOW$S

IO.WVB,S,l,,,,<OUT,,40>
IO.RVB,S,l,,,,<OUT,S>

12 •
1
1
1
100 •

10 •

/%2SARRAY(%D)=/
/%N%2SNUMBER TO SEARCH FOR?/
/%N%2S%D WAS FOUND IN ARRAY(%D)/
/%N%2S%D WAS NOT IN ARRAY/
/%2SARRAY (%D)=%D/

#IARRAY,RO
#10,Rl

(RO)+
Rl
S$
#IARRAY,RO
#INDEX ,R2

#FMTl,Rl

(R2),EDBUF
EDBUF
PRINT
READ
IART, (RO)+
20$
(R2)
(R2) ,#10.
10$

(R2),LEN
#ARGBLK,RS
2, (RS)+
#IARRAY, (RS)+
#LEN,(RS)
#ARGBLK,RS
SORT
R2
#IARRAY,RO

GET ADDRESS OF ARRAY
SET LENGTH OF ARRAY

INITIALIZE ARRAY
LOOP

FORMAT SPECIFICATION (ADDRESS
OF INPUT STRING)
GET INDEX

PRINT MESSAGE
READ INPUT
PUT BINARY KEYBOARD INPUT INTO ARRAY
ZERO MARKS END OF INPUT

IF NE YES

CALCULATE LENGTH OF ARRAY
GET ADDRESS OF ARGUMENT BLOCK
NUMBER OF ARGUMENTS
PUT ADDRESS OF ARRAY

SORT ARRAY

GET ARRAY ADDRESS

Figure 3-26 Source Listing for TSUP.MAC

3-40

30$:

40$:

100$:

PRINT:

READ:

INC
MOV
MOV
MOV
CALL
CMP
BLT
MOV
CALL
CALL
MOV
MOV
MOV
MOV
MOV
MOV
MOV
CALL
TST
BLT
MOV
MOV
MOV
CALL
BR

MOV
MOV
CALL

CALL

CALL
MOV
MOV
CALL
MOV

DIR$
RE'I~URN

CALL
DIR$
MOV
CALL
MOV
RE'rURN

TYPICAL TASK BUILDER FACILITIES

R2
R2,EDBUF
(RO)+,EDBUF+2
#FMTS,Rl
PRINT
R2,LEN
30$
#FMT2,Rl
PRINT
READ
#ARGBLK,RS
#4, (RS)+
#IART, (RS)+
#I ARRAY, (RS)+
#LEN, (RS)+
#INDEX,(RS)
#ARGBLK,RS
SEARCH
INDEX
40$
IART,EDBUF
INDEX,EDBUF+2
#FMT3,Rl
PRINT
100$

#FMT4,Rl
IART,EDBUF
PRINT

$EXST

$SAVAL
#OUT,RO ; ADDRESS
#EDBUF,R2
$EDMSG ;
Rl,WRITE+Q.IOPL+2

#WRITE

INCREMENT INDEX
GET INDEX FOR PRINT
GET CONTENTS OF ARRAY
GET ADDRESS OF FORMAT SPECIFICATION

MORE TO PRINT?
IF LE YES
GET ADDRESS OF FORMAT SPECIFICATION
OUTPUT MESSAGE
READ RESPONSE

SET NUMBER OF ARGUMENTS
SET ADDRESS OF NUMBER LOOKING FOR
SET ADDRESS OF ARRAY
SET ADDRESS OF LEN OF ARRAY
ADDRESS OF RESULT

SEARCH FOR NUMBER IN IART
WAS NUMBER FOUND?
IF LT NO
GET NUMBER LOOKING FOR
GET ARRAY NUMBER
GET FORMAT ADDRESS

DONE

GET FORMAT ADDRESS
GET NUMBER

EXIT WITH STATUS

SAVE ALL REGISTERS
OF OUTPUT BLOCK
START ADDRESS OF ARGUMENT BLOCK
FORMAT MESSAGE
; PUT LENGTH OF OUTPUT
BLOCK INTO PARAMETER BLOCK
WRITE OUTPUT BLOCK

$SAVAL
#READIN
#OUT,RO
$CDTB
Rl, IART

; SAVE ALL REGISTERS
READ REQUEST
GET KEYBOARD INPUT

; CONVERT KEYBOARD INPUT TO BINARY
; PUT INPUT INTO BUFFER

.END START

Figure 3-26 (Cont.) Source Listing for TSUP.MAC

3-41

TYPICAL TASK BUILDER FACILITIES

Once you have assembled TSUP, you can build it with the following Task
Builder command sequence:

TKB>TSUP,TSUP/MA/-WI/-SP=TSUP
TKB>/
ENTER OPTIONS:
TKB>RESSUP=SUPLIB/SV
TKB>//

This command sequence directs the Task Builder to build a task image
file TSUP.TSK and to create an extended (/MA) 80 column (/-WI) map
file named TSUP.MAP. Because /-SP is appended to the map file, the
Task Builder will not output the map file to the line printer.

Under options, the RESSUP option tells the Task Builder that the task
intends to access a supervisor-mode library and that context switching
vectors are required. The Task Builder expects to find a library
image file SUPLIB.TSK and a symbol definition file SUPLIB.STB, on
device LB: under the UFO that corresponds to the terminal UIC. In
addition, the Task Builder expects to find a special entry in the .STB
file that contains the symbol definition for · the supervisor-mode
library's completion routine ($COMPL). This entry was created by the
Task Builder when SUPLIB was built as a result of the CMPRT option.
(Refer to Chapter 6 for more information on the switches and options
used in this example.) A portion of the map that results from the Task
Builder command sequence above is shown in Figure 3-27.

Note under global symbols in Figure 3-27 that the Task Builder has
changed the virtual addresses for symbols SEARCH, SORT, and $SAVAL
while leaving the virtual address of symbol $COMPL the same as it was
when SUPLIB was built. The new virtual addresses for the first three
symbols are addresses to the context switching vectors that the Task
Builder placed in TSUP's code. The Task Builder did not change the
virtual address of $COMPL because it is referenced only from within
the library. Therefore, calls to it do not constitute an initial
processor-mode context switch.

Finally, note that building a resident library as a supervisor-mode
library in no way precludes its use as a "standard" user-mode resident
library. A given resident library might be mapped by one task as a
supervisor-mode library while simultaneously being mapped by another
as a user-mode library.

3-42

TYPICAL TASK BUILDER FACILITIES

TSUP.TSK;6 MEMORY ALLOCATION MAP TKB M35
29-DEC-78 16:39

PARTITION NAME : GEN
IDENTIFICATION : 01
TASK UIC [301,356]
STACK LIMITS: 000212 001211 001000 00512.
PRG XFR ADDRESS: 002046
TOTAL ADDRESS WINDOWS: 2.
TASK IMAGE SIZE 1312. WORDS
TASK ADDRESS LIMITS: 000000 005017
R-W DISK BLK LIMITS: 000002 000007 000006 00006.

*** ROOT SEGMENT: TSUP

R/W MEM LIMITS: 000000 005017 005020 02576.
DISK BLK LIMITS: 000002 000007 000006 00006.

MEMORY ALLOCATION SYNOPSIS:

PAGE 1

TASK
ATTRIBUTES
SECTION

SECTION TITLE IDENT FILE

• BLK.: (RW,I,LCL,REL,CON) 001212 003312 01738.
001212 001234 00668. MAIN 01

$$SUPL: (RW,I,LCL,REL,CON) 004760 000040 00032.
004760 000040 00032. $SUPL 01

GLOBAL SYMBOLS:

IO •. RVB 010400 $CBOSG 003632-R $C5TA
IO .. WVB 011000 $CBTA 003662-R $DAT
SEARCH 004740-R $CBTMG 003640-R $DDIV
SORT 004750-R $CBVER 003624-R $DIV
$CBDAT 003602-R $CDDMG 004020-R $DMUL
$CBDMG 003610-R $CDTB 002446-R $EDMSG
$CBDSG 003616-R $COMPL 160134 $EXST
$CBOMG 003624-R $COTB 002454-R $LNCNT

*** TASK BUILDER STATISTICS:

TOTAL WORK FILE REFERENCES: 2544.
WORK FILE READS: O.
WORK FILE WRITES: O.

004146-R
004322-R
004676-R
004602-R
004640-R
002632-R
003522-R
004524-R

SIZE OF CORE POOL: 2076. WORDS (8. PAGES)
SIZE OF WORK FILE: 1024. WORDS (4. PAGES)

ELAPSED TIME:00:00:12

$MUL
$SAVAL
$SAVRG
$SUPL
$TIM

Figure 3-27 Task Builder Map for TSUP.TSK

3-43

TSUP.OBJ;l

SYSLIB.OLB;6

004552-R
003540-R
004526-R
004766-R
004400-R

TYPICAL TASK BUILDER FACILITIES

3.2 EXAMPLE 5: BUILDING A MULTIUSER TASK (RSX-llM-PLUS ONLY)

A multiuser task is a task that shares the pure (read-only) portion of
its code with two or more copies of the impure (read/write) portion of
its code. When the system receives an initial run request for a
multiuser task, a copy of both the read-only and read/write portions
of the task are read into physical memory. As long as the task is
running, all subsequent run requests for it result in the system
duplicating only the read/write portion of the task in physical
memory. Thus, multiuser tasks are memory efficient.

You designate a task as multiuser when you build it by applying the MU
switch to the task image file. This switch directs the Task Builder
to create two regions for the task. One region (region 0) will
contain the read-write portion of the task; the other region (region
1) will contain the read-only portion of the task.

As with all other tasks, the Task Builder uses a program section's
access code to determine its placement within a multiuser task's
image. It divides address space into read/write and read-only
sections. Unlike a single user task, however, in a multiuser task,
the read-only portion of the task is hardware protected. In addition,
the Task Builder separates the read/write portions of a multiuser task
from the read-only portions and places them in separate regions at
opposite ends of the. task's address space. It allocates the low
address APRs to the read/write portion (which includes the task's
header and stack area) and the highest available APRs to the read-only
portion. Figure 3-28 illustrates this allocation •

APR 7-

APR 6-

APR 5-

APR4-

APR3-

APR 2-

APR 1-

APR O-

...
:UNUSED

.·.·.··.·.· ·.·

READ-ONLY
PROGRAM
SECTIONS

READ/WRITE
PROGRAM
SECTIONS

HEADER & STACK

Figure 3-28 Allocation of Program Sections in a Multiuser Task

3-44

TYPICAL TASK BUILDER FACILITIES

If neither the read-only nor the read/write portion of the task
contain memory-resident overlays the Task Builder will allocate two
window blocks in the header of the task. When the task is installed,
the INSTALL processor will initialize these window blocks as follows:

• Window block O will describe the range of virtual addresses
(the window) for the read/write portion of the task. This
region will always contain the task's header.

• Window block 1 will describe the range of virtual addresses
for the read-only portion.

Figure 3-29 below shows the window-to-region relationship of a
multiuser task.

HIGHEST VIRTUAL
ADDRESS

WINDOW BLOCK
1

WINDOW BLOCK
0

LOWEST VIRTUAL
ADDRESS

·····················~·~.~~~·~···················
READ-ONLY

READ/WRITE

Figure 3-29 Windows for a Multiuser Task

J REGION 1

REGION 0

If a multiuser task is an overlaid task, the read-only portion of the
task can be made up of the following:

• The read-only program sections of the root segment

3-45

TYPICAL TASK BUILDER FACILITIES

• Branches of an overlay structure if the complete branch is
memory resident and read-only

• A co-tree structure if the entire co-tree is memory resident
and read-only.

(Overlaid tasks are described in Chapter 4.)

Finally, the disk image of a multiuser task is somewhat different from
that of a single-user task. The read-only portion of the task is
placed at the end of the disk image. The relative block number of the
read-only portion and the number of blocks it occupies appears in the
label block. The read-only portion of the image is described in the
first library descriptor of the LIBRARY REQUEST section of the label
block. (Refer to Appendix B for more information on the task image
data structures.

The remainder of the text in this section and the figures associated
with it illustrate the development of a multiuser task. This example
was created by concatenating into a single file the resident library
file (LIB.MAC) and the task that links to it (MAIN.MAC) from Example
4. It is not intended to represent a typical multiuser task
application. However, it does illustrate the Task Builder's
allocation of program sections in a multiuser task and that is its
primary value. The concatenated source file, named ROTASK.MAC, for
this example is shown in Figure 3-30. ·

.TITLE

.!DENT

.MCALL

OPl: .WORD
OP2: .WORD
ANS: .BLKW

OUT: • BLKW
FORMAT: .ASCIZ

.EVEN

START:
MOV
MOV
MOV
MOV
MOV
CALL
CALL
MOV
CALL
CALL
MOV
CALL
CALL
MOV
CALL
CALL
EXIT$S

ROTA SK
/01/

QIOW$S,EXIT$S

1
1
1

100 •
/THE ANSWER

#ANS,-(SP)
#0P2,-(SP)
#OPl,-(SP)
#3 ,-(SP)
SP,RS
AADD
PRINT
SP,RS
SUBB
PRINT
SP,RS
MULL
PRINT
SP,RS
DIVV
PRINT

%D,/

OPERAND 1
OPERAND 2
RESULT

FORMAT MESSAGE

TO CONTAIN RESULT
OPERAND 2
OPERAND 1
PASSING 3 ARGUMENTS
ADDRESS OF ARGUMENT BLOCK
ADD TWO OPERANDS
PRINT RESULTS
ADDRESS OF ARGUMENT BLOCK
SUBTRACT SUBROUTINE
PRINT RESULTS
ADDRESS OF ARGUMENT BLOCK
MULTIPLY SUBROUTINE
PRINT RESULTS
ADDRESS OF ARGUMENT BLOCK
DIVIDE SUBROUTINE
PRINT RESULTS

Figure 3-30 Source Listing for ROTASK.MAC

3-46

TYPICAL TASK BUILDER· FACILITIES

;+
;** PRINT - PRINT RESULT OF OPERATION.
;-

PRINT: MOV
MOV
MOV
CALL
QIOW$S
RETURN

#OUT,RO ADDRESS OF SCRATCH AREA
#FORMAT,Rl FORMAT SPECIFICATION
#ANS,R2 ARGUMENT TO CONVERT
$EDMSG ; FORMAT MESSAGE
#IO.WVB,#S,#l,,,,<#OUT,Rl,#40>

; RETURN FROM SUBROUTINE

;** FORTRAN CALLABLE SUBROUTINE TO ADD TWO INTEGERS

AADD::

.PSECT AADD,RO,I,GBL,REL,CON

CALL
MOV
MOV
ADD
MOV
RETURN

$SAVAL
@2(RS),RO
@4(RS),Rl
RO,Rl
Rl,@6(RS)

SAVE RO-RS
FIRST OPERAND
SECOND OPERAND
SUM THEM
STORE RESULT
RESTORE REGISTERS AND RETURN

;** FORTRAN CALLABLE SUBROUTINE TO SUBTRACT TWO INTEGERS

.PSECT SUBB,RO,I,GBL,REL,CON

SUBB: : CALL $SAVAL SAVE RO-RS
MOV @2(RS),RO FIRST OPERAND
MOV @4(RS),Rl SECOND OPERAND
SUB Rl,RO SUBTRACT SECOND FROM FIRST
MOV R0,@6(RS) STORE RESULT
RE: TURN RESTORE REGISTERS AND RETURN

;** FORTRAN CALLABLE SUBROUTINE TO DIVIDE TWO INTEGERS

.PSECT DIVV,RO,I,GBL,REL,CON

DIVV:: CALL $SAVAL SAVE REGS RO-RS
MOV @2(RS),R3 FIRST OPERAND
MOV @4(RS),Rl SECOND OPERAND
CLR R2 LOW ORDER 16 BITS
DIV Rl,R2 DIVIDE
MOV R2,@6(RS) STORE RESULT
RE:TURN RESTORE REGISTERS AND RETURN

;** FORTRAN CALLABLE SUBROUTINE TO MULTIPLY TWO INTEGERS

MULL: :

.PSECT MULL,RO,I,GBL,REL,CON

CALL
MOV
MOV
MUL
MOV
RETURN
.END

$SAVAL
@2(RS),RO
@4(RS),Rl
RO,Rl
Rl,@6(RS)

START

SAVE RO-RS
FIRST OPERAND
SECOND OPERAND
MULTIPLY
STORE RESULT
RESTORE REGISTERS AND RETURN

Figure 3-30 (Cont.) Source Listing for ROTASK.MAC

3-47

TYPICAL TASK BUILDER FACILITIES

Once you have assembled ROTASK, you can build it with the following
command sequence:

TKB>ROTASK/MU,ROTASK/-WI/-SP=ROTASk
TKB>/
ENTER OPTIONS:
TKB>ROPAR=RDONLY
TKB>//

This command sequence directs the Task Builder to build a multiuser
(/MU) task image named ROTASK.TSK and to create an 80 column (/-WI)
map file named ROTASK.MAP. Because /-SP is attached to the map file,
the Task Builder will not output a map to the line printer.

Under options, the ROPAR option specifies that the system is to load
the read-only portion of the task into a partition named RDONLY.
Specifying a separate partition for the task's read-only region is not
a system requirement. The system will load the read/write portion
into partition GEN. The system will not load either region until it
receives a run request for the task.

The map that results from this command sequence is shown in Figure
3-31. Note that the Task Builder has added one field to the task
attributes section of this map describing the disk block limits of the
read-only portion of the task. It has also added a field to the root
segment portion of the map that describes the memory limits of the
read-only portion of the task.

Finally, note that the Task Builder has allocated space for all the
program sections with the read-only attribute beginning with the
highest available APR (in this case, APR 7).

3-48

TYPICAL TASK BUILDER FACILITIES

ROTASK.TSK;6 MEMORY ALLOCATION MAP TKB M35
6-JAN-79 13:58

PARTITION NAME : GEN
IDENTIFICATION : 01
TASK UIC [301,356]
STACK LIMITS: 000212 001211 001000 00512.
PRG XFR ADDRESS: 001552
TASK ATTRIBUTES: MU
TOTAL ADDRESS WINDOWS: 2.
TASK IMAGE SIZE 1120. WORDS
TASK ADDRESS LIMITS: 000000 004217

PAGE 1

TASK
ATTRIBUTES
SECTION

R-W DISK BLK LIMITS: 000002 000006 000005 00005.
R-0 DISK BLK LIMITS: 000007 000007 000001 00001.

*** ROOT SEGMENT: ROTASK

R/W MEM LIMITS: 000000 004217 004220 02192.
R-0 MEM LIMITS: 160000 160177 000200 00128.
DISK BLK LIMITS: 000002 000006 000005 00005.

MEMORY ALLOCATION SYNOPSIS:

SECTION
-------. BLK.: (RW,I ,LCL,REL,CON) 001212 002570 01400 •

001212 000530 00344.
01 ROTASK.OBJ;6

AADD ~ (RO,I ,GBL,REL,CON) 160000 000024 00020.
160000 000024 00020.

01 ROTASK.OBJ;6
DIVV : (RO,I,GBL,REL,CON) 160024 000026 00022.

160024 000026 00022.
01 ROTASK.OBJ;6

LNC$D : (RW,D,GBL,REL,CON) 004002 000002 00002.
MULL : (RO,I,GBL,REL,CON) 160052 000024 00020.

160052 000024 00020.
01 ROTASK.OBJ;6

SUBB : (RO,I ,GBL,REL,CON) 160076 000024 00020.
160076 000024 00020.

01 ROTASK.OBJ;6
$$RESL: (RW,I,LCL,REL,CON) 004004 000024 00020.
$$RESM: (RW,I,LCL,REL,CON) 004030 000166 00118.

GLOBAL SYMBOLS:

TITLE ID ENT

ROTA SK

ROT ASK'

ROT ASK

ROTA SK

ROT ASK

FILE

AADD 160000-R DIVV 160024-R MULL 160052-R SUBB 160076-R

*** TASK BUILDER STATISTICS:

TOTAL WORK FILE REFERENCES: 2365.
WORK FILE READS: O.
WORK FILE WRITES: O.
SIZE OF CORE POOL: 2076. WORDS (8. PAGES)
SIZE OF WORK FILE: 1024. WORDS (4. PAGES)

ELAPSED TIME:00:00:06

Figure 3-31 Task Builder Map for ROTASK.TSK

3-49

TYPICAL TASK BUILDER FACILITIES

3.3 EXAMPLE 6: BUILDING A TASK THAT CREATES A DYNAMIC REGION

In all the examples of tasks shown thus far in this chapter, the Task
Builder has automatically constructed and placed in the header of the
task all of the window blocks necessary to map all of the regions of
the task's image. The INSTALL processor has been responsible for
initializing the window blocks when the task was installed. In all
the examples, this has been possible because both the Task Builder and
the INSTALL processor have had all the information concerning the
regions available to them.

When a task creates regions while it is running (dynamic regions), the
information concerning the regions is not available to either the Task
Builder on the INSTALL processor. Therefore, when the Task Builder
builds such a task, it does not automatically create window blocks for
the dynamic regions. It creates only the window blocks necessary to
map the task region (the region containing the header and stack) and
any shared regions that the task references.

Dynamic regions are created and mapped with Executive directives that
are imbedded in the task's code. When you build a task that creates
dynamic regions, you must explicitly specify to the Task Builder how
many window blocks (in excess of those created by the Task Builder for
the task region and any shared regions) it is to place in the task's
header. The Executive will initialize these window blocks when it
processes the region and mapping directives. In all (including window
blocks for the task region and shared regions), you can inlcude as
many as eight window blocks to a task in an RSX-llM system and as many
as 16 in an RSX-llM-PLUS system.

The text in the remainder of this section and the figures associated
with it illustrate the development of a task that creates dynamic
regions. Figure 3-32 shows a task (DYNAMIC.MAC) that creates a 128
word dynamic region. This task simply·creates an unnamed region, maps
to it, and fills it with an ascending sequence of numbers beginning at
the region's base and moving upwards. When the region is full,
DYNAMIC detaches from it and prints the following message on your
terminal:

DYNAMIC IS NOW EXITING

The region is automatically deleted on detach.

All of the Executive directives used by
DTRG$S, EXIT$S, CRRG$S, CRAW$S, QIOW$S,
manipulate the region are described in the
Reference Manual.

3-50

DYNAMIC (RDBBK$, WDBBK$,
and QIOW$C) to create and
RSX-llM/M-PLUS Executive

• TI~rLE
.!DENT

.MCALL

.MCALL

.NLIST

REGION
WORD 0
WORD 1
WORD 2
WORD 3
WORD 4
WORD 5
WORD 6

TYPICAL TASK BUILDER FACILITIES

DYNAMIC
/VOl/

RDBBK$,WDBBK$,DTRG$S,EXIT$S,CRRG$S,CRAW$S
QIOW$C ,QIOW$S

BEX

DESCRIPTOR BLOCK
SIZE OF REGION IN 32 DECIMAL WORD BLOCKS
REGION NAME

1111

NAME OF SYSTEM CONTROLLED PARTITION IN
WHICH REGION WILL BE CREATED
STATUS WORD
PROTECTION WORD

RDB: RDBBK$ 128.,,GEN,<RS.MDL!RS.ATT!RS.DEL!RS.RED!RS.WRT>,170017

WDB:

MESl:

ERRl:

ERR2:

ERR3:

STAR'T:

20$:

WINDOW
WORD 0
WORD 1
WORD 2
WORD 3
WORD 4
WORD 5

WDBBK$

.ASCIZ
Sl = •
.ASCII
SIZl =
.ASCII
SIZ2 =
.ASCII
SIZ3 =
.EVEN
.PAGE
.ENABL

CRRG$S
BCS
MOV
CRAW$S
BCS
MOV
MOV
.REPT
ASL
• ENDR
MOV
MOV
INC
DEC
BGT
DTRG$S
BCS
QIOW$C
EXIT$S

DESCRIPTOR BLOCK
APR TO BE USED TO MAP REGION
SIZE OF WINDOW IN 32-WORD BLOCKS
REGION ID
OFFSET INTO REGION TO START MAPPING
LENGTH IN 32-WORD BLOCKS TO MAP
STATUS WORD

7,128.,0,0,,<WS.MAP!WS.WRT>

/DYNAMIC IS NOW EXITING/
- MESl

/CREATE REGION FAILED/
• - ERRl
/CREATE ADDRESS WINDOW FAILED/

• - ERR2
/DETACH REGION FAILED/

• - ERR3

LSB

#ROB ; CREATE A 128 WORD UNNAMED REGION
1$; FAILED TO CREATE REGION
RDB+R.GID,WDB+W.NRID ; COPY REGION ID INTO WINDOW BLOCK
#WDB CREATE ADDR WINDOW AND MAP
2$ FAILED TO CREATE ADDR WINDOW
WDB+W.NBAS,RO BASE ADDR OF CREATED REGION
WDB+W.NSIZ,R2 NUMBER OF 32. WORDS IN REGION
5 MULTIPLY
R2 BY

32 •
#1,Rl INITIAL VALUE TO PLACE IN REGION
Rl,(RO)+ MOVE VALUE INTO REGION
Rl NEXT VALUE TO PLACE IN REGION
R2 ONE LESS WORD LEFT
20$ TO FILL IN
#ROB DETACH AND DELETE REGION
3$; DETACH FAILED
IO~WVB,5,1,,,,<MESl,Sl,40>

Figure 3-32 Source Listing for DYNAMIC.MAC

3-51

TYPICAL TASK BUILDER FACILITIES

ERROR ROUTINES
;
1$: MOV #ERRl,RO CREATE FAILED

MOV #SIZl ,Rl SIZ OF MESSAGE
BR 6$ WRITE MESSAGE

2$: MOV #ERR2,RO CREATE ADDRESS WINDOW FAILED
MOV #SIZ2,Rl SIZE OF MESSAGE
BR 6$

3$: MOV #ERR3,RO DETACH FAILED
MOV #SIZl ,Rl ; SIZE OF MESSAGE

6$: QIOW$S #IO.WVB,#5,#l,,,,<RO,Rl,#40>
EXIT$S
.END START

Figure 3-32 (Cont.) Source Listing for DYNAMIC.MAC

Once you have assembled DYNAMIC, you can build it with the following
Task Builder command sequence:

TKB>DYNAMIC,DYNAMIC/-WI/-SP=DYNAMIC
TKB>/
ENTER OPTIONS:
TKB>WNDWS=l
TKB>//

This command sequence directs the Task Builder to create a task image
named DYNAMIC.TSK and an 80 column (/-WI) map file named DYNAMIC.MAP
on device SY: under the terminal UIC. Because /-SP is attached to
the map file, the Task Builder will not output the file to the line
printer.

Under options, the WNDWS option directs the Task Builder to create one
window block over and above that required to map the task region.
Note that one window block must be created for each region the task
expects to be mapped to simultaneously.

The map that results from this command sequence is shown in Figure
3-33.

Note that creating dynamic regions always involves the assumption that
there will be enough room in the partition named in the task's region
descriptor block to create the region when the task is run. In this
example, if DYNAMIC were to be run in a system whose partition GEN was
not large enough to accommodate the region it creates, the CREATE
REGION directive would fail.

3-52

TYPICAL TASK BUILDER FACILITIES

DYNAMIC.TSK;l MEMORY ALLOCATION MAP TKB M35
6-JAN-79 14:13

PARTITION NAME GEN
IDENTIFICATION VOl
TASK UIC [301,356]
STACK LIMITS: 000212 001211 001000 00512.
PRG XFR ADDRESS: 001406
TOTAL ADDRESS WINDOWS: 2.
TASK IMAGE SIZE 480. WORDS
TASK ADDRESS LIMITS: 000000 001673
R-W DISK BLK LIMITS: 000002 000003 000002 00002.

*** ROOT SEGMENT: DYNAMI

R/W MEM LIMITS: 000000 001673 001674 00956.
DISK BLK LIMITS: 000002 000003 000002 00002.

MEMORY ALLOCATION SYNOPSIS:

PAGE 1

TASK
ATTRIBUTES
SECTION

SEC'TION TITLE !DENT FILE

• BLK.: (RW,I,LCL,REL,CON) 001212 000430 00280.
001212 000430 00280. DYNAMI VOl

$DPB$$:(RW,I,LCL,REL,CON) 001642 000030 00024.
001642 000030 00024. DYNAMI VOl

*** TASK BUILDER STATISTICS:

TOTAL WORK FILE REFERENCES: 518.
WORK FILE READS: O.
WORK FILE WRITES: 0.
SIZE OF CORE POOL: 2076. WORDS (8. PAGES)
SIZE OF WORK FILE: 768. WORDS (3. PAGES)

ELAPSED TIME:00:00:03

Figure 3-33 Task Builder Map for DYNAMIC.TSK

3.4 VIRTUAL PROGRAM SECTIONS

DYNAMIC.OBJ;!

DYNAMIC.OBJ;!

A virtual program section is a special Task Builder storage allocation
facility that permits you to create and refer to large data structures
by means of the mapping directives. Virtual program sections are
supported in the Task Builder through the VSECT option and in FORTRAN
through a set of FORTRAN-callable subroutines that issue the necessary
mapping directives at runtime. With the Task Builder VSECT option you
can specify the following parameters for a relocatable program section
or FORTRAN common block that you have defined in your object module:

• Base virtual address

• Virtual length (window size)

• Physical length

3-53

TYPICAL TASK BUILDER FACILITIES

By specifying the base address, you can align the program section on a
4K address boundary as required by the mapping directives.
Thereafter, references within the program need only point to the base
of the program section or to the first element in the common block, to
ensure proper boundary alignment.

By specifying the window size, you can fix the amount of virtual
address space that the Task Builder allocates to the program section.
If the allocation made by a module causes the total size to exceed
this limit, the allocation wraps around to the beginning of the
window.

By specifying the physical size, you can allocate, before runtime, the
physical memory that the program section will be mapped into at
runtime. The Task Builder allocates this physical memory within an
area that precedes the task image. This area is called the mapped
array area.

The physical length parameter is optional. If you intend to allocate
physical memory at runtime through the Create Region directive, you
can specify a value of O.

Note that when you specify a nonzero value for the physical memory
parameter, the resulting allocation affects only the task's memory
image, not its disk image.

Note also that the Task Builder will attach the virtual attribute to a
relocatable program section you have specified in the VSECT option
only if the section is defined in your task through the common
statement. For example:

TKB>VSECT=VIRT:l60000:20000:2000

In this example, virtual program section VIRT is allocated with a
window size of 4K words and a base virtual address of 160000. In
physical memory, 32K words are reserved for mapping the section at
runtime.

Assume the program is written in FORTRAN, and includes the following
statement:

COMMON /VIRT/ARRAY(4) •••

This statement generates a program section to which the Task Builder
attaches the virtual attribute. A reference to the first element of
the section, ARRAY(l), is translated by the Task Build~r to the
virtual address 160000.

Figure 3-34 shows the effect of this use of the VSECT option.

3-54

TYPICAL TASK BUILDER FACILITIES

160000 APR 7 --

APR 6--

APR 5--

APR 4--

APR 3--

APR 2--

APR 1--

APR 0--

TKB >I

WINDOW

TASK
IMAGE

0 (PROGRAM
SECTION
DEFINITION)

COMMON/VI RT/ ...

HEADER & STACK

VIRTUAL ADDRESS
SPACE

ENTER OPTIONS:
TKB >VSECT = VIRT:160000:20000:2000
~

• o e o

0
PHYSICAL LENGTH
64-BYTE BLOCKS

Figure 3-34 VSECT Option Usage

3-55

TASK
IMAGE

COMMON/VI RT/ ...

HEADER & STACK

MAPPED
ARRAY
AREA

PHYSICAL MEMORY

TYPICAL TASK BUILDER FACILITIES

As mentioned previously, the Task Builder restricts the amount of
virtual address space allocated to the section to a value that is less
than or equal to the window size, wrapping around to the base if the
window size is exceeded.

This process is illustrated in the following example, in which three
modules, A, B, and C, each contain a program section named VIRT that
is 3000 words long. A window size of 4K words has been set through
the VSECT option. If the program section has the concatenate
attribute, the Task Builder allocates memory to each module as
follows:

Module

A
B
c

Low Limit

160000
1 74000
170000

Length

14000
14000
14000

High Limit

174000
170000
164000

The address limits for modules B and c illustrate the effect of
address wrap around when a component of the total allocation exceeds
the window boundary. Note that the addresses generated will be
properly aligned with the contents of physical memory if the virtual
section is remapped in increments of the window size.

3.4.1 FORTRAN Run-Time Support for Virtual Program Sections

FORTRAN supports subroutines to make use of the mapping directives.
FORTRAN also supports calls to the following subroutines, which are
related to virtual program sections:

Subroutine

ALSCT

RLSCT

Function

Allocates a portion of physical memory for use as a
virtual section

Releases all physical memory allocated to a virtual
section

As mentioned earlier, the effect of one or more VSECT= declarations at
task-build time is to create a pool of physical memory below the task
image (the mapped array area). Before a virtual section is referred
to, the task must allocate a portion of this memory through a call to
ALSCT. When space is no longer required, it is released through a
call to RLSCT.

Note that these subroutines issue no mapping directives. They
allocate and release space using region and window descriptor arrays
that you supply. The resulting physical offsets are used in the
task's subsequent calls, that perform the actual mapping.

The subroutine ALSCT is called to allocate physical memory to a
virtual program section as follows:

CALL ALSCT (ireg,iwnd[,ists])

3-56

ireg

iwnd

TYPICAL TASK BUILDER FACILITIES

A one-dimensional integer array that is 9 words long. Elements 1
through 8 of the array contain a region descriptor for the
physical memory to be mapped. The descriptor has the following
format:

ireg(l)

ireg(2)

ireg(3)

ireg(4)

ireg(S)

ireg(6)

ireg(7)

ireg(8)

ireg(9)

Region ID

Size of region in units of 64-byte blocks

Name of region in Radix-50 format
characters)

(Second three characters)

Name of main partition containing region

The name is in Radix-50 format

Region status word

Region protection code

(first three

Thread word: this element links window descriptors
that are used to map portions of the region. It is
maintained by the subroutine.

The elements of the array that you set up consist of ireg(l), and
ireg(3) through ireg(8). The thread word, ireg(9), must be zero
on the initial call; thereafter, the subroutine maintains it.

When your task makes an allocation, ireg(l) and ireg(2) must be 0
on the initial call. In this case, ALSCT obtains and stores the
region size in ireg(2). When the a~location is being made from a
separate region, the caller must supply both region ID and size.
Elements 3 through 8 are not referred to by the subroutine but
must be set up by the caller as required by the applicable system
directives. For a detailed description of these parameters,
refer to the RSX-llM/M-PLUS Executive Reference Manual.

A one-dimensional array that is 11 words long. The first 8 words
contain a window descriptor in the following format:

iwnd(l)

iwnd(2)

iwnd(3)

iwnd(4)

iwnd(S)

iwnd(6)

iwnd(7)

iwnd(8)

Base APR in bits 8 through 15; the Executive Sets bits
0 through 7 when the appropriate mapping directives are
issued

Virtual base address

Window size in units of 64-byte blocks

Region ID

Offset into the region, in units of 64-byte blocks

Length to map, in units of 64-byte blocks

Status word

Address of send/receive buffer

3-57

ists

iwnd(9)

TYPICAL TASK BUILDER FACILITIES

Base off set of physical block allocated to section in
units of 64-byte blocks

iwnd(lO) Length of block in units of 64-byte blocks (supplied by
caller); set to maximum block offset by subroutine

iwnd(ll) Thread word: this element links window descriptors
that are used to map other portions of the region. It
is maintained by the subroutine

The following array elements are supplied as output from the
subroutine:

iwnd(4), iwnd(S), iwnd(9), iwnd(lO), and iwnd(ll)

The remaining elements must be set up as- required by the
Executive directives. Consult the RSX-llM/M-PLUS Executive
Reference Manual for a detailed description of these parameters.

receives the result of the call. One of the following values is
returned:

+l Block successfully allocated. In this case, the region
and window descriptor arrays are set up as described
above.

-200. Insufficient physical memory was available for allocating
the block

The subroutine RLSCT is called to deallocate the physical memory
assigned to a virtual section as follows:

ireg

iwnd

CALL RLSCT (ireg,iwnd)

A one-dimensional integer array that is 9 words long. The
contents of the array are the same as those described for
subroutine ALSCT.

A one-dimensional integer array that is 11 words long. The
contents of the array are the same as those described for
subroutine ALSCT.

Upon return, element iwnd(lO) is the length of the deallocated
region in units of 64-byte blocks.

The procedure for using these subroutines can be summarized as
follows:

• You allocate storage in the program for one window descriptor
per VSECT, and for a single region descriptor.

• Your task calls the subroutine ALSCT to reserve physical
memory to which the program section will be mapped.

3-58

TYPICAL TASK BUILDER FACILITIES

• Your task issues the mapping directives to map the virtual
address space into a portion of the physical memory. It is
the task's responsibility to ensure that the physical memory
to be mapped is always within the limits defined by iwnd(9)
and iwnd(lO).

• When the space is no longer required, the task unmaps it and
releases it with a call to RLSCT.

3.4.2 Example 7: Building a Program that Uses a Virtual Program Section

Figure 3-35 shows the FORTRAN source file for a task named VSECT.FTN.
It illustrates the use of the ALSCT FORTRAN subroutine. When you
buUd, in.stall, and run VSECT, it will allocate the mapped array area
below its header, create a 4K-word window, and map to the area through
the window. ALSCT will then initialize the area and prompt for an
~rray subscript at your terminal by printing:

SUBSCRIPT?

When you input a subscript, it will respond with ELEMENT= and the
contents of the array element for the subscript you typed. VSECT will
continue to prompt until you type CTRL/Z. Upon receiving a CTRL/Z
vsgcT will exit.

Once you have compiled VSECT, you can build it with the following Task
Builder command sequence:

TKB>VSECT,VSECT/-SP=VSECT,LB:[l,l]FOROTS/LB
TKB>/
ENTER OPTIONS:
TKB>WNDWS=l
TKB>VSECT=VIRt:l60000:20000:200
TKB>//

This command sequence directs the Task Builder to create a task image
file named VSECT.TSK and a short (by default) map file VSECT.MAP.
Because /-SP is appended to the map file, the Task Builder will not
output the map to the line printer.

The library switch (/LB) specifies that the Task Builder is to search
the FORTRAN run time library FOROTS.OLB to resolve any undefined
references in the input module VSECT.OBJ. Because the library switch
was applied to the FORTRAN library file without arguments, the Task
Builder extracts from the library and includes in the task image, any
modules in which references are defined.

Under options, the WNDWS option directs the Task Builder to add a
window block to the header in the task image. This window block will
be initialized by the Executive when it processes the mapping
directives within the task.

Th49 VSECT option directs the Task Builder to establish for the program
section named VIRT a base address of 160000 (APR 7) and a length of
20000(8) bytes (4K words). The program section VIRT is defined within
th49 task through the FORTRAN COMMON statement. The VSECT option also
specifies that the Task Builder is to allocate 200 64-byte blocks of
physical memory in the task's mapped array area below the task's
header. (For more information on the switches and options used in
this example, refer to Chapter 6)

The map that results from this command sequence is shown in Figure
3-36.

3-59

TYPICAL TASK BUILDER FACILITIES

c
C VSECT.FTN
c

INTEGER *2 SUB,IRDB{9),IWDB{ll),DSW
INTEGER *2 IARRAY(4096)
COMMON /VIRT/IARRAY
IWDB { 1) "3400 ! USE APR 7 FOR WINDOW
IWDB (3) 128 !WINDOW SIZE = 128*32 WORDS 4K
IWDB (5) = 0 !OFFSET
IWDB (7) = "402 !STATUS = WS.64B!WS.WRT

c
C ALLOCATE 4K MAPPED ARRAY TO IWDB,IRDB
c

c

CALL ALSCT (IRDB,IWDB,DSW)
IF (DSW .NE. 1) GOTO 100

C CREATE A 4K ADDRESS WINDOW
c

CALL CRAW {IWDB,DSW)
IF (DSW .NE. 1) GOTO 200

c
C MAP 4K MAPPED ARRAY
c

CALL MAP {IWDB,DSW)
IF (DSW .NE. 1) GOTO 300
DO 1 I=l,4096

1 !ARRAY (I) = I
c
C MAPPED ARRAY IS INITIALIZED, PROMPT FOR A SUBSCRIPT
c
3 WRITE {5,5)
5 FORMAT ('$SUBSCRIPT?')

READ {5,4,END=lOOO)SUB
4 FORMAT (!7)

WRITE {5,6)IARRAY (SUB)
6 FORMAT (' ELEMENT= ',I7)

GOTO 3
c
c ERROR ROUTINES
c
100
101

WRITE {5,lOl)DSW
FORMAT {' ERROR FROM
GOTO 1000

ALSCT. ERROR= ',I7)

200
201

300
301
1000

WRITE {5,20l)DSW
FORMAT {' ERROR FROM
GOTO 1000
WRITE (5,30l)DSW
FORMAT {' ERROR FROM
CALL EXIT
END

CREATING ADDRESS WINDOW. ERRROR

MAPPING. ERROR I , I 7)

Figure 3-35 Source Listing for VSECT.FTN

3-60

I , I 7)

TYPICAL TASK BUILDER FACILITIES

VSECT.TSK;l MEMORY ALLOCATION MAP TKB M35
8-JAN-79 11:41

PARTITION NAME : GEN
IDENTIFICATION : $FORT
TASK UIC [301,356]
STACK LIMITS: 000216 001215 001000 00512.
PRG XFR ADDRESS: 001216
TOTAL ADDRESS WINDOWS: 2.
MAPPED ARRAY AREA: 4096. WORDS
TASK IMAGg SIZE 9440. WORDS
TOTAL TASK SIZE 13536. WORDS
TASK ADDRESS LIMITS: 000000 044653

PAGE 1

TASK
ATTRIBUTES
SECTION

R-W DISK BLK LIMITS: 000002 000046 000045 00037.

*** ROOT SEGMENT: VSECT

R/W MEM LIMITS: 000000 044653 044654 18860.
DISK BLK LIMITS: 000002 000046 000045 00037.

MEMORY ALLOCATION SYNOPSIS:

SECTION TITLE !DENT FILE

• BLK.: (RW,I,LCL,REL,CON) 001216 000000 00000.
001216 001020 00528 •• MAIN. $FORT VSECT.OBJ;l

VIRT : (RW,D,GBL,REL,OVR) 001216 020000 08192.
001216 020000 08192 •• MAIN. $FORT VSECT.OBJ;l

GLOBAL SYMBOLS:

003506-R FOO$ 003532-R MOL$IS 002736-R TVQ$

*** TASK BUILDER STATISTICS:

TOTAL WORK FILE REFERENCES: 16257.
WORK FILE READS: O.
WORK FILE WRITES: O.
SIZE OF CORE POOL: 4188. WORDS (16. PAGES)
SIZE OF WORK FILE: 3584. WORDS (14. PAGES)

ELAPSED TIME:00:00:32

Figure 3-36 Task Builder Map for VSECT.TSK

3-61

003144-R

TYPICAL TASK BUILDER FACILITIES

3.5 EXAMPLE 8: PRIVILEGED TASKS

There are two classes of tasks in the RSX-llM/M-PLUS systems:
privileged and nonprivileged. The majority of tasks running on any
one system are nonprivileged.

The distinction between privileged and nonprivileged tasks is
primarily a distinction of system access capabilities. Because, in an
unmapped system, all tasks have access to all of memory, this
distinction is not hardware enforceable. Therefore, if your system is
unmapped your task must be responsible for observing the access rules
of your system.

In a mapped system, privileged tasks have special device and memory
access rights that nonprivileged tasks do not have. A privileged task
can, with certain exceptions, access the Executive routines and data
structures; a nonprivileged task cannot. Some privileged tasks have
automatic I/P page mapping available to them; nonprivileged tasks do
not. Finally, a privileged task can bypass system security features
while a nonprivileged task cannot.

Because of their special access rights, privileged tasks are
potentially hazardous to a running system. A privileged task with
coding errors can corrupt the Executive or unintentionally disable
peripheral devices. Moreover, problems caused by such a privileged
task can be obscure and difficult to isolate. For these reasons, you
must exercise caution when developing and running a privileged task.

You designate a task as privileged with the PR {privileged) Task
Builder switch {this switch is described in Chapter 6). The Task
Builder allocates address space for a privileged task based on the
memory management APR that you specify as an argument to this switch.
Three arguments are acceptable to the Task Builder: O, 4, and 5. The
choice of which of these arguments to specify is based on the
considerations described below.

When you ?pecify 4 or 5, the Task Builder automatically reserves APR 7
for mapping the I/O page. Moreover, the Task Builder makes the
Executive available to your task by reserving the APRs necessary to
map the Executive into your task's virtual address space. Therefore,
if your task requires access to the Executive, you must specify an
argument of either 4 or 5.

The choice between APR 4 and 5 is dictated by the size of the
Executive area. If the Executive is 16K words or less, you should
specify an argument of 4. The Task Builder applies a bias of 100000
{16K) to all addresses within your task.

If the Executive is 20K words, you must specify an argument of 5. The
Task Builder applies a bias of 120000 {20K) to all addresses within
your task.

The mapping for APR 4 and 5 is shown in Figure 3-37.

When you specify an ar~ument of 4, there will be 12K words of address
space between the beginning of the task and the start of the mapping
for the I/O page. If your task expects to access the I/O page, it
must not exceed this 12K word limit. If it does, the Task Builder
will be forced to reserve APR 7 to map the task instead of the I/O
page.

When you specify an argument of 5, there will be 8K words of address
space between the beginning of the task and the start of the mapping
for the I/O page. In this case, the task must not be greater than 8K
words if it expects to access the I/O page.

3-62

APR 7-

APR6-

APR 5-

APR4-

APR 3-

TYPICAL TASK BUILDER FACILITIES

1/0 PAGE

AVAJABLE
TASK SPACE

* ..

RESERVED FOR

- VIRTUAL 160000 - APR 7-

APR6-

- VIRTUAL 120000 - APR 5-

- VIRTUAL 100000 - APR 4-

APR3-

1/0 PAGE

l
AVAILABLE
TASK SPACE

•
•

APR 2- EXECUTIVE APR 2-

RESERVED FOR
EXECUTIVE

MAPPING
MAPPING

APR 1- APR 1-

APRO- -VIRTUALO- APR 0-

/PR:4 /PR:5

Figure 3-37 Mapping for /PR:4 and /PR:S

When a task overlaps the I/O page, the Task Builder does not
necessarily generate an error message. Before the Task Builder
generates an error message, a task designated to be mapped with APR 4
must be greater than 16K words; a task designated to be mapped with
APR 5 must be greater than 12K words. Only when you install a task
that overlaps the I/O page does the INSTALL processor generate the
following message:

INS---WARNING--PRIVILEGED TASK OVERMAPS THE I/O PAGE

While this is not a fatal error message, you should consider the
condition to be fatal if your task expects to access the I/O page.

When you specify an argument of O, the Task Builder reserves APR O for
mapping your task. Virtual address space begins at virtual address 0
and extends upward as far as 32K words. Your task cannot access the
ExE~cutive routines or data structures, and the Task Builder does not
automatically reserve an APR to map the I/O page.

A task mapped with APR O can access the I/O page through a device
common (refer to Chapter 3 for a description of device commons).

The MACR0-11 source program PRIVEX.MAC in Figure 3-38 illustrates one
possible use of a privileged task.

NOTE

The nature of privileged tasks is such
that you must have a working knowledge
of system concepts to understand the
operation of one or to write one. If
this example deals with Executive
functions that are unfamiliar to you,
you may prefer to skip this section and
return to it at a later time.

3-63

TYPICAL TASK BUILDER FACILITIES

If you assemble, build, and install PRIVEX into your system, it will
scan the system device tables and examine the UCBs of all non-pseudo
devices on your system. It will determine whether each device is
attached by a . task and print on your terminal the names of all
attached devices on your system with the name of each attached
program.

PRIVEX accesses two Executive routines, $SWSTK (switch stack) and
$SCDVT (scan device tables). The routine $SWSTK switches the
processor to system state (Kernel mode). This switch to system state
is necessary because it inhibits all other processes from modifying
the Executive data structures until PRIVEX is finished with them. The
double semicolons (;;) indicate the portion of the task that is
running in system state.

The routine $SCDVT performs the actual scanning of the device tables.
It returns to PRIVEX each time it accesses a new UCB.

PRIVEX also calls the system library routine $EDMSG (edit message) to
format the data it has retrieved from the device tables. This routine
is documented in the IAS/RSX-11 System Library Routines Reference
Manual.

MACRO LIBRARY CALLS
.TITLE PRIVEX
.!DENT /01/

.MCALL ALUN$C,EXIT$S,QIOW$S

LOCAL DATA

.NLIST BEX

ATTMES: .ASCIZ /%2A%P: IS ATTACHED
BUFMES: .ASCIZ /BUFFER OVERFLOW/

.LIST BEX

QIOBUF: .BLKB 132.

.EVEN

BY %2R/

;MESSAGE OUTPUT BUFFER

BUFFER INTO WHICH INFORMATION IS STORED AT SYSTEM STATE FOR
PRINTING AT USER STATE. AN ENTRY IS FOUR WORDS LONG:

ADDRESS IN DCB OF THE TWO ASCII CHARACTER DEVICE NAME

BINARY UNIT NUMBER

FIRST RADSO WORD OF NAME OF ATTACHED TASK

SECOND RADSO WORD OF NAME OF ATTACHED TASK

Figure 3-38 Source Code for PRIVEX

3-64

TYPICAL TASK BUILDER FACILITIES

THE BUFFER IS TERMINATED BY A

0 ALL UNITS IN THE SYSTEM HAVE BEEN EXAMINED
-1 THE BUFFER WAS FILLED BEFORE ALL UNITS COULD BE EXAMINED

BUFFER: .BLKW 4*200.+l
BUFEND=.-2

;
;ADDRESS OF LAST WORD OF BUFFER

START: MOV
CLR
CLR

#BUFFER,R2
(R2)
Rl

;GET ADDRESS OF INFORMATION BUFFER
;ASSUME NO UNITS ARE ATTACHED
;INITIALIZE CURRENT DCB ADDRESS

"CALL $SWSTK,FORMAT" SWITCHES TO SYSTEM STATE. ALL REGISTERS
ARE PRESERVED ACROSS THE TRANSITION FROM USER MODE TO KERNEL
MODE. BEING IN SYSTEM STATE LOCKS OTHER PROCESSES OUT OF THE
EXECUTIVE (GUARANTEES THAT THE DATA BEING EXAMINED WILL NOT
CHANGE WHILE IT IS BEING EXAMINED). A "RETURN" WILL GIVE
CONTROL TO "FORMAT" AND WILL RESTORE THE CONTENTS OF THE
REGISTERS TO THEIR VALUES BEFORE THE "CALL $SWSTK".

CALL $SWSTK,FORMAT ;SWITCH TO SYSTEM STATE
MOV #$SCDVT,-(SP) ;;GET ADDRESS OF SCAN DEVICE TABLES

; ; COROUTINE
20$: CALL @(?P)+ ;;GET NEXT NONPSEUDO DEVICE UCB

I I ADDRESS
BCS 100$;;IF CS NO MORE UCBS

.~T THIS POINT:

40$:

60$:

80$:

100~?:

R3 - ADDRESS OF THE DEVICE CONTROL BLOCK
R4 - ADDRESS OF THE STATUS CONTROL BLOCK
RS - ADDRESS OF THE UNIT CONTROL BLOCK

CMP
BEQ
MOV
CLR
BISB
MOV
BEQ

CMP
BLOS
ADD
MOV
MOV
MOV
MOV
CLR
INC
BR
CALL
BCC
COM
RETURN

Rl,R3
40$
R3,Rl
RO
D.UNIT(R3),RO
U.ATT(R5),R4
60$

;;IS THIS A NEW DCB?
;;IF EQ NO
;;REMEMBER THIS DCB
;;FORM LOWEST UNIT NUMBER ON
;; THIS DCB
;;IS A TASK ATTACHED?
;;IF EQ NO
;;IF NE R4 IS TCB ADDRESS

#BUFEND,R2 ;;ANY MORE ROOM IN BUFFER?
80$;;IF LOS NO
#D.NAM,R3 ;;FORM ADDRESS OF DEVICE NAME
R3,(R2)+ ;;SAVE IT IN BUFFER
RO,(R2)+ ;;SAVE UNIT NUMBER
T.NAM(R4),(R2)+ ;;SAVE NAME .OF ATTACHED TASK
T.NAM+2(R4), (R2)+ ;;
(R2) ;;ASSUME NO MORE ATTACHED UNITS

RO ;;INCREMENT UNIT NUMBER
20$;;
@(SP)+ ;;GET $SCDVT TO CLEAN OFF STACK
80$;;
(R2) ;;SHOW BUFFER OVERFLOW

;;RETURN TO USER STATE AT FORMAT

.ENABL LSB

Figure 3-38 (Cont.) Source Code for PRIVEX

3-65

TYPICAL TASK BUILDER FACILITIES

FORMAT: TST (R2) ;ANY MORE INFORMATION IN BUFFER?
BEQ EXIT ;IF EQ NO
CMP #-l,(R2) ;OVERFLOWED BUFFER?
BNE 40$;IF NE NO
MOV #BUFMES,Rl ;GET ADDRESS OF OVERFLOW MESSAGE
CALL PRINT ; PRINT IT

EXIT: EXIT$S ;
40$: MOV #ATTMES,Rl ;GET ADDRESS OF TEMPLATE

CALL PRINT ;FORMAT AND PRINT THE INFORMATION
BR FORMAT

.DSABL LSB

PRINT - FORMAT AND PRINT A MESSAGE

INPUTS:
Rl - ADDRESS OF AN $EDMSG INPUT STRING
R2 - ADDRESS OF AN $EDMSG PARAMETER BLOCK

OUTPUTS:
R2 - ADDRESS OF NEXT PARAMETER IN THE $EDMSG PARAMETER BLOCK
RO, Rl, R3, R4 ARE DESTROYED
RS IS PRESERVED

PRINT: MOV #QIOBUF ,RO
RO,R3
$EDMSG

;GET ADDRESS OF OUTPUT BUFFER
;SAVE FOR QIOW$S MOV

CALL ;FORMAT MESSAGE INTO OUTPUT BUFFER

REMOVE LEADING ZEROS FROM UNIT NUMBER

20$:

40$:

MOV
TST

MOV
DEC

CMPB
BEQ
INC
CMPB

BNE
MOVB
INC
MOVB
BNE

R3,RO
(RO)+

RO,R4
Rl

#'0, (RO)+
20$
Rl
I : ' - (RO)

40$
#I 0' (R4) +
Rl
(RO)+, (R4) +
40$

;POINT AT OUTPUT BUFFER
;INCREMENT BY TWO (POINT PAST
; DEVICE NAME)
;REMEMBER THIS SPOT
;ASSUME NEXT BYTE IS A LEADING ZERO
; (REDUCE LENGTH OF MESSAGE)
;IS IT?
;IF EQ YES -- IGNORE IT
;COUNTERACT TOO MUCH DECREMENTING
;WAS THE BYTE A COLON (WAS THE UNIT
; NUMBER ZERO)?
;IF NE NO
;ADD A ZERO UNIT NUMBER
;INCREASE LENGTH OF MESSAGE
;TACK ON REST OF MESSAGE
;IF NE NOT DONE

PRINT THE MESSAGE ON LUN "OUTLUN'~ (DEFINED BY THE TASK BUILD FILE)
AND WAIT USING EVENT FLAG 1

QIOW$S #IO.WVB,#OUTLUN,#l,,,,<R3,Rl,<#' >>
RETURN

.END START

Figure 3-38 (Cont.) Source Code for PRIVEX

3-66

TYPICAL TASK BUILDER FACILITIES

PRIVEX.MAC should be assembled with the following assembler command
string:

MAC>PRIVEX,PRIVEXl-SP=[l,l]EXEMCIML,[200,200]RSXMCIPA:l,[301,311]PRIVEX

The file EXEMC is the Executive macro library and the file RSXMC is
the Executive prefix file. The switches used in the command string
are described in the IASIRSX-11 MACR0-11 Programmer's Reference
Manual.

The Task Builder command sequence for PRIVEX is as follows:

>TKB
TKB> PRIVEXIPR:S,PRIVEXl-SP=PRIVEX
TKB> [2,54]RSX11M.STB,[l,l]EXELIBILB
TKB> I
ENTER OPTIONS:
TKB> UNITS=l
TKB> GBLDEF=OUTLUN:l
TKB> ASG=TIO:l
TKB> II
>

;DEFINE NUMBER OF LUNS
;DEFINE LUN ON WHICH TO PRINT MESSAGES
;ASSIGN LUN TO DEVICE

This command sequence directs the Task Builder to build PRIVEX as a
privileged task and to add a bias of 120000 to all locations within
it. APR 5 was chosen in this example because the Executive in the
system on which this exam~le was originally built is 20K words long.
If the Executive in your system is 16K words or less, you can use
IPR:4 when you build the task.

In the options section of the Task Builder command sequence, the
UNITS=l option specifies that PRIVEX is going to use only one logical
unit. The GBLDEF=OUTLUN:l option defines the symbol OUTLUN as being
equal to 1, and the ASG=TIO:l option associates device TIO: with
logiqal unit 1.

The Task Builder map for PRIVEX is shown in Figure 3-39. The GLOBAL
SYMBOL SECTION has been shortened to save space. Note that the task's
address limits begin at virtual address 120000. The diagram in Figure
3-40 illustrates how the Task Builder allocates virtual address space
for the program.

3-67

PRIVEX.TSK;2

TYPICAL TASK BUILDER FACILITIES

MEMORY ALLOCATION MAP TKB M32
7-0CT-78 16:10

PARTITION NAME : GEN
IDENTIFICATION : 01
TASK UIC [301,311]
STACK LIMITS: 120146 121145 OOlOQO 00512.
PRG XFR ADDRESS: 124526
TASK ATTRIBUTES: PR
TOTAL ADDRESS WINDOWS: 1.
TASK IMAGE SIZE 1856. WORDS
TASK ADDRESS LIMITS: 120000 127147
R-W DISK BLK LIMITS: 000002 000011 000010 00008.

*** ROOT SEGMENT:PRIVEX

R/W MEM LIMITS: 120000 127147 007150 03688.
DISK BLK LIMITS: 000002 000011 000010 00008.

MEMORY ALLOCATION SYNOPSIS:

PAGE 1

Task
Attributes
Section

SECTION TITLE !DENT FILE

• BLK.: (RW,I,LCL,REL,CON) 121146 005654 02988.
121146 003656 01966. PRIVEX 01

LNC$D : (RW,D,GBL,REL,CON) 127022 000002 00002.
$$RESL: (RW,I,LCL,REL,CON) 127024 000024 00020.
$$RESM: (RW,I,LCL,REL,CON) 127050 000100 00064.

GLOBAL SYMBOLS:

AS.DEL 000010
G.STAT 000003
AS.EXT 000004
HI$DIC 000115

$rrT56 033102
.TT22 025634

CI.PWF 177776
I.O.CLN ·003400
DV.ISP 002000
10.DET 002000

.
$VTDCB 033406
.TT43 027314

*** TASK BUILDER STATISTICS:

D.RS80 177660
KINDR7 17 2316
D .. RS81 177657
KISARO 172360

.DB3 020630

TOTAL WORK FILE REFERENCES: 185418.
WORK FILE READS: O.
WORK FILE WRITES: O.
SIZE OF CORE POOL: 9454. WORDS (36. PAGES)
SIZE OF WORK FILE: 8448. WORDS (33. PAGES)

ELAPSED TIME:00:00:30

D.VKRB 000010

D.VOUT 000004

.MMl 021620

Figure 3-39 Task Builder Map for PRIVEX

3-68

PRIVEX.OBJ;2

APR 7-

APR 6-

APR 5-

APR 4-

APR 3-

APR 2- -

APR 1- -

TYPICAL TASK BUILDER FACILITIES

1/0 PAGE

........,.,.,.,...,..._VIRTUAL 160000

. ~~~~~~:
PRIVEX. TSK

EXECUTIVE

VIRTUAL 127147 f
'TASK ADDRESS LIMITS

VIRTUAL 120000 J

APRO VIRTUALO

Figure 3-40 Allocation of Virtual Address Space for PRIVEX

3-69

CHAPTER 4

OVERLAY CAPABILITY

The Task Builder provides you with the means to reduce the memory
and/or virtual address space requirements of your task by using
tree--like overlay structures created with the Overlay Description
Language (ODL). You can specify two kinds of overlay segments: those
that reside on disk and those that reside permanently in memory.

4.1 OVERLAY STRUCTURES

To create an overlay structure, you divide a task into a series of
segments consisting of:

• A single root segment, which is always in memory and,

• Any number of overlay segments, which either 1) reside on disk
and share virtual address space and physical memory with one
another (disk-resident overlays); or 2) reside in memory and
share only virtual address space with one another
(memory-resident overlays)!

Segmetnts consist of one or more object modules which in turn consist
of one or more program sections. Segments that overlay each other
must be logically independent; that is, the components of one segment
cannot reference the components of a segment with which it shares
virtual address space. In addition to the logical independence of the
overlay segments, the general flow of control within the task must be
considered when creating overlay segments.

You must also consider the kind of overlay segment to create at a
given position in the structure, and how to construct it. Dividing a
task into disk-resident overlays saves physical space, but introduces
the overhead activity of loading these segments each time they are
needed, but not present in memory. Memory-resident overlays, on the
other hand, are loaded from disk only the first time they are
referenced. Thereafter, they remain in memory and are referenced by
remapping.

Several large classes of tasks can be handled effectively by an
overlay structure. For example, a task that moves sequentially
through a set of modules is well suited to the use of an overlay
structure. A task that selects one of a set of modules according to
the value of an item of input data is also well suited to the use of
an overlay structure.

1 Note that memory-resident overlays can be used only if the hardware
has a memory management unit, and if support for the memory management
directives has been included in the system on which the task is to
run.

4-1

OVERLAY CAPABILITY

4.1.1 Disk-Resident Overlay Structures

Disk-resident overlays conserve virtual address space and physical
memory by sharing them with other overlays. Segments that are
logically independent need not be present in memory at the same time.
They, therefore, can occupy a common physical area in memory (and,
therefore, common virtual address space) whenever either needs to be
used.

The use of disk-resident overlays is shown in this section by an
example, task TKl, which consists of four input files. Each input
file consists of a single module with the same name as the file. The
task is built by the command:

>TKB TKl=CNTRL,A,B,C

In this example, the modules A, B, and C are logically independent;
that is:

A doea not call B or C and does not use the data of B or c.

B does not call A or C and does not use the data of A or c.

C does not call A or B and does not use the data of A or B.

A disk-resident overlay structure can be defined in which A, B, and C
are overlay segments that occupy the same storage area in physical
memory. The flow of control for the task will be as follows:

CNTRL calls A and A returns to CNTRL.

CNTRL calls B and B returns to CNTRL.

CNTRL calls c and c returns to CNTRL.

CNTRL calls A and A returns to CNTRL.

In this example, the loading of overlays occurs only four times during
the execution of the task. Therefore, the virtual address space and
physical memory requirements of the task can be reduced without unduly
increasing the overhead activity.

The effect of the use of an overlay structure on the allocation of
virtual address space and physical memory for task TKl is described in
the following paragraphs.

The lengths of the modules are:

Module Length (in octal)

CNTRL 20000 bytes
A 30000 bytes
B 20000 bytes
c 14000 bytes

Figure 4-1 shows the virtual address space and physical memory
requirements as a result of building TKl as a single-segment task on a
system with memory management hardware.

The virtual address space and physical memory requirement to build TKl
as a single-segment task is 104000(8) bytes.

In contrast, Figure 4-2 shows the virtual address space and physical
memory required to build TKl as a result of using the overlay
capability and building it as a multisegment task.

4-2

160000 APR 7--

140000 APR 6-·

120000 APR 5-·

100000 APR 4-

60000 APR 3-

40000 APR 2-

20000 APR 1-

APR 0-

c

B

A

CNTRL
(ROOT SEGMENT)

OVERLAY CAPABILITY

HEADER AND STACK

VIRTUAL ADDRESS SPACE

c

B

A

CNTRL
(ROOT SEGMENT)

HEADER AND STACK

PHYSICAL MEMORY

Figure 4-1 TKl Built as a Single-Segment Task

4-3

104000
BYTES

160000 APR 7-

140000 APR 6-

120000 APR 5-

100000 APR 4-

60000 APR 3-

40000 APR 2-

20000 APR 1-

0 APR 0-

A

OVERLAY CAPABILITY

B

CNTRL
(ROOT SEGMENT)

c

HEADER AND STACK

VIRTUAL ADDRESS SPACE

A

B c

CNTRL
(ROOT SEGMENT)

HEADER AND STACK

PHYSICAL MEMORY

Figure 4-2 TKl Built as a Multisegment Task

4-4

50000
BYTE

OVERLAY CAPABILITY

The multisegment task requires 50000(8) bytes.

NOTE

In addition to module storage, storage
is required for overhead in handling the
overlay structures. This overhead is
not reflected in this example.

In the use' of the overlay capability, the amount of virtual address
space and physical memory required for the task is determined by the
length of the root segment and the length of the longest overlay
segment. Overlay segments A and B in this example are much longer
than overlay segment c. If A and B are divided into sets of logically
independent modules, task storage requirements can be further reduced.
Segment A can be divided into a control program (AO) and two overlays
(Al and A2). Segment A2 can then be divided into the main part (A2)
and two overlays (A21 and A22). Similarly, segment B can be divided
into a control module (BO) and two overlays (Bl and B2).

Figure 4-3 shows the virtual address space and physical memory
required for the task produced by the additional overlays defined for
A and B.

As a single-segment task, TKl requires 104000 bytes of virtual address
space and physical memory. The first overlay structure reduces the
requirement by 34000 bytes. The second overlay structure further
reduces the requirement by 14000 bytes.

The vertical and horizontal lines in the diagrams of Figures 4-2 and
4-3 represent the st~te of virtual address space and physical memory
at various times during the calling sequence of TKl. For example, in
Figure 4·-3 the leftmost vertical line in both diagrams shows virtual
address space and physical memory, respectively, when CNTRL, AO, and
Al are loaded. The next vertical line shows virtual address space and
physical memory when CNTRL, AO, A2, and A21 are loaded, and so on.

The horizontal lines in the diagrams of Figures 4-2 and 4-3 indicate
segments that share virtual address space and physical memory. For
example, in Figure 4-3, the uppermost horizontal line of the task
region in both diagrams shows Al, A21, A22, Bl, 82, and c, all of
which can use the same virtual address space and physical memory. The
next horizontal line shows Al, A2, Bl, 82, and c, and so on.

4.1.2 Memory-Resident Overlay Structures (Not Supported on RSX-llS)

The Task Builder provides for the creation of overlay segments that
are loaded from disk only the first time they are referenced.
Theireafter, they reside in memory. Memory-resident overlays share
virtual address space just as disk-resident overlays do but, unlike
disk-resident overlays, memory-resident overlays do not share physical
memory. Instead, they reside in separate areas of physical memory,
each segment aligned on a 32-word boundary. Memory-resident overlays
save time for a running task because they do not need to be copied
from a secondary storage device each time they are to overlay other
segments. "Loading" a memory-resident overlay, reduces to mapping a
set of shared virtual addresses to the unique physical area of memory
containing the overlaying segment.

4-5

OVERLAY CAPABILITY

160000 APR 7-

140000 APR 6-

120000 APR 5-

100000 APR 4-

60000 APR 3-

40000 APR 2-

[A21l A22 B1~ A1J A2 B2

AO BO 20000 APR 1- .._ _______ _.__ _

CNTRL
(ROOT SEGMENT)

______

O APR O- __ H_EA_D_E_R_A_N_D_ST_A_C_K _______ _

VIRTUAL ADDRESS SPACE

AO BO

CNTRL
(ROOT SEGMENT)

HEADER AND STACK

PHYSICAL MEMORY

c

Figure 4-3 TKl Built with Additional Overlay Defined

4-6

34000

OVERLAY CAPABILITY

The use of memory-resident overlays is shown in this section by an
example, task TK2, which consists of four input files. Each input
file consists of a single module with the same name as the file. The
task is built by the command:

>TKB TK2=CNTRL,D,E,F

In this example, the modules D, E, and F are logically independent;
that is:

D does not call E or F and does not use the data of E or F.

E does not call D or F and does not use the data of D or F.

F does not call D or E and does not use the data of D or E.

A memory-resident overlay structure can be defined in which D, E, and
F are overlay segments that occupy separate physical memory locations
but which occupy the same virtual address space. The flow of control
for the task will be as follows:

CNTRL calls D and D returns to CNTRL.

CNTRL calls E and E returns to CNTRL.

CNTRL calls F and F returns to CNTRL.

The effect of the use of a memory-resident overlay structure on the
allocation of virtual address space and physical memory for task TK2
is descr1bed in the following paragraphs.

The lengths of the modules are:

Module Len~th (in octal)

CNTRL 20000
D 10000
E 14000
F 12000

Figure 4-4 shows the virtual address space and physical memory
requirements as a result of building TK2 as a single-segment task on a
system with memory management hardware.

The virtual address space and physical memory requirements when TK2 is
built as a single-segment task is 56000(8) bytes.

If TK2 is built using the Task Builder's
capability, the relationship of virtual
memory changes, as shown in Figure 4-5.

4-7

memory-resident overlay
address space to physical

160000 APR 7-

14000 APR 6-

120000 APR 5-

100000 APR 4-

60000 APR 3-

40000 APR 2-

20000 APR 1-

0 APR 0-

OVERLAY CAPABILITY

F

E

D

CNTRL
(ROOT SEGMENT)

HEADER AND STACK ---------- -- - - - -
VIRTUAL ADDRESS SPACE

....,

....,

F

E

D

CNTRL
(ROOT SEGMENT)

HEADER AND STACK

PHYSICAL MEMORY

Figure 4-4 TK2 Built as a Single-Segment Task

4-8

'"

ii

II

56000
BYTES

OVERLAY CAPABILITY

160000 APR 7-

140000 APR 6-

120000 APR 5-

100000 APR 4-

60000 AP fl 3-

F

40000 APR 2-
E

D E F D

20000 APR 1- 34000(8)

CNTRL BYTES CNTRL
(ROOT SEGMENT) (ROOT SEGMENT)

HEADER AND STACK HEADER AND STACK
0 APR 0-

VIRTUAL ADDRESS SPACE

PHYSICAL MEMORY

Figure 4-5 TK2 Built as a Memory-Resident Overlay

4-9

56000
BYTES

OVERLAY CAPABILITY

The physical memory requirements for TK2 do not change(56000(8)
bytes}, but the virtual address space requirements have been reduced
to 34000(8) bytes. This represents a savings in virtual address space
of 22000(8) bytes.

NOTE

In addition to module storage, storage
is required for overhead in handling the
overlay structures. This overhead is
not reflected in this example.

In Figure 4-5, the vertical and horizontal lines in the virtual
address space diagram represent the state of virtual address space at
various times during the calling sequence of TK2. The leftmost
vertical line shows virtual address space when CNTRL and D are loaded
and mapped. The next vertical line shows virtual address space when
CNTRL and E are loaded and mapped, and the third vertical line shows
virtual address space when CNTRL and F are loaded and mapped.

The uppermost horizontal line of the task region shows that segments
Di E, and F share virtual address space.

When TK2 is activated, the Executive loads TK2's root segment into
physical memory. The Executive loads segments D, E, and F into memory
as they are called. Once all segments in the structure have been
called, "loading" of the overlay segments reduces to the remapping of
virtual address space to the physical locations in memory where the
overlay segments permanently reside. Figures 4-6 and 4-7 illustrate
the relationship between virtual address space and physical memory for
task TK2 during four time periods:

• TIME 1 (Figure 4-6A) - TK2 is run and the system loads the
root segment (CNTRL) into physical memory and maps to it.

• TIME 2 (Figure 4-68) - CNTRL calls segment D. The
loads segment D into physical memory and maps to it.
D returns to CNTRL.

system
Segment

• TIME 3 (Figure 4-7A) - CNTRL calls segment E. The system
loads segment E into physical memory, unmaps from segment D,
and maps to segment E. Segment E returns to CNTRL.

• TIME 4 (Figure 4-78) - CNTRL calls segment F. The system
loads segment F into physical memory, unmaps from segment E,
and remaps to segment F. Segment F returns to CNTRL

4-10

160000 APR 7-

140000 APR 6-

'120000 APR 5-

'100000 APR 4-

()0000 APR 3-

40000 APR 2-

OVERLAY CAPABILITY

CNTRL
(ROOT SEGMENT)

HEADER AND STACK

Figure 4-6A Time 1

....
0 API~ 0- '-------------'

VIRTUAL ADDRESS SPACE

CNTRL
(ROOT SEGMENT)

HEADER AND STACK

PHYSICAL MEMORY

Figure 4-6 Relationship Between Virtual Address Space
and Physical Memory -- Time 1 and Time 2

4-11

OVERLAY CAPABILITY

Figure 4-68 Time 2

160000 APR 7-

140000 APR 6-

120000

100000 APR 4-

60000 APR 3-

40000 APR 2-

D ... D
20000 APR 1- - - - -

CNTRL CNTRL
(ROOT SEGMENT) ... (ROOT SEGMENT)

HEADER AND STACK HEADER AND STACK 0 APR 0- - - - -
VIRTUAL ADDRESS SPACE

PHYSICAL MEMORY

Figure 4-6 (Cont.) Relationship Between Virtual Address Space
and Physical Memory -- Time 1 and Time 2

4-12

HiOOOO APR 7-

140000 APR 6-

120000 APR 5-

100000 APR 4-

60000 APR 3-

40000 APR 2-

20000 APR 1-

0 APR 0-

OVERLAY CAPABILITY

Figure 4-7A Time 3

--
E

::---_ ----~----------1-... _- - - -
CNTRL

(ROOT SEGMENT)

HEADER AND STACK

VIRTUAL ADDRESS SPACE

..
E

....
D

CNTRL
(ROOT SEGMENT)

HEADER AND STACK

PHYSICAL MEMORY

Figure 4-7 Relationship Between Virtual Address Space
and Physical Memory -- Time 3 and Time 4

4-13

OVERLAY CAPABILITY

Figure 4-78 Time 4

160000 APR 7-

140000 APR 6-

120000 APR 5-

100000 APR 4-

60000 APR 3-

F

40000 APR 2-
E

/
D

20000 APR 1-

CNTRL CNTRL
(ROOT SEGMENT) .. (ROOT SEGMENT)

0 APR 0-
HEADER AND STACK HEADER AND STACK - - - -

VIRTUAL ADDRESS SPACE

PHYSICAL MEMORY

Figure 4-7 (Cont.) Relationship Between Virtual Address Space
and Physical Memory ~- Time 3 and Time 4

4-14

OVERLAY CAPABILITY

It is important to be careful in choosing whether to have
memory-resident overlays in a structure. Careless use of these
segments can result in inefficient allocation of virtual address
space. This is because the Task Builder allocates virtual address
space in blocks of 4K words. Consequently, the length of each overlay
segment should approach that limit if you are to minimize waste. (A
segment that is one word longer than 4K words, for example, will be
allocated SK words of virtual address space. All but one word of the
second 4K words will be unusable.)

You can also conserve physical memory by maintaining control over the
contents of each segment. The inclusion of a module in several
memory-resident segments that overlay one another causes physical
memory to be reserved for each extra copy of that module. Common
modules, including those from the system object module library
(SYSLIB), should be placed in a segment that can be accessed from all
referencing segments.

The primary criterion for choosing to have memory-resident overlays is
the need to save virtual address space when disk-resident overlays are
either undesirable (because they would slow the system down
unacceptably), or impossible (because the segments are part of a
resident library or other shared region that must permanently reside
in memory).

Memory-resident overlays can help you use large systems to better
advantage because of the time savings realized when a large amount of
physical memory is available. Resident libraries, in particular, can
benE~fit from the virtual address space saved when they are divided
into memory-resident segments.

4.2 OVERLAY TREE

The arrangement of overlay segments within the virtual address space
of a task can be represented schematically as a tree-like structure.
Each branch of the tree represents a segment. Parallel branches
denote segments that overlay one another and therefore have the same
virtual address; these segments must be logically independent.
Branches ~onnected end to end represent segments that do not share
virtual address space with each other; these segments need not be
logically independent.

The Task Builder provides an overlay description language (ODL) for
representing an overlay structure consisting of one or more trees (the
ODL is described in Section 4.4).

The allocation of virtual address space for TKl (see Section 4.1.1)
can be represented by the single JVerlay tree shown in Figure 4-8.

4-15

OVERLAY CAPABILITY

A21 A22 y
A1 A2 81 82

I
I

I y
AO BO c
I I I

I
CNTRL

Figure 4-8 Overlay Tree for TKl

The tree has a root (CNTRL) and three main branches (AO, BO, and C).
It also has six leaves (Al, A21, A22, Bl, B2, and C).

The tree has as many paths as it has leaves. The path down is defined
from the leaf to the root. For example:

A21-A2-AO-CNTRL

The path up is defined from the root to the leaf. For example~

CNTRL-BO-Bl

Knowing the properties of the tree and its paths is important to
understanding the overlay loading mechanism and the resolution of
global symbols.

4.2.1 Loading Mechanism

Modules can call other modules that exist on the same path. The
module CNTRL (Figure 4-8) is common to every path of the tree and,
therefore, can call and be called by every module in the tree. The
module A2 can call the modules A21, A22, AO, and CNTRL; but A2 cannot
call Al, Bl, B2, BO, or C.

When a module in one overlay segment calls a module in another overlay
segment, the called segment must be in memory and mapped, or must be
brought into memory. The methods for loading overlays are described
in Chapter 5.

4e2.2 Resolution of Global Symbols in a Multisegment Task

In resolving global symbols for a multisegment task, the Task Builder
performs the same activities that it does for a single-segment task.
The rules defined in Chapter 2 for resolving global symbols in a
single-segment task apply also in this case, but the scope of the
global symbols is altered by the overlay structure.

In a single-segment task, any module can refer to any global
definition. In a multisegment task, however, a module can only refer
to a global symbol that is defined on a path that passes through the
called segment.

4-16

OVERLAY CAPABILITY

The following points, illustrated in the tree diagram in Figure 4-9,
describe the two distinct cases of multiply defined symbols and
ambiguously defined symbols.

In a single~-segment task, if you define two global symbols with the
same1 name, the symbols are multiply defined, and an error message is
produced.

In a multisegment task, you can define two global symbols with the
same name if they are on separate paths, and not referenced from a
segment that is common to both.

If you define a global symbol more than once on separate paths, but
they are referenced from a segment that is common to both, the symbol
is ambiguously defined. If you define a global symbol more than once
on a single path, it is multiply defined.

The Task Builder's procedure for resolving global
summarized as follows:

symbols

1. The Task Builder selects an overlay segment for processing.

is

2. The Task Builder scans each module in the segment for global
definitions and references.

3. If the symbol is a definition, the Task Builder searches all
segments on paths that pass through the segment being
processed, and looks for references that must be resolved.

4. If the symbol is a reference, the Task Builder performs the
tree search as described in step 3, looking for an existing
definition.

5. If the symbol is new, the Task Builder enters it in a list of
global symbols associated with the segment.

Overlay segments are selected for processing in an order corresponding
to their distance from the root. That is, the Task Builder processes
the segment farthest from the root first, before processing an
adjoining segment.

When the Task Builder processes a segment, its search for global
symbols proceeds as follows:

• The segment being processed

• All segments toward the root

• All segments away from the root

• All co-trees (see Section 4.5)

Figure 4-9 illustrates the resolution of global symbols in a
multisegment task.

4-17

A1

A21
T (DEF)
S (REF)

I
A2

OVERLAY CAPABILITY

A22
R (REF)
0 (REF)
S (REF)

I

81 82
0 (REF)
R (REF)
S (REF)

R (DEF)
0 (REF) S (REF) S(Ry

I

I
AO

Q (DEF)
S (DEF)
T (DEF)

I

CNTRL
S (REF)

BO
0 (DEF)
S (DEF)

c

Figure 4-9 Resolution of Global Symbols in a Multisegment Task

The following notes discuss the resolution of references in Figure
4-9:

1. The global symbol Q is defined in both segment AO and segment
BO. The references to Q in segment A22 and in segment Al are
resolved by the definition in AO. The reference to Q in Bl
is resolved by the definition in BO. The two definitions of
Q are distinct in all respects and occupy different overlay
paths.

2. The global symbol R is defined in segment A2. The reference
to R in A22 is resolved by the definition in A2 because there
is a path to the reference from the definition
(CNTRL-AO-A2-A22). The reference to R in Al, however, is
undefined because there is no definition for R on a path
through Al.

3. The global symbol S is defined in both segment AO and segment
BO. References to S from segments Al, A21, or A22 are
resolved by the definition in AO, and references to S in Bl
and B2 are resolved by the definition in BO. However, the
reference to S in CNTRL cannot be resolved because there are
two definitions of S on separate paths through CNTRL. The
global symbol S is ambiguously defined.

4. The global symbol T is defined in both segment A21 and
segment AO. Since there is a single path through the two
definitions (CNTRL-AO-A2-A21), the global symbol T is
multiply defined.

4.2.3 Resolution of Global Symbols from the Default Library

The process of resolving global symbols may require two passes over
the tree structure. The global symbols discussed in the previous
section are included in user-specified input modules that the Task
Builder scans in the first pass. If any undefined symbols remain, the
Task Builder initiates a second pass over the structure in an attempt

4-18

OVERLAY CAPABILITY

to resolve such symbols by searching the default object module library
(normally LBO:[l,l]SYSLIB.OLB). The Task Builder reports any
undefined symbols remaining after its second pass.

When multiple tree structures (co-trees) are defined, as described in
Section 4.5, any resolution of global symbols across tree structures
during a second pass can result in multiple or ambiguous definitions.
In addition, such references can cause overlay segments to be
inadvertently displaced from memory by the overlay loading routines,
thereby causing run-time failures. To eliminate these conditions, the
tree search on the second pass is restricted to:

• The segment in which the undefined reference has occurred

• All segments in the current tree that are on a path through
the segment

• The root segment

When the current segment is the main root, the tree search is extended
to all segments. You can unconditionally extend the tree search to
all segments by including the FU (full) switch in the task image file
specification. (Refer to Chapter 6 for a description of the FU
switch.)

4.2.4 Allocation of Program Sections in a Multisegment Task

One of a program section's attributes indicates whether the program
section is local (LCL) to the segment in which it is defined or is
global (GBL).

Local program sections with the same name can appear in any number of
segments. The Task Builder allocates virtual address space for each
local program section in the segment in which it is declared. Global
program sections that have the same name, however, must be resolved by
the Task Builder.

When a global program section is defined in several overlay segments
along a common path, the Task Builder allocates all virtual address
space for the program section in the overlay segment closest to the
root.

FORTRAN common blocks are translated into global program sections with
the overlay (OVR) attribute. In Figure 4-10, the common block COMA is
defined in modules A2 and A21. The Task Builder allocates the virtual
address space for COMA in A2 because that segment is closer to the
root than the segment that contains A21.

If the segments AO and BO use a common block COMAB, however, the Task
Builder allocates the virtual address space for COMAB in both the
segment that contains AO and the segment that contains BO. AO and BO
cannot communicate through COMAB. When the overlay segment containing
BO is loaded, any data stored in COMAB by AO is lost.

You can specify the allocation of program sections explicitly. If AO
and BO need to share the contents of COMAB, you can force the
allocation of this program section into the root segment by the use of
the .PSECT directive of the Task Builder's overlay description
language, described in Section 4.4.

4-19

OVERLAY CAPABILITY

A1 A2

~MA

AO
COM AB

I
I

81 82 y
BO

CO MAB

I
CNTRL

c

I

Figure 4-10 Resolution of Program Sections for TKl

4.3 OVERLAY DATA STRUCTURES AND RUN-TIME ROUTINES

When the Task Builder constructs an overlaid task, it builds
additional data structures and adds them to the task image. It also
includes into the task image a number of system library routines
(called overlay run-time routines). The data structures contain
information about the overlay segments and describe the relationship
of each segment in the tree to the other segments in the tree. The
overlay run-time routines use the data structures to facilitate the
loading of the segments and to provide the necessary linkages from one
segment to another at run time.

The Task Builder links the majority of data structures and all of the
overlay run-time routines into the root segment of the task. The
number and type of data structures, and the functions the routines
perform, depend on two considerations:

• Whether the task is built to use the Task Builder's autoload
or manual load facilities

• Whether the overlay segment is memory resident or disk
resident

These considerations have a marked impact on the size and operation of
the task. Chapter 5 describes the Task Builder's autoload and manual
load facilities and describes the methods for loading overlays.
Appendix B describes the data structures and their contents in detail.

The contents of the root segment for a task with an overlay structure
are discussed briefly in the following paragraphs.

Depending on the considerations above, some or all of the following
data structures are required by the overlay run-time routines:

• Segment tables

• Autoload vectors

• Window descriptors

• Region descriptors

4-20

OVERLAY CAPABILITY

Figure 4-11 shows a typical overlay root segment structure.

TASK CODE & DATA

WINDOW DESCRIPTORS

REGION DESCRIPTORS

SEGMENT DESCRIPTORS

OVERLAY
RUN-TIME
ROUTINES

AUTO LOAD VECTORS

TASK CODE
AND
DATA

HEADER AND STACK

TYPICAL
MAIN TREE

ROOT SEGMENT

Figure 4-11 Typical Overlay Root Segment Structure

There is a segment descriptor for every segment in the task. The
descriptor contains information about the load address, the length of
the segment, and the tree linkage.

When you build an overlaid task autoloadable, autoload vectors appear
in the root segment and in every segment that calls modules in another
segment located farther away from the root of the tree.

Window descriptors are allocated whenever a memory-resident overlay
structure is defined for the task. The descriptor contains
information required by the Create Address Window system directive
(CRAW$). One descriptor is allocated for each memory-resident overlay
segment.

Region descriptors are allocated whenever a task is linked to a shared
region containing memory-resident overlays. The descriptor contains
information required by th.e Attach Region system directive (ATRG$).

4-21

OVERLAY CAPABILITY

4.4 OVERLAY DESCRIPTION LANGUAGE

The Task Builder provides a language, called the Overlay Description
Language {ODL), that allows you to describe the overlay structure of a
task. An overlay description is a text file consisting of a series of
ODL directives, one directive per line. You enter this file in a Task
Builder command line, and identify it as an ODL file by specifying the
MP switch {see Chapter 6) to the file name. If you specify an ODL
file to the Task Builder, it must be the only input file you specify.

An ODL line takes the form:

label: directive argument-list ;comment

A label is required only for the .FCTR directive {see Section 4.4.2).

The ODL directives are listed below and described in Sections 4.4.l
through 4.4.6:

• .ROOT and .END

• .FCTR

• {exclamation point operator)

e .NAME

• .PSECT

• @ {at sign; indirect command file specifier)

Directives act upon argument-list which consists of named input files,
overlay segments, program sections, and lines in the ODL file itself.
Operators group these named task elements, or attach attributes to
them.

If the name belongs to a file, you can enter a complete file
specification. Defaults for omitted parts of the file specification
are as described in Chapters 1 and 6, except that the default device
is SYO:, and the default UFD is taken from the terminal UIC.

In addition, the following restrictions apply to argument-lists:

• You can only use the dot character {.) in a file name.

• Comments cannot appear on a line ending with a file name.

4.4.1 .ROOT and .END Directives

Each overlay description must begin with one .ROOT directive and end
with one .END directive. The .ROOT directive tells the Task Builder
where to start building the tree, and the .END directive tells the
Task Builder where the input ends.

The arguments of the .ROOT directive use three operators to express
concatenation, overlaying, and memory residency.

4-22

•

OVERLAY CAPABILITY

The hyphen (-) operator indicates the concatenation of
address space. For example, X-Y means that sufficient
address space will be allocated to contain segment
segment Y simultaneously. The Task Builder allocates
X and segment Y in sequence.

virtual
virtual

X and
segment

• The exclamation point (!) operator indicates memory-residency
of overlays. (This operator is discussed in Section 4.4.3.)

• The comma (,) operator, appearing within parentheses,
indicates the overlaying of virtual address space. For
example, Y,Z means that virtual address space can contain
either segment Y or segment z. If no exclamation point (1)
precedes the left parenthesis, segment Y and segment Z also
share physical memory.

The comma (,) operator is also used to define multiple tree
structures (as described in Section 4.5.1).

You use parentheses to delimit a group of segments that start at the
same virtual address. The number of nested parenthetical groups
cannot exceed 16.

For example:

.ROOT X-(Y,Z-(Zl,Z2))

.END

These directives describe the tree and its corresponding virtual
address space shown in Figure 4-12:

y Z1 Z2

y

z
I

z y

I
x I x

Figure 4-12 Tree and Virtual Address Space Diagram

To create the overlay description for the task TKl in Figure 4-3
(Section 4.1.1), you could create a file called TFIL.ODL that contains
the directives:

.ROOT CNTRL-(A0-(Al,A2-(A21,A22)),BO-(Bl,B2),C)

.END

To build the task with that overlay structure, you would type:

>TKB TKl=TFIL/MP

The MP switch in the command string above tells the Task Builder that
there is only one input file (TFIL80DL), and that this file contains
an overlay description for the task.

4-23

OVERLAY CAPABILITY

4.4.2 .FCTR Directive

The .FCTR directive allows you to build large, complex trees and
represent them clearly.

The .FCTR directive has a label at the beginning of the ODL line that
is pointed to by a reference in a .ROOT or another .FCTR statement.
The label must be unique with respect to module names and other
labels. The .FCTR directive allows you to extend the tree description
beyond a single line, and thus allows you to provide a clearer
description of the overlay. (There can be only one .ROOT directive.)

For example, to simplify the tree given in the file TFIL (described in
Section 4.4.1), you could use the .FCTR directive in the overlay
description as follows:

AFCTR:
BFCTR:

.ROOT CNTRL-(AFCTR,BFCTR,C)

.FCTR AO-(Al,A2-(A21,A22))

.FCTR BO-(Bl,82)

.END

The label BFCTR is used in the .ROOT directive to designate the
argument of the .FCTR directive, BO-(Bl,82). The resulting overlay
description is easier to interpret than the original description. The
tree consists of a root, CNTRL, and three main branches. Two of the
main branches have sub-branches.

The .FCTR directive can be nested to a level of 16. For example, you
could further modify TFIL as follows:

AFCTR:
.ROOT CNTRL-(AFCTR,BFCTR,C)
.FCTR AO-(Al,A2FCTR)

A2FCTR: .FCTR A2-(A21,A22)
BFCTR: .FCTR BO-(Bl,82)

.END

4.4.3 Exclamation Point Operator

The exclamation point operator allows you to specify overlay segments
that will reside in memory rather than on disk (see Section 4.1.2).
You specify memory residency by placing an exclamation point (1)
immediately before the left parenthesis enclosing the segments to be
affected. The overlay description for task TK2 in Figure 4-4 (Section
4.1.2) is as follows:

.ROOT CNTRL-1 (D,E,F)

.END

In the example above, segments D, E, and F are declared resident in
separate areas of physical memory. The single starting virtual
address for D, E, and F is determined by the Task Builder, by rounding
the octal length of segment CNTRL up to the next 4K boundary. The
physical memory allocated to segments D, E, and F is determined by
rounding the actual length of each segment to the next 32-word
boundary (256-word boundary if the CM switch is in effect), and adding
this value to the total memory required by the task.

4-24

OVERLAY CAPABILITY

The exclamation point operator applies only to segments at the first
level inside a pair of parentheses; segments in parentheses nested
within that level are not affected. It is therefore possible to
define an overlay structure that combines the space-saving attributes
of disk-resident overlays with the speed of memory-resident overlays.
For example:

.ROOT A-1 (Bl-(82,83) ,C)

.END

In this example, Bl and C are
exclamation point operator. 82
however, because no exclamation
parentheses enclosing them.

declared memory resident by the
and 83 are declared disk resident,
point operator precedes the

Not~~ that while a memory-resident overlay can call a disk-resident
overlay, the converse is not legal; that is, you cannot use an
exclamation point for segments emanating from a disk-resident segment.
For example, you cannot build the following structure:

.ROOT A-(Bl-1 (B2,B3),C)

.END
; this overlay description is illegal

In this example, Bl is declared disk resident, so it is illegal to use
the exclamation point to declare 82 and 83 memory resident.

4.4.4 .NAME Directive

The .NAME directive allows you to specify a name for a segment, and
then to assign attributes to the seg~ent. The name must b~ unique
with respect to file names, program section names, .FCTR labels, and
other segment names used in the overlay description. The chief uses
of this directive are:

1. To name a segment uniquely that is to be loaded through the
manual load facility (see Chapter 5)

2. To permit a segment that does not contain executable code to
be loaded through the autoload mechanism

The format of the .NAME directive is:

.NAME segname[,attr] [,attr]

segname

attr

A 1- to 6-character name; this name can consist of the Radix-50
characters A-Z, 0-9, and$ (the period (.) cannot be used).

One of the following:

GBL The name is entered in the segment's global symbol
table.

The GBL attribute makes it possible to load
nonexecutable overlay segments by means of the
autoload mechanism (see Chapter 5).

4-25

NOD SK

NOGBL

OVERLAY CAPABILITY

No disk space is allocated to the named segment.

If a data overlay segment has no initial values,
but will have its contents established by the
running task, no space for the named segment on
disk need be reserved. If the code attempts to
establish initial values for data in a segment for
which no disk space is allocated (a segment with
the NODSK attribute), the Task Builder gives a
fatal error.

The name is not entered in the segment's global
symbol table.

If the GBL attribute is not present, NOGBL is
assumed.

DSK Disk storage is allocated to the named segment.

If the NODSK attribute is not present, DSK is
assumed.

The attributes described are not attached to a segment until the name
is used in a .ROOT or .FCTR statement that defines an overlay segment.
When multiple segment names are applied to a segment, the attributes
of the last name given are in effect.

In the following modified ODL file for TKl (Figure 4-3 of Section
4.1.1), the three main branches, AO, BO, and c, are provided with
names by specifying them in the .NAME directive and using them in the
.ROOT directive. The default attributes NOGBL and DSK are in effect
for BRNCHl and BRNCH3, but BRNCH2 has the complementary attributes
(GBL and NODSK) that will cause the Task Builder to enter the name
BRNCH2 into the segment's global symbol table and ·to allocate disk
space for the segment to be suppressed. BRNCH2 contains uninitialized
storage to be utilized at runtime •

• NAME BRNCHl
.NAME BRNCH2,GBL,NODSK
.NAME BRNCH3

AFCTR:
.ROOT CNTRL-1 (BRNCH1-AFCTR,*BRNCH2-BFCTR,BRNCH3-C)
.FCTR AO-(Al,A2-(A21,A22))

BFCTR: .FCTR BO-*! (Bl,B2)
.END

(The asterisk (*) is the autoload indicator;
Chapter 5.)

it is discussed in

The data overlay segment BRNCH2 is loaded by including the following
statement in the program.

CALL BRNCH2

This action is immediately followed by an automatic return to the next
instruction in the program.

You can also use segment names in making patches with the ABSPAT and
GBLPAT options (see Chapter 6).

4-26

OVERLAY CAPABILITY

NOTE

In the absence of a unique .NAME
specification, the Task Builder
establishes a segment name, using the
first program section file, or library
module name occurring in the segment.

4.4.5 .PSECT Directive

You can use the .PSECT directive to directly specify the placement of
a 9lobal program section in an overlay structure. The name of the
pro9ram section (a 1- to 6-character name consisting of the Radix-50
characters A-Z, 0-9, and $) and its attributes are given in the .PSECT
directive. Thus, you can use the name to indicate to the Task Builder
the segment to which the program section will be allocated. An
example of the use of .PSECT is given in the modified version of task
TKl (the original version is shown in Figure 4-3 in Section 4.1.1)
shown below.

In this example, TKl has a disk-resident overlay structure. The
example assumes that the programmer was careful about the logical
independence of the modules in the overlay segment, but failed to take
into account the requirement for logical independence in multiple
executions of the same overlay segment.

The flow of task TKl can be summarized as follows. CNTRL calls each
of the overlay segments, and the overlay segment returns to CNTRL in
the order A, B, C, A. Module A is executed twice. The overlay
segment containing A must be reloaded for the second execution.

Module A uses a common block named DATA3. The Task Builder allocates
DATl\3 to the overlay segment containing A. The first execution of A
stores some results in DATA3. The second execution of A requires
these values. In this disk-resident overlay structure, hciwever, the
values calculated by the first execution of A are overlaid. When the
segment containing A is read in for the second execution, the common
block is in its initial state.

To permit the two executions of A to communicate, a .PSECT directive
is used to force the allocation of DATA3 into the root. The indirect
command file for TKl, TFIL.ODL, is modified as follows:

AFCTR:
BFCTR:

.PSECT DATA3,RW,GBL,REL,OVR

.ROOT CNTRL-DATA3-(AFCTR,BFCTR,C)

.FCTR A0-(Al,A2-(A21,A22))

.FCTR BO-(Bl,B2)

.END

The attributes RW, GBL, REL, and OVR are described in Chapter 2.

4.4.6 Indirect Command Files

The Overlay Description Language processor can accept ODL text
indirectly, that is, specified in an indirect command file. If an at
sign (@) appears as the first character in an ODL line, the processor
will read text from the file specified immediately after the at sign.
The processor accepts the ODL text from the file as input, at the
point in the overlay description where the file is specified.

4-27

OVERLAY CAPABILITY

For example, suppose you create a file, called BIND.ODL, that contains
the text:

B: .FCTR Bl-(B2,B3)

This text can be replaced by a line beginning with @BIND, at the
position where the text would have appeared:

C:
@BIND

Indirect

.ROOT A-(B,C)

.FCTR Cl-(C2,C3)

.END

C:
B:

Direct

.ROOT A-(B,C)

.FCTR Cl-(C2,C3}

.FCTR Bl-(B2,B3)

.END

The Task Builder allows two levels of indirection.

4.5 MULTIPLE-TREE STRUCTURES

You can define more than one tree within an overlay structure. These
multiple tree structures consist of a main tree and one or more
co-trees. The root segment of the main tree is loaded by the
Executive when the task is mad~ active, while segments within each
co-tree are loaded through calls to the overlay run-time routines.
Except for this distinction, all overlay trees have identical
characteristics: a root segment that resides in memory, and two or
more overlay segments.

The main property of a structure containing more than one tree is that
storage is not shared among trees. Any segment in a tree can be
referred to from another tree without displacing segments from the
calling tree. Routines that are called from several main tree overlay
segments, for example, can overlay one another in a co-tree. The same
considerations in deciding whether to create memory-resident overlays
or disk-resident overlays in a single-tree structure apply in building
a structure containing co-trees.

4e5.l Defining a Multiple-Tree Structure

Multiple-tree structures are specified within the Overlay Description
Language by extending the function of the comma operator. As
described in Section 4.4, this operator, when included within
parentheses, defines a pair of segments that share storage. The
inclusion of the comma operator outside all parentheses delimits
overlay trees. The first overlay tree thus defined is the main tree.
Subsequent trees are co-trees. For example:

X:
Y:

.ROOT

.FCTR

.FCTR

.END

X,Y
XO-(Xl,X2,X3}
YO-(Yl,Y2}

In this example, two overlay trees are specified: 1) a main tree
containing the root segment XO and three overlay segments, and 2) a
co-tree consisting of root segment YO and two overlay segments. The
Executive loads segment XO into memory when the task is activated.
The task then loads the remaining segments through calls to the
overlay run-time routines.

4-28

OVERLAY CAPABILITY

A co-tree must have a root segment to establish linka~e with its own
overlay segments. However, co-tree root segments need not contain
code or data and, therefore, can be 0 length. You can create a
segment of this type, called a null segment, by means of the .NAME
directive. The previous example is modified, as shown below, to move
file YO.OBJ to the root and include a null segment.

X:

Y:

.ROOT

.FCTR

.NAME

.FCTR

.END

X,Y
XO-YO-(Xl,X2,X3)
YNUL
YNUL-(Yl,Y2)

The null segment YNUL is created by use of the .NAME directive, and
replaces the co-tree root that formerly contained YO.OBJ.

4.5~2 Multiple-Tree Example

The following example illustrates the use of multiple trees to reduce
the size o~ the task.

In this example, the root segment CNTRL of task TKl (described in
Section 4.1.1) has had two routines added to it: CNTRLX and CNTRLY.
The routines are logically independent of each other, and both are
approximately 4000(8) bytes long. However, the routines have been
placed in the rciot segment of TKl instead of being overlaid because
both routines must be accessed from modules on all paths of the tree.
In a single-tree overlay structure, the root segment is the only
segment common to all paths of the tree. The schematic diagram for
the modified structure is shown in Figure 4-13.

A21 A22

I
I

J
A1 A2 81 82

I I I I
I I

AO BO c
I I I

I
CNTRLY

I
} ROOT CNTRLX

I SEGMENT
CNTRL

Figure 4-13 Overlay Tree for Modified TKl

4-29

OVERLAY CAPABILITY

One possible overlay description for this structure is shown below •

AFCTR:
A2FCTR:
BFCTR:

• ROOT CNTRL-CNTRLX-CNTRLY-(AFCTR,BFCTR,C)
.FCTR AO-(Al,A2FCTR)
.FCTR A2-(A2l,A22)
.FCTR BO-(Bl,B2)
.END

Because TKl consists of disk-resident overlays and the new routines
are concatenated within the overlay structure, the new routines add
10000(8) bytes to both the virtual address ~pace and physical memory
requirements of the task. However, the added routines consume more
virtual address space than might be expected, as shown in Figure 4-14.

The expansion of TKl's virtual address space requirements caused the
task to extend 4-000(8) bytes beyond the next highest 4K word boundary
(APR 2). Because the Executive must use an additional mapping
register (APR2) the apparent cost in virtual address space above APR 2
of 4000(8) bytes is in fact 20000(8) bytes. (Compare the diagram in
Figure 4-14 with the diagram in Figure 4-3.) The shaded portion of the
unused virtual address space in Figure 4-14 represents the portion of
virtual address space that is allocated but is unusable as allocated.

Small tasks, such as TKl, are seldom adversely affected by the
inefficient allocation of virtual address space, but larger tasks may
be. For example, a large task that contains code to create dynamic
regions (see Chapter 3) or that contains Executive directives to
extend its task region (see the RSX-llM/M-PLUS Executive Reference
Manual) will require at least 4K words of virtual address space to map
each region. In such a task, the use of co-trees can often save
virtual address space and can, therefore, be of paramount importance.
TKl can be modified to reflect this.

As noted earlier, the routines CNTRLX and CNTRLY are logically
independent. Logical independence is a primary requirement for all
segments that overlay each other. However, CNTRLX and CNTRLY cannot
be structured into either of the main branches of TKl's tree because
it is further required that the routines be accessible from modules on
all paths of the tree. Therefore, the only way CNTRLX and CNTRLY can
be overlaid and still meet all of these requirements is through a
co-tree structure. Figure 4-15 shows the schematic representation of
TKl as a co-tree structure.

4-30

APR7-

APR6-

APR5-

APR4-

APR3-

APR2-

APR1-
ROOT
SEGMENT

APRO-

OVERLAY CAPABILITY

A1 B1
A2 B2

AO BO

CNTRLY
- - - -
CNTRLX

- - -

CNTRL

HEADER AND STAC.:

VIRTUAL ADDRESS
SPACE

c

...

lA21lA22J @
A1 _I l B1 A2 B2 c

AO I BO

CNTRLY
r- - - - - - - - -

CNTRLX
t- - - - - - - - -

CNTRL

HEADER AND STACK

PHYSICAL MEMORY

Figure 4-14 Virtual Address Space and Physical Memory for Modified TKl

4-31

OVERLAY CAPABILITY

A21 A22

I I
I

A1 A2 81 82

I
I

I I
I

I
AO BO c CNTRLX CNTRLY
I

I
I I I

I
I

CNTRL CNTRL2

MAIN TREE CO-TREE

Figure 4-15 Overlay Co-Tree for Modified TKl

The root segment CNTRL2 of the co-tree is a null segment. It contains
no code or data and has a length of O. As noted earlier, the root
segment is required by the Task Builder in order to establish linkage
with the overlay segments. One possible overlay description for
building TKl as a two-tree structure is shown below •

AFCTR:
A2FCTR:
BFCTR:

• NAME CNTRL2
.ROOT CNTRL-(AFCTR,BFCTR,C),CNTRL2-(CNTRLX,CNTRLY)
.FCTR AO-(Al,A2FCTR)
.FCTR A2-(A21,A22)
.FCTR B0-(Bl,B2)
.END

The co-tree is defined in the .ROOT directive by placing the comma
operator outside all parenthesis (immediately before CNTRL2). The
.NAME directive creates the null root segment. Figure 4-16 shows the
new relationship between virtual address space and physical memory.

The diagrams in Figure 4-16 illustrate the savings (4000(8) bytes) in
both virtual address space and physical memory that is realized by
overlaying CNTRLX and CNTRLY. What may be more important in some
applications, however, is that the top of TKl's task region has
dropped below the 4K boundary of APR 2. TKl has gained 4K words of
potentially usable virtual address space.

NOTE

The numbers used in this example have
been simplified for illustrative
purposes. In addition, the storage
required for overhead in handling the
overlay structures is not reflected in
this example.

Because the null root CNTRL2 is 0 bytes long, it does not require any
virtual address space or physical memory and, therefore, does not
appear in the diagrams in Figure 4-16.

Finally, you can define any number of co-trees. Additional co-trees
can access all modules in the main tree and other co-trees.

4-32

APR 7-

APR 6-

APR 5-

APR 4-

APR 3-

APR 1-

APR 0-

OVERLAY CAPABILITY

CNTRLX CNTRLY NULL ROOT CNTRLX CNTRLY -
A211 A22 LENGTH=O l A21J A22

A1 B1 ~ A1 l B1 i---
A2 B2 c A2 B2

AO BO ... AO BO

CNTRL CNTRL
(ROOT SEGMENT) (ROOT SEGMENT)

HEADER AND STACK HEADER AND STACK - - - - -
VIRTUAL ADDRESS SPACE

PHYSICAL MEMORY

Figure 4-16 Virtual Address Space
and Physical Memory for TKl as a Co-Tree

4-33

c

OVERLAY CAPABILITY

4.6 OVERLAYING PROGRAMS WRITTEN IN A HIGH-LEVEL LANGUAGE

Programs written in a high-level language usually require the use of a
large number of library routines in order to execute. Unless care is
taken when overlaying such programs, the following problems can occur:

• Task Builder throughput may be drastically reduced because of
the number of library references in each overlay segment.

• Library references from the default object module library,
that are resolved across tree boundaries can result in
unintentional displacement of segments from memory at runtime.

• Attempts to task build such programs can result in multiple
and ambiguous symbol definitions when a co-tree structure is
defined.

The following procedures are effective in solving these problems:

• Task Builder throughput can be increased if you link commonly
used library routines into the main root segment.

• Ambiguous and multiple definitions, and cross-tree references
can be eliminated by using the NOFU switch (the Task Builder
default) to restrict the scope of the default library search.

If sufficient memory is available, the object time system can be
effectively placed in the root segment by building a memory-resident
library. This also reduces total system memory requirements if other
tasks are also currently using the library.

If a memory-resident library cannot be built, you can force library
modules into the root by preparing a list of the appropriate global
references and linking the object module into the root segment.

For other ways to reduce task size, you should consult the user's
guide for the language you are using.

4.7 EXAMPLE 9: BUILDING AN OVERLAY

The text in this section and the figures associated with it illustrate
the building of an overlay structure. For this example, the routines
of the resident library LIB.TSK and the task that refer to it,
MAIN.TSK (from Example 4, Chapter 3), are assembled as separate
modules and built as an overlaid task. This task is built first with
disk-resident overlays and then with memory-resident overlays. The

·disk-resident version of the task is named OVR.TSK and the
memory-resident version is named RESOVR.TSK.

NOTE

This example is intended to provide you
with a working illustration of the
Overlay Description Language. It does
not reflect the most efficient use of
it.

4-34

OVERLAY CAPABILITY

Two alterations were made to each of the routines for this example:

• A .TITLE and .END assembler directive was added to each
routine to establish it as an unique module.

• The following assembler directive was added to each arithmetic
routine to increase its allocation:

.BLKW 1024.*3

This was done to make the Task Builder allocation of address
space more obvious for documentation purposes.

The operation of the overlaid task is identical to that of Example 4
in Chapter 3. The routines and their titles as a result of the .TITLE
directives are as follows:

• The integer addition routine is named AD DOV

• The integer subtraction routine is named SUBOV

• The integer multiplication routine is named MULOV

• The integer division routine is named DIVOV

• The register save and restore routine is named SAVOV

• The print routine is named PRNOV

• The main calling routine is named ROOTM

The lengths of the modules are:

Modul~ Length (in octal)

AD DOV 14024 bytes

SUBOV 14024 bytes

MULOV 14024 bytes

DIVOV 14026 bytes

SAVOV 4042 bytes

PRNOV 4260 bytes

ROOTM 4104 bytes

The flow of control for OVR.TSK is as follows:

ROOTM calls AD DOV and ADDOV returns to ROOTM

ROOTM calls PRNOV to print the result and PRNOV returns to ROOTM

ROOTM calls SUBOV and SUBOV returns to ROOTM

ROOTM calls PRNOV to print the result and PRNOV returns to ROOTM

ROOTM calls DIVOV and DIVOV returns to ROOTM

ROOTM calls PRNOV to print the result and PRNOV returns to ROOTM

ROOTM calls MULOV and MULOV returns to ROOTM

ROOTM calls PRNOV to print the result and PRNOV returns to ROOTM

4-35

OVERLAY CAPABILITY

The print routine (contained in module PRNOV) is called between each
arithmetic operation by the control routine (contained in module
ROOTM). To avoid loading it into physical memory each time it is
called, PRNOV can be placed in the root segment of the task. In
addition, each arithmetic routine calls SAVOV. Therefore, SAVOV must
be on a path common to all segments in the tree. It too is placed in
the root segment of the task. One possible overlay configuration far
this task is shown in Figure 4-17.

SUBOV DIVOV

I I
I

MULOV AD DOV l ______ I·

I }
SAVOV

PR~OV SE~~OETNT
ROOTM

Figure 4-17 Overlay Tree of Virtual Address Space for OVR.TSK

To build this overlay, first create an ODL file (OVERTREE.ODL) that
contains its description:

.ROOT ROOTM-PRNOV-SAVOV-*(MULOV,ADDOV-(SUBOV,DIVOV))

.END

Then, after you have modified the modules and assembled them, you can
build the task with the following command line:

TKB>OVR,OVR/-SP=OVRTREE/MP

This command instructs the Task Builder to build a task image OVR.TSK
and to create a map file, OVR.MAP, under the UFO that corresponds to
the terminal UIC. The negated spool switch (/-SP) inhibits the Task
Builder from spooling the map file to the line printer.

The overlay switch (/MP) attached to the input file tells the Task
Builder that the input file is an ODL file. Therefore, this file will
be the only input file specified. Refer to Chapter 6 for a
description of the switches used in this example.

A portion of the map that results from this task build is shown in
Figure 4-18.

4-36

OVERLAY CAPABILITY

PARTITION NAME : GEN
IDENTIFICATION : 01
TASK UIC [303,3]
STACK LIMITS: 000176 001175 001000 00512.
PRG XFR ADDRESS: 010010 ----S::-
TOTAL ADDRESS WINDOWS: 1. ~
TASK IMAGE SIZE 10496. WORDS
TASK ADDRESS LIMITS: 000000 050753
R-W DISK BLK LIMITS: 000002 000106 000105 00069.

OVR.TSK;ll OVERLAY DESCRIPTION:

BASE: TOP LENGTH

08640.
06164.
06164.
06164.
06168.

*** ROOT SEGMENT: ROOTM

ROOTM
MULOV
AD DOV

SUBOV
DIVOV

R/W MEM LIMITS: 000000 020677 020700 08640.
DISK BLK LIMITS: 000002 000022 000021 00017.

MEMORY ALLOCATION SYNOPSIS:

Task
Attributes
Section

SECnON TITLE IDENT FILE

• BLK.: (RW,I ,LCL,REL,CON) OOll 76 002034 01052.
ANS :(RW,D,GBL,REL,OVR) 003232 004006 02054.

003232 004006 02054. ROOTM 01

GLOBAL SYMBOLS:

AADJD
ANS

007276-R DIVV
007232-R MULL

007316-R PRINT 014274-R SUBB
007266-R SAVAL 020366-R

*** TASK BUILDER STATISTICS:

TOTAL WORK FILE REFERENCES: 7768.
WORK FILE READS: O.
WORK FILE WRITES: 0.
SIZE OF CORE POOL: 8198. WORDS (32. PAGES)
SIZE OF WORK FILE: 3328. WORDS (13. PAGES)

ELAPSED TIME:00:00:27

Figure 4-18 Map File for OVR.TSK

ROOTM.OBJ;lO

007306-R

Figure 4-19 shows the allocation of virtual address space for OVR.TSK.
The circled numbers in Figure 4-18 correspond to the circled numbers
in Figure 4-19.

4-37

OVERLAY CAPABILITY

160000 APR 7-

140000 APR 6-

120000 APR 5-

100000 APR 4-

60000 APR 3-

40000 APR 2-

SUBOV ·
-~
- 034723

DIVOV

MULOV AD DOV ~
- 020677

~ ROOT SEGMENT

- 001176
.__ _________ __,_~

Figure 4-19 Allocation of Virtual Address Space for OVR.TSK

4-38

OVERLAY CAPABILITY

Note that the root segment for OVR.TSK (ROOTM) has expanded with task
building while the segments containing the arithmetic routines have
not. Before task building, the sum of the modules (in octal bytes)
that comprise the root segment is:

4104 + 4260 + 4042 = 14,426 bytes

After task building, the root segment is 20,677(8) bytes long. The
Task Builder has added a header, a stack area, and the overlay
run-time routines to it. The segments containing the arithmetic
routines have not changed. If there had been calls from segments
nearer the root to segments up tree, the Task Builder would have added
data structures to the calling segments as well. (Refer to Chapter 5
for a description of the overlay loading methods.)

You can build OVR as a memory-resident overlay by simply adding the
memory-resident operator (!) to the ODL file for OVR as shown below:

.ROOT

.END
ROOTM-PRNOV-SAVOV-*!(MULOV,ADDOV-!(SUBOV,DIVOV))

For this example, the name of the ODL file and the task image file
havE~ been changed to RESOVR.ODL to distinguish it from the disk
resident version. You can build RESOVR with the following command
1 i DE~:

TKB>RESOVR,RESOVR/-SP=RESOVR/MP

This command directs the Task Builder to build a task named RESOVR.TSK
and to create a map file named RESOVR.MAP. The negated spooling
switch (/-SP) inhibits spooling of the map file.

The MP switch on the input file tells the Task Builder that the file
is an ODL file and that it will be the only input file for this task
build. Refer to Chapter 6 for a description of the switches used in
th i :s example.

A portion of the map that results from this task build is shown in
Figure 4-20.

Figure 4-21 shows the
RESOVR.TSK. The circled
numbers in Figure 4-21.

allocation
numbers

4-39

of
in

virtual address space for
Figure 4-20 correspond to the

OVERLAY CAPABILITY

PARTITION NAME : GEN
IDENTIFICATION : 01
TASK UIC [303~3]
STACK LIMITS: 000236 001235 001000 00512.
PRG XFR ADDRESS: 010226 ~
TOTAL ADDRESS WINDOWS: 3. G
TASK IMAGE SIZE 16896. WORDS
TASK ADDRESS LIMITS: 000000 077777
R-W DISK BLK LIMITS: 000002 000107 000106 00070.

RESOVR.TSK;2 OVERLAY DESCRIPTION:

BASE ~ TOP 0 LENGTH

~ ~;-;_m/ 0214~~--~8960.
040000 054077 014100 06208.
040000 054077 014100 06208.
060000 074077 014100 06208.
060000~0~4077~014100 06208.

*** ROOT SEGMENT: ROOTM

ROOTM
MULOV
AD DOV

SUBOV
DIVOV

R/W MEM LIMITS: 000000 021377 021400 08960.
DISK BLK LIMITS: 000002 000023 000022 00018.

MEMORY ALLOCATION SYNOPSIS:

Task
Attributes
Section

SECTION TITLE !DENT FILE

• BLK.: (RW,I,LCL,REL,CON) 001236 002034 01052.
ANS : (RW,D,GBL,REL,OVR) 003272 004006 02054.

003272 004006 02054. ROOTM 01

GLOBAL SYMBOLS:

ROOTM.OBJ;lO

AADD
ANS

007336-R DIVV
007272-R MULL

007356-R PRINT 014512-R SUBB 007346-R
007326-R SAVAL 020604-R

*** TASK BUILDER STATISTICS:

TOTAL WORK FILE REFERENCES: 7840.
WORK FILE READS O.
WORK FILE WRITES : O.
SIZE OF CORE POOL: 8198. WORDS (32. PAGES)
SIZE OF WORK FILE: 3328. WORDS (13. PAGES)

ELAPSED TIME:00:00:24

Figure 4-20 Map File for RESOVR.TSK

4-40

160000

140000

120000

100000

60000

40000

20000

0

APR 7-

APR 6-

APR 5-

OVERLAY CAPABILITY

APR 4- ~~~~!ifm,;.;,;.;;~~~~~
::::::::::::: .. :::::::::::::::::/:::::-::.:::::::::::::::::<:::::::: ... ·:..·: . .-:.··:.··:.··

APR 3-

APR 1-

APR 0-

SYSLIB
SAVOV
PR NOV
ROOTM

1--------------1 - 001236
HEADER AND STACK

-~

ROOT SEGMENT

Figure 4-21 Allocation of Virtual Address Space for RESOVR.TSK

4-41

OVERLAY CAPABILITY

Note that the Task Builder allocates virtual address space for each
level of overlay segment on a 4K word boundary. When built as a
disk-resident overlay, this structure requires 12K words of virtual
address space; when built as a memory-resident overlay structure, .it
requires 16K words of virtual address space. As noted earlier, you
must be careful when using memory-resident overlays to ensure that
virtual address space is used efficiently.

Finally, note in Figure 4-20 that the Task Builder has allocated three
window blocks to map RESOVR.TSK. Each level of the overlay in a
memory-resident overlay requires a separate window block to map it.
In a disk-resident overlay, a single window block maps the entire
structure r~gardless of how many segment levels there are within the
structure. This consideration can be important when you are building
an overlaid task that either creates dynamic regions or that accesses
a resident library or common because of the extra window blocks
required to use these features.

4.8 SUMMARY OF THE OVERLAY DESCRIPTION LANGUAGE

1. An overlay structure consists of one or more trees. Each
tree contains at least one segment. A segment is one or more
modules containing one or more program sections that can be
loaded by a single disk access.

A tree can have only one root segment, but it can have· any
number of overlay segments.

2. An ODL file is a text file consisting of a series of overlay
description directives, one directive per line. You enter
this file in the Task Builder command line, and identify it
as an ODL file by attaching the MP switch to the file name.
If you enter an ODL file in the Task Builder command line, it
must be the only input file you specify.

3. The overlay description language provides five directives for
specifying the tree representation of the overlay structure:

4.

a.

b.
c.
d.

.ROOT and .END -
• END directive;
directive because
.PSECT
.FCTR
.NAME

There can be only one .ROOT and one
the .END directive must be the last

it terminates input.

.PSECT, .FCTR, and .NAME can be used in any order in the ODL
file.

You define the tree structure using
(,), and exclamation point (1)
parentheses.

the hyphen (-), comma
operators, and by using

a. The hyphen operator (-) indicates that its arguments are
to be concatenated and thus are to coexist in memory.

b. The comma operator (,) within parentheses indicates that
its arguments are to overlay each other either
physically, if disk resident, or virtually, if memory
resident.

c. The comma operator not within parentheses
overlay trees.

4-42

delimits

OVERLAY CAPABILITY

d. The parentheses group segments that begin at the same
point in memory. For example:

.ROOT A-B-(C,D-(E,F))

This ODL command line defines an overlay structure with a
root segment consisting of the modules A and B. In this
structure, there are four overlay segments: c, D, E, and
F. The outer pair of parentheses indicates that the
overlay segments C and D start at the same virtual
address; and similarly, the inner parentheses indicate
that E and F start at the same virtual address.

e. The exclamation point operator {!) immediately before a
left parenthesis declares the enclosed segments to be
memory resident. Nested segments in parentheses are not
affected by an exclamation point operator at a level
closer to the root.

5. The .ROOT directive defines the beginning overlay structure.
The arguments of the .ROOT directive are one or more of the
following:

a. File specifications as described in Chapter 1

b. Factor labels

c. Segment names

d. Program-section names

6. The .END directive terminates input

7. The .FCTR directive provides a means for replacing text by a
symbolic reference (the factor label). This replacement is
useful for two reasons:

a. The .FCTR directive extends the text of the .ROOT
directive to more than one line and thus allows complex
trees to be represented.

b. The .FCTR directive allows the overlay description to be
written in a form that makes the structure of the tree
more apparent.

For example:

.ROOT A-(B-(C,D),E-(F,G),H)

.END

Using the .FCTR directive this overlay description can be
written as follows:

.ROOT A-(Fl,F2,H)
Fl: .FCTR B-(C,D)
F2: .FCTR E-(F,G)

.END

The second representation makes it clear that the tree has
three main branches.

4-43

OVERLAY CAPABILITY

8. The .PSECT directive provides a means for directly specifying
the segment in which a program section is placed. It accepts
the name of .the program section and its attributes. For
example:

.PSECT ALPHA,CON,GBL,RW,I,REL

ALPHA is the program section name and the remaining arguments
are the program section's attributes (program section
attributes are described in Chapter 2).

The program section name (composed of the characters A-Z,
0-9, and $) must appear first in the .PSECT directive, but
the attributes can appear in any order, or can be omitted.
If an attribute is omitted, a default condition is assumed.
The defaults for program section attributes are RW, I, LCL,
REL, and CON.

In the example above, therefore, you need only specify the
attributes that do not correspond to the defaults: .PSECT
ALPHA,GBL

9. The .NAME directive provides you with the means to designate
a segment name for use in the overlay description, and to
specify segment attributes. This directive is useful for
creating a null segment, naming a segment that is to be
loaded manually, or naming a nonexecutable segment that is to
be autoloadable. (Refer to Chapter 5 of this manual for a
description of manually loaded and automatically loaded
segments.) If you do not use the .NAME directive, the Task
Builder uses the name of the first file, program section, or
library module in the segment to identify the segment.

The .NAME directive creates a segment name as follows:

.NAME segname,attr,attr

where segname is the designated name (composed of the
characters A-Z, 0-9, and $), and attr is an optional
attribute taken from the following: GBL, NODSK, NOGBL, DSK.
The defaults are NOGBL and DSK. The defined name must be
unique with respect to the names of program ~ections,
segments, files, and factor labels.

10. You can define a co-tree by specifying an additional tree
structure in the .ROOT directive. The first overlay tree
description in the .ROOT directive is the main tree.
Subsequent overlay descriptions are co-trees. For example:

.ROOT A-B-(C,D-(E,F)),X-(Y,Z),Q-(R,S,T)

The main tree in this example has the root segment consisting
of files A.OBJ and B.OBJ. Two co-trees are defined; the
first co-tree has the root segment X and the second co-tree
has the root segment Q.

4-44

CHAPTER 5

OVERLAY LOADING METHODS

The RSX-llM/M-PLUS systems provide two
disk-resident and memory-resident overlays:

methods for loading

• Autoload -- the Overlay Run-time routines are automatically
called to load segments you have specified

• Manual Load -- you include in the task explicit calls to the
Overlay Run-Time routines.

When you build an overlaid task, you must decide which one of these
methods to use, because both cannot be used in the same task.

The loading process depends on the kind of overlay:

• Disk resident -- a segment is loaded from disk into a shared
area of physical memory, writing over whatever was present.

• Memory resident -- a segment is "loaded" by mapping a set of
shared virtual addresses to a unique unshared area of physical
memory, where the segment has been made permanently resident
(after having been initially brought in from the disk).

With the autoload method, the Overlay Run-Time routines handle loading
and error recovery. Overlays are automatically loaded by being
referenced through a transfer-of-control instruction (CALL, JMP, or
JSR). No explicit calls to the Overlay Run-Time routines are needed.

In the manual load method, you handle loading and error recovery
explicitly~ Manual loading saves space and gives you full control
over the loading process, including the ability to specify whether
loading is to be done synchronously or asynchronously.

In the manual load method, you must provide for loading the overlay
segments of both the main tree and the root segments, as well as the
overlay segments, of the co-trees. Once loaded, the root segment of a
co-tree remains in memory.

5.1 AUTOLOAD

To specify the autoload method, you use the autoload indicator, an
asterisk (*). You place this indicator in the ODL description of the
task at the points where loading must occur. The execution of a
transfer-of-control instruction to an autoloadable segment up-tree
(farther away from the root) automatically initiates the autoload
process.

5-1

OVERLAY LOADING METHODS

5.1.1 Autoload Indicator

The autoload indicator (*) marks as autoloadable the segment or other
task element (as defined below). If you apply the autoload indicator
to an ODL statement enclosed in parentheses, every task element within
the parentheses is marked as autoloadable. Placing the autoload
indicator at the outermost level of parentheses in the ODL description
marks every module in the overlay segments as autoloadable.

If, in the TKl example of Chapter 4, Section 4.1.1, segment C
consisted of a set of modules Cl, C2, C3, C4, and CS, the tree diagram
would be as shown in Figure 5-1.

A21 A22 C5 I I
I C4

A1 A2 81 82 C3 I
I

I I
I

I C2
AO BO C1

CNTRL

Figure 5-1 Details of Segment C of TKl

Placing the autoload indicator at the outermost level of parentheses
ensures that, regardless of the flow of control within the task, a
module will be properly loaded when it is called. The ODL description
for task TKl would be:

AFCTR:
BFCTR:
CFCTR:

.ROOT CNTRL-*(AFCTR,BFCTR,CFCTR)

.FCTR AO-(Al,A2-(A21,A22))
.FCTR BO-(Bl,B2)
.FCTR Cl-C2-C3-C4-CS
.END

Also, when the root segment of a co-tree is not a null segment, you
must mark the co-tree's root segment (CNTRL2) as well as its outermost
level of parentheses to ensure that all modules of the co-tree are
properly loaded. For example, if the· co-tree root (CNTRL2) of the
multiple tree example, Section 4.5.2, had contained code or data it
would have been marked as follows:

.ROOT CNTRL-*(AFCTR,BFTCR,CFCTR) ,*CNTRL2-*(CNTRLX,CNTRLY)

You can apply the autoload indicator to the following elements:

• File names - to make all the components
autoloadable.

of the file

• Portions of ODL tree descriptions enclosed in parentheses - to
make all the elements within the parentheses autoloadable,
including elements within any nested parentheses.

• Program section names - to make the program section
autoloadable. The program section must have the instruction
(I) attribute.

5-2

OVERLAY LOADING METHODS

• Segment names defined by the .NAME directive - to make all
components of the segment autoloadable.

• .FCTR label names - to make the first component of the factor
autoloadable. All elements specified in the .FCTR statement
are autoloadable if they are enclosed in parentheses.

In the following example, two .PSECT directives and a .NAME directive
are introduced into the ODL description for TKl. Autoload indicators
are applied as follows:

AFCTR:
BFCTR~

CFCTR:

.ROOT CNTRL-(*AFCTR,*BFCTR,*CFCTR)

.FCTR AO-*ASUB1-ASUB2-*(Al,A2-(A21,A22))

.FCTR (BO-(Bl,82))

.FCTR CNAM-Cl-C2-C3-C4-C5

.NAME CNAM,GBL

.PSECT ASUBl,I,GBL,OVR

.PSECT ASUB2,I,GBL,OVR

.END

The following notes are keyed to the example above.

1. The autoload indicator is appli~d to each factor name;
therefrire:

e *AFCTR=*AO

• *BFCTR=*(BO-(Bl-82))

• *CFCTR=*CNAM

CNAM, however, is an element defined by a .NAME directive.
Therefore, all components of the segment to which the name
applies are made autoloadable, that is, Cl, C2, C3, C4, and
C5.

2. The autoload indicator is applied to the name of a program
section with the instruction (I) attribute (*ASUBl), so
program section ASUBl is made autoloadable.

3. The autoload indicator is applied to a portion of the ODL
description enclosed in parentheses:

*(Al,A2-(A21,A22))

Thus, every element within the parentheses is
autoloadable (that is, files Al, A2, A21, and A22).

made

The net effect of this ODL description is to make every element except
program section ASUB2 autoloadable.

5.1.2 Path Loading

The autoload method uses path loading; that is, a call from one
segment to another segment up-tree (farther away from the root)
ensures that all the segments on the path from the calling segment to
the called segment will reside in physical memory and be mapped. Path
loading is confined to the tree in which the called segment resides.
A call from a segment in one tree to a segment in another tree results
in the loading of all segments on the path in the second tree from the
root to the called module.

5-3

A1
I

OVERLAY LOADING METHODS

A21 A22
I I

I
A2 B1 B2
I I I

I I
AO BO

CNTRL

C5
C4
C3
C2
C1

Figure 5-2 Path-Loading Example

In Figure 5-2, if CNTRL calls A22, all the modules between the CNTRL
and A2 are loaded. In this case, modules AO and A2 are loaded.

With the autoload method, the Overlay Run-Time routines keep a record
of the segments that are loaded and mapped, and issue disk-load
requests only for segments that are not in memory. If CNTRL calls A2
after calling Al, AO is not loaded again because it is already in
memory and mapped.

A reference from one segment to another segment down-tree (closer to
the root) is resolved directly. For example, A2 can immediately
access AO because AO was path loaded in the call to A2.

5.1.3 Autoload Vectors

To resolve a reference up-tree to a global symbol in an autoloadable
segment, the Task Builder generates an autoload vector for the
referenced global symbol. The reference in the code is changed to a
definition that points to an autoload vector entry. The format for
the autoload vector is shown in Figure 5-3.

JSR PC,SUB

$AUTO

SEGMENT DESCRIPTOR ADDR.

ENTRY POINT ADDRESS

Figure 5-3 Autoload Vector Format

In the figure, a transfer-of-control instruction to the global symbol
executes the call to the autoload routine, $AUTO.

An exception to the procedure for generating autoload vectors is made
in the case of a program section with the data (D) attribute.
References from a segment to a global symbol up-tree in a program
section with the data (D) attribute are resolved directly.

Because the Task Builder can obtain no information about the flow of
control within the task, it often generates more autoload vectors than
are necessary. However, your knowledge of the flow of control within
your task, and knowledge of path loading, can help you determine where
to place the autoload indicators. By placing the autoload indicators

5-4

OVERLAY LOADING METHODS

only at the points where loading is actually required, you can
minimize the number of autoload vectors generated for the task.

In the following example, all the calls to overlays originate in the
root segment. That is, no module in an overlay segment calls outside
its segment. The root segment CNTRL has the following contents:

PROGRAM CNTRL
CALL Al
CALL A21
CALL A2
CALL AO
CALL A22
CALL BO
CALL Bl
CALL B2
CALL Cl
CALL C2
CALL C3
CA.LL C4
CALL CS
E:ND

If you place the autoload indicator at the outermost level of
parentheses, 13 autoload vectors are generated for this task;
however, because A2 and AO are loaded by path loading to A21, the
autoload vectors for A2 and AO are unnecessary. Moreover, the call to
Cl loads the segment that contains C2, C3, C4, and CS; therefore,
autoload vectors for C2 through CS are unnecessary.

You can eliminate the unnecessary
autoload indicator only at the
required, as follows:

auto load
points

vectors by placing the
where explicit loading is

AFCTR:
BFCTR::

.ROOT CNTRL-(AFCTR,*BFCTR,CFCTR)

.FCTR AO-(*Al,A2-*(A21,A22))

.FCTR (BO-(Bl,B2))
CFCTR: .FCTR *Cl-C2-C3-C4-C5

.END

With this ODL description, the Task Builder generates seven autoload
vectors -- for Al, A21, A22, BO, Bl, 82, and Cl.

S.1.4 Autoloadable Data Segments

You can make overlay segments that contain no executable code
autoloadable, as follows. First, you must include· a .NAME directive
and specify the GBL attribute, as described in Section 4.4.4. For
example:

.ROOT A-*(B,C)

.NAME BNAME ,GBL
B: .FCTR BNAME-BFIL

.END

The global symbol BNAME is created and entered into the symbol table
of segment BNAME. Since this segment is marked to be autoloaded, root
segment A calls segment BNAME as follows:

CALL BNAME

S-5

OVERLAY LOADING METHODS

The segment is autoloaded and an immediate return to inline code
occurs.

The data of BFIL must be placed in a program section with the data (D)
attribute to suppress the creation of autoload vectors.

5.2 MANUAL LOAD

If you decide to use the manual load method to load segments, you must
include in your program explicit calls to the $LOAD routine. These
load requests must supply the name of the segment to be loaded. In
addition, they can include information necessary to perform
asynchronous load requests, and to handle load request failures.

The $LOAD routine does not path load. A call to $LOAD loads only the
segment named in the request. The segment is read in from disk and
mapped regardless of its previous status.

A MACR0-11 programmer calls the $LOAD routine directly. A FORTRAN
programmer calls $LOAD using the FORTRAN subroutine MNLOAD.

5.2.1 MACR0-11 Manual Load Calling Sequence

A MACR0-11 programmer calls $LOAD as follows:

MOV
CALL

#PBLK,RO
$LOAD

PBLK is the address of a parameter block with the following format:

PBLK:

length

event-flag

seg-name

i/o-status

ast-trp

.BYTE

.RAD50

.WORD

.WORD

length, event-flag
/seg-name/
[i/o-status]
[ast-trp]

The length of the parameter block (3 to 5 words).

The event flag number, used for asynchronous loading.
If the event-flag number is O, synchronous loading is
performed.

The name of the segment to be loaded: a 1- to
6-character Radix-50 name, occupying twd words.

The address of the I/O status doubleword. Standard QIO
status codes apply.

The address of an asynchronous trap service routine to
which control is transferred at the completion of the
load request.

The condition code C-list is set or cleared on return, as follows:

• If condition code C=O, the load request was accepted.

• If condition code C=l, the load request was unsuccessful.

5-6

OVERLAY LOADING METHODS

For a synchronous load request, the return of the condition code C=O
means that the desired segment is loaded and is ready to be executed.
For an asynchronous load request, the return of the code C=O means
that the load request was successfully queued to the device driver,
but the segment is not necessarily in memory. Your program "must
ensure that loading has been completed, by waiting for the specified
event flag before calling any routines or accessing any data in the
segment.

5.2o2 FORTRAN Manual Load Calling Sequence

To use the manual load mechanism in a FORTRAN program, your program
must refer to the $LOAD routine by means of the MNLOAD subroutine.
The subroutine call has the form:

CALL MNLOAD(seg-name[,event-flag] [,i/o-status] [,ast-trp] [,ld-ind])

seg--name

event-flag

i/o--status

ast-·trp

ld-i. nd

A 2-word real variable containing the segment name in
Radix-SO format.

An optional integer event flag number used for an
asynchronous load request. If the event flag number is
O, the load request is synchronous.

An optional 2-word integer array containing the I/O
status doubleword, as described for the QIO directive
in the RSX-llM/M-PLUS Executive Reference Manual.

An optional asynchronous trap subroutine entered at the
completion of a request. MNLOAD requires that all
pending traps specify the same subroutine.

An optional integer variable containing the results of
the subroutine call. One of the following values is
returned:

+l Request was successfully executed.

-1 Request had bad parameters or was not successfully
executed.

You can omit optional arguments. The following calls are legal:

Call Effect

CALL MN LOAD (SEGAl)

CALL MNLOAD (SEGAl,O,,,LDIND)

5-7

Load segment named in SEGAl
synchronously.

Load segment named in SEGAl
synchronously and return
success indicator to LDIND.

OVERLAY LOADING METHODS

Call Effect

CALL MNLOAD (SEGAl,l,IOSTAT,ASTSUB,LDIND)
Load segment named in SEGAl
asynchronously, transferring
control to ASTSUB upon
completion of the load
request; store the I/O Status
doubleword in IOSTAT, and the
success indicator in LDIND.

The following example uses the program CNTRL, previously discussed in
Section 5.1. In this example, there is sufficient processing between
the calls to the overlay segments to make asynchronous loading
effective. The autoload indicators are removed from the ODL
description and the FORTRAN programs are recompiled with explicit
calls to the MNLOAD subroutine, as follows:

PROGRAM CNTRL
EXTERNAL ASTSUB
DATA SEGAl /6RA1 /
DATA SEGA21 /6RA21 /

CALL MNLOAD (SEGAl,l,IOSTAT,ASTSUB,LDIND)

CALL Al

CALL MNLOAD (SEGA21,l,IOSTAT,ASTSUB,LDIND)

CALL A21

END
SUBROUTINE ASTSUB
DIMENSION IOSTAT(2)

END

When the AST trap routine is used, the I/O status doubleword is
automatically supplied to the dummy variable IOSTAT.

5.3 ERROR HANDLING

If you select the manual load method, you must provide error handling
routines that diagnose load errors and provide appropriate recovery.

If you use the autoload mechanism, a simple recovery procedure is
provided that checks the Directive Status Word (DSW) for an error
indication. If the DSW indicates that no system dynamic storage is

5-8

OVERLAY LOADING METHODS

available, the routine issues a Wait for Significant Event directive
and tries again; if the problem is not dynamic storage, the recovery
procedure generates a synchronous breakpoint trap. If the task
services the trap and returns without altering the state of the
program, the request will be retried.

A more comprehensive user-written error recovery
substituted for the system-provided routine
conventions are observed:

subroutine can ·be
if the following

1. The error recovery routine must have the entry point name
$ALERR.

2. The contents of all registers must be saved and restored.

On entry to $ALERR, R2 contains the address of the segment descriptor
that could not be loaded. Before recovery action can be taken, the
routine must determine the cause of the error by examining the
following words in the sequence indicated:

1. $DSW

2. N.OVPT

The Directive Status Word may contain an error
status code, indicating that the Executive
rejected the I/O request to load the overlay
segment.

The contents of this location, offset by N.IOST,
point to a 2-word I/O status block containing the
results of the load overlay request returned by
the device driver. The status code occupies the
low-order byte of word O. For example, for a
device not ready condition, the code will be
IE .DNR. (For more information on these codes
refer to the IAS/RSX-11 I/O Operations Reference
Manual.)

5.4 GLOBAI. CROSS-REFERENCE OF AN OVERLAID TASK

This section illustrates a global cross-reference that has been
created for an overlaid task. The task consists of a root segment
containing the module ROOT.OBJ, and two overlay segments composed of
modules OVRl and OVR2. The overlay description of the file is as
follows:

.ROOT ROOT-(OVR1,*0VR2)

Only segment OVR2 is autoloadable. Figure 5-4 shows the resulting
cross-reference listing.

As shown, the global symbol OVRl is defined in module OVRl, and a
single nonautolaodable, up-tree reference is made to this symbol by
the module ROOT, as indicated b the circumflex. Note that segment
OVRl cannot be evaded because of the restriction against mixing manual
load and autoload in the same task.

5-9

OVERLAY LOADING METHODS

OVRTST CREATED BY TKB ON l-OCT-76 AT 12:04 PAGE 1

GLOBAL CROSS REFERENCE CREF VOl

SYMBOL VALUE REFERENCES •••

N.ALER 000010 AUTO # OVRES
N. I OST 000004 OVCTL # OVRES
N.MRKS 000016 # OVRES
N .OVLY 000000 OVCTL # OVRES
N.OVPT 000054 AUTO OVCTL ·· # VCTDF
N .RDSG 000014 # OVRES
N.STBL 000002 # OVRES
N.SZSG 000012 # OVRES
OVRl 002014-R # OVRl ROOT
OVR2 002014-R * OVR2 @ ROOT
ROOT 001176-R 0 ROOT
$ALBP1 001320-R # AUTO
$ALBP2 001416-R # AUTO
$ALERR 001246-R # ALERR OVDAT
$AUTO 001302-R # AUTO
$DSW 000046 ALERR # VCTDF
$MARKS 001546-R # OVCTL
$OTSV 000052 # VCTDF
$SAVRG 001452-R AUTO # SAVRG
$VEXT 0 00 0 56 # VCTDF
• FSRPT 000050 # VCTDF
.NALER 001442-R # OVDAT
.N IOST 001436-R # OVDAT
.NMRKS 001450-R # OVDAT
.NOV LY 001432-R # OVDAT
.NOVPT 000042 # OVDAT
• NRDSG 001446-R # OVDAT
.NSTBL 001434-R # OVDAT
.NSZSG 001444-R # OVDAT

OVRTST CREATED BY TKB ON l-OCT-76 AT 12:04 PAGE 2

SEGMENT CROSS REFERENCE CREF VOl

SEGMENT NAME RESIDENT MODULES

OVRl OVRl
OVR2 OVR2
ROOT ALERR AUTO OVCTL CV DAT OVRES ROOT SAVRG

VCTDF

Figure 5-4 Sample Overlaid Cross-Reference Listing

As shown, the global symbol OVRl is defined in module OVRl, and a
single nonautoloadable, up-tree reference is made to this symbol by
the module ROOT, as indicated by the circumflex. Note that segment
OVRl cannot be evaded because of the restriction against mixing manual
load and autoload in the same task.

5-10

OVERLAY LOADING METHODS

The asterisk preceding the module OVR2 indicates that the global
symbol OVR2 is an autoload symbol and is referenced from the module
ROOT through an autoload vector, as shown by the at sign (@)
character.

Down-tree references to the global symbol ROOT are made from modules
OVRl and OVR2. These references are resolved directly.

The segment cross-reference shows the segment name and modules in each
overlay.

5-11

CHAPTER 6

SWITCHES AND OPTIONS

You use switches and options to control the construction of your task
image. This chapter provides detailed reference information on all
the Task Builder switches and options.

6.1 SWITCHES

The syntax for a file specification, as given in Chapter 1, is:

dev: [group,member]filename.type;version/swl/sw2 ••• /swn

Optionally, you can conclude a file specification with one or more
switches (swl,sw2, ••• swn). When you do not specify a switch, the Task
Builder establishes a default setting for it.

You designate a switch by a 2- to 4-character code preceded by a slash
(/). If you precede the 2- to 4-character code with a minus sign (-)
or the letters NO, the Task Builder negates the function of the two
characters. For example, the Task Builder recognizes the following
settings for the switch CP (checkpointable):

/CP
/-CP
/NOCP

The task is checkpointable
The task is not checkpointable
The task is not checkpointable

In some cases, two particular switches cannot both be used in a file
specification. When &Jch a conflict occurs, the Task Builder selects
the overriding switch according to the following table:

Switch

AC (Ancillary Control
Processor)

EA (Extended Arithmetic
Element)

CC (Concatenated object
file)

For example:

Switch

PR (Privileged)

FP (Floating Point
Processor)

LB (Library file)

MCR>TKB IMGS=IN6,INS/LB/CC

Overriding Switch

AC

FP

LB

The Task Builder assumes that the input file INS is a library file.
It searches the file for undefined global references. It does not
include in the task image all of the modules in INS.

6-1

SWITCHES AND OPTIONS

The switches that the Task Builder recognizes are given in
alphabetical order in Table 6-1. Sections 6.1.1 through 6.1.31 give
detailed descriptions of each switch, in alphabetical order,
including:

• The switch format

• The file(s) to which the switch can be applied

• A description of the effect of the switch on the Task Builder

• The default assumption made if the switch is not present

Table 6-1
Task Builder Switches

Applies
Format Meaning to File Default

AC [: n] Task is an ancillary control pro- .TSK -AC
cessor

AL Task can be checkpointed to space .TSK -AL
allocated in the task image file

cc Input file consists of concatenated .OBJ cc
object modules

CM Memory-resident overlays are aligned .TSK -CM
on 256-word physical boundaries

CP Task is checkpointable .TSK -CP

CR A global cross-reference listing .MAP -CR
is appended to the memory allocation
file

DA Task contains a debugging aid • TSK, -DA
.OBJ

DL Specified library file is a re- .OLB -DL
placement for the system object
module library

EA Task uses extended arithmetic .TSK -EA
element

FP Task uses the floating-point .TSK -FP
processor

1 The default is /MA for an input file, and /-MA for system and
resident library .STB files.

2 The default for the memory management switch is /MM
system has memory management hardware and /-MM if the
does not have memory management hardware.

if the host
host system

(continued on next page)

6-2

SWITCHES AND OPTIONS

Table 6-1 (Cont.)
Task Builder Switches

Format Meaning

FU All cotree overlay segments are
searched for matching definition or
reference when modules from the de
fault object module library are
being processed

HD Task image includes a header

LB Input file is a library file

MA Map file includes information
from the file

MM System has memory management

MP Input file contains an overlay
description

MU Task is a multiuser task

PI Task is position independent

PM Postmortem Dump is requested

PR[:n] Task has privileged access rights

RO Memory-resident overlay operator
(!) is enabled

SE Messages can be directed to the
task by means of the Executive
SEND directive

SH Short memory allocation file is
requested

SL Task is slaved to an initiating
task

SP Spool map output

SQ Task program sections are
allocated sequentially

SS Selective Search for global
symbols

TR Task is to be traced

WI Memory allocation file is printed
at a width of 132 characters

XT[:n] Task Builder exits after n
diagnostics

6-3

Applies
to File

.TSK

• TSK,
.STB

.OLB

.MAP,

.TSK

.TSK

.ODL

.TSK

• TSK,
.STB

.TSK

.TSK

.TSK

.TSK

.MAP

.TSK

.MAP

.TSK

.OBJ

.TSK

.MAP

.TSK

Default

-FU

HD

-LB

MA or -MAl

MM or -MM2

-MP

-MU

-PI

-PM

-PR

RO

SE

SH

-SL

SP

-SQ

-SS

-TR

WI

-XT

SWITCHES AND OPTIONS

This page left blank intentionally

6-4

SWITCHES AND OPTIONS

AC

6.1.1 /AC[:n] -- Ancillary Control Processor

File

Task image

Syntax

file.TSK/AC:O=file.OBJ
or

file.TSK/AC:4=file.OBJ
or

file.TSK/AC:5=file.OBJ

Description

Your task is an ancillary control processor; that is, it is a
privileged task that extends certain Executive functions. For
example, the system task FllACP is an ancillary control processor
that receives and processes FILES-11 related input and output
requests on behalf of the Executive.

Effect

Your task is privileged. The Task Builder sets the AC attribute
flag and the privileged attribute flag in your task's label block
flag word.

The value of n is an octal number that specifies the first KT-11
Active Page Register that you want the Executive to use to map
your task's image when your task is running in user mode. Legal
values are O, 4, and 5. If you do not specify n, the Task
Builder assumes a value of 5.

If you do not explicitly specify that your task is to run on a
mapped system (through the MM switch) and it is not otherwise
implied (the Task Builder is not running in a system with KT-11
hardware), the Task Builder merely tests the value of the switch
for validity, but otherwise ignores it.

Default

/-AC

NOTE

You should not use /AC and /PR on the
same command line.

6-5

SWITCHES AND OPTIONS

AL

6.1.2 /AL -- Allocate Checkpoint Space

File

Task image

Syntax

file.TSK/AL=file.OBJ

Description

Your task is checkpointable. The system will checkpoint it to
space in your task's image file.

Effect

Your task is checkpointable. This switch directs the Task
BuiLder to allocate additional space in your task image file to
contain the checkpointed task image.

Default

/-AL

NOTE

It does not make sense to use /CP and
/AL in the same command line.

6-6

SWITCHES AND OPTIONS

6.1.3 /CC -- Concatenated Object Modules

File

Input

Syntax

file.TSK=file.OBJ/-CC

Description

cc

This switch controls the way the Task Builder extracts modules
from your input file.

Effect

By default, the Task Builder includes in your task image all the
modules of your input file. If you negate this switch (as in the
"Syntax" section above), the Task Builder includes only the first
module of your input file.

Default

/CC

6-7

SWITCHES AND OPTIONS

CM

6.1.4 /CM -- Compatibility Mode Overlay Structure

File

Task image

Syntax

file.TSK/CM=file.OBJ

Description

Your task will be built in compatibility mode.

Effect

The Task Builder aligns memory-resident overlay segments on
256-word boundaries for compatibility with other implementations
of the mapping directives.

Default

/-CM

6-8

SWITCHES AND OPTIONS

CP

6.1.5 /CP -- Checkpointable

File

Task image

Syntax

file.TSK/CP=file.OBJ

Description

Your task is checkpointable. The system will checkpoint it to ·
space that you have allocated in the system checkpoint file on
the system disk. This switch assumes that you have allocated the
checkpoint space through the MCR command ACS. (Refer to the
RSX-llM/M-PLUS MCR Operations Manual.)

Effect

The system writes your task to the system checkpoint file on
secondary storage when its physical memory is required by a task
of higher priority.

Default

/-CP

NOTE

It does not make sense to use /CP and
/AL in the same command line.

6-9

SWITCHES AND OPTIONS

CR

6.1.6 /CR -- Cross-Reference

File

Memory allocation (map)

Syntax

file.TSK,file.MAP/CR=file.OBJ

Description

This switch determines whether or not a cross reference listing
is added to your map file.

Effect

The Task Builder creates a special work file (file.CRF) which
contains segment, module, and global symbol information. The
Task Builder then calls the cross reference processor (CRF) to
process the file. CRF creates a cross reference listing from the
information contained in the file, and then deletes file.CRF.
(Refer to Appendix D, RSX-11 Utilities Manual for more
information on CRF.

The cross-reference listing and its contents are described in the
"Example" section below.

Default

/-CR

Example

NOTE

In order for this switch to be
effective, CRF must be installed in your
system.

Figure 6-1 shows a cross reference listing for task OVR. The
numbers in the following text correspond to the circled numbers
in the listing •

•
•

The cross-reference page header gives the name of the memory
allocati-0n file, the originating task (TKB), the date and
time the memory allocation file was created, and the
cross-reference page number •

The cross-reference list contains an alphabetic listing of
each global symbol along with its value and the name of each
referencing module. When a symbol is defined in several
segments within an overlay structure, the last defined value
is printed. Similarly, if a module is loaded in several
segments within the structure, the module name will be
displayed more than once within each entry.

6-10

•
OVR

SWITCHES AND OPTIONS

The suffix -R is appended to the value if the symbol is
relocatable.

Pref ix symbols accompanying each module name define the type
of reference as follows:

Pref ix Symbol Reference Type

blank Module contains a reference that is resolved
in the same segment or in a segment toward the
root.

@

*

Module contains a reference that is resolved
directly in a segment away from the root or in
a co-tree.

Module contains a reference that is resolved
through an autoload vector.

Module contains a non-autoloadable definition.

Module contains an autoloadable definition.

The segment cross-reference lists the name of each overlay
segment and the modules that compose it. If the task is a
single segment task, this section does not appear.

CREATED BY TKB ON ll-APR-79 AT 09:27 PAGE

GLOBAL CROSS REFERENCE CREF

1 lo
VO~

SYMBOL VA.LUE REFERENCES •••

AADD 034700-R * ADDOV @ ROOTM
ANS 007232-R PRNOV # ROOTM
DIVV 050724-R * DIVOV @ ROOTM • IO .WVB 011000 PRNOV
MULL 034700-R * MULOV @ ROOTM
PRINT 014274-R # PRNOV ROOTM
SA VAL 02:0366-R AD DOV DIVOV MULOV # SAVOV SUBOV
SUBB 050724-R @ ROOTM * SUBOV
$EDMSG 001272 PRNOV

OVR CREATED BY TKB ON ll-APR-79 AT 09:27 PAGE 2

SEGMENT CROSS REFERENCE CREF VOl

SEGMENT NJl,ME RESIDENT MODULES

AD DOV AD DOV • DIVOV DIVOV
MULOV MULOV
ROOTM PRNOV ROOTM SAVOV
SUBOV SUBOV

Figure 6-1 Cross Reference Listing for OVR.TSK

6-11

SWITCHES AND OPTIONS

DA

6.1.7 /DA -- Debugging Aid

File

Task image or input

Syntax

file.TSK/DA=file.OBJ
or

file.TSK=file.OBJ,file.OBJ/DA

Description

Your task includes a debugging aid that will control its
execution.

Effect

If you apply this switch to your task
Builder automatically includes the
LBO:[l,l]ODT.OBJ into your task image.

image
system

file, the
debugging

Task
aid

The Task Builder causes control to be passed to the debugging
program when task execution is initiated.

If you apply this switch to one of your input files, the Task
Builder assumes that the file is a debugging aid that you have
written. Such debugging programs can trace a task, printing out
relevant debugging information, or monitor the task's performance
for analysis.

In either case, /DA has the following effects on your task image:

Default

/-DA

• The transfer address of the debugging aid overrides the
task transfer address.

• The Task Builder initializes the header of your task so
that, on initial task load, registers RO through R4
contain the following values:

RO - Transfer address of task

Rl - Task name in Radix-SO format (word #1)

R2 - Task name (word #2)

R3 - The first three of six RADSO characters representing
the version number of your task. The Task Builder
derives this number from the first .IDENT directive
it encounters in your task. If no .IDENT directive
is in your task, this value will be O.

R4 - The second three RADSO characters representing the
version number of your task.

6-12

SWITCHES AND OPTIONS

DL

6.1.8 /DL -- Default Library

File

Input

Syntax

file.TSK=file.OBJ,file.OLB/DL

Description

Your input file is a replacement for the system object module
library.

Effect

The library file you have specified replaces the file
LBO:[l,l]SYSLIB.OLB as the library file that the Task Builder
searches to resolve undefined global references. The default
device for the replacement file is SYO:. The Task Builder refers
to it only when undefined symbols remain after it has processed
all the files you have specified. You can apply the DL switch to
only one input file.

Default

/-DL

6-13

SWITCHES AND OPTIONS

EA

6.1.9 /EA -- Extended Arithmetic Element

File

Task image

Syntax

file.TSK/EA=file.OBJ

Description

Your task uses the KEll-A Extended Arithmetic Element.

Effect

The Task Builder allocates three words in your task's header for
saving the state of the extended arithmetic element.

Default

/-EA

NOTE

You should not use /EA and /FP on the
same command line.

6-14

SWITCHES AND OPTIONS

6.1.10 /FP -- Floating Point

File

Task image

Syntax

file.TSK/FP=file.OBJ

Description

Your task uses the floating-point processor.

Effect

FP

The Task Builder allocates 25 words in your task's header for
saving the state of the floating-point processor.

Default

/-FP on RSX-llM systems
/FP on RSX-llM-PLUS systems

Notes

1. You should not use /FP and /EA on
the same command line.

2. In an RSX-llM system, the FP
will be effective only
Executive supports the
Point Processor.

switch
if the

Floating

3. In an RSX-llM system it a task that
uses the Floating Point Processor is
built without the FP switch, the
task will run correctly until a
second task that uses the Floating
Point Processor is run. Then both
tasks will either crash or produce
incorrect results. For information
on changing the Task Builder's
defaults, refer to Appendix E.

6-15

SWITCHES AND OPTIONS

FU

6.1.11 /FU -- Full Search

File

Task image

Syntax

file.TSK/FU=file.ODL/MP

Description

This switch controls the Task Builder's search for undefined
symbols when it is processing modules from the default library.

Effect

When the Task Builder processes modules from the default object
module library, and it encounters undefined symbols within those
modules, it normally limits its search for definitions to the
root of the main tree and to the current tree. Thus, unintended
global references between co-tree overlay segments are
eliminated. When the FU switch is appended to the task image
file of an overlaid task, the Task Builder searches all co-tree
segments for a matching definition or reference.

Default

/-FU

6-16

SWITCHES AND OPTIONS

HD

6.1.12 /HD -- Header

File

Task image or symbol definition

Syntax

fileeTSK/-HD,,file.STB=file.OBJ
or

file.TSK,,file.STB/-HD=file.OBJ

Description

When negated this switch directs the Task Builder to exclude a
header from your task image.

Effect

The Task Builder does not construct a header in your task image.
You use the negated form of this switch when you are building
commons, resident libraries, and loadable drivers.

Default

/HD

6-17

SWITCHES AND OPTIONS

LB

6.1.13 /LB -- Library File

File

Input

Syntax

file.TSK=file.OBJ,file.OLB/LB
or

file.TSK=file.OBJ,file.OLB/LB:mod-l:mod-2 ••• :mod-8
or

file.OBJ=file.OLB/LB:mod-l:mod-2,file.OLB/LB

Description

The file to which this switch is attached is an object module
library file. The Task Builder's interpretation of this switch
depends upon the form you use. There are three forms:

Effect

1. Without arguments (the first syntax given above)

2. With arguments (the second syntax given above)

3. Both with and without arguments (the third syntax given
above)

If you apply this switch without arguments, the Task Builder
assumes that your input file is a library file of relocatable
object modules. The Task Builder searches the file immediately
to resolve undefined references in any modules preceding the
library specification and extracts from the library, for
inclusion in the task image, any modules that contain definitions
for such references.

If you apply the switch with arguments, the Task Build~r extracts
from the library the modules named as arguments of the switch
regardless of whether or not the modules contain definitions for
unresolved references.

If you want the Task Builder to search an object module library
file both to resolve global references and to select named
modules for inclusion in your task image, you must name the
library file twice: once, with the modules you want included in
your task image listed as arguments of the LB switch; and a
second time, with the LB switch and no arguments.

The position of the library file within the Task Builder command
sequence is important. The following rules apply:

1. The library file must follow to the right of the input
file(s) that contain references to be defined in the
library. For example:

TKB>file.TSK=infilel.OBJ,lib.OLB/LB

6-18

Default

/-LB

SWITCHES AND OPTIONS

The command above illustrates the correct usage of the
LB switch; the following command illustrates incorrect
usage:

TKB>file.TSK=lib.OLB/LB,filel.OBJ

2. If you are using the Task Builder's multiple line input,
and you specify a given library more than once during
the command sequence, you must attach the LB switch to
the library file each time you specify the library. For
example:

>TKB
TKB>file.TSK=filel.OBJ,file2.0BJ,lib.OLB/LB
TKB>file3.0BJ,file4.0BJ,lib.OLB/LB
II

3. When you are building an overlay structure, the Task
Builder limits the number of input files you can specify
to 1. Therefore, you must specify object module
libraries for an overlay structure within the Overlay
Description Language (ODL} file for the structure. To
do this, you must use the .FCTR directive to specify the
library. For example:

AFCTR:
BFCTR:
LIB:

.ROOT CNTRL-LIB(AFCTR,BFCTR,C)

.FCTR AO-LIB(Al,A2-(A21,A22))

.FCTR BO-LIB(Bl,B2)

.FCTR LB: [303,3]LIBOBJ.OLB/LB

.END

The technique used in the ODL file above allows you to
control the placement of object module library routines
into the segments of your overlay structure. (For more
information on overlaid tasks, see Chapter 4.)

NOTES

1. You should not use the LB switch
and the CC switch in the same
command sequence.

2. You can use the SS switch in
conjunction with the LB switch
(with or without arguments) to
perform a selective search for
global definitions.

6-19

SWITCHES AND OPTIONS

MA

6.1.14 /MA -- Map Contents of File

File

Input or memory allocation

Syntax

file.TSK,file.MAP=file.OBJ,file.OBJ/-MA
or

file.TSK,file.MAP/MA=file.OBJ

Description

The Task Builder is to include information from your input file
in the memory allocation output file.

Effect

If you negate this switch and apply it to an input file, the Task
Builder will exclude from the map and cross-reference listings
all global symbols defined or referred to in the file. In
addition, the Task Builder will not list the file in the "file
contents" section of the map.

If you apply this switch to the map file, the Task Builder will
include in the map file the names of routines it has added to
your task from SYSLIB. It will also include in the map file
information contained in the symbol definition file of any shared
region referred to by the task.

Default

/MA for input files.

/-MA for system library and resident library STB files.

6-20

SWITCHES AND OPTIONS

6.1.15 /MM -- Memory Management

File

Task image

Syntax

file.TSK/MM=file.OBJ
or

file.TSK/-MM=file.OBJ

Description

MM

The system on which your task is to run has memory management
hardware.

Effect

The Task Builder can build a task image for a mapped or unmapped
system independently of the mapping status of the system on which
your task is being built. If you specify /-MM, the Task Builder
assumes an unmapped system.

Default

/MM or /-MM. When you do not apply /MM to your task image file,
the Task Builder allocates memory according to the mapping status
of the system on which your task is being built.

NOTE

When you negate this switch (/-MM), it
suppresses the Task Builder's
recognition of the memory-resident
overlay operator (!). The Task Builder
checks the operator for correct syntax
but it does not create any resident
overlay segments.

6-21

SWITCHES AND OPTIONS

MP

6.1.16 /MP -- Overlay Description

File

Input

Syntax

file.TSK=file.ODL/MP

Description

Your input file is an Overlay Description Language (ODL) file.

Effect

The Task Builder receives all the input file specifications from
this file. It allocates virtual address space as directed by the
overlay description. If you use the Task Builder's multiline
command format (see section 1.3), the Task Builder automatically
requests option information at the console terminal by displaying

Default

/-MP

ENTER OPTIONS: •

NOTES

1. If you use the multiline command
format when you specify an ODL file,
the Task Builder automatically
prompts for option input.
Therefore, you must not use the
single slash (/) to direct the Task
Builder to switch to option input
mode when you have specified /MP on
your input file.

2. When you specify /MP on the input
file for your task, it must be the
only input file that you specify.
Furthermore, the input file must
have a file type of .ODL.

6-22

SWITCHES AND OPTIONS

MU

6.1.17 /MU -- Multiuser

File

Input

Syntax

file.TSK/MU=file.OBJ

Description

Your task is a multiuser task.

Effect

The Task Builder separates your task's read-only and read/write
program sections. It then places the read-only program sections
in your task's upper virtual address space and the read/write
program sections in your task's lower virtual address space.

Default

/-MU

6-23

SWITCHES AND OPTIONS

Pl

6.1.18 /PI -- Position Independent

File

Task image or symbol definition

Syntax

file.TSK/PI=file.OBJ
or

file.TSK,,file.STB/PI=file.OBJ

Description

Your shared region contains only position-independent code or
data.

Effect

The Task Builder sets
attribute flag in the
region.

Default

/-PI

the Position-Independent Code (PIC)
label block flag word of your shared

6-24

SWITCHES AND OPTIONS

PM

6.1.19 /PM -- Postmortem Dump

File

Task image

Syntax

file.TSK/PM=file.OBJ

Description

If your task terminates abnormally, the system automatically
lists the contents of the memory image.,

Effect

The Task Builder sets the Postmortem Dump flag in your task's
label flag word.

Default

/-PM

Notes

1. If your task issues an ABRT$ (abort
task} directive, the system will not
dump the task image even though the
Task Builder has set the Postmortem
Dump flag in your task's label flag
word. In this case, the system
assumes that a Postmortem Dump is
not necessary since you know why
your task was aborted.

2. The PMD utility must be installed in
your system and be able to get into
physical memory for this switch to
be effective.

6-25

SWITCHES AND OPTIONS

PR

6 .1. 20 /PR [: n] -- Privileged

File

Task image

Syntax

file.TSK/PR:O=file.OBJ
or

file.TSK/PR:4=file.OBJ
or

file.TSK/PR:5=file.OBJ

Description

Your task is privileged with respect to memory and device access
rights. If you specify PR:O, your task does not have access to
the I/O page or the Executive. However, if you specify PR:4 or
PR:5, your task does have access to the I/O page and the
Executive, in addition to its own partition.

Effect

The Task Builder sets the Privileged Attribute flag in your
task's label block flag word.

The value of n is an octal number that specifies the first Active
Page register that you want the Executive to use to map your task
image when your task is running in user mode. Legal values are
O, 4, and 5. If you do not specify one of these values, the Task
Builder assumes a value of 5.

If you do not explicitly specify that your task is to run on a
mapped system, (through the MM switch) and it is not -Otherwise
implied (by the presence of KT-11 hardware on the system upon
which the Task Builder is running), the Task Builder merely tests
the value of the switch for validity, but otherwise ignores it.
Privileged tasks are described in Chapter 2.

Default

/-PR

NOTE

You should not use /PR and /AC on the
same command line.

6-26

SWITCHES AND OPTIONS

RO

6.1.21 /RO -- Resident Overlay

File

Task image

Syntax

file.TSK/-RO=file.ODL/MP

Descriptie>n

The Task Builder's recognition of the memory-resident overlay
operator (!) is enabled.

Effect

The memory-resident overlay operator (!), when present in the
overlay description file, indicates to the Task Builder that it
is to construct a task image that contains one or more
memory-resident overlay segments. If you negate this switch (as
in the "Syntax" section above), the Task Builder checks the
operator for correct syntactical usage, but otherwise ignores it.
With the memory-resident overlay operator thus disabled, the Task
Builder builds a disk-resident overlay from the overlay
description file.

Default

/RO

6-27

SWITCHES AND OPTIONS

SE

6.1.22 /SE -- Send

File

Task image

Syntax

file.TSK/-SE=file.OBJ

Description

This switch determines whether or not messages can be directed to
your task by means of the Executive Send directive. (Refer to
the RSX-llM/M-PLUS Executive Reference Manual for information on
the Send directive)

Effect

By default, messages can be directed to your task by means of the
Executive Send directive. If you negate this switch (as in the
"Syntax" section above), the system inhibits the queuing of
messages to your task.

Default

/SE

6-28

SWITCHES AND OPTIONS

SH

6.1.23 /SH -- Short Map

FilE~

Memory allocation (map)

Syntax

file.TSK,file.MAP/-SH=file.OBJ

Desc~ription

The Task Builder produces the short version of the memory
allocation file.

Efh~ct

The Task Builder does not produce the "file contents" section of
the memory allocation file.

Default

/SH

Example

The memory allocation file consists of the following items:

1. Page Header

2. Task Attributes Section

3. Overlay Description (if applicable)

4. Root Segment Allocation

5. Tree Segment Description (if applicable)

6. Undefined References (if applicable)

7. Task Builder Statistics

An example of the memory allocation file (map) is shown in Figure 6-2.
The numbered and lettered items in the notes following the figure
correspond to the numbers and letters in Figure 6-2.

6-29

SWITCHES AND OPTIONS

OVR.TSK;25 MEMORY ALLOCATION MAP TKB M36
13-APR-79 09:10

TASK NAME • G) fh'\
PARTITION NAME ; GEN~
IDENTIFICATION : 01 \EJ
TASK UIC : [303,3J@)
TASK PRIORITY :G)
STACK LIMITS: 000176 001175 001000 00512.(D
ODT XFR ADDRESS:{])
PRG XFR ADDRESS: 010010(6)
TASK ATTRIBUTES:G)
TOTAL ADDRESS WINDOWS: l.(D
MAPPED ARRAY :CE)
TASK EXTENSION : CD
TASK IMAGE SIZE : 10496. WORDS@)
TOTAL TASK SIZE :C!V
TASK ADDRESS LIMITS: 000000 050753@)
R-W DISK BLK LIMITS: 000002 000106 000105 00069.@
R-0 DISK BLK LIMITS:@)

OVR.TSK;25 OVERLAY DESCRIPTION:

BASE TOP LENGTH

000000 020677 020700 08640. ROOTM
020700 034'23 014024 06164. MULOV
020700 034723 014024 06164. AD DOV
0347 24 050747 014024 06164. SUBOV
034724 050753 014030 06168. DIVOV

OVR .TSK; 25
ROOTM

MEMORY ALLOCATION MAP TKB M36
13-APR-79 09:10

***ROOT SEGMENT: ROOTMG)

R/W MEM LIMITS: 000000 020677 020700 08640.@
DISK BLK LIMITS: 000002 000022 000021 00017.(S}

MEMORY ALLOCATION SYNOPSIS:

PAGE 1 J 0 PAGE HEADER

TASK ATTRIBUTES
SECTION

OVERLAY
DESCRIPTION

PAGE 2

SECTION TITLE !DENT FILE

:··;~~:~ (RW I I ,LCL ,REL ,CON) 001176 002034 01052 .@ ____ _
ANS : (RW,D,GBL,REL,OVR) 003232 004006 02054.

003232 004006 02054. ROOTM

GLOBAL SYMBOLS:

AADD
ANS

007276-R
007232-R

DIVV
MULL

007316-R
007266-R

PRINT 014274-R
SAVAL 020366-R

FILE: ROOTM.OBJ;l TITLE: ROOTM !DENT: Ol{Q)
<ANS >: 003232 091.237 004006 02054.(E)

ANS 007232-R\.l)
<MAIN >: 010010 010105 000076 00062.Q)

UNDEFINED REFERENCES:(D

SUBB

01 ROOTM.OBJ; l@

007306-R(D

Figure 6-2 Memory Allocation File (Map) Example

6-30

A ROOT SEGMENT
W ALLOCATION

SWITCHES AND OPTIONS

OVR .TSK; 25
MULOV

MEMORY ALLOCATION MAP TKB M36
13-APR-79 09:10

*** SEGMENT: MULOV

R/W MEM LIMITS: 020700 034723 014024 06164.
DISK BLK LIMITS: 000023 000037 000015 00013.

MEMO~Y ALLOC.l\TION SYNOPSIS:

PAGE 4

SEC'rION TITLE !DENT FILE

, BLK.:(RW,I,LCL,REL,CON) 020700 000000 00000.
MULL :(RO,I,GBL,REL,CON) 020700 014024 06164.

020700 014024 06164. MULOV 01

GLOBAL SYMBOLS:

MULi:. 0 34 700-R

FILI~: MULOV.OBJ;l TITLE: MULOV !DENT: 01
<MULL >: 020700 034723 014024 06164.

MULL 034700-R

* ** .~ ** * * * * * *
UNDEFINED REFERENCES:

*** TASK BUH.DER STATISTICS:

TOTAL WOHK FILE REFERENCES: 8178.@
WORK Fil:.E READS: O.}fb\
WORK FILE WRITES: O. ~
SIZE OF CORE POOL: 8200. WORDS (32. PAGES)(D
SIZE OF WORK FILE: 3328. WORDS (13. PAGES)@)

ELAPSED TIME: 00: 00: 28 ©

MULOV.OBJ;l ~TREE SEGMENT
~ DESCRIPTION

A TASK BUILDER
\:I STATISTICS

Figure 6-2(Cont.) Memory Allocation File (Map) Example

6-31

SWITCHES AND OPTIONS

Notes to Figure 6-2:

0 The Page Reader shows the name of the task image file and the
overlay segment name (if applicable), along with the date, time,
and version of the Task Builder that created the map.

The Task Attribute Section contains the following information:

Task Name -- The name specified in the TASK option. If you do
not use the TASK option, the Task Builder suppresses this
field.

Partition Name -- The partition specified in the PAR option.
If you do not specify a partition, the default is partition
GEN.

Identification -- The task version as specified in the .!DENT
assembler directive. If you do not specify the task
identification, the default is 01.

Task UIC -- The task UIC as specified in the UIC option. If
you do not specify the UIC, the default is the terminal UIC.

Task Priority -- The priority of the task as specified in the
PRI option. If you do not specify PRI, the default is 50.

Stack Limits The low and high octal addresses of the stack,
followed by its length in octal and decimal bytes.

ODT Transfer Address -- the starting address of the ODT
debugging aid. If you do not specify the ODT debugging aid,
this field is suppressed.

Program Transfer Address -- The address of the symbol
specified in the .END directive of the source code of your
task. If you do not specify a transfer address for your task,
the Task Builder automatically establishes a tranfer address
of 000001 for it. The Task Builder also suppresses this field
in the map if you do not specify a transfer address.

Task Attributes -- These attributes are listed only if they
differ from the defaults. One or more of the following may be
displayed:

AC

AL

CP

DA

EA

FP

-HD

PI

PM

Ancillary control processor

Task is checkpointable, and task image file contains
checkpoint space allocation

Task is checkpointable, and task image file will be
checkpointed to system checkpoint file

Task contains debugging aid

Task uses KEll-A extended arithmetic element

Task uses floating-point processor

Task image does not contain header

Task contains position-independent code and data

Postmortem Dump requested in the event of abnormal
task termination

6-32

©

SWITCHES AND OPTIONS

PR Task is privileged

-SE Messages addressed to the task through the SEND
directive will be rejected by the Executive

SL Task can be slaved

TR Task initial PS word has T-bit enabled

Total Address Windows -- the number of window blocks allocated
to the task.

Mapped Array -- the amount of physical memory (decimal words)
allocated through the VSECT option or Mapped Array Declaration
(GSD type 7, described in Section B.1.8 of Appendix B).

Task Extension -- the increment of physical memory
words) allocated through the EXTTSK or PAR option.

(decimal

Task Image Size -- the amount of memory (decimal words)
required to contain your task's code. This number does not
include physical memory allocated through the EXTTSK option.

Total Task Size -- the amount
words) allocated including
extension area.

of physical memory
mapped array area

Task Address Limits -- the lowest and highest
addresses allocated to the task, exclusive of
addresses allocated to VSECTs and shared regions.

(decimal
and task

virtual
virtual

Read/Write Disk Block Limits -- from left to right: the first
octal relative disk block number of the task's header; the
last octal relative disk block number of the task image; the
total contiguous disk blocks required to accommodate the
read/write portion of the task image in octal and decimal.

Read-Only Disk Block Limits -- from left to right: the first
octal relative disk block of the multiuser task's read-only
region; the last octal relative disk block number of the
read-only region; the total contiguous disk blocks required
to accommodate the read-only region in octal and decimal.
This field appears only when you are building a multiuser
task.

The Overlay Description shows, for each overlay segment in the
tree structure of an overlaid task, the beginning virtual address
(the base), the highest virtual address (the top), the length of
the segment in octal and decimal bytes, and the segment name.
Indenting is used to illustrate the ascending levels in the
overlay structure. The Task Builder prints the Overlay
Description only when an overlaid task is created.

The Root Segment
elements:

Allocation -- This section has the following

Root Segment -- The name of the root segment. If your task is
a single-segment task, the entire task is considered to be the
root segment.

Rec1d/Write Memory Limits -- From left to right: the beginning
virtual address of the root segment (the base), the virtual
address of the last byte in the segment (the top), the length
of the segment in octal and decimal bytes.

6-33

SWITCHES AND OPTIONS

Disk Block Limits -- From left to right: the first relative
block number of the beginning of the root segment, the last
relative block number of the root segment, total number of
disk blocks in octal, and the total number of disk blocks in
decimal.

Memory Allocation Synopsis -- From left to right: the program
section name, the program section attributes, starting virtual
address of the program section, total length of the program
section in octal and decimal bytes.

The program section shown as • BLK. in this field is the
unnamed relocatable program section. Notice in this example
that there are 636(8) bytes allocated to it (2034 bytes - 1176
bytes= 636 bytes). This allocation is the result of calls to
routines that reside within the unnamed program section in
SYSLIB. (For more information, see the description of the MA
switch in Section 6.1.14.)

Module contributor -- This field lists the modules that have
contributed to each program section. In this example, the
program section ANS was defined in module ROOTM. The module
version is 01 (as a result of the .!DENT assembler directive)
and the file name from which the module was extracted is
ROOTM.OBJ;l. If the program section ANS had been defined in
more than one module, each contributing module and the file
from which it was extracted would have been listed here.

NOTE

The absolute section, • ABS. is not
shown because it appears in every module
and always has a length of O.

The global symbols section lists the global symbols defined in
the segment. Each symbol is listed along with its octal
value. A -R is appended to th value if the symbol is
relocatable. The list is alphabetized in columns.

The file contents section (which is composed of the four fields listed
below) is printed only if you specify /-SH in the Task Builder command
sequence. The Task Builder creates this section for each segment in
an overlay structure. It lists the following information:

Input file -- File name, module name as established by the
.TITLE assembler directive, module version as established by
the .!DENT assembler directive.

Program section -- Program section name, starting virtual
address of the program section, ending virtual address of the
program section, length in octal and decimal bytes.

Global symbol -- Global symbol names within each program
section and their octal values. If the segment is
autoloadable (see Chapter 5), this value will be the address
of an autoload vector. The autoload vector in turn will
contain the actual address of the symbol.

An -R is appended to the value if the symbol is relocatable.

6-34

SWITCHES AND OPTIONS

Program section -- This field
described in note g above.

is identical to the field

Undefined References -- This field lists the undefined global
symbols in the segment.

The Tree Segment Description is printed for every overlay segment
in an overlay structure. Its contents are the same for each
overlay segment as the Root Segment Allocation is for the root
segment.

Task Builder Statistics lists the following information, which can
be used to evaluate Task Builder performance:

(§)

@

@

Work File References -- The number of times that
Builder accessed data stored in its work file.

Work File Reads -- The number of times that the
device was accessed to read work file data.

Work File Writes -- The number of times that the
device was accessed to write work file data.

the

work

work

s i~~e of Pool -- The amount of memory that was available
work file data and table storage.

Size of Work File -- The amount of
required to contain the work file.

device storage that

Task

file

file

for

was

Elapsed Time -- The amount of wall-clock time required to
construct the task image and produce the memory allocation
(map) file. Elapsed time is measured from the completion of
option input to the completion of map output. This value
excludes the time require to process the overlay description,
parse the list of input file names, and create the
cross-reference listing (if specified).

See Appendix E for a more detailed discussion of the work file.

6-35

SWITCHES AND OPTIONS

SL

6.1.24 /SL -- Slave

File

Task image

Syntax

file.TSK/SL=file.OBJ

Description

Your task is slaved to an initiating task.

Effect

The Task Builder attaches the slave attribute to your task.
your task successfully executes a Receive Data directive,
system gives the UIC and TI: device of the sending task to
The slave task then assumes the indentity and privileges of
sending task.

When
the
it.
the

This switch only applies to you if your system has multiuser
protection. (Refer to your system generation manual for more
information on multiuser protection and slave tasks.)

Default

/-SL

6-36

SWITCHES AND OPTIONS

6.1.25 /SP -- Spool Map Output

File

Memory allocation (map)

Syntax

file.TSK,file.MAP/-SP=file.OBJ

Description

SP

This switch determines whether or not the Task Builder calls the
print spooler to spool your memory allocation (map) file after
task build.

Effect

By de!fault, when you specify a map file in a Task Builder command
sequence, the Task Builder creates a map file on device SYO: and
then has the file queued for listing on LPO:.

If you negate this switch (as shown in the "syntax" section
above!), the Task Builder will create the map file on device SYO:
but will not call the print spooler to output it to LPO:

Default

/SP

6-37

SWITCHES AND OPTIONS

SQ

6.1.26 /SQ -- Sequential

File

Task image

Syntax

file.TSK/SQ=file.OBJ

Description

The Task Builder constructs your task image from the program
sections you specified, in the order that you input them.

Effect

The Task Builder does not reorder the program sections
alphabetically. Instead, it collects all the references to a
given program section from your input object modules, groups them
according to their access code and, within these groups,
allocates memory for them in the order that you input them.

You use this switch to satisfy any adjacency requirements that
existing code may have when you are converting it to run under
RSX-11. Use of this feature is otherwise discouraged for the
following reasons:

• Standard library routines (such as FORTRAN
routines and FCS modules from SYSLIB)
properly.

I/O handling
will not work

• Sequential allocation can result in errors if you alter
the order in which modules are linked.

Alternatively, you can achieve physical adjacency of program
sections by selecting names alphabetically to correspond to the
desired order.

Default

/-SQ

6-38

SWITCHES AND OPTIONS

SS

6.1.27 /SS -- Selective Search

File

Input

Syntax

fileuTSK=file.OBJ,file.OBJ/SS
or

fileuTSK=file.OBJ,file.STB/SS
or

fileuTSK=file.OBJ,file.OLB/LB/SS

Deficription

The SS switch directs the Task Builder to include into its
internal symbol table only those global symbols for which there
is a previously undefined reference.

Effect

When processing an input file, the Task Builder normally includes
into its internal symbol table each global symbol it encounters
within the file whether or not there are references to it. When
you attach the SS switch to an input file, the Task Builder
checks each global symbol it encounters within that file against
its list of undefined references. If the Task Builder finds a
match, it includes the symbol into its symbol table.

Dej:ault

/-SS

E>cample

Assume that you are building a task named SEL.TSK. The task is
composed of input files containing global entry points and
references (calls) to them as shown in Table 6-2.

Table 6-2 Input Files for SEL.TSK

Input
File Name Global Definition Global Reference

INl A

A
IN2 B

c
IN3 c
IN4 A

B
c

6-39

SWITCHES AND OPTIONS

File IN2 and IN4 contain global symbols of the same name that
represent entry points to different routines within their
respective files. Assume that you want the Task Builder to
resolve the reference to global symbol A in INl to the definition
for A in IN2. Assume further, that you want the Task Builder to
resolve the reference to global symbol C in IN3 to the definition
for C in IN4. By selecting the sequence of the input files
properly and applying the SS switch to files IN2 and IN4, the
Task Builder will resolve the references correctly without
conflict. The following command sequence illustrates the correct
sequence:

TKB>SEL.TSK-IN1.0BJ,IN2.0BJ/SS,IN3.0BJ,IN4.0BJ/SS

The Task Builder processes input files from left to right,
therefore, in processing the above command sequence, the Task
Builder processes file INl first and encounters the reference to
symbol A. There is no definition for A within INl, therefore,
the Task Builder marks A as undefined and moves on to process
file IN2. Because the SS switch is attached to IN2, the Task
Builder limits its search of IN2 to symbols it has previously
listed as undefined, in this case, symbol A. The Task Builder
finds a definition for A and places A in its symbol table. There
are no undefined references to symbols B or C, so the Task
Builder does not place either of these symbols in its symbol
table.

NOTE

It is important to realize that the SS
switch effects only the way the Task
Builder constructs its internal symbol
table. The routines for which symbols B
and C are entry points will be included
in the task image even though there are
no references to them.

The Task Builder moves on to IN3. It encounters the references
to symbol c. Since the Task Builder did not include symbol C
from IN2 in its symbol table, it cannot resolve the reference to
C in IN3. The Task Builder marks symbol C as undefined and moves
on to IN4.

When the Task Builder processes IN4 it encounters the definition
for C in that file and includes it in the table. Again, since
the SS switch is attached to IN4, the Task Builder includes only
C in its symbol table.

When the Task Builder has completed its processing of the above
command sequence, it has constructed a task image composed of all
of the code from all of the modules, INl through IN4. However,
only symbols A from IN2 and C from IN4 will appear in its
internal symbol table.

NOTE

The example above does not represent
good programming practice. It is
included here to illustrate the effect
of the SS switch on the Task Builder
during a search sequence.

6-40

SWITCHES AND OPTIONS

The SS switch is particularly valuable when used to limit the
size of the Task Builder's internal symbol table during the
building of a privileged task that references the Executive's
routines and data structures. By specifying the Executive's
Symbol Definition File (STB) as an input file and applying the SS
switch to it, the Task Builder will include into its internal
symbol table only those symbols in the Executive that the task
references. An example of a Task Builder command sequence that
illustrates this is shown below:

TKB>OUTFILE.TSK/PR:S=INFILE.OBJ,RSXllM.STB/SS

The above command sequence directs the Task Builder to build a
privileged task named OUTFILE.TSK from the input file INFILE.OBJ.
The specification of the Executive's STB file as an input file
with the SS switch applied to it directs Task Builder to extract
from RSXllM.STB only those symbols for which there are references
within OUTFILE.TSK.

6-41

SWITCHES AND OPTIONS

TR

6.1.28 /TR - Traceable

File

Task image

Syntax

f ile.TSK/TR=f ile.OBJ

Description

Your task is traceable.

Effect

The Task Builder sets the T-bit in the initial PS word of your
task. When your task is executed, a trace trap occurs on the
completion of each instruction.

Default

/-TR

6-42

SWITCHES AND OPTIONS

6.1.29 /WI -- Wide Listing Format

File

Memory allocation (map)

Syntax

file.TSK,file.MAP/-WI=file.OBJ

Description

This switch controls the width of your map file.

Effect

WI

By default, the Task Builder formats a map file 132 columns wide.
When you negate this switch (as in the "Syntax" section above),
the Task Builder formats the map file 80 columns wide.

Default

/WI

6-43

SWITCHES AND OPTIONS

XT

6.1.30 /XT[:n] -- Exit on Diagnostic

File

Task image

Syntax

file.TSK/XT:4=file.OBJ

Description

More than n errors are not acceptable.

Effect

The Task Builder exits after encountering n errors. The number
of errors can be specified as a decimal or octal number, using
the convention:

n.

#n or n

indicates a decimal number (the decimal point must be
included).

indicates an octal number.

If you do not specify n, the Task Builder assumes that n is 1.

Default

/-XT

6-44

SWITCHES AND OPTIONS

6.2 OPTIONS

Task Builder options provide you with the means to give the Task
Builder information about the characteristics of your task.

These options which are listed in Table 6-2 can be divided into seven
categories. The identifying abbreviation and a brief description of
each category are listed below:

l. contr

2. ident

3. alloc

4. share

5. device

6. alter

7. synch

You use control options to affect Task Builder
execution. ABORT is the only member of this
category. You can direct the Task Builder to
abort the task-build with this option.

You use identification options to identify your
task's characteristics. You can specify the name
of your task, its priority, user identification
code, and partition with options in this category.

You use allocation options to modify your task's
memory allocation. With the options in this
category, you can change the size of your task's
stack and program sections. When you write
programs in a high-level language, you can change
the size of your work areas and buffers and
declare the virtual base address and size of
program sections. Finally, you can declare the
number of additional window blocks (if any) that
your task requires.

You use storage sharing options to indicate to the
Task Builder that your task intends to access a
shared region.

You use device specifying options to specify the
number of units required by your task, and the
assignment of logical unit numbers to physical
devices.

You use the content altering options to define a
global 3ymbol and value, or to introduce patches
in your task image.

You use synchronous trap options
synchronous trap vectors.

to define

Some Task Builder options are of interest to all users of the system;
others are of interest only to high-level language programmers; and
still others are of interest only to MACR0-11 programmers. Table 6-3
lists all the options alphabetically, and gives a brief description of
each.

6-45

Option

ABORT

ABSPAT

ACTFIL

ASG

CMPRT2

COMMON
LIBR

EXTSCT

EX TT SK

FMTBUF

GBLDEF

GBLPAT

GBLREF

GBLXCL2

LIBR

MAXBUF

ODTV

SWITCHES AND OPTIONS

Table 6-3
Task Builder Options

Meaning

Directs TKB to terminate a task build

Declares absolute patch values

Declares number of files open
simultaneously

Declares device assignment to
logical units

Declares completion routine for
supervisor-mode library

Declare task's intention to access
a memory-resident shared region

Declares extension of a program
section

Declares extension of the amount of
memory owned by a task

Declares extension of buffer used
for processing format strings
at run time

Declares a global symbol definition

Declares a series of patch values
relative to a global symbol

Declares a global symbol reference

Declares global symbols to be
excluded from a supervisor-mode library

Declares task's intention to access
a memory-resident shared region

Declares an extension to the FORTRAN
record buffer

Declares the address and size of
the debugging aid SST vector

Interest 1 Category

H,M con tr

M alter

H alloc

H,M device

H,M ident

H,M share

H,M alloc

H,M alloc

H alloc

M alter

M alter

H,M alter

H,M alter

H,M share

H alloc

M synch

1 The user interest range is indicated as follows:

2

• H indicates options of interest to high-level language
(such as FORTRAN) programmers

• M indicates options of interest to MACR0-11 programmers

These options are applicable to RSX-llM-PLUS systems only.

(continued on next page)

. 6-46

Option

PAH

PRJC

RESCOM
RES LIB

REssup2

ROPAR2

STJ\CK

SUPLIB2

TASK

TSKV

SWITCHES AND .OPTIONS

Table 6-3 (Cont.)
Task Builder Options

Meaning

Declares partition name and
dimensions

Declares priority

Declare task's intention to access
a memory-resident shared region

Declares task's intention to access a
resident supervisor-mode library

Declares partition in which read-only
portion of multiuser task is to reside

Declares the size of the stack

Declares task's intention to access a
system-owned supervisor-mode library

Declares the name of the task

Declares the address of the task
SST vector

UIC Declares the user identification code
under which the task runs

UNITS Declares the maximum number of units

VSECT Declares the virtual base address and
size of a program section

WNDWS Declares the number of additional
address windows required by the task.

Interestl

H,M

H,M

H,M

H,M

H,M

H,M

H,M

H,M

M

H,M

H,M

H,M

H,M

l The user interest range is indicated as follows:

Category

ident

ident

share

share

ident

alloc

share

ident

synch

ident

device

alloc

alloc

• H indicates options of interest to high-level language
(such as FORTRAN) programmers

• M indicates options of interest to MACR0-11 programmers

2 These options are applicable to RSX-llM-PLUS systems only.

6-47

SWITCHES AND OPTIONS

ABORT

6.2.1 ABORT -- Abort the Task-Build

You use the ABORT option when you discover that an earlier error in
the terminal sequence will cause the Task Builder to produce an
unusable task image.

The Task Builder, on recognizing the keyword ABORT, stops accepting
input and restarts for another task-build.

Syntax

ABORT=n

n

An integer value.
form of an option;

The integer is required to satisfy the general
however, the value is ignored in this case.

Default

none

NOTE

If you type a CTRL/Z at any time it will
cause the Task Builder to stop accepting
input and begin building the task.

The ABORT option is the only proper way
for you to restart the Task Builder if
you discover an error and decide you do
not want the Task Builder output.

6-48

SWITCHES AND OPTIONS

ABSPAT

6.2.2 ABSPAT -- Absolute Patch

You use the ABSPAT option to declare a series of object level patches
starting at a specified base address. You can specify up to 8 patch
values.

Syntax

ABSPAT=seg-name:address:vall:val2 ••• :va18

seg-name

The 1- to 6-character Radix-SO name of the segment.

address

vall

val2

val8

The octal address of the first patch. The address can be on a
byte boundary; however, two bytes are always modified for each
patch: the addressed byte and the following byte.

An oct~l number in the range of 0 through 177777 to be stored at
address.

An octal number in the range of 0 through 177777 to be stored at
address+2

An octal number in the range of 0 through 177777 to be stored at
address 14.

NOTE

All patches must be within the segment
address limits or the Task Builder will
generate the following error message:

Tl<B--*DIAG*--LOAD ADDRESS OUT OF RANGE IN module name

6-49

SWITCHES AND OPTIONS

ACTFIL

6.2.3 ACTFIL -- Number of Active Files

You use the ACTFIL option to declare the number of files that your
task can have open simultaneously. For each active file that you
specify, the Task Builder allocates approximately 512 bytes.

If you specify less than four active files (the default), the ACTFIL
option saves space. If you want your task to have more than four
active files, you must use the ACTFIL option to make the additional
allocation.

You must include an Object Time System (OTS) and record I/O service
routines (FCS or RMS-11) in your task image for the extension to take
place. The program section that is extended has the reserved name
$$FSR1.

Syntax

ACTFIL=f ile-max

file-max

A decimal integer indicating the maximum number of files that can
be open at the same time.

Default

ACTFIL=4

6-50

SWITCHES AND OPTIONS

ASG

6.2.4 ASG -- Device Assignment

The ASG option declares the physical device that is assigned to one or
more logical units.

Syntax

ASG=device-name:unit-numl:unit-num2 ••• :unit-num8

device-name

A 2-character alphabetic device name followed by a 1- or 2-digit
decimal unit number.

unit-numl
unit-num2

unit-num8

Decimal integers indicating the logical unit numbers.

ASG=SY0:1:2:3:4,TIO:S,CL0:6

6-51

SWITCHES AND OPTIONS

CMPRT

6.2.5 CMPRT -- Completion Routine

The CMPRT option is available on RSX-llM-PLUS systems only.
this option to identify a task as a supervisor-mode library.
identifies the entry point of the completion routine that the
will use to return control to your program in user mode.

You use
It also
library

You should define your completion routine in the root segment of your
supervisor-mode library. When your library is an overlay structure
with a root of O, the completion routine must appear in all of the
main branches of the overlay structure nearest to the root. The
completion routine also must have the same virtual address in all
branches.

When you specify a completion routine that does not appear in your
code, the Task Builder expects to find the routine in the System
Library (SYSLIB) on device LB: under UFD [1,1]. When it extracts the
completion routine from the System Library, the Task Builder places
the routine in the root of your task. This means that if you build an
overlaid supervisor-mode library with a root of O, the Task Builder
will expand the root to accommodate the completion routine.

Syntax

name

CMPRT=name

A 1- to 6-character Radix-50 name identifying the completion
routine.

Default

none

6-52

SWITCHES AND OPTIONS

COMMON
LIBR

6. 2. 6 COMMON or LIBR -- System-Owned Resident Common or System-Owned
Resident Library

The COMMON and LIBR options are functionally identical; they both
declare that your task intends to access a system-owned shared region.
However, by convention, the COMMON option is used to identify a shared
region that contains only data, and the LIBR option is used to
identify a shared region that contains only code.

The term "system-owned" means that the Task Builder expects to find
the common or library named in the keyword and the symbol definition
file associated with it under UFD [1,1] on device LB:.

Syntax

COMMON=name:access-code[:apr]
or

LIBR=name:access-code[:apr]

name

The 1- to 6-character Radix-50 name specifying the common or
library. The Task Builder expects to find a symbol definition
file having the same name as the common or library with an
extension of .STB under [l,l] of device LB:.

access-code

apr

The code RW (read/write) or the code RO (read-only) indicating
the type of access the task requires.

NOTE

A privileged task can issue QIOs to a
resident common even though the task has
been linked to the common with read-only
access.

An integer in the range of l through 7 that specifies the first
Active Page Register (APR) that you want the Task Builder to
reserve for the shared region. The Task Builder recognizes the
APR only for a mapped system, you can specify it only for
position-independent shared regions. If you omit the APR
parameter and the shared region is position independent, the Task
Builder will select the highest available APR to map the region.
When a shared region is absolute, the base address of the region,
and therefore, the APR the maps it, is determined by the PAR
option when the region is built. Refer to PAR in Section 6.2.17.

Default

None

6-53

SWITCHES AND OPTIONS

EXTSCT

6.2.7 EXTSCT -- Program Section Extension

You use the EXTSCT option to extend a program section.

If the program section to be extended has the attribute CON
(concatenated), the Task Builder extends the section by the number of
bytes you specify in the EXTSCT option. If the program section has
the attribute OVR (overlay), the Task Builder will extend the section
only if the length you specify in the EXTSCT option is greater than
the length of the program section.

Syntax

EXTSCT=p-sect-name:extension

p-sect-name

A 1- to 6-character radix-SO name specifying the program saction
to be extended.

extension

An octal integer that specifies the number of bytes by which to
extend the program section.

Example

In the following example, the program section BUFF is 200 bytes
long.

EXTSCT=BUFF:250

The number of bytes the Task Builder extends the program section
BUFF depends on the CON/OVR attribute:

• For CON, the extension is 250 bytes

• For OVR, the extension is 50 bytes

The Task Builder will extend the program section if it encounters
the program section name in an input object file or in the
overlay description file.

Default

None

6-54

SWITCHES AND OPTIONS

EXTTSK

6.2.8 EXTTSK -- Extend Task Memory

You use the EXTTSK option to dlrect the system to allocate additional
memory for your task when it is installed in a system-controlled
partition.

The amount of memory that the system allocates for your task is the
sum of the task size plus the increment you specify (rounded up to the
nearest 32-word boundary). If the task is built for a user-controlled
partition, the allocation of task memory reverts to the partition
size.

In an unmapped system, the Task Builder ignores the EXTTSK keyword.

NOTES

1. You should not use the EXTTSK
option to extend a task containing
memory resident overlays because
the system will not map the
extended area.

2. When you use the EXTTSK option to
extend a checkpointable task that
has been declared checkpointable
with the AL switch, the check point
file within the task image will be
the size of the task plus the size
of the extended task area.

Syntax

EXTTSK=length

length

A decimal number specifying the increase in
allocation (in words).

Default

task memory

The task is extended to the size specified in the PAR option
(Section 6.2.17).

6-55

SWITCHES AND OPTIONS

FMTBUF

6.2.9 FMTBUF -- Format Buffer Size

You use the FMTBUF option to declare the length of the internal
wor~ing storage that you want the Task Builder to allocate within your
task for the compilation of format specifications at runtime. The
length of this area must equal or exceed the number of bytes in the
longest format string to be processed.

Run-time compilation occurs whenever an array is referred to as
source of formatting information within a FORTRAN I/O statement.
program section that the Task Builder extends has the reserved
$$0BF1.

Syntax

FMTBUF=max-format

max-format

the
The

name

A decimal integer, larger than the default, that specifies the
number of characters in the longest format specification.

Default

FMTBUF=l32

6-56

SWITCHES AND OPTIONS

GBLDEF

6.2.10 GBLDEF -- Global Symbol Definition

You use the GBLDEF option to declare the definition of a global
symbol.

The Task Builder considers this symbol definition to be absolute. It
overrides any definition in your input object modules.

Syntax

GBLDEF=symbol-name:symbol-value

symbol-name

A 1- to 6-character Radix-SO name of the defined symbol.

symbol-value

An octal number in the range of 0 through 177777 assigned to the
defined symbol.

Default

None

6-57

SWITCHES AND OPTIONS

GBLPAT

6.2.11 GBLPAT -- Global Relative Patch

You use the GBLPAT option to declare a series of object level patch
values starting at an offset relative to a global symbol. You can
specify up to eight patch values.

Syntax

GBLPAT=seg-name:sym-name[+/-offset] :vall:val2 ••• :val8

seg-name

The 1- to 6-character Radix-50 name of the segment.

sym-name

A 1- to 6-character Radix-50 name specifying the global symbol.

offset

vall

val2

val8

An octal number specifying the offset from the global symbol.

An octal number in the range of 0 through 177777 to be stored at
the octal address of the first patch.

An octal number in the range of 0 through 177777 to be stored at
the first address+2.

An octal number in the range of 0 through 177777 to be stored at
the first address+l4.

Default

None

NOTE

All patches must be within the segment
address limits or the Task Builder will
generate a fatal error.

6-58

SWITCHES AND OPTIONS

6.2.12 GBLREF -- Global Symbol Reference

You use the GBLREF option to declare a global symbol
reference originates in the root segment of the task.
used for memory-resident overlays of shared regions.

Syntax

GBLREF=symbol-name:symbol-name ••• :symbol-name

symbol-name

GBLREF

reference. The
This keyword is

A 1- to 6-character name of a global symbol reference.

Default

None

6-59

SWITCHES AND OPTIONS

GBLXCL

6.2.13 GBLXCL -- Exclude Global Symbols

The GBLXCL option keyword directs the Task Builder to exclude from the
symbol definition file of a supervisor-mode library the symbol(s)
specified in the option.

It is important to exclude from the symbol definition file of a
Supervisor-mode library a symbol that is defined in the library if:

1. the symbol represents an entry point to a routine that uses
the stack to pass parameters and,

2. the routine is called from the user-mode task linked to the
library.

When the processor is switched from user to supervisor mode, two words
are pushed onto the stack. If a user-mode task is permitted to call a
routine in supervisor-mode that uses the stack to pass parameters, the
two words pushed onto the stack will not be anticipated by the routine
and both the called routine and the supervisor-mode completion routine
will fail. (For more information on supervisor mode libraries, see
Chapter 3.)

Syntax

GBLXCL=symbol-name:symbol-name ••• :symbol-name

symbol-name

The symbol(s) to be excluded.

Default

None

6-60

SWITCHES AND OPTIONS

6.2.14 LIBR -- System-Owned Library

Refer to COMMON in Section 6.2.6.

6-61

LIBR

SWITCHES AND OPTIONS

MAXBUF

6.2.15 MAXBUF -- Maximum Record Buffer Size

You use the MAXBUF option to declare the maximum record buffer size
required for any file used by the task.

If your task requires a maximum record size that exceeds the default
buffer length, you must use this option to extend the buffer.

I

You must also include an Object Time System (OTS) in your task image
for the extension to take place. The program section that is extended
has the reserved name $$IOB1.

Syntax

MAXBUF=max-record

max-record

A decimal integer, larger than the default, that specifies the
maximum record size in bytes.

Default

MAXBUF=l32

6-62

SWITCHES AND OPTIONS

ODTV

6.2.16 ODTV -- ODT SST Vector

You use the ODTV option to declare that a global symbol is the address
of the OD~r Synchronous System Trap vector. You must define the global
symbol in the main root segment of your task.

Syntax

ODTV=symbol-name:vector-length

symbol-name

A 1- to 6-character Radix-SO name of a global symbol.

vector-length

A decimal integer in the range of 1 through 32 specifying the
length of the SST vector in words.

De1:ault

None

6-63

SWITCHES AND OPTIONS

PAR

6.2.17 PAR -- Partition

You use the PAR option to identify the partition for which your task
is built.

In a mapped system, you can install your task in any system partition
or user partition large enough to contain it. In an unmapped system,
your task is bound to physical memory. Therefore, you must install
your task in a partition starting at the same memory address as the
partition for which it was built.

Syntax

PAR=pname[:base:length]

pname

The name of the partition.

base

The octal byte address defining the start of the partition.

length

The octal number of bytes contained in the partition.

In a mapped system, a length of 0 implies a system-controlled
partition.

If the target system is mapped and you specify a partition length
that is greater than the length of your task, the Task Builder
will automatically extend the length of your task to match the
length of the partition. This procedure is equivalent to using
the EXTTSK keyword to increase the task memory. If your task
size is greater than the partition size that you specify, TKB
will generate the following error message:

TKB--*DIAG*-TASK HAS ILLEGAL MEMORY LIMITS

If you do not specify the base and length, the Task Builder will try
to obtain that information from the system on which you are building
your task. If you have specified a partition that resides in that
system, the Task Builder can obtain the base and length.

The Task Builder binds the task to the addresses defined by the
partition base. If the partition is user-controlled, the Task Builder
verifies that the task does not exceed the length specification.

Default

PAR=GEN

6-64

SWITCHES AND OPTIONS

PRI

6.2.18 PRI -- Priority

You use the PR! option to declare your task's execution priority.

On systems with multiuser protection, you cannot run a task at a
priority that is greater than the system priority (SO) unless it is
installed or run from a privileged terminal. If you are working from
a privileged terminal, and you do not override this option by
specifying a different priority when you install your task, this
priority is used.

Syn.tax

PRI=priority-number

pr:iority-number

A decimal integer in the range of 1 through 250

DeJEault

Established by Install; refer to the RSX-llM/M-PLUS MCR
Operations Reference Manual.

6-65

SWITCHES AND OPTIONS

RE SC OM
RESLIB
6.2.19 RESCOM or RESLIB -- Resident Common or Resident Library

The RESCOM and RESLIB options are functionally identical; they both
declare that your task intends to access a user-owned shared region.
However, by convention the RESCOM option is used to identify a shared
region that contains only data and the RESLIB option is used to
identify a shared region that contains only code.

The term "user-owned" means that the resident common or library and
the symbol definition file associated with it can reside under any UFD
that you choose. You can specify the UFD and remaining portions of
the file specification for both options. You must not place comments
on the same line with either option.

Syntax

RESCOM=file-specification/access-code[:apr]
or

RESLIB=file-specification/access-code[:apr]

file-specification

The memory image file of the resident common or resident library.
The file specification format is discussed in Chapter 1.

access-code

apr

The code RW (read/write) or the code RO (read-only), indicating
the type of access required by the task.

NOTE

A privileged task can issue QIOs to a
resident common even though the task has
been linked to the common with read-only
access.

An integer in the range of 1 through 7 that specifies the first
Active Page Register (APR) that you want the Task Builder to
reserve for the common or library. The Task Builder recognizes
the APR argument only for a mapped system. You can specify it
only for position-independent shared regions. If the APR
parameter is omitted and the shared region is
position-independent, the Task Builder will select the highest
available APR to map the region. When a shared region is
absolute, the base address of the region, and therefore, the APR
that maps it, is determined by the PAR option when the region is
built. Refer to PAR in Section 6.2.17. You can specify it only
for position-independent shared regions.

6-66

Default

SWITCHES AND OPTIONS

NOTES

1. The Task Builder expects to find a
symbol definition file having the
same name as the memory image file
but with a file version of .STB, on
the same device and under the same
UFD as the memory image file.

2. Regardless of the version number you
give in the file specification, the
Task Builder uses the latest version
of the .STB file.

When you omit portions of the file-specification, the following
defaults apply:

• UFD - taken from current terminal UIC

• device - SYO:

• file type - .TSK

• file version - latest

6-67

SWITCHES AND OPTIONS

RESLIB

6.2.20 RESLIB -- Resident Library

Refer to RESCOM in Section 6.2.19.

6-68

SWITCHES AND OPTIONS

RESS UP

6.2.21 RESSUP -- Resident Supervisor-Mode Library

You use the RESSUP option to declare that your task intends to access
a user-owned, supervisor-mode library. The term "user-owned" means
that the library and the symbol definition file associated with it can
reside under any UFD that you choose. You can specify the UFD and
remaining portions of the file specification. You must not place
comments on the line with RESSUP.

Syntax

RESSUP=file-specification/[-]SV[:apr]

file-specification

The memory image file of the supervisor-mode library. The file
specification has the standard RSX-llM/RSX-llM-PLUS format
discussed in Chapter 1.

/[-]SV

apr

The code SV for supervisor vectors or -SV for no supervisor
vectors. If you specify SV, the Task Builder replaces calls to
the supervisor-mode library within your task with context
switching vectors. If you specify -SV, calls within your task to
the supervisor-mode library are resolved directly and you must
provide your own means for context switching.

NOTE

The elimination of supervisor vectors is
useful if the supervisor-mode library
contains threaded code.

An integer in the range of 0 through 7 that specifies the first
Supervisor Active Page Register that you want the Task Builder to
reserve for your supervisor-mode library.

NOTES

1. The Task Builder expects to find a
symbol definition file having the
same name as the memory image file
but with a file version of .STB, on
the same device and under the same
UFD as the memory image file.

2. Regardless of the version number you
give in the file specification, the
Task Builder uses the latest version
of the .STB file.

6-69

3.

Default

SWITCHES AND OPTIONS

When the CMPRT and RESSUP
appear in a command
together, the CMPRT option
specified first.

options
sequence
must be

When you omit portions of the file specification, the following
defaults apply:

• UFD - taken from the current terminal UIC

• device - SYO:

e file type - .TSK

• file version - latest

6-70

SWITCHES AND OPTIONS

RO PAR

6.2o22 ROPAR -- Read-Only Partition -- RSX-llM-PLUS Only

You use this option to declare the partition in which the read-only
portion of your multiuser task is to reside.

Syntax

ROPAR~parname

parname

The partition name in which your multiuser task is to reside.

Default

The partition in which the read/write portion of the task
resides.

6-71

SWITCHES AND OPTIONS

STACK

6.2.23 STACK -- Stack Size

You use the STACK option to declare the maximum size of the stack
required by your task.

The stack is an area of memory that the MACR0-11 programmer uses for
temporary storage, subroutine calls, and synchronous trap service
linkage. The stack is referred to by hardware register 6 (SP, the
stack pointer).

Syntax

STACK=stack-size

stack-size

A decimal integer specifying the number of words required for the
stack.

Default

STACK=256

6-72

SWITCHES AND OPTIONS

SUPLIB

6.2.24 SUPLIB -- Supervisor-Mode Library -- RSX-llM-PLUS Only

You use this option to declare that your task intends to access a
system-owned, supervisor-mode library. The term "system-owned" means
that the Task Builder expects to find the supervisor-mode library and
the symbol definition file associated with it under UFD [1,1] on
device LB:.

Syntax

name

SUPLIB=name: [-] SV [: apr]

The 1- to 6-character Radix-50 name specifying the system-owned,
supervisor-mode library. The Task Builder expects to find a
symbol definition file having the same name as the library with a
file version of .STB under [1,1] of device LB:.

: [-] sv

apr

The code SV for supervisor vectors or -SV for no supervisor
vectors. If you specify SV, the Task Builder replaces calls to
the supervisor-mode library within your task with context
switching vectors. If you specify -sv, calls within your task to
the supervisor-mode library all resolved directly and you must
provide your own means for context switching.

NOTE

The elimination of supervisor vectors is
useful if the supervisor-mode library
contains threaded code.

An integer in the range of 0 through 7 that specifies the first
Supervisor Active Page Register that the Task Builder is to
reserve for the library.

NOTE

When the CMPRT and SUPLIB options appear
in a command sequence together, the
CMPRT option must be specified first.

Default

None

6-73

SWITCHES AND OPTIONS

TASK

6.2.25 TASK -- Task Name

You use the TASK option to give your task an installed name different
from its task image name.

Syntax

TASK=task-name

task-name

A 1- to 6-character name identifying your task.

Default

The first six characters of the task image file name are used to
identify the task when the task is installed.

6-74

SWITCHES ANb OPTIONS

TSKV

6.2.26 TSKV -- Task SST Vector

You use the TSKV option to declare that a global symbol is the address
of the task Synchronous System Trap (SST) vector. You must define the
global symbol in the main root segment of your task.

Syntax

TSKV=symbol-name:vector-length

symbol-name

A 1- to 6-character name of a global symbol.

vector-length

A decimal integer in the range of 1 through 32 specifying the
length of the SST vector in words.

Default

None

6-75

SWITCHES AND OPTIONS

UIC

6.2.27 UIC -- User Identification Code

You use the UIC option to declare the User Identification Code (UIC)
for your task when you run it with a time-based schedule request.

Syntax

group

UIC=[group,member]

An octal number in the range of 1 through 377, or a decimal
number in the range of 1 through 255. Decimal numbers must be
followed by a decimal point (.).

member

An octal number in the range of 1 through 377, or a decimal
number in the range of 1 through 255. Decimal numbers must be
followed by a decimal point (.).

Default

The UIC that the Task Builder is running under (normally the
terminal UIC).

6-76

SWITCHES AND OPTIONS

UNITS

6.2.28 UNITS -- Logical Unit Usage

You use the UNITS option to declare the number of logical units that
are used by your task.

Syntax

UNITS=:max-uni ts

max-units

A decimal integer in the range of 0 through 250 specifying the
maximum number of logical units. Note that in mapped systems the
UNITS option creates tables that require dynamic memory.
Therefore, large arguments can exhaust dynamic memory. (Refer to
the system generation manual for more information.)

Default

UNITS=:6

6-77

SWITCHES AND OPTIONS

VSECT

6.2.29 VSECT -- Virtual Program Section

You use the VSECT option to specify the virtual base address, virtual
length, and optionally, the physical memory allocated to the named
program section. Refer to Section 3.4 for more information on virtual
program sections.

Syntax

VSECT=p-sect-name:base:window[:physical-length]

p-sect-name

base

A 1- to 6-character program section name.

An octal value representing the virtual base address of the
program section in the range of 0 through 177777. If you use the
mapping directives the value you specify must be a multiple of
4K.

window

An octal value specifying the amount of virtual address space in
bytes allocated to the program section. Base plus window must
not exceed 177777 (octal).

physical-length

An octal value specifying the minimum amount of physical memory
to be allocated to the section in units of 64-byte blocks. The
Task Builder rounds this value up to the next 256-word limit.
This value, when added to the task image size and any previous
allocation, must not cause the total to exceed 2048K bytes. If
you do not specify a length, the Task Builder assumes a value of
0.

Default

Physical-length defaults to O.

6-78

SWITCHES AND OP'TIONS

WNDSW

6. 2 .. 30 WNDWS -- Number of Address Windows

The WNDWS option declares the number of address windows required by
the task in addition to those needed to map the task image, and any
mapped array or shared region. The number specified is equal to the
number of simultaneously mapped regions the task will use.

Syntax

WNDWS==n

n

An integer in the range 1 through 7 in an RSX-llM system and 1
through 15 in an RSX-llM-PLUS system.

Default

WNDWS==O

6-79

CHAPTER 7

HOST AND TARGET SYSTEMS

7.1 INTRODUCTION

You can build a task on one system (the host), and run it on another
(the target). For example, your installation might consist of one
large computer system with mapping hardware, and several smaller
unmapped systems. On the large system you could create and debug
tasks, and then transfer them to the smaller systems to run.

For example, if you are developing a task named TK3, using the default
partition of your host system, the Task Builder command could be:

>TKB TK3,TK3=SQ1,SQ2

When you are ready to move TK3 to a target system, you build it again,
indicating the mapping status of the target system, and naming the
partition in which the task is to reside:

>TKB
TKB>TK3/-MM,TK3=SQ1,SQ2
TKB>/
ENTER OPTIONS:
TKB>PAR=PART1:100000:40000
TKB>//

The resulting task image is ready to run on the unmapped target
system.

You can transfer a task from the host system to the target system by
following these steps:

1. Build the task image specifying the partition in which the
task will run. If the target system is an unmapped system,
specify the partition's base address and size.

2. Ensure that any shared regions accessed by the task are
present in both systems.

3. If the target system and the host system do not have the same
mapping status, set the Memory Management switch (/MM or
/-MM) to reflect the mapping status of the target system.

The task code must not use any hardware options (FPP, EIS, EAE, etc.)
that are not present on the target system. This is particularly
important if you are a FORTRAN user because FORTRAN tasks often use
mathematics routines that are hardware dependent. (Refer to the
IAS/RSX-11 FORTRAN IV Installation Guide and the IAS/RSX-11 FORTRAN IV
User's Guide for more information on FORTRAN requirements).

7-1

HOST AND TARGET SYSTEMS

7.2 EXAMPLE: TRANSFERING A TASK FROM A HOST TO A TARGET SYSTEM

In this section, the resident library LIB and the task that refers to
it MAIN (from Example 4, Chapter 3) are rebuilt to run on an unmapped
system. To save space, only the Task Builder command sequences are
shown.

Assuming that the target system has a partition within it named LIB,
only two changes need be made to the original command sequence that
builds the library:

1. The negated memory management switch (/-MM) must be attached
to the image file specification

2. The partition base and length must be specified

The modified command sequence is as follows:

TKB>LIB/-HD/PI/-MM,LIB/-WI,LIB=LIB
TKB> /
ENTER OPTIONS:
TKB> STACK=O
TKB> PAR= LIB: 136000: 20000
TKB> //

If the target system does not contain a partition of the same name as
the shared region you must change the name of the shared region to
match the name of an existing partition in the target system. This is
a requirement of RSX-llM; on RSX-llM-PLUS systems it is not.

Assuming that the target system has a partition named GEN and that the
task MAIN is to run in that partition in the target system, three
changes must be made to the command sequence that builds the task
MAIN:

1. The negated memory management switch (/-MM) must be attached
to the task image file specific~tion

2. The APR parameter of the RESLIB keyword must be eliminated

3. The partition in which the task is to reside, its base
address, and length must be explicitly specified

The modified command sequence is as follows:

TKB>MAIN/-MM,MAIN/MA/-WI=MAIN
TKB>/
ENTER OPTIONS:
TKB>RESLIB=LIB/RO
TKB>PAR=GEN:30100:40000
TKB>//

Figure 7-1 shows the map file of the resident library LIB for an
unmapped system. LIB is bound to the partition base specified by the
PAR keyword in the task-build command sequence. Note that the shared
region is declared position independent even though it is bound to the
partition base 136000. The position-independent declaration is not
necessary in this example because the referencing task MAIN does not
require the program section names within the library in order to refer
to it. However, in applications involving tasks that require the
program section names from the library, you must declare the library
position-independent so that the Task Builder will place the program
section names in the library's symbol definition file.

7-2

HOST AND TARGET SYSTEMS

L IB • '1' SK ; 5 MEMORY ALLOCATION MAP TKB M36
22-JAN-79 10:49

PARTITION NAME : LIB
IDENTIFICATION : 01
TASK UIC [303,3]
TASK ATTRIBUTES: -HD,PI
TOTAL ADDRESS WINDOWS: 1.
TASK IMAGE SIZE 64. WORDS
TASK ADDRESS LIMITS: 136000 136163
R-W DISK BLK LIMITS: 000003 000003 000001 00001.

*** ROOT SEGMENT: LIB

R/W MEM LIMITS: 136000 136163 000164 00116.
DISK BLK LIMITS: 000002 000002 000001 00001.

MEMORY ALLOCATION SYNOPSIS:

PAGE 1

SECTION TITLE !DENT

. BLK.: (RW,I,LCL,REL,CON) 136000 000000 00000.
AADD :(RO,I,GBL,REL,CON) 136000 000024 00020.

136000 000024 00020. LIB
DIVV : (RO,I,GBL,REL,CON) 136024 000026 00022.

136024 000026 00022. LIB
MULL :(RO,I,GBL,REL,CON) 136052 000024 00020.

136052 000024· 00020. LIB
SAVAL :(RO,I,GBL,REL,CON) 136076 000042 00034.

136076 000042 00034. LIB
SUBB :(RO,I,GBL,REL,CON) 136140 000024 00020.

136140 000024 00020. LIB

GLOBJl1L SYMBOLS:

AADD
DIVV

136000-R MULL 136052-R SUBB
136024-R SAVAL 136076-R

136140-R

*** 'I'ASK BUILDER STATISTICS:

'I10TAL WORK FI LE REFERENCES: 3 76.
WORK FILE READS: O.
WORK FILE WRITES: O.
SIZE OF CORE POOL: 8200. WORDS (32. PAGES)
SIZE OF WORD FILE: 768. WORDS (3. PAGES)

ELAPSED TIME:00:00:05

01

01

01

01

01

Figure 7-1 Task Builder Map for LIB.TSK

FILE

LIB .OBJ; 2

LIB .OBJ; 2

LIB.OBJ;2

LIB.OBJ;2

LIB.OBJ;2

Figure 7-2 shows the map file of the task MAIN for an unmapped system.
The task is bound to the partition base 30100 and linked to the shared
region LIB, which begins at 136000.

7-3

HOST AND TARGET SYSTEMS

MAIN.TSK;6 MEMORY ALLOCATION MAP TKB M36
22-JAN-79 11:20

PARTITION NAME : GEN
IDENTIFICATION : 01
TASK UIC [303,3]
STACK LIMITS: 030312 031311 001000 00512.
PRG XFR ADDRESS: 031652
TOTAL ADDRESS WINDOWS: 2.
TASK IMAGE SIZE 1120 WORDS
TASK ADDRESS LIMITS: 030100 034313
R-W DISK BLK LIMITS: 000002 000006 000005 00005.

*** ROOT SEGMENT: MAIN

R/W MEM LIMITS: 030100 034313 004214 02188
DISK BLK LIMITS: 000002 000006 000005 00005.

MEMORY ALLOCATION SYNOPSIS:

PAGE 1

SECTION TITLE !DENT FILE

• BLK.:(RW,I,LCL,REL,CON) 031312 002564 01396.
031312 000530 00344. MAIN

GLOBAL SYMBOLS:

AADD 136000-R
DIVV 136024-R
I 0. WVB 011000
MULL 136052-R

SAVAL 136076-R
SUBB 136140-R
$CBDAT 033060-R
$CBDMG 033066-R

*** TASK BUILDER STATISTICS:

$CBDSG 033074-R
$CBOMG 033102-R
$CBOSG 0 33110-R
$CBTA 033140-R

TOTAL WORK FILE REFERENCES: 2518.
WORK FILE READS: O.
WORK FILE WRITES: O.
SIZE OF CORE POOL: 8200. WORDS (32. PAGES)
SIZE OF WORK FILE: 1024. WORDS (4~ PAGES)

ELAPSED TIME:00:00:08

01 MAIN.OBJ;l

$CBTMG 033116-R
$CBVER 033102-R
$CDDMG 033276-R
$CDTB 033424-R

Figure 7-2 Task Builder Map for MAIN.TSK

7-4

CHAPTER 8

MEMORY DUMPS

The RSX-llM/M-PLUS Postmortem Dump task (PMD) generates Postmortem
memory dumps of tasks that are abnormally terminated. In addition,
PMD can produce edited dumps, called Snapshot Dumps, for tasks that
are running. Section 8.1 describes Postmortem Dumps in general;
Section 8.2 di~cusses the specific case of Snapshot dumps. Both types
of dump are very useful debugging aids.

8.1 POSTMORTEM DUMPS

You can make a task eligible for a Postmortem Dump in any of three
ways:

1. At task-build time, by specifying the PM switch for the task
file. /-PM disables dumps; it is the default condition.

2. When you install a task by using the PMD switch to
the taskbuild option. /PMD=YES enables dumping;
disables dumping.

override
/PMD=NO

3. When you use the MCR command ABORT (described in the
RSX-llM/M-PLUS MCR Operations Manual), by including the PMD
switch in the command line to specify a dump.

You should install PMD in a 4K partition in which all other tasks are
checkpointable. This allows the dump to be generated in a timely
manne!r, and prevents the system from being locked up while the dump is
being generated. PMD can dump either from memory or from the
checkpoint image of your task. The PMD is sensitive to the location
of the aborted task; therefore, if the aborted task is checkpointed
during the dump, PMD switches to reading the chec~point image. Once
the task is checkpointed, PMD locks it out of memory until it has
completed formatting the dump.

Dumps are always generated on the system disk under UFD [1,4];
therefore, to avoid errors from PMD, you must create a UFD for [1,4]
before installing the task. When PMD finishes generating the dump, it
attempts to queue the dump to the print spooler for subsequent
printing. If no spooler is installed, the dump file is left on the
disk and can be printed at a later time using the Peripheral
Interchange Program (PIP; described in Chapter 4 of the RSX-11
Utilities Manual).

8-1

MEMORY DUMPS

NOTE

Dump files tend to be somewhat large.
The dump of an SK partition averages
about 340 blocks. Therefore, if there
is little space on the disk, it is
important to print and delete the dump
file without delay. The print spooler
automatically deletes all files with the
type .PMD after printing them.

Figure 8-1 shows the contents of a Postmortem and Snapshot Dump; the
notes that follow the figure are keyed to figure and provide a
description of the dumps contents. Snapshot Dumps ·are explained more
fully in Section 8.2.

POST-MORTEM DUMP 0
TASK: TT6 8
PC: 000720 0

TIME: S-OCT-76 1S:06

IOT EXECUTION 0
REGS: RO - 00034S Rl - 074400 R2 - 000120 R3 -

R4 - 000000 RS - 000000 SP - 000304 PS -

TASK STATUS: MSG AST DST -CHK HLT STP REM MCR 0
EVENT FLAG MASK FOR <1-16> 000001 CD
CURRENT UIC: [007 ,001) DSW: 1. f)
PRIORITY: DEFAULT - 50. RUNNING - SO. I/O COUNT: O.

LOAD DEVICE - DBO: LBN: 1,160034 0

FLOATING POINT UNIT

STATUS - 000000

RO - 000000
Rl - 000000
R2 - 000000
R3 - 000000
R4 - 000000
RS - 000000

LOGICAL UNITS

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

UNIT DEVICE FILE STATUS

1 DBO:
2 DBO:
3 DBO:
4 DBO:

000000
000000
000000
000000
000000
000000

$

140130}
17 0000

e

TI DEVICE - TT6:~

OVERLAY SEGMENTS LOADED AND RESIDENT LIBRARIES MAPPED }

STARTING RELATIVE BLOCK: 000002 BASE: 000000 LENGTH: 0014S4 ~
STARTING RELATIVE BLOCK: 000004 BASE: 001454 LENGTH: 000264

TASK STACK

ADDRESS CONTENTS ASCII
000304 000045 %

Figure 8-1 Sample Postmortem Dump (Truncated)

8-2

MEMORY DUMPS

PARTITION: GEN VIRTUAL LIMITS: 000000 - 001777

000000 000304 000162 000001 067426 I 06 84 A Q08!
304 000 162 000 001 000 026 157 ID r ol

000010 003401 003401 170017 000352 1AD3 AD3 8PQ E4!
001 007 001 007 017 360 352 000 1 p

000020 000304 000000 000000 000000 D6 1
304 000 000 000 000 000 000 000 ID

000030 000000 000000 000000 000000 1
000 000 000 000 000 000 000 000 I

000040 000000 140162 074106 000001 OlZ SIO Al
000 000 162 300 106 170 001 000 r@ Fx

000050 000000 000000 001104 000000 NT
000 000 000 000 104 002 000 000 D

000060 000373 000000 000000 000000 Fk
373 000 000 000 000 000 000 000

000070 000000 074150 000004 051646 SJX D MON!
000 000 150 170 004 000 246 123 1 hx &SI

000100 000000 051646 000000 051646 MON MON!
000 000 246 123 000 000 246 123 &S &SI

000110 000000 051646 000000 000001 MON Al
000 000 246 123 000 000 001 000 1 &S

000120 067020 000000 001777 061404 IQXP YW 03.!
020 156 000 000 377 003 004 143 I n cl

000130 000020 000000 000600 007406 p IX BPFI
020 000 000 000 200 001 006 017 1

000140 170000 000720 000000 000000 18P KX 1
000 360 320 001 000 000 000 000 I p p

000150 140130 000120 074400 000345 !01 B SNP E/I (0
130 300 120 000 000 171 345 000 Ix@ P Y e

000160 000000 000000 000000 000000 1
000 000 000 000 000 000 000 000 I

*** DUPLICATE THROUGH 000236 ***
000240 000000 000000 001110 000000 NX

000 000 000 000 110 002 000 000 H
00250 001454 000264 000000 000000 TL OT

054 003 264 000 000 000 000 000 1 , 4
000260 000001 001612 074360 003413 A vz SN AEC!

001 000 212 003 360 170 013 007 1 px
00270 063014 131574 000000 000000 lPMD . 1

014 146 17 4 263 000 000 000 000 1 f 3
000300 001051 000001 000045 050114 M3 A 7 L361

05.l 002 001 000 045 000 114 120 1) % LP!
000310 000000 000001 000100 000304 A AX D61

000 000 001 000 100 000 304 000 I @ D 1
000320 000524 000000 000000 000000 HT I

124 001 000 000 000 000 000 000 !T
000330 000000 000000 000000 063014 PMD!

000 000 000 000 000 000 014 146 1 f I
000340 131574 047123 052120 052123 1 ••• LUK MSX MS$!

174 263 123 116 120 124 123 124 1 3 SN PT ST!
000350 000000 016746 177734 012746 DlN 7T CTF!

000 000 346 035 334 377 346 025 1 f \ f 1
000360 001037 l 04377 103456 005046 MW U61 UYF AX81

037 002 377 210 056 207 046 012 1 & I

Figure 8-1 (Cont.) Sample Postmortem Dump (Truncated)

8-3

0

0

0

MEMORY DUMPS

Type of dump - Postmortem or Snapshot. If it is a Snapshot
Dump, the dump identification is printed.

The name of the task being dumped, and the date and time the
dump was generated.

The program counter at the time of the dump. If it is a
Postmortem Dump, the reason the task was aborted is printed.

The general registers, stack pointer, and processor status at
the time of the dump.

The task status flags at the time of the dump. See
description of ATL or TAL in the RSX-llM/M-PLUS
Operations Manual for the meaning of the flags.

the
MCR

The task event flag mask word at the time of the dump. If
the dump is a Snapshot Dump, the efn specified in the SNAP$
macro will be ON (see Section 8.2.2).

The task UIC and the current value of the directive status
word.

The task's priority and
outstanding I/O requests,
task was initiated (TI:).

default priority, number of
and the terminal from which the

The task load device and the logical block number for the
start of the task image on the device.

The floating-point unit (FPU) registers or the extended
arithmetic element (EAE) registers if the task is using one
of these hardware features. If the task is not using the FPU
or EAE, these registers are not printed. If the task uses
the FPU and does not speqify /FP on the task image file, or
if it uses the EAE unit and has not specified the EA switch,
the registers are not printed. If the machine you are using
has both an FPU and an EAE, PMD assumes you are using the FPU
because it is the unit of choice for arithmetic computations.

The logical unit assignments at the time of the dump. UNIT
is the logical unit number, and DEVICE is the device to which
the logical unit is assigned. For Snapshot Dumps, the file
names of any open files are displayed under FILE STATUS.
Postmortem Dumps do not display this information because all
of the files have been closed as a result of the I/O rundown
on the aborted task.

The following are display~d: the overlay segments loaded and
resident libraries mapped at the time of the dump; the
relative block number of the segment; the base address; the
length of the segment; and, for tasks using manual load, the
segment names. For resident libraries, the library name is
also displayed. The block number can be used to determine
which segment is loaded, by reference to the memory
allocation file generated by the Task Builder. The starting
block number for each segment is the relative block number of
the segment. By obtaining a match, the name of the segment
in memory can be determined. Zero length segments are
usually co-tree roots.

8-4

MEMORY DUMPS

The task stack at the time of the dump. The address is
displayed, along with the contents, in octal, ASCII, and
Radix-so. Each word on the stack is dumped. If the stack
pointer is above the initial value of the stack (H.ISP), only
one word is dumped. The rest is dumped as part of the task
image.

41) The task image itself. The partition being dumped and the
limits of interest are displayed. For Postmortem Dumps, all
address windows in use are dumped. For Snapshot Dumps, the
virtual task limits that you request are displayed. The dump
routine rounds the requested low limit down to the nearest
multiple of eight bytes and rounds the requested high limit
up to the nearest multiple of eight bytes. The dump image
displays the virtual starting address of a 4-word block of
memory, the data in both octal and Radix-SO on the first
line, and byte octal and ASCII on the second line. A 4-word
block that is repeated in a contiguous region of memory is
printed once, and then noted by the message

*** DUPLICATE THROUGH xxxxxx ***
where xxxxxx indicates the last word that is duplicated. If
the task was aborted, all address windows in use are dumped.
If the dump is a Snapshot Dump, up to four contiguous blocks
of memory can be dumped, if requested.

8.2 SNAPSHOT DUMP

Snapshot Dumps are edited dumps produced for running tasks. You can
request a Snapshot Dump any number of times during the execuiion of a
task. The information generated is under the control of the
programmer.

Snapshot Dumps are generated by the following macros:

• SNPDf$ -- defines offsets in the Snapshot Dump Control Block,
and defines control bits, which control the format of the dump

• SNPBK$ -- allocates the Snapshot Dump Control Block (see Table
8-1)

• SNAP$ -- causes a Snapshot Dump to be generated

SNPBK$ and SNAP$ issue calls to SNPDF$; so, you need not explicitly
issue the SNPDF$ macro call. Sections 8.2.l and 8.2.2 describe the
SNPBK$ macro and the SNAP$ macro, respectively.

8-S

MEMORY DUMPS

Label Offset

SB.CTL 0 CONTROL FLAGS

SB.DEV 2 DEVICE MNEMONIC

SB.UNT 4 UNIT NUMBER

SB.EFN 6 EVENT FLAG

SB.ID 10 SNAP IDENTIFICATION

SB. LM1 (L 1) 12 MEMORY BLOCK 1
(H 1) 14 LIMITS

(L2) 16 MEMORY BLOCK 2

(H2) 20 LIMITS

(L3) 22
MEMORY BLOCK 3

(H3) 24 LIMITS

(L4) 26 MEMORY BLOCK 4
(H4) 30 LIMITS

SB.PMD 32 "PMD ... "
34 IN RADIX-50

Figure 8-2 Snapshot Dump Control Block Format

8e2.l Format of the SNPBK$ Macro

The format of the SNPBK$ macro call is:

dev

unit

ctl

SNPBK$ dev,unit,ctl,efn,id,Ll,Hl,L2,H2,L3,H3,L4,H4

The 2-character ASCII name of the device to which the dump is
directed. If it is a directory device, the UFD (1,4] ·must be on
the volume. The dump is written to the disk and then spooled to
the line printer. If there is no print spooler, the file is left
on the disk. If the device is not a directory device, the dump
goes directly to the device.

The unit number of the device to which the dump is directad.

The set of flags that control the format of the dump and the data
to be printed. The flags are:

SC.HOR Print the dump header (i terns 1 to 10 in Figure 8-1)

SC.LUN Print information on all assigned LUNs (item 11)

SC.OVL Print information about all loaded overlay segments
(i tern 12)

SC.STK Print the user stack (item 13)

8-6

efn

id

MEMORY DUMPS

SC.WRD Print the requested memory in octal words and Radix-SO
(i tern 14)

SC.BYT Print the requested memory in octal bytes and ASCII
(i tern 14)

The event flag to be used to synchronize your program and PMD.

A number that identifies the Snapshot Dump. Because dumps can be
requested at different times and under different conditions, this
ID is used to identify the place or reason for the dump.

Ll,L2,L3,L4
The starting addresses of the memory blocks to be dumped.

Hl ,H2 ,H3 ,H·4
The ending addresses of the memory blocks to be dumped.

NOTE

If no memory is to be dumped, each limit
(Ll,L2,L3,L4,Hl,H2,H3,H4) should be O.

Only one Snapshot Dump Control Block is allowed.
global label •• SPBK.

It generates the

NOTE

Because SNPBK$ is used to allocate
storage for the Snapshot Dump Control
Block, all arguments except dev must be
valid arguments for .WORD or .BYTE
directives.

8.2.2 Format of the SNAP$ Macro

The format of the SNAP$ macro is:

SNAP$ ctl,efn,id,Ll,Hl,L2,H2,L3,H3,L4,H4

ctl
The set of flags that control the format of the dump and the data
to be printed. The flags are:

SC.HDR Print the dump header

SC.LUN Print information on all assigned LUNs

SC.STK Print the user stack

SC.OVL Print information about all loaded overlay segments

SC.WRD Print the requested memory in octal words and Radix-SO

SC. BYT Print the requested memory in octal bytes and ASCII

8-7

efn

id

MEMORY DUMPS

The event flag to be used to synchronize your program and PMD. A
Wait-For-Single-Event-Flag directive is always generated to
perform synchronization.

A number that identifies the Snapshot Dump. Because dumps can be
requested at different times and under different conditions, this

·ID is used to identify the piace or reason for the dump.

Ll,L2,L3,L4
The starting addresses of memory blocks to be dumped.

Hl,H2,H3,H4
The ending addresses of memory blocks to be dumped.

NOTES

1. If no memory is to be dumped, each limit
(Ll,L2,L3,L4,Hl,H2,H3,H4) should be o.

2. The control flags can be set in any
combination; they are not mutually
exclusive. Thus, any number of options can
be obtained; for example,
SC.HDR!SC.LUN!SC.WRD prints the header,
LUNs, and the requested memory in word octal
and Radix-SO mode.

3. Arguments should be specified only to
override the information already in the
Snapshot Dump Control Block.

4. Because SNAP$ generates instructions to move
data into the Snapshot Dump Control Block,
its arguments must be valid source operands
for MOV instructions.

8.2.3 Example of a Snapshot Dump

The sample program shown in Figure 8-3 causes two Snapshot Dumps to be
printed directly on LPO:. The first dump uses the parameters defined
in the Snapshot Dump Control Block. The header is generated, and the
data in relative locations BLK to BLK+220 is displayed, in word octal
and Radix-SO. The identification on the dump is 1.

The second dump causes the data in the locations BLK to BLK+220 to be
displayed in byte octal and ASCII. A header is also generated. The
dump identification is 64 (100 octal). Figures 8-4 and 8-S show the
dumps generated by the sample program.

8-8

MEMORY DUMPS

SNPT:3T - TEST SNAP DUMP AND PMD MACRO MlOlO 03-SEP-76 1S:S7 PAGE l

6

000000
000036
000041
000044

7 000046

123
124
000

116
123

8 000216 012700 000036'
9 000222

10 000226
11 000412 000004
12 000046'

SNPTST - TEST SNAP DUMP AND PMD
SYMBOL TABLE

BLK OOOOOOR SB.EFN=
BUF 000036R SB. ID =
IE.ACT= ****** GX SB.LMl=
SB .c'rL= 000000 SB.PMD=
SB.DEV= 000002 SB.UNT=

ABS. 000000 000
000414 001

ERROHS DETECTED: 0

VIRTUAL MEMORY USED: l33S WORDS
DYNAMIC MEMORY AVAILABLE FOR 30

120
124

BLK:
BUF:

.TITLE
• IDENT
.MCALL
SNPBK$
.ASCIZ

.EVEN

SNPTST - TEST SNAP DUMP AND PMD
/01/
SNPBK$,SNAP$,CALL
LP,O,SC.HDR!SC.OVL!SC.WRD,l,l,BLK,BLK+220
/SNPTST/

START: SNAP$

MACRO MlOlO

000006
000010
000012
000032
000004

(6 PAGES)
PAGES

#BUF,RO MOV
CALL
SNAP$
IOT
.END

$CATS
#SC.HDR!SC.OVL!SC.BYT,,#100

START

03-SEP-76 15:57 PAGE 1-1

SC.BYT= 000040
SC.HOR= 000001
SC.LUN= 000002
SC.OVL= 000004

SC.STK= 000010
SC.WRD= 000020
START 000046R
$CATS = ****** GX

ASSEMBLY TIME (ELAPSED): 00:00:14
SNPTST,SNPTST=SNPTST

$DSW ****** GX
$$$T2 000027
.• SPBK OOOOOORG
•.• SNP= 000032

Figure 8-3 Sample Program that Calls for Snapshot Dumps

8-9

MEMORY DUMPS

SNAPSHOT DUMP ID: 1

TASK: TT6 TIME: S-OCT-76 1S:06

PC: 0 00 S22

REGS: RO 000000 Rl 100104 R2 000000 R3 140130

R4 - 000000 RS - 000000 SP - 000304 PS - 170000

TASK STATUS: MSG -CHK STP WFR REM MCR

EVENT FLAG MASK FOR <1-16> 000001

CURRENT UIC: [007 ,001] DSW: 1.

PRIORITY: DEFAULT - SO. RUNNING - SO. I / 0 COUNT : 0 • TI DEVICE - TT6:

LOAD DEVICE - DBO: LBN: 1,160034

FLOATING POINT UNIT

STATUS - 000000

RO - 000000 000000 000000 000000
Rl - 000000 000000 000000 000000
R2 - 000000 000000 000000 000000
R3 - 000000 000000 000000 000000
R4 - 000000 000000 000000 000000
RS - 000000 000000 000000 000000

OVERLAY SEGMENTS LOADED AND RESIDENT LIBRARIES MAPPED

STARTING RELATIVE BLOCK: 000002 BASE: 000000 LENGTH: 0014S4

TASK IMAGE

PARTITION: GEN VIRTUAL LIMITS: 000304 - OOOS24

000300 OOlOSl 000001 00002S OS0114 M3 A u L36
000310 000000 000001 000001 000304 A A D6
000320 OOOS24 000000 000000 000000 HT
000330 000000 000000 000000 063014 PMD
000340 131S74 047123 OS2120 OS2123 LUK MSX MS$
0003SO 000000 016746 177734 012746 DlN 7T CTF
000360 001037 104377 1034S6 OOS046 MW U61 UYF AXB
000370 012746 000304 012746 000336 .CTF D6 CTF EV
000400 017646 000000 062766 000002 !EBV PLV B
000410 000002 017666 000002 000002 B EBB B B
000420 012746 0002S07 104377 01343S !CTF 31 U61 UX/
000430 OOS046 OOS046 OOS046 OOS046 !AXB AXB AXB AXB
000440 012746 000336 017646 000000 !CTF EV EBV
0004SO 062766 000002 000002 017666 !PLV B B EBB
000460 000002 000002 012746 003413 B B CTF AEC
000470 104377 103006 022737 177771 !U61 UQO FBO BI
ooosoo 000046 001402 000261 000405 B SJ DQ FU
OOOSlO 016746 177576 012746 OOlOSl !DlN SF CTF M3
000520 104377 012700 000342 004767 !U61 CSH EZ AWl

Figure B-4 Sample Snapshot Dump (in Word Octal and Radix-50)

B-10

MEMORY DUMPS

SNAPSHOT DUMP ID: 64

TASK: TT6 TIME: 5-0CT-76 15:06

PC: 000716

REGS: RO - 000345 Rl - 074400 R2 - 000120 R3 - 140130

R4 - 000000 RS - 000000 SP - 000304 PS - 170000

TASK STATUS: MSG -CHK STP WFR REM MCR

EVEN'r FLAG MASK FOR <1-16> 000001

CURRENT UIC: [007001] DSW: 1.

PRIOJRITY: DEFAULT - 50. RUNNING - 50. I/O COUNT: 0. TI DEVICE - TT6:

LOAD DEVICE - DBO: LBN: 1,160034

FLOATING POINT UNIT

STATUS - 000000

RO - 000000 000000 000000 000000
Rl - 000000 000000 000000 000000
R2 - 000000 000000 000000 000000
R3 - 000000 000000 000000 000000
R4 - 000000 000000 000000 000000
RS - 000000 000000 000000 000000

OVERLAY SEGMENTS LOADED AND RESIDENT LIBRARIES MAPPED

STARTING RELATIVE BLOCK: 000002 BASE: 000000 LENGTH: 001454
STARTING RELATIVE BLOCK: 000004 BASE: 001454 LENGTH: 000264

TASK IMAGE

PARTITION: GEN VIRTUAL LIMITS: 000304 - 000524

000300 051 002 001 000 045 000 114 120 !) % LP
000310 000 000 001 000 100 000 304 000 @ D
000320 124 001 000 000 000 000 000 000 'T
000330 000 000 000 000 000 000 014 146 f
000340 174 263 123 116 120 124 123 124 3 SN PT ST
000350 000 000 346 035 334 377 346 025 f \ f
000360 037 002 377 210 056 207 046 012 . &
000370 346 025 304 000 346 025 336 000 f D f " 1
000400 246 037 000 000 366 145 002 000 & ve
000410 002 000 266 037 002 000 002 000 6
000420 346 025 107 005 377 210 035 207 f G
0004.30 046 012 046 012 046 012 046 012 & & & &
000440 346 025 336 000 246 037 000 000 f " &
0004:50 366 145 002 000 002 000 266 037 ve 6
000460 002 000 002 000 346 025 013 007 f
000470 377 210 006 206 337 045 371 377 % y
000500 046 000 002 003 261 000 005 001 !& I
000510 346 035 176 377 346 025 051 002 ! f f
000520 377 210 300 025 342 000 367 011 @ b w

Figure 8-5 Sample Snapshot Dump (in Byte Octal and ASCII)

8-11

APPENDIX A

TASK BUILDER INPUT DATA FORMATS

An object module is the fundamental unit of input to the Task Builder.
You create an object module by using any of the standard language
processors (for example, MACR0-11 or FORTRAN) or by using the Task
Builder itself (symbol definition file). The RSX-llM/M-PLUS librarian
(LBR) gives you the capability to combine a number of object modules
into a single library file.

An object module consists of variable length records of information
that describe the contents of the module. These records guide the
Task Builder in translating the object language into a task image.
Six record (block) types are included in the object language:

• Declare global symbol directory (GSD) record (type 1)

• End of global symbol directory (GSD) record (type 2)

• Text information (TXT) record (type 3)

• Relocation directory (RLD) record (type 4)

• Internal symbol directory (!SD) record (type 5)

• End-of-module record (type 6)

The Task Builder requires at least five of these record types in each
object module. The only record type that it does not require is the
internal symbol directory.

The various record types are defined according to a prescribed format,
as illustrated in Figure A-1. An object module must begin with a
declare-GSD record and end with an end-of-module record. Additional
declare-GSD records can occur anywhere in the file but must occur
before an end-of-GSD record. An end-of-GSD record must appear before
the end-of-module record, and at least one RLD record must appear
before the first TXT record. Additional RLD and TXT records can
appear anywhere in the file. The ISD records can appear anywhere in
the file between the initial declare-GSD record and the end-of-module
record.

Object module records are variable length and are identified by a
record type code in the first byte of the record. The format of
additional information in the record depends on the record type.

The following sections describe each of the
greater detail. The outline of these sections

A-1

six record types
is as follows

in

TASK BUILDER INPUT DATA FORMATS

A.l Declare Global Symbol Directory Record
A.1.1 Module Name (Type 0)
A.1.2 Control Section Name (Type 1)
A.1.3 Internal Symbol Name (Type 2)
A.1.4 Trasfer Address (Type 3)
A.1.5 Global Symbol Name (Type 4)
A.1.6 Program Section Name ('fype 5)
A.1.7 Program Version Identification (Type 6)
A.1.8 Mapped Array Declaration -(Type 7)
A.1.9 Completion Routine Name (Type 10)

A.2 End of Global Symbol Directory Record
A.3 Text Information Record
A.4 Relocation Directory Record

A.4.1 Internal Relocation (Type 1)
A.4.2 Global Relocation (Type 2)
A.4.3 Internal Displaced Relocation (Type 3)
A.4.4 Global Displaced Relocation (Type 4)
A.4.5 Global Additive Relocation (Type 5)
A.4.6 Global Additive Displaced Relocation (Type 6)
A.4.7 Location Counter Definition (Type 7)
A.4.8 Location Counter Modification (Type 10)
A.4.9 Program Limits (Type 11)
A.4.10 Program Section Relocation (Type 12)
A.4.11 Program Section Displaced Relocation (Type 14)
A.4.12 Program Section Additive Relocation (Type 15)
A.4.13 Program Section Additive Displaced Relocation

Type 16)
A.4.14 Complex Relocaion (Type 17)
A.4.15 Resident Library Relocation (Type 20)

A.5 Internal Symbol Directory Record
A.6 End of Module Record

A.l DECLARE GLOBAL SYMBOL DIRECTORY RECORD

The global symbol directory (GSD) record contains all the information
required by the Task Builder to assign addresses to global symbols and
to allocate the virtual address space required by a task.

GSD records are the only records processed by the Task Builder in its
first pass; therefore, you can save significant time by placing all
GSD records at the beginning of a module (because the Task Builder has
to read less of the file).

GSD records contain nine types of entries:

• Module name (type 0)

• Control section name (type 1)

• Internal symbol name (type 2)

• Transfer address- (type 3)

• Global symbol name (type 4)

• Program section name (type 5)

• Program version identification (type 6)

• Mapped array declaration (type 7)

• Completion routine name (type 10)

A-2

TASK BUILDER INPUT DATA FORMATS

TASK BUILDER DATA FORMATS

GSD Initial Declare GSD

RLD Initial Relocation Directory

GSD Additional GSD

TXT Text Information

TXT Text Information

RLD Relocation Directory

..... _

•
•
•

GSD Additional GSD

END GSD End of GSD

ISD Internal Symbol Directory

ISD Internal Symbol Directory

TXT Text Information

TXT Text Information

TXT Text Information

END MODULE End of Module

Figure A-1 General Object Module Format

Each entry type is represented by four words in
shown in Figure A-2, the first two words
characters, the third word contains a flag byte
identification, and the fourth word contains
about the entry.

the GSD record. As
contain six Radix-50
and the entry type

additional information

A-3

TASK BUILDER INPUT DATA FORMATS .

0 RECORD = 1
TYPE

RAD50
NAME

ENTRY TYPE FLAGS

VALUE

RAD50
NAME

TYPE FLAGS

VALUE

•
•
•

RAD50
NAME

TYPE I FLAGS

VALUE

RAD50
NAME

TYPE I FLAGS

VALUE

Figure A-2 Global Symbol Directory Record Format

A.1.1 Module Name (Type 0)

The module name entry declares the name of the object module. The
name need not be unique with respect to other object modules (that is,
modules are identified by file, not module name), but only one such
declaration can occur in any given object module. Figure A-3
illustrates the module entry name format.

MODULE
NAME

ENTRY = 0 0 TYPE

0

Figure A-3 Module Name Entry Format

A-4

TASK BUILDER INPUT DATA FORMATS

A.1.2 Control Section Name (Type 1)

Control sections, which include absolute sections (ASECTs), blank and
named control sections· (CSECTs), are replaced in RSX-llM by program
sections (PSECTs). For compatibility with other systems, the Task
Builder processes ASECTs and both forms of CSECTs. Section A.1.6
details the entry generated for a .PSECT directive.

ASECTs and CSECTs are defined in terms of .PSECT directives, as
follows:

For a blank CSECT, a program section is defined with the following
attributes:

.PSECT ,LCL,REL,CON,RW,I,LOW

For a named CSECT, the program section is defined as:

.PSECT name, GBL,REL,OVR,RW,I,LOW

For an ASECT, the program section is defined as:

.PSECT • ABS.,GBL,ABS,I,OVR,RW,LOW

The Task Builder processes ASECTs and CSECTs as program sections with
the fixed attributes defined above. Figure A-4 illustrates the
control section entry name format.

CONTROL SECTION

NAME

ENTRY
1 IGNORED TYPE =

MAXIMUM LENGTH

Figure A-4 Control Section Name Entry Format

A.1.3 Internal Symbol Name (Type 2)

The internal symbol name entry declares the name of an internal symbol
(with respect to the module). The Task Builder does not support
internal symbol tables; therefore, the detailed format of this entry
is undefined. If the Task Builder encounters an internal symbol entry
while reading the GSD, it ignores that entry. Figure A-5 illustrates
the internal symbol name entry format.

SYMBOL
NAME

ENTRY
2 0 TYPE =

UNDEFINED

Figure A-5 Internal Symbol Name Entry Format

A-5

TASK BUILDER INPUT DATA FORMATS

A.1.4 Transfer Address (Type 3)

The transfer address entry declares the transfer address of a module
relative to a program section. The first two words of the entry
define the name of the program section, and the fourth word defines
the relative offset from the beginning of that program section. If a
transfer address is not declared in a module, then a transfer address
must not be included in the GSD, or a transfer address of 000001
relative to the default absolute program section (. ABS.) must be
specified. Figure A-6 illustrates the transfer address entry format.

NOTE

If the program section is absolute, the
offset is the actual transfer address
(if not 000001).

SYMBOL
NAME

ENTRY = 3 0 TYPE

OFFSET

Figure A-6 Transfer Address Entry Format

A.1.5 Global Symbol Name (Type 4)

The global symbol name entry declares either a global reference or a
definition. Definition entries must appear after the declaration of
the program section in which the global symbols are defined and before
the declaration of another program section (see Section A.1.6).
Global references can be used anywhere within the GSD.

As shown in Figure A-7, the first two words of the entry define the
name of the global symbol. The flag byte declares the attributes of
the symbol, aud the fourth word defines the value of the symbol
relative to the program section in which the symbol is defined.

SYMBOL
NAME

ENTRY = 4 FLAGS TYPE

VALUE

Figure A-7 Global Symbol Name Entry Format

Table A-1 lists the bit assignments of the flag byte of the symbol
declaration entry.

A-6

TASK BUILDER INPUT DATA FORMATS

Table A-1
Symbol Declaration Flag Byte -- Bit Assignments

Bit Number and Name Setting Meaning

0

1

2

3.

4

5

6

7

Weak Qualifier

Definition or
Reference Type

Definition

Relocation

0

1

0

1

0

1

0

1

A.1~6 Program Section Name (Type 5)

The symbol has a strong
definition and is resolved in
the normal manner.

The symbol has a weak
definition or reference. The
Task Builder ignores a weak
reference (Bit 3 = 0). It
also ignores a weak definition
(Bit 3 = 1) unless a previous
reference has been made.

Not used

Normal definition or
reference.

Library definition. If the
symbol is defined in a resident
library STB file, the base
address of the library is added
to the value and the symbol is
converted to absolute (bit 5 is
reset); otherwise, the bit is
ignored.

Global symbol reference.

Global symbol definition.

Not used.

Absolute symbol value.

Relative symbol value.

Not used.

Not used.

The program section name entry declares the name of a program section
and its maximum length in the module. It also uses the flag byte to
declare the attributes of the program section.

A-7

TASK BUILDER INPUT DATA FORMATS

GSD records must be constructed such that once a program section name
has been declared, all global symbol definitions pertaining to it must
appear before another program section name is declared. Global
symbols are declared with symbol declaration entries. Thus, the
normal format is a series of program section names each followed by
optional symbol declarations. Figure A-8 illustrates the program
section name entry format.

PROGRAM SECTION
NAME

ENTRY = 5 FLAGS TYPE

MAXIMUM LENGTH

Figure A-8 Program Section Name Entry Format

Table A-2 lists the bit assignments of the flag byte of the program
section name entry.

Table A-2
Program Section Name Flag Byte -- Bit Assignments

Bit Number and Name

0

l

2

Memory Speed

Library program
section

Allocation

Setting

0

1

0

1

0

1

Meaning

The program section is to occupy
low-speed (core) memory.

The program section is to occupy
high-speed (MOS/bipolar) memory.

Normal program section.

The program
relocatable and
resident library
block.

section
refers

or

is
to a

common

Program section references are to
be concatenated with other
references to the same program
section to form the total memory
allocated to the section.

Program section references are to
be overlaid. · The total memory
allocated to the program section
is the largest request made by
individual references to the same
program section.

(continued on next page)

A-8

TASK BUILDER INPUT DATA FORMATS

Table A-2 (Cont.)
Program Section Name Flag Byte -- Bit Assignments

Bit Number and Name Setting Meaning

3

4

5

6

7

Access 0

1

Not used; reserved for future
DIGITAL use.

Program section has read/write
access.

Program section has read-only
access.

Relocation 0 The program section is absolute
and requires no relocation.

Scope

Type

1

0

l

0

l

The program section is
relocatable and references to
the control section must have a
relocation bias added before
they become absolute.

The scope of the program section
is local. References to the
same program section are
collected only within the
segment in which the program
section is defined.

The scope of the program section
is global. References to the
program section are collected
across segment boundaries. The
segment in which a global
program section is allocated
storage is determined either by
the first module that defines
the program section on a path,
or by direct placement of a
program section in a segment
using the overlay description
language .PSECT directive.

The program section contains
instruction {I) references.

The program section
data {D) references.

NOTE

contains

The length of all absolute sections is
zero.

A-9

TASK BUILDER INPUT DATA FORMATS

A.1.7 Program Version Identification (Type 6)

The program version identification entry declares the version of the
module. The Task Builder saves the version identification of the
first module that defines a nonblank version. It then includes this
identification on the memory allocation map and writes the
identification in the label block of the task image file.

The first two words of the entry contain the version identification.
The flag byte and fourth words are not used and contain no meaningful ·
information. Figure A-9 illustrates the program version
identification entry format.

SYMBOL
NAME

ENTRY
= 6 0 TYPE

0

Figure A-9 Program Version Identification Entry Format

A.1.8 Mapped Array Declaration (Type 7)

The mapped array declaration entry allocates space within the mapped
array area of task memory. The array name is added to the list of
task program section names and may be referred to by subsequent RLD
records. The length (in units of 64-byte blocks) is added to the
task's mapped array allocation. The total memory allocated to each
mapped array is rounded up to the nearest 512-byte boundary. The
contents of the flag byte are reserved and assumed to be zero.

One additional window block is allocated whenever a mapped array is
declared.

Figure A-10 illustrates the mapped array declaration entry format.

MAPPED ARRAY

NAME

ENTRY = 7 FLAGS TYPE

LENGTH (NUMBER OF 64-BYTE BLOCKS)

Figure A-10 Mapped Array Declaration Entry Format

A-10

TASK BUILDER INPUT DATA FORMATS

A.1.9 Completion Routine Definition (Type 10)

The completion routine definition declares the entry point for the
completion routine of a supervisor-mode library. This data structure
is cieated by the Task Builder and appears only in Symbol Definition
files of supervisor-mode libraries.

As shown in Figure A-11, the first two words of the entry define the
name of the entry point. The third word contains the entry type byte
and the flag byte. The flag byte contains no meaningful information.
The fourth word contains the symbol value.

COMPLETION ROUTINE
NAME

ENTRY = 10 0 TYPE

VALUE

Figure A-11 Completion Routine Entry Format

A.2 END OF GLOBAL SYMBOL DIRECTORY RECORD

The end of global symbol directory (end-of-GSD) record declares that
no other GSD records are contained further on in the module. There
must be exactly one end-of-GSD record in every. object module. As
shown in Figure A-12, this record is one word long.

0 RECORD
TYPE 2

Figure A-12 End of Global Symbol Directory Record Format

A.3 TEXT INFORMATION RECORD

The text information (TXT) record contains a byte string of
information that is to be written directly into the task image file.
The record consists of a load address followed by the byte string.

TXT records can contain words and/or bytes of information whose final
contents have not yet been determined. This information will be bound
by a relocation directory record that immediately follows the text
record (see Section A.4). If the TXT record needs no modification,
then no relocation directory record is needed. Thus, multiple TXT
records can appear in sequence before a relocation directory record.

The load address of the TXT record is specified as an offset from the
current program section base. At least one relocation directory
record must precede the first TXT record. This directory must declare
the current program section.

A-11

TASK BUILDER INPUT DATA FORMATS

The Task Builder writes a text record directly into the task image
file and computes the value of the load address minus 4. This value
is stored in anticipation of a subsequent relocation directory that
modifies words and/or bytes contained in the TXT record. When added
to a relocation directory displacement byte, this value yields the
address of the word and/or byte to be modified in the task image.

Figure A-13 illustrates the TXT record format.

0
RECORD = 3 TYPE

LOAD ADDRESS

TEXT TEXT

•
•
•

~ '
TEXT TEXT

Figure A-13 Text Information Record Format

A.4 RELOCATION DIRECTORY RECORD

The relocation directory (RLD) record contains the information
necessary to relocate and link the preceding TXT record. Every module
must have at least one RLD record that precedes the first TXT record.
The first RLD record does not modify a preceding TXT record; rather
it defines the current program section and location. RLD records
contain 15 types of entry, classified as relocation or location
modification entries:

• Internal relocation (type 1)

• Global relocation (type 2)

• Internal displaced relocation (type 3)

• Global displaced relocation (type 4)

• Global additive relocation (type 5)

A-12

TASK BUILDER INPUT DATA FORMATS

• Global additive displaced relocation (type 6)

• Location counter definition (type 7)

• Location counter modification (type 10)

• Program limits (type 11)

• Program section relocation (type 12)

• Program section displaced relocation (type 14)

• Program section additive relocation (type 15)

• Program section additive displaced relocation (type 16)

• Complex relocation (type 17)

• Resident library relocation (type 20)

Each type of entry is represented by a command byte which specifies
the type of entry and the word/byte modification, followed by a
displacement byte, and then by the information required for the
particular type of entry. The displacement byte, when added to the
value calculated from the load address of the preceding TXT record
(see Section A.3), yields the virtual address in the image that is to
be modified.

Table A-3 lists the bit assignments of the command byte of each RLD
entry.

Bit Number

0-6 Entry

Table A-3
Relocation Directory Command Byte -

Bit Assignments

and Name Setting Meaning

Type Potentially, 128 command types
can be specified; currently,
15 are implemented.

7 Modification 0 The command modifies an entire
word.

l The command modifies only l
byte. The Task Builder checks
for truncation errors in byte
modification commands. If
truncation is detected (that
is, if the modification value
is greater than 255), an error
occurs.

Figure A-14 illustrates the RLD record format.

A-13

TASK BUILDER INPUT DATA FORMATS

0 RECORD = 4 TYPE

DISP CMD

INFO INFO

' ••
INFO INFO

CMD INFO

INFO DISP

INFO

r '
INFO INFO

DISP CMD

INFO INFO

' r

INFO INFO

Figure A-14 Relocation Directory Record Format

A.4.1 Internal Relocation (Type 1)

The internal relocation entry relocates a direct pointer to an address
within a module. The Task Builder adds the current program section
base address to a specified constant and writes the result into the
task image file at the calculated address (that is, a displacement
byte is added to the value calculated from the load address of the
preceding text block).

A-14

TASK BUILDER INPUT DATA FORMATS

For example:

A: MOV #A,RO

or

.WORD A

Figure A-15 illustrates the internal relocation entry format.

DISP B ENTRY = 1 TYPE

CONSTANT

Figure A-15 Internal Relocation Entry Format

A.4.2 Global Relocation (Type 2)

The global relocation entry relocates a direct pointer to a global
symbol. The Task Builder obtains the definition of the global symbol
and writes the result into the task image file at the calculated
address.

For example:

MOV #GLOBAL,RO

or

.WORD GLOBAL

Figure A-16 illustrates the global relocation entry format.

DISP B ENTRY = 2 TYPE

SYMBOL
NAME

Figure A-16 Global Relocation Entry Format

A.4.3 Internal Displaced Relocation (Type 3)

The internal displaced relocation entry relocates a relative reference
to an absolute address from within a relocatable control section. The
Task Builder subtracts the address plus 2 that the relocated value is
to be written into from the specified constant and writes the result
into the task image file at the calculated address.

A-15

TASK BUILDER INPUT DATA FORMATS

For example:

CLR 177550

or

MOV 177550,RO

Figure A-17 illustrates the internal displaced relocation entry
format.

DISP B ENTRY = 3 TYPE

CONSTANT

Figure A-17 Internal Displaced Relocation Entry Format

AD4.4 Global Displaced Relocation (Type 4)

The global displaced relocation entry relocates a relative reference
to a global symbol. The Task Builder obtains the definition of the
global symbol, subtracts the address plus 2 that the relocated value
is to be written into from the definition value, and writes the result
into the task image file at the calculated address.

For example:

CLR GLOBAL

or

MOV GLOBAL,RO

Figure A-18 illustrates the global displaced relocation entry format.

DISP B ENTRY = 4 TYPE

SYMBOL
NAME

Figure A-18 Global Displaced Relocation Entry Format

A.4.5 Global Additive Relocation (Type 5)

The global additive relocation entry relocates a direct pointer to a
global symbol with an additive constant. The Task Builder obtains the
definition of the global symbol, adds the specified constant to the
definition value, and writes the result into the task image file at
the calculated address.

A-16

TASK BUILDER INPUT DATA FORMATS

For example:

MOV #GLOBAL+2,RO

or

.WORD GLOBAL-4

Figure A-19 illustrates the global additive relocation entry format.

DISP B ENTRY = 5 TYPE

SYMBOL
NAME

CONSTANT

Figure A-19 Global Additive Relocation Entry Format

A.4.6 Global Additive Displaced Relocation (Type 6)

The global additive displaced relocation entry relocates a relative
reference to a global symbol with an additive constant. The Task
Builder obtains the definition of the global symbol, adds the
specified constant to the definition value, subtracts the address plus
2 that the relocated value is to be written into from the resultant
additive value, and writes the result into the task image file at the
calculated address.

For example:

CLR GLOBAL+2

or

MOV GLOBAL-5,RO

Figure A-20 illustrates the global additive displaced relocation entry
format.

DISP B ENTRY = 6 TYPE

SYMBOL
NAME

CONSTANT

Figure A-20 Global Additive Displaced Relocation Entry Format

A-17

TASK BUILDER INPUT DATA FORMATS

A.4.7 Location Counter Definition {Type 7)

The location counter definition entry declares a current program
section and location counter value. The Task Builder stores the
control base as the current control section, adds the current control
section base to the specified constant, and stores the result as the
current location counter value.

Figure A-21 illustrates the location counter definition entry format.

0 B ENTRY = 7 TYPE

PROGRAM SECTION
NAME

CONSTANT

Figure A-21 Location Counter Definition Entry Format

A.4.8 Location Counter Modification {Type 10)

The location counter modification entry modifies the current location
counter. The Task Builder actds the current program section base to
the specified constant and stores the result as the current location
counter.

For example:

.=.+N

or

.BLKB N

Figure A-22 illustrates the location counter modification entry
format.

0 B ENTRY = 10 TYPE

CONSTANT

Figure A-22 Location Counter Modification Entry Format

Ae4.9 Program Limits {Type 11)

The program limits entry is generated by the .LIMIT assembler
directive. The Task Builder obtains the first address above the
header (normally the beginning of the stack) and the highest address
allocated to the task. It then writes these two addresses into the
task image file at the calculated address and at the ·calculated
address plus 2, respectively.

A-18

TASK BUILDER INPUT DATA FORMATS

For example:

.LIMIT

Figure A-23 illustrates the program limits entry format.

DISP
ENTRY
TYPE 11

Figure A-23 Program Limits Entry Format

A.4.10 Program Section Relocation (Type 12)

The program section relocation
beginning address of another
section in which the reference
Builder obtains the current
section and writes it into the
address.

For example:

B:
.PSECT A

.PSECT
MOV

or

c
#B,RO

.WORD B

entry relocates a direct pointer to the
program section (other than the program
is made) within a module. The Task
base address of the specified program
task image file at the calculated

Figure A-24 illustrates the program section relocation entry format.

DISP B
ENTRY = 12
TYPE

PROGRAM SECTION
NAME

Figure A-24 Program Section Relocation Entry Format

A.4.11 Program Section Displaced Relocation (Type 14)

The program section displaced relocation entry relocates a relative
reference to the beginning address of another program section within a
module. The Task Builder obtains the current base address of the
specified program section, subtracts the address plus 2 that the
relocated value is to be written into from the base value, and writes
the result into the task image file at the calculated address.

A-19

TASK BUILDER INPUT DATA FORMATS

For example:

.PSECT A
B:

.PSECT C
MOV B,RO

Figure A-25 illustrates the program section displaced relocation entry
format.

DISP B
ENTRY

= 14 TYPE

PROGRAM SECTION
NAME

Figure A-25 Program Section Displaced Relocation Entry Format

A~4.12 Program Section Additive Relocation (Type 15)

The program section additive relocation entry relocates a direct
pointer to an address in another program section within a module. The
Task Builder obtains the current base address of the specified program
section, adds this address to the specified constant, and writes the
result into the task image file at the calculated address.

For example:

B:

C:

.PSECT A

.PSECT
MOV
MOV

or

.WORD

.WORD

D
#B+lO,RO
#C,RO

B+lO
c

Figure A-26 illustrates the program section additive relocation entry
format.

A-20

TASK BUILDER INPUT DATA FORMATS

DISP B ENTRY = 15
TYPE

PROGRAM SECTION
NAME

CONSTANT

Figure A-26 Program Section Additive Relocation Entry Format

A.4.13 Program Section Additive Displaced Relocation (Type 16)

The program section additive displaced relocation entry relocates a
relative reference to an address in another program section within a
module. The Task Builder obtains the current base address of the
specified program section, adds this address to the specified
constant, subtracts the address plus 2 that the relocated value is to
be written into from the resultant additive value, and writes the
result into the task image file at the calculated address.

For example:

.PSECT A
B:

C:

.PSECT
MOV
MOV

D
B+lO,RO
C,RO

Figure A-27 illustrates the program section additive
relocation entry format.

DISP B ENTRY = 16
TYPE

PROGRAM SECTION
NAME

CONSTANT

displaced

Figure A-27 Program Section Additive Displaced Relocation Entry Format

A-21

TASK BUILDER INPUT DATA FORMATS

A.4.14 Complex Relocation (Type 17)

The complex relocation entry resolves a complex relocation expression.
Such an expression is one in which any of the MACR0-11 binary or unary
operations are permitted with any type of argument, regardless of
whether the argument is an unresolved global symbol, is relocatable to
any program section base, is absolute, or is a complex relocatable
subexpression.

The RLD command word is followed by a string of numerically-specified
operation codes and arguments. The operation codes each occupy one
byte. The entire RLD command must fit in a single record. The
following 15 operation codes are defined:

• No operation

• Addi ti on {+)

• Subtraction {-)

• Multiplication

• Division {/) --

• Logical AND (&)

byte 0

byte 1

byte 2

{*) -- byte

byte 4

-- byte 5

3

• Logical inclusive OR { 1) byte 6

• Negation {-) -- byte 10

• Complement < "c) -- byte 11

• Store result {command termination) -- byte 12

• Store result with displaced relocation {command termination)
-- byte 13

• Fetch global symbol -- byte 16. It is followed by 4 bytes
containing the symbol name in Radix-50 representation.

• Fetch relocatable value -- byte 17. It is followed by 1 byte
containing the sector number, and 2 bytes containing the
offset within the sector.

• Fetch constant byte 20. It is followed by 2 bytes
containing the constant.

• Fetch resident library base address -- byte 21. If the file
is a resident library STB file, the library base address is
obtained; otherwise, the base address of the task image is
fetched.

The STORE commands indicate that the value is to be written into the
task image file at the calculated address.

All operands are evaluated as 16-bit signed quantities using 2's
complement arithmetic. The results are equivalent to expressions that
the assembler evaluates internally. The following rules should be
noted.

1. An attempt to divide by zero yields a zero result. The Task
Builder issues a nonfatal diagnostic error message.

A-22

TASK BUILDER INPUT DATA FORMATS

2. All results are truncated from the left to fit into 16 bits.

3.

No diagnostic error message is issued if the number is too
large. If the result modifies a byte, the Task Builder
checks for truncation errors as described in Section A.4.

All operations are performed
absolute 16-bit quantities.
the result only.

on relocated (additive) or
PC displacement is applied to

For example:

.PSECT ALPHA
A:

.PSECT BETA
B:

MOV #A+B-<Gl/G2& "C< 1771201 G3» ,Rl

Figure A-28 illustrates the complex relocation entry format.

DISP I BI ENTRY = 17
TYPE

COMPLEX STRING

12

Figure A-28 Complex Relocation Entry Format

A.4.15 Resident Library Relocation (Type 20)

The library relocation entry relocates a direct pointer to an address
within a resident library.

If the current file is a resident library symbol definition file
(STB), the Task Builder obtains the base address of the library; adds
this address to the specified constant; and writes the result into
the task image file at the calculated address. If the file is not
associated with a resident library, the Task Builder uses the task
bas:e address.

Figure A-29 illustrates the library relocation entry format.

DISP

CONSTANT

ENTRY
TYPE

20

Figure A-29 Resident Library Relocation Entry Format

A-23

TASK BUILDER INPUT DATA FORMATS

A.5 INTERNAL SYMBOL DIRECTORY RECORD

The internal symbol directory (!SD) record declares definitions of
symbols that are local to a module. The Task Builder does not support
this feature; therefore, the detailed record format is undefined. If
the Task Builder encounters this type of record, it ignores that
record.

Figure A-30 illustrates the !SD record format.

0 RECORD = 5
TYPE

UNDEFINED

Figure A-30 Internal Symbol Directory Record Format

A.6 END OF MODULE RECORD

The end-of-module record declares the end of an object module. There
must be exactly one end-of-module record in every object module. As
shown in Figure A-31, this record is one word long.

0 RECORD
TYPE 6

Figure A-31 End-of-Module Record Format

A-24

APPENDIX B

DETAILED TASK IMAGE FILE STRUCTURE

Figure B-1 illustrates how the Task Builder records a task image on
disk.. As noted in the following sections, many parts of the task disk
image shown in this figure are optional and may not be recorded for
every task image.

The following sections, which provide detailed information on the task
image file structure, are organized as follows:

B.l Label Block Group
B.2 Checkpoint Area
B.3 Header

B.3.1 Low-memory Context
B.3.2 Logical Unit Table Entry

B.4 Task Image
B.4.1 Autoload Vectors
B.4.2 Segment Descriptor
B.4.3 Window Descriptor
B.4.4 Region Descriptor
B.4.5 Supervisor-Mode Vector

B • 1 LABEL :BLOCK GROUP

The label block group precedes the task on the disk and contains data
that is needed by the system to install and load a task but need not
reside in memory during task execution. This group consists of three
parts:

• Task and resident library data (label block 0)

• Table of LUN assignments (label blocks 1 and 2)

• The segment load list (label block 3)

Table B-1 describes the task and resident library data. Figure B-2
illustrates how the Task Builder organizes this data in label block O.
The INSTALL processor verifies the task and resident library data when
entering the tasks into the System Task Directory (STD) file. You can
obtain the offsets shown in Figure B-2 by calling the LBLDF$ macro
that resides in macro library LB: [1,1] EXEMC.MLB.

B-1

Relative
disk block 0

Relative
disk block 1

Relative
disk block 2

Relative
disk block 3

Relative
disk block n

Overlay segments
(task-resident
overlay data base)

DETAILED TASK IMAGE FILE STRUCTURE

Label block 0 - Task and
resident Ii brary data

Label block 1 - Table of
LUN assignments

Label block 2 - Table of
LUN assignments (optional)

Label block 3 - Segment
load list (optional)

Checkpoint area
(optional)

Task header -
Fixed part

Task header -
Variable part

Root segment

t----

(contiguous blocks)

Segment table

~ Autoload vector -
~ Region descriptor -
~ Window descriptors -
~ Segment descriptors -

Figure B-1 Task Image on Disk

B-2

Label block
group

Header

Task image

Pa1rameter

L$BTSK

L$BPAR

L$BSA

L$BHGV

L$BMXV

L$BLDZ

L$BMXZ

L$BOF'F

L$BWND

L$BSYS

L$BWND

L$BSEG

L$BFLG

DETAILED TASK IMAGE FILE STRUCTURE

Table B-1
Task and Resident Library Data

Definition

Task name consisting of two words in Radix-50 format.
This parameter is set by the TASK keyword.

Partition name consisting of two words in Radix-50
format. This parameter is set by the PAR keyword.

Starting address of task. Marks the lowest task virtual
address. This parameter is set by the PAR keyword.

Highest virtual address mapped by address window O.

Highest task virtual address. When the task does not
have memory-resident overlays, the value is set to
L$BHGV.

Task load size in units of 64-byte blocks.
represents the size of the root segment.

This value

Task maximum size in units of 64-byte blocks. This
value represents the size of the root segment plus any
additional physical memory needed to contain task
overlays.

Task offset into partition in units of 64-byte blocks.
This value represents the size of the mapped array area,
which precedes the task's code and data in the
partition.

Number of task window blocks less library window blocks
-- low byte

System ID high byte

Number of task windows (excluding resident libraries).

Size of overlay segment descriptors (in bytes).

Task flags word. The following flags are defined:

Bit Flag Meaning when Bit = 1

15 TS$PIC Task contains position-independent code
(P IC)

14 TS$NHD Task has no header

13 TS$ACP Task is ancillary control processor

12 TS$PMD Task generates post-mortem dump

11 TS$SLV Task can be slaved

(continued on next page)

B-3

DETAILED TASK IMAGE FILE STRUCTURE

Table B-1 (Cont.)
Task and Resident Library Data

Parameter Definition

L$BFLG Bit Flag Meaning when Bit = 1
(Cont.)

10 TS$NSD No SEND can be directed to task

9 (not used)

8 TS$PRV Task is privileged

7 TS$CMP Task is built in compatibility mode

6 TS$CHK Task is not checkpointable

5 TS$RES Task has memory-resident overlays

4 TS$SUP Image linked as supervisor-mode library
(RSX-llM-PLUS systems only)

L$BDAT Three words containing the task creation date as 2-digit
integer values as follows:

L$BLIB

L$BPRI

L$BXFR

L$BEXT

L$BSGL

L$BHRB

L$BBLK

L$BLUN

L$BROB

L$BROL

Year since 1900
Month of year
Day of month

Resident library entries.

Task priority set by the PRI keyword.

Task transfer address. Used to initiate a bootable core
image, for example, the resident executive.

Task extension size in units of 32-word blocks.
parameter is set by the EXTTSK keyword.

Relative block number of segment load list. Set
no list is allocated.

Relative block number of header.

Number of blocks in label block group.

Number of logical units.

Relative block number of R/O image.

R/O load size in 32-word blocks.

B-4

This

to 0 if

DETAILED TASK IMAGE FILE STRUCTURE

Label Offset

L$BTSK 0 Task

2 Name

L$BPAR 4 Task

6 Partition

L$BSA 10 Base address of task

L$BHGV 12 Highest window 0 virtual address

L$BMXV 14 Highest virtual address in task

L$BLDZ 16 Load size in 64-byte blocks

L$BMXZ 20 Maximum size in 64-byte blocks

L$BOFF 22 Task offset into partition

L$BWND/L$BSYS 24 System l.D. I Number of window blocks~·
L$BSEG 26 Size of overlay segment descriptors

L$BFLG 30 Task flag word

L$BDAT 32 Task creation date - Year

34 -Month

36 -Day

L$BLIB 40 Library /common

42 Name R$LNAM

44 Base address of library R$LSA
Library

46 Highest address in first library window R$LHGV Request

50 Highest address in library R$LMXV (maximum
of 7

52 Library load size (64-byte blocks) R$LLDZ 14-word

54 Library maximum size (64-byte blocks) R$LMXZ entries in
RSX-11 M systems

56 Library offset into region R$LOFF and

60 Number of library window blocks R$LWND maximum
of 15

62 Size of I ibrary segment descriptors R$LSEG 14-word

64 Library flag word R$LFLG entries in
RSX-11 M+ systems)

66 Library creation date - Year R$LDAT

70 -Month

72 - Day

344 0

L$BPRI 346 Task priority

L$BXFR 350 Task transfer address

L$BEXT 352 Task extension (64-byte blocks)

L$BSGL 354 Block number of segment load list

L$BHRB 356 Block number of header

L$BBLK 360 Number of blocks in label

L$BLUN 362 Number of logical units

L$BROB 364 Relative Block of R-0 Image

L$BROL 366 R-0 Load Size

0 *Less library window blocks.

Figure B-2 Label Block 0 -- Task and Resident Library Data

B-5

DETAILED TASK IMAGE FILE STRUCTURE

Table B-2 describes the contents of the resident shared region name
block. The Task Builder constructs this block by referring to the
disk image of the resident shared region. The format is identical to
words 3 through 16 of the label group block.

Parameter

R$LNAM

R$LSA

R$LHGV

R$LMXV

R$LLDZ

R$LMXZ

R$LOFF

R$LWND

R$LSEG

R$LFLG

R$LDAT

Table B-2
Resident Library/Common Name Block Data

Definition

Shared region name consisting of 2 words in Radix-50
format.

Base virtual address of library or common.

Highest address mapped by first library window.

Highest virtual address in library or common.

Shared region load size in 64-byte blocks.

Library maximum size in 64-byte blocks. This value
represents the size of the root segment plus the sum of
all memory-resident overlays.

Size of mapped
library. This
of the task.

array space allocated by resident
value is added to the mapped array area

Number of window blocks required by library.

Size of library overlay segment descriptors in bytes.

Library flags word. The following flags are defined:

Bit Meaning

15 LD$ACC -- access intent (l=read/write,
O=read-only)

3 LD$SUP -- supervisor-mode library (l=yes)

2 LD$REL -- position-independent code (PIC) flag
(l=PIC)

Three words containing the shared region creation date
in 2-digit integer values as follows:

Year since 1900
Month of year
Day of month

The table of LUN assignments, illustrated in Figure B-3, contains the
name and logical unit number of each device assigned. Label block 2
(the second block of LUN assignments) is allocated only if the number
of LUNs exceeds 128.

B-6

DETAILED TASK IMAGE FILE STRUCTURE

The Task Builder creates the segment load list if the image is a
resident library that contains memory-resident overlays. Figure B-4
illustrates the segment load list. Each entry in the list gives the
length, in bytes, of a memory-resident overlay segment.

Label
Block
1

Label
Block
2

Device name

Unit number

• • •
Device name

Unit number

Device name

Unit number

• • •
Device name

Unit number

LUN 1

LUN 128

LUN 129

LUN 255

Figure B-3 Label Blocks 1 and 2 -- Table of LUN Assignments

Length of root segment

Length of first overlay segment

Length of second overlay segment

• • •
0

Figure B-4 Label Block 3 -- Segment Load List

B.2 CHECKPOINT AREA

The checkpoint area is created by the AL switch (refer to Chapter 6).
The checkpoint area will be as large as the task image plus any areas
created by the EXTTSK, PAR, or VSECT options.

B.3 HEADER

As shown in Figure B-1, the task header starts on a block boundary and
is immediately followed by the task image. The header is read into
memory with the task image.

The header is divided into two parts: a fixed part as shown in Figure
B-5 and a variable part as shown in Figure B-6. The offsets for the
fixed part are defined by macro HDRDF$ residing in LB:[l,l]EXEMC.MLB.

B-7

DETAILED TASK IMAGE FILE STRUCTURE

The variable part of the header contains window blocks that describe
the following:

• The task's virtual-to-physical mapping

• Logical unit data

• Task context

Although the header is fully accessible to the task, you should
consider only the information in the low-memory context (H.DSW through
H.VEXT) in the fixed part of the header to be accurate. In a mapped
system, the Executive copies the header of an active task to protected
memory. Subsequent Executive updates to the header are made to this
copy, not to the header copy within the running task.

The following sections provide more detail on the low-memory context
and on Logical Unit Table entries (the Logical Unit Table is part of
the variable part of the header; see Figure B-6).

NOTE

To save the identification, you should
move the initial value set by the Task
Builder to local storage. When the
program is fixed in memory and being
restarted without being reloaded, you
must test the reserved program words for
their initial values to determine
whether the contents of R3 and R4 should
be saved.

The contents of RO, Rl, and R2 are only
set when a debugging aid is included in
the task image.

Be3.l Low-Memory Context

The low-memory context for a task consists of the Directive Status
Word and the impure area vectors. The Task Builder recognizes the
following global names:

Name Meaning

.FSRPT File Control Services work area and buffer pool vector

$OTSV FORTRAN OTS work area vector

N.OVPT Overlay run-time system work area vector

$VEXT Vector extension area pointer

The only proper reference to these pointers is by symbolic name. The
pointers are read-only. If you write into them, the result will be
lost on the next context switch.

The impure area pointers contain the addresses of the storage used by
the reentrant library routines listed above.

The address contained in the vector extension pointer locates an area
of memory that can contain additional impure area pointers.

B-8

DETAILED TASK IMAGE FILE STRUCTURE

Label Offset

H.CSP 0 Current Stack Pointer (R6)

H.HDLN 2 Header length

H.EFLM 4 Event flag mask

6 Event flag address

H.CUIC 10 Current UIC

H.DUIC 12 Default U IC

H.IPS 14 Initial PS

H.IPC 16 Initial PC (R7)

H.ISP 20 Initial Stack Pointer (R6)

H.ODVA 22 ODT SST vector address

H.ODVL 24 ODT SST vector length

H.TKVA 26 Task SST vector address

H.TKVL 30 Task SST vector length

H.PFVA 32 Power fail AST control block

H.FPVA 34 Floating-point AST control block

H.RCVA 36 Receive AST control block

H.EFSV 40 Address of event flag context

H.FPSA 42 Address of floating-point context

H.WND 44 Pointer to number of window blocks

H.DSW 46 Directive Status Word

H.FCS 50 Address of FCS impure storage

H.FORT 52 Address of FORTRAN impure storage

H.OVLY 54 Address of overlay impure storage

H.VEXT 56 Address of impure vectors

H.SPRl/H.NML 60 Mailbox LUN J Swapping priority

H.RRVA 62 Receive by reference AST control block

64 Reserved

66 Reserved

70 Reserved

H.GARD 72 Header guard word pointer

H.NLUN 74 Number of LUNs

Figure B-5 Task Header, Fixed Part

B-9

Low-Core
Context

DETAILED TASK IMAGE FILE STRUCTURE

H.LUN I LUN Table (2 words per LUN)

• • •
Number of window blocks

Partition control block address

Low virtual address limit

High virtual address limit

Address of attachment descriptor

Window size (in 32-word blocks)

Offset into partition (in 32-word blocks)

Number of PD Rs to Map

Contents of last PDR

Current PS

Current PC

Current R5

Current R4

Current R3

Current R2

Current R 1

Current RO

Header guard w?rd

• • •

l First PDR Address

Initial Values

Relative block number of header

ldent. word #2

ldent. word #1

Task name word #2

Task name word #1

Program transfer address

Figure B-6 Task Header, Variable Part

Offsets

W.BPCB

W.BLVR

W.BHVR

W.BATT

W.BSIZ

W.BOFF

W.BNPD/W.BFPD

W.BLPD

Figure B-7 illustrates the format of the vector extension area. Each
location within this region contains the address of an impure storage
area that is referred to by subroutines; these subroutines must be
reentrant. Addresses below $VEXTA, referred to by negative offsets,
are reserved for DIGITAL applications. Addresses above $VEXTA,
referred to by positive offsets, are allocated for user applications.

B-10

DETAILED TASK IMAGE FILE STRUCTURE

$VEXT

$VEXTA

•
•
•

.PSECT $$VEXO

.PSECT $$VEX1

--~~~~~~~~~~---

l Reserved for
(DIGITAL use

} Reserved for
user applications

Figure B-7 Vector Extension Area Format

The program sections $$VEXO and $$VEX1 have the attributes D, GBL, RW,
REL, and OVR.

The program section attribute OVR facilitates the definition of the
offset to the vector and the initialization of the vector location at
link time. For example:

.G LOBL $VEXTA MAKE SURE VECTOR AREA IS LINKED

.PSECT $$VEX1,D,GBL,RO,REL,OVR

BEG=. POINT TO BASE OF POINTER TABLE

.BLKW

LABE:L: .WORD

OFFSET== LABEL-BEG

.PSECT

IMPURE:

N

IMPURE

OFFSET TO CORRECT LOCATION
IN VECTOR AREA

SET IMPURE AREA ADDRESS
DEFINE OFFSET

You should centralize all offset definitions within a single module
from which the actual vector space allocation is made. Also, you
should conditionalize the source to create two object modules: one
that reserves the vector storage and, one that defines the global
offsets which will be referred to by your resident library's
subroutines.

Note that the sequence of instructions above intentionally redefines
the global symbol. The Task Builder will report an error if this
value differs from the centralized definition.

B-11

DETAILED TASK IMAGE FILE STRUCTURE

You can locate your vector through a sequence of instructions similar
to the following:

MOV @#VEXT,RO
MOV OFFSET(RO),RO
.END

GET ADDRESS OF VECTOR EXTENSIONS
POINT TO IMPURE AREA

B.3.2 Logical Unit Table Entry

Figure B-8 illustrates the format of each entry in the Logical Unit
Table.

UCB address

Window block pointer

Figure B-8 Logical Unit Table Entry

The first word contains the address of the device unit control block
in the Executive system tables. That block contains device-dependent
information.

The second word is a pointer to the window block if the device is file
structured.

The UCB address is set during task installation if a corresponding ASG
parameter is specified at task build time. You can also set this word
at run time with the Assign LUN Directive to the Executive.

The window block pointer is set when a file is opened on the device
whose UCB address is specified by word 1. The window block pointer is
cleared when the file is closed.

B .• 4 TASK IMAGE

The system reads the task image into memory beginning with the task
header (see Figure B-1). The root segment of the task image is a set
of contiguous disk blocks; it is therefore loaded with a single disk
access.

Each overlay segment of the task image begins on a block boundary (see
Figure B-1). The relative block number for the segment is placed in
the segment table. Note that a given overlay segment occupies as many
contiguous disk blocks as it needs to supply its space request. The
maximum size for any segment, including the root, is 32K minus 32
words.

B-12

DETAILED TASK IMAGE FILE STRUCTURE

NOTE

One exception to the block boundary
alignment of segments occurs when shared
regions contain resident overlays. When
this occurs, the image is compressed
and, instead of being aligned on block
boundaries, segments are aligned on
32-word boundaries. This facilitates
the loading of regions.

Figure 'B-9 illustrates the structure and principal components of the
task-resident overlay data base.

@OAD SEGMENT
~

TOR DESCRIPTOR
1-----,

WINDOW
DESCRIPTOR

~

~-DAD SEGMENT REGION
fOR DESCRIPTOR DESCRIPTOR ,.....,

AUTO LOAD SEGMENT WINDOW
VECTOR DESCRIPTOR DESCRIPTOR t--

Figure B-9 Task-Resident Overlay Data Base

Autoload vectors are generated whenever a reference is made to an
autoloadable entry point in a segment located farther away from the
root than the segment making the reference.

One segment descriptor is generated for each overlay segment in the
task or shared region. The segment descriptor contains information on
the size, virtual address, and location of the segment within the task
image file. In addition, it contains a set of link words that point
to other segments. The overlay structure determines the link word
contents.

The window descriptor contains information required to issue the
mapping directives. One window descriptor is allocated for each
memory-resident overlay in the structure.

The region descriptor contains information required to attach a
resident library or common block. It is allocated within each task
that refers to a shared region containing memory-resident overlays.

The following sections describe each data base component in greater
detail.

B-13

DETAILED TASK IMAGE FILE STRUCTURE

B.4.1 Autoload Vectors

The autoload vector table consists of one entry per autoload entry
point in the form shown in Figure B-10.

JSR PC,sub

$AUTO

Segment descriptor address

Entry point address

Figure B-10 Autoload Vector Entry

The autoload vector contains a JSR instruction to the autoload
processor, $AUTO, followed by a pointer to the descript~r for the
segment to be loaded and the real address of the entry point.

B.4.2 Segment Descriptor

The segment descriptor consists of a fixed part and two optional
parts. The fixed part is six words long. If the manual-load feature
is used ($LOAD), two words are added containing the segment name.
When a memory-resident overlay structure is included, a ninth word is
appended that points to the window descriptor.

Figure B-11 illustrates the contents of the segment descriptor.

Word

0

2

3

4

5

6

7

8

15 12 11 0

Status J Relative disk address

Load address

Length in bytes
Fixed Part

Link up

Link down

Link next

Segment

name

Window descriptor address

Figure B-11 Segment Descriptor

Word 0 contains the relative disk address in bits O through 11 and the
segment status in bits 12 through 15. Each segment in the task image
file begins on a disk block boundary. The relative disk address is
the block number of the segment relative to the start of the root
segment.

B-14

DETAILED TASK IMAGE FILE STRUCTURE

The segm~nt flags are defined as follows:

Bit Setting

15 Always set to 1

14 0 Segment has disk allocation
1 Segment does not have disk allocation

13 0 Segment is not loaded from disk
1 Segment loaded from disk

12 0 Segment is loaded and mapped
1 Segment is either not loaded or not mapped

Word 1 contains the load address of the segment. This address is the
first virtual address of the area where the segment will be loaded.

Word 2 specifies the length of the segment in bytes.

Words 3, 4, and 5 point to the following segment descriptors:

• Link up -- the next segment away from the root (O=none)

• Link down the next segment toward the root (O=none)

• Link next the adjoining segment; the link next pointers
are linked in circular fashion

When the system loads a segment, the overlay run-time system follows
the links to determine which segments are being overlaid and should
therefore be marked out of memory. For example:

A21 A22

y
Al A2

I I
I

AO

The segment descriptors are linked as follows:

A21 A22 A21 A22

L,
Al A2

~
Al~A2

AO

.link up link down link next

If there is a co-tree, the link next for the root segment descriptor
points to the co-tree root segment descriptor.

Words 6 and 7 contain the.segment name in Radix-SO format.

Word 8 points to the window descriptor used to map the segment
(O=none).

B-15

DETAILED TASK IMAGE FILE STRUCTURE

B.4.3 Window Descriptor

The Task Builder allocates window descriptors only if
structure containing memory-resident overlays.
illustrates the format of a window descriptor.

Word 15 8 7

0 Base Active Page Register l Window ID

Virtual base address

2 Window size in 64-byte blocks

3 Region ID

4 Offset in partition

5 Length to map

6 Status word

7 Send/receive buffer address (always 0)

8 Flags word

9 Address of region descriptor

Figure B-12 Window Descriptor

you define a
Figure B-12

0

Words 0 through 7 constitute a window descriptor in the format
required by the mapping directives. If the memory-resident overlay is
part of the task, the region ID is zero. If the memory-resident
overlay is part of a shared region, the ID is filled in at run time by
the overlay loading routine.

Words 8 and 9 contain additional data that is referred to by the
overlay routines. Bit 15 of the flags word, if set, indicates that
the window is currently mapped into the task's address space.

Word 9 contains the address of the associated region descriptor. If
the memory-resident overlay is part of the task, and no region
descriptor is allocated, this value is zero.

B.4.4 Region Descriptor

The region descriptor is allocated only when the memory-resident
overlay structure is part of a shared region. Figure B-13 illustrates
the format of a region descriptor.

B-16

DETAILED TASK IMAGE FILE STRUCTURE

0 Region ID

Size of region

2 Region

3 name

4 Region

5 partition

6 Region status

7 Protection codes (always 0)

8 Flags

Figure B-13 Region Descriptor

Words 0 through 7 constitute a region descriptor in the format
required by the mapping directives. The flags word is referred to by
the overlay load routine. Bit 15 of the flags word, if set, indicates
that a valid region identification is in word O. If this bit is
clear, the overlay load routine issues an Attach Region directive
(with protection code set to zero) to obtain the identification.

B.4.5 Supervisor-Mode Vectors (RSX-llM-PLUS Only)

A supervisor-mode vector consists of four words. The Task Builder
replaces each call from a user-mode task to the root segment of a
supervisor-mode library with one of these structures. The
supervisor-mode vector is shown in Figure B-14.

JSR PC,sub

$SUPL

Completion routine address

Entry point address

Figure B-14 Supervisor-Mode Vector

The supervisor-mode vector contains a JSR instruction to the context
switching routine, $SUPL. $SUPL issues the SCAL$ Executive directive
to context switch the processor from user mode to supervisor mode.
The supervisor-mode vector also contains the address of the completion
routine within the supervisor-mode library and the entry point of the
library.

B-17

APPENDIX C

RESERVED SYMBOLS

Several global symbols and program section namesl are reserved for use
by the Task Builder.2 Special handling occurs when the Task Builder
encounters a definition of one of these names in a task ~mage.

The definition of a reserved global symbol in the root segment causes
a word in the task image to be modified with a value calculated by the
Task Builder. The relocated value of the symbol is taken as the
modification address.

The following global symbols are reserved by the Task Builder:

Global
Symbol

.FSRPT

.MOLUN

.NLUNS

.NOV LY

N.OVPT

.NSTBL

.ODTLl

.ODTL2

$0TSV

.TRLUN

$VEXT

Modification
Value

Address of file storage region work area (.FSRCB)

Error message output device

The number of logical units used by the task, not
including the message output and overlay units

The overlay logical unit number

Address of overlay run-time system work area (.NOVLY)

The address of the segment description tables; this
location is modified only when the number of segments
is greater than one

Logical unit number for the ODT terminal device TI:

Logical unit number for the ODT line printer device CL:

Address of Object Time System work area ($0TSVA)

The trace subroutine output logical unit number

Address of vector extension area ($VEXTA)

1 In RSX-llM and RSX-llM-PLUS, absolute sections (ASECTs) and both
blank and named control sections (CSECTs) are supplanted by program
sections (PSECTs). The .PSECT assembler directive eliminates the need
for .ASECT and .CSECT directives, except for compatibility with other
systems. This manual refers to all sections as program sections,
unless the specific characteristics of ASECTs or CSECTs apply.

2 All symbols and program section names containing a period (.) or a
dollar sign ($) are reserved for DIGITAL-supplied software.

C-1

RESERVED SYMBOLS

The Task Builder reserves the following program section names. In
some cases, the definition of a reserved program section causes that
program section to be extended if you specify the appropriate option.

Section
Name

$$ALVC

$$DEVT

$$FSR1

$$IOB1

$$0BF1

$$RGDS

$$RTS

$$SLVC

$$SGDO

$$SGD1

$$SGD2

$$WNDS

Description

Contains the segment autoload vectors

The extension length (in bytes) is calculated from the
formula:

EXT = <S.FDB+52>*UNITS

The definition of S.FDB is obtained from the root
segment symbol table and UNITS is the number of logical
units used by the task, excluding the message output,
overlay, and ODT units.

The extension of this section is specified by the
ACTFIL option

The extension of this section is specified by the
MAXBUF option

FORTRAN OTS uses this area to parse array type format
specifications; this section can be extended by the
FMTBUF keyword

Contains the region descriptors for resident libraries
referred to by the task

Contains the return instruction

Supervisor-mode library transfer vectors (RSX-llM-PLUS
only)

Contains the program section adjoining the task segment
descriptors

Contains the task segment descriptors

Contains the program section following the task segment
descriptors

Contains the task window descriptors

C-2

APPENDIX D

IMPROVING TASK BUILDER PERFORMANCE

This appendix contains procedures to assist you in maximizing Task
Builder performance. These procedures include:

• Evaluating and improving Task Builder throughput

• Modifying command switch defaults to provide a more efficient
user interface

• Using the Slow Task Builder when large work file space is
required

These procedures assume that the
features not found in the Fast
Appendix F.

program to be linked requires
Task Builder (FTB) described in

Use of the procedures described in this appendix may require relinking
the Task Builder. You can do this only in a system that has, as a
minimum, a 14K user-controlled or system-controlled partition. In
some cases, you can make the modifications without relinking by using
the binary patch program ZAP (see the RSX-11 Utilities Manual).

Modifications to the Task Builder build file imply one or more of the
following files located under UFD [1,24] (mapped) or [1,20]
(unmapped):

RSX-llM systems:

BIGTKBBLD.CMD
TKBBLD.CMD
SLOTKBBLD.CMD

RSX-llM-PLUS systems:

TKBBIGBLD.CMD
TKBSLOBLD.CMD

These files reside on the RKOS disk containing the system object
modules.

D.l EVALUATING AND IMPROVING TASK BUILDER THROUGHPUT

Task Builder throughput is determined by three factors:

1. The amount of disk latency incurred because of overlays

2. The amount of memory available for table storage

3. The amount of disk latency due to input file processing

D-1

IMPROVING TASK BUILDER PERFORMANCE

The following sections outline methods for improving throughput in
each of these three cases.

D.1.1 Overlay Latency

The Task Builder is overlaid to reduce memory requirements. Two
versions built with different overlay structures are supplied with the
system:

• TKB.TSK, which is heavily overlaid but runs in an 8K partition

• BIGTKB.TSK, which contains fewer overlays than TKB.TSK but
requires a 14K partition

You should install the appropriate version, that is, one that saves
space or time, based on the system resources. In addition, the task
should reside on the highest performance disk in the system.

D.1.2 Table Storage

The principal factor governing Task Builder performance is the amount
of memory available for table storage. To reduce memory requirements,
a work file is used to store symbol definitions and other tables.
This work file cannot exceed 65,543 words. As long as the size of
these tables is within the limits of available memory, the contents of
this file are kept in memory and the disk is not accessed. If the
tables exceed this limit, some information must be displaced and moved
to the disk, degrading performance accordingly.

You can gauge work file performance
portion of the Task Builder map.
parameters:

• Number of work file references
work file data was referred to.

by consulting the statistics
The map displays the following

total number of times that

• Work file reads -- number of work file references that
resulted in disk accesses to read work file data.

• Work file writes -- number of work file references that
resulted in disk accesses to write work file data.

• Size of core pool -- amount of in-core table storage in words.
This value is also expressed in units of 256-word pages
(information is read from and written to disk in blocks of 256
w~rds).

• Size of work file -- amount of work file storage in words. If
this value is less than the pool size, the number of work file
reads and writes is zero. That is, no work file pages are
removed to the disk. This value is also expressed in pages
(256-word blocks).

• Elapsed time -- amount of time required to build the task
image and output the map. This value excludes ODL processing,
option processing, and the time required to produce the global
cross-reference.

D-2

IMPROVING TASK BUILDER PERFORMANCE

You can reduce the overhead for gaining access to the work file in one
or more of the following ways:

• By increasing the amount of memory available for table storage

• By placing the work file on the fastest random access device

• By decreasing system overhead required to gain access to the
file

• By reducing the number of work file references

You can increase the amount of table storage by installing the Task
Builder in a larger partition or, if the Task Builder is running in a
system-controlled partition, by using the INSTALL/INC keyword to
allocate more space.

In a system that includes support for the Extend Task directive, the
Task Builder automatically increases its size if it is checkpointable
and installed in a system-controlled partition. You set the maximum
limit. You can increase this maximum by issuing the MCR command SET
/MAXEXT.

Increasing the proportion of resident dynamic memory reduces the
amount of I/O necessary for access to the Task Builder internal data
structures. As stated above, once the resident memory has been
filled, the data structures overflow into a temporary work file on the
device assigned to the workf ile logical unit number. This logical
unit number (W$KLUN) is specified in the build command file.
Preferably, this unit number should be assigned to a device other thari
the system device; e.g., a fixed head disk.

Displacement of pages to the workf ile is done on a least recently used
basis. The workfile extends automatically as necessary to hold all
pages displaced. The parameter W$KEXT is provided in the build
command file of the Task Builder and defines the file extension
properties. A negative value indicates that the extend is
noncontiguous, a positive value that the extend is contiguous. If a
contiguous extend fails, a noncontiguous request is attempted; if a
noncontiguous extend fails, a fatal workfile I/O error is reported.
As long as the workfile remains contiguous, a higher access rate can
be obtained.

It is not possible to state exactly how many symbols the Task Builder
can process, because there are many data structures included in
virtual memory. The following is a list of the structures that are
stored in the virtual memory. All the sizes given are approximate
only (sizes vary with characteristics of the task being built and may
vary from release to release).

Structure Name

Segment Descriptor

Description

Contains listhead
sizes, the pointers
defining the overlay
tree, the segment name.
Part of this structure
becomes the segment
descriptor in the
resultant task image.

D-3

Approx. Size
(words)

60.

IMPROVING TASK BUILDER PERFORMANCE

structure Name

P-section Descriptor

Symbol Descriptor

Element Descriptor

Control Section
Mapping Table

Description

Contains the name,
address size, and
attributes of a
p-section.

Contains symbol name,
value, flags, and
pointers to defining
segment and program
section descriptors.

Contains module
name, ident, filename,
count of program
section and some
flags.

Table of program
section size and
program section
descriptor addresses.

Approx. Size
(words)

10.

8. (nonoverlaid
task)

15. (overlaid task)

8. -18.

2 words per
program section in
each module

The maximum usage of virtual memory occurs during phase three of the
Task Builder, when the symbol table is built. However, phase one
makes significant use of virtual memory when an overlaid task is being
built. It is at this point that all the segment descripto~s are
allocated, as well as an element descriptor for every filename
encountered during the parsing of the tree description. In addition,
a p-section descriptor is produced for every .PSECT directive
encountered in the overlay description.

The parsing of the overlay description also makes use of dynamic
memory during the processing of each directive. This memory is
released upon completion of the analysis; during the analysis,
however, the whole tree description must fit into the resident portion
of the storage. If sufficient storage cannot be obtained in· the
resident dynamic memory, the error message NO DYNAMIC STORAGE
AVAILABLE is returned. The method for increasing the ratio of dynamic
storage to virtual memory may be applied here possibly to allow a task
with a large overlay description to be built.

The amount of memory required during analysis depends on:

1. The number of directives,

2. The length of .FCTR lines,

3. The number of operators (i.e., commas, dashes, and
parentheses), and

4. The number of filenames encountered.

The amount of resident storage area available depends on the version
of the Task Builder used. The smaller version (TKB) has enough
storage in an SK partition to handle the overlay description for all
privileged tasks.

The larger version (BIGTKB) links all DEC-supplied tasks in a 14K
partition.

D-4

IMPROVING TASK BUILDER PERFORMANCE

There are a number of ways to reduce the amount of virtual memory
required during the build of a specific task. Reduction of the data
structures in virtual memory also increases the speed of searching the
tables and reduces the amount of paging to the workfile.

1. Extract object modules by name from relocatable object
libraries {e.g., LIBRY/LB:MODl:MOD2). This technique
requires smaller element descriptors and fewer filename
descriptors and is also faster because there are fewer files
to open and close.

2. Use concatenated object modules for the same reasons as
above.

3. Use shared regions {resident libraries and common areas) for
language and overlay run time systems and file control
services. Such use of shared regions allows symbols and
p-sections to be defined only once, rather than on multiple
branches of the tree.

4. Place modules that occur on parallel branches of the tree in
a common segment {i.e., closer to root) for the same reasons
as 3 above.

5. Use the /SS switch on symbol table files {.STB) that describe
absolute symbol definitions so that only those symbols
referenced are extracted from the module.

6. Minimize the number of segments and keep the tree balanced.
For example, if one segment is very long, there is no value
in putting a tree structure in parallel unless creation of
one segment in parallel would be longer.

In addition to the above, a version of BIGTKB can be built which has
less throughput but requires less virtual memory per element than
BIGTKB. This version is built using the command file SLOTKBBLD.CMD
supplied on the RK05 utility disk or the RK06 and RP system disks
under UFD (1,20] (unmapped) or (1,24] {mapped).

There are four error messages associated with the virtual memory
syst,em:

1. NO DYNAMIC STORAGE AVAILABLE. This error occurs when there
is insufficient resident storage for creation of some data
structure. As much as possible of the data already allocated
{all unlocked pages) has been paged to the workfile, but
there is still not enough free memory. Such a situation
might arise during the analysis of the overlay description,
early in the task-build run and particularly if it is a
complex tree. Reduction of the ODL and extension of the Task
Builder memory allocation (see above) are the recommended
recovery procedures.

2. UNABLE TO OPEN WORKFILE. The probable causes of this error
are:

• Device assigned to logical unit 8 of the Task Builder is
not mounted.

• The device is not FILES-11.

• There is no space on the volume.

D-5

IMPROVING TASK BUILDER PERFORMANCE

• The device is offline, not ready, write locked, or faulty.

• There is no such device.

The MCR function LUN ••• TKB may be used to determine which
device the Task Builder is attempting to use.

3. WORKFILE I/O ERROR. The probable causes of this error are:

• Hardware error; e.g., parity error on the disk.

• Device is not ready, or is write-locked.

• An extend failure has occurred; e.g., the disk is full.

4. NO VIRTUAL MEMORY STORAGE AVAILABLE. The addressable limit
of the virtual memory has been reached. There is no recovery
other than to reduce the virtual memory requirements of the
task being built along the lines suggested earlier.

The work iile normally resides on the device from which the Task
Builder was installed. You can change the device by reassigning
logical unit 8 through the Monitor Console Routine or by editing the
build file and relinking the Task Builder.

System overhead for work file accesses is incurred in translating a
relative block number in the file to a physical disk address. To
minimize this overhead, the Task Builder requests disk space in
contiguous increments. The size of each increment is equal to the
value of symbol W$KEXT defined in the Task Builder build file. A
larger positive value causes the file to be extended in larger
contiguous increments and reduces the overhead required to gain access
to the file. The increment should be set to a reasonable value
because the Task Builder resorts to noncontiguous allocation whenever
contiguous allocation fails.

You can reduce the size of the work file by:

• Linking your task to
commonly used routines
System) whenever possible

a core-resident
(for example,

library
FORTRAN

containing
Object Time

• Including common modules, such as components of an object time
system, in the root segment of an overlaid task

• Using an object library or file of concatenated object modules
if many modules are to be linked

When you use either of the last two procedures, system overhead is
also significantly reduced because fewer files must be opened to
process the same number of modules.

You can reduce the number of work file references by eliminating
unneeded output files and cross-reference processing or by obtaining
the short map. In addition, you can usually exclude selected files,
such as the default system object module library, from the map. In
this case, you can obtain, and retain, a full map at less frequent
intervals.

D-6

IMPROVING TASK BUILDER PERFORMANCE

D.1.3 Input File Processing

The procedures for minimizing the size of the work file and number of
work file accesses also drastically reduce the amount of input file
processing.

A given module can be read up to four times when the task is built:

• To build the symbol table

• To produce the task image

• To produce the long map

• To produce the global cross reference

Files that are excluded from the long map are read only twice. The
third and fourth passes are eliminated for all modules when you
request a short map without a global cross reference.

D.1.4 Summary

In summary, you can use the following procedures to improve Task
Builder throughput:

• Use the INSTALL/INC or EXTTSK keyword to allocate more table
space

• Increase maximum task size by raising the system limit for
dynamic task extension

• Reduce disk latency by placing the work file on the fastest
random access device

• Reduce system overhead by modifying the command file to
allocate work file space in larger contiguous increments

• Decrease work file size by using resident
concatenated object files, and object libraries

libraries,

• Decrease work file size by including common modules into the
root segment of an overlaid task

• Decrease the number of work file references by eliminating the
map and global cross reference, obtaining the short map, or
excluding files from the map

D.2 MODIFYING COMMAND SWITCH DEFAULTS

The default switch settings and values provided by the Task Builder as
released may not suit the requirements of all installations. For
example, the default /-EA (no KEll Extended Arithmetic Element) would
be unsatisfactory at an installation that made frequent use of this
hardware.

D-7

IMPROVING TASK BUILDER PERFORMANCE

You can thus tailor the switch defaults by altering
the words that contain initial switch states.
Builder in this way is a three-step process:

the contents of
Modifying the Task

1. Consult Tables D-1 through D-4 to determine the switch word
and bit to be altered.

2. Edit the appropriate Task Builder command file to include the
switch word modification through a GBLPAT keyword referring
to the global switch word name.

3. Relink the Task Builder using the modified command file.

The command files for system tasks, as provided with the released
system, require the standard set of Task Builder defaults; therefore,
you must retain and use an unmodified copy of the Task Builder
whenever such tasks are relinked.

You use tables D-1 through D-4 to alter the defaults as follows:

• You identify the switch and the file it applies to.

• You consult the switch category entry in each table to locate
the applicable switch words.

• You scan the switch settings to find the switch and associated
bit.

• You OR the desired setting of the associated bit with the
initial contents to obtain the new set of defaults.

• You specify the revised value and switch word as arguments in
a GBLPAT keyword.

• You relink the Task Builder to produce a version containing
the appropriate defaults.

For example, to change the Task Builder Extended Arithmetic Element
default to /EA, perform the steps described below.

By consulting Table D-1, you determine that two switch words, $DFSWT
and $DFTSK, contain task file switches. Of these, $DFTSK contains the
default setting for the EA switch in bit 13. Setting this bit to 1
changes the initial switch setting to /EA. This new valu~ is combined
{ORed) with the initial contents to yield the revised setting 120002.
The required keyword input is:

TKB>GBLPAT=TASKB:$DFTSK:l20002

NOTE

The setting of bit positions not listed
in the tables must not be altered.

The only switches that have associated values are /AC and /PR. In
these cases, the value is the number of the initial APR used to map
the task. The default can be altered by changing the value specified
in the build file GBLDEF keyword for the symbol D$FAPR. Only v~lues 4
or 5 can be used.

D-8

IMPROVING TASK BUILDER PERFORMANCE

Table D-1
Task File Switch Defaults

Switch Category: Task file

Switch Word: $DFSWT

Initial Contents: O

Switch Settings:

Bit Condition if Set to 1

15

11

4

3

AB Abort build on error

SQ Sequential PSECT allocation

FU Full overlay tree search

-RO Disable recognition of memory-resident
overlay operator

Switch Category: Task file

Switch Word: $DFTSK

Initial Contents: 100002

Switch Settings:

Bit Condition if Set to 1

15 -CP,

14 FP

13 EA

12 -HD

11 CM

10 DA

9 PI

8 PR

7 TR

6 PM

5 SL

4 -SE

2 AC

1 -AL

0 NT

-AL Not checkpointable
1

Floating-point processor

Extended Arithmetic Element

No header

Compatibility Mode

Debugging aid

Position independent

Privileged

Trace

Postmortem Dump

Slave task

No SEND to task

Ancillary control processor

No checkpoint allocation1

Revised network protocol

1 The combination of not checkpointable with checkpoint
allocation (100000) is illogical and should not be used.

D-9

IMPROVING TASK BUILDER PERFORMANCE

Table D-2
Map File Switch Defaults

Switch Category: Map file

Switch Word: $DFLBS

Initial Contents: 120000

Switch.Settings:

Bit

15

Condition if Set to 1

-MA Do not include system library and STB
files in map

Switch Category: Map file

Switch Word: $DFMAP

Initial Contents: 2040

Switch Settings:

Bit Condition if Set to 1

10 SH Short map

8 -SP Do not spool

6 CR Cref

5 WI Wide format

Table D-3
Symbol Table File Switch Defaults

Switch Category: Symbol table file

Switch Word: $DFSTB

Initial Contents: 0

Switch Settings:

Bit Condition if Set to l

12 -HD Build task without header

9 PI Task is position independent

D-10

IMPROVING TASK BUILDER PERFORMANCE

Table D-4
Input File Switch Defaults

Switch Category: Input file

Switch Word: $DFINP

Initial Contents: 000100

Switch Settings:

Bit

15

6

Condition if Set to l

-MA Do not include1 file contents in map

cc File contains two or more concatenated
object modules

D.3 THE SLOW TASK BUILDER

The TKB.TSK and BIGTKB.TSK versions of the Task Builder each use a
symbol table structure that can be searched quickly, but which
requires more work file space than previous versions. You may thus
receive the following message in some instances:

NO VIRTUAL MEMORY STORAGE AVA! LABLE

If this occurs, you should try to reduce the work file size by using
the procedures described in Section D.l. If these procedures do not
sufficiently reduce the work file size, you can link a third version
of the Task Builder, the Slow Task Builder. This version requires
less storage, but runs considerably slower than the other versions.
The build file is SLOTKBBLD.CMD which resides on the same device and
UFD as the other Task Builder command files.

D-11

APPENDIX E

THE FAST TASK BUILDER

The Fast Task Builder (FTB) is intended for use as a load-and-go type
of linker. It contains very few options and does not support:

• New map format

• Overlaid programs

• Linking to resident libraries

• Production of symbol table files

• Creation of resident libraries

• Privileged tasks

The supported switches are:

/SP on map file (default /SP)

/CP on task file (default /CP) l

/MM on task file (default /MM)

/FP on task file (default /FP)

/DA on input or task image (default

The support option inputs are:

ASG (same defaults as TKB)

STACK (same default as TKB)

UNITS

EXTSCT

ACTFIL (same default as TKB)

MAXBUF (same default as TKB)

/-DA)

1 No checkpoint space is allocated in the task image file.

E-1

THE FAST TASK BUILDER

FTB allocates symbol table space from the end of its image to the end
of the partition. It does not have a virtual symbol table. An Extend
Task or equivalent of 8K is recommended. FTB does not dynamically
extend itself at run time.

FTB runs approximately four times faster than TKB on an 11/70 with
RP04s when TKB is running with a totally resident symbol table. In
smaller systems with slower disks, the ratio should be much higher.

E-2

APPENDIX F

ERROR MESSAGES

The Task Builder produces diagnostic and fatal error messages.
messages are printed in the following forms:

Error

'rKB -- *DIAG*-error-message

or

TKB -- *FATAL*-error-message

Some errors are correctable when command input is from a terminal. In
such a case, a diagnostic error message can be printed, the error
corrected, and the task building sequence continued. However, if the
samE~ error is detected in an indirect command file, a correction
cannot be made, and the Task Builder aborts.

SomE~ diagnostic error messages merely advise you of an unusual
condition. If you consider the condition normal for your task, you
can install and run the task image.

NOTE

The Task Builder exits with 2 statuses:
it returns an ERROR status when it
encounters a diagnostic error and a
SEVER ERROR when it encounters a fatal
error. (For more information about the
Exit-With-Status directive, see the
RSX-llM/M-PLUS Executive Reference
Manual.)

This appendix tabulates the error messages produced
Builder. Most of the messages are self-explanatory.
the line in which the error occurred is printed.

by the Task
In some cases,

A Software Performance Report (SPR) should be submitted to DIGITAL in
cases where the explanation accompanying a message refers to a system
error.

ALLOCATION FAILURE ON FILE file-name

The Task Builder could not acquire sufficient disk space to store
the task image file, or did not have write-access to the UFD or
volume that was to contain the file.

F-1

ERROR MESSAGES

BLANK P-SECTION NAME IS ILLEGAL
overlay-description-line

The overlay-description-line printed contains a .PSECT directive
that does not have a p-section name.

COMMAND I/O ERROR

I/O error on command input device.
possible hardware error.)

COMMAND SYNTAX ERROR
command-line

(Device may not be online, or

The command-line printed has incorrect syntax.

COMPLEX RELOCATION ERROR - DIVIDE BY ZERO: MODULE
module-name

A divisor having the value zero was detected in a complex
expression. The result of the divide was set to zero. (Probable
cause - division by a global symbol whose value is undefined.)

FILE file-name ATTEMPTED TO STORE DATA IN VIRTUAL SECTION

The file contains a module that has attempted to initialize a
virtual section with data.

FILE file-name HAS ILLEGAL FORMAT

The file file-name contains an object module whose format is not
valid.

ILLEGAL APR RESERVATION

An APR specified in a COMMON, LIBR, RESCOM, or RESLIB keyword is
outside the range 0-7.

ILLEGAL D~FAULT PRIORITY SPECIFIED
option-line

The option-line printed contains a priority greater than 250.

ILLEGAL ERROR-SEVERITY CODE octal-list

System error (no recovery). An SPR should be submitted with a
copy of the message containing the octal-list as printed.

ILLEGAL FILENAME
invalid-line

The invalid-line printed contains a wild card (*) in a file
specification. The use of wild cards is prohibited.

ILLEGAL GET COMMAND LINE ERROR CODE

System error (no recovery).

ILLEGAL LOGICAL UNIT NUMBER
invalid-line

The invalid-line printed contains a device assignment to a unit
number larger than the number of logical units specified by the
UNITS keyword or assumed by default if the UNITS keyword is not
used.

F-2

ERROR MESSAGES

ILLEGAL MULTIPLE PARAMETER SETS
invalid-line

The invalid-line printed contains multiple sets of parameters for
a keyword that allows only a single parameter set.

ILLEGAL NUMBER OF LOGICAL UNITS
invalid-line

The invalid-line printed contains a logical unit number greater
than 250.

ILLEGAL ODT OR TASK VECTOR SIZE

ODT or SST vector size specified greater than 32 words.

ILLEGAL OVERLAY DESCRIPTION OPERATOR
invalid-line

The invalid-line printed contains an unrecognizable operator in
an overlay description. This error occurs if the first character
in a p-section or segment name is a dot (.).

ILLEGAL OVERLAY DIRECTIVE
invalid-line

The invalid-line printed contains an unrecognizable overlay
directive.

ILLEGAL PARTITION/COMMON BLOCK SPECIFIED
invalid-line

User defined base or length not on 32-word boundary.

ILLEGAL P-SECTION/SEGMENT ATTRIBUTE
invalid-line

The invalid-line printed contains a program section or segment
attribute that is not recognized.

ILLEGAL REFERENCE TO LIBRARY P-SECTION p-sect-name

A task has attempted to reference a p-sect-name existing in a
shared region but has not named the shared region in a keyword.
This error will occur when you explicitly specify an STB file as
an input file but you have not specified the library to which the
STB file belongs in an option.

ILLEGAL SWITCH
file-specification

The file-specification printed contains an illegal switch or
switch value.

INCOMPATIBLE REFERENCE TO LIBRARY P-SECTION p-sect-name

A task has attempted to reference more storage in a shared region
than exists in the shared region definition.

INCORRECT LIBRARY MODULE SPECIFICATION
invalid-line

The invalid-line contains a module name with a non-Radix-50
character.

F-3

ERROR MESSAGES

INDIRECT COMMAND SYNTAX ERROR
invalid-line

The invalid-line printed contains a syntactically incorrect
indirect file specification.

INDIRECT FILE OPEN FAILURE
invalid-line

The invalid-line contains a reference to a command input file
which could not be located.

INSUFFICIENT PARAMETERS
invalid-line

The invalid-line contains a keyword with an insufficient number
of parameters to complete its meaning.

INVALID APR RESERVATION
invalid-line

APR specified on a keyword for an absolute library.

INVALID KEYWORD IDENTIFIER
invalid-line

The invalid-line printed contains an unrecognizable keyword.

INVALID PARTITION/COMMON BLOCK SPECIFIED
invalid-line

Partition is invalid for one of the following reasons:

1. The Task Builder cannot find the partition name in the host
system in order to get the base and length.

2. The system is mapped, but the base address of the partition
is not on a 4K boundary for a non-runnable task or is not 0
for a runnable task.

3. The memory bounds for the partition overlap a shared region.

4. The partition name is identical to the name of a previously
defined COMMON or LIBR shared region.

5. The top address of the partition for a runnable task exceeds
32K minus 32 words for a mapped system, or exceeds 28K minus
1 for an unmapped system.

6. A system-controlled partition was specified for an unmapped
system.

INVALID REFERENCE TO MAPPED ARRAY BY MODULE module-name

The module has attempted to initialize the mapped array with
data. An SPR should be submitted if this problem is caused by
DIGITAL-supplied software.

F-4

ERROR MESSAGES

INVJl~LID WINDOW BLOCK SPECIFICATION
inva1lid-line

The number of extra address windows specified exceeds the number
permitted. On an RSX-llM system, you can specify as many as 7
extra window blocks; on an RSX-llM-PLUS system, you can specify
as many as fifteen extra window blocks.

If you build a task on an RSX-llM system and specify more window
blocks, you get this error message, but the task will build.
HowevE~r, it cannot be installed and run on an RSX-llM system.

I/O ERROR LIBRARY IMAGE FILE

An I/O error has occurred during an attempt to open or read the
Task Image File of a shared region.

I/O ERROR ON INPUT FILE file-name

This E~rror occurs when the Task Builder cannot read an input file
specification (for example, when the command line is greater than
eighty characters).

I/O ERROR ON OUTPUT FILE file-name

LABEL OR NAME IS MULTIPLY DEFINED
invalid-line

The invalid-line printed defines a name that has already appeared
as a .FCTR, .NAME, or .PSECT directive.

LIBRARY FILE filename HAS INCORRECT FORMAT

A module has been requested from a library file that has an empty
module name table.

LIBRARY REFERENCES OVERLAID LIBRARY
invalid-line

An attempt was made to link the resident library being built to a
shared region that has memory-resident overlays.

LOAD ADDR OUT OF RANGE IN MODULE module-name

An attempt has been made to store data in the task image outside
the address limits of the segment. This problem is usually
caused by one of the following:

1. an attempt to initialize a p-section cont~ined in a shared
region

2. an attempt to initialize an absolute location outside the
limits of the segment or in the task header

3. a patch outside the limits of the segment it applies to

4. an attempt to initialize a segment having the NODSK attribute

LOOKUP FAILURE ON FILE filename
invalid-line

The invalid-line printed contains a filename that cannot be
located in the directory.

F-5

ERROR MESSAGES

LOOKUP FAILURE ON SYSTEM LIBRARY FILE

The Task Builder cannot find the system Library
(SYO:[l,l]SYSLIB.OLB) file to resolve undefined symbols.

LOOKUP FAILURE RESIDENT LIBRARY FILE
invalid-line

No symbol table or task image file can be found for the shared
region.

MAXIMUM INDIRECT FILE DEPTH EXCEEDED
invalid-line

The invalid-line printed gives the file reference that exceeded
the permissible indirect file depth (2).

MODULE module-name AMBIGUOUSLY DEFINES P-SECTION p-sect-name

The p-section p-sect-name has been defined in two modules not on
a common path, and referenced from a segment that is common to
both paths.

MODULE module-name AMBIGUOUSLY DEFINES SYMBOL sym-name

Module module-name references or defines a symbol sym-name whose
definition exists on two different paths, but is referenced from
a segment that is common to both paths.

MODULE module-name ILLEGALLY DEFINES XFR ADDRESS p-sect-name addr

1. The start address printed is odd.

2. The module module-name is in an overlay segment and has a
start address. The start address must be in the root segment
of the main tree.

3. The address is in a p-section that has not yet been defined.
An SPR should be submitted if this is caused by
DIGITAL-supplied software.

MODULE module-name MULTIPLY DEFINES P-SECTION p-sect-name

1. The p-section p-sect-name has been defined more than once in
the same segment with different attributes.

2. A global p-section has been defined more than once with
different attributes in more than one segment along a common
path.

MODULE module-name MULTIPLY DEFINES SYMBOL sym-name

Two definitions for the relocatable symbol sym-name have occurred
on a common path. Or two definitions for an absolute symbol with
the same name but different values have occurred.

MODULE modu1e-name MULTIPLY DEFINES XFR ADDR IN SEG
segment-name

This error occurs when more than one module making up the root
has a start address.

F-6

ERROR MESSAGES

MODULE module-name NOT IN LIBRARY

The Task Builder could not find the module named on the LB switch
in the library.

NO DYNAMIC STORAGE AVAILABLE

The Task Builder needs additional symbol table storage and cannot
obtain it. (If possible, install the Task Builder in a larger
partition.)

NO MEMORY .~VAILABLE FOR LIBRARY library-name

The Task Builder could not find enough free virtual memory to map
the specified shared region.

NO ROOT SEGMENT SPECIFIED

The overlay description did not contain a .ROOT directive.

NO VIRTUAL MEMORY STORAGE AVAILABLE

Maximum permissible size of the work file exceeded. The user
should consult Appendix D for suggestions on reducing the size of
the work file.

OPE!f FAILURE ON FILE file-name

OPTION SYNTAX ERROR
invalid-line

The invalid-line printed contains unrecognizable syntax.

OVERLAY DIRECTIVE HAS NO OPERANDS
invalid-line

All overlay directives except .END require operands.

OVEHLAY DIRECTIVE SYNTAX ERROR
invalid-line

The invalid-line printed contains a syntax error or references a
line that contains an error.

PARTITION partition-name HAS ILLEGAL MEMORY LIMITS

1. The partition-name defined in the
address alignment that is not
system.

host system has a base
compatible with the target

2. The user has attempted to build a privileged task in a
partition whose length exceeds the task's available address
space (8K or 12K).

PASS CONTROL OVERFLOW AT SEGMENT segment-name

System error. An SPR should be submitted with a copy of the ODL
file associated with the error.

PIC LIBRARIES MAY NOT REFERENCE OTHER LIBRARIES
invalid-line

The user has attempted to build a position-independent shared
region that references another shared region.

F-7

ERROR MESSAGES

P-SECTION p-sect-name HAS OVERFLOWED

A section greater than 32K has been created.

REQUIRED INPUT FILE MISSING

At least one input file is required for a task-build.

REQUIRED PARTITION NOT SPECIFIED

The PAR keyword was not used when running the Task Builder on an
RSX-llD host system. The keyword must contain explicit base
address and length specifications.

RESIDENT LIBRARY BAS INCORRECT ADDRESS ALIGNMENT
invalid-line

The invalid-line specifies a shared region that has one of the
following problems:

1. The library references another
address bounds (i.e., not on
system).

library with invalid
4K boundary in a mapped

2. The library has invalid address bounds.

RESIDENT LIBRARY MAPPED ARRAY ALLOCATION TOO LARGE
invalid-line

The invalid-line printed contains a reference to a shared region
that has allocated too much memory in the task's mapped array
area. The total allocation exceeds 2.2 million bytes.

RESIDENT LIBRARY MEMORY ALLOCATION CONFLICT
keyword-string

One of the following problems has occurred:

1. More than seven shared regions have been specified.

2. A shared region has been specified more than once.

3. Non-position-independent shared regions whose
allocations overlap, have been specified.

ROOT SEGMENT IS MULTIPLY DEFINED
invalid-line

memory

The invalid-line printed contains the second .ROOT directive
encountered. Only one .ROOT directive is allowed.

SEGMENT seg-name HAS ADDR OVERFLOW: ALLOCATION DELETED

Within a segment, the program has attempted to allocate more than
32K. A map file is produced, but no task image file is produced.

TASK HAS ILLEGAL MEMORY LIMITS

An attempt has been made to build a task whose size exceeds the
partition boundary. If a task image file was produced, it should
be deleted.

F-8

ERROR MESSAGES

TASK HAS ILLEGAL PHYSICAL MEMORY LIMITS
mapped-array task-image task extension

The sum of the parameters displayed -- mapped array size, task
image size, and task extension -- exceeds 2.2 million bytes. The
quantities are shown as octal numbers in units of 64-byte blocks.
Any resulting task image file should be deleted.

TASK IMAGE :FILE filename IS NON-CONTIGUOUS

Insufficient contiguous disk space was available to contain the
task image. A non-contiguous file was created. After deleting
unnecessary files, the /CO switch in PIP should be used to create
a contiguous copy.

TASK REQUIRES TOO MANY WINDOW BLOCKS

The number of address windows required by the task and any shared
regions, exceeds 8 for RSX-llM tasks and sixteen for RSX-llM-PLUS
tasks.

TASK-BUILD ABORTED VIA REQUEST
option-line

The option-line contains a request from the user to abort the
task-build.

TOO MANY NESTED .ROOT/.FCTR DIRECTIVES
invalid-line

The invalid-line printed contains a .FCTR directive that exceeds
the maximum nesting level (16).

TOO MANY PARAMETERS
invalid-line

The invalid-line printed contains a keyword with more parameters
than required.

TOO MANY PARENTHESES LEVELS
invalid-line

The invalid-line printed contains a parenthesis that exceeds the
maximum nesting level (16).

TRUNCATION ERROR IN MODULE module-name

An attempt has been made to load a global value greater than +127
or less than -128 into a byte. The low-order eight bits are
loaded.

UNABLE TO OPEN WORK FILE

The work file device is not mounted. (The work file is usually
located on the same device as the Task Builder.)

UNBA.LANCED PARENTHESES
invalid-line

The invalid-line printed contains unbalanced parentheses.

F-9

ERROR MESSAGES

n UNDEFINED SYMBOLS SEGMENT seg-name

The segment named contains n undefined
allocation file is requested, the
terminal.

VIRTUAL SECTION HAS ILLEGAL ADDRESS LIMITS
option-line

symbols. If no memory
symbols are printed on the

The option-line printed contains a VSECT keyword whose base
address plus window size exceeds 177777.

WORK FILE I/O ERROR

I/O error during an attempt to reference data stored by the Task
Builder in its work file.

F-10

INDEX

A
Access code,

grouping program sections by, 6-38
Active Page Register (APR), 2-10

declaring supervisor-mode 6-69
declaring system-owned

supervi.sor-mode, 6-7 3
reserving for system-owned shared

region, 6-52, 6-66
specifying, 6-5
Supervisor-mode, 3-32

Addresses,
Assignment of, 2-1

ALSCT subroutine, 3-56
APR, see Active Page Register
Asterisk,

in cross-reference listing, 6-11
in global cross-reference, 5-10

At sign (@), 1-5
in cross-reference listing, 6-11
in global cross-reference, 5-10
see also directives and operators

Attribute GBL
in .NAME directive, 5-5

$AUTO,
Autoload routine, 5-4
Autoload, 5-1
error handling, 5-8
Indicator, 5-2, 5-3

Autoloadable,
making file names, 5-2
making program sections, 5-2

Autoload vectors
efficient generation of, 5-5

B
.BLK see program sections, blank

c
Circumflex,

in cross-reference listing, 5-9
6-11

, (comma) , see directives and
operators

Command file,
indirect, 1-5
interaction with indirect, 1-6
levels of indirection, 1-7

Command line,
comments in 1-7
form, 1-2
Multiple line input, 1-3
option input, 1-3
order of output files, 1-2
terminating character, 1-3, 1-5

Completion Routine, 3-33
Contents of a, 3-35
example of, 3-35

Concatenated object modules,
using to reduce Task Builder

overhead, D-5
Co-trees, 4-28

resolution of global symbols
in, 4"'"19

Co-tree segment,
affecting symbol search on, 6-16

CTRL/Z
effect on Task Builder, 6-48

D
Data Structures,

building, 2-1
overlay, 4-20

Default library,
controlling search for symbols

in, 6-16
Device common,

development of a, 3-19
establishing physical addresses

for a, 3-20
Directives and operators,

Overlay Description Language,
4-22

.ROOT, 4-22

.END, 4-22

. FCTR, 4-24
! (exclamation point) , 4-24
.NAME, 4-25
.PSECT, 4-27
@ (at sign)
, (comma) , 4-23
- (hyphen) , 4-23

Disk image, 2-14
Multiuser task, 3-46

Double colon(::), 3-19

E
.END, see directives and operators
! (exclamation point), see direc

tives and operators
Examples,

Example 1: Building and linking
to a common in MACRO~ll, 3-11

Example 2: Building and linking
to a device common in MACR0-11,
3-19

Example 3: Building and linking
to a Resident library in
MACR0-11, 3-23

Index-1

INDEX

Examples (Cont.)
Example 4: Building and linking

to a supervisor-mode library
in MACR0-11, 3-32

Example 5: Building a Multiuser
task (RSX-llM-PLUS Only) , 3-44

Example 6: Building a task that
creates a dynamic region

Example 7: Building a Program
that uses a virtual program
section, 3-59

Example 8: Privileged tasks, 3-62
Example 9: Building An Overlay

F
.FCTR, see directives and operators
File names,

making components of autoload
able, 5-2

File specification,
defaults for, 1-8
conventions for, 1-8

FORTRAN common blocks, 4-19

G
GBL attribute,

in .NAME directive, 5-5
GEN partition, 6-64
Global symbol,

as address of ODT SST routine,
6-63

in autoloadable segment, 5-4
in cross-reference listing, 6-10

Global symbols,
ambiguously defined, 4-17
(co-tree) resolution of, 4-19
multiply-defined, 2-8, 4-7
resolution of, 2-7
resolving, 4-16
summary of resolution of, 4-17
undefined, 2-8

H
Header, 2-15
High-level language,

overlay programs written in 4-34
Host system,

building a task for another
system on, 7-1

- (hyphen) , see directives and
operators

Indirect command files, 4-27
Input,

aborting Task Builder, 6-48

Input file,
designating as debugging aid, 6-12
designating as library file, 6-18
directing selective global symbol

search on, 6-39
including contents of in map, 6-20
specifying as default library,

6-13
I/O page,

overlapping, 3-63

L
Label Block, 2-15
Library Object modules,

placing in an overlay structure,
6-19

Listing,
generating global cross-reference,

6-10
$LOAD routine, 5-6
Loading, asynchronous

example of, 5-8
LUN,

assigning physical devices to,
6-51

M
Manual load, 5-1

error handling, 5-8
FORTRAN calling sequence, 5-7
MACR0-11 calling sequence, 5-6

Map file, see memory allocation
file

Mapped Array Area, 3-54
Mapped regions,

declaring address windows for,
6-79

Memory Allocation file,
adding cross-reference to, 6-10
changing width of, 6-43
contents of, 6-29
description of, 6-32 to 6-35
example of, 6-29 to 6-31
general, 1-1
inhibiting spooling of, 6-37

Memory image, 2-15
Memory Management Unit, 2-10
Messages,

inhibiting system queing of, 6-28
Modules,

control of input to Task Builder,
6-7

extracting from library, 6-18
placing in segment to reduce

Task Builder overhead, D-5
Multisegment task,

see overlay structures,
see also overlay

Multiuser system
priority of tasks in, 6-65

Index-2

INDEX

Multiuser tasks, 3-44
declaring read-only partition for,

6-71

N
.NAME, see directives and operators
Number sign (#),

in cross-reference listing, 6-11

0
Obj1ect module,

contents of, A-1
overriding definition in, 6-57
using /SS on to include only

selective global symbols from,
16-39

Object module library file,
using /SS on to include

only selective global symbols
from, 16-39

Object Time System,
usage to extend record buffer,

6-62
ODL, see Overlay Description

Language,
Option,

categories of, 6-45
general form of, 1-4
processing, 3-8
sieparation of arguments lists, 1-4
options, 6-45 through 6-79
ABORT, 6-48
ABSPAT, 6-49
ACTFIL, 6-50
ASG, 6-51
CMPRT, 6-52
COMMON or LIBR' 6-53
EXTSCT, 6-54
EXTTSK, 6-55
FMTBUF, 6-56
GBLDEF, 6-57
GBLPAT, 6-58
GBLREF, 6-59
GBLXCL, 6-60
LIBR, 6-61
MAXBUF, 6-62
ODTV, 6-·63
PAR, 6-64
PRI, 6-65
RESCOM or RESLIB, 6-66
RESSUP, 6-69
ROPAR, 6-71
STACK, 6-72
SUPLIB, 6-73
TASK, 6-·7 4
TSKV, 6-·75
UIC, 6-76

Index-3

Option (Cont.)
UNITS, 6-77
VSECT, 6-78
WNDWS, 6-79

Overlay data structures, 4-20
Overlay description

effect on Task Builder
performance D-4

Overlay Description Langgage,
Autoload indicators in, 5-3
Autoload indicators placed

efficiently in, 5-5
directives and operators of, 4-22

.ROOT, 4-22

.END, 4-22

.FCTR, 4-24
! (exclamation point) , 4-24
.NAME, 4-25
.PSECT, 4-27
@ (at sign)
, (comma) , 4-23
- (hyphen) , 4-23

enabling memory-resident overlay
operator in, 6-27

summary of, 4-42
using indirect files with, 4-27

Overlay Description Language file,
declaring a, 6-22

Overlay operator,
enabling recognition of memory

resident, 6-27
suppression of memory-resident,

6-21
Overlay run-time, 4-20
Overlay segments,

Task Builder Processing of, 4-17
Overlay structures,

ambiguously defined global
symbols in, 4-17

classes of tasks handled
effectively by, 4-1

creating, 4-1
multiply defined global symbols

in a, 4-17
specifying library search in, 6-19

Overlay tree, 4-15
calling segments in an, 5-3

Overlays,
choosing whether to have memory

resident, 4-15
consuming physical memory when

using memory-resident, 4-15
defining multiple tree, 4-28
disk-resident, 4-2
loading disk-resident, 4-5
loading mechanism of, 4-16
loading of memory-resident, 4-10
loading methods, 5-1
loading synchronously and

asynchronously, 5-1

Overlays (Cont.)
memory resident, 4-5
pathloading, 5-3

INDEX

the effect on physical memory of
disk resident, 4-2

the effect on physical memory of
memory-resident, 4-7

the effect of virtual address
space of disk-resident, 4-2

the effect on virtual address
space of memory resident, 4-7

p
Page Address Register (PAR) , 2-10
Page Description Register (PDR) ,

2-10
Partition,

naming for target system, 7-1
pathloading, see overlays
PMD task,

installation for timely
operation, 8-1

Postmortem Dump,
description of contents, 8-4, 8-5
Sample of, 8-1

Privileged tasks,
accessing Executive with, 3-62
accessing I/O page with, 3-62
building, 3-62

Program Sections,
allocation of, 2-2
attributes of, 2-4
blank, 2-3, 3-4, 3-13
creating a, 2-3
elements of a, 2-2
explicitly specifying a, 4-19
making autoloadable, 5-2
ordering of, 3-4
(overlay structure) allocation

of, 4-19
restrictions of names for, 3-10,

3-31, 3-38
sequential ordering of adjacency

requirements for, 6-38
Program,

steps in the development of, 1-1
.PSECT, see directives and,

operators,
PSECT see program sections

R
Region descriptors, 4-21
Resident common,

building and linking to a, 3-11
device, 3-19
establishing offsets in, 3-11,

3-16

loading a, 3-14
steps in building a, 3-11
typical, 3-1

Resident library,
building a, 3-23
typical, 3-1

Resident Shared Region
absolute, 3-6
allocation of APRs for, 3-8
allocation of window blocks for,

3-8
declaring position independent

6-24 '
definition of, 3-1
including symbol definitions in

map file, 6-20
initializing window blocks for, 3-8
installing, 3-3, 3-10
linking to a, 3-6
options for linking to, 3-6
position independent, 3-3
precautions when specifying

position-independent, 3-4
procedure for building a, 3-3
restriction on position indepen-'

dent, 3-10
specifying partitions for, 3-3
specifying position-independent

3-4 I

type of access to, 3-8
using to reduce TKB overhead D-5

RLSCT subroutine, 3-56 '
Root segment,

defining completion routine in
6-52 '

global symbol as ODT SST vector
in, 6-63

.ROOT, see Directives and operators

s
Search of libraries, 6-18
Segment,

call to up-tree, 5-3
definition of a, 4-1
making autoloadable, 5-3
patching a, 6-49
patching by offset, 6-58

Segments,
limiting number of to reduce Task

Builder overhead, D-5
properly loading when called load

ing as part of co-tree, 5-2
Semicolon (;), 1-7
Slash,

double (//), 1-5
single (/), 1-3, 1-6

Index-4

Snapshot dump
jaxample of, 8-8

INDEX

format of Macro for creating, 8-7
Snapshot dump control block,

format ~f macro for, 8-6
SS switch,

using to reduce Task Builder
overhead, D-5

.s~rB file see Symbol Definition
file

Supervisor-mode library,
identifying completion routine

in I 6-52 \
linking to a, 3-32
restriction on contents of, 3-35
typical mapping for, 3-33

Supervisor vector, 3-33
$SUPL routine, 3-33
Switches,

l\C [: n] , 6 - 5
l\L I 6-6
CC, 6-7
CM, 6-8
CPI 6-9
CR, 6-10
DA I 6-12
DL I 6-13
EA I 6-14
}i'p I 6-1.5
Ji'U I 6-16
HD, 6-17
LB I 6-18
MA, 6-20
MM, 6-21
MP I 6-22
MU I 6-2.3
PI I 6-24
PM, 6-25
PR, 6-26
HO I 6-27
SE I 6-28
SH, 6-29
SL, 6-36
SP I 6-37
SQ, 6-38
SS I 6-39
']~R, 6-42
WI, 6-43
XT [: n] , 6- 4 4
conflicts in, 6-1

Symbol Definition file,
contents of a, 3-3
E~xcluding symbols from a, 3-37,

6-60
for system-owned shared region,

6-52
for system-owned supervisor-mode

library, 6-73
for user-owned shared region, 6-67
for user-owned supervisor-mode

library, 6-69

Index-5

Symbol Definition file (Cont.)
specifying a, 3-3
UFD for, 3-8
using /SS on to include only

selective global symbols from,
16-39

using /SS on to reduce Task Build
er overhead, D-5

Symbols,
affecting search for undefined,

6-16
in cross-reference listing, 6-11

Syntax rules,
summary of, 1-9

SYSLIB see system object module
library

System-controlled partition,
extendingmemory for task in, 6-55

System Object Module Library, 2-7
including contributions from in

map, 6-20
replacin.g as default, 6-13

T
Task,

allocating additional memory for
a, 6-55

assigning physical devices to
LUNs, 6-51

attaching slave attribute to, 6-36
building for target system, 7-1
changing alignment of memory-resi-

dent overlay segments in, 6-8
changing name of, 6-74
creating multiuser, 6-23, 3-44
data needed by system to install,

B-1
declaring access to system-owned

shared region, 6-52
declaring access to system-owned

supervisor-mode library, 6-73
declaring access to user-owned

supervisor-mode library, 6-69
declaring access to user-owned

shared region, 6-66
declaring additional address

windows for, 6-79
declaring execution priority for

6-65
declaring global symbol

references in a, 6-59
declaring length of format buffer

in a, 6-56
declaring maximum stack size of,

6-72
declaring number of active files

for, 6-50
declaring number of LUNs for, 6-77

INDEX

Task (Cont.) Task Builder (Cont.)
declaring object-level patches

for, 6-49
declaring ODT SST vector in, 6-63
declaring read-only partition for

multiuser, 6-71
declare record buffer size maxi

mum, 6-62
declaring synchronous system trap

vector address for a, 6-74
declaring UIC for time-based

schedule request, 6-76
effect of program section order

in creating, 6-38
enabling memory-resident overlay

operator, 6-27
enabling Postmortem Dump for, 6-25
enabling T-bit trace trapping in,

6-42
establishing privileged access

rights for, 6-26
example of transferring from host

to target system, 7-1
extending a program section in a,

6-54
extending to partition length,

6-64
identifying partition for, 6-64
including debugging aid (ODT) in,

6-12
indicating system mapping status

of, 6-21
inhibiting queuing of messages to,

6-28
list of attributes, 6-32, 6-33
making checkpointable, 6-9
patching relative to global

symbol, 6-58
relocation of, 2-10, 2-16
specifying as ancillary control

processor, 6-5
specifying use of floating point

processor in, 6-15
specifying use of KEll-A in, 6-14
specifying virtual program

section for a, 6-78
Task Builder,

exit on errors, 6-44
functions, 2-1
improving performance of, D-1 to

D-7 .
main function, 1-1
option for restarting input to,

6-48

Index-6

reserved symbols for, C-1
virtual memory error messages,

D-5, D-6
Task header,

controlling creation of, 6-17
space for EAE context, 6-14
space for floating point context,

6-15
Task image,

allocating additional (checkpoint)
space in, 6-6

checkpoint area within, B-7
d~fault type, 1-8

Task memory, 2-15

u
UFD

for Postmortem Dump, 8-1
Unamed program section, see blank

program section

v
Virtual address space,

mapped system, 2-10
unmapped system, 2-8

Virtual program section,
allocating physical memory to a,

3-56
building a task that uses a, 3-59
creating a, 3-53
specifying base address for a,

3-54
specifying physical size for a,

3-54
specifying window blocks for a,

3-59
specifyingwindow size for a, 3-54
support for a, 3-53

w
Window, 2-16
Window blocks, 2-16

creating, 3-50
Window descriptors, 4-21
Work file,

changing device to improve Task
Builder performance, D-6

Wrap around,
window, 3-56

READER'S COMMENTS

RSX-llM/M-PLUS
Task Builder Manual
AA-H266A-TC

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. If you require a written reply and are
eligible to receive one under Software Performance
Report {SPR) service, submit your comments on an SPR
form.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the
pac;re number.

PlE!ase indicate the type of reader that you most nearly represent.

[] Assembly language programmer

[] Higher-level language programmer

[] Occasional programmer (experienced)

[] User with little programming experience

[] Student programmer

[] Other (please specify>~~~~~~~~~~~~~~~~~~-

Name Date ___________ _

Or9anization--~----------------------------

Street

Ci 1:.Y.---·-----------State------- Zip Code ______ _
or

Country

- - - Do Not Tear - Fold Here and Tape - - - - - - - - - -

~n~nomo 1111 '

BUSINESS REPLY MAIL
FIRST CLASS PERMIT N0.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

RT/C SOFTWARE PUBLICATIONS TW/A14

DIGITAL EQUIPMENT CORPORATION

1925 ANDOVER STREET

TEWKSBURY, MASSACHUSETTS 01876

No Postage
Necessary

if Mailed in the
United States

- - - - Do Not Tear - Fold Here -

I
-= u

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	015
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	3-47
	3-48
	3-49
	3-50
	3-51
	3-52
	3-53
	3-54
	3-55
	3-56
	3-57
	3-58
	3-59
	3-60
	3-61
	3-62
	3-63
	3-64
	3-65
	3-66
	3-67
	3-68
	3-69
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	4-41
	4-42
	4-43
	4-44
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	6-34
	6-35
	6-36
	6-37
	6-38
	6-39
	6-40
	6-41
	6-42
	6-43
	6-44
	6-45
	6-46
	6-47
	6-48
	6-49
	6-50
	6-51
	6-52
	6-53
	6-54
	6-55
	6-56
	6-57
	6-58
	6-59
	6-60
	6-61
	6-62
	6-63
	6-64
	6-65
	6-66
	6-67
	6-68
	6-69
	6-70
	6-71
	6-72
	6-73
	6-74
	6-75
	6-76
	6-77
	6-78
	6-79
	7-01
	7-02
	7-03
	7-04
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	A-24
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	C-01
	C-02
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	E-01
	E-02
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	F-07
	F-08
	F-09
	F-10
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	replyA
	replyB

